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Preface

When I was asked by К. K. Phua to do a book for World Scientific based on my 
work, he suggested a volume of essays or a reprint volume. I have decided to combine 
these two suggestions into one, by preparing a reprint volume with commentaries. 
Some of the commentaries are drawn from historical articles that I have written 
for publication, others are drawn from unpublished historical accounts written for 
institutional archives, and yet others have been written expressly for this volume. In 
the commentaries, I try to relate the reprinted articles to the time-line of my career, 
and at the same time to analyze their relations with the work of other physicists 
whose work influenced mine and vice versa.

In keeping with these dual aims, I have arranged the articles and the commen
taries in approximately chronological order, but occasionally deviate from strict 
chronology in order to group topically related articles together. In choosing which 
articles to include, I have been guided by two generally coinciding measures, my own 
estimate of significance, and the citation count. However, in occasional cases I have 
included infrequently cited articles where I felt that there was an interesting related 
story to tell. Often, when finishing a line of work, I have written a long summarizing 
article or review; some of these are too long to be included in their entirety, and so I 
have included in the reprints only the sections most relevant to the narrative in the 
commentaries. Similarly, I have not included among the reprints the summer school 
lectures I have given on current algebras, anomalies, and neutrino physics, but refer
ences to them appear in the commentaries. In the last decade, I have published two 
books related to my work on generalized forms of quantum mechanics, and included 
many research results directly in these books in lieu of first writing papers. It is 
feasible to give only brief descriptions of these projects in the commentaries; I have 
included just a few papers from this period, all in the nature of follow-ons to the 
first book.

In both the texts of the commentaries and the reference lists that follow them, 
reprinted articles are identified by a sans serif R, so that for example, R1 designates 
the first reprinted article. Numbers in square brackets following each reference in 
the reference lists give the pages in the commentaries where that reference is cited. 
There is also an index of names following the commentaries, and a list of detailed 
chapter subheadings in the Table of Contents.

I wish to thank Tian-Yu Cao for a critical reading of the commentaries and much
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helpful advice, Alfred Mueller for a helpful conversation on renormalon ambiguities, 
Richard Haymaker for a clarifying email on dual superconductivity parameters, and 
William Marciano, Robert Oakes, and Alberto Sirlin for calling my attention to 
relevant references. I also wish to thank the following people for sending me help
ful comments on the initial draft of the commentaries after it was posted on the 
archive as hep-ph/0505177: Nikolay Achasov, Dimi Chakalov, Christopher Hill, Ro
man Jackiw, Andrei Kataev, Peter Minkowski, Herbert Neuberger, and Lalit SehgaJ. 
I am grateful to Antonino Zichichi for permission to use the quote from Gilberto 
Bernardini in Chapter 2, to Mary Bell for permission to use the quote from John 
Bell in Chapter 3, to James Bjorken for permission use his quote in Chapter 3, and 
to Clifford Taubes for helpful email correspondence and permission to use his quotes 
in Chapter 7.

My editor at World Scientific, Kim Tan, has given valuable assistance throughout 
this project. Miriam Peterson and Margaret Best have patiently assisted in the 
conversion of my TeX drafts to camera-ready copy and with indexing, the latter a 
task that was shared with Lisa Fleischer and Michelle Sage. I am also indebted to 
Momota Ganguli and Judy Wilson-Smith for bibliographic searches, to Christopher 
McCafferty and James Stephens for help with computer problems, and to Marcia 
Tucker and Herman Joachim for assistance, respectively, in scanning and duplicating 
certain of the papers to be reprinted. Finally, I wish to express my appreciation to the 
Institute for Advanced Study (abbreviated throughout the commentaries as IAS) for 
its support of my work, first from 1966 to 1969, when I was a Long Term Member, 
and then from 1969 onwards, when I have been a member of the Faculty, in the 
School of Natural Sciences. My work has also been supported by the Department of 
Energy under Grant No. DE-FG02-90ER40542.

In addition to the publishers acknowledged on each individual reprint, I also 
wish to thank World Scientific for the use of material originally prepared for their 
volumes commemorating the 50th anniversary of Yang-Mills theory. Chapter 3 on 
anomalies is largely based on an essay I contributed to 50 Years o f Yang-Mills The
ory., edited by G. ’t Hooft, and the parts of Chapters 7 and 9 dealing respectively 
with monopoles and projective group representations are based on an essay I wrote 
for a projected companion volume on the influence of Yang-Mills theory on math
ematics. Also, some material in Chapters 2 and 3 overlaps with the contents of a 
letter on antecedents of asymptotic freedom that I wrote to Physics Today, which 
appears in the September, 2006 issue.



C o n te n ts

COMMENTARIES

1. Early Years, and Condensed Matter Physics 1
References for Chapter 1  3

2. High Energy Neutrino Reactions, P C A C  Relations, and
Sum Rules 4

Introduction 4
Forward Lepton Theorem 6

Soft Pion Theorems 8

Sum Rules 14
More Low Energy Theorems; Weak Pion Production Redux 20
References for Chapter 2 24

3. Anomalies: Chiral Anomalies and Their Nonrenormalization, 
Perturbative Corrections to Scaling, and Trace Anomalies to
All Orders 30

Chiral Anomalies and я-0 —> 7 7  Decay 30
Anomaly Nonrenormalization 36
Point Splitting Calculations of the Anomaly 39 
The Non-Abelian Anomaly, Its Nonrenormalization and

Geometric Interpretation 41
Perturbative Corrections to Scaling 44
Trace Anomalies to All Orders 47
References for Chapter 3 49

4. Quantum Electrodynamics 55
Introduction 55 
Strong Magnetic Field Electrodynamics: Photon Splitting

and Vacuum Dielectric Constant 56
The “Finite QED” Program via the Callan-Symanzik Equations 58

Preface vii



X Adventures in Theoretical Physics

Compactification of Massless QED and Applications 60
References for Chapter 4 62

5. Particle Phenomenology and Neutral Currents 65
Introduction 65
Visits to Fermilab 65
Neutral Currents 68

References for Chapter 5 71

6. Gravitation 74
Introduction 74
First Papers 75
Einstein Gravity as a Symmetry Breaking Effect 77
References for Chapter 6 80

7. Non-Abelian Monopoles, Confinement Models, and Chiral 
Symmetry Breaking 83

Introduction 83
Non-Abelian Monopoles 83
Confinement Models 87
Chiral Symmetry Breaking 92
References for Chapter 7 94

8. Overrelaxation for Monte Carlo and Other Algorithms 98
Introduction 98
Overrelaxation to Accelerate Monte Carlo 98
Image Normalization 101
References for Chapter 8 101

9. Quaternionic Quantum Mechanics, Trace Dynamics, and 
Emergent Quantum Theory 103

Introduction 103
Quaternionic Quantum Mechanics 103
Quaternionic Projective Group Representations 104
Trace Dynamics and Emergent Quantum Theory 107
References for Chapter 9 109

10. W here Next? I l l

Index of Names in the Commentaries 112



Contents

REPRINTED PAPERS

1. Early Years, and Condensed Matter Physics

R1 Prom Elements of Radio to Elementary Particle Physics 121

R2 Theory of the Valence Band Splittings at к =  0 in Zinc-Blende and 
Wurtzite Structures

R3 Quantum Theory of the Dielectric Constant in Real Solids 128

2. High Energy Neutrino Reactions, P C A C  Relations, and Sum Rules

R4 Tests of the Conserved Vector Current and Partially Conserved
Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions

R5 Consistency Conditions on the Strong Interactions Implied by a 
Partially Conserved Axial-Vector Current

R6 Consistency Conditions on the Strong Interactions Implied by a 
Partially Conserved Axial-Vector Current. II

R7 Appendix A, from Current Algebras and Applications to Particle 
Physics (with R. F. Dashen)

R8 Calculation of the Axial-Vector Coupling Constant Renormalization 
in /3 Decay

R9 Sum Rules for the Axial-Vector Coupling-Constant Renormalization 
in /3 Decay

RIO Sum Rules Giving Tests of Local Current Commutation Relations 
in High-Energy Neutrino Reactions

R ll Neutrino or Electron Energy Needed for Testing Current 
Commutation Relations (with F. J. Gilman)

R12 Low-Energy Theorem for the Weak Axial-Vector Vertex 
(with Y. Dothan)



xii Adventures in Theoretical Physics

R13 Partially Conserved Axial-Vector Current Restrictions on 
Pion Photoproduction and Electroproduction Amplitudes 
(with F. J. Gilman) 211

R14 Possible Measurement of the Nucleon Axial-Vector Form Factor 
in Two-Pion Electroproduction Experiments
(with W. I. Weisberger) 219

R15 Photo-, Electro-, and Weak Single-Pion Production in the
(3,3) Resonance Region (excerpts) 225

3. Anomalies: Chiral Anomalies and Their Nonrenormalization, 
Perturbative Corrections to Scaling, and Trace Anomalies to 
All Orders

R16 Axial-Vector Vertex in Spinor Electrodynamics 241

R17 7г° Decay 254

R18 Anomalous Commutators and the Triangle Diagram
(with D. G. Boulware) 263

R19 Absence of Higher-Order Corrections in the Anomalous
Axial-Vector Divergence Equation (with W. A. Bardeen) 268

R20 Low Energy Theorem for 7  +  7 —> 7r +  7r -f 7r (with B. W. Lee,
S. B. Treiman, and A. Zee) 288

R21 Breakdown of Asymptotic Sum Rules in Perturbation Theory
(with W.-K. Tung) 293

R22 Bjorken Limit in Perturbation Theory (with W .-K. Tung) 297

R23 Anomalies in Ward Identities and Current Commutation
Relations (excerpt) 311

R24 Energy-Momentum-Tensor Trace Anomaly in Spin-1/2
Quantum Electrodynamics (with J. C. Collins and A. Duncan) 318



Contents xiii

4. Quantum Electrodynamics

R25 Photon Splitting in a Strong Magnetic Field (with J. N. Bahcall,
C. G. Callan, and M. N. Rosenbluth)

R26 Photon Splitting and Photon Dispersion in a Strong Magnetic 
Field (excerpts)

R27 Photon Splitting in a Strong Magnetic Field: Recalculation and 
Comparison with Previous Calculations (with C. Schubert)

R28 Quantum Electrodynamics without Photon Self-Energy Parts:
An Application of the Callan-Symanzik Scaling Equations 
(with W. A. Bardeen)

R29 Short-Distance Behavior of Quantum Electrodynamics and 
an Eigenvalue Condition for a

R30 Constraints on Anomalies (with C. G. Callan, D. J. Gross, and 
R. Jackiw)

R31 Massless, Euclidean Quantum Electrodynamics on the 5-Dimensional 
Unit Hypersphere

R32 Massless Electrodynamics in the One-Photon-Mode Approximation

5. Particle Phenomenology and Neutral Currents

R33 Three-Pion States in the K l —» Puzzle (with G. R. Farrar 
and S. B. Treiman)

R34 Some Simple Vacuum-Polarization Phenomenology: e +e~ —> Hadrons; 
the Muonic-Atom X-Ray Discrepancy and g ^ ~  2

R35 J =  | Contributions to +  N  - »  -I- N  +  тг° in the Weinberg 
Weak-Interaction Model

R36 Nuclear Charge-Exchange Corrections to Leptonic Pion Production 
in the (3,3)-Resonance Region (with S. Nussinov and E. A. Paschos)

R37 Application of Current Algebra Techniques to Neutral-Current-Induced 
Threshold Pion Production

328

333

354

358

368

395

402

419

442

445

460

462

481



xiv Adventures in Theoretical Physics

R38 Application of Current-Algebra Techniques to Soft-Pion Production 
by the Weak Neutral Current: V, A  Case 485

R39 Renormalization Constants for Scalar, Pseudoscalar, and Tensor 
Currents (with E. W. Colglazier, J. B. Healy, I. Karliner,
J. Lieberman, Y. J. Ng, and H.-S. Tsao) 507

6. Gravitation

R40 Trace Anomaly of the Stress-Energy Tensor for Massless Vector 
Particles Propagating in a General Background Metric
(with J. Lieberman) 517

R41 “No-Hair” Theorems for the Abelian Higgs and Goldstone
Models (with R. B. Pearson) 527

R42 Order-# Vacuum Action Functional in Scalar-Free Unified Theories
with Spontaneous Scale Breaking 533

R43 A Formula for the Induced Gravitational Constant 536

R44 Einstein Gravity as a Symmetry-Breaking Effect in Quantum
Field Theory 539

7. Non-Abelian Monopoles, Confinement Models, and Chiral 
Symmetry Breaking

R45 Appendix A, from Theory of Static Quark Forces 577

R46 Appendix A, from Classical Quark Statics 582

R47 Relaxation Methods for Gauge Field Equilibrium Equations 
(with T. Piran; excerpts) 584

R48 Effective-Action Approach to Mean-Field Non-Abelian Statics, 
and a Model for Bag Formation 609

R49 Flux Confinement in the Leading Logarithm Model (with T. Piran) 620

R50 The Heavy Quark Static Potential in the Leading Log and the 
Leading Log Log Models (with T. Piran) 627



Contents xv

R51 Quasi-Abelian versus Large-Nc Linear Confinement 
(with H. Neuberger)

R52 Chiral Symmetry Breaking in Coulomb Gauge QCD 
(with A. C. Davis)

R53 Gap Equation Models for Chiral Symmetry Breaking

8. Overrelaxation for Monte Carlo and Other Algorithms

R54 Over-Relaxation Method for the Monte Carlo Evaluation of the 
Partition Function for Multiquadratic Actions

R55 Overrelaxation Algorithms for Lattice Field Theories

R56 Stochastic Algorithm Corresponding to a General Linear 
Iterative Process

R57 Study of an Overrelaxation Method for Gauge Theories 
(with G. V. Bhanot)

R58 Algorithms for Pure Gauge Theory

R59 General Theory of Image Normalization (excerpt)

R60 Similarity and Affine Normalization of Partially Occluded Planar 
Curves Using First and Second Derivatives (with R. Krishnan)

9. Quaternionic Quantum Mechanics

R61 Nonadiabatic Geometric Phase in Quaternionic Hilbert Space 
(with J. Anaлdan)

R62 Coherent States in Quaternionic Quantum Mechanics 
(with A. C. Millard)

R63 Projective Group Representations in Quaternionic Hilbert Space

R64 A Rejoinder on Quaternionic Projective Representations 
(with G. G. Emch)

Stephen L. Adler: Vita

633

635

658

664

668

682

685

689

699

703

709

720

730

739

744





1

1. Early Years, and Condensed M atter Physics

A brief synopsis of my career appears in an article that I wrote recently for the Abdus 
Sal am International Centre for Theoretical Physics (Adler, 2004, Rl), which includes 
a description of events when I was young that led to my becoming a theoretical 
physicist. The focus of this article is on the career path that led to my work in high 
energy physics. However, before I published anything in high energy theory, I spent 
several summers working in industrial research laboratory jobs in condensed matter 
physics, and it was this work that led to my first scientific publications.

By the end of my junior year at Harvard, I had taken courses in quantum me
chanics and also in condensed matter physics (then called solid state physics). With 
this background, during the summer of 1960, I got a job working for Joseph Birman, 
who at that time (before going on to Professorships at New York University and then 
City College of the City University of New York) headed a section studying electrolu
minescence at the Genoral Telephone and Electronics (GT&E) Research Laboratory. 
This industrial research laboratory, formerly the Sylvania Research Laboratory, was 
conveniently located a few miles from where my family lived in Bayside, Queens. I 
had a desk in an office looking out over the entrance to the Long Island Sound, from 
which I could see sections of roadway being hoisted into place on the Throgs Neck 
Bridge, then under construction.

During my first weeks at GT&E, Joe got me started learning some basic group 
theory as applied to crystal structures, and then suggested the problem of using these 
group theory methods to check a formula that Hopfield (I960) had given relating 
band theory structures in hexagonal and cubic variants of zinc sulfide (ZnS) and 
related compounds, substances that Joe had been studying (Birman, 1959) with an 
eye to electroluminescence applications. This turned out to be basically a technical 
exercise and confirmed Hopfield’s results. In the course of this work, which I finally 
wrote up a year later (Adler, 1962a, R2), I also attempted an a priori estimate 
of a parameter determined by experimental fits to the Hopfield formula. This got 
me interested in the Ewald sum method for doing crystal lattice sums, on which 
I wrote a paper (Adler, 1961) giving generalized results for sums over lattices of 
functions f(r)Yem (6 , ф), with Yfm a spherical harmonic and f ( r )  a radial function 
representable as a transform by f ( r )  — exp (—r 2 t)g(t)dt. These two pieces of
work stemming from my summer at GT&E were my first scientific publications. 
With Joe’s encouragement, I also gave a 10 minute contributed paper (Adler and
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Birman, 1961) on the ZnS work at the New York meeting of the American Physical 
Society the following winter, while I was back home on inter-term break from college. 
Since this was my first conference talk, I typed out a text and went over it so many 
times that I knew it by heart. After my talk, Joe said words to the effect, “That 
was fine, but next time you give a talk don’t sound like it was memorized” , wisdom 
that I have taken to heart on many subsequent occasions!

When I returned to Harvard for my senior year I was told by some of the fac
ulty that Henry Ehienreich from the General Electric (GE) Research Laboratory 
was on leave at Harvard that year, and was giving the graduate course on solid 
state physics, covering substantially different material from what I had heard the 
year before. I attended Henry’s lectures, which included a calculation of the en
ergy and wave-number dependent dielectric constant in isotropic solids, using the 
self-consistent field or energy-band approximation, along the lines of the treatment 
given in Ehrenreich and Cohen (1959). I got to know Henry outside the classroom 
as well, and he invited me to work at the GE Research Laboratory in Schenectady, 
NY the following summer, after my graduation from college in June 1961. This was 
appealing in a number of ways, since my family had moved to Bennington, V T  the 
year before, about an hour’s drive away from Schenectady, and so I was able to 
drive home for a visit on weekends. At GE, Henry suggested that I generalize the 
treatment of the dielectric constant that he and Cohen had given so as to include 
various effects of interest in real solids. In the paper that resulted (Adler, 1962b, 
R3), I calculated the full frequency and wave-number dependent dielectric tensor in 
the energy-band approximation, including tensor components that couple longitu
dinal and transverse electromagnetic disturbances, which are absent in the isotropic 
approximation but are present even in solids with cubic symmetry. The longitudi
nal to longitudinal component of the general dielectric tensor reduces to the result 
obtained by Ehrenreich and Cohen when various identities (reflecting charge conser
vation and gauge invariance, as well as symmetries) are used. I also gave a method, 
based on an analysis of “Umklapp” processes that couple wave numbers differing by 
a reciprocal lattice vector, together with use of a multipole expansion, for calculating 
local field corrections to the dielectric constant, giving a modified Lorenz-Lorentz 
formula. (Local field corrections were also studied by Cohen’s student Nathan Wiser
(1963) by a different method.) My paper on the dielectric constant in real solids has 
been widely cited in the subsequent condensed matter literature, reflecting its rele
vance for spectroscopic studies of solids, as well as its generalizations to nonlinear 
dielectric behavior.

Although I had decided to focus on elementary particle theory for my graduate 
study in Princeton, I retained an interest in solid state physics, and returned to 
GE for half of the summer of 1962 to work again with Henry Ehrenreich, this time 
publishing a paper (Adler, 1963) in which I applied the dielectric constant results of 
the previous summer to the theory of hot electron energy loss in solids. Not long after
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this visit, Henry left GE to take a Professorship at Harvard, where our paths crossed 
again during my postdoctoral years. After finishing my PhD at Princeton in 1964, I 
spent the summer working at Bell Telephone Laboratories in Murray Hill, under the 
supervision of Phil Anderson and Dick Werthamer. However, aside from informal 
notes on the application of raising and lowering operators to the vortex structure in 
type II superconductors, my principal publication resulting from this final industrial 
summer job was a writeup of my work on PCAC consistency conditions, which I 
will discuss in the next chapter.

R eferen ces for C hapter 1

Adler, S. (1961). A  Generalized Ewald Method for Lattice Sums. Physica 27, 1193-1201. [1]

Adler, S. L. (1962a) R2. Theory of the Valence Band Splittings at A: =  0 in Zinc-Blende and 
Wurtzite Structures. Phys. Rev. 126, 118-122. [1]

Adler, S. L. (1962b) R3. Quantum Theory of the Dielectric Constant in Real Solids. Phys. 
Rev. 126, 413-420. [2]
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1654-1666. [2]
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Adler, S. and J. L. Birman (1961). An LCAO Theory of the к =  0 ,0 ,0  Valence Band 
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Hopfield, J. J. (1960). Fine Structure in the Optical Absorption Edge of Anisotropic Crystals.
J. Phys. Chem. Solids 15, 97-107. [1]

Wiser, N. (1963). Dielectric Constant with Local Field Effects Included. Phys. Rev. 129, 
62-69. [2]
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2. H igh Energy Neutrino Reactions, P C A C  R elations, 
and Sum Rules

Introduction

By the end of my undergraduate years at Harvard (1957-1961), I had gone through 
most of the graduate course curriculum, as well as a senior year reading course orga
nized by Paul Martin for my classmate Fred Goldhaber and me. This course gave me 
an introduction to quantum field theory, or more precisely, to quantum electrody
namics, through some of the seminal papers appearing in the reprint volume edited 
by Schwinger (1958). Although as a result of my summer research jobs I could have 
gone on relatively easily to a PhD in solid state physics, I wanted to enter particle 
physics, and moreover wanted exposure to styles of theoretical physics different from 
those I had seen already at Harvard. Hence I decided on Princeton for my graduate 
work (with strong encouragement from Harvard faculty member Frank Pipkin, who 
was an enthusiastic Princeton graduate alumnus), and enrolled there in the fall of 
1961.

My first year there was spent preparing for general exams, mostly by reading. I 
also participated in a seminar organized by the graduate students, which surveyed 
many aspects of dispersion relations and covered some topics in Feynman diagram 
calculations as well. The only formal course I took was one given by Sam Treiman, 
which gave an introductory survey to elementary particle physics. I was impressed by 
the clarity of his approach, and both because of this and because Murph Goldberger 
was planning a sabbatical leave the following year, I asked Treiman to take me on 
as a thesis student.

This turned out to be a fortunate choice. Treiman proposed that I do a thesis in 
the general area of high energy neutrino reactions, which was just then emerging as 
an area of phenomenological interest. After doing a survey of the literature in the 
field, I first did a “preliminary problem” of calculating the final lepton and nucleon 
polarization effects in the quasielastic neutrino reaction +  N  —» I +  N , with all 
induced form factors retained in the vector and axial-vector vertices (Adler, 1964a). 
I did this calculation in two ways, first by using the covariant form of the matrix 
element and Dirac 7  matrix algebra, then by using the center of mass form and 
Pauli matrix algebra, and directly checked the equivalence of the two forms of the 
answer. This convinced Treiman that I could calculate, and incidentally introduced 
me to the axial-vector current and coupling дд  which were to be central to my work 
for many years.
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After this calculation was completed, I decided to make the main focus of my the
sis a calculation of the simplest inelastic high energy neutrino reaction, that of pion 
production in the (3,3) or Д(1232) resonance region. This problem had the appeal 
of having as a paradigm the beautiful dispersion relations calculation of pion pho
toproduction of Chew, Goldberger, Low, and Nambu (1957), which was one of the 
classics of the dispersion relations program. An extension to electroproduction had 
already been carried out by Fubini, Nambu, and Wataghin (1958), but they had 
done no numerical work, and on closer examination their matrix element turned 
out to be divergent at zero hadronic momentum transfer vb  when the lepton four- 
momentum transfer squared denoted by q2  (or k2) is nonzero, There were similar 
problems (surveyed in my thesis) with the other papers then available dealing with 
pion electroproduction or weak production, so doing a complete and careful calcu
lation, including numerical evaluation of the cross sections, seemed a good choice of 
thesis topic. It was also a demanding one; although I wrote my thesis and got my 
degree in 1964, my goal of a complete calculation, including the necessary computer 
work, was not achieved until 1968.

Much of the delay though, was a result of the fact that weak pion produc
tion turned out to be a marvelous theoretical laboratory for studying the impli
cations o f conservation hypotheses for the weak vector and axial-vector currents, 
and this became a parallel part of my research program, as reflected in the title of 
my thesis “High Energy Neutrino Reactions and Conservation Hypotheses” (Adler, 
1964b). F'rom Treiman and from my reading, I had learned about the Feynman- 
Gell-Mann (1958) proposal of a hadronic conserved vector current (CVC), and I 
had also learned about the Goldberger-TYeiman (1958) relation for the charged 
pion decay constant, which they had discovered through a pioneering dispersion 
theoretic calculation of the weak vertex. A simplified derivation of this relation had 
already been achieved through the suggestion of Nambu (1960), Bernstein, Fubini, 
Gell-Mann, and Thirring (1960), Gell-Mann and Levy (1960), and Bernstein, Gell- 
Mann, and Michel (1960), that the axial-vector current is partially conserved, in the 
sense that the divergence of the axial-vector current behaves at small squared mo
mentum transfer as a good approximation to the pion field, or equivalently, is pion 
pole dominated. (Much later on, after contacts with China resumed, I learned that 
Chou (1960) had given a similar simplified derivation of the Goldberger-Treiman 
relation, as well as further applications to decay processes.) The partial conservation 
hypothesis was an appealing one, but as Treiman kept emphasizing, it was supported 
by “only one number” and therefore had to be regarded with caution. So a second 
goal of my thesis work ended up being to keep an eye out for other possible tests of 
the conservation hypotheses for the weak vector and axial-vector currents.

Before going on to discuss how these emerged from my weak pion production 
calculation, let me first recall what I knew when I started the thesis work. The first 
chapter of the thesis (written in the spring of 1964) was a theoretical survey; in
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the section headed “Partially Conserved Axial Vector Current (РС АС )” I referred 
only to the papers of Goldberger and Treiman, of Nambu, of Bernstein et al., and 
of Gell-Mann and Levy cited in the preceding paragraph. In the final section of 
the first chapter, entitled “Survey of Computations Relating to Specific Reactions” 
there is the following reference to the paper of Nambu and Shrauner (1962), which 
was my reference 37: “An entirely different approach to weak pion production in 
the low pion-energy region has been pursued by Nambu and Shrauner.37 These 
authors assume that the weak interactions are approximately 7 5  invariant ( “chirality 
conservation” ). They then obtain formulas for production of low energy pions, in the 
approximation in which the pion mass is neglected, in analogy with the treatment 
of low energy bremsstrahling (sic) in electron scattering.” At the time I started my 
calculations, neither Treiman nor I understood the relation between the Nambu- 
Shrauner work and the issue of partial conservation of the axial-vector current. This 
was partly because we were suspicious of the assumption of zero pion mass, and 
partly because the Nambu-Shrauner paper makes no reference to the axial-vector 
coupling g,4 , so it was not clear whether their “chirality” was related to the weak 
currents I was studying in my thesis. This second point is particularly significant, 
and I will return to it in considerable detail below. I was not able to determine from 
my files (by finding either a reference in my notes or a Xerox copy) when I first read 
the Nambu-Lurie (1962) paper on which the Nambu-Shrauner paper was based, 
but it was probably a year later, in early 1965.

Forward Lepton Theorem

Roughly the first year and a half of my thesis work on weak pion production was 
spent mastering the formal apparatus of Lorentz invariant amplitudes (used for writ
ing dispersion relations) and center of mass multipole expansions (used for imple
menting unitarity) and the transformations between them, the Born approximation 
structure, cross section calculations, etc. Then in the winter of 1963-1964 or the 
spring of 1964 (I can only establish dates approximately by the sequence of folders, 
since I did not date them), I began noticing things that transformed a hard and 
often dull calculation into a very interesting one (just in the nick of time, since I 
was due to finish in June of 1964 and had already accepted a postdoctoral position 
at the Harvard Society of Fellows starting in the fall semester.)

The first thing I noticed was that at zero squared leptonic four momentum trans
fer, my expression for the weak pion production matrix element reduced to just the 
hadronic matrix element of the divergence of the axial-vector current, which by the 
partial conservation hypothesis is proportional to the amplitude for pion-nucleon 
scattering. I then tried to abstract something more general from this specific ob
servation, and soon had a neat theorem showing that in a general inelastic high 
energy neutrino reaction, when the lepton emerges forward and the lepton mass is
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neglected, the leptonic matrix element is proportional to the four momentum trans
fer; hence when the leptonic matrix element is contracted with the hadronic part, 
the vector current contribution vanishes by CVC, and the axial-vector current con
tribution reduces by partial conservation (for which I coined the parallel acronym 
PCAC, which has become standard terminology) to the corresponding matrix ele
ment for an incident pion. Thus inelastic neutrino reactions with forward leptons 
can be used as potential tests of CVC and PCAC; this became a chapter of my 
thesis and was written up as a paper (Adler, 1964c, R4) as soon as my thesis was 
completed. The paper on CVC and PCAC tests was the first of three papers in 
which I found connections between high energy neutrino scattering reactions and 
properties of the weak currents; the other two were my long paper on the g ,4 sum 
rule, and a paper on neutrino reaction tests of the local current algebra, both of 
which are reprinted in this volume and will be discussed shortly.

To determine whether the C VC/PCAC test could be implemented experimen
tally, I wrote a letter to the neutrino experimentalists at CERN. After a few months 
I received a charming reply from Gilberto Bernardini, who commented ‘T he delay 
of this answer, for which I apologize very much, is due to two facts. The first is the 
known time diagram of the ‘modern physicist’ . In case you do not know it yet, I plot 
it here: (Diagram with a vertical time axis and an upwards pointing arrow; ‘work’ 
at the bottom, ‘travel &; meetings’ in the middle, and ‘dinners & ceremonies’ at the 
top.) Unfortunately, according to my age, I am already very much in the central 
region and even higher.” Bernardini then went on to say that Antonino Zichichi had 
brought my paper to his attention a couple of weeks before, and then continued with 
an analysis of technical problems in executing my proposal. There followed a further 
exchange of letters with Bernardini, with theorist John Bell, and with experimen
talists Guy von Dardel and Carlo Franzinetti. O f particular note, von Dardel wrote 
me a long letter after he read my paper, remarking that the care with which he 
read it was partly due to a skiing accident that had kept him in bed with a broken 
leg and nothing better to do, and giving a formula that he had worked out, during 
his enforced time away from experimental activities, for corrections to my theorem 
when the lepton emerges at a small angle to the forward direction. This formula 
turned out to be not quite right (there was an incorrect energy factor), but started 
me thinking about the issue, which I discussed with John Bell when I attended an 
Informal Conference on Experimental Neutrino Physics at CERN, January 20-22, 
1965. Bell had redone the calculation of the pion exchange contribution to the small 
angle correction by splitting the amplitude into spin-flip and non-spin-flip parts, 
getting a result that turned out also to be not quite right (there was a factor of 2 off 
in one term). When I got back to Harvard I repeated the calculation, according to 
my notes, by the “Bell method” , and also by a covariant method, and got a formula 
that I never published, but conveyed in letter of Feb. 10, 1965 to Bell (with copies 
to Bernardini, Block, von Dardel, Faissner, Franzinetti, and Veltman, most of whom



8 Adventures in Theoretical Physics

I had talked with when I was at CERN). The corrected small angle formula states 
that the first factor on the second line of Eq. (16) of R4 should be replaced by
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with fc2 =  m?( ko/k2 o +  /с10 /с20^2 the leptonic four-momentum transfer squared and 
with в the lepton-neutrino polar angle, assuming that the lepton-neutrino azimuthal 
angle has been averaged over.

Even before my visit to CERN, Bell (1964) had noted that when one considers 
my forward lepton formula in the context of nuclei, “the following difficulty presents 
itself: Because of absorption, pion cross sections depend on the size of large nuclei 
roughly as j42/ 3. But neutrinos penetrate to all parts of nuclei; for them cross sec
tions should contain at least a part proportional to A. This indicates for large nuclei 
a critical dependence of a(W, - q2) on g2.” Bell proceeded to use optical model meth
ods to discuss this “shadowing effect” , which has continued to be of interest over 
the years. It took many years for my forward lepton formula, and Bell’s shadowing 
observation, to be experimentally verified; for a survey of the status of both, and 
further references, see the recent conference talk by Kopeliovich (2004). An earlier 
review of Mangano et al. (2001) also discusses the experimental status of shadow
ing, and a good exposition of the theory is given in the review of Llewellyn Smith 
(1972). For specific applications of the forward lepton formula to exclusive chan
nels, see Ravndal (1973) and Rein and Sehgal (1981) for Д(1232) production, and 
Faissner et al. (1983) for coherent 7r° production (which was used to determine the 
coupling strength of the isovector neutral axial-vector current). Also, Sehgal (1988) 
and Weber and Sehgal (1991) discuss an interesting analog of the forward lepton 
theorem for purely leptonic neutrino-induced reactions.

Soft P ion  T h eorem s

Returning now to my thesis work in the spring of 1964, the second thing that I 
noticed, again working from my explicit expression for the weak pion production 
amplitude, was that when I imposed the PCAC condition at zero values of the 
hadronic energy variable v and the hadronic momentum transfer variable v>b , only 
the Born approximation pole term coming from the nucleon intermediate state con
tributed; all of the model dependent parts of the weak amplitudes dropped out. 
Thus I got what I called a “consistency condition” on the pion-nucleon scattering 
amplitude А1гЛГ(+), implied by PCAC, taking the form

gl/M  =  =  0, vB =  0, k2 =  0)/K NN*(k? =  0),

with gT the pion-nucleon coupling constant, M  the nucleon mass, —к2 the squared 
mass of the initial pion (the final pion is still on mass shell), and with K NNn(0 ) the
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pionic form factor of the nucleon, normalized so that K NN'ir(-M .%) =  1 . This seemed 
absolutely remarkable, and I immediately proceeded to do a dispersion relation 
evaluation of the pion-nucleon amplitude on the right, using the Roper (1964) phase 
shift analysis as input, and assuming that the effects of off-shell continuation in 
^ttN(+) ^  wen ^  were smaji jn getting up this calculation, I used several
theoretically equivalent ways of writing the subtracted dispersion relation to get an 
estimate of the errors in the analysis. The Christenson-Cronin-Fitch-Turlay (1964) 
experiment on CP violation had a substantial block of computer time reserved for 
analysis, and courtesy of them I was able to use a small amount of their time to 
run my programs, a few days before I was scheduled to give a talk at Columbia. I 
recall staying up all night to get the job done, and at one point, in the wee hours 
of the morning, dropping my deck of cards and then having to spend precious time 
getting them back in the proper order. But I did get my calculation done by morning 
(and never again attempted an “all-nighter” .) The relation worked very well, and 
as Treiman later said, “now there is a second number” ; PCAC was starting to look 
interesting. This work became the final chapter of my thesis.

Immediately after finishing my thesis I took a summer job at Bell Laborato
ries at Murray Hill, nominally working for Phil Anderson. I wanted to learn about 
superconductivity, and Phil assigned me to work for Dick Werthamer. I did learn 
about the BCS and Ginzburg-Landau theories, and Abrikosov vortices in type-II 
superconductors, but I did not succeed in my project with Dick, which was to try 
to understand the resistance to vortex line motion using thermal Green’s functions. 
A few weeks before the end of the summer, I asked for and got Phil’s permission to 
spend some time writing a paper on the pion-nucleon consistency condition (Adler, 
1965a, R5), which I also then extended to pion-pion and pion-lambda scattering. In 
the pion-pion case, since there are no pole terms, the consistency condition takes the 
form that the pion-pion scattering amplitude with one zero mass pion, evaluated at 
the symmetric point s — t — и =  is zero. This was the first example of a soft 
pion zero or, as termed in the literature, “Adler zero” , in non-baryonic amplitudes, 
that I will return to shortly. Knowing that I was planning to go on in particle theory, 
Phil told me one day that he had an interesting paper to show me, which had just 
been submitted to the journal Physics which he was editing. It was Gell-Mann’s
(1964) paper on current algebra; Phil let me read it, but not Xerox it. This was to 
prove decisive for my work on sum rules nine months later. My interactions with 
Phil however were brief, and never touched on the subject of symmetry breaking in 
superconductivity and particle physics, on which Phil had written a paper (Ander
son, 1963) that I learned of only many years later, that was a forerunner of work on 
the “Higgs mechanism” for giving masses to vector bosons.

In the fall of 1964 I moved to Harvard as Junior Fellow in the Society of Fel
lows, sharing a postdoc office next to the office occupied by Henry Ehrenreich in
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the Applied Physics division. (Henry had recently left General Electric to accept 
a Professorship at Harvard.) In principle I was going to do solid state physics as 
well as particle theory, but that never happened. I spent the fall term working on 
numerical aspects of my weak pion production calculation, and also reading papers 
on attempts to calculate the axial-vector renormalization constant дд , including the 
papers of Gell-Mann and Levy (1960) and Bernstein, Gell-Mann and Michel (1960).
I had a hunch that the fact that дд is near one was somehow connected with PCAC, 
but I did not see a concrete way of exploiting PCAC in a calculation. I also was 
starting to think about how to make the PCAC consistency condition calculations 
independent of the cumbersome Lorentz invariant amplitude apparatus that I had 
used to get them. I soon found that the relevant terms could be isolated directly from 
the Feynman diagrams without invoking all the formal kinematic apparatus of my 
thesis, and this approach extended to a general matrix element as well; the strategy 
was the same one that I had used in the paper on CVC and PCAC tests, of going 
from a particular observation in the context of my weak pion production calculation 
to something more general. The result was a formula for soft pion production, in 
terms of external line insertions on the hadronic amplitude for the same process 
in the absence of the pion (Adler, 1965b, R6). For baryons of nonzero isospin, the 
insertion factors are nonzero, while for isospin zero baryons, and mesons such as the 
pion or kaon, the insertion factor vanishes. This latter result generalizes the soft-pion 
zero or “Adler zero” to the emission of a soft pion in any reaction involving only 
incoming and outgoing mesons, but no external baryons. These zeros continue to 
play a role in the analysis of experimental results on mesonic resonances; for recent 
discussions, see Bugg (2003, 2004) and Rupp, Kleefeld, and van Beveren (2004).

The soft pion zeros are an indication that according to PCAC, the pion cou
pling to other hadrons is effectively pseudovector, and not pseudoscalar. When I 
visited CERN in late January of 1965, while in the midst of work on the Feynman 
diagram approach to the PCAC consistency conditions, I found that Veltman had 
been thinking in a similar direction, but had not reached the point of writing down 
external line insertion rules. Veltman gave me a one page memo to file that he had 
written, which pointed out that my PCAC consistency conditions are equivalent to 
pseudovector coupling, which implies the vanishing of invariant amplitudes for soft 
pion emission after singular terms are split off. Veltman also noted that Feynman 
had briefly remarked on the relation between the Goldberger-Treiman relation and 
pseudovector coupling in his conference summary talk at Aix-en-Provence in 1962, 
and gave me a copy of the relevant page. Feynman did not, however, report agree
ment with experiments on pion-nucleon scattering, apparently because he did not 
recognize the necessity of splitting off the singular Born terms before concluding 
that pion emission amplitudes vanish in the soft pion limit.

In the course of my work on the insertion rules I remembered the paper of Nambu 
and Shrauner (1962) which I had briefly mentioned in the Introduction to my thesis;
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I now looked this up, as well as the paper of Nambu and Lurie (1962) on which it 
was based, and saw that my final formula, when specialized to the case of an ingoing 
and outgoing nucleon line, was substantially the same as the pion bremsstrahlung 
formula of Nambu and Lurie. I noted this in my paper, and consistently referred to 
the Nambu papers from this point on. In recognition of Nambu’s work, I used his 
notation x  and term “chirality” to refer to the integrated axial-vector charge in my 
next two papers, which dealt with the дл sum rule; however, in modern terms this 
is a misnomer, since chirality is now used to mean the left- or right-handed sums of 
vector and axial-vector charges. Gell-Mann’s notation for the axial-vector charges 
has become the standard one, and after these two papers I followed the Gell-Mann 
notation.

The comparison with Nambu’s approach also raised the issue of the role of the 
pion mass: do the PCAC results limit smoothly to the zero pion mass ones, for which 
the soft pion theorem derivations appear quite different? This point was dealt with in 
footnote 6 of my paper R6, where I showed that the limits, (1) pion mass approaches 
zero, and (2) pion four momentum transfer squared approaches zero, can be taken 
in either order; the same soft pion theorem results, although the contribution which 
comes from the massless pion pole when the limit (1) is taken first, comes instead 
from the axial-vector divergence when the limit (2) is taken first. This point is now 
taken for granted, but in the early years it caused me (and others) considerable 
confusion. After this paper I almost immediately got involved with sum rules, and 
so I did not publish the detailed connection between my second PCAC paper and 
the Nambu-Lurie approach until a few years later, when I included it as “Appendix 
A ” of Chapter 2 of the book on Current Algebras which I put together with Roger 
Dashen (Adler and Dashen, 1968). This appendix is reprinted here as R7. At the 
end of Appendix A, I again discussed the relationship between the zero pion mass 
and nonzero pion mass calculations. The analysis of Appendix A also shows how the 
PCAC approach to soft pion theorems that I had developed fixes the undetermined 
renormalization constant appearing in the chirality approach of Nambu-Lurie. In 
the formulas of Appendix A, there are factors of дл that axe missing in the formulas 
of the papers of Nambu, Lurie, and Shrauner. Correspondingly, in the paper of 
Nambu and Lurie, in the discussion associated with their Eq. (2.7), they noted that 
a renormalization constant Z  appears, but didn’t observe that this can be precisely 
identified as дл- Instead, they redefined their chirality as Z -1 X, that is as (5 л ) 1*- 
They then made a compensating adjustment in the pion decay constant in their Eq. 
(4.5), where they dropped the дл factor which appears in the Goldberger-Treiman 
relation. Nambu and Lurie say there, “1/A is more or less the conventional pion 
coupling constant 1/A — /  =  g/2m. (4.5) It is not proven, however, that this agrees 
with the coupling constant defined in the dispersion theory. For the time being, we 
assume it to be the case.” In the subsequent paper of Nambu and Shrauner (1962), 
an identification of f  with the standard pion-nucleon coupling was established, but
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the issue of where to include factors of дд was not addressed. My impression from 
this was that there was some uncertainty in the minds of Nambu and his students 
about how the chirality is to be normalized, and this impression was reinforced 
by a conversation I later had with Nambu about their work and my Appendix A 
derivation of their result.

In the low energy theorem for one soft pion which Nambu and Lurie had derived, 
and which I had obtained from PCAC and the Feynman rules in my second PCAC 
paper, the gA factor drops out, and so the normalization of the axial-vector charge or 
“chirality” is irrelevant. The applications discussed in the papers of Nambu, Lurie, 
and Shrauner all involved only one soft pion; Nambu and Lurie looked, for example, 
a.t n +  N  —> tt +  N  +  n, with the final pion soft but with the other pions “hard” ; in 
fact, what they actually did was to calculate single soft pion emission in the reaction 
7Г -Ь JV —» Д(1232). Similarly, Nambu and Shrauner (1962) analyzed single soft pion 
electroproduction and weak production, relating them to the form factors of the 
vector and axial-vector currents. In this paper they included current commutator 
terms by analogy with the classic Low (1958) paper on bremsstrahlung; their answer 
for electroproduction is correct because the дд  factor drops out there anyway, but 
their answer for weak axial-vector production lacks дд  factors in places, for reasons 
explained in the next paragraph. A follow-up paper of Shrauner (1963) dealt with 
single soft pion production in pion-nucleon scattering, with the scattering pions 
“hard” . My “PCAC consistency condition” was likewise a single soft pion theorem 
which gives a relation between the amplitude for 7r +  N  —♦ N +  vr, with the final 
pion soft, and the amplitude 7r N  —> N, which is just the pion-nucleon coupling 
constant, and involves no factors of дд.

The factors of дд  and the explicit identification of the “chirality” with the charge 
associated with the axial-vector current become important, however, if one wants to 
discuss multiple soft pion production, and also weak axial-vector pion production, 
since one then encounters commutators of an axial-vector charge with an axial-vector 
charge or current, which are evaluated by the Gell-Mann current algebra. If one 
defines the relevant chirality as (^л) - 1  times the axial-vector charge, as is implicit 
in the Nambu-Lurie paper when one identifies their Z  with gA, then the relevant 
commutator is (д д ) ~ 2 times a vector charge, which at zero momentum transfer just 
gives (gA)~2. This is in fact the origin of the (дд ) ~ 2 term in the дд  sum rule, where 
the difference between (дд ) ~ 2 and 1 is highly significant. The point, then, is that 
while Nambu and Lurie gave a correct formula for single soft pion production, it in 
fact cannot be generalized to multiple soft pion production (or soft pion production 
by the weak axial-vector current) without first dealing carefully with the question 
of normalization, as I did in my second PCAC paper R6 and in Appendix A of the 
book on current algebras R7.

Another difference between the work of Nambu and his students, and what I 
did in my first PCAC consistency condition paper R5, related to the method of
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comparison with experiment, and the level of accuracy claimed for soft pion pre
dictions. The Goldberger-Treiman relation is good to about 7 % accuracy, and my 
comparison of the PCAC consistency condition with experiment also indicated that 
the relation was satisfied to about 1 0 %, thus reinforcing the idea that PCAC could 
be used as a quantitative tool for studying the strong interactions, with the residual 
errors arising from the extrapolation of the pion four-momentum squared fc2 from 
M 2 to 0 . Given that the pion mass is much smaller than all other hadron masses, an 
extrapolation error ~  M^/^hadron — *s reasonable. The success of the дл sum 
rule shortly afterwards gave further support to the idea that PCAC gives quanti
tatively accurate predictions. Nambu, Luri£, and Shrauner, however, argued only 
for qualitative agreement between their soft pion results and experiment based on 
comparisons of rescaled angular distributions, but did not find anything close to 
~  10% agreement for absolute cross sections. For example, for the relation between 
the cross sections for pion-nucleon scattering with production of an additional pion, 
and pion-nucleon scattering, Nambu and Lurie (1962) showed agreement with their 
predictions to within roughly a factor of three (giving a predicted cross section of
0.2 mb versus experimental values in the range 0.6 to 0.7 mb). Similarly, for the 
same reaction Shrauner (1963) found that “the magnitudes of the cross sections 
seem to be significantly underestimated by a factor of about 7” . The source of these 
discrepancies is not clear. They may be due, in part, to the fact that, instead of 
testing the soft pion predictions at the kinematic point of zero pion four momentum 
(such as the point v — vg  =  0 used in my PCAC consistency condition work), 
Nambu, Lurie, and Shrauner did the comparisons in energy intervals above scat
tering threshold. (However, Shrauner argues, on the basis of branching ratios,that 
the discrepancy is probably not attributable to an overlap of the Д(1232) resonance 
with the comparison region.) I think that a combination of lack of clarity about how 
their chiral current was related to the physical axial-vector current, as reflected in 
the normalization problems noted above, together with the lack of striking quanti
tative comparisons with experiment, were responsible for the work of Nambu and 
his students being largely unnoticed by the community. It was only after the quan
titative successes of PCAC in my consistency condition paper and in the дл  sum 
rule that followed shortly afterwards, and my demonstration of the equivalence be
tween the PCAC insertion rules and the chirality conservation approach, that the 
significance of the work of the Nambu group became clear.

Finally, as an historical footnote to this discussion of soft pion theorems, Tou- 
schek (1957) appears to have been the first to introduce continuous 7 5  symmetry 
transformations, as applied to the neutrino field, and to observe that invariance un
der these transformations requires that the neutrino mass be zero. Nishijima (1959) 
(in work submitted for publication in late 1958) considered continuous 7 5  symmetry 
transformations in theories of massive fermions; to preserve 7 5  invariance he gauged 
the transformations with a massless pseudoscalar boson, transforming as В —» B  +  \
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under a 75 transformation with parameter A. The action written in Nishijima’s pa
per is just the effective action one would now write for a singlet Nambu Goldstone 
boson (such as an axion) coupled to a massive fermion. Nambu (1959), in remarks 
at the Kiev Conference, noted the analogy between 75  symmetry in particle physics 
and gauge invariance in superconductivity, and related this to his suggestion that 
a nucleon-antinucleon pair in a pseudoscalar state could be the pion. This idea was 
further developed in the well-known paper Nambu and Jona-Lasinio (1961), that 
laid the basis for the modern theory of Nambu-Goldstone bosons associated with 
spontaneous symmetry breaking, and for the fact that most of the mass of the nu
cleon comes from chiral symmetry breaking. In the meantime, Giirsey (1960) had 
introduced isovector 75  transformations, as an extension of the similar isoscalar 
transformations used by Nishijima, and constructed a precursor to nonlinear pion 
effective Lagrangians. These papers all contained important seeds of our present-day 
understanding of chiral symmetries.

Sum Rules

I have now gotten ahead of the chronological story; a lot of things happened very 
fast in 1965. In the fall of 1964 I started thinking about the question of the renor
malization of the nucleon axial-vector coupling g&, and accumulated a file of papers 
on the subject. However, my attempts at a calculation were based on the commu
tator of the nucleon field with the weak axial-vector charge, giving results identical 
to those already obtained by Bernstein, Gell-Mann, and Michel (1960), which ex
pressed дл in terms of unmeasurable off-shell form factors, but achieving no further 
progress. In early 1965 I saw a preprint of Fubini and Furlan (published as Fubini 
and Furlan, 1965) which applied the commutator of vector current charges, together 
with the ingenious idea of going to an infinite momentum frame, to calculate the 
radiatively induced renormalization of the vector current. (Harvard did not have a 
preprint library in those days, but Schwinger’s secretary Shirley would let me into 
his office from time to time to look through the unread preprints that were stacked 
on his desk. This presented no difficulty since Schwinger was a night-owl who mainly 
worked at home, and used his office only a few hours a week, when he came in to 
lecture and to see students. That is how I became aware of the Fubini-Furlan pa
per. As a result of this experience, one of the first things I did when I arrived at 
the Institute for Advanced Study eighteen months later was to start a preprint li
brary for the particle physicists.) I immediately thought about applying this to the 
axial-vector current, using the Gell-Mann current algebra that I’d seen the previous 
summer at Bell Labs. However, because of other things I was working on I didn’t get 
around to it until a few months later, when in a chance encounter Arthur Jaffe told 
me that he had heard a talk by Roger Dashen about work he and Gell-Mann had 
been doing on sum rules. I decided I had better stop delaying (although it turned
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out that Dashen and Gell-Mann were working on fixed momentum transfer sum 
rules), dropped my weak pion production computer work, and spent spring break 
working out the consequences of combining the Gell-Mann current algebra, PCAC, 
and the Fubini-Furlan method. It turned out to be surprisingly easy, with the infi
nite momentum frame solving a problem I had encountered in earlier attempts to 
calculate дд, which is that the axial-vector charge matrix element is proportional to 
the nucleon velocity, and vanishes for nucleons at rest. I soon had a formula relating 
the difference between 1  and (дл ) ~ 2 to a convergent integral over a difference of 
pion-nucleon cross sections,

, 1 4M l  1 /•“  W dW  ,
‘ TA-  ]Ин+м. ип-мг|’»т ' ,’"(я,1 '

with Mi, and Мдг the pion and nucleon masses, (Jq (W )  the total cross section for 
scattering of a zero-mass on a proton at center-of-mass energy W , and again with 
K NN*(0) the pionic form factor of the nucleon, normalized so that K NN‘" (—M%) —
1 . I first tried to saturate the integral in the narrow Д(1232) approximation, and 
the result was a disappointing qa — 3. I then pulled out the computer deck I 
had used for the consistency condition numerical work the previous year, did the 
integral carefully, and got qa =  1.24. I also observed that the relation for дд  could 
be equivalently recast as a two-soft pion low energy theorem,

1 - 2  
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Here A kN^  and £ * * ( - )  are the isospin-odd pion-nucleon scattering amplitudes, 
v and i>b are again the energy and momentum transfer variables, and are
the initial and final pion masses, which are now both off shell. A few days after I 
submitted a letter to Physical Review Letters, Sidney Coleman returned from a trip 
to SLAC and when I described my results to him, he told me that he had just heard 
about a similar calculation being done there by Bill Weisberger, whose points of 
departure were the same as mine: the Gell-Mann current algebra, the Fubini-Furlan 
paper, and my paper on PCAC consistency conditions. I talked to Weisberger by 
phone, and then called PRL and asked them to delay publication of my letter until 
they received the manuscript Weisberger was preparing. My paper (Adler, 1965c, 
R8 ) and Weisberger’s (Weisberger, 1965) appeared as back-to-back letters in the 
June 21 issue. They give substantially identical derivations; Weisberger’s numerical 
result of 1.16 differed from mine of 1.24 because I had included a correction for the 
off-pion-mass-shell extrapolation of the threshold phase space factor associated with 
the Д(1232) resonance, which I knew from my work on weak pion production could 
be reliably estimated. At the time, this correction made agreement with experiment 
worse (the experimental value for gA was then 1.18), but the best value now has
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settled down to gA -  1.257 ±  .003, in gratifyingly good agreement with the value I 
got when I included the kinematic extrapolation correction. Weisberger and I both 
submitted longer papers to Physical Review describing our work (Adler, 1965d, 
R9); Weisberger (1966). These emphasized the low energy theorem approach to 
the relation for дл, giving historically the first two-soft pion low energy theorem. 
In my paper I also gave an analog for pion-pion scattering, and then in the final 
section (Adler, 1965. R9, Section V), I returned to the observation that I had made 
a year earlier about forward lepton scattering, and showed that the дд  sum rule 
could be converted to an exact relation, involving no off-shell PCAC extrapolation, 
for forward inelastic high energy neutrino reactions. This relation, which provided 
a test of the Gell-Mann current algebra of axial-vector charge commutators, was 
another indication of a deep connection between the structure of currents on the 
one hand, and inelastic lepton scattering on the other.

The gA sum rule provided yet a third result supporting the use of PCAC as a 
method for calculating soft pion processes. Simultaneously, it was a stunning success 
for Gell-Mann’s brilliant idea of abstracting the current algebra from the naive quark 
model, with the hope that it would prove to be a feature that would also be valid 
in the then unknown theory of the strong interactions. At this point the whole 
community took notice, and a string of current algebra/PCAC applications appeared 
in rapid succession. To mention just a few, Weinberg (1966a) and Tomozawa (1966) 
reexpressed the soft pion theorems for pion-nucleon scattering, coming from my 
consistency condition papers and the дл sum rule papers, in the form of formulas 
for the pion-nucleon scattering lengths, and Weinberg in the same paper also used my 
result of a PCAC zero in pion-pion scattering, plus a symmetry argument, as inputs 
for a derivation of pion-pion scattering lengths. Weinberg (1966b) also generalized 
the two-soft pion low energy form of the g j4 sum rule to a general formula for multiple 
soft pion production. Finally, in another striking application of soft pion theorems, 
Callan and Treiman (1966) gave a series of important results for К  meson decays, 
in which the role of rapidly varying pole terms was clarified in Weinberg (1966c).

In connection with the g j4 sum rule, I have an interesting Feynman anecdote 
to relate. I spent the spring term of 1966 as a member of Murray Gell-Mann’s 
postdoctoral group at Cal Tech. A few weeks after I arrived, Feynman asked me to 
stop by his office to look at some pages in his notebook, in which he had almost 
derived the gJ4 sum rule, before Weisberger and I did it. The whole expression was 
there (including the kinematic correction that I had included for the off-mass-shell 
extrapolation), except that, where the Gell-Mann algebra had dictated a 1 coming 
from the commutator of two axial-vector charges giving an unrenormalized vector 
charge, Feynman had put 0! So numerically the relation did not work, and Feynman 
had given up on it and gone on to other things. He evidently had not paid attention 
to Gell-Mann’s current algebra, or at least not realized, from his heuristic way of 
doing things, that it was essential for this calculation.
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Returning again to events in 1965, as soon as the long paper on дд  was com
pleted, I departed to be a summer visitor at CERN. There I met Murray Gell-Mann 
for the first time, and had long conversations with him. Murray was particularly 
interested in the Section V  relation between the current algebra of vector and axial- 
vector charges and forward high energy neutrino reactions, and urged me to try to 
extend it to a test of the local current algebra which he had given in his Physics 
paper (Gell-Mann, 1964). I spent the summer working on this, and found that I 
could do it; as I recall, the crucial bits came together when I spent a day work
ing at a kitchen table during a week off for holiday at Lake Garda. The results 
were written up in the late summer of 1965 at CERN and/or Harvard, and ap
peared in Adler (1966), RIO. This article gave the first detailed working out of the 
structure of deep inelastic high energy neutrino scattering (the electroproduction 
case was given independently in the review of de Forest and Walecka (1966)), with 
both the electroproduction and neutrino cases specific examples of general local 
lepton coupling theorems given by Lee and Yang and by Pais, as referenced in my 
article RIO. However, the a, /3 ,7  notation that I used for the structure functions 
did not become the standard one; the now standard з structure functions, 
which follow the notation of de Forest and Walecka and were further popularized 
by Bjorken, are linearly related to the ones I used. [Specifically, I separated the 
cross section into strangeness-conserving and strangeness-changing pieces, whereas 
the current convention is to define the structure functions as the sum of both. At 
zero Cabibbo angle, the relation between my a, /3 ,7  and the conventional W i ^  is 
a  — W i, /3 =  2 Mjv7  =  W3 , w’th Мдг the nucleon mass. For general Cabibbo 
angle вс, one has cos2 в с ( 3 ^C^|Asj=l =  ^ 2 °, w'th similar relations for 
the other two structure functions.] The article actually gave three sum rules; two for 
the a  and 7  structure functions which subsequent analysis by Dashen showed to be 
divergent and hence useless, and one for the /3 deep inelastic amplitude which is a 
convergent and useful relation. The beta sum rule divides into axial-vector and vec
tor parts, which are separately given as Eqs. (53a) and (53b) respectively of Adler 
(1966), RIO, and which when added to give the total A S  =  0 cross section yield
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This sum rule (and the ones for the separate vector and axial-vector contributions) 
has the notable feature that the left-hand side is independent of q2, even though the 
Born term contributions and the continuum integrand on the right axe g2-dependent. 
At zero squared momentum transfer q2, the axial-vector part of the /3 sum rule 
reduces to the relation I gave in my long paper on g&, which had prompted Gell- 
Mann’s question about a generalization; the first derivative of the vector part with 
respect to q2  at q2  =  0 gives the sum rule also derived by Cabibbo and Radicati 
(1966) using moments of currents. Because the neutrino and antineutrino differential
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cross sections d?ajd(q^)d\Vaxe dominated by the /3 structure function in the limit 
of large neutrino energy, by integrating over W  one gets the limiting cross section 
relation (at zero Cabibbo angle)

lim
E,/-*oo

da(p +  p) da(v +  p) G2

d{q2) d{q2)
with G the Fermi constant. Similar relations at non-zero Cabibbo angle are given 
in Eq. (27) of RIO, and it is easy to obtain analogous relations for the vector and 
axial-vector contributions to the cross sections taken separately.

In late October of 1965 I spoke on “High Energy Semileptonic Reactions” at the 
International Conference on Weak Interactions held at Argonne National Labora
tory (Adler, 1965e), in which I gave the first public presentation of the local current 
algebra sum rules for the /3 deep inelastic neutrino structure functions, and the lim
iting relations for the differential cross sections that they imply. In the published 
discussion following this talk, in answer to a question by Fubini, I noted that the /3 
sum rule had been rederived by Callan (unpublished) using the infinite momentum 
frame limiting method, but that the a  and 7  sum rules could not be derived this 
way, reinforcing suspicions that “the integral for /3 is convergent, while the other 
two relations (for a  and 7 ) really need subtractions.” Bjorken was in the audience 
and was intrigued by the /3 sum rule results, and soon afterwards converted them 
into a differential cross section inequality (Bjorken, 1966, 1967) for deep inelastic 
electron-nucleon scattering, for which there was the prospect of experimental tests 
relatively soon. To see why the neutrino cross section relation given above implies 
an inequality for electron scattering, one notes that since the v +  p differential cross 
section is positive, the right-hand side G 2 / 7Г gives a lower bound for the V +  p dif
ferential cross section, with a similar lower bound holding for the vector current 
contribution alone. But noting that according to С VC, the vector weak current is 
in the same isospin multiplet as the isovector part of the electromagnetic current, 
and using the Wigner-Eckart theorem, one gets a corresponding lower bound for the 
inelastic differential cross section induced by an isovector virtual photon scattering 
on a nucleon. One then notes that in the scattering of a virtual photon on a target 
containing equal numbers of neutrons and protons, the isovector and isoscalar cur
rents add incoherently, and so the isovector current contribution alone gives a lower 
bound. Combining the two bounds, and including an extra l /( f c 2) 2 for the virtual 
photon propagator, replacing G by the fine structure constant a, and keeping track 
of numerical factors, one gets Bjorken’s electron scattering result

d[cr(e +  p) +  сг(е +  n)] 27га2 
E c — oo d i k 2 )  >  (fc2 ) 2 ’

which was testable in the experiments soon to begin at SLAC. Verification of my 
neutrino sum rule, on the other hand, took two decades and more; see Allasia et 
al. (1985) for the first reported test, and Conrad, Shaevitz, and Bolton (1998) for
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more recent high precision results. For a recent study of my neutrino sum rule, in 
comparison with the Gottfried (1967) sum rule for electron-proton scattering, within 
the framework of the large N c expansion of QCD with Nc colors, see Broadhurst, 
Kataev, and Maxwell (2004) and Kataev (2004).

Although not directly tested until many years after it was derived in 1965, my 
neutrino sum rule had important conceptual implications that figured prominently 
in developments over the next few years. To begin with, it gave the first indica
tions that deep inelastic lepton scattering would give information about the local 
properties of currents, a fact that at first seemed astonishing, but which turned out 
to have important extensions. Secondly, as noted by Chew in remarks at the 1967 
Solvay Conference (Solvay, 1968), the closure property tested in the sum rules, if 
verified experimentally, would suggest the presence of elementary constituents in
side hadrons. In a Letter (Chew, 1967) published shortly after this conference, Chew 
argued that my sum rule, if verified, would rule out the then popular “bootstrap” 
models of hadrons, in which all strongly interacting particles were asserted to be 
equivalent ( “nuclear democracy” ). In his words, “such sum rules may allow con
frontation between an underlying local spacetime structure for strong interactions 
and a true bootstrap. The pure bootstrap idea, we suggest, may be incompatible 
with closure.” In a similar vein, Bjorken, in his 1967 Varenna lectures (Bjorken, 
1968), argued that the neutrino sum rule was strongly suggestive of the presence 
of hadronic constituents, and this was also noted in the review of Llewellyn Smith 
(1972).

These conceptual developments still left undetermined the mechanism by which 
the neutrino sum rule, and Bjorken’s electron scattering inequality, could be sat
urated at large q2. During my visit to Cal Tech in 1966, I renewed my graduate 
school acquaintance with Fred Gilman and worked with him on two projects. One 
was an analysis of the saturation of the neutrino sum rule for small q2 (Adler and 
Gilman, 1967, R ll) , in which we concluded that SLAC (soon to start operating) 
would have enough energy to confront the saturation of the nonzero q2 sum rules 
in a meaningful way. In this paper, we noted that the (3 sum rule posed what at 
the time was a puzzle: the left-hand side of the sum rule is a constant, while the 
Born terms on the right are squares of nucleon form factors, which vanish rapidly as 
the momentum transfer q2 becomes large. The low lying nucleon resonance contri
butions on the right were expected to behave like the Д(1232) contribution, which 
is form factor dominated and also falls off rapidly with q2. Hence it was clear that 
something new and interesting must happen in the deep inelastic region if the sum 
rule were to be satisfied for large q2: “to maintain a constant sum at large q2, the 
high W  states, which require a large E  to be excited, must make a much more 
important contribution to the sum rules than they do at q2 =  0” . We were cau
tious, however (too cautious, as it turned out!), and did not attempt to model the 
structure of the deep inelastic component needed to saturate the sum rule at large
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q2. Bjorken became interested in the issue of how the sum rule could be saturated, 
and formulated several preliminary models that (in retrospect) already had hints of 
the dominance of a regime where the energy transfer v grows proportionately to the 
value of q2. I summarized these pre-scaling proposals of Bjorken in the discussion 
period of the 1967 Solvay Conference (Solvay, 1968), which Bjorken did not attend, 
in response to questions from Chew and others as to how the neutrino sum rule 
could be saturated. The precise saturation mechanism was clarified (to a very good 
first approximation) some months after the Solvay conference with the proposal by 
Bjorken (Bjorken, 1969) of scaling, and soon afterwards, with the experimental work 
at SLAC on deep inelastic electron scattering, that confirmed Bjorken’s intuition. 
For a very clear exposition of the relation between scaling and the neutrino sum 
rule, see Sec. 3.6B of Llewellyn Smith (1972), who notes that when the sum rule is 
rewritten in terms of Bjorken’s scaling variable cj, “The simplest way to ensure the 
Q2 [my q2} independence of the left-hand side as Q 2  —* oo is to assume that the 
limit in eq.(3.71) [in my notation, limQ2_ 00^fixed P ^ (u j ,Q 2 /M^)] exists” .

More Low Energy Theorems; Weak Pion Production Redux

In the fall of 1965 I received an invitation from Oppenheimer, which I accepted, to 
come to the Institute for Advanced Study as a long term member with a five year 
appointment, starting in the fall of 1966. Roger Dashen, whom I had met briefly 
when he visited Harvard earlier in 1965, received a similar invitation. The intent 
behind our appointments was that we would reinvigorate high energy theory at the 
Institute, which had fallen into a decline with the departures of Lee, Yang, and Pais 
to professorships elsewhere, and with a turn of Dyson’s research interests towards 
astrophysics.

Before going to Princeton, as mentioned above, I spent the spring term of 1966 
as a postdoc in Murray Gell-Mann’s group at Cal Tech. By this time the successes of 
PCAC and current algebra had attracted a lot of attention and stimulated an out
pouring of papers, the more important ones of which appear in the volume which 
Dashen and I put together a year later. My own work in the spring of 1966 was 
focused on two issues. The first involved using PCAC to get small momentum ex
pansions of matrix elements of the axial-vector current, in analogy with the paper of 
Low (1958) on soft photon bremsstrahlung. With Joe Dothan, I wrote a long paper 
(Adler and Dothan, 1966, R12) applying these ideas to the weak pion production 
amplitude and to radiative muon capture. The weak pion results figured in my later 
comprehensive paper on the subject (see below), while the radiative muon capture 
work was incorporated into later chiral perturbation theory treatments of radiative 
muon capture; for a review of the current theoretical and experimental status of 
muon capture, including a discussion of discrepancies between theory and exper
iment in the radiative capture case, see Gorringe and Fearing (2004). The other
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direction of work involved two phenomenological studies done with Fred Gilman. 
One of these dealt with saturation of the neutrino sum rule, as described in the pre
ceding section. The other dealt with a detailed phenomenological study of the PCAC 
predictions for pion photo- and electro-production (Adler and Gilman, 1966, R13), 
including a saturation analysis for the Fubini-Furlan-Rossetti (1965) sum rule; for 
a recent update on this, see Pasquini, Drechsel, and Tiator (2005).

My first year at the Institute was largely devoted to writing the book on Current 
Algebras with Roger Dashen (Adler and Dashen, 1968). The book consisted of se
lected reprints grouped by categories with commentaries that we supplied, plus some 
general introductory material. I was responsible for writing the introductory sections 
and the commentaries for Chapters 1-3, which included Appendix A, reprinted here 
as R7. Roger was responsible for the commentaries for Chapters 4-7, which included 
an original and very detailed analysis of precisely which sum rules could be derived 
by the infinite momentum frame method, or in different language, when a naive 
assumption of unsubtracted dispersion relations would (and would not) give correct 
results. This analysis confirmed earlier suspicions that my /3 neutrino sum rule was 
correct, but that the a  and 7  sum rules should have subtractions, and so were not 
useful. The book on Current Algebras was completed, and sent off to the publisher, 
in the fall of 1967.

During this period I also worked with Bill Weisberger, who was then at Prince
ton, on sorting out the tricky pion pole structure in two pion photo- and electro
production, which had to be handled carefully to get a fully gauge-invariant ex
pression (Adler and Weisberger, 1968, R14). Our interest in this process, as noted 
in the title of the paper, was motivated by the fact that it gives an alterna
tive, indirect method of measuring the nucleon axial-vector form factor gA(k2)- 
An experiment to measure дл{к2) by this method was carried out by Joos et al. 
(1976) giving a value m A =  1.18 ±  0.07 GeV for the mass in the dipole formula 
дА{к2) =  <М(0 ) ( 1  +  к2 /тп\)~2. This value is in good agreement with the value 
тпа =  107 ±  0.06 GeV given in the quasielastic scattering +  n —► + p  exper
iment of Baker et al. (1981), and also in reasonable agreement with values of 
obtained from single pion electroproduction at threshold using the low energy the
orem of Nambu and Shrauner (1962) (for which experimental references are given 
in both the Joos et al. and Baker et al. articles). At the 1968 Nobel Symposium 
on Elementary Particle Theory, I gave a brief talk (Adler, 1968a) reviewing various 
methods that had been proposed to measure the nucleon axial-vector form factor: 
quasielastic neutrino scattering, neutrino production of the Д(1232), electroproduc
tion of a single soft pion (the Nambu-Shrauner proposal), and electroproduction 
of the Д(1232) plus an additional soft pion (the proposal of my paper R14 with 
Weisberger). Over the years since then, all of these methods have been carried out.

I also returned, after completion of the book on Current Algebras, to the repeat
edly delayed project of completing the numerical work associated with my thesis
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calculation of weak pion production, and this kept me busy until the spring of 1968, 
when I finished a comprehensive article on photo-, electro-, and weak single-pion 
production in the Д(1232), or as it was then termed, the (3,3) resonance region 
(Adler, 1968b, R15). This paper is so long (123 pages) that it is not feasible to 
reprint it all here, so I have included only the introduction (Sec. 1) and part of the 
discussion of implications of PCAC (Secs. 5A and 5B). The basic approximation used 
in this paper consisted of using the Born approximation for all nonresonant multi
poles, augmented by terms coming from the PCAC low energy theorems, together 
with a unitarized Born approximation for the dominant resonant (3,3) multipoles, 
giving predictions for weak pion production in the (3,3) region in terms of the vec
tor and axial-vector form factors of the nucleon. By 1968 there were experimental 
results on pion electroproduction which were in satisfactory agreement with my the
ory, except for values of the momentum transfer к2 significantly larger than roughly
0.6(GeV/с )2, where in retrospect one can see effects from the scaling regime showing 
up. For neutrino pion production, preliminary comparison of my results with CERN 
data showed an axial-vector form factor дл{к2) that falls off more slowly with к2 than 
the vector form factors, with a dipole mass of т д  ~  1.2GeV. A subsequent compar
ison of my model with high-statistics neutrino data from Brookhaven by Kitagaki 
et al. (1986) gave good fits with a dipole mass of т д =  1.28 ±  0.11 GeV, somewhat 
high compared to values obtained by other methods described above. Reasonable 
fits of my model to the Д cross section and density matrix elements measured in 
the hydrogen bubble chamber at Argonne were also reported in papers of Schreiner 
and von Hippel (1973a,b), and a comparison with other models and data was given 
by Rein and Sehgal (1981). (For a recent alternative approach to Д(1232) weak 
production, and extensive references to earlier theoretical and experimental studies 
of this reaction, see Paschos et al. (2004).) After 1968 I did not work again on weak 
pion production until 1974-75, when the subject became important because it was 
an avenue for exploring weak neutral currents, as discussed in Chapter 5 below.

To conclude this section on low energy theorems, let me address the question of 
the extent to which the modern viewpoint, of pions as Nambu-Goldstone bosons, 
entered into my work. The earliest reference that I could find in my research notes 
to the “Goldstone theorem” (and specifically to the derivations given in the paper 
of Goldstone, Salam, and Weinberg, 1962) dates from the spring of 1967, in other 
words, after nearly all the work on soft pion theorems was completed. (This reference 
was in the context of calculations on the axial-vector vertex in QED that were the 
starting point of my work on the axial anomaly, to be discussed in the next chapter.) 
I fully appreciated the role of pions as Nambu-Goldstone bosons only after hearing 
seminars that referred to Nambu-Goldstone versus Wigner-Weyl representations of 
75  symmetry, which were connected (as best I recall) with the work of Gell-Mann, 
Oakes, and Renner (1968) and Dashen (1969) on chiral SU (3) x SU (3) as a strong 
interaction symmetry. This may at first seem surprising, but now that the tapestry



High Energy Neutrino Reactions, PCAC Relations, and Sum Rules 23

of the standard model is completed, we see clearly the interrelations of its many 
threads; at the time when these threads were being laid down, those working from 
one direction were often unaware or only dimly aware of progress from another.

Perhaps this is also a good point to say that the elucidation of the chiral struc
ture of the strong interactions was only one of the results flowing from the successes 
of current algebra methods and PCAC; something that was perhaps even more sig
nificant at the time was the demonstration that quantum field theory methods were 
really valid, after all, in dealing with hadronic interactions. When I entered gradu
ate school, the prevailing view was that the strong interactions would be understood 
through some kind of dispersion theoretic “reciprocal bootstrap” , and nearly every 
particle physics talk I heard began with a Mandelstam diagram on the blackboard. 
By 1967, this view had changed; it was clear that field theory could produce re
sults which could not be obtained from the dispersion relations program, and this 
strongly influenced subsequent developments.
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3. Anom alies: Chiral Anomalies and Their N onrenorm alization, 
Perturbative Corrections to Scaling, and Trace A nom alies

to A ll Orders

Chiral Anomalies and 7r° — > 7 7  Decay

I got into the subject of anomalies in an indirect way, through exploration during 
1967-1968 of the speculative idea that the muon-electron mass difference could be 
accounted for by giving the muon an additional magnetic monopole electromagnetic 
coupling through an axial-vector current, which somehow was nonperturbatively 
renormalized to zero. After much fruitless study of the integral equations for the 
axial-vector vertex part, I decided in the spring of 1968 to first try to answer a 
well-defined question, which was whether the axial-vector vertex in QED was renor
malized by multiplication by Z 2 , as I had been implicitly assuming. At the time 
when I turned to this question, I had just started a 6-week visit to the Cavendish 
Laboratory in Cambridge, England after flying to London with my family on April 
2 1 , 1968 (as recorded by my ex-wife Judith in my oldest daughter Jessica’s “baby 
book” ). In the Cavendish I shared an office with my former adviser Sam Treiman, 
and was enjoying the opportunity to try a new project not requiring extensive com
puter analysis; I had only a month before finished my Annals of Physics paper R15 
on weak pion production (see Chapter 2), which had required extensive computa
tion, not easy to do in those days when one had to wait hours or even a day for the 
results of a computer run.

My interest in the multiplicative renormalization question had been piqued by 
work of van Nieuwenhuizen, in which he had attempted to demonstrate the finite
ness to all orders of radiative corrections to jj. decay, using an argument based on 
subtraction of renormalization constants that I knew to be incorrect beyond lead
ing order. I had learned about this work during the previous summer, when I was 
a lecturer at the Varenna summer school held by Lake Como from July 17-29, 
1967, at which van Nieuwenhuizen had given a seminar on this topic that was cri
tiqued by Bjorken, another lecturer. (For further historical details about this, see my 
review article Adler (2004a) on anomalies and anomaly nonrenormalization, from 
which much of this commentary has been adapted.) Working in the old Cavendish, I 
rather rapidly found an inductive multiplicative renormalizability proof, paralleling 
the one in Bjorken and Drell (1965) for finiteness of Z 4 times the vector vertex. 
I prepared a detailed outline for a paper describing the proof, but before writing 
things up, I decided as a check to test whether the formal argument for the closed 
loop part of the Ward identity worked in the case of the smallest loop diagram. This
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is a triangle diagram with one axial and two vector vertices (the A V V  triangle; 
see Fig. 1(a)), which because of Furry’s theorem (C  invariance) has no analog in 
the vector vertex case. I knew from a student seminar that I had attended during 
my graduate study at Princeton that this diagram had been explicitly calculated 
using a gauge-invariant regularization by Rosenberg (1963), who was interested in 
the astrophysical process j y  +  v —» 7  +  v, with 7 1/  a virtual photon emitted by a 
nucleus. I got Rosenberg’s paper, tested the Ward identity, and to my astonishment 
(and Treiman’s when I told him the result) found that it failed! I soon found that 
the problem was that my formal proof used a shift of integration variables inside 
a linearly divergent integral, which (as I again recalled from student reading) had 
been analyzed in an Appendix to the classic text of Jauch and Rohrlich (1955), with 
a calculable constant remainder. For all closed loop contributions to the axial vertex 
in Abelian electrodynamics with larger numbers of vector vertices (the A V V V V , 
A V V V V V V loops; see Fig. 1(b)), the fermion loop integrals for fixed photon 
momenta are highly convergent and the shift of integration variables needed in the 
Ward identity is valid, so proceeding in this fermion loop-wise fashion there were 
apparently no further additional or “anomalous” contributions to the axial-vector 
Ward identity. With this fact in the back of my mind I was convinced from the outset 
that the anomalous contribution to the axial Ward identity would come just from 
the triangle diagram, with no renormalizations of the anomaly coefficient arising 
from higher order A V V  diagrams with virtual photon insertions.

(a) (b)

Fig. 1. Fermion loop diagam contributions to the axial-vector vertex part. Solid lines are 
fermions, and dashed lines are photons, (a) The smallest loop, the A V V  triangle diagram, (b) 
Larger loops with four or more vector vertices, which (when summed over vertex orderings) 
obey normal Ward identities.

In early June, at the end of my 6 weeks in Cambridge, I returned to the US and 
then went to Aspen, where I spent the summer working out a manuscript on the 
properties of the axial anomaly, which became the body (pages 2426-2434) of the 
final published version (Adler, 1969, R16). Several of the things done there deserve 
mention, since they were important in later applications. The first was a calculation
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of the field theoretic form of the anomaly, giving the now well-known result

=  2im0j 5(:c) +  ^ F i<T{x)FTp{x)ê aTp ,

with jp =  ф'ур'уьф the axial-vector current (referred to above as A), j 5 =  ф'уъ’ф the 
pseudoscalar current, and with m о and qo the (unrenormalized) fermion mass and 
coupling constant. The second was a demonstration that because of the anomaly, Z 2 

is no longer the multiplicative renormalization constant for the axial-vector vertex, 
as a result of the diagram drawn in Fig. 1 (a) in which the A V V  triangle is joined to 
an electron line with two virtual photons. Instead, the axial-vector vertex is made 
finite by multiplication by the renormalization constant

=  Z2[ 1 +  ^(ао/тг)2 Iog(A2 /m 2) +  ...] ,

thus giving an answer to the question with which I started my investigation. Thirdly, 
as an application of this result, I showed that the anomaly leads, in fourth or
der of perturbation theory, to infinite radiative corrections to the current-current 
theory of and vee scattering, but that this infinity can be cancelled between 
different fermion species by adding appropriate v^e and ve[i scattering terms to 
the Lagrangian. This result is a forerunner of anomaly cancellation mechanisms in 
modern gauge theories. It is related to the fact, also discussed in my paper, that the 
asymptotic behavior of the A V V  triangle diagram saturates the bound given by the 
Weinberg power counting rules, rather than being one power better as is the case 
for the A V V V V  and higher loop diagrams, and has a leading asymptotic term that 
is a function solely of the external momenta. Finally, I also showed that a gauge 
invariant chiral generator still exists in the presence of the anomaly. Although not 
figuring in our subsequent discussion here, in its non-Abelian generalization this was 
relevant (as reviewed in Coleman, 1989) to later discussions of the f / ( l )  problem 
in quantum chromodynamics (QCD), leading up to the solution given by 4  Hooft 
(1976).

No sooner was this part of my paper completed than Sidney Coleman arrived 
in Aspen from Europe, and told me that Bell and Jackiw (published as Bell and 
Jackiw, 1969) had independently discovered the anomalous behavior of the A V V  
triangle graph, in the context of a sigma model investigation of the Veltman (1 9 6 7 )-  
Sutherland (1967) theorem stating that n° —> 7 7  decay is forbidden in a PCAC 
calculation. The Sutherland-Veltman theorem is a kinematic statement about the 
A V V  three-point function, which asserts that if the momenta associated with the 
currents A ,V ,V  are respectively q,k\,k 2 , then the requirement of gauge invariance 
on the vector currents forces the A V V  vertex to be of order qk\k2  in the external 
momenta. Hence when one applies a divergence to the axial-vector vertex and uses 
the standard PCAC relation (with the quark current J-% the analog of )

< ^ ( x )  =  ( / , M 2 / ^ ) ^ ( x )  ,
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with the pion mass, the pion field, and f v the charged pion decay constant, 
one finds that the ir° —► 7 7  matrix element is of order q2 kik,2 , and hence vanishes 
in the soft pion limit q1  —* 0. Bell and Jackiw analyzed this result by a perturbative 
calculation in the a-model, in which PCAC is formally built in from the outset, and 
found a non-vanishing result for the 7r° —> 7 7  amplitude, which they traced back 
to the fact that the regularized A V V  triangle diagram cannot be defined to satisfy 
the requirements of both PCAC and gauge invariance. This constituted the “PCAC 
Puzzle” referred to in the title of their paper. They then proposed to modify the 
original сг-model by adding further regulator fields with mass-dependent coupling 
constants in such a manner as to simultaneously enforce gauge invariance and PCAC, 
thus enforcing the Sutherland-Veltman prediction of a vanishing n° —► 7 7  decay 
amplitude. In the words of Bell and Jackiw in their paper, “It has to be insisted that 
the introduction of this mass dependence of coupling constants is not an arbitrary 
step in the PCAC context. If a regularization is introduced to define the theory, 
it must respect any formal properties which are to be appealed to.” And again in 
concluding their paper, they stated “To the complaint that we have changed the 
theory, we answer that only the revised version embodies simultaneously the ideas 
of PCAC and gauge invariance.”

It was immediately clear to me, in the course of the conversation with Sidney 
Coleman, that introducing additional regulators to eliminate the anomaly would 
entail renormalizability problems in a  meson scattering, and was not the correct way 
to proceed. However, it was also clear that Bell and Jackiw had made an important 
observation in tying the anomaly to the Sutherland-Veltman theorem for n° —» 7 7  

decay, and that I could use the sigma-model version of the anomaly equation to get 
a nonzero prediction for the 7г° —* 7 7  amplitude, with the whole decay amplitude 
arising from the anomaly term. I then wrote an Appendix to my paper (pages 2434- 
2438), clearly delineated from the manuscript that I had finished before Sidney’s 
arrival, in which I gave a detailed rebuttal of the regulator construction, by showing 
that the anomaly could not be eliminated without spoiling either gauge-invariance 
or renormalizability. (In later discussions I added unitarity to this list, to exclude 
the possibility of canceling the anomaly by adding a term to the axial current with 
а дц/[д\)г singularity.) In this Appendix I also used an anomaly-modified PCAC 
equation

=  K U M l / у П  )Ф Л х ) +  S ^ F ^ ( x ) F T» ( x ) e ^ Tp ,

with S a constant determined by the constituent fermion charges and axial-vector 
couplings, to obtain a PCAC formula for the 7Г° —» 7 7  amplitude F w

F* =  -(a / n )2S V 2/ U  .

Although the axial anomaly, in the context of breakdown of the “pseudoscalar- 
pseudovector equivalence theorem” , had in fact been observed much earlier, start
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ing with Puknda and Miyamoto (1949) and Steinberger (1949) and continuing to 
Schwinger (1951), my paper broke new ground by treating the anomaly neither as 
a baffling calculational result, nor as a field theoretic artifact to be eliminated by 
a suitable regularization scheme, but instead as a real physical effect (breaking of 
classical symmetries by the quantization process) with observable physical conse
quences.

This point of view was not immediately embraced by everyone else. After com
pleting my Appendix I sent Bell and Jackiw copies of my longhand manuscript, and 
an interesting correspondence ensued. In a letter dated August 25, 1968, Jackiw was 
skeptical whether one could extract concrete physical predictions from the anomaly, 
and whether one could augment the divergence of the axial-vector current by a def
inite extra electromagnetic contribution, as in the modified PCAC equation above. 
Bell, who was traveling, wrote me on Sept. 2, 1968, and was more appreciative of 
the possibility of using a modified PCAC to get a formula for the neutral pion de
cay amplitude, writing “The general idea of adding some quadratic electromagnetic 
terms to PCAC has been in our minds since Sutherland’s rj problem. We did not 
see what to do with it.” He also defended the approach he and Jackiw had taken, 
writing “The reader may be left with the impression that your development is con
tradictory to ours, rather than complementaxy. Our first observation is that the о  
model interpreted in a conventional way just does not have PCAC. This is already 
a resolution of the puzzle, and the one which you develop in a very nice way. We, 
interested in the сг-model only as exemplifying PCAC, choose to modify the con
ventional procedures, in order to exhibit a model in which general PCAC reasoning 
could be illustrated in explicit calculation.” In recognition of this letter from John 
Bell, whom I revered, I added a footnote 15 to my manuscript saying “Our results 
do not contradict those of Bell and Jackiw, but rather complement them. The main 
point of Bell and Jackiw is that the a model interpreted in the conventional way, 
does not satisfy the requirements of PCAC. Bell and Jackiw modify the <r model in 
such a way as to restore PCAC. We, on the other hand, stay within the conventional 
<7 model, and try to systematize and exploit the PCAC breakdown.” This footnote, 
which contradicts statements made in the text of my paper, has puzzled a number 
of people; in retrospect, rather than writing it as a paraphrase of Bell’s words, I 
should have quoted directly from Bell’s letter.

Following this correspondence, my paper was typed on my return to Princeton 
and was received by the Physical Review on Sept. 24, 1968. (Bell and Jackiw’s 
paper, a CERN preprint dated July 16, 1968, was submitted to П Nuovo Cimento, 
and received by that journal on Sept. 11, 1968.) My paper was accepted along with 
a signed referee’s report from Bjorken, stating “This paper opens a topic similar 
to the old controversies on photon mass and nature of vacuum polarization. The 
lesson there, as I (no doubt foolishly) predict will happen here, is that infinities 
in diagrams are really troublesome, and that if the cutoff which is used violates a
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cherished symmetry of the theory, the results do not respect the symmetry. I will 
also predict a long chain of papers devoted to the question the author has raised, 
culminating in a clever renormalizable cutoff which respects chiral symmetry and 
which, therefore, removes Adler’s extra term.” Thus, acceptance of the point of 
view that I had advocated was not immediate, but only followed over time. In 1999, 
Bjorken was a speaker at my 60th birthday conference at the Institute for Advanced 
Study, and amused the audience by reading from his report, and then very graciously 
gave me his file copy, with an appreciative inscription, as a souvenir.

The viewpoint that the anomaly determined the 7г° —» 7 7  decay amplitude had 
significant physical consequences. In the Appendix to my paper, I showed that the 
value S =  g implied by the fractionally charged quark model gave a decay amplitude 
that was roughly a factor of 3 too small. More generally, I showed that a triplet 
constituent model with charges (Q ,Q  -  1,Q  -  1) gave S =  Q -  and so with 
integrally charged constituents (Q — 0 or Q =  1 ) one gets an amplitude that agrees 
in absolute value, to within the expected accuracy of PCAC, with experiment. I 
noted in my paper that Q =  0, or S — — \ corresponded to the case in which 
radiative corrections to weak interactions had been shown to be finite, but this 
choice for the sign of the 7г° —» 7 7  amplitude was soon to be ruled out. Over the 
next few months Okubo (1969) and Gilman (1969) wrote me letters accompanying 
preprints which demonstrated, by different methods, that the sign corresponding 
to a single positive integrally charged constituent going around the triangle loop 
agrees with experiment. Okubo also analyzed various alternative models for proton 
constituents, and pointed out that while some are excluded by the experimentally 
determined value of 5, the integrally charged Maki (1964)-Hara (1964) single triplet 
model (the model that I had considered in my Appendix, but now with Q =  1), and 
the corresponding integrally charged three triplet model of Han and Nambu (1965) 
(see also Tavkhelidze (1965), Miyamoto (1965), and Nambu (1965)), are both in 
accord with the empirical value S ~  5 . In a conference talk a year later, in September 
1969 (Adler, 1970a, R17) I reviewed the subject of the anomaly calculation of neutral 
pion decay, as developed in the papers that had appeared during the preceding year.

The work just described gave the first indications that neutral pion decay pro
vides empirical evidence that can discriminate between different models for hadronic 
constituents. The correct interpretation of the fact that S ~  | came only later, when 
what we now call the “color” degree of freedom was introduced in the seminal pa
pers of Bardeen, Fritzsch, and Gell-Mann (1972; reprinted as hep-ph/0211388) and 
Fritzsch and Gell-Mann (1971/1972; reprinted as hep-ph/0301127). These papers 
used my calculation of 7Г° —> 7 7  decay as supporting justification for the tripling 
of the number of fractionally charged quark degrees of freedom, thus increasing the 
theoretical value of S for fractionally charged quarks from | to 5 . The paper of 
Bardeen, Fritzsch, and Gell-Mann also pointed out that this tripling would show up 
in a measurement of R, the ratio of hadronic to muon pair production in electron
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positron collisions, while noting that “Experiments at present are too low in energy 
and not accurate enough to test this prediction, but in the next year or two the 
situation should change.” , as indeed it did.

Before leaving the subject of the early history of the anomaly and its antecedents, 
perhaps this is the appropriate place to mention the paper of Johnson and Low 
(1966), which showed that the Bjorken (1966)-Johnson-Low (1966) (BJL) method 
of identifying formal commutators with an infinite energy limit of Feynman diagrams 
gives, in significant cases, results that differ from the naive field-theoretic evaluation 
of these commutators. This method was later used by Jackiw and Johnson (1969) 
and by Boulware and myself (Adler and Boulware, 1969, R18) to show that the A V V  
axial anomaly can be reinterpreted in terms of anomalous commutators. This line 
of investigation, however, did not readily lend itself to a determination of anomaly 
effects beyond leading order. For example, I still have in my files an unpublished 
manuscript (circa 1966) attempting to use the BJL method to tackle a simpler prob
lem, that of proving that the Schwinger term in quantum electrodynamics (QED) is 
a с-number to all orders of perturbation theory. I believe that this result is true (and 
it may well have been proved by now using operator product expansion methods), 
but I was not able at that time to achieve sufficient control of the BJL limits of high 
order diagrams with general external legs to give a proof. (See also remarks on this 
in Chapter 4.)

Anomaly Nonrenormalization

We are now ready to address the issue of the determination of anomalies beyond 
leading order in perturbation theory. Before the neutral pion low energy theorem 
could be used as evidence for the charge structure of quarks, one needed to be 
sure that there were no perturbative corrections to the anomaly and the low energy 
theorem following from it. As I noted above, the fermion loop-wise argument that 
I used in my original treatment left me convinced that only the lowest order A V V  
diagram would contribute to the anomaly, but this was not a proof. This point of 
view was challenged in the article by Jackiw and Johnson (1969), received by the 
Physical Review on Nov. 25, 1968, who stated “Adler has given an argument to the 
end that there exist no higher-order effects. He introduced a cutoff, calculated the 
divergence, and then let the cutoff go to infinity. This is seen in the present context 
to be equivalent to the second method above. However, we believe that this method 
may not be reliable because of the dependence on the order of limits.” And in their 
conclusion, they stated “In a definite model the nature of the modification (to the 
axial-vector current divergence equation) can be determined, but in general only 
to lowest order in interactions.” This controversy with Jackiw and Johnson was the 
motivation for a more thorough analysis of the nonrenormalization issue undertaken 
by Bill Bardeen and myself in the fall and winter of 1968-1969 (Adler and Bardeen,
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1969, R19) and was cited in the “Acknowledgments” section of our paper, where we 
thanked “R. Jackiw and K. Johnson for a stimulating controversy which led to the 
writing of this paper.”

The paper with Bardeen approached the problem of nonrenormalization by two 
different methods. We first gave a general constructive argument for nonrenormal
ization of the anomaly to all orders, in both quantum electrodynamics and in the 
iT-model in which PCAC is canonically realized, and we then backed this argu
ment up with an explicit calculation of the leading order radiative corrections to 
the anomaly, showing that they cancelled among the various contributing Feynman 
diagrams. The strategy of the general argument was to note that since the anomaly 
equations written above involve unrenormalized fields, masses, and coupling con
stants, these equations are well defined only in a cutoff field theory. Thus, for both 
electrodynamics and the c-model, we constructed cutoff versions by introducing 
photon or cr-meson regulator fields with mass A. (This was simple for the case of 
electrodynamics, but more difficult, relying heavily on Bill Bardeen’s prior experi
ence with meson field theories, in the case of the tr-model.) In both cases, the cutoff 
prescription allows the usual renormalization program to be carried out, expressing 
the unrenormalized quantities in terms of renormalized ones and the cutoff A. In 
the cutoff theories, the fermion loop-wise argument I used in my original anomaly 
paper is still valid, because regulating boson propagators does not alter the chiral 
symmetry properties of the theory, and thus it is straightforward to prove the va
lidity of the anomaly equations involving unrenormalized quantities to all orders of 
perturbation theory.

Taking the vacuum to two 7  matrix element of the anomaly equations, and 
applying the Sutherland-Veltman theorem, which asserts the vanishing of the matrix 
element of at the special kinematic point q2 =  0. Bardeen and I then got exact 
low energy theorems for the matrix elements (2 7 |2 im o j5 |C)) (in electrodynamics) 
and (2 7 |(/,гМ2 /л /2 ) < Ш  (in the <7 -model) of the “naive” axial-vector divergence 
at this kinematic point, which were given by the negative of the corresponding 
matrix element of the anomaly term. However, since we could prove that these 
matrix elements are finite in the limit as the cutoff A approaches infinity, this in 
turn gave exact low energy theorems for the renormalized, physical matrix elements 
in both cases. One subtlety that entered into the all orders calculation was the 
role of photon rescattering diagrams connected to the anomaly term, but using 
gauge invariance arguments analogous to those involved in the Sutherland-Veltman 
theorem, we were able to show that these diagrams made a vanishing contribution to 
the low energy theorem at the special kinematic point q2 =  0. Thus, my paper with 
Bardeen provided a rigorous underpinning for the use of the 7Г° —* 7 7  low energy 
theorem to study the charge structure of quarks.

In our explicit second order calculation, we calculated the leading order radiative 
corrections to this low energy theorem, arising from addition of a single virtual pho
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ton or virtual ст-meson to the lowest order diagram. We did this by two methods, 
one involving a direct calculation of the integrals, and the other (devised by Bill 
Bardeen) using a clever integration by parts argument to bypass the direct calcula
tion. Both methods gave the same answer: the sum of all the radiative corrections is 
zero, as expected from our general nonrenormalization argument. We also traced the 
contradictory results obtained in the paper of Jackiw and Johnson to the fact that 
these authors had studied an axial-vector current (such as ф'уц'уь'ф in the <r-model) 
that is not made finite by the usual renormalizations in the absence of electromag
netism; as a consequence, the naive divergence of this current is not multiplicatively 
renormalizable. As we noted in our paper, “In other words, the axial-vector current 
considered by Jackiw and Johnson and its naive divergence are not well-defined ob
jects in the usual renormalized perturbation theory; hence the ambiguous results 
which these authors have obtained are not too surprising.” Our result o f a defi
nite, unrenormalized low energy theorem, we noted, came about because “In each 
model we have studied a particular axial-vector current: in spinor electrodynamics, 
the usual axial-vector current ... and in the a model the Polkinghorne (1958a,b) 
axial-vector current ... which, in the absence of electromagnetism, obeys the PCAC 
condition.” It is these axial-vector currents that obey a simple anomaly equation to 
all orders in perturbation theory, and which give an exact, physically relevant low 
energy theorem for the naive axial-vector divergence.

This paper with Bill Bardeen should have ended the controversy over whether 
the anomaly was renormalized, but it didn’t. Johnson pointed out in an unpublished 
report that since the anomaly is mass-independent, it should be possible to calculate 
it in massless electrodynamics, for which the naive divergence 2 im oj5 vanishes and 
the divergence of the axial-vector current directly gives the anomaly. Moreover, in 
massless electrodynamics there is no need for mass renormalization, and so if one 
chooses Landau gauge for the virtual photon propagator, the second order radiative 
correction calculation becomes entirely ultraviolet finite, with no renormalization 
counter terms needed. Such a second order calculation was reported by Sen (1970), 
a Johnson student, who claimed to find nonvanishing second order radiative correc
tions to the anomaly. However, the calculational scheme proposed by Johnson and 
used by Sen has the problem that, while ultraviolet finite, there axe severe infrared 
divergences, which if not handled carefully can lead to spurious results. After a long 
and arduous calculation (Adler, Brown, Wong, and Young, 1971) my collaborators 
and I were able to show that the zero mass calculation, when properly done, also 
gives a vanishing second order radiative correction to the anomaly. This confirmed 
the result I had found with Bardeen, which had by then also been confirmed by dif
ferent methods in the тп0 ф 0 theory in papers of Abers, Dicus, and Teplitz (1971) 
and Young, Wong, Gounaris, and Brown (1971).

Even this was not the end of controversies over the nonrenormalization theo
rem, as discussed in detail in my review Adler (2004a) that focuses specifically on
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anomaly nonrenormalization. Suffice it to say here that no objections raised have 
withstood careful analysis, and there is now a detailed understanding of anomaly 
nonrenormalization both by perturbative methods, and by non-perturbative meth

ods proceeding from the Callan-Sym anzik equations. There is also a detailed under
standing of anomaly nonrenormalization in the context of supersymmetric theories, 
where initial apparent puzzles are now resolved.

Point Splitting Calculations of the Anomaly

At this point let me backtrack, and discuss the role of point-splitting methods 
in the study of the Abelian electrodynamics anomaly. In the present context, 
point-splitting was first used in the discussion given by Schwinger (1951) of the 
pseudoscalar-pseudovector equivalence theorem, to be described in more detail 
shortly. Almost immediately following circulation of the seminal anomaly preprints 
in the fall of 1968, Hagen (1969, received Sept. 24, 1968, and a letter to me dated 
Oct. 16, 1968), Zumino (1969, and a letter to me dated Oct. 7, 1968), and Brandt 
(1969, received Dec. 17, 1968, and a letter to me dated Oct. 16. 1968) all rederived 
the anomaly formula by a point-splitting method. Independently, a point-splitting 
derivation of the anomaly was given by Jackiw and Johnson (1969, received 25 
November, 1968), who explicitly made the connection to Schwinger’s earlier work 
(Johnson was a Schwinger student, and was well acquainted with Schwinger’s body 
of work). The point of all of these calculations is that the anomaly can be derived 
by formal algebraic use of the equations of motion, provided one redefines the sin
gular product ■ф(х)у[1 'у5 'ф(х) appearing in the axial-vector current by the point-split

and takes the limit x' —» x  at the end of the calculation.
Responding to these developments, I appended a “Note added in proof” to my 

anomaly paper, mentioning the four field-theoretic, point-splitting derivations that 
had subsequently been given, and adding “Jackiw and Johnson point out that the 
essential features of the field-theoretic derivation, in the case of external electro
magnetic fields, are contained in J. Schwinger, Phys. Rev. 82, 664 (1951)” . What 
to me was an interesting irony emerged from learning of the connection between 
anomalies and the famous Schwinger (1951) paper on vacuum polarization. I had in 
fact read Section II and the Appendices of the 1951 paper, when Alfred Goldhaber 
and I, during our senior year at Harvard (1960-61), did a reading course on quantum 
electrodynamics with Paul Martin, which focused on papers in Schwinger’s reprint 
volume (Schwinger, 1958). Paul had told us to read the parts of the Schwinger pa
per that were needed to calculate the V V  vacuum polarization loop, but to skip the

expression
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rest as being too technical. Reading Section V of Schwinger’s paper brought back 
to mind a brief, forgotten conversation I had had with Jack Steinberger, who was 
Director of the Varenna Summer School in 1967. Steinberger had told me that he 
had done a calculation on the pseudovector-pseudoscalar equivalence theorem for 
я-0 _» but heid gotten different answers in the two cases; also that Schwinger had 
claimed to reconcile the answers, but that he (Steinberger) couldn’t make sense out 
o f Schwinger’s argument. Jack had urged me to look at it, which I never did until 
getting the Jackiw-Johnson preprint, but in retrospect everything fell into place, 
and the connection to Schwinger’s work was apparent.

This now brings me to the question, did Schwinger’s paper constitute the dis
covery of the anomaly? Both Jackiw, in his paper with Johnson, and I were careful 
to note the connection between Schwinger’s (1951) paper and the point-splitting 
derivations of the anomaly, once it was called to our attention. However, recently 
some of Schwinger’s former students have gone further, arguing that Schwinger was 
the discoverer of the anomaly and that my paper and that of Bell and Jackiw were 
merely a “rediscovery” of a previously known result. I believe that this claim goes 
beyond the published record of what is in Schwinger’s paper, as analyzed in detail in 
Sec. 2.3 and Appendix A of my review Adler (2004a). Stated briefly, Schwinger’s cal
culation was devoted to making the pseudovector calculation give the same non-zero 
answer as the pseudoscalar one, and what Schwinger calls the redefined axial-vector 
divergence is in fact not the divergence of the gauge-invariant axial-vector current, 
but rather the axial-vector current divergence minus the anomaly. In other words, 
Schwinger’s calculation effectively transposes the anomaly term to the left-hand 
side of the anomaly equation, so that what he evaluates is the effective Lagrangian 
arising from the left-hand side of the equation

P j l (x )  -  ^ F ^ ( x ) F T<’ (x )Harp =  2 im 0j 5 (x) ,

which then necessarily gives the same result as calculation of an effective Lagrangian 
from the right-hand side, which is pseudoscalar coupling. There is no gauge-invariant 
axial-vector current for which the combination on the left-hand side is the diver
gence, but as shown in Eqs. (58) and (59) of R l6 , there is a gauge-non-invariant 
axial-vector current which has this divergence.

The use of a point-splitting method was o f course important and fruitful, and 
in retrospect, the axial anomaly is hidden within Schwinger’s calculation. But 
Schwinger never took the crucial step of observing that the axial-vector current 
matrix elements cannot, in a renormalizable quantum theory, be made to satisfy 
all of the expected classical symmetries. And more specifically, he never took the 
step of defining a gauge-invariant axial-vector current by point splitting, which has 
a well-defined anomaly term in its divergence, with the anomaly term completely 
accounting for the disagreement between the pseudoscalar and pseudovector calcu
lations of neutral pion decay. So I would say that although Schwinger took steps in
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the right direction, particularly in noting the utility of point-splitting in defining the 
axial-vector current, his 1951 paper obscured the true physics and does not mark 
the discovery of the anomaly. This happened only much later, in 1968, and led to a 
flurry of activity by many people. My view is supported, I believe, by the fact that 
Schwinger’s calculation seemed arcane, even to people (like Steinberger) with whom 
he had talked about it and to colleagues familiar with his work, and exerted no in
fluence on the field until after preprints on the seminal work of 1968 had appeared.

The Non-Abelian Anomaly, Its Nonrenormalization and Geometric 
Interpretation

Since in the chiral limit the A V V  triangle is identical to an A A A  triangle (as is 
easily seen by an argument involving anticommutation of a 7 5  around the loop), I 
knew already in unpublished notes dating from the late summer of 1968 that the 
A AA  triangle would also have an anomaly; a similar observation was also made 
by Gerstein and Jackiw (1969). Prom fragmentary calculations begun in Aspen I 
suspected that higher loop diagrams might have anomalies as well, so after the 
nonrenormalization work with Bill Bardeen was finished I suggested to Bill that he 
work out the general anomaly for larger diagrams. (I was at that point involved 
in other calculations with Wu-Ki Tung, on the perturbative breakdown of scaling 
formulas such as the Cailan-Gross relation, to be discussed shortly.) I showed Bill 
my notes, which turned out to be of little use, but which contained a very pertinent 
remark by Roger Dashen that including charge structure (which I had not) would 
allow a larger class of potentially anomalous diagrams. Within a few weeks, Bill 
carried out a brilliant calculation, by point-splitting methods, of the general anomaly 
in both the Abelian and the non-Abelian cases (Bardeen, 1969). Expressed in terms 
of vector and axial-vector Yang-Mills field strengths

F P ( x ) =  d »V v{x) -  dvv » {x )  -  i\v»(x), V v{x)] -  i[A^(x), A v{x)\ , 

F f ( x )  =  d »A v{x) -  Р А » (х )  -  i[V *(x), A v(x)] -  i[A »(x ), V v{x)\ ,

Bardeen’s result takes the form

d^Jg^x) =  normal divergence term
+  ( l / 47r2 ) ê CTTtr; [A S[(l/4 ) F ^ ( x ) F r ( x )  +  (1/12 )F %  {x )F °/ {x)

+  (2 / 3  )iA ^ x )A v{x )F ^ (x )  +  (2/3 ) iF ^ {x )A <r(x )A T(x)
+  (2/2,)iAll{x )F ^ (x )A T(x) -  (%/S)A>1 {x )A v{x )A a{x )A T{x )] ,

with tr/ denoting a trace over internal degrees of freedom, and the internal 
symmetry matrix associated with the axial-vector external field. In the Abelian case,
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with trivial internal symmetry structure, the terms involving two or three factors of 
~ vanish by antisymmetry of ,ar, and there are only A V V  and A A A  triangle 

anomalies. When there is non-trivial internal symmetry or charge structure, there 
are anomalies associated with the box and pentagon diagrams as well, confirming 
Dashen’s intuition mentioned earlier. Bardeen notes that whereas the triangle and 
box anomalies result from linear divergences associated with these diagrams, the 
pentagon anomalies arise not from linear divergences, but rather from the definition 
of the box diagrams to have the correct vector current Ward identities. Bardeen also 
notes, in his conclusion, another prophetic remark of Dashen, to the effect that the 
pentagon anomalies should add anomalous terms to the PCAC low energy theorems 
for five pion scattering; I shall return to this shortly.

There are two distinct lines of argument leading to the conclusion that the non- 
Abelian chiral anomaly also has a nonrenormalization theorem, and is given exactly 
by Bardeen’s leading order calculation. The first route parallels that used in the 
Abelian case, involving variously a loop-wise regulator construction, explicit fourth 
order calculation, and an argument using the Callan-Symanzik equations; for de
tailed references, see Adler (2004a). The conclusion in all cases is that the A dler- 
Bardeen theorem extends to the non-Abelian case. Heuristically, what is happening 
is that except for a few small one-fermion loop diagrams, non-Abelian theories, just 
like Abelian ones, are made finite by gauge invariant regularization of the gluon 
propagators. But this regularization has no effect on the chiral properties of the 
theory, and therefore does not change its anomaly structure, which can thus be de
duced from the structure of the few small fermion loop diagrams for which naive 
classical manipulations break down.

The second route leading to the conclusion that the non-Abelian anomaly is non
renormalized might be termed “algebraic/geometrical” , and consists of two steps. 
The first step consists of a demonstration that the higher order terms in Bardeen’s 
non-Abelian formula are completely determined by the leading, Abelian anomaly. 
During a summer visit to Fermilab in 1971, I collaborated with Ben Lee, Sam 
Treiman, and Tony Zee (Adler, Lee, Treiman, and Zee 1971, R20) in a calcula
tion of a low energy theorem for the reaction 7  +  7 —> 7 r - f 7 r  +  7 r i n  both the neutral 
and charged pion cases. This was motivated in part by discrepancies in calculations 
that had just appeared in the literature, and in part by its relevance to theoretical 
unitarity calculations of a lower bound on the K QL —► decay rate. Using PCAC,
we showed that the fact that the 7  +  7  —» З7Г matrix elements vanish in the limit 
when a final ir° becomes soft, together with photon gauge invariance, relates these 
amplitudes to the matrix elements F*  for 7 + 7  —► tt° and F 37r for 7  —» 7г ° + 7г+ -|-7г- , 
and moreover, gives a relation between the latter two matrix elements,

eF3* =  f ~ 2 F n , /  =  A  
V 2
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Thus all of the matrix elements in question axe uniquely determined by F *, which 
itself is determined by the A V V  anomaly calculation. An identical result for the same 
reactions was independently given by Terent’ev (Terentiev) (1971). In the meantime, 
in a beautiful formal analysis, Wess and Zumino (1971) showed that the current 
algebra satisfied by the flavor SU (3) octet of vector and axial-vector currents implies 
integrability or “consistency” conditions on the non-Abelian axial-vector anomaly, 
which are satisfied by the Bardeen formula, and conversely, that these constraints 
uniquely imply the Bardeen structure up to an overall factor, which is determined 
by the Abelian A V V  anomaly. By introducing an auxiliary pseudoscalar field, Wess 
and Zumino were able to write down a local action obeying the anomalous Ward 
identities and the consistency conditions. (There is no corresponding local action 
involving just the vector and axial-vector currents, since if there were, the anomalies 
could be eliminated by a local counterterm.) Wess and Zumino also gave expressions 
for the processes 7  —> Зя- and 2 j  —> З7Г discussed by Adler et al. and Terentiev, as 
well as giving the anomaly contribution to the five pseudoscalar vertex. The net 
result of these three simultaneous pieces of work was to show that the Bardeen 
formula has a rigidly constrained structure, up to an overall factor given by the 
7T° — > 7 7  decay amplitude.

The second step in the “algebraic/geometric” route to anomaly renormaliza
tion is a celebrated paper of Witten (1983), which shows that the Wess-Zumino 
action has a representation as the integral of a fifth rank antisymmetric tensor (con
structed from the auxiliary pseudoscalar field) over a five-dimensional disk of which 
four-dimensional space is the boundary. In addition to giving a new interpretation of 
the Wess-Zumino action Г, Witten’s argument also gave a constraint on the overall 
factor in Г that was not determined by the Wess-Zumino consistency argument. 
Witten observed that his construction is not unique, because a closed five-sphere 
intersecting a hyperplane gives two ways of bounding the four-sphere along the equa
tor with a five dimensional hemispherical disk. Requiring these two constructions 
to give the same value for ехр(гГ), which is the way the anomaly enters into a 
Feynman path integral, requires integer quantization of the overall coefficient in the 
Wess-Zumino-Witten action. This integer can be read off from the A V V  triangle 
diagram, and for the case of an underlying color SU (N C) gauge theory turns out to 
be just Nc, the number of colors.

To summarize, the “algebraic/geometric” approach shows that the Bardeen 
anomaly has a unique structure, up to an overall constant, and moreover that this 
overall constant is constrained by an integer quantization condition. Hence once the 
overall constant is fixed by comparison with leading order perturbation theory (say 
in QCD), it is clear that this result must be exact to all orders, since the presence 
of renormalizations in higher orders of the strong coupling constant would lead to 
violations of the quantization condition.

The fact that non-Abelian anomalies are given by an overall rigid structure



44 Adventures in Theoretical Physics

has important implications for quantum field theory. For example, the presence of 
anomalies spoils the renormalizability of non-Abelian gauge theories and requires 
the cancellation of gauged anomalies between different fermion species (see Gross 
and Jackiw (1972), Bouchiat, Iliopoulos, and Meyer (1972), and Weinberg (1973)), 
through imposition of the condition tr{TQ,T]3}T 7 =  0 for all a , /3 , 7 , with Ta the 
coupling matrices of gauge bosons to left-handed fermions. The fact that anomalies 
have a rigid structure then implies that once these anomaly cancellation conditions 
are imposed for the lowest order anomalous triangle diagrams, no further conditions 
arise from anomalous square or pentagon diagrams, or from radiative corrections 
to these leading fermion loop diagrams. Other places where the one-loop geometric 
structure of non-Abelian anomalies enters are in instanton physics, and in the ’t 
Hooft anomaly matching conditions. These and other chiral anomaly applications 
are discussed in more detail in my review Adler (2004a), and also in my Encyclopedia 
of Mathematical Physics article Adler (2004b). Both of these sources give extensive 
references to recent review articles and books on anomalies, which update the 1970 
reviews given in my Brandeis lectures (Adler, 1970b) and in Jackiw’s Brookhaven 
lectures (Jackiw, 1970).

Perturbative Corrections to Scaling

While finishing the paper with Bardeen on anomaly nonrenormalization, I had em
barked on a different set of perturbative calculations with Wu-Ki Tung; these be
came a forerunner of a different kind of “anomaly” , the anomalous scaling observed 
in deep inelastic electron and neutrino scattering. Our starting point was the ques
tion of whether applications of the Bjorken (1966) limit technique, which assumed 
that the asymptotic behavior of time-ordered products is given by the “naive” or 
free field theory equal time commutator, would be modified in perturbation theory. 
Strong hints in this direction had been given in a paper of Johnson and Low (1966), 
which showed that the “Bjorken-Johnson—Low” limit can produce anomalous com
mutators, and related results were also obtained in an earlier paper of Vainshtein 
and Ioffe (1967); our aim was to do calculations focusing on several physically impor
tant applications not covered in this previous work. These were the calculation by 
Bjorken (1966) of the radiative corrections to j3-decay, the Bjorken (1967) backward- 
neutrino-scattering asymptotic sum rule, and the Callan-Gross (1969) relation re
lating the ratio of the longitudinal to transverse deep inelastic electron scattering 
cross sections to the constitution of the electric current, with the latter an applica
tion both of the Bjorken-Johnson-Low limit method, and of the later proposal by 
Bjorken (1969) of scaling of the deep inelastic structure functions.

For our test model, we considered an S£/(3) triplet of spin-1/2 particles bound 
by exchange of a massive singlet gluon, which we took as either a vector, scalar, 
or pseudoscalar. The results of the vector exchange calculation, to leading order of
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perturbation theory, were reported in Adler and Tung (1969), R21, while additional 
leading order results in the scalar and pseudoscalar gluon cases, and some fourth 
order results, were given in the follow-up paper Adler and Tung (1970), R22. We 
concluded that the Callan-Gross relation for spin-1/2 quarks, which asserts the van
ishing of q'2o-£J(q2 ,uj) for large q2 with fixed scaling variable ш, breaks down in leading 
order of perturbation theory. A similar conclusion was also reached by Jackiw and 
Preparata (1969a,b), whose first paper appears in the same issue of Physical Review 
Letters as our paper R2 1 . Tung and I related the breakdown of the Callan-Gross 
relation to a corresponding breakdown of Bjorken’s backward neutrino sum rule. 
We also showed that the certain current commutators receive a systematic pattern 
of logarithmic asymptotic corrections, and calculated the leading perturbative cor
rection to the logarithmically divergent part of the radiative corrections to /3 decay. 
Tung (1969), while still at the Institute, and Jackiw and Preparata (1969c), went 
on to carry out general analyses of the range of validity and breakdown of the 
Bjorken-Johnson-Low limit in perturbation theory.

These papers had a number of implications for subsequent developments. The 
logarithmic deviations from the Callan-Gross relation were soon understood in a 
more systematic way through the Wilson (1969) operator product expansion and 
the CaJlan (1970)-Symanzik (1970) equations, which gave anomalous dimensions in 
accord with the leading order results obtained by Tung and me and by Jackiw and 
Preparata, and with the fourth order results obtained by Tung and me in R22; for a 
discussion of this, see Beg (1975). The fact that perturbative field theory gives strong 
violations of scaling led to a skepticism as to whether field theory could describe 
the strong interactions at all. For example, Fritzsch and Gell-Mann (1971/1972), in 
their long paper on “Light Cone Current Algebra” , remarked that “The renormalized 
perturbation theory, taken term by term, reveals various pathologies in commutators 
of currents. Not only are there in each order logarithmic singularities on the light 
cone, which destroy scaling, and violations of the rule that сг^/ат —> 0 in the Bjorken 
limit, but also a careful perturbation theory treatment show the existence of higher 
singularities on the light cone..." This was one of their motivations for introducing 
the light cone algebra, which abstracted from field theory algebraic relations that 
led to scaling and parton model results, with the field theory itself being discarded.

At the same time, there were also thoughts that a renormalization group fixed 
point in field theory might provide a remedy. In the same article, Fritzsch and 
Gell-Mann noted that in the context of a singlet vector gluon theory, “we must 
imagine that the sum of perturbation theory yields the special case of a ‘finite 
vector theory ’2 7  [reference to Gell-Mann and Low, and Baker and Johnson] if we 
are to bring the vector gluon theory and the basic algebra into harmony.” Quite 
independently, in a conference talk at Princeton that I gave in October of 1971 
(published considerably later as Adler (1974), R23), in Section 2.4, on “Questions 
raised by the breakdown of the BJL limit”, I made the remark “Can one make a
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consistent calculational scheme in which Bjorken limits, the Callan-Gross relation 
and scaling are all valid? This is a real challenge to theorists...Perhaps a successful 
approach would involve summation of perturbation theory graphs plus use of the 
Gell-Mann-Low eigenvalue condition (see sect. 3).” (I made these comments at 
just the time when I was working on a possible eigenvalue condition in quantum 
electrodynamics, growing out of the work of Gell-Mann and Low, and Johnson, 
Baker, and Willey, as described below in Chapter 4. The relevance of an eigenvalue 
to power law behavior was also pointed out in the papers of Callan (1972) and of 
Christ, Hasslacher, and Mueller (1972), which I included as references when I edited 
my 1971 conference talk in the fall of 1972.) However, in the field theories then 
under consideration, there was an obstacle to realizing this idea. As I noted in Sec.
3 of my Princeton talk, for singlet gluon theories the renormalization group methods 
suggested either no simple scaling behavior (if there were no renormalization group 
fixed point at which the /3 function had a zero), or power law deviations from scaling 
of the form (q2 ) - 7  (if there were a fixed point at a nonzero coupling value Aq where 
/3 vanished, with 7  the value of the anomalous dimension at the fixed point). Since 
in a strong coupling theory 7  would be expected to be large at the fixed point, power 
law deviations from scaling looked to be too large to agree with experiment.

It took another eighteen months for this obstacle to be overcome. Three de
velopments were involved: the introduction of the modern form of “color” as a 
tripling of the fractionally charged quark degrees of freedom by Bardeen, Fritzsch, 
and Gell-Mann (1972), the non-Abelian gauging of this form of color by Fritzsch 
and Gell-Mann (1972), and finally, in line with Gell-Mann’s dictum “Nature reads 
the books of free field theory”, a search for field theories that would have almost 
free behavior in the scaling limit. The conclusion of this search, the discovery of the 
asymptotic freedom of non-Abelian gauge theories and its implications by Gross, 
Politzer, and Wilczek, in the end proved a realization of the field-theoretic route 
that been contemplated by various people in 1971. In asymptotically free theories, 
because the renormalization group fixed point (the Gell-Mann-Low eigenvalue) is 
at zero coupling, where the anomalous dimension 7  vanishes, the deviations from 
scaling are not powers of q2, but rather only powers of logq2, with exponents that 
can be calculated in leading order of perturbation theory. Thus the deviations from 
scaling predicted by non-Abelian gauge theories, and specifically by quantum chro
modynamics (QCD) as the theory of the strong interactions, are much weaker than 
would be expected for singlet gluon theories, and are compatible with experiment.

Returning briefly to the calculations that Tung and I did, our results for the 
radiative corrections to /?-decay in the singlet vector gluon model turned out later 
to have applications in the QCD context. They can be converted to the realistic case 
of the octet gluon of QCD by multiplication by a color factor, as discussed in the 
review of Sirlin (1978), and so have become part of the technology for calculating 
radiative corrections to weak processes.
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Trace A nom alies to All Orders

In an influential paper Wilson (1969) proposed the operator product expansion, 
incorporating ideas on the approximate scale invariance of the strong interactions 
suggested by Mack (1968). As one of the applications of his technique, Wilson dis
cussed 7T° —* 2 7  decay and the axial-vector anomaly from the viewpoint of the short 
distance singularity of the coordinate space A V V  three-point function. Using these 
methods, Crewther (1972) and Chanowitz and Ellis (1972) investigated the short 
distance structure of the three-point function 6 VflVUl with 9 =  the trace of the 
energy-momentum tensor, and concluded that this is also anomalous, thus confirm
ing earlier indications of a perturbative trace anomaly obtained in a study of broken 
scale invariance by Coleman and Jackiw (1971). Letting Д ^ р )  be the momentum 
space OVfjVv three point function, and Пм„ be the corresponding V^VU two-point 
function, the naive Ward identity Д м„(р) =  (2 — рад /д р (Г)П111,(р) is modified to

Ац1/(р) — ^ 2  — ^  П ^ „ ( р )  — j  {jPfxPv — VfJ-i'P ) ) 

with the trace anomaly coefficient R  given by

R = E $ + \  E 0? •
i ,sp in ^  i,spinO

Thus, for QED, with a single fermion of charge e, the anomaly term is 
- [ 2 a / ( 3 7 r)](pMp1/—r?Mt,p2). In a subsequent paper, Chanowitz and Ellis (1973) showed 
that the fourth order trace anomaly can be read off directly from the coefficient of 
the leading logarithm in the asymptotic behavior of П^1/(р), giving to next order an 
anomaly coefficient —2 а / ( 3 7 г) — а 2/(27Г2). Thus, their fourth order argument indi
cated a direct connection between the trace anomaly and the renormalization group 
13 function.

My involvement with trace anomalies began roughly five years later, when Phys
ical Review  sent me for refereeing a paper by Iwasaki (1977). In this paper, which 
noted the relevance to trace anomalies, Iwasaki proved a kinematic theorem on the 
vacuum to two photon matrix element of the trace of the energy-momentum ten
sor, that is an analog of the Sutherland-Veltman theorem for the vacuum to two 
photon matrix element of the divergence of the axial-vector current. Just as the 
latter has a kinematic zero at q2  =  0, Iwasaki showed that the kinematic struc
ture of the vacuum to two photon matrix element of the energy-momentum tensor 
implies, when one takes the trace, that there is also a kinematic zero at q 2 =  0 , 
irrespective of the presence of anomalies (just as the Sutherland-Veltman result 
holds in the presence of anomalies). Reading this article suggested the idea that just 
as the Sutherland-Veltman theorem can be used as part of an argument to prove 
nonrenormalization of the axial-vector anomaly, Iwasaki's theorem could be used 
to analogously calculate the trace anomaly to all orders. (In addition to writing a
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favorable report on Iwasaki’s paper, I invited him to spend a year at the IAS, which 
he did during the 1977-78 academic year.) During the spring of 1976 I wrote an 
initial preprint attempting an all orders calculation of the trace anomaly in quan
tum electrodynamics, but this had an error pointed out to me by Baqi Beg. Over 
the summer of 1976 I then collaborated with two local postdocs, John Collins (at 
Princeton) and Anthony Duncan (at the Institute), to work out a corrected ver
sion (Adler, Collins, and Duncan, 1977, R24). Collins and Duncan simultaneously 
teamed up with another Institute postdoc, Satish Joglekar, to apply similar ideas 
to quantum chromodynamics, published as Collins, Duncan, and Joglekar (1977), 
and independently the same result for QCD was obtained by N. K. Nielsen (1977). 
Similar results were given in a preprint of Minkowski (1976), which grew out of 
discussions in the Gell-Mann group at Cal Tech in which the role of the /3 function 
in the trace anomaly formula, and its implications for generating the scale of the 
strong interactions, were appreciated (С. T. Hill, private communication, 2005, and 
P. Minkowski, private communication, 2005).

In the simpler case of QED, the argument based on Iwasaki’s theorem is given 
in Section II of R24. The basic idea is to use Iwasaki’s result for the vacuum to 
two photon matrix element of the trace of the energy momentum tensor, together 
with expressions for the electron to electron and the vacuum to two photon matrix 
elements of the “naive” trace тпоф'ф given by application of the Callan-Symanzik 
equations. The final result for the trace is given by

= [1 + 5(a)}m0^  + ^(a)iV[FA£rFA<7] + ... ,

with N[ ] an explicitly defined subtracted operator, with ... indicating terms that 
vanish by the equations of motion, and with <5(a) and /3 (a) the renormalization 
group functions defined by 1 +  (5(a) -  (m /m Q)dm Q/d m  and /3(a) -  (m /a ) d a /d m . 
The first two terms in the power series expansion of the coefficient of the F \a F Xa 
term in the trace agree with the fourth-order calculation of Chanowitz and Ellis. The 
trace equation in QCD has a similar structure, again with the /3 function appearing 
as the anomaly coefficient. The fact that the trace anomaly coefficient is given by the 
appropriate (3 function extends to the supersymmetric case, and leads to interesting 
issues that are reviewed in the final section of Adler (2004a). The appearance of 
the /3 function in the anomaly coefficient has also played a role in the inference of 
the structure of effective Lagrangians from the form of the trace anomaly; see, for 
example, Pagels and Tomboulis (1978) for an application to QCD, and Veneziano 
and Yankielowicz (1982) for an application to supersymmetric Yang Mills theory.
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4. Q u an tu m  E lec tro d y n a m ics

Introduction

My interest in a detailed study of quantum electrodynamics (QED) began during 
my visit to Cambridge, U.K. in the spring of 1968, when I found the anomalous 
properties of the axial-vector triangle diagram discussed in Chapter 3. This started 
me thinking more generally about the properties of fermion loop diagrams, and 
in particular I wondered whether such diagrams in quantum electrodynamics could 
lead to an eigenvalue condition for the electric charge, possibly giving an explanation 
of why the charges of different particle species (such as the electron and proton) are 
the same in magnitude. This speculation ultimately proved to be wrong, and I look 
back on the investigations that it inspired with mixed feelings, as being somewhat of 
a misadventure. On the one hand, my work on aspects of quantum electrodynamics 
led to a number of important papers with useful results, but on the other hand, my 
preoccupation with this program kept me from jumping into the emerging area of 
Yang-Mills unification at the point when much of the interesting theoretical work 
on non-Abelian theories was being done.

My work on QED divided into three distinct phases, described in the following 
sections. The first part dealt with a calculation of the process of photon splitting 
in strong magnetic fields, which served as a warm-up for getting into the study 
of fermion loop diagrams. After this calculation was completed, I turned to an 
investigation of the renormalization group properties of QED, using as a tool the 
newly discovered Callan-Symanzik equations. Finally, in an attempt to get a better 
formalism for calculating the renormalization group /? function contribution from 
closed loop diagrams, I worked out a compactification of massless QED on the 4- 
sphere, and applied this formalism to a number of theoretical issues. By the end 
of this phase, it was clear that developments in non-Abelian gauge theories were 
the future of the field of particle physics and, through grand unification, offered 
a compelling way to understand charge quantization, which had been the starting 
motivation for my interest in electrodynamics. So at this point I set my QED work 
aside and moved on to some of the phenomenological investigations described in 
Chapter 5.
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Strong M agnetic Field Electrodynam ics:
Photon Splitting and Vacuum  D ielectric C onstant

The discovery of pulsars with ultra-strong trapped magnetic fields led to a surge of 
interest in strong field QED processes, that are unobservably small for attainable 
laboratory magnetic fields. One of the processes of interest is photon splitting in 
a constant magnetic field, which is described by a closed electron loop Feynman 
diagram. When conversations at the Institute turned to whether this reaction could 
be of relevance in the dynamics of pulsar magnetospheres, my interest in getting 
into a general study of fermion loop processes in QED made it natural for me to 
get involved. The initial phase of this study led to a paper (Adler, Bahcall, Callan, 
and Rosenbluth, 1970, R25), that surveyed the basic features of the photon splitting 
process. Briefly, the lowest order box diagram makes a vanishing contribution, by 
an argument using Lorentz invariance and gauge invariance, and so the leading 
contribution comes from the hexagon diagram, with three insertions of the external 
magnetic field. (Earlier calculations had overlooked this fact, and so led to the 
wrong dependence on magnetic field strength.) Using the Heisenberg-Euler effective 
Lagrangian, we calculated the photon splitting absorption coefficients for the various 
photon polarization states relative to the magnetic field vector, to leading order 
in the external magnetic field, for photon energies small relative to the electron 
mass. We also gave the selection rules that result from the fact that the dielectric 
constant for the vacuum permeated by a strong magnetic field is different for the 
different photon polarizations (this was where Marshall Rosenbluth’s expertise as a 
plasma physicist entered in), and made numerical estimates. Some of our results were 
independently obtained around the same time by Bialynicka-Birula and Bialynicki- 
Birula (1970).

Again with the aim of getting more experience with QED calculations, I decided 
to embark on an exact calculation of photon splitting, for arbitrary magnetic fields 
and for arbitrary photon energies below the pair production threshold. This involved 
a very lengthy calculation using the proper time method, that Schwinger had first 
used (Schwinger, 1951) to give an elegant rederivation of the Heisenberg-Euler effec
tive Lagrangian. I derived general formulas for both the photon splitting amplitudes, 
and the refractive indices needed for the selection rules (in the latter case correcting 
an earlier result of Minguzzi (1956,1958a,1958b)). I wrote a computer program to 
numerically evaluate the photon splitting absorption rates, and computed sample 
results, as well as giving a detailed discussion of possible plasma physics corrections 
to the selection rules. These results were all reported in a comprehensive article 
(Adler, 1971, R26) on photon splitting and dispersion in a strong magnetic field.

My overall conclusion was that the leading order calculation from the hexagon 
diagram gives good order of magnitude estimates, as graphed in Fig. 8  of R26, which 
plots the ratio of the exact photon splitting absorption coefficient to the hexagon
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diagram prediction, versus magnetic field, for photon frequencies equal to zero and 
equal to the electron mass m. This plot, incidentally, gives a check both on my 
exact analytic calculation and the numerical work, since the ratio approaches unity 
for small field strengths, where the hexagon dominates. For magnetic fields of order 
the “critical field” B q r  — m2/e ~  4.41 x 109  Tesla (4.41 x 101 3  Gauss), and photon 
frequencies of order the electron mass m , the photon splitting mean free path is 
much shorter than characteristic pulsar magnetosphere depths. However, since the 
absorption coefficients scale as B 6 for small fields, and since the pulsars known 
in 1971 tended to have fields of up to a few tenths of B c r , the photon splitting 
process at that time seemed to be not of great astrophysical importance. Stoneham 
(1979) published an analytic recalculation of photon splitting by a different method 
(without numerical evaluation), which as we shall see agreed with my calculation. 
In an Appendix to his paper, he also improved on my estimate of the very small 
corrections that arise from the box diagram, when finite opening angles resulting 
from photon dispersion are taken into account, and we exchanged letters on this 
aspect of his work. However, after Stoneham’s paper, interest in photon splitting 
waned for quite a number of years.

In the mid 1990’s, the discovery of “magnetars”, pulsars with fields much higher 
than the critical field, revived interest in photon splitting. Around April, 1995, John 
Bahcall told me that recent papers by Mentzel, Berg, and Wunner (1994) and Wun- 
ner, Sang, and Berg (1995) claimed that the photon splitting absorption coefficients 
for energetic photons in strong fields were a factor of 1 0 4  higher than given in my 
1971 paper. If true, this would have had important astrophysical ramifications, so I 
looked back at my own work, and at the papers of the Wunner group. I was struck 
by the fact that the Wunner group had not checked to see whether their calculation 
reproduced the known B 6 dependence of photon splitting for weak fields and low 
energy photons, a consistency test that, as noted above, I had incorporated into 
my analytic and numerical work. So I strongly suspected that they had made an 
error, possibly through a lack of gauge invariance, and wrote a letter to this effect 
to the Wunner group, while John simultaneously wrote to Astrophysical Journal 
Letters, where their second paper was being considered for publication. Neither of 
these letters had any effect, and the Wunner, Sang, and Berg paper was published 
in December, 1995. John Bahcall and Bohdan Paczynski then urged me to make 
my private misgivings known more publicly. In response, I wrote a short IAS As
trophysics Preprint Series article in January, 1996 (Adler, 1996), expanding on my 
letter to the Wunner group, and concluding “it is important that their calculation 
and mine be rechecked by a third party, with the aim of understanding where the 
discrepancy arises and determining who is right.” I submitted this note to the -4s- 
trophysical Journal, which rejected it.

Although this short note was never published, it had the intended effect as 
a result of its internal circulation within the IAS. Not long afterwards Christian
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Schubert, an IAS visitor at the time, came to my office and said that with new 
“stringy” Feynman rules with which he was expert, he thought he could repeat in 
a few days the calculation that had taken me a couple of months by the proper 
time method. I replied that if he could do that, I would deal with the numerical 
aspects. A week or two later Christian gave me two equivalent formulas for the 
photon splitting amplitude obtained by his methods; in the meantime, the Russian 
group of Baier, Milstein, and Shaisultanov (1996) had produced yet another calcu
lation, which agreed numerically with my 1971 paper. During a short visit to the 
Institute for Theoretical Physics in Santa Barbara, I wrote programs to directly 
compare Schubert’s two expressions, my 1971 result, Stoneham’s 1979 formula, and 
the analytic formula of the Russian group, all as applied to the allowed polarization 
case. (The reason for doing this numerically is that an analytic conversion between 
inequivalent Feynman parameterizations is very difficult, because zero can be writ
ten as a multidimensional integral in complicated ways.) The programs showed that 
the five calculations gave precisely identical amplitudes. This was reported in the 
paper that I drafted with Schubert on my return to the IAS (Adler and Schubert, 
1996, R27). We also posted my computer programs on my web site, and advertised 
this posting in the paper, so that the community at large could verify what we had 
done. About a month later, I received an email from Wunner retracting the earlier 
numerical results of his group, which turned out to result from a single sign error in 
their computer programs. When this sign error was corrected, the analytic results of 
Mentzel, Berg and Wunner gave answers that agreed with everyone else, as discussed 
in Wilke and Wunner (1997). Thus the photon splitting controversy was finally re
solved. Subsequently, John Bahcall had me assemble a file of all the relevant papers 
and correspondence for a post-mortem meeting that he held with the editors of the 
Astrophysical Journal, to analyze and improve the process that that had allowed an 
incorrect paper to get into print, despite several advance warnings that the results 
were suspect.

T he “F in ite  Q E D ” Program  via the Callan— Sym anzik E quations

My comprehensive article on photon splitting was finished in early 1971, and the 
following summer I returned to my long-standing interest in a study of unresolved 
issues in the theory of quantum electrodynamics. Johnson, Baker, and Willey (1964), 
Johnson, Willey, and Baker (1967), and Baker and Johnson (1969, 1971a,b) had 
written an important series of papers (referred to below as JBW) in which they 
argued that if QED has a Gell-Mann-Low eigenvalue, then the asymptotic behavior 
of both the electron and photon propagators would drastically simplify, with the 
mass term in the electron propagator having power law scaling behavior, and the 
asymptotic photon propagator behaving, after charge renormalization, as if it had 
no photon self-energy part. Bill Bardeen and I were both in Aspen for part of the
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QED using “ »  " T  new Cajlan 
i ’ ^er than addressing the issue of a possible

eige lue in QED, we studied the simplified model suggested by the presence of 
such an eigenvalue, in which the photon propagator is taken as a free propagator 
with no self energy part. In this case the /3 function term, which has a coupling 
constant derivative, is not present in the Callan-Symanzik equations, and these 
equations then can be explicitly integrated to give the simple form for the electron 
propagator found by JBW. These results were described in the paper Adler and 
Bardeen (1971), R28. In addition to giving results of interest for QED, this paper 
was one of the first applications of the Callan-Symanzik equations, and was also 
a motivation for my remarks at the Princeton conference later in 1971 (see R23), 
in which I suggested a possible connection between an eigenvalue condition in the 
strong interactions and Bjorken scaling.

After finishing the paper with Bardeen, I turned to a detailed study of the full 
theory of QED, with photon self-energy parts retained, on which I wrote a com
prehensive paper Adler (1972a), R29. This paper had a number of new results. I 
began with a review of the original Gell-Mann-Low formulation of the renormal
ization group in QED, and then redid their analysis in terms of the more modern 
Callan-Symanzik approach, ending up in Eq. (53) with the explicit map between 
the Callan-Symanzik /3(a) function and the functions ф(а) and q(a) that enter into 
the Gell-Mann-Low formulation. (An implicit form of this map had appeared in 
Sec. II.3 of Symanzik (1970).) After reviewing the JBW program and the results 
obtained with Bardeen in R28, I showed by an argument based on the Federbush- 
Johnson (1960) theorem that if there is an eigenvalue in QED, then in the massless 
limit all 2ra-point current correlation functions must vanish at the eigenvalue. I then 
went on to show, in an argument that benefited from a conversation with Roger 
Dashen, that the vanishing of higher correlation functions also implied the vanish
ing of all coupling constant derivatives of the photon proper self-energy part at the 
eigenvalue; hence the eigenvalue, if it existed, must be an infinite order zero of the 
one-loop /3 function. These were all correct results that give the paper an enduring 
value.

I concluded the paper by proposing that in addition to the standard renormal
ization group result, in which the eigenvalue plays the role (through running of 
the coupling) of the unrenormalized fine structure constant ao, there could be an 
additional solution, resulting from a fermion-loopwise summation of the theory, in 
which the eigenvalue plays the role of the physical coupling a. A motivation for this 
proposal was that the formal power series argument, which shows the equivalence of 
loopwise summation to the usual renormalization group analysis, could break down 
in the presence of an essential singularity in the coupling. I then went on to conjec
ture that loopwise summation with an eigenvalue for a  was the mechanism fixing 
the physical fine structure constant in a uniform manner for all fermion species.
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As I have noted in the Introduction to this Chapter, this conjecture turned out to 
be wrong, and in retrospect my excessive emphasis on it in writing R29 distorted 
the presentation of an otherwise good paper. At the time key people working on 
the renormalization group, in particular Gell-Mann, Low, and Wilson, were all very 
skeptical. Wilson, in particular, remarked at a Princeton seminar that my demon
stration of an infinite order zero showed there could be no eigenvalue in QED, and 
although I was privately annoyed at the time, it is now clear that this was the correct 
conclusion.

Finally, in an Appendix to my paper, I returned to the electron propagator 
analysis carried out in R28, this time in a general covariant gauge. This investigation 
was later reanalyzed in more detail, and improved, in a comprehensive study by 
Lautrup (1976).

The final paper in this section, Adler, Callan, Gross, and Jackiw (1972), R30, 
studied the combined implications of the BJL limit, the nonrenormalization of 
anomalies, and the possible presence of an eigenvalue in QED. This paper, which 
was initially drafted by Roman Jackiw, grew out of discussions among the authors 
at Princeton and at the National Accelerator Laboratory. It shows that the following 
three phenomena are, when taken in combination, incompatible: (1 ) nonrenormal
ization of the axial-vector anomaly, (2) the existence of an eigenvalue in QED, (3) 
validity of naive scale invariant short-distance expansions involving the axial-vector 
current at the eigenvalue. Since the finite QED program was intended to eliminate 
the pathologies of QED, through presence of an eigenvalue, this showed that its aims 
could not be attained, and again cast strong doubt on the existence of an eigenvalue 
in QED. For later work coming to the same conclusion, and references to more re
cent literature, see Baker and Johnson (1979), and Acharya and Narayana Swamy
(1997). On rereading R30 now, it occurs to me that the argument establishing a 
relation between the axial-vector anomaly and the Schwinger term given in Section 
III may be extendable to show that the vanishing of anomalies in axial-vector loop 
diagrams coupling to four or more photons in QED implies, through similar use of 
a BJL limit, that the Schwinger term in the two-point function is a с-number. As 
noted in Chapter 3, this is a result that I was unable to prove, before the advent of 
the theory of anomalies, in 1966. For another approach to constraining the structure 
of the Schwinger term, see Jackiw, Van Royen, and West (1970).

C om pactification  of M assless Q ED and A pplications

The fact that the eigenvalue condition for QED can be studied in the conformally 
invariant, massless electron theory, led me to study remappings of the Feynman rules 
for QED that make use of conformal invariance. In Adler (1972b), R31, I showed 
that the equations of motion and Feynman rules for massless Euclidean QED can 
be written in terms of equivalent equations of motion and Feynman rules expressed
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in terms of coordinates that are confined to the surface of a unit hypersphere in 
5-dimensional space (a four-sphere in mathematical terms). For example, letting r)a 
be the coordinate on the sphere (where a runs from 1 to 5, and (t?“ ) 2  =  l) , the 
usual four-vector potential is replaced by a five-vector A a obeying the constraint 
(with repeated indices summed) r]aA a — 0, and the electromagnetic field strength 
is replaced by a three-index tensor Fatc — ЬаьАс + LbcA a +  ЬщАъ, with Ьаь the 
5-space rotation generators. This tensor has a two-index dual Fab, and the Maxwell 
equations become L abFabc = 2eJc , ЬаьРьс =  Fac. The corresponding 0(5) covariant 
Feynman rules are given in Table I of R31. The result of this transformation of the 
theory is an explicit demonstration that massless QED can be compactified, so 
that there are only ultraviolet divergences (corresponding to points approaching 
each other on the surface of the sphere, where it becomes tangent to Euclidean 
4-space), but no infrared divergences. The 0(5) rules, however, are not manifestly 
conformal invariant; in a later section of the paper I showed that they are related, by 
a projective transformation, to a manifestly conformal invariant (but non-compact) 
0(5.1) formalism that was introduced earlier by Dirac (1936).

In two subsequent papers I further developed and applied the 0(5) covariant 
formalism. In Adler (1973) I showed that the usual Feynman path integral takes 
the form of an amplitude integral, constructed as an infinite product of individu
ally well-defined ordinary integrals over coefficients appearing in the hyperspherical 
harmonic expansion of the electromagnetic potential A a. In the paper Adler (1974), 
R32,1 used the amplitude integral formalism to study a simple model, in which only 
a single photon mode of the form A a <x V\aT) ■ -  V2arl ■ v \ , with v \$  orthogonal unit 
vectors, is retained. The external field Fredholm determinant or vacuum persistence 
amplitude Д(еЛ) =  det( ^ 7  ■ d  +  e*y - A) could then be studied by exploiting the 
0 (3 ) ж 0 (2 ) residual symmetry of this model, which permits the external field prob
lem to be reduced to a set of two coupled first order ordinary differential equations, 
with a Wronskian equal to the Fredholm determinant. A significant result coming 
out of the analysis of this model was that the renormalized Fredholm determinant 
is an entire function of order four as eA  becomes infinite in a general complex di
rection. This played a role in a subsequent discussion of asymptotic estimates in 
perturbative QED, as discussed in the paper of Balian, Itzykson, Zuber, and Parisi
(1978), which followed up on an earlier paper of Itzykson, Parisi, and Zuber (1977). 
Whereas extrapolation from the solvable case of a constant field strength FMI/ sug
gested that the order of the Fredholm determinant is two, my solvable example 
showed that two cannot be the correct answer for general vector potentials. Balian 
et al. noted this and then went on to present further arguments for the determinant 
being of order four in four-dimensional spacetime, or more generally of order D  in 
D-dimensional spacetime. This in turn had important implications for their study 
of asymptotic behavior of the perturbation series in QED. The subject of the or
der of the Fredholm determinant was further developed by Bogomolny. In an initial
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paper by Bogomolny and Fateyev (1978), the case of fields with an 0(3) x 0(2) 
symmetry group that I had initiated in R32 was taken up again, and an asymptotic 
formula for the Fredholm determinant was obtained. In a subsequent paper, Bogo
molny (1979) showed that this asymptotic formula, and a similar formula obtained 
by Balian et al. for another special case, could be extended to the general result 
Пт^-моо A ( e A )  =  (e4/1 2 n 2) J  d 4x ( (A ^ )2) 2, provided A  ̂ is chosen to obey the non
linear gauge condition d ^ A ^ A 2) — 0. Thus the order four result that I found in my 
“one-mode” model in fact gave the correct general answer for QED.

A further application of the 0(5) formalism for QED emerged after the discov
ery of the instanton solution to the Yang-Mills field equations. Jackiw and Rebbi 
(1976) showed that the one-instanton solution is invariant under ал 0(5) subgroup 
of the full conformal group, and hence can be rewritten in an elegant way in terms of 
the 0(5) formulation of electrodynamics, as extended to non-Abelian gauge fields. 
Letting q„ be the 0(5) equivalent of the Dirac 7  matrices, and 7 аь =  (i/4)[aa, аь], 
a matrix-valued vector potential Aa obeying the constraint rj ■ A — 0 can be im
mediately constructed as A a — Сць'УаЬ- Jackiw and Rebbi showed that when this 
vector potential is substituted into the Yang-Mills field equation as expressed in 
the non-Abelian extension of the 0(5) formalism, one gets a cubic equation for the 
coefficient C , two roots of which give pure gauge potentials with vanishing field 
strengths, but the third root of which gives the instanton! Thus, I had missed a sig
nificant opportunity in not pursuing the question, raised at least once when I gave 
seminars, of what the non-Abelian generalization of the 0(5) formalism was like. 
A variant of the non-Abelian 0(5) formalism was subsequently applied by Belavin 
and Polyakov (1977), with corrections by Ore (1977), to give a recalculation of the 
Fredholm determinant in an instanton background that was first computed by ’t 
Hooft (1976).
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5. Particle Phenom enology and Neutral Currents

Introduction

Much of the work described in Chapters 2 and 3 on soft pion theorems, sum rules, 
anomalies, and neutrino reactions falls in the category of phenomenology, but both 
the interrelations between different aspects of this research, and the chronology, sug
gested that it be discussed earlier. Even before this work was done, I wrote my first 
particle phenomenology paper in collaboration with my first year Princeton gradu
ate school roommate, and former Harvard classmate, Alfred Goldhaber (Adler and 
Goldhaber, 1963). In this paper we analyzed the possibility of using the deuteron to 
provide a polarized proton target, by determining the polarization of the recoiling 
spectator neutron through its scattering on He4. Although perhaps feasible, this 
proposal was never implemented, and much better methods for directly obtaining 
polarized targets are now available. After I completed the work on quantum elec
trodynamics described in Chapter 4, I returned to phenomenology in a number of 
papers written, or conceived, during visits to the National Accelerator Laboratory 
(subsequently renamed the Fermi National Accelerator Laboratory, or Fermilab), 
and continued with related work in a number of papers written at the IAS. I dis
cuss the earlier work done at Fermilab in the first section that follows, and then in 
the second section take up work at both Fermilab and the IAS relating to neutral 
currents.

V isits to  Fermilab

When the National Accelerator Laboratory was inaugurated, my former thesis ad
visor Sam Treiman was brought in, on a succession of leaves from Princeton starting 
in 1970, to serve as temporary head of the Theory Group, with the charge of set
ting it up and recruiting a permanent head. Subsequently, Ben Lee was hired to be 
the permanent head of the Theory Group. During this period many theorists from 
outside institutions were invited to be term time and/or summer visitors, and as 
part of this program I made a series of visits to Fermilab, and wrote a number of 
phenomenological papers growing out of discussions with people there.

As already noted in Chapter 3, during a 1971 visit to Fermilab I collaborated 
with Lee, Treiman, and Tony Zee to study the anomaly-based prediction for the pro
cess 'у'у —* З7Г, described in the paper R20. This was applied in a subsequent paper
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that I wrote with Glennys Farrar and Treiman (Adler, Farrar, and Treiman, 1972, 
R33) to an analysis of the contribution of three pion intermediate states to the rare 
kaon decay K l —> Ц+Ц~- The background for this study was what was then called 
the “K i  —» n +fi~ puzzle”, the fact that experiment had not detected this kaon 
decay mode at a level considerably below that given by a unitarity bound based on 
the assumed dominance of a two photon intermediate state in the absorptive part 
of the decay amplitude. There were thus two possibilities, either an experimental 
problem, or destructive interference with another intermediate state, for which the 
three pion intermediate state was a prime candidate. Aviv and Sawyer (1971) had 
proposed to use soft pion methods to estimate the three pion contribution, and had 
concluded that the contribution was much too small to be relevant. However, the 
Aviv-Sawyer analysis used an expression for the Зтг —> 7 7  amplitude which had 
been shown in R2 0  to be incorrect. In R33, we estimated the three pion contribution 
by using the corrected 3 7 Г —> 7 7  amplitude calculated in R20, but still found that 
it gave much too small a contribution to explain the lack of observed K i  —► 
events. Similar conclusions, again using the results of R20, were reached indepen
dently by Pratap, Smith, and Uy (1972). Ultimately, the origin of the “K l —» /х+/л~ 
puzzle” turned out to be experimental, and this decay mode has now been seen in 
a number of experiments, with the Particle Data Group giving an average value for 
Г(д+^ “ )/Г тот of ~  7.2 x 10—9, as compared with the theoretical unitarity lower 
bound of 7.0 x 10~ 9  based on the current K i  —» 7 7  branching ratio.

During the years 1973-1974, my Fermilab visits led to papers in two separate 
areas, searches for neutral currents in weak pion production, and the analysis of 
what was then a discrepancy between theory and experiment in /z-mesic atom x-ray 
spectra. I will take up this second area first, because the neutral current work leads 
directly into the papers discussed in the next section. My interest in the /i-mesic 
atom discrepancy was stimulated by my earlier work on quantum electrodynamics, 
since an eigenvalue in QED could show up as deviations from the standard pertur
bation theory predictions for vacuum polarization effects. Thinking about tests for 
vacuum polarization discrepancies in QED led me to think more generally about 
other aspects of vacuum polarization, in particular the predictions for the ratio 
R {s) — a (e+ e~ —* hadrons; s ) /a (e + e~ —> in various models for quark
structure of hadrons. This offshoot of the QED work led to results that are still 
used today, introduced in the paper Adler (1974a), R34: dealing with “Some simple 
vacuum-polarization phenomenology...” . My basic observation was that whereas R  
is measured in the timelike region, the natural place to compare experiment with 
scaling predictions of various theories is in the spacelike region, where (since there 
are no threshold effects) one might expect an early or “precocious” onset of scaling. 
Rather than directly using the dispersion relation for the vacuum polarization part 
to calculate the spacelike continuation, I proposed using its first derivative, and so
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defined a function

Г°° duR(u)
2

This function is the one for which parton models and QCD most directly make pre
dictions, and since it is positive definite and involves a strongly convergent integral 
(for R  approaching a constant), the experimentally inaccessible high energy tail has 
a known sign and a magnitude that can be bounded. For a parton model in which 
R  asymptotically approaches a constant C, one has T ( —s) ~  C /s  as s —> oo, and a 
similar formula holds in QCD with a known logarithmic correction. The paper R34 
used the function T (—s) to propose a test of the colored quark hypothesis. Subse
quently, De Rujula and Georgi (1976) used a modified version of this idea, defining 
D (s) =  s T (—s ), to analyze the new SPEAR data. They found that the original 
colored quark model was excluded, and among various viable possibilities, noted 
that “the standard model with charm is acceptable if heavy leptons are produced,” 
a conclusion that was borne out by experiment with the subsequent discovery of 
the r  lepton. Shortly afterwards, Poggio, Quinn, and Weinberg (1976) proposed a 
generalized method in which the derivative of the hadronic vacuum polarization 
that I had used is replaced by a finite difference between the hadronic vacuum po
larization values at points a distance ±гД from the timelike real axis, leading to 
a “smeared” average of R(s) that retains sensitivity to threshold effects. Recently, 
my original method, generally in the form D (s) used by De Rujula and Georgi, has 
been revived under the name of the “Adler function” , in a number of papers; see, 
for example, Broadhurst and Kataev (1993), Kataev (1996); Peris, Perrottet, and de 
Rafael (1998); Beneke (1999); Eidelman, Jegerlehner, Kataev, and Veretin (1999); 
Kataev (1999); Cvetic, Lee, and Schmidt (2001); Cvetic, Dib, Lee, and Schmidt 
(2001); Milton, Solovtsov, and Solovtsova (2001); and Dorokhov (2004).

