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PREFACE

Mathematics consists of rigorous abstract reasoning.
At first, it can be intimidating; but learning about math
can help you appreciate its great practical usefulness and
even its beauty—both for the visual appeal of geometric
forms and the concise elegance of symbolic formulas
expressing complicated ideas.

Imagine that you are to build a bridge, or a radio, or a
bookcase. In each case you should plan first, before begin-
ning to build. In the process of planning you will develop
an abstract model of the finished object—and when you
do that, you are doing mathematics.

The purpose of this book is to collect in one place ref-
erence information that is valuable for students of math-
ematics and for persons with careers that use math. The
book covers mathematics that is studied in high school
and the early years of college. These are some of the gen-
eral subjects that are included (along with a list of a few
entries containing information that could help you get
started on that subject):

Arithmetic: the properties of numbers and the four
basic operations: addition, subtraction, multiplication,
division. (See also number, exponent, and logarithm.)

Algebra: the first step to abstract symbolic reasoning.
In algebra we study operations on symbols (usually let-
ters) that stand for numbers. This makes it possible to
develop many general results. It also saves work because
it is possible to derive symbolic formulas that will work
for whatever numbers you put in; this saves you from hav-
ing to derive the solution again each time you change the
numbers. (See also equation, binomial theorem, qua-
dratic equation, polynomial, and complex number.)

Geometry: the study of shapes. Geometry has great
visual appeal, and it is also important because it is an
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example of a rigorous logical system where theorems
are proved on the basis of postulates and previously
proved theorems. (See also pi, triangle, polygon, and
polyhedron.)

Analytic Geometry: where algebra and geometry
come together as algebraic formulas are used to describe
geometric shapes. (See also conic sections.)

Trigonometry: the study of triangles, but also much
more. Trigonometry focuses on six functions defined in
terms of the sides of right angles (sine, cosine, tangent,
secant, cosecant, cotangent) but then it takes many sur-
prising turns. For example, oscillating phenomena such
as pendulums, springs, water waves, light waves, sound
waves, and electronic circuits can all be described in
terms of trigonometric functions. If you program a com-
puter to picture an object on the screen, and you wish to
rotate it to view it from a different angle, you will use
trigonometry to calculate the rotated position. (See also
angle, rotation, and spherical trigonometry.)

Calculus: the study of rates of change, and much
more. Begin by asking these questions: how much does
one value change when another value changes? How fast
does an object move? How steep is a slope? These prob-
lems can be solved by calculating the derivative, which
also allows you to answer the question: what is the high-
est or lowest value? Reverse this process to calculate an
integral, and something amazing happens: integrals can
also be used to calculate areas, volumes, arc lengths, and
other quantities. A first course in calculus typically cov-
ers the calculus of one variable; this book also includes
some topics in multi-variable calculus, such as partial
derivatives and double integrals. (See also differential
equation.)

Probability and Statistics: the study of chance phe-
nomena, and how that study can be applied to the analy-
sis of data. (See also hypothesis testing and regression.)



Logic: the study of reasoning. (See also Boolean
algebra.)

Matrices and vectors: See vector to learn about quan-
tities that have both magnitude and direction; see matrix
to learn how a table of numbers can be used to find the
solution to an equation system with many variables.

A few advanced topics are briefly mentioned because
you might run into certain words and wonder what
they mean, such as calculus of variations, tensor, and
Maxwell’s equations.

In addition, several mathematicians who have made
major contributons throughout history are included.

The Appendix includes some formulas from algebra,
geometry, and trigonometry, as well as a table of integrals.

Demonstrations of important theorems, such as the
Pythagorean theorem and the quadratic formula, are
included. Many entries contain cross references indicating
where to find background information or further applica-
tions of the topic. A list of symbols at the beginning of the
book helps the reader identify unfamiliar symbols.

Douglas Downing, Ph.D.
Seattle, Washington
2009
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LIST OF SYMBOLS

Algebra

� equals
� is not equal
� is approximately equal
� is greater than
� is greater than or equal to
� is less than
� is less than or equal to
� addition
	 subtraction

, multiplication
�, / division

square root; radical symbol

nth root
! factorial

number of combinations of n things taken j at a
time; also the binomial theorem coefficient.

number of permutations of n things taken j at a
time

absolute value of x
∞ infinity

determinant of a matrix

Greek Letters
p pi (� 3.14159...)
� delta (upper case), represents change in
d delta (lower case)

 sigma (upper case), represents summation
s sigma (lower case), represents standard 

deviation

2 a b

c d
20x 0n

Pj

nCj,1nj 22n  

2 

#

ix



x

u theta (used for angles)
f phi (used for angles)
m mu, represents mean
e epsilon
x chi
r rho (correlation coefficient)
l lambda

Calculus
�x increment of x

derivative of y with respect to x

second derivative of y with respect to x

partial derivative of y with respect to x

S approaches
lim limit
e base of natural logarithms; e = 2.71828.
∫ integral symbol

indefinite integral

definite integral

Geometry
� degrees
m� perpendicular
� perpendicular, as in 

l angle

� triangle, as in �ABC
� congruent

AB�DC

�
b

a
f1x 2dx

�f1x 2dx

0y
0x

y– ,
d2y

dx2

y¿,
dy

dx



~ similar
parallel, as in 
arc, as in AB

— line segment, as in 

4 line, as in AB
4

S ray, as in 

Vectors
length of vector a
dot product
cross product

¥f gradient
¥ # f divergence 
¥ 
 f curl

Set Notation
{ } braces (indicating membership in a set)
� intersection
� union

empty set

Logic
S implication, as in aS b (IF a THEN b)
~ p the negation of a proposition p¿ conjunction (AND)
� disjunction (OR)
IFF,4 equivalence, (IF AND ONLY IF)

universal quantifier (means “For all x . . .”)
existential quantifier (means “There exists an 
x . . .”)

E
�x

�

a 
 b
a # b
� a �

AB
!

AB

��
AB � CD�

xi
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ABELIAN GROUP See group.

ABSCISSA Abscissa means x-coordinate. The abscissa of
the point (a, b) in Cartesian coordinates is a. For con-
trast, see ordinate.

ABSOLUTE EXTREMUM An absolute maximum or an
absolute minimum.

ABSOLUTE MAXIMUM The absolute maximum point for
a function y � f (x) is the point where y has the largest
value on an interval. If the function is differentiable, the
absolute maximum will either be a point where there is a
horizontal tangent (so the derivative is zero), or a point at
one of the ends of the interval. If you consider all values
of x (	∞ � x � ∞), the function might have a finite max-
imum, or it might approach infinity as x goes to infinity,
minus infinity, or both. For contrast, see local maximum.
For diagram, see extremum.

ABSOLUTE MINIMUM The absolute minimum point for
a function y � f (x) is the point where y has the smallest
value on an interval. If the function is differentiable, then
the absolute minimum will either be a point where there
is a horizontal tangent (so the derivative is zero), or a
point at one of the ends of the interval. If you consider
all values of x (	� � x � �), the function might have a
finite minimum, or it might approach minus infinity as x
goes to infinity, minus infinity, or both. For contrast, see
local minimum. For diagram, see extremum.

ABSOLUTE VALUE The absolute value of a real number
a, written as , is:

Figure 1 illustrates the absolute value function.

0a 0 � 	a if a � 0

0a 0 � a if a � 0

0a 0

1 ABSOLUTE VALUE



ACCELERATION 2

Absolute values are always positive or zero. If all the
real numbers are represented on a number line, you can
think of the absolute value of a number as being the dis-
tance from zero to that number. You can find absolute
values by leaving positive numbers alone and ignoring
the sign of negative numbers. For example,

The absolute value of a complex number a � bi is

.

ACCELERATION The acceleration of an object measures
the rate of change in its velocity. For example, if a car
increases its velocity from 0 to 24.6 meters per second
(55 miles per hour) in 12 seconds, its acceleration was
2.05 meters per second per second, or 2.05 meters/
second-squared.

If x(t) represents the position of an object moving in
one dimension as a function of time, then the first deriv-
ative, dx/dt, represents the velocity of the object, and the
second derivative, d2x/dt2, represents the acceleration.
Newton found that, if F represents the force acting on an
object and m represents its mass, the acceleration (a) is
determined from the formula F � ma.

2a2 � b2

0	105 0 � 105, 00 0 �  0
017 0 � 17,

Figure 1 Absolute value function



ACUTE ANGLE An acute angle is a positive angle smaller
than a 90� angle.

ACUTE TRIANGLE An acute triangle is a triangle
wherein each of the three angles is smaller than a 90�
angle. For contrast, see obtuse triangle.

ADDITION Addition is the operation of combining two num-
bers to form a sum. For example, 3 � 4 � 7. Addition sat-
isfies two important properties: the commutative property,
which says that

a � b � b � a for all a and b

and the associative property, which says that

(a � b) � c � a � (b � c) for all a, b, and c.

ADDITIVE IDENTITY The number zero is the additive
identity element, because it satisfies the property that the
addition of zero does not change a number: a � 0 � a
for all a.

ADDITIVE INVERSE The sum of a number and its addi-
tive inverse is zero. The additive inverse of a (written as
	a) is also called the negative or the opposite of a: a �
(	a) � 0. For example, 	1 is the additive inverse of 1,
and 10 is the additive inverse of 	10.

ADJACENT ANGLES Two angles are adjacent if they
share the same vertex and have one side in common
between them.

ALGEBRA Algebra is the study of properties of operations
carried out on sets of numbers. Algebra is a generaliza-
tion of arithmetic in which symbols, usually letters, are
used to stand for numbers. The structure of algebra is
based upon axioms (or postulates), which are statements
that are assumed to be true. Some algebraic axioms
include the transitive axiom:

if a � b and b � c, then a � c

3 ALGEBRA



and the associative axiom of addition:

(a � b) � c � a � (b � c)

These axioms are then used to prove theorems about
the properties of operations on numbers.

A common problem in algebra involves solving con-
ditional equations—in other words, finding the values of
an unknown that make the equation true. An equation of
the general form ax � b � 0, where x is unknown and a
and b are known, is called a linear equation. An equa-
tion of the general form ax2 � bx � c � 0 is called a
quadratic equation. For equations involving higher
powers of x, see polynomial. For situations involving
more than one equation with more than one unknown,
see simultaneous equations.

This article has described elementary algebra. Higher
algebra involves the extension of symbolic reasoning
into other areas that are beyond the scope of this book.

ALGORITHM An algorithm is a sequence of instructions
that tell how to accomplish a task. An algorithm must be
specified exactly, so that there can be no doubt about what
to do next, and it must have a finite number of steps.

AL-KHWARIZMI Muhammad Ibn Musa Al-Khwarizmi 
(c 780 AD to c 850 AD) was a Muslim mathematician
whose works introduced our modern numerals (the Hindu-
arabic numerals) to Europe, and the title of his book Kitab
al-jabr wa al-muqabalah provided the source for the term
algebra. His name is the source for the term algorithm.

ALTERNATE INTERIOR ANGLES When a transversal
cuts two lines, it forms two pairs of alternate interior
angles. In figure 2, �1 and �2 are a pair of alternate
interior angles, and �3 and �4 are another pair. A theo-
rem in Euclidian geometry says that, when a transversal
cuts two parallel lines, any two alternate interior angles
will equal each other.

ALGORITHM 4



ALTERNATING SERIES An alternating series is a series
in which every term has the opposite sign from the pre-
ceding term. For example, x 	 x3/3! � x5/5! 	 x7/7! �
x9/9! 	 . . . is an alternating series.

ALTERNATIVE HYPOTHESIS The alternative hypothe-
sis is the hypothesis that states, “The null hypothesis is
false.” (See hypothesis testing.)

ALTITUDE The altitude of a plane figure is the distance
from one side, called the base, to the farthest point. The
altitude of a solid is the distance from the plane containing
the base to the highest point in the solid. In figure 3, the
dotted lines show the altitude of a triangle, of a parallelo-
gram, and of a cylinder.

AMBIGUOUS CASE The term “ambiguous case” refers to
a situation in which you know the lengths of two sides of
a triangle and you know one of the angles (other than the
angle between the two sides of known lengths). If the
known angle is less than 90�, it may not be possible to
solve for the length of the third side or for the sizes of the
other two angles. In figure 4, side AB of the upper trian-
gle is the same length as side DE of the lower triangle,
side AC is the same length as side DF, and angle B is the

5 AMBIGUOUS CASE

Figure 2 Alternate interior angles



same size as angle E. However, the two triangles are
quite different. (See also solving triangles.)

AMPLITUDE The amplitude of a periodic function is one-
half the difference between the largest possible value of
the function and the smallest possible value. For example,
for y � sin x, the largest possible value of y is 1 and the
smallest possible value is 	1, so the amplitude is 1. In
general, the amplitude of the function y � A sin x is .0A 0

AMPLITUDE 6

Figure 4 Ambiguous case

Figure 3 Altitudes



ANALOG An analog system is a system in which numbers
are represented by a device that can vary continuously. For
example, a slide rule is an example of an analog calculat-
ing device, because numbers are represented by the dis-
tance along a scale. If you could measure the distances
perfectly accurately, then a slide rule would be perfectly
accurate; however, in practice the difficulty of making
exact measurements severely limits the accuracy of analog
devices. Other examples of analog devices include clocks
with hands that move around a circle, thermometers in
which the temperature is indicated by the height of the
mercury, and traditional records in which the amplitude of
the sound is represented by the height of a groove. For
contrast, see digital.

ANALYSIS Analysis is the branch of mathematics that stud-
ies limits and convergence; calculus is a part of analysis.

ANALYSIS OF VARIANCE Analysis of variance (ANOVA)
is a procedure used to test the hypothesis that three or more
different samples were all selected from populations with
the same mean. The method is based on a test statistic:

where n is the number of members in each sample, S*
2 is

the variance of the sample averages for all of the groups,
and S2 is the average variance for the groups. If the null
hypothesis is true and the population means actually are
all the same, this statistic will have an F distribution with
(m 	 1) and m(n 	 1) degrees of freedom, where m is the
number of samples. If the value of the test statistic is too
large, the null hypothesis is rejected. (See hypothesis
testing.) Intuitively, a large value of S*

2 means that the
observed sample averages are spread further apart,
thereby making the test statistic larger and the null
hypothesis less likely to be accepted.

F �
nS*

2

S2

7 ANALYSIS OF VARIANCE



ANALYTIC GEOMETRY Analytic geometry is the branch
of mathematics that uses algebra to help in the study of
geometry. It helps you understand algebra by allowing
you to draw pictures of algebraic equations, and it helps
you understand geometry by allowing you to describe
geometric figures by means of algebraic equations.
Analytic geometry is based on the fact that there is a one-
to-one correspondence between the set of real numbers
and the set of points on a number line. Any point in a
plane can be described by an ordered pair of numbers 
(x, y). (See Cartesian coordinates.) The graph of an
equation in two variables is the set of all points in the
plane that are represented by an ordered pair of numbers
that make the equation true. For example, the graph of the
equation x2 � y2 � 1 is a circle with its center at the ori-
gin and a radius of 1. (See figure 5.)

A linear equation is an equation in which both x and
y occur to the first power, and there are no terms con-
taining xy. Its graph will be a straight line. (See linear

ANALYTIC GEOMETRY 8

Figure 5 Equation of circle



equation.) When either x or y (or both) is raised to the
second power, some interesting curves can result. (See
conic sections; quadratic equations, two unknowns.)
When higher powers of the variable are used, it is possi-
ble to draw curves with many changes of direction. (See
polynomial.)

Graphs can also be used to illustrate the solutions for
systems of equations. If you are given two equations in
two unknowns, draw the graph of each equation. The
places where the two curves intersect will be the solu-
tions to the system of equations. (See simultaneous
equations.) Figure 6 shows the solution to the system of
equations y � x � 1, y � x2 � 1.

Although Cartesian, or rectangular, coordinates are
the most commonly used, it is sometimes helpful to use
another type of coordinates known as polar coordinates.

AND The word “AND” is a connective word used in logic.
The sentence “p AND q” is true only if both sentence p

9 AND

Figure 6



as well as sentence q are true. The operation of AND is
illustrated by the truth table:

AND is often represented by the symbol or &. An
AND sentence is also called a conjunction. (See logic;
Boolean algebra.)

ANGLE An angle is the union of two rays with a common
endpoint. If the two rays point in the same direction, then
the angle between them is zero. Suppose that ray 1 is
kept fixed, and ray 2 is pivoted counterclockwise about
its endpoint. The measure of an angle is a measure of
how much ray 2 has been rotated. If ray 2 is rotated a
complete turn, so that it again points in the same direc-
tion as ray 1, we say that it has been turned 360 degrees
(written as 360�) or 2p radians. A half turn measures
180�, or p radians. A quarter turn, forming a square cor-
ner, measures 90�, or p/2 radians. Such an angle is also
known as a right angle.

An angle smaller than a 90� angle is called an acute
angle. An angle larger than a 90� angle but smaller than
a 180� angle is called an obtuse angle. See figure 7.

For some mathematical purposes it is useful to 
allow for general angles that can be larger than 360�, or
even negative. A general angle still measures the amount
that ray 2 has been rotated in a counterclockwise direc-
tion. A 720� angle (meaning two full rotations) is the
same as a 360� angle (one full rotation), which in turn is
the same as a 0� angle (no rotation). Likewise, a 405�
angle is the same as a 45� angle (since 405 	 360 � 45).
(See figure 7.)

¿
p q p AND q
T T T
T F F
F T F
F F F

ANGLE 10



A negative angle is the amount that ray 2 has been
rotated in a clockwise direction. A 	90� angle is the
same as a 270� angle.

Conversions between radian and degree measure can
be made by multiplication:

(degree measure) � 
 (radian measure)

(radian measure) � 
 (degree measure)

One radian is about 57�.

p

180

180
p

11 ANGLE

Figure 7 Angles



ANGLE BETWEEN TWO LINES If line 1 has slope m1,
then the angle u1 it makes with the x-axis is arctan m1.
The angle between a line with slope m1 and another line
with slope m2 is arctan m2 	 arctan m1.

If v1 is a vector pointing in the direction of line 1, and
v2 is a vector pointing in the direction of line 2, then the
angle between them is:

(See dot product.)

ANGLE OF DEPRESSION The angle of depression for an
object below your line of sight is the angle whose vertex
is at your position, with one side being a horizontal ray in
the same direction as the object and the other side being
the ray from your eye passing through the object. (See
figure 8.)

ANGLE OF ELEVATION The angle of elevation for an
object above your line of sight is the angle whose vertex
is at your position, with one side being a horizontal ray
in the same direction as the object and the other side
being the ray from your eye passing through the object.
(See figure 8.)

arccos a v1
# v2

�v1� 
 �v2�
b

ANGLE BETWEEN TWO LINES 12
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ANGLE OF INCIDENCE When a light ray strikes a sur-
face, the angle between the ray and the normal to the sur-
face is called the angle of incidence. (The normal is the
line perpendicular to the surface.) If it is a reflective sur-
face, such as a mirror, then the angle formed by the light
ray as it leaves the surface is called the angle of reflec-
tion. A law of optics states that the angle of reflection is
equal to the angle of incidence. (See figure 9.)

See Snell’s law for a discussion of what happens
when the light ray travels from one medium to another,
such as from air to water or glass.

ANGLE OF INCLINATION The angle of inclination of a
line with slope m is arctan m, which is the angle the line
makes with the x-axis.

ANGLE OF REFLECTION See angle of incidence.

ANGLE OF REFRACTION See Snell’s law.

ANTECEDENT The antecedent is the “if” part of an
“if/then” statement. For example, in the statement “If he
likes pizza, then he likes cheese,” the antecedent is the
clause “he likes pizza.”

13 ANTECEDENT

Figure 9



ANTIDERIVATIVE An antiderivative of a function f (x)
is a function F(x) whose derivative is f (x) (that is,
dF(x)/dx � f (x)). F(x) is also called the indefinite inte-
gral of f (x).

ANTILOGARITHM If y � loga x, (in other words,
x � ay), then x is the antilogarithm of y to the base a. (See
logarithm.)

APOLLONIUS Apollonius of Perga (262 BC to 190 BC), a
mathematician who studied in Alexandria under pupils of
Euclid, wrote works that extended Euclid’s work in
geometry, particularly focusing on conic sections.

APOTHEM The apothem of a regular polygon is the dis-
tance from the center of the polygon to one of the sides
of the polygon, in the direction that is perpendicular to
that side.

ARC An arc of a circle is the set of points on the circle
that lie in the interior of a particular central angle.
Therefore an arc is a part of a circle. The degree mea-
sure of an arc is the same as the degree measure of the
angle that defines it. If u is the degree measure of an arc
and r is the radius, then the length of the arc is
2pru/360. For picture, see central angle.

The term arc is also used for a portion of any curve.
(See also arc length; spherical trigonometry.)

ARC LENGTH The length of an arc of a curve can be
found with integration. Let ds represent a very small seg-
ment of the arc, and let dx and dy represent the x and y
components of the arc. (See figure 10.)

Then:

ds � 2dx2 � dy2

ANTIDERIVATIVE 14



Rewrite this as:

Now, suppose we need to know the length of the arc
between the lines x � a and x � b. Set up this integral:

For example, the length of the curve y � x1.5 from a
to b is given by the integral:

� �
b

a

21 � 2.25x dx

s � �
b

a

21 � 11.5x.5 22dx
s � �

b

a
B1 � a dy

dx
b2

dx

ds � B1 � a dy
dx
b2

dx

15 ARC LENGTH

Figure 10 Arc length



Let u�1 � 2.25x; dx�du/2.25

ARCCOS If x � cos y, then y � arccos x. (See inverse
trigonometric functions.)

ARCCSC If x � csc y, then y � arccsc x. (See inverse
trigonometric functions.)

ARCCTN If x � ctn y, then y � arcctn x. (See inverse
trigonometric functions.)

ARCHIMEDES Archimedes (c 290 BC to c 211 BC) stud-
ied at Alexandria and then lived in Syracuse. He wrote
extensively on mathematics and developed formulas for
the volume and surface area of a sphere, and a way to cal-
culate the circumference of a circle. He also developed
the principle of floating bodies and invented military
devices that delayed the capture of the city by the
Romans.

ARCSEC If x � sec y, then y � arcsec x. (See inverse
trigonometric functions.)

ARCSIN If x � sin y, then y � arcsin x. (See inverse
trigonometric functions.)

ARCTAN If x � tan y, then y � arctan x. (See inverse
trigonometric functions.)

AREA The area of a two-dimensional figure measures how
much of a plane it fills up. The area of a square of side a

�
11 � 2.25b 21.5 	 11 � 2.25a 21.5

3.375

0 1�2.25b
1�2.25a�

1

1.5 
 2.25
u1.5

s � �
1�2.25b

1�2.25a

12u>2.25 2 du
ARCCOS 16



is defined as a2. The area of every other plane figure is
defined so as to be consistent with this definition. The
area postulate in geometry says that if two figures are
congruent, they have the same area. Area is measured in
square units, such as square meters or square miles. See
the Appendix for some common figures.

The area of any polygon can be found by breaking the
polygon up into many triangles. The areas of curved fig-
ures can often be found by the process of integration.
(See calculus.)

ARGUMENT (1) The argument of a function is the inde-
pendent variable that is put into the function. In the
expression sin x, x is the argument of the sine function.

(2) In logic an argument is a sequence of sentences
(called premises) that lead to a resulting sentence (called
the conclusion). (See logic.)

ARISTOTLE Aristotle (384 BC to 322 BC) wrote about
many areas of human knowledge, including the field of
logic. He was a student of Plato and also a tutor to
Alexander the Great.

ARITHMETIC MEAN The arithmetic mean of a group of
n numbers (a1, a2, . . . an), written as , is the sum of the
numbers divided by n:

The arithmetic mean is commonly called the average.
For example, if your grocery bills for 4 weeks are 
$59, $62, $64, and $71, then the average grocery bill is
256/4 � $64.

ARITHMETIC PROGRESSION See arithmetic
sequence.

a �
a1 � a2 � a3 � # # # � an

n

a

17 ARITHMETIC PROGRESSION



ARITHMETIC SEQUENCE An arithmetic sequence is a
sequence of n numbers of the form

ARITHMETIC SERIES An arithmetic series is a sum of
an arithmetic sequence:

In an arithmetic series the difference between any two
successive terms is a constant (in this case b). The sum of
the first n terms in the arithmetic series above is

For example:

ASSOCIATIVE PROPERTY An operation obeys the
associative property if the grouping of the numbers
involved does not matter. Formally, the associative prop-
erty of addition says that

for all a, b, and c.
The associative property for multiplication says that

For example:

� 3 � 14 � 5 2 � 3 � 9

13 � 4 2 � 5 � 7 � 5 � 12

1a 
 b 2 
 c � a 
 1b 
 c 2
1a � b 2 � c � a � 1b � c 2

�
6

2
�213 2 � 15 2 12 2� � 48

3 � 5 � 7 � 9 � 11 � 13

a
n	1

i�0
1a � ib 2 �

n

2
�2a � 1n 	 1 2b�

� 1a � 3b 2 � p � �a � 1n 	 1 2b�S � a � 1a � b 2 � 1a � 2b 2
a, a � b, a � 2b, a � 3b, . . . , a � 1n 	 1 2b
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ASYMPTOTE An asymptote is a straight line that is a close
approximation to a particular curve as the curve goes off to
infinity in one direction. The curve becomes very, very
close to the asymptote line, but never touches it. For exam-
ple, as x approaches infinity, the curve y � 2	x approaches
very close to the line y � 0, but it never touches that line.
See figure 11. (This is known as a horizontal asymptote.)
As x approaches 3, the curve y � 1/(x 	 3) approaches the
line x � 3. (This is known as a vertical asymptote.) For
another example of an asymptote, see hyperbola.

AVERAGE The average of a group of numbers is the same
as the arithmetic mean.

AXIOM An axiom is a statement that is assumed to be true
without proof. Axiom is a synonym for postulate.

AXIS (1) The x-axis in Cartesian coordinates is the line 
y � 0. The y-axis is the line x � 0.

� 5 
 16 
 7 2 � 5 
 42

15 
 6 2 
 7 � 30 
 7 � 210
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(2) The axis of a figure is a line about which the figure
is symmetric. For example, the parabola y � x2 is sym-
metric about the line x � 0. (See axis of symmetry.)

AXIS OF SYMMETRY An axis of symmetry is a line that
passes through a figure in such a way that the part of the
figure on one side of the line is the mirror image of the part
of the figure on the other side of the line. (See reflection.)
For example, an ellipse has two axes of symmetry: the
major axis and the minor axis. (See ellipse.)
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BASE (1) In the equation x � loga y, the quantity a is called
the base. (See logarithm.)

(2) The base of a positional number system is the
number of digits it contains. Our number system is a dec-
imal, or base 10, system; in other words, there are 10
possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. For example, the
number 123.789 means

In general, if b is the base of a number system, and the
digits of the number x are d4d3d2d1d0 then x � d4b

4 �
d3b

3 � d2b
2 � d1b � d0

Computers commonly use base-2 numbers. (See
binary numbers.)

(3) The base of a polygon is one of the sides of the
polygon. For an example, see triangle. The base of a
solid figure is one of the faces. For examples, see cone,
cylinder, prism, pyramid.

BASIC FEASIBLE SOLUTION A basic feasible solution
for a linear programming problem is a solution that satis-
fies the constraints of the problem where the number of
nonzero variables equals the number of constraints. (By
assumption we are ruling out the special case where more
than two constraints intersect at one point, in which case
there could be fewer nonzero variables than indicated
above.)

Consider a linear programming problem with m con-
straints and n total variables (including slack variables).
(See linear programming.) Then a basic feasible solu-
tion is a solution that satisfies the constraints of the prob-
lem and has exactly m nonzero variables and n 	 m
variables equal to zero. The basic feasible solutions will

� 8 
 10	2 � 9 
 10	3

1 
 102 � 2 
 101 � 3 
 100 � 7 
 10	1
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be at the corners of the feasible region, and an important
theorem of linear programming states that, if there is an
optimal solution, it will be a basic feasible solution.

BASIS A set of vectors form a basis if other vectors can be
written as a linear combination of the basis vectors. For
example, the vectors i � (1, 0) and j � (0, 1) form a basis
in ordinary two-dimensional space, since any vector 
(a, b) can be written as ai � bj.

The vectors in the basis need to be linearly independent;
for example, the vectors (1, 0) and (2, 0) won’t work as a
basis.

Suppose the vectors e1 and e2 form a basis. Write the
vector v as v1e1 � v2e2. To find the components v1 and v2,
find the dot products of the vector v with the two basis
vectors:

Write these equations with matrix notation

Now we can use a matrix inverse to find the compo-
nents:

If the basis vectors e1 and e2 are orthonormal, it becomes
much easier.

In that case:

Therefore, the matrix in the above equation is the
identity matrix, whose inverse is also the identity matrix,

e1
# e1 � 1, e2

# e2 � 1, and e1
# e2 � e2

# e1 � 0

£v1

v2

≥ � £e1
# e1 e1

# e2

e2
# e1 e2

# e2

≥	1£v # e1

v # e2

≥
£v # e1

v # e2

≥ � £e1
# e1 e1

# e2

e2
# e1 e2

# e2

≥ £v1

v2

≥
v # e2 � 1v1e1 � v2e2 2 # e2 � v1e1

# e2 � v2e2
# e2

v # e1 � 1v1e1 � v2e2 2 # e1 � v1e1
# e1 � v2e1

# e2
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and then the formula for the components becomes very
simple:

For example, if the basis vectors are (1, 0) and 
(0, 1), and vector v is (10, 20), then (10, 20) · (1, 0) gives
10, and (10, 20) · (0, 1) gives 20. In this case, you already
knew the components of the vector before you took the
dot products, but in other cases the result may not be so
obvious. For example, suppose that your basis vectors are
e1 � (3/5, 4/5) and e2 � (	4/5, 3/5). You can verify that
these form an orthonormal set. Then the components of
the vector (10, 12) in this basis become:

and the vector can be written:

BAYES Thomas Bayes (1702 to 1761) was an English
mathematician who studied probability and statistical
inference. (See Bayes’s rule.)

BAYES’S RULE Bayes’s rule tells how to find the conditional
probability Pr(B|A) (that is, the probability that event B will
occur, given that event A has occurred), provided that
Pr(A|B) and Pr(A|Bc) are known. (See conditional proba-
bility.) (Bc represents the event B-complement, which is the
event that B will not occur.) Bayes’s rule states:

Pr1B>A 2 �
Pr1A 0B 2Pr1B 2

Pr1A 0B 2Pr1B 2 � Pr1A 0Bc 2Pr1Bc 2

4 
 1	4>5, 3>5 2 � 22e1 � 4e2

110, 20 2 � 22 
 13>5, 4>5 2 �

110, 20 2 # 1	4>5, 3>5 2 � 	40>5 � 60>5 � 4

110, 20 2 # 13>5, 4>5 2 � 30>5 � 80>5 � 22

v2 � v # e2

v1 � v # e1
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For example, suppose that two dice are rolled. Let A be
the event of rolling doubles, and let B be the event where
the sum of the numbers on the two dice is greater than or
equal to 8. Then

Pr(A|B) refers to the probability of obtaining doubles
if the sum of the two numbers is greater than or equal to
8; this probability is 3/15 � 1/5. There are 15 possible
outcomes where the sum of the two numbers is greater
than or equal to 8, and three of these are doubles: (4, 4),
(5, 5), and (6, 6). Also, Pr(A|Bc) � 3/21 � 1/7 (the prob-
ability of obtaining doubles if the sum on the dice is less
than 8). Then we can use Bayes’s rule to find the proba-
bility that the sum of the two numbers will be greater than
or equal to 8, given that doubles were obtained:

BERNOULLI Jakob Bernoulli (1655 to 1705) was a Swiss
mathematician who studied concepts in what is now the
calculus of variations, particularly the catenary curve. His
brother Johann Bernoulli (1667 to 1748) also was a math-
ematician investigating these issues. Daniel Bernoulli
(1700 to 1782, son of Johann) investigated mathematics
and other areas. He developed Bernoulli’s theorem in fluid
mechanics, which governs the design of airplane wings.

BETWEEN In geometry point B is defined to be between
points A and C if AB � BC � AC, where AB is the dis-
tance from point A to point B, and so on. This formal

Pr1B 0A 2 �

1

5



5

12

1

5



5

12
�

1

7



7

12

�

1

12

1

12
�

1

12

�
1

2

Pr1Bc 2 �
21

36
�

7

12

Pr1A 2 �
6

36
�

1

6
; Pr1B 2 �

15

36
�

5

12
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definition matches our intuitive idea that a point is
between two points if it lies on the line connecting these
two points and has one of the two points on each side of it.

BICONDITIONAL STATEMENT A biconditional state-
ment is a compound statement that says one sentence is
true if and only if the other sentence is true.
Symbolically, this is written as p ↔ q, which means 
“p → q” and “q → p.” (See conditional statement.) For
example, “A triangle has three equal sides if and only if
it has three equal angles” is a biconditional statement.

BINARY NUMBERS Binary (base-2) numbers are written
in a positional system that uses only two digits: 0 and 1.
Each digit of a binary number represents a power of 2.
The rightmost digit is the 1’s digit, the next digit to the left
is the 2’s digit, and so on.

For example, the binary number 10101 represents

1 
 24 � 0 
 23 � 1 
 22 � 0 
 21 � 1 
 20

� 16 � 0 � 4 � 0 � 1 � 21

Here is a table showing some numbers in both binary and
decimal form:

Decimal Binary Decimal Binary
0 0 11 1011
1 1 12 1100
2 10 13 1101
3 11 14 1110
4 100 15 1111
5 101 16 10000

Decimal Binary
20 � 1 1
21 � 2 10
22 � 4 100
23 � 8 1000

24 � 16 10000
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Decimal Binary Decimal Binary
6 110 17 10001
7 111 18 10010
8 1000 19 10011
9 1001 20 10100

10 1010 21 10101

Binary numbers are well suited for use by computers,
since many electrical devices have two distinct states: on
and off.

BINOMIAL A binomial is the sum of two terms. For exam-
ple, (ax � b) is a binomial.

BINOMIAL DISTRIBUTION Suppose that you conduct
an experiment n times, with a probability of success of p
each time. If X is the number of successes that occur in
those n trials, then X will have the binomial distribution
with parameters n and p. X is a discrete random variable
whose probability function is given by

In this formula 

(See binomial theorem; factorial; combinations.)
The expectation is E(X ) � np; the variance is Var(X ) �

np(1 	 p). For example, roll a set of two dice five times,
and let X � the number of sevens that appear. Call it a “suc-
cess” if a seven appears. Then the probability of success is
1/6, so X has the binomial distribution with parameters 
n � 5 and p � 1/6. If you calculate the probabilities:

Pr(X � 0) � .402

Pr(X � 1) � .402

Pr1X � i 2 �
5!15 	 i 2!i! a 1

6
b i a 5

6
bn	 i

£n
i
≥ � n!>�1n 	 i 2!i!�.

f1i 2 � Pr1X � i 2 � £n
i
≥ pi11 	 p 2n	 i
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Pr(X � 2) � .161

Pr(X � 3) � .032

Pr(X � 4) � .003

Pr(X � 5) � .0001

Also, if you toss a coin n times, and X is the number
of heads that appear, then X has the binomial distribution
with :

BINOMIAL THEOREM The binomial theorem tells how
to expand the expression (a � b)n. Some examples of the
powers of binomials are as follows:

(a � b)0 � 1

(a � b)1 � a � b

(a � b)2 � a2 � 2ab � b2

(a � b)3 � a3 � 3a2b � 3ab2 � b3

(a � b)4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4

(a � b)5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

Some patterns are apparent. The sum of the exponents
for a and b is n in every term. The coefficients form an
interesting pattern of numbers known as Pascal’s trian-
gle. This triangle is an array of numbers such that any
entry is equal to the sum of the two entries above it.

In general, the binomial theorem states that

� # # # � a n

n 	 1
b abn	1 � an

n
bbn

1a � b 2n � an
0
b an � an

1
b an	1b � an

2
b an	2b2

Pr1X � i 2 � £n
i
≥ 2	n

p � 1
2
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The expression is called the binomial coeffi-

cient. It is defined to be

which is the number of ways of selecting n things, taken
j at a time, if you don’t care about the order in which the
objects are selected. (See combinations; factorial.) For
example:

The binomial theorem can be proven by using math-
ematical induction.

BISECT To bisect means to cut something in half. For
example, the perpendicular bisector of a line segment

is the line perpendicular to the segment and halfway
between A and B.

BIVARIATE DATA For bivariate data, you have observations
of two different quantities from each individual. (See cor-
relation; scatter graph.)

BOLYAI Janos Bolyai (1802 to 1860) was a Hungarian
mathematician who developed a version of non-
Euclidian geometry.

AB

an
n
b �

n!

0!n!
� 1

a n

n 	 1
b �

n!

1!1n 	 1 2! � n

an
2
b �

n!1n 	 2 2!2!
�
n1n 	 1 2

2

an
1
b �

n!1n 	 1 2!1!
� n

an
0
b �

n!

n!0!
� 1

an
j
b �

n!1n 	 j 2!j!
an
j
b
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BOOLE George Boole (1815 to 1865) was an English
mathematician who developed the symbolic analysis of
logic now known as Boolean algebra, which is used in
the design of digital computers.

BOOLEAN ALGEBRA Boolean algebra is the study of
operations carried out on variables that can have only two
values: 1 (true) or 0 (false). Boolean algebra was devel-
oped by George Boole in the 1850s; it is an important part
of the theory of logic and has become of tremendous
importance since the development of computers.
Computers consist of electronic circuits (called flip-flops)
that can be in either of two states, on or off, called 1 or 0.
They are connected by circuits (called gates) that represent
the logical operations of NOT, AND, and OR.

Here are some rules from Boolean algebra. In the fol-
lowing statements, p, q, and r represent Boolean variables
and4 represents “is equivalent to.” Parentheses are used
as they are in arithmetic: an operation inside parentheses is
to be done before the operation outside the parentheses.

Double Negation:
p ↔ NOT (NOT p)

Commutative Principle:
(p AND q) ↔ (q AND p)
(p OR q) ↔ (q OR p)

Associative Principle:
p AND (q AND r) ↔ (p AND q) AND r
p OR (q OR r) ↔ (p OR q) OR r

Distribution:
p AND (q OR r) ↔ (p AND q) OR (p AND r)
p OR (q AND r) ↔ (p OR q) AND (p OR r)

De Morgan’s Laws:
(NOT p) AND (NOT q) ↔ NOT (p OR q)
(NOT p) OR (NOT q) ↔ NOT (p AND q)
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Truth tables are a valuable tool for studying Boolean
expressions. (See truth table.) For example, the first dis-
tributive property can be demonstrated with a truth table:

q p p p ( p AND q)
OR AND AND AND OR

p q r r (q OR r) q r ( p AND r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

The fifth column and the last column are identical, so
the sentence “p AND (q OR r)” is equivalent to the sen-
tence “(p AND q) OR (p AND r).”

BOX-AND-WHISKER PLOT A box-and-whisker plot for
a set of numbers consists of a rectangle whose left edge
is at the first quartile of the data and whose right edge is
at the third quartile, with a left whisker sticking out to the
smallest value, and a right whisker sticking out to the
largest value. Figure 12 illustrates an example for a set of
numbers with smallest value 10, first quartile 20, median
35, third quartile 45, and largest value 65.
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C

CALCULUS Calculus is divided into two general areas:
differential calculus and integral calculus. The basic
problem in differential calculus is to find the rate of
change of a function. Geometrically, this means finding
the slope of the tangent line to a function at a particular
point; physically, this means finding the speed of an
object if you are given its position as a function of time.
The slope of the tangent line to the curve y � f (x) at a
point (x, f (x)) is called the derivative, written as y� or
dy/dx, which can be found from this formula:

where “lim” is an abbreviation for “limit,” and Δx means
“change in x.”

See derivative for a table of the derivatives of different
functions. The process of finding the derivative of a func-
tion is called differentiation.

If f is a function of more than one variable, as in f (x,
y) then the partial derivative of f with respect to x (writ-
ten as ∂f / ∂x) is found by taking the derivative of f with
respect to x, while assuming that y remains constant. (See
partial derivative.)

The reverse process of differentiation is integration
(or antidifferentiation). Integration is represented by the
symbol ∫:

If dy/dx � f (x), then:

This expression (called an indefinite integral) means
that F(x) is a function such that its derivative is equal 
to f (x):

y � �f1x 2dx � F1x 2 � C

y¿ �
dy

dx
� lim
¢xS0

f1x � ¢x 2 	 f1x 2
¢x
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C can be any constant number; it is called the arbitrary
constant of integration. A specific value can be assigned
to C if an initial condition is known. (See indefinite inte-
gral.) See integral to learn procedures for finding inte-
grals. The Appendix includes a table of some integrals.

A related problem is, What is the area under the curve
y � f (x) from x � a to x � b? (Assume that f (x) is con-
tinuous and always positive when a � x � b.) It turns out
that this problem can be solved by integration:

(area) � F(b) 	 F(a)

where F(x) is an antiderivative function: dF(x)/dx � f(x).
This area can also be written as a definite integral:

(See definite integral.) In general:

where

For other applications, see arc length; surface area,
figure of revolution; volume, figure of revolution;
centroid.

CALCULUS OF VARIATIONS In calculus of variations,
the problem is to determine a curve y(x) that minimizes
(or maximizes) the integral of a specified function over a
specific range:

J � �
b

a

f1x,y,y¿ 2dx

¢x �
b 	 a
n

, x1 � a, xn � b.

lim
¢xS0,nSqa

n

i�1
f1xi 2¢x � �

b

a

f1x 2dx
1area 2 � �

b

a

f1x 2dx � F1b 2 	 F1a 2

dF1x 2
dx

� f1x 2
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where y� is the derivative of y with respect to x (also known
as dy/dx).

To determine the function y, we will define a new
quantity Y:

where e is a new variable, and � can be any continuous
function as long as it meets these two conditions:

These conditions mean that the value for Y is the same
as the value of y at the two endpoints of our interval a and
b. Then J can be expressed as a function of e.

If e is zero, then Y becomes the same as y. If y were
truly the optimal curve, then any value of e other than
zero will pull the curve Y away from the optimum.
Therefore, the optimum of the function J(e) will occur at
e � 0, meaning that the derivative dJ/de will be zero
when e equals zero.

To find the derivative:

we can move the d/de inside the integral:

and use the chain rule:

dJ1e 2
de

� �
b

a

a 0f
0x
dx

de
�
0f
0Y
dY

de
�
0f
0Y¿
dY¿
de
bdx

dJ1e 2
de

� �
b

a

d

de
 f1x,Y,Y¿ 2dx

dJ1e 2
de

�
d

de �
b

a

f1x,Y,Y¿ 2dx

J1e 2 � �
a

b

f1x,Y,Y¿ 2dx
h1a 2 � 0; h1b 2 � 0

Y � y � eh
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Since x doesn’t depend on e, we have dx/de � 0. Also,
Y � y � e�, so 

and

Our equation becomes:

Use integration by parts on the second integral, with
u and dv defined as:

Then:

and

Using the integration by parts formula 

dJ1e 2
de

� �
b

a

0f
0Y
hdx �

0f
0Y¿
h ` b
a

	 �
b

a

h
d

dx

0f
0Y¿
dx

uv 	 	vdu:
	udv �

v � h

du

dx
�
d

dx

0f
0Y¿

dv �
dh

dx
dx

u �
0f
0Y¿

dJ1e 2
de

� �
b

a

a 0f
0Y
hbdx � �

b

a

a 0f
0Y¿
dh

dx
bdx

dJ1e 2
de

� �
b

a

a 0f
0Y
h �

0f
0Y¿
dn

dx
bdx

dY¿
de

�
dh

dx
.

dY>de � h; Y¿ �
dY

dx
�
dy

dx
� e
dh

dx
;
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The middle term becomes zero because the function
� is required to be zero for both a and b:

Recombine the integrals:

The only way that this integral is guaranteed to be
zero for any possible function � will be if this quantity is
always zero:

Since Y will be the same as y when e is zero, we have
this differential equation that the optimal function y must
satisfy:

This equation is known as the Euler-Lagrange 
equation.

For example, the distance along a path between the
two points (x � a, y � ya) and (x � b, y � yb) comes
from the integral (see arc length):

S � �
b

a

21 � y¿2dx

0f
0y

	
d

dx

0f
0y¿

� 0

0f
0Y

	
d

dx

0f
0Y¿

� 0

dJ1e 2
de

� �
b

a

h a 0f
0Y

	
d

dx

0f
0Y¿
bdx

dJ1e 2
de

� �
b

a

0f
0Y
hdx 	 �

b

a

h
d

dx

0f
0Y¿
dx

	 �
b

a

h
d

dx

0f
0Y¿
dx

dJ1e 2
de

� �
b

a

0f
0Y
hdx �

0f
0Y¿

�h1b 2 	 h1a 2�
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The function f is:

Find the partial derivatives:

We will guess that the shortest distance is the obvious
choice: the straight line given by the equation

Y � mx � b

where the slope m and intercept b are chosen so the line
passes through the two given points. In this case y��m,
which is a constant, so the formula above for will be a
constant that doesn’t depend on x. Therefore:

and the Euler-Lagrange equation is satisfied, confirming
what we expected—the straight line is the shortest dis-
tance between the two points.

Here is another example of this type of problem. You
need to design a ramp that will allow a ball to roll down-
hill between the point (0, 0) and the point (10, 	10) in the
least possible time. The correct answer is not a straight
line. Instead, the ramp should slope downward steeply at
the beginning so the ball picks up speed more quickly. The
solution to this problem turns out to be the cycloid curve:

x � a(� 	 sin�) y � 	a(1 	 cos �)

where the value of a is adjusted so the curve passes
through the desired final point; in our case, a equals
5.729. (See figure 13.)

d

dx

0f
0y¿

� 0

0f
0y ¿

0f
0y¿

� 0.511 � y¿2 2	0.52y¿ � 11 � y¿2 2	0.5y¿

0f
0y

� 0

f1x,y,y¿ 2 � 21 � y¿2
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CARTESIAN COORDINATES A Cartesian coordinate
system is a system whereby points on a plane are identi-
fied by an ordered pair of numbers, representing the dis-
tances to two perpendicular axes. The horizontal axis is
usually called the x-axis, and the vertical axis is usually
called the y-axis. (See figure 14). The x-coordinate is
always listed first in an ordered pair such as (x1, y1).
Cartesian coordinates are also called rectangular coordi-
nates to distinguish them from polar coordinates. A three-
dimensional Cartesian coordinate system can be
constructed by drawing a z-axis perpendicular to the x- and
y-axes. A three-dimensional coordinate system can label
any point in space.

CARTESIAN PRODUCT The Cartesian product of two
sets, A and B (written A 
 B), is the set of all possible
ordered pairs that have a member of A as the first entry
and a member of B as the second entry. For example, if
A � (x, y, z) and B � (1, 2), then A 
 B � {(x, 1), (x, 2),
(y, 1), (y, 2), (z, 1), (z, 2)}.
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CATENARY A catenary is a curve represented by the
formula

The value of e is about 2.718. (See e.) The value of a
is the y intercept. The catenary can also be represented by
the hyperbolic cosine function y � cosh x

The curve formed by a flexible rope allowed 
to hang between two posts will be a catenary. (See fig-
ure 15.)

CENTER (1) The center of a circle is the point that is the
same distance from all of the points on the circle.

(2) The center of a sphere is the point that is the same
distance from all of the points on the sphere.

(3) The center of an ellipse is the point where the two
axes of symmetry (the major axis and the minor axis)
intersect.

(4) The center of a regular polygon is the center of the
circle that can be inscribed in that polygon.

y �
1

2
a1ex>a � e	x>a 2
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CENTER OF MASS See centroid.

CENTRAL ANGLE A central angle is an angle that has its
vertex at the center of a circle. (See figure 16.)

CENTRAL LIMIT THEOREM See normal distribution.

CENTROID The centroid is the center of mass of an object.
It is the point where the object would balance if sup-
ported by a single support. For a triangle, the centroid is
the point where the three medians intersect. For a one-
dimensional object of length L, the centroid can be found
by using the integral
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where �(x) represents the mass per unit length of the
object at a particular location x. The centroid for two- or
three-dimensional objects can be found with double or
triple integrals.

CHAIN RULE The chain rule in calculus tells how to find
the derivative of a composite function. If f and g are func-
tions, and if y � f(g(x)), then the chain rule states that

For example, suppose that and you
are required to define these two functions:

Then y is a composite function: y�f (g(x)), and

Here are other examples (assume that a and b are
constants):

dy

dx
� aeaxy � eax

dy

dx
�

a

ax � b
y � ln 1ax � b 2

dy

dx
� a cos 1ax � b 2y � sin 1ax � b 2

dy

dx
�

1

2
g	1>2 6x � 3x11 � 3x2 2	1>2

dg

dx
� 6x

df

dg
�

1

2
g	1>2

g1x 2 � 1 � 3x2; f1g 2 � 1g
y � 21 � 3x2

dy

dx
�
df

dg

dg

dx

	L0 xrdx

	L0 rdx
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CHAOS Chaos is the study of systems with the property that
a small change in the initial conditions can lead to very
large changes in the subsequent evolution of the system.
Chaotic systems are inherently unpredictable. The
weather is an example; small changes in the temperature
and pressure over the ocean can lead to large variations in
the future development of a storm system. However,
chaotic systems can exhibit certain kinds of regularities.

CHARACTERISTIC The characteristic is the integer part
of a common logarithm. For example, log 115 � 2.0607,
where 2 is the characteristic and .0607 is the mantissa.

CHEBYSHEV Pafnuty Lvovich Chebyshev (1821 to 1894)
was a Russian mathematician who studied probability,
among other areas of mathematics. (See Chebyshev’s
theorem.)

CHEBYSHEV’S THEOREM Chebyshev’s theorem states
that, for any group of numbers, the fraction that will be
within k standard deviations of the mean will be at least
1 	 1/k2. For example, if k � 2, the formula gives the
value of . Therefore, for any group of numbers
at least 75 percent of them will be within two standard
deviations of the mean.

CHI-SQUARE DISTRIBUTION If Z1, Z2, Z3, . . . , Zn are
independent and identically distributed standard normal
random variables, then the random variable

will have the chi-square distribution with n degrees of
freedom. The chi-square distribution with n degrees of
freedom is symbolized by , since � is the Greek letter
chi. For the distribution, E(X) � n and Var(X) � 2n.

The chi-square distribution is used extensively in sta-
tistical estimation. (See chi-square test.) It is also used
in the definition of the t-distribution.

x2
n

x2
n

S � Z2
1 � Z2

2 � Z2
3 � # # # � Z2

n

1 	 1
4 � 3

4
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CHI-SQUARE TEST The chi-square test provides a method
for testing whether a particular probability distribution fits
an observed pattern of data, or for testing whether two fac-
tors are independent. The chi-square test statistic is calcu-
lated from this formula:

where fi is the actual frequency of observations, and fi* is
the expected frequency of observations if the null hypoth-
esis is true, and n is the number of comparisons being
made. If the null hypothesis is true, then the test statistic
will have a chi-square distribution. The number of degrees
of freedom depends on the number of observations. If the
computed value of the test statistic is too large, the null
hypothesis is rejected. (See hypothesis testing.)

CHORD A chord is a line segment that connects two points
on a curve. (See figure 17.)

