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Preface

It is thought that ants in an ant colony do not know exactly how the ant 
colony where they live should be built. Each ant has certain things that it 
does in coordinated association with other ants, but no ant designs the 
colony. How the colony of ants works collectively in the manner it does 
remains a mystery. However, an important clue to the answer to this 
question may be found by looking at interactions among ants.

Many organisms form collectives that strongly affect the behavior of 
individuals. Familiar examples include the schooling behavior of fish 
and the flocking behavior of birds. Collective behavior emerges from 
traits of individuals. Collectives emerge from relatively simple traits 
of individuals, and these traits give rise to individual behaviors that 
form the collective. Collectives can be treated as an additional level of 
organization between the individual and the population.

For the last decade, attempts have been made to develop some general 
understanding, and ultimately a theory of systems that consist of 
interacting agents. It is common to call these systems collective systems 
because it is difficult to reduce aggregate behavior to a set of properties 
characterizing the individual components. Interactions produce 
properties at the aggregate level that are simply not present when the 
components are considered individually.

In his book, titled The Wisdom o f Crowds, Surowiecki (2004) explores 
an idea that has profound implications. A large collection of people are 
smarter than an elite few, no matter how brilliant they are and or how 
much better they are at solving problems, fostering innovation, coming to 
wise decisions, even predicting the future. His counterintuitive notion, 
rather than crowd psychology as traditionally understood, suggests new
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insights regarding how complex social and economic activities are 
organized. He explains the wisdom of crowds emerges only under 
the right conditions, which are (1) diversity, (2) independence, (3) 
decentralization, and (4) aggregation.

On the other hand, the fact that selfish behavior may not achieve full 
efficiency has been well reported in the literature. Recent research efforts 
have focused on quantifying the loss of system performance due to 
selfish and uncoordinated behavior. The degree of efficiency loss is 
known as the price o f anarchy. We need to design systems so that selfish 
individual behaviors need not degrade the system performance.

In this book, a collective system, or simply a collective, is modeled as 
a collection of autonomous decision-making entities, called agents. A  
collective refers to any complex system of interacting agents, together 
with performance measures by which we can rank the behavior of the 
entire system. Collective systems include a collection of diverse and 
mutually adaptive agents pursuing varied and often conflicting interests. 
The collective systems are situated between a few agents in game 
theoretic systems, a few hundred agents in multi-agents systems, and a 
larger scale of agents in typical economic and social systems.

The mission of collective evolution is to harness the collective systems 
of selfish agents and to serve to secure a sustainable relationship in an 
attainable manner so that desirable properties can emerge as collective 
intelligence. Of particular interest is the question as to how social 
interactions can be restructured so that agents are free to choose their 
own actions while avoiding outcomes that none would have chosen.

Darwinian dynamics based on mutation and selection form the core of 
models for evolution in nature. Evolution through natural selection is 
understood to imply improvement and progress. If multiple populations 
of species adapt to each other, the result is a co-evolutionary process. 
The problem to contend with in co-evolution based on the Darwinian 
paradigm, however, is the possibility of an escalating arms race with no 
end. Competing species might continually adapt to each other in more 
and more specialized ways, never stabilizing at a desirable outcome.

In biology, the gene is a better unit of selection by which to represent 
individuals. However, the collective evolutionary process is expected to 
compel agents towards ever more refined adaptation and evolution,
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resulting in sophisticated behavioral rules. The persistence and 
sustainability of the collective system in turn depends on its persistent 
collective evolution.

Hardware developments will soon make possible the construction of 
very-large-scale models, for instance, models that contain one million to 
100 million agents. It has been argued that the main impediment to 
creating empirically relevant agents on this scale is our current lack of 
understanding of the realistic behavior of agents. This bottleneck, i.e., 
what rules to write for agents, is the primary challenge facing the agent 
research community. The approach of collective evolution is very much 
at the forefront of this issue.

As is usual in the case of any book, the author is deeply indebted to 
several people. My friends and colleagues, the authors of the books and 
papers to which I have referred herein, have contributed to this book in 
many ways. I would like to thank those colleagues who provided 
stimulating academic interactions through debate and dialog through 
readings, including Professors Yuji Aruka, Robert Axtell, David Green, 
Dirk Helbing, Taisei Kaizoji, Thomas Lux, Robert MacKay, Hidenori 
Murakami, Frank Schweitzer, Bernard Walliser, and Xin Yao. I would 
also like to Associate Professors Hiroshi Sato and Masao Kubo, my 
many wonderful students at the National Defense Academy, Japan, who 
provided a quiet retreat from the pressures of teaching and administration 
during the editing of this book.

Above all, there is my family. My wife Kazuko and our daughters Aya 
and Kaori have all supported me and tolerated my bringing my work 
home with me. I would also like to thank Mr. and Mrs. Russell and Lynn 
Phillips who taught me how to write a thesis when I was a student at 
Stanford University 30 years ago. Since my college years, they have 
observed my progress, but I have struggled with speaking and writing in 
my second language. Finally, I would like to thank all of you who will 
take the time to read this book. I hope that you will learn as much from 
reading this book and as I have learned through its writing.

Akira Namatame





Contents

1. Introduction to Collective Systems 1
1.1 Collective Outcomes of Interacting Agents........................  1
1.2 The Study of Collective Systems..........................................  5
1.3 The Price of Anarchy in Collective System s......................  10

1.3.1 Collection action with strategic compatibility........ 11
1.3.2 Collection action with strategic complementarity.. 14

1.4 Review of the Literature........................................................  17
1.5 Evolutionary Design of Desired Collective Systems......... 25
1.6 Outline of the Book.................................................................  28

2. Introduction to Game Theory and Evolutionary Games 31
2.1 Classification of Games and Nash Equilibrium.................. 31
2.2 Correlated Equilibrium........................................................... 40
2.3 Interaction Structures..............................................................  43
2.4 Learning in Games..................................................................  47
2.5 Evolutionary Games................................................................  51
2.6 Relation between Learning and Evolution........................... 57
2.7 Design of Learning and Evolving Agents............................ 60

3. Social Interactions and Social Games 65
3.1 Social Interactions with Externalities...................................  65
3.2 Binary Decisions with Externalities...................................... 67
3.3 Decomposition to Pair-wise Interactions............................. 76
3.4 Compound Social Games.......................................................  78

Preface vii

xi



3.5 Nash Equilibrium and Collective Efficiency......................  86
3.6 Conflict Resolution between Collective Efficiency and 

Equity  95

4. Micro-Macro Dynamics 101
4.1 A Threshold Model for Dealing with Heterogeneity in 

A gents  101
4.2 A Micro-Macro Loop.............................................................. 103
4.3 Two Facets of an Individual’s Decision: Purposive and 

Contingent Decisions  107
4.4 Micro-Macro Dynamics within a Collective.......................  112
4.5 Micro-Macro Loop between Two Collectives....................  119
4.6 Micro-Macro Dynamics between Two Collectives...........  122

5. Knowledge Transaction Games 131
5.1 Merit of Knowledge Sharing.................................................. 131
5.2 A Formulation of Knowledge Transaction G am es............  134
5.3 Characteristics of Knowledge Transaction.........................  138
5.4 Repeated Knowledge Transaction.........................................  142
5.5 Knowledge Transaction by Multiple A gents......................  148
5.6 The Knowledge Accumulation Process as a 

Micro-Macro Loop  152

6. Gains from Diversity 161
6.1 Identity and Diversity..............................................................  161
6.2 Integration and Segregation......... .........................................  165
6.3 Global and Local Adaptation M odels..................................  167
6.4 Threshold Distributions and Locating Heterogeneous 

A gents  171
6.5 Performance M easures............................................................ 176
6.6 Evaluation of Collective Adaptive Dynamics.....................  181

7. Selective Interaction and Reinforcement of Preference 191
7.1 Selective Interaction in G am es.............................................  191
7.2 Evolution of Preference.........................................................  194
7.3 Social Games with Neighbor Selection................................  197

xii A daptation and Evolution in Collective Systems



7.4 Preference Reinforcement through Selective Interaction... 204
7.5 Coexistence of Conformists and Nonconformists..............  209
7.6 Development of Preference through Interaction................. 213

8. Give-and-Take in Social Interaction 219
8.1 Social Interaction with the Logic of the M inority..............  219
8.2 Formalisms of Dispersion Gam es.........................................  224
8.3 The Price of Anarchy of Uncoordinated Collective 

Decisions  228
8.4 Learning Models in Dispersion Games................................  233
8.5 The Principle of Give-and-Take in Dispersion Games.....  236
8.6 Localized Dispersion Games and Emergence of Dynamic 

Orders in Harmony  240
8.7 Interpretation of the Principle of Give-and-Take...............  246

9. Collective Evolution of Behavioral Rules 249
9.1 Repeated Interactions on Social N etw orks.........................  249
9.2 Repeated Interactions with Bounded Memory....................  255
9.3 A Strategy Choice with a Coupling Rule............................. 257
9.4 Iterated Prisoner’s Dilemma Games on Social Networks.. 264
9.5 Iterated Coordination Games on Social Networks.............  274
9.6 Iterated Hawk-Dove Games on Social Netw orks..............  278
9.7 Sustainable Coupling R ules...................................................  282

10. Collective Evolution of Synchronized Behavioral Rules 287
10.1 Dispersion Games on Social Networks................................  287
10.2 Generalized Rock-Scissors-Paper Games............................ 303
10.3 A Coupling Rule with a Memory of T w o............................ 306
10.4 A Coupling Rule with a Memory of Four............................ 319
10.5 Effects of Implementation Error in Collective Evolution.. 324
10.6 From Co-evolution to Collective Evolution........................  332

Bibliography 341

Contents xiii

Index 353





Introduction to Collective Systems

Chapter 1

A collective system is a large system of adaptive agents, where each 
agent has her own utility function to optimize, along with global 
performance measures of the full system. The envisioned objective is to 
study the mechanism of inducing desirable collective outcomes. This aim 
is quite novel, since a collective of agents needs to establish coordinated 
and synchronized behavior from the bottom up. In this chapter, we 
provide a survey of approaches to the study of collective systems.

1.1 Collective Outcomes of Interacting Agents

Billions of people make billions of decisions everyday about many things. 
It often appears that the aggregation of these unmanaged individual 
decisions leads to a desired outcome. It is amazing that economic and 
social activities generally work well in this way without any authority. 
Adam Smith characterized this fact by stating that an “unseen hand” 
brought about coordination among self-interested individual economic 
activities. The unseen hand is observed behind many market activities. 
This principle also works as a basic mechanism for allocating limited 
resources to people who need them.

People constantly interact with each other in different ways and for 
different purposes. Somehow these individual interactions produce some 
coherence at the aggregate level, and therefore, aggregation may 
generate structure and regularity. The individuals involved may have a 
very limited view of some part of the whole system but their activities

I
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are coordinated to a large degree and produce a desirable outcome at the 
aggregate level.

However, there are other systems for which it is difficult to 
understand how they work or to find out better ways to make them work. 
For instance, many economic and social systems often produce 
inefficient outcomes at the aggregate level in a way that the individuals 
who comprise the system need not know anything about or even be 
aware of it. When the system results in some undesirable outcome, we 
often think about whether it is due to the members who comprise the 
system. We tend to observe the resulting outcome as corresponding to 
the intentions of the members who compromise the system.

There is strong interest in many fields to answer the following 
questions. How do interacting individuals with micro-motives produce 
the aggregate outcome? How do we identify the micro-rules of agents 
that produce some regularities of interest at the macroscopic level? There 
has been no natural methodology for systematically studying these issues.

Most of our social activities are substantially free of centralized 
management, and although we may care how it all comes out in the 
aggregate, our own decisions and behaviors are typically motivated by 
self-interest. Therefore, in examining collective behavior, we shall draw 
heavily on the individual decisions. It might be argued that 
understanding how individuals make decisions is sufficient to understand 
most parts of the collective system. Although individual decisions are 
important to understand, they are not sufficient to describe how a 
collection of agents arrives at specific decisions. These situations, in 
which the decision of an agent depends on the decisions of others, are 
situations that usually do not permit any simple summation or 
extrapolation to the aggregate (Schelling,1978). To make this connection, 
we usually have to look at the system of interactions among agents.

We usually ascribe human behaviors as if they are oriented toward a 
goal. Peoples have preferences and pursue their own goals, or maximize 
comfort as well as minimize effort embarrassment. We might 
characterize these behaviors as purposive behaviors. Economists argue 
that much of individual private consumption is also dependent upon 
other peoples’ consumption. We often behave by reacting to others. 
Therefore, what we also have is a mode of contingent behavior that
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depends on what other people are doing (Schelling, 1978). For example, 
each person’s enjoyment of driving a car is inversely related to others’ 
enjoyment if too many peoples drive. Everybody becomes stuck in 
congested traffic in this case. This is a kind of social congestion and the 
problem is that there is no way of knowing what others will do. When we 
are in a mode of contingent behavior, the resulting collective behavior is 
often volatile and far from desirable.

It is not easy to tell from collective phenomena just what the motives 
are behind individuals and how strong they are. For instance, consider a 
traffic jam  again. It is not easy to capture the properties of a traffic jam  at 
the aggregate level without describing what individual drivers do. Each 
of these drivers is different, and the characteristics of their driving 
behavior become the rules in the model. When we run this model we can 
reproduce a traffic jam, but this time we need to watch closely how the 
individual drivers interact with each other and we can inject to see how 
these interactive behaviors among drivers would affect the visible 
properties of the traffic jam  (Resnick, 1999)(Bonabeau, 2002).

Therefore, we have to look closely at agents who are adapting to 
other agents. In this way, the behavior of one agent affects the behaviors 
of the other agents. How well agents accomplish what they want to 
accomplish depends on what other agents are doing. What makes this 
kind of interactive situation interesting and difficult is that the aggregate 
outcome is what has to be evaluated, not merely how agents behave 
within the constraints of their own environments.

How well they do for themselves in adapting to environments is not 
equivalent to how satisfactory a social environment they collectively 
create for themselves. There is no presumption that the self-serving 
behavior of agents should lead to collectively satisfactory results. If our 
problem is that there is too much traffic, we are also part of the problem. 
If we raise our voice to make ourselves heard, we add to the noise level 
that other people are raising their voices to be heard over.

Our complex systems often result in the features of emergent 
properties, which are properties of the system that separate components 
do not have. These emergent properties, we find, are the result of not 
only the behavior of individual agents but the interactions between them 
as well. For instance, what drivers do on the road depends on what other
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drivers do. This can not be explained without looking at how the agents 
behave and interact with each other to make up the whole. Resulting 
traffic jams are counterintuitive phenomenon that we could only predict 
with the framework of the collective system of interacting agents.

We can observe many collective phenomena viewed as emergence 
that has arisen from billions of small-scale and short-term decisions of 
interacting agents. Viewing complex systems as a collective of 
interacting agents means adopting a new scientific approach that shifts 
from reductionism to connectionism.

With the view of reductionism, every phenomenon we observe can be 
reduced to a collection of components, the movement of which is 
governed by the deterministic laws of nature. In such reductionism, there 
seems to be no place for novelty >r emergence. The basic approach with 
the view of reductionism is the rational choice model. The rational 
choice theory posits that an agent behaves to optimize her own utility 
produces relevant and plausible prediction about many aggregate 
phenomena.

However, there are many critics of approaches based on the rational 
choice model. The problem of the rational choice model is that it 
assumes agents who are sufficiently rational. Goals and purposes of 
agents are also often related directly to other agents or they are 
constrained by an environment that consists of other agents who are 
pursuing their own goals.

When a society or organization faces some complex problems, the 
typical reaction is to fall into “centralized thinking” (Watts, 2001). A 
small coherent group of experts decide what to do based on the 
characteristics of the problem, and execute rules and everyone else then 
simply follows these rules. However, introducing additional rules can 
serve only to make the problem worse. This is because it is usually 
centralized thinking behind these local rules, so the effect of new local 
rules being added to existing local rules is quite strong. Without 
modeling the process of the chains of reactions, it would be very hard for 
a human brain to predict this pathological collective behavior.

To understand this paradox, we need to take a look at the problem of 
“decentralized thinking” (Resnick, 1999). What should be clear is that 
combining the many different individuals involved at a single point is
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almost certain not to succeed in delivering the kind of essential 
functionality. Some other kind of connectionism is required.

1.2 The Study of Collective Systems

A collective system is modeled as a collection of autonomous decision
making entities, called agents. In this section, we provide the definition 
and a survey of approaches to collective systems. A collective system, or 
just simply a collective, means any complex system of interacting agents, 
together with performance measures by which we can rank the behavior 
of the entire system (Turner and Wolpert, 2004). Collective systems 
include a collection of diverse and mutually adaptive agents pursuing 
varied and often conflicting self-interests.

Many organisms form aggregations that have strong effects on 
individual behaviors. Familiar examples include schools of fish and 
flocks of birds. Auyang (1998) defines the term “collective” for such 
aggregations. According to Auyang, the defining characteristics of a 
collective are as follows. Interactions among individuals making up a 
collective are strong, that is internal cohesion is strong while external 
interactions are weak. Furthermore, collectives have their own 
characteristics and processes that can be understood independent of the 
individuals that compromise them.

Another defining characteristic of collectives in ecological systems is 
that collectives exist for longer or shorter times than do the individuals 
making up the collective. Collectives can be treated as an additional level 
of organization between the individual and the population (Grim, 2005). 
Individuals belonging to a collective may behave very differently from 
individuals alone, so different traits may be needed to model in 
individuals that are not in a collective.

The behavior of a collective emerges from traits of individuals. A 
school of fish is an example of modeling a collective as emerging from 
relatively simple traits of individuals, and these traits give rise to 
individual behaviors that form the collective. Representing a collective 
explicitly does not mean that individuals are ignored. Instead, a 
collcctivc can also be represented by the manner in which individual
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behaviors affect the collective and how the state of a collective affects 
individual behaviors. For instance, individuals make decisions as to 
when to disperse, and this affects the formation and persistence of the 
collective, while these individual decisions are based in part on the state 
of the collective. Therefore, the\collective system can only be understood 
by modeling individuals and the aggregate, as well as the link between 
them.

We use the term collective system when it is impossible to reduce the 
overall behavior of the system to a set of properties characterizing the 
individual agents. Interaction between agents is also important 
consideration that produces emergent properties at the aggregate level 
that are simply not present when the components are considered 
individually. Another important feature of collective systems is their 
sensitivity to even small perturbations. The same action is found to lead 
to a very broad range of responses, making it exceedingly difficult to 
perform prediction or to develop any type of experience of a typical 
scenario.

At the basic level, a collective system consists of agents and the 
relationships between them. Agents may execute various behaviors that 
are appropriate for the system they represent. Each agent individually 
assesses her situation and behaves on the basis of a set of local and 
idiosyncratic rules. Repetitive and competitive interactions between 
agents are a feature of a collective system and require the power of 
computers to explore the collective dynamics, which are not obtainable 
through pure mathematical modeling and analysis.

An agent is described by a number of fundamental components 
including, (1) a private utility function, (2) the drive to optimize the 
private utility function, (3) a set of possible actions, (4) the rule that 
generates an action in an attempt to optimize her utility or adapt to 
others, and (5) information and memory about history. In addition, (6) 
agents may be capable of learning or evolving, allowing new behavioral 
rules to emerge.

The collective systems are situated between a few agents in game 
theoretic systems, a few hundred agents in multi-agents systems, and a 
larger scale of agents in typical economic and social systems. Hardware 
development will soon make possible the construction of very large-scale
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models. Therefore, we may obviate the need for small-scale multi-agent 
systems. It will be argued that the main impediment to creating 
empirically relevant agents on this scale is our current lack of 
understanding of the realistic behavior of agents. Therefore, the 
bottleneck of what rules to decide for agents is also the primary 
challenge for researching collective systems (Axtell and Epstein, 1999).

The performance of the collective system, which consists of many 
interacting agents, should be described on two different levels: the 
microscopic level, where the decisions of the individual agents occur, 
and the macroscopic level, where the collective behavior can be 
observed. Understanding the role of the link between these two levels 
also remains a challenge (Schweitzer, 2002).

There are two related theoretical issues in the study on collective 
systems. One is the effect of interactions among agents in determining 
macroscopic outcomes. The other issue is how to design the micro-rules 
of agents that produce a desirable outcome at the macroscopic level.

Turner and Wolpert (2004) propose two different perspectives for the 
study of collective systems: analysis, or the forward problem, and 
design, or the inverse problem.

(1) The forward problem focuses on how the localized attributes of a 
collective (the properties of agents) induce global behavior of interest 
and determine system performance.

(2) The inverse problem arises when we wish to design a system to 
induce a desirable outcome.

It is generally believed that ants in an ant colony do not know exactly 
how to build the ant colony in which they live. Each ant has certain 
things that it does, in coordinated association with other ants, but there is 
no ant that designs the whole colony. No individual ant knows whether 
there are too few or too many ants exploring for food. Why the colony of 
ants works collectively as it does, and as effectively as it does, remains a 
mystery. An important factor in understanding such behavior is the 
interactions among ants (Bonabeau, 1999).

Economists may not like the idea of comparing the economy to an ant 
colony. They are no doubt convinced that such organizations are in some 
sense optimal, but they are not convinced that the optimality is achieved
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in the same way as it is in a market. Thus, if  we ask most economists to 
describe the basic question that concerns them, they answer that they are 
trying to understand the equilibrium of the market and whether it entails 
an efficient use of limited resources (Kirman, 2001).

Most of these are activities in which an agent's behavior is influenced 
by others, or in which agents care about the behavior of others. Or, they 
both care and are influenced by trying to obtain an equilibrium. An 
equilibrium is a stable situation in which some motion, or activity, or 
some adjustment, or response, has ceased, resulting in some stagnation in 
which several items that have been interacting and adjusting to each 
other are at last adjusted and are in balance.

Equilibrium is a central concept in the study of social systems as well 
as in the study of physical collective phenomena. In physical systems, 
equilibrium results from a balancing of forces. In a physical system, 
particles are in equilibrium when they do not deviate from a given 
position or stable trajectory. In a collective of agents, their behaviors are 
typically motivated toward their own interests. Therefore, in a collective 
of agents, equilibrium is a balancing of intentions. That is, individuals' 
intentions are in equilibrium when no one wants to deviate from her 
intended behavior given the intentions of others (Young, 2005).

However, it is widely observed that an equilibrium situation is not 
usually efficient at the macro level. The fact that selfish behavior at 
equilibrium may not achieve full efficiency is well documented in the 
literature. While all agents understand that the outcome is inefficient, 
acting independently cannot manage the collective with respect to what 
actions to take or how to decide these actions.

Yet there is also the problem of explaining how disparate individual 
activities are coordinated, as in the case of ants and other social insects. 
The solution must apply equally well to other collective systems. The 
forward problem arises in the study of some previously existing field 
such as complex theory. The fundamental problem lies in determining 
how the combined actions of many agents lead to coordinated behavior 
on a global scale. Approaches in existing research fields may provide 
valuable insight into some aspects of studying the forward problem of 
collective systems. However, these approaches fall short of providing
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suitable methodologies for dealing with heterogeneity in agents and their 
interactions.

Agent interactions also occur on structured networks. Yet the 
development of tools for modeling, understanding, and predicting 
dynamic agent interactions and behavior on complex networks lags 
behind. Even recent progress in complex network modeling has not yet 
offered any capability to model dynamic processes among agents who 
interact on a global scale, as in small-world or scale-free networks. 
Computational modeling of dynamic agent interactions on structured 
networks is important for understanding the sometimes counter-intuitive 
dynamics of such loosely coupled agent systems of strategic interactions.

Given a collective system, there is also an associated inverse problem 
or a design problem, with respect to configuring or modifying each agent 
so that in the pursuit of their own interests, the agents also optimize the 
global performance. Solving this kind of inverse problem may involve 
determining and modifying the internal models of agents as well as the 
method of interactions between agents.

We should also consider the degree of freedom that each agent should 
have. Here, there are two basic approaches: top-down and bottom-up 
approaches. With the top-down approach, the designer may have the 
freedom to assign the private utility functions of the agents. With the 
bottom-up approach, agents may have the freedom and incentive to 
modify their private utility functions. In either case, the focus is on 
guiding collective systems toward desirable outcomes.

The agent wishes to optimize her own utility, and the system designer 
wishes to implement a decentralized algorithm for optimizing the 
collective performance. However, excessive pollution or social 
congestion problems are the most commonly recognized examples of a 
break between individual optimization and collective efficiency. 
Therefore, the inverse problem is concerned with how the private utility 
functions of agents can be redesigned so that their selfish behaviors give 
rise to a desired collective outcome. If the collective system can be 
designed, we need design it so that selfish behaviors of agents need not 
degrade the system performance, by providing a carefully chosen 
decentralized mechanism that can be implemented at the agent level.
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The inverse problem is a high priority for the study of collective 
systems. The investigation of the inverse design problem also comes up 
in the study of already existing fields, such as learning in games and 
multi-agent systems. However, these approaches are basically based on 
so-called equilibrium analysis and, therefore, they fall short of providing 
suitable methodologies for solving the inverse problem.

1.3 The Price of Anarchy in Collective Systems

The fact that selfish behavior may not achieve full efficiency has been 
well known in the literature. Therefore, it is important to investigate the 
loss of collective welfare due to selfish and uncoordinated behavior. 
Recent research efforts have focused on quantifying this loss for specific 
game environments. The resulting degree of efficiency loss is known as 
the price o f anarchy (Roughgarden, 2005). The investigation of the price 
of anarchy provides a foundation for the design of collective systems 
with robustness against selfish behaviors. We may need to design 
systems such that selfish behaviors of individuals need not degrade the 
system performance.

Social interactions in which people's behavior is influenced by the 
behaviors of others, or in which people care about the behaviors of 
others, are analyzed in the context of collective action. In this section, I 
demonstrate that there are a host of collective action problems that share 
the same general structure and that make agent interaction problematic 
whenever they arise.

An externality is an unexpected side-effect of the social activities of 
some individuals on seemingly unrelated people. An externality also 
occurs when individuals care about the choices of others, and each 
individual’s choice affects the choices of others. There are basically two 
types of social activities with externalities: strategic compatibility and 
strategic complementarity. With strategic compatibility, individual 
payoffs increase with the number of people taking the same action. 
Instead, with strategic complementarity, payoffs are better if the actions 
of people are distributed.
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Many collective action problems can be investigated through the 
underlying social games. Game theory studies the interaction between 
human beings and provides a way of modeling strategic interactions, 
situations in which the consequences of agents’ actions depend on the 
actions taken by the others, and each agent knows who is involved in the 
same game. The outcome of a conventional game is a set of actions taken 
by all involved agents. On the other hand, social games are a way of 
modeling social interactions in which each agent may not know who is 
involved.

1.3.1 Collection action with strategic compatibility

The study of collective action began with Olson (1965). In his book, 
there are rich discussions about how different factors, such as 
instrumental and social incentives, are embodied as the payoff structures 
in a collective action problem. Consider the provision of a public good 
for individuals. In contrast to private goods, public goods are non
excludable in consumption, and the nature of the public enables an 
individual to have a free ride. Olson analyzed this problem in terms of 
the size of the group for which the public good is provided. Olson found 
that unless the number of individuals in the group is quite small, or 
unless there is coercion or some other special device to make individuals 
act in their common interest, self-interested individuals will not act to 
achieve collective interest, and simply attempt to gain a free ride.

Free riding is a very frequent phenomenon in everyday life. 
Economists use public goods games to calculate optimal taxes and 
subsidies. These exercises rest on the assumption that agents will free 
ride on others, hence leading to a social inefficiency. An effective 
approach to handle the problem of free riding is to use external 
enforcement. However, an alternative approach has emerged that 
investigates the exact circumstances under which efficient collective 
outcome is possible in the absence of external enforcement.

However, rather than exploring the possibility that various types of 
games coexist, most collective action problems focus on analyzing cases 
in which the collective action can be interpreted as a type of dilemma



12 Adaptation and Evolution in Collective Systems

game. In general, human interaction is characterized by a mixture of 
conflict and consensus.

Let us consider situations in which N  agents are identically situated 
by presenting a binary choice problem with externalities. That is, each 
agent’s payoff, whichever way she makes her choice, depends on the 
number of agents who choose one way or the other. The typical situation 
is the interaction with strategic compatibility, where the increased effort 
by some agents leads the remaining agents to follow suit, which produces 
multiplier effects.

We formally consider this situation by specifying the payoff function 
of each agent with the following two strategies:

Each agent receives a benefit in proportion to the number of agents to 
disclose by choosing Si, which is denoted by n (0<  n < N ). The payoff 
function of each agent is defined as follows:

If an agent discloses her knowledge, she receives some proportional 
benefit a(n/N) minus some cost с due to disclosure. Even if she does 
not disclose her knowledge, she can receive some benefit b(n/N) from 
the contribution of other agents as the spillover effect.

Interdependent decision making problems involving N  agents are 
called N-person games. We simplify an N-person game considering a 
population of N  agents, each with a binary choice between Sj and S2. In 
addition, for any agent the payoff for choosing either Sj or S2 depends on 
how many other agents choose Si or S2. This social game can be 
analyzed in the following two cases.

Sj : Disclose her private knowledge, 
S2 : Does not disclose. ( 1.1)

U(S1) = a ( n / N ) - c ,  
U(S2) = b(n/N) .

(1.2)

<Case 1> b > a -  с : In this case, the payoff to S2 is greater than that to 
Si. Therefore, the rational choice of each agent is S2 without considering 
the choices of the other agents. In game theory, this is defined as a
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dominant strategy. When this condition holds for all agents, no agent will 
trade, and this results in the sharing of no common knowledge. This case 
is known as the N-person prisoner's dilemma game (NPD) or the social 
dilemma.

It may not be surprising that the result of local optimization by many 
agents with conflicting interests does not possess any type of global 
optimality. In the language of game theory, this means that an 
equilibrium situation arising from individual rationality can be Pareto- 
inefficient, and thus the outcome can be more efficient, that is, some are 
better off while no one is worse off. In game theory, the most canonical 
example of Pareto inefficiency of selfish behavior is the social dilemma. 
There are many problems involving the clash of individual and collective 
interests, including the energy crisis problem, various problems related to 
the conservation of scare natural resources, and a range of problems 
arising from environmental pollution.

Game theory suggests two alternative solutions to social dilemmas. 
One solution is to introduce external enforcement. In this case, the payoff 
structure is altered in such a way that the defecting person incurs some 
penalty. The other solution is to repeat the game in a way that, from the 
standpoint of the players, looks like it is being played infinitely many 
times. The evolutionary paradigm is also built on this type of analysis. It 
should be noted that the analysis of repeated games is also a very fertile 
area of study with respect to collective systems.

<Case 2> b < a -  с : It is easy to recognize that there are other collective 
action problems with a very different structure from that of the social 
dilemma. Under the condition of Case 2, we have two stable solutions: 
an all-5; choice and an all-S2 choice.

The payoff is maximum at n/N=l, when all agents choose 5P and 

they can enjoy the highest externality, which is better for all agents. On 
the other hand, if the proportion of agents who disclose their knowledge 
is relatively low (less than с /(a -  b) ) ,  it becomes rational to choose S2. 
If this condition holds for all agents, no agent will disclose her 
knowledge, and they encounter the same situation as the social dilemma.
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In this case, with multiple equilibria, the problem involves not only 
how to get a concerted choice, but also how to achieve the best 
equilibrium. If many agents choose S2, no agent is motivated to choose 
the inferior choice S2 unless a sufficient number of agents switch beyond 
the intersection of the two payoff functions in (1.2). Therefore, the ratio 
at the intersection provides a crucial mass parameter for the selection of 
the efficient equilibrium.

It is enough merely to get agents to make the right choice at the 
beginning. If the ratio of agents that choose the superior strategy (Si) is 
greater than that of the intersection point of U(Si) and U(S2), then all 
agents will self-enforce to choose Sj. In this sense, a certain threshold 
appears. If the initial ratio of the agents choosing S/ exceeds this 
threshold, they can induce other agents to shift to a superior choice. The 
inverse is also true. If many agents stick to an inefficient choice, then all 
agents follow the same path to an undesirable outcome.

1.3.2 Collection action with strategic complementarity

The fact that selfish behavior need not produce a socially optimal 
outcome was well known before the advent of game theory. Pigou (1920) 
proposed a route selection problem in which individuals independently 
need to travel from the same source to destination. Suppose that there are 
two highways between two locations. One of which is broad enough to 
accommodate all traffic that appears without congestion, but is poorly 
graded and surfaced. While the other is a much better road, but is narrow 
and quite limited in capacity. Assuming that all individuals aim to 
minimize the driving time, we have good reason to expect all traffic to 
follow the better road, and therefore, the better road will be completely 
congested.

The route selection problem is commonly used for the prediction of 
traffic patterns in transportation networks that are subject to congestion. 
We formulate the route selection problem as follows. There are two 
alternative choices, Route A, using a private vehicle, or Route B, using a 
public train to commute to the same destination. Let us suppose that the 
required time if an agent chooses public transportation, the train (Route
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B), is 40 minutes, which is constant regardless of the number of agents 
on the train. On the other hand, the required time for an agent who 
chooses a personal vehicle (Route A) is an increasing function of the 
number of agents who choose the same route, as depicted in Figure 1.1 
(Dixit and Nalebuff, 1991). If a large number of agents are free to choose 
either of the two choices, they will tend to distribute themselves between 
the two routes in such proportions that the transportation time will be the 
same for every agent on both routes. As more agents use personal 
vehicles (Route A), congestion develops, until at a certain point there is 
no difference between routes.

Knight (1924) developed the idea of traffic equilibrium. He gave a 
simple and intuitive description of a postulate of the route choice under 
congested conditions. Wardrop (1952) clarified two basic principles that 
formalize the notion of user equilibrium and system optimal. The latter is 
introduced as an alternative behavior postulate of the minimization of the 
total travel costs.

Wardrop's first principle is that the journey times in using two routes 
are equal and are less than those that would be experienced by a single 
vehicle on any unused route. Each user non-cooperatively seeks to

Time(minute)

Figure I. I The vertical axis represents the estimated traveling time, and the horizontal 
axis represents the number o f agents that use private vehicles (Route A)
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minimize her cost of transportation. This principle of route choice, which 
is identical to the notion postulated by Knight, became accepted as a 
sound and simple behavioral principle to describe the spreading of trips 
over alternate routes due to congested conditions. The traffic flows that 
satisfy this principle are usually referred to as user equilibrium, since 
each user chooses the route that is the best. Specifically, a user-optimized 
equilibrium is reached when no user can lower her transportation cost 
through unilateral action.

On the other hand, the system optimal conditional is characterized by 
Wardrop's second principle, which is the equilibrium at which the 
average journey time is minimum. This implies that each user behaves 
cooperatively in choosing her own route to ensure the most efficient use 
of the entire system. Traffic flows satisfying Wardrop's second principle 
are generally known as system optimal. This second principle may 
require that users cooperate fully or that a central authority controls the 
transportation system.

User equilibrium is realized at the intersection in Figure 1.1. 
However, the system optimal condition is achieved at n=2,000, which is 
half of user equilibrium. In much of the transportation science literature, 
Nash equilibrium is called user equilibrium, and Pareto-efficient 
outcome is called system optimality.

Can the power of centralized control improve over the selfish 
outcome? We suppose that we can choose who chooses what, and 
assigning half of the commuters to each of the two alternative choices. 
The commuters who are assigned to the train are no worse off than in the 
previous outcome. On the other hand, the commuters that are allowed to 
drive now enjoy lighter road traffic conditions and arrive at their 
destination at half of the previous time. Therefore, the state of affairs has 
improved for half of the commuters and has not been changed for the rest 
of the commuters. The problem of equity or fairness may arise with 
regard to who should be better off.

A solution to this kind of problem may invoke the intervention of an 
authority that finds the system optimal condition and imposes the desired 
behavior on agents. While such an optimal solution may be easy to find, 
the implementation of a desired solution becomes difficult to enforce in 
many practical situations.



Introduction to Collective Systems 17

The emerging research field of collective systems represents a 
fundamentally new scientific approach to sharing compared to existing 
approaches. Collective systems are situated between a few agents in 
game-theoretic systems, among a few hundred agents in multi-agents 
systems, and among a greater number of agents in typical social systems. 
Some relevant research fields provide a partial solution to the study and 
design of collective systems. In particular, game theory, multi-agent 
systems, complex systems, and evolutionary systems are fields that 
grapple with some of the issues encountered in the field of collective 
systems. What is needed for exploring new research fields is to survey 
the basic concepts in related fields and to clarify where they fall short of 
providing suitable methodologies for the study of collective systems.

<Agent-based modeling> The approach of agent-based modeling is the 
main tool in many research fields. With agent-based modeling, we can 
describe a system from the bottom up, from the point of view of its 
constituent units, as opposed to a top-down approach, where we look at 
the properties at the aggregate level without worrying about the system's 
components and their interactions. The novelty in agent-based modeling, 
compared to what physicists call micro-simulation, is that we are dealing 
With modeling collective systems, where the components of the system 
are agents or human beings with adaptive and evolving behavior.

It is generally not possible to conclude for an agent-based model that 
a particular attribute will give an agent an absolute advantage over time, 
or that a particular behavioral rule is optimally configured for an agent in 
an absolute sense (Epstein and Axtell 1996). In principle, using agent- 
based tools, a modeler can permit attributes and rules to vary and evolve 
over time. These variations could be the result of innate or external 
forces for change, or they could result from deliberate actions undertaken 
by agents. We also relax assumptions to permit endogenous adaptation or 
learning. This raises an interesting nature-nurture modeling issue: 
namely, which attributes and rules of agents should be viewed as part of 
their core maintained identities and which attributes and rules shoukb-be

1.4 Review of the Literature
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permitted to vary in response to environmental influences? Moreover, 
this issue arises at both the individual and collective levels. How much 
variation in behavioral rule should agent to be permitted to exhibit over 
time, and how much variation should be permitted across all agents?

<Multi-agent systems> Today we face many challenges with respect to 
designing large-scale systems consisting of multiple autonomous agents. 
Research on multi-agent systems is intended to provide both principles 
for construction of complex systems involving multiple agents and 
mechanisms for the coordination of many agents. The most important 
reason is that some domains require multiple agents. In particular, if 
there are different people with different goals and proprietary 
information, then a multi-agent system is needed to handle their 
interactions.

An agent-based model is extended to the study of multiple agents and 
their interactions. We specify how multiple agents interact, and then 
observe the properties that occur at the macro level. The connection 
between micro-motivation and macro-outcomes will be developed in 
which agents are instantiated to interact according to fixed or evolving 
local rules.

An important characteristic to consider when designing a multi-agent 
system is whether the agents are stable or evolving. Because of the 
inherent complexity of the problem domain, there is a great deal of 
interest in using machine learning techniques to help handle this 
complexity. Of course agents with learning capabilities can be 
particularly useful in dynamic environments, but when agents are 
allowed to learn or evolve into other agents, it is not guaranteed that the 
outcome will be desirable.

Agents are both heterogeneous and versatile. As a result of both 
behavioral heterogeneity and versatility, small differences in agents can 
make large differences in collective outcomes. Heterogeneity turns up 
repeatedly as a crucial factor in collective systems. But the situation is 
not always as simple as saying that heterogeneity is desirable and 
homogeneity is not good. The basic question remains: what is the proper 
balance between heterogeneity and homogeneity? When heterogeneity is 
significant, we need to be able to show the gains from heterogeneity.
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However, the analysis of a collective system of heterogeneous agents 
becomes difficult and is often intractable.

Another interesting problem is that agents are very homogeneous in 
the beginning. Differences in behavior and strategy use evolve 
endogenously as the collective system runs. Agent heterogeneity 
becomes a changing feature of the collective systems that can then be 
studied. Unlike some approaches in the previous research, we are 
primarily interested in the problem in which the preferences, and even 
the identities of the agents, can evolve over time, rather than situations in 
which the agents and their preferences are fixed.

<Complex systems> Complex systems deal with systems that are 
composed of many interacting particles. Complex systems often result in 
features, self-organization and emergent properties, which are properties 
of the system that the separate parts do not have. Therefore, the emerging 
system outcome is extremely hard to predict.

Axelrod and Cohen (2001) propose three methods by which to 
harness the complexity based on variation, interaction and selection. The 
term harnessing complexity means deliberately changing the structure of 
a system in order to increase some measure of performance. Variation in 
a population of agents and actions of agents provides the raw material for 
adaptation. However, we need to select the proper balance between 
variety and uniformity. The mechanism that deals with interactions fits 
into two types: external and internal. The external mechanism is a way to 
modify the system from outside. On the other hand, the internal 
mechanism is a way to change the interaction patterns that are driven by 
the components of the system.

Selection is based on natural selection in evolutionary biology. The 
selection mechanism is important as the fundamental means by which 
agents and actions should be eliminated and replaced. While natural 
selection provides an important paradigm for how an evolving system 
can work, it also has a serious disadvantage compared with collectives, 
where we are interested in achieving desired adaptation and evolution. 
Furthermore, there are two approaches to selection: selecting at the agent 
level and selecting at the strategy level. Selection at these two levels can
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work very differently. Determining whether selection is at the agent level 
or strategy level depends on the performance measures. Using fine
grained and short-term measures of success can help individual learning 
by providing focused and rapid feedback. Such narrow and prompt 
measures of success can also be used to evaluate who is successful and 
who is not.

However, our challenge in collective systems in dealing with the 
overall performance or long-term measures, using fine-grained measures 
of success (individual utilities) can easily be misleading. In collective 
systems, individual measures need to be appropriately correlated, so that 
agents can generally use strategies that are mutually beneficial. The 
importance of interaction may not be understood if selection is done at 
the agent level.

<Complex adaptive systems> How does self-organization work? This is 
a huge question that humans may never answer completely. Evidently 
something intrinsic in the manifestation of the reality that humans 
perceive may spontaneously produce spatial, temporal, or functional 
structures by means of self-organization, the principles of which are 
searched in a variety of disciplines, ranging from physics, chemistry and 
biology, to medicine, psychology and sociology.

Complex adaptive systems proposed by Holland (1995) mainly 
concern self-organization and emergence in complex large-scale 
behaviors from the aggregate interactions of less complex agents. An ant 
nest serves as a typical example. The individual ant has a stereotyped 
behavior, and almost always dies when circumstances do not fit the 
stereotype. On the other hand, the collective of ants, the ant nest, is 
adaptive, surviving over long periods in the face of a wide range of 
hazards. It is much like an intelligent organism constructed of relatively 
unintelligent parts (Bonabeau, 1999).

The process of self-organization can be accelerated and deepened by 
increasing variation, for example by adding noise to systems. Collective 
systems may have several equilibrium outcomes. To adapt to a changing 
environment, the systems need a sufficiently large variety of possible 
equilibrium states to cope with likely perturbations. Given this variety,
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ч**- most adequate configurations are selected according to the fitness 
defined for the system. The basic method is then to define an appropriate 
fitness function that distinguishes better outcomes from worse outcomes, 
and then create a system in which the components (agents) vary relative 
to each other in such a way as to discover behavioral rules with higher 
fitness. This is also a challenging issue in the study of collective systems.

<Evolution> Evolution is based on the concept of natural selection that 
supports the survival of more successful strategies or individuals. In 
general, an evolutionary process combines two basic elements: A 
mutation mechanism that provides variation and a selection mechanism 
that favors some variations over others. Agents with higher payoff are at 
a productive advantage compared to agents who use strategy with lower 
payoff. Hence, the latter decrease in frequency in the population over 
time by natural selection.

It is not surprising that many scientists are exploring a new unified 
theory of evolution by merging learning in game theory and evolutionary 
game theory with modem biological evolution theory. This new theory 
attempts to explain all kinds of evolutionary processes. Its methods and 
models in fact cover not only biological evolution of organisms but also 
the evolution of animal and human behavior in their societies.

There may be two competing approaches in dealing with evolution in 
collective systems: the microscopic model based on individual learning 
and the macroscopic model based on system evolution. Instead of 
drawing a distinction between models of learning and evolution, it is 
easier to make a distinction between models that describe adaptive 
behavior at the individual level and those that describe adaptive behavior 
at the aggregate level.

<CO‘evolution> If we observe the natural world, species do not evolve in 
isolation, but rather, they have, to varying degrees, an evolutionary 
history of interactions with other species. Much of the diversity and 
Specialization observable within the natural world is due to co-evolution.

Like biologicafi systems, many socio-economic systems can be 
modeled as a co-evolutionary system containing many interactive agents,
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each reciprocally evolving in response to adaptations in the others. If 
multiple populations of agents are adapting to each other, then the result 
is a co-evolutionary process. If we use the standard definition of co
evolution, there must be two populations, with each reciprocally 
evolving specific adaptations and counter-adaptations in response to the 
other. Co-evolution is defined as an evolutionary change in a trait of the 
individuals in one population in response to a trait of the individuals of a 
second population, followed by an evolutionary response by the second 
population to the change in the first.

Co-evolution is a holistic, synergetic and complex evolutionary flow 
that cannot be split up into components. Co-evolution rests not only on 
mutually coupled interactions, but also on our desire to realize better 
outcomes by solving mutual conflicts or overcoming competition. 
However, the problem to contend with in co-evolution is the possibility 
of an escalating arms race with no end. Competing agents might 
continually adapt to each other in more and more specialized ways, never 
stabilizing at a desirable behavior. This is an example of the problem of 
sub-optimization. Optimizing by each individual does not lead to optimal 
performance for the collective system as a whole.

<Evolutionary dynamics > The term evolutionary dynamics often refers 
to systems that exhibit a time evolution in which the character of the 
dynamics may change due to internal mechanisms. Such models are of 
course interesting for studying systems in which variation and selection 
are important components. Evolutionary dynamics are described by 
equations of motion that may change in time according to certain rules 
that can be interpreted as mutation operations.

For a species, survival is a necessary goal in any given environment. 
On the other hand, for a collective system, both purpose and environment 
need to be specified by the designers or agents who compromise the 
system. If certain aspects of the world can be set by design, one can 
explore through intensive experimentation, in which designs tend to 
induce desirable outcomes when other aspects of the world are permitted 
to exhibit realistic degrees of plasticity. Alternatively, exploiting the 
growing power of evolutionary algorithms, one can deliberately induce 
evolution as a means of discovering improved design configurations.
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One important area of research on collective systems lies outside the 
conventional evolutionary approach based on the Darwinian paradigm of 
natural selection. Co-evolution also concerns cooperation within in and 
between species. For instance, in symbiosis, competition is suppressed 
because the long-term benefits gained from cooperation outweigh short
term competitive advantages. A mathematical framework to model co- 
evolutionary dynamics in such non-Darwinian systems has been 
developed (Crutchfield and Schuster, 2003).

<Individual optimization and collective efficiency> We might expect 
collective behavior to be closer to the optimal behavior if we typically 
assume rational behavior at the individual level. Adam Smith’s 
conclusion that collective efficiency arises from the individual pursuit of 
self-interest may be more general than it appears. The connection 
between individual rationality and collective efficiency, between 
optimization by individuals and optimality in the aggregate, has been 
studied in some domains. Regarding this issue, the traditional approaches 
usually assume that aggregate efficiency requires individual optimization.

Collective behavior may be rational, whereas that of the individuals 
may not be so. Gode and Sunder (1993) show that market efficiency, a 
key characteristic of market outcomes, is largely independent of 
variations in individual behavior under classical condition. They showed 
that market efficiency is achievable in double auction markets even if 
agents act randomly within their budget constraints. They performed a 
series of experiments with humans and computational agents who take 
decisions on a random basis. They referred to these agents as zero 
intelligence agents. In their experiments, they obtained a remarkable 
collective efficiency with these agents in that by simply applying a 
budget constraint to the zero intelligent agents, the efficiency in such a 
market is almost equal to the efficiency in markets with profit motivated 
humans.

Their results suggest that the achievement of high levels of collective 
efficiency under classical conditions may place minimal demands on 
individual rationality, no maximization and not even bounded rationality 
is necessary. Perhaps the main issue then is not how much rationality
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there is at the micro level, but how little rationality is sufficient to 
generate macro-level patterns in which most agents are behaving as if 
they were rational (Axtell, 2003). We seek an alternative methodology 
that leaves room for the improvement of the collective system through 
learning as a substitute for individual rationality. Adaptation and 
evolution may affect the dynamics of a collective system and lead it to 
evolve to a more efficient outcome.

<Individual learning and social learning> One important issue is the 
level at which learning is modeled. The two basic possibilities are the 
individual level and the collective level. Various studies to clarify an 
essential difference between individual learning and social learning have 
been performed. Vriend (2000) and Arifavoric (2004) make these two 
learning processes more precise. They consider a population of agents 
who produce homogeneous goods in an oligopoly market. Each firm 
learns the proper production level the generic algorithm. The first is as a 
model of social (or population) learning. Each individual agent in the 
population is characterized by an output rule, which is a binary string of 
fixed length, specifying simply the agent's production level. The measure 
of success is simply the profits generated by each rule. The underlying 
idea is that firms look around, and tend to imitate, and re-combine rules 
of other firms that appeared to be successful. The more successful these 
rules were, the more likely they are to be selected for this process of 
imitation and re-combination.

The second way is to use a model of individual learning. Instead of 
being characterized by a single output rule, each individual agent now 
has a set of rules in mind. In each period, only one of these rules is used 
to determine its output level to the market. The rules that were more 
successful recently are more likely to be chosen. In individual learning, 
instead of examining how well other agents with different rules did in 
previous periods, each agent checks how well it did in previous periods 
when it used these rules itself.

They showed that the individual learning model converges close to 
the Nash equilibrium output level, whereas the social learning model 
converges to the competitive equilibrium output level, where no firm 
gains profit. The difference to modeling learning between these two
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approaches is often neglected, but they claim that for a general class of 
games this difference is essential.

1.5 Evolutionary Design of Desired Collective Systems

This book deals with an important question. In collective systems where 
many agents are all adapting to each other and the collective outcome is 
extremely hard to predict, what actions should agents take? When there 
are a huge number of agents, and numerous interactions, a great deal of 
learning is an attempt to imitate the success of other agents, the resulting 
collective outcomes are hard to predict. There are also curious questions 
about how complex systems work and how they can be made to work 
better. However, no natural method has been proposed for systematically 
studying these issues. We need to identify and redesign the microscopic 
rules of agents that produce desirable outcomes at the macroscopic level.

The emerging research field of collective systems represents a 
fundamentally new scientific approach. In dealing with the above 
problem we de-emphasize traditional scientific goals such as 
optimization, equilibrium analysis, and control, in favor of appreciating 
the importance of emergence, self-organization, diversity, adaptation and 
evolution.

A collective system is characterized as a system that consists with 
many learning agents who adapt to other learning agents. A collective 
system consists of individuals who are learning about a process in which 
other members are also learning. Learning the true state of the system is 
therefore quite unlike learning the values of parameters that govern a 
physical process, for example, or even the parameters that describe a 
social process that is external to the observer (Young, 2005). When the 
observer is a part of the system, the act of learning changes the point to 
be learned. It is therefore unclear whether there behavioral rules of any 
degree of complexity that can solve this problem consistently. It is also 
unclear whether the problem can be solved using fixed learning models 
that bear some resemblance to actual learning behavior in human. 
Therefore, in order to investigate the performance of a collective system 
of adapting or evolving agents, we need to explore a new method beyond
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the conventional equilibrium analysis that emphasizes the dynamic and 
evolving aspects of the system.

The priority for a desirable collective outcome is stability, which is to 
be crudely modeled using the idea of equilibrium of the system. 
However, the condition of stability is not enough, and we need other 
criteria, efficiency and equity. In the field of economics, efficiency 
means that nothing gets wasted. This follows Pareto-optimality in taking 
the absence of waste to be equivalent to the requirement that nobody can 
be made better off without someone else being made worse off 
(Binmore, 2001). Efficiency represents the measure of the desirability of 
collective at the macro level. On the other hand, equity stands for the 
measurement of the desirability at the micro level.

As shown in Figure 1.2, given a collective system, there is an 
associated inverse design problem, i.e., how to configure or modify the 
components (agents) of the system so that in their pursuit of their own 
interest, they also optimize the global performance. Solving this inverse 
problem may involve determining and modifying the number of agents 
and how they interact with each other and what degree of freedom each 
agent has.

Inver

Forward problems
Interacting agents with micro-motives

Figure 1.2 The forward and inverse problems o f  a collcclivc system
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In this book, we develop a game-based approach for designing 
collective systems. For studying frequency-dependent natural selection, 
game-theoretic arguments are more appropriate than optimization 
algorithms. This allows the design of agents that have the ability to 
correct and improve agents’ behavioral rules. We also propose a flexible 
learning paradigm that allows agents to identify situations in which their 
behavioral rules fail or can be enhanced and to respond by initiating 
learning processes of successful agents.

Agents interact with each other in complex ways, and linked agent 
behaviors are highly nonlinear. However, we investigate the situations in 
which they succeed in organizing themselves into a coherent behavior 
and produce desirable outcomes through a simulation study. In 
particular, we focus much of the hidden knowledge of the mysteries of 
collective behavior of linked learning agents.

Learning agents play the underlying game repeatedly by starting off 
with a small set of sample rules to be tested. Individual learning then 
involves, (1) assignment of a rating to each of the rules on the basis of 
experience, and (2) invention of new rules to replace those rules that end 
up with a low rating. The rating of a rule is merely the average of the 
payoffs received when it is used against the opponent. The genetic 
algorithm uses these ratings as fitness and generates new rules 
accordingly. Evolutionary learning also follows numerous rules that are 
causally dependent on previous interactions and on their stored rules. 
There is no social learning such as imitation or exchange among agents.

However, in the standard model of individual learning, agents are 
viewed as being genetically coded with a strategy and selection pressure 
favors agents that are fitter, i.e., whose strategy yields a higher payoff 
against the average payoff of the population. Natural selection operates 
on the local probability distribution of strategies within the repertoire of 
each individual member. An individual’s ability to survive and grow is 
based on advantages that stem from core competencies that represent 
evolution.

The envisioned research object is quite novel since it requires 
harmonic and synchronized interactions among self-interested agents. An 
important aspect of collective evolution is the learning strategy adapted 
by individuals. In this book, the concept of collective evolution can be
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extended beyond the boundaries of a single agent. Collective evolution is 
valuable in a social context because it can help to expose new behavioral 
rules and spread them to other agents who cannot effectively make the 
proper choice. Each agent is modeled to learn the coupling rule rather 
than a specific behavior.

Collective evolution also provides a microscopic foundation that is 
missing in evolutionary approaches. To be sure, we do not see collective 
evolution as a potential replacement for evolutionary theory, but I argue 
that they may provide necessary complements, or can be seen as 
capacities that evolved during evolution to increase the learning 
efficiency of the individual.

Agents constantly improve their behavioral rules. As such, an 
important requirement for an efficient behavioral rule is that it should be 
robust. That is, it may not to be replaced by other rules. Significantly, if a 
rule achieves both efficiency and equity then it is robust. Our framework 
synthesizes the principle of collective learning and the mechanism of 
collective evolution into a coherent approach to the design of the desired 
collectives. It also provides a device for channeling the complexity of 
collective systems into manageable and desirable change. Collective 
evolution is also a driving force for building networks of sustainable 
interaction that foster stability, efficiency, and equity in collectives of 
selfish agents.

1.6 Outline of the Book

The foundations of this book lie in three distinct fields: computer 
science, game theory, and complex theory. These three traditions have 
made important contributions to this discussion and to the mechanisms 
proposed to solve the problem of collective action. These traditions will 
be the subject of this book.

From computer science come insights about collective systems with 
many agents that can be designed to work together and adapt to each 
other. Two areas of computer science are important. First, there is the 
rapid growth of multi-agent systems, which has led computer science 
into deeper analyses of what it takes for systems of many agents to work
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together by establishing efficient coordination. Second, there is the field 
of evolutionary computation, which has fostered an engineering 
approach to evolution and adaptation. With an engineering approach, one 
asks how systems can be designed to become more effective over time. 
By making evolution an engineering problem, evolutionary computation 
has shed light on how collective system can evolve to a desirable 
outcome.

Game theory provides insights into how agents can choose actions to 
maximize their utilities in the presence of other agents who are doing the 
same thing. A primary question in the recent study of game theory is how 
each individual should learn in the context of many learners.

Complex systems deal with systems composed of many interacting 
particles. Complex systems often result in features, self-organization and 
emergent properties, which are properties of the system that the separate 
parts do not have. Therefore, the emerging collective outcome is 
extremely hard to predict. The generation of collective systems with 
advantageous behaviors beyond our manual design capability requires 
long-term incremental evolution with continuing emergence.

This book provides some fundamental and common problems for 
studying adaptation and evolution in collective systems and highlights 
the benefits and shortcomings of the many related fields. This book also 
provides some of the essential questions that need to be addressed if the 
new research field of collective systems is to mature into a new collective 
science.

In Chapter 2, we review the basic concepts of game theory and 
evolutionary games. Game theory is devoted to the logic of rational 
decision-makings in social contexts. It is about what happens when self- 
interested agents interact. The outcome is explained by the concept of 
equilibrium. Evolutionary game theory, instead, assumes that the game is 
repeated many times and asks which strategies can survive in the long 
run.

In Chapter 3, we formulate social games in which there are a large 
number of agents, each of which faces a binary decision problem with 
externalities. The outc6me depends on the strategy choices of all agents. 
Fortunately, in certain strategic situations, interactions among many 
agents can be analyzed by decomposition into the underlying 2x2 games.
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In Chapter 4, we consider a global adaptation model of heterogeneous 
agents. We obtain the relationship between agents’ heterogeneous micro
motives and the macroscopic behavior. In particular, we characterize the 
gains from heterogeneity of agents.

In Chapter 5, we characterize the gains from heterogeneous 
interactions by formulating knowledge trading in a population. The main 
concern is in what circumstances knowledge trading can be accelerated 
by self-interested agents.

Chapter 6 presents a comparative study of two adaptive populations, 
one in a global environment, and the other in a spatial environment. We 
also show that the gain from heterogeneity depends on the type of 
interaction and the location of heterogeneous agents.

In Chapter 7, we study a model in which agents can select partners 
with whom to interact. An agent needs to select her neighbors to interact 
with and faces a tradeoff between joining a neighborhood where most 
agents share her preference or another neighborhood where they have 
different preferences than hers. Unlike some approaches in these fields, 
we are primary interested in the problem in which the preferences and 
even the identities of the agents can evolve over time, rather than 
situations in which the agents and their preferences are fixed. .

In Chapter 8, we deal with social congestion problems. Dispersion 
games provide a simple model for understanding the mechanisms behind 
many paradigms for all types of congestion that may arise when we need 
to utilize limited resources. We introduce a new adaptive model based on 
the give-and-take strategy, in which agents yield to others if they gain, 
and otherwise randomize their actions.

In Chapter 9, we explore an alternative learning model, coupled 
learning, and focus on coupling dynamics that may change in time 
according to coupled behavioral rules. We show that collective learning 
of coupling behavioral rules serves to secure desired outcomes by 
establishing sustainable relationships.

In Chapter 10, we consider another type of social interaction in which 
agents should be dispersed. In particular, we focus on the emergence of 
synchronized behavioral rules that sustain efficient and equitable 
outcomes. Collective evolution reconciles individual-based evolution and 
leads to socially desirable outcomes.



Chapter 2

Introduction to Game Theory 
and Evolutionary Games

In this chapter, we review the basic concepts of game theory and 
evolutionary games. Game theory is devoted to the logic of rational 
decision-making in a social context and is concerned with what happens 
when multiple self-interested agents interact. The outcome is explained 
by the concept of equilibrium. A Nash equilibrium is a combination of 
strategies that provide the best outcome for each party, and no party can 
obtain a better payoff by unilateral deviating from their strategy. 
Evolutionary game theory, instead, assumes that the game is repeated 
many times and asks which strategies can survive in the long-run.

2.1 Classification of Games and Nash Equilibrium

A game is any interdependent situation in which at least two agents 
interact. There are situations in which the agents’ payoffs are identical or 
completely opposed. The former situations are classified as pure 
coordination games, and the latter are classified as zero-sum or constant- 
sum games. On the other hand, games in which the agents’ payoffs are 
neither identical nor opposed are called mixed-motive games (Schelling, 
1978). This term focuses on the complex strategic properties that 
motivate the agents to partly cooperate and partly compete with other 

gents. An agent in a mixed-motive game has to contend with both the 
ultemal conflict causing the mixed-motive and the external conflict 
arising from interaction with the other agents.

There is a rich collection of literature and theoretical analyses on two- 
person games. In this section, we classify 2x2 (two-person, two-strategy) 
mixed-motive games into a few categories and examine the basic

.11
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characteristics of strategic interactions. Consider the situation in which 
two self-interested agents face a binary decision problem having with 
two strategies, Si and S2- The payoffs of each agent depend on the 
outcome of the other agent’s choice, as shown in Table 2.1.

This matrix defines the general payoff matrix of a symmetric 2x2 game. 
The game is symmetric, because the game is identical from each agent’s 
point of view. If the payoff values further satisfy the condition, b = c, 
then it is defined as a doubly symmetric 2x2 game.

The choice of an action is called a strategy. A self-interested agent is 
rational in the sense that the agent chooses an optimal strategy based on a 
guess or on the anticipation of the other agent's choice. Therefore, each 
agent considers her payoff and chooses the best strategy to optimize 
payoff. Nash equilibrium is defined as any profile of strategies in which 
each agent’s strategy is the best response to the strategies of the others.