In the second part of R34 I examined what was then a discrepancy between theory 
and experiment in fi-mesic atom x-ray transition energies, under the assumption 
that (if real) the discrepancy arose from a nonperturbative correction Sp to the 
vacuum polarization absorptive part. Assuming that Sp is positive, or positive and 
monotonic, I derived lower bounds on the corresponding deviation that would be 
expected in a^ =  Ь(д^ -  2). For instance, if Sp is assumed positive and monotonic, 
comparison of the kernels that weight p in the formulas for the x-ray transition 
energies and for a^ gives the bound 5a^ < —(0.98 ±  0.18) x 10-7 . In a follow-up 
paper with Roger Dashen and Sam Treiman (Adler, Dashen, and Treiman, 1974) 
we discussed other tests for a nonperturbative vacuum polarization contribution, 
and also placed bounds on the mass of a light scalar meson that could be invoked 
to explain the x-ray discrepancy. A few months later, Barbieri (1975) extended 
the method of R34 to show that precision measurements of the (/i4 He)+ system 
were already at variance, within the vacuum polarization deviation or scalar meson
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exchange hypotheses, with the supposed x-ray discrepancy. A later paper of Barbieri 
and Ericson (1975) gave additional evidence against the scalar meson explanation 
for the x-ray discrepancy. In the meantime, during 1975 and the few years following, 
there were a number of experimental developments, reviewed in detail in Borie and 
Rinker (1982), as a result of which the muonic x-ray discrepancy was eliminated. 
Incidentally, the current theoretical and experimental values of differ by a few 
parts in 10 9, well below the lower bounds on 5a^ inferred in R34 from the /i-mesic 
atom x-ray data at that time, giving an additional indication that that the purported 
x-ray discrepancy was an experimental artifact.

N eutral Currents

The existence of weak neutral currents is a principal prediction of the Glashow- 
Weinberg-Salam electroweak theory, and commanded much attention in the 1970s. 
Failure to find weak neutral currents would have falsified the electroweak theory, 
and on the other hand, detection of weak neutral currents would give a value for 
the electroweak mixing angle which in turn determines the masses of the heavy 
intermediate bosons of the theory. As a result of my thesis work on weak pion 
production, it was natural for me to get interested in theoretical estimates of the 
neutral current weak pion production channels v  +  N{ —* v  +  -rr +  N f ,  with N i j  a 
nucleon (either a neutron or proton) and with 7Г a pion of appropriate charge. In 
July 1972, a collaboration with Wonyong Lee as spokesman proposed a study of 
weak neutral currents in both the purely leptonic and the pion production channels 
at the Brookhaven AGS accelerator, and a copy of their proposal is in my files. 
Through this, and through related correspondence of Ben Lee with Sam Treiman, I 
got interested in doing detailed calculations for this process, and over the next few 
years was in frequent touch with the experimental group for which Wonyong Lee 
was spokesman.

My initial papers were motivated by the fact that preliminary estimates of neu
tral current weak pion production by Ben Lee (1972) appeared to conflict with 
experiments in complex nuclei reported by Wonyong Lee (1972), subject to two 
caveats. The first caveat was that Ben Lee’s static model estimates didn’t include 
7 = 1 /2  contributions to weak pion production, and the second caveat was that nu
clear charge exchange corrections could be important, as noted by Perkins (1972). 
The first of these issues was dealt with in a short paper Adler (1974b), R35, where I 
used my model of R15, as adapted to the neutral current case, to estimate the effects 
of including the nonresonant isospin 1 / 2  channels, and concluded that they had lit
tle effect on Ben Lee’s estimate from the dominant isospin 3/2 channel. The second 
issue was dealt with in a paper on nuclear charge exchange corrections to pion pro
duction in the Д(1232) region, that I wrote in collaboration with Shmuel Nussinov 
and Emmanuel Paschos (Adler, Nussinov, and Paschos, 1974, R36). In this paper,
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we estimated the effects of multiple charge exchange scattering on pion production 
in nuclear targets, using an extension of techniques used by Fermi and others to 
calculate multiple neutron scattering in the early days of neutron physics. A con
siderable part of the fun of writing this paper was learning about this older work on 
neutron physics, and feeling a sense of continuity between current concerns of weak 
interaction physics and the quite differently motivated work of an earlier generation. 
In addition to giving analytic formulas, we tabulated various results for the case of a 
1 3 AI2 7  target, as appropriate to experiments with aluminum spark chamber plates. 
In R36, we made the simplifying assumption of an isotopically neutral target (that 
is, equal numbers of neutrons and protons), which is exact for бС12, and a good 
approximation for aluminum. In a follow up paper (Adler, 1974c), I extended the 
model to nuclear targets with a neutron excess. As can be seen from Table II of R36, 
charge exchange corrections are sizable, and in our model typically reduce the ratio 
of neutral current to charged current 7г° production by about 40%.

My next paper on neutral currents was motivated by the fact that preliminary 
results of an experiment on weak pion production in hydrogen at Argonne National 
Laboratory showed a cluster of neutral current events just above threshold. In this 
kinematic regime soft pion methods should apply, allowing one to relate threshold 
neutral current weak pion production in the standard electroweak theory to the 
elastic neutral current cross section for v  +  p —* v +  p. Using this relation, I showed 
in Adler (1974d), R37 that one could place bounds on the expected number of 
neutral current pion production events in the threshold region, with the Argonne 
results exceeding these bounds. Thus, there seemed to be stronger neutral current 
weak pion production than suggested by the S U (2) x £/(1 ) electroweak theory.

Subsequent events then proceeded on several parallel tracks. In a follow-up paper 
to R37, published as Adler (1975a), R38, I used the full apparatus of my weak pion 
production calculation of R15 to extend the neutral current calculation above the 
threshold region to include the regime where Д(1232) production dominates. This 
analysis reinforced the conclusions about the preliminary Argonne data already 
reached in R37. Simultaneously, with a large group of postdocs at the Institute, I 
embarked on a study of weak pion production in alternative models of neutral cur
rents with scalar, pseudoscalar, and tensor currents, and also with so-called “second 
class” (abnormal G-parity) currents. Additionally, in Adler, Karliner, Lieberman, 
Ng, and Tsao (1976), we did a detailed study of isospin-1/2 resonance production 
by V, A neutral currents. Perhaps the one part of the group effort on alternative 
current structures to have lasting value was a calculation of nucleon to nucleon and 
pion to pion matrix elements of scalar, pseudoscalar, and tensor current densities, 
using all the theoretical tools then at our disposal: flavor SU3 and chiral SU j x SU3 

symmetries, the quark model, and the MIT “bag” model. The results of these cal
culations were checked by several of us, and tabulated in Adler, Colglazier, Healy, 
Karliner, Lieberman, Ng, and Tsao (1975), R39; they were subsequently relevant for
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estimates of the coupling to nucleons of hypothetical scalar and pseudoscalar par
ticles. such as axions. The main part of the group effort was a current algebra soft 
pion production calculation for the alternative current case, which involved exten
sive algebra and computer work. From this, we found that one could explain roughly 
half of the reported Argonne threshold events with currents of scalar, pseudoscalar, 
and tensor type, by allowing some deviations from the matrix element estimates of 
R39. as I reported at the January, 1975 Coral Gables Conference (Adler, 1975b). 
In the meantime, the Argonne group reexamined possible background problems af
fecting their preliminary results, with the result that they ultimately discounted the 
cluster of pion production events near threshold. So by September of 1975, when I 
reviewed the subject of gauge theories and neutrino interactions at a conference at 
Northeastern University (Adler, 1976a), the electroweak theory predictions for neu
tral current weak pion production, following from purely V  and A  currents, were no 
longer in conflict with experiment. This conclusion was reinforced by a subsequent 
detailed analysis by Monsay (1978) of neutral current weak pion production, using 
my model together with the charge exchange corrections of R36.

In the summer of 1975 I lectured on neutrino interactions and neutral currents 
at the Sixth Hawaii Topical Conference on Particle Physics, and gave a compre
hensive survey of neutral current phenomenology based on parton model methods, 
soft pion theorems, and quark model calculations of baryon static properties. This 
appeared both in the conference proceedings (Adler, 1976b) and again in a tenth 
year anniversary volume selecting highlights from the preceding summer schools 
(Pakvasa and Tuan, 1982). My hope in preparing the 1975 lectures was that survey
ing all available tools would hasten the day when one could determine electroweak 
parameters based on using all available data for a global fit, instead of doing piece
meal fits channel-by-channel. Such a global fit was carried out a few years later 
by Abbott and Barnett (1978a,b), who included four types of data: deep inelastic 
neutrino scattering v N  —* l>X, elastic neutrino-proton scattering up —* up, neu
trino induced inclusive pion production u N  —> uttX ,  and neutrino induced exclusive 
pion production v N  —► u-rrN. For the exclusive pion process, they employed my 
weak pion production calculation of R15 as extended to neutral currents in R38, 
using test data that I ran for them from my programs as benchmarks to help debug 
their programming. Their results were, in the words of their letter Abstract, “for 
the first time, a unique determination of the weak neutral-current couplings of и 
and d quarks. Data for exclusive pion production are a crucial new input in this 
analysis.” Their multi-channel fit gave the first full confirmation that the Glashow- 
Weinberg-Salam model, with sin2  6 w  between 0.22 and 0.30, was in agreement with 
the experimental up and down quark neutral current coupling parameters. To me, 
the Abbott-Barnett analysis was valued recompense for the several years of hard 
calculation and scholarly attention to detail that I had put into the subject of weak 
pion production.
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6. G rav itation

In tro d u ctio n

During the first half of the 1970’s, I started to get interested in learning more about 
gravitational physics. When I was a graduate student at Princeton in the early 
1960’s, particle physics and gravitational physics were quite separate subjects, with 
the former the domain of Goldberger and Treiman, and the latter the domain of 
Wheeler and Dicke, to mention just a few key faculty members. Under the un
structured system at Princeton, I never took a course in gravitation, and for my 
general exam got by with the introduction to general relativity that I obtained by 
reading the text of Peter Bergmann (1942), as well as reading some of the original 
Einstein papers reprinted in a Dover edition. (Working through the Dover volume 
was a project of an informal reading and discussion group during my senior year 
at Harvard, organized by Norval Fortson, an experimental physics graduate student 
affiliated with the residential house where I lived then.) However, in the 1970’s it 
became clear both that many new results had been obtained in general relativity, 
so that my undergraduate knowledge was out-of-date, and that general relativity 
was becoming part of the essential tool kit of people working in quantum field the
ory. Among the things that convinced me of this were reading the thesis of Stephen 
Fulling (1972) on scalar quantum field theory in de Sitter space, while I was working 
on the 0(5) formulation of QED, the work o f ’t Hooft and Veltman (1974) and Deser 
(1975) on one-loop divergences of quantum gravity, and the availability of the new 
books on gravitation of Weinberg (1972), Misner, Thorne, and Wheeler (1973), and 
Hawking and Ellis (1973).

My intention in writing my comprehensive Hawaii lectures in the summer of 
1975 was to wind up my involvement with neutrino physics, so that I could turn 
to something new. Since in 1976 I was due for a sabbatical, and my family did not 
want to travel away from Princeton, I decided that to learn relativity I would take a 
“reverse sabbatical” , by going to Princeton University to teach the relativity course 
for a year. So I spent my evenings during the 1975-1976 academic year reading the 
texts of Weinberg and of Misner, Thorne, and Wheeler, and then took my sabbatical 
during the 1976-1977 academic year, teaching both the fall term course in Special 
Relativity and the spring term continuation course in General Relativity. I also was 
the faculty advisor for John David Crawford, who did a senior thesis on experimental
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tests for curvature squared additions to the gravitational action. With this reading 
and teaching as background, I embarked on a number of relativity-related research 
projects, described in the next two sections.

First Papers

My first papers on gravity were the working out of a very speculative idea, that grav
itation might be a composite phenomenon, with the gravitational fields arising as 
composite “pairing” amplitudes of photons in analogy with the energy gap order pa
rameter for superconductivity. In the paper Adler, Lieberman, Ng, and Tsao (1976), 
we looked for weak coupling singularities in the electromagnetic photon-photon lad
der graph sum in a conformally flat spacetime, and found some resemblances to 
the helicity structure of graviton exchange amplitudes. In a follow-up paper (Adler, 
1976) I gave a linearized Hartree formulation for the photon pairing problem in a 
general background metric. I was never able to establish a detailed connection be
tween photon pairing amplitudes and graviton couplings in the general case, and the 
fact that no weak coupling singularities occurred in flat spacetime meant that one 
could not establish a connection with the standard results of linearized general rela
tivity. In retrospect, the absence of pairing effects in flat spacetime could have been 
expected from a subsequent theorem of Weinberg and Witten (1980), that ruled 
out spin- 2  composites under quite general assumptions, and effectively doomed the 
program as set up in the 1976 papers. However, a useful outcome of writing these 
papers was that it started me thinking more generally about the idea of gravitation 
as an effective theory, and in particular about Sakharov’s ideas on gravitation, which 
I briefly discussed in the paper Adler (1976); following up this direction later on led 
to my work on the Einstein action as a symmetry-breaking effect, discussed in the 
next section.

A second topic that I worked on in 1976 was the regularization of the stress- 
energy tensor for particles propagating in a general background metric. In the paper 
Adler, Lieberman, and Ng (1977), we applied covariant point-splitting techniques to 
the Hadamard series for the Green’s functions, which we used to define a regular
ized stress-energy tensor for vector and scalar particles. This was a very technical 
computation, and contained useful formulas among its results, but also produced an 
embarrassment: by our method of regularization, we did not find the trace anomaly 
that had been found by others using different methods. We rechecked our calcula
tion carefully, but could not find the source of the discrepancy. The problem was 
finally resolved by Wald (1978) (in time to be described in a note added in proof 
to our 1977 paper). Wald had earlier (Wald, 1977) set up a general axiomatization 
for the stress-energy tensor, and in Wald (1978) had shown that it leads to an es
sentially unique result. Applying a point-separation method similar to ours, he had 
also found no trace anomaly, but then went on to note that there was a subtle error
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in our analysis. We had assumed that the local and boundary-condition-dependent 
parts of the Hadamard solution are separately symmetric in their arguments, but 
this is in fact not the case; only their sum is symmetric. Wald (1978) showed in the 
scalar case that when the analysis is repeated without the incorrect assumption, one 
gets the standard trace anomaly. Judy Lieberman and I then did the corresponding 
calculation in the vector particle case (Adler and Lieberman, 1978, R40), again find
ing that when the asymmetry of the two pieces of the Hadamard solution is taken 
into account, one gets the correct trace anomaly.

In a lunchtime conversation at some point during the 1977-1978 academic year, 
Robert Pearson asked whether the “no-hair” theorems of general relativity applied 
to the case of spontaneous symmetry breaking. I thought this was interesting and 
looked into it, finding no relevant papers in the literature. This became the subject 
of a joint paper (Adler and Pearson, 1978, R41), which showed that the standard 
“no-hair” theorems generalize to the vector field in the Abelian Higgs model, and 
to the non-conformally invariant Goldstone scalar field model. In our paper, we 
restricted ourselves to static, spherically symmetric black holes, and made the phys
ically motivated assumption that any “hair” would also be static and spherically 
symmetric. This permits a simplifying choice of gauge for the Abelian Higgs model 
introduced by Bekenstein (1972). He observes that static electric charge distribu
tions must give rise to static electric fields and vanishing magnetic fields. Thus one 
can find a special gauge in which the potentials A^ obey A =  0, dA a/d t =  0. Since 
the gauge-independent source current j и obeys similar conditions j  =  0 , d jo /d t =  0 , 
and since the gauge-independent magnitude of the Higgs scalar field is static, one 
finds that the residual phase of the Higgs scalar field in the special gauge is a space- 
independent, linear function of time, which can be eliminated by a further gauge 
transformation that preserves the gauge conditions A =  0, dA a/d t =  0. Thus one 
can do the analysis of possible “hair” taking the vector potential to be zero, and 
the Abelian Higgs field to be real. I have described Bekenstein’s argument here in 
some detail because the choice of gauge in R41 is the basis of rather loosely worded 
objections to our paper in lectures of Gibbons (1990); his assertion (and that of 
authors who have quoted his lectures) that the gauge choice is problematic is not 
correct, as working through the Bekenstein argument given above makes clear. Also,
I have rechecked the proof given in R41, and apart from the minor problem found 
by Ray, as discussed below, I find that the proof is correct, in disagreement with 
further statements in Gibbons’ lecture. However, in response to Gibbons’ comments 
about our choice of gauge, proofs of the “no-hair” theorem for the Abelian Higgs 
model that do not use a special gauge choice have since been given by Lahiri (1993) 
and by Ayon-Beato (2000).

Our argument starting from Eq. (24) of R41 was subsequently considerably sim
plified, and in the case when dO/dX |#  =  0 corrected, in a paper of Ray (1979). (The 
subscript H  here refers to evaluation at the horizon; see R41 for details of this and
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other notation used in the following discussion of Ray’s paper.) The minor problem 
noted by Ray resulted from our not dropping the subdominant term d 9 /d \  on the 
right-hand side of Eq. (31) when integrating this equation to get Eq. (33), so as 
to be consistent with our dropping this term elsewhere, such as in Eq. (32). When 
this term is dropped, the 9~ 1/>2 factor in Eq. (33) is replaced by a constant, and the 
approximate solution of Eq. (33) agrees with the exact solution of Eq. (24) given by 
Ray. As Ray points out, with this correction one still finds that q ~1 ф2 is infinite at 
the horizon unless К  =  0, which is what is needed to complete the proof.

Finally, I note that the subject of black hole “hair” in gauge theories has taken 
on new interest recently with the discovery that topological charges on a black hole 
can give nonzero effects outside the horizon; see, for example, Coleman, Preskill, 
and Wilczek (1992) and the related lectures of Wilczek (1998).

E instein  G ravity as a Sym m etry Breaking Effect

In late January of 1978 I organized a small conference on “Geometry, Gravity and 
Field Theory” for the EST Foundation in San Francisco; this was a memorable 
event that was attended by a large fraction of the leading people with interests 
in quantum gravity. During my plane travel for this conference, and afterwards,
1 started to think about the confinement problem in QCD, and this became the 
main focus of my research for the next two years, as described in the following 
chapter. However, learning about scale breaking in QCD also led me back into 
gravitational physics, through considering the role similar mechanisms might play 
in giving a quantitative form to the suggestion by Sakharov (1968) (see also Klein, 
1974) that Einstein gravity is the “metric elasticity” of spacetime. I did not arrive at 
the correct formulation immediately; I find in my files two unpublished manuscripts, 
the first positing monopole boundary conditions, and the second positing dimension-
2  operators, as a source for symmetry breaking, in both cases suggesting connections 
with the Einstein-Hilbert action. I went as far as submitting a manuscript based on 
the second for publication, and also gave a seminar on it at Princeton University, 
where my arguments were torn to shreds by David Gross (following which I withdrew 
the manuscript). The criticism proved useful; I went home, learned more about 
dimensional transmutation and the theory of calculability versus renormalizability, 
and came up with the correct formulation given in Adler (1980a), R42. The basic 
idea here is that in theories which contain no scalars, so that scale invariance is 
spontaneously broken (QCD is a prime example, but “technicolor” type unification 
models also fit this description), there will be an induced order R  term in the action 
in a curved background, with a coefficient that is calculable in terms of the scale 
mass of the theory. Thus, if an underlying unified theory spontaneously breaks scale 
invariance at the Planck scale, one can induce the Einstein gravitational action as a
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scale-symmetry breaking effect, giving an explicit realization of the Sakharov-Klein 
idea.

I followed up this paper with a second one (Adler, 1980b, R43) in which I gave an 
explicit formula for the “induced gravitational constant” in theories with dynamical 
breakdown of scale invariance, expressed in terms of the vacuum expectation of the 
autocorrelation function of the trace of the renormalized stress-energy tensor

( I G t t G , ^ ) - 1 =  s  j  d4x[(xG)2 -  {x)2}{T(Т АЛ( z ) T £ (о)) > 5 , ^ 2 Г  .

This formula for the induced Newton constant was independently obtained at about 
the same time by Zee (1981), and in the subsequent literature, the term “induced 
gravity” has come to be frequently used to describe the whole set of ideas involved. 
These papers attracted considerable attention in the gravity community, one result 
of which was that Claudio Teitelboim and his colleagues at the University of Texas 
in Austin invited me to give the Schild lectures in April of 1981. (My four lectures 
over a two week period, entitled “Einstein Gravity as a Symmetry-Breaking Effect 
in Quantum Field Theory”, were the eleventh in the Schild series.) This proved 
memorable for an unanticipated reason; shortly before I was to go to Texas I con
tracted a mild case of what was probably type-A hepatitis (the kind transmitted 
by shellfish), and so was sick in bed with very little energy. I dragged myself out of 
bed on alternate days to write lecture notes, and then was so tired I had to sleep 
the entire day following. At any rate, I improved enough so that my doctor gave 
me permission to go to Texas, where Philip Candelas took me into his home and 
helped me get through my scheduled lectures. Ultimately, I expanded the lectures 
into a much-cited comprehensive article that appeared in Reviews of M odem  Physics 
(Adler, 1982, R44). A year later, I wrote a briefer synopsis of the program of gener
ating the Einstein action as an effective field theory, for a Royal Society conference 
on “The Constants of Physics” , which was published as Adler (1983).

The explicit formula for the induced gravitational constant raises a number of 
interesting issues. First of all, if one assumes an unsubtracted dispersion relation 
for the Fourier transform ip{q2) of the autocorrelation function of the stress-energy 
tensor trace, the induced gravitational constant is negative. However, as shown by 
Khuri (1982a) using analyticity methods, in asymptotically free theories there are 
three possible cases, depending on the distribution of zeros of ip{q2), and in one of 
these cases (7inti has positive sign. In further papers Khuri (1982b,c) showed that 
in this case one can place useful bounds on the induced gravitational constant, 
expressed in terms of the scale mass of the theory.

The question of whether the formula for the induced gravitational constant gives 
a unique answer has been discussed, from the point of view infrared renormalon sin
gularities, by David (1984) and in a follow-up paper of David and Strominger (1984). 
These authors argue that renormalons introduce an arbitrariness into the calculation
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of Ojnd, as manifested through the fact that in the dimensional regularization of the 
ultraviolet singular “comparison function” Фс(£) introduced in Eq. (5.48) of R4 4 , 
one has to continue onto a cut. In Appendix B, Section 3 of R44, I used a principal 
value prescription to deal with this, which David argues can be modified by taking 
complex weightings of the upper and lower sides of the branch cut, allowing a free 
parameter multiple of the imaginary part to be introduced into the calculation of 
the integral over the comparison function. David argues that this means that the 
expression for Gjncj has an inherent ambiguity. I believe that this conclusion is sus
pect; since QCD and similar theories that spontaneously generate a mass scale are 
believed to be consistent field theories, their curved spacetime embeddings should, 
by the equivalence principle, also be consistent theories. This strongly suggests that 
the coefficient of the order R  term in a curvature expansion of the vacuum action 
functional should be well defined, and that the ambiguity is an artifact of the com
parison function procedure. This view is supported by the review article of Beneke 
(1999) on renormalons, where it is argued that renormalon ambiguities are typically 
canceled by corresponding ambiguities in non-perturbative terms (such as the inte
gral A I(jv  with integrand Ф -  Фс(<) in Eq. (5.48)), giving total physical amplitudes 
that are unambiguous. In other words, the renormalon ambiguities are an artifact of 
an attempted separation of QCD physical amplitudes into a “perturbative” and a 
“non-perturbative” part, and only indicate that if a branching prescription (such as 
a principal value) is needed for the perturbative part, then a corresponding branch
ing prescription is also needed for the non-perturbative part. This will make the 
calculation of quantities like Gind difficult, but does not imply that the calculation 
cannot, in principle, give a unique, physical answer. In the paper of David and Stro- 
minger (1984), the authors show that Gin(i is unambiguous in finite supersymmetric 
theories, giving an existence proof that there are theories with a finite induced New
ton’s constant. In the general case, they acknowledge that “there is no proof that 
Gind will necessarily be ambiguous” , and I suspect that in fact G;nd will turn out to 
be well defined in a much wider class of supersymmetric and non-supersymmetric 
theories than only finite ones. Clearly, this is a question that merits further study.

If one thinks more generally about the structure of a fundamental theory of 
gravitation, there are a number of possibilities. It may be that the Planck length is 
the minimum length scale possible, because of an underlying “graininess” of space
time. Or spacetime may be a continuum, as generally assumed, in which case the 
Planck length plays the role of the scale at which a classical metric breaks down, 
with new dynamical principles taking over at shorter distances. The suggestion that 
the order R  gravitational action is an expression of scale symmetry breaking in a 
more fundamental scale-invariant theory is clearly based on a continuum picture 
of spacetime. A continuum assumption is also made in string theories, which how
ever are not scale-invariant; in string theories a fundamental length scale (the string 
tension) appears in the action, and this directly sets the scale for the gravitational
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action. Should spacetime turn out to be discrete or grainy, there may be more gen
eral forms of the induced gravitation idea that are relevant. Ultimately, the origin of 
the spacetime metric, and of the Einstein-Hilbert gravitational action tha t governs 
its dynamics, will not be certain until we have a unifying theory that also resolves 
the cosmological constant problem, which is not dealt with in any of the current 
ideas about quantum gravity.

R e f e r e n c e s  fo r  C h a p t e r  6

Adler, S. L. (1976). Linearized Hartree Formulation of the Photon Pairing Problem. Phys. 
Rev. D 14, 379-383. [75]

Adler, S. L. (1980a) R42. Order-R  Vacuum Action Functional in Scalar-Free Unified Theories 
with Spontaneous Scale Breaking. Phys. Rev. Lett. 44 , 1567-1569. [77]

Adler, S. L. (1980b) R43. A Formula for the Induced Gravitational Constant. Phys. Lett. В 
95, 241-243. [78]

Adler, S. L. (1982) R44. Einstein Gravity as a Symmetry-Breaking Effect in Quantum Field  
Theory. Rev. Mod. Phys. 54, 729-766. [78,79]

Adler, S L. (1983). Einstein Gravitation as a Long W avelength Effective Field Theory. Phil. 
Trans. R. Soc. Lond. A 3 1 0 , 273-278. This paper also appears in The Constants of 
Physics, W . H. McCrea and M. J. Rees, eds. (The Royal Society, London, 1983), pp.
[63]-[68]. [78]

Adler, S. L. and J. Lieberman (1978) R40. Trace Anomaly of the Stress-Energy Tensor for 
Massless Vector Particles Propagating in a General Background Metric. Ann. Phys. 
113, 294-303. [76]

Adler, S. L., J. Lieberman, and Y. J. Ng (1977). Regularization of the Stress-Energy Tensor 
for Vector and Scalar Particles Propagating in a General Background Metric. Ann. 
Phys. 106 , 279-321. [75,76]

Adler, S. L., J. Lieberman, Y. J. Ng, and H.-S. Tsao (1976). Photon Pairing Instabilities: A 
Microscopic Origin for Gravitation? Phys. Rev. D  14, 359-378. [75]

Adler, S. L. and R. B. Pearson (1978) R41. “No-Hair” Theorems for the Abelian Higgs and 
Goldstone Models. Phys. Rev. D  18, 2798-2803. [76,77]

Ayon-Beato, E. (2000). “No-Hair” Theorem for Spontaneously Broken Abelian Models in 
Static Black Holes. Phys. Rev. D 62, 104004. [76]

Bekenstein, J. (1972). Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. 
D  5, 1239-1246. [76]

Beneke, M. (1999). Renormalons. Physics Reports 317 , 1-142. See especially Sec. 2. [67,79]

Bergm ann, P. G. (1942). Introduction to the Theory o f R elativity  (Prentice Hall, Englewood 
Cliffs). [74]



Gravitation

Coleman, S., J. Preskill, and F. Wilczek (1992). Quantum Hair on Black Holes. Nucl. Phys. 
В  378 , 175-246. [77]

David, F. (1984). A Comment on Induced Gravity. Phys. Lett. В 138, 383-385. [78,79]

David, F. and A. Strominger (1984). On the Calculability of Newton’s Constant and the 
Renormalizability of Scale Invariant Quantum Gravity. Phys. Lett. В 143 , 125-129. 
[78,79]

Deser, S. (1975). Quantum Gravitation: Trees, Loops and Renormalization, in Quantum  
Gravity, an Oxford Symposium , C. J. Isham, R. Penrose, and D. W. Sciama, eds. 
(Clarendon Press, Oxford), pp. 136-173. [74]

Fulling, S. (1972). Scalar Quantum Field Theory in a Closed Universe of Constant Curvature. 
Princeton University Dissertation. [74]

Gibbons, G. W. (1990). Self-Gravitating Magnetic Monopoles, Global Monopoles and Black 
Holes, in The Physical Universe: The Interface between Cosmology, Astrophysics, and 
Particle Physics, Lecture Notes in Physics Vol. 383, J. D. Barrow, A. B. Henriques, M. 
Т. V. T. Lago, and M. S. Longair, eds. (Springer-Verlag, Berlin, 1991), pp. 110-133. 
[76]

Hawking, S. W. and G. F. R. Ellis (1973). The Large Scale Structure of Space-Time (Cam
bridge University Press, Cambridge). [74]

Khuri, N. N. (1982a). Sign of the Induced Gravitational Constant. Phys. Rev. D  26, 2664- 
2670. [78]

Khuri, N. N. (1982b). Upper Bound for Induced Gravitation. Phys. Rev. Lett. 49 , 513-516. 
[78]

Khuri, N. N. (1982c). Induced Gravity and Planck Zeros. Phys. Rev. D 26, 2671-2680. [78]

Klein, O. (1974). Generalization of Einstein’s Principle of Equivalence so as to Embrace the 
Field Equations of Gravitation. Phys. Scr. 9, 69-72. [77,78]

Lahiri, A. (1993). The No-Hair Theorem for the Abelian Higgs Model. Mod. Phys. Lett. A 
8 , 1549-1556. [76]

Misner, C. W., K. S. Thorne, and J. A. Wheeler (1973). Gravitation  (W. H. Freeman, San 
Francisco). [74]

Ray, D. (1979). Comment on the “No-Hair” Theorem for the Abelian-Higgs Model. Phys. 
Rev. D  20 , 3431. [76,77]

Sakharov, A. D. (1968). Vacuum Quantum Fluctuations in Curved Space and the Theory 
of Gravitation. Dok. Akad. Nauk. SSSR  177, 70-71 (English translation: Soviet Phys. 
-  Doklady 12, 1040-1041). [77,78]

’t Hooft, G. and M. Veltman (1974). One-Loop Divergencies in the Theory of Gravitation.
Ann. Inst. Henri Poincare A: Physique tM orique 20, 69-94. [74]

Wald, R. M. (1977). The Back Reaction Effect in Particle Creation in Curved Spacetime. 
Commun. Math. Phys. 54, 1-19. [75]



82 Adventures in Theoretical Physics

Wald, R. M. (1978). Trace Anomaly of a Conformally Invariant Quantum  Field in Curved 
Spacetime. Phys. Rev. D  17, 1477-1484. [75,76]

Weinberg, S. (1972). Gravitation and Cosmology: Principles and A pplications o f the General 
Theory of Relativity  (John Wiley, New York). [74]

Weinberg, S. and E. W itten (1980). Limits on Massless Particles. Phys. Lett. В  96 , 59-62. 
[75]

Wilczek, F. (1998). Lectures on Black Hole Quantum Mechanics: Lectures 3 & 4, in The 
Black Hole 25 Years After, C. Teitelboim and J. Zanelli, eds. (World Scientific, Singa
pore), pp. 229-326. [77]

Zee, A. (1981). Spontaneously Generated Gravity. Phys. Rev. D  23, 858-866. [78]



83

7. N o n -A b e lia n  M o n o p o les , C on fin em en t M o d e ls , and  
C hiral S y m m e tr y  B reak in g

Introduction

The somewhat disparate topics to be discussed in this chapter are all connected 
through my interest during the late 1970’s and early 1980’s in studying nonper
turbative properties of quantum chromodynamics (QCD), the theory of the strong 
interactions. I began these investigations by looking for a semi-classical model for 
heavy quark confinement. My first idea, that quarks might be confined in a non- 
Abelian monopole background field, did not work, but led to interesting progress 
in the theory of monopoles, as described in the first section. Most significantly, as 
discussed in detail, the monopole work led indirectly to the completion by Clifford 
Taubes of his multimonopole existence theorem during a visit to the IAS in the 
spring of 1980. I then turned to models based on the nonlinear dielectric properties 
of the QCD vacuum, which led to the confinement of quarks in “bag”-like structures 
which yield good heavy quark static potentials, as discussed in the second section. 
Finally, at the end of this period I worked briefly on the spontaneous breaking of 
chiral symmetry in QCD within the framework of pairing models patterned after 
superconductivity, as discussed in the final section. All three of these aspects of my 
study of QCD involved heavy numerical work, which in turn led to my interest in 
algorithms discussed in the next chapter.

N on -A belian  M onopoles

My first attempt at the confinement problem, which did not succeed but which had 
useful by-products that I shall describe here, was based on the idea of considering 
the potential between classical quark sources in the background of a non-Abelian 
’t Hooft (1974a)-Polyakov (1974)-Prasad-Sommerfield (1975)-Bogomol’nyi (1976) 
monopole or its generalizations, which I conjectured in Adler (1978b), R45 might act 
as a quark-confining “bag”. To justify considering classical quark sources, I initially 
resorted to a scheme (Adler, 1978a) that I called “algebraic chromodynamics” , which 
involved looking at the color space spanning the direct product of independent 
color charge matrices. However, I eventually dropped this apparatus in my pursuit 
of the confinement problem, and used instead the popular approximation of color 
charge matrices lying in a maximal Abelian subgroup of the SU (3) color group of
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conventional QCD, which gives a good first approximation to the full QCD color 
structure. Since it is clear that source charges in classical Yang-Mills theory are not 
confined, I looked for a simple modification of this theory that might lead to a linear 
potential. The first idea I tried was to look at classical Yang-Mills charges in the 
field of a background monopole. This had the obvious problem tha t the monopole 
scale has no clear relation to the QCD scale set by dimensional transm utation, but 
I simply ignored this difficulty and plunged ahead.

To pursue (and ultimately rule out) the conjecture that a monopole background 
would confine, I did a number of calculations of properties of monopole solutions. 
The first was a calculation of the Green’s function for a single Prasad-Sommerfield 
monopole, by using the multi-instanton representation of the monopole and a formal
ism for calculating multi-instanton Green’s functions given by Brown et al. (1978). 
This calculation was spread over two papers that I wrote; setting up contour integral 
expressions for the Green’s function was done in Appendix A of Adler (1978b), R45, 
and the final result for the monopole propagator, after evaluation of the contour in
tegrals and considerable algebraic simplification, was given in Appendix A of Adler 
(1979a), R46. (The fact that many lengthy expressions for parts of the Green’s func
tion collapsed, after algebraic rearrangement, into simple formulas, suggested that 
there should be a more efficient way to find the monopole Green’s function. Not 
long afterwards, Nahm (1980) gave a new representation for the monopole that per
mitted a much simpler calculation of the Green’s function given in R46.) To check 
that the lengthy expression that I had obtained for the propagator really satisfied 
the differential equation for the Green’s function, I used numerical methods, calcu
lating the partial derivatives acting on the propagator by finite difference methods 
on a very fine mesh. Prom numerical calculations based on the propagator formula, 
it was clear that a single monopole background would not lead to confinement; all 
that happened was that a Coulombic attractive — 1  / r  potential was reversed into 
a repulsive 1 / r  potential for large quark separations, a result that could have been 
anticipated from the large distance structure of the monopole field.

Not yet ready to give up on the monopole background idea, I then wrote two 
papers speculating that the Prasad Sommerfield monopole might be a member of a 
larger class of solutions, in which the point at which the monopole Higgs field van
ishes is extended to a higher-dimensional region, and in particular to a “string”-like 
configuration with a line segment as a zero set. In the first of these papers (Adler 
1979b) I studied small deformations around the Prasad-Sommerfield monopole and 
found several series of such deformations. For normalized deformations I recovered 
the monopole zero modes that had already been obtained by Mottola (1978, 1979), 
but I found that “if an axially symmetric extension exists, it cannot be reached 
by integration out along a tangent vector defined by a nonvanishing, non-singular 
small-perturbation mode” . This work was later extended into a complete calculation 
of the perturbations around the Prasad-Sommerfield solution by Akhoury, Jun, and
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Goldhaber (1980), who also found “no acceptable nontrivial zero energy modes.” 
In my second paper, Adler (1979c), I employed nonperturbative methods and sug
gested that despite the negative perturbative results, there might still be interesting 
extensions of the Prasad-Sommerfield solution with extended Higgs field zero sets.

At just around the same time, Erick Weinberg wrote a paper (Weinberg, 1979b) 
extending an index theorem of Callias (1978) to give a parameter counting theorem 
for multi-monopole solutions. Weinberg concluded that “any solution with n units of 
magnetic charge belongs to a (4n — l)-parameter family of solutions. It is conjectured 
that these parameters correspond to the positions and relative f/(l) orientations of 
n  noninteracting unit monopoles”. For n =  1, his results agreed with the zero-mode 
counting implied by Mottola’s explicit calculation. Weinberg and I were aware of 
each other’s work, as evidenced by correspondence in my file dating from March 
to June of 1979, and references relating to this correspondence in our papers Adler 
(1979c) and Weinberg (1979b).

My contact with Clifford Taubes was initiated by an April, 1979 letter from 
Arthur Jaffe, after I gave a talk at Harvard while Jaffe, as it happened, was visiting 
Princeton! In his letter, Jaffe noted that I was working on problems similar to those 
on which his students were working, and enclosed a copy of a paper by Clifford 
Taubes. (This preprint was not filed with Jaffe’s letter, so I am not sure which of 
the early Taubes papers listed on the SLAC Spires archive that it was.) Jaffe’s let
ter initiated telephone contacts with Taubes and some correspondence from him. 
On Jan. 6 , 1980 Taubes wrote to me that he was making progress in proving the 
existence of multi-monopole Prasad-Sommerfield solutions, and in this letter and a 
second one dated on January 18, 1980 he reported results that were relevant to my 
conjectures on the possibility of deformed monopoles. His results placed significant 
restrictions on my conjectures; in a letter dated Feb. 1, 1980 I wrote to Lochlainn 
O’Raifeartaigh, who had also been interested in axially symmetric monopoles, say
ing that “On thinking some more about your paper (O’Raifeartaigh’s preprint was 
unfortunately not retained in my files) I realized that the enclosed argument by 
Cliff Taubes is strong evidence against n — 2 monopoles involving a line zero. What 
Taubes shows is that a finite action solution of the Yang-Mills-Higgs Lagrangian 
cannot have a line zero of arbitrarily great length; hence if n =  2  monopoles con
tained a line zero joining the monopole centers, the monopole separation would be 
bounded from above. But this seems unlikely...”. This correspondence and the re
sult of Taubes was mentioned at the end of the published version, Houston and 
O’Raifeartaigh (1980).

As a result of our overlapping interests, I arranged for Taubes to make an informal 
visit, of two or three months, to the IAS during the spring of 1980. Clifford had 
expressed interest in this, he noted in a recent email, in part because Raoul Bott 
had suggested that he visit the Institute to get acquainted with Karen Uhlenbeck, 
who was visiting the IAS that year. In the course of his visit he met and interacted
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with Uhlenbeck, who, along with Bott, had a major impact on his development as 
a mathematician.

Taubes began the visit by looking at my conjecture of extended zero sets, but 
after a while told me that he could not find an argument for them. Partly as a result 
of his work, I was getting disillusioned with my own conjecture, so I asked him what 
was happening with his attempted proof of multi-monopole solutions. Taubes replied 
that he was stuck on that, and not sure whether they existed. I then mentioned to 
him Erick Weinberg’s parameter counting result, which strongly suggested a space of 
moduli much like that in the instanton case, where looking at deformations correctly 
suggests the existence and structure of the multi-instanton solutions. To my surprise, 
Taubes was not aware of Erick’s result, and knowing it impelled him into action on 
his multi-monopole proof. Within a week or two he had completed a proof, and 
wrote it up on his return to Harvard. (Thus, there was a parallel to what happened 
a year before with respect to solutions of the first order Ginzburg-Landau equations. 
In that case, Taubes had heard a lecture at Harvard by Erick Weinberg on param
eter counting for multi-vortex solutions (written up as Weinberg, 1979a) and then 
went home and came up with his existence proof for multi-vortices, Taubes (1980). 
The vortex work provided the initial impetus for Taubes’ turning to the monopole 
problem.) In his paper Taubes showed that “for every integer N  ф 0 there is at 
least a countably infinite set of solutions to the static S U (2) Yang-Mills-Higgs equa
tions in the Prasad-Sommerfield limit with monopole number N . The solutions are 
partially parameterized by an infinite sublattice in S ^ (R 3), the iV-fold symmetric 
product of R 3 and correspond to noninteracting, distinct monopoles.” This quote 
is taken from the Abstract of his preprint “The Existence of Multi-Monopole Solu
tions to the Static, S U (2) Yang-Mills-Higgs Equations in the Prasad-Sommerfield 
Limit” , which was received on the SLAC Spires data base in June, 1980, and which 
carried an acknowledgement on the title page noting that “This work was completed 
while the author was a guest at the Institute for Advanced Studies, Princeton, NJ 
08540”. His preprint also ended with an Acknowledgment section noting his con
versations with me, with Arthur Jaffe, and with Karen Uhlenbeck, as well as the 
Institute’s hospitality. The proof was not published in this form, however, but in
stead appeared (with acknowledgments edited out at some stage) as Chapter IV of 
the book Jaffe and Taubes (1980) that was completed in August of 1980. The mul
timonopole existence proof was a milestone in Taubes’ career; in a recent exchange 
of emails relating to the events described in this section, Taubes commented on his 
visit “to hang out at the IAS during the spring of 1980. It profoundly affected my 
subsequent career...” . He went on to further investigations of monopole solutions, 
that lead him to studies of 4-manifold theory which have had a great impact on 
mathematics.

O ’Raifeartaigh, who had been following the monopole work at a distance, invited 
me during the spring of 1980 to come to Dublin that summer to lecture on my papers.
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However, since Taubes had much more interesting results I suggested to Lochlainn 
that he ask Clifford instead, and Taubes did go to Dublin to lecture. After Clifford’s 
visit, I redirected my search for semiclassical confinement models to a study of 
nonlinear dielectric models by analytic and numerical methods, in collaboration 
with Tsvi Piran; these models do give an interesting class of confining theories, and 
are described in the following section. Based on the observation that the Yang-Mills 
action is multiquadratic (that is, at most quadratic in each individual potential 
component), Piran and I also applied the same numerical relaxation methods to 
give an efficient method for the computation of axially symmetric multimonopole 
solutions. (This was done mainly to illustrate the computer methods, since by then 
exact analytic 2-monopole solutions had appeared; see Forgacs, Horvath and Palla 
(1981) and Ward (1981).) The numerical methods that. Piran and I developed were 
described in our Reviews of M odem Physics article Adler and Piran (1984), R47 
that marked the completion of the research program on confining models, and as a 
by-product, on monopoles.

C onfinem ent M odels

Having seen that monopole backgrounds would not confine, I turned my attention 
to another type of semi-classical model, proposed in various forms by Savvidy (1977) 
(see also Matinyan and Savvidy (1978)) and Pagels and Tomboulis (1978). The basic 
idea is to do electrostatics with Abelianized quark charges, and with the fundamen
tal QCD action replaced by a renormalization group improved effective action, in 
which the gauge coupling is replaced by a running coupling, that is taken to be a 
function solely of the field strength squared. Although use of the running coupling 
is only justified by the renormalization group in the ultraviolet regime of large field 
strengths, the model assumes that the same functional form can be extrapolated to 
small field strengths as well. This leads to electrodynamics with a nonlinear, field- 
dependent dielectric constant that develops a zero for small squared field strengths. 
Because the only dynamical input from QCD is the running coupling, the model, as 
Frank Wilczek later remarked to me, can be considered as a very simple embodiment 
of the idea that “asymptotic freedom” should be associated with “infrared slavery”. 
Since the running coupling involves a scale mass, the model directly incorporates 
the phenomenon of dimensional transmutation. Pagels and Tomboulis conjectured, 
on the basis of various evidence, that the nonlinear dielectric model would confine, 
but did not have a proof.

In the paper Adler (1981), R48, I analyzed the effective action model in detail 
and proved that it confines quarks. The argument starts from a Euclidean form 
of the Feynman path integral, and shows that the static potential is the minimum 
of the effective action in the presence of sources. I then specialized to the leading- 
logarithm effective action, and showed that the action minimum is associated with a
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field configuration in which a color magnetic field fills in whenever the color electric 
field is less than the minimum magnitude к at which the effective action is minimized. 
This reduces the action minimization to an electrostatics problem, to which one can 
apply flux conversation estimates due t o ’t  Hooft (1974b). In the nonlinear dielectric 
model context, these estimates show that the static potential is bounded from below 
by k,Q(R  — r), with Q the Abelianized quark charge, with r  a constant, and with R  
the interquark separation. Hence the potential increases linearly for large R , and the 
model confines. In an Appendix to R48, I discussed how a one-loop renormalization 
group exact, leading-logarithm running coupling can be obtained, by a coupling 
constant transformation, from the more usual two-loop renormalization group exact 
running coupling (to which the confinement argument also applies).

When I presented this proof of confinement by the nonlinear dielectric model 
at a Department of Energy sponsored workshop in Yerevan, Armenia in 1983, an 
interesting dialogue with the Soviet physicist A. B. Migdal ensued. When I started 
to talk, and said what I was going to prove, Migdal stood up and stated that it was 
well-known that the Sawidy (-Pagels-Tomboulis) model did not confine, and gave 
some reasons. I then presented my proof, after which Migdal stood up, and said 
words to the effect that the problem is that there are too many confining models! 
As we shall see, there is really only one other model, the “dual superconductor” 
model, which like the nonlinear dielectric model is motivated by the idea of a color 
magnetic condensate, but describes this with a different dynamics.

Following publication of R48, I wrote a paper (Adler, 1982a) formalizing the 
approximations (further discussed below) needed to get an Abelianized effective 
action model from the functional integral for QCD. I then turned to the problem 
of understanding in detail how the leading-log model gives a confining potential. 
Since it was clear that this would, at least in part, involve numerical solution of the 
nonlinear differential equations involved, I brought in Tsvi Piran as a postdoc. Tsvi 
had worked extensively in the numerical solution of the Einstein equations of general 
relativity, and came to the IAS with the understanding that he would continue this 
and other interests he had in astrophysics, but would also collaborate with me in the 
numerical solution of the leading-log model equations. Because of my work on the 
induced gravity program, this collaboration didn’t start immediately after Tsvi’s 
arrival, but once we began work, Tsvi taught me a great deal about setting up an 
interactive program to numerically solve partial differential equations. As is typical 
in doing numerical work, most of our time was spent developing and testing our 
computer codes, which took many months. To guard against programming errors, 
Tsvi and I each independently wrote our own programs, which once debugged gave 
identical results. The final production runs took a total of less than two days running 
time on the then new IAS VAX 11/780 computer, using mesh sizes of up to 100 x 100 
to resolve details of the confinement domain.

The equations to be solved, in the leading-log model with three light fermion
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flavors and scale mass «, are

V -(e(E )E ) =  f  ,
j c =  QS(x)6(y)[5(z -  a) -  S(z +  a)] ,

e(E) =  h 0 log(E 2 /K 2) , Е = \ Ё \  ,

. 9
bo =  8 ^  •

We also studied the leading-log-log model, in which the two-loop exact form of the 
running coupling is used. We originally tried to solve the equations directly in terms 
of the scalar potential A but found that the numerical programs were unstable. 
I then introduced a flux function reformulation of the problem (suggested by sim
ilar methods used in plasma physics), and this gave a stable, rapidly convergent 
iteration showing formation of a flux-confining free boundary. To understand the 
structure of the free boundary, Tsvi suggested that a paper of Fichera on elliptic 
equations that degenerate to parabolic would be relevant, and this indeed was the 
case, as described in Appendix A of our review R47. Prior to writing the review, we 
wrote two shorter papers. The first (Adler and Piran, 1982a, R49) demonstrated flux 
confinement and gave a numerical determination of the large R  asymptotic form of 
the interquark potential, which contains a leading term linear in Д, and a subdom
inant term proportional to log k}!2 R. The second (Adler and Piran, 1982b, R50) 
gave compact, accurate functional forms that fit the computed static potentials for 
both the leading-log and the leading-log-log models.

One nice feature of the leading-log model (as well as the leading-log-log exten
sion) is that its small distance and large distance limiting cases can be approximated 
analytically. In the small distance limit, I devised an analytic perturbation method 
(Adler, 1982b) which shows that the potential has the standard form of a Coulomb 
potential with a logarithmic correction that is expected from perturbative QCD, 
permitting the parameter к of the model to be related to the QCD scale mass. With 
this identification, the model has no adjustable parameters. In the large distance 
limit, an ingenious analysis by Lehmann and Wu (1984) showed that the confine
ment domain is an ellipsoid of revolution, with maximum diameter growing as R 1/ 2 

with the interquark separation, and gave an analytic expression for the free bound
ary shape for large R  as well as the subdominant term in the potential. Thus, the 
model yields a “fat” bag, rather than a cylindrical confinement domain of uniform 
radius; however, Lehmann told me at the time that he believed the true QCD be
havior would show a constant-radius cylindrical domain, and he appears now (see 
below) to be right. As discussed in the articles I wrote with Piran, the analytic 
forms for both small and large R  agreed very well with our numerical results, giving 
confidence that the numerical analysis had been carried out correctly.

How well do the nonlinear dielectric models agree with QCD? There are two
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aspects to this question, whether they give satisfactory static potentials, and whether 
they describe the flux confinement domain that is realized in QCD. To assess the 
static potentials tabulated in R50, one has to do a detailed fit to heavy quark 
spectroscopic data. This was done in papers of Margolis, Mendel, and Trottier (1986) 
and of Crater and Van Alstine (1988), both of which concluded that the log-log model 
potential is in good agreement with experimental data on heavy quark systems, with 
reasonable values of the quark masses. The fit of Margolis, Mendel, and Trottier used 
a value of A^f§ =  0.270 GeV, while that of Crater and Van Alstine used a value of 
Лл-у£ = 0.215GeV (note that their A is the к 1 / 2 of R50, which is related to & м§  
by ЛЛ7 5  = 0.959k1/2). These values of are in reasonable accord with the value 
Лд/S = 0.218 GeV that Piran and I had quoted in R50, obtained by requiring the best 
fit of our potential to Martin’s phenomenological potential for heavy quark systems. 
These values of should be compared with the three light quark experimental 
value Лд^£ ~  0.369GeV (Hinchliffe, 2005). For a simple extrapolation from the 
asymptotically free regime to the confining regime of QCD, the nonlinear dielectric 
model does reasonably well in accounting for heavy quark spectroscopy.

As already noted, the confinement domain in the nonlinear dielectric models is 
an ellipsoid of revolution, with width increasing with the quark separation R. Let 
p be the cylindrical radial coordinate, and 2  the coordinate along the axis of the 
cylinder. On the medial plane z  =  0, various quantities of interest can be computed 
in the large-R  limit directly from the Lehmann-Wu asymptotic solution. The radius 
of the confinement domain on the medial plane is

pm = m  (d̂) ’ 

and the value of |l5| on the medial plane is

from which one can check that the flux integral gives 2n j 0Pm pdp\D\ =  Q. The profile 
of \D\ is evidently parabolic, and scales with pm oc R^.

To compare this “fat bag” confinement domain with QCD, one must rely on lat
tice simulations, since in real-world QCD, the confining flux tube breaks up through 
quark-antiquark pair formation before the asymptotic regime is reached. Assuming 
that the lattices used are large enough to accurately approximate the continuum 
theory, the data from simulations that have been carried out show a confinement 
domain of constant diameter in the limit of large R , as discussed and referenced in 
the book of Ripka (2004). The details of the simulated confinement domain favor the 
“dual superconductor” model, in which QCD is regarded as a dual of a Ginzburg- 
Landau superconductor, with magnetic monopole pairs replacing the Cooper pairs
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of superconductivity. In this picture, in addition to the color fields, there is a dy
namical variable corresponding to the monopole condensate. A numerical analysis 
of flux confinement in a dual superconductor, using the methods described in my 
review with Piran R47, has been given by Ball and Caticha (1988), who give plots 
of the confinement domain; for further details and references, see both Ripka (2004) 
and the review of Baker, Ball, and Zachariasen (1991). For appropriate values of 
the three dual superconductor model parameters (a magnetic charge g , which can 
be related to an effective QCD coupling eeff by the Dirac quantization condition 
g =  2 п /е ек, a scalar magnetic condensate mass m #, and a gauge gluon mass my), 
good fits to the lattice simulations are obtained, and the dual superconductor model 
also gives a phenomenologically satisfactory static potential. (In a recent preprint, 
Haymaker and Matsuki (2005) argue that in lattice comparisons, the continuum 
m y  gives rise to two parameters that must be fitted, making four parameters in 
all including g.) However, since the dual superconductor gives a Coulomb poten
tial at short distances, without logarithmic modifications, the dual superconductor 
parameters cannot be directly related to the QCD scale as was possible for
the scale parameter к of the nonlinear dielectric model. As a limiting case, the dual 
superconductor model gives the standard bag model with a field discontinuity at the 
boundary; a numerical solution of this model is also discussed in Ball and Caticha
(1988).

Although the nonlinear dielectric model and the dual superconductor model suc
cessfully describe important aspects of confinement in QCD, major steps would be 
needed to incorporate such classical action models into a proof of confinement. To 
do so one would have to prove that the true energy of a widely separated quark- 
antiquark pair in QCD is bounded from below by the energy calculated in one or 
the other of the two models. This would require achieving precise control over the 
qualitative approximations involved in the models, which include a mean-field ap
proximation to the functional integral as discussed in Adler (1982a), the replacement 
of the exact QCD effective action by the model effective action, and replacement 
of the octet of color quark charges by Abelianized effective charges lying in the 
maximal commutative subgroup. Although, as I argued in the case of the nonlin
ear dielectric model in Adler (1982a), these simplifications of the full problem are 
plausible, replacing qualitative approximations by precise mathematical statements 
with error estimates will be no small task.

In any flux tube picture of confinement based on Abelianized charges, such as 
either the nonlinear dielectric model or the bag limit of the Ginzburg-Landau dual 
superconductor model, the string tension scales as the Abelianized quark charge, 
or as the square root of the corresponding Casimir. In a paper with Neuberger 
(Adler and Neuberger, 1983, R51), we pointed out that in the large-N c limit of 
S U (N C) gauge theory, the string tension scales with the Casimir when changing from 
fundamental to adjoint representation quarks; hence to the extent that flux tube
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models give a good description of confinement in N c — 3 QCD, different confinement 
mechanisms appear to be at work in QCD and in its large N c limit.

Chiral Sym m etry  Breaking

Not long after I had finished the review paper R47 with Piran summarizing our 
work on confinement models, Anne Davis suggested looking at another outstanding 
problem in QCD, that of chiral symmetry breaking. After studying the relevant 
literature (reviewed in the Introduction to our paper Adler and Davis (1984), R52), 
we decided to focus on setting up and solving a superconductor-like gap equation for 
fermion pairing in Coulomb gauge, systematically imposing the axial-vector current 
Ward identities to get the correct renormalization procedure. This method permitted 
us to study pairing using a Lorentz vector instantaneous confining potential with 
V  oc r, getting infrared-finite results for physical quantities without imposing ad 
hoc infrared cutoffs. The model gives spontaneous breaking of chiral symmetry, but 
with values of the quark condensate (йи) and the pion decay constant Д- that 
are considerably too low when the phenomenological confining potential (or string 
tension) is used as input. Similar results were also found by a group at Orsay, and 
we learned later that the utility of the axial-vector Ward identities in deriving the 
gap equation had also been noted by Delbouigo and Scadron (see the reprinted 
papers R52 and R53 for references). Extensions of the model of R52 to the finite 
temperature case were later discussed by Davis and Matheson (1984), Alkhofer and 
Ammundsen (1987), and Klevansky and Lemmer (1987).

In a subsequent paper (Adler, 1986, R53) that I wrote for the Nambu Festschrift, 
I reviewed the work of various groups on gap equation models, and also noted a 
problem. In order for there to be no explicit breaking of chiral symmetry in the 
gap equation model, the instantaneous potential must be the time component of a 
Lorentz vector, so that it contains factors 7 0  that anticommute with 7 5 . However, 
experimental data on heavy quark spectroscopy show that the confining part of 
the potential is predominantly Lorentz scalar, and using a Lorentz scalar potential 
in the gap equation model would lead to explicit violation of chiral symmetry, and 
therefore invalidate the model. This suggests that the approximations leading to the 
gap equation model are not valid for the confining part of the potential. In R53,1 also 
gave equations that I had worked out for a retarded extension of the instantaneous 
potential model. The original intention had been for a graduate student in either 
Princeton or Cambridge to work on solving the extended model, but in view of 
the Lorentz structure problem this was not done (a covariant treatment of the gap 
equation model was later given by von Smekal, Amundsen, and Alkofer (1991)). 
For various proposals for addressing the Lorentz structure issue, see Lagae (1992), 
Szczepaniak and Swanson (1997), and Bicudo and Marques (2004).

Shortly after the paper R52 was out, Cumrun Vafa, then a Princeton graduate
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student, had a few conversations with me about his attempts to turn the Banks- 
Casher (1980) eigenvalue density criterion for chiral symmetry breaking into a proof 
that chiral symmetry breaking occurs in QCD. (For recent progress in applying the 
Banks-Casher criterion in the large-./Vc limit, see Narayanan and Neuberger (2004).) 
I didn’t have much in the way of concrete suggestions to offer, and Cumrun started 
also talking to Edward Witten, who very sagely suggested looking at a different 
problem, that of studying whether parity conservation can be spontaneously bro
ken in QCD. This problem proved tractable, and their papers (Vafa and Witten, 
1984a,b), proving that parity is not spontaneously broken in vector-like gauge theo
ries (and similarly for the isospin and baryon number symmetries), became part of 
Vafa’s thesis. The difference between the parity problem and the chiral symmetry 
problem can be understood by considering their respective order parameters. If par
ity is spontaneously broken, the pseudoscalar order parameter u ijsu  will receive a 
vacuum expectation. When the fermions are integrated out, one obtains a Lorentz 
invariant, parity-nonconserving operator functional X  of the gluon fields that is real 
in Minkowski space, but picks up a factor of i when rotated to Euclidean space. 
This, together with positivity of the Euclidean space Dirac fermionic determinant 
in a vector-like theory, is the basis of the Vafa-Witten proof that adding a small mul
tiple of X  to the action cannot make the ground state energy lower. In the chiral 
symmetry problem, the relevant order parameter is the parity conserving but chiral 
symmetry breaking scalar operator to , which when the fermions are integrated out 
leads to a functional X '  of the gluon fields that remains real when rotated to Eu
clidean space. Hence the Vafa-Witten argument suggests that the energy minimum 
may lie at a nonzero value of X ' , but such a local analysis cannot find the global 
minimum, and hence does not give a proof of chiral symmetry breaking. Rigor
ous lattice inequalities given by Weingarten (1983) give a proof of chiral symmetry 
breaking only when additional strong assumptions are made, including the existence 
of the continuum limit and the confinement of color, together with use of anomaly 
matching conditions.

Over twenty years later, the problem of proving the breakdown of chiral sym
metry in QCD is still open, as is that of proving confinement. In fact, there is 
considerable evidence that chiral symmetry breaking and confinement in QCD are 
related phenomena. For example, lattice simulations such as D’Elia et al. (2004) 
show that the deconfining and chiral transitions coincide; gap equation models of 
the type studied in R52 find chiral symmetry breaking for a confining potential but 
not for a Coulomb potential, and lattice inequalities of the type studied by Wein
garten also need confinement as an ingredient to show chiral symmetry breaking. 
Thus it appears that both of these outstanding problems in QCD are aspects of 
the larger problem of proving that QCD exists and has a mass gap, which is one of 
the seven Clay Foundation Millennium Problems in mathematics and mathematical 
physics. Perhaps in this century, with the added incentive of a $1 million reward,
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rigorous proofs of confinement and chiral symmetry breaking in QCD will be found!
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8. O v er r e la x a tio n  for M o n te  C arlo  a n d  O th e r  A lg o r ith m s

Introduction

As I have already noted, the investigations described in the previous chapter all 
involved extensive computer work. This got me interested in the issue of algorithms 
more generally, and led to two distinct research directions in the years tha t followed. 
One involved generalizing the acceleration methods for solving partial differential 
equations to the related problem of Monte Carlo simulations, as discussed in the first 
section that follows. The second involved neural networks and pattern recognition, 
and led among other things to work on image normalization methods, described 
briefly in the second section of this chapter.

O verrelaxation to  A ccelerate  M onte Carlo

In preparation for numerically solving the partial differential equations for the 
leading-log models, I did general reading on numerical methods for handling partial 
differential equations. This taught me about the critical slowing down problem -  the 
fact that as one refines meshes to get more accurate numerical solutions, the rate 
of convergence of the iterations slows down. I also learned about various strategies 
devised for defeating critical slowing down, and in particular about the successive 
over-relaxation (SOR) modification of the standard Gauss-Seidel iteration. In a 
Gauss-Seidel iteration of a positive functional, one replaces each successive variable 
by the value that locally minimizes the functional. In SOR, one builds in a system
atic overshoot beyond the local minimum, with the amount of overshoot tuned to 
the degree of mesh refinement, yielding more rapid convergence as a result. In the 
work of R47, Piran and I used SOR in all of our iterative solutions, and achieved 
substantial gains in convergence speed on our finest meshes.

I became interested in Monte Carlo algorithms because it was clear that lattice 
gauge theory simulations probably would be the only way that one could study de
tails of the structure of the flux confinement domain in QCD. I knew from talks that 
I had heard in Princeton that there were two main Monte Carlo methods in use, the 
Metropolis method and the heat bath method, and also that the folk wisdom at the 
time was that heat bath was the best one could do, since it corresponded to “nature’s 
way” of achieving thermal equilibrium. However, since the zero temperature limit of
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heat bath just corresponds to a Gauss-Seidel iteration, which I knew could be accel
erated by SOR, I suspected that the conventional wisdom was wrong, and that there 
should be extensions, to Monte Carlo thermalizations, of the standard acceleration 
methods for the solution of differential equations. Since the monopole numerical 
work had brought out the fact that the Yang-Mills action is multiquadratic, I de
cided to study this question in the simple context of multiquadratic actions, where 
the question becomes whether for quadratic actions, the SOR method for differen
tial equations has an extension to Monte Carlo thermalization. This is the question 
addressed in Adler (1981), R54, where I showed that SOR does indeed extend to the 
thermalization of multi-quadratic actions, by explicitly constructing in Eqs. (14a,b) 
the transition probability that obeys detailed balance when an overrelaxation pa
rameter is included in the iteration. (Note that the normalization factors in these 
equations have the 7r in the correct place, but the other factors inverted; this is 
corrected in Eqs. (9) and (11) of my later paper R55. The argument of R54 does 
not involve the normalization factors, and is unaffected.) For this overrelaxed ther
malization, I showed that the means of the thermalized variables iterate according 
to standard SOR; since standard SOR accelerates Gauss-Seidel, this implies that 
there should be a corresponding acceleration of the thermalization process as well.

The 1981 paper R54 gave the earliest indication that Monte Carlo methods could 
be accelerated to improve critical slowing down, and for this reason was conceptu
ally important, as well as having later applications and extensions. To the best of 
my knowledge, I am supported by the literature on the subject, in stating that R54 
first introduced acceleration methods into Monte Carlo. Two compilations of Monte 
Carlo articles edited by Binder contain literature surveys, Binder et al. (1987), and 
Swendsen, Wang, and Ferrenberg (1992), relating to the critical slowing down prob
lem. In both surveys, the earliest listed reference is from 1983; neither survey cites 
my 1981 paper (or Whitmer’s 1984 paper -  see below), although some of the cited 
articles do reference these papers.

I didn’t immediately continue work on Monte Carlo acceleration myself, but 
suggested it as a thesis research area to my Princeton University graduate student 
Charles Whitmer. He applied the method to ф4 and Higgs actions that are point split 
on a lattice with unit displacement Д according to фА{х) —> ф2 (х)ф'2(х +  ajj,), which 
makes them multiquadratic, and in the paper Whitmer (1984) reported improvement 
over conventional heat bath Monte Carlo. I got interested in the subject again a few 
years later, after Goodman and Sokal (1986) (who knew about the SOR method of 
R54 and Whitmer’s paper) proposed a stochastic extension of multigrid methods, 
and Creutz (1987) and Brown and Woch (1987) gave a simple implementation of 
the SOR idea for lattice gauge theory plaquette actions. This latter development 
eliminated the need for the problematic gauge fixing that I had used in R54 to 
keep the latticized gauge action multiquadratic, and opened the way to practical 
applications of SOR to gauge theory Monte Carlo studies. In the spring of 1987,
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I went to Torino, Italy with my daughter Victoria, who had been eager to visit 
Europe after finishing her high school requirements. During this sabbatical term I 
was a visitor at the Institute for Scientific Interchange (ISI), at the invitation of 
Mario Rasetti and my former IAS colleague Tullio Regge; I also had an office at 
the University of Torino that I used a couple of days a week. Although I had been 
spending considerable time over the previous few years working on quaternionic 
quantum mechanics (see the next chapter), I decided on this trip to return to my 
old interest in Monte Carlo SOR, stimulated by the fact that experts in the Monte 
Carlo field had started to get interested. In a paper that I wrote while at ISI (Adler, 
1988a, R55) I gave a much more detailed analysis of overrelaxed thermalization for a 
quadratic action, and also gave extensions of the method to non-quadratic actions, 
including S U (n ) gauge theory.

After my return to the IAS from this sabbatical, I continued work on Monte- 
Carlo algorithms for several more years. In a paper written in the fall of 1987 after I 
returned from Italy (Adler, 1988b, R56), I gave an elegant formal analysis showing 
that the general linear iteration u' — M u + N f  corresponding to a splitting 1 =  M +  
N L  of the quadratic form L for a Gaussian action, has a corresponding stochastic 
generalization

P (u  -» v!) =  (^ / 7r)lj/2(det Г)1//2 exp[—(?/ -  M u  -  N f ) Tf3 Г(и' - M u -  N f )] ,

with Г = \ { L ~ l — M L- 1 M T ) - 1  a modified temperature matrix. This extends the 
SOR thermalization of R54 to a general linear iterative process. Later in the same 
academic year, I gave in Adler (1988c) a Metropolis variant of the S U (n ) method 
given in R55, that extended the method for the Wilson action used by Creutz and by 
Brown and Woch to general overrelaxation parameter u>. In collaboration with Gyan 
Bhanot, a former IAS member and a Monte Carlo expert, we made a numerical study 
of the S U (2) version of this algorithm, with results reported in Adler and Bhanot
(1989), R57. (Growing out of this collaboration, Bhanot spent several years as a half- 
time member of the IAS in the early 1990’s, in the course of which we wrote a number 
of further papers on a variety of Monte Carlo acceleration methods.) I also gave talks 
at lattice conferences; at the biennial Lattice Gauge conference Lattice 8 8 , held at 
Fermilab that year, I gave a plenary talk reviewing work on algorithms for pure 
gauge theory, focusing primarily on the theory and application of overrelaxation 
methods (Adler, 1989, R58). Monte Carlo overrelaxation has become a standard 
part of the lattice gauge theorist’s tool kit; for a sampling of recent applications, see 
Kiskis, Narayanan, and Neuberger (2003), Holland, Pepe, and Wiese (2004), Meyer 
(2004), Pepe (2004), Shcheredin (2005), and de Forcrand and Jahn (2005).
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Im age N orm alization

During the 1990s, I interspersed my work on quaternionic quantum mechanics and 
particle physics with work on aspects of neural networks and pattern recognition. 
My neural network interests involved an analog device that I patented (Adler, 1993) 
and an article (Adler, Bhanot, and Weckel, 1996) analyzing its algorithmic aspects. 
In pattern recognition, from lunchtime conversations with Joseph Atick and Norman 
Redlich, I got interested in the problem of extracting those features of an image that 
are invariant under a symmetry transformation. This problem is closely analogous 
to that of extracting those features of a gauge potential that are gauge-invariant, 
and in Adler (1998), R59 I gave a general formal solution, based on imposing image 
normalizing constraints analogous to gauge-fixing constraints. I have reprinted here 
only the first two sections of this unpublished article (without references), in which 
the general theory is set up; further sections of the article give applications to a 
variety of viewing transformations of a planar object. Shortly afterwards, when one 
of the IAS string theory postdocs was interested in switching to a computer-related 
career, I suggested applying my methods to the problem of the similarity and affine 
normalization of partially occluded planar curves (such as the boundary of a planar 
object). We worked this out together and it was published as Adler and Krishnan
(1998), R60. The excerpt R59 of the general paper that is reprinted here gives the 
background needed to follow the extension of the planar algorithm to curve segments 
given in R60.
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9. Q uatern ion ic  Q uantum  M echanics, T race  D ynam ics, and  

Em ergent Q uan tum  T h eo ry

Introduction

During the twenty years from 1984 to 2004, a large part of my time was spent on 
investigations into foundational areas of quantum mechanics. Most of my research 
from this period was later presented in two books that I wrote, Quaternionic Quan
tum Mechanics and Quantum Fields (Oxford University Press, New York, 1995) 
and Quantum Theory as an Emergent Phenomenon (Cambridge University Press, 
Cambridge, 2004). I have not included in this reprint volume any research papers 
incorporated (some considerably improved) into the two books, since this would 
be infeasible because of length limitations. So what I discuss in this chapter are a 
few papers dealing with quaternionic topics written during the period between the 
two books, together with a brief description of how I got interested in quaternionic 
quantum theory, and later on, in the possibility of a pre-quantum theory.

Quaternionic Quantum Mechanics

M y interest in quaternionic quantum mechanics grew out of my interest in the Harari
(1979)-Shupe (1979) model for composite quarks and leptons. They postulated an 
order-dependence for the preon wave functions (e.g., T T V ,  T V T ,  V T T  were con
sidered to be three distinct color states), which suggested that quantum theory over 
a noncommutative field might be involved. I was never able to use quaternions or 
related ideas to make a successful preon model, either during the period before my 
book (see Adler, 1979, 1980) or after (Adler, 1994a), but the issues raised, and 
interactions with key people acknowledged in the Preface of the 1995 volume, led 
me to undertake a systematic study of quaternionic quantum mechanics. Perhaps 
the most important new result contained in my papers (Adler, 1988) and in my 
book is the fact that the 5-matrix in quaternionic scattering theory is complex, 
not quaternionic, which was a surprise to the experts in the field and invalidated 
proposed searches (such as Peres, 1979) for quaternionic effects manifested through 
noncommuting scattering phases. I also clarified the relationship between time rever
sal symmetry in quaternionic quantum theory (where it is unitary) and in complex 
quantum theory (where it is antiunitary), proved that positive energy quaternionic 
Poincare group representations are complex and not intrinsically quaternionic, and
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gave a quaternionic generalization of projective group representations (to which I 
shall return shortly). These were but a few of the many topics dealt with in my 
1995 book. M y quaternionic investigations also motivated work I did in new direc

tions in standard quantum mechanics, such as a paper that I wrote showing that 
S U (3) x 5f7(12) is the minimal grand unified theory in which, species by species for 

charged fermions, no Dirac sea is required (Adler, 1989).
After my book on quaternionic quantum mechanics was completed, a number 

of papers that I wrote with collaborators clarified issues that were left unresolved, 
or were inadequately treated, in the book. One of these issues dealt with the non- 
adiabatic geometric phase in quaternionic Hilbert space. This was discussed in my 
book, but on a visit to the IAS, Jeeva Anandan pointed out that my treatment 
was incomplete, and sketched what was needed to improve it. I filled in the details 
and drafted a manuscript, which became a joint paper (Adler and Anandan, 1996, 
R61) that was published in the Larry Horwitz Festschrift issue o f Foundations o f 
Physics. A  second issue that was left hanging was the analog o f coherent states 
in quaternionic quantum theory. M y thesis student Andrew Millard and I studied 

this, and wrote a paper (Adler and Millard, 1996a, R62) giving the extension of 
the Perelomov coherent state formalism to quaternionic Hilbert spaces. We also 
showed that the closure requirement forces an attempted quaternionic generalization 
of standard coherent states based on the Weyl group to reduce back to the complex 
case, settling a question raised in discussions with me by John Klauder. The other 
issues that were dealt with after publication of the quaternionic book were the 
structure of quaternionic projective representations, and the relationship between 
standard complex quantum mechanics and the dynamics based on a trace variational 
principle that I had introduced in the field theory chapter of the 1995 book. These 
form the subject of the next two sections.

Quaternionic Projective G roup  Representations

Given two group elements b,a with product ba, a unitary operator representation Ub 
in a Hilbert space is defined by U^Ua =  U ^. A  more general type o f representation, 
called a ray or projective representation, is relevant to describing the symmetries of 
quantum mechanical systems. In his famous paper on unitary ray representations 
of Lie groups, Bargmann (1954) defines a projective representation as one obeying 
UbUa =  Ubau (b ,a ), with u>(b, a) a complex phase.

This definition is familiar, and seems obvious, until one asks the following ques
tion: Bargmann’s definition is assumed to hold as an operator identity when acting 
on all states in Hilbert space. However, we know that it suffices to specify the 
action of an operator on one complete set o f states in Hilbert space to specify 
the operator completely. Hence why does one not start instead from the definition 

UbUa\f) =  Uba\ f)u (f-,b ,a ), with (|/ )} one complete set of states, as defining a pro
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jective representation in Hilbert space? Let us call Bargmann’s definition a “strong” 
projective representation, and the definition with a state-dependent phase a “weak” 
projective representation. Then the question becomes that of finding the relation 
between weak and strong projective representations.

Although I have formulated this question here in complex Hilbert space, it axose 
and was solved in the context of quaternionic Hilbert space, where the phases 
u j(f ]b ,a ) are quaternions, which obey a non-Abelian group multiplication law iso
morphic to 5 0 (3 ) ~  S U (2 ). The strong definition was adopted for the quaternionic 
case by Emch (1963, 1965), but in Sec. 4.3 of my book on quaternionic quantum 
mechanics I introduced the weak definition in order for quaternionic projective rep
resentations to include embeddings of nontrivial complex projective representations 
into quaternionic Hilbert space; the state dependence of the phase is necessary be
cause even a complex phase ш does not commute with general quaternionic rephas- 
ings of the state vector |/). I noted in my 1995 book that the weak definition can 
be extended to an operator relation by defining

n ( M  =  £ l / M / ; M ( / l  ,
/

so that the weak definition then takes the form

UbUa =  Ubati(b ,a ) ,

which gives the general operator form taken by projective representations in quater
nionic quantum mechanics. I also introduced in Sec. 4.3 of my book two special
izations of this definition, motivated by the commutativity properties of the phase 
factor in complex projective representations. I defined a multicentral projective rep
resentation as one for which

[П(Ь, a), tfe] =  [fi(b, <*),!/*] =  0

for all pairs b, a (note that in Eq. (4.51a) of my book, Uab should read C/(,a, so that the 
two conditions just given suffice), and I defined a central projective representation 

as one for which

[fi(b, a ),U c] — 0

for all triples a, 6 , c.
Subsequent to the completion of my book, I read Weinberg’s first volume on 

quantum field theory (Weinberg, 1995) and realized, from his discussion in Sec. 2.7 
of the associativity condition for complex projective representations, that there must 
be an analogous associativity condition for weak quaternionic projective represen
tations. I worked this out (Adler, 1996, R63), and showed that it takes the operator 

form

U - l £ l(c,b )Ua =  Л (сЬ ,а )- ‘ П ( с ,Ц П (М )  ,
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which by the definition of Q(b, a) shows that U a 1Q .(c ,b )U a is diagonal in the basis 
{|/ )}, with the spectral representation

U ^ n (c ,  b)Ua =  ^  |/M /; cb, a )u ( f ;  c, b a )u {f] b, a )(f\  . 

f

On the basis of some further identities, I  also raised the question o f whether one can 
construct a multicentral representation that is not central, or whether a multicentral 
representation is always central.

Subsequently, I discussed the issues of quaternionic projective representations 
with Andrew Millard. He explained them to his roommate Terry Tao, a mathematics 
graduate student working for Elias Stein, and at my next conference with Andrew, 
Tao came along and presented the outline of a beautiful theorem that he had devised. 
This was written up as a paper of Tao and Millard (1996), and consists o f two parts. 
The first part is an algebraic analysis based on the spectral representation given 
above, which leads to the following theorem

Structure Theorem : Let U  be an irreducible projective representation o f a 

connected Lie group G . There then exists a reraying of the basis |/) under which 

one of the following three possibilities must hold.

(1) U  is a real projective representation. That is, w (/; b, a ) — us(b, a ) is independent 
of I/) and is equal to ± 1  for each b and a.

(2) U  is the extension of a complex projective representation. That is, the matrix 
elements ( f \Ua\f' )  are complex and w (/ ;6 , a)  =  ш(Ь, a)  is independent o f |/) 
and is a complex phase.

(3) U  is the tensor product of a real projective representation and a quaternionic 

phase. That is, there exists a decomposition U a =  £3/ |/)oa(/|, where the 

unitary operator U ® has real matrix elements, aa is a quaternionic phase, and 
Ufa =  ±T J^U ^  for all b and a.

From the point of view of the Structure Theorem, case (1) corresponds to the 
only possibility allowed by the strong definition of quaternionic projective represen
tations, as demonstrated earlier by Emch (1963, 1965), while case ( 2 ) corresponds to 
an embedding of a complex projective representation in quaternionic Hilbert space, 
the consideration of which was my motivation for proposing the weak definition. Spe
cializing the Structure Theorem to a complex Hilbert space, where case (3) cannot 
be realized, we see that in complex Hilbert space the weak projective representation 
defined above implies the strong projective representation; hence no generality is 
lost by starting from the strong definition, as in Bargmann’s paper.

The second part of the Tao-M illard paper is a proof, by real analysis methods, 
of a Corollary to the structure theorem, stating



Quarternionic Quantum Mechanics, Trace Dynamics, and Emergent Quantum Theory 107

Corollary 1: Any multicentral projective representation o f a connected Lie group 
is central.

This thus solved the question of the relation of centrality to multicentrality that 
I raised in my paper R63.

Subsequent to this work, I had an exchange with Gerard Emch in the Journal of 
Mathematical Physics debating the merits of the strong and weaJc definitions. After 
a visit to Gainesville where we reconciled differing notations, we wrote a joint paper 
(Adler and Emch, 1997, R64) clarifying the situation, and reexpressing the strong 
and weak definitions in the language and notation often employed in mathematical 
discussions of projective group representations.

Trace Dynam ics and Emergent Quantum Theory

M y work on emergent quantum theory arose from the merging of two lines of 
thought. The first line of thought arose from answering the question of whether 
quaternionic quantum mechanics ameliorates the measurement problem of standard 
quantum mechanics; the answer is “no” , because quaternionic quantum theory still 
has a unitary time evolution, and so the usual problems persist. However, in the 
course of working this through I read some of the literature on the measurement 
problem in standard quantum theory, and came away convinced that there were real 
issues to be addressed. The second line of thought arose from my attempts to con
struct quaternionic quantum field theories. I found that the canonical quantization 
method could not be extended to the quaternionic case, and so I had to resort to 
an alternative formalism, which I variously called “generalized quantum dynamics” , 
“total trace dynamics” , or finally, simply “trace dynamics” , to generate operator 
equations without “quantizing” a classical theory. This was done by using a vari
ational principle based on a Lagrangian constructed as a trace of noncommuting 
operator variables, making systematic use of cyclic permutation under the trace op
eration. These ideas were developed in the paper Adler (1994b) and were described 
in Chapter 13 of my 1995 book; in Chapter 14, I suggested that the nonlinearity 
of trace dynamics could make it relevant for resolving the measurement problem 
in quantum theory. However, the problem of relating the trace dynamics formal
ism to the standard canonical formalism of complex quantum field theory remained 

unsolved.
One of the questions I had posed to Andrew Millard was that of better under

standing trace dynamics, in the hope of finding a connection to standard quantum 
theory. After I arrived in Aspen in the summer of 1995, Andrew sent me a memo 
containing his discovery that in trace dynamics with a Weyl symmetrized Hamilto
nian and noncommuting boson degrees of freedom qr ,p r> the operator 52r [gr,Pr] is 
conserved. I soon found that the generalization to include fermions is the conserved
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operator that we denoted by C, defined by

C =  у ;  [ яг ,Рт]~ У ]  { qr , Pr }  , 
r, boson r, fermion

and that this operator is conserved as long as the trace Hamiltonian has no fixed 
operator coefficients, which is equivalent to saying the the trace Hamiltonian has 
a global unitary invariance. It then seemed natural to suggest that the equiparti- 
tioning of С  in a statistical thermodynamical treatment would provide the missing 
connection between trace dynamics and standard quantum mechanics.

The implementation of this idea was published in Adler and M illard (1996b), and 
I developed it further over the following years with many collaborators, as described 
in Sec. 5 of the “Introduction and Overview” that opens my 2004 book on emergent 
quantum theory. This book, which is set within the framework of complex H ilbert 
space, gives a complete, self-contained development of trace dynamics as a (non- 
commutative) dynamics underlying quantum theory. Prom the statistical mechanics 
of this underlying theory there emerge, in a mutually complementary way, both the 
unitary and the nonunitary parts of orthodox quantum theory. The unitary part of 
quantum theory (the canonical algebra and the Heisenberg representation time evo
lution of operators) comes from an application of generalized equipartition theorems 
in the statistical thermodynamics of trace dynamics. The nonunitary part o f quan
tum theory, in the form of stochastic state vector reduction models from which the 
Born rule for probabilities can be derived, comes from the Brownian motion correc
tions to this thermodynamics. Thus, trace dynamics provides a unified framework 
from which both the unitary dynamics of quantum systems, and the nonunitary 
evolution describing state vector reduction associated with measurements, emerge 
in a natural way.

Although quantum mechanics and quantum field theory have been the undis
puted basis for all progress in fundamental physics during the last 80 years, the 
extension o f the current theoretical frontier to Planck scale physics, and recent en
largements of our experimental capabilities, may make the 2 1 st century the period 
in which possible limits of quantum theory will be probed. M y 2004 book suggests a 
concrete framework for exploration of the proposition that quantum mechanics may 
not be the final layer of fundamental theory. It also addresses the phenomenology 
o f modifications to quantum theory, specifically as implemented through stochastic 
additions to the Schrodinger equation. I have continued with these phenomenolog
ical studies since completion of the book; my most recent papers (Bassi, Ippoliti, 
and Adler, 2005; Adler, Bassi, and Ippoliti, 2005; Adler, 2005) have dealt with ana
lyzing possible tests of stochastic localization theories in nanomechanical oscillator 

and gravitational wave detector experiments.
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10. W h e re  N ex t?

In looking back at my work, I see one pattern that is repeated over and over. Many 
of the most interesting research results that I have obtained were unanticipated 
consequences of other, quite different research programs. In the course of detailed 
calculations, or speculative explorations, I noticed something that seemed worth 
pursuing, even though tangential to my original motivations, and this new direction 
ended up being of much greater interest. This happened with my calculations of 
weak pion production, which led as spin-offs to the forward lepton theorem, the 
neutrino sum rule, and soft pion theorems. It happened again with my exploration 
of gauging of the axial-vector current as an explanation for the muon mass, which led 
to anomalies. M y interest in an eigenvalue condition in QED led to the calculation 
of photon splitting, and later on to an improved method for analyzing collider data. 
My attempts at a composite graviton led to an investigation of Einstein gravity as 
a symmetry breaking effect. M y interest in the (spurious) Argonne threshold events 
induced me to extend my weak pion work to neutral currents, which contributed to 
the first unique determination of the electroweak couplings by Abbott and Barnett. 
M y attempt to relate monopole background fields to confinement played a role in the 
multimonopole existence proof of Taubes. M y computational experience in solving 
effective action confinement models led to overrelaxation as an acceleration method 
for Monte Carlo. And most recently, my interest in composite models for quarks 
and leptons led to a long exploration of the fundamentals of quantum theory, first 
through my study of quantum theory in quaternionic Hilbert space, and growing 
out of that, through my development of trace dynamics as a possible pre-quantum 

theory.
I think this pattern is no accident, but rather a reflection of my guiding philoso

phy in doing research, which has been that it is more important to start somewhere, 
even with a speculative idea or an apparently routine calculation, than to sit around 
waiting for an “important” idea. Once immersed in the nitty-gritty of an investiga
tion, things have a way of appearing, that often lead off in very fruitful directions. 
So given this, when I look ahead, I can only say the following: I have some rough 
ideas as to where I would like to start in new explorations in fundamental theory 
and particle phenomenology, but I cannot say where these may ultimately lead, in 
the course of my continuing adventures in theoretical physics.
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One Hundred Reasons to be a Scientist

F r o m  E l e m e n ts  of R a d io  t o  E l e m e n t a r y  P a r t ic l e  Ph ysic s

Stephen L. Adler 
Institute for Advanced Study at Princeton, USA

I was bom  in 1939 in N ew  York City to Irving and 
Ruth Relis Adler. My father was a m athem atics teacher 
and my m other had also majored in m athem atics in 
college. I was directed towards science by my parents 
from an early age. W hen I was two years old my father 
built me a gadget box from pieces o f hardware, and 
around the same time my mother made me a home-made 
version o f  the “Pat the B unny” book, each page 
containing a different tactile or m anual operation for me 
to perform. W hen I was older my father built me 
electrical toys such as telegraphs, a "burglar alarm ” that 
rang a bell when a door was opened, and a miniature 
traffic light. W e also engaged in nature activities, 
collecting snakes and butterflies. W hen 1 was eight I 
participated in a young people’s astronom y course at the 
M useum  o f  Natural History in N ew  York, and my 
fascination with the fossils I saw  at this m useum  led me 
to think briefly o f  being a paleontologist, but this interest 
soon waned.

M y actual career path began in sixth grade o f  
elem entary school, w hen a classm ate started to talk to me 
about his interest in radio; I visited him at home and saw 
his equipm ent and tools. This introduction developed into 
a serious interest in electricity, radio, and electronics 
while I w as still in elem entary school. I built various 
electrical devices, such as electric m otors w ith rotor 
lam inations cut from tin cans and perm anent m agnet 

stators taken from old radio loudspeakers. (I still have one o f  these on my bookcase at the Institute for 
A dvanced Study). W ith encouragem ent from my father I read M arcus and M arcus’s classic W orld W ar II 
text “Elem ents o f  R adio” ; my father m ade a point o f  letting me be the family radio expert, w hile he was the 
consultant on the few bits o f  algebra in the text. A lso at my father’s suggestion, I started to canvass the 
neighborhood door to door, pulling a small wagon and asking for old radios, appliances, and television sets 
people were planning to throw away. I stripped the parts out o f  these, and used them to build radios, 
am plifiers, and even an oscilloscope using a salvaged 7-inch television tube. I also learned enough Morse 
code to get my Technician Class am ateur radio license, and built a sm all rig using a w ar surplus aircraft 
receiver and a hom e-built transm itter. However, am ateur radio activity did not interest me nearly as much as 
building electronic equipm ent, w hich I continued through various science projects in high school.

G iven this exposure to electronics, it would have been natural for me to pursue a career in electrical 
engineering, but towards the beginning o f  my high school years I got a first glim pse o f  the fascinating world 
o f  high energy physics research. For two summers my family had vacationed in a state park near Ithaca, NY, 
and Phillip M orrison, an old friend o f  my father’s, gave us a tour o f  the physics laboratories at Cornell, where 
Robert W ilson had built a succession o f  particle accelerators. I liked the am bience o f  these laboratories, and 
was im pressed with the fact that i f  I pursued physics as a career I would learn and use electronics, but not 
necessarily the other way around. By my jun ior year in high school, I had decided on experim ental physics as 
a career.

M y first physics research laboratory experience cam e at the end o f  my senior year in high school, when I 
attended a rwo-week course in X-ray diffraction techniques for industrial engineers given at Brooklyn 
Polytechnic Institute by Isadore Fankuchen, w ho would every now and then include a bright high school 
student in his class. I was able to do all the theoretical and laboratory work, and learned many things, such as 
crystal lattice structure and Fourier transform s, that are standard physic ist’s tools. A lm ost immediately 
afterw ards, I went to a sum m er jo b  at Bell Labs in M anhattan, along w ith eight other science-oriented high
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Adventures in Theoretical Physics

One Hundred Reasons to be a Scientist

school graduates. M any o f  them  had already learned calculus, and so I decided to teach m y se lf  calcu lus that 
summer.

M y father gave me his old calculus text, along with the sage advice to do every third p roblem — because I 
had to do problem s to leam  the m aterial, bu t there was not time (and it w ould  be too boring) to try to do all o f  
them. So I spent my com m uting time, and spare time at w ork, doing calculus problem s. A s a resu lt, w hen I 
entered Harvard in the fall I was able to place directly into A dvanced C alculus, w h ich  had a m ajor im pact in 
how  fast I was able to proceed w ith my physics education.

I entered college intending to be an experim entalist, but my friendships w ith  various classm ates, am ong 
them Daniel Quillen (later a Fields m edalist) got m e interested in m athem atics. I found that I w as very good 
at the theoretical aspects o f  my classes, but although com petent in the laboratory, I lacked the touch o f  the 
gifted experim entalist. So, by the m iddle o f my freshm an year, I had  decided to shift m y sigh ts from  
experim ental to theoretical physics. A long w ith Fred G oldhaber, w ho w as to be m y first year room m ate in 
graduate school at Princeton, I took essentially the w hole graduate course curriculum  at H arvard  during  my 
junior and senior years. M em orable teachers at H arvard included Ed Purcell, F rank P ipk in , Paul M artin , and 
Julian Schw inger. As a result o f  my Harvard preparation, at P rinceton I was able to take m y G eneral Exam s 
at the end o f  the first year, and then to start thesis research w ith Sam  T reim an at the beginning o f  m y second 
year.

Treim an suggested that I look for calculations to do in the new ly em erging area o f  accelerato r neutrino  
experim ents, and this was the beginning o f  my career in high energy physics. A  m ajor part o f  my thesis w ork  
was a calculation o f pion production from nucleons (protons or neutrons) by a neutrino beam . A lthough this 
was a  long and tedious project, it gave me a  detailed introduction to the “vector” and “axial-vecto r” currents 
through which neutrinos interact with nucleons. This know ledge growing out o f  my thesis pro ject w as the 
foundation for my most significant scientific contributions during the period 1964 through 1972, w hich  all 
involved in some w ay or another the discovery o f  further results connected w ith vector and ax ial-vecto r 
currents. These included various low energy theorem s for pion em ission derived from  the hypothesis o f  a 
“partially conserved" axial vector current, various sum rules including the A dler-W eisberger sum  rule for the 
axial vector coupling to nucleons and a  sum rule for deep inelastic high energy neutrino scattering  cross 
sections, as well as the co-discovery (along with Bell and Jackiw ) o f  the “anom alous” d ivergence p roperties 
o f  the axial-vector current. The theoretical analysis o f  anom alies led to a deeper understanding o f  neutral 
pion decay into gam m a rays, provided one o f  the first pieces o f  evidence for the fact that each  quark com es in 
three varieties (now  called “ colors”), and has had a m ultitude o f other consequences for theoretical physics 
over the last thirty-five years.

During the years since 1 9 7 2 ,1 have w orked on a variety o f  other topics in theoretical high energy physics, 
including neutral current phenom enology, strong field electrom agnetic processes (such as photon splitting  
near pulsars), and acceleration m ethods for M onte Carlo sim ulation algorithm s. T hroughout the last tw enty 
years I have devoted about ha lf o f  my research time to studying em beddings o f  standard quantum  m echanics 
in larger m athem atical fram ew orks. One aspect o f  this w ork involved a  detailed study o f  a quan tum  
m echanics in w hich quaternions replace the usual com plex num bers. Another, m ore recent aspect, has 
involved the study a possible “pre-quantum ” m echanics based on properties o f  the trace o f  a m atrix, from  
w hich  quantum  theory can em erge as a form o f therm odynam ics. I have w ritten books describing both o f  
these studies. For the next few years, I plan to return to my original area o f  particle phenom enology, in the 
context o f  supersym m etric m odels for further unifying the elem entary particles and the forces acting on them .

26
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Theory of the "Valence Band Splittings at k =  0 in Zinc-Blende 
and Wurtzite Structures

St e p h e n  L .  A d l e r *

General Telephone fir -Rtectronics Laboratories, Inc., Bayside Laboratories, Bayside, New York 
(Received September 28, 1961)

A tbeory of the valence b a r d  splittings at k = 0 in zinc-blende and wurtzite structures is proposed, in 
which the wurtzite levels a r e  treated as perturbations of those in zinc blende. Starting from onc-elcctron 
Hamiltonians for the two structures, the two-parameter formulas originally derived by Hopfield are ob
tained, with a minimum of approximations, along with explicit expressions for the parameters in terms of 
Hamiltonian matrix e lem en ts . The two-parameter formulas are compared with experimental data and 
agreement is found to be g o o d .  A simple tight-binding (linear combination of atomic orbitals), 3p valence 
band, point-ion lattice m odel is used to calculate an effective charge for ZnS from the known valence band 
splittings in the wurtzite a r «d  zinc-blende dimorphs; a value of 2.3e is obtained.

1 . IB T K O D H C T IO M

THE object of this paper is t o  explore a theory of 
the k= 0  valence band energy  splittings and wave 

functions in zinc-blende and w u rtz ite  structures. This is 
of interest because receDt experimental work on hex
agonal (wurtzite) and cubic ( z in c  blende) ZnS,1 hex
agonal CdS,1 CdSe,2 and ZnO,1 c u b ic  ZnSe,4 and other 
I I -V I  semiconductors has made e l v  ailable data on their 
valence band energy splittings and wave function 
symmetries.

Previous theoretical work on w u r tz ite  and zinc-blende 
valence band splittings has been  reported by Birman5 
and by Hopfield.' Birman’s th e o r y  did not include the 
spin-orbit interaction. Hopfield’s  w ork , based on a quasi- 
cubic model of the wurtzite structure, gave useful 
formulas for the wurtzite and zinc-blende valence band 
splittings, which fit experimental data obtained for ZnS 
to within 10%. The theory presen ted  below starts from 
the rigorous one-election Hamil ton ians for wurtzite and 
zinc blende and yields, with a m in im um  of approxima
tions, the formulas proposed b y  Hopfield. In addition, 
the crystal field and spin-orbit param eters are expressed 
in terms of matrix elements o f  the wurtzite and zinc- 
blende Hamiltonians.

Although the anion and c a t io n  are for the sake of 
definiteness assumed to be $ a n d  Zn, this does not enter 
into the derivation. The trw0,pa.rameter formulas should 
be valid in other substance t h a n  ZnS crystallizing in 
zinc-blende and wurtzite djjnoi-phs, provided that the 
approximations made in t^e d er iva tion  still hold.

* Summer visitor, I960; now F*bysics Department, Princeton 
University, Princeton, New J&rs('y -

1 J. L. Birman, H. Samelsor^ A .. Lempicki, GT&E R&D J.
1, 1 (1961).

* J. 0. Dimmock and R. G. ^/hee ler, J. Appl. Pbys. 32, 227 IS 
(1961).

1 D. G. Thomas, J. Phys. Cv.m - Solids 15, 8 6  (I960).
‘ M. Aven, D. T. F. MiHfcf' a n d  B. Segall, Geneial Electric 

Research Laboratory Report p. K  I . -  (2773G) (unpublished).
4 J. L. Birman, Phys. Rev. j<5e 1493 (1959).
* J. J. Hopfield, J. Phys. C }^ n . Solids IS, 97 (1960).

2. THEORY

Some details of the zinc-blende and wurtzite ge
ometries will be needed.’  In zinc blende there are two 
atoms per unit cell, and in wurtzite, four. Call the two 
sulfur atoms in the wurtzite basis sulfur 1 and 2, re
spectively. The nearest-neighbor configurations in zinc 
blende and ideal wurtzite are identical and the second- 
nearest-neighbor (nearest like ion) configurations are 
nearly so (Fig. 1). This local structural similarity will be 
exploited by using axis systems for the two structures in 
which the nearest neighbors of the sulfur 1 site in the 
wurtzite basis and the sulfur site in the zinc blende basis 
have identical coordinates. The axis systems which will 
be used throughout the rest of this paper, unless ex
plicitly stated otherwise, are illustrated in Fig. 2. Note 
that the axes for zinc blende are not the usual Cartesian 
axes employed for this structure.6

The Hamiltonians for band-theoretic treatment of 
wurtzite and zinc blende, including in each the spin- 
orbit interaction term, are

Ягв =  рг/ 2 т +  V z e ( r )+  (Л/4тгсг) ( V  V zbX  p) o,

В w“  P2/ 2 w +  K w (r )+  (А/4m V) ( v  KWX  p) <r,

where V 2b and Vw are the respective crystal potentials 
in the two substances. A  modification of the linear com
bination of atomic orbitals (LCAO) procedure will be 
used to find expressions for the valence band energy 
splittings and wave functions at k = 0  in the Brillouin 
zone. In the usual LCAO formalism,8 the Hamiltonian 
at k= 0  is diagonalized in a space spanned by the cell 
periodic functions Ф =  ^n( r -  R/). Here is
a free-ion orbital, n denotes a complete set of quantum 
numbers and R /  is the position of the (3th basis atom 
in the jth  unit cell. In the modification used in this 
paper, the rigorous zinc-blende (ZB) Bloch functions 
at k =  0 are expanded in Wannier functions,

X „ ( r — R / ) ,

where R /  is the coordinate of the sulfur atom in the

7 J. L. Birman, Phys. Rev. 109, 810 (1958).
‘ J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

Copyright© 1962 by the ^ p r i c a n  Physical Society. Reprinted with permission.
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zinc blende

[ I I I ]  or [ -C - ]
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wurtzite x'

119

О Ь*1 о

above

below

Fig . 1. First and second neighbors in zinc blende and wurtzite. 
Large circles are S atoms, small ones Zn. Open circles are in the 
same plane. Comparing the two structures, we note that only 
three of the twelve second neighbors differ, and even these are 
disposed symmetrically. These are shown as the 3 atoms ‘ 'above" 
and are rotated by ir/3 in zinc blende with respect to their 
positions in wurtzite.

jth cell in zinc blende. These functions form an ortho- 
normal set ((Ф„2В|Ф„2В>=г„„.) and are a complete 
cell-periodic set in zinc blende. In wurtzite (W ), the 
Hamiltonian matrix at k = 0  will be computed using as 
basis functions the linear combinations of zinc-blende 
Wannier functions,

(2N)~i D  [ x „ ( r -  R / )± x „ (r— R * ) }

where R/ and R/ are the coordinates of the two sulfur 
atoms in the cell in wurtzite. We remark that 
< * .w+1 * „ ; " - > =  <Ф„ " + 1 Sw l * » - w- > = 0 ;inother words, 
the wurtzite Hamiltonian matrix breaks up into two 
submatrices spanned, respectively, by the functions 
* „ w+ and %„w_. This is proved by noting that the 
symmetry operation Сг, the twofold screw axis in wurt
zite, which interchanges type-1 and type-2 sites, leaves 
H w and the ^ „ w+ functions invariant while changing 
the sign of the ^ nw_ functions. Furthermore, the func
tions ,i ,„w+ and * nw~ are similar in form, respectively, 
to the zinc-blende valence band wave functions 
’Я'лк2® =  N~* exp(tk - R ,)X „(r— Rj) at the points 
к =(0,0,0) and k =  (0,0,2ir/c) in the zinc-blende Bril- 
louin zone. Consequently, the wurtzite energy eigen
values determined by the submatrix 1Я w| 'J'n'W+) 
correspond to levels at k =  (0 ,0 ,0) in zinc blende, while 
those determined by the submatrix 
correspond to levels at k= (0 ,0,2ir/c), which is the point 
A at the Brillouin zone edge in zinc blende. Only the 
wurtzite levels corresponding to those at k= (0,0,0) in 
zinc blende will be considered.

To a good approximation, the functions \t'„w+ are an 
orthonormal set. The reason is that the nearest like ion 
(second-nearest neighbor) configurations in wurtzite and 
zinc blende are almost identical, and consequently 
nearest-like-ion overlaps can be expected to give roughly

,-2 I 1 ,
» ,Л ,Л '

/  ,  1  1  i .  /  1 lj3.SS,V3 J

(0,^, Л  >X
Fig. 2. Axes for zinc blende and wurtzite. The axes x, у , z are 

the ones used in this paper. These are the axes usually employed 
for the wurtzite structure. The axes x', y', z‘ are the conventional 
axes for the zinc-blende structure. The open and blackened circles 
represent sulfur and zinc sites, respectively.

equal contributions to {'$>„ZB|SI'n.ZD)and ('J/„ W4"|>Pti'W+)- 
Assuming higher overlaps can be neglected, we have 
(Ф „w+1Ф w+) « (Фп2® | 25) =  5„„-. Thus, by means 
of a linear combination of zinc-blende Wannier functions 
one can construct a nearly orthonormal set of basis 
functions for the wurtzite structure, suitable for a com
parison of the energy levels in the two structures at 
k= (0 ,0,0).

Zinc Blende

Let us consider in more detail the z in c - b le n d e  Bloch 
functions at the top of the valence band. If  we omit the 
spin-orbit interaction term in the zinc-blende Hamil
tonian, the top of the valence band will be sixfold de
generate, with state vectors ( | X ),  | F), | Z ) )  • ( | +  ), I — )) 
where | X ), \ Y ), \ Z ) are Bloch states transforming like 
x, y, z under the operations of the zinc-blende symmetry 
group T л. The zinc-blende Hamiltonian with the spin- 
orbit interaction term is diagonal in the manifold 
spanned by

1)=|П )|+>,
2 > = ( l / v ,6 ) 0 2 | n > | - ) - 2 | Z > |  +  >], 
3 > = ( l / V 6 ) [ ^ | n > | + > + 2 | Z > | - > ] ,  
4>=|П>|->, (D

r|5 )= (l/v3 )[v2|n>|-)+|Z>|+> ],
l7 t| 6 )= (I/ vS )[v2 | n )| + > -| Z > | - )],

| П >=  (l/v2 )(|X >+t|  F>), | ft) =  (1 m ( | X ) - i | Y)).
The first group of states transforms as a basis for the 
irreducible representation Га of the double group of T d ; 
the second set is a basis foT Г 7. Use of the finite basis, 
Eq. (1), to diagonalize the Hamiltonian is equivalent 
to treating the spin-orbit term by first-order perturba
tion theory. Thus, the error in the energies made by the
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neglect of admixtures of wave functions from other 
bands is of the order tf/E,, where 5 is the zinc-blende 
spin-orbit splitting and E a is the band gap. Since 
SV-Ee~  0.0675/3.6, the fractional error made in the 
valence band splitting is small. The prediction that the 
zinc-blende valence band is split into а Г8 level and a 
Г7 level agrees with experiment.1

Wurtzite

The basis functions in wurtzite are taken as sums of 
zinc-blende Wannier functions. Consider in particular 
those constructed from the zinc-blende valence band 
wave functions, using for these the approximate forms 
Eqs. (1). Since the threefold rotation operation and the 
reflection plane parallel to its axis are symmetry opera
tions in both zinc blende and wurtzite, the behavior of 
the sets of states 11), •••, 16); 11+), |6+) under 
these operations will be identical. I t  is thus possible to 
show, by using characters of the double group of Си, 
that the states 11+), ■ • ■, 16+) transform according to 
representations of the double group of Сэ„ as follows3

A, (l/v2)[|l+>+|4+>] 
A, (l/v2 )[| l+>-|4+)]

(TO

A,

(Г7)

Г12+) 
U3+>

A6|

(Г.)

5+>
6+ >

1+ 4+ 2+ S+ 3+ 6+

1+ a 0 0 0 0 0
4+ 0 a 0 0 0 0
2+ 0 0 b с 0 0
5+ 0 0 c* d 0 0
3+ 0 0 0 0 b с
6+ 0 0 0 0 c* d

where 5, as before, is the zinc-blende spin-orbit splitting, 
and 5nn. is the Kronecker delta. The near degeneracy of 
the valence band in zinc blende has been made a com
plete degeneracy in H a by subtraction of <■>(£*-HSui); 
this term has been included in the perturbation B\. In 
this way we have defined a problem in degenerate 
perturbation theory. If  the degenerate manifold is 
treated exactly, neglect of the admixture of other wave 
functions of the basis is equivalent to neglecting second- 
and higher order terms in a perturbation expansion, and 
results in an error «  | ( | i7 i|  )| г/Е„. Here |(|#i|)| is 
the magnitude characteristic of matrix elements of the 
perturbation, which can be expected to be of the order 
of the valence band splittings in wurtzite «0.05 ev. 
Thus, the fractional error made in the valence band 
splitting ~0.05/3.6, which is small.

Two-Parameter Formulas

Because Hi factors completely into 2X2 submatrices, 
exact solution of the eigenvalue problem within the 
degenerate manifold is easy. The results for the wurtzite 
and zinc-blende valence band energy splittings and the 
wurtzite valence band eigenstates are:

This permits a simplification of the submatrix of the 
wurtzite Hamiltonian spanned by 11+), ■ • - , |6+), to

A-Ew:

a+5 Г /а+г\2 2а5_|1

L c r H
Г/а-Мх1 (2)

The prediction that the wurtzite valence band consists 
of a Г 9 level and two Г 7 levels agrees with experiment.

Just as in zinc blende, the admixture of other wave 
functions forming the basis will be neglected. Let us 
write

(к|Яо|и')=<^»2В|ягв|'1' п̂ в) - м „ . ( 1 :г„*),
t-l

*-1

AEzb •

k )= U +),
yfla

N b\h)=— 15+>+

л д с)= — 15+>+

г = < 1 1 Я 2в | 1 ) - < 5 | Я г в |5>;

г Н Ф ’- Я Н  

Н Ф ' - т Г И

(3)

a The designation in parentheses refers to the representation o f 
the double group o f C *  according to which the functions approxi
m ately transform. T h e  basis functions for wurtzite would trans
form  exactly according to irreducible representations o f i f  we 
took the zinc-blende valence band Bloch functions to be linear 
combinations o f ionic 3p orbitals. W e have instead used the exact 
zinc-blende Bloch, functions. Because the wurtzite Ham iltonian is 
diagonalized with respect to on ly a finite basis, and because the 
functions in the basis transform only approxim ately according to 
irreducible representations o f Ce*, the wurtzite valence band wave 
functions obtained have only approxim ately the correct symmetry 
properties. Nevertheless, in the remainder o f this paper the wurt
zite functions w ill be labeled by the indicated representations 
o f Ce..

Here Nb and ISfc are normalization constants and a is 
a crystal field parameter defined by

a =  [<П+ 1 ffw  I П + )-  (П I f f ZBIП )]
- [ < z + [ t f w | z + > - < z | H ZB| z> ].

In this expression Hw and H zn signify the Hamiltonians 
without the spin-orbit interaction terms.10

Equations (2) are the two-parameter formulas origi
nally derived by Hopfield.5 They have been obtained by 
making only three approximations:

10 I t  is easy to show that the fractional error resulting from  
neglect o f  these terms is o f the order

Kl+KA/^mV^KwXpinL. У
j<l+| Vw|l+)| — mVir') 

where (r1) is the mean square sulfur ion radius.

-to-4,
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(1) Assumption of approximate orthonormality of 
the wurtzite basis;

(2) Neglect of energy terms « 5 V-E»;
(3) Neglect of energy terms =  [ (|ffi| )г/Е а.

Note that the equations for the splittings in wurtzite 
are completely symmetric in a and S. This means that 
a and & cannot be determined uniquely from the wurtziLe 
splittings: if (a,S)= (a,b) is one solution consistent with 
the data, then (a , i )=  (6,a) is another. The ambiguity 
just corresponds to the fact that solving (2) for a and i  
in terms of E a—Et, Еъ—Е с leads to a quadratic equa
tion, both roots of which are allowable solutions. This 
symmetry of the two-parameter formulas is not ex
plicitly evident in the version of them given by Balkan- 
ski and Cloizeux.11

Finally, it is to be emphasized that the anion and 
cation have been assumed to be S and Zn in the above 
derivation purely for the sake of convenience in referring 
to them. The theory should be valid in other semicon
ductors with ^>-like valence bands and with spin-orbit 
and crystal field splittings which are small relative to 
the band gap.

3. APPLICATION TO ZnS, CdS, AND OTHER 
II-V I COMPOUNDS

The two-parameter formulas describe three splittings 
in terms of two parameters. They fit well the values 
given by Birman et a l}  for the spin-orbit splitting of the 
zinc-blende form and the two valence band splittings of 
the wurtzite form of ZnS. From the data (Table I )  at 
77°K, i=0 .068  ev and E a- E b + i ( E b- E c) =  ̂ (a + S )  
=  0.069 ev, giving a =  0.070 ev. The theory then gives 
0.080 ev and 0.029 ev for the wurtzite splittings, within 
10% of the experimental values of 0.084 ev and 0.027 ev. 
The order of levels predicted is also correct.

A  reasonable result is also obtained when Eqs. (2) 
are applied to data for CdS. Crystals of cubic CdS have 
not yet been grown. However, with data for hexagonal 
CdS, the formulas can be used to predict the value of 
the spin-orbit splitting which would be observed in 
cubic CdS. Tw o values are obtained as a result of the

T able  I. Valence band splittings in ZnS and CdS.

Temperature
Ы ) 3 (ev) Е ' - Е ь  (ev) Еъ—Е , (ev)

77
Cubic ZnS 

0.068
14 0.065

77
Hexagonal ZnS 

0.027 0.084
14 0.026 0.082

77
Hexagonal CdS 

0.016 0.062

ambiguity discussed above: i  =  0 06S ev or 6 =  0.029 ev 
(at 77°K.), The first of these is close to the ZnS splitting 
and is probably the correct solution, since the valence 
band spin-orbit splitting should be determined primarily 
by the wave function and potential near the sulfur ion 
and should depend only weakly on the nature of the 
cation. Measurements on CdSe2 and on ZnSe,1 which 
show nearly the same spin-orbit splitting for both sub
stances, are evidence for the validity of this type of 
argument.

From the formulas, Eqs. (3 ), the parentage of the 
lines in wurtzite ZnS can be determined. Taking 
a=0.070 ev, one obtains

|6)=0.48]S+)+0.88|2+),

| c) = 0 .8 8 15+)—0.481 2 f ).

These can also be written

16) =  0.901 П+)| —) —0.44|Z+)| +>,

| c ) = 0 .4 4 1П+) | — > + 0 .901Z+) H - ).

These expressions have a simple interpretation (see the 
splitting diagram, Fig. 3). The states |5) and |2) trans
form according to the irreducible representations Гб and 
Ti, respectively, of the double group of the wave vector 
at k =  (0,0,0) in zinc blende. These states are zinc-blende 
valence band eigenstates which differ in energy by 5, the 
spin-orbit energy. Equations (3) indicate how these 
zinc-blende levels mix when the crystal field perturba
tion is ‘ ‘ turned on.”  The states | П+)| — ) and |Z +) | + )  
transform, respectively, according to the irreducible 
representations Гб and f i  of the single group С j„, the

Г -
F-

Г-

I?’

I
I жI
i
I
II
l
I
Iу

X
I
I

J?
r? /

---- 4 ___L _ (T
I
I
I
I
I
I
I
I

u M. BaJkanski and J. Cloizeux (to be published).

Fig. 3. Splitting diagram indicating the mixings and splittings 
of the valence band levels as the perturbations, the spin-orbit 
interaction, and the crystal field, Vw— V z b , are turned on in 
opposite orders. As in the text, W means wurtzite and ZB means 
zinc blende; SO and XSO mean, respectively, with and without the 
spin-orbit interaction. At the right of the figure, the lowest Г 7 
level in the W SO column is joined by a double line to the Г 1 level 
and by a single line to the Гв level. This signifies that the wave 
function of the lowest V1 level is a mixture of functions which 
transform according to Г* and Г 1 of the single group C«u, and that 
the coefficient of the Г 1 wave function is larger than the coefficient 
of the Га wave function. The other single and double lines have 
a similar significance.
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group of the wave vector at k= (0,0,0) in a wurtzite 
structure in which there is no spin-orbit interaction. 
According to Eqs. (3), when the spin-orbit interaction 
in wurtzite is “ turned off”  by setting 6 =  0, the state |6) 
becomes |П+)| — ) (transforming according to Г6), the 
state | c) becomes |Z+)|-|-) (transforming according to 
Ti), and the ГБ state has the higher energy. The predic
tion that the Г j level would exceed the Ti level in energy 
in wurtzite ZnS if the spin-orbit interaction could be 
eliminated agrees with the observations showing that 
in hexagonal ZnO, in which the spin-orbit interaction is 
extremely weak due to the low anion atomic number, 
the Г i-like levels lie above a r r like level.12

4. ESTIMATION OF THE EFFECTIVE CHARGE

An attempt was made to make an a priori calculation 
of a, and by this means to estimate an effective charge 
for ZnS. The zinc-blende Bloch states | X), | F), \Z) 
were assumed to beLCAO states constructed from sulfur 
3p ionic orbitals. Only zeroth and first-neighbor inter
action integrals were retained, and a point-ion model 
of the zinc-blende and wurtzite lattices, with effective 
ionic charges +X « and —Xe for zinc and sulfur ions, re
spectively, was used. This model gives a— — (3E/5) 
X  JtTdr r where E  is the coefficient of r2P 2 (cos0) 
in the expansion of Fw about a sulfur ion site and Rst 
is an ionic radial orbital. Evaluation of E by an Ewald 
summation method13 gives A =  2.3, clearly too large. 
Taking into account the effect of mixings of sulfur 3d 
states into the zinc-blende valence band wave function 
and the deviation of wurt2ite ZnS from ideality was 
found to produce little change in the value of X obtained. 
(The expansions of Fw and F Zb used are given in the 
Appendix.) Mixings of zinc 4p states into the zinc-blende 
wave function may have an important effect on X, but 
the overlap integrals necessary to estimate this were 
not calculated.

11 However, in ZnO, unlike ZnS, the order of levels is Г7, Г#, Г 7 ; 
this is discussed by Hapfield* and by Thomas.3

11 B. R. A. Nijboer and F. W. De Wette, Physica 23, 309 (1957).
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APPENDIX

We give here the first few terms of the expansion in 
solid harmonics of the potentials in ideal wurtzite and 
zinc-blende point-ion lattices. The nearest like-ion 
distance is dss and the effective charge parameter is X. 
The origin for the expansion is a sulfur site such as is at 
the orgin in Fig. 2; in other words, a sulfur site with 
nearest neighbors with direction cosines (0,0,1); 
(0, — 2v2/3, -1/3 ); (%5/vS, \Я/3, -1/3 ); (-\2/v3, 
V2/3, —1/3) on the unprimed axes. All sums were 
evaluated by an Ewald method and were checked to the 
number of places indicated by summing with two differ
ent values of the convergence parameter.

Zinc blende (conventional axes, i.e., primed axes in 
Fig. 2):

FZB x'y'z'
-----------Ao+Bo-------+ • • • ,
e^X/dsg dss3

B„= 76.8.

Wurtzite (unprimed axes in Fig. 2):

F w z U2z2- * - f )
--------= Co+A>----+ £ 0 ---------------
eb/dss dss dss1

*[2 «3- 3 ( r '+ / ) z ]  (З ^ у -У )
4-Л---------------------hGo-------——h ■ • •,

dss2 dss1

A )=  —0.0397, Fo— 14.43,

E 0=  0.142, G0=  10.1.

Note that E =  ( —er\/dss3)Ea.
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Quantum Theory of the Dielectric Constant in Real Solids

St e p h e n  L. A d l e r *
Genera} Electric Research Laboratory, Schenectady, New York 

(Received October 12, 1961)

The quantum theory of the frequency- and wave-number-dependent dielectric constant in solids is ex
tended in order to study the full dielectric constant tensor and to include local-field effects. Within the 
framework of the hand theory, an explicit expression for the dielectric constant tensor, neglecting local- 
field effects, is derived. In addition to components which are the ordinary longitudinal and transverse di
electric constants, there are components which couple transverse and longitudinal electromagnetic dis
turbances. A formalism for calculating the local-field corrections to the dielectric constant is developed in 
detail for the case of the longitudinal dielectric constant of a cubic insulating solid. In the coarsest (dipole) 
approximation, the theory gives a Lorenz-Lorentz formula modified by self-polarization corrections arising 
from the polarization of the charge in a unit cell by its own field.

QUANTUM  mechanical treatments of the fre- 
quency-and wave-numbei-dependent dielectric 

constant in solids have been given by Noziferes and 
Pines1 and by Ehrenreich and Cohen.2 These authors 
give explicit expressions for certain components of the 
dielectric constant tensor, valid within the framework 
of the random phase approximation (RPA). Expres
sions are not given for the remaining components of 
the dielectric constant tensor and local field effects are 
neglected. This paper will generalize the treatment of 
Ehrenreich and Cohen1 so as to include additional 
effects of interest in real solids. In Sec. I  an expression 
for the full frequency- and wave-number-dependent 
dielectric constant tensor in a solid of arbitrary sym- 
metry will be derived, still neglecting local field effects. 
The additional components obtained correspond to a 
coupling between longitudinal and transverse electro
magnetic disturbances. This coupling, which does not 
appear in an isotropic free electron gas, is present in 
solids of even cubic symmetry and vanishes only for 
propagation along special directions of high symmetry. 
In Sec. I I ,  local field effects in insulators of cubic sym
metry will be discussed. An integral equation will be 
set up which determines the longitudinal dielectric 
constant with local field corrections in the case of wave
lengths large compared to the lattice constant but small 
compared to the over-all crystal dimensions. The in
tegral equation will be rewritten by making a multipole 
expansion of the potential in a given cell arising from 
the charge density in all other cells. The solution, when 
only dipole terms are retained, is the modified Lorenz- 
Lorentz formula

4 ir (a  — C i )
€ 1 “ --------------------,

1— (4 r / 3 ) ( a — Ci )

where a is the polarizabilily of the solid calculated 
without making local field corrections, and C\ is a re

* Present address: Department of Physics, Princeton Uni
versity, Princeton, New Jersey.

1 P. Nozi&res and D. Pines, Phys. Rev. 109, 741, 762, 1062

duction in a due to polarization of the charge in a given 
cell by its own field.

The calculations of Secs. I  and I I  are performed 
within the framework of the one-electron (energy band) 
approximation and use a linearized Liouville equation 
to determine the single-particle density matrix. Since 
in this context linearization is equivalent to the R P A ,1 
the results obtained in Secs. I  and П  are still valid only 
within the framework of the RPA.

I. DIELECTRIC CONSTANT TENSOR

We will first introduce a phenomenological dielectric 
constant tensor. Let A (i,i) and ф(т,() be the potentials 
describing fields acting on a system of charged par
ticles. In response to the fields, charge and current 
densities p'”d(r,/) and j iod(r,0 , which satisfy the equa
tion of continuity V - j 'Illi+3p i“d/3i=0, will be induced 
in the system. Let us immediately introduce Fourier 
transforms A(q,<j), Ф(Ч,ш), i lnd(q,<‘0 ) etc., by

A ( i ,/) =  Jdqdu  A(q,tii) exp i(q-r—tut), (1-1)

and similar equations.
In their treatments of the dielectric constant, Noziferes 

and Pines1 and Ehrenreich and Cohen,3 following a 
practice originated by Lmdhard,* define longitudinal 
and transverse dielectric constants £L and t T by the 
equations

- ^ [ • « • « ( q , » )  - 1 ]  • E « - r > (q,u)

= 4xji"-,<1 T>(q,")’ (*-2)

The two constants describe respectively the longi
tudinal current induced by a purely-longitudinal electnc 
field and the transverse current induced by a purely- 
transverse electric field. In the case of a free-electron 
gas a longitudinal (transverse) current cannot be in
duced by a transverse (longitudinal) electric field. 
Consequently t L and er give a complete description of 
the linear dielectric properties. In solids, in general a

*T. Lindhard, Kel. Dan site Videnskab. Selskab, Mat.-fys.(1958): ibid. I l l ,  442 (1958); ibid. 113, 1254 (1959).
1 H. Ehrenreich and М. H. Cohen, Phys. Rev. 115, 786 (1959). Mcdd. 28, 8 (1954).
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purely-transverse or a purely-longitudinal clectric field 
induces both transverse and longitudinal currents. In 
this case the linear dielectric properties are fully de
scribed by a dielectric-constant tensor defined by

—t£i>[e(q,u) — 1]- E(q,M) =  4jrjind(q,a)). (1.3)

The longitudinal and transverse constants tL(q,o>) and 
t r (q,o>) can be simply related to e(q,b>). Let $ be a unit 
vector parallel to the direction of propagation q, and 
define

l r = l — 4S
(1.4)

where 1 is the unit dyadic. Then letting E(q,o>) be 
purely longitudinal or purely transverse gives

Et (qla)) =  l i .e(q)M) - l £l

tT(q,w) =  l r '  t(q,o))-lr-

equation with respect to A and ф by setting p =  p(0)+ p (,) 
etc. The unperturbed density matrix, p<0>, satisfies 

| ki) =  /o(£id) ] k/) with /o(£n) the Fermi-Dirac dis
tribution function. The perturbation p(I> is linear in A 
and ф. Dropping quadratic terms gives

aa(l'k+q\p<l,\lk)/dt
=  (£,.k+, - £ lk)(/'k+q|P<‘>|ik)

+  Q/o (El  k) — /о (Ey  k+q) ]

X (/ 'k+q ] — (e/ 2 m c)(A p + p -А)+еф\1к). (1.8)

Let us assume

A(r,0 =  A(q,u) expi(q-r-o)/),

Ф(г,0 =  <К«.и) expi(q-r-brf),
(1.9)

(1.5)

The remaining components of the dielectric-constant 
tensor are 1£ ■ t(q,oi) ■ l T and l r • t(q,u) • 1 l , which vanish 
for a free-electron gas but do not in general vanish for 
a solid. They describe, respectively, the longitudinal 
ttransverse) current induced by a transverse (longi- 
(udinal) electric field.

An explicit expression for *(q,<-0 will be calculated in 
the energy-band approximation. Consider the single- 
partide Liouville equation

(1.6)

where p is the single-particle density matrix and

H =  (l/2m )[p— (e/ c )A (t,t )J + rt(r ,t ) +  U (r ). (1.7)

Here U (r) is the periodic lattice potential. Let the state 
functions for the unperturbed lattice be |k/)=K_,«ki 
Xexp(ik-r) with иц cell-periodic and V the volume of 
the crystal. They satisfy the Schrodinger equation 
[p V 2»i+£/(r)]|  k2) =  £ k(| kO, in which к is the wave 
vector and I the band index. Linearize the Liouville

and make the Ansatz that the time dependence of 
( i 'k + q [p (l)|/k ) is exp(—uat). The frequency ш is taken 
to have a small positive imaginary part, corresponding 
to an adiabatic turning on of the perturbing potentials. 
It is an easy calculation to show that

< l'k + q '|* * U k )-V .,« * (q ,« )( i 'k + q U k )  (1.10)
and

i(/'k+q'|A-p+p-A|Jk>
=  S,.,q( / 'k + q ] p<+ S k + ftq /'2 |;k )-A (q ,u ) . (1.11)

The abbreviation 

( i 'k + q l / ( r „ p 0 |/ k )

=  ( I /O  [ “ i'k+q*M/(r, - i h v r)uik(r)di, (1.12)

has been introduced, in which the integration extends 
over a unit cell. Couplings of the wave vector q to wave 
vectors q + K , where К  is a reciprocal lattice vector, 
have been neglected. These so-called Umklapp processes 
give rise to the local field corrections and will be dis
cussed in Sec. П. The solution of Eq. (1.8) is immedi
ately obtained in the form

<J'k+q|p<»|/k>=
Dro(£!k)-/o(£!'k+,)][ (/ /k+q|ik)e<i,(q,(1) )- (^ k + q |  р.+йк- f ftq/2| ik) ■ (e/mc)A(q,u)]

Йш +  -Е|к — -Ei'k+4
(1.13)

The induced current and charge density may be 
calculated from

i ind(r,/ )=T rp (1)jop<0)(* ')+ T rp (0)jop(I)( r^)i (114) 

P’"d( r,0 = Trp(1)popt0) ( r)j

where

Ьр(0) (г) =  (h / 2 m )[_ (p ./ m )S (i- i.)+ S (i- r.) (p./m)'], 

ЬрС1) (г )=  — W fnc)A (r,t)b (i—re), (1.15)

РоВ<0) (г) =  е5 (г- г.),

and i .  and p. are, respectively, the position and mo

mentum operators. This gives

j ind(q,ci))= — e‘A (q loi)N/mcV
+ 2 > к ( Л |  p j-M k + S q /2 |i 'k + q )

X(i'k+q|p<‘)|ik), (1.16)

p“ d(q ,» )- («/ F )Z :i«-k (ik | i'k + 4)
X(i'k+q|p<4|/k>, (1.17)

with N  the number of cells in the crystal.
Since j iod(q,u) and pbd(q,<j) are obtained by linear

ization of a gauge-invariant theory with respect to the 
potentials, they are invariant under infinitesimal gauge 
transformations, and thus also under arbitrary gauge
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transformations. This is verified explicitly, in the case gauge in which 0 = 0  without loss of generality. Note 
of the expression for in the Appendix. Since that A will not in general be transverse in this gauge,
the theory is gauge invariant, we may transform to a From Eqs. (1.13) and (1.16) we get

1^(4^) =  —

_____ * _  ( г к | р . + й к + й д / 2 ; / ' к + д ) [ / о ( £ , к) - / о ( 5 , , к^ ) ] ( Г к + д | р <+ й к + й д / 2 | ; Ь ) - А ( д , ы )

m~cV u'k &*j-f-£ik—£i*k+q

Comparing with Eq. (1.3) and noting that E(q,(i)) =  «dA(q,ciO/£ gives 

t ( q ^ ) = ( l - 4xAV/m W )  1

§ 4 « *  (* k |p ,+ £ k + f iq /2 |J ,k + q )[/o (£ i'k + .|)—/o ( £ u ) ] ( J 'k + q |p .+ A k + S q /2 |2 k )

mWJ1 и-к

an erplidt expression for the frequency- and wave- 
number-dependent dielectric constant tensor.

It  is interesting to compute *L(q,a>) =  l t - i:(q,td)• l L 

directly from (1.19). This can he done by using the 
three identities

q - ( ik 'p .+ * k + A q ,/2 |i 'k + q )
-  (m / h )(£i-k+q— (ik | Г к +  q), (1.20)

0 -  - N + { l / h f )  E , rk  q- (ik | p .+ * k + * q /2 |J 'k +  q)
X C/o (£.k) —/o(£i- k+q) ]  (/' k +  q | / k), (1.21)

& il +  £ j k ~ £ l ' k + q

(1.18)

(1.19)

and

0 = E i i'k|(ik|/'k+q)|*C/„(£Ik)-/o(£I-k+0 ]. 0 -2 2 )

Equations (1-20) and (1.21) are proved in the Ap
pendix, while Eq. (1.22) is obtained by making the 
change of variable к —►— к — q and noting that 
£ t = £ _  k, k*> £ k+s= £ k  and Mik+K= w J*> where
К  is a vector of the reciprocal lattice. Applying the 
identities to (1.19) gives

l i e (q ,a> )li = l i  1 ~ ^ r e ‘N /m V < J ‘+
4irt*

£  q- (ik | p .-hA k+ ftq /21 Г к-f- q) 
hq2mVb>* ti'k

&■)
X C/o(£.'k+5) —/o ( £ ik ) ] y 'k + q |ik ) ^ -Л

\fei> +  £ jk — £ l ’ k+q /

| 'hre2 |( / k |r k + q ) |« C / , ( £ , • * , ) - / . ( £ , >)] 
=  1 l \И ----- L. -------------------------------------—

I q L y  H'k Й и + £ | к ~ £ l'k + q

(1.23)

Equation (1.23) is just the longitudinal dielectric constant derived by Ehrenreich and Cohen.5 Using the same 
identities employed to derive (1.23), it is easy to show that l r -t(q,tij) ■ 1l and It-e(q,< j) ■ l r  are given by

l r - ( i k |p .+ S k U 'k + q ) ( r k + q |/ k ) 5 [ / 0(£„k+, ) - / o ( £ lk)]
l r -£ (q ,w ) - l i  = -------- Z,

w qm V u'k Aa)+£lk~£|'k+q

4X*2 5 № | r k + q ) ( i 'k + q | P.+A k |/k )-lr [/ 0(£,.k+, ) - / o ( £ ik )]
I t -  t(q,<o) • 1 T= ------ - 2-

(1.24)

When the limit q -

шqmV и-к й ш + £ :к -£ г к + ,

• 0 is taken, the dielectric constant tensor becomes

W t f  W  (/k|p.U/k)(/'k|p.Uk)Q/0(£ I'k )- / o (£ Ik )]
*(0,ca)= 1------------ 1----------2_

m Vu? m 2Vu? и ' к Aa-(-£jk—£ |'k

In a crystal of cubic symmetry, the sum over the of propagation in a cubic material, but will not in gen- 
star of k, 2Zk*(/k| p , |/ 'k ) ( / 'k | p . | /к ), is a multiple of 
the unit dyadic, and consequently t(0 ,u) is isotropic.
Thus, with the approximations made to get Eq. (1.19),
as q —► 0 the longitudinal and transverse dielectric 
constants become equal and lr-^(q.aj)■ lr. and 1 l  
■ e(q,<i)) ■ l r vanish. This is true for an arbitrary direction

eral hold in the case of crystals of lower symmetry.

IL  LOCAL-FIELD CORRECTIONS 

In this section лге will develop the theory of the
longitudinal dielectric constant with local-field correc 
tions, for a cubic insulating solid, in the case of wave-
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lengths large relative to the lattice constant but small 
relative to the over-all crystal dimensions. Local-field 
effects arise in a real solid because the microscopic 
electric field varies rapidly over the unit cell. Conse
quently, the macroscopic field, which is the average of 
the microscopic field over a region large compared with 
the lattice constant but small compared with the wave
length 2ж/q, is not in general the same as the effective 
or local field which polarizes the charge in the crystal 
For example, suppose a slowly varying external potentiaj

expt(q-r—at) (2.1)

is applied to the crystal. The total potential 
Ч-фм  will in general contain rapidly varying terms 
with wave vector q + K , where К is a vector of the 
reciprocal lattice:

Ф =  Цх<<>(а,К,ы) e xpi [ ( q+K) - r— (2.2)

The potential ф is the microscopic potential and deter
mines how the charge in the crystal is polarized. The 
macroscopic potential (ф)»у is clearly given by

(* )»T=^ (q ,0,tj) expt'(q r—a>t), (2.3)

since exp(iq r) is nearly constant over the averaging 
region while exp [t(q +K ) ■ rj, (K^O ), is very rapidly

varying. The derivation in Sec. I  assumed a potential 
of form Eq. (2.1) instead of Eq. (2.2). In other words, 
the distinction between the microscopic and macro
scopic fields and potentials was neglected, with the 
result that no local-field corrections were obtained. In 
order to obtain the longitudinal dielectric constant with 
local-field corrections, a total potential of the form Eq.
(2.2) must be assumed (with A =  0), and the induced 
potential,

Ф '^ Ц я  <£i"d(q,K,£1)) exp i£ (q+K )-r—at], (2.4)

must he calculated. The longitudinal dielectric constant 
is obtained from the macroscopic total and induced 
potentials* according to an alternative form of Eq. (1.2),

0 • £i (q,oj) -4 =  1 — (<£ln<J) .v(q,<j)/(0) . T(q,cj). (2.5)

Using Eq. (2.3), this is

4 ■ *b(q,w) ■ £= 1—0 i,ld(q,O,£d)/<£ (q,0,o). (2.6)

The right-hand side of Eq. (2.6) is easily evaluated 
in a formal manner. A  calculation analogous to that of 
Sec. I  gives the relation between ф'"л and ф as

* “ d(q,K,w) =  | , +  K| -  £ k- G (q +  K, q + K ', w)
X * (  q , K » ,  (2.7)

with

/ rr, * 4̂ 5 _  (il<lexP ( - iK -OM'k+q)0'k-i-q|exp(iK, T.)|ik)|7o(£ii.)-/o(-Erk+Q) ]
G (q+ K , q+K ',a ,) = ---- E  ------------------------------------------------------------------------------------------ . (2.8)

V if'*

As before, the variable of integration in the matrix 
element has been indicated by r«. Let us define 
« (q + K , q + K ', w) and «“ '(q + K ,  q + K ', ш) by

« (q + K , q + K ', to)

=  бк.г'—G (q+ K , q + K ',  to) | q +  K|-2, (2.9)

(q + K , q + K " ,  ш)
X f - 1(q + K " ,  q + K ',  ш) =  Лк,к'. (2.10)

[The quantity e- 1(q + K , q + K ', w) is just the dielectric 
response function of Schwinger and Martin.5 Equations
(2.9) and (2.10) have been given by Falk,* who treats 
the nearly free electron case.]

Rewrite Eq. (2.7) as

|q+K |4> (q ,K ,o0 -< rd(q,K,<.0]
=  E k ' « (q + K , q + K /,M )|q+K '|!<#p(q1K',(u), (2.11)

and note that <£(q,K,tij) —4>ind(q,K,ai) =  <£,” t(q,K,aj) 
=  0“ t(q,u)5K,o, since the external potential (the poten
tial due to charges located outside the crystal) is essen
tially constant over a unit cell of the crystal. Using Eq.
(2.10) we find

<Kq,K,f))= I q + K I - ^ q + K ,  q .a V ^ H q .u ),  (2.12)
4 L. Rosenfeld, Theory of Electrons (North-Holland Publishing 

Company, Amsterdam, 1951), Chap. 2. 
a P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
• D. S. Falk, Phys. Rev. 118, 105 (1960).

giving1
£-e(q,u)-$ = !/ « "(q.q.bi). (2.13)

Thus, the problem of finding the dielectric constant 
with local field corrections reduces to that of solving 
the integral equation

« - ( q + K , q + K ',  w)

=Sk, к '+ Z ] к" G (q + K , q + K " , ш)| q + K " |-2
X «- 1(q + K " ,  q + K ', w), (2.14)

obtained by combining Eqs. (2.9) and (2.10).
The main purpose of this section is to develop a 

systematic method of approximating the integral equa
tion (2.14). This will be accomplished by means of two 
successive transformations. First, the integral equation 
will be transformed from the К representation to an r 
representation, where r is a continuous variable con
fined to a unit cell of the real lattice centered about the 
origin. In this representation, the kernel of the integral 
equation will be split into two parts, K L and K s. These 
describe the influence on a given cell of the field of the 
polarized charge in all other cells (K L) and of the field 
of the polarized charge in the same cell (K^), and are 
connected, respectively, with the local field and self
polarization corrections. A second transformation will

7 This equation has been independently obtained by N. Wiser.
I  am indebted to М. H. Cohen and N. Wiser for communicating
their results prior to publication.
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then be made by expanding K L in a multipole series, where R; are the vectors of the real lattice and the 
leading to an integral equation in what might he termed continuous variable г is confined to a unit cell centered 
a multipole representation. This equation can be solved at R,=Q. The inverse of the dielectric constant is ob- 
approximately by neglecting all but the first P  multi- tained from 
pole moments. The case when only dipole moments are
retained will be worked out explicitly, and leads to a _ lf  * f  . , , '2 18'
Lorenz-Lorentz formula modified by self-polarization e Ua2} *
corrections.

In the equations that follow, the ы dependence of «_1 , , . . . .  
and G will no longer be indicated explicitly. To trans- The kemel of Ше mteSral e4uatlon> 
form to the г representation let us define

r-1(q,r,i/) =  E  eiK 'e-‘K' " ' e- 1( q + K 1 q + K ') ,  (2.15) X (q ,r,r1' ) = - G ( q , r , r 1)—
K r ' ii. J o 4ir

G (q,r,r ')=  E  e<K re-<K'" 'G (q + K , q + K ').  (2.16) .

X E eXPtq (2-19)
The integral equation becomes j | R;+  r/— ri |

e_1(q,r,r/)
1 f  can be divided into two parts,

= v“ E  s(r~  ®j)H----I diid.ii
K(n,T,Ti') =  K L(4, i , T i ) + K s(q,i,Ti)- (2.20)

p .  exp tq -(R j+ r i'—гО-!
XG(q,r,ri)| — E ---- г—----- ----------- i Since several kernels similar in structure will be intro-

**’ 1 I ® j+ ri ~ ril -1 duced in the course of the derivation, we specify them
X t-H q .r , '/ ), (2.17) all through the functional form

-r[ 4,/ ,«J=----  E -------------------------------------------------------------. (2-21)
v  (j‘̂ n hu+Elk—£i-k+,

(No terms with 1=1' appear in the summation in centered about the origin, |r,|/|r/— R;1 < 1  for all
the case of an insulator because all bands are either R ,f^0 and the multipole expansion 
empty or full.) The kernels G(q,r,r,'), K b(q,r,n '),
and X s(q,r,ri') are obtained from this form by the *• exptq-R, «  .
substitutions —  E ‘ ~ ----- r ^ T = ^ (r ' ) ” ' T j'(4 ,r i )  (4* , I г«—Г! — Rj-i ^
G,KLJZa- / = V 0 E i « ( r - r <:- R i) 1

. f is valid. Equation (2.23) serves as definition of tne ex-
£”* ®o E i  e (r i K,), pansion coefficient T„. Substituting Eq. (2.17) into

K L: g=  (®0/4ir) exppq- (г/ — r , ) ]  Eq. (2.18), splitting the kemel according to Eq. (2.20),
Х Е /  exp(iq-R )/|r _  ri' — R | (2 22) ma^ n8 the multipole expansion of Eq. (2.23) and letting

’ 1 ’ ’ ‘ q —* 0 results in 
K a: g=(v„/bc) e x p [iq - (r , '- r . ) ]/ | r .- r i 'l .

The prime on the sum defining g in K L means that the e H0|0)“ 1 ~ iE ^ 'K ip  + ® i  i- (2-24) 
term with R>=0  is to be omitted.

Since l i  and r, are restricted to lie within a unit cell The quantity Врь is defined by

B„L=lim i —  exp(tq r1' ) r j,(q,r1') « - 1(q1r1', r ') l .  (2-25)
J

and B is is the p = l  case of (2.21) by substituting

В ,я= 1йпГ—  b r ' * 1'K )>« (r , ' ) « - 1(q,r1,>r' ) l .  (2.26) K " L: / = '• . * = (* • ) ’
«-°L v j Jo -I K vs( t i ) :  f=  (t.)* exp(tq-r.), (2.27)

The kernels K iPL and K / ( r i ' )  are obtained from Eq. g=(v»/4ir) e xp [tq - (ii'-r .)]/ |  r/— r,|.
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In deriving Eq. (2.24), the relation 

q -(/ 'k + q | r . exp(iq-r,)|/k)
=  - i ( / 'k + q | ik ) + 0 (52), (2.28)

valid when № 1', has been used.
The kernels K i,1 and K ps (ri') are known quantities. 

In order to complete the set of equations, expressions 
for В ,4 and B ,s must be derived. Multiplying Eq. 
(2.17) by q exp(jq- ri')T„(q,ri') and integrating gives

В / - Ф , . ! + £ ( - l)*(*+ \ l i m W q , 0)]
*-i \ Л /  «-•

• m i V - B . 1), (2.29)
n~l

where the kernel Ki,,1 is obtained from Eq. (2.21), by 
the substitution

K*„b: / =  (r.)‘ , f = (r.)* . (2.30)

In the first term on the right-hand side of Eq. (2.29) 
the evaluation

lim — I di e‘ , rT3,(q,r) (2.31)
о = 0, # > 1,

has been used.8 Finally, an equation for the B ,s must 
be derived. Let us write

.D (q ,r ,r ')= « (r -r ')— (1/»J-K s (q,r,r/), (2.32)

and define D ^ q ^ r i )  by

J d u  D~>(q,

1 This is easily obtained by using
va ^  exp(lq-Rj) v  exppCq+K)’ (r« r ) i
4ж 7 1 г<—Г— R|| *  jq + K I *

It should be noted that terms involving BoL have 
been omitted from Eqs. (2.24), (2.29) and (2.35) be
cause they vanish in the limit q —» 0. For example, the 
coefficient of Bo1, in Eq. (2.24) contains a factor 
(/'k+q|exp(—iq-r,)|Zk). Since

(J'k+ q | exp ( -  iq ■ r.) | Ik) =  (i 'k +  q | /к)
- iq '(rk + q | r .| /k )+ 0 (?5) =  0 (3i)

and

q r . »« exp(iq-R j)
B0L= — I

v j  0 4тг

- 4vJo
di Y.

exp(iK -r) 1

r,ri)D(q,ri,r') = S (r -r '). (2.33)(I/»*)

Then we can write 

е-Чч.г.г7)
=  D ~ l (q ,r ,T ')+ ( 1 /  V a^ J d r td r  \D ~ l ( q ,r , r i )

X ^ t (q,ri,r1' ) e- 1(q,r.,,r'). (2.34)

Multiplying Eq. (2.34) by — iqY.Ts {x)/vf, integrating 
and maidng a multipole expansion gives

b / = —  £  fdrdii
Va 0

X Kp5(r)D_ ,(0Ir>r,)K „i (ri) ■ ВД (2.35)

where K „I'(ri) is defined by 

K nt (r i): / = * . £ * « (  r i - r . - R , ) ,  g= (. I.)"- (2.36)

0 К |K+q|5 q

the term drops out as q —* 0. Similarly, the terms in 
Eq. (2.29) and Eq. (2.35) involving Bo1, do not 
contribute.

The preceding manipulations have replaced the inte
gral equation (2.14) fort_1(q + K , q + K ')  by Eqs. (2.29) 
and (2.35), which together constitute an integral equa
tion for В Л * = 1 , - - -  , «>), and the integral Eq. (2.33) 
for D~ O n c e  the quantities BPL and B ^  are known, 
the dielectric constant with local-field corrections can 
be calculated from Eq. (2.24). The point of this formal 
rearrangement is that it is now possible to make an 
approximation with a clear physical significance which 
makes Eqs. (2.29) and (2.35) easily soluble. This is 
simply to neglect all the BPL with p greater than some 
integer P. This means roughly that we are approxi
mating the influence on a given cell of the charge in any 
other cell by the first P  multipole moments of this 
charge. In many cases, we expect very good results to 
be obtained for a small value of P. The most familiar 
case is that of / ’ = 1  (dipole approximation). Utilizing 
the fact that the only second-order tensor compatible 
with cubic symmetry is the isotropic tensor, and noting 
that the inhomogeneous term in the equation for Bjb 
is a vector parallel to q, Eqs. (2.24), (2.29), and (2.35) 
become

«-4o ,o)= i-fB i‘ -ft -K n M + B ,^ ,
B ,b-4= i -  2pim$- T2(q,0) •

x  №*•$+$• Ки^в^-й),

Bi5 $ =  -  (i/v,*)$- J d rd h
(2.37)

X K 1s (r )0 -1(01r1rJ)tf1t (r ,H B 1t <?
=  —i4irCjBiL-<2.

It is easy to show that

K nL-£=  — 4xa, (2.38)
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where a is the polarizability calculated without making 
local-field corrections. pThe second term on the right 
of Eq. (1.21) is just 4та.] The dipole sum £ T 2(q ,0 )£  
is not absolutely convergent. However, if we evaluate 
it in a crystal of finite diameter L, letting L  —» °° and 
q —* 0 while keeping gL3> 1, it has the value — inde
pendent of the crystal shape.9 This evaluation procedure 
is the one that makes sense physically for wavelengths 
in the infrared, visible and near ultraviolet. For such 
wavelengths and for a typical crystal of dimension L  
and lattice constant a, the inequality holds.
However, since i j a « l  and since the matrix elements 
and energies appearing in the kernels vary appreciably 
only when q changes by an amount of order 1/a, we 
can still take the limit q —> 0 in the kernels.

Using these evaluations, Eqs. (2.37) may be readily 
solved to yield

taking the cutoff integer P  larger than one. Note that 
T„(0,0) is absolutely convergent for p >  2, so no addi
tional ambiguities regarding the method of summation 
appear when working to higher order. Although the 
calculation has been carried out for crystals of cubic 
symmetry in order to avoid a tensor dielectric constant, 
its main features would be expected to carry over to 
the case of arbitrary symmetry. I f  the restriction to 
insulators is dropped, intraband terms (1=1') appear in 
Eq. (2.21). I f  these are treated in a free-electron ap
proximation, which should be reasonahle when motion 
of the conduction electrons and holes is well described 
by an effective mass, the generalization of the above 
derivation is straightforward and leads to

-=14--
4ir(a—Ci)

«->(0 ,0) 1 — (4ir/3)(a—Ci)
(2.39)

4iror2/3

14-4jrai/3

E- '(0 ,0 )
-= 1 + w + -

4x(an —Ci)

1 —  (4ir/3) (a11— Ci)

(2.42)

This is the usual Lorenz-Lorentz formula, modified by 
the subtraction from a of

C i=  (1/4ят<,2)^- jd id t !

X  K^(r)<r| [ 1 -  ( I / O * * ] - 11 r ,> K ,4 r ,H . (2.40)

This self-polarization correction takes just the form that 
is expected on the basis of a simple classical model. I f  
we compute the dielectric constant of a macroscopic 
cubic lattice of uniform spheres composed of material 
of polarization per unit volume a, we find that the di
electric constant is determined by a Lorenz-Lorentz 
formula, except that a is replaced by

(2.41)

In Eq. (2.42) or1 and a11 are, respectively, the intraband 
0 = 0  and interband ( l^ V )  parts of a, the polariza
bility without local field corrections. The restriction 
qLy> 1, necessary to evaluate the dipole wave sum 
Ts(q,0), cannot be relaxed without drastically altering 
the derivation. In order to deal with wavelengths 
comparable with the macroscopic dimensions of the 
crystal it would be necessary to take into account sur
face effects, which of course has not been done in the 
above derivation.
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APPENDIX

In order to prove that the expression for j ln<1(q,w) is 
gauge invariant, we need the auxiliary identities:

T.i «ik(t)«ik*(r') = fa E j «(r—r'— R,), (A1)

The subtracted term is a self-polarization correction 
arising from the influence on a given sphere of its sur
face charge. To examine the qualitative form of Ci, 
let us replace all the kernels К  appearing in Eq. (2.40) 
by —4ra [cf. Eq. (2.38)]. Then we see that the cor
rection Ci also has the form A cP/ il+B a ), with A, B > 0.

With the formalism developed, higher-order correc
tions to the Lorenz-Lorentz formula can be obtained by

q' yk|/’«+Ab+^q/2 |i,k+q)
=  (m /h )(E rk+q- E lk) ( lk { I 'k + q )-  (A2)

Expression (A l)  is just the completeness relation for the 
periodic parts of the Bloch functions. The identity 
(A2) is obtained in a straightforward manner by writ
ing к -p Schrodinger equations for «ik* and «rk+q. 
multiplying the former by ttt-k-н, the latter by и it*, and 
subtracting. We may also regard (A2) as the result of 
expanding

J d r e x p ( - t q - r ) [ v ( ; k | j op® )( r )U 'k + q )+ a ( ;k |Pop« )( r ) |; 'k + q > /a O  =  0, (A3>

which shows that it is an expression of conservation of charge in the unperturbed theory.

• М. H . Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
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Let us now make the gauge transformation A —> A+q/(q,u), ф—*ф+(о>/с)/(q,td). Then 

д j fcd/ д  q ;U) =  _  £Nq/mcV

___ *  (/k|p.+Ak+Aq/2|rk+ «i)[y ,(£ ,t)-/ o (£ ,,M.,)](/ 'k+q|p.+ftk+Aq/2ljk )-q

т ’сИ 11' к fc j+ £ lk—£l'k+4

+ A .  a k |p .+ S k + A q/2 U 'k + q ) [ /„ ( £ Ik) - /o ( £ r k +t) ]  

Я1СК «'к Йы+JSik —  £|'к+,

Combining terms gives

Aj'”d//(q > “ ) =  (е?/т сУ ){— iV fcq+£u -k(/k | p « + * k + * q /2 |/ 'k + q ) [ /c (£ ii ,)— y0(£ i'k + ,)]( /'k + q |/k )}
=  ( «V « c V ) [—JV*q-f2 Ein/o(£iO Hr(ik| p.+ftk+ftq/21Z'k+ q)(i'k+q| ik)

=  («*/»ncF)[—M q + 2  Н и  /o(-Eu)(/k| p,+ftk+Aq/2|/k)]=0. (A4)

In the last step, the fact that (/к | p.+ftk|ik) has odd parity under inversion of к has been used.
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Tests of the Conserved Vector Current and Partially Conserved Axial-Vector 
Current Hypotheses in High-Energy Neutrino Reactions*

Stephen  L. Adler|
Princeton University, Princeton, New Jersey 

(Received 8 April 1964)

The following theorem is proved: Consider the high-energy neutrino reaction I'+ ft —* with a  a 
nucleon or nucleus, I a lepton (e or ji) and 0 a system of strongly interacting particles. Suppose that the mass 
of a and the invariant mass of 0 ате not equal, and that the lepton mass is neglected. Then when the lepton 
emerges with its momentum parallel to that of the neutrino, the squared matrix element, averaged over 
lepton spin, depends only on the divergences of the vector and the axial-vector currents. Tests of the conserved 
vector current and the partially conserved axial-vector current hypotheses, based on the theorem, are 
proposed.

I . INTRODUCTIO N

T HERE is a characteristic property of neutrino 
reactions at high energy which makes possible 

new tests of the conserved vector current1 (CVC) and 
the partially conserved axial-vector current5 (PCAC) 
hypotheses. Consider the reaction v + a —*/+0, where 
a is a nucleon or nucleus, I is a muon or electron, and 
/9= 0 i+  • ■ • +|S„ is a system of strongly interacting 
particles. Let the four-momenta of v, a, I, and 0 be, 
respectively, ku pi, ki, and pi, and let the leptonic 
momentum transfer be k— ki—k t= p t— pv We denote 
by M a the mass of a, by mi the mass of the lepton I, 
and by W the invariant mass of the system 0 . We take 
the neutrino mass to be zero.

Theorem 1. Suppose that W ^ M ,  and that mj is 
neglected. Consider the configuration in which the final 
lepton emerges with its momentum parallel to that of 
the incident neutrino. (We call this the parallel con
figuration.') Then the squared matrix element for 
H -a —*1+0, averaged over lepton spin, depends only 
on the divergences of the vector and the axial-vector 
currents.

Proof: The matrix element is

3H= 2-1'ЧЯт(1+7бК</913*K+  3*A I a) - (1) 

Squaring and averaging over lepton spin gives4

<|3R|>)=^|3x’ ’+ ^ | e X 0 | 3 .v+ ^ l a ) * r x, I (2)

• Work supported in part by the U. S. Air Force Office of 
Scientific Research, Air Research and Development Command.

f  National Science Foundation Predoctoral Fellow. Present ad
dress : Lyman Laboratory, Harvard University, Cambridge, Mas- 
sachusetts.

1 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (19S8).
*M . L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178 

(1958); Y. Nambu, Phys. Rev. Letters 4, 380 (1960); J.'Bern
stein, S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 
17, 757 (1960), and references listed there.

