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PREFACE

By the middle of this century automatic control engineering was well

advanced. Sophisticated analytic techniques were available for the

design of linear servomechanisms and with great justification Norbert

Wiener said: “The present age is as truly the age of servomechanisms

as the 19th Century was the age of the steam engine . . . Kolmogoroff

and Wiener had developed a mathematical theory of optimal filtering

and prediction, and engineers were already beginning to consider

problems in optimal control. It then happened in 1953 under the in-

fluence of Lefschetz that Bushaw gave a mathematical solution of a

simple optimal control problem. This was the beginning of the develop-

ment of a theory which is the subject of this monograph and the begin-

ning of the development of a more general theory of optimal control.

Bushaw’s methods for solving his special problem could not be

generalized but it was his work that brought optimal control theory

to the attention of mathematicians in this country and the Soviet

Union. Different approaches to the study of a general linear time optimal

problem were given by Bellman and LaSalle in the United States and by

Gamkrelidze and Krasovskii in the Soviet Union. This led eventually

to the development of a general theory and to Pontryagin’s maximum
principle. Many other people too numerous to name here have con-

tributed to this problem and the theory is today quite complete. The

linear time optimal problem is the optimal control problem about

which we know the most and is the best introduction to the general

theory.

The purpose of this monograph is to present the main features of

that theory as an application of mathematics. Part I is the mathematics

and is a concise but self-contained presentation of those aspects of

functional analysis needed for the control problem. It includes also a

few basic results from the theory of linear differential equations.

v
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Part II is the application to the linear time optimal control problem.

The two parts can be studied independently but are meant for the

reader who wants both. Someone primarily interested in mathematics

with an application might begin with Part I. The reader mainly interes-

ted in the basic introductory problem in optimal control theory from

which the general theory arises should begin with Part II and refer

from time to time to Part I. Part III is a brief discussion of the nonlinear

time optimal control problem.

The authors wish, in particular, to thank their Polish friend, Czeslaw

Olech, who read the manuscript carefully and made a number of

valuable technical suggestions for improvement. The first-mentioned

author would like to acknowledge the ideas and insight gained from

numerous discussions with George W. Haynes.

March
, J969 Henry Hermes

Joseph P. LaSalle
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PART I

FUNCTIONAL ANALYSIS





1. Logical Foundations

A partially ordered system is a set & together with a binary operation

rg, defined between some elements of which satisfies: (1) a :g b and

b ^ c implies a ^ c\ (2) a ^ a; (3) a and b :g a implies a = b. If

is partially ordered and Q is a subset of & such that a, b e Q implies

either a ^ b or b ;g a then Q is said to be completely (totally) ordered.

If & is partially ordered and Sag?, an element m e 0* such that

a Sm for all a e S is said to be an upper bound of S. An element m e &
is maximal if a e and m :g a implies m = a.

Zorn’s Lemma. Let & be a nonempty partially ordered set with the

property that every completely ordered subset has an upper bound in

Then 0> contains at least one maximal element.

Zorn’s lemma is equivalent to the axiom of choice and hence can

itself be looked upon as an axiom. If the reader finds this axiom hard

to accept, perhaps he may find more palatable the equivalent axiom of

choice which can be stated as follows. Given a family of nonempty sets

{£a ;
a g A} with A an arbitrary index set

,
one can choose an elementfrom

each set Sa to form a new set S.

2. Topological Considerations

Algebraic structures are described in terms of properties of exactness

whose statements involve only a finite number of elements of a set. For

instance, the statement of the commutative law of addition involves two

elements. In analysis the number of elements involved in the description

of convergence, continuity, etc., which are properties dealing with

“nearness” or “approximation,” is no longer finite, and it has been

found convenient to base these concepts on collections of subsets called

“topologies.”

1



2 I. FUNCTIONAL ANALYSIS

From an axiomatic viewpoint, a topologyT for a set X is a family of

subsets of X satisfying:

(a) the union of any collection of sets in T is again a set in T ;

(b) the intersection of a finite collection of sets ofT is a set in T\
(c) X itself, and the empty set 0, belong to T

.

The sets of T are called open sets and the set X with topology T is

called a topological space. Closed sets are defined as the complements of

open sets. Any open set which contains a point x is called a neighborhood

of x.

If we have two topologies T1 and T2 for a set the topology Tx

is said to be weaker than the topologyT 2 ifT1
c= T2 ;

i.e., if every open

set ofT x
is an open set in T2 . Equivalently, in this case T 2 is said to

be stronger than Tv The stronger topology contains more open sets.

Two topologies are the same or equivalent ifT x = IT2 ; i.e., if they have

the same open sets. This can be shown to be equivalent to: T x
and T2

are the same if given any open set 0 in either, and point x e (P, there is an

open & in the other containing x and contained in (9.

Let X and Y be topological spaces and/ a function with domain X
and range in Y. Then / is continuous at a point x0 e X if to each neigh-

borhood V of/(xq) in Y there is a neighborhood U of x0 in X such that

f(U)a V. This is equivalent to the property that the preimage of an

open set in 7be open in X; i.e., for 0 open in F,/
_1
(0 = {x;/(x) e 0}

is open in X. A sequence {xn} = {xl9 x2 , . .
. , xn , . . .} of points x„ in X

is said to converge to x (written xn
-> x or lim x

n = x) if each neighbor-

hood of x contains all but a finite number of points of {x„}.

Let X be a topological space with topology T and S be a subset of

X. Then we can define a topology for S to be sets of the form 0 n S,

0 e T. This is called the relative topology of S induced by the topology

T ofX.

If X is a topological space and S a subset of X, a family T of open

sets in X is said to be an open covering of S if every point of S belongs to

at least one element in T. S is compact if every open covering of S
includes a finite subfamily which covers S. S is sequentially compact if

every sequence in S has a subsequence which converges to a point of S.

S is conditionally sequentially compact if every sequence in S has a sub-

sequence which converges to a point of X.

A family of subsets of a set X has the finite intersection property if

every finite subfamily has a nonempty intersection. Using this, one easily
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gets the following characterization of compactness. A subset S of a

topological space X is compact if and only if every family of relatively

closed subsets of S with the finite intersection property has a nonempty

intersection .

If X is a topological space with the property that each pair of

distinct points of X has disjoint neighborhoods, the topology is said

to be a Hausdorff topology.

exercise 2.1. Show that a closed subset of a compact space is

compact.

3. Ways of Generating a Topology

Let X be any set. From the axioms it follows that the collection of

all subsets of X is a topology for X; it is called the discrete topology and

is the strongest topology. From the viewpoint of analysis it has little

value, since with this topology each point is a neighborhood of itself

and this eliminates approximation. On the other extreme is the weakest

topology for X, called the indiscrete topology, which consists of the two

sets 0 (the empty set) and X. It again is quite useless in analysis.

Our next task is to consider ways of generating significant topologies

“between” these two extremes.

Let X be a topological space with topology ZT

.

A base for the

topology 2T is a collection of open subsets J* of X such that any element

of ?T can be written as a union of elements of J1

. Let X be a set and

a nonempty collection of subsets of X which satisfy: (i) For each

xe X there is a Bx e J* such that xe &x . (ii) Given two sets Bu B2 e J’,

if x e B1
n B2 there is a B3 e & such that x e B3

cz B
i
n B2 . We may

then define the elements of a topology 2T for X to consist of arbitrary

unions of elements of$ together with 0. It is easily seen that the axioms

of a topology are satisfied, and X will have $ as base.

A nonempty collection S of open subsets of a topological space X
is called a subbase if the collection of all finite intersections of elements of

S is a base for ?T

.

Let X be an arbitrary set and S a collection of subsets

of X. Then there are certainly topologies for X which contain S (for
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instance the discrete topology), and there is a unique topology for X
containing S, which is weaker than any other topology with this

property. Indeed, since the intersection of an arbitrary collection {$~
a}

of topologies of X is itself a topology, take the intersection of all

topologies containing S. It will be the weakest topology containing S
and as such is unique.

A more constructive way to characterize the unique weakest

topology containing S is by taking all unions of finite intersections of

elements of S
,
together with 0 and X, as a topology for X. This is the

desired topology. It has S as a subbase.

As an example, which will be useful later, let X be any set and let Y
be a topological space with topology 3T( Y ) and {/a ;

a e A] a collection

of functions, each defined on X with range in Y. The weak topology

generated by {/a ;oceTl} is the weakest topology in X under which

each of the functions fa is continuous. This requires that f~\(9) be

an open set in X for each oce A, (9 e 3*(Y). Let S = oce A,

(9 e3T{Y)} and use £, as in the previous paragraph, to generate a top-

ology. This topology with S as subbase is then the weak topology gen-

erated by {/J.

Product Topologies

Let Xu ...,Xn be topological spaces, with a basis for the

topology of X
t

. Their topological product Xt
x X2 x • •

• x Xn is

defined as the set of all ^-tuples (jq, . .
. , xn) with x

t
e X

t ,
taking as a

base for the topology all products U
l
x • •

• x Un of U
t
in @&

i
.

The product X = J*Ja 6 A Xa of an arbitrary family of spaces {X
oc }oceA

is defined as the set of all functions x with domain A and range
(JaeA Xa

such that x(a) e Xa . When the Xa are toplogical spaces a topology is

assigned to X = YIocsa Xa by taking as a base the sets consisting of

products of nonempty open sets Ua with Ua in Xa and Ua = Xa for all

but a finite number of a. With this topology X =
[]a£yi Xa is called the

topological product of the spaces Xa . For each oce A the mapping Pa

defined by Pa(x)
= *(a) is called the projection of X onto Xa . The

product topology above can then be seen to be the weak topology
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generated by the family of projections {P^oleA}. An important

property of topological products, which we state without proof, is

:

Theorem 3.1 (Tychonoff). The topological product of compact spaces

is compact.

Another very useful way of generating a topology for a set X is via a

metric function ,
which is a real-valued function p defined on pairs of

elements of X satisfying: (1) p(x, y) = p(y, x); (2) p(x, z) ^ p(x, y)

+ p(y ,
z)

; (3) p(x, y) = 0 if and only if x = y. Itfollows that the values of

p are greater than or equal to zero. A set X with a metric p considered as a

topological space with base defined by the “ open balls ” {y ; p(y ,
x) < r},

x e X, r > 0, is called a metric space. Any set X may be made into a

metric space by defining p(x, 7) to be zero if x = y and one if x ^ y.

This yields the discrete topology and is trivial. However, an important

question is
:
given a set S with a topology PT, can one determine if dT is a

metric topology; i.e., can a base for the elements of 3T be defined via a

metric function ? If this is possible the topology is said to be metrizable
,

if not it is nonmetrizable. (Necessary and sufficient conditions for a

topology to be metrizable can be given.)

In a metric space X, compactness and sequential compactness of a

set S are equivalent.

A sequence {xn} in a metric space is called a Cauchy sequence if for

every s > 0 there is a positive integer N such that p(xn ,
xm) < s whenever

n , m^N. A metric space is complete if every Cauchy sequence converges

to an element of the space.

exercise 3.1. Let K be the set of all nonempty compact subsets

A, B, ... of ^-dimensional Euclidean space En
. For xe En

the distance

d(x, A) ofx from A is defined by d(x. A) = min{||x — a\\; aey4}and define

2p(A, B)
= max d(a ,

B) + max d(b
,
A).

ae A b e B

Show that p is a metric function for K. (This is called the Hausdorjf

metric for K) If
||
a — b\\ ^ c for all oeA and all b e B, show that

p(A, B) S c. (Here ||x|| denotes the Euclidean length ofxeEu
.)
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4. Linear Topological Spaces

We shall assume the definition and basic concepts of a linear space

X over a field d> are known. The elements of X are called “points” or

“vectors” and the elements of d) are called “scalars.” If X is a linear

space and if S is a subset of X, the span of S is the subspace of X con-

sisting of all finite linear combinations of elements of S. A subspace S
has codimension one if it is not the whole space and if there exists one

element x e X such that the span of S is all of X. A hyperplane is

any translation of a subspace of codimension one. A linear functional

on A" is a scalar-valued linear function defined on X. Note the following

result.

Lemma 4.1 A subset H of a linear space A" is a hyperplane if and only if

there is a nontrivial linear functional x' on X and a scalar c such that

H = {x; x'(x) = c}.

Proof Assume that H is a hyperplane. Then H = x0 H0 where

X = span{//0 u {xt }} 9 xt not in H0 . Then for each x e X, x = ctx
1 + h0 ,

h0 G //0 ,
and this representation is unique. With x'(x) = a, it is clear that

H = {x\ x’(x) = x'Cxo)}-

Conversely, assume H = {x; x'(x) = e} for some scalar c and a

nontrivial linear functional x'. Then there is an x0 such that x'(x0)
= 1

.

Let L be the null space of a'. Then, if x’(x) = d, x — dx0 e L
,
and we

see that {x0 } u L spans X. Hence L is a subspace of codimension one

and H = {x; x'(A) = c} = cx0 + L. This completes the proof.

Thus the linear functional x’ plays the role of the “ normal” to the

hyperplane x'(x) =c. If x0 is a point of the hyperplane, then its equation

can always be written x'(x — x0) = 0. The hyperplane divides the space

into the two “ sides” x'(x) ^ c and x\x) ^ c.

Let A" be a linear space which is also a topological space and let O
be the associated scalar field, either the reals or the complexes with their

usual topology. Then A" is a linear topological space if the mappings
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Oi, x2 ) -> x
x + x2 of X x X -+ X and (a, x) -» ax of O x X -> X are

continuous.

A normed linear space is a linear space X together with a function,

called the norm and denoted
||

•
||,

defined on it which “measures the

distance to zero” of an element of X and satisfies: (1) ||x|| ^0 and

\\x\\ = 0 if and only if x = 0; (2) \\x + y\\ ^ ||x|| + ||j>|| ;
and (3) \\ccx\\ —

|a| ||x||, where xe X and aeO. One may note that given a norm, if we

define p(x, y) = ||x — j||, then p is a metric, and hence the norm can be

used to define a metric topology. It is easily seen that a normed linear

space, understood to have the norm-induced topology, is a linear

topological space. If the normed linear space is complete it is called a

Banach Space.

As an example, we consider the ££
p
spaces. Two real-valued func-

tions defined on the real interval [0, T~\ will be called equivalent if the set

on which they differ has Lebesgue measure zero. Let 1 ^ p < oo be

given. Let X be the linear space of equivalence classes of Lebesgue

measurable functions / defined on [0, T~\ for which l/( T)l
P di < 00 •

For feX we define ll/ll = [jo \f( T )\
P df\ xlp

. With this definition of

norm, X becomes a complete normed linear space which is usually

denoted by i?
p[0,

7
1

].

If X is the space of essentially bounded real-valued functions / on

[0, T], we define ||/||
= ess sup|/(r)| and obtain the complete normed

linear space JT^EO, T~\.

If X and Y are normed linear spaces, a linear operator T:X - Y is

continuous if and only if there is an M > 0 such that ||7x|| ^ M ||x|| for

all x e X. The set of all continuous linear operators from X to Y, with

the usual definitions of addition and scalar multiplication, is itself a

linear space. One may define a norm of an element T in this space to be

|| TH = sup{||7x|| :||x|| = 1}, and the associated norm induced topology

is called the uniform operator topology for the space.

Consider, in particular, the case when X is a normed linear space

and Y is the scalar field O, which is itself a normed linear space. The set

of all continuous linear mappings from X to Y is then the set of all

continuous linear functionals on X. With the norm defined as above,

it is denoted by X' and called the normed conjugate or normed dual

of X.

If X is merely a linear topological space, the linear space of all

continuous linear functionals on X is again denoted by X' and is called
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the conjugate or dual space of X. We will not associate any specific

topology with X' in this case.

It is well known for 1 < p < oo that the normed conjugate space

-£%[0, T~\ of J2?p[0, T] is (congruent to) ^,[0, T~\ where 1 /p + \jq = 1.

Also i?j[0, T~\ is jSf^jT), T~\, but the converse is not true.

5. Convex Sets and the Hahn-Banach Theorem

Let X be a linear space. Note that we proceed first with just the linear

structure of X. A set K in X is convex if, whenever x, y e K, the “line

segment” ax + (1 — a)y, 1, joining x to y also belongs to K.
A point x is called an internal point of a set S in X if given any y e X
there is an e >0 such that x + Sy e S for all real |£| < e. Geometrically,

x is an internal point of S if the intersection of S with any “line”
through x contains a segment with x as midpoint. A point is called a
bounding point of S if it is neither an internal point of S nor of its

complement.

Let A" be a convex set in X which has an internal point. Without loss

of generality we may assume the internal point to be the origin. Define a
real-valued function p on X as follows. Let 7(x) = {« > 0; (l/a)x e K)
and p(x) = inf{/(x)}. Then p is called a supportfunction of K. Geometri-
cally this can be interpreted as follows. For any nonzero point x e X
consider the ray from the origin through x. If p(x) =0, the ray is con-

tained in K. If p(x) >0, the ray leaves K at the pointy = (l/p(x))x, and

y is a bounding point of K. The function p satisfies: 0 <; p(x) < oo;

p(ax) = ap(x), a > 0 ;
p(x + y) ^ p(x) + p(y)

;

if x e K, p(x)^l; in-

ternal points of K have p(x) < 1 ; bounding points satisfy p(x) = 1.

To motivate the Hahn-Banach theorem, and in particular some of its

uses in control theory, let K be a closed, bounded, convex set in En which
does not contain the origin. One may ask: is there a point in K nearest

the origin and if so how may we characterize it? Geometrically we can
define a support hyperplane to be a hyperplane which has a nonempty
intersection with K but such that K lies entirely on one side of this plane.

Intuitively, and actually, in order that a point x e K be closest to the
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origin it must belong to the boundary of K and a support plane to K
containing v must have a unit normal, at which “points to the

origin.”

The Hahn-Banach theorem is an analogous result for more general

linear spaces. A nontrivial linear functional will take the place of a

normal to the hyperplane in the above example. However, the existence

of supporting hyperplanes is by no means obvious or even true, in

general. If X is a linear topological space, it is possible to have a dense

hyperplane in X; i.e., the closure of the hyperplane is X. To avoid this

and to obtain something analogous to the finite-dimensional, geo-

metrically motivated model, we will have to consider hyperplanes of the

form {x e X; x'(x) =c } where x' is a continuous linear functional on

X and c some constant. We will continue for the moment, however,

with the nontopological case. For simplicity, the results will be stated

and proved for real linear spaces (i.e., the associated field is the reals),

although the theorems can be extended to complex linear spaces.

Theorem 5.1 (Algebraic Hahn-Banach Theorem). Let X be a real linear

space and p a real-valued function defined on X which satisfies;

(i) o(cjx) = ap(x), a > 0

(ii) p(x + y) <1 p(x) + p(y).

Let x'0 be a real linear functional defined on a subspace L of X such that

x'0(x) ^ p(x) for all x e L. Then x'0 admits an extension x' to all of X
which is linear and satisfies x'(v) ^ p(x) for all x e X.

Proof\ We may assume L is a proper subspace of X. We first will show

for any y $ L that x'0 can be extended to a linear functional x{ defined

on the space spanned by L and y, in such a way that x^(v) ^ p(x)

on Lv

If x eLu then x = ay -F / for some real a and some l e L, and this

representation is unique. Therefore we must have vi(v) = ax[(y)

+ x f

0(l), and this leaves us with the question of whether or not we

can assign a value to x[(y) which will satisfy x[(x) ^ p(x) for all x eL
x

.

This is equivalent to

ax'iO) ^ + 0 - x'o(l)
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for all real a and all l e L, which in turn is easily seen to be equivalent to

-p(-y- pi)- x'o(Pl) g x'lOO ^ p(y + I61)
- 4080

for all real /? and all leL. Again this is equivalent to

m = sup(-p(-y - l) - x '

0(/)) g x'0(y) g inf(p(y + l)-x'0(l)) = M.
leL leL

If we knew that m ^ M, then by assigning x[(y) any value between

m and M we would obtain a suitable extension x[ of x'0 to L
x

. Now for

any lu l2 e L

x’oih) - x'o(l2 ) = xo(/i - l2 ) ^ p(l i - h) ^ p(l
i + y) + p(-l 2 - y)-

Therefore

-p(-l 2 -y)~ x’0(l2 ) ^ p(/ x + y) - xo(/j)

for all li, l2 e L. Hence m M and this shows we can properly extend

x'Q to Lv
Wo now form a partially ordered system ^ of all linear extensions

x' of x'Q which satisfy x'(x) g p(x) on the domain of x'

.

The partial order

relation is defined by x[ ^ x’2 if x’2 is an extension of x \ . We have shown,

above, that & is not empty. Also any completely ordered subset has

an upper bound, the extension defined on the union of the domains of

definitions of the extensions in the totally ordered subset. Applying

Zorn’s lemma gives a maximal extension of x'0 ,
which must necessarily

be defined on all of X. Indeed, if there were a point y not in its domain,

our above argument shows that we can extend this functional to include

y in such a way that the desired inequality with p holds. Therefore this

maximal element is the required functional.

Theorem 5.2 Let M and N be convex sets in a real linear space X.

Assume that M has at least one internal point and N contains no in-

ternal point of M. Then there is a nontrivial linear functional x' such

that x'(x) ^ c for x e M and x'(x) ^ c for x e N. (When x' has this

property it is said to separate M and N.)

Proof. Assume, without loss of generality, that 0 is an internal point of

M. Let x0 e N and define

K=x0 + M — N = {x0 + m — n: m e M, n e N}.
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Then K is convex, M = x0 + M — x0 a K, and since 0 is an internal

point of M it is an internal point of K.

We next show that x0 is not an internal point of K. Suppose it were.

Then M — N = K — x0 would have 0 as an internal point. For any

y # 0 and some positive a, the point ay would belong to M — N; i.e.,

ay = m — n for some me M, n e N, or (ay + n)/(a + 1) = m/(a+ 1).

Suppose, in particular, we choose y e N. The left side of the above equality

is a point on the line segment joining y to n in N, and hence belongs to

N since N is convex. Since 0 is an internal point of M, it readily follows

from the convexity of M that mj(

a

+ 1) is an internal point of M. This

contradicts the hypothesis that N contains no internal points of M.

Therefore x0 is not an internal point of K.

Now let p(x) be the support function of K. Then p(x0) ^ 1 and p

satisfies the hypotheses of Theorem 5.1. To apply this theorem define

Xq on the one-dimensional subspace L spanned by x0 as follows:

x'0(ax0) = ap(x0), a real. Then if a > 0, x'0(ax0) = p(ax0), while if

a ^ 0, x'q

(

ax0) ^ 0, which is less than or equal to p(ax0).
Theorem 5.1

now applies and yields an extension x' of x'0 defined on all of X and

satisfying x'(x) g p(x).

For x e K
,

x'(x) ^ p(x) < 1 while x
f

(xQ) = p(x0) ^ 1, and x r

separates x0 and K. But points in K have the form x0 + m — n 9 me M
and neN. Hence x'(x0 + m - ri) g 1, and x\x0) ^ 1 implies x\m - n)

^0 or x'(m) ^ x'(n), me M, neN. With c =sup{x'(m); m e M} this

implies x' separates M and N.

We now consider analogous theorems for normed linear spaces. If

K is a convex set in a normed linear space X
,
an interior point of K

(i.e., a point with a neighborhood contained in K) is an internal point

of K. The converse is not necessarily true.

Theorem 5.3 (Topological Hahn-Banach Theorem). Let x'0 be a

continuous linear functional defined on a linear subspace L of a real

normed linear space X. Let ||*o|| L = sup{|xo(x)|; x eL, ||x|| = 1}

denote the norm of x'0 on L. Then x'0 may be extended to a continuous

linear functional x’ defined on all of X without increasing its norm.

Proof. Let p(x) = ||xoIIl M- Then p satisfies the conditions of Theorem

5.3, and, in fact, p is a norm on X. Thus there exists an x' defined on all
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of X, which extends x{>, such that x'(x) ^ p(x) = ||x^|| L ||x||, -x'(x) =
x'(~ x) S p(—x) =

\\
xo\\ L \\x\\ which together imply |x'(x)| ^ p(x) =

II*oIIlM f°r ad xeX. This shows that x' is continuous and
II-* II

=
11*0 IIl •

Before deriving a separation theorem analogous to Theorem 5.2,

we shall prove two lemmas. These lemmas, and Theorem 5.4, which
follows, can be extended to include linear topological spaces. (This
is not the case, however, for the corollary to Theorem 5.4.) For our
needs, and for simplicity, we confine ourselves to normed linear spaces.

Lemma 5.1 A linear functional x' on a real normed linear space X
is continuous if and only if its null space L = {x; x'(x) = 0} is closed.

Proof, If x' is continuous its zeros from a closed set. This shows
necessity. For sufficiency we may assume x' ^ 0 and its null space L is a

closed hyperplane. By linearity, it suffices to show continuity at the

origin.

Suppose x0 is such that x'(x0) = 1 . ThenM = x0 + L - {x
;
x\x) = 1

}

is a closed hyperplane (Lemma 4,1), not containing the origin, on
which x f

has the yalue 1.

Since M is closed and does not contain 0, r = inf{||x||
;
x g M} >0.

If x'(x)^0, then (1jx\x))xeM and hence |x'(x)| ^ (l/r)||x||. This
shows that x' is continuous.

Lemma 5.2 If a linear functional x' on a real normed linear space X
separates two sets, one with an interior point, then x' is continuous.

Proof, We first note that a hyperplane is either dense in X or closed.

Indeed ifL is a hyperplane. La Lc X (the bar denoting closure). Then
either L = L or L= X. For if L were not closed L contains elements
not in L. Since each is a linear space (the closure of a linear subspace is

easily shown to be a linear subspace) and L has codimension one, L
must be X.

Let M be the set with the interior point and suppose x'(x) c for

x e M. With a translation, if necessary, we may assume c >0. Then the

null space L of x' is disjoint from M. Since M contains an interior

point, L cannot be dense in X. Hence being a hyperplane L is closed,

and, from Lemma 5.1, x' is continuous.
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Theorem 5.4 LetM and N be convex sets in a real normed linear space

X. Assume thatM has at least one interior point and that N contains no

interior point of M. Then there is a nontrivial continuous linear

functional x' such that x'(x) ^ c for x e M, x'(x) ^ c for x e N. Further-

more ifM is open, x'(x) < c for x e M, x'(x) ^ c for x e N.

Proof. Since an interior point is an internal point, Theorem 5.2 applies

to yield a linear functional x' which separates M and N. From Lemma
5.2 this functional must be continuous.

Suppose that M were open and contained a point x0 such that

x'(x0) = c. From the continuity of x' it would follow that the inverse

image of some real neighborhood of c would be contained in M, con-

tradicting x'(x) ^ c for all x e M.

Corollary 5.1 If X is a real normed linear space, xl9 x2 e X, xt ^ x2 ,

then there exists a nontrivial continuous linear functional x' such that

x'(x
x ) / x'(x2 ). This implies also that if x'(x) = 0 for all continuous

linear functionals x' on X9 then x =0.

The proof follows from the previous theorem by taking an open

ball about x
t
which does not contain x2 . This generalizes to linear

topological spaces X with the property that for any two distinct points

x1? x2 in X there is a convex neighborhood of one which does not

contain the other.

6. Dual Variational Problems and the Foundations of Moment Problems

Theorem 6.1 Let M be a linear subspace of a real normed linear space

X and let d denote the distance from some point x to M. If x' e X'

vanishes on M then |x'(x)| ^ rf||x'||. Furthermore there exists a linear

functional x' e X', vanishing on M, for which equality holds.

Before undertaking a proof let us look at the geometric meaning of

this result. Let M° denote the continuous linear functionals which

vanish on M. Then the theorem states that

d = inf ||x — m\\ = max{x'(x); x' e M°, ||x'|] = 1}.

m eM
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In Euclidean space this means geometrically that the length of the pro-

jection of x on each unit vector x' which is orthogonal to M is less than

or equal to the distance d from x to M. Furthermore there exists a unit

vector x' orthogonal to M for which |x'(x)| = d.

Proof. Since the result is trivial when d = 0, we assume d> 0. For

m e M and x' e M°, |x'(x)| = \x'(x — m)\ ^ ||x'|| ||x — m\\. Hence

|x'(X)| g inf ||x'|| || x — m\\ or |x'(x)| ^ d||x'||.

m e M

We next must construct a linear functional in M° for which equality

holds. We first define a continuous linear functional Xq on the span

{M, x} and then extend it to all of X by Theorem 5.3.

An element in span {M, x} has the form ax — m, meM\ define

Yq

(

ax — m) = ad. Then if a = 0, x'0{ni) = 0; i.e., x'0 vanishes on M. Also,

since M is a subspace, 0 e M and a^(x) = d. To show that x^ is con-

tinuous, note that

11411 = supl
1^— meM, <xx - m ¥= o]

{
||
ax - m||

J

(Uo(x - m/a)h d
= sup = sup = 1

m l \\x
— m/a|| j m || a — m\\

by the definition of d. By Theorem 5.3, x^ has a continuous extension

to all of X which satisfies the requirements of the theorem.

The Second Dual Space

If A" is a normed linear space, then X' is also a normed linear space,

and hence X" (the space of continuous linear functionals on X') is

again a normed linear space with ||x"|| =sup{|x"(x')|
;

||x'|| = 1}. We
define a linear mapping J: X -> X'\ called the canonical imbedding

,
by

the equation (Jx)(x') = x'{x) for all x' e X\ x e X. It is clear that J is

well defined; i.e., if Jx = x'/, Jx = x^ then (xj — x^Xx') = 0 for all

x' g X\ which implies x'[ = x^ . The normed linear space X is said to be

norm reflexive if J is onto. We shall show that the mapping J is always

one-to-one and norm preserving.
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To show that J is one-to-one, suppose x
t ^ x2 . By the corollary to

Theorem 5.4 there exists an x' e X, such that x'(vi) / x'(x2 ), hence

x'(x
t ) = (Jx^x') ^ (Jx2)(x') = x'(x2 ). To show J is norm preserving,

take M = {0} in Theorem 6.1. Then M° = X' and we obtain

Ml = max{x'(v); M|| - 1). (6.1)

Let Jx = x". Then

Ill'll = sup{|x"(x')l; Mil = !}

= sup{|x'(x)|; ||x'|| = 1} = || x |

.

The next result is dual to Theorem 6.1.

Theorem 6.2 Let M be a linear subspace of a real normed linear space X
and let M° be the set of continuous linear functionals in X' which

vanish on M. For any x'0 e X' of distance r/from M°

d= min{||xo - e A/ 0
}
= sup{xo(x); xeM, ||xf = 1} = ||xi|| M ;

i.e., the minimum on the left is actually attained by some m'0 e M°.

Proof. If meM, Jm vanishes on M°. Applying Theorem 6.1 to

M° c=X' gives

|*o(m)| = \(Jm)(x'0 )\ ^ d\\Jm\\ = d\\m\\ or ||x^|| M ^ d.

To complete the proof, we will construct m f

0 e M° such that d

IIxo
- /Wq II

= Ikollw • By Theorem 5.3 there is an x' e X' which agrees

with x'0 on M and with jjx'f = (|Xo || M • Take m'Q = x'0 - x\ Then m'0

vanishes on M and

||xolL ^ d = inf{||xo - m'J| ; m' e M 0
} <; \\x’0 - m'0 \\

= ||x'|| = \\xq\\ m .

Therefore equality holds for m '

0 .

This theorem is the basis for many results in moment problems.

The next theorem is similar to Theorem 6.1 but replaces the sub-

space M by a convex set K\ i.e,, it characterizes the distance from an

arbitrary point to a convex set. It has many applications, particularly in

linear control theory, convex programing, and game theory.

Theorem 6.3 Let K be a convex set in a real normed linear space and let

x0 be a point a positive distance d from K. Then
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d = inf || x — x0 ||

= inf max x'(x — x0 ) = max inf x'(x — x0 ),
xeK xeK = I \\x'% = 1 xeK

(6.2)

the maximum being achieved by some x' el'

For purposes of statement and proof, there is no loss of generality

in assuming a translation has been made so that x0 = 0. The statement

equivalent to (6.2) then becomes

d= inf ||.v|| = inf (max *'(*)) = max (inf *'(*)), (6.3)
xeK xeK ([^c'

||

- 1 xeK

where the maximum is attained by some x[ g X' and furthermore

Xi(t) ^ d for all x e K (d > 0).

Proof. Wc shall prove (6.3). The first equality is a definition, the second

merely uses (6.1) to replace ||x|j
7
and the third is the one we must prove.

For each x' e X\ ftx'll = 1, we know x'(x) ^ ||x||. Thus inf* e

K

x'(x)

ginf^K |*|| = d. We will show that there exists an x[ e X\ ^ 1

with x\ (x) > d for all x e K ,
which will show that maxjj*,| _ 1

(inf
JC e K x'(*))

= d and thus complete the proof. Note that this will imply \\x
f

t ||

= 1

.

Let S be an open ball about the origin of radius d. Then S n K = 0
and by Theorem 5.4 there exists a nontrivial continuous linear func-

tional x'0 and a constant c such that x'0(y) < c for y e S, x'0(y) > c for

y e K. Since S’ is a ball about the origin, c > 0 and we may take c = 1

.

Let *i = dxo . Then x[ (y) < d for y e S
, x\ (>’) ^ d for y e K and

|| x j ||

= sup |*{(*)| = sup |dxo(x)| = sup |xo(x)| ^ 1.

11*11
= 1 11*11 = l 11*11

= d

Therefore xi is as desired and it achieves the maximum indicated on

the right in (6.3).

Corollary 6.1 Let K be a convex set in a real normed linear space X
and *0 be any point in X. Then x0 belongs to the closure of K (denoted

K) if and only if, for each ||x'f = 1, x'(x0) ^ sup{x'(x); xeK}.

Proof If x0 eK and |x'|| = 1, certainly x'(*0) ^ sup{x'(*); * e K}.

On the other hand if *0 its distance to K is positive and (6.2) implies

the existence of an x\ fjx'fl
= 1, such that 0 < d = infxeK x'(x) — x'(x0)

or x'(a'o) > infxe K(-^'W) = supxeK x’(x).
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7. Weak and Weak * Topologies

Let Ibea normed linear space and X' its normed dual space; i.e.,

the space of continuous, linear, scalar-valued functions on X. Elements

of X' constitute a set of functions which can be used, as in Section 3,

to generate another topology for X, which is the weak topology gener-

ated by X' . This will be the weakest topology for X under which the

elements of X' are still continuous.

Taking into consideration that a base for a topology may be formed

by taking all finite intersections of elements of a subbase, a base for the

weak topology ofX consists of neighborhoods of the form

N(x0 , e ,
A') = {x e X; \x'(x - x0)| < e, x' e A'}

where s > 0 and A' is a finite subset of X'. The weal topology of X is

sometimes denoted dT{X, X '), the topology of X generated by the

elements of X'. From the corollary to Theorem 5.4 it readily follows

that given two points x1? x2 e X with xt ± x2 ,
there are disjoint weak

neighborhoods of the points. This shows that the weak topology is a

Hausdorflf topology.

One may easily show that the weak topology of En
is the same

as the usual Euclidean metric topology. However, for an infinite-di-

mensional Banach space, the weak topology is not metrizable. A
sequence {x„} in a normed linear space X converges weakly to

x (converges in the weak topology) if and only if the scalar sequence

{x’(xn — x)} converges to zero for each fixed x'eX'. Geometrically

this means that the distance (in norm) from x„ to each hyperplane

through x tends to zero.

From Corollary 6.1 and the definition of weak neighborhoods one

may easily show that a convex set K cz X is closed in the norm topology

ifand only if it is closed in the weak topology. Indeed, the weak topology

is weaker than the norm topology, hence K closed in the weak topology

implies K closed in the norm topology. Conversely if x0 $ K Corollary

6.1 shows we may find a weak neighborhood of x0 disjoint from K.

Thus the complement ofK is open in the weak topology and K is closed.
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If X is a normed linear space, X' and X

"

are both normed linear

spaces. The canonical imbedding / of Section 6 yields a one-to-one

correspondence between X and the range of /in X". Therefore, we can

consider elements a; of X as continuous linear functionals on X' with

x(x') = (,Jx)(x '). This means that X' has two quite natural weak
topologies: that induced by X" which is the weak topology for X'
[denoted 3~(X

X

")], and that induced by the elements of X. The
latter is called the weak * topology and denoted 3~(X\ X). If X is

reflexive (i.e., / is onto) the weak and weak * topologies for X' are the

same. If X is not reflexive, the weak * topology of X’ is weaker than its

weak topology, One may easily show that a normed linear space, with

either the weak or weak * topology, is a linear topological space.

Lemma 7.1 Let X' be the normed conjugate space of a real normed
linear space X and x'l5 x2 be two distinct points in X'. Then there exists

an element xel such that (/x)(xi) ^ (Jx)(x'2). Essentially, this shows
that the weak * topology of X r

is a Hausdorff topology,

Pvoof. Since x[ and x'
2

are distinct, there is an x for which x[(x) ^
x2 (x), from which the result follows.

The weak topology was defined so that the linear functionals which
were continuous on X with its norm topology are still continuous when
Xhas its weak topology. This leads to:

Lemma 7.2 Let T be a continuous linear mapping from X

\

with its

norm topology, to En
. Then T is continuous as a mapping of X, with its

weak topology, to En
. (E

n
is Euclidean n space.)

Let r=(fl5 ..,f„) be a continuous linear mapping from X\ with

its norm topology, to En
such that the components T

t
of T are repre-

sentable as elements of X. Then T is continuous as a mapping of X',

with the weak * topology, to En
.

Since the weak topology of an infinite-dimensional Banach space is

not a metric topology, sequences and compactness versus sequential

compactness must be handled with care. In particular, one may have a

point x in the weak closure of a set S such that no sequence in S con-

verges weakly to x. Thus a generalized notion of sequence, in particular

one in which the index set has larger cardinality than that of the integers,
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is needed. This has led to the definitions of nets and filters, which how-

ever will not be dealt with here. To stress, again, what may happen in an

infinite-dimensional Banach space X with its weak topology we point

out that it is possible to construct a sequence {x„} such that every weak

neighborhood of zero contains a point of {xn} yet {xn} has no sub-

sequence converging to zero.

One may wonder why the normed topology of a normed linear space

should be discarded in favor of the weak topology. For our purposes, the

main reason is the following. A set S which is not compact in the strong,

or norm, topology may be compact in the weak topology. The weaker

the topology, the more likely a set will be compact. For instance, with

the indiscrete topology for a set X, every subset is compact. It is easily

shown that the closed unit ball in an infinite-dimensional normed linear

space is not compact in the norm topology. On the other hand, a result

which is basic to control theory is:

Theorem 7.1 Let X be a real normed linear space. The closed unit ball

S' = {pc' e X'l ||x
,

|| ^ 1} of X' is compact in the weak * topology

Proof. Let ® denote the scalar field. For x e X let dx be the closed unit

disk {X e 0:|A| ^ ||x|| } in <J>. Then dx is compact. Define C = Yixex dx -

By Tychonoff’s theorem (Theorem 3.1) C is compact. An element c e C
can be considered as a function on X with value c(x) e dx ;

then |c(x)| ^
||x||, and C can be considered as the set of all such functions.

For x' e S' we have |x'(x)| ^ ||x||
;
therefore, we may think of S' as a

subset of C. In particular, with x' e S' we associate the element c e C
such that c(x) = x'(x).

Let C/S' denote the complement of S' in C. We will show that C/S'

is open in C and hence S' is closed in C and therefore compact. Since the

topology X) of S' is just the relative topology of S' induced by

the topology of C, S' will have been shown to be compact in the weak *

topology 3T{X\ X).

It therefore remains to show that C/S' is open in C. Now c0 e C/S'

maps X into E' and is not linear. Therefore either (i) there exist x
x ,
x2 e X

such that CqCxj) + c0(x2) c^Xi + x2) or (ii) there exists a e E' and

xe X such that c0(ocx) # ac0(x). In Case (i) there exists an e > 0 such

that c0{xx ) + rj
l + c0(x2) + rj 2 ^ c0(x1 + x2) + rj 3 for all ^ e (-£,£)
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and

{c e C; |c(Xi) - c0(x2)\ < e, \c(x2) - c0(x2)\

< e, |c(a', + x2)
- C0(A! +x2)\ < e}

is open, contains c0 ,
and is in C/S'. In Case (ii) there is an e > 0 such

that c0(ax) + r\
t ^ occ0(x) + rj 2 f°r aH

*1i
E (
— 8) and

{c g C; |c(ax) — c0(ax)| < e, |ac(x) — ac0(x)| < e}

is an open set in C/S' containing c0 . Therefore C/S' is open and this

completes the proof.

Corollary 7.1 Let X be a real normed linear space and Q
r

<= X' be

bounded in the norm topology and closed in the weak * topology of X'.

Then Q

'

is compact in the weak * topology ^(X'
9 X),

Proof. Since Q' is bounded in the norm topology, it is contained in a

sufficiently large closed ball of X' . From Theorem 7.1 the closed unit

ball of X' is weak * compact; clearly a closed ball of any finite radius

is also weak * compact. Thus Q' is a closed subset of a compact set,

hence compact.

8. Extreme Points, Exposed Points, and the Liapunoy Theorem

Let X be a linear space and K a set in X. A point x e K is an extreme

point of K if whenever x = oik
1 + (1 — ot)k2 ,

ku k2 e K,0 < oc < 1, then

Ay = k2 . In words, x is an extreme point ofK if it cannot be written as a

proper convex combination of two distinct elements of K. IfK is convex

this is equivalent to stating that x is an extreme point ofK if x is not the

midpoint of any nondegenerate line segment in K. Although the concept

of extreme point does not depend upon the topology, we often have to

use topological methods to establish their existence.

Now let X be a linear topological space and letK be a set in X. If there

is a nontrivial linear functional rj' such that inf{rj'(x — y)\ x e K} = 0,

then the hyperplane through y defined by {x e X; rj'(x — y) = 0} is
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called a support plane n(rj) ofK at y. Since rj'(x — y) ^ 0 for all c e K, the

functional tf can be thought of as an “ inner normal ” to K at y and K is

said “ to lie on one side ” of this hyperplane. A point x e K is an exposed

point of K if K has a closed support hyperplane at x which has only x

as its intersection with K. Since the closed support hyperplanes are sets

on which a continuous linear functional is constant, the concept of an

exposed point is relative to the topology of the space. For X a non-

reflexive Banach space, it is possible to have a convex set K' c= X'

such that x' is an exposed point of K' when X' is considered with its

weak topology but not an exposed point in X' with its weak * topology.

An exposed point will always be an extreme point, but even in E2

it is possible to have a convex set with an extreme point which is not an

exposed point. Indeed consider a unit circle S 1
in the plane and a point

p outside S 1
. Draw the tangents from p to S 1

,
intersecting S 1

at points

q and r. Then the line segments pr and pq together with the larger arc

qr of S 1 bound a convex set. The points q and r are extreme points of this

set which are not exposed.

Lemma 8.1 (Krein-Milman). Let X be a real linear topological space

with the property that for any two distinct points x
x
and x2 of X there

is a continuous linear functional x' with x'{x
x ) ^ x'(.x2). Then each

nonempty compact set K of X has at least one extreme point.

Proof. A nonvoid subset A of K is said to be an extremal subset of K
if whenever a proper convex combination ockl + (1 — a)k2 ,

0 < a < 1,

of two points of K is in A then both kx
and k2 are in A. Clearly K is

always an extremal subset of itself and an extremal subset of K which

consists of a single point is an extreme point.

Suppose x
l
and x2 are distinct points of X and x' is a continuous

linear functional such that x^Vj) / x'(v2 ). Then, in the scalar field, there

are disjoint open convex neighborhoods of x'(xi) and x'(x2). The in-

verse images of these neighborhoods, under x', will be disjoint open

neighborhoods of xx and x2 in X which shows that X has a Hausdorff

topology. In a Hausdorff space, compact sets are closed (Exercise 2.1),

and therefore K has at least one closed extremal subset; i.e., K itself.

Let be the nonempty family of closed extremal subsets of K
,

partially ordered by set inclusion. Any totally ordered subset of

has a minimal element (the nonempty intersection of the elements of the
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totally ordered subset
;
that the intersection is nonempty follows from the

compactness of K). By Zorn’s lemma has a minimal element A 0 .

Suppose A 0 contains two distinct points xx and x2 . Let a' be a con-

tinuous linear functional such that a'C^i) ^ x\x2) and define /? =
inf{x'(A); x e A 0 }. Then A t = {x e A 0 ;

x'(x) = /?} is a closed, nonempty,
proper subset of A 0 . Since A 0 is an extremal set, if ku k2 eK and
cck

l + (1 - a)k2 is in A
x

for some 0 < a < 1, then ku k2 e A 0 . But
from the definition of Au it follows that ku k 2 e Av Therefore A

t is a

proper, closed, extremal subset of A 0 and this contradicts A 0 being the

minimal elements of Therefore A 0 contains one point, and this is an
extreme point.

In the development of linear optimal control theory Liapunov’s

theorem on the range of a vector measure [1] played a fundamental role

and was first used to establish what is called in control theory the

“bang-bang” principle. This important result can be stated, in a more
general fashion than we shall do here, as a theorem in abstract measure
theory and can be given a direct proof which is, however, both long and
complicated. The result which we give here is adequate for linear con-

trol theory and can be proved quickly with the tools we have already

developed. We will first prove a result which later will provide us with

an existence theorem for optimal control and will aid us in obtaining

information about the form of optimal control. Next we will prove a

“bang-bang” principle and this and the previous result will give us

Liapunov’s theorem. This reverses the way Liapunov’s theorem was
first used in control theory, which we will discuss later, and this will

show the essential equivalence of Liapunov’s theorem and the “ bang-

bang” principle.

Theorem 8.1 Let / be any subset of the real line having finite Lebesgue
measure and let A* = {u e &J1); 0 <; u(t) <; 1}. Let y be a (column)

vector-valued function with components yu ...,yn in 1). Then the

set of points

M =
jj

y(r) u{t) dx\ weT

is convex and compact.

Proof. Since ¥ is the translation by the function \ in SPJJ) of the

closed ball of radius \ in &JJ), it is weak * compact by Theorem 7.1.
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Let T be the mapping from SPJJ) to En
defined by Tu = ^y(t) u(t) dx .

This is certainly a continuous mapping of &JJf relative to its norm
topology. Since (I) = ££ it follows from the second statement in

Lemma 7.2 that T is continuous relative to the weak * topology of

o^
7

00 (7). T is continuous and linear, T is weak * compact and convex,

and therefore its image T^F) = M in En
is compact and convex. This

completes the proof.

For E any subset of the real line the characteristic function Xe i s

defined to have the value Xe(0 — 1 f°r t 'm E and to be zero elsewhere.

Theorem 8.2 (The Bang-Bang Principle). Let 7,
VF, and M be as in

Theorem 8.1. Define T 0 = {

x

E ;
E a measurable subset of 7} and

M° = |j
>>(t) u°(t) dr; u° e T 0

Then M° = M.

Proof. The proof we give is patterned after the proof of the more general

theorem given by J. Lindenstrauss [2]. The theorem is not true if y is

allowed to take values in an infinite-dimensional Banach space and it is

not surprising that the proof will be by induction on the dimension n.

Let T be as defined in the proof of Theorem 8.1. It is clear that

M° <= M. Now M cz M° if, for each a = (au . .
.

,

an) e M, T~ 1

(a) =
{ue x¥;Tu = a} contains a characteristic function. Since T is con-

tinuous, the inverse image of a closed set is closed. Therefore T~\a)

is a nonempty, closed, convex subset of the weak * compact set Q,

which shows that T~ 1
(a) is weak * compact since the weak * topology

is a Hausdorlf topology. It follows from Lemma 7.1 that the conditions

of Lemma 8.1 are satisfied, and therefore T~ 1
(a) has extreme points.

We shall show that an extreme point of T~ 1

(a) is of the form yE for

some measurable subset E of 7.

Let u be an extreme point of T~ 1
(a) and suppose there is an e > 0

and a subset E
i of 7, having positive measure, such that s ^ u(t) ^ 1 — e

on E
x . It will be shown that this implies the existence of a nonzero

h e SejT) such that —h + u and h + u are both in T~ 1
(a); i.e., that u is

the midpoint of a line segment in T~ 1
(a) which contradicts its being an

extreme point.
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Since the proof for n = l is equivalent to the induction step, only

the induction step will be given. We assume the theorem true for n — 1

and will show it to be true for n.

Let E2 <= El
be such that both E2 and E3 = E

x
— E2 (the complement

of E2 relative to Ex ) have positive measure. (This is possible for a

nonatomic measure such as Lebesgue measure.) Applying the induction

hypothesis, with / replaced, respectively, by E2 and E
3 ,

there are

measurable sets F2
ci E2 and Ed

cz E
d
such that

f y.A) Xf2
(t) dr = -j y-.Mdr, i = 1, . .

. , (n - 1).
j e2

2Je
z

yM n-ii?)

=

z >’i(
T
)
dt, i = i !)•

] e , 2 Je 3

Define h 2 = - xjt 3
and /r 3 = 2 ~ Xe ,

Then

|
h 2 (x) j/;(t) dx = 0, /= 1, . - i), |/r 2 (t)| ^ 1,

and h 2 is not zero on E2 . Also

f y t
(T) dx = 0, f = l,2 (n — 1), |/7 3 (t)| ^ 1,

J
£l

and h 2 is not zero on £3 .

Consider h{ t) = ah2
(r) 4- /?/? 3

( r). We desire |a|, |/2| < e, a
2

4- /£ > 0,

and a, /? such that

f ^(t) T„(t) rfr = a[ h 2 (t) yn(T) cfr + p f /i 3 (t) 4„(t) dr
‘Ti J

£i

= 0 .

Clearly this can be done. With such a choice of a and /?, /7 is not

identically zero in E
x ;

it is zero elsewhere in /, |/?(t)| < e, and

J/ K T) dx = 0. Therefore —h + u and u 4- h belong to T~\a),

giving a contradiction to w being an extreme point.

Combining Theorems 8.1 and 8.2 we then have immediately:

Corollary 8.1 (Liapunov’s Theorem on the Range of a Vector

Measure). The set M° is convex and compact.
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In a form that we want later on we have, as a corollary of

Theorems 8.1 and 8.2,

Corollary 8.2. Let Y be an n x r-matrix-valued function with com-

ponents yu in ^[0, /*]. Let Q be the set of r-vector-valued measurable

functions u whose components Uj satisfy \uft)\ ^ 1, j = 1,

.

.
. ,

r. Let

Q° be that subset of Q for which \uj(t)\ = 1, j= 1,...,2. Then

{Jo Y(z) u(t) dz
;
u e Q} is symmetric, convex, and compact and

|j
Y(z)u(z)dz; u e

q| =
j
J

Y(z)u°(z)dz; i/°eQ°j. (8.1)

Proof. Let y
j denote the jth column of Y. Then

f Y(t) u(r) dz = j] f y
J
(z) Uj(z) dz. (8.2)

J 0 j- 1 ^0

Define

Rj =
|jo

Uj(t) dx ; Uj e fllj,

Rj =
|

y
J
(x) Uj(x) dx; u°e

£2°
J,

and using the notation of Theorems 8.1 and 8.2,

Mj = |£
y
j
(x) Vj(x) dx; Vj e 'p|,

M°j = {£
y
j
(x) v°j(x) dx; v°j e T°j.

By Theorems 8.1 and 8.2 we know that Mj is convex and compact and

Mj = Mj. With Uj(z

)

= 2vj(z) — 1 we see that Q and D° are affine

transformations of 'F and x¥°. Therefore Rj and R° are affine transfor-

mations of Mj and Mj
,
and hence Rj is convex and compact and

Rj = R Then (8.1) and the convexity and compactness of R =

{Jo Y(z) u(z) dz ; u e Q} is an easy consequence of (8.2). Since Q is

symmetric, R is symmetric, and this completes the proof.

Another interesting consequence of these results is

:



26 I. FUNCTIONAL ANALYSIS

Corollary 8.3 (Richter [3]). Let 1 be any subset of the real line having

finite Lebesgue measure and let G be any function defined on / with

values in the set of subsets of En
. Define K = {^s(x) ch

;
s measurable,

s(x) e G(t)}. Then K is convex.

Proof. If there are no measurable functions, or at most one measurable

function s on I with values ^(t) e G( t), the result is trivial.

Assume, therefore, that s° and s
1

are measurable on / with values

s
l

(t) e G( x). Let r
t = {/^(t) dt and 0 < a < 1. We will show there is a

measurable function/ with s°(t) g G(t) and ^/(t) dx = 0ro + (1 — 0)r
L

.

Consider the 2/z-dimensional vector-valued function s
2 = (s°, s

l
).

By Corollary 8.1, {|j s
,2
(t) /£(t) dx: E is a measurable subset of

/} is convex in E2n
. For E — 0 and E = /, we see that 0 and

(\I s°(x)dx, \I s
l (x)dx) belong to this set; hence there is an Ee such

that (lEo s
0
dx , dx) — dx, dx). Define

/(t) = (*°W
\s

l

(x)

for x g E
q

for x e I — E0 .

Then

f s°( t) dx=
|

s°(t) dx -j- f ^(t) dx
I * E0 *

1 1-Eo

= 0ro + (1 - 0)rv

This completes the proof.

Theorems 8.1 and 8.2 have been stated for the special case 0 ^
u(t) ^ 1, thereby simplifying the proofs and statements and readily

yielding the important Corollary 8.2 which is fundamental for con-

sidering linear control systems with the control u a measurable r-vector-

valued function with component values \uft)\ ^ 1. For simplicity of

presentation and notation, this is the type of admissible control function

considered throughout most of the monograph. However the possibility

of extending future results to include controls which are measurable

functions with values in an arbitrary compact set U (which may vary

with time) contained in E r depends on a generalization of Theorems 8.1

and 8.2 and Corollary 8.2, which we now give.

Let / be a subset of the real line having finite Lebesgue measure;
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let or
be the simplex, in real (r + l)-dimensional space Rr+l

,

and let V(ar

) be the set of r + 1 vertices of or
. We will use the notation

J£
r
f\l) to mean the topological product of S£Jf) taken with itself

(r + 1) times. Then u e =$P
r + x

(I) implies that each component u
{
e 2JJ)-

Theorem 8.3 Let Y(t) be an n x (r + l)-matrix-valued function with

components in Then
{J7 Y(r) u(r) ch: u measurable, w(t) e or

for t e /} = {J7 Y( t) u{ t) dr: u measurable, u(r) e V(or

), i e /} and both

of these sets are compact and convex

Proof. To simplify notation, let

'Y = {ue&r
+'(I):u(t)eor

,
tel}

4'° = {w e JSC'+'CI): u(t) e V(a
r

), tel}

and define

T :
<£r + 1

(/) -> E" by Tu =
J

Y(x) u(t) ch.

Clearly T is convex and bounded in the norm topology; hence, by

Corollary 7.1, if we can show T is weak * closed it will be weak * com-

pact. Suppose u° is a weak * limit of T which does not belong to T.

Then there is a set E <= I of positive measure such that u°(t) $ or
for

t e E. One may readily establish the existence of an e > 0 and ;/ e Er+X

such that the inner product (;/, £) ^ C if and (/?, < C — e

for t in a subset E
l
of E having positive measure Define a function

"’(0 = (h’o(0» • • • ,
»v(0) in by

w(t\ = for teE u
iV>

\0 for t$E
x

.

Then w separates u° and lF, contradicting u° being a weak * limit of T.

Thus T is closed, convex, and weak * compact. By Lemma 7.2, T is

weak * continuous; therefore T XY = {Tu: ue x
l
J
} is a compact, convex

subset of En
.

To complete the proof we must show the equality of TT and THj0
.

Clearly TT 0 aT x
Y. If a e TT, T~\a) n T is a weak * compact, convex
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subset ofT and hence, by Lemma 8.1, has an extreme point u. The proof

will be complete if we can show u is in T°.

Suppose V(ar

) consists of (r + 1) points; enumerate them

as v°, . .
.

,

v
r

. Then there is a set E
l

<=. I having positive measure and

such that
|

u(t) — v
l

\

> s > 0 for all t e El
and / = 0, . .

.

,

r. We will

show this implies the existence of a nonzero h g £P
r + x

(J) such that

— h + u and h + u are both in T~\a) n T; i.e., that u is the midpoint

of a line segment in T~\a) n T, contradicting its being an extreme

point. We will construct h so that u(t
)
+ h{t) g cr for t g ElJ h{t) — 0 for

t g I — El9 and
j£)

Y(t) h(z) ch — 0. This will show both —hYu and

h + u are in n T as required.

Let E2 a E1 be such that both E2 and E3 = E1
— E2 (the comple-

ment of E2 relative to E
x ) have positive measure. This is possible for a

nonatomic measure such as Lebesgue measure. We will give an induc-

tion argument for the construction of h
,
the induction being on the row

dimension n of the matrix Y(t). For the remainder of this proof, y
l

(t)

will denote the /th row of the matrix Y(t) and (y\t ),
h(tj) the inner pro-

duct of y
l

(t) and h(t) in Er+1
.

For n = l order the elements v°, . .
.

,

v
r
of V(o

r

) and define Fj =

{t e E2 \
\u(t) — vj

\

equals the distance from u(t) to V{cr
r

)
with j the

smallest index for which this equality holds}. Clearly Fj n F
t — 0 if

i t
"4h \J

r
j=oFj = E2 and eac^ Fj ls measurable. Define h2 on E

2
by

defining its restriction to Fj as (1/2r)(u(t) — vJ), j = 0, . .
.

,

r. Then

h 2 Y 0 on E
z
and u{t) ± h

2
(t) g ar

. Extend h
2
to be zero on I — E2 . We

define a function h
3 on E3 similarly. Let h{t) = och

2
(t) + /?/?

3
(/). Clearly

we may choose |a|, |/?| ^ 1, a
2 + > 0 such that

f h(t))dt = a f (y'(t),h
2
(t))dt + p f (/(0

J E ,

J E2
J E 3

/1
3
(0) dt = 0

and for such values a, /?, h is as desired.

Now use the induction hypothesis for n — 1 with the set E
1

re-

placed by E2 . Thus there exists a nonzero measurable function h
2

defined on E2 ,
with u{t) ± h

2
(t) e or

,
such that jE2

(/( t), h
2
(x)) dx = 0

for i = 1, 2, . .
.

,

n — 1 and h
2

is zero on I — E2 . Similarly apply the

induction hypothesis with E
l
replaced by E3 to obtain a nonzero func-

tion h
3

defined on Ez with u(t) + h
3
(t) e or

,
^(/(t), h

3
(x)) dr = 0,
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/= 1, — 1 and h
3

is zero on I — E3 . Consider h(t) = oih
2
(t)

+ ph 3
(t). Again choose |a|, |/?| ^ 1, 0 < a

2 + fi

2 and such that

0 = f (/CO, *(0) dr = oc f (/(t), /i
2
(t) + p f (/(t), /i

3
(t)) dr.

J E2
JE3

This completes the induction step for the construction of h, and thereby

completes the proof.

Let F be a function defined on the real interval I with values F(t)

nonempty compact subsets of a fixed compact set in En
. We shall

assume F is continuous in the Hausdorff topology (see Exercise 3.1) but

this can be weakened to F measurable (see the remark following the

proof of the next theorem).

Define

J
F{t) dx = jj /(

t) dx: f measurable, /(t) g F(t), x el

and let co F denote the function with values co F(t) the convex hull of

F(t). The desired generalization of Corollary 8.2 is:

Theorem 8.4 (Aumann [4]). J7 F(t) dx = Jj co F(x) dx and both are

convex, compact, subsets of En
.

Proof. Convexity follows from Corollary 8.3.

We next show the equality. Certainly
|7 F(t) dx a j7 co F{x) dx.

Suppose y e J/CO F(x) dx. Then y = J7 /(t) dx for some measurable /
with values /( t) g co F( t). By Caratheodory’s theorem (Eggelston [5],

p. 34) for each x el the pointf{x) e co F(x) may be written as a convex

combination of n + 1 points of F(x); i.e.,

r), f(T) e F(t)
i=0

(8.3)

0^f,(T)gl, t«,(T)=l.
i = 0

We let <^(t) denote the vector function (<^0(^) 5 • • • ,
^„(t)) g an

.

The proof of the theorem will be completed under the assumption

that the functions % i9 f
l can be chosen as measurable. This will then be

proven in Lemma 8.2 which follows. Let the vectors/'(/) be the columns



30 I. FUNCTIONAL ANALYSIS

of an n x (n + 1) matrix Y(t). By theorem 8.3 there exists a measurable

vector function £*(0 = . .
. , £*(/)) taking values in the vertices of

the simplex on
such that

J/(0
dt =jm %(t) dt = jr(t) {*(0 dt.

Now £?(*)- {? for all t and i and £"=o£?(0-l- Let /, = {/£/:

£*(r) = 1}. Then each 7
(

is measurable, y”=0 I
t
= 7, 7

(
. n Ij = 0 if

/ ^ j. Define /*(r) =/!

(r) for t e 7
;

. Then /* is measurable, /*(f) e T7^)
and Jj/*(0 dt = hf{t) dt

,
showing F(7) <7/ = J7

co F(/) dt.

To show compactness we need only show
Jj

co F(t)dt is compact.

Let A = {fe f(t) e co F(t ), t e I}. Then, since each F(t )
is closed

and bounded, A is a closed, bounded, convex subset of J^CO- From

Section 7, A is closed in the weak topology. But JSPJW * s reflexive so the

weak and weak * topologies are the same. Corollary 7.1 then shows that

A is weakly compact. Define J> : JF
n
2{l) En by >(/) = Jj/(t) dr. Then

J is weakly continuous; hence ./(A) is compact, i.e., Jj co F(t)dt is

compact. This completes the proof.

remark. Define a compact set valued function F to be measurable

if, for any closed set D a En
, {/ g 7: F(t) r\ D ^ 0} is Lebesgue

measurable. Plis' [6] has proven the following generalization of Luzin’s

theorem.

Let F be a measurable set valued function defined on 7 with values

nonempty compact subsets of E'\ Then given any e > 0 there exists a

closed set B a I with measure differing from that of 7 by less than £,

on which F is continuous in the Hausdorff topology.

We next will state and prove the representation lemma needed to

complete the proof of Theorem 8.4. Note that it is this use of the lemma

in completing the proof of Theorem 8.4 that requires continuity (or

measurability) of F. The lemma will be stated so that the proof is self-

contained for the case F continuous and complete except for the proof of

Plis' theorem of the preceding remark for the case F measurable.

Lemma 8,2 (Filippov [7]). Let g(y) = g(v1 , . .
. ,

vm) be a continuous

/7-vector-valued function of the m real variables vl9 ..., vm . Let H{t)

be a continuous (measurable) function defined on the real interval 7 with
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values nonempty compact subsets of a fixed compact subset of Em
.

Define

^(0 = {g(v): V E

Then if r(t) is a measurable function with values r(t) e R{t) there exists a

measurable function v(t) with values in H(t) such that r(t) = g(v(t ))

almost everywhere in /.

Proof. For given r e R(t ) we select from these v e H(t ) which satisfy

g(v) = r the one with smallest first component. If there is more than one,

we take that with the smallest second component, and so on. The

smallest values exist since g is continuous, H(t ) is compact, hence

g~\r) n H(t) is compact. We shall show by induction that the functions

v
x
(t), . .

.

,

vm{t) so chosen are measurable. Suppose v
x
(t), . .

.

,

vs _ x
(t) are

measurable. (If a* = 1 there is nothing to assume.) We must show that

vs(t) is measurable. By Luzin’s theorem, for any e > 0 there exists a

closed set E cz 1 of measure greater than g(I) — e such that r(t ), v
x
(t), . .

.

,

vs _ x
(t) are continuous on E. (If we deal with the case H measurable we

use Plis’ generalization of Luzin’s theorem as stated in the preceding

remark to include H continuous on E.) We will show that, for any

number a
,

{ t e E: v
s
(t ) ^ a } is closed.

Suppose not. Then there exists a sequence {/„} in E such that

tn -*t'e E, vs(tn) ^ vs{t') - e, > 0. (8.4)

Since |fi(/)l

'

s bounded by a constant for ail i and t, a subsequence of the

tn can be chosen (we assume it is the original sequence) so that *;,-(/„)
->

v\ for /= 1,2, ...,/??. Since v(tn) e H(tn) and H is continuous on E
and //(/') is closed, (v\, . . ., v'm)

= v' e From (8.4) and the con-

tinuity of the functions v i9 i = 1, 2, . .
.

,

s — 1 on E, it follows that

v'i = t') for i = 1,2 1

,

' lK J
(8.5)

v
s ^ V

s
(t’) - £

x
.

Taking a limit in the identity g(v
x
(tn), . .

.

,

vm(tn))
= r(tn) and using the

continuity of g we obtain g(v
x
(t '), . .

. ,
vs _ x

(t'), v
'

s ,
. .

.

,

v'm)
= r(t').

From this and (8.5) we see vs(t') is not the smallest value of vs satisfying

the equation g(vx(t '), . .
. ,

vs _ x
(t'), vs ,

. .
.

,

vm)
= This contradicts

the definition of vs(t ) ;
thus {t e E: v

s(t) ^ a} must be closed. This shows

vs is measurable on E. Since E cz I and the measure g(E) differs from
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ji{I) by at most e with s > 0 and arbitrary, v
s
is measurable on 1 and the

induction step is complete, as is the proof.

To use Lemma 8.2 in the proof of Theorem 8.4 choose

g(s 9 p
0,...,n= i bp* and H(t) = o”

+i xF(t)x---xm
i = 0

with F(t) appearing n + 1 times in the product. Then, in (8.3), / is a

measurable function with values /(r) in ^(rr"
+

F(r '), . . . , F(t)'). By

Lemma 8.2 we may take the functions £;(/), fit) satisfying (8.3) to be

measurable.

9. Finite-Dimensional Vector Space

Although we assume throughout a knowledge of linear algebra and

finite dimensional vector (linear) spaces, we discuss them here briefly

in order to introduce notations we shall adopt throughout. Let V„ be

an n dimensional vector space over the reals, and let
(j

1

,
.

,
be a

basis of V„. Then each £ in V„ is uniquely represented by £ = x^ 1

+ Xl -| + xn
This then establishes an isomorphism between V„

and n dimensional real space R" with the one to one mapping of V„

onto R" defined by

We assume a knowledge of matrix operations, and denote the vectors in

R" by column vectors {n x 1 matrices). If A is an n x k matrix, A’

denotes its transpose. Thus the scalar or inner product of two vectors y

and x in R" is

y'x = y1
x

1 + ••• + y„x„

and

|x|
2 = x'x = xx

2 + • • + x„
2

.

This defines a norm on R" making it a normed linear space often

denoted (as we have previously done) by £". We shall, however, use the

notations Rn and E" interchangeably.
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In Rn we write |*| for ||x||. This makes the basis . .
.

,

C an orthonor-

mal basis. If rj = y^
1 + •

• + yn C and £ = x^ 1 + • •
• + xn this

induces an inner product ( rj
, Q = y'x in Vn . With this inner product Vn

is a normed linear space that is congruent (isometrically isomorphic)

to Rn
. If rj' is a linear function on Vn (rj' e V„), then

iXO = y'*>

where £, = x^ 1 + • •
• + xn £

n and y t
= rj'(£

l

). Each linear functional can

be represented as an inner product and Vn is reflexive.

In general, if A is an n x k matrix, we define

||,4 1|

= max{||v4x|| ;\x\ = l, xe Rk
}.

Thus, ||^4 1|

2
is the maximum eigenvalue of A'A. Note also that ||y42frc|| ^

M|| • IIJJ^II ^ Mil • ll^ll ‘ 1*1, and therefore

M*ll ^ Mil * Mil.

In Section 8 above we defined support planes and exposed points

for general linear topological spaces. We now wish to confine ourselves

to n dimensional Euclidean space Rn
. Here the linear functionals are

given by the inner product ( t/, x) = rj'x, where rj e Rn
. If

x = and r\ —

then rj' = (rju ...

,

rj2 ) is the transpose of y\ and rj'x = r]
l
x

1 + • •
• + rjn xn .

Thus all linear functionals are continuous and all hyperplanes defined

by r\'x — const are closed. For finite dimensional vector spaces we then

have the following result:

A hyperplane in Rn
is said to separate two sets if they lie on opposite

sides of the hyperplane. Since the closure of a convex set is closed we
shall confine ourselves to closed convex sets.

Theorem 9.1 Let K be a closed convex set in Rn and let w be a point

of Rn not in K. Then there exists a support plane of K at the point w*

ofK closest to w that separates K and w ,
and is normal to w — w*.

Proof. Since d = d(w
,
K) = infyeK \y — w\ > 0, there exists a sequence

y
n
e K such that

\
w — y

n
\

-» <ias n -* oo. Since the sequence y
n
is bounded,
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it has a limit point w* in K and d = \w — w*\. By Theorem 6.3

d = \w — w*| = inf rj'(w — y) for some \rj\ = 1.

yeK

Hence

|
W — W*

I

= f]'(w — W*) ^ I

W — W*|,

rj'(w — w*) =
|

w — w*\,

and therefore

w — w*

For y e K,

rj'iy
— vr*) = q'(w — w*) — rj'(w — y) ^ 0

;

i.e., the hyperplane n normal to rj at w* is a support plane to K. Since

the line segment from w to a point y of K intersects n in exactly one

point, w* is unique.

Corollary 9.1 Let K be a closed convex set of Rn and let w(t) be a

continuously differentiable function on [0 ,
£*] to Rn

. If \v(t)$K for

0 <; t < t* and w(t *) 6 K, then there is a support plane 71(17) to K at

h{/*) with outward normal 77 and such that rj'w(t *) ^ 0. (w = dw/dt.)

Proof. For each w(t), 0 ^ t < t
*

9 let w*(t) be the point ofK closest w(t).

By Theorem 9.1 there is a support plane to K normal to

_
w(t) - w*(Q

which separates w(t) and K for each 0 ^ t < t*. Since the unit sphere in

Rn
is compact and w*(^ e K are bounded, there exists a sequence tn

such that tn -+t
*

9
w*(t)->qeK

,
and 77 C^)

—
> ^ (|^| = 1 ) as n -> go. It is

easy to see that q = vr(/*) and 71(77) is a support plane of K at w(f*).

Since

0 < j/'(0(w(0 - >v*(/„)) = j?'(OI>0„) - v‘V*)] +

and

n’(t„)(Mn - < 0
,
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it follows that

W(t*) - wfa) \

t* - tn I

< 0 .

The proof is completed by letting n -> oo.

Corollary 9.2 Through each point of the boundary of a closed convex

set in R" there is a support plane.

Proof. This is a simple special case of Corollary 9.1.

The above corollary is not true for infinite dimensional linear

topological spaces even if K is assumed to be compact and the boundary

point is assumed to be an extreme point.

For later use we define now the concept of “strict convexity.” A
closed convex set K is said to be strictly convex if it contains more than

one point and each of its boundary points is an exposed point; that is,

each support plane has exactly one point in common with K. It is not

difficult to see that a strictly convex set in Rn
has a nonempty interior

(Exercise 9.1).

exercise 9.1. Show that each strictly convex set in Rn has a non-

empty interior.

exercise 9.2. Let M be a closed convex set in Rn and N a compact

convex set in Rn
. IfM and N do not intersect, show that M and N have

parallel support planes each of which separate M and N.

exercise 9.3. Let M(t) and N(t) be set functions on [0, /*] to the

set of nonempty compact convex sets of Rn which are continuous

relative to the Hausdorff metric for compact sets in Rn
. If M(t) and N(t)

do not intersect for 0 t < t* and intersect for t = t*, show that M(t*)

and N(t*) have a common support plane that separates M(t*) and N(t*).

exercise 9.4. Let A be a closed convex set of Rn and let M(t) be as

in Exercise 9.3. If N and M(t) do not intersect for 0 ^ t < t* but N
and M(t*) intersect, show that M(t*) and N have a common support

plane that separate M(t*) and N.
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10. Linear Differential Equations

For the most part the differential equation of interest to us will be

of the form (x = dx/dt )

x = A{t)x+f{t), (10.1)

where A is an n x n matrix-valued function and /is an n vector-valued

function whose components (ay and /•) are Lebesgue summable on

finite intervals of [0, oo). A function * on [0, oo) to R" will be said to be

a solution of (9.1) on [0, oo) if x is absolutely continuous on [0, oo)

and satisfies almost everywhere on [0, oo)

x(t) = A(t) x(t) +/(/).

Assume for the moment that /= 0 and that there does exist a solu-

tion <p(t) = x(t; t0
,x°) on [0, oo) of

x = A(t) x (10.2)

satisfying <p(t0) = x{t0 ,
t0 ,x°) = x° (r0 A 0). Then with V(x) =

x'x = |x|
2

4 V(cp(t)) =
at

and

— 2||A(0II \<p(t)\
2
g j: V(q>(0) g 2|M(t)|| \<p(t)\

2
-

at

Hence

— 2||A(0H V(cp(t)) g £ V(<p(t)) g 2|M(t)|| V((p( 0),
at

which implies

jt

exp
|^2 Jj*

||/4(t)H dtj b((p(0) ^0

and

jt

exp[-2|'||A(T)MTjF(<p(t)) ^0.
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Together these two inequalities imply

exp jVwiI dt V(x0) ^ V(cp(t)) ^ exp 2 f

L J
t0

MW II
dT V(x°)

(10.3)

or

exp -2
f MW ||

dr l*ol ^ l*0> t0 >x°)l ^ exp f IMWMt

for all t, t0 ^ 0. It then follows immediately from (10.3) that x(/, t0 , 0)
= 0. The zero function is the unique solution on [0, oo) of (10.2) satisfy-

ing x(t0)
= 0.

Assume now that x(t,t09 x°) is a solution of (10.1) on [0, oo)

satisfying x(t °
,
t0 ,

x°) = x°. Since the difference of two solutions of

(10.1) is a solution of (10.2), the solution x(t, t0 ,x°
), if it exists, is

unique.

We will next show that a solution X(t 9 10), t0 ^ 0, of the matrix

differential equation

X = A(t) X
, (10.4)

satisfying X(t09 /0) = L exists on [0, oo). X(t
9 10 ) is called the principal

matrix solution of (10.4) at t0 . In fact, we will show that

*o) = * + f A(ti) dt
x + f A(t2 ) f A(ti) dt

1
dt2

J
to J

t0
J

t0

+ * ‘
* + [ f A0n-l) *

*
‘ A(t2 )

J
to

J
tO

A2

x A(t^) dt± dt2 • . . dtn + *
*

.

jto

This can be written in a more manageable form. Let M be the set of

continuous n x n matrix valued functions $ defined on [0, oo) and

define the transformation T of M into itself by

T(®)(0 = /+ (* A (t) ®(t) dx.
J
to
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Then the above formula can be written

X(t, t0)
= lim T"(I)(t).

n~* oo

It is not difficult to see that

\\T
n
(I)(t)\\ ^ 1 + (\\A(r)\\dr + •"+- (\\A{r)\\dr

J
t0

nl J
tQ

S exp[ijw dx

Therefore lim„^ oc T"(I)(t) - F(t) exists and is continuous on [0, oo).

For Lebesgue integrals it follows easily that

T(F(t)) - / + I A(x) lim T”(/)(t) dx
''to n~*co

= lim (i 4- f A(r)T”(I)(r) dr
n-> oo \ ^ to

= lim T"
+1

(J)(l) = F(t).
n~r 00

Hence

F(t)
= I 4- f A(r) F(r) dr.

0

Therefore F(t) is absolutely continuous and is a solution of (10.4) on

[0, oo) satisfying F(t0 )
= I. This establishes the existence of the solution

we want and F(t )
= X(t

,
/0).

We then obtain immediately by uniqueness

X(t, f) X(tu t0) = X(t, t0) (10.5)

for all nonnegative t
,
tu and t0 ,

since both sides of the equality satisfy

(10.4) and the same initial condition at t = t
l

. With t = t0 in (10.5) we

see that X(t
,
/0) is nonsingular for all t^ 0 and

X(t09 ti) = X 1
(t0 , ti).

Now it can be either derived or simply verified that the solution

x(t, t0 ,
x°) of (10.11 satisfying x(t0 ,

t0 ,
x°) = x° is

x(t, t0 ,
x°) = X(t

,
t0)x° + f X(t

,
t) /(t) dr

J
to

( 10 .6)
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for all nonnegative t and t0 and all x° e Rn
. If, in particular, we take

t0 = 0 and define X(t) = X(t
, 0) then X(t, t0) = X(t) X~\t0), and we

obtain

x(t, 0, x°) = X(t)x° + X(t) (x~\x) /(t) dx. (10.7)

When A is a constant matrix we will write

x = Ax + /(/). (18.8)

Since A is a constant matrix, X(t , /0) will depend only on t — t0 ,
and

again by uniqueness we will have X(t, t0) = X(t — t0 , 0) = X{t — t0)

and X{t) X(t0) = X(t + t0) for all t and t0 . Thus for constant matrices

we use X(t) to define the matrix exponential and adopt the notation

X(t) = e
At

. It is the solution of X = AX satisfying 3f(0) = I. With this

notation the solution x(t ,
x°) of (10.8) satisfying a(0, x°) = x° is

x(t, x°) = e
At
x° 4- e

At
f e~

Ar
f(t) dx (10.9)

for all t and all x° e Rn
.

The case that will interest us most is

x = A(t) x + B(t) u{t ), (10.10)

where A and B are n x n

-

and n x r-matrix valued functions whose

components are Lebesgue summable on finite intervals of [0, co) and u

is an r-vector-valued function whose components are measurable and

bounded on finite intervals of [0, oo). Then f{t) = B{t) u(t) has sum-

mable components on finite intervals of [0, oo) and

x(f, x°, u) = X(t)x° + X(t) (x-\x) B(x) m(t) dx (10 11)

is the solution of (10.10) satisfying x(0, x°, u) = x° for all t ^0.
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11. The General Linear Time Optimal Problem

We consider a control system described by the vector differential

equation

x(t) = A(t) x(t) + B(t) u(t) (x(0 = dx(t))
J)

with fixed initial data x(0) = x°. The vector

will always be n dimensional, A and B are n x n- and n x r-matrix-valued

functions, respectively, with components summable over finite real

intervals, and

is a measurable vector-valued function with values u(t) constrained to

lie in a compact set U of Rr
. Let x{t\ u) denote the absolutely continuous

solution of (11.1) satisfying x(0) = x°. The existence and uniqueness

of this solution was discussed in Section 10. The problem is to deter-

mine a control w*, subject to its constraints, in such a way that the

solution x(t
;
w*) of (11.1) reaches a continuously moving target z(t) in

Rn
in minimum time t* ^ 0. Such a control u will be termed time

optimal
,

or, as we shall say throughout, simply optimal. Since the

generalization to continuously moving compact sets is not difficult, we

restrict ourselves to z(t

)

a continuously moving point; that is, z{t)

defines a continuous curve in the state space Rn
. A rendezvous with an

orbiting satellite in minimum time presents a problem of this type.

Another example is the problem of stabilizing the growth of population

in minimum time.

43
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This time optimal problem admits a natural geometric interpre-

tation which motivates a method of solution. Define

= {x{t\ w); u measurable, u(t) e U for t e [0, t]}. (11.2)

The set ja/(t) is called the attainable set at time t and consists of all

possible values that solutions of (11.1) can assume using all admissible

controls. Obviously, hitting the target z at time t is equivalent to

z{t) e c For example, if U consists of a single point u° e E”, (11.1)

has a unique solution x(t; u°) and s0(t) = {x(t; u0)}. In this case, and

even more generally, it is easy to see that sY(t) and z(t) may never have

points in common.
The existence of an optimal control depends on the following. Is

there some value of t ^ 0 for which z(t)e ^{t )—a question of “con-

trollability”—and if so, letting r* = inf{t; z{t) e is there an

admissible control u

*

such that x(t*\ u*) = z(f*)? For the linear

system considered, we shall see that the second question is equivalent

to the question of whether or not is closed.

Along with the attainable set we shall consider a related set

9l(t). Let X(t) be the principal matrix solution (see Section 10) of the

homogeneous system x{t) = A{t)x{t) [X(0) = /, the identity matrix].

Then for an admissible control u (that is, a measurable control with

values in U) the solution of (11.1) is given by

x(t ; u) = X(t)x° + X(t) f X~ 1
(t) B(t) u(t) dx.

Jo

Define

Y(x) = X~\x) B(t), w(t) = X~ 1
(t) z(t) - x°. (11.3)

An equivalent optimal control problem is then to find an admissible

control u for which w(t) = J
f

0
Y(x) u{x) dx for a minimum value of t ^ 0.

If we let

0l(t) = {y{t\ u); u measurable, u(x) e U}, (1 1.4)

where y(t; u) = Jo Y(x) u{x) dx
,
then

J*(t) = X(t)[_x° + mi = {X(t)x° + X(t)y
; y e <*(*)} (11.5)

and z(t) e stf(t) is equivalent to w(t) e &(t). Many properties of &(t)

can be immediately translated to similar properties of stf(t) since t )
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is a translation of &(t) followed by a linear transformation X(t). This

set 8%(t) is called the reachable set at time t.

The reachable set &(t) gives a simpler description than does

of the effect of the control on the system. Another and useful way of

looking at this is that under the change of coordinates defined by

x = X(t)y the system equivalent to (11.1) is

y=Y(t)u(t). (11.6)

Then y(t;u) is the solution of (11.6) satisfying y(0;u) = 0 and the

objective is now to hit the moving target w(t) in minimum time. Thus

w* is optimal if and only if w(t*) e &(t*) and w(t) $ &(t) for t < t *
;
t* is

the minimum time.

In order to avoid certain complications it will be convenient to take

U to be the unit cube Cr
in Rr

. Here Cr — {u e Rr

;
\uj\ S 1,j= 1,2,

. .
.

,

r}. The admissible controls u are then those whose components Uj ,

j — 1,2 ,
. .

.

,

r, are measurable on finite intervals with — 1 ^ Uj(t) ^ 1

for all t ^ 0. Actually what we do here can be extended to U any com-

pact set (even this can be weakened) in Rr
. However the results of Sec-

tion 14 become more difficult to prove and the notation throughout

becomes more cumbersome. These generalizations can be accom-

plished with the aid of Theorem 8.4.

12. General Properties of the Reachable Set and the

Bang-Bang Principle

Since we are now restricting ourselves to values of the control

function in the unit cube Cr of Rr

,
the set of admissible controls on

[0, /] is given by

Q[0, t] = {u; u measurable on [0, /], u{t) g Cf

, 0 ^ t ^ t }. (12.1)

The reachable set &(t) is then

*(0 = jj
Y(t) u(t) dz; u e Q[0, t]

j.
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By assumption the components of the matrix B are in ^[0, f], the space

of Lebesgue summable functions on [0, f], and X~ x
is an absolutely

continuous matrix function on [0, /]. Hence the components of Y =
X~ xB are in <^[0,/]. Now M{t) is obviously symmetric for each

t > 0, since ue Q implies — u e Q, and hence we have by Corollary 8.2:

Lemma 12.1 The reachable set &t(t) is symmetric, convex, and compact

for all t ^ 0.

The second part of Corollary 8.2 contains what is called in control

theory the “bang-bang” principle. The set of bang-bang controls on

[0, r] is

fl°[0, t~] = {u ; u measurable, |w/t)| = \J = 1, . .
.

,

r, % e [0, £]}•

These are the controls which at all times utilize all the controls available.

Then

«°(t) = |j

r

Y(t) u°(t) dx, u° e Q°[0, f]

j

is the set of points reachable by bang-bang control. By Corollary 8.2

we have

:

Theorem 12.1 (The Bang-Bang Principle).

0l{t) = @°(t) for each ^0.

This says that any point that can be reached by admissible control

in time t can also be reached by bang-bang control in the same time. It

had been an intuitive assumption for some time that if the control for a

system is operating from a limited source of power and if it is desired

to have the system change from one state to another in minimum time,

then it is necessary at all times to utilize all the power available
;
that is,

to use bang-bang control. The intuitive feeling is that, if full power is

not being used, the use of the additional power available can always

speed up the process. In his paper [8] in 1952 Bushaw accepted this

hypothesis (and for his problem this was correct) but in this strong form

the hypothesis is not always a valid one. There are cases—and we will

see simple examples of this later—where there can be more power

available than can be used effectively and optimal control is not neces-

sarily always bang-bang. However, the bang-bang principle does say
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that if there is an optimal control
,
then there is always a bang-bang

control that is optimal. Hence if optimal control is unique it is bang-

bang.

This bang-bang principle was first proved in [9] using Liapunov’s

theorem on the range of a vector measure (Corollary 8.1). In Section 8

Liapunov’s theorem was shown to be a consequence of the bang-bang

principle, and hence the two are equivalent.

There are several other properties of the reachable set that are of

importance which we would like to establish now. For the first of these

it is convenient to make the set of all nonempty compact subsets of Rn

into a metric space (see Section 3, Exercise 3.1) by defining the distance

p(A, B) between two such subsets A and B to be the smallest real number

d so that A is contained in a d neighborhood of B and Bm&d neighbor-

hood of A. We then have:

Lemma 12.2 &(t) is a continuous function on [0, oo) to the metric

space of compact subsets of Rn
.

Proof. For each /0 = ^ and f ^ 0

I
y(t; u) - y(t0 ; u)|

J
Y(t) u{x)dx < fVttHI dx

J
t0

It then follows, from the definition of the metric p, that

p(R(t), R(to)) = jW)ll dx

The conclusion of the lemma follows since
Jfo

||7(T)|| dx is absolutely

continuous.

The following is also a result we will need later:

Lemma 12.3 If y is in the interior of 0t(t*} for some t* > 0, then y is

an interior point of &(t) for some 0 <t<t*.

Proof. Let iVbea neighborhood of y of radius e inside &(t*). Suppose

for each 0 < t < t* that y is not an interior point of &(t). Then by

Theorem 9. 1 and Corollary 9. 1 there is for each 0 < t < t* a hyperplane n t

through y such that &(t) lies on one side of n
t

. Because of the neighbor-

hood N of y that is inside ^(/*) there is then a point q of <%(t*) whose
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distance from 0l(t) is at least e for each 0 <t<t*. This contradicts the

continuity of 0l(t) and completes the proof.

In the proof of the above lemma we made use of the fact that 0l{t) is

closed, convex, and continuous. It is instructive to note that convexity

is essential. Consider the set 0t{t) shown in Fig. 12.1, where the angular

slice closes continuously and at time t* has closed along the dotted line

and 3%(t*) is a disk. Then at time t* the point y is in the interior of $(t*)

but at any time t < /* the point y is an exterior point of M(t).

13. General Theorems on Optimal Control

On the basis of what has gone before we are now in a position to

obtain a thorem on the existence of optimal control and a necessary

condition for a control to be optimal. The geometric ideas behind the

proofs can easily be illustrated for dimension 2. Suppose that the

reachable set &(t) and the moving target w(t) are as shown in Fig. 13.1.

The target cannot be reached in time t
1
[Fig. 13.1a] but by time t2 it is

possible to hit the target, w(t2 ) e @L(t2 ) [Fig. 13.1b]. The set <%(t) is

growing continuously, w(t) is moving continuously, and one then

expects that at some time t* between tx and t2 the situation will be as

shown in Fig. 13.1c. This will be the first time w(t) hits &(t); that is,
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w(t*) = y(t*; w*). The time /* will be the minimum time, and will

be an optimal control. The point w(t*) will be on the boundary of

^2(£*), and, since ^2(t*) is convex and closed, there will be a support

plane n(r]) at w(t*). This we will now show is the general picture of what

happens, and it will give us an existence theorem and a necessary con-

dition for optimal control. The existence theorem will state that if it is

possible to hit the moving target using an admissible control, then there

is an admissible control that is optimal. At the moment we have no

information about when it is possible to hit the moving target and this

is a question of controllability which we will return to later (Section 19).

The necessary condition for optimal control gives information on the

form of optimal control and this is a special instance of Pontryagin’s

maximum principle. As we shall see later, this necessary condition is not

always sufficient and the information it gives on the form of opitmal

control may not be complete. It may, in fact, happen that it gives no

information at all.

We have defined admissible controls u relative to an interval [0, t~\.

We will say that a control u defined on [0, oo) is admissible if it is

admissible on each finite interval [0, t), t ^ 0; that is, |w/t)| ^ 1 for

each j = 1, .

.

. ,
r and t ^ 0 and u is measurable on each finite [0, t],

t ^ 0. Let Q denote the set of all admissible controls. We have that Q
is convex and note also that it has the following property: if u

x and u
2

are in Q and E is any measurable subset of [0, oo) then the control u

defined by u(t) = u
x

(t) on E and u(t) = u
2
(t ), elsewhere, is also admissible

(u e Q).



50 II. LINEAR TIME OPTIMAL CONTROL

We then obtain the following existence theorem as a consequence of

the fact that w(t) is continuous and M(t) is continuous and closed:

Theorem 13.1 (Existence of an Optimal Control). If there is a control

u e Q and a t
x ^ 0 for which x(t

l ;
u) = z(q), then there is an optimal

control.

Proof. The assumption of the theorem is equivalent to vr(c) e ^(q). Let

t* = inf{/ : w(t) e &(t)}. Now 0 ^ /* ^ q and there is a nonincreasing

sequence of times tn converging to t* and a sequence of controls u
n
e Q

with w(tn) = y(tn ,
u
n
) e ^(O- Also

K'*) - y('*> «")l ^ Mt*) - KOI +

1

y(tn ,u”) - y(t *, «")|

^ |
w(t*) - w(OI + f

||
Y(t)|| dx.

J
t*

By the continuity of w(t) and the integrability of
||
Y(r)|| it follows that

y(t *, un

)
-x w(t*) as n -> oo. Since y(t*, un

) e &(t*) for each n and

is closed, h’(/*) e@k{t*). Hence K**) = y(t* 9 w*) for some u* e Q and,

by the definition of t* 9 u* is optimal.

Given two vectors a
,
b in Rk we denote the inner product by (a ,

b)

or simply by a'b. In keeping with matrix notation a and b are column

vectors and a\ the transpose of a
,
is a row vector. We shall also use the

notation

a = sgn b (13.1)

to mean aj — sgn bj9 j = 1
9 . . k, where sgn bj = 1 if bj > 0, sgn bj =

— 1 if bj < 0, and when bj = 0 sgn bj is undefined. Thus Eq. (13.1) is

to be thought of as “ a is of the form sgn b ”

—

a satisfies (13.1) wherever

sgn bj is defined.

Consider, for instance, in the y coordinates the trajectory y(t
;
u)

defined by

y(t;u)=
|

y(x) m(t) dr.
J 0

Then y(t, u) is a solution of

y = Y(t ) u(t). (13.2)



13. GENERAL THEOREMS ON OPTIMAL CONTROL 51

Let a nonzero ^-vector q define a direction in Rn
. Suppose that what we

want to do is find an admissible control u that maximizes the rate of

change of y(t; u) in the direction rj
;
that is, we want to maximize

n'y = n Y(t)u(i).

Since rj'Y(t) u(t) = Yj=i W Y(ty]jUj(t), we see that if w* is of the form

w*(0 = sgn[// 7(0], rj # 0, (13.3)

then rf Y(t) u*(t) = Yj=i IW Y(t)]j\. Hence for all weQ

rj
f

7(0 u{t) ^ rj' 7(0 w*(0 for all t ^ 0 (13.4)

and

rj' y(t;u) ^rj' y(t;u*) for all / ^ 0. (13.5)

To dwell on this for a minute, Eq. (13.3) means for each j = 1
, . .

. , r

that m*(0 = sgn[f/' 7(0] j
when [^'7(0]j ¥= 0. For instance, if[77' Y{r)j]

# 0 almost everywhere, 7 = 1, . .
.

,

r, then almost everywhere |w*(0| = 1,

j = 1, . .
.

,

r, and we say that n* is determined by (13.3). When |w*(0| = 1

almost everywhere for j = 1, . .
.

,

r we say that the control w* is bang-

bang.

Thus a control w* maximizes rj'y(t
;
w) over all admissible controls

if and only if «* is the form (13.3). Therefore for any fixed > 0 and

any u* of the form (13.3) the point q* = >>0*
;
w*) is on the boundary of

^(t*). Moreover, rj'(p — q*) 0 for all e ^0*) and the hyperplane

n(rj) through q* normal to rj is a support plane to at q* (?? is an

outward normal to this support plane). Note also that, if u
1
is any other

control of the form (13.3) then y(t *; w
1

) lies on this hyperplane n{rj).

Conversely, if q* is on the boundary of then by Lemma 12.1

and Corollary 9.2 there is support plane n(rj) of @(t*) through q*
9
and

we may take rj, which is a nonzero vector, to be an outward normal.

Hence we have proved the following:

Lemma 13,1 A point q* = y(t*
;
n*) is a boundary point of &(t*) with

rj an outward normal to a support plane of ^£(/*) through q* if and

only if m* is of the form u*(t) = sgn [rj
f

7(0] on [0, /*] for some rj ^ 0.

From Lemmas 12.3 and 13.1 we obtain immediately:
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Theorem 13.2 (A Necessary Condition for Optimal Control). If «* is

an optimal control with t* the minimum time, then w*, is of the form

u*(t) = sgn\yj' Y{t )] on [0, f *] for some nonzero vector rj.

Proof. Since t* = 0 is trivial, we assume t* > 0. We want to show that

w(t*) =y(t*; w*) must be on the boundary of ^(?*), for then Lemma
13.1 will tell us that w* is of the form (13.3) on [0, /*]. Assume that

w(t*) is an interior point of Then by Lemma 12.3 w(t*) is an

interior point of ^(tf) for some 0 < t
x < t*. Let A be a neighborhood

of w(t*) inside Then, since ^(C) $(t) for all t > tl9 N is con-

tained in <%(t) for all t> tv The continuity of w{t) then implies that

w(t2 ) e f°r some t2 < t*. This contradicts the definition of t*

and w(t*) is a boundary point of ^(/*). As pointed at the beginning,

this completes the proof.

Note that this theorem and Lemma 13.1 now tell us [and this is

essentially (13.5)] that if w* is an optimal control—and therefore for

some rj # 0 is of the form u*(t) = sgn[^' F(/)] on [0, r*]—then the

hyperplane n(t, rj) through y(t; u*) is a support plane to M{t) for each

/ e [0, t*]. In order to show in a moment that this is Pontryagin’s

maximum principle for the linear time optimal problem, we restate this

result relative to the attainable set s#(t) and obtain:

Corollary 13.1 If w* is an optimal control with t* the minimum time,

then x(t\ u*) is on the boundary of s/(t) for each t e [0, /*] and ij/(t) =

rj' X~\t) is an outward normal of a support plane of s0(t) at x(t; u*)

for some rj # 0 and each t e [0, /*].

example 13.1. Consider the control of the undamped harmonic

oscillator

x + x = u, \u\ ^ 1

.

An equivalent system of first-order equations is

* = y

y — —x + u.

Hence here
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and

X{t) = e
At

=(^
cos / sin t

— sin t cos t}
9

Y(t) = e~ AtB = -sin

cos :)

rj' Y(t) = —rj
t
sin t + rj 2 cos t, rj

t

2 + r\^ / 0.

We can now conclude that if for a given target an optimal control w*

exists, then it is of the form

u*(t) = sgn(sin(/ + d))

for some —n^S^n [since — rj
l
sin t + y

\ 2 cos t = a sin(/ + S) with

a > 0]. Therefore, if there is an optimal control, it will be unique,

bang-bang (|w(/)| = 1 almost everywhere), and its changes of sign occur

7i units of time apart.

example 13.2. Here we will consider a simple singular case where

the necessary condition on optimal control gives no information. For

the system

W — x
i + u

x2 =x2 + u, |w|^l,

we see first of all that the control is quite limited. At the point p in

Fig. 13.2 the possible directions for the flow lie between the vectors a

Fig. 13.2.
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and b. It is not possible, for instance, to go from p to the origin. It is

easier to see the effect of control, by going to the y coordinates,

o
II

1
II

II
1

SuIIS' OL
y\—e ‘u

y 2 = e~‘u.

The reachable set (Fig. 13.3) lies on the line y1 = y2 between the points

(-1, -1) and (1,1).

Here r\' Y{t) = (rj
1 + rj 2)e~

t

and, when 77' = (—1,1), rj'Y(t) = 0.

Thus, for instance, if hitting h?

(/) is as illustrated in Fig. 13.3, the

necessary condition gives no information, although it is easy to see

what an optimal control is in this case. One could pick u = 1 until
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the point w(/*) is reached and then turn the control off. Clearly there

are an infinity of optimal controls.

exercise 13.1. Give in detail the proof of Corollary 13.1.

exercise 13.2. What can be said about the form of optimal

control for:

(a) x — u,

(b) x + 2bx + x = u,

(c) x = y + uu

y = —x — 2by — tq + u2 ,

(d) x
t = iq + w2 >

x2 = u
i
— u2 ,

(e) x
x = b

x
(t) u(t),

x2 = b2(t) u(t )

;

, . M, 2n ^ t S 2n + 1, n — 0, 1, . .
.

,

~
\0, otherwise,

b2 (t)
= 1 - b

t
(t).

exercise 13.3. Consider the system (11.1) and assume x° and

C > 0 are such that j/(c) does not contain the origin. Use Theorem 6.3

of Part I to show that: if i/* is an admissible control which is optimal

in the sense that x(tl9 u*) has minimal distance to the origin, then

u*(t) = sgn [rjY(ty] on [0, t{] for some unit vector y\.

By means of Corollary 13.1 we can see the relation between this

necessary condition and Pontryagin’s maximum principle [10]. Follow-

ing Pontryagin we introduce the Hamiltonian x
,

t
,
u) = \j/(A(t)x

+ B(t) u). Then consider

dH— = A(t)x + B(t)u
dyj

( 13 .6 )

dH— =
OX

( 13 .7 )

Equation (13.6) corresponds to (11.1) and \j/(t) = rj'X
1
(t ) is the general

solution of (13.7). Define

x, t) = max{//(i/G x, t, w);ue Cr
}.



56 II. LINEAR TIME OPTIMAL CONTROL

Pontryagin’s maximum principle states that, if w* is an optimal control,

then for some nontrivial solution of (13.7)

KO, x(t; u*), t, u*(t)) = M(iKO, x(t; u*), t)

almost everywhere. Here

M(i/c x, 0 = A(t) x + max
\J/

B(t) u
u e Cr

= HO A(t) x + \jj B(t) Ii*(f),

where u*(t) = sgn[^5(t)] = sgn[rj
fX~

=

sgn[rj' 7(0]. Hence
this maximum condition for the linear time optimal problem is equiva-

lent to Theorem 13.2.

exercise 13.4. If A and B are constant matrices, show that M(Ht),
x(t; u *), t) = c almost everywhere.

It is interesting to note what this necessary condition means geo-

metrically. At each point of x(t; u*) the vector is an outward
normal to the attainable set at x(t; u*). The quantity H(Ht),
x(t\ u), t

9
u(t)) is proportional to the component of x(t9 u) in the direction

of this normal. At a given time t the choice of the control determines

the direction of the flow x(t; u) at a point in the state space and optimal

control has the property that it selects a direction for the flow which

maximizes its component in the direction of an outward normal to the

attainable set at the point. This is closely related to Bellman’s equations

of dynamic programing and also to the use of Liapunov functions to

design control systems.

With regard to this necessary condition for optimal control it

should be pointed out that it states only that optimal control is of the

form (13.3) for some nonzero vector rj. However, we do know that at a

point of the y space the vector rj is an outward normal to the reachable

set, and it is this type of structural information about the form of

optimal control that makes computational procedures possible.

Actually this is enough to enable us to obtain control laws for some
simple problems but even for these problems it is helpful to know more
about the uniqueness of control, controllability, and to know when this

necessary condition is also sufficient.
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14. Questions of Uniqueness and Properties of the

Boundary of the Reachable Set

Consider the simple control system

x
.

1
= Ul ’

X2 — U2 5

Here

5=F(/)=|q y{t\u) = ^u{x) ch,

and it is not difficult to see that ^(/*) is a square (Fig. 14.1) with sides

of length 21*.

Let the objective be to reach the origin in minimum time (z(t) = 0

and w(t)= —x°). Then y on the boundary of 0t(t*) means for this

example that it is possible to go from —y to the origin in time t* and t*

Fig 14.1.
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is the minimum time. If y° is as shown in Fig. 14.1, then optimal

control is certainly not unique. There are an infinite number of optimal

controls and optimal trajectories to y even though there is a unique

support plane at y° with normal

In this case

,7

0
' no = (i,o),

and the necessary condition for optimal control tells us only that

u* = 1 but gives no information about u2 . At the vertex y
l

of Fig. 14.1,

optimal control is unique even though the support plane is not. Taking

any outward normal yj to 0?{t*) at y
l

with rj
l
> 0, rj 2 > 0, we see that

ri'Y(t) = (/?!, i] 2 ), and now the necessary condition for optimal control

implies u* = 1 and u* — 1 and determines the control uniquely.

What can happen when B is not a constant matrix is somewhat more

complex. For instance, for the system

= /?,(/) Hi

A'2 = bjU) «2 »

the reachable set M(t) is a rectangle. The trajectory to a vertex will still

be unique but since b
x
(t) and b 2(t) can vanish over an interval the

control to reach a vertex may not be unique. When b
{
(t) = 0, the

control Ui has no effect and the choice of u
x

is immaterial. These

questions of uniqueness of controls and trajectories are intimately

related, and this is what we now want to investigate.

The fundamental control system is, as before,

x = A(t) x + B(t) u, (14.1)

and all of our discussion will be relative to the reachable set &(t) and

trajectories

y(t ;
n) = f Y(t) u(t) dx.

Keep in mind that the attainable set is a translation and a linear

transformation of &(t), and you will see that all the results in this

section and in Section 16 are true with &(t) replaced by We say
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that a point q of R" is reached in time t* if q e that is, if for some
admissible control u

,
q* = y(t*;u). Now we can consider uniqueness

of reaching q in time t* in different ways. The function y{ • ;
u) we call

the trajectory to q in time t*; i.e., two trajectories y{- ;
u

l

) and •
; u

2
)

are said to be equal
,
if y(t\ u

1

) = y(t
;
u
2
) for all t e [0, /*]. Then unique-

ness of the trajectory to q in time t* means that q = y{t*\ u x

) = y(t*
;
u
2
)

implies y(t; u
x

) = y(t; u
2
) for all t e [0, t*].

The next concept of uniqueness is associated with “essential

equality ” of control, which we will now explain. Since

y(t;u)= f Y(t) w(t) dx.
Jo

and

Y(t) u( t) = y\x) i/
x (t) + • •

• + /(t) u
r
(x),

where y
j
( x) is the /th column vector in Y(t), the /th component of the

control Uj has no effect when y
J
(x) = 0. Now y

J
(z) = X~ 1

(t) bj
(x),

where ^(t) is the /th column vector of £(t), and therefore, y
j
(t) = 0

is equivalent to bj
( t) = 0. If 5 is a constant matrix, then j

j(t) = 0 for

any t means = 0, and the /th component of control never has an

effect. We might as well remove bJ from B (reduce r by one). Thus, the

distinctions we are about to make by adding the adjective “essential”

are not really significant when B is a constant matrix. We could also

restrict admissible control to uf t) = 0 when bJ
\t) = 0, but while

reasonable to do so from the point of view of applications it is not

essential and we prefer another tactic.

We will say that two controls u
l and u

2
are essentially equal on

[0, t*] if for each j = 1, . .
.

,

r, u)(t) = u
2
(t) almost everywhere on

[0, f*] where bj(t) ^ 0; that is the corresponding components of

control are equal whenever they are effective. The control to reach q
in time t* is said to be essentially unique if q = y(t*; u

1

) = y(t*
;
u
2
)

implies u
l

is essentially equal to u
2

. A control will be said to be essen-

tially bang-bang on [0, f*] if it is essentially equal on [0, /*] to a bang-

bang control; that is, if {/; \uj(t)\ < 1, bJ
(t) ^ 0, t e [0, t*]} has

measure zero for each j = 1, . .
.

,

r. Whenever the control is effective it

is bang-bang.

exercise 14.1. Show that essential equality is an equivalence re-

lation.
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exercise 14.2. Show, with respect to reaching q in time /*, that

essential uniqueness of control implies uniqueness of trajectory.

It is quite easy to see (Exercise 14.2) that uniqueness of control

implies uniqueness of the trajectory. The converse is true but not so

obvious. Consider, for instance the simple system (n = r = 2)

3T = u
i + u2 >

y2 = + u2 — 1 ^ u
i 1, z = 1,2.

Now the controls

u
i and u

2 =

which are clearly different controls, bring the system in unit time from

the origin to (1, 1) but yield the same trajectory. However the trajectory

to reach (1, 1) in unit time is not unique.

Theorem 14.1 The following are equivalent:

(1) uniqueness of the trajectory to reach q in time t*;

(2) the controls to reach q in time t* are essentially bang-bang;

(3) the control to reach q in time t* is essentially unique.

Proof. We will show that (1) => (2) => (3) and, since obviously (3) => (1)

(Exercise 14.2), this will complete the proof. We may assume that

q e since otherwise the statements are true vacuously.

(1) =>(2): We show that not (2) implies not (1). Assume that q can

be reached in time t* by a control w* which is not essentially bang-bang;

that is, for some j = 1, . .
. ,

r the set

has positive measure and q = y(t*;u*). By the bang-bang principle

(Theorem 12.1) there is a bang-bang control Uj for which

f y
j
(t) Uj(t) dt = f y

j(t)u%t)dt.
J Q J 0

Define u
t
= u* for i # j and take lift) as above. Then q =y(t*; u) =

y(t*; w*)but

Y(t)[u{t) - «*(/)] =AO C"jit)
~
«J(0] / o
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on Ej. Therefore, since y(t\ u) is absolutely continuous, we have for

some t
x
e (0, /*) that y(t

x ;
u) / y(t

t ; w*).

(2) => (3). Assume that (2) is true and that u
l and u

2
are admissible

controls that bring the system to q in time t *. Then u = + ^t/
2

is an
admissible control that brings the system to <7 in time t*. Since w, u\
and w

2
are by assumption essentially bang-bang, it must be that u

1

is

essentially equal to w
2

. Therefore (2) implies (3), and, since it is clear

that (3) => (1), this completes the proof of the theorem.

This theorem shows us, in addition to the fact that these types of

uniqueness are the same, that an essentially unique control is always

essentially bang-bang. We show next that what was observed at the

beginning of this section (Figure 14.1) is in general true (see Section 8

for the definition of an extreme point).

Theorem 14.2 A point q is reached in time t* by a unique trajectory

if and only if q is an extreme point of

Proof. Assume that there are controls u
1 and u

2 and a t
t
e (0, t*) such

that p i = y{t
x ;

u
l

) ^ y(t
t ;

u
2
) = p2 and q* = y(t*\ u

l

) = y(t*
9
u
2
). De-

fine

<h = Pi + (q- Pi)

and

<h=P2 + (q-Pi)-

Then q1
may be attained by using control w

1 on [/0 , t{\ and control u
2

on (tu f*]; q2 may be attained in a similar fashion. Thus qx
e

q2 e &(t*), qx q2 ,
and q = \q± + \q2 . Hence q is not an extreme

point of ^(t*).

Conversely, assume that q is not an extreme point of ^(/*). If q is

not in ^(t*), then it cannot be reached in time t*. If q is in ^(t*), then

q = zQi + iq2 qi ¥= #2 and
<7i ? q2 e By the bang-bang

principle (Theorem 12.1) there are bang-bang controls u
1 and u

2 such

that qi = y(t*; u
1

) and q2 = y(t *; u
2
). Then q = y(t*\ + \u2

). Now
it cannot be that u = \u

x + \u2
is essentially bang-bang. This would

mean that u\t) is essentially equal to u
2
(t) almost everywhere on [0, /*]

which would imply y(t *; u
1

) = y(t *; u
2
). Hence q* can be reached by a

control that is not essentially bang-bang and by Theorem 14.1 the

trajectory to q* is not unique. This completes the proof.
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This theorem states that what we saw in the simple example at the

beginning of this section is in general true. The point y° (Fig. 14.1) is

not an extreme point of ^(t*) and the trajectory to reach y° in time

is not unique. The point y
1

is an extreme point of &(t*) (it is also ex-

posed), and the trajectory reaching y
1
in time t* is unique. For further

results along these lines see [11].

15. Unique Determination of the Control by the Necessary Condition.

Normal Systems

In the previous section we answered the question of uniqueness of

the trajectory in terms of a geometric property of the reachable set.

Thus, if for the problem of time optimal control the minimum time is

t*
9
then w(t*) is on the boundary of ^(t*), and if w(t*) is an extreme

point of ^(r*), then the control to reach w(t*) in time t* is essentially

unique and essentially bang-bang. This, as we shall see in this section,

does not answer the more important question (certainly more important

from the point of view of developing computational methods of com-

puting optimal controls) of when the optimal control is uniquely deter-

mined by the necessary condition for optimal control (Theorem 13.2)

which states that

u*(t) = sgn[q' Y(0], # 0, (15.1)

where rj is some nonzero vector [an outward normal to a support plane

n(rj) of 0Z(t*) at w(f*)].

This necessary condition, as we have seen by examples, may give

no information about the optimal control and certainly will not, in

general, determine a unique control. The condition (15.1) states that

up) = sgnD/VCO] = sgn[WX~\t) bpy) (15.2)

on [0, f*] for j = 1, . .
.

,

r where y
J\t) and b'(t) are the yth column

vectors of Y(t) and B(t). When t]'y\t) = 0 Eq. 15.2 gives no information

about up). If bj(t) = 0, this doesn’t matter because then the control

has no effect and up) can be taken to be any value between — 1 and 1
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and might as well be taken to be zero. But q'yj{t) can vanish when Uj(t)

is effective and this does matter. Let

Ej(rj)={t; rjy\t) = 0, b\t) ± 0, t e [0, f*]}. (15.3)

If Ej(rj) has measure zero, then u*(t) is uniquely determined on [0, f*]

by (15.2) whenever the control is effective. We shall say that Eq. 15.1

essentially determines u* on [0, f*] if u
J
(t) = sgn

[

77
' 7(0] and u

2
(t) =

sgn\j]'Y(t)~\ implies u
1 and w

2
are essentially equal on [0, f*]. When

this is true w* will be essentially bang-bang. Thus, w* is essentially

determined by (15.1) if and only if Efq) has measure zero for each

j — 1, ...,«. When this is the case the control will be essentially unique

and the point q* = y(t*
;
i/*) will be an extreme point (Theorem 14.2).

Actually, as we shall show in the next theorem, g* must be an exposed

point. Thus there is only a slight difference between uniqueness of the

trajectory and the control being essentially determined by the necessary

condition (15.1). The distinction arises only when q* is an extreme point

but is not exposed (see Exercise 15.3).

Theorem 15.1 The control if' to reach q* in time t* is essentially deter-

mined on [0 ,
f*] by u*(t) = sgn[y 7(0] for some 77 ^ 0 if and only if

q
* = y(t*; u*) is an exposed point of ${t*).

Proof. Assume first that w* is essentially determined on [0, r*] by

u*(t) = sgn [_q

r

Y(t)~\. From Lemma 13.1 we know that q* is a boundary

point of &(t*) with rj an outward normal to a support plane n(rj) of

£%(t*) at q* and that points on this support plane can be reached in

time t* only by controls of this form. Since any other control of this

form is essentially equal to w*, q* is the only point of &(t*) on n(q).

Therefore q* is an exposed point. Conversely, assume that q* is an

exposed point of £%{t*). Then for some support plane n(rj) of &(t*)

through q*, q* is the only point of ^(t*) on 71(77), and q* =y(t*; 1/*)

where u*(t) = sgn

[

77 ' T(t)] on [0, /*] (Lemma 13.1). Now controls of

the form sgn[rj'Y(t)^ reach 71(77) in time t* (Lemma 13.1), and since q*

is exposed must reach q*. An exposed point is an extreme point and by

Theorem 14.2 the control to reach q* in time t* is essentially unique.

Hence 1/* is essentially determined by u*(t) = sgn[77'T(0] on [0, /*],

and this completes the proof.
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exercise 15.1. Let N(q) denote the cone of unit outward normals to

support hyperplanes to &(tf) at a point q belonging to the boundary of

^(tf) and let u be such that y(tt ; u) = q. Show that N(y(t\ u)) 3 N(q)

if t ^ t
x . When N{qf) consists of more than one vector we say that

has a corner at q. Hence conclude, if ^(t*) has no corners, that

$(t) has no “corners” for t > t*.

exercise 15.2. Show that the attainable set s#(t) [and hence &(t)2

for

Xi = x2

x2 = — x
t + u, x(0) = 0, |i/(f)| ^ 1,

has “ corners ” for 0 < t < n and is a circle of radius 2, centered at the

origin, for t = n. Hence conclude that has no corners for t ^ n.

exercise 15.3 Show for the system

x
1
= x2 , x2 = —x

1
+u, 71

,

x
x = 0, x2 = u, t> n,

with \u(t)\ ^ 1, that &(t) has points for t > n which are extreme but not

exposed and that for these points the control (which is essentially

unique and essentially bang-bang) is not essentially determined by
sgn [rj' 7(0]- In fact, show that this necessary condition for these points

gives no information about the control u.

exercise 15.4. Prove Theorem 15.1 directly without making use

of Theorem 14.2 and the bang-bang principle.

Again referring to the example at the beginning of Section 14 and
to Fig. 14.1 the vertex y

1
is an exposed point and the control w* to

reach y
1

is uniquely determined by w* = sgn[V 7(t)]> where

for any r\
x > 0, r\2 > 0. All that is necessary is that n(rj) be a support

plane that contains no point of ^(/*) other than y
1

. Uniqueness of the

control and its being determined uniquely by the necessary condition

w*(t) =• sgn \jf 7(0] have nothing to do with uniqueness of the direction q.

Exercise 15.3 gives an example where optimal control is essentially
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unique, and therefore essentially bang-bang, and yet the necessary

condition gives no information about the form of the optimal control

to reach points that are extreme but not exposed.

We will say that the system

x = A(t) x + B(t) u (15.4)

is essentially normal on [0, f*] if Efq) [Eq. (15.3)] has measure zero for

each j = 1, . .
.

,

r and each rj ^ 0. If the system (15.4) is essentially

normal on [0, t*~\ for each /* > 0 we say simply that the system (15.4)

is essentially normal.

Hence we see that if (15.4) is essentially normal on [0, f*], then on

[0, f*] optimal control is essentially unique
,
is essentially bang-bang

,
and

is essentially determined by the necessary condition (15.1). Conversely
,

it

is essentially normal on [0, /*] only if,\
for each q ^ 0, u(t) = sgn[^' Y(t)']

essentially determines u(t) on [0, f*].

As an immediate consequence of Theorem 15.2 (see Section 9 for

the definition of strict convexity) we have:

Corollary 15.1 The system (15.4) is essentially normal on [0, /] if

and only if ^(?*) is strictly convex.

A stronger concept of normality is that of a “ normal ” system, and

we introduce this concept since again the adjective “essential” has no

real significance when B is a constant matrix. Also we want later on to

compare proper and normal systems. Define

Gfq) = {t; q'yJ(t) = 0, t e [0, /*]}.

We say that the system (15.4) is normal on [0, t*~\ if Gfq) has measure

zero for each j = 1, . .
.

,

r and each q ^ 0. If the system (15.4) is normal

for each > 0 we say simply that the system (15.4) is normal. Thus,

if a system is normal
,
control is always effective and optimal control is

unique
,
bang-bang

,
and uniquely determined by the necessary condition

(15.1). Note also, if a system is normal, that if W Y(t)]j = q'yj(t)

vanishes on a set of positive measure for any j = 1, . .
.

,

r, then r\ = 0.

Also it is clear, since Eft7)
cz Gfq), that normal implies essentially

normal.

exercise 15.5. Let A and B be constant matrices. Then if (15.2) is

normal on [0, t*~\ for any z* > 0, it is a normal system.
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To sum up what we have learned note that if a point q * of R(t *)

is exposed, then the trajectory y(t; u*) to q* is unique and the control

is essentially bang-bang and essentially unique. Moreover, u* is essen-

tially determined by sgn[// Y(/)] for some q ^ 0.

If the system (15.4) is not essentially normal, there will be an q ^ 0

and j such that Ej(q) has positive measure. In this case different control

components Uj on E/q) yield different trajectories but if two controls

u
x and u

2
differ only in theiryth component on Ej(q) then q • y(t*; u

x

) =
q-y(t*;u2

), although y(t*; u
x

) ^ y(t*; u
2
). This shows that y(t*\u

x

)

and y{t*; u
2
) belong to the intersection of R(t*) with its support plane

determined by q. This intersection is the intersection of two convex

sets, and hence is convex. This means that when the system is not

essentially normal on [0, f*] there is a “flat spot” on the boundary

of R(t*).

We have also shown that if the system (15.4) is essentially normal,

then boundary points of R(t*) can, and can only, be reached by a

control that is essentially bang-bang. The value of the control compo-
nent Uj has no effect on the trajectory when y

j(l) — 0. We may choose

it to be one in absolute value for such values of t and again conclude

that all boundary points of R(t*) may be attained with bang-bang

control. If the system is not essentially normal, we cannot use the

formula u*(t) = sgn \_q'Y{t)~\ to conclude that points q* which belong

to a “flat spot” of the boundary of may be reached by bang-

bang controls. Here we must appeal to the bang-bang principle,

Theorem 12.1, which shows that all points of &(t*) may be reached

by bang-bang control.

Theorems 14.1 and 14.2 show that essential uniqueness of control

to reach a point q *, uniqueness of the trajectory to q*
9
and q* being

an extreme point are all equivalent. But uniqueness of the trajectory

may not imply that the essentially unique control to reach q* is essen-

tially determined by sgn[^' Y(/)] f°r an q ^ 0. This can happen when q*

is an extreme point of ^(/*) but is not an exposed point (Exercise 15.3).

Theorems 14.1 and 14.2 seem to be somewhat deeper results than

Theorem 15.1 in that their proofs seem to require the bang-bang

principle which in turn is equivalent to Liapunov’s theorem on the

range of a vector measure (Theorem 8.2), whereas the proof of Theorem
15.1 can be made quite elementary (Exercise 15.4).

Figure 15.1 illustrates in the plane some of the geometric possibilities
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(c)
(d)

for the reachable set. In Fig. 15.1a the set 7?* is strictly convex

and at each boundary point q* there is a unique support plane n(rj)

with unique outward normal r\. The control w* to reach q* in time /*

is uniquely determined by w*(/) = sgn[rj' F(r)] and is essentially bang-

bang. The system giving rise to this 3%(t*) must be essentially normal

on [0, /*]. In Fig. 15.1b the set &(t*) is strictly convex and the control

system for this ^(/*! is also essentially normal. It differs from Fig.

15.1a in that there are points q* where the support plane is not unique.

However, each support plane n(rj) to at q* contains no point of

M(t*) other than q* and the control w* for which q* =y(t*,u*) is
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uniquely determined by u*(t) = sgn[rj' Y(7)], where r\ is any of these

outward normals at q *. The point q x
of Fig. 15.1c is not an extreme

point and this is an exceptional (singular) case. Although n(r\
l

) is

unique, the control to q x
is not unique and there are an infinity of

admissible trajectories reaching q t
in time t*. However, the bang-bang

principle (Theorem 12.1) assures us that there is at least one bang-

bang control which brings the system to q* in time t*. The point q2

of Fig. 15.1c is an extreme point of J?(t*) that is not exposed. The sup-

port plane n(rj *) is unique, the control that brings the system to q2 in

time t* is essentially unique, is essentially bang-bang, but not essentially

determined by sgn[^' F(0] on [0, f*]. Here the conti ol system for

is not normal on [0,/*]. The situation at q* in Fig. 15. Id is

similar to that at q* in Fig. 15.1b except that there are support planes

such as n(rj°) at q* = y(t*; «*) for which the control u* is not essentially

determined by sgn 011 [0, t*~\ but is essentially determined by

sgn \ji Y{t)~] with yj as shown in Fig. 15. Id. In Fig. 15. le the dimension

of ,^(/*) is less than n (

n

^ 2) and rf Y(t )
= 0 on [0, f *]. Thus, for each

point y(t*; u) of ^(/*), although it is true that u(t) = sgn[rj° Y(ty], this

gives no information about the control u. The point q* is an exposed

point and what happens here does not differ essentially from that at

q* in Fig. 15. Id.

exercise 15.6. Show that: (a) If is an extreme (exposed)

point of M(t*) then y(t
, u*) is an extreme (exposed) point of &(t) for

each t g [0, /*]. (b) strictly convex implies &(t) is strictly convex

for all t g [0, /*].

exercise 15.7. Show that: If the system (15.4) is normal on [0, r*],

then the origin is an interior point of ^7*).

16. Normality of Systems with Constant Coefficients

Here our system is

x = Ax + Bu, (16.1)

where A and B are constant matrices. We will also assume that no

column vector bJ of B is zero so that each component of control is
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always effective and v/e have no need for the adjective “essential.” For

this system

X(t)=eAt and Y{t)=e~ AtB
,

and these are real analytic functions. Hence \ji Y(t)~\j = fyj
(t) =

rj'e~
At
bj either is identically zero or has a finite number of zeros on

each finite interval. Therefore system (16.1) is normal if and only if

rj'e~
At
bj = 0 for some j = 1 ,

. .
.

,

r implies rj = 0.

We then have immediately that ifthe system (16.1) is normal,
optimal

control (if it exists) is always unique and bang-bang
,
and is determined

by the necessary condition of Theorem 13.2 for some rj ^ 0.

Now when A and B are constant matrices we can characterize

normality directly in terms of these two matrices. Evaluating the

identity rj'e~
At
bJ = 0 and its derivatives at t = 0 implies rj'b

j = 0,

rj'Abj = 0, . .
.

,

rj'A
n ~ 1

bj = 0, we see that (16.1) is normal if b\ AbJ
,

. .
.

,

A n ~ x

bj are linearly independent for each j = 1, . .., r. We now show

that the converse of this is true.

Theorem 16.1 The system (16.1) is normal if and only if for each

j = 1, . .
.

,

r the vectors b\ Ab\ . .
.

,

A n ~ l

bJ are linearly independent.

Proof. The sufficiency of the condition was shown above. To prove

the necessity assume for some j that the vectors bJ
\ AbJ

\ . .
.

,

A n ~ l bj are

linearly dependent, which implies for some nonzero vector q that

rj'b
j = q'AbJ = • • • = q'A

n ~ x

bj = 0.

Let

v(t) = q'e
At
bj

.

Then

(Dk
v)(t) = rj\— A)k

e
Atb\ where D=djdt.

Let <p( — 2) be the characteristic polynomial of A. By the Hamilton-

Cayley theorem (p( —A)= 0. Hence cp{D)v = q'(cp(D)e~
At
)b

l =
— A)e~ At

)b
l = 0; that is, v satisfies cp(D)v = 0 and, at t— 0,

Dk
v =0, k = 0, . .

.

,

n — 1 . By the existence-uniqueness theorem of

differential equations v(t) = 0. Hence (16.1) is not normal and this

completes the proof.
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The general second-order linear differential equation with constant

coefficients

x, + 2b0 x x + c0 x x
=u(t )),

which is the problem Bushaw studied, is equivalent to

*i = *2

*2 = ~ co*i ~ 2b0 x2 + u(t).

Here

Since b and Ab are linearly independent this system is normal. There-

fore optimal control is unique and bang-bang.

More generally the /ffh-order equation

<p(D)x
i
= u(t), (16.2)

where cp(X) = A” a
x
2
n ~ l + • •

• + an and D = dldt is normal (Exercise

16.1) and, in fact, every normal autonomous system with r — 1 is

equivalent to a system of the form (16.2) [Exercise (16.5)]; that is, if

x = Ax + bu is normal then there is a change of coordinates y - Qx
such that

0 10.
0 0 1.

o

o
1 -

f

0

^
QAQ -

1 =

0 ...
\-a„ . .

: o
j

• • -tfl/

1!oCN

1

•

lil

and the original system is equivalent to q>(D)y
x
= u.

EXERCISE 16.1. Show that cp(D)x
x
= u is normal.

exercise 16.2. For x = Ax + bu (r = 1) show that the concept of

normality is invariant under a linear change of coordinates y = Qx.
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exercise 16.3. The /7th order system x = Ax is equivalent to an nth-

order equation cp(D)y
l
= 0 if and only if there exists a vector a such

that a, aA, aAn ~ x
are linearly independent.

exercise 16.4. If b
,
Ab, . .., A n ~ 1

b are linearly independent and

a # 0 is orthogonal to b, Ab
,

. .
.

,

A"~ 2
b

,
then a

,
gl4, . .

.

,

are

linearly independent.

exercise 16.5. Show that x = Ax + bu is normal if and only if it is

equivalent to an /7th-order equation of the form (p(D)y
l = u.

exercise 16.6. Show that ifA has two (or more) linearly independent

eigenvectors corresponding to the same eigenvalue, then x = Ax + bu

cannot be normal.

exercise 16.7. Show that the system (16.1) is normal if and only if

the functions y t

J\t) 9 y2
J
(t)> • • • » yn

J
(0 are linearly independent on some

interval of positive length for each j = 1, . .
.

,

r. ( Y(t ) = 0V(0)-

17. Sufficient Conditions for Optimal Control for a Special Problem.

Proper Systems

We wish to confine ourselves for the moment to the special problem

of reaching the origin in minimum time (z(t) = 0, w(t) = —x°). Thus

for the fundamental control system

x = A(t) x + B(t) u(t), x(0)=x°, (17.1)

we may consider x to be the error in control, and what we wish to do

is to reduce this control error to zero in the shortest possible time. Now
reaching the origin in time t corresponds to —x° e $(t) and the reach-

able set &(t)
9
being symmetric about the origin, is therefore the set

of all initial states from which it is possible by admissible control to

go to the origin in time t. the necessary condition for optimal control

(Theorem 13.2) is derived from and is equivalent to the fact that — x0
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is on the boundary of M(t*) where t* is the minimum time. Now it is

quite clear that without further restrictions on the system (17.1) a

point — x0 can remain on the boundary of the reachable set M{t) over

an interval of time—this means that over this interval of time &(t) is

not “expanding” at — x0 . Therefore even for this simple problem of

reaching the origin the necessary conditions for optimal control may
not be sufficient. We will say that the reachable set is expanding

at time t* if &(t) is contained in the interior of for all 0 rg t < t*

If &(t) is expanding for all t* > 0 we will say simply that M{t) is

expanding. Hence if M(t) is expanding at time t* and — x0 is on the

boundary of then t* is the minimum time it will take to go

from x° to the origin, and any control that does this will be optimal.

Note that expanding does not imply that s#(t) will be expanding.

This is not to be expected since s/(t) = X(t) (x° + $(t)).

Let us suppose that there is a control w* of the form

w*(f) = sgn[^'y(/)] for some rj ^ 0 (17.2)

that biings the system (17.1) from x° to the origin in time t*. Then
— x0 will be a point on the boundary of 3i(t*) and if is expanding

at time t* then t* is the minimum time and u* is an optimal control.

[In terms of s&(t) this is simply saying that the origin is not in

for t < f*.] From this we can conclude:

Theorem 17.1 (Sufficiency Condition). If a control z/* of the form

(17.2) brings a system from a point x° to the origin in time /*, and if

8%{t) is expanding at time t*, then w* is an optimal control.

Of course what we would like to have are some criteria for when
the system (17.1) is expanding, and to be of practical value we want

criteria that can be checked computationally from a knowledge of

the matrices A and B.

As a first step in this direction we give a characterization of when
$(t) is expanding. We shall say that the system (17.1) is proper on an

interval [/0 , /,] if rj'Y(t) = 0 a.e. on [/0 ,
implies rj = 0. If (17.1) is

proper on [/0 ,
tQ + S~] for each 5 > 0 we say the system is proper at

time t0 . If (17.1) is proper on each interval [/0 ,
t

{

~\, t
{
> t0 ^ 0, we say

simply that the system is proper.
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Theorem 17.2 &(t) is expanding at time t* if and only if the system

(17.1) is proper on [f* — <5, /*] for each <5 > 0.

Proof. Assume that (17.1) is proper on [t* — <5, /*] for each <5 > 0 and

let q = y(tu u) be any point in 0 < t
x
< t*. Since M(t

x ) c= ^(/*),

g Suppose q is on the boundary of ,^(/*). Let n(q) be a support

plane of M(t*) at <7 with q an outward normal; i.e., q'(p — q) S 0 for

all p g Define

fw(0, /<;/,,

W*(0 =
(sgn[i/'r(/)], r, <t< t*.

Then for p = y(t*; u*) e &(t*)

rf(p-q)={ i’Y(t)dt=( iwnt)\jdt>0,
J
tl j= 1

since the system is proper on [/,, f*]. This contradicts our assumption

that q is on the boundary of ^(/*), and hence it is an interior point of

Therefore $(t
x ) is contained in the interior of £%(/*) for all

0 < t
x
< t*. Conversely, if (17.1) is not proper on [f* - <5, f*] for all

3 > 0, then q Y(t) = 0 a.e. on \_t* — <5, /*] for some q ^ 0 and some

3 > 0. Let u
1

be any control satisfying u\t) = sgn [q' K(/)] on [0, t* — <5]

and define

w*(/)
lu\t), 0 ^ t St* — 3

,

\0, t* -S<t^t*.

Then w* is of the form sgn[// K(/)] on [0, /*]. From Lemma 13.1,

q = y(t* — 3; u
l

) = y(t*; u*) is on the boundary of both $(t* — 3)

and Therefore ^(/* — 5*) is not contained in the interior of

&(t*) for any 0 < <5* ^ 3 and tft(t) is not expanding at /*. This completes

the proof.

Since the system (17.1) is proper if and only if it is proper on each

interval [/* — 3
,
f*] for all 3 > 0 and /*, we have immediately:

Corrollary 17.1 ^(/) is expanding if and only if the system (17.1) is

proper.

Corollary 17.2 (Sufficiency Condition). If (17.1) is proper and, for

some w* of the form (17.2) and some t* ^ 0, x(t*\ u*) = 0, then u* is
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an optimal control for the special problem z(t )
= 0 and t* is the

minimum time.

exercise 17.1. Discuss sufficient conditions for optimal control

when A is a constant matrix and the equations of motion of the moving
target z(t) are the same as the uncontrolled system (z = Az).

It is quite clear that the concept of a normal system is much stronger

than that of a proper system and every normal system is proper. Even
when r = 1 there is a subtle difference between the concepts of normal
and proper, and it is possible when r = 1 to have a system which is

proper but not normal. This is a mathematical subtlety that we do not

want to make too much out of. The definition of normality was moti-

vated by Eq. (17.2). The system (17.1) is normal if [^'T(/)]j = 0 on a

set of positive measure for any j = 1, . .
.

,

r implies rj = 0, and we know
for normal systems that the control is determined almost everywhere

by Eq. (17.2). Now it is possible to have a continuous function which

vanishes on a set of positive measure but yet is not identically zero

almost everywhere on any interval of positive length, and hence even

for r = 1 it is possible to have a system which is proper but not normal.

When A and B are constant (or analytic) matrices, then the concepts

of normal and proper are the same when there is only one control

component (r = 1).

For the autonomous system (A and B constant matrices)

x = Ax + Bu(t) (17.3)

we can show:

Theorem 17.3 The autonomous system (17.3) is proper if and only if

rank[£, AB, . .
.

,

A n ~ 1
B~] = n. (17.4)

Proof\ Here proper is equivalent to f Y(t )
= 0 implies rj = 0 since

r\ Y(t ) is analytic. Now rj' Y(t )
= r\'e~

AtB = 0 implies (by differentiating

and setting t = 0) fB = 0, rj'AB = 0, . .
.

,

rj'A
n ~ 1B = 0. For rj ^ 0 this

implies (17.4) is not satisfied. We could proceed now just as we did in

the proof of Theorem 16.1 but instead will use the Hamilton-Cayley

theorem in a slightly different fashion. If (17.4) is not satisfied we can

find an rj / 0 such that rj'B = 0, . .
.

,

rj'A
n ~ 1B = 0. By the Hamilton-

Cayley theorem we can write A n
as a linear combintion of /, A, . .

.

,
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A n
*, and hence, rj'A

nB = 0. By a simple induction we obtain rj'A
kB = 0

for all integers k
,
which implies r\’e~

AtB = 0. This completes the proof.

example 17.1. The following system is proper but not normal:

X
{
= — x

x + u
1

x2 = —2x2 + u
x + u2 .

Here

Since b
2 and Ab2

are linearly dependent the system is not normal.

However, the linear independence of b
1 and b2

implies the system is

proper. Hence the reachable set will not be strictly convex and the control

will not be determined by the necessary condition.

When A and B are constant matrices, Theorem 17.3 and Corollary

17.2 give us a practical means of deciding when the necessary condition

for optimal control (Theorem 13.2) is also sufficient for the special

problem. Although Theorem 17.1 is a general sufficient condition, we
do not as yet know how to check directly from a knowledge of A(t)

and B(t) when 0l(t) is expanding at time /*. In order to obtain a criterion

of this type, we assume A(t) has (k — 2) continuous derivatives and
B(t) has (k — 1) continuous derivatives. This means Y(t) has (

k

— 1)

continuous derivatives. We first note that

= Y(t) = DY(t) = + D] B(t)

or

DY=X~ 1 [~A + D]B.

Defining T = — ^4 + Z) it is easy to see that

DJY=X~ 1rJB. (17.5)

The operator TJ on the matrix function B is defined by induction:

TJB = T(Tj
~ 1

B). For instance,
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D2 Y= D[X~\-A + D)~\B = X~\-A + D)[i-A + D)B~]

= X~\-A + D) 2B = X~\A 2B - AB - 2AB + B);

i.e.,

Y2B = A 2B - AB - 2AB + B

and

T2
B(t0) = A\t0 ) B(t0) - A(t0) B(t0) - 2 A(t0) B(t0) + B(t0).

In terms of this operator F we can now give a computable criterion

that $(t) be expanding at time t* and hence a sufficient condition for

optimal control that depends only upon A(t) and B(t).

Theorem 17.4 Assume that A has k — 2 continuous derivatives at

time t* > 0 and that B has k — 1 continuous derivatives at t*. If

rank[J?(f*), TB(t% . .
.

,

= n
9

then &(t) is expanding at time t*.

Proof\ If &(t) is not expanding at time t*, we have by Theorem 17.2

that there exists a nonzero vector rj and a 5 > 0 such that rj' Y(t) = 0

on [t* — (5, r*]. Differentiating and using (17.5) we obtain

n’x~\t) B(t) = rj'x-\t) r B(t) = •••= n'x~\t) rk
-'B(t) = o

on It* - <5, f*]. Since X~ l

{t) is nonsingular, rank[B(t *), . .
.

,

rk ~ 1
B(t*)~\

< n
,
and this completes the proof.

Stated as a sufficient condition, we have from Theorems 17.1 and

17.4:

Corollary 17.3 The assumptions on A and B are as in Theorem 17.4.

If a control w* of the form (17.2) brings a system from a point x° to the

origin in time /* and if

rank[5(t*), TB(t% .
. , T

k ~ 1
B(t*)^\ = n,

then u* is optimal and t* is the minimum time, for the special problem.

The condition which appears in Theorem 17.4 and Corollary 17.3

plays an important role in the study of the controllability of a system

and will be studied in more detail in Section 19.
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Up to this point in discussing the system (17.1) we have taken the

initial time to be zero and the initial condition to be x(0) = x°. It

becomes convenient now to speak about an arbitrary initial time t0

where t0 is any nonnegative number. Let X(t, t0) be the matrix solution

(see Section 10) of x = A(t) x satisfying X(t0 ,
t0)

= /, the identity

matrix. Then in terms of our previous notation X(t) = X(t, 0) and

X(t, t0) = X(t ) X~\t0). The solution x(t
;

t0 , x°, u) of

x = A(t) x + B(t) u(t), x(t0) = x°
, (17.6)

is

x(t; t0 ,x°, u) = X(t) X~\t0 ) x° + X(t) ( X~\x) B(t) u(t) dx

= X(t) X~\t0 ) x° + X(t) y(t
;

t0 ,
u), (17.7)

where

y(t; t0 9 u) = f Y(x) u(x) dx.
•ho

Note that y(t
;

t0 ,
u) = >’(/; w) — >’(/0 ;

u)• Thus starting at time t0 at x°

and hitting the moving target z(t) at some time t ^ corresponds to

z(t) = x(t; t0 ,
x°, u). Define

j/(L f0) = {x(t; x°
? w); w e Q},

t0)
=

{y(t ;
t0 ,u);ue Q},

and

H’(/, t0)
= X~\t) z(t)-X~\t0) x°.

Then hitting the target at time t corresponds to z(t) e s/(t, t 0) or

w(L /0 ) e ^?(L t0). It is clear that everything proved previously about

0l{t) and can be extended to &(t, t0) and s/(t, t0). For all t ^ t0 ,

^?(/, t0) and srf(t, t0) are convex, compact, and continuous functions

of t and ^(t, /0) i s symmetric about the origin. Note also that under

the change of coordinates x = X(t)y the differential equation for y is

the same as before,

y=Y(t)u{t) (17.8)

and t0) = X(t)[X~\t0) x° + &{t, /„)].

Now relative to an arbitrary initial time t0 we have:
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Theorem 17.5 The system (17.1) is proper on [70 ,
t
x
~\, t, > t0 if and

only if the origin is an interior point of 0t(tu t0)-

Proof. The origin being on the boundary of 0t(tu t0) is clearly equiva-

lent to n'Y(t) = 0 almost everywhere on the interval [r0 ,
for some

rj ^ 0. This comples the proof since the origin is always in 0t(t
x , t0).

Corollary 17.4 The system (17.1) is proper at t0 if and only if the origin

is an interior point of &(t, t0) for each t > t0 .

Thus we see that the concept of a system being proper is related to a

“controllability” property. Corollary 17.3 says, taking into considera-

tion only the effect of the control, that at any given point of the state

space and at any given time t0 ^ 0 the system can be moved by ad-

missible control in any desired direction. The special problem of

bringing the system to the origin (z(t )
= 0) in finite time starting at

time t0 at x° is equivalent to x° e — X(t0) &(t, t0) = X(t0) &(t, t0) for

some t^t0 . Hence we can conclude from Corollary 17.4 that given

any initial time t0 ^ 0 any any t > t0 there is a neighborhood N of

points about the origin from which starting at time t0 it is possible using

admissible control to bring the system to the origin in time t. Therefore,

if the uncontrolled system x = A(t)x is asymptotically stable and the

system (17.1) is proper at time t0 ,
then there is for each initial state x°

in Rn
an admissible control u that brings the system to the origin in finite

time. If x = A(t) x is asymptotically stable, then it is asymptotically

stable in the large. This means that starting from any initial state the

system without control (u = 0) will arrive in the neighborhood N in

finite time and then with admissible control can be brought to the origin

in finite time. Hence in this case &{t0)
=

(J to) = Pn
- If the

system is proper, then $(t0) = R
n
for all t0 ^ 0.

For the autonomous system

x = Ax + B u{t) (17.9)

we can prove a bit more and can include the case where the uncontrolled

system is stable but not necessarily asymptotically stable. Note also

that there may be multiple eigenvalues on the imaginary axis in which

case the uncontrolled system is not stable and this, too, is included.
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Theorem 17.6 If the system (17.9) is proper and no eigenvalue of A has

a positive real part, then for each x° e Rn
there is an admissible control

that brings the system to the origin in finite time.

Proof. What we want to show is that the set 0t = 1J^ 0 &(t) = {y(t;u);

u e Q, t ^ 0} is the whole space Rn
. It is clear that 01 is convex, and we

will show that 01 has the property stated in Exercise 17.3. Since the

system is proper we know for any r\ ^ 0 that at least one component
of v(t) =rj'Y(t) =rj'e~

AtB is not identically zero. We may assume

V\(t) ^ 0. Assume that |^(0I dt < oo. Then the integral Jo vft) dt

converges, and we may define w(f) = j,

00 v^x) dx. Since vft) satisfies

<p{— D) vft) = 0, where D = djdt and cp(X) is the characteristic equation

of A, w(t) satisfies Dcp(— D)w(t) = 0. But w(t) - 0 as t -» oo and this is

a contradiction since w(t) ^ 0 and the roots of l(p(— X) =0 all have

nonnegative real parts. Therefore
Jq 1^(01 dt = oo. Hence with u{t) =

sgn [ri'e~
AtB]

9
f]'y(t 9 u) oo as oo, and this completes the proof

since this implies 01 = R!\

exercise 17.2. Show that ^ = (J t ^ o 0t(t) is convex. If (17.1) is

proper, show that 01 is open.

exercise 17.3. Show that : IfK is a convex set in Rn
with the property

that given any number c > 0 and any nonzero vector rj in Rn
there is a

y e K such that fy > c, then K = Rn
.

exercise 17.4. Show that: If (17.9) is proper and the eigenvalues

of A all lie on the imaginary axis, then given any two points x° and x 1

in Rn
there is an admissible control that brings the system from x°

to x 1
in finite time.

At this point we now have considerable information about

optimal control and by looking at simple examples we can see how
the theory can be used to obtain optimal control laws. In the three

examples solved below we make use of the fact that the system is

proper, and then use the sufficiency condition (Corollary 17.2). Then,

since our systems are autonomous, we can start at the origin, integrate

backwards with controls of the form sgn[rj'Y(t)'], and find all optimal

trajectories into the origin. This procedure has quite limited appli-

cations, and for this reason we shall not bother with a detailed
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description. The theory does provide some general computational

methods. Exercise 17.6 is the basis for one of these. For further infor-

mation and references on computing optimal controls see [12],

Appendix A.

example 17.2. We consider again (Example 13.1)

x T- x = w, \u\ ^ 1,

which is equivalent to

x=y,

v = —x + u.

We want to reach the origin in minimum time. As we saw in Example

13.1, optimal control is of the form

w*(0 = sgn[sin(f + <5)], (17.10)

and, since the system is normal (and hence proper), any control of this

form that brings the system into the origin is optimal. Since the eigen-

values of the uncontrolled system are +/, we also know that there is

an optimal control for each initial state (x0 , y0) in the (x, y) plane, and

since the system is normal, this optimal control is uniquely determined

by (17.10). When u = ± 1, the trajectory in the (x, y) plane is a circle

with center (±1,0) with a clockwise direction of motion for increasing

t (in time t the trajectory moves through an arc of the circle of angle t).

With this information we can easily locate where optimal control

changes sign. Thus, taking -n ^ 5 ^ n in (17.10), we start at the origin

with controls of the form (17.10), integrate backwards in time, and

determine all optimal trajectories. With 0 < <5 ^ n we have (Fig. 17.1)

starting at the origin that u = 1 and for decreasing t the optimal tra-

jectory starts out counterclockwise along the semicircle with center at

(1,0). At some point P
t

(at time t = — <5) along this semicircle,

sin(t + 6) changes sign, and u switches to - 1 . The trajectory is now the

semicircle with center at (—1,0) for —5 — n<t^—d. At time

— <5 — n the point P2 is reached and the control switches to u = 1, and

so forth. Similarly, if —n < b < 0, the trajectory leaves the origin in

decreasing time with u = — 1 counterclockwise along the circle with

center (- 1, 0). At a point such as Q 1
on the semicircle u changes sign.

The trajectory is now the semicircle with center at (1, 0) from Q x
to
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Fig. 17.1.

Q 2 - At Q 2 it changes sign again, and so forth. It is thus not difficult

to see that u changes sign along the chain of semicircles as shown in

Fig. 17.1. Above the semicircles u = —
1 and below u = 1. Note that

this procedure has given an optimal control law as a function of the

state (x, y) of the system (“feedback” or “closed loop” control),

although our theory has had to do only with control as a function of t

(“open loop”) control.

example 17.3. Here we consider a system with two control com-

ponents

Xj = — 3xj — 2x 2 + w,, \u
x \ ^ 1,

x2 =x x + u2 ,
\u2 \ ^ 1.

The eigenvalues of A are — 1 and —2 and the linear change of co-

ordinates
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gives the equivalent system

Zj = — 2zj + u
x + u2 ,

z 2 = — z2 + Wi + 2w2 ,

which is somewhat easier to deal with,

and

n' Y{t) = O/.e
2

' + r\ 2 e\ + 2r\ 2 e’).

Clearly the system is normal. Therefore optimal control is uniquely

determined by u*( t) = sgn \f]'Y{t)~\ and for each point of the state space

there is an optimal control (the eigenvalues are negative). To obtain

the optimal trajectories we want to start at the origin and integrate

backwards. To do this we replace t by — t, and have

dzjdx = 2z, — u
{
— u 2 ,

dz2/dx = z2 — u
{
— 2u 2 ,

where

Mj(t) = sgn(/?i<T
2t + r\ 2 e~

x

),

w2 ( t) = sgn + 2r\ 2 e~
z
).

Taking rj
{ + rj 2 < 0, + 2rj 2 < 0, and rj 2 > 0, we begin at the origin

with u
x
= — 1, u2 = —

1, and move along the parabola (Fig. 17.2)

z,(r)=e2r -l,
“

’

z2 (r) = 3(e
r - 1).

Now u2 (t) will change sign at x
x
=ln( — ^,/2^ 2 ) and u

x ( t) will change

sign at t 2 =ln( — rjJrj 2 ). Hence t 2 — x
x
= In 2. Therefore starting at

time t = 0 at the point (z
{
(t

x
), z2 (t 1 )) of a with u

x
= — 1, u2

= 1, we

leave a along the parabola

Zi(0 =z 1
(r

1
)e

2r
,

z 2 (t) = z 2(t,y = (e
r ~

1 )
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and u
l
changes signs at

Zj(ln2) =4zj(t,),

z2(ln2) =2 z2(t,) - 1.

These equations tell us how to transform a to obtain the curve p where

u
x
changes sign. Starting at the origin with rj

x + rj 2 < 0 and r]
x + lrj2 ^ 0,

we have u
x
= — 1 and u2 — 1 and u

x
must change sign some time not

later than t = In 2 and can do so at any point along the line from (0, 0)

to (—1,0). This is the switching curve y. The other switching curves

a', /?', y' are obtained by symmetry. It is clear that these are the only

possible switching curves, and this gives a control law for the complete

state space.
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example 17.4. Let us consider the optimal control problem of

coming to the origin in minimum time for

x
1
= — x

1 + ul9

A"2
= — 2^2 U

i

+ U2 , |

Wj |^1,
| 1 = 1 -

As was shown in Example 17.1, this system is proper but not normal.

Since the eigenvalues are negative, there does exist optimal control

for the whole state space R2
,
but it will not be uniquely determined by

u = sgn However, it is possible to determine switching curves

that give a unique optimal trajectory through each point of the state

space and hence an optimal control law. Here

Vi Y(t) = ( rj
x
e

x + f] 2 e
2
\ rj 2 e

2t
).

Letting t = — t, we examine the solutions of

dx
x ldx = x

1
— ul9

dxjdx = 2x2 — U\ — u2 ,

leaving the origin with control satisfying

ui( t) = sgn (rj
l
e~ x + rj 2 e~

2t
), u2 {t) = sgn(^ 2 e~

2t
).

All such solutions give optimal trajectories (Corollary 17.2). Taking
rj 2 = 0, we can choose u 2 to be any value between - 1 and 1 and switch

values any time we please. We restrict ourselves to values —1, 0, or 1.

The curve a in Fig. 17.3 corresponds to rj
t < 0, rj 2 = 0, and u

{
= — 1,

u2 = 1. If we switch to u2 = 0, the trajectories leaving a are parabolas

with vertices at (
— 1, —•£•). The curve /? corresponds to switching at time

t = 0, and every point between a and (1 has an optimal trajectory

passing through it. The curve /? corresponds to leaving the origin with

u
{
= — 1, u2 =0. Switching to u2 = — 1, we leave /? at any point we

please along parabolas with vertices at (-1, —1). The curve y corre-

sponds to switching to u2 = - 1 at time t = 0; that is, to leaving the

origin with u
x
= —

1 ,u2 = —1. All points between /? and y can be

reached in this way. Picking rj
l > 0 and + rj 2 < 0, we see that we can

switch to z/j = 1 at any point along y we please. The trajectories leaving

y are parabolas with vertices at (1, 0) and each point between y and a'

can be reached in this way. The switching curves a', /?' and / are

obtained by symmetry. There are an infinity of ways in which this

could be done.
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Fig. 17.3.

exercise 17.5. Assume that the system (17.1) is normal. Let — x°

be on the boundary of &(t*) and let y\ be an outward normal to ^(t*)

at — x°. For any y with the property that y'x° < 0, define

u
y
(t) = sgn[y' y(/)]

and

F(t, y, x°) = y'[_x° + y(t, w
y
)].

Show that F(t, y, x°) = 0 defines a function T(y, x°) with the property

that T(y, x°) < T(r], x°) = t* for any y that is not an outward normal
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to J*(f*) at x°. The problem of computing rj (and hence of computing
the optimal control u to go from a0

to the origin) is therefore reduced
to that of maximizing T(y, x°).

exercise 17.6. Solve the problem of Example 17.2 with \u\ S 1 re-

placed by —a^u^b,a>0,b>0. What can be said if a = 0 (for

instance, what is the attainable set)?

18. Transversatility and a Sufficient Condition for the General Problem

For a continuously moving target z(t ) we know that a necessary

condition for w* to be an optimal control is that w* be of the form

tt*(0 = Sgn [yj

f

Y{ty\ (18.1)

for some rj ^ 0; that is, along an optimal trajectory, optimal control

maximizes rj'y(t,u) and therefore maximizes rj'X~\t ) x(t, u). This, as

was pointed out in Section 13, is a special case of Pontryagin’s maximum
principle.

It is easy to see that this necessary condition applies also when z(t)

is replaced by any continuously moving compact target set S(t ) [_S(t) is

a continuous function on [0, oo) to the metric space of compact subsets

of 7?"] or by any stationary target set S in R". Just as before one can

show that if t* is the minimum time and p e n S(t*), then p must
be on the boundary of both and S(t*). If S is a fixed target set

and a point p of S is reached in minimum time, then the control to

reach p is optimal and p must be on the boundary of both S and

We now want to obtain further necessary conditions, called transver-

sality conditions, which tell how an optimal trajectory behaves as it

approaches the target and how the target behaves as it approaches the

attainable set

Consider first the case of a moving point target z(t) and assume

that z(t) is continuously differentiable and that A(t) and B(t) are

continuous. In the y space the moving target is

w(t)=X~\t) z(t)-x°.
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Let w* be an optimal control to hit z(t ) and let /* be the minimum time.

Then w{t*) = y(t*; w*) and w(t) $ &(t) for t e [0, t*). Thus by Theorem
9.1 there is for each t e [0, t*) a support plane n(t) to &(t) at a point

q(t) of the boundary of <%(t) which separates w(t) and R(t). Let rj(t)

be a unit normal to n(t) outward relative to It then follows that

- y(t, «*)] ^ 0,

nV)Mt) - g(ty] ^ o,

and

yj\t)[w(t) — y(t, w*)] ^ 0 for all t e [0, t*).

By compactness of the unit sphere in Rn and compactness of we
can select a sequence of times tk e [0, t*) such that tk -> t* 9

rj(tk)
-+ rj,

and q(tk) -» q as Ic oo. Since ^'(ODKO — g(/)] = |w(/) — #(0I> the

distance of w(t) from $?(/), it follows that <7
= w(/*). Let p be any

point in Then for some admissible control u, p = y(t* 9 u) and

V'itidlyitk) - y(tk ,
w)] ^ o. Letting k -> oo we can conclude that rj is an

outward normal to at q = w(t*) =y(t*, u). Hence

n\k)
y(h> «*) - w(tk )

h-r

= ri’(h)

- y«*, «*)]
,

!>«*) - wfa)]
j ^ p

(18.2)

Since rj' Y(t)u*(t) is continuous and |Jf*y(r) «(t) dr\ < K\t* — t
k \

for

some constant K
,
it follows that rj'y(t , w*) is differentiable and

dt
y( y(t, u*) = rj'Y(t) w*(t).

Letting k - oo in Eq. (18.2), we obtain

rj'w(t*) ^ 77' T(f*) w*(f*) = q'y(t*, «*). (18.3)

Rewriting this inequality yields the following necessary condition for

optimal control to a continuously moving target

:
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Theorem 18.1 Assume that A(t ), B(t ), and z(t) are continuous and

let w* be an optimal control to hit z(t) with /* the minimum time. Then
for some rj ^ 0

rj'X~\t *) z(t*) ^ r]'X~\t*)[A(t*) x(t *, w*) + 2?(/*) w*(/*)], (38.4)

where = sgn [77' T(f)].

We shall give a geometric interpretation of inequality (18.3) in

terms of the target function w(t) and the reachable set function

A similar interpretation follows for inequality (18.4), z(t) and

Lemma 13.1 showed that the condition u*(t) = sgn[rj' T(/)] was
necessary and sufficient for y(t*, w*) = w(t*) to be a boundary point of

£%(/*). This assures that the intercept, with w(t), occurs on the boundary.

For t* to be optimal, we must have that as / increases to t* the target

w(t) is not approaching the boundary of the reachable set from within

this set. We shall show that this is the interpretation of inequality (18.3).

Geometrically, rj is an outward normal to a support plane n(t*) of

at y(t*,u*). Let h\rj), . .
.

,

hn
~\rj) denote (/7 — 1) linearly in-

dependent unit vectors, each orthogonal to rj
,
which determine n(t*).

Then the vectors {(1, y(t*, u*)), (0, h\rj)), . .
.

,

(0, hn
~\rj))} are n

linearly independent vectors in the (n + l)-dimensional (

t

, y) space and

determine a hyperplane P at the point (it*,y(t *, u*)). A normal to P,

directed (at least locally) away from the reachable cone {(t, y): 0,

yet%(t)} is (
— r\

f

y(t*,u*),r]). If w(t) is to approach the reachable

cone from outside the cone, the inner product of (1, vv(t*)) with

( — rfyit*, u*, rj) must be nonpositive. This is inequality (18.3).

If S is any stationary set in Rn and w* is an optimal control to hit S
and if it hits S in time t* at a point p of S, then w* is an optimal control

to hit z(t) = p. Note also in this case, since p is outside for

0 rg / < /*,thatw(0 = X~\t ) p — x° isoutside^(Z) forO ^ t < t*. Using

Theorem 18.1 we summarize the transversality for a stationary target as:

Corollary 18.1 If A(t) and B(t) are continuous and w* is an optimal

control to hit a stationary target S in minimum time t*, then for some

*1 ¥=0

rj'X
_1

(/*) x(t *, w*) = r]'X~\t*)[A(t*) x(/*, w*) + B(t*) w*(/*)] ^ 0,

(18.5)

where w*(t) = sgn [rj'Y(t)~].
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If the inequality (^0) in (18.4), or (18.5) for stationary targets, can

be replaced by strict inequality (>0) we have strict transversality.

Strict transversality, sometimes referred to as a penetrating condi-

tion, may be used to obtain a sufficient condition for the general

problem.

It was previously noted (Section 17) that &(t) expanding does not

imply that s#(t) will be expanding. This is easily seen from the relation

s/(t) = {X(t)(x° + y): ye &(t) . Thus, even for a stationary target z

and a proper system, it is possible for z to belong to the interior of

£0{t
x ) and to the boundary of stf(tf) for some t2 > t

x
. For this case, and

the more general case of a continuously moving target z(t), we define

t* to be a local minimum time and w* a local optimal control if x(t*
9
w*) =

z(/*) while for some S > 0, z(t) $ <stf{t) for t* — S £ t < t*.

Theorem 18.2 Let A(t) and B(t) be continuous and z(t) be a continu-

ously differentiable target. Suppose u* is an admissible control such

that x(t*
9
u*) = z(t*). A sufficient condition that u * be a local optimal

control and t* a local minimum time is that w* satisfy the necessary

condition u*(t) = sgn [r]' Y(t)~] for some rj ^ 0 and the strict transver-

sality condition

rj'X~\t *) z(f*) < r)'X~\t *) x(/*, w*). (18.6)

Proof. The transversality condition (18.6) is equivalent to

rj'w(t *) < Y]

f

y(t *, u*)

in the y space. Since w and y are continuous there exists a 5 > 0 such

that for t e \t* — <5, t*)

j* f*

rj'w(t) dx < rj'y(t, w*) dx
J

t
J

t

or, using the fact that w(t*) = y(t*, w*),

f]'y(t, w*) < rj'w(t), te[t* — S, t*). (18.7)

From Corollary 13.1, in particular Eq. (13.5), we see that u*(t) =
sgn[^' F(/)] implies rj'y(t

,
u) ^ r\

f

y(t
,
w*) for all / ^ 0 and any admissible

control u. Combining this with (18.7) gives

rj'y(t, u) < rj'w(t), te[t* — S, t*). (18.8)



90 IT. LINEAR TIME OPTIMAL CONTROL

Now suppose t* is not a local minimum time. Then w(t) e &(t) for

some t
x
e [t* — d, t*)

9
and hence there is a control u such that y(tu u) =

w(/j). This contradicts (18.8), completing the proof.

It is interesting to note that any conditions which yield

rj'X~\t*) x(t* 9
w*) > 0 in (18.5) of Corollary 18.1 with S a stationary

point target p will, by Theorem 18.2, be sufficient conditions for t*

to be a local minimum time. In particular, if p is the origin and w*

satisfies the necessary condition u*(t) = sgn[^'F(/)],

x(t*, u*) = r,’Y(t*)u*(t*) = f \(r,'Y(t%\.
j= 1

In this case one might expect strict transversality for a proper system.

However our next example will show that even for a normal system

this need not be the case.

example 18.1. Consider, again, the normal system x + x = u,

\u\ S 1, of Example 17.2. Our problem will be to reach the origin in

minimum time from the initial point (2, 0).

As we saw in Examples 13.1 and 17.2, if we choose an arbitrary r\

of the form (cos <5, sin 5) then a necessary condition that a control be

optimal is that it have the form sgn[sin(t + <5)]. For our problem if we

choose 5=0, // =(1,0), «*(/) = 1 for 0 ^ n and x
1
(t,u*) = 1

+ cos t , x2 (t< u*) = — sin t. Thus x(0, w*) = (2, 0), x(n 9
u*) = (0, 0), while

w* satisfies the required necessary condition. However x(t, u*)

= 0, 0 ^ t ^ n. On the other hand, Corollary 17.2 shows that w* = 1 is

optimal and n is the minimum time. This shows that strict transver-

sality even for a normal autonomous system and stationary target is

not a necessary condition for optimality.

exercise 18.1. In Theorem 18.1 let the target be a continuously

moving compact convex target set S(t). Show that there is an r\ ^ 0

such that at the point x(t*, w*) the hyperplane normal to rj is a support

plane to *S(t*) with rj an inner normal and w*(t) = sgnj^' T(/)] (see

Exercise 9.3).

exercise 18.2. Establish the result in Exercise 18.1 under the

assumption that the target S is a stationary closed convex set.
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exercise 18.3. Determine the switching curves to hit the sphere

S = {x:\x\ = a} in minimum time for:

(a) x = u, \u\ ^ 1

;

(b) x + x = w, \u\ ^ 1

;

(c) x + x = u, — a ^ u ^ b, a > 0, b > 0.

exercise 18.4. In Exercise 18.3b, choose an s > 0 and, for x° in

a neighborhood of (2 + e, 0), compute the optimal time t*(x°). Show
that t* is not a differentiable function.

19. Controllability with Unlimited Control

We consider the same fundamental system

x = A(t) x + B(t) u(t)) 9 x(t0) = x° 9 (19.1)

but wish now to remove the constraint |w*(t)| ^ 1, i = 1, . .
.

,

r. Instead

we consider throughout this section a more general class Q* of ad-

missible controls and shall only require them to be square summable

on finite intervals. Assume also that A(t) and B(t) are matrix-valued

functions defined on [0, oo) and that they are square summable on

finite intervals.

We now define the various controllability concepts that we wish

to discuss in this section. The system (19.1) is said to be controllable

on an interval [70 ,
t{\ if, given x° and x 1

in Rn
,
there is a control ue Q*

which brings the system (19.1) starting at time t0 at x° to x 1
at time t

t ;

that is, there is an admissible control that transfers the system from

(

t

0 ,
x°) to (f^x 1

). If the system (19.1) is controllable on [ t0i t{\ for

some t
x > t0 we say that the system (19.1) is controllable at time t0 . If

the system (19.1) is controllable at each t0 ^ 0, we say simply that it is

controllable. The adjective “completely” is sometimes used with these

two concepts of controllability but seems unnecessary and it is conven-

ient to drop it. We say that the system is fully controllable at time t0

if it is controllable on [/0 , ^i] for each t 1 > t0 ,
that is, one can start at
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x° at time t0 and by admissible control reach any point x 1
in an arbit-

rarily short time (any time t
1 > t0). If the system is fully controllable

at each t0 ^ 0 we again say simply that the system is fully controllable.

It is clear that full controllability implies controllability, and as we will

see in this section full controllability is equivalent to a system being

proper. The principal objective of this section is to obtain sufficient

conditions for controllability that are useful and can be checked without

solving the differential equations for the system.

Since the constraint \u] ^ 1, i = 1, r
,
has been removed, the

control

u(t)= 7'(0f, ZeR\ (19.2)

is admissible (u e f2*) and for this control

x(0 = X(t) X~\t0) x° + X(t) ( Y(t) Y'(t) { dx
J
to

= X(t) X-\t0) x° + X(t) M(t, t0 ) Z, (19.3)

where

M(t0 ,
t) = ( Y(t) Y\x)dx. (19.4)

0

Hence if M(t0 , tf) is nonsingular and we want x(tf) = x 1 we can solve

(19.3) for Z and obtain

{ = LX-\f) X 1 - X~\t0) X
0
]. (19.5)

Equations (19.5) and (19.2) give us an explicit expression for a control

that transfers the system from (t0 ,x°) to (tu xx
). This leads us to a

relationship between M(t0 , tf) and controllability

Theorem 19.1 The following are equivalent:

A. M(t0 , ^) is nonsingular;

B. the system (19.1) is controllable on [^0 , ^i]

;

C. the system (19.1) is proper on [70 , tf\.

Proof. It is clear that M(t0 , tf) nonsingular is equivalent to M(t0 ,
t
x )

is positive definite, and this in turn is equivalent to r\ Y(t) = 0 a.e. on

[70 , tf] implies rj = 0. Therefore A and C are equivalent. We show next

that if the system is not proper on [/0 , tf], then it is not controllable.
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If it is not proper on [_t0 ,tJ, then there is an rj ^ 0 for which

rj'Y(t) = 0 a.e. on [/0 ,
t

{

~\ and for any admissible control u :

rj'X~
1
(t

l
)x(t

l
)-ri'X-\t0 )

= ri' f Y(t) u(t) dt = 0.
J

t0

Let c be the constant vector rj'X~\t0). Then the only points x 1
that

can be attained in time t
x

lie on the plane rj'X~
i
(t

1
)x

1 = c. This proves

that C implies B. We have already shown above that A implies B, and

the proof is complete.

We then have immediately:

Corollary 19.1 The following are equivalent:

A. M(t0 ,
t

x ) is nonsingular for some t
x > t0 ;

B. the system (19.1) is controllable at t0 ;

C. the system (19.1) is proper on [/0 ,
t

x

~\ for some t
x
> t0 .

Corollary 19.2 The following are equivalent:

A. M(t0 ,
t

{ ) is nonsingular for all t
{
> t0 ;

B. the system is fully controllable at time t0 ;

C. the system is proper at time t0 .

Corollary 19.3 The following are equivalent:

A. M(t0 ,
t

x ) is nonsingular for all t
x > t0 and all t0 ^ 0

;

B. system (19.1) is fully controllable;

C. system (19.1) is proper.

exercise 19.1. Prove the equivalence of B and C in Theorem 19.1

using Theorem 17.5.

exercise 19.2. Assuming that the system is controllable on [\t0 , t
x

~\

show that the control defined by (19.2) and (19.5) is the “minimum
energy control” to transfer the system from ( t0 ,

x°
) to (t

x ,
x 1

), where

the control energy E(u) is defined by E(u) = |w(0l
2

dt.

exercise 19.3. Generalize Exercise 19.2 with the control energy

defined by E(u) = u\t) Q{t ) u(t) dt
,
where Q(t ) is a positive definite

r x r matrix.
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The necessary and sufficient condition given in terms of M(t0 ,
t

x )

in Corollary 19.3, while of theoretical interest, is usually not very useful.

To apply this criterion one must know Y(t) = X~ 1
(t ) B(t ), and this

means that one must know the principle matrix solution X(t) of

x = A(t) x. Hence applying this criteria can be extremely difficult even
when A is a constant matrix and almost impossible when A depends
upon time. What we want to do now is to obtain conditions for con-

trollability that depend directly upon the matrices A(t) and B(t) and
are therefore directly computable. We have already done this when A
and B are constant matrices and know that the autonomous system

x = Ax + Bu is proper if and only if

rank[£, AB, . .
.

,

A n ~ l
B~\ = n. (19.6)

What we want to do now is to generalize this condition under the

assumption that the matrix Y(t ) has continuous derivatives. We will

assume that A(t) has k — 2 continuous derivatives and that B(t) has

k - 1 continuous derivatives. This means that 7(0 has k ~ 1 continuous

derivatives.

We obtain first a necessary and sufficient condition for controlla-

bility at time t0 and then later will obtain some sufficient conditions

that are often easier to apply (see Section 17 for the definition of F).

Theorem 19.2 Assume that A has (n — 2) continuous derivatives and
that B has (n — 1) continuous derivatives on [/0 ,

oo). The system (19.1)

is controllable at t0 if and only if there exist times tu . .
.

,

tn ^ t0 (all

greater than or equal to t0) for which

rankLX- 1

^) X~\t2) FB(t2 ), . .
.

,

X~\tn) r-"
1^] = /i. (19.7)

Proof. From (17.5) we see the condition (19.7) is equivalent to

rankCF^), DY(t2), . .
.

,

Dn ~ x

7(0] = n. (19.8)

To prove sufficiency of this condition we will show that (19.1) not

controllable at t0 implies that rank[7(^
, . .

.

,

Dn ~ 1

7(6,)] < n for any
set tu ..., tn ^t0 . Indeed (19.1) not controllable at t0 implies [since

Y(t) is continuous] that there exists a nonzero vector r\ such that

f]'Y(t)= 0 for all t ^ t0 (Corollary 19.1). This implies rj'DY(t), ...,

rj'

D

n ~ 1
(t)Y(t) are also zero for all t^t0 . Therefore, for any set

tu •••> tn ^ t0 ,
rank[(/j), ..., Dn ~ 1

Y(tn)'] <n.
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In order to show necessity of the condition we assume that the

system (19.1) is controllable at t0 . We will then establish the existence

of times tu t2 ,
. .

.

,

tn ^. t0 for which (19.8) is satisfied that is, for any

nonzero vector v\ that the 77r-dimensional vector [ Y(t ) is an n x r

matrix] rj'\_Y(t
1 ), DY(t2 ), . .

.

,

Dn ~ 1
Y{tn)] # 0. Let e

1 be any nonzero

vector. Since (19.1) is controllable and therefore proper at t0 ,
there is a

t
x > tQ such that e

v
Y{t{) # 0. If rankf!^)] = n, we are finished. If

not, there is a unit vector e
2 such that e

2 ' Y(t
x ) = 0, and clearly e

1 and

e
2
are linearly independent.

We next show that there exists a t2 ^ t0 such that e
rDY{t2 ) ^ 0.

Indeed, suppose e
2 DY(t) = 0 for all t ^ t0 . Then

0= ( e
2
'DY(T) dx = e

2
'Y(t)

for all t^:t09 which contradicts the controllability of (19.1) at t0

(Corollary 19.1). We continue inductively in this manner and either

for some j < n,

rank[7(0, DY(t2\ . .
.

,

D^ 1
Y(tj)] = n 9

and we are finished or else we generate n linearly independent vectors

e
2

, . .
.

,

e
n and times t l9 12 , . .

.

,

tn ^ t0 for which

e
k
'[Y(t i),DY(t2),...,D

k - 2
Y(tk _ i)]=0. k —2, .. .

.

n, (19.9)

and

e
kDk ~ i

Y(tk) 0, k = 1 , . .
. , n. (19.10)

Now any nonzero vector rj can be expressed as rj —Ya = i
not

a. = 0. Then

= a 1
^

1
7(t 1 ), fa t

^DY(t2 ) 9
...

9 ittSlT-'YvA
i =

i

i = i

and it is clear from (19.10) that this /7r-dimensional vector cannot be

zero since all of the a^s are not zero. This completes the proof.

In much the same way as was used to obtain the sufficiency of the

above condition we obtain:
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Theorem 19.3 If A(t) has k — 2 continuous derivatives and B(t) has

k — 1 continuous derivatives, then the system (19.1) is fully controllable

(proper) at t0 if for some positive integer k

(a) rank[2?(/0), TB(t0), . .
.

,

T*" 1^)] = n

or, more generally,

(b) for each t
x > t0 there is a t e [70 ,

t
x ) for which

rank TB(t ), . .
.

,

Tk ~ 1
B(t)'] = n.

Proof. Assume that (19.1) is not proper at t0 ^ 0. Since Y(t) is con-

tinuous, this implies that rj'Y(t) = 0 on |70 ,
for some rj / 0 and

some t
x
> tQ . Differentiating rj'Y(t) = rj'X~\t ) B(t), we obtain

ri'X~\t) B(t)= 0, ) T(t) B(t)

= 0, . .
.

,

rj’X~
l
(t) r*- 1

^) 5(0=0

for Ze[r0 ,r]]. Therefore the nonzero vector Yi’X~
i
(t) is in the null

space of each of the matrices 5(0, 15(0, • • , T
k ~ 1

B(t) and

rank[5(0,T5(0.....r‘
-15(0]<» for all te[t0 ,t

t ].

This contradicts both (a) and (b) and completes the proof.

The following example illustrates a case where it would not be

possible to decide controllability using M(t0 ,
t
x ):

example 19.1.

x = A(t) x + B{t) u
,

where n = 2,

and A(0) = DA(0) = D2A(0) = 0. Under these conditions TjB(0) =
DjB(0) for j = 0, 1, 2, 3. Therefore

5(0) = T5(0) =0 ,
r 2

5(0) = 0 , r 3
5(0) = 0

Since T2B(0) and T3B(0) are linearly independent, it follows from

Theorem 19.3 that the system is fully controllable (proper) at t0 = 0.
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exercise 19.4. Show that

= t
A
u

x
{t),

X2 = t
3U2 (t)

is fully controllable (proper) at t0
= 0 using (a) Corollary 19.1 and (b)

Theorem 19.3. Is this system proper (fully controllable) ?

Theorem 19.2 certainly suggests that the conditions in Theorem 19.3,

while sufficient, may not be necessary. We will illustrate now that this

is so even when A and B are C 00
(to say that A and B are C 00 means that

all the derivatives of A and B exist and are therefore continuous).

Fig. 19.1.

Let g 1
and g2 be periodic of period 1 and on the interval [0, 1] and

be as shown in Fig. 19.1. These functions can be made to approach

zero like e~ 1/t2 and can be made C 00
. Define

b
t
(t) =e~ u,2

g l ^j,
for t> 0, 6,(0) = 0,

b2(1)= for 1 > 0, b 2 (0) = 0.
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Since Jo b
t
(t) dt > 0 for i = \ , 2 and all /, > 0, the system

x, = b
x
(t)u

x
(t),

x2 = b2(t) u2(t)
(19.11)

is proper (fully controllable) at to =0. This follows since 3t(t
x , 0)

contains the origin in its interior for each /, > 0 (Corollary 17.3). It is

also easy to see, since either g x
(t) = 0 or g2(t) s 0 on [t0 ,

t0 + <5] for
each t0 > 0 and sufficiently small <5 > 0, that the system is not proper
at any t0 > 0. Now

rank[Z>(0), Tb(0), . .
. ,

= 0

and

ranker), Tb(t ), . .
. , T*"

1

^/)] ^ 1

for all t ^ 0 and all integers k = 1,2, Thus even for Cx functions
and k arbitrarily large the conditions of Theorem 19.3 are not necessary.

This is similar to the fact that the vanishing of the Wronskian is a
sufficient but not necessary condition for functions to be linearly

independent.

What we want to do now is show, under the assumption that A(t

)

and B(t) are analytic or piecewise analytic on [0, oo), that a condition
similar to (b) in Theorem 19.3 is both necessary and sufficient for a
system to be proper (fully controllable) at t0 . By piecewise analytic we
mean piecewise continuous with only isolated singularities (points
where the function is not analytic). For instance, the functions b

x
(t)

and b 2 (t ) of Eq. (19.11) (Fig. 19.1) can be made piecewise analytic.

The system given by Eq. (19.11) is really pathological, and for most
practical purposes the results we will now obtain gives us a necessary
and sufficient condition that a system be proper (fully controllable).

Let (t0 , t
x ) be a fixed nonempty open interval and define

g(k, t0 ,
t

x )
= max rank[B(t), TB(t), T

*

_1
£(f)].

t e (f0 ,fl)

Then g(k, t0 , t
x ) is defined when B(t) and A(t) have enough derivatives

on (A>> h) so that T* ’(t) B(t) is defined on (t0 , t
x ). Assume now that

g(m, t0 ,
t

x ) is defined for some integer m > n. Since g(k, t0 ,
t
x ) ^ n,

there is at least one integer n* g n such that g{n*, t0 ,
t
x ) = g{n* + 1,

t0 ,t]). Let «0 =g(n*, t0 , t
x ) and let ^'(t), . .

. , fS
n
°{t) be n0 column
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vectors from [B(t), rn* -1
(7) B(t)~] which are linearly independent

at t* e (t0 ,
t

x ). By Exercise 19.6 these vectors are linearly independent

for te(t *, tf), some nonempty subinterval of (/0 , /j). Let fi

n° +l (t) be

a column vector of r"*(f) f?(0* Then, since p(n*,
, /,) = fi(n* + 1, t0 ,

tf), r +
\t) = eft) p\t) + • •

• + c*
o P

n
°(t), and it follows (see Exercise

19.7) because of the nature of T that Fpno+i (t), /?*(/), . .., j8"°(0 are

linearly dependent for te(t*,tf). Certainly r/?"
0+1

(f), Ffi\t), . ..,

Fpn
°(t) are linearly dependent and by assumption Ffi

l

(t), . .., ft"
0

are linearly dependent for / = 1, 2, . .
.

,

n0 . Hence the conclusion. There-

fore ju(/7*
5 C*)

== M'7 * + 1,1*
j
**)> • • — t*, tf), and we have

proved

:

Lemma 19.1 If /0 , C) is defined for k = 1, 2, . .
.

,

m, m > n, then

for some nonempty open interval (/*

,

/f) in (t0 , tf) and some n* ^ w

tin*, tS,tX) = tin*+], tlA)

for all j = 1, . .
.

,

m — «*.

Assume now that A(/) and f?(r) are analytic on (t0 , tf) and that

ju(/7
,

f0 ,
< n. Then by Lemma 19.1 there exists a (/*, t f) such that

p(k, tf) < n for all integers k = 1,2, This implies that there is a

/* g (f0? /j) and a nonzero vector rf
* for which = 0 for all

j = 0, 1, 2, .... Taking r\ = ??*, we have Dj
rj' Y(t) = 0 at t = t*

for all / = 0, 1,2, ...

.

Since if T(r) is analytic on (r0 ,
rj, ?/' T(r) = 0 on

(/0 , C)- Therefore (19.1) proper at t0 implies that yu(/?
9

t09 t
} ) = n for

all t
1 > t0 . Combined with Theorem 19.3 we have:

Theorem 19.4 If Aft) and B{t) are analytic on (t0 , t f), ^ > /0 ^ 0

then the system (19.1) is proper (fully controllable) at t0 if and only if

for each t
x > t0 there is a t e (t0 , tf) such that

rank[J?(0, T(t) B{t ), . .
.

,

Tn ~ 1
B(t)'] = n. (19.12)

We can, for example, apply this theorem to the system (19.11). It

is piecewise analytic for t > 0 and we can therefore conclude that it is

not proper for any t0 > 0, although it is proper at t0 = 0. This is then

an example of a system which is controllable for all t0 ^ 0 but not proper

(fully controllable) at any t0 > 0. To apply this result it is useful to note

that because of analyticity Eq. (19.12) will be satisfied at all but isolated
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points of [tQ ,
t{\ if the system is proper and if not proper will not be

satisfied at any point of [70 ,
t
x ).

exercise 19.5. If (i;

1

,
. .

.

,

£
k
are linearly independent vectors in Rn

,

then, for some S > 0, + v, . .
.

,

^ + v are linearly independent for

all v satisfying \v\ < S.

exercise 19.6. If £\t), . .., £
k
(t) are continuous and linearly

independent at t0 ,
then there is an e > 0 sucn that £\t), . .

.

,

£
k
(t) are

linearly independent for \t — t0 \
< e.

exercise 19.7. If ^(t), ..., £
k
( t ) are linearly independent and

{
k+1

(0 = Ci(0 ^(0 + • •
• + ck(t) ^\ t) for

\

t - t0\<e show that if

= 1, k, are Cm
for

1
1 — t0 1

< e, then Cj(t ), j = 1, k, are

also Cm
for

1

1 - /0 |

< e.

exercise 19.8. Using the notation of Lemma 19.1, show that if

rank[J?(0, T{ t ), . .
.

,

5(0)] = n(n*> t0 ,

for all te(t0 ,
t

x ), then in using condition (b) of Theorem 19.3 it is not

necessary to go beyond k = n* which is less than or equal to n. In

general, is it necessary or not to go beyond k =nl

exercise 19.9. Consider the «th-order, controlled, linear differential

equation

xin\t) + a„-j(0 x(" -1)
(0 + • •

• + a0(t) x{t) = u(t),

where aj{t) has j continuous derivatives on [0, oo). Show that the

equivalent system y(t) = A{t ) y(t) + b(t) u(t ), where

" 0 1 0 . . . 0
“ “0‘

0 0 1 . . . 0

A(t) =
1

, B(t

)

=

0 . . 0 . 1 0

. ^0 ~ a
\ -<*n- 1 . _

1
_

is fully controllable (proper) at any t0 ^ 0.
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EXERCISE 19.10. Let

Show that the system x{t) = A x(t) + b(t ) u(t) is not controllable at

t0 = 0. Show that all solutions which satisfy x(0) = 0 lie on the surface

x
x
sin t — x2 cos t = 0 therefore there cannot be a single time t

{ > 0

in which all points can be reached. However, show that even with

control bounded by \u(t)\ ^ 1 any point in Rn can be attained in finite

time from the initial state x(0) = 0.
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20. General Theory

We consider the problem of reaching a continuously moving

target z(t) by a trajectory of the control system described by the vector

differential equation

x(0 =f(t,
x(t\ u(t)), x(0) = x°, (20.1)

in minimum time. The vectors x and /will be always ^-dimensional. An
admissible control u will be a measurable r-vector-valued-function

which may have values at time t in a nonempty compact set U(t ), with

the set-valued function U continuous in the Hausdorff topology. We
will assume the vector function / is continuous in all arguments, is

continuously differentiable with respect to x, and that the inner product

inequality

1 + |x|
2
] (20.2)

holds for some constant C and all x, and u e U(t). This condition

prevents finite escape time of trajectories and could be replaced by any

condition which allows us to restrict attention to a compact set of the

(/, x) space. Indeed, for any solution x of (20.1) we obtain x'x ^
C[1 + |x|

2
], d/dt\x\

2 S C[1 + |x|
2
], or |x(t)|

2 ^ (1 + |x°|
2
) exp 2 Ct.

Therefore once a value 0 is chosen, we need consider only the

compact region

D(t) = {(t, x): 0 St ST, |x|
2 ^ (1 + |x°|

2
) exp 2CT} (20.3)

of the (

n

+ l)-dimensional t, x space.

We next introduce the set-valued function

R(t, x) = {/(/, x,u):ue U(t)}.

Since / is continuous and U(t) is nonempty and compact, R(t, x) is

nonempty and compact. Furthermore R is continuous in the Hausdorff

topology as a function of t and x. Associated with Eq. (20.1) is the

equation

x(t) e R(t, x(r)), x(0) = x°. (20.4)

105
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A solution of (20.4) is defined to be an absolutely continuous function cp

such that cp(0) = x° and cp(t) e R(t
,
cp(t)) almost everywhere. The set-

valued function R is introduced as a convenience in notation and
presentation.

Lemma 20.1 A function cp is a solution of (20.4) if and only if cp is a

solution of (20.1) for some admissible control u.

Proof. If (p is a solution of (20.1) for control u, then cp(t) = f(t ,
cp{t),

u(t)) e R(t, cp(t)) almost everywhere, showing that (p is a solution of

(20.4).

Conversely, suppose cp is a solution of (20.4) on an arbitrary interval

[0, Tl Let V(t) = {(/, cp(t\ u) e £" +r+1
: u e £/(/)}. Then Fis continuous

in the Hausdorff topology. Also, the values V(t) are nonempty, compact
sets which, by the continuity of V, are contained in some fixed compact
ball (with radius possibly depending on T) for t e [0, T]. Clearly

R(t
,
<p(t)) =f(V(t)). Since cp is a solution of (20.4), cp(t) is a measurable

function with cp(t) e R(t
,
<p(t)) almost everywhere. By Lemma 8.1 there

is a measurable function having values v{t) = (t, cp(t), u{t)) e V(t)

such that (p{t) =/(r(0); ^(0 = /(/, cp(t ), w(t)), where w is measur-

able and has values t/(t)e L(/). This shows cp is a solution of (20.1),

completing the proof.

The attainable set function is defined, as in the linear problem,

to have values the set of all states a attainable by trajectories of

(20.1) using all possible admissible controls. Equivalently, by Lemma
20.1, is the set of all points cp(t) such that cp is a solution of (20.4).

Again, the existence of an optimal control for the time optimal problem
will depend on being closed.

example 20.1. Consider the two-dimensional system

x
1 = (1 - x2

2
)w

2
, a

x (0) = 0,

x2 = w, x2 (0) = 0,

with \u(t)\ ^ 1. We shall first show that the point (1, 0) is a limit point

of stf( 1) but does not belong to j/(l).

For each positive integer n subdivide [0, 1] into 2n equal sub-

intervals. Let Ij = [y/2/7, (j + l)/2n), j = 0, 1, . .
.

,

2n - 1. Define
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U\t) =
if t e Ij with j odd,

if 1 e Ij with j even.

Let cp(t, u
n
) denote the solution corresponding to u

n
. Then <p 2 (l, u

tl

)
= 0

for all n and as n-> co, cp 2 (t, u
n
) converges uniformly to zero on the

interval [0, 1]. Thus, since (u
n
(t))

2 = 1,

<Pl(hU*) = 1-
\

l

(p2
2
(T,U

n
)

J o

dx < 1

and as n -> oo, (p t ( 1, u
n
) -> 1. However (1, 0) j/(l) since this would

require a control u such that cp 2 {t ,
w) = 0 and this can occur only if

u = 0 in which case (p x
{t

,
w) = 0.

The construction of this example depended on the fact that R(t
,
x) =

{((1 — x2
2
)u, u) e E2

:
—

1 ^ u S 1} is not convex for all t
,
x.

exercise 20.1. Consider the time optimal problem of hitting the

fixed target z = (I,0) with system equations those of Example 20.1.

Show that for any t' > 1, (1, 0) e and inf{/: (1, 0) e &0(t)} = 1.

Does an optimal control for this problem exist?

Theorem 20.1 (Filippov). Suppose / satisfies the state continuity

conditions, inequality (20.2), and that R{t
, x) is convex for all t, x.

Then for any T^. 0, is compact and si is continuous as a function

of t in the Hausdorff topology.

Proof. Since U(t) is continuous on [0, T~\ there is an N such that

\u\ ^ N whenever ue U(t ), t e [0, T~\. Since / is continuous let M be

such that
|
f(t 9

x, y) | ^ M for (t, x) e D(T ), \u\ ^ N [see (20.3) for the

definition of

We shall first show the closure of si(T). As remarked, XEsi(T)
implies |x|

2
^ (1 + |x°|

2
) exp(2CT), showing si(T) is bounded, hence,

if closed, compact. Let xn = cp
n
(T) be a sequence of points in si(T) con-

verging to a point x*, with cp
n
a solution of (20.4). Then \q>

n
(t)\ ^ M,

showing the cp
n form an equicontinuous family (each has the same

Lipschitz constant M). Therefore a subsequence (we take it to be

the original sequence) of the cp
n
converges uniformly on [0, T~\ to a

function cp which also has Lipschitz constant M and is therefore ab-

solutely continuous. Clearly cp(0) = x° and cp(T) = x*. We will next

show cp is a solution of (20.4).



108 III. NONLINEAR TIME OPTIMAL CONTROL

Let be any point of [0, T] for which <p{t0 ) exists. We will show
(p(t0) e R(t0 ,

(p(tj).

cp(t) - cp(t0)

t-t0

lim
n-* oo

<p
a(t)-<pH

(to)

t -

t

0

lim f (p"(t0 + (t — t0)s) ds.
tl-KX) J 0

Let e > 0 be given and <5 > 0 be such that

<pQ) - <p(t0 )

t-t0

- <p(to) < £

if
1
t - tQ \

< <5.

For almost all t, cp
n
(t) g 7?(t, <p”(t)). But cp

n
converges uniformly

to (p and 7? is continuous in the Hausdorlf topology. Therefore for

\t - t0 \

sufficiently small (and less than 8) and n sufficiently large, <j>\ x)

belongs to be a closed £ neighborhood of R(t0 , <p(/0)) for almost

all x g [t0 ?
t~\. Denote this neighborhood by RE

(t0 ,
cp(t0)). Then

(pVo + (* - t0)s) g R%t0 ,
<p(t0)) for almost all se[0

9 1} and, since

R\t0 ,
(p(t0)) is convex, the mean value theorem for vector-valued

functions shows

f <P"(to + (t- t0)s) ds e R\t0 , <p(t0))
J o

for all n sufficiently large. Thus (cp(t )
- (p(t0))/(t — /0) belongs to

RVo 9 <P(to))9 hence <p(t0) e R
2e

(t0 ,
(p(t0)). But £ is arbitrary and

R(t

o

,
(p{t0)) is closed, therefore <p(t0) e R(t0 ,

<p(t0)). This holds at any
point t0 such that (p(t0 ) exists, i.e., for almost all t0 , showing cp is a

solution of (20.3). Thus <p(T) = x* g si(T) and si{T) is closed.

To complete the proof, we need only show si is continuous in the

Hausdorff topology on [0, T]. Let t
l
,t2 e [0, T] and x 1

be any point in

si{tx ) x
l = (p(t1 ), with (p a solution of (20.4) defined on [0, T~]. If x2 =

cp(t2 ) g j/(/2 ) the bound \f(t, x, u) | ^ M shows \x
x — x2

\ ^ M \t
t
— t2 1.

Thus given any £ > 0, j/(^) is contained in an s neighborhood of

si(t2)if\tl
— t2 1

<e/M. Similarly si{t2 ) is contained in an £ neighborhood

of sd{t^) if \t± — t2 \
<g/M. Thus si is continuous and the proof is

complete.
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Corollary 20.1 (Existence of a Time Optimal Control). Assume the

conditions of Theorem 20.1 are satisfied and that there exists a f^O
such that the target point z(T) e stf(T). Then there exists an optimal

control.

Proof\ Let t* = inf{t: T ^ t ^ 0, z(t) e s4(t)}. Since there is at least

one value T such that z(T) e stf(T) by assumption, t* is well defined. We
must show z(t*) e

Let {tn} be a sequence of times converging to t* such that z(tn) e

For each n let cp
n be a solution of (20.4) with cp

n
(tn )

= z(tn). Then

mt*) - z(t*)\ £ \cp\t*) - cp\Q\ + |z(0 - z(t*)|

^ |z(0 - z(t*)\ + f M dr,
j

t
*

where M is the bound on
|f(t9 x, u)\ as in the proof of Theorem 20.1.

From the continuity of z, it is clear that (<p"(?*)} converges to z(t*) as

n oo. Since cp
n
(t *) g £0{t*) and is closed, z(/*) g complet-

ing the proof.

We next will prove an approximation theorem which has as a

corollary an analog of the bang-bang principle. The result will not be

as sharp as in the linear case. Again R(t , x) will denote the set {/(?, x,w):

u g U(t)} with / and U satisfying the continuity conditions and con-

dition (20.2) as stated previously. We let co R denote the nonempty

compact set-valued function with values co R(t

,

x) the convex hull of

R(t 9
x); i.e.,

co R(t 9 x) = {a f(t9 x, u) + (1 — a)f(t9 x, v): 0 ^ a ^ 1, u 9 ve U(t)}.

(20.5)

From this representation it is clear that solutions of the equation

x(t) g co R(/
9
x(/)), x(0) = x°, (20.6)

exist. Indeed, for u 9
v admissible controls and 0 ^ a ^ 1, the solution

of

x = a f(t, x, u) -
1- (1 — a)/(t, x, v)

9
x(0) = x°,

will be a solution of (20.6).
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Theorem 20.2 Let cp be any solution of (20.6) on an interval [0, T~\.

Then for any e > 0 there exists a solution \j/ of (20.4) such that

max0<^ r \cp(t) - \j/(t)\ < s.

Proof. Since U(t) is continuous on [0, T] there is an N such that

\u\ ^ N for ue U(t ), te [0, T]. Also, /is assumed continuously differ-

entiable with respect to x. Let K be the maximum of the absolute value

of all partial derivatives (djdx^fft ,
x, u) for ( t ,

x) e D(T), \u\ ^ N.

For the moment, let v be any admissible control and \j/(t, v) the

corresponding solution of (20.1). Then

\(p(t)->p(t, u)| =

<

f [0CO -/(T, <j/(r, v), v(r))] dr

l<p(.T) -f(j, <p(t). t>C0)] dr + (lf(r, cp(r), v(r))
J n

-/(r, <A(t, v), v(r))] dr

<
f[<p(r) -fir, cp(r), ®(r))] dr
J o

+ n
1/2K f \<p(r) - ^(t)| dr.

J 0

The required result will follow from an application of the Gronwall

inequality to (20.7) if we can show the existence of an admisisble control

v which makes

fW)-/(T, cp{T), P(T))] dT
J 0

arbitrarily small, uniformly for t e [0, T~\.

Subdivide the interval [0, T~\ into m equal subintervals each of

length T/m.

Let Ij denote the interval (j — l)T/m < t ^ jT/m
, j = 1, 2, . .

.

,

m.

Since cp is a solution of (20.6), cp(t ) e co R(t, cp(t)) almost everywhere.

By Theorem 8.4 \j. co R(t, cp{t)) dt = J7j R{t ,
cp{t)) dt

, which may be

interpreted that there exists a measurable function y
j

,
defined on /•
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with value at time t in R{t
,
cp(t)), such that

Jj.
cp(t) dt = J7j. y\t) dt.

As in the proof of Lemma 20.1, one may use Lemma 8.1 to conclude

that there is an admissible control vj defined on Ij such that y
j(t) =

f(t, (p(t), vj(t)) almost everywhere. Define v* to be that admissible

control on [0, T~\ whose restriction to Ij is vj
, j = 1, 2, . .

.

,

m. Then

L<P(t) ~f(t, cp(t),v*m dt = 0 for j = 0, m.

hence

fW) -/(T, cp(T), dt
J o

^ 2Mn 1/2nT/m,

where Mis the bound on |/(7, .v, u)\ for ( t ,
x) e D(T), \u\ ^ N. The num-

ber m of subintervals is arbitrary; choose it large enough so that

2Mn 1/2Tjm < £ exp(— n 1/2KT). Then (20.7), with v replaced by t*,

becomes

\cp(t) — \J/(t, v*)\ ^ s exp(— n 1,2Kt) + n
i/2K f \(p(r) — \jj{r, i;*)| dr.

J 0

An application of the Gronwall inequality gives
|

cp(t) — v*)\ ^ £

for 0 ^ t ^ T, showing that if/ is the desired solution of (20.4) or (20.1),

completing the proof.

Corollary 20.2 Let stf(T) and d#(T) denote the set of points attainable

at time T by solutions of (20.4) and (20.6), respectively. Then stf(T)

is dense in 3#(T) and, since &(T) is closed, the closure of srf(T) is J’(r).

exercise 20.2. Consider the linear system x = A(t) x + B(t) u
,

x(0) = x°, with controls u satisfying |w(OI ^ L Use Theorem 20.2 to

show that any trajectory x(t, u) defined on an interval [0, T~] may be

uniformly approximated by a trajectory x(t, u°) arising from a bang-

bang control u°. Show that even in the linear case, it is not necessarily

possible to find a bang-bang control u° such that x(t, u) = x{t, u°) for

all 0 < t < T.
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21. Nonlinear Problems with Control Appearing Linearly

We now consider the special case of Eq. (20.1) of the form

x(t) = g(t, x(t)) + H(t, x(t)) u(t), x(0) = x°. (21.1)

The components of g(t, x) and H(t
,
x) are assumed continuous in t

and x and continuously differentiable with respect to x. Here g{t
,
x)

is an n vector while H(t, x) is an n x r matrix. We shall assume either

that the right side of (21.1) satisfies condition (20.2) or, as in the special

case of the two-dimensional examples which will follow, that there is

some condition satisfied to assure that we may restrict our attention to

a compact subset of ( t ,
x) space.

For equations of the special form (21.1), if the values a control may

take at time t are constrained to a set U(t), we observe that R(t
,
x) =

{g(t, x) + H(t
,
x) u: u e U(t)} is a translation of a linear image of U(t).

A case of particular interest is where U consists of the vertices of the

unit cube in Er

;
i.e.,

U = {u : \Uj\ = 1,7= 1,2, ...,r}.

Then the convex hull of U is the unit cube. Now the linear image of the

convex hull of U is the convex hull of the linear image of U. Therefore,

for this U, the study of x(t) e R(t
,
x(/)), x(0) = x°, is equivalent to the

study of (21.1) with admissible controls being bang-bang controls,

while the sutdy of x(t ) e co R(t, x(t)), x(0) = x°, is equivalent to the

study of (21.1) with admissible controls being mesaurable functions

taking values in the unit cube. Letting 12 denote this latter set of control

functions, Theorem 20.2 shows: Given any s > 0 and T > 0, if cp is a

solution of (21.1) corresponding to the arbitrary control u e Q, there exists

a bang-bang control u° such that the corresponding trajectory uniformly

approximates cp to within s over the interval [0, T~]. Corollary (20.2)

shows that the closure of the set of points attainable at time T by

trajectories of (21.1) corresponding to bang-bang control is the set of

points attainable at time T with controls u e £1. It is natural to wonder

whether these attainable sets are actually equal, as is the case in linear
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systems; i.e., is the nonequality merely a shortcoming of the method of

proof? In what follows, a method for constructing solutions to a class

of two-dimensional nonlinear optimal control problems will be de-

veloped. Using this method, a two-dimensional example (Example 22.7)

will be given to show that equality of the attainable sets for arbitrary

and bang-bang controls need not hold.

22. Two-Dimensional, Autonomous, Nonlinear Systems with

Control Appearing Linearly

We will consider systems of the form

*i(0 = ^iWO) + ^iWO) u(t),

x2(t) = A 2(x(t)) + B2(x(t)) u(t), x(0) = x°,

where x = (x1? x2 ) while u is a scalar-valued measurable control with

|w(OI ^ 1. The functions A
t
,Bi9 i= 1,2, are assumed to be once

continuously differentiable in the plane. A solution, for control choice

u, which exists (locally) and is unique, will be denoted by (pit, u, x°).

The optimization problem will be to minimize a (cost) functional of the

form

C
tf

L((p(t; u, x0)) dz,
J o

where tf [actually fy(w)] is the smallest nonnegeative value of t such that

(p{tf ;
u

,
x0)

= xf
,
xf being a given terminal (target) state. Here L is

assumed to be a once continuously differentiable, real-valued function.

Of particular interest is the case L = 1 which reduces to the time

optimal problem.

Before dicussing the problem of obtaining an optimal control, we
will determine the region in E2

in which solution trajectories can exist.

Define

R(x°) = {x e E2
: x = cp(t, u, x°), t e [0, oo), u admissible},

R(xf) — {x e E2
: x = (p(— t, u, xf), t e [0, oo), u admissible},
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where (p( — t
,
u, xf) denotes a solution of

*i(0 = -^iWO) - ^iWO) u(t\

x2{t)
= —A 2(x(

n
))
— B2(x(t)) u(t), x(0) = xf .

In words, R(x°) is the set of points which can be attained from x°,

while R(xf) is the set of points from which xf can be attained.

Obviously, if a solution to the optimal control problem for (22.1)

exists the arc of the trajectory connecting x° to xf must lie in R(x°) n
R(xf). Also, if R(x°) n R(xf) ^ 0, the empty set, there will be an

admissible control u with the corresponding solution trajectory joining

x° and xs .

Our first goal will be to find a constructive method of determining

R(x°) n R(xf). It will be shown that, with several conditions satisfied,

the boundary of this set consists of arcs of the trajectories cp(t
, 1, x°),

<p(t, 1
,
Xs), and <p(-t, -1, xf).

Let y e E 2
, |a| ^ 1, and define the vector

£(«, y) = (d,Ofi + a B^y), A 2(y) + a B2(y)).

Then the set of possible “directions” which a solution of (22.1) can

assume at the point y is given by {£(a, y): |a| ^ 1}.

Let

My) = My) + My) B
t (y). (22.2)

Note that A(y) + 0 implies y is not a rest point solution of (22.1) for

any admissible control. Define 0(a, y) to be the angle traced out by

the ray £(cr, y) as o varies continuously from — 1 to a. The angle will be

called positive if it is traced out in a counterclockwise direction and

negative if in a clockwises direction.

Lemma 22.1 If A(y) ^ 0, the set {£(a, y) :
|a| ^ 1 } of possible directions

is bounded by £(— 1, y) and £(1, y) with 0 < |d(l, y)\ < n.

Proof. For any — 1 1, £(a, y) lies on the line segment joining

£(-l ,y) and £(1 ,y), since we can write {(a, y) = ((a + l)/2) £(1, y)

+ ((1 - a)/2){(-l, y). Thus «-l ,y), £(1 9 y) bound {£(a,y): |a| ^ 1}.

Letting |<j;(a, y)\ denote the length of the vector £(a, y), the con-

dition A(y) 7^ 0 implies |£(a, y)\ # 0 and that £( — 1
, y) and £(oc, y) are

linearly independent for any — 1 < a ^ 1, thus 0 < \6(\,y)\ < n.
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In view of this lemma the directions £(1, jc°) and £( — 1, x°) bound
the set of possible directions at x°, and the angle 0(1, x°), which we may
assume for the sake of this disucussion to be positive, is such that

0 < 0(1, x°) < n. The next lemma will show that if we were to observe

the angle 0(1, cp(t; 1, x
0
)) as t increases from zero, the condition

A{cp(t\ 1, x
0
)) # 0 implies the invariance of the sign of 0(1, cp(t; — I,*0

)).

Intuitively one would expect that all possible trajectories are restricted

to a “ wedge-shaped ” region bounded by </>(•; 1 ,
x°) and <p( •

;
— 1 ,

x°).

Lemma 20.2 Let y(o), a0 ^ o ^ <jf ,
be a continuous curve in E 2 such

that A(y(<j)) ^ 0. Then sign 0(1, y(cr)) is invariant along the curve.

Proof

\

Since 0(1, y(cr)) is a continuous function of cr, if it changes sign

there would be a value o
l
e [a0 , af] such that 0(1, y^)) = 0. The

assumption A(y(cr)) # 0 and Lemma 22.1 show this cannot happen.

The following example illustrates a case where arcs of the tajectories

<p(t, l,x°), cp{t, — l,x°), <p(— t, l,xf), and <p(
— t, — 1 ,

xf) form the

boundaries of a compact set S in the plane. Our goal will be to show
that, with several conditions satisfied, S is R(x°) n R(xf).

example 22.1.

*1 =V -x
l

2x2 u, x° = (1, 0), |m(0|^1,

x2 = —x2 + u, xs = (2, 0).

Calculation yields (see Fig. 22.1):

1
, X°) = e'

\(P 2 (t, 1, x°) = 1 — e~'

-i,x°) = e'

[<P 2(U -1, x°) = e~' - 1

1

q>(t, 1, x°) =

<P(t, - 1, x°) =

1

1, Xf) = |

e l l2 <p(-t, -
1, Xs) = (

e
'

1
1
2

e'- 1.

Also:

A(x) = x,
2
[x 2

2 - 1].
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Our main purpose is to obtain a method for solving a class of

control problems which will provide interesting examples. We will

require that the examples satisfy the following conditions:

(i) (p(t
,

1
,
x° ) and (p(t, — 1

,
x°) have only the point x° in common,

while <p(— t, 1
,
xf) and cp( — t

,

— 1
,
xf) have only the point xf in

common.

(ii) cp(t, 1, x°) and cp(— t
, —1, xJ) intersect in a unique point other

than xf . Also cp(t, — l,x°) and cp(— t, l,xf) intersect in a

unique point other than xf .

The above conditions insure that arcs of the trajectories cp(t
, 1, x°),

cp(t

,

— l,x°), cp(— t, l,xf), and cp(— t
,

- 1,/) form the boundary of

a compact region S of the plane having nonempty interior. We require,

in addition, that

(iii) A(x) -jf- 0 for x e S.

With these assumptions, one may conclude that

S c= R(x°) n R(xf).
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Indeed, condition (iii) shows that the equation

*1 = A i(x) + B^x),

x2 = A 2(x) + B2(x)

has no rest point solutions in S. Therefore the trajectory <p(t, 1
, y) must

leave S, and in doing so intersect the arc of cp(—t, — 1, xf) which
contributes to the boundary of S. By switching to control u = - 1 at the

time this intersection occurs, it is easily seen that y e R{xf). Similarly,

(p{-t, 1
, y) must intersect the arc of <p(t, - 1 , x°) which contributes to

the boundary of S showing that y e R(x°).

Our goal is to obtain conditions which insure S = /?(x°) n R(xi ).To

accomplish this an additional assumption is needed. Let

r(x°) = {<p(t, 1, x°): t^O) u -l,x°): t ^ 0}

and

T(xf) = {(p(-t, 1, xf): t ^ 0} u -1, xf): t ^ 0}.

If E2 — T(x°) is not arcwise connected, we shall say r(x°) separates the

plane and similarly for r(x/). If neither r(x°) or T(xf) separates the

plane, one may have a situation as pictured in Fig. 22.2. In this case

S * R(x°) n R(xf).

The additional condition is;

(iv) At least one of the arcs r(x°) or F(xf
) separates the plane and

A(x) ^ 0 for x on the arc that separates.

With Conditions (i)—(iv) satisfied we may show

S = R(x°) n ^(x^.

Indeed, suppose T(x0
) separates the plane partitioning it into the

arcwise disjoint sets Ht and H2 . For identification purposes, suppose

xf e H2 . Let y be any point of E2 - S. If y e Hu Lemma 22.2 can be

used to show it is not attainable from x° while if y e H2 or is on r(x°)

but not in S, xf is not attainable from y. Thus R(x°) n R(xf) c S, and
hence these sets are equal.

exercise 22.1. Complete the details of the above discussion.
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We may note that in Example 22.1, r(x°) separates the plane and all

of the conditions (i) through (iv) are satisfied. The following are

examples which do not satisfy these conditions.

example 22.2.

x
t = *i + x2 u, \u(t)\ ^ 1,

x2
= x2

-\- x
t
u, x° = (2, 0), xf = (1, 0).

Then (see Fig. 22.3):

(p(t
;
i, x°) =

e
2t + 1

,

e
2'-l,

<p(t ; -i, *°) =
le

2, + U

u - e
2

',

<p(-t ; hxf
)
=

(Xe-
2 ' + 1 )

W' 2 ' - 1 ),

(p(-t; -1, xf) =
p~ 2

' + 1)

U(1 - e~
21

),

while A(x) = x2
2 — x 2

.
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exercise 22.2. Examine the region R(xf) more carefully; i.e.,

describe it completely.

example 22.3. In this example (see Fig. 22.4) only a possible con-

figuration will be shown, rather than derive the situation as an example

from a set of differential equations. One should note that the example

does not violate either Lemma 22.1 or Lemma 2.22, even if the cor-

responding A(x) is zero only at the origin.

Note that although cp( • , 1, x°) intersects cp(- ,
-

1, x°) several times,

the sign of 0(1, cp( •
,
— 1, x

0
)) remains the same at these points of inter-

section.

exercise 22.3. Show that a picture such as in Fig. 22.4 could not be

obtained if A(x) ^ 0 for all x e E 2
. Describe R(x°) for Fig. 22.4.

Rather than try to specify the most general conditions which lead to

problems with Properties (i)-(iv), we assume the properties and will

check each example individually. This completes, for the moment, the

discussion of the admissible region R(x°) n R(xf ). We will next proceed

to the determination of optimal controls.
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Synthesis by Green’s Theorem

Let A(x) 7^ 0 for x e R(x°) n R(xf) and {cp(t, u, p): t
p
{u) ^ t S t

q
{u)}

be an arc of an admissible trajectory of (22.1) connecting two points p
and q in R(x°) n R(xf); i.e., cp(t

p ,
u, p) = p while (p(tq9 u, p) = q. The

cost functional can be expressed as a line integral along this arc by

multiplying the first of Eqs. (22.1) by —L(x) B2{x), the second by

L{x) B^x), adding, and dividing by A(x) to obtain

rq LB2 LB
x

w, p)) dz = dx i H —dx2 ,

J
tp

J
P A A

where the line integral is taken along the arc of cp(t, u, p) joining p to q.

Now suppose cp{t
,
u

1 ,p) and cp(t
,
u2 ,p) are two different solutions

of (3.3.1), each joining p to q in R(x°) n R(xf) and having no points

other than p and q in common. Let T be the closed curve formed by
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these trajectory arcs. Assume we traverse F in a counterclockwise

fashion by following first the arc of cp(t
,
uu p) from p to q and next the

arc of cp(t
,
u2 , p) from q to p. Denoting

C(ut,p, q) = L((p(T,Ui, p))dx

one finds

r LB2 LB
i

C(uu p , q )
— C(u 2 , p, q) = (t — dx* H — dx2 .

J r A A

Since the bounding curve T is a Jordan arc, applying Green’s theorem

to the above yields

C(uu p, q) - C(u 2 ,p,q)= co(x) ds,

where

, x
d (LBA d (LB2\

and 01 is the region enclosed by T.

Since co(x) can be computed without knowledge of a solution of the

differential equations (22.1), this provides a direct method for com-

paring the relative optimality of two trajectories by examining the sign

of co in the region they enclose.

example 22.4.

x
x = \ + x2 u, x° = (0, 2), \u(t)\ ^ 1,

x2 = x2 — u, xf = (0, 3).

Problem: minimize 1 dx, i.e., time optimal.

A(x) = 1 + x2

2x2

(l+^2 2
)
2

'

Let Q be any arc joining x° to xf in R(x°) n R(xf) and C2 be the arc

composed of the trajectories cp{t
;
— 1, x°) and cp(— 1\ 1, xf) as shown in

Fig. 22.5.
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Since co(x) > 0 in R(x°) n R(xf) one finds that the cost along curve

Cl minus the cost along C2 is positive; i.e., curve C2 is “better” than

Cx . This is true for any admissible trajectory arc C1 ;
i.e., C2 is the op-

timal arc.

Before we discuss more examples, let us examine more closely the

reasoning behind the Green theorem approach.

A homeomorphism f of a topological space X into a topological

space 7 is a one-to-one continuous map having a continuous inverse.
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An arc in a topological space Y is a homeomorphic image of a closed

real interval. A path cp is a continuous mapping of a closed real interval

into Y; the image in Y of cp is called the track or orbit of (p. Clearly, a

track may have self-intersections, an arc may not. It is evident that by
changing parametrization, two different paths may have the same track.

In the Green theorem approach, the idea is motivated by considering

two paths which are admissible solutions of the differential equations

and whose tracks join given points p and q and have only these points in

common. The merit of the idea lies in the fact that it is a direct method

;

i.e., it leads to comparing the relative optimality of trajectories without

explicitly computing the solutions of the differential equations. Speci-

fically, one uses (22.3) to obtain the optimal arc in R(x°) n R{xf). In

order that this lead to a useful result, we must show:

Lemma 22.3 If T is an arc in R(x°) n R(xf) which may be realized

as the track of a solution of (22.1) and if A(x) ^ 0 for xeF, then

the control u leading to the solution with track T is uniquely deter-

mined to within a set of zero measure (i.e., the solution (path) of

(22.1) having T as its track is unique).

Proof. Let cp(t, w), 0 t ^ tu be a solution of (22.1) with control u

and having track L. Now A(cp(t, u)) + 0 implies \<p(t, u)\ + 0, and since

T is an arc (has no self-intersections) it follows that cp{t
, u) is a homeo-

morphism. Suppose cp{o
,
v), 0 ^ a ^ <rl9 is also a solution with control

v and having track F. Define a map h : [0, t{] [0, by cp(h(t), v) =
cp(t, u). Then h is a homeomorphism and therefore must be monotone
since it maps a real interval onto a real interval. We may assume
h(0) = 0. Now a monotone map has a derivative almost everywhere,

but need not be absolutely continuous. At a later point, we shall need

the formula Jo h\x) dx = h(t); hence we next will compute h explicitly

and show that it is absolutely continuous.

The arc length of the segment of T between the points <p(0, u) and

<p(t, u) is given by s(t) = «)}
1/2 dx = ft \q>(x, u)\ dx. Simi-

lady, the arc length between the points cp(0, v) and cp{o
,
v) is given by

Ko) — Jo l^(T ?
v)\ dx. From the continuity conditions on the right side

of (22.1), there exists anM>0 such that \(p(o, v)\ ^ M for 0 ^ a ov
On the other hand, the hypothesis A(<p(<j, v)) ± 0 for 0 ^ o ^ o

x
yields

the existence of an m > 0 such that
|

(p(a, r)| ^ m for 0 ^ a ^ a
1 . It
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follows that 1(a) is a Lipschitz continuous function with a Lipschitz

continuous inverse which we shall denote /
_1

. From its representation,

s(t) is absolutely continuous. By “matching arc length” one sees that if

a = l~
1
(s(t)) then cp(a, v) = cp(t, u). Thus the required function h is

given by h(t) = l~
1
(s(t)) and is the composite of a Lipschitz continuous

function with an absolutely continuous function, hence is absolutely

continuous. [Actually s(t) is also Lipschitz continuous.]

Differentiating the identity cp(h(t), v) = (p(t
,
u) with respect to t

yields h(t)cp'(h(t ), v) = (p(t
,
u) or

h(t)
Ai(cp(h(t), v))

A 2((p(h(t), v))

B
x
((p(h(t\ v))'

B2((p(h(t), v))\ \y(h(t))

u)) u))' A
'

A 2 {(p{t, u)) B2((p(t, u)) u(t)

for almost all t e [0, t{\. Since cp(h(t ), v) = (p(t
,
u) and A(x) ^ 0 implies

the matrix is nonsingular, we conclude h(t) = 1 and v(h(t)) = u(t).

But h is absolutely continuous, h(0) = 0, hence h(t) = t and v(h(t)) =

v(t) = u(t ) almost everywhere, completing the proof.

To summarize, the procedure in the use of the Green’s theorem

approach is as follows. First compute A(x) and determine R(x°) n
R(xf). If Ax ^ 0 in R(x°) n R(xf), co(x) can be computed and its

algebraic sign can be used to determine the optimal arc joining x° of xf

in R(x°) n R(xf). If this arc is realizable as the track of a solution of

(22.1), the control producing a solution with this track is unique and

optimal. The problem of whether or not the optimal arc in R(x°) n
R(xf) is realziable as the track of a solution depends on the zeros of

a>(x). This is best seen by the following example:

example 22.5. Consider

= x^t) + x2(t) u(t ), x° = (1, 0),

x2(t) = x2(t

)

+ x
x(0 u(t), xf = (3, 0),

(22.4)

with \u(t)\ g 1 and the problem being to minimize
J{/

L(x(t)) ch, where

L{x) = Xj + bx2 — 2b ln(x
t + x2 ). Then

a)(x) =
— x 2 — bx x + 2b

x
x

2 - x2
2
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while A(x) = x2
2 — x and the region R(x°) n R(xf) is as pictured in

Fig. 22.6.

We consider first — 1 ^ b ^ 1 . In this case the arc co = 0 can be

realized as a trajectory for the system (22.4). By comparison of arcs, one

concludes the optimal track is as shown by the arrows in Fig. 22.6.

If |Z?| < 1, then |w(/)| < 1 along the part of the trajectory which has

{x: co(x) = 0} as its track. If b = 1, this arc is realized with the control u

satisfying \u(t)\ = 1. If |Z?| > 1, there is no control, satisfying \u{t)\ ^ 1,

which leads to a trajectory having a track coinciding with {x: co(x) = 0}.

This is the case where the zeros of co are such that the optimal arc is not

realizable as a track of an admissible solution and the method is

inconclusive.

example 22.6. Consider Eqs. (22.4) with initial and terminal data

as in Example 22.5 but the problem being the time optimal problem.

Then L= 1, A(x) and R(x°) n R(xf) are as in Example 22.5, but co(x)

= 0. Equation (22.3) shows that the difference in cost along any two

admissible trajectories joining x° and xf is zero; i.e., the problem is

independent of control. Indeed, by multiplying the first of Eqs. (22.4)

by xx the second by — x2 ,
and adding, one obtains x

txt —x2 x2 =
Xi

2 — x2
2

;
hence all solutions satisfy x

x

2
(t) + x 2

(t ) = e
2t

. From this
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it is easily seen that the time necessary to reach xf is indeed independent

of control..

example 22.7 (A time optimal problem in which the optimal control

is not bang-bang). Consider the time optimal problem for the equations

and initial and final data in Example 22.1. The set i?(x°) n R(xf) is

given in Fig. 22.1. Then co(x) = — 2x2/x1

2
[l — x2

2
]
2

,
and one concludes

that the optimal arc is

{(*i, x2): x2 = 0, 1 ^ x
t ^ 2},

i.e., an arc along which co = 0. It is easily seen that the control which

yields the optimal trajectory is u = 0. In view of Lemma 22.3, this

control is unique to within a set of measure zero. Therefore this is an

example of a time optimal problem for a system with control appearing

linearly, yet the optimal time is not attainable by a bang-bang control.

exercise 22.4. Show that for any two-dimensional system of the

form (22.1) there exists a function L(x) so that minimizing L(x( t)) dx

is independent of control.

Hint: Any two-dimensional pfaffian has an integrating factor.

example 22.8 (The Goddard rocket problem). Consider a small

rocket fired vertically from the surface of the earth. Assume that the

initial mass of the rocket and fuel is m0 ,
while when all fuel is used up

the rocket has mass mf
. It is assumed that the rocket is a variable thrust

vehicle, with thrust T satisfying 0 ^ T(t) ^ 1. The problem is to utilize

thrust as a function of time subject to its constraints, in such a way as to

attain maximum height.

The rocket equation is

(v — ve) dm + (m — dm)(v + dv) — mv = F dt
,

where v is rocket velocity, ve the gas escape velocity, and F the forces

acting. In a constant atmosphere and constant gravitational field, an

approximate F is F = —kv2 — mg
,
k a constant while g is the gravity

constant. Then

dv dm ~

m —— vp —— = — kv — mg.
dt dt
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Now m(t) = W0 - jo T(r) dx >
yielding the system

dv

dt

kv2
ve

g T(0
m m

dm

dt
= -no, v =

dh

dt '

where h will designate height. The conditions are clearly v(tf)
= 0,

v(0) = 0, h(0) = 0, m(tf)
= mf ,

m(0) = m0 .

Changing to h as independent variable,

dv

dt

dv dh

dh dt

dv

dh

dm dm

dt dh
'

and we now seek a feedback optimal thrust T(m, v). The equations of

motion become

dv kv
2

ve T
V
dh m 9 m

v(0) = v{hf) = 0

m(0) = m 0 ,
m(hf) = mf ,

with the problem ’ mg to maximize 1 dh with the control con-

strained by 0 ^ T ^ 1. Utilizing the Green theorem approach,

v dv dm =
m

dh,

and since (- kv2/m -g) + 0, A(v, m) ^ 0. Also a computation gives

cq(v, m) =
— kv

2
ve + gmve + kv

3

(kv
2 + mg) 2

The region of interest is as shown in Fig. 22.7.

Depending on the values of constants present in the equations of

motion, the following situations may occur: (i) The curve co = 0 lies

to the right of the region of interest in Fig. 22.7. In this case the optimal

strategy is full thrust until all fuel is expended, after which there will be a

coasting arc with T= 0. (ii) The cruve co = 0 intersects the region of

interest and is realizable as the track of a trajectory. In this case the
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optimal strategy is full thrust to begin with, then a “programmed” or
intermediate thrust arc (which follows co = 0), and finally the coast arc.

(iii) The curve co = 0 intersects the region of interest but is not realizable

as the track of an admissible trajectory. Here the Green theorem
approach does not apply directly and a more detailed analysis is neces-
sary.

23. A Further Look at the Maximum Principle and Singular Arcs

We next state, without proof, the maximum principle for a time
optimal, point-to-point transfer problem with system equations

*(0 =/(b x(t), u(t)).

Here x = (x
t , . .

. , xn), u = (uu . .
.

,

wr), with an admissible control
being a measurable function with values in a compact set U. We shall

assume that /is continuously differentiable in all arguments. Define

H(t, x, p,u)=p f{t, x, u) - p0

H*(t, x, p) = max{H(t, x,p,u):ue U}.



23. THE MAXIMUM PRINCIPLE AND SINGULAR ARCS 129

Maximum Principle

A necessary condition that w* is an optimal control and cp(t
,
w*) the

corresponding optimal trajectory is that there exists a nonzero vector

function p = (pu . .
.

,

pn) such that

H(t, (pit, «*), pit), M*(0) - H*it, (pit, u*), pit))

and

Pit) = - Hit, q>it, u*), pit), «*(0) = - j- H*(t, (pit, u*), pit)).

Transversality

We are particularly interested in the case when / is independent of

time, i.e.,/(x, w), in which case the transversality condition becomes

u*)> Pit)) = Po ^ 0 in t.

remark. The maximum principle is a necessary condition, similar

to the Euler-Lagrange equations and Weierstrass condition of the

calculus of variations. It may be considered as a linear (and second-

order) approximation or “derivative” test, for seeking a maximum or

minimum of a functional defined on the path space of a control system.

In analogy, if we seek a maximum of a real-valued function/of a single

real variable x, the fact that f'(x0) = 0 and f"(x0) ^ 0 does not alone

imply x0 provides / a local maximum. These are, however, necessary

conditions. In a similar way, the maximum principle includes only the

first- and second-order approximations. It is easy to construct a real-

valued function of a real variable with an inflection point at zero, but

for which all derviatives at zero vanish. For example,

(e~
1/x

\ x > 0,

/(x)= 0, x = 0,

(
— e~ ilx2

, x<0

has this property.
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The behavior of/ in a neighborhood of zero cannot be determined
by derivatives, no matter how high an order we consider. An analogous
example can be constructed for a functional (cost functional) defined
on the path space of a control system. Problems in which the maximum
principle yields no constructive information are termed singular prob-
lems. These may intuitively be considered as cases where a third- or
higher-order test would be needed to determine the behavior of the cost

functional in a neighborhood of an “extremal” path, i.e., one which
satisfies the maximum principle. Our method for analyzing these prob-
lems, in two dimensions, will again be by the Green theorem, which is a
global approach to minimization, i.e., does not depend on local approxi-
mations as does the maximum principle. Although there is not complete
agreement on definitions of singular arcs, that which we shall next give

is the most common.

Singular Solutions

If the maximum principle is applied to a time optimal problem with

system equations 22.1, one finds

Hit, x, p, u) = PtA^x) + p 2 A 2(x) + [p [
B2 (x) + p2 B2(x)~]u - 1 .

If u is restricted to take values between —1 and 1, the maximum
principle implies an optimal control u* must satisfy

u*{t) = sgnO//) M<P(t, u*))+p2{t) B2 (ip(t, w*))].

However, it is possible that the quantity inside the brackets can be
identically zero for a set of values t having positive measure, in which
case the maximum principle yields no information as to the value u*(t).

Now let u be any admissible control, and cp(t, u) the corresponding
solution of (22.1). Define H(t, x, p, u) as above. If there exists a nonzero
vector-valued function p which satisfies the differential equation

Q
Pit) = ~

fa
Hit> vit’ w)> pit)’ ui( ))

and yields

Iplit) BJcpit, u)) + p2(t) B2 ((p(t, u)Y\ = 0 (23.1)

for tel, a set of positive measure, then the restriction of (p to / is called
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a singular solution. Singular solutions are of much mathematical interest

because of the number of necessary conditions they automatically

satisfy, yet are not necessarily optimal.

exercise 23.1. Show that if cp(t, u) is a singular solution of (22.1)

along which A^O, then co(cp(t, u)) = 0.

exercise 23.2. Show directly (not using co = 0) that the solution of

Example 22.7 is a singular solution.

exercise 23.3. Show that u = 0 yields a singular solution in the time

optimal problem for

x
x
(t) = u x° = (0, 0),

x2(t )
= 1 4- x2 x

2
u

,
xf = (0, \)

with \u{t)\ ^ 1. Use the Green theorem method to show that this

solution is not optimal. [Actually, it provides neither a maximum nor

a minimum, but is equivalent to an inflection point in the path space,

for the functional tf(u). If the second equation is replaced by x2 =
1 -y x2 x\

n
u, the “flatness” of the inflection point increases with n.

If it is replaced by x2 = 1 4- x2 [exp(— 1 lx x

2
y]u, it is an inflection point

which cannot be determined by any number of derivatives.]

exercise 23.4. The nonlinear system (22.1) is said to be locally

controllable along the solution (p(t
, u) if for some t

x > 0 all points in

some neighborhood of <p(tl9 u) are attainable by trajectories of (22.1)

with admissible controls.

(a) Show that a sufficient condition for (22.1) to be locally con-

trollable along the solution cp(t
,
u), where \u{t)\ < 1, is that the linear

variational equation associated with cp is controllable; that is, letting

and A x(x), Bx(x) be the matrices of partial derivatives, show that a

sufficient condition is that the variational equation

= lA x(<P(U w)) + BxUp(t, u)) t/(0] y(t) + B((p(t, u)) v(t)

is controllable.
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(b) Assume that A and B are analytic. Show that if cp{t
,
u) is an

analytic singular solution of (22.1), the associated variational equation

(of Part a) is not controllable.

Note : This does not mean that (22. 1) is not locally controllable along

the singular solution, but only that the most obvious sufficient con-

dition fails. In fact, Exercise 23.3 provides a singular solution along

which the system is locally controllable.
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