There are at least two reasons that Nash equilibrium is important. The 
first is that if a game has a kind of solution that is common knowledge 
among the agents, then it must be in equilibrium. If it were not, some 
agents would have to believe that it is rational for them not to make their 
best response to what they know. But it is not rational not to behave 
optimally. The second reason is that equilibrium matters are more 
important. If the payoffs in a game correspond to how fit agents are, then 
evolutionary processes that prefer more fit agents to less fit agents will 
not work when they are in equilibrium, because all of the survivors will 
be as fit as possible in order to be in the social contexts.

Table 2.1 Payoff matrix o f a 2x2 game
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Another interesting question is this. Under what circumstances can a 
population of self-interested agents realize a desirable collective outcome 
without explicit communication or cooperation. Here, we define concepts 
of individual rationality and collective rationality.

Definition 2.1 The strategy for each agent to maximize her payoff is 
defined to be individually rational.

It should be irrational for each agent to deviate from her individually 
rational strategy as long as the other agents stick to their strategy. A 
formal solution when self-interested agents interact is Nash equilibrium, 
a combination of strategies that are the best against one another.

Definition 2.2 A set o f strategies satisfying the conditions o f the 
individual rationality o f all agents is defined as a Nash equilibrium. In 
other words, i f  no agent can improve her payoff by a unilateral change in 
strategy, such a pair o f strategies is defined as a Nash equilibrium.

No one can obtain a better payoff by deviating unilaterally from a 
Nash equilibrium. However, there is another solution concept, which is 
referred to as efficient equilibrium.

Definition 2.3 A set o f strategies in which if no agent can improve her 
payoff without lowering the payoff o f the other agent is defined to satisfy 
collective rationality.

Definition 2.4 A set o f strategies is defined as being in efficient 
equilibrium (Pareto-efficient) i f  it maximizes the summation o f the 
payoffs o f all agents.

Consider two agents that face a binary decision with the payoff matrix 
in Table 2.1. If an agent chooses either strategy Si or S2, we define such 
a definitive choice as a pure strategy. If an agent chooses Si with some 
probability x  and S2 with remaining probability 1-x, we define such a 
probabilistic choice as a mixed strategy, which is denoted as x=(x, 1-x).
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When an agent chooses the mixed strategy ex=(l, 0) or e2=(0, 1), she is 
said to choose pure strategy 5/ or S2 respectively.

Each agent is assumed to choose an optimal strategy based on the 
guess or anticipation of the other agent's strategy. If both agents are 
assumed to be so knowledgeable as to correctly guess or anticipate, the 
other agent’s strategy, their best responses are the same, since they face a 
symmetric game with the same payoffs.

Suppose the other agent chooses a mixed strategy y=(y,l-y). The 
expected payoffs U(e„y) of choosing the pure strategies et , i = 1,2, are

U(e, y) = (a -b )y  + b,
(2.1)

U(e2,y )  = ( c -d )y  + d.

The difference in expected payoffs when she chooses el or e2 is

U(el , y ) - U ( e 2,y )  = (a + d -  b -  c )y  + d -  b . (2.2)

A symmetric 2x2 game in Table 2.1 is classified into four categories 
depending on the payoff values. We obtain both a Nash equilibrium and 
an efficient equilibrium of a game in each category.

(1) Dilemma Game: (c > a > d > b, 2a > b + c)

Suppose two agents face binary decisions to choose either S} (Cooperate) 
or S2 (Defect). We consider the case in which the payoff values satisfy:

(i) с > a > d > b, and (ii) 2a> с + d.
Both agents evaluate the payoffs associated with each strategy and 
choose the best one, which is the same in this symmetric game. The first
(i) inequality implies for any mixed strategy y=(y,l-y),

U(e2,y)  > U(e„y) \ /y  . (2.3)

Therefore, if both agents seek their individual rationality, they choose 
( S2, S2) = (Defect, Defect) and the sum of payoffs of both agents is 2d. 
On the other hand, the sum of payoffs of both agents is 2a (= a + a) if 
they choose Sl , and b + с if one agent defects and the other cooperates. 
Therefore, the second condition (ii) implies that (5,, 5,) = (Cooperate, 
Cooperate) satisfies the condition of collective rationality.
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These two conditions create the tension in dilemma between 
individual and collective interests. The two agents benefit if they 
establish mutual cooperation. However, self-interested agents may be 
motivated to defect if they seek individual rationality.

(2) Coordination Game: (a > c, d > b)

The necessity for coordination may arise when contributions of many 
participants are necessary to produce a common good that everyone may 
value highly. We consider the situation in which the payoff values satisfy 
a > с and d > b. In this case, there is some у at which the expected 
payoffs of an agent from choosing S; and S2 are indifferent. Two 
expected payoffs in (2.1) can be equated at

ay+ b(l - y )  = cy + d(l -y). (2.4)
Such у is obtained as

у = (d - b)/(a + d  - b - c)=  в . (2.5)

The expected payoffs in (2.1) of choosing pure strategy Si (e;) or S2(e2) 
satisfy the following inequalities:

U(ej,y) > U(e2,y) if у > в,
U(en y) < U(e2,y) if у < в ,  (2-6)
U(e,,y) = U(e2,y) i f y  = d.

Therefore, if the other agent is more likely to choose Sj (<=•,), an agent also 
chooses Sj, on the other hand, if  the other agent is more likely to choose 
52(e2),she also chooses S2. If the other agent chooses the mixed strategy 
У = (в, 1 -  в) then she is indifferent with respect to the two strategies.

Since the payoff matrix in Table 2.1 is symmetric, the optimal 
strategies are the same for both agents. Therefore, the coordination game 
has two pure Nash equilibria of (Si, Si) and (S2, S2), and one mixed Nash 
equilibrium (в , в ) ,  where в  = (в\ l -в). Among these three equilibria, 
the most preferable efficient equilibrium, defined as the Pareto- 
dominance, is (Si, S/), which dominates the other two equilibria. There 
is another equilibrium concept besides Pareto-dominance, which is 
defined as risk-dominance. If the other condition, a + b < с + d, is also 
satisfied, then the equilibrium (S2, S2) becomes risk-dominate (Si, Si).
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Coordination games have multiple equilibria with the possibility of 
coordinating on different strategies. This problem is known as 
miscoordination. The traditional game theory does not address how 
agents know which equilibrium will actually be realized when a game 
has multiple equally plausible equilibria. Game theory is also 
unsuccessful in explaining how agents should learn in order to shift to a 
better equilibrium.

(3) Dispersion Game: (c  > a, b > d)

Coordination is mainly being considered in a context in which agents can 
achieve a common interest by taking the same action. Therefore, a more 
frequently studied class of games is the class of coordination games in 
which both agents gain payoffs when they choose the same action. A 
complementary class that has received relatively little attention is the 
class of games in which agents gain payoffs only when they choose the 
distinct action. These situations are formulated as dispersion games.

Some discussions of coordination and dispersion games have focused 
on the two-agent case. In this case, the coordination game and the 
dispersion game differ only by the renaming of one agent’s strategies. 
However, with arbitrary numbers of agents the two games diverge. While 
the generalization of the coordination game to multiple agents is quite 
straightforward, that of the dispersion game is more complex. We discuss 
multi-person dispersion games in Chapter 8 and Chapter 10.

There is a mixed strategy that equates the expected payoffs of each 
agent in (2.1). The two expected payoff functions can be equated at

The expected payoffs to an agent for choosing pure strategy Si( e \) or 
S2( e2 ) satisfy:

U(e,,y) > U(e2,y) if у < в ,

ay+ b(l - y )  = cy + d(l -y) .  
Such у is obtained as

у  -  (b -  d )/(b + с -  a -  d ) = 6

(2.7)

(2.8)

U(e„y) < U(e2,y) i f y > 6 ,  
U(e,,y) = U(e2,y) if у = в.

(2.9)
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That is, if the other agent is more likely to choose Si, she will choose 
the other strategy S2. On the other hand, if the other agent is more likely 
to choose S2, she chooses Si. If the other agent chooses the mixed 
strategyy, she is indifferent with respect to the two strategies. Therefore, 
the dispersion game has two pure Nash equilibria (Si, S2) and (S2, Si), 
and these are non-equivalent, each one assigning different payoffs to 
each agent. There is also one mixed Nash equilibrium (в, в), where 
в  ={в, l -в). Under this mixed Nash equilibrium, both agents gain the 
same expected payoff.

(4) Hawk-Dove Game

We have a special case of dispersion games. The two-person game with 
the payoff matrix in Table 2.2 is known as the Hawk-Dove game. Let us 
suppose that there are two possible behavioral types: one escalates the 
conflict until injury or sticks to display and retreats if the opponent 
escalates. These two behavioral types are described as "hawk" and 
"dove".

The payoff corresponds to a gain in fitness v, while an injury reduces 
fitness by c, and we assume с > v. If a hawk meets a hawk, they fight 
until one is seriously injured. The fitness of the winner is increased by v, 
and that of the loser is reduced by c, so that the expected fitness is (v-c)/2, 
which is negative since the cost of the injury exceeds the prize of the 
fight. If a dove meets a dove, they engage in threatening display, but flee 
when confronted with real danger, and therefore, each expected fitness is 
v/2. If a hawk meets a dove, the dove runs away, and the hawk wins the

Table 2.2 Payoff matrix o f the Hawk-Dove game



38 Adaptation and Evolution in Collective Systems

contested resource of value v.
The expected payoffs of an agent choosing from Si (Hawk) or S2 

(Dove) if the other agent chooses a mixed strategy у = (у, 1-y) are
U(el ,y) = ( v - c ) y / 2  + v ( l - y ) , 2
U(e2,y) = v ( l - y ) / 2 .

There is a mixed strategy that equates the expected payoffs, and such у is 
obtained as

y = v / c ^ 0 .  (2.11)

The expected payoffs in (2.10) to an agent choosing pure strategy Si 
( e\ ) or S2 ( e2 ) satisfy:

U(e,,y) > U(e2,y) if у < в ,
U(en y) < U(e2,y) if у >9,  (2.12)
U(e,,y) = U(e2,y) if у = в.

Therefore, if the other agent is more likely to choose Si (Hawk), she will 
choose S2 (Dove). On the other hand, if the other agent is more likely to 
choose S2, she chooses 5/. The Hawk-Dove game also has two pure Nash 
equilibria of (Si, S2) and (S2, Si), each assigning different payoffs to each 
agent. There is also one mixed Nash equilibrium (в, в), where Q =(9, 1- 
в) ,  and under this mixed strategy agent gains the same expected payoff.

In the context of symmetric games with the payoff matrix given in 
Table 2.1 or Table 2.2, let us suppose a pair of the mixed strategy (x, у ) 
constitutes a Nash equilibrium. A Nash equilibrium (x, y) is defined as 
symmetric if x=y, that is, both agents use the same mixed or pure strategy. 
All three Nash equilibria of a coordination game are symmetric; however, 
only the mixed equilibrium is symmetric for the dispersion game and the 
Hawk-Dove game.

Strategic interactions between two agents who have two strategies are 
formulated as 2x2 games with the payoff matrix in Table 2.1. This payoff 
matrix with the four parameters can be transformed into the equitable 
payoff matrix in Table 2.3 with the two payoff parameters. Subtracting с 
from a (a=  a - c), and b from d (J3=d - b), we obtain the payoff matrix 
in Table 2.3. With this transformation, a symmetric game becomes a
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doubly symmetric game. We will see the payoff matrices in Table 2.1 
and Table 2.3 have the same Nash equilibria.

Suppose the other opponent chooses mixed strategy y=(y, 1-y) in the 
payoff matrix in Table 2.3. If an agent chooses pure strategy Si (e, ) or S2 
(e2), her expected payoffs are obtained as

U(e,, y )= a y ,
1 (2.13)

U(e2,y )= f iy .

(1) Dilemma Game: ( a  < 0, /3 > 0)

In this case, two expected payoffs in (2.13) satisfy

U ( e 2, y ) >  U ( e „ y )  Vy . (2.14)

Therefore, the payoff matrix in Table 2.3 has a unique Nash equilibrium 
( S2, S2), which is the same as the Nash equilibrium of Table 2.1.

(2) Coordination Game: ( (X > 0, (5 > 0)

The two expected payoffs in (2.13) when an agent chooses Sj ( )  and S2 
(e2) are equated at the point,

y= j 3 / ( a+ j 3 ) =( d - b ) / ( a  + d - b - c ) =  в ,  (2.15)

and we have the following relation:
U(e,,y) > U(e2,y) if у > в,
U(e,,y) < U(e2,y) if  у < в, (2-16)
U(e,,y) = U(e2,y) if  у = в.
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Table 2.3 Normalized payoff matrix in Table 2.1
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Therefore, the payoff matrix in Table 2.3 has the same three Nash 
equilibria as the payoff matrix in Table 2.1.

(3) Dispersion Game: ( a  < 0, /? < 0):

In this case, the two expected payoffs in (2.11) are equated at the point 
y= P/(a + f3 )=(b-d)/(b + с -  a -  d)= в (2.17)

Then, we have the relation:

U(e„y) > U(e2,y) if  у < в ,
U(eIty) < U(e2,y) if  у > в ,  (2.18)
U(e,,y) = U(e2,y) if  у = в.

Therefore, the dispersion game with the payoff matrix in Table 2.3 has 
the same three Nash equilibria as the payoff matrix in Table 2.1.

2.2 Correlated Equilibrium

In this section we will look at a different concept of equilibrium, 
correlated equilibrium. We start with an example of the asymmetric 
coordination game, which is also known as the battle o f sexes game.

Two agents (a man and a woman) who have two strategies play the 
game of the payoff matrix in Table 2.4. It is easy to see that both (SIt Si) 
and (S2, S2) constitute pure Nash equilibria, since if one agent chooses 
pure strategy S„ i-1,2, the best response of the other is to choose the 
same strategy. Under these two Nash equilibria with pure strategies, the 
pair of payoffs for both agents are (2,1) and (1,2), respectively.

Table 2.4 Asymmetric coordination game
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There is another Nash equilibrium with mixed strategies. That consists 
of a man choosing Si with probability 2/3 and S2 with probability 1/3, 
and a woman choosing Si with probability 1/3 and S2 with probability 2/3. 
In this case the expected payoffs to both are (2/3, 2/3), which are lower 
than that of the pure Nash equilibria, because both the man and the 
woman can receive 1 at the worst outcomes in the pure Nash equilibria.

Now, we consider a situation in which a third party flips a fair coin, 
and based on the outcome of the coin toss, both the man and the woman 
are advised as to what they should do. For example, if the coin shows 
heads, both agree to choose Si, and when the outcome is tails both agree 
to choose S2. This type of game is defined as play with correlated 
strategies. It is important to note that no one has any incentive to deviate 
from the agreement. The advantage of following such advice is that the 
pair of expected payoffs (1.5, 1.5) is higher compared to that of (2/3, 2/3) 
from the mixed Nash equilibrium.

Similarly, we consider the Hawk-Dove game in Table 2.5. In this case, 
the worst outcome occurs when both agents choose hawk. There are two 
pure Nash equilibria, (Hawk, Dove) and (Dove, Hawk) and with payoffs 
(12,0) and (0,12) to both agents, respectively, and these equilibria are 
Pareto-efficient. A mixed Nash equilibrium occurs when both agents 
choose “Hawk” and “Dove” with probabilities 0.4 and 0.6, respectively. 
This mixed Nash equilibrium has an expected payoff of 3.6 to each agent, 
which is not Pareto-efficient equilibrium. Now, let us consider a 
correlated equilibrium. As before, a third party tells both agents what to 
do based on the outcome of the following probability: (Dove, Dove) with 
1/3, (Dove, Hawk) with 1/3, and (Dove, Hawk) with 1/3.

Table 2.5 Example of the Hawk-Dove game
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Therefore, the third party tries to avoid the worst case (Hawk, Hawk). 
We note that the third party only tells the agents what they are supposed 
to do, and does not reveal whether the other agent deviates from the third 
party’s instruction. Therefore, if the third party tells Agent 2 to be 
“Hawk”, then Agent 2 has no incentive to deviate. This is because Agent 
2 knows that the outcome must be (Dove, Hawk) and that Agent 2 will 
obey the instruction.

Next, let us consider the case when Agent 2 is told to “Dove”. Then, 
Agent 2 knows that the outcome must be either (Dove, Dove) or (Hawk, 
Dove) each happening with equal probability. Agent 2’s expected payoff 
on choosing “Dove” conditioned on the fact that Agent 2 is told to 
“Dove” is 3. Under this instruction, 6 is the payoff when Agent 1 is also 
“Dove”, i.e., the outcome is (Dove, Dove) and 0 is the payoff that Agent
2 receives when Agent 1 chooses Hawk, since the outcome is (Hawk, 
Dove). If Agent 2 decides to deviate, by choosing Hawk when told to 
choose Dove, the expected payoff is 1.5. So, this expected payoff by 
deviating is lower than the payoff 3 on obeying the instruction. Therefore, 
Agent 2 does not deviate. Since the game is symmetric, Agent 1 also has 
no incentive to deviate from the instruction. In the case of this correlated 
equilibrium, the expected payoff for each agent is 6, which is higher than 
the expected payoff 3.6 of the mixed Nash equilibrium. Therefore, the 
payoffs of both agents can be made be improved by correlating their 
independent strategy-choices.

For obtaining correlated equilibrium, we need to find a probability 
distribution on the set of all possible outcomes. Let S be the set of 
strategy combinations of both agents. Let Ui(S) be the payoff to agent i, 
i=l,2, when a pair of strategies S=(St, S2) is followed by both agents, and 
let p(S) denote the probability with which the third party observes the 
outcomes, S=(Si, S2), in which case, Agent 1 is told to choose strategy 
Si and Agent 2 is told to choose strategy S2. To ensure that correlated 
equilibrium results, no agent should have a motivation to deviate from 
the instruction S by the third party. So, if both agents are told to choose 
S n i = 1,2, then the other strategy for that agent should have no better 
outcome. Thus, the expected payoff of choosing the informed strategy is 
at least as great as the expected payoff when each agent alone switches to 
the other strategy.
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Asymmetric coordination games such as the battle-of-sexes game in 
Table 2.4 and the Hawk-Dove game in Table 2.5 have two pure equilibria 
in which both agents gain different payoffs, resulting in asymmetric pure 
equilibria. However, both agents gain the same payoff at the mixed 
equilibrium, which is sub-optimal compared with pure equilibria. This 
raises many issues. In particular, we need to find a better solution to 
overcome the tradeoff between efficiency and equity.

How can we motivate a particular choice when there is no sufficient 
reason for preferring one of two or more indistinguishable outcomes?

Since there is no way to choose between the pure equilibria, one 
solution is to select the mixed equilibrium. For instance, in the context of 
the Hawk-Dove game, agents can increase their expected payoff by 
tossing a coin ahead of time, and the loser may agree to swerve (dove), 
and the winner will not swerve (hawk). This kind of treatment will 
increase the expected payoffs for both agents.

We could also introduce the concept of a joint strategy that specifies a 
rule for each agent to follow. The rule of the joint strategy specifies 
strategy choices for both agents, and an equilibrium is defined as the 
joint strategies such that no agent has any incentive to depart from it. We 
can also define a randomized joint strategy, which randomizes between 
pure joint strategies. When both agents choose mixed strategies, it is 
characterized as randomized joint strategies that randomize between pure 
joint strategies. Then, the question is whether we can find an efficient 
rule of the joint strategy choice that specifies a plan for each agent so 
that the Pareto-efficient outcome is obtained. We may need to find some 
mechanism for achieving Pareto-efficiency using, (1) an external device, 
such as signals, or an authorization device, or (2) learning. We discuss 
this issue in Chapters 9 and 10.

2.3 Interaction Structures

The interaction structure specifies who affects whom. The importance of 
interacting with the right people is often stressed, which is sometimes 
stated as “It’s not what you know, but who you know that matters”. 
Therefore, it is important to consider with whom an agent should interact.
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In order to describe the ways of interaction, the random matching model 
is frequently used. There are also a variety of interaction models, 
depending on how agents meet, and what information is revealed before 
interaction.

(1) Global interaction model

When all agents are modeled to interact with all other agents in the same 
population, the model is referred to as a global interaction model. The 
global interaction model becomes equivalent to the random matching 
model, in which each agent is assumed to interact with a randomly 
chosen agent from the population.

(2) Random interaction model

The random interaction model is treated as follows. As shown in Figure 
2.1, two agents who are randomly chosen from the same population are 
matched and play a 2x2 game. In each round, all agents are randomly 
matched. At the end of each round each agent observes only the play in 
her own match. The way an agent acts now will influence the way her 
current opponent plays in the next round, but the agent is unlikely to be 
matched with her current opponent or anyone who has met the current 
opponent for a long time.

An important assumption of the random interaction model is that 
agents receive knowledge of the current strategy of the population. Let us 
suppose that at the end of the round, the population aggregates are

Figure 2.1 A random interaction model
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announced. If the population is large, each agent has little influence on 
the population aggregates, and consequently little influence on future 
play, so agents have no reason to depart from myopic behavior. 
Therefore, agents choose their optimal strategy based on aggregated 
information concerning what the other agents of the same population 
have chosen in the past. This aggregate information is defined as the 
population strategy. Each agent calculates her expected payoffs and 
chooses the best response to this population strategy.

(3) A local interaction model

There are many situations in which a spatial environment becomes a 
more realistic representation, since interactions in real life rarely happen 
on such a macro-scale as assumed in the global interaction model. Spatial 
interaction is generally modeled through the use of the two dimensional 
(2D) grid in Figure 2.2 with each agent inhabiting each cell of the lattice 
on the grid. Interaction between agents is restricted to nearest 
neighboring agents. Each agent chooses an optimal strategy based on 
local information about what her neighbors will choose. However, the 
consequences of their choices may take some time to have an effect on 
agents with whom they are not directly linked.

Figure 2.2 Local matching

(4) A small-world network model

Complex networks describe a wide range of systems in nature and 
technology and can be modeled as a network of nodes in which the 
interactions between nodes are represented as edges. Recent advances in
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understanding these networks revealed that many of the systems show a 
small-world structure. Watts and Storogatz (1998) introduced a small- 
world network architecture that transforms from a nearest neighbor 
coupled system to a random coupled network by rewiring the links 
between the nodes. Two parameters are used to describe the transition.

The mean path length L, which specifies the global property of the 
network, is given as the mean of the shortest path between all pairs of 
vertices. In contrast, the clustering coefficient С characterizes the local 
property of the system and can be calculated as the fraction of the 
connections between the neighbors of a node divided by the number of 
edges of a globally coupled neighborhood, averaged over all vertices. 
Probability results in a random coupled network with a short mean path 
length and a low clustering coefficient.

For instance, consider a one-lattice model in which each node is 
coupled with its nearest neighbors, as shown in Figure 2.3. It has a large 
mean path length and a high clustering coefficient. If one rewires the 
links between the nodes with a small probability, then the local structure 
of the network remains nearly intact, while maintaining the clustering 
coefficient contrast. In contrast, due to the introduction of shortcuts by 
the rewiring procedure, the mean path length becomes strongly reduced. 
Networks with these properties are called small-world networks.

Regular Small world Random

Increasing randomness

Figure 2.3 A small-world network model. Illustration of a one-lattice model
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2.4 Learning in Games

The traditional assumption in game theory is that agents are rational in 
the sense that agents maximize their own payoffs, and all agents who are 
involved commonly know this. Rationality means to respond optimally 
to others’ decisions. Thus, the rational decision making process is purely 
forward-looking. Such a forward-looking model that involves deliberate 
decision-making is defined as a rational-choice model, which requires 
well-defined preferences and unlimited information for all agents.

The reason for the dominance of the rational-choice approach in game 
theory is not that it is realistic. Theoretically, it is quite understandable to 
confront the rational-choice approach. There may even exist situations in 
which agents know very little about their decision environments, so that 
all what they can do is repeat past decisions. The real advantage of the 
rational-choice assumption is that it often allows deduction.

An alternative to the assumption of a rational choice model is some 
form of adaptation. The adaptation may be at the individual level, 
through learning, or may be evolution at the population level, through 
survival of more successful individuals. Either way, the consequences of 
adaptive processes are often very hard to deduce when agents following 
their own adaptive rules interact with each other.

Recently, more general notions have been introduced, which allows 
bounded rationality. This means that we combine the ideas of (1) how 
agents cognitively perceive their decision environment and update their 
cognitive model in the light of new information and (2) how previous 
successful feedback leads to adaptation. Work on learning in game 
theory started with descriptive motivation in mind. That is, its main goal 
is to show that agents who follow simple learning rules for updating their 
strategy would eventually adopt an optimal strategy that corresponds to 
Nash equilibrium (Fudenberg and Levine, 1998) (Young, 2005).

The basic research agenda in game theory is also to explore non
equilibrium explanations in games, to view equilibrium as the long-run 
outcome of a dynamic adaptive process of learning. In other words, the 
outcomes of the games should be interpreted as steady states of an 
underlying dynamic learning process. A variety of learning models have
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been studied. Many adaptive mechanisms have been discussed in the 
literature on learning, and they are classified as follows.

(1) Reinforcement learning

Reinforcement is an empirical principle that states that the higher the 
payoff from taking an action in the past, the more likely it will be taken 
in the future. In reinforcement learning models, agents are taken to 
behave quite primitively, simply reacting to positive or negative stimuli. 
Reinforcement learning models reflect the simple mechanism whereby 
the propensity for an agent to choose a strategy is positively related to 
the amount of satisfaction historically associated with it. Agents tend to 
adopt actions that yielded a higher payoff in the past and to avoid actions 
that yielded a low payoff. Although the payoff is related to an agent’s 
choice behavior, only the agent’s own payoffs matter, and not those of 
others.

A more complicated version of reinforcement learning is based on the 
principle of probabilistic choice. That is, the probability of selecting a 
strategy at present increases with the payoff that resulted from taking that 
strategy in the past. This general principle underlying reinforcement 
learning can be formulated in a variety of ways. Subsequently, a more 
complex analysis turns to models in which agents are postulated to 
behave in a substantially more involved fashion, i.e., they entertain 
expectations on future interactions at the current interaction and react 
optimally to them.

Within such a class of learning models, they range from shortsighted 
agents, who behave without deliberate calculation, to forward-looking 
agents, who attempt to understand their environment in a dynamic 
fashion. If they repeatedly play the same game against each other, 
forward-looking agents consider the possibility that their current play 
may influence the future play of their opponent.

(2) Best-response learning

In most game theoretic models, agents are assumed to have perfect 
knowledge of the consequences of their choices. In this learning model,
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agents are assumed to adopt a strategy that optimizes their expected 
payoff given what they expect the other (or others) to do. An important 
assumption of best-response learning is that they receive knowledge of 
the current strategy of their opponent.

Alternatively, they may know the strategy distribution of the 
population and can calculate their best-response strategy based on 
information about what the other agents have done in the past. In this 
learning model, agents choose the best replies to the current strategy 
population and may gradually learn the strategy population at a Nash 
equilibrium.

(3) Evolutionary learning

Evolutionary learning is based on the concept of natural selection that 
supports the survival of more successful strategies or individuals. 
Agents with higher payoff are at a productive advantage compared to 
agents who use strategies with a lower payoff. Hence, the latter decrease 
in frequency in the population over time by natural selection.

In the standard model of evolutionary learning, agents are viewed as 
being genetically coded with a strategy and selection pressure favors 
agents that are fitter, i.e., agents whose strategy yields a higher payoff 
against the average payoff of the population. The idea of using a 
genetic algorithm to create complex strategies has been developed 
by many researchers.

(4) Social learning

Learning also occurs in the social contexts in which an agent learns 
some behavioral patterns or acquires knowledge as a consequence of 
observation of or interaction with other agents. For instance, an agent 
may learn the behavior of others, especially behaviors that are popular 
for yielding a high payoff. The term social learning is a general term 
that represents learning that is influenced socially, in contrast to 
instances of individual learning in which a behavioral pattern or 
knowledge acquisition is not influenced by interaction with other 
agents. In general, evolutionary learning is very slow with regard to 
proliferating a superior rule. However, social learning may be fast,



50 Adaptation and Evolution in Collective Systems

because the transmission of a superior rule from one agent to another is 
very fast.

However, this term should be distinguished from imitation, which 
describes one psychological process that can result in social learning. 
Imitation refers to instances whereby the observation of the behavior 
of another individual allows an individual to reproduce the same 
behavioral pattern. The term imitation is not a synonym for social 
learning, since it is possible to imitate without learning anything. 
Imitation is just one of several processes that can be result in social 
learning (Laland, 2002).

The basic question a learning model must address is what agents know 
before the game starts, and what it is that they are learning. Depending 
on these details, i.e., the length of an agent’s memory or their assumed 
knowledge on the payoff structure, many different versions of best- 
response learning models also arise.

Most learning theory abstracts from repeated game considerations by 
explicitly or implicitly relying on a model in which the incentive to try to 
alter the future play of opponents is sufficiently small so as to be 
negligible. There are two levels of sophistication in this type of forward- 
looking learning. One is simply to forecast how opposing agents will 
play. If two agents are repeatedly matched against each other, they ought 
to consider the possibility that their current strategy may influence the 
choice of the future strategies of the opponent. There are several ways of 
modeling the learning of an opponent’s strategy.

A closely related issue is how much rationality to attribute to the 
agents. The true challenge is then to describe how the best bounded 
rational agents rely on past results to improve their outcomes on how 
they predict the consequences of certain decision alternatives based on 
some simple learning models. With the above learning models, we 
basically try to understand how various learning models lead to a Nash 
equilibrium.

On the other hand, we also have to seek the proper models in which 
agents consciously try to improve the collective outcome. In this sense, 
we can look at learning models for behavioral rules. We are 
especially interested in learnable rules in the sense that agents try to
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obtain a better outcome. Rules that do poorly are not likely to be 
used, and agents will seek a better behavioral rule. We discuss this 
issue in Chapter 9 and Chapter 10.

2.5 Evolutionary Games

In many applications, it is of interest to know which strategies can 
survive in the long run. While the concept and techniques of game theory 
have been used extensively in many diverse contexts, they have been 
unsuccessful in answering this key question. In this section, we present 
the basic model of evolutionary games that may remedy the 
shortcomings of game theory.

One of the variations involves iterated games. The standard 
interpretation of game theory is that the game is played exactly once 
between fully rational individuals who know all the details of the game, 
including each other's preference concerning outcomes. Evolutionary 
game theory, instead, assumes that the game is repeated in a large 
population of agents. Two agents who are randomly drawn from a 
population play the underlying game. That is, we focus on a population 
of agents who are assumed to undergo identical pair-wise interaction, 
which is formulated as a 2x2 game (Weibull, 1996).

An evolutionary model starts with a description of the aggregate 
behavior of a population. An example of this approach is replicator 
dynamics (RD), which postulates that the fraction of the population 
playing a strategy increases if the payoff (or fitness) received from that 
Strategy is above the average payoff of the population. Although the RD 
was originally motivated by biological evolution, it can be derived from 
various sorts of game theoretic models. One such model is the stimulus- 
response model, which postulates that a strategy that performs well is 
reinforced and so is more likely to be played in the future. An alternative 
model is the imitation model, in which an agent mimics other more 
successful agents. The imitation model is also similar to a model of 
social learning, where agents are trying to learn what strategy is best 
from other agents.
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More precisely, we consider a population whose members are 
randomly matched in pairs to play the underlying 2x2 game. An 
evolutionary selection process operates over time on the strategy 
distribution of the population. From a theoretical viewpoint, there are 
two basic related questions.

(1) What reasonable features should be postulated on the dynamics of 
the strategy distribution in a population?

(2) Under what conditions does the strategy distribution converge to 
equilibrium of the underlying game?

Research on the above issues have been attracted a great deal of 
attention from many researchers, from the viewpoint of evolution. In 
essence, evolutionary game theory builds upon the simple idea that any 
non-optimal behavior should eventually be weeded out of the population 
by the pressure of natural selection. Thus, rather than invoking agents’ 
rational choices, some criterion of long-run survivability is used. There 
are a number of interesting scenarios, in which such an evolutionary 
approach is able to explain the selection of the specific equilibrium based 
on multiple Nash equilibria of the underlying game. This property is 
known as a refinement of Nash equilibria.

In general, an evolutionary process combines two basic elements: a 
mutation mechanism that provides variety, and a selection mechanism 
that favors some varieties over others. A key concept in evolutionary 
games is that of an evolutionarily stable strategy. Such a strategy is 
robust to natural selection. Suppose all agents are genetically 
programmed to apply the same incumbent strategy. Now inject a small 
proportion of agents who are also programmed to adapt some other 
strategy (often referred to as a mutant strategy). The incumbent strategy 
is said to be evolutionarily stable if there exists an invasion barrier such 
that if a proportion of agents adapting the mutant strategy falls below this 
barrier, then the incumbent strategy earns a higher payoff than the mutant 
strategy.

Evolution is modeled as a dynamic process. As a first step, however, it 
is useful to study it from a static viewpoint and ask what kind of 
configurations can be suitably conceived as a stable point of evolutionary 
dynamics. The first equilibrium concept in evolutionary games is the 
evolutionarily stable strategy (ESS), which is proposed by Smith and



Introduction to Game Theory and Evolutionary Games 53

Price (1982). It is known that the aggregate behavior of a population 
tends toward a Nash equilibrium, and this property is said to satisfy the 
condition of evolutionary stability. The criterion of evolutionary stability 
generalizes Darwin's notion of survival of the fittest from an exogenous 
environment to a competitive environment, where the fitness of a given 
strategy depends on the strategies of others.

The evolutionary stability requires that a small number of agents who 
adopt some alternative strategy do not do as well as the agents who stick 
to the incumbent strategy. Consequently, agents who adopt the prevailing 
strategy have no incentive to change their strategy, since they do better 
than those who choose the mutant strategy, and the latter has an incentive 
to return to the incumbent strategy. However, the evolutionary stability 
property does not explain how a population of agents may arrive at such 
an equilibrium. Instead, it asks whether a strategy is robust to 
evolutionary pressures.

Let us suppose that the underlying game is symmetric with S=(Si, S2) 
being the common strategy set for all agents. The underlying game has 
the payoff matrix shown in Table 2.3. The question implicitly posed by 
the ESS concept can be formulated as follows. Can the originally 
monomorphic population be permanently invaded by a small number of 
alternative agents who adopt a different strategy?

Suppose that a number of agents who choose a different mixed 
strategy у  = (у , 1 -  у) (mutant strategy) appear in a large population of 
agents, all of whom are programmed to choose the same mixed strategy 
x = ( x ,  1 — x)  (incumbent strategy). Let the proportion of agents in the 
population who choose a mutant strategy у  be e. Since they are randomly 
matched against each other, the expected payoff earned by an agent for 
choosing the incumbent strategy x  is

(1 -  e ) U  (x , x) +  e U (x, y)  =  U (x (l -  e ) x  + ey). (2.19)

Similarly, the expected payoff earned by an agent for choosing the 
mutant strategy у  is

(1 -  e ) U { y , x )  + e U( y ,  y)  = U ( y , (  1 -  e ) x  +  e y ) . (2.20)

A strategy x  is defined as evolutionary stable if the following 
inequality holds for any mutant strategy у  ( # х )
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U  (X, (1 -  e ) x  + £ y ) > U ( y ,  (1 -  £)x  +  ey ) . (2.21)

If the expected payoff (Darwinian fitness) of an agent adopting the 
mutant strategy у  is smaller than that of agents adopting the incumbent 
strategy x, then that mutant cannot invade the population. Such a strategy 
is defined as evolutionarily stable.

Definition 2.5 A (mixed) strategy x is defined as an evolutionarily stable 
strategy (ESS) if it satisfies

U(x,  (1 -  £ )x + £y) > U ( y , ( \ -  £)x  + £y) . (2.22)

Since e  is assumed to be small, (2.22) implies the condition (i) or (ii),
(i) U { x , x ) > U { y , x )  V y ( * x ) ,  (2.23)

(ii) If U(x,  x) =  U( y ,  л:), then U(x,  y ) = U ( y ,  y ) . (2.24)

The above ESS concept induces a symmetric Nash equilibrium of the 
underlying game, since condition (2.23) simply reflects this. In addition, 
an ESS must also satisfy condition (2.24). Therefore, the ESS notion is 
stronger than Nash equilibrium, and it can be regarded as a refinement of 
Nash Equilibrium. This brings us to an important question of the 
existence of an ESS.

When the underlying game has a symmetric payoff matrix in Table 2.3, 
the ESS is obtained as follows.

(1) Dilemma Game: If the underlying game is a prisoner’s dilemma 
game, the pure strategy S2 (e2) is the unique ESS.

(2) Coordination Game: If the underlying game is a coordination game, 
two pure strategies Si(ei), S2(e2) and one mixed Nash strategy 
0=  (0, 1-0) are ESS, where в = f t / a, are all ESS.

(3) Dispersion Game: If the underlying game is a dispersion game, the 
mixed Nash strategy 0 =  (6\ 1-9), where 0 = f 3 / a ,  is the unique ESS.

(4) Hawk-Dove Game: If the underlying game is a Hawk-Dove game 
with the payoff matrix shown in Table 2.2, the mixed Nash strategy 
0 =  (6i 1-0), where в  =  1 -  v / c , is the unique ESS.
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The criterion of evolutionary stable equilibrium (ESS) highlights the 
xole of mutations. It is also of interest to know which strategies can 
survive in the long run. Evolutionary dynamics highlight the role of 
selection. We now take a dynamic approach to the study of evolution by 
characterizing the dynamic aspect of evolutionary games. In particular, 
we ask the following question: Do any reasonable dynamics exist that 
would lead a population of agents to an ESS in the long-run?

We focus on evolutionary dynamics formulated as the replicator 
dynamics (RD) model. We will observe that a Nash equilibrium is a 
stable point of the RD model. The model of RD starts with a description 
of the aggregate behavior of a population of agents. The fraction of the 
population choosing a specific strategy increases if the payoff received 
from that strategy is above the average payoff of the population.

Let x e  [0, 1] denote the proportion of agents choosing pure strategy 
5, (e , ) . The current strategy distribution of the population at time t is 
denoted as x(t)  = [ x ( t ) , l - x ( t ) )  , which is defined as the strategy 
distribution of the population. The RD model describes the growth rates 
of the strategy distribution. Since we consider a population of agents who 
play with two strategies, the RD model is governed by the equation in 
which the function x(t)  denotes the percentage growth rate of strategy 
5,(6,). The expected payoff to an agent choosing ^(e,) is Uie^xit)), and 
the average payoff of the population is U (x(t),x(t j) . Since we assume 
that greater payoff (fitness) yields greater reproductive success, the 
percentage growth rate of x(t)  is described as

The above dynamics is defined as the replicator dynamics (RD) of a 
single population. From (2.13), we can derive

x(t)  =  {U ( e 1, x(t)) -  U (x (0 , * (0 )  }jc(f). (2.25)

U (e,, x) -  U(x, x} = ( l -  x){U(e1, x) -  U(e2, x)} 

= {(a + Д1x -  f i } x ( l - x ) .  

Then, the dynamics in (2.25) is in the form of

(2.26)

x(t) = {(a  + p )x  -  p jx (t)( l - x ( t ) ) . (2.27)
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The stability of the RD in (2.27) is then determined depending on the 
signs of the payoff values (X and / ? .

(1) Dilemma Game: For any initial value x(0), the RD converges to 
x=0, where all agents choose S2(e2).

(2) Coordination Game: If the initial value x(0) is greater than 
в  — P  / {a  + P ) , the RD converges to x=l ,  where all agents choose 
Si(ej). On the other hand, if that the proportion is smaller than 0 ,  the RD 
converges to x=0, where all agents choose S2(e2).

(3) Dispersion Game and Hawk-Dove Game: For any initial value x(0), 
the RD converges to x = в  and the proportion в  of the population 
chooses Sj(ej), and the rest of the agents choose S2(e2).

Figure 2.4 represents the phase diagrams of the RD depending on the 
underlying game. If the underlying game is a coordination game, then 
evolution from all initial conditions other than the mixed equilibrium 
leads to one of the pure equilibria of the game, and which equilibrium is 
reached is determined by the side of the mixed equilibrium on which 
play begins. However, for a dispersion game and a Hawk-Dove game,

x=0 x =1
(All S2) (a) Dilemma game (All S j)

в
+ —

(All S2) (b) Coordination game

— ►

(All Sx)

(All S2)
(c) Dispersion game and Hawk-Dove game

Figure 2.4 Basins of attraction of replicator dynamics
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evolution from all interior population states leads to the unique mixed 
equilibrium x = ( 0 , 1 - 0 ) .

By definition, the ESS concept is restricted to the analysis of 
monomorphic configurations, i.e., situations in which all agents in 
the population adopt the same strategy. Naturally, the evolutionary 
performance of the strategy must be tailored to some global assessment 
of the payoff induced across all of the individuals that adopt it. For 
simplicity, the ESS concept identifies such global performance with the 
corresponding average payoff. Thus, in view of the large-population 
scenario, the evolutionary stability is linked to the identical payoff faced 
by all agents.

However, diversity is also an important feature of most interesting 
evolutionary environments. Therefore, the checks and balances afforded 
by a suitable degree of heterogeneity are crucial to understanding the 
evolutionary stability of the situation. However, the heterogeneity must 
be introduced explicitly into the framework if the problem is to be 
suitably modeled. We will discuss this issue in Chapter 4.

In order to extend the generality of our approach, it is also worth the 
effort to allow for the possibility that several distinct populations interact. 
Thus, let us suppose that there are several distinct populations, the 
members of which interact according to a certain underlying game. In 
fact, in order to avoid unnecessary notational burden, let us simply posit 
that there are just two populations of agents. We will discuss this issue in 
Chapter 5.

2.6 Relation between Learning and Evolution

The standard assumption of game theory is that the game is played 
exactly once between fully rational individuals who know all the details 
of the game, including each other's preferences concerning outcomes. In 
this case, rationality means that agents maximize their own payoffs and 
react optimally to others’ decisions.

In many real contexts, agents can seldom hope to understand the 
underlying game, which in turn leads them to adopt different approach. 
In these situations, agents can repeat strategies that worked well in the
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past. A very different reaction is to substitute forward-looking 
deliberation, which is also referred to as the shadow o f the future, for 
pure adaptation to past results, which is referred to as the shadow of the 
past. This approach is also characterized as adaptation based on a 
behavioral strategy that is acquired based on past success or failure.

The origins of evolutionary game theory lie in biological models of 
natural selection. They treat agents as automata, merely responding to 
changing environments without deliberating on other agents’ decisions. 
Agents are genetically programmed to adopt a certain strategy. Then, 
evolution is driven by differences in their reproductive success. In 
essence, evolutionary game theory builds upon the simple rule that any 
non-optimal behavior should eventually be weeded out of the population 
by the pressure of competition and better-suited behavior. Thus, rather 
than invoking agents’ reasoning ability to discipline behavior, the 
criterion of long-run performance and survival is used.

In most game theoretic models, agents calculate their best strategy 
based on information about what other agents have done in the past. 
Then, agents gradually learn the equilibrium strategy. However, it is easy 
to see that there is no general way to guarantee that agents will behave in 
an efficient manner. This is due to the fact that although a pair of 
strategies is efficient, performing them may be irrational for one agent or 
both agents, as illustrated in the dilemma game. Game theory and 
evolutionary games are not able to provide answers explaining how 
agents should behave in order to overcome an inefficient equilibrium 
situation.

Many inconsistencies within game-theoretical models and the 
evolutionary models emerged. We need to explore models that provide a 
micro foundation that is missing in evolutionary approaches. The 
combined approach may provide a necessary complement, which can be 
seen as capacities that evolved during evolution to increase the learning 
efficiency of the individual.

It is also not surprising that many scientists are exploring a new 
unified theory of evolution by merging game theory and evolutionary 
game theory with modern biological evolution theory (Nowar and 
Sigmund, 2004). This new theory attempts to explain all kinds of 
evolutionary processes. Its methods and models cover not only biological
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evolution of organisms, but also the evolution of animal and human 
behavior in their respective societies. Evolutionary models explore 
changes in the global frequency distribution of strategies across a 
population. In contrast, models of learning operate on the local 
probability distribution of strategies within the repertoire of each 
individual member.

When agents are driven by their conscious choices, rather than natural 
selection, we need to describe how agents learn. Although sometimes 
learning and evolution may occur simultaneously, the former usually 
proceeds much more quickly than the latter. Agents can quickly switch to 
preferred strategies, but the change in the strategy distribution is driven 
by gradual turnover in the population.

Baldwin (1896) proposed the idea that individual lifetime learning has 
an influence on evolution, an idea that is known as the Baldwin effect. 
This idea explains the relationship between learning and evolution, 
particularly in regard to benefits and costs in learning. The Baldwin 
effect occurs in two steps. In the first step, lifetime learning gives agents 
the chance to change their phenotypes. If the learned traits are useful to 
the agents and result in increased fitness, they will spread in the 
population in the next generation. This step implies synergy between 
learning and evolution. In the second step, if  the environment is 
Sufficiently stable, then the evolutionary path finds innate traits that can 
replace learned traits, because of the learning cost. This step is also 
known as genetic assimilation. Through these two steps, learning can 
accelerate the genetic acquisition of learned traits.

Hinton and Nowlan (1987) developed the first computational model to 
evaluate the Baldwin effect. Ackley and Littman (1991) showed that 
learning and evolution together are more successful than either alone in a 
collection of agents. Most of these studies have assumed that 
environments are fixed and investigate the first step of the Baldwin effect.

Suzuki and Arita (2003) have investigated dynamic environments and 
how learning can affect the course of evolution in dynamic environments. 
They used the Iterated Prisoner’s Dilemma (IPD), in which phenotypic 
plasticity is introduced into strategies. They conducted computational 
experiments in which phenotypic plasticity was allowed to evolve. They 
Considered a population of agents involved in an IPD. All genes were set
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randomly in the initial population. A round robin tournament was 
conducted between individuals and can be changed by noise (mistake) 
with some probability. The game was played for several rounds, and the 
total score of each agent was regarded as a fitness value. A new 
population was generated by roulette wheel selection according to the 
scores, and mutation was performed on a bit-by-bit basis with some 
probability.

They showed how learning can affect the course of evolution. A 
drastic mode transition happens at the edge between the first and second 
steps of the Baldwin effect in dynamic environments where the optimal 
solution changes dynamically, depending on the interactions between 
individuals. They showed that the implicit cost of learning yields the 
evolution of the potential region that the population could reach through 
the learning process on the fitness landscape. They interpreted the 
Baldwin effect through the meta-strategy generated during evolution and 
analyzed the property of this meta-strategy.

2.7 Design of Learning and Evolving Agents

There is no doubt that agents learn from their past successful and 
unsuccessful attempts, from iterating social interactions and from 
improving and adapting behaviors. A variety of learning models have 
been studied with little concern for the extent to which the models do a 
good job of learning. We believe that agents may tend not to use learning 
models that do poorly. First, we must determine what types of learning 
models agents may use and what they know during learning. Are they 
learning about how to choose the best response strategy, or are they 
learning how to play?

We believe that for most purposes proper models involve neither full 
rationality nor extreme stimulus-response models. We will simplify 
matters by assuming that agents know the extensive form of the game 
and their own payoff. However, they may or may not know their 
opponents payoffs. We can imagine how learning agents might move 
toward a desirable outcome. However, in principle, we could fold this
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evolutionary element into a meta-learning that includes both the short
term learning and long-term evolution.

We endow agents with some learning capability and describe the 
evolutionary dynamics that magnifies tendencies toward better situation. 
By incorporating consideration of how agents learn into evolutionary 
models, we not only make them more realistic, but we also enrich the 
aggregate behavior that can emerge. It is also important to determine 
how a population of learning agents moves toward an efficient 
equilibrium in an imperfect world as they evolve.

A few researchers have tackled the design problem of learning agents. 
Learning agents may be modeled to adapt their strategy choices with 
certain rules. Agents might observe only the history of their own payoffs 
and strategies and might discover new strategies by experimentation. The 
genetic algorithm model of learning attempts to explore such a setting. 
However, agent design has not clarified how to think about learning.

The most important question faced in market design, for instance, lies 
in the representation and structure of the agents. Agents can vary from 
simple agents, who behave only considering constraints, to sophisticated 
learning models. Given that there are many ways to process past data, 
there must be as many ways to construct learning agents. This leaves 
•ome open questions about evolutionary dynamics with only a limited 
amount of new speciation. Agents may be modeled as adapting their 
Strategies. This allows for the possibility of agents to learn how to 
Overcome inefficiencies. An interesting feature is that agents are very 
homogeneous in their abilities at the start. Differences in behavior and 
Strategy evolve endogenously as the system runs. Agent heterogeneity 
becomes a changing feature of the system that can then be studied.
( Young (2005) investigates the performance of a system that is 
composed of other learners. He provides a framework emphasizing the 
amount of information required to implement different learning types of 
learning models. He proved that a learning procedure that satisfies 
certain criteria of convergence to Nash equilibrium may not exist.

Shoham (2003) classified the following agenda of leaning in the 
environment of multiple agents. The first agenda is descriptive and asks 
how humans learn in the context of other learners. The name of the game 
here is to show experimentally that a certain formal model of learning
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agrees with peoples’ behavior. This is a key concern for game theory, 
since a successful theory would support the notion of Nash equilibrium, 
which plays a central role in the game theory.

The second agenda is how to design learning agents. In this case, we 
can easily imagine situations in which agents are implemented with 
different learning models. This is also a basic design problem of 
distributed systems. A central designer may control multiple agents, but 
will not design and implement the same learning rules for them. Instead 
each agent is endowed with a different learning rule that will be 
improved over time. Then, the choice of a learning model becomes a 
basic issue to be considered. We need to view the designer’s choice of 
learning models as a fundamental decision that should follow normative 
criteria.

The other research agenda is prescriptive and asks how agents should 
learn in the context of other learners. In this case we may not be able to 
obtain optimal learning models for them. Instead, we assign a learning 
rule to each of them so that they may converge to a desired situation. In 
this case the question of how best to learn is different from the issue of 
how best to behave.

Tennenholtz (2002) introduced the concept of efficient .learning 
equilibrium (ELE), a normative approach to learning in multi-agent 
settings. In ELE, the learning algorithms themselves are required to be in 
equilibrium. In addition, the learning algorithms must arrive at a desired 
value after polynomial time, and deviation from the prescribed ELE 
becomes irrational after polynomial time. The following are the 
requirements:

(1) Individual Rationality. The learning models themselves should be in 
equilibrium. It should be irrational for each agent to deviate from its 
learning model, as long as the other agents stick to their learning models.

(2) Efficiency. Deviation from the learning models by a single agent 
while the others stick to their learning models will become irrational, in 
the sense that it will lead to a situation in which the deviator’s payoff is 
not improved after many stages. If all agents stick to their prescribed 
learning models, then the expected payoff obtained by each agent will be
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close to the value it could have obtained in a Nash equilibrium. The 
agents known the game from the outset.

A set of learning algorithms satisfying the above properties for a given 
class of games is said to be an Efficient Learning Equilibrium (ELE). 
They proved the existence of an ELE, where the desired value is the 
expected payoff in a Nash equilibrium. They also introduced the concept 
of a Pareto-ELE, where the objective is the maximization of the sum of 
all agents’ payoffs.

Tennenholtz proved the existence of an ELE and of a Pareto-ELE in 
repeated games. The idea of equilibrium of learning models can be 
viewed similarly. We can search for learning models such that it will be 
irrational for each agent to deviate from its current model assuming the 
other agents sticks to their models, regardless of the state of the game. 
Both ELE and Pareto-ELE provide new basic tools for learning in multi
agent settings.

Another unique approach is a design approach (Shoham, 2003). Let us 
consider the existence of some correlation device that provides the agents 
with a learning model to use and suggested payments to be made. This 
correlation device is not a designer who can enforce behaviors or 
payments and does not possess any private knowledge or aim to optimize 
private payoffs. Suggested payments are just part of the learning model, 
and it is up to the agents to decide whether to make them. This is proof 
that the learning models are in equilibrium and suggests that these 
payments will actually be executed by self-interested agents.

We may ask what the best learning model is for a given agent for a 
fixed class of the other agents facing the same situations. The model thus 
retains the design stance of engineering, asking how to design an optimal 
or effective learning agent for a given environment. This is precisely 
because it adopts the optimal agent design approach and does not 
consider the equilibrium concept to be central or even necessarily 
relevant.

The essential divergence between the equilibrium approach and the 
design approach lies in the attitude towards bounded rationality, a largely 
unsolved problem. In contrast, the design approach embraces bounded 
rationality as the starting point, and only adds elements of learning when
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appropriate. The result is fewer elegant theorems in general, but perhaps 
a greater degree of applicability in certain cases.

In general, this applies to situations with complex strategy spaces, and 
in particular to multi-agent learning settings. We especially need to focus 
on the behavior rules that provide the guidance to choose their actions. 
This means that agents are trying to realize a better relationship, rather 
than to receive a good payoff. We discuss this issue in detail in Chapter 9 
and Chapter 10.



Social Interactions and Social Games

Chapter 3

[n this chapter, we formulate social games in which there are a large 
lumber of agents, each of which faces a binary decision problem with 
ixtemalities. The outcome depends on the strategy choices of all agents. 
Fortunately, in certain strategic situations, interactions among multiple 
igents can be analyzed by decomposition into underlying 2x2 games.

3.1 Social Interactions with Externalities

[n this section, we demonstrate that there are a host of problems that 
share the. same general structure with externalities and that make social 
interactions problematic whenever they arise.

The question of how it is possible for a collection of independent 
individuals to achieve both their own goals as well as their common goal 
has been addressed in many fields. The key element that distinguishes a 
common goal from an individual goal is that the former requires a kind 
of collective action. By a common goal, we mean a goal that is 
achievable by collective action that requires explicit cooperation.

Coordination is different concept from cooperation, which does not 
assume the existence of the common goal shared by all members. 
Coordination is necessary in order to achieve individuals’ goals more 
efficiently. The essence of the collective system is that it is the 
individuals who are making the decisions, not the collective. Therefore, 
we need to cope with the collective system by attempting to stack the 
deck in such a way that individuals have selfish incentives to do the 
collectively desirable thing.

6IS



66 Adaptation and Evolution in Collective Systems

Undesirable outcomes that no one would have chosen may occur when 
social interactions of agents leads to a result that is not optimal. This 
problem is often referred as a coordination failure. The reason that 
uncoordinated activities of agents who pursue their own ends often 
produce outcomes that all would seek to avoid is that each agent’s action 
affects the others and these effects are often not included in the 
optimization process made by other agents. These unaccounted for 
effects on others are called externalities.

Externality in economic activities, for instance, causes a good or a 
service to have a value for a potential customer that is dependent on the 
number of customers already owning that good or using that service 
(Cooper, 1999). One consequence of externality is that the purchase of a 
good by one individual indirectly benefits others who own the good. For 
example by purchasing one particular type of the mobile phone, a person 
makes other users of the same type more useful. This kind of side-effect 
is known as a positive externality. There is another type, known as a 
negative externality, which occurs when the by-product is viewed as 
having a social cost. For instance, when we drive a car we create air 
pollution. This air pollution can have harmful effects on others. Although 
we do not usually account for this in the costs of driving, other people 
pay the costs of dealing with air pollution.

An externality is usually considered to be an unaccounted side effect 
of activities by some agents on other unrelated agents. An externality 
also occurs when individuals care about others’ choices and each 
individual’s choice affects others’ choices. For instance, when deciding 
which movies to visit, which new technologies to adopt or which job 
candidates to select, we often have little information with which to 
evaluate the alternatives. Therefore, we rely to the recommendation of 
friends or simply select the choice that most people have selected. Even 
when we have access to plentiful information, we often lack the ability to 
make sense of it and rely on the advice of trusted friends or colleagues.

An externality also occurs in other social interactions when a decision 
causes benefits all of the costs to other individuals. In other words, the 
individual does not bear the entire gain or loss brought about by his or 
her action. For instance, consider the provision of a public good for a 
collective of individuals. In contrast to private goods, public goods are
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non-excludable in consumption. The public-good nature of a lighthouse, 
for instance, enables each individual to have a free ride. It is not always 
individuals’ incentives to abstain from certain activities that cause social 
dilemma problems. Sometimes, it is the individual activities themselves 
that have a harmful effect on the common interest, which suggests the 
implicit agreement to abstain from these activities (Olson, 1965). Air- 
pollution is another typical example. Although everybody can be made 
better off by an appropriate agreement controlling everyone’s pollution 
level, individuals have an incentive to free ride in the absence of 
enforcement.

We distinguish two types of externalities: strategic compatibility and 
strategic complementarity. If social interactions are characterized to have 
strategic compatibility, agents’ payoffs increase with the number of 
agents who take the same action. In contrast, if social interactions are 
characterized to have strategic complementarity, things are better off if 
agents distribute themselves among the possible actions. But even if 
everyone prefers to be mixed, it often turns out that most agents begin to 
take the same action. The problem of coordination failure arises in both 
contexts of social interactions with externalities.

Social interaction with externalities raises two basic questions, a 
positive question and a normative question. The first question concerns 
how the outcome actually comes to exist, and the second question 
concerns what the desired outcome should look like. The producers of 
externalities do not have an incentive to take into account the effect of 
their actions on others, and the outcome will be inefficient. This may 
make the problems of externalities too complex to deal with.

3.2 Binary Decisions with Externalities

From the perspective of a social planner, social interactions with 
externalities will result in an outcome that is not socially optimal. In this 
section, we illustrate some problems of inefficiency by considering 
binary decisions with externalities.

We consider a population of N  agents, each faces a binary choice 
problem between 5/ and S2. For any agent, the payoff for choosing Si or
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S2 depends on how many other agents also choose Sj or S2. Here, we 
consider social interactions in which agents are identically situated in the 
sense that every agent’s outcome, which ever way she makes her choice, 
depends on the number of agents who choose on way or the other.

The payoff to each agent is given as an explicit function of the actions 
of all agents, and therefore she has an incentive to pay attention to the 
collective decision. However, the binary decision itself can be considered 
to be a function of solely the relative number of other agents who are 
observed to choose one alternative over the others. This class of binary 
decision problems is referred to as binary decisions with externalities.

As simplistic as it appears, a binary decision framework is relevant to 
surprisingly complex outcomes. Both the detailed mechanisms involved 
in binary decision problems and the origins of the externalities can vary 
widely across specific problems. The relevant binary decision problem 
frequently exhibits a threshold nature. Agents display inertia in switching 
outcomes, but once their personal threshold has been reached, the action 
of even a single neighbor can tip them from one state to another.

We now formulate some binary decision problems with externalities. 
A typical example is the situation in which the increased effort by some 
agents leads the remaining agents to follow suit, which causes multiplier 
effects. In this case, each agent receives a high payoff if she selects the 
same action as the majority.

Example 3.1 <A network formation problem> We consider a population 
of N  agents in which each agent periodically has to make a decision as to 
whether to join the network or separate from it. If more agents join the 
network, then they receive a higher payoff. Intuitively, it is enough to 
accept that an agent's rational decision depends on the other agents 
directly linked with her. This interdependence with externality in 
decision may in turn influence the decisions of the others.

Here, each agent has the following two strategies:
^ : joins the network,

S2: separates from the network. (3.1)

Two assumptions that simplify the analysis further are that the payoff 
function is symmetric, that is to say, it is the same from every agent’s
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point of view, and that every agent’s payoff function is linear with 
respect to the number of agents choosing one of the choices. That is, an 
agent’s payoff function is directly proportional to the number of agents 
selecting one of the choices.

The payoffs to each of the agent choosing S/ or S2 are given as

U(S, )  = a ( n / N ) - c ,
(3.2)

U ( S 2) = b ( n / N ) .

where n/N (0 < nl  N  < 1) is the proportion of agents of choosing S],
The above payoff functions are depicted in Figure 3.1. The payoff for 

joining the network is an increasing function of the agents who make the 
same decision. Any agent who chooses 5; or S2 gains if some agents that 
previously chose S2, shift and choose Si, since both payoff functions are 
rising to the right. Therefore the collective maximum can occur at the 
right extremity, where all agents choose Si.

The optimal strategy of each agent is obtained in the two cases 
depending on the relations among the payoff values, a, b, and c.

Figure 3 .1 The U ( S and U(S2) functions indicate the payoffs to an agent choosing S, or 
fj when the proportion of agents who choose St is n/N



70 Adaptation and Evolution in Collective Systems

<Casel> b >  a —с : In this case, the payoffs of an agent choosing from
Si or S2 satisfy

U(S2) >U( S l ) Vn/ N.  (3.3)

Therefore, the rational choice is S2 without regarding the others’ choices. 
In game theory, S2 is defined as a dominant strategy. In this case, no 
agent will add to the networks, and this situation is known as a social 
dilemma. There are several social and economic problems involving the 
clash of individual optimality and collective optimality.

Game theory suggests two alternatives for solving social dilemma 
problems. One of them is to introduce enforcement. For instance, the 
payoffs are altered in such a way that a non-cooperative agent incurs 
some penalty. The other option is to repeat the binary choice problems. It 
should be noted that the analysis of repeated games has been very fertile 
for the study of social dilemmas (Axelrod, 1987).

<Case 2> b < a - с : The expected payoff to an agent choosing 5/ or S2 
is shown in Figure 3.2. In this case, the two lines showing the expected 
payoffs intersect at с /(a -  b) , and they satisfy:

(i) U(S{) < £/(^2) if n / N < c / ( a - b ) ,

(ii) t/(Sj) > {/($2) if n / N > c / ( a - b ) .

The collective payoff is maximum at n/N=l,  when all agents choose 
S], However, when the proportion of agents joining the network is less 
than the value at the intersection c / ( a - b ) , it begins to be rational for an 
agent to choose S2. When this condition holds, no agent will join the 
network, and they encounter the same social dilemma problem.

In Case 2, we have two stable solutions, an all-S/ choice and an all-S2 
choice. The former situation enjoys the highest externality and is better 
for all agents. When there are multiple solutions, one for each extremity, 
the problem is to obtain a collaborative choice.

Since the two payoff functions have the same slope, there is no 
ambiguity about which solution is superior. If many agents choose Sh no 
agent is motivated to choose the inferior S2 unless enough others do so, 
which switches the intersection of the two payoff functions. Therefore,
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the ratio at the intersection becomes a crucial value for the selection of 
the efficient outcome. It is enough merely to get agents to make the right 
choice at the beginning. If the ratio of agents who choose Si is greater 
than the critical value, с /(a  —b) = в  at the intersection, all agents may 
self-enforce to choose Si. Therefore, the initial ratio (threshold) is vital 
and if it exceeds this threshold, it can induce all other agents to shift to a 
superior choice without any central authority.

n/N: Proportion choosing S/

Figure 3.2 The vertical coordinate represents the payoff functions U(Si) and U(S2). 
rhese functions indicate payoffs to an agent choosing 5; or S2 when the proportion of 
igents who choose Sj is n/N

Example 3.2 <A competitive route selection problem  (1)> Example 3.1 
llustrates the situation in which the increased effort by some agents 
eads the remaining agents to follow suit. On the other hand, there are 
opposite situations where agents may receive a high payoff if they select 
:he distinct strategy as the majority does.

We now reformulate the competitive route selection problem 
iiscussed in Chapter 1. For a collection of N  agents, there are two 
:hoices, either to use a private car (5, or Route A in Figure 1.1) or a 
jublic train ( S2 or Route B) to commute to the same destination.
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5,: uses a private car,

S2 : uses the train. (3.5)

If more agents use private cars to commute, congestion develops and the 
required time to commute increases in proportion to the number of 
agents who use cars. However, even if a large number of agents choose 
the train, the required time for them to commute is constant, as illustrated 
in Figure 1.1.

The payoff for each strategy Sb i= l,2 , could be measured in terms of 
its inverse travel time l/T(Sj). We have the relation l/T(Si)=V(Si)IL, 
where V(Si) is the average speed of a car and L the length of the route. 
We can approximate the average speed by the linear relationship: V(Si) -  
У maxi 1 -  n/N), where Vmax is the speed limit, n is the number of agents 
who use cars, and N  is the total number of agents who commute. Then, 
the payoffs to an agent for using a private car or for using a train, the 
inverse of traveling time (benefit) minus time (cost), are defined as 
follows:

U(S1) = a ( l - n / N ) ,

U ( S 2) = b .  (3.6)

In this case, the payoff to an agent choosing 5/ is defined as a linearly 
decreasing function of the proportion of agents who choose s^n/ N) ,  as 
shown in Figure 3.3. On the other hand, the payoff to an agent who 
chooses S2 is constant, regardless of the choices of the others. User 
equilibrium based on individual optimality is reached at the intersection, 
which is achieved at n/N=a/(a+b). However, the collective maximum 
(system optimal) is achieved at n/N=a/2(a+b), which is half of the value 
at the user equilibrium.

In this situation, the choice of Sj benefits those who make the opposite 
choice, S2 , and the choice of S2 benefits those who choose Si. Each agent 
non-cooperatively seeks to maximize her own payoff, and a Nash 
equilibrium (user equilibrium) is achieved when each agent chooses the 
route that is the best for all agents. Specifically, a Nash equilibrium is 
achieved when no agent may improve her utility through unilateral action. 
Therefore, a Nash equilibrium is achieved at the intersection, which is 
given at n/N =a/(a + b).
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However, this Nash equilibrium at the intersection is not at collective 
maximum. Any agent choosing Sj or S2 gains if some agents who 
previously chose Si instead choose S2. Since the slope of the payoff 
function of Si is shaper than that of the payoff function of S2, if fewer 
agents than the ratio at the intersection choose Si, then the agents who 
eventually choose S2 will increase more than the agents who switch from 
Sj to S2 decreases.

n/N: Proportion choosing Sj

Figure 3.3 The functions U(Sj) and U(S2) indicate the payoffs to agents choosing S, or S2 
as a function of the proportion of agents choosing Sj, i.e., n/N

Example 3.3 <A competitive route selection problem  (2)> We consider 
another route selection problem with a different payoff function. The 
payoffs to an agent choosing from 5; or S2 are given 

U(S, )  = a ( \ - n / N ) ,

U ( S 2) = b ( n / N ) .  (3.7)

The payoff for choosing Sj is given as a linearly decreasing function of 
the proportion of agents choosing Sh which is illustrated in Figure 3.4. 
We notice a difference between the two payoff schemes, in that only one 
curve slopes up to the right in Figure 3.3, whereas two curves having 
slopes of opposite sign appear in Figure 3.4. In Section 3.4, we will show 
that the collective efficiency is achieved at n/N=0.5.
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Payoff

b

a

0 0.5 a/(a+b)
n/N\ Proportion choosing St

Figure 3.4 The vertical coordinate represents the payoff functions U(S{) and U(S2). 
These functions indicate payoffs to an agent choosing S, or S2 when the proportion of 
agents who choose Si is n/N

Example 3.4 <A market entry problem> Market entry games are often 
used to understand how competitive firms implicitly coordinate their 
self-interested market entry decisions. Market entry games are modeled 
to simulate a situation in which a newly emergent market opportunity 
may be fruitfully exploited by no more than a fixed number of firms.

When too many entrants wish to exploit a new market opportunity, a 
problem arises regarding how many entries should be coordinated. 
Without coordination, too many firms may decide to enter and 
consequently will result in a much worse situation. Conversely, when 
they are fully aware of the consequences of excessive entry, firms may 
be reluctant to enter, or no firm may try to exploit the market in the first 
place.

We formulate a market game with a collection of N  agents. Some 
integer Nc (1 < Nc < N), representing the capacity of the market, is 
publicly known. Each agent i must decide independently whether to enter 
the market (Si) or stay out of it CSV). The payoff for each strategy is given 
as

v + r(Nc -  n) if decides to enter (Si)
U(x) =

if decides to stay out (S2) (3.8)



Social Interactions and Social Games 75

where дг = (xhx2,..,xn) is the vector of all agents’ decisions, xt, x i£(SIt S2] , 
is a decision of agent i, n is the number of entrants (0 < n < N ), and v 
and r are positive constants (Duffy and Hopkins, 2002).

Note the similarity between the route choice in Example 3.2 and the 
market entry problem if we compare the payoff schemes in Figure 3.3 
and Figure 3.5, in which one payoff function slopes up to the right and 
the other is constant. We have a stable Nash equilibrium at the 
intersection of the two payoff functions. If more than Nc agents choose Si, 
then the choice of S2 will be better, and agents will switch from 5, to S2 
until the two functions are equivalent in value. On the other hand, if 
fewer agents choose Si, then the choice of 5/ will be the more attractive 
choice, and agents will switch from S2 to Si until the advantage of the 
payoff disappears.

Therefore, a Nash equilibrium is reached at the intersection at n/N = 
Nc /N. However, this equilibrium is not at collective maximum. The 
collective maximum is achieved at NC/2N, which is a half of the value of 
a Nash equilibrium.

Market entry problems typically admit a large number of Nash 
equilibria (Ochs, 1998). Given this multiplicity of equilibrium outcomes, 
a question arises as to which type of equilibrium agents are likely to 
coordinate upon. In addition, there is no support for convergence to 
equilibrium on either the collective or individual level.

If collective efficiency does not occur at the intersection and it is 
achieved by lowering the frequency of entry, there is a payoff difference 
between choice 5/ and choice S2. Since the collective occurs to the left of 
the intersection, agents who choose S2 gain less than those who choose 
5/. This is very different from the Nash equilibrium at the intersection, at 
which all agents receive the same payoff. This raises another problem of 
equity.

Some compensation may be necessary, or agents may need to take 
turns, in order to solve this problem. If an inefficient S2 choice has 
become established, no one will choose S2 unless she expects others to do 
80. There are many situations in which no one is willing to be the first to 
switch and everyone waits for the others to switch. Therefore, they 
become trapped at an inefficient Nash equilibrium at the intersection.
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Payoff

Figure 3.5 The function U(Sj) shows the payoff to an agent who chooses Si, and the 
function U(S2) shows the payoffs to an agent who chooses S2 when the proportion of 
agents choosing S/ is n/N

3.3 Decomposition to Pair-wise Interactions

In the previous section, we addressed some examples of binary collective 
decision problems with externalities. There is extensive literature and 
many theoretical results on two-person games, however, literature and 
theoretical results on multi-person games remains sparse. In general, 
multi-person games become analytically difficult to treat if the number of 
agents becomes large. However, multi-person games illustrated in the 
previous section can be decomposed into two-person games by treating 
them as the interaction between an individual and the collective. By 
decomposition into 2x2 games, we can treat multi-person games from a 
single agent’s viewpoint (Colman, 1999).

Let us consider the network formation game with the payoff 
functions described by (3.2). We assume that the agents interact with 
each other with the payoff matrix shown in Table 3.1. The expected 
payoffs to an agent choosing from 5, or S2 are given as

U ( S l ) = ( a -  c)(n / N )  -  c (l -  n / N )  = ар -  с ,

U ( S 2) = bp (3.9)
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Therefore, the payoffs for choosing S, or S2 become the same as those 
given in (3.2). As we showed in Chapter 2, the linear transformations of 
the payoff matrix do not affect the Nash equilibrium. By subtracting b 
from a-с, subtracting 0 from -c , and then dividing all payoffs by
0  = c / ( a  — b ) ; we obtain the payoff matrix in Table 3.1, which is 
strategically equivalent to the payoff matrix in Table 3.2.

Similarly the route selection problem in Example 3.3, in which an 
agent’s payoff functions are given in (3.3), can be decomposed into the 
payoff matrix of Table 3.3. By dividing all payoffs by в =a/(a +b),  we 
obtain the payoff matrix in Table 3.3, which is also strategically 
equivalent to the payoff matrix in Table 3.4.

Note the similarity between the competitive route choice in Example
3.2 and the market entry problem, in which one payoff slopes up to the 
right and the other is constant. The market entry problem formulated as a 
multi-person game can be also decomposed into a two-person game, in 
which each agent has the payoff matrix in Table 3.5.

Table 3.1 Decomposition of the payoff function in Figure 3.2 into a 2x2 game

Table 3.2 Transformed payoff matrix ( в  — С / ( a  — b )  )

s ,
(1 -p) _  

0

в
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Table 3.3 Decomposition of the payoff function in Figure 3.5 into a 2x2 game

C ollective
choice

O wn choice

5 .
(p)

s 2
(1 -p)

5 ,
0

0
b

a

S 2
a

b
0

0

Table 3.4 Transformed matrix in Table 3.2 { в  =  a / ( a  +  b)  )

Collective 
' ' ' ' - - - -^ c h o ic e  

Own choice

s ,
(p )

S2(l-P)

0
0

l - в
в

s 2
в

l - e
0

0

Table 3.5 The decomposed payoff matrix of a market entry game

Collective
choice

Own choice
S, s 2

0
0

v / N

v / ( N - N c)

s 2

v / ( N - N c)

v / N

v / N

v / N

3.4 Compound Social Games

In the previous section, we observed that multi-person games involving 
social interaction by many agents could be decomposed into two-person 
games by treating them as the interaction between an individual and the 
collective. We can also examine this property in the opposite sense. The 
payoff function to each agent in social games is defined by the
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composition of the underlying 2x2 games. We define multi-person games 
having this property as compound social games.

The theory of compound games was first suggested by Colman (1999). 
Compound games apply to multi-person games in which the underlying 
two-person games are symmetric in the sense of being the same from 
every agent’s viewpoint. Furthermore, the payoff resulting from one of 
the two choices is a linear function of the number of the other agents who 
choose one of the choices.

In compound games, it does not make any difference whether each 
agent interacts with all the others or whether each encounters a randomly 
chosen opponent. Each agent's payoff depends the agent’s choice and all 
others’ choices. In this case, each agent's payoff depends her choice and 
the strategy distribution of the population.

Suppose that agents repeatedly play the underlying game with the 
payoff matrix in Table 3.6. When the proportion of agents choosing Si is 
p £ [0, 1], the expected payoffs of an agent who adopts either S, (et with 
the mixed strategy representation) or S2 (e2) are

U( e l , p )  = (a — b ) p  + b ,

U( e 2, p ) = ( c - d ) p  +  d . (3.10)

Therefore, the payoff functions of an agent are a linear function of the 
proportion of agents p  who choose Sj.

We now define the following indifference function : 

I(p)=U(el , p ) - U ( e 2,p)

= (a + d  - b - c ) p  + b - d  (3.11)

Table 3.6 Payoff matrix o f a decomposed social game



80 Adaptation and Evolution in Collective Systems

This function is equal to the expected payoff of both strategies at the 
strategy distribution p=(p, 1-p) of the population. The derivative of this 
indifference function, L=a+d-b-c, measures the marginal change in each 
strategy’s relative payoff when the number of agents choosing the same 
strategy increases. That is, this derivative measures the degree to which 
acting in concert benefits the agents when aggregate behavior of the 
population is p=(p, 1-p).

Compound social games are classified into the following types 
depending on the payoff values, a , b , с and d  :
(i) Compound dilemma games: (a >  c, b >  d, or a < c , b < d ),
(ii) Compound coordination games: (L > 0: a >  c , d >  b),
(iii) Compound dispersion games: (L < 0: c >  a , b >  d),
(iv) Compound Hawk-Dove games: (L < 0: a=(v-c)/2, b=v, c=0, d=v/2).

(1) Compound Dilemma Games', (c > a > d > b). The N-person 
Prisoners’ Dilemma (NPD) game is a multi-person decision-making 
involving the clash of individual and collective interests. The NPD is 
modeled with the following structure:

(i) Each agent faces a binary choice between two strategies: Si 
(Cooperate) and S2 (Defect).

(ii) The strategy S2 is dominant for each agent, that is, each agent 
obtains a better payoff by choosing S2 than 5/, no matter how many of the 
other agents choose Si.

(iii) The outcome if all agents choose their inferior strategy S] is 
preferable, from every agent’s point of view, to the outcome if everyone 
chooses S2. Since the dominant strategy S2 is best choice for an 
individual, if all agents choose S2, they collectively result in an 
inefficient Nash equilibrium.

The NPD is formulated as a compound dilemma game with the payoff 
functions shown in (3.2), which is depicted in Figure 3.6. The vertical 
axis represents an agent’s expected payoffs, and the horizontal axis 
represents the proportion of agents in the population who choose Si. In 
this figure, the filled dot, an all-S2 choice at the left-extremity, indicates a 
Nash equilibrium, and the open dot, an all-5/ choice at the right- 
extremity indicates collective efficiency. It is obvious that the right- 
extremity enjoys the highest externalities and is the best for all agents. If
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all agents seek their individual rationality, they choose S2 and receive b. 
On the other hand, if all agents cooperate in choosing 5/, they receive a 
(a > b).

However, if one agent defects by choosing S2, and all other agents 
cooperate, then the defecting agent will receive с (с > a). In particular, 
the outcome if all agents choose the inferior strategy Si is preferable, 
from every agent’s point of view, to the outcome if everyone chooses S2. 
However, the dominant strategy S2 is the best choice for an individual. 
Therefore, no agent will be motivated to deviate unilaterally from 
choosing S2.

Figure 3.6 The functions U{ehp)  and U(e2,p) indicate payoffs to an agent choosing Sj(et) 
or Si(e2) as functions of the proportion of agents choosing S,

(2) Compound Coordination Games: (a > c, d  > b) There are many 
situations in which it is better to agree than to be against everyone else. 
On the other hand, it is better to be against everyone if no one else agrees. 
The payoff functions of the compound coordination game are shown in 
Figure 3.7. The vertical axis represents an agent’s expected payoffs, and 
the horizontal axis represents the proportion of agents in the population 
who choose Si. The payoff to an agent choosing St and the total payoff to
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an agent choosing S2 at their end-points are found by setting p = l  and 
p=0.

Compound coordination games are unlike compound dilemma games, 
in so far as the payoff function U(e2, p) does not dominate the function 
U(eb p) across the entire region of p. As shown in Figure 3.7, we have a 
different case with two stable Nash equilibria at the end points on the left 
and right, and one unstable Nash equilibrium at the intersection point.

If only a few agents choose Si, they will switch to S2 if they are 
rational, and if most agents choose 5 / , the few agents who choose S2 will 
switch to Si. Then, the tendency is always away from the intersection 
point. If everyone chooses Si or if everyone chooses S2 then no one is 
motivated to switch. The direction in which the collective behavior will 
move depends on the initial proportion of agents who choose Si.

The two payoff functions can be equated at the point
ap + b(l - p) = cp + d (l - p),  (3.12)

and such p  is obtained as
p-(d-b)/(a  + d - b - c )  = в .  (3.13)

In particular, the outcome in which agents choosing Si and S2 split into 
ratios of в  and 1 - 0 ,  respectively, it is preferable from every agent’s 
point of view and none is motivated to deviate unilaterally from the 
status quo. Therefore, the intersection is also a Nash equilibrium. The 
two filled dots in Figure 3.7 indicate Nash equilibria and the open dot 
indicates both Nash equilibria and collective efficiency. We have two 
stable Nash equilibria, an all-5; choice and an all-S? choice, however, the 
right-extremity enjoys the highest externality and is better for all agents.

The problem then is how to achieve the most efficient Nash 
equilibrium. Since both curves have the same direction, there is no 
ambiguity about which equilibrium is superior. In this case with multiple 
equilibria, the problem is to obtain a concerted choice. If many agents 
choose S2, then no agent is motivated to choose the inferior choice S2 
unless enough other agents switch beyond the intersection of the two 
payoff functions. Therefore, the ratio at the intersection provides a 
crucial mass parameter (threshold) for the selection of collective 
efficiency. It is enough merely to get agents to make the right choice at 
the beginning. If the ratio of agents who choose the superior strategy (Si)
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at the beginning is greater than the value at the intersection, all agents 
eventually self-enforce to choose Si. Therefore, this threshold is viable 
and if the initial ratio of choosing Sj exceeds this value, it can induce 
other agents to shift to a superior choice.

Payoff

p: Proportion choosing S,

Figure 3.7 The functions V(eip) and U(e2 p) indicate payoffs tcr>an agent choosing S/ (e,) 
or S2 (e2) as a function of p, the proportion of agents who choose S, (e,)

(3) Compound Dispersion Games: (c > a, b > d) A more frequently 
studied class of games is coordination games, in which agents gain high 
payoffs when they choose the same action. A complementary class that 
has received relatively little attention is games in which agents gain 
payoffs only when they are dispersed by choosing distinct actions. These 
games are sometimes called dispersion games. In Chapter 2, we focused 
on the two-agent case, and the 2x2 dispersion games are equivalently 
transformed into coordination games by renaming the strategies.

However, with an arbitrary number of agents, the coordination and 
dispersion games diverge. While the generalization of two-person 
coordination games to multi-person games is quite straightforward, that 
of dispersion games is more complex.
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The payoff functions of the compound dispersion game are depicted in 
Figure 3.8. The compound coordination game with the payoff functions 
in Figure 3.7 have two equilibria of pure strategies ip=0  and p = l )  and 
one mixed situation, in which both strategies are used at the ratios of в  
and 1 -в.  Under this mixed population, the payoffs of all agents are equal, 
and under the two equilibria of pure strategies in which all agents 
coordinate on the same strategy. On the other hand, the compound 
dispersion game, in which the two functions have opposite slopes, has a 
unique equilibrium at the intersection of the two payoff functions, 
indicated by the filled dot in Figure 3.8.

The payoff at the Nash equilibrium is the same whether agents choose 
5/ or S2. The two payoff functions can be equated at the intersection

ap+ b(l  - p) = cp + d(l  - p), (3.14)
and p  is obtained as

p  -  (b -  d )  / ф  + с -  a -  d )  =  в  . (3.15)

If the game is repeated, there will be a tendency towards a stable 
equilibrium with 6 N  agents choosing Sj and the remaining 
(1 - 0 ) N  agents choosing S2. However, such a mixed equilibrium 
situation is not to be efficient. We discuss this issue in Section 3.5.

Figure 3.8 The functions U(etp)  and U(e p) indicate payoffs to an agent choosing S,(e,) 
or S2 (e2) as a function of p, the proportion of agents who choose Si
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(4) Compound Hawk-Dove Games: (a=(v-c)/2, b=v, c=0, d=v/2). We 
consider a multi-person version of Hawk-Dove games. A natural way is 
to construct compound Hawk-Dove games in which many agents engage 
in a series of two-person contests with one another according to the 
payoff structure in Table 2.2. This is a special case of compound 
dispersion games with the payoff matrix in Table 3.6, where a=(v-c)/2, 
b=v, c=0, and d=v/2.

The compound Hawk-Dove game has a unique symmetric Nash 
equilibrium in the mixed population, the proportion of agents who adopt 
5/('Hawk') is в  = v I с and that of agents who adopt 52(Т)оуе') is 
1 —0 = 1 —v / c .  At the Nash equilibrium of the mixed population, the 
expected payoff per agent is (v/2){l-(v/c)}. However, if all agents choose
S2 ('Dove'), then each agent receives v/2.

Multi-person Hawk-Dove games are unlike the NPD in so far as the 
function of S2 does not dominate the function of Si across its entire region 
of p, as shown in Figure 3.9. The payoff at the Nash equilibrium is the 
same whether the individual agent chooses Si or S2. The two payoff 
functions are equated at the intersection

( v - c ) p / 2  + v ( l - p )  = v ( l - p ) / 2 ,  (3.16)

and such p  is obtained as
p  = v / c  =  d  (3.17)

If the game is repeated, there will be a tendency towards a stable 
equilibrium with (1 - 6 ) N  agents choosing S, and ON agents choosing S2. 
However, like the compound dispersion games, this mixed Nash 
equilibrium is not efficient, because all agents would be better off if they 
chose S2, but this outcome is not a Nash equilibrium.

As shown in Figure 3.9, we have a unique stable Nash equilibrium at 
the intersection (the filled dot). If more agents than the ratio at the 
intersection choose Si, S2 will be the better choice and some agents will 
switch from S, to S2 until the two choices become equivalent. On the 
other hand, if fewer agents choose Si, the choice of Si will be more 
attractive and some agents will switch from S2 to Si until the payoff 
advantage disappears. However, this Nash equilibrium is not at a 
collective maximum. Any agent who chooses 5/ or S2 gains if some
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agents choosing S2 shift and choose Sh because both payoff functions are 
rising to the left.

The collective maximum can occur at the left-extremity (the open dot), 
where p =0  and all agents behave as “Doves”.

Figure 3.9 The function U(ehp) shows the payoff to an agent who acts as a “Hawk (e/)”, 
and the function U(e2,p)shov/s the payoffs to an agent who acts as a “Dove (e2)”

3.5 Nash Equilibrium and Collective Efficiency

A natural way to study social interactions involving many agents is to 
model compound social games, in which all agents engage one another in 
a series of two-person games according to the payoff matrix in Table 3.6. 
In this section, we characterize Nash equilibrium and collective 
efficiency in compound social games.

Definition 3.1 There is a population of agents G = {i: 1 < i < N ] ,  and 
each agent individually faces the binary choice problem with the two 
strategies Si and S2. We denote the proportions of agents who choose 5/ 
by p  and who choose S2 by 1-p. The vector p  = (p, p) defines the 
strategy distribution of population G.
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Definition 3.2 An equilibrium situation in which if no agent can 
improve her payoff by unilaterally changing her strategy is defined as a 
Nash equilibrium. We denote the payoff of agent i as и  (л;,, x(i)) when 
she chooses xl e {Sx,S2}and the remainder of the other agents choose 
x(i) = (x„x2,., , xi + ] xn). The set of strategies (x*, x" (г)) is defined as 
a Nash equilibrium when it satisfies

U(x%x, ( i ) )>U(xi , x , (i)), Vx,. e { S lf52}, V ie G  (3.18)

Definition 3.3 The optimal situation in which no agent can improve her 
payoff without lowering the payoff of any other agent is defined as 
collective efficient (Pareto-efficient).

We define the situation in which the summation of the payoffs of the 
population (or the average payoff per agent) is maximized as collective 
efficiency (or collective maximum).

Pareto efficiency (or Pareto optimality) is a central concept in game 
theory with broad applications in economics, engineering and the social 
sciences. A change that can make at least one individual better off 
without making any other individual worse off is called a Pareto 
improvement. An allocation of resources is Pareto efficient when no 
further Pareto improvements can be made. The term is named after 
Vilfredo Pareto, an Italian economist who used the concept in his studies 
Of economic efficiency. If an allocation is not Pareto efficient, then it is 
the case that some individual can be made better off without anyone 
being made worse off. It is commonly accepted that such inefficient 
Outcomes are to be avoided, and therefore, the Pareto efficient is an 
important criterion for evaluating social systems.

There is often more than one Pareto efficient outcome, and not every 
Pareto efficient outcome is regarded as desirable. In general, there are 
many Pareto efficient allocations, some of which are very bad from the 
point of view of equity, and there is no connection between Pareto 
efficiency and equity. In particular, a Pareto efficient outcome may be 
very inequitable. For example, consider a dictatorship run solely for the 
benefit of one person. This will, in general, be Pareto optimal because it 
will be impossible to raise the welfare of anyone except the dictator
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without reducing the welfare of the dictator. Nevertheless, most people 
(except the dictator) would not see this as a desirable outcome.

We obtain Nash equilibria and an efficient equilibrium outcome 
(collective efficiency) of compound social games with the underlying 
payoff matrix in Table 3.6.

Lemma 3.1 The strategy distribution p* ={p* ,1 -  p*) is a Nash 
equilibrium if the expected payoffs o f an agent choosing Sj (ег) or S2 (e2) 
satisfy the following conditions:

(i) an agent who chooses S](ei),

{ / ( е , ,р ‘) > U ( e 2, p * ) . (3.19)

(ii) an agent who chooses S2 (e2),

U(e2, p ‘ ) > U ( e „ p ) .  (3.20)

Collective efficiency (Pareto efficiency) is achieved at the strategy 
distribution at which the average payoff per agent is maximized. We 
denote the average payoff per agent by E(p) when the strategy 
distribution is p=(p ,l-p). Since the proportion of agents who choose Si is 
p  and that of agents who choose S2 is 1-p, the average payoff per agent is

E{ p)  = p U  (el , p)  +  (1 -  p ) U ( e 2, p)

= (a + d - b - c ) p 2 +( b  + c - 2 d ) p  + d  . (3.21)

In the context of the two-person symmetric game with the payoff 
matrix in Table 3.6, a pair of mixed strategy (p, p)  constitutes a Nash 
equilibrium. A Nash equilibrium of the two-person game is defined in 
terms of how the payoff is affected when she switches to the other 
strategy when the other agent sticks to the current mixed strategy p.

Here, we consider the payoff to any other mixed strategy p  and 
compare it with the payoff to some other strategy distribution q if it is 
switched to q. Since collective efficiency is defined in terms of such 
payoff comparisons, accordingly the strategy population p  is defined as 
collective efficient if there is no such the strategy distribution q.

We now obtain Nash equilibria and collective efficiency for each type 
of compound social games with the payoff schemes depicted in Figures
3.6 to 3.9.
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(1) Compound Dilemma Games: A compound social dilemma game has 
the following strategy distributions as a unique Nash equilibrium.

p -  (0,1) (3.22)

The expected payoffs to an agent choosing Si(ei) or S2(e2) are
U(ev p)  = b, U(e2,p)  = d  (3.23)

Since the payoff parameters of the underlying game in Table 3.6 
satisfy d >  b, we have

U { e 2 , p )  > U ( e l , p )  . (3.24)

I The payoff functions of a compound dilemma game are depicted in 
f Figure 3.6, and the values of U(eh p) and U(e2,p) at their end-points are 
i found by setting p=0  and p = l ,  respectively. Thus, if none of the other 

agents choose Si, that is, if p=0, then the payoff to a solitary agent who 
! chooses Si is b, and the payoff to an agent who chooses S2 is d. If all of 

the other agents choose Si, then the agent who chooses 5/ receives a, and 
a solitary agent who chooses S2 receives c. The payoff с can be 
Interpreted as the temptation to be the sole agent who chooses S2. The 
payoff a is the reward for joint Si choices, and d is the punishment for 
joint S2 choices. The payoff b is the payoff for being the sole agent who 
Chooses Si.

There remains one definitional question. How do agents behave when 
an agent is better off when the number of agents who choose the inferior 

, cooperative strategy Si is greater. Let us consider the case in which the 
' payoff parameters in Table 3.6 satisfy the following conditions: с > a > 

d > b and b + с > a + d. For consider a collection of N  agents, each of 
which faces a binary decision problem with the following two strategies: 

Si', vaccinated against the disease (cooperate)
S2: unvaccinated (defect)

The payoffs of both strategies and also the average payoff of the 
population are plotted against the ratio of the agents choosing Si(ei). 
Each agent, either she chooses St (<?/) or S2 (e2), she is better off, the more 
there are among the others who choose inferior strategy Si. However, as 
shown in Figure 3.10, the U(e2, p) curve is above the U(eh p)  curve, and 
each agent herself prefers to choose S2. Figure 3.10 also shows that the 
advantage of the choicc of S2 (defector) increases with the choice of 5/
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(cooperator). The dotted line shows the average payoff corresponding to 
the ratio of agents choosing 5;. At the left of the scale, every agent is 
choosing S2, and the average coincides with the U(e2, p) curve. On the 
right hand side, every agent is choosing Si, and the average coincides 
with the U(eh p)  curve.

The average payoff function takes its maximum at the middle, and the 
things are better off if the agents distribute themselves between the two 
groups, cooperators and defectors, though it is individually better to be 
unvaccinated (S2). The average payoff per agent in (3.21) is maximized 
at

p* = ( 2 d - b  - c ) / 2 ( a  + d - b  -  c) (3.25)

As shown in this example, the entire population gains a higher payoff if 
they allow some defectors, rather than having all agents cooperate.

In Example 3.1, if the condition b > a -  с holds for each agent’s 
payoff function in (3.2), then the network formation problem becomes an 
NPD game. In contrast, if the condition b > 2a -  с holds, then collective 
efficiency is achieved for a mixed population of cooperators and

Figure 3.10 The functions U(e,,p) and \J(e2,p) indicate payoffs to an agent choosing 
Sj(e,) or S2(e2) as a function of p, the ratio of agents who choose Sh as indicated by the 
dotted line . Collective efficiency is achieved at p=p*
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defectors. With the payoff scheme in Figure 3.6, collective efficiency 
ought to occur only when all agents choose Si. In this case, all agents 
receive the same payoff.

On the other hand, in the case in which the payoff scheme is given in 
Figure 3.10, collective efficiency is achieved at p=p*  with the 
coexistence of cooperators and defectors. In this mixed population case, 
however, some agents (defectors) gain more than others (cooperators). 
The problem is then how to maximize collective efficiency in such an 
inequitable situation. It may become hard to devise a scheme to split 
agents into two groups, in which agents in one group receive less than 
those in the other group. We will discuss this issue in Chapters 9 and 10.

t (2) Compound Coordination Games: In compound coordination games 
[ With the payoff functions depicted in Figure 3.7, there are two stable 

Nash equilibria and one unstable Nash equilibrium as follows:
(i) = (1,0),

(ii) p = (0,1), (3.26)

(iii) p = (0 ,1 -0) .

The above strategy distributions correspond to the two corner points, the 
Open dots and the filled dot and the intersection in Figure 3.7.

(i) p  = (1,0) : Since U(el , p)  = a, U(e2,p)  = d,  and a > b, the 
i expected payoffs to an agent choosing 5/ or S2 satisfy the inequality:

U ( e „ p ) > U ( e 2, p ) .  (3.27)

(H) p = (0,1): Since U(e2,p)  = d,  U(el , p)  = b, and d > c ,w e h a v e
U(e2, p ) > U ( e 1, p ) .  (3.28)

, (iii) p = ( 0 , 1 -0)  : A Nash equilibrium is also obtained at the intersection
i Of the two payoff functions. The expected payoffs of an agent who 
\ chooses Si or S2 satisfy

U ( e „ p )  = U ( e 2, p ) .  (3.29)

To understand why this is so, consider first the point to the left of the 
Intersection of Ihe graph in Figure 3.7. This region represents the choice
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facing an agent when relatively few of the agents choose 5; (p is small). 
Each agent would regret having chosen S2 and would switch to 5; if the 
games are repeated, because the U(eh p) function is above the U(e2, p) 
function in this region. Thus, agents who choose S2 will tend to change 
into agents who choose S} and the outcome will move to the right. To the 
right of the intersection, exactly the reverse holds. That is, agents who 
choose Si will switch to S2 and the outcome will move to the left as p 
decreases.

In summary, if everyone chooses 5/ or S2, then no one is motivated to 
switch. If only a few choose 5/, that is, when p  is small, they will all 
switch to S2 if they are rational, and if most agents choose 5/, the agents 
who choose S2 will switch to S i . The tendency is always away from the 
intersection point. Everyone is better off in the situation in which all 
agents choose Si, compared to the situation in which all agents choose S2. 
The direction in which a collective evolves depends on the initial 
proportion of agents who choose Si, and an initial bias in either direction 
will tend to be self-reinforcing.

At the intersection, and only at the intersection, no agent will have 
cause for regret and none will be motivated to switch, because both 
strategies are equally good with regard to the indicated ratio o f agents 
who choose Si. Therefore, the intersection is a Nash equilibrium, and any 
deviation from it will tend to be self-correcting.

The average payoff per agent is

Therefore, the collective efficiency at which the average payoff per agent 
is maximized is at one of the two corner points:

(3) Compound Dispersion Games: In compound dispersion games with 
the payoff functions depicted in Figure 3.8, the payoff at the Nash 
equilibrium is the same whether the individual agent chooses Si or S2.
The two payoff functions can be equated at that point:

E (p ) = р Щ е ^ р ) * ^ - p)U{e2, p )
= (a + d -  b -  c ) p 2 + (b + с -  2 d ) p  + d ■ (3.30)

p = l  (All agents choose 5/) if a > d, 
p=0  (All agents choose S2) if d > a.

(3.31)
(3.32)

ap + b(I - p) = cp + d(l  - p), (3.33)
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and such p  is obtained as
p  = (b -  d )  /(b + с -  a -  d )  = 0  (3.34)

This means that if the game is repeated, there will be a tendency 
toward a stable equilibrium with ON agents choosing Sj and the 
remaining (1 -  0 ) N  agents choosing S2. More generally, it means that 
the agents will tend to evolve towards this mixed population. At the 
intersection, and only at the intersection, no agent will have cause for 
regret and none will be motivated to switch. Because the strategies are 
equally good with regard to the indicated ratio of agents who choose Sj. 
The intersection is therefore a unique Nash equilibrium, and any 
deviation from it will tend to be self-correcting.

However, this Nash equilibrium is not at collective maximum. Any 
agent who chooses Si or S2 gains if some agents choosing S2 shift and 
Instead choose S]. The collective maximum occurs to the left of the 
intersection. Since the slope of the payoff function Si is sharper than that 
of the payoff function of S2, if fewer agents than the ratio at the 
Intersection choose Si, then the agents who choose Si will gain more than 
the agents who choose S2 will lose. If the collective maximum does not 
occur at the intersection, there is a payoff difference between the choice 
of Si and the choice of S2. For instance, if the collective maximum occurs 
to the left of the intersection, then the agents who choose S2 gain less 
than those who choose Si. This is a big difference from the Nash 
equilibrium at the intersection, at which all agents receive the same 

; payoff.
Therefore, there is the conflict between efficiency and equity. Some 

Compensation may be necessary or agents may need to take turns in order 
to solve this tradeoff problem. If some equilibrium is established, no one 
will change her strategy unless she expects others to do so. There are 
many situations in which no one is willing to be the first to switch, and 
every agent is waiting for the other agents to switch. Therefore, they 
easily become trapped at an inefficient Nash equilibrium.

The compound dispersion game has the following strategy 
distributions as a unique Nash equilibrium:

p  = ( 0 , \ - 0 )  (3.35)
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The expected payoffs of an agent choosing from 5/ (ej) or S2 (e2) satisfy 
U(e1,p)  = U(e2,p)  (3.36)

Although the 2x2 dispersion game has three Nash equilibria, the 
compound social dispersion has a unique Nash equilibrium. For instance, 
the strategy distribution p  = (1,0) is not a Nash equilibrium. The 
expected payoffs to an agent choosing from Si or S2 satisfy

U(e2, p ) > U ( e l , p ) .  (3.37)

Since 11(е^,р) = а, U( e2, p)  = c, and с > a, the average payoff per 
agent is

E { p )  =  p U  (e l , p )  + ( 1 -  p ) U  (e 2, p )

= {a + d - b - c ) p 2 + (b + c - 2 d ) p  + d  . (3.38)

The collective efficiency at which the average payoff per agent is 
maximized is achieved at

p*  = (b + с -  2 d ) / 2 ( b  + с -  a -  d ) . (3.39)

Therefore, if the following condition is not satisfied,
b = с (3.40)

then collective efficiency is not achieved at a Nash equilibrium.
Social interaction between two agents having two strategies is also 

formulated as a symmetric 2x2 game with the payoff matrix in Table 3.6. 
Subtracting с from a ( a  = a - c) and b from d  (/?= d - b), we obtain the 
payoff matrix in Table 2.2. With this transformation, we have a doubly 
symmetric 2x2 game. Nash equilibrium of compound social games will 
not be affected by this normalization. However, collective efficiency will 
be affected by this transformation.

(4) Compound Hawk-Dove Games: The expected payoffs to an agent 
choosing from Si or S2 are 

U( e l , p )  = v p /  2 ,
U ( e 2, p )  = vp + ( v - c ) p / 2  , (3.41)

and the two payoff functions can be equated at
p  = \ - v / c .  (3.42)

The average payoff per agent is
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E( p )  = p U  (ex, p )  + ( \ -  p ) U( e 2, p )  

= —c p 2 / 2 + cp + (v -  c) / 2.

Therefore, collective efficiency is achieved at 
p*  =  1 .

(3.43)

(3.44)
However, the following issue remains: if the Hawk-Dove game is 
repeated, whether will there be a tendency toward collective efficiency, 
at which all agents choose S2 (Dove) and avoid conflict? In this case, all 
agents receive the same payoff of v/2. We discuss this issue in Chapter 9.

3.6 Conflict Resolution between Collective Efficiency and Equity

A Nash equilibrium is defined as the equilibrium situation in which no 
agent has an incentive to change her strategy. Since each agent seeks to 
optimize her payoff, a Nash equilibrium is also the stable situation in 
which no agent improves her payoff by unilaterally changing her strategy. 
The payoffs of all agents should also be optimized simultaneously. On 
the other hand, collective efficiency is defined as the situation in which 
the average payoff per agent is maximized.

In the previous section, we observed that there is a conflict between a 
Nash equilibrium and collective efficiency in compound dispersion 
games. Compound dispersion games also have another qualitative 
difference from other compound social games. All agents come to 
choose the same strategy, resulting in the same payoff being received at 
the collective efficient outcome in dilemma games, coordination games 
and Hawk-Dove games. However, in dispersion games, agents must split 
into two groups, and the agents in one group receive a better payoff 
while the agents in the other group receive a lower payoff at the efficient 
outcome. Therefore, we also tackle the issue of inequity in dispersion 
games.

The equilibrium situation in which each agent uses the mixed Nash 
strategy seems to be fair in the sense that the payoffs for all agents 
choosing mixed strategies are the same. However, the payoffs of all 
agents in this mixed situation is less than that for the case in which all 
agents use pure strategies. We thus observe that the conditions of 
equilibrium and equity contradict with the condition of efficiency.
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In general, coordination failure is attributed to certain features of payoff 
functions that induce competition among agents attempting to maximize 
their own payoff. We will show that coordination success or failure 
depends heavily on the structure of the payoff functions.

<Payoff Scheme />  Let us consider the following payoff functions of a 
social dispersion game. The payoff of an agent choosing Sx(ei) is given 
as a linearly decreasing function of p, the ratio of agents who choose Sl . 
The payoff when she chooses S2(e2) is given as a linearly increasing 
function of p, as shown in Figure 3.4,

Each agent non-cooperatively seeks to maximize her payoff, and a 
Nash equilibrium is achieved when each agent chooses the strategy that 
is the best to her. Specifically, an agent-optimized Nash equilibrium is 
reached when no agent may improve her payoff through unilateral 
change. Such a Nash equilibrium is achieved at the intersection, at which 
the ratio of agents choosing S, is p=a/(a+b). Collective efficiency, at 
which the summation of the payoffs of all agents is maximized, is 
obtained as follows. The average payoff per agent is

The above average payoff is maximized at p -  0.5 and does not depend on 
the payoff parameters a and b. Therefore, under the payoff functions 
given in Figure 3.4, the Nash equilibrium and collective efficiency 
become the same if we have a=b. On the other hand, if a + b they are 
different.

<Payoff Scheme / />  We define the payoff function to an agent choosing 
from Sj(ei) or S2(e2) as follows:

U ( e l , p )  = a ( l -  p ) ,  

U (e2, p)  = bp . (3.45)

E ( p , p ) = p U ( e 1, p )  + ( \ -  p ) U( e 2, p )  

= (a + b ) p ( l - p ) (3.46)

U(el , p )  = l -  p. 

U(e2,p)  = \ - e . (3.47)
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The above payoff functions are depicted in Figure 3.11, and they have 
the same payoff structure as the functions in Figure 3.5. The two payoff 
functions intersect at p=6, which is a Nash equilibrium (the filled dot).

The average payoff per agent is obtained as 
E ( p ,  p )  =  p U  (el , p )  + ( I -  p ) U  (e2, p)

= - p 2 + р в  + 1 - в  (3.48)

Therefore, collective efficiency is achieved at p=  6/2 (the open dot) 
which is half of the Nash equilibrium.

The dispersion games with the payoff functions in Figure 3.11 can be 
decomposed into a pair-wise 2x2 game with the payoff matrix in Table 
3.7, which has two pure Nash equilibria at (Slt S2) and (S2, S{), and one 
mixed Nash equilibrium. A geometric interpretation of the Nash 
equilibria is shown in Figure 3.12.

If both agents choose Si with a probability of в  and S2 with a 
probability of 1-6, they realize a mixed Nash equilibrium. At the two 
pure Nash equilibria (Si, S2) and (S2, Si), they receive different payoffs, 1 
and 1-6, respectively. However, at a Nash equilibrium involving mixed 
strategies, they receive the same payoff 1 - 6  . Therefore, this mixed 
equilibrium situation seems fairer than the two asymmetric equilibria.

However, the payoff to each agent is less than those of the two 
asymmetric equilibria of pure strategies. The sum of the payoffs at one of 
the pure equilibria is 2 + в , and that of at the fair mixed equilibrium is 
2( 1- 0 ).

Table 3.7 Decomposition into a 2x2 game
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Payoff

Figure 3.11 Payoff Scheme II: The function U(Sjp) shows the payoff to an agent 
choosing Sj, and the function U(S2, p )  shows the payoff to an agent choosing S2 when the 
proportion of agents who choose Si is p. Nash equilibrium is achieved at p= в  and 
collective efficiency is achieved atp= в/2

Payoff

Figure 3.12 Geometric interpretation o f the payoff matrix in Table 3.7. The filled dot 
represents a mixed Nash equilibrium and the empty dots represent pure Nash equilibria
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We observe that the criterion for an efficient outcome contradicts that 
of equity. Consider two agents who face the 2x2 game with the payoff 
matrix in Table 3.7. If the first agent chooses Sj and the second agent 
chooses S2, and in the next turn, they change roles and the first agent 
chooses S2 and the second agent chooses Su then they can sustain an 
equitable situation. However, this type of dynamic coordination by 
taking turns has not been studied within the framework of conventional 
game theory (Browning, 2004, Hanaki, 2005). We will discuss this issue 
in Chapter 8.

<Payoff Scheme / / />  We can modify the payoff functions in (3.45) if we 
assume that each agent can receive an extra payoff from the outside. Let 
us consider the following payoff functions:

Ще1,р) = 1 - р  + вр,

и(е2,р) = \ - в + в р .  (3.49)

A Nash equilibrium is achieved at the intersection in Figure 3.13 when 
the ratio of agents choosing Si is p=6, which is the same as Payoff 
Scheme II.

We now obtain collective efficiency, at which the average payoff per 
agent is maximized. Since the average payoff per agent is obtained as

E ( p ,  p )  = p U ( e x, p )  +  (1 -  p ) U ( e 2 , p )

= - p 2 + 2 в р  + \ - в  (3.50)

collective efficiency is achieved at the Nash equilibriump=6.
The equilibrium situation at which each agent uses a mixed strategy 

appears to be fair because the expected payoffs to all agents are the same. 
However, the sum of the payoffs of all agents under the mixed strategies 
is less than that in the case in which all agents use pure strategies. We 
thus observe that the combination of equilibrium and equity contradicts 
the combination of equilibrium and efficiency.

A Nash equilibrium (x, y) is symmetric if x  = y, that is, if both agents 
Use the same mixed or pure strategy. All three Nash equilibria of 
coordination games are symmetric. However, only the mixed equilibrium
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is symmetric for dispersion games, and the mixed Nash strategy is not 
efficient, except in a symmetric dispersion game.

We have observed that the criteria for a Nash equilibrium contradict 
the criteria for equity in asymmetric dispersion games. Collective 
efficiency of compound dispersion games will be affected by the 
normalization of the underlying payoff matrix. This property implies that 
by modifying asymmetric payoffs, the conflict between collective 
efficiency and equity is solved.

Table 3.8 Decomposition of the payoff functions in Figure 3.6 into a 2x2 game

Figure 3.13 Payoff Scheme III: U(Sjp) and U(S2,p) show the payoffs to an agent 
choosing 5; or S2- Nash equilibrium and collective efficiency is achieved at the 
intersection (the open dot)



Micro-Macro Dynamics

Chapter 4

In examining collective systems, we draw heavily on deliberate 
individual decisions by applying rational procedures. In this chapter, we 
characterize the collective adaptive dynamics of heterogeneous agents, in 
which each agent adapts to every other agent. We obtain and analyze the 
micro-macro dynamics that characterizes the relation between an agent’s 
micro-motivated behavior and the macroscopic behavior.

4.1 A Threshold Model for Dealing with Heterogeneity in Agents

We can observe many situations in which agents' microscopic behaviors, 
reflecting their micro-motives, combined with the behaviors of others 
produce unanticipated outcomes. These situations, in which an agent’s 
decision depends on the decisions of other agents, usually do not permit 
any simple summation or extrapolation to the aggregates.

On the other hand, interacting agents sometimes produce coherent 
collective phenomena. Collective phenomena appear in the emergence of 
macro-structure from the bottom up and are driven by simple behavioral 
rules that outwardly appear quite different from the phenomena that they 
generate collectively (Gilbert and Troitzsch, 1999). Large-scale effects of 
interacting agents are called emergent properties. Emergent properties 
are often surprising because it can be hard to anticipate the full 
consequences of even simple forms of interactions. Therefore, we aim at 
discovering fundamental local or micro mechanisms that are sufficient to 
generate the macroscopic behavior of interest (Axelrod and Cohen, 
2001).

101
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Much literature on macroscopic behavior has contrasted the older 
notion that irrationality at the individual level is the key to explanation in 
generating unanticipated collective outcomes. Granovetter (1978) and 
Schelling (1978) are among the first to propose models that capture such 
a process that deviates from a rational choice model to describe an 
individual behavior. In their models, agents impinge on other agents and 
adapt to each other. The actions of each agent affects the actions of the 
other agents, and how well agents accomplish what they want to 
accomplish also depends on what other agents are doing. All of these 
models have common features in which an agent’s behavior is influenced 
by other agents’ behaviors and vice versa.

Heterogeneity turns up repeatedly as a crucial factor in explaining 
collective behavior. But the situation is not always as simple as saying 
that heterogeneity is desirable and homogeneity is not good. Then, the 
basic question is as follows. What is the right balance between 
heterogeneity and homogeneity? When heterogeneity is significant, we 
also need to investigate the gains from heterogeneity. However, the 
analysis of a collective of heterogeneous agents becomes difficult, and it 
is often intractable (Kirman and Zimmermann, 2001).

The approaches by Granovetter and Schelling are characterized as the 
threshold model, since their models use agent-specific thresholds. The 
threshold model is important for dealing with heterogeneity in agents. A 
threshold model is often used to explain collective phenomena in a 
society. For instance, a social network plays a fundamental role as a 
medium for the spread of information, ideas, and influence among its 
members. An idea or innovation that appears can either die out quickly 
or make significant inroads into a society. If we want to understand the 
extent to which such ideas are adopted, it is important to understand how 
the dynamics of adoption are likely to unfold within the underlying 
social network. The extent to which people are likely to be affected by 
the decisions of their friends and colleagues, or by the extent to which 
word-of-mouth effects will take hold.

Such social network diffusion processes have a long history of study 
using a threshold model in the following framework (Watts, 2002). In 
considering operational models for the spread of an idea or innovation 
through a social network, represented by a directed graph, wc will speak
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of each individual node (agent) as being either active (an adopter of the 
innovation) or inactive. Then, we usually focus on the motivation, in 
which each agent’s tendency to become active increases monotonically 
as more of her neighbors become active.

In the framework of a threshold model, an agent is influenced by her 
neighbor, which is represented by some weight. The dynamics of the 
process then proceed as follows. Each agent chooses a threshold 
в  uniformly at random from the interval [0, 1], and this represents the 
weighted fraction of an agent’s neighbors that must become active 
in order for that agent to become active. Given a random choice of 
thresholds, and an initial set of active agents, the diffusion process 
unfolds deterministically in discrete steps. In some step, agents that were 
active in the previous step remain active, and we activate any agent for 
which the total weight of her active neighbors reaches her threshold.

The threshold model represents the different latent tendencies of 
agents to adopt activation when their neighbors do. However, the 
resulting collective behavior may or may not maximize an agent’s payoff 
or utility. From the threshold distribution alone, nothing can be said 
about this. A threshold model alone does not give information about the 
payoff to an individual at each possible equilibrium outcome.

4.2 A Micro-Macro Loop

If the system consists of many interacting components, which we call 
agents, then the system performance should be described on two 
different levels: the microscopic level, on which the decisions of the 
individual agents occur, and the macroscopic level, on which collective 
behavior can be observed. To make this connection we usually have to 
look at the system of interactions between individuals.

The greatest promise for determining how the heterogeneous micro
worlds of individuals generate macroscopic orders of interest or 
unanticipated outcomes lies in the analysis of linking microscopic 
behavior and macroscopic behavior. However, to understand the role of 
the link between these two levels remains a challenge (Schweitzer, 2002).
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Therefore, we aim at discovering the fundamental role of the micro
macro link that is essential to study on collective systems.

For modeling purposes, we consider a collection of interacting 
heterogeneous agents who make decisions in the following stylized terms. 
Each agent continuously adapts to other agents in order to improve her 
payoff or fitness. The question of how does a collective of agents 
develop a macro-behavior of interest depends on how they interact as 
well as how they adapt their behavior to each other. We obtain the micro
macro dynamics that relates each individual’s adaptive behavior by 
assuming that each agent myopically adapts her self-interested behavior 
by observing the aggregate information of the collective.

We consider a collective of heterogeneous agents G = [ i : 1 ^ i < N ] , 
each of which faces a binary choice problem with the two alternatives, Si 
and S2. In the simplest form of our model, agents are bom with their own 
idiosyncratic preference or interest. We also assume rationality based on 
their endogenous preference in choosing the alternatives. On the other 
hand, their decision is also contingent in the sense that their rational 
choice depends on how other agents make decisions. Although an 
agent’s decision depends on how all other agents make decisions, they 
are not assumed to be knowledgeable enough to correctly anticipate all 
other agents’ decisions. While no agent can directly observe all other 
agents’ decisions, instead, she can obtain aggregated information. That is, 
each agent is assumed to be knowledgeable of the strategy population in 
the past. That is, at any given moment, each agent has the opportunity to 
observe the proportions of agents having chosen two strategies.

We model the individual binary decision problem as follows: the cost 
and benefit of each strategy also depend on how many other agents 
choose the same strategy. The repeated strategy choices by a large 
number of agents can be treated as a repeated two-person game. That is, 
each agent has the idiosyncratic payoff matrix in Table 4.1 and plays 
against all the other agents, who are assumed to play collectively.

We denote the proportion of agents having chosen Si at time t by p(t) 
(0 < p(t)  < 1). We impose a weak monotonic condition reflecting the 
inertia and myopia hypotheses on the collective adaptive dynamics, 
which describe the temporal changes in the strategy population. At any 
given moment, each agent has the opportunity to observe the strategy
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Table 4.1 The payoff matrix of agent i
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population, p(t)={p(t), l-p(t)}. Agents are assumed to be rational in the 
sense that they make their choice to maximize their expected payoff 
based on the observation of the strategy population, p(t).

The expected payoffs to agent i received by choosing 5/ or S>, 
conditional on everyone else continuing with their previous choices, are 
as follows:

(4.1)
Ui(Sl) = aiP(t) + bt( l - Pm  

Ut(S2) = ctp(t)  + dt( 1 -  pit)) .

Then, agent i chooses S, if

aiP(t) + bt(1 -  pit)) > ctp(t) + d t(l ~ p i t ) ) , (4.2)

ОГ S2 if

a ,pi t )  +  6,(1 -  p(t ) )  < ctp( t )  + d t (l -  p ( t ) ) . (4.3)

We assume that the payoff values of Table 4.1 satisfy the condition 
at + di — — c i Ф 0  . Then, the best-response strategy of agent i is 
obtained as follows:

Case 1: ai + d i -  bi - c i > 0

( i) If p( t ) > id , -  bt) Ца. + d{ -  bi -  c,) = <9,: then Sl (4 4)
( ii) If pi t )  < i d t - bi) l {ai + di - bt - c t) = вг: then S2

Case 2: at + dt -b ,  -  ct < 0
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(i) If p{ t )  < O ', then S u
' , (4.5)

(ii)If p (t)> d i : then S2.

The payoff matrix in Table 4.1, one for each agent, can be replaced by 
one-dimensional threshold 0, defined in (4.4). The crucial point in 
dealing with heterogeneity in payoffs is the associated threshold, one for 
each agent. This aggregation makes it easy to describe variations in 
heterogeneous agents. A threshold model makes this possible because a 
large number of payoff matrices, one for each agent, can be replaced by 
the distribution of a one-dimensional threshold. This allows enormous 
simplification in the ensuing analysis of heterogeneity in agents, which 
game theory handles only with difficulty.

Equations (4.4) and (4.5) also describe the relations between an 
agent’s rational decision (microscopic behavior) and the collective 
decision (macroscopic behavior). We can explore the relation between 
the behavioral characteristics of the individuals who comprise the 
collective system and the aggregate behavioral characteristics of the 
collective system using these equations. We define the dynamics 
described by these equations as the micro-macro dynamics.

As we discussed in the previous section, the earliest and simplest 
micro-macro link was introduced by Schelling and was further discussed 
by Granovetter. They considered the following situation. A group of 
people faces a collective action problem such that an individual wants to 
participate only if many others join, and exactly how many total 
participants must join is given by her threshold. Each person in a group 
wants to participate only if the total number participating reaches her 
threshold. Only people with low thresholds participate, but their 
participation makes people with slightly higher thresholds want to 
participate. As the number participating grows, people join successively, 
and this is known as the snowball or bandwagon effect. This kind of 
effect is caused by a micro-macro loop between individuals and the 
collective.

Their threshold models can predict how and among whom collective 
action emerges and grows, as people learn more about each other over 
time. However, their models are not clear regarding some basic questions,
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such as where an agent’s threshold comes from and how a threshold is 
related to a payoff maximizing behavior.

On the other hand, the payoff matrix of game theory allows us to 
investigate, for any particular agent, which outcome maximizes her 
utility, or whether an outcome is Pareto optimal. The conventional 
threshold model, however, does not permit this. When an individual is 
activated because her threshold is exceeded, she acts so as to maximize 
her utility under existing conditions. The resulting equilibrium may or 
may not maximize the overall utility of the collective. From the 
distribution of threshold alone, nothing can be said about this.

4.3 Two Facets of an Individual’s Decision: Purposive and 
Contingent Decisions

\n  agent’s decision is said to be purposive, if it is based on the notion of 
jursuing her own goal or maximizing preference. However, the behavior 
)f an agent often relates directly to those of other agents, and it is 
JOnstrained by other agents who are also pursuing their own goals or 
nterests. We distinguish this aspect of the individual decision by 
■eferring it as contingent decision, since it depends on what other agents 
ire doing.

As a specific example to illustrate both purposive and contingent 
ttpects, we consider the situation in which each agent faces the 
following binary choice problem with two alternatives:

St : votes for, S2; votes against.

One’s decision to vote for a particular alternative may also heavily 
lepend on what others decide to do, partly because of social influence, 
>artly because one does not want to waste her own vote. In this particular 
)Xample, the payoff values of agent i, 1 < / < N , in Table 4.1 are given 

18

a, = « , + # ,  b i = a it c, - 0 ,  d, = fi, ( -1  < a , < 1, o s #  £ 1 )  (4.6)

If at > 0, agent i personally prefers to vote for, and if cct < 0, 
ihe prefers to vote against. The absolute value let;I measures the 
preference strength. The value Д  measures the utility from the
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conformity with what the majority does. If Д  > 0 , agent i prefers to 
choose the same choice as the majority. This type of an agent is defined 
as a “conformist”.

In this section, we characterize a rational decision of a conformist. The 
threshold defined in (4.4) of a conformist is obtained as

0 t =  ( Д - « , ) / ( « , + Д + а , -  Д ) = (1 -  a, /  Д .) /  2 (4.7)

Since the payoff parameters in (4.6) of a conformist satisfies the 
condition at + d i —bi —ci > 0 . From (4.4), the best-response strategy of 
a conformist is obtained as follows:

<Best-response of a conformist: majority rule>

(i) If p i t )  > : then St (votes for),

(ii) If p( t )  < в ;: then S2 (votes against). (4.8)

The strategy population at t, p(t), has a significant effect on an 
individual decision in the next time period. Since a conformist aims to 
choose the same strategy as the majority, we define the choice rule of the 
best-response strategy in (4.8) as the majority rule.

As an example, we consider Agent A and Agent В with different 
thresholds вл and 0B , as shown in Figure 4.1. The vertical-axis 
represents p i t ) ,  and the solid line represents the threshold as a function 
of Oti /  Д . Since OiA is negative, Agent A personally prefers to vote 
against. On the other hand, OiB is positive. Therefore, Agent В prefers to 
vote for. Suppose p i t ) , the proportion of agents who vote for  at time t, is 
given at p ( t ) =p l . Since 0 A is greater than p ], based on the majority rule 
in (4.8), Agent A decides to vote against at time t + 1 . However, if pi t )  
goes up to p 2 , then she changes her mind and decides to vote for. 
Similarly, at p i t )  =  p ], Agent В decides to vote for. However, if pi t )  
goes down to p 3, she changes her minds and decides to vote against.

We now consider another type of agent whose payoff values in Table
4.1 are given as

a t bt = ai + Д , с, = Д ,  d , = 0 i - l < a , < l , 0 ^ j S ^ l )  (4.9)
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This type of agent prefers the opposite choice of the majority. 
Therefore, we call this type of agent a “nonconformist”. The threshold of 
a nonconformist is given as

* , = - ( « , +  # ) / ( « , - « , - Д - Д )  = (1 + « , / Д ) / 2  (4.10)

Since the payoff parameters of a nonconformist satisfies the condition 
a i + d t —bi -  ct < 0 , the best-response strategy of a nonconformist is 
obtained from (4.5) as follows:

<Best-response of a non-conformist: minority rule>

(i) If p (t) < dt : then St (votes for),
(ii) If p{t) > <9,: then S2 (votes against). (4.11)

Since a nonconformist aims to choose a different strategy from the 
majority, we define the choice rule of the best-response strategy in (4.11) 
as the minority rule.

As an example, we also consider two agents, A and B, with different 
thresholds 6A and 9B, as shown in Figure 4.2. If Ct A is negative, then 
Agent A prefers to vote against. On the other hand, CXB is positive then, 
Agent В prefers to vote for. Suppose p( t )  is given at p t . In this case 9  A 
is greater than p ] , Agent A will decide to vote against, according to the 
minority rule in (4.11). However, if p( t )  goes up to p 2, she changes her 
minds and decides to vote for. Similarly, at p( t )  =  p {, Agent В will 
decide to vote for. However, if p( t )  goes down to р ъ, she will change 
her minds and decide to vote against.

The payoff matrices of both a conformist and a non-conformist can be 
represented as the payoff matrix in Table 4.2. If Д  > 0 , agent i is a 
conformist, and if Д  < 0, she is a nonconformist. Based the choice rules 
of the best-response strategy in (4.8) and (4.11), agents are classified into 
the four types:
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a ,  IP ,

Figure 4.1 Best-response strategy of a conformist ( Д  > 0 )  as a function of p(t) and
а  /Д

а г , /Д
Figure 4.2 Best-response strategy of a nonconformist (Д < 0) as a function of p(t) and

a , IA
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<Type 1 : Hardcore Si chooser> If agent i is a conformist and her 
payoff values satisfy the relation 0 < Д  < <2, , or if she is a 
nonconformist and her payoff values satisfy —Oti < Д, < 0 , she always 
chooses Si without regard to the others’ decisions. In this case, 
S/becomes a dominant strategy, and we define this type of agent as a 
hardcore Sj chooser.

<Type 2: Hardcore S2 chooser> If agent i ’s payoff values satisfy the 
relation 0 < Д  < —a i and she is a conformist, or if her payoff values 
satisfy cti <  Д  < 0 and she is a nonconformist, then she always chooses 
Sj without regarding others’ decisions. In this case, S2 is a dominant 
Itrategy, and this type of an agent is defined as a hardcore S2 chooser.

<Type 3: Opportunist conformist> If agent i is a conformist (Д  >0), 
and her payoff values satisfy the relation \ct\ < Д , her best-response 
Strategy depends on the others’ choices. This type of a conformist is 
defined as an opportunist.

<Type 4: Opportunist nonconformist  If agent i is a nonconformist 
(A < 0), and her payoff values satisfy the relation |#J < —Д , her best- 
response strategy depends on the others’ choices. This type of a 
nonconformist is also defined as an opportunist.

A type is a category of agents within the larger collective who share 
Ю те characteristics. We can distinguish types by some aspects of 
agents’ unobservable internal models that characterize their observable 
behaviors. The notion of type facilitates the analysis of heterogeneity. 
Heterogeneous agents can be classified into the above four types, as 
ihown in Figure 4.3. In this figure, the horizontal-axis represents the 
parameter Cl,, each agent's preference level over two choices (purposive 
behavior), and the vertical-axis represents the parameter P, , which 
measures the comfort gained from the consistency of choice with the 
Majority or minority (contingent behavior).
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a i

Figure 4.3 Classification of agent types from their idiosyncratic payoff values (Of,, Д )

4.4 Micro-Macro Dynamics within a Collective

It is interesting to consider how a collective of interacting agents gropes 
its way towards equilibrium in an imperfect world in which agents adapt 
their strategy over time. Previous works have focused particularly on the
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relation between the microscopic and macroscopic behavior. The 
Standard assumption, however, is that agents are endowed with similar 
behavioral rules (Kaniovski, 2000).

In this chapter, we departed from this assumption by considering the 
heterogeneity in agents with respect to their preferences as well as their 
behavioral rules. In particular, infinitely different types of agents could 
be classified into four types: hardcore Si or S2 choosers, conformists who 
follow the majority does, and nonconformists who counter the majority.

In this section, we investigate the micro-macro dynamics that relate an 
agent’s microscopic adaptation and the macroscopic behavior. We are 
especially interested in the long-run properties of collective adaptive 
dynamics in which agents adapt to each other over time. The dynamic 
idaptive process as a whole is guided by self-interest seeking behaviors 
Df agents. This type of collective dynamics is similar to self-organizing 
processes observed in many natural systems (Camazine, 2001).

The collective decision starts from a set of unstructured local decisions, 
however, they are allowed to self-organize by establishing some orders 
ЭГ regularities. We investigate how agents’ microscopic decisions 
Sombined with the others’ decisions produce regularities and 
Unanticipated outcomes of interest at the aggregate level.

Equilibrium collective behavior of interacting agents is characterized 
|)y the threshold distribution over the population. We denote the 
cumulative distribution function of the threshold, which is defined over 
fee density function as

At first, we consider a collective of conformists. We denote the 
lumber of conformists ( Д  > 0 ) who have the same threshold в  by 

The proportion of conformists whose thresholds are less than в  
8 denoted as

e^e

Where N t is the number of conformists in the collective.
We approximate the probability distribution и, (6i) by the continuous 

function / ,(0 ) ,  which is defined as the density function of the threshold.

(4.13)

(4.14)
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The heterogeneity in agents is characterized by this threshold density 
function.

We denote the proportion of agents to vote for (Si) at time t by p ( t ). 
We assume the following inertia and myopia on prediction of the 
collective behavior at the next time. The agents make decision 
conditional on everyone else continuing with their previous choices, 
which is given by Ft(p(t)). Therefore, p ( t  + 1), the proportion of agents 
who vote at t +1 is given as

p ( t  +  \ )  =  Fx(p ( t ) )  (4.15)

Since the above dynamics relate agents’ micro-motives with the 
collective behavior, such dynamics is defined as micro-macro dynamics 
of conformists.

We can predict the ultimate proportion of the choice of each strategy. 
Given the threshold density, the question is one of finding the 
equilibrium of the micro-macro dynamics, which is obtained by the fixed 
point of (4.15), satisfying

p * = F l ( p * )  (4.16)

As an example, we consider a collective of conformists with the 
threshold density in Figure 4.4(a). In this case, most agents are 
opportunists and care about how other agents behave, rather than what 
they actually want to do. The cumulative distribution function is shown 
in Figure 4.5(a). The phase portrait in Figure 4.5(a) shows the 
convergence of the dynamics. There are two stable equilibria Ei at the 
right-extremity and E} at the left-extremity, and one an unstable 
equilibrium E2 in the middle.

In this case, two nearly identical initial conditions result in totally 
opposite outcomes. Suppose the initial proportion of agents who vote at 
the beginning is given, which is slightly less than the proportion at E2, 
the collective decision converges to E h where all agents vote fo r  or 
against. On the other hand, if the initial proportion to vote fo r  is slightly 
higher than E2, the collective decision converges to E3, and in this case 
everybody votes for.

Similarly, we consider the density function in Figure 4.4(b). With this 
density function, some fractions of the agents ( в , = 0 )  are hardcore S,
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choosers, and they vote fo r  independent of how many other agents vote 
for. On the other hand, some other fraction of the agents {d i = 1) consists 
of hardcore S2 choosers, and they also decide to vote against independent 
of how many other agents vote against. These agents care only about 
what they actually want to do personally.

(a) (b)

Figure 4.4 Density o f the threshold over the collective captures the variability of 
iBdividual characteristics. The vertical axis represents the ratio of agents of having a 
particular threshold, (a) The majority o f the collective has intermediate thresholds, (b) 
П и collective splits into two groups having extreme thresholds, which are close to ff=0 
ind 9=1

(a) (b)

Figure 4.5 These graphs show the accumulative distributions of thresholds, F(0), and the 
to n vergences of the collective decision of the collectives of conformists with the density 
Ainctions of thresholds in Figure 4.4(a) and (b)
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The cumulative distribution of the threshold is given in Figure 4.5(b). 
The fixed point of Fx ( p )  is obtained as the point where it intersects with 
the line at a 45-degree angle. In this case, there are two equilibria: E, in 
the middle and E2 at the right-extremity, in which E t is stable and E2 is 
unstable. The phase portrait in Figure 4.5(b) also illustrates the 
convergence of the collective adaptive dynamics. Starting from any 
initial point, the collective decision converges to Et, where half of the 
agents vote fo r  and the rest of the agents vote against. Therefore, the 
agents split into two groups.

Similarly, we formulate the micro-macro dynamics of the collective of 
nonconformists. The number of nonconformists (/?, < 0) with the same 
threshold в. is denoted by n2(d t) . We denote the proportion of 
nonconformists whose thresholds are less than 0  as

H 2(ff) = ^ n 2(ei) / N 2 (4.17)
e<e

where N2 is the number of nonconformists. We approximate the 
probability distribution n2 (0,) by the continuous density function / 2(0 ) . 
The cumulative distribution of the threshold density, which is defined in
(4.13), is denoted by F2( 0 ) .

The micro-macro dynamics of nonconformists are described as 
follows: the proportion of agents who vote fo r  at time t is given as p ( t ) . 
By the definitions of the cumulative distribution F2 (0 )  and the rational 
decision rule of a nonconformist in (4.11), the proportion of 
nonconformists who vote fo r  at t + \ is given as 1 -  F2(p ( t) ) .  Therefore, 
we have the following dynamic equation, which is defined using the 
complimentary cumulative distribution of F2( 0 ) :

p ( t  +  l )  =  l -  F2( p ( t ) )  (4.18)

The fixed point of the above adaptive dynamics is obtained by solving 
the equation

p ’ = l - F 2(p")  (4.19)

We assume that the threshold density of nonconformists is given in 
Figure 4.4(a). The dynamics describing the collective adaptive behavior 
of nonconformists associated with this threshold density is shown in
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F(p( 0) F(pii))

(a) (b)

Figure 4.6 The graphs show the complimentary cumulative distribution functions of 
thresholds, 1-F( в) and the convergences o f the collective decision of the collectives of 
non-conformists with the density functions of thresholds in Figure 4.4(a) and (b)

Figure 4.6(a). There is no stable equilibrium, and it produces cyclic 
behavior, which alternates between p = 0  and p = l .

We consider the threshold density in Figure 4.4(b). The micro-macro 
dynamics is shown in Figure 4.6(b). In this case, there is the unique 
■table equilibrium at the middle point p=0.5 , and starting from any initial 
point, the micro-macro dynamics converges to p=0.5.

We now consider a mixed collective consisting of both conformists 
ind nonconformists. The proportion of conformists (Д . > 0) is к = N, / N 
< 0 < * < 1 ) ,  and that of nonconformists (Д  < 0) is 1 -  к = N2 / N , where 
N  = N t + N 2 is the total number of agents in the mixed collective. Using 
Equations (4.16) and (4.18), the micro-macro dynamics of the mixed 
/Collective is given as

p ( t  +1) = kFt( p ( t ) )  +  (1 -  fc)(l -  F2(p ( t ) ) )  (4.20)

Where p(t) is the proportion of agents who vote for at t. We characterize 
fce micro-macro dynamics of the mixed collective by changing the value 
Pf k .

Let us suppose the threshold densities of both conformists and 
nonconformists are given in Figure 4.4(a). In Figure 4.7, we show the 
bollective behavior in (4.20) when we set к as: (a) k=0.3, (b) k=0.5, (c) 
k»0.N. The vertical axis represents p(t), the proportion of agents who 
Vote for iS/) and (he horizontal axis represents the time t. When we start
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pi 0

p CO

10 repeat 
(a) k=0.3

(b) k=0.5

20

(c) k=0.8

Figure 4.7 Convergence o f collective decisions governed by (4.20) with different values 
of k, the proportion o f conformists in the collective
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from arbitrary initial conditions. The collective decision oscillates 
between 0.4 and 0.6 when we set k=0.3  (Figure 4.7(a)). However, when 
we set k=0.5  (Figure 4.7(b)), it converges to 0.5, starting from any initial 
condition. When we set k=0.8  (Figure 4.7(c)), it converges to either 0.2 
or 0.8, depending on the initial condition.

We have addressed the question of how the heterogeneous micro
worlds of individuals generate the global macroscopic orders. We have 
also examined fundamental local or micro mechanisms that are sufficient 
to generate macroscopic structures of interest.

Interacting situations in which an agent’s behavior depends on those 
of other agents usually do not permit any simple summation or 
extrapolation to the aggregates. We cannot simply jump to a conclusion 
about aggregate behavior from what one knows or can guess about 
individual preferences. To make that connection, we have to look at the 
micro-macro dynamics that between the micro-motives of agents and the 
aggregated behavior.

Knowing the preferences, motives, or beliefs of agents can only 
provide a necessary but not a sufficient condition for the explanation of 
the aggregated outcome. The purposes, as well as contingent behaviors, 
of individual agents produce coherent collective behavior, and 
sometimes cyclic behavior. The resulting micro-macro dynamics can be 
quite complex. The surprise lies in the emergence of macrostructure from 
Jhe bottom up, which occurs from local adaptive decisions that outwardly 
appear quite remote from the collective outcomes they generate. In short, 
it is not the emergent macroscopic object per se that is surprising, but the 
accumulative effect of the local adaptive decisions that generate complex 
behaviors at the macroscopic level.

4.5 Micro-Macro Loop between Two Collectives

b  this section, we extend our analysis of a single collective to multiple 
JOllectives. With this extension, an agent adapts her rational decision to 
the aggregated information of the other collective, and therefore, the 
micro-macro loop is formed between multiple collectives.
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Table 4.3 Payoff matrix of agent A  in G A and agent В in GB

'''''•--^ A g en t В 
Agent A s 2

S.
a A

a B

bA
CB

CA

bB

d A

d B

We consider pair-wise interactions between two collectives, GA and 
GB ■ A pair consisting of Agent A and Agent B, who are randomly chosen 
from each collective plays the underlying 2 x 2  game in Table 4.3. Each 
agent in each collective has the idiosyncratic payoff matrix.

The proportion of agents in G A having chosen S x at time t is denoted 
by x ( t ) ,  and that of agents in G B is y ( t ) . The strategy population of G A 
at t is denoted as x(t)-{x(t) ,l-x(t)} , and that of G B is y(t)={y(t), l-y(t)}. 
At any given moment, the agents have the opportunity to observe the 
strategy distribution of the other collective. All agents are assumed to 
share the aggregated information, and they are assumed to adapt to it 
with the best-response strategy.

We can reduce the four payoff parameters in Table 4.2 into two 
parameters by summarizing as follows:

«/ = a i ~ bi > A = d , —C j,i  = A ,B .  (4.21)
In this section, we characterize a rational decision of an agent depending 
on the type of underlying game between two collectives.

<Case 1> Coordination game: (#, > 0, A, > 1 = A B )
If both parameter values a i , Д  > i = A, В , are positive, the underlying 
pair-wise interaction becomes a coordination game. In this case, if both 
agents choose the same strategy, they can receive a positive payoff, 
otherwise they receive nothing. The threshold of each agent is

0 , . = A  / ( « , - + A ) .  i = A , B. (4.22)
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The best-response strategies of Agent A and Agent В are determined 
from their threshold and the strategy distribution of the other collective 
as follows:

(a) Agent A in G a,

> й ■ S
(4.23)(i) If y ( t )  > 0 A : S ,,

(ii) l f y ( t ) < e A: S2.

(b) Agent В in G B,

(i) If x(t)  < в в \ St ,
(ii) If x(t)  > в в \ S2.

(4.24)

<Case 2 > Dispersion game: ( a ,  < О, Д  < 0 ,  i = A,B)
If both parameter values are negative, the underlying pair-wise 
Interaction becomes a dispersion game. In this case, the best-response 
Itrategies of both agents are:

(a) Agent A in G a,

(i) If y ( t ) > e A : St ,

(ii) If y ( t )  < 6
(4.25)

A '

(b) Agent В in G B,

(i) If x ( t ) < 0 B : S lt

(ii) If x ( t ) > 6 B : S2. ( ' } 

(Case 3> Vicious-circle game

We consider the following conflict situation, in which the parameter 
Values of two agents have the opposite signs,

a A, p A >0 ,and  a B,j3 B < 0 .  (4.27)
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In this case, the underlying pair-wise interaction is defined as a 
vicious-circle game. The best-response strategies of Agent A and Agent 
В are

(a) Agent A  in G A,

(i) If y ( t )  > вА : S,,
(ii) If ;y(0 < в А : S2.

(b) Agent В  in G B,

(i) If x(t)  < 6B : Si,

(ii) If x ( t ) > 6B : S2.

4.6 Micro-Macro Dynamics between Two Collectives

In this section, we investigate the micro-macro dynamics of the two 
collectives when the micro-macro loop is formed between two 
collectives. An agent interacts with an agent who is randomly chosen 
from the other collective. The micro-macro dynamics can be analyzed 
depending the type of the underlying game.

<Case 1> The underlying pair-wise interaction is a coordination game

The proportion of agents who have the same threshold 0, in collective G, 
are denoted by и, (0) / N ,  i = A, В . We approximate the discrete function 
nt( в ) / N  by the continuous density function , i = A ,B .  The
proportion of agents in collective G„ i -  A, В , whose threshold is less 
than в is given by

i = A ,B .  (4.30)

The above functions are defined as the cumulative threshold 
distributions of collective G; , i = A, В .

We denote the proportion of agents who choose 5/ at time t in GB by 
y ( t ) . Agents in the collective GH choose their best-response strategy by

(4.28)

(4.29)
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assuming that the same proportion of agents in GA may choose Si at t  + 1. 
From the rule of choosing the best-response strategy in (4.23), the 
proportion of agents in GA to choose 5; at f + 1 is given by FA( y ( t ) ) . 
Therefore, the change of x ( t ) is governed by the following dynamics:

x ( t  +  l )  =  FA(y ( t ) ) .  (4.31)

Similarly, the dynamics of y ( t ) , the proportion of agents who choose 
5, in G B, is governed by the following dynamics:

y ( t  + 1) = F B ( x ( t ) )  . (4.32)

The pair of dynamic equations in (4.31) and (4.32) is defined as the 
micro-macro dynamics between two collectives. Our aim is to predict, 
starting from any initial value of *(0) or j ( 0 ) , the ultimate strategy 
populations of both collectives. The collective behaviors at equilibrium 
are obtained as the fixed point satisfying

x ' = F 'A y') ,
. (4-33)

У = F„(x  )

As an example, we consider the density functions of the two 
collectives given in Figure 4.8. This is the case in which a pair of agents 
randomly chosen from each collective play the asymmetric coordination 
game, which is also known as the battle o f  sexes game. In this 
asymmetric situation, their preferred choices are different. Agents in GA 
prefer 5/ and agents in GB prefer S2.

We show the dynamics of x ( t )  and y ( t )  in Figure 4.9 by changing the 
initial ratio incrementally between 0 and 1. The horizontal axis 
represents the adaptation time, and the vertical axis represents the 
proportion of agents who choose 5, at each time period. If the initial 
ratios of both collectives are relatively low (less than 0.35), then (x ( t ), 
y ( t ) ) converges to (0,0). That is, all agents in both collectives finally 
come to choose S2. If the initial ratios are high (greater than 0.65), then 
they converge to (1,1), and all agents come to choose 5,. If the initial 
ratios are between 0.35 and 0.65, then they produce cyclic behavior 
between at p = 0  and p - l .  With this cyclic behavior, if all agents choose
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Si at some time t , then at the next time t  +  1, all agents change to S2, and 
this miscoordination is repeated endlessly.

в  6 
(a) Collective GA (b) Collective GB

Figure 4.8 The density functions of threshold of two collectives: (a) The majority of 
collective GA has thresholds close to 0=0. (b) The majority of collective GB has 
thresholds close to 0=1

IePeat 20 о 10 repeat 20

(a) Collective GA (b) Collective GB

Figure 4.9 The proportions of agents having chosen S/ in G A and GB are different. An 
agent chosen from collective GA is more likely to prefer S, to S2, and an agent chosen 
from collective GB is more likely to prefer S2 to S,
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a a
(a) Collective G A (b) Collective GB

Figure 4.10 The density functions of two collectives: (a) The majority of collective GA 
has thresholds close to 0=0. (b) The collective splits into two groups having extreme 
thresholds, which are close to 0=0  and 9=1

* v ; i

08

w

0 8 m r
o.« 06

0.4 0.4 м и г
0 J

M l j 0.2

wn 0 £—

0 10 repeat 20 0 10 r«Peet 20

(a) Collective GA (b) Collective GB

Figure 4.11 The proportions of agents having chosen 5, in GA and GB . Starting from 
■ny initial value, they converge to x =1 and y = l
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Playing the same coordination game repeatedly in a population of 
agents who play based on their rational calculations of the payoff on a 
particular strategy with different expectations for the other strategy can 
easily lead to coordination failures (Fudenberg and Levine, 1998). The 
heterogeneity in payoffs poses more complex phenomena by producing 
both stable behaviors and cyclic oscillations. These examples have 
considerable intuitive appeal since they display situations in which 
agents’ rational actions, in pursuit of well-defined preferences, lead to 
outcomes that are undesirable to all agents.

We now consider the pair of the density functions in Figure 4.10. The 
density function of collective GA is as shown in Figure 4.8, and all of the 
agents in GA are more likely to prefer Sj to S2 On the other hand, the 
collective GB consists of two types of agents, one type is more likely to 
prefer Si to S2, and the other type to prefer S2 to S/. The portrait of the 
micro-macro dynamics is shown in Figure 4.11. In this case, starting 
from any initial ratio, they converge to x = l  and y = l ,  and both collectives 
finally come to choose Si, and therefore perfect coordination is achieved.

<Case 2> The underlying pair-wise interaction is a dispersion game

We now characterize the micro-macro dynamics when the underlying 
pair-wise interaction is formulated as a dispersion game. By the 
definition of the cumulative function F ( 0 )  (i -  A, В ) in (4.30), and the 
rules t for choosing the best-response strategy in (4.25) and (4.26), the 
micro-macro dynamics are obtained as follows. The proportions of 
agents who choose Si at t+1 in GA and GB are given as l —FA(yit)) and 
1 - F B(x(t)) ,  respectively. Therefore, the micro-dynamics between two 
collectives is described using the complimentary cumulative distribution 
functions as:

x ( f  +  l )  =  l - F A (?(*) ) ,
y ( t  +  [ ) = l - F B( x{ t ) ) .  (4"i4)

The above micro-macro dynamics is characterized at equilibrium by 
obtaining a fixed point satisfying:
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x = l  ~ F A( y ) ,  
y ' = l - F B( x ) .

(4.35)

We consider the pair of density functions /Д  6 ) , i = A,B,  in Figure
4.12. Agents in GA are more likely to prefer S2 to 5/. On the other hand, 
the collective of GB consists of two different types of agents, one type is 
more likely to prefer St to S2, and the other type is more likely to prefer 
S2 to Si .

(a) Collective G , (b) Collective GB

Figure 4.12 The density functions of two collectives, (a) The majority of collective G A 
has thresholds close to 9=0. (b) The collective splits into two groups having extreme 
thresholds that are close to 9=0 and 9=1

10

(a) Collective G л%

repeat 20 10 repeat 20

(b) Collective GB

Figure 4.13 The proportions o f  agents having chosen 5 / in GA and GB . S tarting from  
any initial value, they converge to x=0 and y=l
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The micro-macro dynamics is shown in Figure 4.13. Starting from any 
initial value, x ( t ) converges to x=0, and all agents in G A choose S2. On 
the other hand, y ( t ) )  converges to y = l ,  implying that all agents in G B 
come to choose Si. In this case, perfect coordination is realized between 
the two collectives.

<Case 3)> The underlying pair-wise interaction is a vicious-circle game

We now obtain the micro-macro dynamics when the underlying pair
wise interaction is formulated as a vicious-circle game. As a specific 
example, we consider two populations of sellers and buyers. Each seller 
has two strategies, S, (honest) and S2 (cheat), and each buyer also has 
two strategies, Si (inspect) and S2 (does not inspect).

A seller and a buyer who are randomly chosen from each population 
face a trading game with the payoff matrix in Table 4.4. If the seller A is 
honest and the buyer В inspects, that is, at (Si, Si), the seller receives a 
positive payoff, aA> 0. Or, if the seller cheats and the buyer does not 
inspect, that is, at (S2, S2), the seller also receives a positive payoff (3A> 0, 
then cheating is better than being honest if the buyer does not inspect.

In this case, however, the buyer receives nothing. On the other hand, if 
the seller is honest and the buyer does not inspect, then at (Si, S2), the 
buyer receives a positive payoff, J3B> 0 (because of the inspection cost 
and defective production). Or, if the seller cheats and the buyer inspects, 
then at (S2, Si), the buyer receive a B>  0. In the latter two cases, the buyer

Table 4.4 Payoff matrix of a buyer and a seller (a i , Д  > 0, i — A, B.)

Buyer В S, s 2
Seller A (inspect) (no inspect)

s.
(honest)

0

aA
Pb

0
aB 0

(cheat) 0 Pa
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receives nothing. In this trading game, there is no pure strategy Nash 
equilibrium, and only a mixed-strategy equilibrium is possible.

From (4.28) and (4.29), we can obtain the micro-macro dynamics. The 
proportion of agents who choose Si in G A at t +  \  is given by the 
cumulative function FA(y(t)) , and that in G B is given by the 
complementary function \ - F B(x ( t) ) . Then, the micro-macro dynamics 
are obtained as:

x (t  +  l )  =  FA(y( t) )  
y(t + l) = l - F B(x(t))

The micro-macro dynamics at equilibrium is characterized by the 
fixed point satisfying

jc' = F A y *)
* 1 (4-37> у  =1  - F B(x  )

We consider the pair of density functions / ,  (#) ,i  =  A ,B ,  in Figure 
4.14. The micro-macro dynamics are shown in Figure 4.15. Starting from 
any initial value, both x ( t )  and y ( t )  converge to 0.5. In this case, both 
collectives split into two groups, and half of the agents of both 
collectives come to choose Sh and the rest choose S2.

All of these examples have considerable intuitive appeal, since they 
display situations in which agents’ rational decisions, in pursuit of well- 
defined preferences, sometimes lead to surprising outcomes. One may 
also wonder why there are no situations in which the behavior of agents 
cannot usefully be summed and predicted by the initial proportions of 
agents who engage in one of two possible strategies. At each time period, 
agents decide which strategy to choose given the information of the 
aggregate of the other collective. They adapt rationally, knowing that 
everyone else is also making a rational choice. As time progress, and 
agents come to know more about the strategy population of the other 
collective, a specific strategy may become more likely to be chosen. 
However, correct predictions do not happen because of heterogeneity in 
agents.
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(a) Collective G , (b) Collective G .

Figure 4.14 The density function of two collectives. Both collectives split into two 
groups having extreme thresholds that are close to 6=0 and 6=1

0.8

y w i
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0 10 repeat

(a) Collective GA

20 10 repeat 20

(b) Collective GB

Figure 4.15 The proportions o f agents having chosen Sj in G A and GB . Starting from 
any initial value, they converge to x=0.5  and y=0.5



Knowledge Transaction Games

Chapter 5

In this chapter, we formulate knowledge transaction games. We consider 
a collective of agents who trade their private knowledge with each other. 
The dynamic knowledge trading process can be formulated as the micro
macro dynamics discussed in the previous chapter. Agents trade their 
private knowledge with other members, and the disclosed knowledge 
is shared as common knowledge. Shared knowledge also causes agents 
to accumulate their private knowledge at an individual level at an 
accelerated rate. The main concern is then under what circumstances 
a collective of self-interested agents can accelerate knowledge 
accumulation at both the individual level and the collective level.

5.1 Merit of Knowledge Sharing

In modem societies, knowledge is not only closely connected to 
! innovation and technological advances, it also becomes an economic 

commodity in its own right. The creation and distribution of knowledge 
becomes a central part of the analysis and discussion because we live in 
the age of the information economy.

Defining knowledge is a first essential step for considering 
knowledge intensive activities. However, there are many definitions of 
knowledge. To some, knowledge concerns wisdom, the result of learning 
and experience, to others knowledge is only learning or only experience, 
whereas others believe knowledge involves information or data (Fischer 
and Frohlich, 2001).

In their book '"The Knowledge-Creating Companies”, Nonaka and 
Takeuchi (1995) distinguish two types of knowledge, tacit knowledge
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and explicit knowledge. Tacit knowledge is knowledge that is hard to 
articulate with formal language. It is personal knowledge embedded in 
individual experience and personal belief. In other words, it is part of 
what we know that we can explain. The other type of knowledge is 
explicit knowledge, which can be articulated in formal language 
including grammatical statements, mathematical expressions, 
specifications, manuals, and so forth. Knowledge transformation is 
thought of as a spiral construction, where transformation of tacit 
knowledge into explicit knowledge leads to the diffusion of knowledge, 
which can then be built on and incorporated back into the tacit 
knowledge of the members of the same organization or group.

Organization cannot create knowledge on its own without the 
initiatives of individuals and the interactions that takes place within the 
organization. Individual knowledge is transformed into organizational 
knowledge. However, it is difficult to promote this transference in an 
environment in which attendants have conflicts of interest. Transferring 
from the individual level to an organization level requires costs time and 
money, and requires a great deal of effort.

The goal of this chapter is to model the knowledge accumulation 
process by formulating knowledge transference as a knowledge 
transaction game. We classify knowledge into two types. One is shared 
knowledge, which is common to all members of the same organization or 
group. This type of knowledge can be transmitted across agents 
explicitly. The other type of knowledge is private knowledge, which is 
personal knowledge that is embedded in individual experience or 
individually created.

When agents have the chance to trade their knowledge, they try to 
trade their private knowledge with others so that their utility or payoff 
from a transaction is improved. Factors such as the value of acquiring 
new knowledge from trading partners and the cost of disclosing their 
private knowledge to others should be considered.

If agents trade their private knowledge, then disclosed knowledge 
becomes common knowledge. If many agents are willing to trade their 
knowledge, they can share common knowledge at a higher level. 
Transacted knowledge comes to be shared and common knowledge also 
causes agents to accelerate their creation of new private knowledge. That
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is, shared knowledge has positive feedback with respect to knowledge 
creation at an individual level. The micro-macro link between individual 
knowledge and shared knowledge is conceptually depicted in Figure 5.1.

Agents may recognize that sharing knowledge with each other is 
important for achieving joint works effectively. On the other hand, they 
may sometimes try to hide their private knowledge from disclosure if 
they behave selfishly. In this case, they cannot share common knowledge 
at a higher level. Then, the main concern is under what circumstances 
can knowledge sharing be accelerated.

Figure 5.1 Knowledge sharing and creation through knowledge trading
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5.2 A Formulation of Knowledge Transaction Games

Agents can acquire new knowledge only through knowledge trading, and 
trading can integrate transacted knowledge with one’s own private 
knowledge to create new knowledge. However, knowledge trading has 
some unique property, which is not found in the trading of economic 
goods. That is, if knowledge is diffused, it is beneficial to any agent who 
is at least partly capable of understanding it.

In this section, we formulate knowledge transaction between two 
agents as a 2x2 game. We also obtain the condition for sharing common 
knowledge at a higher level through the repeated knowledge transaction 
games. We consider two agents who have both types of knowledge, 
private knowledge and common knowledge. Agents may benefit from 
knowledge transaction if their utility will be increased. Therefore, they 
will trade their private knowledge with another agent only if their utility 
is improved.

We consider knowledge transaction between agent A , who has the 
collection of private knowledge п л={х ; l < . j < N } ,  and agent В  , who 
has the collection of private knowledge = {у ,• 1й j<, NH}- Each agent 
makes a rational decision considering both the benefit and cost 
associated with each trade. Factors such as the value of knowledge 
possessed by the other agent and the loss associated with sharing her own 
knowledge should be considered before transaction.

We assume a semi-linear function of each agent in the form of

U i(Cli ,K )  =  a i + v i(K ),  i = A, В . (5.1)

where Q ; represents the private knowledge of agent i, i = A,B, and К  
represents the common knowledge of both agents.

Let us assume agent i, where i = A ,В , has knowledge of the value 
X  . The difference X - v t(X)  represents the relative value of agent i 
when she keeps it as private knowledge. When the condition 
X  — v((X) >0 holds, she places a higher priority on having X  as private 
knowledge. On the other hand if the condition v,(X) -  X > 0 holds, she 
places a higher priority on having it as common knowledge.

We define the following three types of value function:
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Definition 5.1 For a knowledge pair  X  and Y, ( X * Y )

(1) If  vt ( X + Y ) - v [( X)  + vl (Y), then the value function v, (X) is linear.

(2) If  vt(X  + Y ) > v i ( X )  + vl (Y), then the value function vt( X)  is super
additive.

(3) If vt ( X +  Y ) < v i ( X)  + vi (Y), then the value function v,(X) is semi
additive.

If the value function v,(X) is super-additive, then the knowledge 
accumulation process satisfies the property of increasing-returns to 
scales. In this case, the sharing of common knowledge with the other 
agent brings additional value. If this property holds, then increasing the 
level of common knowledge implies sharing more experiences with each 
other for effective joint works. In this case, agents may achieve greater 
collective understanding for achieving common tasks. On the other hand, 
if the value function is semi-additive, sharing more knowledge has the 
property of decreasing-retum to scales.

We formulate knowledge transaction between two agents as a 2x2 
game. Each agent i , i = A, В , has two strategies:

Sx : Trades a piece of private knowledge in Q( , i = A, В .
S2 : Does not trade

Let us consider the knowledge transaction between agent A with 
knowledge X  and agent В with knowledge Y, as shown in Figure 5.2. The 
payoffs to both agents when they choose each strategy are given as the 
payoff matrix in Table 5.1. The payoffs to agent A  in Table 5.1 are

U A (Sb Sx) = П д -  X  +  vA ( X  + У) = a A ,

uA(slts2) = aA-x+vA(X) = bA,
U A( S2 , SO = n A + v A(Y) = c A , 

u A( S2 , S 2 ) = Q a -  d A .

The payoffs to agent В are
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l / e ( S , . S , ) - n e  — Y + v f i ( X  + Y )  = aB , 

t / B ( S 2 , S 1) =  £ l f l - l '  +  vB ( n  =  fce ,

^ ^ ( ^ 2 . ^ 1) = + Vg(X) = Cg ,
UB(S2,S2) = ClB = d B .

(5.4)

When both agents decide to trade their private knowledge, the payoffs 
are defined as the value from common knowledge minus the value of 
private knowledge. On the other hand, if one agent does not trade while 
her partner does trade, she receives some gain by knowing the new 
knowledge held by the other agent. If an agent trades her private 
knowledge and her partner does not trade, then her traded knowledge 
becomes common knowledge, and some of the value of the knowledge is 
lost. If both agents are not involved in the transaction, they receive 
nothing. Therefore, agents may not lose all of the value of their 
knowledge, and they also receive some gain even if the agent does not 
trade while the other agent does. This is a unique feature of knowledge 
transaction that is not found in the trading of economic commodities.

We define the following payoff parameters:

a A =  aA ~ CA =  ~ x + va ( x  +  Y ) ~ va OO , 

Pa = dA ~ bA = X - v A( X) , 
aB ~ aB ~ cb = ~ Y + V g ( ^  +  5 0 _ V ^ ( X )  > 

Pb = dB ~Ьв = Y - v b(Y).

(5.5)

From the above, we have the following relation:

a i + P i = v i ( X  + Y ) - v i ( X ) - v i ( Y) ,  i =  A , В  . (5.6) 

We also define the following thresholds for both agents.

e„ s  p y  (a , + p„) = {X -  vA {X )}/{vA { X + Y ) -  v, (X) -  v, (У)}, 

e s = P. / ( a ,  + P ,) = {Y -  vB (r)}/{ve {X + Y ) -  V, ( x ) -  v, (У)}.
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The denominators in (5.7) represent the multiplier effects of sharing 
knowledge, and the numerators represent the costs associated with 
transaction.

(Value of Private Knowledge) 
+

(Value of Common Knowledge)

Knowledge Transaction

I  X  Y (

Utility of Agent after Transaction

Privale Common 
Knowledge Knowledge

/ ^ A

Private Common 
Knowledge Knowledge

Q ,

U A(Sl S,) = a A- X  + vA( X v Y )

Figure 5.2 Knowledge trading between two agents

Table 5.1 Payoff matrix of knowledge trading games
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5.3 Characteristics of Knowledge Transaction

The threshold associated with each piece of knowledge to be traded 
reflects an agent’s value judgments on knowledge transaction. Each 
agent reasons the value of knowledge held by other agents. The value of 
knowledge of each agent is also reflected in her threshold defined in 
(5.7).

<Case 1> v(X) is super-additive
We denote the probability of her partner choosing S, (trade) by p . If the 
value function agent i is super-additive, then the payoff parameters in 
(5.5) satisfy the relations a { > 0 and Д. > 0 . The best-response strategy 
of agent i is obtained from (4.8) as:

(i) If p  >  0 , S,  (Trades)
(5.8)

(ii) If p  < 0 ., S2 (Does not trade)

We can classify agents who have super-additive value functions into 
three types, depending on threshold value of в  defined in (5.7).

(a) 0 . «  0 ( q  »/з[): Hard-core contributor

From the best-response strategy in (5.8), an agent whose threshold is 
close to zero has as a dominant strategy. Since she is willing to 
disclose her private knowledge without regard for the other agent’s 
strategy, an agent with a lower threshold is defined as a hard-core 
contributor.

(b) 0 . - 1  (f t  » a ; ) :  Free rider

An agent whose threshold is close to one has ^  as a dominant strategy. 
She does not trade her knowledge without regard for the choice of the 
other agent. We define such an agent as a free rider.

(c) 0 < < 1: Opportunist
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In this case, the best-response strategy of agent i depends on her 
partner’s strategy. We define this type of agent as an opportunist.

<Case 2> vt(X)  is semi-additive

If the value function of agent i is semi-additive, the payoff parameters 
satisfy the relations a  < 0 and P < 0 . Therefore, the best-response 
strategy of agent i is obtained from (4.11) as

(i) If p  < 0,, S, (Trades),
(ii) If p  > в t , S2 (Does not trade).

Agents with semi-additive value functions are also classified into the 
three types depending on their threshold value, as defined in (5.7).

(a) d t = 0 Free rider

From (5.13), an agent with a lower threshold has S2 as a dominant 
strategy. She does not trade her knowledge without regard for the choice 
of the other agent. We define such an agent as a free rider.

(b) 6 t ** 1 ( at h^/7): Hard-core contributor

An agent with a high threshold has 5, as a dominant strategy. She is 
willing to trade her knowledge without regard for the other agent’s 
choice. Such an agent is defined as a hard-core contributor.

(c) 0 < 8 i < 1: Opportunist

In this case, the best-response strategy of agent i depends on her 
partner’s strategy. We define such an agent as an opportunist.

As an example, we consider knowledge transaction between two 
agents A and B, each of which has the super-additive value function 
V/(K) , i =  A,  В  . Each agent reasons the value of knowledge held by the 
other agent in terms of her own private knowledge. That is, the value of 
knowledge held by her partner can be estimated as a function of the
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value of her own knowledge. An agent with knowledge of the value X  
reasons the value of the other agent’s knowledge Y  as:

Y  =  a X  ( a >  0 ). (5.10)

If 0 < a  < 1, an agent believes her partner has knowledge of lower 
value, and if a  > 1, her partner is believed to have knowledge of higher 
value.

We also assume that the super-additive value functions of both agents 
have the following specific form:

v i ( X ) ^ k X l n ( X ) ,  i =  A , В . (5.11)

In Figure 5.3, we depict the function in (5.11) with к =  0 5  . The 
horizontal axis represents the value of private knowledge X  , and the 
vertical axis represents the value of v , (X ) , which corresponds to the 
value of X  when it becomes common knowledge to both agents. When 
the value function v,(X) is super-additive, the denominator and 
numerator of the threshold in (5.7) can be approximated as:

V, ( X + a X ) -  V'(X) -  vt (aX)  =  kX (ln (l +  a)  +  orln(l + 1 l a ) )
(5.12)

A ' - v , ( X )  = X ( l - / H n X )

Therefore, the threshold in (5.7) represents the function of the value of 
knowledge X  and a  as

^  ч H k - \ n X
0 ( X , a )  = -------------------------------- (5.13)

ln(l + or) + orln(l + 11 a )  v '

In Figure 5.4, we depict the value of the threshold in (5.13) as a 
function of X  and a.  The horizontal axis represents the value of 
knowledge X , and the vertical axis represents the threshold in (5.13). 
From this figure, if the value of knowledge X  increases, its associated 
threshold decreases sharply. The threshold also decreases as Ot 
increases. Therefore, if an agent estimates that her partner has more 
valuable knowledge, her threshold will decrease. Therefore, in this case 
an agent is more likely to trade her knowledge.
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Figure 5.3 Super-additive value function in (5.11) ( к  =  0.5 )

Figure 5.4 Threshold 0 ( X  ,OC) as a function of a  and X
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5.4 Repeated Knowledge Transaction

In this section, we consider repeated knowledge transaction between 
agent A  with a collection of knowledge Q,'a = {X; : 1 < / < N A} and 
agent В  with a collection of knowledgeQ'b = {/ 1 < j  < Nnj- Each agent 
makes a rational decision as to whether to trade each piece of knowledge.

The rational decision for knowledge transaction is characterized by 
the threshold associated with each knowledge transaction, as defined in
(5.13). We denote the proportion of knowledge of agent i that is 
characterized by the same threshold в  by п^в)!  N  , i -  A, В . We 
approximate these discrete functions by the continuous function /  (#), 
i = A ,B  , as shown in Figure 5.5.
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(a) Type 1 (b) Type 2

(c) Type 3

Figure 5.5 Characterization o f private knowledge in terms of a threshold. (1) Type 1: 
An agent with high-value knowledge, (2) Type 2: An agent with intermediate-value 
knowledge, (3) Type 3: An agent with low-value knowledge
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An agent having the density function illustrated in Figure 5.5(a) 
(Type 1) is characterized as having knowledge of high value, since the 
associated threshold function takes low values. An agent having the 
density function shown in Figure 5.5(b) (Type 2) is characterized as 
having knowledge of intermediate value. An agent having the density 
function shown in Figure 5.5(c) (Type 3) is characterized as having 
knowledge of low value, since the associate threshold function takes high 
values.

We denote the proportion of knowledge for which the threshold is 
less than в  in a collection of knowledge £2, held by agent i by

Fi ( 0 ) =  | / ;(Я)й?Я i = A,B.  (5.14)
л<в

We also denote the ratio of successful transaction of agent A  and agent 
В  by the t-th transaction as x ( t )  and y ( t )  , respectively. From the 
rational transaction rule in (5.9), agent A  will trade her knowledge if its 
associated threshold satisfies y (0  > 6 A . Similarly agent В will trade 
her knowledge if its associated threshold satisfies x ( t ) >  6 B . The 
proportion of knowledge to be traded at the next time period t +1 is 
given by FA(y(t ))  for agent A  and FB(x(t)) for agent В . Therefore, 
the dynamics of knowledge transaction is described as:

*(* + 1) = ^ ( у ( 0 )
+  =  i j 

The above dynamics may reach equilibrium at the fixed point satisfying 

x '  =  F A( y )

* г Л  (5Л6)У = F B( X )•
We consider repeated knowledge transaction in the following three 

cases:

<Case 1> Agent A: intermediate-value knowledge (Type 2). Agent B: 
high-value knowledge (Type 1) as shown in Figure 5.6.
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Figure 5.7 illustrates the dynamics of repeated knowledge transaction. 
The horizontal axis represents the ratio of successful trading of agent A  
( x( t ) ), and the vertical axis represents the ratio of successful trading of 
agent В  ( y( t ) ). The dynamics in (5.15) have two stable equilibria at 
left-extremity E0 and at right-extremity E 3. At the lowest equilibrium at 
E 0, where (x, y )  = (0,0), neither agent trade knowledge. On the other 
hand, at the highest equilibrium E 3, (x,  у ) =  (1,1) , both agents trade all 
of their knowledge. If the pair of initial ratios (л(о), _y(0)) is in Region I 
in Figure 5.7, then the dynamics converges to E0, and if the pair is in 
Region IV, then the dynamics converges to E 3. If the initial values are in 
either Region II or Region III, the dynamics will cycle between 
(x,  y )  = (1,0) and (x,  y )  =  (0,1).

<Case 2> Agent A: intermediate-value knowledge (Type 2), Agent B: 
low-value knowledge (Type 3) as shown in Figure 5.8.

In this case, agent A  is Type 2, as in Case 1. On the other hand, 
agent В  is Type 3 in Figure 5.8. The dynamics is shown in Figure 5.9. 
By comparison with Case 1 in Figure 5.9, Region I, in which the 
dynamics converges to (jc, >’) = (0,0) becomes larger, and Region IV, in 
which the dynamics converges to (x,  y) = (1,1) becomes smaller.

<Case 3> Agent A: high-value knowledge (Type 1), Agent B: low-value 
knowledge (Type 3) as shown in Figure 5.10.

We now consider the completely asymmetric case in which agent A  
has high-value knowledge and agent В  has low-value knowledge. Their 
threshold densities are as illustrated in Figure 5.10. The dynamic process 
is shown in Figure 5.11, and both agents mostly repeat miss-coordination, 
since Region II and Region III, in which the cyclic behavior between 
(x, y) = (1,0) and (x,  y) = (0,1) occurs, become larger.

In Case 1, knowledge sharing is promoted because both agents have 
incentive for sharing knowledge through transaction. On the other hand, 
in Case 2, knowledge sharing is relatively discouraged. An agent is 
rational and trades only if her utility can be improved. She fears a loss in 
disclosing her knowledge, because she estimates that the trading partner
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does not have valuable knowledge. In Case 3, they encounter another 
problem of miss-coordination. Consider the situation in which one agent 
discloses her knowledge and the other agent does not, and in the next 
period the previously non-disclosing agent discloses her knowledge but 
the previously disclosing agent does not disclose. Assuming that this 
miss-coordination continues, we found that the relative knowledge level 
of both agents plays a significant role in controlling knowledge 
transaction. Knowledge transaction between two agents having different 
values of private knowledge becomes difficult.

(a) Knowledge of intermediate value (b) Knowledge of low value

Figure 5.6 Characterization of values of knowledge in terms of threshold: (a) Collection 
of knowledge of agent A: C1A (b) Agent B: Q.B

F;igure 5.7 Dynamics in (5.15)
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(a) Knowledge of intermediate value (b) Knowledge of low value

Figure 5.8 Characterization of values of knowledge in terms of threshold: (a) Collection 
of knowledge o f agent A: Q. A , (b) Collection of knowledge of agent B:
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(a) Knowledge of high value (b) Knowledge of low value

Figure 5.10 Characterization of values of knowledge in terms of threshold: (a) Collection 
of knowledge of agent А: £2Л , (b) Collection of knowledge of agent B:

Figure 5.11 Dynamics in (5.15)
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5.5 Knowledge Transaction by Multiple Agents

Thus far we have formulated knowledge transaction between two agents 
who have plenty of knowledge and who have made numerous decisions 
as to whether of not to trade. In this section, we extend knowledge 
transaction in a collective of agents, G = {г: 1 ^ г < N}.  Each agent trades 
her private knowledge only if her utility is improved.

We denote knowledge traded by agent i by X  i , and knowledge 
traded by all other agents except agent i by 
X( i )  = (.Xl , X 2, . . . , Xi_l , X i+l, . . . , Xl i ) .

By treating all other agents except agent i by one representative 
agent with the two strategies, 5,: trades knowledge X  (г), and S2: does 
not trade, we can obtain the payoff matrix of agent i in Table 5.2. The 
payoff parameters in Table 5.2 are

where Q, represents the private knowledge of agent i, and К  represents 
the common knowledge shared with all other agents.

The threshold of agent i with the payoff matrix in Table 5.2 is defined
as

Of = Q i - X i + v i ( K + X i + X  (г)) 
bi = n i - X i + v i ( K  + X i )

Ci = S l i + Vi( K + X(iy)  

d ^ S l i + v ^ K )

(5.17)

(5.18)

Table 5.2 Payoff matrix of agent i

(trade X(ij) (not trade)



Knowledge Transaction Games 149

Q = _____________ Х ' + у^ Ю - уА К  + Х ^ _____________
' v ^ K + x ^ x i m - v ^ K + x ^ - v ^ K + x i m + v ^ K )  ( 5 Л 9 )

The denominator in (5.19) represents the multiplier effect of sharing 
knowledge, and the numerator represents the disclosure cost for of 
private knowledge.

Next, we consider repeated knowledge trading in the group and 
observe how both private knowledge and common knowledge is 
accumulated through knowledge transaction. We assume that the value 
functions v t( K) ,  i= l,2 ,.. . ,N , are super-additive in the form of

vt ( X )  = k Xl n ( X)  (1 <Li <N) .  (5.20)

In the above equations, the parameter value к is set as к = 0.2 . In Figure
5.12, we describe the numerator of the threshold in (5.19) as a function 
of X  , when we set К  = 40. From this figure, if X  > 30, the value of Д  
becomes negative.

We now investigate the dynamic knowledge accumulation process 
starting with the different values of private and common knowledge as 
shown in Table 5.3. We consider two groups, and each group consists of 
50 agents.

Group Ga : The private knowledge of all members is high.

Group GB : Half of the group has high-value private knowledge and 
the rest has low-value private knowledge.

Table 5.3 Initial private and common knowledge levels

Low High

Common Knowledge ( К ) 10 40

Private Knowledge ( Q  ) 10-80 10-300
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Figure 5.12 Value of the numerator in (5.19) ( AT =  40)

Levels o f Initial Private Knowledge 

(a) Group Ga

Levels of Initial Private Knowledge

(b) Group GB

Figure 5.13 Ratio of agents having knowledge o f the same value
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The value distribution of private knowledge of each group is shown in 
Figure 5.13, where the vertical axis represents the ratio of agents who 
have the same value of private knowledge. Heterogeneity in the private 
knowledge of each group in Figure 5.13 can be interpreted in terms of 
the threshold densities, as shown in Figure 5.14. From this figure, we can 
induce two important points. First, if knowledge is valuable, its 
associated threshold becomes low. Second, the threshold density is 
ranged within a relatively small area.

Distribution o f Threshold

Threshold 

(a) £2 (0 ): 10-80 (Group GA )

Distribution o f Threshold

Threshold 

(b) £2 (0 ): 10-300 (Group GA )

Figure 5.14 Ratio o f agents having the sam e threshold
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Distrib ution of Thre shold

Threshold

(с) П (0 ) : 10-80 (Group G B )

Distribution of Threshold

Threshold

(d) £2(0) : 10-300 (Group GB )

Figure 5.14 (Continued)

5.6 The Knowledge Accumulation Process as a Micro-Macro Loop

In this section, we investigate the knowledge accumulation process by 
specifying the micro-macro loop between individuals and the collective. 
The accumulation process of common knowledge is described as shown 
in Figure 5.1, and knowledge transaction at the microscopic level plays a 
key role in fruitful knowledge accumulation.
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The micro-macro link is also interpreted as the process of knowledge 
re-combination of agents. Once common knowledge is accumulated, 
agents may absorb it and they can create new knowledge. The absorption 
ability of common knowledge of individuals can be interpreted as the 
strength of the micro-macro link. Knowledge sharing is an important 
value-adding component of knowledge management initiatives in 
organizations. We also investigate how the re-combination ability of 
knowledge at the micro level affects knowledge accumulation at the 
macro level.

We formulate the repeated knowledge transaction by multiple agents. 
The levels of both private and common knowledge may change over 
time through knowledge transaction. We denote the level of private 
knowledge of agent i as £2, (0  and the level of common knowledge by 
K( t )  at the t-th transaction period. We define the following production 
function of private knowledge:

n,.(? + i ) = ( i - ^ . ) a , ( 0 - x ,  + r ,^ ( 0  (5.2i)

where 8. represents the depreciation rate of private knowledge and y.  
represents the re-combination ability of agent i . The re-combination 
ability becomes important in creating new knowledge by combining 
existing knowledge.

Similarly, we introduce the following production function for 
common knowledge:

K ( t  + l) = ( l - i e ) K ( t )  + j i x i ( t )  (5.22)
i=i

where К represents the depreciation rate of common knowledge. We 
assume that the knowledge to be trade by each agent is in proportion to 
the level of her private knowledge. Then, we assume that agent i trades 
knowledge given by

X t = x iQ i ( t ) .  (5.23)

We also focus on the effect of the re-combination ability in knowledge 
accumulation. We consider the following two cases:
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<Case 1> Fifty agents have different re-combination ability у  , which 
ranges from 0.02 to 0.1 with an increment of 0.02.

<Case 2> All agents have low re-combination ability of у  =0.02.
The other parameter values are set as follows:

8, =0 .1 ,  «' = 0.1, jc, = 0.1 (5.24)

In Figure 5.15, we show the case in which the initial levels of private 
knowledge of all agents are set to be low (£1(0) = 10-80), and the re
combination ability у  is uniformly distributed in [0.02, 0.1] (Case 1). 
The proportion of trading agents is shown in Figure 5.15(a) for two 
groups with the different initial common knowledge A'(O) = 10 and 
JST(0) = 40, respectively. The initial ratio of trading agents is set to 0.3.

In the group with the high initial common knowledge ( K(0) = 40), all 
agents eventually come to be traded. On the other hand, for the group 
with low initial common knowledge ( AT(0) = 10), no agent trades. The 
accumulated private and common knowledge of both groups are shown 
in Figure 5.15(b)(c). Despite the large difference in the trading patterns 
at the individual level, however, there is little difference in accumulated 
knowledge.

In Figure 5.16, we show the simulation result when all agents have 
the low re-combination capability of у = 0.02. One group starts with low 
common knowledge A"(0) = 10, and the other group starts with high 
common knowledge A"(0) = 40. The transaction process shown in Figure 
5.16(a) is the same as that shown in Figure 5.16(a). However, even if the 
group has high common knowledge initially, they cannot accumulate 
private and common knowledge at higher levels, as shown in Figure 
5.16(b)(c).

We now consider the group of agents in which each agent has a 
different value of private knowledge ranging from £l(0) = 10 to 
£^(0) = 30 0 .  In Figure 5.17, we show the case in which the re
combination ability is distributed uniformly over [0.02, 0.1]. We also 
consider two groups with initial common knowledge AT(0) = 10 and 
.KX0) = 4 0 , respectively. The proportions of agents that trade their 
knowledge are shown in Figure 5.17(a). Even if the initial common 
knowledge is low, all agents eventually trade their knowledge. The
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accumulated private knowledge and common knowledge of both groups 
are shown in Figure 5.17(b)(c). They succeed in accumulating both 
private and common knowledge at higher levels.

In Figure 5.18, we show the simulation result when all agents have 
the low re-combination capability of у  = 0.02. One group starts with a 
low level of common knowledge ЛГ(0) = 10, and the other group starts 
with a high level of common knowledge К  (0) = 40. The transaction 
processes of both groups are shown in Figure 5.18 (a), and all agents in 
both groups eventually trade their knowledge. The accumulated private 
knowledge and common knowledge are shown in Figure 5.18 (b)(c). It is 
shown that both groups fail to accumulate knowledge at both the private 
and common levels even if all agents trade their knowledge.

From these simulation results, we conclude the following. If some 
agents in a group have more valuable knowledge, all agents come to 
trade their knowledge and succeed in accumulating common knowledge 
at a higher level, even if the initial level of common knowledge is low. 
However, if the re-combination abilities of agents are low, they cannot 
accumulate knowledge at a higher level. They fail to create new 
knowledge even if they frequently trade their knowledge. Therefore, the 
re-combination ability of knowledge is important for accumulating 
knowledge on both the individual and collective levels.

Knowledge sharing is an important value-adding component of 
knowledge management initiatives. However, it is not clear that it has the 
effect of knowledge creation. It may be simply diffused among agents 
without creating new knowledge. The model in this chapter explicitly 
includes the accumulation processes of both private and common 
knowledge. Knowledge sharing becomes one of the important issues for 
many activities in an organization. The above simulation results imply 
that the re-combination ability has a great influence on knowledge 
accumulation. Even if most agents trade their private knowledge, they 
may fail to accumulate knowledge at a sufficient level if the re
combination ability of common knowledge and private knowledge of 
each agent is low.
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Gains from Diversity

Chapter 6

This chapter investigates the gains from diversity through heterogeneous 
interactions. We conduct a comparative study of the collectives of 
interacting agents, one in a global environment, and the other in a spatial 
environment. Each agent repeatedly plays either a coordination game or 
a dispersion game by adapting her best-response strategy to the global 
Strategy population in a global environment, and to the local strategy 
population in a local environment. The performances of the global and 
local collective adaptive dynamics are evaluated in terms of stability, 
efficiency, and equity. The spatial environment is shown to encourage 
higher performance compared to the global environment.

6.1 Identity and Diversity

Many physical systems consist of an identical or lower number of 
different types of interacting particles. As a consequence, the widely 
Studied physical systems assume that all particles follow identical laws of 
motion. Many economists also try to explain human behavior on the 
assumption of identical agents with the same personality or preference. 
However, recent literature has found that individuals' personalities vary 
widely. Thus, when individuals differ in personalities or preferences, 
they will behave differently, even when they face the same problem with 
an identical environment.

In many economic and social contexts, the diversity of individual 
interests should be a central consideration. However, the issue of 
diversity in agents does not arise in many practical problems. In fact, 
many disciplines tend lo make the assumption of a representative agent.

161
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That is, the macroscopic behavior arising from interactions of many 
agents can be modeled as if it were the behavior of a single agent. One 
way this might happen is if all agents are identical, however, to retain the 
possibilities of extending our understanding of collective phenomena of 
interest, we must relax the condition that all agents are identical or that 
they adapt to the same aggregate information.

The economic approach to human behavior has traditionally 
emphasized the role of individual preferences in explaining social 
phenomena. On the other hand, the sociological approach essentially 
focuses on heterogeneity in individuals as the determining factor in 
explaining social phenomena.

An emerging body of research on social interactions has attempted to 
breach the gap between these two approaches. Recent research on social 
interaction models has pointed out two key crucial aspects in explaining 
collective behavior: heterogeneity in individual preferences and 
interactions among individuals. These models also take into account the 
fact that the preferences of individuals with respect to actions can depend 
on the actions of other individuals. The emphasis is also put on the 
interplay between the heterogeneity of individual preferences and 
interactions in a collective of agents.

Heterogeneity in individual preferences is treated via the random 
utility approach (McFadden, 1975). Suppose each agent in a collective of 
N  agents faces a binary choice problem with the two options, St and S2. 
The payoff difference of the two choices takes the form

U , - U 2 + e  (6.1)
where \Jh i= 1,2 are the payoffs associated with the choice of Sh i=1,2. 
These payoffs are the same for all agents representing representative 
preference. Heterogeneity of individual preferences is modeled via the 
random term £  that varies randomly across the agents.

We assume the rational-choice model, which is the option with the 
larger utility, is selected. Here, we also assume that an agent’s choice is 
characterized by some threshold value, and each agent selects 5/ if her 
payoff difference in (6.1) is greater than or equal to her specific 
threshold в. Therefore, an agent’s specific choice depends on the payoff 
difference, the heterogeneity term £ and the threshold ft
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Then the proportion of agents who choose Si is obtained as the 
probability satisfying

Pr(S,) = Pr(Ui - U 2 > в - e )  (6.2)
The cumulative of the Gumbel density function takes the form

F(x) =exp{-exp(-kx)} (6.3)
where к  is a diversity parameter. Large к  indicates that agents share 
similar individual preferences or thresholds, and small к  indicates a 
large heterogeneity of preferences or thresholds.

К we assume that в  and e  are independently drawn from the above 
Gumbel function, then х - в - Е  is logistically distributed with the 
cumulative function

F(x) =1/{1 + ехр(-лх)} (6.4)
By retranslating this into the original variables in (6.2), we obtain

Pr(S,) = ! /[ !  + exp{-tfU , - U 2) } ]  (6.5)
The diversity parameter к  determines the shape of the logistic 

distribution. Depending on the value of к  the logistic probability 
function in (6.5) has the following characteristics. (1) If к  takes a larger 
value, the function is close to the step function. In this case, if the utility 
Ui  associated with Si becomes larger than U2 associated with S2, all 
agents choose S], In contrast, if the utility U2 becomes larger than Uj,  
then all agents choose S2. (2) If к  takes a small value, then the function 
takes a value close to 0.5. Therefore, the collective outcome is separated 
between two choices. In this case, each agent behaves randomly and her 
choice does not depend on the associated utility. (3) If к  takes an 
intermediate value, then the ratio of agents who choose Si will increase if 
its associated utility Ui  is higher than U2. However, even if Ui  is larger 
than U2, both agents who choose Si and agents who choose S2 coexist.

More precisely, the above results mean that when individual tastes are 
sufficiently heterogeneous with a large value of к, the distribution of 
choices is similar to the case with the collective of identical preference. 
On the other hand, small diversity means small K, and the collective 
choice comes to be more random. There is a threshold value of x>, above 
which social interactions dominate individual heterogeneity to the point 
of altering the collective outcome. There is another threshold value of k2,
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below which social interactions also dominate individual heterogeneity 
to the point of causing the collective outcome to be random. This abrupt 
change in collective behavior is usually called a phase transition and is 
observed in many models of social interactions with externalities.

If the value of к  is between these two thresholds, then the collective 
behavior depends on heterogeneity in individuals. If the utility associated 
with Si becomes larger, more agents come to choose 5/. However, the 
difference becomes small, and the collective outcome becomes separated 
between two choices. Normally, the ratio of agents who choose Si will 
increase if its associated utility Ui iS higher than U2, the utility of S2. 
However, there is some probability that the option S2 will be chosen.

Let consider a single agent referred as a representative agent with a 
utility function that takes the form

F(U) =l/{l+exp(-Ki/)} (6.6)
Since (6.5) and (6.6) take the same form, the collective decisions of 
many heterogeneous agents can be treated as the decision of this 
representative agent. This relation simplifies the analysis of a collective 
of heterogeneous agents. However, this simplification depends on the 
assumption that two parameters в  and e, representing heterogeneity in 
preferences and thresholds, obey the Gumbel function and are 
statistically independent.

The underlying logic of social interaction models with individuality 
and heterogeneity of agents is to understand the collective behavior 
rather than that of a single agent. The main focus of the analysis is on the 
role of externalities across the agents in determining the collective 
behavior. In examining the collective behavior, the social interaction 
approach treats collective behavior as a regularity of the collection of 
individual decisions as they are determined through the interactions and 
idiosyncratic characteristics of the agents. Individual choice is guided by 
payoffs as well as social influences on individual preferences. The main 
point for the analysis is then the assumption that agents are influenced by 
the choices of others. The resulting collective systems with a micro
macro loop are the object of study.
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Evolution is responsible for a lot of sorting and separating, and the 
coexistence of various creatures. Individuals become mixed or separated 
in accordance with many factors. However, we have little knowledge 
regarding why and how heterogeneous individuals come to aggregate, in 
that individuals neither intend nor need to be aware of it.

To understand what kinds of segregation or integration may result 
from individual behavior, we have to look at the processes by which 
various mixtures and separations are brought about. Schelling (1978) 
investigated the problem of segregation that can result from individual 
discriminate behavior. He examined that some individual perceptions of 
differences, such as color, can lead to segregation. He also examined the 
extent to which inferences can be drawn from actual segregation with 
respect to the preferences of individuals.

Social interaction models focus on the role of externalities across the 
agents in determining aggregate behavior. The main point for the 
analysis is the assumption that agents are influenced by the choices of 
others. Young (1993) investigated dynamic processes in which the 
adoption of a specific behavior from two alternatives becomes more 
likely than its adoption by one’s neighbor. He examined a conformist 
adaptive dynamics in which agents change their behaviors to comport 
with the choices of neighbors. He interprets this type of positive 
reinforcement as a conformity effect, since each agent obtains positive 
reinforcement from conforming with her neighbors.

Although the specific motivations for conforming differ across agents, 
the dynamic process exhibits quite complex behavior in the aggregate. 
The obvious equilibrium is for everyone to adopt the same alternative. 
There exist other equilibrium states in which some agents are 
coordinated on one alternative while others are coordinated on the other 
alternative. An outcome is defined as completely integrated if all agents 
adopt the same alternative, or is completely segregated if agents adopting 
one alternative continuously form one group and all other agents 
adopting the other alternative form another group. Young shows that 
many intermediate patterns that are partly integrated and partly 
segregated are observed when the agents adapt their choices to neighbors.

6.2 Integration and Segregation
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This result is also evidence of the collective system in which adaptation 
at the individual level can lead to a sub-optimal outcome.

In this chapter, we investigate whether it is possible to form desirable 
integrated or segregated patterns from the bottom-up that may satisfy 
everybody? It is important to consider with whom individual agents 
interact, and how they adapt or learn from others.

We attempt to gain a deeper understanding of this issue by specifying 
the way of adaptation at the individual level. To do this, we consider two 
fundamental models, global and local adaptation. A comparison is 
made between collective behavior evolved in the global interaction 
model and that evolved in the local interaction model.

Our work extends the analogy by acknowledging that social 
interactions are modeled in the framework of coordination or dispersion 
games. We consider a collective of heterogeneous agents located in a 
two-dimensional space, and they play either a coordination game or a 
dispersion game. We especially investigate the gains from diversity 
through the comparative simulation study of two adapting collectives: 
one in a global environment and the other in a local environment. We 
then clarify the most crucial factor that considerably improves the 
performance of the collective of adaptive agents. In order to do so, we 
also need to specify the configurations of heterogeneous agents.

The study takes is conducted in distinct two stages. We first consider 
the case in which each agent adapts her strategy to all other agents. 
Following the global adaptation model, we consider the case in which 
each agent adapts to only her neighbors. Instead of having agents 
interacting on a macro scale, we look at the introduction of locality and 
of neighborhood relationships. The selection pressure in a local 
arrangement may be lower, if agents are only assessed on a local level, 
and not in a global fashion. This allows for agents who may have been 
eliminated if assessed against all agents to survive in a local space by 
forming a niche.
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As we discussed in Chapter 4, in the global adaptation model, agents 
adapt to aggregate information about how all other agents behave, as 
shown in Figure 6.1. An important assumption of the global adaptation 
model is that each agent has knowledge of the aggregate of interactions. 
An agent compares her payoffs associated with possible alternatives and 
chooses her best response strategy to this aggregate information.

Instead of the local adaptation model, each agent adapts to her 
neighbors. Local adaptation may be a more realistic model since 
interactions in real life rarely happen on a macro scale and are generally 
confined to their neighbors. Implementation of spatial interaction is 
achieved through the use of a two-dimensional (2D) lattice with each 
agent inhabiting a cell on the grid, and interaction between agents is 
restricted to neighboring cells, as shown in Figure 6.2. The hypothesis of 
the local adaptation model also reflects the limited ability of agents to 
receive, decide, or act based upon information they receive in the course 
of interactions.

We consider a collective of N  agents, each faces binary decision 
problems with the payoff matrix in Table 6.1 or Table 6.2. The crucial 
factor for describing heterogeneity in agents is the payoff parameter (or 
threshold), в , and each agent takes a different value.

An agent who plays the coordination game in Table 6.1 receives a 
higher payoff if more agents choose the same strategy. Therefore, an 
agent who plays a coordination game is characterized as a conformist, 
since her adaptive behavior is based on the majority rule. On the other 
hand, an agent who plays the dispersion game in Table 6.2 receives a 
higher payoff if she chooses a distinct strategy from the majority. 
Therefore, an agent who plays a dispersion game is characterized as a 
nonconformist, since her adaptive behavior is based on minority rule.

6.3 Global and Local Adaptation Models
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Figure 6.1 Global interaction. Each agent interacts with all other agents. Equivalently, 
each agent adapts to the aggregated information o f the collective

Figure 6.2 Local interaction. Agents located in the 2D lattice interact with their 
nearest neighbors

cConformist Adaptive Dynamics>

We consider conformist adaptive dynamics, in which an agent interacts 
with the payoff matrix in Table 6.1. Suppose the proportion of agents 
who choose S, at time t is p(t )  . The expected payoffs to an agent i 
(conformist) choosing from Sj or S2, conditional on everyone else 
continuing with their previous choices are

u i ( s l ) = P m - e ) ,  u i ( s 1) = ( \ - p ( t ) e .  (6.7)
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By comparing the expected payoffs to 5/ and S2., the best-response 
Strategy of agent i who interacts globally with the payoff matrix in Table
6.1 is obtained as:

<Global majority rule>

(i) If p ( t ) > 0 ,  then Sj,

(ii) If p ( t ) < 6 ,  thenS2.. (6.8) 

(If p i t )  = в , Sj or S2 is chosen randomly).

Each agent observes the global information on p ( t )  and adapts as 
follows. If at least a threshold fraction в  of the collective chooses 5 ,, 
then she chooses Sh else she chooses S2. Since an agent adapts to the 
direction of the majority, we define the adaptation rule in (6.8) as the 
global majority rule.

We now obtain the best-response strategy when each agent adapts to 
her neighbors. We denote the proportion of the neighbors of agent i to 
choose 5; at time t by p t{t) . The expected payoffs of agent i to 
choosing form Si or S2 are

U i(Sl) =  p i{ 1-0,.), Ul(S2) =  { l - p i(t))er  (6.9)

By comparing the expected payoffs to Si and S2., the best response- 
Strategy of agent i who interacts locally with the payoff matrix in Table
6.1 is obtained as:

Table 6.1 Payoff matrix of agent i (conformist) (0 < в  < 1)
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<Local majority rule>

(i) If p i ( t ) > 0 ,  then 5 ,,

(ii) If p t (t)  <  в , then S 2 . (6.10) 

(If p i (t) =  в , Sj.or S2. is chosen randomly).

Each agent observes the local information Pi(t) of her nearest neighbors 
and adapts by choosing Si if at least the fraction в  of her neighbors 
choose Si, else she adapts by choosing S2. Since an agent adapts to the 
direction of the majority of the neighbors, we define the adaptation rule 
in (6.10) as the local majority rule.

<Nonconformist Adaptive Dynamics>

We next consider a collective of N  agents, each of which faces a binary 
decision with the payoff matrix in Table 6.2. In this situation, she 
receives a positive payoff if she chooses the strategy that is distinct from 
the majority, and we characterize this type an agent as a nonconformist.

Suppose the proportion of agents who choose 5, at time t is pi t )  . 
The expected payoffs of agent i choosing from Si or S2, conditional upon 
everyone else continuing with their previous choices are as follows:

ui(s1) = ( i - P(t))e, ui(sl ) = Pm -0 )-  (б-ii)

Then the best-response strategy of agent i who adapts to the aggregate 
information is obtained as

Table 6.2 Payoff matrix of agent i (nonconformist) (0 й в  < 1)
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<Global minority rule>

(i) If p{t )  < в , then S l ,

(ii) If pit)  > в , then S 2 . (6.12)

Since an agent adapts to the direction of the minority, we define the 
adaptation rule of a nonconformist in (6.12) as the global minority rule.

Similarly, we can obtain the best-response strategy when each agent 
adapts to her neighbors. The proportion of the neighbors of agents i 
choosing 5, at time t is denoted by P,(J) . The expected payoffs of 
agent i choosing from S/ or S2 are

u.t (S ,) = p ,  (0(1 -  e ) , U t (S 2) = (1 -  Pi (0 )0  (6.13)

The best-response strategy of agent i who adapts to her neighbors is 
obtained as

<Local minority rule>

(i) If p t (t) < 6 ,  then S,,

(ii) If p t (t) >  в , then S2 . (6.14)

We define the adaptation rule of a nonconformist in (6.14) as the local 
minority rule.

6.4 Threshold Distributions and Locating Heterogeneous Agents

To account for variations in preferences, each agent is assumed to be 
idiosyncratic with respect to the payoff parameter в  in Tables 6.1 or 6.2. 
This critical number, the individual’s threshold, is distributed across the 
population according to some probability distribution. We denote the 
number of agents with the same threshold в  in the population of N  
agents by n{9) . The discrete distribution п( в) /  N  is approximated by 
the continuous function /  {в) . This threshold density characterizes 
heterogeneity in agents.

Each agent is assigned threshold в  drawn at random from the density 
function / \в )  distributed over the unit interval |(), 1]. Here, we assume
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the following two basic conditions. The first condition is that the 
threshold density is symmetric and satisfies

= (6.15)

The second condition is that the threshold density has the same 
average of 0.5, i.e.,

в  f ( f f ) d 0  =  0.5.  (6.16)JO

We set up the five different threshold densities shown in Figure 6.3. 
The density function of Case 1 (unit density) represents the collective of 
identical agents with the same threshold 6=0.5. The rest of the density 
functions represent collectives of heterogeneous agents. The collective 
with the threshold density of Case 2 is divided into two extreme groups: 
half of the agents have the threshold 6=0, and the other half of the agents 
have the threshold 6=1. In Case 3, the threshold density is normally 
distributed with the peak at 6=0.5. In Case 4, the threshold density is 
uniformly distributed between 0 and 1. In Case 5, the threshold density 
has two peaks at 6=0  and 6=1.

When the collective is characterized with the density function of Case 
3 (normal density), all agents consider the decisions of other agents 
before they make their own decisions. However, in the collective with 
the density function of Case 2 (density with two peaks), Case 4 (uniform 
density), or Case 5 (polarized density), some fraction of the agents are 
hardcore agents who choose Si (agents with 6=0) and will choose St 
independently of what the other agents decide. There also exist some 
hardcore agents who choose S2 (agents with 6=1) and they choose S2 
without regarding the decisions of other agents. These hardcore agents 
care only about what they actually want to do personally and do not 
consider the decisions of the other agents.

When heterogeneous agents interact locally, the agents with which 
they interact becomes important. Spatial interaction is achieved 
through the use of a 2D grid in Figure 6.2. Each agent chooses a best- 
response strategy based on local information about what her nearest 
neighbors have chosen in the previous period. Therefore, in the local
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adaptation model, we need to consider the location configuration of 
heterogeneous agents of different thresholds.

In the collective with the threshold density in Figure 6.3, their 
preferred choices differ depending on their thresholds. However, we 
classify heterogeneous agents into the following two types:

<Type 1> Agent with the threshold satisfying в  < 0.5 
<Type 2> Agent with the threshold satisfying в > 0.5 
If an agent plays a coordination game with the payoff matrix in Table 

6.1, and she is Type 1 with в  < 0 .5 , she prefers S, to S2 , or if an agent is 
Type 2 with в  > 0 5 ,  she prefers S2 to 5,. On the other hand, if an agent 
plays a dispersion game with the payoff matrix in Table 6.2, and she is 
Type 1 with в  <  0 5  , she prefers S2 to 5, , or if she is Type 2 with 
в > 0 5 ,  she prefers 5, to S2 .

Each agent is assigned a threshold drawn at random from one of the 
threshold densities in Figure 6.3. Therefore, infinitely many location 
configurations may be possible. Here, we consider the following three 
basic assignments.

(1) Random assignment: Agents are randomly located on the lattice, and 
each type of agent has a chance to interact with agents of any type.

(2) Well-mixed assignment: Agents are located structurally so that they 
interact only with agents of the opposite type.

(3)S orted  assignment'. Agents are located structurally so that they 
interact only with agents of the same type.

The above three basic assignments are illustrated in Figure 6.4.
Let us consider the case in which two agents (conformists) play a 

coordination game with the payoff matrix in Table 6.1. In this case, each 
agent is better off if she interacts with an agent of the same type. For 
example, if agent A with в A =0.2 (Type 1) interacts with agent В of the 
•ame type with в в -  0.3 (Type 1), the payoff matrix is given in Table 
6.3. In this case, their preferred strategies are the same, and the payoff 
matrix becomes symmetric. In this symmetric situation, both agents can 
easily establish the Pareto-optimal outcome by choosing S{ . On the other 
hand,
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(a) Case 1 (Unit density) (b) Case 2 (Density with two peaks)

(b) Case 3 (Normal density)
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(c) Case 4 (Uniform density)

(d) Case 5 (Polarized density)

Figure 6.3 Density functions of the payoff parameter 6. Case 1: unit density and all 
agents have the same threshold 6=0.5. Cases 2: density with two peaks at 6=0 and 6=1. 
Case 3: normal density. Case 4: uniform density. Case 5: polarized density at 6=0 and 
6=1

О Typel: •  Type2:

(a) Random assignment (b) Well-mixed assignment (c) Sorted assignment 
Figure 6.4 Locating heterogeneous agents
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On the other hand, if agent A  interacts with agent В of a different type 
with 6B = 0.7 (Type 2), the payoff matrix is given in Table 6.4. In this 
case their preferred strategies are different and the payoff matrix 
becomes asymmetric. In this asymmetric situation, a coordination failure 
may occur because the agents have distinct preferred strategies.

We now consider the case in which two agents (nonconformists) play 
a dispersion game with the payoff matrix in Table 6.2. In this case, an 
agent is better off if she interacts with an agent of a different type. For 
instance, if agent A  with в A = 0 .8  (Type 2) interacts with agent В with 
0 g = 0 .3  (Type 1), their payoff matrix is given in Table 6.5. In this 
Case, both agents can easily achieve a Pareto-efficient outcome by 
Choosing distinct strategies. However, if agent A  interacts with agent В of 
the same type with в в = 0.7 (Type 2), the payoff matrix is given in 
Table 6.5. In this situation, in which their preferred strategies are the 
•ame, a coordination failure may occur by choosing the same strategy.

Table 6.3 Payoff matrix when the same types of agents interact

—— Agent  В 
Agent A S, S2

0.7 0
St

0.8 0
0 0.3

S2
0 0.2

Table 6.4 Payoff matrix when different types of agents interact

Agent A
Agent В

s, s 2

s ,
0.8

0.3

0

0

S2
0

0

0.2

0.7
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Table 6.5 Payoff matrix when the same types of agents interact

—— Agent  В 
Agent A Si s 2

0 0.7
Si

0 0.8
0.3 0

s2
0.2 0

Table 6.6 Payoff matrix when different types of agents interact

'—-— Agent  В 
Agent A ~ ' ---- ^ S, S2

0 0.3
Si

0 0.8
0.7 0

S2
0.2 0

6.5 Performance Measures

In this section, we introduce stability, efficiency and equity as measures 
for evaluating the performance of collective systems. The priority for a 
desirable collective outcome is stability, which is crudely modeled using 
the idea of equilibrium of an underlying game. Why should we care 
about equilibrium? If a game has a rational solution that is common 
knowledge among agents, it must be equilibrium. If not, then some 
agents would have to believe that it is rational for them not to select the 
best-response to what they know agents are going to do. But it cannot be 
rational not to choose their best-response strategy.

However, the condition of stability is not sufficient, and we need the 
efficiency and equity criteria. Efficiency means that nothing gets wasted. 
In economics, the Pareto-optimality is followed in taking the absence of 
waste to be equivalent to the requirement that nobody can be made better 
off without someone else being made worse off. Efficiency stands for the
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measurement of the desirability of a collective outcome at the macro 
level. On the other hand, equity stands for the measurement of the 
desirability at the micro level.

In the beginning, agents choose their strategies randomly, and adapt 
them to the whole strategy population or their neighbors based on the 
rules obtained in Section 6.3. We evaluate collectives at equilibrium 
when the strategy population converges to a particular state. In our 
limulations, we change the initial conditions, i.e., the proportion of 
agents to each strategy, and observe the process of convergence of the 
•trategy population.

<Stability> We obtain the proportion of agents who choose each 
Itrategy starting from arbitrary initial conditions and observe how the 
collective behavior converges to a particular outcome after repeated 
adaptations by all agents. The stability is also concerned with the path- 
dependency of the collective adaptive system.

<Efficiency> Efficiency is evaluated by obtaining the average payoff per 
agent. Efficiency stands for the measure used to evaluate the desirability 
of collective behavior at the macro level. The average payoff per agent U 
il defined as

U  = j^u g (u )d u  (6.17)

Where и is the payoff to each agent, and g(u) is the payoff distribution 
Of the collective.

<Equity> Equity is also measured by obtaining the payoff distribution 
g(u) of the collective. The Lorenz curve L(x) is often used to measure 
(he extent of the payoff distribution. The Gini ratio is used to measure 
Inequality, which is obtained from the Lorenz curve. It is defined as the 
ftiea surrounded by the Lorenz curve L(x) in Figure 6.5. The horizontal 
•xis represents the cumulative proportion of agents, and the vertical axis 
fepresents the cumulative proportion of the total payoff L(x), which is 
Cumulated to the proportion at the level x  starting with the poorest agents. 
The Gini ratio ф is defined as
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o
0 0.2 0.4 0.6 0.8 

The cumulative proportion o f  agents

Figure 6.5 The Lorenz curve and the Gini ratio

(p = 2S (6.18)

where S  is the area between the 45-degree line and the Lorentz curve 
L(x). In the most equitable case, L(x) becomes the 45-degree line. The 
equity measure E  is then defined as

which is obtained as twice the gray area in Figure 6.5.
The Lorenz curve L(x) is defined using the payoff distribution function 

g(u) of the collective as

The denominator of (6.20) is the aggregated payoff of the collective and 
the numerator is the sum of the payoff to the 100jc% of agents starting 
with the poorest agent.

We can theoretically obtain efficiency and equity of the collective 
systems with the density functions of some simple forms.

E  = 2 L(x)dx (6.19)

L (x )  =  fo Tg(T)dT/^Tg(T)dT (6.20)

where w is the value satisfying the following relationship:

(6.21)
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<Case 1> Conformist adaptive dynamics: The underlying game has the 
payoff matrix in Table 6.1

When each agent in the collective plays a coordination game with the 
payoff matrix in Table 6.1, she adapts with the majority rule in (6.7). Let 
Us suppose the proportion of agents who choose 5, converges to P .

<Efficiency> The average payoff at equilibrium is obtained as follows. 
An agent, with a threshold в  less than or equal to Р chooses Slt and 
receives the payoff

и = р \ \ - в )  ( 0 < < 9 < / /) .  (6.22)

On the other hand, an agent, with the threshold в  greater than p * will 
Choose S2 , and receives the payoff

u = { \ - p ) 6  (p < в <  1). (6.23)

Then, the average payoff U of the collective is obtained as

U-= Г  ( Х - в ) р  f( .0 )d 0 +  \ \ ( \ - в ) р ' f ( d ) d e  (6.24)JO Jp

Therefore, the average payoff per agent (efficiency) is obtained as the 
function of the equilibrium p and the threshold density f { 0 )  of the 
Collective.

As examples, we consider the following two extreme cases:
(i) all agents choose the same strategy: S \ ( p '  = 1) or S2 ( p ’ =  0 ),
(ii) half of the agents choose S, and the other half choose S2 .
{i.e., p ’ = 0.5).

The average payoffs per agent for each case is obtained as follows:

(i) P =  1 (or p ' = 0 ): U = 0 .5 ,

(ii) p ’ =05 ; U = 0 .5 -  J ° 5 в p * f ( 6 ) d e . (6.25)

<Equity > The proportion of agents who gain payoff и by choosing 5, is 
/ ( \ - f f )  . Therefore, the payoff distribution of agents who choose 5, is 

given as



180 Adaptation and Evolution in Collective Systems

g, (u)  = / ( 1 - 0 )  = f ( u /  p")  ( 0 < 9 < p * , p *  * 0 ) .  (6.26)

Similarly, the proportion of agents who gain the payoff и by choosing 
S2 is /  (0) , and the payoff distribution of agents who choose S2 is

g 2(u) = f  ( в )  = f  (и / (i  - p ' ) )  ( p '  < e, z i , p '  ± i) (6 .27)

Then, the payoff distribution of the collective is obtained as the sum of 
the above two distributions as

g(u)  = g l (u) + g 2( u ) . (6.28)

The payoff distributions when the strategy distribution converges to 
one of these two cases are obtained as follows:

(i) p * = 1  (or p'  =0):  g ( u )  = f ( u )  (0  < и < 1)

(ii) p  = 0 5  : g ( u )  = 2 / (2m) (0.25 < и <  0.5) (6.29)

<Case 2> Nonconformist adaptive dynamics: The underlying game has 
the payoff matrix is Table 6.2

When an agent plays a dispersion game with the payoff matrix in Table 
6.2, she adapts with the minority rule in (6.9). Then, an agent with the 
threshold в  less than or equal to P will choose 5, and will receive the 
payoff

и = ( Х - р ' ) в  (p* < в <  1) (6.30)

An agent with the threshold в  greater than p * chooses S2 , and 
receives the following payoff:

u = p ' (  1 - 0 )  (0  < 0 < p ‘) .  (6.31)

Therefore, the average payoff per agent (efficiency) and the equity of 
the collective system are obtained to be the same as in Case 1.
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In this section, we present comparative simulation results of two 
adapting collectives, one in a global environment and the other in a local 
environment. The underlying social interaction between agents is 
modeled either a coordination game or a dispersion game.

The strategy population is evolved when each agent adapts her best- 
response strategy. We are interested in the long-run collective behavior 
when each agent adapts to the rest of the all agents or her nearest 
neighbors over time. We investigate which model, global adaptation or 
local adaptation, encourages the emergence of high performance. We 
impose only a weak monotonic condition reflecting the inertia and 
myopia hypotheses on the collective dynamics, which describe the 
Changes in the number of agents playing each strategy.

<Case 1> Conformist adaptive dynamics: The underlying game has the 
payoff matrix in Table 6.1

We consider the global adaptation model of a collective of conformists. 
The collective dynamics, in which each agent (conformist) adapts to the 
aggregate information with the majority rule in (6.7), is shown in Figure 
6.6. In this figure, the horizontal axis represents the initial proportion of 
agents who choose Sl , and the vertical axis represents the proportion of

* r*agents P having chosen at the end.
The collective behavior of identical agents (density of the threshold is 

Case 1 in Figure 6.3) is simple. It only depends on the initial value of 
P (0) , the proportion of agents who choose 5, at the beginning. 
When p(0) > 0.5, it converges to p* = 1, where all agents choose 5,, and 
If p(0) < 0.5 , it converges to p* = 0 , where all agents choose S 2.

We show the collective dynamics with the threshold densities in Cases 
2, 3, 4, and 5 in Figure 6.6. The collective behavior of heterogeneous 
agents with the polarized threshold density (Case 2 in Figure 6.6) is also 
limple and remains at p(t) = 0.5 starting from any initial value of p(Q).

The performance of the collective system with the density of Case 3 is 
the same as the collective system of the identical agents in Case 1. When 
p(0)> 0 .5, it converges to /,* = | , where all agents choose S , , and if

6.6 Evaluation of Collective Adaptive Dynamics
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p(0) < 0.5, it converges to p* = 0 ,  where all agents choose S2. More 
precisely, the above result means that only the initial ratio p(0) that 
divides the collective most evenly will play a role in determining the 
long-run equilibrium.

There is a critical value of the initial condition, below which every 
agent chooses Si and above which every agent chooses S2- Therefore, 
social interactions dominate individual heterogeneity to the point of 
altering the nature of equilibria. This abrupt change in the collective 
outcome is usually called a phase transition and is observed in many 
social interaction models with positive externalities. The collective 
adaptive system under the threshold density of Case 4 remains as the 
same as the initial value. On the other hand, the collective system with 
the density in Case 5 converges to p* = 0.5, starting from any initial 
value, which is the same as Case 2 of the polarized threshold density.

The equity (£) and the average payoff per agent U (efficiency) of the 
collective system having each threshold density in Figure 6.3 are

0 0.25 0.5 0.75 1 
p (0

▲ case2 ■  case3 •  case4
Figure 6.6 Stability o f global adaptive dynamics with the density functions in Figure 6.3. 
Each agent globally adapts to the majority rule. The horizontal axis is the initial ratio of 
choosing Si (p(0)), and the vertical axis is the ratio p*  for choosing S\ at equilibrium
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obtained as follows:
Case 1: ( E , U)  = (1.0, 0.5), Case 2: (E , U ) = (0.99,0.5),
Case 3: ( E , U)  = (0.84, 0.5), Case 4: (E , U ) = (0.89, 0.38), and 
Case 5: ( E , U)  = (0.94, 0.44).

The above pairs of equity and efficiency are shown in Figure 6.7, 
Where the horizontal axis denotes equity (E) and the vertical axis denotes 
tit average payoff (U). The equity is high for each case. Essentially, 
there is little difference in the performances, regardless of the 
jfcterogeneity. The exception to this is that a slightly higher equity and 
ifficiency is achieved if the agents are identical.

We now evaluate the local adaptive dynamics, in which each agent 
pkp ts locally, and compare the results of the global adaptive dynamics. 
|Ъ е collective behavior of local adaptive dynamics when heterogeneous 
|gents are randomly located is shown in Figure 6.8. The collective 
jystem associated with the polarized threshold density (Case 2 in Figure 
S.4) remains constant at p( t ) = 0.5 for any initial value of p ( 0 ) . In all 
Other cases, agents who choose Si and agents who choose S2 coexist,

U

1

0.8

0.6

0.4

0.2

0

Case2 
Case3 *  *

Case4 * MseJ

0.2 0.4 0.6 
E

0.8

figure 6.7 Plot o f equity and average payoff per agent o f the collective system having 
etch  threshold density in Figure 6.3. The horizontal axis is equity (£), and the vertical (ми is the average payoff (U) when agents adapt with the majority rule o f global 
idtptation
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and this is a significant difference from the result of the global adaptive 
dynamics shown in Figure 6.6. The efficiency and equity under the 
random assignment are obtained as follows:

Case 1 \(E,U) = (0.38,0.2), Case 2 :(E,U)= (0.72,0.5), Case 3: (e ,U) = 
(0.57,0.38), Case 4: (E,U) = (0.65, 0.42), Case 5: (E,U) = (0-7, 0.5).

P(0)

♦  ease l ▲ case2 ■  case3 case4

Figure 6.8 Stability of local adaptive dynamics of collectives with the density functions 
in Figure 6.3 under random assignment

u

1

0.8

0.6

0.4

0.2

0

Case5 i  
Case4 ♦  

Case3 ♦
♦
Casel

Case2

0.2 0.4 0.6 
E

0.8

Figure 6.9 Plot of efficiency and equity. The horizontal axis is the equity (£), and the 
vertical axis is the average payoff (U) when agents adapt with the majority rule of local 
adaptation under random assignment
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Figure 6.9 shows the pairs of equity and efficiency. Efficiency and 
equity become worse in all cases compared with the global adaptation 
model. We especially notice that the disparity between rich and poor 
agents becomes extreme under the local adaptation model.

We now evaluate the local adaptive dynamics in the structured 
environment in which heterogeneous agents are sorted so that they can 
interact only with agents of the same type, as shown in Figure 6.4(c). The 
fcimulation results are shown in Figure 6.10. The results for Case 1 are 
the same with random assignment. This is not necessarily surprising 
lince all agents adapt to the same direction and receive almost the same 
jpayoff in the non-spatial environment. The collective dynamics with the 
threshold densities of Case 3, Case 4, or Case 5, become almost the same 
as that for polarized density in Case 2. The collective behavior converges 
|Uld remains constant at p(t)  = 0.5 , starting from any initial value 
pfp(O)-

The equity and efficiency of the local adaptation model under the 
•orted assignment are obtained as follows:
Case 1: (e ,u ) = (0.85, 0.4), Case 2: (E,U)  = (0.95, 0.95), Case 3: 
(£ ,[/)=  (0.89, 0.6), Case 4 :(E,U)-  (0.83, 0.7), Case 5: (E,U)= (0.85, 
0.83). These results are depicted in Figure 6.11.

P(0)
♦  ease l A  case2 ■  case3 •  case4

Figure 6.10 Stability of locul adaptive dynamics with the density functions in Figure 6.3 
for locul adaptation uiulcr sorted assignment
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In short, efficiency and equity are high under the well-mixed 
assignment, where agents interact with agents of the opposite type, but 
they are low under the random assignment, where they have chance to 
interact with any type of agent. Essentially, there are big improvements 
in the performance of the collective system compared with the system 
under random assignment. For a collective of identical agents (Case 1), 
all agents have the same threshold. Therefore, the equity is the highest. 
However, the efficiency is low and becomes equal to that of the random 
assignment model. If each agent adapts globally in a diverse collective, 
efficiency is moderate and equity is high. In local adaptation with 
random assignment, both efficiency and equity are low. Therefore, the 
diversity tightens the gap between efficiency and equity. However, in 
local adaptation with sorted assignment, both efficiency and equity 
become high.

Figure 6.11 summarizes the experimental results under the spatial 
framework. There are a couple of important differences from the results 
obtained using the non-structured environment shown in Figure 6.9.

1 Case2
♦

0.6

0.8 Case5 +  

Case4 ♦  

Case3 ♦
u

0.4 ♦
Casel

0.2

0
0 0.2 0.4 0.6 0.8 1 

E

Figure 6.11 Experimental results under the spatial framework. The horizontal axis is the 
equity (E), and the vertical axis is the average payoff (U) when agents adapt with the 
majority rule for local adaptation under the sorted assignment
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Hgure 6.11 shows that it is actually easier to achieve both high 
Ifficiency and high equity in a spatial and structured environment where 
heterogeneous agents are located such that they only interact with agents 
bf the same type. This important result occurs due to the individuals in 
the spatial framework being restricted to interact with neighbors 
having similar preferences.

<Case 2> Nonconformist adaptive dynamics: The underlying game has 
the payoff matrix in Table 6.2

Here, we consider the global adaptation model in which each agent 
nonconformist) plays a dispersion game in Table 6.2 and adapts to the 
|ggregate information with the minority rule in (6.12).

The equity E  and efficiency U (average payoff) of the collective with
Bach threshold density in Figure 6.1 are obtained as follows: 

Case 1: ( E , U)  = (0.9, 0.4), Case 2: ( E , U)  = (0.4 0.25), 
Case 3: ( E , U)  = (0.7, 0.3), Case 4: ( E , U)  = (0.94, 0.44), 
Case 5: ( E , U)  = (0.6 0.25).

|n  Figure 6.12, we summarize these results.

1

0.8

0.6
U

0.4
Case5 Case3

♦
Casel

0.2
♦ ♦ ♦Case4

0
0 0.2 0.4 0.6 0.8 1 

E

Figure 6.12 Plot of equity and efficiency (average payoff) of the collective with each 
threshold density in Figure 6.1. The horizontal axis is equity (E), and the vertical axis is 
(he average payoff (II) when ugent.s adapt with the minority rule for global adaptation
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The resulting volatile collective behavior in each case is often far from 
efficient and equitable. The reason for the low efficiency is that the 
collective dynamics behaves cyclically, alternating between the two 
extremes, p=0  and p= l. Under this cyclic collective behavior, almost all 
agents choose the same strategy, and that results in lowering the average 
payoff.

In local adaptation with random assignment, we have the following 
results:

Case 1: ( E , U)  = (1.0, 0.5), Case 2: (E , U ) = (0.85, 0.45),
Case 3: ( E , U)  = (0.6, 0.38), Case 4: ( E , U)  = (0.63, 0.4),
Case 5: ( E , U)  = (0.82, 0.45).

In Figure 6.13, we summarize these results.
However, in local adaptation with well-mixed assignment, we have the 

following results:
Case 1: ( E , U )  = (0.85, 0.4), Case 2: ( E , U )  = (0.95, 0.95),
Case 3: ( E , U)  = (0.89, 0.58), Case 4: ( E , U)  = (0.89, 0.75),
Case 5: ( E , U)  = (0.89, 0.83).

In Figure 6.14, we summarize these results. In short, efficiency and 
equity are high under the well-mixed assignment, in which agents 
interact with agents of the opposite type, but they are low under the 
random assignment, in which they interact with agents of any type.

Under the well-mixed assignment model, in which heterogeneous 
agents are located such that they only interact with neighbors of the 
opposite type, the efficiency comes to depend on the diversity of the 
collective. Moreover, among the five threshold densities, Case 2 achieves 
the highest efficiency and Case 1 achieves the lowest efficiency. So, we 
can conclude that a collective of agents with very diverse preferences 
generates the most efficient and equitable outcome.

Meanwhile, performances also depend on the diversity of the 
collective when agents are located randomly. That is, equity depends on 
the diversity of the collective but efficiency does not, which is very 
different from the situation of the global interaction model. Moreover, 
Case 1 has the highest equity, so that adaptation induces an equitable 
outcome in the collective of identical agents with the same preference. 
Conversely, the collective with the density of Case 2 has the highest 
efficiency and equity. Thus, we can conclude that the local adaptation
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model under the structured assignment produces an efficient and 
equitable outcome, especially in collective system with very diverse 
preferences.

1

0.8 

0.6
U

0.4 

0.2 

0
0 0.2 0.4 0.6 0.8 1 

E

Figure 6.13 Results for local adaptation with random assignment. The horizontal axis is 
equity (E), and the vertical axis is the average payoff (f/) when agents adapt with the 
minority rule
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Figure 6.14 Results for local adaptation with well-mixed assignment. The horizontal axis 
Is equity (/?). and the vertical axis is the average payoff ([/) when agents adapt with the 
minority rule
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We also investigated whether a collective of heterogeneous agents that 
are locally connected without a central authority can produce better 
performance. We investigated the crucial factors that considerably 
improve the performance. The aggregate information in the global 
adaptation model is shown to be inefficient. The performance of the 
collective adaptive system depends on with whom interaction occurs, 
rather than how the agents adapt to each other. Therefore, assigning 
heterogeneous agents on the space where interactions occur outperforms 
adaptation at the individual level.

Comparison of the collective behavior evolved in spatial and non- 
spatial environments also yielded some other interesting results. It has 
been demonstrated that interaction on a spatial framework encourages 
and promotes efficiency and equity to a greater extent than when 
interaction is performed on a global level. When interaction occurs in a 
global, macro way, our results show that the environment produces no 
gain from diversity of the collective.

In summary, it is clear that a spatial environment results in a collective 
that is more efficient and equitable than collective adaptation in a global 
environment. However, in a spatial environment, while advantageous, 
the collective may have no gain and little impact on the performance of 
individuals if heterogeneous agents are randomly assigned and have no 
chance to interact with the appropriate neighbors.

The lesson here is that the collective dynamics of heterogeneous 
agents can be very sensitive to the composition of micro-motives of 
agents. The critical number, the individual’s threshold, is assumed to be 
distributed across the collective according to some probability 
distribution. The collective outcomes depend on how the heterogeneous 
agents with different thresholds are located in the two-dimensional lattice.

Diversity plays a more important role when a spatial structure is used. 
If the locations of heterogeneous agents are well set, spatially interacting 
agents generate a more desirable collective outcome, compared with the 
global interaction model. The reason for this needs to be explored further 
and will form the basis for further study. This issue will be discussed in 
Chapter 7.



Selective Interaction and 
Reinforcement of Preference

Chapter 7

In this chapter, we examine the effect of the combined models of partner 
choice and preference reinforcement in social interaction. Agents choose 
which partners to interact with and then decide on a mode of behavior for 
the interaction. After successful interactions, they increase the payoff 
parameter of fitter strategies. We show that a collective of identical 
agents with the same preference in the beginning evolves into 
heterogeneous agents with diverse preferences by achieving the most 
efficient and equitable collective outcome.

7.1 Selective Interaction in Games

A different kind of collective behavior arises when agents change those 
with whom they interact before they make up their mind how to behave. 
In this chapter, we study a model in which agents can select partners with 
whom to interact. An agent may need to select her neighbors to interact 
with while considering a tradeoff between joining a neighborhood in 
which most agents share the same preference or another neighborhood in 
which they have different preferences. Agents also move because they 
prefer the neighborhood they are moving into compared with the 
neighbors they are moving away from. Therefore, we assume that agents 
are assumed to have the ability to move and interact selectively with 
Other agents while making interaction mandatory for other agents.

141
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For instance, consider dilemma games in which agents are endowed 
with the ability to interact selectively with other agents. The idea of 
selective interaction in dilemma games is as follows. Agents are assumed 
to have the ability to avoid bad matches, and they want to interact with 
other agents who cooperate and not with those who defect. This is 
obvious for agents who benefit from the cooperative outcome, but it is 
also true for agents who want to exploit other agents. Exploitative agents 
do well when they find other agents who cooperate and do not do well 
when they interact with other agents who also defect. So exploitative 
agents also benefit from selective interaction only with those agents who 
cooperate and aVoid interaction with those agents who defect.

Selective interaction in dilemma games was introduced in previous 
studies (Tesfatsion, (1996), Axelrod, (1997)). When agents interact with 
other agents, they begin to develop a history of play. They keep track of 
how many times the other agent defects. If the other agent defects more 
than a certain number of times in previous interactions, then the agent 
will avoid interaction with that agent again.

Another crucial effect of selective interaction is that it allows agents to 
group together. An agent can avoid interaction with other agents if she 
receives a payoff that is lower than some threshold and moves to another 
site in order to have a chance to interact with different agents. Because of 
the gain from cooperation, cooperators that are surrounded by other 
cooperators can earn higher payoffs than defectors who are primarily 
surrounded by other defectors. Thus, endowing agents with the capability 
of selective interaction substantially increases the chances that 
cooperative agents will survive and that cooperative behavior will evolve.

The work by Schelling (1978) and Young (1998) introduced briefly in 
the previous chapter also triggered a lot of interest with respect to the 
question of the selection of neighbors. The aims of their models are to 
explain how social integration or segregation may occur spontaneously, 
even if people do not intend for them to occur. Individuals interact 
locally, having preference over their neighborhood. Taking the color of 
an individual (for instance white or black) as the criteria for 
discrimination, the problem faced by each individual is to choose a 
location given an individual threshold of acceptance for the proportion of 
individuals of different color in their neighborhood. They showed that a
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different kind of social norm arises when people change those with 
whom they associate, instead of changing how they behave given their 
associates. In other words, they choose their neighbors instead of 
conforming to their neighbors. This is called a sorting process.

In their models, agents behave based on the following simple rule. An 
agent agrees to stay in a neighborhood with agents that are mainly of the 
same color. More specifically, the following behavioral rule is used. An 
agent with one or two neighbors will try to move if  there is not at least 
one neighbor of the same color. Under the assumption of a local 
behavioral rule for each agent, a fully integrated structure is observed at 
equilibrium, where no agent wants to move. However, they show that a 
slight perturbation is sufficient to induce a chain reaction and the 
emergence of aggregate behavior of segregation. The agents move at 
random towards a new location in agreement with their own preferences. 
The mobility of agents generates new discontented agents through a 
chain reaction until a new equilibrium is reached, and finally spatial 
segregation between two groups of agents with different colors often 
emerges. Thus, they show that selective interactions are sufficient for the 
occurrence of complete segregation, while it is not an attribute of the 
individual agents.

In game theory, the problem of equilibrium selection is an important 
issue. Important research concerns the impact of different network 
structures on equilibrium selection when agents can choose their network 
of interactions. Ellison (1993) analyzed the role of local interaction 
networks for the spread of particular strategies when the underlying 
game is a coordination game. He showed that the collective outcome 
converges to the risk-dominant equilibrium of the underlying 
coordination game if agents are located on a circle and interact with their 
two nearest neighbors. Similarly, Blume (1993) and Kosfeld (2002) 
proved the convergence to the risk-dominant equilibrium in a population 
of agents who are located on a two-dimensional lattice.

In contrast, Ely (2002) and Bhaskar and Vega-Redondo (2002) showed 
that once agents are allowed to choose which partners to interact with, 
the situation is very different. They introduced a number of locations 
where agents can meet and play the coordination game with each other. 
Thus, at any time, agents choose both a location and a strategy. With the
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combination of the partner selection and the strategy choice, they showed 
that risk dominance looses its selection force and that the population of 
agents is most likely to coordinate to realize the Pareto-efficient 
equilibrium. The reason for this is intuitive. Since agents can freely 
choose their interaction partners, they are able to select neighbors who 
engage in the Pareto-efficient equilibrium strategy in order to gain higher 
payoff, and at the same time, they can avoid agents who choose the 
inefficient risk-dominant strategy to obtain a lower payoff.

7.2 Evolution of Preference

Economists typically object to preference-based explanations of human 
behavior because differences in preferences can explain everything, and 
therefore nothing. On the other hand, over the past decade, psychologists 
have produced a robust collection of stylized facts about human 
preferences. While preferences are empirically quite stable, they are far 
from identical. Then, one of the most challenging issues is to identify the 
mechanism of forming heterogeneous preferences among individuals. 
Another important issue is the relation between adaptation of behavior 
and evolution of preference.

Individualism assumes that agent preferences are endogenous and 
selfish and that they are not affected by outside factors. It is amazing 
how little we know about the effects of the environments on preferences. 
The primary effects appear to operate through motivational rewards and 
the evolution of norms through social interactions. However, we lack 
adequate conceptual tools and empirical information on the process of 
preference formation. Therefore, it may be useful to consider a formal 
model of the process of preference formation (Bowles, 2004).

Agents are generally heterogeneous with respect to certain attributes. 
When agents have some heterogeneity by themselves, without any 
interaction, this characteristic is referred as idiosyncratic heterogeneity. 
When agents interact with each other, with the combined model of 
adaptation or learning and the insertion of a specific interaction structure, 
the agents are generally driven toward heterogeneous individual 
preferences, even if they are initially identical. We refer to this 
characteristic as interactive heterogeneity.
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In the previous chapter, we were concerned with the diversity effect of 
the idiosyncratic preferences of agents. In this chapter, we are mainly 
concerned with interactive heterogeneity, and we show how a collective 
of identical agents having the same preferences evolves into 
heterogeneous agents with diverse preferences.

In general, adaptation of the behavior of an agent based on endowed 
preference is much faster than evolution of preference. It is often argued 
that in order to understand how individuals adapt, it is sufficient to 
observe their preferences. However these situations, in which an agent’s 
adaptation depends on other agents’ adaptations, usually do not permit 
any simple induction or extrapolation as to preference. The greatest 
promise lies in further analysis of situations in which agents behave in 
ways contingent on one another, and these interactive situations are also 
central in the analysis of the linkage between adaptation in behavior and 
preference evolution.

Equilibrium and efficiency are defined over the set of preferences 
expressed in the form of payoff functions of the agents, and their 
preferences are usually fixed. Traditional models take the individual 
preferences as an exogenous data and do not consider their particular 
form as a relevant object of study. Moreover, there appears to be a 
consensus in the research field about which type of preferences to allow 
in models. The working assumption in this regard is that an individual’s 
behavior is guided by the sole individual motive of the maximization of 
one’s own preference. However, this assumption has recently come 
Under criticism. In turn, this has led many researchers to consider 
alternatives to the rational-choice model based on preference, such as the 
non-individualistic model or the social preference model (Bowles, 2004).

Therefore, it appears that time has come to critically examine the 
validity of modeling agents with fixed preference, and to ask deeper 
questions about the basis and plausibility of changing the structure of 
individual preference. One natural approach to addressing this issue is to 
adopt an evolutionary perspective in preference developments.

There has been some research on the study of preference evolution in 
the following framework. A population of agents repeatedly plays the 
underlying game. The payoff represents the evolutionary fitness, and the 
question arises as to whut type of preferences are evolutionarily stable, in
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the sense of inducing a payoff that is at least as high as any alternative 
mutant in any given environment. More specifically, the following 
viewpoints are described:

(1) Success means an increase of payoff.
(2) Individual preferences of more fit agents are inherited by the 

genetic operation.
The above evolutionary explanation of the preference structures may 

be conceived to be identical to that of natural selection, in the sense that 
more evolutionarily fit agents can survive. However, it would be a 
mistake to conclude that evolution favors unequivocally agents that have 
preferences that are more evolutionarily fit. We may need to know more 
about the structure of the interaction mechanism in order to identify the 
precise implications of evolutionary forces on the selection of preference.

Human behavior is mainly driven by a conscious choice rather than 
natural selection. Many economic models, for instance, describe how 
agents behave based on their preferences. Game theory is typically based 
on the assumption of the rational-choice model. In our view, the reason 
for the dominance of the rational-choice approach is not that scholars 
think it to be realistic. Nor is game theory used solely because it offers 
good advice to the decision maker, because its unrealistic assumptions 
undermine much of its value as a basis for advice. The real advantage of 
the rational-choice model is that it often allows reasonable deduction to 
explain why an agent chooses a specific choice.

While we usually study the collective behavior of agents with endowed 
preferences, it is worthwhile to try to explain where and how these 
preferences appear. Unlike their behavior, the preferences of agents are 
traits, some of which are determined by natural selection. Preference 
leading to reproductive success causes an agent to thrive at the expense 
of the other agents. The effects of preferences on reproductive fitness are 
also mediated through the choice of behavior.

One alternative to the above model of preference evolution is the 
model of preference reinforcement. The basic premise in reinforcement 
learning is that the possibility of taking a strategy at present increases 
with the payoff that resulted from taking that strategy in the past. For 
instance, agents may try any number of alternative strategies, and repeat 
those that led to high payoffs in the past. The propensity to try a strategy
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increases according to the associated payoff. Therefore, agents are 
assumed to tend to adopt strategies that yielded higher payoffs, and to 
avoid strategies that yielded low payoffs. Although payoff characterizes 
choice of behavior, it is an agent's own past payoffs that matter, not the 
payoffs of the other agents.

Agents may consequently engage in trial and error by changing their 
preferences as well as their interaction partners. Preferences determine an 
agent's behavior, which in turn determine her fitness. Because preference 
generates fitness in this way, in order to understand preference 
reinforcement, we also need to focus on the interaction mechanism. In 
particular, we focus on how a collective of identical agents with the same 
preference is formed and what characteristic of interactive heterogeneity 
is formed through selective interactions. In order to do so, we must 
concurrently describe how agents select interaction partners as well as 
how they reinforce their preferences.

7.3 Social Games with Neighbor Selection

In many social interactions, agents consider not only which actions to 
choose, but also with whom they should interact. Similarly, in some 
social contexts, dissatisfied agents seek to break up some partnerships or 
alliances and to form new ones. This ability to rematch has strong 
implications for behavior within social relationships. While this 
observation is a relatively obvious, we have no systematic method of 
modeling such choice behavior depending on an agent’s ability to select 
partners in the framework of game theory. In this section, we introduce 
such a methodology and examine a new class of social games in which 
agents also decide with whom they will play the game.

In Section 7.1, we have observed that agents endowed with the ability 
to select interaction partners in dilemma games have a strong advantage. 
Furthermore, selective interaction is a more useful mechanism to realize 
a cooperative outcome in a society of selfish agents. In this section, we 
introduce the combined model of selective interaction with preference 
reinforcement combined in the context of social games with positive 
externalities and with negative externalities.
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In our model, a collective of agents repeatedly plays the underlying 
2x2 game, formulated as a coordination game or a dispersion game. The 
payoff to each agent represents the fitness in this case. While preference 
determines an agent’s strategy, the success or failure of her strategy 
choice determines which strategy should be reinforced. The model of 
preference evolution consists of two aspects, one governing the strategy 
choice based on the current preference and the other describing the 
direction of preference reinforcement.

We shall see that the combined model of the partner choice and 
preference evolution requires special analysis techniques. In our model, 
agents repeatedly play the underlying game with the current neighbors 
and myopically adapt their strategies with regard to neighbors in order to 
maximize their payoffs. After a number of repetitions of the game, they 
evaluate their performance in terms of the average payoff (fitness), and 
the successful agents increase the payoff parameter associated with the 
current strategy, and decide to remain in the same game. On the other 
hand, dissatisfied or unsuccessful agents move to new games in order to 
change the partners and interact with new neighbors.

More specifically, an agent decides to stop interaction with her current 
neighbors if she receives a payoff that is below some threshold, and 
moves to another game in order to interact with other neighbors. On the 
other hand, if her gain by choosing some specific strategy exceeds a 
certain threshold, then she continues to interact with the same neighbors 
and the preference (associated payoff parameter) of that strategy 
increases. Preference evolution therefore leads us to consider dynamics 
that run at two different speeds at once.

Although we treat selective interaction and preference evolution of the 
individual as occurring simultaneously, the former may proceed much 
faster than the latter. Agents can quickly switch to their preferred 
strategies, but changes to preferences driven by successful strategy 
choices may occur later.

Behavior trajectories of the collective can look quite different when 
social interaction has positive externalities, in which case it is modeled as 
a coordination game, or when it has negative externalities, in which case 
it is modeled as a dispersion game. In social interaction with positive 
externalities, increasing the number of agents using the same strategy
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increases each agent’s payoff. Therefore, preference reinforcement often 
forces collective behavior to adjust discontinuously. As an example, let 
us consider the case in which the agents play a coordination game with 
the payoff matrix in Table 7.1, in which the choice of Si or S2 results in 
the same payoff for each agent. Suppose some agents gain more by 
choosing the same strategy Sl as their neighbors than other agents, who 
take a distinct strategy S2 . In this case, reinforcement of preference 
causes Sj to become preferred, and it becomes more prevalent in the 
population.

As preferences change, agents decide their behavior based on a new 
preference level that favors 5, and makes S2 less attractive relative to 
S]. Thus, the secondary effect of the good performance of Sj is that 
agents who have originally chosen S2 will begin to choose 5, . This 
secondary effect inhibits the growth of S2 . The primary effect of this 
change in preferences is to increase the proportion of agents who choose 
S i . With this distribution of preference changes, a moment is reached at 
which equilibrium play can only be maintained if a significant fraction of 
the agents simultaneously switch strategies. Thus, when a collective of 
agents benefits from acting in concert, we should expect sudden shifts in 
the way they behave.

On the other hand, in social interaction with negative externalities, 
increasing the number of agents who choose the same strategy lowers 
each agent’s payoff. Let us assume the agents face a dispersion game 
with the payoff matrix in Table 7.2. Increasing the representation of 5, 
makes this strategy less attractive. As biases prompting S2 become more 
prevalent, many agents switch from S2 to Sl , reinforcing the growth of 
5,. Then, most agents choose ^ . Surprisingly, this effect also causes 
agents to switch to S2 again. In this case, more complex phenomena will 
be observed, and cyclic behavior occurs between the extreme situations 
in which all agents choose or all agents choose S2 . In this case of 
causing cyclic behavior, no agent can gain a payoff and their preferences 
are not reinforced.

The payoff matrices in Table 7.1 and Table 7.2 have one payoff 
parameter (or threshold), which is в . The crucial concept for describing 
heterogeneity of agents is their payoff parameter, and they take different
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values, one for each agent. The heterogeneity of a collective of agents is 
then characterized by the density function of 9, as shown in Figure 6.3.

In Chapter 6, we described a comparative study of global interaction 
and local interaction in a collective of heterogeneous agents. 
Heterogeneity in agents makes it possible to introduce another means of 
interaction, selective interaction. This is possible because agents have 
different preferences, represented by parameter values or thresholds, and 
they can include partners by focusing their heterogeneity in preferences.

In Chapter 6, we classify heterogeneous agents into the following two 
types, depending on their payoff parameter values:

<Type 1> An agent with the payoff parameter satisfying: в  < 0.5. 

<Type 2> An agent with the payoff parameter satisfying: в  > O f .

Table 7.1 Payoff matrix for a coordination game
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In Figure 7.1, we describe the partner selection process. Each agent 
interacts with her neighbors by choosing her preferred strategy. If she 
gains an average payoff per neighbor of more than 0.5, she remains at the 
same location, otherwise she moves to new location in order to interact 
with different neighbors.

We consider collectives of heterogeneous agents, with threshold 
densities as shown in Figure 6.3. We observe how heterogeneous agents 
located randomly in the beginning will self-organize their configurations 
through endogenous selection of partners.

We show the simulation results in Figure 7.2 for the case in which each 
agent with the payoff matrix in Table 7.1 plays a coordination game with 
her neighbors. As shown in Figure 7.2(a), in the beginning, we allocate 
2,500 heterogeneous agents randomly in the lattice. After a few hundred 
repetitions of selective interaction, each of the collectives has a threshold 
density (case 1 through case 5) and moves toward a completely separated 
configuration, as shown in Figure 7.2(b), in which most agents come to 
interact with neighbors of the same type.

I'igurc 7 .1 Process of selective interaction
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We also show the simulation results in Figure 7.3, when each agent 
with the payoff matrix in Table 7.2 plays the dispersion game with her 
neighbors. After a few hundred repetitions of selective interaction, the 
collective of agents, each of which has a different threshold density (case
1 through case 5), moves toward to a completely mixed configuration, as 
shown in Figure 7.3, and in these cases, most agents finally select 
neighbors of the opposite type. That is, in this mixed situation, agents of 
Type 1 play with agents of Type 2, and vice versa.

(a) Initial location: random (b) Final location: segregated.

Figure 7.2 Locations of agents after selective interaction. Each agent has the payoff 
matrix of a coordination game

(a) Initial location: random (b) Final location: mixed

Figure 7.3 Locations of agents after selective interaction. Each agent has the payoff 
matrix of a dispersion game
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The pairs of efficiency (average payoff) and equity in the final 
configuration of each case are shown in Figure 7.4. When the underlying 
game is a coordination game, we have the results shown in Figure 7.4(a), 
which are almost the same as the results shown in Figure 6.11. When the 
underlying game is a dispersion game, we have the results in Figure 
7.4(b), which are also almost the same results shown in Figure 6.14.

Therefore, a collective of heterogeneous agents initially located 
randomly could self-organize their locations through selective 
interactions and achieve the most efficient and equitable collective 
outcome. This desired collective outcome is achieved by self-organizing 
their location configuration so that they can interact with appropriate 
neighbors.

We found that through selective interaction, the most desirable 
conformal behavior emerged in social interactions with positive 
externalities, and the most desirable dispersed behavior emerged in social 
interactions with negative externalities, which made use of the diversity 
of a collective. This collective behavior has high efficiency and equity, 
so that it becomes desirable on both the micro and macro levels. The 
most crucial factor, which considerably improves the overall 
performance of the collective system, is the selection of the correct 
agents with whom to interact.
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7.4 Preference Reinforcement through Selective Interaction

In this section, we examine the effect of the combined model of selective 
interaction and preference reinforcement. As a specific model, we 
assume that agents reinforce their preferences over two possible 
strategies. Consider a collective of identical agents who have the same 
payoff parameter of 0=0.5 in the payoff matrices in Table 7.1 or Table
7.2 in the beginning. Agents myopically adapt their strategies to their 
neighbors in the direction that maximizes the expected payoff. After 
repeating the underlying game with the current neighbors, the agents 
gradually reinforce their preferences as well as select interaction partners 
based on the success of the repeated plays.

The basic premise in reinforcement learning is that the possibility of 
taking a strategy at present increases with the payoff that resulted from 
taking that strategy in the past. Agents try one of two strategies, and 
repeat the strategy that led to a high payoff in the past. This basic 
premise in reinforcement learning is modified as follows in our 
framework. The payoff parameter is increased according to the success 
of trying a strategy. Therefore, agents are more likely to adopt the 
strategy that yielded a higher payoff and to avoid the strategy that 
yielded a low payoff.

In Chapter 6, we classified heterogeneous agents into the following 
two types: conformists and nonconformists. Agents who play a 
coordination game with the payoff matrix in Table 7.1 are classified as 
conformists, and those who play a dispersion game with the payoff 
matrix in Table 7.2 are classified as nonconformists.

<An adaptation rule o f  a conformist: the local majority rule>

We denote the proportion of the neighbors of agent i who choose 5, at 
time t as p,(t) . The best-response strategy of agent i (conformist) is 
described as the local majority rule as

(i) If Pi (t) > в , then Su

(ii) If p i ( t ) < 9 ,  thenS2- (7.1) 
(In the case p t (t) = в , S,  or S2 is chosen randomly).
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<An adaptation rule o f  a nonconformist: the local minority rule>

The best-response strategy of agent i (nonconformist) is described as the 
local minority rule as

(i) If p t (t) < в , then 5/,

(ii) If p t( t ) > e ,  then S2. (7.2)
In Chapter 6, we have observed that it is actually easier to achieve

both high efficiency and equity in a spatial and structured environment. 
This important result occurs due to the fact that individuals in a 
spatial fram ework are restricted to interact with appropriate 
neighbors having sim ilar preferences.

Among the several heterogeneities observed in the payoff parameter, 
the collective having the threshold density with two peaks, in which half 
of the agents have 9=0 and the other half have 9=1, achieved the greatest 
efficiency and equity. In the beginning, all of the agents are identical and 
have 9  = 0 5 .

We now show how a collective Of identical agents with the same 
preference evolves into heterogeneous agents so that they can achieve the 
collectively desirable outcome of the most efficiency and equity.

Figure 7.5 shows the collective preference reinforcement process. 
Each agent interacts with her neighbors by choosing her preferred 
strategy. If the average payoff per neighbor is more than 0.5, she 
reinforces the payoff parameter associated to her current choice. The 
reinforcement of the payoff matrix of a conformist is shown in Table 7.3, 
and that of a nonconformist is shown in Table 7.4 

More specifically, each agent (conformist) repeatedly plays the 
underlying game with the nearest four neighbors. If the average payoff 
per neighbor is greater than 0.5 by choosing 5,, an agent increases the 
parameter value 1 - 9  associated with 5, by A <9 = 0.01 and decrease the 
parameter value в  associated with S 2 by A9 = 0.01. Similarly, an agent 
(nonconformist) who gains an average payoff per neighbor of more than 
0.5 by choosing S 2 increases the parameter value в  associated with S 2 
by A 9 — 0.01 and decreases the parameter value l- в  associated with 5] 
by A6  = 0.01.
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Figure 7.5 Collective preference reinforcement process

Table 7.3 Reinforcement of the payoff-parameter for a conformist



Table 7.4 Reinforcement of the payoff-parameter for a nonconformist

Selective Interaction and Reinforcement o f  Preference 207

Ю0 400 200 t = 0

02 Q4 Q6 
в

(a) p(0)=0.25

08

E  0 6a
g.06(Иe
§04

8.02 
gо. о

f = 0 200 400 \ 6C0

02 04 06 
9

(b) p(0)=0.75

08

к 1
Sat
E 0.8 *
ft 0.6 | 04

! “
0

t  = 0

' ^ ^ И ^ Н Н
600

. 400 200 к a
_ jv__

600 
200 400

^ J \ . Л
0.2 0.4 0.6 08

в
(с) p(0)=0.5

Figure 7.6 Transition of the density function of a collective of conformists. The 
Underlying game is a coordination game
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Figures 7.6(a) through 7.6(c) show the cases in which the initial value 
is set to p (0) =0.25, p (0) =0.5, and p (0) =0.75, respectively. After 
t=600, half of the agents reinforce 6  = 0 ,  and the rest of the agents 
reinforce 6  = 1. In these cases, a collective of identical agents succeeds 
in reinforcing their preference, so that the most efficient and equitable 
collective outcome is achieved. The performance of the collective 
reinforcement learning process depends on the initial condition of p (0 ) .

In Chapter 6, we analyzed the stability of collective adaptive dynamics 
and showed that the initial ratio p (0 ) plays a role in determining the 
long-run equilibrium. The initial ratio of Si selection, p ( 0) =0.5, 
eventually divides the collective outcome at equilibrium. Below this 
ratio, every agent chooses Si, and above this ratio, every agent chooses 
S2- This abrupt change in the collective outcome is usually called a phase 
transition. /

The collective reinforcement learning process has the same property as 
collective adaptive dynamics. The initial ratio p (0 )= 0 .5  also becomes 
crucial in dividing the collective behavior. Below this ratio, every agent 
reinforces 6  = 0 , so that Si becomes the dominant strategy, and above 
this ratio, every agent reinforces to 6  = 1 , so that S2 becomes the 
dominant strategy.

We show the simulation results of a collective of nonconformists in 
Figure 7.7. In this case, the underlying game is formulated as a 
dispersion game. The performance of collective reinforcement learning 
heavily depends on the initial conditions. In Figure 7.7(a), the initial 
proportion of agents who choose Si in the beginning is set to either 
p ( 0) =0.25 or p ( 0) =0.75. In these cases, the parameter values of 6=0.5 
remain, and therefore the agents do not reinforce their preferences.

In Figure 7.7(b), the initial proportion of agents who choose S{ in the 
beginning is set to p ( 0) =0.5. Agents with the same parameter value of 
6  = 0.5 gradually self-reinforce, and after /=600, half of the agents 
reinforce to 6  = 1 and the rest of the agents reinforce to 6  = 0 .  This 
result implies that agents succeed in collectively reinforcing their 
preferences so that the most efficient and equitable collective behavior is 
achieved.

Therefore, except in the case in which the initial ratio is carefully 
chosen and set a tp (0 )= 0 .5 , the collective reinforcement learning fails
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in a collective of nonconformists who behave based on the minority rule.
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Figure 7.7 Transition of the density function of a collective of nonconformists. The 
underlying game is a dispersion game

7.5 Coexistence of Conformists and Nonconformists

In the previous section, we investigated the collective dynamics of 
selective interaction with reinforcement of endogenous preference. We 
have shown that the most crucial factor that considerably improves the 
performance of the collective system is the combination of the partner 

; selection model with the process preference evolution.
In a collective of conformists, the underlying social interaction has the 

property of positive externalities, and their behavioral rule is 
characterized as the majority rule. In this case, the success of collective 
reinforcement learning does not depend on the initial conditions.

However, the initial ratio p (0) =0.5 becomes a critical point that 
determines the direction in which the collective reinforcement process 
will evolve. If p(0)  > 0.5, all agents reinforce to ft = 0 and come to 
have Si as a dominant strategy. If p ( 0) < 0.5, all agents reinforce to 
В = 1 come to have S2 as a dominant strategy. Therefore, such a phase 
transition occurs, and p ( 0) = 0.5 becomes a critical point. In a collective 
of nonconformists, the underlying social interaction has the property of 
negative externalities, and their behavioral rule is characterized as the
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minority rule. In this case, the success of collective reinforcement 
learning also crucially depends on the initial condition. In addition, 
except for the case in which the initial ratio p ( 0) is set at 0.5, they fail 
to reinforce their preference in the direction of achieving the desirable 
outcome.

In this section, we examine the combined effect of conformists and 
nonconformists, which are heterogeneous at the meta-level with opposite 
behavioral rules. We consider a mixed collective in which half of the 
collective are conformists and the other half are nonconformists.

Initially, conformists and nonconformists are randomly allocated in a 
two-dimensional lattice. They repeatedly interact with their nearest 
neighbors for a time. If they gain a payoff above than a certain level (set 
to 0.4 in this case), they stay the same site and reinforce the payoff 
parameter associated with their current choice.

We show the simulation results in Figure 7.8 when the initial 
proportion of agents (including both conformists and nonconformists) 
who choose Si is set as p (0 ) = 0.25. A mixed collective of conformists 
and nonconformists with the same initial parameter value of 6  = 05 
gradually self-reinforce their preferences, and after t= 1,000 repetitions 
almost all of the conformists (49% of the collective, where 50% of the 
agents in the collective are conformists) reinforce to 6 = 1  , and the 
remaining 1 % of the conformists reinforce to 6  = 0 . On the other hand, 
half of the nonconformists (25% of the collective) reinforce to 6 = 1 ,  and 
the rest of the nonconformists (25% of the collective) reinforce to 6  = 0.  
Therefore, the percentage of agents who choose S] is 75%. Therefore, all 
conformists (50% of the total population) and half of the nonconformists 
(25% of the total population) choose S]f and the other half of the 
nonconformists choose S2.

In Figure 7.9, we show the results when the initial proportion is 
p ( 0) =0.75. After t=l,000 repetitions, almost all of the conformists (49% 
of the collective, where 50% of the agents in the collective are 
conformists) reinforce to 6  = 0 ,  and the remaining 1% of the 
conformists reinforce to 6 = 1 . On the other hand, half of the 
nonconformists reinforce to 6 = 1  , and the other half of the 
nonconformists reinforce to 6 = 0.  The ratio of agents who choose S,  is 
25%. Therefore, all conformists choose S2 and half of the nonconformists
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(25% of the total population) choose S2 and the other half choose Sh
The success of reinforcement learning in a collective of conformists or 

a collective of nonconformists depends on the initial conditions. For a 
collective of conformists, the initial ratio p ( 0) = 0.5 becomes a 
threshold value that determines whether all agents reinforce to Si as the 
dominant strategy, or they reinforce to S2 as the dominant strategy. For 
the collective of nonconformists, except for the case in which the initial 
ratio is set to p ( 0) = 0.5, collective reinforcement learning fails.

In Figure 7.10, we show the result when the initial proportion is set to 
p ( 0) = 0.5. In this case, after t=600 repetitions, half of the conformists 
(25% of the collective) and half of nonconformists (25% of the 
collective) reinforce to Q = \  , and the remaining agents reinforce to 
6  = 0 . The ratio of agents who choose S, is 50%, and half of the 
conformists (25% of the total population) and half of the nonconformists 
(25% of the total population) choose S The same is true for agents who 
choose S2.

In this case, a collective of identical agents (both conformists and 
nonconformists) with the same parameter value of 6  = 05  in the 
beginning evolves into a collective of heterogeneous agents in which half 
of the agents have the parameter value of 0 = 0 , and the remaining 
agents have the parameter value of в = \ .  Therefore, the coexistence of 
conformists and nonconformists in the same collective promotes the 
achievement of the most desirable outcome. They collectively succeed in 
reinforcing their preferences and evolve into heterogeneous agents, so 
that the most efficient and equitable outcome is reached.

Conformists follow the majority, and nonconformist act in a manner 
that is contrary to the majority. Therefore, conformists tend to accelerate 
toward convergence. On the other hand, the convergence behavior of 
nonconformists tends to alternate between choices. By combining 
conformists and nonconformists, who have opposite behavioral 
characteristics, we observe the following interesting properties. 
Conformists have the lock-in property, whereby they always make the 
same choice. This lock-in property is also observed in the reinforcement 
of preference. Depending on the majority of the initial ratio, they 
reinforce their preference in the same direction. However, the vacillating 
property of nonconformists is modified. The coexistence of conformists
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and nonconformists, i.e., heterogeneity at the meta-level, prompts the 
success of collective reinforcement learning. In this mixed collective, 
without regarding the initial ratio, all conformists and nonconformists 
succeed in reinforcing their preferences so that the most efficient and 
equitable collective outcome is realized.

7.6 Development of Preference through Interaction

There are many social interactions with positive externalities in which 
the underlying game has multiple equilibria. A very simple example is 
games involving contributions to the public community. For an example, 
on Sunday morning we can choose to participate in volunteer work to 
clean up a public park or to stay at home. The underlying game becomes 
a coordination game that has three Nash equilibrium situations.

In the first round, we all choose the strategy of contributing the 
community. In the second round, we all choose to stay at home and 
nobody cleans up the public park. In the third round, we each toss a coin 
to decide whether to contribute. The third alternative may seem dubious, 
but if everybody else is randomizing her choice, tossing a coin to decide 
what to do is as good as any other method of selection. Therefore, we 
face an equilibrium selection problem, and the condition of efficiency 
takes us some way towards solving this equilibrium selection problem.

In Chapter 3, we observed that there is a conflict between Nash 
equilibrium and efficiency in social interaction with negative 
externalities. There is also an efficiency-equity tradeoff. An equilibrium 
situation is defined as a stable situation in which no agent changes her 
Strategy. Since each agent seeks to optimize her payoff, an equilibrium 
Situation is also defined as the situation in which no agent improves her 
payoff by unilateral changing her strategy, and the payoffs of all agents 
should be optimized simultaneously. However, it is observed that the 
Conditions of equilibrium and efficiency contradict each other. It is 
bbvious that some agents agree to choose their strategy and the other 
ftgents who benefit from a larger payoff reimburse them as a side- 
payment, whereby they may realize an efficient equilibrium. However, 
this type of subdivision of payoff is not studied in the framework of the
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theory of non-cooperative games. Rather, this type of problem is 
investigated in the theory of cooperative games.

Although the individual decision problem is important to understand, it 
is not sufficient to describe how a collection of agents arrives at specific 
desirable collective outcomes. Therefore, we aim to discover the 
fundamental micro-mechanisms that are sufficient to generate the 
desirable macroscopic structures of interest. This type of self
organization is referred as the emergence of desired orders from the 
bottom up.

The first priority for a desirable collective outcome is stability, which 
is crudely modeled using the idea of equilibrium of an underlying game. 
The next priority is efficiency, which is also defined as following Pareto 
optimality and is equivalent to the requirement that nobody can be made 
better off without someone else being made worse off. The third priority 
is equity.

The question of whether interacting agents self-organize desirable 
macroscopic behavior from bottom up depends on the type of social 
interaction as well as heterogeneity in agents. While agents may 
understand an outcome to be inefficient, by acting independently, they 
are powerless to manage the collective to overcome this inefficiency.

An agent’s decision is purposive if she behaves to pursue her own goal 
to maximize her own payoff. However, the behavior of an agent often 
relates directly to those of other agents, and it is constrained by other 
agents who are also pursuing their own interests. Therefore, individual 
decisions are characterized as both purposive and contingent. In Chapter 
4, we observed situations in which agents' microscopic behaviors 
reflecting their micro-motives combined with the behaviors of others 
often produce inefficient outcomes.

In the previous section, we introduced the combined model to examine 
the relationship between partner choice and evolution of preference. 
Agents choose which partners to interact with and decide on a mode of 
their preference, which influences their strategy choice. A collective of 
identical agents with the same preference in the beginning eventually 
evolves into a collective of heterogeneous agents with diverse 
preferences. The combined model of selective interaction and preference 
evolution formalizes the idea that agents facing decisions under
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interdependent environments may seek guidance from the way that other 
agents that they are familiar with have acted in similar situations. 
Implicit elements of this problem are a social structure indicating with 
whom an agent interacts and an inference process describing how an 
agent incorporates her observations in reinforcing her preference and 
choosing her optimal behavior.

In particular, we have considered a mixed collective of conformists 
who behave under the majority rule and nonconformists who behave 
under the minority rule. The coexistence of these heterogeneous agents at 
the meta-level is crucial for increasing the performance of the collective. 
The simulation results in the previous section suggest that diversity 
effects of the mixed collective have been observed in a few aspects. 
Initially conformists who share 50% of the collective and nonconformists 
who share the remaining 50% are randomly located in a two-dimensional 
lattice. They repeatedly interact with their nearest neighbors for a certain 
period. If they gain a payoff greater than a certain level, they remain at 
the same site and reinforce their payoff parameter as described in the 
previous section.

Heterogeneity across a collective of agents reflects a balance between 
purposive behavior and contingent behavior. In Chapter 4, we classify 
heterogeneous agents into basically two types: hardcore agents and 
opportunists. A hardcore agent has a dominant strategy and can make 
choices without regarding the others’ decisions. On the other hand, the 
optimal choice of an opportunist depends on the choices of the others.

In the beginning, all conformists and nonconformists are identical and 
have the same parameter value of 0 =  0.5 and the threshold of the density 
is given in Figure 7.11(a). Therefore, they are all opportunists, since their 
best-response strategy heavily depends on the behavior of their 
neighbors. After collective reinforcement of preference, they evolve into 
heterogeneous agents with the density function in Figure 7.11(b), in 
which half of the agents, including both conformists and nonconformists, 
have the parameter value of 0 = 0 , and the remaining agents have the 
parameter value of 0  = 1. The coexistence of conformists and 
nonconformist promotes the achievement of the most desirable outcome.

The mechanism behind the most efficient and equitable outcome 
achieved is that a collective of opportunists succeeds in reinforcing its
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preferences and evolves into a collective of hardcore agent. Therefore, 
they develop their preference so that they have their dominant strategies 
and can choose their preferred strategy without worrying about the 
others’ choices.

Thus, the desirability of the collective reinforcement process is 
determined by the combination of conformists and nonconformists. 
Conformists do what the majority does and nonconformist do the 
opposite of what the majority does. Conformists have a feature whereby 
their collective action accelerates toward convergence. On the other hand, 
nonconformist has a feature whereby they alternate between choices. By 
combining conformists and nonconformists, the lock-in property of 
conformists and the property of alternating choices of nonconformists are 
merged, and they produce an efficient stable macro-behavior.

However, after a successful preference reinforcement process, 
conformists and nonconformists are segregated, so that conformists 
interact only with conformists, and nonconformists interact with 
nonconformists. In the niche of conformists, the conformists of the same 
type also form a sub-niche. Conformists who have Sj as a dominant 
strategy by reinforcing the parameter value as в  = 0 (Type 1) are located 
next to each other and they interact with agents of the same type. On the 
other hand, conformists who have S2 as a dominant strategy by 
reinforcing the parameter value as в  =1 (Type 2) are located next to 
each other and interact with agents of the same type, as shown in Figure 
7.12(a).

On the other hand, nonconformists do not form any sub-niche and are 
located so as to interact with agents of the opposite type. That is, 
nonconformists who have S/ as a dominant strategy by reinforcing the 
parameter value as 0=  1 (Type 1) are located so that they interact with 
nonconformists of Type 2 who have S2 a dominant strategy by 
reinforcing the parameter as 0=0 ,  as shown in Figure 7.12(b).

If there were only a single type of agent, then standard models of 
reinforcement learning would fit quite well. However, when agents have 
diverse preferences and different choices about with whom they interact, 
the analysis becomes more complex. The idea that a diversity of 
preferences can benefit a collective by discouraging it from swinging to 
extremes is not so surprising. There is a natural extension of this idea to
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learning, namely that neighborhoods including different types of agents 
are less susceptible to herding toward the wrong action. In strategic 
environments, if agents can evolve their preferences to the point that they 
can choose a dominant strategy, then they can choose their most 
preferred strategy without regarding the others’ choices. With this 
property at the individual level, the resulting collective outcome becomes 
the most desirable outcome.

Most work on learning has focused on the inference process, taking the 
social structure to be exogenous. However, when agents differ in their 
preferences, the value of learning to an agent depends on choosing the 
correct agents with whom to interact. This chapter has looked at a model 
in which agents with diverse preferences must first choose neighbors and 
then choose an action based on their observations of how other agents in 
the neighborhood behave.

The reinforcement learning process is guided by the self-interest 
seeking of agents. The mechanism has a strong similarity to the nature of 
a self-organizing and growing process. The growth starts from the 
collective of identical agents. However, they are allowed to self-organize 
by establishing a desirable collective outcome. The resulting collective 
dynamics can be quite complex. The combined model of selective 
interaction and preference evolution makes it possible to focus on the 
positive effect by forming proper niches. Agents recognize that there is 
something inherently complex about decision-making and that this 
complexity has to do with its strategic nature.
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Give-and-Take in Social Interaction

Chapter 8

In our daily life, we face many congestion problems, and solving these 
problems has become an important issue. Congestion problems always 
arise when we need to utilize limited resources. The dispersion game 
provides a simple model for understanding the mechanisms behind many 
congestion situations. In this chapter, a simple behavioral rule that has an 
intriguing property for dealing with congestion problems is derived. We 
introduce a new behavioral rule of give-and-take, in which an agent 
changes her strategy in order to yield to others if she could gain a payoff. 
We show that a collective of agents, each acting with the principle of 
give-and-take, self-organizes to obtain the most desirable collective 
outcome.

8.1 Social Interaction with the Logic of the Minority

The term emergent is used to denote stable macroscopic patterns that 
arise from interactions of agents who behave with their idiosyncratic 
behavioral rules. Emergent properties are often surprising because it is 
hard to anticipate the full consequences of actions, even if the underlying 
behavioral rules are simple. However, there remain many issues as to 
how to derive a set of behavioral rules that induce a desirable collective 
outcome.

In this chapter, we consider strategic environments in which a large 
number of agents have to be dispersed. A rational approach to modeling 
individual learning may be useless in solving these dispersion problems. 
In particular, we address the following basic questions: (1) How does a 
collective of sell'-motivuted agents self-organize collective behavior that

214
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satisfies the constraints without a central authority? (2) How does 
learning at individual levels lead to efficient collective behavior? (3) 
How does the principle of give-and-take in a collective of agents play the 
part of an invisible hand to promote self-organization of emerging 
desired collective behavior?

Coordination is necessary in social interactions to ensure that the 
individual actions of many agents are carried out with few conflicts. 
Coordination problems arise mainly because individuals do not consider 
the effects of their actions on others. The class of coordination problems 
that has been investigated has the property whereby increased effort by 
some agents leads the remaining agents to follow suit, which gives rise to 
multiplier effects.

Social interaction problems such as sharing or allocating limited 
resources in an efficient way result in different types of coordination 
among individuals. This complementary class of social interactions, in 
which agents gain payoffs only when they choose distinct action, as the 
majority does, has received relatively little attention. Examples of this 
type of social interaction include traffic or Internet congestion problems. 
This type of social interaction is also related to the problem of division of 
labor or dispersion of several agents in an efficient way.

Social interactions with positive or negative externalities are modeled 
in the following common framework. We assume that each agent has the 
same payoff function u(x, X ), where the agent's action x  is taken in a set 
that is a subset of real numbers, and the second argument, X, is the 
average of the others’ actions. In this case, the others may be a finite 
number or a continuum of agents. The second argument generates the 
payoff externality to each agent.

We distinguish strategic compatibility (or social interaction with 
positive externality) from strategic complementarity (or social interaction 
with negative externality). In the first case, a higher level of activity X  by 
others increases the marginal payoff of each agent and stimulates the 
incentive to act in the same manner as the others. In this case, each agent 
behaves based on the logic o f  majority. In the second case, on the 
contrary, a higher level of activity X  by others reduces the marginal 
payoff. For example, each person who travels on a congested highway or 
visits a popular restaurant increases the waiting time of other travelers.
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In this case, an agent gains a payoff if she chooses the opposite route to 
what the majority does, and we define that an agent behaves based on the 
logic o f minority.

Alpem (2001) introduced a dispersion problem, in which agents prefer 
to be more dispersed by illustrating the following typical examples:

(1) Location problems: Retailers simultaneously choose their positions 
within a common space so as to maximize the area in which they are the 
closest retailer.

(2) Habitat selection: Males of a species choose territories in which 
there are no other males. Animals choose feeding patches with low 
population density with respect to food supply.

(3) Congestion problems: Individuals seek facilities or locations of 
low population density.

(4) Network problems: Travelers choose routes with low congestion 
levels.

These dispersion problems, in which an agent behaves based on the 
logic of minority, arise in a large number of domains, including load 
balancing in computer science, niche selection in biology, and division of 
labor in economics. Social interaction with negative externalities poses 
many difficulties that are not found in social interactions with positive 
externalities. In particular, in situations in which self-motivated agents 
behave based on the logic of minority require better coordination to 
disperse them efficiently so as to produce equal benefits to each of them.

Effective solutions to social congestion problems or scarce resource 
allocation problems may require the invocation of an authority. The 
central authority may find the social optimum and impose the optimal 
behavior on all agents. Although such an optimal solution may be easy to 
find, the implementation becomes difficult to enforce in practical 
situations. For instance, to alleviate social congestion, the central 
authority often explicitly charges users in order to eliminate the socially 
inefficient congestion of a scarce resource. However, this approach often 
requires equilibrium solutions in which all agents are fully informed 
about the structure of the problem and the behaviors of all other agents. 
Consequently, the relationship between each agent’s microscopic 
behavior and the congestion at the aggregate level they experience is 
easily discerned. However, the reliance on information-intensive
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equilibrium solutions limits the usefulness of the models in solving many 
congestion problems.

Most attractive in science is a brief story that can be easily told to 
people outside the specific scientific field, the core of which, however, 
constitutes a salient and deeper problem. The El Farol bar problem, 
introduced by Arthur (1994), is a thought-provoking model related to 
learning and bounded rationality that has received much attention as a 
paradigm to discuss many issues, including social inefficiency resulting 
from rational behavior.

There is an Irish bar named “El Farol” in downtown Santa Fe, New 
Mexico. The El Farol bar has live Irish music on every Thursday night. 
Each of the staff in the Santa Fe institute (referred to herein as “agents”) 
are interested in going to the bar on Thursday night to enjoy the live 
music. All agents have identical preferences. They will enjoy the night at 
El Farol very much if the bar is not so crowded. However, each of them 
will suffer miserably if the bar is crowded. The bar has a maximum 
capacity. In Arthur's example, the total number of agents is N= 100, and 
the capacity is set to C=60.

Arthur used this very simple yet interesting problem to illustrate the 
effective uses of inductive reasoning by agents. The only, information 
available to agents is the number of visitors to the bar on previous 
Thursday nights. Agents make their choices by predicting whether the 
attendance on the current Thursday night will exceed capacity, and they 
then take the appropriate action. Arthur investigated the number of 
agents attending the bar over time by using a diverse collection of simple 
prediction rules that were followed by the agents. The agents make their 
choices by predicting whether the attendance on the current Thursday 
night will exceed the capacity and then take the appropriate action

What makes this problem particularly interesting is that it is 
impossible for each agent to be perfectly rational, in the sense of 
correctly predicting the attendance on any given night. This is because if 
most agents predict that the attendance to be low (and therefore decide to 
attend), the attendance will actually be high, whereas if they predict that 
the attendance will be high (and therefore decide not to attend), the 
attendance will be low.
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One interesting result obtained by Arthur is that, over time, the 
average attendance of the bar is approximately equal to the maximum 
capacity. Arthur examined that the driving force behind the equilibrium 
situation around the capacity is realized. In Arthur’s simulations, agents 
attempt to predict how many others will attend El Farol each time using 
a simple rule of inductive reasoning. If they predict attendance will be 
less than 60, then they go to the bar. If they predict attendance will be 
greater than 60, then they stay at home. Each agent uses a number of 
different “rules of thumb”, such as simple averages, moving averages, 
and linear or nonlinear models to formulate predictions. They then act on 
the prediction that has been most frequently correct in the recent past.

The El Farol bar problem  has received a fair amount of attention from 
computer scientists and physicists as well as from researchers in the area 
of complex systems. Casti (1996) uses the El Farol bar problem  to frame 
his definition of a complex adaptive system as one with “a medium-sized 
number of intelligent, adaptive agents interacting on the basis of local 
information. t

Challet and Zhang (1997) simplify the El Farol bar problem  even 
further by considering a minority game in which agents choose one of 
two groups to join and receive positive payoffs only when they choose 
the smaller group and receive negative payoff as penalty if they choose 
the larger group.

We need to explore the mechanism in which interacting agents who 
are stuck at an inefficient equilibrium can move toward a better outcome. 
While agents understand that the outcome is inefficient, each agent 
acting independently may be unable to manage the collective activity 
concerning what to do and also how to decide. Self-enforcing solutions, 
in which agents achieve a desirable allocation of limited resources while 
pursing their self-interests without any explicit agreement with others, 
are of great practical importance.
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8.2 Formalisms of Dispersion Games

In the examples of social interaction with negative externalities discussed 
in the previous section, agents want to disperse rather than meet. In this 
section, we formalize dispersion games as an integrated framework of 
the El Farol bar problem and its variant, the minority game. Dispersion 
games will display important and interesting properties in a number of 
different domains.

Dispersion games are generalization of 2x2 dispersion games for an 
arbitrary numbers of agents and actions. However, we restrict the 
problem here to N  agents, each of which has a binary choice. In these 
games agents prefer outcomes in which the agents are maximally 
dispersed across the set of possible actions. For instance, each agent 
chooses a resource to utilize, and her utility depends on the number of 
other agents who try to utilize the same resource. In this case, the 
capacity of a resource is limited.

The El Faxpl bar problem and the minority game have a common 
feature. Agents are rewarded a unitary payoff whenever the side chosen 
happens to be chosen by the minority of the population. There are many 
ways to generalize the solution to these dispersion problems. For 
instance, different people have different tolerances for what constitutes a 
crowd or an unacceptable delay. Each agent could also have a parameter 
that represents her tolerance for congestion. These observations motivate 
us to extend the El Farol bar problem as one-shot simultaneous games 
under several different payoff schemes.

The El Faro bar problem and its variant, the minority game, are 
formulated as follows. Consider a collective of N  agents. Each agent has 
to choose between S l or S 2 , and those on the minority side win. More 
specifically, at each period of the stage game, N  agents must choose 
privately and independently between two strategies:

S x: go to the bar,

S 2 : stay home. (8.1)
The payoff function of each agent depends on the actions of all agents. 

The payoff to each agent is declared after all agents have chosen
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independently, those who are in the minority win and receive payoffs 
The payoff function to an agent i is formally defined as follows:

<A Basic Payoff Scheme>

(i) U i ( S l ) = \ ,  if  p(t) = ^ i<Na:( t ) l N  < в ,

(ii) U t ( S l ) = - l ,  if p ( t ) > 6 ,  (8.2)

(iii) U i ( S 2) =  - 1  if p ( t ) < 6 ,

(iv) U  t ( S 2 ) =  1 if p ( t ) > 0 .

We represent the choice of agent i at time t by at(t) =1 if she chooses 
S l , and a,(t)=0 if she chooses S 2 . The total attendance at t is denoted by 

A(t)= ^ at(t) , and therefore the ratio of agents that choose S , is 
p(t)=A(t)/N. The value of в  is the capacity rate of the bar and is set as 
#=0.6 in the El Farol bar problem and 0=0.5 in the minority game.

Let us analyze the structure of this minority game to see what to 
expect. Consider the extreme case, in which only one agent chooses S , , 
and all of the others choose S 2 . This lucky agent gets a reward point, 
and there is no reward for the others, and there is a huge waste of the 
resource. An equally extreme example occurs when N/2 agents choose 
S l and N/2 agents choose S 2 . From a social point of view, the second 
situation is preferable since all of the agents can get an equal payoff. In 
this perfect coordination, the average gain (efficiency) per agent would 
also be maximized. Therefore, waste is proportional to the amplitude of 
fluctuation, and the average gain is usually far from this desirable 
outcome.

The generalized story of the El Farol bar problem and the minority 
game is as follows. N  agents in total decide independently each night 
whether to go to a bar. Going is enjoyable if the bar is not crowded, 
otherwise the agents would prefer to stay home. Crowded is defined by 
the capacity С (0 < С < N), according to which the bar is crowded if 
more than С people attend, whereas it is not crowded, and thus enjoyable, 
if the number of attendances is С or less. Let agents have the identical 
payoff functions, and a is the positive payoff for attending an under
crowded bar, and h is the negative payoff for attending a crowded bar.
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Without loss of generality, the payoff received for staying home is set to 
be zero.

With the above generalization, the payoff function for each agent is 
defined as follows:

<Payoff Scheme 1>

(i) Ui(S]) = a,  if p(t) = Z iSiSNai( t ) / N ^ 0 ,

(ii) ^ .(5 1) = -b ,  if (8.3)

(iii) U,(S2) = 0 .

where в  = С I N  is the capacity rate of the bar.
Let us consider another payoff scheme in which the payoff is defined 

as a linearly decreasing payoff function the proportion of the agents that 
make the same choice.

<Payoff Scheme 2>

Ui(Sl) = a - ( a  + b)p( t ) ,  (8 4)
Ui(S2) = 0

In this payoff scheme, agents that choose S', (going to the bar) are 
rewarded with a payoff that is a linearly decreasing function of the ratio 
of the attendance, p(t).  On the other hand, the payoff for choosing S2 
(staying home) is linearly increasing with respect to the proportion of the 
attendances, p(t) . That is, more payoff is awarded to every agent 
choosing the minority side. Clearly, this structure favors the smaller 
minority. This is similar to a lottery in that we would like to win, but it is 
even better if we are the only winner.

With the basic payoff scheme described by (8.2), whenever the side an 
agent chooses happens to be chosen by the minority of the agents, they 
receive an award. That is, the agents in the minority receive the payoff 
+1 and agents in the majority receive -1 as penalty. For instance, for the 
El Farol bar problem, if the bar is not crowded, agents who go the bar 
enjoy themselves and receive the payoff, and agents who stay home 
receive the penalty since they lose the opportunity for enjoyment.
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However, if the bar is crowded, agents who attend the bar will suffer 
miserably and will receive the -1 penalty, and agents who stay home will 
receive the +1 payoff as a bonus for making the right decision.

With Payoff Scheme 1 described by (8.3), agents who stay home 
receive nothing and agents who go to the bar receive either a payoff or a 
penalty. If the El Farol bar is not crowded, then agents who go to the bar 
enjoy themselves and receive the payoff a (a>0). However, if the bar is 
crowded agents who attend the bar will suffer miserably and will receive 
a negative payoff -b (b > 0). The payoff to each agent under this payoff 
scheme is shown in Figure 8.1(a).

As we noticed before, the dispersion problem with Payoff Scheme 1 
shown in (8.3) contains a knife-edge response to increased attendance, 
and the analysis of equilibrium depends crucially on how the agent 
accounts for her own behavior. A formal treatment of the knife-edge case 
can be remedied with Payoff Scheme 2 described by (8.4). With this 
payoff scheme, agents who stay at home receive nothing and those 
agents who go to the bar receive payoff or penalty that is proportional to 
the level of the crowdedness. The payoff to each agent under this payoff 
scheme is illustrated in Figure 8.1(b).

Figure 8.1 Payoff functions: (u) unitary award (Equation (8.3)), (b) proportional award 
(Equation (8.4))
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Figure 8.1 (Continued)

8.3 The Price of Anarchy of Uncoordinated Collective Decisions

The El Farol bar problem is a type of congestion game in which each 
agent’s payoff depends on the number of other agents who choose the 
same action. In a deterministic setting where agents utilize only pure 
deterministic strategies, it is easy to see that Nash equilibrium occurs for 
the payoff functions shown in (8.2), (8.3) or (8.4) when there is no 
difference between the two choices for each agent i:

i/,.(S,) = t/,.(S2) ,  1 Z i Z N .  (8.5)

This condition implies that the expected payoff for the pure strategy 
of Sj (attending the bar) is exactly equal to the expected payoff for the 
pure strategy of S 2 (staying home). This must hold for all agents 
simultaneously.

The condition in (8.5) is satisfied at the intersection of the two utility 
functions in Figure 8.1. Therefore, it is easy to see that Nash equilibrium 
occurs when exactly С (the capacity of the bar) agents attend. In addition,
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this condition also determines a mixed equilibrium strategy that depends 
on the distribution of total attendance, which, in general, depends on the 
probabilities for individual agents. A dispersion game also presents a 
unique symmetric mixed strategy Nash equilibrium, in which each agent 
chooses Sj and S 2 with the probabilities x= C /N = 6  and 1- x  =1-6 
respectively. However this symmetric mixed strategy Nash equilibrium 
is not Pareto optimal. Any attendance outcome that falls short of the 
maximum capacity of an under-crowded bar can be improved by 
increasing attendance, and vice versa. In contrast, the mixed strategy 
Nash equilibrium is fair, since the expected payoffs to all individual 
agents are equal and are 0. In addition, the randomness in agents’ choices 
of strategy will generate fluctuations in attendance.

We can measure the level of efficiency by the average payoff per 
agent over a long period of time. Consider the extreme case in which 
only one agent attends the bar and all of the other agents stay home for 
each time period. Only this lucky agent gets the reward, and the others 
get nothing. Therefore, the average payoff per agent is 1 IN  in Payoff 
scheme 1 in (8.3). An equally extreme situation is that when N9 agents 
attend the bar and N il -  9) agents stay home. In this case, the average 
payoff per agent is 6. From a collective efficiency point of view, the 
latter situation is preferable.

Let us suppose that there exists some central authority that causes a 
slightly larger number of agents than Nd  to choose St when в  > 0.5 . In 
this case, those who stay at home are rewarded, and the average payoff 
per agent is 1 -  в . Similarly, if slightly fewer agents than N0  choose Sl 
when в  < 0.5, those who attend the bar are rewarded and the average 
payoff per agent is в . Therefore, the average payoff per agent is given as 
Max(6, 1 - 6 ) .  Similarly, if the central authority causes slightly fewer 
agents than N9  to choose S1 if в  £ 0.5, and a slightly larger number of 
agents than NB to choose 5, if в  < 0.5 , then the average payoff per 
agent is M in(6, 1 - 6 ) .  Therefore, the best-case and worst-case average 
payoffs are as follows:

<Best-case average payoff>

М а х (в ,  \ — в )  (8.6)
(KftSI

<Worst-casc average payoff>
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Min (в, 1-6») (8.7)
<K6><1

The best-case and worst-case average payoffs become the same when в 
= 0.5.

The average payoff (efficiency) under Payoff Scheme 1 in (8.2) is 
obtained as follows. Let us suppose slightly fewer agents than the 
capacity С  =  N 0  choose 5 ,. In this case, agents who choose 5, receive 
the payoff, and the average payoff per agent is а  в  . On the other hand, if 
a slightly larger number of agents than N 0  choose S , , these agents 
receive negative payoff -b and the average payoff per agent is —b 0 .  
Therefore, when the payoff function has the property of a knife-edge, as 
shown in Figure 8.1(a), there is a fluctuation of the average payoff.

<Best-case average payojf>

aO (8.8)
<Worst-case average payoff>

- b O  (8.9)

The average payoff per agent under the payoff function 2 is obtained 
as follows.

<Best-case average payoff>

M a x 0 { a - ( a + b ) 0 } (8.10)
OS0-S1

<Worst-case average payojf>

M in 0{a -  (a + b)0} (8.11)
o<e<\

The dispersion problem formulated as an /V-person game can be 
decomposed into a 2x2 game, and then the Nash equilibrium strategy and 
collective efficiency (the average payoff per agent) can be obtained by 
analyzing the underlying game. In the dispersion game with Payoff 
Scheme 1, shown in (8.3), agents are rewarded a unitary payoff 
whenever their choice happens to be in the minority. Let us suppose each 
agent plays with all other agents individually under the payoff matrix in 
Table 8.1. The payoff to agent i obtained by playing with all other agents 
by choosing St or S2 is:

Ui(S1) = -n( t )  + ( N - n ( t ) - l ) ,
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where n  represents the number of agents that choose S,. The average 
layoff from play with one agent is obtained as

Ui(S]) = Ui(S]) / N  = \ - 2 p ( t ) ,

Ui{S1) = Ui( S2) l  N  = 2p( t ) .  (8.13)
Then, we have the same payoff functions as shown in (8.4). Therefore, 
the dispersion problem with N  agents can be decomposed into a 2x2 
game with the payoff matrix shown in Table 8.1. With this 
decomposition, each agent is modeled to interact with all other agents 
under this payoff matrix.

Suppose each agent interacts with all other agents under the payoff 
matrix shown in Table 8.2. The payoff to agent i obtained by choosing 
either St or S2 is given as

Ui(S]) = a ( N - n - \ ) - b n ,

U t ( S2) = 0 .  (8.14)
Dividing by N  , the average payoff per agent is obtained as

Ui(S,) = U i(Sl) / N  = a - ( a  + b)p( t ) ,

Ui(S2) = Ui(S2) / N  = 0.  (8.15)
Then, we have the same payoff functions as in (8.4), and thus minority 
games can be decomposed into 2x2 games. The payoff matrix in Table
8.2 is equivalently transformed into the payoff matrix shown in Table 8.3 
by setting в  = a / ( a  + b ) .

Note that the payoff matrix in Table 8.3 is a dispersion game. As 
shown in Chapter 3, the coordination game and the two-agent dispersion 
game differ only by the renaming of one agent’s actions. However, with 
arbitrary numbers of agents and actions, these two games diverge.

We now evaluate the collective performance under the mixed Nash 
equilibrium strategy. Here, all agents choose the mixed strategy in which 
an agent assumes that each other agent is also choosing a fixed mixed 
strategy. In each round, each agent selects a strategy randomly from the 
probability distribution that represents the mixed Nash equilibrium. We 
consider a population of agents with N=2,500 for which the capacity rate 
is set to 0=0.5. In this ease this dispersion game has a unique mixed

Ui ( S2) = n ( t ) - ( N - n ( t ) - l ) .  (8.12)
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Nash equilibrium in which each agent selects the two strategies with 
equal probability.

We represent the mixed strategy RND(x) = (x, 1 -  x) of choosing S, 
with the probability x  and S2 with \-x . If all agents adapt the mixed 
Nash equilibrium strategy, RND(0.5), each agent can expect a payoff of 
0.5 for each time period, and the distribution of the total payoffs follow a 
binomial distribution with a mean of N  / 2 and a variance of N14.  The 
variance is also a measure of the degree of social efficiency. If the 
variance is high, the magnitude of the fluctuations of approximately 
N /2  also becomes high, implying the loss of aggregated welfare.

Table 8.1 Underlying payoff matrix of the minority game

Table 8.2 Underlying payoff matrix of the minority game
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Table 8.3 Payoff matrix of general minority games

Strategy of 
others

Own strategy
Sl

(Go)
s 2

(Stay home)

0 1 - 0

(Go) 0 в

в 0

(Stay home) 1 - 0 0

8.4 Learning Models in Dispersion Games

The alternative to the assumption of the rational-choice model in which 
agents behave to maximize their payoff is a form of adaptation. The 
adaptation may be at the individual level through learning or it may be at 
the collective level through the survival and reproduction of the more 
successful individuals or strategies. Either way, the consequences of 
adaptive processes are often very hard to deduce from the collective 
behavior of agents who follow specific learning models since they 
usually generate a chain of the reactions.

An important issue in multi-agent environments is the learning model 
adapted by each agent. In Chapter 2, we specified several learning 
models that have been discussed in the literature of game theory. Arthur 
modeled the El Farol bar problem, where the individual agents in 
creative ways try to forecast the next attendances and correspondingly 
decide to attend or stay at home. Agents may behave differently because 
of their personal beliefs on the outcome of the next time period, which 
only depends on what agents do at the next time period and the past 
history. Therefore, each agent is modeled to learn the successful 
prediction rule. Arthur believes that any solution to the El Farol bar 
problem would require heterogeneous agents who pursue different
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prediction rules, and the heterogeneity in agents’ actions arises from the 
heterogeneity in predicted attendance. Arthur’s solution, in which each 
agent maintains a collection of heterogeneous prediction rules, leads to 
patterns of attendance that fluctuate considerably above and below the 
capacity level.

Challet and Zhang (2005) take a different approach in modeling 
heterogeneous agents. Agents make decisions based on the common 
knowledge of the past history, which can be represented by a binary 
sequence, and each bit indicates whether an agent is on the winning side. 
The past history available at time t is represented by /i(t) . The 
heterogeneity in agents arises from the collection of the heterogeneous 
action rules, and they investigate how agents choose different actions 
with the common information fi(t).

If the size of the past history fJ.(t) is M, then the size of the strategy 
space is 2M. Each agent has a finite set of randomly drawn 5 strategies 
out of the strategy space. Some strategies maybe shared by multiple 
agents, however, if the size of the past history is moderately large, the 
chance of repetition of a single strategy is exceedingly small. All 5 
strategies at an agent’s disposal can collect points if they win based on 
the past /i(t) and on the actual outcome of the next play. However, these 
points are only virtual points as they record the merit of a strategy as if it 
were used each time. The agent uses the strategy having the highest 
accumulated points for her action and gets a real point only if the 
strategy used happens to win in the next play.

The interesting result by Challet and Zhang is that there is some 
critical parameter defined by the ratio of the number of agents N  and the 
size of the strategy space, 2M. This critical parameter determines the 
collective performance, and the fluctuations show an interesting pattern, 
which is basically classified into the three regimes: (1) if the number of 
agents is small with respect to the number of the strategy space, then the 
outcome is seemingly random, which very similar to what we would 
expect if agents were just tossing coins to decide whether to go (this is 
the mixed Nash equilibrium strategy), (2) when the number of agents is 
greater than the strategy space, they enter the herding phase, resulting in 
big fluctuations, and (3) in all other cases, the minority game fluctuates 
between either a crowded phase or a random phase.
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Suppose that agents use predictive rules like those suggested by Arthur 
and that attendance at El Farol for the last Thursday night has been 
exactly the capacity C. How should an individual agent decide whether 
or not to attend in this case? Common sense suggests that agents who 
have attended the bar should continue to attend next Thursday night. On 
the other hand, agents who have not attended should continue to remain 
at home because the addition of another agent will result in attendance of 
C+l and result in penalty.

Reinforcement learning is the learning model based on the above 
observation in agents’ behaviors. Reinforcement learning takes place in 
the context of iterated choice problems, which asserts that choices that 
have led to good outcomes in the past are more likely to be repeated in 
the future. With reinforcement learning, agents need not form explicit 
expectations, but their actual behavior is described on the basis of 
probability for their action. Reinforcement learning is then modeled as an 
updating of probability, where the agents make use of their personal 
experience only. The updating rule of probability relies explicitly on the 
payoff.

Bell (2003) proposes a model of reinforcement learning based on habit 
formation. The incentives are in agreement with the common sense idea 
that people tend to minimize bad experiences and maximize good ones. 
By developing certain habits, agents may send signals to others to avoid 
conflicts.

Agents are consistent in their desire to maximize pleasure and 
minimize painful experiences. Therefore, an agent goes to the bar more 
often if the bar is under-crowded but prefers to go less often if the bar is 
crowded. Over time, an agent gathers information about the state of the 
bar and remembers this in the form of the parameter. This rule can be 
interpreted as a kind of habit formation through reinforcement learning. 
Not everyone can attend an under-crowded bar. Neither can everyone be 
in the minority. By the final iteration, the agents have divided themselves 
into two groups: agents who always attend the bar and agents who 
always stay at home. This division of the agents appears nowhere in the 
algorithm statement rather it is an emergent property of the solution 
based on reinforcement learning or individual habit formation.
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However, the type of equilibrium that is actually realized when agents 
follow reinforcement learning depends on the nature of the information 
available to them. In particular, Franke and Bell show that limiting the 
information available to agents leads agents to successfully coordinate on 
an efficient equilibrium, while providing more information leads to an 
inefficient outcome. By changing the information structure in the 
algorithm so that agents adapt their probabilities of choosing either 
strategy at each play causes the algorithm to no longer converge to such 
an optimal situation, rather the attendance patterns continue to fluctuate 
wildly.

Thus, Bell points out that the information structure becomes crucial. 
When agents each receive or utilize a subset of total information, then 
the overall performance is far better behaved than when all agents act on 
complete information. In other words, homogeneity of information may 
be the key ingredient driving the dispersion game. With more 
heterogeneous information among agents, however, the congestion 
problem may vanish.

The adaptive solution proposed by Bell thus provides a simple 
mechanism whereby a large collection of decentralized agents, each 
acting in their own best interest and with only limited knowledge, drives 
a solution to many social congestion problems.

8.5 The Principle of Give-and-Take in Dispersion Games

Since the class of dispersion games displays interesting properties, we 
need to explore the learning models that may work effectively. The 
specialized learning model for the specific learning environment 
generally exhibits better performance than generic and representative 
learning models.

In this section, we propose a new behavioral rule based on the 
principle of give-and-take. This behavioral rule departs from the 
conventional assumption in learning models such that agents adapt their 
behavior in the direction of improving their payoff. We usually assume 
that an agent is guided by self-interest, and therefore tends to choose the 
action that yielded a higher payoff, and to avoid action with a lower
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payoff. The principle of give-and-take, on the contrary, is based on the 
following behavioral rule: an agent yields to others by changing her 
action if she can receive the payoff by choosing the minority side.

We formalize the behavioral rule based on the principle of give-and- 
take. The state variable oXt) denotes the following collective outcomes:

(i) cw(f) = 0 if A (t)/N  < в  (not crowded), (8.16)

(ii) (0{t) = 1 if A (t)/ N  > в  (overcrowded).

Each agent has common information on the state variable co(t), and 
decides whether to choose S, ( a i = 0) or St ( a, = 1) at the next time 
period t + 1 depending on whether she is rewarded or not. The action 
a,(t +1) of agent г at r +1 is then determined by the following rule.
At the current period

(i) = 0) л (a; (t) = 1) => a. (t +1) = 0

(ii) (co(t) = 1) л  (a, (0  = 0) => a. (t +1) = 1

(iii) (aK t)=  l )A (a i(t) = l)= > a i(t + l) = RND(x) (8.17)

(iv) (co(t) = 0) л (a, (г) = 0) => a, (t + 1) = RND(y)

where RND(x) represents the mixed strategy x = (x, 1 -  *), in which S i 
is chosen with the probability x  and S2 is chosen with the probability
1 — x  .

We need to specify how an agent decides the mixed strategy RND(x) 
when she is in the majority side by choosing 5,, and RND(y) when she is 
in the majority side by choosing S2. The expected number of agents who 
choose 5, at t + 1 when all agents follow the rule in (8.17) is

A (t +  \) = xA(t) + N - A ( t )  (8.18)

RND(x) in (8.17) is determined in order to satisfy the following 
condition:

A (t +  l) =  N 6 .  (8.19)

Therefore, the probability x to choose St is set as
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x = {N 0 -(N -A (t))} /A (t) . ( 8 .2 0 )

We assume that the condition N -A ( t)<  N0 is satisfied. That is, if the 
attendance is greater that the capacity (overcrowded), then the number of 
agents who stay home should be smaller than the capacity. This 
assumption is satisfied if 0=0.5.

Similarly, we specify the mixed strategy RND(y). The expected 
number of agents who choose 5, at t +1 is given as

A(t + l) = ;y(W-A(0). (8.21)

Then, RND(y) is set to satisfy the following condition:

Here, we also assume that the condition N  -  A(t) > N 0  is satisfied. That 
is, if the total attendance is below the capacity, then the number of agents 
who stay home should be greater than the capacity. This assumption is 
satisfied if 0 =  0.5.

We consider a population of agents with N  =2,500 and the capacity 
rate 0 = 0.5. Figure 8.2 shows the simulation result when all agents 
follow the behavioral rule of give-and take in (8.17). Figure 8.2(a) shows 
the ratio of attendance over time, and it is shown that the average number 
of agents who attend, by choosing 5, (Go), converges to the capacity rate. 
Figure 8.2(b) shows the distribution of the cumulative payoff of the 
population. All agents receive the same average payoff 0.5. This result 
indicates that high collective efficiency and equity are achieved when all 
agents behave under the principle of give-and-take.

A(t + Y) = N 0 . (8.22)

The probability у  of choosing S { is then set as 

y = N 0 /(N -A (t)) (8.23)
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Figure 8.2 Simulation result under give-and-take ( в  =0.5)
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8.6 Localized Dispersion Games and Emergence of Dynamic Orders 
in Harmony

The matching methodology also plays an important role in the outcome 
of social games. Thus far, we have assumed that agents play the 
dispersion game by adapting to the global information of the population. 
The basic model thus far is the same as assuming that agents interact 
with all other agents, which is known as the global interaction model. We 
refer to this type of dispersion game as a global minority game (GMG).

On the other hand, the idea of local minority game (LMG) is that each 
agent play the minority game with their nearest neighbors. In many 
situations, agents are not assumed to be knowledgeable enough to 
correctly guess or anticipate all other agents’ actions in the collective. 
The hypothesis of local interaction reflects the limited ability of agents to 
receive, decide, and act based upon aggregated information they receive 
in the course of interaction.

Consider a collective of agents located in a two-dimensions lattice 
who interact with their nearest neighbors. We arrange these agents in a 
50 x 50 area with no gaps, and the four comers and edges of the area 
connect with those on the opposite side, as shown in Figure 6.2. We 
consider the two cases of localized minority games, in which each agent 
interacts with her four neighbors and eight neighbors with the payoff 
matrix in Table 8.4.

In an LMG, we aim at discovering fundamental local or micro 
mechanisms that are sufficient to generate the desirable macroscopic 
structures. The main concern in a GMG was to show how interacting 
agents self-organize into a desirable collective behavior in time. In an 
LMG, however, they have to self-organize their behavior in both time 
and space.

We now define the behavioral rule of give-and-take in an LMG by 
modifying the rule in (8.17). We denote the ratio of the neighbors of 
agent i who chooses 5, at t by p t (t ) ,  and define the following local 
state variable (Qi (t ):
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Table 8.4 Underlying payoff matrix of the local minority game

(i) If (t) < в , OJt(t) -  0 (locally crowded),

(ii) If Pi (t) > в , о ф ) = 1 (locally overcrowded). (8.24)

We set the capacity rate at 0=0.6, and the agents play the minority 
game with the payoff matrix given in Table 8.4. Agent i decides whether 
to choose S, ( a t = 0) or S, ( a ; = 1) at t +1 as follows:

(i) (щ  (t) = 0) л  Ц (Г) = 1) => fl.(f + 1) = 0

(ii) (C0i (t ) = 1) л  (a,, (t) = 0) => a t (t +1) = 1

(iii) (щ  (t) = 1) a  (a,. (f) = l) => я, (f +1) = RND (x ) (8.25)

(iv) (o\(t) = 0) л  (a,. (0  = 0) => a,. (Г +1) = /?7VD(jc)

where RND(x) represents the mixed strategy x =  (*, 1 — x) . We set 
x=0.5, and 5, and 5, are chosen with equal probability.

The efficiency of the LMG depends on the number of neighbors with 
which to interact. Let us consider the configuration shown in Figure 8.3, 
in which each agent plays with four neighbors. In this configuration, 
agents who choose Si (white) interact only with agents who choose S2 
(black), and agents who choose S2 interact only with agents who choose 
5/. Since each agent interacts with the matrix in Table 8.4, an agent who 
chooses Si (white) receives a payoff of 0.6 per neighbor. However, an 
agent who chooses S2 receives a payoff of 0.4. This inequality between
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agents who choose Sj and agents who choose S2 will be diminished if all 
agents alternate their choice, so that agents who choose 5/ become agents 
who choose S2, and vice versa, in the next round. If all agents take turns 
in their independent choices, then they receive the same average payoff 
of 0.5. Therefore, the desirable collective behavior of the most efficiency 
and equity is achieved if they take turns and realize the two patterns 
shown in Figure 8.3 alternatively.

We now investigate the case in which each agent plays a minority 
game with eight neighbors. The most desirable configuration achieved 
with four neighbors in Figure 8.4(a) is no longer desirable when agents 
interact with eight neighbors. Let us consider the configuration in Figure 
8.6(b), agents who choose S/ (white) receive an average payoff of 0.45 
per neighbor, and agents who choose S2 receive an average payoff of 0.3. 
This inequality between agents who choose Si and agents who choose S2 
will be diminished if all agents alternate their choices, so that agents who 
choose Si become agents who choose S2, and vice versa, in the next 
round. If all agents take turns, then they receive the same average payoff 
of 0.375.

Figure 8.3 Configuration of S, choosers (white) and S2 choosers (black): Interaction with 
four neighbors



Give-and-Take in Social Interaction 243

We show the simulation results in Figure 8.5. Figure 8.5(a) shows the 
numbers of agents who choose S t (attend) and S 2 (stay at home) over 
time when each agent plays the minority game with four neighbors. 
Figure 8.5(b) shows the results with eight neighbors. These results show 
that when agents play with four neighbors, they quickly converge to the 
situation where and half of the agents attend and the other half stay at 
home. However, if they play with eight neighbors, a longer time is 
required but there is a sudden convergence to the situation in which the 
agents split into two groups based on their choice of 5/ or S2.

Figure 8.4 Configuration of choosers (white) and S2 choosers (black): Interaction with 
eight neighbors
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Figure 8.6 shows the maximum, average and minimum payoff per 
neighbor over time. When the agents play the minority game with four 
neighbors (Figure 8.6(a)), they converge into two groups. In one group 
each agent receives a payoff of 0.6, and an agent in the other group 
receives a payoff of 0.4. Then, the average payoff per agent converges to
0.5.

Figure 8.7 shows the payoff distribution for the final two plays of the 
game. It is shown that all agents receive the same payoff at the final 
stages for both cases.

(a) Four neighbors (b) Eight neighbors

Figure 8.6 Maximum, average, and minimum payoff per agent over time

(a) Four neighbors (b) Eight neighbors

Figure 8.7 Distribution of the average payoff of the last two periods
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Figure 8.8 and Figure 8.9 show the configuration of agents who 
choose Si and agents who choose S2. The white cells denote the agents 
who choose 5,, and the black cells denote the agents who choose S 2 . In 
the case in which each agent interacts with four neighbors, they generate 
two meshed patterns, as shown in Figure 8.8. When each agent interacts 
with eight neighbors, however, they generate stripe patterns, as shown in 
Figure 8.9. In the beginning, all agents choose independently, and their 
collective outcome is far from desirable. However, if they repeatedly 
adjust their behavior based on the rule of give-and-take, then the agents 
self-organize themselves into the most desirable behavior by taking turns 
choosing Sj and S 2 , alternately. We can characterize such desirable 
collective behavior as interactive synchrony.

11шi i | r i  
ш км* ■ ■
iiГЛ ■ a • 1II 11■ ■ II

- 31 1j 1 1 1 J
I Ш в [1 • • 1 I £
I 1I 1 : I E
I 1I • • 1 i Ir u n В 1 1*1 w
к ■ 

■ ■ 1 
■ Ш■ ■ ii

■
■■ 
■ i

■■
■ ■ 1

■■11 ■ ■

■ 
■ il )■ 
■ i

■ ■ ■ ■
■ в■ N■11

<

1 "  "  »  !
Initrai Configuration 
(Random)

ц у у ц ц ц ц ш
■ ■L1 •  1 Я  - - ■ i I* •мама ■ ■ 1 1 ■ 1 1 ■ ■ MB

■ ■ Г ■ 1
I : I E 1I I Ё 1: I I E 1• J I •I

I I 1 1I I l 11 I 1 1S - • - 1I I 1 1
1 s 1 _1 1

Neighborhood Sze « 4

Figure 8.8 Interactive synchrony produced starting from randomly chosen initial 
strategies (LMG with four neighbors)
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Initial Configuration 
(Random)

Neighborhood Size « 8

Figure 8.9 Interactive synchrony produced starting from randomly chosen initial 
strategies (LMG with eight neighbors)

8.7 Interpretation of the Principle of Give-and-Take

The theory of self-organization has grown out of many disparate 
scientific fields, including physics, chemistry, biology, cybernetics, 
computer modeling, and economics. Self-organization is basically the 
spontaneous creation of a globally coherent pattern out of uncoordinated 
decentralized behaviors. However, the overall collective behavior is self
organized as a function of its own maintenance, and thus tends to resist 
perturbations. Local interaction of large numbers of decentralized agents 
produces synchronized behavior. This surprising finding appears 
consistently in the emergence of macro-structure from the bottom up, 
according to the principle of give-and-take, which outwardly appears 
quite different from the collective phenomena the agents generate.
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Solving a congestion problem from the bottom up, rather than by 
centralized planning and control, depends deeply on socially intelligent 
behavior of individuals. A rational approach based on the individual 
preference maximization will be useless in solving complex social 
congestion problems. Preferences, motives, or beliefs of agents can only 
provide a necessary but not sufficient condition for the explanation of 
socially intelligent behavior. Although, the basic mechanisms underlying 
human behavior are still far from clear, the different approaches need to 
be better integrated. For future development in the study of self
organization in collective systems, we may need to focus on the aspect of 
collective intelligence that will emerge beyond an individual’s 
optimization behavior.

Humans are social creatures that learn to engage extensively in social 
exchange. We trade services and goods and information among friends 
and associates. Those who fail to develop social relationships will face 
many hardships. Although this observation might involve some altruistic 
elements, it appears to be largely based on reciprocity. If some people 
fail to reciprocate your favors and assistance, you stop the relationship 
This is judged to be why people are cooperative and trusting. In long
term social relationships, the norm of reciprocity seems to be the most 
widespread and persistent norm that regulates behavior (Gouldner, 1960). 
Relationships that go well seem to be almost always be characterized by 
a pattern of reciprocal solidarity, i.e., both agents repeatedly act to some 
extent in solidarity with their partner and as a result receive reciprocation. 
In order to solve social conflicts with others, we may need to change 
ourselves and alter our behavioral rules. The principle of give-and-take is 
very important in human society.

There are two contradictory views in answering the basic question as 
to why we support others or why should we always be kind to others. 
One is the idea of support out of pity (altruistic interpretation), and the 
other is the idea of support in expectation of returns (selfish 
interpretation) (Morioka, 1995).

The former, the altruistic idea of support, states that we sometimes 
help others in trouble because we want to ease their hardship. For 
instance, many volunteers may not support others in expectation of 
returns. The essential motivating factor here is a feeling o f pity. We are
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living an enjoyable peaceful life because of a lot of people’s assistance. 
We feel good even when we do a small kindness for others, such as just 
giving directions to someone who is lost. We may be happy if we win a 
lottery or if others accept your opinion after pushing very hard, but these 
are not true joys. The joy of being kind to others can not be taken away 
by anyone. However, the joy of accumulating money or having people 
accepting our opinion can be taken away from us. We may work hard to 
gain money and material possessions, but these things can easily be 
destroyed.

The latter, the selfish idea of support, states that the reason why a 
person helps others in trouble is that the person expects the same in 
return. In other words, a person expects to be helped by someone in 
return (not necessarily by the exact person whom she helped) if the norm 
of mutual support has taken root in her society.

Simulation results based on the principle of give-and-take shown in 
this chapter support an old saying, “Those who are kind to others are 
sure to be rewarded .” (In Japanese, "nasake wa hito no tamenarazu".)



Collective Evolution of Behavioral Rules

Chapter 9

We have observed that the performance of the collective system heavily 
depends on how agents’ behaviors are properly coupled. This chapter 
explores an alternative learning model, coupled learning, and focuses 
on coupling dynamics that may change in time according to coupled 
behavioral rules. We show that collective evolution serves to secure 
desired outcomes by establishing sustainable behavioral rules. This 
chapter also presents a comparative study of two evolving collectives, 
one in a spatial structure, and the other in a small-world network 
structure. The small-world environment is shown to encourage desirable 
collective evolution more than the spatial environment.

9.1 Repeated Interactions on Social Networks

This chapter and the next chapter are devoted to the issue of emergence 
of desired collective behaviors through collective evolution in the 
context of iterated social games. The study on the emergence of a desired 
collective from the bottom up is the complementary approach to the 
evolutionary approach in which variation and selection are important 
considerations. A growing interest in this approach comes not only from 
evolutionary computation, but also from other scientific disciplines.

In Chapter 2, we classify social interactions formulated as non- 
cooperative games into four categories: prisoner’s dilemma games, 
coordination games, hawk-dove games, and dispersion games. It is 
shown that equilibrium situations led by natural selection are far from 
efficient.

244
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Prisoner’s dilemma games are stylized situations that capture the 
logic of a spectrum of social disasters that we bring upon ourselves if we 
seek our own self-interest. In a situation such as prisoner’s dilemma 
games, individuals to detect (D) will always be favored by natural 
selection, even though the average payoff in a population of defectors is 
less than in a population of cooperators. In terms of evolutionary game 
theory, to defect is the unique evolutionary stable strategy (ESS).

Two different types of solutions to this conflict between equilibrium 
and efficiency have been proposed. First, the Iterated Prisoner's 
Dilemma (IPD) was made popular by the work of Axelrod (1980). 
Axelrod did computer and human experiments on the repeated prisoner’s 
dilemma. The most successful strategy is the Tit-For-Tat (TFT) strategy, 
which starts by playing С (Cooperate) and then the agent plays whatever 
its opponent played in the previous round. In repeated games, there is a 
probability that two agents will meet again, and the agents can remember 
how they played in previous encounters. This allows more complicated 
strategies than the binary choice of С or D. Axelrod conducted a 
computer tournament with 62 different strategies submitted by scientists 
from all around the world. The most successful strategies among them 
are, (i) nice: the agent never defects first, (ii) forgiving: the agent restores 
cooperation after an accidental defection, and (iii) retaliatory: the agent 
reacts by playing the same strategy as the opponent.

An important feature of the strategy choice in the real world is that 
strategies cannot be implemented without error. Since the other agent 
does not necessarily know whether a given action is an error or a 
deliberate choice, a single error can lead to significant complications. 
The effects of error have been treated under the rubric of noise. The issue 
of how to cope with noise has become an important research question 
among many scientists. Clearly, when noise is introduced, some 
unintended defections will occur, and this may undercut the effectiveness 
of those successful strategies.

Two different approaches to coping with noise in the context of the 
IPD have been proposed, (i) Generosity, in which some percentage of the 
other agent's defections are allowed to go unpunished, has been widely 
advocated as a good way to cope with noise. A generous version of TFT, 
called GTFT is also known to prevent a single error from echoing
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indefinitely, (ii) Contrition, in which a reciprocating strategy such as 
TFT can be modified to avoid responding to the other agent's defection 
after her own unintended defection, allows a quick way to recover from 
error. It is based upon the idea that one shouldn't be provoked by the 
other agent's response to one's own unintended defection.

Axelrod and Yin (1997) conducted a powerful test by taking into 
account that rules that are unsuccessful in a noisy environment are less 
likely than are relatively successful rules to be used again. The fraction 
of the population represented by a given rule in the next generation of the 
tournament is proportional to that rule's tournament score in the previous 
generation. When this evolutionary process is repeated over many 
generations, the proportion of the various rules changes, and the 
environment faced by each rule tends to emphasize those rules that have 
been doing relatively well in the noisy setting.

The basis of the analysis by Axelrod and Yin is the global 
environment, where the average score of each rule when paired with all 
other rules is compared. Other situations where cooperative behavior can 
be spread out are models that introduce some kind of spatial structure so 
that all interactions are local. Nowak and Sigmund (1993) showed that 
cooperation survives if agents in a population locally interact with each 
other and learning is driven by imitation of successful behavior. Agents 
play against their nearest neighbors and not against random opponents or 
against all other agents of the population. The introduction of spatial 
interaction may affect the evolutionary dynamics in various ways. The 
possibility of spatial structures may also allow for stability where the 
global or random matching model would be unstable.

The introduction of spatial dimensions is shown in Figure 9.1. Agents 
allocated to each cell of a nxn lattice play an underlying game against 
their nearest neighbors. The summed payoff of each game provides the 
agent’s fitness. After every individual has played the game with her 
neighbors, each rule of the agents is updated according to the general 
evolutionary rules based on the principle of natural selection. Each agent 
is replaced by an offspring of the highest scoring individual of the 
nearest neighbors. These offspring play the same strategy as their 
ancestors, unless a mutation occurs, which happens at a small mutation 
rate. If a mutation occurs, the offspring's strategy is not its parent's
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Figure 9.1 Games on a grid. Each agent interacts with her nearest neighbors

strategy but a new strategy chosen randomly. The main effect of the 
spatial structure in the IPD is that cooperative strategies can build 
clusters in which the benefits of mutual cooperation can outweigh losses 
against defectors. Thus, clusters of cooperators can invade groups of 
defectors that prevail in non-spatial populations.

The evolutionary dynamics described above could also be interpreted 
as a learning process. In the random interaction model or mean-field 
model, we could say that each agent checks to see if another randomly 
chosen agent in the population gets a higher payoff, and, if so, switches 
to that strategy with a probability proportional to the payoff difference.

In the lattice model each agent may choose the strategy of the most 
successful agent among her immediate neighbors. This may not be the 
most successful strategy in the position of this agent, since her neighbors 
may interact with different neighbors. The introduction of spatial 
interactions leads to the development of spatial games in which agents 
are located in the nodes of a fixed regular network of interaction, 
displaying rich spatio-temporal dynamics.

Recent studies on the structure of social, technological, and biological 
networks have shown that they share salient features that situated them 
far from being completely regular or random. Social interactions are 
rarely well described by random or regular networks. Therefore, we also 
need to study the influence of the topological aspects of networks by 
exploring the different network topology.
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The topology of social networks is much better described by what has 
been called a small-world network, as shown in Figure 9.2. In a regular 
lattice model, agents interact with the nearest neighbors. In the version of 
a small-world network, a fraction of the neighborhood is replaced by 
breaking interactions. An equal number of new agents are selected from 
outside of the current neighborhood. These new agents for interaction are 
selected randomly from the rest of the population.

Kuperman and Abramson (2000) studied an evolutionary version of 
the prisoner’s dilemma game, played by agents placed in a small-world 
network. Agents are able to change their strategy, imitating that of the 
most successful neighbor. They found that collective behaviors 
corresponding to the small-world network enhances defection where 
cooperation is the norm in the fixed regular network.

Another important issue to consider is that networks are dynamic 
entities that evolve and adapt driven by the actions of agents that form a 
network. Zimmermann and Egufluz (2004) studied the evolution of the 
social network. Initially, each agent plays a prisoner’s dilemma game 
with fixed neighbors. The network of interaction links evolves, adapting 
to the outcome of the game. They analyzed a simple setting of such an

Figure 9.2 Games on a small-world network. Each agent interacts with her four nearest 
neighbors and four other agents randomly chosen from the population
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adaptive and evolving network, in which there is co-evolution of the state 
of the agents and the interaction links defining the network. The network 
of interaction evolves into a hierarchical network structure that governs 
the global dynamics of the system. However, the resulting network has 
the characteristics of a small-world network when a mechanism of local 
neighbor selection is introduced.

Various studies have examined the impact of different network 
structures on equilibrium selection in the context of iterated coordination 
games. If agents can choose the partners with which to interact, then they 
will form networks that lead to efficient Nash equilibrium play in the 
underlying coordination game. Ellison (1993) analyzed the role of local 
interactions for the spread of particular strategies in coordination games, 
showing how play converges to risk-dominant equilibrium if agents are 
located on a circle and interact with their two nearest neighbors. 
Similarly, Blume (1993) and Kosfeld (2002) proved the convergence to 
the risk-dominant equilibrium in a population of agents located on a two- 
dimensional lattice.

Goyal and Vega-Redondo (2005) study the formation of networks 
among agents who are bilaterally involved in coordination games. In 
addition to specifying which pairs of agents in the population play the 
game, the network structure also determines how strategic information 
diffuses among the agents and how coordination among the agents is 
found. They showed that once agents are allowed to choose their partners, 
the situation is very different. They introduce a number of locations 
where agents can meet and play the coordination game with each other. 
Thus, at any time, agents choose both a location and a strategy in the 
game. Under these conditions they showed that risk dominance looses its 
selection force and that the population is most likely to coordinate on the 
Pareto efficient equilibrium. Since agents can freely choose their 
interaction partners, they are able to find partners that choose the Pareto 
efficient equilibrium strategy, and at the same time they can avoid agents 
that choose the risk-dominant inefficient strategy. The latter condition,
i.e., the ability to avoid bad matches, is crucial in social interactions, as 
we discussed in Chapter 7.
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9.2 Repeated Interactions with Bounded Memory

In our social life, we have to make our decisions based on our bounded 
capability. However, these restrictions may be improved through 
learning that utilizes past experiences. Interesting phenomena have also 
been observed using repeated games played by agents who choose their 
strategy based on a behavioral rule, which may be improved through 
learning.

Most models of game theory deal with specific social interaction 
between individuals who adapt their behavior (strategy) in order to 
maximize their gains within the prescribed underlying game. The 
situation changes abruptly when interactions are repeated, depending on 
the outcomes of the previous interaction, or past results. There is no 
doubt that we learn from our past successful and unsuccessful attempts to 
improve our behaviors.

In this section, we consider repeated games with some memories, in 
which agents are modeled to play infinitely many rounds of the 
underlying 2x2 game. In the framework of iterated games, a type of 
behavioral rule that should be considered is the deterministic strategy 
choice based on finite memory. This type of behavioral rule may take 
into account the actions that occur in a finite number of past rounds and 
then choose a certain strategy. A behavioral rule can then be viewed as a 
look-up table, in which each entry corresponds to each of the possible 
finite-length histories that can be memorized. The number of possible 
behavioral rules in the context of repeated games depends on the agent’s 
memory size.

For instance, we consider the following cases.
(1) An agent chooses her strategy without any memory. This case is 

denoted as m = 0, or a memory of zero.
(2) An agent chooses her strategy based on the last choice of her 

opponent. This case is denoted as m = 1, or a memory of one.
(3) An agent chooses her strategy based on the outcome of the 

previous round, the previous join actions of herself and her opponent. 
This case is denoted as m = 2, or a memory of two,

(4) An agent chooses her strategy referring to the previous two rounds. 
This case is denoted us /« = 4, or a memory of four.
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When agents decide their strategy based on their memories of past 
rounds, the strategy choice becomes quite different. Here, we consider 
the IPD as an illustration. A strategy choice with memories allows more 
complicated interactions than the simple strategy choice of either С 
(Cooperate) or D (Defect).

In the case of a memory of zero (m  = 0), there are two possible rules 
of the strategy choices: “always chooses D” (which is denoted as All-D) 
and “always chooses C” (which is denoted as All-C).

In the case of m  =  1, we can denote a rule of the strategy choice as 
“PoPi” (Po, Pi £  [0, 1]), where p 0 ( p i) is the probability of choosing S2 
when the opponent’s last choice was Si (S2). In this case, there are four 
behavioral rules: “00”, “01”, “10”, and “11”. For example, “11” (i.e., p 0 
= 1, p \  = 1) means always chooses S2 (All-D) and “00” (p 0 = 0, p \  = 0 ) 
means always chooses Si (All-C).

In the case of m  = 2, a rule of the strategy choice is described as 
“PoP iPtPt  (Pi £  [0, 1]), where p 0, p \ ,  p 2 and p 3 represent the probability of 
choosing S2 when the agent’s choice and the opponent’s choice in the 
previous round are (Sb Si), (Sb S2), (S2, Si) and (S2, S2), respectively. 
There are 24 = 16 possible rules to represent “pcpipipy-

In research regarding the IPD, some special names are used for the 
strategy choice rules with the memory size of m  = 2. That is, 0000 means 
All-C, “1111” means All-D, “0101” corresponds to TFT, and “1010” 
corresponds to ATFT (Anti-TFT). Here, “0111” is defined as 
FRIEDMAN (which plays Si (Cooperate) only when the previous 
choices of both agents were Si), and “0110” is defined as PAVLOV.

Nowak and Sigmund (1993) found a very successful strategy choice, 
w in -s ta y  a n d  lo se -sh ift,  which is the same as PAVLOV. With the 
principle of win-stay and lose-shift, if both choose Si (win) then they 
also choose Si. If the opponent chooses Si and the agent chooses S2 (win), 
then she also chooses S2. On the other hand, if both choose S2 (lose), then 
they change and choose S2. If the opponent chooses S2 and the agent 
chooses Si, then she loses. Therefore, she changes and chooses S2.

Here, the effective memory size of agents to remember past 
experiences is of interest. Some interesting results were obtained by 
Lindgren (1991). He studied this issue in the IPD by changing the 
memory size from a memory of 1 to a large memory. The average score
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for each agent is calculated, and this determines which individuals will 
be allowed to reproduce. Among nearest neighbors, the individual with 
the highest score reproduces offspring, which inherits the parent's 
strategy, possibly altered by mutations.

There is a small chance that the action is altered by mistake. When 
the memory of the rules has evolved to a longer size, agents remember 
their own past strategies as well as their opponents’ past strategies, which 
corresponds to the memory size of the rules. If the memory has evolved 
to a greater length, more complicated rules are developed. We can easily 
observe open-ended evolution with the increase in the memory size in 
the simulations. If there exist rules of the effective memory size that 
realize an efficient equilibrium, then the simulation cannot be invaded by 
any agents with longer memory size.

9.3 A Strategy Choice with a Coupling Rule

The literature on learning in the game theory is mainly concerned with 
the understanding of learning procedures that if adopted by interacting 
agents will converge in the end to the Nash equilibrium of the underlying 
game. The main concern is to show that adaptive dynamics lead to a 
rational behavior, as prescribed by a Nash equilibrium strategy. The 
learning algorithms themselves are not required to satisfy any rationality 
requirement. Instead, they converge to a rational behavior if it is adopted 
by all agents. Another basic research agenda is to explore non
equilibrium explanations of equilibrium in repeated games to view 
equilibrium as the long-run outcome of a dynamic learning process.

Many learning models have been proposed, such as best-response 
learning dynamics as individual payoff improving. However, it is 
difficult to formulate learning dynamics that guarantee convergence to 
Nash equilibrium. We call a dynamical system uncoupled if an agent’s 
learning model does not depend on the payoff functions of the other 
agents. Hart (2003) proved that there are no uncoupled dynamics that are 
guaranteed to converge to Nash equilibrium. Therefore, a coupling 
between agents, that is, the adjustment of an agent's strategy depends on
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the payoff functions of the other agent, is a basic condition for 
convergence to Nash equilibrium.

In addition, Nash equilibrium cannot make precise predictions about 
the outcome of repeated games. Nor can it tell us much about the 
dynamics by which a collective of agents moves from an inefficient 
equilibrium to a better outcome. These limitations, along with concerns 
about the cognitive demands of forward-looking rationality, have 
motivated many researchers to explore alternatives backward-looking 
learning models. Most of these efforts have been invested in evolutionary 
dynamics.

In this section, we will take a different approach by focusing on 
collective evolution of coupled rules. This approach differs from the 
common use of the genetic algorithm, in which the goal is to optimize a 
fixed fitness function. In the genetic algorithm, the focus is also on the 
best final result or on a good solution. In collective evolution, we are 
interested in better coupling among agents, which leads to desirable joint 
actions.

The first question we must address is what individuals know and what 
it is that they are learning about. In repeated games, agents repeatedly 
play an underlying game, each time observing their payoff and other 
agents’ strategies. In the classic work on learning in game theory, the 
agents select their strategy in the next iteration of the game based on the 
result of the previous play using some updating rule. In the repeated 
model, agents engage in a series of games with different rules at each 
stage. In fact, the nature of each game depends on the results of the 
pervious game, and this means the strategy choice depends on agents’ 
joint action in the previous rounds of games.

An important aspect of iterated games is the introduction of a 
coupling rule by which an agent can decide her strategy. We will shift 
attention to coupling dynamics with coupling rules. We make a 
distinction between adaptive or evolutionary dynamics and coupling 
dynamics. In an adaptive dynamics, other mechanisms are allowed as 
well, e.g., modifications of strategies based on the strategy distribution of 
the population. But, such adaptive dynamics do not necessarily improve 
the outcome to which the individual belongs in the long run. 
Evolutionary dynamics, on the other hand, refer to the systems based on
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the basic mechanisms of biological evolution, that allows, inheritance, 
mutation, and selection. However, as we observed in Chapter 2, 
evolutionary dynamics based on natural selection also converge to an 
inefficient outcome. Coupling dynamics differ, in this sense, from 
evolutionary dynamics, in which a fixed goal is used in the fitness 
function and where there is no coupling between agents.

The essence of various social interactions among agents can be 
modeled by the underlying games describing pair-wise interactions 
between agents with two strategies to choose from. Depending on their 
joint choices, they obtain a certain payoff. Therefore, a better method of 
coupling between agents may be key in improving an outcome. In the 
models we discuss here, an agent is locally coupled to her neighbor. The 
success or failure for a certain behavioral rule depends on how agents are 
coupled each other.

We consider the prisoner’s dilemma game as an illustration. Each 
agent has a coupling rule to decide the action in the next game based on 
the joint actions in previous round. That is, a strategy choice for repeated 
games uses the memory of the previous rounds to choose one of the two 
strategies for the next play.

Let assume that each agent remembers the past h  outcomes. At time t, 
therefore the history would be the outcomes at t-h , t-h + 1 , . . . ,  t -1 . A 
coupling rule must specify, for each history, what strategy the agent 
should choose. A quick calculation shows that the number of possible 
coupling rules with the outcome of only the previous round (the memory 
of m =2) is 24 and with the previous two rounds (the memory of m =4) is 
216. Therefore, with the increase of the memories of the past rounds, 
there are a huge number of coupling rules. The hope is that agents would 
find a better coupling rule out of the overwhelming number of possible 
rules after a reasonable number of repeated games.

We assume that each agent has a coupling rule for a memory of two, 
which means that the outcome of the previous move is used to make the 
next choice. Each coupling rule is represented as a binary string so that 
genetic operators can be applied. We represent Si (Cooperate) by 0 and 
S2 (Defect) by 1. In Table 9.1, we show all possible coupling rules for the 
memory of two. There arc four possible outcomes for each move 
between two agcnls: (S|,S|)-(0. 0), (S1, S2)=(0, 1), (S2. S|)=(1, 0), and (S2,
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S2)=(l, 1). Each coupling rule specifies the strategy choice based on the 
outcome of the previous round. Agent strategies are restricted to those 
employing only the previous move with the other agent to determine the 
next choice.

As discussed in the previous section, the well-known rules are: ALL- 
C= “0000”, ALL-D=”1111”, TFT=”0101” and PAVLOV=”0110”. These 
are the rules with no probabilistic strategy choice. The main difference 
between PAVLOV and TFT is the value of p 4. While both strategies 
cooperate with each other, PAVLOV readily exploits unconditional 
cooperators, but is more heavily exploited by unconditional defectors.

Nowak et al (1992), and Grim (1995) also worked on the spatial IPD 
by considering stochastic strategies that depend only on the last play. 
Such strategies are referred to as Markov strategies. This rule is defined 
by the four probabilities (ph p 2, рз, p 4) given the outcome of the previous 
round, which is also shown in Table 9.1.

In populations of such Markov strategies, in which interactions 
between individuals are in the form of an IPD, they examined how 
spatial structure influences the evolution of cooperation and what impact 
it has on the evolutionary dynamics. Comparing the spatial model with a 
randomly mixed model, they also showed that, PAVLOV and generous 
variants thereof are very successful strategies in the stochastic 
environment, where agents sometimes make mistakes in implementing 
rules.

Table 9.1 Some well-known rules for strategy choices in the IPD 

(p i, i= l, 2, 3 and 4 represent the probability of choosing S2)

Previous strategy Rules of strategy choices

Own Opponent ALL-C ALL-C TFT PAVLOV MARKOV

0 0 0 1 0 0 Pi

0 1 0 1 1 1 P2

1 0 0 1 0 1 Рз

1 1 0 1 1 0 P4
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We now consider a leamable behavioral rule. Although the coupling 
rules in Table 9.1 are fully specified before interactions start, instead we 
consider that agents can learn each content of the rule. They learn which 
strategy they have to choose for each of the four different outcomes that 
can arise in the iterated game. Specifically, each agent has a leamable 
coupling mle, as shown in Table 9.2, in which the # symbol represents 
either 0 or 1.

We can fully describe a coupling rule of a deterministic strategy 
choice by recording what the strategy will do in each of the four different 
outcomes that can arise in the underlying game. There are 24=16 possible 
coupling rules, as shown in Figure 9.3. We investigate what types of 
coupling rales are generated and spread out the population through the 
iteration of the underlying games.

An agent having an internal model with a 7-bit string, as shown in 
Figure 9.4, constitutes the coupling rule with the memory size, m=2. At 
each generation, agents repeatedly play the underlying game for T  
rounds. One generation corresponds to the repetition of a game for T 
rounds.

Each coupling rale is represented by bit-strings in Figure 9.4. Each 
position of a binary string represents the following strategy. The first 
position encodes the strategy that an agent takes at each generation. 
Since no memory exists at the start, an extra bit is needed to specify a 
hypothetical history. A position j ,  je . [2,3], encodes the memory that an 
agent and her opponent choose at the previous round. The strategy site j ,  
jG  [4...7], encodes the coupling rule in Table 9.2, which specifies the 
strategy choice corresponding to the memories stored at the site j e  [2,3].

Table 9.2 A leamable coupling rule (# represents 0 or 1)

Strategy site in 
Figure 9.4

Previous strategies Next strategy
Own Opp

4 0 0 #
5 0 1 #
6 1 0 #
7 1 1 #
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The first process that comes to mind for behavioral rule generation is 
to carry out a kind of random trial-and-error, making limited random 
changes in the rules that are already in place. However, the process of 
population-based search with random variation and selection is often 
insufficient to create desirable rules of interest. Selection is required 
because without the fitness criterion and a procedure for eliminating poor 
solutions, the search would degenerate into a purely random walk. In 
genetics an interaction called crossover causes the characteristics of the 
parents to appear in new combinations in the offspring. Crossover is the 
mechanism that breeders exploit when they crossbreed superior 
behavioral rules. This recombination of set of alleles is most interesting 
from the point of view of rule discovery.

The crossover operator is used to evolve coupling rules. The average 
payoff per generation (per T  iterations of the underlying game) is 
calculated, and this determines which agents succeed. Each agent 
compares her average payoff with those of all agents who interact. 
Unsuccessful agents will replace part of their poor coupling rule as 
follows: half of the coupling rule in Figure 9.4 (including the first 
strategy site representing the initial strategy choice) is replaced with the 
rule of the most successful neighbor who gains the highest average 
payoff.

Agents mimic their most successful neighbor to improve their 
coupling rule. Their success depends in large part on how well they learn 
from their neighbors. If an agent gains a better payoff than her neighbor, 
there is a chance that her coupling rule will be imitated by others. In the 
collective evolution approach, there is no need to assume a rational 
calculation to identify the effective rule. Instead, analysis of what is 
chosen at any specific time is based on an implementation of the idea 
that effective rules are more likely to be retained than ineffective rules.

Moreover, collective evolution allows the introduction of a new rule 
as occasional random mutations of old rules. It could be that the more 
successful agents are more likely to survive and reproduce effective 
coupling rules. A second interpretation is that agents learn by trial and 
error, keeping effective rules and altering rules that give a low payoff. A 
third interpretation is that agents observe each other, and those with poor 
performance tend to imitate the rules of those that they see doing better.
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Type 1 : 0 0 0 0  (ALL-C)
Type 2: 1 0 0 0
Type 3: 0 1 0 0
Type 4: 1 1 0 0
Type 5 : 0 0 1 0
Type 6: 1 0 1 0
Type 7 : 0 1 1 0  (PAVLOV)
Type 8: 1 1 1 0

Type 9: 0 0 0 1 
Type 10: 1 0 0 1 
Type 11: 0 1 0 1 (TFT)
Type 12: 1 1 0 1
Type 13: 0 0  1 1
Type 14: 1 0 1 1
Type 15: 0 1 1 1 (FRIEDMAN)
Type 16: 1 1 1 1 (ALL-D)

Figure 9.3 All possible coupling rules with the memory size of m=2

1 2 3 4 5 6 7

*- First own strategy
Memory of his ton,' of one 

*- Strategy site

Figure 9.4 A coupling rule with the memory size of m=2
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9.4 Iterated Prisoner’s Dilemma Games on Social Networks

The IPD has become the standard model for the study of the evolution of 
cooperative behavior within a population of self-interested agents. We 
have observed that cooperation in the prisoners’ dilemma game can 
survive if agents in a population locally interact with each other and 
adaptation is driven by the imitation of the most successful neighbor. The 
crucial effect of local interaction in this model is that it allows 
cooperative agents to cluster together. Since the positive externalities 
from cooperation are locally restricted, local interaction reduces the 
possibility for defectors to exploit cooperators. As a consequence, 
cooperators that are surrounded by other cooperators can earn higher 
payoffs than defectors who are primarily surrounded by other defectors. 
Together with the imitation of successful agents this gives cooperators a 
chance to survive.

However, suppose that every agent comes to use the same strategy. Is 
there any reason for some agent to use a different strategy, or would the 
native strategy remain the choice of all? We will investigate this issue by 
considering a population of agents who play the underlying game based 
on a coupling rule.

An agent with a new rule is said to be able to invade the population if 
she can get a higher payoff than agents with the native rule. In this case a 
new rule is said to invade a native rule. Axelrod defines such a rule to be 
collectively stable if no other rule can invade it. This concept is basically 
the same as the evolutionary stable strategy (ESS). The motivation 
behind applying collectively stability to the analysis is to discover which 
kinds of rules can be sustained in the face of any possible alternative 
rule. If everyone is using a native rule and some other rule gives a better 
payoff, then some agents are sure to find this better rule sooner or later. 
Thus, only a rule that cannot be invaded can maintain the population as 
the rule used by many agents.

A typical example of a collectively stable rule is TFT. A population 
of agents using TFT will cooperate with each other, and each will get the 
payoff at Pareto efficiency every iteration. If another rule is to invade 
this population, it must offer a higher expected payoff. However, no such 
rule exists, and therefore TFT is collectively stable. Any rule is defined
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to be nice if it starts to cooperate. Nice rules are also collectively stable. 
On the other hand, ALL-D is also collectively stable. If all other agents 
defect, then there is no point for any agent to cooperate.

As we discussed in Section 9.2, the introduction of spatial 
interactions leads to the development of spatial games in which agents 
are located in the nodes of a fixed network of interaction. For example, 
in Axelrod's work (1984), it was found that the most successful rule in 
spatial populations was a rule that ranked only 31st of 62 in his round 
robin tournament.

A more ambitious objective is to find a learning procedure that will 
enable the agents to obtain the Pareto efficient payoff. We say that a set 
of rules is Pareto efficient if the total payoff for all agents is maximized. 
It is easy to see that there is no general way to guarantee that agents will 
learn such an efficient rule.

We arrange agents for a 20 x 20 area (N = 400 agents) with the 
lattice model shown in Figure 9.1 with no gaps, and the four comers and 
sides of the area connect to the opposite sides. All agents of the 20x20 
lattice play the dilemma games in Table 9.3 against their eight neighbors. 
They repeat interaction for a certain number of rounds (T=20), defined as 
one generation, based on leamable coupling rules. The payoffs of the 
repeated game are summed and the average payoff per generation 
provides the individual’s score. The strategy choice for each agent is 
driven by a coupling rule that improves over several generations.

In the beginning, 400 agents have different coupling rules, which are 
randomly generated by specifying the values of # in Table 9.2. A part of

Table 9.3 Payoff matrix of the underlying dilemma game
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the coupling rule is replaced with the rule of the highest scoring agent 
among her eight neighbors (crossover). Since no memory exists at the 
start, one extra bit is needed in order to specify the initial strategy to 
start the game at each generation.

We consider two cases to specify the initial strategy:
(1) The initial strategy is chosen randomly.
(2) The initial strategy of the most successful neighbor is mimicked. 

(Case 1) The initial strategy used to p lay the game is chosen randomly

In this case, the average payoff per agent was approximately 1.8, and 
both the cooperative and defect strategies coexist by making clusters. 
However, the coupling rules learned by all 400 agents were aggregated 
into two types, “1011” and “0011”, as shown in Table 9.4(a). 
Approximately 60% of the learned rules were 1011, which is an All-D- 
like rule, and the remaining 40% of the learned rules were “0011”, which 
is a TFT-like rule.

(Case 2) The initial strategy used to p lay the game is copied from  the 
most successful neighbor

Figure 9.5(a) shows the average payoff per agent over generations. The 
average payoff was increased to 2.87. Initially both agents who defect 
and agents who cooperate were present. However, this situation quickly 
disappeared and the ratio of agents who choose the cooperative strategy 
increased and the population obtained higher payoffs by exhibiting a 
cooperative population.

In the beginning, most agents have different coupling rules, however, 
the coupling rules learned by all 400 agents were aggregated into two 
types, “0111” and “0101”, as shown in Table 9.4(b). Approximately 97% 
of agents learned the coupling rule of 0111. The rest of the agents (3%) 
learned the rule of “0101”, which is TFT.

There are a couple of important differences between Case 1 and Case 
2. It is actually easier for cooperation to evolve if agents also mimic the 
initial strategy to invoke the game of each generation from the most 
successful neighbor. As a result, the coupling rule to sustain the
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cooperative outcome is realized after a few generations. As shown in 
Table 9.4(b), all agents learned to start to play with 0 (cooperate) at each 
generation, and the cooperation is clearly more stable in this case.

The coupling rule 0111, which is learned by most agents can be 
interpreted as follows. If both agents decide to cooperate, then they 
cooperate. However, if one of the agents defects, then the other agent 
defects as well. This rule of the strategy choice is similar to FRIEDMAN 
and TFT in Axelrod’s tournament (1980). FRIEDMAN is a totally 
unforgiving rule that employs permanent retaliation. It is never the first 
to defect, but once the other agent defects even once, FRIEDMAN 
defects from then on. In contrast, the learned rule “0111” is unforgiving 
for one generation, but thereafter is forgiving of that defection, since the 
agent starts over with cooperate at the next generation.

TFT is unforgiving for only one move, but thereafter is forgiving of 
that defection. TFT is also characterized as reciprocity, since if one agent 
defects and the other cooperates, then the first agent cooperates during 
the next round and never tries to exploit agent the other again, even if she 
wins the game. On the other hand, rule “0111” exploits the other agent if 
it brings a higher payoff.

Here, evolutionary dynamics refer to the movement of the population 
average in the four-dimensional coupling rule space as shown in Table 
9.2. The proportion of each rule in the population may be changed by 
crossover, and fitter rules increase their share in the population. The 
game between two agents with a coupling rule becomes a kind of the 
stochastic process on a finite automaton representing the state diagram of 
the outcomes. This game automaton has as its internal states, the pairs of 
possible internal states for the two agents, and the transitions are 
determined as the phase diagram of the two coupling rules.

The game between two coupling rules with finite memory can be 
described as a stationary stochastic process. The state transition of the 
outcomes when both agents choose their strategies according to the 
learned coupling rule is illustrated in Figure 9.6 as a state transition 
diagram. The outcomes “00” and “11” are perfect absorbing states. Once 
the process enters such a state, it tends to stay there, unless occasional 
randomness creates noise in the system. Since each agent also learns to
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cooperate in the first round of each generation, as shown in Table 9.4(b), 
they remain at the absorbing state at “00”.

2.87

(a) Repeated games on the fixed local network: each agent interacts with eight fixed neighbors

Payoff Average

Generation

(b) Repeated games on the small-world network 

Figure 9.5 Payoffs per agent in iterated prisoner’s dilemma games
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(Case 3) Iterated games on the small-world network: the initial strategy 
mimics the highest scoring agent among previous partners

We also compare and identify the effect the method of interaction 
by considering the topology of a small-world network. The locally 
networked agents will be compared to half-mixed populations, which are 
again modeled by a lattice, but on which each agent interacts with four 
partners that are nearest neighbors and four partners that are randomly 
chosen on the lattice, as shown in Figure 9.2. Figure 9.5(b) shows the 
result of the small-world network. There is an important difference 
between this graph and the graph obtained using the fixed local

Table 9.4 Coupling rules learned by 400 agents (prisoner’s dilemma games) 

(a) Fixed local network (initial strategy: random)

Rule type
Initial

strategy Strategy site Number of 
agents1 4 5 6 7

14 Oor 1 1 0 1 1 330

13 0 or 1 0 0 1 1 70

(b) Fixed local network (initial strategy: mimicry)

Rule type
Initial

strategy Strategy site Number of 
agents1 4 5 6 7

15 0 0 1 1 1 389

11 0 0 1 0 1 11

(c) Small-world network (initial strategy: mimicry)

Rule type
Initial

strategy Strategy site Number of 
agents1 4 5 6 7

15 0 0 1 1 1 400



270 Adaptation and Evolution in Collective Systems

Figure 9.6 State transitions of two agents who play with the coupling rule of “0111”

network (Figure 9.5(a)). Figure 9.5(b) shows that it is actually easier for 
cooperation to evolve in the small-world network environment.

As a result, all agents gain the same efficient payoff 3. The 
cooperative strategy could be realized after a few generations, as shown 
in Figure 9.5(b). The cooperation is clearly more stable in the small- 
network environment compared with the fixed local network 
environment. In the beginning, each agent has a different coupling rule. 
The rules learned by 400 agents were aggregated into only one type 
“0111”, as shown in Table 9.4(c).

The scope of sustainable cooperation is dependent on how agents 
interact. If they interact locally in a fixed lattice network, then two types 
of rules can coexist. The introduction of a small-world network, so that 
individuals interact with those in their neighborhood as well as with new 
partners who may not have met before, affects the collective dynamics in 
various ways. The possibility of space-temporal structures may allow for 
global stability, where the local interaction model would allow two 
behavioral rules coexist.

In particular, we observed the following effects of the spatial and 
small-world spatial structure in the IPD played with coupling rules.

(1) Small-world network structure greatly facilitates the evolution 
of cooperative behavior. There is more cooperation in a structured
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population with a small-world network and cooperation evolves much 
faster.

(2) In the small-world network, a qualitatively different coupling rule, 
compared to the populations in the spatial context, evolves. Clustering, 
as it occurs in the fixed local network, is a very strong reason for the 
survival of the cooperative strategy. However, it permits the coexistence 
of two rules. On the other hand, the small-world structure has a strong 
stabilizing effect on collective evolution toward the most desirable 
outcome by spreading out the unique sustainable rule.

The problem with All-C is that it provides an incentive for the agents 
to defect. Unconditional cooperation places a burden on the rest of the 
agents. On the other hand, TFT promotes the mutual interest of all agents 
rather exploit the weaknesses of some agents. A better strategy would be 
based on reciprocity but it is a bit more forgiving than TFT. Generous tit- 
for-tat (GTFT), which repays cooperation with a probability of 
cooperation but forgives defection with some probability is successful in 
a stochastic environment where agents make some mistakes when 
implementing their strategy.

TFT does well by promoting the mutual interest of all agents rather 
than exploiting some agents and requires agents to help others as well as 
themselves by making it difficult for inferior strategies to survive. In 
addition, agents must help themselves no more than they help others. 
Therefore, TFT has the self-policing feature and gives agents an extra 
incentive to interact with other agents. TFT can teach reciprocity to other 
agents so that they can build a mutually beneficial relationship. However, 
the problem of TFT is that once a mutual defect is started, it can continue 
indefinitely. The other problem of TFT is that in the case in which TFT 
plays itself and an agent mistakenly defects, mutual cooperation cannot 
be recovered because one of the two agents will always defect.

Doebeli, Hauert and Killingback (2004) compared the spatial model 
with a randomly mixed model. They combined the IPD and spatial 
structure in a more stochastic model in which agents interact with only 
their neighbors and new randomly mutated strategies can appear at any 
time. They showed that RETALIATOR (the same as FRIEDMAN) 
occurs most frequently in non-spatial populations. FRIENDMAN
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cooperates only if both players mutually cooperate in the previous round. 
Therefore, FRIENDMAN is very resistant to exploitation by mutual 
defectors like ALL-D, but at the same time, FRIENDMAN is also very 
vulnerable to stochastic errors, because it has no means to reestablish 
cooperation once it accidentally defects.

Among spatial structures with some noise, PAVLOV is known as 
the most successful. One very clear advantage of PAVLOV over 
FRIENDMAN, for example, is its ability to return to mutual cooperation 
with other individuals playing the same strategy, after an occasional 
mistake leads to a defection. This feature is very important in the 
stochastic world, where occasional errors occur.

Lindgren (1997) investigated evolutionary dynamics based on the 
IPD with a more general set of rules by changing the memory size. They 
demonstrated various evolutionary phenomena by studying the behavior 
in two completely different worlds: the mean-field model (all interact 
with all) and the local interaction model. The average payoff for each 
agent is calculated, and this determines which agents are allowed to 
reproduce offspring in the next generation. The offspring inherits the 
parent's strategy, possibly altered by mutations to be described below in 
detail for the different models. The successful rules that evolve are 
basically more sophisticated versions of PAVLOV, which returns to 
cooperation only after a series of two mutual defections or when mutual 
defection follows mutual cooperation.

The learned coupling rule “0111” in collective evolution in the 
framework of this chapter is similar to FRIEDMAN. In the framework of 
the proposed model, the agents reevaluate their rules after repeated play 
for one generation, and the agents then cooperate in playing the game. 
Therefore, the learned rule of “0111” is unforgiving within one 
generation, but thereafter is forgiving of the defection since the rules start 
with cooperate at the next generation.

Fowler et al. (2005) also suggested that egalitarian motives are more 
important than motives for punishing non-cooperative behavior. They 
also argued that the desire to reduce inequality may motivate cooperators 
who altruistically punish defectors. This finding is consistent with 
evidence that humans may have an incentive to punish the highest 
earners in order to promote equality, rather than cooperation. The
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evolutionary history of humans suggests that egalitarianism shaped many 
human cultures and that egalitarian motives may, therefore, be a 
powerful force behind the punishment of defectors.

A number of questions, such as why so many different successful 
rules are discovered in the context of the same IPD and whether there are 
any better alternatives than have been already discovered, remain to be 
answered. In most previous research, agents behave like automata with 
pre-specified rules. The only way that agents modify their pre-specified 
rules are by mutation. If a mutation occurs, which happens at a small 
mutation rate, the rule of an agent is replaced with a new rule chosen 
randomly from the entire rule space.

One can imagine how a collection of self-interested agents with 
learning models might collectively evolve. However, in principle one 
could fold this evolutionary element into meta-leaming that includes 
both short-term learning and long-term evolution. We emphasize the 
effect of learning a behavioral rule rather than a strategy. We also 
emphasize the effect of leamable behavioral rules rather than fixed 
behavioral rules.

Fortunately, there are never as many different coupling rules in a 
population as there are agents, because most agents mimic the most 
successful rule from their neighbors. However, it is doubtful whether 
agents succeed in exploring a superior rule and spread it to the entire 
population when inferior rules such as All-D are easy to exploit.

In the context of collective evolution, agents, initially endowed with 
randomly chosen rules, jointly improve their rules by exchanging part of 
their rules with the most successful neighbor. We showed that mutual 
cooperation in the prisoner’s dilemma game is sustained if the strategy 
choice is driven by a coupling rule, which is also jointly improved.

The crucial effect of the local interaction model is that it allows 
cooperative strategies to cluster together. However, this clustering also 
helps to retain defects. Since cooperative behavior is exploited by 
defection, it cannot invade the cluster of defection. On the other hand, 
small-world networks solve the weakness of the local network, and a 
superior rule that sustains mutual cooperation is discovered and spreads 
to the entire population.
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What is the motive for cooperation? What in society makes us help or 
support each other? As discussed in the previous chapter, there are two 
contradictory views in answer to the basic question of why we should 
cooperate or be kind to others. One is idea of cooperation in expectation 
of returns (selfish interpretation). The latter point is that those who are 
kind to others are sure to be rewarded. The other is the idea of sympathy 
(altruistic interpretation).

Social norms are self-enforcing patterns of social behavior. It is in 
everyone’s interests to conform given the expectation that others are 
going to conform. Many spheres of social interactions are governed by 
social norms such as reciprocity. We can likely understand now that 
harmony in a society is based on the balance between selfish and 
altruistic motivations. The desired outcome is a condition in which there 
is a perfect balance in the society.

9.5 Iterated Coordination Games on Social Networks

In this section, we consider cases in which pair-wise interaction between 
agents is formulated as a coordination game. The coordination game with 
the payoff matrix in Table 9.5 has two strict Nash equilibria, ( S l , S ,) 
and ( S 2 ,S 2 ), and one mixed strategy equilibrium. The most preferable 
Pareto-efficient equilibrium is ( S, , 5, ), which dominates the other 
equilibria. There is another equilibrium solution, risk- dominance, in 
which ( ^2 , ^2 ) risk-dominates ( ). How do agents choose their 
strategy when Pareto-efficient equilibrium and risk-dominant equilibrium 
are different?

Table 9.5 Payoff matrix of the underlying game: coordination game
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(Case 1) The initial strategy of each generation is chosen randomly

The average payoff per agent was approximately 0.3, which is far from 
the Pareto-efficiency, in which all agents could gain 1. The coupling 
rules learned by 400 agents were aggregated into only type, “0111”, 
which is interpreted as follows. If agent A chooses the Pareto-efficient 
strategy Si (0), then agent В also chooses Si (0), and if agent A chooses 
risk-dominant strategy S2 (1), then agent В also chooses the same risk- 
dominant strategy 52 (1).

(Case 2) The initial strategy of each generation mimics the highest 
scoring agent among her neighbors.

Figure 9.7(a) shows the average generation payoff per agent. After a few 
generations the average payoff was increased to 1. Initially there were 
two types of agents: agents who gained a high payoff of 1 and agents 
who gained a lower payoff below 1. However, this changed quickly, and 
the ratio of agents who choose the Pareto-efficient strategy increased and 
the entire population obtained the same payoff at Pareto-efficiency. In 
the beginning, each agent had different behavioral rules that were chosen 
randomly. The coupling rules learned by all 400 agents were aggregated 
into two types, “0111” and “0101”, as shown in Table 9.6. 
Approximately 90% of the agents learned behavioral rule “0111”, and 
the remaining 10% of the agents learned rule “0101”.

Most agents learned the same coupling rules in both Case 1 and Case
2. However, the average payoffs per agent of are quite different for each 
case, which reflects the difference in strategy at the beginning of each 
generation.

(Case 3) Iterated games on a small-world network: the initial strategy 
mimics the highest scoring agent among her neighbors.
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Figure 9.7(b) shows the same experiment in a small-world network 
framework. The coupling rules learned by all 400 agents were 
aggregated into only one type, “0111”, as shown in Table 9.6(c). There 
are a couple of important differences in this graph and the graph obtained 
using the fixed spatial environment (Figure 9.7(a)). Figure 9.7(b) shows 
that it is easier for the Pareto-efficient strategy to evolve in a small-world 
network environment. As a result, the rule that sustains the Pareto- 
efficient outcome could be spread out more quickly in a small-world 
network environment.

The game between two coupling rules with finite memory can be also 
described as a stationary stochastic process. The state transition of the 
outcomes when both agents decide their strategies according to the 
learned coupling rule is illustrated in Figure 9.8 as the state transition 
diagram. Outcomes “00” and “11” are perfect absorbing states. Once the 
process enters such a state, it tends to stay there, unless occasional 
randomness creates noise in the system. Since each agent also learns to 
start the game by choosing the Pareto-efficient strategy Si(0), at each 
generation, they remain in the absorbing state “00”. However, in Case 1, 
in which all agents choose their first strategy randomly, there are two 
types of clustering in the population. Clusters of agents who always play 
the Pareto-efficient strategy Si(0), and clusters of agents who always 
play the risk-dominant strategy S2(l), result in a lower average payoff.

max

rrun

20 30
Qtntration

(a) Fixed local networks 

Figure 9.7 Average payoff per agent in iterated coordination games
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Table 9.6 Coupling rules learned by 400 agents in coordination games

(a) Fixed local network (initial strategy: random)

Rule type
Initial

strategy Strategy site Number of

1 4 5 6 7 agents

15 Oor 1 0 1 1 1 400

(b) Fixed local network (initial strategy: mimicry)

Rule type
Initial

strategy Strategy site Number of 
agents1 4 5 6 7

15 0 0 1 1 1 361

11 0 0 1 0 1 39

(c) Small-world network (initial strategy: mimicry)

Rule type
Initial

strategy Strategy site Number of 
agents1 4 5 6 7

15 0 0 1 1 1 400

277

Figure 9.8 State transitions of two agents who play with the coupling rule of “0111 ”
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9.6 Iterated Hawk-Dove Games on Social Networks

In this section, we consider social interaction in which a pair-wise 
interaction between agents is formulated as a hawk-dove game with the 
payoff matrix in Table 9.7. In this game, there is the unique symmetric 
Nash equilibrium in mixed strategies with this game: both agents use the 
strategy Sj (hawk) with probability #=5/6 and the strategy S2 (dove) with 
probability 1-p =1/6. At the mixed strategy equilibrium, the expected 
payoff is 5/6. If each agent chooses strategy S2 (dove), (not equilibrium) 
each agent can receive 5. This implies that the mixed-strategy results in 
inefficient equilibrium. Evolutionary dynamics based on natural selection 
also selects this mixed Nash equilibrium.

It was found that if the hawk-dove game is played in spatially 
structured populations, there are more cooperative individuals (dove) 
than in non-structured populations (Killingback and Doebeli,1996). The 
main effect of spatial structure is that, in structured populations, the dove 
strategy can build clusters in which the benefits of mutual doves 
outweigh losses with respect to hawks. Thus, clusters of doves can 
invade populations of hawks that constitute an ESS in non-spatial 
populations.

As discussed in the previous section, we also consider the following 
two cases:

(1) The initial strategy is randomly chosen.
(2) The initial strategy of an agent mimics the highest scoring agent 

among her neighbors.

Table 9.7 Payoff matrix of the underlying game: hawk-dove game

Strategy of the 
other agent

Own strategy

s,
(Hawk)

S2
(Dove)

-1 0

(Hawk) -1 10
10 5

S2
(Dove) 0 5
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(Case 1) The initial strategy o f each generation is randomly chosen.

The average payoff per agent was approximately 0.7, which is far from 
the Pareto-efficiency of 5. The coupling rules learned by 400 agents were 
aggregated into two types, “1011” and “0010”, as shown in Table 9.8(a). 
Approximately 60% of the agents learned “1011” and the remaining 40% 
of the agents learned “0010”.

(Case 2) The initial strategy o f each generation mimics the highest 
scoring agent among her neighbors.

Figure 9.9(b) shows the average generational payoff per agent. After a 
few generations, the average payoff was increased to 5. Initially there are 
agents who gain high payoffs and agents who gain low payoffs. However, 
this changed quickly, and the ratio of agents who chose the dove strategy 
increased, and the entire population came to obtain the same payoff.

Table 9.8 shows the rules learned by 400 agents, which are 
aggregated into three types. After a few generations, 400 different rules 

[ were aggregated into three types. The learned coupling rules in Table 9.8 
have the form of “##01”, where # represents either 0 or 1. This type of 

[ coupling rule can be interpreted as follows. If both agents decide to 
choose the dove strategy, then they choose the dove strategy. However, if 
one of the agents decides to choose the hawk strategy, then the other 
agent chooses the hawk strategy as well.

The state transition of the outcomes when both agents choose their 
strategies according to the learned coupling rule “0001”is illustrated in 
Figure 9.10 as a state transition diagram. The outcomes “00” and “11” 
are perfect absorbing states. Once the process enters such a state, it tends 
to stay there, unless occasional randomness creates noise in the system. 
Since each agent also learned a rule to choose the dove strategy (1), at 
the first play of each generation, as shown in Table 9.8, the agents 
remain in the absorbing state at "11".

The outcome “11” is both equitable and efficient; however, it is not 
Nash equilibrium. The implication being that, while there is one 
desirable outcome, it may be difficult for decentralized agents to reach
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this equitable and efficient outcome if they learn their best-response 
strategies rather than the coupling rules.

(Case 3) Iterated games on a small-world network: the initial strategy 
mimics the highest scoring agent.

Figure 9.9(b) shows the same experiment on a small-world network 
framework. The coupling rules learned by 400 agents were aggregated 
into only one type, "0001", as shown in Table 9.8(c). There are a couple 
of important differences between the small-world environment (Figure

Table 9.8 Coupling rules learned by 400 agents in hawk-dove game

(a) Fixed local networks (initial strategy: random)

Rule type
Initial

strategy Strategy site Number of 
agents

1 4 5 6 7

14 0 or 1 1 0 1 1 220

5 0 or 1 0 0 1 0 80

(b) Fixed local networks (initial strategy: mimicry)

Rule type
Initial

strategy Strategy site Number of 
agents

1 4 5 6 7

9 1 0 0 0 1 320

10 1 1 0 0 1 76

11 1 0 1 0 1 4

(c) Small-world network (initial strategy: random)

Rule type
Initial

strategy Strategy site Number of 
agents

1 4 5 6 7

9 1 0 0 0 1 400
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Payoff Average

(a) Repeated games on fixed local networks: each agent interacts with eight fixed neighbors

P ayo ff A ve rage

(b) Repeated games on small-world networks

Figure 9.9 Average payoff per agent in iterated hawk-dove games
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9.9(b)) and the spatial environment (Figure 9.9(a)). Figure 9.9(b) shows 
that it is easier for all agents co-evolve to share the same coupling rule in 
a small-world network environment. As a result, the unique coupling rule 
“0001” was able to spread more quickly in a small-world network 
environment.

Figure 9.10 State transitions of two agents who play with the coupling rule of “0001”

9.7 Sustainable Coupling Rules

Most game theory models deal with specific social interactions between 
individuals who adapt their behavior (strategy) in order to maximize their 
gains within the prescribed underlying game. The situation changes 
abruptly when games are repeated and agents behave based on past 
experiences and choose their strategy depending on past outcomes.

We find that the structure of the underlying payoff matrix determines 
which equilibrium is played, independently of the specific payoff. This 
contrasts with the play of games between individuals, where payoffs play 
an important role in determining equilibrium.

There is no doubt that people learn from past successful and 
unsuccessful attempts to improve their behaviors. Most learning models 
apply when agents learn or adapt based on losses or gains. On the other 
hand, meta-learning applies to improving behavioral rules.

Г
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In particular, we focus on the coupling rules that provide the guidance 
to choose their strategy. This means that agents attempt to realize a better 
outcome for both agents rather than to get a good payoff. We have 
studied the dynamics of an ensemble of locally coupled agents that 
attempts to drive the collective system from an incoherent behavior to a 
desirable behavior.

Agents constantly improve their behavioral rules. Thus, an important 
requirement for an efficient behavioral rule is that it should be robust. 
That is, it may not to be replaced by other rules. Significantly, if a rule 
achieves Pareto-efficiency, then it is robust. Therefore, we can conclude 
that sustainable behavioral rules are also robust.

In this section, we develop the definition of a sustainable coupling 
rule that serves to secure sustainable relationships among agents in an 
attainable manner. The coupling rule specifies the strategy choice at each 
play of the underlying game. After playing the games several times, 
which is defined as one generation, they review their current rules and 
update their incumbent rule with the new rule if their average payoff is 
poor compared with their neighbors. This character of collective 
evolution may allow for the possibility of escalating the conventional co- 
evolutionary path with no end. That is, agents might continually adapt to 
each other in more and more specialized ways, never stabilizing at a 
desirable behavioral rule.

We define a set of behavioral rules to be efficient if the total payoff 
for both agents is maximized when they follow these rules when 
choosing a strategy for each iterated game. An ambitious objective is 
then to find a learning procedure that will enable the agents to obtain 
such efficient rules, then the mission of collective evolution is to harness 
the collective systems in which interacting agents attempt to explore a 
better behavioral rule.

We also define a set of coupling rules to be sustainable if they are not 
to be replaced by other rules. In this case, the payoffs to both agents 
should be maximized and equitable when the agents follow these 
sustainable coupling rules in choosing their strategy. An ambitious 
objective of collective evolution is also to find a learning procedure that 
will enable the interacting agents to obtain such sustainable coupling 
rules through repeated play of the underlying games.
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We consider the case in which a collection of agents plays a given 
underlying 2x2 game with the payoff matrix G. By playing the games 
several times, each agent receives the appropriate payoff, as dictated by 
the payoff matrix G. A strategy choice for repeated play of the game uses 
the recent outcomes of play to choose one of the two strategies for the 
next play.

The coupling rule r, of agent i, i= l ,  2, determines the particular 
strategy choice for each possible outcome. The memory m e M  at time t 
consists of the history of outcomes that have occurred thus far. Given the 
underlying game G, a coupling rule for an agent is a mapping from the 
set of memory M, the set of possible outcomes, to the set of possible 
strategies. A quick calculation shows that the number of possible 
couplings becomes huge. The hope is that agents would find a better 
coupling among the overwhelming number of possible rules after a 
reasonable number of generations.

We define a desired outcome and denote it by Vi(G), which is the 
payoff obtained by agent i at Pareto-efficiency of the underlying game G.

Definition 9.1 A p a ir  o f  coupling rules (rIt r2) o f  agent i, i= l , 2, is 
defined as sustainable if  they cannot be replaced by other coupling rules.

Given an underlying game G and the number of iterations T  in 
repeated games, we denote the expected Г-iteration average payoff of 
agent i when both agents follow a set of coupling rules (r,, r2) as 
U,(rh r2), i = 1\2.

Lemma 9.1 If the set o f  coupling rules (rh r2) is sustainable fo r  agent i, 
i = 1, 2, then the sum o f the average payoff p er  iteration should be 
Pareto efficient by satisfying

£/1(r1,r2) + £/2(r1, r 2) = VI(G) + V2(G) (9.1)

This lemma implies that if both agents i, i = 1, 2, play with a pair of 
sustainable coupling rules (ri, r2), then their average payoff per iteration 
is Pareto-efficient.
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Lemma 9.2 If agent i plays with a sustainable coupling rule r, and the 
other agent plays with some other rule r, which is not a sustainable 
coupling rule, then her average payoff is worse than V/G), i.e.,

t / , ( r i , r ) < V i (G) (9.2)

This requirement is that if an agent plays with another coupling rule 
that is not sustainable, the average payoff per iteration becomes worse 
than the desired value at Pareto efficiency.

We now obtain sustainable coupling rules in the context of repeated 
games with the memory size of 2 (m =2). In this case, each coupling rule 
needs 4 bits to represent the strategy choices, as shown in Table 9.2. In 
this chapter, we have investigated the prisoner’s dilemma game, the 
coordination game and the hawk-dove game. We will continue our 
discussion on the dispersion game in the next chapter.

Here, we characterize the sustainable coupling rules when the 
underlying game is one of four different types.

(1) The underlying game is the prisoner’s dilemma game in Table 9.3.

A sustainable coupling rule should be of the form “0##1”. That is, a 
sustainable coupling rule implies that if the outcome is (Si, Si), both 
agents cooperate. However, if the outcome is (S2, S2), both agents defect, 
and one of the agents defects in the next round. In other outcomes, one 
agent cooperates and the other defects, and so the other agent might 
cooperate or defect, which is represented by #e  (0,1).

(2) The underlying game is the coordination game in Table 9.5

A  sustainable coupling rule should be of the form “0##1”. This rule 
implies that if the outcome is (Si, Si), both agents choose the Pareto- 
strategy (Si), and so the agents also choose 5/(0) next time. On the other 
hand, if the outcome is (S2, S2), both agents choose the risk-dominant 
strategy S2(l). For all other outcomes, she might choose either Si or S2, 
which is denoted by #e  (0,1).

(3) The underlying game is the hawk-dove game in Table 9.7.
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A sustainable coupling rule should be of the form “###1”. This rule 
implies that if the outcome is (S2, S2), both agents choose S2 (dove), and 
so one agent chooses S2(l) next time. For all other outcomes, she might 
choose either Si (hawk) or S2 (dove), which is denoted by # e  (0,1).

(4) The underlying game is a dispersion game in Table 10.1.

When the underlying game is the dispersion game in Table 10.1, there 
are two types of sustainable coupling rules. One type is of the form 
“#01#”. This rule implies that if the outcome is (Si, S2), both agents 
choose distinct strategies, and one agent chooses Si (0), the same strategy 
as was chose in the previous round. In the case in which the outcome is 
(S2, Si), one agent should choose S2 (1), which is the same strategy as in 
the previous round. For all other outcomes in which both agents choose 
the same strategy, an agent might choose either Si or S2, which is denoted 
by #e  (0, 1).

There is another type of sustainable coupling rule “#10#” when the 
underlying game is a dispersion game. This rule is completely opposite 
to the coupling rule “#01#”. If the outcome is (Si, S2), an agent changes 
her strategy by choosing S2(l). In the case in which the outcome is (S2, 
Si), the other agent also switches to S2 (1).

Browning and Colman (2004) investigated how alternating 
coordination can evolve without any communication between agents 
who play the asymmetric dispersion game. Using a genetic algorithm 
incorporating mutation and crossing-over, they showed that coordinated 
turn-taking can evolves in games with asymmetric Nash equilibria. By 
alternating coordination the agents benefit from it. The asymmetry in 
payoffs from interaction induces agents to learn the behavioral rule, so- 
called give-and-take to break the asymmetry. However, how agents 
evolve alternating coordination without communication is not fully 
explained. We will investigate this issue in the next chapter.



Chapter 10

Collective Evolution of Synchronized 
Behavioral Rules

In the previous chapter, we focused on the role of the coupling rule in the 
context of repeated games. The term coupling dynamics refers to systems 
that exhibit a time evolution in which the characteristics of the internal 
dynamics of agents change by introducing plasticity into the coupling 
rules. In this chapter, we consider another type of social interaction in 
which agents should be dispersed. In particular, we focus on the 
emergence of synchronized behavioral rules that sustain efficient and 
equitable outcomes.

10.1 Dispersion Games on Social Networks

Dispersion games are clearly important role and deserve a great deal of 
discussion and scrutiny. We view the approach of this chapter as opening 
the door to substantial additional work on this exciting class of games. 
Unfortunately, the analysis is not a simple one. The gap between 
underlying games, treated in the previous chapter, and dispersion games 
requires further simulation works.

The dispersion game with the payoff matrix in Table 10.1 has two 
pure Nash equilibria, (Si, S2) and (S2, Si). There is another equilibrium 
with mixed strategies. If both agents choose Si with probability 6  and 52 
with probability 1-6, they also reach a Nash equilibrium. At the two pure 
equilibria (Sh S2) and (S2, S,), the agents receive different payoffs if 
6  Ф 0.5 . In this case, one agent receives 2 6  and the other agent receives 
2(1-6). However, in an equilibrium situation involving mixed strategies 
both agents receive the same payoff 20(1 -  6 ) .  Therefore, this mixed

2K7
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Nash equilibrium situation seems fairer than the first two asymmetric 
pure Nash equilibria. However, this mixed Nash equilibrium is 
inefficient because the payoff to both agents is lower than in the first two 
cases. The sum of the payoffs at the pure equilibria is 2 and that at the 
fair mixed Nash equilibrium is 40(1 -  в ) , which is less than 2. We thus 
observe that the criterion for efficiency contradicts that for equity.

The number of possible coupling rules in the repeated games depends 
on the agents’ memory size. We can observe open-ended evolution with 
the increase of the memory size in computer simulation. If there exists a 
rule of the effective memory size to realize the Pareto-efficient outcome, 
then the outcome cannot be altered by any rule with a longer memory 
size. As we have shown in the previous chapter, when the underlying 
game is a prisoner’s dilemma game, a coordination game, or a Hawk- 
Dove game, the effective memory size is m=2.

However, when the underlying game is a dispersion game, agents may 
need longer memories. We assume that each agent remembers the past 
outcomes of two rounds and that the memory size is m=4. A quick 
calculation shows that the total number of coupling rules with the 
memory size m=4 is 216. A coupling rule specifies, for each history, what 
strategy the agent should choose, as shown in Table 10.2. The hope is 
that agents would find a better coupling rule from among the 
overwhelming number of possible rules after a reasonable number of 
repeated interactions.

Table 10.1 Underlying game: dispersion game (0 < в  < 1)
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Agents repeatedly play the dispersion game in Table 10.1 for T  (=20) 
iterations based on the rule represented by a binary string in Figure 10.1. 
The values of the first two strategy sites, pi and p 2, encode the strategies 
that the agent chooses at t - 0  and t= l .  The strategy sites pJy j s  [3,...,6], 
encode the memories of the strategies chosen by the agent and her 
opponent at the previous round, t - 1. The strategy sites Pj, jG  [7,...,23], 
encode the strategy that the agent should choose at the next round t, 
corresponding to the values at the strategy sites Pj, j s  [3,...,6], We also 
assume that each agent occasionally makes a mistake with some 
probability £  in implementing the strategy specified by the coupling rule.

Table 10.2 Coupling rules with the memory size of four (m=4) 

(own: one’s own strategy, opp: opponent’s strategy, .S',=0, S2= 1, #: 0 or 1)

Strategy site 
in Figure 10.1

Past strategies
Next

strategy
t-2 t-1

own opp own opp
7 0 0 0 0 #
8 0 0 0 1 #
9 0 0 1 0 #
10 0 0 1 1 #
11 0 1 0 0 #
12 0 1 0 1 #
13 0 1 1 0 #
14 0 1 1 1 #
15 1 0 0 0 #
16 1 0 0 1 #
17 1 0 1 0 #
18 1 0 1 1 #
19 1 1 0 0 #
20 1 1 0 1 #
21 1 1 1 0 #
22 1 1 1 1 #
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An agent mimics the coupling rule of the most successful neighbor as 
a guide for improvement of her rule. The success depends in large part 
on how well the agents learn from each other, and if some agents are 
doing well, their effective rules have a chance to be imitated by others.

(Case 1) Symmetric dispersion game

First of all, we consider the case in which all agents repeatedly play the 
symmetric dispersion game with the payoff matrix in Table 10.3. The 
average payoff per agent at each generation is shown Figure 10.2. The 
highest and lowest payoffs per agent are also shown. There exist lucky 
agents, who receive the maximum payoff of 1, and unlucky agents, who 
receive a lower payoff.

Figure 10.2(a) shows the result when there is no implementation error. 
The average payoff per agent was gradually increased to 0.78. Figure 
10.2(b) shows the result with the implementation error rate of 5%. 
Consequently, collective evolution leads to a more desirable outcome 
when agents have a little chance of making mistakes in implementing 
rules. Furthermore, the difference between the highest and lowest 
payoffs becomes small, and the equity of the population is also improved.

2ЫИ 4 bits 16ЫИ

I i ii Г  I I II Г I I I I I I I I I I I I I Г
l f t  «nil Memory Strategy site 
2nd choue

Own strategies at t  = 1 and /  = 2 
Memorv o f two previous rounds 
Own strategies (/ > 3)

Figure 10.1 Representation of a coupling rule of the memory size, m=4
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Table 10.3 Symmetric dispersion game with 6=0.5 in Table 10.1

Payoff
10 max

(a) Implementation error:

Payoff
max

average 

' min

ibiO.82

Generation
(b) Implementation error: 5%

Figure 10.2 Sim ulation results with the fixed local netw ork
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We also compare and identify the effect of the manner of interaction 
by considering the small-world network. The locally networked agents 
will be compared to a half-mixed population in which a half of the 
population is again modeled by a lattice, but in this case each agent 
interacts with four partners that are nearest neighbors and four 
partners that are randomly chosen from the population. Figure 10.3 
shows the result of the small-world network. There is an important 
difference in this graph and the graph obtained using the fixed local 
network (Figure 10.2). Figure 10.3 shows that it is actually easier for 
desired outcomes of efficiency and equity to evolve in the small-world 
network environment.

The advantage of agent-based modeling is that we can investigate 
coupling rules learned by all agents that lead to a desirable collective 
outcome at the macro level. In Table 10.4, we show the coupling rules 
learned by 400 agents. In the beginning, they are endowed with 
randomly chosen coupling rules. However, these different rules were 
updated through collective evolution. The 400 rules were finally 
aggregated into 15 types, as shown in Table 10.4. The numbers in the 
right-hand column represent the number of agents who share the same 
rule.

Payoff

Figure 10.3 Simulation result with the small world network
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These 15 aggregated rules also have the same values at the following 
strategy sites: #8, #9, #11, #12, #14, #15, #17, #18, #19, #20, #21, and 
#22. The values of the strategy sites are also summarized in Table 10.5. 
From this table, we can imply the following two interesting properties. 
Firstly, although each agent has a memory of four (m =4) and her 
coupling rule depends on the outcomes of the two previous rounds, her 
strategy choice is made depending on the previous round. Secondly, if an 
agent chooses 5, (0) and her opponent chooses 5, (1) (in this case both 
agents gain the payoff), she repeats the same strategy Sx (0). Similarly, if 
she chooses 5,(1) and her opponent chooses 5,(0) (in this case both 
gents also gain the payoff), then she also repeats the same strategy S2 (1).

Table 10.4 Learned coupling rules with the error rate of 5%

Rule
type

Initial
Strategy Strategy site

Number
of

agents
1 2 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 36

2 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 31

3 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 30

4 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 30

5 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 25

6 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 22

7 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 18

8 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 18

9 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 17

10 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 16

11 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 14

12 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 14

13 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 13

14 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 12

15 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 11
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All other rules are interpreted as follows. If both agents choose the 
same strategy (in which case they do not gain the payoff), cases in which 
they may choose the same strategy as in the previous round or change 
their strategy are equally likely to occur. Therefore, we can observe that 
learned coupling rules have the following common feature. If they gain 
the payoff (success), then they repeat the same strategy, and if they 
cannot gain (fail), then they change their strategy. This common feature 
is the same as the principle of reinforcement learning.

In Table 10.6, we show the coupling rules learned by 400 agents in the 
small-world network architecture without any implementation error. All 
learned rules were aggregated into 15 types. The numbers in the right
most column represent the number of agents who learned the same type 
of rules.

Table 10.5 Characteristics of the learned coupling rules in Table 10.4



Collective Evolution o f  Synchronized B ehavioral Rules 295

These 15 aggregated types also have common values at the strategy 
sites except at #7, #10, #19, and #22. The features of the learned rules are 
summarized in Table 10.7. The common values at the strategy sites at #8, 
#9, #11, #12, #13, #14, #15, #16, #17, #18, #20, and #21 imply the 
following property. If they gain the payoff (success), then they repeat the 
same strategy, and if they cannot gain (fail), then they change the 
strategy.

When agents interact with fixed neighbors (local interaction), a 
mistake in implementing the strategy plays an important role in helping 
agents to learn coupling rules that realize efficient outcomes. However, if 
agents interact in the small-world network environment, they succeed in 
learning coupling rules that realize the most efficient outcomes without 
any mistake.

Table 10.6 Learned coupling rules on the small-world networks with the error rate of 0%

Rule
type

Initial
Strategy Strategy site Number

of
agents1 2 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 64
2 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 58
3 0 0 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 47
4 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 31
5 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 27
6 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 23
7 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 20
8 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 18
9 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 17
10 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 15
11 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 12
12 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 9
13 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 9
14 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 8
15 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 5
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By comparing the results shown in Table 10.5 and Table 10.7, we can 
conclude that the scope of emergence of an efficient coupling for 
realizing perfect coordination is dependent on how agents interact. If 
they interact locally in a lattice network, then perfect coordination does 
not occur because they may choose two possible strategies at the 
outcomes specified at strategy sites #13 and #16 in Table 10.5. However, 
the introduction of a small-world network, so that individuals interact 
with those in their neighborhood as well as new partners who may not 
have met before affect the collective dynamics, which greatly facilitates 
the collective evolution of perfect coordinated behavior.

Table 10.7 Characteristics of the learned coupling rules in Table 10.6
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(Case 2) Asymmetric dispersion game

Next, we investigate the case in which the underlying game is the 
asymmetric dispersion game with the payoff matrix in Table 10.8. Figure 
10.4(a) shows the average payoff per agent and the highest and lowest 
payoffs in the population when there is no implementation error. The 
average payoff per agent was gradually increased to 0.75. However, the 
difference between the highest and lowest payoffs is large, and there are 
lucky agents who received the maximum payoff of 1 and unlucky agents 
who received almost nothing. Figure 10.4(b) shows the simulation result 
with the implementation error of 5%. From this simulation result, 
mistakes in implementing a strategy for a specified a coupling rule are 
also important in helping agents to learn more desirable coupling rules.

In Table 10.9, we show the coupling rules learned by 400 agents. 
These rules were aggregated into 15 types. The right-most column shows 
the number of agents who learned to share the same rule. These 
aggregated rules have common values at the strategy sites #8, #9, #11, 
#13, #14, #15, #16, #17, #18, #20, #21, and #22. These commonalities 
are summarized in Table 10.10. The common values at the strategy sites 
among the learned coupling rules imply the following interesting 
properties. Although the agents have a memory of four (m =4) and learn 
to choose their strategies based on the choices made during the previous 
two rounds, they learn to make their decisions depending on only the 
previous round.

Table 10.8 Asymmetric dispersion game with в = 0.2 in Table 10.1
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Secondly, and more interestingly, if each agent chooses St (0) and her 
opponent chooses S2( l)  (in this case both agents gain the payoff), she 
changes her choice to 5 2 (1). On the other hand, if  she chooses S2( l )  and 
her opponent chooses S, (0) (in this case both agents also gain the 
payoff), then she also changes to 5, (0). In all other cases, that is, if  both 
agents choose the same choices (in which case they do not gain the 
payoff), the likelihood of choosing the same strategy as in the previous 
round is equal to that of choosing the other strategy.

Payoff
\л

i m

й  l №Л- . /vAjU V------

0.75

Payoff
(a) Implementation error: 1

m
Generation

(b) Implementation error: 5%
Generation

Figure 10.4 Simulation result with fixed local networks
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Most agents succeeded in learning the coupling rules that have the 
following property. If the agent gains the payoff (success), then they 
change their strategies. We define this behavioral rule based on the 
principle of give-and-take, as discussed in Chapter 7. In Chapter 7, we 
showed that the rule of give-and-take is effective for realizing efficient 
and equitable outcomes when the underlying social interaction is 
modeled as a minority game. However, we did not discuss the 
background or derivation of this rule. A central authority may force its 
members to follow such a rule. However, our interest is to show how the 
agents could evolve such behavioral rules based on the principle of give- 
and-take rule without any control from the outside When agents face 
symmetric dispersion games with the payoff matrix in Table 10.3, there 
is no difference in the payoff under outcome (Si, S2) or (S2, St).

Table 10.9 Learned coupling rules for a fixed local network with an error rate o f 5%

Rule
type

Initial
Strategy Strategy site Number

of
agents1 2 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 72
2 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 61
3 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 43
4 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 40
5 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 37
6 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 35
7 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 31
8 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 31
9 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 13
10 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 12
11 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 10
12 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 10
13 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 2
14 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 2
15 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 1
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Therefore, they learn the coupling rules to continue the same strategy 
if  they gain. On the other hand, when they face asymmetric dispersion 
games with the payoff matrix in Table 10.8, the payoffs to both agents at 
the two pure Nash equilibria (Si, S2) and (S2, Si) become asymmetric. 
Therefore, they learn to realize efficient and equitable outcomes by 
visiting the two pure Nash equilibria alternatively.

Social norms are self-enforcing patterns of social behavior. It is in 
everyone’s interests to conform given the expectation that others are 
going to conform. Many spheres of social interactions are governed by 
social norms. We have showed that the agents collectively evolve such 
social norms. The introduction of genetic algorithms enabled researchers 
to investigate the natural selection of social norm using sophisticated 
computer simulations. The evolutionary problem is to explain how such
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social behaviour could have evolved, given that natural selection 
operates at the individual level. Computer simulations have shown that, 
after thousands of repetitions of social interactions, social norms such as 
such as reciprocity, give and take, and so forth.

In an evolutionary approach, there is no need to assume a rational 
calculation to identify the effective rule. Instead, the analysis of what is 
chosen at any specific time is based upon an implementation of the idea 
that effective rules are more likely to be retained than ineffective ones. 
Furthermore each agent mimics the most successful neighbor as 
guidance of improving her coupling rule. Their success depends in large 
part on how well they learn from their neighbors. If an agent gains more 
payoff than her neighbor, there is a chance her coupling rule will be 
imitated by others. The more successful agents are more likely to survive 
and reproduce effective coupling rules. However, agents also observe 
each other, and those agents with poor performance tend to imitate the 
rules of those they see doing better. This mechanism of collective 
evolution tends to evolve to both efficient and equitable outcomes. 
Furthermore, the asymmetry in payoffs from interaction induces agents 
to learn the behavioral rule, so-called give-and-take to break the 
asymmetry.

A major shortcoming of this influential research is its focus on games 
in which cooperation or coordination involves the agents acting 
similarly. There are games in which favourable payoffs are possible only 
if  one player acts one way while the other acts the opposite way. To 
cooperate successfully, the agents have to alternate or take turns, out of 
phase with each other. A typical example is the dispersion game. If this 
type of interaction is repeated, then the agents benefit, in terms of natural 
selection, by coordinated alternation by taking turns in choosing one of 
the two strategies and there is evidence to show that this type of turn- 
taking occurs quite commonly in nature. Give and take or alternation is a 
strategy that is intuitive and simple, but even so it is beyond the scope of 
most traditional learning models.

Hanaki (2006) used adaptive models to understand the dynamics that 
lead to efficient and fair outcomes in the repeated battle of sexes game 
with the payoff matrix in Table 2.4 in Chapter 2. He develops a model 
that not only uses reinforcement learning but also the evolutionary
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learning that operates through evolutionary selection. He found that the 
efficient and fair outcome emerges relatively quickly through turn taking. 
However, his model requires a long run pre-experimental phase before it 
is ready to take turn. Turn taking in the battle of the sexes game is just 
one of many game theoretic phenomena, and it raises an important 
general point for further studies.

Browning and Colman (2004) investigated how this type of 
coordinated, alternating cooperation can evolve without any 
communication between agents who play the dispersion game. Using a 
genetic algorithm incorporating mutation and crossing-over, they showed 
that coordinated turn-taking can evolves in games with asymmetric Nash 
equilibria. The procedure followed Wu and Axelrod (1997). For each 
outcome of the game, each agent receives one of four payoffs, and she 
remembers three past outcomes. Since there are 43 different three-move 
histories, each string of 64 binary digits suffices to specify a choice for 
every three-move history. The offspring rules that played in each 
subsequent generation were formed from the most successful rule of the 
previous generation, using a genetic algorithm. The algorithm 
implemented the following five steps: (1) The payoff values were 
assigned according the underlying game. (2) An initial population was 
for each of the 20 randomly chosen rules. (3) In each generation, each of 
the 20 rules was paired with each of the others for the fixed number of 
repetitions with every other rule in the population (global interaction). 
(4) At the end of each generation, after each rule had played with each of 
the others, each rule’s mean payoff was computed, and it was as signed a 
mating probability proportional to its fitness score. (5) For each offspring 
strategy, two rules were randomly selected as parents, selection being 
proportional to mating probability scores.

They showed that about 85% of the plays in the population are 
characterized by coordinated turn taking. They study the nature, 
properties and phenomena of coordinated alternating cooperation in a 
range of dispersion games with asymmetric equilibria. By alternating 
coordination the agents benefit from it, however, how agents evolves 
alternating coordination without communication is not fully explained.
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10.2 Generalized Rock-Scissors-Paper Games

The hand game “Rock-Scissors-Paper (RSP)”, which is also known as 
“Janken” in Japan, has been played world-over for a long time. It is most 
often used to solve small conflicts between people but it can also be 
played to decide more serious matters. We should recognize that such a 
simple game is not only a children's game and that there are actually 
organizations dedicated to this game, as evidenced by the home page of 
the World RSP Society.

The RSP game consists of each player shaking a fist a number of times 
and then extending the same hand in one of three configurations: a fist 
(rock), two fingers extended (scissors), or flat (paper). Each of these is 
referred to as a strategy, and the winning strategy is dependent upon the 
opponent’s strategy. Rock wins against scissors, scissors wins against 
paper, and paper wins against rock. If each player chooses the same 
strategy, the round is a stalemate, and must be replayed. This RSP game 
is formulated with the payoff matrix in Table 10.11, which is a zero-sum 
game.

Table 10.11 Payoff matrix o f the rock-scissors-paper game

Opponent’s
choice

Own choice

Si
(Rock)

S 2
(Scissors)

5 3
(Paper)

(Rock)

0

0

-1

1

1

-1

s 2

(Scissors)

1

-1

0

0

-1

1

5 3
(Paper)

-1

1

1

-1

0

0
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The RSP game is also important in many scientific disciplines. For 
instance, one of the central aims of ecology is to identify mechanisms 
that maintain biodiversity. Numerous theoretical models have shown that 
competing species can coexist if  ecological processes such as dispersal, 
movement, and interaction occur over small spatial scales. In particular, 
this may be the case for non-transitive communities, that is, communities 
without strict competitive hierarchies. The classic non-transitive system 
involves a community of three competing species satisfying a 
relationship similar to the RSP game. Such relationships have been 
demonstrated in several natural systems. Some models predict that local 
interaction and dispersal are sufficient to ensure the coexistence of all 
three species in such a community, whereas diversity is lost when the 
ecological processes occur over larger scales.

Kerr et al. (2002) set out to investigate the mechanisms that maintain 
biodiversity in ecosystems. The study of three bacterial strains engaged 
in an interaction that mimics the RSP game shows the importance of 
localized interactions in maintaining biodiversity. Understanding the 
processes that maintain and generate biodiversity is crucial to conserving 
biodiversity. They explored whether genetic diversity can persist over the 
long time scales required for evolution. They found that the triangular 
relationship among rock, scissors, and paper, alone is not sufficient to 
preserve biodiversity. Biodiversity disappeared when the strains were 
grown in environments that allowed them to interact globally and more 
thoroughly. On the other hand, localizing the interactions preserves 
genetic diversity.

Their work also has the potential to help answer one of the biggest 
questions in evolution such as why so many different types of organisms 
exist. The localization of dispersal and interaction with RSP games is an 
example of one process that might prove important in maintaining all 
that diversity. Although Kerr and colleagues are not the first to show that 
localized interactions can turn into a dynamic coexistence of many types, 
endlessly chasing each other. However, their approach offers new ideas 
to understand how biological communities are built, which is one of the 
most intriguing aspects of the study of biodiversity.

We can extend the zero-sum RSP game to a non zero-sum game with 
the generalized payoff matrix in Tabic 10.12. The situation of the non
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zero-sum game is very different from that of the zero-sum game. In the 
zero-sum game situation with the payoff matrix in Table 10.11, the sum 
together of all wins and losses is 0. If someone wins, the other has to 
lose. In the zero-sum game situation, each agent has strong incentive to 
win. But in the non zero-sum game situation, agents do not compete only 
to win or lose, since the sum of all wins and losses is not zero. Since 
profits can be increased by cooperating with the opponent, implicit 
coordination between the agents may occur.

We consider a population of agents located a lattice network, as shown 
in Figure 9.3 in Chapter 9. The agents repeatedly play the generalized 
RSP game with the payoff matrix in Table 10.12. Agents play with their 
nearest eight neighbors based on the coupling rules. The coupling rules 
of the agents are updated using the crossover operator. Each agent 
mimics part of the coupling rule of the most successful neighbor.

If we set Л = 2 in Table 10.12, this game becomes strategically 
equivalent to the zero-sum game in Table 10.11. In this case, this payoff 
matrix has the unique mixed Nash equilibrium strategy such that each 
strategy (rock, scissors or paper) is chosen with the same probability. 
The expected payoff to each agent under this mixed Nash equilibrium is 
(A + l)/ 3.

If the payoff parameter Л is increased and becomes greater than 2, 
then the Pareto-efficient outcome is achieved when both agents choose 
distinct strategies. However, under these asymmetric situations, one 
agent receives the payoff Л , and the other agent receives nothing, then 
the problem of fairness may arise. The sum of the payoff to both agents 
at the Pareto-efficient outcome is Л . Therefore, the price of anarchy, the 
ratio of the average payoff at Nash equilibrium to that of at the Pareto- 
efficient outcome is about 2/3.
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10.3 A Coupling Rule with a Memory of Two

A coupling rule uses the past outcomes of play to choose one of the three 
strategies for the next round. Here, we assume that each agent can 
remember the last round of play (memory of m=2). There are nine 
possible outcomes, (St, St), (Si, S2), (Si, S3), (S2, Si), (S2, S2), (S2, S3), 
(S3, Si), (S3, S2), and (S3, S3) for each round of the repeated RSP game 
with three strategies.

We can fully describe a rule of the deterministic strategy choice by 
recording what the strategy will do in each of the nine different 
outcomes. The number of possible rules with the memory size m=2 is 39. 
A three-bit string is used, and we represent “rock (5/)=0”, “scissors 
(S2)= l” and “paper (S3)=2”. Each coupling rule is represented as a binary 
string in Figure 10.3, and the genetic operators can be applied. The first 
strategy site p ] encodes the initial strategy that the agent takes at each 
generation. The strategy sites pjf j  e [2,3] encode the history of the last 
round. The strategy sites pn j  e [4,...,12] encode the strategy that the 
agent takes corresponding to the values at the strategy sites pj, j  e [2,3].
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Each agent plays the RSP game T  times (Г=20) with the eight nearest- 
neighbor agents and attains a success score measured by her average 
payoff per neighbor. The 20 repetitions compose one generation.
A crossover technique form a genetic algorithm is used to evolve 
coupling rules. The hope is that agents find a better coupling rule from 
among the overwhelming number of possible rules after a reasonable 
number of generations. Unsuccessful agents update their coupling rules 
according to the crossover operator, in which half of the coupling rule in 
Figure 10.3 (including the first strategy site representing the initial 
strategy) is replaced with the rule of the most successful neighbor who 
gains the highest average payoff. The neighbors also serve another 
function. If the neighbor is doing well, she is also protected from 
adopting a selfish rule, and thus more effective rules can spread 
throughout the population from neighbor to neighbor.

We also consider the effect o f implementation error in collective 
evolution. That is, there is a small probability of choosing a different 
strategy from that specified by the rule. Significant differences will also 
be observed when agents make small mistakes in implementing their 
rules.

The simulation results when agents repeated play RSP games with the 
payoff matrix in Table 10.12 ( Я = 2 )  are shown in Figure 10.4. This 
figure shows, (i) the average payoff per agent, and (ii) the ratio of each 
strategy over the generation. Figure 10.4 shows the case without any 
implementation error. It is shown that all agents succeed in gaining the 
same payoff of 1.

Ibit 

□  

1st choice

2bit

Memory

9bit

Strategy site

Own strategy for t = 1 

Memory o f  the previous round 

Own strategies

Figure 10.5 Architecture o f the coupling rule with the memory size o f m=2
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Figure 10.5 shows the results with the implementation error of 10%. In 
this case, almost all agents succeed in gaining the payoff of 1. In addition, 
a few agents gain payoffs of slightly higher than 1, and some agents 
receive payoffs of less than 1. Figure 10.6 (b) and Figure 10.7(b) show 
the strategy distributions over the generation. Without any mistakes, all 
agents come to choose “scissors” (S2) and realize the Pareto-optimal 
outcome by causing the game to end in a tie. However, some agents 
choose “rock” (Si) instead of “scissors” (S2) by mistake.

In the beginning, 400 agents have different coupling rules. These rules 
were aggregated into 20 types, as shown in Table 10.13, without any 
mistakes. These 20 rule types also have common values at the strategy 
sites #5=“ 10”, #6=“11” #7=“ 12”, and #9=“21”.

The game between two coupling rules with finite memory can also be 
described as a stationary stochastic process. The state transition of the 
outcomes when both agents choose their strategies according to the same 
coupling rule of type 1 is illustrated in Figure 10.18(a) as the state 
transition diagram. If two agents with the same coupling rule interact, 
there exist multiple absorbing states. However, they also learn to initiate 
the game by taking the same strategy “rock (0)” and therefore are 
absorbed into the outcome with back-to-back scissors strategies, “11”.

The state transition of the outcomes when both agents choose their 
strategies according to the distinct coupling rules (type 6 vs. type 10) is 
illustrated in Figure 10.8(b) as the state transition diagram. In this case of 
heterogeneous interaction, there exists only one absorbing state, and 
starting from the initial pair of strategies of “20”, their strategy choices 
are absorbed into the outcome of “11”.

On the other hand, with the implementation error of 10%, the initial 
400 different coupling rules were aggregated into one type, as shown in 
Table 10.14. The state diagram of the play by two agents with the same 
coupling rule, given in Table 10.14, is shown in Figure 10.9. There are 
two absorbing states at “11” and “00”. The agents also learned to initiate 
the game by taking the same strategy “rock (0)”, and therefore they are 
eventually absorbed into the outcome of “00”. However, with some 
mistakes, there are some chances to move to other outcomes by choosing 
different strategies, and so the agents eventually reach the other 
absorbing state of “ 11”.



Collective Evolution o f  Synchronized Behavioral Rules 309

Payoff
Payoff Average Ratio

H bBb IsiI
iax

average

l u J
j 111111

>2(Scwifjr)

500 1000 1500 7000

(a) Average payoff per agent (b) Ratio of each strategy

Figure 10.6 Simulation results with Я = 2 (implementation error: 0% )

Payoff

(a) Average payoff per agent (b) Ratio o f each strategy

Figure 10.7 Simulation results with Л = 2 (implementation error: 10%)
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Table 10.13 Learned coupling rules with Я = 2 (implementation error: 0% )

Rule type

Initial
strategy

Strategy site Number of 
agents

1 2 3 4 5 6 7 8 9 10

1 0 1 2 0 0 1 0 2 0 1 46
2 0 1 2 0 0 1 0 2 0 0 42
3 0 1 2 0 0 1 0 2 0 2 28
4 0 1 0 1 0 1 0 2 0 2 28
5 0 1 0 1 0 1 0 2 0 1 27
6 2 2 2 0 0 1 0 2 0 1 16
7 0 2 2 0 0 1 0 2 0 1 15
8 2 1 2 1 0 1 0 1 0 2 13
9 0 0 2 0 0 1 0 2 0 0 11
10 0 2 2 1 0 1 0 1 0 1 10
11 2 1 2 0 0 1 0 2 0 1 10
12 0 1 0 0 0 1 0 2 0 0 9
13 0 2 2 0 0 1 0 2 0 2 8
14 2 2 2 1 0 1 0 1 0 1 8
15 0 2 0 1 0 1 0 2 0 1 8
16 0 2 2 1 0 1 0 2 0 1 7
17 0 2 2 0 0 1 0 2 0 0 7
18 2 1 2 1 0 1 0 2 0 2 6
19 0 1 2 1 0 1 0 2 0 1 5
20 0 1 2 0 0 1 0 1 0 0 5

initial strategies

I
© ---------► © - « — ©

Figure 10.8(a) State diagram o f the strategy choices o f two agents who have the same 
coupling rule (rule type 1). There are three absorbing states. If  the choices are (1,1) then 
the game is a tie, and if  the agents choose (0,2) or (2,0) one agent wins and the other loses.
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Figure 10.8(b) State diagram o f the strategy choices of two agents who have different 
rules (rule type 6 vs. rule type 10)

Table 10.14 Learned coupling rules in with A = 2 (implementation error: 10%)

Rule type

Initial
strategy Strategy site Number of 

agents
1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 1 1 2 1 2 0 400

Figure 10.9 State diagram of the strategy choices o f two agents. There are two absorbing 
states at (0,0) and (1,1), in which the result is a tie
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Figure 10.10 Simulation result with A = 10 (implementation error: 0% )
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Figure 10.11 Simulation result with Я = 10 (implementation error: 10%)

Table 10.15 Learned coupling rules with A = 10 (implementation error: 0% )

Rule type

Initial
Strategy

Strategy site Number of 
agents

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 1 1 0 2 1 1 166
2 1 0 0 0 1 2 0 2 1 1 145
3 1 0 0 0 1 0 0 2 1 1 89
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We now investigate the strategic situation by increasing the payoff of 
winning the game by setting ^=10 in Table 10.12. Figure 10.10 shows 
the simulation results without any implementation error. Figure 10.10(a) 
shows the payoff per agent at each generation, and there exit lucky 
agents who gain the highest payoff, which is close to 10, by always 
winning the game and also unlucky agents who gain almost nothing by 
always losing the game. The average payoff per agent is approximately 
3.04, which is lower than the expected payoff at Nash equilibrium, which 
is approximately 3.7. In the beginning, 400 different coupling rules were 
aggregated into three types, as shown in Table 10.15. Figure 10.10(b)

Figure 10.12 State diagram o f the strategy choices o f two agents who have the same rule 
(Rule type 1). There are two absorbing states. Since they learn to start the play with 
Scissors (1) the play results in a tie at “ 11”

Figure 10.13 State diagram o f the strategy choices o f two agents who have different rules 
(Rule type 1 vs. Rule type 2). There is a unique absorbing state at “01”, and one agent 
continues to win while the other loses

initial
strategies

Ж  Ж /  Ж  Ж  Q

Q  Q

initial
strategies
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shows the strategy distributions, in which some fluctuations are observed.
As we discussed in Chapter 9, when the underlying game is a 

dispersion game, collective evolution leads to a more equitable situation 
when agents have little chance to make mistakes in implementing 
strategies specified by a coupling rule. Figure 10.11 shows the simulation 
results with the implementation error of 10%. With some implementation 
errors, the payoff difference between lucky agents who gain the highest 
average payoff and unlucky agents who gain the lowest average payoff 
become small, as shown in Figure 10.11(a). The average payoff per agent 
is increased to approximately 4. Figure 10.11(b) show the strategy 
distributions over generations, which become stable. Slightly more 
agents come to choose “rock (Si)”, and the two other strategies are less 
utilized in the population.

Without any implementation error, 400 different coupling rules in the 
beginning were aggregated into three types as shown in Table 10.15. The 
state transition of the outcomes when both agents choose their strategies 
according to the same coupling rule of type 1 is illustrated in Figure 
10.12 as the state transition. The state transition of the outcomes when 
both agents choose their strategies according to the distinct coupling 
rules (type 1 vs. type 2) is illustrated in Figure 10.13.

With the implementation error of 10%, 400 different coupling rules in 
the beginning were aggregated into eight types as shown in Table 10.16. 
As shown in Table 10.16, 400 rules in the primitive generation are 
aggregated into eight types, which also have common values at the

Table 10.16 Learned coupling rules with Я = 10 (implementation error: 10%)

Rule type

Initial
Strategy

Strategy site Number of 
agents

1 2 3 4 5 6 7 8 9 10

1 2 0 1 0 2 0 2 1 0 0 149
2 2 2 1 0 2 0 2 1 0 0 102
3 2 0 1 0 2 2 2 1 0 0 58
4 2 2 1 0 2 2 2 1 0 0 41
5 2 2 1 0 2 0 2 1 0 2 20
6 2 0 1 0 2 0 2 1 0 2 15
7 2 0 1 0 2 2 2 1 0 2 9
8 2 2 1 0 2 2 2 1 0 2 6
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strategy sites #3=“01”, #4=“02”, #5=“10”, #7=“12”, #8=“20” and 
#9=“21”. The state diagram of the play by two agents can be analyzed in 
the following two cases.

(Case 1) Agents who have the same coupling rule 
The strategy choices between two agents with the same coupling rule 
type i, i= l,2,..,8 , are shown in Figure 10.14. In this figure, there is one 
absorbing state at “00” and one limiting cycle. The state diagram 
contains two paths, one for moving towards to the absorbing state and 
one for the limiting cycle, and there is no path between the two cycles. 
As shown in Table 10.16, agents also learn to initiate the play by 
choosing paper (2) and strategy choices eventually converge to 00. This 
means that if  an agent plays with other agents of the same rule, they 
converge to the state of a tie, and receive the lower payoff of 1.

(Case 2) Agents who have different coupling rules 
We now investigate the state diagrams of plays by two agents who have 
different coupling rules in Table 10.6. The state diagram is shown in 
Figure 10.15. In this case there is no absorbing state and there is one 
limit cycle. Starting from any state, it eventually converges to an 
efficient cycle such that agents win three times and lose three times. 
With some mistakes, some interesting properties emerge. If an agent A 
chooses rock (0) and her opponent В chooses “scissors (1)” (in this case 
she wins and her opponent loses), then in the next round agent A chooses 
“scissors (1)” and agent В chooses “paper (2)”. In the following round 
agent A chooses “paper (2)” and agent В chooses “rock (0)”. Therefore, 
agent A wins three times and agent В loses three times.

However, after these games, the two agents completely reverse roles, 
and the winning agent thus far, agent A, chooses “scissors (1)” and the 
losing agent thus far, agent B, chooses “rock (0)”. After these three one
sided games, they trade places. The winner thus far chooses “scissors 
(1)” and loser thus far chooses “rock (0)”. The winner then becomes the 
loser, and vice versa. In total, her opponent wins three times. Both agents 
are eventually absorbed into the limit cycle of the three-wins and three- 
losses. Thus far, this agent wins three times and her opponent loses three 
times. Therefore, the two agents switch roles as winner and loser. Since
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both agents win three times and lose three times, on the average, they 
gain the payoff at Pareto-efficiency.

If the system were to start from the set of the states, it would evolve to 
an attractor. These are known as the basin of attraction. In this case, the 
point attractor for the state of the systems is replaced by a circle, and in 
the limit, the system moves endlessly around this circle.

The coexistence of multiple attractors constitutes the natural mode of 
systems capable of performing regulatory tasks. We would expect to see 
the system staying within one basin of attraction and then at some point 
switching between different attractors as we add some noise.

Figure 10.14 State diagram o f the strategy choices o f two agents who have the same rule 
(Rule type 1). There is a unique absorbing state at (0,0), and both agents continue to 
reach a tie

(n ) @  —♦ (To)
Ж  Ж  & ж  Q

initial __i
strategies

Figure 10.15 State diagram o f  the strategy choices o f two agents who have different rules 
(Rule type 1 vs. Rule type 2). There is a unique limit cycle that visits the state: (0 ,1 ), (1 ,2 ), 
(2 ,0 ), (1 ,0 ), (2 ,1 ) and (0 ,2 ). Both agents continue to win three tim es and loose three times
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A number of studies have examined the dynamics of an ensemble of 
globally coupled components with the aim of driving the system from 
incoherent collective evolution to a state of spontaneous full 
synchronization. Synchronization is a form of macroscopic evolution 
observed in a wide class of complex systems. Typically, it appears when 
the range of the interactions inside the system is of same order as the 
system size. Mechanical and electronic devices, as well as certain 
chemical reactions are known to exhibit synchronized dynamics.

We have observed that a collective of locally coupled agents who play 
the three-strategy game, Rock-Scissors-Paper, drives the collective from 
incoherent collective behavior to a state of spontaneous full 
synchronization, and they can sustain dynamic orders of efficiency and 
equity. Therefore, collective evolution of coupled rules has been proven 
to be an appropriate paradigm for such kinds of emerging desired 
collectives.

If the generalized RSP game has the same payoff structure as the 
original RSP game, formulated as the zero-sum game, each agent learns 
to enter into a tie. If the payoff for winning the game increases, agents 
learn to win and lose in a coordinated way. That is, if one agent wins 
three rounds, then the previously winning agent loses the next three 
rounds. If all agents repeat this coordinated behavior, they can realize the 
most efficient and equitable outcomes.

We have also found that, under suitable conditions, the collective 
system evolves from completely uncoordinated behavior to a state of full 
synchronization of coordination. Bearing in mind the role of 
synchronization as a collectively desired behavior, we incorporated an 
additional evolutionary mechanism. Concretely, each agent is allowed to 
vary her coupling rule according to a given criterion.

In this case, inefficient and unsynchronized rules are eliminated and 
replaced by slightly modified rules produced by crossover with more 
successful rules. Thus, the collective system may be able to learn to 
perform a specific collective task, and in particular, to evolve towards a 
coherent synchronized outcome. However, as shown in Figure 10.9, the 
average payoff per agent is slightly lower than the value at Pareto- 
efficiency. Therefore, we may need to investigate some obstacles of the 
perfect coherent synchronized outcome.
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Heterogeneity turns up repeatedly as a crucial factor in complex 
systems and organizations. But the situation is not always as simple as 
saying that heterogeneity is desirable and homogeneity is not. The basic 
question as to the correct balance between heterogeneity and 
homogeneity remains in many fields. When heterogeneity is significant, 
we need to be able to show the gains from heterogeneity. An agent type 
is a category of agents within the larger population who share some 
characteristics. We usually distinguish types by some aspects of the 
agents’ unobservable internal models that characterize their observable 
behaviors. The notion of type facilitates the analysis of heterogeneity.

Agents are categorized by location in the coupling rule space. Since 
the space of all coupling rules is so complex, this categorization is not 
trivial in the beginning. For example, we might constrain the coupling 
rules to be a finite number of rules. Even after these kinds of limitations, 
we might still be left with too large a space of rules to consider. 
However, there are further disciplined approaches to winnowing down 
the rule space. The question is how best to represent meaningful classes 
of agents and then use this representation to obtain effective rules.

The collection of agent types includes agent types with which the 
agent being designed might interact. These agent types may come with a 
distribution, in which case one can hope to design an agent to receive the 
maximum expected payoff. In either case we need a way to speak about 
agent types. The agents, located on the lattice, play 2x2 RSP games 
against their eight nearest neighbors, and all rules one for each agent are 
aggregated into a few types. Therefore, an agent may play with other 
agents with the same coupling rule or with agents with different coupling 
rules. They should also learn the locations of the space so that maximum 
number of dispersed agents with different coupling rules may. play the 
dispersion game.

If an agent plays with another agent who has a different rule type, they 
can sustain the efficient cycle with three wins and three loses, and both 
agents obtain the equal payoff of A/2. The sum of their payoff is also 
Pareto-efficient. However, this desirable situation will disappear if an 
agent plays with another agent who has the same coupling rule. 
Therefore it is a very difficult task for the agents to evolve synchronized 
coupling rules that satisfy coherency in both time and location.
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10.4 A Coupling Rule with a Memory of Four

It is an interesting exercise to figure out the effect of the memory size of 
agents who remember past rounds. In this section, we consider the 
coupling rule with the memory size of four (m=4). Therefore, a strategy 
choice for repeated play uses the past two rounds to choose one of the 
three strategies for the next play. Since there are 34 possible distinct 
outcomes, we need 81 bit strings to represent a coupling rule. The 
number of possible rules with the memory of four (m=4) is increased to 
381. The hope is that agents would find a better coupling rule out of the 
overwhelming possible rules after a reasonable number of generations.

Each coupling rule is represented as a bit string in Figure 10.16. Each 
value of P j , j  g  [1,...,87] carries the following information. The first and 
second strategy sites encode the initial two strategies that the agent takes 
at each generation. Since no memory exists at the start of the game, 
an extra two bits is needed to specify the strategies at the first and 
second round as a hypothetical history. The strategy sites 
P j , j s  [3,..,6] encode the history of the strategies (rock, scissors or 

paper) that the agent and her opponent selected during the previous two 
rounds. The strategy sites p s , ; e  [7,...,87] encode the strategy that the 
agent should take according to the past two rounds.

Figure 10.17 shows (a) the average payoff per agent and (b) the 
strategy distribution over the generation when the agents play the game 
with the payoff matrix in Table 10.12 (X-2) without any implementation 
error. All agents gain the same payoff after several hundred generations. 
As shown in Figure 10.17(b), the ratio of “rock (Sj)” is relatively high 
compared with the ratios of “scissors (S2)” and “paper (S j)”.

In the beginning, 400 agents have different coupling rules, which were 
aggregated into a few types. The aggregated rules also have common 
values at the strategy sites. Eight aggregated rules are also represented as 
one meta-rule, as shown in Table 10.17. Except for the strategy sites 
marked by #, all learned coupling rules have common values.

The state diagram of the plays between two agents with the coupling 
rule in Table 10.17 is shown in Figure 10.18. There is one limit cycle 
that visits the states “2211”, “ 1100”, “0000” and “0022”. Therefore, the
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two agents continue to reach a tie by choosing “rock (5;)” at a ratio of 
0.5 and “scissors (52)” and “paper (5 j)” at a ratio of 0.25.

Figure 10.19 shows the simulation results with the implementation 
error of 10%. Figure 10.19(a) shows the average payoff per agent. In this 
case, almost all agents succeed in gaining the same payoff of 1, and a 
few agents gain more than 1 or less than 1. The strategy distribution in 
Figure 10.19(b) shows that the ratios of the three strategies are almost the 
same. Therefore, we can conclude that in the repeated RSP game with 
Л = 2 , which is strategically equivalent to the zero-sum RSP game, 

three strategies (rock, scissors and paper) can coexist without any 
implementation error.

2bit 4bit 81 bit

1st &  2nd Memory Strategy site
choice 1

1 — Own strategy for / = 1

—► Memory o f one and two previous mutual moves

—»- Own strategies

Figure 10.16 Architecture of the coupling rule with the memory size of m=4

Payoff Ratio

(a) Average payoff per agent (b) Ratio of each strategy

Figure 10.17 Simulation result with Я = 2 and a memory o f m=4 (implementation 
error: 0 % )
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Table 10.17 Learned coupling rules with the memory size o f m=4 and A = 10 
(implementation error: 0% ) (The # symbol indicates the possibility of either 0 or 1)

Initial
Strategy

Second
Strategy Strategy site

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 1 2 # # # # 2 0 # 1 # 2 1 0 0 #

Strategy site

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
1 # 2 # 0 # 2 # 2 # # # 0 # # # 0 0 # 2 # 0

Strategy site

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# 0 # 2 1 # # 1 # # # # 0 2 # 0 # # 0 1 0 #

Strategy site

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# # 0 2 2 0 # 0 # 1 1 1 2 2 0 1 1 0 2 0 1 1

initial strategies

I

Figure 10.18 State diagram o f the strategy choices o f two agents. There is a unique limit 
cycle that visits the state: “2211”, “ 1100”, “000”, and “0022”. Both agents continue to 
reach ties choosing Rock (0) at a ratio o f 0 .5, and Scissors (1) and Paper (2) at a ratio of 
0.25
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Payoff Ratio

Figure 10.19 Simulation results with A = 2 and m=4, and with an implementation error 
o f 10%
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Figure 10.20 Simulation results with Л = 10 and m=4, and with an implementation error 
o f 0%
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Figure 10.21 Simulation results with Я = 10 and m=4, and with an im plem entation 
error o f  10%
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We show the state diagram of the strategy choices of two agents in 
Figure 10.16. There is the unique limit cycle that visits the state: “2211”, 
“1100”, “0000” and “0022”. Both agents continue to reach ties by 
choosing “rock (Si)” at a ratio 0.5 and “scissors (S2)” and “paper ( S 3 ) ”  at 
a ratio of 0.25.

We now show the simulation results when the payoff for winning the 
game is increased to ^=10 and without any implementation error. Figure 
10.20(a) shows the average payoff per agent. There are lucky agents who 
gain the highest payoff and unlucky agents who gain almost nothing. The 
average payoff per agent is approximately 4, which is higher than the 
expected payoff at Nash equilibrium, which is approximately 3.7. Figure 
10.20(b) shows the strategy distributions. The ratios of “rock (5 ;)” and 
“scissors (S2)” are high, and the ratio of “paper (S3)”  is relatively low.

Figure 10.21 shows the simulation results with an implementation 
error of 10%. The average payoff per agent (Figure 10.21(a)) is 
approximately 4, which is the same as the simulation result without 
implementation error. However, in this case, the payoff difference 
between the lucky agent who gains the highest average payoff and the 
unlucky agent who gains the lowest average payoff becomes small. The 
strategy distribution is shown in Figure 10.21(b) and the ratios of the 
three strategies become approximately the same. Therefore, we conclude 
that the implementation error is effective to realize efficient and 
equitable outcomes while sustaining the diversity of the population.

The number of possible strategies in repeated RSP games depends on 
the agents’ memory size. It is possible, in principal, to derive an efficient 
behavioral rule with a finite memory size. We can observe open-ended 
evolution with the increase of the memory size in the simulation. It is 
also an interesting exercise to figure out the effective memory size of 
agents that is required in order to remember past outcomes.

In the previous section, we compared cases in which agents behave 
based the behavioral rules of agents having memory sizes of two and 
four. If all agents have the same memory size, the effective memory size 
that is required in order to realize efficient and equitable outcomes is 
m=2. However, by increasing the memory to m -4, dynamic coexistence 
of all three strategies can be realized by sustaining the diversity of the 
strategy population.
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10.5 Effects of Implementation Error in Collective Evolution

Evolution through natural selection is often understood to imply 
improvement and progress. A heritable trait that confers to its bearer a 
higher fitness will spread within the population. The average fitness of 
the population would therefore be expected to increase over time. This is 
often pictured as a steady ascent on a fitness landscape (Mayley, 1997). 
The landscape metaphor suggests some solid ground over which the 
population moves. Although the environment selects the adaptations, 
these adaptations can also shape the environment. By moving across a 
fitness landscape, the population changes the landscape.

The behavior of a collective system can be characterized by the 
associated payoff function to each agent. The trajectory of the behavior 
of an agent moves from a given behavioral rule to that of the neighboring 
agent for which the payoff function is improved. More generally, the 
payoff function represents the degree to which a certain behavioral rule 
is preferable to the current rule. The higher the value of the payoff, the 
better, or the more fit, the outcome.

The payoff function determines the agent space into a payoff 
landscape, where every point in the space has a value associated with the 
average payoff of each agent over one generation. This payoff landscape 
in general has many peaks and valleys. The attractors of the collective 
dynamics will now correspond to a locally optimized payoff landscape 
(Nowark and Sigmund, 2004).

The collective system will always move upward in the payoff 
landscape. When it has reached a locally optimal point, some agents will 
not be able to leave this point. The local maximum of the payoff 
landscape are the points that separate the basins of the attractors that lie 
between the peaks. For the evolution of the systems, in general, better or 
fitter usually means more potential for growth. However, the collective 
dynamics implied by a payoff landscape does not, in general, lead to the 
overall optimal state. The path of the collective systems will in general 
end in a local optimal rather than in the global optimal.

An effective way to obtain an evolutionary system out of a locally 
optimal system is to add a degree of indeterminism to the system 
dynamics, that is, to give the system the possibility of making transitions
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to states other than the locally-most-fit state. This can be seen as the 
injection of noise or random perturbation into the evolutionary system, 
which makes it deviate from its preferred trajectory. Physically, this is 
usually the effect of outside perturbations.

Instead, we consider the role of implementation error, or “mistakes”, 
as internal perturbations that can push the collective system upwards, 
towards a higher potential of the landscape. This may be sufficient to 
allow the collective system to escape from a local optimum, after which 
it will again start to climb up towards a better state.

Therefore, such internal perturbations push the collective system 
towards a more efficient outcome, and mistakes generally increase 
fitness. The stronger the mistake the better the collective system will be 
able to escape the relatively shallow valleys, and thus reach a potentially 
better outcome. However, a collective system with some mistakes will 
never be able to truly reach a global optimum because whatever level of 
fitness it reaches, it will still be perturbed and pushed into less fit states.

In this section, we continue our discussion on the role of mistakes. The 
influence of making a mistake will be verified. Mistakes in implementing 
a strategy are important and their influence should be examined 
thoroughly. When agents occasionally make small mistakes, they 
collectively evolve to full coordination by realizing ideal dynamic orders 
of efficiency and equity. Depending on the initial strategies, agents start 
at inefficient cycle, but mistakes lead the agents to more efficient 
strategies. However, these mistakes also lead agents from efficient rules 
toward less efficient rules.

In order to verify the role of mistakes in collective evolution in more 
detail, we increase the length of the simulation and simulate up to 4,000 
generations. Each agent plays the generalized RSP game in Table 10.12 
with A.=10. In Table 10.18, we show how 400 different rules in the initial 
generation are aggregated into a few common rules. After 4,000 
generations, they converge into six types when there is no 
implementation error. However, the convergence is much faster with an 
implementation error of 10%, and the behavioral rules converge into 
eight types after 2,000 generations.

Therefore, if we simulate a large number of generations, the coupling 
rules of all agents are aggregated into a few types without regarding the
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implementation error. However, a qualitative difference exits between 
the learned rules without any implementation error and those with some 
implementation error.

The game between two coupling rules with finite memory can be 
described as a stationary stochastic process. The state transition of the 
outcome when both agents choose their strategies according to the 
learned coupling rules is illustrated in Figure 10.22 as a state transition 
diagram with no implementation error. Either they play with the same or 
different coupling rules, and we have the same state diagram as that 
shown in Figure 10.22. There is one absorbing state at “0000” and one 
limit cycle that visits “1001” and “0110”, alternatively. However, there is 
no commonality in the initial strategies at the start of the game at each 
generation. Therefore, there are two possibilities to be absorbed at 
“0000” and to reach the limiting cycle. In the former case, the two agents 
reach a tie and receive low payoffs, and in the latter case, they take turns 
winning and losing. Before they reach these cases, they visit many 
outcomes. This is the reason for the co-existence of the three strategies.

The state transition diagram for play under the coupling rules learned 
with the 10% implementation error is shown in Figure 10.23 and Figure
10.24. In this case, there are two different features. First, all agents, learn 
to initiate the game by choosing “scissors (1)”. Second, the state 
diagrams between the two agents are different depending on whether 
they have the same coupling rule type or different types. The state 
transition diagram when the two agents have the same rule is shown in 
Figure 10.23, and there are two absorbing states at “0000” and “2222”. 
There are also two limit cycles, one of which visits “1122” and “2211”

Table 10.18 Number o f common rules learned by 400 agents over various numbers of 
generations

Generation
Number o f different coupling rules

Implementation error: 0% Implementation error: 10%

500 400 400
1,000 400 250
1,500 368 30
2,000 238 8
4,000 6 8
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Figure 10.22 State diagram o f the strategy choices o f two agents who play with the same
or different coupling rules learned without the implementation error
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Figure 10.23 State diagram o f the strategy choices o f two agents who play with the same
coupling rules learned with an implementation error o f 10%
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and the other visits “0221”, “2120”, “2012” and “1202”. However, they 
learn to initiate the game with “scissors (1)” and so eventually converge 
to the limit cycle, visiting “1122” and “2211” alternately. By reaching 
this limit cycle, the two agents take turns winning and losing, which is 
the principle of give-and-take discussed in the Section 10.1.

The state transition diagram for the case in which the two agents have 
different rules is shown in Figure 10.24. There is one absorbing states at 
“2222”, and one limit cycle that visits “0221”, “2120”, “2012” and 
“1202”. However, they also learn to initiate the game with “scissors (1)” 
and eventually converge to the limit cycle, visiting “0221”, “2120”, 
“2012” and “1202”. Before reaching this limit cycle, where they take 
turns winning and losing, they visit many outcomes.

In summary, whether two interacting agents play with the same rule or 
with different rules, they eventually reach the limiting cycle where they 
come to take turns winning and losing. This is the reason why they 
collectively realize efficient and equitable outcomes.

It is known that the most effective use of noise to maximize self- 
organization is to start with large amounts of noise that are then 
gradually decreased, until the noise disappears completely. The initially 
large perturbations allowing escape from local optima, while the gradual 
reduction will allow it to settle down in what is hopefully the deepest 
valley. This is the basic principle underlying annealing, the hardening of 
metals by gradually reducing the temperature, thus allowing the metal 
molecules to settle in the most stable crystalline configuration. The same 
technique is called simulated annealing when applied to simulation 
models of self-organization.

We apply the same technique of simulated annealing. In the beginning, 
we set the implementation error at 10% until the 1,000th generation, and 
then cut the error rate to 0%. The simulation results are shown in Figure
10.25, and we have two cases if we cut the error at the 1,000th 
generation: either efficient collective behavior will disappear (case 1) or 
the outcomes will remain approximately the same (case 2). Diversity is 
neither accidental nor random. The persistence of an individual agent 
depends on the context provided by the other agents as well as 
endogenous mistakes.
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Figure 10.24 State diagram o f the strategy choices o f two agents who play with different
coupling rules learned with an implementation error o f 10%
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(a) C ase 1

3.18

10 00  1 5 0 0  2000
Generation

(b) C ase 2

4.0

10 00  1500  20 00
Generation

Figure 10.25 Average payoff per agent over generations. The implementation error is 
10% by the 1,000th generation and is thereafter set at 0%
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10.6 From Co-evolution to Collective Evolution

A reinforcement learning model successfully replicates human behavior 
for games with an unique mixed strategy Nash equilibrium (Erev, 1988). 
However, experimental studies have been accumulating evidence that the 
human behavior exhibited in other types of games does not coincide with 
the equilibrium solutions of standard game theory. Several distinct 
models have been proposed to account for such learning processes. 
Attempting to characterize and work with the class of strategies that 
people actually consider is an important project for behavioral game 
theory (Bowles, 2004).

Experimental studies have been focused to explain human behavior in 
such well-known games, the battle of the sexes game, the hawk-dove 
game, and the dispersion game. Except a dispersion game, the Pareto- 
efficient outcome is also fair. On the other hand, the Pareto-efficient and 
fair outcome of a dispersion game is achieved only if  two agents 
alternate between the two pure strategy equilibria. It is reported that in 
these games, experimental subjects behave as if  they are motivated by 
fairness and efficiency considerations. Subjects often find and coordinate 
their actions so that they can maximize the aggregate payoff and receive 
the almost the same payoff (McKelvey, 2002, Arifovic, 2005). 
Observations that people behave as if they are concerned about fairness 
and efficiency have led some researchers to develop models with a richer 
class of preferences in which players care not only about their own 
material payoffs but the payoffs to others (Fehr, 1999).

Hanaki (2005) uses adaptive models to understand the dynamics that 
lead to efficient and fair outcomes in repeated games. Instead of 
assuming that fairness and efficiency considerations are a primitive of 
the underlying model, he has demonstrated that a simple learning model 
applied to a limited set of finitely-complex repeated game strategies can 
generate the efficient and fair outcomes.

Experimental subjects often try to explore possible actions and decide 
what to do next based on the resulting outcomes. However, he developed 
a model of rule learning by enumerating all deterministic two-state 
automata (rule of memory of two), and it does not scale easily to 
automata with more than two states. His model not only uses
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reinforcement learning but also the evolutionary learning that operates 
through evolutionary selection. It also requires a long run pre- 
experimental phase before it is implemented. Furthermore, what has not 
been explored in his model is the underlying dynamics that lead to an 
efficient and fair outcome.

The most unrealistic aspect of the rule learning is the large number of 
rules each agent considers. A realistic model should account for the fact 
that the agents consider a much smaller number of rules from which they 
learn. The rules agents consider are often preconditioned by factors such 
as imitation that have evolved over the generations. The set of rules 
agents consider is a small subset of the possible rule space. Occasionally 
agents are given a chance to look for a different partner to learn if  they 
are unhappy with the status quo. Evolutionary pressures make agents 
more likely to adopt the rules of successful agents with higher payoff. 
Over time, the majority of the population will learn about a similar 
subset of possible rules that may realize and sustain efficient and 
equitable outcomes of the underlying games.

Starting with an intuitively plausible set of assumptions, we 
demonstrated that collective evolution develops into the efficient and fair 
outcome of the underlying games, such as a prisoner’s dilemma game, a 
coordination game, a hawk-dove game, and a dispersion game. We also 
investigate the dynamics behind the convergence to the efficient and fair 
outcome.

We conclude by summarizing what we have learned thus far in the 
framework of collective evolution. The mission of collective evolution is 
to harness collective systems and to serve to secure a sustainable 
relationship in an attainable manner so that a desirable outcome of the 
collective system could emerge. Of particular interest has been the 
question as to the conditions under which social interactions among 
agents will result in an outcome that is in some sense optimal.
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Put differently, we examined how social interactions can be 
restructured so that agents are free to choose their own actions while 
avoiding outcomes that none would have chosen. This is the same as the 
pursuit of a Pareto-efficient outcome. Another important consideration is 
the principle that the collective outcome should also be fair. We can say 
that we are interested in determining the correct behavioral rules. It is 
shown that collective evolution of coupling rules between agents has 
proven to be an appropriate paradigm for such emerging desired 
collective outcomes.

We define a set of behavioral rules to be efficient if the total payoff for 
all involved agents is maximized when they follow these rules to choose 
a strategy for each iterated game. Then, we need to devise behavioral 
rules that induce self-regarding agents to learn efficient rules. The 
success or failure of a certain behavioral rules depends on what other 
rules are present. An ambitious objective is then to find a learning 
procedure that would enable the agents to obtain and implement such 
efficient behavioral rules.

The framework developed in Chapter 9 and this chapter is distinct 
from co-evolution in three aspects. First, there is the coupling rule, which 
is a deterministic or stochastic process that links past outcomes with 
future behavior. The second aspect, which is distinguished from 
individual learning, is that agents may wish to optimize the outcome 
realized by the joint actions. The third aspect is to describe how a 
coupling rule should be improved with the criterion of performance to 
evaluate how well the rule is doing.

In Chapter 8, we showed that, if  a collective of interacting agents who 
repeatedly adapt their behavior to their neighbors based on the behavioral 
rule of give-and-take, they could realize the most desirable outcome. We 
define such desired collective behavior as interactive synchrony. In 
Chapter 9, we showed that agents could collectively evolve such a give- 
and-take rule when the underlying game is an asymmetric dispersion 
game with two strategies.

In this chapter, we have extended this approach further by considering 
the case in which the underlying dispersion game has three strategies. 
The Rock-Scissors-Paper (RSP) game is a typical form of representing 
the triangular relationship: Rock crushes scissors, scissors cut paper and
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paper covers rock. Rock-scissors-paper relationships are also common in 
many ecosystems, and this simple RSP game has been used to explain 
the importance of biodiversity.

Most evolutional processes are modeled based on a mean-field model, 
which posits that agents interact with each other. This is essentially 
assuming that the populations are mixed. Because of advances in 
computational ability, we are now able to consider how populations 
interact in space and relax this assumption. As we have briefly 
introduced in Section 10.3, Kerr et al. demonstrated the importance of 
the scale of interaction and dispersal on maintaining biodiversity. The 
scale at which organisms interact and disperse can have profound effects 
on the maintenance of biodiversity. Biodiversity disappeared when the 
organisms were grown in environments that allowed them to interact 
more thoroughly. They demonstrated that spatial separation might be 
necessary for different populations to coexist. Their work also has the 
potential to help answer one of the biggest questions in ecology and 
evolution: Why are there so many different types o f organisms out there? 
The localization of dispersal and interaction, coupled with rock-paper- 
scissors, is an example of one process that might prove important in 
maintaining this diversity.

They also investigated basic questions such as whether genetic 
diversity can persist over the long time scales required for co-evolution. 
In terms of game theory, the spatial environment is shown to encourage 
the convergence to Nash equilibrium, where three strategies, rock, 
scissors and paper, can coexist beyond the global environment. However, 
Nash equilibria of the RSP game are inefficient, and the spatial 
environment does not encourage high performance of the whole 
population.

In order to clarify this issue, we generalized a basic rock-scissors- 
paper relationship to a non zero-sum game in which agents may benefit 
from achieving a sustainable relationship. In this case, diversity resulting 
from proper dispersal by achieving Nash equilibrium is not sufficient, 
and a much more deeply correlated relationship may be required. We 
have observed that a collective of locally coupled agents who play the 
generalized RSP game drives incoherent collective behavior into a state 
of spontaneous full synchronization by achieving full efficiency.
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Bearing in mind the role of synchronization by archiving desired 
collective behavior, we incorporated an additional evolutionary 
mechanism. Concretely, each agent is allowed to vary her coupling rule 
according to a given criterion. Learning itself could be fully replaced by 
an evolutionary mechanism in the spirit of genetic algorithms. In this 
case, unsynchronized rules were eliminated and replaced by slightly 
modified copies of successful rules. Thus, the collective of agents may 
be able to learn to perform a specific collective task, and in particular to 
evolve towards a coherent synchronized state.

In summary, we have examined the problem of interactive learning in 
the context of repeated games. In fact, interactive learning is a feature of 
almost all social systems, where the intentions of the learners are at least 
part of what needs to be learned. The envisioned research object is quite 
novel, since it requires harmony with synchronized interactions among 
self-interested agents. Fortunately, many of the results discussed in the 
preceding chapters extend readily to a wider class of situations in which 
many agents interact.

In this way, we obtain a robust learning procedure that leads to near- 
optimal behavior in situations where many agents are interacting with 
each other. The approach of collective evolution is very much at the 
forefront of the general topics of designing desired collectives in terms of 
efficiency, equity, and sustainability. The desired collective outcome also 
depends increasingly on a process that encourages both diversity and 
commonality among behavioral rules. Calling upon both diverse and 
shared perspectives among relevant agents will lead to an enhanced 
understanding of the situation and will help agents to behave adequately 
in interactive environments.

Darwinian dynamics based on mutation and selection form the core of 
models for evolution in nature. Evolution through natural selection is 
often understood to imply improvement and progress. A heritable trait 
that confers to its bearer a higher fitness will spread within the 
population. The average fitness of the population would therefore be 
expected to increase over time. This fitness landscape suggests some 
solid ground over which the population moves.

If multiple populations of species adapt to one another, the result is a 
co-evolutionary process. Co-evolution is defined as an evolutionary
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change in a trait of individuals in one population in response to a trait of 
individuals in another population, which is followed by the evolutionary 
responses by other populations to the change in the first population. Co
evolution can also come in the form of local pair-wise interactions 
between geographically distributed populations with each population 
engaged in local pair-wise interactions. Since every improvement in one 
species leads to a selective advantage for that species, variation will 
normally continuously lead to increases in fitness in one species or 
another.

Nowark and Sigmund (2004) points that the Darwinian paradigm, 
which is also widespread in the theory of genetic algorithms, neglects 
half of the evolutionary mechanism. Although the environment selects 
the adaptations, adaptations can also shape the environment. By moving 
across a fitness landscape, populations change that landscape. This is 
particularly clear if  several populations interact, because each population 
can be part of the fitness landscape of the other. Therefore, the fitness 
landscape is shaped by the strategy distributions of each of the 
populations. As the population moves through the fitness landscape, new 
peaks and valleys form, leading to further motion.

For co-evolutionary systems, fitter usually means better or with more 
potential for growth. However, the co-evolutionary dynamics implied by 
a fitness landscape does not generally lead to the overall fittest state, and 
the system has no choice but to follow the path of steepest descent. This 
path will in general end in a local optimum of the potential, not in the 
global optimum. Apart from changing the fitness function, the only way 
for the system to escape from a local optimum is to add some noise to the 
co-evolutionary dynamics, that is, to give the system the possibility to 
make it deviate from its preferred trajectory.

Another problem to contend with in co-evolution based on the 
Darwinian paradigm is the possibility of an escalating arms race with no 
end. Competing species might continually adapt to each other in more 
and more specialized ways, never stabilizing at a desirable outcome. In 
general, different species are coevolving, and improvement in one 
species implies that it will get a competitive advantage over another 
species, and thus be able to capture a larger share of the resources 
available to all. Since every improvement in one species will lead to a
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selective advantage for that species, variation will normally continuously 
lead to increases in fitness in one species or another. This means that 
increased fitness in one species will tend to lead to decreased fitness in 
another species. The only way that a species involved in a competitive 
environment can maintain its fitness relative to the others is by in turn 
improving its strategy with no end. This effect is known as an arms race.

The most obvious example of an arms race is co-evolution between 
predators and prey (for instance, foxes and rabbits) in which the only 
way predators can compensate for a better defense by the prey (e.g. 
rabbits running faster) is by developing a better offense (e.g. foxes 
running faster). However, the relative fitness gap remains the same. 
Another example is tree growth. In this example, the net effect of an 
arms race may be an absolute decrease in fitness. Trees in a forest are 
normally competing for access to sunlight. If one tree grows slightly 
taller than its neighbors it can capture part of their sunlight. This forces 
the other trees in turn to grow taller, in order not to be overshadowed. 
The net effect is that all trees tend to become taller and taller, still 
gathering on average the same amount of sunlight while spending far 
more resources in order to sustain their increased height. These examples 
of the arms race illustrate the problem of sub-optimization. For instance, 
optimizing access to sunlight for each individual tree does not lead to 
optimal performance for the forest as a whole.

The arms race in co-evolution is also referred as the red queen 
principle, which says we have to run faster and faster to survive in the 
face of rivals. The red queen principle was proposed by the evolutionary 
biologist van Valen (1973) and is based on the observation of Alice by 
the Red Queen in Lewis Carroll's "Through the Looking Glass" that "in 
this place it takes all the running you can do, to keep in the same place." 
In evolutionary biology, the arms race asserts that competitive co
evolution of species is seen to be a spur to the evolution of complexity 
itself, manifesting, however, no net gains in relative fitness. In socio
economic systems, the red queen principle asserts that a continuous 
application of offsetting or contravening force on the micro level can 
maintain global stability.

Robson (2003) and Markose (2005) discussed the relevance of the red 
queen principle in economics. They studied the evidence for competitive
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co-evolution in biology to see what implications it may have for the 
growth of complexity in socio-economic institutions and market 
environments. There are deep analogies and interconnections between 
biology and economics. Both disciplines concern how the properties of 
complex systems relate to the properties of their components. In the 
competition that governs the fight for scarce resources or in cases of 
direct confrontation with zero-sum payoffs, such as in parasite-host or 
predator-prey situations, what matters is the relative, rather than absolute, 
performance capabilities of the individuals. Certain attributes of 
individuals have to be enhanced relative to the same in others to maintain 
the status quo.

We have stressed that co-evolutional dynamics based on the 
Darwinian paradigm does not necessarily lead to an optimal situation. It 
can be that all agents would be better off if  they jointly deviated, in a 
correlated way, with the use of another strategy. Such a concerted action 
is beyond the means of co-evolution based on the Darwinian paradigm. 
In this sense, collective evolution is the appropriate framework.

In biology, the individual, or better yet the gene, is the unit of 
selection. On the other hand, collective systems are based on an 
analogous assumption that individuals are selfish optimizers. With 
competing populations continually striving to gain an upper hand, a 
collective evolutionary process is expected to compel agents towards 
ever more refined adaptation, resulting in sophisticated behavioral rules. 
To induce collective evolution, the behavioral rules of agents that are 
best able to outperform opponents are selectively biased in favor of 
reproduction. On the other hand, unsuccessful behavioral rules are 
discarded because behavioral rules are unlikely to reproduce. 
Furthermore, cultural interpretations of collective evolution assume that 
successful behavioral rules spread by imitation or learning by the agents.

Collective evolution from the bottom up is deeply related to 
aggregations that have strong effects on individual behaviors. Many 
organisms form aggregations that have strong effects on individual 
behaviors. The characteristics of a collective are as follows. Interactions 
among individual agents who comprise a collective are strong. That is 
internal cohesion is strong, while external interactions are weak. 
Furthermore, collectives have their own characteristics and processes
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that can be understood independently of the individuals who compromise 
them.

Collective evolution is a holistic, synergetic and complex evolutionary 
flow that cannot be split up into components. Its collective evolutionary 
dynamic rests not only on mutually coupled interactions, but also on our 
desires for realizing better outcomes by solving mutual conflicts and 
overcoming competition. Collective evolution is one that has an internal 
process for cultivating individual learning and connecting it to the 
learning of others. Thus, when faced with change, a collective system has 
the requisite energy and flexibility to move in the direction it desires. An 
individual’s ability to survive and grow is based on advantages that stem 
from core competencies that represent collective evolution.

Collectives can be treated as an additional level of organization 
between the individual and the populations or societies. The population 
can only be understood by modeling both individuals and collectives and 
the links between all three levels. Individuals belonging to a collective 
may behave very differently from individuals alone, so different traits 
may be needed to model individuals who are not in a collective. The 
behavior of collectives emerges from the traits of individual agents. 
Collectives can also represent how individual behaviors affect the 
collectives and how the state of the collective affects individuals’ states 
and their behavior. The persistence and sustainability of the collective 
system in turn depends on its persistent collective evolution.
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