J When mi=0, both k\ and k\ are null vectors. I f  the space 
components of two null vectors are parallel in one Lorentz frame, 
they are parallel in all Lorentz frames. Hence “parallel configura- 
tion11 is an invariant concept.

* The four-vectors have an imaginary time component: p 
e  (V tPd  “  (P»*/,o). The quantity p+  is defined by p¥ p*, p t*  
*=>—^4*, where * denotes complex conjugation.

with
T \ ,^  ki - . (3 )

When mi is neglected, k\ and ki are null vectors. In  the 
parallel configuration they are proportional. I f  W a ,  
k0 is nonzero,1 and we may write

A ,= JfeioJfecT1* , kt=  ktoko^k ■ (4 )

ThuS- /О
T ^ = 2 k 1M f 1kykt .

Since (/3]Э35Уд*х|а)=—»*xOlc)x|“ )i we find that

<l3all> = 2 iI0w 0- i l ^ ] a ( ^ v+ ^ )/ a * x | a )| s , ( 6 )

proving the theorem.
When W = M a, ko vanishes and the proof of the 

theorem breaks down. I t  is in fact well known that in 
the “ elastic”  weak reaction v + N  —» l + N , a conserved 
vector current will contribute strongly in the forward 
direction.* We assume henceforth that W ^ M * .

П . T ESTS O F CVC

Since the antisymmetric tensor term t\,-,ikiykvi 
vanishes under the hypotheses of Theorem 1, the charac
teristic parity-violating effects in weak interactions can 
arise only from vector-axial vector interference. Con
sequently, if  the vector current is conserved, and i f  »»/ 
may be neglected, all parity violating effects must vanish in  
the parallel configuration. This makes possible new ex
perimental tests of the hypothesis that the vector cur
rent in Д6'=0 leptonic reactions is conserved (C V C ). 
Whereas previous tests have dealt with (0|5*y le )  ô r  

and various values of P =  (fa— pi)*, the new 
tests will study (0 |5xv |a) for and A * »0 .

Let us work in the lab frame, in which a is at rest. W e  
assume that a is unpolarized. Then, if CVC is false, the 
two simplest types of parity violating term which m ay 
appear in the differential cross section, in the parallel 
configuration, are:

4 In the frame in which 0 is at rest, k t=  (ТУ1 й*)/(2ИО*
When m, =  0, A is a null vector, 80 il i t  is nonvanishing m any
Lorentz frame it is nonvanishing in all Lorentz frames.

•T. D. Lee and C. N. Yang, Phys. Rev. 126, 2239 (1962).

Copyright© 1964 by the American Physical Society. Reprinted with permission.
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(A ) The vector triple-product terms

Q .(qyX q*), (7)

where q,, <\j, and q* are any three distinct momenta 
chosen from among the lepton momentum ks and the 
momenta q,,- ■ of

Qir ■ - ,qn of j9i, - - ■ ,jS„;

(B ) The vector -pseudovector terms

q ,«r , (8)

where a is the spin of a baryon in /3 and q, is any mo
mentum chosen from among кг and qi,- • - ,q„.

Since, in the parallel configuration, ki and k2 are 
proportional, and since k j=  k24-q!-|-■ ■ - +  qni the sys
tem /9 must contain at least three particles if there are 
to be enough linearly independent vectors to construct 
a nonvanishing triple product. Consequently, the re
action with the lowest threshold which could show a 
triple product term is Iwo-pion production:

>*(ki)+a(0) —» J (k i)+ a '(q i)+ ir (q 5)+ ir (q s) . (7a)

I f  CVC is valid, the laboratory differential cross section 
must contain no term k2-(q2X q 3). (There is only one 
linearly independent triple product in two pion pro
duction.) Note that to test CVC it is not necessary to 
observe the recoil nucleus a' ; it is enough to know the 
initial neutrino direction and to observe the lepton and 
the two pions.

Because nucleon polarizations are hard to measure, 
lambda kaon production,

i<(kj)+<i(0) —» /(k2)+ a '(q i)- f-A (q j)+ A !(q3) , (8a)

is the reaction with the lowest threshold in which terms 
of type (B) could he detected in practice. The A, 
through its decay asymmetry, analyzes its own po
larization. I f  CVC is valid, the terms <fa - k2, oA- qa and 
<rA- q3 must not appear, while o v  (k2Xqs), <rv (k2X qj), 
and <7a - (q2Xqs) are allowed. Similar tests of CVC may 
be constructed for reactions with thresholds higher than 
those of Eqs. (7a) and (8a).

The proposed tests of CVC are strictly valid only 
when nti is neglected. However, we will see in the next 
section that the main lepton mass correction to the 
matrix element does not give rise to interference be
tween a conserved vector current and the axial vector 
current. Consequently, the tests should be good in 
practice even if the lepton is a muon.

ttt TESTS OF PCAC

A. Lepton Mass Neglected

Let us now accept the truth of CVC. Then, neglecting 
mi, the matrix element in the parallel configuration 
depends only on (0\д$\л/дх\\a). In an attempt to find 
a general explanation for the validity of the Goldberger- 
Treiman formula for pion decay, it has been postulated

by Nambu, Gell-Mann, and others that $\A is partially 
conserved.2 We denote by PCAC the hypothesis that the 
covariant amplitudes contributing to ($\д$\л/дх\\а) 
satisfy unsubtracted dispersion relations in the variable 
I? and that these dispersion relations, for — М т* < ¥  
< M r2 and for all values of the other invariants formed 
from four-momenta in a and /3, are dominated by the 
one-pion pole. (M T=  the pion mass; we are of course 
considering only the case where the quantum numbers 
of a and /3 permit a one-pion pole.) Let kos be the value 
of ka in the rest frame of /?. If the ex
trapolation from the physical value, k2~Q, to the pole 
at —М тг will have little effect on the spinors and 
kinematics, and we have the covariant relation

( Р \ д З \ л / д х х \  or)

=  - ih (f i\  ЗИ|«>= W W ^ + c t  -> m k '+ M . ' ) - '
X (2£o)1,J(ir+ 13 Т\л/дх\ 10). (9)

Here 7'(ir++ “ ~ >0) is the transition amplitude for 
■n+-\-a —* fS, with the incident ir+ of energy k0 and with 
the momentum of the incident t + parallel to k. The 
Goldberger-Treiman relation, itself a consequence of 
PCAC, may be used to express the pion-decay matrix 
element in terms of ga, the beta decay axial-vector 
coupling constant:

{2kayi'(v+\d3^/dxx\0) =  - i lW M x g A g r 'M * .  (10)

Numerically, gA ~  1.2X 10 ‘̂W ^ 5; M N is the nucleon 
mass and g, is the rationalized, renormalized pion- 
nucleon coupling constant (^Г2/4тт 14). Combining 
Eqs. (9) and (10) gives

=  (2k0 У * Г (* + + а - >  P W 'M x g ^ r 'M S W + M S ) - '  

=  (2k0У »Г (т + + а  - »  m inM NgAg r l 

X f l - i ^ + M V ) - 1]- (1 1 )
This equation may be used to express the weak-reaction 
cross section in the parallel configuration in terms of the 
cross section for ir++ n —>/8. Before carrying through 
the details we will consider lepton mass corrections.

B. Lepton Mass Corrections

Up to this point we have neglected mt. Now let us 
compute the principal lepton mass corrections. We will 
find that the lepton mass corrections, while not con
tributing significantly to terms of the form (vector)
• (axial vector) in the squared matrix element, make an

Fra. 1. Diagram 
giving rise to
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<|3rt|=) =
4 M  n1 * m&2o

important contribution to terms of the form (axial parallel to k, by 
vector) - (axial vector).

Consider the diagram shown in Fig. 1. We denote by 
Jx'4II|“ )the contribution of this diagram to(/S| 1“ ), 

and by (0lol*'4I la) everything that is left over. It  is 
easy to see that

g r ’

<в|^»|а)= (2£0)v*TV4-a -* m 4*MNUg r' 
X (-JkxW +M S)-\ (12)

from which it follows that 

*x(|9| ̂ x'1I|e)= (2^0)1,!7‘(т++ а  -

Although (/9|̂ x',n |o) ’ s a lepton mass correction, it 
must be retained because ffli’ f f + J f , ’ ) -1 is of order 
unity when I is a muon. Other lepton mass corrections 
involve large masses in the denominator and may 
reasonably be neglected. Keeping terms of first order 
in m? in the kinematics gives7

(14)

X , -
m fk  о

2 (M  ,2*2o“b tn?ka) J
1 |ЗТ1 (тг++а- ■/3)|2. (16)

*1 — *10*0 lk-\-bpl t  *2 “ =*20*0 'k-\-bpi',

2 k - p ^  2ki k 2=  — m fkyakitT1, № =  го-1 .

I f  the vector current is conserved, it follows that

Ф I I a)(013.4-3/4 а)*Гх,
=  2* 10* 20*o-2IOS]*-iJx |Q)|a

+  2b (йю +Ы ^о- 1 Re[<j91 k ■ g *I «>03\p, • ̂  I a>*] 
+24*|</3|#1.^ n | a )|l

+  W * . 0*20-4031 £)хАП I a>(/31 V 11 a)*
+ 2 R e [^ l^ I|‘»>^l3x/lIIl“>*3)- (15)

We have retained m f only in terras where there is one 
factor (fc '+M ,2) -1 for each factor m f. No vector axial- 
vector interference terms are of this form. Substituting 
Eqs. (11) through (14) into Eq. (15) and performing 
algebraic simplification leads to the following theorem: 

Theorem 2. Suppose that CVC and PCAC are true. 
Consider the parallel configuration in i>+a—* f“ + 0 , for 
*00 satisfying kaf/ M f?> \ . Let m? be retained only 
where it occurs in the combination Af,*)-1.
Then the invariant matrix element 3H for v+ а  —» Z_+/3, 
squared and averaged over lepton spin, is related to the 
invariant matrix element8 ЗК(т++ог —*■ /3) for ir++ a —> j3, 
with the t + of energy *0 and with the ir+ momentum

In computing kw, fejo, and *0 in Eq. (16), the lepton 
mass should be neglected. Then Eq. (16) will be for
mally covariant, since ratios of the time components of 
parallel null vectors, such as *ю/*о and kw/ka, are 
invariant quantities.

Corollary 1. Under the hypotheses of the theorem, 
the energy, angle, and polarization distributions of the 
particles in /9, in the reaction > + а —►/"+/3, will be 
identical with the distributions in the reaction ir+-f-a—* £ 
(for the same invariant mass W of /9 in the two processes).

Corollary 2. Under the hypotheses of the theorem, 
the lepton differential cross section da/dSli of v+ a  —* 
l~+P , in the laboratory frame (the rest frame of a), is 
given by

da rd W / W \ l ftjo1
—  1 —  ) ( * . * - t f . » ) « * l  ^  J —  « /  

it2 \ M J  \ F  )  4» 3d il i

Г mfko 
X l  1 ---------------------------

L 2 (M,I*20+ « , 2*o)J
T (W0 , (1 7)

J Actually, ki =  kiok(T'k-\-ak-\-bpi, k i^ k u k ^ k + a k + b p i, where 
a is of first order in «ii*. We have dropped the term ak in Eq. (14) 
because it docs not lead to important lepton mass corrections.

■The transition amplitude 7'(‘г+4-а —*0) and the invariant 
matrix element 9П(т+4-а —♦ /3) are related by

*<-*+— »■
The factor of proportionality is just the product of the normaliza
tion factors for the wave functions of т+, a and of all the particles 
in 0. The S matrix is given in terms of 'T by

£/* -  */<+ (2») Hi (p j — pi) T .

where o (W ) is the total cross section at total energy W  
in the /3 rest frame, for т++ а —>0. Also,

*„= .»)/(• 2W ),
*2«= (M J + lM 'E -W 'y V W ),

E  is the neutrino energy in the laboratory frame, and 
F = M .g r/ (2M N )^  1.0. The formulas for Я - а —<► l++ P  
corresponding to those given above are obtained by 
replacing тг+ by t~.

Use of Corollary 1 to test PCAC does not require 
knowledge of the neutrino energy spectrum, since for 
a given W  the energy, angle and polarization distribu
tions of the particles in 0 are independent of the neu
trino energy E. Testing PCAC by making a quantitative 
comparison of da/d ilt with Eq. (17) of Corollary 2 does 
require a knowledge of the neutrino spectrum. Since all 
dependence on £  in Eq. (17) is contained in the factors 
*!oJ[ l - W * o (J t f , 2* 2o+™I2*o)-,] ,J the weighting over 
the spectrum is easy to carry out once the spectrum is 
known.

IV.  EXTRAPOLATION IN  A*

Theorem 2 requires that kof/Мт* be much larger 
than unity. This condition is necessary for it to be 
legitimate to extrapolate from to **
=  — Mir1 in the kinematics of the reaction к+а —* P- 
Since k ^ { W -M . ) { W + M . )/ (2 W ) ,  the condition
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ka^/MTrS>\. will be satisfied as long as W —M a> 4 M T. 
Thus, for most weak multiparticle production reactions, 
Theorem 2 is valid as it stands.

However, in the interesting case of single-pion pro
duction in the (3,3) resonance region, W —M „<,AM T 
and Theorem 2 must be modified. This is done by re
placing 3H(jr++ a  —> x + o /) by mZc(ir+-(-ni —» т+ а '), 
where Ш с is the invariant matrix element computed 
from the covariant amplitudes for т++ а  —» тг+а' by 
using the correct kinematics, with Wmmfkukif1, for 
the reaction When a is a single
nucleon N,

m(Tr++N~> ir+ N ')=  (brW/MbdxWiQVA- *)
+ * > - * / , ( ^ - * ) J t<l (18)

with f i  and /j the usual center-of-mass pion-nucleon 
scattering amplitudes,9 and with and к unit vectors, 
in the center of mass, along the momenta of the final 
and initial pion, respectively. Calculation of 311' shows 
that10

3Tt‘(ir+ + N  -»  * ■ + # ')=  (4 t W / M n ) x / [ j i (W ,4 - %)

+<r-Qo ■ kgi(W hy]xi, (19)
where

fr(yr,Z-k)~h{W ,x),

_______g j W A - , (2 0 )
" G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 

Phys. Rev. 106, 1337 (1957). In Eqs. (18) through (20), isotopic 
spin indices have been suppressed.

10The calculation is done as follows: We are considering the 
reaction ^(^i)-! N (p \ )—+i(Aj)-f-iV,(j)-l-T(g). Let us define the 
variables v and p b  by — b (p i - h s ) ’ g / M tf  and vb  — \ q -k / M N . 
The corrected matrix element 3E° is given by

where A ’ N(v}vB) and B rN( i\vj) are the covariant amplitudes for 
pion-nucleon scattering. [In  pion-nucleon scattering, ir(?i) 
+JV(^i) —» ir(y)+2V'(i), the variables v and v„ are defined by 
v = - i (J > ,+ s ) -q / M x  and va =  iq -q i/ M n .] Expressing ЗГС* in

+ [ * , ( J f r4 -^ )/2

and where ko~ (W i—MN3-\-Mr1)/(2W). Clearly, when 
kJ/M,*S>\ one finds that gi.i(W ,^- k), as
is expected.

If only the dominant (3,3) partial wave is retained, 
the main effect of Eq. (20) is to replace <n,i(W) in 
Corollary 2 by <rz,3{W)k^/(ki?—A/V). If, in additino, 
the lepton mass and nucleon recoil effects are neglected, 
Eq. (17) reduces to the result obtained from the static 
model by Bell and Berman.11 This agreement with the 
static model is not surprising. The (3,3) projections of 
the Bom terms for weak pion production and for pion- 
nucleon scattering can be shown to satisfy the PCAC 
proportionality. In the static model, the entire matrix 
element is determined by the (3,3) projection of the 
Bom term and by the experimental (3,3) resonance 
parameters. Hence, in the static model, the weak pion 
production and pion-nucleon scattering matrix elements 
satisfy the PCAC proportionality.

Note added in proof. The considerations of this paper 
also apply to the decays 2 ^ —» A+«*-|- (v/i>), when the 
electron is relativistic and emerges parallel to the neu
trino. For example, if CVC and PCAC are true, meas
urement of the differential decay rate in the parallel 
configuration would determine the strong 2ЛП coupling 
constant.
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Partially Conserved Axial-Vector Current
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It is shown that a partially conserved A S = 0  axial-vector current (diJx* =  C<o.) implies consistency con
ditions involving the strong interactions alone. The most interesting of these is a relation among the sym
metric isotopic-spin pion-nucleon scattering amplitude Л ,л,(+), the pionic form factor of the nucleon K NNr, 
and the rationalized, renormalized pion-nucleon coupling constant gr'

= = 0,yB=0, i ' = 0 )/W 'd t1 = 0 ).
[ i f  is the nucleon mass and — i '  the (mass)1 of the initial pion. The final pion is on mass shell; the energy 
and momentum transfer variables p and vb are defined iD the text.] By using experimental pion-nucleon 
scattering data, we find that this relation is satisfied to within 10%. Consistency conditions involving the эпг 
and the тЛ scattering amplitudes are stated.

IN 1958 Goldberger and Treiman1 proposed a re
markable formula for the charged pion decay 

amplitude, which agrees with experiment to within 
10%. Subsequently, Nambu, Gell-Mann and others2 
suggested that the success of the Goldberger-Treiman 
relation could be simply understood if it were postulated 
that the strangeness-conserving axial-vector current is 
partially conserved. The partial-conservation hypothe
sis leads to a number of relations connecting the weak 
and strong interactions, of which the Goldberger- 
Treiman relation is the simplest.1 So far, only the rela
tion for charged pion decay has been tested experi
mentally.

We wish to point out in this paper that, in addition to 
giving relations connecting the weak and strong inter
actions, the partially conserved axial-vector current 
hypothesis leads to consistency conditions involving the 
strong interactions alone * This comes about, as will be 
explained below, because under special circumstances 
only the Bom approximation contributes to matrix 
elements of the divergence of the axial-vector current. 
The most interesting consistency condition is a non
trivial relation among the symmetric iso topic spin pion- 
nucleon scattering amplitude A *NW, the pionic form 
factor of the nucleon R NNw, and the rationalized, 
renormalized pion-nucleon coupling constant g ,:

gr« Л ^ (+ )(„=0, Va=o,£2= o)
— -------------------------------- . (1 )

_ _ _ _ _  M  X ww' ( * 1= 0 )

• Junior Fellow. Now at Physics Department, Harvard Uni- 
versity, Cambridge 38, Ma&sachusetts.

1 M. L. Goldberger and S. B, Treiman, Phys. Rev. 109, 193 
(1958).

1 Y. Nambu, Phys. Rev. Letters 4 , 380 (1960); J. Bernstein, 
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17, 
757 (1960); M. Gell-Mann and M. L^vy, Nuovo Cimento 16, 70S
(1960); J. Bernstein, M. Gell-Mann, and W. Thirring, Nuovo 
Cimento 16, 560 (1960).

1 J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring, 
Nuovo Cimento 17, 757 (1960); S. L. Adler, Phys. Rev. 13§, 
B963 (1964).

4 Related ideas have been discussed within the framework of a 
model calculation by K. Nishijima, Phys. Rev. 133, В 1092 (1964).

[Here M  is the nucleon mass and —k1 is the (mass) 2 of 
the initial pion. The final pion is on mass shell; the 
energy and momentum transfer variables »  and v b  are 
defined in Eq. (15) below.] By using experimental pion- 
nucleon scattering data, we find that this relation is 
satisfied to within 10%.

In Sec. I  we define and discuss the concept of a 
partially conserved axial-vector current. In Sec. IL  we 
derive the consistency condition relating the pion- 
nucleon scattering amplitude to the pion-nucleon cou
pling constant, In Sec. I l l ,  pion-nucleon dispersion rela
tions and experimental pion-nucleon scattering data are 
used to test whether the consistency condition is 
satisfied. In Sec. IV, other consistency conditions on the 
strong interactions are stated.

1. D EFINITION OF PAR TIALLY  CONSERVED 
AXIAL-VECTOR CURRENT

We assume that the weak interactions between 
leptons and strongly interacting particles are described 
by a current-current effective Lagrangian of the form

— jeen=7 .l(x )ik (*)+ad jom t, (2a)

where

jx(z) =  ( 1/VZ) [Vyyx ( 1 + 7 г Ж . + (l+ 7 s )^  J

is the weak current of the leptons and where J\ is the 
weak current of the strongly interacting particles. Let 
J\r and J\A denote the vector and the axial-vector 
parts of the strangeness-conserving weak current

Л (Д 5 = 0 )= / ХЧ -/ )А  (2c)

Definition: By partially conserved axial-vector cur
rent (PCAC) we mean the hypothesis that

ЗхЛ*= - [ Ш М , 1<я(0 )/|!Д ' " ' ' ( 0 ) ] ^ + Л .  (3)

Here M  is the nucleon mass, M ,  is the pion mass, gA (0) 
is the /З-decay axial-vector coupling constant [g,t(0) 
« 1.2 ' 10~ V ^ 5]i i ’ is Л 6 rationalized, renormalized 
pion-nucleon coupling constant (gI.!/4nr=14.6)1 and v>w

В 1022

Copyright © 1965 by the American Physical Society. Reprinted with permission.
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is the renormalized field operator which creates the x+. 
The quantity K NNl(0) is the pionic form factor of the 
nucleon evaluated at zero virtual pion mass; K NN* is 
normalized so that K NNw( —M T2) =  1. It  is explained 
below how the constant multiplying <pT in Eq. (3) is 
chosen. In order to give content to the definition, we 
must specify properties of the residual operator R. We 
suppose that for states a and /3 for which (fi\ <рт\а)?*0, 
and for momentum transfer near the one pion pole at 
— M r  [say, for — М т2<  (pg—p„)2<MJ~\, the matrix 
element of R is much smaller than the matrix element of 
the pion operator term. In other words, we postulate 
that if ф\^>,|a)?*0  and if | (p f—^„)*| < M r2, then

________ \ m \ ° ) \ _____________________<Ki

In what follows, we derive equalities which hold 
rigorously if the residual operator R is zero. I f  R  is not 
zero, but satisfies the inequality of Eq. (4), the "equals” 
signs should be replaced by “ approximately equals” 
signs. The magnitude of the squared momentum trans
fer | (pp— pa)* | is understood to be always less than M TJ.

It  is not actually necessary to specify the constant in 
front of <рж in the definition of PCAC. If we simply 
postulate that

d\JyA =  C<p, , (5)

the constant С may be determined as follows: Let us 
consider the matrix element of d\JyA between nucleon 
states (N  \ dxJ\A \ N ). Let pi and pl be, respectively, the 
four-momenta of the final and the initial nucleon, and 
let us denote by k the momentum transfer pi~p\. 
According to the usual invariance arguments, (N  | J\A \ N ) 
has the form

/ M  М\Ч*
(N\JxA\ N )= [ ----------- )  й{ р , )1 &Л к г) 7 x 7 .

Vso pio/
—f  A.(k1)<rx^,yt—ih i(lt ‘)h y i ]T +u(P i) , (6)

where r+ =  ̂ (r i+ tr i) is the isospin raising operator. 
From Eq. (6), we find that

(N\dxJ xA\N)\t '_a

•----- ik\(N | J\A | iV) | *’-o
M  M  \1/1/ M  M  \ 1

=  2MgA ( 0 ) [ --------- j  d(^,)7.r+«0>i) .
'# 2 0  10/

We also have

с
&+м.г 

с С

k '+ M S
<N\jT\N )= -igrV lK NN'(k 2)

k2+ M 2 

{  M  M  \ '12
X l --------j u(pt)ytT+u(pi),

\pi0 ^10'
(8)

where K NNr(k2) is the pionic form factor of the nucleon. 
From Eq. (8), we find

С
(N  | С* , ] N ) | *■_„=-----i g W ^ i Q )

M 2

/М  J fy e
X  ( --------- )  u  (Рг)УбТ+и  (/>,), (9 )

"P20 P10/

and comparing this with Eq. (7) gives

C = - m M M S g A{Q)/grK NNr(Q). (10)

I f  we form the matrix element of 5\J\A between the 
one pion state and the vacuum, we find that

(2io)I/,(>r+1 d\J\A 10)
---- iV IM M J‘gJL(p)/grK NN,(0 ) , (11)

which is the Goldberger-Treiman relation for charged 
pion decay. For general states (1 and a, such that 
Ф | pT|a)?^0, we find that

(0 | a „ A » = -
g rK " " '(0 )  

1

X -

(7)

(2к<,)и'Г(тг++ а ^  13). (12)
k2-\- M 2

Here T(ic+Jra  —> ff) is the transition amplitude for the 
strong reaction x++ a — where the (mass) 2 of the 
initial jr+ is — k2 =  — (p0—pa)2. Thus, we see that PCAC 
leads to a whole class of relations connecting the weak 
and the strong interactions.

The definition of PCAC which we have given is not 
the same as the definition which would be suggested by 
a polology approach. This would be to define PCAC as 
the hypothesis that the covariant amplitudes contribut
ing to (/3| dx/x'11<*) satisfy unsubtracted dispersion rela
tions in the variable k2, and that these dispersion rela
tions, for \kt\ < M ,1 and for all values of the other 
invariants formed from four-momenta in a and ji, are 
dominated by the one pion pole. I t  is easy to see that if 

depends on invariants other than k2, the 
polology version of PCAC is ambiguous. Suppose that 
A is a covariant amplitude contributing to (|8| d\J\A |or), 
and that A  depends on two invariants, s and k2. Then 
the polology version of PCAC implies that

^ ( ^ !) =  i ( j )/ (A J+ M ,5),  (13)

where A  is the residue of A  at k2=  — M * .  Let us now 
define a new variable s '= s —ah? and treat A  as a func
tion of independent variables s' and k2. To evaluate the 
residue we set every explicit k2 equal to — AfV. We then 
find from the polology version of PCAC that

A [ (s - a £ 5) + a (—Af,1) ]  A [s '—aM w2]  
A (s ',k ')~ ------------------------------------------------ • (14)

P + M 2 AHM 2
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/ P| +
y p ,

к - P i

У
/тг

JL*.'
covariant amplitudes - ^ ( v , » ^ 1) according to

Pi\ n nw'p! p\ n

/£l0 ^20 \I|IJ
( -------- 2ka J
\ i f  M  J

Fio. 1. Generalized Born approximation diagrams for 
(гЛ' | /x41Л0. The heavy dot marts tne vertex where the operator 
J\* acts.

-й {р г )г  Z  OjXAj(v,VB ,k*)u (pi). 
i-i

Clearly, Eqs. (13) and (14) differ unless A has no de
pendence on the variable 5 to begin with. In other 
words, the polology definition of PCAC is inherently 
ambiguous, since the value of the residue at №= — М тг 
depends on how the invariants other than h? are chosen.

This ambiguity is not present in the definition of 
PCAC given in Eqs. (3) and (4). The reason is that V  
is at no point set equal to — M ,s but is kept at whatever 
value it has in the weak matrix element (/31 Эх7хА|а). We 
use the unambiguous version of PCAC in the remainder 
of this paper.6

П. CONSISTENCY CONDITION ON PION- 
NtJCLEON SCATTERING

In the previous section we saw, in Eq. (12), that 
PCAC leads to relations between the strong and the 
weak interactions. These allow one to predict the weak 
interaction matrix element (/31 d\J\A |a), if one knows the 
strong interaction transition amplitude 'T(x+-fa —> 0). 
The principal point we wish to make in this paper is 
that there are cases in which only the Bom approxima
tion contributes to a covariant amplitude of (fi j  dxJxA |a), 
for appropriately chosen values of the energy, mo
mentum transfer and other invariants on which the 
covariant amplitude depends. The Bom approximation, 
in turn, is known in terms of weak and strong inter
action coupling constants. Using PCAC to eliminate the 
weak interaction coupling constants leaves a con
sistency condition involving the strong interactions 
alone. In this section, we study the matrix element 
(1гЛ/|Эх7хл |Л) and derive the consistency condition 
stated in Eq. (1). In Sec. IV, we discuss conditions 
obtained from other matrix elements of d\JxA.

We begin by writing down the structure of the 
matrix element (xJVlJx^liV), Let pi, рг, and q be, re
spectively, the four-momenta of the initial nucleon, the 
final nucleon, and the final pion. The momentum 
transfer k is given by k—p t+ g -p i .  We define invariants 
v and vs by

y=  — (p i+ps ) ■ t y (2M ) ,

vB= q -k / (2 M ).

The matrix element can be decomposed into eight

The quantities 0 ,x are given by*

< V = 5 (? 7 *— yxff), 0 iy =  ik (p 1+ p i)x ,  

( V  =  (pi-\-pt)\,

<V=?x,
0 /=ijV/7x ,

Oex = tfe?x, 
O S = h ,
Oak=ikkx.

(16)

(17)

(IS)

* In a previous paper £S. L. Adler, Phys, Rev. 135, B963 (1964)] 
we used the polology version of PCAC. If, instead, the definition 
of Eqs. (3) and (4) had been used, 9TC(»+-f- a —* 0) in Theorem 2 of 
the paper would simply have been the invariant matrix element 
for *-++ e  —► 0, with the initial r + of (mass)5 — —k*.

The amplitudes А / (»,ув,1Р) have been chosen so that 
they have no kinematic singularities.7

The isotopic spin structure of the amplitudes 
AjftijVBtk*) is specified by writing

AjiP .VB .W a^A ,■<+>(*,*B,k*Ke ( 18)
+ A  ,t_) (г,Ув,&)Ь[.т*>тв1 ■

Here X; and Xt  are, respectively, the isospinors of the 
initial and final nucleon and is the isotopic spin wave 
function of the final pion. [ I f  the final pion is а тг*, 
Ф„= 2~1/s(l ,  ± i ,  0)„, while if it is а я-0, фа=  (0 ,0,1) « ]  
The quantity Фа+ is defined by ^e+= i(l,^ ,0 )e , so that 
Фв+те= т+. The presence of ipg+  is just a reflection of the 
fact that the weak current J\A transforms like 
under isotopic spin rotations.

Let us split each amplitude Aj(v,VB,№)<t» hi to two 
parts,

The part A f  is defined as the sum of all pole terms 
contributing to Aj, while A j is simply everything that is 
left over when the pole terms are removed from A j. The 
amplitudes A jF are calculated from th e  g e n e r a l i z e d  

Born approximation diagrams shown in Fig. 1. In each 
diagram, the heavy dot marks the vertex where the 
operator J\A acts. The nucleon vertex of J\A is given by

t + [£a(<!1)tx7 s — / , 4  ( J P ) » ^ , ? * - '*** (**)**■? J -  (20 )

Evaluation of the Bom diagrams gives

j-1

=  u {p i )X l *^ a* { iT ay bgr[ i / { p i - \ -q ~ iM ) ' ]

X  t +\j a  (k2)o x ,k ,y t— i h A  (^ )£ х 7 б ]

+  T+ [ g A  { № ) 4 \ n — f x (J P )< r \ J i44 i — ih A  (/ s * )fcm D

X [1 / (^1 — ? — iM )lfiT *ybgr}X ,-u (j> i) , (21 )

from which the A jp are easily obtained. Since the 
divergence of the terms proportional to /л (k1) vanishes

•The kinematic structure of the matrix element 1^"!
has been discussed by N. Domhey, Phys. Rev. 127,653 (1962) an 
by P. Dennery, Phys. Rev. 127, 664 (1962).

’  A simple modification of the argument used by BaH IJ- “ ■ 
Ball, Phys. Rev. 124, 2014 (1961)3 can be used to show that the 
amplitudes A j  have no kinematica! singularities.
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identically and since the divergence of the terms pro
portional to hjitji1) vanishes when № =0, we write down 
only the pole contributions proportional to gA(ki) :

1 \

2 M  L \vf—v vb~\~v)

grgA(k*)r / 1

A i '= -------- i  M

-------1— —
\V.B—V PB~rv/~

, g rgA(k?)r
A iP= -------- j i„al

2M  L wB
( - U - Ц
\кд— V I'B+J'/

(22)

XK — -V )L \vb—V VB~TV/

\vb~ v v b t v J _IJ

According to the PCAC hypothesis, we can also evaluate 
(irN  I d\J\A | N ) as (тЛГ | C v ,  | N ). This gives

^ M g A(0 )
M a$= ------------- [ A rN(v, v b , £ ! =  O)„0

grK™*(>0) 

\2М £л (0)
- i k B 'N(v, * . , * * - 0 ) r f]

A rM(v, vb, №=0)a6 
grK ™ '(0)

- i k S rN(v, VB, k*=0)all- i k — K N>,' (0 )
2 M

x \ J - ------- — )
L \vb~ v vb+ v '

~  ̂1! ■
—v Рв~

The amplitudes A Ttl(v, vB, k*=0) and B ,N(v, vB, kl - 0) 
describe pion-nucleon scattering with the initial pion a 
virtual pion of (mass)5 =  — A5 =  0 and with the final pion 
a real pion of (mass)J= i ( fT2.8 We have separated off the 
pole terms of В (A has no pole terms); В  denotes 
everything which is left over after this separation is 
made.

Comparing Eqs. (24) and (25), we see that the pole 
terms proportional to

vb+ vJ

+К.т.,те~](--------- —— ^1.
^VB~V VB-rv/J

The amplitudes A } and A,, ■■■, А » have no pole 
contributions proportional to gA(k?).

Let us now evaluate

(t N  I дхУИ | N ) =  - i k x(*N  |Л^|Л0

at £* =  0. Using the decomposition of (xiVl/x4 !^ )  into 
covariants As, splitting each A, into parts A f  and A,, 
and evaluating the A ,p from Eq. (22), leads to the 
result that

L(pio/M) (pw/M)2koJi\r N  | dxJS  | N )  1

(23)
with

M a0 = A ( v ,V B ) a f— ik B ( v ,V o ) a f ,
1 _ _

A (к,Уа)„0 = — { — 2 M v (A i+ A 2)*p 
VI

+  2MVBAtap-{-2grgA(0)Sae} ,
I f .

B(v,vB)<t0— —  \2AfAi„g— M A iaf-\-2MvAsâ
I
—  2 M v s A tt.g + g rgA (0)

&nj--------—----  ̂ ( -------1-------^
\vB~  v уд +  v/ \vb~ v VB~i~v/

(2 6 )

are identical. This is consistent with the requirements of 
PCAC. A remarkable fact emerges when we consider 
the equation for the A amplitudes,

(l/'J2)£—2Mv(Ai-\-Ai)aS+2MvBAiaa-i-2grg4(p)liag~]
=  \yiMgA (0)/grK » N40)~]A'N(v, vB, V = 0U .  (27)

Let us set v= vB =  0. Since the А,- have all pole terms 
removed, and since they have no kinematic singu
larities,

lim v (^ i+ A 2) =  lim v^^4a=0. (28)
F-*fl

Hence at v—VB=k2= 0, all the unknown amplitudes 
drop out. Equation (27) then becomes

g *  A tN ( v = 0 ,  vb =  0, k2 =  0 ) af
-------------------------------------- . (29)

M  K NNr(0)

Decomposing A„pTN into symmetric and antisymmetric 
isotopic spin parts,

A af « -  A » «+ ) « ,ag+ A  (30)

(24)
gr2 Л '"<+> (*=0, x „ = 0, k! = 0)

(31)

(25)

M  K f,N'(0 )

0 = A *K -4 v = 0 , vs = 0, £2= 0 ). (32)

Equation (32) is automatically satisfied by virtue of the 
odd crossing symmetry of A *N<-~\ Equation (31) is a 
nontrivial consistency condition waich must be satisfied 
if PCAC is true.

We saw above that the pole terms, which are the only 
pion-nucleon scattering terms of second order in the 
coupling constant g„ do not contribute to the amplitude 
y{»iV(+) leading term in the perturbation series for 
K NNr is 1. Consequently, if A 'nw /K nn* is expanded 
in a renormalized perturbation series, no term of order 
g 2 will be present. Thus it is clear that the consistency 
condition is not an identity in the coupling constant. 
This makes it fundamentally different from relations 
obtained from unitarity or from crossing symmetry, 
which are always true order by order in perturbation 
theory.

8 Pion-nucleon scattering with the initial pion virtual has been 
discussed by E. Ferrari and F. Selleri, Nuovo Cimento 21, 1028
(1961) and by I. Iizuka and A. Klein, Progr. Theoret. Phys. 
(Kyoto) 25, 1017 (1961).
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Note that a similar consistency condition cannot be 
derived for the В amplitudes, since the presence of the 
terms IM A i—M A t in Eq. (24) prevents the elimination 
of the unknown amplitudes A i and A t.

In the next section, the condition of Eq. (31J is com
pared with experiment. Before going on to do this, let 
us summarize the properties of J\A that were actually 
used in the derivation. Nowhere did we use the fact that 
J\A is the weak axial-vector current which couples to 
the leptons. Clearly, the consistency condition may be 
derived if the following two conditions are met:

(i) There exists a local axial-vector current J\, the 
divergence of which is proportional to the pion field,

d\J\—C<pT\ (33)

# k ,

K Nrr"(k1= 0 ), requiring us to use a model to calculate 
the difference,

Л'"<+)(»= 0 , кд=0 , **= 0 )

* " " ' ( * * =  0 )

-Л '"< + > (у= 0, Ув=0 , Л »= -Л Г ,* ).  (36)

We first give several alternative ways of using pion- 
nucleon dispersion relations to calculate the on-mass- 
shell amplitude. We then discuss a model for going off 
mass shell in k2, and summarize the final results. In the 
remainder of this section, we take the charged pion mass 
to be unity. In these units the nucleon mass is M  — 6.72 
and9

(ii) In the nucleon vertex of J\, which apart from 
isospin is

- F (£ 2V *^ ,7 s - tS (£ 2)£X7 i.> (p i), (34)

the form factors G, F, and H  are finite at № — 0, and fur
thermore, G(0; is nonvanishing. In the matrix element 
(*N\J\\N), the covariant amplitudes 
are finite at у= уя = ^ г= 0 once the poles which arise 
from the Born-approximation (one-particle intermedi
ate state) diagrams are subtracted off. [^Except for the 
requirement that G(0) he nonvanishing, these condi
tions are necessarily satisfied if the form factors and 
covariant amplitudes in the two matrix elements of J\ 
satisfy the usual spectral conditions, that is, if their 
singularities as functions of the complex variables k!, v 
and vb arise only from allowed intermediate states.] 

Condition (ii) and the requirement of locality are 
essential for the derivation to go through. They are 
very restrictive conditions, and it is easy to find axial- 
vector currents which do not satisfy them but which 
obey Eq. (33). For instance, the current J\ defined by

Л'=С<Эх j D ( x - x ' ) v .(x ')d *x ', 

D (x )  J

g,!/Jtf =  27.4±0.7. (37)

The equations used in making the calculations de
scribed in this section are derived in the Appendix.

A. Evaluation of j4iW<+> ( v =  0, ft5=  — 1)

We wish to evaluate the on-mass-shell amplitude 
Л»^(+>(0, 0 —1). Since the point v = v b =  0 is not a 
physical one, we must use pion-nucleon dispersion 
relations to compute ^4'w<+)(0, 0, - 1) from scattering 
data. The fixed momentum transfer dispersion relation 
satisfied by <4' л'(+) (j<, vB, —1) is10

il’ »<+»(», n , - l )

1 Г
—  I dv'Im A '"< + > (v' , v B, - l )

1 1 

'+ »
хГ— + — 1 ,  У0= 1  +  1/ (2М ).

Lv'— v v'+kJ
(38)

(35)

satisfies d\Jx'=C^r, by construction. But J\ is not 
local, and in the nucleon vertex of J\ , G(k* ) ^ 0 and 
H(№ )a l /Л*, so that (ii) is violated.

Ш . DISPERSION RELATIONS TEST OF 
CONSISTENCY CO NDITION

In this section, we use pion-nucleon dispersion rela
tions and experimental pion-nucleon scattering data to 
test whether Eq. (31) is satisfied in nature. By using 
dispersion relations, the on-mass-shell amplitude 
A •’A,(+)(i/ =  0, vb =  0, /Ь*= — М гг) may be calculated from 
scattering data. However, Eq. (31) involves the off- 
mass-shell combination A ’Nl+)(v—0, vn — 0, £ 2 = 0)/

Since the integral in Eq. (38) probably does not con
verge, it is necessary to introduce a subtraction.

1. Threshold Subtraction

The usual procedure is to make a subtraction at 
threshold. This gives

2 Г*0 dv
Л'"<+>(0 , 0 , - 1)=Л'*<+>(У„,0 , _ i ) —  i _ _

v

Im X ^t+V , -  
X ------------- — ------------- , (39)

which has a strongly convergent integral. The integrand 
can be calculated in terms of phase shifts. The integral

• The coupling constant gT* is related to the coupling constant /’
by £,?=4*"4A P P . We use the value /’  =  0,081±0.002 quoted by
W. S. Woolcock, Proceedings of the Aix-en-Provence International
Conference an Elementary Particles (Centre d’Etudes Nud&ires
de Saday, Seine et Oise, 1961), Vol. I, p. 459.

10 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 
Phys. Rev. 106, 1337 (1957).
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was evaluated using the phase shift analysis of Roper11 
up to a pion laboratory kinetic energy of T r— 700 MeV, 
where the integral was truncated. A  convergence check 
indicated that the truncation error is small. The result 
is

2 Г  dp' 1пъ4 '"<+> (к', 0, - 1V
-  I -------------------------------- =7.4. (40)
W J„ p' к '» - * »

We make no error estimate here since Roper gives no 
егтог estimate for his phase shifts.

The threshold subtraction constant can be expressed 
in terms of scattering lengths by

Л ' * ‘+>(ко, 0, - 1)

4т

/ 1 \ -  (J + l ) [2 ( l + l ) ] !
-  ( 1+ —  IE  [i»n .n«+ J a M.o»J------- -----—

v 2 M / 1 -  2,+1[(«+l)]]J

-2M E
i-i

/ (2 0 1

2 «(i0 *
(41)

where oi± fI) is the scattering length in the channel with 
isospin I, orbital angular momentum I, and total angular 
momentum J= ld b i. Equation (41) is rapidly conver
gent and it suffices to keep only the S-, P-, D-, and 
F-wave scattering lengths. Using the 5- and P-wave 
scattering lengths quoted by Woolcock15 and obtaining 
D - and F-wave scattering lengths from Roper’s poly
nomial and resonance fits to the phase shifts, gives

^*"(+>(4 , 0, —1) =  37.3±0.7, 

4'*<+>(0, 0, - 1 )  =  29.9±0.7.
(42)

The threshold subtraction constant arises almost en
tirely from the P-wave scattering lengths. The error 
estimates take into account only the errors in the S- 
and P-wave scattering lengths quoted by Woolcock.

Alternatively, we can obtain all scattering lengths 
from the threshold behavior of Roper’s fits to the phase 
shifts, giving

о, —1)=40.7, (43) 
j4**i+)(0, 0, -1) = 33.3.

2. Broad. Area Subtraction Method.

There is a fairly large discrepancy between Woolcock’s 
scattering lengths and the threshold behavior of Roper’s

11L. D. Roper, Phys. Rev. Letters 12, 340 (1964) and private 
communication. We use Roper’s lm — 3 phase shift fit lor pion 
laboratory kinetic energy T r in the range ()<  ̂T". <  700 MeV. In 
terms of v and vb, =  v—pb — vo.

a W. S. Woolcock, Ref. 9. Woolcock’s results are quoted in J. 
Hamilton, P. Menotti, G. C. Oades, and L, L. J. Vick, Phys. Rev. 
128, 18S1 (1962). The slichtly different scattering lengths proposed 
by Hamilton ei al. give the same result for 0, —1) as do
Woolcock’s.

phase shifts. This suggests that it would be desirable to 
perform the subtraction in a manner which does not 
weight threshold behavior so heavily. We give a method 
which effectively smears the subtraction over a finite 
segment of the real axis and has the additional ad
vantage of containing a built-in consistency check on 
the phase shift data used. Let us consider the function

p  W -
Л »к<+>(к, кв= 0, i * = - l )  

[ (к — Pa) (•'+ ко) ( »— I'm) (к+к . ) ] 1'1
, (44)

where v „>  k0 lies on the physical cut. Since F (s ) ap
proaches zero at v— <b, we can write an unsubtracted 
dispersion relation

1 Г -  A F ( p ' ) /  1 1 \
P (p)  =  ~ dp'■------- ( - ----- У—----J, (45)

r J n  2* \ k ' - k  p ' + p /

where A F (v ')= F (v '+ it )—F{p '—it )  is the discontinuity 
of Р  across the cut from ка to « . The square root in the 
denominator has opposite signs on the opposite sides of 
its cut from kq to Vn and has no cut from vm to «j. 
Consequently,

ДР(к') 

2 i

R t 4  (к ', 0, - 1 )

(46)

[ ( / — ко) ( » ' + ко) ( p„ — к ') ( k „ +  k ' ) ] 1'1 

Ко <  к' <  к „ ,

ДР(к') 1пь4тЛГ<+)(к', 0, — 1)

2г С (к'—ко) (к'+ко) (к'—к_) (к '+  к „ )]1/!

к „< к '<  оо ,
giving

А .*(+>(0 , 0 , - 1)

2 Г~  dp' Re^l гА,(+)(к', 0, — 1)к0кт

*  } п1 р' [(>''— »о)(к '+»о) ( » « —•'') (*»тЧ-•'')Z31/’
2 r“ dv' 1тЛ '*<+>(к ',0, - 1)кокт 

г  J fm v' [ (к '— к0)(к '+ к 0) (к '— к „ )(к '+ к „ )]1л

(47)

This equation involves R e 4 'JV(+) over a segment of 
finite length, not just at threshold. In the limit as к» 
approaches k0, Eq. (47) becomes identical with Eq. (39) 
for the threshold subtraction. The fact that Eq. (47) 
involves no principal value integrals makes numerical 
evaluation easy.

I f the exact values of Reu4lW<+) and 1mA TlfW  were 
used to evaluate the integrals, Eq. (47) would clearly 
give the same answer for all values of кт between k0 and 
<» . Thus, by varying k„  we can check the consistency of 
the phase shifts used to evaluate Л ’ К(+)(к', 0, —1).

Using the phase shift data of Roper and integrating 
up to a pion laboratory kinetic energy of 700 MeV gives
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T a s l e  I. A »*(♦> versus length of the square-root cut, as calculated by и sine fixed ............. , ,.
ead of the squarc-root cut lies at pion-nucleon centcr-of-mass eoerev IV  --- I fU - л , u Fjanster dispersion relations. The upper 
гримасе, t._ =  2.1. In terms of м ., r m is given by >’т =  га+ыш+ыт,/2М ' W" '  threshold, u ,  =  l ,  and at the peak of the (3,3)

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
A '»:*> ;0. 0, - 1 )  

(» * = 0 )
29.70 29.43 29.16 28.90 28.66 28.44 28.23 28.02 27.83

- 1 )
i » ,  =  - l/ 2 J fl 26.73 26.54 26.3fi 26.17 26.00 25.83 25.67 25.51 25.36

D 2.97 2.89 2.80 2.73 2.66 2.61 2.56 2.51 2.47

the results shown in Table I. I t  is convenient to intro
duce a parameter such that the upper end of the 
square-root cut lies at pion nucleon center-of-mass 
energy i r e =Af-J-oj- . In terms of <̂ mj the parameter vm 
is given by г «= »в -гш - -гш,,У2АГ In changing ш„ from 
1.7 to 2.5, we move the upper end of the square-root cut 
across the peak of the (3,3) resonance, thus considerably 
altering the distribution of the integral between the 
two terms in Eq. (47). Still, the total varies by less than 
10%, indicating that Roper’s phase shifts are reasonably 
consistent with dispersion relations in the (3,3)  reso
nance region. The end of the cut was not taken greater 
than ш_=2.5 to avoid introducing a large truncation 
error from ertending the integrals only to 700 MeV. A  
convergence check indicated that in all cases shown in 
Table I  the truncation error is small.

The result of this analysis may be stated as

^ '* < • « (0 ,0 , -1 )= 2 8 .7 ± 0 .9 ,  (48)

where we have taken as the error estimate the variation 
of A r* (+) as is moved across the peak of the (3,3) 
resonance.

3. Alternative Broad-Area Subtraction Method.

As a further check, we have used an alternative 
method to evaluate ^ ,Ar<+5(0, 0, — 1). L e t us write

A r*<+>(0, 0, - 1 ) = D + A ’ * l » ( v = 0 ,  vb— — 1/2A#-, — 1), 

£>=:Ar * w (v = 0 ,  * л =  0 , - 1 )  (49)
.* < + )(„= 0, yB= - l / 2 M ,  - 1 ) .

In  other words, we add and subtract the quantity 
A rif<+40 — 1/2M  — 1). In  the difference term D , we 
evaluate V " < + > (0 , - 1/2^ , ' О  by using the fixed 
momentum transfer dispersion relation for A  . [See 
Eq. (3 8 )] with a broad area s u b tr a c n o n . ThLs is just the

'm >— -  «
D = 2 .6 S ± 0 .3 . (50;

З Й * .  IP o , the

We now add back Л'*<+>(0, -1 / 2 i f ,  - 1) evaluated 
by an independent method. Let us recall that vb~  — 1/ 
(2Af) corresponds to forward pion-nucleon scattering. 
Since the even isotopic spin forward scattering ampli
tude is given by

i « + > ( i . ) = Л  •»«+> (»., -1 / 2 А Г , - 1 )

4 -v 5 rV(+ )( „ > - 1 / 2 M , - 1 ) ,  (51)
we have

(0) =  A -»(+ ) (0, - 1/2M , - 1). (52)

Thus, we can use ordinary forward dispersion relations”  
to evaluate Л т^ (+)(0, — 1/2M , — 1). Making a broad 
area subtraction gives

^'*(+>(0 , — 1/2АГ, - 1 )
, гS’

M  [ (p „ 2— 1/4АЯ)(1 —1/4АР)]1/а

2 Г -d v ' ReF(+)(v )v „

irJ i

2 Г» dv'

+  J i  ~ 7 w -  i )  < ✓ + 1 )  ( » „ - V ) ( » . + у ')1 ф

Im f l+l(/ )i|«

t J .k s  C(F/- i ) ( . . ' + i ) ( / - r j ( / + o ] 1/i'

(53)
We recall that 

4t
R e F « V ) = —  [2 J t f^ A f4 - l ]1/JRe(/,(+)+ / j(+)) '.  (54) 

M

where /i(+) and /2<+) are the usual center-of-mass 
[isospin ( + ) ]  pion-nucleon scattering amplitudes. 
Furthermore,1*

IraP '+) (/ )  =  i  , (55)

where <r+(v) and are, respectively, the total ir+p
and ir~~p cross sections. To evaluate the integrals, we 
used Roper’s phase shifts for laboratory pion kinetic 
energies below 700 MeV. Above 700 MeV, we used the 
tabulation of <r+ and a - given by Amblard el al}* and the

“  For example, see the article by J- D. Jackson in Dispersion 
Relations, edited by G. R. Screaton (Intcrscience Publishers, inc., 
New York, 1961), p. 38. . . .

»  B. Amblard et al., Phys. Letters 10, 138 (1964).
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T a b le  П . A »*<♦> versus length of the square root cut, as calcu
lated by using forward scattering dispersion relations.

1.5 2.1 2.7 3.3 3.9

Л.*(+>(0, —l/ 2 i f , - 1 )  26.33 26.23 26.15 26.09 26.07

Л'*<+>(0, -1/2M , - 1 )  =  26.15±0.2, 

A f*r(+) (q, 0, —1) =  28.8±0.4,

3 ir J i |q|a

where |q| is the pion center-of-mass momentum and 
where /3 3 is the resonant (3,3) partial wave amplitude. 
According to Chew et al.,10 in the narrow resonance 
approximation one finds that

asymptotic region fit of Von Dardel et al.n The results, 
shown in Table II, give

4 'T J 1
doy-

141 * 12irAfJ
(60)

givmg

(56)

where we have taken as the error estimate the variation 
of Л тА,<+)(0, —\/7M, —1) as is varied from 1.5 to 
3.9. We have not included in the error estimate the 
error in the factor g,2/M  appearing in Eq. (53), since 
when we divide by g?/M  to compare the left- and right- 
hand sides of Eq. (31) this error drops out.

The values of 4 тЛГ(+)(0, —1/2M , —1) obtained by 
using fixed momentum transfer dispersion relations 
(Table I) and forward scattering dispersion relations 
(Table П ) are in excellent agreement. When fixed mo
mentum transfer dispersion relations are used, the total 
result for A —1/2M, —1) comes from the inte
gration over the physical cut. By contrast, when forward 
scattering dispersion relations are used, nearly all of the 
total comes from the pole term in the dispersion rela
tions, which leads to the term (g,1/ — 1/4ЛР) 
X ( l —1/4ЛР) ] -1/1 in Eq. (53). Thus, the two methods 
“ sample”  pion-nucleon scattering in very different 
ways. Their agreement gives us confidence that the 
numbers obtained from the dispersion relations calcula
tions are reliable.

B. Model for Going Off Mass Shell in k‘

In order to compare the consistency condition with 
experiment we must calculate the difference

[Л ’ "<+>(0,0,0)/_К'л'л,,'(0 )]—Л '"<+»(0, 0, - 1 ) .  (57)

To motivate the model which we use, let us return for a 
moment to the fixed momentum transfer dispersion 
relation for A t N ( + ) ( v , 0, — 1),

1 /•*
(+)(„, o , - l )  =  -  I dv' In v l '^ + ’ O'', 0, - 1 )

T i n
г 1 I t
X | -------—  ! • (58)

Lv'—v v '+ vJ

Let us proceed as if no subtractions were necessary. We 
evaluate the integral by keeping only the resonant (3,3) 
state in the integrand and going to the static limit. This 
gives

32 1 Im/a.s 
А тЛ,(+> (0, 0, —1 ) « — Mir — j  doi------- , (59)

Л ' « « ( 0 , 0 ,  - 1 ) «  (8/9) (gra/ J O « 24.4. (61)

This number is in good agreement with those obtained 
above by the proper procedure of using subtracted 
dispersion relations. The fact that a (3,3) dominant, 
unsubtracted dispersion relation calculation gives a 
reasonable result for Л тЛГ(+)(0, 0, — 1) suggests that 
such a calculation may also give a reasonable estimate 
of the change in A tNc+) produced by going off mass 
shell. Thus, as our model for going off mass shell in к?, 
we take

Да*[Л-"<+>(0,0,0)/Л'"лг'(0 ) ] - у 4 ' « h (0,0, - 1 ) ,

2 Л" dv Г.
. - / - 4

"Л a,: rW(+)

K NN' (  0) 

- A i J N{+) (62)

11 G. von Dardel et al., Phys. Rev. Letters 8, 173 (1962).

where the subscript 3, 3 indicates that only the resonant 
partial wave is to be retained.1*

The integral in Eq. (62) can be evaluated once the 
off-mass-shell partial wave amplitude /3.3 ( 1»', k2= 0 )  is 
known. It  turns out that in the (3,3) resonance region, a 
very good estimate of =  0) is given by

h .SW , p = 0 )
/ „ (✓ , *1=0) « / „ ( ✓ .  * ’ =  - 1 ) — —--------------, (63)

/ j .3 (x  , # =  —  1 )

where /3.js denotes the (3,3) projection of the Bom 
approximation.17 Roughly speaking, the reasons for the 
validity of Eq. (63) are:

(i) Equation (63) gives/3,3(1/, ^ = 0 )  the phaseof the
(3,3) on-mass-shell amplitude, as is required by 
unitarity.

(ii) The left hand, or “ potential”  singularity of 
/3.3 (1i',k2) nearest to the physical cut is determined 
entirely by /з.зв(|'/,*а). Multiplying /3.3(1»', — 1) by

—1) g>ves the right-hand side of 
Eq. (63) approximately the correct nearly potential 
singularity structure for /1,1(1/,0). A  detailed numerical 
analysis18 indicates that the error involved in using Eq.

11 A  justification for this model would he provided if one could
prove that A (v ) ^ A rNi+^(v)OtO)/KNNr(0 )~ A TN^ ( v 10, — 1) satis
fies an unsubtracted dispersion relation in the variable v. Then
Д(0) could be expressed as an integral of 1тД(г) over the physical
cut. Since only tie  (3,3) phase shift is appreciable at low energy, 
it would be reasonable to keep only the (3,3) partial wave in
1тЛ(>').

17 E, Ferrari and F. Selleri, Nuovo Cimento 21, 1028 (1961).
11 S. L. Adler (to be published).
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(63) for /i.j(»',0), in the (3,3) resonance region, maybe 
as small as half a percent.

Since is proportional to K NNl(0), the
pionic form factor of the nucleon drops out of the 
calculation. Substituting Eq. (63) into Eq. (62) and 
doing the integration numerically gives the result

Д « — O.S. (64)

Hence the model we have used indicates that extrapo
lation off mass shell has only a small effect, of order 2% 
of gr*/M. This figure corresponds to the fact that the 
two terms in the integrand of Eq. (62) cancel up to 
small terms of order M S/M 1, which is about 2%. The 
need to use a model is unfortunate, and the extrapola
tion off mass shell is the least certain aspect of the 
comparison of Eq. (31) with experiment. However, the 
apparent smallness of A indicates that the model would 
have to fail very badly for there to be an appreciable 
effect on the numerical results.

C. Summary

Adding the —0.5 obtained from going off mass shell 
to the results of Subsection A gives the final results 
shown in Table 1П. They indicate that unlfss the model

Tab le Ш . Final results for A '"<+> (0,0,0)M /К” " *  (0)g?. The error 
estimates are obtained as indicated in the text.

Method Result
Error

estimate

Threshold subtraction, using Woolcock's 
S - and P-wave scattering lengths.

1.07 ±0.04

Threshold subtraction, using Roper's phase 
shift fits for all scattering lengths.

1.20 . . .

Broad area subtraction, using fixed mo
mentum transfer dispersion relations.

1.03 ±0.04

Alternative broad area subtraction method, 
using forward scattering dispersion 
relations.

1.03 ±0.015

used for going off mass shell is badly in error, the con
sistency condition of Eq. (31) is satisfied to within 10%, 
and quite possibly to within 5%. This fact, together 
with the success of the Goldberger-Treiman relation, 
suggests that the PCAC hypothesis deserves further 
study.

IV. OTHER CONSISTENCY CONDITIONS

The consistency condition on pion-nucleon scattering 
is not the only condition on the strong interactions 
which is implied by PCAC. In this section, we discuss 
briefly the conditions connected with several other 
scattering amplitudes.

A. Condition on Pion-Pion Scattering

Let us consider the pion-pion scattering reaction 
illustrated in Fig. 2.*‘  Let (p^a), (p ,j3) be the four-

u G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

momenta and isospin indices of the initial pions, and 
, (p t f l ) the four-momenta and isospin indices of 

the final pions. We take all four-momenta to be in
coming, so that the condition of energy-momentum 
conservation reads

(65)

We introduce the standard Mandelstam variables s, t, «  
by

J— ( p i + p i ¥ =  ( p i + p t ) 2,

i=  (j>i+P*),=  Ц>г+р»У, / g g j 

« =  (?i+^j),=  (pi+ptY i 
р-?Л-р^-\-р^Л-р^-

The isospin structure of the pion-pion scattering matrix 
element is

( 1 юр юр гор «о )1/5(1лг°и‘  | КТГ1” )

(67)

From the requirement that the scattering amplitude be 
symmetric under interchange of the pions, we find that

+A"(u\t,s)B*i,.Spa’ , (68)

where A rr (s\ t,u) is a symmetric function of t and и. А тж 
also depends on p f ,  p ? ,  р гг, and p f .  I t  is easy to see that 
at the symmetric point * = < = « =  (/>i4-^i! + ^ 3 ! +/>42)/3j 
A "  is left invariant by the interchange p-? <-» pi1, by the 
interchange pi «-> p?, and by the simultaneous inter
changes pi1 <-+ pi1, pt1 <-* pt1.

Let us now consider the axial-vector matrix element 
(t it ] J\A|it). Let pt^k  be the momentum transfer and 0 
the isospin index associated with the current J\A, while 
we take (pi,a), (pi,a1), and to be the four-
momenta and isospin indices of the three pions. The 
isospin structure of the axial-vector matrix element is

( $ р а р ю р п ) 1№{тж | J \ A | r )
=  *M  (s,t,U)aP,a’P’1i'a'l'e+ . (69)

Defining Mandelstam variables as above, we find that 
the amplitude M(s,t,u)af,a>px is given by

M  (S,t,u)

— l(s| i,«) (p l+ p 0 )tM  l(jI  t,u) (p l—pt)\
+ A  } (s I t,u)plx]AaflA«4'+ C-̂  1 (t I “ ,*) (p 1 +  pt) *
+Ai(t\u,s) (p i—p»)\+A  i(/1 u,j)^4x]5»a'8«e' 

+  [^ i( « [< ,^ ) (^ l- t -^ 4 )x + ^ l(«| < ,i )  (p l— pt)\

-|-Л|(«| ,̂i) !̂| ]̂ia/S,S0a, , (70)

where vli(j|i,M) and Л s(j| /,«) are symmetric functions 
and j ( j  I /,u) is an antisymmetric function of the 
variables t and u.

There are no pole terms which contribute to the 
amplitudes Ai, A,, and А г of Eq. (70). Thus, when

Р1'Р1= Р *Р »~ Р 1 'Р *= 0, (71)
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we have />ixAf(Sj<>«)«0,»'£'X=Oi in other words,

(хтг|5хЛХ|х) =  0. (72)

Equation (71) implies that we are at the symmetric 
point

s = t= u = k ‘- M J ,  (73)

Since i + < + « =  —3M ,*+k\  we see that Eq. (73) can be 
satisfied when £!=0, giving the result that (тгтг| d\J\A\ir) 
vanishes when i 5 =  0 and s = t = u = —M J . The PCAC 
hypothesis allows us to write

(чпг | d\J\A | т) =  C(t t  | ip, | t )  . (74)

Consequently, PCAC implies that

A ™ (s = -M J \ t = -M S ,u = -M * \ h * = 0 )  =  0, (75)

where — is the (mass)1 of one of the four pions and 
where the other three pions are on mass shell.

Comparison of Eq. (75) with experiment will be 
difficult, since the effect of one of the pions being off 
mass shell is very likely to be important. In particular, 
the negative of the pion-pion amplitude at the on-mass- 
shell symmetric point,

и = - $ М г'\ к '= - М * )
(76)

is just the effective pion-pion coupling constant11 and is 
not zero.

B. Condition on Pion-Lambda Scattering10

The derivation in this case closely parallels the 
derivation given in Sec. I I  for the condition on irN 
scattering. The generalized Bom approximation dia
grams for (я-л|УхА|А) are shown in Fig. 3. In the 
derivation of Sec. II, we make the replacements

ig r^ in ^ N -  Vx—*igAz(^i-T'6^A+^A76^z*)v»H----- (77)

to define the Л2тг strong vertex11;

gA'j'irt\'YbT+$лг —»
£AiJ(^4'x76^A+&m76'/'2-H—  (78)

to define the A2 weak vertex; and

A af * , - i k B . l)' l l - * ( A ^ - i k B ^ ) S at (79)

\

Fig. 2. Four-momenta and isospin 
indices for mr scattering.

/

\ / Рл

Q  
/ \

s/ Vj/ v
“ References dealing with rA  scattering are given by T. L.

Trueman, Phys. Rev. 127, 2240 (1962).
11 M. Gell-Mann, PhyH. Rev. 106, 1296 (1957).

A *

/
p , * k - p , * q  \ / ~ p , - q - p 2-K  \

P2\ a  л /p, Р гЧ л

F ig . 3. Generalized Born approximation diagrams for (т Л [Л л 1Л).

to define the тгА scattering amplitudes. Equation (27) 
becomes

-2 M v (A 1+ A t) + 2 M vbA  ,+2gA jgx41 (0)

1 IIx [ . - T - L
I 2LvB— v-К+(Т Уя+(< +  <Г- 

8ЛА1 (0 )(Л/А+ М г)

?a ^ 4I (0 )
■ArA(y, vB, A’  =  0 ), (80)

where <r =  (M z*~  JI/as) / ( 2 M a) ,  , =  -  (* ,+ # ,) -*/(2M*), 
VB =  q-k/(2Mt), and where K AZ is the form factor of the 
Л2т vertex, normalized so that K AX( —M T*) =  1. Setting 
1>=*л= 0  gives the consistency condition

0 = A r l (v=0 , vb =  0, k2= 0 ). (81)

This is a null condition and thus differs greatly from the 
condition derived for t N  scattering. The difference 
arises from the fact that the intermediate state baryon 
in the generalized Bom approximation for (тЛ|.7хА|Л) 
is a 2, which has a mass unequal to that of the external 
Л. This makes the quantity tr in Eq. (80) different from 
zero, with the result that the coefficient of 2g/lzgAi I (0) 
vanishes when v and vb are set equal to zero. In the case 
of irN scattering, a is zero, and a nonnull condition on 
A ’ N is obtained. It would be an interesting problem to 
try to determine from a study of xA scattering whether 
Eq. (81) is satisfied.

C. Other Reactions

The space-spin structures of (r7T|/xA|.K’) and 
(x(2,H) lA '4! (2,2)) are similar to the space-spin struc
tures of (тпт[УхА |'"') and {*N\J\A | TV), respectively. 
Consequently, there will be consistency conditions on 
the яК, the x2, and the x2 scattering amplitudes. Since 
(x(2,2) | J\A | (2,2)) has a generalised Bom approxima
tion diagram with an intermediate (2,2), the consist
ency condition will be a nonnull condition, like Eq. (31) 
for r N  scattering, rather than a null condition, like Eq. 
(81) for тгЛ scattering.

We have not studied reactions with more than two 
particles in the final state. It  would be interesting, for 
example, to determine from a study of (тпгЛг|./хА |Л0 
whether PCAC implies a consistency condition in
volving the amplitudes for х + Л ' —* т + т + А г.
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/ 1 1 A rN W - M  B 'N

APPENDIX

[ (^ о + Л / Х ^ о + М )]1'2 2W 4r 2W 4 t 

U — 1Л * "  W + M  B 'N
------------------------ + --------
[  (/»io— M ) (p2o~ 2 f ) ]1/s 2W 4tt 2W 4*

(A8)

We derive here the equations used in the numerical 
calculations described in Sec. I I I .  Let us consider the The Partial wave expansion of /, and /2 is given by 
reaction :r(/fe)+iV(£i) —» x(g)-f-iV(£j), where the four- 
momenta of the particles are indicated in parentheses.
We take the nucleons and the final pion to be on mass 
shell,

(A l)

but keep t? arbitrary. Let k =  —pi and q = —pj be, re
spectively, the momenta of the initial and final pion in 
the center-of-mass frame of the reaction, and let kn, pю, 
go, pso be the center-of-mass particle energies. We 
denote by W the total center-of-mass energy

W— £o+/>io= 9 0 + ^ 2 0 , 

k0= (X V * - \ P - h * )/ 2 W ,  

q t = ( W * - b P + M * ) / 2 W ,  

* 10=  (И'Ч-АЯ+*>)/2И', 

p,0=  ( W * + M ' - M , t)/2W.

J i=  !£ f i+ p  1+1 ( y ) ~  5Z f i—P  1-1 ' (y )  >
i-« 1-2

/.= £  o w h -w o o , 
j-i

1 rl
2 1

= -  f  d y l f t P i - \ (y )+ f iP i ( y ) ' ] ,2 J - 1

(A9)

f »

(A2)

We denote by <p the center-of-mass scattering angle be
tween the final and initial pion, so that

jiscos v=$-k, (A3)

/

where f l± is the amplitude for the partial wave with 
orbital angular momentum I and total angular mo
mentum J = l± \ .  The symmetric isospin amplitude 
/i±(+) is given in terms of the isotopic spin § and 5 
amplitudes by

fi±w 4 f i ± w )+hfi±w>- (A  10)

Finally, we need the inverse of Eq. (A 8) for the ampli- 
where q and k are unit vectors along the directions of the tude А тЛГ, 
final and initial pion, respectively. The magnitudes | q |

(A5)

and I к | are clearly given by

IQI =  (9o,— M  ,ty ,t, |k | =  (W + t f )1'1. (A4)

The quantities v and vb are related to W  and cos<p by

V- VB=(W *-M *)/2M ,

vB=  (l/2 M)[]q||k|cos»>—<?o&o].
The variable ш, frequently used in going to the static 
limit, is defined by

w = W — М . (A 6)

Let us introduce center-of-mass amplitudes /1 and /5 
by writing

u ip ^ A ^ - ik B '^ u iP i )

4-rW
= ----- Х./»С/1+ Л »-Й *-*3 *«< 1 (A7)M

where A 'N and B tN are the covariant amplitudes used 
in the text and where Xlf and Xti are the nucleon

A*n (1W + M )f1

1 (Рго -М )(Рм -М )У "
(A l l )

A. Equations for Threshold Subtraction 
and Static Limit

Let us first consider the case when fe2= — and 
derive the equations used in the threshold subtraction 
and the static limit treatments of the dispersion rela
tions. Below the two-pion threshold,

/i±l/) =  exp [tij±(n]  sinSl±(,)/|q| , (A12)

where Sy.(/) is the phase shift. The scattering length 
«г±сл is defined by

f ,J n
Д(±(Л =  lim — — . (A13)

ПН® a !11
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Using the facts that B. Equations for Extrapolation off Mass Shell

cos#>=[(2Af»B+.MV)/|q|5] + l , (A 14) Now let us consider and derive the equa
tions used for going ой mass shell in kJ. According to our 

and that the leading term of P i'{y ) for large у is model, we wish to calculate

P t' ( y ) ~ [ / ( 2l)\/V(l\Y~bl~' > (A 15) 1 т Д ( У,^ ) = [ Г п ъ 4 , , г^ ( + ) ( 1.10 1А2)/А :АГЛГ' ( ^ ) ]
-  1 т Л , 0 , - 1 )  (A19)

at i J =  0. From Eqs. (A9-A11) and Eq. (63) of the text, 

[/,<+)] r =  Y. Коц-(,/!)+$ «й -<1/2)]  1тД(к,й2) is given by

'_<1 4x 2 r3(W +M )q<?

2‘+-C(/+l)!]*
-\-u(j>ia+M) 1(1.—1), (A20) 

Г/*(+)П -  ............ ...  . , -I

we find that, at threshold,

I t t ; I -  z -  .....- " n - .....JL | q |яJT i-i (A16) 

+ ^ a^ (w _ a|+a/»]} i = -

U,iB{ v , W = -M J )  | к

(A21)

х>^ Р м ’ ‘ + и Л “ ’ 3(И/+,0?*  \
2 С ( » „ + У ) ( » и + Л / ) ] 1Я _______________________________________________

(  1  ̂ Л 1 / / » <+>1  Х 3(Ж+М)?02

~ ~ 7 T ~ S‘ V №  lT ^ J  ’  + * ( t n + M )\ 2М/ L |q |JJ T ры+ М

When хц =  0, this is just the result stated in Eq. (41) of
the text. The Bom approximations are computed by substituting

The static limit of 4̂тЛГ̂ +> is easily derived. According the isospin if part of the Bom approximation
to Eqs. (A9-A11), when all partial wave amplitudes в»лгв<1/2) =, _  e 2£М»(£!Ч/1 allk fv+ a )
except /a,i — are neglected, A rNm  is given by "  '  ‘ ' ‘ " ' '  * ’ (A22)

a=  (2^jofco+^ )/2|q||k] ,
AtNW  VZW + M  IMvB+qo1 into E q (Ag) to calculate jB izm  and f t B«m The / = a

4r  L ры+м  | q]2 projection is then done by using Eq. (A9). The result is

(W - M ) (p i0+ M )  12 1 / ..Л » ,* 1) Ы  N

4 ^  ( } K * ” ’ W v — MS )  |k|/V'’ v

In the static limit, when vB—0, this is 

16 Mira

JV=(u[(^io+Af) (p to+M )Ji*A (a )

+  (W + M )£ (p la-M )(p n -M )1 4 * C (a ) ,

A »«+> „ N'=w(p .o+MM (a')+ (W +M ) ( * » -  M)C(a'),
3  IqI

where
Since in the static limit (when рл= 0) and n * l ,
we have “ '=  (2pt^ -M S )/ 2 \ q \ \

2 n d v ' 

r J „  v'

a
1 тЛ 1ЛГ<+>(/, 0, —1) A (a )=  1— ln [(a + l)/ (a —1 ) ] ,

2 (A24)

32 1 Г  Im/,., 1Г /1 — 30*4 / a+ l\1

* 1 <A,8> c w " i 3“ + ( —

Consistency Conditions on the Strong Interactions 
Implied by a Partially Conserved Axial-Vector 
Current, St e p h e n  L. A d l e r  [Phys. Rev. 137, 
B1022 (1965)]. In Eqs. (16) and (23).

l (p u / M ){p w/M)2k
should be

t(pJM )(Pn/M )2qoy »
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Consistency Conditions on the Strong Interactions Implied by a 
Partially Conserved Axial-Vector Current. II

S te p h e n  L. A d l e r *

Lyman Laboratory oj Physics, Harvard University, Cambridge, Massachusetts 

(Received 26 March 1965)

Consequences of the partially conserved .\xiai vector current (PCAC) hypothesis are explored. A set of 
simple rules is derived which relate the matrix element for any strong interaction process with the matrix 
element for the corresponding process in which an additional zero-mass, zero-energy pion is emitted or 
absorbed. A generalization to include lowest order electromagnetic processes is given. A theorem is stated 
and proved which shows how divergence equations of the form d\Ji=*D are modified when a minimal 
electromagnetic interaction is snitched on.

INTRODUCTION

IN an earlier paper1 it was shown that the hypothesis 
of partially conserved AS =  0 axial-vector current 

(PCAC) leads to consistency conditions involving 
solely the strong interactions. One of these conditions, 
relating the pion-nucleon scattering amplitude A 'N(+) 
and the pion-nucleon coupling constant g„ was shown 
to agree with experiment to within 10%. In this note 
we give a simplified and generalized derivation of the 
consistency conditions implied by PCAC. We will 
derive a set of simple rules which relate the matrix 
element for any strong interaction or first-order electro
magnetic process with the matrix element for the 
corresponding process in which an additional zero-mass, 
zero-energy pion is emitted or absorbed. The rules are 
closely connected with the “ chirality conservation” 
formulas of Nambu, Lurie, and Shrauner.

Let us begin by recalling certain definitions from (I). 
We denote by J\A the strangeness-conserving weak 
axial current. By partially conserved axial-vector 
current we mean the hypothesis that

then

« 1. (2)

dxJxA =  -
^ W A V ( O )

~~gJcHKr(o)
(i)

Here M N is the nucleon mass, M ,  is the pion mass, 
is the 0-decay axial-vector coupling constant 

[Лч^ЧО) ~  1.2X lO-5/ ^ g r  is the rationalized, re
normalized pion-nucleon coupling constant (g^/Ar 

14.6), and ф,  is the reDormalized field operator which 
creates the jr+. The quantity K NN*(0) is the pionic form 
factor of the nucleon evaluated at zero virtual pion 
mass; K NNt is normalized so that K NNr( —M 0 = 1 .  
In order to give content to the definition, we must 
specify properties of the residual operator R. We 
suppose that for states (p (p r) \ and ]a (£ f)) for which 
<0|tf.|a)^O, and for momentum transfer near the one 
pion pole at — М ,-  [say, for — Mir‘ <  (pr — p ,)t < M wi']l 
the matrix element of R is much smaller than the matrix 
element of the pion operator term. In other words, we 
postulate that if (0|ф,|а)»^О and if | (pp— pt)"‘ \ < M w2,

[ v 2 M „ M TV * ( 0 ) / ^ . K ™ r (0 ) ]  | <01 ф* I a ) |

In what follows we derive equalities which hold 
rigorously if the residual operator R  is zero. I f  R  is not 
zero, but satisfies the inequality of Eq. (2), the “ equals” 
signs should be replaced by “ approximately equals' 
signs.

It will be helpful to introduce a number of abbrevia
tions and definitions. We denote by k the momentum 
transfer pr—pi. Let us introduce the isotopic vector 
quantities J\Aa, <t>.° (e=  1, 2, 3), in terms of which

Л 4 ” 4 ( Л "  +  * Л * ) ,  Фш =  ( l / v 2 )  (фг1+  гфт2)  • (3 )

We denote the product g, K NN'(0 )  by g,r>,(0). Then 
the generalization of Eq. (1) to all three isospin compo
nents Jx*" is (neglecting R)

(0 )/яг"Ч 0 )Ж » . W

It will be convenient to introduce an isospin notation 
for the 2 and for the 3 analogous to that for the nucleon 
N. We introduce isospinors and isospin column vectors 
as follows:

- 0 -

•1- 0 1 •
1 1

2 +-> — i , 2 » - » 0 . 2 - - »  — —i
V2

.0 . .1.
V2

. 0  .

(5)

• Junior Fellow, Society of Fellows.
■Stephen L. Adler, Phys. Rev. 137, B1022 (1965). We will 

refer to this paper as (I).

By и-i or « I  we will mean the ordinary Dirac spinor for 
the hyperon, multiplied by the appropriate isospinor 
or isospin column vector. Let t “  denote the usual Pauli 
matrices, and let tNa, <s“, and (Ia be the matrices 
defined by

tN‘  =  ts° ~ T‘ , (6)

(?)

Then we may write the baryon matrix elements of J\A° 
and of •/ ,"= (—□  +  М ,5)ф,“ as follows. (We omit the 
induced pseudoscalar terms in JxAa, since these are 

В 1638
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treated separately in the derivation below. See Refs.
4 and 6.)

(B (p F)\JS°\B (pr) )

=  ( -------------1 й в  {pr)gABy \ y ^ B°uB {p i ) ,
'  pro pro I

(B {pF)\Jt‘ \B{P l))

^ M b M b\'*

\ PF0 pi о /
йв(ре)1£гтВУь1Ваиа(рг).

M „gAN(0) MzgAZ(0) М 2елЦ0) 

grTN(0) gSz(0) g r'sm

lira  </3C/> )̂out | | or (/-/)*"> 
rr~*l

ж; 1Г

ч.\ Л  qX

(8)

Неге В denotes N, 2, or S.
Using these definitions of the coupling constants, and 

Eq. (4), it is an easy matter to see that

(9)

Equation (9) will permit us to eliminate the axial- 
vector coupling constants gAN, gAZ, and gAz from the 
consistency conditions obtained in the next section.

I. DERIVATION OF CONSISTENCY 
CONDITIONS

We take the matrix element of both sides of Eq. (4) 
between states (0(£?)о" ‘ | and |a(^/)iB), where fi and 
a are any systems of strongly interacting particles. 
This gives

Ы/80>р)ои,|Л^“|а(/>,)!">

= (2MNM sgi n m/gr' N(v m  (ре)™1\Ф,л<* (p i)'"),

2MNgAN(0) М ,г 
----------- -------- ---- Л *  a (#/)“ ). (10)

gr' Hm  m s + v

Let us examine what happens in the limit as k —* 0 
(p p —* Pi)- The right-hand side of Eq. (10) in most 
cases approaches a finite limit, since

(ID

Fic. 2. Ways of attaching the proper vertex of Jy,A, represented 
by a heavy dot. The proper vertex can he (a) attached to an 
internal line, (b) attached to a terminating external pion line, 
(c) attached to a nonterminating external line.

is just the matrix element for

a —* j8+ (zero-mass, zero-energy pion) ,

and is in general nonzero.® Thus, the matrix element 
(0 (M o“*|Ajl‘‘ l«O>/)ln)must contain pole terms which 
go as 1/A, in order that the scalar product of k with 
this matrix element have a finite limit. Clearly, if we 
can develop a simple set of rules for calculating these 
pole terms, we can calculate (fi(р г )оМ| | <* (^r)'“)  to 
zeroth order in k.

Calculation of the pole terms in (fi (p r)0*1 j _ГхА“ | 
tt(^/)ln) turns out to be quite easy. Let us restrict 
ourselves to values of the momenta of the particles in 
a and in fi for which the matrix element (0°ut|aln) has 
no singularities. (The sort of situation we wish to 
exclude is illustrated in Fig. 1.) The renormalized 
matrix element for (0 (^r)ont| A A‘ I“ (£/)1") >s obtained 
as follows3: First we write down a complete set of 
irreducible or “ skeleton” diagrams for the matrix 
element. Then we make a series of insertions in the 
skeleton diagrams. We replace each bare propagator by 
the renormalized propagator, each bare strong-interac- 
tion vertex by the renormalized proper strong-interac- 
tion vertex, and each bare vertex where J\A acts by the 
renormalized proper vertex of J\A.* We can divide the 
diagrams so obtained into three categories, according 
to where the proper vertex of J XA is attached: (a) The 
proper vertex of J\A is attached to an internal line 
[Fig. 2 (a )]; (b) the proper vertex of J\A is attached to 
an external pion line which terminates [Fig. 2 (b )]; 
(c) the proper vertex of J\A is attached to an external 
line which does not terminate [Fig. 2(c)].

рг N

Fig. 1. The sort of situation which is excluded by the re
quirement that we avoid singularities of When 
=  — ?a),=  —M n*, the diagram illustrated is infinite because 
the nucleon propagator joining the two bubbles is infinite. Such 
infinities can anse in general from pole diagrams contributing to 
(0nnt1aln). (Pole diagrams are those which can be divided into two 
disconnected parts by cutting a single internal line.) We restrict 
ourselves in the text to values of tbe external four-momenta for 
which all pole diagrams contributing to (0°ut|a,B) are nonsingular.

5 Note that the value of the limit depends in general on the 
direction in which k approaches zero.

* Let us review some definitions. The skeleton of a diagram is 
ohtained by replacing all vertex parts by bare vertices and by 
omitting all self-energy parts from the propagators, so that only 
bare propagators appear. An irreducible or “ skeleton”  diagram is 
a diagram which is identical with its own skeleton. A proper 
vertex diagram is one which cannot he divided into two discon
nected diagrams by cutting a single interna) line.

4 Note that the dominant part of the induced pseudoscalar 
coupling arises from the diagrams which give the one-pion pole 
term in dispersion theory. These diagrams are improper when 
considered as haryon-A-4 vertices, and thus are not included in 
the proper baryon vertices of J\A.
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Corresponding to this division, wc can write 

(0 (М ои‘|*кЛ',*|аЫ 1”}
=  < 0 (^ )e'“ |*x/x', , M * . , ) i» ) INT

+Ф(рр)'‘°1\кх1^-\а(ргУ‘)*1™ 
+<РЦ>,У'‘Ч М хА‘ \сс(ргУ'‘)™ т. (12)

We now analyze in turn the contribution of each of 
the terms in Eq. (12):

(a) First let us consider the case where the proper 
vertex of J\A is attached to an internal line. Each 
diagram contributing to (/3(^?)“" ‘ | Jx'4|e(/’i ) ‘”) INT cor
responds to a diagram for (/3“°l |ain), but has an addi
tional internal propagator. The requirement that

a’*) be nonsingular means that all internal 
momenta are either integrated over or are off the mass 
shell. Thus the additional propagator cannot give rise 
to an infinity as k —* 0, and we conclude that 03(pp)outl 
JfexAx |e(^r)"*)INT is of order A.5

(b) The sum of all diagrams where the proper 
vertex of J\A is attached to a terminating external pion 
line is proportional to

0зо>р)” ‘ |J s l* (# i)ta) [ i / ( * 4 - . * ) > * I л л“ Io ). (13) 

Using Eq. (4) to evaluate (ir*|Jx'1°|0) gives the result

{6 (M °u4**A ',°|a(^)i°)PI0N

diagrams may be divided into two types, according to 
whether J\A changes or does not change the mass of 
the external particle.7 The only case where the mass is 
changed is that where J\A changes an external 2 to a A 
or an external A to a 2. Both of these cases make a 
contribution to ф {рг)ол11 kxJxA° \ a (£/)'“) EXT which is 
of order k, since the propagator which follows the 
proper vertex of J\A behaves as ( i f j 2— as 
k —>0, and thus is nonsingular. Finally, we will show 
that the diagrams where J\A is attached to a non- 
terminating external line, and does not change the mass, 
are of order it-1. Insertion of J\A into a pseudoscalar 
meson line is forbidden by parity; insertion of J\A 
into а Л line is forbidden by isospin. Thus, we need only 
consider insertions of J\A into external N , 2, and 2 
lines. The contribution of the insertion of J\A into the 
line of a final baryon В of four-momentum ps is

/Mbs1'1 1
( ---- ) й в ( р в ) е л в ------------- ----- 34. (15) 
\ р в о / ----------------------------- Р в — h — i M  в

Here ЗП is the matrix element for the process a —* P, 
with the final baryon В virtual. Since рвг— — M b1, 
the propagator can be written as

1 Р в - к + Ш в

рв—k—iM  в ~ 2  pB-k-^-k1
(16)

k '+ M S  g ,'* (0 )
-№ (р г )° *и * ‘ \*(р1Уп)-  (14)

This is of order k1 and may be neglected.8
(c) We next consider diagrams where the proper 

vertex of J\A is attached to a nonterminating external 
line. (We restrict ourselves to external lines of particles 
in the pseudoscalar meson or baryon octets.) These

* We assume, of course, that none of the proper vertices of J\A 
have a singularity as k —• 0.

‘  These diagrams form the dominant part of the induced pseudo
scalar coupling. A  statement much stronger than that they are 
of order t '  can he made. Referring to Eq. (10), we note that the 
right-hand side may be written

(2 -if^u ''(0 )/ jr' ' ,' ( 0 ) ) [ l—i 1/(£ '+ А/, ')](£  ./,*|„ (p i)^ ).

The part of this proportional to ^ / ( f + M r>) aacily cancels the 
contribution, given by Eq. (14), of the diagrams where J\A is 
attached to a terminating external pion line. Now 
has the property

lim lira *•/(*»+.«.*)-1. 
lim lim * V ( J H + A f ,«) = 0.

whereas the terms in Eq. (12) labeled IN T  and E XT are in
dependent of the order of the limiting operations:
Um Jim <0(#r)I"|*»A'‘*l<i(#;)l,,) I’" ’“ IT

*»Ug .fan (gClr)*"'!*^^!*» IfrW 'КТ.1ХТ

Hence the exact cancellation of terms proportional to 4*/(4*Ц- M wl) 
means that the limitj as Af ,*—» 0, of the consistency conditions 
of Ea. (24) is identical with the consistency conditions which 
would he obtained in a theory in which the pion mass was set 
equal to zero at the outset. Note that by virtue of Eq. (4), in 
such a theory the axial-vector current would be exactly conserved.

showing that there is indeed a singularity as k —i► 0. To 
lowest order in k, we can neglect k in calculating ЭТС 
and can retain only the term of order k~' in Eq. (16). 
Thus, the insertion becomes

/J fj\ 1B p B-\-iM в
---- ) йв(рв)£АВУ\ — ~3It( f e=0)  .

'/>во/ —2pB k
(17)

Calculating 311 with Jfe =  0 means that we keep the final 
baryon В on the mass shell. Furthermore, рв~\~*Мв' s 
just the positive frequency projection operator for B, 
with the property

[рвЛ - iM  b)P b — ( p a + i M  b ) » M  b - (18)

Let us denote by 9Tle the matrix element obtained by 
bringing all рв in3TC(£ =  0) to the left and replacing them 
by iM  в. Then the insertion becomes, finally,

/Мв\'1* Рв+ iM s
I --- ) йв(рв)£лвЧ\'Г4в*

— 2 pB k
3Tle. (19)

'  p  Я0/

The crucial point is that

</3°" (2x)«tf (* . ,- j> 7)3TC(a-> (3) , (20a)

,'М в\1П
-*3 Il(a -> 0 ) =  ( -----]  й в (р В) Ш ‘
_______  '̂ва/

(20b)

TWc are neglecting the electromagnetic interactions, so all 
particles in the same isospin multiplet are of equal mass.
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is just the malrix dement which describes the strong 
process a —»/8, with all particles on the mass shell. Thus, 
3TI* can be measured experimentally. Similar arguments 
show that the insertion of J\A into an initial baryon 
line gives

M B\ 1/2 р в + Ш вp V  * •
'  рва/

with
2 pB k

externa]
line*

Insertions

For external x, K, v, Л, the insertion is zero. For 
external N, 2, S, denoted by B, the insertions are

final B:

Лв(рв) ■ 

initial В : 

ив(Рв) —

2И в

рв+iM яГгг1Я(0)
lpB k L 2Mi

(0 ) ~]pB^iMa
■fry ---------- (25a)

J - 2  p B - l-2pB-k

(2Sb)

These rules are the generalization to arbitrary processes 
of the consistency conditions derived in (I). It is an 
interesting fact that these rules are just what would be 
obtained if the effective pion-baryon coupling for pions 
with four-momentum near zero were pseudovector 
rather than pseudoscalar. This intimate connection 
between PCAC and gradient coupling theories was first 
noted by Feynman.*

As an illustration of the above rules, let us consider a 
special case. Let a be a single nucleon of four-momentum

• R. P. Feynman, Proceedings of the Aix-en-Provence Inter
national Conference on Elementary Particles (Centre d'Etudes 
Nucl£aires de Saday, Seine et Oise, 1961), Vol. П, p. 210. I  am 
very grateful to Dr. M. Veltman for calling my attention to this 
reference and for emphasizing the connection between PCAC and 
gradient coupling of the pion.

p i and any number of pions; similarly, let 0 be a single 
nucleon of four-momentum pi and any number of 
pions. Then we may write

^лвУ\Уь1Ваив(рв ), (2 1 )

- Ж ( а^ р )= (м в/рва)''*т’‘ив(рв). (2 2 )

To sum up, we have analyzed the behavior of each 
of the terms in Eq. (12). Let us collect the results 
and write

(2 M NgAN(0)/gr*N(0 ))(P (p ,)°at\Js\a(pry n)+O (k*)
=  0 (k )+0 (k> )

+  X! pnsertions in — »ЭГС(а —>/S)]+0(£). (23)

The three terms on the right-hand side of Eq. (23) refer, 
respectively, to the internal line, the terminating 
external pion line, and the nonterminating external 
line insertions of Jy*. Multiplying through by gr'-^O)/ 
[2MNgAS (0 )] and using Eq. (9) to eliminate the ratios 
gAZ(0)/gAN(0) and ц « (р )/ * ,* (0 ) in terms of strong- 
interaction coupling constants leads to the following 
set of rules:

=  0 (J f e ) +  £  ' n — ‘ ^ ( a -1 >/3 )J . ( 2 4 )

SJTC(a —*&) = (M нг/ Рк1ри>У17йн (pi)yRurf(pi). 

According to the rules derived above, 

(0(/>г)О1,,|/г*|а(/.,)‘">

/ М ^ У ' 5 irgr'^O)
=  0 ( * ) - [ -------] id v (* ,) --------  •

10̂ 20'  IL 2M n

(26)

-fcr.T-

- —2 p ^ 'k J L 2p\- k  J 
-*л"(о)r«rlWC0 ) -11

X ------- куы“ tt(#i).L 2Mn Jl (27)

It  is easily seen that Eq. (27) is equivalent to the 
“ chirality conservation” formula obtained by Nambu 
and Lurie* in a theory in which the pion mass is zero 
and in which the axial-vector current is exactly con
served.1 Nambu and Shrauner10 and Shrauner11 applied 
Eq. (27) to the case when a, fi =  r + N  and found possible 
consistency with experiment. A simpler case was studied 
in (I), where we took a = N , 0 =x *+W . In this caseSD? 
is just the pion-nucleon vertex ig,тьу( and ((x^V )ol,l| 
7»*| N '° ) is the pion-nucleon scattering amplitude. 
Introducing the usual pion-nucleon scattering-energy 
and momentum-transfer variables v and vB,

p\k=—M N{v—vB),
p i - k =  — M n ( v-}-vb)  , 

we get from Eq. (27)

(28)

/ М ы ''ш 

'piopia
— ) * * » • № * №  
iopia'

Г  т *т *  t “ t *
-b *---- Bat— iR—

M n 2Mn\-vb—v *’s+>'-
«лг Ы .  (29)

(30)

The term (gS/Mц)Ьаъ leads to the consistency condition 

i4*w‘+>(* = 0 , yB*=0, ^  = 0 ) gS 

K " " ' (  0) ~Mn'

which was discussed in detail in (I).

П. MODIFICATION IN  THE PRESENCE OF
THE ELECTROMAGNETIC INTERACTIONS

It is interesting to see how the rules derived above are 
modified when the electromagnetic interactions are 
taken into account. Since isotopic spin is not a good

• Y. Nambu and D. Luri£, Phys. Rev.^l25, 1429 (1962); Y. 
Nambu and E. Shrauner, ibid. 128, 862 (1962). 

ie Y. Nambu and E. Shrauner, Ref. 9.
11 E. Shrauner, Phys. Rev. 131, 1847 (1963).
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quantum number in the presence of electromagnetism, 
we will work only with fields and currents with definite 
charge transformation properties. Thus, we replace the 
three equations contained in Eq. (4) by the equations

where

ЗкЛ‘,ш = Сфг'± ),

J\A !±)= i  , л лИ1= Л - " ;

Ф.“ -М /Л)Г*.,Тэ#Л, Ф.(0)=Ф.3; 

—i \ f l M f / M T, g A N (0)

(31)

(32)

c=-

[The superscript ( ± )  refers to the charge destroyed.]
It  is shown in the Appendix that to first order in the 
electric charge e (e>0), the modification of Eqs. (31) 
in the presence of the electromagnetic interactions is

(ax=Fi^0 A * c±,=C<*,.<±\

0)=V2C<*,'«. (33)

As is customary, A\ denotes the electromagnetic field. 
Since all electromagnetic corrections to masses and 
coupling constants are of second order in e, questions 
such as whether to use the charged or neutral pion mass 
in computing С do not arise.

Equations (33) permit us to state a simple set of 
rules for computing (up to terms linear in the four- 
momentum of the added pion) the matrix elements 
(0°"‘ |/,<±°’ | (ory)la), where a and /3 are any systems of 
strongly interacting particles and where the initial 
photon -y may be real or virtual. The terms 
in Eqs. (33) give rise to insertions into the external 
baryon lines of—ЙТ1(а7 —> 0 ) identical with those of 
Eq. (25), apart from trivial changes in the isospin 
factors arising from the use of fields and currents of 
definite charge. In addition, we must add to{j3out| / ж(± )] 
(07) ' “)  the term

± «g r ’ * (0)

0)

arising from the term AxJ\M±) in Eq. (33). Using the 
standard reduction formulas, we find to lowest order 
in e that

<0°'“ M  l (у)Л-*(±> (у) 1 (cry)1*) 

exp(i*’ -y)

and Shrauner,’  who also discuss a detailed application 
to the reaction e + N  —» e + ^ + x .
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A P P E N D IX

We give here a fairly general treatment of the way 
in which divergence equations of the form

dJx=D  (A l)

are modified in the presence of electromagnetic interac
tions. We state the result in the form of a theorem.11

Theorem. Let be the unrenormalized fields of 
particles of charge Let us consider a strong interac
tion theory with the Lagrangian where 
[ф) denotes the set of the ip,. Let J\ be a current with 
definite charge transformation properties (charge e j ) 
derived by making an infinitesimal gauge transforma
tion on the fields \f>, in the following manner13:

£ -► £ '= £ [{* '}, {3 .* '} ] .  <A2)
■/>=[ 6£ys(dxA)]i_<i.

Then,
(1) In the absence of electromagnetic interactions 

the current Д  satisfies

3Jx=D , (A3)

with J\ and D both functions of the 1 and the д.ф, only:

Л - Л С М .
B = 0 [ W , { ^ ) ] .  (A4)

(2) Inclusion of the electromagnetic interactions, 
with minimal electromagnetic coupling, changes Eqs. 
(A3) and (A4) to

Ох-«/Лх)Л[{*}, О г .»В Д >, К ) ] .  (AS)

where denotes the quantity (Э,— ie,A ,)ф,-.
Proof. We proceed as if the fields were classical 

quantities, ignoring questions of commutation and 
anticommutation. Let us first consider the case when 
there are no electromagnetic interactions. The Lagrange 
equation of motion for the field ф,- is

(2fe0' ) ,/J
к "> , (35)

where k‘ is the four-momentum and <> the polarization 
four-vector of the photon 7 . Equations (33), (34), and 
(35) allow us to calculate the matrix element for the 
emission of a zero-energy, zero-mass pion in photo- and 
electroproduction reactions. They are equivalent to 
the formalism derived for this purpose by Nambu

«£  S£
------Э.---------. (A 6)
Sif/j S(d^j)

Under the gauge transformation

_________  Л - * Ф / = Ь + Л Р Ц Ф )1 ,  (A7)

111 am grateful to Professor S. Coleman for assistance in proving 
the theorem.

11 M. Gell-Mann and M. I-6vy. Nuovo Cimento 16, 70S (I960).
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the derivatives djpj and the Lagrangian £ change 
according to

d j / j  - *  д ,ф , '^ д ,ф ,+  ( d ,\ )F j+ A  (a ,F ,) , 

=  £ £ { * + № ) ,  [ d J + ( d .h ) F  
+ A (d .F ) } ] .  (A8)

From Eq. (A8) we find for the first variations,

The first variations are

5£'
— = L
ЙЛ i

S£' -| 
d,F; I ,

m  щ . ’Ы )  J

i£' «£'
(A9)

«(ахл) s

Eq. (A8) also implies that 

■J£ 'l J£ Г 4£'

[
&£'~l J £  Г  i £ '  "I i £

— ------ , ------------------------ (A10)

^/J*-o 4 i  L«(ax̂ /)JA-o Щ*Ф,)H W i)

Together, Eqs. (A6), (A9), and (A 10) imply that

4 — 1Lj(dxA) J a- o1 - Г - 1  •J a- o L 5 A Ja_o
(A ll)

We define

J\ — [ 5 £ '/5  (3xA )]a-o  , 

Z?=[W'/«a]a-o;

э,-
&£l 6£E

-ie jA .-
S£l

TTjw 
£ EH -

8£ЕИ' ГЛ£ЕМ' i£ E
- = Z i ----- —Fr\------- -(d,Fi~iejA,Fj)  I ,

5Л j  L 5?rje J

i £ E" ' Г5 £ Е“ ' ~\

(A17)

«(ax  a )

Using the Lagrange equation, Eq. (A15), we see that

ra£E“ -riJCE“ '
aJ, 1 -Г— 1Lj(dxA)JA-o L 4Л J a_o

(A18)

(A 12)

these are clearly functions only of the {Ф J and the 
{д,Ф\-

Let us now turn on the electromagnetic interactions. 
According to the hypothesis of minimal electromagnetic 
coupling, the Lagrangian is modified according to

£ - > £ * *  =  £ [ { * } ,  { , - . } ] + £ * » ,  (A13)

where £ EM0 is the kinetic Lagrangian of the electro
magnetic field A . and where *■,„ is (д .—iе,А.)фл. The 
new Lagrange equation for the field ф, is

(A 14)

Let us henceforth treat ф,- and т,,, rather than ф, and 
д.ф}, as the independent variables in taking the varia
tion of £ EM. Then the Lagrange equation becomes

(A15)

Now let us make the gauge transformation ф{—*ф/ 
= ф ,+  AF,. The quantity t>. and the Lagrangian £ EM 
change according to

-*■ TTjJ =  itj.—icjA ,A F ,+  (Э„Л)F ,+ A  (a «F ,),

£ Е“ ' = £ [ {Л , {О ] + - С Е“ 0

=  £ [{^ -|-A f ), {it,—ieAaAF
+  (a .A )F + A (a .F )) ]+ £ EM“. (A16)

Let us make use of the fact that the current J\ has 
definite charge transformation properties. Since i£/ 
Ь(д\ф,) transforms as a field with charge — e,-, Eqs. (A9) 
and (A12) tell us that Fj must transform as a field 
with charge ej+ej. Thus,

F & i ехр(ге,0, Фг ехр(гег1), • • •]
=  exp[t(ey+ e j ) / ] F £ ^ 1,^,,- • (A19)

Taking the first derivative with respect to t gives the 
identity

(«у+ « j )F j . (A20)

Consequently, using a„Fj=£i(5,FJ/5^[)d„0!, we obtain 

d.Fi - i{ .e i+ e J)A  (Э. —U iA M i

= I i ( 8 W k .  (A21)

In other words, S .F j—i(ej-\ -ej)A .F j is the same func
tion of {^ },  { * , )  as d,Fj is of {^ },  { d j ) .  Hence, by 
comparison of Eq. (A17) with Eq. (A9) it is clear that

[ «£ EM7a(axA)]A_o=/x[{^}, { * . } ] ,
£ i{p £ E“ '/^/]4_0F)+ [5£E“ VSTj„']A_ 0

X [a .F i - i (e ,+ « y )J4 .F j )= I ? [ {^ } ,  (п .П .  (A22)

Thus, Eq. (A18) can be rewritten as

( а х - й ^ О Л ЦФ), { * . » £ ! » ,  { * , ) ] .  (А2з)

This completes the proof.
Equation (A23) involves unrenormalized quantities 

throughout and is exact. In the case of PCAC, as con
sidered in the text, D  — C ^ r, where the superscript on 
C“ denotes that it is unrenormaJized. It  is trivial to 
pass from Eq. (A23) to Eq. (33) of the text, which 
involves only renormalized quantities, if we work to 
lowest order in the electromagnetic coupling e: All 
electromagnetic renormalization effects are of second 
order in e and may be neglected. All strong interaction 
renormalization effects are contained in the ratio C/C“, 
where С is the renormalized constant appearing in 
Eq. (32) of the text.

157
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Excerpt from S. L. Adler and R. F. Dashen, Current Algebras and Applications to Par
ticle Physics (W. A. Benjamin, New York, 1968). Reprinted by permission of Pearson 
Education, Inc. publishing as Pearson Addison Wesley.

A P P E N D I X  A

W e give here a detailed discussion of the chirality 
method fo r deriving pion low energy theorems. We first  
consider a partially -conserved axial-vector current; we
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then briefly show why the m assless pion, conserved ax ia l- 
vector current case considered by Nambu and LuriS  
[P aper 5] gives the same answers. We recall that the 
“ chirality”  x(t) is defined by

x(t) = / d 3x[ff f° (x) + iff|° (x)]

= F f (t ) + iF|(t) (A . l )

and from  Eqs. (1.93) and (1.100), its time derivative is

dx(t) = ^ M N M^ A  f d3 x ф^ 
dt gr  (0) J

72-MN M ^gA  

■ ^ -  (A -2) 

К we define x °ut and xin by

Xout = И т  x(t), Xin = lim x(t) (A.3)
t —■►oo t —̂ — oc

integration of Eq. (A .2) from  — °° to <*> gives

X°ut -  хШ = [V2M Ng A /gr (0 )] J d 4x M p $ r  

= [V2'MN gA /gr  (0)]

X / d4x ( C ^  + М ^ Ф ^ .

= [ ^ M N gA /gr  (0)] / d 4x (A.4)

(We have used the fact that / d4x = 0.) Taking the
matrix element of Eq. (A .4) between states (/3(q2)j and 
| a  (q l )) we get*

159

* Again, we suppress the labels “ out”  and “ in”  on the states.
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(q2) I xout -  x in I« (q i )) = [V2MN gA /gr (o)1

x Jd4x e ^ a - 4i ) 'x 

x (/3 (q2) | J-jj-- (0)1 a (q: )>

Clearly, the right hand side of Eq. (A .5) is the matrix e le 
ment for the emission of a pion of zero four-momentum in 
the process a  — 0. We w ill now show that the left hand 
side of Eq. (A .5) can be expressed in term s of the S -m atrix  
element (0(q2) I a (Q i)) describing the process in the ab 
sence of the soft pion.

To see this we must determine the effect of x °ut in Eq. 
(A .5). {The discussion for x*n w ill be sim ilar.) W e know 

that (i) x °Ut is the space integral of a local operator,
(ii) x0ut is time independent [oscillatory terms in x(t) 
vanish in the limit as t -  » ] .  Let us suppose that xout 
can be written in the form

where (P is a (possibly infinite) polynomial in the “ out”  
fields of a ll particles present. Consider a term in 6* 
coming from  the product of N “ out”  fields. It has the 
time dependence ex p (-if it ), with

= [ ^ M N gA /gr  ( 0 ) ]

X (2тг)4 64 (q2 -  qx)

x  ( M q 2)l  J _(°)| « (q2)) (A -5)U

x °ut = / d 3x (P [ {$ out} ] (A. 6)

(A .7)

with € j -  ±1 and with the momenta p- constrained by the 

x integration to satisfy
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N
£  Pi = 0 (A .8)
j= l J

К no zero mass particles are present, it is easy to show 
that the constraint of Eq. (A .8) implies that П vanishes 
identically if and only if N = 2, = M2 and ti = - e 2 .
In other words, time independence requires that xout be a 
bilinear expression in the “ out”  fields and their ad joints 
of the form

+ Z ) / d 3x $ out(-^ (x )t o | ') $ ° ut^ ) (x) (A .9) 
j J

The superscripts (+), ( - )  indicate respectively the positive, 
negative frequency parts of the “ out”  fields; the sum ex
tends over a ll stable particles.

The matrices о Ф  are  determined by (iii) Lorentz co 

variance and parity (x °Ut is an axial-vector charge),
(iv) isotopic spin (xou* is the isospin raising member of 
an isotopic triplet) and (v) the asymptotic definition of xout 
as lim  x(t)- For example, (iii) and (iv) require that the

t —»0O
nucleon term in х °Ш have the form

g<+) / d > x y ° u t(+W r sC t<+)«

= g (+) / d3x ^ Ut'+* (x) T t y ° y 5 (x) (A.10)

To determine g ^  we use (v), which states that

lim  <p(q2 ) | x(t) I n (q ,)) = (p (q2 ) I X°Ut I n (qt )) (A . l l )  
t — °0
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The matrix element <p(q2) | x(t) I n(qt )) is actually time in 
dependent, because the n and p have equal m ass; using  
Eq. (1.92) to evaluate it gives for the left hand side of Eq.
(A .11)

/ М 2 -\1/z
ш )  y 'U > S A ’/W 4 l K 2 .)s 5’ (<J2 - 4 l ) (A .12)

while Eq. (A. 10) implies that the right hand side of Eq.
(A .11) is

( jyj 2  ̂1/2

I p (q 2 )B<+ )r V , u n (q ,K 2 n )» «> (4 , -  4 . )

(A .13)

Hence g (+) = gA , and

X0ut = gA J d = x ? “ u l (t> ( x ) T . / n *?,U,<t)W

+ negative frequency part 

+ term s for other particles (A .14)

C learly, the effect of x0ut on an outgoing particle is to 
give back the same particle, with the same momentum, but 
with changed spin and isotopic spin. The expression for x*n 
is obtained by replacing all labels “ out”  in Eq. (A .14) by 
“ in.”

Using Eq. (A .14), we can evaluate the matrix element 

(0(q2) I X0ut I a ( q j )) in term s of <3(q2 ) | a  (q j )). Eq. (A .14) 
instructs us to form  a sum over “ insertions”  in the lines 
of all outgoing particles in (|3(q2) |. If we write ф  \ = |
the contribution of the particle  ̂is



R7

144 C U R R E N T  A L G E B R A S

[ O l x o u t l « ) L

= [<c, . . .|xoutl«>]
С

г d 3 q r'
J I(2 It)

spin, isospin 
of C'

X <Cl x 0 u t | r > < r , . . . | a >  (A .15)

and the total matrix element is

03|xOutl « )  = £  № l x ° Ut | « ) ] -  (A . 16)

Let us illustrate with the case of a final nucleon line. We  
write

(0 (q 2 ) I Of (q, )> = a  + (2ff)4i 64 (q2 -  q j T ( a  -  (3) 

/ M N \ ^  -

T (a  -  /3) = ( ^ j  i ^ N ^ N ) 311 (А Л 7 >

Then the contribution of the final nucleon N to 

</3(q2) l  X°U t i a ( q , ) >

is *

/ м ы\ -  
(2ir)4i6 4(q2 - q . )  - j -  i  uN (qN )gA  t + y °  y 5

V N /

^N + M N ^

24°n j3TI (A .18)

163

*T o  com pare Eq. (A .18) with Paper 6, which uses the Pauli 
metric, replace «fN in Eq. (A .18) by See the introductory
rem arks about m etrics.
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that is, the effect of x °ut is to cause the insertion
/  i  + м  \

uN (qN) -  UN(qN ^ А т+ J (АЛ9)

in Eq. (A .17). Comparing with Eq. (A .5), we see that the 
contribution of the final nucleon N to (fi | \ a )  is

iN(4N)S T*/ ^ ( ^ r L)3,l(A-20)

The total expression for (fi \ | a ) w ill be a sum of term s  
like Eq. (A .20) for a ll outgoing particles in (/31 and a ll in 
coming particles in | or).

Now let us briefly  discuss why Nambu and Lurig  get the 
same insertion rules in the m assless pion case. According  
to Eq. (A .2), when М я = 0 the chirality is conserved,

dxM f  = 0 

dt
= 0 (A .21)

which im plies that = q _  *Мтг = 0 = S°  the term  
proportional to J d3x J^. in Eq. (A .4) is no longer present. 
However, when the pion is m assless, the asymptotic chi
rality x °Utj iR addition to containing the bilinear terms of 
Eq. (A .9), w ill also have a time independent term  propor
tional to I  dax(0/8x°) (x). This term expresses the 
fact that emission of a zero four-momentum pion is a 
p h y s ica l  process, not a virtual process, when M^ = 0. 
[The {э/эх °) is necessary in order to have the space in 
tegra l of the time component of an axial-vector.] It is 
easy to verify that

 ̂out _  ̂out " ^ ^ N ^ A
*M ^ = 0  ^bilinear gr (0)

x J d 3x (9 / 9 x ° )$ ^ t (x) (A .22)
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and s im ila r ly  fo r  Hence x£ * . 0 -  „  -  0
im plies that 7 '

{ ^  ( Q a ) 1 X b ilin ea r "  C l i n e a r  I » ( < « . »

= [ ’/?"MN gA/gr (0)]

x  [0 ( q 2) I / <33х (э / э х ° ) Ф°!!1(х ) | a  (qj )> 

-</3 (q2)| /с13х {з / э х ° )Ф ^ (х )|  « ( q j ) ]  {A .23)

The matrix elements on the right hand side of Eq. (A .23) 
are easily evaluated,

-< £ (q 2 ) I f d 3x (d /d x ° ) Ф“  (x ) | c^Cqj)) 

= <|3(q2 ) I ./^Зх (э/эх0) ф £ ^ ( х ) | а ^ 1 )> 

= [(0  | / d 3x (a / 9 x ° ) Ф °^1 (x) | я-  (q)>]

X {  <7Г“ (q)|3 (q2) I O’ (qx )>}

= / ( | ^ 1 ( 2 я ) 3 63(q )(2 q ° ) ' 1/2 ( - i q ° )] 

x  {(27г)Ч  б4 (q2 + q -  q 1) ( 2 q ° ) - l/a 

x  0 (q 2 ) I (0) | o- (q, )>}

= |-(2Д)4 б4 (q2 -  q, ) ( f i (q2 ) | (0) | о (q , )) (A.24)

so that Eq. (A .23) becomes

(|3(q2) I XbiUnear -  ^b ilinear 1 “ (q i^

= [V2M N gA /gr (0)](2tf)4

x  6 - (q 2 - q l )<8(q1)| J jr. ( 0 ) | a ( q 1)> (A .25 )

This leads to the same insertion ru les as were obtained 
from  Eq. (A .5).
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CALCULATION OF THE AXIAL-VECTOR COUPLING CONSTANT RENORM ALIZATION IN  /3 DECAY

Stephen L. Adler*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 
(Received 17 May 1965)

1. Introduction. —We have derived a sum rule 
expressing the axial-vector coupling-constant 
renormalization in P decay in terms of off-mass- 
shell pion-proton total cross sections. This 
Letter briefly describes the derivation and gives 
the numerical results, which agree to within 
five  percent with experiment. Full details w ill 
be published elsewhere.

The calculation is based on the following as
sumptions:

(A ) The hadronic current responsible for Д5 
= 0 leptonic decays is

, _  , r V I  V2 
+lJx

A1
iJ

A l,
(1)

(B) The axial-vector current is partia lly con
served (PCAC),3

Aa .  t! HA a
A A '  ^ v

(3)

grK (0 )

where g r  is the rationalized, renorm alized 
pion-nucleon coupling constant (,sy2/4ir = 14.6), 
K ww ,(0) is the pionic form  factor of the nucle
on, normalized so that / )  = 1, and 
<fî a is the renormalized pion field. A c c o rd in g ^  
to Eq. (3), the chiralities x*(0  = Sd^x(Jt  ̂
satisfy

where G y  is the Ferm i coupling constant (G y  
= 1.02x 10" V M j/ ).1 Here JxVa = :t/-Nr x|T«

is the vector current, which we as
sume to be the same as the isospin current,2 
and JxAa -  : ф ^ у 5?таф^* •• •: is the ax ia l-vec
tor current. Since the vector current is con
served , the vector coupling constant is unre
norm alized. The renormalized axial-vector 
coupling constant g A is defined by

(N (q )\Jx \N(q))

= ^ ^ / я 0)Су йыШ у х V 5>T+«y<7). (2)

d & M  M  2g
± , . >  л  «  л  f  ."5

- X  V I - --------- T f r r ------- j d  X V * .
dl

(4)

М /С (0)

(C) The axial-vector current satisfies the 
equal-time commutation relations

I J * a (x ),J 4Ab _ Vo = 6(x -y  )U ahCJ AVC (x ). (5)

This implies that the chiralities satisfy

1х+ (Л ,х - (П ] = 2 Л  (6)

where Is is the third component of the isotopic 
spin.

Copyright © 1965 by the American Physical Society. Reprinted with permission.
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The assumptions (A) are the usual ones for 
the leptonic decays. The additional hypotheses 
(B) and (C) are both necessary to obtain the sum 
rule for g A . The hypotheses (A )-(C ) are mutual
ly consistent, in the sense that there is a renor- 
malizable field theory (the a model of Gell-Mann 
and Levy4) in which they are exactly satisfied.

2. Sum rule. -T h ere  are two essentially equiv
alent ways to derive the sum rule f o r ^ .  The

first is to use a method proposed recently by 
Fubini and Furlan.5 We take the matrix element 
of Eq. (6) between single proton states (/>(<?)! 
and Ip (q ') ) . The right-hand side gives

</>to)l2^l/>(<7'))=(2)r)s6 (q-q '). (7)

In the matrix element of the commutator we 
insert a complete set of intermediate states, 
separating out the one-nucleon term (to which 
only the neutron contributes):

Ы<7)1[*+(0, X (f)]l/>(<7')>

= | Z  J  4 ^ < P (^ X +(t)\n(k))(n(k)\X~{t)\p(q')) + £  <^(?)1х+(/)1Л<;1Г (0 !/>(?'»}-(Х+~ Г ) .  (8)
'spin j * N  '

The one-neutron term is easily evaluated using Eq. (2), giving

(2n)s6 (q -q 'te A 2( l - M N 2/702). (9)

In the summation over higher intermediate states we make use of Eq. (4), giving

V2 MNM ^ A

g  Km \ 0)
Y

(p(q)\j<Px (p J i)(,j\ !cPx  ifi _ lp (q ') )
- — ( i t  — IT ). ( 10)

7 * N  (*0 Qj0 >

From Eqs. (9) and (10), we see that there is a family of sum rules, with qe as a parameter. In the 
lim it as qD approaches infinity, a sum rule for \~gA ~ 2 is obtained. Let us assume that the limiting 
operation can be taken inside the sum over intermediate states in Eq. (10). It is useful to write this 
sum in the form

j *  N  M N * M n j *  N
INT

where q j is the total momentum and where “ IN T " denotes the internal variables of the system j. The 
invariant mass of the system j  is M j.  The integrations over x and qj can be done explicitly, giving a 
factor (2ir)36 (q -q '), and constraining qj to be equal to q. Let us write

/W in . I
( 12)

so that F j*  is a Lorentz scalar. Then using the facts that qjQ = (qQ*+ M f - M  and (<?o- ^;0^ * = ^ o  
+ )V (M ;2-M jyJ)2, the lim it of Eq. (10) becomes

Г * MH*A
u

(2i7)s6(q -q ')  f dWM W 
_________N

2 2 2
m , (w

|ис + (?0г + И/5- ^ 2)1/215
Urn { K ~ [W , tq -q  >‘ }-K*\W , *■]}, 

<?0 ~  <“°

(13a)

167
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with

К±[И/,(?-Ч.)2]= T, 6(W-M )M 4IF. I1. 
J i*N 1 * ,

IN T

(13b)

The lim it of the quantity in boldface curly brackets is 4, and the lim it ol the momentum transfer (q 
- q i  )* = —[g0—<i?02 is 0. It is easy to see that ЛС*(IV, 0) is equal to [ (Н * -М
х о 0± (И,) 1 where a ^ W ) is the total cross section for scattering of a zero-m ass ir* on a proton at cen
ter-of-m ass energy W. Thus we get the simple and exact result

4M
1- N 1 f

TT JlA

WdW

*A

r k +(W)-a0-(W )l (14)

Here о0± (И') is the total cross section for scattering of a zero-m ass ir* on a proton, at cen ter-o f- 
mass energy W.

The second method of getting the sum rule parallels the derivation from PCAC of a consistency 
condition on pion-nucleon scattering.* Using the identity

( d / d t ) < N ! T [ X° ( f ) x b (0 ) ] lN >  ={N\{x(t), х Ь (0 ) ] б « )1 Л О  + (N\T[{d/dt)Xa(Dx*(0 ) ] I N >  , 

and hypotheses (B) and (C), one obtains the relation

1 - 2
;C (0,0,0,0),

g

(15)

(16)

where

Here A and В are the usual odd-isospin pion- 
nucleon scattering amplitudes, v and Vft are 
the energy and momentum transfer variables, 
and M v* and M „^are , respectively, the mass
es of the initial and final pion.7 If G{v, •••) is 
assumed to satisfy an unsubtracted dispersion 
relation in the energy variable v , Eq. (14) fo l
lows from  Eq. (17). Thus, the assumption that 
the lim it (gn — °q) may be taken inside the sum 
over intermediate states in the method of Fu
bini and Furlan is  equivalent to the assumption 
that G (i/, ■•■) obeys an unsubtracted dispersion 
relation. There i6 evidence that the unsubtract-

О  If IT
(17)

ed dispersion relation for G(v,**>) is valid." 
Clearly, if a subtraction were required, the 
sum rule for g£  would be useless.

3. Numerical evaluation. —Because Eq. (14) 
involves off-m ass-shell pion-proton scattering 
cross sections, a little work is necessary to 
compare it with experiment. Let us split the 
right-hand side of Eq. (14) into the sum of three 
terms:

1
4V

1- — i = — —  (Я1+Я2 + К5),
g g

( 18 )

with

1 vJM d * N1 v’ v

(19a)

« , = -  Г° — lmG(v,-M J/ 2 , M  )
i  1Г J jy j  V  V

I  f ° °

V (19b)
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and

v VТГ j  ШЛ

dv
—  Im

The dominant term, Я,, involves only the phys- 
ical pion-proton total cross sections о . Nu
m erical evaluation gives®>“

g (v, o,m  м

(4 M „V ?  2)Я, =0.254. 
/V r  I

(20 )

The term й 2 can be calculated in terms of pion- 
nucleon scattering phase shifts, giving11

(4M jv.V^ ) « 2 = 0.155. ( 2 1 )

The term R ,, which describes corrections aris 
ing from taking the external pion off the mass 
shell, cannot be calculated directly from exper
imental data. In order to estimate this term, 
we assume that the off-m ass-shell partial-wave 
amplitude Fi j ] ( w J / )  is given by

Id I__________71 77

f  B (W ,M  M )
LJI 77 IT

■ f I W, M M  ). (22)
LJI ТГ 7Г

(Here / = orbital angular momentum, J= total 
angular momentum, and / = isospin.) The su
perscript В denotes the Born approximation. 
Multiplying the physical f j j j  by the ratio of the 
Born approximations gives the off-m ass-shell 
f l j j ,  the correct threshold behavior, and the 
correct nearby left-hand singularities. Gener
alized unitarity implies that the off-m ass-shell 
and the physical partial-wave amplitudes have 
nearly the same phase; Eq. (22), which gives 
them identical phases, approximately satisfies 
this requirement. Numerical evaluation of 
using Eq. (22), gives12

(A M j/ g  2R x  -0.061. (23)
N  Г A

It is possible that this number for /?, is correct 
to within 20 

Combining the three terms of Eq. (18) yields

theory
= 1.24. (24)

We have not attempted to make a detailed e r 
ror estimate.14 The best experimental value

(Of
(19c)

for g^  is '

e expt _ i  is  ± о 02. (25)

It is interesting that the region around the 
600- and 900-MeV pion-nucleon resonances 
makes an important contribution to the sum 
rule. If only the contribution of the (3, 3) reso 
nance is retained, we get the result g^  «  1.44. 
Thus, the (3,3) resonance does not exhaust 
the sum rule.

After completing this work, I learned that 
a sim ilar calculation has been done indepen
dently by W eisberger.1’

•Junior F e llow , Soc ie ty  o f F e llo w s .
'in  the Cabibbo ve rs ion  o f u n ive rs a lity  [N . Cabibbo, 

Phys. R ev . L e tte rs  10, 531 (1963 )], G y is  rep la ced  by 
cos 6Gy.

2R. P. Feynman and M . G e ll-M an , Phys. R ev . 109.
193 (1958).

3M . G ell-M ann and M . L ev y , Nuovo C im ento 1£, 70S 
(19G0); Y . Nambu, Ph ys . R ev . L e tte rs  4j 380 (I9 6 0 );
S. L . A d le r , Phys. R ev . 137. B1022 (1965).

‘ G ell-M ann and L £ vy , r e fe r e n c e  2. Th e view poin t 
that the com m utation re la tion s  o f Eq. (5) m ay hold e x 
a c tly  is  due to  G ell-M an n  [M . G ell-M an n , P h ys ics  
63 (1964)1.

sS. Fubini and G. Furlan , to be published.
6S. L . A d le r , re fe re n c e  3 and to be published; Y . Nam 

bu and D. L u r ie , Ph ys . R ev . 125. 1429 (1962); Y . Nam - 
by and E . Shrauner, Ph ys . R ev . 128. 862 (1962).

7In the scattering reaction irOb,)+£(?!)—■ тт(*2) +p(g2), 
the variables v, vg, MTl , and яте defined by v 
= - * 1* (? l+?2)/2Mw. VB=ki-k2/2Mff, СМл‘ )2 = - * 12,
Ш,л = -*22-

'F i r s t  o f a ll ,  the con vergen ce  o f the sum ru le  o f 
Eq. (11) su ggests that an unsubtracted d isp e rs ion  r e 
la tion  is  v a lid . Second ly, B. A m b la rd  e t a l., Phys. 
L e tte rs  10, 138 (1964), have shown that the physica l 
fo rw a rd  ch arge-exch an ge am plitude G (v  ,

sa t is fie s  an unsubtracted d ispers ion  re la tion .
It would be su rp r is in g  i i  th is resu lt  w ere  changed by 
the ex trapo la tion  of the ex tern a l pion m ass from  
to 0.

^Values o f <j ± from  0 to  110 M eV  w ere  taken from  
the sm oothed fit  o f N. P . K lep ik ov  a^.. Joint In sti
tute fo r  N u c lea r R esea rch  R eport No. D -584, 1960 (un
published ). F rom  110 to 4950 M eV  w e used the tabu
la tion  o f B. A m b la rd  et a l., Ph ys . L e tte rs  138
(1964) and p r iv a te  com m unication . A b ove  4950 M eV , 
we used the a sym pto tic  form u la  o ~ —a *=  7.73 mbx|J/

169
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(1 B eV / c ))-0 '7 given by G. von D ardel et ah , Phys. Rev. 
L e tte rs  8, 173 (1962). Th is  fo rm u la  g ives  a good fit 
to the experim en ta l data up to  20 B eV /c. Th e con tri
bution to  the sum ru le  of the reg ion  beyond 20 Bev/c 
is n eg lig ib le .

I0For the pion-nucleon coupling constant we used the 
value / l =£ r JM „7 l6 n A fN J = 0 .0a i ± 0.002, quoted by 
W . S. W ool cock, P roceed in gs  o f the A ix -en -P ro ve n ce  
C on ference on E lem en tary  P a r tic le s , 1961 (C .E .N ., 
Saclay, F rance, 1961), V o l. I, p. 459.

' ’ it is  convenient to w rite  Я 2 as a s ingle in tegra l o v e r  
pion-nucleon c e n te r-o f-m a ss  energy W t the integrand 
o f which is the d iffe ren ce  o f two te rm s. Th is  in tegra l 
is  sen sitive  only to  low -en e rgy  pion-nucleon s c a tte r
ing data, since the tw o te rm s in the Integrand cancel 
at high en erg ies . The number quoted in the text was 
obtained using R o p e r 's  Zm = 3 phase sh ifts (L .  D. R o 
p e r , Phys. R ev . L e tte rs  12, 340 (1964), and p riva te  
com m u nication ], truncating the in teg ra l at W = 11.20 
M i .  Th e in teg ra l is  dominated by the (3 ,3 ) resonances: 
Extending the in tegra l on ly o v e r  the (3, 3) resonance 
gave (4Mtf*/gr 2)R 2 = 0.166. A  th ird  ca lcu la tion , using 
sim p le B re it -W ign e r  fo rm s  fo r  the (3 ,3 ) and the 600- 
and 900-M eV resonances, and n eg lectin g  a ll other par
tia l w aves, gave [4MN 1/gr i )R 2 = 0.156. Thus, the va l
ue o f Д j  is  in sen s itive  to  ‘ ‘ co n tro v e rs ia l’ 1 featu res o f

R o p e r 's  phases, such as w h eth er the P u  w ave  r e s o 

nates.
l lTh is  num ber was obta ined u s in g  R o p e r 's  phase 

sh ifts , truncating the in te g ra l a t W -  11.20 M - ■ E x ten d

in g  the in teg ra l only o v e r  the (3 ,3 )  res o n a n ce  gave  
(4JWw 2/£r 2)R 3 = -0 .0 6 6 ; eva lu a tin g  the in te g ra l w ith  on
ly  B re it -W ign e r  te rm s  fo r  the lo w - ly in g  reson a n ces  

gave { Ш ц г/g r l )R% = —0.059.

lsT o  es tim a te  the a ccu racy  o f the m od e l, w e rep ea ted  
the ca lcu lation  o f R 3 w ith  the assu m ption  , 0 ,0 )

=flJI(W,M^,M1l)KNNl'(.0)2W 2-M N2)2l [(W2 -M s 2 +Mi,2)2 

- 4 W 2M ^2) , which includes on ly a th resh o ld  c o r r e c 
tion fa c to r , and a constant fa c to r  K ^ ^ v (0 )2 to  account 
fo r  the change in strength  of the n ea rb y  le ft-h an d  s in 

gu la r it ie s . Th e n u m erica l r e s u lt  fo r  (4 М ^ !/^г ! )К з  
w as changed by about 20% , to  —0.051.

uTh e varia tion  am ong d if fe re n t  ca lcu la tion s  ( r e f e r 

ences 11-13) o f Я 2 and R i g iv e s  an idea  o f the u n ce r
ta in ty  in the th eo re tic a l resu lt .

15C . S. Wu, p r iva te  com m unication . 
leW . I. W e is b e rg e r , accom pan yin g L e t t e r  |Phys. R e v . 

L e tte rs  14, 0000 (1965 )). In the n u m erica l eva lu a tion  
of W e isb e rg e r , gд  is  ca lcu la ted  fro m  the dom inant 

te rm  R i , g i v i n g ^ -1 .1 6 .

CALCULATION OF THE AXIAL-VECTOR COU
PLING CONSTANT RENORMALIZATION IN 0 
DECAY. Stephen L. Adler [Phys. Rev. Letters 
14, 1051 (1965)].

P lease note the following corrections: (1) De
lete the redundant sentence immediately fo l
lowing Eq. (14); (2) in Eq. (19a), dv/d should 
be dv/v\ (3) in reference 1, (Mj/) = _fesJ should 
be (M ^ )* = _ * 22; (4) in reference 8, Eq. (11) 
should be Eq. (14); (5) in reference 13, [(W2 
- M N2+Afn2)2-4W_"MJI2] should be [(w 2- M N2 
+M 1,2)2-4 W 2M 7J2]~ l ; (6) in reference 16, 0000 
should be 1047 and R l should be Д (1) in re f
erence 2, Gell-Man should be Gell-Mann, and 
in reference 8, Phys. Letters 10 should be Phys. 
Letter 10.
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Sum Rules for the Arial-Vector Coupling-Constant Renormalization in g Decay*

Ste p h e n  L. Ant.vnf  
Lyman Laboratory oj Physics, Harvard University, Cambridge, Massachusetts 

(Received 7 June 1965)

Starting from the axial-vector current algebra suggested by Gell-Mann and the hypothesis of a partially 
conserved axial-vector current, we derive a sum rule relating 1 — g j -1 to off-mass-shell pion-proton total 
cross sections. Numerical evaluation gives the theoretical prediction £л =  1.24, in good agreement with 
experiment. A  similar sum rule for pion-pion scattering can only be satisfied if there is a large low-energy 
/ “ 0, 5-wave pion-pion scattering cross section. We suggest testa, in high-energy neutrino reactions, of an 
algebra suggested by Gell-Mann for the vector and axial-vector current octets.

INTRODUCTION

WIT H IN  two years after the discovery of parity 
violation in the weak interactions, the main 

features of 0 decay were clarified.1 It  was found that 
only vector and axial-vector couplings are present. The 
vector coupling constant was found to be identical with 
the vector coupling constant in muon decay; the axial- 
vector coupling constant was found to differ by a factor 
gA*= 1.2 from the value expected for a pure V — A  inter
action. The identity of the vector coupling constants 
in beta and in muon decay was soon explained by the 
hypothesis of a conserved vector current (CVC).J The 
value of the axial-vector coupling constant, on the other 
hand, has remained somewhat of a mystery.’

We give, in this paper, a theory of the axial-vector 
coupling-constant renormalization gA, based on the 
axial-vector current algebra suggested by Gell-Mann4 
and on the hypothesis of a partially conserved axial- 
vector current (PCAC).* In Sec. I, we discuss the 
assumptions made. In Sec. II, we present two deriva
tions of a sum rule relating l — gA~3 to off-mass-shell 
pion-proton total cross sections. Numerical evaluation 
of the sum rule, in Sec. I l l ,  gives the theoretical pre
diction £4=1.24. In Sec. IV, we derive a sum rule 
relating 2gj~* to pion-pion scattering; we find that this 
sum rule can be satisfied only if there is a large low- 
energy 1—0, S-wave pion-pion scattering cross section. 
In the final section, we propose tests, in high-energy

neutrino experiments, of the algebra proposed by Gell- 
Mann1 for the vector and the axial-vector current 
octets. The tests make no assumptions about partial 
conservation of the currents.

L  ASSUMPTIONS

The sum rules for gA discussed below are derived 
from the fallowing assumptions:

(A) The hadronic current responsible for AS—0 
leptonic decays is

J X= G V со8в(Ли - Н Л * » + Л л - Н Л - " ) , (1)

where Gy is the Fermi coupling constant (Gy =1.02 
X 1 0 a n d  cosfl is the Cabibbo angle.* Here 
J \y“ is the vector current, which we assume to be the 
same as the isospin current, and J\A‘  is the axial-vector 
current. In the Fermi theory, we would have had

J\A‘ = i  :фгГГ\7&т°фн: ■

(2a)

(2b )

*  An abbreviated version of the calculation of has appeared 
in Physical Review Letters [S . L . Adler, Phys. Rev. Letters 14. 
1051 (1965)]. Alter this calculation was completed, I  learned 
of similar work by Weisberger QW. I .  Weisberger, Phys. Rev. 
Letters 14, 1047 (1965)].

f  Junior Fellow, Society of Fellows.
1 M. Goldhaber, Proceedings of the 1958 Annual International 

Conference on High Energy Physics (CERN, Geneva, 1958), p. 233.
1 R . P. Feynman and M . Gell-Mann, Phys. Rev. 109, 193 (1958).
1 Previous papers on the aiial-vector coupling constant renor

malization include: R . J. Blin-Stoyle, Nuovo Cimento 10, 132 
(1958); S. Okubo, ibid. 13, 292 (1959); J. Bernstein, M . Gell- 
Mann, and L. Michel, ibid. 16, 560 (1960): A. P. Balachandran, 
ibid. 23, 428 (1962); H. Banerjee, ibid. 23, 1168 (1962); V. S. 
Mathur, R. Nath, and R . P. Saxena, ibid. 31, 874 (1964); Y. S. 
Kim, ibid. 36, 523 (1965); Y . Nambu and G. Jona-Lasinio. Phys. 
Rev. 124, 246 (1961); Nguyen-Van-Hieu, Nud. Phys. 42, 129 
(1963).

4 M. Gell-Mann, Physics 1, 63 (1964).
1 M . Gell-Mann and M. L£vy, Nuovo Cimento 16, 705 (1960); 

Y . Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys. 
Rev. 137, В 1022 (1965).

Actually, we know that mesonic and other terms must 
be present. Fortunately, in what follows we will not 
have to assume any specific expressions for J\y and J\A 
in terms of particle fields.

Since the vector current is conserved, the vector 
coupling constant is unrenormalizecL The renormalized 
axial-vector coupling constant gA is defined by

(N (q )\Jx\N (q ))=  (M N/qa)G 9 cosflfly(g)
X  Ы+&АЧ\удт+и N(q ). (3)

(B) The axial-vector current is partially conserved 
(PCAC),

M NMjgA 
ЭхЛ^*=----------- ф.'.

g rK ^ '(  0)
(4)

Here g , is the rationalized, renormalized pion-nucleon 
coupling constant (g,V4xtB 14.6), K NN*(0) is the pionic 
form factor of the nucleon, normalized so that

1, and^,“ is the renormalized pion field.

• N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

В 736

Copyright © 1965 by the American Physical Society. Reprinted with permission.



172 Adventures in Theoretical Physics

S U M  R U L E S  F O R  R E N O R M A L I Z A T I O N  I N  fl D E C A Y В 737

According to Eq. (4), the chiralities

x H t )---- i  j d » x ( J S '± V t“ )

satisfy
d r
—x::(0= -------------I л**Фг‘ ■
dt g,K"N' ( 0) J

(S)

(C ) The axial-vector current satisfies the equal-time 
commutation relations

[./И*М Л " (у )]| =- г ( х -  у) t 'h‘J iT4 (х) . (6)

This implies that the chiralities satisfy 

[х + (0 ,* - (0 ] = 2Л , (7)

where P  is the third component of the isotopic spin.
The assumptions (A) are the usual ones for the 

leptonic decays. The vector-axial-vector form of the 
leptonic weak interactions is, of course, well estab
lished.1 There is also considerable experimental evi
dence for the hypothesis’  that the weak vector current 
Ji,v‘  is the same as the isospin current.7

The hypothesis (B) of a partially conserved axial- 
vector current (PCAC) was introduced by Gell-Mann 
and Levy* and by Nambu* to explain the successful 
Goldberger-Treiman relation* for charged pion decay. 
In addition to predicting the Goldberger-Treiinan rela
tion, PCAC predicts an experimentally satisfied relation 
between the pion-nucleon scattering amplitude /}r-vc+) 
and the pion-nucleon coupling constant gf.“

The commutation relations (C) play an essential role 
In the calculation. [Note that Eq. (6) is a somewhat 
stronger assumption than Eq. (7), since even if spatial 
derivatives of the delta function were present on the 
right-hand side of Eq. (6), they would integrate to zero

in Eq. (7). Only Eq. (7) is actually needed in the 
derivation below.] The hypothesis that Eq. (6) or 
Eq. (7) holds exactly is due to Gell-Mann.4 Gell-Mann 
and Ne’eman have emphasized10 that Eq. (7) is the 
most natural way in which one can make meaningful 
the idea of universality of strength between the weak 
couplings of leptons and baryons, without spelling out 
in detail the construction of from particle fields. 
Gell-Mann has also pointed out11 that Eq. (7), by fixing 
the scale of the axial-vector current relative to the 
vector current, can, in principle, determine the axial- 
vector renormalization gA.

To sum up, Eqs. (1), (3), (5), and (7) are the hy
potheses on which our calculation of gA is based. They 
are mutually consistent, in the sense that there is a 
renormalizable field theory (the a model of Gell-Mann 
and Livy*), in which they are exactly satisfied.

П. DERIVATIONS OF THE SUM RULE

We give, in this section, two different derivations of 
a sum rule expressing gA in terms of off-mass-shell 
pion-proton total cross sections. A  third derivation has 
been given by Weisberger.11

A. Method of Fubini and Furlan

The simplest derivation uses a method proposed 
recently by Fubini and Furlan.1* We take the matrix 
element of Eq. (7) between single-proton states (^(g)| 
and |^(q')). The right-hand side gives

(#(9)|2P| (̂9')>=(2r)*i(q-q')- (8)
In the matrix element of the commutator, we insert 
a complete set of intermediate states, separating out 
the one-nucleon term (to which only the neutron 
contributes):

(  d4
(*(?)! D ^ O b rW D I?(?’)>= Z  I ------ (J>(q)\x4t)\n(k)}(n{k)\x- ( t )\ p (q’) )

■pin J (2t )*

+  Z  (K9)lx+(0lj><j|>r №1 £(?')>- (x+ «-*■ X“ )  • (9)

The one-neutron term is easily evaluated using Eq. (3), giving 

d>k
Z

spin

r  d*k
/ 7 7 T > W I * +W In (k ))(n {k ) \x- ( t )  1 p{q>))
J (2»)*

~ j 7 Г ),(2т)Ч(ч _k)(2* W k- 1’) ( —  ~ k x ^ ( 9)r(7/.* - ^ Л 747«ц(д') ( 10)
J ' \ 9o to > \ 2iMf, /

= (2ж)|г(ч-ч')й.15(1 -М л*/9оа).
1 С. S. Wu, Rev. Mod. Phys. 36, 618 (1964].

• c * i  411(1 S‘ B ‘ TleimJm. Phy>. Rev. 109, 193 (1958).л. L. Adler, Ref. 5.
“  *2 ^ ann “ d V. Ne'enmn, Ann. Phys. (N . Y .) 30, 360 (1964). 
“ M . Gell-Mann, Phys. Rev. 125, 1067 (1962).
Z  ' V 1- Weisberger, Phys. Rev. Letters 14, 1047 (1965]. 
u S. Fubuu and G. Furlan, Physics 1, 229 (1965).
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In the summation over higher intermediate states we make use of Eq. (S), giving

f vlM yA fSg j-p jp(q) I f<P x <t>r '\ j)(j\  f& x

L g ,K ™ '(0 ) J aw
( x + ~ x - ) .  ( 11)

From Eqs. (10) and (11), we see that there is a family of sum rules, with qo as a parameter. In the limit as qa 
approaches infinity, a sum rule for 1—gj.~1 is obtained. Let us assume that the limiting operation can be taken 
inside the sum over intermediate states in Eq. (11). It is useful to write this sum in the form

Z  = f - ^ Г  d W  £  02)>h .v  J (2r)*JuM+u. J j j v

where q̂ - is the totaJ momentum and where “ IN T ” denotes the internal variables of the system j .  We have denoted 
by M , the invariant mass of the system j .  The integrations over x and qj can be done explicitly, giving a factor 
(2x),5(q—q') and constraining qj to be equal to q. Let us write

01<M(0) I /»(?))= {{Ms/q,) Ш ъ М яР * , (13)

so that is a Lorenta scalar. Then we have for the summation over higher intermediate states,

I Г
(2x)4 (q q ' ) j ------— —  I/  dW E  « (^ - 2 f , ) (M „ / 9o) ( M j q » )  ( ? , - ?,о)-г[| Р г \ '~  I Fi+ IS]  • (14)

L grK NN'l f i )  J J u H+H,

Using the equations
q , ^ { q t + M ? - M l? y i', (ISa)

(9о-9уо)-’ =  (дс+дяУ/Ш .’ - М * * ) ' , (ISb)

the limit as ?o— of Eq. (14) becomes

Г VZMNgA -v f “ м Nw [?<,+ (?o,+  H', - A f ^ ) ' ' ,] 2|
-------------  (2x)*5(q—q') f d\V--------------- lira -------------------------------- j

LgrK '" " (0 )J  J.UK+Ur (TV * - M N*y «r- qt(qJ + W ' - M N>y>' I 
X  lim [t f-p  V, ( ? -  ( q - ?i)’ ] ], (16)

whexe we have defined ЛГ±[И '’, (5— fl/)*] by the equation

K ^ W ,(« -? / )* ]=  E  i{\ V -M ,W S \ F i± \ '.  (17)

IN T

Note that K *  can only depend on the indicated variables because (i) K *  is a Lorentz scalar, and (ii) all internal 
variables are summed over.14

It is now trivial to take the indicated limits The limit of the quantity in curly brackets is 4, and the limit of the 
momentum transfer (q— 9,-)*= — Сво-  (̂ о’ + И ^ — М ц*)'1гУ  is 0. Thus we are left with the sum rule

1 2 M J  f -  4M„WdW
1------------------------/ ----------------[К * (И ',0) - ^ ( И ' , 0 )1  (18)

gA1 г Д ™ '(0)’ ; « п у , O P-M *»)»

To complete the derivation, we must express in terms of pion-proton scattering cross sections. Let
®о± (И/) denote the total cross section for scattering of a zero-mass x *  on a proton, at center-of-mass energy W. It 
is easiest to calculate ^ ( W )  in the center-of-mass frame. If we let k and q be, respectively, the four-momenta of

11 An average over initial proton spin is understood, but is not indicated explicitly.
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the initial pion and proton, then we have1*

В 739

= (2x)'

MN 2ka

r d‘q,
*|— :
J (2v Y i(2t )1 2кй

v '  INT

„ „  \ u \ JA o )\ p m \ , . , 4
= 2t  2- --------------------одао-  9»— Ko) ■

j »*y 24o
INT

V ( q i - q - k )

(19)

(20a)

(20b)

(20c)

Keeping in mind the fact that the initial pion has zero 
mass (fc*=0), the following center-of-mass-frame equa
tions may be derived:

go+£o=ty,

flux= |kl/io+|k|/go=iy/?o-,
*„=(И” -М И / (2И0 ;

о ‘1л±(о)|*(?)>- м г*ц\ф,±т IK?))
=  M .1(M*/fl<>),',f/± - (20d)

Combining Eqs. (19) and (20) gives

(И0- (2 r М ы /(1П- Af**)) £  4 J ¥ - M d M .* \P ib \*  
i*N 
IN T

= (2r i fw/ (m -M O )X ±(W/,0) . (21)

Let us take the matrix element of this equation between 
states (/3(4f)| and |ot(Ar)). We get the equation

- К к г - к г ) ь № г ) Ы 0 ) l « » r )>
-<|S(M|tf(0)|a(ftf)). (24)

Let us now consider what happens as (k r— k i) —» 0. In 
this limit, only those pole terms of {0 (k r) ljx (0) |a(^r)) 
which behave as {kr— i i )-1 will contribute to the left- 
hand side of Eq. (24). It  was shown in (I I )  that these 
singularities arise only from insertions of the vertex of 
j\ on external lines of (|9|a). Furthermore, in the limit 
as (k r—k i)—>0, these insertions leave the external 
particles on mass shell. Thus we get a “ consistency 
condition”  expressing

(25)lim </J(*,)M(0)|a(*,)> 
(fcj—

Comparing with Eq. (18), we get the simple and exact 
sum rule

1W1 Ш 1 p  ll'd 

£a* t J

х ы ч ю - г о - т : .  (22)

While the derivation just given is straight-forward, 
it suffers from the defect of requiring an additional 
assumption: We must assume that the limit qa —>°c can 
be taken inside the sum over interemdiate states in 
Eq- (11). The next derivation which we give clarifies 
the meaning of thia assumption.

B. “PCAC Consistency Condition” Method

In two previous papers’1 (hereinafter called I  and II), 
we showed that the hypothesis of a partially conserved 
axial-vector current leads to consistency conditions in
volving stiong-interaction scattering amplitudes. The 
method used is a general one. Suppose that we have 
local field operators j\ (x ) and d(x) which satisfy the 
equation
__________ d\jx(x) =  d( x ). (23)

"  S. L . Adler, Phy*. Rev. 137, B1022 (1965), hereinafter called 
I ;S .  L. Adler, Phy«. Rev. 139, B163S (1965), hereinafter called П. 
See also the related papen: Y . Nambu and D. Lurii, ibid. 125, 
1429 (1962); Y . Nambu and E. Shrauner, ibid. 128, 862 (1962).

in terms of the physical matrix element (0|a). Clearly, 
the same procedure can be applied to the quantities

i ( 0 =  J d ‘x ji(x ,Q  and d (t )=  J d ’x d (x , l ) ,

which satisfy the equation

dj{l)/d l= id {t). (26)

Of course, the resulting formulas will not be manifestly 
covariant. What was done in (I I )  was to study in detail 
the case when j{ t ) is simply the chirality We will 
now apply the same method to a somewhat more 
complicated object,

j(xo ) =  j  dyo r*"{N (q )\Г[х“Ы х 1Ы]1ЛЧ?)) ■ (27)

in order to rederive the sum rule for gA.
Let us consider the quantity T  defined by

e~<k*n

j  dx 0<

х т ч )\ Ц з г Ы * Ы 1 \!*{я»

■v (*<>)■ (28)
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Let us also define P ‘ (x) by the equation We will introduce the assumption that P ‘ (x) <*<£,*(*)

d)JxJ‘ (x) =  P ' ( x ) , (29) at a 'ater sta8e calculation.
 ̂ .. . . .. . . .  . . From time-translation invariance, we know that

so that the chirality x satisfies

d r j (x t )  =  e~ik,4X  constant. (31)
- ^ ■ w =  / Л Р ‘ ( * ) .  (30)
dx о J Consequently,

d r  d
—ikcj(x i) =  — j(*c ) =  I dyt (q )|— Г[х*(*о)х*(уо)]| N (q ))

dxо J dxB

— e~ik,zl>(N (?) | [д* (®o)iX4(*o)] | N  ( ? ) )+ f  dy о f  P x  e- « 'v ° (N  (?) | Г [Р - (г )х * Ы ]|  iV (?)>. (32) 

Since the second term on the right-hand side of Eq. (32) is proportional to exp(— ikoXo), we can rewrite it as

------ Ц —  [d y , [ f ix  □  ,+ M S )(N (q )  I Г [Р « (х )х ‘ Ы ] | ^ ( ?) ) .  (33)
- k J + M S J  J

We have assumed that we can integrate by parts with respect to the spalial variables x; this can be justified by the 
use of wave packets.1* Combining Eqs. (28), (32), and (33), and then interchanging the order of the integrations 
over xc and y0, gives

—ikaT = J d x „ e,<1̂ ‘ ‘ llo(/V(?)|[x‘,(x0),x i (*o)]|A'(?))

+  fd x ««"■*■----- ------fd yо f 'P x < r ‘t° * ( - n , + M . i )(N (q )\ T Z P ‘ (x )x l (yo)l\N (q))J MS-kJJ J
= 2x i(l,- io )(iV (? )| [x ‘ (0),x40)]|iV(9) ) - f - --------- [  i y . e - ^ W ,  (34)

M  —k(f-
with

j i (y * )=  J  ̂ « ii4* » ( - n . + ^ , t)(iV (? )| r [P “ (* )x 6W ]| iV (? ))

=  ei,,,BXconstant. (35)

Treating ji(yo ) in the same manner as we treated j ( x o), we get

ih j i (y i )= M  * j< P *  eil,n(N  (?) | [У Ы . - Р *  ( x,>lo )]] N  (?))

+ ---- ----- [ i “x [d*y  *■■ '»(- П . + Л # Л ( -  n ,+ M J ) (N (q )\ T lP ‘ (x )P > (y )]\ N (q )). (36)

To sum up, we have derived the identity

—ika J dxteiU*J dyo <Г •‘««{Л' (?) | T[x° (*о)х1(Уо)] | N (?) )

=  2x5(io-Ao)|"(N (? )|Qx*(0),X* (0 )] I # (? ) )+  ( -  M - - V -  l Л (Л Г (Я)|Ь»(0)^-(1.0)3|ЛГ(в))1 

+ ------------ !------------ — [ d*x fd ‘y n .+ - M V ) ( -  n . + i f . W e )  ] r [P * (x )P ‘ (y)]| iV (?)). (37)
f ) i l J  J

M We will never integrate by parts with respect to the time variable.
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Since we will obtain the sum rule lor gA from the part of Eq. (37) which is antisymmetric in a and b, let us drop 
all terms which are symmetric. Because [x * (*o)>Xh(*o)] ” ««**•/', and since dl'/dxo=0, we have <2[x‘ (*o),x (*o)_l/ 
dxt — 0. In other words,

J  <Л*СР‘ ( х ,* о ) ,х ‘ Ы >  f  < P * [P 4x , * o ) a * ( * o ) ] P W
indicating symmetry ипНрг interchange of a and 6. Thus we can drop the term proportional to

(N  (?) | [x40)^*(*,0 )]| JV (g)>.

Let us now consider the antisymmetric part of Eq. (37) for small ko. A t the end of the calculation, we will let 
to approach 0. On the left-hand side, only diagrams with x* inserted on the external nucleon lines will make a 
contribution of zeroth order in to, as was shown in (П ). This can be seen directly by inserting a complete set of 
intermediate states in the time-ordered product:

(q) | Г[х*(хо)хкЫ ]1  N  (<})>

= j dxtj L  1{N(q) |x*(*o) | j)(J  1 х‘ Ы  IN (q))e{xo-yo)

+ (N (q )  |x" ( * )  l i )0 '| x ‘ (* « )  I N {q ))e (yo -x , ) ]

i

X 2 r f(i0-i»)(2 ir)«a (0 )S («iy- q ) ,  (39)
where

Д ,=  (q o '+ M > - M ^ y n -q o . (40)

Clearly, only the one-nucleon intermediate state (J = N , A j=0 ) gives a singularity behaving as J6o-1- Evaluation 
of the spin sum, as in Eq. (10), gives, for the left-hand side of Eq. (37),

(2x)4(0)i (i0-  M S / qJ )+ 0 {k t) , (41)

where O (i0) indicates terms which vanish as £0—> 0.
Let us now evaluate the terms of the right-hand side of Eq. (37). The commutator of the chiralities is easily 

evaluated, using Eq. (6), giving

2Ti(.h~ko)(N(q) | [x*(0),x ‘ (0 )]| iV (?))=  ( 2x) 4( 0) i ( l o- (42)  

In the last term of Eq. (37), let us introduce the PCAC hypothesis,

i f  К M  SgA
p . ( * )= -------------* .• (* ) ,  (43)

g rK ™ '(0)
giving

( M S \ (  M S(  M S  у  M S  \ r M NgA 1* 1 f  f

у ( - о .+ м . 'К -□ ,+ 1/.Ч(л'(() ln *..W + .‘W]|.v(,)>. (4 4 )

i scattering amplitude. In fact, the ofl-i 

A ’ »l-> (y ,r*,M S ,M S ) and B '“ l-H ,t,B>M S ,M .0 ,

Apart from factors, this is just a pion-nucleon scattering amplitude, In fact, the ой-mass-shell pion-nucleon scat- 
ter mg amplitudes
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where M  and IA J  are, respectively, the masses of the initial and final pion, are defined by17

-  —*(2x )4 (?d - k - q t- D  « М  H/qu) {Ms/qvi) )4 '

'X-V’N(.<lt){[A 'Ni~) b ' , V B , M г1) —*^B 'A'M ( |,j|' « ) ^ « <̂ ' r)D}I!T*>Tb!l+isospin symmetric)un(qi) , (45a) 

¥B =  k-l/ v = — k -(q i+q i)/ (2M n ) ■ (45b)

The term В  can be separated into pole terms,17 and a nonpole part which we label Ё :

(ьЧ 2 М я)К ™ * 1 -  (M ,0 a] ( ( ^ - - ) - 1+(»j.-|-K)-,) + 5 ' wW . (46)

The integral in Eq. (44) is identical with Eq. (45), with

l =  (0,»J«) —k =  (0,t’io), M , ,=  M w, =  kt\ vb= —W/ (2MW), v= qtjid/ Af у . (47)

Combining Eqs. (44), (45), (46), and (47), we find that Eq. (44) becomes

| 2M J  1 i
(2т)«й(0Ж /,-*„ )< « •*•(§ ,.) \ - g A4 t f / q t -------------------- ^ e ^ r#(-4> ',0 ,0 ,0 )-|-v5^<-> (^010 ,0 ) ] l+ 0 ( i„ » ) ,  (48)

I grtK NNw(Q f  v )

with v^qJta/Мн. The term proportional to —g^Mt?/ 
q j  arises from the Bom term in Eq. (46) when the sub
stitutions of Eq. (47) are made, and just cancels the 
similar term in Eq. (41). Thus, in the limit as A0—»0, 
we obtain from Eq. (37) the Lorentz-invariant identity

1-
1 ~2 MS  

' gA*~ g ''K ""* (0y
<5(0), (49)

where

G (y )  -  v - ' l A  ^(-)(г,0,0,0)+»5'*‘->(»10,0,0)]
=  y~l[ A  • "  <“ > (i-AO.O)+ vB  <-> (p ,0,0,0)]. (50)

We are able to drop the bar on В  because the Born 
term ( vb— » )- ,+  (j'b+ i')-j vanishes identically at »б =  0.

Equation (49), which follows solely from the assump
tions of Sec. I, is our final result From the crossing and 
analytidty properties of А  and B T>,^~\ we know 
that G ( v )  is an even function of v and is analytic in the 
v plane, apart from cuts running from ± [_M W+ M ,*/  
(22/w) ]  to ±oo . Let us assume that G (v )  satisfies an 
unsubtracted dispersion relation in the variable v. Then 
we may write

2 Г  dv
G(0) = - 1  —  ImGGO. (51)

r j  UrUt.'/(tun) *

It is easily verified that

ImG (y) ”  J (<7<T— <r0+) . (52)

Changing the integration variable from v to the center- 
of-mass energy W  [i>= (W * —  M n1)/  (2A/V)], and com
bining Eqs. (49), (51), and (52) leads to the sum rule 
of Eq. (22). Thus, the assumption that the limit Jo—»00

may be taken inside the sum over intermediate states in 
the method of Fubini and Furlan is equivalent to the 
assumption that G(v) obeys an unsubtracted dispersion 
relation.

There is evidence that an unsubtracted dispersion 
relation for G(v) is valid. First of all, provided that the 
Fomeranchuk theorem is valid, the integral in Eq. 
(22) is convergent. Secondly, Amblard et al. and 
Hohler el al. have shown11 that the forward charge- 
exchange scattering amplitude

^  - M t' / (1 M N), M . , M r)
+  *В«™-»(*> — М г1/ (2 М ц ),  M r,M r)

satisfies an unsubtracted dispersion relation. It  would 
be surprising if this result were changed by the ex
trapolation of the external pion mass from M r to 0. 
Clearly, if a subtraction were required, the sum rule 
for gA would be useless.

By writing a dispersion relation for the last term in 
Eq. (37), without assuming the PCAC hypothesis, one 
gets a sum rule relating 1 — gA* to cross sections measur
able in high-energy neutrino experiments. This sum 
rule is discussed further in Sec. V.

HL NUMERICAL EVALUATION

Because Eq. (22) involves off-mass-shell pion-proton 
scattering cross sections, a little work is necessary to 
compare it with experiment. Let us split the right-hand 
side of Eq. (22) into the sum of three terms:

1 - gA-*~  (4MJ/grW Ri+Jb+lU), (53)

177

”  G. F. Chew, M. L . Goldberger. F. E. Low. and Y- Nambu, 11 B. Amblard el at., Phys. Letters 10, 138 (1964); G. НвЫег, 
Phys. Rev. 10«, 1337 (1957). ' G. Ebd, and J. Giesecke, Z. Physik 180, 430 (1964).
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with

1 r* dv / M S \
R i = —  / —  ImGi v , ---------- , M , ,  M T )

\ 2M N )

1 Г  dv
= -  —( f —MS]

2 r J  u .  ^

1 f ”  dv (  MS \
R i= -  I — ImO( V, —^77-, M T, M ,  j 

tJ j

- J ,

2M„

dv
(S4b)

>rJ »*/(!««) v 

dvdv Г
— Im G (v,0 ,M „M ,)

G{v, 0,0,0)

3-0)

G(v,vBt f t ',M , i )=  „-ЧА {v,VBtM S № r>)

+  ,B '"i-> (v ,vBt f S M . r)']- (S4d)

It  is interesting that the region around the 600- and 
900-MeV pion-nucleon resonances makes an important 
contribution to the sum rule. I f  only the contribution of 
the (3,3) resonance is retained, we get the result gA 
=  1.44. In other words, the (3,3) resonance does not 
exhaust the sum rule.

(54a) The remainder of this section deals with the details 
of the numerical evaluation

A. Calculation of R i

As stated above, Ri is calculated directly from the 
physical pion-proton total cross sections <r*. Values of 
a* from 0 to 110 MeV were taken from the smoothed 
fit of Klepikov et a l From 110 to 4950 MeV, we used 
the tabulation of Amblard el a l.“  Above 4950 MeV, 
we used the asymptotic formula <r~—a+=  7.73 mb 
X [ t y ( B e V / c ) g i v e n  by von Dardel et al.™ This 
formula gives a good fit to the experimental data up to 

(54c) 20 BeV/c. Use of this formula beyond 20 BeV/e repre
sents an extrapolation from the present experimental 
data, and gives

There is a definite reason for splitting things up this 
way. Numerically, we find that |.Ri| >  |J?,| >  The 
dominant term, R ,, involves only the physical pion- 
proton scattering cross sections it*, and thus can be 
reliably determined. The terms Rt and Rt are correc
tions, which take into account the fact that the sum 
rule involves the forward charge-exchange scattering 
amplitude, with both external pions of zero mass. The 
term Rt can be calculated in terms of pion-nucleon 
scattering phase shifts. Since it is dominated by the 
(3,3) resonance, it can be fairly reliably calculated. The 
term R t is less well known, because a model is needed 
to calculate the off-mass-shell partial wave amplitudes.

We get the following numerical results11

' I f ” dn
—  —y - M S ) in (<r+- ° - ) ~ -0.011.
2-rJ 20 BeV Г

(58)

(4M*W)Ki=0.254, 
(4Mw»/gr>)iJ1=0.155) 

(4Af*Vg S )R ,=  -0.061,
(55)

Thus, unless the [^/(BeV/c)^-0"7 asymptotic behavior 
is very much in error, the region above 20 BeV/c 
contributes only a few percent of 1—git-1-

B. Calculation of Ri

It  is convenient to express Ri as a single integral 
over center-of-mass energy W, the integrand of which 
is the difference of terms referring to vn= 0  and to vb 
=  — M S/(2M if). The center-of-mass scattering angle ф 
is given by

у^соБф = 1-1-А/ w*/1 k Ia at vb =  0 ,

y = c o ^ =  1 at v b — — M S / (2M k ) ,

where | k| is the center-of-mass frame pion momentum. 
Thus we get

(59)

giving
theory. 1.24. (56)

R i = - 16 f

A reasonable error estimate, based upon the variations 
among the several calculations of R, and R, discussed 
below, is ±0.03. The best experimental value is®

Д ( К >

J Mm+M.

IV* M S \  (W + M n У

£лто>,=  1.18±0.02. (57)

Thus, the sum rule agrees with experiment to within
5%.

(l^-M *»)»!

/ MS\  (И 
+ h [W , l+ ---- )------

\ I k l v V -

(W +M nY -M .

M S \  (.W- М н У  -j

“ For the pion-nudran coupling constant, we used the value 
P  =  e ^ ifr'/ (l6 r ifH I)~0.0SirbO.O02 quoted by W. S. Woolcock, 
Proceedings of the Aix-en-Provence International Conference on 
FJemenlary Particles (Centre d'Etudea Nuclfciires de Saclmy. Seine 
et Oise, 1961), Vol. I ,  p. 459. 

и С. S. Wu (private communication).

al., Dubna report D-584, 1960"  N. P. Klepikov
(unpublished).

я В. Amblard et al., Ref. 18 and private communication.
*  G. von Dardel el al., Phys. Rev. Letters 8, 173 (1962).
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with J\(W,y) and f*W ,y ) the usual center-of-mass 
pion-nucleon scattering amplitudes. Since f i  and /a are 
analytic functions of у in an ellipse with foci ± 1  and 
with semimajor aids l + 2Jf,V|k|V4 we can legiti
mately use partial-wave expansions in calculating /1 
and /j in both terms of Eq. (60). The integral is rapidly 
convergent, since the two terms in Д(И'Г) tend to 
cancel at high energies.

The number (4A/^3/^rJ)l f j=  0.155 quoted in Eq. (55) 
was obtained by using Roper’s Z„=3 phase-shift fit,25 
truncating the integral at W =  11.20M (Beyond this 
energy no phase-shift fit is available.) The integral is 
dominated by the (3,3) resonance; extending the inte
gral only over the (3,3) resonance gave (43/V/g,,).Rj 
=  0.166. A  third calculation, using simple Breit-Wigner 
forms for the (3,3) and the 600- and 900-MeV reso
nances, and neglecting all other partial waves, gave 
(4A*V/gr2)i?j =  0.156 when the integral was truncated 
at 11.20AfT, and (4My,/gr,).R2=0.145 when the integral 
was extended to an upper limit of W  «1 7 M r. The good 
agreement of these numbers indicates that P i is in
sensitive to “ controversial”  features of Roper’s phases, 
such as whether the Р ц  wave resonates.

C. Calculation of Rг

The term Ri, which describes corrections arising from 
taking the external pion off the mass shell, cannot be 
calculated directly from experimental data. In order to 
estimate this term, we must assume a model for the 
off-mass-shell partial wave amplitude f u i { W J ) .  
(Here 1= orbital angular momentum, J — total angular 
momentum, and /=  isospin.)

Actually, in order to evaluate R t, we only need to 
know the imaginary part of f u i ( W Below 
the inelastic threshold at W —M  generalized
unitarity tells us that

(61)

The intermediate state pion is, of course, on the mass 
shell. Since only the region around the (3,3) resonance 
is appreciably affected by taking the external pions off 
the mass shell, it suffices to study fu iQ V  and
then to use the elastic unitarity relation of Eq. (61) to 
get

In constructing a model, we use the following in
formation about fu r -

(i) Threshold behavior. From kinematic considera
tions, we know that near the threshold at W — M n + M * ,  
i m W M v M * 1)  wi11 be equal to ( | к ‘ЦЬ/ |) '  times

slowly varying factors, with

I k‘. '| = [ (O T -3 f  ,«]■'*,
*„<./= [ W * -M  * * +  (АГ,*-Оя]/(2ИО ■

Here I к* I and | k y | are the center-of-mass momenta of 
the initial and final pions; when Af»*— 0(1/»), we de
note I k ’| by I k°| (|k[).

(ii) Unitarity. Setting either M , ' or M J  equal to 
M w in Eq. (61), we see that f i j i ( W has the 
same phase &ui as the true pion-nucleon partial wave 
amplitude fu i (W ,M ,,M r).

(iii) Left-hand singularities. Changing the external 
pion mass changes the left-hand singularities in the 
partial wave amplitude f u i (W ,M , 'J f , r). The left- 
hand singularities closest to the physical region come 
from the partial wave projection f u iB[W ,M Ti,M rr)  of 
the Born approximation (the pole term) in Eq. (46). 
Reference to Eq. (46) shows that
contains a factor .K'NJV*Q— (М »*)2]Я Л,Л,' [ — ( M aris
ing from the change in strength of the coupling of the 
external pions to nucleons when the external pion mass 
is changed from the physical value.

A simple model, which takes into account the con
siderations (i)-(iii), is to take

fu iiW M s M r )

f u , B(W ,M r ',M .)
■ f u t W M .M . ) .  (63)

“ This statement assumes the validity of the Mandelstam 
representation.

“ L . D. Roper, Phys. Rev. Letters 12, 340 (1964) and private 
communication.

Equation (63) gives r) the same phase as
f i j i (W ,M IrM *). Multiplying the physical f u i  by the 
ratio of the Born approximations gives the off-mass- 
shell f u i  the correct threshold behavior and, approxi
mately, the correct nearby left-hand singularities. A 
second model is to take

-  ( Ik*|/ 1 b|)‘X ww* [ -  (M . 'y ] f IJ2(W M - M . )  ■ (64)

Here we have put in only a threshold correction factor 
and a constant factor (A fT*)a]  to account for
the change in strength of the nearby left-hand singu
larities. According to Eq. (61), the first model gives

Г f u K W f i f l )  *i* 
=  I  I lm f l } I (W ,M r ,M .), (65)

L/wr*(4,,Af»,Afi)J

while the second model gives

-  ( | b* | /1 b | )«* * *■  (0)>
X lm f U I{W M ^ M r ).  (66)

Although Eq. (61) is valid only below the inelastic 
threshold, we will use Eq. (65) and Eq. (66) above the 
inelastic threshold as well as below.

Numerical evaluation of Eq. (54c) gives (4M*Vgr2)P i

179
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=  —0.061 when the model of Eq. (65) is used, and 
(4 ifV/ fr,)^ i=  —0.051 when we assume Eq. (66). In 
both cases, Roper’s phase-shift fit was used, and the in
tegral was truncated at W — ll.20A fU sing Eq. (65) in
tegrated only over the (3,3) resonance gave 
=  —0.066. Evaluating the integral with only Breit- 
Wigner terms for the low-lying resonances gave similar 
results. Thus, the quoted value of Rt, while dependent 
on the model used for going ой mass shell, is insensitive 
to “ controversial”  features of the phase shifts.

D. Remarks

The terms Rt and Rt, which come largely from the 
(3,3) resonance region, give a combined contribution of 
0.094, as compared with the contribution of 0.2S4 
coming from Ri. It may at first seem surprising that 
the effect of R, and Rt is so big, but it is easy to under
stand this. From Eq. (66), we can see that the main 
effect of Rt and R t is to multiply <73,1, the (3,3) reso
nance contribution to the integrand of R u by a factor

Now let us make a quantitative analysis. According 
to Eq. (57), the left-hand side of Eq. (69) is

2/gS=  1-43. (70)

Let us express the right-hand side of Eq. (69) in terms
of the variable W2, giving 

1 Г  ds 

g iKN»* {V r 2* ] iM. 's -M . '
[ > o , - ( j ) - ^ r + W ] -  (71)

As in the proton case, we take account of the fact that 
the external pion in Eq. (71) is of zero mass by writing

cr0,'.'(*)= ̂ "'(O)5 (1 k° I / 1 к I Y W -1 (*)
=  K " K’ {0 )'l(s -M S y/s(,s -

|k°|VI4 (67)

At the peak of the (3,3) resonance, this factor is 1.27. 
Since the (3,3) contribution to J?! is 0.43, we expect 
Rt to be increased by an amount of order

0.27 X  0.43 =  0.12, (68)

in rough agreement with the sum of Rt and Ri.

IV. PION-PION SCATTERING SUM RULE

In Sec. II, we took the matrix element of Eq. (7) 
between proton states and derived a sum rule relating 
ga to pion-proton scattering. Now let us take the 
matrix element of Eq. (7) between t + states. The same 
manipulations used in the proton case lead to the sum 
rule

-4 М ,* )> ,''7(*) ,
(72)

where 1= orbital angular momentum, 7=  isospin, and 
iTrl-, (i) is the on-mass-shell partial wave cross section. 
Thus Eq. (71) becomes

4МУ 1 r°° ds

g* 2-к) ш , '  s— M S

г (s- а д  •
x  т.

1-0 L s (s -4 M r*)J
I even

«  г  { s - M S Y  - f

i-i  Lj($—4M,*)J
1 odd

(73)

Let us first evaluate the contributions of the two 
well-established тгт resonances, the 1=1— lp  and the 
1 = 2 ,1 = 0  p .  We parametrize <rS'1 ando-,5'” in the form56

‘ W-

gS 0)*

1 r  Wd 

J iv .H '* -

W d W

m s

x O fb - f l o - ^ + a n i

<r.1.»(0 =

12T7.V / U + M S )  

( ! - s ) ' + y , M S ) ’ 

20rч М Ь + M S ) 

( s , - s y + y f » l/ {v + M S ) '

(74)

(69)

where <tot± (W') is the total cross section for scattering 
of a zero mass x *  on a physical t +, at center-of-mass 
energy W. Equation (69) involves g*- *, rather than 
gA~‘~  1, because the one-pion intermediate state con
tribution vanishes on account of parity. The factor 2 
on the left-hand side of Eq. (69) comes from the fact
that <x+(9) 12/*|ir+(g ') )= 2 - (2 ir )ai ( q — q').

While, of course, no direct pion-pion scattering data 
is available, there is enough information on pion-pion 
resonances to compare Eq. (69) with experiment. First 
of all, ao,+ (W') comes only from 1—2 scattering. While 
there are resonances in the low energy 7 =  0 and 7=  1 
pion-pion scattering, the 7=2 scattering seems to be 
small. Thus the right-hand side of Eq. (69) is positive, 
agreeing in sign with the left-hand side.

The reduced widths y t2 and 7/  are related to the 
experimental full widths at half-maximum Г , and Г/ by

7 » ’  =
,+ M r* vf+ M S
— :— j»iY, 7/ = — ;— */г Л (75)

Using the experimental values*’ 29ЛМS, Г „ 
=  0.755M„ 5/=80.0Л7г», Г,=0.716М., we get, for the 
p and f°  contributions to Eq. (73),

(76)
p contribution=0.42,

P  contribution= 0.11.

As a check, we also calculated the p and p  contribu-

"  L. A. P. Baliza. Phys. Rev. 129, 872 (1963). 
я A. H. Rosenlda et al., Rev. Mod. Phys. 36, 977 (1964).
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tions in the narrow resonance approximation. This gave
0.35 for the p and 0.09 for the /° contribution, indicating 
that resonance shape corrections will not substantially 
change the numbers of Eq. (76).

The contribution of 0.53 from the p and the p  is 
only 37% of the total of 1.43 required by the sum rule. 
Since the /” contribution is so small, and since there 
seem to be no resonances with l> 3  in the low-energy 
region,”  it should be reasonable to neglect the con- 
tribution of terms with 2>3 in Eq. (73). Rearranging 
Eq. (69), we get

<V  1 Г  ds
-------/ ---------
Vs 2rJ m . 's —M S

4M S  1

i

dsW  W -  ____

grJ 2*J a t . ' s—M S

Vi
2 1 Г (s -M S )*  I 1

M

axial-vector current commutation relations of Eq. (7) 
and the partially conserved axial-vector current hy
pothesis of Eq. (5). In this section, we discuss a sum 
rule which follows from the axial-vector current algebra 
alone, regardless of whether PCAC is true. We will 
also derive sum rules which follow from a proposed 
algebra of the strangeness-changing currents.

Let us begin by reviewing the theory of leptonic 
weak interactions of the hadrons. According to Gell- 
Mann1 and to Cabibbo,' the hadronic weak current isJ1

Л * =  (ffu+iShx+SJV+t'ib^GF cose
+  ( f f « +  iJu-f- ff4x‘ +tffix l)Gr sinS. (80)

Here Gy is the Fermi coupling constant and fl is the 
Cabibbo angle. The vector currents S,-\ and the axial 
ciments 3-,-x1 (J =  1, ■•■,8) each form an SUt octet. 
The SUt generalization of the conserved-vector-cur- 
rent (CVC) hypothesis is to assume that the vector 
currents 1,-x are just the unitary spin currents, with

L ( j—4Mr*)_

+  1.43-0.42-0.11^0.9. (77)

Thus, the pion-pion sum rule can be satisfied only i f  there 
is a large lorui-energy 1 — 0, S-wave pion-pion scattering 
cross section.

In order to get an idea of how big the 1=0, 5-wave 
scattering cross section would have to be in order to 
satisfy Eq. (77), we evaluated the left-hand side of 
Eq. (77) using a simple scattering-length parametriza- 
tion of the 7=0, S -wave phase shift,”

(к Д ^ -И ,* ) )1"  cot3°,0= \/aa+ B (v ) ,

B ( v)= (2 / r )(v / (v + M S )y i*  (78)

Х 1 п [> / В Д '2+  0/М ,Ч -1 )1Д] ,
which gives

41га0г
----------------------------------- . (79)
ao4+(F+J/,*)[l+a»ffM T

We find that Eq. (77) can be satisfied only if do> 1.3 or 
if a0< —0.85. It  is interesting that an 1=0, 5-wave 
scattering length of the order of a pion Compton 
wavelength is also suggested by studies of low-energy 
pion-nucleon scattering2* and of К  и decays." Needless 
to say, there is nothing unique about the parametriza- 
tion of Eq. (78).

V. TESTS OF THE CURRENT ALGEBRA IN 
HIGH-ENERGY NEUTRINO REACTIONS

The sum rules discussed in the preceding three sec
tions are derived from two principal hypotheses: the

a—1,2,3; 

S,x=iV3Fx,
(81)

where is the isotopic spin current and Fx is the 
hypercharge current. In our new notation, the currents 
defined in Sec- I  are

A ^ S .x ,  Л ^ = 5 .х ‘ , а - 1,2,3. (82)

Let us define vector and axial-vector "charges” F ,■ 
and F jb according to

/= —* J  d'x ; Fj l =  —i  J  d'x . (83)

Gell-Mann* has postulated that even in the presence of 
the SUt symmetry-breaking interaction, the following 
commutation relations hold exactly:

CFirPj] — ifijtFk | 
C PfcF/X/eA1.

[ В д ‘> » у * л .

(84)

The chirality commutation relation of Eq. (7) is, of 
course, just a special case of Eq. (84):

[W - iF i5, * y - tF ,5] = 2F3. (85)

“  G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (I960).
*  J. Hamilton, Strong Interactions and IIigh Energy Physics—  

Scottish Universities' Summer School, 1963, edited by R. G. Moor- 
house (Plenum Press, New York, 1964).

и С Kacser, P. Singer, and T . Truong, Phys. Rev. 137, В 1605
(1965).

Sum Rules for the Axial-Vector Coupling Constant 
Renormalization in (? Decay, Ste ph e n  L. A d le r  
[Phys. Rev. 140, B736 (1965)]. In Eqs. (73) and 
(77), the coefficient of the isospin-2 cross section 

should be | rather than i  None of the conclu- 
sions of Sec. IV  is changed. I wish to thank 
Dr. A. N. Kama! for pointing out this error.

From Eq. (84), we also get the following commutation 
relation for the “ charge”  associated with the strange
ness changing part of J\k:

IF t+ iF i+ F S + iF S ,  F t - i F t + F J - i F f i
=  2y/3F6+  2 F . + M W +  2JV . (86)

Assuming that we can integrate by parts with respect 
to the spatial variables x, we can express the time de
rivatives of the “ charges” in terms of the divergences of

ю In this section, we use the notation of Ref. 4 for the currents.
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the corresponding currents:

—Fj= f  d'xd&jx,
i t  J 

dt J

zero (5 = 0) leads to the relations, for forward lepton, 

<P<r[v-{-p—* l~ +  (5=0 )3

(87)

dU idEi 

<f<r[j+f-»2++ (5  = 0) ]

• СИ cos*e/(W)iV,+(JV),
(91)

Лс ,
with

dSlgdEi
=GyJcos*e/(R0tf,-(W0.

Let us now derive sum rules which provide tests of 
the cxiinmutation relations of Eq. (85) and Eq. (86), 
considering first the strangeness-conserving case, Eq. 
(85). We proceed exactly as in Sec. П, taking the matrix 
element of Eq. (85) between proton states. The only 
difference is that we do not assume that the divergence 

is proportional to the pion field. We thus get 
the sum rule

1 г  M S + lM y E - W ^ *
(92)

1 = * a ! + /;
AMNWdW I
W - M S ) '

OvP-(HO-A'P4wO:i>

with
(88)

Here E  is the inddent-neutrino energy, E i is the final- 
lepton energy, and is the lepton solid angle (all in 
the laboratory frame, where the initial proton is at 
rest). In terms of W and E, E i is given by

E i~  (M ^ + 2 M „ E -W l)/ (2M fl)  ■ (93)

We can apply the same method to the commutator 
of the strangeness-changing currents" [Eq. (86) ] ,  giv
ing the two sum rules

f  4M NWdW „  .
4 -  / ---------------- [ 5 , - W - V W ] .  <94a)

J {V P -M S t
J*N
INT

{ j I 1 p {q))

=((A fJ,/?„)(MJ/?io)),'JV -

0V - M j y

r  4M NWd.W
2= /-------------[ 5 . - W - 5 . + W ] .

J [W -M s * )'
(94b)

(89)

In other words, ffj* is the matrix element of the di
vergence of the axial-vector current; the sum rule of 
Eq. (88) involves this matrix element only at zero 
four-momentum transfer (q—qj)1.

The matrix element needed to evaluate the right- 
hand side of Eq. (88) can be directly measured in high- 
energy neutrino reactions. Consider the inelastic 
reaction

Equation (94a) has discrete contributions at W = M a, 
W — M i  and a continuum from IV— t to 00 -
Equation (94b) has a discrete contribution at W =  M t  
and a continuum from to <*>. The func
tions 5 ,,.*  are measurable in strangeness-changing 
high-energy neutrino reactions, since for forward lepton,

< *4v+  (p,n) - »  t~+  (5 =  + 1) ]

dSltdEi

v i+N —* l + j ,

=С И  sin5ey(W )5 (Pl,)+ (Wr) i (95) 

. * 4 - ( 5 = - l ) ]

with fi a neutrino, / a lepton, N  a nucleon, and j  a 
system of strongly interacting particles with М ^ М ц .  
In a previous paper,B we showed that when the lepton 
emerges parallel to the incident neutrino direction, and 
when the lepton mass is neglected, the matrix element 
for Eq. (90) depends only on the divergences of the 
hadronic current. Clearly, under these hypotheses the 
momentum transfer (<j—qj)* is zero, so we are measuring 
just the matrix element needed in Eq. (88). (In the 
A 5 = 0  case, the divergence of the vector current 
vanishes.) Summjng over final states j  of strangeness

dShdEi

’  S. L . Adler, Phya. Rev. 135, B963 (1964).

Thus, Eqs. (88), (91), (94), and (95) can be used to 
directly test the algebra proposed by Gell-Mann for 
the vector and the axial-vector currents.
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u The oudeon matrix element of the axial-vector terms on the 
right-hand side of Eq. (86) vanishes when we average over 
nucleon spin.

Sum Rules for the Axlal-Vector Coupling Constant Renormalization in 5 Decay) Ste p h e n  L. A d l e r  
[Phys. Rev. 140, B736 (1965); 149, 1294(E) (1966)].

1. In the first line of Eq. (62), A f»1 should read (JW .'')*. In Eq. (65), f u , B(W ,0,0) should read 
f u i B(W ,0 ,M w). I wish to thank G. E. Brown, A. M. Green, В. H. J. McKellar, and R. Rajaraman for 
pointing; out these errors.

2. A  factor of |k|/|k°| was omitted in Eqs. (72), (73), and (77). Equation (72) should read

^ ‘■ 'W -d k l/ lk 'D J C '^ o yd k 'l/ lk iy w ^ W ,
and Eqs. (73) and (77) are corrected by making the substitution ds —» (|k|/|k°|)ds. Making the correc
tion increases the magnitude of the scattering length do required to saturate the sum rule.
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Sum Rules Giving Tests of Local Current Commutation Relations in 
High-Energy Neutrino Reactions

St e p h e n  L . A d le r*

CERN, Genoa, Switzerland and Lyman Laboratory, Barnard University, Cambridge, Massachusetts
(Received 6 October 1965)

We show that the local commutation relations of the vector and the aikl-vector current octets can be 
studied in nonforward lepton-neutrino reactions. We do this by using the commutation relations to derive 
sum rules, for fixed q* (^  =  invariant lepton momentum transfer squared), involving the elastic and the 
inelastic form factors measured in high-energy neutrino reactions.

1. INTRODUCTION

IT  has recently been proposed by Gell-Mann1 that the 
fourth components of the vector and axial-vector 

current octets satisfy the local equal-time commutation 
relations

C M * ) ,M y ) ] | *»-*,=---- U < 5 « (x )6 (x - j ) , (la )

[& * (* ) ,S V W ]  14- » «=  -fob 'S c ts(x )S (x -y ) , (lb ) 

[^ .4‘ (* )Д и ‘ (у)!]| * .- » .= —/.».ffrf(*)*(x—у) • (lc ) 
Here and fF,,),1 are, respectively, the octet vector, 
and axial-vector currents, and a, b, с are unitary spin 
indices ru n n ing from 1 to 8. According to Eq. (1), the 
octet vector and axial-vector charges

----i [ d‘x M * ,0 ,
J  (2)

F al (t) =  ~ i  j & x  Я чЧ */ ), 

satisfy the equal-time commutation relations

lF lt( t ) ,F b ( l ) ' ]= iU 'F '( i ) ,  
W W l - M O ,  (3)

ZFaKt),Pbim = ifa b c F c(t).

The commutation relations of Eq. (1) are considerably 
more restrictive than those of Eq. (3), since even if 
derivatives of the delta function were present on the 
right-hand side of Eq. (1), Eq. (3) would still be valid. 
In an earlier paper5 [bereafter referred to as ( I ) ]  we 
showed that the commutation relations of Eq. (3) can 
be tested in high-energy inelastic neutrino reactions, in 
which the lepton (which is regarded as massless) emerges 
moving parallel to the direction of the incident neutrino. 
In other words, Eq. (3) may be tested in дй =  0 neutrino 
reactions, where q1 is the invariant momentum transfer 
between the neutrino and the outgoing lepton. In this 
paper we generalize the results of (I), by showing that 
the local commutation relations of Eq. (1) can be tested 
in <7J>0  (nonforward lepton) neutrino reactions. We do 
this by deriving from Eq. (1) a sum rule, valid for each 
fixed q\ involving quantities measurable in high-energy 
neutrino reactions.

* Junior Fellow, Society of Fellows.
1 M . G ell-M ann, Physics 1, 63 (1964).
• S. L. Adler, Phys. Kev. 140, B736 (1965).
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In addition to Eq. (1) for the fourth components of 
the current octets, let us postulate that the space com
ponents of the octets satisfy the local equal-time com
mutation relations

C ^anfa), (y ) ]  |

=  W . » . ' «M ,( * ) « ( * - y ) + 5 . b>> (4a)

*0—VQ *0—»o }

=  -2 6 ../ oi<,Qe4(a:)£(x-y)-j-5c,i*l (4b)

*o—va

(4c)

Here Ч)е<! and Dci2 are the fourth components of vector- 
cunent octets, and &c* is similarly the fourth component 
of an axial-vector octet. The quantities S ^ 1-*"* are sym
metric in the unitary spin indices a and b. I f  the simple 
quark-model commutation relations proposed by Dashen 
and Gell-Mann* and by Lee4 are valid, we have

во4=^15. (5)

However, Eq. (S) is not valid in theories in which meson 
fields are explicitly included in the currents, whereas, in 
many of these field theories, Eq. (4) still holds. We will 
derive sum rules which provide tests of Eq. (4) in §’ > 0  
neutrino reactions.

Each of the sum rules discussed in this paper requires 
for its derivation, in addition to a local equal-time com
mutation relation, the assumption that a certain scatter
ing amplitude obeys an unsubtracted dispersion relation 
in the energy variable, for fixed qa. No attempt will be 
made in this paper to justify the assumption of unsub
tracted dispersion relations. Thus, the statement made 
in this paper is that if the assumption of unsubtracted 
dispersion relations is valid, the sum rules derived 
provide a direct experimental test of local equal-time 
commutation relations.

In Sec. 2 we state in detail the results of the paper. 
The next two sections comprise the derivation. In Sec. 3 
we analyze the kinematics of high-energy neutrino re
actions. In Sea 4 we derive, from local commutation 
relations, sum rules which involve the quantities defined 
in the kinematic analysis of Sec. 3. In an Appendix we 
give lepton-mass corrections to the results stated in 
Sec. 2.

* R. F. Dashen and M . Gell-Mann, Phys. Letters 17, 142 (1965).
'  B. W. Lee, Phys. Rev. Letters 14, 676 (1965).
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2. RESULTS 

We consider the high-energy neutrino reaction

v+ n -+ i+ a, (6)
where v is a neutrino, N  is a nucleon (neutron or proton),
I is an electron or muon, and 0 is a system of strongly 
interacting particles. Throughout the text of this paper, 
we will neglect the final lepton mass, i.e., we take

« , - 0 .  (7)

The results stated below are only slightly modified when 
all lepton-mass terms are included. (See the Appendix.) 
We define all noninvariant quantities referring to the 
reaction of Eq. (6) in the laboratory frame, in which the 
nucleon N  is at rest:

E ,=  neutrino energy,
£i=lepton energy, 
ф= lepton -neutrino scattering angle, 
fli=lepton solid angle, (8a)
k,— neutrino four-momentum, 
ki=  lepton four-momentum,
5— k,—ki—lepton four-momentum transfer.

rs OF L O C A L  C U R R E N T  1145

We denote by W  the invariant mass of the system /3, 
by Mw the nucleon mass, and by q1 the invariant 
momentum transfer between the leptons:

qt=(k,-k,y=4E£,smK<t>/2), ^
I ^ = [ 2Afw(Er- £ i ) + M 'J»2- 9s] ,/i.

We assume that the semileptonic weak interactions 
are described by the current-current effective Lagrangian 
density

л5(*)= (G/S£)jx(*)/x(*)+adjoint,

G = 1.023X 10-yj|f v1, 

j\ (x) =  $1(*)7х(1+7бЖ(я) , W

J\{x)= (cos9c)[ffn(:r)+»SF2x0r )+  Sixe(* )+ t f f ix 5(%)]
+  (sinec)[34x(*)+iffsx(*) +  54x'(*)+ifftxs(*)D) 

6c= Cabibbo angle.

We define the form factors F i *'’(}* ), F iv(q‘‘), gv(q2), 
£л(92) , and hxiq1), which describe elastic neutrino 
reactions, as follows:

(N (p t) 15ix(0)+igFix(0)\Н(р1))=(.{Мц/ры)(Мц/Рч>)У1Чйн(р1)т+[Р 17(ц‘)у->,— F 27(92)<rx,?,]wAr(£i)
=  ((Afw//iio)(Afw/^io))1/stMjr(^2)T+[j7 (g2)')rx+ip2y (ga)(^ i+ / ls)xD«Jvr(/>i)> 

q= p1—p1, gviq1) =  F iv(g*)+2AfNF iv(q* ),

(JV(?2)| 3u.l (Q )+ i$ i> }(P )\ N {p i))= ((M  я/рк)(М  н/рн>)Уп1Як(рг)т+[£А^ )ч \ — *Ал(д2)9хЪ'бмл (^ )-

Here т+ denotes ^ (г ’ + гт2), with %т‘(с=  1, 2, 3) the nucleon isotopic spin matrices.
F inal ly, we define the diagonal one-nucleon matrix elements of the operatorstUe41,2 appearing in Eq. (4) as follows

(N(j>)\VeJ ’K0)i№ ( / > ) ) = , £=1,2 ,3 ; ( n )

(N {p )\ V ^ \ 0 )\ N (p ))= iC 71-2.

If  the quark-model commutation relations hold, so that Eq. (5) is valid, then

C,1!= l ,  C r‘ '2=*V3. (12)

If the quark-model commutation relations are not valid, the values of C/1,! and Cy1,J are not at present known. 
We may now state the results of this paper, as follows.

Strangeness-Conserving Case

The kinematic analysis of Sec. 3 shows that we may write the reaction differential cross section in the form

i4 0 +̂  0 +̂ (5=о)) / ад£,=1 ^ г |
Х [92аШ(92,РГ)+2£,Е, со82(^)рШ(92,^)Т(£,+£09*7(±)(9г,^ )]-  ( 13)

By measuring Pa/dQidEt for various values of the neutrino energy E „  the lepton energy Ei, and the lepton- 
neutrino angle ф, we can determine the form factors аш , /3(±), and 7<±> for all q2> 0  and for all W above threshold. 

In Sec. 4 we prove that:
(i) the local commutation relations of Eq. (la ) and Eq. (lc ) imply

r* W
2  =  ^ ( 5 , ) 2+ F i v ( 9 2) 2+ 9 « F '2jV ) 2+  I -------d ^ [ j 3 M (9 2,^ ) - / S < + > (9 5, W ) ] ;  ( 1 4 )

J un+u . M n
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(ii) the local commutation relations of Eq. (4a) and Eq. (4c) imply

Г  W
C i ' + C , l = ( \ + q 4 m j ) g i ( f ) * + { t f / 4M Nt)gY{!f)4 ‘ /  ----- d W [ a ^ \ q \ W ) - a W {q \W )y , (IS)

J Mu+u, M s

(iii) the local commutation relation of Eq. (4b) implies

gv (д2) Ы ^ )  Г  W

I M»+U.

Strangeness-Changing Case

C* sin’ flc Ei

Ms

We write

) Г  W
-= / ----dW[y<--)(q\W)-v^(q\W)].

J ия+и. М ц
(16)

f t (0 +(wb0 +0 / w j (2тг) 2 E,

Х [ 5,а(, , , ) (±1(42̂ ) + а д с М!( а д ^ , 10(± 1 (}> Я т (-Е .+ £ 1)дгГ(,>.»)ш (?а(И ')].  (17)
Then,

(i) the local commutation relations of Eq. (la ) and Eq. (lc ) imply

f  W
(4,2)= / — W [ f i ^ - K q ' , W ) - h „ » \ q ' , W ) - ] - ,  (18)

J M N

(ii) the local commutation relations of Eq. (4a) and Eq. (4c) imply

Г W
[v5(cyi+CKI)+ i(C /*+c/1) I vS(C1.1+Cy!) - i ( c I1+ c ,J) ]=  / — <да,Св(,..) (-,(ЛИ0-а с ,1.)№ЧЛИ0]; ( » )

J M s

(iii) the local commutation relation of Eq. (4b) implies

Г W
(0,0)=  / —  dW[ylr,^-KqI, W ) - 'Y ^ +)(q2,W )]- (20)

J M s

The integrals of Eqs. (18)-(20) have discrete contributions at W =  M д and/or M z and a continuum extending from 
\ y = M a+ M w or from W = M z + M ,  to W — « .  We have not explicitly separated ой the discrete contributions to 
the integrals, as was done in Eqs. (14)-(16) for the strangeness-conserving case. I t  would, of course, be straight
forward to do this.

The sum rules of Eqs. (14)-(16) and (18)—(20) hold for each fixed q', provided, as was stated in Sec. 1, that the 
assumption of an unsuhtracted dispersion relation needed to derive each sum rule is valid. When q*= 0, Eqs. (41) 
and (43) of the next section show that

Й (О .И О =(4М *У (И '*-Л^ ‘) ’ )  Л  T. S(ke0+ E l- E . - M s ) {  | <fi\ dyJS|tv)|4- K/S|a^v1Л0! ! } , (21)
0.1NT j

where J\v and J\A are the vector and axial-vector weak currents appropriate to the M  =  G or | Д5| =1 cases 
(e.g., Jxp=  ffix-f *Jtx or Sfrx+tff»). Thus, at g2=0  Eqs. (14) and (18) are just the forward lepton sum rules derived

'П The sum rule on 0 has an interesting consequence for the behavior of neutrino cross sections in the limit of very 
large neutrino energy E„ With the aid of Eq. (8), let us write Eqs. (13) and (14) in the form

ф -Н З (5 = 0 ) )/ < f(91) r f ? o = ^ ^ f [? ia (±>+ (2 £ .,- 2 £ - ?o - i9 a)/3(±)=F(2£: , - ? . ) ? У ± а  (22)

AZoGS‘->-/3'+)).  (23)
/***>-

The differential cross section dv/d(ql)  is given by

da ^

dq1 J (.я'пмн)- <2(?2У?  о

da  /■*.(*-«•/«*» d2<r . .  
— = I dq0--------- . (24)
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The upper limit of integration is fixed by the requirement that sin3(<#»/2) lie between 0 and 1. Using Eqs. (22)-(24), 
it is straightforward to prove the following theorem:

Thiorem. Suppose that the integrals

Г % М - аЮ ), Г ^ ( 7<->+ 7 (+>), f dqoQ3<->~/i<+>) (2S)
J qo1 J 9° '

are convergent Then

lim {<My+p —» I-H3(S=0))/d(g2) —do(v+p  —» i+^(5=0))/<i(ij2) }

G* cos20c Г  „  GJcos2ec
= ----------- I dq о[/3<->-0<+> ]= ----------- • (26)

2т J  *
Similar results hold in the strangeness-changing case. Adding the cross sections lor the Д 5=0  and the | AS] — 1 
cases to obtain the total cross section, we find

lim [_daT(v-\-p)/d{q1) —daT(v\-p)/d{q'iy\— (G2/»)(cos!fic+ 2  sin’ flo),
b, - «  (27)

lim [daT{i-\-n)/d{qr] —di7r(>>-f«)Af(9s) ]= (G 2/7r)(— cos2flc+sm2flc) ■

Equation (27) is the somewhat surprising statement that, in the limit of large neutrino energy, d<xr(v+N)/d(q*) 
—daT{v+N)/d(q2) becomes independent о/ g2. This result is unchanged by the lepton-mass corrections.

3. K IN E M A T IC  ANALYSIS OF H IG H -E N E R G Y  N E U T R IN O  R E A C T IO N S

In this Section we derive Eq. (13) ,which gives the general form for the neutrino reaction leptonic differential 
cross section, d^/dSlidEi.* In particular, we find explicit expressions for the form factors a(q*,W), &(q2,W ), 
7 (gs,H/), in terms of matrix elements of the vector and the axial-vector currents.

According to the effective Lagrangian of Eq. (9), the matrix element ЗГС for the process v + N  —» l+ f i  is given by

Ж =^т , m = u t(k ,)y> (l+yb)u,(kr)'t-1i2(p ” Kbi>) I Jxy+ J i A | N (kK) ) . (28)

Here g=  (G cos9c, G sin6c) in (Д5=0, | Д5| =  1) reactions, J\v and J\A are the appropriate vector and axial-vector 
currents, and jfcp and kn are, respectively, the four-momenta of /8 and of N. In the frame in which the initial nucleon 
#  is at rest, the reaction cross section is given by

/ (Pki Г d3kfi ли i m,\
—  / —  £  Z s ( k , + k , - k , - k * ) l ------ I r K M 1)- ( 29)
(2ir)s J ( 2t )»h,int . VE, E ,)

In Eq. (29), E p.int is a sum over the internal variables of the system /3, £ ,  is an average over the initial nucleon 
spin, and (|m|2) is the sum of |*я|* over the lepton spin states. From Eq. (29) we get

d'*/dQtdE,=  [g*/(2ir ■)*](&/£,)«, (30)
with

*=  Y, £  5 (^ o+£ i— Afw)ffii»i,(|«ijs) l t,_,. (31)
A,INT .

Let us now study the quantity к. We introduce the abbreviated notation

en=2_I/sfi[(*j)'y> (l+7t)«»(^01

V x '-< 0- l A  »‘( 9 ° + В Д | Л г W O .O f v)>, (32)
A x»=  i f a + M Ky\ | Л * 1 N (f i, iM „ )),

£ » =  52 !£ Kkeo+Ei— Е ,—M n) .
fl.INT •

Let us further denote by JW and by A J  the matrix elements of the divergences of the vector and the axial-vector 
currents,

VD» ---- tqy.V\f =  *(9o+^w)]| d\J\v\N (0,tAfw)>,

_________  A» tm— •M x'-*№ "t[q,*(?0+МнУ]\Мъл\яф,шя)). (33)
1 Locality theorems of this type are, of course, well known. See, for example, T . D. Lee and C. N  Yane Phva. Rev. 126. 2239 

(1962); A. Pais, Phye. Rev. Letters 9, 117 (1962).
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Since the final lepton mass is neglected, we have
0 . /344

Using Eqs. (33) and (34), we may write

m=*>.(yi*+Axl,)^ c n(&„k- q nqu/q<?){Vi<>+AJ‘)+i(q-e/q<?)(V1,i>+ADil) ,  (35)
where the repeated indices n and k are summed from 1 to 3. Defining by

we find that 

*=E e mim,{Im|

?-?//?о,)(«.*-? .г*/?о ,) {Е е (Р / )* Р * '+ Е в М / )М / + Е е [ (Л / )* 1'/ + ( » У ) * Л * ' ] )  
+ * .« (? »? ../ V ){E e  I Vd* I J+ E s  I A J  I ̂ Е л П ^ с Т  Vdi>+(Vd^ *A d^ }  

+U*(6nt-q*qk/q*,)(iqm/q<,i){Z i ,l (V S )*V D‘'~ (V Dll)*V kt ]+ Z £ (A ki>)*ADt - ( A D‘!)*A kr ]
+ E e  L(Vbe)*Ai>'l~ (A Di>)*Vkr i + j : £ (A k’ )*V De - (V D (‘) ,,A k>~]). (37)

The next step is to use the transformation properties of the currents under time reversal and parity to determine 
the form of the various Ed terms in Eq. (37). Denoting by T  and by P  the time-reversal and parity operators, 
respectively, we have

Г Л Ч 0 )Г - « -----/ Л 0), Г Л Ч 0 )Г - ‘ = - / И (0 ) ,  P J kv(Q)P~l -----Л у(0 ), 0 ), (38)

and similarly for the divergences of the currents. Under the assinnption that the “ in” and "out”  states of definite 
total energy each form a complete basis for states of that energy, we have

E  & (k ,< ,+ E i~ E -M N)\F '‘l(k>))<fiouKkt)\= E  6 (ha+E l- E , - M N)\ P T ^ (k i ) ) ( P T ^ 4 k ll)\ , (39a)
0.INT d.INT

and
E I N (kN)){N (k s )I = Z \ P T N (k ff)) (P T N (k ff) I . (39b)
4 »

Using Eqs. (38) and (39) we find that

Е е  M W -  £  ' L b ( h ° + E i - E - M ff)(p> '4J l v \N)<p“ \Jiv \N)*
t .  IN T  a

=  E  E  S (h 0+ E l- E , - M „ X P T ^ t\Jky\PTN )t (P T ^ '‘ t\Jiv \PTN )
0.1NT •

=  Ed V,*{Vk>)*= [Ei9 V S (V /> )*y . (40)

Thus, the tensor Ejj V t^ V f )*  is real, and hence sym
metric. Using P  alone shows that this tensor is an even 
function of q. A similar analysis can be carried through 
for each of the Е е  terms in Eq. (37), with the following 
results:

(i) Е е  Vtf (V / )*  and Ed are real sym
metric tensors (even under q —» — q);

(ii) Y . )  ZVk* (A /> )* + A kfi {V f )* l  is an imaginary, anti
symmetric pseudotensor (odd under q > q);

(iii) E e l I V l *  and E * M * 'I *  are real scalars;
(iv ) T .e lV D l>(,ADf)*+ A D l,(VDl,) * l  is an imagmary 

pseudoscalar:
(v ) Ed [V k‘‘(V Df,) * - ( V k<>)*VDl>'] and E,s I A A A d*)*

— (A k*)*A Df \ are imaginary vectors;
(v i) Е е  С V f ( A  d T ~  ( Vk»)*A  d * ]  and Е в  Ы  (  У d * )*

— (A kfi)* V o fl  are imaginary pseudovectors.

All of these quantities must be formed from the one 
vector available, q. Thus the only possible tensors are 
SkJ and qrfj and the only pseudotensor is «у .? .. No

pseudovectors or pseudoscalars can be formed. Con
sequently, the most general from of the quantities 
appearing in Eq. (37) is

E e ( * 7 W =  b k V W M + q w v ^ w ) , 

Z , (A / )  *A kf =  SjtA W .W H q & A  ,(q*,W ),

Е е [ ( A W V J + C V W A ^ i w J i q 'W ) , 

Y.>\VD»\ '= D v{q\W ),

Z »\ A D<>\'=DA(q>,W),

Е е  [ ( Vk*)*V D> - ( VD') * V k4 ~ i qkI r (q \ W ),
Ed l (A k>)*AD' - ( A DV A k<4=iqkI A{q\W) ,

Efl K An’ yV D ’ + i V b T A D ^ O ,  
E e l W M i > ' - ( ^ ) * » v ; i = o ,

Е е  [ 0W * V - ( * V W ] = 0 ,

with all the structure functions [V j, Vi etc.] in Eq. (41) 
real.

(41)
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(42)

All that remains now 5s to evaluate the tensor con
tractions contained in Eq. (37). Using the equations

9. ( i . » - 9.9x/V)= ~  (? W )? t .
9.9̂ . « = 2& £ ,(£  - Е ,У  cos5 (ф/2),

Е Я ,  coss(4>/2) ,  

t* .iq it .»=  iq * (E ,+ E ,), 

we get, by some straightforward algebra, the result

<P<r/dQ,dEi= № /(2t ) 'J E ,/ E ,)k ,

cos'(\6)p(q\W) 
- q '(E ,+ E , :fr(9W ,  

a(9W = K 1(9*,H')+/<i(?,,B'), 
e(q>,w)=

+  f [ I P(q ',W )+ IA <?,W )-\+D 7(q',W ) 
+ D A(q ',W )) iM N'/ (W '- M fr'+ q ')> , 

■t(q\W) =  I(q \ W ).

(43)

4. DERIVATION OF THE SUM RULES

In this Section we derive the sum rules of Sec. 2. In 
the first subsection we state and discuss the fundamental 
identity used in the derivations. In subsequent sub
sections we derive Eqs. (14), (15), and (16). The deriva
tions for the strangeness-changing case are identical to 
those for the strangeness-conserving case, and are 
omitted.

(A) Fundamental Identity 

The starting point of the derivations is the identity*

-  Г d le ^ ‘(N \LA {l),B (0 )]\N )
90 J 0

=  -i (N \ lA ® ),B (0 )l\ N )

+ ( 2?o )~ '(N  | [А(0),В(0)Ж*(0)И (0)D IЛ0

+ q j  d tt< "4 N \ lA (t ),B (0 )l\ N ), (46)

The formula for antineutrino-induced reactions is the 
same, except that the final term in к is changed to 
+  q>(E ,+ E iY ft f jW )  [and, of course, in Eq. (32) de
fining Vt and At, the currents J kr  and J%A are replaced 
by their ad joints].

The simplest illustration of our result is the elastic 
reaction p+jV —► i+ jV . Explicit calculation shows that 
d ^ iv + p —*l+n)/d£lidEi has the form of Eq. (13), 
with

where
dA(f)

dt
6 (t )=

dB(t)

dt
(47)

are the time derivatives of A (t) and B (f). Equation (46) 
is easily derived by repeated integration by parts, and 
holds for all 9o in the upper half of the complex plane. 
In this paper, the operators A (t) and B (f) will always 
be of the form

a{-V ,B 0 = «(jr—tfiO[(i+eV4Jfw* b (?*)*
+ (9у<ш *')*„(9*)’] ,

p-> (q\W ) =  & (W -M N)lg A(q*y

+ F i4 f ) t+q ‘F S ( №
у Щ ? М - Ц 1Г - И и) 1 - и (? Ь № / И и] ш

(44)

We have also computed, for this reaction, the individual 
structure functions appearing in Eq. (41). They are

V ^ ( q \ W )  =  $ ( W - M „ ) ( q ' / U { N ' ) g y ( q ' y ,

V ,<->(<?,W )= 6 (W -M „ ) { l l+ q '/ 4 M N4 fv (q ') ' 

- g v W f r W / M » ) , 

A l ^ ( f , W )  =  S (W -M N) ( l + q t/AM ^)gA(q^yi 

A ,<->(<Д W ) =  b (W —M  H) l ( q y m N')h A(q' ) ‘
~ h A(q*)gA(q ')/M N-], 

/<->(9\И0  -  i ( W - M H) l - g A(<f)t y(q*)/M„-], 

I^ -K q ^ W ) =  6 (Ц Г -М „ ) ( -  1/2Мнг)

X  [2.M NgA(qv) —qxhA(qt) y , 

D A< -\ q \ W )= 6 (W -M N) ( qy m Ni )

X [ . lM » u (q ' ) - q 'h A(q1)- ] ',  

I v ' - )(q\W ) =  D v<~\q\W)=V.

A (l) =  - i J d tx e -“ - '3 A(x ,t),

B (t)= ‘ — i j  dly e<->ffB(yJ0;

$A =  5\iX or ffo x ', f f a =  f f » ,  or ffb ,*.

(48)

(45)

In (I )  we studied Eq. (46) with 8=0; this led, in the 
limit 9o—* 0, to sum rules at 9J=0. In this paper we will 
study the case when e?^0, and will find, in the limit as 
9n —» 0, sum rules for fixed 9S (with 9,=  181 *).

There are a number of features which all of the 
derivations given below have in common. First of all, 
we will always use Eq. (46) with the nucleon N  at rest, 
and with the nucleon spin averaged over. Secondly, 
each term of Eq. (46) can be divided into a part which 
is symmetric and a part which is antisymmetric in the 
unitary spin indices a and b. We will only study the 
identity for the antisymmetric parts. In each case below, 
we will find that the term

V  =  (2q0)~1(N  | [А  (0),В(0)]+[Й (0),Л (0) J | N )  (49)

■Equation (46) is a more symmetrical version of Eq. (37) of 
Ref. 2. Equation (4<j) remains valid If (tf| and j t f )  are replaced 
by any two state* of equal four-momentum.
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is purely symmetric in the unitary spin indices, and 
thus makes no contribution. Thirdly, since we have

q {  dte<u‘{N \ [A (t),B (0 )]\ N )

I {Н\5л [Р)ф\5л \Ы)
=  —гдо Z . --------------------------

(^ к т ж) l9o+ ^ - (| e | ‘ -|-^)W»

(2т)Ч (в), (50)

the limit as jo—*0 of Eq. (50) is zero for all |a|J>0. 
As a result, the third term on the right-hand side of 
Eq. (46) makes no contribution to the sum rules.7

Finally, we will always find that the unitary spin- 
antisymmetric part of

f. (51 )

is an odd function of qo, O(qo,q2). Thus, in the limit as 
q̂  —> 0 the identity of Eq. (46) will become the equation

= C , (52)

where С is the unitary spin-antisymmetric part of the 
commutator — »(^V|[j4(0),S(0)]|iV). Equation (52) 
states that the commutator of A and В  is related to the 
energy derivative of a forward scattering amplitude, 
evaluated at zero energy. Up to this point the derivation 
is rigorous. Now, in order to relate the left-hand side 
of Eq. (52) to physically measurable quantities, we will 
assume that the energy derivative (d/dqn)0(qo,q1) 
satisfies an unsubtracted dispersion relation in the energy 
variable q0l for fixed q1. The discontinuity of (d/dqo) 
XO(?o,9s) across its cuts will, in each case considered, 
be related to the structure functions defined in Eq. (41).

(B) Sum Rule for g<±J

The sum rule on iS<=t> of Eq. (14) is obtained by adding 
together two separately derived sum rules on the axial- 
vector and the vector parts of and 0р(± ):

W
1-м(в*)Ч - 1 — w  

J u n + u .  M  x

X [ f r H («\ l*r) - / k w (9 W 3 .  (53a)

Г  W 
i - F i  r(q1) 1+ q 2Fi4q,y +  ' — dw 

J Un+U.Mn

X C M - )( ? W - 0 7 (+> (9 W :i-  (53b)

In terms of the structure functions defined in Eq. (41),

A t(±) (q\ W ) «  [ 9‘Л j <±> (<22,И 0 + (?J) M ,(±) (q\ tV) 
+ q4 S ± K q \ W )+ D i ^(q\W )~]

Х Ш ^ / ^ - М ^ + ^ У ,  (54) 

0 v ^ (q \ W ) =  q2[ y 1̂ > (q\W )+q2V ^ (q \ W ) ']
X i M S / Q V ' - M  * > + ? )* .

[The structure functions I y i± )(qi ,W) and Д гш ( { !,{1') 
vanish identically in the strangeness-conserving case, 
because of conservation of the vector current] Since the 
derivations of Eqs. (53a) and (53b) are identical, we 
will treat explicitly only the axial-vector case, Eq. (53a).

We start from the fundamental identity of Eq. (46), 
taking

4  
=  — t  j  d‘y

Лег-4—ff.4‘ (*,0 ,
(55)

7?м ‘ (У.<)-

Defining Da(x ) =  x) we find, by spatial integra
tion by parts, that

A {t)~  J d ‘x e-i, r[D .(x^ )— J „ * (x ,0 ] , 

B (i )=  j d !y е;,»[2?ь(у,0+м.З^Ду,/)],

(56)

where the repeated index n is summed over. With A and 
В as shown in Eq. (55), the first term on the right-hand 
side of Eq. (46) becomes, using the local commutation 
relation of Eq. (lc ),

- i  Z (N | [А  (0 ),В (0 )]|Л0=«„6Л г ') (2 ,гЖ < )). (57) 
■

Thus this term is purely antisymmetric in the isospin 
indices a and b. QNote that the validity of Eq. (57) 
depends on the correctness of the local commutation 
relation. If  Eq. (lc ) were modified by the addition of a 
term proportional to V*5(x—y), a term proportional to 
| s|1 would be added to Eq. (57).] The second term on 
the right-hand side of Eq. (46) becomes

-1
U  ! « * = ----

2{o
Е (л ч [У d>x

+ T . (N \ [ f  d>y e‘” — J  ( 5 8 a )

1 Only when |«|*=0 does the one-nucleon intermediate state make a contribution to the limit. This is the case con-

sidered in Ref. 2.
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-1

2?o

г  f  eSf.i‘ (x,0 f  "I,£<iV|| J fixe-* '-----, J cPyeb-’SubfljiX)

+ U » l [ f  d’x ^ O4s( y , 0 j l ^ ) | » (5 8 b )

where we have obtained Eq. (58b) by setting — y«-> x in the second term of Eq. (58a) and by using the parity 
transformation properties of the axial-vector current Clearly V i°l is explicitly symmetric in a and b. Thus, if we 
agree to keep only the part of Eq. (46) which is antisymmetric in a and b, the second term on the right-hand 
side of Eq. (46), which involves the unknown commutator of d5aJ/dt with ffw6, drops out. As discussed above, 
the limit as jo ~ ♦ 0 of the third term on the right-hand side of Eq. (46) vanishes.

Now let us turn to the left-hand side of Eq. (46). Using translational invariance, the integral over у can be done 
explicitly, giving an over-all factor of (2 t)sS(0). We cancel this against the identical factor in Eq. (57). Taking N  
to be a proton at rest, and multiplying Eq. (46) by an over-all factor („м gives

1 = ---- f d**exp( — ИпЯ' оДя) ,  ■Е>ь(О)+«„5:ьтБ(О)]|/’)+0 (?о ), (59a)
9o J •

$ = (М < 7 о ), ( S9b)

where o(qa) indicates terms which vanish as gn—> 0. Let us define the amplitudes d(q0,q2), ai(?n,?5), <12(90,9s), and 
*■4(90,9*) by the equations

d(qD,q*) =  t ' UJd*x  e4 , "9 (i.)E (#|  [£ „ (* ),Z>b(0)]| p ) ,

<11(90,9’ ) г—+ a5(9o.9J)9»9»=«<.ba J d 'x < r *в( *0) £ (*) .  ̂ ь,пе(0) ]  | ̂  } , t60)

iq^Aiqotf) =  «.ы J d 'x  « г ‘ «-*в(я*,)£<£ | [ ^ „ ‘ (x),1>4(0) ] -  [£>„(*), Jh*6(0 ) ]  I p ) ■

We will prove below that these are all odd functions of <?0. Thus Eq. (59), in the limit as 90—>0, becomes 
the statement

i = - - X ( 9o,9!) ,
3qo „„-о (61)

*(9o,95) =  d(90ifl*)+9г<и(9о.9,)+ (9 1) г®5(9о>9г)+9^л(9(1|92) .
with q1 fixed at |s|J.

Let us now study the properties of the functions d, alt a,, and Ia From their definitions as retarded commutators, 
it follows by the standard methods of forward dispersion relations8 that they are analytic functions of 90 in the 
upper half q„ plane, for fixed q2. Thus if we assume that the amplitude (d/dq^Hqotf) approaches zero as 90 —*00 
in the upper half plane, we can write the unsubtracted dispersion relation

~X (9°.9 !) = -  I 7 -7 ™ {^ (9 o ',9 2)+ 9 V (9 o ,,92)+ (9 !) V ( 9 0,,92)+ 9 V (9 o 'J9J) } ,  (62)
o q о т .1 (go — qoj

where the absorptive parts d', a\, at, ix  are defined by

« Ч 9 М * Ы « . м  J  dtx e - <̂ T . { p \ lD a(x ) ,D b m \ p ),

*Сах'(9в,9*)«.-+о*'(9*>91)9 « 9 -]= Ь а И  J  d ^ t r ^ ' Z i p ]  [ f f . „ ‘ ( * ) , $ * , ‘ (0 )] | p ) , (63)

Ct9»»V(9o,9J) ] = ie „ t ,  j  Л г ‘« -  E ( ? | [ f f an6(*),D !,(0 )]- [2 > (1(*),:Fb„ '(0 ) ]|/.> .

■ J. D . Jackson, Dispersion Rations, ediied by G. R. Screaton (hterscience Publishers, Inc., New York, 1961), pp. 1-32.
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The next step is to evaluate the absorptive parts. Let us consider explicitly the case of d'. Let k ,=  (0,iM N)  be 
the proton four-momentum. Inserting a complete set of intermediate states, we find that

Г d°h 
id'(qo,q') =  hM2*y Z Z  I   

e.iNT . J (2jr)s

X  [<^ | Z).(o)  I p(kt ))(p (k f ) I £4(0)  I p )s { k , -q -  A, )  -  (£ | £ t(0) 1 I  £>.(0) | p)6(k, + ? - * , ) ]

>) I D t(0 ) j p)y\vt- qb{k^a—g<i—M s )

- l< t\ D b m »{.h W (k ')\ D M \ p )'}W ,-^ b (k fl0+ q ', -M tl) ) . (64)

Z Z {[(ifIDMlPihWike)IDt(0 ) I/>)]]„„-,^0- 90- Af*)
0 ,IN T  «

Parity invariance tells us that

Z  Z  1<J> 1 D b(/0) I \ D M |pfi\it^ S (k ,0+qa- i f N)
«.IN T  t

— £  Z  [(^l®a(O)l0(W)(/2(£0)|A>(O)|p)]|b(_,,£(£/jo+9o—M n) -  (65)
e.mi t

Thus Eq. (64) can be written, using the antisymmetry of {„ « ,  as

«Ч в М * )- ™ .*  Z  Zl(p\Da(.Omks)m kt)\D i(O)\p)l\u-,Li(kK-q o -M H)+&(k0'+ q o -M u )l .  ( 66)
J9.INT •

We see that d' is an even function of qa\ hence d is an odd function of go. Since

*ai,iD*Db=Dl*Di- D t*Dl=$il(D l*+ iD t* )(D 1- i D i) - ( D l* - i D i*)(D 1+ iD t) ] ,  (67)

we obtain finally the result that
?o> 0 , (68)

with
Z  Z  I ^ [ q , » ( ? o + ^ ) ] |  A (0 ) - t Z )2(0) |p) 14 { k ^ ga—M n ) ,

f l . IN T  a (69)

Z > «  =  Z  Z 1 Ш Л ч о + М м )']  I D M + i D m  | p ) 14 (k sa-q o ~ M K) .
f.lNT ш

Clearly Eq. (69) is identical with Eqs. (41), (32), and (33), defining the structure function D, with gD given by

qa= E - E l= (W l - M Ni -\-qi)/2MH. (70)

In a similar тп^ттрг we find that a i , az, and i/  are even functions of qa (which implies that fli, Ci, and are 
odd functions of go)- Also, we find that for qv>0,

ai'(?o,?,) =  i*’D4i(-)— ai{q(Slqi)-\T\_Ai{--'> — A im J, й'(90|9г) =  § » [ ^ (-)— (71)

where the structure functions A ^ i (±), and /Ac±> are those defined in Eq. (41). Combining Eqs. (43), (61),
(62), and (68)—(71), we see that we have derived the sum rule

г Г W
1= / d q M S -'- № » - ]=  / ----dW[fiAl->{q\W )-M+Kq\W )l- W

J J M s

Using Eq. (44), the pole contribution to Eq. (72) can be explicitly evaluated, giving Eq. (53a).

(C) Sum Rule for « (±)

The sum rule on a (±) of Eq. (IS ) is obtained by adding together the two identities

\ r°° IV
1 + — W ) 2+  I  — dW[_aA^ (q \ W ) - a ^ (q \ W )2 ,  (73a)

AMn ĵ Jasn+m*M n

C,'=( — )gv (q ’) ’+  --- ЙИ'[ак(-Ч9,.И,) - “ ^+>(9*,^)]- (?3b>
'A M  n*j J Mx+Mw M  N

Here ал '* 1 and ay(±) are, respectively, the axial-vector and the vector parts of аш ,

а/±> = Л1(±)(?г, » ') ,  av(±>=lV±>(9W )- (74>
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We will sketch the derivation of Eq. (73a); the derivation of Eq. (73b) is identical.
In order to derive Eq. (73a), we use the fundamental identity, with

A (t) — - iJ < P x  , B ( l ) = - i  j d 'y  е‘"^ьтЧу,1) ■ (75)

Using Eqs. (4a) and (11), the first term on the right-hand side of Eq. (46) becomes

—* Т .(р I [Л(0),-В(0)]|£)= - « abei„mCil( i r ,’X2ir)aS(0)+(symmetric in ab) . (76)

The second term is

■ V — - E W  J  d b r + - J  d'y -----—---- , fftm‘ (y ,/ )J+ [-— -------, JFe»*(x,/)Jj \p), (77)

which, by using the parity transformation properties of 3* is equal to

—  — - — , ffw.‘(r,0j+[— - — , ff«‘(y,0jj l*>.

The expression in Eq. (78) is explicitly symmetric under the simultaneous interchanges n <-> m, a*-*b. Since 
parity invariance requires that V i he of the form

(79)

Z7i is symmetric under the interchange a <-> b. Thus, if we keep only terms which are antisymmetric in a and i, 
the unwanted terms drop out.

As a result, we are left with the identity

d
CrJ= — 4(go1?1) ,

to—о (80)

4(9o,95)=< li(9o,<72)^ «»+< ij(9o,9,)g »g «=  e,u jd * x  й“ <,,*в(ж0)Е (^ 1£---------- , --------— j  | p) ■

[Here д5ътК®)/<>1 denotes дЯъщ*(у,1)/д1 evaluated at y=0, /=0.] Let us now postulate that

d<Ii(go,g*)/a?o (81)

satisfies an unsubtracted dispersion relation. I t  is easy to see that the absorptive part of fii(}o,?1)  is just jo1 times 
the absorptive part of the amplitude ai(g0,95) defined in Eq. (60). Thus, the S,m term in Eq. (80) becomes

C/*= f d q ^ - y -/!,<+>)= f  ^ -d W lA l<~-'>{q\W )-A^{q\W )'], (82)
J J M n

which is the result to be proved.

(D) Sum Rule for

The sum rule on y<±> of Eq. (16) is derived by adding the fundamental identity, with

A i ( i )=  - i  J d 'x  <-*■•*f f „ ‘ (x ,0 , B i ( l ) = ~ i  j d sy e*'-»SFh»(yft ) , (83)

to the same identity, with

A , { t ) = - i j ’& х е -ь -я5 „ (Ы ) ,  B1( t ) = - i j d ’‘yei- ’ $bJ‘(y,l). (84)

Using Eq. (4b), the first term on the right-hand side of Eq. (46) is

—* Y .(p I C^i(0)i^ i(0) ]+ [/ l  j(0),B«(0)J|/i)= (symmetric in ab) , (85)
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since
E<*l<M P)|#)-0 (86)

lor nucleon states at rest. The second term, using the parity transformation properties of the currents, becomes

(8 7 )

Clearly, ni°b is symmetric in a and b. I f  we keep only the antisymmetric part of the identity, the ГдЗ^/ЛД! and 
the terms drop out.

Thus, we get the identity

»(?o,?j) = « „ mJd*xe iq'z9(ia)T,{p\ 

The postulate that

dV„\x) 35Jm(0)l rdZ„(x) affb,e(o)n
----  l̂ >- (88)

dxa dt J L dxa dt J

di{qo,q*)/dqv (89)

satisfies an unsubtracted dispersion relation in qa leads immediately to Eq. (16).
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APPENDIX

In this Appendix we give the generalization of the results stated in Sec. 2 to the case when all lepton-mass 
terms are included. In order to calculate lepton-mass corrections, it is easier to work covariantly, rather than to 
eliminate the fourth components of currents in terms of spatial components and divergences. Thus we write

7'x«= E  E  г (/ ^ -^ о -? о )< Л Ч Ы  I (J ,y+ J * A)*  ItK k x + q W ik x + q ) | |  N (k N) )
t f.IN T  •

M N _ _
= ---- [ASx,+5£>o£w.+C«x,-rag7£wi+D)?x?*+-E(9x£v«4-g«£vx)], (A l)

kita

with A, • ■ ■, Ё  functions of q1 and W. Time reversal and parity invariance rule out the presence of a term propor
tional to qxkN. — qJiN\ m Eq. (A l). Comparing Eq. (A l )  with Eq. (41), in the laboratory frame, shows that

A = a {q \ W ), M S & ^ W .W ) ,  M x C = y (q 2,W ), D ^& {q\W )=  V->{q\W)+A , ( j J,H0,

M NE = t (q 1,W) =  q<r'{Vi{qt,W )+ A i{q 'l,W)-\-q1[y i (< f ,W )+ A 1(qi,W)~\+h\Jv{q1,'W)-!r l A(q1>W )'} ) .

I t  is straightforward to calculate the contraction of T x.  with the leptonic trace. We find that Eq. (13) and Eq. (22) 
for the strangeness-conserving case are replaced by

/ М  fl\  \ / G’ cos^c ftE .-go ) 2- » » ) 5] 1'2

H O + P ^ \ № S = 0 )) / daidE‘ - ~ ^  E . * (  )

/ /р\ fl\ \ / G2 cos i0c .
+/3(5-0) j  /  d(q2)dq<i---- , (A4)
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with

K<±>=(?a+ m t1) a ^ ( ?»iJV)+ [;2£,>-2£F5o-i(9 2+»n lJ)lS t±J(92,^ )
4= [(2£ ,-?0)g!- w l2?o>f±,(5,^ ) + > i s(?s+ M lJ)^ ± ) (9!(I f ) - 2 w I!i£,6(±>(«2. ^ ) -  (AS)

Inspection of Eq. (A5) and its analog for a neutron target shows that j3(±), 7 (±>, e(±), and а (±,+ £ т 125с±> are 
independently measurable. Since the derivation of the sum rule on a (±1 given in Sec. 4 shows that

0 =  j  d9„(i<->-6<+>), (A6)

we may modify Eq. (15) to read

Cz1+ C rl= (H -g J/4M„»)gx(?5) ,+  (9V4M^)gr(92) i

+  bmi:‘[(l+ qy 4M Ni)fv(q2y—gv{q'i)fv{q'‘)/MN+ (q 2/iMN'‘)hA(q2)1-hA(q'2)RA(q'i)/MN]

Г  W
+  I ----- (A7)

J mk+m, Afw

Thus, in the strangeness-conserving case, when lepton-mass terms are included there are still three sum rules which 
may be directly compared with experiment.

In the strangeness-changing case, equations similar to Eqs. (A3)-(A5) hold, and |3(),,n) (±), « i 1t(J,.«)(:t)± 9 J7(ii.n)(:1:,i 
and a<ii,ii)(:t,+Jffii25(Il« )<±,± 9ii7(p1n)(±) are independently measurable. We see that in this case, when lepton-mass 
terms are included, only the sum rules on /3(„,,o(±1 can he directly compared with experiment.

It is easy to verify that the results of Eq. (26) and Eq. (27), referring to the high neutrino-energy behavior of 
neutrino cross sections, are unchanged by adding the lepton-mass terms. Equation (24) becomes

da л * (1-ьм *л  4£Лпг!
— = /  dqe--------- , i = g 2+n ij2-j-----------. (A 8)
dq' J (aVufjf)- d(q2)dqe <?2+*Jii2

If, in addition to Eq. (25), we postulate that

Г  da* [•* dqa
/ — ( « < - ! - « ( + ) ) ,  / — ( « ( - > _ , (+ > )  (A 9 )

J go1 J q о

are convergent (and similarly in the strangeness-changing case), then we immediately obtain Eqs. (26) and (27).

Sum Rules Giving Tests of Local Current Commutation Relations in High-Energy Neutrino Reactions, 
S t e p h e n  L. A d l e r  [Phys. Rev. 143, 1144 (1966)]. In Eq. (45) for Fi<->(g2,n0, in both terms on the 
right-hand side, / v (35) should be F 2V(.q2).
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Neutrino or Electron Energy Needed for Testing Current 
Commutation Relations*

Stephen  L. AuLERf 

Institute for Advanced Study, Princeton, New Jersey

AND

F rederick J. Gm iANt 

California Institute of Technology, Pasadena, California 
(Received 19 October 1966)

For small leptonic invariant 4-mamentum transfer g3, we investigate wbat minimum neutrino or electron 
en ergy  is needed to test current commutation relations. We find that at laboratory energies of order 5 BeV, 
it is reasonable to start trying to check the equalities or inequalities implied by the current algebra.

2S A P R I L  1967

RE CENTLY Gell-Mann1 has postulated that the 
fourth components of the vector and axial-vector 

weak-current octets satisfy the local equal-time com
mutation relations

(̂ У) J I fabc^ci{x)S(x y) , ( la )

[^(зОДм'Су)] 14-»,= y), (lb)

[3ra<6(x),ffMt0 ') ]U - » .=  -/<ibc3:e«(3: ) « (x - y ) .  (lc )

It  has been shown by Adler2 that Eqs. (la ) and (lc ) 
can be tested in high-energy neutrino reactions, where 
they imply that, in the limit of infinite incident neutrino 
energy, the difference dar{v-{-N)/dif—daT(v-\-N)/d(f 
approaches a constant which is independent of the 
leptonic invariant 4-momeatum transfer if. Bjorken,1 
by an isospin rotation, has transformed the neutrino- 
reaction results into inequalities on electron-nucleon 
(or muon-nucleon) scattering which hold in the limit 
of infinite incident electron energy; these inequalities 
may make it feasible to test Eq. (la ) in the near future.

However, before proceeding to experiments, one must 
answer the question, what is effectively an infinite inci
dent neutrino or electron energy E i  More precisely, 
what is the energy E(<f,S) such that for E>E{<f,6 ) 
the neutrino equalities hold to within fractional error 
S? No general answer to this question can be given. 
However, we will show, in this paper, that the experi
mental information used in evaluating the sum rules 
for the axial-vector coupling constant and for the 
nucleon isovector radius and magnetic moment suffice 
to determine E(<p=0, 6) in two cases.

The results indicate that at incident energies of order 
5 BeV it is reasonable to start trying to check the equali
ties or inequalities implied by the current algebra, at 
least for small <?. It is encouraging that this energy 
range is accessible to the Stanford Linear Accelerator.

* Work supported in part Ъу the U. S. Atomic Energy Com
mission. Prepared under Contract No. A T (ll- l )-6 8  for the San 
Francisco Operations Office, U. S. Atomic Energy Commission, 

t  Junior Fellow, Society of Fellows, 1964-66.
I  National Science Foundation Postdoctoral Fellow, 1965-1966. 
1 M . Gell-Mann, Physics 1, 63 (1964).
>S. L. Adler, Phys. Rev. 143, В 1144 (1966).
■J. D . Bjorken, Phys. Rev. Letters 16, 408 (1966).
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Let us review the results’ for the high-energy neutrino 
reaction

v+ N ^ rl-h3. (2)

We neglect the lepton mass mt, and define the following 
kinematic quantities (noncovariant quantities always 
refer to the laboratory frame) :

M k ~ nucleon mass,

E =  incident neutrino energy,

E '—final lepton energy, 

k—neutrino 4-momentum, 

k '— final lepton 4-momentum, 

tf =  {k—i ')5 =  leptonic invariant 4-momentum (3) 
transfer,

q<t=E—£ ' =  leptonic energy transfer,

W =  invariant mass of system 0

=  (2Mлг ô+Aftf1- 91)1'^
?0=  (w * -M J + f ) / {2 M N).

Let G be the Fermi coupling constant and 9C the Cabibbo 
angle. Then the cross section for strangeness-zero 
(5 = 0 ) final states may be written

iPa
Q ) + p - >  0 + ^ = ° > ] / d<fdq*

G5 cos4 e 

4 irE?
- [9V=fc>+ (2E>-2Eqa-\<?)p r̂

T ( 2 £ - 9s)5V ± > ].  (4)

The form factors a<±J, /3(±\ and are functions of 
<f and qa- The local commutation relations of Eqs. 
(la ) and (lc ) imply that

• J (5)

Combined with Eq. (4) and with the expression for 

1S98

Copyright© 1967 by the American Physical Society. Reprinted with permission.
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Fig . I. The function 
F i(E ) defined in Eq. (12). 
Above f = 5 BeV, wc have 
assumed e-̂ + )oc>-e .
Sec Ref. 7 for details of 
the numerical evaluation.

da/ d(fi
da r*l
--- =  j  dq0-------
do1 ! « d<fdq0d f Jo 

Eq. (5) implies that

<кт[у+р—1>/3(5=0)] dorC v+p -i>0(S=O)]|

dff d f  I

G1 cos*ee

(6)

lim

which separately obey the sum rules1

i=  [
J%~

/•* w
= [|д(9*)?+ / —-  

J Ыы+Мт M N

(7)

XdW[fiA™ (t ,W ) - f a '+ 4 fW ] ' (9a)

L =  j  dq0[fivM ~ /5И+)]

r  W 
W ( f l J + 4 W t f ) ] 4 - / —  

J mn+m, м кIn order to study the manner in which the limit in 
Eq. (7) is approached, let us s.narate 0(±> in the sum 
rule oi Eq. (5) into vector and axial-vector parts,

At <f=0 and for W > M „ + M T, /V±>(0,W ')= 0, so
(8) that Eq. (9b) becomes the trivial equality 1=1. Since

Fig . 2. Input values (Ref. 7) of 
*<“ >—<r<+) lor values of f  from 
threshold to 10 BcV, including the 
asymptotic tail above 5 BeV for 
the case a  — 0.5.
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F ig . 3. The function P i(S ) defined in Eq. (16). Above ? o = l.l 
BeV, we have assumed

2 « t [ - | '(/ * = 1 )+ £  —> / =  ! ] — ®t [ t (/  =  1 ) + ^  - »  / = 4 ]o c f o _ *.

See Ref. 10 for details of the numerical evaluation.

Pa c±)(0,fV) is related to ст(±,(0,W ), the total cross 
section for the scattering of a zero-mass *■=*= on a proton, 
by4

IM S g S ^ K  о.*Ю
^г± )(0,Ж )=— — ------------- , (Ю)

ir«r(0 )! W * -M S

we see that Eq. (9a) becomes the usual sum rule for 
£л м  Thus, Eqs. (4)-(7) imply that, at 9̂ 0,

»/3(5=0)] »/9(5=0)]

1“

with

d? d<? ,-o

G2 cos^.

2t

i -  [ '  *

-ti+FiCe)], ( l i )

dqa/ ?o\

on \ £/

2 A / V  1
X --------[<г<+>(0,ИО-<г<->(0,ИО][ . (12)

»i.(0)* I

In Eq. (12), ?„= (TF -A /y )/ (2A fw), as obtained from 
Eq. (3) for qc with <f =  0. Rather than using Eq. (12) 
for our numerical analysis, we use the expression

I M S  1 
x  . (13)

which involves only the pion on-mass-shell cross sections 
ff(± ) (^ )  =  0-(±)(—M J, W ). The statement that the 
right-hand side of Eq. (13) approaches 1 as E — is 
the polology form of the gs sum rule.5 The variable

4 In writing Eq. (9), we are defining the pion interpolating field 
to be the divergence of the axial-vector current, suitably normal
ized. The partially conserved axial-vector current (PCAC ) 
hypothesis is used when we replace Eq. (12) by Eq. (13).

» W . I. Weisberger, Phys. Rev. Letters 14, 1047 (1965).
« S. L. Adlei, Phys. Rev. Letters 14, 1051 (1965).

v= (W 2— M S ~ M S )/ {2 M n ) is the pion laboratory 
energy. If PCAC is valid, the integrands of Eqs. (12) 
and (13) are expected to differ appreciably only for 
small center-of-mass energy W, where kinematical 
threshold effects may be important; this difference 
should not greatly affect the large-E behavior of P\(E).

The numerical evaluation7 of F i(E ) is shown in Fig. 
1 Qn Fig. 2 we plot the input data <r(-> —a<+)],  I t  is 
seen that for energies of a few BeV, F\(E) becomes 
monotonic and greater than 90% of its asymptotic 
value of unity. Thus, neutrino energies of order S BeV 
are certainly adequate for testing the local current alge
bra at ^  =  0.

The curve of Fig. 1 has no direct bearing on Bjorken’s 
inequalities for electron scattering, since these inequali
ties come from the vector sum rule of Eq. (9b) and do 
not involve the axial-vector sum rule of Eq. (9a). As 
we remarked above, Eq. (9b) becomes a trivial identity 
at <j2= 0. However, the first derivative of Eq. (9b) with 
respect to <f gives the interesting sum rule

d r~ W d
0= 2— J?,r ( Л  | , » _ < ,4 W (0 )? +  ---- dW—

dq2 J ms+u . M h dqf

Х[?к<->(91,ИО-/М +>(91,ИО]| (14)

which has been derived by Cabibbo and Radicati and 
others.2'8 To exploit this fact, let us keep only the vector 
part of Eqs. (4)-(7) and expand in a power series in if 
{we use the fact that av(± )l „’_o= [q<rdf3rl±)/d<f]\ ,*_o 
=  / i(±,(0 i^ )i >n ^  notation of Ref. 2 }:

» / 3 ( 5 “ 0 ) ]  d a T v [v - \ - p —*  / 9 ( 5 = 0 ) ]

d<f

G* COŜ fle

with
2ir

1+ — Л (£ )+ 0[  (?>)>] 
M S

(IS)

1F a( £ )  d 1
------- 2-—Fiv (9*) | ,*_o+ [ iV  —
M  n* d<f 2 M  nR  4E?

+  f s ^ r i - ^ + ^ - |
J Mr+M Sum и) 9o’ L E 2E1 J

Х [ Г а< - > ( 0 , И 0 - Г 1<+ > ( 0 , Ж ) ] ,  ( 1 6 )

and 9o= (W I -M S V O M n )  as in Eq. (12). The inte
grand in Eq. (16) may be related to the total cross

7 We have used the cross-scction tabulation of G. HBhler, C. Ebel, 
and J. Giesecke [Z . Physik 180, 430 (1964)]. Above »  =  5 BeV, we 
have assumed crt+1 — <r'-Ja,Cff*+1—1,1 j]|p- ib*v ( k/5 BeV) a. For 
each value of a, we have normalized Fi, so that r i ( ° ° )  — !■

•S  L  Adler (unpublished); T- D. Bjorken (unpublished); 
Phys. Rev. 148, 1467 (1966); N. Cabibbo and L. Radicati, Phys. 
Letters 19, 697 (1966); R. F. Dashen and M . Gell-Mann, in 
Proceedings of the Third Coral Gables Conference on Symmetry 
Principles al High Energy (W . H. Freeman and Company, San 
Francisco, 1966).
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Fio. 4. Input values (Rel. 10) ol

2<ггЫ/-1)+ * - / -Н
—“rDy U = i) -* 1 - 1]

for values of 50 from threshold up 
to 10 BeV, including the asymp
totic tail above g o = l- l BeV for 
the cases a =  0.3 and a =0.7.

sections for isovector photons incident on nucleons to 
produce I —\ and I= \  final states:

УУ-Ч0,И0 - К 1(+)(0,И0 =
go

2т*о:

T able I .  Values of 

2orC'yU== 1)-|"£ - 
up to go*■ !.! BeV.

► /=« - <rrC-y (/ -  i i - * /- h

X {2стт’['г (/=  1 )+^  —> / =  Я

/ - ! ] )■  (17)

These isovector photon cross sections have been esti
mated by Gilman and Schnitzer,' who find that Eq. 
(14) appears to be satisfied. Using numerical estimates 
similar111 to those of Gilman and Schnitzer, we have 
computed F?(E). The result, shown in Fig. 3, indicates 
that |Fj(£)| is less than 0.5 for energies in the 5 to 10 
BeV range. { In Fig. 4 and Table I we give the input data 
2c  H > ( / =  1 ) + #  - »  / =  * ] - < M > ( / =  1) + #  - » / = * ] . }

To conclude, for small (f, energies of order 5 BeV 
suffice to test local commutation relations. We must 
caution that as if  increases, the needed energy E(<f,5) 
will be expected to increase rapidly. This is clear from 
the experimental fact that the single-nucleon and (3,3) 
resonance contributions, i.e., the small W  contributions, 
to the sum rules of Eqs. (9a) and (9b) decrease rapidly 
with increasing <j“.u Thus, to maintain a constant sum

• F. J. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966).
10 Up to go“ 1.1 BeV, we have included the contributions of the 

i-wave, ЛГ*(1238), Л"*(1520), and ^*(1688). We assumed the 
Ли*(1520) and JV*(1688) peaks measured in photoproduction come 
only from isovector photon transitions, and that for these two 
resonances, —0.6. Above 1.1 BeV, we have assumed 
2aT[y ( I  =  V )+p  —* / =  1]  — огСтУ “ l )  +  />“ * and 
for each a we have chosen tbe normalization N  of the tail to make 
Fa(co) —0 . For none of the values of a considered did this require 
an unreasonably large tail.

11 Nucleon form factore: E. B. Hughes el al,, Phys, Rev. 139, 
B458 (1965): clectroproduction: A. A. Cone et al.f Phys. Rev. 
Letters 14, 526 (19o5)* weak production: CER N  Report No. 
N P  A/Int. 65-11, 1965 (unpublished).

To
(MeV)

Ц т М ) + ^ / = Н  
—<ntr (/ =  l ) + p  “ ♦

Ш

150 + 8
175 4-60
200 +94
225 +50
250 - 1 1
275 -1 0 8
300 -2 3 8
325 -32 8
350 -287
375 - 2 0 0
400 -13 8
425 - 8 6
450 -4 9
475 - 2 4
500 + 3
525 + 7
550 +30
575 +46
600 +6 4
625 +1 0 0
650 +114
675 +  148
700 +182
725 +217
750 +227
775 +176
800 +125
825 +80
850 +5 4
875 +53
900 +5 4
925 +5 4
950 +  66
975 +76

1000 +75
1025 +72
1050 +46
1075 + 2 2
1100 + 1 0
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at large (?, the high W  states, which require a large 
E  to be excited, must make a much more important 
contribution to the sum rules than they do at ( f = 0. 
The calculations of this paper shed no light on the

important question of how rapidly Е(^,6) increases 
with q1, but only serve to indicate at what energies E 
it may pay to begin the experimental study of the local 
current algebra.
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Low-Energy Theorem for the Weak Axial-Vector Vertex*

S. L. Adlek| and Y . D othan {

California InzliiuU oj Technology, Pasadena, California 
(Received 13 M ay 1966)

A  low-energy theorem is derived for the weak axial-vector vertex. The theorem enables one to  calculate 
°r electromagnetic processes the two leading terms in the expansion of the axial-vector vertex in 

S S T  ^ % 1еР1ошс,!оиг т “ т теп1иш transfer. Applications to weak pion production, K .t decay, and 
inr]i,HJn^ t w are «bscussed. b  particular, we express the radiative д-capture matrix element, up to and 
(е т ,Т п Г ^ П . °°S Ш,еаГ “  Ле iePtonic four-momentum transfer and the photon four-momentum, in 
terms of the elastic weak form factors and pion photoproduction amplitudes.

INTRODUCTION

T T  is well known1 that the infrared divergent order A-1 
A  term in the matrix element for the radiation of a 
photon of four-momentum k in any process (the matrix 
element of the electric current) can be expressed solely 
ш terms of Ле matrix element for the same process with 
no current present. Low* has shown that current con
servation enables one to calculate the electric-current 
matrix element not only to order jfe-> but also to order

111 terms of Л е  process without the current. In the 
present work, we derive analogous results for the matrix 
elements of the axial-vector current. We express each 
such matrix element in terms of the matrix element for 
the process with no axial-vector current and the matrix 
element of the divergence of the axial-vector current 
The relation 15 exact to orders k~l and k*. Under the

° fapartially conserved axiai-vector current 
(I'LAC), we can relate the matrix element of the di
vergence to the corresponding matrix element of the pion 
source, which is physically measurable, apart from the 
usual small off-mass-shell extrapolation.' Thus we 
obtain an expression for the axial-vector matrix element 
solely in terms of physically measurable quantities. 
Clearly, this shows that the essential point in Low’s 
derivation is not current conservation, but the fact that 
the divergence of the current is independently measura
ble. Results analogous to ours will hold for any current 
whose divergence is known.

In Sec. I  we state two simple lemmas and rederive 
Lows results from them. In Sec. I I  we derive the 
analogous results for the strangeness-conserving weak 
axial-vector current. We also show how these results 
are modified when two currents are present, instead of

* 7  Й Т  *
tr J s  (A dd^W ^i F‘ D°b!?-Ch' The Theory of Photons and ш«-i p  -p « “ on-W eley, Reading Massachusetts, 1955) n 391

, L  V ? ;  R ev - 110, 974 (1958). ’ P '
Y  NanAu 0 “ * L ivy ‘ ,N u o v o  Cimento 16, 70S (1960);
a “  i Теог 4’ 3S? (l960); K' C' Ch°u- Zh-492 (1961)] [.Enghsh tranal.: Soviet Phys.— JETP 12,

4 S. L. Adler, Phys. Rev. 140, B736 (1965), Sec. I1IC.
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only one. As an application, we treat in Sec- I I I  the 
following processes: Weak pion production, K .4 decay, 
and radiative ц capture. In particular, we find in the 
case of radiative ц capture that when terms of order qk 
and higher are neglected (5=  lepton four momentum 
transfer, k=  photon four-momentum), the matrix ele
ment can be expressed solely in terms of the elastic 
weak form factors and pion photoproduction ampli 
tudes. This means that structure effects linear in q or 
linear in k are determined, giving the leading corrections 
to the radiative д capture matrix element previously 
calculated by Manacher and Wolfenstein6 and by 
Qpat.1

I. LOW 'S RESULTS FO R T H E  E LE C TR O 
M AG NETIC  CURRENT

We consider the process a —> b+y , where a and b are 
arbitrary hadron states. The matrix element for the 
process is given by’

I а )и = « (2т)‘г«1

1
NaNb^Ma, (1)

(2т )« ‘ (2*(,)>'*

where p., pb, N„, and N b are, respectively, the total 
four-momenta and the normalization factors of the par
ticles in states a and b, e* is the polarization of the 
photon, and k is its four-momentum. The quantity M a 
is related to the matrix element of the electromagnetic 
current J„EM by

N J f iM . = OM(b \ J .^ \ a )la. (2)

Conservation of the electromagnetic current implies 
that

kaM a= 0 .  (3 )

We state two simple mathematical lemmas from 
which Low’s results are easily derived. [In  the follow-

* G. K . Manacher and L. Wolfenstein. Phys. Rev. 116, 782ЦУЬУ)*
1 G. I. Opat, Phys, Rev. 134, B428 (1964).
’  Four-vectors have an imaginary fourth component: p= (p ,p*) 

с f t  P 4=p 4+?n?< = p q —po?i- The quantity p* is de
nned by p =p*, pt =  —pi*, where «  denotes the ordinary com- 
р е *  conjugate. The у matrices (?,, 7,, y,, y i y i= y ,yty,y,) are 
all Herrmtian, and satisfy y.yf+ y n .  =  2 i.,.
1267

Copyright© 1966 by the American Physical Society. Reprinted with permission.
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FiO. 1- The nonradiative process.

Ма̂ (к )= М ^ Щ + 0 {к). (4)

F ig . 2. Contribu
tions to the radiative 
process.

We can express Afe**1 in terms of Г, 

(2 * ,+ * ).
T ls + r rk ,  t, 0, (p ,+ k ¥ + M f i

ing, 0{kn) denotes terms of the nth or higher degree in 
k-1

Lemma 1: Let M J 1 be an arbitrary four-vector 
function of arbitrary independent variables, which is 
independent of the four-vector ka. Then kaM an ~ 0 (k 2) 
implies that M „l l = 0. Proof: Obvious.

Lemma 2: I f  kaM «=  0 and 
where M „u is independent of k and where kaM a1= 0, 
then M a — M S + 0 {k ).  Proof: kaM ,=  kaM al—G implies 
к *М ап = 0 (к г),  so by Lemma 1, M al l~ 0.

Note that “ independent of k”  is not the same as 
“ zeroth order in k.”  For example, k jp -k  is zeroth order 
in k but is not independent of k.

We now apply the lemmas to the two cases con
sidered by Low. First we discuss scattering of a charged 
scalar particle from a neutral scalar particle (Fig. 1). 
We denote the initial and final neutral-partide four- 
momenta by ri and rj, and the corresponding charged- 
particle four-momenta by pi and рг. Let T(s=p\ 
•ri+p i-T i, t=  (f j—n )1, A j=  ̂ i2+ А/12, L i — р^-\-M ■?) 
be the transition amplitude for the nonradiative process 
in Fig. 1. We have explicitly indicated the dependence 
of T  on the amount by which the external charged par
ticles are off the mass shell, since the amplitude for the 
process in which the photon is emitted from one of the 
external charged particle lines involves the off-mass- 
shell nonradiative amplitude. The physical nonradiative 
amplitude is Г^/ДО).

The radiative amplitude gets contributions from two 
types of terms: terms in which the photon is radiated 
from an external charged partide line [Tigs. 2(a) and 
2(b ) ; we call these terms M .'uar\ and terms in which the 
photon is radiated from an internal line £Fig. 2(c); we 
call these terms The infrared divergent terms
come only from while М а“ * is finite at й=0. We
write

fa + k y + M f
(2pi—k)a

+T [_s~ryk , t, (P i -k y + M J ,  0]----------------- . (5)
fa -k y + M f

We expand T  with respect to k, giving

(2 p i+  k)a (2pi— k)a 
------------- T [ V A 0] —71>,/,0,0>
(2 p2+k)-k (2 p i-k )-k

( Pi* Pm \ S
---- T*-k-\----- ryk )—Г[>,/,0,0]

рук рук /ds

+ 2  pu— T[i,i,0,A j|
3Ai lii-o

+ 2̂ i.— T[j,/,Ai,0] 
ЗД1

+0(k). (6)

We are now able to rewrite M a in the form required by 
Lemma 2,

M a= M <r ' + M aM = M al+ M a1I+ 0 (k ) ,  (7)

(2 p i+ k )„  (2p ,~ k )a 
M S = ----------- -Л>Л0,0] — Г[^,(,0,0>

(2 P i+ k ) - k

<
(2p1- k ) - k

P 2e Pla \
---- r 1 • -------T\ -k—Ttn— J
рук Ру к  /

Х - Г ^ Д О ] ,  (7a) 
ds

Man =  К + г ^ - г О л о .о ]
ds

~\~2pia——7'[̂ i,<,0,A J  
dA]

-\-2р\л----^[ij^AijO ]
dAi

+  Л/а1п*(0) . (7b)
A l— 0

From this we conclude that M „=  M S + 0 (k ).  In other 
words, the terms in the radiative amplitude of order k° 
as well as those of order A-1 have been determined.

The procedure required by the lemmas may be re
duced to a simple redpe: (1) Write down the sum 
of the terms in which the photon is radiated from an 
external charged particle line. (2) Drop all terms from 
A f,” * which are explicitly independent of k, giving a 
truncated amplitude M aaxt'. (3) Add to a AM a 
independent of k so as tomake£a(M 1I‘,I,/+<4M«) =  0 (A2). 
Then М «И,,+  ДАГ. is the M S  required by the lemma.

Let us apply this redpe to the problem considered
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above. We have computed М „“ ‘ in Eq. (5). In the first 
term let us expand T  with respect to the off-mass-shell 
variable but not with respect to the energy variable:

T ts + r t -k, I, 0, ( f c + * )* + t f  Я

=  T\_s+ri-ks t, 0, 0]+ [ (^ j+ £ )s+ A b 2]

— r [j+ r r fe ,  i, 0, Д2]
ад, Дд-0 1 -

+ 0 (k)\. (8)

Let us discuss the first term of Eq. (12). Because the 
final fermion is off its mass shell, T ^ + fv fc ,  0> (^ !+ ^ )2 
+ М У ] con tarns terms which give a vanishing contri
bution as k —* 0 when multiplied on the left by a spinor 
й{рг). These terms are not physically measurable in the 
nonradiative process. I t  is therefore convenient to 
write Г  in the form

Zti+r.-JU. 0, {pi+kY+MJ-}

i y {p i+ k )+ W

The off-mass-shell derivative term in this expansion, 
when substituted into Eq. (S), leads only to terms 
which are either explicitly independent of k or are of 
first order in k. These terms are dropped in forming the 
truncated matrix element We repeat this procedure for 
the second term in Eq. (5). Thus the truncated matrix 
element M is

(2 * + * ) .
= ------------------T f r + f y A ,  t, 0, 0 ]

2 W

- t r  (p i + k ) + w

r * [> + * v M ,0, (p i+ k y + M fi

(2p i+ k )k

— T [s —rvk , /,0, 0}
(2 p l-k )a

(2 P i-k ) -k
-0 (k ). (9)

The divergence of M 0“ ‘ ' is 

i.A fa*x,'=  k, I, 0, 0]

I, 0, 0] + 0 (ft*)

а
= (г,-A + rr^ -rC i.tA O l+ O ^ ). (10)

ds

Hence, A M a is determined to be

-  ( r j+ f , ) „ —T[r,/,0,0]. (11) 
ds

Clearly, М а**1'+ДАГа is identical with the M J  of 
Eq. (7a) to order k.

As a second illustration of the procedure, we consider 
the case when the charged particles have spin §. This is 
the simplest photon analog of the axial-vector case, 
since the axial-vector vertex cannot couple to a spin- 
zero particle line. As we shall see, the only difference 
from the preceding case is due to slight complications 
caused by spin.

We start by writing down M ,® ,

5) I (ty .+ i---- aâ kn)-----------------
I 2M t i y  (pt-{-k)-\-Mt

X J ls + гг-к , I, 0, (P i+ k y + M J -]

+  71*“ rvk , I, {p i—к)г-\-М-?, 0]

H-------------------- k, I, 0,
2W

X  ( p t + k y + M f t , (13)

where W  denotes [ — (£s+  jfe)1] 1'5. The term T p[s,i,0,0] 
is the amplitude measured in the nonradiative process. 
We rearrange Eq. (13) in the form

T{Vf-*vfc, I, 0, (^j+£)!+AfaJ]

=  T p[s+rj-£ , t, 0, 0] + p Y ‘ (^ s + £ )+ A fJ

x ( c ~ i f  (/>1+  k)-\-U j ]—
l дЛг

Х Т Ъ + ry k , t ,0, Д,]| + 0 (A )
I д ,-с

1 Г ( i y  (#>!+*)—Afa'l

2WI. ' W + M t J

Х {Г «[Н -г2-*,/,0, (j> i+ky+M fi

- T ' l s + r r k ,  t, 0, (fc ,+ *)!+ W ] } }  - (14)

When substituted back into Eq. (12), the term in bold
face brackets in Eq. (14) leads to terms either independ
ent of k or of first order in k. Strictly speaking, we 
should have included in Eq. (12) the negative-frequency 
terms in the photon spm-^-off-mass-shell spin-^ vertex. 
By the same argument, these terms do not contribute 
to the truncated matrix element. Hence, the truncated 
matrix element is

M  = f i  ( p t)  |  ( i y a+ i ^ - p r a t k ^ J

X -
1

i y  (^ i+ 4 )+ A fj 

+ T ’’l s - r l -k,l, 0 ,0]

r F[i+fi-A , /, 0, 0]  

1

. , ------------( iy a+ i ----- (Tatkfi)
i y ( p i - k ) + M \  2 J

) u (p i). / M \1
XI 17« +  »-----Oatkjl

( 12) \ 2M\ J

i y  {Pi—k )+ M i

u(pi)+0(k ) , (15 )
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which involves only the physically measurable matrix 
element. Using the identities

u ( p 2) i y k -
1

* r  (p2+k )+M .,

1
(16)

- iy k u (p i )= -u (p i ) ,
i y  (p\— k ) + M \

we can calculate kaM a‘xt',

kaM < rl'= u { p i ) { T F\ j+ n -k , t, 0, 0]
- Т Ъ - ъ - к ,  t, о, 0 ] } « Ы + 0 ( * г).  (17)

The expression between the spinors is identical to 
Eq. (10) in the spin-zero case. Therefore, AMa is

d
A M *---- , (18)

8s

and M J  is M a ^ '+A M a . This is Low’s result.

П. AXIAL-VECTOR CURRENT

We now consider the matrix element of the strange
ness-conserving weak axial-vector current JaAi between 
hadron states a and b,

N J f , M J = M ( b \ J * AH a ) in. (19)

The superscript j  is an isotopic spin index ( j —1,2,3). 
We no longer have the equation kaM J — 0, since the 
axial-vector current is not conserved. Let D> be the 
matrix element of the divergence of the axiat-vector 
current,

N a N b D ’ =  N J t J t aM J =  out< 4 1 -  idaJaA i\ a } Sa. (2 0 )

Here, as in Section 1, к = р а—ръ- The PCAC hypothesis 
relates matrix elements of the divergence of the axial- 
vector current to matrix elements of the pion source,

MugA m j
cut(b | d J aAi  | a )in = -------------------------- «u t  ( b  | J J \ « ) i n , (2 1 )

gr(0) k *+ m j

where M # and m, are the nucleon and pion masses, 
J J  is the pion source, gvi™ Йa (0) » 1.18 is the weak 
axial-vector coupling constant, and gr(0) is the off- 
mass-shell pion-nudeon coupling constant. The [physi
cal coupling constant is £ ,=gr(— ж,5);  gs/far** 14.6.] 
We wish to emphasize that the PCAC hypothesis 
allows one to measure D’ in purely strong interaction 
experiments.

Since the axial-vector current is not conserved, we 
will need a slightly modified version of Lemma 2: 

Lemma 2?: I f  kaM J =  D1 and M J =  M J l-\- M  J Jl 
+ 0 {k ), where M J 11 is independent of k and where 
kaM J l — D>+0(k1), then M J = M J :+ 0 (k ).  This lemma 
leads to a modification of the recipe stated in Sec. I :
(1) Write down M J 4,t, the sum of terms in which the

axial-vector current is coupled to external particle lines.
(2) Drop all terms from M J  which are explicitly in
dependent of k, giving a truncated amplitude M J **1'.
(3) Add to M J  a A M J  independent of k so as to 
make ka{ M J ‘*l'+ A M a’’) =  D ’+0 (k?). Then M J
+  A M J  is the M J  required by the lemma, We actually 
will not omit all terms of order k, but will consistently 
retain terms of order k which explicitly contain a pion 
propagator.

As an illustration of the recipe, we will consider the 
problem analogous to the second example in Sec. I, 
scattering of a spin-zero particle from a spin-£ particle 
(which we will take to be a nucleon) with an additional 
coupling of the spin-j particle to the axial-vector 
current. The answer will involve the corresponding 
matrix element, in which the axial-vector current is re
placed by the pion source. We write the pion-emission 
matrix element in the form

M J = 0Ul(b\JJ\a)!n (N aN b)~ 

=Ъ{рг)\чт{Р)т’у sr
1

i y  (p*.-\-k)+MN 

X T?\.s+rrk , t, 0, 0 ]+ 7 ^ [> —r,-£, t, 0, 0]

1

i y -  ( p i — k ) + M f r
4rW)T>ys+iTJ( 0)

d I 1
+ ih — f j m  + ow )\ u (p 1). 

dk\ I * _ о  j
(22)

We have explicitly exhibited the Bom terms in the form 
given by dispersion theory, where residues are evaluated 
at the Bom pole and so no nucl eon-off-mass-shell terms 
are present. The way we write the Born terms serves as 
the definition of the non-Born part T J (k ).

We are now ready to write down M J

f r ‘  1
M J  “ * =  £(/>2) igx(**)7«7б------- 7---------------

1 2 i y  (j>2+ k )+ M N

X r t+ f . - i ,/ , » ,  (Р г+ к У + М ^

+  Г [ т — Гук, I, (p i—k y + M rf ,  0 ]

X
1-------------------------TJ) 

------------------ ЧА{Ь?)УаУЬ—] U{pi)
i y  (J>i—k )+ M N 2 I

MugA ika 

gr( 0 )

-M J . (23)

The term in brackets in Eq. (23) is the direct coupling 
of the axial-vector current to the external nucleon lines. 
The term proportional to M J  comes from the diagrams 
shown in Fig. 3; although this term is formally of first 
order in k, it can be important because of the small 
mass of the pion.
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As we have seen in Sec. I, the truncated matrix 
element is obtained by dropping the negative frequency 
part of T  and by neglecting off-mass-shell terms. This 
gives

( t > 1 
M J  (pt) \ igA(V  ) 7.T r -  — ------ --------

i 2 i y  ( p i + k ) + M N

X r p[s + r ,- i,  I, О, 0 ]+ Г Ч > —n-k, t, 0, 0]

1
—igA(k?)y„yt—

t y (p i—k )+ M N 2

F ig . 3. Pion pole 
contributions to the x 
axial-vector current 
matrix element. The 
axial-vector coupling 
is denoted by X .

k*{M J M '+ A M a>)^D>, with

Using the identities

1
u(j>t) iy k y r

M NgA ika 

g,(0) b?+m.
-M J + O ik ).  (24) D ‘~  \ M V + n *

M N g A H I,1

M h )

1

iy  C *̂+*)-l-Afjsr 

= й(^г)Г—yt+ 2Mirn------------------1 ,
L i y  (£2+£)-|-Afw-l

X  |tgr(0)TJ7 r
I t y  ( p l - { - k ) - { - M I f

X T ^ s + n  k, 1,0,0]+ r ^ [s - n - fe ,  t, 0, 0]

1

(25)

-igr (0)т*у»+»Т т’ (0)

i y  (j>i—k )+ M K
-iy  kyeu(j>i) + iky— T A k )

dkx
+О(А®)|«(/>0 ■ (27) 

k - 0  J

-Г- 7b+
i y  (# i“ k )+ M N

-2Мцуьsj“ (#i).
Comparing Eqs. (26) and (27), we see that kaA M a‘ 

must satisfy

we can calculate kaM as Mt', 

k.tM J a t'= u { p ^ - \ g AT'y J 'p[s-\-ri kl t, 0, 0]

— rq > —ri-k, t, 0, 0Ъ&ат>Уъ

M NgAmf\ 1 
-i-------------— - t '7 s----------------------------

f + и ,1 I iy (j> 2 + k )+ M „  

X T ^ s + r t  k, I, 0, O ^ r 'C i-n -J fe , I, 0, 0]

* v ( p i — k ) + M N I )

ifxgA t? I _ d
----- ^  i r,»-(0)+ fc—  

£ ,(0 )  t f + m , 1 i dkx

kaAMJ=u(pi) IgAr’y iT^S+Tf k, I, 0, 0]

+ T p[ j - r r £, t, 0, 0]kxT^5-f
MugA

'Т а д Г

х Г гл о )+ *х — 5V(*) l + 0 (**) « w  L dkx L .J  J
(28a)

(
W  \ 4eir*yjT;*A0,o]

I
M nRa 1

+ г рО,г,0,0]̂ лт'у6+------Т А 0) U(*0
g r ( 0 )  )

+  ka1l(p 1) rbi\gAT’ys—Tp\_s,l,0$r\
ds

x T . m
t-0

+ 0 (tf) }« (* ,,)-  (26)
ds

In deriving Eq. (26), we have combined the Bom terms 
in M T> with the divergence of the first term in Eq. (24),
о n Dxmn n/i nyi f и л f л aw. a f 1.9̂1 —____ /

MugA 3 _
+ — —  — TAk)

gr(0) dka
« ( # 0+ O (t f ) .  (28b)

in Mr> with the divergence of the first term in Eq. (24), ^  the reader has undoubtedly noted, the nucleon prop- 
and have expanded the form factors Ы * 2) and g,(k ') agator terms have exactiy cancelled between Eq. (26) 
m powers of й2. - m -  j . . t_ . l *

”  ’ u '  '  LLll IU UUTb LAftl-UJ LaULLULU UCLWH.11
Powers of й2. gq  ^7), and so do not appear in Eq. (28a). In the
We determine A M J  by the requirement that term involving TV, the pion propagator has dropped
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out altogether, since

m.

Р + т .1 к?+тжг
= 1. (29)

In going from Eq. (28a) to Eq. (28b), we have simply 
expanded in powers of k  and collected together the 
terms of zeroth, first, and second order in k.

Since kat\MJ is of first order in k, the zeroth-order 
terms on the right-hand side of Eq. (28b) must vanish 
identically. This gives

й (рг) Т r»'(0)tt(3>i)= - й ( р г) |— ■т ^ Г Ч ^ Д О ]

u ( p i ) .  (30)

2 M N

gr(0) .
+  Гр[̂ ,/,0,0]  т‘уь 

2Мц

This formula, which has been obtained previously,8 
expresses the matrix element for the emission of a zero 
four-momentum pion in terms of the matrix element of 
the process without the pion. Equation (30) can be used 
to eliminate 2V (0) from the term proportional to M J  
in Eq. (24). Comparing the terms of first order in k ,  we 
find

a
riahgAT’ye— T'T.f./AO] 

ds
АМа>=й(р2)

---- r P[>,/,0,0]l£ATWK.
ds

M N gA  d

+ ---------- T A V
g r (  0)  d k a

\u(pi). (31)

Adding this expression to the M J  of Eq. (24) gives 
the analog of Low’s result for the axial-vector case.

A similar method can be applied to the case in which 
more than one current is acting. As an example, we 
consider the matrix element"

U , (32a)>= Jd*y eill'voui(b| T\_JaA’ (ic)J,{y)~] | a) 

Calculating kaM aJ, we get 

k„Ma,’=  [ d'ye'*’» / i l - t —  T\_JaA>{x)J,{y)'] aS
J ont '  I dXa ill

= J  aM(b\-b(jCa-ydU 'ЬУ]\<1)т

+  I 0* i(b \ - iT [d aJaAi(x )J ,{уУ]\а)ъ.

(32b)

1Y . Nambu and D. Luri£, Phys. Rev. 125, 1429 (1962); 
S. L. Adler, ibid. 139, В 1638 (1965).

■ In Eq. (32) we have neglected “ seagull”  terms, which will be 
included m the calculations of Sec. Ш .

The only difference from the case treated above is that 
the divergence, in addition to having the term with a 
pion vertex substituted for the axial-vector vertex, also 
contains an equal-time commutator term. Following 
the procedure of this section, we can determine M a„l, 
apart from terms of order k and higher. I f  the divergence 
of Jo is also known, we can apply the technique a second 
time, determining terms of order k which are independ
ent of q. This leaves an error which only involves terms 
of order qk and higher.10 We will consider such a case in 
the next section, when we discuss radiative д capture.

Ш. APPLICATIONS

In this section we apply the results of the previous 
section to several concrete examples. We consider first 
single-pion production from a nucleon by the axial- 
vector current. As an illustration of the use of our 
method in the strangeness-changing case, we discuss 
K„t decay. We finally discuss the process of radiative
ii capture on a proton, an example in which two currents 
are present.

1. Weak Pion Production

We consider the process

y ^ + N i p , )  l{kt)+ N (p t) + ^ ( q )  , (33)

where the four-momentum of each particle is indicated 
in parentheses. Let M J n be the axial-vector matrix 
element for this process, as defined in Eq. (19), with

out<6| ='>at(N(p*)-K'1(q)\ , (34)

k=ki—k.= pl-  (pi + } ) .

In this case, 7'p[i,i,0,0] is the pion-nucleon vertex 
igryt,Tn, which has no j  dependence. Hence the d/ds 
terms in Eq. (31) vanish. Clearly M rin, the matrix 
element with the pion source substituted for the axial- 
vector current, is just the amplitude for pion-nucleon 
scattering. We find

[ т* 1
M J "  “ ‘ ' =  « ( £ 2) ]  igA (k2)y ays— -

X igrynT'+igrytT’

2 iy -(j> i-\ -k )+M n

1

iy  (fii-k)-\-MN

t’\
X  ig A  (^)7a7b—  } « l) 

2 I

MNgA ika
+ ----------------- M r’n, (35a)

________  g,(0) V+mS

10 This method has been applied to the case when only vector 
currents are present by G. K. Manacher, thesis, Carnegie institute 
of Technology Report N YO  9284, 1961 (unpublished).
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1
igr<J?)rhs

iy- 0>j+£)+AfN 

1

lg,ytT'

*7" (j>i—k)+Mn

+ & .i '(0 )+ ik b — T .* (k )
dkx

From Eq. (30), we find that

ti(?.)tfV"(0)u(*i)

[ « , (0)

Чт(№)?4ь
(39)

+ 0(^)1 «(*>,). 
о I

(35b)

Other derivative terms vanish at v=0  because of the 
well-known11) crossing properties of A lN  and B rN,

i4.w (±)(_>j . . .)  =  ± Л 'ЛГ<±>(>», •••),
£ ^ Ш ( _ У| ...)== ■■■)■

Since —it5 is the (mass)1 of the initial pion, Eq. (38) 
involves the pion-nucleon scattering amplitude ex
trapolated slightly ой mass shell. Note that Eq. (36) 
is just the consistency condition on irN  scattering,18

M'(°)

2 A f A
, . tr(0 ) 

+igry6r"— T1Yi

=  й (р  a)
grg,(0)

2 M m

M n

From Eq. (31), we have 

M Ng 

fr№)

(36)

MrtgA  f d _
ш а>~=--------«(/>0 — T j ' ( k )

g,(0) idk.
и(р  i). (37)

From the usual expression for the pion-nucleon scatter
ing amplitude,11 we find (remembering that — k is the 
incoming pion four-momentum),

I — t v -•(*)! 
dka 11

u(j> i)

v w l [ _

q k
v b =  — , k * ) - i y V)VBiP )

2 M N /

+ [ -  i  (y, ,42) - 1‘7 ■ w (-> ( xB, ,̂ ) ]

x § [t v 3D «(^Ol

dvs
—  Ы

(j>l+Pi)a

dv 2Mw

+ i7aB 'w‘-) I jO V ' ]
r -

Mff
(40)

Equations (35), (37), and (38) give the two leading 
terms in an expansion of M J "  in powers of k,

M J '—M J "  “ ‘Ч-ДM j '+ 0 ( k ) . (41)

Alternatively, we can use the analog of Eq. (30) to 
find the leading term in an expansion in powers of q 
(the soft pion limit). In this case, one would take T F in 
Eq. (30) to be the axial-vector vertex. There will be an 
additional term in Eq. (30) arising from the equal-time 
commutator of the two axial-vector currents involved. 
Assuming the commutation relations postulated by 
Gell-Mann,13 we find1*

*rt' + A A f <I, " ' + 0 ( ? ) ,
with

[MV (j>l~hpl)a

(4 2 )

gr(0)
Д М „ ,П = i ------~й(рг)

2 M N gA 2Mn

+17.Гg*--------- 11 JC rV 'X ^ l) ,
L  g A  g A -IJ

ду =3.70. (43)

Clearly, at the point q=k=Q  we must have &Main 
=  A M Jn>. At this point p i—pt and thus iya and 
(pi~\-pi)<,/ (2M s) are equal between spinors. Hence, 
consistency between Eq. (42) and Eq. (41) demands

£as

2 M ,Nr d A * N <--'>
-------! --------- hBr*<
g,(0)*L dv !"]| -I I,

(44)
rj—4*—в*—0

which is the sum rule for the axial-vector coupling 
constant.1'

u(j>i). (38)

u G. F. Chew, M . L . Goldbeiger, F. E. Low, and Y . Nambu, 
РЬув. Rev. 106, 1337 (1957). Note that, according to Eq, (34), 
—к is the ingoing pion foui-momentum.

u S. L . Adler, Phys. Rev. 137, В 1022 (1965). 
u M. Gell-Mann, Physics 1, 63 (1964).
11Y . Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962); 

S. L . Adler (to be published); G. Furlan. R. Jengo, and E. Remiddi, 
Nuovo Cimento 44, 427 (1966). The diligent reader will actually 
fend that in Eq. (42), and also in Eq. (45), we have dropped certain 
terms proportional to ka which are not singular at k' = — m," These 
terms are, of course, determined by our procedure, but they are
numerically insignificant in weak pion production because ka, 
contracted with the lepton current, becomes proportional to the
lepton mass. We have also in Eq. (45) neglected a very small
extra term, proportional to J">, which appears in Eq. (41) when the
pion four-momentum q is taken off mass shell [see W. I- Weis-
cerger, Phys. Rev. 143, 1302 (1966), Eq. (n . l la ) ] .

“ W . I .  Weisberger, Phys. Rev. Letters 14, 1047 (1965);
S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
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Comparing Eqs. (43) and (38), we may determine 
the terms linear in either q or k. Our final result is then

M J '= M a*  , (45)

with

MsgA |П
A l f . * " - » — —*(/>„)!! •

g r ( 0 )

rgr(O)1/ 
+ ! ------1 1-

IL див jv J

L2M!„\  gAV  2 M N

2 Ms

gr(0y i<Ta6kf 

2Мгн 2M s

case,"
d*JaA- е,!!— 1=Сктк*Фк, (51)

lfl R. P. Feynman, in Symmetries in Elementary Particle Physics 
(Academic Pres9 Inc., New York, 1965), p. 158. The constant Ck

we find that

1
— Fi 
mK

d !=  С к— T , x[x,y, (ft- )4]
I *-v-(k ') ’-<>

1

mg

(52)

— Ск— Т тц[х,у, (&")*]

Hence, the K ti decay amplitudes at a point on the 
boundary of the Dalitz plot are related to the vK  ampli
tude, with one К  meson ой mass shell. In terms of the 
conventional Mandelstam variables, the point 
x = y =  (k -y ~ 0  is

<w)

Unfortunately, it is doubtful if Eq. (46) will be of 
practical use, since there is a strong final-state inter
action leading to the (3,3) resonance, which is located 
only one pion mass away from threshold in energy. 
This makes it unlikely that k and q will be good expan
sion parameters. However, we will use the same method 
of comparing expansions in q and k in dealing with 
radiative д capture, where the final-state interaction is 
negligible and so the expansion may be physically 
interesting.

2. Kti Decay

Here we consider the process

K+(k+) -  т + (г + )+ т -0 г )+  « ( * . )+ * (* . )  ■ (47)

Again the four-momentum of each particle is indicated 
in parentheses. Let the four-momentum carried away 
by the lepton pair be k~,

k .+ k .= k ~ . (48)

The most general form of the axial-vector contribution 
to the decay matrix element is

M a=  (2ko+2po+2po-yi , cul(n+ir~\J„A- Л5— Ч K+)

1 (49)
= ---\_F\{P++ P  )a+^’j(p+ — ̂ ")а+.РзА|1~3 •

mK

The form factors F  ате functions of the arguments 
x =  (p++ P ~ ) k~, y =  {p+-p ~ ) -k ~, and (k~y. We define 
the matrix element for ir+ir~—* K +K~  by writing

{2 k ^ 2 p ^ 2 p a- ) ' n c . f r + i r  | J k  IK + ) in

=  iT lK[_x,y,(k-yr] .  (50)

Then if we assume PCAC in the strangeness-changing

*= (р^+Р~У= — тк3,
t - U r + p y — mJ, 
и= (k~—p-y= — m1‘.

3. Radiative у Capture

(53)

In this subsection we discuss the process of radiative 
ц capture by a proton. This is an example of the situa
tion, discussed briefly at the end of Sec. II, in which 
more than one current is acting. Consider then

n~(k„)+p (p i) - »  v (k , )+ 7 (k )+ n (p i) , (54)

and let
(55)

be the lepton foui-momentum transfer. The matrix 
element for this process is given by

G I
T = - \ - ( n \ j » \ p ) a wya(\ + yi) 

v21
1

X -
1

i y  {К -к )+ т „  ( 2A,)1'»

+  (ny\J *W \ р)й,Уа{\+Чь)и> | , (56)

with ex the polarization vector of the photon and G the 
Fermi constant. The two contributions to T  correspond, 
respectively, to radiation by the muon (which is nega
tively charged) and to radiation by the hadrons. The 
matrix element (n\Jaw\p) is given by

/рюрыХ'11
( — )  {n \ J «\ p )
\ m w

= *«(/-2)[^ 1У ( ( « - ky)ya- F ?  ( { q - k y M q - k ) s 

+  gA(.(.q— ky)y«yb—ihA((q -k y )y t(q— k)a2u{j> i), 

  (57)

is given by Ck =  W k+ M idgAlN/gKNl(P), with g ^  the Л beta- 
decay coupling constant and gXiVA the K N A  coupling. For appli
cations o f partial conservation of the strangeness-conserving axial- 
vector current to K ti decays, see C. G. Callan and S. B. Treiman, 
Phys, Rev. Letters 16, 153 (1966) and M . Suzuki, ibid. 16, 212 
(1966).
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Here, F ir (f) and Ftv(t) are the isovector Dirac and 
Pauli electromagnetic form factors [•Fi', (0) =  1, 
F tF(0)= j j r/(2A fy ) l  gA(t) is the axial-vector form 
factor, and hA(t) is the induced pseudoscalar form 
factor. Applying PCAC to the one-nucleon vertex of 
the axial-vector current, we find that hA (() may be 
written in the form

, 4 2Afv^[j,/g,(0)]
hA(t) = ---------------------- 1-*'(0 >

t+ m j

1г  П1,2гг( ( )+ ^ Л
Г «) =  Н * j ,

(58a)

From Eqs. (60) and (62), we can deduce the gauge 
condition satisfied by

/ 01O02O\1/J , 4
( 2jfe0-------) (п7|7,*|^) =  «€х*Г,‘ х- (63)
\ APn /

Replacing ty* by h  in Eq. (62), and multiplying 
Eq. (60) by q«, we get

( f+ m j

r ( 0 ) « 2 t f K g / ( 0 ) ,

g,(0)( i+ m T«)J (58b)

(g—*)4+ »It jV M*n i 

f+ m S
(64)

( }— £)*+«,*
■V2tt(̂ i)t7sgr((9“ i )1)w(^i) ■

(2koPi<tpw/Min )v l{ny |У0И'1 p)=et\*M  \a. (59)

which explicitly exhibits the one-pion pole part and the when Eq. (64) becomes fcxTn-x^O, the usual
remainder r (i). gauge condition for on-mass-shell pion photoproduction.

We write (ny\Ja*\p ) in the following form: Before stating Л е  results for rad;ative м capture, we

will discuss the significance of Eqs. (60) and (62).  ̂A  
more conventional way to proceed in calculating 

We wish to use our knowledge of the divergences of the and qalfx « would be to contract the photon in
vector and axial-vector currents to calculate M\a, up to Eq- (59), giving 
and including terms linear in q and in k. In order to do 
this, we have to know the quantities ixAfx. and q„Mx„.
The first of these may be determined by conservation of 
the electromagnetic current. When <x* is replaced by 
4x in Eq. (56), the resulting expression must vanish.
This tells us that

eM\.=

(6 5 )

h M ^ = -  (j>1opWM*Nyi1(n\Jaw\p)l (60)

In order to calculate q „ M we made use of our knowl
edge of the divergences of the vector and the axial- 
vector parts of the weak current,17

JaW =  Jay+JaA, 

д ^ аА̂ и А ^ ал+  (T/2MHm,*gA/g,(0))<l>r

(61a)

(61b)

/рюр,о\1П Г 
^  J iJ d*x er* 'z{—n t)

Х<я|Г[Лх(*)ЛйЧ0)]|/>>

/р1фь\11г Г Г

Хе<«| Г [ /х и" ( х ) Л ж (0)] | ? ) + 5 х . ] ,

with

й*же“<*-*{( я0)

X (я  I [dAy(x)/dxc,Jaw(0 )] Iр ),  ( 66)

, . - ,, , , .. . . , where we have assumed that Ay and Jaw commute at
where A a is the electromagnetic vector potential and , *• m. , t ™  с 5n
A.+ tbp a e4ual times. The equal time commutator term 5x« m

Eq. (65), sometimes called a “ seagull or cata-ф, + is the field which annihilates a positive pion. Equa
tions (61b) follow from the assumption of minimal 
electromagnetic coupling and from the divergence equa
tions in the absence of electromagnetism. (The factor 
VI in the axial-vector equation comes from the defini
tions of JaA and Ф ^ : J„A= J aAl—iJaM and фн- 
=  (<£.’ —«#>,,)/v2.) Using Eqs. (61b) to evaluate 
(ny | daJaw | p), we find

strophic” term, describes the coupling of the weak and 
electromagnetic currents at the same point (see Fig. 4). 
It  is a reflection of the extent to which 4̂x appears in 
JoV. Calculating we now get

M/x- =  l
/piapia\in

/piop2o\ 1 
tX 5 = M x a =  — [ -----------j  «X

\ n
dx oc'^afao)

+ t-
y iM NgA m f

gr(0) (f+m

(  Pl0P20\llt
- {  2k0------)
.A  M*N J

x< i i <Px I -“ •^7,*"(*),/."40)1 Py

/р\оРго\ 111 .
+ [ — - 1  e~4k\S\c - (67)

X<r ' (ny\J,*\p ).  (62)

"  S. L . Adler, Phys. Rev. 139, B1638 (1965).
F ig . 4. A  “ seagull" diagram.
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The commutator of the currents is
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г (*o)[/oEM (*),/«*’(o)]
=  — S(0 (x)7aB'(0)+[possible gradient terms

proportional to <Э„Л(,,(х)3 . (68)

The first term in Eq. (68) is the one conjectured by 
Gell-Mann11; the possible presence of the gradient terms 
was pointed out by Schwinger.18 We see that Eq. (60) 
implies that the Schwinger terms exactly cancel the di
vergence of the “ seagull”  terms. This cancellation has 
been proved by Feynman in a Yang-Mills theory and 
has been conjectured by him to be a general result.11 In 
other words, when calculating the divergence of quanti
ties like Mxa, if one neglects both the “ seagull”  terms 
and the Schwinger terms, one gets the right result Note 
that the “ seagull” terms cannot be dropped when cal
culating the matrix element M ^  itself.

In order to state our answer for radiative u capture, 
we have to define the amplitudes for pion photoproduc
tion with the pion off-mass-shell. This process is re
lated by crossing symmetry to the matrix element 
(ny\Jr+\p) in Eq. (62). We write the photoproduction 
amplitude in the following form,20

( 2£o J
\ m *n J

= e tfx fu fa )  { igrW) т*уг-
vy  (p t+ q )+ M n

x i i f  T x U + r1) ---------- 0 is+Mr TJ) l
L 2 M n J

7x(l+r»)-— G ^+pV )] 
L 2Mw J

1
X -------------;-------- i g r  («5)т*ув

* (2f- * )x
i y ( p i — q )+ M N

(q-ky+m S

1—I

9s V  ,, , gri-m^-g^O)'
—*у«[гу,т3[]дх^Н-----^ f/ (0)+

+(i+B
m.

where ф] is the isospin wave function of the pion, Xi and 
Xj are the nucleon isospinors, k is the ingoing photon 
four-momentum, and q is the outgoing pion four- 
momentum. The isoscalar nucleon anomalous magnetic 
moment has been denoted by tia[2M irFt3(0 )= iis 
=  — 0.12]. The four-vectors 0,x, which satisfy fex0«x=O, 
are given by

O n=& ys(y\yk—yky\ ), 71=1

0n  — iy t ^ ( p i + p 2 ) \ q - k —  (р 1-\-рг)  ‘ A ? x ] , 4 2 =  1

Oi\=yt (y \ q -k -y k q x) , (70)

0 <x =  7b[7x(^i+^2)-^-7'^(/>i+^j)x]
- i M  tty t(y\yk -yky> ,). ч«=1

The amplitudes V, are functions of the invariants 
(f, k1, v, and vb, with

v——k-(pi-\-pt)/2Mn, vB—q-k/2Mfi. (71)

The bar on top of the V. is a reminder that the Born 
term has been separated off. The numbers rj, specify the 
crossing properties® of the amplitudes V „

y,c±, o4 - v> . . . )  =  ч. (± 1 ,1 Ж .(±-0)( - ' , - " ) .  (72)

The terms explicitly proportional to (l+ g V m ,1) in 
Eq. (69) are necessary to satisfy Eq. (64), the gauge- 
invariance requirement when the pion is off-mass-shell. 
Since

g r { .— m S ) — g  r ( 0 )  m r 2

£ Д 0 )+ -------------------- « — £»(<>), (73)
m,* 2

the gauge-invariance term is numerically very small. 
The matrix element (7Я !•/.+ [£), which is the one 
needed in Eq. (62), is obtained from Eq. (69) by the 
replacements

(74)

Since the final nucleon is a neutron and the initial one 
is a proton, we have

* . = n ,  ( ” )

1
1

— i
v2

. 0 .
<x — » «X*,
q - * —q,
k —*—k.

u(p)X  iex, (69)

11 J. Schwinger, Phys. Rev. Letters 3, 296 (1959) and Phys.
Rev. 130, 406 (1963).

u R. P. Feynman (private communication).
M G- F. Chew, M . L. Goldberger, F. E. Low, and Y . Nambu,

Phys. Rev. 106, 1345 (1957). The amplitudes (VltVtlVhVt)<f°\
as defined in Eq. (69). are respectively double tbe corresponding
amplitudes (Л ^ С ,# )* * 03 of CGLN. [Th e isospin matrix elements
in Eq. (69) are one-hall those of CGLN.J

We can now state the result for radiative ц capture: 

M\a=M\t,s JrM\a'lpD+M\aPFF
/9* Qk \

+ М ъ .* + 0 [---- , ----- ) .  (76)
W s1 mR4

The mass mR, which characterizes the terms neglected 
in our calculation, will typically be several pion masses



210 Adventures in Theoretical Physics

1S1 L O W - E N E R G Y  T H E O R E M  F O R  W E A K  A X I A L - V E C T O R  V E R T E X  1277

or greater in magnitude, since we have explicitly in
cluded all pion propagator terms.11 In Eq. (76), we have

СЧА(.?)у«У1+кл(ф)уь9*

2Af„J

ft У

V
.r

/
/  " \
* W n

4 /
/  ■ \

5; *

L
(c)

u »
V 
JT

/  -  \  
(d) '

XL
M ^ ppp= - i g A

Г uxikn 1 
+»! m“-----!------------------

L 2 M s^ iy -(p i+ q )+ M tr

X (9J)'Y«76+ hA(<f)ytqa 

+ iF lv{<?)ya- iF S ( ? ) o aSqt-}\u(j,l) , (77)
I

2MngA й(рду(и{рд

g-(0)  ̂ (q -k y + m r1 

r  — 2q\q.

(.) (f) (g)

f+ m S  

9-

)-i\n+(q\ka—q-kS\a)S  , (78)
\

№

Fio. S. Contributions to radiative ц capture.

X yvJiikr
Ms

eJ“C
2Mn j,(0) 

M ^ E= ia {j> ,u -â (M.v/2M N)

+2gA  (0 )(9 i7 »+ A „7 x —b\*y ■ k)yb 

— tV (0 )ix «7 «+ 2 F iv '(0 )  (9k7e+ kay x)

— 2Ft7 '{PXqy.trafqf—ka!THk{)

+[^«gx/g,(0) ]0^ )u (fi) ,

virtual pion decay. The q̂ qa, ix«, and S  terms corre
spond, respectively, to Figs. 5 (e)-5(g). The nontrivial 
structure term 5 cannot be determined by the procedure 

flflOxe |«(^i), (79) 0f this paper, because it is of order qk compared with 
the ix„ term. The term Afx<.ppp describes the structure 
part of virtual pion photoproduction. The Born part of 
virtual photoproduction has already been included in 
M ^  and M x * ™  [see Figs. 5 (c )-5 (e)]. In writing 
M xaPPP, we have eliminated V i(0) | о by using Eq. (30), 
which implies

with

and with

0x„ = 7K7i f̂i

Hr =  1.79, —1-91, 

Гatv«>i ka av,<->!

(80)

(81)

.  g , (0 ) gr(0)M 's
Fis(0)= - (83)

Мц 2M1n

L Ova \ъ2Мя dv !o 2M\  J 

+iy t [ (p i+p i )\ka— (f i i+p t)  -£<rx*]7V0) | и

+7*[7x*«—7 ' i (-) | о

+£.e>u».»7#P«c<n |o- (82)

In Eq. (82), | a means evaluation of the 'Vj at the point
v — VB— <f=*k*— 0.

Let us now discuss the various terms in Eq. (76). The 
nucleon Bom term M ^ N corresponds to the diagrams 
of Figs. 5 (a )-(d ). The term M xaRPD describes radiative

11 The terms of order cp are determined by our procedure, but 
we have omitted Ihem in writing the answer bccausc they arc as 
small numerically as the undetermined terms of order qk.

Equation (83) is one of the photoproduction sum rules 
derived by Fubini, Fuilan, and Rossetti.”

The remainder term AfxaR is necessary to satisfy the 
divergence equations, Eq. (60) and Eq. (62). The first 
term, proportional to цу/2Мц, has been included in 
previous calculations. I t  corresponds to the “ seagull 
diagram of Fig. 5(h). The remaining terms, linear in q 
or k, are new. They are represented diagrammatically 
by Fig. 5 (i). We thus see that our procedure has allowed 
us to determine the leading nontrivial structure effects 
in radiative д capture.
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Partially Conserved Axial-Vector Current Restrictions on Pion 
Photoproduction and Electroproduction Amplitudes

St e p iie n  L . A d l e u *

Lyman Laboratory, Harvard University, Cambridge, Massachusetts
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F r e d e r ic k  J . G i l m a n !

California Institute oj Technology, Pasadena, California 
(Received 4 August 1966)

W e discuss numerically the restrictions imposed by the partially conserved axial-vector current (PCAC ) 
on the pion photoproduction amplitude W + )(0) and on the pion electroproduction amplitude JV“ 3(0).
W e find that the magnetic-dipole dominance and the narrow-resonance approximations are unreliable.
The nonresonant s waves make an important contribution to (0), and we find that the PCAC pre
diction for this amplitude is reasonably well satisfied. The electric and longitudinal multipoles appear to 
make a much bigger contribution to TV_ ) (0) than does the magnetic dipole M i+, which is strongly sup
pressed by the kinematics.

I. INTRODUCTION AND CONCLUSIONS

A  S has been much emphasized recently,1 the partially 
^ ^  conserved axial-vector current (PCAC) hypoth
esis, supplemented by current commutation relations, 
relates any weak or electromagnetic process in which a 
zero four-momentum pion is emitted to the same process 
in the absence of the pion. In particular, when applied 
to pion electroproduction, PCAC implies the relations2

(g M / M N)F S & )
=  W +)(k =  vb=  (M / y = 0 ,  k1) , ( la )

* r (0 )

M N

&Л (**)

-Ы ° )
•Fi4A’)J (**)-•

=  7,с-> (х=»д= (А Г , ') , = 0 1 & ).

( lb )

( lc )

Here F iv (k )̂ is the isovector nucleon Dirac form factor; 
F iv(k2) and f j s(/fc*) are, respectively, the isovector and 
isoscalar nucleon Pauli form factors; gA(k2) is the 
nucleon axial-vector form factor [x<(0) =  1.18j; and 
gr(0) is the pion-off-mass-shell pion-nucleon coupling 
constant [g r= g r (—Af»!)i g,V4xsal4.6]. The pion 
photoproduction amplitudes PV+,0) and the pion 
electroproduction amplitude PV- * will be specified 
more precisely below. When £*=0, Eqs. (la ) and (lb )

* Junior Fellow, Society of Fellows.
t  National Science Foundation Postdoctoral Fellow, 1965-66.
1 Y . Nambu and D. Lurid, Phys Rev. 125, 1429 (1962); Y . 

Nambu and E. Shrauner, ibid. 128, 862 (1962); S. L . Adler, ibid. 
139, B1638 (1965); M . Suzuki, Phys. Rev. Letters 15, 986 (1965); 
C. G. Callan and S. B. Treiman, ibid. 16, 153 (1966).

* These relations are contained implicitly in the wealc pion 
production results of Nambu and Shrauner (Ref. 1). Thecovariant 
forms have been derived by a number of authors: S. L. Adler, in 
Proceedings of the International Conference on Weak Interactions, 
Argonne National Laboratory, 1965, p. 291 (unpublished); 
Riazuddin and B. W . Lee, Phys. Rev. 146, B1202 (1966); 
G. Furlan, R. Jengo, and E. Remiddi, Nuovo Cimento 44, 427
(1966).
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become the photoproduction relations of Fubini, 
Furlan, and Rossetti’ ; and Eq. (lc ) becomes a relation 
between the axial-vector and charge radii of the nucleon.

The main purpose of this paper is to give a careful 
numerical analysis of Eqs. (la ) and (lc ) at t?—0. In 
the dispersion integrals for F i(+) and Fe(-) we keep 
only the multipoles which resonate around the iV*(1238) 
and the iV**(1520), and the nanresonant s waves. As a 
preliminary, in Sec. I I  we state the needed kinematics 
and briefly derive Eqs. (1). In Sec. H I we give the 
numerical discussion, using the photoproduction analy
ses of Schmidt and Hohler4 and of Walker4 in the region 
of the first two pion-nucleon resonances.

We reach the following conclusions:
1. The magnetic-dipole (W ]+) contribution to 

F if+) (0) from the neighborhood of the N*(1238) equals 
only about 0.75 times the left-hand side of Eq. (la ). 
Estimates based on the narrow-resonance approximation 
indicate a larger M 1+ contribution, but we find that the 
narrow-resonance approximation for the iV* (1238) 
overestimates integrals over the resonance by about 
60%. When the resonant E 1+, and multipoles 
are included, the value of PV+ )(0) is reduced to about
0.6 times the left-hand side of Eq. (la ). However, the 
nonresonant j  waves make a large contribution to the 
integral,® making the total integral for V , (0) equal 
to about 0.85 of the value predicted by PCAC.

2. The dispersion integral for K«(_ )(0) is not mag- 
netic-dipole-dominated, because the M l+ contribution 
is kinematically suppressed. For instance, the multipole 
Ej+ (electric quadrupole) in the ЛГ*(1238) region makes 
a contribution three times as big as the multipole M 1+ 
to V i(_ ,(0), even though the £ i+ multipole is much

1 S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40, 
1171 (1965).

* W . Schmidt and G. Htihler, Ann. phys (N . Y .) 28, 34 (1964); 
W  Schmidt, Z. Physik 182, 76 (1964).

1R . L . Walker (private communication).
* The nonresonnnt s wave also makes an important contribution 

to the sum rule relating the isovectoi nucleon magnetic moment 
and charge radius to photoproduction cross sections— see F. J. 
Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966).

1460
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“ X T

Fie. 1. Bom approx
imation diagrams.

smaller than the Mi+. The value of V»(- ) (0) depends . у *1
sensitively on the hard-to-measure longitudinal multi
poles. Under the dubious assumption that the known 
proportionality of longitudinal and electric multipoles 
for zero photon momentum holds unchanged for large 
photon momenta as well, Eq. (lc ) predicts an axial- 
vector form factor which falls off somewhat more I
slowly with fe5 than does F iy(kt). p pj

The results of this paper should not be regarded as 
final, since the input multipole data may change as
better analyses of photoproduction become available, isospin structure of the matrix element is given by

\Л/ЧЛЛ/1----<

What is definitely indicated, however, is that a compar
ison of Eqs. (1) with experiment must avoid unreliable 
narrow-resonance and M i+-dominance approximations.

П. KINEMATICS AND DERIVATION OF 
PCAC RELATIONS

A. Kinematics

Let us consider the reaction

7 W + » W - * f ( l ) + f f W .  (2)

where the initial gamma may be real or virtual. The 
external particle masses are, respectively,

- k \  - p t - M J ,  - 9> = (A f ,0 * ) - p t = M S .  (3)

We define invariant-energy and momentum-transfer 
variables v and vB by

у=~{р1-\-рг) к/(2Мы), VB — q-k/(2MN) ;  (4)

these are related to TV, the invariant mass of the final 
pion-nudeon system, by

0Ul( ^ | / ^ W  = a<+)Fxc+)+<J<->Fx<->, (g)

with7

a<±> = Х/7*̂ ,,*}(твта:Ьтаг«)Х/ , (10)

(5)

All noninvariant quantities used in this paper refer 
to the reaction center-of-mass frame, in which k+p ! 
=  q + P i= 0 . We denote by у the cosine of the angle 
between the photon and pion directions:

(6)

and by | к | =  (k f+ k 1) '11 and |q| =  (go*—(A fI/)1) in the 
photon and pion momenta. The photon and pion 
energies are given by

ko=-
2 W

qo=-
2 W

(7)

In Eq. (10), jr., X/, and X/ are, respectively, the 
isospinors of the final pion, the final nucleon, and the 
initial nucleon. The space-spin structure of the matrix 
element is given by

«л Ух!±-0)= i  ( * , « ,  (.Mrf )\k ' )

x « W 0 W » W -

Defining [a ,b )~a -fb -k—a-kb-1, we may take theO(Vj-) 
as

o ( v  i)= ^ 7 б{Т|Т) j 4iy= i;  
0 (V i)=m {^ i+^ j.
о(К|)=7б{7.д), ч»г= — i ;
0 (Y 4) = 7б(7| ^1+Ы "*МлТ'б{'1г,'У} , 4i7= l;
0(7l)=t7»{*,g}) »?iv= - i ;
0(^.)=7«{A,7), 4«V= — 1-
The numbers ijjV specify the crossing properties of the 
invariant amplitudes:

^ ■ « ( » ,n , ( t f/)’ ,**>
=  »*, ( M / )’> * ’) • ( 13)

To make the normalization precise, we state the 
contribution of the Bom approximation diagrams of 
Fig. 1 to the invariant amplitudes. £In the following 
equations we take the external pion to be physical

The matrix element for the electroproduction reaction 
of Eq. (2) takes the form

т =е,ъ Br,l(T(q)Nip1)\J^+JJ\N<J>l) ) , (8)

with e, the electric charge, ex the virtual photon 
polarization vector (which satisfies k -t= 0 ), and with 
J\“  and J\Y, respectively, the third component of the 
isospin current and the hypercharge current. The

1 Our notation follows that of a review article on pion electro- 
and weak production in preparation by one of the authors (S .L .A .). 
Our amplitudes are related to those of C G LN  [G - F* ^hew.
F. E. Low, M . L. Goldberger, and Y . Nambu, Phys. Rev. 106, 
1345 (1957)] as follows:
со variant am plitudes-[K i1Ki1V i17«]< :tJI) uj. op-.

=  2[Л,В,С,Х>;]‘ ± л сои «,
center-of-mass amplitudes—[S/7] * * * 1 ш.

= (8iWr/JfN)[ffiv] <i,°)oarji.
multipoles—[Afi*, ек.]<±л> ш.ср.,

= etc.](±'01CQbw-
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(M rf = M , ) ;  F r (k2)  is the pion charge form factor.] The amplitudes Sjv have simple multipole expansions7:

S 'F s m /  i i x
' — ------± — Г )  ’ fflF= E  W * + z » ) P ^ ( y )AM*, \pB—v VB-\rV/ ^

&гРт7(]ъ*)/ 1 1 \ «
у*ШЯш— Г "  ( ------± — Г )  - +  s  O W - i ^ + M W G O ,

'У л — v Vb ~\~V/ i—2

y,c±>*= g,y , r (* ’ V  1 T  M  s ^ =  f  [ (и -  1Ж * + U f  .J P , '(у ) ,
2Aftf \ v b ~ v  i<b+v/ (14) 1-1

F|№)B_ grF,r(A2V  1 i M  3:3F= £  (-М и .+адри ./ 'в )
Ш » W 7 % a+J  ’ - 1 (17)

7§(+ )* .0 , Т У '"  ~ 2gY f , r (y )  2РЛк1) ) , +  S  W ^ + Е ^ Р Л Ъ ) ,
~кг \2M nvb iM r/Ув—№/

Vt< »* = 0 .  ffir =  f  ( М ^ - М ^ - Е ^ - Е ^ Р П у ) ,
1 -1

While the consequences of PCAC are most simply „  e
expressed in terms of the invariant amplitudes Vj, pion k<,3sv=  £  (/+ lJ iifP j+ i 'fy )-  5Z ILi—P i - i ( y ) ,
photoproduction and electroproduction experiments are 1-0 1-1
most easily analyzed in terms of the center-of-mass «
frame amplitudes ff,r, defined by7 k0$ ,v=  £  (/+ 1)£ц_JP/ (y ).

•
£xy x(±.0) =  £  Cfjrl±m Xf*ZjyXi. (IS ) The index i ±  of the multipole specifies the orbital

r-i angular momentum (Г) and the total angular momentum
__ , ( J = l ± 4) of the final pion-nudeon system. I t  is
Here Xy and X, are the nudeon Pauli spmors, and the straighcforward) but tedi0US) to calculate the Ипеаг

s are osen as ollows. transformations connecting the amplitudes Vj and »FyF.8 

2 iF=  *(«»•*— a-kk-t), t—Q-ik-1) ,
Z 2r = a X i X t ) ,  2 t v = - i i * v k k - t / k o ,  (16) B. Derivation

2 i7= w - l(J -  t -Q -k k -*), 2 ,v=  —iPa-Qk- *./kQ. The PCAC rdations of Eq. (1) come from the identity

i  j d ' x  <r-«- * * ( -  □  ,+ M r 'X N iP i )  | T[_d.J.A°(x), ( Л 2, (0 )+ 7 xr (0 ))] | N

— — ijd *x e ~ il‘ *фс* (— □  i +  M ,* )&(x o )(N (p i)|[/ол“(* ), Jxn  (0 )+7xr (0) ] |N

- q ¥jd * x e - i’ - S ' . * ( - n l+ M t ') {N (P i )\ T lJ .* ‘ (.x ),V b It (0 )+ J b r (0 ))l\N (j>d }^ , (18) 

which is obtained by integration by parts. Using the partially conserved axial-vector current hypothesis,®

< »)
gr(0)

we see that the left-hand side of Eq. (18) is just

M NM,*gA ^  й^ 0 ^ ) м( ^ [ у + ) ^ ( . н + в <-)ру<-)+а(1»^с<|)]+в0т  terms, (20)

gr(0) J~l

where V j denotes the non-Bom part of the amplitude Vj.

•See, for example, R . Blankenbecler, S. Gartenbus, R . Huff, and Y . Nambu, Nuovo Cimento 17, 775 (I960); P. Dennery, 
Phys. Rev. 124, 2000 (1961). „  . , , n„ .

■ M . Gell-Mann and M. L£vy, Nuovo Cimento 16, 70S (1960); Y . Nambu, Phys. Rev. Letters 4, 380 (1960).
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Let us evaluate the two terms on the right-hand side of Eq. (18) in the limit as q —>0. The equal-time com
mutator term approaches

- t l f ,V . * < W (^ O l [ j " < iW , (* )I J ^ ’ (0 )+/x ,,(0)]| \ N (f i ) )b .  (21)

Because of the integration over all space, possible gradient terms in the commutator do not contribute, and we 
find for this term

. (22)

(To simplify the algebra we have dropped terms proportional to i- «= 0 . )  The term proportional to q„  in the 
limit as q ,—>0, can he evaluated by keeping only the one-nucleon-pole terms.10 This gives

tc
igAVqy*---------------^[Tx(Fil'(^ )ra+ F 1s(fe,) ) - (Tb feM(F ^ (F )r3+ F 2S(^ ) ) ]

2 - 2fi-q
_уР\Л-1М s r.l

+  a*L'yx(FiF(£J)TaH-Fis(£2) ) —o'k,ife,(Fi7( i ,)T3+Fjs( t2) ) ] ------ '-------igAyqyi— [ u(Pi)t\
2pi-q 21

I F ivm
=  ---------e ^ !)0 (7 ,)«(^ ,)+ (a<+>Fa4 ^ ) + a<«)FJs (^ ) )M(^2)0 (7 ,  )*(/>,)

\ P

F1v( is)r  / 1 1 \ / 1 1 VI 1
-------- -— J o(+)[ ------- 1-------- ] + a (—4 ----------------- J lw(^2)0 (Pri)«(/>i)+the other Bom terms} . (23)

2 L \vb— v vb~\-v/ \vb— v 1

Comparing Eq. (20) with Eqs. (22) and (23), we get the relations

<g,(0l)/Jr«)Piv № ) - ? i m ( » - » * - (М г> У =0, Й1) ,

(£r(fi)/Mn)F is ( t ,) = V i (0>(>,=  *le =  (М / У = 0 , k ') ,

F iv w ]  ( * V = 7 ,w  ( , =  , B=  { M j y =0, P ) .

If we take v=  vs=0 to mean “ first set vb =  0, then set j>=0”  the bars in Eq. (24) may be dropped, since the Born 
approximation to V\ vanishes at ид — 0 (for all гИО). This completes the deviation of Eqs. (1).

Ш . NUMERICAL ANALYSIS

We now proceed to a numerical analysis of Eqs. (la ) and (lc ) at k2=Q. Introducing the abbreviations V it+) (0)
— V i(+)(i>= vs— (A f/ )! =£ j = 0), Fe(_ )(0)= F e M (i<— vb— (M / )J= i * = 0), we write the equations in the form

gr(0)|-g ж т

M  N I-g x (0)

~ F t r (0 )= -^ -V Y+>  (0) ,  — Г— — F/ '  (0)1 = — F,<-> (0) .  (25)
gT(0) t f * L * * (0 )  W J g,(0)

In order to calculate V i<+) and PY-) from experimental photoproduction data, we assume that PV+) and W - )  
both satisfy unsubtracted fixed momentum transfer dispersion relations in the energy variable И1:

«•«.w  - U - W . O W W /  l i \
W +>0 ’,K *,(M I' ) « , * » ) ------------------— -------------- / ----------J--------- \

2Afy \ v b ~ - v  v b -\ -v J

+ ~  f dv' b b V t+ \ v\ v B , (M S y jA — )  , (26)
___ ir J 4 +Ut+M^/(2Mk) \v'—v v'-\-v/

10 See S. L. Adler, Ref. 1, where the rules for calculating the “pole insertions”  are discussed. In  Sec. I I В we have ignored questions 
O fg u g e  invariance. I t  is easily shown [S. Adler and Y . Dothan, Phys. Rev. 151, 1267 (1966), and M . Nauenberg, Phys. Letters 22, 201 
(lJ66)Jthat when the final pion is oil mass shell, the photoproduction or elcctroproduction amplitude is not divergenceless, but has a di
vergence proportional to ( f + M »*)g^C(v—* ) ’ ]/ [  (?—b ) ' + M In  order to maintain the correct divergence, additional terms must be 

j  u Bora approximation calculated from the diagrams of F ig -1  However, these additional terms vanish when o =  b i e 0,
n v l b  DOt affect Л е  resuJta paper. See also S. Fubini. Y . Nambu, and A. Wataghin, Phys. Rev. Ill, 329 (1P58).

Validj „у of the unsubtracted dispersion relation for Fi*+*(0) is indicated by the Regge-pole analysis of photoproduction given by
G. Zweig, Nuovo Cimento 32, 689 (1964).



R13 215

1464 S . L .  A D L E R  A N D  F .  J. G I L M A N 152

r  JrB+Mr

which imply that

+ М Г>/(2И«)
dy' -  - ) . - 1 \ ,

V » '— p y '- ( -  V/

gr fVi<+40)]
-i i f

* « '  gr
Im

I Vi<+)(y',0,0,0) 1

£r(0) I V,< >(0) j r  Jm .+ m /̂2Hh v g,(Q) I V»(_)(/,0,0,0) I
(27)

In order to calculate the integrand of Eq. (27), we make a multipole expansion, keeping only those multipoles which 
can at present be determined from experiment. These are: (i) the nonresonant s-wave multipoles and L^_. 
The £(ц_ makes a large contribution to charged pion photoproduction; (ii) the multipoles M i+(aft), £ 1+<ал>, and 
/ , 1+(«Л), which are important around the /=fiV*(1238); (iii) the multipoles £ г - (1Л>, and which
are important around the /=^Л?**(1520).

Doing the necessary arithmetic, we find

* r ( 0 )

gr

0,0)=
2 M N

F.M (*,0,0,0) 
g r (0 )  m - M ^ 3 g r (  0 ) L

W -M ^ g r i  0)

2 1  gr [ E ^ ' V - E ^ 1™ 2W (L o¥<4 » ~ Ь щ .«п )

W - M N W * -M N* W + M N

3(3H,+ M „ )£ ,+« «  8W Ll+w «  3M z- Wi) (M N-S W )E lJ 4 v> 8W I+J'™ - 
4

W '- M J W ' - M n * W + M n
(28b)

The multipoles appearing in Eq. (28) are not actually the physical multipoles, since they refer to zero final 
pion mass {M ,1=0 ). We relate them to the physical multipoles by the prescription

M a) M <i>

gr( 0)
E E •

gr
L  . i± н ,’-я . L  . >±

/ h U .'-o  у

\|ql ’
(29)

U.’-M.

where the subscripts on j q | indicate that | q | is to be 
computed from W  with M J = 0 or M w, respectively. 
The prescription of Eq. (29) gives the unphysical 
multipoles the correct threshold behavior and, approx
imately, the correct nearby left-hand singularities.13 
Using Eq. (29) eliminates the obnoxious factor £,/gr(0) 
in Eq. (28) and leaves us with simple integrals over the 
physically measurable multipoles.

From pion-photoproduction experiments, the electric 
and magnetic multipoles can be measured. However, 
the longitudinal multipoles can only be measured in 
pion electroproduction experiments; so far little data 
is available. Consequently, we will have to make a 
guess as to the magnitude of the longitudinal multipoles. 
When the photon momentum | к j approaches zero, the 
longitudinal and electric multipoles become propor
tional with known coefficients,1'

(30)

11 For a more detailed discussion see S. L. Adler, Phys. Rev. 
140, В 736 (1965).

”  J. D. Bjorken and T. D. Walecka, Ann. Phys. (N. Y . )  38, 35 
(1966); y .  Dothan and R. P. Feynman (private communciation),

For want of a better estimate, we will assume that these 
proportionalities hold for nonzero | к | as well. In other 
words, we take

j 2 ̂ '2— (31)

in the numerical work described below.

A. Narrow-Resonance Approximation

We begin by discussing the narrow-resonance approx
imation for the magnetic dipole (Л/ц.(,л')  contribution. 
It is convenient here to use the CGLN model14 for 
M i+(J/2), which, as Schmidt and Hdhler4 and Schmidt4 
have shown, is in good agreement with photoproduction 
experiments. According to this model

4.70gr W  | q| |k| exp(ii3,i)sin5a.s
M  1+(i/« = ----------------------------- — ■--------- , (32)

3 M J  iP U V / M S

with /*=0.08, Sj.a the pion-nucleon scattering phase 
shift in the (3,3) partial wave, and | q| evaluated with

14 G. F. Chew, F. E. Low, M . L . Goldberger, and Y . Nambu, 
Phys. Rev. 106, 1345 (1957).
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Table I. Parameters for multipoles.

E L E C T R O  P R O D U C T I O N

T a b ix  П , Multipole contributions.

1465

WK |q|s F * A
(units of (units of (units of Multipole (units of 

Resonance A f*) M r) M  r)  911 A fT_1) Multipole

Contribution to
[g ,/ g r (0 )]fV +>(0) 

(units of M r-5)

Contribution to 
br/g,(0)w,<->(0) 

(units of M T~%)

tf*(1238)

tf«(1 520 )

8.85

10.80

1.65

ЗЛО

0.860 J f , ,™  

0.860

+0.112 
H u —  -0.0080

+0.0155 
£ w (ul) +0.0628

Substituting Eq. (32) into Eq. (27), we find 
for the magnetic-dipole contribution to VV+5 (0)

|r 8 4.70
V (0 ) j magnetic dipole™ " i  j

M s  9 2M s

+0.055
+0.081

W w>
U S ' "

+0.413
£ 1+<w -0.088
£,+cw>
Mb.™»> -0.031
JE*_ол> +0.042

Total +0.472
PCAC prediction +0.550

Г-- Г
T J Mi

dW-
sin2ij

(33)

+0.0329
- 0.0212
-0.0365
+0.0238
+0.0133
+0.0471
-0.0333
+0.0018
-0.0305
+0.0281
+0.0255

----j ---------FiT
M n \- f,<(0)

uu+u. [|q

45*1

.* J
Г g/ (0 ) 0.045-

A — +—
L|u(0) M.

According to the narrow-resonance approximation,1® 
7=1, giving

V !<+>(0) ] magnetic dipole (narrow resonance) ^ 0. 62/MS, (34)

to be compared with the value predicted by PCAC 
[the left-hand side of Eq. (25)],

the TV*3* (1520) in the form1*

SnrW 4̂(| q| в/1 д|)аГ/2 

M s  W R- W - i r / 2  ’
311 = '

( r̂/Ms)F,v(0)^O.S5/M,K (35) Г = Г Я1

Actually, the narrow-resonance approximation is very 
misleading. Direct numerical evaluation of /, using the 
experimental (3,3) phase shift,1* gives /=0.63, so that 
actually

И>1+> (0) | mvnetic dipole 1=3 0.39/if,1. (36)

In other words, the narrow-resonance approximation 
overestimates the integral I  by 60%. [The narrow- 
resonance approximation is also misleading when used 
to evaluate the gA sum rule. If only the (3,3) contribu
tion to this sum rule is kept, one gets g i^  1.4 when the 
integral is evaluated using the experimental t N  cross 
section,17 and gA =  3 when one uses the narrow-resonance 
approximation.] To sum up, the narrow-resonance 
approximation for the ЛГ*(1238) is useful for making 
oider-of-magnitude estimates, but should be avoided in 
quantitative tests of sum rules.

B. Resonant Contributions

We turn next to the evaluation of the resonant 
contributions to JV+ )(0) and W _ ,(0). using Walker’s 
photoproduction analysis. Walker* has parametrized 
each resonant multipole 3TC around the 7V*(1238) and

11 G. F. Chew, F. E. Low, M . L . Goldberger. and Y . Nambu, 
Phys. Rev. 10Й, 1337 (1957).

11 W e obtained the same numerical result using the (3,3) 
base-shift parametrizations of Schmidt (Ref. 4) and of L. D. 
0per, University of California Report No. UCRL-7846 (un

dent evaluation of th:ч integral, see

I q| ^*1+0.7735] ц\т?/Мтх 

\|q| J  1+0.77351q|7M V '

(37)

The parameters А, Гд, W r, and | q] л are listed in 
Table I. Using Eqs. (37) and (31) we have calculated 
the integrals for F i(+)(0) and VV- ) (0), obtaining the 
results listed in Table П.

We note, first of all, that according to Table I I  the 
М 1+(,л) contribution to W +)(0) is

tV + ’ WU^eUccUpole «0.41/il/,1, (38)

phase-shift parametrizations of Schmidt (Ref. 4) and of L . D. 
Koper, University of Calif<

Eublished). For an indepen 
>. Lyth, Phys. Letters 21, 338 (1966).
17 See W. I. Weisberger, Phye. Rev. Letters 14, 1047 (1965): 

S- L . Adler, ibid. 14, 1051 (1965).

in good agreement with the value of 0.39/Af»1 obtained 
above from the CGLN-Schmidt-Hdhler work. The 
multipole £ i+|,/2) makes a significant contribution to 
the sum rule because it appears in Eq. (28a) with a 
coefficient three times as large as the coefficient of 
M  Walker’s ImEl+<,/5) has a constant negative 
sign across the .№*(1238). I f  the suggestion of the CGLN 
model14 [that Im£i+(,/!) changes sign from negative to 
positive around the (3,3) resonance peak] should prove 
to be correct, then the value for the contribution
given in Table I I  may be an overestimate.

Looking at the contributions to ^ «c_)(0)i т аУ at 
first seem surprising that the small £ i+<!/2) multipole 
makes a much bigger contribution than the large 
М И_(,Л> multipole. But a glance at Eq. (28b) shows 
the reason why— the ratio of the coefficients of M  i+(3/2̂

11 Equation (37) does not give the multinoles E i-  the
correct threshold behavior, but the N**{1520) is far enough from 
threshold so that this is not too important. To  make the off- 
mass-shell correction we have multiplied each 9ГС by [  I a I 
IQ so that the off-mass-snell multipoles all have the
correct threshold behavior.
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CENTER-OF-MASS ENERGY W 

Fig. 2. Ratio oi electric to longitudinal multipoles, for iP=0 .

and .Ei+ (l/5> in the integral for PV- ) (0) is

W + M N I

Г -3 (ЗИ Ч -А *лг)

M SL w2— T - 3 (3 W + M N)

E 1+v i » * = c E 1m.) " '» * + (m , -h J E  i+<,)umB, 
Ll+ c ./» b = e i l+ ( < )  <./i) в +  0 « , - M„ ) I , 1+(rt (> « ) * .

(40)

(Numerically, the e terms, which come largely from the 
pion-exchange graph, are much larger than the ц terms, 
which come from the crossed nucleon graph.) One can 
verify, by direct calculation, that at | b J =  0 (for 
all /SVO),

’ !+(«) am в
- = 1. (41)

But at the physical threshold |q| =0  we find for real 
photons that

£ 1+ы (М1*/£1+м (,л)* = 0.
(42)

In Fig. 2 we have plotted the ratio of the numerically 
dominant e terms as a function of energy. Clearly, in 
determining the longitudinal multipole contributions 
to V «M (0)i assumptions such as Eq. (31) are unreliable 
and there will be no substitute for measurement 
of the longitudinal multipoles in electroproduction 
experiments.

C. Nonresonant S Wave

It  is well known that there is an important s-wave 
contribution to charged-pion photoproduction. Since 
the s-wave pion-nucleon phase shifts are of order 
15°-20° in the low-energy region, the imaginary parts 
of the x-wave amplitudes will make an important 
contribution to the integrals for VV+)(0) and VY- ) (0). 
We estimate this contribution as follows. The Born 
approximations for the s-wave multipoles £|ц.(± '01 are1*

W-М нЬЛО  I7 -J fY 0.88 
---------------- , B , , ! » * . .

1 Г£ Н Л « _  1+ -

M u  M ,

1- V 5 /1+ F \1

M ,
(43)

2V Л Т у ) } '

(39)

which is numerically =  —0.02 at the peak of the 
AT*(1238). In other words, the contribution is
very strongly kinematically suppressed. The longi
tudinal multipoles contribute with strength comparable 
to the electric multipoles. To emphasize the dubious 
nature of the approximation of Eq. (31) for the longi
tudinal multipoles, we have computed the Bom 
approximations £ 1+(,л) and from the diagrams
of Fig. 1, splitting them into parts proportional to the 
electric charge e and the difference of the nucleon total 
magnetic moments ця—цп:

Pion-photoproduction experiments, as analyzed by 
Schmidt,* indicate that (i) in charged-pion photo
production, the multipole £ w is equal to the Bom 
approximation; (ii) in neutral-pion photoproduction, 
{M n/W )Eb+ is independent of energy, and at threshold 
is roughly one-half of the Bom approximation. The 
charged and neutral pion amplitudes are related to 
£h-<±,0) by

£<h-<,+>"  (l/v2)(£ 0+<-)+£»+(0>), 
£ w.^ > = i[£ (4.c+)+£ftf№].

(44)

I f  we assume that the isoscalar amplitude (which is 
small anyway) is not much different from its Bom 
approximation,u then the experimental results imply

Re£n.<+>« —
W

-0.4-
4.70

(45)

We get the imaginary parts of the multipoles £ w.(1/2 a/J) 
by using the Fermi-Watson theorem, which tells us 
that

1т£(ц.<1Я)«зш 51 Re£ w_<I/J1
=  sinSi[]Re£(n-<+)+ 2  R eE jf1-1] ,

Im£o+(!/a)sssm5j R e E , * ^
=  sinSa[Re£m .<+)-Re£w M ] ,

(46)

with Jj, j ]  the s-wave pion-nucleon phase shifts.
The numbers given in Table I I  have been obtained 

by using Eqs. (45) and (46), integrating from threshold 
to a center-of-mass energy W =  10 M r, and taking the 
the pion-nucleon phase shifts from Roper's lm= i  
analysis.20 Adding the s-wave result to the other

»  This is suggested by the C G LN  model, in which the isoscalar 
amplitude is given by the Bora approximation, but tht‘ iaovector 
amplitude differs appreciably from the Bom approximation due to 
the preacnce of the dispersion integral over the iV*(1238).

30 L. D . Roper, Ref. 16.
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contributions to VV+ )(0) raises the total to about 
QA5 of the value predicted by PCAC.,! If we assume

11 I f  is taken to be zero, the Еь+М*) and
contributions to V i<+l(0) become 0.062/if.• and О.Обб/М,1, 
respectively. Thus, as expected, the s-wave contribution cornea 
mainly from the charged-pion photoproduction amplitude 

The only muldpole significant in the low-energy region 
which we have omitted from our analysis is M\_. While ReAf]_ is 
known, the Р ц pion-nucleon phase shift becomes large only when 
the inelasticity in this channel is also large. This means that 
ImAfi_ cannot then be reliably determined by the Fermi-Watson 
theorem.

Eq. (31) for £(ц., the result for TV- ) (0) obtained from 
the resonant multipoles is changed very little.
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Current-algebra techniques and the hypothesis of partially conserved axial-vector current are used to 
derive a low-energy theorem for the reaction e + N  —* e-fJV-Hr4-x(soft). Particular attention is paid to 
satisfying the requirements of gauge covariance. Except for recoil corrections, the resulting matrix element 
is proportional to the nucleon axial-vector form factors, and we suggest that this electromagnetic process 
may be used to measure gA (ife1).

I. INTRODUCTION

MEASUREM ENT of the momentum-transfer de
pendence of the nucleon axial-vector form factor 

gA(k2) would clearly be of great interest, since it would 
give information about the spectrum of axial-vector 
mesons, just as our experimental knowledge of the nu
cleon electromagnetic form factors has provided much 
useful information about the vector mesons. Unfortun
ately, the elastic and inelastic weak-interaction experi
ments' to measure g±{k2) are much more difficult than 
their electromagnetic counterparts, and as a result very 
little about gj(№ ) is known at present. Clearly, it would 
be useful to have alternative, even if very indirect, 
methods of measuring gA(£г). We discuss in this paper 
the possibility of measuring gA(k2) in the electroproduc
tion reaction

e + N  ->  e+tf+n-bxCsoft), (1)

assuming the validity of the current algebra and of the 
partially conserved axial-vector current (PCAC) hy
potheses. This possibility is suggested by the recent 
work of a number of authors,2 showing that when cur- 
rent-algebra-PCAC methods are applied to the photo
production reaction 7+ iV  —» iV+ir+7r(soft), which is 
the k1— 0 case of Eq. (1), the results of the old Cutkosky- 
Zachariasen static model* are obtained, with the domi
nant term coming from the matrix element of the axial- 
vector current (№r| JH liV ).

* A. P. Sloan Foundation Fellow.
t  Supported in part by the U. S. Air Force Office of Research, 

Air Research and Development Command, under Contract No. 
A F  49 (638)-1545.

1 For a discussion of the determination of £4 (A *) in neutrino ex
periments, see E. С. M. Young, CERN Report 67-12 (unpublished).

J T. Ebata, Phys. Rev. 154, 1341 (1967); P. Camithere and H. 
W. Huang, Phys. Letters 24B, 464 (1967): P. Narayanaswamy 
and B. Renner, Nuovo Cimento S3 A, 107 (1968); S. M. Berman 
(unpublished) (B er man has also considered the extension to electro
production) ; W. I. Weisberger (unpublished).

1 R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108 
1956). QSee also P. Carruthers and H. Wong, ibid. 128, 23S2 
1962).] The soft-pion result generalizes their model to a relati- 

vislic framework in the same way that Chew, Goldberger, I-ow, 
and Nambu extended the Chew-Low static model for N y im 
photoproduction.
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In Sec. I I  we apply soft-pion methods to the reaction 
of Eq. (1), and get a relation between the matrix element 
for this process and the matrix elements for single-pion 
weak production and electroproduction, (ZVtt | Jx'41 iV) 
and (N r  | /xEM | A )̂. By carefully keeping all pion pole 
diagrams, we eliminate some discrepancies noted in the 
previous work on two-pion photoproduction. The ma
trix element (iVir|./jL‘1 j iV )  can be related, in turn, to the 
axial-vector form factor g  ̂{k2), using models analogous 
to the very successful CGLN4 treatment of pion 
photoproduction.

In Sec. I l l  we retain only the l —J —\ partial wave, 
treated in the CGLN approximation, and discuss the 
possibility of measuring gA{k2) in the reaction e+ iV —> 
iVa,a*(1238)+T(soft).

П. DERIVATION

We will consider the electroproduction reaction

e (k i)+ N (p i) —> в(^2)+ ^ (/ '2)+ зг(5)-|-7г'(51) ,  (2)

with the superscript i  an isospin index. Letting k—k\ 
—kt be the four-momentum transfer between the elec
trons, the hadronic matrix element for Eq. (2) is

M \= J dtxiHy □ 1,,+.Мг*)

X (N (p M q ) I П ф '-(у )Л ™ (х )) | N (p0 ). (3)

We wish to find the limit of Eq. (3) when it* is soft, that 
is, as q, —♦ 0. This can be done by the standard soft- 
pion methods5; the only delicate point is to insure that 
our soft-pion approximation for satisfies gauge 
invariance.

Let us begin then by studying the gauge properties 
of M x. Multiplying Eq. (3) by -  ik\, integrating by parts

• G. F. Chew, M . L. Goldberger, F. E. Low, and Y . Nambu, 
Phys. Rev. 106, 1345 (1957). Hereafter referred to as CGLN.

t See, for example, S. L . Adler and F. J. Gilman, Phys. Rev. 
152, 1460 (1966).
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with respect to x, and using 3v7xEM =  Q gives

J <1Ы*у

х {л г (^ т (?)Ц (* .-Ув)1;/ .« (* )А * (у )]| а д > . W

In all simple canonical field theories involving pions 
one finds®

6(*о-уо) [ЛкмМ,<f>,■ ( } ) ] = (S)

substituting this into Eq. (4) and finally integrating by 
parts with respect to у gives

Clearly, the proper current J\AP has no pion pole; Eq.
(9) is thus a convenient decomposition of the axial- 
vector current into pion-pole and non-pion-pole pieces. 
[As an illustration, let us take a and b to be nucleons. 
Then (N  | Л А | N ) «  в(*лгх7«+*?х*лТ*)«- In the approxi
mation in which the induced pseudoscalar form factor 
fiA is given by кл= 2 М Ngx/(§2+ ^  , the proper part 
of (N\J\A\N) is just the piece wg.iTxT's1* ]  bet us now 
introduce the PCAC hypothesis in the form

d.J .‘A=~
M s M rXgA

*r(0)

Ы /х---- **e(? .*+M ,‘) d*y

| фг-(у) | N (pJ)

U.Xq.'+MS)’ > Г 
-  Mb ’

Then using Eq. (10) we can write Eq. (11) as

M s g  A
d .J .'AP----------Л - ,

«,(0)

(ID

( 1 2 )

(k -q .y + M .

Xe«*-..) * (N (p M q )  I J r ‘(y) I N ip , ) ) . (6)

As expected, when r ‘ is on the mass shell, k\M\=0, but 
in the ofl-shell case the divergence of M\ is nonzero. 
Our soft-pion approximation for M\ will not actually 
satisfy Eq. (6) exactly, but will ohey the approximate 
version

€5.1(9.’ + AfT4) f
kyMx=s--------------------  dty

r , 'J

which says that the divergence of the proper part of the 
axial-vector current is a smooth interpolating operator 
for the pion source. Thus, we can rewrite the gauge con
dition [Eq. (7 )] in the alternative form

it,..(g.*+Af.*)A, gr(0) f d*y
(k - q .y + M .1 M sgA.

X te -»(ff(piM?)U*,* p(y) 1̂ 0) ■ ( 13)
(k -q .y + M ,

№ Q H tM !d \ J .< y )\ N (p d ), 0 )

obtained by neglecting q, in the matrix element of J , 
but keeping q, in the rapidly varying factor ( q ? + M f ) f  
C(£— 9«),+ M ’«1].  Clearly, Eqs. (6) and (7) are identical 
both in the soft-pion limit (? .= 0) and on the mass shell 
( q , '= - M * ) .

In applying PCAC to Eq. (3), it is helpful to introduce 
the “ proper part”  J\AP of the axial-vector current, de
fined as follows: Let a and b be arbitrary hadron states, 
and let q = p a—pi. Then we define J\AF by

To get a soft-pion approximation for M\, we substi
tute Eq. (11) into Eq. (3) and integrate by parts with 
respect to y. This gives

М .*

with 

MxEro= —

q . '+ M r *

«,(0)

(14)

J  d*x

14)— (а|Л |6)H----- (e|?./.*|6), (8)
M  »*

which implies that

--(a\JSF\b)— 7 q[  (a Iq,J.AP\b), (9)

M NgA-

X  « ‘► ‘ '■■(В Д т (5) I J S A(X)  I N (p 0 ) (IS )

the equal-time commutator of Ja,A with Д им,7 and with 

«,(0)

(о|Л^|6)=
M  xBm*P=tg„

ф+ M J  

q * + M *  

M s

/ d*xd*y е,л -ге~ 
[ J

(10)

MNgA ■

X (N (p M q )  I W . ‘A(y)J ,™ (x ))  I N < t0> (16) 

the remainder. Separating Eq. (IS) for Afx™ 0 into a

г 7 integrated over with respect to x, Eq. (5) becomes ’  We have, of course, evaluated the equal-time commutator us-
w и  )ust tbc statement that the pion ing the Gell-Mann algebra of currents ГМ. Gell-Mann, Physics 1,

auantum numbers 7 =  1, K=0 . The focal 63 (1964)]. The possible presence of Schwinger terms in the timc-
Й Ы \v • ’ ■ ■ , , integrated version m canonical space commutators is irrelevant because of the cancellation of
Г J1 c “̂arge densi‘ y “  “ e Schwinger term and “ seaguU-diagram1' contributions in soft-
г ôrm ^  canonical fields and momenta, and thus
С-/̂ “м (30 ,Ф*г'(у)П1*1)-в| contains no gradient of й-function terms 
which vanish whea integrated spatially.

pion calculations. See, for example, S. L. Adler and R. F. Dashen, 
Current Algebras (W. A. Benjamin, Inc., New York, 1968), Chap.
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may be calculated to be
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Nip,)
<C)

Nip,)

F ig . 1. Contributions to £Eq.
(16)J. (a) Axial-vector curreDt couples to 
a virtual pion. (b) Axial-vector current 
attaches to the initial external nucleon 
line ш single-pion electropioduction. 
There is a similar diagram (not shown) in 
which the axial-vector current attaches 
to the final external nucleon line, (c) 
Axial-vector current and vector current 
attach to a virtual pion at the same space- 
time point [a  “ seagull" diagram], (d) 
Axial-vector current couples to internal 
lines in the matrix element (N (Pi)r(a ) I
XT(/ . * « Л “ М)|ЛГ(А)>.

—  [d*x
fr*J

e - K i i r

(k -q .y + M ,

x  «■“ -»•>- ' (N i t M q )  I -M *) | (20)

gr (0 ) q.xk.
-  f d‘x
* J

Cd)

proper part and a remainder gives 

g r ( 0 )
---- i

M N g A

d*x « ’ (*-»•)-*(jV(/)j)T(y) |

(k -q ,)\ (k —?,), Г 
XJ\°AP(x) N (j>i))— \ d<x

(к -д .У + М ,*  J 

|Л^ '(* )1  W ) ]  (I?)

~ — — { / *** e<i (̂ *)T(?) I J\iAr(x)

( i —q.)xk,
x l а д )

M „gA (k - q .y + M ,1

X  e“ ' ‘ (J V W i(})  | J , 'AP(x) \N(j>i)). (21)

Finally, in Fig. 1 (d) the axial current couples to internal 
lines in the matrix element

(N(p,)r (q) I П / .и (у )Л “ (*)) I * ( * ) ) ;
consequently, M\BURVlil is of order q, and may be 
neglected.

Comparing Eq. (21) with Eq. (18), we see that the 
effect of including the radiative pion decay diagram is to 
change the coefficient of the pion-pole term in M\^IC 
from (k—q.)\ to (k—2q.)x. This eliminates the factor of 
two discrepancy noted by Carruthers and Huang,3 who 
neglected M xaTTRP<=)) and leads to the satisfaction of 
the approximate gauge condition (13).

Combining all the terms, we may write our answer as 
follows:

/ M S
M x=  (2*y&4( p i + q - p i - k ) [ ---------- )

'2*10̂ 3000/

N \=  e,jc|
Г  ( 2 q .-k )J t ,

2/ю̂ зо?о̂

X ii(j> i)N xu (fo )+ 0 (q .),

1/“ i*r(0)\ , Jp

(22)

d*xeil
(k - q .y + M ,

X < t f ( ^ ( ? ) l A ‘ ^ ( * ) № ) > ] -  (18)

In going ftom Eq. (17) to Eq. (18) we have neglected 
q, in matrix elements of the proper part J\tAP and its 
divergence Эг1щсЛР, but have retained q, in the rapidly 
varying factor (k—q.)x/[(k—q^1+ M , i'̂ . The surface 
term M xeuH? contains four types of terms, shown in 
Figs. l(a )- l (d ).  In Fig. 1(a), the axial-vector current 
couples to a virtual pion; it is easy to see that

--------------- + ix, I -------- }
L( k - q .y + M ,1 J\ M NgA J

gr(0) p l+ iM f!
H--------- T'q, y t--------— 0\EM

2 M u  2pi-q.

P i+ iM if  gr(0)
+ОхЕИ----------------r‘g.75,

-2 p i-q .  2M u

where 0 ,‘AP and OxBM are defined by

/  M S  \ 1

(N (p i)*(q )\JSAP\N(fil) ) =  ( - --------- )
\2piô ao9o'

J/xatTRF<.) =  .
q . '+ M T>

-My. (19) ( а д * ( д)|ЛЕМ № ) ) = ( ;
M S  у -

IpiopioQo'

XH(j>i)OxE,tii(Pi).

(23a)

(23b)
In Fig. 1(b), the axial current attaches to an external nu
cleon line in single-pion electroproduction; an expression The terms proportional to are the single-pion 
for Л/*аШ1Р(ь1 гяг> be obtained from the usual axial- electroproduction contribution Л/хн1;к? 6̂) mentioned 
current insertion rules and is given below. In Fig. 1(c), above.8 Since the single-pion electroproduction matrix 
the axial current and vector current attach to a virtual —~  ~  . . , . ,hr addirinnul. ,,  ..  . . . .  . ,, • b  wri t ing the matrix element f t ™  we neglect tne aaamonaj
pion at the same space-time point; this IS a  seagull”  mom(nta^  carried by the intermediate nudeon. I t  is dear that
diagram contributing to virtual radiative pion decay and the citoi is 0 (j.), consistent with oui approximation.
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element is gauge-invariant, we have 
XOxEHM(^.)= Ы {рг)0 ^ ^ + г М „ ) =0, and thus the 
divergence of N\ is

T ab le  I. Isospin coefficients.

k\N\= *,»„•
q.'+M,' / — ig r (O )

(k -q .Y + M S  \ M „ g i\M Ngir
(24)

Combining Eqs. (22)-(24), it is dear that the approxi
mate gauge condition of Eq. (13) is satisfied. In particu
lar, when g , t= — M T*, fexNx=0, so on-mass-shell Eq. 
(22) gives a gauge-invariant approximation to the ma
trix element for two-pion electroproduction.

Ш.  D ISCU SSIO N

Ol Ол

«-H>—» e+x+(so ft)-№ .,,l>
0N , . , » - # + i r - — A

Ч я + т " - l ( v 2 ) " 1 - * V 2 iV i

e + f  -*  e+x-(soft) +Л,«.,*++
0 - iN,  .*++-+ #+x+ *

Let us now briefly consider the possibility of indirectly 
measuring КлО?) in the reaction e+ N —» e+iV+ir 
+ r(so ft), by use of Eqs. (22)-(23). For simplicity, we 
will restrict ourselves to the case in which the soft pion 
is at rest (threshold) in the center-of-mass frame of the 
final baryons,® and in which the hard pion and nucleon 
emerge in the (3,3) resonance. At the soft-pion thresh
old, the kinematic structure of two-pion electioproduc- 
tion becomes identical to the kinematic structure of the 
more familiar case of single-pion electroproduction; this 
makes it  easy to compute the two-pion cross section 
from the matrix element in Eqs. (22)-(23). When the 
hard v  and N form an Ns,t*, the matrix elements in Eqs. 
(23a) and (23b) describe weak production of the (3,3) 
resonance from a nudeon target and have been exten
sively studied.10 The vector matrix element £Eq. (23b)] 
is found to be dominated by the magnetic dipole11 am
plitude while the axial-vector matrix element 
[E q. (23a)3 is dominated by the electric, longitudinal, 
and scalar amplitudes £ 1+cm),and3C l+ (li)« ' «  
£The subscript (g^) indicates that the part of 3Ci+<J/2) 
proportional to the induced pseudoscalar form factor 
Ax is to be dropped and only the part proportional to 
the axial-vector form factor gA retained; this restriction 
arises because only the proper  part of the axial-vector 
current appears in Eq. ( 2 3 ) For momentum transfers 
fel  less than SO F "J, a  model which should give a  good 
approximation to is

A straightforward calculation shows th at, in  term s of 
the weak (3,3) production multipoles, the cross section 
for e+ tf->  «+JV«,i*+ir(threshold) is given b y

1 (PaTe+N  —> e+Ni,«*+ir(soft)]
<,,(*,*,W)=--------------------------- ------------

|q.| dq.dk'dW

l Z r (0 ) ' Сw + M „ y Ifll

г 1

X L: / 2£io&2|)— hk2\ 
■ 1+ -

M J  W * + ( W + M r y -M T'i i k i ^ y

У м | г+3|В|*+|С|а]

PI*].

2fes\ |к|*

|к|>
(26)

1 |k|
A —— — Mi+

gA p 10

14B=at---
pio

C=az—

IU a)

рга

1
D=—ai 

gi

(27 )

X -
(feo- 2М т)£1+<»№ +2М ,(1 к ]  /jfeo)3Ci+(«A) ( , ' a  

V+2MM
Mi+(,'«  = M1+<J'!>B/1+«'»//i+(,l!1B, 
<S1+c,;j) = &  + « '» »/ , + « '»/ / ,+ « '«* , 

£.+(,/,) = £i+(,rt,e/>+(*/*)//i+(,me,
(25)

where /i+(,/,) is the pion-nudeon scattering amplitude 
in the (3,3) channel and where the superscript В  de
notes ‘ 'Bom  approximation.” Expressions for /i+(,/!)B, 
M • • ■ are given in the Appendix.10

I That is, the frame defined by pi-{-Q-}-Qia 0. In the case qi*=0 
which we consider, the center-of-mass frame of the final baryons is 
identical with the center-of-тава frame of the hatd pinn and nu
cleon (the Wi.i* rest frame).

Je S. L. Adler (to be published).
II Our multipolts arc a factor (8rW times those ol Ref- 4.

where km1 is the laboratory-frame in itial electron en
ergy, where q,o and all other noninvariant quantities 
refer to the center-of-mass frame of the final baryons, 
and where IV is the invariant mass of the resonating 
pion and nudeon. Values of the isospin coefficients 01,2,5 
are given in Table I. For comparison, the cross section 
for the ordinary (3,3) electroproduction reaction 
«+ £ —> e + N j.i^  is

<г,(*’,И0 е
<P<r(e+p-+e+N,,,*+) a1 |q| 1

dk4W

2k\okzo~
3* (k,0Ly  2 k*

f  2kwkio—%k\
<11+-------------]V |k|> )|Afi+(,,I) I*- (28)
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Looking a t  Table I, we see that the most promising statement about the relative rates of decrease of <xi and 
reaction for the measurement of %л№) is <r2 is that

e+ p ->  c+7r-(soft)+;V3.3*++ 
4

Р +  ТГ+

for the following three reasons: (1) The coefficient Oi of 
the axial-vector multipoles is the largest in this case.
(2) The coefficient at vanishes and, consequently, the 
vector multipole M i+<J/2) enters only through the very 
small recoil-correction term |C|2. (3) In this case there 
is no soft-pion background coming from single-pion 
electroproduction, which can only lead to a soft ir+ or ir°.

Because the Bom approximations Si+(3/2>B and 
£ 1+(а'« л are known functions of W and k2, and are 
proportional to g iik 2), Eq. (26) [apart from the small 
term |C|!]  is proportional to gA(k2) 1, and thus a mea
surement of <rj as a function of k2 will determine the 
momentum transfer dependence of gA- 11

There is, however, a  possible problem, which m ay be 
illustrated by comparing Eq. (26) with Eq. (28) for 
ordinary (3,3) resonance electroproduction. Just as o\ 
is proportional to £л(.к2)2, ог is proportional to F y{k2) 2, 
where F v(k2) is an isovector electromagnetic form fac
tor. There seems to be some evidence that the axial- 
vector form factor gA(k2) faUs off considerably more 
slowly with k2 than does F v(k!). This in turn suggests 
that the soft pion-f- TV a, a * production cross section <n 
falls off much more slowly with k2 than does the N3 ,s* 
cross section rr2. Unfortunately, however, this conclusion 
is not correct. The reason is that the multipoles M i+(3/2) 
and 6 i+<8/2) have different sm all-1 k| threshold behavior,

► o, (30)

and this behavior, in the model of Eq. (25), persists 
into the physical region as well. As a  result, the correct

Oi(£2)/ffi(0) L?yi(^2)/gx]2 I к  [ V -o

(29) а,(к2)Ы<0) [Fvm | b | V

fjA(k2)/gAJ  (W -M „)2 
[F r (k2) J  { W -M Ny + k 2 '

(31)

Even if gA(k2) falls off appreciably more slowly than 
F v{k>), the effect of the factor (W —M n)2/[JW ~ M ц)г 
-\rk2~\ is to cause a\ to decrease more rapidly than cr2.

The importance of the threshold behavior in Eq. (31) 
illustrates a problem which might invalidate Eq. (22), 
our soft-pion approximation for the two-pion produc
tion matrix element, and thus destroy the possibility of 
measuring gx(£2) in the reaction Eq. (29). In deriving 
Eq. (22), we have neglected terms of first order or 
higher in the soft-pion four-momentum q,. At k2—0 , 
we feel fairly justified in this approximation, since it 
leads to the Cutkosky-Zachariasen formulas, which 
seem to work. However, it  is alw ays possible that some 
of the terms of order qt, which are negligible a t k2= 0 , 
increase rapidly relative to the terms of zeroth order in 
q, as k1 increases, because of a  different threshold be
havior in I к  I ■ If this happened, the soft-pion approxi
mation could become bad precisely in the large-A2 re
gion, where we m ust look to measure gA(k2). Hopefully, 
this does not happen, but in using Eq. (22) to interpret 
two-pion electroproduction experiments, this danger 
must be kept in mind. A more detailed investigation of 
this problem is being undertaken.

APPENDIX

We give here expressions for the Born approxi
mations /1+<а' !>л, Л/,+<3' 2>л, <Si+(3' 1)S, £ i+(3' J)S, and 
3Ci+(.A^ll)B ■

/ i + (, / h b =
gr

&irW I q 11

H "s |q| 1 4 /  ~gr

[W-(j>iti+Mn)A (d)+ W+(j> и — M  ff)C(d)"],

M NW -(p10+ M „ ) A (a)

О*
a — Y
\4 M NV

ZFS(k2)+ 2M NF S (k 2)1\
W 2

W+ B(a) M NW+ С (a) ~\

W 2 I qj |k| W ^ + M t i )  |q||k| j

I
H-nucleon and pion charge terms,

11 A similar calculation would lead to a determination of ji(A*) in electroproduction of a single soft pion. The relevant matrix elements 
are given in Ref. 5, which gives further references. Experimental data on single- and double-pion photoproduction reactions indicate 
that double-pion electroproductioo may yield more reliable results for gA(&*) than single-pion electroproduction. The reason is tnat 
the soft-pion matrix element seems to give an accurate description of the experimental results for two-pion photoproduction up to 
about 100 MeV above the threshold, while the single-pion photoproduction is dominated by Ni, i* production (wmcn cannot
be described by soft-pion methods) as soon as one goes away from threshold. In fact, it is interesting to note that the recent UbbY 
results on y+ fi  —* #я11*+++ 1г_ show a cross section rising less rapidly above threshold than indicated by earlier experiments ana 
agree within experimental error with the prediction of the Cutkosky-Zachariasen model. The relevant experimental results ana r r- 
ences are given in Fig. 9 of M. G. Hauser, Phya. Rev. 160, 1215 (1967). If both methods of measuring Sa(&) are feasible, one will 
happy to have two independent determinations.
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W* I q I * I к | * W* | q] | к |

W +  C (a) 3 E(a)

^ ‘( ĵo+Afy) |q||k| W3 

'■-gTuW\rM„{pu-  il/*)jy++ Q W --p,№
2 MN /I W

........................................................“ >]■

A(a) MN(pl<,+MN)W --(}iW+- p 10)kt С (a)X______ | ------------------------
|4|‘ |k|* (£io+Mw)(*M+2f*)PF |q||k|.

— a y * - * »  g » | , (M )
2M N L |q|«|k| (^io+^)(/>io+Afw) |q| J

with
W ± = W ± M n ,  Oi+=CO>io+Af^)(f!o+Afy)]1J*, Oi+-=[(/’io+-fcfw)/(f’Jo+-Mtf)DU4i ( A 2 )  

e=  (2/>ioio+ fcl)/ (21q| |k|), a ^ ( 2 p ^ 0—M ,,)/{2 \q\i) .

The functions A through E are defined by

A ( a ) - 1 -  \a u £ t ) , B{a) = ,

C(«)----^3a+ K l-3a‘) £(a) = i[ l-e * + ia (a J- l )  ln( ~ “)]■

and Fi 7(fe1) and F^ik1) are, respectively, the isovector nudeon charge and magnetic form factors, norm alized  
so that F i7(0)+ 2M wFi*(0)= 4.7 . For reasons explained in Ref. 10, only the part of M 1+» /2)B proportional to  
the total nucleon isovector magnetic moment (given explicitly in the equation above) is used in Eq. (2 5 ); th e  
part proportional to the nucleon and pion charges should he dropped.

(A3)
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Photo-, E lectro-, and W e a k  Single-Pion P roduction  
in the (3,3) Resonance Region

S t e p h e n  L. A d l e r  

Institute f o r  Advanced Study, Princeton, New Jersey 08540

W e give a  unified acco un t o f s ingle-p ion photo-, e lectro -, and  w eak production . 
The em phases o f the pap er a re  fourfold : (1) W e give a  deta iled  k in em atic  discussion 
of single -p ion  electro - and w eak -p roductio n ; (2) w e develop a  d yn am ica l m odel for 
e lectro productio n  and w eak production in the (3 ,3 ) resonance reg ion , based on the 
C G LN  m odel for ph o to production ; (3) we system atic a lly  d iscuss the partia lly-co nserved  
axa il-vecto r cu rren t (P C A C ) and cu rren t-a lgeb ra  co nstra in ts which relate the single-p ion 
electro - and  w eak-productio n  m atrix  elem ents to the m atrix  elem ents for o ther p ro cesses;
(4) we co m pare our m odel w ith  experim ent.

1. IN T RO D U C T IO N

Production o f a single pion is the simplest inclastic process that can be studied 
in electron-nucleon and neutrino-nucleon scattering experiments. Already, 
several pion electroproduction experiments have been performed and some crude 
data on weak pion production is available. Since, in the future, there will be a 
substantial accumulation o f data on these processes, the theoretical interpretation 
of pion production experiments becomes an important problem.

We give in this paper (/) a detailed, unified treatment o f single pion photo-, 
electro- and weak production. The parallel discussion of the three processes is 
natural, since they are closely related. Photo-production is, o f course, just a special 
case o f electroproduction, in which a real photon, rather than a virtual photon, is 
involved. According to the conserved vector current (CVC) hypothesis (2), the 
isovector electroproduction amplitudes are related by an isospin rotation to the 
vector-current weak-production amplitudes. The weak production process also 
involves axial-vector amplitudes which, while not directly related to electroproduc
tion amplitudes, are most naturally treated in analogy with the treatment o f the 
vector amplitudes when making dynamical models. Comparison of photoproduc
tion and electroproduction models with experiment gives an idea of how good 
weak-production models may be expected to be.

The main emphases o f this paper are fourfold: First o f all, we give a detailed 
kinematic discussion o f single-pion electroproduction and weak production,
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including a derivation of differential and total cross-section form ulas for the weak- 
production case, and a discussion of the kinematic singularities which appear in 
the electroproduction matrix element when gauge invariance is imposed. The 
kinematic results are general, and are not limited to single-pion production in the 
(3, 3) resonance region. Secondly, we construct a dynamical model fo r the single- 
pion electro- and weak-production matrix elements in the (3, 3) resonance region. 
We limit our dynamical discussion to this region because, as shown in the pioneer
ing work of Chew, Goldberger, Low, and Nambu (3) (CGLN ), in the (3, 3) 
resonance region a very successful model for pion photoproduction can be made. 
Our work is essentially an extension to the electro- and weak-production cases o f 
the version of the CGLN model discussed recently by Hdhler and Schmidt (4). 
Thirdly, we discuss various PCAC and current algebra constraints which relate the 
single-pion electro- and weak-production matrix elements to the matrix elements 
for pion-nucleon scattering, for two-pion electroproduction and to the nucleon 
vector and axial-vector form factors. Wherever possible, we test whether our 
(3, 3)-dominated model satisfies the PCAC conditions. Finally, using predictions 
o f our theoretical model in the (3, 3) resonance region, we give a comparison with 
experimental data obtained in recent photon, electron, and neutrino experiments.

The CGLN dispersion-theoretic dynamical model is not the only approach to 
getting predictions which we could have used. Other recent methods involve (i) 
use o f a postulated higher symmetry, such as SUs , to relate the N-N33 (vector or 
axial-vector current) vertex to the nucleon vector and axial-vector form factors (5), 
or (ii) direct introduction of N-N33 (vector or axial-vector current) form factors, 
which are parametrized in a convenient fashion and are used to generate a family 
o f cross section curves (6). We prefer the CGLN approach because it has given 
more detailed and more accurate results than the higher symmetry method in the 
case o f photoproduction, and because approach (ii) is little better than phenom
enology unless specific dynamical assumptions, such as use of a higher symmetry 
or o f the CGLN model, are made in order to give definite values for the N-N£3 
(vector or axial-vector current) form factors. Of course, there exists already a 
considerable literature on the dispersive approach to single-pion electro- and weak 
production (7), (S). The most extensive recent treatments are the electroproduction 
calculation of Zagury (7), and a weak-production calculation by Salin (5) based 
on the work of Dennery (7), (S). In an Appendix we give a detailed comparison o f 
our model with the work o f Zagury and of Dennery. As noted above, we only 
discuss pion production in the (3, 3) resonance region. We do not treat higher 
isobar production, a topic which has been discussed recently by several authors (9).

Having explained the aims and scope of this paper, we turn next to a brief 
elaboration o f its contents. Section 2 is devoted to a discussion o f the kinematics 
o f pion weak production and electroproduction; most of the subsection headings 
are self-explanatory. In order to keep this section readable, we have put most
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detailed  k inem atic form ulas in appendices. In Subsection 2D(3) we discuss only 
the m ost e lem entary consequences of the partially-conserved ax ial-vector current 
(PC A C ) hypothesis, obtained by equating the divergence of the ax ial-vector weak 
p ion production am plitude to the (off-shell) p ion-nucleon scattering am plitude, 
and expressing the resulting equality  in terms of m ultipoies. Other consequences 
of PC A C , includ ing soft-pion theorems, are given in Section 5. Our p rincipal new 
k inem atic  results are the form ulas for the w eak-p ion-production differential cross 
section in term s of helic ity am plitudes, and for the weak-production total cross 
section (in tegrated over the pion em ission angles) expressed as a  sum over m ultipole 
am plitudes, given in Subsection 2F and Appendix 4. In Subsection 2G and 
Appendix 5 we use the R arita -Schw inger form alism  to define d irect N~N*S 
(vector or ax ia l-vecto r current) couplings, and we relate these couplings to the 
m ultipoles lead ing to the N to N*j transition. This w ill enab le the com parison of 
our paper, and other d ispersive approach papers which ca lcu la te  the m ultipole 
am plitudes lead ing to excitation  of the (3, 3) resonance, w ith papers using the 
phenom enological, d irect-coupling approach.

In Section 3 we write down the fixed momentum transfer d ispersion relations 
which the weak production am plitudes obey and discuss the questions o f k inem atic 
s ingu larities and convergence. We show that the use o f gauge invariance to reduce 
the num ber o f independent vector am plitudes from eight to six n e c e s s a r i l y  
introduces a k inem atic  s ingu larity  in some o f the invarian t am plitudes, but that 
the effect o f this s in gu lar ity  on the p h y s i c a l  matr ix  e l em en t  can be e lim inated  by an 
appropriate  subtraction  in the dispersion relations.

In Section 4 we develop a dynam ical model for pion w eak production and electro- 
production . W hen specialized to pion photoproduction, our model differs only 
s ligh tly from the H ohler Schm idt version of the CG LN  model. The general method 
is to write fixed m om entum  transfer dispersion relations for the in varian t am p li
tudes. U nder the dispersion in tegrals we approxim ate the im ag in ary  parts o f the 
am plitudes by keeping only m ultipoles which excite the (3, 3) resonance and which 
are dom inant in Bom  approxim ation . W e then project out in tegral equations for 
these m ultipo les; an exam ination  o f the nearest left-hand sin gu lar ity  structure of 
the m ultipoles shows enough of a resem blance to the fam iliar case o f p ion -nucleon  
scattering to allow  a sim ple approxim ate so lution to the in tegral equations. We 
guess th is approxim ate so lution by the heuristic procedure of first studying the 
static-nuleon lim it of the in tegral equations. (A t the sam e time we try  to c larify  
the relation between several approaches found in the lite ra tu re  for so lving the 
Omnes equations involved.) We then check num erica lly  that the guess is a reason
ab ly  self-consistent so lution to the in tegral equations when no static  approxim ation  
is m ade, so that our final answer is no t  a  static lim it result. We show  that the sam e 
argum ents lead ing to our model for the dom inant m ultipo les also can  be used to 
ju stify  an approxim ation  which we have used elsew here ( 1 0 ) for the p ion off-shell
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extrapolation of partial-wave and multipole amplitudes. Our model is summarized 
in Subsection 4E; the static limit o f the model is calculated here only as a check, 
and is not used in the subsequent numerical work. A  comparison o f our model 
with other weak production and electroproduction calculations is given in A p 
pendix 7.

In Section 5 we derive a large number of PCAC and current-algebra conditions 
on the pion electroproduction and weak production amplitudes, and compare 
them with values for the amplitudes calculated in our model. We interpret one 
particularly bad discrepancy as indicating that we have neglected a vector meson 
exchange contribution to weak pion production by the axial-vector current. W e  
briefly discuss the low-energy theorem which relates two pion electroproduction, 
with one pion soft, to single-pion weak production and electroproduction am pli
tudes.

Finally, in Section 6 we compare our model with experiment. Agreement with 
photoproduction data and with electroproduction data for electron momentum  
transfers less than 0.6 (BeV/c)2 is good, but our theory appears to break down for 
momentum transfers much greater than 0.6 (BeV/c)2. In weak production, a fit o f 
our model to CERN data for neutrino production of the (3, 3) resonance suggests 
an axial-vector form factor which falls off more slowly with increasing momentum  
transfer than do the vector form factors. We also discuss some features o f weak 
pion production which may be of interest in future experiments.

In this section we discuss the kinematics of the pion weak, electro-, and photo- 
production reactions. Many of the formulas give here have been published else
where; our aim has been to collect all o f the kinematic equations needed in this 
work, using a standardized notation.

2 A . E n e r g y  a n d  A n g l e  V a r i a b l e s

Let us consider the weak, electro- and photo- pion production reactions

2. K IN E M A T IC S

X  j ( * i )  +  N(Pd -*■ J J  ( * 0  +  Щрг) +  А я), 

e ik j + N(Pl) e'(k2) + N{p2) + n(q), 

y{k) + Щр{) -*  N{pz) +  n(q).

(2A.1)
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Substitu ting the static  lim it equations into Eq. (2F .8) for the differential cross 
section gives, after some a lgeb raic  rearrangem ent,

d*a k f r i  d 2o  GP2 cos2 вс  ( * M -  ш)2 / 2 M „ \ *  
dQeL d W  77 d(k2) dW  4 tt3 (ш2 -  Л О 1' 1 V г ,  '

(4E.6)
w ith

° 3.Л Ю  =  16Щ а м  -  ia<-))2 |/‘3+/2) Is (4E.7)
and w ith

«  =  SaV  +  sin2(0/2)] +  (F S  +  2MnF W  sin2(0/2)

X [K * »  +  k\a)  +  kw k n  sin2(0/2)]/A/w2

+  +  2М пРг у )  s in2(S/2)(7c10 +  ki 0)/MN — m S g AhAu>l(2MNkw )

+  [/и/(2Л*„)]2 +  4* 10£2o s in2(0/2)][sin2(0/2) +  w//(4/c^)]. (4E .8)

As the notation suggests, o 3 3 (W )  has been defined so that in (v/i^-induced w eak 
reactions it is the cross section for (3, 3) excitation in (i7+/ir_)-nucleon  scattering. 
Eqs. (4E.6-8) are identical w ith the sta tic  model results of Bell and Berm an. 
(Bell and Berm an om it the lepton mass term s.)

S. WEAK PION PRODUCTION AND THE PARTIALLY-CONSERVED 
AXJAL-VECTOR CURRENT HYPOTHESIS

In this section we discuss in a system atic w ay the im p lications of the PCA C 
hypothesis for w eak  single pion production . W e first derive the PC A C  predictions, 
and then, wherever possib le, com pare them with the model for the pion production 
am plitude derived in the previous section. We in terpret a g la r in g  discrepancy 
between one of the PC A C  predictions and our model as in d icating  that we om itted 
an im portant vector meson exchange contribution  to w eak pion production  by the 
ax ial-vector current. F in a lly , we briefly discuss the connection between the reaction 
e _|- jV -*  e ' +  A' -f  ir(soft) 77 and single pion electro- and w eak production.

5A. Derivation of the P C A C  R elations

(1) Small-k2 C ond it ion s  ( Axial-Vector P a r t )

We saw  in Subsection 2D that for sm all к 2 the P C A C  hypothesis relates the 
axial-vector m ultipoles and j e ,±  to the corresponding p ion-nucleon  scattering 
partia l-w ave am plitudes f (± [see Eqs. (2D .12), (2D .15) and (2D . 19)]. It w ill be 
useful to rewrite the identities contained in Eq. (2D . 12) in term s of the invarian t
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and the center o f mass am plitudes which were in troduced in Subsec tion  2C . T h is 
is most easily  done by going back to the statem ent of P C A C ,

0.1 I а д / f  +  y f )  | /V) = ^  \ 9 . \ N >  (5A.1)

and expressing the right- and left-hand sides o f this equation  in term s o f  e ither 
invarian t or center-of-m ass fram e am plitudes.

Invariant am p l i tud e s :

W riting33 

outO ta) М(Рг) I <P. I ^ (P i) )

=  M t M P iM V *  a M [A'»M  („, VB , k\ q 2 =  - M S )

-  i y  ■ kB"N{+\ Vt...)) +  V 5  a (- )M 'N<- ,(K,...) -  i y  ■ k B 'N{- \ V, ...)}} uN( P l )
(5 A. 2)

and expressing the left-hand side of Eq. (5A. I) in terms of the in varian t am p litu d es 
Vj and A , , we find

-2 М ыу(Ах + Л )(±) + 2 М„увА ?  +  k*A<*’
_ j M ыВл____ Af,8 .»n(±), . j  . .  t\ 

g r(0) к* +  Af.* &  *  * k • M Л  (5A  3)

2Л/*Л<=) -  М „А^  + 2 ^ 4 * ’ -  2 М ИМ ^  -

_  2 Л Л / .  v ir* in
«,(0) + W, 1 ( , ,,/c *

The physical content o f Eq. (5A .3) is, o f course, just the same as that of Eq. (2D . 12). 
Since we will w ant, in particu lar, to study Eq. (5A .3) at the point v =  v B — 0 , we 
must separate ofT the Born terms, which become singu lar at that point. The p io n - 
nucleon scattering Born approxim ation is

»» , k\ -  M.2) = (_ L _  T (5A.4)
Z/V1 N \|/j — v Vg -(- w

u  E quation (5A.2) defines the olT-shell p ion-nucleon  scattering  am plitudes vB , ft* q1 =
— and B” N|*>(vl q i  =  —М„'),  in which the in itia l pion has (m ass)1 — — k2. T h ey  a rc
re la ted  to the physical p ion-nucleon  scattering am plitudes v„) and  vB)  by

A"H{±\v, vB , k> =  - M „ \  q • =  - M „ ’ ) =

#7N'*4>', , ** = -M ,‘, <?* = —M„') = *„).
O ur no tatio n  fo llow s A d ler (JO).
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and the w eak  production  Bora approxim ation is given in Eq. (2E.6). U sing a bar 
to denote the non-Born part o f the am plitude, e.g ., A ^  — A[±] +  we find
by substitu ting Eqs. (5A .4) and (2E.6) into Eq. (5A .3) that34

- 2 M M  +  Аг)ш  +  2 M NvBj f ] + к Ч ^  +  Q  2g ' g J d c 1)

_  ____ 7wN(±)/,. K.2 дм 2\
g T(  0 ) к г +  M J  ( ^

(5A .5)
2 M na [±) -  M NX ?  +  2 M nv̂  -  2 М ы*а Л<? ) -  k 4 ^

_ 1Мц%Л а”ЫШ/ 1.2 I/ 2ч
-  Ч аоГ  к* + м.* й

Eq. (5А .5) can  be further sim plified by separating /4, and Ла into their one-pion- 
exchange contributions, com ing from the d iagram  of F ig. 3, and a rem ainder,

(5A .6)

(5A .7)

t(±) _2 Mug л______I___  2«w(±)/,. ir2 _*/ 2\ i j(±)*
Al g , ( 0) k% +  Мпг '  * * 1 1 * '  _r 7 *

__ 2 MfjgA 1 n n tf (± )/ .. . .  f. 2 д./ 2 \ i Т (± )Л
* ^ д о Г ^ 2 + Ж '2' - л̂ )  + - .  •

E quation (5A .5) becomes

- 2 M M  + I 2)(±> + 2MnvbA ^  + + (J) 2grgA(k2)

gA 0)
2Mn^  -  MnAJ* ’ +  2М ^А^] -  2Mt>vBA{f  ~ к Ч ^ *

= Va,k\ -М Л

In Eq. (5A .7) the pion propagator (к 2 +  M„2) l , which varies rap id ly  with к г , has 
dropped o ut; the physical content o f P C A C  is the assertion  that the left- 
and right-hand sides of Eq. (5A .7) vary only slow ly as k2 is varied  in the interval 
- M *  ^  к г ^  0 (apart from possible threshold corrections o f the type discussed 
in Subsection 2D).

From  Eq. (5 A. 7) and the crossing properties of Eq. (2C .3), which state that certain  
of the am plitudes At vanish at v =  0 , we deduce the fo llow ing relations (32):

=  J . i t t+ i  I • (5A.8)
MN

M W e use the equatio n  2 М ^ л(к ‘ ) — k’hAk*) — ^ М ^ ^ Л О Ш М ^ К к ' +  M ^ ) ] gA k ' ) ,  
ob ta ined  by sandw ich ing Eq. (2D . 10) between one nucleon  states.
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' * - ' - ' * 1 ________ I . - . . - .

я ‘+)1

gA 8j n w - )  |

g *  0) dv 1,

gA аЛ’ "'+» I
g r (  0 ) dvB I,

(5A .9 )

Equation (5A .8) is the fam iliar consistency condition on nN  scatte rin g  im p lied  by 
PC A C  (35). To interpret Eq. (5A .9) we note that, for sm all four-vector k, w e h ave

М Л ) [  t  0(V,) V ?  + i  0(Af) A™ 
L j - i  i -1

M P i)

=  М л )  j  £ 0(V,) v)±)B +  £  0{Ai) A]±)B
\ i- 1 Ы

+  +  '? 2±)]10 (P i +  p2) ■ e. +  lo q ■ e

-  [ Л ?  -  M Ny  • e  +  0(k)\ М л ) -  (5A .10 )

The notation |0 means that the invarian t am plitudes are eva luated  a t к  =  0 , 
that is, at v  =  vB =  k2 =  0. Since crossing sym m etry im plies that Л£+) |0 =  
Л^+) |0 =  Л^+) |0 =  10 =  0, the Bom approxim ation and Eqs. (5A .9 ) com 
pletely specify the w eak production am plitude, up to term s of first o rder in k.

C en t e r - o f -m a s s  amplitudes' .

U sing  the definition o f the p ion-nucleon scattering center of m ass am p litu d es 
f i  and /„ ,

М л ) И " "  ~  i y  ' к В '" )  НМ( Л ) =  x)\ f i  +  °  • $<* • Ш  X<, (5A .11) 

we find that Eq. (5A .1) takes the form

. . i b  12 . 1Л О _  U/~ 1 Ж 9&AW » * I _  = U<‘ "S* fW
‘  * .  7 * •  g r ( 0 )  k2 +  M 2

ИИ! _  «лш  V  _  SnWgA M * f{±) 
k„ * k0 g T{ 0) к* +  M , 1 ‘

(5A.12)



R15 233

PION PRODUCTION IN (3, 3) REGION 259

I f/ i and /2 are expanded in p artia l waves according to

A  =  t  f t +P 'u r ( y )  -  t

(5A .13)

f t  =  I  (A -  -  //+> « Ы .

com parison  w ith  the partia l-w ave expansion o f ; a in Eq. (2D .4) leads imme
d iate ly  to Eq. (2D .12).

As has been much discussed recently, the PC A C  hypothesis, com bined w ith the 
algeb ra  of currents proposed by G ell-M ann (34), leads to a  “p ion low -energy 
theorem ” for an y  weak or electrom agnetic process in which a  pion is em itted (35). 
The theorem  relates the m atrix  elem ent o f the process, a t zero-pion four- 
m om entum , to the m atrix  elem ent o f the corresponding process in which no pion 
is present and to an equal tim e com m utator o f currents. As app lied  to weak or 
e lectroproduction of p ions, the method gives restrictions on certain  o f the invarian t 
am plitudes at the point q — 0. W e give a detailed derivation  o f the restrictions 
on the ax ial-vector am plitudes Aj t  and state (w ithout g iv ing  a derivation ) the 
s im ila r  results for the vector am plitudes V,.

The low-energy theorem is derived from the identity

i j  <Рхе~*'*(—Пх +  M * )  I T[d0J l ‘( x ) ( J t \ 0) +  U ? < m  \ N(Piy> e x

=  - % 2 +  Л О  J  <Рхе~*"ф*

X <ЛЦй) I J t 1 0) +  / 7 f  (0 ) ]U - . I N(Pl) )  e ,

-  q. f <Гхе-**(-Пш + М,*)ф:

obtained by integration  by parts. W e evaluate  each  o f the term s in the lim it as 
q -*■ 0. Using the PC A C  hypothesis in the form

(2) Small-q  Condit ion s (Axial-Vector and  Vector Par ts )

X  <N(p,) | T[J^(x)(Jt\0) +  i J f m ] | N(p0> e , , ( 5 A . 1 4 )

(5A .15)
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the left-hand side of Eq. (5A.14) is seen to be p roportional to the m a tr ix  e lem en t 
for weak production of a pion of (m ass)2 — —g2,

left-hand side =  £  [a<+)/4,t+V> va , k2, q 2) +  a ^ A ^ i v ,  vB , k2, q 2)\
gr(0) j . l

X й „ ( р г)  0 (A ,)  u „ (P]) .  (5A .16 )

A t q =  0 the invariants q2, v  and vs  are zero. U sin g  the postu lated  co m m u tatio n  
relation (34)

У  d \ J i a(x\  ./ f ( 0 ) ] [  o =  - е аЬЛ с(0 ). ( 5 A 1 7 )

the first term on the right-hand side o f Eq. (5A. 14) becomes

- M 2 J  d * x t :< N ( p J  | J t \ 0) +  «Vf(0)]U0-o I JV(A)>

=  М 2й»(р«Ж?г{кг) 0 (A J  -  

X (FS (k2) +  2M NFt v(k2)) О Ш ]  u N( P l) a'~K (5 A . 18)

F ina lly , in the lim it as q —*-0 only the one-nucleon pole term s co n tribu te  to the 
term proportional to qa on the right-hand side of Eq. (5A .14). In other w ords, th is 
term is

- Л О / » * М л )  \1?лУ ■ q y b у  У 1 \ +  УбМл(*®)1 K Ti +  /ts) 

+  +  <T2) (% y bg/1(fc2) +  y 5fcA/) (̂fc2)]

X ~ 2 ~ .  ‘qMN ■ q y b 4 p j  uN(P\) «л +  O (q ) .  (5A . 19)

After some a lgeb ra , this can be rewritten in the form 

М Л л й А Р г ) [ М ^ Л к 2) J - ' t y A j  -  h A(k2) a (+)0 (/ l7)] u „ (P l)

, й ( n -,\Sr(Q)gAk2)
+ вг(0) U"(Pt) 1 “ 2 MN 0{Al)

X L.+. (_ J---------- ]— ) + a.-> (— !—  +
I  V i's  —  v  vB +  v )  \VB — V Vg VII

+ s M g S S .  U .  ( _ L _  + _ L _ \  +  (— ! L _ \ l
2A / vr L — v  vB - j -  v )  \irB —  v  v B v/i

, Sr(0 )  hA(k2) .
+  ~ ~ 2 Щ —

I
x И  - drr) + + ггЬ)]( (5A-20)
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w ith  the term  in curly  brackets ju st the Born approxim ation for weak pion 
production . Substitu ting  Eqs. (5A .16), (5A .18), and (5A .20) into the identity o f 
Eq. (5A .14), we see that the Born approxim ation terms, which are singu lar at 
q  =  0, cancel out. This leaves us w ith the follow ing conditions on the non-Born 
parts o f the am plitudes (denoted again  by a bar) (36):

Л[~\у =  =  0, k\ q2 =  0) =  - S f L F  y(k2)t
m nSa

„  =  0, k\ q* =  0) =  -  [F*{k*) -  gAg A{k*) +  2M„FS(k>)],
M n 5a

4 %  =  «* =  0, k\ д * =  0 ) = - Ш  hA(k2). (5A .21)

A n en tire ly  analogous derivation  can be carried out for the vector weak p roduc
tion (and the electroproduction) am plitudes, lead ing to the identities (57)

v f V  = v. = o, k\ q1 = 0) = &©/■/■(**>.

F<°>(„ =  „„ =  0 , k\ q* =  0) =  ^  F ^ k * ) ,  (5A .22)
iV1N

V r\ v  =  vB =  0, k\ q* =  0) =  ш  [ M £ L  _  F S ik 2)] (** )-» .

E quations (5A .21) and (5A .22), together with the Born approx im ation , com pletely 
specify the weak production am plitude up to terms o f first order in q.

The condition on Â +) has a sim ple in terpretation  when k2 is near — M *,  so 
that only the pion pole term s in A!,+] and hA need be retained . In the p ion  pole 
approxim ation ,

=  уш -  0 , k\ q '1 =  0 )

~ -  W  v - h ?  - - - » ■ * • = *■ - »).

and substitu ting these relations into Eq. (5A .21) gives

Л - » ж („  =  Vb =  0, к 2 =  92 =  0 ) =  . (5A .24)MN

Eq. (5A .24) is identical w ith the p ion -nucleon  scattering  consistency condition  
o f Eq. (5A .8). (It m akes no difference whether it is the in itia l or the final p ion which 
is off mass shell.)
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(3) C om b in ed  R e la t ion s

A number of interesting relations can be obtained by com b in in g  the sm all-g  
equations of Eq. (5A .21) w ith the smalWc equations o f Eq. (5A .9). [M o re  p ro p erly , 
we use the analog o f Eq. (5A .9) in which the final pion m ass — q 2 h as been  ex tra 
polated from M „2 to 0. We neglect a sm all add itional term , the so -called  “ a  te rm ,” 
which appears in the equation for Л£+) when q2 ф  — Л/,2 ( JS ) .]  T ak in g  the lin ea r  
com bination of and X j-1 which elim inates F2y(k*) gives

2A ?  |e +  A*-’ |0 =  - g t(0 )(l -  g A2) l ( M / gA) ,  (5A .25 )

w hile elim inating Л£-) from Eq. (5A .9) gives

- л “  L -  \ I. -  +  s " " i .  - (5А Э Д

[The abbreviation |0 indicates evaluation  of the am plitudes at v  =  vB «= k? — 
q2 =  0 .] T aken together, Eqs. (5A .25) and (5A .26) im p ly that

j ___i_ = _  2mn* f , (5A .27 )
Ov Iy—vb—Jb ™o*=0Za gr2(0) L dv Л „ г_к*-в*-о

the usual g A sum rule ( i9 ) . In other words, the g A sum rule em erges as the co nd ition  
that the sm all-g and small-fc expressions for the ax ia l-vecto r w eak  p ro duction  
m atrix  elem ent be consistent at the point q =  к  — 0 (32).

Since Eqs. (5A .9), (5A .21) and (5A .22) determ ine the term s in the w eak  p ro duc
tion m atrix  elem ent linear in e i th e r  q or k, one can use them to w rite dow n an  
expression for the weak production m atrix  elem ent, exact up to term s o f o rder 
qk, q 1 and к 2 D ropping lepton m ass corrections, one finds (32)

u N( p 2) [  £  0(Vt) v j l )  +  £  0(A,)  / Н  uN( Pl) 
L j - i  j - i  J

= aN(pi) £  0 (K ,)  vj±)B +  £  0(A}) A f )B +  A (±) +  0(qk , q\  A:2) ]  uN(Pl), 
i - i  j - i  J

. . . .  igA гЛ ’ *|+> I gr(0)u.v
J -  m - s r -  L ’  ’ '  -  w  *'■”-*> • <5A-28)

4 '" ~  m  I - w  ~ 1 7 ) (A  + й )  ■ *

-  U + W  (‘ - д - £)| .
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T his result, while valid near 17 — & — 0 (and perhaps even good at the pion 
p roduction  threshold) is sure to fail in the (3, 3) resonance region, since it does not 
take  final-state in teractions into account. Thus, the small-*?, -k expansions will 
not be o f p ractica l use in ca lcu lating weak pion production cross sections. 

A nother useful re lation  obtained from Eqs. (5A .9) and (5A .21) is (40)

I — — 1 I _ ff'(Q) p  k//y\ /сд 294
1 1 “  g M  ь  I  MNgA F* (0)- (5A-29)

or equ iva len tly , by use of Eq. (5A .27)

I S a £ . * ( _ )  I _  g r (0 ) Г J ___  , 2MnF2v(0) I  „ д ̂ L g , ( 0 ) B L 2 M N* [ g A g A +  g A J- (5A-3°)
I f  the w eak production am plitude A[~' |0 were zero or neglig ib ly sm all, Eq. (5A .29) 
or Eq. (5A .30) would give a relation between the isovector nucleon m agnetic 
m om ent and p ion-nucleon  scattering .35 However, the num erical an a ly s is  of the 
next subsection shows that our w eak production model does not give any  theoretical 
reason for neglecting [0 .

5B. C o m p a r is o n  w i t h  W e a k  P r o d u c t io n  M o d e l

In T able V we com pare the PC A C  predictions for the various covarian t am p li
tudes w ith  the values calcu lated  from the model given in the previous section, at 
the point v  — vB =  к г ■» q2 — 0 . The am plitudes P^+l, Л}-1,.. . in Colum n (A) are 
ca lcu la ted  d irectly  from Eq. (ЗА .2). The bar, we recall, m eans that only the non- 
Born part o f the am plitude is retained. In our m odel, the non-Born part o f the 
am plitude comes from the dispersion in tegrals over the dom inant (3, 3) m ultipo les, 
which in turn are given by Eq. (4D .22). Since we ac tu a lly  need the dom inant 
m ultipoles at the off-mass-shell point q2 =  0 , we use the off-m ass-shell form  of 
Eq. (4D .22),

lo’ -o =  M X )  +  я(£2) 7 ( ^ з . Э)] (5B .1)

and s im ilarly  for <?£/2) |„._0 and SPQ12' . The factor £r(0 ) -1 m u ltip ly ing  a ll the 
am plitudes in Colum n (A) o f Table V cancels the facto r g r(0) in |g._0 ,
<̂ 1+/2)я l««-o an£i ]a]_o, and thus drops out o f the n um erica l eva lu ation .

55 A  num ber o f au th ors (41), because of in co rrec tly  u sing  am p litu d es w ith  k in cm atic  s in 
gu la r it ies , have ob ta ined  Eqs. (5A .29) and  (5А.ЗО) w ith /fj~* |„ rep laced  by 0.
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The PCAC predictions in Column (B) were obtained from  the experimental 
values

and from pion-nucleon scattering phase-shift data.36
For some of the amplitudes, the agreement between the low-energy predictions 

o f PCAC and our weak production model is poor, indicating that, at least in the 
region near v =  va =  k1 =  q2 =  0, significant omissions have been made from  
the weak production amplitude. Let vis consider the entries in Table V individually:

£ ^ +l |0 : The prediction of the model, 0.38, is 70%  of the value 0.55  
predicted by PCAC. A detailed analysis o f the PCAC prediction for F1(+1 |0 has 
been made by Adler and Gilman (37), who find that, in addition to the multipole 

the multipoles Ej+21, £o+5), aRd E ^ i] also make significant contributions 
to the dispersion integral for V̂ +) |0 . Using experimental values for the important 
multipoles in the regions o f the (3, 3) resonance and the second pion-nucleon  
resonance [N*(1520)], Adler and Gilman found £F1(+I |0 =  0.47.

С I7! 01 |0 : In our model the isoscalar amplitude is pure Born approximation, 
so the barred, or non-Born, amplitude vanishes.

|q : The analysis o f Adler and Gilman (37) shows that the contribution  
o f the Af£/5) multipole to the dispersion relation for |„ is kinematically sup
pressed, and consequently is smaller numerically than the contributions o f the 

I4+21 and other multipoles. This means that use of the magnetic dipole

51 T h e quo ted  v a lu e  of 1 w as obtained from  the an a ly s is  of H ohler an d  S trau ss  (42),
w ho m ake  the approxim ation

an d  ca lcu la te  the ph ysical am p litude on the righ t-hand side from  phase sh ift d a ta  an d  a  R egg e  
m ode] for the h igh-energy reg ion . S im ila r ly , to ca lcu la te  £* dAnN{^ jd v B |0 , w e m ake  the ap p ro x im a 
tion

\xY =  3.70, 
ps =  - 0 .12, 

gA =  1.18,
(5B.2)

F}"(0) =  —0.045jM *

an d  use the va lue

Л’гЛ'+ЧО.О, - М Д  -M „ ')  -  ^ ' « ( 0 ,  -M „ 4 2 Mn , - M v\ -M „')  2.66/M„ 
ca lcu la ted  from  phase shift d a ta  by A d ler (43).
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TABLE V

C o m p a r i s o n  o f  PCAC P k e d i c t t o n s  w i t h  t h e  M o d e l  D e v e l o p e d  i n  S e c t i o n  4"

(B) Equa-
Value in Model PCAC p rediction tion

[?  =  g r l g r i  0 ) ]  N o

( р ;л , ° . з «  5Л.22

5 A .n

S0.012

M , T ' " KVi «■”

for M a — 2 BeV.»

IA\~\ =  0 .32  ^  -  . . g '~  (1 -  gA1 +  ^ ) 1  =  0.28“ 5A .30
1 0  gr I 2MN'gA‘ J

r4 ' - '\  =  0 .12 - gr>A -  =  0.47 5A .2I! “ 1MN'gA
p dAvNi*11

CA<+4 = 1 .3  —  ( * ------------ 1 =  3 .]"  5A .9
3 0  «r 8>j  Ii

lA'-'L  = - 0 .0 9 6  — [1 -  gA1 + = - 0 .8 3  5A.21

tAfyh/O) = - I -7 = - 2.0 5A.2L

« M „ =  I th roughout.
4 W e have param etrized  к Aik1) in the form ^ ( t 5)/f^(0) — (1 +  к 2! M A7) *.
'  O btained from the an a ly s is  o f  H ohler and Strauss (42). See Footnote 36.
d O biained  from  the an a ly s is  of A dler (43). See Footnote 36.

dom inance approxim ation  in the dispersion relation for Vg 1 is dub ious, and that 
com parison of the m agnetic dipole result lo •* 0.012 with the PC A C
prediction has little  meaning.

lo : The PCAC prediction here is in reasonable agreem ent w ith the 
value given by the model. Since the value o f |0 in the model (0 .32) is o f the 
sam e order o f m agn itude as the m agnetic moment term in the P C A C  prediction 
(_ 0 .4 7 ) , the model gives no theoretical reason for the neglect o f the w eak pion 
production term s in Eq. (5A .30) relative to the m agnetic moment and the p ion - 
nucleon scattering terms.
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|„ and £Д<-' |0 : For each of these amplitudes individually, the model 
disagrees badly with the PCAC prediction. However, for the linear com bination  
£[2Дг-1 |0 +  A |0] which enters into the gA sum rule [see Eqs. (5A .25-27)], the 
prediction of the model is 0.14, in good agreement with the P C A C  prediction o f 
- g , 0  ~ £лгт Л л )  =  0.10.

S^s+1 lo '• The prediction of the model here is in fair agreement with P C A C .

lA'i+) 1о/Лу<(0): Here the integral over the (3, 3) resonance37 is in good 
agreement with PCAC. However, this is somewhat o f an accident, since as we 
noted in Subsection 3C, vB , к2) does not satisfy an unsubtracted dispersion
relation in v! The significance o f the good agreement is that the two term s in the 
subtraction constant o f Eq. (3C.3) nearly cancel when va =  k2 =  0, making the 
subtraction constant small.

The comparison of our model with the PCAC predictions indicates that while 
agreement in the case o f the photoproduction amplitudes F1(+) |0 and Vl0) Ц is 
good, agreement for most o f the weak production amplitudes is less than satis
factory. Thus, it may not be correct to justify our model for weak production by 
its success in photoproduction, since the comparison with the PCAC predictions 
indicates that in the weak production case, important pieces o f the amplitude 
have been omitted. However, this problem may not be as serious as it appears from  
Table V. The worst discrepancies occur in the amplitudes and Д̂ -1 ; we will 
show below that the trouble with these amplitudes comes from neglecting certain 
vector meson exchange contributions to weak pion production. While the vector 
exchange terms make the major contribution to Л 2-) |„ and Д̂ -1 |„, we shall see 
in Subsection 6C that they do not greatly change the weak pion production cross 
sections in the (3, 3) region.

5C. V e c t o r  M e s o n  E x c h a n g e  A m p l i t u d e

In this Subsection we calculate the vector meson exchange contribution to weak 
pion production by the axial-vector current (44). We will not limit ourselves to p 
exchange alone, but rather will sum over all diagrams in which a particle with the 
quantum numbers J PG =  1 ~h is exchanged. As is discussed above in Subsection 
3C, such r-channel singularities are not in general correctly included when the 
j-channel dispersion integrals (the integrals over x') are extended only over the

«  T h e equatio n s re la tin g  Im Л , to  I n  analogous to Eqs. (4B .6-8), are

a, -----^MNW[W.(plc + + MN) + 3W+(2MNvg + <?<W]
X Ira J T 'W l iW 'O ^  | q 11 It | i , ) .
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Axial-Vector Vertex in Spinor Electrodynamics

S t e p h e n  L . А л ь е я  

Institute fo r  Advanced Study, Princeton, New Jer sey  08540 
(Received 24 September 196£)

Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor 
electrodynamics has anomalous properties which disagree with those found by the formal manipulation of 
field equations. Specifically, hecause of the presence of closed-loop “triangle diagrams,” the divergence of 
arial-vector current is not the usual expression calculated from the field equations, and the axial-vector 
current does not satisfy the usual Ward identity. One consequence is that, even after the extemal-line 
wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-) 
order perturbation theory. A corollary is that the radiative corrections to v j elastic scattering in the local 
current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless 
electrodynamics, despite the fact that the theory is invariant under 7 » transformations, the axial-vector 
current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and 
discuss a possible connection between our results and the and ij —» 2y decays. In particular, we
argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector 
current (PCAC) for the neutTal members of the axial-vector-current octet must be modified in a well- 
defined manner, which completely alters the PCAC predictions for the and the ij two-photon decays.

INTRODUCTION

THE axial-vector vertex in spinor electrodynamics 
is of interest because of its connections (i) with 

rad iative corrections to vd  scattering and (ii) with the y j  
invariance of massless electrodynamics. We will show 
in this paper, within the framework of perturbation 
theory, that the axial-vector vertex has anomalous 
properties which disagree with those found by the formal 
manipulation of field equations. In particular, because 
of the presence of closed-loop “ triangle diagram s,” the 
divergence of the axial-vector current is not the usual ex
pression calculated from the field equations, and the 
axial-vector current does not satisfy the usual Ward iden
tity . One consequence is that, even after external-line 
wave-function renormalizations are made, the axial- 
vector vertex is still divergent in fourth- (and higher-) or
der perturbation theory. A corollary is that the radiative 
corrections to vil elastic scattering in the local current- 
current theory diverge in fourth (and higher) order. A 
second consequence is that, in massless electrodynamics, 
despite the fact that the theory is invariant under 
7 i transformations, the axial-vector current is not 
conserved.

In Sec. I we derive the usual formulas for the axial- 
vector divergence and W ard identity, and then show 
how they are modified by the presence of triangle 
diagrams. In Sec. II we discuss various consequences of 
the additional term found in Sec. I. In the Appendix 
we show that it is  not  possible to redefine the triangle 
diagram in a physically acceptable way so as to elim
inate the anomalous behavior discussed in Secs. I and II. 
We also discuss in the Appendix a possible connection 
between our results and the ir° —► 2y and q —» 2y decays. 
In particular, we argue that as a result of triangle 
diagrams, the equations expressing partial conservation 
of axial-vector current (PCAC) for the neutral members 
of the axial-vector current octet must be modified in a

177

well-defined manner, which completely alters the PCAC 
predictions for the ir0 and the ij two-photon decays.

I. AXIAL CURRENT DIVERGENCE AND 
WARD IDENTITY

We work in the usual spinor electrodynamics, 
described by the Lagrangian density1

£{х) = ф (x) ( г у П  — т^ф (x)—\Ff ,{x)F^ (x)

— : еаф(х)у„\ф(х)А»(х)-. , (1)

ЗА ̂ (x) 3A,(x) 3
P^(x) = ----------------------, у  □=-y'*— .

ex ’ 3x“ dx“

We define the axial-vector current j f  (x) and the 
pseudoscalar density j ‘ (x) b y

j „ l (x) = :ф(х)у^уьф(х) : , 
j ‘ (x) = -,ф(х)укф(х) : ;

the corresponding vertex parts Т^(р,р ')  and T‘ (j>,p') 
are defined by

Sr'(P)TS(p,p>)Sr'(p')

= -  ( ei , ' ,r> '-» (r ( if (»)У/(0)#(>)))|,
J (3)

Sr'(P)r*(P,P')Sy’ (p')

= — Jd*xd*y e ip'ze~ip' ' ,,{Т(<р(х)^(0)ф(у)У)п.

Using the equations of motion which follow from Eq.
(1), the divergence of the axial-vector current m ay

1 We use the notation and metric conventions of J. D. Bjorken 
and S. D. Drell, Relaiivistic Quantum Fields (McGraw-НШ Book 
Co., New York, 1965), pp. 377-390. Note that « ш » -  *ош= *■

2426

Copyright© 1969 by the American Physical Society. Reprinted with permission.
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easily be calculated to be

dx.
(4)

y¥) yW yW) 
p p*p, P*P*

r jr , Г<‘ ,° r 1*"-" /**’
,  9+ Pk P'*Pv» ! P*

From Eqs. (3) and (4), we obtain the usual axial-vector 
Ward identity

<J>-p')'Tt4 p , p ' )= lm J K p ,P ' )
+ S r ' ( p r ' y b + 4 b S ; ( p ' ) - ' -  (5)

Our task in this section is to see whether Eqs. (4) and 
(S), which we have formally derived from the field 
equations, actually hold in perturbation theory.

To this end, let us rederive Eq. (5) in perturbation 
theory. It is convenient to write

IV=7,7s+V,
Г‘=г6+А‘ ,

S r ' ( p ) - l= p - m t - 2 ( p ) ,
(6)

where the vertex corrections A, 1 and A8 and the proper 
self-energy part X(p)  are calculated using ( p —m«)_1 as 
the free propagator. (Use of the bare mass win=m —bm 
in the free propagator automatically includes the mass-
renonnalization counter terms.) In terms of A»5. As, . . vertex.„„Л У  Fr, Fig. 1. Diagrams contributing to the anal-vector vertex,
an d  2 , Eq. (5) becomes (a) „ ^ .v e c to r  vertex is attached to the fe ra io n lm e
,  _ . .  .. ning with external four-momentum p' and ending w ilt  ex
{ р - р У А ,Ч р ,р  ) = 2т сЛ1(.р,р ) - Ъ { р ) у 1—г Л ( р ' ) . (7) four-momentum f .  (b) The axial-vector vertex is attached to an

internal closed loop.
In order to derive Eq. (7), let us divide the diagrams 
contributing to A i n t o  two types: (a) diagrams
in which the axial-vector vertex 7 /y6 is attached to the gives, after a little  algebraic rearrangement, 
fermion line beginning with external four-momentum
P* and ending with external four-momentum p ; (b) —— —* ■ * .
diagrams in which the axial-vector vertex 7 O'* is ^  П  7 »  P'<
attached to an internal closed loop [|See Figs. 1(a) and 1 m "
1(b), respectively]. A typical contribution of type (a) 
has the form

<*>_
b-1 1-1 L P~\- P j—Wo J  p~\~pk We

ln -l t - l  r
E  П 7 й1-

Ы  L P~\~Pj~~HlQ-J
- — - V -
P i~ m 0j  i

1

-i+iL
X  n  !  7 <fl-

p + p k —mo 

1

7»7 r-
P'+P.— m 0

гp ’+ p j—m  qJ

1.-1Г

- ( .• 0 П  i 7 »
i - lL  P~\~Pi—Wo-J

— 7 in T 7 Ci>

■where we have focused our attention on the line to which 
the 7 , 7 !  vertex is attached and have denoted the 
remainder nf the diagram by (• ■ ■)■ M ultiplying Eq. (8) 
b y  (j>—p')* and making use of the identity

1 1
------------ ip - tb n -------
р-\-рЬ—1ГН Р'Л-рк

1

— m о p-\-pk—m a 

1 1

(2mu7()

- 7 i + 7 (9)

1 >р»-1Г 1 1 , .
X------------  П |Tm------------ hr<*°(” 0

Р'Л~Рк—Mo i“ *+lL P ’~\~Pi—WflJ

- W

1___ V > ( - ) .  ( iQ)
J-iL ' p '+ p ,—«oJ

The first, second, and third terms in Eq. (10) are, 
respectively, the type-(a) piece of A‘ , and the pieces 
of — 2 (£)7 s and —yt2 {p') corresponding to the typ e -(a ) 
piece of A,* in Eq. (8). Summing over a ll typ e -(a ) 
contributions to Л Д we get

(Р-Р'УК6(%)(Р,Р’)
= 2 т ^ ( р , р ' ) - Х ( р ) у . - у ^ ( Р ' )  - ( !  ! )

P'+P*— m o P+Pk—mt p'+pk—mo We turn next to contributions to A, 1 of type (b ). A
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typical term is

1Vttfd*r Tr { £  п Г т® -----------V J— —
J  I k-l (-1 L T+ps—fllqJ r+ p l—

X — ------ i ---------  П -------------------- 1 )
1'-\-pir{-p'— <_fc+lL T~\~Pj-\-p'— p ~  Wo-lj 

X ( - ■ •)• 02)

M ultip lying b y  ( р —р'У  and using Eq. (9) gives

/ и l- l Г 1 - 1  1
d*r T r E  П  I У11)-------------- \r(lc)--------------2»io76

t - i  j - i  L r+ p j— m oJ r + p i—m

1 5» Г  1
n  T(fl-Ото f-*+iL T-\-Pj-\-p'—p —ma

in.• - Чr+ p j—mt
x (-)+J  rfv trjY .ri

- 7 « п Г т Ш------ ,,
i - i  L t+ P j +  p '—p — nto J I

1 H e - ) . (13)

The first term in Eq. (13) is the type-(b) contribution 
to A‘ corresponding to Eq. (12), while making the 
change of variable r ~» r+ p '—p in the integration in 
the second term causes the second and third terms to 
cancel. This gives, when we sum over all type-(b) 
contributions,

( p - (p ,p ‘) = 2moA‘ <*> ip ,p ' ) . (14)

The W ard identity of Eq. (7) is finally obtained by 
adding Eqs. (11) and (14).

C learly, the only step of the above derivation which 
is not simply an algebraic rearrangement is the change 
o f  integration variable in the second term of Eq. (13). 
This will be a valid  operation provided that the integral 
is at worst superficially logarithmica lly  divergent, a 
condition that is satisfied by loops with four or more 
photons, that is, loops with 2. However, when the 
loop is a  triangle graph with only two photons emerging 
(See Fig. 2) we have я=  1, and the integral in Eq. (13)

Flo. 2. The axial-vector triangle graph. There is a second 
diagram, with the photon four-momenta and polarization indices 
interchanged, whi(± makes a contribution equal to that of the 
diagram pictured.

appears to be quadratically divergent. Actually, since

tr{7«7(I)r y tJ)r} = 0 , (IS)

the integral in the n=  1 case is superficially linearly  
divergent. Since it  is well known that translation of a 
linearly divergent integral is not necessarily a  valid 
operation,1 we must check carefully to see whether 
Eq. (14) holds for the triangle graph.

To do this we make use of an explicit expression for 
the triangle graph calculated by Rosenberg.1 The sum 
of the diagram illustrated in Fig. 2 and the correspond
ing diagram with the two photons interchanged is

—ie  o1

"(M

i eo1 r  d*r 
— R . „ = 2  / -------( - l ) t r
!x)« J  (2tY T+ki—Mq 

i

-(—гейу,)

r—ma T— k i ~ m 0
(16)

Evaluation of Eq. (16) by the usual regulator techniques 
leads to the following expression for R,pll [Aj denotes 
Aj(k i ,*>)]:

(17)

^A \k\ £repit~̂ ~Â k̂   ̂T .0 JJ
-{-A ik-ipk^ki' A
+Л iki„ki(kirf ( rfli-i-A в^2.^1{Й2ге{грм,

A i “  k\■ kiA ri-k^A 1,
Ai=ki2Ai-{-ki‘ktAi,

As(ii,A j) = — At (ki,ki) — —1651̂ 711(41,^2) ,
A i(ki,kt) = —Ab(ki,k\)= 16л*^7 m(kijc t)—/io(£i,£s)]3,

where

I.t(.ki,kt)= f  dx f  d y x ’y 1 Q>(1—y)^ !1
Jo Jo

________ + x(\ —x)k<?-\r2ocykvki~ 1Я0*]”1. (18)

*J. M. Jauch and F. Rohrlich, The Theory o f Photons and 
Electrons (Addison-Wesley Publishing Co., Inc., Cambridge, 
Mass., 1955), pp. 458-461.

1L. Rosenberg, Phys. Rev. 129, 2786 (1963). In Eq. (16) and 
Fig. 2, we have labeled the legs of the triangle in accordance with 
Rosenberg's notation, which differs from the labeling convention 
used in Eqs. (12) and (13). Becauge the integral defining the 
triangle graph is lineajly divergent, the value of the triangle 
graph is ambiguous and depends on the labeling convention and 
the method of evaluation or the integral. For example, if Eq. (16) 
is evaluated by symmetric integration about the origin in r  space, 
the vnlue of Rw,* so obtained satisfies the usual axial-vector Ward 
identity (but is not gauge-invariant with respect to the vector 
indices}. If, on the other hand, Eq. (16) is evaluated by symmetric 
integration around some other point in r  space, say r=*ki []or. 
alternatively, if we integrate symmetrically around r = 0 but label 
the triangle using the convention of Eqs. (12) and (13)I, then the 
result has an anomalous axial-vector Ward identity. Tne value in 
Eq. (17) which we have assigned to is the unique value which 
is gauge-invariant with respect to the vector indices. Further 
discussion of the ambiguity in the definition of Eq. (16), and a 
justification of the specific choice in Eq. (17), are given in the 
Appendix.
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We "will also need an expression for the triangle graph 
with replaced by 2meyi. Defining

— if-*

Г—ff»0 r—fcj—m0
- 2 « o7 i

we find that

Bi^SiPmJwCkbkz).

, (19)

(20)

S ub graph  4

a(0«-<2«4)
S u b g r a p h  2 

a ( 2 ) « - < 2 n H ) + 4

We are now ready to calculate the divergence of the 
axial-vector triangle diagram. К the Ward identity 
holds, we should find

— (A H -£ i) '£ ,p|1=  2maR , (21)

Fic. 3. Diagram for calculation of the asymptotic behavior 
of the general axial-vector loop.

but from Eqs. (16)-(20) we find, instead,

— (^i"b^!)'‘J?,»»=2nt0R<p+87rIAi{ifei,'( jr,#. (22)

W e see that the axial-vector Ward iden tity  fa i l s  in  the 
case o f  the triangle graph.  The failure is a result of the 
fact that the integration variable in a  linearly divergent 
reynm an integral cannot be freely translated.

The breakdown of the axial-vector W ard identity 
which we have just found is related to another anom
alous property of the triangle graph. To see this, let 
ш  consider the behavior of the general axial-vector 
loop diagram with 2n  photon vertices (See Fig. 3) 
as the 2n — 1 independent photon momenta kh 
S i_ i  approach infinity simultaneously in the manner ’

bj=- i j — 1, • - •, 2n— 1; 
qj fixed, £—> «  ,

Fig. 4. Subgraphs (doubled lines) which determine the 
asymptotic behavior of Fig. 3.

while the momentum p —p ’ carried b y  the axial-vector 
current is held fixed. According to W einberg’s theorem,4 
the asymptotic behavior of the loop graph in this 
lim it is

{■(In {)», (24)

where 0 is undetermined b y  W einberg’s analysis and 
where a  is the m aximum of the superficial divergences6 
<*(g) of the subgraphs5 g linking the 2 m  photon lines 
(i.e., linking the momenta which are becoming infinite). 
For the diagram of Fig. 3 there are two such subgraphs, 
illustrated in Fig. 4, with superficial divergences a ( l )  
= — 2 n + l and a(2) = — 2я+ 3 . Thus, the asym ptotic 
coefficient a  is a ( 2 )= —2 »+ 3 , and comes from the 
subgraph in which all propagators in the loop are 
involved. Now Weinberg’s theorem alw ays tells us 
what the maximal asymptotic pow er  of a  graph is, but 
it  does not guarantee that the coeff ic ient of the m axim al 
term is nonvanishing. In fact, in the case of the ax ia l- 
vector loop diagram we will show that the coefficient 
of the £->"+*(ln{)« term does vanish, so th a t the leading 
asymptotic behavior is E- l ’ +a0ii{),J , one power lower 
than is predicted by naive power counting. L e t us denote 
b y  L (p—/ , » i ;  pi, • • •, ^>jn-i) the graph illu strated  
in Fig. 3,

L(P~P\ ж 0; pi, •••, />,._,)

— Jd< r  Tr{ £  ffPxCfr------ -------1
J  I *-i i-i L r-\-Pj—mfA

1 1
X 7 ( « - -~t,7:--------------------

• "T p i  та T-\-p t~i~p'— p —mo

1
X n  ! 7 (n

i-*+iL T+Pj+P'-P-
— 1 1 .  (25) 
-WO JJ

* S. Weinberg, Phys. Rev. 118, 838 (1960). For a simplified 
exposition of Weinberg’s results, see J . D. Bjorken and S. D. 
L)rellt Ref. 1, pp, 317-330 and pp. 364-368. Weinberg's theorem 
applies for arbitrary spaedike four-vectors <7/, There can also be 
powers of In ln{, In In ln£, etc., in Eq. (24), which we do not 
indicate explicitly.

* The superficial divergence of the subgraph is obtained, as 
usual, by adding — 1 f0r each internal fermion line, — 2  for eaoh 
mternal boson line, and +4 for each internal integration. For the 
precise definition of subgraph in the general case, see Ref. 4-
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Clearly we can write

P\l‘ ' 0
(A) = Ь (р —р ' ,т ц ‘, p i , - • - ,p2n~i)

— ЦО,та', p i , -  • -jptK-i) (26)
(B) + 1 (0 ,mo; pi,- ■■,pin-i)—L(0,0; pi,-• -,ргп-\)
(C) + L (0 ,0 ; pi,- • -,pt^i).

Because differencing the loop graph with respect to 
either the axial-vector current four-momentum p —p' or 
the fermion mass та decreases the degree of divergence 
by one, terms (A) and (B) on the right-hand side of 
Eq. (26) have a(2) = — 2я+ 2, and therefore behave 
asym ptotically as £■****(ln{)*\ Term (C) on the 
right-hand side of Eq. (26) can he rewritten as

•Ц0> 0; pi, Pi»-1)
r 2n *-i г 1 -I
/ d*r Tr E П (Л
J .ь—t j - i 1L r+P i-

,(*).
T + p t

1 <>
П

-  j d < r  T r j 7

T+pk >-*+■

П I 7W

, + P j  j i

Э 1» Г 1 "I— ■n-----
I dr“  J-1  L  T + p , J

(27)

Г *» Г l  i i
/ d*T Tr 7 * П 7  (ft-------
J i-i L T+P, -11

Integrating by parts with respect to r gives 

i ( 0 j 0 ;  P i ,  ■ • • , p i « - i )  =  0 ,

proving that the asymptotic behavior of the loop graph 
is one power better than given by Weinberg’s theorem.

The only nonalgebraic step in this proof is the 
integration by parts with respect to r, an operation 
which is valid provided that the integration variable in

(28)

can be freely translated. This is the same condition as 
we found above for valid ity  of the axial-vector Ward 
identity. Thus again, our proof is valid for n>  2, but 
we expect possible trouble in the case of the triangle 
graph (л= 1). From the explicit expression for the 
triangle graph in Eqs. (17) and (18), we see that if we 
write Й1= (g, i s -  -  t q + p ' - p ,  then as ® we find

-► -8 * * t ? '* TW„+ 0 (ln S ). (29)

In other words, the asymptotic power is a=  1 = — 2я+ 3 , 
as given by Weinberg’s rules, rather than one power 
lower, as is the case for the loop graphs with n~>2 . 
I t  is easy to check that when Eq. (29) is multiplied by 
— (ki+ki)*, the term with the anomalous asymptotic 
behavior agrees, for large {, with the term in Eq. (22) 
which violates the Ward identity. Thus, the breakdown 
of the axial-vector W ard identity in the triangle graph

F ig. 5. Contribution of the triangle diagram to the general 
axial-vector vertex. We have not drawn the second diagram in 
which the photon lines emerging from the triangle are crossed.

and the anomalous asymptotic behavior of the triangle 
graph are basically the same phenomenon.

It is dear that the breakdown of the W ard identity 
for the basic triangle graph will also cause failure of the 
W ard identity for any graph of the type illustrated in 
Fig. S, in which the two photon lines coming out of the 
triangle graph join onto a “blob” from which 2/ 
fermion and b boson lines emerge. From Eq. (22) for 
the divergence of the basic triangle graph, it  is possible 
to show that the breakdown of the axial-vector W ard 
identity in the general case is simply described by 
replacing Eq. (4) for the axial-vector-current divergence 
(which we have shown to be incorrect) by

3 a0
— * , (* )-2 tM o jI(* )+ — :i » ' ( * ) F " ( * ) :  (30) 
дх„ 4т

[Equation (30) is easily verified b y  using the Feynman 
rules for the vertices of j f ,  j 6, and (ao/4jr) : F ^ F T' :  

which are given in Fig. 6 .]  For example, if we define 
F(p,p') by

Sr'(p)F(j>,p’)Sr'(p’) = - jd b d ^

X (r(*(* ):^40 )*r40):W (y))> », (31)
then the axial-vertex W ard identity of Eq. (5) is 
modified to read

Сp - p 'y r S ( f i , p ' )  = 2mJ*(p,p')-i(ao/br)P(p,p')
+Sp'(j>']r1-irr\-yiSr(j>')~1- (32)

O P E R A T O R

i j ix i

I'm

V E R T E X  FACTOR

l a r p

Fig. 6. Feynman rules for the vertices appearing in Eq. (30).
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Equation (30), -which is the principal result of this 
section, states the surprising fact that the axial-vectcr- 
cu Trent dircrgcncc, as calculated in  perturbation theory, 
contains a well-defined extra term which is net obtained 
when the axial-vector divergence i s  calculated by formal  
uje o f  the equations o f  motion .•

П. CONSEQUENCES OF THE EXTRA TERM

Tn this section we investigate the consequences of 
the extra term which we have found in the axial-vector- 
current divergence [E q. (30)] and in the axial-vector- 
current Ward identity [E q. (32)]. We consider, in 
particular, the questions of (A) renormalization of the 
axial-vector vertex, (B) radiative corrections to vii 
scattering, and (C) the connection between 75 invar
iance and a conserved axial-vector current in massless 
quantum electrodynamics.

A- Renormalization of the Axiel-Vector Vertex

Recently, Preparata and Weisberger7 have proved 
the following theorem: If a  local current, constructed 
as a bilinear product of fermion fields, is conserved apart 
from mass terms, then the vertex parts of both the 
current and its divergence are made finite by multi
plication by the wave-function renormalization con
stants of the fields from which the current is constructed.
I f  Eq. (4) correctly described the divergence of the 
axial-vector current in spinor electrodynamics, then the 
theorem of Preparata and Weisberger would apply in 
this case. However, we have seen that the divergence 
is actually given by Eq. (30), and involves an additional 
term which is not a mass term. The effect of this extra 
term, we shall see, is to cause the Preparata-Weisberger 
argument to break down.

F irst let us review how the Preparata-Weisberger 
result could be derived if Eq. (4), and the corresponding 
W ard identify of Eq. (5), were true. Since both j /  and 
j b are local bilinear products of fermion fields, the vertex 
parts Г , 1 and Г6 are mulliplicativcly renormalizable. Thus 
we can write

T>l (P,P')=zA- ' ? s ( p , p ' ) ,  
TKP,P')=ZD-^ ( P , P ' ) ,  (33)

s / W - z A 'W ,

where the tilde quantities a ie  finite (cutoff-independent) 
and where ZA, ZD, and Zt are cutoff-dependent re
normalization constants. Substituting Eq. (32) into 
Eq. (5) we get

( p - p ' y r S (P ,p ' )= Q m < Z A/ZD)TKp,P')
_________ +  (ZA/Zt)lS r‘ ( p ) - ^ i+-tlS , 1 (p ')-1] , (34)

1 We show In the Appendix that this eitra term cannot be 
eliminated by redefining the triangle graph.

’ G.  Preparata and W. I.  Weisberger, Phys. Rev. 17S. 1965 
(1968), Appendix C.

P P

I.C L f  f  -щ- k( *t
Fig. 7. Diagram giving the lowest-order contribution of the 

extra term in Eq. (32). The heavy dot denotes the vertex о 
(oo/4r):F!*f'': «t„,.

and varying the cutoff gives 

0= b ( l m J . j Z D)? ' ( p ,p ' )+ b (Z A/Zy)
x l S S i p r ^ + y b S S W ) - 1! .  (3 5 ) 

Putting p,p ‘ , or both on mass shell then implies th a t

г (2m Bz A/zD) = г ( z j z i )  = о , (36 )

which means that both 'ImoZA/Zi, and ZA/Z5 a re  
cutoff-independent, and hence finite. Thus, if Eqs. (4 )  
and (S) were correct, m ultiplication by  the w av e - 
function renormalization constant Zs would m ake Г  и 
and Г ‘ fiinte. _ .

Let us now consider the actual situation, in w h ich  
the divergence of the axial-vector current is given b y  
Eq. (30) and the axial-vector W ard iden tity  by  Eq. (3 2 ) . 
The extra term in Eq. (32) first appears in order ao* of 
perturbation theory. [See Fig. 7 .]  This lowest-order 
contribution is already logarithm ically d iv e rg en t ; 
introducing a cutoff by replacing the photon propagator 
l/XgM-it) with [l/^ -H O D C - ^J/ (— A +9! +i*)D> w e  
find that

- i ( a a/ ^ )P (P ,p ' ) -----1  (aoA )1 In (A*/m') ( p - p ) “
X 7 »7 t+ao1X finite-(-0 (otos) ■ (37)

We will also need part of the expression for Т*(Р,Р') to  
order a 0,

Г1(& ?,) = 'У5[ 1+ 0 (ао)]+  (ao/2ir)mo

x.4 p ,p ,) ( p - p ' ) fy , y i + o ( a o t) ,

— 2x yp 'p '— G r+yVo2] -1 -

Comparing Eqs. (37) and (38), we see that it i s  im p o s s 
ible to cancel away the divergence in  Eq. (37) by  a d d in g  to  
it a  constant multiple o f  Eq. (38): A constant coun ter 
term of order a 02 multiplying the leading 7 s term  ш  
Eq. (38) cannot cancel the divergence in Eq. (3 7 ), 
because the latter is proportional to ( р - р ^ ^ Ч н Ч ь  
while a constant counter term of order ao m u lt ip ly in g  
the ( f —f ,)M7 *7 s term in Eq. (38) cannot cancel th e  
divergence in Eq. (37) because of the nontrivial fun c
tional dependence of l ( p ,p ' )  on p  and p ' . In  o ther 
words, the axial-vector divergence with the extra term  
included,

2m ^ ( p , p ' ) - i ( aa/ ^ )F (p ,p ' ) , (39 )

is not multip licativdy renormalizable.
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Fig. 8. Lowest-order contribution of the triangle diagram to the 

axial-vector vertex. We have not drawn the diagram in which the 
photon lines are crossed.

Since m ultiplicative renormalizability of the diver
gence was essential to the Preparata-Weisberger argu
ment outlined above, this argument no longer applies. 
We expect, then, that even after multiplication by Zi, 
there will still be logarithmically divergent terms in the 
axial-vector vertex. Such terms first appear in order aoJ 
of perturbation theory, as a result of the diagram shown 
in Fig. 8 ; the divergence of Fig. 8 is just a consequence 
of the anomalous asymptotic behavior of the triangle 
graph pointed out in Sec. I. Introducing a cutoff in 
the photon propagator as above, we find that

W ( p , p ' )  = 7 ,Y «[1-!(< *oA )j Ь ( л у « 5) ]
+ ао X fini te+ao’ X fini te-|- О (a oJ) - (40)

Equation (40) shows explicitly that the axial-vector 
vertex, while still m ultiplicatively renormalizable, is not 
sim ply made finite by multiplication by the wave- 
function renormalization constant Zj. Rather, we have 
[see Eq. (33 )]

Zj i= Z J[ l+ J (a o A )*  In (A*/»»*) -f- О (ao‘) ]  ■ (41)

B. Radiative Corrections to viI Scattering

As an application of Eq. (40), le t us consider the 
rad iative corrections to v i  scattering, where I is а  ц  or 
an e. According to the usual local current-current theory, 
the leptonic weak interactions are described by the 
effective Lagrangian

(42)

where G*= W~l/Mp,ctaa is the Fermi constant and 
whcrĉ

7t)« (43)

is the leptonic current. In addition to the usual terms 
describing muon decay, Eq. (42) contains the terms

(G/v5)[>yx (1—71) yM S„7X(1—7»)м
+ ёу»(1 —7t)>'.*VYx( l —'7 « )0 i  (44)

which describe elastic neutrino-lepton scattering. In 
order to study radiative corrections to the basic v j  
scattering process, it is convenient to use a Fierz trans
formation to rewrite Eq. (44) in the form (the so-called

We omit the normal ordering signs.
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“charge retention ordering”)

(G/VT) [ f iyx 7s) v„
+  ̂ Ух(1—7s)«f.7x( l —7s)*’J .  (45)

The radiative corrections to Eq. (45) m ay then be 
obtained simply by calculating the radiative correc
tions to the charged lepton currents Д7 х(1 — y i) f i  and 
«7 x (l—7s)ej without any reference to the neutrino 
currents.

Now, application of standard electrodynamic pertur
bation theory shows that the eflect of the radiative 
corrections to the charged lepton currents is to replace 
the matrix elements piy\(i—yi)n ,  <ryx(l—yB) t  (we use
H, e to denote spinors here) by

А ^ М Ц Г х ^ -Г х ^ » } ,, Гх“ ‘>>. (46)

In Eq. (46), Гх^'*1 and I V d e n o t e  the proper vector 
and axial-vector vertices, while the wave-function 
renormalization factors 2V "1*1 come from self-energy 
insertions on the external lepton lines which run into 
and out of the proper vertices. From the usual electro
dynamic W ard identity for the vector part, we know 
that Z jM and ZJ<,)I V ,) are finite. On the other 
hand, Eq. (40) tells us that

^■•)Гх^*>=7х7«[1-3(аоЛ)1Ь(ЛУжа)]
+ aoX fin ite+ an2X fin ite+ 0(aoJ) , (47)

which means that, on account of the presence of axial- 
vector triangle diagrams, the radiative corrections to v# 
and Vfji scattering diverge in  the fou rth  order o f  perturba
tion theory. This result contrasts sharply with the fact 
that the radiative corrections to muon decay or to the 
scattering reaction vu+ e —> у,+ м are finite to all 
orders in perturbation theory.7 The crucial difference 
between the two cases, of course, is that because of 
separate muon and electron-number conservation, the 
current Д7х(1—7 s)e cannot couple into closed electron 
or muon loops, and thus the troublesome triangle 
diagram is not present.

Two points of view can be taken towards the diver
gent rad iative corrections in v i  scattering. One view
point is that we know, in any case, that the local 
current-current theory of leptonic weak interactions 
cannot be correct, since this theory leads a t high energies 
to nonunitary m atrix elements, and since it  gives 
divergent results for higher-order weak-interaction 
effects.” Thus, it is entirely possible that the modifica
tions in Eq. (44) necessary to give a  satisfactory weak- 
interaction theory will also cure the disease of infinite 
radiative corrections in v i  scattering. The other view
point is that we should try  to make the radiative 
corrections to v i  scattering finite, within the framework 
of a  local weak-interaction theory. I t turns out that this

'  For recent discussions of the sicknesses of the local current- 
current theory and their possible remedies, see N. Christ, Phys. 
Rev. 176, 2086 (1968); and M. Gell-Mann, M. L. Goldbergcr, 
N. M. Kroll, and F. E. Low, Phys. Rev. (to be published).
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is possible, if we introduce r j i  and vf t  scattering terms 
into the effective Lagrangian, so that Eq. (44) is 
replaced by

(G/\5)On,(l-7e)^-m(l-7i)e]
X[>,7x(1 -T b)»’»— TTsVJ. (48)

This works because the troublesome extra term in 
Eq. (30) is independent of the hare mass fno, so that it 
cancels between the muon and electron terms in Eq. 
(48), giving10

In particular, if the gauge transformation of Eq. (51), 
with constant gauge function A, leaves the Lagrangian 
invariant, then i£ /«A = 0 and the current / “ is con
served. Thus, to an y  continuous invariance trans
formation of the Lagrangian  there is associated a  
conserved current. I t  is also easily  verified that the 
charge Q(/)= $<PxP{x,t) associated w ith  the current 
J “ has the properties

(54a)dQ{i)/dt~ 0 ,
(54b)

---- OrxTtf»— O'n7ie]=2im„W ji70i-2t»n))<‘)e76e. (49)
dx\

Application of the Preparata-Weisberger argument to 
Eq. (49) then shows that the radiative corrections to 
Eq. (48) are finite in all orders of perturbation theory. 
Experimentally, it  will be possible to distinguish 
between Eq. (48) and Eq. (44) by looking for elastic 
scattering of muon neutrinos from electrons.

C. Connection Between 44 Invariance and a 
Conserved Aiial-Vector Current in 

M assless Electrodynamics

Finally, let us discuss the effects of the axial-vector 
triangle diagram in the case of massless spinor electro
dynamics [jEq. (1) with mo= 0 ]. We will find that the 
triangle diagram leads to a breakdown of the usual 
connection between symmetries of the Lagrangian and 
conserved currents. As in our previous discussions, we 
begin by describing the standard theory, which holds 
in the absence of singular phenomena.8 Let {Ф(зс))
= {* i(*)i • ■} and {д*Ф} be a set of canonical
fields and their space-time derivatives, and let us 
consider the field theory described by the Lagrangian 
density

£(*)=£[{*>}, (З^Ф)]. (50)

To establish the connection between invariance proper
ties of £  and conserved currents, we make the infinites
imal, local gauge transformation on the fields,

Ф,(*) -  Ф ,(ж)+А(*)С£{Ф(*)}], (51)

and define the associated current J “ by

7 * = - « £ / i( 3 aA). (52)

Then, b y  using the Euler-Lagrange equations of motion 
of the fields, we easily find11 that the divergence of the 
current is given by

Equation (54b) states that Q is the generator of the 
gauge transformation in Eq. (51), for constant A.

Let us now specialize to the case of massless electro
dynamics, with Eq. (51) the gauge transform ation

(55)

When A is a constant and nta—Q, th is transformation 
leaves the Lagrangian of Eq. (1) invarian t, so that 
according to Eq. (53), the associated current J a s h o u ld  

be conserved. But calculating J a, we find

J»=-«£/«(d„A)=£y“7 ^ , (56)

which according to Eq. (30) has the divergence

daJ ‘ = (ao/4r)f't'  (x)FTI>(x) € ( .„  • (S?)

Thus, Eq. (53), which was obtained b y  formal calcula
tion using the equations of motion, breaks down in this 
case. We see that because of the presence of the axial- 
vector triangle diagram, even though the Lagrangian  (and  
all orders o j  perturbation theory) o f  m a ss l e s s  e l ec tro 
dynamics are 7 t invariant, the axial-vector cu rren t  
associated with the y i  transformation i s  not conserved .

However, it  is amusing that even though there is no 
conserved current connected with the 7 b  t r a n s f o r m a t i o n ,  

there is still a  generator with the properties of Eq- 
(54). To see this, let us consider the qu an tity  j 6 defined 
by

ao dA'(x)

referring to Eq. (30), we see that

dx ,

— jV t o = o .
dx„

(58)

(59)

(53)

Although j,® is conserved, it  is explicitly g a u g e - d e p e n d e n t  
and therefore is  not an observable current operator. B ut 
the associated charge

"  What is happening here i i  that the muon triangle diagram 
and the electron triangle diagram contribute with opposite sign, 
and so regularize each other.

11 For details, see S. L. Adler and R. F. Dashen, Cunenl Algebras 
(W. A, Benjamin, Inc., New York, 1968), pp. 15-18.

r
I d>x jV (x) 

- /
oca

Лс| ФЧх)у$(х)-\— A - V X A j (60)
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is gauge-invariant and therefore observable. According 
to Eq. (59), <36 is time-independent, and its commutator 
with ф(х) (calculated formally by use of the canonical 
commutation relations) is

K ',lK *)!]=  —T*lK*) = *[*T»#,(* )]-  (61)

Comparison with Eq. (59) then shows that Q‘  is the 
conserved generator of the -yf transformations.0

After this manuscript was completed, we learned that 
Bell and Jackiw u had independently studied the 
anomalous properties of the axial-vector triangle graph, 
in the context of the a  model. In the Appendix we 
discuss certain questions raised both by the paper of 
Bell and Jackiw  and in conversations with Professor 
S. Coleman.

Note added in proof.  (1) All field quantities appearing 
in the paper denote unrenorntalized fields, with the one 
exception that in Eqs. (A29), (A30), and (A34), ф,* 
and ф,  denote, respectively, the renormalized pion and 
t] fields.

(2) I t is our claim that Eq. (30) is an exact result, 
valid  to all orders in electromagnetism, and sim ilarly 
that the «т-model analog, Eq. (A22), is exact to all orders 
in both the electromagnetic and strong couplings. These 
conclusions follow in our diagrammatic analysis from 
the fact that electromagnetic or strong radiative correc
tions to the basic triangle always involve axial-vector 
loops with more than three vertices, which satisfy the 
normal axial-vector Ward identities. A more detailed 
discussion of this question will be given by the author 
and W. A. Bardeen (to be published).

(3) Field-theoretic derivations of Eq. (30) have been 
given by C. R. Hagen (to be published), R. Jackiw and 
K. Johnson (to be published), B. Zumino (to be 
published), and R. A. Brandt (to be published). Jackiw 
and Johnson point out that the essential features of 
the field-theoretic derivation, in the case of external 
electromagnetic fields, are contained in J . Schwinger, 
Phys. Rev. 82, 664 (1951).

(4) In Eq. (A l) we state that the general form of the 
triangle diagram is R ,, f , Rosenberg’s gauge-invariant 
expression, plus an arb itrary multiple of fc5) ' ;  
we infer this form for the extra term by studying how 
the triangle graph is changed by shifts in the integration 
variable. It is easy to see that this is the on ly  allowed 
f o r m  for the ambiguity, by noting that the extra term 
must satisfy the following conditions, (i) The extra 
term must have the dimensions of a m ass; (ii) the extra 
term must be a  three-index (apn) Lorentz pseudotensor;
(iii) the extra term must be symmetric under inter
change of the photon variables (k\,a) and (kj,p );
(iv) the extra term must have no s ingidarities  in any 
of the variables h f ,  kt', ki kt and ma, since the dis-

u Because of an implicit photon field dependence of jV (x) 
implied by Eq. (30), Q' does commute with all the photon field 
variables. The details of showing this are complicated, and will 
be given elsewhere. 

u J .  S. Beii and R . Jackiw (unpublished).

continuities of the triangle diagram across its singulari
ties involve no linear divergences and hence are un
ambiguously contained in Rosenberg's expression R .„ .

(5) The statement in Ref. 20, that the simultaneous 
presence of isoscalar and isovector vector mesons 
affects the »л—>2? prediction, is not correct. There 
will, of course, be an extra term of the form

ЭВ((1= 1 )/дх.дВ'(1= 0)/ах,ц,т,

in the PCAC equation. However, the matrix element 
of this term relevant to the ir" —+ 2y  low-energy theorem, 
when expressed in terms of Fourier transforms of the 
vector-meson fields, is proportional to

I  d*k(y(kl>( М К ъ )  I (/= \)B -S{I= 0) 10)

Because of photon gauge invariance, the matrix element 

(7 (^1,«i )?(&,«*) 15<H.»r+M*(/= l)B _ iT(7= 0) 10)

is proportional to kiki, and so the two-vector meson 
term is of order AiAj(Ai-j-jb2). Since the low-energy 
theorem involves only terms of order kikt, the two- 
vector meson contribution is of higher order and does 
not affect our result. This also means that the extra 
terms in the PCAC equation proposed recently by 
R. Arnowitt, М . H. Friedman, and P. Nath, Phys. 
Letters 27В, Й57 (1968), do not in fact lead to a non- 
null PCAC prediction for *a —* 2y.
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APPENDIX
We discuss here the following questions raised both 

by  the recent paper of Bell and Jackiw  and in conversa
tions with Professor S. Coleman: (1) Is the expression 
R ,rr [see Eq. (17 )] which we have used for the triangle 
graph unique, or is it possible to redefine Rmt,  by a sub
traction in such a way as to eliminate the anomalies 
discussed in the text? (2) W hat is the connection 
between our results and the <r-model discussion of Bell 
and Jackiw , and between our results and the physical 
I 0—* 2y  and —> 2y  decays?

A. Uniqueness of the Triangle Graph
The expression for R ,„  in Eq. (17) is obtained from 

Eq. (16) b y  the regulator technique of subtracting from
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Eq. (16) a  loop with m 0 replaced by M, performing the demand either. In other words, as long as we consider 
r  integration, and then letting M - »  «=. Clearly, any only the divergence properties of there is no
mass-independent terms m Eq. (16) will be lost in 
process. That a  mass-independent term is present can 
be seen from the fact that when we make the change of 
integration variable r —» r+aki+ ikt  in Eq. (16), the 
result is not left invariant, but rather is changed by 
multiples of and e „ f fkjT. II we are careful to
preserve symmetry with respect to the photon variables, 
the change will be proportional to e rtpf(ki—kt)T. The 
noninvariance of the triangle graph under changes 
of integration variable is of course just a result of the 
linear divergence in Eq. (16), and means that in a 
nonregulator calculation the results obtained for the 
triangle graph will depend on how the external momenta 
ki and ki are taken to run through the internal lines. 
We m ay express this ambiguity formally by writing 
that the general expression for the triangle graph is

* . ,я [ Г > * .р ,+ К „ я ( * 1- Ь ) ' ,  (A l)
with R, f f  the regulator value in Eq, (17).

We easily find the following properties of

(i) vector index divergence:

f  & I'k-i* trspp ,

(ii) axial-vector index divergence:

—  (fci+AjJ'.RwQ’D
= 2жоЛ„+(8т1—2f)Aiti 1, tjr„ ; (A3)

(iii) asymptotic behavior: Writing ki=£q, кг = ~ iq  
+ p '—p, as {—► я

*«,.[{•]-» — {(8л1—2f)gTeT„, ; (A4)
(iv ) axial-vector meson to two-photon matrix ele

ment : If J - (ki+ks) = a  ■ ki= e5 • k2= k? = * 2*= 0, then*

(AS)
(v) large m a behavior:

lim £„„„[£]= Г «т .„ (*1- * 0 Г. (A6)MQ-MO 4 7

Referring first to Eqs. (A2)-(A4), we see that when 
£-  0 , which is the case discussed in the text, the triangle 
graph is gauge-invariant with respect to the photon 
indices but has an anomalous axial-vector Ward identity 
and anomalous asymptotic behavior. B y contrast, when 
f= 4 ir3 there is no longer gauge invariance with respect 
to the photon indices, but the axial-vector Ward 
id en tity  and the asymptotic behavior as {—» «  are 
normal. Since the formal proof of gauge invariance for 
the triangle graph suffers from the same difficulties as 
does the formal proof of the axial-vector Ward identity, 
there is no a prior i  reason to demand gauge invariance 
with respect to the photon indices as opposed to a  normal 
axial-vector W ard identity, or, for that matter, to

requirement fixing f .
There are, however, two additional restrictions on 

R . w h i c h  force us to choose J  = 0. F irst of all, we recall14 
that two real photons can never be in a state w ith total 
angular momentum 1, which means th at the m atrix  
element for an axial-vector meson to decay into two 
photons must vanish. In order for our triangle graph 
to satisfy this requirement, we m ust have l" f i ' t i eR M  
= 0 when I is an axial-vector meson polarization vector 
satisfying I - (fti-b W “ 0 and when the photon variab les 
satisfy €1-Jfei= t i  ki=kii =ki1=0.  Referring to Eq. 
(A5), we see that this requirement forces us to choose 
f = 0 . [T o check that, even with the constraints on
I, t, etc., the expression (£1—fci)T£T<n>u is ™ general
nonvanishing, choose ki= (— 1, 1, 0 , 0), t i=  (0 ,0 ,1,0), 
fc»= ( —2, 0, 2, 0 ), «*= (0,1,0,0), kt+ к г — (—3 ,1 , 2, 0 ), 
/=(0,0,0,1), *2= (1, 1, - 2 , 0 ) . ]  Secondly, i t  is 
physically unreasonable that a loop diagram  such as 
our triangle graph should influence l ow -en er gy  ph enom 
ena in the lim it as the mass of the loop fermion becomes 
infinite. In other words, we expect

lim £„,,„[{■]= 0 , ki, Ai fixed (A7)

which according to Eq. (A6) again requires f  = 0. Thus, 
there are strong physica l restrictions w h ich  un iqu e ly  
select Ike regulator value f o r  the tr iangle g r a p h ; in p artic 
ular, it  is not permissible to m ake the choice f  = 4»* 
which eliminates the anomalies discussed in the text.

B. Connection with Bell and Jack iw  and with 
it0 —> 2y  and 4 —» 2 f  D ecay

In a recent paper, Bell and Jack iw  discuss ir° —» 27 m 
the <r model; they find and attem pt to resolve a  paradox 
arising from the presence of triangle diagrams. W  e briefly 
summarize their work, and then discuss our own in ter
pretation of the paradox, which differs from theirs.16 
Bell and Jackiw use a truncated version of the a  model, 
in which the charged pion and the neutron fields are 
omitted. Letting ф, ф1 and a  be, respectively, the fields 
of the proton, the neutral pion, and the scalar meson, 
the Lagrangian density is8

£ = ^ [47- □  -m o + g o (< r+ i^ 7 i)> + i[(^ ) , +  
- W * I- iW + 2 X o/ / o V -X o [(0 J+<ra)1

-  2 / r > , ( # 4 ^ H V ' - ^ ' .  ( A 8 )

with the coupling constant ft, given by 

________  /о=Ко/(2жо). (A9)

14 С. N. Yang, Phys. Rev. 77, 242 (1950).
“  Our results do not contradict those of Bell and Jackiw , but 

rather complement them. The main point of Bell and Jack iw  is 
that the a model interpreted in the conventional way, does not 
satisfy the requirements of PCAC. Bell and Jackiw modify the 
a model in such a way as to restore PCAC. We, on the other hand, 
stay within the conventional a model, and try to systematize and 
exploit the PCAC breakdown.
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The axial-vector current is

;V (* )  = £(*)ivY»vK*)+2[  <r(x)— ф(х) 
l  ax'■

a -i a
—ф(х)— <т(х) I—/о-1---- Ф(х) , (AlO)

dx<• J  dx"

and the divergence of the axial-vector current, as 
calculated by  f o rm a l  u se  o f  the equations o f  motion, is

d  Mo*
— /d6(*)=~—'Ф(х). (A ll)
dx? f 0

This is, of course, the usual operator PCAC equation.
The paradox noted by Bell and Jackiw  is obtained by 

applying Eq. ( Al l )  to the calculation of *“—> 27 decay. 
L et us concentrate first on the left-hand side of Eq. 
(A l l ) .  The m atrix element 3TZ,, of the axial-vector 
current between the vacuum and a state with two 
photons has the following general structure, imposed by 
the requirements of Lorentz invariance, gauge in
variance, and Bose statistics [cf. Eq. (17 )]:

S  rppi'kljki) ClklTCTrpm~\-C2k2T€r*pii~b'Ciklpkl^k2T(trdll 
+  C Jl2l>kltklTe(T4 l - i -C J l l^ lCkl, ([T,i,

+ C j^2«fel£A2, <|r,j., /*««1 
Ct=ki-kiCrbkJC\ ,

с * ( м о — c,№A о, 
c t(ki,ki)— c t(M 0 -

As in Eq. (17), ki and ki denote the photon four- 
momenta. The m atrix element of the divergence of the 
axial-vector current is proportional to (/fci+^O'WI,, 
and a straightforward algebraic rearrangement1 using 
Eq. (A12) shows that

(AH-AO'fi'es'-S1 (^1,^2) I 0
= i ( C s- C 4)(/fe1+ i 2)%.%2T« i'« ! ,,££„),. (A13)

Thus, if we write the matrix element for тг°—* 2y in 
the form

= (A14)

then Eqs. (A l l )  and (A13) tell us that in the a  model 
(or an y  other PCAC model), F  vanishes when the pion 
mass (&1+&2)2 is extrapolated to zero. This statement, 
of course, m ust hold in each order of perturbation 
theory. So let us check by  calculating ЗТС̂тг0—► 27) 
d irectly in the a  model in lowest-order perturbation 
theory, where the only diagram which contributes is the 
pseudoscalar coupling triangle diagram (i.e., Fig. 2 with 
7 л7 « replaced by the pion-nucleon coupling igayi)- We
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find, comparing with Eqs. (19) and (20), that 

—ie  o’
‘liii(тг1 > 27)lowtjt order—------- 1̂ 0

(2 x)<

— «2*“ffr,p(2a0/ jr)ggW 00(kl,k2) , (A1S)

so that
2«o

Flavtet order — goMal aa(kl,kt)\ (A16)
9Г

Setting (fti+A2)a= 0 then gives

I 010 8°F low eit order I <ti+ii)*_0= ----- —  , (A17)
X  M o

which does not vanish, contradicting the conclusion 
obtained indirectly from PCAC. The nonzero value of 
Eq. (A 17) is the paradox of Bell and Jackiw .

Bell and Jackiw  attem pt to circumvent this contradic
tion by introducing a regulator nucleon field which is 
quantized with commutators rather than anticom
mutators. The coupling of the regulator field to the 
mesons is described by the interaction Lagrangian 
density

^i£i(<H“i#76)^i; (A18)

to maintain the PCAC equation the regulator coupling 
and mass must satisfy the relation

g i/ m ^ go/ m o .  (A19)

Thus, as the regulator mass approaches infinity, the 
regulator coupling to the mesons becomes infinite as 
well. As a consequence, even in the lim it of infinite 
regulator mass the regulator field triangle diagram 
makes a contribution to the amplitude for тг°—+27 
decay,

aa g  1 ao go
F  regulator triangle d iagram  ‘  :  ------------ .  (A20)

-1~“ it m i  ir m Q

The total amplitude is the sum of Eqs. (A16) and (A20), 
and does  vanish a t (ifci+i^ )3 — 0, in accord with the 
PCAC prediction.

Unfortunately, however, the regulator procedure of 
Bell and Jackiw  leads to grave difficulties when we 
turn to purely strong interaction phenomena. Let us, 
in particular, consider the regulator loop contribution 
to the scattering of 2n a  particles. In the lim it of large 
regulator mass, this loop is proportional to

W H k ^ J M S T - (AJ1>
and thus, on account of Eq. (A19), becomes infinite as 
mi  —> °o. This means that the regulator procedure of 
Bell and Jackiw  introduces unrenormalizable infinities 
into the strong interactions in the a  model, and therefore 
is not satisfactory.
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We now suggest a different resolution of the paradox, 
utilizing the ideas developed in the text.18 As we saw, 
when triangle graphs are present we cannot naively use 
the equations of motion to calculate the divergence of 
the axial-vector current. Rather, we must infer the 
correct divergence equation from perturbation theory, 
which tells us that the extra term of Eq. (30) is present.
In the a model, the effect of this extra term is to replace 
Eq. (Al l )  by

d oo
— //(*) = (A22)
dx, /» 4ir

In other words, the PCAC equation must be modified 
in  the presence o f  electromagnetic interactions. As a 
result, the argument leading to the conclusion that F 
vanishes at (ifei+fca^O must be modified. As before, 
we conclude that the matrix element of the left-hand 
side of Eq. (A22) between vacuum and two photons 
vanishes a t (АН-Аг)5= 0. But instead of implying that 
3TC(r°—> 27) vanishes, this now tells us that

9TC(t°—* 27) = Z r ’^X m atrix element of (у?ф)

= ~ f‘1(/oi/W).Zr1,,Xmatrix element

of [(ao/4ir)f‘ 'F '* ({. Tp]

M* (  a go \
= —  2 Г Ц5( ---------(A23)

ihi1 \ t  »k/

in other words,
M* / о ga\

F| (ki+ii)*_o= — Zi l/,l ---------) .  (A24)
до1 \ v m j

[In  Eqs. (A23) and (A24), Z\ is the rfi wave-hmction 
renormalization constant.] To lowest order in perturba
tion theory, Eq. (A24) agrees with Eq. (A17), so our 
modified PCAC equation leads to no paradox. In 
addition, Eq. (A22) yields a bonus: From the derivation 
of Eq. (A24) it  is dear that Eq. (A24) is not just a 
lowest-order perturbation theory result, but in fact is an 
exact statement in the a  model. We can reexpress 
Eq. (A24) in terms of physical quantities using the 
equation1*

•  ’ m0 im mjf g4

where mu,  g r ( 0 ) ,  gA are, respectivdy, the renormalized 
nudeon mass, the renormalized pion-nudeon coupling 
constant (evaluated at pion mass zero), and the nucleon 
axial-vector coupling constant in the a  model. Thus 
Eq. (A 24) becomes

a  g r ( 0 )
cti+i , ) ’_ o = --------------- . (A 26)

________  x  m NgA

11 M.  Gell-Mann and M. L^vy, Nuovo Cimento 16, 705 (1960).
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Let us now make the standard PCAC assumption that 
F is slowly varying as the pion mass (Ai+£s)!  is varied  
from /и* to 0, so that we can use Eq. (A26) for the 
physical 7r°-decay m atrix  element. W e also replace 
gr(0) b y  the on-shell coupling constant gr. Using the 
physical values for /i,my, g , ,  g^,17 we find for the pion 
lifetime

t- '=  G iV64ir)P= 9.7 e V , (A27)

in good agreement with the experim ental va lue18

ТехРГ 1= (1.12± 0.22)Х Ю 1* sec-*
= (7 .3 7 ± 1 .5 )eV . (A28)

So we see that the <r model, as in terpreted w ith  Eq. 
(A22), gives a  reasonable account of тг°—> 27 d ecay .1’ 
This also makes it d ear that the use of regulators to 
cancel aw ay the triangle graph contribution to F  up  to 
terms of order ^/тц3 w ill tend to give much too small 
a value for the ir°—» 27 m atrix  element.

The above ideas are readily extended to other field 
theoretical models, and hopefully, to the physical 
axial-vector current as well. Let 5aex be the third 
component of the axial-vector octet. ( I t  corresponds 
to in the model discussed above.) L et us suppose 
that the world is really described by a field theory, and 
that there are only spin-0 or spin-£ elem entary fields.20 
We then make the following two assum ptions:

(i) The usual PCAC equation,

0
— 3rs,x= C ,pV »*i Cw—fnNgA/gr(0) 1 (A29) 
dzx

17 We take gr*»13.4, 1.18. II we used gA** 1.24, tben we 
would get r- l =8.9 eV. We can also evaluate Eq. (A26) by using 
the relation gr(^)/{mNgA) = ̂ ^ / fw ,  with /*■ the charged-pion 
decay amplitude and /i+ the charged-pion mass. (See S. L. Adler 
and R. F. Dashen, Rei. 11, pp. 41-45.) This gives F | (Ац.a ^ -o  
= — {a/r)'/2tL+i/ fw. Using the experimental value /¥« 0 .9 6  /*+** 
we find from Eq. (A27) that r-1 = 7.4 eV.

11 A. H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968).
10 Comparing Eqs. (A26) and (A17), we see that apart from a 

factor of gA~*} our PCAC expression for the ir° lifetime is the same 
аэ the expression obtained from the pseudoscalar coupling triangle 
graph if one uses the physical nucleon mass and pion-nucleon 
coupling rather than the bare mass and coupling appearing i n  
Eq. (A17). That the triangle graph, evaluated using physical 
quantities, gives a good value for —► 2y decay has been noted by 
J. Steinberger, Phys. Rev. 76, 1180 (1949); and J . S te in b e r g e r  
(private communication).

“ This assumption is not strictly necessary for the calculation 
of the ж* —► 2y rate. If there is also a single elementary neutral 
vector-meson field B x, then there will be an additional term in 
Eq. (A30) proportional to F('dB r/dxAe(,r, .  However, because the 
gauge-invariant coupling of a massive vector boson to a physical 
photon vanishes [G. T. Feldman and P. T. Matthews, Phys. Rev. 
132, 823 (1963)], this term makes no contribution to the physical 

2y decay. In general, there will be no change in the ** —► 2y 
prediction if only isoscalar vector mesons or on ly isovector vector 
mesons are present. If both isoscalar and isovector vector meson, 
are present, there will be additional terms like l)/dxs
dBr( l =0)/дх,*1шт„ which do affect the t° —► 2 7  prediction.
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should, on account of triangle graphs, he replaced by The two-photon decay ri—*2y  can be treated in a

°  On.
— Я}п = С ,ц гфг*+5— , (A30)

with 5  a constant.11
(ii) If ffjtX is expressed in terms of the elementary 

fields by

3:a‘ x= E ^ / y S V j+ m e so n  terms, (A31) 
i

then S  is given by

S=Y.i,<2,3, (а з  2)
i

where the charge of the j'th fermion is 0>е<>. Equation 
(A32) means that we count only triangle graphs of the 
elem entary fermions, but do not include triangles 
involving nonelementary bound states. I t m ay be 
possible to decide in model calculations whether this 
rule, which we conjecture, is really  correct.

Using Eq. (A30) to calculate the i ° —* 2y  matrix 
element then gives

F*> —(a/ir) 2.9 (g,/m n£a)- (A33)

The experimentally measured я-0 lifetime corresponds1* 
to 151= 0.44; for comparison, S  in the tr model is 
§12— $02= § , while S  in the quark model is i ( § ) 2 
~ § ( —i ) 2=i- More generally, in any triplet model in 
which the electromagnetic current is a Z/-spin singlet, 
the trip let charges will be (QV,Q*,Q\) = (Q, Q— 1, Q— 1) 
and we have S = } (P —}(Q— 1)J—Q—i-  That is, in 
trip let models we have 5=(Q)»v, where (Q),r  is the 
average charge of the triplet particles taking part in 
both the AS= 0 weak V— A current and the |Д5| =1 
weak V— A current. This means that the condition 
(Q )«t= — §, necessary2* for the radiative corrections to 
the AS — 0 and |Д5| = 1 weak currents to be finite, 
also predicts a  x° —» 2y  rate in good accord with 
experim ent54

u In Eq. (A30), ф.с does not necessarily mean a canonical pion 
field, but only a suitable interpolating field for the pion. For 
example, in the quark model, фяс would be proportional to fat-rift. 
The separation of into two terras in Eq. (A30) is made
unique by the requirement that фго and the photon field be 
dynam ically independent, in the sense that [_ф,а,Л »]= [^,о,Л  *] = 0  
at equal times.

и If we use instead of Eq. (A33) the formula Fc= — (a/r)(2S) 
X M W V 7 J , as in Ref. 17, then the experimentally measured 
lifetime gives |5| =0.50.

” N. Cabibbo, L. Maiani, and G. Preparata, Phys. Letters 2SB, 
132 (1967); K. Johnson, F. Low, and H. Suura, Phys. Rev. 
Letters 18, 224 (1967).

u  This result was noted previously, in the context of the vector 
dominance model by N. Cabibbo, L. Maiani, and G. Preparata, 
Phya. Letters 25B, 31 (1967).

similar manner. The analog of Eq. (A30) for is

3 1 ao
— а ^ - С чц ч*фч+—5—Р ''Р г' ч . „ ,  (A34) 
d*x \3 4ir

where 5  is the same constant as in Eq. (A30) and where 
the factor 3 appears because the electromagnetic 
current is a t/-spin singlet.51 If there were no ij — X° 
mixing, then ф, would be the jj field; in the presence of 
mixing, ф, would be a mixture of the i\ and X0 fields. 
In the SUt limit, one has, of course, C , = C ,. To get a 
prediction for the 7 7 —*2 y  rate from Eq. (A34), we 
sandwich Eq. (A34) between the ij state and a two- 
photon state and make the following three approxima
tions: (i) We neglect 4 —X0 m ixing; (ii) we take C ,=  C,-;
(iii) we ngclect the left-hand side of Eq. (A34), which 
makes a contribution of order ^ ,2 [equivalently, we 
assume that the exact prediction F„(ji,2= 0 )=  — (a/r) 
X (2S/V3)(1/C,) can be smoothly extrapolated from 
/i,2=0 to the physical 11 m ass]. These approximations 
give the standard SUt prediction26

Г (ч —>27) = ̂ Л ) Т ( т г ° —»2 7 ) = (165±34) eV, (A35)

about a factor of 8 smaller than the experimental 
value of

Г(ч —* 2y)*= (1210± 260) eV. (A36)

In view of the approximations made, the discrepancy is 
not too disturbing; in particular, the terms of order p ,2 
are by no means negligible, and could easily make a 
contribution to the if —» 27 m atrix element as important 
as the S/v3 term which we have retained.”

u The correctness of the factor 1/V3 is easily verified in the 
triplet model.

11 The factor ( j i ju i) 1 comes from phase space.
”  We discuss briefly two other electromagnetic decays to which 

current algebra methods have been applied: id—* jtS  and 4  —» 3-ir. 
In the case of ы —* it has been argued by D. G. Sutherland 
rNucl. Phys. B2, 433 (1967)] that the usual PCAC equation 
[Eq. (A l l) ]  implies vanishing of the decay amplitude a t  zero ir“ 
four-momentum. This conclusion, however, is erroneous, and 
results from the use by Sutherland of an insufficiently general form 
for the axial vector-current vector-meson photon vertex. The 
most general such vertex is given by Eq. (A I2); an examination of 
the reasoning leading to Eq. (A13) shows that Eq. (A13) is valid 
only when 4i, = 4|,  = 0. When one of the vectors is massive, as in 
the case of ы decay, we find instead that
(4i-f I

= CC4+Ci—j(C i+ C e ) ] i i4 i(£ r« i'« '< | ,o ^ 0 , 
contradicting Sutherland's conclusion. This equation also means 
that our modified PCAC prediction for Xе —* 2-y will be altered 
when one of the photons is virtual, as is the case in the Primakoff 
effect.

In the decay q —* 3 r , the only point which we wish to make is 
that the triangle graphs which we have considered (involving 
either photons or strongly interacting vector mesons) cannot alter 
the usual PCAC predictions. The reason is the presence in all 
matrix elements coming from our extra term of the factor

which vanishes at zero four-momentum for the 
axial-vector vertex. (In the w°—*2y case we were always talking 
about the matrix element left after removal of this factor.)
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I wish to descr ibe some rece nt  theoret i ca l  w o rk  on it® -* 
decay,  which helps to r e s o lv e  puzzling quest ions which have a r i s e n  
ove r  the y e a r s ,  and which may  shed l ight on the nature  of p o s s i b le  
fundamental constituents of mat ter ,  such as quarks.  P u r e l y  k i n e 
matic  considerat ions tell  us that the m a t r ix  e lement  and the dec ay  
ra te  for this pro ce ss  are

-  2y) = * , 4 . % % * ' ’ . ,  F , 
l  c. l  Z с,тсгр

t ' 1 = (ji3 /fe4Tr)F2 , (1)

with (k , 6 j|, ^ 2 ,G2  ̂ rnomen ûm and po lar iza t ion  f o u r - v e c t o r s  
of the two photons, ц the pion m ass ,  and F an in t r ins ic  coupling  
constant.  The job for the theor ist ,  of course,  is to t r y  to c a l c u 
late F. An important  step towards this goal was taken in 1949 by 
S te i n b e r g e r , * who considered a model in which the it® d is so c ia te s  
(via pse udosca la r  coupling) into a proton-ant iproton p a i r ,  which  
emit  the two photons and then annihi late.  In lowest  o rd e r  p e r t u r 
bation theory  there  a r e  only two Feynman d iagrams,  the t r ia n g le  
dia gram  in Fig.  la and the corresponding diagram with the two 
photons interchanged. Although this diagram appears  to be l i n e a r 
l y  dive rgent ,  the prese nce of the 4  ̂ in the Ferm ion  t r a c e  cause s  
a l l  d ive rgent  t e r m s  to vanish identical ly,  and a s t ra ig h t fo rw a rd  
calculation gives (neglecting smal l  te rms of o rd er  u^/m

N
„  8 .

F 88 - ~ ~  , (2) n m

647
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Fig. 1(a) Triangle  dia gram  with pse udoscalar  coupling, (h) T r i 
angle d ia g ra m  with pseudovector  coupling, (c) A v i r tual  meson  
c o r r e c t i o n  to the t r iangle  diagram.

a  = fine s t ru c tu re  constant = e /4тт « 1 / 1 3 7  , 
g = pion-nucleon coupling constant и  13. 6 , 

r n .  = nucleon m a s s  .
N -1 Substituting Eq. (2) into Eq. (1), one finds a decay ra te  т » 1 4  eV,

in f a i r l y  good a g re em en t  with the exper imental  ra t e  =
(1. 12 ± 0. 22) x  1 0 ^  sec '*  = ( 7 .37  ± 1. 5) e V . That such a naive c a l 
culat ion should work  so wel l  i s ,  in fact, ra th er  puzzling, s ince we 
know that Eq. (1) is just  the f i r s t  t e rm  in p power  s e r i e s  in the 
strong coupling gr , and there is no obvious reas on  why one should 
be able to get away with the neglect  of a ll  of the higher t e r m s .

A second puzzle a lso  emerged  f rom  S t e i n b e r g e r 1 s ca lculation.
In addition to calculating n® -» 2-y decay  using pseudosca la r  
coupling, Ste inberge r  a ls o  repeated the calculat ion with pseudo
vec to r  (ax ia l - vec to r )  coupling, by evaluating the d iagram  shown in 
Fig. lb. This diagram i j  actua l ly  l in e a r l y  d ive rgen t ,  and must  be 
evaluated by regu la tor  techniques to insure  photon gauge in v a r ia n c e .  
On the basis of the ps eudos ca la r  - pseudovector  equivalence th e o re m ,  
one would expect Fig. lb to give the sa me ra te  as Fig.  la ,  but a c tu 
al calculat ion shows that Fig. lb gives а тг̂  -» 2-y ampli tude F 
s m a l l e r  than that of Eq. (2) by a facto r  ц2 / 6 т ^ ^ .  In the l i m i t  of 
z e ro  pion m a s s ,  the pseudovector  ampli tude F a c tu a l ly  van is h es !

During the l a s t  ten y e a r s ,  extensive  and v e r y  su ccess fu l  c a l c u 
lat ions on soft pion em iss ion  have been done using the p a r t i a l l y -  
con se rved  a x ia l - v e c to r  c u r r e n t  (PCAC) hyp othes is .  This hypothe
sis states that, apart  f ro m  c e rt a in  eq u a l- t im e  c o m m uta to r  t e r m s  
(which do not enter into our prob lem),  soft pions behave as  i f  they  
w e r e  coupled to nucleons by pseu dov ec tor ,  r a t h e r  than pseudo-
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sca la r ,  coupling. When we turn to S te in b erg er  1 s c a lc u la t io n ,
PCAC thus leads us to the t roublesome conclusion that the a n s w e r  
F *  0 should be chosen over  the n u m e r ic a l l y  r e a s o n a b l e  a n s w e r  
for F given by Eq. (2)! This conclusion is independent of the p e r 
turbation theory  model  used by S te in b erg er ,  and is e a s i l y  d e r i v e d  
in a completely general  fashion.  ̂ A l l  we need do is to sandwich  
the PCAC equation

Э = (f K Z )ф , (3)X 3 tt U
TT

f = charged pion decay ampli tude ,
TT

between the two photon state < \(k , e. )\(к , e - ) | and the v a c u u m  
| 0 >. The m a t r ix  e lement of the r ight-hand side of Eq. (3) is  p r o 
port ional to -* 2-y), while a pure ly  k inem at ic  a n a l y s i s  of

shows that the m a t r i x  e l e m e n t  of the 
lef t-hand sid'e of Eq,(3) is proport ional to k ^ k ^ e j ^ e ^ P e ^ ^ p  V 
(kj+k ) .̂ Thus, in a model- independent way,  P C A C  p re d ic t s  
F ос (k^+k^) = just as was found f rom  the p seu d ovec to r  t r i 
angle graph in perturbation theory.

To s u m m a r iz e ,  the theory  of decay p re se nt s  the fo l lowing  
three  puzzles :

(1) Naive calculation using the lowes t  o rd er  p s e u d o s c a la r  coupling  
t r iangle  d iagram,  and neglecting possible st rong in te rac t io n  r e 
norm al iz a t ion  ef fects ,  gives a s u rp r is ingl y  good r e s u l t .

(2) The p s eudo s ca la r  - p s eudove ctor equivalence th eorem  b r e a k s  
down. Pse udov ec to r  coupling predicts  that —* 2y decay  is 
st rongly  suppressed.

(3) PCAC im p l i e s ,  in a model  independent way,  that ir  ̂ —* 2\ d e 
cay is s t rongly  suppressed .

3
Recent  theoret ica l  work,  which I wi l l  now b r i e f l y  d e s c r ib e ,  

has helped to r e s o l v e  these puzzles .  The key obse rv a t ion  is that  
when v e r y  singular  diagrams (e .g .  t r iangle  diagrams)  a r e  p r e s e n t ,  
fo rma l  f i e ld - th eo ry  re s u l t s  such as Ward ident it ies ,  the pseudo-  
s c a la r - p s e u d o v e c to r  equivalence theorem,  and the P CA C  equation  
i tse l f ,  b reak down. Consider ,  for example,  the p s e u d o s c a l a r - 
pseudovector  equivalence th eorem,  which a s s e r t s  that the d ia 
g rams of Figs .  la and lb should give ident ical  re s u l t s .  The th eo 
r e m  is fo r m a l ly  der i ved  by taking the vacuum to two photon m a 
t r ix  e lement  of the diverg ence equation



R17 257

650 VII -  PROPERTIES OF PIONS AND MUONS

(gr /2 im N > \j5X = gr j5
• 5X т  X 
J = +Y V5+ j 5 = +v5+

(4)

[We can neglect  meson t e r m s  in Eq. (4) because no v i r tual  mesons  
ap pea r  in Figs.  la and lb. ] The mat r ix  e lement  of the r ight-hand  
side of Eq. (4) co rr espon ds to Fig. la, while the m a t r ix  e lement  
of the le f t -hand  side of Eq. (4) corresponds to Fig. lb, and Eq. (4) 
a s s e r t s  that they should be equal. This fo rma l  der ivat ion breaks  
down because the local  product  of op era tors  is singu
l a r ,  and the naive manipulations of equations of motion which lead  
to Eq. (4) a re  in c o r re c t .  The c o r r e c t  answ er  can be obtained by 
re g a rd in g  the a x ia l - v e c to r  cu rr en t  and the pseudosca la r  cu rr en t  
as l i m i t s  of nonlocal ,  gauge- invar ian t  c u r r e n ts ,  ^

X + €

/  d i - A ( J )j Nx) = l im ^ ( x + e ) v \  ф(х-€)ехр  
€ -  0

■ ie
X -  G 

X  +  G5 — I fj (x) = l im ф{х+е)у^+(х-e) exp - ie  J  di - A ( i )
€ -» 0 *- x-  с

A = e lect romagnet ic  field,  

giving, a f ter  a ca re fu l  calculation  

•5X 5 / / л , г £(гг 'ТР
V  =2 mV  + (* /4ir>F F V r p  '

t  Q. t  t  Q.
F s = 8 A S - 3 SA = e l ec trom agnet ic  f i e ld -s t re ngth  tensor

(5)

(6 )

The m a t r ix  e lement  of the ex tra  t e r m  in Eq. (6) p r e c i s e l y  accounts
for  the d i f ference between Figs. la and lb as ca lculated by Stein-

3b e r g e r l  An a l t e rn a t iv e  proce dure  is to d i r e c t l y  ca lcula te  the di f
fe re n c e  of  Figs.  la and lb in momentum space.  If one f r e e l y  t r a n s 
lates  the loop integrat ion v a r i a b le s  one "deduces" that the d i f f e r 
ence is ze ro ,  but if one pays ca re fu l  attention to the fac t  that in 
l i n e a r l y  divergent  integrals  the or igin of  integrat ion cannot be 
f r e e l y  shifted,  one reproduces  the r ight-han d side of Eq. (6). We 
see,  then, that the p s eudosc a la r - p s e u d o v e c t o r  eq uiva lence  th e o re m  
bre aks  down for t r iang le  d ia gram s  because of the p r e s e n c e  of 
s ingular  ( l inea r l y  divergent)  in te g ra ls ,  and the breakdown is c o m 
pact ly  su m m a r iz e d  by Eq. (6).

C le a r l y ,  the phenomenon which m od if ie s  Eq. (6) wi l l  a ls o  af fect  
the PCAC equation, Eq. (3). Let us consider  a p a r t i c u l a r  f i e ld -  
theo re t ic  model ,  the cr-model of G e l l -M an n  and L e vy .  This model
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consists  of a neutron n and a proton p in teract in g  with the pions  
U +, t t°, i t " ) and with a s c a la r ,  i s o s c a la r  m e s o n  tr v i a  SU 2 ® SU^ 
s y m m e t r i c  couplings. In the absence of e l e c t r o m a g n e t i s m ,  Eq.(3)  
is sat is f ied as an operator  identity,  with ф q the ca nonic a l  pio»” 
f ield. In the prese nce of e l ec tr o m ag ne t i sm ,  the s i n g u l a r i t y  
t r iangle  diagram changes Eq. (3) to read

\ * 3 X  =  ' V ^ O  +  ^ ^ ^ Ч с г т р  '  ( ? )

In other words,  the PCAC equation for the neu tra l  pion m u s t  be  
modif ied in the p re se nce  of e l ec trom ag ne t ic  in te ra c t io n s .  J u s t  as  
we did above, le t  us take the m a t r ix  e lement  of Eq. (7) betw een  
the vacuum and the two-photon state.  In the sof t  pion l i m i t ,  the 
m a t r ix  e lement  of the lef t-hand side makes  no contr ibut ion,  but in 
stead of deducing that the tt® -• 2y  ampl itude F v a n i s h e s ,  we now 
find that F is proport ional  to the m a t r ix  e lemen t  of the e x t r a  
t e r m  in Eq. (7), ^

F j = - -  . (8)

I (k1+k2)2= o 11 f,T
Bec au se  Eq. (8) has been der ived  without r e c o u r s e  to p e r tu rb a t io n  
theory ,  it is an exact low energy theorem for  it® d e c a y .  ̂ Using  
the exper im en ta l  value f & 0. 96 ц 4 and substituting Eq. (8) into 
Eq. (1), we find the decay rate  t"^ = 7 . 4  eV, in ex ce l le n t  a g r e e 
ment with exper iment .  It is interest ing to compar e Eq. (8) with  
Ste in b e rg e r ' s  lowest  order  perturbation theo ry  r e s u l t  [Eq. (2)] by  
using the G o ld b e rg e r - T r e im a n  re la t ion ,

f m. .g  .
it N A

gA = nucleon a x ia l - v e c to r  coupling constant «  1. 22,  

to r e w r i t e  Eq. (8) in the fo rm

F l ,  w -  -  —  —  . (10)

* (k1 + k 2 ) ° 11 m N gA

We see that the ef fects of higher o rd e r s  of perturbat ion  th eory  a r e  
e n t i r e l y  contained in the factor which is n u m er ic a l ly  c l ose  to
unity; as a re s u l t  Ste inberger  ’ s calculation, which neglects the f a c 
tor  g^,  is a f a i r l y  good f i r s t  approximation.

We se e,  then, that the modified PCAC equation r e s o l v e s  the 
puzzles  noted above. At the same time, howev er ,  some new
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quest ions and prob lems a re  ra i sed .  Let  us now consider  these  
p ro b le m s ,  as wel l  as some of the ex per imental  implications of Eq. 
(7).

1. We have jus t  gone through some ra th e r  subtle reasoning  to avoid  
the predict ion,  fol lowing f rom  the unmodified PCA C equation, that  
F is suppre ss ed  by a fac tor  However ,  one can a lw ays  
a s k  how one knows that decay is not r e a l l y  a suppress ed  decay.  
One a rgument  is the theoret i ca l  one, that with the ex tra  t e r m  PCA C  
gives  a good an sw er  for ir1̂ decay,  which means that without this 
t e r m ,  the ra te  would be much too sm a l l  to ag ree with ex per iment .  
There is a lso  an interest ing exper im en ta l  t e s t ,^  which st rongly  
suggests that it  ̂ decay  is not suppressed .  To see  this,  let  us r e 
tu rn  to the su ppress ion  argument  fol lowing Eq. (3), in the a l t e re d  
si tuation in which one of the photons is o f f - m a s s - s h e l l ,  say  k ^  Ф
0. Some s imple  kinematics  shows that the vacuum to two photon  
m a t r i x  e lement  of 9 ^ ^  is now proport ional  to kj^k2 T®i ^e 2^ *  
е£ТсГр ^ 2+Рк12 ]' P o r ^er  unity.  We see that whi le  the on- 
snel l  pa r t  of the amplitude is sup press ed  by a fac tor  the of f -
shel l  dependence is not s u p p re s s e d . Since the o f f - s h e l l  amplitude  
is m e a s u r e d  in the reac t ion  тт̂  -* е + е “\, our su ppre ss io n  a r g u 
ment  p re d ic ts  that the kj^ dependence of this p ro c e s s  wi l l  have  
the fo rm  1 + (р/ц^)к^, which has a much l a r g e r  slope than the 
f o r m  1 + (p/m ^)k^ expected in the absence of su ppre ss io n  of the 
n® -* Zy decay.  A m e a s u r e m e n t  of this slope has been re p o r te d
by Devons et al .  ,  ̂ who find a m a t r ix  e lemen t  1 + a k ^ ,  a =
(0. 01 ± 0. ll)/p.^. C l e a r l y ,  this is s t rong evidence against  it® -» Zy 
suppre s s ion.

2. The argume nt  that Eq. (8) is an exact  low energ y  th e o r e m  is not  
as  s imple  as we have made it sound. To be s u re  that Eq. (8) is 
exact ,  we m u st  be su re  that s t rong in te ract ion  modif icat ions of the 
t r iang le  d iagram,  such as i l lu s t ra te d  in Fig. lc ,  do not r e n o r m a l 
ize the ex tra  t e r m  in Eq. (7). This can in fact be dem on st ra ted ,
to any finite o rd er  of perturbat ion  t h e o r y .  ̂ The r e a s o n  that v i r t u 
al m eso n  c o r re c t io n s  do not modify Eq. (7) is that they a lw ays  in 
vo lve  F e rm io n  loops with m o r e  than three  v e r t i c e s  (Fig. lc  in
vo lves  a 5 - v e r t e x  loop), which s a t i s f y  n o rm a l  W a r d  ident i t ies be 
cause they a r e  highly convergent .  There  is s t i l l  the poss ib i l i ty  
that Eq. (7) is modif ied by nonperturbat i ve  e f f e c t s ,  such as con
tr ibut ions f rom t r ia ng le s  involving bound states  of the fundamental  
f i e lds .  Our neglect  of possible  nonperturbat i ve  modif icat ions is 
pure assumption.

3. The s p e c ta c u la r l y  good agre e m e n t  of Eq. (8) with e xp er i m en t  is
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somewhat  for tuitous,  ’^oth because of the l a r g e  e r r o r  in the e x p e r i 
mental  n-0 -» 2-y ra te  and because of the usu al  1 0 - 2 0  p e r c e n t  e x 
trapolation e r r o r  involved in PCAC a rg ume nts .  F o r  e x a m p l e ,  use  
of the G o ld b e r g e r - T r e im a n  re la t ion  to r e p l a c e  Eq. (8) by Eq. (10) 
a l t e r s  the theoret ica l  predict ion by 20 perc en t ,  to T " ^  = 9 . 1 e V .

4. The constant appear ing in f ront  of the t e r m  (o,/4TT)F̂ ’<rF TP x  
e^(rTp in Eq. (7) a r i s e s  f ro m  our p a r t i c u la r  choice  of fundamental  
Ferm ion  f ields ,  and di f fers  in di f ferent  f i e ld - t h e o r e t i c  m o d e l s .C\
Quite ge nera l ly ,  if ?   ̂ is ex p re s s e d  in te r m s  of fundamental  
f ields by 5X ^

3е = E й.Ф-\ Yc^- + m eson t e r m s  , (11)
3 j J ■> 5 J 

then the modif ied PCAC reads

= |(. № ,ф  0 * S<«/4"lir5' V % , rTp •TT
s  = ?  g.Q.2

J J J

(12)

where  the charge of the j™ fe rmion  is Q j . A l l  we a r e  doing, of  
cours e ,  is adding up the contributions of the t r ia ng le  d ia g r a m s  i n 
volv ing the va r i ous F erm io n s .  The ir  ̂ —* 2y  low e n e rg y  t h e o r e m  
der ived  f r o m  Eq. (12) is

= _ £ ^Ai±_ 2S «  - -  — — -—  2S , (13)
(k1+k 2 )2 =0  * £n f f mN gA

which reduce s  to our previous r e s u l t  when S = i .

The com par ison  which we have made above with the e x p e r i 
mental  u® decay ra te  te l ls  us that |s| « 0 .  5, but does not d e 
t e r m in e  the sign of S. However ,  there a r e  a number of d i f f e re n t  
ways of determining the sign of S, al l  of which, fo r tunate l y ,  se em  
to a g re e !  The f i r s t  method is by an a lys is  of tt+ -* e+^v decay,  
the vec to r  pa r t  of which is re l ated  by CVC to F  and the a x i a l - v e c 
tor  pa r t  of which can be est imated by hard  pion techniques.  Using  
the ex p e r im e n ta l ly  m e a s u r e d  vec to r  to a x ia l - v e c to r  ra t io  for  this  
p r o c e s s ,  Okubo® finds that S is posit ive.  A second method is to 
make  use of fo rw a rd  photoproduction, w h e re  one can o b s e rv e  
the in te r f e re n c e  between the P r im a k o f f  amplitude (which is p r o 
port iona l  to F) and the fo rward  pure ly  strong interact ion ampli tude.  
The sign of the la t te r  can be determined  by finite energy sum r u l e s  
f r o m  the known sign of the photoproduction amplitude in the (3, 3) 
r es o nan ce  region;  the an alys i s  has been c a r r i e d  out by Gilman,*^ 
who finds S posi t ive .  A third method consists of comparing Eq.  
(13) with an ap prox imate  expre ssion  for the ir  ̂ -» Zy ampl itude de-
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r i v e d  by Go ld berger  and T r e i m a n ^  (as corrected by P ag els1^). 
These authors  applied a pole dominance argument to proton Comp
ton sc at te r ing d isper s ion  re la t ion s,  obtaining the re lat ion

F *  -  4 tto — -----  (14)Й m r N
к = proton anomalous magnetic moment = 1. 79,
P о

which gives а тг —* 2y ra te  of 2.0 eV, in fa i r  agreement  with e x 
p e r im e n t .  Com par ison  of Eq. (14) with Eq. (13) again gives S p o s i 
t ive .  A  fourth method which has been proposed® is to use Compton 
s ca t te r i n g  data on protons to t r y  to measure  the inter ference of the 
pion exchange piece (proport ional  to F) with the nucleon and nucleon  
i s o ba r  exchange pieces .  The problem with this proposa l^  is that  
one does not know whether to take the pion exchange piece in its 
B orn  approximation fo rm ,  tF/(t-fi ), or in the polology fo rm,  
H2 F/(t -n2 ). Since t is negative in the physical  region, this un
c e r ta in ty  leads to a sign ambiguity and renders  the method dubious.  
In any case ,  with fa i r  ce r t a in ty  one learns  f rom the f i r s t  three  m e 
thods that S is posi t ive.

A r m e d  with the exper im en ta l  knowledge that S = + 0. 5, we can 
now use Eq. (12) to test va r i ous  models of the hadrons which have  
been proposed. One v e r y  popular model  is the t r ip l et  m o d e l , con
s is ting of an SU^- tr ip le t  of Fermions (p,n ,\)  interact ing by meson  
exchange.  The charges  of (p ,n ,\)  are  (Q,Q-1,Q-1)  and the c o r r e s 
ponding a x ia l - v e c to r  couplings are  (gD, g n,g^) = ( j . - 5 , 0 ). One i m 
m e d ia te l y  finds S = j  Q2 - ^(Q-l )2 = Q - 5 , and so S = £ re q u i re s  
Q = 1 [i. e. , integral  t r ip le t  charges (1, 0 ,  0 ) ] .  Note that the f r a c 
t ional ly  charged quark model  has Q =2/3, S = 1/6, and so the 
quark hypothesis  is s t rongly  excluded. Another in tegra l ly  charged  
t r ip le t  mode l  which is a l lowed is the Han-Nambu - Tavkhel idze1 
model ,  which has th ree  t r ip l e t s ,  S, U, B, with r es pe c t iv e  charges  
(1, 0 , 0 ), (1, 0 , 0 ), (0 , - 1, - 1) and with ax ia l -ve c to r  couplings ( £ , 0 ) 
for each t r ip l et .
5. The ideas which we have developed can a lso  be applied to the 
r] -> 2y and the X° -  2y d e c a y s . 13 Unfortunately,  the e x p e r i 
men ta l  si tuation h e r e  is w o r s e ,  and the theoret ica l  situation is a lso  
w o r s e ,  because the soft Л and soft X° approximations involve a 
much l a r g e r  extrapolat ion f r o m  the physical  region than does the 
soft pion approximation.  N o n e t h e l e s s ,  pursuing this t rack ,  G la 
show et a l .  ^  find a connection between the тг 2-y, r) 2 y and 
X® -* 2y decay ra t e s ,  which predicts
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T_1(X °  -  Zy)  «  350  k e V  

и  120  k e V

Present  experiments  do not distinguish between the two a l t e r n a 
t ives  in Eq. (15).

REFERENCES
1. J .  Ste inberger ,  Phys.  Rev. 76, 1180 (1949).
2. D. G. Sutherland, Nuclear Phys.  B2,  433  (1967).
3. S. L. A d le r ,  Phys.  Rev. 177,  2426 (1969)', J .  S. B e l l  and R. 

Jackiw,  Nuovo Cimento 60, 47 (1969).
4. J .  Schwinger ,  Phys.  R e v ?  82, 664 (1951); C. R.  Hagen, P h y s .  

Rev. 177,  2622 (1969); B. Zumino, in P ro ceed in gs  of the T o p i 
cal Conference on Weak Interactions,  CERN, G en ev a (1969),
p. 3 61.

5. S. L. A d le r ,  Ref.  3; S. L. Adle r  and W. A. B a rd e e n ,  P h y s .
Rev. (in p r e s s ).

6. R. F. Dashen, pr iva te  communication.
7. S. Devons et a l . ,  Phys.  Rev.  184,  1356 (1969).
8. S. Okubo, Phys.  Rev. 179,  1629 (1969).
9. F. J .  Gi lman, Phys .  Rev.  (in p re s s ) .

10.  M . L.  Goldberger  and S. B. Tre im an ,  Nuovo Cimento 9̂  451 
(1958); H. Page ls ,  Phys.  Rev.  1 58, 1566 (1967).

11 .  A. Hearn, pr i vate  communication.
12.  M. Y. Han and Y. Nambu, Phys.  Rev. 139,  B1006 (1965); A.  

Tavkhel idz e, in High Energy Phys ics  and E le m e n ta ry  P a r t i 
c les ,  International Atomic Energy Agency,  Vienna (1965), p- 763.

13. S. Okubo (to be published); S . L .  Glashow, R. Jackiw and 
S.S. Shei (to be published).

DISCUSSION

A. P a r : Recent measurements, by the Priniakoff effect, of the ir° decay 
rate give t_1 = 11.2 eV (± 10%). S.L.A.: Using g2 /Air = 14.6, the 
theoretical estimate is in the range 7.4 - 9.1 eV, but as indicated 
there is ъ 20% uncertainty in the PCAC extrapolation. Incidentally, 
the new width is in still poorer agreement with the fractionally- 
charged quark model. V. Telegdi: Would one expect to see, in 

n-decay, evidence for a non E.M. isospin symmetry breaking inter
action? S.L.A.: One can invent such an interaction to explain the 
3ir decay of the ri. The extra terms I discussed will not affect this 
decay mode.

655

2
quark model  (Q = —) ,

integ ra l ly  charged (Q = ± 1) 
t r ip le t  model  . (15)
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Anomalous Commutators and the Triangle Diagram
S t e p h e n  L . A d l e e  

Institute fo r  Advanced Study, Princeton, New J er s e y  08540

AND

D a v id  G. B o u x w a b e  

University o j Washington, Seattle, Washington 98105 
(Received 19 March 1969)

Wc consider matrix elements of the axial-vector current in spinor electrodynamics, and develop the 
change in the usual reduction formalism caused by the presence of the axial-vector-current-two-photon 
triangle diagram. When at most one photon is reduced in from the external states, we are able to charac
terize the anomalous behavior of the triangle diagram entirely in terras of a  consistent set of anomalous 
field-current and current-current commutators.

IT has recently been shown1 that the axial-vector 
current in spinor electrodynamics does not satisfy 

the usual divergence equation

where

jV (*) =Ф(х)7 ,УьФ(х) , j*(x) = ^ ( * W ( s ) , (1)

expected from naive use of the equations of motion. 
Rather, because of the presence of the triangle diagram 
shown in Fig. 1, the axial-vector current satisfies the 
anomalous divergence condition

= 2 + (W4r)Ff'(a)/f "(*)«{„,, (2)
with the unrenormalized electromagnetic field-
strength tensor. Because radiative corrections to the 
basic triangle diagram (Fig. 2) involve axial-vector 
loops with a t  least five vertices, and because these larger 
loops satisfy the usual axial-vector W ard identity, 
Eq. (2) is an exact equation, valid to all orders in 
perturbation theory.’

In the present paper we explore further consequences 
of the singular behavior of the triangle diagram in 
spinor electrodynamics. Although the anomalous 
divergence phenomenon appears in all matrix elements 
of the axial-vector current, we will consider explicitly 
only the axial-vector-current-two-photon matrix ele
ment (0| which is described in lowest 
order by the graph of Fig. 1. (Here ki, k2 and ej, 
denote, respectively, the four-momenta and polariza
tions of the two photons.) First, we develop the reduc
tion formalism for the triangle graph. When one photon 
is reduced in, we are able to characterize the anomalous

1 S. L. Adler, Phys. Rev. 177, 2426 (1969). Thu paper will 
h err alter be referred to as I. See also J . Schwinger, ibid 82, 664 
(1951), Sec. V; C. R. Hagen ibid. 177. 2622 (1969); R. Jackiw 
and K. Johnson, ibid. 182, 1457 (1969); B. Zumino (unpublished). 
Ai in I , we use the notation and metric conventions of J. D. 
Bjorken and S. D. Drell. R daln istic Quantum F itldi (McGraw- 
Hill Book Co., New York, 3965), pp. 377-390. In particular, we 
use < «n -* lu  = l.

a S. L. Adler and W. A. Bardeen, Phys. Rev. 182, 1515 (1969). 
Note that the anomalous divergence term can be rewritten in 
terms of finite quantities аз (а/4г)Р,1*Р,г'ц вг, } where Fr1'  is the 
renormalized electromagnetic field-strength tensor.

184

behavior of the triangle graph entirely in terms of 
anomalous commutators of the electromagnetic field 
with the axial-vector current (“seagulls”) and of the 
electromagnetic current with the axial-vector current 
(“Schwinger terms”). We check that the various com
mutators which we obtain are consistent with each 
other, with the equations of motion, and with the 
electromagnetic-field canonical commutation relations. 
These formal considerations indicate that the equations 
obtained from explicit study of the matrix element 
<0|jV| is  ,*j) can be applied unchanged to the 
matrix element (A\j?l \B), with A and В  arb itrary, 
when a t  most one photon is reduced in from the external 
states. Using the anomalous commutation relations, 
we complete the heuristic verification that the quantity 
Q‘ introduced in I is the chiral generator in massless 
electrodynamics. F inally, we show that when both 
photons are pulled in, one cannot represent the triangle 
graph by a reduction formula containing a time-ordered 
product with the usual properties.

To study the reduction formula for the triangle graph 
with one photon pulled in, we use the equation8

<01 jV (0) J Ai,«,; ij,«*)[(2 ir) ’2kia(2r) г2кго]111 

= - i t i ' J  Л г * 1'1

XD,<0| T ( j , W A . W  | * .^ )[(2т)*2*в ]» *

= - и м  Z tt/ faY lR vA h M . (3)
where A. is the photon field and R .fh(ki,k2) is the 
explicit expression for the lowest-order triangle graph 
given in Eqs. (17) and (18) of I. Bringing □ ,  inside the 
time-ordered product (using the usual rules* for 
differentiating time-ordered products), we find

J d*x ло | г о л 0M .(*)) | *.,«.)
_________ =A ,,^ io+ S„+ C ^ ,(A ii)), (4)

* Since in E^s. (3)-(7) we work to lowest order only, we omit 
the wave-function renormalization factor from Eq. (3).

1 S. L. Adler and R. F. Dashen, Current Algebras (\V. A. 
Benjamin, Inc., New York, 196Я), Eq. (2.7).

1740
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with*

A

V s

(S)

, . = i j  d lx «л >Ч(юК01 [Л r (i) ,jn '(0 )] | ,

B , . = J d * !  e<k,‘, 4(*o)(01 [A  .( x ) , j , ‘ (0)]| ,

C M = e t  J d*xe-* '*(0 \n jS (p ) j . (x ) )\k lttr), 

a
A.(x)?s— A.(x), j . ( lx )=^(x)yM x).

дхц

Provided that the time-ordered product in Cr, is not 
too singular, in the limit as im —• « ,  the function C ^ iio )  
has the Rjorken*-Johnson-Low7 behavior

Fig. 1. Axial-vector triangle diagram which 
leads to the extra term in Eq. (2).

with

B'(x) = [ V  X  A (x )]‘ = t r"— A'(x), 
ex'

E‘(x)----- A ‘( * ) ------- * »•(* ),
dx‘

tm = 1.
(9)

C M = -
—1«0

1̂0 J
d*x

х(о|СУ.(х),уло)]|W + o [ W W ] , (6)
indicating that the equal-time commutators 
D U *W (< > )1 ГА,(*),Уг‘ (0 )], and [ j . ( * ) J , ‘ (0 )] are 
to be identified, respectively, with the parts of R ,„  
behaving like &ю, 1, and i 10_l as km becomes infinite. 
From Eqs. (17) and (18) of I, we find

4 l  (Al (J* k i ' t l  ){ er#pj»“f*̂ rt*0T#ji KpQtOreH
+ A lO - 1 H ( 1 —  g ^ ) ( l l 2 . K l , „ + k i i , l . r , r )

+ в*о(1 &o(l &¥>)Ь\ч*цг9*
+  (terms which vanish when О — 0 о г м = 0 )]}

+О[(1пА„)-»/й10‘ ] .  (7)

Comparing Eq. (7) with Eqs. (S) and (6), we find the 
equal-time commutation relations*

(8) k

l A *(*),/»,(y)]=[^.(*),i/(y)]=o ,
[ A = ( — 2tao/*-)4*(x — y )S r( y ) ,
СA r ( x ) , j , l ( y )2  = ( ia 0/ »)5 , (x —y) c r“ E ' ( y ) ,

U o M J o b ) J  =  ( - й в/2т*)В(у)- V,6‘( x - y ) ,  
CJr(x ) , jo l ( y ) ]  = ( - M 0/ 4x1) [ E ( i ) X  V jJ , ( x —y ) ] r ,

Ш * ) , ■?.*(> )] — (*«o/4i , )^E(^ i)X  y ) ]* ,

an d '* ' haV* ‘ Uppra3aed tke d'pendence of A „ ........C „  on k,
• J_ D. Bjorken, Phyi. Rev. 148 1467 (1968).

Suppi 2 $ m 4 T i m E‘ b ,w ' IogI- Th“ ret- Phy’ - (Kyoto)
■ We remind the reader that since we have deduced the Co m- 

mu tat ora of Eq. (8) from the triangle graph alone, without 
considering other graphs, we have not yet ruled out the presence 
of additional terms ш the field-current or current-current commu
ta to r  of Higher order than a , or respectively. However, the 
consistency argument of Eqs. (23)-(30) below suggests that such

.T** O0CVI “  *“ ■ wont Schwinger terms and seagulls of the usual type, which cancel against each other when 
vector or axial-vector divergences axe takeD.

We have only listed the current-current com m utators 
containing a t  least one tim e component, since these a re  
the only ones which appear when divergences w ith  
respect to the vector or axial-vector indices (<r or it) a r e  
brought inside the time-ordered product in Eq. (5). A il 
of the nonvanishing commutators in Eq. (8) a r e  
anomalous in the sense th at if they are calculated b y  
naive use of canonical commutation relations th e y  
vanish.

It is easy to check that the anomalous com m utation 
relations of Eq. (8), together w ith  the reduction  
formula of Eqs. (4) and (5), correctly reproduce th e  
known divergence properties of the lowest-order 
triangle diagram. Consistent with our assumption t h a t  
the time-ordered product C „  is not too singular, a n d  
obeys the Bjorken-Johnson-Low asym ptotic fo rm ula, 
we use the usual formulas* for differentiation of th e  
time-ordered product,

з/гОУСуШ*))=7 W i , ‘«/.(*)>
+«(у°-*0)[Уо‘ (у),Ус(*)]. £10) 

a.'T<jS(y)j.(x))=П й1(у)а,’Ш )
+ a(*»-/ )[ioW ,i,‘(y)]-

To check gauge invariance for the photon which h a s  
been reduced in, we m ultiply Eq. (4) by k\‘ . U sin g  
vector-current conservation (d 'j«  = 0) and Eq. (10) to  
evaluate i i 'C ^ i io ) ,  we find

■ f  d*x * -“ !•*□ ,(0 1 ГО ДО М  .(* )) I *»«■)

= k\* J  d*x «**' * i(*°)(01ЦЛ *(*),y(i‘ (o)D I k bb )

—ie0 J d 4x «л ‘ *«(а;")(0| [ jo (* ) ,> ‘ (0)]| As,«i). 0 1 )

V s

* Го

V s

A
V *

% r„
Fia. 2. Typical second-order radiative corrections 

to tha triangle diagram.
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Using the commutators of Eq. (8), one can easily see 
that the right-hand side of Eq. (11) vanishes. To check 
the axial-vector divergence of the triangle, we multiply 
Eq. (4) by — Using the axial-vector-current
divergence equation (2) and Eq. (10) to evaluate 
(Ai+ £ i)<<Cm (Ak) i we find

- (* !+ * * )"  J  d4x #”“ »•*□ *(0 J T ( j J ( 0 )A ,(* ))  |

= —ie  о J  d*x e- a i 'T(0 [ r ( [2 im 0j s(0)

+(a„/4x)F«*(0)FM(0)<(, rJ i r W ) |

+  /d**eft‘ 4 (x 0)

x {- {ki+ktHo I [a i kb<,)
+i«o(01 D '.(*),jo ‘ (0 )] | . (12a)

Since we are only working to lowest order (order e»1), 
the anomalous divergence term proportional to 
CoaoFt*FT4 ( „ ,  makes no contribution. However, the 
anomalous commutator terms in curly brackets may 
be evaluated from Eq. (8), and they give

J d * x  «л » ж4(*о){ — (k i+ k ,y (0 1 [A .(x) ,jV (0 )] | ki,a )

+ «.< 0 1 [ ; . ( * )  Jo 5(0 )] 1

= - « t '( « * V 2 * W * « '« W . (12b)

When multiplied by t f ,  Eq. (12b) is identical with 
the m atrix element (0| (ao/4x)F{'F T'<(,,p| £bei; ^ , ‘ г) 
ХС(2'*'),2^1о(25г)*2А2о]1/1 which comes from the anoma
lous term in Eq. (2) if we calculate the divergence of 
( O j d i r e c t l y ,  before reducing in one 
photon. We see then that the reduction formula of 
Eqs. (4) and (5), combined with the anomalous com
mutators of Eq. (8), correctly characterizes the anoma
lous axial-vector index divergence of the triangle 
diagram. As Jackiw  and Johnson1 have particularly 
emphasized, in the reduction formula the anomalous 
divergence term k^k i'n . , ,  arises from the failure of the 
“Schwinger term” and the “seagull”
to cancel. (As a point of consistency, we note that the 
pseudoscalar-two-photon triangle R,,  [defined in 
Eq. (19) of I ]  has the asymptotic behavior R.,(ki,k2)—<>0 
as kur~**>. Thus the usual equal-time commutation 
relations

LA « (* ) ,j ‘ (y) ] = LA » (* ) ii‘ (y)D—0 (13)

remain valid, and no extra, seagull terms are picked up 
when the one-photon reduction formula is applied to 
the m atrix element (0|2moj*| Ai,«i;

We proceed next to check whether the commutation 
relations of Eqs. (8) and (13) are formally consistent

with each other, with the equations of motion, and with 
the usual electromagnetic-field canonical commutation 
relations. In the Feynman gauge, the electromagnetic- 
field equations of motion and commutation relations are

ПАЯ=АК—V,Af = eo j f ,
LA x(z) ,A '(> )] I , v = [A x(x) ,A’ ( y ) l  I = 0 , (14)
[/ !*(*),Л '(у)]|  ,•_„•= —ig x,S*(x — y ) .

We also need the divergance equations satisfied by the 
currents j,{x,t) and j„ l {x,t) ,

Э
— /o+ V -j= 0,
at

(is) a
—Jo4+ v  j 5 = 2 im oj ‘ + (2oto/ir) E В ,
at

with E and В given, of course, by Eq. (9). We proceed 
to combine Eqs. (14) and (15) with Eqs. (8) and (13). 
All the commutators which we write down are a t equal 
time, with z?=y“=l.

(i) From [A,(x), jo6( y ) l  = 0, we deduce1

[^«(*).Jo ‘ (y)]+ C ^ -(* ).(3/ aO j06Cy)] = 0 . (16)

On substituting Eq. (15) for (d/dt)joh(y ) and using 
LA.(x),jb( y ) ]  = LA.(x),j ‘ ( y ) ]  = 0, we find

[ i i . ( * ) , io ‘ W ]=  — D4«(z),(2oro/7r)E(50 • B (y )] . (17)

Using the canonical commutation relations of Eq. (14), 
we then get

D io(z)jV (X >]=0, (18)

LAr(x),j0* b )l  = (-2 ia ,/ T )& K x-y)B '{y ) , (19)

in agreement with Eq. (8).
(ii) From [A 0( i) ,jo ‘ (3 ')]= 0, we deduce

LA o(*) j'o ‘ (y ) ]+ [^ o (* ) ,(3 / dt) jo‘ Cy)] = 0 . (20)

Substituting Eq. (15) for (d / a t ) j06( y ) and Eq. (14) for 
Ao(i), and using the commutators С^4о(*),Уо'(у)!] 
= [A o(* ) , j6(y ) ] = [ i 0(* ) ,j‘ (30]=O, we find

Lecja(x)>job( y ) l  = -LAt(x),(2a„/x)'E(y) • B (y )]
= ( - 2йго/ж) В (у) ■ т .г Ч *  -  У). (21)

that is,

C ;.W ,io 5W ] = ( - » V 2 0 B C v ) - r 14a( x - y ) ,  (22)

in accord with Eq. (8).
(iii) From LA,(x),jog(y)]-= —(2ia0/ir)S3(x— y)B '(y ) ,  

we find

[л  г(ж),у0Ч:у)]+[л ,.(*), (d/a/) j 0‘Cy)]
= ( —2ia0/ir)&4x—y)Br(y)

_________ = ( 2 W x ) !* ( x - y ) [ v J XE(>) ] ’ . (23)

1 We use here the method of D. G. Boulware and L. S. Brown, 
Phys. Rev. 156, 1724 (1967).
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Substituting for A,(z) and (d/di) jj(y) « before, we find equations of motion1 suggests th a t Eqs (19) and ( 2 2 )
are themselves exact to all orders of p e r t u r b a t i o n

[« •* (* )  jVG O ]- D *r(*),V j• j4 y ) ]  theory.12 The values given in Eq. (8) for [_Ar(x ) , j . l ( y ) j *
= ( 2 м ^ ) « ' ( х - у ) [ Т ,Х В Д ] '  D'r(*),io‘ (y)D. “ >d C jo W .i . 'W ]  cannot, on the o th e r

- [ Л г(* ),(2 ао Д )Е (у )В (у )] han<J. be deduced from the consistency arp itn en t о
— ( _ 2|ап/т)ГE(x)XV J* (x -y )>  (24) Eqs. (23)-(30). To see this, we note that Eqs. (2 4 )

( i  V 1 (26), and (30) [a s  well as the reduction formulas ( Ш
Using Eq. (8) to evaluate [««>,(*),jVOO] and and (12)] are aU unchanged if we modify these c o m m u -  

— we see that Eq. (24) is satisfied. tators to read
(iv) From [jo(*) Jo‘ (y ) ] = -  (ieo/2»1) B(y) ■ V,S’ (x -  y), 

we find

[(e/30 io (x )Iio, (>)]+Cio(a:),(a/a0jo, ( j’) ]
= ( —к 0/2т1)В(у) ■ VT&'(x-y)
= ( ,v  2т»)С ,̂ХЕ(э-)]Тж«>(х-у). (25)

Substituting Eq. (IS) for (d/dt)j0(x) and (d/dt)j<f(x) 
gives’”

- [ v , - i ( * ) i i o ‘ (y ) ] -C ? o ( i)1v T-i‘ (y )]
“  (i>o/2t, ) [V ,X  E (y)] • ХтР ( х - у ) .

tao
[A r( * ) , j .5( y ) ] ----- &3( x - y ) i ” ‘E ‘(y )

r

-ie<>&3( x - y ) S r‘ ( y ) ,

- i« o

(26)

Using Eq. (8) to calculate the commutators on the 
left-hand side, we find that Eq. (26) is satisfied.

(v) Finally, to check the consistency of quantization 
in the Feynman gauge, we must verify that

4t ’

ieo

+ ;— [ « * ( * -  y)S"(y)D . ay
(3 1 )

Cio(*),i.5Cy)]=— CE(y) X v ,5 » ( x -  y )T  
4*’

_,-.-С «»(х-у)5"(у)],
ax'L=AB+ V k  (27)

i  , ■ и ■ j  . . . . , with S"(y)  a  pseudotensor operator. In other w o rd s ,
П , т Г Г  У U,dtepend“  ° Л е aHal- the consistency check of Eqs. (23)-(30) does not r u le  vector current. That is, we must venfy that M t ^  ^  hig4ber orders of p e rtu rb a tio n

[£ (* ), )'Д-уЛ=0 (28) theory  т а У modify Eq. (8) b y  adding Schwinger t e r m s
and seagulls of the usual typ e ,11 which cancel a g a i n s t  
each other [a s  in Eqs. (11) and (12 )] when vecto r o r

1 I A J" i- _ 1 ___T 4 OTI

and that
[£ (* ),j7 ( j ) ]= 0 - (29)

axial-vector divergences are taken. I t is expected11 o n
Equation (28) follows immediately from the first line general grounds that the commutator [A,(x),j.E(y)3 
of Eq. (8). To check Eq. (29), we substitute Eq. (14) does not involve derivatives of the S function and t h a t  
for A0 and use [Л о (*),/А у)]= 0 , giving the commutators DV(*),i»*(y)] and [ io W jV W D  d o

C t (*)»jV  (>0]=[eoj'o(*),jV(y)]
+ [V ,-A (x ) , i , ‘ ( y ) ] .  (30)

Substituting commutators from Eq. (8) then shows 
that the right-hand side of Eq. (30) vanishes.

We conclude that the commutation relations of 
Eq. (8), which were obtained from the triangle graph 
in lowest-order perturbation theory, are consistent with 
the equations of motion and canonical commutation 
relations of Eos. (14) and (IS). Moreover, the fact that 
Eq. (19) for lAr(x),y„‘ (y ) ]  and Eq. (22) for [Уо(х),;'о4(у ) ] 
were deduced  from simpler, exact commutators11 and

and Drell (Rel. 1). Let Т.Л,М i , . . . )  be an arb itrary am p litude 
involving an external photon of polarization 9 and four-momentum 
klt an axial>vector current j ml  with four-momentum —
2] external fermions, and b additional external photons. B ecau se
of chaige-conjugation invariance, we cannot have
When />0 or b> l, the asymptotic coefficient a  associated
as *10—юо, can never be greater than zero. When /=0 and . »
the superficial asymptotic coefficient is 1 (the graph is lin e a r ly
divergent), but gauge invariance implies that the photon b m u s t 
couple through its field^strength tensor, and this reduces th e  
elective a  to zero. Thus a  for T can never be greater than zer°* 
and since T is arbitrary, this statement holds for a ll sub graph s 
of T as well. We conclude that as iio * 00 .
and since . . )  =0 by gauge invariance, this m ean s
that . .)^-'tio_1(lnJfcio)tf. Comparing with Eq. (5), w e
conduce that [^ .(x ),jV (y)3= C ^o(*),jV (y)Je °- An »d en ,lc a l 
argument holds with /„* replaced by j*. . . ,

11 We believe that Eqs. (19) and (22) are exact when sandwiched
r U A A  r’ T ?  ,rom between Vormalizahle s i t r a  (eYandjb^W e make no claims ab o u t

C/*(x)«^ » (y )]* 0  can matrix elements involving non-normal izable states such a s  
d i  . divergence^equation >(*)!*} or У/(у)|в) and, m particular, we do not demand th a t

; 5 т 1 :  Commutators of Eq. (8) satisfy the Jacobi identity. (T h e y
do «/>*.) P.jr a discussion of Jacobi* id entity breakdown, see Johnson 
and Low (Ref. 7).

11 See Adler and Dashen (Ref. 4)t Chap. 3; Boulware and Brown 
(Ref. 9); D. G. Boulware, Phys. Rev. 1/2, 1625 (1968).

II IPL ' * “ ****■ n a t LLLttt ¥Y с Utl I'
‘ ‘ The commutation relations Ы.(х) , j . ‘ ( y l l - ГЛ ЛаеГмП  

*0  can be proved to all orclers in 
perturbation theory by the В jorlten-Johnson-Low method, using 
the W an berg asymptotic rules diacusaed in Chap. 19 of Bjorken
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not involve derivatives of the 5 function higher than 
the first. Under this assumption, Eq. (31) represents the 
most general form for these commutators consistent 
with Eqs. (14) and (15).

Using Eq. (19), we can easily complete the argument 
sketched in I  that the operator

Q“= J  d 'x  № (* )+ («< / *) A(z) ■ V ,X  A (*)] (32)

is the conserved generator of y t  transformations in 
massless electrodynamics. In I it was shown that

- e s= o , c o v e o u — in * ( y ) .  (зз) 
dt

We now show that Qb commutes with the photon field 
variables. From the first line of Eq. (8) we find

t f M .W ]= [< M o G ') ]= 0 ,  (34a)

while from Eq. (19) we find14

L&Ar ( у ) ]= £ У  ̂ j V ( * ) ^ r ( y ) J

+j^y"d1x (оц/я-)А(х)- V,XA(x),A,(y)J 

2 iao 2 iao
--------B ' ( y ) --------B '(y )=  0 , (34b)

»  7Г

as promised.
F inally , we will show that when two photons are 

pulled in, the triangle graph cannot be represented by 
a reduction formula containing a time-ordered product 
with the usual properties. When two photons are 
pulled in, Eq. (3) is replaced b y16

f d*xd*y e~a ‘ ■ у - * 1- *

X D .D ,(0|  T ( j , l (0)Af (x)Af (y ) ) l0 )

= i[ e'V(2 ’r)i J K . . , ( * M -  (35)

Bringing and □  „ inside the time-ordered product 
on the left-hand side of Eq. (35) gives1"

u  Equation (34) and Eqs. (163 and (19) may he combined into 
the simple observation that and dQifdt=* 0 implies
M vi.H -o .

11 Again, we neglect the photon wave-function re normalization.
11 We have suppressed tne dependence of and S p ;  on ki 

and ks.

/■
d*xdlу

х а ,а » < о 1 г ( ,д о )л .(* )л ,(у ) )| о >

C „„(jfcio,4io) =«o *J d*xdly  в- **1 -y-**»-*

х(0|гО‘Л0)У,(х)ЛЫ)|0>.
The “ time-ordered product” C„,, contains all of the 
dynamical singularities of the matrix element, but in 
addition there is a polynomial in Ai and which we 
have labeled Sm , arising from anomalous commutators 
of A and A with the currents. If the time-ordered 
product C„,,  were of the usual type, then it would have 
the Bjorken-Johnson-Low behavior in the lim its as 
kio, km, or k\a — kw become infinite. That is, we would 
have

j (KpĈ 10i 2̂d) f d*xdly

Х<л ''&Ы)<г*” (0| r ( [ i . ( x ) , ; . 4 0 )]y ,(y ))| 0)

+ 0 ((lnk1<>y/ k 1t ‘) ,

(Аю,Аю) ■
*«,*10 hT

■ i e  о* Г
----- Ikm J

d*xdly

X r ^ ' V ' ^ i W (01 Г(С/р(у ) ,у ,» (0 ) ]у .(х ) )10) 

+0((1пА2о)*Дг|,*), (37)

—1«0J Г
'l™l kla—km—kiaJ

d lxd*y

x < r  !.(*.+*.)• («+r)e «■•a«-ta> .<»-7)3 ( j ( * #_ y e) )

х (0|г (С>(х),У.(уШ Л0))Ю >

-|-O[[(ln(iio—km))g/(.km—iso)5] .

According to Eqs. (36) and (37), all terms in R .„  
which either approach constants or diverge linearly in 
the three lim its must be contained entirely in the 
polynomial .S. In Eq. (7) we saw that as ki0—><», with 
Лао fixed, R .rf  approaches a nonzero finite lim it and, by 
Bose sym m etry, the same statem ent holds for the 
lim it кга—>°o, with km fixed. In I it  was shown that in 
the lim it im —£20—»°°, with йм+£го fixed, R ,r  ̂diverges 
linearly (i.e., behaves as finite coefficient times km—km). 
Clearly, these three lim iting behaviors cannot  be de
scribed by a polynomial in km and km, which means 
that Cr. ,  cannot vanish in all three of the lim its in 
Eq. (37). Thus, the time-ordered product appearing in 
the two-photon reduction formula is not of the usual 
type.

We wish to thank L . S. Brown, R. Jackiw , and S. B. 
Treiman for helpful conversations.
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Absence of Higher-Order Corrections in the Anomalous 
Axial-Vector Divergence Equation

Ste ph en  L . A d le r  and W il l ia m  A . B a r d e e n *

Institute fo r Advanced Study t P rinceton , New J e r s e y  08540 
(Received 24 February 1969)

We consider two simple field-theoretic models, (a) spinor electrodynamics and (b) the <t model with the 
Polkinghorne axial-vector current, and show in each case that the axial-vector current satisfies a simple 
anomalous divergence equation exactly to alt orders of perturbation theory. We check our general argument 
by an explicit calculation to second order in radiative corrections. The general argument is made tractable 
by introducing a cutofi, but to check the validity of this artifice, the second-order calculation is carried out 
entirely in terms of renormalized vertex and propagator functions, in which no cutofi appears.

I. INTRODUCTION

T T  has recently been shown11 that the axial-vector 
1  current in spinor electrodynamics does not satisfy 
the usual divergence equation

( 0
в '7 Л * )  = 21«о;4(* ) ,

jV ( * )  =Ф(хУг,.Уь+{х)  , j l (x ) =Ц х)чьф(х ) ,

expected from naive use of the equations of motion, 
but rather obeys the equation

d 'jV to  = 2 i« o it(*)+(ao/4T)F«'(*)F, '(* ) t l#r, , (2)

with F£'  the electromagnetic field strength tensor, 
Sim ilarly, it was shown that in a simple version of the 
Gell-M ann-Levy a  model* coupled to the electromag
netic field, the axial-vector current does not satisfy 
the usual PCAC (partially conserved axial-vector 
current) equation

=  — G u V g o M 1 ) ,

=Ф(*)Ьг,Уьф(х')+<г(х)д,т(х) (3)

-ir(r)a,<r(ac)+g,r1a (1ir (* ) , 

but instead obeys the modified PCAC condition

e pjV (* )= -0 * iV |  °M *)
+ § (“«/4ir)Fl '( * )F , ',(T)<{. 4 . (4)

In both theories, the extra term in Eqs. (2) and (4) 
arises from the presence of the axial-vector triangle 
diagram shown in Fig. 1. This diagram has an anoma
lous property; when it is defined to be gauge-invariant 
with respect to its vector indices, it  does not satisfy the 
usual axial-vector Ward identity.

• Research sponsored by the Air Force Office of Scientific 
of Aerospace Research, U. S. Air Force, under 

AFOSR Grant No. 68-1365.
1 S. L. Adler, Phy*. Rev. 177, 242(5 (1969), hereafter referred to 

as I. As ш I we use the notation and metric conventions of J. D. 
Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw- 
H ill Book Co., New York, 1965), pp. 377-390.

1 See also J . Schwinger. Phys. Rev. 82, 664 (1951), Sec. V; 
9 '..R ■ jf*? } !!•  2®22 0969); R. Jackiw and K. Johnson,
tbid. 182, 1459 (I960); R. A. Brandt, ibid. 180, 1490 (1969V 
B. Zumino (unpublished).

1 M. Gell-Mann and M, L^vv, Nuovo Cimento 16, 705 (1960). 
We actually study a truncated version of the »  model proposed 
by J. S. Bell and R. Jackiw, ibid. 60A, 4? (!o*9).
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An essential conclusion4 of I  was th a t Eqs. (2) a n d  
(4) are exact. In other words, the anomalous te rm  
F**Fr f t j„r, does not receive additional contributions 
from radiative corrections to triangles, such as show n 
in Fig. 2 (the wavy line denotes either a  photon or a  
meson). This conclusion follows naively  from the o b 
servation that radiative corrections to the basic t r i 
angle involve axial-vector loops (such as the five-vertex  
loop shown in Fig. 2) which, unlike the low est-order 
axial-vector triangle, do satisfy the usual ax ia l-vecto r 
Ward identity. The purpose of the present paper is  to  
support this naive reasoning with more detailed c a lc u 
lations, and in particular, to show that the fact t h a t  
radiative corrections to triangles involve the usual r e -  
normalizable infinities causes no trouble.

The plan of the paper is as follows. In  Sec. II  we c o n 
sider the two models discussed in I—spinor e le c tro 
dynamics and the <r model—and develop a  general a r g u 
ment which shows that Eqs. (2) and (4) are exact. I n  
Sec. I l l  we give an explicit  calcu lation  of the second- 
order radiative corrections to the triangle. We find, in  
agreement with our general arguments, th a t when a ll o f 
the second-order radiative corrections are sum m ed , 
their contributions to the Fl 'F TI>t f , T,  term e x a c t ly  
cancel. In Sec. IV we briefly summarize our results a n d  
compare them with the conclusions reached recen tly  b y  
Jackiw and Johnson.2

F ig . 1. Axial-vector triangle diagram which 
leads to the extra term in Eqs. (2) and (4).

V b  */**5

ДДД
Fig. 2. Typical second-order radiative corrections to the tr ian g le  
_________  diagram in spinor electrodynamics.

4 For example, in order for the low-energy theorem for —* 2-y 
derived in I  to be valid, it is essential that there be no stro n g- 
interaction corrections to the anomalous term in Eq. (4).
1517
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П. GENERAL ARGUMENT

We develop in this section a general argument, valid 
to any finite order of perturbation theory, which shows 
that Eqs. (2) and (4) are exact. The basic idea is this: 
Since Eqs. (2) and (4) involve the unrenormalized fields, 
masses, and coupling constants, these equations are 
well defined only in a cutoff field theory. Consequently, 
for both of the field-theoretic models discussed, we con
struct a  cutoff version by introducing photon or meson 
regulator fields with mass Л. In both cases, the cutoff 
prescription allows the usual renormalization program 
to be carried out, so that the bare masses and couplings 
and the wave-function renormalizations are specified 
functions of the renormalized couplings and masses, 
and of the cutoff A. In the cutoff field theories, it  is 
straightforward to prove the valid ity  of Eqs. (2) and
(4) for the unrenormalized quantities; this is our 
principal result. From Eqs. (2) and (4) we obtain 
exact low-energy theorems for the matrix elements 
(2-у[2г«оУ'|0) and (2y  | ( —MiVfo),r |0); the latter of 
these yields the r° —► 2y  low-energy theorem discussed 
in I.

Having summarized, in a very condensed way, our 
method and results, we now turn to the details in the 
various models.

A. Spinor Electrodynamics

We consider first the case of spinor electrodynamics, 
described by the Lagrangian density

£ (*) =ф(х)(гд—т 0)И*) —iF^(x)F‘"(x)
—е (ф(х)у,\р(х)А“(х ] , (5)

Fu (x) -  д^4 „(x) — d,A , ( * ) ,  a = 7 “d„.

We introduce a cutoff by modifying the usual Feynman 
rules for electrodynamics as follows.

(i) For each internal fermion line with momentum 
p  we include a factor i ( p —mo+ie)~l and for each vertex 
a factor —«(O’(i, with mo and «с the bare mass and charge. 
For each internal photon line of momentum q, we replace

Km, 3. (a ) Two-vertex photon vacuum polarization loop, (b) 
Larger vacuum polarization loops, (c) Vertex and self-energy 
parts which are made finite by the photon propagator cutоtf and 
gauge invariance of loops.

the usual propagator — ig»,(?*+i£)-1 by the regulated 
propagator

/~1 1 \ - i g „  —Л1
- i g j ------------------------ I ------------------------- • (6)

\9s+t£ q*—Л5+ « /  q '+ it  (?’ — A’ + i«

(ii) Let П „(2)(}) denote the two-vertex vacuum 
polarization loop 3 (a )]

n„«>(?)

d lk г  1 1 ”]
------ Trj 7„--------------- 7,------------------  . (7)
(2 ir)* L k—m o+ it k-\-q—ma+te-

Wherever Пг, (!)(д) appears, we use its gauge-invariant, 
subtracted evaluation”

n ./ , >(9) = (? r f ,- f^ > )n «> (?1) > П <»(0)=0. (8)

All vacuum polarization loops with four or more vertices 
[Tig. 3(b )] are calculated by imposing gauge invariance; 
this suffices to make them finite without need for further 
subtractions,

(iii) As usual, there is a  factor f  dH/Qx) 4 for each 
internal integration over loop variable I and a factor
— 1 for each fermion loop.

(iv) We use the standard, iterative renormalization 
procedure1 to fix the unrenormalized charge and mass 
«и and mo and the fermion wave-function renormaliza
tion Zi as functions of the renormalized charge and 
mass e  and m  and the cutoff A. For finite A, the renor
malization constants eo, mo, and Zi will all be f in ite. 
The reason is that regulating the photon propagator 
(plus gauge invariance for loop») renders finite a ll vertex 
and electron self-energy parts and all photon self
energy parts other than Пр,<2). [Examples of such ver
tex and self-energy parts are given in Fig. 3 (c ) .] The 
self-energy part П ^(г) has already been made finite by 
explicit subtraction.

(v) We include wave-function renormalization fac
tors and Zsi n  for each external fermion and photon 
line. (We recall that Zз=eVeo, .)

This simple set of rules makes all ordinary electro
dynamics matrix elements finite. We m ay summarize 
the rules compactly by noting that they are the Feyn
man rules for the following regulated  Lagrangian density:

JG*(z) = £ 0RW+<CrK(* ) ,
Хоя (ж) —т 0)ф(х) —iF f ,(x)F>l,(x)

+ i F „ R(.x)FK̂ x )  -W A *{x )A **{x ) , (9) 

£ i* (x ) = —«оФ(х)у^ф(х)1А>‘(х)+А Я,1(*Л
+ C (!l[F P (* )+ ^ f, 'iW ] [ ^ ( ^ 4 - f ' ' ' W ] ,

where A is the field of the regulator vector meson of 
mass A, and F„rR(x) =*d,A,R( x ) - d ,A ,R(x) is the regu
lator field strength tensor. The regulator field free

* Bjorken and Drcll (Ref. 1), Chap. 19.
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Lagrangian density is included in £оя (ж) with the op
posite sign from normal; hence according to the canon
ical formalism, the regulator field is quantized with 
the opposite sign from normal—that is,

whereas

[А *(*),А ,Ы ]1 ••-»•= —4w S*(*-y )

—giving the regulator bare propagator the opposite sign 
from the photon bare propagator. The interaction terms 
in £ i b(i ) treat the regulator and the photon fields 
symmetrically. The term proportional to C(s) is a 
logarithmically infinite counter term which performs 
the explicit subtraction in the two-vertex vacuum 
polarization loop П*/15, so that П<!)(0) =0.

Having specified our cutoff procedure, we are now 
ready to introduce the axial-vector and pseudoscalar 
currents j„ s( i)  and and to study their properties. 
First, we must check whether all m atrix elements of 
these currents are finite when calculated in our cutoff 
theory. The answer is y e s , that they are finite, and

Yh r j

I*jo. S. A rb itrary Feynm an 
am plitude involving j r*.

our attention first to the type-(a) contribution pictured 
in Fig. 6(a), which can be w ritten

1In-1 l - l  Г
E П 7
i - i  j - i  L

(Л-
1 1

Fig. 4. Basic loops involving one axial-vector or one 
pscudoscalai vertex.

follows immediately from the fact that all of the basic 
fermion loops involving one axial-vector or one pseudo- 
scalar vertex (Fig. 4) are made finite by the imposition 
of gauge invariance on the photon vertices, without the 
need for explicit subtractions. Thus, we can turn im
m ediately to the problem of showing that Eq. (2) is 
exactly satisfied in our cutoff theory.

Let us consider an arbitrary Feynman amplitude 
involving j / ,  with 2/ external fermion and b external 
boson lines (Fig. 5). Proceeding as in 1, we divide the 
diagrams contributing to the Feynman amplitude into 
two categories, which we call type (a) and type (b). 
The type-(a) diagrams are those in which the axial- 
vector vertex 7,76 is attached to one of the j  fermion 
lines running through the diagram; a typical type-(a) 
contribution is shown in Fig. 6(a). B y contrast, the 
type-(b) diagrams are those in which the axial-vector 
vertex 7 /ув is attached to an internal closed loop; in 
Fig. 6(b) we show a typical contribution of type (b). 
In both Figs. 6(a) and 6(b), we have denoted by Q the 
four-momentum carried by the axial-vector current.

To study the divergence of the axial-vector current, 
we m ultip ly the m atrix element of by iQ“. We turn

p + p j —tne
— ™ бт т гp + p k —ma P + p k - ■m о

X
2n—1 I

П  I '*-*+1L
,сл_

p ' + p i - m  0J  

Q = P ~ P \

Q = p - p '

I7 ( !» )( . . •) , ( 10)

y tl) yW уШ  X  У 12" ’ ,
P + P. P*Pb P'*Ph Р#4А И  P^ P2nH1 A j - ___ - ■ —

Mil v-w,
2f-2 (o) b

2f b

\w\-\1 HL_тш тттш ш т

F ig. 6. (a) Contribution to Fig. 5 in which the axia.1- , 
vertex i3 attached to one of the / fermion lines running г В 
the diagram, (b) Contribution to Fig. S in which the axia -v 
vertex is attached to an internal closed loop.
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where we have focused our attention on the line to 
which the у^уь  vertex is attached and have denoted the 
remainder of the diagram by (■■■). As shown in I, when

we multiply the propagator string in Eq. (10) by iQ* 
and do an algebraic rearrangement of terms, we obtain 
the following identity:

a" - 1 к- i  Г 1 И 1 1 2я —l г  1 “I
iQ* T, П  7 (л-------------- It'* ’-------------- Y„7s------—  П  I 7 (л--------------|7(,’°

t-i У- i L p + p j —mo-l p + p t —ma p' + pk—m 0 j-*h L p ' + p j—m 0J

2n-l *-1 f“
* £  П  ! 7 <л

2n—I r

^  ± i]  r ; --------; r — ;------------- - l im oy s - ------------- П  | У(л~------------ Г
fc_1 >“ l I- P~rPi—Wo-J P~rPk~vto p  ~\~pk—tno >**+* L P'-\~pj—m oJ

1 1 2n—]
------ 17« П
>j—mo J  >-»

2n—1 Г
-* П  I y ls)-

L p + p t—mt-
- l r « .  ( i i )

Since the integrals over the four-momenta of the photon 
propagators joining the fermion propagator string 
to the “blob” in Fig. 6(a) (i.e., the integrals over 
p\,m ‘ are all convergent in our regulated field
theory, i t  is safe to do the algebraic manipulations im
plicit in Eq. (11) inside  the integrals. The first term on 
the right-hand side of Eq. (11) gives the type-(a) con
tribution to the Feynman amplitude for 2im<tjs, cor
responding to replacing УрУь by 2гтауь in Fig. 6(a). 
The two remaining terms in Eq. (11) are the usual 
“surface terms” which arise in Ward identities from 
the equal-time commutator of ja6 with the fields of the 
external fermions of momenta p  and p'.‘ Thus, as far 
as the type-(a) contributions to the Feynman amplitude 
are concerned, the divergence of j »  is simply 2 im 0j b, 
with no extra terms present.

We turn next to the type-(b) contribution pictured 
in Fig. 6(b), which we write as

L(Q;y/Yi,Ph 
L(Q\ Г ; • - ,p2A~i)

d*r Tr
г» t - i r
E l i  7
i - i  L 

1
Ч-], — W o-Ir + p j —ma

Xy<»-
1

r+pk—m a r + p i - Q - m o

X П  - i - -------1 ) ,  (И )
y-*+iL т+р, — Q—

where we have focused our attention on the closed loop 
and have again denoted the remainder of the diagram 
by (■■■)■ As was shown in I, some straightforward 
algebra implies

L{Q\ iQ ^ r f s! pi, ■ ■ - ,p2« -1)
= L(Q; 2im0y s ;  pi, - - ■,Pzn-i)

i  [ d * r T r l y t  П  f y uy------------- 1
J  I i—• L r+pj—mo-l

In
-7 6  П  j 7 

>—i L
(Л-

— ii- i — O  — t n n J  Ir + p j - Q —mo
(13)

For loops with я̂ > 2 (i.e., with four or more vector 
vertices) the residual integral in Eq. (13) is sufficiently 
convergent for us to be able to make the change of 
variable r —*r+Q  in the second term, causing the two 
terms in the curly brackets to cancel. Thus, the loops 
with n> 2  satisfy the usual Ward identity

■,p2*-l)
~L(Q; 2гтауь\ pi,- ■,pi*-i) . (14)

Again, since the integrals over pi, ■ - •, p j«_ i are ail 
convergent in the regulated field theory, the manipula
tions leading to Eq. (14) can all be performed in s ide 
these integrals. This means that the type-(b) pieces 
containing loops with « > 2  all agree with the usual 
divergence equation d‘,j r t(x) — 2 imn j6(x).

Finally, we must consider the case n = 1, that is, the 
axial-vector triangle diagram illustrated in Fig. 7. As 
was shown in I, when the triangle is defined to be gauge- 
invariant with respect to the vector indices, i t  does not 
satisfy Eq. (14) for the axial-vector index divergence. 
Instead, there is a well-defined extra term left over 
which comes from the failure of the two terms in the 
curly brackets in Eq. (13) to cancel. The analysis of I 
shows that the effect of the extra term is to add to the 
normal axial-vector divergence equation the term

X [  (15)

- Y. Takahashi, Nuovo Cimento 6, 370 (1957).
Fig. 7. Contribution of the axial-vector triangle 
diagram to the Feynman amplitude of Fig. 5.
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To summarize, our diagrammatic analysis shows that 
the axial-vector divergence equation in the regulated 
field theory is

+{<ч/ 4*)[F(r(x)FRr,,(x) + F Rt'(x)FT'( x)
+ P Ri4x)F*’>(x)-]4 . n . (16)

Equation (16) is identical with Eq. (2), apart from the 
terms involving FR which arise from our explicit in
clusion of a regulator field. The crucial point is that the 
coefficient of the anomalous term is exactly ao/4ir and 
does not involve an unknown power series in  the coupling  
constant coming f r om  higher orders in  perturbation theory.

The diagrammatic analysis which we have just given 
may be rephrased succinctly as follows: If we use the 
regulated Lagrangian density in Eq. (9) to calculate 
equations of motion, and then use the equations of 
motion to naively calculate the axial divergence, we find

d* j , l (x)= 2 i m ^ ( x) . (17)

Extra terms on the right-hand side of Eq. (17) can only 
come from singular diagrams where the naive deriva
tion breaks down. In the regulated field theory, all 
virtual photon integrations converge and therefore, can
not lead to singularities giving additional terms in Eq.
(17). Hence breakdown in Eq. (17) (if it  occurs a t all) 
must be associated with the basic axial-vector loops 
shown in Fig. 4. But, as we have seen, the axial-vector 
loops with four or more photons satisfy Eq. (17), so 
the basic triangle diagram is the on ly  possible source of 
an anomaly.

Having derived our basic result, we turn next to the 
ow-energy theorem for 2 im^jb(x) which is implied by 

Eq. (16). Taking the matrix element of Eq. (16) be
tween a state with two photons and the vacuum gives

F(ki kt)=G(.k1 kt)+B[ki kJ) , (18)
where

= (4 W »o )- ,/,*,f*,'«i**€1* '€ ,r.,F (* 1 * , ) ,
{y (hi, *i)-y (A,, t,) 1 1 0)

= №ofe20̂)“1J5<!i{fe2Tei*'t2‘ ' <tr,pG(/fe1' i s) , 
(ao/4x)(7(*l)tl)Y( t J)ts) | (F t '+ F Rl ’ )(F ^ я,р)«(. , р|0) 

= (4*io*»)“ u ,* 1«*l '« i , ' . , * '4fr. ^ ( * I- kt) . \ l9)

We wish, in particular, to study Eq. (18) a t the point 
* i k t - 0 . As has been shown, by Sutherland and 
Veltman,’ F(ki-kt) *. k y  ki, so the left-hand side of Eq
(18) vanishes a t giving

С(0) = - Я ( 0 ) .  (20)

There are two types of diagrams which contribute to 
E(ki-kt), as illustrated in Fig. 8, where we have used 
the symbol ® to denote action of the operator

’  D. G. Sutherland, Nucl. Phys. B2, 433 (1967),
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F ig. 8 . (a) Diagram in which the operator (ao/4rr)(F**+PKt€) 
X (P " + F a ")e{, TJ) denoted b y ® , attaches d irectly to the external 
photon lines, (b) Diagram in which there is a photon-photon scat
tering between ®  and the two external photons.

(aa/4v)(Ft"+FRt'')(F'i‘+ F R’l’) t l . TI,. In the diagram s in 
Fig. 8 (a), the field strength operators attach  d irectly 
onto the external photon lines, w ithout photon-photon 
scattering. The effect of the vacuum  polarization parts 
and the external-line wave-function renormalizations 
is to change cuo to a, giving

Я (0 ) ‘‘ ) = 2 а Д . (2D

In the diagrams in Fig. 8(b), there is a photon-photon 
scattering between ® and the free photons. As a result 
of the antisymmetric tensor structure of the anomalous 
divergence term, the vertex ® is proportional to ki+k°. 
Also, the diagram for the scattering of light b y  light is 
itself proportional to kikt, since photon gauge in v a r ia n c e  
implies that the external photons couple through their 
field strength tensors.8 Thus, the diagrams in Fig. 8(b) 
are proportional to iiij(/fei+/fei) and are of higher order 
than the terms which contribute to the low-energy 
theorem, giving us

Я (0 ) ‘*>=0. (22)

Combining Eqs. (20)-(22), we get an exact low -en er gy  
theorem for the operator 2tm 0j 6,

G(0) = —2a/ ir. (23)

So far in our discussion we have kept the cutoff Л 
finite, so that G(0) is a matrix element calculated with 
our modified Feynman rules. Let us now indicate 
briefly the form which Eq. (23) takes when the cutoff 
Л becomes infinite. A straightforward analysis of m atrix  
elements of the operator j 4 shows that divergences as 
A —» oo are associated on ly  with the electron propagator

* *• Kaiplus and M. Neumann, Phys. Rev. 80, 380; 83, 776
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Sr'(p ) ,  the photon propagator D /(q)„ ,  the photon 
vertex part Г*(p,p'), and, in addition, the pseudoscalar 
vertex part T6(p,p'), defined by

S r  (p )Tb(p ,p ’) S r ( p ' )  = — j d 4xd‘y  e i r '*£-ip'"*

Х (Т (ф (х )т ф ( у ) ) ) о .  (24)

In m atrix elements of m o j6, the vertex part Г6(p,p') 
will d early  always occur in the combination m<tCs(p,p ') . 
Let us now introduce the usual electrodynamic re- 
normalizations

Z c 1S F'(j>)=SF'(p ) ,
Z% r  г'{я)ц>,

Z{T,{p,p')=T,(j>,p'),
Z i= Z t ,  ea=Zi~llte ,

plus the usual wave-function renormalizations on ex
ternal lines. The effect of these rescalings is to replace 

Tl (j>,p'), wherever it  occurs, by maZiTs(p,p'). But, 
as we will now show, this latter quantity is f in ite  (i.e., 
cutoff-independent as A —»°o). To see this, we note 
first that Tb(p,p') is m ultiplicatively renormalizable9; 
therefore, if ZiV6(p,p ) is finite, then so is ZiT5(p,p'). 
Next, let us write the Ward identity for the axial-vector 
vertex,

(p - р ‘УТДр,р>)=7таТ’‘(р,р'} - i ( * 0/4*-)F(p,p')
+ 5 F' ( p T l , (26)

where Г ,1 and P  are defined by replacing j 6(0) in Eq. 
(24) by j „ B(0) and ’ f(0)e£ffrs, respectively. When
p  —p ’, the left-hand side of Eq. (26) obviously vanishes.
I t is also easy to see that P(p ,p )  =0 as a  result of the 
antisym m etric tensor structure of this term. So the 
axial-vector W ard identity a t p = p '  becomes the simple 
equation

0 = 2СТоГ‘0>,^)+5/0>)-1Т 6-Ь 55/ (/ -)-1 , (27)

which immediately implies that mtZtT6(p,p) is finite.
If we introduce a renormalized pseudoscalar vertex 
part by writing

moZ irL(p,p') = m f s(j>,p' ) , (28)

then Eq. (28) m ay be rewritten as the equal-momentum 
boundary condition

0 = 2тГ'(р,р) + S , ' ( p ) - ly s - H t3 ; ( p ) - ' . (29)

The results of this analysis m ay be summarized as 
follows: If we calculate an arb itrary matrix element of

• We recall that multiplicative renormalizability of the usual 
vector vertex Г,  follows from the fact that Г, satisfies the integral 
equation ГР= 7 Р—J'TgSp S r'K  [se e  Bjorken and Drell (Ref. 5)].
Mare generally, G. Preparata and W. I. Weisherger pPhys. Rev.
175, 1965 (1968)] have observed that in spinor electrodynamics 
the vertex To(j f ,pf) of with 0 a product of 7 -matriceSj
satisfies the integral equation Го = 0 —J 'T oSf'Sp 'K, and there
fore is multiplicatively renormalizable.
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mujs in our cutoff theory, and then let A —» « , we get 
the same answer as if we calculated all the skeleton 
diagrams for the matrix element and replaced the elec
tron and photon lines and the vertex parts appearing 
in the skeleton by the renormalized quantities S / (p ) ,  
D p‘(q)»,, ^rip,p'), and mVb{p,p'). These quantities can 
all be calculated without recourse to cutoffs by using 
dispersive methods; in the case of the pseudoscalar ver
tex the subtraction constant in the dispersion relation 
can be fixed by using Eq. (29) as a boundary condition.

Returning to our low-energy theorem, we see that in 
the limit A —» »  the pseudoscaiar-photon-photon 
matrix element G(ki kt) becomes the renormalized 
matrix element G(ki - i« )  calculated by the recipe we 
have just outlined, and the low-energy theorem tells us 
that

6 (0 ) = - 2  а/ж. (30)

In other words, all order a 1, a 3, ■■■, contributions to 
fj(ii-A s) vanish a t ki-ki=*0. In the next section, we 
will verify by explicit calculation that the order a? terms 
do cancel.

In conclusion, we remark that the arguments which 
we have given in this section for spinor electrodynamics 
apply, with only trivial modification, to the neutral- 
vector-meson model of strong interactions. In particular 
the low-energy theorem analogous to Eq. (23) will hold 
to all orders in both a  and the neutral-vector-meson 
strong coupling.

B. a  Model

We turn next to the case of Gell-Mann and Levy’s 
a model.11 As in I, we consider a  truncated version of the 
a model which contains only a  proton (ф), a  neutral 
pion (ir), and a scalar meson (<r), but omits the charged 
pions and the neutron. Our exposition will differ some
what from the previous case of spinor electrodynamics, 
where we fi rst  introduced a cutoff procedure to remove 
infinities from the theory, and then afterwards pro
ceeded to discuss the properties of the axial-vector cur
rent. In the case of the a  model, we will have to consider 
the axial-vector current s imultaneously  with our intro
duction of the cutoff, in order to ensure that the cutoff 
preserves the usual PCAC equation [E q. (3 )] when 
electromagnetic interactions are neglected. Once we 
are sure that the axial-vector divergence equation in 
the absence of electromagnetism has no abnormalities, 
we can then determine how Eq. (3) is modified when 
electromagnetic effects are taken into account.

We begin by writing the Lagrangian for the a model 
and discussing some of the formal properties of this 
theory. We have

£ =tp[id—Ga(go~1-{-<r-{-iiryb)Jpl'
+X„[4CTa-f4£0ff(a’ + ^ ) - h ^ V - b - a)2]
+ ^ o 2[2giTJ<r+tfa+ ira]

+ * [ ( * r ) , + W , ] - W ( * - a + * s ) ,  ( 3 1 )
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where we have chosen the fully translated form of the a 
model with

(<t)o«=0 (32)

' ( i+ H n * # .
' Я—®(«0_ ,+<r),

An important feature of the Lagrangian  density in
Eq. (31) is that it  is no l  normal-ordered; the omission
of normal ordering is essential in order for the axial-

„ , , , . , , vector current to satisfy  the PCAC equation (34). To
to all orders of perturbation theory. The axial-vector sg£ ^  ,et us cons;der the eflect of normal ordermg on
current is generated by the chiral gauge transformation tfae chiral_invariant meson-meson scattering term ,

£ w v — m +£лглг ' 3) + ^ и м (<) i 
^  £ jf ir ( , ) =4«rs , £ jf ^ ( , )=4goff(o-s+Tr‘ ) ,  (40)

f i W ^ g o V ’ + w 5) 1.

The normal-ordered forms of the two-, three-, and four- 
meson scattering terms are defined by

(: JEv«»>: >o = ( (d/dv) : i W ’ >: >= 0 ,
( : J W « : >o= ((Э/Эег):£  : >o = ( W d x ) : £ м м <J>:>o

=  { (д г/ д а г) : £ ы и : )o 
= {{д/да) (d/dir) : ■ )o

T-

4-<r-go~1 +<r -+ go '+<r+VT, 
giving

j V -  —i£/S[S>■*) ,

f r j , 6=-b£./lv = -<Jil '/g 0)x . (34)

The terms in Eq. (31) have the following significance: 
(i) G« is the unrenormalized meson-nucleon coupling 
constant; (ii) the quantity g0 is related to the bare 
nucleon mass m<t by

Go/go“ Wo, (35)

and m ay be expressed directly as a vacuum expectation 
value,

l/ go = < ^ J d ' x  y(:t),7r(0;)j| ; (36)

=  ( (Э * / Л г* ) :£ и м <8):> о = 0 ,

( : JEj/j/^:)o = ((3/da) :£*rw )°= ((^/Зх) :£мм^ ' ■ )o 
= ((Э,/3<гг):£ лги ( ,) :)о=  • ■ •

= ((3V airs):£vA fC4):)o = °-

These conditions m ay easily be satisfied b y  introducing
(iii) w ! is the bare meson mass which appears in the bare counter ‘ «I™5 t0 remove the vacuum  expectation values 
propagators Д r ’ (q) and Д r'{q), var*ous derivatives,

:£лш (2>: = 4eJ—(4<jj )o, 
■£мм{г)- = 4g0a ^ + x 1) —4go<r(3<rs-bxl )o 

—4go(^(‘T2+ ’r5))°) 
:£ v * <4>: =go, (<r5+ ’r2) ’ —4^о2т{.7(<т! +1г2))о (^2)

- 2 g 0V (3ff1+ ir, )o-2gaV(<rs+ 3T , )o 
-g o J< (^+ ’r, ) , )o+2gos(^ )o (3a, +ir*)o

+  2goS(5rJ)o(ffi  +  3lTJ)o ,
giving

■ £nn' = £ w  —4goff(3(T5+ x s)0—4g0V(a(ff1+5r5))o
— 2 g 0V 5(3ff, + x J )o — 2go1x ! (ffJ + 3 T r, )o

+ co n st. (43)

Д ^ * (« )  = 1/(?*-м 1, + « ) ;  (37)

(iv) the term XoC4<r, -|-4goix(<75-i-x5)+go! (i7s-|-xJ)1]  is а 
chiral-invariant meson-meson scattering interaction; 
and (v) the term i^o, [2g0_1<r-f-ff2+jrs]  is a  chiral-in
variant counter term  which is necessary to guarantee that

(8£/«ff>0=a,(i£/a(ax<7))0= 0 , (38)

as is required by the Euler-Lagrange equations of 
motion and translation invariance. Equations (32) and 
(38) fix /m! to have the value

^0, = (GQg < ^ -X o[4go, (3<J! + x J)+4g„J<T(<TJ+ jr, ) ] ) o. (39)

The eflect of до2, which is formally quadratically di
vergent, is to remove the “tadpole” diagrams of the 
type shown in Fig. 9, so that the condition (<t)0=0 is 
maintained in each order of perturbation theory. I t  is 
easily seen that the до1 counter term simultaneously 
removes the quadratically divergent parts of the x- 
and ст-meson self-energies, so that the remaining bare 
quantities appearing in the Lagrangian (Go,go,jii), as 
well as the wave-function renormalizations, are at most 
logarUhmically divergent.

F ig. 9. Tadpole diagram.

Clearly, the normal-ordered interaction : &mm '■ w ill be 
chiral-invariant only if the counter terms combine to 
be proportional to <Ts+ ir, +2<r/g0, that is, only if

( З ^ + Т ^ - ^ + З х * ) ,  = (3*5+ir*>n+g0(<K<r, +ir*)>0:

which requires
(44)

(45)(u, )o=(ir>)o,
(<r(<7,+ ’T1) ) o = 0 .

These conditions would be satisfied if x  and a  were free 
fields, but they are nol true in the presence of the in ter
action terms of Eq. (31). Thus, the normal-ordered 
form \Stuw. is not invariant under the chiral gauge 
transformation of Eq. (33) and, if used in the L ag ran 
gian instead of £uu ,  spoils the PCAC equation. The 
w ay out of this difficulty consists in noting th a t the
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normal-ordering conditions of Eq. (4) are not necessary 
for the consistency of the Lagrangian field theory of 
Eq. (31); all that is necessary is the single condition 
(5J2/6it)o=0. As  we have seen, this condition can be 
satisfied by including the chiral-invariant counter term 
proportional to цо1, without any use of normal ordering 
in the Lagrangian,

The fact that removes the quadratic divergence 
from the ir and a  self-energies can be expressed in a 
simple equation, which will be very useful in what 
follows. Let Д r ’ '(q) denote the full pion propagator, 
given by

d*x e ' i z(T(x(x)n(0)))a

■1/C3S-**12- S ' ( ? 5) ] , (46)

where 2 r ($!) is the pion proper self-energy. According 
to Eq. (46),

A f " ( 0 ) ----- l/|> 2+ 2 '( 0 ) ] . (47)

An alternative expression for Д m ay be obtained 
by substituting the PCAC equation (34) into Eq. (46),

Mlг j

=— q* f « '• '(T ’OVfcMO)))*
Mi2 J

ito  r
-------I <i,* e _f' ' IO o l (*),ir(0)]|„_ii)o, (48)

which at q =0 becomes

tga f  — I 
A ^ ''(0 ) = ------ I d>x (Cjo'fcX’K0) ] !  zc-o)o-------- . (49)

Mi2 J  Mi
Comparing Eqs. (47) and (49), we obtain the desired 
result

2*(0) “ 0. (50)

Since the differences 2 т(г/г) —2 г(0) and 2 '(^ ! ) —2 r (0) 
are only logarithmically divergent, Eq. (50) tells us 
that the ir and a  self-energies 2'(<?2) and 2 '(^ г) are them
selves only logarithmically divergent.

So far, we have discussed the a  model in the absence 
of electromagnetism. To include electromagnetism, we 
add to the Lagrangian density of Eq. (31) the terms

— —e вру A*. (51)

We expect, because of the presence of triangle diagrams, 
that electromagnetism will modify the PCAC equation 
by the addition of a  term proportional to F*rF , f ttr , , . 
However, it is easy to see that all of the other formal 
properties of the a  model which we have derived above 
are unchanged. In particular, Eq. (SO) is still valid in

the presence o f  electromagnetism, since the antisymmetric 
tensor structure of the extra term in the PCAC equation 
causes the contribution of this term to Eq. (48) to 
vanish a t q=0.

This completes our survey of the formal properties 
of the a  model. We proceed to introduce a cutoff (with 
electromagnetism included) by modifying the usual 
Feynman rules as follows.

(i) For each internal fermion line with momentum p 
we include a factor i ( p —«е+ г*)-1, »io=Go/go.
For each internal photon line of momentum q, we re
place the usual propagator — ̂ Д д ’ +ге)-1 by the regu
lated propagator

- J ' ---------
\<72Н-г« q* — А2+м/ q2-\-i€\q2—

(52)

For internal ж o r  a  lines, which are not attached al either 
end to the axial-vector current, we replace the usual 
propagator i(q2—m z+ i«)_1 by the regulated propagator

\дг—̂ 1г-\-ге q1 —Л! -Не/

i / —A 5+ M i2 N
=---------------1------------ r |. (53)

j 2—f*iJ+«e '9 г _ Л2+ « /

For the photon-nucleon, meson-nudeon, and meson- 
meson vertices, we include the factors shown in Fig. 10, 
with eo, go, Go, and Xo the appropriate bare couplings.

(ii) For the axial-vector-current-nucleon and axial- 
vector-current-meson vertices, we include the factors 
shown in Fig. 11. For the pion propagator immediately 
following the axial-vector-current-pion vertex, we use 
the unregulated  propagator t(gJ— ̂ iJ+ ie)_1, while we 
replace the product  of pion and a propagators im 
m ediately following the axial-vector-current-pion-a

-----  - *----  . r
--- — - tr

V E R T E X F A C T O R

Y T<T \p\p - i G ,

ir if/ip - - p G *Г5

trcr - - - - - 0 i X e

& trtj --
(Г7Г1Г a i «3=x .

crtr a a

1Г 1T ТГ7Г 24io|Xc
CTO- TT TT e l d * X .

1'iC. 10 . F e y n m a n  ru les for th e  в m o d el: p h o lo n -n u clco n , m csun- 
n u cleon , an d  m eson-m cson v ertices.
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vertex by

q ' - r f + U  ( q + Q ) ' - r f+ i '

ql —A’ +te (j+ Q )5—AJ+ i«
(54)

" ' O '
O '

(iii) We use the finite, renormalized values for all of 
the superficially divergent nucleon loop diagrams illus
trated in Fig. 12. These diagrams fall into six classes:
(a) diagrams with external a or т  lines only, (b) dia
grams with one axial-vector vertex and external meson 
lines, (c) diagrams with external photon lines only,
(d) the axial-vector-photon-photon triangle diagram,
(e) diagrams with external photon and meson lines, and
(f) diagrams with an axial vector vertex and external 
photon and meson lines. In Appendix A we give explicit 
renormalized expressions for the diagrams of types (a) 
and (b), and show that they satisfy the usual axial- 
vector Ward identities. The diagrams of type (c) (pho
ton vacuum polarization loops) were considered in our 
discussion of spinor electrodynamics. The diagrams of 
types (d )-(f) are made finite and unique by  calculating 
them in a  gauge-invariant manner. As we have empha
sized, the triangle diagram of type (d) does not satisfy 
the usual axial-vector Ward identity. We show in Ap
pendix A that the axial-vector^photon-photon-meson 
box diagram [F ig . 12(f)] does satisfy the usual axial- 
vector W ard identity.

(iv) We take account of the counter term proportional 
to in the following way. First, we omit all <r-meson 
tadpole diagrams (Fig. 9). (The recipe in Appendix A 
sets the basic nucleon loop tadpole equal to zero, but 
now tadpoles involving virtual meson integrations are to 
be dropped as well.) Second, when calculating pion 
self-energy diagrams E '(qs) involving virtual meson 
integrations, a  subtraction a t q =0 should be performed 
to ensure that

Z '(0 )= 0 . (55)

[W e will check explicitly below that the derivation of 
Eqs. (46)-(50) is valid in the cutoff theory.] This sub
traction eliminates the formal quadratic divergence 
(which has become an actual logarithmic divergence in 
our cutoff theory) and leaves only formal logarithmic 
divergences, which are rendered finite by the cutoffs in

И о
r-k ' - k

Л  Л
r . k , /  \ f - k ,  T w w r  r * k i /  V - » !

1Z TA ,  . / - A *

' i — i1 T l
,+k, | L*k,.kt.ks r.k,| |Ftk,»k,*kj r.k.j ^М ч-кэ

x l—r— к  1— :—Li ' '
♦ pumuiDiloni ♦

T * I I T  T a o a a
(a)

'» k!

4- permulatiani 
T»trfftf

(«.%>

(b)

lc) id)

(•> (O

--------- - ■ A X I A L  C U R R E N T
V E R T E X  F AC T O R

g".°M

-iq^-Uq + Q)̂

Flc. 11. Feynman rules for the a  model: axial-veclor-current- 
nucleon and axia]-vector-current-meson vertices.

F ig. 12. Superficially divergent nucleon loop 
<r model. The six categories are described in the text unm 
following Eq. (54).

the meson propagators. The a self-energy is to be calcu 
lated from the pion self-energy b y  use of the equation

2*(g’) =[Z*(9* ) - 2 *(0) ] + 2 ' ( 0) ;  (56)
the quantity in square brackets is only form ally 
rithmically divergent, and hence finite in our cuto 
theory. All other diagrams involving v irtu a l meson 
integrations are autom atically finite in the cuto 
theory. . .

(v) There is a  factor _/W/(2ir)4 for each in terna 
integration over loop variable I, a  factor — 1 f°r eaC 
fermion loop, a factor \ for each closed loop w ith one 
or two identical meson lines [F ig . 13 (a)], and a  factor
S for each closed loop with three identical meson lines 
[F ig . 13(b)].

(vi) We use the iterative renormalization procedur
“  We mike no attempt to promt renormalizability of the »  

modM. RooormalizabUity of the <r model (with only the m 
nresent) Ъм recently been discussed by B. W . Lee, Nucl. У 
^9 , 64-9 (i969), and renormalization of the closely relate' 
theory has been analyzed by Т. T. Wu, Phys. Rev.
(1962).
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to fix the unrenormalized quantities eo, go, Go, \a, 
fno^Go/go, fa, and the wave-function renormalizations 
Zi (fermion wave-function renormalization), Z i1, Z f ,  
and Z3"r = (e/eo)1,J. For finite A, all of these will be 
f in i t e  functions of A and of the renormalized quantities 
e, g, G, Л, and ц, with ц  the physical pion mass. (Alter
natively, we can take the independent physical quan
tities to be t, m, G, Л, and ц, with m  the physical nucleon

182

mass.) We include wave-function renormalization fac
tors Zi'1*, (Zi*)111, (Zi”)in, and (Z]7)111 for each fermion 
pion, tr, and photon external line.

As in the case of spinor electrodynamics, the cutoff 
rules in the a model are compactly summarized by the 
statement that they are the Feynman rules for the 
regulated Lagrangian density11:

£ Ji( * )= ^ [ t a -G 1,(go-1+<r,’+ jT r7 S) > + ( f (,)+X.)[4(<rr) J+ 4 ^ ,' ( ( 0 J+ ( ’rr) ,)+g<.5((<rT)J+ (x r) 3) J]
+ h E ^ i ( d T n '+ ( d v Tn + h ( F t*'+rf)L2g<r'<r'r + (< T T y + (* T ) ' l+ i l ( d * y + ( d c ) 4 -W (* 2+ ° i)
-K (*> rRy+ (d ,T*y]+ W l( ir* y+ (< T ‘ y ] - i F l. J> '+ iF ' . ‘ F*>’ -№ A '*A * '‘- e<fh l,t(A'‘+AR'‘)

- f  C(,) (F^+F,,*) (F*'+Fr “’) , wT=ir+I я , ar = a + aR. (57)

The axial-vector current, generated by the gauge trans 
formation

♦ (1+ § tw )^ ,
r —n r —n(go_1+<0, 

go~l -\-<T —► go_1+ir4-I«r , 
irB —» irR—vaR, 
ая —» aR-\-virR,

(58)

— S£R/S(d^) =yHyfyt<//+ad,ir—irdra+go  'df ir 
-< rRd , * R+ T Rd r<r*+E™

X (trr Sf trT—r Tdf a T+gtTid f irr ) . (59)

LO O P

! i

FACTO R

i  > <ч ___У ч

f -

(•)

т— ------ - 4  f- -

(Ы

Flo. 13. Meson loop diagrams and corresponding 
Bose-symmetry factors.

11 Since («■>() = <<rK>0 = 0, the conditions (i£/ba)a = (l£/l<rR)c = 0 
are identical

11 The modified Feynman rules for meson propagators attached
to the axial-vector vertex [item (ii) above] follow directly from 
Eq, (59). The pion propagator immediately following the axial- 
vector-current-pion vertex is unregulated because go appears 
in Eq. (59) without an accompanying 1Г'Я,тк term. Similarly, 
the product of meson propagators following the axial-vector- 
current-picn-ff vertex is regulated as in Eq. (54) because the 
bilinear terms in Eq. (59) have the difference-of-products form 
e d , r —Td,tr — (a Kd,ir‘—г кЯ1,<гя) .

The counter terms proportional to Dm , Ew , and F (,) 
perform the explicit subtractions in the loops illustrated 
in Figs. 12(a) and 12(b), just as C (,) provides the explicit 
subtraction in the basic vacuum polarization loop (see 
Appendix A for details).

We are now ready to calculate the divergence of the 
axial-vector current in our cutoff theory. One w ay to 
do this is to proceed diagrammatically, as we did in 
Eqs. (10)-(14) in the spinor electrodynamics case. How
ever, because of the complexity of the a  model, this 
method will involve very complicated equations. There
fore, we will instead follow the second, more succinct, 
method used in spinor electrodynamics. We note first 
that calculation of the axial-vector divergence in the 
regulated a model by naive use of the equations of 
motion gives

d ' j , 1 = — S£R/Sv = — (ftiYgo)*'- (60)

Extra terms on the right-hand side of Eq. (60) can arise 
only from diagrams which are so singular that the W ard 
identities break down. However, since we have cut off 
the photon and meson propagators, all v irtual boson 
integrations are strongly convergent and cannot lead 
to singularities which are not present when the boson 
integrations are omitted. Thus, breakdown of Eq. 
(60) can only be associated with the basic axial-vector 
loops shown in Figs. 12(b), 12(d), and 12(f). (All other 
axial-vector loops have enough vertices, and hence are 
convergent enough, to satisfy the normal axial-vector 
W ard identities.) B y explicit calculation, we have found 
that of these diagrams, only the axial-vector-vector- 
vector triangle of Fig. 12(d) has an anomalous Ward 
identity, leading to the conclusion that, in the regulated 
a  model, the axial-vector-current divergence equation is

d > = -  (м1У Ы * + К « о / 4 ч г )(Я '+ ^ ')
X(.F'>+FR” )tt.„ .  (61)

This completes our verification that Eq. (4) is exact 
to all orders of the strong and electromagnetic couplings 
in the a model.
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From Eq. (61) a  number of consequences immediately and substitute Eq. (61) for » ( * ) .  Using Eq. (59) or
follow. jV5(*)> ajid the canonical commutation relation

(i) We can check the consistency of our cutoff Feyn- .
man rules by verifying that Eq. (55) is really valid in [3 <l*,(* )+ E (!)30irI,(*),* ,(0)]| *,-o = — i& (*) i \ '
the regulated theory. As in Eq. (46), we define , _ _  , .we still find the result A ," (0 )  = - l/ w J. The relation

Д,• ' ( » ) — * f  ̂ e->*(r(T(xV(0))>„ (62) between Д ," ( ? )  and the proper pion self-energy 2 '( ? г)
J  '  v 4 w "  ’ in the cutoff theory is given by

1 1 1 1 / 1  1 N 1 
A r " (? )  -i S'(<j>) +  2 - (9* )( - - -  ; ) S r({! ) -   

q * ~ ii i1 q '—fii1 g1—Mis g 1 — mi* \ g J — mi 3  — A * /  9 “ Mi

l  / 1  l  \ / 1 I n 1
+ --------:s -(g * )(---------------------V ( e * ) ( -------------- -— :  •

g1—/ii* \д*—ц\г q1 —Л1/ \gS—Mi 3 —A1/ 3 - Mi

l+ S 'f o ’Xg’ - A * ) - 1

9._ ^ l. + S ^ ) 0 i l » -A * )(3 l - A * r 1
(64)

so that

Д ," (0 )= -
1—2 '(0 )Л -‘

- д 1>-2'(0)(м1, - А ,)Л“1
(65)

and therefore Eq. (49) still implies that S*,(0)= 0.
(ii) In the absence of electromagnetism, Eq. (61) be- ment 

comes the usual PCAC equation — (wVgo)*-
From this equation, it is straightforward to prove1* that 
the coupling-constant, mass, and wave-function renor
malizations which make 5-m atiix  elements in the a 
model finite also make all matrix elements of j f6 and of 
(MiVgo)» finite (i.e., cutoff-independent as A —*°o). In

Precisely the same arguments leading to Eq. (23) show 
that

G *(0)= —« / * , (69)

proving Eq. (66). We are now free to le t  the cutoff Л 
approach infinity, defining a  renormalized m atrix  e e

lim G r(Ai, A i)= 6* '(ftrfi») ,
Д-*во

which satisfies the exact low-energy theorem 

S*(0) = - a / x .

(70)

(71)

the p r e s ^ c e  of electromagnetism, the effect of the extra ^  щ  we ^  ^  ^  E q. (71)  to second 
term in Eq. (61), as shown ш I, .s to mduce an extra Qrder ^  ^  3trong me^ n.n ' deon coupling constant G.

(iii) The low-energy theorem of Eq. (71) can be re 
rewritten in a physically interesting form, as ^ ° ^ s ' 
We introduce the x —* 2y  decay am plitude F*{ki w

infinity in which is not removed by the renormaliza
tions which make the S  matrix finite. However, just as 
we found that mo/4*) is made finite by the fermion 
wave-function renormalization in spinor electrody
namics, we expect that, even in the presence of electro
magnetism, GjiVgoK will be made finite by the pion 
wave-function renormalization in the a model. T hat is, 
we expect

(mi*/ go)(ZtT) ll> = fin ite. (66)

Since the pion field is multiplicatively renormalizable,

т  = (Z ,')1/V “ “rm, (67)

to prove Eq. (66) we only need show that any particular 
nonvanishing m atrix element of (ji^/gajr is finite. The

and the pion weak decay amplitude /T b y  w riting

I ( □  J+Ms) ^ “ orra [0>
= *'««*'«!r.^ '(*i-k') » (72)

and
Ш  li.M O ) =  (2 ?o )-1j4 - W m j )/ -/V 2- ( 73 ) 

Comparing Eq. (72) with Eqs, (68) and (71), we find

- M i1 (2 ,* ) 1' 1--------- -------_F , ( 0 ) ------- ,
go M5 *

(74)

natural choice is the vacuum to two-photon matrix while taking the divergence of Eq. (73) and using £-4- 
element Gr(Ai-Ai)i defined by (61) gives

(7 (fc i,e iM £ » ,€ j)| (— MtVgoHIO)

= (4*,oi»)-,',Ai‘*tr«i*'«i*'t,,.,G'(*i-*») •
/ ,A 2 = ( - MiVgo)(2,*)‘ '»

(68) +  (terms of higher order in a ) . (75)

■* J. Bemstrin, M. Gell-Mann, and L. Michel, Nuovo Cimento Com bin ing Eqs. (74) and (75) then  g iv es  th e  lo w -e n e rg y  
16, 560 (1960); Preparata and Weisberger (Ref. 9). theorem  re la tin g  the t t 2y  a n d  ir w ea k  d e c a y  am p» -
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(ol

F ig . 14. (a) y s - y . - y ,  skeleton triangle, (h) Second-order radiative 
corrections to the y t - y ^ y ,  triangle in spinor electrodynamics.

tudes,

f ' ( 0 )  = ( - c ./ T ) (W / / ,)
- f  (terms of higher order in a ) . (76)

The fact that Eq. (61) is exact means that Eq. (76) is 
true to all orders in the strong interactions in the a 
model. The experimental consequences of Eq. (76) are 
discussed in I.

Ш. SECOND-ORDER CALCULATION

We give in this section an explicit second-order calcu
lation to check our contention that Eqs. (2) and (4) are 
exact. Rather than calculating corrections to both the 
axial-vector and pseudoscalar or pion vertices and 
checking Eqs. (2) and (4) directly, we will check these 
equations indirect ly  by verifying the low-energy theo
rems (30) and (71) which they imply. In the case of 
spinor electrodynamics, we will calculate the second- 
order radiative corrections to the m atrix element 

| Ит<фуъф\0 ), which arise from the six 
diagrams shown in Fig. 14(b). These diagrams [plus 
mass counter terms appearing in the basic у ь - у . - у р tri
angle of Fig. 14(a)] make a contribution to 5 (0 ) of 
order a 2, which must, in fact, be zero for Eq. (30) to be 
correct. The vanishing of the a 2 term is dearly  a test 
of the absence of a term proportional to 
in Eq. (2).

Sim ilarly, in the a  model we will calculate radiative 
corrections to (7 (^1,«1)7 (162,«2) | ( — piV£o)T IO)- It is con-

-IG0̂

F ic. 15. Nucleon bubble diagram, which in 
the a  model appears in the second-order radiative 
corrections to the y i - y . ^ r ,  triangle.

venient to rewrite this matrix element by substituting 
for ц 2тг the pion equation of motion obtained from Eq.
(31),

— — □  2T — iGtfjryt'P
-f-Xo[8goCTir +  4go27r(<r5-)-7r1)]+ ^o V . (77)

The matrix element of ШЧг makes a contribution to 
G’ (ki-ki) of order kf kt ,  and thus can be neglected at 
ki-ki^O. If we work to second order in G! but to zeroth 
order in X, so that the physical pion and a masses re
main equal, the meson-meson scattering terms in Eq. 
(77) can also be dropped. F inally, let us recall that the 
effect of the counter term proportional to д02 is to pro
duce a subtraction in the pion proper self-energy, giving 
2 T(0)= 0 . In particular, this means that the counter 
term nf i r  in Eq. (77) combines with the nucleon bubble 
diagram involving -iGtfjrt-jl/, shown in Fig. 15, to give 
a  contribution to G'(ki-ki)  proportional to 2 r(2(6i £ 2), 
which vanishes at k\£2= 0 . Recalling that Go/go—»*o, 
we m ay summarize the findings of this paragraph by 
the statement that to check the low-energy theorem of 
Eq. (71) to order G5, we need only calculate the matrix 
element (7 (^1, 61)7 ^ 5,<j)|jm0̂ 7 i^|0), omitting the bub
ble diagram of Fig. 15. The twelve diagrams which con
tribute have the form of those in Fig. 14(b), with the 
virtual photon line replaced by a  virtual pion or a  virtual 
a line. These diagrams, plus mass counter terms in the 
basic triangle of Fig. 14(a), make a contribution to 
G '(0) of order G2a, which must vanish for Eq. (71) to 
he valid [thereby verifying the absence of a term pro
portional to GlatsF i ’’F Trn „ ,  in Eq. (14)]. Thus we see 
that the second-order spinor electrodynamics and a- 
model calculations will appear very similar.

The calculations of the second-order radiative correc
tions to the triangle diagram will proceed in the follow
ing way. First, we calculate the renormalized quantities 
T„{p,p'), and in spinor electrodynamics
and the a  model, and substitute them into the 75-7 «-7,  
skeleton triangle of Fig. 14(a). The constants (3(0) and 
£ '( 0 ) are determined by extracting the first nonvanish
ing terms of a Taylor series expansion of the amplitudes 
in the photon momenta ki and ki. The Ward identities 
and integrations by parts are used to show that the self
energy corrections are exactly canceled by the unex
panded vertex corrections. The terms where an external 
momentum has been expanded from a vertex correction 
function are evaluated in two ways: by direct calcula
tion and by using a  further integration by parts. Using 
either method, the sum of these terms is found to vanish. 
Therefore, the second-order radiative corrections to 
G(0) and &'(0) are zero.

Let Т/г>(Р,Р'), ?bw (.P>Pl, and S r ' w (P) denote the 
renormalized second-order vector vertex, pseudoscalar 
vertex, and fermion propagator in either spinor elec
trodynamics or the <r model, as defined by Eqs. (25) and 
(28). (Explicit expressions for these quantities are given 
in Appendix B.) The matrix element which we want
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is proportional to p art of Eq. (78) com ing from the second-order rad iative
corrections, le t  us su b stitu te

311.,=| d V T r[Tl««(»’- * Slr+Jfe1)S,'<»(H-*0 Г^(p,p')=y,+^(j>,p'),
Vb™(j>,p ')=v>+M(p,p ') , 0 9 )

x r , a >(f+*i, f)S/® W P,«(r, r - k i )  S F'W(J>) = [p-m —Z(p)yi

X S r  Г̂ an{j  jso[a ^e ^jje second-order part. This
Since we are actually  only interested in studying the gives

ЗГС,,( ,> - J d * r  T r[A t( r - i 2) r - t - i i ) ( r + f t i- f f 0 -17 « ( i ' - » ’») ^ „ ( r —fej—m )  1 ( 80a)

+ y i ( r + k L- m ) - 1X ( r + k i ) ( r + k i -M ) - ly . ( T - n ) - l y , ( ! r - k i - m ) - 1 (80b)

+ 7 i ( f + fe i- » » )_lA,(*'+Ai, r ) ( r —m ) - ly , ( r —k t— я»)-*1 (80c)

+ 7 b (r+ fe i~ »t)-17 , ( r - m ) - IS ( r ) ( r - m ) - 17 s( r - f t 2- m ) - 1 (80d)

+ > i(i,+ f e i - » n ) - S ' . ( r - t » ) “ 1Ap(f) (80e)

+ 7i(^+Ai— n)~^y,{r—kt—m)_12(r—fta)(r—kt—m)-1] , (80^

■with the six terms in Eq. (80) corresponding, of course, 
to the six diagram s in F ig. 14(b). To evaluate  Eq. (80), 
we use the fact th a t although the integral over r  is 
apparently lin early  divergent, the lin early  divergent 
parts of terms (80a)-(80f) vanish separately  when the 
trace is taken .14 This means th a t we can sim plify the 
torm of Eq. (80) b y  m aking separate translations of the 
integration  variab le  in each of the pieces (80a)-(80f), 
as follows:

(a) r - > r + * , ,  ( d ) r —>r,

(b) r - * r ~ k i ,  (e) r —* r ,
(c) r — (f) r —>*•+£,.

it  has argum ent r, and  the v ertex  p arts  As, A „  and A„ 
h ave r  as t h e  first argum ent. N ext, w e T a y lo r - e x p a n d  
w ith respect to ki and ki, keeping o n ly  the lead in g  term  
of order kik* (because of the 75, the term s of order 1, ki, 
кг, ki1, and ki2 vanish  id en tica lly ). D efin ing the vertex  
derivatives ASit(r) and A ..j(f)  b y

A j(r, r + a )  = A 6( f , r ) + o £A i ,{ ( r ) + 0 ( a * ) , ^ g ^  

A ,(r, r+ a )  = А ,(г ,г )+ а*А г>{( г )+ 0 ( л 2) ,
we find

ЗК.,«> = ЗП:^„(*)+ЗГГв.р<,)
+ (term s of higher order in m om enta) , (82)

AJter m aking these translations, wherever 2  appears w ith  [w e  abbreviate  i=  ( r — tn)~4

ЗТС^,и>=*,«4,'ЗТСдСг„<»

= J d ir T r [A t( f , r ) s (—ki)sy^s( — k2) s y rf + ’YtsS ( r ) s y^k iS y rsk1S + y tsA,(r,r)sft iSyf sktS

+ 7 b s ( - k i ) s y ^ 2 ( r ) s y f sk1s + y bs ( —kI)sy^A l,(r , r ) sk iS+ yts (—k i ) s y ^ ( —k2)s'Y if2(r)s3> (83)
and with

= J d*r TT[kl(Ab.((r)syrs ( —k i) sy f s + y ts ( —ki()A,,((r)syf sk2s-}-yis ( —k i ) s y r s ( —k2T)A.t.T(f)^J- (8^

T he tensors and 3TCa|r»,l,f m ust both have the and  therefore are com pletely an tisym m etric  in  th e ir 
structure------------------------------------------------------------------------ indices. C learly, each ind iv idua l term  in  the sum s in 

3Hx(r»(  ̂ Eqs. (83) and (84) w ill also have the form  of Eq. (85 ), 
________  3rie«,./*>=<„.,3iia<>>, (8S; -------------

on dimensional grounds, at most logarithmically divergent. Be- 
y-matrU counting shows that trace of each of the terms cause of the over-all factor 7 », the logarithmic divergences vam s 

(bOaJniOf; is proportional to the fermion mass m, and is thetdore, as well, so that the integrals of terms (80a)-(80f) actually converge.
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once the integration  over r  is performed. This fact 
g rea tly  sim plifies the following calculation.

To eva lu ate  we elim inate the vertex parts
from  Eq. (83) b y  using the W ard identities

evaluating the trace gives

ЕГГСя<2>= — 4i J ,

As M  = ( l/ 2w )[> i2 (r)+ Z (r)-)' J ,  

Ax(r,f) =  - a x2 ( r ) ,

— д ь ( т - т ) - 1 = ( r —J»)-I7x(r —m)- 1 .

(86)

In tegration  b y  p arts in the term s involving <3xZ(r) shifts 
the d erivatives to the free propagators ( r —m)-1. The 
resu ltan t am plitudes all involve a  trace containing у  
m atrices, r, and  2 (r ) . B y  anticom m uting r through the 
7  m atrices and using the total an tisym m etry of 
ЗТ£л{т,»(2) ш its  tensor indices, we find

- m r ‘[A O -1) - D , ( r 4)]}  ( r ! - w 5)" 3 (90) 

From Appendix В we find

. _ L  / 41
16л-2 1 —G1

а д -

< I zdz------------
J  о —r 2z ( l  —

—2m

( l - z ) + z » » 2+ ( l - z V

j d * r  { ( r » - * » 1)-»

Х Т г й (т г * 2 ( г )+ 2 (7)71)7 tfy/ y/ y j 

+ ( r ! —я» , ) - 4Т г[(г+ ях )2 (г)(г+ ст )7 б 7 Г 7 «7 »7 ( .]  

—(r, —m ,)-*S r. T r [ 2 ( r ) ( r+ fn )7 s7 t7 ,7, ] }  .

(2)= J  d*r Tr{Aj,f (r)i7 ^ ( —7г)̂ 7>1

+ 7 fri [ - A , . E(f)+ A ..{(r )J!] i 7 ^ 7 ^ } . (88)

w here A ^  obtained from A ,.^ 2̂ (r) b y  reversing 
the order of a ll ^ -m atrix  products. From Appendix B, 
we find the expressions

Aj,{(r) = 7«7££i(r, )+ 7 ^ tE 2 ('’*) 1 
A>,fW = 7 / t й l ( ^ ) - h ,iT«l’Л ( г ,) + П # 7ЕЯаИ  

+ g , iD i ( j r) + r ^ iDt(r'l)+ r^ i rD t ( r t ) , 

A .,t(»')'s = 7 .» ,f£)i(f , ) + r y ff7 tDs(»,t)+ 7 tT »7‘̂ 3 (f5)
+ g.tD i(T*)+r.r lDb(r,:) + r s iTDi(Ti) ,

(89)

-D , ( r> ) -----—  J

(91)

16л-2 1 -C P

< f  zdz-------------
J a  — r*z(l —

2( 1 -ж )

'z (l —z) + Z W J 2+ (1 — z)*i2

(87)

On substitu tion  of the general expression 2 (г)=А(тг) 
+тВ(тг) and use of sym m etric integration in r, we find 
th a t  the right-hand side of Eq. (87) vanishes, im plying 
3 T C .W J)= 0 .

T he evaluation  of ЗЛ1д (г„ (,) in Eq. (84) will be done 
using two different methods, each giv ing zero. The first 
m ethod involves a  direct calculation of the integrals. 
W e recall th a t each term  of Eq. (84) is to ta lly  an ti
sym m etric  in the tensor indices, once the integration 
over т is performed. Using this total an tisym m etry and 
reversing the order of the 7  m atrix  products in the third 
term  in Eq. (84) y ields

where the upper (lower) en try  in { } refers to spinor 
electrodynam ics (the a  model), and where ju2 is the 
v irtu a l photon, pion, or a  mass. Inserting Eq. (91) into 
Eq. (90), we find th a t the in tegra l in  Eq. (90) is pro
portional to Kji^/m-), w ith

1 (a ) . i f  zdz f
J  0 J  a

udu l —t t ( l — z)

(м + 1) а « z ( l — z ) + z + ( l— z)a
(92)

W e show in Appendix С th a t this in tegra l is id en tica lly  
zero, giving 3TCB<5) = 0 .

T he second method used to eva lu ate  9TZb { ,» , (s) in 
volves the use of an  in tegration  b y  parts. Since the 
derivative on the vertex function rem oves the effect 
of the renorm alization constants, the three term s in Eq. 
(84) m ay  be w ritten  d iagram m atica lly  as shown in Fig. 
16(a). In  the first term  in Eq. (84), we use Eq. (86) to 
replace (7—т)~^гр( т - m)-1 b y  — d„(r—m)-1 , and then 
in tegrate  by parts, using the to ta l an tisym m etry  of the 
am plitude to drop the term s in which the derivative 
acts on the propagators ad jacen t to ki and  7 ». This 
operation has the effect of rep lacing the left-hand d ia 
gram  in F ig. 16(a) b y  the d iagram  in F ig . 16(b). The 
expression for 9TCS£r,/ 2) becomes

згсл„( ! ,=*1{̂ :г с :* | т#р0 >

= J  d V T r [7 i j ( —k i)sk sA .,T( r ) s (—y , ) i

+ 7 s* (—Ai{)A,.£(*-)i7,iA»J

+ 7б * (—fti)*7c*(—*aT)A ,,r ( r ) i ] . (93)

w here Ei, Ea, Di, ■ ■ ■, are simple integrals over Feynm an 
param eters. Substitu ting Eq. (89) into Eq. (88) and

Each term  in the sum of Eq. (95) involves a  trace 
contain ing 7  m atrices, r, and  the function A ,.f(r). B y  
anticom m uting 7 through the 7  m atrices and by using
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Fig. 16. (a) Diagrammatic representation of ЗЧя,,*1' in spinor 
electrodynamics, (b) Diagram obtained from the left-hand loop 
in (a] by integration by parts.

the antisym m etry of 3TCbj„ p(,) in its  indices, one finds

electrodynam ics, the usua l ax ia l-v ec to r c u rren t o f  E q .  
(1), and  in the a  m odel, the P o lk in gh o m e1® a x ia l - v e c t o r  
current of Eq. (3 ), w hich , in  the absence of e l e c t r o 
m agnetism , obeys the PC A C  cond ition . B y  in t r o d u c in g  
cutoffs in the boson p ro p agato rs w e h av e  show n  t h a t ,  
in the presence of e lec trom agnetism , th e  d iv e r g e n c e s  
of our ax ia l-vector curren ts are  m odified in  a  s im p le  w e l l -  
defined w ay , to a l l  o rders of p e rtu rb a tio n  th e o ry . T h e  
modification consists of th e  add itio n  of a  s im p le  n u 
m erical m u tlip le  of ( a o t o  th e  n a i v e  
ax ial-vector d ivergence. (T h e n a iv e  d ivergen ce  is  t h e  
one obtained b y  form al m an ip u la tio n  of e q u a t io n s  o f  
m otion when sub tleties a ris in g  fro m  th e  s in g u la r i t y  o f  
local-field products are n eg lected .) F rom  th e  a n o m a lo u s  
d ivergence equations w e o b ta ined  sim p le lo w -e n e r g y  
theorems for the v acuum -to -27 m a tr ix  e lem en t o f t h e

f j i . f i  / м г  naive divergence. A lthough these theorem s w ere  derived
— J  (r m )  Tr{'y1A«l>(r)5[_7 (/yT]}  • (94) ^ jth  the cutoff A fin ite , w e argued  th a t  in bo th  m o d e ls ,

* ш .ш r  1 __  - ■ *-----  л

(The term s coming from the anticom m utators exactly  
cancel because of the an tisym m etry .) Substituting Eq. 
(89) into Eq. (94) im m ediately gives ЭТСя;,,/*1 =0. I t  
is not ac tu a lly  necessary to have the detailed form of 
Eq. (89) to see th a t Eq. (94) vanishes. Referring to 
F ig. 17(a), we see th a t  in spinor electrodynam ics A ,., 
has the form

Л ., . - 7 .А » .Д 0 т “ , (95)

and when Eq. (95) is substituted into Eq. (94), the sum 
over v ir tu a l photon polarization states a  cancels to 
zero. S im ilarly , from F ig . 17(b) we see th a t in the a 
model A . j  has the property14

A -.,,(r )- t7 jA „ ,,(r ) i7 t, (96)

which again  im plies th a t Eq. (94) vanishes. In  this case, 
the v irtu a l p ion term  is exactly canceled by the v irtu a l 
a  term . ■

IV. SUM M ARY AND DISCUSSION

W e sum m arize our results and briefly compare them 
w ith  the recent findings of Jackiw  and Johnson.3 We 
have considered two models, spinor electrodynam ics and 
a  trun cated  version of the a  model. In each model, we 
h ave stud ied  a  par ti cu lar  axial-vector curren t: in  spinor

--------/-и«Уа
(a)

*“ »V--------/-“ • e.*V........... i a  .Г.
r S --------- r  ------- ч

(Ы
F ia . 17. Diagrammatic representation of A ,,, in (a) spinor electro

dynamics and (b) the a modeL

11 Comparing Eq. (96) with Eq. (89), we see that in the a model,
we must have = = This can be verified from the explicit
formulas of Appendix B.

even in  the presence of e lec trom agnetism , th e  n a iv e  
divergence is  a  fin ite (cu toff-independent) o p e ra to r  a s  
A —»oc.17 T h is allow ed us to pass free ly  to th e  l im i t  
A —» » ,  obtain ing a  low -energy theorem  for th e  r e 
norm alized naive divergence operato r. T h is lo w -e n e rg y  
theorem w as checked exp lic it ly  to second o rd e r  in  
rad iative  corrections in a  ca lcu la tio n  using  o n ly  r e n o r 
m alized  (cutoff-independent) q u an titie s , v e r ify in g  o u r  
contention th a t  no sub tleties w ere invo lved  in  th e  A—» 00 
lim it.

Thus, in our calculation , use of the cutoff h as b een  a n  
artifice, and the cutoff does not ap pear in  the  p h y s ic s . 
As is m ade clear b y  the discussion of E qs. ( 6 6 ) - ( 7 0 ) ,  
th is im portant feature can  be traced  d ire c t ly  b a c k  to  
the following property of the two ax ia l-v ec to r c u r r e n ts  
which we have stud ied : The n a i v e  d i v e r g e n c e s  o f  t h e  t w o  
axial-vec tor currents , a s  w e l l  a s  the ax ia l-v ec to r  c u r r e n t s  
themselves , a re  mu lt ip l i ca t iv e ly  renormal izab le .  W e c o n 
jecture th a t  in  an y  renorm alizab le th eo ry  fie ld  w ith  a n  
axial-vector current satisfying  th is p roperty , a rg u m e n ts  
analogous to those of th is paper can  be c a r r ie d  th ro u g h .

W ith  these comments in m ind , le t  us exam ine th e  c o n 
clusions of Jack iw  and Johnson. Ja c k iw  an d  Jo h n so n  
trea t the electrom agnetic field as an ex te rn a l (n o n 
quantized) variab le , b u t allow  quan tized  stro n g  in t e r 
actions of the spinor p artic les, so the ir c a lc u la t io n  
applies, for example, to the a  m odel. R a th e r th an  c o n 
sidering the Polkinghom e curren t of E q. (3 ), J a c k iw  
and Johnson take as the ax ia l-vector cu rren t th e  f e r 
mion p art фчичьф alone. T h ey find th a t  the effect of 
the strong interactions on the anom alous d iv ergen ce  
term  is ambiguous, and depends on p rec ise ly  h ow  a  
cutoff is introduced. I t  is easy  to see th a t (even  in  th e  
absence of electrom agnetism ) the curren t фчрУь'Р is  n o t  
m ade fin ite b y  the usual renorm alizations w hich  m a k e

u J. C. Polkinghorne, Nuovo Cimento 8, 179 (1958); 8, 781
(1459)

11 That ie, multiplication by the usual external-line w ave- 
function renormalization factors makes Feynman amplitudes of 
the naive divergence finite.
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the S  m atrix  in the a  model finite, and, by a reversal
o l the P reparata-W eisberger a r g u m e n t , t h i s  means 
th a t  the naive divergence of this current is not  m ulti- 
p lic a tiv e ly  renorm alizable. In other words, the axial- 
vector curren t considered b y  Jack iw  and Johnson and 
its  n a ive  divergence are not well defined objects in the 
usual renorm alized perturbation theory; hence the 
am biguous resu lts which these authors have obtained 
are  not too surprising.

The presence of two different axial-vector currents 
in the a  model poses, however, the following question: 
W hich curren t should we take as the prototype for the 
p h y s i c a l  ax ial-vector current? The answer is th at there 
are  two argum ents in favor of using the full Polking
horne current, rather than its  fermion part alone, as 
the current to which the sem ileptonic weak interactions 
couple: (i) W e w ant the physical axial-vector current to 
sa t is fy  the PCAC hypothesis. Although PCAC does not 
requ ire  th a t the divergence of the axial-vector current 
be a  canonical pion field (as is the case for the Polking
horne curren t), it  does require th a t i t  a t  least be a 
smooth  in terpo lating  field for the pion. However, a  non- 
m u ltip lica tiv e ly  renorm alizable operator, such as the 
d ivergence of the current w ill not  be a  smooth
operator and therefore is not a  pion interpolating field 
su itab le  for PCAC argum ents, (ii) When charged fields 
and  charged currents are  added to the model, we w ant 
the ax ial-vector currents to satisfy  the Gell-Mann 
curren t-algebra hypothesis. As Gell-M ann and L6v y ‘ 
have shown, the Polkinghorne axial-vector current is 
the one which obeys the current algebra. The fermion 
p art alone does not sa tisfy  the current algebra.

To sum m arize, then, in the <r model (and also in the 
neutral-vector-m eson model, which behaves like spinor 
e lectrodynam ics), the current which is a  prototype for 
the physica l ax ial-vector current has a simple anom a
lous divergence term  in the presence of electrom ag
netism . Other axial-vector currents can be defined which

do not have simple anomalous divergence behavior, but 
these currents are not good prototypes for the physical 
current.
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APPENDIX A

In the first part of this Appendix, we g ive explicit 
renormalized expressions for the d iagram s depicted in 
Figs. 12(a) and 12(b), and we show th a t they sa tisfy  
the usual axial-vector W ard identities. In the second 
part, we demonstrate that the ax ial-vector-photon- 
photon-meson box d iagram  of Fig. 12(f) satisfies the 
usual axial-vector W ard id en tity .1’

A. M  eson and A xial-V ector-C urrent-M eson Loops

In order to g ive unambiguous values to the d ivergent 
loops which we encounter, we define the sym m etric , 
cutoff integral symbol

L (Al)

Equation ( Al )  is a shorthand for the following sequence 
of operations: (i) W e do the usual Dyson rotation  to the 
Euclidean region; (ii) we in tegrate  sym m etrica lly  over 
the angle variab les around the center r  = C\ and (iii) 
we integrate the Euclidean m agn itude squared  *=  —r ! 
up to an upper lim it of M %. Using this sym bol, we define 
unrenorma liz ed  meson and  axial-vector-current-m eson 
loops as follows20:

M eson  Loops

T . = - Gj  4 - t J J - ) ,
J  lo . tr ’] (2я-)1 \ r ~ m o /

T „ ( k ) ------ * а д ,  T „ ( k )  =  - i 2 r ( k ) ,

r  d*r / 1  1 \
2 .(k) = — iGo1 / -------T n ------------------------I ,

J ta .n /Ч  (2ir)4 \ r — mo t — k — m j

С d<r /  1 1 \
X.(k)=iGa2 ------ TrI 75-------- Vs-------------1,

Ло.лгЧ \ r —ntо T—k —mo/

“  Preparata and Weisberger (Ref. 9), Appendix C. . . ,
i i  р ог a derivation of the Ward identities satisfied by the general spinor loop coupltng to scalar, pseudoscalar, vector, and anal- 

vector external sources, with full SUi structure, see W. Bardeen (to he published). The results of Appendix A axe a special case of the
general problem discussed by Bardeen. „ _ . , .

”  In this Appendix, 2 r ( i)  and 2 , (k) denote, respectively, the pion and a proper self-energies, which were denoted by Zr (* J and 
in t ie  text.



284 Adventures in Theoretical Physics

182  A N O M A L O U S  A X I A L - V E C T O R  D I V E R G E N C E  E Q U A T I O N  1533

r  d*r / 1 1 1 \
Г .„ (Л 1,* ,) = 2Со« / — 'T r U — -------- ---------------------------I ,

J  io, v ’l (2t ) 4 \ T - k t - n h  r + k i - m 0 T - m 0/

r  d*r f  1 1 1 \
r „ . ( M S) = -2G „’ / —  T r ( -  ...........— ------------------ ) ,

J io .m ’] (2 ir)4 \r —fci-Ж о Г+Й1 —« о  Г — ТПа/

T ----- ( * „ M . ) ------G04  —  T r(V
Л » .* ’) ( 2 r )4 \

d*r / 1 1
7 s -

r+ fel +  k l +  fel — »*0

1
--------------- ------------ |-£ve p erm utatio n s
r + k i—m t  Г—*»o /

f  d*r / 1 1
T '„ . ( k u k M  =  -Go* I -------Tr{ ■

J  [O.M1] (2ir)* —WJo T-bfci+fea—Wo

1 1  . \X -------- -----------------(-five p erm uta tio n s 1,
r + fc i—m« T—m o  '

r d*r (

JlO.Af'l (2t) 4 \

dV / 1 1
7 i------------------------- 7c---------- --------

1 \£lrJ ' '  I’+fci+fet+fea- *Ио T+fei+fcj—Ото

1 1 -------------- 4 
X ------------------------- (-five p erm u ta tio n s J . (A 2)

r + fe i—m e  T—m o  'r-f fc i—fMo т—m 0

Axial-Vcctor-Current-Meson Loops 

r  d (r  I  1 1 \ tGo»»o

A M ~ ~ G‘L „

—o j  ^ -T rfh .T .— -----V ,A3!
./[o.jtrV'»] (2 ir)4 \ г —т 0 r —fe—m0/ 

r d«r / 1 1 1 \
= 2G02 I -------T r ( 75--------------- b / r t t ------------------------)-

J  l«.w ’] (2ir)4 \ r —fei—too r+ fe j—mo Г—Л1о/

The loops T,,  Г „ ,  T „ ,  A „  and B ,  are  a t least linearly  forward calculation shows that
d ivergent, and so specification of the center for sym - r  d*r / 1 1 \
m etric  averaging is essential. The three-meson and four- kf ( —Go) | ___ T rf £7,76--------- 7«-------------- )
meson loops, on the other hand, are not linearly diver- Ло.мЧ (2ir)4 \ T—mo T—k —mo/ 
gent, and  so the origin of integration in these loops m ay
be freely  translated . (Terms which vanish as M -*°o --------- i [2 ,(& )  — 2 , ( 0 ) ] + $ G ij/ (& ), (A 4)
w ill be p icked up from the translation, but m ay be Gi 
ignored. S im ilarly , the two different expressions which
we have given for A,  are not precisely equal, bu t differ f  d*r / 1 1 N
b y  term s which van ish  as M  —юо.) Д * )=  I T r l -  I

w .  1. . » .  л ) , » . .  ш  .n  l___ ./io .v ’ i (2 t )  \r—Л — mo r —ntc
f  d*r / 1 1 1 N

= I -------Т п -------------- k-------- k-------- )
J  i i .h ' i  (2 ir)4 \t —k —m o T—Wo т- m  о/

W e have chosen identical upper lim its M 1 for all loop 
in tegra ls except A„  where the upper lim it has been 
taken  as Mlein  (« is the base of natural logarithm s).
T hese choices of upper lim it guarantee th a t the un- 
renorm alized loops satisfy  the usual axial-vector W ard = _ _ ! ! _ _ j - 0 (Jtf-i) (A5)
id en tities. For exam ple, in the case of A„  a straight- (4т)*
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Therefore, Лu(k), as defined in Eq. (A3), satisfies the 
usua l ax ial-vector W ard id en tity

k“A „(*) =  -  {ma/Gb)i[Z.{k) - 2 , ( 0 ) ] .  (A6)

S im ila rly , the ax ial-vector triangle satisfies
the W ard  id en tity

— (^ i+Лг) kt) = (tno/Gt) T „ .
+ t 2 , ( * , ) - i 2 r (41) .  (A7)

The aiial-vector-curTent-three-m eson hox d iagram  of 
F ig. 12(b) is superficially logarithm ically  divergent, but, 
because Tr{7 f.'Ysr(l,7 ii)r(l»T'6) r ( l ,7 i)r} = 0, this d ia
gram  a c tu a lly  converges, which is w hy we have not 
included i t  in  the lis t of unrenormalized axial-vector- 
curren t loops in Eq. (A3). Introducing a  cutoff a t 
* = M 1 (which changes this d iagram  only by terms which 
van ish  as M  —»oo) and then tak ing the divergence y ie lds 
a lin ear com bination of three- and four-meson loop 
d iagram s, a ll w ith  cutoff a t  х = М г as in Eq. (A2) 
Some of these loops m ay  occur w ith the loop integration 
v ariab le  tran sla ted  b y  a finite am ount w ith respect to 
the stan dard  forms in Eq. (A2), but as we have pointed 
out, th is does not m atter because none of the three- or 
four-meson loops is lin early  divergent. W e conclude, 
then, th a t  the axial-vector-current-three-m eson box d ia
gram  and the meson loop diagram s of Eq. (A2) satisfy  
the u sua l axial-vector W ard  iden tity . Identical reason
ing shows th a t the axial-vector-current-four-m eson 
pentagon, which is superficia lly  convergent, is related 
b y  the usual W ard id en tity  to a  linear combination of 
the meson box d iagram s of Eq. (A2) and to the conver
gen t meson pentagon diagram . Note that because the 
ax ial-vector-current box and pentagon d iagram s are  
f in i t e ,  the ir W ard iden tities w ill necessarily involve linear 
com binations of the meson triangle and box diagram s in 
which the logarithm ic divergences exactly  cancel.

H av ing  defined the unrenormalized loop diagram s 
and shown th a t they  satisfy  the correct W ard identities, 
w e next construct the renormalized loops and show th a t 
they , too, sa tisfy  the proper W ard identities. The re
norm alized meson scattering and axial-vector-current 
loops are  obtained from the tin renormalized loops by 
add ing appropriate m atrix  elements of jj3count,r and 
j x i counts w ith  j-see Eqs (57) and (59 )]

from the second-order ir and a  self-energy diagrams to be

m0JGV /M 2\
£><«=---------l n ( —  + £ < «,

Kmt?/

£ < »= -

(4ir)

- 2 G 05

\w»! -

/ M \  
l n ( —  + £ < « ,  

W o 2/(4 * )a

p™  = 2 ,(0 )  = iG „4
JlO.M*

d*r
(A9)

X T r( 75----------Y s--------- ) .
\ r —mt, r —m j

The finite constants 5 <J) and are ad justed  to give 
the physical pion mass and the meson-meson scattering 
constant the specified values ц 2 and X. The renormalized 
loops, denoted by a  tilde, are given by

T '  = T ,+ i (m 0/G0)F W = 0 ,
S .(A )= 2 ,( A ) - f W  

2„(/fc) =2„(A) _ 8 £>№ -& E W , 

t  r r „+ 8i(G o/m 0) B (J>, 
T . . .= T „ '+ 2 4 i (G o / m 0) D ' » , (A10) 

f „ „  = r „ . .+ 2 4 i(G o ,/W)r><, >, 
f  . . „  = r„ „ - ( - 2 4 i(G 0V «o 5)-D!2),
T „ „  =  r „ „ + 8 f (G o V m o l)Z?(w ,

A,(k) =A„(k) + i ( m 0/G<>)E<»kf ,

I t  is straightforw ard to verify  th a t a ll of the tilde quan 
tities approach fin ite lim its as M  —» « ,  showing, as re
quired by chiral invariance, th a t the subtraction  con
stan ts determ ined from the second-order loops m ake the 
triangle and box d iagram s fin ite as w ell.

From Eqs. (A6), (A7), an d  (A10) we find th a t the 
renormalized loops A„ and sa tisfy  the desired W ard 
identities

к»Ар(к) = — i(mo/Go)2 T(k ) ,
— = (mo/Gd)T ( A l l )

+ i2 „ (£ i) —i 2 T(k i ) .

=£,(1) [4<r>-|-4(Go/»«oM<7, +*J )
+ (c ./ « o ,)(<rI+ x 2) J] + ^ (,,E ( ^ ) a+ (a ^ )3]  

+ iF«)[(2«p/G o)< 7+ al 44r!] ,  (A8)

j „ ‘  “ unl"  =  £ < » )[o -a Mx - r d ll< r + ( M o / G „ ) a „ x J .

The subtractions D (*\ E (t\ and F (1) are determ ined

N ext, we recall th a t the ax ial-vector-curren t box and 
pentagon d iagram s and the unrenorm alized meson- 
scattering  triangle and box d iagram s a je  re lated  b y  the 
usual W ard identities. This im plies th a t the sam e W ard 
iden tities are  satisfied b y  the ax ia l-vecto r box and 
pentagon and the renorma l ized  m eson-scattering d ia 
gram s. The reason is th a t the counter term s which sub
trac t the divergences in the meson loops necessarily  
occur in each W ard  id en tity  in the sam e lin ear com bina
tion as the logarithm ic divergences, and therefore cancel 
among them selves in the W ard id en tity  in the sam e 
m anner as the logarithm ic divergences do. Th is com-



286 Adventures in Theoretical Physics

182 A N O M A L O U S  A X I A L - V E C T O R  D I V E R G E N C E  E Q U A T I O N  1535

pletes the proof that the renormalized basic loop d ia- variab les, since tak in g  an  ab so rp tiv e  p a r t  e lim inates the
grams satisfy the normal axial-vector W ard identities. superfic ia lly  lo g a r ith m ica lly  or l in e a r ly  d ivergen t loop

in tegrals , and therefore the ab so rp tiv e  p a rts  sa t is fy  the
B. Asial-Vector-Current-Photon-Photon- usuaI W ard  iden tities. A ccord ing to ( ii) , a  possible

M eson Loop [Figure 12(f)] anom alous term  m u st h av e  th e  form

The W ard  iden tity  for the axial-vector-current- anom alous term
photon-photon-meson loop of Fig. 12(f) relates i t  to a  “ m oF iF j/gfaa , ex te rn a l m om enta) , (A12) 
linear combination of the diagram s shown in Fig. 12(e),
plus a  possible anomalous term. To see that no anoma- where F\ and Ft  a re  the two photon fie ld  strength
lous term  is ac tu a lly  present, we note th a t: (i) Gauge tensors and where g  h as th e  d im ensions of (m ass)2,
invariance m akes the diagram s of Figs. 12(e) and 12(f) H owever, because of the d iv ision  b y  g ,  E q. (A12) neces-
finite, so no renormalizations are needed to m ake the sarQy  has singu larities , an d  therefore ( iii)  forces the
various terms in the W ard iden tity  well defined; (ii) m o lnalo lls term  to be м г 0 . 
a  possible anomalous term  m ust be gauge-invariant
w ith respect to both photon indices, m ust he odd in  APPENDIX В 
tno, and m ust have the dimensions of a  mass, since a ll
of the other term s in the W ard id en tity  have these We sta te  here the renorm alized  second-order vecto r
properties; (iii) a  possible anomalous term can have n o  vertex , pseudoscalar vertex , an d  ferm ion p ro pagato r 
s in gu la r i t i e s  in in ternal masses or external momentum used in the calcu lation  of Sec. 1П .

e* r l r 1 I 2 m W !  1
Гх(,1(£,/>0=7*4-------- j  zdz j  d y  b v x ln  --------------------- I--------------------------------1 ,

l w j .  J|  I L D J  D ssfn * + ( l—е)д*)

e* г' Г1 I r z W + ( l - z ) f - \  7  ,N
Ttw (p ip ')=  7»H-------  j  zdz I d y  l 87 i / ln l --------------------- JH--------- j-

Jo  Jo  I L D J  D
.1

2 *w *+ (l— г)м*]

5 / < » 0 > )= I > - m - S ( ^ ) l - ‘ , ( B l )

r  zstn5+ ( l — 1, v с1 r' I r  z ^ + t l - s V  I  
2 (p )  = ------  I zdz 12g! l n j ----------------------------------------|

16т2 io  I L - i M l - z ' l + z m M - a - z V JL -^ sz(l-z)+zm,+ (l —*)m*-1

m‘ -*>*(l-z)* 2m^P1+4w,P 1]
+ g i----------------------------------------- 1-------------------------f ,

—£4(1— n)+zfn5+ ( l — z)n* zh n '+ il— z)p* J

D = ( y V - y z ) p I+ [ ( l - y ) ' Lzt - { i - y ) z ' ] p l*+ 2y(\

T he quan tities c ,  Ny, N, P lt P t , /, g,, and g , are defined a  M od e l
as follows: c= G ,

s p i n o r  E le ctrodynamics  ^  = - 2 ш ^ - 2 [ ( 1 - ^ - ( l - y ) zy ]
X y J i ( \ - z + y z ) p ' - y z p ^ ,

N ----- 2m (p—p ' ) , (B 3 )

P .= 2* - 2 z + 2 ,  P s= - ( l - 2)* ,

c = e ,

Ni, =  — 2m xy\—2 [(1  — z + y z ) p '  —yzp~\

X 7 x [ ( l - > z ) / > - ( l - y ) z ^ ] + 4 m [ ( l - 2 y z ) £ x ,  Q

+  ( l - 2 i + 2 j * ) f c ' l  ’
N  =  ̂ - ^ ( l - y z ) p - ( l - y ) z p ' y  (В  2) g l  P ' g ! P '

x [ ( l - z + y z ) £ '— yzp~ \+ 2m (p -p ' ) , APPENDIX С

P i= * , + 2 i— 2 ,  P i  =  l —2z,  W e show that the integral

^ = 1 ’ Г1 Г  udu  l - u ( l - z )

S i= b n ~ P ,  g *  =  4 m —2 p .  ^ o  & i + l ) « « ( l - * ) + . + ( l - . U
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is id en tica lly  zero. W e begin b y  observing that 1(a) is more, for R ea> 0 , 
an a ly t ic  in  the a  p lane, ap art from a cut along the real 
ax is from 0 to — The d iscontinuity across this cut 
a t  a  — —A is proportional to

f '  Г  11
11 (a) I < I dz I -—  

J  о Jo  ( « -

udu z + « s ( l— z)

(k+ 1 )3 uz(  1 —z )+ z + ( l  — z)a

/■’ zdz /•“
) -  / ------

J o  1 —z j  о
p(A) =  ------  / ---------- W  d z --------- -=—  (C3)

(“ +1)> J o  J o  ( u + 1 ) 1 2
and

dzХ [ 1 - * ( 1 - г Ш « г + г/ ( И - Л )  ^  udu  ^  dz

_ < ^ / М С И Ж Д ^  /(o )=2/ 0 « о ^ ж
J o  Z -z '+ A ( l-z )y  »  ^  j  j

!  ^ « ^ [ ^ - ( 4 + l W  n ~ J 0 f a + i y = 2 ~ 2 = 0 ' (C4)
—■ - ■ ОС j « I

2Л J  о dz l [ —z*+A(t— z) ] 1 . . . . .  i ,
L (C2) Since Feynm an integrals like  Eq. ( C l )  never lead to

functions of exponential type, Eqs. ( C 1 ) - ( C 4 )  show
w hich m eans th a t 1(a) is an entire function. Further- that 7 (o ) » 0 .
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Comments and Addenda

The Comments and Addenda section is fo r  short communications which are not o f  such u rgen cy  as to  ju stify  pub lica tion in Physica 
Review Letters and are not appropriate fo r  regular Articles, /t includes on ly the fo llow in g  typ es o f  com m un ica tion s: (I )  com m en ts on 
papers previously published in The Physical Review or Physical Review Letters. (2) addenda to papers p rev iou sly  pub lished  in The Physica 
Review or Physical Review Letters, in which the additional information can be p resen ted  w ithout th e n eed  f o r  w riting a com p le t e  artic e. 
Manuscripts intended fo r  this section should be accompanied b y a b rie f abstract fo r  in form alion-retrieval purposes. A ccep ted  manuscripts 
will fo llow  the same publication schedule as articles in this journal, and galleys will be sent to  authors.

L o w -E n erg y  T heorem  fo r  7  + 7 - * 7г + 7Г + 7г

Stephen L. Adler,* Benjamin W. L ee ,t  and S. B. T reim an  J 
National A cc e le r a to r  L abora tory , B atavia , I l l in o is  60510

and 

A. Zee
In stitu te  f o r  A dvanced Study, P r in ce to n , New J e r s e y  08540 

(Received 10 September 1971; rev ised  m anuscript received  1 October 1971)

We use the hypothesis of the p artia lly  conserved ax ia l-vecto r cu rren t (PCAC) to show that 
the m atrix  elem ents for y  + y —ж0 + and y+ y—7Г° + ¥++jr“ vanish in the soft-тг0 lim it . 
T h is, combined with photon gauge invariance, im p lies low -energy theorem s re la tin g  these 
m atrix  elem ents to the m atrix elements for у + y — rt° and у — тг0 +7Г+ + тг“ . Since the m agn i
tude of the form er is  determined by the тг° life tim e , while the ra tio  of the la t te r  to the fo r
m er is  determined in a model-independent way by isosp in  and low -energy-theorem  a rg u 
m ents, a  model-independent prediction for the y + y — я + л +тт amplitude can be given . Our 
re su lts  ag ree  with those of Aviv, Hari Dass, and Sawyer in the neutral c a se , but not in the 
charged case . We give a d iagram m atic and effective-Lagrangian  in terpretation  of our fo r
mulas which explains the discrepancy.

The reaction у  +y — тг + v + тг is  of in terest, both 
because it may be observable in electron-positron 
collid ing-beam  experim ents,1 and because it  is 
re levant to theoretical unitarity calculations2 of a 
lower bound on the decay rate  of K°L -  д* д -  In r e 
cent papers, Aviv, Hari Dass, and Sawyer3 and 
Yao4 have applied effective-Lagrangian methods 
to calcu late  the m atrix  elem ents for the neutral 
and charged cases of у  + y ~  v + v + 17. The fact that 
R efs. 3 and 4 a re  in disagreem ent has prompted 
us to repeat the calculation by standard current- 
a lg e b ra— PCAC methods.5 Our resu lts agree with 
Ref. 3 (but not with Ref. 4) in the neutral сазе 
у  +y — if0 + ir° + ir°, and d isagree  with both Refs. 3 
and 4 in the more in teresting charged case y  + y  
~ *° + и‘ + я - .  After b riefly  discussing our method 
and re su lts , we explain the reasons for our d is 
agreem ent with the e a r lie r  calculations.

We begin with the sim ple, but powerful observa
tion that the m atrix  elem ents

* " “- * ( r (W + r (W -«"(«,)+ ж*(,.)+ »-(»_))
and

4

ЭП000* Ж Ы К )  + y (fe2>-  if0(во)+ W  +17°{9»'))

vanish  in the single-soft-Jr° lim it qB— 0, w ith the 
rem aining two pions held on the m ass sh e ll. To 
see this, we follow the standard PCAC procedure 
of writing the reduction form ula d esc rib in g  9K° 
or 3 lt°“  with the n° off the m ass sh e ll, and then r e 
placing the it0 field by the d ivergence of the a x ia l - 
vector current (Af,2/ )-1 3X£FJ\ [The n o rm a liz a 
tion constant / is  given by = 0 .68 M ,,  
with / , the charged-pion decay am plitude.) B e 
cause the corresponding ax ia l charge F\ com 
mutes with the electrom agnetic cu rren t, no  e q u a l- 
time commutator term s a re  picked up when the 
derivative Зл is  brought outside the T product in 
the reduction formula. Integration by p arts  then 
makes the derivative act on the ir° wave function, 
producing a factor <j0>. Thus both ЗП0*' and 'Ж000 
are  proportional to q0, and since they contain no 
pole term s which become sin gu lar a s  q0—  th e y  
vanish in this lim it. Note that th is argum ent is  
unaltered by the divergence anomaly7 in Эх^з > 
since when is  the only ax ia l-v ec to r  cu rren t

3497
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p resen t, its  d ivergence anomaly vanishes when________ergy behavior of 3R0*" and 3B°“  (the q0-  0 lim it, 
the associated  four-momentum q0 van ishes.8,*_________ gauge invariance for photon 1, and gauge in varl- 

In addition to the soft-я 0 lim it which we have________ ance for photon 2), we can determine ЗИ0*" and 
juat derived, we know that 9П0*" and 3It0M must be_____ 9П 000 from their pion-pole d iagram s up to an e rro r  
gauge-invariant. That is , they are  b ilinear forms_____ of order at le a s t .10 In p articu lar, the 
in « , and €, (the polarization vectors of the two________ term s in ЭИ®*- and ЭИ000 quadra t ic  in the momenta 
photons) and vanish when either €j is  replaced by______ fc,, k2, q„, ?,(<?J), and <7_(tfo) are  completely d eter- 

or e, is  replaced by k2. We can now invoke the______mined. The relevant pion-pole d iagram s are  i l lu s -  
standard lo re  of cu rren t-a lgeb ra  low-energy theo-_____trated in F ig. 1. The pion-pion scattering am pli- 
rem s ,’  which te lls  us that since we know three in -_____ tudes which appear a re  evaluated from the current- 
dependent p ieces of information about the low-en-_____ algebra expression11, 12 

___________________________________________ i

/(<?,) + v ‘ (qc ) + ni (qi )) = 1(9» + ? J 2 -  Af.*] + [ ( ^  + ?л)2 -  M .2] + 6^8., [(<?„ + tf,,)2 -  Af.2]

“ Jct(<7.  + ?i:),  + (<?»+9i )a + (9c+^ ) J - 3W ,s](6,eaa( + 6M6a. + 5<.45ai,)) , ( la )

where л is  a param eter proportional to the isotensor component of the **o term ” and is  re lated  to the /=0 
pion-pion S-wave scattering length aQ by

а0=(7/32тг)/-аМ ,(1 -4 .х ) .  (lb)

The y  + y —я” and у - я °  + я* + я~ amplitudes a re  expressed in term s of coupling constants F '  and F3'  defined 
by

3Il(y(fe1)+y(feJ) - i r t')=«*rrfeJe€i'£J4£ae, 4i :' ' ,
(2)

ж (у ( * ,) - » •+ »* (? * )+ = « М  f '3'  •

The coupling constant F '  is  re lated  to the я° lifetim e by13

T ,0- l  = (M rV64ff)(F,r)a . (3)

Comparison with experiment gives I.F, | = (а/я)(0.66± 0.08Л/,)-1, with a  the fin e-struc tu re  constant. While 
the coupling constant F3’  has not been m easured, both the theory of PCAC anom alies14 and model-indepen
dent isospin and lour-energy-theorem  arguments (see below) predict

eFi ' = f - , F , t е = (4яа )1Я. (4)

Combining Eqs. (1) and (2) with the appropriate propagators to form the pion-pole d iag ram s, and adding 
the unique second-degree polynomial which guarantees gauge invariance and vanishing of the m atrix  e le 
ments as qa-  0, we get the following predictions for ЭТС04" and ЭТС°°°:

3tt°“  = ( l  -3x)3R (< 701 9o, 9 j ) ,

4»/ / „ V _ v . 2 p . u a b e <t**< Л  (<Ул + q’n)2 + (<70 + Qo? + {як+ я: )a -  3Af A
) ~ lf  F  k 1 k 2 €  а й у б  + + q n “  j y j  г  I

(  —Л/ я \
= if~, F ’ k*k£(l€fr.atty i  ( (fe +12 f l ~M 2) <when three ,ln a l pions a re  on m ass s h e ll) , (5a) 

a / rt -  (qa + qt + q )2 _ j ^ f , 2)  - * Я ( 90 , 9 . ,  4_)

- r4« у Г/ $Q* ~ ^д)д Lfl.-- L \O.T ш ~~ ъа/1а(п к f
- zeF  € ? € a Ч~ "  V  -  2q_ • * a 1 *♦iQ-  “  a) )

+ (* !“  *a. Г -  6 ) + ( * i - * a) e<7S€ „y6r J  .

jJrt0

(5b )
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FIG. 1. Pion-pole diagram s for (a) the neutral and 
(b) the charged cases.

These equations a re  our b asic  r e s u lt s .1*
Our exp ress io n  for ЗЯ000 in Eq. (5a) a g re e s  with 

that g iven  by Aviv e t  a l .  We d isag re e  with the r e 
su lt  for 3K°“  quoted by Yao, who has (through ал 
apparen t a lg e b ra ic  e r ro r )  rep laced  -A f,2 in Eq. (5a) 
by —4AfT . In the case  of s t r ic t ly  m a s s le s s  pions, 
o u r o n -she ll re su lt  for 3H°“  is  the s im p le  s t a t e - ’ 
ment that the te rm s  in the m a tr ix  elem ent qu ad ra t
ic  in the e x te rn a l momenta v an ish .16 Th is re su lt 
can  be im m ed iate ly  gen era liz ed  to the reaction  
y + y - n u 0, as follow s: The PCAC argum ent given 
above te l ls  us that in the lim it  when any one u° has 
zero  four-m om entum , with the other n -  1 n°’ s on 
the m ass  sh e ll , the m atr ix  elem ent 3H(y +y -  nir°) 
m ust van ish . In addition, gauge in var ian ce  im p lie s 
that ЭИ m ust van ish  when e ith er of the photon four- 
m om enta, fc, o r  klt v an ish es. Taking four-m om en
tum conservation  into account, th is  g iv e s  us n +2 -1  
= n +1 independent conditions on the low -energy  
behav io r of Ж. S ince for m a s s le s s , n eu tra l pions 
the p ion-pole d ia g ram s  (tree  d iag ram s) sum to a  
constan t, independent of pion four-m om enta, the 
n +1 conditions can be sa t is f ie d  only if  эд(у +y
-  ян0) v an ish e s17 up to te rm s which a re  at le a s t  
of o rd e r  (m o m e n tu m ^ 1.

Our re s u lt  for Ж » -  in Eq. (5b) d is a g re e s  with 
the fo rm u las quoted by Aviv e t  a I. and by Yao both 
of which overlook the c la s s  of pole d iag ram s pro 
p ortio na l to F3'. The fo rm ula of Aviv e t  a l .  a lso  
h a s  the 1 in the la r g e  round p aren th eses m u ltip ly 
ing  F rep laced  by j .  In o rd e r to better un der
stand  th is  la t t e r  d isc re p an c y , It is  helpful to have 
a  d ia g ram m a tic  in te rp re ta tio n  of the vario u s te rm s 
in  Eq. (5b). T h is i s  g iven  in F ig . 2, which i l lu s 
t r a t e s  the lo w e s t-o rd e r  p ertu rb atio n -theo ry  con
tr ib u tio n s  to 3K“ ° and ЭК0*" In the C ell -M ann-LSvy

ж*(<)

(a) * 4 > \ ! /**<«0

к ч ч * о

y(k,)/  \ y (k 2)

ж (q.*<C)̂ 4 .* lC)2+(ql+iC)2-3Mj

» “*(q )
(Ы . j « , , f * m  V j y r i ( J

w
*Tr’ (qi *q4+q .) 

y ( k , y \ r (k2 )

-f"zm r 
<4^*q.iz - mJ

ц.+члОг _MI <q.*q, ♦q.^-Mj

(a) *:<<) . . . .  
--C4.lv

y (k ,) / \ y (k 2>

*•*(<!) i r t q )

* 4  У ? 4 w 4 ’
r p v O  'H ^ v O

/ V w  / V < k2)
rIM y(k|)

3f*m*

(b)

y (k ,)/  \ y l k j l  
f 2 m *

_w -w .a  .0  y &m  k, kj t '  «2 <a 0 rg

tGl

У1*!1/  \у< кг) 
-2Г г m '

(ь) \ / * - ы

ЯГ<к|>/ \ r ^ 2 ]
—1Л F̂ w* f  Я. еву8т

(b) ." T V  
» ‘ <q. |4X j  “ "<4-> 

у(к,)|}у<кг ) Г<".ЖУ<к21 
S“ <C(4.-h*r«ay<rt S°(q.-^)<ror«ay«,T

(2чГкг) « , <2q-k2 > «2
‘‘l-Zq. 4  k|-2qv k2 

♦y(k,>— r (kz )

FIG. 2. Low est-order d iag ram s contributing to <a)
3Rfl0° and (b) 3UC*~ in the G ell-M ann — Levy о model. The 
single so lid  line propagating around each  loop denotes 
the nucleon. In this o rder of perturbation  theo ry , / _t 
- 8 Г/МИ, with g r the pion-nucleon coupling constant and 
with MN the nucleon m ass. {The la rg e  b lack  dot a t  the 
four-pion vertices  denotes the pion-pion sca tte r in g  am 
plitude of Eq. (1). To lowest o rd er in perturbation  
theory, this a r is e s  a s  the sum  of a  d ire c t  four-p ion in 
teraction  [coming from the te rm  <* *iF)2 in  the o-m odel 
Lagrangian] and of pole term s involving is o sc a la r  о  
mesons exchanged between p a irs  of pions.}

a m odel.1* The f ir s t  and fourth row s g iv e  ju s t  the 
lo w est-o rd er contributions to the pole d ia g r a m s  of 
F ig . 1. The о -pole d ia g ram s  in  the second  row  can  
c le a r ly  be rep resen ted  aa m a tr ix  e lem en ts  of the 
effective L agrang ian

= * i I f  + F ’ F ^ F ^ c  аву6я° * • S , (6)

with F at  the e lec tro m agn etic  f ie ld -s tre n g th  ten so r . 
As a  check, we note that v ° i  ■ 5 = (я0)3 + 2 i r V n ',  and 
since the m atrix  e lem en t of (ir0)’  h as a  B o se  s y m 
m etry  facto r of 6, the contributions of Eq. (6) to 
Ж000 and to Ж0*- a r e  in the c o r re c t  ra t io  of 3 :1 .
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Let us turn next to the five-point functions in the 
third row. Aviv e t  al. assum e that these are rep 
resented by the sam e effective-Lagrangian stru c 
ture as in Eq. (6). If this were so, a five-point 
contribution of -2 / " ’  ЭП” to ЭИ000 would imply a 
corresponding contribution of - f / " 3 JK’ to 311°’ ”, 
which would then combine with the а -pole diagram  
to give a  total nonpole contribution of j / ' 1 3R*. 
This is  the origin of the \ in the formula of Aviv 
e l  al . In actual fact, however, we find that the 
five-point d iagram s are  not described by Eq. (6), 
but ra th er by the effective Lagrangian

= - s i e f e ’ (3 aA > M 6£ar6,(3 r >r0)1f (7)

Equation (7) s t il l  couples the three final pions 
through a pure /=1 state , as required by G parity . 
In the charged-pion case , Eq. (7) obviously leads 
to the five-point contribution listed in the third 
row of F ig. 2(b). Although not gauge-invariant by 
its e lf , th is contribution combines with the pole 
term s in the fourth row of F ig. 2(b) (which are 
a lso  not by them selves gauge-invariant) to give a 
gauge-invariant sum . In the neutral case , using

the fact that the m atrix element of 36ir°(ir°)a is  
2Hq0 + q'0 + q'„) = 2i(kl + kt ) and using Eq. (4) to e lim i
nate F3* in term s of F*, we find that Eq. (7) just 
gives the gauge-invariant contribution -2 / _J ЭТ1', 
as  requ ired .19 F inally , we note that while Yao ob
tains the correct value of 1 for the constant term  
in the large round parentheses multiplying F ' , he 
gets this by using an incorrect effective Lagran
gian, which does not respect the д /= 1 ru le , to 
generalize from the neutral to the charged case. 
The moral is  that effective Lagrangians must be 
handled with caution. When am biguities a r is e  as 
to the form of the effective Lagrangian, they must 
be resolved by reference back to the basic current 
algebra relations, which the effective Lagrangian 
is  supposed to represen t.20
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vo lves only ax ia l-v ecto r Ward identities for ring d ia

gram s which have pseudoscalar (and in some case s  
sca la r) v e rtices  in addition to vecto r v e rtice s  and the 
ax ia l-v ecto r vertex. These Ward identities a re  known 
not  to have anom alies; see W. A. Bardeen , Ref. 7, and 
R. W. Brown, C .-C . Shih, and B. L. Young, Phys. Rev. 
186, 1491 (1969).

ICSince the m atrix elem ents in question a re  even func
tions of the external four-m om enta, the e r ro r  w ill actu
a lly  be of order (momentum)4.

, l S. W einberg, Phys. Rev. L etters Г7, 616 (1966).
,2We use the notation and m etric conventions of J . D. 

Bjorken and S. D. D rell, R e l a t i v i s t i c  Quantum F i e l d s  
(M cGraw-Hill, New York, 1965), pp. 377-390 .
,3For a d iscussion of experim ental evidence on the sign 

of F * , see  F. J . Gilman, Phys. Rev. 184, 1964 (1969). 
and S. L. A d ler, in P r o c e e d i n g s  o f  t h e  T h i r d  I n t e r n a t i o n 
a l  C o n f e r e n c e  on High E n e r g y  P h y s i c s  and  N u c l e a r  
S t r u c t u r e , New York, 1969, edited by S. Devons (Plenum, 
New York, 1970), p. 64 7.

,4In a renorm alizab le ferm ion -trip let model which 
sa tis f ie s  PCAC, the anom aly predictions for F * and F 3w 
indiv idually a re  — (ot/»)/- l 2<7 and F 3* «  — ( e/4я2) 
х / ”32ф. The quantity Q , which is  the average charge of 
the nonstrange tr ip le t p a r tic le s , drops out in the ratio . 
See S. L . A d ler, Ref. 7; S. L. A dler and W. A. Bardeen, 
Phys. Rev. 182, 1517 (1969); and R. Aviv and A. Zee 
(unpublished).

lsIn the la rg e  square-bracketed  term s in Eq. (5b) , we 
have specia lized  to the case in which the charged pions 
a re  on the m ass sh e ll: q +2- q j }  -  Afn2* 

ieHowever, one cannot conclude that y + y  — »°+ 1г° +ir° 
is  suppressed re la tive  to y + y —*®+ir+ +ir“. In fac t, for 
a ll  values of the p aram eter x the t h r e s h o l d  value of 
ЭП000 is  t h r e e  t i m e s  l a r g e r  than that of 9Tl°+“ , as required  
by the А/ - 1  ru le .
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"T h is generalizes the resu lt of E. S. Abers and S. F e ls , 
Phys. Rev. Letters 26, 1512 (1971).
JIM. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 

(I960). The a meson in this model is  pure iso sc a la r , 
and so the param eter x vanishes. A s im ila r calculation
io the a model has been done independently by T. F.
Wong (unpublished).

,sWe emphasize that this consistency check means that 
Eq. (4) is  a model-independent resu lt, since it is  r e 

qu ired by Eq. (5), together w ith the fac t that the on ly  
tw o-derivative 2y-3ir couplings co n sisten t with the Д/ =1 
ru le  a re  given by Eqs. (6) and (7). For a c lo s e ly  re lated  
d iscussion , see  J .  W ess and B. Zum ino, Phys. L etters  
(to be published).
S0After this work was com pleted , we le a rn ed  that s i m

ila r  re su lts  have been obtained independently by М. V. 
T eren tiev . See М. V. T eren tiev , Zh. E ksperim . i T eor. 
F iz . P is 'm a  v Redaktsiyu 14, 140 (1971).
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BREAKDOWN OF ASYM PTOTIC SUM RULES IN PERTURBATION THEORY

Stephen L. A d le r  and W u-K i Tung 
The Institute for Advanced Study, Princeton, New Je rsey  €8540 

(Received 5 March 1969)

It Is shown that a ll of the principal results of the BJorken-Iimit technique break down 
in perturbation theory in the “gluon" model of strong Interactions.

T h re e  y e a r s  ago B jo rk e n 1 pointed  out that the a sym p to tic  b eh av io r  of a  t im e -o rd e re d  p roduct of two 
c u r r e n t s  i s  r e la te d  to e q u a l- t im e  co m m u ta to rs  of the c u r r e n ts  and th e ir  t im e  d e r iv a t iv e s ,

l im  f d 4x e ~ t q ' XT ( J  a w J , (0)) = ( iq0 ) - 1 f d 4x e ~ i q ' X6 ^ ° i J  a M , j J , (0)]

5  f ix ed  „. -2 r ,4  -tq -x^ .O
+ («?Q) f d  * e  14 *b(x  ) [ i ^ x ) , J ° ( Q ) ] ^ 0 (qQ ), (1)

T h is  co n n ectio n  has been  e x te n s iv e ly  ap p lied  to the study  of r a d ia t iv e  c o r r e c t io n s  to h ad ro n ic  & d e c a y 2 
and to th e  d e r iv a t io n  of a sy m p to t ic  sum  ru le s 3 and a sy m p to tic  c r o s s - s e c t io n  re la tio n s '*  fo r h igh  e n e rg y  
in e la s t ic  e le c tro n  and n eu tr in o  s c a t te r in g . In a l l  of th e se  a p p lic a t io n s , it  i s  a s su m e d  th a t th e  e q u a l
t im e  co m m u ta to rs  a p p e a r in g  on the r ig h t-h an d  s id e  of Eq. (1) a r e  the s a m e  a s  the “n a iv e  co m m u ta to rs '*  
o b ta in ed  by s t r a ig h t fo rw a rd  u s e  of c a n o n ic a l com m utation  r e la t io n s  and eq u a tio n s of m otion . T h at th is  
i s  a  q u e s t io n a b le  a ssu m p tio n  w as  po in ted  out by Johnson  and L ow ,5 who in d ep en d en tly  d is c o v e re d  Eq.
(I ) . T hey s tu d ied  th is  equatio n  in a  s im p le  p e r tu rb a t io n - th e o ry  m o d e l, in  w h ich  the c u r r e n t s  co u p le  
th ro u gh  a  fe rm io n  t r ia n g le  loop to a  s c a l a r  (v ec to r )  m eson . T h ey found th a t in  m o st c a s e s  the r e s u l t s  
o b ta in ed  by e x p lic it  ev a lu a tio n  of the le f t-h an d  s id e  of Eq. (1) d if f e r  fro m  th o se  c a lc u la te d  fro m  n a iv e  
c o m m u ta to rs  by w e ll-d e f in e d  e x t r a  t e r m s . B e c a u se  of s p e c ia l  f e a tu r e s  of the t r ia n g le  g rap h  m o d e l, 
h o w e v er , th e se  e x t r a  t e r m s  do not d ir e c t ly  in v a lid a te  the a p p lic a t io n s  of Eq. (1) m en tio ned  above.

W e r e p o r t  h e r e  the r e s u lt s  of a  m o re  r e a l i s t i c  p e r tu rb a t io n  th e o ry  c a lc u la t io n , w h ich  sh o w s th a t fo r 
c o m m u ta to rs  of s p a c e  com ponents w ith  sp a c e  com po n en ts , the B jo rk en  l im it  and the n a iv e  c o m m u ta 
to r  d if f e r  by t e r m s  w h ich  m odify a l l  of the p r in c ip a l a p p lic a t io n s  of Eq. (1). W e c o n s id e r  a  s im p le ,  
r e n o r m a l iz a b le  m o de l of s tro n g  in te r a c t io n s , c o n s is t in g  of an  SU (3) t r ip le t  of s p in -1  p a r t ic le s  ф bound 
by the exch an g e  of an  S U (3 )-s in g le t  m a s s iv e  v e c to r  “g lu o n .” The v e c to r  c u r r e n t  in  th is  m o d e l i s  J ^ a 
- ^ У ^ а Ф, and the n a iv e  e q u a l- t im e  co m m u ta to r of two v e c to r  c u r r e n ts  is

5 (д г°-у0 ) 1 ^ в (ж), J b ( y ) ]  = йЛ(х - у Щ х )С ф к ) ,  (2)

W e w is h  to c o m p a re  the B jo rk e n - l im it  co m m u ta to r w ith  the n a iv e  c o m m u ta to r , to se co n d  o r d e r  in  the 
g lu o n -fe rm io n  co u p lin g  co n stan t in  the s p e c ia l  c a s e  in  w h ich  E qs. (1) and (2) a r e  san d w ich ed  b e 
tw een  fe rm io n  s t a t e s .  To do th is ,  w e c a lc u la te  the r e n o r m a l iz e d  c u r r e n t - f e rm io n  s c a t t e r in g  a m p l i 
tude Т д у  (/> ,£ ',g )  and co m p are  i t ,  in  the l im it  a s  q0 — i « ,  w ith  the r e n o r m a liz e d  v e r t e x  f ( C ; p , p ' )  of 
the n a iv e  co m m u tato r ."  The s c a t te r in g  am p litu d e  can  be e x p r e s s e d  in  t e r m s  of the r e n o r m a liz e d  v e c 
to r  v e r t e x  f  ( у ^ \ р , р ' )  and the r e n o rm a liz e d  fe rm io n  p ro p a g a to r  S (p )  by

f ^ “b(p,p',q)=r(y^;p,p+q)S(/>+q)f{y^p+q,p')\a\b + f(y i);p ,p-q')$(p-q')r(y^ ,p-q',p ')

+ В ^ аЬ{ р , р ' л ) ,  (3)

w ith  B ^ va ^ ( p , p ' , q )  the sum  of the two box d ia g r a m s  i l lu s t r a t e d  in  F ig . 1. W e f in d , by e x p lic it  c a lc u -

978
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la tio n ,

lim
<70 -  »**> 

q ,  p ,  p 1 f ixed

т ab(t>,P',q)-Q0 1\f(c-,p,p')+^o(QQ ‘ \na0),- l , - -2 (4)
f i v

А - ( г 2/ 1 б .2 )| а (г|11>̂ д 0 г 1Ю)|'01лв |х Ь] + * ( г / 0У(А-о ';1У0г 1,){ха Л Ь Н-

We s e e  that the B jo rk e n - lim it  com m utator and the n a iv e  c o m m u ta to r d if f e r  by th e  te r m  la b e le d  Д , 
w hich is  w e ll defined  and f in ite . We note that A v an ish e s  when ц  =0 o r  p = 0 , in d ic a t in g  th a t  fo r  the 
t im e - t im e  and t im e -s p a c e  co m m u ta to rs , the B jo rken  l im it  and the n a iv e  c o m m u ta to r  a g r e e .  T h is  r e 
su lt  can be independently  deduced from  the u s u a l o n - s h e l l  W ard  id en t ity

q >if i i ° b ( p , p ‘, q ) = H * a ,>b }rv \P,P')\ (5)

the co n sis ten cy  b etw een  Eq. (4) and Eq. (5) p ro v id e s  a  con ven ien t c h e c k  on th e  c a lc u la t io n  le a d in g  to 
Eq. (4). W hen one o r  both c u r r e n ts  >/да , j J ’ i s  re p la c e d  by the c o r re sp o n d in g  a x ia l - v e c t o r  c u r r e n t

a  fo rm u la  l ik e  Eq. (4) h o ld s , w ith  the a p p ro p r ia te  ch an g e  in  С and  w ith  A m o d i
f ied  a s  fo llo w s:

7 a т 50 * * r b , 5bJ  — J  <=> Д — —v A , J  — J  <
ц. м ‘ 5 v v *A - - V V A -

(6 )

One m ay  w onder w h e th er o u r  defin itio n  of Г (С \ р ,р ' )  cou ld  be ch an ged  by a  f in ite  r e s c a l in g  in  su ch  a  
w ay a s  to ab so rb  the te rm  Д. H ow ever, s in c e  r^YQYv+Yt/yQY^ vy 0 an d  s in c e
-YvYOYii the v e r te x  f ( C ; p , p ' )  is  a  l in e a r  com b in ation  of v e c to r  and a x ia l - v e c t o r  v e r t ic e s .
T h e re fo re , the n o rm a liz a tio n  of th is  v e r te x  i s  co m p le te ly  f ix ed  by the t im e -c o m p o n en t c u r r e n t  a lg e b r a  
and L oren tz  c o v a r ia n c e , and r e s c a l in g  is  not p erm itted .

In add itio n  to s tu d y in g  the <j0—1 te rm  in  Eq. (1), w e have a lso  c a lc u la te d  th e  q 0 ~ 2 t e r m  in  th e  s p e c ia l  
c a s e  c o n s id e re d  by C a lla n  and G ro s s .4 S p e c ia liz in g  to fo rw ard  s c a t te r in g  (p=p\ a^b) and  sp in  a v e r 
a g in g , w e  find

lim  Urn m p Q- \ Q2 U r [ ( l ^ ) f  ° a (Pt
Л )- 0 0 ? » - * "

= —2(6*^ -/>'У  )(xa )2 + ~  [ 2 (ln<7 Q2 + con st) (6^ V ) (V

The p re s e n c e  of lraj0a on the r ig h t-h an d  s id e  of Eq. (7) in d ic a te s  that the e x p re s s io n  of Eq. (1) can n o t, 
s t r i c t l y  sp ea Jd n g , be c a r r ie d  out to o rd e r  ? 0" 2, and th a t the co e ff ic ie n t (/>|5(х°)[^а (* ) ,* ^ й <0)]|/>> of th e  
q B 2 t e rm  is  lo g a r i th m ic a lly  d iv e rg e n t .7 U sing  n a iv e  co m m u tato rs to e v a lu a te  th is  c o e f f ic ie n t , C a lla n  
and G ra s s  con c luded  th a t the double l im it  on the le f t-h an d  s id e  of Eq. (7) shou ld  be p ro p o r t io n a l to  the 
t r a n s v e r s e  te n so r  The p re s e n c e  of the ad d itio n a l te rm  (£ 2 /6ir2 )£ i£ ;(v3)2  i n Eq. (7) in d ic a te s
th a t t h e ir  c o n c lu s io n  f a i l s  in  p e r tu rb a tio n  th eo ry .

W e nex t in d ic a te  how the v a r io u s  ap p lic a t io n s  of the B jo rk e n - l im it  tech n iqu e  a r e  m o d if ied  b y  o u r  r e 
s u lt s .

q q' -qJ -q
\ / \ /
x̂° XX хль

, F = \  F=\
FIG. 1. Box diagrams contributing to В a^. The 

dashed line denotes the virtual gluon. **U

FIG. 2. Diagrams for the radiative corrections to 
the vector ft transition. The wavy line denotes the v ir 
tual photon.
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(i) R ad ia tiv e  co rrec tio n s  to g d ecay .2-W e  co nsider the vecto r 0 tran sitio n  between the ferm ions ф1 
and фх. We in troduce a  cutoff A2 and ca lcu la te  the d ivergen t p art of the rad ia tiv e  co rrec tio n s to th is 
p ro c e s s , d e sc r ib ed  by the d iag ram s of F ig . 2. Using the tim e-com ponent cu rren t a lg eb ra  alone, it has 
been shown that the f ir s t  th ree  d iag ram s in F ig . 2 sum to a  u n iv e rsa l, s tructure-independen t f ra c tio n 
a l change in  the d ecay  am plitude ЬМ/М = (3a/87r) InA2. The d ivergen t part of the fourth d iag ram  in F ig .
2 can be eva lu a ted  to o r d e r s 2 from Eqs. (4) and (6), g iv ing ЬМ/М = (За/8л)2<5 InA2 ( l- ^ g V ie jr 2), w ith
<5 the av e ra g e  ch arge  of the doublet ф1 5. The term  proportional to g 2 com es, of co u rse , from  the is o 
sp in - s y m m e tr ic  term  in A. The total d ivergen t p a rt of the rad ia tiv e  co rrec tio n  is  thus, to o rd e r  g 1,

(6M/M). . = (3a/8jr)InA 2 [ l  + 2 $ ( l - 3 ^ / l6 i r 2)]. (8)to tal

We se e  that the choice Q = - i ,  which rem oves the d ivergence to low est o rd e r  in g 2, s t i l l  le ave s  a  r e 
s id u a l d iv ergen ce  in second o rder.

( ii)  A sym pto tic  sum ru le s  and c ro ss -se c t io n  re la t io n s .3’4-W e  introduce the v a r iab le  w = - q 2/p ■ q and 
define the s p e c tr a l  functions and W2(w ,q 2) by

d isc  1_ш ,
- 2 Tri 4 tr

Yy ’ p  + m \ .  a b , a b ,„ ,  . 2 .. , 2.
= Л X [ Wl i n , ?  + 1

+ W2(w ,q 2) ( p ^ - p -  qq^/q2) ( p v - p  ■ q q j q ' ) \  w>0.  (9)

In te rm s  of th ese  s p e c tr a l functions, the asym ptotic  fo rm u la  of Eq. (7) m ay be rew ritten  as the sum 
ru le

lim  (•■•)(bi j -f>ip j ) + £ i p i ~pj = lim  2 f a d w [ m W l (6t i - p p i ) + (mWl+ q 2mWi /w2)fitf i f ], (10)
2 ОИ 5 q  — —qo q * ------- ---

f ir s t  obtained by C a llan  and G ross. As these  authors note, the quantity mW 1+q2mW2/u>2 is  positiv e  
d e fin ite , d iffe r in g  only by positiv e  fac to rs  from  ~q2aj^((i) , q 2), w ith a £ the longitud inal e le c tro p rad u c - 
tion  c ro s s  sectio n . Thus the p resen ce  of p 'p1 in Eq. (7) im p lies  that, in  the q u ark  m odel, q2ai,(u>,q2) 
does not v an ish  a sym p to tic a lly , in  d isag reem en t with the conclusion of C a llan  and G ross. In a  s im i la r  
fash ion , the S U (3 )-an tisym m etric  p art of Eq. (4) lead s to the asym pto tic  sum  ru le

1 - ^ 4 =  lim  - 2  [ 2dw m W ..  (11)
8 ir  - 1

q  — —ca

A part from  the term  g 2/8л2 on the left-hand  s id e , which com es from  the S U (3 )-an tisym m etr ic  p a rt of 
A , Eq. (11) is  the b ackw ard -n eu tr in o -sca tte r in g  asym pto tic  sum  ru le  of B jo rken .3 The m odification  in 
the le ft-h an d  s id e  of Eq. (11) is  c lo se ly  re la ted  to the nonvanishing of q2a L( w , q 2). To se e  th is , we 
w r ite  dawn the u su a l f ix e d -^ , tim e-com ponent a lg e b ra  sum  ru le 8

1=2 J * d w q 2m W j u 2 (12)

and su b trac t it  from  Eq. (11), g iv ing9

- g 2/Su2 = 11m - 2  J*du>(jnW1 + q2mW2/w2). (13)
q 2 — — oo

Thus the S U (3 )-an tisym m etr ic  term  in A and the f r ' f j  term  in Eq. (7) a r e  b a s ic a l ly  the sam e  phenom e
non. As an add itional check on our a r ith m e tic , we have c a lcu la ted  W1 and W2 d ir e c t ly ,  g iv ing  mW ,
+ qxmW2/u)x ^ g2il)/22ifI, in  ag reem en t w ith Eqs. (10) and (13).

We have a lso  stud ied  the s c a la r  (p seud o sca la r) gluon m odel in p ertu rba tio n  th eo ry , and find effects 
s im i la r  to those reported  here . F u ll d e ta ils  of the c a lc u la t io n s , and fu rth er  d iscu ss io n , w ill be pub
lish ed  e lsew h ere .

We w ish  to thank W. A. B ardeen  and S. B. T re im an  fo r helpful d is c u s s io n s , and Dr. C a r l K aysen fo r 
the h o sp ita lity  of the Institute fo r Advanced Study. A fter th is  w ork w as com pleted , we learn ed  that 
R. Ja ck iw  and G. P re p a ra ta  had a lso  d iscovered  the breakdow n of the C a llan -G ro ss  r e su lt  in p e rtu rb a 
tion theory.
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Note added in proof, - ( i )  We have been in fo rm ed  by J .  D. B jo rk e n  of a  r e la t e d  p a p e r  by A. I. V a in 
sh te in  and B. L. Ioffe {Zh. E ksp erim . i T eo r. F i z . - P i s ’m a  R ed ak t. 6 , 917 (1967 ) [ t r a n s la t io n :  S o v ie t 
P h y s .- J E T P  L e tte r s  6 , 341 (1967)]}. We w il l  d is c u s s  th is  w o rk  in  o u r  d e ta i le d  p a p e r , ( i i )  In the c a se  
when one c u rren t i s  an a x ia l-v e c to r  c u rre n t  [the f i r s t  two lin e s  of Eq. (6 )] , w e h av e  o m itte d  an SU(3)~ 
s in g le t  con tribution  to the B jo rken  lim it  com ing from  the t r ia n g le  d ia g r a m  d is c u s s e d  by Jo h n so n  and 
Low. Addition of th is  p iece  does not a l t e r  any of o u r  c o n c lu s io n s .

' j .  D. Bjorken, Phye. Rev. 148, 1467 (1966).
*For references, see G. Preparata and W. I. Weiaberger, Phys. Rev. 175, 196S (1968).
3For a survey, see lectures by J . D. Bjorken, in Selected Topics in Particle Physics. Proceedings of the Inter

national School of Physics "Enrico Fermi.” Course X II. edited by J . Steinberger (Academic P re ss , Inc., New 
York, 1968).

4C. G. Call an and D. J . Gross, Phys. Rev. Letters 22, 156 (1969).
5k . Johnson and F. E. Low,_ Progr. Theoret. Phys. (Kyoto) Suppl. Nos. 37-38, 74 (1966),
®The renormalized vertex Г{Cip,p') ia obtained from the unrenormalized vertex Г (C ;p ,p ' )  by multiplying by the 

fermion wave-function renormalization constant Z t̂ with no further finite rescalinga.
’The term lng0J Is present when PrL is finite and is  not a result of the additional p$ — “  lim it.
8See S. L. Adler and R. F. Dashen, Current Algebras (W. A. Benjamin, Inc., New York, 1968), Chap. 4.
'This connection was first noted by F. J . Gilman, Phys. Rev. 167. 1365 (1968).
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Bjorken Limit in Perturbation Theory

S t e p h e n  L. A d l e r  a n d  Wo-Kj T u n g  

Institute fo r  Advanced Study, Princeton, New Jer sey  08540 
(Received 29 October 1969)

We present detailed calculations illustrating the breakdown of the Bjorken limit in perturbation theory, 
in the “gluon” model of strong interactions. To second order in the gluon-ferrmion coupling constant in 
the scalar, pseudoscalar, and vector coupling models, we calculate the Bjorken-limit commutator of a 
pair of currents of arbitrary (vector, axial-vector, scalar, pseudoscalar, tensor) type. To fourth order 
in the coupling, in the scalar- and pseudoscalar-gluon models, we determine the leading logarithmic be
havior of the SUi-antisymmetric part of the vector-vector commutator. In the body of the paper we present 
the main results and discuss their various features and implications. The computational details are relegated 
to two appendices.

I. HISTORICAL INTRODUCTION

EQUAL-TTME current com m utators have come to 
p la y  a  cen tra l role in  partic le  physics. In his 

famous papers of 1961 and 1964, G ell-M ann1 proposed 
th a t the tim e components of the vector and axial-vector 
octet currents sa tis fy  a  simple S U i® S U 3 algebra. The 
exp lo itation  of th is postu late b y  the “infinite-mo- 
m entum ” and “low -energy theorem" methods has led 
to im portan t predictions, which agree w ell w ith ex
perim ent.* The b eau ty  of these “ classical” current- 
a lgeb ra  methods is th a t they  depend only on the 
postu lated  com m utation relations together w ith such 
w eak dynam ical assum ptions as pion-pole dominance 
and unsubtracted  dispersion relations. They are inde
pendent of more detailed  (and  therefore, more dubious) 
d ynam ica l assum ptions. The experim ental successes 
thus provide a  strong argum ent th a t an y  future theory 
of the hadrons m ust incorporate the SU3®*££/j time- 
component current algebra.

T h is requirem ent, of course, does not un iquely  
specify a  model of the hadrons—there are m any 
passib le field-theoretic models which satisfy  the Gell- 
M ann  hypothesis. In an attem pt to narrow the selec
tion, atten tion  has been turned recently to the study  of 
the space-component-space-component com mutators, 
which can be used to distinguish between models which 
have the sam e time-component algebra. The problem 
of finding experim ental tests of the space-space algebra 
is m ade difficult b y  the fact th a t the “c lassica l” current- 
a lgeb ra  methods of infinite-momentum lim its and low- 
energy theorems cannot be made to app ly  in th is case. 
H owever, in 1966 B jorken3 pointed out th a t the 
asym pto tic  behavior of a time-ordered product of two 
currents is sim ply related  to the equal-tim e commu-

‘ M. Gell-Mann, Phys. Rev. 12S, 1067 (1962) ^ P h ys ic s 'l'бЗ 
(1964).

3 For a survey, see S. L. Adler and R. F. Dashen, Current 
Algebras (Benjamin, New York, 1968).

1 J . D. Bjorken, Phys. Rev. 148, 1467 (1966).
1

tator of the currents,

lim  f  2) (0 ) )
tjO-*joO; q fixed *'

- i f lT 1/  d*x [ / m ( z ) , / (1)( 0 ) ] + 0 ( ?0- 2) . (1)

Equation (1) has been extensively applied to the study  
of space-space current com m utators, leading to a  new 
class of asym p to t i c  s um  ru le s}  These sum rules have 
testable experim ental consequences in  ine lastic  electron 
and neutrino scattering reactions and im portan t im p li
cations in the theory of rad ia tive  corrections to hadronic 
/} decay.

In all of the applications of Eq. (1 ) , ал im portant 
assum ption is m ade: I t  is a s sum ed  th a t the equal-tim e 
com m utator appearing on the right-hand  side of Eq. 
(1) is the sam e as the “naive com m utator” obtained by 
straightforw ard use of canonical com m utation relations 
and equations of motion. T h a t th is is a  questionable 
assum ption was pointed out b y  Johnson and Low ,6 who 
independently discovered Eq. (1 ) .  T h ey  studied this 
equation in a simple perturbation-theory m odel, in 
which the currents couple through a  fermion triangle 
loop to a sca lar, pseudoscalar, or vector meson. T hey 
found th a t in  m ost cases the resu lts obtained b y  
explicit evaluation  of the left-hand side of Eq. (1) 
d iffer from those ca lcu la ted  from n a ive  com m utators by 
w ell-defined ex tra  term s. Because of special features of 
the triangle graph model, however, these ex tra  term s 
d id  not d irectly  in va lid a te  the applications of Eq. (1) 
m entioned above.

R ecen tly , we have reported a  more rea listic  perturba-

* For a survey, see lectures by J . D. Bjorken, in Selected Topics 
in  Particle P hysics, P roceed ings o j  ike International School o f  
Physics "Enrico Fermi," Course XLI, edited by J. Steinberger 
(Academic, New York, 1968).

11 K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto) 
Suppl. Nos. 37-38, 74(1966). Important early work on the validity 
of tne Bjorken limit, in the context of the Lee model, has also 
been done by J . S. Bell, Nuovo Cimento 47A, 616 (1967).
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tion-theory calculation,' which showed that for com
m utators of space components w ith space components, 
the Bjorken fimit and the naive commutator do differ 
by terms wbich modify a ll of the principal applications 
of Eq. (1 ). In other words, asympto t i c  sum  rules  derived  
f r om  the naive spa ce- spa ce  commutators f a i l  i n  perturba
tion theory. One is, of course, still free to postu late th at 
nonperturbative effects conspire to make the asym p
totic sum rules valid  when a ll orders of perturbation 
theory are summed, but the need for this assumption 
means that asym ptotic sum rules do not ju s t  give a test 
of the space-space algebra, but involve deep dynam ical 
considerations as well.

In our previous work, we considered only vector and 
axial-vector current commutators in the quark model 
w ith a massive vector “gluon,” to second order in the 
gluon-fermion coupling constant g„7 In  the present 
paper, we extend our resu lts to a rb itrary  (vector, 
axial-vector, scalar, pseudoscalar, tensor) currents in 
the quark models with vector-, scalar-, or pseudoscalar- 
coupled gluon. W orking to second order in g r, we obtain 
results analogous to those found previously in the more 
restricted case. In addition, for the vector-vector 
com mutator in the scalar- and pseudoscalar-gluon 
models, we obtain the leading logarithm ic p art of the 
gr4 term. In Sec. II  we sum m arize our results and in 
Sec. I l l  we discuss briefly their significance. To facilitate  
reading, a ll com putational details are relegated to 
Appendices,

П. RESULTS

W e consider a sim ple, renorm alizable model of the 
strong interactions, consisting of an SUt trip let of 
sp in -i p artic les ф bound b y  the exchange of an SU*- 
singlet m assive “gluon.” W e assume th a t the gluon 
couples to the fermions b y  either scalar, pseudoscalar, 
or vector coupling. In order to treat sim ultaneously 
com m utators involving vector (axial-vector, scalar,
. . . )  currents, we introduce the abbreviated notation

J  (л = ФчтФ,

7(0 = Y,A*(7,7sX“, X», . . . ) ,  (2)

7 в )= 7 А ‘ (7г7Л ‘ , X*.

according to whether the first or second current is a 
vecto r (ax ial-vecto r, scalar, . . . )  current. The naive 
equal-tim e com m utator of the two currents is

i  (:r°—у ) [7 (d  ( z ) , J m  (y )  ]  = s* ( * _  у )$ (х )С ф (х ) , 

C=7o[7imi>, 7c7(l)3~7(i)7o7<2)~7 (B7tfY<i)- (3)
W e wish to compare the B jorken-lim it com mutator with 
the na ive  com m utator, in the special case in which

an<1 W-'K' Tung, Phys. Rev. Letters 22, 978 
(1969). See also R. Jackiw and G. Preparata, ibid. 22, 975 
(1969), who have independently arrived at similar conclusions.

7 In Ref. 6 we denoted the coupling constant g ,  by g. In the 
present work, g will always indicate a gluon (or its foui- 
momentuDi).

4 \
V
7

- q # -q
/-? Л  AVtej --------------- s. An

л р ' d '  'D*
(a)

/С̂!г> Тг
X _ / v
2 у  Г— Т ^ , 0

Х у -

Л - '(2) Л

(Ь)
Лги

- Л

— А ,  
— \

Fig. 1. (а) Lowest-order current-fermion scattering diagrams, 
(h) Diagrams obtained from the lowest-order ones by insertion 
of a single virtual gluon.

Eqs. (1 ) and (3) are sandw iched betw een ferm ion 
states. To do this, we ca lcu la te  the r e n o r m a liz e d  cur
rent-fermion scattering  am p litude T’m ttfiP i P’> 
in the lim it дц—п » ,  and com pare the c o e f f ic ie n t  of the 
qa" 1 term  with the renorm alized vertex  Г (С ; p, p ’ ) 
the naive com m utator. The aste risk  on Т р )т *  i n " 
d icates th a t i t  is the fu ll covar ian t sca tte rin g  a m p l it u d e ,  

which differs from the renorm alized T  p roduct, 
Q m n ( p , p ‘ , q ) t  ЬУ a “seagu ll” term  a Wa ) (p ,  p ‘ , Qi 
which is a  polynom ial in qo,

P\ я) =°mm(P, P\ <«)(/*> P'> l)- W
Iden tity  of the B jorken lim it and  n a ive  com m utators 
would mean that

I™ P', д) = 9о_1Г (С ; p , p ' )

+ 0 (?o _s ln^o)- (5 )

In the calculation which follows, we test the v a l id i t y  of 
Eq. (5) in perturbation theory.1

A. Second Order

To second order in the gluon-ferm ion coupling 
constant g r, there are two classes of d iagram s which 
contribute to T The d iagram s of the first c lass, 
illustrated  in F ig. 1, consist of the low est-order curren t-

* A general discussion oi the mechanism responsible for Bjorken- 
limit breakdown has been given by W.-K. Tung, Phys- Rev. 
188, 2404 (1969). See also R. Jackiw and G. Preparata, ibid. 185, 
1929 (1969).
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4

-q '

'(2) V
-q

4'UMl

p' p'
FiC. 2. Diagrams containing fermion triangles.

fermion d iagram s and  the second-order d iagram s ob
ta ined  from the lowest-order ones b y  insertion of a 
single v ir tu a l gluon. The d iagram s of the second class, 
illu s tra ted  in F ig. 2, involve a fermion triangle diagram . 
W e denote the contributions of these two classes to 
2\i)<2)* b y  ?(i)( !)*Con’l,t and T (i)(a)*"1“’, l respectively.

The first-class d iagram s are evaluated  by the stand
ard  technique of regu lating  the gluon propagator with 
a  regu lato r of mass X, which defines an unrenormalized  
am plitude T (i)(2)*c”n,pl. To get the renormalized  am pli
tude, one m ultip lies b y  the external fermion wave- 
function renorm alization constant Zj and takes the 
lim it  X—►«>

(6)

In  certa in  cases, as discussed below, this lim it diverges 
lo garith m ica lly ; in these cases, we take  X to be finite 
b u t ve ry  large, dropping term s which vanish as X— 
b u t retain ing a ll terms which are proportional to lnX5. 
The renorm alized vertex

Г (С ; p , p ' )  = lim  Z2r ( C ;  p, p ')
X—oo

is ca lcu la ted  by the sam e techniques from the d iagram  
of F ig . 3. F in a lly , we take the lim it qa—»i<*> in our 
expression for ?'(i)(i)*Comct and compare with Г (С ; p, p ' ) , 
g iv ing  the resu lts

P ' ,q )=  0 , (7a)

lim  Т ы т ^ - ' Ч Р ,  P Я)
€*••«•; q.p.p7

lim  f am Coapl(p ,  P', q)
«»-»<«;q.p.-p* Jixad

= ?о-1[Г (С ; p, p T i + d P - ^ + O i q r *  W o ), (7b)

дсоп,р«= ( j r*/32irJ) {In(X*/| q0 |I)C-7<i)7oYYoYym,«) 

+ lY V O '0>7a7<a)7'Y

^7 <l)7o YYr7 (2)7r Y h Y7V7 (i)7r  47o7  (2) ]

—  ?7 (ц7е Y>o YYo7 (i)—  }  Y W ( i)7o7 <2>7oY 

+ 7 (1)70^ 707(2)704+  Y7o7 (U7oYTo7 (S)

-  i7a)7oY7r7(8)7,-y -  i  Yyr7(i)7rY7oT(l) 

+ } f [ 7 r7 (i)7T7 <2)7a + 7o7 (i)7r7 (*)7 ']4
- ( 1 ) ^ ( 2 ) } .  (7c) 

In  Eq. (7 ) , the notation V ' Y  is a shorthand for

1 ■ 1 in the scalar-gluon case, i y &■ ■ ■ i y i  in the pseudo- 
scalar-gluon case, and ( — 7 , ) 1*>7P in the vector- 
gluon case. Some details of the calculation leading to 
Eq. (7 ) are given in Appendix A.

The second class d iagram s (F ig. 2) have been ca l
culated by Johnson and Low .6 In our model, which has 
only St/3-singlet gluons, these diagram s contribute 
only to the -S£/j singlet p art of the com m utator. T ak ing  
the B jorken lim it, and com paring with the bubble 
d iagram  contributions to Г (С ; p, p ')  illu strated  in 
Fig. 4, Johnson and Low find

lim  f (i)(2, p\ q)
(20“*ioojq , p , p f  i iz e d

= 5(11(2>М щ (Р, P\ ? ) +  lim  7i(i)(.),' i“ ‘ ( ? ,  p', q) 

=5(i)(2,lri“ *C?> P', ?)+ 9о_1[Г (С ; p, / ,')Ь“ЬЬ1*+ Д 1г,“ « ]

+ 0 ( ^ f  * l n j o ) . ( 8 )

W e will not exhibit the detailed form of Д11'»”*, but only 
rem ark that in  all ca s e s  Д1г1“ * vanishes when the three- 
momenta q and q/=q + p —p* associated with the 
currents 7(i) and J m  van ish,

Д‘г|“ * |q_q'_0=0. (9)

^Equation (9 ) is true when the tr ip le t of fermions ф are 
degenerate in m ass. Johnson and Low* also discuss the 
effect of mass sp litt in gs .] Thus, for the p h ysica lly  
in teresting case of the com m utator of sp a tia lly  in te
grated  currents, the entire answ er is g iven  b y  Eq. (7 ) . 
No cancellation between the .S t/ rsing let p a rt of 
дсотщ ancj д ^ .т »  j s possible, and we conclude th a t the 
Bjorken lim it and the naive com m utator in our models 
differ in second-order perturbation  theory.

To m ake contact w ith our previous work and w ith  
our fourth-order results, it is useful to w rite  out two 
special cases of Eq. (7 ) . W e consider the com m utator 
of two vector currents, tak ing  7d) =7*Xe, 7 (2) = 7  A b- In 
the vector-gluon case we find

дСотр« = (gry i 6 ^ )  {2(gM,-& og .o )7o [> , x»]

+ i(7 .7 o 7 j.-7 * 7 o 7 » ) {A“, X»)) ,  (10)

in agreem ent w ith the resu lt which we have reported in 
Ref. 6. In the sca lar- and pseudoscalar-gluon cases we 
find

Д<к“с‘ = (gr У  16т3) {(& ,-& ,аЫ 7 о [Х ‘,1 X6]

— i (7»7o7ji 7м'Уо7») {X°, X*][ln(XV| q0 ]*) — 1 ] ) .  (11)

B. Fourth Order

To fourth order in gp, the num ber of d iagram s con
tribu ting  to is so large th a t a  d irect calculation

Fic. 3. Second-order correction to the 
vertex ol the naive commutator C.

P'
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of the Bjorken lim it, in analogy with our treatm ent of 
the second-order case, is prohibitively complicated. 
However, un itarity  implies that the part of Д pro
portional to []X*, X*], and independent of the three- 
momenta q, q', p, and p' and of the fermion mass m, 
is related to an integral over the longitudinal current- 
fermion inelastic total cross section .''1 Applying this 
connection to the commutator of vector currents in the 
scalar- and pseudoscalar-gluon cases, we have ca l
culated the leading logarithm ic contribution to the 
[X“, X*] term in fourth order, w ith the result

д =  ( ^ - ы ь о Ы У ,  x4] [ ( g r 7 i M + 7 ( g , 7 i < ^ ) 2
X ln ([ go H + g^X co nstJ+ C term s sym m etric in o, b)

+  (term s proportional to q, q ', p, p ', and m ) .  ( 12)

D etails of the u n ita r ity  relation and of the total cross- 
section calculation are outlined in Appendix B.

Ш . DISCUSSION

W e proceed next to discuss a  number of features of 
our results of Eqs. (7) and (1 0 )- (1 2 ) .

1. W e begin by noting that to second order in g,1, 
дсот.о1 contains terms ln(X2/| ?o |2) which diverge 
logarithm ically  both in the B jorken lim it gg—Hoc and 
in the infmite-cutofl lim it X—»°o. I t  is easy to see that 
the lnX5 divergences result from a m ism atch be
tween the m u ltip licative factors needed to make 
Г o)ro*Compi(^ , p ', g )  and Г (С ; p, p ‘) finite (i.e ., 
InA2 independent). As we recall, the renormalized  
quantities f m m ^ mcX(P, p\ q) and Г (С ; p, p ‘ ) are 
obtained from Г п)<1)*с°"‘>’‘ ( 0 , p', q) and Г (С ; p, p')  by 
m u ltip ly ing  b y  the wave- fun c t ion  renormalization 7.г and 
tak ing  the lim it X—»a>, keeping any residual ln\2 
dependence. On the other hand, the f in i t e  quantities 
7’o ,«)*Comi’t (p 1 p\  ? ) ,,",to and Г (С ; p, р ' у ^ ь  are ob
tained  b y  m u ltip ly ing  b y  appropriate vertex and 
propagator renorm alization factors which completely 
remove the InA2 dependence,

Fig. 4. Self-energy diagram which 
makes a second-order correction to the 
SE/j-singlet part of C.

p '

Г (С ; p , p ')  ,b it ,= Z (C ) V{C‘, p ,  p ' ) ,

q Y ^ = z { y m ) Z ( y m ) Z ^  (13)
X T m m * ^ 4 p, p\ q) .

In general, the vertex renorm alizations Z (C ), Z ( y m ) t 
and Z (7 (!)) are not equal to each other or to Z2. If we 
w rite

Z (C ) =  1+ A (C ),
2 2= 1 4 -a 2, (14^

then we find, to second order, that 

f w a f ^ K p ,  P\ q) =  T m(t)*Cmnvt{p, p\ q'j finite 

+ [2 A j—A (7 (i)) -  Л (7(„) ]

I -  1

Using the fact th a t fin ite q u an titie s  on the left- a n d  
right-hand sides of Eq. (7b ) m u st m atch  up , w e s e e  
that

[ д , + A (C ) -  A (yci)) -  A(7«>) ]C + f in ite , ( 1 6 )

confirming th a t the lnX2 dependence in  Д00'"0* r e s u lt s  
from a m ism atch between the m u ltip lica tiv e  re n o rm a li-  
zation factors on the left- and righ t-h and  sides of E q .  
(7b ). To check Eq. (16) d ire c tly , w e note from  E q .  
(A10) th a t

A ( О С -  (g,*/32«*)JY '/ .С У '» InX*>

A27o= (gr*/325T!) %ЧУтУаУтЧ InA2, ( 1 7 )

which allows us to rew rite the square  b rack e t in  E q . 
(16) in the form

(grV32irs) lnX5 (7 (1)5 YYt7o7t  4 7 (2) 'V (i)4 УУгУаУ’ УУа)

- И  Y 7rll7  (i)7o7 m - У т У М ю Ъ 'Ч

— ^ Y7 r7 (i)7T TY o7 (2) “I” 7  0 )7 o i Y 7 t7  (i)7T У

-7U )7o i Y Y O W 'T f+ i Y7r7 (i)7 rY7o7 (i)) . ( 1 8 )

w ith  the four lines coming from A2, A ( O i  - A (7m )>  
and — A(7 (2) ) ,  respectively. A lit t le  a lgeb ra  then sh o w s  
th a t Eq. (18) is indeed iden tica l w ith  the InA2 p a r t  o f 
Eq. (7c).

The presence of term s which d iverge as In I gn 12 in  
Eq. (7c) indicates that, i n  the g en e ra l  c a s e , the B j o r k e n  
lim it does not exist. The fact th a t th e  In | ?o Is a n d  
lnXs terms occur in the com bination ln(X2/| qo I2) 
means that, to s e cond  o rd e r , the ex is t en ce  o f  the  B j o r k e n  
l imit i s  d ire c t ly  connec t ed  w i th  the m a t ch in g  o f  r e n o r m a l i 
zation fa c t o r s  on the l e f t - and r igh t -hand  s id e s  o f  E q .  
(7 b ) : When the renormalization factors m atch , t h e  
B jorken lim it exists; when the factors do not m atch , t h e  
Bjorken lim it d iverges .10 U nfortunately , w e sh a ll s e e  
th a t this simple connection does not hold in  h ig h e r  
orders of perturbation theory.

To interpret the divergence of the B jo rken  lim it , w e  
note that the renormalized T  product can  be w r itte n  a s a

x  I T(D 
L y p + y q 7  (i)+ 7  (i) ■

Пс-.р, p')-
y p - y q 1

Г ( С ; * ,  Я ' ш “ + [Л 2-Л (О З С .

(15)

]■

T(D(!) (P, p', q)= j  dqt
j -  «О

, p ( p , p\  q. g°') 
• / 

qo— qo
( 1 9 )

7 (i)

1 F. J. Gilman, Phye. Rev. 167, 1365 (1968).

10 This was first noted by A. I. Vainshtein and B. L. Ioffe, 
Zh. Eksperim. i Teor. Fiz. Pis’ma v RedakLsiyu 6, 917 (1967) 
[Soviet Phvs. JETP Letters 6, 341 (1967)]. These authors co n 
jectured that when the renormalization factors match, th e  
Bjorken limit and naive commutator agree. Our calculations show  
that this conjecture is invalid.
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Table I. Cases involving vector (V) and axial-vector (A) octet 
currents with finite Bjorken limit in second order.

Model
Current Current

■Ли
Piece of 

current фСф

Vector gluon VoiA К or A V от A
Scalar or pseudo V V V

scalar gluon V A A
A V A

where the spectra l function p is defined by 

й ( р ) р ( р ,  P', q, qo)u (p ' )

=  ( 2 E  ( p  j 7 (1 ,1 N )(N  1 7 (s) I p ' ) H q + p - N )
N

~ (2*)« E {p  I 7 od I i W I I P ' M q + H - p ’ ) .N
(20)

Provided th a t the spectral function does not oscillate 
an  infinite num ber of tim es11 (and  i t  cannot have this 
k ind  of pathological behavior in perturbation th eo ry ), 
when the B jorken lim it of ?ю т (р>  P', ?) exists it is 
equal to the in tegra l

й ( р )  f dq0' p ( p ,  p ',  q , q 0' ) u ( p ' )
J — ce

= (2ж)’ E  (P I /(!> I N)(N 17o) I j» ')J4q+ p-N )
N

~ ( 2 E  (P 17(5) I N )(N  I 7(u I / M q + N - >
N

(21)

which is ju s t  the usual sum -over-interm ediate-states 
definition of the com m utator. Conversely, in the cases 
in which the B jorken lim it d iverges logarithm ically , 
the in tegra l and  sum  in Eq. (21) m ust diverge logarith 
m ica lly .

2. There are a number of interesting cases in which 
the renorm alization factors do m atch, and hence the 
B jorken  lim it exists in second order. W e have enumer
ated  in Tab le I  a ll examples of this type in which all of 
the currents involved, 7 (Ц, 7 W, and <J/C\p, are either 
vector or axial-vector octet currents. Specific formulas 
for д с°“ р< in the case when 7(i> and 7(j) are vector 
currents were given in Eqs. (10) and (11) above. 
(To obta in  the corresponding formulas when 7(i) 
and/or 7ед are axial-vector currents, in the vector- 
gluon case, one sim ply m ultiplies from the left or right 
b y  7 a according to the scheme shown in Table П .)

The rem arkable result that emerges from these 
exam ples is that, even wh en  the B jork en  l im i t  exists in  
s e c on d  order , i i  does  not agree  with the na ive  commutato r  
( th a t  is, дс«“ р‘ is finite but nonzero). According to our

previous discussion, this means th a t the Bjorken lim it 
agrees with the spectral function integral of Eq. (21 ), 
but the naive com mutator does not. M ost of the prin
cipal applications of the B jorken lim it technique for 
space-component-space-component com mutators as 
sum e  the id en tity  of the B jorken lim it and naive com
m utator, and therefore, according to our results, break 
down in perturbation theory. Further details of this 
breakdown are given in Ref. 6.

3. From an  inspection of Eq. (10) and Table II, 
we see that in the vector-gluon case, for a ll commu
tators involving vector and axial-vector currents, 
дСотц vanishes when either /i— 0 or v=  0. This result can 
be deduced d irectly  from the W ard id en tity10 satisfied 
by ^о)в)*с<’шр‘ (Л  p ' ,  я )  j which, in the case when 
7(d and 7o) are both vector currents, states that

2V>*Con,pt(?, P\ q) I
= Г([Х“,Х‘> ,; /.,^)- (22)

M ultip ly ing  by qtT1 and tak ing the lim it дд—►»<» gives 
im m ediately

lim  ?<1№>+Сошр1( ? 1 p\ q) | та)-т'Лв-7(а)—

= 90-‘ Г ( [> , Х‘> „ ; p, P ' )  + 0 (? o -s ln9„), (23)

confirming our explicit calcu lation . A sim ilar derivation  
holds in the cases involving axial-vector currents, pro
vided that the divergence of the ax ial-vector current 
is “soft,”12 as i t  is in the vector-gluon case. W e thus see 
th a t the breakdown of the B jorken lim it which we 
have found is consistent w ith  the constraints imposed 
b y  W ard iden tities. Therefore a ll of the resu lts of the 
Gell-M ann time-component algebra, which are derived 
d irectly  from the W ard iden tities, rem ain v a lid .11

4. W e turn next to the order g *  resu lt of Eq. (1 2 ) , 
which gives the VV~*V com m utator in  the sca lar- and 
pseudoscalar-gluon models (th e  second line in T ab le 
I ) .  W e see that even  though the renorma l iza t ion  fa c t o r s  
match , the B jo rk en  l im i t  i n  this ca s e  d iv e r g e s  i n  f o u r t h

T able II. Substitutions to get axial-vector current results in 
the vector-gluon case.

Current
•Лi)

Current
A n Change in Eq. (10)

V V none

A V дСвтп»—|_.удДСодр!

V A дСогйВ1—>дОошвЬу1

A A дСош1)1_ь — ЛСопц>Суа

11 This pathological case is discussed in detail by R. Brandt and
J. Sucher, Phys. Rev. Letters 20, 1131 (1968).

,J See Ref. 2, pp. 252-260, for a discussion of soft divergences. 
11 There is one exception to this statement, which arises when 

Ward identity anomalies are present. See S. L. Adler, Phys. Rev. 
177, 2426 (1969); J . S. Bell and R. Jackiw, Nuovo Cimento 60, 
47 (1969); R. Jackiw and K. Johnson, Phys. Rev. 182, 1459 
(1969); S. L. Adler and W. A. Bardeen, ibid. 182, 1517 (1969).



302 Adventures ir  Theoretical Physics

B J O R K E N  L I M I T  I N  P E R T U R B A T I O N  T H E O R Y 2851

order . We note, however, that the divergence behaves 
as g r4 In | g0 1! , whereas in fourth order, terms behaving 
like | ,'(ln  | go I ')1 could in principle he present. On the 
basis of this behavior and our second-order results, we 
make the following con je c tu re :  When the renormalization  
fa c to r s  n eeded to make Tm m *(p , p', g) and  Г{С; p, p') 
f in i t e  are  the same, the B jorken l im it  i n  order 2n  o f  p e r 
turbation theory contains no terms  gr5"(ln  | g 0 |2)" , but 
begin s  in  genera l w ith t erms  |,’" (ln  | qa |2)"  >.

W e have only calculated results for the scalar- and 
pseudoscalar-gluon models because these models have 
the simple property that, when the un ita r ity  method of 
Appendix В is used, each ind ividual interm ediate state  
m akes a  contribution behaving a t  worst as g r4 In ! q0 11. 
The situation in the vector-gluon model is more compli
cated , since here the individual interm ediate states 
contain term s behaving as gP*(ln | qa |2) 5, as well as 
terms gr* In | до I1. If our conjecture is correct, the 
gr (In j |3)2 term s from the various interm ediate 
states in the vector-gluon case m ust add up to zero. 
W e have not checked whether this happens; i t  would 
c learly  be worth doing.

5. As mentioned, in Sec. I, one can try  to save 
asym ptotic sum rules by postu lating that nonpertur
bative  eSects conspire to m ake asym ptotic sum rules 
v a lid  when all orders of perturbation theory are 
summed. A simple w ay that th is could happen would 
be if our order g,2 terms in w e re  the lowest-order 
term s in an expression

л  e x p [ - £ g , !  ь  1 9o I*], B > o  (24)

which damps to zero as q g - n m . However, examination 
of our fourth-order result in  Eq. (12) shows that 
exponentiation gives

J l  
16**

Xe4 7 i & 4?o | ,) + 0(«'')* (25)

sum rule, derived  in  A ppend ix  B , connecting the 
t>“, term  in E q. (11 ) w ith  an  in te g ra l over the 
long itud inal current-nucleon  cross section  Lr (g2, ш), 
w ith w= —<f/p-q. In the renorm alized  (X—*■») theory, 
where there is B jo rken -lim it b reakdow n , we find to 
s e cond  o rd er  th a t

lim  T ,(1)0) *Ccm pt_ -  -  J?<f

X [7„7o7.+7.7<i7„+2 ( g „ ,-  g^grt) 7qf ]

+  (term  sym m etric  in  a, b)  + 0 (  jo”2 ln ?o ), (26 ) 

/=  lim  2 f  d u L + r i f . u ) ,  (27)
г2— »

where the subscript « + g  is a  rem inder th a t  to second 
order we need only re ta in  the sin g le  neu tron  p lus 
gluon in term ed iate-state  con tribution  in c a lcu la t in g  L~, 
Our explicit calcu lation  shows th a t

f = gr 7 1 6 ^ ,  

lim  Ln+f (<f, <j) =  (g ,J/64irJ)u , (28 )

which blow s up exponentially rather than damping. 
In  other words, the simple damping mechanism of Eq 
(24 ) cannot be correct, although our fourth-order 
ca lcu lation  obviously cannot rule out more complicated 
dam ping mechanisms.

6- In Eqs. (A  14) and (A15) of Appendix A, we 
ind icate  th a t when the B jorken lim it is taken
b e fo r e  le ttm g the regulator mass X go to infinity, one 
obtains ju s t the naive com mutator. Thus, i t  is tem pting 
to  t r y  to “ save” asym ptotic sum rules by prescribing 
th a t , instead  of using renormalized perturbation theory 
( lim it  X-+=o taken f irst), one should a lw ays work with 
toe unrenorm alized quantities, w ith  X very  large but 
fin ite . W e w ill now argue, however, th a t this is a 
spurious resolution of the difficu lty. L et us consider the

11 This point ol view has been advocated hv f* 13 
Phys. Rev. 188, 2416 (1969). by L ' R ‘ HaSen.

in agreem ent w ith Eq. (2 7 ) . As w e noted  in  R ef. 6, 
Eq. (27) indicates th a t the breakdow n of the B jo rken  
lim it in  Eq. (26) is e ssen tia lly  the sam e phenom enon 
as the breakdown of the C allan -G ross re la tio n ,te which 
states th a t

lim  ш) = 0 .  (29 )
to

L et us now consider the analogs of E qs. ( 2 6 ) - ( 2 9 )  in  
the regulated (X-finite) theory . S ince, in  order g , 2, 

m atrix  elem ents are a lw ays l in ea r  in  the g luon  p ro pa
gator, to obtain the regu lated  m atrix  e lem en t in  order 
gr* we sim ply subtract from the renorm alized  m a tr ix  
element the corresponding expression w ith  the gluon 
mass /1г replaced by the regu lato r m ass X2. S ince /  in  
Eq. (28) is independent of /i1, we find th a t  E qs. ( 2 6 )— 
(28) become

lim  T a)m* < W = ? r 4 [ x «, ( у „ у 0у , + у , у ъ у и)
flO -M  00

+  (term  sym m etric in a, b) + 0 (<7o-2 ln<?o), (30 )

0— lim 2 I do> Ltot (<?, ш);
r -~-«  •> о

Jim ХюГ (-г2, cj) = 0, (31 )

with

L bi  ( t 2, ( j) = L ^ f  ( j 1, ш) -  L»+p-  (g2, ш) („их*. (3 2 )

As expected, in the regulated theory the B jo rken  lim it  
is norma! and the Callan-Gross re lation  is sa tisf ied . 
However, a disturbing problem arises when we exam in e 
in detail exactly how  the B jorken lim it is satisfied . L e t  
us suppose that the regulator m ass X is much la rg e r th an

(196^) ^ a" an an(  ̂ I 1 Gross, Phys. Rev. Letters 22, 156
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the ferm ion m ass m  and the gluon m ass ц,
X2» ™ 5, X2» / !5, (33)

and let us consider, for fixed oi, two ranges of values of

range 1: u 2, m K K -q * < { / (2 a r ‘ - 1),
range 2: £/(20)-*- 1) i=  (X + w )2- w 2.

(34)
The d iv id ing point between the two ranges is ju st the 
threshold for regu lato r partic le  production. For
— fl2<f/(2w~l — 1), we have (g - f  p ) 2<  (X + m )2, and 
regu lato r partic le  production is forbidden. Thus, in 
range 1, the second term  in Eq. (32) vanishes,

(q\ <■>) |»*-х'=0, (35)
w hile the first term  has its  asym ptotic va lue

L*+i ( q2, и )~ (^ г2/64тт2)ш, (36)
and  the C allan-G ross lim it is not  satisfied. In  range 2, 
we have ( j + ^ ) J>  (X + w )2, and regulator production 
is  allow ed ; for —< f»X 2/ (2ш-1—1 ), the second term  in 
Eq. (32) a tta in s  the sam e asym ptotic value as Eq. 
(3 6 ), and the C allan-G ross lim it is satisfied. Thus, we 
see th a t i n  the r egu la to r  t h eo ry , the Callan-Gross l im i t  i s  
sa t is f i ed  o n l y  i n  a r e g i o n  i n  w h i ch  — g2 i s  b ig  on a s ca l e  
d e t e rm in ed  by  X2, and  then  on ly  b y  v ir tue o j  the un -  
p h y s i c a l , n ega t iv e  con tr ibu t ion  o f  regu la tor  p rodu c t ion  to 
the total l o n g i tu d ina l  c r o s s  sec t ion . W e conclude that the 
regu lato r theory does not afford a satisfacto ry resolu
tion of the breakdown of the B jorken lim it in perturba
tion theory.
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A PPE N D IX  A : CALCULATION OF Л 0™"1 

In  th is appendix we outline the calculation leading 
to Eq. (7 ) in the text. W e recall th at 7'<i)(2)*Co" pt is 
defined as the contribution to the current-ferm ion 
scattering  am plitude of the d iagram s shown in F ig. 1, 
consisting of the lowest-order current-fermion d iagram s 
and the second-order diagram s obtained from the 
lowest-order ones by insertion of a single v irtu a l gluon. 
W e m ay  write

^ 0)(ii*Comtt( ^  P', q) = Г(т<1>; p, p + q )  S ( p + q )
X Г (7 р>); p+ q ,  p ' )  +  F(ym'i P> P~q') S ( p - q ' )

Х Г(7(1); p —q', p ' ) + B m m i p ,  p ' ,  q ) ,  ( Al )

where 8  and Г are the renormalized propagator and 
vertex functions and where B u)m denotes the sum of the 
two box diagram s on the fifth line of F ig. 1. We shall 
calculate f  (i)(2)*Ccmet in the lim it go—»»00 and isolate the 
coefficient of the q f 1 term . This is to be compared with 
the m atrix element of the naive com mutator between 
fermion states, given by f  (C ; p , p ' ) .

The renormalized vertex function Г for the current 
i?7 (i)ф is given, to second order in g, by

f  (7 (» ; p, p ' )= Z i r ( y a ) ' ,  Р, p ' ) —Zt7 a )+ A (7 « ) j p, p ' ) ,

(A 2)

with 7.1 the fermion wave-function renormalization and 
with A (7 ci); p, p ')  the usual unrenormalized second- 
order vertex p art (arising  from diagram s on the second 
and fourth lines of F ig. 1 ). Note that Г is obtained by 
m ultip ly ing the unrenormalized vertex function b y  the 
wave-function renormalization, w ith no  fu r t h e r  sub 
tract ions or re s ca l ing .  The renormalized propagator is 
given, to second order in g r, b y  the usual expression18

S ( p ) - ' = Z 2S (p ) -L = Z 2( y p - m o ) - Z ( p ) ,  (A3)

w ith 2(/0 the unrenormalized proper fermion self
energy p art (arising from the d iagram s on the third  line 
of Fig. 1) and w ith m^= m+ Sm  the fermion bare m ass. 
Denoting the lowest-order current-ferm ion am plitude 
by Г а)(2,в°™ we see th a t the first two lines on the 
right-hand side of Eq ( Al )  m ay  be rew ritten  as

ZiTm(а)в°"Ч-СЛ(7(1); p, p + q )  (y p + y q - m )-*7m

+ym {yp-\-yq—m)~i($m+'Z{p+q) )

X ( y p + y q - m y h m + y m i y p + y q —m )-'

Х Л ( 7 в ;  p+q, l̂')  +  ( ( l ) <_>(2 ) ,  q*-*—? ' ) ] .  (A4)

According to Eq. ( A2 ) , the m atrix  elem ent of the naive 
com m utator is

Z2C + A ( C ; p , p ' ) .  (A S)

I t  is easy  to see th a t, as  go—̂ 00, the go-1 term  of 
ZiT(l)(3)B°n‘ is precisely Z-/2. Our task  is therefore re
duced to com paring the g0_1 term  of

[a(7 (d; p, p+q) ( y p + y q —»0_,7gH—

+ ((1)<_4(2), q*+— ?,)D+-S(om(/>i P'< q) (A6)
with Л (C ; p, p').

The unrenorm alized self-energy and vertex p arts  Z 
and  A are ca lcu la ted  b y  the usual technique of in 
troducing a  meson regu lato r of mass X, g iv ing

- H r 2 , ' 1 .  ,  . x ,  J z ( l - * ) ( - . P 5+ w 2) + » :X 4 - ( l - a : ) W ' 1

2 w  = l& P L  dx « * т > + т ) lnl * ( i - * ) ( - ^ * ) + v + ( i - * ) w J  (A7)

S .  L .  A D L E R  A N D  W . - K .  T U N G

11 In this equation, S (p) denotes the unrenormalized propagator in the presence of all interactions.
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and
.. -tr* Г' . Г 1- " ,  (, . , Г z \ * - C ( p , p ’ ,x , y ) '}

A h » ; P . m - ■ & ! ' » I '  l ”U > - c CP, J

where
z= l - x - y ,

C{p, p', x, y ) = x ( l - x ) p 1+ y ( l —y ) p ' 1—2 x yp - p '— (aj+ jO w*. ( A 9 ^

In order to obtain the renormalized propagator and vertex from Eqs. (A2)  and ( A3) ,  w e m u st c a lc u la te  t h e  
X—• »  lim it of the unrenormalized self-energy and vertex parts, dropping a ll term s w hich  van ish  in th is  l im it  b u t  
retaining powers of lnX. [~Note th a t the\— limits of 2  and A are not  the sam e as the ren o rm a l iz ed  se lf-en ergy  a n  
vertex parts 2  and A, which are defined, in  the X— limit ,  b y Z i ( y - p — Жо) — 2 ( p )  = y p ~ 2 ( P ) ,  ZiVW 
+ A (ym ; p, p ’ ) = y m + i h o i ;  P, # ')•] Taking the X ->« lim it in Eqs. (A 7 ) - (A 9 ) , w e find

_ . i  r\ Г  x \ *  "j

-  i s /„л  1 b L ( i - . ) ( - f ’+ » -)+ w > + < i - « ) d •
_/*1 r i - i  | Г "1

l i m A ( 7 a i ;  P, P ')  =  7 7 3  I ^  dy  Н г ь 7 т 7 т Ч ln | .  -------- г  IJ e { № - C ' Kp , f i ’ , x , y )  J

+ ' i l ( i - * h ' p —y y p ' + m l y m l ( i - y h ‘ p ' - x y p + ™ h C ( p  x  ‘ ^A 1 0 '1

F in a lly , taking infinite-momentum lim its of these expressions, we find

lim  lim 2 (^ ) = ( - | г!/16тг5) YYoVfoQ ln(XJ/| p 0 l2) + Й + О (1 п ?0) ,
pr»»« X-*e

lim  lim A (7 (i); p, p')  = (g ,2/16it2) { —|У7т7ю7"уОп (*У| £0 P ) + i ] + i  Y W o )7o4 + 0 ( 1°£o/AO S> ( A l l )
pp-*ico Х-»Ф

lim  lim  A (7 (1); p, p') = (g^/USx5) | — i  Yrr70)7T,vDn (W I £«' 1! ) + i ] + } ‘Y7o7 <i)7o,Y+0 ( ln £o7 Ю  ) ■
X-*«o

The box d iagram  is convergent even w ithout regu- Note that, according to E qs. (3 ) an d  ( A l l ) ,  th e  
larization . In  the regulator theory, В ю т  is the dif- lnX2 dependence of A (C ; p, p ')  p r e c i s e l y  c a n c e l s  th e  
lerence of two terms calculated  w ith meson masses ц lnX5 in the cu rly  bracket in Eq. ( A12) ,  as requ ired  b y  
and X, respectively, b u t the term  w ith m ass X does not the absence of lnX* dependence on the le ft-h an d  s id e , 
contribute in the limit.X—>®. [T h e  situation is sim ilar Substituting Eqs. ( A l l )  and (A 12) in to  E q. (A 6) ,  w e  
to the second term  on the right-hand side of Eq. obtain, f in a lly ,
(A 8) . ]  A lit t le  care m ust be exercised in computing the i:m <? *comot/j. v  „i /1 
Bjorken lim it of B m tn . The reason is th a t, because of 0,(51 {p' P ' q) = (V ?o)
infrared  singu larities, the lim it 9ir-*tco cannot be хГГГС-  * V I 4-АС°” ”‘"1-1-0(лг* In®,), (A 1 3 )
n a iv e ly  taken  under the in tegrals over the Feynm an X L iC ' * ' P ) +  J +  9
p aram eters .17 A detailed  study  y ie ld s w ith  ACt,mDt as given b y  Eq. (7c) of the t e x t

To conclude this appendix we rem ark  th a t  if , s t a r t in g  
Hm 'iimB(u(2)v£, p ’> Я) =  ?o 'sA (C ; p, p ’)  from the regulated quantities of Eqs. (A 7) and  (A 8 )

a n d  th e  re g u la te d  b o x - d ia g r a m  p a r t  В  д а ® , o n e  t o o k  t h e  

+  (g.-7 1 &»2) 9(f  1 Ц у Г т 7 (1)7 (ГУ<я7 ,''У ln (X * / l <7o I2)  B jo r k e n  l im it  qt~*ix be fore  le t t in g  th e  r e g u la t o r  m a s s
X go to infinity, one would obtain

lim T{p) = 0 ( l/ p o ) ,+  i  Ч[7г7(1)7т7(2)7о+7<ГУ(п7г7в)7'] У 

- 1 YYo7(i)7o7(2)7o7- [(1 )< ^ (2 ) ]|  + O (ln ?0/ V ) • (A12)
lim A(7 o>; p, p ' ) = 0 ( l/ pa ) ,

11 The problem which one encounters here сап be illustrated by a (A  14)
simple example.Consider theinteKral f j d x  (AxiQt+B)/(xQ1-\-Oi t i : _  a  !  a r\t \ ! j.
witn A, B, and С constants. In the limit 9*—*— <n, both terms in “ \70Ь P> P ) ” (1 / r  0 />
the numerator behave as ( ij1) -1, although at first glance one ptr" '“

behave 1Ute and to pl' q)= (1/5o)Л(С; p' p,)+ 0{1/9°г)■
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Taile  Щ . Regions of phase apace where denominators in 
Eq. (2.19) vanish as д1—Ю. я в, denote the spatial compo
nents (j = 1 ,2 ,3 ) of nl f t l . . . .

Phase-space region Denominators which vanish

(1) и‘ = 0 ("+««)*, ( « - Ы ’

(2) *i*=0 («+ * .) ',  О - ! . ) 1
(3) ft‘ = 0 (»+ f t ) ’ , (# -ft)*
(4) ft'II r /—

v 1 И

(5) ft ' II p' (/’ - f t ) ’
(6) g i‘ II f  and g ,‘ II p ( ^ - f t ) 1, ip -S tY , ( £ - f t - f t ) ’

(7) ft ' II » ' ( я + ft)1
(8) ft ' II Я* (»+ * .)*

As a consequence, one finds

lim  Г Ши « - p ._  (1/4о)Г (С ; p, p ')  + 0 ( 1 / V ) ; (A15)
ffO-*ioo

th a t is, the B jorken  lim it in the case of fin ite regulator 
m ass agrees w ith  the naive com m utator. This resu lt is 
expected for the regulator theory since the anomalous 
term  дс«“ р1 is independent of the gluon mass and is 
canceled b y  exac tly  the sam e term  (w ith  opposite sign) 
which m ust be present when the regulator mass is kept 
finite.

APPENDIX B : FOURTH-ORDER CALCULATION

In  th is appendix we consider an  extension of our 
previous resu lts to order gA  U nfortunately, repeating 
the general calculation  of Appendix A in the next order 
of perturbation  theory would require a  prohibitive 
am ount of work, and therefore w ill not be attem pted. 
R ath e r, we w ill content ourselves w ith  the calculation of 
one special case, which is made tractab le  by a combin
ation  of tricks. The special case is the S i/3-antisym -

m etric piece of the vector-vector commutator, in  the 
scalar- and pseudoscalar-gluon models. There are two 
further restrictions. W e consider on ly  the leading 
logarithm ic behavior in the Bjorken lim it, and we lim it 
ourselves to the p art of the commutator which, like 
дСотр^ i s ind ep enden t  0f the three-momenta q, q ', p, 
and p' and of the fermion mass m. This second restric
tion means that we can set q= q ' = p = p' = 0 at the 
outset, so th a t we are  dealing with the forward Compton 
scattering am plitude, and that we can take the lim it 
m —*0 wherever Inm divergences do not appear. (W e 
w ill verify  that there are no Inm  factors in the leading 
In | g0 12 term .) The restrictions allow  us to employ the 
following two tricks, which m ake the calculation 
tractab le: ( i)  W e exploit a  connection, provided by 
un ita r ity , between the B jorken lim it of the forward 
Compton am plitude and current-ferm ion cross sections. 
This connection becomes especially  simple in the m—>0 
lim it, ( ii)  For dimensional reasons, In | g0 12 terms in the 
current-fermion cross section ( a t  m = 0) m ust be 
accompanied b y  — In î1 terms, where ii is the gluon 
mass, so we can study  the large-| q0 1* behavior b y  
studying the small V  singu larities. The la tte r  arise  from 
read ily  identifiable regions of phase space, and are 
much more easily  evaluated  than the complete current- 
fermion cross section itself.

We begin by review ing the u n ita r ity  connection®9 
between the current-ferm ion cross sections and the 
forward Compton am plitude. S ince we are only in 
terested in the com m utator of two vector currents, we 
set 7 {i) =  7 (.X<1, 7(21 =  7 ^ * ,  =  and I t  w ill
further be convenient to restric t a  and b to lie in the 
isospin SUi  subspace of SU% (а , Ь= 1, 2 ) ;  this h as no 
effect on the p a rt of the commutato r an tisym m etric  
in a and b, and has the v irtu e  of m ak ing the charge 
structure of our problem iden tica l to the fam ilia r case 
of pion-nucleon scattering. D enoting «*= — we 
m ay w rite  for the sp in-averaged , forw ard-scattering 
current-“proton” am p litude ,18

*Тг[(Г2?),®®*(Л h 4po1̂ + (t) £„ I  d'X e"'l{P 1 n/'°(x)7’i(0) > I f>
4 T r f ( ^ + ,% ^ ---- ——--------7^*+ 7A ‘ — — ---------7> “)1L\ 2m  A  y p + y q —m  y p —y q —m  /J

+ r,-* (g * , « ) ( - & . +  у ) + Г , * ( д » , ы ) ( р , -  ^  q ^ ( p ~  y  ? , )  . ( B l )

On the third and fourth lines, we have exp lic itly  separated off the Born approxim ation and m ade use of the vector 
W ard iden tities for T m m *(p , p, q),  which im ply that the non-Bom  p art is d ivergenceless. The isospin structure 
of the non-Bom am plitudes m ay be w ritten  in the form

« )  = Х»}+Г1ДМ (в», «Н О » , (B2)
T he standard  forward dispersion relations analysis for pion-nucleon scatte rin g1» m ay  now be taken  over to show

u Here “proton" means the £-type quark, and similarly “neutron” means the я -type quark. The actual matrix element is 
obtained by sandwiching Eq. (B l) between “proton” isospinors. 

u  G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phya. Rev. 106, 1337 (1951).
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that the amplitudes satisfy the following dispersion relations:

2у+>(д», ш) = TY+V, « )  -  fd u 'I W f  (<f, w')+W1+(g!!1 < о')][> '-ш )-Ч - (ш'+ w )-1] ,
•'o

«) = -  f  do,' [Wi (<f, «') -  ТЛ\+{ф, ы ') ] [ ( « ' - « ) - 1-  (aZ+co)-1],
■'o

Г ,* » ( Л « )  = - «  f ~ т  P * rr (г2. » 0 + ^ » + ( Л м ' Ш - ' - - ) - 1- (“ '+ “ ) _11
CO

г,*->(л «) = - «  г  ̂  D ^,- t f ,  «0  - H V t f , to')][(«,- ^ ) - 1+(o>'+«)-4 ,
J „  Ш

with absorptive parts given by

- (2ir)»J E  T.(p\^ W(Л ,:F У Л  | JVXJV| ,*) | p)i*(^+g-JV)
•pin*®) лг

2855

(B 3 )

= 2W1± ( g » ( - g u,+  ^ + 3 * О Д » ) ( * > -  £1 bfa- ̂  9) ■ (B4)

In  w riting Eq. (B 3 ), we have assumed one subtraction from the G ell-M ann tim e-com ponent a lgeb ra , is
each for 7\(i) [ th e  subtraction constant 2Y~>(q2, °o) [ 4 J  ,
vanishes b y  crossing sym m etry ] and no subtraction for 0=  | —  [ W f  (<?, u ' )  — R 'V '(9* iw')Di ( B °)
TV*1. To second order in g,J we have explicitly checked ■'в ш
the v a lid ity  of these assumptions. Since the asym ptotic and is v a lid  to a il orders in p ertu rb atio n  th eo ry  in  our
behavior as <j—*0 of higher orders of perturbation theory models. M u ltip ly in g  E q. (B 8 ) b y  2m ( f  an d  ad d in g  to
w ill differ from second order only by powers of inu, Eq. (B 7 ) , we get the m odified sum  ru le
and not b y  powers of u , we expect these assumptions to .*
be true to a rb itra ry  order, and in particu lar, to order / (g2/ ^ , m’/V) = lim  2 j  doi'
g r4- « * — «  J  0

L et us now set q = p = 0 , #i = 1 in Eq. ( B l )  and X [ i>  (3я, w’) — L+iq1, w ')]> ( B 9 )
take the lim it go -n ® . Using Eqs. (B2)  and (B 3 ) , w ith
we find th a t the right-hand side of Eq. ( B l )  becomes ___ .  . . . .  n  I 'n in 'i

l l rv 4._ L 4 f , Ш) = 2«СИ г,т («» ,а .)  +  (?*/«*)W i 4 f , *>)],
9»  ̂j

the t o t a l  longitudinal cross section for c u r r e n t - f e r m io n

x { l — lim  2m  f  d u ’ t W r i f r f - W i * (A « O I l l  The great v irtue  ° f E q ’ (B 9 ) . ' S Ла1>I J lim it 0 , the longitud inal cross sections a re  g iven

+  (term  sym m etric in a, Ь) + 0 (g ,r J lng0) . (B5) Ьу ^  slmple £ormuia

W e know  th a t the B jorken lim it of Т<х>т*(.Р, P, ч) ^  ^
m u st have the general form X i  Y, £  I (p  I £Ti W ± v / ,*) | N )  |2i 4(/>+?— >

jx ,  _  _  ep ln(p) N
j  « « =  ?<r 4 0 “, x*] ( B i  l )

X [7p 7< ry,-t-7 .707 ,+ 2(6„ -M (0 )7 ()/ (92/Mi , ж 2/м5) ]  w  т а У be read ily  verified b y  com parison of E qs. ( В П )
,  . . . .  and (B 4 ). W e w ill see th a t the facto r p T in  E q. ( H l l J

+  (term  sym m etnc m o, i )  + O (g0 1 lng0) ,  (B6) enormously simplifies the subsequent ca lcu la tio n .
w ith  /  the difference between the B jorken lim it and the W e are now геайУ t0 proceed w ith  the ca lcu la tio n  of
n a ive  com m utator. Setting ji = >/=1 in Eq. (B 6 ) ,  / to  order gA  B efore do ing th is , h o w ever, le t  u s  i l lu s tr a te
substitu tin g  for the left-hand side of Eq. ( B l ) ,  and Л е  Procedure and check the arithm etic  done so far b y
com paring w ith  Eq. (B 5 ) , we get a sum rule for f  usinS E4 S- (B 9 ) and ( B11) t0  reca lcu la te  the order

’ gr!  resu lt contained in Eq. (11) of the tex t. T o  second
/ (с7л * . mVu1) = lim  2m (*  order. the interm ediate sta tes which m ay  con tribu te

J Q are the single “neutron,”18 N = n , and  the ‘ neutron
v r m . ; j  /ч plus gluon, N = n +  g (F ig . S ). N either of these con- 

C i ( ^ i “ ) i (<f,« ) ] .  (B 7) tributes to L+, and the single “neutron” con tribu tion  
E quation  (B 7 ) can be rew ritten  in a more useful form to vanishes to order g,2, because the zeroth-order 
b y  recalling  th a t the usual fixed-g3 sum  rule, f ollowing «  We wish to tbnV D. J . Gross for pointing this out to us.
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__________ / ,

/  р+ч \

£  f —  J (*r)>

F ig . S. Diagrams of order gr contributing to the “neutron” plus 
gluon intermediate state.

p art of (p  | | n )  is  proportional to
й ( р ) У ' р и ( п )  = 0 . So we have

L+= 0,

L" = Z ? - l ( 2 l r ) a i  S!T  ip in (p ] ip

X  l37Z (B12) 

m = g ru ( n ) [ ~ ^ — y - p + y - p  — -— \ 4( ^ ) ) 
\ y p + y q  y p - y g l  Г

w ith  the factors y p  in 371 a  result of the factor pT 
m ultip ly in g  the current in Eq. ( B l l ) . 21 The factor 
( 7 ‘ />+7*g)~1= ( y p + y q ) / \ j > - q ( 2 —u)']  in the first 
term  in  3IZ would, if i t  survived, lead to a  divergence in 
E q. (B 9 ) a t  the end point a>—2, but i t  vanishes on 
account of the y p  in  the num erator. The second 
term  in  317! is also simplified by the presence of y p ,  
since i t  can be w ritten  as

g ra ( n ) l ~ 2p - g/  ( ц * - 2р - g ) 2u ( p ) ,

which approaches the fin ite q u an tity  g rt i ( t t ) u ( p )  in 
the lim it of van ish ing gluon m ass д5. As a  resu lt, 
Lr rem ains fin ite in the lim it as *0 and, b y  the d i
m ensional argum ent sta ted  above, we expect L r  to be 
fin ite in  the lim it 5s—>— « .  Th is reasoning can be con
firmed b y  d irect evaluation  of E q. (B 1 2 ), which gives

lim  L- ( j 1, o>) = (g*/64**)a;

su bstitu tin g  into Eq. (B 9 ) then gives 

lim  f = g ,  */16»*,

(B13)

(B14)

/

(o)
A
A

g\
n /

9 V .

J -

(b)

/ч ---- — rt
' \  (e) ' p

/ ЧУф

Л " n
(9)

Fig. 7. Diagrams of order g , % contributing to the “neutron” 
plus gluon intermediate state.

can be accomplished b y  iso lating the p a rt of /  which 
diverges like In^2 as д2—»0. There are  four in term ediate 
states which contribute in fourth order: ( i)  single 
“neutron” , N ^ n  (F ig . 6 ) ;  ( i i )  “neutron” plus one 
gluon, N = n + g  (F ig . 7 ) ;  ( ii i )  “ neutron” plus two 
gluons, N = n + g t+ g t  (F ig . 8 ) ;  ( i v)  triden t, N = 
n + p + p ,  n + n + n ,  or p + p + n  (F ig . 9 ) . The first 
three contribute only to Z r, while the triden t in te r
m ediate sta te  contributes to both L+ and L r . W e 
consider the cases in turn.

( i)  Single “neutron.”  The second-order p a rt of 
(n  | p ' U r — iLr2) I P)  is proportional to й ( п ) А ( у р ;

\  P + q

in  agreem ent w ith the [V , term  in Eq. (11 ).
To order g r*, we w ill not try  to calcu late  the finite 

p a rt  of f ,  but only the p art which diverges logarithm ic
a l ly  as j*—>—со. B y  our dim ensional argum ent, this

p+q-g, 
= n+g2

V
v p+q

n p+q-g2
= n + g.

n p+q-g, t  Р-9, P 
= n+g2

n p « -q -g j D р - д г Р 
= n + g ,

Fig. 6. Diagram of order gr* 
contributing to the one “neutron' 
intermediate state.

Ч 9г

11 As we noted, the fermion mass m is zero. The factor m1 in 
front of Eq. (B12) and subsequent equations just cancels a 
corresponding factor m_l coming from our choice of spinor normal
ization.

n t  р-д,-дг р-д, p n t  P'9,~e* р*9г

Fig. 8. Diagrams af order g r1 contributing to the “neutron” plus 
two gluon intermediate state.
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T a b l e  IV . Phase-space regions and pieces of | ЭТ11* which actually make divergent contributions to Eq. (2.18). 
n1, j i 1, ■■■ denote the spatial components (i= l> 2 ,3 ) of n, g lt • • • .

Phase-space
region Piece of I 3TC I*

(4) «i'll# 1 I«-*“ ( « ) h - t D / ( . y p —y g i - y g i ) X 1/ ( y p - y g i ) l i u (P) I*

(5) f t 1 II# *  I « г * й ( » ) ( г # [1 / ( 7 - # — y f t - 7 - * « ) ] [ l / ( 7 - # - 7 - & ) ] ) « ( # )  I*

(7) XI*II «* I ^*й(«){[1/(7-"+7-||)Ъ'-#[1/('1'-#-7-Ы]|«(#) I*

(8) ll* I! «* ||,Ч(я)|С1/(7 -я+7 Чй)]7-#[1/(7 -# -7 -в.)])«(#) I*

n, p ) u ( p ) ,  where A is the renormalized vertex part. 
Using the fact that #>J= 0 , one sees from Eq. (A8) 
that A ( y P ;  n, p) contains only a piece proportional to 
У Р  and a  piece proportional to ( y n ) ( y p ) ( y n ) ,  
both of which vanish  when sandwiched between the 
spinors. So the single- “ neutron” contribution is zero.

( i i )  “Neutron” plus one gluon. The “ neutron”- 
plus- one- gluon contribution, in fourth order, arises 
from the interference of the first-order diagram s in 
F ig. 5 w ith the third-order d iagram s in Fig. 7. The 
third-order d iagram s are c learly  of the same structure 
as the d iagram s in F ig. 1, which we have already 
evaluated  in our general treatm ent of the order — g,s 
case. W e note first that, because of the factor y p ,  the 
contributions of F igs. 7 (a )  and 7 (b ) van ish. Thus, 
ju st as in the case of the first-order m atrix element, the 
term s containing (7 ‘ ^-|-7 *9)~l a  (2 — u ) -1 vanish, and

p*q *
m .m

V
9,>
9,'

( t i

» P '9,-9, P 
it)

9»

%
9,

l - (p - 9 ,- 9 ;

> < J  p -q .

( 0 . 1 3 1

9 ,-
Я г
V

P-9.-93'
\P-9,

9,
\ P * 9 ,

(3) ID .13)
Fig. 9. Diagrams of order gr* contributing to the trident inter

mediate states.

as a  resu lt the in tegra l over w'  in E q . ( B9 )  converges, 
even for van ish ing gluon m ass T h is m eans th a t an y  
lnji5 s ingu larities in  /  m ust resu lt from Ь д 2 s in gu la r it ie s  
in Lr itself.

To evalu ate  the contribution  of F igs . 7 ( c ) - 7 (  f ) ,  we 
calcu late the r en orma l ized  se lf-energy and  v ertex  p arts  
2  and A, b y  perform ing the u su a l m ass and  w ave- 
function renorm alizations on the un renorm alized  qu an 
tities  of Eqs. (A 10 ). Note th a t the renorm alized  
quantities contain  no dependence on the cutoff X, 
guaranteeing the v a l id ity  of our d im ensional a rg u 
ments. In the treatm en t of the gluon ve rtex  correction  
in F ig. 7 ( / ) ,  a su b tle ty  arises. In stead  of su b trac tin g  
the vertex p a rt  a t gs= p ! , as requ ired  b y  the W atson  
Lepore”  convention, we su b trac t a t  g! = 0. T he d if
ference between the two m ethods of su b trac tio n  m akes 
a contribution to Lr which is proportional to 1п(»»г/мг) , 
but which, for fixed ш, is independent of ф  an d  therefore 
can be dropped. T h is is the only p lace in  the en tire  
calculation where we encounter ln»nJ term s an d  w here 
the presence of а  1пд5 term  does no t in d ic a te  the 
presence of a term  — In?3. W hen the gluon v e rtex  p a rt  
is subtracted a t gJ= 0 , the m~->0 lim it is  fin ite , an d  our 
usual dimensional argum ent applies. On su b stitu tin g  
the expressions for 2  and A into  the th ird -o rder m a tr ix  
element, we find th a t the in tegration  over the in te r 
m ediate state  (n + g ) variab les is a lw ay s  convergen t, 
so th a t ln^! terms in Zr can o n l y  a r i s e  from the exp lic it  
lnfi2 dependence of 2  and A. W e then find for the con
tributions of the various d iagram s to L r ,

lim L ,(ef  = fin ite,

lim / ^ yf = (gTt/4r)i(tii/64vs) lnp’ + fin ite ,
.Л-о (B 15 )
l im i7(, f =  — (gT2/4ir), (“ /64Trl) In ^ + f in ite ,
h2

lim  L u f f  = — 2 (grJ/4ir)J («/64ir2) In ^ + f in ite .

N ext, we m ust examine the contribution  of the box 
diagram s of Figs. 7( g)  and 7 (h ) . W e deal w ith  these 
d iagram s by w riting them  in Feynm an  p a ra m e tr iz e d  
form and substituting into the expression for l r . For 
example, the contribution of F ig . 7 (g )  to L~ is  pro-

” K, M. Watson and J. V. Lepore, Phys. Rev. 76, 1157 (1949).
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p ortionai to

/ > / : Л&г I
0 JD

I d y
J D J o

X  { ( l/ Д .2) 2x[ (1 -  z+ yz ) V- >ZP][(1 -  x) II1 

+ 2xz ( l  — y ) v } + ( 2/D„) [>/[1 —2ж(1 — z + y z ) ]

+2*yzi>]}, (B 16) 

D*= ц г[ х - \ + з * у г ( \ - ъ ) 2 + х ( \ - х )  ( 1 - z )  ( p + q ) 2 

—x ? ( l—y ) t [ 2 ( l —z + y z ) v —2y z i i -  (1 —z) (/>+?)2J ,  

v = p -q ,  P = p -g .

For general va lues of q -p  and f ,  a  s ingu larity  of Eq.

(B16) a t  0 can only arise from the integration 
end points v= 0 ,  * = 0 , x = l ,  • •• ,  y = l . n  A careful 
analysis of the behavior of Eq. (B16) a t  these end 
points in  a ll possible com binations shows that there is 
no ln/i! term  as ц2—>0. A sim ilar analysis y ie ld s the 
same result for F ig . 7 ( h ) , so we get, finally ,

limLjf,,)- = lim £ jt)l)-  = finite.
я2-*)

( B 17) 

’ plusThis completes our an a lysis of the “neutron: 
one gluon in term ediate sta te .

( iii)  “N eutron” p lus two gluons. The “neutron” 
plus two gluon contribution arises from the square of 
the second-order m atrix  element corresponding to the 
d iagram s in  F ig . 8 . W e have

^ 3 g luon

w ith

зк = 8 г1а ( я ) ( -------
V r n + 7 -

V- ^  f  cPn m l  f  d>gl 1 f  d?gt  1 rJ/ , _______

r w , i i  J j J  W S i  J w w l  w w p+’ — «' *>

1 1 1
У'р ~ i — I T T  + ___  I ___ y p  — — 7 ~ 7  + y p -. y n + y g ,  y p - y g i  y n + y g i  y p - y g i  y p ~ y g \ —y g » y p - y g i

+ y p
y p - y g i - y & i y p - y g - Jl— \ w - CB19)

O nly four term s appear in 9TZ because the contributions 
of the two d iagram s on the first line of Fig. 8 are pro
portional to ( y  p + y  q f ' y  pu(j>), and therefore vanish. 
Ju s t  as before, th is means th a t the integral over to' 
in Eq. ( B9)  converges, and an y  ln/i! behavior in 
/г giuon m ust originate in L c , iuc,n itself. Possible d iverg
ences in  i s " giuo„ as p+->0 arise from the eight regions 
of three-partic le phase space lis ted  in Table III , where 
denom inators in  the m atrix  element of Eq. (B19) 
van ish . To ex trac t the d ivergent p art, we m ake a 
carefu l stu d y  of the behavior of the integral of Eq. 
(B 18) in  each of the eight regions. In  this connection, 
the following simple inequa lity  is very useful: L et p be 
a  null vector and  le t gi, gi+£s) be tim elike
w ith  £°>0 and Q°>0. Then we m ay w rite

(y p ){ y Q )= p -Q + b w T ° o ,

X°8=p°Q?—pPQ°, (B2°)

w ith  the following simple bounds on T“*:

\TAa\<{^fQ‘p-Q'}l\ A ,B , = 1 , 2 , 3

I T ^ ^ V ip - Q y + i p O Q O p - Q J 11. (B21)

In  other words, for sm all p-Q ,  the 7 -m atrix product 
( y p )  ( y Q )  a lw ays bounded by ( p -Q )113- Applica
tion  of th is in equ a lity  shows that m any of the po
ten t ia lly  d ivergent phase-space regions ac tu a lly  m ake 
a  fin ite contribution to Eq. (B 1 8 ), and th a t the only 
d ivergen t contributions come from the phase-space 
regions and pieces of j ЭП |2 shown in  Tab le IV. E va lu 
ation  of the spin sums and phase-space integrals show

that regions (4 ) and (5 ) each m ake a  contribution to 
Lr of

— H gr1/4тг)’ (Ы/641Г2) [ln (ito ) -f- (2/oj) — 1 ]  ln^J+ fin ite ,

(B 22)

while regions (7) and (8 ) each m ake a contribution of 

- i ( f r 7 4 i r ) J ( * / 6 4 0  ln„J, (B 23)

giving a  to ta l of

H m ij- . iu o ^  -  (grV 4 ^ )2(co/64^)[ln(i<o) +  (2/gj) - J ]
(.S-O

Х 1гу1г+ fin ite. (B 24)

( iv )  T riden t. The three triden t contributions arise 
from the squares of the second-order m atrix  elem ents 
corresponding to the d iagram s of F ig . 9. In  T ab le  V 
we lis t  the m omentum labeling  for each of the three 
states and ind icate  to which L  i t  contributes. The

T able  V. Four-momentum labeling for trident production.

Trident state
Four-momentum label 
£i i t  £1 Contributes to

(1) я p p L~

(2) H n A L~
(3) t t Л L+

» T .  Kinoshita, J. M ath. Phys. 3, 650 (1952).
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Table VI. Phase-spare regions and pieces of | ЗТС'1-4 |* which actually make divergent contributions to 
Eq. (3.25). g,', g f ,  and denote the spatial components (s= 1, 2, 3) of gi, gi, and gi.

28S9

Phase-space
region Piece of | Э1Г I1 Occurs in

»■ Ho* 1 7 ' &—T-fi ) ] “ t p ) D/( ( a +a ) , — 1* | Ж<Ц 1», | 91l“> 1»

л* ii a* 1 s .'tfto W 'fC iA ?1#—7 'S i—7 'ii)3 « (r tD / C (ft+ ti) , —(‘')]й (й )ч (г|) 1* | зге<» |«

m atrix element for state ( j )  (/ = 1 , 2, 3) receives contributions from only those d iagram s in  F ig . 9 w hich 
are labeled below with ( j ) .  W e find [th e  factors of | in Eq. (B26) are s ta t is t ic a l]

ipin(ji) *рш(̂ 1,р|,р|) J  (2чг) gi J  (2?г) g2 ■' ( 2ttJ ga
with

| ЗПг |2=| 3TC(,) 1Ч -*  |ЗГС®]2, 134+ |2=  §  I 9TC(3) IS ( B 2 6 )

3rL0 )= g r1l u ( g , ) 7 - ^ ( 7 * ? - 7 'g 2 - 7 - g a ) “ l « ( ^ ) [ ( f t + g s) 2- M , ] - l l i ( « 2 ) , '(g3)

+ tt(g2) « ( ^ ) [ ( ^ - g 2 ) ! -M 22“!M (g i) [ -  l/ ( 7 - ^ - 7 'g i - 7 - g 2 )> - / '» ( g 3 )

+ u ( g 2) t t ( / > ) C ( f - g 2) 2- / i i ] ' lf i ( g 0 7 - ? ( 7 - ^ - 7 *g2— 7 - £ з )_ 1 » Ы  !> 

3R(2) = g,2i l l ( g , ) 7 -/ i( 7 -^ -7 - g il- 7 - g 3) - 1« ( ^ ) [ ( g l!+ g ,)2- M! ]->iI(gi )K(g3)

+ * ( g 2 ) 7 '^ ( 7 - ^ - 7 - g i —7 ’ g3)“ 1“ ( ^ ) [ ( g i + g 3 ) 2- ^ 2I l ' 1« ( g i ) , , (g5) l i  ( B 2 7 ) 

31Z<,,= g ,2 | t i ( g i ) « (^ ) [ (^ -g 1) ! - ^ 2 - 4 i ( g 2) [ -  l / ( 7 - ? - 7 - g i - 7 - g 2 ) ] 7 - ^ ( g 3 )

+ u(g2)«(# > )C(f'-g2), -A i! ] “1tZ (g i)[— l / ( y p —y g \ - y g i ) J n f P v (gs)  

+ “ ( g i ) “ (/>)[(#’- g i ) 2- ^ J  ^ ( g 2 ) 7 - ? ( 7 - ^ - 7 ' g i - 7 ’ g3)_1s (g s )

+ f i ( g 2 ) « ( ^ ) [ ( ^ - g 2 ) ! - / i 2] “ 4 i ( g i ) 7 - / > ( 7 - ^ - 7 - g 2 - 7 - g a ) ' l ,’ (fi> ))-

The two diagram s on the first line of F ig. 9 make no This completes our an a lys is  of in te rm ed iate  s ta te s
contribution to the m atrix elements since they contain which contribute in order gA  Adding up the contribu -
the factor ( y p - \ r y q ) ~ by p u ( p ) —0, and as before, tions from E q s .  (B 1 5 ) , (B 2 4 ) , and  (B 2 9 ) , we find, for
th is means th a t divergences in /trident m ust originate in  the to ta l fourth-ordei contribution ,
L  trldfiQt them selves. Po ten tia l divergences in LTtridmt .. . .  , .
are associated w ith special regions of three-body phase A *  ’ ~ n m te>
space where denominators in Eq. (B27) vanish. In
study ing  the actua l behavior of Eq. (B 25) in these {?2> “ ) = — (g rV ^ V W ^ ^ ir5) (B j UJ
regions, we use the inequality  of Eq. (B21) and the *°
estim ates XQln(Jw) +  (2/<o) + V ]  lnjx2+ fin ite ,

I t i(g i.2) « ( ^ )  I *  (g i.a 'p )1,s as £i,2-j5—>0, which, b y  our dimensional argum ent, im p lies th a t

I tf(g ,.2)»<gi) I «  (g i.s-g j)112 a s g i j - g r -Ю. (B28) lim  I + ( q \ u )=  fin ite ,
W e find th a t most of the dangerous phase-space regions "
ac tu a lly  give finite resu lts in the u ^ O  lim it, with lim  Lr ( t f I ы) = (g ,y4n ,) 2(£i>/64ir2) (B 31 )
logarithm ic divergences coming from the regions of «*—”
phase space and pieces of 1 3HU'2> |2 shown in T ab le V I. Х [1п ($и ) +  (2/ы) + V -] 1п(дУд2) + fin ite .
E valuation  of the spin sums and phase-space integrals ~ , . . , . . . /•no',
g ives the resu lt Substituting this resu lt in to  Eqs. (B 6 ) an d  ( .b y j

limZ.+tIldm = finite y ields the fourth-order B jorken lim it quoted in  E q .
"  ’ (12) of the text.24

lim i'u id o n t^  — 4 (g ,1/4ir)2(u/64ir5) !n/i2+ fm ite, (B29) —----------
*4 A fourth-order calculation of the longitudinal cross section

w ith  $ of th is resu lt coming from the phase-space region I" the ‘"equivalent limit in which | q' | and u~‘ simultaneously
£* II ft* - d  J  from the region g,‘ || g.V (1969)"*У *  ^
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Excerpt from S. L. Adler, Anomalies in Ward Identities and Current Commutation Relations, 
in Local Currents and Their Applications, Proceedings of an Informal Conference, D. H. Sharp 
and A. S. Wightman, eds. (North-Holland, Amsterdam and American Elsevier, New York, 
1974). Reprinted with permission from Elsevier.

2 .4 . Q u e s t i o n s  r a i s ed  b y  th e  b r e a k d o w n  o f  t h e  BJL l im i t

E xp erim en ta lly , B jorken scaling w orks very w ell and <?s /oT = 0 . 18±0.05, 
i.e . the long itud inal cross section is sm all. So renorm alized  pertu rbation  theo ry  
seem s to  be a bad guide here. This state o f affairs raises several questions.

( i )  Is it o n ly  the perturbation  expansion that is at fau lt, or d o e s  t h e  t r o u b l e  
l i e  in l o c a l  f i e l d  t h e o r y  i t s e l f ?  Bitar and Khuri [4 ] have studied the B JL  lim it 
using o n ly  an a ly t ic ity  and positiv ity . They find that class I in term ed iate  state 
(fig . 10) v io late the B JL  lim it for space-space com m utators, but cannot ru le  out 
a cancelling  contribution  from  class II in term ed iate  states (fig . 11).

10

Fig. 11
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(ii) Can one make a consistent calculation^ scheme in which Bjorken 
limits, the Callan-Gross relation and scaling are all valid? This is a real challenge 
to theorists. The Lee-Wick theory, for example, doesn’t do the job: The BJL 
limits are satisfied but complex singularities change dispersion relations in such a 
way that the Callan-Gross relation is still violated. Perhaps a successful approach 
would involve summation of perturbation theory graphs plus use o f the 
Gell-Mann-Low eigenvalue condition (see sect. 3).

(iii) The same questions apply to light-cone algebra, which is basically the 
BJL limit in the p0 -* 00 frame, as in the Callan-Gross derivation o f  their sum 
rules.

3. Anomalous scaling

Consider a field theory with a dimensionless coupling constant. When all 
energies become much greater than particle masses, one naively expects the 
n-point functions to scale — i.e. to become mass-independent apart from an 
overall factor. In this section we discuss the formal theory of scaling [5] and its 
breakdown in field theory.

3.1. Formal theory of scaling

The infinitesimal generator of dilations, 5 n , transforms coordinates as 
follows:

(49)

5 d ^  = ( V X + - (50)

Where d is the ‘scale dimension” of ifi. Scale invariance for renormalizable field 
theories results if we take

d -  1 for bosons,

d -  —  for fermions.
2

In simple canonical field theories it is possible to find a conserved, symmetric
energy-momentum tensor fl which can be used to define a “dilation current” 
n .
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DH = V  * <52>

The energy-m om entum  tensor 0 is constructed so that its trace is proportional 
to  the mass term s in the Lagrangian. Thus .

<S 3 >

w here Lm  = mass term  in the Lagrangian (the  o n ly  term  which b reaks scale 
Invariance). T herefore, the d ilation  current D  is conserved when the theo ry  is 
scale-invarian t. Even when is not conserved, the “charge”

D (t)  = / d 3 x D a ( x , t )  (5 4 )

acts as a generator o f  d ilations:

i [D (t ) ,  ^ .(x , Г)] = (х \ дХ + d j y p f e c ,  t ) .  (5 5 )

The relationship

= e f  (5 6 )

is the scale-invariance analog of PCAC. Like PCAC, it can be used to  derive 
low -energy theorem s; in the present case for the em ission o f grav itons in an 
a rb itra ry  process.

Now consider a single scalar-meson fie ld  у  w ith  a se lf-in teraction . L et G (p ) 
be the renorm alized propagator and r ( p , q )  the vertex function . From  the 
usual defin itions o f these quan tities we have

G ( p ) T ( p ,  q )G (p  + < 7 )1 ^

= /d4 *  d4 у  e '? ' *  e'>*> <  0  |Т *(¥ < У Ж 0)^  M )  |0 >  | ^ 0 (5 7 )

= / d ^ d V  е<* V »  { 3 ^ *  (*> (yM 0 ) D J  - 8  (x 0 - y 0 )  [D0 ( x ) .  * 0 0 ] *  (0 )  

- * О Ж * 0) Р 0 ( * ) , * ( 0 ) ]  } | ,и0 - (5 8 )

Integration  by parts shows that the first term  on the r.h .s. is zero  w hen q  = 0 , 
so eq . (5 8 )  becomes
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C (p ) r (p ,O ) (7 (p )  = - / d V e iP ^ { 6 ( J:o - 7 o)< 0| [D (*0),v> 0 )]* ( 0 ) | 0 >

+ 5(x0)<0\v{y)[D{x0)MO)) |0> } • (59)

The qu an tity  in cu rly  brackets on the r.h .s. can be re la ted  b ack  to  G (p )  us ing  
the d ilation  generator com m utator [eq. ( 5 5 ) ] ,  and in  th is w ay  one gets

- . T ( p , 0 )  = p \ G ~ \ p )  + ( 2 d  -  4 )  G 1 ( p ) .  (6 0 )

Recall that Г(р, 0) is the three-point function  shown in  fig. 12, W einberg ’ s 
theorem says that Г(р, 0 )~  polynom ial in log p 1 as p 2 -*■ T hus, n eg lec tin g

' i r  (P.O)

Fig. 12

Г (р , 0 ) as p -*• °° in eq. (6 0 ), w e find

P \ G „ '  ( p )  = ( 4 - 2 d ) G - ‘ ( p ) .  ( 6 1 )

This im plies that G j  satisfies the scaling law 

(T J  = A ( p 2 f - d
(6 2 )

= A p  w hen d  = I .

One sees from this that the neglect o f Г (р , 0 ) in eq . (6 0 ) was ju stif ied .
U nfortunate ly , we know  that the scaling behavior for G~J, p red ic ted  b y  the 

above chain  o f form al argum ents is not correct in renorm alized  p ertu rb atio n  
theo ry , w here we find that

~ P 1 *  [power series in log p 2 ] . (6 3 )

Thfe reason for the breakdow n of the formal theo ry  o f scaling is not h ard  to  find .
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To make the formal manipulations valid, we need to put in regulators. But the 
regulators involve large masses, which necessarily break scale invariance. The 
trouble arises because (0^)regldoes not go to zero as the regulator masses go to 
infinity. This behavior is of course analogous to what one finds when one looks 
at the W A  Ward identity from the regulator viewpoint.

3.2. Correct scaling relations: The Callan-Symanzik equations

Straightforward dimensional arguments require that G~'(p) depend on the 
particle mass as follows

G~l (p) = ft2 G~l [ p V  ] , (64)

so that we have the identity

P„ — J —  G ' l (P) = 2С_ ,( р ) - л - £ -  (65)
° P V d f i

The naive scaling relation, eq. (60), can thus be written

-,T (p ,0) = ( - p - ^ -  + 27)C " 1 (p), G~l (p ) , (66)
dja

where y - d -  1 (=0 when the “scale dimension" d equals the naive canonical 
dimension = 1).

Callan and Symanzik[6] have shown that a correct version of the scaling law 
(66) is given by

-/ Г (р ,0) = ( - , i - -  + 2 t(X )+ 0 (X )-£ -)G - , (p) (67) 
d ц о Д

where X is the renormalized coulping constant, 7(A) = d(X) - 1 and ef(A) is the 
“anomalous" scaling dimension of the theory. If the U term were zero, one 
would find

GZ,' = A ( p *)2 - ' ( Ъ  = A t f y - y M  , (68)

i.e., scaling with anomalous dimension d(X).
л  simple scaling law like eq. (68) does not result from eq. (67) with 0 ^ 0 .  

The p-*°° limit of eq. (67) then becomes
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+ 27 (X) + 0 ( X )  - 4 r ) G ^  ( p ) ,  ( 6 9 )
Эц ЭХ

which can be integrated and gives o n ly  the m uch less restr ic tiv e  a sym p to tic  
predictions o f renorm alization group theo ry .

3 .3 . Remarks

We conclude w ith  several com m ents on the foregoing resu lts.
( i)  The statem ent f)(X) = 0  is c lo se ly  re lated  to  the G ell-M ann-Low  

eigenvalue cond ition*.
( ii)  If 0(X) = 0 , w ith  a simple zero X0 , then

C - ' ( P )  = ^ p 2 ) 1 ' ^ » )  (7 0 )

In other w ords, the asym ptotic  behavior is determ in ed  b y  the bare  cou p ling  
constant X0 , independent o f the value o f the renorm alized  co u p lin g  co n stan t

X [7] •
( ii i)  Several m odels w ith  0 = 0 show scaling p ro perties . For ex am p le , th is is 

the case for both the Johnson-Baker-W illey m odel [8 ] o f  q u an tu m  
electrodynam ics and for the Thirring m odel [9 ] (w ith  m assless or m assive 
ferm ions). Note that neither o f these m odels has a v acuum -po larizatio n  
structure, w hich  for a ferm ion theory im plies 0 -  0.

(iv ) The C allan-Sym anzik  equation  (6 7 )  can be used to prove the 
m om entum  space version of W ilson’s operator p roduct expansion  (in  p e r tu r
bation  th eo ry ), and this can be used to study the anom alous B JL  lim it  [10]  .

(v) An interesting question is w hether the C allan -Sym an zik  re la tio n s can  
be used to  do graph sum m ations for objects more com plicated  than  p ro p agato rs , 
for exam p le, for ferm ion inelastic  structure functions [ 11 ] .
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я t t  I/*'? !!* ! ™'r®f‘moma,Ium',ensor ,race anomaly in spin-1/2 quantum electrodynamics to the functions 
a), (a) ned through the Calhm.Symanzik equations, and prove firiteness of в when the anomaly is 

taken into account. *

I. INTRODUCTION

S p in - j quantum e lectrodynam ics, ch arac te r iz ed  
by the L agrang ian  density1

£ i .tW  = ФМ(гу ■ 9 - т 0)ф(х) -  a F^(x )F^ (x )

- е аФ(х)уиф(х)А'‘ ( х ) , ( i . i )

i s  one of the s im p les t fie ld  theory m odels in which 
to study an o m a lie s . The a x ia l-v ec to r  d ivergence 
anom aly in th is theory has been exten sive ly  
an a lyzed 2; w e w ish  in th is note to d iscu ss  some 
p ro p e rt ie s  of the energy-m om entum -tensor trace  
an om aly .3 Taking for the energy-m om entum  ten- 
so r Guv the sym m etr ic  form

F** , (1.2)

в7* = Ы  Ф уи( Э„+ й 0А„)ф + фу^ э и + г е 0Аи)ф

- $ 1 * * - * е вАЛУиФ - Ф ( 0и - й ! о А,)у,ф] , 
a  s im p le  app lication  of the equations of motion 
g iv e s  the so -c a lle d  “naive” tra c e  form ula

(1.3)
A s h as  been  shown by the authors of Ref 3 Eq
(1 .3 ) l s  not c o r re c t  a s  it  stands, but instead  m ust 
be m odified  by the addition of an anom alous term* 
p ro po rtion a l to Z ^ F ^ F * .  Our aim  in th is pape r  
i s  to d e r iv e  an ex p lic it  fo rm u la  for the trace  
an o m aly , v a lid  to a l l  o rd e rs  in pertu rbation  theory 
e x p re s s e d  in  te rm s of the functions 0 (a )  and 6 (a )

C » !£  fr 6trUr e defined through theC a llan -S y m a n z ik  equations.
In S ec . П w e g iv e  a  s im p le  h eu ris t ic  derivation  

of our r e su lt , w hich, a s  we sh a ll s e e , is  most

M  7  F - П ? "  111 term S 01 a  Subtracted ° P - ^ o r  J- T h e re , we w il l  be thinking in te rm s
o i u s in g  m a s s iv e  reg u la to r l le ld s . Some re la ted

d e ta i ls  a r e  g iven  in  the ap p en d ixes .
Then in  Sec . Ш we w il l  g iv e  a  m o re  c a r e fu l  

d e riv a tio n  us in g  n o rm a l-p ro d u c t m ethods’  and 
d im ensional regu larizatio n .®  In n  s p a c e - t im e  
d im ensio n s, we have

V =  — ( Я -  4 ) £ , „ - 3 ( i » i . Щ0фф)+П70фф .

(1 .4)

The anom aly is  the te rm  -  ( и - 4 ) £ ,„ ,  w h ich  would 
van ish  if £ lal  w e re  f in ite . We w ish  to e x p r e s s  the 
anom aly in te rm s  of re n o rm a liz e d  o p e ra to r s .

Our de riv a tio n  w il l  g iv e  a s  a  b yp roduct a  proof 
that ee„ a s  defined by Eq. (1 .2 ) i s  f in ite  to a l l  
o rd e rs  of p ertu rb atio n  theo ry  even  w hen the t r a c e  
anom aly is  taken  into account. The e a r l i e r  proof 
by C a llan , C o lem an , and Ja c k iw ’  is  in co m p le te , 
w hile the one by F reed m an , M uzin ich , and W ein 
berg* is  not d ir e c t ly  ap p lic ab le  to o u r c a s e .

II. HEURISTIC DERIVATION

The h eu r is t ic  d e r iv a tio n  i s  obta ined  b y  w r it in g  
down an o perato r fo rm u la  fo r the t r a c e  equation  
and then determ in ing  the unknown c o e ff ic ie n ts  ap 
p earin g  in th is fo rm u la  by study ing  i t s  e le c t r o n -  
to -e lec tro n  and vacuum -to -tw o-photon  m a tr ix  
e lem en ts . A s our in it ia l  o p e ra to r a n sa tz  le t  us 
w rite  the m ost g en e ra l l in e a r  com bination  of 
g au g e -in v ar ian t s c a la r  С -even  o p e ra to rs  w ith  the 
c o rre c t d im ensio n a lity ,

«uU = Clm 0M  + C2ZJ- ‘F u F »

+ C,5  i  [ фу • ( 8 + i e 0 А)ф -  фу • ( 8 -  i  e 0 А)ф

- 2 т 0фф] . (2 .1 )

The coefficient of C3 i s  fo rm a lly  ze ro  by u se  of the 
equations of motion; i t  r e p re se n ts  a  d isco n tin uo us 
contribution which is  p re sen t at z e ro  m om entum  
tra n s fe r , but which v an ish es  fo r nonzero  m o -

15 1712
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irientum tran sfe rs , and hence does not contribute 
to physica l m atrix  elem ents. The p rec ise  structure 
of th is term  w ill be determ ined in Sec. Ш, but we 
w ill ignore it  in the heuristic  d iscussion which 
follows. Focussing on the f ir s t  two term s, it is  
e a sy  to see  that e ither Cj or C2 is  infinite, or Eq. 
(2.1) cannot be co rrec t as it  stands. The reason 
is  that both 0,/ and т афф a re  fin ite operators8 
(that is , th e ir m atrix  elem ents are made finite 
by the usual electron and photon wave-function 
renorm alizations), w hereas a  sim ple calculation 
shows that the l o w e s t - o r d e r  d iagram s (illu strated  
in F ig . 1) contributing to the electron-to -electron  
and vacuum-to-two-photon m atrix  elem ents of 
Z3' 1Fx,F Xa a re  logarithm ically  divergent, and 
hence cannot he made fin ite by wave-function r e 
norm alizations alone. This problem is analyzed 
In more deta il in  Appendix A, where it is shown 
that if a  photon regu lato r is  introduced to make 
the d iagram s of F ig . 1 finite, then energy-m o- 
m entum -tensor conservation requ ires  the Intro
duction of ex tra  contributions, proportional to the 
m ass squared of the regu lato r field, in the 0И„- 
regu la to r photon vertex. These term s may be 
thought of as a ris ing  from the energy-momentum 
tensor of the regu lato r field . In the lim it of in
fin ite photon regu lator m ass these contributions 
surv ive and, in lowest relevant order, give a 
second logarithm ic divergence, which just cancels 
the logarithm ic divergence of the d iagram s in 
F ig . 1. Thus, C, and C2 rem ain finite, and the 
co rrec t form of Eq. (2.1) is  actually

®BB= С1т 0фф+ C2N0[F XaFx° ]
+ discontinuous term s , (2.2)

with JV0[.F>1, f 'Xl'] a subtracted form of the operator 
Zi ~1Fx,F Xc. Once it is  apparent that a  subtracted 
operator appears in Eq. (2.2), it is  convenient to 
reex p ress  this operator in term s of another sub
tracted  operator Af[ defined by

<«(*> IM  *■».*•■] !«(* ')>

(2.3)
<0 И * . t JA -P '.  «2»  

(0 te'F^F* | Y(P, с М-Р. <*)>.».
through a relation of the form 

JV0[ = aN[Fu F * ]  + b m &
-(-discontinuous term  . (2.4)

< + photon perm utations

t a ) ( b )

FIG. 1. (a), (b) Logarithm ically divergent electron 
and photon vertex p arts , respective ly , of the operator 
Z3-1F \aF^°, the coupling of which is denoted by ® , 
Wavy lines Indicate photon propagators, and solid lines 
Indicate electron propagators.

This leads to the final operator form for the trace 
equation

e u“ =Kim o^ +K2 N[FiaF u ]

+ discontinuous term  , (2.5)

with the subtracted operator uniquely
specified by the conditions of Eq. (2.3).

We proceed now to determ ine the coefficients 
K t and K 2 in Eq. (2.5) by taking m atrix  elem ents 
of Eq. (2.5) between appropriate sets of sta tes. 
Taking f irs t  the m atrix  elem ent between electron  
sta tes in the lim it of zero momentum tran sfer, and 
using10

<«</» ! • ( * ' ) > , . - ,  = «  ,

(2 .6)
and Eq. (2.3) we find

К1{ е ( р ) \ т вфф\е(р))=т . (2.7)

However, as shown by Sato11 and as explained in 
Appendix B, it is  easy to see from the C allan - 
Symanzik equation for the electron  propagator that

(e(/>) \т0фф\e(t>)) = (2 .8)

with 6(a) the function of the fin e-struc tu re  con
stant a  defined by13

1 + 6 ( a ) =
m Этл (2.9)

Combining Eqs. (2.7) and (2.8), we conclude thatl:

3a
« 1 + 6 (a ) = 1 + + •  • • (2 .10 )

Next we take the m atrix  elem ent of Eq. (2.2) be
tween the vacuum and the two-photon state , again  
in the lim it of zero  momentum tran sfe r. Now as 
Iw asaki14 has shown, the gen era l form of the 
vertex  (0 |0U„ \y(/>„ « ,)) is

<0! | y{Pl, A. * W  + F" *b) -  * ̂ lx°
+Fl» n , iP i  -P J . lP i  -/>J).-B(4a) + i ( n . ^ *  + n „ n . ) ? V c ( 9 I) , 

q= p l +p2> Pi2 “ p 22 = ®i F ‘at = ( p , ) a ( t , ) i - {p i) i ( ( i)a, i = l , 2 .

(2.11)
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As Iw asaki notes, Eq. (2.11) im p lies that the 
vacuum -to-two-photon m a tr ix  elem ent of flu“ is

<°|9., , |И Р „с|)у(Р1) €,)>

= <«i - •/>* -€ ,-/> ,€ ,•  />,)

х Л - 2 В (7 » )+ | С (ва)] , (2 .12)

which van ishes at q 1 = 0 . Hence, from  the vacuum - 
to-two-photon m atrix  elem ent of Eq. (2.5) we get 
using  Eq. (2.6),

0 = [ 1 + 6 ( a ) ] (0 |m0#|r(/>, € , M - p ,  €2)>

+ * , < 0 | * M - p , c 2) ) lr M  .

(2.13)
Now as  shown by A d ler e t  a /.15 and again  a s  ex - 
p la ined  in Appendix B , from  the C allan -Sym an zik  
equation for the photon propagator one se e s  that

« J K w IvOs c X - * ,  o >

= _ i  M
4 1 + 6( a )

X « М - р » 0 >  , (2.14)
w ith  0 (a )  defined by12-16

о/л \ _ 1 8or
p a m BnT

« I [ W 6( « ) ] We * L

_ 2a  a 2
' S  + 2 ^ + “ ' ■ (2.15)

C om paring Eq. (2.13) w ith  Eq. (2 .14), we le a rn  
that

K t = i  « а ) ,  (2Д 6)

and thus our f in al re su lt  for the tra c e  equation is

e »'* = [ 1+ б ( а ) ] т 0# +  i 0 (a)A r[F toF*>]

+ discontinuous te rm  . (2 17)

The f i r s t  two te rm s  in  the p o w e r-se r ie s  expansion 
of the coeffic ien t of the F XcF “  te rm  in Eq. (2.17) 
a g re e  w ith the fo u rth -o rd er ca lcu la tio n  of Chano- 
w itz  and E l l i s .17

The above de riv a tio n  is  ev iden tly  c lo se ly  an a l
ogous to the d erivatio n , 18 by use of the C a llan - 
Sym anz ik  equations, of the nonrenorm alization  
theo rem  for the a x ia l-v e c to r  d ivergence  anom aly

jL M  = 2mi 0f ( x )

* * ■ « * " ( * ) « , . „ .  (2.18)

H ow ever, th e re  a re  two Im portant w ays In which 
the t r a c e  anom aly d iffe rs  from  the ax ia l-v ec to r 
d iv e rgen ce  an om aly . F ir s t ,  the tra c e  anom aly i s

re n o rm a liz e d  In h ig h e r  o rd e r s  of p ertu rb a tio n  
theo ry , and in  fa c t  w ould v an ish , le a v in g  only the 
“ soft” o p e ra to r [ l  + 6 ( a ) ] w a$t)j a s  the t r a c e ,  if 
0 ( a )  s a t is f ie d  the e ig e n v a lu e  cond ition12' 1*

0 (a )  = O . (2.19)

Second, w h e re a s  the a x ia l  an o m a ly  in v o lv es  the 
d i v e r g e n t  o p e ra to r Zs ' lF 1' F n t l c „ ,  w ith  the con 
sequence that m a tr ix  e le m e n ts  of j® a r e  not r e 
n o rm aliz ed  by w ave-fu n c tio n  re n o rm a liz a t io n  
fa c to rs  a lo n e , the t r a c e  an o m aly  in vo lv es  the 
c o n v e r g e n t  (o n ce -su b trac ted ) o p e ra to r  JV[ 
co n sisten t w ith  the f in ite n e s s  of m a t r ix  e le m e n ts  
of the en ergy-m o m en tum  te n so r . T he ap p earan ce  
of a  su b trac ted  o p e ra to r in  Eq. (2 .1 7 ), as w e ll  a s  
c lo se ly  analogous r e s u lt s  of L o w en ste in  and 
S ch ro er in  ф4 s c a la r  f ie ld  th e o ry ,1® su g g e s ts  that 
i t  should be n a tu ra l to d e r iv e  Eq. (2 .17) w ith in  
the fram ew o rk  of the n o rm a l-p ro d u c t fo r m a l is m .5 
T h is is  the su b je c t to w hich  w e now tu rn .

III. NORMAL-PRODUCT DERIVATION

In a l l  subsequent d is c u s s io n  w e a s su m e  that the 
vacuum  exp ectation  va lue  of any o p e ra to r  w e con
s id e r  h as been im p lic it ly  su b trac ted  off.

In th is  section  w e w il l  e x p re s s  6 U“ a s  a  l in e a r  
com bination of n o rm a l-p ro d u ct o p e ra to rs . U n der
ly in g  th is d e riv a tio n  a r e  the fo llo w in g  two o b s e rv a 
tions:

(1) The e x p re ss io n  fo r 9UU in  t e r m s  of n o rm a l 
products is  de te rm in ed  e n t ir e ly  by i t s  in s e r t io n s  
at zero  momentum into G reen ’ s  fu n ctio n s: The 
only o p era to rs that can  o ccur a r e  g au g e  in v a r ia n t  
and of d im ension  at m ost 4 ; but the only such  
operato r which v an ish es  at z e ro  m om entum  is  
г ‘‘ (фу1|ф)1 and th is o p era to r h a s  the w rong c h a r g e -  
conjugation p ro p e rtie s .

(2) The C a llan -Sym an z ik  equation  i s  the W ard  
iden tity  which e x p re s se s  the n on con servatio n  of 
the d ila ta tio n  c u rren t2” and the d iv e rg e n c e  of the 
d ila tion  cu rren t is  e s s e n t ia l ly  flu“ . So, if w e e x 
p re s s  th is  W ard iden tity  in  te rm s  of an in s e r t io n  
of J 8u‘ld*x, then com parison  w ith  th e  C a lla n -  
Sym anzik equation in its  stan d ard  fo rm  w il l  g iv e  
fl„M (at zero  momentum) in te rm s  of re n o rm a liz e d  
o p era to rs .

We w ill use d im ensional re n o rm a liz a t io n 21 to  
define both the norm al p roducts and the r e 
n orm alized  G reen ’ s functions. T h is  is  by no 
m eans e s se n tia l : A ll that i s  r e q u ire d  i s  th a t the 
subtractions perform ed im p lic it ly  by the n o rm a l 
products ag ree  with those obtained by an  e x p lic it  
redefin ition  of the f ie ld s  and p a ra m e te r s  of the 
b a re  theory.

We w ill frequen tly  con sid er in s e r t io n s  a t z e ro  
momentum of o perato rs in G reen ’ s fun ctio n s. In
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Lowenstein’ s22 term inology these are  differential 
vertex  operations (DVO’s).

F irs t  we must define the theory by adding a 
gauge-fix ing term

- 5 ( 3 -  A)V«o (3.1)

to the Lagrangian  so the theory is  given by

£  = * . « + * . ,  • (3-2)

As usual I,, is  renorm alized  by writing

= Z3 % j ; . (3.3)

We are  now ready to sta rt the proof.
Consider the equation of dimensional analysis 

for an unrenorm alized (but dimensionally regu
la r ized ) G reen’s function G0:

n)e° i ) 1G° •
(3.4)

Here Dc  is  the m ass dimension of G0.
By the action princip le we can express a/3e0 

and Э/Эи10 in term s of operator in sertions. Thus,

m 0 —  = -  т>0фф'(0) , 

e a = - t e J i A i f  (0) ,

(3-5)

(3.6)

w here the superscrip t tilde means that the opera
tor has been F ourier transform ed into momentum 
space. Then

0  = -D c - i [ m 0# +  (2 -?п )е афАгф] ( 0 ) ^ С Д ,

(3.7)

where we have m ultiplied the equation by Z2~l/2 
for each external fermion line of G0, and by Z3' ,/2 
for each external photon. Thus, Eq. (3.7) is  an 
equation for the renorm alized Green’s function 
GK.

To rew rite  (3.7) in term s of flu“ we w ill need 
the counting identities.*2 These are  sim ple con
sequences of the equations of motion, and can be 
w ritten  in term s of e ither bare fie lds or normal 
products. In QED these identities are

N, = ( г  фВф + im0# f (0)

= Й М  ?■£*]+* » М М Г ( о ) » (3-8)

NT= [ 2 iFvS + H* • A f/ ^  + ie^ A  i/ j]"(0)

= { i ^ [ f u, z] + iW[<9->l )z] « e 

+ i e ^ ‘ " /1A l [ M i f ] } " ( 0) • (3.9)

Here N4 and Nr denote respective ly  the number of 
ex ternal e lectron lin es of a  Green’s function and

the number of external photon lin es . Also, д is the 
unit of m ass,21 which i s  used by dimensional regu
larization  to make exp lic it the dimension of e0l 
while keeping dim ensionless the renorm alized 
charge e; thus we have е0 = д 2-я/а eZ 3(e,n)~1/2. 
These identities a re  for operations applied to 
Green’s functions, i .e . ,  for DVO's.

We can now write

V ( 0 )  = ( 2 - ;b ) iN r + i ( l - n ) i W .

+ {(2 -  5 n)(3 • АУ/Ьа + т афф

+ (2 -Ь )е „ М * } " (0 )  . (3.10)

Notice that the right-hand side of (3.10) contains 
(a) the operators occurring in Eq. (3.7), (b) N, 
and Nr, which have been expressed in term s of 
renorm alized operators, and (с) ( я -4 ) (8  - A)2/?0. 
The only operator in an inconvenient form is the 
la s t  one.

However,23 an application of the gauge Ward 
identities to each Э • A in turn proves that (Э - A)2/ 

has only a single-loop d ivergence, and that

£  ( • . * ) > .  j j - * [ ( . . A p ]

-  1 б Х « - 4 ) ^ * '
(3.11)

Hence,

° - [ « ^ - D e - i V (o)+ ( § - ^ K h
+ 0(n  -  4) . (3.12)

We have not yet proved 6B“ to be fin ite, so we 
cannot s e tn  = 4 here.

Next, we re c a ll the C allan-Sym anzik equation®*'25 
for Gr :

+ у , « * | ц - * п * г . - * п * г ) в * . (3.13)

Comparison of the la s t  two equations shows that 
8 / (0 ) is  finite at я  = 4, and that

9 / ( 0 )  = -  V  Ye  + i(1 + Y- >  £ Г  + e h  

= + ( i  + y .V noM  - 5Г3

* » • * - ] ' 101 ■

(3.14)
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Here the renormalized action principle has been 
used to express derivatives with respect to e etc. 
in term s c< normal products. Also, we have used 
the resu lt9 that я , # = т 4 # ]  •

Finally, we use (a) the identities (3.8) and (3.9) 
to express Nt and Nr in term s of normal products,
(b) the resu lt fl = ey3/2, and (c) the observation 
made e a r lie r  that the zero-momentum expression 
lo r 6UU determ ines the expression at a ll  momenta.
We get28

0u“ = iv 's M -F 11.,2]+ (1 + У « )т 0#

- [ у ,+  3 - е 2* я/(8яг)] 

x ( i£ N [ji 'i i| i]_ n iM # ]) • (3.15)

Use of the fermion equations of motion gives”

V =\ y .M f , » 11 + (1+ y > „ # . (3.16)

the sam e operator formula as was found in Eq.
(2.П ) above.

Note add ed  in p r o o f .  After this work was com
pleted, we learned that essen tia lly  identical r e 
su lts have been obtained by N. K. Nielsen (unpub
lished).
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APPENDIX A

We analyze here the consequences of including 
a  photon regulator to make finite the divergent 
d iagram s of F igs . 1(a) ai*i 1(b). It proves con
venient to use a regu lato r scheme s im ila r  to that 
used26 in studying the ax ial-vector divergence 
anom aly, and specified as follows:

(i) The sm alle s t closed fermion loops illu strated  
in F ig . 2(a) are given their usual gauge-invariant, 
renorm alized  values.

( ii)  The la rg e r  ferm ion loops, such as illu strated  
in  F ig . 2(b), a re  calcu lated to be photon gauge-in
v arian t and hence fin ite.

( iii)  A ll photon propagators are regu larized : 
Photon propagators em erging singly from vertices, 
a s  in  F ig . 2(c), a re  regu larized  by the rep lace
ment

1
P 1

11
p* ~ p 2 - M 3

- M2
р т(р*-М *) (Al)

+  photon interchange

(a)

photon permutations

+  photon permutations 

<b)

— | +  photon permutotions

+  Р^°'°п permutations 

(e)

FIG. 2. (a) S m alle st closed  ferm ion loops which a r e  
given the ir gauge-invarian t fu lly ren o rm alized  v a lu e s .
(b) L a rge r  fermion loops which a r e  eva lu ated  to be 
gauge Invariant, (c) Photons em erg in g  from s in g le -  
photon v e rt ic e s , which a re  regu lated  accord ing  to Eq. 
(A l) .  (d) Photon p a ir  em erg in g  from  which is  r e g 
ulated according to Eq. (A2). (e) Ferm ion-loop d lag ram 9 
with photon rad ia tive  co rre c tio n s .

with M the regu lato r m ass . P a ir s  of photon prop
agators em erging from the e n e r g y -momentum 
tensor 6uvt as in F ig . 2(d), a re  re g u la r iz ed  by 
the replacem ent

P i Pa

- p i  Vu^ ( p l t p 2) p i

-A r P-zi Pt - M *
(A 2)

with the regulator vertex V^al  chosen so that 
(apart from photon gauge term s, which do not con
tribute to on-shell m atrix  e lem ents) the a lg e b ra ic  
structure of the grav itational W ard id en tit ie s  im 
plied by conservation of 0UV is  p rese rved . Spec if
ic a lly , the Feynman ru le s  for v e r t ic e s  of g lve
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Vuvaa (р1>рг)=-  i  71„г(р1 'PiVat -PitPia)* 2 (Pi ‘РзЧи Л| + Pi uРгЛаЯ~PluPia7!* — PtvPlg'lua

*  Pi  PiWva^uS ^ P l v P i u ^ a i  ~Plvp2a*luB “ Pl uPl B  4wQ) i (A3)
which when contracted with (p l + p2)“ gives

(Pl +Pi)u y u, at (Pi ,P1) = e ^ e  t e r m s *  j p , 2( p2t,riai - p 2a V j  + i p 23(Pi,4ae -P i eX a )  ■ (A4)
We w ish to construct V*wat(p l t p 2) so that

(p i  + p 2)‘1v l vat( p i , p 2) = gauge te rm s+ i(p 12 -M 2)(/>! ^ ee-/>,e7jJ+A(£sJ _M , )(/>1,>)a, - / .137j1J  , (A5)
which g ives for the divergence of Eq. (A2)

(P i* P 2) {^p* V ича^РцРг)  -  р * _ м г p

= gauge te rm s+£(£,,,7},, - р 2л Пи,)(^г

which has the sam e structure as the divergence of 
(1 /p*)V uuat(\/p*), apart from the replacement of 
the photon propagators by regu larized  propagators. 
One e a s ily  finds that the low est-order polynomial 
in momenta satisfy ing Eq. (A5) is

Vvvabipiypzl я  v иvaB^PuPi)

2 M “  ^цв^м) •

(A7)

Thus, the requirem ent that the regularization  
schem e respect gravitational Ward identities in
troduces an exp lic it M2 dependence into the fiu„- 
photon vertex. This is , of course, just the con
tribution to expected from the m ass term  in 
the regu lato r field  Lagrangian.

(iv) The regu larization  prescription  adapted 
above m akes rad ia tive  correction d iagram s such 
as illu stra ted  in F ig . 2(e) fin ite for finite M, but 
divergent as M— “ , with the d ivergences canceled 
by appropriate counterterm s appearing in the r e 
norm alization constant Z3(W)- We note, however, 
that since exp lic itly  renorm alized values for the 
single-loop d iagram s of F ig. 2(a) are always used,
Z3 contains no counterterm s referrin g  to these 
d iag ram s. In effect, we have adopted a  type of 
in term ediate renorm alization procedure, in which 
Z3 contains counterterm s only for those vacuum 
polarization  graphs which involve in ternal v irtual 
photons.

Having specified the regu larization  procedure, 
we can now turn to a study of the low est-order 
divergent 0UU insertions of F ig. 1. It suffices to 
consider these insertions at zero four-momentum 
tran sfer, since the d i f f e r e n c e  between zero and 
nonzero four-momentum tran sfer w ill converge. 
Focussing on the trace-to-two-photon vertex on 
the left-hand side of the dashed line in F ig. 3(a), 
we find in one-fermion-loop order that there are 
two c la s se s  of 6U„ couplings which contribute, as

p 2 2 - M i ) + ^ p , v 7, , “ ~ P i e 4 ~ ) ( p ? ~ p S ^ m 2  )  ’  ( A 6 )

illu strated  in F ig. 2(b) and F ig. 2(c). [W e note in 
passing that an explic it check of виу conservation 
for the d iagram s of F igs. 2(b) and 2(c) shows that 
the structure of the Ward identities is guaranteed 
by the regu larization  scheme sketched above, with 
no need for any additional vertex modifications 
beyond that given by Eq. (AV).] Taking the trace  
on iw  of F ig. 3(b), using the trace  anomaly form ula 
of Eq. (2.17) to leading order, and dropping gauge 
term s gives

, - [ 3 ( b ) ]  = ~  4 -  ^ • (АЯ)

In the absence of regu la to rs, the trace  of F ig . 3(c) 
would vanish, but when regu lato rs are  included it 
is  nonvanishing, on account of the term  propor-

FIG. 3. (a) The d ivergent d iagram s of F ig . 1, at zero 
four-momentum tran sfe r . We focus on the trace -to -tw o - 
photon vertex  on the left-hand side of the dashed line .
(Ь), (c) C la sse s  of one-ferm ion-loop d iagram s which 
contribute to the left-hand aide of the dashed line in (a).
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tional to M2 in Eq. (A7), and one finds

ЧЦ,Г 3(c)) -  ~ 4Af4,i»P f 12 a )  . (A9)(p  - M  )

Setting - p *  = x, and using the fact that

(A 10)

with с a constant, the sum of Eqs. (A8) and (A9) 
becomes

4"13 (b )] ♦ U -l 3(c)]

2a M* 47]лйМ4(а/Зтг1плс+с)
= Зя I,“* *(x+JW2)2 “  (x+M2) 3

n w< d /a/3nlnx+ с  \
"  r)“* dx [  (x+M2)2 )■ ( )

Now the leading single logarithm ic divergence of 
either of the d iagram s in F ig . 3(a) comes from an 
in tegral of the form

/ ’  * И ч в,’13(Ь)] + тГ [3 (с )]} 1 Й х )> (A12)

where ф(х)~с1/х+ • • ■ represents the right-hand 
side of the dashed line. But substituting Eq. (A ll)  
and the leading term  of ф(х) into Eq. (A12), we get 
a re su lt  proportional to

>*< Г '  d  /'aAiitlnx+cN
M J  d x i ; ( — w )

/a /3tr lnx + c\ * ■ *
(  l* + W ) 9 ш * '  (A13)

which approaches a  fin ite lim it as the regulator 
m ass M approaches in fin ity . In other words, the 
logarithm ically  divergent contributions to the 
trace  coming from F igs . 3(b) and F igs. 3(c) p re 
c ise ly  cancel: in effect, the ex tra  M2 term  in 
the 8„„-regulator photon vertex  of Eq. (A7) gen
e ra te s , in the lim it a s M - 4 , a  subtraction counter- 
term  for the divergent operator Zi' lF lQFu . The 
m echanism  operating here is  evidently a  photon 
analog of the ferm ion regu lato r behavior1 which 
can be thought of as producing the trace  anomaly 
in the f ir s t  p lace.

APPENDIX В

We give here the derivation ctf Eqs. (2.8) and
(2.14), and also  illu s tra te  Iw asaki’s  theorem on 
the vanishing of (0  |eu“ \yy) in a  sp ecia l case . To 
d erive  Eq. (2.8) we follow the method of Salo.u  
Introducing the sc a la r  vertex  part г a(p l , p 2),  we 
have

= - Z 2» i0 -Z(/>)] , (B2)

with Sy the un renorm alized  e lec tro n  propagator 
and 2 the reno rm alized  e lectron  proper s e lf 
energy, and substituting into Eq. (B l) , we get

L . *

<e(£)|m0# |e(p)>  = f ,(/>,/>) |,. «  . 

W r it in g

(B3)

Now by the chain ru le  we have

/ Вт ЭЕ 8а  Э£\ (B4)
! \m° ВпГ0 Этя +т° ЭП,В За ’

while from the fact that Ё i s  homogeneous of 
degree 1 i n p  and m  we get

( B5 )

Combining Eqs. (B4) and (B5), j » e  se e  that the 
renorm alization  conditions on E,

(B6)

(B7)

S | - - f L - 0
imply that

[in  Eq. (B6) we have assum ed the Y ennie gauge, 
in which 3 ',W  has a  true  pole at f  = m', th is r e 
stric tion  is  Im m ateria l, since the fin a l re su lt  of 
Eq. (B8) is m anifestly gauge in v ar ian t.] Thus, 
the second term  in Eq. (ВЭ) v an ish es , giv ing the 
desired  resu lt

<«(/.) |»..0#  !<?(/>)) =m0 = 1 Щ * Г у (B 8 )

To derive Eq. (2.14) we follow a  s im ila r  p ro 
cedure. Introducing the z e r o - m om entum -trans
fe r sc a la r  to two-photon vertex  Ггм(£2Лл2, <*)> w e 
have

<0 |"i0#  |y(£, <2))

- * а Г „ , « 1 , а )  

x ( O l z . - ^ F ^ I y t p ,  ( J v i - P , (B 9 )

(B l) However, r„,(/)2/m2, a )  is  re la ted  to the photon 
renorm alized proper se lf-energy  i l ( p 2/ni*, a ) by 
the Callan-Sym anzik equation12
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= t„.(p*/m2,a )  . (BIO)

On setting p 2-  0 in Eq. (BIO) and using the r e 
norm alization condition

f i(0 ,a )  = 0 ,  (B ll)

we  get

a 'r - (0' a )  = - i T & -  (B12>

which when substituted into Eq. (B9) gives the 
desired  relation

<0 |m0^  Ы р ,  ^ Ы - Р ,  <2)>

-

“  4 1 + S (a )

x <0 |Z ,-‘F „ F U ir(p, < M -P , <»)>.». - (B13)

It is  also  instructive to rearran ge  Eq. (BIO) into a 
s ligh tly  d ifferent form by writing

П BV(/>, - /> )  = ( p“p“ -  р ’ Г ' -Ш р ’ /т1, a )  ,

^ ( P ,  - P) =(/>“/ > ■ ' a )  ,
(B14)

giving

*"<* -»>■ r a r a [ ( 2 (* к  -  ■)]

(B15a)

An equivalent form, suggested by Eq. (2.17), is  

[ i +6(c)] д -p )*  -  p2nuy)

= [  2 - p -  £  + « « ) ( a  ^  “  * ) ]  П'“'(Р ’ ~P) '
(Bl5b)

Equation (B15) is  an exact expression, at zero 
momentum tran sfer, for the vacuum-to-two-photon 
m atrix  elem ent Ы the "naive” or canonical trace 
т 0фф.29 Substituting the second-order perturba
tion form ula

Jll2\ p 3/m2, a )

= Ч г Г  <*»*(!- * ) l n ( l  - р2х(' г х ) )  (B16)

into Eqs. (BIO) or (BIG), we recover the usual 
second-order perturbation theory form ula

а г Щ ( р 2/т2, a )

= -  T  j f  dxx{1 - X) n , i - p ? x \ l - x )  ■ (B17)

As a  sim ple, explicit check on Iw asaki’ s theorem 
we have calculated the second-order vacuum -to- 
two-photon m atrix  element of 6B„ at zero  momen
tum tran sfer. (This can either be done d irec tly  by 
diagram m atic techniques, or more sim ply by 
using the Ward identities30 following from con
servation of fluu.) Denoting this m atrix  element 
by Ti2Ja l(p), with p, - p  the (virtual) photon four- 
momenta and with a  and 0 the photon polarization 
Indices, we find that

ТЦ!т { р ) - г и гЫ ( р ) й а , ( ? / т \ а )

+ (P aP l-P ^ ^ P u P Л  fl(2 V / w 2, a ) ,
3, ч (B18)

*UvaA~P ПиаТ 1»в~ ПивЧцд)

aB P и P WuvPa Pi*  ^ ua Pv Pd

PuPt* VvePuPa + TlutPvPa ■

Taking the trace we obtain

^ VT ^ ( P ) = { P a P , - P 2VaJ,)2 p i

x J L f i  {' \ p ' / w \ a ) ,  (B19)

which evidently vanishes for on-shell photons 
(p5 =0) as asserted  by Iw asaki’ s gen era l argu
ment. To exhibit the splitting of Eq. (В1Э) into 
■'naive" and anomalous trace  term s, we substitute 
Eq. (B16) and rearran ge  by comparison with Eq. 
(B17), giving

T\'""T̂ <tt(p)=  -  ( p ap , - p 2r\at)

x ( a f J « ( * V w \ a ) + | £ ) (B20)

as expected from Eqs. (2.17) and (B9) in second 
order.
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Cam bridge, M ass., 1970), p. 3; S . B. T re im an,
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PHOTON SPLITTING IN A STRONG MAGNETIC FIELD

S. L . A d ler, J .  N. B ah ca ll,*  C. G. C a ll an , and M. N. Rosenbluth 
The Institute f o r  Advanced Study, Princeton , New J e r s e y  08540 
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We determine the absorption coefficient and polarization selection ru les for photon 
splitting in a  strong magnetic field, and describe the possible application of our resu lts  
to pulsars.

R ecen t w ork  on p u ls a r s  su g g es ts  the p resen ce  
of trapp ed  m agnetic  f ie ld s  w ith in  an o rder of 
m agn itude In e ith e r  d irec tio n  of the e le c tro d y - 
n an iic  c r i t ic a l  f ie ld  B c1=m2/e =4.41X 1013 G.1 
(H ere  m  and e  a r e ,  r e sp e c t iv e ly , the e lec tro n ic  
m a s s  and c h a rg e .)  In such  in ten se  f ie ld s , e le c 
tro d yn am ic  p ro c e s s e s  which a re  unobservable in

1061

the lab o ra to ry  can becom e im p o rtan t. One su c h  
p ro ce ss , for photons w ith en e rg y  > 2m , i s  
photopair production, fo r w hich both the photon 
absorption  co effic ien t and the co rre sp o n d in g  ^ a c _  
uum d isp ers io n  have been  c a lc u la te d  by T oll- 
For ш < 2m  the photopair p ro c e s s  i s  k in e m a t ic a  
ly forbidden, and the only* photon ab so rp tio n

Copyright © 1970 by the American Physical Society. Reprinted with permission.
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m e c h a n ism  w h ich  d o es not r e q u ir e  the p re se n c e  
of m a t t e r  i s  photon s p lit t in g , i . e . ,

y (* ) + e x te rn a l m ag n e t ic  f ie ld

“ ? (* !)  + >(fe2). (1)

W e p r e s e n t  in  th is  note the r e s u lt s  of c a lc u la t io n s  
of the ab so rp tio n  c o e ff ic ie n t  and the p o la r iz a t io n  
s e le c t io n  r u le s  fo r  th is  re a c t io n , in  the c a s e  of 
a  c o n stan t and s p a t ia l l y  un ifo rm  e x te rn a l m ag n e t
ic  f ie ld  2?.4

To b eg in , l e t  u s  c o n s id e r  photon s p lit t in g  when 
d i s p e r s iv e  e f f e c ts  c au se d  by the e x te rn a l f ie ld  
a r e  n e g le c te d , so  th a t the photon fo u r-m o m en ta  
s a t i s f y  th e  vacuum  d is p e r s io n  re la t io n

kt=k * mk*=  0. (2)

B e c a u s e  the e x te r n a l  f ie ld  В  i s  con stan t and s p a 
t i a l l y  u n ifo rm , i t  canno t t r a n s f e r  fo u r-m o m en tu m  
to the pho tons, and  so  th e  fo u r -v e c to r s  k, k lt k2 
m u st s a t i s f y  fo u r-m o m en tu m  c o n se rv a tio n  by 
th e m s e lv e s ,

k =01( 1 ,^ )  =kl +k2 =wl ( l , k l ) + <i)2( l , k 2). (3)

It i s  e a s i l y  s e e n  th a t E qs. (2) and (3) can  be s a t 
i s f ie d  o n ly  i f  the th re e  p ro p ag a tio n  d ire c t io n s  k , 
&lt  and A , a r e  id e n t ic a l,  w h ich  im p lie s  that the 
photon fo u r - v e c to r s  a r e  p ro p o rt io n a l,

к 1 =(ш1/ш)1г, k2 = (w 2/tii)k. (4)

W e w i l l  u s e  Eq. (4) to s im p lif y  c o n s id e ra b ly  the 
m a t r ix  e le m e n ts  fo r photon s p lit t in g . To le a d in g  
o r d e r  in  e ,  the m a t r ix  e le m e n t in v o lv in g  2я + 1 
in te r a c t io n s  w ith  the e x te r n a l  f ie ld  co m es  fro m  
th e  r in g  d ia g r a m s  w ith  2n + 4 v e r t ic e s  w h ich  a r e  
i l lu s t r a t e d  in  F ig . 1. W hen a l l  p e rm u ta t io n s  of 
the v e r t ic e s  a r e  su m m ed  o v e r , the m a t r ix  e le 
m en t i s  g a u g e - in v a r ia n t , and th e re fo re  m u st 
coup le  the th r e e  photons and the e x te r n a l f ie ld  
o n ly  th ro u gh  th e ir  r e s p e c t iv e  f ie ld - s t r e n g th  te n 
s o r s  F M„, F p S ,  F liv2, and F MV. B e c a u se  Eq. (4) 
t e l l s  u s  th a t o n ly  one fou r-m o m en tu m  i s  p re se n t  
in  the p ro b le m , the m a t r ix  e le m e n t fo r F ig . 1 i s

a  sum  of te r m s  of the fo rm

FFlF2* X k " ' k (5)
2и + 1 f a c to r s  21 f a c to r s

w ith the L o ren tz  in d ic e s  c o n trac ted  to fo rm  a  
L o ren tz  s c a l a r  (w h ich  i s  w hy the n um b er of 
f a c to r s  k m u st be even ). S in ce  k “F (lu=fe,JF M„*
“ f r ^ F a  n o n van ish in g  c o n tr ib u 
tion  i s  obtained only if  e a ch  f a c to r  k i s  c o n trac te d  
w ith  a  d iffe re n t F ,  w h ich  m e an s  th a t w e m u st 
have l * n .  We wi l l  now show fu r th e r  th a t w hen 
l - n , the co n trib u tio n  to the m a t r ix  e le m e n t s t i l l  
v a n is h e s . W rit in g  v flmF lluk v , a  te rm  w ith  2я 
fa c to r s  k h a s  the fo rm

F F 'F ’F x , (6)

2я f a c to r s

a g a in  w ith  L o ren tz  in d ic e s  c o n tra c te d  to fo rm  a  
L o ren tz  s c a l a r .  B e c a u se  of the a n t is y m m e try  of 
the f ie ld  s tre n g th , the n um b er of f a c to r s  v  w h ich  
can  be co n trac ted  w ith  f ie ld  s t re n g th s  c an  o n ly  
be 0, 2, o r  4. An e n u m e ra t io n  of th e se  c o n t r a c 
t io n s5 show s that they  m u st a lw a y s  co n ta in  a t 
le a s t  one fa c to r  of the fo llo w in g  f i ve  ty p e s : 

Va F l " BF BrH>T, F oBF i a y F ^ T ' 6 a, 
v  aF  a6F  g / F 2 j i F i t v t , o r  « „ F ^ F e / f r ^ F - ^ V ,  
or f a c to r s  o b ta ined  fro m  th e se  by p e rm u tin g  the 
photon f ie ld  s t re n g th s  F , F 1, and F 2. A  s im p le  
d ir e c t  c a lc u la t io n  sh o w s th a t fo r f r e e  photons 
p ro p ag a t in g  a lo n g  the s a m e  d ir e c t io n , the f iv e  
f a c to r s  a lw a y s  v an ish , i r r e s p e c t iv e  of the o r ie n 
ta tio n s  of the photon p o la r iz a t io n s . W e co n c lu d e , 
then , that the te rm  w ith  2w f a c to r s  k v a n is h e s , 
so  that a t m o st 2 n -2  f a c to r s  k can  be p re s e n t  
(fo r n  ^  1) in  the te rm  in  the p h o to n -sp lit t in g  
m a tr ix  e le m e n t in v o lv in g  2n + 1 e x te r n a l  f ie ld  
f a c to r s  F .

L et u s  now ap p ly  th is  r e s u l t  to the two s m a l l 
e s t  r in g  d ia g r a m s : the box d ia g r a m  (n =0) and 
the hexagon  d ia g r a m  (n  =1). W e im m e d ia te ly  
le a r n  th a t the box co n tr ib u tio n  to photon sp lit t in g  
v a n is h e s  id e n t ic  a l l y ,6,1 so  th a t the le a d in g  d ia 
g ra m  w hich  c o n tr ib u te s  i s  the h exago n . F u r th e r -

2 n +  I 
i n t e r a c t i o n s  

w i t h  e x t e r n a l  
f i e l d

FIG. 1 . R ing d iag ram  for photon sp littin g  Involving 2л + 1 In te ractio n s w ith  the ex te rn a l f ie ld .

a l l  p e r m u t a t i o n s  
o f  v e r t i c e s
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m o re , the hexagon co n ta in s a t m o st 2 * l - 2 = 0  f a c to r s  of k in  ad d it io n  to  th o se  c o n ta in e d  in  th e  f i e l d  
s tre n g th s , w h ich  m ean s that the hexagon  d ia g r a m  i s  g iv en  e x a c t ly  b y  i t s  c o n s t a n t - f ie ld - s t r e n g t h  l i m i t ,  
w h ich  can  in  tu rn  be e a s i ly  c a lc u la te d  fro m  the H e i s e n b e r g - E u le r8 e f f e c t iv e  L a g r a n g ia n .  L a r g e r  r i n g  

d ia g r a m s  w il l ,  of c o u r s e , a lso  be p re s e n t , but fo r p u rp o se s  of ro u g h  o r d e r - o f - m a g n itu d e  e s t im a t e s  
the le ad in g  dependence on Б / В с , and ш/m  g iv en  b y  the h ex ago n  sh o u ld  be s u f f ic ie n t .  C a r r y in g  o u t t h e  
e f f e c t iv e -L a g r a n g ia n  c a lc u la t io n  fo r the h exagon  g iv e s  the fo llo w in g  f o r m u la s  fo r  th e  p h o t o n - s p l i t in g  
ab so rp tio n  c o e ff ic ie n ts  in  the v a r io u s  photon p o la r iz a t io n  s t a t e s :

«IW  -  (II \  * (-*-)jl + K[W -  W ,+(II )2]=2k[(|| ) - ( ! ) , + i± \ l W

H ere  a = e a “  1/137 i s  the f in e  s t ru c tu r e  co n stan t, ;
6 i s  th e  a n g le  b etw een  the photon p ro p ag a tio n  d i
re c t io n  k and the  d ire c t io n  6 of the e x te rn a l m a g 
n e t ic  f ie ld , and the l in e a r  p o la r iz a t io n  e ig e n -  
m o d es a r e  la b e le d  || o r  J- a c c o rd in g  to w h eth er 
the В  v e c to r  of the e igenm ode l i e s  in , o r  i s  n o r 
m a l to , th e  £ -6  p lan e . Only fo rm u la s  fo r p ro 
c e s s e s  in v o lv in g  an  even  n um b er of -L photons 
h av e  b ee n  g iv e n ; the ab so rp tio n  c o e f f ic ie n ts  fo r 
p r o c e s s e s  in v o lv in g  an odd n um ber of J. photons 
v a n is h  b y  a  s im p le  C P  a rg u m en t. To s e e  th is , 
w e n o te  th a t  fo r  e a ch  ]| photon, th e  m a tr ix  e le 
m en t w i l l  co n ta in  a  C P -e v e n  fa c to r  S pho' ° " - b  
[th e  o n ly  o th e r  p o s s ib le  s c a l a r  p ro duct, 5 pho,on 
•E, v a n is h e s  by t r a n s v e r s a l i t y ] ,  w h ile  fo r each  
-L photon i t  w i l l  con ta in  a  C P-odd  fa c to r  f ; i ,ho,0D
• b.  S in c e  the o n ly  s c a l a r  not in v o lv in g  the photon 
f ie ld s  i s  lc -Б , w h ich  i s  CP  ev en , the m a t r ix  e l e 
m e n ts  fo r  the odd-J--photon p r o c e s s e s  a r e  CP 
odd, and h en ce  v an ish .

So f a r  w e  h av e  a s s u m e d  th a t the photons s a t is f y  
th e  v acu u m  d is p e r s io n  r e la t io n  of Eq. (2 ). A ctu 
a l l y ,  b e c a u s e  of the ab so rp tiv e  p r o c e s s e s  tak in g  
p la c e  in  the e x te r n a l  f ie ld , th e re  w i l l  be d is p e r 
s iv e  e f f e c ts  w h ich  m od ify  Eq. (2 ). A s im p le  CP  
a rg u m e n t  sh o w s th a t the photon e ig en m o d es r e 
m a in  l in e a r l y  p o la r iz e d , w ith  the p a r a l le l  and 
p e r p e n d ic u la r  c h a r a c t e r s  d e s c r ib e d  above , but 
w ith  th e  r a t io  of w av e  num ber to freq u en cy  
ch an g ed  fro m  u n ity  to

k/w=n || (8)

T he in d ic e s  of r e f r a c t io n  пц ± can  b e  c a lc u la te d  
fro m  th e  to ta l  ab so rp tio n  c o e f f ic ie n ts  к ц x by 
K r a m e r s -K ro n ig  (d isp e rs io n )  r e la t io n s , w ith  the 
do m in an t co n tr ib u tio n  co m in g  fro m  p ho topair 
p ro d u c tio n  [th e  co n tr ib u tio n  fro m  photon sp lit t in g  
i s  s m a l l e r  by a  fa c to r  ~ (а/ я )2(Б  s in e / B ,.,)4, and 
c a n  be n e g le c te d ] . F o r s m a l l  Ъ/Вс , the c a lc u la 

tion  h a s  b een  c a r r i e d  out n u m e r ic a l l y  b y  T o l l , 2 
who g iv e s  c u r v e s  fo r  и ц  ̂L a s  a  fu n c t io n  o f f r e 
qu en cy to. W hen w e  h av e  ш < 2 m ,  so  th a t  th e  p a -  
r a m e te r  x ^ (w / 2 m )(S  s in 0 / 2 ?CI) i s  a ls o  s m a l l ,
T o ll ’ s  r e s u l t s  c an  b e  a p p ro x im a te d  a n a l y t i c a l l y  
by

а /BsineY,, /

N ||(*) ~ 0 .18  + 0 .24xs ,

N±(x) ~ 0 .3 1  + 0 .4 4 * a. ( 9 )

W hen d is p e r s iv e  e f f e c t s  a r e  ta k e n  in to  a c c o u n t ,  
the eq u a tio n s of c o n se rv a t io n  of f o u r - m o m e n tu m  

b eco m e

w = Wj + « j

п(ш)ш£ =я(а>1)ш1£1 + «(w 2)w 2€ a, ( 1 )

w ith  e a c h  n  the r e f r a c t iv e  in d e x  a p p r o p r ia t e  t o  
the r e s p e c t iv e  photon p o la r iz a t io n  s t a t e .  T h e s e  
co n d itio n s c an  be s im u lt a n e o u s ly  s a t i s f ie d  o n l y  i f

0 <s д  =k (w1)w1 +k (o>j )w2

- ( w ,  + ta>j)n(<*>, + ш г)> t 1 1 )

in  w h ich  c a s e  the photon p ro p a g a t io n  d i r e c t i o n s  
a r e  not p r e c is e ly  p a r a l le l ,  bu t r a t h e r  d i v e r g e  
fro m  one an o th er by s m a l l  a n g le s  " (Д /w ) . A s  
a  r e s u lt  of th is  n o n p a r a l le l is m , th e  box  d i a g r a m  
i s  no lo n g e r  p r e c is e ly  z e r o ,  but a  c a r e f u l  e s t i 
m ate  show s that It i s  s t i l l  m u ch  s m a l l e r  th a n  t h e  
hexagon . When Л i s  n e g a t iv e , th e  p h o t o n - s p l i t 
t in g  re a c t io n  i s  fo rb id d en . S u b s t itu t in g  th e  i n 
d ic e s  of re f r a c t io n  of Eq. (9 ) in to  E q. (1 1 ) s h o w s ,  
in d eed , th a t fo r s m a l l  x the o n ly  r e a c t io n  in  
Eq. (7) w h ich  i s  k in e m a t ic a l ly  a l lo w e d  i s  (II) ~  ( J - ) l  
+ (-L)3, and th a t th is  r e a c t io n  o c c u r s  w ith o u t r e 
s t r ic t io n  on the photon f r e q u e n c ie s  ш,  and  w 2.

1 0 6 3
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Table I. Selection rules for photon splitting. CP-forbidden reactions are  suppressed 
by a factor ~(a/ir)2(B sinfl/Bcr)4 relative to CP-allowed cases.

Reaction
CP

selection rule
Small-ж kinematic 

selection rule

(II) “-(II), + (11)г Allowed Forbidden
(II)—’(ID i+ M i. W i + dlh Forbidden Allowed
di)-«, + w, Allowed Allowed
W - < D t + (l)t Forbidden Forbidden
(i.)-(||), + (-g2, «j + dbj Allowed Forbidden

Forbidden Forbidden

T he v a r io u s  p o la r iz a t io n  s e le c t io n  r u le s  fo r pho
ton s p l it t in g  a r e  s u m m a r iz e d  in  T ab le  I. B e 
c a u s e  of the s m a l l  n o n p a ra l le lis m  of the photons 
in  the  k in e m a t ic a l ly  a llo w ed  r e g io n s , the "CP- 
fo rb id d en  ” r e a c t io n s  a r e  not p r e c is e ly  fo rb idden , 
but a r e  down by a  f a c to r  ~(a/ir)2(B s m 8/ B c ,)i  r e 
la t iv e  to the “C P -a llo w e d ’’ c a s e s .  W e se e  that 
fo r  s m a l l  x,  a l l  r e a c t io n s  by w h ich  p e rp e n d ic u 
l a r l y  p o la r iz e d  photons m igh t s p l it  a r e  k in e m a t i
c a l l y  fo rb id d en , w h ile  p a r a l le l - p o la r iz e d  photons 
s p l i t  p re d o m in a n tly  in to  p e rp e n d ic u la r ly  p o la r 
iz e d  p h o to n s. H ence photon sp lit t in g  p ro v id e s  a  
m e c h a n ism  fo r  the p ro d u c tio n  of l in e a r ly  p o la r 
iz e d  у  r a y s .8

To co n c lu d e , le t  u s  b r ie f ly  d is c u s s  the p o s s ib le  
a p p lic a t io n  of o u r r e s u l t s  to p u ls a r s .  W e a s su m e  
th a t th e  h e x a g o n -d ia g ra m  ab so rp tio n  c o e ff ic ie n ts  
in  Eq. (7) c an  b e  u s e d  fo r o rd e r -o f-m a g n itu d e  
e s t im a t e s  even  w hen th e  p a r a m e te r s  B / B CT and 
co/m  a r e  of o rd e r  u n ity .10 T ak in g , fo r i l l u s t r a 
tio n , В / В c t ~ш /т ~  s i n 6 ~ l t w e find  к[(||) -  W ,
+ (J-)2]~ 0 .1  c m -1 . T h is  g iv e s  105 ab so rp tio n  
le n g th s  in  the c h a r a c t e r i s t ic  d is ta n c e  Я ри], 4Г 
“  10“ cm  o v e r  w h ich  the trap p ed  m ag n e tic  f ie ld  
h a s  i t s  m ax im u m  s tre n g th , in d ic a t in g  that photon 
s p l it t in g  can  b e  an  im p o rtan t ab so rp tio n  m e c h a 
n ism  fo r  у  r a y s  e m itte d  n e a r  the p u ls a r  s u r f a c e . 
B e fo re  w e c an  ap p ly  th e  k in e m a t ic  p o la r iz a t io n  
s e le c t io n  r u le s  to the p u ls a r  p ro b lem , two q u e s 
t io n s  m u st be d e a lt  w ith . F i r s t ,  s in c e  T o ll’ s  
c u rv e s  fo r  th e  in d ic e s  of r e f r a c t io n  w e re  obta ined  
a s s u m in g  B / B CI s m a l l ,  an  e x trap o la t io n  i s  in 
v o lv ed  in  ex ten d in g  the s e le c t io n  r u le s  fo rb id d in g  
p e rp e n d ic u la r -p h o to n  d e ca y  and p a ra lle l-p h o to n  
d e c a y  in to  p a r a l l e l  photons to the re g io n  w h e re  
S/BCI i s  of o rd e r  u n ity . H ow ever, T o ll ’ s  photo
p a ir  p ro d u c tio n  c u rv e s  show th a t k ±>K|| when 
E / B ct  i s  u n ity . B y  com b in in g  th is  fa c t  w ith  the 
K r a m e rs -K ro n ig  r e la t io n s , one e a s i ly  s e e s  that 
the s e le c t io n  r u le s  in  T ab le  I hold a s  long  a s  
w  < 2m ,  and h en ce  the e x trap o la t io n  i s  ju s t if ie d . 
Seco nd , one e x p e c ts  a  p la s m a  to be p re s e n t  n e a r

the p u ls a r  su r f a c e  w h ich  w i l l  co n tr ib u te  ad d it io n 
a l d is p e r s iv e  t e r m s  to the in e q u a lity  of Eq. (11 ). 
For a  p la s m a -e le c t r o n  d e n s ity  of 1017- 1 0 -19 c m -3 
(in  rough  ac c o rd  w ith  c u r r e n t  p u ls a r  m o d e ls10), 
a  d e ta i le d  e s t im a te  sh o w s th a t p la s m a - in d u c e d  
sp lit t in g  of p e r p e n d ic u la r ly  p o la r iz e d  photons 
o c c u r s  w ith  an  ab so rp tio n  c o e ff ic ie n t  of a t  m o st 
10 _9- 1 0 “ 7 t im e s  the ab so rp tio n  c o e ff ic ie n t  fo r 
the a llo w ed  r e a c t io n  (||) — (J.), + ( i ) 2, and  t h e r e 
fo re  w il l  be c o m p le te ly  n e g l ig ib le .11 W e co n c lu de  
th a t if  у  r a y s  in  the r a n g e  0 .5 -1  M eV  a r e  e m itte d  
n e a r  the p u ls a r  s u r f a c e , and i f  the s u r f a c e  m a g 
n e t ic  f ie ld  i s  a s  l a r g e  a s  B c n  o n ly  th o se  g a m m a s  
w ith  p e rp e n d ic u la r  p o la r iz a t io n  w i l l  e s c a p e . A 
d is ta n t  o b s e r v e r  w ould s e e  l in e a r l y  p o la r iz e d  
g am m a s , w ith  th e ir  5  v e c to r  p e rp e n d ic u la r  to 
the p lan e  co n ta in in g  the l in e  of s ig h t  and the 
t r a v e r s e d  p u ls a r  m a g n e t ic  f ie ld .13

A d e ta ile d  acco u n t of the c a lc u la t io n s  su m m a 
r iz e d  h e re  w i l l  be p re s e n te d  e ls e w h e r e .10 T he 
au th o rs  w ish  to thank P . G o ld re ic h  (who f i r s t  
b ro ught th is  p ro b lem  to our a tte n tio n ), E. P.
L e e , and M. R a s s b a c h  fo r  in fo rm a t iv e  c o n v e r s a 
t io n s . A fte r  th is  m a n u s c r ip t  w a s  co m p le ted , w e 
le a rn e d  th a t so m e  of our r e s u l t s  h ave  b een  ob 
ta in e d  in d ep en d en tly  by Z. B ia ly n ic k a - B ir u la  
and I. B ia l y n ic k i - B i r u la .13

* Present address: California Institute of Technology, 
Pasadena, Calif.

* For a recent view, see F. Pacini, “Neutron Stars, 
Pulsar Radiation and Supernova Hemnants,” to be pub
lished. We use unrationalized Gaussian units, with 
* -c =  1.

2J .  Toll, dissertation, Princeton University, 1952 
(unpublished).

3The phase space for a photon to split into three or 
more photons vanishes.

4In a pulsar, the field В varies over a characteristic 
distance of ^pulsar ~1(,a cm' can be shown to
have a negligible effect on our resu lts.

5We need not consider contractions Involving the
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antisymmetric tensor ea eyfi* Ьесаине by parity the 
number of such factors must be even, and they can be 
eliminated pairw ise in terms of Kronecker deltas by 
means of the Identity

«И вг^п 'в’ х * ^  £  ( -1 )^ 0 M 'g i f g j y ' g b b ' -
P e rm (a 'e 'y * 6 * )

®This result for the box diagram has been obtained 
Independently by M. Rassbach.

This disagrees with the conclusion of V. G. Skobov, 
Zh. Eksp. Teor. Fiz. 35, 131Б (1958) [Sot. Phys. JETP 
8, 919 (1959)] , who failed to make a properly gauge- 
invariant calculation of the box. Skobov’e result Is 
quoted in the review artic le  of T. Erber, Rev. Mod. 
Phys. 38, 626 (1966).

®W. Heisenberg and H. Euler, Z. Phys. 38, 714 
(1936).

*Toll (Ref. 2) points out that in a frequency Interval 
Дш ~eB/m just above the photopair threshold at ш =2m,

the photopalr process acts as a  lin ea r  p o lar ize r of the 
opposite sense, absorbing photons of perpendicular 
polarization, but not those of p a ra lle l polarization.

l0For further d iscussion , see S. L . A dler, to be pub
lished.

1!In a p lasm a, the propagation eigenmodes become 
elllp tlca lly  polarized, but a re  s t il l  “ alm ost plane ||” 
and "alm ost plane -L” in nature . F araday  rotation, 
which arieee  from Interference between two unattenu
ated propagation eigenmodes of d ifferent phase veloci
t ie s , cannot occur In our case  since only the “almost 
plane elgenmode propagates without attenuation.
As a result of photon splitting the "alm ost plane 1 ” 
elgenmode is  rap id ly absorbed.

“ Solid-state lin ear-po larization  an a lyze rs  for gammas 
in this energy range have been described  by G. T. Ewan 
e t  d . ,  Phys. Lett. 29B, 352 (1969).

13Z. B ia lyn icka-B lru la and I. B ia lyn ic ld -B iru la , to 
be published.
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Photon Splitting and Photon D ispersion in a Strong M agnetic Field

S t e p h e n  L. A d l e r

Institu te f o r  Advanced Study, P rinceton, New J er s e y  08540 

R eceived  Ja n u a ry  27, 197]

W e determ in e the refractive  ind ices fo r photon p ro p agatio n , and  the absorption  
coefficient and  po larizatio n  selection ru les fo r photon sp littin g , in a  s tro n g  co nstan t 
m agn e tic  field . R esu lts  a re  presented both in the effective L ag ran g ian  (low  frequency) 
ap p ro x im atio n  an d  in  a  m ore accu ra te  ap p ro x im atio n  w h ich  ex ac tly  sum s the vacuum  
p o la r iza tio n  r in g  d iag ram s, neglecting  on ly in tern al v irtu a l photon rad ia tiv e  co rrections. 
O ur p rin c ip a l conclusion  is th a t photon sp litt in g  can provide a  m echan ism  fo r the 
p ro duction  o f lin ea rly  po larized  gam m a rays .

1. I n t r o d u c t io n  a n d  S u m m a r y

Recent work on pulsars has suggested the presence o f trapped magnetic fields 
within an order o f magnitude (in either direction) o f the electrodynamic critical 
field BCR =  m2/e — 4.41 ■ 1013 gauss1 (with m and e, respectively, the electronic 
mass and charge)[l]. In such intense fields, electrodynamic processes which are 
unobservable in the laboratory can become important. One such process, fo r 
photons with energy ш >  2m, is photo-pair production, for which both the photon 
absorption coefficient (inverse absorption length) and the corresponding vacuum  
dispersion have been calculated by Toll [2]. For ш <  2m, the photo-pair process is 
kinematically forbidden, and the only photon absorption mechanism in the absence 
o f matter is photon splitting, i.e.,

y(k) +  external magnetic field -»■ y(£j) -j- y(kJ .  (1)

We give in this paper detailed calculations o f the absorption coefficient and 
polarization selection rules for this reaction, in the case o f a constant and spatially 
uniform external magnetic field B. A  summary o f our results, and a brief discussion 
o f their possible application to pulsars, have already been given in [3].

In Section 2, we consider photon splitting in the absence o f dispersion, so that 
the three photons are strictly collinear. We find that the box diagram matrix

1 W e use unratio na lized  G auss ian  un its, w ith  h — с  =  1.
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element vanishes, while the hexagon matrix element is nonvanishing and is given 
exactly by its constant-field-strength (small to/m) limit. Using the Heisenberg- 
Euler effective Lagrangian [4], we calculate the sum o f the constant field strength 
limits o f all ring diagrams for photon splitting involving arbitrary numbers o f 
interactions with the external field. Then, we use proper-time techniques to exactly 
calculate the photon splitting matrix element to all orders in the external field, 
without the restriction to constant photon field strengths. (The details o f this latter 
calculation, which neglects only internal virtual photon radiative corrections, are 
given in Appendix 1). The magnitude o f the resulting photon splitting 
absorption coefficient, for photon propagation normal to the external field, is 
к ~  0.1 (В/Всяу  (co/d?)5 cm-1. Thus, if pulsar fields are as large as BCR , fo r photon  
frequencies w o f order m, there are many photon splitting absorption lengths in a 
characteristic pulsar distance o f 106 cm. A comparison o f the photon splitting and 
photo-pair absorption coefficients shows that when the photo-pair process is 
kinematically allowed it dominates over photon splitting as a photon absorption  
mechanism. To complete our discussion of the no-dispersion case, we estimate the 
leading corrections arising from the fact that the magnetic field В is not strictly 
uniform, but varies over characteristic distances o f order 10л с т .  A nonuniform  
magnetic field can transfer momentum to the photons, with the result that the final 
photons emerge at small but finite angles with respect to the initial photon direction. 
This means that the argument for the vanishing o f the box diagram no longer holds, 
but an estimate shows that the resulting box diagram contribution is negligibly 
small compared with the hexagon diagram absorption coefficient.

In Section 3 we discuss dispersion effects and polarization selection rules. 
Because of photon absorption processes which take place in the presence o f the 
external magnetic field B, the vacuum in the presence o f the field В acquires an 
index o f refraction n, and the photon dispersion relation is modified from kja> =  1 
to k/a> — n. There are actually two different indices o f refraction n corresponding 
to the two photon propagation eigenmodes. A  general argument based on the CP 
invariance o f electrodynamics shows that the eigenmodes are linearly polarized, 
with the В-vector o f the eigenmode either parallel to (|| mode) or perpendicular to 
( -L mode) the plane containing the external field and the direction o f propagation. 
The indices o f refraction йц, ± can be calculated in the constant field strength 
(small w/m) limit from the Heisenberg-Euler effective lagrangian, and can be 
calculated without the constant field strength restriction, by the proper time 
methods of Appendix 1. They can also be obtained from the absorption coefficients 
* 11. 1. by Kram ers-Kronig relations, with the dominant contribution coming 
from photo-pair production. When dispersive effects are taken into account, we 
find that energy-momentum conservation in the photon splitting process can be 
satisfied only if the inequality 0 <  A =  и(ш,) w1 +  n(w2) oj2 -  +  tu2),
holds, with w =  tuj -(- w2 and with each n the refractive index appropriate to the
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respective photon polarization state. The photon polarization directions are no 
longer precisely parallel, but rather diverge from one another by small angles o f 
order (А/шу/2. Again, as a result o f this nonparallelism, the box diagram is no 
longer precisely zero, but a careful estimate shows that it is only an order 
а(а =  e2 =  fine structure constant) correction to the hexagon. When A <  0, the 
photon splitting reaction is forbidden. Using our expressions for the refractive 
indices, we analyze the sign o f A for the various photon polarization cases. We 
find that when ы is below the pair production threshold at 2m, only the photon 
splitting reactions (||) —► ( _L>! +  (_L)2 and (||)->  ADj +  Ш з  > (-L)i +  (IDs are 
kinematically allowed. Furthermore, when the small angles between the photon 
propagation directions are neglected, a simple CP-invariance argument shows that 
the photon splitting reactions involving an odd number o f (J_) photons are for
bidden. Hence the only allowed polarization case is (||) —> (J .) ! +  ( J_)2 , indicating 
that photon splitting provides a mechanism for the production o f polarized 
photons: perpendicular-polarized photons do not split, and parallel-polarized 
photons split predominantly into perpendicular photons.

Finally, in Section 4 we discuss corrections to our results arising when a plasma 
with electron density ne is present in the region containing the strong magnetic 
field. We show that for ne o f order 10”  — 1019 cm-3 (in rough accord with current 
pulsar models) the plasma-induced splitting of perpendicular-polarized photons 
occurs with an absorption coefficient o f at most I0-9 — 10-7 times the absorption 
coefficient for the allowed reaction (|[) —»- (_L)i +  (_L)2 , and hence will be com
pletely negligible.

A . Kinematics
W e consider photon splitting in the presence o f a time-independent, spatially 

uniform external magnetic field B. Because of the constancy o f the external field it 
can absorb no four-momentum, and as a result the four-vectors к, кг , k2 o f the 
initial and final photons must satisfy energy and momentum conservation by 
themselves,

It is easily seen that this condition can be satisfied only if the propagation direc
tions o f the three photons are identical,

2 . N o - D isp e r s io n  C a se 2

к  —  w ( l ,  A)  =  fcj  +  k *  =  t o 1( l ,  H j )  +  £i>2( 1 ,  &>). (2)

к =  — k.г > (3)

5 W e fo llow  the m etric and  other n o ta tio na l conven tions o f J . D. B jo rken  an d  S . D . D rell, 
“ R e la tiv is tic  Q uantum  F ie ld s ,” M cG raw -H ill, N ew Y o rk , 1965, pp . 377—390.



336 Adventures in Theoretical Physics

PHOTON SPLITTING IN STRONG FIELD 609

external field direction. The vanishing of all matrix elements involving an odd 
number of perpendicular photons results from the CP invariance o f  quantum  
electrodynamics, as will be explained in detail below.

Finally, doing the phase space integrals gives us the following expressions for 
the photon splitting absorption coefficients:

*[(ii) -  (iDi +  m

= J“ dw, J “ dw2 8(0) -  0>J -  CO,) I J f [{ID -  (II)L + (ll)|]l*

л® cm® 0 -
=

*[(10 -  (-L)i +  Ш*]

= 32m? J0 d<1>1 J„ d“’2 — “i — шг) I “̂Kli) (-L)i +
(23)

n6 B6 sin® Й
=  2 c ABIBCKy  J,

*[U) -  (II): + U )2] + 4 ( 1 )  -  (±), + m

=  3 2 ^  I / " 1 J o < 4  8 ( «  - « , - « * )

X {I Jg[{ 1 )  —  ( l l ) i  +  (_L).2]|2 +  | -*[(_!_) -  ( D i  +  (10.11*}

а6 Й6 sin6 в 4, ,
— 2 п г  2С 2(Й/5сл) J ,

with

J  =  Г  dw j j" dwt 8(w — wt — w2) w12cu22 =  - 7̂7 . (24)
J n J o JU

Eqs. (15), (17), (23) and (2^) constitute our results for photon splitting in the small 
aijin limit when dispersive effects are neglected [3, 8]. We will see below that when 
dispersive effects are taken into account, the reactions (||) —*■ Cll)i +  (П)г» 
( -L )~ ( ll) i  +  (_L)j and (_L) —► (J_), +  (||)2 are kinematically forbidden, while 
the reaction (||)-> (J_)i +  ( J_)2 still occurs with the absorption coefficient given 
by Eq. (23).

D. Exact Calculation

As we have noted, the effective Lagrangian formulas o f Eq. (23) give the sum 
of ring diagrams shown in Fig. 4, in the limit o f constant photon field strength
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(small w/m). It is possible, by using the proper-time techniques developed by 
Schwinger [7], to exactly calculate this sum of ring diagrams, without the small 
u>jm restriction. (Virtual photon radiative corrections to the ring diagrams, such 
as shown in Fig. 6, are still neglected, but these are expected to be strictly an order

к k( к к, к к,

F ig . 6. T yp ica l v irtu a l photon rad ia tiv e  co rrections to the hexago n d iag ram  fo r photon 
sp litt in g  (cf. F ig . 3).

a  co rrec tio n  to  o u r re su lts .)  L eav in g  c a lc u la t io n a l d e ta ils  to  A p p en d ix  1, w e p resent 
here  o n ly  the re su lts  fo r the k in e m a t ic a lly  a llo w ed  re ac tio n  (| |) -*■ ( J_) ,  +  ( j _) 2 . W e 
find  th a t  the m a tr ix  e lem en t -//[(II) ->- (_L)i +  ( ± ) 2] a p p e a r in g  in Eq. (23) is now  
g iven  b y  the ra th e r  co m p lica ted  exp ressio n

л т  -  ( D i  +  u ) 2]

=  [B sin  fl(4 ir)1/2]* ши)1ш 2С 2[ш sin  в , си, sin  в ,  co2 sin  в , В ], (25a)
2  77 17r

Сг[ш, tu, , w2 , J3]

=  ™‘ ._  Г  * Фе х р ( — f* d( f‘ du
1 6 0 1 0 1 ^ 2  J 0 (e s B ) 2 sin h (esB ) ( J 0 J 0

X  [(dw-lOJzA  - f  (w , — aij) ojjcu2S  -|- г 'ш С  +  J _1(“ i -  шг) +  8 J  dt a»£j

A  =  {exp[o)22̂ (j, t) +  w*R{s, u)] +  expt^!2^ ^ , t) +  ai^Ris, и)]}

X e x p f w jt u j  A(s, t, a ) ]  s in h [ e B ( f  — m)]

x  jC +(g, t, a )  -  co sh (eg£ ) & Ш еВ ^  _  ,  +  и)]
{ s i n h ( e B s )

+  2 s in h [e B (j — /)] sinh(eBi/)|,

В =  { e x p K 2tf(s, 0  +  и)] -  e x p K 2* (j, t) +  w22R(s, и)]}

X e x p lo i t  A (j, /, и)] sinh[efl(/ — t/)] — sinh[eS(j  — t +  и)],

С  =  П ехр[ш 22Ж-5. t)  +  a i f R f a  и)] +  e x p K 2« ( s ,  t) +  u 22R(s, и )]]

X e x p f o * ,  A(s, t, и)} -  2} [s in h ( e S s )  +  co sh (e B s )] ,
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t )  =  {exp[aj22.R(j, l )  +  ao^Ris, ы)] — f) +  w)]}

X ехр[ш,ш2 A(s, t, « ) ]  C_(s, t, u) co th(eB s),

Ё — {exp[aj2i?(s, f)] — 1}

X (..m i,1. 5 »  +  01  -  со зЦ ,В Д

with

(25b)

C±(s, t, u) =   ̂ |cosh [(eBi) (-y - -  l ) j  ± cosh [(eBs) ( -y -  -  l)]|,

п/. .л 1 Гл. /. 1 \ . cosh[eBj(2f/s — 1)] — cosh(eBs) ]
R „ , , )  =  -  r  ( 1  -  7 j  +  е Б  j .

A{S, t, и) = 2Л 1 -  ± )  -  sinh(2e5i/) [1 -\ s '  2 eB L sinh(eBj) J

[1 — cosh(2eBu)] г cosh[(eB^)(2f/̂  — 1)] — cosh(eB^) 1
2 eB L sinh(eBi) *

We make some remarks on various features of this formula:

(1) Bose symmetry, which states that У/[(||) -*■ ( J J j  +  (_L)2] is symmetric 
under the interchange w2t is explicitly evident.

(2) The small a>/m limit of Eq. (25) is obtained by replacing A by the zeroth 
order term and C, D and Ё by the (leading) second order terms in their respective 
expansions in powers of photon frequency. (The term Ё does not contribute to the 
constant field-strength limit.) Doing the и and t integrations then shows that, in 
the small wjm  limit, C2[aj, , ai2 , B] reduces to the effective Lagrangian expression 
C2(B/BCR), in just the form given in Eq. (15).

(3) From Eq. (25b), we easily see that R(s, t) and <d(s, t, u) are even functions 
of the external field В, both of which vanish like B2 when В is small. Therefore, the 
small В-limit of Eq. (25) is obtained by expanding out the curly-bracketed exponen
tial terms in А,...,Ё, just as in the small си/т case. The leading small В contribution 
to C2[tu, a), , a>2 , B] is of order B3, as expected for the hexagon diagram, and is 
found to be frequency-independent, confirming our above-stated result that the 
hexagon diagram is given exactly by its constant field strength limit. When higher 
order terms in the expansions of the curly-bracketed exponentials are kept, we see 
that the general term in C, with 2n powers of photon frequency contains at least 
2n + 3 powers of B, in agreement with the theorem of Subsection 2B.
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(4) Because Eq. (25) contains infinite multiple integrals, it is necessary to 
look carefully at the question of convergence. By making the rescalings

— I o + a  / > = ! / > •

(26)

the t and и integrals are transformed into integrals over finite intervals, with only 
the s integral still extending to infinity. To examine the large-j behavior of the 
rescaled integrand, we use the fact that when s —*■ aо with t/s and u/s fixed, the 
quantities R(s, t) and A(s, t, u) are simply approximated by

R(s, t) л* ?(1 — t/s) +  finite,
(27)

A(s, t, u) m 2u(l — t/s) +  finite.

On substituting these expressions into Eq. (25), and making similar large-j 
approximations in the factors multiplying the curly brackets, we obtain the follow
ing result for the region of convergence: When w is below the pair production 
threshold at w — 2m, Eq. (25) converges at least as fast as

J  ds x  (power of s) (28)

for all values of the secondary photon frequencies cu, and w2. When w  is above the 
pair production threshold, there are values of to, and w2 for which the integral 
diverges. Thus, Eq. (25) gives a valid expression for the photon splitting matrix 
element only in the photon energy region where this matrix element is real, but 
fails when the photon splitting matrix element becomes complex, as a result of 
absorptive contributions such as the one pictured in Fig. 7. This failure is no real 
problem, since we will see below that when со >  2m, the photopair production 
process is a far more important photon absorption mechanism than is photon

F ig. 7. Lowest-lying absorptive contribution to photon splitting, corresponding to an electron- 
positron intermediate state. The doubled lines indicate the presence of interactions to all orders 
with the external field P. (Such interactions were indiv idually denoted by an x in Figs. 2, 3, 4, 
and 6.)
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splitting, and so an exact formula for the photon splitting matrix element in this 
region is not really of interest.

(5) As we noted above, in the limit of small В the matrix element 
C2[w, o jj, ш2 , 5] vanishes as B3. However, a glance at Eq. (25) shows that there are 
individual terms which vanish with lower powers of B; the B3 behavior is a result 
of cancellations. It is easy to see, though, that these cancellations are entirely 
contained in the integrands А,..., Ё, and do not involve the s, t, и integrations. As a 
result, reliable numerical results for the photon splitting matrix element and absorp
tion coefficient can be obtained with rather coarse integration meshes. Typical 
numerical results are shown in Fig. 8, which gives the ratio of the exact photon

В / B CR

F ig. 8. R atio  of the exact photon splitting absorption coefficient k[Q|) -► (_L), +  (_L)81 to the 
hexagon diagram  value for the sam e quantity.

splitting absorption coefficient calculated from Eq. (25) to the absorption coefficient 
obtained from the hexagon diagram alone (Eq. (23) with C2(B/BCR) replaced by 
Q(0) =  6 ■ 13/945). The upper curve is the result for w/m =  1, while the lower 
curve, giving the low frequency limit, is identical to a plot of С2(В/Всл)2 (cf. Fig. 5 
which gives a plot of C2(B/BCJi)). We see that in the range 0 <  В/Вся  <  1,
0 <  со/т ^  1 the leading power dependence given by the hexagon diagram alone 
suffices for rough order of magnitude estimates. Furthermore, the effective 
Lagrangian calculation of C2(BjBCR) gives the bulk of the corrections coming 
from higher ring diagrams, with the oi-dependent effects contained in the compli
cated formulas of Eq. (25) (i.e., the spread between the two curves in Fig. 8) being 
fairly small.
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As expected, substituting the Taylor expansions

A :"(z ) =  —8z2/45 +  0 (z 4), 

K\z)  =  — 14z2/45 +  0 (z 4),
(50)

into Eq. (49) gives back the box diagram result of Eq. (46b) in the limit of small 
BjBCR . The calculation can be further improved by using the proper-time tech
niques discussed in Appendix 1 to exactly sum the ring diagrams involving arbitrary 
numbers of interactions with the external field B, without the restriction to small 
co/m. This gives the following formulas for the refractive indices,

and with R(s, t) given by Eq. (25b). When w is set equal to zero, the integral over t 
(or equivalently, over v) is readily done, giving J0 d v J^ '^ s ,  v) =  /^^(eBs), and 
so Eq. (51) reduces directly to Eq. (49). To examine the region o f convergence of 
Eq. (51), we substitute Eq. (27) for R(s, t) and replace v) by their dominant
large-5 behavior, giving

n;l,,x =  1 —  ̂sin2 0Л||,х[о> sin в, B],

B] =

V =

T “  Г  7 * exp(—m2i) f dt ехр[о)2Л(5, /)] -/""Ч*, ”),
A T T  J  q  S  J о

2 t/s -  1, (51)

—eBs cosh(eBju) , eBsv sinh(eS.fu) coth(eKs) 
sinh(eB.s) "и sinh(eAs)

2eBj[cosh(eB.ri;) — cosh(eBi)] 
sinh3(eBi)

sinh(eBi-y) 1
sinh(eBs) J ’

о
(power of j ), (52)

with

=  a t  ( l -----7 ) — m *s  +  eB U 2t ~  s  I “  5) ’
(53)

Maximizing Wx and W11 with respect to t, we find that the integral for con-
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verges for <u <  2m, while that for /jH converges in the somewhat larger region 
w  < mi[1 - f  (1 +  2B/BCJt)1/2]. As Toll [2] has shown, these are just the thresholds 
for photopair production by perpendicular-polarized and by parallel-polarized 
photons, respectively. Thus, Eq. (51) is valid when the refractive indices are real, 
but fails when the refractive indices become complex, as a result o f the presence o f 
the absorptive processes pictured in Fig. 12.

F ig . 12. Lowest-lying absorptive contributions to the refractive indices for paralle l (||)- and 
perpendicular ( l) -p o la r iz ed  photons. The doubled lines indicate the presence of in teractions to a ll 
orders in the external field P .

An alternative method for calculating the indices of refraction uses the fact that 
for each eigenmode the refractive index n is related to the corresponding absorption 
coefficient к by the Kramers-Kronig (dispersion) relation

„(с) =  1 +  L  Г  ^ 1 %  . (54)
тт J Q Cl) — o r

The dominant contribution to Eq. (54) comes from photo-pair production, which 
gives

, pair a /8 sin 0\2 a2fi2 sin2 в(n -  >)v ~  — ‘ -
?CR

, pair a /8 sin в\2 <x2B sin2 в ,CC\In --- 1 I ~  ---- I ---=r------ I =  -------------, t ,JJ )тг \ Br  о I ттт4

as found in Eq. (46b); in comparison to this, the photon-splitting contribution, 
which can be estimated to be of order

(n — ])DhotQn splitting ^  I a /В sin 6\2 (56)
\ tt I \ BCR ) ’

can be neglected. The contribution of other absorptive processes to the index of 
refraction will be even smaller. Thus, substituting into Eq. (54) the actual thresholds 
for photopair production by parallel and perpendicular polarized photons, we get

г ч , . P f“ *fTV) du>'
n i lH  = 1 +  —  , i  t  >

(57)

л±(ш) =  1 -i------f
77 J
p  Г  J  ■ « Г  М  dw '-------- r—

We will not actually evaluate these formulas numerically, but will make use below 
of the computational results of Toll [2], which show that for B/BCR <, 1 the perpen-
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R eg io n  4. In th is region | nT0T —1 j can become as big as un ity , so we have

forbidden decays ^  o> \Q j)2 10~7 / BCR \* ^  
allow ed decay ш5/30 Vj} sin в)

R e g i o n  5. A ccording to Eq. (74), лтот — 1 can become a rb itra r ily  large in 
region 5 because <и2 can come arb itrarily  close to Q c e. But therm al effects, which 
have so far been neglected, prevent the effective value o f | « ,  — Q c e \ in Eq. (74) 
from  becom ing greater than  the therm al spread AQC‘  in the electron cyclo tron 
frequency, which is

a q c' „ / j L -  f  \  M Q c . < № > * _ =  Q . s m k T '  (88)
c \ m (p2 + m2)1* /AV m c m v ’

Even for T  as low as 10_1 °K  we have AQC‘  ^  2 • 10~lz m ,  which lim its | ятот —1 | 
to 10-2 a t  m ost and m akes Eq. (86) sm aller than one. Hence we get

forbidden decay _ ш -(Р с г) -  10~7 ^  3 1Q_g <  1Q_7

____________________________________ R26_______________________________________

allowed decay to5/30

We conclude, then, that the reactions of Eq. (83) have absorption coefficients 
which are at most 10- ’ o f the absorption coefficient o f the allowed reaction 
(||) —> ( J J j  +  (J_)2 . A more detailed analysis shows that this upper band of 
10“7 applies particularly to the decay (||) -*• (NX +  (||)2 ; in the case of all o f the 
decays o f an initially perpendicular photon, the upper bound can be reduced at 
least another two orders of magnitude, to 10~a. Although all of our estimates 
have assumed B/BCR as 0.1, as В  is further increased the electrodynamic terms in 
Eq. (81) rapidly increase in size relative to the plasma terms, causing our upper 
bound to get even smaller. On the other hand, if the plasma density ne is increased 
by a moderate factor the upper bound only increases proportionally. For example 
a factor of 100 increase in density to n„ ~  1010 cm-3 leads to an upper bound on 
perpendicular photon splitting of 10-7 relative to the allowed case. We conclude, 
that plasma induced violations o f  o u r  selection r u l e  against perpendicular photon 
decay should be negligibly small.

APPENDIX I: Proper-Time Calculation of the R efractive Indices and 
Photon Splitting M atrix Element

We outline here the calculations leading to Eq. (51) for the refractive indices 
and Eq. (25) for the photon splitting matrix element. As noted in the text, we work 
to all orders in the strong external field S, without restrictions on w/m (other than

343
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those needed to assure convergence of the final formulas), but we neglect virtual 
photon radiative corrections. This means that we are dealing with the problem of 
vacuum polarization effects produced by a c-number (unquantized) electro
magnetic field, which is a superposition of the strong, constant field В and o f the 
plane wave fields of the photons. Diagrammatically, we are discussing the problem 
of a single virtual electron loop, with arbitrary numbers o f interactions with the 
external fields and either with two photon vertices (refractive index calculation, 
Figs. 9 and 11) or with three photon vertices (photon splitting calculation, Fig. 4).

Very powerful techniques for dealing with the vacuum polarization o f c-number 
fields were developed some time ago by Schwinger [7], and we will follow his 
methods quite closely. We begin by finding an expression for the electromagnetic 
current density <7„(x)> induced by vacuum polarization effects at point x when 
an external c-number electromagnetic field Au is applied to the vacuum. Denoting 
the electron field by ф, and the electron-positron vacuum expectation by < >o > we 
have

■/«(*) =  ЫФ(х), у иф(х)], (A l. l)
O’uOO) =  i е<[Ф(х), уц<К*)]>о.

In order to evaluate Eq. (A l.l) , we introduce the electron Green’s function G(x, x'), 

G(x, x’) =  i (Т(ф{х) ф(х'))\ ( A l .2)

which satisfies the differential equation

[m  ~  yU ( '  I  -  e/1“W ) ]  G(-x > * ')  =  St(x -  * 0 -  <A 1,3)

It is easy to see that is just the limit of the Green’s function in which x
symmetrically approaches x',

ie Tr[y„G(x, x)] = \ie Tr[УдС(х, x)\x̂ ’+. +  yuG(x, x')|,

=  i i e  Тт[уХф(х) ф(Х)\  -  у иКф(х) 0 W>Dtr»cmaex transpose]

=  К1Ф(х), y j (x )]> 0 =  o ;co> - (A 1-4)

Thus, to calculate the induced current it suffices to calculate the Green’s function 
G(x, x').

As Schwinger shows, this calculation is facilitated if we introduce a condensed 
notation in which G(x, x') is regarded as the (л | | x') matrix element o f an 
operator G,

G(x, x') к  (x 1 G 1 x'), (A1 ^
S(x — x') =  (x | x').
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Introducing the additional operator -nu ,

”  ' dx* ~ eA“^> (A l -6)

the differential equation (Al.3) for the Green’s function can be rewritten as the 
algebraic operator equation

(m  -  у  тт) G =  l .  (A l . 7)

Inverting Eq. (A1.7) and substituting into Eq. (A1.4), we get

Ш *)>

=  ieTT[v“ {X \m - \ - A X)\

=  Г е  T r К  (Х \(т  +  У ” ) т > - ( у  ff)« +  m* - ( y  * ? (m  +  У  * > [* ) ]

= 1 fe Tr [у, (* | у • _  ('y <AL8>

where we have used the fact that the trace of an odd number of у matrices is zero. 
The next step is to exponentiate the operator [m2 — (y ■ 7 7 )2] - 1  using the identity

—5-----1------ rr =  / f ds =  / f ds e~im'sU(s),
m2 -  (y  ■ тг)2 J 0 (A , 9)

I/(s) =  e '<v'”)’ ‘ , 

which on substitution into Eq. (A1.8) gives

<./„(*)> =  — ie  f  ds Tr[yuy„(x 1 TTvU(s)\ л) +  у„у„(х I V(s) 7,> I *)]■
(A1.10)

Let us now exploit the fact that U(s) is just the “proper-time evolution” operator 
U(s) =  exp[—iJ fs]  for the quantum mechanics problem with Hamiltonian

=  _ ( y  ■ тг)2 =  - т г 2 -  Ш  - F, a  ■ F =  a J " ,
“ / A 1 1 1 \

CTU„ =  My*. , y j ,  i v M  =  ,

and with “proper time” s. Introducing the definitions

I x(0)) =  I x), (jc(j)| =  (л:(0)[ U(s),
77(0) s=7r, *(0) =  x, (A 1.12)

Tr(i) -  U~\s) ir(0) U(s),x(s) *  U^(s) *(0) U(s),
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we can rewrite Eq. (A1.10) as

Ш *)> =  — he [ ds Tr[yBy,(x(s) | 7r'(s)l x(0))
J 0

+  У . У и Ш  | * ’(0)1 x(0))], (A 1.13)

or equivalently, as

Ш *)> =  -  he f  ds Tr[(x(5) | nu(s) +  тгц(0)| x(0))
J о

-  ша’Ш  I ir,(i) -  ff»(0)| x(0))L (A 1.14)

which is our final expression for the induced current. Using the commutation 
relations

[Xu ,  ,

( A l . 15)
[ttu , 77v] =  ieFuv(x),

we deduce from Eq. (A1.12) the following equations of motion satisfied by xu(s) 
and 1 tu(s),

= U-\s)\iJtT, xu] V(s) = 2n„{s),

=  u-K s)[ i je ,  Trj U(s) (A 1. 16)

=  - e [ n \ s )F u,{x(s)) +  Fuv(x(s)) n\s) +  ^ ов(5) * ( s ) ) ] ,

with

ГЦ(х)ш8 Г*(х)/Эх“,
(A 1.17)

£„„(*) =  U~\s) aaBU(s).

So far we have made no assumptions about the nature of the external field 
FuXx). Now, let us specialize to the case in which Fuv is the superposition of a 
strong constant magnetic field F and a plane wave of amplitude a and field strength 
/,

F„{x)  =  Fu,  +  f M l  £ = n x, (A  l . 18)

with n — ( l, n) a null vector defining the direction of propagation of the wave. 
Taking our constant magnetic field to point along the 3 axis, we have

F21 — ~F12 =  B; all other components =  0. (A l.19)
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To calculate the refractive indices, we will take

=  *B«M ,

/„,(£) =  — «„£*) e““f,
(A 1.20)

and compute the term in <yu(x)> linear in e, while to calculate the photon splitting 
matrix element, we will take

« . ( 0  =  «ь/**1* +  V ' 4 ',

/«►(f) = Й " -  nuely) e'“,f +  шг(пу€ги -  nue2„) e'“=f,
(A 1.21)

and compute the term in <yu(x)) bilinear in €j and e2 .
The procedure now is as follows. First, we substitute Eqs. (A 1.18) and (A 1.19) 

into the equations of motion, Eq. (A 1.16). We then perform two integrations 
which give us expressions for ttu( s )  ±  тги(0) as linear combinations of a quantity 
Ф„ , which is entirely of first order in the plane wave field/,,,, and of xu(s) — -vu(0):

ф м  =  - « к м /«,№)) +/ j № )  " W  +

«А*) -  1T„(0) =  C ^ lxX s) -  xX0)J +  f  dt ФА0,

As) +  TTu(0) =  C ^ I jc / j)  -  x,(0)] +  f  dt T(s, О/ ФХ0,
J a

Cw  =  с-no. matrices,

T(S, O ’ =

(A  1.22)

V 0 0 ' г 0о V  • T 3 " l  # 0
0 C(s, t) ~S(s, t ) 0 7 -o •
0 S(s, t) C(s, /) 0 • •
0 0 0 v _ T  0 . . .  _ 1 3

7" 3 
1 3 _

v =  2f/s — 1,

C(s, t) =
sin(eBju)
sin(efis)

cos (eBsv) — cos (eBs) 
sin(eBs)

Substituting Eq. (A1.22) into Eq. (A l.14), we find that the terms proportional to 
x,(s) — x„(0) vanish, since (a(j)| л /s) — Jc„(0)| x(0)) =  л; — x, = 0, giving

<j Ax)> = -  \e Г ds e - imb f* dt Tr{[7(j, t ) “ — fV K -ф) I ф»(01 *(0))}- (A 1.23) 
J 0 J 0

Our next step is to systematically develop Eq. (A 1.23) in a power series in the 
plane wave amplitude. This is done by going over to an interaction picture in
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which the zeroth order approximation describes the constant magnetic field alone, 
with no plane waves present. Thus, we write

Um(s) = e-**1"’,
=  -^ (0 )2  _  ^e a  . p t

[*1°\ тг!0)] = —ig „ ,
77<°>(0) =  7Г(0), X(O)(0) =  X(0>,

T7(0)(i) -  Um-\s) 7T,01(0) U™(s), xm(s) =  UW)~\s) X(01(0) Uw\s).

(A  1.24)

As Schwinger has shown, the proper time evolution problem defined by Eq. (A1.24) 
can be simply and exactly integrated, giving

„<«>(*) =  R(S) J  j ?  (0),

=  4 o)(o) +  i ( S) :  тг1о> (0),

1 0  0
0 cos(2eBs) —sin(2eBs)
0 sin(2eB,s) cos(2eBs)
0 0 0

m :  =

2s

0

0

L 0

0
sin(2eBs)

eB
1 — cos(2eBs) 

eB 
0

esB

0 “
0
0
1 .

0
cos(2eBs) — 1

7b
sin(2eBs)

eB
0

O'

0

0

2s.

(A  1.25)

( x '« ( i )  I X,0)(0)) =  - l ( 4 l7 ) - 2 -  „
sin(eiB)

We now develop the problem in the presence of the plane wave field in a pertur
bation expansion around the zeroth order solution of Eq. (A1.25). At zero proper 
time, the exact and zeroth order coordinate are the same, while the exact and 
zeroth order canonical momenta differ just by the plane wave amplitude,

*.(0) = *lo)(0), tto(0) = тг‘0)(0) -  «Ц£(0)) = ^ о,(0) -  еац(£(о)(0)). (A1.26)

To find the relation between the exact and zeroth order time evolution operators, 
we use Eq. (A 1.26) to write

Ж  =  +  e fo tf™ )»»* *  +  „ (M -a^ M i)

-  eau(£<°>) <j“(£t0)) -  K a / “*(£"”)]■ (A 1.27)
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Defining A =  — i3^w s, В =  — i(J^  — Жт) s, we apply the identity

е А+в _  exp |J j t e -A tge At^j (A  1.28)

where T  is the time ordering operation. Making a change o f variable и »  i/, this 
gives

U(s) =  t/'°»(s) £/,(5),

V,(s) =  T exp j -й ?  f  du K ( f (0)(w)) +  тг«°>“(и)
J 0

-  е а Д {% ) )  a*(£(% ) )  -  * 2 $ ( H) / rf( £ % ) ) ]  J, (A 1.29)

where Y.[f(u) is defined by

Z§\u) =  U(0)-\u) oa3Ui0\u) =  Л (A1.30)

As expected, the time evolution operator in the interaction picture is constructed 
from dynamical variables |l0l(u), 77( 0 ,( u )  and £$(u)  which have the proper-time 
dependence of the unperturbed problem.

We now use Eq. (A1.29) to rewrite our expression for <yu(x)) final form. 
Referring back to Eq. (A 1.23), we write

w > ) I ФХ01 x(0)) =  (A-(0) I U(s) u-KO Ф М  1/(01 *№))

=  (л(0) I Ul% )  u,(s) UT'(t) t/(0)- J(о  ФХ0) c/(o>(0  u,(DI *(0)).

(A 1.31)

Making use of the explicit expression for in Eq. (A1.22), recalling Eq. (A1.26) 
and substituting Eq. (A 1.31) back into Eq. (A1.23), we get

o;w> = w Г  ds e~imH f  dt Tr* №  o«r -  J 0 J 0

x  (xi0\s) | u,(s) +  f»X?°\0) ”<oh(0

-  2ea\^\t)) f uX£(0)(t)) +  U ^ V ) / “!(^ 0,(0)] UXDI *<o)(0))}. (A 1.32) 

By expanding the operators Uj in this equation to the requisite order in the plane
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wave amplitude, we can obtain expressions for both the refractive indices and the 
photon splitting matrix element, as follows:

(i) Refractive indices. We take the plane wave amplitude as in Eq. (A1.20) 
and keep only first order terms in Eq. (AI.32), giving

Ш *)> =  к 2 Г  ds f  dt Tr{[T(s, t ^ - i a j ](x(o)(i) | тг(й> W u,(£‘0)(0)
J 0 J 0

+  f M > ) )  + lK${t)r.№°X0)\  * (0>(0))}. ( A l .33)

To evaluate the matrix element in Eq. (A 1.33), we use Eqs. (A1.25) to express 
7 r l0 )( i )  and exp[/aj£t0,(r)] in terms of x |0)(i) and x (Q)(0),

TTm(t)  =  R(t) ■ I~\s) ■ [*'0>0) -  -c(0)(0)], 

ехр[/ш^<0,(/)] =  exp[io)/i • x l0)(r)] (A1.34)

=  exp{iw[H ■ (1 — ](t) ■ I~\s)) ■ jc(O)(0)

+  n ■ I(t) ■ /(j)"1 ■ x'01(s)]}.

Since the commutator

[x^Xs), xla)m  = U(S)„  (A 1.35)

is a с-number, we can then use the identities

—  £bg4g[a.&]

e ab =  bea +  [a, fi] ea
(AI.36)

(valid  when [a, [a, 6]] =  [6, [a, 6]] =  0) to b ring a ll facto rs x (OI(5) to the le ft an d  
a ll factors a-,01(0) to the right in Eq. (A1.33), where they ac t on the left- an d  r igh t- 
hand states to give c-numbers,

(x‘°'(s) | x<°>(s) =  (*(0,(s) I x,
(A1.37)

* to>(0) | x t0>(0)) =  x  | x (Q1(0)).

This leaves a completely с-number expression multiplied by the transformation 
function (xt0l(s)| x ‘0l(0)). which is given by Eq. (A 1.25). Note that the matrix
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element (*"»(*)| £ $ ( 0 1 * l0,(0)) is equal to (дг<04̂ )1 * (0,(0)) !$ ( / )  but not to 
Z $ ( 0 (-*(0,MI x'0)(0)), since the state | x<0)(0)) has no у -matrix dependence, while 
the state (x(0)0)| has the у -matrix dependence of Ul0,(s). Evaluating the y-matrix 
traces, contracting tensor indices and making the change of integration variable 
(contour rotation) s -*  —is, t —► — it gives the final result. A particularly simple 
answer is obtained for the cases in which the plane wave is linearly polarized in 
the (||) or (J_) senses defined in the text. Taking, for simplicity, sin в =  1, we get

with expressions given in Eq. (51) of the text.
To relate the refractive indices to А^л , we note that in the self-consistent field 

approximation, the propagation eigenmodes satisfy the equation

as stated in the text. Note that in deriving Eq. (A1.40), we have in two places 
assumed that /j|].± are not much different from unity. The first place is in Eq. 
(A1.39), where we have used the coefficients /4||'±[w, B] computed for plane waves 
satisfying the usual vacuum dispersion relation, rather than satisfying к/со = Яц.х . 
(Recall that in Eq. (A 1.18) we took £ =  n ■ x, with n a null-vector.) The second 
place is, of course, in taking the square root to get Eq. (A1.40). Referring back to 
Eq. (55) of the text, we see that нц>± will be close to unity provided that

a condition which is still well satisfied even when BIBCK is o f order unity. Our 
final formulas for the refractive indices are nearly identical with those obtained 
previously by Minguzzi [2], whose procedure we have followed rather closely. The 
only difference is that for the first term in i’)(see Eq. (51)) Minguzzi has

|| case: </u"> =  -*>2Л V  В] au ,

<j^)  =  В] au ,
(A 1.38)

(A 1.39)

This gives x % I — /4||--L[tu, ff], or taking the square root,

" lU  ** 1 — B]> (A 1.40)

(Al .41)
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^  1 instead of ^  eBs cosh(eBsv)lsinh(eBs), an error which results6 from his 
incorrectly replacing Tlff(f) in Eq. (Al .33) by its average s_1 JJ dt 

(ii) Photon splitting matrix element. To calculate the photon splitting matrix 
element, we take the plane wave amplitude as in Eq. (A1.21) and compute the 
second order terms in Eq. (A1.32), using the expression in Eq. (A1.29) for U, . 
This gives 

Ш Ф  =  * « * [" &  e - m** f  dt Tr{[T(s, I ) ;  -  i a j ]
J 0 J o

X ( * % )  | - 2 a \ ^ \ t ) ) f M la\ t ) )

-  i f  du  [flct f <0)(« ))  7r<0,o(U) +  « , « % ) )  ~
J t

x  [ * <0Ь( 0 / , ^ <0)( 0 )  + ы ^ \ о )  тг(о)ч о  +

-  n ^ v ) f u X ^ \ t ) )  + f uM l°Xt)) ^ \ t )  +  ^ ' ° Л о / : ^ <0)( ') ) ]

X f ' du [a0( t \ u ) )  тг<0)»  +  * Co)»  flo(| ‘0)(u))
J 0

-  *Г<?(и) | x (o,(0)). (A l .42)

1 The error first appears in M inguzzi's analysis when, in his version of Eq. (A l. 16), he w rites 
instead of J  -E ^ s) This m akes the final term  of the m atrix  elem ent in  Eq.

(A l. 33) read (х'^СО I 4°«д/"£(£|01(0 )  j x 101(0)). Then, when evaluating (x m (s )  | | jc(ol(0)), in stead  
of sim ply equating this to (*»>(*) | x IO>(0)Kfl , Munguzzi notes that (x ,ol(s) I дг|0|( 0 ) ) «  ехрф ело  ■ P )  
x  (у-m atrix independent factors) and then regards (jc(01(^) I o„p 1 д:'°>(0)) as the varia tion a l derivat
ive of (-i|0,(-s) | jc,0|(0)) w ith respect to a sm all change in the constant field P . Thus, he w rites,

(x101<i) I a,e  | х'"'(0)) “ = ” - ^ - ( x l,'(s) I x'"'(0)) I 

&
=  exp ( b ' e s o  ■ F  + (  • a) x  (у-m atrix independent factors)

=  (* ‘0l( i )  i *<”'(0)) —  Texp  [ J a  ■ a

= (*'"(*) I Jtl4,(0)) i - 1 f ‘ dt 2<°j(f),
J n

where use has been made of Eqs. (A l. 28) and (Al. 30) and where, in the final line, the change of 
variab le s t  —<► / has been made. So we see that M unguzzi's two errors result in his replacing 
(x “" ( j)  I x ‘°‘(0)) £*$(/) by the /-average of this quantity . As a  result of this error, in M unguzzi’s 
version of Eq. (51), the function W governing the convergence of the representation is (K® — 
<u-;(I — i/ s)-m 's, rather than the expression given in Eq. (53). This leads M unguzzi to the in
correct conclusion that absorptive contributions to Пц begin at ш =  2m , rather than at the larger 
va lue ш = m [ 1 + (I + 2Б / В ск )'12] obtained from Eq. (53). As we have noted, the larger value 
is the one which agrees with the parallel-photon photopair production threshold found by Toll.

‘  As we have implied in the text, the refractive index calculation is simplest when sin в =  1. To 
obtain the answer for general sin 0, we note that the only Lorentz scalars on which the refractive
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Letting <jbi»nears, denote t},e part 0f  (A 1.42) which is bilinear in ex and e2, the 
matrix element J (  for photon splitting is

J (  =  _ ;'(4,г)3̂ 2 €“<̂ Ы1|пеаг>, (A 1.43)

with с the initial photon polarization. The evaluation of Eq. (A 1.42) can be carried 
out by the same methods used to obtain the refractive indices, and leads to the 
result quoted in Eq. (25) of the text for the physically interesting case (|!)-»■(_!_), 4-
Ш .  -6

APPENDIX II: Small Opening A ngle Corrections to the Box Diagram

We estimate here the nonvanishing box diagram contribution to photon splitting 
which arises when spatial variation of the external magnetic field causes the three 
photon momenta to be nonparallel. With trivial modifications, as explained 
below, the calculation also applies to the case in which the external magnetic field 
is strictly constant and the nonparallelism results from vacuum dispersion effects. 
Our aim is to show that, in both of these cases, all terms in the box diagram matrix 
element are at least quadratic in the small angles <f>1 , ф2, ф12 between the photon 
wave vectors.

We proceed by considering the most general momentum-dependent term 
appearing in the part of the photon splitting matrix element which has one external 
field factor/-, whenF carries nonvanishing four-momentum p. This is

F P F F k - k  k2 ks p  -  p  , ^

{ factors m factors и factors r  factors

with i  +  m +  n +  r even and with all Lorentz indices contracted to form a 
Lorentz scalar. We consider various cases in turn:

(i) r >  0. Since p  =  (0, p) and, according to Eq. (36) in the text, | p | ~  фг, 
Eq. (А2.1) is of order фг at least.

(ii) r — 0. We distinguish three principal subcases.

(a) Two photon four-momenta are contracted with F. Since the photon 
four-momenta are proportional, apart from terms of order ф, and since F is an

indices can depend are -  2Ё- and k^P/F^kr, = ш'-В2 s in1 fl, indicating that the recipe is
sim ply to replace w  by w  sin 6. A sim ilar argument in the photon splitting case indicates that the 
m atrix element for general в  is obtained from that for в  =  тг/2 by m aking the replacem ents oj, 

oj| э w z —► tij sin в , ojj sin 0, ojj sin 9.
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We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production 
threshold, using the world line path integral variant of the Bem-Kosower formalism. Numerical 
comparison (using programs that we have made available for public access on the Internet) shows that 
the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, 
and to the recent recalculation by Baier, Milstein, and Shaisultanov. [S 0 0 3 1 -9 0 0 7 (9 6 )0 1 0 0 4 -6 ]

PACS numbers: 12.20.Ds, 95.30.Cq

Photon splitting in a strong magnetic field is an inter
esting process, both from a theoretical viewpoint because 
of the relatively sophisticated methods needed to do the 
calculation, and because of its potential astrophysical ap
plications. The first calculation to exactly include the cor
rections arising from nonzero photon frequency ш was 
given by Adler [1 ], who obtained the amplitude as a triple 
integral that is strongly convergent below the pair produc
tion threshold at ш = 2m , and who included a numerical 
evaluation for the special case w  = m. Subsequently, the 
calculation was repeated by Stoneham [2] using a  differ
ent method, lead ing to a  different expression as a  triple 
integral, that has never been compared to the formula of 
Ref. [1] either analytica lly  or num erically. Recently, a 
new calculation has been published by M entzel, Berg, and 
W unner [3] in the form of a  triple infinite sum, and numeri
cal evaluation of their formula by W unner, Sang, and Berg
[4] c la im s photon sp litting rates roughly 4 orders of m agni

tude larger than those found in Ref. [1 ]. S in ce  this resu  
correct, would have im portant astrophysical im p l ic a t io n ,  
a recalculation by an independent method seem s in o r 
W e report the results of such a recalcu lation  here, toge  
with a numerical com parison o f the resu lting am p 1 u 
with those of A dler and o f Stoneham , as w e ll as w it ® 
cent recalculation independently carried  out by B aier. 1 1  
stein, and Shaisultanov [5 ]. The com parison sh o u s  
these four independent calcu lations g iv e  p rec ise ly  t c S t i n  
amplitude, show ing no evidence o f the dram atic enei g y  
pendent effects c laim ed in Refs. [3] and [4 ].

Our recalculation of the photon sp litting am plitu u s 
a variant o f the world line path in tegral approach to 
Bern-Kosower form alism  [6 - 9 ] .  As is  w ell know л’ 
one loop QED effective action induced for the photon 
by a spinor loop can be represented by the fo llow ing c j o u  

path integral:

Г [А ] — — 2 —  e  m s J  D  x D  ф exp^ — J  ̂ (1 т (^  x2 + ~^фф  + ieA^x^  — i e i ^ (1)

Here s  is the usual Schwinger proper-time parameter, 
the jc m ( t ) ’ s  are the periodic functions from the circle 
with circum ference s  into spacetime, and the ф^{т) ' s are 
antiperiodic and Grassmann valued.

Photon scattering amplitudes are obtained by specializ
ing the background to a  sum of plane waves with defi
nite polarizations. Both path integrals are then evaluated

by one-dimensional perturbation theory; i.e ., one О 
an integral representation for the N-photon am p ltLK
W ick-contracting N “photon vertex operators 

V =  [ T d r  [ Р б ц  -  2 iф l^ф v kfl̂ e l, ] t \ p [ i Ы r ) ] ■
J  0

The appropriate one-dimensional propagators are

( у Ч т О у 'Ы )  =  - Е ^ С в Ы ,  т 2) =  - g * v[ l  r ,  -  r 2 | - (Tl 5 T2- ] .  

(ф^тМЧтг))  = 2 g ^ G F( r , , r 2) = ie ^ s ig n tr , -  r 2) . (3)

The bosonic W ick contraction is actually carried out in the relative coordinate y ( r )  = x ( r )  — jco o f the closed loop, whi l e  
the (ord inary) integration over the average position xq =  ~ f y d r  x ( t )  yields energy-momentum conservation.

Reprinted with permission. © 1996 The American Physical Society 1695
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To take the additional constant magnetic background 
field В into account, one chooses Fock-Schwinger gauge, 
where its contribution to the world line Lagrangian 
becomes

&£ =  j  i e y * F -  ietl/fLFl lv if/v . (4)
Being b ilinear, those terms can be sim ply absorbed into 
the kinetic part of the Lagrangian [9 ,10]. This leads to 
generalized world line propagators defined by

i { h  ~ 2 ,> г ^ ' в(Т1' 12) =  5 ( r i  ~ T2) -  7 *
(5)

( т ь  r 2) =  <5(т] -  t2) .  (6) 

The solutions to these equations can be written in the form
[П]

(
@b (t 1, T2) =

I eF - iesFG.,1
2 ( eF )2 vsin ( e sF )

+ ieFGan ~

Qf (t \,t2) — Gf \2
g -ie s F G n  i i

cos ( e sF )

(7)

(8)

(w e have abbreviated Ggij ш  Gb(t,-, t j), and a dot alw ays 
denotes a  derivative with respect to the first variable).

Those expressions should be understood as power series 
in the field strength matrix. To obtain the photon splitting 
amplitude, we w ill use them for the W ick contraction 
of three vertex operators V0 and V]%2, representing the 
incoming and the two outgoing photons.

The calculation is greatly simplified by the special kine
matics o f this process. Energy-momentum conservation, 
ko + k] + k2 =  0, forces collinearity of all three four- 
momenta, so that, writing -fc0 — к =  w n ,

к i =  —  к, 
ш

, Ь>2 . 
к 2 =  —  к-, 

(О
к 2 =  к \  =  к \

= к  ■ к] — к  ■ к2 = к] ■ к2 — 0 . (9)
M oreover, a simple CP invariance argument together 
with an analysis of dispersive effects [1] shows that 
there is only one allow ed polarization case. This is the 
one where the incoming photon is polarized parallel to 
the plane containing the external field and the direction 
of propagation, and both outgoing ones are polarized 
perpendicular to this plane. This choice of polarizations 
leads to the further vanishing relations

£],2 1 eo — e i,2 ' к =  £i,2 • F  =  0 . (10)

In particular, we cannot Lorentz contract e j with anything 
but e2. This leaves us with only a sm all number of 
nonvanishing W ick contractions,

2 г  т
< W 2> -  П /  dr‘ i exP

, _ 0  J o
-Г X  ^ i ^ j n Q Bijn 
A i.j=0

X Г — У  &ieo<gBOin + moboGfooh

[ei(3S12e 2 + e l §F l2e 2<i>l >̂2n ^Ft2n ]

-  <ыо<Й1&2е 1 § п 2£2[п(эгю ео л(?/г2ол _  (1 2)] (11)

For compact notation we have defined & о = a>,S)\2 = — a>ii2. This result has still to be multiplied by an overall 
factor of (e jB )co sh (e5 S )/ (4 -jr j)2 sin h (esS ), which by itself would just produce the Euler-Heisenberg Lagrangian, and 
here appears as the product of the two free Gaussian path integrals [8].

It is then a  matter of sim ple algebra to obtain the follow ing representation for the matrix elem ent Сг[ш , <U|, cd2, B] 
appearing in Eq. (25) of [1]:

i a f "  e~m's f s f s
------  ' d s s -.— ,— - г / d r | j d r2

4шш1(о2 J o ( e sB y s i n n ( e sB )  J o J o
2

С2[ш , co i ,  w 2, B] —

X exp - t I
i j - o

1 cosh(e5,fiCfl//)
2 eB  sinh(e5fi)

[ —cosh(e5B)G ai2 + ci>i&>2(cosh(eiS) — co sh (e ifiG ei2 ))]

, . , , ,  cosh(esBG soi) co sh (e jfiG fl02
« ( c o t h ( « f i )  -  t a n h ( « * ) )  -  *>, s .nh{esB) ~ m  s .n h ( e sB )

Gf\2 -[sinh(M,6GBoi)(cosh(<?sB) -  cosh(esBGB02))

, ]

-  (1 *“* 2 )]} . (12)
cosh(esB)

Here translation invariance in r  has been used to set the position t0 o f the incoming photon equal to s. Coincidence
lim its have to be treated according to the rules G b (t, r )  — 0, G g ( r ,  r )  1.
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26 A u g u s t 19%A1 ---------------------------------------------------------------- ^  n u u u

r ; :
С2[ш,Ш1,Ш2 ,В ]=  —  s p-mzs cosh(wS) f *  г  *

4 3 M ^ h ( ^  j0 dT' J0 dr*
* expj - 1  £  А|* ; Гс + J _  Hosh^G^)-!]

L 2 e S  sinh(ejfl) J j

: \\g b u ( g b12 -  _  Л  co sh (e iB G ftl, ) \
lL V s in h ^ r f i ’i J  H ---------------------—  ■smh(«B) )  V  c o s h ^ y  

x  -  coth(ejfl) + tanh(ejfi) + —  созЬ(е^ДСд0,) cosh(esBGS02) 1

U  s,nh(„8 ) „ „ Д о * ,  -  — L _ J 5 ! > , _  (1 „  2)]

+ _  sinh(g5gGsn,)N
Lw2\ sinh(eifi) J ~  2)J[-co th (e sB ) + —  + tanh(esB)J

+ GJ !15У «Д О ао1)/j _  £osh(£$fiGflm)x
L cosh(«fi) V cosh(ejB)~J ”  (1 ~ 2)J } ’ <n )

integranci (apart from the exponential) is homogeneous^ ' Once all amplitudes are put in the form o f Eq. (14), 
к®'- , mogeneous .n we can compare them by comparing the proper lime in- 

inaJly, let us remart tb-.t .1_... . tegrand I ЛI 'Ч /? ̂ ltiUlrtU trt aaaL л л ̂  л I V* ■ f 1 1 jar
the (Oj

analt* ° “« « Ч » * »
i" Eq. (II) “ Z S  ’*,°-b'*,ned b> “ Mg all ,en„s 
• » - * .  J j  d -  overall ^ Л „ Г 1 “ ^ , Сг Л

on нитрате mem by comparing the proper time in- 
tegrand J 2(s, o j ,  ш\, ш2, В),  which in each case involves 
only a double integral over a bounded domain. The only 
remaining subtlety is that we must remember thai J 2 van
ishes as шш\и>2 for small photon energy; this is manifest

1 ^  ln above, but in Eq. (12) and the corresponding 
Ъ t0 C° mpare * e amplitudes of Eqs П21 япн equa,ions obtained from Refs. [1], [2], and [5], there is
2  ° f  [1]’ [21’ and [5], we observe ,h* ^  term in the frequencies which vanishes lth Eqs. (12 and (131 h. .J’ e obServe that when the donhb i n ^ o .  ,.. _____ _

C2[<o, со], (o2, B]  =  ------H
4В 2шш\(о2

d srJ o J2(3, (о, (o j, co2,B), 

(14)

l « | l t o s L w s S r ™ 1 ,0 fH,he " “ ‘Г0П »■
II] « .d  B a i e ° M i S „  a „ T s  'I , “ PreSSi0"SO f Adl“
in the form of Eq n S  Z  J  l  ^  [5] “ » al^ady
btp u . in №  r „ S C . : «  2 £ £ Г “ 121-
proper time parameter using the identity

d

1111Cclr lerm in the trequencies which vanishes 
when the double integral is done exactly. In order ю get 
robust results for small photon frequency when the double 
integral is done numerically, this linear term must first be 
su tracted away, by replacing expressions of the form

f  f  e°(L + C), J7a )

т2е~тЧ

with L, Q, and C, respectively, linear, quadratic , and cu- 
ic in the photon frequencies, by the subtracted expression

.  / / к * » - « . ♦ . < * ] .  o-m
Proper time parameter j ,  using the^denH?11 ^  PartS in T|11̂  subtraction is already present in the expression 

. ng the identity of Eq. (25) of Ref. [1], and is discussed in the form
Eqs. (]7a) and (17b) in Ref. [5], and it also must 

be applied to Eqs. (37) and (39) of Ref. [2] after the 
integration by parts of Eq. (15) has been carried our.

•e in principle this subtraction should be applied 
to q. (12) above, it turns out not to be needed there.
. cause the linear term in the frequencies involves only 
integrals of the general form

J 0 dT> / ( ,-T,) / o d r 2[S(r ,  -  r 2) -  i/ s] ,  (18)

which is exactly zero using a discrete center-of-bin 
integration method when the <5 function is discretized as a 

юпес er delta. Thus Eq. (12) is robust for small photon

d s *  (15)

In rewriting ^ Г Г Г 0"3: 10 ^  'П ,he amPlitude-
* «  ^  « f w ? ! r / w c r c “ ; i “ s r ° m ' « " » «
and that there is an error n f 2 " ь Ш2' B]'
in either his Eq G 7  ̂ n r  th л аП 0vera ' minus sign 
Similarly, in rewriting the f  * Г  ППС ° f  his ЕЧ- Ш  
Shaisultanov in this fo™ ° f ВЫеГ’ Milsteln' and
is related to C2 by ™' We П° ‘е Ла‘ their «"plitude T

C2[<o,coU(o2, B ] = т г ] / 2 т 8

4a^B^(o(o  1 a/2 T . (16)
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frequencies as it stands, when used in conjunction with 
center-of-bin integration.

With these prelim inaries out of the w ay, it is then 
com pletely straightforward to program the functions 
J 2 ( s ,  о), Ш], а>2 , B) for the five cases represented by the 
formulas o f Adler [2 ], Stoneham [3], Eq. (12) of this 
paper, Eq. (13) of this paper, and Baier, M ilstein, and 
Shaisultanov [5 ], with the result that they are all seen to 
be precise ly  the same; the residual errors approach zero 
quadratically  as the integration mesh spacing approaches 
zero, as expected for trapezoidal integration. We have 
not carried out the s  and <uj integrals needed to get the 
photon splitting absorption coefficient, since this was 
done in Ref. [1], with results confirmed by the more 
extensive numerical analysis given in Ref. [5]. However, 
anyone w ishing to do this further computation can obtain 
our programs for calculating the proper time integrand 
J 2 by accessing S .L . A .’s home page at the Institute for 
Advanced Study [12].
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Tti a seriesi of recent papers, Johnson, Baker, and Willey study quantum electrodynamics
^  self-energy parts omitted. They find that in this model the asymptotic
photon P »P * «»to rs  have rem arkab le , sim ple p rop ertie s. In the p resen t note we

Г  и pr0perties ean 1)6 derlv0d “ very economical ГалЫоп by using the Callan- Symanzik scaling equations.

In a  s e r ie s  of recent papers, Johnson, Baker, 
ajid W illey1 (JBW) have examined the question of 
whether quantum electrodynam ics can be a se lf- 
consistent, finite theory. They sta rt from the a s 
sumption that the Gell-M ann-Low eigenvalue con
dition2 has a  fin ite root e a, giving the renorm alized 
photon propagator the asymptotic behavior3

~ ^ г°  + gauge term s , ( 1 )

m  = electron m ass ,

e0 = finite bare charge .

A sim ple application of W einberg's theorem* then 
shows that the asymptotic behavior of the renor
m alized electron propagator S^p)  is  co rrectly  ob
tained by replacing a ll internal photon propagators 
by the ir asymptotic form, Eq. (1). Thus, one is  
led to consider quantum electrodynam ics without 
in ternal photon se lf-energy  parts. In this model, 
B aker and Johnson1 find, using renormalization-' 
group methods, that the asymptotic electron prop
agator has the rem arkab ly sim ple form

' f 1?Z2C['>' P̂ + ‘пri™‘/ - p г)^]. (2)
Here € is  a power s e r ie s  in a 0 = e0J/(4n),

£= z ( 2 ? ) + l ( | ^ )  (3)

a  i s  a constant, and (In the Landau gauge where the 
e lec  ron wave-function renorm alization Z, is  finite) 
С is  another constant. According to Eq (2) if 
€ > 0  [a s  suggested by the leading term s in the ex
pansion of Eq. (3)], the asymptotic electron propa
gator is  identical to the propagator of a free 
m ass le ss  ferm ion. This means that the electron 
bare  m ass is zero in the lim it of Infinite cutoff,

and not d ivergent, as would be ind icated  by expand
ing (n?/~p2Y in a perturbation expansion in a B and 
truncating at a fin ite o rder.

Johnson, B aker, and W ille y 1 have a lso  studied 
the photon propagator In the model with no in tern a l 
photon se lf-energy  in sertion s. Introducing a  cutoff 
A to define the unrenorm alized  photon propagator 
and photon proper se lf-en e rg y  D'r (q)^, and »(<72),*

«оlD'r (q)m = + gauge t e r m s , (4)

they find that, asym pto tically ,

J  +/(а с|) ln(~<?2/A2) . (5)
For Eq. (5) to be consistent with the ansatz  of 
Eq. (1) the logarithm ically  d ivergen t term  in 
Eq. (5) must vanish. This g ives the sim p lified  
eigenvalue condition

/(<»„) =°, (6)

which involves only vacuum -polarization  graphs 
without internal photon se lf-energy  p arts . Equation
(6) has been shown1 to be equivalent to the G ell- 
Mann-Low eigenvalue condition (which involves a ll  
vacuum -polarization graphs), so the d iscussio n  
starting from Eq. (1) is  se lf-consisten t.

The purpose of the present paper is  to consider 
quantum electrodynam ics without in terna l photon 
se lf-energy  parts from the viewpoint of the C a llan - 
Symanzik1 sca ling equations. The basic  idea which 
we exploit is  that when photon se lf-en ergy  p arts  
a re  omitted, the troublesome coixpling-constant- 
derivative term s, which would destroy sca ling  be
havior, do not appear in the C allan -Sym anzik  s c a l
ing equations for quantum e lectrodynam ics .7 As a 
resu lt, application of the sca ling  equations in 
asymptotic situations leads to sim ple sca lin g  be-

4 3045
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havior with an "anomalous” dimension. But th is is 
just the type of behavior which Baker and Johnson 
find for the m ass term  in Eq. (2), so it is  not su r
p ris ing  that the Callan-Sym anzik equations lead to 
an economical derivation of Eq. (2). The same 
methods, we find, lead to a  sim ple derivation of 
Eq. (5) a s  w ell.

In deriv ing the Callan-Sym anzik equations, we 
follow c lose ly  a method due to Coleman.’  We f irs t 
make the unrenorm alized quantities ттц, Z,, and 
я(<72) fin ite by introducing an u ltravio let cutoff Л1 
and an in frared  cutoff In the following manner:

(i) We take the propagator for internal photons 
to be

&r(4)„ = (~ - g j )  q’ - ^  + U ,* _ л Ч < €  '

(7)

This means that we a re  working in m assive e le c 
trodynam ics with photon m ass /iJ. Since internal 
photon se lf-en ergy  parts a re  omitted in our model, 
there is  no distinction between hare and physical 
photon m ass.

(ii) We ca lcu la te  the low est-order vacuum- 
polarization contribution to n(q2) (see  Fig. l(a)1 in 
the following manner. F irs t we impose gauge in
varian ce  to remove the quadratic divergence, artd 
then we regu late  the fermion loop, with fermion 
regu lato r m ass Л, to remove the logarithm ic d i
vergence.

( iii)  A ll vacuum -polarlzation loops with four or 
more v ertice s  [see  Fig. 1(b)] a re  calculated by im 
posing gauge invariance, which makes them finite.
The requirem ent of gauge-invariant calculation of 
loops, together with the photon-propagator cutoff 
specified in (i), renders convergent the vacuum- 
polarization contributions to ir(q2) of the type illu s 
trated  in F ig. 1(c). As a resu lt of this cutoff 
schem e, the quantities ^ 2» and n(q2) become 
Л -dependent. On the other hand, because we omit 
in ternal photon se lf-energy  parts, the photon cou-

A . B A R D E E N  4

♦ + ■««

+ other parm uta tions

(c)

FIG. 1. (я) Loweet-order vacuum-polarlzation contri
bution to . (b) Vacuum-polarlzation loope with four 
or more vertices, (c) Vacuum-polarizatlon contributions 
to which Involve the loope with four or more ver
tices Illustrated In (b).

pling constant e0 is  a fixed number, independent of 
Л and of the physical electron and photon m asses 
m and д .

Having p rec ise ly  specified our model, we a re  
ready to d iscuss the scaling behavior of the e le c 
tron propagator. The renorm alized and unrenor
m alized electron propagators a re  re la ted  by the 
equation

S>(/>)'1 = ZJ s ; ( p ) - 1 = Za[ y - р - щ ,  - 2 (/>)l, (8)

with Z(/>) the unrenorm alized electron proper se lf 
energy. Let us consider the change in Eq. (8) when 
the physical electron and photon m asses m and ji 
a re  varied , with the ratio  ii/т, with Л, and with 
e a a ll held fixed. This is  described by acting on 
Eq. (6) with the d ifferen tia l operator m(a/em)
+ ц (8/8 |Д giving

(mi  +»*T ^ j  ~s' { p ) "  = [(mШ +"i ) Irjp ' ^ ~ Z( p) ]1~Z'[(m ш  +11 A) [*+ *§?] ” ■Z * ^ -

0 )

On the right-hand side of Eq. (9) the operator 
т( а/ Вт)  + ц(8/8д) is  understood to act only on the 
quantity enclosed with it  in square brackets; in de
riv ing this equation, we have used the fact that 
£(/>) can depend on the physical m ass m only 
through the bare m ass m̂ . The second and third 
term s on the right-hand side can be sim ply in ter
preted a s  follows: The quantity 1 + BZ{p)/bm0 ap

pearing in the second term  is just the zero- 
momentum-transfer vertex of the s c a la r  electron 
current j s = фф,

(10)

Typical d iagram s contributing to Ts(p, p) a re  i l lu s 
trated in Fig. 2(a). Because internal photon se lf 
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energy parts are  omitted from S f(/>)"', they are 
omitted from r s( p, p) as well; absent in addition 
are  diagram s of the type shown in Fig. 2(b), which 
would a r ise  from electron-m ass differentiation of 
an internal photon self-energy part. The quantity 
j i 8£(p)/a/i appearing in the third term  is a  second 
type of sc a la r  vertex at zero momentum transfer,

а О Д  
Эм

■Д*г,.( p ,p ) . (11)

D iagram atically, it is the sum of contributions ob
tained by replacing successively each internal pho
ton propagator (of four-momentum, say, q) by

2u*photon propagator (17) x -=-----=—— (12 )q* -  + ic

as  illu stra ted  in Fig. 3.
The next step ia  to reexpress the right-hand side 

of Eq. (9) in term s of renorm alized quantities.
Since the skeleton graphs for Ts .(p, p) are a ll con
vergent, this vertex is  made finite by m ultip lica
tion by Z2,

p, p) = f j i  ( p t p)

= cutoff-independent as A - « .  (13)

By contrast, the vertex Ts{p,p) has divergent sk e l
eton graphs [see  Fig. 2(a)], and so needs a vertex - 
renorm alization factor in addition to the wave- 
function renorm alization Zt . In Appendix A we 
show that this factor is  just the bare m ass wi0,

'"oZjI's(p, p)±mTs{ p, p)

= cutoff-independent as Л — ”  . (14) 
Hence Eq. (9) takes the final form

+ a ) f s(p, p) -  ц ' Т ^ р . р ) ,

with

У- г ’ ' 1[{т £ г + ^ ) 2 ] '

i *e=m°', [ ( m s i ’"’>]•

(15a)

(15b)

Equation (15) is  a typ ical Callan-Sym anzik scaling 
equation, a s  sim plified by the neglect of internal 
photon se lf-en ergy  parts."

Let us now consider the behavior of Eq. (15a) as 
p  becom es infinite in a spacelike direction. We 
w ill keep a l l  term s which are  constant or which 
grow as powers of In/.3, but w ill drop term s which 
vanish a s  ( p ‘ l ,p~3, . . . )  x (powers of ln£’ ). By a 
s im p le application of W einberg’ s theorem to the

FIG. 2. (a) T ypical d iag ram s contributing to Г S(J>,P). 
(b) Type of d iagram s which a r e  om itted from  Г 5 ( р , р ) щ 
because they could a r is e  only from  e lec tro n -m ass  d if fe r 
entiation of an in ternal photon s e lf -en e rg y  p ar t.

graphs which contribute to f s and Г4. (see  F igs . 2 
and 3) we find that, to any fin ite o rder of p e rtu rb a 
tion theory,

PtP) ~  (powers of ln/>a) ,

f  AP,P) r*j p ' l x (powers of In/)2) .

Thus, in the asym ptotic lim it, f s m ust be re ta in ed  
in Eq. (15) but f s .(£ ,p) m ay be dropped. F u rth er
more, introducing the gen era l functional fo rm s

S ' r i p y 1 = у  • pF( р г/п?, [i2/m2, e0) 

+mG{p*/m2, p.2/m2, e 0) ,

(16)

(17)

”«f s( P,P) = V pH[ p2/rrf, ti'/m7, e 0)
+ m J ( p 2/m a, /ir?, e 0) ,

and applying W einberg’ s theorem  again , we find 
that F, G, H, J  have, to any fin ite o rder of p e r 
turbation theory, the asym ptotic behavior

F , G , J  p j^  (powers of Inp x) ,

H м  /Г‘ х (powers of lnps) .
(18)

Substituting Eq. (17) into Eq. (15), equating sep a 
rate ly  the coefficients of у  - p  and m, and dropping 
term s which vanish asym ptotically , we get

(19a)
(m ш  + i  +y)  n p W <  й Vm*’ eo) P i  ° ’

(m ът + ц au + y)mG(P2/”1*’ t*2/»?, О

~  - m ( l+ <*)./( pVms, \S/rr?, e 0) ■ 
(19b)

From Eq. (19a) we learn  a number of things.

v— 7

FIG. 3. A typ ical d iagram  contributing to
The doubled photon propagator denotes 
ZtgutAV (Ч! -Цг+ te)_s(42 — лг + if)-1-
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F irst, since everything in th is equation except у 
is  cutoff-independent, у must be cutoff-indepen
dent, 10 i .e . ,

S .  L .  A D L E R  A ND W.  A .  B A R D E E N

\i2/rv?, e 0)

у= у[ц2/тг, e0) . (20)

Comparing with Eq. (15a), we then learn  that or is  
cutoff-independent a lso , 10 i .e . ,

а = а (д 2/ т2, e„) . (21)

[We w ill see  shortly that there is  actually no de
pendence on jц2/т2 in Eqs. (20) and (21).] Integrat
ing Eq. (15b), we find that the Л dependence of Z2 
and m0 is  given by

Z^C.O ^/W .eoX A */**)»'*,

™о = С2(ц У т 2, e0)m(\2/m2) -a/2,
(22)

with C, and C2 dim ensionless functions. Finally, 
in tegrating Eq. (19a) we find that F has a power 
dependence on p 2 for la rg e  spacelike p,

F( p 2/m2, n 2/nf, e a) ~  ей) ( - р 1/тг?)1 ,г .
р-~ш.

(23)

To obtain the equation satisfied  by G which is  
analogous to Eq. (23), we must study the asym p
totic behavior of the quantity J  appearing on the 
right-hand side of Eq. (19b). We do this by calcu
lating the Callan-Sym anzik scaling equation s a t is 
fied by f s ( p ,p ) .  Starting from Eq. (14), and pro
ceeding in analogy with the calculation of Eqs. (9 )- 
(15), we find

= тп(1 + a)Tss(Pi P) + ^ ^ ss ' iP i  PJ i

(24)

with the e lec tro n -sca la r  four-point functions 
and Tss. defined by

p, p) = —  r s( p, p ) ,dn^

mft2fss’(p,p) - ~T~ r s (P, P) ■dH

(25)

Again applying Weinberg’ s theorem, we find that 
the entire right-hand side of Eq. (25) vanishes 
asym ptotically as p~‘ x (powers of ln/>a), and so 
substituting Eqs. (17) and (18) we get

( m am + ц +Y -  a )  J ^ 2/w‘, ( i2/wa, e0) ~  0 .

Equation (26) may be im m ediately integrated to 
give

(26)

£ * ,/ > 7 ^ ,  e0) ( - p 2/m2)t7~a)/l.

(27)
Substituting into Eq. (19b) and doing a final in tegra
tion, we get

C(p2/rr,?, si'/n?, e 0)

(28)

with the f irs t term  a solution of the hom ogen eou s  
equation

( m lm  + 11 Э/Г +У)  mG* fiVm2, e0) 0 .

(29)

To determ ine .K, we note that ycce0J [see  Eq. (15b)]. 
Hence when expanded in powers of e01 the f irs t 
term  in Eq. (28) has, to any finite order in e02, the 
form

k ( £ s ) x(powers of ln*.2) , (30)

which v iolates the W einberg-theorem asymptotic 
behavior of G stated in Eq. (18). So we conclude 
that К -  0 , giving

G(pVrrf, nVm2, e0) ~  - } %(v.2/ir?, e0) ( - p 2/m*)^-*"*.
(31)

Defining

f  In  V m 2 » 1 -  f  з (м а/ тД - e o)

we may combine our resu lts  for the asymptotic be
havior of S f (/>)_1 into the form

&  e0)(-/>2/wi2) ,/a

x[y ■ p -m fx(v.2/m2, ea)(-p2/rn‘)~a/2] .
(32)

Our final step is  to show that у  and a  a re  inde
pendent of \x2/rr?. We do this by w riting down the 
analogs of Eq. (15a) and Eq. (24) obtained by dif
ferentiating with respect to the photon m ass p. only, 
with the electron m ass m held fixed. These are

(m ~  + r M)  5> (p)‘ ■1 = —m cr„ f  s( p,p)~ ii Jf  s. (p, p), 

[v j^ + Y v- ‘*v') ts(p,p)=ma„tss(p,p) + HtTss-(p,p),

(33)

Evaluating Eq. (33) asym ptotically, substituting the
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resu lts of Eqs. (27) and (32), and separating the 
term s proportional to у  -p  and m, we find the two 
equations11

♦ * ) / . ♦ / , * ( £ )  £ 1 0 ,

(34)

(Д an * Y<‘ ~ a v)S  J » +/ i/ j ln ( £ j )  ^ г(у “  a ) p i  0 .

These equations can be satisfied  only if the loga
rithm ic term s vanish separate ly, which im plies

8  8

5 ^ >=M a==0-

giving the desired  result 

y = y(e0) ,  a  = a(e0) .

(35a)

(35b)

The vanishing of the constant te rm s in Eq. (34) then 
im p lies

(36)

On substituting Eq. (22) for ma and Za into Eq. (33) 
for y v and о'fj, and then in sert in g  the re su ltin g  ex 
pressions into Eq. (36), we find the equations

Зд ^  J C^ = 8(1 ^ s / C2̂  = 0 >
(37)

/ ./ C ^ F .t e , ) ,  /2/ C ^ F ,( e0).
Hence our final re su lt  for the asym pto tic behavior 
of the electron  propagator is

s ;(/0 1 ~  ? 1(е0)С1(д*/я1,> еа)(-р2/т1)*1‘»)/г1 у р -т Рг(е0Кг(11г/тг1 е0Н-рг/тгГаи°’/2], (38)

with С , and С2 the sam e functions as appear in 
Eq. (22) for Z2 and 

The resu lt of Eq. (38) is  valid  for a rb itra ry  v a l
ues of the gauge param eter £ in Eq. (7) .12 Under 
the change of gauge

( Ш , _  A ____ i___ —Л2
i t  q * - \ 2 + ie

- Л 2
-Л 2 + 1€

(39)
it is  e a s ily  shown13 that the unrenormalized posi- 
tLon-space electron propagator transform s in the 
sim ple fashion

S ;(x ) -  exp{(£' -  4)[Л(Х) _ X(0 )]}sp (x ),

W v^-i£ a! f  **4 1 -Л* . (40^
(2»)4 J  ~iji* q*ZTjJ* (р^Гд2 e ~ •

By studying the la rg e -x  and sm all-x  behavior of 
Eq. (40), we can find the behavior under gauge 
transform ation of the quantities Flt С u F С a 
and у  appearing in Eqs. (22) and (38). Suppressing 
t te  dependence on ^/m 2 and e01 and letting primed 
quantities denote those computed with gauge pa
ram ete r f  and unprimed quantities those computed 
with gauge param eter we find

r ' - y  = (a 0/ 2 ir )U '-$ ) , 
a ' - o  = 0.

t ( m2 Ya°/ 
i ~ W ) ^ = 1  r  4 »

—® = 1; 
mo

(41a)

F[ 1 - b '  r ( b j y ) r ( l - i y ' )  
F, -  1 - Ь  Г(1 -  i y ) r ( l  + i y ' )

(41b)
х е х р [ ( - а 0/4тг)(2ув -  l ) ( 5 ' - 0 ] ,  

Б  F , Г ( 1 - Ь - 1 о ) Г ( 1  +j r '  + j e ' )
^  '  Г (1  + | у  + 5 аг)Г (1 -  2 V ' — 5 “ 'J 

хехр [(а0/41т)(2ув -  1)(|' -  ? ) ] ,

with yE =0.577 21. . . = E uler’s constant and with Г 
the usual Г function. The derivation  lead ing to 
Eq. (41) is  given in Appendix B.

According to Eqs. (22) and (41a), if we choose 
to satisfy  £) = 0 , then we have
Y‘ 5 Y(e ot 5') -  0 and the wave-function ren o rm a liz a 
tion Z' becomes finite a s  Л — T his choice of 
gauge (the Landau gauge) is  the one used  by B aker 
and Johnson in their work. In the Landau gauge, 
Eq. (38) becomes

^HPVjndju С [ у р  + ат[тг/ -р 2У],
(42)

C = F ’f i [ ,  <z = - F iC ',  < = |i>(e0) I

in agreem ent with the Baker-Johnson re su lt  stated  
in Eq. (2)_ We note also  that the gauge-independent 
quantity mo = m - El r .* = „ is  fin ite a s  д -O  [only Z2 
= 1 -  as/a(y  ■ £ )!> .,,„ Is in frared -d ivergen t]; hence 
the function С ,(д 2/ т3, e0) appearing in Eqs. (22) and
(38) has a finite lim it as fi~ 0. L et us give two 
simple second-order calculations which illu s tra te  
Eqs. (42) and (38). F irs t , we ca lcu late  £ in Eq. (42) 
by noting that to second order
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1 +

= 1 +:

(43)Е (т)= £|г. , =Яо=1Л.

Explicit calculation in an a rb itra ry  covariant gauge 
shows that

£(»я) = »|[(Зо!0/ 4 я ) ln(A2/W) +function of (ii*/n?)],
(44)

which on substitution into Eq. (43) gives

a (e0) = За0/2тг, , (45)

in agreem ent with the second-order term  in Eq. (3). 
As our second illustration  we show that, to second 
order, mB, Z2, and the full renorm alized electron 
propagator S'ripV' in the Feynman gauge do satisfy  
Eqs. (22) and (38). A straightforward calculation 
gives

from which we can identify the quantities appearing in Eqs. (22) and (38),

у(е„) = - a B/2v , a ( e 0) = 3 a 0/2jr, = 1 + 3a„/8ir,

t 2 / 2 » , 0 |  f 1 ,  r „  >, /Л я *  + (1 -  *)д 2\  z ( l - г 2)Ъг? ~\ 
С ,(д  / m , e B) - l + 2v c U ^ - z ) . n ^  (1 _ z]m* )+ 2V  + ( l - 2)Ml J ’

F3(e0) = 1 + 5 а 0/8я ,

с , - 1 * S  [  « >  * 11 •

(46)

(47)

As fi — 0, we see  that C2(ii*/m2, e B) approaches a 
fin ite lim it, as expected.

This com pletes our treatm ent of the electron 
propagator. Let us next turn b riefly  to the asym p
totic behavior of the photon propagator.14 Because 
renorm alization  of the photon propagator is  sub
trac tive , i .e ..

m  Эm 92/^2' <72/™2, e 0)

ir(?J) = jr(qs)- iT (0 ), (48)

the renorm alized  photon se lf-energy  я involves, 
even for asym ptotically large  q2, the nonasymp- 
totic p iece я(0). As a resu lt, the asymptotic be
havior of the r en orm a liz ed  photon propagator can
not be calculated  by replacing a ll internal photon 
propagators by their asymptotic form, Eq. (1). On 
the other hand, the asymptotic unrenormalized  
photon se lf-energy  v(qT) d o e s  involve only the 
asym ptotic behavior of the internal photon propa
gator, and thus can be calculated in our model in 
which in terna l photon lines a re  replaced by Eq. (1). 
To proceed, we w rite down the two Callan-Sym an
zik sca ling  equations obtained by differentiating i t  

with respect to m and with respect to д . These a re

= m(l + а  — a„)irs{<j7 A2, q2/n2, q2/m2, e 0) ,
a (49)

Ц— п(Ч*/\2, q1/Д2, «7m 2, e B)

=m au*s(q2/A2, q2/\t.2, q*/n,r», e B)

+ д Ч г '(« 7 Л 2, q 2/ n 2, q 2/ni2, e B) ,
with a  and а ц given by Eqs. (15b) and (33) above 
and with the photon-photon-scalar three-point func
tions n5 and irs, given by

9
m*s =m° am, я •

(50)

Let us now consider the asym ptotic lim it in which 
q and Л both become la rg e . Application of W ein
berg ’s theorem 19 shows that its and its . vanish a s  
q~'x (powers of In?2) and <?"ax (powers of ln^2), r e 
spectively , so that the right-hand sides of the s c a l
ing equations can be neglected, giving



364 Adventures in Theoretical Physics

QUANTUM E L E C T R O D Y N A M I C S  W I T H O U T . . .  3051

m 4~ rfaVA1, <7а/(Л  e0) ~  0 , am «.*—  (51)

ц-2-*(<?7 л ‘ ,< ?7 ,Л ? , /та1е0) ~  0 .
О 9.Л

This te lls  us that the asymptotic unrenormalized 
photon se lf-energy has no dependence on m and ц, 
that is ,

v(q2/\2, flVn’ .q ’/m2, e0) i~__> v(q2/fi2, e a) . (52)

Furthermore, since to any finite order of p ertu r
bation theory the dependence of я on Л2 can only 
be through powers of lnAJ , then п(<?2/Л5, e0) must 
have the form

v(q2/\2, e0) = £ Bn(e0) [ ln (-9VAJ)1” . (53)
1ГО

We now invoke the fact that since л is  gauge-inde- 
pendent we a re  free to choose the gauge which 
makes 2 , finite, and since n contains no internal 
photon se lf-energy  parts, the subintegrations of ir 
which do not involve a ll lines in the graph are  f i 
nite. But the single subintegration which does in 
volve a l l  lines is  made finite by a single differen
cing of я,

v(q2/\2, e0) -  i?(<7 ,2/A2, e0) = cutoff-independent,

(54)
which te lls  us that only the n -  0 and n = 1 term s can 
be present in Eq. (53). Thus,

v(q2/\2,q 2/v.2,q*/n?.ea)

. r - f i W + B .W i n l - o V A 1) ,

(55)
in agreem ent with the resu lt of JBW stated in 
Eq. (5), with f ( a 0) = B ,(e0) the function which deter
m ines the eigenvalue condition.

We wish to acknowledge the hospitality of the 
Aspen Center for Physics, where this work was 
done.

APPENDIX A

We give here a proof that m f s( p, p) = т„ггГ5(р, p) 
is  fin ite (cutoff-independent a s  Л -  «>) to a ll orders 
of perturbation theory. Let us define Г5(^,р)  to be 
the zero-m om entum -transfer vertex of the pseudo
s c a la r  e lectron current ]*~фуъф. We have p rev i
ously shown,1* by using the ax ia l-v ec to r-v e rtex  
W ard identity, that mtHp, p)^mnZ ,r s{p, p) is  finite 
to a ll o rders  of perturbation theory .11 Let us de
fine

Д(#>, P )= fs{ p ,p )y* -  f \ p , p ) .  (Al)

To zeroth order in perturbation theory, д( p, p) = 0 
i s  fin ite . Let us now make the inductive hypothesis 
that, to o rder я -  2 in perturbation theory, (i)

MP . P ) is  fin ite and ( ii)  a s  0 -  ®, Д (p ,p )~  p~l 
x (powers of lnp’ ). To prove that these  hypotheses 
a re  sa tisfied  in o rd er n a s  w ell, we follow v e ry  
c lose ly  the procedure used  in Chap. 19 of Ref. 3 to 
prove that the usua l ren o rm aliza tio n s of e le c tro 
dynam ics make the vecto r v ertex  fin ite . We begin  
by observing that mTs and rhT5 s a t is fy  the in te g ra l 
equations (see  F ig. 4)

wifs = m0Z2 -  , (A2)

m f 5 =m0Z;ly 5 -  j m f ss ;S ;K  ,

with £  the connected, ren o rm alized  e lectro n -p o si- 
tron sca tte rin g  kern e l, obtained by excluding the 
c la s s  of graphs shown in F ig . 5. Substitu ting Eq.
(А2) into Eq. (A l), we find that the inhomogeneous 
term s cancel, giving the following expression  for 
A:

д = j f 5S;s>K -  j  f  s5;5;£y5 ■ <A3)
Since the perturbation expansion of R begins in s e c 
ond order, to ca lcu la te  Д to o rder n we need only 
in sert f 1 and f s to o rder n — 2 on the right-hand 
side of Eq. (A3). But these a re  known to be fin ite 
by the inductive hypothesis, so the individual fac 
to rs appearing on the right-hand side  of Eq. (A3) 
a re  fin ite. According to W einberg’ s theorem , to 
see whether & is  fin ite to o rder n, and to d e te r 
mine its  la rge-£  asym ptotic behavior, we m ust d e 
term ine the naive degree of d ivergence D of each 
subintegration contributing to the right-hand side  
Of Eq. (A3). As is  shown on pp. 330-334 of Ref. 3, 
a ll subintegrations have D s - 1 , except possib ly 
those involving both electron  propagators and 
a ll lin es in the kernel R. These a re  of two basic  
types, according to whether the e lectron -positron  
lines em erging from f s and f s do [F ig . 6 (a)] or do 
not [F ig . 6 (b)] connect d irec tly  with the ex terna l 
electron-positron lin es entering the kerne l K. 
C learly , the d iagram s shown in F ig. 6 (b) involve 
a  closed electron  loop with a  sing le  s c a la r  or p seu
doscalar vertex. Charge-conjugation invariance 
im plies that such a loop can have only an even num
ber of photon v ertice s  and an odd number of e le c 
tron propagators; the fact that the tra c e  of an odd 
number of у  m atrices vanishes then im p lies  that 
such loops a re  proportional to the electron  m ass

! i" P, I mft s '.
j m H "V,H,rs mf9

FIG. 4. Integral equations sa tisf ied  by the s c a la r  
and pseudoscalar vertex  p ar ts .
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FIG. 5. C lass of graph a excluded from the kernel K .

m. So the d iagram s shown in Fig. 6 (b) a re  a ll  pro
portional to m, which improves the convergence by 
one power of momentum and gives them D s  -1 . 
The contribution to Eq. (A3) of the d iagram s shown 
in Fig. 6(a) can be written sym bolically as

£LtM = f  ( f 5 -  f sy5)S ;S ;x

=j  bSirS'rit - j  tjiS'/s'fiiy' - ;s;k] .
(A4)

The f ir s t  term  in Eq. (A4) has D s -1  because (to 
o rder я  -  2) д  sa tis f ie s  assumption (ii) of the in
ductive hypothesis. The second term in Eq. (A4) 
is  the residue obtained when the m atrix  y 5 is  com
muted from its  orig inal position on the far right 
of Fig. 6(a), through the string  of electron propa
gators and photon vertices , to a position immed
ia te ly  to the right of the vertex f  s. The square 
bracket in this term  is ea s ily  seen to be propor
tional to the electron m ass m, giving the second 
term  an extra  power of convergence with the r e 
su lt that it, too, has D£— 1. This completes the 
demonstration that, to order я , a il subintegrations

5 ;

l r. S 'f

(c)

s ;

<b>

FIG. fi. (a) D iagrams In which the electron-poeltron 
lines em erging from Гs япН f s connect d ire c t ly  with the 
ex ternal electron-pofijtron lines entering the kem el к . 
Internal photon lines in 6  a re  not shown. (b) D iagrams 
in which the electron-poflltron lines em erging from f  j  
япН Г 5 d o  iw t  connect d ire c t ly  with the external eleetron- 
poaltron lines entering the kem el R .  Again, Internal 
photon lines in  f t  a re  not shown.

contributing to the right-hand side of Eq. (A3) have 
1. By W einberg’s theorem, th is im plies that, 

to order я , Д has the properties (i) and (ii) stated 
above, thereby completing the induction.

We note that in making the proof we have not a s 
sumed the omission of internal photon se lf-energy  
parts. Our resu lt, that Д is  fin ite, is  a f o r t i o r i  
s t ill valid  when this sim plification is  made.

APPENDIX В

We derive here the resu lts quoted in Eq. (41) of 
the text, giving the behavior under gauge tran sfo r
mation of the quantities Fv  C j, Ft, C2, a ,  and y. 
Our starting point is  Eq. (40), which we repeat for 
convenience:

s;(x, {') = exp{($' -  0 W*> -  x(0)]}s;(x, о , 

v <eo' f 1 - A ’ (Bl )

Before proceeding with the derivation, we give 
some useful properties of \(x). Letting x be sp ace
like, and using the sym m etrica l integration formula

(B2)
(i/i = B esse l function of order unity), we find the 
following representation for A{x):

\(x) = pa _ ^ V  ( p J — х2Л2)  J ,(p ) • (B3)

From Eqs. (Bl )  and (B3) we learn  that

M * )~ . 0 ,

\{x) ~  - -^  ln(A’/да) + 0(д ,/Л1) + 0(х* ln x*);ж—О 47Г

l(x) -  Alim  X(x) = ^  р1 _^Чд ^ ,(р ) , (B4) 

X(x) ~  [ln (- ix 2v2) + 2yB-  1] + 0(x2 In X2) ,

yE- E u ler's  constant.

We begin by deriving the resu lts  of Eq. (41a), 
giving the gauge-transform ation behavior of the 
renorm alization constants nig and Z2. Introducing 
the wave-function renorm alization Z2(£) and the r e 
norm alized electron propagator S£(x, 4),

S ;(x , 4 ) =2 3( 0 - 1s ;( x ,  о ,  (B5)

we can rew rite  Eq. (Bl )  in the form

s ;( * ,4 ') = 2 a(4 )za( r ) - 1

х е х р { Ц '  -  ? ) [ a<jc) -  x ( 0 ) ] } S ; ( x ,  4 ) .

(вв)
Let us consider the lim it of Eq. (B6) as x— « .
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Because we have supplied ал infrared cutoff д , the 
renormalized electron propagator approaches in 
this lim it the free electron propagator for physical 
m ass m,

Since the right-hand side of Eq. (В*}) is  independent 
of gauge, we get, using the resu lts of Eq. (B4),

(B8)

Comparing Eq. (B8) with Eq. (22) in the text, we 
learn  that

y ' - y  = <a„/2^ U ' - 5) ,
(B9)

To get the gauge transfo rm ation  p ro p ertie s  of the 
bare  m ass m ,̂ we consider the sm a ll-x  lim it of the 
unrenorm alized equation, Eq. (Bl ) .  The sm a ll-*  
behavior of the unrenorm alized  p osition -space  p ro - 
propagator is  determ ined by the la rg e -£  behavior 
of the unrenorm alized  m om entum -space propagator 
by the P o u rie r-tran sfo rm  re la tion

У ’ p-WoU) - 2 ( p ,  I)
But as p — ® for fixed cutoff A , we have 

U p ,  0  ~ Л P~'x (powers of In*.2) , 

so we get from Eq. (BIO)

(BIO)

( B l l )

S ' U  f)  s  _________________
F ' J  (2я )4 y p - m 0(5) +0 (p_1x(powers of ln^2))

= J  ^ ^ e" ^ “[ ^  + ^ ^  + ot )̂' :,><(Pow€rs 01

= ^ 2  * 4^  r~ + O lx '1 x(powers of ln x2) ) . (B12)

Substituting Eq. (B12) into the sm all-x  lim it of Eq. (B l), and using Eq. (B4) for a sm a ll-x  estim ate  of x(x)
-  X(0), we get

^  _ ^ ( П  = 1  (B13)
wb >^(4)

Comparing with Eq. (22) in the text, we find

a -  = a ,  £ i  = l .  (B14)

Next, we derive the resu lts of Eq. (41b), giving the gauge-transform ation behavior of the functions F j  and 
F2 appearing in the asymptotic form of the renorm alized propagator. To proceed, we need the ren o rm al
ized version  of Eq. (B l), obtained by elim inating Z ^ Z ^ 1) - 1 from Eq. (B6) by use of Eq. (B8) and then 
dropping term s in A(x) which, for fixed x, vanish as Л -*>. This gives

S>(x. * ') = expfU' -  t)X(x)] s ;(x , О , (B 15)

with X(x) given in Eq. (B4). We now take the sm all-x  lim it of Eq. (B15), using Eq. (B4) for the sm a ll-x  b e 
havior of X<x) and extracting the sm all-x  behavior of S^(x, 4) from the large-/» asym ptotic form  of Sjr l (Pt £) 
given in bq. (38),

c > t „ t \ - ( * * P  - - i +Л V b  + n iF .,C il -h t /mt ' r a' 1 . , . . .  „ Л
J  (2^  € [  f lCl----------------------- ------------------  + 0 (/> x(powers of lnp2))J  - (B l b '

We can evaluate the in tegra ls appearing in Eq. (B15) by using Eq. (B2) and the form ula ''1

о т

Substituting the resu lt into Eq. (B4) and equating the coefficients on left and right of the two most s in gu lar  
term s a s x - 0 ,  we get the gauge-transform ation form ulas quoted in Eq. (41b) of the text.
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trodyram ice * w /shnw  ti,WOrk deallng Wlth the ebort-d istance behav ior of quantum e le c -  
then in the lim it n f  ■ renormalj2e<i pbotan propagator is  asym ptoticaU y f in ite ,
I Z Z  t  ^ L L Z: Z  maBa 311 0f the ®iDe le - fe rmion-loop 2л -point funcHons, Й -
UEimi c la ss  of aavm н 6 °Е constant, must have a  common in fin ite -o rd e r ze ro . In the 

™ T T i T L  T *  B0lUtl0nS introd^  by Gell-Mann and Low, the asym p - 
free p a r L e t e r '  We t o  ^  >nflmte-order zero and the physica l coupling a  < a ,  ie a 
qulred infinite orrfpr °™ tt, 8 s lngle-ferm ,on_l°0P d iag ram s ac tu a lly  p o sse ss  the r e -  

Г ' ? ’ ,  18 "  UDi4Ue' addWonal eolutlon in wbich the p h ysica l eou- 
K  T  inflmt0"°rd er Zer0- We « « ] . » * ■ «  that this Is the solution chosen

eigenvalue о о п й Ш о Л и ^ 0° ^ ! £ М Г  determ Ined by the
vacm im -D olarlzatinn function re la te d  to the s in g le -f e rm io n - lo o p

fundamental fermion apeo i.rw h ich  ̂ ^ Г а и ^ ^ р ^ ' / е п Г ' 611' 0111 ^ “ “  ПиЮЬвГ °*

I. introduction and summary

The fundamental constant regulating a ll m icro
scopic electronic phenomena, from atomic physics 
to quantum electrodynamics, is  the fine-structure 
constant a . Experimentally, the current value1 
a= 1/(137.036021:0.00021) is  one of the best de
termined numbers in physics. Theoretically the 
reason why nature selects this particular numer
ica l value has remained a mystery, and has pro
voked much interesting speculation. The specula
t o r  may be divided roughly into three general 
p r e s : (a) those In which a  is  cosmologically de
term ine^ either as a cosmological boundary con
dition (which makes a  undeterminable) or as a 
hmchon of time-varying cosmological param eters
L  w M ,T  ? 8 “  1 function o i  “ M f :  (b) theories 
i*  which a  is  a  constant which is determined mic-

t thr°Ueh Ше interpUy 01 №е e lectro- magnetic interaction with Interactions of other
& « ? “ " f  f tr0ngl Weak’ or gravitational.5 Since these interactions are currently even less 
well understood than is  the electromagnetic inter
action, such theories seem at present to offer 
little  promise of an actual computation of a ; (c)

finally, theories in which a  is  m icroscopically 
determined through properties of the electrom ag
netic interaction alone, considered in isolation 
from other interactions. И is th is restric ted  
class of theories to which we w ill address our
selves in the present paper.

The idea that a  may be determined electrom ag- 
netically is an old one. In the ea r ly  days of r e 
normalization theory there were hopes that a  
could be fixed by requiring the logarithm ic d iver
gences appearing In higher orders of perturbation 
theory to cancel or “compensate" the second-order 
divergence in the photon wave-function reno rm ali
zation Z,,4 so that the renormalized photon prop
agator would be asymptotically finite. These hopes 
received a setback, however, when Jost and Lut- 
tinger1 calculated the o rd e r-aa logarithm ically 
divergent contribution to Z, and found that it has 
the same sign as the order- a  divergence. Of 
course, It was obvious that the question could not 
be settled by calculations to any finite order of 
perturbation theory. A system atic nonperturbative 
attack on the problem was made by Gell-Mann and 
Low" in their c lassic  1954 paper on renorm aliza- 
tlon-group methods. They showed that there is

Copyright © 1972 by the American Physical Society. Reprinted with permission.
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indeed an eigenvalue condition imposed by requir
ing that the renormalized photon propagator be
have as

o d c (-<f/nf,  a ) =  a 0 + h{-<f/n?, a ) ,  (1)

with a a finite and with h vanishing as <*>.
However, the condition takes the form $ (a0) = 0, 
and determines the a s ym p t o t i c  c o u p l in g  at0 rather 
than the physical coupling or. Their analysis leaves 
a  a free parameter of the theory, restricted only 
by the condition or< ar0 coming from spectral-func- 
tion positlvity. This essential conclusion was re 
tained in the subsequent Important work of Johnson, 
Baker, and W illey,7 who showed that if the eigen
value condition is  satisfied all the renormalization 
constants of electrodynamics (me and 2 ,  as well as 
Z3) can be finite, and who applied a simple argu
ment based on the Federbush-Johnson theorem" 
to obtain a greatly simplified form of the eigen
value equation for a c. Thus, the prevailing view 
since 1954 has been that it is not possible to de
termine a  within a purely electrodynamical con
text.

Our aim in the present paper is  to give a reex
amination and extension of the work of Gell-Mann 
and Lovr and of Johnson, Baker, and Willey, which, 
we believe, reopens the possibility of an electro
dynamic determination of a. We continue to work 
within the same basic framework as these previous 
authors in that we assume, as they do, that asymp
totically vanishing term s encountered in each or
der of perturbation theory do not sum to give an 
asymptotically dominant result. Our basic obser
vation Is that the work of Johnson e t  al., assumes 
that a 0 is  both a simple zero, and a point of regu
larity , of the Gell-Mann-Low function ф(у). In 
actual fact, we find that an extension of the argu
ment given by Baker and Johnson to obtain their 
simplified eigenvalue condition indicates that 
neither of these assumptions is  correct. We show 
that if ip has a zero at a ll it must be a zero of In
finite o rd e r - i .e . ,  an essential singularity. This 
Infinite-order zero in the coupling constant must 
also appear in a ll of the single-fermion-loop 2n- 
point functions calculated in electrodynamics with 
zero fermion mass. The presence of an essential 
singularity has the important consequence that dif
ferent orders of summing perturbation theory can 
lead to in equ iva len t  forma of the eigenvalue con
dition. One natural method of summing perturba
tion theory is to proceed “vacuum-polarization- 
insertion-wise*1. One first sums a ll internal-pho
ton self-energy parts, and then inserts the resu lt
ing full photon propagators in the vacuum-polariza
tion skeleton graphs. This order of summation is 
the one used by Johnson, Baker, and Willey, and 
leads naturally to the c lass  of asymptotically finite

ADLER 5

solutions Introduced by Gell-Mann and Low, In 
which a a is fixed to be the infinite-order zero and 
a< a 0 Is undetermined. An alternative summation 
method Is to proceed "loopwise”: One first sums 
a ll single-fermion-loop vacuum-polarization 
graphs, then one sums all two-fermion-loop vacu
um-polarization graphs, and ao forth. If we a s 
sume that the single-fermion-loop 2л-point func
tions do actually have the infinite-order zero in the 
coupling constant as described above, then by using 
loopwise summation we show that there is a unique 
additional asymptotically finite solution, in which 
the physical coupling a  is fixed to be the infinite- 
order zero. We conjecture that this is the solution 
actually chosen by nature. According to our conr 
j e c t u r e ,  the f i n e - s t r u c t u r e  c on s tan t  a  m ay  b e  c o m 
pu t ed  a s  f o l l o w s .  Let Fl l\y) be  the c o e f f i c i e n t  o f  
th e  l o g a r i t h m i ca l l y  d i v e r g e n t  p a r t  o f  th e  sum  o f  
s i n g l e - f e r m i o n - l o o p  va cuum -po la r iza t ion  d ia g ra m s  
i l l u s t r a t e d  in Fig. 1. We c o n j e c t u r e  that F [ll(;y) i s  
ana ly t i c  in  an in t e r v a l  ex tend ing  f r o m  y = 0 to y  = or, 
w h e r e  it  ha s an in f i n i t e - o r d e r  z e r o  as  у  a p p r o a ch e s  
a  f r o m  b e low  a l on g  the r e a l  axis . If the function 
F [11(y) has no Infinite-order zero, then the renor
malized photon propagator cannot be asymptotically 
finite. Our conjecture has the obvious virtue that 
it stands or fa lls according to the outcome of the 
mathematical problem of calculating the function 
F [ll(>). This problem will be well posed in per
turbation theory if Is a function of the c lass 
which is  uniquely defined by the coefficients of its 
formal power-series development in у . е

The paper is  organized as follows. In Sec. П we 
give a review of previous work on the short-dis- 
tance behavior of electrodynamics. We derive 
the Gell-Mann-Low equation for the asymptotic 
behavior of the photon propagator, discuss ita 
properties, and establish its relation to the recent 
work of Callan and Symanzik.1” We then review 
the program of Johnson, Baker, and Willey for the 
removal of Infinities from electrodynamics. In 
Sec. Щ we show that the zero of the Gell-Mann- 
Low function must be an essential singularity and 
discuss the Implications of this for the conventional

— C D —

— 4y ♦
pcrmulalions

* ,2 + 1 
permutations

> finite ♦ P  (y) i  logarithm

FIG. 1. Sum of single-ferm ion-loop vacuum -polariza
tion d iagram s which determ ines the function F ^ (y ) ,  with 
the dependence on the coupling constant у  indicated ex
p lic it ly . Throughout the paper we w ill adhere to the con
vention of using solid lines to denote ferm ions, wavy 
lines to denote photons.



370 Adventures in Theoretical Physics

S H O R T - D I S T A N C E  B E H A V I O R  OF  Q U A N T U M . , . 3023

eigenvalue condition on a„ and for the asymptotic 
behavior of the renormalized electron propagator.
Id Sec. IV we introduce the idea of "loopwise" 
summation and show that, assuming the presence 
of the essentia l singularity, there is  ал asym p
totically finite solution of electrodynam ics in which 
a, rather than a e  is  fixed to be the infinite order 
zero. In Sec. V we motivate our conjecture that 
nature picks the solution In which a  is  fixed, and 
we suggest a  possible connection ol our work with 
a  conjecture of Dyson9 concerning s ingu larities in 
electrodynam ics at a  = 0. We also  point out that 
our conjecture leads to a determination of a  which 
is  independent of the number of fundamental fe r
mion species, and based on this (act, give a spec
ulative argument Justifying the neglect of the strong 
interactions in formulating our eigenvalue condi
tion for a . In Appendix A we give a summary of 
notation, while in Appendix В we derive the C allan- 
Symanzik equations for m assive photon (i.e ., in - 
frared-cutoff) spinor electrodynam ics in an a rb i
tra ry  covariant gauge, and b riefly  sketch the ap
plication of these equations to deriving the Johnson- 
B aker-W illey asymptotic form for the electron 
propagator.

II. REVIEW OF PREVIOUS WORK

We begin with a  survey of the papers of Gell- 
Mann and Low, of C allan  and Symanzik and of 
Johnson, Baker and W illey dealing with the short 
d istance behavior of electrodynam ics. Our p artic 
u la r  aim  w ill be to examine the underlying assum p
tions which these authors make and to d iscuss the 
connections between their approaches.

(a)

(Ы

permutations

(c) “ —

- Q > -

permutations

~ < S > ~
♦

permutation*

A. Culoff (Unrenormalized) and Renormalized 
Quin turn Electrodynamics

In o rder for the reno rm aliza tio n  constants an d  
the unrenorm alized  p rop agato rs and vertex  p a r t s  
to be w ell-defined , i t  i s  n e c e ssa ry  to in troduce 
cutoffs. In addition to an u ltrav io le t cutoff A, w e  
wi l l  e lim inate in frared  d iv ergen ces by g iv ing th e  
photon a  nonzero m ass ц.  The in fra red  cutoff 
w ill be needed for the derivation  of the C a lla n -  
Symanzik equations for the e lectro n  p ropagato r 
given in Appendix B. W here no in frared  d iv e r 
gences a re  encountered, such a s  in the d is c u s s io n  
of the asym ptotic photon propagator which o c c u p i e s  

the bulk of the paper, the photon m ass  д w il l  b e  
set to zero . S p ec ifica lly , we introduce the c u t o f f s  
as  follows:

Ш The propagator for a bare  photon of fo u r- 
momentum q is  given by

-A 2
W * =( - f t .  ♦ ) т г ^ 7  7 3

+ 2 3U -  1 ) ^
1 - A ( 2 )

FIG. 2. (a) Lowest-order vacuum-polarization contri
bution to »й г)и1, . (b) Vacuum-polarlzatlon loope with 
four or more vertices. (c) Vacuum-polarlzatlon contri
butions to * iff2) which involve the loope with four or more 
vertices illustrated In <b).

with д 0 the b are  photon m ass and 4 a  guage p a r a m  
e te r . The reason for the p e cu lia r  choice of the 
longitudinal term  in Eq. (2) w ill becom e ap p aren t 
v ery  soon.

(ii) The low est-o rder v a c u u m -p o lariz a tio n  c o n 
tribution to the photon proper se lf -en e rg y  n(<?)uv 
comes from the ferm ion loop d iagram  i l lu s t r a t e d  
in F ig . 2(a). We ca lcu la te  th is contribution in th e  
following manner: F ir s t  we im pose gauge in v a r i 
ance to remove the quadratic d ivergence, and th e n  
we regu late  the ferm ion loop, with ferm ion r e g u 
la to r m ass A, to remove the logarithm ic  d iv e r 
gence.

(ili) A ll vacuum polarization  loops with four o r  
more vertices  [see  F ig . 2(b)] a r e  ca lcu la ted  by 
imposing gauge Invariance, which m akes them 
fin ite. The requirem ent of gau ge-in varian t c a lc u 
lation of fermion loops, together with the photon 
propagator cutoff specified in (i), rend ers  c o n v e r 
gent the vacuum polarization  contribution to ir(<7*),iu 
of the type illu stra ted  in F ig . 2(c). The photon 
propagator cutoff a lso  m akes fin ite a l l  e lec tro n  
se lf-energy  p arts and vertex  p arts , so our cutoff 
procedure is  sufficient to make the u n re n o rm a liz e d  
theory w ell defined.

We can now proceed to define reno rm alization  
constants and renorm alized ( i.e . , A-independent 
in the lim it A—•») л-point functions. The re n o r 
m alized electron propagator and electron-photon 
vertex  a re  introduced in the standard 11 m anner; 
we review in detail only the construction of the 
renorm alized photon propagator. Since ru le s  ( i i )
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and ( iii)  guarantee the gauge invariance of the pho
ton proper se lf-energy  part, we may write

*(<?)Uv = [-g ,,*  + <7**(<?*) • (3)

Letting at„ denote the canonical (bare) coupling and 
summing the s e r ie s  illu stra ted  in F ig. 3 to get the 
full unrenorm alized photon propagator D'r (q)uu, we 
get

1 -A2
<f -  u-o + аг»9ал(ва)[1 +OW/A2)\ q2-  A2

« ад -» у Л Д  <*>
We fix the unrenorm alized photon m ass д 0а by r e 
quiring Eq. (4) to have a pole at <f = ii2, i .e .,

Ml - j i 0J + a s(i2i(M2) = 0 . (5)

We then make the a lgeb raic  rearrangem ent

<? -  + a*</*»(<?*)

= q1 -  m3 + ad  *W) -  Д1я(д2)]

= (<f -  ( iJ ) [ l  + агья (м а)] + a » ? !  r t f )  ~ w<M2)] 

= n ’  + a i f l *<?*)- гКм”)]} ,
(6)

which introduces the photon wave-function renor
m alization constant Z,,

Za_ ,= 1 +a„v(ii2) ,  (7a)

and the renorm alized coupling constant a,

l  + a*n (/ iJ )
(7b)

Comparing Eq. (7) with Eq. (5), we note that the 
photon bare m ass can be reexpressed  as

(8)

indicating that it is  not an independent renorm al
ization constant. To get the full renorm alized pho
ton propagator, we m ultiply Eq. (4) by a ,  and let 
the cutoff Л become infinite, giving

°F '4 )^

Op <q)^* ------- -

FIG. 3. S e r ie s  which defines the fu ll unrenormalized 
photon propagator D'Fiq)^v .

aD'fiq)^- lim  a ^ ; ( ? ) u„

Л  g *“* <f )  <?- ti1+ atf‘ vc{q‘ ) 

+ a ( 4 - l ) —  - j T T ? '

with

vc (q2) = lim  [«(9*) -  и(ма)] -
Л - -

(9)

(10)

We can now see why the longitudinal part of the 
bare propagator had to be chosen as  in Eq. (2): 
Because of the tran sversa lity  of iliq2)^ ,  the lon
gitudinal part of the full propagator [Eq. (4)] is  the 
same as the longitudinal part of the bare propagator. 
Therefore, in order for the longitudinal part of the 
renorm alized propagator to be Unite, the longitu
dinal part of the bare propagator must become 
finite when m ultiplied by a t. This d ictates the 
overall factor of Z„ and the use of д 3 rather than 
д 02 in the denominator. The fact that the gauge 
param eter 4 a lw ays occurs In the combination 
(4 -  1 )Z3 w ill be of importance in  the derivation of 
the Callan-Sym anzik equations for the electron 
propagator given in Appendix B. On the other 
hand, the form of the longitudinal term s is  I r r e l
evant to the subsequent d iscussion of the G ell- 
Mann-Low and Callan-Sym anzik equations for the 
photon propagator, because the photon proper se lf- 
energy is  s tr ic t ly  gauge-invariant (rather than be
ing m erely  gauge-covarlant, as is  the case for 
the electron propagator and the electron-photon 
vertex) and hence rece ives no contribution from 
the longitudinal term s.

To conclude this section, we state the sp ec ia l
ization of Eqs. (7)—(10) to the case  of m ass le ss - 
photon electrodynam ics (д 2 = д оа = 0). We have

n . / \ _ (  _ . qyqu\ adc (-<?/rrf, q)QlDpkQiuu-(■“Ери + ^  1 ф

+ a ( S - l ) Qv Qv
(71*'

w ith

^ ( - fV m 8, a) = [ l  + aV'iq2)] ~l

(11)

(1 2)

a dlm enslonless function which contains a l l  the dy
nam ical effects of vacuum polarization, and with 
Ic (q*) now given by

= lim  [ttiq2) -  ir(0)] . 
A - -

(13)

B. The Gtll-Minn-Low Equation

We turn next to a review of the Gell-M ann-Low 
equation, which describes the asymptotic properties 
of the photon propagator. It w ill be useful to define 
an “asymptotic p art"  of the renorm alized photon
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propagator, which we denote by ad"(-q*/rr?, a), in 
the following manner: We develop adc( - t f/ n f ,  a ), 
in a perturbation expansion in powers of a  and in 
ea ch  o r d e r  o f  perturbation theory  drop term s which 
vanish as — while retaining terras which
are  constant or which increase logarithm ically . 12 

The resulting sum of constant and logarithm ic 
term s is  the "asymptotic p art"  and c le a r ly  has the 
form

ad~(-tf/rrf, a) = q(a) +p( a )ln (-cp/rrt)

+r(a)ln2{-<jVma) + * * (14)

Throughout the ana lys is which f o l l ow s  w e  will make 
the assumption that the nonasymptotic t e rm s  which  
we have n e g l e c t e d  in ea ch  o r d e r  o f  perturbation  
th eory  do not sum to g i v e  a r e su l t  which dominates  
asympto t i ca l ly  o v e r  the logar ithm ic s e r i e s  in Eq. 
(14). That is .  w e a s sum e that the a sympto t i c  b e 
hav io r  o f  the "asymptotic pa r t“ a d “ c o r r e c t l y  d e 
s c r i b e s  the asympto t i c  behavior o f  the exact  p r o p 
agator adc .li

To fac ilitate  the derivation of the G ell-M ann- 
Low equation we introduce a  notation which exp lic it
ly  ind icates the point where the subtraction in the 
photon proper se lf-energy is  made. Thus, letting 
x=~<f/irf, we w rite

adc[x,w, a ]  =at{l + a ( » [x ]  

* [x] = v(-n?x) = t t f )  . (15)

further re fe ren ce  to the point zero .
Let us now le t  x and w  both becom e la r g e . A c 

cording to our e a r l ie r  d iscu ss io n , the r igh t-h an d  
side of Eq. (20) becom es the lo garith m ic  s e r ie s  
ad~{x, a). For the left-hand s id e , we in troduce 
the asym ptotic assum ption that the only dependence 
on x and w, when both a re  la r g e , i s  through the 
ratio  x/w. An equivalent statem ent of the a sy m p 
totic assum ption is  that when * = - 9*/»”“ and 
w -  - q ' 2/nP a re  both la rg e , the quantity У< a *>>'
regarded a s  a  power s e r ie s  in a„ , becom es in d e 
pendent of the e lectron  m ass  m. 14 T h is a ssu m p tio n  
can actually  be ju stif ied  o rd e r -b y -o rd e r  in p e r t u r 
bation theory, e ith er by using the a n a ly s is  of 
C allan  and Sym anzik (see below) or by invoicing 
the theorem on cancellation  of in fra red  s in g u la r i t ie s  
of K inoshita15 and Lee and N auenberg.”  Equation 
(20) now becomes

a j )  [x/w, a j  = ad~(x, a ) ,

where, since w is  la rg e , we m ay re w r ite  Eq. (18) 
for a„  a s

In term s of the new notation, the usual renorm al
ized photon propagator is

de(x, a ) = d jjc ,0 , a ] ,  (16)

with the renorm alized  charge a given by

a= ordJO.O, a ] ,  (17)

Let us now im agine that, instead of malting expan
sions in powers of the usual fine-structu re con
stant a, we use a s  expansion param eter a  new 
f in e-structu re  constant а и defined by

= a d jw , 0 , a ] = a{ l + a(ir[ui] -  » [ 0])} "l . (18)

From the definition of Eq. (15), we may write

«■A[x. U>, a„ ] = a„{ l + a j i f j ]  -  ж[ю])}-‘

= ( a ; 1 + n [x ] - ir [w ]) -1, (19)

which on substitution of Eq. (18) becomes

a.dJix, w, a„] = { a* 1 + лЫ  -  г [ 0] + я[ж] -  я [ш]} -i

= a d jz ,  0 , a ) = adc(x, a ) . (20) ‘

On the right-hand side we have the usual photon 
propagator, which involves a subtraction at the 
nonasymptotic point zero; Eq. (20) states that th is 
can be reexp ressed  in term s of the new charge u ,  
and the photon propagator subtracted at w, with no

a „  = a d “ (w, a )

= q{a) +£(a)lnw +r(a) In2!*; + ■ (2 2)

Equation (21) g ives a functional re la tio n  for dc , 
which may be rew ritten  in a m ore usefu l form  a s  
follows: We Introduce the function <p(z) by the def
inition

!/-(z)=— *D [e, z]l°v I, »,
(23)

Differentiating Eq. (21) with resp ect to x, and then 
setting x -w ,  we get the d ifferen tia l equation

(24a)

(24b)

1 . d a w

Rewriting th is as 

dw d a w
^ " % (a „ )  1

integrating with respect to w  from 1 to * and using 
the boundary condition

a j „ . ,  = ? ( a ) =  o tr f " ( l ,  a )  ( 2 5 )

we get finally the G ell-M ann-Low equation,

d .  (26)dz
1 4 * =  I T T  .j«<a> ф(г)

It is  a lso  useful to have the inversion  form ula 
re lating the coefficients q(a), p{a)...........in the log 
arithm ic expansion of Eq. (22) to the G ell-M ann- 
Low function ifi(z). To get th is, we w rite  г  = a*
“ ad^(x, a) and make a  T aylo r expansion of z with 
respect to lux,
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QngT d" 
h  nl lb . . »

(2 1a)
а ^ ; и , а )  = о,,. (31c)

According to Eq. (24), the derivative d/d(lnx) may 
be rew ritten  aa

d dz d

(27b)

<f(lnx) d(lnx) dz 

giving the desired  formula*

« о » , |Я|
The function ф(г) appearing in these form ulas ie 
not exp lic itly  known beyond its  expansion to sixth 
order of perturbation theory, which Is1"

^ )=г( ^ +й +й ^ £(3)- ” 1+" - ) '  (29)

with £(3) the Riemann f  function.
As Gell-Mann and Low have shown, Eq. <26J pro

vides a powerful tool for analyzing the asymptotic 
behavior of the photon propagator, and leads one 
n atu ra lly  to distinguish the following two poss ib ili
t ie s : (a) The in tegra l fdz/tii(z) in Eq. (26) does not 
d iverge until the upper lim it becomes infinite. In 
th is case ad~(x, a )  — ”  as x— «о, and so the photon 
propagator is  asym ptotically divergent, (b) For 
some finite value z = a B, the function ф(г) develops 
a  sufficiently strong zero for J  a dz/t^z) to d i
verge . In this case a d “(x, a )— ac as x — «  and the 
photon propagator is  asym ptotically finite. We w ill 
r e s tr ic t  our attention from here on exclu sive ly  to 
case  (b), for which, as noted In the Introduction, 
we may write

a d “(x, a) = a€ +k(x, a ) , (30)

lim  h(x, a )  = 0 .

Within the category of case (b), we wish to fu r
ther distinguish between two different types of pos
sib le  asymptotic behavior of the theory:

Type 1. The physical f ine-structu re constant a  
is  equal to the p articu lar value a ,  which sa tisfie s

<?(«i) = «о • (31a>
According to Eq. (21), the coefficient of (lnx)" with 
л a  1 is  then

Eo(o1

(31b)

and the logarithm ic s e r ie s  reduces to its  constant 
term  alone,

In this case the G ell-M ann-Low equation degener
ates to an in tegra l over an in terval of vanishing 
size located at the point where ф _1 Is infinite.

Type 2. The physical f ine-structu re  constant a 
d iffers from a , .  The coefficients of the logarithm ic 
term s In Eq. (28) then do not vanish and ad~(x, a) 
is a nontrivial function of x which approaches a0 In 
the lim it as x — ■». In this ease the G ell-M ann-Low 
equation Is nondegenerate, with the in tegral extend
ing over an in terval of finite s ize , and a  is  an un
determined param eter.

C learly , as far as behavior of the photon propa
gator Is concerned, the more general c la s s  of 
asym ptotically finite solutions with type-2  behavior 
is  just as satisfacto ry  physica lly  as the solution 
with type-1 behavior. (We w ill find additional e v i
dence for this statement when we study the asym p
totic electron propagator below.) Hence following 
Gell-Mann and Law, we conclude that requiring 
asymptotic fin iteness of the renorm alized photon 
propagator fixes a ,̂ but does not determ ine the 
fine-structu re constant o.

To conclude this d iscussion of the G ell-M ann- 
Low equation we give a sim ple, concrete i l lu s t r a 
tion of type-2 asymptotic behavior. Let us make 
the custom ary assumption that ф(г) is  regu la r and 
vanishes with a sim ple zero and negative slope at 
z = a 0. We ignore the fact that ф(г) a lso  vanishes 
for sm all z and rep lace ф by a lin ea r  approxim a
tion aver the integration in terval In the G ell-M ann- 
Low equation,

ф(,2)~ ф'{аа){а0 - z ) , ф'(а0) <0 . (32)

Then Eq. (26) can be im m ediately integrated to give

lnx = — Ц  In [? * -> ! .?> ~ a ° 1 . 0 3 )ф’(а0) L < ?(a )-aо J

which can be rew ritten  as

ad"{x, a) = 0!0 + [? (0!) -  a 0]x *’<<’01

= , (аЫ ?( а ) -а а] Х ;*-'(у ™ > "
(34)

We see that the logarithm ic s e r ie s  for ad~{x, a) is 
nontrivial, with a ll powers of lux present, but that 
it sums to a  function which approaches a„ asym p
totically. The nonasymptotic p iece A, which is 
given in our example by

h(x, a) = [9 (a ) -  a 0]x* <c"0>, (35)

vanishes asym pto tically  as a power of x Indepen
dently of the value of a.
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C. The Callui-Syminuk Equation

A very powerful and elegant method for studying 
the asymptotic behavior of renorm alized perturba
tion theory has recen tly  been developed by Callan 
and Symanzlk . 10 We b rie fly  review here the d e r i
vation of the Callan-Sym anzik equation for the r e 
normalized photon propagator,11 and Indicate its  
connection with the Gell-Mann-Low equation d is 
cussed above. Our starting point is  the formula 
re lating the renorm alized and unrenorm alized pho
ton propagators,

a )_1 = Z ,(ЛаЛя*, a ) [ l  + a t7r(<js) ] , (36)

where we have exp lic itly  indicated the cutoff de
pendence of 2 , .  Since the photon propagator is  
gauge invarian t, the quantities appearing In Eq. 
(36) have no dependence on the gauge param eter 
Let us now vary  the physical electron mass m,

with the canonical (bare) coupling a t and the cutoff 
Л held fixed. Under th is  v a ria t io n  the b are  e le c 
tron m ass and the p h ys ic a l coupling a  both 
change, since the ren o rm alizatio n  conditions g iv e  
both of them an im p lic it  dependence on m. Thus, 
in sofar a s  dc and Z3 a r e  concerned , v a ria t io n  of 
m  is  described  by

d a d a  a m  —— = m - — + m - — —  , dm  d m  Вт 9 a
(37)

while for the bare  propagator 1 + which
depends on m only through mM the m ass  v a ria t io n  
is  described by

d dm .  3n|----  = m ---- * —— sdm dm  3 m,
(38)

Equating the m ass v aria tio n s of the le f t-  and right- 
hand sides of Eq. (36) g ives

/  a da  э \ d . . .—  + m —  —  Id ' - m — dc 1 
\  a m dm  a a ]  dm

= Z,dc ~l + ат^-ро  - 5 — %.dm  3 dm  Эпц,
(39)

The term  3ir/am0 on the right-hand side of Eq. (39) 
is  sim ply in terpreted  a s  a  photon-photon-scalar 
vertex part, with the sca la r  current carrying zero 
four-momentum. It can be shown11 that th is v e r 
tex part i s  made finite by multiplication by the r e 
norm alization constant m,, and so we can write

TTi(93/»"a, a ) . (40)

It can be further shown10, “ that the quantities fHa) 
and 6(a ) defined by

(41)

a re  cutoff-independent and therefore, as indicated, 
a re  functions of a  alone. F inally , we can re late  
the quantity mda/dm  appearing on the left-hand 
side of Eq. (39) to 0 (a), a s  follows:

d a  d . . d

= a Z ,* ,m ^ Z , - a 0 ( a ) .  (42)

Putting everything together we get the Callan- 
Sym anzik equation for the photon propagator,

[m *e)(a a>"

= a [ l  + 6(a)]frrS(47”*3, «>•
(43)

Let us now le t - i f / n f  become in fin ite . O rder by 
o rder in perturbation theory, the left-hand side  of 
Eq. (43) becomes

[m ' £ s +* 4 e ^ " 1) ] a ) "1’ <44)

while a  sim ple application of W einberg’ s  theorem  
ehows that, again order by o rder in perturbation  
theory, the right-hand side of Eq. (43) v an ishes.
So we learn  that d~ s a t is f ie s  the d ifferen tia l equa
tion

(45 a)

Interestingly, when we substitute Eq. (37) for 
md/dm into Eq. (42), we le a rn ”  that Z3( a )  
sa tis f ie s  a differential equation identical In form 
to Eq. (45a),

[ » l ) ] * , ( A7 « \  «0 = 0 .  (45b)
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For the subsequent d iscussion, it w ill be useful to 
reexp ress  Eq. (45a) as a  differential equation for

where a - a , ,  we have $oO = 0. Equation (41) then 
reduces to

[»« э ^  + ̂ “ ) ( а 7 £ +1)] de"(-9,/w*. a ) = 0 .  (46)

We w ill now show that Eq. (46) is  completely 
equivalent to Eq. (26), the Gell-Mann-Low equa
tion. Letting x, as before denote -cf/rrt, we r e 
w rite  Eq. (46) In the form

\^2 x l x * a ^ a ~̂£a\ a d ~̂ x’ « ) * ° *  (47)

T his equation has the in tegral

ad~(x, e ) = * - 1[ ln jc + J  (48)

with the function Ф determined by the boundary 
condition

Ф [а4Г (1 , о)] = * [fl(a )] -  J T (49)

and with с an a rb itra ry  constant of Integration.
(The presence of с m erely reflects the freedom of 
changing 4 by an a rb itra ry  additive constant.) In
verting Eq. (48), we thus can write

x— ad~(x, a )  = 0 , (54)

1п* = Ф[ a£/e"(x, a)] -Ф (« (а )] (50)

which, if  we w rite Ф[и] In the in tegral form 
"■ dz

(51)
<||(г)«[ф'(*)]■*, 

can be further recast as
f ad? fr.a) dz

lnx
_ - L >  WzУ’

(52)

which is  just the Gell-M ann-Low equation. C learly , 
the derivation which we have Just given does not 
involve the asymptotic assumption made In the d is 
cussion im m ediately following Eq. (20); in effect, 
the Callan-Sym anzik route to the Gell-M ann-Low 
equation rep laces a  statement about in frared  be
havior (m  Independence of a wdj[x, w, a j  as m - 0) 
with a  statement about u ltrav io let behavior (asym p
totic vanishing of f  n s ) which can he Justified in 
perturbation theory by the use of Weinberg’ s the
orem .

Comparing Eq. (51) with Eq. (49), we can read 
off the following functional relationship between 
the Callan-Sym anzik function 0(a) and the G ell- 
Mann-Low function ф(г),

a<7 (e)
(53)

Thus, In the case of type- 1 asymptotic behavior,

which has, as expected, the Integral

adc"(x, a ) = a 0. (55)

S im ilarly , Eq. (45b) te lls  us that when 0(a) = 0, 
the photon wave-function renorm alization Z3 is  
cutoff-independent. As shown in Appendix B, the 
Callan-Sym anzik equation for the renorm alized 
electron propagator also  has the function 0(a) as 
coefficient of the Э/Эа term . Consequently, in 
the case of type- 1  asymptotic behavior th is equa
tion also sim p lifies, and leads, by a  simple argu 
ment, 11 to an elem entary scaling form for the a s 
ymptotic electron propagator. C learly , in the case 
of type-2  asymptotic behavior we have 0(a) *0  and 
must deal with the Callan-Sym anzik equations in 
their full complexity. Even so, we find in Appen
dix В that the scaling form for the asymptotic e le c 
tron propagator s t ill holds, again indicating, as 
asserted  above, that there is  no reason for favor
ing the type- 1  solution over the more general c la ss  
of asym ptotically finite solutions with type-2  a s 
ymptotic behavior.

D. The Johnson-Bflker-WiDey Program

We conclude our review by surveying the recent 
work of Johnson, Baker, and W illey (JBW) dealing 
with the asymptotic p roperties of e lectrodynam ics. 
As noted In Sec. I, th is work has led to two p rin 
cipal resu lts : a sim plified form of the G ell-M ann- 
Low eigenvalue condition for a B, and a  dem onstra
tion that if the eigenvalue condition is  satisfied , 
then the electron bare m ass and wave-function 
renorm alization constant 2, can be fin ite. We d is 
cuss these two aspects in turn.

1. Simplified Eigenvalue Condition
A key ingredient In the JBW formulation of the 

eigenvalue condition is  the use of “vacuum -polar- 
izatio n -in sertio n -w ise” summation of the photon 
proper se lf-energy  part n. The basic Idea Is to 
firs t  w rite down a modified skeleton expansion for 
the photon proper se lf-energy  in which a ll d iagram s 
with internal vacuum polarization insertions a re  
omitted. Some typ ical d iagram s which appear in 
th is expansion a re  illu stra ted  In F ig. 4; note that 
they s t il l  contain internal electron se lf-energy  and 
electron-photon vertex p arts . The next step is  to 
rep lace a ll in terna l photon lines appearing in the 
expansion by full renorm alized photon propagators 
оА'г(я)и» (we indicate exp lic itly  the coupling con
stant a  associated  with the ends of the photon line).
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(a) ~ < D ~

4 I H >
FIC. 4 . Typical d iagram s which appear In the modified 

skeleton expansion for the photon proper se lf-energy part 
*. AH proper d iagram s a re  Included which do not have 
Internal photon aelf-energy in sertions. D iagrams (a) 
have a single fermion loop, while those labeled (b) con
tain two or more fermion loops.

This recipe leads to a  "vacuum -polarization-in
sertion-w ise” summed expression for the photon 
proper se lf-energy ж, which, it i s  easy to see, 
co rrectly  includes a ll  of the relevant Feynman 
diagram s.

We next introduce the assumption that the renor
m alized photon propagator is  asym ptotically finite, 
which allows us to w rite  It in the form

J]

(56)

a ll lin es  in the graph. R eferr in g  to Eq. (56), we 
see that each in terna l photon line in  the o v e r-a ll 
in tegration contributes two p a r ts , a  p a rt propor
tional to a 0 and a  p a rt proportional to h. As we 
have seen in Eqs. (32) —(35) above, the conventional 
assum ptions about the nature of the zero  of ф(я) 
imply that h d e c rea se s  a s  a  power of -ф / п?  a s  
-д 2/ т г ->*>. As a  re su lt, any contribution to the 
o ver-a ll in tegration  Involving one o r m ore fac to rs  
h converges, and leads to an a sym p to tica lly  fin ite 
contribution to nc . Hence the asym p to tica lly  lo ga 
rithm ic part of irc is  co rre c tly  obtained by n eg lec t
ing h in  each in terna l photon propagator, so that 
Eq. (56) becomes

a ^(<7)„„= - g uv -^f+gauge te rm . (57)

with h vanishing asym ptotically. i n order for this 
assumption to be self-consistent, we requ ire  that 
the renorm alized photon proper se lf-energy part 
»«, obtained by inserting Eq. (56) in  the skeleton 
expansion as outlined above, must itse lf  be asym p
to tica lly  fin ite. That is , no powers of Inf-gVm2) 
may be present in the asymptotic behavior of ir .
To determ ine the asymptotic p roperties of v  we 
m ust consider each contributing graph (or more 
exactly , each gauge-invariant set of graphs re lated  
by permutation of photon v ertice s) and examine 
the convergence p roperties of both the o ve r-a ll in -
Л - Г Г 0'1’ 4l,nVOlVlBg 311 lin es in g™ph, and the 
subintegrations involving subsets of these lines.
In dotag th is  we m aintain our ‘V acuum -polarization-
in sertion -w ise"  summation by treating internal
photon p r? a g a to r s  a s  complete en tities, described

У Eq. (56), ra ther than a lso  breaking these ud

Г А Г Г * *  graphS‘ By ° " r «sum p tion  of 
Eq. (56), the in ternal photon propagators cannot

1°Karlthmlc te rm s‘ Subintegrations 
Г ь Г Г ™  ectron_8e M-energy and electron-

Г Г Г  PT B 3180 lead *° n° l0^ i ‘ hms, because a s  shown in Sec. HD2,  there is  a  gauge (the

finitP WhiCh makes №ебе asym ptotically
imte It can be shown’ - -  that there are  no other

behavioT'of8 ^ ^ ^ a t i o n s ;  hence logarithm ic 
behavior of a  gr*ph contributing to can only be 
assoc ia ted  with the o ver-a ll integration

Thus, we a re  led to a sim p lified  model for irc (the 
so -ca lled  JBW model) in which no Internal photon 
se lf-energy  in sertion s appear; a ll  in te rn a l pho
tons a re  described  by free  p ro pagato rs coupling 
with the asym ptotic coupling strength  a 0. An a n a l
y s is 1' “ of the asym ptotic behavior of vc in th is 
model shows that a  sing le  logarithm  i s  p resen t 
(corresponding to the fact that a s in g le  subtraction  
suffices to make the o v e r-a ll in tegration  converge), 
so we get finally

(58)~  g{a0) +/(a 0) ln( -  t f/ n ? ) .

Self-consistency of the assum ption of asym ptotic 
fin iteness of irc now requ ires

/ (а„) = 0 , (59)

which is  the JBW form of the eigenvalue condition. 
Let us re ite ra te  that Eq. (59) does not involve a l l  
vacuum polarization graphs [a s  does the G ell- 
Mann-Low eigenvalue condition ip(a0) =0] but ra th e r  
only the re str ic ted  c la ss , illu s tra ted  in F ig . 4, 
which have no Internal photon se lf-en e rgy  in s e r 
tions.

Implicit in the derivation of Eq. (59) a re  ra th e r  
stringent convergence assum ptions. These a r is e  
because the argument leading to Eq. (59) invo lves 
replacing the lim it of an infinite sum [the exact 

is  an infinite sum of skeleton grap hs with 
photon se lf-energy  insertions] by the sum of the 
lim its  of the Individual term s. [Eq. (58) is  the sum 
of skeletons with the photon se lf-en ergy  in sertion s 
replaced by the ir asymptotic l im its .]  A n ece ssa ry , 
but by no means sufficient, condition for the in te r 
change of lim it with sum to be valid  is  that the r e 
sulting se r ie s  f ( a B) be convergent. T his fact w ill 
be of importance in the discussion  of “loopw lse” 
summation given In Sec. IV below.

In their recent papers , 7 B aker and Johnson have 
extended in two respects the treatm ent of the e lgen -
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value equation sketched above: F irs t , they have 
shown that / (a 0) = 0 Im plies that a 0 is  also  a  zero 
of the G ell-M ann-Low function ф(у), and secondly, 
they have shown (again assum ing “vacuum -polar
izatio n -in sertion -w ise"  summation) that Eq. (59) 
can be rep laced by the much sim p ler eigenvalue 
condition

F [ l l ( a o) = 0 , (60)

where is  the single fermion loop part of f (y )
introduced in Sec. I. The f irs t  assertion  is  proved 
by an argument (which we omit) based on properties 
of the modified skeleton expansion, showing that 
ф(у) and f ( y )  a re  functionally related,

* Ы - Е  Ш \ ЯШ  *■1
= / (y)c ,(y )+ / 2(y)c,(ji) + ‘ (61)

Hence a zero  o f / i s  n ecessar ily  a  zero of ф. The 
second assertio n  follows from a  sim ple argument 
based on the Federbush-Johnson theorem; we give 
d e ta ils  in the case , since the resu lts are central 
to the discussion  of Sec. Ш below. We assum e that 
the G ell-M ann-Low eigenvalue equation ^(y) = 0 has 
a  solution y= a a so that the renorm alized photon 
propagator takes the form of Eq. (1). If we now 
le t the electron  m ass m  approach zero, we learn  
from Eq. (1) that the renorm alized photon propa
gator dc approaches its  asymptotic value a 0 for 
any <f *0 . This means that in a theory  o f  m a s s l e s s  
spin-\ e l e c t r o d yn am ic s  sa t i s fy in g  the e ig enva lue  
condition, the fu l l  r eno rm a liz ed  photon propaga to r  
i s  exa ct ly  equal to the f r e e  photon propagator ,  with 
coupling constant at0. Consequently, the absorptive 
part of the photon proper se lf-energy vanishes;
i .e . ,  we have

<0|ju Wj„(y)|0) = 0, (62)

where j v is  the electrom agnetic current operator. 
By exploiting posltiv ity of the absorptive part of 
the fu ll photon propagator, Federbush and John
son” 1 ao have shown that the vanishing of the two- 
point function in Eq. (62) im p lies that }v(x) annihi
la te s  the vacuum, and hence the general 2n-point 
curren t corre lation  function vanishes as well,

<0|r[7Pl(x1)j„J(Ara) ” v |ljii(xJ„)]|0) = 0, n * 2 .  (63)

Equation (63) is  the essen tia l tool which allows us 
to sim plify the eigenvalue condition. Let us take 
the difference between the photon se lf-energy  part 
irc evaluated at four-momenta q1 and q'1. Since the 
fu ll photon propagator is  equal to the free photon 
propagator in the m ass le ss  theory, this difference 
m ay be calculated from the skeleton d iagram s of 
F ig . 4, and according to Eq. (58) is  given by

The contributions to Eq. (64) may be divided into 
two basic types: those containing a single closed 
fermion loop [F ig. 4(a)] and those containing two 
or more closed fermion loops [F ig. 4(b)], The sum 
of contributions of the second type can be recast 
as a sum involving current correlation  functions 
which have been linked together by photon lines, 
and therefore vanishes by Eq. (63). Thus, the 
vanishing of the logarithm ic term  in Eq. (64) im 
p lies that the sum of contributions of the f irs t  type 
must vanish by itse lf, which gives the sim plified 
eigenvalue condition

l ?Cll( a 0) = 0 . (65)

C learly , the sam e argument applied to Eq. (63) 
shows that the sum o f  s in g l e  c l o s e d  f e rm io n  loop 
contributions to the g en e r a l  In -poin t cu r r en t  c o r 
re la tion  function  (я *  2) must vanish by i t s e l f  when  
the coupling is ar0 and the f e rm i o n  i s  m a s s l e s s ,  a 
resu lt which w ill be of great utility  in the next se c 
tion. We s tre ss  in closing that the powerful re su lts  
which we have Just described are  consequences of 
posltiv ity of the spectral function of the photon 
propagator. In p articu la r , since the sing le  closed 
fermion loop contributions to u,. do not by them
selves have a positive spectra l function, the meth
ods which we have used cannot be used to prove the 
converse resu lt that a zero of FCll y ]  ie n ecessa r ily  
a zero of f ( y )  and ф{у).2>

2. Asymptotic Electron Propaga tor  and 
Fin iteness o f  Za and m̂

To analyze the asymptotic electron propagator, 
JBW employ the sim plified model described above, 
in which the asym ptotically vanishing part h of the 
photon propagator is  neglected. Each in terna l pho
ton is  thus represented by a free propagator, cou
pling with the asymptotic coupling strength a 0. In 
this model it is  straightforw ard to determ ine the 
asymptotic behavior of the renorm alized electron 
propagator and of the renorm alization constants 
Z2 and nig, either by using renorm alization group 
methods7 or by use of the C allan-Sym anzik equa
tion ,1" with the resu lts

/ Ла \T<“ l)/»
S>(/>)*1 /-ч/ a , ) ^ - ^ y

x ^ - 7 n F j( a ,)C J(MVmJ, a , ) ^ - ^  * J ,

(66)

Za= C,(nVwi*. a,)l
д*\

I да\

ii'iq2) -  Ti'W2) = Л «») inW/q'1) ■ (64)

m0=C2(ti2/m2,

In w riting Eq. (66) we have used the fact that in the
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JBW model the mapping q(a) is  effectively the unit 
mapping 4(a ) = a , and so Eq. (30) te lls  us that

(67a)

The function 6(a, )  is  defined in Eq. (41), while the 
definition of y( a^) is  given in Appendix B. The 
transformation properties of Eq. (17) under changes 
in the gauge param eter £ can be explic itly  worked 
out,” and for the exponents у  and 6 we find (primed 
quantities re fer to gauge param eter unprimed 
to gauge param eter (,)

а'-в=о.
(67b)

Thus, if  we choose to satisfy

( V z r iU ' - O + r ^ ,  *) = o,

then we have y' =y(alt {') = 0 and the electron  wave 
function renorm alization 2 ' rem ains finite as 
Л—» .  Furtherm ore, if 6 (a ,)> 0 , the electron bare 
m ass mD vanishes in the lim it of infinite cutoff, in
dicating that the physical m ass of the electron is  
en tire ly  electrom agnetic in origin. The apparent 
logarithm ic d ivergence of m. In perturbation theory 
re su lts  only when

яц,= С^/тт?, а , ) т е х р [ -^ 6( а 1) lnfAVwi2)] (68)

is  expanded in a power s e r ie s  In ar,= a 0 and i l le g a l
ly  truncated at a fin ite order. Thus, in the model 
with the photon propagator replaced by its  finite 
asymptotic part, a l l  perturbation theory infin ities 
can be elim inated, provided only that f if a j  >0 .

A litt le  caution is  required , however, in applying 
the resu lts  of the JBW model to the full theory, 
where the photon propagator contains the nonas
ymptotic p iece h in addition to the asymptotic part 
a„. Because the renorm alization counterterm s 
which a re  subtracted In going from the unrenor
m alized to the renorm alized electron propagator 
a re  evaluated at the nonasymptotic four-momentum 
p=m, it is  easy to see that h makes a nonvanishing 
contribution to the asymptotic renorm alized e le c 
tron propagator. Thus Eq. (66) does not n ecessar ily  
apply to the full theory. In Appendix В we analyze 
the effect of h on the asym ptotic behavior of 
5'r(P)~'- