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Preface

The eternal mystery of the world is its comprehensibility.

Albert Einstein

This book is for people who believe that those who study human society

using formal mathematical models might have something to say to them,

but for whom the mathematical formalism is a foreign language that they

do not understand. More generally it is for anyone who is curious about
the nature of mathematical and logical thought and their relationship to the

universe.

Often mathematics is justified by its being useful, and it is. But useful

things can be beautiful, and things can be beautiful without be useful at all.

This is something the humanists have taught us. I stress in this book that

mathematics is beautiful even if we don’t care a whit about its usefulness.
Mathematics is beautiful in the same way that music, dance, and literature

are beautiful. Mathematics may even be more beautiful because it takes a

lot of work to appreciate it. A lot of work. If you get through this book, you

will have done a lot of work. But, on the other hand, you will have acquired

the capacity to envision worlds you never even dreamed were there. Worlds

of logical and algebraic structures.
More times than I care to remember I have heard intelligent people pro-

claim that they are awful at math, that they hate it, and that they never use it.

In so doing, they project an air of imperfectly concealed self-satisfaction. I

usually smile and let it pass. I know that these people expect to be admired

for their capacity to avoid the less refined of life’s activities.

In fact, I do feel sympathy for these friends. I let their judgments on the

topic pass without comment, rather than inform them of the multitudinous
pleasurable insights their condition precludes their enjoying. Thinking that

mathematics is calculating is about as silly as thinking that painting a land-

scape is like painting a woodshed, or that ballet is aerobic exercise.

This book treats mathematics as a language that fosters certain forms

of truthful communication that are difficult to express without specialized

symbols. Some mathematicians are fond of saying that anything worth ex-
pressing can be expressed in words. Perhaps. But that does not mean any-

xi



xii Preface

thing can be understood in words. Even the simplest mathematical state-

ment would take many thousands of words to write out in full.
This is just the skeleton of the beginning of a text. I would like com-

ments and suggestions, both humanist and mathematical. Please email me

at hgintis@comcast.net.
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Reading Math

1.1 Reading Math

Reading math is not like reading English. In reading a novel, a history

book, or the newspaper, you can read a sentence, not understand it perfectly

(perhaps there’s an ambiguous word, or you’re not sure what a pronoun

refers to), and yet move on to the next sentence. In reading math, you must

understand every expression perfectly or you do not understand it at all.
Thus, you either understand something like equation (3.9) perfectly, or you

don’t understand it at all. If the latter is the case, read the expression symbol

by symbol until you come to the one that doesn’t make sense. Then find

out exactly what it means before you go on.

1



2

The Language of Logic

People are not logical. They are psychological.

Unknown

2.1 The Language of Logic

The term true is a primitive of logic; i.e., we do not define the term ‘true’

in terms of more basic terms. The logic used in mathematical discourse has

only three primitive terms in addition to ‘true’. These are ‘not,’ ‘and,’ and

‘for all.’

We define “false” as “not true,” and we define a propositional variable as

an entity that can have the value either true or false, but not both. By the
way, “true” is a propositional constant because, unlike a variable, its value

cannot change. The only other propositional constant is “false.”

In this chapter, we will use p, q, r , s and so on to represent propositional

variables. In general, if p is a propositional variable, we define :p to be a

propositional variable that is true exactly when p is false. When we assert

p, we are saying that p has the value true. From these, we can define all
sorts of other logical terms. We when we assert “p and q”, we are asserting

that both p and q are true. We write this logically as p ^ q. The four

terms true, false, not, and and are used in logic almost exactly as in natural

language communication.

Many other logical terms can be defined in terms of and and not. We

define “p or q”, which we write as p _ q, to be a true when either p or q is

true, and is false otherwise. We can define this in terms of “not” and “and”
as :.:p^:q/. we call _ the inclusive or because in natural language “or”

can be either inclusive or exclusive. An example of an exclusive or is in

the following conversation. Little boy: “I would like Bob and Jim to come

to the playground with me.” Mother: “This is too many people. You can

invite Bob or Jim.” In logic and math, we would write “Bob or Jim” in this

sentence as .pb _ pj / ^ .:.pb ^ pj //, where pb means “you can invite
Bob” and pj means “you can invite Jim.”

2
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Actually, the expression .pb _ pj / ^ .:.pb ^ pj // is fairly typical of

what you run into in reading mathematics. At first it looks like a jumble of
symbols. But if you look closely, you notice that it is a conjuntion of two

expressions, so if you can understand each of the two, you will understand

the whole. The first is easy: pb or pj . The second is the negation of the

conjunction pb and pj , so the second term means not both pb and pj . You

then get that Aha! feeling: the expression means pb or pj , but not both.

You may wonder why the writer did not just use words. The reason is that
in a more complex argument, the verbal translation would be much harder

to understand than the mathematical.

We say “p implies q,” which we write p ! q, if q is true or p is false; i.e.

p ! q has the same meaning as .:p/ _ q. This definition of implication

has the nice property that it justifies the most important form of logical in-

ference, called modus ponens. According to modus ponens, if p is true and

if p ! q is true, then q must be true. However, ! has some unfortunate
idiosyncracies that distance logical implication (which is often called mate-

rial implication) from the notion of logical entailment in everyday language

and thought. For instance, if q is true, then p ! q is true, no matter what

p is. So for instance, “swans are white” ! “cigarettes cause cancer” is a

true implication, but surely cigarettes do not cause cancer because swans

are white, and cigarettes would still cause cancer if a sudden miracle turned
all swans purple. In the same vein, “Göethe was two feet tall” implies both

“2C 3 D 5” and “2C 3 D 23”.

We often translate the material implication p ! q as “if p then q,” al-

though again the formal definition of material implication clashes with ev-

eryday usage. For instance, if Mommy says “If you eat all your vegetables,

then you will be allowed go out and play after dinner,” and if little Joey
does not eat his vegetables, he may still go out and play without violat-

ing Mommy’s assertion as a material implication. In fact, Mommy means

“Only if you eat your vegetables, will you be allowed to go out and play

after dinner.” There is no ambiguity in everyday discourse in dropping the

“only,” since the sentence would be silly otherwise.

Formal logic, however, does not know from silly; we write “q only if p”

as .:p/ ! .:q/ (if p is false, then q must be false). However, if you
check the definition, you will see that this expression means the same thing

as q ! p. So when Mommy says “If p then q” where p means “you eat

your vegetables” and q means “you can go out and play,” she really means,

in terms of mathematical logic, “if q then p”.
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We can combine ‘if’ and ‘only if’ by using the phrase “p if and only if

q”, which means p and q have the same truth-value, or equivalently .p !
q/ ^ .q ! p/. We can abbreviate this as p $ q, or p � q.

2.2 Formal Propositional Logic

Suppose we have a set of propositional variables p, q, r , s, and so on,

which we term atomic propositions. We use the logical connectives and

propositional constants that we defined in the previous section, as follows:

p ^ q p and q

p _ q p or q

:p not p

p ! q p implies q

p $ q p if and only if q

? false

> true

We call the expressions resulting from linking together propositional vari-
ables and constants compound propositions. We define a string to be any

concatenation of propositional variables, logical connectives, propositional

constants, and parenthesis of finite length. For instance,

pp_/ $ q..?rs !/

is a string (although it doesn’t mean anything).
We now define the set of well-formed propositions PC to be the smallest

set of strings of propositional variables, logical connectives, and proposi-

tional constants such that

� The propositional variables p, q, etc. are in PC, as are the proposi-
tional constants ? and >.

� If s and t are in PC, then .s ^ t/, .s _ t/, .:s/, .s ! t/ and .s $ t/

are in PC.

Thus, for instance,

.....p ! q// ^ p// ! q/ (2.1)

is a propositional sentence. This sentence was formed as follows. First,

substitute p and q for s and t in .s ! t/, giving .p ! q/. Second,

substitute this expression for s and p for t in .s^ t/, getting ..p ! q/^p/,
Now substitute this exprression for s and q for t in .s ! t/, getting (2.1).
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Of course, (2.1) has so many parentheses that it is virtually unreadable.

We thus add several conventions that allow us to eliminate useless paren-
theses. The first is we can always eliminate the outer pair of parentheses in

expression s like ..s//. Applying this twice, this reduces (2.1) to

..p ! q/ ^ p/ ! q:

This is now pretty readable. It says “If p implies q, and if p is true, then q
is true. As we have seen, this is the venerable modus ponens.

We also assume that $ and ! bind their arguments more tightly that _
or ^, so we can write (2.1) as

.p ! q ^ p/ ! q:

This, however, can easily be confusing, so we often leave in parentheses
where we would otherwise be forced to think about which logical connec-

tives bind more tightly than which others.

We also assume that : binds more strongly that ! so, for instance, :p !
q is really .:p/ ! q, rather than :.p ! q/.

2.3 Truth Tables

The easiest way to clarify the meaning of these logical connectives is by

using truth tables. The truth table for ^ is

p q p ^ q
T T T

T F F

F T F

F F F.

The truth table for _ is

p q p _ q
T T T

T F T

F T T

F F F.

This says that p _ q is true exactly when at least one of p and q is true.
The truth table for : is simplest of all:
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p :p
T F

F T.

Thus, :p is true exactly when p is false.

The truth table for $ is

p q p $ q

T T T

T F F

F T F

F F T.

Thus p $ q is true if p and q are either both true or both false.

We say that a well-formed proposition is true if its truth-value is true

whatever truth-values are assigned to the atomic propositions it contains.

Truth tables allow you to determine whether any well-formed proposition

is true or false. For example, here is how we show that modus ponens,
equation (2.1), is in fact true. We first form the truth table and fill in values

for p and q:

p q ..p ! q/ ^ p/ ! q

T T T T T T

T F T F T F

F T F T F T

F F F F F F

The only thing we can evaluate now is p ! q, which we do, and then erase
the p and q on either side of the !, getting

p q ..p ! q/ ^ p/ ! q

T T T T T

T F F T F

F T T F T

F F T F F

Now we can evaluate the ^ of the column under the ! and the column

under the p, and put the result under the ^, thus getting the value of the

sub-expression ..p ! q/^p/. I erase the two lines that we used to get this
result, so we have
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p q ..p ! q/ ^ p/ ! q

T T T T

T F F F

F T F T

F F F F

Finally, we can evaluate the column under the ^, and the final q, connected

by the !, and put the result under the final !, thus getting the value of

the whole expression in the column under the final !. I then erase the two

columns we used to get this result, so we have

p q ..p ! q/ ^ p/ ! q

T T T

T F T

F T T

F F T

Because the value of the whole expression is true for all truth-value assign-
ments to p and q, we have proven the assertion.

There is actually a second way to prove the assertion without so much

work, but it requires a little finesse. We suppose the assertion is false, and

derive a contradiction. This is called proof by contradiction or reductio ad

absurdum. So, suppose the assertion is false. An implication s ! t is false

only when s is true and t is false. So, suppose q is false, but .p ! q/ ^ p
is true. A statement s ^ t is true only if both s and t are true. We thus must

have p is true and p ! q is true. Because q is false, this means p must be

false, which is a contradiction, since we have already seen that p must be

true. This proves the assertion.

2.4 Exercises in Propositional Logic

A tautology is a well-formed proposition that is true no matter what the truth

value of the atomic propositions of which it is composed. The following are
some tautologies from propositional logic. Prove them using truth tables,

and say what they mean in words.

� Modus Ponens: .p ^ .p ! q// ! q;
� Modus Tollens: .p ! q/ ^ :q/ ! :p;
� ..p ! q/ ^ .q ! r// ! .p ! r/;
� ..p _ q/ ^ :p/ ! q;
� ..p _ q/ _ r/ $ .p _ .q _ r//
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� ..p ^ q/ ^ r/ $ .p ^ .q ^ r//
� ..p ! q/ ^ .r ! s/ ^ .p _ r// ! .q _ s/I
� p ^ q ! p

� p ! p _ q
� ..p ! q/ ^ .p ! r// ! .p ! .q ^ r//I
� De Morgan’s Theorem I: :.p ^ q/ $ .:p _ :q/
� De Morgan’s Theorem II: :.p _ q/ $ .:p ^ :q/
� Double Negation: ::p $ p;

� Distributive I: p ^ .q _ r// $ .p ^ q/ _ .p ^ r/;
� Distributive II: p _ .q ^ r// $ .p _ q/ ^ .p _ r/;
� Law of Excluded Middle: p _ :p.

2.5 Predicate Logic

There are many important things you cannot say using propositional logic.

For instance, you cannot say “if an integer is not divisible by 2, then its
successor is divisible by 2.” This is because the antecedent, “an integer is

not divisible by 2,” is not a proposition with a truth value. However, let

p be the statement “if an integer between 1 and 7 is not divisible by 2,

then its successor is divisible by 2.” We can express this statement in the

propositional calculus as follows. Let P.n/ be the sentence “If n is not

divisible by 2, then nC 1 is divisible by 2.” Then we have

p $ P.1/^ P.2/^ P.3/^ P.4/^ P.5/^ P.6/^ P.7/:

The problem appears to be that to express the more general statement that

if an integer is not even (divisible by 2), then its successor is even, we need

an infinite conjuction, which is not allowed in the propositional calculus,

and indeed could not even be written out in the propositional calculus.

The solution is to construct a more powerful logical system called pred-

icate logic. We get this system by adding a single new primitive term “for

all,” as well as some new symbols that we call variables, and write x, y, z,
and so on, perhaps with subscripts if we are afraid of running out of appro-

priate letters. Finally, we introduce predicates P.x/, Q.x; y/, R.x; y; z/,

and so on, which become propositions (i.e., are either true or false) when

a real thing is substituted for each “placeholder” variable x, y, or z. For

instance, let P.x/ be the predicate “if x is an integer and x is not divisible

by 2, then x C 1 is divisible by 2.” We then express our desired assertion
by saying “For all x, P.x/.” We write this in symbols as .8x/P.x/.
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Sometimes rather than writing .8x/.P.x/ ! Q.x// we write .8x 2
P /.Q.x//, which reads “for all x in P ,Q.x/.” The symbol 2 is a primitive
term of set theory, which we will cover later. In this case we consider the

predicate P to be the set of all things for which P.x/.

We can define another basic symbol of predicate logic, “there exists,” in

terms of “for all.” To say that there exists some x such that P.x/ means

that :P.x/ is not true for all x, or more simply, :.8x/:P.x/. We write

“there exists” as (9). Thus we have

.9x/P.x/ $ :.8x/:P.x/:

If you think about it for a bit, you will see that the following is also true:

.8x/P.x/ $ :.9x/:P.x/:

Note that you can interchange contiguous 8’s and contiguous 9’s and

preserve the meaning of the expression, but you cannot interchange a 8
and a 9. For instance, restricting ourselves to variables representing human

beings, let P.x; y/ mean “x is the father of y.” Then .8y/.9x/.P.x; y//
may be true (every human has a father), although .9x/.8y/.P.x; y// is

surely false, since there is no human who is the father of every human.

2.6 Proving Propositions in Predicate Logic

If you can prove that a predicate P.x/ is true using the propositional cal-
culus, then .8x/P.x/ is true in the predicate calculus. For instance, we

can prove if P.x/ and if P.x/ ! Q.x; y/, then Q.x; y/, which is Modus

Ponens, in the same way as in the propositional calculus, using truth ta-

bles. We simply assume P.x/ is a new propositional variable rather than

interpreting it as a predicate. Moreover, we have the obvious implications

P.x/ ! .8x/P.x/, meaning that if we can prove P.x/ without knowing

anything about x, then P.x/ must be true for all x. Moreover, as long as
there exists some x, P.x/ ! .9x/P.x/.

However, in general it is far harder to prove things in the predicate cal-

culus than in the propositional calculus. That will not worry us, though,

because using mathematics as a means of communication frees us from

concerning ourselves with how things are proved, just as we can use a tele-

phone if we know which buttons to press when, without knowing anything
about electromagnetic theory.
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2.7 The Perils of Logic

When Gotlob Frege, perhaps the greatest logician since Aristotle, had just

put the finishing touches on the second volume of his masterwork The Ba-

sic Laws of Arithmetic (1903), he received a letter from the young Bertrand

Russell exhibiting a logical contradiction at the heart of elementary set the-

ory. We will deal with Russell’s Paradox later, but it is worth stating here
that perplexing paradoxes can be found in predicate logic as well. These

paradoxes are even more perplexing that Russell’s and other paradoxes of

set theory because they are much more difficult to avoid.

The most important paradox of predicate logic is the Liar’s Paradox. In

its simplest form, the Liar’s Paradox is “This sentence is false.” First, you

should convince yourself that a sentence like this cannot be part of proposi-
tional logic, but can be part of predicate logic. Then, convince yourself that

if it were true, it would be false, and if it were false, it would be true. This

is indeed a contradiction.

Logicians have tried to escape this contradiction by outlawing self-

references predicates. But here is a non-self-referencing form of the Liar’s

Paradox. First we form the predicate

P739.x/ D The predicate P740 is false.

Then we form the predicate

P740.x/ D The predicate P739 is true:

Now if P739 is true, then P740 is false, which means P739 is false. Thus

P739 must be false. But then P740 is true so P739 is false. This is a contra-

diction.

One way to deal with this is to create hierarchies of predicates, and forbid

a predicate from referring to a predicate from the same or higher level. But,

we have no need to go into that.
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Sets

3.1 Set Theory

The central primitive concepts in set theory are those of a set and set mem-

bership. We often denote a set by a letter, such as A, a, a, A, or A. A set is

simply a collection of things, and we call an element of such a collection a

member of the set. We allow sets to be members of other sets. We write

a 2 A (3.1)

to mean that a is a member of set A, and

a … A (3.2)

to mean that a is not a member of set A, or :.a 2 A/, using the logical
notation of the previous chapter. If a 2 A, we also say that a is an element

of A. The concept of set membership 2 is obviously primitive—we can

interpret it clearly, but we do define it in terms of more elementary concepts.

We develop the axioms of set theory in section 3.15. According to one of

these, the Axiom of Extensionality, we can always denote a set unambigu-

ously by its elements, as for instance in

A D f1; a; t; xg; (3.3)

meaning the set A consists of the number 1, and whatever the symbols a, t ,

and x represent.

By the Axiom of Extensionality, a set is completely determined by its
members, and not how they are ordered. Thus the set A in (3.3) is the same

as the set

fa; x; 1; tg
and even the same as the set

fx; t; a; 1; 1; 1; t; a; t; xg:

11
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3.2 Properties and Predicates

We can represent a set in terms of the properties that are satisfied by the

members of the set. Let P.x/ be shorthand for some property that may or

may not be satisfied by a thing x. We call P a predicate. When P.x/ is

true, we say “x has property P .” For instance, suppose P.x/ means “x

is a natural number divisible by 2.” If we denote the natural numbers by
N D f0; 1; 2; : : :g, the set A of natural numbers divisible by 2 is

A D fx 2 NjP.x/g: (3.4)

This is probably the single most important notational device in mathematics,

so you should make sure you understand it well: f� � �j C CCg always

means “the � � � such that C C C.”

By the way, we will use the natural numbers as though we know what
they are, for illustrative purposes. We define them later in terms of (what

else?) sets.

We can write (3.4) in logical notation as

.8x 2 N/.x 2 A $ P.x//; (3.5)

which reads “for all x in N, x is in A if and only if x is divisible by 2.” The
upside-down A means “for all”, and is called the universal quantifier—you

will see it many, many times. The symbol $ means “if and only if.” By

the way, there is another quantifier call the existential quantifier, written

like backwards E (9). We can define either quantifier in terms of the other,

using the concept of negation (:), which means “not”: we have

.8x/P.x/ � :.9x/.:P.x//: (3.6)

In words “P(x) is true for all x” means the same thing as “there does not

exist an x for which P.x/ is false.” We similarly have

.9x/P.x/ � :.8x/.:P.x//: (3.7)

How is this expressed in words?

In general, if P is any predicate, we write the ensemble of things for
which P is true as

fxjP.x/g; (3.8)

and if we want to restrict the ensemble to things that belong to another

ensemble S , we write
fx 2 S jP.x/g: (3.9)
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We also say “P.x/” as a shorthand for “P.x/ is true.” Thus we can read

(3.9) as “the set of all x 2 S such that P.x/.”
A second axiom of set theory is the Axiom of Predication: If A is a set

and P is a predicate, then fx 2 AjP.x/g is also a set. This says we can

freely construct subsets of a set corresponding to any determinate, express-

ible property P.x/. The Axiom of Predication (which is called infelici-

tously in the literature the “axiom of separation”) allows us to carve out a

piece of a set and we get a new set.
A third axiom of set theory is the Power Set Axiom, which says that if A

is a set, then there is another set, we sometime write as P.A/ and sometimes

as 2A, consisting of all the subsets of set A. For instance, if A D fa; b; cg
and a, b, and c are pairwise distinct (i.e., a ¤ b, b ¤ c, and c ¤ a), then

we have

2A D f;; fag; fbg; fcg; fabg; facg; fbcg; fabcgg: (3.10)

Note that if we write jAj to mean the number of elements in the set A, then

we have j2Aj D 2jAj. You will see later why we use this odd notation. The

reason for the “pairwise distinct” qualification is that if a D b D c, then

fag D fbg D fcg D fa; bg D fa; cg D fb; cg D fa; b; cg:

As we will see when we deal with Russell’s Paradox, you cannot assume
that the ensemble of things that satisfy an arbitrary predicate is a set. This

is because the existence of such a set could lead to logical contradictions.

However, we can use the term class to describe the ensemble of things that

satisfy an arbitrary predicate. Indeed, we can formally define a class to

be a predicate, so if we define the class A D fxjP.x/g, then a 2 A means

neither more nor less thanP.a/. This ploy may seem of questionable value,

but note that if a is a class but not a set, then it does not make sense to write
a 2 A no matter what A is, because set membership, 2, is only meaningful

when what comes after the 2 is a set.

A class that is not a set is called a proper class. We can thus say a proper

class C is a subclass of a proper class C, meaning that each element of C

is an element of C, but not that it C is an element of C. The elements of

classes must themselves be sets. Russell’s paradox, presented below, show
the evil results of ignoring the distinction between a class and a set.
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3.3 Operations on Sets

We say set A equals set B if they have the same members. Then, by the

Axiom of Extensionality, two sets are equal if and only if they are the same

set. For instance

f1; 2; 3g D f2; 1; 3g D f1; 1; 2; 3g:

If every member of set A is also a member of set B , we say A is a subset of

B , and we write
A � B or A � B:

The first of these expressions says that A is a subset of B and A ¤ B , while
the second says that A is a subset of B but A may or may not equal B . For

instance fx; tg � fx; t; 1g. For any set A, we then have A � A.

In formal mathematical notation, we define

A � B � .8x 2 A/.x 2 B/
A ¨ B � .8x 2 A/.x 2 B/^ .A ¤ B/

In the second equation, the symbol ^ is logical notation for “and.” Some-

times writers treat � as meaning � and others treat � as meaning ¨. When
A ¨ B , we say A is a proper subset of B .

For any set A we have ; � A, and if A ¤ ;, then ; ¨ A. Can you see

why? Hint: use (3.6) and show that there is no member of ; that is not a

member of A.

Another commonly used notation is AnB or A � B , where A and B are

sets, to mean the subset of A consisting of elements not in B . We call AnB
the difference between A and B . Using logical notation,

A � B D AnB D fxjx 2 A ^ x … Bg: (3.11)

We know that AnB is a set because it is the subset of A defined by the

property P.x/ D x … B .

The union sets A and B , which we write A [ B , is the set of things that

are members of either A or B . In mathematical language, we can write this

as

A [ B D fxjx 2 A _ x 2 Bg:
Here, the symbol _ means “or.” For instance, f1; x; ag [ f2; 7; xg D
f1; x; a; 2; 7g.
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For any set A, we have A [ ; D A. Do you see why?

The intersection of two sets A and B , which we write A \ B , is the set
of things that are members of both A and B . We can write this as

A \ B D fxjx 2 A ^ x 2 Bg:

For instance, f1; x; ag \ f2; 7; xg D fxg.
For any set A, we have A \ ; D ;. Can you see why?

We say sets A and B are disjoint if they have no elements in common;

i.e., if A \ B D ; Can you see why?

For any two sets A and B , we have

A [ B D .AnB/[ .A \ B/[ .BnA/; (3.12)

and the three sets are mutually disjoint. This is illustrated in figure 3.1

A � B
B � A

A \ B

Figure 3.1. Set Differences, Intersections, and Unions

3.4 Russell’s Paradox

Our treatment of set theory is perfectly intuitive, and it is hard to believe

that it could ever get us into trouble. However, the famous philosopher

Bertrand Russell showed that if you call any collection of things that can
be characterized by a predicate a “set,” and you assume any set can be a

member of another set, you quickly arrive at a logical contradiction.

To see this, and to give the reader some practice in using the set notation,

note that the ensemble of all sets is a class S represented by the predicate

P.x/ D .x D x/. Suppose the class of all sets were a set. Consider the

property K such that K.x/ is true of a set x if and only if x … x. For
instance, K.N/ is true because the set of natural numbers N is not itself a
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natural number, and hence N … N. On the other hand, let I be the class of

all sets with an infinite number of members (don’t worry now about how
exactly we define “infinite”; just use your intuition). Then clearly I 2 I

because I has an infinite number of members. Hence K.I/ is false; i.e., I

is a member of itself.

Now define a set A by

A D fx 2 SjK.x/g:

i.e., A is the set of sets that are not members of themselves. Since S is a set

by assumption, the Axiom of Predication implies that A is a set. Therefore

either A is or is not a member of itself. If A 2 A, then K.A/ is false,

so A … A. Thus it must be the case that A … A. But then K.A/ is true,
so A 2 A. This is a contradiction, showing that our assumption that the

ensemble of all sets, S is itself a set. We have proven that S is a proper

class.

By the way, the method of prove used in the last paragraph is called prove

by contradiction or reductio ad absurdum.

We say a mathematical system is consistent if it contains no contradic-
tions. Many mathematicians and logicians spent a lot of time in the first

few decades of the twentieth century in formulating a consistent set theory.

They apparently did so successfully by outlawing huge things like “the set

of all infinite sets,” and always building large sets from smaller sets, such

as the so-called empty set, written ;, that has no elements. I say “appar-

ently” because no one has ever found a contradiction in set theory using the
Zermelo-Fraenkel axioms, which we discuss in section 3.15. On the other

hand, according to a famous theorem of Gödel, if we could prove the consis-

tency of set theory within set theory, then set theory would be inconsistent

(figure that one out!). Moreover, since all of mathematics is based on set

theory, there cannot be a mathematical theory that proves the consistency

of set theory.

People love to say that mathematics is just tautological and expresses no
real truth about the world. This is just bunk. The axioms of set theory,

just like the axioms of logic that we develop later, were chosen because we

expect them to be true. You might ask why mathematicians do not spend

time empirically validating their axioms, if they might be false. The answer

is that if an axiom is false, then some of the theorems it implies will be false,

and when engineers and scientists use these theorems, they will get incorrect
results. Thus, all of science is an empirical test of the axioms of set theory.
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As we shall see, however, there are some sets that exist mathematically but

are not instantiated in the real world. For instance, the natural numbers N

are infinite in number, and there are only a finite number of particles in the

Universe, so you can’t play around with a physically instantiated copy of

N.

Before going on, you should reread the previous paragraphs and make

sure you understand perfectly each and every expression. This will slow you

down, but if you are used to reading normal English, you must understand
that reading and understanding a page of math is often as time-consuming

as reading and understanding twenty-five pages of English prose. This is

not because math is harder than prose, but rather because mathematical ex-

pressions are compressed abbreviations of long and often complex English

sentences.

3.5 Ordered Pairs

Sometimes we care not only about what members a set has, but also in what

order they occur, and how many times each entry occurs. An ordered pair

is a set with two elements, possibly the same, in which one is specified as
the first of the two and the other is the second. For instance, the ordered

pair .a; b/ has first element a and second element b. By definition, we say

.a; b/ D c exactly when c is an ordered pair, say c D .d; e/, and a D d

and b D e.

We could simply designate an ordered pair as a new fundamental concept

along side the set and the member of relationship. However, there is an easy
way to define an ordered pair in terms of sets. We define

.a; b/ � fa; fbgg: (3.13)

You can check that this definition has the property that .a; b/ D .c; d/ if
and only if a D c and b D d .

Note that fag ¤ fa; fagg. This is because the set fag has only one mem-

ber, but the set fa; fagg has two members. Actually, we need a set theory

axiom to show that no set can equal the set of which that set is the only

member.

We can now define ordered triples as

.a1; a2; a3/ � ..a1; a2/; a3/; (3.14)

and more generally, for n > 3

.a1; : : : ; an/ � ..a1; : : : ; an�1/; an/: (3.15)
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The notation a1; : : : ; an is very commonly used, and is a shorthand for the

English expression “a1 through an.” For instance

.a1; : : : ; a7/ D .a1; a2; a3; a4; a5; a6; a7/:

Another noteworthy property of the definition (3.15) is that it is recursive:

we define the concept for low values of n (in our case, n D 2 and n D 3)
and then for any greater n, we define the concept in terms of the definition

for n� 1.

3.6 Mathematical Induction

The set N of natural numbers has one extremely important property. Let
P be a predicate. Suppose P.0/ is true, and whenever P.k/ is true, you

can prove P.k C 1/ is true. Then P.k/ is true for all k 2 N. Proving

propositions about natural numbers in this manner is termed mathematical

induction. More generally, if P.k0/ is true for k0 2 N, and from P.k/ we

can infer P.k C 1/, then P.k/ is true for all k � k0.

As an exercise, we will use mathematical induction to prove that two or-
dered sets .a1; : : : ; ak/ and .b1; : : : ; br/ are equal if and only if k D r ,

k � 2, and ai D bi for i D 1; : : : ; r . First, suppose these three condi-

tions hold. If k D 2, the conditions reduce to the definition of equality

for ordered pairs, and hence the assertion is true for k D 2. Now sup-

pose the assertion is true for any k � 2, and consider the ordered sets

.a1; : : : ; akC1/ and .b1; : : : ; bkC1/. We can rewrite these sets, by definition,
as ..a1; : : : ; ak/; akC1/ and ..b1; : : : ; bk/; bkC1/. Because of the induc-

tion assumption, we have .a1; : : : ; ak/ D .b1; : : : ; bk/ and akC1 D bkC1,

and hence by the definition of equality of ordered pairs, we conclude that

.a1; : : : ; akC1/ D .b1; : : : ; bkC1/. Therefore the assertion is true for all

k � 2 by mathematical induction.

I invite the reader to prove the other direction. It goes something like

this. First, suppose .a1; : : : ; ak/ D .b1; : : : ; br/ and k ¤ r . Then there is a
smallest k for which this is true, and k > 2 because we know that an ordered

pair can never be equal to an ordered set of length greater than 2. But

then by definition, ..a1; : : : ; ak�1/; ak/ D ..b1; : : : ; br�1/; br/. Because

the first element of each of these ordered paris must be equal, we must

have .a1; : : : ; ak�1/ D .b1; : : : ; br�1/, and by the induction assumption,

we conclude that k� 1 D r � 1, so k D r . Thus our assumption that k ¤ r

is false, which proves the assertion.
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3.7 Set Products

The product of two sets A and B , written A �B , is defined by

A � B � f.a; b/ja 2 A and b 2 Bg: (3.16)

For instance,

f1; 3g � fa; cg D f.1; a/; .1; c/; .3; a/; .3; c/g:

A more sophisticated example is

N � N D f.m; n/jm;n 2 Ng:

Note that we write m;n 2 N as a shorthand for “m 2 N and n 2 N.”

We can extend this notation to the product of n sets, as in A1 � : : : �An,

which has typical element .a1; : : : ; an/. We also write An D A � : : : � A,

with the convention that A1 D A.

3.8 Relations and Functions

If A and B are sets, a binary relation R on A � B is simply a subset of
A � B . If .a; b/ 2 R we write R.a; b/, or we say “R(a,b) is true.” We

also writeR.a; b/ as aRb when convenient. For instance, suppose R is the

binary relation on the real numbers such that .a; b/ 2 R, or aRb is true,

exactly when a 2 R is less than b 2 R. Of course, we can replace aRb

by the convention notation a < b, as defining R had the sole purpose of

convincing you that “ <00 really is a subset of R�R. In set theory notation,

<D f.a; b/ 2 R � Rja is less than bg:

Other binary relations on the real numbers are �,>, and �. By simple

analogy, an n-ary onA1 : : : An n 2 N and n > 2 is just a subset ofA1 : : : An.

An example of a trinary relation is

a D b mod c D f.a; b; c/ja; b; c 2 Z ^ .9d 2 Z/.a � b D cd/g:

In words, a D b mod c if a � b is divisible by c.

A function, or mapping, or map from set A to set B is a binary relation

f on A � B such that for all a 2 A there is exactly one b 2 B such that
af b. We usually write af b as f .a/ D b, so f .a/ is the unique value b
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for which af b. We think of a function as a mapping that takes members

of A into unique members of B . If f .a/ D b, we say b is the image of a
under f . The domain Dom(f ) of a function f is the set A, and the range

Range(f ) of f is the set of b 2 B such that b D f .a/ for some a 2 A. We

also write the range of f as f .A/, and we call f .A/ the image of A under

the mapping f .

We write a function f with domain A and range included in B as f WA!
B . In this case f .A/ � B but the set inclusion need not be a set equality.

We can extend the concept of a function to n dimensions for n > 2,

writing f W A1 � : : : � An ! B and f .a1; : : : ; an/ D b for a typical

value of f . Again, we require b to be unique. Indeed, you can check

that a function is just an .n C 1/-ary relation R in which, for any n-tuple

a1; : : : ; an, there is a unique anC1 such that R.a1; : : : ; an; anC1/. We then

write R.a1; : : : ; an; anC1/ as f .a1; : : : ; an/ D anC1.

Note that in the previous paragraph we used without definition some obvi-
ous generalizations of English usage. Thus an n-tuple is the generalization

of double and triple to an ordered set of size n, and n-ary is a generation of

binary to ordered n-tuples.

3.9 Properties of Relations

We say a binary relationRwith domainD is reflexive if aRa for any a 2 D,

and R is irreflexive if :aRa for all a 2 D. For instance, D is reflexive but

< is irreflexive. Note that � is neither reflexive nor irreflexive.

We say R is symmetric if .8a; b 2 D/.aRb ! bRa/, and R is anti-

symmetric if for all a; b 2 D, aRb and bRa imply a D b. Thus D is

symmetric but � is anti-symmetric. Finally, we say that R is transitive if

.8a; b; c 2 D/.aRb ^ bRc ! aRc/. Thus, in arithmetic, ‘D’, ‘<’, ‘>’,

‘�0, ‘>’, and �’ are all transitive. An example of a binary relation that is

not transitive is ‘2’, because the fact that a 2 A and A 2 S does not imply

a 2 S . For instance 1 2 f1; 2g and f1; 2g 2 f2; f1; 2gg, but 1 … f2; f1; 2gg.
A relationR that is reflexive, symmetric, and transitive is called an equiv-

alence relation. In arithmetic, D is an equivalence relation, while <, >, �,

‘>’, and �’ are not equivalence relations.

If R is an equivalence relation on a set D, then there is a subset A � D

and sets fDaja 2 Ag, such that

.8a; b 2 A/.8c 2 Da/.8d 2 Db/..aRc/^ ..a ¤ b/ ! :aRd//:
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This is an example of how a mathematical statement can look really com-

plicated yet be really simple. This says that we can write D as the union
of mutually disjoint sets Da;Db; : : : such that cRd for any two elements

of the same set Da, and :cRd if c 2 Da and d 2 Db where a ¤ b. For

instance, suppose we say two plane geometric figures are similar if one can

be shrunk uniformly until it is coincident with the other. Then similarity is

an equivalence relation, and all plane geometric figures can be partitioned

into mutually disjoint sets of similar figures. We call each such subset a cell

of the partition, or an equivalence class of the similarity relation.

Another example of an equivalence relation, this time on the natural num-

bers N, is a � b mod k, which means that the remainder of a divided by k

equals the remainder of b divided by k. Thus, for instance 23 � 11 mod 4.

In this case N is partitioned into four equivalence classes, f0; 4; 8; 12; : : :g,

f1; 5; 9; 13; : : :g, f2; 6; 10; 14 : : :g, and f3; 7; 11; 15; : : :g. The relation a � b

mod c is a trinary relation.

3.10 Injections, Surjections, and Bijections

If f W A ! B is a function and Range.f / D B , we say f is onto or

surjective, and we call f a surjection. Sometimes, for a subset As of A,

we write f .As/ when we mean fb 2 B j.9a 2 As/.b D f .a/g. This

expression is another example of how a simple idea looks complex when

written in rigorous mathematical form, but becomes simple again once you
decode it. This says that f .As/ is the set of all b such at f .a/ D b for some

a 2 As. Note that f .A/ D Range.f /.

As an exercise, show that if f WA!B is a function, then the function

gWA!f .A/ given by g.a/ D f .a/ for all a 2 A, is a surjection.

If f is a function and f .a/ D f .b/ implies a D b, we say f is one-to-

one, or injective, and we call f a injection. We say f is bijective, or is a

bijection if f is both one-to-one and onto.
If f WA!B is injective, there is another functionWRange.f /!A such

that g.b/ D a if and only if f .a/ D b. We call g the inverse of f , and

we write g D f �1, so g.f .a// D f �1.f .a// D a. As an exercise show

that f �1 cannot be uniquely defined unless f is injective. For instance,

suppose f WZ!Z is given by f .k/ D k2, where BbZ is the set of integers

f: : : ;�2;�1; 0; 1; 2; : : :g. In this case, for any k 2 Z, f .k/ D f .�k/, so
for any square number k, there are two equally valid candidates for f �1.k/.
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Note that if r is a number, we write r�1 D 1=r , treating the �1 as a power,

as you learned in elementary algebra. However, if f is a function, the �1
exponent in f �1 means something completely different, namely the inverse

function to f . If f is a function whose range is a set of non-zero numbers,

we can define .f /�1 as the function such that .f /�1.a/ D 1=f .a/, but f �1

and .f /�1 are usually completely different functions (when, dear reader, are

the two in fact the same function?).

Note that if f WA!B is a function then f �1 is surjective by definition. Is
it one-to-one? Well, if f �1.a/ D f �1.b/, then f .f �1.a// D f .f �1.b//,

so a D b; i.e., f �1 is injective, and since it is also surjective, it is a bijection.

You can easily show that if f is an injection, then f WA! Range.f / is

bijective.

3.11 Counting and Cardinality

If two sets have equal size, we say the have the same cardinality. But, how

do we know if two sets have equal size? Mathematicians have come to see
that the most fruitful and consistent definition is that two sets are of equal

size if there exists a bijection between them. We write the cardinality of

set A as c.A/, and if A and B have the same cardinality, we write c.A/ D
c.B/, or equivalently A � B: The most important property of � is that it

is an equivalence relation on sets. First, for any set A, we have A � A

because the identity function i from A to A such that .8a 2 A/.i.a/ D a/

is a bijection between A and itself. Thus � is reflexive. Moreover if f

is a bijection from A to B , then f �1 is a bijection from B to A. Thus

.A � B/ $ .B � A/, so � is symmetric. Finally if f is a bijection

from A to B and f is a bijection from B to C , then the composite function

g ı f WA!C , where g ı f .a/ D g.f .a//, is a bijection from A to C .

Thus � is transitive. Like every other equivalence relation, � defines a

partition of the class of sets into sub-classes such that for any two members
s and t of the equivalence class, s � t , and if s and t come from difference

equivalence classes :.s � t/. We call these equivalence classes cardinal

numbers.

If there is a one-to-one map from A to B , we write c.A/ � c.B/, or

equivalently, A � B , or again equivalently, c.B/ � c.A/, or B � A. The

binary relation � is clearly reflexive and transitive, but it is not symmetric;
e.g., 1 � 2 but :.2 � 1/.
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One property we would expect � to satisfy is that A � B and B � A,

then A � B . This is of course true for finite sets, but in general it is not
obvious. For instance, the positive rational numbers QC are defined as

follows:

QC �
nm

n
m; n 2 N; n ¤ 0

o

: (3.17)

We also define a relation D on QC by saying that m=n D r=s where

m=n; r=s 2 QC if and only if ms D rn. We consider all members of the

same equivalence classes with respect to D to be the same rational number.
Thus, we say 3=2 D 6=4 D 54=36. It is obvious that N � Q because we

have the injection f that takes natural number k into positive rational num-

ber k=1. We can also see that QC � N. Let q 2 QC and write q D m=n

where m C n is as small as possible. Now let g.q/ D 2m3n. Then g is

a mapping from QC to N, and it is an injection, because if 2a3b D 2c3d

where a; b; c; d are any integers, then we must have a D c and b D d .
Thus we have both N � QC and QC � N.

However N � QC only if there is a bijection between Z and Q. Injec-

tions in both directions are not enough. In fact, there is one easy bijection

between QC and N. Here is a list of the elements of QC as a sequence:

0; 1; 2; 3; 1=2; 4; 1=3; 5; 3=2; 2=3; 1=4;

6; 1=5; 7; 5=2; 4=3; 3=4; 2=5; 1=6; : : :

We generate this sequence by listing all the fractionsm=n such thatmCn D
k for some k, starting with k D 0, and drop any fraction that has already

appeared in the sequence (thus 2 is included, but then 1/1 is dropped; 4 is

included but 3/1 is dropped). Now for any q 2 QC, let f .q/ be the position

of q in the above sequence. Thus Q � Z � N.

3.12 The Cantor-Bernstein Theorem

The amazing thing is that the for any two sets A and B , if A � B and
B � A then A � B . This is called the The Cantor-Bernstein Theorem.

The proof of this theorem is not complex or sophisticated, but it is a bit

tedious. It will be a challenge for the reader to go through the proof until it

is transparent.

To prove the Cantor-Bernstein Theorem, suppose there is a one-to-one

mapping f WA!B and a one-to-one mapping g WB !A. How can we
construct therefrom a bijection hWA!B?
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� � � � � � � � �
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h.a2/
h.a3/

h.a4/

Figure 3.2. The Cantor-Bernstein Theorem

Because f is an injection, f WA!f .A/ is a bijection. Similarly, g WB!
g.B/ is a bijection. If B D f .A/ we are done, so suppose b 2 B � f .A/.

Then for all k 2 N, if a D .g ı f /kg.b/, we define h.a/ D b0, where

g.b0/ D a. In other words, we consider all sequences in A of the form

s.b/ D fg.b/; gfg.b/; .gf /2g.b/; .gf /3g.b/ : : :g

and we define

h.g.b// D b; h.gfg.b//D fg.b/; h..gf /2g.b// D .fg/2.b/; : : :

Note that f ıg.b/means the same thing as fg.b/, f ı g ıf .a/means the

same thing as fgf .a/, and so on. This is illustrated in figure 3.2. Clearly,
this process will iterate an infinite number of times, or h.a/ points back

to some previous point in the sequence, and we can do no more with this

sequence.

We repeat this construction for all b 2 B � f .A/. We call an a 2 A un-

covered if h.a/ is undefined, and we define h.a/ D f .a/ if a is uncovered.

Thus h is a relation with domain A. We must show that (a) h is a function;

(b) h is an injection; and (c) h is a surjection.
To see that h is a function, we must show that h.a/ is defined exactly

once for each a 2 A. Because both f and g are injections, s.b/ and s.b0/

are disjoint (i.e., have no members in common) if b; b0 2 B � f .A/ and

b ¤ b0. To see this, note that b ¤ b0 implies g.b/ ¤ g.b0/. Now g.b/ can-

not occur anywhere in s.b0/ because all members of s.b0/ except the first

are in the image of f while by definition g.b/ is not. Now we use math-
ematical induction and reductio ad absurdum. Suppose we have proved
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that .gf /kg.b/ is not in s.b0/, but .gf /kC1g.b/ is in s.b0/. We cannot

have .gf /kC1g.b/ D g.b0/ because b0 is not in the image of f , whereas
.gf /kC1g.b/ clearly is. But if .gf /kC1g.b/ D .gf /jg.b0/ for j > 0, then

since f and g are injections, we have .gf /k�j C1g.b/ D g.b0/, which we

have already shown is not the case. Because the fs.b/jb 2 B � f .A/g are

disjoint, and h.a/ is defined as f .a/ if and only if h.a/ is not defined by

one of the s.b/, h is a function.

Now we want to show that the function h is injective. Suppose that both
a1 and a2 are uncovered and h.a1/ D h.a2/. If h.a1/ D f .a1/ and

h.a2/ D f .a2/, then a1 D a2, because f is one-to-one. If both a1 and

a2 are covered, let h.a1/ D b1 where g.b1/ D a1 and h.a2/ D b2 where

g.b2/ D a2. Then a1 D a2 because g is an injection. Finally, suppose a1 is

covered and a2 is uncovered. Then a1 D gh.a1/ and h.a2/ D f .a2/. We

can write a1 D .gf /ng.b0/ with n � 0 and b0 2 B � f .A/. Then we have

.gf /ng.b0/ D a1 D gh.a1/ � gh.a2/ D gf .a2/. If n D 0, b0 D hf .a2/,
so b0 2 f .A/, which is a contradiction. Thus n > 0, and since gf is an

injection, we can cancel one gf from both sides of .gf /ng.b0/ D gf .a2/,

getting .gf /n�1g.b0/ D a2. But then a2 is covered, counter to our assump-

tion. This proves that h is injective.

To see that h is surjective, let b 2 B . If b … f .A/, then s.b/ is a

sequence whose first element is b with g.b/ D a 2 A, so h.a/ D b. If
b 2 f .A/ but b is a member of some sequence g.b0/, then b D .gf /jg.b0/

and if a D g.b/, then h.a/ D b. If b is not a member of a sequence and

g.b/ D a, then a will not be covered, since g is injective. Thus f .a/ D b.

This proves h is a bijection.

It is always good to go through an example of a rather complicated

algorithm such as the above. So let A D f2; 4; 6; 8; 10; : : :g and let
B D f3; 6; 9; 12; 15; : : :g and the injections f .k/ D 3k from A to B and

g.k/ D 2k fromB toA. Of course, in this case there is an obvious bijection

of A onto B , where h.2k/ D 3k. However, this does not use f and g, and

depends on the special nature of A and B . We will construct the bijection

h using only the fact that they are injections. We do not have to be able to

order A or B , nor need we know if they are finite or infinite. First, we have

B � f .A/ D f3; 9; 15; 21; 27; : : :g D f3.2k C 1/jk 2 Ng:

Note that f .A/ D Range.f /. You should make sure you understand clearly
why the two sets are equal—substitute values 0,1,2, etc. for k in the second
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set and compare the results with f3; 9; 15; 21; 27 : : :g. Never just take the

writer’s word for things like this.
The elements of A of the form .g ı f /kg.b/ where b 2 B � f .A/ are

then

A� D f.g ı f /jg.3.1C 2k//jj; k 2 Ng
D f2 � 6j � 3.1C 2k/jj; k 2 Ng
D f6j C1.1C 2k/jj; k 2 Ng

For a 2 A�, we let h.a/ D a=2, and for a … A�, we let h.a/ D 3a.

You can check that

A� D f6; 18; 30; 36; 42; 54; 66; 78; 90; 102; : : :g:

so

h.A/ D f6; 12; 3; 24; 30; 36; 42; 48; 9; 60; 66; 72; 78; 84; 15;
96; 102; 18; 114; 120; 21; 132; 138; 144; 150; : : :g:

If you sort this set into ascending order, you will see that (a) there are no

repeats, so h is injective, and (b) the range isB (actually, this is true only up

to b D 84; you must extend the list to include b D 90, which is the image

of a D 180 under h, because 180 D 62.1C 2 � 2 2 A�).

3.13 Inequality in Cardinal Numbers

We say, naturally enough, that set A is smaller than set B , which we write

A � B , if there is an injection f from A to B , but there is no bijection

between A and B . From the Cantor-Bernstein Theorem, this means A � B

if and only if there is an injection of A into B , but there is no injection of

B into A.

If S is a set and R is a binary relation on S we say R is anti-symmetric

if, for all x; y 2 S with x ¤ y either xRy or yRx, but not both, are true.
We say R is an ordering of S if R is anti-symmetric and transitive. We

say set S is well-ordered if there is some ordering R on S such that every

subset A of S has a smallest element. Note that this makes sense because

such a smallest element must be unique, by the anti-symmetry property.

For example ‘<’ is an ordering on N. By the way, we say a relation R is

trichotomous if for all a; b, exactly one of aRb, bRa, or a D b holds. Thus
� is anti-symmetric, but < is trichotomous.
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Let us write, for convenience, Nn D f1; 2; : : : ; ng, the set of positive

natural numbers less than or equal to n. Recall the we could also write
Nn D fk 2 Nj1 � k � ng. It should be clear that if Nn � Nm, thenm D n.

Thus, it is not unreasonable to identify the number of elements of a set with

its cardinality when this makes sense.

We say a set A is finite if there is a surjective function f W Nn !A for

some natural number n, or equivalently, if there is an injective function

f W A! Nn. We also want the empty set to be finite, so we add to the
definition that ; is finite.

We say a set is infinite if it is not finite. You are invited to show that if

set A has an infinite subset, then A is itself infinite. Also, show that N and

Z are infinite. We say that a set is countable if it is either finite or has the

same cardinality as N. We write the cardinality of N as c.N/ D @0.

3.14 Power Sets

The set of natural numbers, N, is the “smallest” infinite set in the sense that
(a) every subset of N is either finite or has the same cardinality as N, which

is @0. The great mathematician Georg Cantor showed that P.N/, the power

set of the natural numbers, has a greater cardinality than @0. Indeed, he

showed that for any set A, c.A/ < c.P.A//:

To see this note that the function f that takes a 2 A into fag 2 P.A/ is

one-to-one, so c.A/ � c.P.A//. Suppose g is a function that takes each
S 2 P.A/ into an element g.S/ 2 A, and assume g is one-to-one and onto.

We will show that a contradiction flows from this assumption. For each S 2
P.A/, either g.S/ 2 S or g.S/ … S . Let T D fa 2 Aja … g�1.a/g, where

g�1.a/ is defined to be the (unique) member S 2 P.A/ such that g.S/ D a.

Then T � A, so T 2 P.A/. If g.T / 2 T , then by definition g.T / … T .

Thus g.T / … T . But then, by construction, g.T / 2 T . This contradiction

shows that g is not one-to-one onto, which proves the assertion.

3.15 The Foundations of Mathematics

In this section I want to present the so-called Zermelo-Fraenkel axioms of

set theory. We have used most of them implicitly or explicitly already. You

should treat this both as an exercise in reading and understanding the nota-

tion and concepts developed in this chapter. Also, substantively, perhaps for

the first time in your life you will have some idea what sorts of assumptions
underlie the world of mathematics. I won’t prove any theorems, although
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I will indicate what can be proved with these axioms. I am following the

exposition by Mileti (2007).
Axiom of Existence: There exists a set.

You might fairly wonder exactly what this means, since the concept of

“existence” is a deep philosophical issue. In fact, the Axiom of Existence

means that the proposition .9x/.x D x/ is true for at least one thing, x.

Axiom of Extensionality: Two sets with the same members are the same.

Axiom of Predication: If A is a set, then so is fx 2 AjP.x/g for any
predicate P.x/.

Now, it is a deep issue as to exactly what a predicate such as P.x/ really

is. We will treat a predicate as a string of symbols that become meaningful

in some language, and such that for each x, the string of symbols has the

value > (“true”) or ? (“false”);

Note that these three axioms imply that there is a unique set with no

elements, ;, which we have called the empty set. To see this, let A be any
set, the existence of which is guaranteed by the Axiom of Existence. Now

let P.x/ mean x ¤ x. The ensemble B D fa 2 AjP.x/g is a set by the

Axiom of Predication. But B has no elements, so B D ;. The empty set is

unique by the Axiom of Extensionality.

Axiom of Parametrized Predication: If A is a set and P.x; y/ is a

predicate such that for every x 2 A there is a unique set yx such that
P.x; y/ holds, then B D fyxjx 2 Ag is a set.

This is a good place to mention that we often use subscripts and super-

scripts to form new symbols. The symbol yx is a good example. This can

cause confusion, for instance if we write something like a2, which could

either mean a � a or the symbol a � super � 2. You have to figure out

the correct meaning by context. For instance, if it doesn’t mean anything to
multiply a by itself, then clearly the second interpretation is correct.

The Axiom of Parametrized Predication is generally called the Axiom of

Collection in the literature. I don’t find this name very informative. Note

that if the set A is finite, the set B whose existence is guaranteed by the

Axiom of Parametrized Predication actually does not need the axiom. The

Axiom of Union (see below) is enough in this case. Can you see why?

There is one especially important case where the Axiom of Parametrized
Predication is used—one that is especially confusing to beginners. Suppose

the predicate P.x; y/ in the axiom is y D C for some set C , the same for

all y. Then the set B consists of a copy of C for each y 2 A. We write

this as CA. Note that a typical member of CA consists of a member of C
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for each x 2 A. We can write this member of CA as f .x/ D y, where

f WA!C ; i.e., members of CA are precisely functions from A to C . Very
often in the literature you will encounter something like “Let f 2 CA”

rather than “Let f WA!C .” The two statements mean exactly the same

thing.

Now you should understand why we expressed the power set of a set A

not only as P.A/, but also as 2A. This is because if we think of the number 2

as the set consisting of the numbers zero and one (i.e., 2=f0,1g), as we shall
do in the next chapter, then a member of 2A is just a function f WA!f0; 1g,

which we can identify with the subset of A where f .x/ D 0. Clearly, there

is a one-to-one corresponding between elements of 2A and the functions

from A whose values are zero and 1, so we can think of them as the same

thing.

Axiom of Pairing: If x and y are sets, then so is fx; yg.

Thus, for instance, f;;;g is a set, and by the Axiom of Extensionality, this
is just f;g. Note that this set is not the same as ; because is isn’t empty—it

has the member ;!

By the same reasoning, for any set A there is a new set fAg whose only

member is A. We thus have a sequence, for instance, of pairwise distinct

sets

;; f;g; ff;gg; fff;ggg; : : :

Axiom of Union: If x and y are sets, then so is x [ y.

Using this axiom, we can form new sets like f;; f;gg, which is the first
example we have of a set with two elements. Later, we will see that the

entire number system used in mathematics can be generated from the empty

set ;, using the axioms of set theory. This is truly building something out

of nothing.

Power Set Axiom If A is a set, then there is a set P.A/, called the power

set of A, such that ever subset of A is an element of P.A/.

While every element of P.A/ is a definite subset ofA, this does not mean
that we can identify every subset using the Axiom of Predication. For in-

stance, if a language has a finite number of primitive symbols (its ‘alpha-

bet’), then all the meaningful predicates in the language can be arranged

in alphabetical order, and hence the meaningful predicates have the same

cardinality as N. But P.N/ is larger than N (i.e., there is no injection of

P.N/ into N, as we saw above), so we cannot specify most of the subsets
of P.N/ by means of predication.
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Axiom of Infinity: For any set x define the successor S.x/ of x to be

S.x/ D x [ fxg D fx; fxgg. Then there is a set A with ; 2 A and for
all x 2 A, S.x/ 2 A. This set is infinite because one can prove that x can

never equal S.S.S : : : S.x// for any number of repetitions of the successor

function.

Axiom of Foundation: Every set A has a member x such that no member

of x is a member ofA. This axiom, along with the others, implies that there

is no infinitely descending sequence of the form : : : 2 x 2 y 2 z 2 A.
There are a few more axioms that are usually assumed, including the

famous Axiom of Choice and the Continuum Hypothesis, but we will not

go into these interesting but rather abstruse issues.
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Numbers

4.1 The Natural Numbers

We have used the natural numbers N D f0; 1; 2; 3; : : :g freely in examples,

but not in formal definitions. We are now in a position to define the natural

numbers in terms of sets. We call the result the ordinal numbers because

they will be totally ordered by the usual notion of <. The empty set ; D fg
is the set with no elements. For instance, the set of married bachelors is ;.
Let us define the symbol 0 (zero) to be ;. Then if n is any number, define

nC 1 as the set consisting of all numbers from 0 to n. Thus we have

0 D ;
1 D f0g D f;g;
2 D f0; 1g D f;; f;gg;
3 D f0; 1; 2g D f;; f;g; f;; f;ggg;
4 D f0; 1; 2; 3g D f;; f;g; f;; f;gg; f;; f;g; f;; f;ggg;

and so on.

4.2 Representing Numbers

As we will see, the above definition of a number is very easy to work with

for theoretical purposes, but it would be a horror if we had to use it in

practice. For instance, you can check that the number 25 would have 224 D
16,777,216 copies of ; in its representation. The Romans moved a bit ahead
of this by defining special symbols for 5, 10, 50, 100, 500, and 1000, but

doing arithmetic with Roman numerals is extremely difficult.

The major breakthrough in representing numbers in a way that makes

arithmetic easy was invented in India around 500 BP, and included a zero

and positional notation with base 10. The symbols used today are 0 1 2 3

4 5 6 7 8 9, and a number written as d1d2d3, for instance, is really 100 �
d1 C 10 � d2 C d3. This number system is often termed arabic, and the

31
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numerals 0; : : : ; 9 are called arabic numerals. There is nothing sacrosanct

about base 10, however. In computer science, base 2 (“binary”) and base
16 (“hexidecimal”) are commonly used. The symbols in base 2 are 0 1, and

in base 16, 0 1 2 3 4 5 6 7 8 9 a b c d e f. So, for instance in base 16, the

number abcd represents the decimal number 43,981 in decimal notation.

This number in binary notation is 1010101111001101.

� � � � � � � � � �

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

16 17 18 19

� � � �  ! " # $ %

& ' ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9

15

20

: ;

<
=

401

Figure 4.1. The Mayan Number System

Even more exotic was the ancient Mayan number system, which was fully

modern in having both a number zero and a base-20 set of numeral symbols,

as shown in figure 4.1. After the 20 symbols, the figure shows the number

20, which is 10 in the Mayan system, and the number 421, which is 111.

The Mayans, as you can see, stack the composite numbers vertically rather
than horizontally, as we do.

4.3 The Natural Numbers as an Ordered Commutative Semigroup

The ingenious thing about our definition of natural numbers is that we can
define all arithmetical operations directly in terms of set theory. We first
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define a total order on N. A total order is a relation, which we will write as

�, that has the following properties for all n;m; r 2 N:

if a � b and b � c, then a � c transitive

if a � b and b � a, then a D b antisymmetric

either a � b or b � a total.

Note that if � is a total order and we define < by a < b if a � b but

a ¤ b, then < satisfies

if a < b and b < c, then a < c transitive

if a < b implies :.b < a/ , asymmetric

either a < b or a D b or b < a total.

In practice, we can think of either � or < as a total order, as either one is

easily defined in terms of the other.
We can define natural number m to be less than (<) natural number n if

m � n, or equivalently, if m 2 n. With this definition, 0 < 1 < 2 < 3 : : :.

Also < is transitive because m � n and n � r impliesm � r in set theory.

Moreover,m < n implies :.n < m/. This is because ifm is a proper subset

of n, then n has an element that is not in m, so n cannot be a subset of m.

Thus < is asymmetric.
We can also show that for any two natural numbersm and n, eitherm < n,

m D n or m > n, so < is total. To see this suppose there are two unequal

numbers, neither of which is smaller than the other. Then there must be

a smallest number m for which n exists with n ¤ m and not m < n and

not n < m. Let n be the smallest number with this property. Then either

m D n � 1 or m < n � 1 or m > n � 1. But we cannot have m D n � 1

because then m 2 n, so m < n. We cannot have the second, or we would
again have m < n � 1 < n, so m < n. Now if the third holds, then either

m D n or m > n, which we have assumed is not the case. This proves the

assertion, and also shows that < is a total order on N.

Now that we have a solid axiomatic foundation for the natural numbers,

we can define addition using what is called the successor function S . For

any natural number n, we define S.n/ D fn; fngg, which is just the number
n C 1, the successor to n. We then define addition formally by setting
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nC 0 D n for any n, and nC S.k/ D S.nC k/. Thus

nC 1 D nC S.0/ D S.nC 0/ D S.n/

nC 2 D nC S.1/ D S.nC 1/ D SS.n/

nC 3 D nC S.2/ D S.nC 2/ D SSS.n/

nC 4 D nC S.3/ D S.nC 3/ D SSSS.n/

: : :

and so on.

With this definition, we note that we can always write the number n as

S : : : S.0/, where there are n S ’s. From this it is obvious that addition is
commutative, meaning that nC k D k C n for any natural numbers n and

k, and associative, meaning .nC k/C r D nC .kC r/ for all n; k; r 2 N.

This makes the natural numbers into what is called in modern algebra a

commutative semigroup with identity.

In general, a semigroup is a set G with an associative binary operationR

on G, meaning a function RWG � G!G such that .aRb/Rc D aR.bRc/.
A semigroup G is commutative if aRb D bRa for all a; b 2 G, and G

has an identity if there is some i 2 G such that aRi D iRa D a for all

a 2 G. Semigroups occur a lot in modern mathematics, as we shall see. In

the semigroup N, the operation is C and the identity is 0. Moreover, N is a

commutative semigroup because for m;n 2 N, we have mC n D nC m.

and it is an ordered semigroup because the total order < satisfies a; b >
0 ! a C b > 0. Finally, N has the additive unit 0, which is an element

such that for any n 2 N, 0C n D n.

The natural numbers are also a commutative, ordered semigroup with

unit 1 with respect to multiplication. In this case, the semigroup property

is that multiplication is associative: .mn/k D m.nk/ for any three natural

numbers m, n, and k. The semigroup is commutative because mn D nm

for any two natural numbers m and n. The unit 1 satisfies 1 � m D m for
any natural number m. The multiplicative semigroup of natural numbers

is totally ordered by <, and the order is compatible with multiplication

because m;n > 0 impliesmn > 0.

4.4 Proving the Obvious

The reader may have been hoodwinked by my handwaving about the “num-
ber of S ’s” that I actually proved that addition in N really is commutative
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and associative. Formally, however, this was no proof at all, and I at least

am left with the knawing feeling that I may have glossed over some impor-
tant points. So the impatient reader can skip this section, but the curious

may be rewarded by going through the full argument. This argument, in-

spired by Kahn (2007), uses lots mathematical induction, as developed in

section 3.6.

First we show that for any natural numbers l, m, and n, we have

mC 0 D 0CmI (4.1)

mC 1 D 1CmI (4.2)

l C .mC n/ D .l Cm/C n: (4.3)

mC n D nCm: (4.4)

For (4.1), by definition mC 0 D m, so we must show that 0Cm D m for

all natural numbersm. First, 0C 0 D 0 by definition. Suppose 0Cm D m

for all natural numbers less than or equal to k. Then

0C S.k/ D S.0C k/ definition of addition

S.0C k/ D S.k/ induction assumption

By induction, (4.1) is true for all natural numbers.

For (4.2), mC 1 D mC S.0/ D S.mC 0/ D S.m/, so we must show

1 C m D S.m/. This is true for m D 0 by (4.1), so suppose it is true for

all natural numbers less than or equal to k. Then 1C S.k/ D S.1C k/ D
S.k C 1/ D S.S.k//. The first equality is by definition, the second by the

induction assumption, and the third by definition. By induction, (4.2) is true

for all natural numbers.

For (4.3), to avoid excessive notation, we define the predicate P.n/ to

mean

.8l;m/.l C .mC n/ D .l Cm/C n/;

and we prove .8n/.P.n// by induction. For n D 0, P.0/ says

.8l;m/.l C .mC 0/ D .l Cm/C 0/;

which, from the previous results, can be simplified to

.8l;m/.l Cm D l Cm/;

which is of course true. Now suppose P.n/ is true for all n less than or

equal to k. Then P.S.k// says that for all l, m,

l C .mC S.k// D .l Cm/C S.k/;
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which can be rewritten as

l C S.mC k/ D S..l Cm/C k/;

and then as

S.l C .mC k// D S.l C .mC k//;

using the induction assumption. The final assertion is true, so P.S.k// is
true, and the result follows by induction. I will leave the final assertion, the

law of commutativity of addition as an exercise for the reader.

4.5 Multiplying Natural Numbers

We can define multiplication in N recursively, as follows. For any natural

number n, we define 0�m D 0, and if we have defined k �m for k D 0; : : : ; n,

we define .nC1/ �mD n �mCm. Note that we have used addition to define
multiplication, but this is valid, since we have already defined addition for

natural numbers.

With this definition, the multiplication has the following properties, where

m;n; k; l 2 N.

1. Distributive law: k.mC n/ D mk C nk D .mC n/k

2. Associative law: .mn/k D m.nk/

3. Commutative law: mn D nm

4. Multiplicative order: m � n if and only if lm � ln

5. Multiplicative identity: 1 �m D m.

To prove the distributive law, note that for any natural numbers k and m,

it holds for n D 0. Suppose it is true for n D 0; : : : ; r . Then we have

k.mC .r C 1// D k..mC r/C 1/ D k.mC r/CmC r

D kmC kr CmC r D k.mC 1/C k.r C 1/;

where we have freely used the associative and distributive laws for addition.

By induction, the first half of the distributive law is proved. The second half
of the distributive law is proved similarly.
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To prove the associative law, note that for anym and n, .mn/�0D 0 while

m.n � 0/ D m � 0 D 0, so the associative law is true for k D 0. Suppose it
is true for k D 0; : : : ; r . Then we have

.mn/.r C 1/ D .mn/r Cmn D m.nr/Cmn

D m.nr C n/ D m.n.r C 1//;

where we have used the distributive law for multiplication, which we have

already proved.
To prove the commutative law, note that for any m, m � 0 D 0 �m D 0. so

the commutative law is true for n D 0. Suppose it is true for n D 0; : : : ; r .

Then we have

m.nC 1/ D .mn/Cm D nmCm D .nC 1/m;

where we have used the second form of the distributive law.

I leave it to the reader to prove the fina two of the above properties.

4.6 The Integers

It is a drag not to be able to define subtraction for any two natural numbers,
so we define a new set of numbers, called the integers

Z D f�3;�2;�1; 0; 1; 2; 3; : : :g:

We can define an integer explicitly as either Cn or �n, where n 2 N. We
can do this by defining two new symbols, “+” and “-”, and letting Cn be

the ordered pair .C; n/ and �n be the ordered pair .�; n/, where n 2 N.

We can conserve on symbols by defining Cn to be the ordered pair .1; n/

and defining �n to be the ordered pair .0; n/, where n 2 N. Either way, we

assume C0 D �0, which denote simply by 0, and we identify the integer

Cn, naturally enough, with the natural number n. We can define addition
of integers easily in terms of addition and subtraction of natural numbers.
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The definition goes like this (check it out!), wherem;n 2 N:

CnC Cm D C.nCm/

�mC �n D �.mC n/

CnC �m D
(

C.n�m/ for n � m

�.m � n/ form � n

Cn � Cm D CnC �m
Cn � �m D CnC Cm
�n � Cm D �nC �m
�n � �m D �nC Cm:

We also define a new operation on integers, called negation, which goes

� C n D �n and � � n D Cn. With this new operation, we can shorten

the definition of integer subtraction to i � j D i C .�j / where i and

j are integers, so the last four lines in (4.5) to a single line. For instance,
Cn��m D CnC�.�m/ D C.nCm/. We must also define multiplication

of integers. We say

Cm � Cn D �m � �n D Cmn (4.5)

Cm � �n D �m � Cn D �mn (4.6)

This looks very complicated, but it is in fact probably how you learned to

subtract integers in school. You can check as an exercise that (a) subtraction
is defined for all integers; (b) C0 D �0 is an additive identity for integers;

(c) integer addition is commutative; (d) the distribution law for multiplica-

tion over addition holds for integers; and (e) for any two integers i and j ,

we have i � j D �.j � i/. When there is no confusion, we write n instead

of Cn for the integer Cn; i.e., nonnegative integers (integers without the

minus sign) are identified with natural numbers.

When we get to abstract algebra later, you will see that the integers form
a commutative group with respect to addition.

Note that Z has the same cardinality as N. To see this, note that f W
N ! Z given by f .k/ D Ck for k 2 N is an injection, and g.0/ D 0,

g.Ck/ D 5k, and g.�k/ D 2k is an injection from Z to N, so by the

Cantor-Bernstein Theorem, there is a bijection between Z and N (actually,

it is easy to construct a bijection directly—try it).
We write the cardinality of N, following Cantor, as @0.
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There is a quite different way of deriving the integers from the natural

numbers that the reader might like to explore. Let integers be natural num-
ber pairs .m; n/ and treat two such numbers .m; n/ and .m0; n0/ as equal

if n C m0 D n0 C n. With this scheme, .m;m/ D .0; 0/, which we call

the additive unit of the integers (zero). We then add these integers term

by term, so .m; n/ C .m0; n0/ D .mC m0; nC n0/. With this definition of

addition , we have .m; n/ C .n;m/ D .m C n; n C m/ D .0; 0/, so for

any two natural numbers m and n, the integers .m; n/ and .n;m/ are neg-
atives each other. if we define .m; n/ > .0; 0/ if n > m, then the natural

numbers appear in the integers as .0; 0/; .0; 1/; .0; 2/; : : : and then negative

numbers are : : : .3; 0/; .2; 0/; .1; 0/. Generally, .m; n/ is positive, and equal

to .0; n �m/, if m < n and is negative, and equal to .m � n; 0/, if m > n.

With this system of integers, we define multiplication by .m; n/ �
.m0; n0/ D .n0n C m0m;m0n C n0m/. If you try this out in a few cases

(e.g., two positive integers or two negative integers), you will see that
it works, and you can prove all the laws of multiplication (associativity,

commutativity, the multiplicative unit is .0; 1/, and the order < is such that

if .m; n/ and .m0; n0/ > 0, then .m; n/ � .m0; n0/ > 0).

4.7 The Rational Numbers

Integers are pretty wonderful, but you can’t define division properly on the

integers N. What, for instance, is 3=4? This is why we define a new number,

which call a rational number, consisting of an ordered pair of integers .i; j /,

where i; j 2 Z and j ¤ 0. We think of the first number i as the numerator

and j as the denominator. Formally, we identify .i; 1/ with the integer

i , and we consider two rational numbers .i; j / and .k; l/ to be the same
if i l D jk, which means they have the same reduced form in which the

denominator does not divide the numerator. Moreover, we define addition

of rational numbers by specifying that .i; j /C .k; r/ D .ir C jk; jr/, and

we define multiplication by .i; j / � .k; r/ D .ij; kr/. Subtraction is defined

as .i; j /� .k; r/ D .i; j /C .�k; r/, Division is defined by .i; j /=.k; r/ D
.i; j / � .r; k/, provided j; k ¤ 0.

You should check that this definition does not depend on any particular

representation of the rational numbers. For instance

.im; jm/C .kn; rn/ D .imrnC jnkm; jmrn/ D .ir C jk; jr/;

for any non-zero integersm and n, so addition is well defined.
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Using terms from modern algebra, the rationals, which we denote by Q,

form a commutative group under addition, the non-zero rationals form a
commutative group under multiplication, and addition is distributive with

respect to multiplication (i.e., a.bC c/ D abC ac for all a; b; c 2 Q). We

call such an algebraic structure a field. There is also a natural total ordering

on Q, where a=b < c=d for integers a; b; c; d with b and d nonzero,

exactly when ad < bc. You can check that with this definition, (a) the

ordering agrees with the usual ordering on the integers; and (b) the ordering
is trichotomous and transitive. Moreover, if 0 < a and 0 < b, then 0 <

ab;i.e., the product of positive numbers is positive. We call such a field an

ordered field. Q is an ordered field.

To prove all of these statements is rather tedious and not very informative,

as we use exactly the same techniques as in dealing with the natural numbers

and the integers. So, I’ll leave this to the curious reader to work out.

4.8 The Algebraic Numbers

The great Greek mathematicians, the Pythagoreans, believe that all positive
numbers were rational; i.e., ratios of natural numbers, and even made this

belief a part of their world view. Were they correct, the field Q of rational

numbers would be the same as the field R of real numbers. However, the

fifth century BC Pythagorean Hippasus proved that it cannot be the case

that
p
2 is the ratio of whole numbers. The proof is very beautiful, and can

be expressed in just a few lines, using reductio ad absurdum.
Suppose

p
2 D a=b, where a and b are non-zero natural numbers. If a

and b have any common factors, we divide them out, so we can assume they

have no common factors. Then squaring both sides, we have 2 D a2=b2,

so 2b2 D a2. Thus 2 divides a2, and since 2 is a prime number (it has no

divisors except 1 and itself), 2 must divide a; say a D 2c. Then a2 D 4c2,

so 2b2 D 4c2, which reduces to b2 D 2c2. But then b2 must be divisible
by 2, so b itself must be divisible by 2. We have thus shown that both a

and b are divisible by 2, contradicting our assumption that a and b have no

common factors.

We call numbers like
p
2 irrational because they are not rational. What do

we mean by “numbers like”
p
2. Well,

p
2 is a solution, also called a root,

of the quadratic equation x2 � 2 D 0. In general the roots of polynomial

equations

axn C bxn�1 C : : : C cx C d D 0 (4.7)
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will fail to be rational numbers. We call the roots of polynomial equations

with rational coefficients algebraic numbers.
Another problem with the solution of polynomial equations is that they

may appear not to exist! For instance, the equation x2C2 D 0 surely cannot

have any real number as its root, because the left hand side is never smaller

than 2! Some smart fellow responded to this by defining the imaginary

number i D
p

�1. If this is legitimate, and if i acts in every other respect

like a number, so you can do arithmetic with it, then i
p
2 is a root of the

equation x2 C 2 D 0, and �i
p
2 is a second root. Indeed, if we admit the

imaginary number i, then we have a whole new algebra of complex numbers

of the form aCbi where a and b are rational or irrational numbers. Complex

numbers were first used by the Italian mathematician Gerolamo Cardano in

the mid-sixteenth century.

The arithmetic of complex numbers is given by

.aC bi/C .c C d i/ D .a C c/C .b C d/i

.aC bi/� .c C d i/ D .a � c/C .b � d/i
.aC bi/ � .c C d i/ D .ac � bd/C .ad C bc/i

a C bi

c C d i
D ac C bd

c2 C d2
C ad � bc
c2 C d2

i:

These rules are all pretty obvious, except perhaps the last, which we get by

multiplying the numerator and denominator of the left hand side by c � d i

and simplifying.

Complex numbers are wonderful, for they give us the following theorem,

the so-called Fundamental Theorem of Algebra.

THEOREM 4.1 Fundamental Theorem of Algebra: The polynomial

p.x/ D anx
n C an�1x

n�1 C : : : C a1x C a0

with ai 2 C can be factored as

p.x/ D a.x � r1/ : : : .x � rn/

where a is a constant and each ri is a complex number. The frig are unique,

except for their order of appearance in the above expression.

The Fundamental Theorem of Algebra is often expressed as saying that
every n-degree polynomial has exactly n roots. This is true if we allow for
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repeated roots. Another way of expressing the Fundamental Theorem is

that the field C of complex numbers is algebraically closed.
But, is it legal just to invent a convenient new number i? There was much

controversy about this a few centuries ago, which is why the term “imag-

inary” was applied to them (and the name has stuck). However, another

smart fellow showed that one could define complex numbers directly as or-

dered pairs of real numbers with the appropriate rules for arithmetic. We

write .a; 0/ for real numbers and .0; b/ for imaginary numbers, so the com-
plex number aC bi becomes .a; b/. We then define arithmetic on complex

numbers by

.a; b/C .c; d/ D .aC c; b C d/

.a; b/� .c; d/ D .a � c; b � d/

.a; b/ � .c; d/ D .ac � bd; ad C bc/

and
a C bi

c C d i
D .ac C bd/C .bc � ad/i

c2 C d2
:

The complex numbers thus form a field (it is easy to check that the dis-

tributive law holds for Q). However, they do not form an ordered field. To

see this, suppose i > 0. Then �1 D ii > 0, which is false. Thus we must
have �i > 0, so �1 D .�i/.�i/ > 0, which is also false. It follows that no

total order can be defined on the field of complex numbers that is compati-

ble with the algebraic operations (i.e, for which the product of two positive

numbers is positive).

4.9 Proof of the Fundamental Theorem of Algebra

Suppose a polynomial p.x/ of degree n with coefficients in C does not have

a root in C. We may assume p.x/ has real coefficients, using the following

argument.
If z D x C iy is a complex number, x; y 2 R, we define the complex

conjugate x � iy of z as z. Clearly if z is a real number, then z D z, and

in general zz D x2 C y2, which is often written as jzj2, the square of the

modulus jzj of z. It is also clear that z D z for any complex number z, and

z1z2 D z1 �z2. Moreover, if p.z/ is a polynomial with complex coefficients,

then q.z/ D p.z/p.z/ has real coefficients, and a root w of q.z/ is either
a root of p.z/ or w is a root of p.z/, in which case w is a root of p.z/. To
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show that q.z/ has real coefficients, we assume z is real and we show that

q.z/ D q.z/. We then have

q.z/ D p.z/p.z/ D p.z/ p.z/ D p.z/p.z/ D q.z/;

which proves the assertion.

Now we assume p.x/ has real coefficients and of odd degree. Then

for sufficient large x, p.x/ and p.�x/ have opposite signs, because the

polynomial has the same sign as its term of highest degree for sufficiently

large jxj (i.e., for large positive or large negative x). To see this, suppose

p.x/ D anx
n C an�1x

n�1 C : : :C a1xC a0. Then, dividing by xn, we get

p.x/

xn
D an C an�1

x
C : : : C a1

xn�1
C a0

xn
;

which must have the same sign as an for large x.

To prove that p.x/ has a root, we will use a very famous theorem from

the calculus, called the Intermediate Value Theorem. This theorem says that

if a polynomial p.x/ with real coefficients and x a real variable, changes

sign between x D a and x D b > a, then p.x/ D 0 for some x 2 .a; b/.1
We prove this theorem in �7.2.

Clearly, using the Intermediate Value Theorem, the assertion that a poly-

nomial of odd degree has a real root is immediately proved by the above

reasoning. The interesting thing about this proof is that it is not algebraic,

but depends on the properties of the real line, in particular its completeness,

which we will define in section 4.10.
Thus if p.x/ has odd degree, it has a root r . But then it is easy to show

that p.x/ D .x � r/q.x/ where q.x/ is a polynomial of one degree less

than p.x/. This fact, by the way, does not depend on the fact that p.x/ has

odd degree, which shows that we can prove the Fundamental Theorem by

mathematical induction: it is true for polynomials of degree one, and if it is

true for polynomials of degree n, then it is true for polynomials of degree

nC 1. However, we have only showed that it is true for polynomials of odd
degree. We must deal with polynomials of even degree. If a polynomial of

even degree n has a root r , it factors into .x� r/ times a polynomial of odd

degree n � 1, which then factors into .x � s/ times another polynomial of

1Recall that .a; b/ means fr 2 Rja < r < bg. By the way, the intermediate value

theorem is true for any continuous function, but we have not yet defined the notion of a

continuous function.
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even degree n � 2. So, we only need deal show that a polynomial of even

degree has a root.
But, before we continue with the proof, let’s see why if r is a root of

p.x/, then p.x/ D .x � r/q.x/ for some polynomial q.x/. Suppose

p.x/ D anx
n C an�1x

n�1 C : : : C a1x C a0

has root r . Then

p.r/ D anr
n C an�1r

n�1 C : : : C a1r C a0 D 0:

Subtracting the last equation from the previous, we get

p.x/ D an.x
n � rn/C an�1.x

n�1 � rn�1/C : : : C a1.x � r/:

However, for any integer k, we have

xk � rk

x � r D xk�1 C xk�2r C xk�3r2 C : : : C xrk�2 C rk�1:

Thus
p.x/

x � r D an

xn � rn

x � r C an�1

xn�1 � rn�1

x � r C : : : C a1

is a polynomial.

This leaves us to deal with polynomials of even degree. Clearly p.x/ D
ax2 C bxC c, which is of degree 2, has two roots given by the well-known

formula

x1; x2 D �b ˙
p
b2 � 4ac
2a

:

So suppose p.x/ is of degree 2nm � 4 where m is odd and we have

proven the theorem for all polynomials of degree less than or equal to

2n�1m. First, we form the vector space CŒx�, where x is a variable, with
typical element r0 C r1x C r2x

2 C : : : C rnx
n, where r0; : : : ; rn 2 C. We

define addition by

.r0 C r1x C r2x
2 C : : : C rnx

n/C .s0 C s1x C s2x
2 C : : : C smx

m/ D

.r0 C s0/C .r1 C s1/x C : : : .rn C sn/x
n C snC1x

nC1 C : : : C smx
m;

where n � m.

Now for any vector v 2 CŒx� we let Œv� be the remainder when we divide v

by the polynomialp.x/; i.e., if v D p.x/q.x/Cr.x/, where the polynomial
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r.x/ has degree less than the degree n of p.x/, then Œv� D r.x/. Now it is

easy to show that the set of new vectors Œv� for v 2 CŒx� is itself a vector
space CŒx�p of dimension n � 1 and basis vectors Œ1�; Œx�; Œx2 �; : : : ; Œxn�1�.

Because CŒx�p is n � 1 dimensional, we can write

1 D r0Œx�C r1Œx�
2 C : : : C rn�1Œx

n�1�C rnŒx
n�;

for some r0; : : : ; rn, where rn ¤ 0 because any n vectors in CŒx�p are

linearly dependent. We can write this as

1 D Œx�.r0 C r1Œx�C : : : C rn�1Œx
n�2�C rnŒx

n�1�/;

which shows that

1=Œx� D r0 C r1Œx�C : : : C rn�1Œx
n�2�C rnŒx

n�1�:

That is, CŒx�p is actually a field, with C as a subfield By construction
p.Œx�/ D 0 in this field. That is, Œx� is a root of p.x/ in K D CŒx�p .

In this new field K, the polynomial p factors into p1.x/.x � Œx�/. Now

factor p1.x/ 2 P.K/, the polynomials over field K. If p1.x/ does not factor

into linear terms, let p2.x/ be any nonlinear factor of p1.x/, and construct

a new field K1 over K where p2.x/ has a root. It is clear that this new

root is also a root of p.x/, so now we have found a superfield K of C in
which p.x/ has at least two roots. We continue this process of contructing

superfields until we reach one, say K�, in which p.x/ factors into linear

factors, p.x/ D a.x � z1/.x � z2/ : : : .x � zn/ with zi 2 K�, and indeed

K� is simply the complex field C with the n (including possible repeats)

elements z1; : : : ; zn adjoined.

The elementary symmetric polynomials in variables x1; : : : ; xn are of the
form

e0.x1; : : : ; xn/ D 1

e1.x1; : : : ; xn/ D
n
X

iD1

xi

e2.x1; : : : ; xn/ D
n
X

i;j D1;i�j

xixj

e3.x1; : : : ; xn/ D
n
X

i;j;kD1;i�j �k

xixj xj

: : :

en.x1; : : : ; xn/ D x1x2 : : : xn:
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To see what this means, you should write out (4.8) for a few values of n. In

a professional article or book, the author may not do that for you, and most
likely will not instruct you to do so either. Here are some examples:

n D 1:

e1.x1/ D x1;

n D 2:

e1.x1; x2/ D x1 C x2;
e2.x1; x2/ D x1x2;

n D 3:

e1.x1; x2; x3/ D x1 C x2 C x3;

e2.x1; x2; x3/ D x1x2 C x1x3 C x2x3;

e3.x1; x2; x3/ D x1x2x3;

n D 4:

e1.x1; x2; x3; x4/ D x1 C x2 C x3 C x4;

e2.x1; x2; x3; x4/ D x1x2 C x1x3 C x1x4 C x2x3 C x2x4 C x3x4;

e3.x1; x2; x3; x4/ D x1x2x3 C x1x2x4 C x1x3x4 C x2x3x4;
e4.x1; x2; x3; x4/ D x1x2x3x4.

The reason we introduce the elementary symmetric polynomials is that if

p.x/ D anx
n C an�1x

n�1 C : : : C a1x C a0 has roots r1; : : : ; rn and has

leading coefficient 1, then we can write

p.x/ D xn C e1.r1; r2; : : : ; rn/x
n�1 C e2.r1; r2; : : : ; rn/x

n�2 C : : :

Cen�1.r1; r2; : : : ; rn/x C en.r1; r2; : : : ; rn/:

In other words, ai D ei.r1; : : : ; rn/ for i D 1; : : : ; n.

We prove below that every symmetric polynomial P.z1; : : : ; zn/ in K�

can be written as a polynomial Q.e1.z1; : : : ; zn/; : : : ; en.z1; : : : ; zn//; i.e.,

any symmetric polynomial is a polynomial function of the elementary sym-

metric polynomials. This assertion is called the Fundamental Theorem of

Symmetric Polynomials. Using this theorem, and taking into account (4.8),
we can writeP.z1; : : : ; zn/ asQ.a1; : : : ; an/; i.e., we can assume P has its

coefficients in the base field C.

Consider, then the polynomial

q.z/ D
Y

1�i<j �n

.z � zi � zj C tzizj /

where t is a real number. This polynomial over K� is symmetric in the
fzig, so its coefficients are real numbers, being functions of a1; : : : ; an. The
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degree of this polynomial is mn.n � 1/=2 D 2k�1.n � 1/m and m.n � 1/

is an odd number, so q.z/ has a complex root by the induction assumption.
Indeed, because there are an infinite number of possible t’s, we can find two

real numbers, s and t ¤ s, such that zi C zj C tzizj and zi C zn C szizj are

both complex. Subtracting one from the other, we see that zizj is complex,

and subtracting s times the first from t times the second, we see that zi C zj
is complex. However zi and zj are roots of the second degree polynomial

x2 � .zi C zj /x C zizj , which we know has complex roots. Therefore zi

and zj are complex numbers. Now dividing p.x/ by .x � zi/.x � zj /, we

obtain a lower degree polynomial, which can be factored by the induction

assumption.

To prove the Fundamental Theorem of Symmetric Polynomials, we take

an approach inspired by David Jao’s entry on PlanetMath.org, “Reduc-

tion Algorithm for Symmetric Polynomials.” The symmetric polynomical

P.x1; : : : ; xn/ is a sum of monomials of the form cx
i1
1 : : : x

in
n , where the

ij are nonnegative integers and c is a complex constant. We define a total

order on the monomials by specifying that

c1x
i1
1 : : : x

in
n < c2x

j1

1 : : : xjn

n (4.8)

if c2 ¤ 0 and there is some k < n such that in�l D jn�l for l D 0 : : : k

but ikC1 < jkC1. For instance .2; 3; 4/ < .6; 4; 5/ and .3; 4; 5/ < .4; 4; 5/.

In words, starting in the nth position in both monomials, go back until the

two exponents are not equal. The monomial with the larger exponent in that
position is the larger monomial. This is called a lexicographic order on the

monomials.

We reduce P into elementary symmetric polynomials by successively

subtracting frmon P a product of elementary symmetric polynomials elim-

inating the largest monomial according to this order without introducing any

larger monomials. This way, in each step, the largest monomial becomes

smaller and smaller until it becomes zero, and we are done: the sum of the
subtracted-off polynomials is the desired expression of P as a polynomial

function of elementary polynomials.

Suppose cxi1
1 : : : x

in
n is the largest monomial in P . Consider the polyno-

mial P1 D P �Q, where

Q WD csin�in�1

1 sin�1�in�2

2 : : : si2�i1
n�1 s

i1
n

and sk is the kth elementary symmetric polynomial in the n variables

x1; : : : ; xn. ClearlyQ is a polynomial in the symmetric polynomials. More-
over, xn occurs with exponent in, since it occurs with exponent in � in�1 in
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the first term, in�1 � in�2 in the second term, and so on, down to i1 times in

the final term. Moroever, xin
n only occurs in a single monomial in Q, and

in that monomial, xn�1 occurs with exponent in�1, since it does not include

a term from s1, and it occurs in the rest of Q with exponent in�1 � in�2 in

the second term, in�2 � in�3 in the third term, and so on, down to i1 times

in the final term. And so on for the remaining variables. This shows that

P �Q has monomials that are smaller than the one just eliminated. We can

now continuous the process until nothing remains in P .
As I have stressed throughout this book, to understand a complex argu-

ment, go through a few simple cases yourself. Here is one example of the

above algorithm. Suppose P.x1; x2/ D .x1 C 7x1x2 C x2/
2. Expanding

this into monomials, we get

P D x2
1 C 2x1x2 C 14x2

1x
2
2 C x2

2 C 14x1x
2
2 C 49x2

1x
2
2 :

The largest monomial is 49x2
1x

2
2 , so we subtract off 49s2

2 , getting

P � 49s2
2 D x2

1 C 2x1x2 C 14x2
1x2 C x2

2 C 14x1x
2
2 :

Now the largest monomial is 14x1x
2
2 , so we subtract off 14s1s2, getting

P � 49s2
2 � 14s1s2 D x2

1 C 2x1x2 C x2
2

Now the largest monomial is x2
2 , so we subtract off s2

1 , getting

P � 49s2
2 � 14s1s2 � s2

1 D 0:

This gives

P.x1; x2/ D 49s2.x1; x2/
2 C 14s1.x1; x2/s2.x1; x2/C s1.x1; x2/

2:

4.10 The Real Numbers

We have define complex and algebraic numbers in terms of real numbers.
But we have not defined real numbers! If you check over previous sections

of this and the previous chapter, you will see that we have defined everything

ultimately in terms of the empty set ;, using the axioms of set theory. But

the moment we discovered the first irrational number, we entered a novel

domain of mathematics. How can we define the real numbers?

A beautiful definition of the reals in terms of the rationals was discov-
ered by the great nineteenth century German mathematician Julius Wilhelm
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Richard Dedekind. Note that
p
2 is the smallest number greater than any

number in the set

D.r2 < 2/ D fq 2 Qjq2 < 2g: (4.9)

So, why not simply define
p
2 asD.r2 < 2/? In effect, this would be saying

that
p
2 is the least upper bound of the set of rational numbers extending

from �1 up to, but not including
p
2. We define a number u to be an upper

bound of a set A of numbers if u � a for all a 2 A. We say u is the least

upper bound of the set A if it is the smallest number that is an upper bound
of A. Note that a set like D.r2 < 2/ defined in (4.9) has an upper bound

in Q, indeed lots of them, but it has no least upper bound; for every upper

bound u 2 Q, there is a still smaller upper bound. Thus, considering sets

of rational numbers, the least upper bound need not exist, as is the case of

D.r2 < 2/. For convenience, we define lubA as the least upper bound of

the set A.

For future reference, we say l is a lower bound for a set A of numbers if
l � a for all a 2 A, and we say l is the greatest lower bound of A if l is

a lower bound of A and any other lower bound of A is smaller than A. We

write glbA for the greatest lower bound of A.

Note that if q 2 Q, q is the least upper bound of the set

D.r < q/ D fr 2 Qj0 � r < qg:

The main difference between D.r < q/ and D.r2 < 2/ is that at the upper
end of the latter set there is a “hole” because

p
2 is not rational, while

lubD.r < q/ D q when q 2 Q.

If we can work out the details of how to add, subtract, multiply and divide

numbers that look likeD.r2 < 2/, and if the resulting algebraic system has

the properties we normally associated with the real numbers, we will have

effectively define R, the real numbers. Formally, we want the real numbers
R to be a totally ordered field in which every set with an upper bound in R

has a least upper bound in R. Moreover, we want the mapping that takes

q 2 Q into D.r < q/ 2 R to be an isomorphism, which means an injection

that preserves all the algebraic operations (e.g., D.r < q/CD.r < q0/ 7!
D.r < q C q0/, for q; q0 2 Q).

We thus define a nonnegative real number as a set ˛ of rational numbers
such that

1. ˛ is non-empty;
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2. ˛ has an upper bound; i.e., .9u 2 Q/.a 2 ˛ ! a < u/;
3. ˛ has no negative upper bound; i.e.,

.8a 2 ˛/..a < 0/ ! .9a0 2 ˛/.a < a0//;
4. Negative Tail property: .8x; y 2 Q/.x < y ^ y 2 ˛ ! x 2 ˛/;
5. ˛ has no largest element; i.e., .8a 2 ˛/.9a0 2 ˛/.a0 > a/.

We call any such set a Dedekind cut. A Dedekind cut contains all rational
numbers from �1 to any rational number in the cut. The reason for con-

dition 3 is that, for now, we want to define only non-negative real numbers.

Note that condition 5 does not imply that a real number has no least up-

per bound, but it requires that a real number cannot contain its least upper

bound, should it have one.

By the way, I am now freely using the notation we developed in chapters 2

and 3. I hope you feel comfortable with them by now. This does not mean
you should be able to read the previous definition with the ease that you read

the morning headlines in the newspaper. It means, rather, that with some

thought, effort, and time, and perhaps by reviewing some of the earlier

material in the book, the definition of a Dedekind cut becomes clear to you.

If not, you should restart your reading of the book back at some earlier

point. I freely admit that I do this all the time in reading mathematical
material.

We now define a non-negative real number as a Dedekind cut ˛. We

turn the real numbers into an algebraic structure much like N by defining

addition, multiplication, and division as well as the identity element for

addition (zero) and for multiplication (one). We will call this R. We then

define negative real numbers and subtraction in the same way we defined
negative integers in section 4.6. In this way, we construct the field R of real

numbers, which will also be an ordered field, with the order conforming to

our definitions of positive and negative.

First we note that the real numbers R can be totally ordered by set inclu-

sion, so we write ˛ < ˇ if ˛ � ˇ. We then define the additive identity of

the real numbers by 0R D fq 2 Qjq < 0g, and we define the multiplicative

identity by 1R D fq 2 Qjq < 1g. Note that 0R < 1R, as required if R is to
follow the normal laws of arithmetic.

We define addition of real numbers by

˛ C ˇ D fx C yj.x 2 ˛/ ^ .y 2 ˇ/g:

The first thing we must check is that ˛ C ˇ is a real number; i.e., it is a
Dedekind cut. Let 
 D ˛ C ˇ. We must show that 
 satisfies all five of the
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conditions in the definition of a Dedekind cut. Clearly 
 ¤ ; and 
 has an

upper bound. Suppose 
 has a negative upper bound u < 0. Because ˛ has
no negative upper bound, there is an a 2 ˛ with a > u=2. Similarly there

is a b 2 ˇ with b > u=2 Thus a C b 2 
 and a C b > u, which shows

that u is not an upper bound for 
 . This is a contradiction, showing that 


has no negative upper bound. Note that all these calculation are quite legal

because they occur in Q, not R.

Now suppose x; y 2 Q, x < y and y 2 
 . Then y D a C b for a 2 ˛

and b 2 ˇ. Now x � b < a, so x � b 2 ˛. But then x D .x � b/C b 2 
 .

This proves the Negative Tail property.

Finally, suppose g 2 
 is the largest element of 
 . Then g D a C b for

a 2 ˛ and b 2 ˇ. But there is an a0 2 ˛ with a0 > a, so g0 D a0 C b is in 


and is larger that g. This reductio ad absurdum shows that 
 has no largest

element. We have thus proved that ˛ C ˇ is a real number.

To show that 0R is an additive identity, we must show that for any real
number ˛, we have ˛ C 0R D ˛. Clearly ˛ C 0R � ˛ (i.e., ˛ C 0R � ˛)

because if you add a negative rational to a 2 ˛, the result must be in ˛

by the Negative Tail property of ˛. If a 2 ˛, there is some a0 2 ˛ with

a0 > a. Then a � a0 < 0, so a � a0 2 0R, from which it follows that

a0 C .a � a0/ D a 2 ˛ C 0R. Thus we have shown that ˛ D ˛ C 0R.

We define multiplication of nonnegative real numbers by ˛ˇ D 0R if
either ˛ or ˇ is 0R, and for ˛; ˇ > 0R,

˛ˇ D fq 2 Qjq � 0g [ fxyj.x 2 ˛/ ^ .y 2 ˇ/^ .x; y > 0/g:

Again, we must first check that 
 D ˛ˇ is a real number for ˛; ˇ > 0.

Clearly 
 is nonempty and has an upper bound. If both ˛ and ˇ are non-

zero, then they must have strictly positive elements a > 0 and b > 0 (this

is because fq 2 Qjq � 0g is not a real number). Thus ab 2 
 , so 
 doesn’t

have a negative upper bound.

I leave it to the reader to prove that 
 has the Negative Tail property, and
has no largest element, so 
 is a real number.

Note that both addition and multiplication are obviously commutative

(i.e., ˛ C ˇ D ˇ C ˛ and ˛ˇ D ˇ˛). I will show that ˛ � 1R D ˛, proving

that 1R is a multiplicative identity. Clearly ˛ � ˛ � 1R because a D a � 1 for

any a 2 ˛. Now let a0 D a � b where a 2 ˛, a > 0, and b 2 1R, b > 0.

Then 0 < ab < a, so ab 2 ˛ by the Negative Tail property. This shows
that ˛ D a � 1R.
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Rather than defining division directly, we define the inverse ˛�1 of a

positive real number ˛. We then define ˛=ˇ D ˛ � ˇ�1 for ˇ > 0. We
define, for ˛ > 0,

˛�1 D fq 2 Qjq � 0g [
fq 2 Qj.q > 0/ ^ .1=q … ˛/

^.9q 2 Q � ˛/.q < 1=r/g:

This definition is quite typical of what you are likely to see in reading a

paper or book with equations. It says that ˛�1 consists of all the non-

positive rationals, plus any rational of the form 1=q where q is not in a and

1=q is not the smallest number in Q � ˛, which is the set of rationals not in

˛.
We must show that if ˛ is a positive real number, then ˇ D ˛�1 is also

a real number, and ˛ � ˇ D 1R. Clearly ˇ is non-empty. Because ˛ > 0R,

there is an a 2 ˛ that is positive. Thus if 1=q 2 ˇ, then 1=q < 1=a, so ˇ

has an upper bound. If u is an upper bound for ˛ but not the least upper

bound of Q�˛, then u > 0 and u … ˛, so 1=u 2 ˇ. But 1=u > 0, so ˇ does

not have a negative upper bound. For the Negative Tail property, suppose
q; s in Q, q < s, and s 2 ˇ. If q < 0 then q 2 ˇ. If s � 0 then q < 0, so

q 2 ˇ. So suppose q; s > 0. Then 1=s … ˛ and 1=q > 1=s, so 1=q … ˛, so

q 2 ˇ, since clearly 1=q is not the least element in Q � ˛.

By the way, I should clue you in that when a mathematician says,

“Clearly,” followed by assertion, you are expected to figure it out for your-

self. It may or may not turn out to be easy to show.
To show that if ˇ D ˛�1 then ˛ˇ D 1R, note first that if a 2 ˛ and b 2 ˇ,

then b D 1=c for some c … ˛, so c > a and hence b D 1=c < 1=a, so

ab < 1. Therefore ˛ˇ � 1Q. Now let q be any positive rational less than

one, so q 2 1R. Note that if ˛ > 1, then ˇ < 1 and conversely (why?) so

either q 2 ˛ or q 2 ˇ. We assume q 2 ˛, leaving the alternative, q 2 ˇ, for

the reader to work out. Let � D 1 � q, and choose s 2 ˛ sufficiently large

that s > q and sC� 2 Q�˛, but sC� is not the smallest element of Q�˛.
Then 1=.s C �/ 2 ˇ and q < s=.s C �/ < 1 (to see that q < s=.s C �/,

rewrite the inequality as q.s C �/ < s, which is qs C q.1 � q/ < s, which

is q.1 � q/ < s.1 � q/ which is true since q < s and 1 � q > 0.

Defining the negative numbers can be accomplished either in a way simi-

lar to the way we defined the negative integers in Z in terms of natural num-

bers N in section 4.6, or we can define a negative real number as a set of
rationals that satisfy conditions 1,2,4, and 5 of the definition of a Dedekind
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cut for non-negative rationals, but may have a negative upper bound. The

we define �˛ for ˛ > 0R as follows:

�˛ D fq 2 Qj.�q … ˛/ ^ .9r 2 Q � ˛/.r < �q/g:

I will not develop this way of dealing with negative reals, but if you choose
to do so, you must show that the negation operator ˛ ! �˛ is the additive

inverse operation. That is, �0R D 0R, and ˛ C .�˛/ D 0R. Moreover, you

must show that with this definition of negation, that the real numbers form

an ordered field. This means showing that if ˛ > 0R, then �˛ < 0R.

The most important characterization of the real number system R are that

it is the only complete, ordered, and Archimedean field. We already know

that R is an ordered field. We say a field is complete if every set of elements
with an upper bound has a least upper bound. We saw that rationals are an

ordered field, but not a complete ordered field because sets like D.r2 < 2/

have no least upper bound. We corrected this in R by defining a least upper

bound for such sets of rationals. But, we could have left some “holes”

somewhere. In fact, we have not.

To prove the reals are complete, let f˛
 2 Rj
 2 �g be an arbitrary
collection of real numbers, where � is some arbitrary set of set of indices.

Let ˛ D [
2�˛
 g be the set-theoretic union of all the ˛
 , and suppose all

the ˛
 have a common upper bound u 2 R. We can obviously assume

u 2 Q, so ˛ is nonempty and has and upper bound. We have dropped the

third condition, because we now have both positive and negative reals. To

show the Negative Tail condition, assume r; s 2 Q, r < s, and s 2 ˛. Then
s 2 ˛
 for some 
 2 �, so r 2 ˛
 , which implies r 2 ˛. It is obvious that

˛ has no largest element, because such an element would be in one of the

˛ 
 , where it would be the largest element in ˛
 , contradicting the fact that

˛
 is a real number.

It remains to show that ˛ as defined above is the least upper bound of the

set ˛� D f˛
 j
 2 �g. First, ˛ is clearly and upper bound of this set, and

for every r 2 ˛, there is a ˛
 with r 2 ˛
 , so r is not an upper bound of ˛� .
The term Archimedean field, named after the ancient Greek mathemati-

cian Archimedes of Syracuse, is the property of having no inf—initely small

quantities, or infinitesimals. If r is a real number and n is an integer, we

define nr to be r C : : : C r , where the addition occurs n times (note that

this is conceptually different from n � r; in fact you can prove the two are

equal). We say x > 0 is an infinitesimal if there is a number y > x such
that nx < y all natural numbers n. To show that R is Archimedean, choose
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any positive real numbers ˛ and ˇ, with ˛ < ˇ. Let r 2 ˛ with r > 0, and

let v 2 Q be an upper bound of ˇ. Then n be an integer larger than v=r .
Clearly nr is in n˛ and nr > v, so n˛ > ˇ.

Non-Archimedean fields do exist, and can be complete and ordered. They

can used to develop standard undergraduate calculus in a quite intuitive way,

but we will leave this matter for another time.

4.11 Denumerability and the Reals

Most of the approach to numbers developed in this chapter is due to the

German mathematician Georg Cantor, who lived from 1845 to 1918. Cantor

first defined cardinal and ordinal numbers, and thought of considering two

sets to be of equal size if there is bijection from one to the other. One of the
achievements of Cantor’s approach is that it supplies a very simple proof

that not all numbers are algebraic. The proof goes like this. First recall that

an algebraic number is the root of a polynomial with rational coefficients;

i.e., a number r such that p.r/ D 0, where p.x/ D anx
n C an�1x

n�1 C
: : : C a1x C a0 and an > 0.

By the way, now that we have defined the real numbers rigorously, I will
revert to writing the real numbers as R rather than R. I will also write 0R as

0 and 1R as 1.

I want to show that the algebraic numbers are denumerable, which means

they are infinite in number but they are countable; i.e., you can put them in

one-to-one correspondence with the natural numbers. This fact was very,

very shocking to mathematicians when Cantor first proved it, because there
appears to be many more algebraic numbers than there are integers. So

much for raw intuition.

First, suppose we have n denumerable sets A1; : : : ; An, where n 2 N.

Then the union of these sets, A D A1 [ A2 [ : : : [ An can be easily

shown to be denumerable. Suppose we arrange each set Ai in one-to-one

correspondence with the natural numbers, so the j th element ofAi is written
a

j
i . By the way, note that we are here using superscripts for the first time.

The superscript j in a
j
i does not mean the j th power of ai but rather the

j th element of Ai . You have to tell by context alone whether a superscript

is the standard power function in arithmetic, or is just a way of labeling an
element of a set.
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Thus for each i D 1; : : : ; n, the elements of Ai can be written as a se-

quence a1
i ; a

2
i ; a

3
i ; : : :. Then we can arrange A in a sequence as follows:

a1
1; a

2
1; a

1
2; a

3
1; a

2
2; a

1
3; a

4
1; a

3
2; a

1
3; a

4
1; : : : :

In words, first write down all elements a
j
i of A for which the sum of the

subscript and the superscript are 2, then all that sum to three, and so on.

Now, if the Ai are not disjoint, drop any instance of a member of A on the

list except the first. We now have a denumeration of A—that is, a one-to-

one onto mapping with the natural numbers.

This shows that any finite union of denumerable sets is denumerable.

A similar argument shows that the product of denumerable sets
A1; : : : ; An, A D A1 � A2 � : : : � An is itself denumerable. We again

choose a denumeration of set Ai so the j th element of Ai is a
j
i . Recall that

we can think of elements of A as sequences (ordered n-tuples) of the form

a1; a2; : : : ; an where ai 2 Ai for i D 1; : : : ; n. Now write down in some

particular order all the sequences whose superscripts add up to n, then

nC 1, then nC 2, and so on. This gives a denumeration of A. By the way,
note that I am allowed to leave off the superscript if I don’t care about it. If

I had put superscripts on a1; a2; : : : ; an it would look like a
j1

1 ; a
j2

2 ; : : : ; a
jn

n ,

which is pretty awful looking.

What if we have a denumerable number of sets A1; A2; : : :? It is easy to

see that exactly the same methods give denumerations of the union or the

product of these sets. To see this, simply go over the above constructions
and note that they do not depend on there being a finite number of sets.

Therefore the union and product of a denumerable number of denumerable

sets is itself denumerable.

Now back to the polynomials with rational coefficients, which we will

write as P . Note that by multiplying a polynomial by the product of the de-

nominators of the coefficients, the polynomial then has integer coefficients

and exactly the same roots. Thus, we will always assume a polynomial
in P has integer coefficients. There is a natural injection from P into the

denumerable product of the integers, Z1 D Z � Z � : : :. We start with

polynomials of degree one, such as ax C b where a > 0. We associate

ax C b with b; a; 0; 0; : : :. For a quadratic ax2 C bx C c we associate

c; b; a; 0; 0; : : :. And so on. Now any denumeration of Z1 gives a denu-

meration of P. But each polynomial in P has only a finite number of roots,
so we can extend the denumeration of Z that of the algebraic numbers.
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Cantor first showed that the algebraic numbers are denumerable, probably

using reasoning similar to the above (actually, I don’t recall what argument
he actually used, if I ever knew it). The true shocker, however, was his

extremely simple argument that the reals R are not denumerable. He did

this using the famous diagonal argument, which he invented.

Suppose R were denumerable, and put all the real numbers between zero

and 1 in a list r1; r2; : : :. Now let 0:d1
i d

2
i ; : : : be a decimal representation

of ri , where each of the d
j
i is one of the digits 0,1,2. . . ,9. Such a repre-

sentation is unique except that a number like 0.1999. . . can also be written

as 0.2. When this occurs, we agree always to use the latter representation.

Now create a real number r between zero and one in which the j th digit is

d
j

j C 1 if 0 � d
j

j � 7, 7 if d
j

j D 8, 8 if d
j

j D 9, and 0 if d
j

j D 9. Clearly r

cannot be in the list r1; r2; : : : because it differs from each ri in the i th dec-

imal position. Moreover, r cannot have an expansion ending with 999 : : :,

because there are no 9’s in r . Therefore there is no such denumeration of

R.

Note that this proves that there are transcendental numbers, which are
numbers that are not the root of any polynomial with integral coefficients.

We now know that only a few of the numbers we use in mathematics are

actually transcendental numbers, and these include e, the base of the natural

logarithms, and � . We do not even know if e C � is transcendental or

algebraic!

4.12 The Continuum Hypothesis
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Probability Theory

Doubt is disagreeable, but certainty is ridiculous.

Voltaire

5.1 Introduction

The material you have learned to this point is sufficient to do a surprising
amount of real mathematics, including probability theory. We will stick to

finite probability spaces because they have none of the weird behavior of

infinite probability spaces, and they are arguably much more important and

fundamental anyway.

5.2 Probability Spaces

We assume a finite universe or sample space � and a set X of subsets

A;B;C; : : : of �, called events. We assume X is closed under finite

unions (if A1; A2; : : : An are events, so is [n
iD1Ai ), finite intersections (if

A1; : : : ; An are events, so is \n
iD1Ai ), and complementation (ifA is an event

so is the set of elements of � that are not in A, which we write Ac). If A

and B are events, we interpret A \ B D AB as the event “A and B both

occur,” A [ B as the event “A or B occurs,” and Ac as the event “A does

not occur.”

For instance, suppose we flip a coin twice, the outcome being HH

(heads on both), HT (heads on first and tails on second), TH (tails on

first and heads on second), and T T (tails on both). The sample space is
then � D fHH;TH;HT; T T g. Some events are fHH;HT g (the coin

comes up heads on the first toss), fT T g (the coin comes up tails twice), and

fHH;HT; THg (the coin comes up heads at least once).

The probability of an event A 2 X is a real number PŒA� such that 0 �
PŒA� � 1. We assume that PŒ�� D 1, which says that with probability

1 some outcome occurs, and we also assume that if A D [n
iD1Ai , where

Ai 2 X and the fAig are disjoint (that is, Ai \ Aj D ; for all i ¤ j ), then

57
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PŒA� D
Pn

iD1 P ŒAi �, which says that probabilities are additive over finite

disjoint unions.1

5.3 De Morgan’s Laws

Show that for any two events A and B , we have

.A [ B/c D Ac \ Bc

and

.A \ B/c D Ac [ Bc :

These are called De Morgan’s laws. Express the meaning of these formulas

in words.

Show that if we write p for proposition “event A occurs” and q for “event

B occurs,” then

not .p or q/ , . not p and not q/;

not .p and q/ , . not p or not q/:

The formulas are also De Morgan’s laws. Give examples of both rules.

5.4 Interocitors

An interocitor consists of two kramels and three trums. Let Ak be the event

“the kth kramel is in working condition,” and Bj is the event “the j th trum

is in working condition.” An interocitor is in working condition if at least

one of its kramels and two of its trums are in working condition. Let C be
the event “the interocitor is in working condition.” Write C in terms of the

Ak and the Bj :

5.5 The Direct Evaluation of Probabilities

THEOREM 5.1 Given a1; : : : ; an and b1; : : : ; bm, all distinct, there are n�
m distinct ways of choosing one of the ai and one of the bj : If we also

have c1; : : : ; cr , distinct from each other, the ai and the bj , then there are

n�m� r distinct ways of choosing one of the ai , one of the bj , and one of

the ck .

1The notation
P

, which is the Greek letter capital sigma, always means “sum” in

formulas. We write
P

n

iD1
ai D a1 C : : : C an. Sometimes if it is obvious what the

summation is over, we just write
P

i
ai or even

P

ai .
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Apply this theorem to determine how many different elements there are

in the sample space of

a. the double coin flip
b. the triple coin flip
c. rolling a pair of dice

Generalize the theorem.

5.6 Probability as Frequency

Suppose the sample space � consists of a finite number n of equally prob-

able elements. Suppose the event A containsm of these elements. Then the
probability of the event A is m=n.

A second definition: Suppose an experiment has n distinct outcomes, all

of which are equally likely. Let A be a subset of the outcomes, and n.A/ the

number of elements ofA. We define the probability ofA as PŒA� D n.A/=n.

For example, in throwing a pair of dice, there are 6 � 6 D 36 mutually

exclusive, equally likely events, each represented by an ordered pair .a; b/,
where a is the number of spots showing on the first die and b the number

on the second. Let A be the event that both dice show the same number of

spots. Then n.A/ D 6 and PŒA� D 6=36 D 1=6:

A third definition: Suppose an experiment can be repeated any number

of times, each outcome being independent of the ones before and after it.

Let A be an event that either does or does not occur for each outcome. Let
nt .A/ be the number of timesA occurred on all the tries up to and including

the t th try. We define the relative frequency of A as nt.A/=t , and we define

the probability of A as

PŒA� D lim
t!1

nt .A/

t
:

We say two events A and B are independent if PŒA� does not depend on
whether B occurs or not and, conversely, PŒB� does not depend on whether

A occurs or not. If events A and B are independent, the probability that

both occur is the product of the probabilities that either occurs: that is,

PŒA and B� D PŒA� � PŒB�:

For example, in flipping coins, let A be the event “the first ten flips are

heads.” Let B be the event “the eleventh flip is heads.” Then the two events
are independent.
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For another example, suppose there are two urns, one containing 100

white balls and 1 red ball, and the other containing 100 red balls and 1
white ball. You do not know which is which. You choose 2 balls from the

first urn. Let A be the event “The first ball is white,” and let B be the event

“The second ball is white.” These events are not independent, because if

you draw a white ball the first time, you are more likely to be drawing from

the urn with 100 white balls than the urn with 1 white ball.

Determine the following probabilities. Assume all coins and dice are
“fair” in the sense that H and T are equiprobable for a coin, and 1; : : : ; 6 are

equiprobable for a die.

a. At least one head occurs in a double coin toss.
b. Exactly two tails occur in a triple coin toss.
c. The sum of the two dice equals 7 or 11 in rolling a pair of dice.
d. All six dice show the same number when six dice are thrown.
e. A coin is tossed seven times. The string of outcomes is HHHHHHH.
f. A coin is tossed seven times. The string of outcomes is HTHHTTH.

5.7 Craps

A roller plays against the casino. The roller throws the dice and wins if the
sum is 7 or 11, but loses if the sum is 2, 3, or 12. If the sum is any other

number (4, 5, 6, 8, 9, or 10), the roller throws the dice repeatedly until either

winning by matching the first number rolled or losing if the sum is 2, 7, or

12 (“crapping out”). What is the probability of winning?

5.8 A Marksman Contest

In a head-to-head contest Alice can beat Bonnie with probability p and can

beat Carole with probability q. Carole is a better marksman than Bonnie,
so p > q. To win the contest Alice must win at least two in a row out

of three head-to-heads with Bonnie and Carole and cannot play the same

person twice in a row (that is, she can play Bonnie-Carole-Bonnie or Carole-

Bonnie-Carole). Show that Alice maximizes her probability of winning the

contest playing the better marksman, Carole, twice.

5.9 Sampling

The mutually exclusive outcomes of a random action are called sample

points. The set of sample points is called the sample space. An event A
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is a subset of a sample space �: The event A is certain if A D � and

impossible if A D ; (that is, A has no elements). The probability of an
event A is PŒA� D n.A/=n.�/, if we assume � is finite and all ! 2 � are

equally likely.

a. Suppose six dice are thrown. What is the probability all six die show

the same number?

b. Suppose we choose r object in succession from a set of n distinct ob-
jects a1; : : : ; an, each time recording the choice and returning the object

to the set before making the next choice. This gives an ordered sample

of the form (b1; : : : ; br/, where each bj is some ai . We call this sam-

pling with replacement. Show that, in sampling r times with replace-

ment from a set of n objects, there are nr distinct ordered samples.

c. Suppose we choose r objects in succession from a set of n distinct
objects a1; : : : ; an, without returning the object to the set. This gives an

ordered sample of the form (b1; : : : ; br/, where each bj is some unique

ai . We call this sampling without replacement . Show that in sampling

r times without replacement from a set of n objects, there are

n.n � 1/ : : : .n � r C 1/ D nŠ

.n � r/Š

distinct ordered samples, where nŠ D n � .n � 1/ � : : : � 2 � 1.

5.10 Aces Up

A deck of 52 cards has 4 aces. A player draws 2 cards randomly from the

deck. What is the probability that both are aces?

5.11 Permutations

A linear ordering of a set of n distinct objects is called a permutation of the

objects. It is easy to see that the number of distinct permutations of n > 0

distinct objects is nŠ D n � .n� 1/ � : : : � 2 � 1. Suppose we have a deck

of cards numbered from 1 to n > 1. Shuffle the cards so their new order

is a random permutation of the cards. What is the average number of cards

that appear in the “correct” order (that is, the kth card is in the kth position)
in the shuffled deck?
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5.12 Combinations and Sampling

The number of combinations of n distinct objects taken r at a time is the

number of subsets of size r , taken from the n things without replacement.

We write this as
�

n

r

�

. In this case, we do not care about the order of the

choices. For instance, consider the set of numbers f1,2,3,4g. The number of

samples of size two without replacement = 4!/2! = 12. These are precisely
f12,13,14,21,23,24,31,32,34,41,42,43g. The combinations of the four num-

bers of size two (that is, taken two at a time) are f12,13,14,23,24,34g, or

six in number. Note that 6 D
�

4

2

�

D 4Š=2Š2Š. A set of n elements has

nŠ=rŠ.n � r/Š distinct subsets of size r . Thus, we have

 

n

r

!

D nŠ

rŠ.n � r/Š
:

5.13 Mechanical Defects

A shipment of seven machines has two defective machines. An inspector

checks two machines randomly drawn from the shipment, and accepts the

shipment if neither is defective. What is the probability the shipment is
accepted?

5.14 Mass Defection

A batch of 100 manufactured items is checked by an inspector, who exam-

ines 10 items at random. If none is defective, she accepts the whole batch.
What is the probability that a batch containing 10 defective items will be

accepted?

5.15 House Rules

Suppose you are playing the following game against the house in Las Vegas.
You pick a number between one and six. The house rolls three dice, and

pays you $1,000 if your number comes up on one die, $2,000 if your number

comes up on two dice, and $3,000 if your number comes up on all three dice.

If your number does not show up at all, you pay the house $1,000. At first

glance, this looks like a fair game (that is, a game in which the expected

payoff is zero), but in fact it is not. How much can you expect to win (or
lose)?
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5.16 The Addition Rule for Probabilities

Let A and B be two events. Then 0 � PŒA� � 1 and

PŒA [ B� D PŒA�C PŒB� � PŒAB�:

If A and B are disjoint (that is, the events are mutually exclusive), then

PŒA [ B� D PŒA�C PŒB�:

Moreover, if A1; : : : ; An are mutually disjoint, then

PŒ[iAi � D
n
X

iD1

PŒAi �:

We call events A1; : : : ; An a partition of the sample space � if they are

mutually disjoint and exhaustive (that is, their union is �). In this case for

any event B , we have

PŒB� D
X

i

PŒBAi �:

5.17 A Guessing Game

Each day the call-in program on a local radio station conducts the follow-
ing game. A number is drawn at random from f1; 2; : : : ; ng. Callers choose

a number randomly and win a prize if correct. Otherwise, the station an-

nounces whether the guess was high or low and moves on to the next caller,

who chooses randomly from the numbers that can logically be correct, given

the previous announcements. What is the expected number f .n/ of callers

before one guesses the number?

5.18 North Island, South Island

Bob is trying to find a secret treasure buried in the ground somewhere in

North Island. According to local custom, if Bob digs and finds the treasure,

he can keep it. If the treasure is not at the digging point, though, and Bob

happens to hit rock, Bob must go to South Island. On the other hand, if Bob

hits clay on North Island, he can stay there and try again. Once on South

Island, to get back to North Island, Bob must dig and hit clay. If Bob hits
rock on South Island, he forfeits the possibility of obtaining the treasure.
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On the other hand, if Bob hits earth on South Island, he can stay on South

Island and try again. Suppose qn is the probability of finding the treasure
when digging at a random spot on North Island, rn is the probability of

hitting rock on North Island, rs is the probability of hitting rock on South

Island, and es is the probability of hitting earth on South Island. What is the

probability,Pn, that Bob will eventually find the treasure before he forfeits,

if we assume that he starts on North Island?

5.19 Conditional Probability

If A and B are events, and if the probability PŒB� that B occurs is strictly

positive, we define the conditional probability of A given B , denoted
PŒAjB�, by

PŒAjB� D PŒAB�

PŒB�
:

We say B1; : : : ; Bn are a partition of event B if [iBi D B and BiBj D ;
for i ¤ j . We have:

a. If A and B are events, PŒB� > 0, and B implies A (that is, B � A),

then PŒAjB� D 1.
b. If A and B are contradictory (that is, AB D ;), then PŒAjB� D 0.
c. If A1; : : : ; An are a partition of event A, then

PŒAjB� D
n
X

iD1

PŒAi jB�:

d. If B1; : : : ; Bn are a partition of the sample space �, then

PŒA� D
n
X

iD1

PŒAjBi �PŒBi �:

5.20 Bayes’ Rule

Suppose A and B are events with PŒA�;PŒB�;PŒBc� > 0. Then we have

PŒB jA� D PŒAjB�PŒB�
PŒAjB�PŒB�C PŒAjBc�PŒBc�

:

This follows from the fact that the denominator is just PŒA�, and is called
Bayes’ rule.
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More generally, if B1; : : : ; Bn is a partition of the sample space and if

PŒA�;PŒBk� > 0, then

PŒBkjA� D PŒAjBk�PŒBk�
Pn

iD1 PŒAjBi �PŒBi �
:

To see this, note that the denominator on the right-hand side is just PŒA�,

and the numerator is just PŒABk� by definition.

5.21 Extrasensory Perception

Alice claims to have ESP. She says to Bob, “Match me against a series of
opponents in picking the high card from a deck with cards numbered 1 to

100. I will do better than chance in either choosing a higher card than my

opponent or choosing a higher card on my second try than on my first.” Bob

reasons that Alice will win on her first try with probability 1/2, and beat her

own card with probability 1/2 if she loses on the first round. Thus, Alice

should win with probability .1=2/ C .1=2/.1=2/ D 3=4. He finds, to his
surprise, that Alice wins about 5/6 of the time. Does Alice have ESP?

5.22 Les Cinq Tiroirs

You are looking for an object in one of five drawers. There is a 20% chance

that it is not in any of the drawers, but if it is in a drawer, it is equally likely
to be in each one. Show that as you look in the drawers one by one, the

probability of finding the object in the next drawer rises if not found so far,

but the probability of not finding it at all also rises.

5.23 Drug Testing

Bayes’ rule is useful because often we know PŒAjB�, PŒAjBc� and PŒB�,
and we want to find PŒB jA�. For example, suppose 5% of the population

uses drugs, and there is a drug test that is 95% accurate: it tests positive on

a drug user 95% of the time, and it tests negative on a drug nonuser 95%

of the time. Show that if an individual tests positive, the probability of his

being a drug user is 50%. Hint: Let A be the event “is a drug user,” let

“Pos” be the event “tests positive,” let “Neg” be the event “tests negative,”
and apply Bayes’ rule.
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5.24 Color Blindness

Suppose 5% of men are color-blind and 0.25% of women are color-blind.

A person is chosen at random and found to be color-blind. What is the

probability the person is male (assume the population is 50% female)?

5.25 Urns

A collection of n C 1 urns, numbered from 0 to n, each contains n balls.
Urn k contains k red and n � k white balls. An urn is chosen at random

and n balls are randomly chosen from it, the ball being replaced each time

before another is chosen. Suppose all n balls are found to be red. What

is the probability the next ball chosen from the urn will be red? Show that

when n is large, this probability is approximately n=.nC 2/. Hint: For the

last step, approximate the sum by an integral.

5.26 The Monty Hall Game

You are a contestant in a game show. The host says, “Behind one of those

three doors is a new automobile, which is your prize should you choose the

right door. Nothing is behind the other two doors. You may choose any

door.” You choose door A. The game host then opens door B and shows

you that there is nothing behind it. He then asks, “Now would you like to

change your guess to door C, at a cost of $1?” Show that the answer is no if
the game show host randomly opened one of the two other doors, but yes if

he simply opened a door he knew did not have a car behind it. Generalize

to the case where there are n doors with a prize behind one door.

5.27 The Logic of Murder and Abuse

For a given woman, let A be the event “was habitually beaten by her hus-

band” (“abused” for short), let B be the event “was murdered,” and let C
be the event “was murdered by her husband.” Suppose we know the fol-

lowing facts: (a) 5% of women are abused by their husbands; (b) 0.5% of

women are murdered; (c) 0.025% of women are murdered by their hus-

bands; (d) 90% of women who are murdered by their husbands had been

abused by their husbands; (e) a woman who is murdered but not by her

husband is neither more nor less likely to have been abused by her husband
than a randomly selected woman.
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Nicole is found murdered, and it is ascertained that she was abused by her

husband. The defense attorneys for her husband show that the probability
that a man who abuses his wife actually kills her is only 4.50%, so there is a

strong presumption of innocence for him. The attorneys for the prosecution

show that there is in fact a 94.74% chance the husband murdered his wife,

independent from any evidence other than that he abused her. Please supply

the arguments of the two teams of attorneys. You may assume that the jury

was well versed in probability theory, so they had no problem understanding
the reasoning.

5.28 The Principle of Insufficient Reason

The principle of insufficient reason says that if you are “completely igno-

rant” as to which among the states A1; : : : ; An will occur, then you should

assign probability 1=n to each of the states. The argument in favor of the

principle is strong (see Savage 1954 and Sinn 1980 for discussions), but

there are some interesting arguments against it. For instance, suppose A1 it-

self consists ofmmutually exclusive eventsA11; : : : ; A1m. If you are “com-
pletely ignorant” concerning which of these occurs, then if PŒA1� D 1=n,

we should set PŒA1i � D 1=mn. But are we not “completely ignorant” con-

cerning which of A11; : : : ; A1m; A2; : : : ; An occurs? If so, we should set

each of these probabilities to 1=.nCm� 1/. If not, in what sense were we

“completely ignorant” concerning the original states A1; : : : ; An?

5.29 The Greens and the Blacks

The game of bridge is played with a normal 52-card deck, each of four

players being dealt 13 cards at the start of the game. The Greens and the
Blacks are playing bridge. After a deal, Mr. Brown, an onlooker, asks Mrs.

Black: “Do you have an ace in your hand?” She nods yes. After the next

deal, he asks her: “Do you have the ace of spades?” She nods yes again. In

which of the two situations is Mrs. Black more likely to have at least one

other ace in her hand? Calculate the exact probabilities in the two cases.

5.30 The Brain and Kidney Problem

A mad scientist is showing you around his foul-smelling laboratory. He

motions to an opaque, formalin-filled jar. “This jar contains either a brain
or a kidney, each with probability 1/2,” he exclaims. Searching around
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his workbench, he finds a brain and adds it to the jar. He then picks one

blob randomly from the jar, and it is a brain. What is the probability the
remaining blob is a brain?

5.31 The Value of Eyewitness Testimony

A town has 100 taxis, 85 green taxis owned by the Green Cab Company and

15 blue taxies owned by the Blue Cab Company. On March 1, 1990, Alice

was struck by a speeding cab, and the only witness testified that the cab

was blue rather than green. Alice sued the Blue Cab Company. The judge

instructed the jury and the lawyers at the start of the case that the reliability
of a witness must be assumed to be 80% in a case of this sort, and that

liability requires that the “preponderance of the evidence,” meaning at least

a 50% probability, be on the side of the plaintiff.

The lawyer for Alice argued that the Blue Cab Company should pay,

because the witness’s testimonial gives a probability of 80% that she was

struck by a blue taxi. The lawyer for the Blue Cab Company argued as
follows. A witness who was shown all the cabs in town would incorrectly

identify 20% of the 85 green taxis (that is, 17 of them) as blue, and correctly

identify 80% of the 15 blue taxis (that is, 12 of them) as blue. Thus, of the 29

identifications of a taxi as blue, only twelve would be correct and seventeen

would be incorrect. Thus, the preponderance of the evidence is in favor of

the defendant. Most likely, Alice was hit by a green taxi.
Formulate the second lawyer’s argument rigorously in terms of Bayes’

rule. Which argument do you think is correct, and if neither is correct, what

is a good argument in this case?

5.32 When Weakness Is Strength

Many people have criticized the Darwinian notion of “survival of the fittest”

by declaring that the whole thing is a simple tautology: whatever survives

is “fit” by definition! Defenders of the notion reply by noting that we can
measure fitness (e.g., speed, strength, resistance to disease, aerodynamic

stability) independent of survivability, so it becomes an empirical proposi-

tion that the fit survive. Indeed, under some conditions it may be simply

false, as game theorist Martin Shubik (1954) showed in the following inge-

nious problem.

Alice, Bob, and Carole are having a shootout. On each round, until only
one player remains standing, the current shooter can choose one of the other
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players as target and is allowed one shot. At the start of the game, they

draw straws to see who goes first, second, and third, and they take turns
repeatedly in that order. A player who is hit is eliminated. Alice is a perfect

shot, Bob has 80% accuracy, and Carole has 50% accuracy. We assume that

players are not required to aim at an opponent and can simply shoot in the

air on their turn, if they so desire.

We will show that Carole, the least accurate shooter, is the most likely to

survive. As an exercise, you are asked to show that if the player who gets to
shoot is picked randomly in each round, then the survivability of the players

is perfectly inverse to their accuracy.

There are six possible orders for the three players, each occurring with

probability 1/6. We abbreviate Alice as a, Bob as b, and Carole as c, and

we write the order of play as xyz, where x,y,z 2 fa,b,cg. We let �i.xyz/

be the survival probability of player i 2 fa,b,cg. For instance, �a.abc/ is

the probability Alice wins when the shooting order is abc. Similarly, if only
two remain, let �i.xy/ be the probability of survival for player i Dx,y when

only x and y remain, and it is x’s turn to shoot.

If Alice goes first, it is clear that her best move is to shoot at Bob, whom

she eliminates with probability 1. Then, Carole’s best move is to shoot

at Alice, whom she eliminates with probability 1/2. If she misses Alice,

Alice eliminates Carole. Therefore, we have �a.abc/ D 1=2, �b.abc/ D 0,
�c.abc/ D 1=2, �a.acb/ D 1=2, �b.acb/ D 0, and �c.acb/ D 1=2.

Suppose Bob goes first, and the order is bac. If Bob shoots in the air,

Alice will then eliminate Bob. If Bob shoots at Carole and eliminates her,

Alice will again eliminate Bob. If Bob shoots at Alice and misses, then the

order is effectively acb, and we know Alice will eliminate Bob. However,

if Bob shoots at Alice and eliminates her, then the game is cb. We have

pc.cb/ D 1

2
C 1

2
� 1

5
pc.cb/:

The first term on the right is the probability Carole hits Bob and wins

straight off, and the second term is the probability that she misses Bob
(1/2) times the probability Bob misses her (1/5) times the probability that

she eventually wins if it is her turn to shoot. We can solve this equation,

getting pc.cb/ D 5=9, so pb.cb/ D 4=9. It follows that Bob will indeed

shoot at Alice, so

pb.bac/ D 4

5
� 4

9
D 16

45
:
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Similarly, we have pb.bca/ D 16=45. Also,

pa.bac/ D 1

5
pa.ca/ D 1

5
� 1

2
D 1

10
;

because we clearly have pa.ca/ D 1=2. Similarly, pa.bca/ D 1=10. Fi-

nally,

pc.bac/ D 1

5
pc.ca/C 4

5
� pc.cb/ D 1

5
� 1

2
C 4

5
� 5

9
D 49

90
;

because pc.ca/ D 1=2. Similarly, pc.bca/ D 49=90. As a check on our
work, note that pa.bac/C pb.bac/C pc.bac/ D 1.

Suppose Carole gets to shoot first. If Carole shoots in the air, her payoff

from cab is pc.abc/ D 1=2, and from cba is pc.bac/ D 49=90. These

are also her payoffs if she misses her target. However, if she shoots Alice,

her payoff is pc.bc/, and if she shoots Bob, her payoff is pc.ac/ D 0. We

calculate pc.bc/ as follows.

pb.bc/ D 4

5
C 1

5
� 1

2
pb.bc/;

where the first term is the probability he shoots Carole (4/5) plus the prob-

ability he misses Carole (1/5) times the probability he gets to shoot again

(1/2, because Carole misses) times pb.bc/. We solve, getting pb.bc/ D
8=9. Thus, pc.bc/ D 1=9. Clearly, Carole’s best payoff is to shoot in

the air. Then pc.cab/ D 1=2, pb.cab/ D pb.abc/ D 0, and pa.cab/ D
pa.abc/ D 1=2. Also, pc.cba/ D 49=50, pb.cba/ D pb.bac/ D 16=45,

and pa.cba/ D pa.bac/ D 1=10.

The probability that Alice survives is given by

pa D 1

6
.pa.abc/C pa.acb/C pa.bac/C pa.bca/C pa.cab/C pa.cba//

D 1

6

�

1

2
C 1

2
C 1

10
C 1

10
C 1

2
C 1

10

�

D 3

10
:

The probability that Bob survives is given by

pb D 1

6
.pb.abc/C pb.acb/C pb.bac/C pb.bca/C pb.cab/C pb.cba//

D 1

6

�

0C 0C 16

45
C 16

45
C 0C 16

45

�

D 8

45
:
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The probability that Carole survives is given by

pc D 1

6
.pc.abc/C pc.acb/C pc.bac/C pc.bca/C pc.cab/C pc.cba//

D 1

6

�

1

2
C 1

2
C 49

90
C 49

90
C 1

2
C 49

90

�

D 47

90
:

You can check that these three probabilities add up to unity, as they should.

Note that Carole has a 52.2% chance of surviving, whereas Alice has only

a 30% chance, and Bob has a 17.8% chance.

5.33 The Uniform Distribution

The uniform distribution on Œ0; 1� is a random variable that is uniformly
distributed over the unit interval. Therefore if Qx is uniformly distributed

over Œ0; 1� then

PŒ Qx < x� D

8

ˆ

<

ˆ

:

0 x � 0

x 0 � x � 1

1 1 � x:

If Qx is uniformly distributed on the interval Œa; b�, then . Qx � a/=.b � a/ is

uniformly distributed on Œ0; 1�, and a little algebra shows that

PŒ Qx < x� D

8

ˆ

<

ˆ

:

0 x � a
x�a
b�a

a � x � b

1 b � x:

Figure 5.1 depicts this problem.

PŒ Qx < x�
1

a b x

Figure 5.1. Uniform distribution
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Suppose Qx is uniformly distributed on Œa; b� and we learn that in fact

Qx � c, where a < c < b. Then Qx is in fact uniformly distributed on Œa; c�.
To see this, we write

PŒ Qx < xj Qx � c� D PŒ Qx < x and Qx � c�

PŒ Qx � c�

D PŒ Qx < x and Qx � c�

.c � a/=.b � a/
:

We evaluate the numerator as follows:

PŒ Qx < x and Qx � c� D

8

ˆ

<

ˆ

:

0 x � a

PŒ Qx < x� a � x � c

PŒ Qx � c� c � x

D

8

ˆ

<

ˆ

:

0 x � a
x�a
b�a

a � x � c
c�a
b�a

c � x

:

Therefore,

PŒ Qx < xj Qx � c� D

8

ˆ

<

ˆ

:

0 x � 0
x�a
c�a

a � x � c

1 c � x

:

This is just the uniform distribution on Œa; c�.

5.34 Laplace’s Law of Succession

An urn contains a large number n of white and black balls, where the num-

ber of white balls is uniformly distributed between 0 and n. Suppose you
pick outm balls with replacement, and r are white. Show that the probabil-

ity of picking a white ball on the next draw is approximately (rC1/=.mC2/:

5.35 From Uniform to Exponential

Bob tells Alice to draw repeatedly from the uniform distribution on Œ0; 1�

until her current draw is less than some previous draw, and he will pay her

$n, where n is the number of draws. What is the average value of this game

for Alice?
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Vector Spaces

6.1 The Origins of Vector Space Theory

The discovery of a way to integrate algebra and plane geometry was among
the greatest of the many achievements of the reknown French philosopher

René Descartes. Descartes noticed that if you take Euclid’s plane geometry

and associate an ordered pair of real numbers .x; y/ with each point, a

line could be identified with the set of points satisfying the linear equation

ax C by D c, where a; b; c 2 R. He then discovered that a circle could be

identified with the solution to the quadratic equation x2 C y2 D r2, where
r > 0 is the radius of the circle. Analytic geometry was born, and with the

notion of the plane as a two dimensional space R2. But the story does not

end there, or even with the generalization of a point to an ordered set of n

real numbers .x1; : : : ; xn/, giving rise to n-dimensional real space Rn for

any natural number n > 0.

One of Euclid’s axioms is that every pair of points uniquely identifies a
line. Algebraically we can find this line, given the two points v1 D .x1; y1/

and v2 D .x2; y2/, by solving the pair equations

axi C byi D c i D 1; 2

for a, b, and c, getting, as long as x1y2 ¤ x2y1,

a D c
y2 � y1

x1y2 � x2y1

; b D c
x2 � x1

x1y2 � x2y1

; (6.1)

where c is any non-zero real number. If x1y2 D x2y1 but x1 ¤ x2, then

c D 0 and a=b D .y2 � y1/=.x2 � x1/, so the line is through the origin

with slope a=b. Finally, if x1 D x2, then the line is the horizontal line

f.x; y/jx D x1g.

As you can see, the description of the line between two points is quite in-

elegant and hard to use because we must discuss three distinct cases. Thus,
every time we want to study something using a line, we have to deal with
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three separate cases. If we want to talk about k lines, we must deal with 3k

separate cases!
However, you could also note that if we define the product of a real num-

ber r and a point v D .x; y/ as rv D r.x; y/ D .rx; ry/, and if we define

the addition of two points as .x1; y1/C .x2; y2/ D .x1 Cx2; y1 Cy2/, then

the line including v1 and v2 simply as the set of points

fvr D rv1 C .1� r/v2jr 2 Rg: (6.2)

To show this, we do have to consider all three cases, but when we are sat-

isfied that this set really is the line between v1 and v2, we will never again

have to consider special cases. So, suppose x1y2 ¤ x2y1. Then the formu-
las (6.1) hold, and if we substitute in any point .x; y/ D rv1C.1�r/v2, you

can check that indeed ax C by D c, where a and b are given by (6.1), and

simplify, we get c. I leave it to the reader to check the cases x1y2 D x2y1

but x1 ¤ x2, and x1 D x2.

It is also true that the line segment between v1 and v2 is just the set of

points frv1 C .1 � r/v2jr 2 Œ0; 1�g.1 Indeed, the point rv1 C .1 � r/v2

divides the line segment between v1 and v2 in the ratio r W 1 � r , so, for
instance, v0 D v2, v1 D v1, v1=2 is the midpoint of the line segment, and

so on.

The easiest way to prove these statements is to move one of the points to

a position where the calculations are easy, prove the statements there, and

then show that the result does not depend on the absolute location of the

points, but only on their relative location to each other. In this case, let’s
move v2 to the origin, so v2 D 0 D .0; 0/ the so-called zero vector. In this

case, vr D rv1, for which it is obvious that vr is on a line with the same

slope as the line through the origin and v1, so the two lines must be the

same. To prove the assertion that vr cuts the line segment between 0 and

v1 in the ratio r W 1 � r , we must define the distance between a point and

the zero vector 0. We define this just as you learned in algebra: the length
of the line segment from 0 to v D .x; y/ is jvj D

p

x2 C y2. From this

definition, you can see that rjvj D jrvj if r � 0. This shows that vr divides

the line segment between 0 and v1 in the ratio r W 1 � r .

1Note that Œ0; 1� means fr 2 Rj0 � r � 1g, and is called the closed interval between

zero and one. We also commonly use .0; 1/, the open interval between zero and one, to

be the closed interval excluding its endpoints, zero and one. Indeed, for arbitrary real

numbers a < b, we have intervals Œa; b�, .a; b/, and even Œa; b/ and .a; b�, the latter two

including one endpoint but not the other. An interval of numbers with exactly one endpoint

included is called a half-open interval. For instance, .a; b� D fr 2 Rja < r � bg.
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Now suppose v2 is an arbitrary point distinct from v1. We define the dis-

tance between v1 and v2 to be
p

.x2 � x1/2 C .y2 � y1/2, which coincides
with our previous definition when v2 D 0. Moreover, if we define subtrac-

tion of points in the obvious way as .x1; y1/�.x2; y2/ D .x1 �x2; y1 �y2/,

then the distance between v2 and v1 is the same as the distance between 0

and v1 � v2. Thus all our distance arguments go through with arbitrary v2

just as they did with v2 D 0.

6.2 The Vector Space Axioms

We develop the ideas presented above by defining an abstract algebraic

structure that generalizes the properties of Rn for n 2 N. A vector space

over an arbitrary field F is a set V , an element of which is called a vector,

with a special vector 0 and the operations vector addition .a;b 7! a C b/,

vector negation (a 7! �a, and scalar multiplication .r; a 7! ra/, for any
a;b 2 V and r 2 F .

We assume first that V is an commutative group with identity 0 under

addition. This means that for any a;b; c 2 V , we have

.a C b/C c D a C .b C c/I
0C a D a C 0 D aI

.�a/C a D a C .�a/ D 0:

We abbreviate a C .�b/ as .a � b/, and we call the new operation a;b 7!
a � b vector subtraction.

We assume second that scalar multiplication satisfies 0a D 0, 1a D a,

and for any r; s 2 F and any a 2 V , .rs/a D r.sa/.

Finally, we assume the same distributive laws that obviously hold in Rn,

namely, for a;b 2 V and r; s 2 F , we have

r.a C b/ D ra C rb

.r C s/a D ra C sa:
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6.3 Norms on Vector Spaces

Suppose the field F is the real numbers R. An inner product on the vector

space V is a map a;b 7! a � b with the following properties:

a � b D b � a

.ra/ � b D r.a � b/

.r C s/ � a D r � a C s � a

a � a � 0

a � a D 0 ! a D 0:

If V D Rn, then the most common inner product is given by

.x1; : : : ; xn/ � .y1; : : : ; yn/� D .x1y1; : : : ; xnyn/:

With this inner product, we have jaj D
p

a � a.

6.4 Properties of Norm and Inner Product

Let V be a normed vector space with an inner product over the real number

field R. It is easy to show that for any a 2 V , r 2 R;

jraj D rjaj:

a
aa b

a C b a C b

Figure 6.1. The Triangle Inequality

Moreover, the standard triangle inequality holds: for a;b 2 V

ja C bj � jaj C jbj:

The triangle inequality is illustrated in figure 6.1.

The parallelogram law says that for a;b 2 V ,

ja C bj2 C ja � bj2 D 2jaj2 C 2jbj2
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To prove this, just multiply out the left hand side, which is

.a C b/ � .a C b/C .a � b/ � .a � b/

using the distributive and other laws of the inner product, and compare with

the right hand side.

a

b

a C b

Figure 6.2. The Pythagorean Theorem

We say two vectors a, and b are orthogonal if a �b D 0. The Pythagorean

theorem says that if a and b are orthogonal, then

jaj2 C jbj2 D ja C bj2:

This is illustrated in figure 6.2.

More generally, we have

jaj2 C jbj2 D ja C bj2 C 2a � b;

which can also easily be proved by multiplying out both sides.

6.5 The Dimension of a Vector Space

In the n-dimensional vector space Rn, we can define n basis vectors

e1; : : : ; en, where ei D .0; : : : ; 0; 1; 0 : : : ; 0/, where the ’1’ is in the ith

position. It is easy to see that each basis vector has length one, any two

distinct basis vectors are orthogonal, and for any vector v D .x1; : : : ; xn/,

we have a unique expression for v in terms of the basis vectors given by

v D
n
X

iD1

xi ei D x1e1 C x2e2 C : : : C xnen: (6.3)

It turns out that this idea of a basis extends to any vector space, and there is

a unique number n of basis vectors in any finite dimensional vector space.
If you think about this for a minute, you will realize that this means that
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there is really a unique vector space of dimension n over a field F , in the

sense that there is an isomorphism between any two vector spaces V1 and
V2 of dimension n over F . An isomorphism is a bijection that preserves

vector addition and scalar multiplication. To define such an isomorphism,

which is not unique, choose a basis for each vector space, say e1; : : : ; en for

V1 and f1; : : : ; fn for V2, let �.ei/ D fi for each i D 1; : : : ; n, and extend �

to all of V1 by defining, for v as in (6.3),

�.v/ D x1f1 C x2f2 C : : : C xnfn:

or more succinctly,

�

 

n
X

iD1

xi ei

!

D
n
X

iD1

xi fi :

The mapping � W V1 ! V2 is the desired isomorphism, as you can easily

show.

We say that a set of vectors v1; : : : ; vk 2 V generates V , or spans V if, for

any v 2 V , there are k elements xi 2 F such that v D
Pk

iD1 kixi . We say

V is finite dimensional if V has a finite set v of vectors that spans V . We say
a set of vectors v1; : : : ; vn are linearly independent if x1v1C : : :Cxnvn D 0

for x1; : : : ; xn 2 F , then x1 D x2 D : : : D xn D 0. This means that no

vector in the set can be written as a linear combination of the others. Note

the when F D R and the vectors space is Rn, then the basis vectors ei are

linearly independent.

We say v1; : : : ; vn 2 V is a basis for V if they span V and are linearly
independent. We shall show that if one basis for V has n elements, all bases

for V have n elements. We call n the dimension of V , and we say V is finite

dimensional.

We must prove that all bases have the same number of elements. We

will also prove that if vector space V has dimension n, then any linearly

independent set of n vectors generates V , and hence forms a basis for V .
Moreover, any set of linearly independent vectors form part of (i.e., can be

extended to) a basis for V .

To prove the above assertions, suppose v D fv1; : : : ; vng and w D
fw1; : : : ;wkg are bases of V . We will show that k � n, which of course im-

plies k D n. Because w spans v, we can write v1 as a linear combinations

of vectors in w:

v1 D
X

i

xi wi ; xi 2 F :
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At least one of the xi , say xm, is not zero, so we can rewrite this as

wm D 1

xm

v1 �
k
X

iD1;i¤m

xi

xm

vi : (6.4)

This shows that the set w1 D fv1;w1; : : : ;wkg � fwmg, where we dropped

wm from w, spans V . Moreover the set w1 is linearly independent. For

if not, then v1 must be a linear combination of the other vectors in w1, in

which case (6.4) shows that wm is a linear combination of the other vectors
in w. This contradicts the fact that w is a basis of V . This proves that w1

is a basis of V . Now, using the same argument, we can add v2 to w1 and

drop a vector in w from w1, getting a new basis w2. It is possible to drop

another vector fromw because if the coefficients of all the vectors wi in w1

had zero coefficients, then v1 and v2 would be linearly dependent, which

is false. Continuing in the same way, we end up with a set wn which, if
k D n, is simply v, or if k > n is wn D fv1; v2; : : : ; vn;w

nC1; : : : ;wkg,

where wnC1; : : : ;wk 2 w. This shows that k � n, and since the whole

argument can be carried out swapping v and w, this shows that k D n.

Now suppose v D fv1; : : : ; vkg are any k linearly independent vectors in

V . If k < n, then v does not generate V , so there a vector vkC1 that is not

generated by v, and hence is linearly independent from v. We can thus add

vkC1 to v. We can continue this until v has cardinality n, when which v is
a basis for V .

This proof was a little long-winded, but essentially simple, using no so-

phisticated theorems or properties of vector spaces. Moreover, it is an ab-

solutely fundamental theorem, and is used frequently in mathematical ar-

guments.

6.6 Vector Subspaces

Suppose V is a vector space of dimension n > 1, and let v D fv1; : : : ; vkg
be a set of linearly independent vectors in V . From the preceding section,

we know that k � n. Suppose k < n. Then it should be clear that the set of

vectors spanned by v, call it Vv , is a subset of V that forms a vector space

in its own right. this is because 0 2 Vv , �v 2 Vv if v 2 Vv , and adding

vectors in Vv , as well as multiplying vectors in Vv by scalars, always leads

to another vector in Vv . We call Vv a subspace of V . We say that the
dimension of the subspace is k. As an exercise, you might try showing
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that if Vv is a subspace of V of dimension k, then any set of k linearly

independent vectors in Vv are a basis for Vv , and there are no sets of size
larger than k vectors from Vv that are linearly independent.

For instance, in R2, any line through the origin .0; 0/ is a subspace, and

in R3, any plane through the origin, as well as any line through the origin,

is a subspace. In Rn, the n � 1-dimensional subspaces are called hyper-

planes. Thus, the hyperplanes in R2 are the lines through the origin, and

the hyperplanes in R3 are the planes through the origin.

6.7 Revisiting the Algebraic Numbers

In section 4.8, we defined an algebraic number as the root of a polynomial

equation anx
n C : : :C a1x C a0 with rational coefficients, or equivalently,

integer coefficients. In section 4.11 We showed that the algebraic numbers

are denumerable, and since the complex numbers are non-denumerable, we

concluded that not all numbers are algebraic.

With the help of our vector space results, we can say a lot more about
algebraic numbers. Let P be the polynomials with coefficients in the field

Q, which is a subfield of the field C of complex numbers. We know from

Theorem 4.1 that every p 2 P has all of its roots in C. Let a 2 C be non-

rational, and consider the set of numbers QŒa� of the form, for any natural

number n > 0,

ana
n C : : : C a1a C a0; (6.5)

where an; : : : ; a0 2 Q. It is easy to see that this is a vector space, where

addition and scalar multiplication are as defined in C. We write this vector

space as QŒa�. If a is algebraic, then this vectors space will be spanned

by the vectors a; a2; : : : ; an�1 and no smaller set of vectors, assuming the
polynomial of least degree of which a is a root is of degree n. To see this,

note that if this polynomial is p.x/ D anx
n C: : :Ca1xCa0, then p.a/ D 0

can be rewritten as

an D �an�1

an

an�1 � : : : � a1

an

a � a0

an

: (6.6)

We could then write am for anym > n�1 in terms of a; a2; : : : ; an�1 using

(6.6). For instance, multiplying both sides of (6.6) by a, we get

anC1 D �an�1

an

an � : : : � a1

an

a2 � a0

an

a:
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Now substitute the right hand side of (6.6) for a6 in the above and simplify.

This is complicated, but it simplifies to

anC1 D
�

a2
n�1

a2
n

� an�2

an

�

an�1 C
�

an�1an�2

a2
n

� an�3

an

�

an�2 C : : :C

�

an�1a1

a2
n

� a0

an

�

a C an�1a0

a2
n

:

This shows that anC1 can be expressed as a linear combination of the basis
vectors f1; a; a2; : : : ; an�1g. Clearly we can extend this calculation to all

higher powers of a.

This proves that if a is algebraic but not rational, then QŒa� is an n-

dimensional vector space, where n is the degree of the lowest-degree poly-

nomial of which a is a root. Conversely, if QŒa� is a finite dimensional

vector space, then a must be algebraic, and the dimension of QŒa� is the
degree of the minimal polynomial of a.

We can also show that if a is algebraic, then QŒa� is in fact a field. To

show this, we need only show that

q

a
D an�1a

n�1 C : : : C a1a C a0

where q and the coefficients an�1; : : : ; a1; a0 lie in Q. To show this, multi-

ply both sides by a, getting the equation

an�1a
n C : : : C a1a

2 C a0a � q D 0

Because QŒa� is n-dimension, the vectors 1; a; a2; : : : ; an are linearly de-

pendent, so the above equation must have a solution.

A similar argument shows that if a1; : : : ; ak are any k algebraic numbers

over Q, the vector space QŒa1; : : : ; ak� is finite dimensional, and indeed is

a field. Generalizing, the set of all algebraic numbers over Q, which we

write A, forms a field. To see this, note that the field axioms can be easily
verified for all finite subfields of A, and hence the hold for A.

We may use this type of argument to show that A is actually algebraically

closed. That is, any polynomical with coefficients in A has all of its roots

in A. To see this, suppose the polynomial is p.x/ D anx
n C : : :Ca1xCa0

where all coefficients are in A. Consider the vector space QŒan; : : : ; a1; a0�.

We know that this is finite dimensional, spanned by the rational coeffi-
cients of the polynomials for which an; : : : ; a0 are the roots. But then
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p.a/ D 0means that a 2 QŒan; : : : ; a1; a0�, so QŒa� is a vector subspace of

QŒan; : : : ; a1; a0�, and since QŒan; : : : ; a1; a0� is finite dimensional, QŒa� is
also finite dimensional, which means that a is algebraic over Q.
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Real Analysis

7.1 Limits of Sequences

Suppose we have an infinite sequence a1; a2; : : : of real numbers. We write

limn!1 ai D a if, for every real number ı > 0, there is a natural number

nı such that the distance between ai and a is less than ı for all i > nı ; in

symbols,

.8ı > 0/.9nı 2 N/.8i > nı/.jai � aj < ı/:
We say the sequence has limit a.

So, for instance, the sequence

1; 1=2; 1=3; 1=4; : : :

has limit zero, as you can easily show (given ı, choose nı to be any natural

number greater than 1=ı). For another example, let k.n/ be the nearest

integer to n �
p

.2/, and form the sequence

k.1/=1; k.2/=2; : : : ; k.n/=n; : : : : (7.1)

You can try you hand a showing that limn!1 k.n/=nD
p
2:

We write limn!1 ai D 1 if, for every real number d > 0, there is a

natural number nd such that ai > d for all i > nd . Note that we could have
used ı instead of d as in the previous definition, but by custom, in analysis

the Greek letters ı and � are reserved for “very small” real quantities.

Suppose we have an infinite sequence a1; a2; : : : of real numbers such

that for every real number ı > 0, there is a natural number nı such that the

distance between ai and aj is less than ı for all i; j > nı ; in symbols,

.8ı > 0/.9nı 2 N/.8i; j > nı/.jai � aj j < ı/:

We say the sequence converges. Such sequences are called Cauchy se-

quences, named after the French mathematician Augustin Louis Cauchy
(1789-1857), the architect of the modern approach to limits, infinitesimals,

83
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and the like. If we are working with the rational number Q, a sequence can

converge without converging to anything! A perfectly good example of this
is the sequence (7.1), which converges, but not to a rational number (see

�4.8). However, the real numbers are complete, as defined in 4.10. We will

show that every Cauchy sequence converges to a real number.

THEOREM 7.1 Triangle Inequality: For any real numbers r and s,

jr C sj � jrj C jsj:

Note that this is just like the triangle inequality for vector spaces (�6.4),

and indeed, you can check that R is a vector space over itself—a one-

dimensional vector space R1.

Proof: The theorem is clearly true, and in fact becomes an equality, if r

and s have the same sign or at least one is 0. If r > 0 and s < 0, but

r C s > 0, then jr C sj D r C s < r D jrj, and similarly if s > 0

and r < 0 but r C s > 0. If r > 0 and s < 0, but r C s < 0, then

jr C sj D �s � r < �s D jsj, and similarly if s > 0 and r < 0 but

r C s < 0.

THEOREM 7.2 A sequence of real numbers s D a1; a2; : : : converges if and

only if there is a real number a such that limn!1 ai D a.

Proof: Suppose first that s converges to a, and for a given ı > 0, choose n

such that jai � aj < ı=2. Then by the triangle inequality,

jai � aj j D j.ai � a/C .a � ai/j � jai � aj C ja � ai j � ı=2C ı=2 D ı:

for i; j > n. This shows that s is Cauchy.

Now suppose s is Cauchy. It is easy to show that s has an upper bound u.

Now each subsequence sk D ak; akC1; : : : of s is Cauchy and has upper

bound u. Then, by completeness of the real numbers, each sk has a least

upper bound bk . Moreover, the sequence t D b1; b2; : : : is increasing; i.e.,
i > j implies bi � bj , because bi is an upper bound to aj ; : : :, but not

necessarily a least upper bound. Now the set fbi ji D 1; 2; : : :g has an upper

bound u, so it has a least upper bound a. We show limn!1 an D a.

For ı > 0, note that a � ı is not an upper bound of t , and hence there is

an n such that bn > a � ı. But then a � bj > a � ı all for j � n. This

implies jbj � aj < ı for all j � n. This shows that t is a Cauchy sequence
that converges to a. Now given ı > 0, choose n so that jbj � aj < ı=4
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for j � n, and choose m � n such that am > bn � ı=4. Then we have

jam � aj D j.am � bm/C .bm � a/j � jam � bmj C jbm � aj � ı=2. Now
chose k � m such that jam � aj j < ı=2 for j � k. Then for j � k,

jaj � aj D jaj � am C am � aj � jaj � amj C am � aj � ı. This finishes

the proof.

7.2 Compactness and Continuity in R

THEOREM 7.3 Local Compactness of the Real Numbers: Let I D
fŒai ; bi � � Rja � ai ; bi � b; i D 1; 2 : : :g be a set of bounded closed

intervals such that Œai ; bi � � Œaj ; bj � for i < j . Then I has a non-empty

intersection; i.e., there is a c 2 R such that c 2 Œai ; bi � for i D 1; 2; : : :.

Proof: The sequence b1; b2; : : : is decreasing and has a as a lower bound,

so the sequence has a greatest lower bound b�. Similarly, the sequence
a1; a2; : : : is increasing, bounded above by b, and so has a least upper bound

a�. Because each bi is an upper bound of a1; a2; : : :, each bi � a�, and

therefore a� is a lower bound of b1; b2; : : :, so because b� is the greatest

lower bound of b1; b2; : : :, we have b� � a�. The interval Œa�; b�� (which

may be a single point if a� D b�) is included in all the intervals in I ,

because each ai � a� and each bi � b�.
We say a function f WR!R is continuous at a point a 2 R if, for any se-

quence fai ji D 1; : : :g such that limi!1 ai D a, we have limi!1 f .ai/ D
f .a/. We sometimes write the same thing as limx!a f .x/ D f .a/. An

alternative way to define continuity at a is that for every � > 0 there is a

ı > 0 such that jf .x/ � f .a/j < � for all x such that jx � aj < �. In other

words, f .x/ stays near f .a/ when x stays near a.
We have the following theorem.

THEOREM 7.4 Suppose f; g WWR!R, and b; c 2 R.

a. if f and g are continuous at a 2 R, then af .x/Cbg.x/ and af .x/g.x/

are continuous at a;

b. if f and g are continuous at a 2 R and if g.a/ ¤ 0, then f .x/=g.x/

is continuous at a;

c. the constant function f .x/ D r is continuous everywhere;

d. the linear function f .x/ D x is continuous everywhere;

e. a polynomial function is continuous everywhere;

f. a rational function, meaning a quotient of polynomials, is continuous

except perhaps at a root of the denominator.



86 Chapter 7

Sometimes we can take a function that is not continuous at a point and

redefine some of its values in a natural way so that it becomes continuous.
For instance f .x/ D .x2 � 1/=.x � 1/ is undefined at x D 1, but we can

define it there to be f .1/ D 2, and it is easy to show that f .x/ is now

continuous. This is because .x2 �1/=.x�1/ D xC1 except where x D 1.

Recall that Œa; b� for a; b 2 R is the closed interval fcja � c � bg. We

have

THEOREM 7.5 Intermediate Value Theorem: Suppose f .x/ is continuous

at all points on the interval Œa; b�, and let r 2 Œf .a/; f .b/�. then there is

some c 2 Œa; b� such that f .c/ D r .

This theorem implies that the image of a closed and bounded interval by a

continuous function is an interval.
Proof: Because r 2 Œf .a/; f .b/�, we must have f .a/ � f .b/, and if

f .a/ D f .b/, then f .a/ D r , so the assertion is true. We may thus

assume that f .a/ < r < f .b/. Let c be the least upper bound of the set

A D fx 2 Œa; b�jf .x/ � rg. We use the completeness of the real numbers

(�4.10) to ensure that c exists. We will show that f .c/ D r . Suppose that

this is false and f .c/ > r . Then choose ı > 0 such that jx� cj < ı implies

jf .c/� f .x/j < f .c/� r (i.e., choose � D f .c/� r > 0 in the definition
of continuity of f .x/ at c). But then f .x/ > r for x 2 .c � ı; c C ı/,

so c � ı is an upper bound for A, which is a contradiction. So suppose

instead that f .c/ < r . Then choose ı > 0 such that jx � cj < ı implies

jf .c/ � f .x/j < r � f .c/ (i.e., choose � D r � f .c/ > 0). But then

f .x/ < r for x 2 .c�ı; cCı/, so cCı is an upper bound forA, which is a

contradiction. This completes the proof of the Intermediate Value Theorem.

THEOREM 7.6 Bolzano-Weierstrass Theorem: Let s D a1; a2; : : : be a

sequence of real numbers in the interval Œa; b�. Then there is a number

c 2 Œa; b� and a subsequence ai1 ; ai2; : : : of s (meaning i1 < i2 < : : :) that

converges to c.

Note that c need not be unique; indeed, it could be all of Œa; b�, as would be

the case if s were an enumeration of the rationals in Œa; b� (see �3.11).

Proof: Let bk be the least upper bound of sk D ak; akC1; : : :. Then

bk 2 Œa; b�, and b1; b2; : : : is a weakly increasing sequence (meaning that

it cannot decrease, but does not necessarily always increase). Let b be the

least upper bound of this sequence. Then limk!1 bk D b. To see this,
choose ı > 0. Then there is an n such that bn > b � ı, which means that
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bm > b � ı for all m � n. This shows that limk!1 bk D b, which proves

the theorem.
The Intermediate Value Theorem shows that the image of a continuous

function on an interval Œa; b� is an interval (i.e., if it contains two numbers

r and s, it contains all the numbers between r and s), but this interval could

be unbounded. In fact, it is not. To see this, suppose for each positive

integer n there is an xn 2 Œa; b� such that f .xn/ > n. Then the sequence

s D x1; x2; : : : must have a subsequence t D y1; y2; : : : that converges
to some number y 2 Œa; b�. But f .y/ D limk!1 f .yi/ because f .x/ is

continuous, and each f .yi/ > i , so f .y/ D 1, which is impossible.

This shows that the image of a bounded interval Œa; b� by a continuous

function is bounded. If r is the least upper bound of this image, then we

can show that r D f .c/ for some c 2 Œa; b�. A precisely parallel argument

shows that the image of Œa; b� is bounded from below, and hence has a

greatest lower bound w, and in fact f .d/ D w for some d 2 Œa; b�. This
shows that the image of Œa; b� is a closed and bounded interval Œf .d/; f .c/�,

where f .x/ attains it minimum at d and its maximum at c. To show all of

this, we need only prove the so-called Extreme Value Theorem.

THEOREM 7.7 If f .x/ is continuous on a closed interval Œa; b�, then f .x/

achieves both its minimum and its maximum for values of x in Œa; b�.

Proof: Let r be the least upper bound of ff .x/jx 2 Œa; b�g. For any positive

integer n, choose xn 2 Œa; b� such that r � 1=n < f .xn/ < r . Therefore

limi!1 f .xi/ D r . By the Bolzano-Weierstrass Theorem (�7.6), we can
assume limi!1 xi D x 2 Œa; b�. But then by the continuity of f .x/,

r D limi!1 f .xi/ D f .x/. This proves f .x/ attains it maximum at

x 2 Œa; b�. The second half of the theorem is proved in a similar manner.
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Table of Symbols

fa; b; xg Set with members a, b and x

fxjp.x/g The set of x for which p.x/ is true

p ^ q, p _ q,:p p and q, p or q, not p

iff If and only if

p ) q p implies q

p , q p if and only if q

.a; b/ Ordered pair: .a; b/ D .c; d/ iff a D c and b D d

a 2 A a is a member of the set A

A �B f.a; b/ja 2 A and b 2 Bg
R The real numbers

Rn The n-dimensional real vector space

.x1; : : : ; xn/ 2 Rn An n-dimensional vector

f WA!B A function b D f .a/, where a 2 A and b 2 B
f .�/ A function f where we suppress its argument

f �1.y/ The inverse of function y D f .x/
Pb

xDa f .x/ f .a/C � � � C f .b/

S1 � � � � � Sn f.s1; : : : sn/jsi 2 Si ; i D 1; : : : ng
Qn

iD1 Si S1 � � � � � Sn

�S Set of probability distributions (lotteries) over S

��
Q

i Si …i�Si (set of mixed strategies)

Œa; b�,.a; b/ fx 2 Rja � x � bg,fx 2 Rja < x < bg
Œa; b/,.a; b� fx 2 Rja � x < bg,fx 2 Rja < x � bg
A [ B fxjx 2 A or x 2 Bg
A \ B fxjx 2 A and x 2 Bg
[˛A˛ fxjx 2 A˛ for some ˛g
\˛A˛ fxjx 2 A˛ for all ˛g
A � B A ¤ B ^ .x 2 A ) x 2 B/
A � B x 2 A ) x 2 B
Ddef Equal by definition

Œ � f! 2 �j .!/ is trueg
f ı g.x/ f .g.x//
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