CIRCLE A circle is the set of points in a plane that are all a
fixed distance from a given point. The given point is
known as the center. The distance from the center to a
point on the circle is called the radius (symbolized by r).
The diameter is the farthest distance across the circle; it is

1f1 	 f1* 22
f1*

�
1f2 	 f2* 22
f2*

� . . . �
1fn 	 fn* 22
fn*
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equal to twice the radius. The circumference is the dis-
tance you would have to walk if you walked all the way
around the circle. The circumference equals 2pr, where 
p � 3.14159. . . (See pi.)

The equation for a circle with center at the origin is 
x2 � y2 � r2. This equation is derived from the distance
formula. If the center is at (h, k), the equation is

(See figure 18.)
The area of a circle equals �r2. To show this, imagine

dividing the circle into n triangular sectors, each with an

area approximately equal to . (See figure 19.) To get

the total area of the circle, multiply by n:

(To be exact, you have to take the limit as the number
of triangles approaches infinity.)

1area 2 �
rC

2
� pr2

rC

2n

1x 	 h 22 � 1y 	 k 22 � r2
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CIRCLE GRAPH A circle graph illustrates what fraction of
a quantity belongs to different categories. (See pie chart.)

CIRCULAR FUNCTIONS The circular functions are the
same as the trigonometric functions.

CIRCUMCENTER The circumcenter of a triangle is the
center of the circle that can be circumscribed about the
triangle. It is at the point where the perpendicular bisec-
tors of the three sides cross. (See triangle.)

CIRCUMCIRCLE The circumcircle for a triangle is the
circle that can be circumscribed about the triangle. The
three vertices of the triangle are points on the circle. For
illustration, see triangle.

CIRCUMFERENCE The circumference of a closed curve
(such as a circle) is the total distance around the curve.
The circumference of a circle is 2�r, where r is the
radius. (See pi.) Formally, the circumference of a circle
is defined as the limit of the perimeter of a regular
inscribed n-sided polygon as the number of sides goes to
infinity. (See also arc length.)

CIRCUMSCRIBED A circumscribed circle is a circle that
passes through all of the vertices of a polygon. For an
example, see triangle. For contrast, see inscribed. In
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general, a figure is circumscribed about another if it sur-
rounds it, touching it at as many points as possible.

CLOCK ARITHMETIC Clock arithmetic describes the
behavior of numbers on the face of a clock. Eight hours
after three o’clock is eleven o’clock, so 3 � 8 � 11 in
clock arithmetic, just as with ordinary arithmetic.
However, ten hours after three o’clock is one o’clock,
so 3 � 10 � 1 in clock arithmetic. In general, if a � b � t
in ordinary arithmetic, then a � b � t MOD 12 in clock
arithmetic, where MOD denotes the operation of taking
the modulus or remainder, when t is divided by 12 (excep-
tion if the remainder is 0, call the result 12). Clock arith-
metic is also called modular arithmetic. Some other
properties of clock arithmetic are:

• 12 � x � x, so 12 acts as the equivalent of 0 in ordi-
nary arithmetic

• 12x � 12
• There are no negative numbers in clock arithmetic, but

12 	 x acts as the equivalent of 	x

Here is the addition table for clock arithmetic:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 1
2 3 4 5 6 7 8 9 10 11 12 1 2
3 4 5 6 7 8 9 10 11 12 1 2 3
4 5 6 7 8 9 10 11 12 1 2 3 4
5 6 7 8 9 10 11 12 1 2 3 4 5
6 7 8 9 10 11 12 1 2 3 4 5 6
7 8 9 10 11 12 1 2 3 4 5 6 7
8 9 10 11 12 1 2 3 4 5 6 7 8
9 10 11 12 1 2 3 4 5 6 7 8 9

10 11 12 1 2 3 4 5 6 7 8 9 10
11 12 1 2 3 4 5 6 7 8 9 10 11
12 1 2 3 4 5 6 7 8 9 10 11 12
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Each number in the box is the sum of the number at the
top and the number on the left.

Here is the multiplication table:

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 2 4 6 8 10 12
3 3 6 9 12 3 6 9 12 3 6 9 12
4 4 8 12 4 8 12 4 8 12 4 8 12
5 5 10 3 8 1 6 11 4 9 2 7 12
6 6 12 6 12 6 12 6 12 6 12 6 12
7 7 2 9 4 11 6 1 8 3 10 5 12
8 8 4 12 8 4 12 8 4 12 8 4 12
9 9 6 3 12 9 6 3 12 9 6 3 12

10 10 8 6 4 2 12 10 8 6 4 2 12
11 11 10 9 8 7 6 5 4 3 2 1 12
12 12 12 12 12 12 12 12 12 12 12 12 12

Each number in the box is the product of the number
at the top and the number on the left.

Clock arithmetic can also be defined using numbers
other than 12.

CLOSED CURVE A closed curve is a curve that com-
pletely encloses an area. (See figure 20.)

CLOSED INTERVAL A closed interval is an interval that
contains its endpoints. For example, the interval 0 � x �
1 is a closed interval because the two endpoints (0 and 1)
are included. For contrast, see open interval.

CLOSED SURFACE A closed surface is a surface that com-
pletely encloses a volume of space. For example, a sphere
(like a basketball) is a closed surface, but a teacup is not.

CLOSURE PROPERTY An arithmetic operation obeys
the closure property with respect to a given set of
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numbers if the result of performing that operation on two
numbers from that set will always be a member of that
same set. For example, the operation of addition is closed
with respect to the integers, but the operation of division
is not. (If a and b are integers, a � b will always be an
integer, but a /b may or may not be.)

Set
Natural Rational Real 

Operation Numbers Integers Numbers Numbers
addition closed closed closed closed
subtraction not closed closed closed closed
division not closed not closed closed closed
root extraction not closed not closed not closed not closed

COEFFICIENT Coefficient is a technical term for some-
thing that multiplies something else (usually applied to a
constant multiplying a variable). In the quadratic equation

A is the coefficient of x2, B is the coefficient of xy, and 
so on.

COEFFICIENT OF DETERMINATION The coefficient
of determination is a value between 0 and 1 that indicates
how well the variations in the independent variables in a

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0
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regression explain the variations in the dependent vari-
able. It is symbolized by r2. (See regression; multiple
regression.)

COEFFICIENT OF VARIATION The coefficient of vari-
ation for a list of numbers is equal to the standard devia-
tion for those numbers divided by the mean. It indicates
how big the dispersion is in comparison to the mean.

COFUNCTION Each trigonometric function has a cofunc-
tion. Cosine is the cofunction for sine, cotangent is the
cofunction for tangent, and cosecant is the cofunction
for secant. The cofunction of a trigonometric function f (x)
is equal to f (p/2 	 x). The name cofunction is used
because p/2 	 x is the complement of x. For example,
cos(x) � sin(p/2 	 x).

COLLINEAR A set of points is collinear if they all lie on the
same line. (Note that any two points are always collinear.)

COMBINATIONS The term combinations refers to the
number of possible ways of arranging objects chosen
from a total sample of size n if you don’t care about the
order in which the objects are arranged. The number of
combinations of n things, taken j at a time, is n!/[(n 	
j)!j!], which is written as

or else as nCj . (See factorial; binomial theorem.)
For example, the number of possible poker hands is

equal to the number of possible combinations of five
objects drawn (without replacement) from a sample of 52
cards. The number of possible hands is therefore:

� 2,598,960

£52

5
≥ �

52!

47!5!
�

52 
 51 
 50 
 49 
 48

5 
 4 
 3 
 2 
 1

an
j
b �

n!1n 	 j 2!j!
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This formula comes from the fact that there are n
ways to choose the first object, n 	 1 ways to choose the
second object, and therefore

ways of choosing all j objects. This expression is equal to
n!/(n 	 j)!. However, this method counts each possible
ordering of the objects separately. (See permutations.)
Many times the order in which the objects are chosen
doesn’t matter. To find the number of combinations, we
need to divide by j!, which is the total number of ways of
ordering the j objects. That makes the final result for the
number of combinations equal to n!/[(n 	 j)!j!].

Some special values of the combinations formula are:

Also, in general:

Counting the number of possible combinations for
arranging a group of objects is important in probability.
Suppose that both you and your dream lover (whom
you’re desperately hoping to meet) are in a class of 20
people, and five people are to be randomly selected to be
on a committee. What is the probability that both you and
your dream lover will be on the committee? The total
number of ways of choosing the committee is£20

 5
≥ �

20!

5!15!
� 15, 504

an
j
b � a n

n 	 j
b

an
1
b � a n

n 	 1
b � n

an
0
b � an

n
b � 1


 1n 	 j � 1 2n 
 1n 	 1 2 
 1n 	 2 2 
 p 1n 	 j � 2 2
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Next, you need to calculate how many possibilities
include both of you on the committee. If you’ve both
been selected, then the other three members need to be
chosen from the 18 remaining students, and there are

ways of doing this. Therefore the probability that you’ll
both be selected is 816/15,504 � .053.

COMMON LOGARITHM A common logarithm is a log-
arithm to the base 10. In other words, if y � log10 x, then
x � 10y. Often log10 x is written as log x, without the sub-
script 10. (See logarithm.) Here is a table of some com-
mon logarithms (expressed as four-digit decimal
approximations):

x log x x log x
1 0 7 0.8451
2 0.3010 8 0.9031
3 0.4771 9 0.9542
4 0.6021 10 1.0000
5 0.6990 50 1.6990
6 0.7782 100 2.0000

COMMUTATIVE PROPERTY An operation obeys the
commutative property if the order of the two numbers
involved doesn’t matter. The commutative property for
addition states that

a � b � b � a

for all a and b. The commutative property for multiplica-
tion states that

ab � ba

£18

 3
≥ �

18!

3!15!
� 816
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for all a and b. For example, 3 � 6 � 6 � 3 � 9, and 
6 
 7 � 7 
 6 � 42. Neither subtraction, division, nor
exponentiation obeys the commutative property:

COMPASS A compass is a device consisting of two
adjustable legs (figure 21), used for drawing circles and
measuring off equal distance intervals. (See geometric
construction.)

COMPLEMENT OF A SET The complement of a set A
consists of the elements in a particular universal set that
are not elements of set A. In the Venn diagram (figure 22)
the shaded region is the complement of set A.

COMPLEMENTARY ANGLES Two angles are comple-
mentary if the sum of their measures is 90 degrees (= p/2
radians). For example, a 35° angle and a 55° angle are
complementary. The two smallest angles in a right triangle
are complementary.

5 	 3 � 3 	 5,
3

4
�

4

3
, 23 � 32
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COMPLETING THE SQUARE Sometimes an algebraic
equation can be simplified by adding an expression to both
sides that makes one part of the equation a perfect square.

For example, see quadratic equation.

COMPLEX FRACTION A complex fraction is a fraction
in which either the numerator or the denominator or both
contain fractions. For example,

is a complex fraction. To simplify the complex fraction,
multiply both the numerator and the denominator by the
reciprocal of the denominator:

COMPLEX NUMBER A complex number is formed by
adding a pure imaginary number to a real number. The
general form of a complex number is a � bi, where a and
b are both real numbers and i is the imaginary unit:
i2 � 	1. The number a is called the real part of the

2

3

4

5

�

2

3



5

4

4

5



5

4

�
10
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5
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complex number, and b is the imaginary part. Two com-
plex numbers are equal to each other only when both their
real parts and their imaginary parts are equal to each other.

Complex numbers can be illustrated on a two-dimen-
sional graph, much like a system of Cartesian coordi-
nates. The real axis is the same as the real number line,
and the imaginary axis is a line drawn perpendicular to
the real axis. (See figure 23.)

To add two complex numbers, add the real parts and
the imaginary parts separately:

(a � bi) � (c � di) � (a � c) � (b � d)i

Two complex numbers can be multiplied in the same
way that you multiply two binomials:

The absolute value of a complex number (a�bi) is the
distance from the point representing that number in the
complex plane to the origin, which is equal to .
The complex conjugate of (a � bi) is defined to be 

2a2 � b2

� 1ac 	 bd 2 � 1ad � bc 2i� ac � adi � bci � bdi2
1a � bi 2 1c � di 2 � a1c � di 2 � bi1c � di 2
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(a 	 bi). The product of any complex number with its con-
jugate will be a real number, equal to the square of its
absolute value:

Complex numbers are also different from real num-
bers in that you can’t put them in order.

Complex numbers can also be expressed in polar
form:

where r is the absolute value and � is
the angle of inclination: b/a � tan u. (See polar coordi-
nates.)

Multiplication is easy for two complex numbers in
polar form:

In words: to multiply two polar form complex numbers,
multiply their absolute values and then add their angles.

To raise a polar form complex number to a power, use
this formula:

(See also De Moivre’s theorem.)

COMPONENT In the vector (a, b, c), the numbers a, b, and
c are known as the components of the vector.

COMPOSITE FUNCTION A composite function is a
function that consists of two functions arranged in such a
way that the output of one function becomes the input of

�r1 cosu � isinu 2�n � rn �cos 1nu 2 � isin 1nu 2�

� r1r2�cos 1u1 � u2 2 � i sin 1u1 � u2 2��r11 cosu1 � i sinu1 2� 
 �r21 cosu2 � i sinu2 2�

1r � 2a2 � b2 21a � bi 2 � r1 cosu � isinu 2

� a2 � b2

1a � bi 2 1a 	 bi 2 � a2 � abi 	 abi 	 b2i2
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the other function. For example, if , and
g(x) � 5x, then the composite function f (g(x)) is the func-
tion . To find the derivative of a composite func-
tion, see chain rule.

Composing functions is not a commutative operation;
that is, f (g(x)) does not equal g(f (x)).

COMPOSITE NUMBER A composite number is a natural
number that is not a prime number. Therefore, it can be
expressed as the product of two natural numbers other
than itself and 1.

COMPOUND INTEREST If A dollars are invested in an
account paying compound interest at an annual rate r,
then the balance in the account after n years will be 
A(1 � r)n. The same formula works if the compounding
period is different from one year, provided that n is the
number of compounding periods and r is the rate per
period. For example, the interest might be compounded
once per month.

COMPOUND SENTENCE In logic, a compound sentence
is formed by joining two or more simple sentences
together with one or more connectives, such as AND,
OR, NOT, or IF/THEN. (See logic; Boolean algebra.)

CONCAVE A set of points is concave if it is possible to
draw a line segment that connects two points that are in
the set, but includes also some points that are not in the
set. (See figure 24.) Note that a concave figure looks as
though it has “caved” in. For contrast, see convex.

In figure 25, curve A is oriented so that its concave side
is down; curve B is oriented so that its concave side is up.
If the curve represents the graph of y � f (x), then the curve
will be oriented concave up if the second derivative y� is
positive; it will be oriented concave down if the second
derivative is negative.

15x � 3

f1u 2 � 1u � 3
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CONCLUSION The conclusion is the phrase in an argument
that follows as a result of the premises. (See logic.) In a
conditional statement the conclusion is the “then” part of
the statement. It is the part that is true if the antecedent (the
“if ” part) is true. For example, in the statement “If he likes
pizza, then he likes cheese,” the conclusion is the clause
“he likes cheese.” The conclusion of a conditional state-
ment is also called the consequent.

CONDITIONAL EQUATION A conditional equation is an
equation that is true only for some values of the unknowns
contained in the equation. For contrast, see identity.

CONDITIONAL PROBABILITY The conditional proba-
bility that event A will occur, given that event B has
occurred, is written Pr(A|B) (read as “A given B”). It can
be found from this formula:

CONCLUSION 56

Figure 24 Concave set

Figure 25



For example, suppose you toss two dice. Let A be the
event that the sum is 8; let B be the event that the num-
ber on the first die is 5. If you don’t know the number of
the first die, then you can find that Pr(A) � 5/36. Using
the conditional probablity formula, we can find:

Therefore, a knowledge of the number on the first die
has changed the probability that the sum will be 8. If C
is the event that the first die is 1, then .
(See also Bayes’s rule.)

CONDITIONAL STATEMENT A conditional statement is
a statement of this form: “If a is true, then b is true.”
Symbolically, this is written as aS b (“a implies b”). For
example, the statement “If a triangle has three equal sides,
then it has three equal angles” is true, but the statement “If
a quadrilateral has four equal sides, then it has four equal
angles” is false.

CONE A cone (figure 26) is formed by the union of all line
segments that connect a given point (called the vertex)
and the points on a closed curve that is not in the same
plane as the vertex. If the closed curve is a circle, then the
cone is called a circular cone. The region enclosed by the
circle is called the base. The distance from the plane con-
taining the base to the vertex is called the altitude. The
volume of the cone is equal to (base area)(altitude).

Each line segment from the vertex to the circle is
called an element of the cone. An ice cream cone is an
example of a cone. The term cone also refers to the 
figure formed by all possible lines that pass through both
the vertex point and a given circle. This type of cone goes
off to infinity in two directions. (See conic section.)

1
3

Pr1A ƒC 2 � 0

Pr1A ƒB 2 �
1>36

1>6 �
6

36
�

1

6

Pr1A ƒB 2 �
Pr1AAND B 2

Pr1B 2
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CONFIDENCE INTERVAL A confidence interval is an
interval based on observations of a sample constructed so
that there is a specified probability that the interval con-
tains the unknown true value of a population parameter.
It is common to calculate confidence intervals that have
a 95 percent probability of containing the true value.

For example, suppose that you are trying to estimate
the mean weight of loaves of bread produced at a bakery.
It would be too expensive to weigh every single loaf, but
you can estimate the mean by selecting and weighing a
random sample of loaves. Suppose that the weights of the
entire population of loaves have a normal distribution
with mean �, whose value is unknown, and a standard
deviation sigma �, whose value is known. Suppose also
that you have selected a sample of n loaves and have
found that the average weight of this sample is . (The
bar over the x stands for “average.”) Because of the prop-
erties of the normal distribution, will have a normal
distribution with mean � and standard deviation .

Now define Z as follows:

Z �
2n1x 	 m 2

s

s>1nx

x
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Z will have a standard normal distribution (that is, a nor-
mal distribution with mean 0 and standard deviation 1).
There is a 95 percent chance that a standard normal ran-
dom variable will be between 	1.96 and 1.96:

Therefore:

which can be rewritten as

The last equation tells you how to calculate 
the confidence interval. There is a 95 percent chance that
the interval from to will
contain the true value of the mean m.

However, in many practical situations you will not
know the true value of the population standard deviation,
s, and therefore cannot use the preceding method.
Instead, after selecting your random sample of size n, you
will need to calculate both the sample average, , and the
sample standard deviation, s:

The confidence interval calculation is based on the fact
that the quantity will have a t-distrib-
ution with n 	 1 degrees of freedom. (See t distribution.)
Note that the quantity T is the same as the quantity Z used
above, except that the known value of the sample stan-
dard deviation s has been substituted for the population
standard deviation, s, which is now unknown. Now you
need to use a computer or look in a t-distribution table for
a value (a) such that Pr(	a � T � a) � .95, where T has

T � 1n1x 	 m 2>s
s � B

1x1 	 x 22 � 1x2 	 x 22 � . . . � 1xn 	 x 22
n 	 1

x

x � 1.96s>1nx 	 1.96s>1n
Pr ax 	

1.96s

2n � m � x �
1.96s

2n b � .95

Pr a	1.96 �
2n1X 	 m 2

s
� 1.96b � .95.

Pr1	1.96 � Z � 1.96 2 � .95
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a t distribution with the appropriate degrees of freedom.
Then the 95 percent confidence interval for the unknown
value of m is from

For example, suppose you are investigating the mean
commuting time along a particular route into the city.
You have recorded the commuting times for 7 days:

39, 43, 29, 52, 35, 38, 39

and would like to calculate a 95 percent confidence inter-
val for the mean commuting time. Calculate the sample
average, . Then calculate the sample stan-
dard deviation s � 7.088. Look for a t-distribution with
7 	 1� 6 degrees of freedom to find the value a � 2.447.
Then the 95 percent confidence interval is

which is from 32.730 to 45.841.

CONGRUENT Two polygons are congruent if they have
exactly the same shape and exactly the same size. In
other words, if you pick one of the polygons up and put
it on top of the other, the two would match exactly. Each
side of one polygon is exactly the same length as one
side of the congruent polygon These two sides with the
same length are called corresponding sides. Also, each
angle on one polygon has a corresponding angle on the
other polygon. All of the pairs of corresponding angles
are equal. See triangle for some examples of ways to
prove that two triangles are congruent.

CONIC SECTIONS The four curves—circles, ellipses,
parabolas, and hyperbolas (figures 27 and 28)—are
called conic sections because they can be formed by the

39.286 �
2.447 
 7.088

27

x �  39.286

x 	
as

2n to x �
as

2n
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intersection of a plane with a right circular cone. If the
plane is perpendicular to the axis of the cone, the inter-
section will be a circle. If the plane is slightly tilted, the
result will be an ellipse. If the plane is parallel to one ele-
ment of the cone, the result will be a parabola. If the
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Figure 27 Conic sections

Figure 28 Hyperbola as a conic section



plane intersects both parts of the cone, the result will be
a hyperbola. (Note that a hyperbola has two branches.)

There is another definition of conic sections that
makes it possible to define parabolas, ellipses, and
hyperbolas by one equation. A conic section can be
defined as a set of points such that the distance from a
fixed point divided by the distance from a fixed line is a
constant. The fixed point is called the focus, the fixed
line is called the directrix, and the constant ratio is called
the eccentricity of the conic section, or e. When e � 1
this definition exactly matches the definition of a
parabola. If e ≠ 1, you can find the equation for a conic
section with the line x � 0 as the directrix and the point
(p, 0) as the focus (figure 29):

21x 	 p 22 � y2

x
� e
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Simplifying:

Complete the square by adding and subtracting 
p2/(1 	 e2)2:

This equation can be rewritten as

where

and

If e � 1, then B is positive, and this is the standard
equation of an ellipse with center at (h, 0). If e � 1, then
B is negative, and this is the standard equation of a
hyperbola.

CONJECTURE A conjecture is a statement that seems to
be true, but it has not yet been proved. For an example,
see Fermat’s last theorem. For contrast, see theorem.

B �
e2p2

1 	 e2

h �
p

1 	 e2
, a2 �

e2p211 	 e2 22
1x 	 h 22
a2 �

y2

B
� 1

cx 	 a p

1 	 e2
b d 2 �

y2

1 	 e2
�

e2p211 	 e2 22
�

y2

1 	 e2
�

p2

1 	 e2
� 0

x2 	
2px

1 	 e2
�

p211 	 e2 22 	
p211 	 e2 22

x2 	
2px

1 	 e2
�

y2

1 	 e2
�

p2

1 	 e2
� 0

x211 	 e2 2 	 2px � y2 � p2 � 0
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CONJUGATE The conjugate of a complex number is
formed by reversing the sign of the imaginary part. The
conjugate of a � bi is a 	 bi. (See complex number.)
The product of a complex number with its conjugate will
always be a nonnegative real number:

If a complex number a � bi occurs in the denomina-
tor of a fraction, it helps to multiply both the numerator
and the denominator of the fraction by a 	 bi:

CONJUNCTION A conjunction is an AND statement of
this form: “A and B.” It is true only if both A and B are
true. For example, the statement “Two points determine
a line and three noncollinear points determine a plane” is
true, but the statement “Triangles have three sides and
pentagons have four sides” is false.

CONSEQUENT The consequent is the part of a conditional
statement that is true if the other part (the antecedent) is
true. The consequent is the “then” part of a conditional
statement. For example, in the statement “If he likes
pizza, then he likes cheese,” the consequent is the clause
“he likes cheese.” The consequent is also called the con-
clusion of a conditional statement.

CONSISTENT ESTIMATOR A consistent estimator is an
estimator that tends to converge toward the true value of
the parameter it is trying to estimate as the sample size
becomes larger. (See statistical inference.)

CONSTANT A constant represents a quantity that does not
change. It can be expressed either as a numeral or as a

�
12 	 18i � 8i 	 12i2

16 	 24i � 24i 	 36i2
�

6

13
	

5

26
i

3 � 2i

4 � 6i
�
13 � 2i 2 14 	 6i 214 � 6i 2 14 	 6i 2

� a2 � b2

1a � bi 2 1a 	 bi 2 � a2 	 abi � abi 	 b2i2
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letter (or other variable name) whose value is taken to be
a constant.

CONTINUOUS A continuous function is one that you can
graph without lifting your pencil from the paper. (See
figure 30.) Most functions that have practical applica-
tions are continuous, but it is easy to think of examples
of discontinuous functions. The formal definition of 
continuous is: The graph of y � f(x) is continuous at a
point a if (1) f(a) exists; (2) exists; and 
(3) . A function is continuous if it is
continuous at each point in its domain.

limxSa f1x 2 � f1a 2 limxSa f1x 2
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Figure 30

Figure 31 Density function for continuous random
variable

CONTINUOUS RANDOM VARIABLE A continuous
random variable is a random variable that can take on any
real-number value within a certain range. It is character-
ized by a density function curve such that the area under
the curve between two numbers represents the probability
that the random variable will be between those two num-
bers. (See figure 31.)



The area can be expressed by this integral:

where X is the random variable and f(x) is the density
function. The density function must satisfy

In words: the total area under the density function
must be one, or Pr(	∞ � X � ∞) � 1

For examples of continuous random variable distribu-
tions, see normal distribution, chi-square distribution,
t-distribution, F-distribution. For contrast, see discrete
random variable.

CONTRADICTION A contradiction is a statement that is
necessarily false because of its logical structure, regardless
of the facts. For example, the statement “p AND (NOT p)”
is false, regardless of what p represents. The negation of a
contradiction is a tautology.

CONTRAPOSITIVE The contrapositive of the statement
is the statement . The

contrapositive is equivalent to the original statement. If
the original statement is true, the contrapositive is true; if
the original statement is false, the contrapositive is false.
For example, the statement “If x is a rational number,
then x is a real number” has the contrapositive “If x is not
a real number, then it is not a rational number.”

CONTRAVARIANT VECTOR, COVARIANT VEC-
TOR Suppose these equations define a coordinate trans-
formation:

x¿2 � a21x1 � a22x2

x¿1 � a11x1 � a12x2

1NOT A 21NOT B 2SASB

�
q

	q

f1x 2dx � 1

Pr 1a � X � b 2 � �
b

a

f1x 2dx
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Write the transformation with matrix notation:

Where (x1, x2) are the components of the vector in the
original coordinates, and are the components in
the new coordinates. For example, a rotation would be
an example of this type of transformation. A vector that
transforms this way is called a contravariant vector.

The inverse transformation is:

where the b’s represent the elements of the inverse of the
a matrix.

Now consider the gradient of a function f (x1, x2):

To find the coordinates of the gradient in the new coor-
dinate system, we have:

Let (§1, §2) represent the components of the gradient in
the original coordinate system and represent the
components of the gradient in the transformed coordi-
nate system. Then:a §¿1

§¿2
b � aa11 a12

a21 a22
b	1 a §1

§2
b

1§¿1,§¿2 2
0f
0x1¿

�
0f
0x1¿
b11 �

0f
0x2
b21

0f
0x1¿

�
0f
0x1

dx1

dx1¿
�
0f
0x2

dx2

dx1¿

§f � a 0f
0x1

 , 
0f
0x2
b

� ab11 b12

b21 b22
b ax¿1
x¿2
b

ax¿1
x¿2
b � aa11 a12

a21 a22
b	1 ax¿1

x¿2
b

1x¿1, x¿2 2
ax¿1
x¿2
b � aa11 a12

a21 a22
b ax1

x2
b
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A vector that transforms in this way is called a covari-
ant vector. In general, the components of a contravariant
vector transform by multiplying by the matrix A that
defines the transformation and the components of a
covariant vector transform by multiplying by the inverse
of A.

CONVERGENT SERIES A convergent series is an infi-
nite series that has a finite sum. For example, the series

is convergent if , in which case the sum of the
series is

If , then the sum of the series is infinite and
it is called a divergent series.

CONVERSE The converse of an IF-THEN statement is
formed by interchanging the “if” part and the “then” part:

statement:

converse:

The converse of a true statement may be true, or it
may be false. For example:

Statement (true) “If a triangle is a right triangle, then
the square of the length of the longest side is equal to the
sums of the squares of the lengths of the other two sides.”

Converse (true) “If the square of the longest side of
a triangle is equal to the sums of the squares of the other
two sides, then the triangle is a right triangle.”

Statement (true) “If you’re in medical school now,
then you had high grades in college.”

Converse (false) “If you had high grades in college,
then you’re in medical school now.”

b S a
a S b

ƒ x ƒ �  1

1

1 	 x

ƒ x ƒ � 1

1 � x � x2 � x3 � x4 � . . .
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CONVEX A set of points is convex if, for any two points in
the set, all the points on the line segment joining them are
also in the set. (See figure 32.) For contrast, see concave.

COORDINATES The coordinates of a point are a set of num-
bers that identify the location of that point. For example:

(x � 1, y � 2) are Cartesian coordinates for a point in
two-dimensional space.

(r � 3, � � 45°) are polar coordinates for a point in
two-dimensional space.

(x � 4, y � 5, z � 6) are Cartesian coordinates for a
point in three-dimensional space.

(latitude � 51 degrees north, longitude � 0 degree)
are the terrestrial coordinates of the city of London.

(declination � 	5 degrees, 25 minutes, right ascen-
sion � 5 hours 33 minutes) are the celestial coordinates
of the Great Nebula in Orion.

(See Cartesian coordinates; polar coordinates.)

COPLANAR A set of points is coplanar if they all lie in the
same plane. Any three points are always coplanar. The
vertices of a triangle are coplanar, but not the vertices of
a pyramid. Two lines are coplanar if they lie in the same
plane, that is, if they either intersect or are parallel.

COROLLARY A corollary is a statement that can be proved
easily once a major theorem has been proved.
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CORRELATION COEFFICIENT The correlation coeffi-
cient between two random variables X and Y (written as
r or �) is defined to be:

Cov(X, Y) is the covariance between X and Y; �X and
�Y are the standard deviations of X and Y, respectively;
and E stands for expectation.

The correlation coefficient is always between 	1 and 1.
It tells whether or not there is a linear relationship between
X and Y. If Y � aX � b, where a and b are constants and 
a � 0, then r � 1. If a � 0, then r � 	1. If X and Y are
almost, but not quite, linearly related, then r will be close to
1. If X and Y are completely independent, then r � 0.

Observations of two variables can be used to estimate
the correlation between them. For some examples, see
regression.

CORRESPONDING ANGLES (1) When a transversal cuts
two lines, it forms four pairs of corresponding angles. In
figure 33, angle 1 and angle 2 are a pair of corresponding
angles. Angle 3 and angle 4 are another pair. In Euclidian
geometry, if a transversal cuts two parallel lines, then the
pairs of corresponding angles that are formed will be
equal.

(2) When two polygons are congruent, or similar,
each angle on one polygon is equal to a corresponding
angle on the other polygon.

CORRESPONDING SIDES When two polygons are con-
gruent, each side on one polygon is equal to a corre-
sponding side on the other polygon. When two polygons

�
E1XY 2 	 E1X 2E1Y 2

2�E1X2 2 	 1E1X 2 22� �E1Y2 2 	 1E1Y 2 22�
r �

Cov1X,Y 2
sXsY
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are similar, the ratio of the length of a side on the big
polygon to the length of its corresponding side on the lit-
tle polygon is the same for all the sides.

COSECANT The cosecant of u is defined to be

(See trigonometry.)

COSH The abbreviation for hyperbolic cosine, cosh, is
defined by:

(See hyperbolic functions.)

COSINE The cosine of an angle u in a right triangle is
defined to be

cosu �
1adjacentside 21hypotenuse 2

coshx �
1

2
1ex � e	x 2

cscu �
1

sinu
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The name comes from the fact that the cosine func-
tion is the cofunction for the sine function, because
cos(p/2 	 �) � sin �. The graph of the cosine function
is periodic with an amplitude of 1 and a period of 2p.
(See trigonometry.)

The table gives some special values of cos �:

� (degrees) � (radians) cos �
0 0 1

30 p/6

45 p/4
60 p/3 1/2
90 p/2 0

180 p 	1
270 3p/2 0
360 2p 1

The value of cos � can be found from the infinite
series

COTANGENT The cotangent of u (abbreviated ctn u or
cot u) is defined to be

(See trigonometry.)

COTERMINAL Two angles are coterminal if they have the
same terminal side when placed in standard position.
(See angle.) For example, a 45° angle is coterminal with
a 405° angle.

COUNTEREXAMPLE A proposed theorem can be dis-
proved by finding a single counterexample—that is, a

ctn u �
1

tan u

cosu � 1 	
u2

2!
�
u4

4!
	
u6

6!
�
u8

8!
	 . . .

1>12

13>2

COTANGENT 72



situation where the proposed theorem is not true. For
example, the proposed theorem “All integers have ratio-
nal square roots” can be disproved by finding a counter-
example—in this case, by showing that is not
rational. (See irrational number.)

COUNTING NUMBERS The counting numbers are the
same as the natural numbers: 1, 2, 3, 4, 5, 6, 7, . . . They
are the numbers you use to count something.

COVARIANCE The covariance of two random variables X
and Y is a measure of how much X and Y move together.
The definition is

where E stands for expectation. If X and Y are completely
independent, then Cov(X, Y) � 0. If Y is large at the same
time that X is large, then Cov(X, Y) will be large.
However, if Y tends to be large when X is small, then the
covariance will be negative. (See correlation coeffi-
cient.) The covariance can also be found from this
expression:

COVARIANT VECTOR See contravariant vector,
covariant vector.

CRAMER’S RULE Cramer’s rule is a method for solving
a set of simultaneous linear equations using determi-
nants. For the 3 
 3 system:

a3x � b3y � c3z � k3

a2x � b2y � c2z � k2

a1x � b1y � c1z � k1

Cov1X,Y 2 � E1XY 2 	 E1X 2E1Y 2

Cov1X,Y 2 � E �1X 	 E1x 2 2 1Y 	 E1Y 2 2�

12
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The rule states:

The vertical lines symbolize determinant. (See deter-
minant.)

To use Cramer’s rule, first calculate the determinant
of the whole matrix of coefficients. This determinant
appears in the denominator of the solution for each vari-
able. To calculate the numerator of the solution for x, set
up the same matrix but make one substitution: cross out
the column that contains the coefficients of x, and replace
that column with the column of constants from the other
side of the equal sign.

z �

3 a1 b1 k1

a2 b2 k2

a3 b3 k3

33 a1 b1 c1

a2 b2 c2

a3 b3 c3

3
y �

3 a1 k1 c1

a2 k2 c2

a3 k3 c3

33 a1 b1 c1

a2 b2 c2

a3 b3 c3

3
x �

3 k1 b1 c1

k2 b2 c2

k3 b3 c3

33 a1 b1 c1

a2 b2 c2

a3 b3 c3

3
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To use the rule to solve a system of n equations in n
unknowns, you will have to calculate n � 1 determinants
of dimension n 
 n. This procedure could get tedious,
but it is the kind of calculation that is well suited to be
performed by a computer. For an example of the method,
we can find the solution of this three-equation system:

The determinant in the denominator is

The three determinants in the numerators are

Then:

z �
	550

	110
� 5

y �
	440

	110
� 4

x �
	330

	110
� 3

3 5 1 	1

3 	6 	5

9 	1 13

3 � 	550

3 5 	1 	4

3 	5 2

9 13 	2

3 � 	440

3	1 1 	4

	5 	6 2

13 	1 	2

3 � 	330

3 5 1 	4

3 	6 2

9 	1 	2

3 � 	110

 9x 	 y 	 2z � 13

 3x 	 6y � 2z � 	5

 5x � y 	 4z � 	1
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CRITICAL POINT A critical point for a function is a 
point where the first derivative(s) is (are) zero. (See
extremum.)

CRITICAL REGION If the calculated value of a test sta-
tistic falls within the critical region, then the null hypoth-
esis is rejected. (See hypothesis testing.)

CROSS PRODUCT The cross product of two three-dimen-
sional vectors

is:

a 
 b (read: a cross b) is a vector with the following
properties:

(1)

where �ab is the angle between a and b and is the
length of vector a.

(2) a 
 b is perpendicular to both a and b.
(3) The direction of a 
 b is determined by the right-

hand rule: Put your right hand so that your fingers point
in the direction from a to b. Then your thumb points in
the direction of a 
 b. (See figure 34.)

(4) a 
 b�0 if a and b are parallel (i.e., if 
uab � 0).

(5) if a and b are perpen-
dicular.

(6) The cross product is not commutative, since

a 
 b � 	b 
 a

Here are some examples:

(2, 3, 4) 
 (10, 15, 20) � (0, 0, 0)

‘ a 
 b ‘ � ‘ a ‘ # ‘ b ‘

‘ a ‘

‘ a 
 b ‘ � ‘ a ‘ # ‘ b ‘ # sinuab

1a1b2 	 a2b1 2�a 
 b � �1a2b3 	 a3b2 2, 1a3b1 	 a1b3 2,
a � 1a1, a2, a3 2 and b � 1b1, b2, b3 2
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Note the two vectors are parallel.

(4, 3, 0) 
 (	3, 4, 0) � (0, 0, 25)

These two vectors are perpendicular, both with length 5,
and they are both in the xy plane. Therefore, the cross prod-
uct has length 25 and points in the direction of the z axis.

(	3, 4, 0) 
 (4, 3, 0) � (0, 0, 	25)

These are the same two vectors as in the previous exam-
ple, except that the order of the cross product is reversed,
so the resulting vector points in the opposite direction.

These two vectors both have length 1, they are in the yz
plane, and the angle between them is 30°. Therefore, the
cross product vector has length 1 
 1 
 sin 30° � 1/2,
and it points in the direction of the x axis.

The cross product is important in physics. The angu-
lar momentum vector L is defined by the cross product:
L � r 
 p, where p is the linear momentum vector and
r is the position vector.

10,1,0 2 
 10,23>2,1>2 2 � 11>2, 0, 0 2
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CUBE (1) A cube is a solid with six congruent square faces. A
cube can be thought of as a right prism with square bases
and four square lateral faces. (See prism; polyhedron.)
Dice are cubes and many ice cubes are cubes. The volume
of a cube with an edge equal to a is a3, which is read as “a
cubed.” The surface area of a cube is 6a2. (See figure 35.)

(2) The cube of a number is that number raised to the
third power. For example, the cube of 2 is 8, since 23 � 8.
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Figure 36 y � x 3

Figure 35 Cube

CUBE FUNCTION Figure 36 shows the graph of y � x3.
Note that the curve has a horizontal tangent at the 



point x � 0, but this point is neither a maximum nor a
minimum.

CUBE ROOT The cube root of a number is the number
that, when multiplied together three times, gives that
number. For example, 4 is the cube root of 64, since 
43 � 4 
 4 
 4 � 64. The cube root of x is symbolized
by or .

CUBIC A cubic equation is a polynomial equation of 
degree 3.

CUMULATIVE DISTRIBUTION FUNCTION A cumu-
lative distribution function gives the probability that a
random variable will be less than or equal to a specific
value. (See random variable.)

CURL The curl of a three-dimensional vector field f (writ-
ten as � 
 f) is defined to be the vector

It can be thought of as the cross product of the oper-
ator � (del) with the field f. For application, see Stokes’
theorem; Maxwell’s equations.

CURVATURE The curvature of a point on a circle of radius
R is 1/R. In general, given (x(t), y(t)), if a curve with
parameter t is defined so that the difference between two

a 0fy
0x

	
0fx
0y
bb

§ 
 f � a a 0fz
0y

	
0fy
0z
b , a 0fx
0z

	
0fz
0x
b ,

x1>313 x
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values of t (call it t2 	 t1) is equal to the length of the arc
of the curve between (x(t1), y(t1)) and (x(t2), y(t2)), then
we can define:

and the curvature value is the length of the curvature
vector.

For example, the points on a circle of radius R can be
defined by x � R cos(t/R) and y � R sin(t/R). Then the
curvature vector is (	cos2 (t/R) /R, 	sin2(t /R) /R), which
has length 1/R. The curvature value is the same at all
points along a circle. The curvature value will be different
points along curves that aren’t circles.

CURVE A curve can be thought of as the path traced out by a
point if it is allowed to move around space. A straight line
is one example of a curve. A curve can have either infinite
length, such as a parabola, or finite length, such as the ones
shown in figure 37. If a curve completely encloses a region
of a plane, it is called a closed curve. If a closed curve does
not cross over itself, then it is a simple closed curve. A cir-
cle and an ellipse are both examples of simple closed
curves.

1curvature vector 2 � k � a d2x

dt2
,
d2y

dt2
b
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CYCLOID If a wheel rolls along a flat surface, a point on
the wheel traces out a multiarch curve known as a
cycloid. (See figure 38.) The cycloid can be defined by
the parametric equations

One important use of the cycloid is based on the fact
that, if a ball is to roll from uphill point A to downhill
point B, it will reach B the fastest along a cycloid-shaped
ramp. (See calculus of variations.)

x � x0 � a1u 	 sinu 2, y � y0 � a11 	 cosu 2
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Figure 38 Cycloid

Figure 39 Cylinder

CYLINDER A circular cylinder is formed by the union of
all line segments that connect corresponding points on
two congruent circles lying in parallel planes. The two
circular regions are the bases. The segment connecting
the centers of the two circles is called the axis. If the axis



is perpendicular to the planes containing the circles, then
the cylinder is called a right circular cylinder; otherwise,
it’s an oblique circular cylinder. The distance between
the two planes is called the altitude of the cylinder. The
volume of a cylinder is the product of the base area times
the altitude. A soup can is one example of a cylindrical
object. (See figure 39.)
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83 DECIMAL NUMBERS

D

DECAGON A decagon is a polygon with 10 sides. A regu-
lar decagon has 10 equal sides and 10 angles, each of
measure 144�. (See figure 40.)

DECIMAL NUMBERS The common way of representing
numbers is by a decimal, or base-10, number system,
wherein each digit represents a multiple of a power of 10.
The position of a digit tells what power of 10 it is to be
multiplied by. For example:

We are so used to thinking of decimal numbers that
we usually think of the decimal representation of the
number as being the number itself. It is possible, though,
to use other bases for number systems. Computers often
use base-2 numbers (see binary numbers), and the
ancient Babylonians used base-60 numbers.

A decimal fraction is a number in which the digits to
the right of the decimal point are to be multiplied by 10
raised to a negative power:

� 5 
 101 � 6 
 100

32,456 � 3 
 104 � 2 
 103 � 4 
 102

Figure 40 Decagon
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DECREASING FUNCTION A function f (x) is a decreas-
ing function if f (a) � f (b) when a � b.

DEDUCTION A deduction is a conclusion arrived at by
reasoning.

DEFINITE INTEGRAL If f (x) represents a function of x
that is always nonnegative, then the definite integral of
f (x) between a and b represents the area under the curve
y � f (x), above the x-axis, to the right of the line x � a,
and to the left of the line x � b. (See figure 41.) The def-
inite integral is represented by the expression

where is the integral sign, and a and b are the limits of

integration.

�

�
b

a

f1x 2dx

� 32 �
5

10
�

6

100
�

4

1000

� 6 
 10	2 � 4 
 10	3

 32.564 � 3 
 101 � 2 
 100 � 5 
 10	1

Figure 41 Definite Integral



85 DEGREE

The value of the definite integral can be found from
the formula F(b) 	 F(a), where F is an antiderivative
function for f (that is, dF/dx � f (x)).

For contrast, see indefinite integral.
For example, we can find the area under one arch of

the curve y � sin x, from x � 0 to x � p.

The antiderivative function is 	cos x. Once the anti-
derivative has been found, it is customary to write the
limits of integration next to a vertical line:

Therefore, the total area under the curve is 2.
In cases where it is not possible to find an antideriva-

tive function, see numerical integration.
If f (x) is negative everywhere between a and b, then

the value of the definite integral will be the negative of
the area above the curve y � f (x), below the x-axis, and
between x � a and x � b.

If f (x) is positive in some places and negative in oth-
ers, then the value of the definite integral will be the total
area under the positive part of the curve minus the total
area above the negative part of the curve.

Definite integrals can also be used to find other quan-
tities. (See arc length; volume, figure of revolution;
surface area, figure of revolution; centroid.)

DEGREE (1) A degree is a unit of measure for angles. One
degree is equal to 1/360 of a full rotation. The symbol for
degree is a little raised circle, �. A full turn measures
360�. A half turn measures 180�. A quarter turn (a right
angle) measures 90�. (See angle; radian measure.)

� 	1	1 2 	 1	1 2 � 2

area � 	cosx ƒ p0 � 1	cosp 2 	 1	cos0 2

area � �
p

0

sinxdx



(2) The degree of a polynomial is the highest power
of the variable that appears in the polynomial. (See poly-
nomial.)

DEL The del symbol � is used to represent this vector of
differential operators:

(See gradient; divergence; curl.)

DELTA The Greek capital letter delta, which has the shape
of a triangle: Δ, is used to represent “change in.” For
example, the expression Δx represents “the change in x.”
(See calculus.)

DE MOIVRE’S THEOREM De Moivre’s theorem tells
how to find the exponential of an imaginary number:

Note that u is measured in radians. For example:

To see why the theorem is reasonable, consider (eix)2.
This expression should equal e2ix, according to the laws
of exponents. We can assume that the theorem is true and
show that it is consistent with the law of exponents:

The theorem can also be shown by looking at the
series expansion of eix:

� e2ix
� cos2x � i sin2x

� cos 2x � 2i sinxcosx 	 sin 2x

1eix 22 � 1 cosx � i sinx 22

eip � cosp � i sinp � 	1

eip>2 � cos 1p>2 2 � i sin 1p>2 2 � i

e0 � cos0 � i sin0 � 1

eiu � cos u � i sin u

§ � a 0
0x

,
0
0y

,
0
0z
b
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The two series in parentheses are the series expan-
sions for cos x and sin x, so

eix � cos x � i sin x

This theorem plays an important part in the solution
of some differential equations.

DE MORGAN Augustus De Morgan (1806 to 1871) was an
English mathematician who studied logic. (See De
Morgan’s laws.)

DE MORGAN’S LAWS De Morgan’s laws determine how
the connectives AND, OR, and NOT interact in symbolic
logic:

(NOT p) AND (NOT q) is equivalent to NOT ( p OR q)
(NOT p) OR (NOT q) is equivalent to NOT ( p AND q)

In these expressions, p and q represent any sentences
that have truth values (in other words, are either true or
false). For example, the sentence “She is not rich and
famous” is the same as the sentence “She is not rich, or
else she is not famous.”

DENOMINATOR The denominator is the bottom part of a
fraction. In the fraction , 3 is the denominator and 2 is
the numerator. (To keep the terms straight, you might
remember that “denominator” starts with “d,” the same as
“down.”) If a fraction measures an amount of pie, the
denominator tells how many equal slices the pie has been
cut into. (See figure 42.) The numerator tells you how
many slices you have.

2
3

� i ax 	
x3

3!
�
x5

5!
	
x7

7!
� . . .b� a1 	

x2

2!
�
x4

4!
	
x6

6!
� . . .b

eix � 1 � ix 	
x2

2!
	
ix3

3!
�
x4

4!
� . . .
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DENSITY FUNCTION See random variable.

DEPENDENT VARIABLE The dependent variable stands
for the output number of a function. In the equation y �
f(x), y is the dependent variable and x is the independent
variable. The value of y depends on the value of x. You
are free to choose any value of x that you wish (so long
as it is in the domain of the function), but once you have
chosen x the value of y is determined by the function.
(See function.)

DERIVATIVE The derivative of a function is the rate of
change of that function. On the graph of the curve y �
f(x), the derivative at x is equal to the slope of the tangent
line at the point (x, f(x)). (See figure 43.)

If the function represents the position of an object as
a function of time, then the derivative represents the
velocity of the object. Derivatives can be calculated from
this expression:

function: y � f (x),
derivative:

Several rules are available that tell how to find the
derivatives of different functions (c and n are constants):

y¿ � f¿ 1x 2 �
dy

dx
� lim
¢xS0

f1x � ¢x 2 	 f1x 2
¢x

Figure 42
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y � c y� � 0
y � cx y� � c

Sum Rule
y � f(x) � g (x) y� � f�(x) � g�(x)

Product Rule
y � f(x) 
 g(x) y� � f(x)g�(x) � f�(x)g(x)

Power Rule
y � cxn y� � cnxn 	 1

Chain Rule

y � g( f(x))

Trigonometry
y � sin x y� � cos x
y � cos x y� � 	sin x
y � tan x y� � sec2 x
y � ctn x y� � 	csc2 x
y � sec x y� � sec x tan x
y � csc x y� � 	csc x ctn x
y � arcsin x y� � (1 	 x2)	1/2

y � arctan x y� � (1 � x2)	1

y¿ �
dg

df

df

dx
�
dg

dx

Figure 43



Exponential
y � ax y� � (ln a)ax

Natural Logarithm
y � ln x y� � 1/x

(See also implicit differentiation.)
If y is a function of more than one independent vari-

able, see partial derivative.
The derivative of the derivative is called the second

derivative, written as y�(x) or d2y/dx2. When the first
derivative is positive, the curve is sloping upward. When
the second derivative is positive, the curve is oriented so
that it is concave upward. (See extremum.)

DESCARTES Rene Descartes (1596 to 1650) was a French
mathematician and philosopher who is noted for the
sentence “I think, therefore I am” and for developing
the concept now known as rectangular, or Cartesian
coordinates.

DESCARTES’ RULE OF SIGNS Descartes’ rule of signs
states that the number of positive roots of a polynomial
equation will equal the number of sign changes among
the coefficients, or that number minus a multiple of 2. To
count the sign changes, be sure the polynomial terms are
arranged in descending order by power of x, and ignore
any zero coefficients.

For example, consider the third-degree polynomial
with roots a, b, and c :

Here are just two of the possibilities. If a, b, and c are
all positive, then the sign pattern of the coefficients of 
the polynomial will be �, 	, �, 	 (three changes), and
there are three positive roots. If a, b, and c are all 

� 1ab � ac � bc 2x 	 abc

1x 	 a 2 1x 	 b 2 1x 	 c 2 � x3 	 1a � b � c 2x2
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negative, then the sign pattern will be �, �, �, � (no
sign changes), and there are no positive roots.

DESCRIPTIVE STATISTICS Descriptive statistics is the
study of ways to summarize data. For example, the mean,
median, and standard deviation are descriptive statistics
that summarize some of the properties of a list of num-
bers. For contrast, see statistical inference.

DETERMINANT The determinant of a matrix is a number
that is useful in describing the characteristics of the matrix.
The determinant is symbolized by enclosing the matrix in
vertical lines. The determinant of a 2 
 2 matrix is

The determinant of a 3 
 3 matrix can be found from:

The 3 
 3 determinant consists of three terms. Each
term contains an element of the top row multiplied by its
minor. The minor of an element of a matrix can be found
in this way: First, cross out all the elements in its row.
Then cross out all the elements in its column. Then take
the determinant of the 2 
 2 matrix consisting of all the
elements that are left.

Note that the signs alternate, starting with plus for the
element in the upper left hand corner.

	 a1c2b3 	 b1a2c3

� a1b2c3 � b1c2a3 � c1a2b3 	 c1b2a3

� a1 2 b2 c2

b3 c3
2 	 b1 2 a2 c2

a3 c3
2 � c1 2 a2 b2

a3 b3
23 a1 b1 c1

a2 b2 c2

a3 b3 c3

3
2 a b

c d
2 � ad 	 bc
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For example:

To find the determinant, you don’t have to expand
along the first row. Expansion along any row or column
will produce the same value. If there is any row or col-
umn that contains many zeros, it is usually easiest to
expand along that row (or column). For example:

In this case we expanded along the last column.
There is no simple formula for determinants larger

than 3 
 3, but the same method of expansion along a
column or row may be used. One useful fact is that the
value of the determinant will remain unchanged if you
add a multiple of one row (or column) to another row (or
column). By careful use of this trick, you can usually cre-
ate a row consisting mostly of zeros, thus making it eas-
ier to evaluate the determinant. Even so, evaluation of
large determinants is best left to a computer.

If the determinant is zero, then the matrix cannot be
inverted. (See inverse matrix.) Some other properties of
determinants are as follows:

� 316 	 4 2 � 6

3 1 1 0

4 6 0

2 5 3

3 � 0 2 4 6

2 5
2 	 0 2 1 1

2 5
2 � 3 2 1 1

4 6
2

� 2 # 10 	 7 # 1	13 2 � 4 # 1	21 2 � 27

� 419 # 1 	 5 # 6 2� 216 # 3 	 8 # 1 2 	 719 # 3 	 5 # 8 2
3 2 7 4

9 6 8

5 1 3

3 � 2 2 6 8

1 3
2 	 7 2 9 8

5 3
2 � 4 2 9 6

5 1
2
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det (AB) � det A det B

det I � 1 (I is the identity matrix),

det A	1 � 1/det A

Determinants can be used to solve simultaneous linear
equation systems. (See Cramer’s rule.)

DIAGONAL A diagonal is a line segment connecting two
nonadjacent vertices of a polygon. For example, a rec-
tangle has two diagonals, each connecting a pair of oppo-
site corners.

DIAMETER The diameter of a circle is the length of a line
segment joining two points on the circle and passing
through the center. The term diameter can also mean the
segment itself. The diameter is equal to twice the radius,
and d � c/p, where c is the circumference. The diameter
is the longest possible distance across the circle. Our
Milky Way galaxy is shaped like a disk with a bulge in
the middle. The diameter of the circle that makes up the
outer edge of the disk is about 100,000 light-years.

The diameter of a sphere is the length of a line seg-
ment joining two points on the sphere and passing
through the center. The sun is a sphere with a diameter of
about 865,000 miles.

DIFFERENCE The difference between two numbers is the
result obtained by subtracting them. In the equation 5 	
3 � 2, the number 2 is the difference. If two points are
located along a number line, then the absolute value of
their difference will be the distance between them. For
example, Bridgeport is at mile 28 of the Connecticut
Turnpike, and Stamford is at mile 7. The distance
between them is the difference: 28 	 7 � 21 miles.

DIFFERENCE EQUATION Difference equations describe
the change with time of variables that change over discrete
time steps. Difference equations have some similarities
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with differential equations. The difference is that the inde-
pendent variable in a differential equation can vary contin-
uously. In a difference equation, the function has one value
at time 1, then another value at time 2, another value at time
3, and so on.

Here is an example of a difference equation:

The subscripts indicate time. For example, x1 would be
the value of x at time 1, x2 would be the value at time 2,
and so on.

Rewrite this equation so all the terms involving x are
on the left and all terms not involving x are on the right:

Note that x � h/(1 	 k) is one particular solution to
this equation. However, there are other solutions. Change
the right-hand side to zero:

When the right-hand side is zero, the equation is called a
homogeneous equation. Guess that the solution can be
written in this form:

Insert this proposed solution into the equation:

Divide by cgt	1:

g 	 k � 0

Therefore, g � k, and the function x � ckt will solve the
homogeneous equation:

The letter c represents an arbitrary constant whose value
is specified if you know an initial condition.

xt 	 kxt	1 �  0

cgt 	 kcgt	1 �  0

x � cgt

xt 	 kxt	1 � 0

xt 	 kxt	1 � h

xt � h � kxt	1
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To find the complete solution to the original equation,
add the particular solution to the homogeneous solution.
Therefore:

is the solution for the difference equation

If you have the initial condition x � x0 when t � 0, then
solve for c:

The final formula for the solution is:

If k � 1, the second term will become smaller with time,
so the solution for xt will converge to the value h/(1 	 k).

DIFFERENCE OF TWO SQUARES An expression is a
difference of two squares if it is of the form a2 	 b2. This
expression can be factored as follows:

a2 	 b2 � (a 	 b)(a � b)

DIFFERENTIABLE A continuous function is differen-
tiable over an interval if its derivative exists everywhere in
that interval. (See calculus; derivative.) This means that
the graph of the function is smooth, with no kinks, cusps,
or breaks. (See figure 44.)

DIFFERENTIAL Differential refers to an infinitesimal
change in a variable. It is symbolized by d, as in dx. The
derivative dy/dx can be thought of as a ratio of two dif-
ferential changes. (See derivative.)

xt �
h

1 	 k
� ax0 	

h

1 	 k
bkt

c � x0 	
h

1 	 k

x0 �
h

1 	 k
� ck0 �

h

1 	 k
� c

xt 	 kxt	1 � h

xt �
h

1 	 k
� ckt
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DIFFERENTIAL EQUATION A differential equation is
an equation containing the derivatives of a function with
respect to one or more independent variables. The order
of the equation is the highest derivative that appears; for
example, the equation

is a first-order equation, which can be solved by turning
it into an integral:

Second-order equations appear commonly in physics,
since force equals mass times acceleration. If you know
an equation for the force acting on a particle that moves

11 2 y � �f1x 2dx

dy

dx
	 f1x 2 � 0
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Figure 44 Curves that are not differentiable at the
point marked by the arrow



in one dimension, its position x at a time t will be found
by solving this differential equation:

Note that, in the above equation, t is now the independent
variable, and x is the dependent variable. For example,
the motion of a weight connected to a spring is given by
this equation:

where m is the mass and k is a constant depending on the
nature of the spring. The solution is:

where v is defined to be , and A and B are two arbi-
trary constants whose value depends on the initial position
and velocity of the weight. Note that solving an integral, or
first-order differential equation, results in one arbitrary
constant. When solving a second-order differential equa-
tion, there will be two arbitrary constants in the solution.

Equation (3) can be generalized to the form:

where the term involving dx /dt represents the friction act-
ing on the weight. A similar type of equation describes
the behavior of oscillating electric circuits. The solution
is given by:

where B1 and B2 are the two arbitrary constants, and r1
and r2 are the solutions of the quadratic equation

r2 � c1r � c0 �  0

x � B1e
r1t � B2e

r2t

14 2 d2x

dt2
� c1
dx

dt
� c0x � 0

2k>mx � Asin 1vt � B 2
13 2 md2x

dt2
� 	kx

12 2 F � m
d2x

dt2
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If the two values for r are pure imaginary numbers, then
the solution will oscillate. This comes from De Moivre’s
theorem:

If the two values for r are real, then the result will be an
exponential function. If the two values for r are complex
numbers (call them r0 � iv and r0 	 iv), then the solu-
tion will be a mixture of oscillating and exponential fac-
tors as follows:

where again B1 and B2 are the arbitrary constants.
Equation (4) above is called a linear differential equa-

tion. The general form of a second-order linear differen-
tial equation is:

The equation is said to be homogeneous if the right
hand side function is zero; in other words, it can be writ-
ten in the form:

If y1 is a solution of equation (5), and y0 is a solution
of equation (6), then y1 � y0 will also be a solution of (5).

All of the above equations are called ordinary differen-
tial equations because there is only one independent vari-
able. If the equation contains derivatives with respect to
more than one independent variable, then it is called a par-
tial differential equation. For example, the equation

02f
0x2 �

1

y2

02f
0t2

16 2 c d2

dt2
� f11t 2 ddt � f0 1t 2 d x � 0

15 2 c d2

dt2
� f11t 2 ddt � f01t 2 d x � f1t 2

x � er0 t1B1sinvt � B2cosvt 2

eiu � cosu � isinu



is a second-order partial differential equation. An exam-
ple of a solution is f (x, t) � sin(x 	 vt), which defines a
wave moving in one spatial dimension x, where t is time
and v is the velocity of the wave.

DIFFERENTIATION Differentiation is the process of
finding a derivative. (See derivative.)

DIGIT The digits are the 10 symbols 0, 1, 2, 3, 4, 5, 6, 7, 8,
9. For example, 1462 is a four-digit number, and the
number 3.46 contains two digits to the right of the deci-
mal point. There are 10 digits in the commonly used dec-
imal system. In the binary system only two digits are
used. (See binary numbers.)

DIGITAL A digital system is a system where numerical
quantities are represented by a device that shifts between
discrete states, rather than varying continuously. For
example, an abacus is an example of a digital device,
because numbers are represented by beads that are either
“up” or “down”; there is no meaning for a bead that is
partway up or down. Pocket calculators and modern
computers are also digital devices. A digital device can
be more accurate than an analog device because the
system only needs to distinguish between clearly sepa-
rated states; it is not necessary to make fine measure-
ments. Other examples of digital devices include clocks
that display numbers to represent the time (rather than
show hands moving around a circle) and music stored as
a series of numbers in an MP3 file. For contrast, see
analog.

DIHEDRAL ANGLE A dihedral angle is the figure formed
by two intersecting planes. Consider two intersecting
lines, one in each plane, that are both perpendicular to the
line formed by the intersecting planes. Then the angle
between these two lines is the size of the dihedral angle.
(See figure 45.)
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DILATION A dilation is a transformation that changes the
size of a figure, but not its shape.

DIMENSION The dimension of a space is the number of
coordinates needed to identify a location in that space. For
example, a line is one dimensional; a plane is two dimen-
sional; and the space we live in is three dimensional.

DIRECTION COSINES The direction cosines of a line are
the cosines of the angles that the line makes with the
three coordinate axes.

DIRECTIONAL DERIVATIVE The directional derivative
of a function f(x, y) in the direction of a unit vector v �
(vx, vy) is the dot product of the gradient of f with v:

DIRECTLY PROPORTIONAL If y and x are related by
an equation of the form y � kx, where k is a constant,
then y is said to be directly proportional to x.

1directional derivative 2 �
0f
0x
vx �

0f
0y
vy
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DIRECTRIX A directrix is a line that helps to define a geo-
metric figure. (See conic sections.)

DISCRETE Discrete refers to a situation where the possibil-
ities are distinct and separated from each other. For exam-
ple, the number of people in a city is discrete, because
there is no such thing as a fractional person. Measurements
of time and distance, however, are not discrete, because
they can vary over a continuous range. (See continuous.)
Measurements of the energy levels of electrons in quantum
mechanics are discrete, because there are only a few pos-
sible values for the energy.

DISCRETE RANDOM VARIABLE A discrete random
variable is a random variable which can only take on val-
ues from a discrete list. The probability function (or den-
sity function) lists the probability that the variable will
take on each of the possible values. The sum of the prob-
abilities for all of the possible values must be 1.

For examples, see binomial distribution; Poisson dis-
tribution; geometric distribution; hypergeometric dis-
tribution. For contrast, see continuous random variable.

DISCRIMINANT The discriminant (D) of a quadratic
equation ax2 � bx � c � 0 is D � b2 	 4ac. If a, b, and
c are real numbers, the discriminant allows you to deter-
mine the characteristics of the solution for x. If D is a
positive perfect square, then x will have two rational val-
ues. If D � 0, then x will have one rational solution. If D
is positive but is not a perfect square, then x will have two
irrational solutions. If D is negative, then x will have two
complex solutions. (See quadratic equation.)

DISJOINT Two sets are disjoint if they have no elements in
common, that is, if their intersection is the empty set. The
set of triangles and the set of quadrilaterals are disjoint.

DISJUNCTION A disjunction is an OR statement of the
form: “A OR B.” It is true if either A or B is true.
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DISTANCE The distance postulate states that for every two
points in space there exists a unique positive number that
can be called the distance between these two points. The
distance between point A and point B is often written as
AB. If A � (a1, a2, a3) and B � (b1, b2, b3), then the 
distance between them can be found from the distance
formula (which is based on the Pythagorean theorem):

DISTRIBUTIVE PROPERTY The distributive property
says that a(b � c) � ab � ac for all a, b, and c. For
example,

DIVERGENCE The divergence of a vector field f (written
as � � f) is defined to be the scalar

It can be thought of as the dot product of the operator
� (del) with the field f. For application, see Maxwell’s
equations.

DIVERGENCE THEOREM The divergence theorem
states that if E is a three-dimensional vector field, then
the surface integral of E over a closed surface is equal to
the triple integral of the divergence of E over the volume
enclosed by that surface:

For application, see Maxwell’s equations.

��
surface S

E # dS � ���
interior of S

1§ # E 2dV

§ # f �
0fx
0x

�
0fy
0y

�
0fz
0z

 27 � 27.

 3 # 9 � 12 � 15

 314 � 5 2 � 3 # 4 � 3 # 5

AB � 21a1 	 b1 22 � 1a2 	 b2 22 � 1a3 	 b3 22



DIVERGENT SERIES A divergent series is an infinite
series with no finite sum. A series that does have a finite
sum is called a convergent series.

DIVIDEND In the equation a � b � c, a is called the
dividend.

DIVISION Division is the opposite operation of multiplica-
tion. If a 
 b � c, then c � b � a. For example, 6 
 8 �
48, and 48 � 6 � 8. The symbol “�” is used to represent
division in arithmetic. In algebra most divisions are writ-
ten as fractions: b � a � b/a. For computational pur-
poses, b/a is symbolized by . (See also remainder;
synthetic division.)

DIVISOR In the equation a � b � c, b is called the divisor.

DODECAHEDRON A dodecahedron is a polyhedron with
12 faces. (See polyhedron.) (See figure 46.)

DOMAIN The domain of a function is the set of all possi-
ble values for the argument (the input number) of the
function. (See function.)

DOT PRODUCT Let a and b be two n-dimensional vec-
tors, whose components are:

b � 1b1, b2, b3, p bn 2a � 1a1, a2, a3, p an 2

a
b
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The dot product of the two vectors (written as a · b) is
defined to be:

To find a dot product, you multiply all the correspond-
ing components of each vector and then add together all of
these products. In two-dimensional space this becomes:

The dot product is a number, or scalar, rather than a
vector. The dot product is also called the scalar product.
Another form for the dot product can be found by defin-
ing the length of each vector:

Then:

Let ua be the angle between vector a and the x-axis,
ub be the angle between vector b and the x-axis, and
u� ua 	 ub be the angle between the two vectors. 

Then:

We can rewrite the dot product formula:

Using the formula for the cosine of the difference
between two angles gives

a # b � rarb cosu

a # b � rarb 1 cosuacos ub � sinuasinub 2
ay
ra

� sinua ;
by
rb

� sinub

ax
ra

� cosua ;
bx
rb

� cosub

a # b � rarb a axbxrarb �
ayby
rarb
b

ra � 2a2
x � a2

y, rb � 2b2
x � b2

y

a # b � axbx � ayby

b � 1bx, by 2a � 1ax, ay 2
a # b � a1b1 � a2b2 � a3b3 � # # # � anbn
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The last formula says that the dot product can be
found by multiplying the magnitude of the two vectors
and the cosine of the angle between them. This means
that the dot product is already good for two things:

1. Two nonzero vectors will be perpendicular if and
only if their dot product is zero. (A zero dot product
means that cos u � 0, meaning u � 90�.)

2. The dot product a · b can be used to find the pro-
jection of vector a on vector b:

Note that the quantity (a·b)/(b·b) is a scalar, so the pro-
jection vector is formed by multiplying a scalar times the
vector b. (See figure 47.)

Here is an example of how the dot product can be
used to find the angle between two vectors. The cosine of
the angle between the vectors (1,1) and (2,4) will be
given by

u � arccos.95 � 18°

cosu �
1 # 2 � 1 # 4
22 # 220

� 0.95

projection of a on b � P �
a # b
b # b b
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DOUBLE INTEGRAL The double integral of a two-vari-
able function f(x, y) represents the volume under the sur-
face z � f(x, y) and above the xy plane in a specified
region. For example:

represents the volume under the surface z � f (x, y) over
the rectangle from x � a to x � b and y � c to y � d.
(See figure 48.)

This assumes that f (x, y) is nonnegative everywhere
within the limits of integration. If f (x, y) is negative, then
the double integral will give the negative of the volume
above the surface and below the x, y plane.

For example, consider a sphere of radius r with center
at the origin. The equation of this sphere is

x2 � y2 � z2 � r2

The equation

z � f1x,y 2 � 2r2 	 x2 	 y2

�
y�d

y�c
�
x�b

x�a

f1x,y 2dx dy

Figure 48 Double integral



defines a surface, which is the top half of the sphere. The
volume below this surface and above the plane z � 0 is
given by the double integral:

The limits of integration for y will be from to
, and the limits for x will be from 	r to r.

Evaluate the inner integral (involving y) first. While
evaluating the inner integral, treat x as a constant. Define

, then use the trigonometric substitution
y � A sin u; dy � A cos udu; u � arcsin(y/A). Then the
integral can be written:

� A2�
p>2

	p>2�12 11 � cos2u 2�du
� A2�

arcsin112
arcsin1	12cos 2u du

� �
u�arcsin1A>A2
u�arcsin1	A>A2A21 	 sin 2uAcosu du

� �
y�A

y�	A

2A2�1 	 1y>A 22� dy
� �

y�A

y�	A

2A2 	 y2dy

�
y�2r2	x2

y� 	2r2	x2

2r2 	 x2 	 y2 dy

A � 2r2 	 x2

2r2 	 x2

2r2 	 x2

2r2 	 x2 	 y2dy dx�
y�2r2	x2

y�	2r2	x2
�
x�r

x� 	r
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The second term in the integral is zero, so the result
for the inner integral is:

Now substitute this expression in place of the inner
integral, and then evaluate the outer integral involving x:

(Note that this is half of the volume of a complete
sphere.)

DYADIC OPERATION A dyadic operation is an operation
that requires two operands. For example, addition is a
dyadic operation. The logical operation AND is dyadic,
but the logical operation NOT is not dyadic.

�
r

	r

p

2
1r2 	 x2 2dx �

p

2
a r2x 	

x3

3
b ` r
x�	r

�
2

3
pr3

�
y�2r2	x2

y� 	2r2	x2

2r2 	 x2 	 y2dy �
p

2
1r2 	 x2 2

�
r2 	 x2

2
ap

2
�
p

2
b 	

r2 	 x2

4
�sinp 	 sin 1	p 2�

Since A2 � r2 	 x2:

�
A2

2
u 2 p>2

	p>2 	
A2

4
sin2 u 2 p>2

	p>2

�
A2

2 �
p>2

	p>2du �
A2

2 �
p>2

	p>2cos2udu
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E

e The letter e is used to represent a fundamental irrational
number with the decimal approximation e � 2.7182818
. . . . The letter e is the base of the natural logarithm func-
tion. (See calculus; logarithm.) The area under the
curve y � 1/x from x � 1 to x � e is equal to 1.

The value of e can be found from this series:

The value of e can also be found from the expression

In calculus, the function ex is important because its
derivative is itself: ex.

ECCENTRICITY The eccentricity of a conic section is a
number that indicates the shape of the conic section. The
eccentricity (e) is the distance to the focal point divided
by the distance to the directrix line. This ratio will be a
constant, according to the definition. (See conic section.)
If e � 1, then the conic section is a parabola; if e � 1, it
is a hyperbola; and if e � 1, it is an ellipse.

The eccentricity of an ellipse measures how far the
ellipse differs from being a circle. You can think of a cir-
cle as being normal (eccentricity � 0), with the ellipses
becoming more and more eccentric as they become flat-
ter. The eccentricity of the ellipse x2/a2 � y2/b2 � 1 is
equal to

EDGE The edge of a polyhedron is a line segment where
two faces intersect. For example, a cube has 12 edges.

e �
2a2 	 b2

a

e � lim
vS0
11 � v 21>v

e � 2 �
1

2!
�

1

3!
�

1

4!
�

1

5!
� # # #
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EIGENVALUE Suppose that a square matrix A multiplies
a vector x, and the resulting vector is proportional to x:

In this case, l is said to be an eigenvalue of the matrix A,
and x is the corresponding eigenvector. In order to find
the eigenvalues, rewrite the equation like this:

where I is the appropriate identity matrix. If the inverse of
the matrix (�I 	 A) exists, then the only solution is the
trivial case x � 0. However, if the determinant is zero,
then we will be able to find nonzero vectors that meet our
condition.

For example, let A be the matrix

Set the determinant of (� I 	 A) equal to zero:

From the quadratic formula, we find two values for 
l: 8 and 	1. These are the two eigenvalues.

Now, to solve for the first eigenvector, set up this
matrix equation:

which is equivalent to this two-equation system:

 6x �  5y �  8y

 2x �  3y �  8x

a2 3

6 5
b ax
y
b � a8x

8y
b

l2 	 7l 	 8 � 0

1l 	 2 2 1l 	 5 2 	 18 � 0

2 l 	 2 	3

	6 l 	 5
2 � 0

a2 3

6 5
b

1lI 	 A 2x � 0

Ax � lx
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These equations are equivalent, so there are an infi-
nite number of solutions. This means that once one
eigenvector has been found, any vector that is a multiple
of that vector will also be an eigenvector. In this case let
x � 1, then we find y � 2. Therefore, any vector of the
form (x, 2x) is an eigenvector associated with the eigen-
value 8.

Using a similar procedure, we can find that the eigen-
vectors associated with the eigenvalue 	1 are of the form
(x, 	x).

When solving for the eigenvalues of an n 
 n matrix,
you will have to solve a polynomial equation of degree n.
This means there can be as many as n distinct solutions.
Often the solutions will be complex numbers. As you can
see, solving for eigenvalues of large matrices is a difficult
problem.

Eigenvalues have many applications in fields such as
quantum mechanics.

EIGENVECTOR See eigenvalue.

EINSTEIN’S SUMMATION CONVENTION Einstein
proposed that if the same index letter appears twice in a
term, then it will automatically be assumed to be summed
over. So, aibi means , where the context makes it
clear what n should be. (See metric.)

ELEMENT An element of a set is a member of the set.

ELLIPSE An ellipse is the set of all points in a plane such
that the sum of the distances to two fixed points is a con-
stant. Ellipses look like flattened circles. (See figure 49.)
Each of these two fixed points is known as a focus or
focal point. (The plural of focus is foci.) The longest dis-
tance across the ellipse is known as the major axis. (Half
of this distance is known as the semimajor axis.) The
shortest distance across is the minor axis.

gni�1aibi
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The center of the ellipse is the midpoint of the seg-
ment that joins the two foci. The equation of an ellipse
with center at the origin is

where a is the length of the semimajor axis, and b is the
length of the semiminor axis. The equation of an ellipse
with center at point (h, k) is

(This assumes the major axis is parallel to the x axis. To
learn how to find the equation of an ellipse with a different
orientation, see rotation.)

The area of an ellipse is A � pab.
The shape of an ellipse can be characterized by a num-

ber that measures the degree of flattening, known as the
eccentricity. The eccentricity (e) is

e �
2a2 	 b2

a
�
r
a

1x 	 h 22
a2 �

1y 	 k 22
b2 � 1

x2

a2 �
y2

b2 � 1
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where r is the distance from the center to one of the focal
points, as shown in figure 49. When e � 0, there is no
flattening and the ellipse is the same as a circle. As e
becomes larger and approaches 1, the ellipse becomes
flatter and flatter. (See figure 50.)

An ellipse can also be defined as the set of points such
that the distance to a fixed point divided by the distance to
a fixed line is a constant that is less than 1. The constant is
the eccentricity of the ellipse. (See conic sections.)

One reason why ellipses are important is that the path of
an orbiting planet is an ellipse, with the sun at one focus.
The orbit of the earth is an ellipse that is almost a perfect
circle. Its eccentricity is only 0.017.

ELLIPSOID An ellipsoid is a solid of revolution formed by
rotating an ellipse about one of its axes. If the ellipse has
semimajor axis a and semiminor axis b, then the ellipsoid
formed by rotating the ellipse about its major axis will
have the volume .

ELLIPTIC INTEGRAL The distance around an ellipse
can be represented by an elliptic integral. If the ellipse
has semimajor axis a and semiminor axis b and is cen-
tered at the origin, its equation is:

x2

a2 �
y2

b2 � 1

4
3pab

2
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The arc length integral for the distance around the
ellipse is:

This expression can be simplified:

Let k represent the eccentricity of the ellipse:

Divide both the top and the bottom of the fraction by a2

and then rewrite the integral:

Substitute x � au, u � x/a, dx � adu.

Factor out a2:

Substitute u � sin u, du � cos udu:

S � 4a�
1

0B
1 	 k2u2

1 	 u2 du

S � 4a�
1

0B
1 	 k2u2

1 	 u2 du

S � 4�
1

0B
a2 	 k2a2u2

a2 	 a2u2 a du

S � 4�
a

0B
a2 	 k2x2

a2 	 x2 dx

k2 �
a2 	 b2

a2

S � 4�
a

0B
a4 � 1b2 	 a2 2x2

a4 	 a2x2 dx

S � 4�
a

0B1 �
x2b2

a4 a1 	
x2

a2b	1

dx

S � 4�
a

0B1 � a dy
dx
b2

dx
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If k � 0, the result gives the circumference of a circle:
S � 2pa. If k � 1, the result is 4a because the ellipse
degenerates into two line segments, each of length 2a.
However, for other values of k, there is no formula for the
result, so you must use numerical integration.

EMPTY SET An empty set is a set that contains no ele-
ments. It is symbolized by �. For example, the set of all
people over 100 feet tall is an example of an empty set.

EQUATION An equation is a statement that says that two
mathematical expressions have the same value. The symbol
� means “equals,” as in 4 
 5 � 20. If all the items in an
equation are numbers, then the equation is an arithmetic
equation and it is either true or false. For example, 10 �
15 � 35 is true, but 2 � 2 � 5 is false. If the equation con-
tains a letter that represents an unknown number, then there
will usually be some values of the unknown that make the
equation true. For example, the equation 5 � 3 � x is true
if x has the value 8; otherwise it is false. An equation in one
unknown is said to be solved when it is written in the form
x � (expression), where (expression) depends only on num-
bers or on letters that stand for known quantities.

When solving an equation, the basic rule is: Whatever
you do to one side of the equation, make sure you do
exactly the same thing to the other side. For example, the
equation 10x � 5 � 6x � 2 can be solved by subtracting
6x � 2 from both sides:

 4x � 3 � 0

 10x � 5 	 16x � 2 2 � 0

4a�
p>2

0
21 	 k2sin 2u du

� 4a�
arcsin 1

arcsin 0 B
1 	 k2sin 2u

1 	 sin 2u
cosudu
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Subtract 3 from both sides:

Divide both sides by 4:

You cannot divide both sides of an equation by zero,
since division by zero is meaningless. It also does no good
to multiply both sides by zero. Squaring both sides of an
equation, or multiplying both sides by an expression that
might equal zero, can sometimes introduce an extraneous
root: a root that is a solution of the new equation but is not
a solution of the original equation. For example, you might
solve the equation by squar-
ing both sides:

In this case x � 4 does satisfy the original equation,
but x � 2 does not. This means that x � 2 is an extrane-
ous root.

An equation that can be put in the general form 
ax � b � 0, where x is unknown and a and b are known,
is called a linear equation. Any one-unknown equation
can be written in this form provided that it contains no
terms with x2, 1/x, or any term with x raised any power
other than 1. An equation involving x2 and x is called a
quadratic equation, and can be written in the form ax2 �
bx � c � 0. For equations involving higher powers of x,
see polynomial.

When an equation contains two unknowns, there will in
general be many possible pairs of the unknowns that make

1x 	 4 2 1x 	 2 2 � 0

x2 	 6x � 8 � 0

 3x2 	 18x � 24 � 0

x2 	 2x � 1 � 4x2 	 20x � 25

2x2 	 2x � 1 � 2x 	 5

x � 	
3

4

4x � 	3
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the equation true. For example, 2x � y � 20 will be satis-
fied by (x � 0, y � 20); (x � 5, y � 10); (x � 10, y � 0);
and many other pairs of values. In a case like this, you can
often solve for one unknown as a function of the other, and
you can draw a picture of the relationship between the
unknowns. Also, you can find a unique solution for the two
unknowns if you have two equations that must be true
simultaneously. (See simultaneous equations.)

Another kind of equation is an equation that is true
for all values of the unknown. This type of equation is
called an identity. For example, y3 � y 
 y 
 y is true for
every possible value of y. Usually it is possible to tell
from the context the difference between a regular (or con-
ditional) equation and an identity, but sometimes a sym-
bol with three lines (�) is used to indicate an identity:
sin2 x � cos2 x � 1.

The above equation is true for every possible value 
of x.

EQUILATERAL TRIANGLE An equilateral triangle is a
triangle with three equal sides. All three of the angles in
an equilateral triangle are 60� angles. The area of an equi-
lateral triangle of side s is .

EQUIVALENCE RELATION An equivalence relation sta-
tisfies the reflexive, symmetric, and transitive properties.
The “equals” relation for two numbers is one example; the
“congruent” relation for two polygons is another example.

EQUIVALENT Two logic sentences are equivalent if they
will always have the same truth value. For example, the
sentence “ ” (“IF p THEN q”) is equivalent to the
sentence “ .”

EQUIVALENT EQUATIONS Two equations are equiva-
lent if their solutions are the same. For example, the
equation x � 3y � 10 is equivalent to the equation 2x �
6y � 20.

1NOT q 2S 1NOT p 2pS q

s213>4
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ERATOSTHENES Eratosthenes of Cyrene (276 to 194 BC)
was a Greek mathematician and astronomer who is the first
person known to have calculated the circumference of the
Earth. (See Eratosthenes sieve.)

ERATOSTHENES’ SIEVE Eratosthenes’ sieve is a means
for determining all of the prime numbers less than a given
number by filtering out all of the non-prime numbers.
Figure 51 illustrates all of the prime numbers less than
100. First, cross out all multiples of two after two. Then,
cross out all multiples of three after three, then all multi-
ples of five after five, and continue the process for all of
the prime numbers below .

ESTIMATOR An estimator is a quantity, based on obser-
vations of a sample, whose value is taken as an indicator
of the value of an unknown population parameter. For
example, the sample average is often used as an esti-
mator of the unknown population mean m. (See statisti-
cal inference.)

EUCLID Euclid (c 300 BC) was a Greek mathematican who
lived in Alexandria and is noted for his treatise on geom-
etry, Elements, which focused on developing a logical
structure with proofs. Much of the work is of the nature of

x

2100 � 10
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a textbook based on work by earlier writers, but the com-
pleteness of the work made it one of the most influential
mathematical works of all time. The geometry of our
everyday world is still known as Euclidian geometry.

EUCLID’S ALGORITHM Euclid’s algorithm provides a
way of determining the greatest common factor of two nat-
ural numbers a and b. Assume a � b. First, calculate the
remainder to the division a � b (call it r1). Then, calculate
the remainder to the division b � r1 (call it r2); then calcu-
late the remainder in the division r1 � r2. Keep repeating
the process, where at each stage you divide the remainder
in the previous step by the new remainder, until you find a
remainder of 0. Then, the last nonzero remainder that you
found is the greatest common divisor of a and b.

For example, we can find the greatest common factor of
1683 and 714.

First division:

Second division:

Third division:

Fourth division:

Since 51 is the last nonzero remainder, it is the great-
est common factor of 1683 and 714.

EUCLIDIAN GEOMETRY Euclidian geometry is the
geometry based on the postulates of Euclid. Euclidian
geometry in three-dimensional space corresponds to our
intuitive ideas of what space is like. For contrast, see
non-Euclidian geometry.

204 � 51 � 4 remainder 0

255 � 204 � 1 remainder 51

714 � 255 � 2 remainder 204

1683 � 714 � 2 remainder 255
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EUCLIDIAN PARALLEL POSTULATE The Euclidian
parallel postulate assumes that there is one, and only one,
line that can be drawn through a given point that is paral-
lel to another given line. For contrast, see non-Euclidian
geometry.

EULER Leonhard Euler (1707 to 1783), a Swiss mathemati-
can who worked much of his life in St. Petersburg and
Berlin, advanced mathematical ideas in many areas,
including analytic geometry, calculus, trigonometry, the
theory of complex numbers, and number theory. He also is
responsible for much mathematical notation that is now
common, including for summation, e for the base of
the natural logarithms, f () for functions, p for the circum-
ference of a circle of diameter 1, and i for .

EULER’S METHOD Euler’s method provides a way to
approximate the solution to a differential equation. Your
goal is to calculate the function y � f(x). The differential
equation allows you to calculate dy/dx � f �(x) at each
point. If you know an initial condition (x0, y0 � f(x0)), then
calculate dy/dx at that point, and calculate the new point
(x0 � h, f(x0 � h)):

A smaller value of h will lead to a more accurate approx-
imation, but it will require more work to calculate the
curve.

EVEN FUNCTION The function f(x) is an even function if
it satisfies the property that f(x) � f(	x). For example,
f(x) � cos x and g(x) � x2 are both even functions. For
contrast, see odd function.

EVEN NUMBER An even number is a natural number 
that is divisible evenly by 2. For example, 2, 4, 6, 8, 10,
12, and 14 are all even numbers. Any number whose 

f1x0 � h 2 � f1x0 2 � f¿ 1x0 2h

2	1

a
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last digit is 0, 2, 4, 6, or 8 is even. For contrast, see odd
number.

EVENT In probability, an event is a set of outcomes. For
example, if you toss two dice, then there are 36 possible
outcomes. If A is defined to be the event where the sum
of the two dice is 5, then A is a set containing four out-
comes: {(1,4), (2,3), (3,2), (4,1)}. (See probability.)

EXISTENTIAL QUANTIFIER A backwards letter E, ,
is used to represent the expression “There exists at least
one. . . ,” and is called the existential quantifier. For
example, the sentence “There exists at least one x such
that x2 � x” can be written with symbols:

(1)

For another example, let Ax represent the sentence “x
is an American,” and Mx represent the sentence “x is good
at math.” Then the expression

(2)

represents the sentence “There exists at least one x such
that x is both an American and x is good at math.” In more
informal terms, the sentence could be written as “Some
Americans are good at math.”

You must be careful when you determine the negation
for a sentence that uses the existential quantifier. The nega-
tion of sentence (2) is not the sentence “Some Americans
are not good at math” which could be written as

(3)

Instead, the negation of sentence (2) is the sentence
“No Americans are good at math,” which can be written
symbolically as

(4) NOT1 Ex�1Ax 2 AND 1Mx 2�
Ex�1Ax 2 AND1NOTMx 2�

Ex�1Ax 2AND 1Mx 2�
Ex 1x2 � x 2

E
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Sentence (4) could also be written as

(5)

(See universal quantifier.)

EXPECTATION The expectation of a discrete random
variable X (written E(X)) is

where f(xi) is the probability function for X [that is,
f(xi) � Pr(X � xi)] and the summation is taken over all
possible values for X. The expectation is the average value
that you would expect to see if you observed X many
times. For example, if you flip a coin five times and X is
the number of heads that appears, then E(X) � 2.5. This
is what you would expect: the number of heads should be
about half of the number of total flips. (Note that E(X)
itself does not have to be a possible value of X.)

The expectation of a continuous random variable with
density function f(x) is

Some properties of expectations are as follows:

(Cov(A, B) is the covariance of A and B).
The expectation is also called the expected value, or

the mean of the distribution of the random variable. If
the value of the summation (or the integral) used in the
definition is infinite for a particular distribution, then it
is said that the mean of the distribution does not exist.

EXPONENT An exponent is a number that indicates the
operation of repeated multiplication. Exponents are

E1AB 2 � E1A 2E1B 2 � Cov1A, B 2E1cX 2 � cE1X 2 if c is a constant.

E1A � B 2 � E1A 2 � E1B 2
E1X 2 � �

q

	q

xf1x 2dx

E1X 2 � a
i
xif1xi 2

�x�1AxSNOTMx 2�
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written as little numbers or letters raised above the main
line. For example:

The exponent number is also called the power that the
base is being raised to. The second power of x (x2) is
called x squared, and the third power of x (x3) is called x
cubed.

Exponents obey these properties:

(1) xaxb � xa+b For example:

(2) xa/xb � xa	b For example:

(3) (xa)b � xab For example:

(32)3 � 32 
 32 
 32 � (3 
 3) 
 (3 
 3)

 (3 
 3) � 36

So far it makes sense to use only exponents that are
positive integers. There are definitions that we can make,
however, that will allow us to use negative exponents or
fractional exponents. For negative exponents, we define:

For example, x	1 � 1/x, 2	5 � 1/25 � 1/32. This def-
inition is consistent with these properties:

3	2 �
34

36 �
3 
 3 
 3 
 3

3 
 3 
 3 
 3 
 3 
 3
�

1

3 
 3
�

1

32

x	a �
1

xa

� 2 
 2 
 2 
 2 � 24

26>22 � 2 
 2 
 2 
 2 
 2 
 2>2 
 2

43 
 45 � 14 
 4 
 4 2 14 
 4 
 4 
 4 
 4 2 � 48

 103 � 10 
 10 
 10 � 1,000

 24 � 2 
 2 
 2 
 2 � 16

 32 � 3 
 3 � 9
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If the exponent is zero, we define:

for all x (x � 0).
This definition seems peculiar at first, but it is consis-

tent with the properties of exponents. For example,

We define a fractional exponent to be the same as taking
a root. For example, . By the multiplication
property: (x1/2)2 � x2/2 � x1. In general: , and

. (See root.)

EXPONENTIAL DECAY A function shows exponential
decay if its value becomes smaller over time according to
a function of the form:

(assume g � 0).

EXPONENTIAL FUNCTION An exponential function is a
function of the form f(x) � ax, where a is a constant known
as the base. The most common exponential function is 
f(x) � ex (see e), which has the interesting property that its
derivative is equal to itself. Exponential functions can be
used as approximations for the rate of population growth or
the growth of compound interest. The inverse function of an
exponential function is the logarithm function.

EXPONENTIAL GROWTH A function shows exponen-
tial growth if its value becomes larger over time accord-
ing to a function of the form:

(assume g � 0).

y � y0e
gt

y � y0e
	gt

xa>b � 1 b1x 2a x1>a �
a1x

x1>2 � 1x

1 �
34

34 � 34	4 � 30

x0 � 1
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EXPONENTIAL NOTATION Exponential notation pro-
vides a way of expressing very big and very small num-
bers on computers. A number in exponential notation is
written as the product of a number from 1 to 10 and a
power of 10. The letter E is used to indicate what power
of 10 is needed. For example, 3.8 E 5 means 3.8 
 105.
Exponential notation is the same as scientific notation.

EXTERIOR ANGLE (1) An exterior angle of a polygon is
an angle formed by one side of the polygon and the line
that is the extension of an adjacent side.

(2) When a line crosses two other lines, the four
angles formed that are outside the two lines are called
exterior angles. (See figure 52.)

EXTRANEOUS ROOT See equation.

EXTRAPOLATION An extrapolation is a predicted value
that is outside the range of previously observed values. 
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EXTREMUM An extremum is a point where a function
attains a maximum or minimum. This article will con-
sider only functions that are continuous and differen-
tiable. A global maximum is the point where a function
attains its highest value. A local maximum is a point
where the value of the function is higher than the sur-
rounding points. Similar definitions apply to minimum
points. (See figure 53.)

Both local maximum and local minimum points can be
found by determining where the curve has a horizontal tan-
gent, which means that the derivative is zero at that point.
If the first derivative is zero and the second derivative is
positive, then the curve is concave up, and the point is a
minimum. For example, if f(x) � x2 	 10x � 7, then the
derivative is 2x 	 10, which is zero when x � 5. The sec-
ond derivative is equal to 2, which is positive, so (5, f (5))
is a minimum point.

If the first derivative is zero and the second derivative
is negative, then the curve is concave downward and 
the point is a maximum. For example, if f(x) � 	x2 �
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12x � 14, then the derivative is 	2x � 12, which is zero
when x � 6. The second derivative is equal to 	2, which
is negative, so (6, f(6)) is a maximum point.

If the first derivative is zero and the second derivative
is also zero, then the point may be a maximum, a mini-
mum, or neither. Here are three examples:

At x � 0 both the first and second derivative are zero, and
the point (0, f(0)) is neither a maximum or a minimum.

At x � 0 both the first and second derivative are zero, and
the point (0, f (0)) is a minimum.

At x � 0 both the first and second derivative are zero, and
the point (0, f (0)) is a maximum.

For the case of a function of two variables, see 
second-order conditions.

f1x 2 � 	x4; f¿ 1x 2 � 	4x3; f– 1x 2 � 	12x2

f1x 2 � x4; f¿ 1x 2 � 4x3; f– 1x 2 �  12x2

f1x 2 � x3; f¿ 1x 2 � 3x2; f– 1x 2 �  6x
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F

F-DISTRIBUTION The F-distribution is a continuous 
random variable distribution that is frequently used in
statistical inference. For an example, see analysis of
variance. There are many different F-distributions. Each
one is identified by specifying two quantities, called the
degree of freedom for the numerator (listed first) and the
degree of freedom for the denominator. Use a computer
or consult a table to find values for the distribution. If X
is a random variable with a chi-square distribution with
m degrees of freedom, and Y has a chi-square distribution
with n degrees of freedom that is independent of X, then
this random variable:

will have an F-distribution with m and n degrees of
freedom.

FACE A polyhedron is a solid bounded by several polygons,
each of which is called a face. For example, dice and all
other cubes have six faces. A triangular pyramid (tetra-
hedron) has four faces, and a square-based pyramid has
five faces.

FACTOR (1) A factor is one of two or more expressions
that are multiplied together.

(2) The factors of a whole number are those whole
numbers by which it can be divided with no remainder.
For example, 72 has the factors 1, 2, 3, 4, 6, 8, 9, 12, 18,
24, 36, 72.

(3) To factor an expression means to express it as a
product of several factors. For example, the expression 
x2 	 2x 	 15 can be factored into the following product:
(x � 3)(x 	 5). (See factoring.)

X>m
Y>n
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FACTOR THEOREM Suppose that P(x) represents a poly-
nomial in x. The factor theorem says that, if P(r) � 0, then
(x 	 r) is one of the factors of P(x).

FACTORIAL The factorial of a positive integer is the prod-
uct of all the integers from 1 up to the integer in question.
The exclamation point (“!”) is used to designate factor-
ial. For example,

The factorial of zero is defined to be 1: 0! � 1.
Factorials become very big very fast. For example,

69! (read “sixty-nine factorial”) is about 1.7 
 1098.
Factorials are used extensively in probability. (See prob-
ability; permutations; combinations.) There are n! dif-
ferent ways of putting a group of n objects in order. For
example, there are 52! � 8.1 
 1067 ways of shuffling a
deck of cards. There are 52 choices for the top card. For
each choice of the top card there are 51 choices for the
second card. For each of these possibilities there are 50
choices for the third card, and so on. Factorials are also
used in the binomial theorem.

FACTORING Factoring is the process of splitting a compli-
cated expression into the product of two or more simpler
expressions, called factors. For example, (x2 	 5x � 6)
can be split into two factors:

x2 	 5x � 6 � 1x 	 3 2 1x 	 2 2

n! � n 
 1n 	 1 2 
 1n 	 2 2 
 . . . 
 3 
 2 
 1

 5! � 5 
 4 
 3 
 2 
 1 � 120

 4! � 4 
 3 
 2 
 1 � 24

 3! � 3 
 2 
 1 � 6

 2! � 2 
 1 � 2

 1! � 1
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Factoring is a useful technique for solving polynomial
equations and for simplifying complicated fractions.
Some general tricks for factoring are:

(1) If all the terms have a common factor, then that fac-
tor can be pulled out:

ax3 � bx2 � cx � x(ax2 � bx � c)

(2) The expression x2 � bx � c can be factored if you
can find two numbers m and n that multiply to give c and
add to give b:

(x � m)(x � n) � x2 � (m � n)x � mn

(3) The difference of two squares can be factored:

a2 	 b2 � (a 	 b)(a � b)

(4) The difference of two cubes can be factored:

x3 	 a3 � (x 	 a)(x2 � ax � a2)

(5) The sum of two cubes can be factored:

x3 � a3 � (x � a)(x2 	 ax � a2)

(See also factor theorem.)

FALSE “False” is one of the two truth values attached to
sentences in logic. It corresponds to what we normally
suppose: “false” means “not true.” (See logic; Boolean
algebra.)

FEASIBLE SOLUTION A feasible solution is a set of val-
ues for the choice variables in a linear programming
problem that satisfies the constraints of the problem. (See
linear programming.)

FERMAT Pierre de Fermat (1601 to 1665) was a French
mathematician who developed number theory, worked on
ideas that later became known as calculus, and corre-
sponded with Pascal on probability theory. (See also
Fermat’s last theorem.)
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FERMAT’S LAST THEOREM Fermat’s last theorem
states that there is no solution to the equation an � bn � cn

where a, b, c, and n are all positive integers, and n � 2.
(If n � 2, then there are many solutions; see Pythagorean
triple.)

The theorem acquired its name because Fermat men-
tioned the theorem and claimed to have discovered a
proof of it, but did not have space to write it down.
Nobody has ever discovered a counterexample, but it has
turned out to be very difficult to prove this theorem. Over
the years several proofs have been proposed, but closer
analysis has revealed they have flaws. Prior to being
proved, this statement should more properly be called a
conjecture rather than a theorem. In 1993 Andrew Wiles
proposed a proof, which needed revision but was then
shown to be correct.

FIBONACCI SEQUENCE The first two numbers of the
Fibonacci sequence are 1; every other number is the sum of
the two numbers that immediately precede it. Therefore, the
first 14 numbers in the sequence are: 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377.

FIELD (1) A field is a set of elements with these properties:
—It is an Abelian group with respect to one operation

called addition (with an identity element designated 0).
(See group.)

—It is also an Abelian group with respect to another
operation called multiplication.

—The distributive property holds: a(b � c) �
ab � ac.

For example, the real numbers are an example of a
field, with addition and multiplication defined in the tra-
ditional manner. The concept can also be generalized to
other types of objects.

(2) See vector field.
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FINITE Something is finite if it doesn’t take forever to count
or measure it. The opposite of finite is infinite, which
means limitless. There is an infinite number of natural
numbers. There is a finite (but very large) number of grains
of sand on Palm Beach or of stars in the Milky Way galaxy.

FIRST DERIVATIVE TEST If the first derivative of a
function f (x) is zero at a point x0, then the point has hor-
izontal tangent at that point. The point may be a local
maximum, local minimum, or neither. (See second deriv-
ative; second-order conditions.)

FOCAL POINT See ellipse; parabola; conic section.

FOCI “Foci” is the plural of “focus.” (See focus.)

FOCUS (1) A parabola is the set of points that are the same
distance from a fixed point (the focus) and a fixed line
(the directrix). The focus, or focal point, is important
because starlight striking a parabolically shaped tele-
scope mirror will be reflected back to the focus. (See
conic section; parabola; optics.)

(2) An ellipse is the set points such that the sum of the
distances to two fixed points is a constant. The two points
are called foci (plural of focus). Planetary orbits are
shaped like ellipses, with the sun at one focus.

FORCE A force in physics acts to cause an object to move,
or else restrains its motion. For example, gravity is a
force. A force is a vector quantity because it has both
magnitude and direction.

FOURIER Jean-Baptiste Joseph Fourier (1768 to 1830)
was a French mathematician who studied differential
equations of heat conduction, and developed the concept
now known as Fourier series.

FOURIER SERIES Any periodic function can be expressed
as a series involving sines and cosines, known as a Fourier
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series. Assume that units are chosen so that the period of
the function is 2p. Then:

where the coefficients are found from these integrals:

For example, consider the square wave function,
defined to be:

f (x) � 1 if 0 � x � p, 2p � x � 3p, and so on

f (x) � 0 if 	p � x � 0, p � x � 2p, and so on

Set up these integrals to find the coefficients of the
Fourier series (the integral only needs to be taken from 0
to p because the function is zero everywhere between
	p and 0):

� 	
1
np
1	1 	 1 2 �

2
np

 1if n is odd 2
� 	

1
np

�cos 1np 2 	 cos0�

� 	
1
np

cosnx 0p0
bn �

1
p �

p

0

sinnxdx

bn �
1
p �

p

	p

f1x 2 sin nx dx

an �
1
p �

p

	p

f1x 2 cos nx dx

� 1ancosnx � bnsin nx 2� 1a2cos2x � b2sin2x 2 � . . .

f1x 2 �
a0

2
� 1a1cosx � b1sinx 2
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The remaining coefficents are zero:

except

Figure 54 shows how the series becomes closer to
matching the square wave as more terms are added.

FRACTAL A fractal is a shape that contains an infinite
amount of fine detail. That is, no matter how much it is
enlarged, there is still more detail to be revealed by
enlarging it further.

Figure 55 shows how to construct a fractal called a
Koch snowflake: start with a triangle, and repeatedly
replace every straight line by a bent line as shown in the
figure. The picture shows the result of doing this 0, 1, 2,
and 6 times. If this were done an infinite number of
times, the result would be a fractal.

(See also Mandelbrot set.)

FRACTION A fraction a/b is defined by the equation

The fraction a/b is the answer to the division prob-
lem a � b. The top of the fraction (a) is called the

a

b

 b � a

�
1
p �

p

0

dx �
1
p
1p 	 0 2 � 1

a0 �
1
p �

p

0

cos0 dx

�
1
np
1 sin 1np 2 	 sin0 2 � 0

�
1
np

sinnx 0p0
an �

1
p �

p

0

cosnx dx
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Figure 54

Figure 55 Koch snowflake generation



numerator, and the bottom of the fraction (b) is called
the denominator.

Suppose that the fraction measures the amount of pie
that you have. Then the denominator tells you how many
equal slices the pie has been cut into, and the numerator
tells you how many slices you have. The fraction 1/8 says
that the pie has been cut into eight pieces, and you have
only one of them. If you have 8/8, then you have eight
pieces, or the whole pie. In general, a /a � 1 for all a
(except a � 0). If a � b in the fraction a /b, then you have
more than a whole pie and the value of the fraction is
greater than 1. A fraction greater than 1 is sometimes
called an improper fraction. An improper fraction can
always be written as the sum of an integer and a proper
fraction. For example, . Figure
56 illustrates some fractions.

The fraction a/b becomes larger if a becomes larger,
but it becomes smaller if b becomes larger. For example,

, but .

The value of the fraction is unchanged if both the top
and the bottom are multiplied by the same number: a/b �
ac/bc For example,

A decimal fraction, such as 0.25 (which equals ) is a
fraction in which the part to the right of the decimal point
is assumed to be the numerator of a fraction that has
some power of 10 in the denominator. (See decimal
numbers.) Decimal fractions are easier to add and com-
pare than ordinary fractions.

A fraction is said to be in simplest form if there are no
common factors between the numerator and the denomi-
nator. For example, is in simplest form because 2 and 3
have no common factors. However, is not in simplest24

30

2
3

1
4

4

5
�

3 
 4

3 
 5
�

12

15

5
11 � 5

12
5

11 � 6
11

10
3 � 9

3 � 1
3 � 3 � 1

3 � 31
3
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form. To put it in simplest form, multiply both the top and
the bottom by .

See least common denominator for an example of
adding two fractions.

FRUSTUM A frustum is a portion of a cone or a pyramid
bounded by two parallel planes. (See figure 57.) For an
application, see surface area, figure of revolution.

1
6 
 24
1
6 
 30

�
4

5

1
6

Figure 56 Examples of Fractions



FUNCTION A function is a rule that associates each member
of one set with a member of another set. The most common
functions are those that associate one number with another
number. For example, the function f (x) � 3x2 � 5 turns 1
into 8, 2 into 17, 3 into 32, and so on. The input number to
the function is called the independent variable, or argu-
ment. The set of all possible values for the independent
variable is called the domain. The output number is called
the dependent variable. The set of all possible values for
the dependent variable is called the range.

An important property of functions is that for each
value of the independent variable there is one and only
one value of the dependent variable.

An inverse function does exactly the opposite of the
original function. If you put x into the original function and
get out y, then, if you put y into the inverse function, you
will get out x. The inverse function of f (x) is sometimes
written as f 	1(x). In order for a function to have an inverse,
it must be one-to-one; that is, there must be one and only
one input number for each output number. (It is possible
for a function to have two input numbers leading to the
same output number, but such a function will not have an
inverse.) The range of the inverse function is the same as
the domain of the original function and vice versa. For
example, the natural logarithm function is the inverse of
the exponential function ex.
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Figure 57 Frustums of cone and cylinder
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FUNDAMENTAL PRINCIPLE OF COUNTING If two
choices are to be made, one from a list of m possibilities
and the second from a list of n possibilities, and any
choice from the first list can be combined with any
choice from the second list, then the fundamental princi-
ple of counting says that there are mn total ways of mak-
ing the choices. This principle is also called the
multiplication principle. (See also combinations; per-
mutations.)

FUNDAMENTAL THEOREM OF ALGEBRA The fun-
damental theorem of algebra says that an nth-degree poly-
nomial equation has at least one root among the complex
numbers. It has exactly n roots when you include complex
roots and you realize that a root may occur more than
once. (See polynomial.)

FUNDAMENTAL THEOREM OF ARITHMETIC The
fundamental theorem of arithmetic says that any natural
number can be expressed as a unique product of prime
numbers. (See prime factors.)

FUNDAMENTAL THEOREM OF CALCULUS The
fundamental theorem of calculus says that

where �x � (b 	 a)/n, xi is a number in the interval from
a � (i 	 1) �x to a � i�x, and dF(x)/dx � f (x). The the-
orem tells how to find the area under a curve by taking an
integral. (See calculus, definite integral.)

lim
nSq,¢xS0

a
n

i�1
f1xi 2¢x � �

b

a

f1x 2dx � F1b 2 	 F1a 2
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GALOIS Evariste Galois (1811 to 1832) was a French
mathematician who made crucial contributions to group
theory and applied this to the study of the solvability of
polynomial equations.

GAME THEORY Game theory is the mathematical study
of strategy games whose results can be represented by a
matrix showing the decisions of each player. The game of
rock-paper-scissors can be represented by this matrix,
which shows the payoff to player 1:

player 1’s choice player 2’s choice
rock paper scissors

rock 0 	1 1
paper 1 0 	1
scissors 	1 1 0

If both players choose the same item, they both get 0.
Otherwise, the winner gets 1 point and the loser gets 	1
point, where rock beats scissors, scissors beats paper, and
paper beats rock. This is a zero-sum game because the
sum of the payoffs to the two players always equals zero.
Game theory involves determining an optimal strategy,
which often means determining the probability with
which a certain strategy should be chosen. Because of the
symmetry of the rock-paper-scissors game, you can’t
beat a strategy of choosing each of the three options ran-
domly, using equal probabilities (unless you are able to
detect a pattern in your opponent’s choices that would
allow you to base your choice on your prediction of your
opponent’s moves).

An example of a non-zero sum game is the prisoner’s
dilemma:
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prisoner 1 prisoner 2
confess don’t confess

confess 	5 0
don’t confess 	10 	1

Two suspects are being questioned separately. The
absolute value of the numbers in the matrix represent
years in jail. (The numbers are negative because each
prisoner wants fewer years.) If they both confess, they
both get 5 years in jail; if neither confesses, they both get
1 year in jail on a minor charge. A prisoner who con-
fesses in exchange for testimony against the other will
get to go free, but the other prisoner will get 10 years in
jail. One possible strategy would be for each player to
maximize the payoff under the worst-case scenario. This
strategy would lead each player to confess, but if they
both confess, they both end up worse off than if they had
been able to agree not to confess.

GAUSS Carl Friedrich Gauss (1777 to 1855) was a German
mathematician and astronomer who studied errors of
measurement (so the normal curve is sometimes called
the Gaussian error curve); developed a way to construct a
17-sided regular polygon with geometric construction;
developed a law that says the electric flux over a closed
surface is proportional to the charge inside the surface
(this law is now included as one of Maxwell’s equa-
tions); and studied the theory of complex numbers.

GAUSS-JORDAN ELIMINATION Gauss-Jordan elimi-
nation is a method for solving a system of linear equa-
tions. The method involves transforming the system so
that the last equation contains only one variable, the next-
to-last equation contains only two variables, and so on.
The system is easy to solve when it is in that form. For
example, to solve this system:

2x 	 3y � z � 5
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6x � y 	 5z � 51

4x � 14y 	 8z � 100

eliminate the term with x from the last two equations. To
do this, subtract twice the first equation from the last
equation to obtain a new last equation, and subtract three
times the first equation from the second equation to obtain
a new second equation. The system then looks like this:

2x 	 3y � z � 5

10y 	 8z � 36

20y 	 10z � 90

Now, to eliminate the term with y from the last equa-
tion, subtract twice the second equation from the last
equation. Here is the new system:

2x 	 3y � z � 5

10y 	 8z � 36

6z � 18

Solve the last equation for z (solution: z � 3). Then
insert this value for z into the second equation to solve
for y (solution: y � 6). Finally, insert the values for z and
y into the first equation to solve for x (solution: x � 10).

GEODESIC A geodesic curve follows the shortest distance
between two points through a particular space. For exam-
ple, in Euclidian space a straight line is the geodesic
between two points. Along the surface of the Earth, a
great circle route is the geodesic. (See spherical
trigonometry.)

GEOMETRIC CONSTRUCTION Geometric construc-
tion is the process of drawing geometric figures using
only two instruments: a straightedge and a compass.
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Figure 58 shows how to bisect an angle with geometric
construction. First, put the point of the compass at the
vertex of the angle, and then mark off arcs 1 and 2 (each
equal distance from the vertex). Then, put the point of the
compass at the point where arc 1 crosses the side of the
angle, and then mark off arc 3. Move the point to arc 2,
and then mark off arc 4 (making sure that the distance is
the same as it was from arc 1 to arc 3). To bisect the
angle, simply draw the line connecting the vertex of the
angle to the point where arcs 3 and 4 cross.

Classical geometers sought a similar way of trisecting
an angle with geometric construction, but that has since
been proved to be impossible.

GEOMETRIC DISTRIBUTION Consider a random exper-
iment where the probablity of success on each trial is p. You
will keep conducting the experiment until you see the first
success; let X be the number of failures that occur before
the first success. (Assume that each trial is independent of
the others.) Then X is a discrete random variable with the
geometric distribution. Its probability function is:

Pr (X � i) � p (1 	 p)i

The expectation of X is (1 	 p)/p, and the variance is
(1 	 p)/p2. For example, if you are trying to roll a 6 on one
die, then p � 1/6, and you can expect to roll 5 non-sixes
before rolling a 6. For comparison, see binomial distri-
bution.
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Figure 58 Bisecting an angle with geometric 
construction



GEOMETRIC MEAN The geometric mean of a group of
n numbers (a1, a2, a3, . . . an) is equal to

(a1 
 a2 
 a3 
 . . . 
 an)
1/n

For example, the geometric mean of 4 and 9 is 
� 6. For contrast, see arithmetic mean.

GEOMETRIC SEQUENCE A geometric sequence is a
sequence of numbers of the form

a, ar, ar2, ar3, . . . arn	1

The ratio between any two consecutive terms is a
constant.

GEOMETRIC SERIES A geometric series is a sum of a
geometric sequence:

S � a � ar � ar2 � ar3 � ar4 � . . . � ar n	1

In a geometric series the ratio of any two consecutive
terms is a constant (in this case r). The sum of the n terms
of the geometric series above is

To show this, multiply the series by (1 	 r):

(a � ar � ar2 � ar3 � ar 4 � . . . � ar n	1)(1 	 r)
� a � ar � ar2 � ar3 � ar4 � . . . � arn	1

	ar 	 ar2 	 ar3 	 ar 4 	 . . . 	 ar n	1 	 ar n

� a 	 ar n

Therefore,

which can be rewritten in the form given above.

�
a 	 arn

1 	 r

S � a � ar � ar2 � ar3 � ar4 � . . . � arn	1

a
n	1

i�0
ar i �

a1rn 	 1 2
r 	 1

14 
 9
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For example:

If n approaches infinity, then the summation will also
go to infinity if . However, if 	1 � r � 1, then rn

approaches zero as n approaches infinity, so the expres-
sion for the sum of the terms becomes:

For example:

GEOMETRY Geometry is the study of shape and size. The
geometry of our everyday world is based on the work of
Euclid, who lived about 300 B.C. Euclidian geometry has
a rigorously developed logical structure. Three basic
undefined terms are point, line, and plane. A point is like
a tiny dot: it has zero height, zero width, and zero thick-
ness. A line goes off straight in both directions. A plane is
a flat surface, like a tabletop, extending off to infinity. We
cannot see any of these idealized objects, but we can
imagine them and draw pictures to represent them. Euclid
developed some basic postulates and then proved theo-
rems based on these. Examples of postulates used in mod-
ern versions of Euclidian geometry are “Two distinct
points are contained in one and only one line” and “Three
distinct points not on the same line are contained in one
and only one plane.”

The geometry of flat figures is called plane geometry,
because a flat figure is contained in a plane. The geome-
try of figures in three dimensional space is called solid
geometry.

1 �
1

2
�

1

4
�

1

8
�

1

16
�

1

32
� . . . �

1

1 	 1
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� 2

a
q

i�0
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a

1 	 r

0r 0 � 1

2 � 4 � 8 � 16 � 32 � 64 �
12 2 126 	 1 2

2 	 1
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Other types of geometries (called non-Euclidian
geometries) have been developed, which make different
assumptions about the nature of parallel lines. Although
these geometries do not match our intuitive concept of
what space is like, they have been useful in developing
general relativity theory and in other areas of math.

GLIDE REFLECTION A glide reflection is a combination
of a reflection about a line and a translation parallel to
that line.

GÖDEL Kurt Gödel (1906 to 1978) was an Austrian born
U.S. mathematician who developed Gödel’s incom-
pleteness theorem.

GÖDEL’S INCOMPLETENESS THEOREM This theo-
rem states that a rigid logical system will contain true
propositions that cannot be proved to be true. Therefore,
no logical system can be complete in the sense of being
able to provide formal proofs for all true theorems.

GOLDEN RATIO The golden ratio (designated f) is the
ratio that occurs when a line segment is divided into two
parts, and the ratio of the length of the longest part to the
shortest part matches the ratio of length of the total seg-
ment to the longest part. Calling the length of the short-
est part 1, the value of f solves this equation:

The solution is:

The ratio has aesthetic appeal in a variety of contexts,
and it sometimes arises naturally in biology.

f �
1 � 25

2
� 1.618034

f � 1

f
�
f

1
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GRADIENT The gradient of a multivariable function is a
vector consisting of the partial derivatives of that function.
If f(x, y, z) is a function of three variables, then the gradi-
ent of f, written as �f, is the vector

For example, if

f(x, y, z) � xa yb zc

then the gradient is the vector

[(axa	1 yb zc), (bxa yb	1 zc), (cxa yb zc	1)]

If the gradient is evaluated at a particular point (x1, y1,
z1), then the gradient points in the direction of the greatest
increase of the function starting at that point. If the gradi-
ent is equal to the zero vector at a particular point, then that
point is a critical point that might be a local maximum or
minimum. (See extremum; second-order conditions.)

GRAPH The graph of an equation is the set of points that
make the equation true. By drawing a picture of the graph
it is possible to visualize an algebraic equation. For exam-
ple, the set of points that make the equation x2 � y2 � r2

true is a circle.

GRAPHING CALCULATOR A graphing calculator lets
you visualize a function by drawing its graph. You can
choose the scale of the graph so you can zoom in on a
particular location or zoom out to get the overall view.

GREAT CIRCLE A great circle is a circle that is formed by
the intersection of a sphere and a plane passing through
the center. A great circle is the largest circle that can be
drawn on a given sphere, and the shortest path along the
sphere between two points is a great circle. (See sphere;
spherical trigonometry.)

a 0f
0x

,
0f
0y

,
0f
0z
b
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GREATEST COMMON FACTOR The greatest common
factor of two natural numbers a and b is the largest nat-
ural number that divides both a and b evenly (that is, with
no remainder). For example, the greatest common factor
of 15 and 28 is 1. The greatest common factor of 60 and
84 is 12. (See Euclid’s algorithm.)

GREATEST INTEGER FUNCTION The greatest integer
function f (x) gives the greatest integer less than or equal
to a real number x. Its graph resembles a staircase. (See
figure 59.)

GREEN’S THEOREM Let f(x, y) � [fx(x, y), fy(x, y)] be a
two-dimensional vector field, and let L be a closed path in
the x, y plane. Green’s theorem states that the line integral
of f around this path is equal to the following integral over
the interior of the path L:

�
path L

f1x,y 2dL � � �
interiorof L

B0fy
0x

	
0fx
0y
Rdxdy
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The amazing part of this theorem is that it works for any
vector field f and any path L. The following will show that
it works for the rectangular path shown in figure 60; this
result can be generalized to an arbitrary path.

Start with the double integral over the interior:

�fx 0y�b
y�0�dx� �

b

0

�fy 1a,y 2 	 fy 10,y 2�dy 	 �
x�a

x�0

dy 	 �
x�a

x�0
�
y�b

y�0

0fx
0y
dy dx�fy 0x�a

x�0 �� �
y�b

y�0

	 �
y�b

y�0
�
x�a

x�0

a 0fx
0y
b dx dy

� �
y�b

y�0
�
x�a

x�0

a 0fy
0x
b dx dy

�
y�b

y�0
�
x�a

x�0

B0fy
0x

	
0fx
0y
R dx dy
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This can be rearranged into these four integrals:

When combined, these four integrals give the four
pieces of the line integral around the rectangular path.

For a generalization of this result, see Stokes’s theo-
rem. For an application, see Maxwell’s equations. For
background, see line integral.

GROUP A group is a set of elements for which an operation
(call it ) is defined that meets these properties:

(1) If a and b are in the set, then is also in the set.
(2) The associative property holds:

(3) There is an identity element I such that 
(4) Each element (a) has an inverse (a	1) such that

.
If the operation is also commutative (that is,

), then the group is called an Abelian group.
For example, the real numbers form an Abelian group

with respect to addition, and the nonzero real numbers
form an Abelian group with respect to multiplication.
The theory of groups can be applied to many sets other
than numbers, and to operations other than conventional
multiplication.

(See also field.)

a ° b � b ° a

a ° a
	1 � I

a ° I � a
1a ° b 2 ° c a ° 1b ° c 2 �

a ° b
°

� �
0

a

fx1x, b 2dx � �
0

b

fy 10, y 2dy
�
a

0

fx1x, 0 2dx � �
b

0

fy1a, y 2dy
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HALF PLANE A half plane is the set of all points in a plane
that lie on one side of a line.

HARMONIC SEQUENCE A sequence of numbers is a
harmonic sequence if the reciprocals of the terms form an
arithmetic sequence. The general form of a harmonic
sequence is

HEPTAGON A heptagon is a polygon with seven sides.

HERO’S FORMULA Hero’s formula tells how to find the
area of a triangle if you know the length of the sides. Let
a, b, and c be the lengths of the sides, and let s � (a � b
� c) / 2. Then the area of the triangle is given by the
formula

HESSIAN The Hessian matrix of a multivariable function is
the matrix of second partial derivatives. If f (x, y, z) is a
function of three variables, its Hessian matrix is:

HEURISTIC A heuristic method of solving problems
involves intelligent trial and error. By contrast, an algorith-
mic solution method is a clearly specified procedure that is
guaranteed to give the correct answer. (See algorithm.)

¶02f0x2
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02f
0x0z
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HEXADECIMAL NUMBER A hexadecimal number is a
number written in base 16. A hexadecimal system con-
sists of 16 possible digits. The digits from 0 to 9 are the
same as they are in the decimal system. The letter A is
used to represent 10; B � 11; C � 12; D � 13; E � 14;
and F � 15. For example, the number A4C2 in hexadec-
imal means

10 
 163 � 4 
 162 � 12 
 161 � 2 
 160 � 42, 178

HEXAGON A hexagon is a six-sided polygon. The sum of the
angles in a hexagon is 720º. Regular hexagons have six
equal sides and six equal angles of 120º. Honeycombs are
shaped like hexagons for a good reason. With a fixed
perimeter, the area of a polygon increases as the number of
sides increases. If you have a fixed amount of fencing, you
will have more area if you build a square rather than a tri-
angle. A pentagon would be even better, and a circle would
be best of all. There is one disadvantage to adding more
sides, though. If a polygon has too many sides, you can’t
pack several of those polygons together without wasting
a lot of space. You can’t pack circles tightly, or even
octagons. You can pack hexagons, though. Hexagons make
a nice compromise: they have more area for a fixed perime-
ter than any other polygon that can be packed together
tightly with others of the same type. (See figure 61.)

HEXAHEDRON A hexahedron is a polyhedron with six
faces. A regular hexahedron is better known as a cube.
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HILBERT David Hilbert (1862 to 1943) was a mathemati-
cian whose work included a modern, rigorous, axiomatic
development of geometry.

HISTOGRAM A histogram is a bar diagram where the hor-
izontal axis shows different categories of values, and the
height of each bar is related to the number of observations
in the corresponding category. If all categories are the
same width, then the height of each bar is proportional to
the number of observations in the category. If the cate-
gories are of unequal width, then the height of the bar is
proportional to the number of observations in the category
divided by the width of the category (the division being
needed to make sure that wider categories don’t have taller
bars just because they are wider). (See figure 62.)

HORIZONTAL LINE TEST The horizontal line test can
be used to determine if a function is a one-to-one func-
tion. If a horizontal line can be drawn that crosses two
points on the graph of the function, then the function is
not one-to-one. (See also vertical line test.)
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HYPERBOLA A hyperbola is the set of all points in a plane
such that the difference between the distances to two
fixed points is a constant. A hyperbola has two branches
that are mirror images of each other. Each branch looks
like a misshaped parabola. The general equation for a
hyperbola with center at the origin is

The meaning of a and b is shown in figure 63. The two
diagonal lines are called asymptotes, which are deter-

mined by the equation The farther you arey2 � a bx
a
b2

.

x2

a2 	
y2

b2 � 1
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from the origin, the closer each part of the curve
approaches its respective asymptote line. However, the
curve never actually touches the lines.

HYPERBOLIC FUNCTIONS The hyperbolic functions
are a set of functions defined as follows:

hyperbolic cosine: cosh 

hyperbolic sine: sinh 

hyperbolic tangent: tanh 

For an example of an application, see catenary.

HYPERGEOMETRIC DISTRIBUTION The hyper-
geometric distribution is a discrete random variable dis-
tribution that applies when you are selecting a sample
without replacement from a population. Suppose that the
population contains M “desirable” objects and N 	 M
“undesirable” objects. Select n objects from the popula-
tion at random without replacement (in other words, once
an object has been selected, you will not return it to the
population and therefore it cannot be selected again). Let
X be the number of desirable objects in your sample.
Then X is a discrete random variable with the hypergeo-
metric distribution. Its probability function is given by
this formula:

Pr1X � i 2 �

£M
i
≥ 
 £N 	M

n 	 i
≥£N

n
≥

x �
sinhx
coshx

x �
1

2
1ex 	 e	x 2

x �
1

2
1ex � e	x 2
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The symbols in the parentheses are all examples of the
binomial coefficient. For example:

(See combinations; binomial theorem.)
The expected value of X is equal to nM/N. Here is the

intuition for this result. If you have M � 600 blue mar-
bles in a jar with a total of N � 1000 marbles, and you
randomly select n � 100 marbles from the jar, you would
expect to choose about 60 blue marbles.

The variance of X is np (1 	 p)(N 	 n) / (N 	 1),
where p � M/N, the proportion of desirable objects in the
population.

HYPERPLANE A hyperplane is the generalization of the
concept of a plane to higher dimensional space. A plane
(in 3 dimensions) can be defined by an equation of the
form ax � by � cz � d, where a, b, c and d are known
constants. A hyperplane of dimension n can be defined by
an equation of the form:

a1x1 � a2x2 � . . . � anxn � a0

where a0 to an are known constants.

HYPOTENUSE The hypotenuse is the side in a right
triangle that is opposite the right angle. It is the
longest of the three sides in the triangle.

(See Pythagorean theorem.)

HYPOTHESIS A hypothesis is a proposition that is being
investigated; it has yet to be proved. (See hypothesis
testing.)

HYPOTHESIS TESTING A situation often arises in
which a researcher needs to test a hypothesis about

£N
n
≥ �

N!1N 	 n 2! n!
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the nature of the world. Frequently it is necessary to
use a statistical technique known as hypothesis test-
ing for this purpose.

The hypothesis that is being tested is termed the null
hypothesis. The other possible hypothesis, which says
“The null hypothesis is wrong,” is called the alternative
hypothesis. Here are some examples of possible null
hypotheses:

“There is no significant difference in effectiveness
between Brand X cold medicine and Brand Z medicine.”

“On average, the favorite colors for Democrats are the
same as the favorite colors for Republicans.”

“The average reading ability of fourth graders who
watch less than 10 hours of television per week is above
that of fourth graders who watch more than 10 hours of
television.”

The term “null hypothesis” is used because the
hypothesis that is being tested is often of the form “There
is no relation between two quantities,” as in the first
example above. However, the term “null hypothesis” is
used also in other cases whether or not it is a “no-effect”
type of hypothesis.

In many practical situations it is not possible to deter-
mine with certainty whether the null hypothesis is true or
false. The best that can be done is to collect evidence and
then decide whether the null hypothesis should be
accepted or rejected. There is always a possibility that the
researcher will choose incorrectly, since the truth is not
known conclusively. A situation in which the null hypoth-
esis has been rejected, but is actually true, is referred to as
a type 1 error. The opposite type of error, called a type 2
error, occurs when the null hypothesis has been accepted,
but is actually false. A good testing procedure is designed
so that the chance of committing either of these errors is
small. However, it often works out that a test procedure
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with a smaller probability of leading to a type 1 error will
also have a larger probability of resulting in a type 2 error.
Therefore, no single testing procedure is guaranteed to be
best. It is customary in statistics to design a testing proce-
dure such that the probability of a type 1 error is less than
a specified value (often 5 percent or 1 percent). The prob-
ability of committing a type 1 error is called the level of
significance of the test. Therefore, if a test has been con-
ducted at the 5 percent level of significance, this means
that the test has been designed so that there is a 5 percent
chance of a type 1 error.

The normal procedure in hypothesis testing is to cal-
culate a quantity called a test statistic, whose value
depends on the values that are observed in the sample.
The test statistic is designed so that if the null hypothesis
is true, then the test statistic value will be a random vari-
able that comes from a known distribution, such as the
standard normal distribution or a t distribution. After the
value of the test statistic has been calculated, that value is
compared with the values that would be expected from
the known distribution. If the observed test statistic value
might plausibly have come from the indicated distribu-
tion, then the null hypothesis is accepted. However, if it
is unlikely that the observed value could have resulted
from that distribution, then the null hypothesis is
rejected.

Suppose that we are conducting a test based on a test
statistic Z, which will have a standard normal distribution
if the null hypothesis is true. There is a 95 percent chance
that the value of a random variable with a standard nor-
mal distribution will be between 1.96 and 	1.96.
Therefore, we will design the test so that the null hypoth-
esis will be accepted if the calculated value of Z falls
between 	1.96 and 1.96, since these are plausible values.
However, if the value of Z is less than 	1.96 or greater
than 1.96, we will reject the hypothesis because the value
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of a random variable with a standard normal distribution
is unlikely to fall outside the 	1.96 to 1.96 range. The
range of values for the test statistic where the null
hypothesis is rejected is known as the rejection region or
critical region. In this case the critical region consists of
two parts. (The two regions at the ends of the distribution
are called the tails of the distribution.) Notice that there
still is a 5 percent chance of committing a type 1 error. If
the null hypothesis is true, then Z will have a standard
normal distribution, and there is a 5 percent chance that
the value of Z will be greater than 1.96 or less than
	1.96. (See figure 64.)

Here is an example of a hypothesis testing problem
involving coins. Suppose we wish to test whether a par-
ticular coin is fair (that is, equally likely to come up
heads or tails). Our null hypothesis is “The probability of
heads is .5.” The alternative hypothesis is “The probabil-
ity of heads is not .5.” To conduct our test, we will flip the
coin 10,000 times. Let X be the number of heads that
occurs; X is a random variable. If the null hypothesis is
true, then X has a binomial distribution with n � 10,000,
p � .5, E(X) � np � 5, 000, Var(X) � np (1 	 p) � 2,500,
and standard deviation � 50. Because of the central limit
theorem, X can be approximated by a normal distribution
with mean 5,000 and standard deviation 50. We define a
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new random variable Z as follows: Z � (X 	 5000)/50.
Now Z will have a standard normal distribution. If the
calculated value of Z is between 	1.96 and 1.96, we will
accept the null hypothesis that the coin is fair; otherwise
we will reject the hypothesis. For example, if we observe
5063 heads, then X � 5063, Z � 1.26, and we will accept
the null hypothesis. On the other hand, if we observe
5104 heads, then X � 5104, Z � 2.08, and we will reject
the null hypothesis because the observed value of Z falls
in the critical region.

For other examples of hypothesis testing, see chi-
square test and analysis of variance.
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I

i The symbol i is the basic unit for imaginary numbers, and
is defined by the equation i2 � 	1. (See imaginary
number.)

ICOSAHEDRON An icosahedron is a polyhedron with 20
faces. (See polyhedron.) (See figure 65.)

IDENTITY An identity is an equation that is true for every
possible value of the unknowns. For example, the equa-
tion 4x � x � x � x � x is an identity, but 2x � 3 � 15
is not.

IDENTITY ELEMENT If � stands for an operation (such
as addition), then the identity element (called I) for the
operation  is the number such that I � a � a, for all a. For
example, zero is the identity element for addition,
because 0 � a � a, for all a. One is the identity element
for multiplication, because 1 
 a � a, for all a.

IDENTITY MATRIX An identity matrix is a square matrix
with ones along the diagonal and zeros everywhere else.
For example:

(2 
 2 identity): a1 0

0 1
b
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(3 
 3 identity):

(4 
 4 identity):

The letter I is used to represent an identity matrix. An
identity matrix satisfies the property that IA � A for any
matrix for which IA exists. For example:

If the result when multiplying two square matrices is
the identity matrix, then each matrix is called the inverse
matrix for the other. (See inverse matrix.)

IF The word “IF” in logic is used in conditional statements
of the form “IF p, THEN q” (p S q). (See conditional
statement.)

IMAGE The image of a point is the point that results after
the original point has been subjected to a transformation.
For an example of a transformation, see reflection.

IMAGINARY NUMBER An imaginary number is of the
form ni, where n is a real number that is being multiplied
by the imaginary unit i, and i is defined by the equation
i2 � 	1. Since the product of any two real numbers with
the same sign will be positive (or zero), there is no way
that you can find any real number that, when multiplied

°1 0 0

0 1 0

0 0 1

¢ °11 12 13

21 22 23

31 32 33

¢ � °11 12 13

21 22 23

31 32 33

¢

± 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

≤

°1 0 0

0 1 0

0 0 1

¢
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by itself, will give you a negative number. Therefore, the
imaginary numbers need to be introduced to provide
solutions for equations that require taking the square
roots of negative numbers.

Imaginary numbers are needed to describe certain
equations in some branches of physics, such as quantum
mechanics. However, any measurable quantity, such as
energy, momentum, or length, will always be represented
by a real number.

The square root of any negative number can be
expressed as a pure imaginary number:

An interesting cyclic property occurs when i is raised
to powers:

i0 � 1 i4 � 1 i8 � 1

i1 � i i5 � i i9 � i

i2 � 	1 i6 � 	1 i10 � 	1

i3 � 	i i7 � 	i i11 � 	i

A complex number is formed by the addition of a
pure imaginary number and a real number. The general
form of a complex number is a � bi, where a and b are
both real numbers.

IMPLICATION An implication is a statement of this form;
“AS B” (“A implies B”). (See conditional statement.)

IMPLICIT DIFFERENTIATION Implicit differentiation
provides a method for finding derivatives if the relation-
ship between two variables is not expressed as an explicit
function. For example, consider the equation x2 � y2 � r2,
which describes a circle of radius r centered at the origin.
This equation defines a relationship between x and y, but
it does not express that relationship as an explicit func-
tion. To find the derivative dy/dx, take the derivative of

21	10 2 � 21	1 2 110 2 � 2	1210 � i210



both sides of the equation with respect to x:

Assume that r is a constant; then d(r2)/dx is zero. Use
the chain rule to find the two derivatives on the left:

Now solve for dy/dx:

For another example, suppose that y � ax. Take the
logarithm of both sides:

ln y � x ln a

Now y is no longer written as an explicit function of x,
but you can again use implicit differentiation:

Assume that a is a constant:

Use the chain rule on the left-hand side:

and then solve for dy/dx:

dy

dx
� y lna � ax lna

1
y

dy

dx
� lna

d

dx
1lny 2 � lna

d

dx
1lny 2 �

d

dx
1x ln a 2

dy

dx
� 	

x
y

2x � 2y
dy

dx
� 0

d1x2 2
dx

�
d1y2 2
dx

�
d1r2 2
dx

d

dx
1x2 � y2 2 �

d

dx
1r2 2
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IMPROPER FRACTION An improper fraction is a frac-
tion with a numerator that is greater than the denomina-
tor: , for example. An improper fraction can be written
as the sum of a whole number and a proper fraction. For
example, . For contrast, see proper
fraction.

INCENTER The incenter of a triangle is the center of the
circle inscribed inside the triangle. It is the intersection of
the three angle bisectors of the triangle. (See incircle.)

INCIRCLE The incircle of a triangle is the circle that can
be inscribed within the triangle. (See figure 66.) For con-
trast, see circumcircle.

INCONSISTENT EQUATIONS Two equations are incon-
sistent if they contradict each other and therefore cannot
be solved simultaneously. For example, 2x � 4 and 3x �
9 are inconsistent. (See simultaneous equations.)

INCREASING FUNCTION A function f(x) is an increas-
ing function if f(a) � f(b) when a � b.

INCREMENT In mathematics, the word “increment”
means “change in.” An increment in a variable x is usu-
ally symbolized as �x.

INDEFINITE INTEGRAL The indefinite integral of a
function f is symbolized as follows:

�f1x 2dx � F1x 2 � C

7
4 � 1 � 3

4 � 13
4

7
4
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where ∫ is the integral sign, and F is an antiderivative
function for f [that is, dF/dx � f(x)]. C is called the arbi-
trary constant of integration. Since the derivative of a
constant is equal to zero, it is possible to add any constant
to a function without changing its derivative. That is the
reason why this type of integral is called an indefinite
integral. For example, suppose that a car is driven at a
constant speed of 55 miles per hour. Then its position at
time t will be given by the indefinite integral

Because of the arbitrary constant, we do not know the
exact value of the position. We know that the car has been
traveling 55 miles per hour, but we cannot figure out its
position unless we also know where it started from. If the
car started at milepost 25 at time zero, we can solve for
the value of the arbitrary constant, and then we will know
that the position of the car at time t is given by the func-
tion 55t � 25.

In general, it is possible to solve for the arbitrary con-
stant of integration if we are given an initial condition.

(See also integral; definite integral.)

INDEPENDENT EVENTS Two events are independent if
they do not affect each other. For example, the probability
that a new baby will be a girl is not affected by the fact that
a previous baby was a girl. Therefore, these two events are
independent. If A and B are two independent events, the
conditional probability that A will occur, given that B has
occurred, is just the same as the unconditional probability
that A will occur:

(See conditional probability.)

Pr 1A 0B 2 � Pr 1A 2

�55dt � 55t � C
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Also, if A and B are independent, the probability that
both A and B will occur is equal to the probability of A
times the probability of B:

For example, suppose the probability that the primary
navigation system on a spacecraft will fail is .01, the
probability that the backup navigation system will fail is
.05, and these two events are independent. In other
words, the probability that the backup system will fail is
not affected by whether or not the primary system has
failed. Then the probability that both systems will fail is
.01 
 .05 � .0005. Therefore, the probability that both
systems will fail is much smaller than the probability that
either of the individual systems will fail. This result
would not be true, however, if these two events were not
independent. If the probability that the backup system
will fail rises if the primary system has failed, then the
spacecraft could be in trouble.

INDEPENDENT VARIABLE The independent variable is
the input number to a function. In the equation y � f(x),
x is the independent variable and y is the dependent vari-
able. (See function.)

INDEX The index of a radical is the little number that tells
what root is to be taken. For example, in the expression

, the number 3 is the index of the radical. It
means to take the cube root of 64. If no index is specified,
then the square root is assumed: .

INDIRECT PROOF The method of indirect proof begins
by assuming that a statement is false, and then proceeds
to show that a contradiction results. Therefore, the
statement must be true. For an example, see irrational
number.

22 36 � 236 � 6

23 64 � 4

Pr 1AAND B 2 � Pr 1A 2 
 Pr 1B 2



INDUCTION Induction is the process of reasoning from a
particular circumstance to a general conclusion. (See
mathematical induction.)

INEQUALITY An inequality is a statement of this form: “x
is less than y,” written as x � y, or “x is greater than y,”
written as x � y. The arrow in the inequality sign always
points to the smaller number. Inequalities containing num-
bers will either be true (such as 8 � 7), or false (such as 
4 � 3). Inequalities containing variables (such as x � 3)
will usually be true for some values of the variable.

The symbol � means “is less than or equal to,” and the
symbol � means “is greater than or equal to.”

A true inequality will still be true if you add or sub-
tract the same quantity from both sides of the inequality.
The inequality will still be true if both sides are multi-
plied by the same positive number, but if you multiply by
a negative number you must reverse the inequality:

(See also system of inequalities.)

INFINITE SERIES An infinite series is the sum of an infi-
nite number of terms. In some cases the series may have
a finite sum. (See geometric series.)

INFINITESIMAL An infinitesimal is a variable quantity
that approaches very close to zero. In calculus �x is usu-
ally used to represent an infinitesimal change in x.
Infinitesimals play an important role in the study of
limits.

INFINITY The symbol “∞” (infinity) represents a limitless
quantity. It would take you forever to count an infinite
number of objects. There is an infinite number of num-

4 � 3

2 
 4 � 2 
 3

8 � 6

3 4 � 3

	2 
 4 � 	2 
 3

	8 � 	6
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bers. As x goes to zero, the quantity 1/x goes to infinity.
(However, that does not mean that there is a number
called ∞ such that 1/0 � ∞.) The opposite of “infinite” is
finite.

INFLECTION POINT An inflection point on a curve is a
point such that the curve is oriented concave-upward on
one side of the point and concave-downward on the other
side of the point. (See figure 67.) If the curve represents
the function y � f (x), then the second derivative d2y/dx2

is equal to zero at the inflection point.

INNER PRODUCT The inner product of two vectors is a
function that produces a scalar. The inner product of two
n-dimensional vectors u and v is:

where ui represents the ith component of vector u, vj rep-
resents the jth component of vector v, and gij represents
the metric (see metric). With Cartesian coordinates in
Euclidian space, the metric is very simple: gij � 1 if i � j,
and gij � 0 if i � j. Then the inner product becomes the
same as the dot product:

u # v �a
n

i�1
uivi

a
n

i�1
a
n

j�1
gij uivj
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INSCRIBED (1) An inscribed polygon is a polygon placed
inside a circle so that each vertex of the polygon touches
the circle. For an example, see pi.

(2) An inscribed circle of a polygon is a circle located
inside a polygon, with each side of the polygon being
tangent to the circle. For an example, see incircle. A cir-
cle can be inscribed in any triangle or regular polygon.
There are many polygons, such as a rectangle, where it is
not possible to inscribe a circle that touches each side.

INTEGERS The set of integers contains zero, the natural
numbers, and the negatives of all the natural numbers:

. . . , 	6, 	5, 	4, 	3, 	2, 	1, 0, 1, 2, 3, 4, 5, 6, . . .

An integer is a real number that does not include a
fractional part. The natural numbers are also called the
positive integers, and the integers smaller than zero are
called the negative integers.

INTEGRAL The process of finding an integral (called inte-
gration) is the reverse process of finding a derivative. The
indefinite integral of a function f(x) is a function F(x) �
C such that the derivative of F(x) is equal to f(x), and C
is an arbitrary constant. The indefinite integral is written
with the integral sign:

(See calculus; derivative; indefinite integral.) Here
is a table of integrals of some functions:

Perfect Integral Rule

in other words, if f(x) � 1, then F(x) � x

�dx � x � C

�f1x 2dx � F1x 2 � C
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Sum Rule

Multiplication by a constant

(if a is a constant)

Power Rule

(The above rules make it possible to find the integral
of any polynomial function.)

Trigonometric Integrals

For more information on integration methods, see
integration by trigonometric substitution and integra-
tion by parts. Also, the Appendix lists many common
integrals.

Integrals can also be used to find the area under curves
and other quantities. (See definite integral; surface

�sec x dx � ln 0sec x � tan x 0 � C� tanx dx � ln 0sec x 0 � C� cosx dx � sinx � C

� sinx dx � 	cosx � C

�x	1dx � ln 0x 0 � C
�xndx �

1

n � 1
xn�1 � C 1if n � 	1 2

�af1x 2dx � a�f1x 2dx
� 3f1x 2 � g1x 2 4dx � �f1x 2dx � �g1x 2dx



area, figure of revolution; volume, figure of revolu-
tion; arc length; centroid.)

INTEGRAND The integrand is a function that is to be inte-
grated. In the expression , the function f (x) is
the integrand. (See integral.)

INTEGRATION Integration is the process of finding an
integral. (See integral.)

INTEGRATION BY PARTS Integration by parts is a
method for solving some difficult integrals that is based
on a formula found by reversing the product rule for
derivatives:

The key to making this method work is to define u and
dv in a fashion such that the integral will be easier
to solve than the original integral .

For example, can be integrated by defining 
u � ln x, dv � dx. Then:

For another example, to solve , let u � x
and dv � cos xdx. Then du � dx, and v � sin x.

Integration by parts is sometimes a trial and error
process, as it is not obvious in advance which integrals

� xsinx � cosx � C

�xcosxdx � xsinx 	 � sinxdx

	x cosxdx

� x lnx 	 x � C

� lnxdx � x lnx 	 �x1
x
dx

du �
1
x
dx, v � x

	ln xdx
1 	u dv 2	v du

�u dv � uv 	 �v du

	f1x 2dx
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the method will work for, and it is not always clear the
best way to make the definitions u and dv.

INTEGRATION BY TRIGONOMETRIC SUBSTITU-
TION Some integrals involving expressions of the form 
(1 � x2) or (1 	 x2) can be solved by making trigono-
metric substitutions and taking advantage of trigonomet-
ric identities, such as sin2 u � cos2 u � 1 or tan2 u � 1 �
sec2 u.

For example, to evaluate

make the substitution x � sin u. Then dx � cos udu, and
u � arcsin x. The integral becomes:

Therefore:

The following integral can be solved by making the
substitution x � tan u:

For another example of this method, see double
integral.

� 1

1 � x2 dx � arctan x � C

� 1

21 	 x2
dx � arcsinx � C

� �du � u � C

� � 1

2cosu
cosudu

� 1

21 	 sin 2u
cosudu � � 1

2cos 2u
cosudu

� 1

21 	 x2
dx
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INTERCEPT The y-intercept of a curve is the value of y
where it crosses the y-axis, and the x intercept is the value
of x where the curve crosses the x-axis. For the line y �
mx � b, the y intercept is b and the x intercept is 	b/m.

INTERPOLATION Interpolation provides a means of esti-
mating the value of a function for a particular number if
you know the value of the function for two other numbers
above and below the number in question. For example,
sin 26° � 0.4384 and sin 27° � 0.4540. It seems reason-
able to suppose that will be approximately
two-thirds of the way between 0.4384 and 0.4540, or
0.4488. This approximation is close to the true value as
long as the two numbers you are interpolating between
are close to each other. The general formula for interpo-
lation when a � c � b is

INTERSECTION The intersection of two sets is the set of
all elements contained in both sets. For example, the
intersection of the sets {1,2,3,4,5,6} and {2,4,6,8,10,12}
is the set {2,4,6}. William Howard Taft is the only mem-
ber of the intersection between the set of Presidents of the
United States and the set of Chief Justices of the United
States. The set of squares is the intersection between the
set of rhombuses and the set of rectangles. The intersec-
tion of set A and set B is symbolized by .

INTERVAL NOTATION The interval of points between a
and b (including both endpoints a and b themselves) can
be written with interval notation as [a,b].

INVARIANT An invariant quantity doesn’t change under
specified conditions. For example, the distance between
two points in Euclidian space is invariant if you rotate or
translate the coordinate system used to express those
points.

A º B

f1c 2 � f1a 2 �
c 	 a

b 	 a
�f1b 2 	 f1a 2�

sin 1262
3

° 2
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INVERSE If � represents an operation (such as addition),
and I represents the identity element of that operation,
then the inverse of a number x is the number y such that
x � y � I. For example, the additive inverse of a number x is
	x (also called the negative of x) because x � (	x) � 0.
The multiplicative inverse of x is 1/x (also called the
reciprocal of x) because (assuming x � 0).

INVERSE FUNCTION An inverse function is a function
that does exactly the opposite of the original function. If
the function g is the inverse of the function f, and if y �
f(x), then x � g(y). For example, the natural logarithm
function is the inverse of the exponential function: If y �
ex, then x � In y.

INVERSE MATRIX The inverse of a square matrix A is
the matrix that, when multiplied by A, gives the identity
matrix I. A inverse is written as A	1: AA	1 � I.

(See matrix; matrix multiplication; identity
matrix.)

A	1 exists if det A � 0. (See determinant.)
The inverse of a 2 
 2 matrix can be found from the

formula:

In general, the element in row i, column j of the
inverse matrix can be found from this formula:

element (i, j) in A	1

where

acofactorji � 1	1 2 j� i 
 det 1aminorji 2
acofactorji

detA

£a b

c d
≥	1

� ± d

ad 	 bc

	b

ad 	 bc

	c

ad 	 bc

a

ad 	 bc

≤

x # 1
x � 1



and is the matrix formed by crossing out row i and
column j in matrix A. (See minor.) For an application,
see simultaneous equations.

INVERSE TRIGONOMETRIC FUNCTIONS The
inverse trigonometric functions (figure 68) are six func-
tions (designated with the prefix “arc”) that are the
inverse functions for the six trigonometric functions:

If a � sin b, then b � arcsin a
If a � cos b, then b � arccos a
If a � tan b, then b � arctan a
If a � ctn b, then b � arcctn a
If a � sec b, then b � arcsec a
If a � csc b, then b � arccsc a

There are many values of b such that a � sin b, for a
given a. For example, sin(p/6) � sin(2p � p/6) �
sin(4p� p/6) � 1/2. Therefore, it is necessary to spec-
ify a range of principal values for each of these functions
so that there is only one value of the dependent variable
for each value of the independent variable. The name of
the function is capitalized to indicate that the principal
values are to be taken. The table lists the domain and the
range of the principal values for the inverse trigonomet-
ric functions.

aminorji
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Inverse Range
Function Function Domain (principal values)

x � sin y y � Arcsin x 	1 � x � 1 	p/2 � y � p/2
x � cos y y � Arccos x 	1 � x � 1 0 � y � p
x � tan y y � Arctan x all real numbers 	p/2 � y � p/2
x � ctn y y � Arcctn x all real numbers 0 � y � p
x � sec y y � Arcsec x |x| � 1 0 � y � p
x � csc y y � Arccsc x |x| � 1 	p/2 � y � p/2
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Figure 68 Inverse trigonometric functions



(Note: the ranges given for arcsecant and arccosecant are
chosen to match the ranges of their corresponding recipro-
cal functions. The range for arcsecant could also be given as
	p/2 to p/2 so that it follows one continuous branch of the
curve. The range for arccosecant could likewise be given as
0 to p.)

Inverse trigonometric functions are sometimes indi-
cated by writing	1, for example, sin	1x � arcsin x
(However, be careful not to confuse this 	1 notation with
an exponent.)

For example, if you need to walk in a straight line
toward a point 4 miles north and 3 miles east, then you
need to walk at an angle u such that u � arctan
degrees north of east.

INVERSELY PROPORTIONAL If y and x are related by
the equation y � k/x, where k is a constant, then y is said
to be inversely proportional to x.

IRRATIONAL NUMBER An irrational number is a real
number that is not a rational number (i.e., it cannot be
expressed as the ratio of two integers). Irrational numbers
can be represented by decimal fractions in which the dig-
its go on forever without ever repeating a pattern. Some
of the most common irrational numbers are square roots,
such as � 1.7325050808 . . . . Also, most values of
trigonometric functions are irrational, such as sin(10°) �
0.1736481777. . . . The special numbers p (pi) and e are
also irrational.

To show that is not a rational number, we need to
show that there are no two integers such that their ratio is

. Suppose that there were two such integers (call them
a and b) with no common factors. Then a2/b2 � 2, so a2 �
2b2. Therefore a2 is even (meaning that it is divisible by
2). If a2 is even, then a itself must be even. This means
that a can be expressed as a � 2c, where c is also an

12

12

13

4
3 � 53.1
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179 ISOSCELES TRIANGLE

integer. Then a2 � 4c2 � 2b2, or b2 � 2c2. This means
that b2 is even, and thus b is even. We have reached a
contradiction, since we originally assumed that a and b
had no common factors. Since we reach a contradiction
if we assume that is rational, it must be irrational.
We can easily find a distance that is units long,
though. If we draw a right triangle with two sides each
one unit long, then the third side will have length .
(See Pythagorean theorem.) The radical can be
approximated by the decimal fraction 1.414213562 . . .

ISOMETRY An isometry is a way of transforming a figure
that does not change the distances between any two
points on the figure, so the transformed figure is congru-
ent to the original. For example, a translation or a rota-
tion is an isometry. However, if a figure is transformed
by making it twice as big, then the transformation is not
an isometry.

ISOSCELES TRIANGLE An isosceles triangle is a trian-
gle with two sides of equal length.

12
12

12
12
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J

JACOBIAN If f (x, y), g(x, y) are two functions of two vari-
ables, then the Jacobian matrix is the matrix of partial
derivatives:

(The analogous definition also applies to cases with
more than two dimensions.) The determinant of this
matrix is known as the Jacobian determinant.

JOINT VARIATION If z � kxy, where k is a constant, then
z is said to vary jointly with x and y. 

§0f0x 0f
0y

0g
0x

0g
0y

¥
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KEPLER Johannes Kepler (1571 to 1630) was a German
astronomer who used observational data to express the
motion of the planets according to three mathematical
laws: (1) planets move along orbits shaped like ellipses,
with the sun at one focus; (2) a radius vector connecting
the sun to the planet sweeps out equal areas in equal times
(this means that a planet travels fastest when closest to the
sun); (3) the square of the orbital period is proportional to
the cube of the mean distance from the planet to the sun.

KOVALEVSKAYA Sofya Kovalevskaya (1850 to 1891) was
a mathematician who worked in Germany and Sweden and
made important contributions in differential equations.

KRONECKER DELTA The Kronecker delta, djk, equals 1
if j � k and 0 if j � k.
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L

LAGRANGE Joseph-Louis Lagrange (1736 to 1813) was
an Italian-French mathematician who developed ideas in
celestial mechanics, calculus of variations, and number
theory.

LAGRANGE MULTIPLIERS The method of Lagrange
multipliers can be used to find maximum or minimum val-
ues in the presence of constraints. For example, suppose
you need to choose x and y to maximize the function

z(x, y) � ax � by

subject to this constraint:

R 	 hx2 	 ky2 � 0

Create the Lagrangian function L as follows:

L � ax � by � l(R 	 hx2 	 ky2)

Notice that the first part of the Lagrangian is the function
we are trying to maximize. The second part consists of a
new variable l (called the Lagrange multiplier), multi-
plied by the left-hand side of the constraint equation. (To
do this, arrange the equation so that the right-hand side is
zero.) The method also works with more than one con-
straint; just add a new Lagrange multiplier for each one.

Now find the partial derivatives of L with respect to x,
y, and l, and set them all equal to zero:

0L
0l

� R 	 hx2 	 ky2 � 0

0L
0y

� b 	 2kly � 0

0L
0x

� a 	 2hlx � 0



Now solve this three-equation system. From the first two
equations, notice

Substitute these into the third equation:

Now plug the formula back into the formulas for x and
y, and you have the solution.

For example, suppose a � 3, b � 4, h � k �
R � 1. Then the problem is asking for the point along the
circle x2 � y2 � 1 that maximizes 3x � 4y, and our for-
mulas tell us:

LAPLACE Pierre-Simon Laplace (1749 to 1827) was a
French astronomer and mathemetician who investigated
the motion of the planets of the solar system.

y �
4

5

x �
3

5

l � B
32 � 42

4
�

5

2

l � B
a2k � b2h

4Rhk

R �
a2k � b2h

4hkl2

R 	 h a a
2hl
b2

	 k a b
2kl
b2

� 0

y �
b

2kl

x �
a

2hl
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LAPLACIAN The Laplacian of a function f(x, y, z) is:

It is the divergence of the gradient of f (See partial
derivative.)

LATERAL AREA The lateral area of a solid is the area of
its faces other than its bases. For example, the lateral area
of a pyramid is the total area of the triangles forming the
sides of the pyramid.

LATUS RECTUM The latus rectum of a parabola (see fig-
ure 69) is the chord through the focus perpendicular to
the axis of symmetry. The latus rectum of an ellipse is
one of the chords through a focus that is perpendicular to
the major axis.

LAW OF COSINES The law of cosines (see figure 70)
allows us to calculate the third side of a triangle if we know
the other two sides and the angle between them:

c2 � a2 � b2 	 2ab cos C

§2f �
02f
0x2 �

02f
0y2 �

02f
0z2

Figure 69
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Figure 70 Law of Cosines

In this formula, a, b, and c are the three sides of the tri-
angle, and C is the angle opposite side c.

Calling the altitude of the triangle h, we know from
the Pythagorean theorem that . Solving for
h and s2 gives:

h � a sin C

s2 � b 	 s1 � b 	 a cos C

c2 � a2 sin2 C � b2 	 2ab cos C � a2 cos C

Using the fact that sin2 C � cos2 C � 1, we obtain

c2 � a2 � b2 	 2ab cos C

The final equation is the law of cosines. It is a general-
ization of the Pythagorean theorem. For C � 90° � p/2,
we have a right triangle with c as the hypotenuse and 
cos C � 0, so the law of cosines reduces to the Pythago-
rean theorem.

For example, to calculate the third side of an isosceles
triangle with two sides that are 10 units long adjacent to
a 100° angle, we use this formula:

c2 � 102 � 102 	 2 
 10 
 10 
 cos 100°

c � 15.3

(See also solving triangles.)

LAW OF LARGE NUMBERS The law of large numbers
states that if a random variable is observed many times,

h2 � s22 � c2



the average of these observations will tend toward the
expected value (mean) of that random variable. For
example, if you roll a die many times and calculate the
average value for all of the rolls, you will find that the
average value will tend to approach 3.5.

LAW OF SINES The law of sines expresses a relationship
involving the sides and angles of a triangle:

In each case a small letter refers to the length of a side,
and a capital letter designates the angle opposite that side.
(See figure 71.) The law can be demonstrated by calling h
the altitude of the triangle:

A similar demonstration will show that the law works
for c and C. (See solving triangles.)

LAW OF TANGENTS If a, b, and c are the lengths of the
sides of a triangle, and A, B, and C are the angles opposite

bsinA � asinB

h
a

� sinB

h

b
� sinA

a

sinA
�
b

sinB
�

c

sinC
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these three sides, respectively, then the law of tangents
states that the following relations will be true:

LEAST COMMON DENOMINATOR The least common
denominator of two fractions a/b and c/d is the smallest
integer that contains both b and d as a factor. For exam-
ple, the least common denominator of the fractions 3/4
and 5/6 is 12, since 12 is the smallest integer that has
both 4 and 6 as a factor.

To add two fractions, turn them both into equivalent
fractions whose denominator is the least common denomi-
nator. For example, to add 3/4 � 5/6:

LEAST COMMON MULTIPLE The least common mul-
tiple of two natural numbers is the smallest natural num-
ber that has both of them as a factor. For example, 6 is the
least common multiple of 2 and 3, and 30 is the least
common multiple of 10 and 6.

LEAST SQUARES ESTIMATOR See regression; multi-
ple regression.

3

4
�

5

6
�

9

12
�

10

12
�

19

12

5

6
�

5

6



2

2
�

10

12

3

4
�

3

4



3

3
�

9

12

c 	 a

c � a
�

tan �12 1C 	 A 2�
tan �12 1C � A 2�

b 	 c

b � c
�

tan �12 1B 	 C 2�
tan �12 1B � C 2�

a 	 b

a � b
�

tan 3 12 1A 	 B 2 4
tan 3 12 1A � B 2 4
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LEIBNIZ Gottfried Wilhelm Leibniz (1646 to 1716) was a
German mathematician, philosopher, and political advi-
sor, who was one of the developers of calculus (indepen-
dently of his rival Newton).

LEMMA A lemma is a theorem that is proved mainly as an
aid in proving another theorem.

LEVEL OF SIGNIFICANCE The level of significance for
a hypothesis-testing procedure is the probability of com-
mitting a type 1 error. (See hypothesis testing.)

L’HOSPITAL’S RULE L’Hospital’s rule (also spelled
L’Hopital) tells how to find the limit of the ratio of two
functions in cases where that ratio approaches 0/0 or
�/�. Let y represent the ratio between two functions, f(x)
and g(x):

Then l’Hospital’s rule states that

where f�(x) and g�(x) represent the derivatives of these
functions with respect to x.

For example, suppose that

and we need to find . We cannot find this limit directly

because inserting the value x � 2 in the expression for y
gives the expression 0/0. However, by setting f(x) � 2x2 �
18x 	 44, we can find f�(x) � 4x � 18, f�(x)� 26,
g(x) � 2x 	 4, g�(x) � 2. Therefore:

lim
xS2
y �

26

2
� 13

lim
xS2

lim
xS2

y �
2x2 � 18x 	 44

2x 	 4

lim
xSa
y �

limxSaf¿ 1x 2
limxSag¿ 1x 2

y �
f1x 2
g1x 2
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For another example, suppose that

and assume that n and P are constant. To find y, we
must use l’Hospital’s rule. We let:

f(r) � Pr(1 � r)n; f �(r) � Prn(1 � r)n	1 � P(1 � r)n

Therefore:

This formula represents the monthly payment for a home
mortgage, where r is the monthly interest rate, n is the
number of months to repay the loan, and P is the princi-
pal amount (the amount that is borrowed). The result
says that if the interest rate is zero, the monthly payment
is simply equal to the principal amount divided by the
number of months.

To prove the rule, note that the ratio of the derivatives
at x � a would be approximately:

(To get the exact value we would have to take the limit as
Δx goes to zero.) Cancel out Δx:

f¿ 1a 2
g¿ 1a 2 �

f1a � ¢x 2 	 f1a 2
g1a � ¢x 2 	 g1a 2

f¿ 1a 2
g¿ 1a 2 �

f1a � ¢x 2 	 f1a 2
¢x

g1a � ¢x 2 	 g1a 2
¢x

lim
rS0
y �

P
n

lim
rS0
g¿ 1r 2 � n

g1r 2 � 11 � r 2n 	 1; g¿ 1r 2 � n11 � r 2n	1;

lim
rS0
f¿ 1r 2 � P

lim
rS0

y �
Pr11 � r 2n11 � r 2n 	 1
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Since the rule applies where f(a) and g(a) are both zero,
the formula simplifies to:

Take the limit as Δx goes to zero on both sides:

The right hand side becomes f(a)/g(a):

Therefore, when f(a) � g(a) � 0:

if this limit exists.
The rule also applies when f (x) and g(x) both

approach infinity as x approaches a.

LIKE TERMS Two terms are like terms if all parts of both
terms except for the numerical coefficients are the same.
For example, the terms 3a2b3c4 and 	6.5a2b3c4 are like
terms. If two like terms are added, they can be combined
into one term. For example, the sum of the two terms
above is 	3.5a2b3c4.

LIMIT The limit of a function is the value that the depen-
dent variable approaches as the independent variable
approaches some fixed value. The expression “The limit
of f (x) as x approaches a” is written as

lim
xSa
f1x 2

lim
xSa

f1a 2
g1a 2 � lim

xSa

f¿ 1a 2
g¿ 1a 2

lim
¢xS0

f¿ 1a 2
g¿ 1a 2 � lim

¢xS0

f1a 2
g1a 2

lim
¢xS0

f¿ 1a 2
g¿ 1a 2 � lim

¢xS0

f1a � ¢x 2
g1a � ¢x 2

f¿ 1a 2
g¿ 1a 2 �

f1a � ¢x 2
g1a � ¢x 2
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For example:

In each of these cases the limit is not very interesting,
because we can easily find f(2), f(p/2), or f(1). However,
there are cases where limxSa f(x) exists, but f(a) does
not. For example:

is undefined if x � 1. However, the closer that x comes to
1, the closer f(x) approaches 3. For example, f(1.0001) �
3.0001. All of calculus is based on this type of limit. (See
derivative.)

The formal definition of limit is: The limit of f (x) as x
approaches a exists and is equal to B if, for any positive
number e (no matter how small), there exists a positive
number d such that, if 0 , then

.

LINE A line is a straight set of points that extends off to
infinity in two directions. The term “line” is one of the
basic undefined terms in Euclidian geometry, so it is not
possible to give a rigorous definition of line. You will
have to use your intuition as to what it means for a line
to be straight. According to a postulate, any two distinct
points determine one and only one line. A line has infi-
nite length, but zero width and zero thickness. (See also
line segment.)

LINE GRAPH A line graph illustrates how the values of a
quantity change. The horizontal axis often represents
time. (See figure 72.)

LINE INTEGRAL Let E be a three-dimensional vector
field, and let Δ L be a small vector representing a portion
of a path L in three-dimensional space. Take the dot

0f1x 2 	 B 0 � e � 0x 	 a 0 � d

f1x 2 �
1x 	 1 2 1x � 2 2
x 	 1

lim
xS2
x2 � 4, lim

xSp>2sinx � 1, lim
xS1
x2 � 3x � 1 � 5
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product E � Δ L, and then add up all of these products for
all elements of the path; now, take the limit as the length
of each path segment goes to zero, and you have the line
integral of the field E along the path L:

In order to evaluate the integral, the path needs to be
expressed in terms of some parameter, and then the limits
of integration are given in terms of this parameter. The
examples below are chosen so that the paths are relatively
simple.

Let E be a vector field with magnitude given by:

whose direction always points away from the origin. (This
is the electric field created by a point electric charge with
charge q located at the origin.)

Consider a line integral along a path radially outward
from the charge, starting at distance r1 and ending at dis-
tance r2. (See path A in figure 73.) In this case the field
vector E points in the same direction as the path vector

�E� �
q

4pe0r
2

�
path

E # dL
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dL, so the dot product between them will simply be the
product of their magnitudes:

(We can rename dL as dr because this path is only in
the direction of increasing r.) The line integral becomes:

Now, consider an example of a line integral along a
circle that is centered at the origin. (See path B in figure
73.) In this case, the field vector E is everywhere per-
pendicular to the path vector dS, so the dot product is
everywhere 0. Therefore, the line integral is zero.

�
q

4pe0
11>r1 	 1>r2 2

r2
r1

�
q

4pe0
1	r	1 2 0

�
q

4pe0
�
r2

r1

r	2dr

�
r2

r1

q

4pe0r
2dr

E # dL � �E� 
 �dL� �
q

4pe0r
2dr
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Any arbitrary path can be broken into tiny segments,
some of which are arcs of circles centered on the origin,
and others which travel radially outward or inward. The
circular parts will contribute 0 to the total line integral,
and the total contribution of the radial parts will depend
only on the distances r1 and r2. In particular, if you take
the line integral of the electric field along any closed path
(i.e, a path that ends up at the same place it started), then
r1 � r2 and the value of the integral will be zero. There
are important implications when a vector field has this
special property. (See potentional function; Stokes’s
theorem; Maxwell’s equations.)

For another example, let the vector field B be defined
by:

where m0 and I are constants. The field vector at any
point will be perpendicular to the vector connecting the
origin to that point. (See figure 74.)

(This field represents the magnetic field generated by
a current I flowing through a long, straight wire along the
z axis. The field does not change as z changes, so we have
not explicitly included the z coordinate.)

B1x, y 2 � c 	ym0I

x2 � y2,
xm0I

x2 � y2 d
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The magnitude of the field is m0I/r. Written in polar
coordinates, the field is:

where is a unit vector pointing in the direction of the
field.

Now, take the line integral of the magnetic field along
a circular path centered on the wire. In each case the field
vector B points in the same direction as the path vector
dL, so the dot product is simply the product of their
magnitudes:

We can write as rdu, and the line integral around the
entire circle can be written:

If we take the line integral along a path that goes radi-
ally outward from the wire, then the field vector B will be
everywhere perpendicular to the path vector dL, so the dot
product between them will be zero.

LINE OF BEST FIT The line of best fit minimizes the sum
of the squares of the deviations between each point and
the line. (See regression.)

LINE SEGMENT A line segment is like a piece of a line.
It consists of two endpoints and all of the points on the
straight line between those two points.

� m0I

�
m0I

2p �
2p

0

du

�
2p

0

m0I

2pr
rdu

�dL�

B # dL � �B� # �dL�

û

B1r,u 2 �
m0I

r
û
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LINEAR COMBINATION A linear combination of two
vectors x and y is a vector of the form ax � by, where a
and b are scalars. (See also linearly independent.)

LINEAR EQUATION A linear equation with unknown x is
an equation that can be written in the form ax � b � 0.
For example, 2x 	 10 � 2 can be written as 2x 	 12 � 0,
so this is a linear equation with the solution x � 6. (See
simultaneous equations.)

LINEAR FACTOR A linear factor is a factor that includes
only the first power of an unknown. For example, in the
expression y � (x 	 2)(x2 � 3x � 4), the factor (x 	 2) is
a linear factor, but the factor (x2 � 3x � 4) is a quadratic
factor.

LINEAR PROGRAMMING A linear programming prob-
lem is a problem for which you need to choose the optimal
set of values for some variables subject to some constraints.
The goal is to maximize or minimize a function called the
objective function. In a linear programming problem, the
objective function and the constraints must all be linear
functions; that is, they cannot involve variables raised to
any power (other than 1), and they cannot involve two vari-
ables being multiplied together.

Some examples of problems to which linear program-
ming can be applied include finding the least-cost method
for producing a given product, or finding the revenue-
maximizing product mix for a production facility with
several capacity limitations.

Here is an example of a linear programming problem:
Maximize 6x � 8y subject to:

y � 10

x � y � 15

2x � y � 25

x � 0

y � 0
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This problem has two choice variables: x and y. The
objective function is 6x�8y, and there are three constraints
(not counting the two nonnegativity constraints x � 0 and
y � 0).

It is customary to rewrite the constraints so that they
contain equals signs instead of inequality signs. In order to
do this some new variables, called slack variables, are
added. One slack variable is added for each constraint.
Here is how the problem given above looks when three
slack variables (s1, s2, and s3) are included.

Maximize 6x � 8y subject to:

y � s1 � 10

x � y � s2 � 15

2x � y � s3 � 25

x � 0, y � 0, sl � 0, s2 � 0, s3 � 0

Each slack variable represents the excess capacity
associated with the corresponding constraint.

The feasible region consists of all points that satisfy
the constraints. (See figure 75.) A theorem of linear pro-
gramming states that the optimal solution will lie at one
of the corner points of the feasible region. In this case the
optimal solution is at the point x � 5, y � 10.

A linear programming problem with two choice vari-
ables can be solved by drawing a graph of the feasible
region, as was done above. If there are more than two vari-
ables, however, it is not possible to draw a graph, and the
problem must then be solved by an algebraic procedure,
such as the simplex method.

LINEARLY INDEPENDENT A set of vectors a, b, and c is
linearly independent if it is impossible to find three scalars
m, n, and p (not all zero) such that ma � nb � pc � 0. Two
vectors clearly are not linearly independent if they are mul-
tiples of each other; for example, if a � (2,3,4) and b �
(20,30,40), then 10a 	 b � 0. With a set of three vectors,
it can be more complicated to tell. For example, let 
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a � (2,3,4), c � (5,6,7), and d � (19,24,29). No two of
these vectors are multiples of each other. Still, they are not
linearly independent, because 2a � 3b � d � 0. If the vec-
tors are arranged as the columns of a square matrix, then
they are linearly independent if and only if the determinant
of that matrix is not zero. (See determinant; rank.) In this
case, the determinant 

is zero.

LITERAL A literal number is a number expressed as a
numeral, not as a variable. For example, in the equation 
x � 2.4y, 2.4 is a literal number.

3 2 5 19

3 6 24

4 7 29

3
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LN See natural logarithm.

LOBACHEVSKY Nikolay Lobachevsky (1792 to 1856)
was a Russian mathematician who developed a version of
non-Euclidian geometry.

LOCAL MAXIMUM A local maximum point for a func-
tion y � f (x) is a point where the value of y is larger than
the points near it. If the first derivative is zero and the sec-
ond derivative is negative at a point [x1, f(x1)], then the
function has a local maximum at that point. There may be
more than one local maximum, so there is no guarantee
that a particular local maximum will be the absolute
maximum. (For illustration, see extremum.)

LOCAL MINIMUM A local minimum point for a function
y � f(x) is a point where the value of y is smaller than the
points near it. If the first derivative is zero and the second
derivative is positive at a point [x1, f (x1)], then the func-
tion has a local minimum at that point. There may be
more than one local minimum, so there is no guarantee
that a particular local minimum will be the absolute min-
imum. (See also local maximum.)

LOCUS The term “locus” is a technical way of saying “set
of points.” For example, a circle can be defined as being
“the locus of points in a plane that are a fixed distance
from a given point.” The plural of “locus” is “loci.”

LOG The function y � log x is an abbreviation for the log-
arithm function to the base 10. (See logarithm.)

LOGARITHM. The equation x � ay can be written as y �
loga x, which means “y is the logarithm to the base a of
x or y is the exponent to which a must be raised in order
to result in x. For example, log28 � 3 means the same as
23 � 8.” Any positive number (except 1) can be used as
the base for a logarithm function. The two most useful
bases are 10 and e. Logarithms to the base 10 are called
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common logarithms. They are very convenient to use,
since we use a base 10 number system. If no base is spec-
ified in the expression log x, then base 10 is usually
meant: log x � log10 x. Here are some examples:

logarithm form exponential form

log 1 � 0 100 � 1

log 10 � 1 101 � 10

log 100 � 2 102 � 100

log 1,000 � 3 103 � 1, 000

Except in a few simple cases, logarithms will be irra-
tional numbers. Use a calculator or computer to find dec-
imal approximations for logarithm values.

Logarithms to any base satisfy these properties:

log(xy) � log x � log y

log(y/x) � log y 	 log x

log(xn) � n log x

These properties follow directly from the properties of
exponents.

Logarithms are convenient if we have to measure very
large quantities and very small quantities at the same time.
For example, the stellar magnitude system for measuring
the brightness of stars is based on a logarithmic scale.

Logarithms have also been very helpful as calculation
aids, because a multiplication problem can be turned into
an addition problem by taking the logarithms. (See slide
rule.) However, this use has become less important as
pocket calculators have become widely available.

Logarithms to the base e are important in calculus.
(See natural logarithm.)

LOGIC Logic is the study of sound reasoning. The study of
logic focuses on the study of arguments. An argument is a
sequence of sentences (called premises), that lead to a
resulting sentence (called the conclusion). An argument is
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a valid argument if the conclusion does follow from the
premises. In other words, if an argument is valid and all
its premises are true, then the conclusion must be true.
Here is an example of a valid argument:

Premise: If a shape is a square, then it is both a rec-
tangle and a rhombus.

Premise: Central Park is not a rhombus.
Conclusion: Therefore, Central Park is not a square.

Here is another example of an argument:

Premise: If a shape is either a rhombus or a rectangle,
then it is a square.

Premise: Central Park is a rectangle.
Conclusion: Therefore, Central Park is a square.

This is a valid argument, since the conclusion follows
from the premises. However, one of the premises (the first
one) is false. If any of the premises of an argument is false,
then the argument is called an unsound argument.

Logic can be used to determine whether an argument
is valid; however, logic alone cannot determine whether
the premises are true or false. Once an argument has been
shown to be valid, then all other arguments of the same
general form will also be valid, even if their premises are
different.

Arguments are composed of sentences. Sentences are
said to have the truth value T (corresponding to what we
normally think of as “true”) or the truth value F (corre-
sponding to “false”). In studying the general logical prop-
erties of sentences, it is customary to represent a sentence
by a lower-case letter, such as p, q, or r, called a sentence
variable or a Boolean variable. Sentences either can be
simple sentences or can consist of simple sentences joined
by connectives and called compound sentences. For exam-
ple, “Spot is a dog” is a simple sentence. “Spot is a dog and
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Spot likes to bury bones” is a compound sentence. The
connectives used in logic include AND, OR, and NOT. To
learn how these are used, see Boolean algebra.

LOGICALLY EQUIVALENT STATEMENTS See truth
table.

LORENTZ TRANSFORMATION The Lorentz transfor-
mation describes how events look different to observers
moving with different velocities, according to Einstein’s
special theory of relativity. Let t, x, y, z be the time and
space coordinates of an event in the original frame of ref-
erence, and let t�, x�, y�, z� be the coordinates of an event
in a new frame, which is moving with velocity v in the
positive x direction with respect to the original frame.

Define:

where c is the speed of light.

Then the Lorentz transformation can be written:

Time Coordinate Space Coordinates

t x y z original

frame

x� � � (x 	 !t) h� � y z� � z new frame

In everyday life, the velocity v is always very small
compared to the speed of light, so � is always very close
to 1.

LOXODROME A loxodrome on a sphere is a curve that
makes a constant angle with the parallels of latitude.

t¿ � g a t �
vx

c2
b

g � B
1

1 	 v2>c2

LOGICALLY EQUIVALENT STATEMENTS 202



203 MANDELBROT SET

M

MACLAURIN Colin Maclaurin (1698 to 1746) was a
Scottish mathematician who extended the field of calcu-
lus. (See Maclaurin series.)

MACLAURIN SERIES The Maclaurin series is a special
case of the Taylor series for f (x � h), when x � 0. (See
Taylor series.)

MAGNITUDE The magnitude of a vector a is its length. It
is symbolized by two pairs of vertical lines, and it can be
found by taking the square root of the dot product of the
vector with itself:

For example, the magnitude of the vector (3, 4) is

MAJOR ARC A major arc of a circle is an arc with a mea-
sure greater than 180°. (See arc.)

MAJOR AXIS The major axis of an ellipse is the line seg-
ment joining two points on the ellipse that passes through
the two foci. It is the longest possible distance across the
ellipse. (See ellipse.)

MAJOR PREMISE The major premise is the sentence in a
syllogism that asserts a general relationship between
classes of objects. (See syllogism.)

MANDELBROT SET The Mandelbrot set, discovered by
Benoit Mandelbrot, is a famous fractal, i.e., a shape con-
taining an infinite amount of fine detail. It is the set of val-
ues of c for which the series converges,zn�1 � z2

n � c

213,4 2 # 13,4 2 � 29 � 16 � 225 � 5

�a� � 2a # a
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where z and c are complex numbers and z is initially (0,0).
(See complex number.)

Figure 76 shows the whole set and an enlargement of
a small area. On the plot, x and y are the real and imagi-
nary parts of c. The Mandelbrot set is the black bulbous
object in the middle; elsewhere, the stripes indicate the
number of iterations needed to make exceed 2.

MANTISSA The mantissa is the part of a common loga-
rithm to the right of the decimal point. For example, in
the expression log 115 � 2.0607, the quantity 0.0607 is
the mantissa. For contrast, see characteristic.

MAPPING A mapping is a rule that, to each member of one
set, assigns a unique member of another set.

MATHEMATICAL INDUCTION Mathematical induc-
tion is a method for proving that a proposition is true for
all whole numbers. First, show that the proposition is true
for a few small numbers, such as 1, 2, and 3. Then show
that, if the proposition is true for an arbitrary number j,
then it must be true for the next number: j � 1. Once you
have done these two steps, the proposition has been
proved, since, if it is true for 1, then it must also be true
for 2, which means it must be true for 3, which means it
must be true for 4, and so on.

0z 0

Figure 76 Mandelbrot set



205 MATHEMATICS

For example, we can prove that

is true for all natural numbers n.
(See arithmetic series; summation notation.) The

proposition is true for n � 1, n � 2, and n � 3:

Now assume that this formula is true for any arbitrary
natural number j. Then:

Therefore the formula works for j � 1 if it works for
j, so it must be true for all j.

MATHEMATICS Mathematics is the orderly study of the
structures and patterns of abstract entities. Normally the
objects that mathematicians talk about correspond to
objects about which we have an intuitive understanding.
For example, we have an intuitive notion of what a

�
j2 � j � 2j � 2

2
�
1j � 2 2 1j � 1 2

2

�
j1j � 1 2

2
� 1j � 1 2

a
j�1

i�1
i � a

j

i�1
i � 1j � 1 2

a
3

i�1
i � 1 � 2 � 3 � 6 �

313 � 1 2
2

a
2
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212 � 1 2
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1
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i � 1 �

111 � 1 2
2
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i � 1 � 2 � 3 � 4 � . . . � n �
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number is, what a line in three-dimensional space is, and
what the concept of probability is.

Applied mathematics is the field in which mathemat-
ical concepts are applied to practical problems. For
example, the lines and points that pure mathematics deals
with are abstractions that we can’t see or touch. However,
these abstract ideas correspond closely to the concrete
objects that we think of as lines or points. Mathematics
was originally developed for its applied value. The
ancient Egyptians and Babylonians developed numerous
properties of numbers and geometric figures that they
used to solve practical problems.

The formal procedure of mathematics is this: Start with
some concepts that will be left undefined, such as “num-
ber” or “line.” Then make some postulates that will be
assumed to be true, such as “Every natural number has a
successor.” Next make definitions using undefined terms
and previously defined terms, such as “A circle is the set of
all points in a plane that are a fixed distance from a given
point.” Then use the postulates to prove theorems, such as
the Pythagorean theorem. Once a theorem has been proved,
it can then be used in the proof of other theorems.

MATRIX A matrix is a table of numbers arranged in rows
and columns. The plural of “matrix” is “matrices.” The
size of a matrix is characterized by two numbers: the
number of rows and the number of columns. Matrix A is
a 2 
 2 matrix, matrix B is 3 
 2, matrix C is 3 
 3, and
matrix D is 2 
 3:

B � ° 0 6

10 5

4 2

¢
A � a1 2

3 4
b
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(The number of rows is always listed first.) A baseball
box score is an example of a 9 
 4 matrix.

ab r h rbi
shortstop 5 3 3 0
first baseman 4 1 2 1
right fielder 4 0 1 2
center fielder 4 0 1 0
left fielder 4 0 0 0
catcher 4 1 1 1
third baseman 4 0 1 0
pitcher 3 0 0 0
second baseman 3 0 1 0

The transpose of a matrix A (written as Atr or A�) is
formed by turning all the rows into columns and all the
columns into rows. For example, the transpose of

Matrices can be multiplied by the rules of matrix mul-
tiplication. If A is an m 
 n matrix, and B is an n 
 p
matrix, then the product AB will be an m 
 p matrix. The
product AB can be found only if the number of columns in
matrix A is equal to the number of rows in matrix B. (See
matrix multiplication.) A square matrix is a matrix in
which the numbers of rows and columns are equal. One

is the matrix a11 21 31

12 22 32
b°11 12

21 22

31 32

¢

D � a100 15 25

36 10 15
b

C � °1 0 1

0 1 0

1 0 1

¢
207 MATRIX



important square matrix is the matrix with ones all along
the diagonal from the upper left-hand corner to the lower
right-hand corner, and zeros everywhere else. This type of
matrix is called an identity matrix, written as I. For exam-
ple, here is a 3 
 3 identity matrix:

An identity matrix has the important property that,
whenever it multiplies another matrix, it leaves the other
matrix unchanged: IA � A.

For many square matrices there exists a special matrix
called the inverse matrix (written as A	1), which satisfies
the special property that A	1A � I. (See inverse
matrix.)

The determinant of a square matrix (written as det A) is
a number that characterizes some important properties of
the matrix. If det A � 0, then A does not have an inverse
matrix.

The trace of a square matrix is the sum of the diago-
nal elements of the matrix. For example, the trace of a 
3 
 3 identity matrix is 3.

The use of matrix multiplication makes it easier to
express linear simultaneous equation systems. The sys-
tem of equations can be written as Ax � b, where A is an
m 
 m matrix of coefficients, x is an m 
 1 matrix of
unknowns, and b is an m 
 1 matrix of known constants.
If you know A	1, you can find the solution for x:

Ax � b

A	1Ax � A	1b

Ix � A	1b

x � A	1b

°1 0 0

0 1 0

0 0 1

¢
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MATRIX MULTIPLICATION The formal definition of
matrix multiplication is as follows:

Two matrices can be multiplied only if the number of
columns in the left hand matrix is equal to the number of
rows in the right hand matrix. If A is an m 
 n matrix (m
rows and n columns) and B is an n 
 p matrix, then the
product matrix AB exists and has m rows and p columns.
Immediately we can see that matrix multiplication is not
commutative, since it makes a difference which matrix is
on the left and which is on the right.

The formula for matrix multiplication looks very com-
plicated, but we can make more sense of it by using the dot
product of two vectors. The dot product of two vectors is
formed by multiplying together each pair of corresponding
components and then adding the results of all these prod-
ucts. (See dot product.)
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A matrix can be thought of as either a vertical stack of
row vectors:

or as a horizontal stack of column vectors:

For our purposes it is best to think of the left hand
matrix (A) as a collection of row vectors, and the right
hand matrix (B) as a collection of column vectors. Then
each element in the matrix product AB can be found as a
dot product of one row of A with one column of B:

The element in position (1, 1) of the product matrix is
the dot product of the first row of A with the first column
of B. In general, the element in position (i, j) is formed by

± a1
# b1 a1

# b2 a1
# b3

p a1
# bp

a2
# b1 a2

# b2 a2
# b3

p a2
# bp

o
am
# b1 am

# b2 am
# b3

p am
# bp

≤AB �

b1 � °b11

o
bn1

¢ . . . bp � °b1p

o
bnp

¢
° b11

p b1p

o
bn1

p bnp

¢ � 1b1, b2, . . . , bp 2

a1 � 1a11, a12, . . . , a1n 2
o

am � 1am1, am2, . . . , amn 2
° a11

p a1n

o
am1

p amn

¢ � ° a1

o
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¢
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the dot product of row i in A and column j in B. Examples
of matrix multiplication are:

Matrix multiplication is a very valuable tool, making
it much easier to write systems of linear simultaneous
equations. The three-equation system

a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

can be rewritten using matrix multiplication as

(See simultaneous equations.)

MAXIMA The maxima are the points where the value of a
function is greater than it is at the surrounding points.
(See extremum.)

MAXIMUM LIKELIHOOD ESTIMATOR A maximum
likelihood estimator has this property: if the true value of
the unknown parameter is the same as the value of the
maximum likelihood estimator, then the probability of
obtaining the sample that was actually observed is maxi-
mized. (See statistical inference.)

MAXWELL’S EQUATIONS Maxwell’s four equations
govern electric and magnetic fields. They were put

°a1 b1 c1

a2 b2 c2

a3 b3 c3

¢ °xy
z

¢ � °d1

d2

d3

¢

°11 12 13

21 22 23

31 32 33

¢ ° 1 0

100 1

10000 2

¢ � °131211 38

232221 68

333231 98

¢
aa b

c d
b a e f

g h
b � aae � bg af � bh

ce � dg cf � dh
b
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together by James Clerk Maxwell in the 1870s on the
basis of experimental data. These equations can be used to
establish the wave nature of light.

First, here are the equations for free space in integral
form, assuming there is no change in current over time.

Let E be an electric field (a three-dimensional vector
field). These two equations apply:

(1)

(That is, the line integral of the electric field over any
closed path is zero.)

(2)

(That is, the surface integral of the electric field around
any closed surface is equal to q, the total charge inside
the surface, divided by a constant known as e0.)

Let B be a magnetic field (also a three-dimensional
vector field). Then the line integral around a closed path
depends on the current flowing through the interior of
the path:

(3)

where I stands for the amount of electric current, and m0
is a constant. The surface integral of B over a closed sur-
face is zero:

(4)

The four equations given above can also be written in
alternate forms. Use Stokes’s theorem to rewrite the two
equations involving line integrals. Equation (1) becomes:

(5) § 
 E � 0

� �
closed surface

B # dS � 0

�
path L

B # dL � m0Iinside

� �
closed surface

E # dS �
qinside
e0

�
closed path

E # dL � 0
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In words: the curl of the electric field is always zero.
Equation (3) becomes:

(6)

where J, called the current density is defined by this
integral:

By using the divergence theorem, the two equations
involving surface integrals can be rewritten. The left-
hand side of equation (2) is changed from

into

The right-hand side of equation (2) is changed by
defining r, called the charge density, so that the triple
integral of r over any volume is equal to the total charge
inside that volume:

We then have the equation

Since this equation must hold true for any arbitrary sur-
face S, we can write the equation in this form:

(7) § # E �
r

e0

� � �
interior of S

1§ # E 2dV � � � �
interior of S

a r
e0
b dV

qinside S � � � �
interior of S

rdV

� � �
interior of S

1§ # E 2dV
� �
surface S

E # dS

� �
surface S

J # dS � Iinside

§ 
 B � m0J
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In words: the divergence of the electric field is propor-
tional to the charge density.

Equation (4) becomes:

(8)

MEAN The mean of a random variable is the same as its
expectation. The mean of a group of numbers is the same
as its arithmetic mean, or average.

MEAN PROPORTIONAL The mean proportional is the
geometric mean of two or more numbers. If the n num-
bers are x1, x2, x3, . . . , xn, the mean proportional is the
nth root of their product:

MEAN VALUE THEOREM If the derivative of a function
f is defined everywhere between two points, (a, f(a)) and
(b, f(b)), then the mean value theorem states that there
will be at least one value of x between a and b such that
the value of the derivative is equal to the slope of the line
between (a, f(a)) and (b, f (b)). This means that there is at
least one point in the interval where the tangent line to the
curve is parallel to the secant line that passes through the
curve at the two endpoints of the interval.

MEASURES OF CENTRAL TENDENCY A measure of
central tendency indicates a middle or typical value of a
group of numbers. Examples of measures of central ten-
dency are the mean (or average), median, or mode.
Typically these three values are near each other, but not
always. For example, one very large value will significantly
increase the value of the mean, but it will not affect the
median.

MEDIAN (1) The median of a group of n numbers is the
number such that just as many numbers are greater than
it as are less than it. For example, the median of the set of
numbers {1, 2, 3} is 2; the median of {1, 1, 1, 2, 10, 15,

2n x1 
 x2 
 x3 
 . . . 
 xn.

§ # B � 0
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16, 20, 100, 105, 110} is 15. In order to determine the
median, the list should be placed in numerical order. If
there is an odd number of items in the list, then the
median is the element in the exact middle. If there is an
even number, then the median is the average of the two
numbers closest to the middle.

(2) A median of a triangle is a line segment connect-
ing one vertex to the midpoint of the opposite side. (See
triangle.)

METALANGUAGE A metalanguage is a language that is
used to describe other languages.

METRIC A metric tensor defines how to measure distances
along a path using an integral based on a particular set of
coordinates. For the simplest example, consider this inte-
gral in two-dimensional Euclidian space using Cartesian
coordinates. See arc length to find the length of an arc in
ordinary calculus. That calculation is based on the differ-
ential distance dS:

dS2 � dx2 � dy2

To generalize this formula, we will call the first coordi-
nate x1 (instead of x) and the second coordinate x2
(instead of y):

Now write the expression like this:

where g is a matrix whose components are defined as:

g11 � 1, g12 � 0,

g21 � 0, g22 � 1

The matrix g is the metric (or the metric tensor). The
components of g determine how to measure distances along
curves in this particular space using these coordinates.

dS2 � g11dx
2
1 � g12dx1dx2 � g21dx2dx1 � g22dx

2
2

dS2 � dx2
1 � dx2

2
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Written with summation notation:

Einstein’s useful convention is to automatically sum
over repeated indices, so we can leave out the summation
sign and write the expression like this:

dS2 � gijdxidxj

(Note: some of the subscript indices are often written as
superscripts for reasons beyond the scope of this book. If
you use that notation, you need to use care to distinguish
superscript indices from exponents.)

There is no need to introduce g for the simple case
above, but we can now extend the same framework to
cases with different kinds of coordinates. For example,
suppose that we use polar coordinates instead of Cartesian
coordinates. Let x1 now equal r (the distance from the ori-
gin), and x2 now equal u (the angular coordinate; see polar
coordinates.) Then:

The components of g are:

g11 � 1, g12 � 0,

g21 � 0, g22 � x1

For another example, let x1 � u � longitude and x2 �
f � latitude be coordinates on the surface of the Earth.
The metric needs to take the curvature of the surface of
the Earth into account:

dS2 � (R cos fdu)2 � (Rdf)2 � (R cos x2dx1)
2 � (Rdx2)

2

g11 � R2 cos2 x2, g12 � 0,

g21 � 0, g22 � R2

ds2 � dr2 � rdu2 � dx2
1 � x1dx

2
2

dS2 � a
2

i�1
a

2

j�1
gijdxidxj
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For example, if you travel along a constant longitude
course: u � x1 � constant, dx1 � 0:

where a and b are the latitudes of the two endpoints of the
path, measured in radians, and R is the radius of the Earth.

If you travel along a constant latitude course:
f � x2 � constant, dx1 � 0:

where b and a are the longitudes of the two endpoints of
the path.

1distance 2 � Rcosf1b 	 a 2� Rcosfu 0bu�a

� Rcosf�
b

u�a

du

� �
b

u�a

Rcosfdu

� �
b

u�a

21Rcosfdu 22
1distance 2 � �

b

u�a

21Rdf 22 � 1Rcosfdu 22

1distance 2 � R1b 	 a 2� Rf 0bf�a

� �
b

f�a

Rdf

� �
b

f�a

21Rdf 22
1distance 2 � �

b

f�a

21Rdf 22 � 1Rcosfdu 22
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According to Einstein’s theory of general relativity,
the presence of mass causes space-time to curve, and the
metric describes how this works.

MIDPOINT Point B is the midpoint of the segment AC if it
is between A and C and if AB � BC (that is, the distance
from B to A is the same as the distance from B to C).

MINIMA The minima are the points where the value of a
function is less than it is at the surrounding points. (See
extremum.)

MINKOWSKI Hermann Minkowski (1864 to 1909) devel-
oped the idea of four-dimensional space-time, a concept
used in relativity theory.

MINOR The minor of an element in a matrix is the deter-
minant of the matrix formed by crossing out the row and
column containing that element. For example, the minor
of the element d in

is the determinant

(See determinant; inverse matrix.)

MINOR ARC A minor arc of a circle is an arc with a mea-
sure less than 180°. (See arc.)

MINOR AXIS The minor axis of an ellipse is the line seg-
ment that passes through the center of the ellipse that is
perpendicular to the major axis.

2 b c

h i
2 � bi 	 ch

°a b c

d e f

g h i

¢
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MINOR PREMISE The minor premise is the sentence in a
syllogism that asserts a property about a specific case.
(See syllogism.)

MINUTE A minute is a unit of measure for small angles
equal to 1/60 of a degree.

MODE The mode of a group of numbers is the number that
occurs most frequently in that group. For example, the
mode of the set {0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 6, 6, 6} is
3, since 3 occurs four times.

MODULAR ARITHMETIC See clock arithmetic.

MODULUS (1) In division, the modulus is the same as the
remainder.

(2) The modulus of a complex number is the same as its
absolute value.

MODUS PONENS Modus Ponens refers to an argument of
the form:

Premise 1: If A, then B.
Premise 2: A is true.
Conclusion: B is true.

MODUS TOLLENS Modus Tollens refers to an argument
of the form:

Premise 1: If A, then B.
Premise 2: B is not true.
Conclusion: A is not true.

MONOMIAL A monomial is an algebraic expression that
does not involve any additions or subtractions. For exam-
ple, 4 
 3, a2b3, and are all monomials.

MONTE CARLO SIMULATION A Monte Carlo simula-
tion uses a random number generator to model a series of
events. This method is used when it is uncertain whether or
not a particular event will occur, but the probability of
occurrence can be estimated. For example, the Monte

4
3pr

3
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Carlo method can simulate a baseball game if you know
the probability that each player will get a hit. A computer
can be programmed to generate a random number for each
at bat, and then determine whether or not a hit occurred.

MULTICOLLINEARITY The multicollinearity problem
in multiple regression arises when two or more indepen-
dent variables are highly correlated. In that case, it is dif-
ficult to determine the individual effects of the different
variables. In the extreme case where two independent
variables are perfectly correlated, the multiple regression
calculation cannot be performed because it would involve
dividing by zero.

For example, suppose that you conduct a multiple
regression calculation for a sample of people where income
and education are two of the independent variables.
Suppose that all of the people with a high level of education
in your sample also have high incomes, and all of the peo-
ple with little education also have low incomes. In that case,
you cannot tell if any observed difference is caused by the
education difference or by the income difference. The best
way to solve the multicollinearity problem would be to
obtain additional observations, so you have observations of
some people with high education and low income, and
other people with low education and high income.

MULTINOMIAL A multinomial is the sum of two or more
monomials. Each monomial is called a term. For exam-
ple, a2b3 � 6 � 4b5 is a multinomial with three terms.

MULTIPLE REGRESSION Suppose that a dependent
variable Y depends on some independent variables X1, X2,
and X3 according to the equation:

Y � b1X1 � b2X2 � b3X3 � b4 � e

where b1, b2, b3, and b4 are unknown coefficients, and e
is a random variable called the error term. See regression

MULTICOLLINEARITY 220



for a discussion of the case where there is only one inde-
pendent variable. The problem in multiple regression is
to use observed values of the X’s and Y to estimate the
values of the b’s. For example, Y could be the amount of
money spent on food, X1 could be income, X2 could be
the price of food, and X3 could be the average price of
other goods. The random variable e is included to
account for all other factors that could affect demand for
food that are not explicitly listed in the equation. If our
equation is going to be of much help in predicting the
demand for food, then the factors we have included must
be more important than the ones left out.

If we have t observations each for Y, X1, X2, and X3
then we can arrange the observations of the X’s into a
matrix X of t rows and four columns (with the last col-
umn consisting only of ones). Y can be arranged into a
matrix of t rows and one column. If the coefficients are
arranged in a matrix of four rows and one column ", the
estimate for the coefficients is:

b � (XtrX)�1XtrY

where (XtrX)	1 is the inverse of the matrix formed by
multiplying X transpose by X. (See matrix; matrix
multiplication.) This is called the ordinary least squares
estimate because it minimizes the squares of the devia-
tions between the actual values of Y and the values of Y
predicted by the regression equation. The actual calcula-
tions of the regression coefficients are best left to a
computer.

The R2 statistic provides a way of determining how
much of the variance in Y this equation is able to explain.
The t-statistic for each coefficient provides an estimate of
whether that coefficient really should be included in the
regression (i.e., is it really different from zero?).
Regression methods are used often in statistics and in the
branch of economics known as econometrics.
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MULTIPLICAND In the equation ab � c, a and b are the
multiplicands.

MULTIPLICATION Multiplication is the operation of
repeated addition. For example, 3 
 5 � 5 � 5 �
5 � 15. Multiplication is symbolized by a multiplication
sign (“
”) or by a dot (“ ”). In algebra much writing can
be saved by leaving out the multiplication sign when two
letters are being multiplied, or when a number multiplies
a letter. For example, the expressions ab, pr2, and 
mean a 
 b, p
 r2, and 
 a 
 t2, respectively.

Multiplication obeys the commutative property:

(a 
 b) � (b 
 a)

and the associative property:

(a 
 b) 
 c � a 
 (b 
 c)

Whenever an expression contains both additions and
multiplications, the multiplications are done first (unless
a set of parentheses indicates otherwise). For example:

3 
 5 � 4 
 5 � 15 � 20 � 35

3 
 (5 � 6) 
 4 � 3 
 11 
 4 � 132

The relation between addition and multiplication is
given by the distributive property:

a(b � c) � ab � ac

MULTIPLICATION PRINCIPLE If two choices are to be
made, one from a list of m possibilities and the second
from a list of n possibilities, and any choice from the first
list can be combined with any choice from the second
list, then the fundamental principle of counting says that
there are mn total ways of making the choices.
(See also combinations; permutations.)

MULTIPLICATIVE IDENTITY The number 1 is the
multiplicative identity, because 1 
 a � a, for all a.

1
2

1
2 at

2

#
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MULTIPLICATIVE INVERSE The multiplicative inverse
of a number a (written as 1/a or a	1) is the number that,
when multiplied by a, gives a result of 1:

The multiplicative inverse is also called the reciprocal.
For example, is the reciprocal of 2. There exists a mul-
tiplicative inverse for every real number except zero.

1
2

a 

1
a

� 1
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N

NAPIER John Napier (1550 to 1617) was a Scottish math-
ematician who developed the concept of logarithms.

NATURAL LOGARITHM The natural logarithm of a
positive number x (written as ln x) is the logarithm of x
to the base e, where e � 2.71828. . . . The natural loga-
rithm function can also be defined by the definite integral

(See figure 77.)
Here is a table of some natural logarithms:

x ln x x ln x
0.2 	1.6094 5 1.6094
0.5 	0.6931 6 1.7918
0.8 	0.2231 7 1.9459
1 0 8 2.0794
2 0.6931 9 2.1972
3 1.0986 10 2.3026
4 1.3863 100 4.6052

lnx � �
x

1

t	1dt

Figure 77



NATURAL NUMBERS The natural numbers are the set of
numbers {1, 2, 3, 4, 5, 6, 7, 8, . . .}. This set of numbers
is also called the counting numbers, since they’re the
numbers used to count something. They can also be
called the positive integers.

NECESSARY In the statement pS q, q is a necessary con-
dition for p to be true. For example, having four 90� angles
is a necessary condition for a quadrilateral to be a square
(but it is not a sufficient condition).

NEGATION The negation of a statement p is the statement
NOT p. (See logic; Boolean algebra.)

NEGATIVE A negative number is any real number less than
zero. The negative of any number a (written as 	a) is
defined by this equation: a � (	a) � 0.

These are the rules for operations with negative
numbers:

1. To add two negative numbers: Add the two absolute
values, and give the result a negative sign. Example:
(	5) � (	3) � 	8.

2. To add one positive and one negative number: Subtract
the two absolute values, giving the result a positive sign if
the positive number had greater absolute value, and giving
the result a negative sign if the negative number had greater
absolute value. Examples: 5 � (	3) � 2; (	5) � 3 � 	2.

3. To multiply two negative numbers: multiply the two
absolute values and give the result a positive sign.
Example: (	5) 
 (	3) � 15.

4. To multiply one positive and one negative number:
multiply the two absolute values and give the result a neg-
ative sign. Example: (	5) 
 (3) � (5) 
 (	3) � 	15.

5. To take the square root of a negative number, see
imaginary number.

NEWTON Sir Isaac Newton (1643 to 1727) was an English
mathematician and scientist who developed the theory of
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gravitation and the laws of motion, designed a reflecting
telescope using a paraboloid mirror, used a prism to split
white light into component colors, and was one of the
inventors of calculus (independently of his rival
Leibniz). (See Newton’s method.)

NEWTON’S METHOD Newton’s method (see figure 78)
provides a way to estimate the places where complicated
functions cross the x-axis. First, make a guess, x1, that
seems reasonably close to the true value. Then approxi-
mate the curve by its tangent line to estimate a new
value, x2, from the equation

where f�(x1) is the derivative of the function f at the point
x1. (See calculus; derivative.)

The process is iterative; that is, it can be repeated as
often as you like. This means that you can get as close to
the true value as you wish.

x2 � x1 	
f1x1 2
f¿ 1x1 2

Figure 78 Newton’s method



For example, Newton’s method can be used to find the
x-intercept of the function f(x) � x3 	 2x2 	 6x 	 8,
whose derivative is f �(x) � 3x2 	 4x 	 6. Start with a
guess, x1 � 10:

xi f(x i) f�(x i) 	f(x)/f�(x)
10 732 254 	2.88
7.118 209 117 	1.77
5.343 55.4 58.3 	0.95
4.393 11.8 34.3 	0.34
4.048 1.28 26.98 	0.047
4.00088 0.023

The true value of the intercept is x � 4.
A brief word of warning: the method doesn’t always

work. The tangent line approximation will not always
converge to the true value. The method will not work for
the function shown in figure 79.

NOETHER Emmy Noether (1882 to 1935) was a German
mathematician who contributed to abstract algebra.

NON-EUCLIDIAN GEOMETRY Euclidian geometry
describes the geometry of our everyday world. One pos-
tulate of Euclidian geometry describes the behavior of
parallel lines. This postulate says that, if a straight line
crosses two coplanar straight lines, and if the sum of the
two interior angles formed on one side of the crossing
line is less than 180º, then the two other lines will inter-
sect at some point. In other words, they will not be par-
allel. If, on the other hand, the sum of the two interior
angles is 180�, then the two lines will be parallel, mean-
ing that they could be extended forever and never inter-
sect. This postulate seems intuitively clear, but nobody
has been able to prove it after several centuries of trying.
Since we cannot travel to infinity to verify that two seem-
ingly parallel lines never intersect, we cannot tell
whether this postulate really is satisfied in our universe.
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Some mathematicians decided to investigate what
would happen to geometry if they changed the parallel
postulate. They found that they were able to prove theo-
rems in their new type of geometry. These theorems were
consistent because no two theorems contradicted each
other, but the geometry that resulted was different from
the geometry developed by Euclid. In one type of non-
Euclidian geometry, called hyperbolic geometry, there is
more than one line parallel to a given line through a given
point. Janos Bolyai wrote one of the earliest descriptions
of hyperbolic geometry in 1823; Nicolai Lobachevsky
independently developed the same ideas at the same time.
In another type of non-Euclidian geometry, called elliptic
geometry, there are no parallel lines. Elliptic geometry
generalizes the situation in which you would find
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yourself if you were a two-dimensional being confined to
the surface of a sphere. In that case any two “lines”
would always intersect on the other side of the sphere.
Ludwig Schlafli and Bernhard Riemann described ellip-
tic geometry in the late 1800s.

Non-Euclidian geometries play an important role in
the development of relativity theory. They also are impor-
tant because they shed light on the nature of logical
systems.

NORM The norm of a vector is its length.

NORMAL In mathematics the word “normal” means “per-
pendicular.” A line is normal to a curve if it is perpendic-
ular to a tangent line to that curve at the point where it
intersects the curve. Two vectors are normal to each other
if their dot product is zero.

NORMAL DISTRIBUTION A continuous random vari-
able X has a normal distribution if its density function is

The mean (or expectation) of X is m, and its variance
is s2. If m� 0 and s� 1, then X is said to have the stan-
dard normal distribution, which has the density function

Figure 80 shows a graph of the standard normal den-
sity function. There is no formula for this integral, but
you can use a computer to find the values. Some spe-
cific values are: 68.26 percent of the area is within 1
standard deviation of the mean; 95.44 percent is within
2 standard deviations; 99.80 percent is within 3 stan-
dard deviations.

f1x 2 �
1

22p
e	x

2>2

f1x 2 �
1

s22p
e	1x	m22>2s2
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Also, the value of the integral can be found from this
Taylor series:

If the first x in the series is called term 0, then the
denominator in term i is found from the formula 
2ii!(2i � 1).

The central limit theorem is one important application
of the normal distribution. The central limit theorem
states that, if X1, X2, . . . , Xn are independent, identically
distributed random variables, each with mean m and vari-
ance s2, then, in the limit that n goes to infinity,

Sn � X1 � X1 � X3 � . . . � Xn

will have a normal distribution with mean nm and vari-
ance ns2. The reason that this theorem is so remarkable
is that it is completely general. It says that, no matter how
X is distributed, if you add up enough measurements, the
sum of the X’s will have a normal distribution.

�
1

22p
cx 	
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6
�
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NOT The word “NOT” is used in logic to indicate the nega-
tion of a statement. The statement “NOT p” is false if p is
true, and it is true if p is false. The operation of NOT can
be described by this truth table.

p NOT p
T F
F T

The symbols –p or ~ p or are used to represent
NOT. (See logic; Boolean algebra.)

NULL HYPOTHESIS The null hypothesis is the hypothesis
that is being tested in a hypothesis-testing situation. (See
hypothesis testing.) Often the null hypothesis is of the
form “There is no relation between two quantities.” For
example, if you were testing the effect of a new medicine,
you would want to test the null hypothesis “This medicine
has no effect on the patients who take it.” If the medicine
did work, then you would obtain statistical evidence that
would cause you to reject the null hypothesis.

NULL SET The null set is the set that contains no elements.
The term “null set” means the same as the term “empty
set.”

NUMBER Everyone first learns the basic set of numbers: 1,
2, 3, 4, 5, 6, . . . . These are known as the natural num-
bers, or counting numbers. The natural numbers are used
to count discrete objects, such as two books, five trees, or
five thousand people. There is an infinite number of nat-
ural numbers. Natural numbers obey an important prop-
erty known as closure under addition. This means that,
whenever you add two natural numbers together, the
result will still be a natural number. The natural numbers
also obey closure under multiplication.

One important number not included in the set of nat-
ural numbers is zero. It would be very difficult to measure

p
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the snowfall in the Sahara Desert without knowing the
number zero. The union of the set of natural numbers and
the set containing zero is the set of whole numbers.

The set of whole numbers does not obey closure
under subtraction. If you subtract one whole number
from another, there is no guarantee that you will get
another whole number. This suggests the need for
another kind of number: negative numbers. Also, there
are times when the natural numbers do not do an ade-
quate job of measuring certain quantities. If you are mea-
suring the government surplus (equal to tax revenue
minus government expenditures), you need negative
numbers to represent the years when the government runs
a deficit. If you are measuring the yardage gained by a
football team, you need to use negative numbers to rep-
resent the yardage on the plays when the team loses
yardage. Every natural number has its own negative, or
additive inverse. If a represents a natural number and 	a
is its negative, then a � (	a) � 0. The union of the set
of natural numbers and the set of the negatives of all the
natural numbers and zero is the set of integers. The set of
integers looks like this:

. . . ,	5, 	4, 	3, 	2, 	1, 0, 1, 2, 3, 4, 5, 6, 7, 8, . . .

Integers do not obey closure under division. A rational
number is any number that can be obtained as the result of
a division problem containing two integers. All fractions,
such as , 0.6, 3.4, and , are rational numbers. Also, all
the integers are rational numbers, since any integer a can
be written as a/1. The set of rational numbers is infinitely
dense because there is always an infinite number of other
rational numbers between any two rational numbers.

Nevertheless, there are many numbers that aren’t ratio-
nal. The square roots of most integers are not rational. For
example, but is approximately equal to
2.236067977 . . . , which cannot be expressed as the ratio

1514 � 2

52
3

1
2
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of two integers. There are important geometric reasons
for needing these irrational numbers. (See Pythagorean
theorem.) Irrational numbers are also needed to express
most of the values for trigonometric functions, and 
two special numbers, pi � p � 3.14159 . . . and e �
2.71828 . . . are both irrational. For practical purposes
you can always find a rational number that is a close
approximation to any irrational number.

The set of all rational numbers and all irrational num-
bers is known as the set of real numbers. Each real num-
ber can be represented by a unique point on a straight line
that extends off to infinity in both directions. Real num-
bers have a definite order, that is, for any two distinct real
numbers you can always tell which one is bigger. The
result of a measurement of a physical quantity, such as
energy, distance, or momentum, will be a real number.

However, there are some numbers that are not real.
There is no real number x that satisfies the equation 
x2 � 1 � 0. Imaginary numbers are needed to describe
the square roots of negative numbers. The basis of the
imaginary numbers is the imaginary unit, i, which is
defined so that i2 � 	1. Pure imaginary numbers are
formed by multiplying a real number by i. For example:

If a pure imaginary number is added to a real number,
the result is known as a complex number. The real num-
bers and the imaginary numbers are both subsets of the
set of complex numbers. The general form of a complex
number is a � bi, where a and b are both real numbers.
Complex numbers are important in some areas of
physics.

NUMBER LINE A number line is a line on which each point
represents a real number. (See real number.)

NUMBER THEORY Number theory is the study of proper-
ties of the natural numbers. One aspect of number theory

1	64 � 1641	1 � 8i
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focuses on prime numbers. For example, it can be easily
proved that there are an infinite number of prime num-
bers. Suppose, for example, that p was the largest prime
number. Then, form a new number equal to one plus the
product of all the prime numbers from 2 up to p. This
number will not be divisible by any of these prime num-
bers (and, therefore, not by any composite number formed
by multiplying these primes together) and will therefore
be prime. This contradicts the assumption that p is the
largest prime number. There are still unsolved problems
involving the frequency of occurrence of prime numbers.

The introduction of computers has made it possible to
verify that a proposition works for very large numbers,
but no computer can count all the way to infinity so the
computer is no subsitute for a formal proof if you need to
know that a theorem is always true.

For another example of a problem in number theory,
see Fermat’s last theorem.

NUMERAL A numeral is a symbol that stands for a number.
For example, “4” is the Arabic numeral for the number
four. “IV” is the Roman numeral for the same number.

NUMERATOR The numerator is the number above the bar
in a fraction. In the fraction , 8 is the numerator. (See
denominator; fraction.)

NUMERICAL INTEGRATION The numerical integra-
tion method is used when it is not possible to find a for-
mula that can be evaluated to give the value of a definite
integral. For example, there is no formula that gives the
value of the definite integral

The procedure in numerical integration is to divide the
area under the curve into a series of tiny rectangles and

�
a

0

e	x
2

dx

8
9
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then add up the areas of the rectangles. (See figure 81.) The
height of each rectangle is equal to the value of the func-
tion at that point. As the number of rectangles increases
(and the width of each rectangle becomes smaller), the
accuracy of the method improves. In practice, the calcula-
tions for a numerical integration are carried out by a com-
puter. There are also alternative methods that use
trapezoids or strips bounded by parabolas.
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Figure 81 Numerical integration
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OBJECTIVE FUNCTION An objective function is a
function whose value you are trying to maximize or min-
imize. The value of the objective function depends on the
values of a set of choice variables, and the problem is to
find the optimal values for those choice variables. For an
example, see linear programming.

OBLATE SPHEROID An oblate spheroid is elongated hor-
izontally. For contrast, see prolate spheroid.

OBLIQUE ANGLE An oblique angle is an angle that is not
a right angle.

OBLIQUE TRIANGLE An oblique triangle is a triangle
that is not a right triangle.

OBTUSE ANGLE An obtuse angle is an angle larger than
a 90° angle and smaller than a 180° angle.

OBTUSE TRIANGLE An obtuse triangle (see figure 82) is
a triangle containing one obtuse angle. (Note that a trian-
gle can never contain more than one obtuse angle.)

Figure 82 Obtuse triangles

Figure 83 Octahedron

OCTAGON An octagon is an eight-sided polygon. The best-
known example of an octagon is a stop sign. (See polygon.)



OCTAHEDRON An octahedron is a polyhedron with eight
faces. (See polyhedron.) (See figure 83.)

OCTAL An octal number system is a base-eight number
system.

ODD FUNCTION The function f(x) is an odd function if it
satisfies the property that f(	x) � 	f(x). For example,
f(x) � sin x and f(x) � x3 are both odd functions. For
contrast, see even function.

ODD NUMBER An odd number is a whole number that is
not divisible by 2, such as 1, 3, 5, 7, 9, 11, 13, 15, . . . .
For contrast, see even number.

ONE-TAILED TEST In a one-tailed test the critical region
consists of only one tail of a distribution. The null hypoth-
esis is rejected only if the test statistic has an extreme value
in one direction. (See hypothesis testing.)

ONE-TO-ONE FUNCTION A function y � f(x) is a one-
to-one function if every value of x in the domain is asso-
ciated with a unique value of y in the range, making it
possible to find an inverse function.

OPEN INTERVAL An open interval is an interval that does
not contain both its endpoints. For example, the interval
0 � x � 1 is an open interval because the endpoints 0 and
1 are not included. For contrast, see closed interval.

OPEN SENTENCE An open sentence is a sentence con-
taining one or more variables that can be either true or
false, depending on the value of the variable(s). For
example, x � 7 is an open sentence.

OPERAND An operand is a number that is the subject of an
operation. In the equation 5 � 3 � 8, 5 and 3 are the
operands.

237 OPERAND



OPERATION An operation, such as addition or multiplica-
tion, is the process of carrying out a particular rule on a set
of numbers. The four fundamental arithmetic operations
are addition, multiplication, division, and subtraction.

OPTICS Optics (also known as geometric optics) is the
study of how light rays behave when they are reflected or
bent by various media. In particular, optics focuses on
light rays that are reflected off mirrors, or are refracted
(bent) by lenses.

A reflecting telescope is built by taking advantage
of the fact that parallel light rays striking a parabolic mir-
ror will all be reflected back to the focal point. (See fig-
ure 84.) (See parabola; angle of incidence.)

A refracting telescope is built by designing a lens that
will refract parallel light rays to a single point. (See fig-
ure 85.) (See Snell’s law.)

OR The word “OR” is a connective word used in logic. The
sentence “p OR q” is false only if both p and q are false;
it is true if either p or q or both are true. The operation of
OR is illustrated by the truth table:

p q p OR q

T T T
T F T
F T T
F F F
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The symbol is often used to represent OR. An OR
sentence is also called a disjunction. (See logic; Boolean
algebra.)

ORDERED PAIR An ordered pair is a set of two numbers
where the order in which the numbers are written has an
agreed-upon meaning. One common example of an
ordered pair is the Cartesian coordinates (x, y), where it
is agreed that the horizontal coordinate is always listed
first and the vertical coordinate last.

ORDINATE The ordinate of a point is another name for the
y coordinate. (See Cartesian coordinates; abscissa.)

ORIGIN The origin is the point (0, 0) in Cartesian coordi-
nates. It is the point where the x- and the y-axes intersect.

ORTHOCENTER The orthocenter of a triangle is the point
where the three altitudes of the triangle meet. (See trian-
gle.)

ORTHOGONAL Orthogonal means perpendicular.

ORTHONORMAL A set of vectors is orthonormal if they
are all orthogonal (perpendicular) to each other, and they
all have length 1. (See basis.)

OUTLIER An outlier is an observation significantly different
from other observations. It is worth investigating to see
why there is such an observation. It might have occurred
because of a measurement error, or there might be some
interesting story to be learned about that observation.

�
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PARABOLA A parabola (see figure 86) is the set of all
points in a plane that are equally distant from a fixed
point (called the focus) and a fixed line (called the direc-
trix). If the focus is at (0, a) and the directrix is the line
y � 	a, then the equation can be found from the defini-
tion of the parabola:

The final equation for a parabola is very simple. One
example of a parabola is the graph of the equation y � x2.

The graph of the equation y � Ax2 � Bx � C is a
parabola that is symmetric about the line .

Parabolas have many practical uses. The course of a
thrown object, such as a baseball, is a parabola (although

x � 	 B
2A

y �
1

4a
x2

 4ay � x2

y2 � 2ay � a2 � x2 � y2 	 2ay � a2

y � a � 2x2 � 1y 	 a 22

Figure 86 Parabola
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it will be modified a bit by air resistance). The cross sec-
tion of a telescopic mirror is a parabola. The telescopic
mirror constitutes a surface known as a paraboloid, which
is formed by rotating a parabola about its axis. When par-
allel light rays from a distant star strike the paraboloid,
they are all reflected back to the focal point. (See optics.)
For the same reason, the network microphones that pick
up field noises at televised football games are shaped like
paraboloids. Probably the largest parabola in practical
use is the cross section of the 1000-foot-wide radio tele-
scope carved out of the ground at Arecibo, Puerto Rico.
The parabola is an example of a more general class of
curves known as conic sections.

PARABOLOID A paraboloid is a surface that is formed by
rotating a parabola about its axis. (See parabola.)

PARALLEL Two lines are parallel if they are in the same
plane but never intersect. In figure 87 lines AB and CD
are parallel. A postulate of Euclidian geometry states
that “Through any point not on a line there is one and
only one line that is parallel to the first line.”

Two planes are parallel if they never intersect. 

PARALLELEPIPED A parallelepiped is a solid figure
with six faces such that the planes containing two oppo-
site faces are parallel. (See figure 88.) Each face is a
parallelogram.

Figure 87 Parallel lines



PARALLELOGRAM A parallelogram is a quadrilateral with
opposite sides parallel. (See quadrilateral.)

PARAMETER (1) In statistics a parameter is a quantity
(often unknown) that characterizes a population. For
example, the mean height of all 6-year-olds in the United
States is an unknown parameter. One of the goals of statis-
tical inference is to estimate the values of parameters.

(2) See parametric equation.

PARAMETRIC EQUATION A parametric equation in x
and y is an equation of the form x � f (t), y � g(t), where
t is the parameter, and f and g are two functions. For
example, the parametric equation x � r cos t, y � r sin t
defines the circle centered at the origin with radius r. For
another example of a parametric equation, see cycloid.

PARENTHESIS A set of parentheses ( ) indicates that the
operation in the parentheses is to be done first. For exam-
ple, in the expression

y � 5 
 (2 � 10 � 30) � 5 
 42 � 210

the parentheses tell you to do the addition first.

PARTIAL DERIVATIVE The partial derivative of 
y � f(x1, x2, . . ., xn) with respect to xi is found by taking
the derivative of y with respect to xi, while all the other
independent variables are held constant. (See derivative.)
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For example, suppose that y is this function of two vari-
ables: . Then the partial derivative of y with
respect to x1 (written as 0y/0x1) is . Likewise, the
partial derivative with respect to x2 is found by taking the
derivative with x1 treated as a constant:

PARTIAL FRACTIONS An algebraic expression of the
form

(where m � n) can be written as the sum of n partial frac-
tions, like this:

where C1, . . . Cn, are constants for which we can solve.
For example, the expression

can be split up into partial fractions as follows:

Now we need to solve for C1 and C2, which we can do
this way:

For this equation to be true for all values of x, we
must have C1 and C2 satisfy these two equations:

5x 	 71x 	 1 2 1x 	 2 2 �
C11x 	 2 2 � C21x 	 1 21x 	 1 2 1x 	 2 2

5x 	 71x 	 1 2 1x 	 2 2 �
C1

x 	 1
�
C2

x 	 2

5x 	 71x 	 1 2 1x 	 2 2

C1

x 	 a1
�

C2

x 	 a2
� # # # �

Cn
x 	 an

bmx
m � bm	1x

m	1 � # # # � b2x
2 � b1x � b01x 	 a1 2 1x 	 a2 2 1x 	 a3 2 
 # # # 
 1x 	 an	1 2 1x 	 an 2

0y
0x2

� bxa1x
b	1
2

axa	1
1 x

b
2

y � xa1x
b
2
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coefficients of x:

5 � C1 � C2

constant terms:

	7 � 	2C1 	 C2

This is a two-equation, two-unknown system, which
has the solution C1 � 2, C2 � 3. Therefore:

PASCAL Blaise Pascal (1623 to 1662) was a French math-
ematician who developed the modern theory of probabil-
ity, invented a calculating machine using wheels to
represent numbers, studied fluid pressure, and wrote
about religion. (See Pascal’s triangle.)

PASCAL’S TRIANGLE Pascal’s triangle is a triangular
array of numbers in which each number is equal to the sum
of the two numbers above it (one is above and left, the
other is above and right). Diagonal lines of 1’s make up the
top two sides of the triangle, which looks like this:

If the “1” at the top is called row zero, and the first
item in each row is called item 0, then item j in row n can
be found from the formula:

5x 	 71x 	 1 2 1x 	 2 2 �
2

x 	 1
�

3

x 	 2
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(See factorial; combinations.)
Also, row n of the triangle gives the coefficients of the

expansion of (a � b)n. (See binomial theorem.)

PENTAGON A pentagon is a five-sided polygon. For pic-
ture, see polygon. The sum of the angles in a pentagon is
540°. A regular pentagon has all five sides equal, and
each of the five angles equal to 108°. The most famous
pentagon is the Pentagon building, near Washington,
D.C., which has sides 921 feet long.

PERCENT A percent is a fraction in which the denominator
is assumed to be 100. The symbol % means “percent.”
For example, 50% means 50/100 � 0.50, 2% means
2/100 � 0.02 and 150% means 150/100 � 1.5.

PERCENT DECREASE The percent decrease from an ini-
tial value x1 to a final value x2 is 100(x1 	 x2)/x1. For exam-
ple, if a price falls from 20 to 16, it is a 4/20 � 0.20 � 20
percent decrease.

PERCENT INCREASE The percent increase from an ini-
tial value x1 to a final value x2 is 100(x2 	 x1)/x1. For
example, if a price increases from 16 to 20, it is a 4/16 �
0.25 � 25 percent increase.

PERCENTILE The pth percentile of a list is the number
such that p percent of the elements in the list are less than
that number. For example, if the height of a particular
child is at the 55th percentile, then 55 percent of the chil-
dren of the same age have heights less than this child.

PERFECT NUMBER A perfect number equals the sum of
all its factors except itself. For example, the factors of 6
are 1, 2, 3, and 6; since 1 � 2 � 3 � 6, 6 is a perfect
number.

an
j
b �

n!1n 	 j 2!j!
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PERFECT SQUARE A perfect square is an integer that
can be formed by squaring another integer. The smallest
perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
121, 144, 169, 196, and 225.

PERIMETER The perimeter of a polygon is the sum of the
lengths of all the sides. If you had to walk all the way
around the outer edge of a polygon, the total distance you
would walk would be the perimeter.

PERIOD The period of a periodic function is a measure of
how often the function repeats the same values. For exam-
ple, the function f(x) � cos x repeats its values every 2p
units, so its period is 2p.

PERIODIC A periodic function is a function that keeps
repeating the same values. Formally, a function f(x)
is periodic if there exists a number p such that
f (x � p) � f(x), for all x. If p is the smallest number with
this property, then p is called the period. For example, the
function y � sin x is a periodic function with a period of
2p, because sin(x � 2p) � sin x, for all x. (See Fourier
series.)

PERMUTATIONS The term “permutations” refers to the
number of different ways of choosing things from a group
of n objects, when you care about the order in which they
are chosen, and the selection is made without replace-
ment. The number of permutations of n objects, taken j at
a time, is n!/(n 	 j)!. (See factorial.) The number of per-
mutations is symbolized by nPj. For example, if there are
25 players on a baseball team, then the total number of
possible batting orders is

� 7.41 
 1011

25 # 24 # 23 # 22 # 21 # 20 # 19 # 18 # 17 �
25!125 	 9 2!
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There are 25 choices for the first batter. Once the first
batter is chosen, then there are 24 choices left for the sec-
ond batter. Once these choices have been made, there are
23 choices left for the second batter, and so on.

For situations where you do not care about the order
in which the objects are selected, see combinations.

PERPENDICULAR Two lines are perpendicular if the
angle between them is a 90° angle. By definition, the two
legs of a right triangle are perpendicular to each other.
(See figure 89.)

Two vectors are perpendicular if their dot product is
zero. (See dot product.)

Two planes are perpendicular if the dihedral angle
they form is a right angle. (See dihedral angle.) In a
well-designed house the walls are perpendicular to the
floor.

PI The Greek letter p (pi) is used to represent the ratio
between the circumference of a circle and its diameter:

This ratio is the same for any circle. p is an irrational
number with the decimal approximation 3.1415926536 
. . . p can also be approximated by the fraction 22/7, or
377/120. For example, if a circle has a radius of 8 units,

p �
circumference

diameter
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then it has a diameter of 16, a circumference of
16p � 16 
 22/7 � 50.3, and an area of pr2 � p
 82

� 201.1.
There are several ways to find numerical approxima-

tions for pi. If we inscribe a regular polygon inside a cir-
cle (see figure 90), then the perimeter of the polygon is
less than the circumference of the circle. However, if we
double the number of sides in the polygon, keeping it
inscribed in the same circle, then the perimeter of the
polygon will be a closer approximation to the circumfer-
ence of the circle. If we keep doubling the number of
sides, we can come as close as we want to the true cir-
cumference. Let sn be the length of a side of a regular 
n-sided polygon inscribed in a circle of radius r. Then:

For , the perimeter of the polygon will approach
p as the number of sides is increased:

r � 1
2

s22n � 2r2 	 r24r2 	 s2n

PI 248

nSn
n (approximation for p)

4 2.8284
8 3.0615

16 3.1214
32 3.1365
64 3.1403

128 3.1413
256 3.1415
512 3.14157

1024 3.14159

The arctangent function can be used to find a series
approximation for p. We know that

1

1 	 z
� 1 � z � z2 � z3 � z4 � # # #



(for ). (See geometric series.) If z � 	x2, then

If y � arctan x, then dy/dx � 1/(1 � x2). (See inte-
gral.) Then:

If we integrate this series term by term, then

Since tan(p/4) � 1, then arctan 1 � p/4. Therefore:

After 1,000 terms, this series gives the value 3.1406;
after 1,001 terms, the result is 3.1426.

p

4
� 1 	

1

3
�

1

5
	

1

7
�

1

9
	

1

11
� # # #

y � arctanx � x 	
x3

3
�
x5

5
	
x7

7
�
x9

9
	 # # #

dy

dx
� 1 	 x2 � x4 	 x6 � x8 	 x10 � # # #

1

1 � x2 � 1 	 x2 � x4 	 x6 � x8 	 x10 � # # #

0z 0 � 1
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Another way to find p is the infinite product:

PIE CHART A pie chart (also called a circle graph) is a
type of chart that resembles a pie and graphically shows
the relative size of different subcategories of a whole.
(See figure 91.)

PIECEWISE A function is piecewise continuous if it can
be broken into different segments such that it is continu-
ous in each segment.

PLACEHOLDER Zero acts as a placeholder to indicate
which power of 10 a digit is to be multiplied by. The
importance of this role is indicated by considering the

p

2
�

2

1



2

3



4

3



4

5



6

5



6

7



8

7



8

9

 # # #
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difference between the two numbers 300 � 3 
 102 and
3,000,000 � 3 
 106.

PLANE A plane is a flat surface (like a tabletop) that
stretches off to infinity. A plane has no thickness, but infi-
nite length and width. “Plane” is one of the key undefined
terms in Euclidian geometry. Any three noncollinear
points determine one and only one plane.

PLATO Plato (428 BC to 348 BC), one of the greatest of
ancient Greek philosophers, established the Academy at
Athens with these words over the entrance: “Let no one
ignorant of geometry enter here.” The five regular poly-
hedra are sometimes called Platonic solids.

PLATONIC SOLID The five regular polyhedra are known
as the Platonic solids. (See polyhedron.)

POINT Point is a basic undefined term in geometry. A point
is a particular location in space. It has no height, width, or
thickness. Geometric axioms determine how points relate
to the undefined terms “line” and “plane”: (1) two distinct
points determine one and only one line; (2) three non-
collinear points determine one and only one plane.

POINT-SLOPE EQUATION OF LINE If a line of slope
m passes through a point (x1, y1), its equation can be
written:

which can be rewritten:

y � mx � (y1 	 mx1)

POINT SYMMETRY A figure has point symmetry about a
point P if, for every point on the figure, there is another

y 	 y1

x 	 x1
� m
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point on the figure that is the same distance from P but in
the opposite direction. (See figure 92.)

POISSON Simeon-Denis Poisson (1781 to 1840) was a
French mathematician who made contributions to celes-
tial mechanics, probability theory, and the theory of elec-
tricity and magnetisim. (See Poisson distribution.)

POISSON DISTRIBUTION The Poisson distribution is a
discrete random variable distribution that often describes
the frequency of occurrence of certain random events,
such as the number of phone calls that arrive at an office
in an hour. The Poisson distribution can also be used as
an approximation for the binomial distribution. The
Poisson distribution is characterized by a parameter usu-
ally written as � (the Greek letter lambda). If X has a
Poisson distribution, then the probability function is
given by the formula:

Pr1X � k 2 �
e	llk

k!
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where e � 2.71828 . . . , and the exclamation mark indi-
cates factorial. The Poisson distribution has the unusual
property that the expectation and the variance are equal
(each is equal to �).

POLAR COORDINATES Any point in a plane can be
identified by its distance from the origin (r) and its angle
of inclination (u). This type of coordinate system is
called a polar coordinate system. (See figure 93.) It is an
alternative to rectangular (Cartesian) coordinates. Polar
coordinates can be changed into Cartesian coordinates by
the formulas

x � r cos u, y � r sin u

Rectangular coordinates can be changed into polar
coordinates by the formulas

(If x is negative, be sure to put the result for u in the
correct quadrant.) 

r � 2x2 � y2, u � arctan
y

x

Figure 93 Polar coordinates
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For example:

Cartesian Coordinates Polar Coordinates
(3, 0) (3, 0°)
(0, 4) (4, 90°)
( , 1) (2, 30°)
(3, 3) ( , 45°)
(	3, 3) ( , 135°)
(	3, 	3) ( , 225°)
(3, 	3) ( , 315°)

The equation of a circle in polar coordinates is very
simple: r � R, where R is the radius. The formula for the
rotation of axes in polar coordinates is also very simple:
r� � r, u� � u	 f, where f is the angle of rotation. (See
rotation.)

POLAR FORM OF A COMPLEX NUMBER A complex
number can be written in the form r(cos u� i sin u). (See
complex number.)

POLISH NOTATION In Polish notation, operators are
written before their operands. Thus, 3 � 5 is written 
� 5 3. No parentheses are needed when this notation is used.
For example, (2 � 3) 
 4 would be written 
 � 2 3 4.

POLYGON A polygon (see figure 94) is the union of three
or more line segments that are joined end to end so as to
completely enclose an area. “Polygon” means “many-
sided figure.” Most useful polygons are convex polygons;
in other words, the line segment connecting any two
points inside the polygon will always stay completely
inside the polygon. (A polygon that is not convex is con-
cave, that is, it is caved in.)

Polygons are classified by the number of sides they have.
The most important ones are triangles (three sides), quadri-
laterals (four sides), pentagons (five sides), hexagons (six
sides), and octagons (eight sides). A polygon is a regular
polygon if all its sides and angles are equal.

118
118
118
118

13



Two polygons are congruent (figure 95) if they have
exactly the same shape and size. Two polygons are simi-
lar if they have exactly the same shape but different sizes.
Corresponding angles of similar polygons are equal and
corresponding sides have the same ratio.

The sum of all the angles in a polygon with n sides is
(n 	 2)180°.

POLYHEDRON A polyhedron is a solid that is bounded by
plane polygons. The polygons are called the faces; the
lines where the faces intersect are called the edges; and
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the points where three or more faces intersect are called
the vertices. Some examples of polyhedrons are cubes,
tetrahedrons, pyramids, and prisms.

There are five regular polyhedra, which means that
each face is a congruent regular polygon. For pictures,
see the entries for each type.

Type Face Shape F V E
tetrahedron triangle 4 4 6
cube square 6 8 12
octahedron triangle 8 6 12
dodecahedron pentagon 12 20 30
icosahedron triangle 20 12 30

(F stands for the number of faces; V is the number of
vertices; and E is the number of edges.) Note that the
F � V � E � 2.

POLYNOMIAL A polynomial in x is an algebraic expres-
sion of the form

anx
n � an	1x

n	1 � � a3x
3 � a2x

2 � a1x � a0

where a0, a1, . . ., an are constants that are the coefficients
of the polynomial, and n is a positive integer. In this arti-
cle it will be assumed that all of the coefficients a0 . . . an
are real numbers.

The degree of the polynomial is the highest power of
the variable that appears. The polynomial listed above has
degree n, the polynomial x2 � 2x � 4 has degree 2, and the
polynomial 3y3 � 2y has degree 3.

Graphs of polynomial functions are interesting because
the curve can change directions. The number of turning
points is odd if the degree of the polynomial is even, and
vice versa, and the maximum number of turning points is
one less than the degree of the polynomial. The table
shows the number of turning points a polynomial curve

# # #
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might have. Figure 96 shows a third-degree polynomial
curve with two turning points.

Number of 
Degree turning points Term
1 0 straight line
2 1 quadratic
3 0 or 2 cubic
4 1 or 3 quartic
5 0 or 2 or 4 quintic

At each turning point the curve has a horizontal tan-
gent line. The value of x at each of these points can be
found by setting the derivative of the curve equal to zero.
(See derivative.)

A polynomial equation is an equation with a polyno-
mial on one side and zero on the other side:

anx
n � an	1x

n	1 � � a3x
3 � a2x

2 � a1x � a0 � 0# # #
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A polynomial of degree n can be written as the prod-
uct of n first-degree (or linear) factors, so the polynomial
equation can be rewritten:

(x 	 r1)(x 	 r2) 
 
 (x 	 rn) � 0

The equation will be true if either x � r1, or x � r2,
and so on, so the equation will have n solutions. In gen-
eral, a polynomial equation of degree n will have n solu-
tions. However, there are two complications. First, not
all of the solutions may be distinct. For example, the
equation

x2 	 4x � 4 � (x 	 2)(x 	 2) � 0

has two solutions, but they are both equal to 2. An
extreme example is the equation (x 	 a)n � 0, which has
n solutions, but they are all equal to a.

Second, not all of the solutions will be real numbers.
For example, the equation

x2 � 2x � 2 � 0

has two solutions: x � 	1 � i, and x � 	1 	 i. The let-
ter i satisfies i2 � 	1. (See imaginary number.) These
solutions are both said to be complex numbers. The
complex solutions to a polynomial equation come in
pairs: if (u � vi) is a solution to a polynomial equation,
then (u 	 vi) will also be a solution (remember the
assumption that all of the coefficients are real numbers).

If the degree of the polynomial equation is two, then
the equation is called a quadratic equation. These equa-
tions can be solved fairly easily. It can be difficult to
solve polynomial equations if the degree is higher than
two. The rational root theorem can sometimes help to
identify rational roots. Newton’s method is a way to find
numerical approximations to the roots. If you are able to
factor the polynomial, then the solutions will be obvious,
but factoring can be very difficult. If you have found one

# # #
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solution of the equation, you can make the equation sim-
pler. If you know that (x � r) is a solution of the polyno-
mial equation f(x) � 0, then use synthetic division to
divide f(x)/(x 	 r). The result will be a polynomial whose
degree is one less than f(x), so it will be easier to find
more solutions.

Figures 97 to 101 illustrate the different possibilities
for a fourth-degree polynomial curve.

POPULATION A population consists of the set of all items
of interest. The population may consist of a group of peo-
ple or some other kind of object. In many practical situa-
tions the parameters that characterize the population are
unknown. A sample of items is selected from the popula-
tion, and the characteristics of that sample are used to esti-
mate the characteristics of the population. (See statistical
inference.)
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Figure 97 y � x4 	 11x3 	 7x2 � 155x � 150



POPULATION 260

Figure 98 y � x4 	 19x3 � 114x2 	 256x � 160

Figure 99 y � x4 	 4x3 	 5x2 	 2x � 10
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Figure 101 y � x4 	 11x3 � 7x2 	 155x � 800

Figure 100 y � x4 	 6x3 � 2x2 � 16x � 32
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POSITIVE NUMBER A positive number is any real num-
ber greater than zero.

POSTULATE A postulate is a fundamental statement that
is assumed to be true without proof. For example, the
statement “Two distinct points are contained by one and
only one line” is a postulate of Euclidian geometry.

POTENTIAL FUNCTION If a vector field f(x, y, z) is the
gradient of a scalar function U(x, y, z), then U is said to
be the potential function for the field f. For example, if
U represents potential energy, then the force acting on a
body is the negative of the gradient of U. A potential
function for f can be found only if the curl of f is zero.
Another way of stating the condition is that the line inte-
gral of f around a closed path must be zero.

POWER A power of a number indicates repeated multipli-
cation. For example, “a to the third power” means “a
multiplied by itself three times” (a3 � a 
 a 
 a).
Powers are written with little raised numbers known as
exponents. (See exponent.)

POWER SERIES A series of the form

c0 � c1x � c2x
2 � c3x

3 �

where the c’s are constants, is said to be a power series
in x.

PRECEDENCE The rules of precedence determine the
order in which operations are performed in an expression.
For example, in ordinary algebraic notation and many
computer programming languages, exponentiations are
done first; then multiplications and divisions; and finally
additions and subtractions. For example, in the expres-
sion 3 � 4 
 52 the exponentiation is done first, giving
the result 3 � 4 
 25. Then the multiplication is done,
resulting in 3 � 100. Finally the addition is performed,
yielding the final result, 103.

# # #
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An operation enclosed in parentheses is always per-
formed before an operation that is outside the parenthe-
ses. For example, in the expression

3 
 (4 � 5),

the addition is done first, giving 3 
 9. Then the multipli-
cation is performed, yielding the final result, 27.

PREMISE A premise is one of the sentences in an argu-
ment: the conclusion of the argument follows as a result
of the premises. (See logic.)

PRIME FACTORS Any composite number can be
expressed as the product of two or more prime numbers,
which are called the prime factors of that number. Here
are some examples of prime factors:

4 � 2 
 2 16 � 2 
 2 
 2 
 2
6 � 2 
 3 18 � 2 
 3 
 3
8 � 2 
 2 
 2 27 � 3 
 3 
 3
9 � 3 
 3 32 � 2 
 2 
 2 
 2 
 2

10 � 5 
 2 48 � 2 
 2 
 2 
 2 
 3
12 � 2 
 2 
 3 60 � 2 
 2 
 3 
 5
14 � 2 
 7 72 � 2 
 2 
 2 
 3 
 3
15 � 5 
 3 75 � 3 
 5 
 5

PRIME NUMBER A prime number is a natural number
that has no integer factors other than itself and 1. The
smallest prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41. (See Eratosthenes sieve.)

PRINCIPAL ROOT The principal root is the positive root;
for example, the principal square root of 25 is positive 5
(not negative 5).

PRINCIPAL VALUES The principal values of the arcsin
and arctan functions lie between 	p/2 and p/2. The prin-
cipal values of the arccos function are between 0 and p.
(See inverse trigonometric functions.)



PRISM A prism is a solid that is formed by the union of all
the line segments that connect corresponding points on
two congruent polygons that are located in parallel
planes. The regions enclosed by the polygons are called
the bases. A line segment that connects two correspond-
ing vertices of the polygons is called a lateral edge. If the
lateral edges are perpendicular to the planes containing
the bases, then the prism is a right prism. The distance
between the planes containing the bases is called the alti-
tude. The volume of the prism is (base area) 
 (altitude).

Prisms can be classified by the shape of their bases. A
prism with triangular base is a triangular prism. (See fig-
ure 102.) A cube is an example of a right square prism.
Triangular prisms made of glass have an important appli-
cation. If sunlight is passed through the prism, it is split up
into all the colors of the rainbow (because light of differ-
ent wavelengths is refracted in different amounts by the
glass). (See Snell’s law; optics.)

PROBABILITY Probability is the study of chance occur-
rences. Intuitively, we know that an event with a 50 per-
cent probability is equally likely to occur or not occur.
Probabilities can be estimated empirically by observing
how frequently an event occurs. Mathematically, proba-
bility is defined in terms of a probability space, called Ω
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(omega), which is the set of all possible outcomes of an
experiment. Let s be the number of outcomes. For exam-
ple, if you flip three coins, Ω contains eight outcomes:
{(HHH), (HHT), (HTH), (HTT), (THH), (THT), (TTH),
(TTT)}, where H stands for heads and T stands for tails.
An event is a subset of Ω. For example, if A is the event
that two heads appear, then A � {(HHT), (HTH),
(THH)}. Let N(A) be the number of outcomes in A. Then
the probability that the event A will occur (written as
Pr(A)) is defined as Pr(A) � N(A)/s. In this case N(A) �
3 and s � 8, so the probability that two heads will appear
if you flip three coins is 3/8.

An important part of probability involves counting the
number of possible outcomes in the probability space.
(See combinations; permutations; sampling.)

For information on other important probability tools,
see random variable; discrete random variable; con-
tinuous random variable.

Also, probability provides the foundation for statisti-
cal inference.

PROBABILITY SPACE The probability space is the set
of outcomes for a probability experiment. (See proba-
bility.)

PRODUCT The product is the result obtained when two
numbers are multiplied. In the equation 4 
 5 � 20, the
number 20 is the product of 4 and 5.

PROJECTION The projection of a point P on a line L is the
point on L that is cut by the line that passes through P and
is perpendicular to L. See figure 103. In other words, the
projection of point P is the point on line L that is the clos-
est to point P. The projection of a set of points is the set of
projections of all these points. Some shadows are examples
of projections. Vectors can be projected on other vectors.
(See dot product.)
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PROLATE SPHEROID A prolate spheroid is elongaged
vertically. For contrast, see oblate spheroid.

PROOF A proof is a sequence of statements that show a
particular theorem to be true. In the course of a proof it is
permissible to use only axioms (postulates), or defined
terms, or theorems that have been previously proved.

PROPER FRACTION A proper fraction is a fraction with
a numerator that is smaller than the denominator, for
example, . For contrast, see improper fraction.

PROPORTION A fractional equation of the form 
a/b � c/d is called a proportion.

PROPORTIONAL If x � ky, where k is a constant, then
x is said to be proportional to y. (See also inversely
proportional.)

PROPOSITION A proposition is a proposed theorem that
has yet to be proved.

PROTRACTOR A protractor is a device for measuring the
size of angles. Put the point marked with a dot (see fig-
ure 104) at the vertex of the angle, and place the side of
the protractor even with one side of the angle. Then the
size of the angle can be read on the scale at the place
where the other side of the angle crosses the protractor.

2
3
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PROTRACTOR POSTULATE The protractor postulate
says that any angle can be associated with a real number
representing the measure of that angle (so called because
a protractor is used to measure angles).

PYRAMID A pyramid (see figure 105) is formed by the
union of all line segments that connect a given point
(called the vertex) and points that lie on a given polygon.
(The vertex must not be in the same plane as the poly-
gon.) The region enclosed by the polygon is called the
base, and the distance from the vertex to the plane con-
taining the base is called the altitude. The volume of a
pyramid is given by

1volume 2 �
1

3

 1base area 2 
 1altitude 2
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Pyramids are classified by the number of sides on
their bases. (Note that all the faces other than the base are
triangles.) A triangular pyramid, which contains four
faces, is also known as a tetrahedron.

The most famous pyramids are the pyramids in Egypt.
The largest of these pyramids originally had a base 756
feet square and an altitude of 481 feet.

PYTHAGORAS Pythagoras (c 580 BC to c 500 BC) was a
Greek philosopher and mathematician who founded a
brotherhood that developed religious and mathematical
ideas. (See Pythagorean theorem.)

PYTHAGOREAN THEOREM The Pythagorean theorem
relates the three sides of a right triangle:

c2 � a2 � b2

where c is the side opposite the right angle (the
hypotenuse), and a and b are the sides adjacent to the
right angle.

For example, if the length of one leg of a right triangle
is 6 and the other leg is 8, then the hypotenuse has length

. The White House, the Washington
Monument, and the Capitol in Washington, D.C. form a
right triangle. The White House is 0.54 mile from the
Washington Monument, and the Capitol is 1.4 miles from
the monument. From this information we can determine
that the distance from the White House to the Capitol is

Another application of the theorem is the distance for-
mula, which says that the distance between two points in
a plane, (x1, y1) and (x2, y2), is given by1distance 2 � 21x1 	 x2 22 � 1y1 	 y2 22

210.54 22 � 11.4 22 � 1.5miles.

262 � 82 � 10
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There are many ways to prove the theorem. One way
involves similar triangles. In figure 106, triangles ABC and
ACD have exactly the same angles, so they are similar.
Since corresponding sides of similar triangles are in pro-
portion, we know that c/b � b/c2. Likewise, triangles ABC
and CBD are similar, so c/a � a/c1. Therefore:

a2 � cc1 and b2 � cc2

Add these together:

a2 � b2 � c(c1 � c2) � c2

and the theorem is demonstrated.

PYTHAGOREAN TRIPLE If three natural numbers a, b,
and c satisfy a2 � b2 � c2, then these three numbers are
called a Pythagorean triple. For example, 3, 4, 5 and 
5, 12, 13 are both Pythagorean triples, because 32 � 42 �
52 and 52 � 122 � 132.
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Figure 106 Pythagorean theorem



QED 270

Q

QED QED is an abbreviation for quod erat demonstrandum,
latin for “which was to be shown.” It is put at the end of
a proof to signify that the proof has been completed.

QUADRANT The x- and y-axes divide a plane into four
regions, each of which is called a quadrant. The four
quadrants are labeled the first quadrant, the second quad-
rant, and so on, as shown in figure 107.

QUADRANTAL ANGLE The angles that measure 0°, 90°,
180°, and 270°, and all angles coterminal with these, are
called quadrantal angles.

QUADRATIC EQUATION A quadratic equation is an equa-
tion involving the second power, but no higher power, of
an unknown. The general form is

ax2 � bx � c � 0

(a, b, and c are known; x is unknown; a � 0).
There are three ways to solve this kind of equation

for x. One method is to factor the left-hand side into two

Figure 107



linear factors. For example, to solve the equation x2 	
7x � 12 � 0 we need to think of two numbers that mul-
tiply to give 12 and add to give 	7. The two numbers that
work are 	4 and 	3, which means that

x2 	 7x � 12 � (x 	 4)(x 	 3) � 0

so x � 4 or x � 3.
Often the factors are too complicated to determine

easily, so we need another method. One possibility is
completing the square. We write the equation like this:

We can simplify the equation if we can add something
to the left-hand side to make it a perfect square. Add
b2/4a2 to both sides:

The equation can now be rewritten as:

The last equation is known as the quadratic formula.
It allows us to solve for x, given any values for a, b, and
c. The third way to solve a quadratic equation is simply
to remember this formula.

The formula also reveals some properties of the solu-
tions. The key quantity is b2 	 4ac, which is known as
the discriminant. If b2 	 4ac is positive, there will be two

x �
	b � 2b2 	 4ac

2a

x �
b

2a
� �B

b2 	 4ac

4a2

ax �
b

2a
b2

�
b2 	 4ac

4a2

x2 �
bx
a

�
b2

4a2 �
b2

4a2 	
c
a

x2 �
bx
a

� 	
c
a
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real values for x. If b2 	 4ac has a rational square root,
then x will have two rational values; otherwise x will
have two irrational values. If b2 	 4ac is zero, then x
will have one real value. If b2 	 4ac is negative, then x
will have two complex solutions. (See complex number.)

The real solutions to a quadratic equation can be
illustrated on a graph of Cartesian coordinates. The
graph of ax2 � bx � c is a parabola. The real solutions
for x will occur at the places where the parabola inter-
sects the x-axis. Three possibilities are shown in fig-
ure 108.

Here are two special cases:

• ax2 � bx � 0;

Solutions: x � 0, .

• ax2 � c � 0;

Solutions: .

QUADRATIC EQUATION, 2 UNKNOWNS The general
form of a quadratic equation in two unknowns is

(1) Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

where at least one of A, B, and C is nonzero. The graph
of this equation will be one of the conic sections. To
determine which one, we need to write the equation in a
transformed set of coordinates so we can identify the
standard form of the equation. First, rotate the coordinate
axes by an angle u, where

tan2u �
B

A 	 C

x � �B	
c
a

x � 	
b
a
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Figure 108 Quadratic equation
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This procedure will get rid of the cross term Bxy. (See
rotation.) In the new coordinates, x� and y�, the equation
becomes

(2) A�x�2 � C�y�2 � D�x� � E�y� � F� � 0

If either A� or C� is zero, then the graph of this equa-
tion will be a parabola. For example, suppose that there
is no y�2 term, so C� � 0. If you perform this translation
of coordinates:

the equation becomes

which can be graphed as a parabola.
If neither A� nor C� is zero in equation (2), then per-

form the translation

Then the equation can be written in the form

If A� � C�, then this is the equation of a circle. If A�
and C� have the same sign (i.e., they are both positive or
both negative), the equation will be the equation of an
ellipse. If A� and C� have opposite signs, the equation will
be the equation of a hyperbola.

You can tell immediately what the graph of equation
(1) will look like by examining the quantity B2 	 4AC. It
turns out that this quantity is invariant when you rotate the
coordinate system. This means that B�2 	 4A�C� in equa-
tion (2) will equal B2 	 4AC in equation (1). If B2 	 4AC
� 0, the graph is an ellipse or a circle. If B2 	 4AC � 0,

A¿x–2 � C¿y–2 � F– � 0

x– � x¿�
D¿
2A¿

 and y– � y¿�
E¿
2C¿

A¿x–2 � E¿y– � 0

x– � x¿�
D¿
2A¿

 and y– � y¿�
4A¿F¿ 	 D¿2

4A¿E¿



the graph is a parabola. If B2 	 4AC > 0, the graph is a
hyperbola.

It is also possible for the solution to equation (1) to be
either a pair of intersecting lines or a single point, or even
for there to be no solution at all. In these cases the solu-
tion is said to be a degenerate conic section.

QUADRATIC FORMULA The quadratic formula says that
the solution for x in the equation ax2 � bx � c � 0 is

(See quadratic equation.)

QUADRILATERAL A quadrilateral (see figure 109) is a
four-sided polygon. A quadrilateral with two sides

x �
	b � 2b2 	 4ac

2a
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parallel is called a trapezoid, with area h(a � b)/2. A
parallelogram has its opposite sides parallel and equal.
The area of a parallelogram is bh. A quadrilateral with all
four sides equal is called a rhombus. A quadrilateral with
all four angles equal is called a rectangle. The sum of the
four angles in a quadrilateral is always 360°, so each
angle in a rectangle is 90°. The area of a rectangle is ab.
A regular quadrilateral has all four sides and all four
angles equal, and is called a square. The area of a square
is a2.

A Venn diagram (figure 110) can be used to illustrate
the relationship between different types of quadrilaterals.

QUARTIC A quartic equation is a polynomial equation of
degree 4. (See polynomial.)

QUARTILE The first quartile of a list is the number such
that one quarter of the numbers in the list are below it; the
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third quartile is the number such that three quarters of the
numbers are below it; and the second quartile is the same
as the median.

QUINTIC A quintic equation is a polynomial equation of
degree 5. (See polynomial.)

QUOTIENT The quotient is the answer to a division prob-
lem. In the equation 33/3 � 11, the number 11 is the
quotient.
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R2 The R2 value for a multiple regression is a number that
indicates how well the regression explains the variance in
the dependent variable. R2 is always between 0 and 1. If it
is close to 1, the regression has explained a lot of the vari-
ance; if it is close to 0, the regression has not explained
very much. In the case of a simple regression, this is often
written r2, which is the square of the correlation coeffi-
cient between the independent variable and the dependent
variable. (See regression; multiple regression.)

RADIAN MEASURE Radian measure is a way to measure
angles that is often the most convenient for mathematical
purposes. The radian measure of an angle is found by mea-
suring the length of the intercepted arc and dividing it by
the radius of the circle. For example, the circumference of
a circle is 2pr, so a full circle (360 degrees) equals 2p radi-
ans. Also, 180 degrees equals p radians, and a right angle
(90 degrees) has a measure of p/2 radians. The radian
measure of an angle is unit-free (i.e., it does not matter
whether the radius of the circle is measured in inches,
meters, or miles). Radian measure is required when
trigonometric functions are used in calculus.

RADICAL The radical symbol is used to indicate the
taking of a root of a number. Thus means the qth root
of x, which is the number that, when used as a factor q
times, equals x: . Here q is called the index of
the radical. If no index is specified, then the square root is
meant. A radical always means to take the positive value.
For example, both y � 5 and y � 	5 satisfy y2 � 25, but

. (See root.)

RADICAND The radicand is the part of an expression that
is inside the radical sign. For example, in the expression

the expression (1 	 x2) is the radicand.21 	 x2

125 � 5

1 q1x 2q � x

q1x11 2
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RADIUS The radius of a circle is the distance from the cen-
ter of the circle to a point on the circle. The radius of a
sphere is the distance from the center of the sphere to a
point on the sphere. A line segment drawn from the cen-
ter of a circle to any point on the circumference is also
called a radius. The plural of “radius” is “radii.”

RANDOM VARIABLE A random variable is a variable
that takes on a particular value when a specified random
event occurs. For example, if you flip a coin three times
and X is the number of heads you toss, then X is a random
variable with the possible values 0, 1, 2, and 3. In this
case Pr(X � 0) � 1/8, Pr(X � 1) � 3/8, Pr(X � 2) � 3/8,
and Pr(X � 3) � 1/8.

If a random variable has only a discrete number of pos-
sible values, it is called a discrete random variable. The
probability function, or density function, for a discrete ran-
dom variable is a function such that, for each possible
value xi, the value of the function is f(xi)� Pr(X � xi). In
the three coin example, f(0) � 1/8, f(1) � 3/8, f(2) � 3/8,
and f(3) � 1/8.

For examples of discrete random variable distribu-
tions, see binomial distribution; Poisson distribution;
geometric distribution; hypergeometric distribution.

A continuous random variable is a random variable
that can have many possible values over a continuous
range. The density function of a continuous random vari-
able is a function such that the area under the curve
between two values gives the probability of being
between those two values. (See continuous random
variable.)

For some examples of distributions for continuous ran-
dom variables, see normal distribution; chi-square dis-
tribution; t-distribution; F-distribution.

RANGE (1) The range of a function is the set of all possi-
ble values for the output of the function. (See function.)
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(2) The range of a list of numbers is equal to the
largest value minus the smallest value. It is a measure of
the dispersion of the list—in other words, how spread out
the list is.

RANK The rank of a matrix is the number of linearly inde-
pendent rows it contains. The m 
 m matrix A will have
rank m if all of its rows are linearly independent, as will
be the case if det A � 0. (See linearly independent;
determinant.) The number of linearly independent
columns in a matrix is the same as the number of linearly
independent rows.

RATIO The ratio of two real numbers a and b is
a � b, or a/b. The ratio of a to b is sometimes written as
a : b. For example, the ratio of the number of sides in a
hexagon to the number of sides in a triangle is 6:3, which
is equal to 2:1.

RATIONAL NUMBER A rational number is a number
that can be expressed as the ratio of two integers. A
rational number can be written in the form p/q, where
p and q are both integers (q�0). A rational number can
be expressed either as a fraction, such as , or as a dec-
imal number, such as 0.2. A fraction written in decimal
form will be either a terminating decimal, such as

or , or a decimal that endlessly
repeats a particular pattern, such as 

o r
. If the decimal represen-

tation of a number goes on forever without repeating any
pattern, then that number is an irrational number.

RATIONAL ROOT THEOREM The rational root theo-
rem says that, if the polynomial equation

1
7 � 0.142857142857142857. . .

10
11 � 0.909090909090 . . . ,2

9 � 0.222222222. . . ,

1
3 � 0.333333 . . . ,

1
4 � 0.255

8 � 0.625

1
5



anx
n � an	1x

n	1 � an	2x
n	2

� . . . � a2x
2 � a1x � a0 � 0

where a0, a1, . . . an, are all integers, has any rational
roots, then each rational root can be expressed as a
fraction in which the numerator is a factor of a0 and the
denominator is a factor of an. This theorem sometimes
makes it easier to find the roots of complicated polyno-
mial equations, but it provides no help if there are no
rational roots to begin with. For example, suppose that
we are looking for the rational roots of the equation

x3 	 9x2 � 26x 	 24 � 0

In this case an � 1 and a0 � 24. Therefore the ratio-
nal roots, if any, must have a factor of 24 in the numera-
tor and 1 in the denominator. The factors of 24 are 1, 2,
3, 4, 6, 8, 12, 24. If we test all the possibilities, it turns
out that the three roots are 2, 3, and 4.

To show that this rule holds in the case where 
an � 1, and all the roots are integers, note that in factored
form the polynomial is:

(x 	 r1)(x 	 r2)(x 	 r3) 
 . . . 
 (x 	 rn)

where r1 to rn are the roots of the polynomial equation. If
you multiply this out, you will see that the last term
becomes the product of all the roots; therefore, the roots
will all be factors of a0.

RATIONALIZING THE DENOMINATOR The process
of rationalizing the denominator involves rewriting a
fraction in an equivalent form that does not have an irra-
tional number in the denominator. For example, the frac-
tion can be rationalized by multiplying the
numerator and denominator by .12: 1>12 � 12>21>12
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The fraction can be rationalized by mul-
tiplying the numerator and the denominator of the frac-
tion by 

RAY A ray is like half of a line: it has one endpoint, and
then goes off forever in a straight line. You can think of a
light ray from a star as being a ray, with the endpoint
located at the star.

REAL NUMBERS The set of real numbers is the set of all
numbers that can be represented by points on a number
line. (See figure 111.)

The set of real numbers includes all rational numbers
and all irrational numbers. Any real number can be
expressed as a decimal fraction, which will either terminate
or endlessly repeat a pattern (if the number is rational), or
continue endlessly with no pattern (if the number is
irrational).

Whenever the term number is used by itself, it is often
assumed that the real numbers are meant. The measure-
ment of a physical quantity, such as length, time, or
energy, will be a real number.

The set of real numbers is a subset of the set of com-
plex numbers, which includes the pure imaginary num-
bers plus combinations of real numbers and imaginary
numbers.

�
a 	 2b
a2 	 b

1

a � 2b 

a 	 2b
a 	 2b �

a 	 2b
a2 � a2b 	 a2b 	 b

a 	 1b:
1> 1a � 1b 2

Figure 111 Number line for real numbers



RECIPROCAL The reciprocal of a number a is equal to 1/a
(provided a � 0). For example, the reciprocal of 2 is ; the
reciprocal of 0.01 is 100, and the reciprocal of 1 is 1. The
reciprocal is the same as the multiplicative inverse.

RECTANGLE A rectangle is a quadrilateral with four 90°
angles. The opposite sides of a rectangle are parallel, so
the set of rectangles is a subset of the set of parallelo-
grams. A square has four 90° angles, so the set of squares
is a subset of the set of rectangles. The area of a rectangle
is the product of the lengths of any two adjacent sides. For
picture, see quadrilateral.

RECTANGULAR COORDINATES See Cartesian coor-
dinates.

RECURSION Recursion is the term for a definition that
refers to the object being defined. The use of a recursive
definition requires care to make sure that an endless loop
is not created. Here is an example of a recursive defini-
tion for the factorial function n!:

n! � n(n 	 1)!

(In words: “The factorial of n equals n times the factorial
of n 	 1.”) This definition leads to an endless loop. Here
is a better recursive definition that avoids the endless
loop problem:

If n > 0, then n! � n(n 	 1)!

If n � 0, then n! � 1

Here are the steps to use this definition to find 3!:

3! � 3 
 2!
Look up 2!

2! � 2 
 1!
Look up 1!

1! � 1 
 0!

1
2
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Look up 0!
0! � 1

Then 1! � 1 
 1
Then 2! � 2 
 1 � 2

Then 3! � 3 
 2 � 6
For an example of a geometric figure that is defined

using recursion, see fractal.

REFLECTION A reflection is a transformation in which
the transformed figure is the mirror image of the original
figure. The reflection is centered on a line called the axis
of symmetry. Here is how to find the reflection of a par-
ticular point. Draw from the point to the axis, the line per-
pendicular to the axis. Then the point on that line that is
the same distance from the axis as the original point, but
on the opposite side of the axis, is the reflection of the
original point. In other words, the axis of symmetry is the
perpendicular bisector of the line segment joining 
a point and its reflection. (See figure 112.)

REFLEXIVE PROPERTY The reflexive property of
equality is an axiom that states an obvious but useful
fact: x � x, for all x. That means that any number is equal
to itself.

Figure 112 Reflection



REGRESSION Regression is a statistical technique for
determining the relationship between quantities. In simple
regression, there is one independent variable (x) that is
assumed to have an effect on one other variable (the depen-
dent variable, y), according to the equation y � a � bx. It
is necessary to have several observations, with each obser-
vation containing a pair of values (one for each of the two
variables). The observations can be plotted on a two-dimen-
sional diagram (see figure 113), where the independent
variable, x, is measured along the horizontal axis and the
dependent variable, y, is measured along the vertical axis.

The regression procedure determines the line that best
fits the observations. The best-fit line is the line such that
the sum of the squares of the deviations of all of the
points from the line is at its minimum. The slope (b) of
the best-fit line is given by the equation

A bar over a quantity represents the average value of the
quantity. After the slope has been found, the vertical inter-
cept (a) of the line can be determined from the equation

There may or may not be a close relationship between
y and x. The r2 value for the regression is a number
between 0 and 1 that indicates how well the line summa-
rizes the pattern of the observations. In some cases the line
will fit the data points very well, and then the r2 value will
be close to 1. In other cases the data points cannot be well
summarized by a line, and the r2 value will be close to 0.
The value of r2 can be found from the formula:

r2 �
1xy 	 x # y 221x2 	 x2 2 1y2 	 y 2 2 �

1xy 	 x # y 22
Var1X 2Var1Y 2

a � y 	 bx

b �
xy 	 x # y
x2 	 x 2
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Figure 113 Regression



Also, the r2 value is the square of the correlation
coefficient.

For situations where there are several independent
variables, each having an effect on the dependent vari-
able, see multiple regression.

Here is a sample of a simple regression calculation.
We have four values for each of the variables x and y. (In
reality, this would be too few observations to make
reliable statistical generalizations, but to illustrate the
calculation it helps to work with a small number of
observations.)

x y
1 8
3 12
6 25
10 35

�
544

4
� 136

x 
 y �
1 
 8 � 3 
 12 � 6 
 25 � 10 
 35

4

sy � 2Var1Y 2 � 2514.5 	 202 � 10.7

y2 �
82 � 122 � 252 � 352

4
�

2,058

4
� 514.5

y �
8 � 12 � 25 � 35

4
�

80

4
� 20

sx � 2Var1X 2 � 236.5 	 52 � 3.391

x2 �
12 � 32 � 62 � 102

4
�

146

4
� 36.5

x �
1 � 3 � 6 � 10

4
�

20

4
� 5
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We can now use the regression equation to forecast the
value of y for a given value of x. Our equation tells us that
if x � 8, the forecasted value of y is 4.3478 � 3.1304 

8 � 29.3913.

Many calculators and computer software packages are
programmed to perform regression calculations.

Often there is a relationship between two quantities,
but the relationship cannot be represented as a line.
Sometimes it is possible to perform a transformation that
converts a nonlinear relationship into a linear relation-
ship. For example, if y � abx, then take the logarithm of
both sides:

log y � log a � x log b

Then perform a regression with x as the independent vari-
able and log y as the dependent variable. The resulting
slope will be log b and the intercept will be log a.

If the relation is y � axb, take the logarithm of both
sides:

log y � log a � b log x

In this case use log x as the independent variable, and the
resulting slope will be b.

If the equation for y includes both x and x2, use mul-
tiple regression with x and x2 as independent variables.

REGULAR POLYGON A regular polygon is a polygon
in which all the angles and all the sides are equal. For

r2 � 0.99212 � 0.9842

correlation � r �
136 	 5 
 20

3.391 
 10.7
� 0.9921

intercept � a � 20 	 3.1304 
 5 � 4.3478

slope � b �
136 	 5 
 20

36.5 	 52 � 3.1304
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example, a regular triangle is an equilateral triangle with
three 60° angles. A regular quadrilateral is a square. A reg-
ular hexagon has six 120° angles.

REGULAR POLYHEDRON A regular polyhedron is a
polyhedron where all faces are congruent regular polygons.
There are only five possible types. (See polyhedron.)

REJECTION REGION The rejection region consists of
those values of the test statistic for which the null
hypothesis will be rejected. This is also called the critical
region. (See hypothesis testing.)

RELATION A relation is a set of ordered pairs. 
The first entry in the ordered pair can be called x, and the
second entry can be called y. For example, {(1, 0), (1, 1),
(1, 	1), (	1, 0)} is an example of a relation. A function
is also an example of a relation. A function has the spe-
cial property that, for each value of x, there is a unique
value of y. This property does not have to hold true for a
relation. The equation of a circle x2 � y2 � r2 defines a
relation between x and y, but this relation is not a func-
tion because for every value of x there are two values of

and .

RELATIVE ERROR The relative error of a measurement
or approximation is the difference between the true value
and the approximate value, divided by the true value. For
example, a 1-meter error in a measurement of a 1-kilometer
distance has a relative error of only 0.001; but a 1-meter
error in a measurement of a 10-meter distance has a rel-
ative error of 0.1.

RELATIVE EXTREMA A relative extrema is a local
maximum or local minimum point. It is higher (or
lower) than the points around it, but it is not necessarily
the highest point a particular curve reaches.

	2r2 	 x2y:2r2 	 x2
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REMAINDER In the division problem 9 � 4, the quotient
is 2 with a remainder of 1. In general, if m � nq � r
(where m, n, q, and r are natural numbers and r � n),
then the division problem m/n has the quotient q and the
remainder r.

REMAINDER THEOREM The remainder theorem states
that if y � f(x) is a polynomial, then the remainder from
the division f(x)/(x 	 a) will equal f(a). If (x 	 a) is a fac-
tor of f(x), then the remainder will be zero, and f(a) will be
zero. In general, the polynomial division can be written:

where b is the remainder. Multiply both sides by (x 	 a):

f(x) � g(x)(x 	 a) � b

When x � a, then this equation simplifies to:

f(a) � b

(Note: we don’t need to determine the quotient polyno-
mial g(x) in order to prove the theorem.)

REPEATING DECIMAL A repeating decimal is a
decimal fraction in which the digits endlessly repeat 
a pattern, such as or 

. For contrast, see terminat-
ing decimal.

RESIDUAL If (xi, yi) represents one observation used in a
regression calculation, and y � ax � b is the equation of
the regression line, then the residual for this observation
is yi 	 (axi � b). It is the vertical distance between the
point and the regression line, or the difference between
the actual value of y at that point and the value of y that
is predicted by the regression line.

14285714. . .0.2857142857

2
7 �2

9 � 0.2222222. . .

f1x 2
x 	 a

� g1x 2 �
b
x 	 a
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RESULTANT The resultant is the vector that results from
the addition of two or more vectors. For illustration, see
vector.

REVERSE POLISH NOTATION Reverse Polish notation
is the same as Polish notation, except written in reverse
order: operators come after operands.

RHOMBUS A rhombus is a quadrilateral with four equal
sides. A square is one example of a rhombus, but in gen-
eral a rhombus will look like a square that has been bent
out of shape. (See figure 114.)

RIEMANN Georg Friedrich Bernhard Riemann (1826 to
1866) was a German mathematician who developed a
version of non-Euclidian geometry in which there are no
parallel lines. This concept was used by Einstein in the
development of relativity theory. He also made many
other contributions in number theory and analysis.

RIGHT ANGLE A right angle is an angle that measures
90° (p/2 radians). It is the type of angle that makes up a
square corner. (See angle.)

RIGHT CIRCULAR CONE A right circular cone is a cone
whose base is a circle located so that the line connecting
the center of the circle to the vertex of the cone is perpen-
dicular to the plane containing the circle. (See cone.)

RIGHT CIRCULAR CYLINDER A right circular cylin-
der is a cylinder whose bases are circles and whose axis
is perpendicular to the planes containing the two bases.
(See cylinder.)
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RIGHT TRIANGLE A right triangle is a triangle that con-
tains one right angle. The side opposite the right angle is
called the hypotenuse; the other two sides are called the
legs. Since the sum of the three angles of a triangle is 180°,
no triangle can contain more than one right angle. The
Pythagorean theorem expresses a relationship between the
three sides of a right triangle:

c2 � a2 � b2

where a and b are the lengths of the two legs, and c is the
length of the hypotenuse.

ROOT
(1) The root of an equation is the same as a solution

to that equation. For example, the statement that a qua-
dratic equation has two roots means that it has two
solutions.

(2) The process of taking a root of a number is the
opposite of raising the number to a power. The square root
of a number x (written as ) is the number that, when
raised to the second power, gives x:

The symbol is called the radical symbol. A positive
number has two square roots (one positive and one neg-
ative), but the radical symbol always means to take the
positive square root.

Some examples of square roots are:

A small number in front of the radical (called the
index of the radical) is used to indicate that a root other
than the square root is to be taken. For example is23 x

216 � 4, 225 � 5, 236 � 6

21 � 1, 24 � 2, 29 � 3,

1
11x 22 � x

1x
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the cube root of x, defined so that . Examples
of other roots are:

Roots can also be expressed as fractional exponents:

(See exponent.)

ROTATION A rotation of a Cartesian coordinate system
occurs when the orientation of the axes is changed but the
origin is kept fixed. In figure 115 the coordinate axes x�
and y� (x-prime and y-prime) are formed by rotating the
original axes, x and y, by an angle u. The main reason for
doing this is that sometimes the equation for a particular
figure will be much simpler in the new coordinate system
than it was in the old one.

q2x � x1>q
23 8 � 2, 23 27 � 3, 25 32 � 2, 24 10,000 � 10

123 x 23 � x
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We need to find an expression for the new coordinates in
terms of the old coordinates. Let # and f be as shown in
figure 115. Then # � f	 u.

From the definition of the trigonometric functions:

y� � r sin #, x� � r cos #

Using the formula for the sine and cosine of a differ-
ence:

sin # � sin f cos u 	 cos f sin u

cos # � cos f cos u � sin f sin u

Substituting:

y� � r sin f cos u 	 r cos f sin u

x� � r cos f cos u � r sin f sin u

Since y � r sin f and x � r cos f, we can write

y� � y cos u 	 x sin u

x� � x cos u � y sin u

The last two equations tell us how to transform any 
(x, y) pair into a new (x�, y�) pair. We can also derive the
opposite transformation:

y � y� cos u � x� sin u

x � x� cos u 	 y� sin u

Coordinate rotation helps considerably when we try to
make a graph of the two-unknown quadratic equation

Ax2 � B xy � Cy2 � Dx � Ey � F � 0

The problem is caused by the B xy term. If that term
weren’t present, the equation could be graphed as a conic
section. Therefore what we would like to do is to choose
some angle of rotation u so that the equation written in
the new coordinates will not have any x� y� term. We can
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use the rotation transformation to find out what the equa-
tion will be in the new coordinate system:

x � x� cos u 	 y� sin u

y � y� cos u � x� sin u

xy � x� y� cos2 u � x�2 sin u cos u
	 y�2 sin u cos u 	 y� x� sin2 u

x2 � x�2 cos2 u 	 2x� y� cos u sin u � y�2 sin2 u

y2 � y�2 cos2 u � 2x� y� cos u sin u � x�2 sin2 u

After we have combined all these terms, the equation
becomes

x�2[A cos2 u � C sin2 u � B sin u cos u]
� x�[D cos u � E sin u]

� y�2[A sin2 u � C cos2 u 	 B sin u cos u]
� y�[	D sin u � E cos u]

� x� y�[	2A cos u sin u � 2C cos u sin u
� B cos2 u 	 B sin2 u] � F � 0

To get rid of the x� y� term, we need to choose u so that

0 � 2 cos u sin u(C 	 A) � B(cos2 u 	 sin2 u)

0 � (C 	 A) sin 2u � B cos 2u

For an example of a rotation, consider the equation
xy � 1. Here, we have B � 1, F � 	1, and A � C � D �
E � 0. To choose u so as to eliminate the cross term, we
must have u � arctan(1/0), or u � p/4 � 45°.1

2

u �
1

2
arctan

B

A 	 C

tan2u �
B

A 	 C

sin2u

cos2u
�

B

A 	 C
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To find the equation in terms of x� and y�, use the rota-
tion transformation:

x � 2	1/2(x� 	 y�), y � 2	1/2(y� � x�)

(Use the fact that sin p/4 � cos p/4 � 2	1/2.) The
rotated equation becomes:

which is the standard form for the equation of a hyper-
bola. (See figure 116.)

In three-dimensional space, here is the formula for
transforming coordinates if two rotations are performed:
first, rotate the x-axis and y-axis by an angle u, leaving
the z-axis unchanged; and second, rotating the x-axis and
z-axis by an angle f, leaving the y-axis unchanged:

x� � x cos u cos f � y sin u cos f � z sin f

y� � 	x sin u � y cos u

z� � 	x cos u sin f 	 y sin u sin f � z cos f

1 �
1

2
x¿2 	

1

2
y¿2
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ROTATIONAL SYMMETRY A figure has rotational sym-
metry about a point if it can be rotated about that point by
a certain angle and the new rotated figure is the same as
the original figure. For example, a circle has rotational
symmetry about its center for any angle of rotation. A
square has fourfold rotational symmetry about its center
because it can be rotated by 90 degrees, 180 degrees, 270
degrees, or 360 degrees. An equilateral triangle has three-
fold rotational symmetry.

ROUNDING Rounding provides a way of approximating a
number in a form with fewer digits. A number can be
rounded to the nearest integer, or it can be rounded to a
specified number of decimal places, or it can be rounded to
the nearest number that is a multiple of a power of 10. For
example, 3.52 rounded to the nearest integer is 4; 6.37
rounded to the nearest integer is 6. If 3.52 is rounded to one
decimal place, the result is 3.5: if 6.37 is rounded to one
decimal place, the result is 6.4. The number 343,619
becomes 344,000 when it is rounded to the nearest thou-
sand. It is often helpful to present the final result of a cal-
culation in rounded form, but the results of intermediate
calculations should not be rounded because rounding could
lead to an accumulation of errors.

RULER POSTULATE The ruler postulate states that a line
can be associated with a real number scale. This postulate
makes it possible to measure distances along a line, but the
value of the distance depends on the units you use. For
example, a ruler scaled with inches will give different
numerical values for distance than will a ruler scaled with
centimeters.
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S

SADDLE POINT A saddle point is a critical point that is not
a maximum or minimum. For example, if f(x, y) � x2 	 y2,
then both first partial derivatives are zero at the point (0,0).
The curve is a minimum point if you cut a cross section
along the x-axis, but it is a maximum point if you cut a cross
section along the y-axis. Therefore, it is a saddle point. To
see where the name comes from, imagine you are an ant in
the middle of a saddle on a horse’s back. If you look toward
the front or back of the horse, you will seem to be in the
bottom of a valley–that is, a minimum point. However, if
you look in the direction of the sides of the horse, you will
seem to be at the top of a hill–a maximum. (See second-
order conditions.)

SAMPLE A sample is a group of items chosen from a popu-
lation. The characteristics of the sample are used to esti-
mate the characteristics of the population. (See sampling;
statistical inference.)

SAMPLE SPACE The sample space (or probability space)
is the set of outcomes for a probability experiment. (See
probability.)

SAMPLING To sample j items from a population of n
objects with replacement means to choose an item, then
replace the item, and repeat the process j times. Flipping
a coin 1 time is equivalent to sampling with replacement
from a population of size 2. The fact that you’ve flipped
heads once does not mean that you cannot flip heads the
next time. There are nj possible ways of selecting a sam-
ple of size j from a population of size n with replacement.

To sample j items from a population of n objects with-
out replacement means to select an item, and then select
another item from the remaining n 	 1 objects, and repeat
the process j times. Dealing a poker hand is an example of
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sampling without replacement from a population of 52
objects. After you’ve dealt the first card, you can’t deal that
card again, so there are 51 possibilities for the second card.
There are n!/(n 	 j)! ways of selecting j items from a pop-
ulation of size n without replacement.

The concept of the two different kinds of sampling pro-
vides the answer to the birthday problem in probability.
Suppose that you have a group of s people. What is the
probability that no two people in the group will have the
same birthday? The number of possible ways of distribut-
ing the birthdays among the s people is 365s. (That is the
same as sampling s times from a population of size 365
with replacement.) To find the number of ways of distrib-
uting the birthdays so that nobody has the same birthday,
you have to find out how many ways there are of sampling
s items from a population of 365 without replacement,
which is 365!/(365 	 s)!. The probability that no two peo-
ple will have the same birthday is therefore

For example, if s � 3, the formula gives the probability

The table gives the value of this probability for differ-
ent values of s.

s Probability
2 .997
3 .992
5 .973
10 .883
15 .747
20 .589
30 .294
50 .030

365 
 364 
 363

365 
 365 
 365
� .992

365!> 1365 	 s 2!
365s
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This result says that in a group of 50 people there is
only a 3 percent chance that they will all have different
birthdays.

(See also combinations; permutations.)

SCALAR A scalar is a quantity that has size but not direc-
tion. For example, real numbers are scalars. By contrast,
a vector has both size and direction.

SCALAR PRODUCT The scalar product (or dot product)
of two vectors (x1, y1, z1) and (x2, y2, z2) is defined to be
(x1x2 � y1y2 � z1z2) This quantity is a number (a scalar)
rather than a vector. (See dot product.)

SCALENE TRIANGLE A scalene triangle is a triangle in
which no two sides have the same length.
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Figure 117 Scatter plot

SCATTER PLOT A scatter plot illustrates the relation
between two quantities. For example, to illustrate the
relation between height and weight for a group of peo-
ple, obtain observations of their heights and weights.
The observations must come in pairs (one observation of



height and one of weight for each person). Measure one
quantity along the horizontal axis and one on the vertical
axis, and represent each person by a dot. (See figure 117.)
(See also regression.)

SCIENTIFIC NOTATION Scientific notation is a short-
hand way of writing very large or very small numbers. A
number expressed in scientific notation is expressed as a
number between 1 and 10 multiplied by a power of 10.
For example, the number of meters in a light year is about
9,460,000,000,000,000. It is much easier to write this
number as 9.46 
 1015. The wavelength of red light is
0.0000007 meters, which can be written in scientific
notation as 7 
 10	7 meter. Computers use a form of
scientific notation for big numbers, as do some pocket
calculators.

SECANT (1) A secant line is a line that intersects a circle, or
some other curve, in two places. Lines AB and CD in fig-
ure 118 are both secant lines. For contrast, see tangent.

(2) The secant function is defined as the reciprocal of the
cosine function: sec u� 1/ cos u. (See trigonometry.)
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Figure 118 Secant lines

SECOND A second is a unit of measure of an angle equal
to 1/60 of a minute (or 1/3600 of a degree).

SECOND DERIVATIVE TEST If the first derivative of a
differentiable function f(x) is zero at a point x0, then the
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point has a horizontal tangent at that point. The second
derivative test may be able to determine if the point is a
local maximum, local minimum, or neither. If the second
derivative is positive, the curve is concave up at this
point, so the point is a minimum. If the second derivative
is negative, the curve is concave down at this point, so
the point is a maximum.

If the second derivative is zero, then you can’t tell
from this test. For example, y � x4, y � 	x4, and y � x3

all have both first and second derivative equal to zero 
at x � 0, but y � x4 has a minimum, y � 	x4 has a maxi-
mum, and y � x3 has a point with a horizontal tangent that
is neither a maximum nor a minimum. (See figure 119.)

(See second derivative; second-order conditions.)

SECOND-ORDER CONDITIONS The second-order
conditions are used to distinguish whether a critical point
is a maximum or a minimum. To see the case of one vari-
able, see extremum. With two variables, it is more com-
plicated. Let f(x, y) be a function with two variables, and
suppose that both partial derivatives (0f / 0x) and (0f / 0y)
are zero at a point (x1, y1). Use the following notation for
the three second-order derivatives:

Evaluate each of these at the point (x1, y1). There are
three cases to consider:

(1) If fxx fyy � (fxy)
2, there is a local maximum or min-

imum. To tell the difference: If fxx and fyy are positive, you
have a local minimum. This means that a cross-section of

fxy �
02f
0x0y

fyy �
02f
0y2

fxx �
02f
0x2
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the curve will be concave upward. If fxx and fyy are nega-
tive, you have a local maximum.

(2) If (fxy)
2 � fxx fyy, there is a saddle point.

(3) If (fxy)
2 � fxx fyy you cannot tell from this test

whether you have a maximum, minimum, or saddle
point.

SECTOR A sector of a circle is a region bounded by two
radii of the circle and by the arc of the circle whose end-
points lie on those radii. In other words, a sector is shaped
like a pie slice. (See figure 120.) If r is the radius of the
circle and u is the angle between the two radii (measured
in radians), then the area of the sector is .

SEGMENT (1) The segment AB is the union of point A and
point B and all points between them. (See between.) A
segment is like a piece of a straight line. A segment has
two endpoints, whereas a line goes off to infinity in two
directions.

(2) A segment of a circle is an area bounded by an arc
and the chord that connects the two endpoints of the arc.

SEMILOG GRAPH PAPER Semilog graph paper has a
logarithmic scale on one axis, and a uniform scale on the
other axis. It is useful for graphing equations like y � ckx.

SEMIMAJOR AXIS The semimajor axis of an ellipse is
equal to one half of the longest distance across the
ellipse.

1
2 ur

2
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SEMIMINOR AXIS The semiminor axis of an ellipse is
equal to one half of the shortest distance across the
ellipse.

SENTENCE See logic.

SEQUENCE A sequence is a set of numbers in which the
numbers have a prescribed order. Some common examples
of sequences are arithmetic sequences (where the differ-
ence between successive terms is constant) and geometric
sequences (where the ratio between successive terms is
constant). If all the terms in a sequence are to be added, it
is called a series.

SERIES A series is the indicated sum of a sequence of num-
bers. Examples of series are as follows:

1 � 3 � 5 � 7 � 9 � 11 � 13

a � (a � b) � (a � 2b) � (a � 3b)
� � [a � (n 	 1)b]

2 � 4 � 8 � 16 � 32 � 64

a � ar � ar2 � ar3 � � ar n	1

The first two series are examples of arithmetic series.
The last two series are examples of geometric series. For
other important types of series, see Taylor series; power
series. (See also mathematical induction.)

SET A set is a well-defined group of objects. For example,
the set of all natural numbers less than 11 consists of 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Sets can be defined by list-
ing all their elements within braces, such as {New York
City, Los Angeles, Chicago}, or by giving a description
that determines what is in the set and what is not: “An
ellipse is the set of all points in a plane such that the sum
of the distances to two fixed points in the plane is a con-
stant.” Sets can also be described by set builder notation.

# # #

# # #
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For example, {x | a � x � b} means values of x between
a and b. The relationship between sets can be indicated
on a type of diagram known as a Venn diagram. (See fig-
ure 121.) (See also intersection; union.)

SEXAGESIMAL SYSTEM The basic unit in the sexagesi-
mal system for measuring angles is the degree. If you place
a one degree (1°) angle in the center of a circle, the angle
will cut across 1/360 of the circumference of the circle.

SIGMA (1) The Greek capital letter sigma (
) is used to
indicate summation. (See summation notation.)

(2) The lower case letter sigma (�) is used to indicate
standard deviation.

SIGN The sign of a number is the symbol that tells whether
the number is positive (�) or negative (	).

SIGNIFICANT DIGITS The number of significant digits
expressed in a measurement indicates how precise that
measurement is. A nonzero digit is always a significant
digit.
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Trailing zeros to the left of the decimal point are not
significant if there are no digits to the right of the deci-
mal point. For example, the number 243,000,000 con-
tains three significant digits; this means that the true
value of the measurement is between 242,500,000 and
243,500,000.

Trailing zeros to the right of the decimal point are sig-
nificant. For example, the number 2.1300 has five signif-
icant digits; this means that the true value is between
2.12995 and 2.13005.

Do not include more significant digits in the result of
a calculation than were present in the original measure-
ment. For example, if you calculate 243,000,000/7, do
not express the result as 34,714,286, since you do not
have eight significant digits to work from. Instead,
express the result as 34,700,000, which, like the original
measurement, has three significant digits. (However, if a
calculation involves several steps, you should retain more
digits during the intermediate stages.)

SIMILAR Two polygons are similar if they have exactly the
same shape, but different sizes. (See figure 122.) For
example, suppose you look at a color slide showing a pic-
ture of a house shaped like a rectangle. If you put the
slide into a projector, you will then see on the screen a
much bigger image of the same rectangle. These two rec-
tangles are similar. Each angle in the little polygon will
be equal to a corresponding angle in the big polygon.
Each side on the little polygon will have a corresponding
side on the big polygon. If one side of the little polygon
is half as big as its corresponding side on the big poly-
gon, then all the sides on the little polygon will be half as
big as the corresponding sides on the big polygon. For
polygons that have the same size, as well as the same
shape, see congruent.
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Figure 122

SIMPLEX METHOD The simplex method, developed by
mathematician George Dantzig, is a procedure for solv-
ing linear programming problems. (See linear program-
ming.) The method starts by identifying a point that is
one of the basic feasible solutions to the problem. (See
basic feasible solution.) Then it provides a procedure to
test whether that point is the optimal solution. If it is not,
then it provides a procedure for moving to a new basic
feasible solution that will have a better value for the
objective function. (If you are trying to maximize the
objective function, then you want to move to a point with
a larger objective function value.) The procedure
described above is repeated until the optimal solution has
been found. In practice the calculations are usually per-
formed by a computer.



SIMULTANEOUS EQUATIONS A system of simultane-
ous equations is a group of equations that must all be true
at the same time. If there are more unknowns then there
are equations, there will usually be many possible solu-
tions. For example, in the two-unknown, one-equation
system x � y � 5, there will be an infinite number of solu-
tions, all lying along a line. If there are more equations
than there are unknowns, there will often be contradictory
equations, which means that no solution is possible. For
example, the two-equation, one-unknown system

2x � 10

3x � 10

clearly has no solution that will satisfy both equations
simultaneously. For there to be a unique solution to a sys-
tem, there must be exactly as many distinct equations as
there are unknowns. For example, the two-equation, two-
unknown system

3x � 2y � 33

	x � y � 4

has the unique solution x � 5, y � 9.
When counting equations, though, you have to be

careful to avoid counting equations that are redundant.
For example, if you look closely at the three-equation,
three-unknown system

2x � y � 3z � 9

4x � 9y � 0.5z � 1

2x � y � 3z � 9

you will see that the first equation and the last equation
are exactly the same. This means that there really are
only two distinct equations. Equations can be redundant
even if they are not exactly the same. If one equation can
be written as a multiple of another equation, then the two
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equations are equivalent and therefore the second equa-
tion is redundant. For example, these two equations:

x � y � z � 1

2x � 2y � 2z � 2

say exactly the same thing.
Also, if an equation can be written as a linear combi-

nation of some of the other equations in the system, then
it is redundant.

A linear equation is an equation that does not have any
unknowns raised to any power (other than 1). Systems of
simultaneous nonlinear equations can be very difficult to
solve, but there are standard ways for solving simultaneous
equations if all the equations are linear.

Simple systems can be solved by the method of sub-
stitution. For example, to solve the system

2x � y � 9

x � 3y � 17

first solve the second equation for x: x � 17 	 3y. Now,
substitute this expression for x back into the first equa-
tion, and the result is a one-unknown equation: 2(17 	
3y) � y � 9. That equation can be solved to find y � 5.
The value of x can be found by substituting this value for
y into the second equation: x � 2. The substitution
method is often the simplest for two-equation systems,
but it can be very cumbersome for longer systems.

If the simultaneous equation is written in matrix form:
Ax � b, where A is an n 
 n matrix of known coeffi-
cients, x is an n 
 1 matrix of unknowns, and b is an n 

1 matrix of known constants, then the solution can be
found by finding the inverse matrix A	1:

x � A	1b

However, if the determinant of A is zero, then the
inverse of A does not exist, which means either that the
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equations contradict each other (meaning that there is no
solution), or that there is an infinite number of solutions.
(See matrix; matrix multiplication; Cramer’s rule;
Gauss-Jordan elimination.)

A two-equation system can also be solved by graphing.
A linear equation in two unknowns defines a line. The
solution to a two-equation system occurs at the point of
intersection between the two lines (figure 123). If the two
equations are redundant, then they define the same line, so
there is an infinite number of solutions (figure 124). If the
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two equations are contradictory, then their graphs will be
parallel lines, meaning that there will be no intersection
and no solution (figure 125).

SINE The sine of angle u that occurs in a right triangle is
defined to be the length of the opposite side divided by
the length of the hypotenuse. (See figure 126.)

For a general angle in standard position (that is, its
vertex is at the origin and its initial side is along the
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x axis), pick any point on the terminal side of the angle,
and then sin u � y/r. (See figure 127.)

The table gives some special values of sin u. (See fig-
ure 128.)

u (degrees) u (radians) sin u
0 0 0
30 p/6 1/2

45 p/4

60 p/3
90 p/2 1
180 p 0
270 3p/2 	1
360 2p 0

23>21>22
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For most other values of u there is no simple algebraic
expression for sin u. If u is measured in radians, then we
can find the value for sin u from the series

(See Taylor series.)
Figure 129 shows a graph of the sine function (x is

measured in radians). The value of sin x is always
between 	1 and 1, and the function is periodic because

sin x � sin(x � 2p) � sin(x � 4p) � sin(x � 6p)

and so on.

sinu � u 	
u3

3!
�
u5

5!
	
u7

7!
� # # #

Figure 128



Because the graph of a sine wave oscillates smoothly
back and forth, the sine function describes wave patterns,
harmonic motion, and voltage in alternating-current
circuits.

To learn how the sine function relates to the other
trigonometric functions, see trigonometry.

SINH The abbreviation for hyperbolic sine, sinh, is defined
by:

(See hyperbolic functions.)

SKEW Two lines are skew if they are not in the same plane.
Any pair of lines will either intersect, be parallel, or be
skew.

SLACK VARIABLE A slack variable is a variable that is
added to a linear programming problem that measures
the excess capacity associated with a constraint. (See lin-
ear programming.)

sinh x �
1

2
1ex 	 e	x 2
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SLANT HEIGHT The slant height of a right circular cone
is the distance from the vertex to a point on the base circle.

SLIDE RULE A slide rule is a calculating device consisting
of two sliding logarithmic scales. Since log(ab) � log a �
log b, a slide rule can be used to convert a multiplication
problem into an addition problem, which can be per-
formed by sliding one scale along the other. (See figure
130.) Slide rules were commonly used before pocket cal-
culators became available.

SLOPE The slope of a line is a number that measures how
steep the line is. A horizontal line has a slope of zero.
As a line approaches being a vertical line, its slope
approaches infinity. The slope of a line is defined to be
�y/�x, where �y is the change in the vertical coordinate
and �x is the change in the horizontal coordinate between
any two points on the line. (See figure 131.) The slope of
the line y � mx � b is m. To find the slope of a curve, see
calculus.

SLOPE FIELD A slope field diagram illustrates the solu-
tions to a differential equation. Choose an array of points
(x, y). At each point, calculate dy/dx (using the equation
you’re trying to solve). On the graph, draw a short line
segment at that point whose slope equals the value of
dy/dx at that point. The resulting patterns will give you a
visual clue about the nature of the solution.

Figure 132 shows a slope field for the differential
equation dy/dx � 	x /y.
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SLOPE-INTERCEPT EQUATION OF A LINE The equa-
tion of a line can be written y � mx � b, where m is the
slope and b is the y-intercept.

SNELL’S LAW When a light ray passes from one medium
to another, then it will be bent by an amount given by
Snell’s law. For every medium through which light trav-
els, it is possible to define a quantity known as the index
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of refraction, which is a measure of how much the speed
of light is slowed down in that medium. The index of
refraction for a pure vacuum is 1; the index of refraction
of air is very close to 1. The index of refraction of water
is 1.33.

Suppose that a light ray is passing from medium 1, with
index of refraction n1, into medium 2, with index of refrac-
tion n2. Let A1 by the angle of incidence (that is, the angle
between the light ray and the normal line in the first
medium) and let A2 be the angle of refraction (the angle
between the light ray and the normal in the second
medium). (See figure 133.) Then Snell’s law states that

n1 sin A1 � n2 sin A2

For example, if a light ray passes from air to water at
an angle of incidence of 30°, then the angle of refraction
will be

If you hold a stick in water, it will appear to be bent.
(See also optics.)

arcsin a 1 # sin30°
1.33

b � arcsin.376 � 22.1°
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SOLID A solid is a three-dimensional geometric figure that
completely encloses a volume of space. A cereal box is an
example of a solid, but a cereal bowl is not. For examples
of solids, see prism; sphere; cylinder; cone; pyramid;
and polyhedron.

SOLUTION If the value x1 makes an equation involving x
true, then x1 is a solution of the equation. For example,
the value 4 is a solution to the equation x � 5 � 9, and
	3 and 3 are both solutions of the equation x2 	 9 � 0.
The set of all solutions to an equation is called the solu-
tion set.

If you have more than one equation with more than
one unknown, see simultaneous equations.

SOLUTION SET The solution set for an equation consists
of all of the values of the unknowns that make the equa-
tion true.

SOLVE To solve an equation means to find the solutions for
the equation (i.e., to find the values of the unknowns that
make the equation true).

SOLVING TRIANGLES The following rules tell how to
solve for the unknown parts of a triangle:

1. If you know two angles of a triangle, you can eas-
ily find the third angle (since the sum of the three angles
must be 180°).

2. If you know the three angles of a triangle but do not
know the length of any of the sides, you can determine
the shape of the triangle, but you have no idea about its
size.

3. If you know the length of two sides (a and b) and
the size of the angle between those two sides (C ), then
you can solve for the third side (c) by using the law of
cosines:

c2 � a2 � b2 	 2ab cos C
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4. If you know the length of one side (a) and the two
angles next to that side (B and C), you can find the third
angle (A � 180° 	 B 	 C), then use the law of sines to
find the remaining sides:

b � a sin B/ sin A

c � a sin C/ sin A

5. If you know the length of the three sides, then use the
law of cosines to find the cosine of the angles:

You may find similar expressions for cos A and cos B.
6. If you know the length of two sides (b and c) and the

size of one angle other than the one between those two
sides, there are three possibilities. Suppose you know
angle B. Then use the law of sines:

—If c sin B/b is less than 1, then there are two possi-
ble values for C, one obtuse and one acute, and there are
two triangles that satisfy the given specifications. This is
called the ambiguous case.

—If c sin B/b � 1, then C is a right angle, and there
is only one triangle that satisfies the given specifications.

—If c sin B/b is greater than 1, there is no triangle that
satisfies the given specifications (since sin C cannot be
greater than 1).

SPEED The speed of an object is the magnitude of its veloc-
ity. (See velocity.)

SPHERE A sphere is the set of all points in three-
dimensional space that are a fixed distance from a given
point (called the center). Some obvious examples of

sinC �
csinB
b

cosC �
a2 � b2 	 c2

2ab
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spheres include basketballs, baseballs, tennis balls, and
(almost) the Earth. The distance from the center to any
point on the sphere is called the radius. The distance across
the sphere through the center is called the diameter.

The intersection between a sphere and a plane is a cir-
cle. The intersection between a sphere and a plane pass-
ing through the center is called a great circle. A great
circle is larger than any other possible circle formed by
intersecting the sphere by a plane. The shortest distance
along the sphere between two points on the sphere is the
path formed by the great circle that connects those two
points. (See spherical trigonometry.)

The circumference of a great circle is also known as
the circumference of the sphere. The circumference of
the Earth is about 24,900 miles. The volume of a sphere
is , where r is the radius. (See volume, figure of rev-
olution.) The surface area of a sphere is 4pr2. (See sur-
face area, figure of revolution.)

SPHERICAL TRIGONOMETRY Spherical trigonometry
is the study of triangles located on the surface of a sphere.
(By contrast, ordinary trigonometry is concerned with tri-
angles located on a plane.) Spherical trigonometry has
many applications involving navigating along the spheri-
cal surface of the earth.

Like a plane triangle, a spherical triangle has three
vertices and three sides. However, unlike a plane triangle,
the sides are not straight lines; instead, each side is a
great circle path connecting two of the vertices. Since
each side is an arc of a circle, its size can be expressed in
degree measure or radian measure. There is a dihedral
angle at each vertex, formed by the two planes contain-
ing the great circles representing the two sides that meet
at that vertex. It is customary to use capital letters to rep-
resent the angles in the triangle, and small letters to rep-
resent the degree measure of the three sides. Side a is

4
3pr

3
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opposite angle A, side b is opposite angle B, and side c is
opposite angle C. (See figure 134.)

The three angles in a spherical triangle add up to more
than 180°. It is even possible to have a spherical triangle
with three right angles. (For example, consider a spherical
triangle with one vertex at the north pole, another vertex on
the equator at latitude � 0, longitude � 0, and the other
vertex along the equator at latitude � 0, longitude � 90°.)
However, a small spherical triangle will be similar to a
plane triangle, and its three angles will add up to only
slightly more than 180 degrees.

Consider a spherical right triangle, where C is the
right angle. These formulas apply:

Spherical right triangle:

cos c � cos a cos b

cos c � ctn A ctn B

Formulas for angle A Formulas for angle B

cosB �
tana
tanc

cosA �
tanb
tanc

sinB �
sinb
sinc

sinA �
sina
sinc
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The following formulas apply for all spherical
triangles:

Law of Sines for Spherical Triangles

Law of Cosines for Sides for Spherical Triangles:

cos c � cos a cos b � sin a sin b cos C

Law of Cosines for Angles for Spherical Triangles:

cos C � 	 cos A cos B � sin A sin B cos c

For example, suppose you need to calculate the short-
est possible distance along the surface of the Earth
between point 1 (longitude lon1, latitude lat1) and point 2
(coordinates lon2, lat2.). Set up the spherical triangle with
the north pole as one vertex, and these two points as the
other vertices. Then the three sides of the spherical trian-
gle are:

s1 � 90° 	 lat1
s2 � 90° 	 lat2

d � the distance between the two points along the great
circle route—that is, the result we are looking for. Angle D
is the difference in longitude between the two points:

D � lon2 	 lon1

(See figure 135.)
From the law of cosines for sides:

cos d � cos s1 cos s2 � sin s1 sin s2 cos D

sina
sinA

�
sinb
sinB

�
sinc
sinC

sinB �
cosA
cosa

sinA �
cosB
cosb

tanB �
tanb
sina

tanA �
tana
sinb
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If we measure side d in radians, the distance is rd,
where r is the radius of the Earth (6375 kilometers). Then
we have this formula:

distance � r arccos[(sin lat1 sin lat2)
� (cos lat1 cos lat2 cos D)]

For example, if point 1 is at longitude 205°, latitude
20°, and point 2 is at longitude 239° and latitude 32°, the
distance between them is:

6375 arccos[sin 20° sin 32° � cos 20° cos 32° cos 34°]
� 6375 arccos .8419
� 6375 
 .5700 � 3634 kilometers

SPHEROID A spheroid is similar to a sphere but is length-
ened or shortened in one dimension. (See ellipsoid; pro-
late spheroid; oblate spheroid.)

SPIRAL The curve r � au, graphed in polar coordinates,
has a spiral shape. (See figure 136.)

SQUARE (1) A square is a quadrilateral with four 90° angles
and four equal sides. Chessboards are made up of 64
squares. (See quadrilateral.)
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(2) The square of a number is found by multiplying
that number by itself. For example, 4 squared equals 4
times 4, which is 16. If a square is formed with sides a
units long, then the area of that square is a squared (writ-
ten as a2).

SQUARE MATRIX A square matrix has equal number of
rows and columns. (See matrix; determinant.)

SQUARE ROOT The square root of a number x (written
as ) is the number that, when multiplied by itself,
gives x:

For example, because 6 
 6 � 36. Any pos-
itive number has two square roots: one positive and one
negative. The square root symbol always means to take the
positive value of the square root. (See root.) To find 
when x is negative, see imaginary number.

1x

236 � 6

11x 2 
 11x 2 � 11x 22 � x

1x
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The square roots of most integers are irrational num-
bers. For example, the square root of 2 can be approxi-
mated by 

Square roots obey the property that

For example:

SQUARE ROOT FUNCTION Figure 137 shows a graph
of the square root function y � .

STANDARD DEVIATION The standard deviation of a
random variable or list of numbers (usually symbolized
by the Greek lower-case letter sigma: �) is the square
root of the variance. (See variance.)

The standard deviation of the list x1, x2, x3 . . . xn is
given by the formula:

1x

2225 � 29 
 25 � 29 
 225 � 3 
 5 � 15

1ab � 1a # 1b

22 � 1.41421356 . . .
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where is the average of the x’s. The above formula is
used when you know all of the values in the population.
If, instead, the values x1 . . . xn come from a random sam-
ple chosen from the population, then the sample standard
deviation is calculated, which uses the same formula as
above except that (n 	 1) is used instead of n in the
denominator.

STANDARD POSITION An angle is in standard position
if its vertex is at the origin and its initial side is along the
x-axis. (See trigonometry.)

STATISTIC A statistic is a quantity calculated from the
items in a sample. For example, the average of a set of
numbers is a statistic. In statistical inference, the value of
a statistic is often used as an estimator of the unknown
value of a population parameter.

STATISTICAL INFERENCE Statistical inference refers
to the process of estimating unobservable characteristics
on the basis of information that can be observed. The
complete set of all items of interest is called the popula-
tion. The characteristics of the population are usually not
known. In most cases it is too expensive to survey the
entire population. However, it is possible to obtain infor-
mation on a group randomly selected from the popula-
tion. This group is called a sample. For example, a
pollster trying to predict the results of an election will
interview a randomly selected sample of voters.

An unknown characteristic of a population is called a
parameter. Here are two examples of parameters:

The fraction of voters in the state who support candi-
date X,

The mean height of all nine-year-olds in the country.

x

s � B
1x1 	 x 22 � 1x2 	 x 22 � # # # � 1xn 	 x 22

n

327 STATISTICAL INFERENCE



A quantity that is calculated from a sample is called a
statistic. Here are two examples of statistics:

The fraction of voters in a 200-person poll who support
candidate X,

The mean height in a randomly selected group of 90
nine-year-olds.

In many cases the value of a statistic is used as an indi-
cator of the value of a parameter. This type of statistic is
called an estimator. In some cases it is fairly obvious
which estimator should be used. For example, we would
use the fraction of voters in the sample who support can-
didate X as an estimator for the fraction of voters in the
population supporting that candidate, and we would use
the mean height of 9-year-olds in the sample as an esti-
mator for the mean height of 9-year-olds in the popula-
tion. In the formal theory of statistics, certain properties
have been found to be characteristic of good estimators.
(See consistent estimator; maximum likelihood esti-
mator; unbiased estimator.) In some cases, as in both
of the examples given above, an estimator has all of these
desirable properties; in other cases it is not possible to
find a single estimator that has all of them. Then it is
more difficult to select the best estimator to use.

After calculating the value of an estimator, it is also
necessary to determine whether that estimator is very reli-
able. If the fraction of voters in our sample who support
candidate X is much different from the fraction of voters
in the population, then our estimator will give us a very
misleading result. There is no way to know with certainty
whether an estimator is reliable, since the true value of the
population parameter is unknown. However, the use of
statistical inference provides some indication as to the
reliability of an estimator. First, it is very important that
the sample be selected randomly. For example, if we
select the first 200 adults that we meet on the street, but it
turns out that the street we chose is around the corner
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from candidate X’s campaign headquarters, our sample
will be highly unrepresentative. The best way to choose
the sample would be to list the names of everyone in the
population on little balls, put the balls in a big drum, mix
them very thoroughly, and then select 200 balls to repre-
sent the people in the sample. That method is not very
practical, but modern pollsters use methods that are based
on similar concepts of random selection.

It is important to realize that pseudo-polls, such as
television call-in polls, have made no effort to make a
random selection, so these are totally worthless and mis-
leading samples.

If the sample has been selected randomly, then the
methods of probability can be used to determine the likely
composition of the sample. Statistical inference is based on
probability. Suppose a poll found that 45 percent of the
people in the sample support candidate X. If the poll is a
good one, the announced result will include a statement
similar to this: “There is a 95 percent chance that, if the
entire population had been interviewed, the fraction of
people supporting candidate X would be between 42 per-
cent and 48 percent.” Note that there is always some uncer-
tainty in the results of a poll, which means that a poll
cannot predict the winner of a very close election. Also
note that there is no guarantee that the fraction of candidate
X supporters in the population really is between 42 percent
and 48 percent; there is a 5 percent chance that the true fig-
ure is outside that range. For an example of how to calcu-
late the range of uncertainty, see confidence interval.

For another important topic in statistical inference, see
hypothesis testing. For contrast, see descriptive statistics.

STATISTICS Statistics is the study of ways to analyze data.
It consists of descriptive statistics and statistical infer-
ence. (Note that the word “statistics” is singular when it
denotes the academic subject of statistics.)
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STEM AND LEAF PLOT A stem and leaf plot illustrates
the distribution of a group of numbers by arranging the
numbers in categories based on the first digit. For exam-
ple, the numbers 52, 63, 63, 68, 71, 74, 75, 75, 76, 77, 77,
78, 78, 79, 85, 87, 88, 89, and 96 can be displayed with a
stem and leaf plot:

5 | 2
6 | 338
7 | 1455677889
8 | 5789
9 | 6

STOCHASTIC A stochastic variable is the same as a ran-
dom variable.

STOKES’S THEOREM Let f be a three-dimensional vec-
tor field, and let L be a continuous closed path. Stokes’s
theorem states that the line integral of f around L is equal
to the surface integral of the curl of f around any surface
S for which C is the boundary:

This theorem is a generalization of Green’s theorem,
which applies to two dimensions. See Green’s theorem
for an example. For application, see Maxwell’s equa-
tions. For background, see line integral; surface inte-
gral; curl.

SUBSCRIPT A subscript is a little number or letter set
slightly below another number or letter. In the expression
x1, the “1” is a subscript.

SUBSET Set B is a subset of set A if every element con-
tained in B is also contained in A. For example, the set of

�
path C

f1x,y,z 2 # dL � � �
surface S

1§ 
 F 2dS
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high school seniors is a subset of the set of all high school
students. The set of squares is a subset of the set of
rectangles, which in turn is a subset of the set of parallel-
ograms. For illustration, see Venn diagram.

SUBSTITUTION PROPERTY The substitution property
states that, if a � b, we can replace the expression a any-
where it appears by b if we wish. For example, in solving
the simultaneous equation system 2x � 3y � 24, 2y � 8
we can solve the second equation to find y � 4, and then
substitute 4 in place of y in the first equation:

2x � 3 # 4 � 24

Therefore x � 6.

SUBTRACTION Subtraction is the opposite of addition. If
a � b � c, then c 	 b � a. For example, 8 	 3 � 5.
Subtraction does not satisfy the commutative property:

a 	 b � b 	 a

nor the associative property:

(a 	 b) 	 c � a 	 (b 	 c)

SUFFICIENT In the statement “IF p, THEN q” (pS q), p
is said to be a sufficient condition for q to be true. For
example, being born in the United States is sufficient to
become a United States citizen. (It is not necessary,
though, because a person can become a naturalized citi-
zen.) Showing that a number x is prime is sufficient to
show that x is odd (if x � 2), but it is not necessary (for
example, 9 is odd, but it is not prime).

SUM The sum is the result obtained when two numbers
are added. In the equation 5 � 6 � 11, 11 is the sum of
5 and 6.

331 SUM



SUMMATION NOTATION Summation notation provides
a concise way of expressing long sums that follow a
pattern. The Greek capital letter sigma © is used to repre-
sent summation. Put where to start at the bottom:

and where to stop at the top:

and put what you want to add up along the sides:

For example:

SUPPLEMENTARY Two angles are supplementary if the
sum of their measures is 180°. For example, two angles
measuring 135° and 45° form a pair of supplementary
angles.

SURFACE A surface is a two-dimensional set of points. For
example, a plane is an example of a surface; any point
can be identified by two coordinates x and y. We live on
the surface of the sphere formed by the Earth; any point
can be identified by the two coordinates latitude and
longitude.

� 385

a
10

j�1
j2 � 1 � 4 � 9 � p � 64 � 81 � 100

a
5

i�1
i � 1 � 2 � 3 � 4 � 5 � 15

a
5

i�1
i

a
5

i�1

a
i�1
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SURFACE AREA The surface area of a solid is a measure
of how much area the solid would have if you could
somehow break it apart and flatten it out. For example, a
cube with edge a units long has six faces, each with area
a2. The surface area of the cube is the sum of the areas of
these six faces, or 6a2. The surface area of any polyhe-
dron can be found by adding together the areas of all the
faces. The surface areas of curved solids are harder to
find, but they can often be found with calculus. (See sur-
face area, figure of revolution.) Surface areas are
important if you need to paint something. The amount of
paint you need to completely paint an object depends on
its surface area.

SURFACE AREA, FIGURE OF REVOLUTION Suppose
the curve y � f(x) is rotated about the x-axis between the
lines x � a and x � b. (See figure 138.)

The surface area of this figure can be found with inte-
gration. Let dA represent the surface area of a small frus-
tum cut from this figure. (See figure 139.)

The surface area of the frustum is dA � 2pyds
where y is the average radius of the frustum, and ds
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is the slant height. ds is given by the formula 
. (See arc length.) Then the total

surface area is given by this integral:

For example, a sphere can be formed by rotating the
curve about the x-axis from x � 	r to
x � r. Then

The integral for the surface area is:

A � �
r

	r

2p2x2 � y2dx

A � �
r

	r

2pyB1 �
x2

y2 dx

dy

dx
�

	x

2r2 	 x2
�

	x
y

y � 2r2 	 x2

�
b

a

2pyB1 � a dy
dx
b2

dx

ds � 21 � 1dydx 22dx
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SURFACE INTEGRAL Let E be a three-dimensional vec-
tor field, and let S be a surface. Consider a small square
on this surface. Create a vector dS whose magnitude is
equal to the area of the small square, and whose direction
is oriented to point outward along the surface. Calculate
the dot product and then integrate this dot prod-
uct over the entire surface. The result is the surface inte-
gral of the field E along this surface:

In order to evaluate the integral, the surface needs to
be expressed in terms of two parameters. The result will
be a double integral, since the surface is two-dimen-
sional. The example below is a simple case because the
surface is a sphere.

Let E be a vector field with magnitude given by:

whose direction always points away from the origin. (This
is the electric field created by a point electric charge with
charge q located at the origin.)

Consider a surface integral along a sphere of radius r0
centered at the charge. In this case the field vector E
points in the same direction as the vector dS, so the dot
product between them will simply be the product of their
magnitudes.

�E� �
q

4pe0r
2

1surface integral 2 � � �
surface

E # dS

E # dS,

A � 4pr2

A � 2prx�r	r

A � 2pr�
r

	r

dx
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Since r is constant for a sphere, it can be pulled out-
side the integral, along with the other constants. The sur-
face integral becomes:

The double integral over the surface of the sphere just
gives the surface area of the sphere, so the result is:

For application, see Maxwell’s equations.

SYLLOGISM In logic, a syllogism is a particular type of
argument with three sentences: the major premise, which
often asserts a general relationship between classes of
objects; the minor premise, which asserts something
about a specific case; and the conclusion, which follows
from the two premises. Here is an example of a syllogism:

Major premise: All books about logic are interesting.
Minor premise: The Dictionary of Mathematics Terms

is a book about logic.
Conclusion: Therefore, the Dictionary of Mathematics

Terms is interesting.

SYMMETRIC (1) Two points A and B are symmetric with
respect to a third point (called the center of symmetry) if the
third point is the midpoint of the segment connecting the
first two points. (See figure 140.)

(2) Two points A and B are symmetric with respect to
a line (called the axis of symmetry) (see figure 140) if the
line is the perpendicular bisector of the segment AB. (See
also reflection.)

q

4pe 0r
2 4pr2 �

q
e0

q

4pe0r
2 � �

sphere

dS

E # dS � �E� 
 �dS� �
q

4pe0r
2dS
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SYMMETRIC PROPERTY OF EQUALITY The sym-
metric property of equality states that, if a � b, then
b � a. That means that you can reverse the two sides of
an equation whenever you want to.

SYNTHETIC DIVISION Synthetic division is a short
way of dividing a polynomial by a binomial of the form
x 	 b. For example, to find

by algebraic division, we would have to write

3x2 �23x 	4

To make synthetic division shorter, we leave out all
the x’s and just write the coefficients. Also, we reverse

0

	4x �28

	4x �28

23x2 	165x

23x2 	161x

3x3 �2x2 	165x �28

3x3 	21x2

x 	 7

3x3 � 2x2 	 165x � 28

x 	 7
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the sign of the divisor (so (x 	 7) becomes (x � 7) in this
case) so as to make every intermediate subtraction
become an addition. Finally, we condense everything
onto three lines. Here is a step-by-step account: First,
write the coefficients on a line:

3 2 	165 28 )7

Second, bring down the first coefficient (3) into the
answer line:

3 2 	165 28 )7

3

Third, multiply the 3 in the answer by the 7 in the divi-
sor, and write the result (21) on the second line as shown:

3 2 	165 28 )7
21

3

and then add:

3 2 	165 28 )7

21

3 23

Now repeat the multiplication and addition procedure
for the next two places:

3 2 	165 28 )7

21 161

3 23 	4

3 2 	165 28 )7

21 161 	28

3 23 	4 0
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The numbers in the answer line are, from left to right,
the coefficients of x2, x1, and x0. The farthest right entry in
the answer line is the remainder (in this case 0).
Therefore, the answer is 3x2 � 23x 	 4.

The general procedure for synthetic division when the
dividend is a third-degree polynomial:

where the answer is found from:

a3 a2 a1 a0 )b

c2b c1b c0b

c2 c1 c0 R

The c’s and R are defined as follows:

c2 � a3

c1 � c2b � a2

c0 � c1b � a1

R � c0b � a0

SYSTEM OF EQUATIONS See simultaneous equations.

SYSTEM OF INEQUALITIES A system of inequalities is
a group of inequalities that are all to be true simultane-
ously. For example, this system of three inequalities

x � 2

y � 3

x � y � 10

defines a set of values for x and y that will make all of the
inequalities true. The graph of these points is shown in
figure 141.

�
R

x 	 b

a3x
3 � a2x

2 � a1x � a0

x 	 b
� c2x

2 � c1x � c0
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(See also linear programming.)
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T

t-DISTRIBUTION The t-distribution refers to a family of
continuous random variables that play an important part
in statistical estimation theory. A specific t-distribution is
characterized by a parameter known as the degrees of
freedom. The density function for the t-distribution is
bell-shaped and centered at 0, similar to the standard nor-
mal distribution. As the degrees of freedom increase, the 
t-distribution density function approaches the standard
normal density function.

If X1, X2, X3, . . . , Xn are a group of independent,
identically distributed random variables, with unknown
mean m and unknown standard deviation �, and is the
average, then:

and s is the sample standard deviation:

then the random variable T defined as:

has a t-distribution with n 	 1 degrees of freedom. This
formula can be used to find a confidence interval for the
mean, and can also be used in hypothesis testing to test
whether m has a specified value.

The t-distribution is defined in terms of two random
variables: Z, a random variable with a standard normal dis-
tribution, and Y, which has a chi-square (x2) distribution

T �
2n1x 	 m 2

s

s � B
1X1 	 x 22 � 1X2 	 x 22 � 1X3 	 x 22 � . . . � 1Xn 	 x 22

n 	 1

x �
X1 � X2 � X3 � # # # � Xn

n

x
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with n degrees of freedom (that is independent from Z).
The random variable T is defined as:

which has a t-distribution with n degrees of freedom. 
E(T) � 0 (if n � 1), and Var(T) � n/(n 	 2) if n � 2.

TANGENT (1) A tangent line is a line that intersects a cir-
cle at one point. Line AB in figure 142 is a tangent line.
For example, the tires of a car are always tangent to the
road. A tangent line to a curve is a line that just touches
the curve, although it may intersect the curve at more
than one point. For example, line CD in figure 142 is tan-
gent to the curve at point E. The slope of a curve at any
point is defined to be equal to the slope of the tangent line
to the curve at that point. (See calculus.)

(2) If u is an angle in a right triangle, then the tangent
function in trigonometry is defined to be (opposite side)/
(adjacent side). For an example of an application, sup-
pose that you need to measure the height of a tall tree. It
would be difficult to climb the tree with a tape measure,
but you can walk 50 feet away from the tree and measure
the angle of elevation of the top of the tree. (See figure
143.) If the angle is 55°, then you know that

tan55° �
1height of tree 2

50

T �
Z1Y>n 21>2

TANGENT 342

Figure 142 Tangent lines



Tan 55° � 1.43. This means that the height of the tree is
1.43 
 50 � 71.5 feet. This type of method is often used
by surveyors when they need to measure the distance to
faraway objects, and a similar type of method is used by
astronomers to measure the distance to stars.

Tan u is related to the other trigonometric functions by
the equation:

Here is a table of special values of the tangent function:

u (degrees) u (radians) tan u
0 0 0
30 p/6

45 p/4 1
60 p/3 23

1>23

tanu �
sinu
cosu
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u (degrees) u (radians) tan u
90 p/2 infinity
180 p 0
270 3p/2 	infinity
360 2p 0

For most values of u, tan u will be an irrational num-
ber. (See trigonometry.)

TANGENT CIRCLES Two circles are tangent if they
touch at just one point. (See figure 144.)

TANH The abbreviation for hyperbolic tangent, tanh, is
defined by:

(See hyperbolic functions.)

TAUTOLOGY A tautology is a sentence that is necessarily
true because of its logical structure, regardless of the facts.

tanhx �
sinhx
coshx

�
ex 	 e	x

ex � e	x
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For example, the sentence “The Earth is flat or else it is
not flat” is a tautology. A tautology does not give you any
information about the world, but studying the logical
structure of tautologies is interesting. For example, let r
represent the sentence

(p AND q) OR [(NOT p) OR (NOT q)]

The following truth table shows that the sentence r is
a tautology:

p q p AND q NOT p NOT q (NOT p) r
OR
(NOT q)

T T T F F F T
T F F F T T T
F T F T F T T
F F F T T T T

All of the values in the last column are true. Therefore,
r will necessarily be true, whether or not p or q is true. In
words, sentence r says: “Either p and q are both true, or else
at least one of them is not true.”

The negation of a tautology is necessarily false; it is
called a contradiction.

TAYLOR Brook Taylor (1685 to 1731) was a British math-
ematician who contributed to advances in calculus. (See
Taylor series.)

TAYLOR SERIES The Taylor series expansion of a func-
tion f (x) states that

�
h3f¿– 1x 2

3!
�
h4f–– 1x 2

4!

f1x � h 2 � f1x 2 � hf¿ 1x 2 � h2f– 1x 2
2!
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In this expression f�(x) means the first derivative of f,
f �(x) means the second derivative, and so on.

Taylor series are helpful when we know f(x), but not
f(x � h). If the series goes on infinitely, we can often
approximate the value of f (x � h) by taking the first few
terms of the series. By adding more and more terms we
can make the approximation as close to the true value as
we wish.

The first two terms of the series can be reached by
approximating the curve by its tangent line. (See figure
145.)

For an example of where the additional terms come
from, consider the third-degree polynomial function

f(x) � a0 � a1x � a2x
2 � a3x

3

Then:

� 1a3x
3 � 3a3hx

2 � 3a3xh
2 � a3h

3 2� 1a2x
2 � 2a2xh � a2h

2 2f1x � h 2 � a0 � 1a1x � a1h 2
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By taking the values of the derivatives of f, we can
see that

f �(x) � a1 � 2a2x � 3a3x
2

f �(x) � 2a2 � 6a3x

f ��(x) � 6a3

Therefore, in this case:

and no higher terms are needed in the series.
Taylor series make it possible to find expressions

to calculate some functions, such as sin u. Since sin u �
sin(0 � u), we can form the Taylor expansion:

(using the fact that d sin u/du � cos u, and d cos u/du �
	sin u). (u is in radians.)

Since sin 0 � 0 and cos 0 � 1, we have

sinu � u 	
u3

3!
�
u5

5!
	
u7

7!
�
u9

9!
	 p

	
u3cos0

3!
�
u4sin0

4!
� p

sinu � sin0 � ucos0 	
u2sin0

2

�
h3f¿– 1x 2

3!

f1x � h 2 � f1x 2 � hf¿ 1x 2 �
h2f– 1x 2

2!

�
h2

2
�2a2 � 6a3x� �

h3

6
�6a3�

� f1x 2 � h�a1 � 2a2x � 3a3x
2�

� 1a2h
2 � 3a3xh

2 2 � a3h
3

� f1x 2 � 1a1h � 2a2xh � 3a3x
2h 2347 TAYLOR SERIES



Other examples of Taylor series are as follows:

TENSOR A tensor is a type of linear function with multiple
indices. The properties of tensors are beyond the scope of
this book, but some familiar objects are actually specific
examples of tensors. A tensor of rank zero can be repre-
sented as a scalar; a tensor of rank one can be represented
as a vector; and a tensor of rank two can be represented as
a matrix. In three-dimensional space the components of a
tensor of rank n form a multidimensional array with 3n

numbers that need to be specified.
A specific tensor is applied to an array of specific

dimensions, resulting in an another array of specified
dimensions, similar to the way that an ordinary function is
applied to a number resulting in another number. For
example, when a matrix is multiplied by a vector, the
matrix acts as a tensor (a linear function) that converts the
vector into another vector.

The components of a particular tensor change when
expressed in a different coordinate system, just as the
components of a particular vector are different if that vec-
tor is expressed in a different coordinate system (see
basis). If T represents a rank two tensor that converts
vector x into vector y according to the matrix multiplica-
tion, then:

y � Tx

and A is a coordinate transformation that converts x and
y into x� and y�:

x� � Ax

y� � Ay

ex � 1 � x �
x2

2!
�
x3

3!
�
x4

4!
� p

cosu � 1 	
u2

2!
�
u4

4!
	
u6

6!
� p
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then the components of the tensor T transform under this
coordinate transformation to the new matrix T�:

T� � ATA	1

You can now use the transformed matrix in the new coor-
dinate system:

y� � T�x�

Tensors are used to describe the stresses in structures,
the motions of fluids, and the curvature of space-time in
general relativity. One example of a tensor is the metric
tensor that defines distances in a particular kind of space.
(See metric.)

TERM A term is a part of a sum. For example, in the poly-
nomial ax2 � bx � c, the first term is ax2, the second term
is bx, and the third term is c. The different terms in an
expression are separated by addition (or subtraction) signs.

TERMINAL SIDE When discussing general angles in
trigonometry, it is convenient to place the vertex of the
angle at the origin and to orient the angle in such a way
that one side points along the positive x-axis. Then the
other side of the angle is said to be the terminal side.

TERMINATING DECIMAL A terminating decimal is a
fraction whose decimal representation contains a finite
number of digits. For example, , and 
0.15625. For contrast, see repeating decimal.

TEST STATISTIC A test statistic is a quantity calculated
from observed sample values that is used to test a null
hypothesis. The test statistic is constructed so that it will
come from a known distribution if the null hypothesis is
true. Therefore, the null hypothesis is rejected if it seems
implausible that the observed value of the test statistic could
have come from that distribution. (See hypothesis testing.)

TETRAHEDRON A tetrahedron is a polyhedron with four
faces. Each face is a triangle. In other words, a tetrahedron

5
32 �1

4 � 0.25
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is a pyramid with a triangular base. A regular tetrahedron
has all four faces congruent. (See figure 146.)

THEN The word “THEN” is used as a connective word in
logic sentences of the form “p S q” (“IF p, THEN q.”)
Here is an example: “If a triangle has three equal sides,
then it has three equal angles.”

THEOREM A theorem is a statement that has been proved,
such as the Pythagorean theorem.

TOPOLOGY Topology is the mathematical study of how
points are connected together. If an object is stretched or
bent, then its geometric shape changes but its topology
remains unchanged.

TOROID A toroid can be formed by rotating a closed curve
for a full turn about a line that is in the same plane as the
curve, but does not cross it. The set of all points that the
curve crosses in the course of the rotation forms a toroid.

TORUS A torus is a solid figure formed by rotating a circle
about a line in the same plane as the circle, but not on the
circle. A doughnut is an example of a torus.

TRACE The trace of a square matrix is the sum of the diag-
onal elements of the matrix. For example, the trace of

is equal to: 1 � 3 � 6 � 10.

°1 2 9

7 3 4

8 5 6

¢
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TRAJECTORY The trajectory is the path that a body
makes as it moves through space.

TRANSCENDENTAL NUMBER A transcendental number
is a number that cannot occur as the root of a polynomial
equation with rational coefficients. The transcendental
numbers are a subset of the irrational numbers. Most values
for trigonometric functions are transcendental, as is the
number e. The number � is transcendental, but this fact was
not proved until 1882. The square roots of rational numbers
are not transcendental, even though they are often irra-
tional. For example, is a root of the equation x2 	 6 �
0, so it is not transcendental.

TRANSFORMATION GEOMETRY Transformation
geometry is the study of objects that have been moved or
changed in some way. Some possible transformations are
translations (or slides), rotations (or turns), and reflec-
tions (or flips). In each case, the technical name is given
first and an informal name is given in parentheses. The
above transformations are isometries—they preserve
shape and size. For some other transformations, see pro-
jections and topology.

TRANSITIVE PROPERTY The transitive property of
equality states that, if a � b and b � c, then a � c. All real
and complex numbers obey this property.

The transitive property of inequality states that, if a �
b and b � c, then a � c. Real numbers obey this prop-
erty, but complex numbers do not.

TRANSLATION A translation occurs when we shift the
axes of a Cartesian coordinate system. (See figure 147.)
(We keep the orientation of the axes the same; otherwise
there would be a rotation.) If the new coordinates are
called x� and y� (x-prime and y-prime), and the amount
that the x-axis is shifted is h and the amount that the 

16
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y-axis is shifted is k, then there is a simple relation
between the new coordinates and the old coordinates:

x� � x 	 h

y� � y 	 k

TRANSPOSE The transpose of a matrix is formed by turn-
ing all the columns in the original matrix into rows in the
transposed matrix. For example:

If a matrix A has m rows and n columns, then Atr will
have n rows and m columns.

a1 2 3

4 5 6
b tr � §1 4

2 5

3 6

¥aa b

c d
b tr � aa c

b d
b
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TRANSVERSAL A transversal is a line that intersects
two lines. For examples, see corresponding angles and
alternate interior angles.

TRAPEZOID A trapezoid is a quadrilateral that has exactly
two sides parallel. For illustration, see quadrilateral.

TREE DIAGRAM A tree diagram illustrates all of the pos-
sible results for a process with several stages. Figure 148
illustrates a tree diagram that shows all of the possible
results for tossing three coins.
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Figure 148 Tree diagram

Figure 149 Triangle

TRIANGLE A triangle is a three-sided polygon. (See figure
149.) The three points where the sides intersect are called
vertices. Triangles are sometimes identified by listing
their vertices, as in triangle ABC.



One reason that triangles are important is that they are
rigid. If you imagine the three sides of a triangle as joined
by hinges, you could not bend the triangle out of shape.
However, you could easily bend a quadrilateral or any
other polygon out of shape if its vertices were formed with
hinges. Triangle-shaped supports are often used in bridge
construction.

If you add together the three angles in any triangle, the
result will be 180°. To prove this, draw line DE parallel
to line AC, as in figure 150. Then angle 1 � angle 2, and
angle 4 � angle 5, since they are alternate interior angles
between parallel lines. We can also see that angle 2 �
angle 3 � angle 4 � 180°, since DBE is a straight line.
Then, by substitution, angle 1 � angle 3 � angle 5 �
180°.

The area of a triangle is equal to (base)(altitude),
where (base) is the length of one of the sides, and (alti-
tude) is the perpendicular distance from the base to the
opposite vertex. (See figure 151.)

If one of the three angles in a triangle is an obtuse
angle, the triangle is called an obtuse triangle. If each of
the three angles is less than 90°, it is called an acute tri-
angle. If one angle equals 90°, it is called a right triangle.

If the three sides of a triangle are equal, it is called an
equilateral triangle. If two sides are equal, it is called an
isosceles triangle. Otherwise, it is a scalene triangle.

1
2
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Two triangles are congruent if they have the same
shape and size. There are several ways to show that tri-
angles are congruent:

(1) Side-side-side: Two triangles are congruent if all
three of their corresponding sides are equal.

(2) Side-angle-side: Two triangles are congruent if
two corresponding sides and the angle between them are
equal.

(3) Angle-side-angle: Two triangles are congruent if
two corresponding angles and the side between them are
equal.

(4) Angle-angle-side: Two triangles are congruent if
two corresponding angles and any corresponding side are
equal.

(5) Leg-hypotenuse: Two right triangles are congruent
if the hypotenuse and two corresponding legs are equal.

If all three of the angles of the two triangles are equal,
then the triangles have exactly the same shape. However,
they may not have the same size. For example, the White
House, the Capitol, and the Washington Monument form a
triangle, and the marks representing these three buildings
on a map also form a triangle. The two triangles have the
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same shape, so they are said to be similar, but the triangle
formed by the real buildings is clearly much bigger than the
triangle formed by the marks on the map. The correspond-
ing sides of similar triangles are in proportion (meaning
that, if one side of the big triangle is 10 times as large as the
corresponding side on the little triangle, then the other two
sides on the big triangle will also be 10 times as large as
their corresponding sides on the little triangle).

A line segment that joins the vertex of a triangle to the
midpoint of the opposite side is called a median. The
point where the three medians intersect is called the cen-
troid; it is the point where the triangle would balance if
supported at a single point. The point where the three alti-
tudes of the triangle join is called the orthocenter. The
point where the perpendicular bisectors of the three sides
cross is called the circumcenter; it is the center of the cir-
cle that can be circumscribed about that triangle. (See fig-
ure 152.) For illustration of the circle that can be
inscribed in a triangle, see incircle.
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TRIGONOMETRIC FUNCTIONS OF A SUM Suppose
that we need to find sin(u � ø), where u and ø are two
angles as shown in figure 153. We can see that

We can find s2 from the equation

s2 � t1 sin u

We can find t1:

Now we find t2 from

t2 � s1 sin u

and put this value for t2 back in the equation for t1:

t1 � h cos ø 	 s1 sin u

t1 � t2
h

� cosf; then t1 � hcosf 	 t2

sin 1u � f 2 �
s1 � s2
h
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Putting this expression back in the equation for s2 gives

s2 � h cos f sin u 	 s1 sin2 u

Putting this expression back in the equation for sin(u� f)
we obtain

From the definitions of the trigonometric functions,
we know that:

The final formula becomes:

sin(u � f) � sin f cos u � sin u cos f

From this formula we can derive a similar formula for
cosine:

cos(u � f) � sin(90° 	 u 	 f)

� sin(90° 	 u) cos(	f)
� cos(90° 	 u) sin(	f)

� cos u cos f 	 sin u sin f

and a formula for tangent:

tan 1u � f 2 �
sin 1u � f 2
cos 1u � f 2

h �
d

sinf
, s1 �

d

cosu
,
s1
h

�
sinf
cosu

�
s1cos 2u

h
� cosfsinu

�
1

h
c s1cos 2u � hcosfsinu d

�
1

h
c s111 	 sin 2u 2 � hcosfsinu d

sin 1u � f 2 �
1

h
c s1 � hcosfsinu 	 s1sin 2u d
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We can find double-angle formulas by setting u � f:

sin 2u � 2 sin u cos u

cos 2u � cos2 u 	 sin2 u � 1 	 2 sin2 u � 2 cos2 u 	 1

TRIGONOMETRY Trigonometry is the study of triangles.
In particular, six functions are called the trigonometric
functions: sine, cosine, tangent, cotangent, secant, and
cosecant. Although these functions were originally devel-
oped to help solve problems involving triangles, it turns
out that they have many other applications.

Trigonometric functions can be illustrated by consid-
ering a circle of radius r centered at the origin. Draw an
angle u in standard position with vertex at the origin and
initial side along the x axis. Then, let (x, y) be the coor-
dinates of the point where the terminal side of the angle
crosses the circle. The definitions of the trigonometric
functions are:

tanu �
y

x
 ctnu �

x
y

cosu �
x
r
 secu �

r
x

sinu �
y

r
 cscu �

r
y

tan2u �
2 tanu

1 	 tan 2u

tan 1u � f 2 �
tanu � tanf

1 	 tanu tanf

�

sinucosf
cosucosf

�
sinfcosu
cosucosf

cosucosf
cosucosf

	
sinusinf
cosucosf

�
sinucosf � sinfcosu
cosucosf 	 sinusinf
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Whether the value of a trigonometric function is posi-
tive or negative depends upon the quadrant. Figure 154
shows the sign of the value for sin, cos, and tan for each
of the four quadrants.

An angle is completely unchanged if we add 2p radi-
ans to it. This means that

sin u � sin(u � 2p) � sin(u � 4p)
� sin(u � 6p) � . . .

Therefore the trigonometric functions are periodic, or
cyclic. For every 2p units, they will have the same value.

For example, a 405° ( radian) angle is the same as a
405° 	 360° � 45° ( radian) angle, and a
	45° angle is the same as a 	45° � 360° � 315° angle.

Figure 155 shows the graphs of the sine, cosine, and tan-
gent functions. The sine function can be used to describe
many types of periodic motion. The curve describes the
motion of a weight attached to a spring or a swinging pen-
dulum. It describes the voltage change with time in an alter-
nating-current circuit with a rotating generator. The
movement of the tides is approximately sine-shaped, as is
the variation of the length of the day throughout the year.

9p
4 	 2p � p

4

9p
4
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The sine function is also used to describe light waves, water
waves, and sound waves. Use a calculator to find decimal
approximations for these functions.

(See also trigonometric functions of a sum; inverse
trigonometric functions.)

TRINOMIAL A trinomial is the indicated sum of three
monomials. For example, 10 � 13x2 � 20a3b2 is a trino-
mial.

TRIPLE INTEGRAL A triple integral means to integrate a
function over an entire volume. For example, if r(x, y, z)
represents the density of matter at a point (x, y, z), then

gives the total mass contained in the parallelepiped from
x � 0 to x � a, y � 0 to y � b, and z � 0 to z � c.

TRISECT To trisect an object means to cut it in three equal
parts. For example, one can trisect a line segment, or tri-
sect an angle. (See geometric construction.)

TRUE “True” is one of the two truth values attached to
statements in logic. It corresponds to what we normally
suppose: “true” means “accurate,” “correct.” (See logic;
Boolean algebra.)

TRUNCATED CONE A truncated cone consists of the sec-
tion of a cone between the base and another plane that
intersects the cone between the base and the vertex. It
looks like a cone whose top has been chopped off.

TRUNCATED PYRAMID A truncated pyramid consists
of the section of a pyramid between the base and another
plane that intersects the pyramid between the base and
the vertex. It looks like a pyramid whose top has been
chopped off.

�
z�c

z�0
�
y�b

y�0
�
x�a

x�0

r1x,y,z 2dx dy dz
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TRUNCATION The truncation of a number is found by drop-
ping the fractional part of that number. It is equal to the
largest integer that is less than or equal to the original num-
ber. For example, the truncation of 17.89 is equal to 17.

TRUTH TABLE A truth table is a table showing whether a
compound logic sentence will be true or false, based on
whether the simple sentences contained in the compound
sentence are true. Each row of the table corresponds to
one set of possible truth values for the simple sentences.
For example, if there are three simple sentences, then
there will be 23 � 8 rows in the truth table. Here is a truth
table that demonstrates De Morgan’s law:

NOT (p OR q)
is equivalent to

(NOT p) AND (NOT q).

p q p OR q NOT NOT p NOT q (NOT p)
(p OR q) AND

(NOT q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

The first two columns contain the simple sentences p
and q. Since there are four possible combinations of truth
values for p and q, the table contains four rows. Each of
the five remaining columns tells us whether the indicated
expression will be true or false, given the possible values
for p and q. Note that the column for NOT (p OR q) and
the column for (NOT p) AND (NOT q) have exactly the
same values, so these two sentences are equivalent.

TRUTH VALUE In logic, a sentence is assigned one of two
truth values. One of the truth values is labeled T, or 1; it
corresponds to “true.” The other truth value is labeled F,
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or 0; it corresponds to “false.” The question “What does
it mean for a sentence to be true?” is a very difficult
philosophical question. In logic a sentence is said to have
the truth value T or F, rather than to be “true” or “false”;
this makes it possible to analyze the validity of arguments
containing “true” or “false” sentences without having to
answer the question as to what “truth” really means.

TWO-TAILED TEST In a two-tailed test the critical region
consists of both tails of a distribution. The null hypothe-
sis is rejected if the test-statistic value is either too large
or too small. (See hypothesis testing.)

TYPE 1 ERROR A type 1 error occurs when the null
hypothesis is rejected when it is actually true. (See
hypothesis testing.)

TYPE 2 ERROR A type 2 error occurs when the null
hypothesis is accepted when it is actually false. (See
hypothesis testing.)
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U

UNARY OPERATION A unary operation takes only one
operand. Examples include negation and absolute value.
For contrast, see binary operation.

UNBIASED ESTIMATOR An unbiased estimator is an
estimator whose expected value is equal to the true value
of the parameter it is trying to estimate. (See statistical
inference.)

UNDEFINED TERM An undefined term is a basic concept
that is described, rather than given a rigorous definition.
It would be impossible to rigorously define every term,
because sooner or later the definitions would become cir-
cular. “Line” is an example of an undefined term from
geometry.

UNION The union of two sets A and B (written as )
is the set of all elements that are either members of A or
members of B, or both. For example, the union of the 
sets A � {0,1,2,3,4} and B � {2,4,6,8,10,12} is the set

� {0,1,2,3,4,6,8,10,12}. The union of the set of
whole numbers and the set of negative integers is the set
of all integers.

UNIT CIRCLE A unit circle is a circle with radius 1. If the
unit circle is centered at the origin, and (x, y) is a point on
the circle such that the line from the origin to that point
makes an angle u with the x-axis, then sin u � y and
cos u � x.

UNIT VECTOR A unit vector is a vector of length 1. It is
common to use i to represent the unit vector along the 
x-axis—that is, the vector whose components are (1,0,0).
Likewise, j is used to represent (0,1,0), and k represents
(0,0,1). A three-dimensional vector whose components are

AhB

AhB



(x, y, z) can be written as the vector sum of each compo-
nent times the corresponding unit vector: (x, y, z) � xi �
yj � zk.

UNIVERSAL QUANTIFIER An upside-down letter A, ,
is used to represent the expression “For all . . . ,” and is
called the universal quantifier. For example, if x is
allowed to take on real-number values, then the sentence
“For all real numbers, the square of the number is non-
negative” can be written as

(1)

For another example, let Cx represent the sentence “x
is a cow,” and let Mx represent the sentence “x says moo.”
Then the expression

(2)

represents the sentence “For all x, if x is a cow, then x says
moo.” In more informal terms, the sentence could be written
as “All cows say moo.”

Be careful when taking the negation of a sentence that
uses the universal quantifier. The negation of sentence (2)
is not the sentence “All cows do not say moo,” which
would be written as

(3)

Instead, the negation of sentence (2) is the sentence
“Not all cows say moo,” which can be written as

(4)

Sentence (4) could also be written as

(5)

(See existential quantifier.)

$x 1Cx AND NOTM̌x 2
NOT�̌̌x 1CxS M̌x 2
�̌̌x 1CxSNOTM̌x 2

�̌̌x 1CxS M̌x 2
�̌̌x 1x2 � 0 2

�
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UNIVERSAL SET The universal set is the set of all objects
in which you are interested during a particular discus-
sion. For example, in talking about numbers the relevant
universal set might be the set of all complex numbers.
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VARIABLE A variable is a symbol that is used to represent
a value from a particular set. For example, in algebra it is
common to use letters to represent values from the set of
real numbers. (See algebra.)

VARIANCE The variance of a random variable X is defined
to be

Var (X) � E[(X 	 E(X)) 
 (X 	 E(X))]

� E[(X 	 E(X))2]

where E stands for “expectation.”
The variance can also be found from the formula:

Var (X) � E(X2) 	 [E(X)]2

The variance is often written as s2. (The Greek lower-
case letter sigma (s), is used to represent the square root
of the variance, known as the standard deviation.)

The variance is a measure of how widespread the
observations of X are likely to be. If you know for sure
what the value of X will be, then Var(X) � 0.

For example, if X is the number of heads that appear
when a coin is tossed five times, then the probabilities are
given in this table:

i Pr(X � i) i 
 Pr(X � i) i2 
 Pr(X � i)
0 1/32 0 0
1 5/32 5/32 5/32
2 10/32 20/32 40/32
3 10/32 30/32 90/32
4 5/32 20/32 80/32
5 1/32 5/32 25/32
sum: 1 2.5 7.5
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The sum of column 3 [i 
 Pr(X � i)] gives 
E(X) � 2.5; the sum of column 4 [i2 
 Pr(X � i)] gives
E(X2) � 7.5. From this information we can find

Var(X) � E(X2) 	 [E(X)]2 � 7.5 	 2.52 � 1.25

Some properties of the variance are as follows.
If a and b are constants:

Var (aX � b) � a2Var(X)

If X and Y are independent random variables:

Var (X � Y) � Var (X) � Var (Y)

In general:

Var (X � Y) � Var(X) � Var(Y) � 2Cov(X, Y)

where Cov(X, Y ) is the covariance.
The variance of a list of numbers x1, x2, . . . xn is given

by either of these formulas:

where a bar over a quantity signifies average.

VECTOR A vector is a quantity that has both magnitude
and direction. The quantity “60 miles per hour” is a reg-
ular number, or scalar. The quantity “60 miles per hour to
the northwest” is a vector, because it has both size and
direction. Vectors can be represented by drawing pictures
of them. A vector is drawn as an arrow pointing in the
direction of the vector, with length proportional to the
size of the vector. (See figure 156.)

Vectors can also be represented by an ordered list of
numbers, such as (3,4) or (1, 0, 3). Each number in this list
is called a component of the vector. A vector in a plane
(two dimensions) can be represented as an ordered pair.

� x2 	 1x 22Var1x 2 �
1x1 	 x 22 � 1x2 	 x 22 � . . . � 1xn 	 x 22

n
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A vector in space (three dimensions) can be represented
as an ordered triple.

Vectors are symbolized in print by boldface type, as
in “vector a.” A vector can also be symbolized by plac-
ing an arrow over it: .

The length, or magnitude or norm, of a vector a is
written as 

Addition of vectors is defined as follows: Move the
tail of the second vector so that it touches the head of
the first vector, and then the sum vector (called the
resultant) stretches from the tail of the first vector to the
head of the second vector. (See figure 157.) For vectors
expressed by components, addition is easy: just add the
components:

(3, 2) � (4, 1) � (7, 3)

(a, b) � (c, d) � (a � c, b � d)

To multiply a scalar by a vector, multiply each com-
ponent by that scalar:

10(3, 2) � (30, 20)

n(a, b) � (na, nb)

�a�

a
S

Figure 156 Vector



To find two different ways of multiplying vectors, see
dot product and cross product.

VECTOR FIELD A two-dimensional vector field f trans-
forms a vector (x, y) into another vector f(x, y) � [ fx(x, y),
fy(x, y)]. Here fx(x, y) and fy(x, y) are the two components
of the vector field; each is a scalar function of two vari-
ables. An example of a vector field is:

If we evaluate this vector field at (3,4) we find:

In this particular case, the output of the vector field is
perpendicular to the input vector.

The same concept can be generalized to higher-
dimensional vector fields. For examples of calculus oper-
ations on vector fields, see divergence; curl; line
integral; surface integral; Stokes’ theorem; Maxwell’s
equations.

VECTOR PRODUCT This is a synonym for cross
product.

VELOCITY The velocity vector represents the rate of
change of position of an object. To specify a velocity, it is
necessary to specify both a speed and a direction (for
example, 50 miles per hour to the northwest).

f13,4 2 � c	4

5
,

3

5
d

f1x,y 2 � B 	y

2x2 � y2
,

x

2x2 � y2
R

371 VELOCITY

Figure 157 Adding vectors



If the motion is in one dimension, then the velocity is
the derivative of the function that gives the position of the
object as a function of time. The derivative of the veloc-
ity is called the acceleration.

If the vector [x(t), y(t), z(t)] gives the position of the
object in three dimensional space, where each component
of the vector is given as a function of time, then the veloc-
ity vector is the vector of derivatives of each component:

VENN DIAGRAM A Venn diagram (see figure 158) is a pic-
ture that illustrates the relationships between sets. The uni-
versal set you are considering is represented by a
rectangle, and sets are represented by circles or ellipses.
The possible relationships between two sets A and B are as
follows:

Set B is a subset of set A, or set A is a subset of set B.
Set A and set B are disjoint (they have no elements in

common).
Set A and set B have some elements in common.

velocity � c dx
dt

,
dy

dt
,
dz

dt
d
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Figure 159 is a Venn diagram for the universal set of
complex numbers.
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Figure 159 Venn diagram

Figure 160 Vertical angles

VERTEX The vertex of an angle is the point where the two
sides of the angle intersect.

VERTICAL ANGLES Two pairs of vertical angles are
formed when two lines intersect. In figure 160, angle 1
and angle 2 are a pair of vertical angles. Angle 3 and
angle 4 are another pair of vertical angles. The two angles
in a pair of vertical angles are always equal in measure.



VERTICAL LINE TEST The vertical line test can be used
to determine if a relation is a function. If a vertical line can
be drawn that crosses two points on the graph of the rela-
tion, then the relation is not a function. (See also hori-
zontal line test.)

VOLUME The volume of a solid is a measure of how much
space it occupies. The volume of a cube with edge a units
long is a3. Volumes of other solids are measured in cubic
units. The volume of a prism or cylinder is (base area) 

(altitude), and the volume of a pyramid or cone is (1/3) 

(base area) 
 (altitude). (See also volume, figure of
revolution.)

VOLUME, FIGURE OF REVOLUTION Suppose the
curve y � f(x) is rotated about the x-axis between the lines
x � a and x � b. (See figure 161.)

The volume of this figure can be found with integration.
Let dV represent the volume of a small cylinder cut from this
figure. (See figure 162.)

dV � py2dx

where y is the radius of the cylinder, and dx is the height
of the cylinder.
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Figure 161 Surface formed by rotating y � f(x)
about x axis



The volume of the entire figure is given by this integral:

For example, a sphere can be formed by rotating the
circle y = about the x-axis from x � 	r to
x � r. The volume is given by the integral:

V �
4

3
pr3

� p c2r3 	
2

3
r3 d

� p c r3 	
1

3
r3	 a	r3 	

1

3
1	r 23b d

� p a r2x 	
1

3
x3b ` r

	r

V � �
r

	r

p1r2 	 x2 2 dx
2r2 	 x2

V � �
b

a

py2dx
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WEIGHTED AVERAGE A weighted average of a group of
numbers x1, x2, x3, . . . , xn is:

w1x1 � w2x2 � w3x3 � � wn xn

where the w’s are a group of positive numbers such that:

w1 � w2 � w3 � � wn � 1

Each number xi has a corresponding weight wi. A larger
value of wi means that xi should be given greater signifi-
cance in calculating the weighted average.

For example, the expected value of a discrete random
variable is a weighted average of the possible values,
where each possible value is weighted by its probability of
occurrence. For another example, when the weighted aver-
age value of the U.S. dollar relative to foreign currencies is
calculated, each currency is weighted according to the
amount of trade of that country with the United States.

WELL-FORMED FORMULA A well-formed formula
(or wff ) is a sequence of symbols that is an acceptable
formula in logic. For example, the sequence p AND q is
a wff, but the sequence AND pq is not a wff.

Certain rules govern the formation of wff ’s in a partic-
ular type of logic. Here is an example of such a rule: If p
and q are wff’s, then (p AND q) is also a wff.

WHOLE NUMBERS The set of whole numbers includes
zero and all the natural numbers 0, 1, 2, 3, 4, 5, 6, . . . 

# # #

# # #

WEIGHTED AVERAGE 376



X

X-AXIS The x-axis is the horizontal axis in a Cartesian
coordinate system.

X-INTERCEPT The x-intercept of a curve is the value of x
at the point where the curve crosses the x axis.
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Y

Y-AXIS The y-axis is the vertical axis in a Cartesian coor-
dinate system.

Y-INTERCEPT The y-intercept of a curve is the value of y
at the point where the curve crosses the y-axis.



Z

Z-AXIS The z-axis is the third axis in a three-dimensional
coordinate system. Typically the x-axis and y-axis are
thought of as being in a horizontal plane, with the z-axis
pointing up. However, if you draw the x-axis and y-axis
on a vertical plane (such as a wall blackboard), then this
implies that the z-axis extends out of the board toward
you.

ZENO’S PARADOX Zeno’s paradox claims that an object
can never travel a distance d because it first must pass
through the point d/2; before that it must pass the point
d/4; before that it must pass the point d/8; and so on.
Since there are an infinite number of points, Zeno’s para-
dox claims that it would take an infinite amount of time.
Since in reality objects can move from one point to
another, Zeno’s paradox is based on a misunderstanding
of continuous space. Alternatively, space might not be
continuous on extremely small scales, in which case an
object does jump from one location to an adjacent loca-
tion without passing through any intermediate locations.
In any case, the laws of quantum mechanics make it
impossible to measure the exact location of something
with perfect accuracy.

ZERO Intuitively, zero means nothing—for example, the
score that each team has at the beginning of a game is
zero. Formally, zero is the identity element for addition,
which means that, if you add zero to any number, the
number remains unchanged. In our number system the
symbol “0” also serves as a placeholder in the decimal
representation of a number. Without zero we would have
trouble telling the difference between 1000 and 10.
Historically, the use of zero as a placeholder preceded the
use of zero as a number in its own right.

379 ZERO



ZERO OF A FUNCTION A zero of a function f(x) is a value
of x such that f(x) � 0. For example, a polynomial function
of degree n can have as many as n zeros.

ZERO-SUM GAME See game theory.
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APPENDIX

ALGEBRA SUMMARY

Exponents

a0 � 1

a	1 � 1/a

a1/2 �

(am)n � amn

aman � am�n

Multiplying Algebraic Expressions

a(b � c) � ab � ac

(a � b)(c � d) � ac � ad � bc � bd

(a � b)2 � a2 � 2ab � b2

(a � b)(a 	 b) � a2 	 b2

Fractions

ab
ac

�
b
c

a

b


c

d
�
ac

bd

c
a

�
d

b
�
bc � ad

ab

a
c

�
b
c

�
a � b
c

am

an
� am	n

2a
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Quadratic Formula

If ax2 � bx � c � 0, then 

GEOMETRY SUMMARY

Plane Figures

Triangles

• sum of angles � 180°

• (area) � 
 (base) 
 (height)

• If the lengths of the sides are a, b, and c, and 
s � (a � b � c) / 2, the area is

.

• Pythagorean theorem for a right triangle:
a2 � b2 � c2, where c is the hypotenuse.

Quadrilaterals

• sum of angles � 360°

• square: a � length of side; (area) � a2; four 90°
angles

• rectangle: a and b are lengths of two adjacent sides;
(area) � ab; four 90° angles

• paralellogram or rhombus: (area) � (base) 
 (height)

2s1s 	 a 2 1s 	 b 2 1s 	 c 2
1
2

x �
	b � 2b2 	 4ac

2a

a
b
c

�
ac

b

a
b

c
�
a

bc

a
b
c
d

�
ad

bc
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• trapezoid: a and b are lengths of two parallel sides;
h is distance between those two sides; (area) �
h(a � b)/2

Polygons

• sum of angles for an n-sided polygon: 180 
 (n	 2)

Regular Polygons

• area of regular polygon with n sides inscribed in cir-
cle of radius r:

• area of regular polygon with n sides of length a:

Circle

• r � radius; (circumference) � 2pr

• (area) � pr2

• area of sector of circle with angle u (radians):

• area of segment of circle with angle u (radians):

Solid Figures

Cube (side of length a)

• (volume) � a3

• (surface area) � 6a2

r2

2 1u 	 sinu 2
ur2

2

1area 2 �

na2sin a 2p
n
b

4 	 4cos a 2p
n
b

1area 2 �
1

2
nr2sin a 2p

n
b
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Sphere, radius r

• (volume) � pr3

• (surface area) � 4pr2

Prism or Cylinder

• (volume) � (base area) 
 (height)

Cone or Pyramid

• (volume) � 
 (base area) 
 (height)

TRIGONOMETRY SUMMARY

Trigonometric Functions for Right Triangles

Let A be one of the acute angles in a right triangle.
Then:

Trigonometric Functions: General Definition

Consider a point (x, y) in a Cartesian coordinate system.
Let r be the distance from that point to the origin, and let
A be the angle between the x-axis and the line connecting
the origin to that point. Then:

tanA �
y

x

cosA �
x
r

sinA �
y

r

tanA �
1oppositeside 21adjacentside 2

cosA �
1adjacent side 21hypotenuse 2

sinA �
1opposite side 21hypotenuse 2

1
3

4
3
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Radian Measure

p rad � 180°

Special Values

Degrees Radians sin cos tan

0° 0 0 1 0

30°

45° 1

60°

90° 1 0 Undefined (infinite)

Trigonometric Identities

These equations are true for all allowable values of A
and B.

Reciprocal functions:

Cofunctions (radian form):

cscA �  sec ap
2

	 AbsecA � csc ap
2

	 Ab
ctnA �  tan ap

2
	 AbtanA � ctn ap

2
	 Ab

cosA � sin ap
2

	 AbsinA � cos ap
2

	 Ab
ctnA �

1

tanA
tanA �

1

ctn A

secA �
1

cosA
cosA �

1

secA

cscA �
1

sinA
sinA �

1

cscA

p
2

231
2

23
2

p
3

112
112

p
4

113
23
2

1
2

p
6
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Negative angle relations:

sin(	A) �	 sin A

cos(	A) � cos A

tan(	A) �	 tan A

Quotient relations:

Supplementary angle relations: The angles A and B
are supplementary angles if A � B � p.

sin(�	 A) � sin A

cos(�	 A) �	cos A

tan(�	 A) �	tan A

Pythagorean identities:

sin2 A � cos2 A � 1

tan2 A � 1 � sec2 A

ctn2 A � 1 � csc2 A

Functions of the sum of two angles:

sin(A � B) � sin A cos B � sin B cos A

cos(A � B) � cos A cos B 	 sin A sin B

Functions of the difference of two angles:

sin(A 	 B) � sin A cos B 	 sin B cos A

cos(A 	 B) � cos A cos B � sin A sin B

tan 1A 	 B 2 �
tanA 	 tanB

1 � tanAtanB

tan 1A � B 2 �
tanA � tanB

1 	 tanAtanB

ctnA �
cosA
sinA

tanA �
sinA
cosA
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Double-angle formulas:

Squared formulas:

Half-angle formulas:

Product formulas:

sinAsinB � 	
cos 1A � B 2 	 cos 1A 	 B 2

2

cosAcosB �
cos 1A � B 2 � cos 1A 	 B 2

2

cosAsinB �
sin 1A � B 2 	 sin 1A 	 B 2

2

sinAcosB �
sin 1A � B 2 � sin 1A 	 B 2

2

tan aA
2
b � � B

1 	 cosA
1 � cosA

cos aA
2
b � � B

1 � cosA
2

sin aA
2
b � � B

1 	 cosA
2

cos 2A �
1 � cos2A

2

sin 2A �
1 	 cos2A

2

tan 12A 2 �
2 tanA

1 	 tan 2A

� 2cos 2A 	 1

� 1 	 2sin 2A

cos 12A 2 � cos 2A 	 sin 2A

sin 12A 2 � 2sinAcosA
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Sum formulas:

Difference formulas:

Formulas for triangles: Let a be the side of a triangle
opposite angle A, let b be the side opposite angle B, and
let c be the side opposite angle C.

Law of cosines:

c2 � a2 � b2 	 2ab cos C

Law of sines:

BRIEF TABLE OF INTEGRALS

a, b, c, m, n represent constants;

C represents the arbitrary constant of integration.

Perfect Integral

�dx � x � C

a

sinA
�
b

sinB
�

c

sinC

cosA 	 cosB � 	2sin a ˇˇ

A � B

2
b sin a ˇˇ

A 	 B

2
b

sinA 	 sinB � 2cos a ˇˇ

A � B

2
b sin a ˇˇ

A 	 B

2
b

cosA � cosB � 2cos a ˇˇ

A � B

2
b cos a ˇˇ

A 	 B

2
b

sinA � sinB � 2sin a ˇˇ

A � B

2
b cos a ˇˇ

A 	 B

2
b
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Multiplication by Constant

where u � nx

Addition

Powers

Polynomials

�
a1x

2

2
� a0x � C

�
anx

n�1

n � 1
�
an	1x

n

n
� p �

a2x
3

3

� a1x � a0 2dx� 1anxn � an	1x
n	1 � p � a2x

2

�x	1dx � ln 0x 0 � C
�xn dx �

xn�1

n � 1
� C if n � 	1

�x dx �
x2

2
� C

��f1x 2 � g1x 2�dx � �f1x 2 dx � �g1x 2 dx
�f1nx 2dx �

1
n �f1u 2 du

�nf1x 2dx � n�f1x 2 dx
�n dx � nx � C
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Substitution

For example:

where u � x2 � a.

Integration by Parts

Note: The arbitrary constant of integration C will not
be explicitly listed in the integrals that follow, but it must
always be remembered.

Trigonometry

�x sin x dx � sinx 	 xcosx

� sin 2x dx �
x

2
	

sin2x

4

�sec x dx � ln 0sec x � tanx 0
� tanx dx � ln 0sec x 0
� cosx dx � sinx

� sinx dx � 	cosx

�udv � uv 	 �v du

�
1

2 �f1u 2du
�xf1x2 � a 2dx � �xf1u 2 a 1

2x
b du

�f1u1x 2 2dx � �f1u 2dxdudu
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Exponential Functions and Logarithms

�excosx dx �
ex1 sinx � cosx 2

2

�ax dx �
ax

lna

�x2ex dx � x2ex 	 2xex � 2ex

�xex dx � xex 	 ex

�ex dx � ex

�arctanx dx � xarctanx 	
ln 11 � x2 2

2

�arcsinx dx � xarcsinx � 21 	 x2

�
m 	 1
m � sinm	2x dx

� sinmx dx � 	
sinm	1xcosx

m

� sin x cos x dx �
sin 2x

2

�xcos x dx � cosx � xsinx

� cos 2x dx �
x

2
�

sin2x

4

�x2sin x dx � 	x2cosx � 2xsinx � 2cosx
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Integrals involving ax2 � bx � c

For this section, let D � b2 	 4ac. These integrals can
be simplified by substituting u � x � b/2a:

(1)

Specific examples of form (1) include:

� 1

1 	 x2 dx �
1

2
ln ` 1 � x

1 	 x
`

� 1

1 � x2 dx � arctanx

If D � 0 : y � 	
2

2ax � b

If D � 0 : y �
1

2D ln ` 2ax � b 	 2D
2ax � b � 2D `

If D � 0 : y �
2

2	D
arctan a 2ax � b

2	D
b

Let y � � 1

ax2 � bx � c
dx

ax2 � bx � c �
4a2u2 	 D

4a

�
q

	q

e	x
2>2dx �

1

22p

�x2 lnx dx �
x3lnx

3
	
x3

9

�x lnx dx �
x2lnx

2
	
x2

4

� lnx dx � x lnx 	 x
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(2) Let 

If

If

(provided 

Specific examples of form (2) include:

� 1

2n2x2 � m2
dx �

1
n

ln 2 nx
m

� B1 �
n2x2

m2 2� 1

2m2 	 n2x2
dx �

1
n

arcsin a nx
m
b

� 1

2x2 	 1
dx � ln 1x � 2x2 	 1 2

� 1

21 � x2
dx � ln 1x � 21 � x2 2

� 1

21 	 x2
dx � arcsinx

02ax � b 0 � 2D 2.
a � 0 and D � 0 : y �

	1

2	a
arcsin a 2ax � b

2D b2ax � b 0a � 0 : y �
1

2a ln 022a1ax2 � bx � c 2 �

y � � 1

2ax2 � bx � c
dx

� 1

m2 	 n2x2 dx �
1

2mn
ln `m � nx
m 	 nx

`
� 1

m2 � n2x2 dx �
1
mn

arctan a nx
m
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(3) Let 

Specific examples of form (3) include:

� ln 2 nx
m

� B1 � a nx
m
b2 2 dm2

2n
c a nx
m
bB1 � a nx

m
b2

�2m2 � n2x2 dx �

�
nx
m B1 	 a nx

m
b2 d

�2m2 	 n2x2 dx �
m2

2n
carcsin a nx

m
b

�2x2 	 1 dx �
x2x2 	 1 	 ln 0x � 2x2 	 1 0

2

�21 � x2 dx �
x21 � x2 � ln 0x � 21 � x2 0

2

�21 	 x2 dx �
arcsinx � x21 	 x2

2

� 1

2ax2 � bx � c
dxa 4ac 	 b2

8a
b

y �
2ax � b

4a
2ax2 � bx � c �

y � �2ax2 � bx � c dx
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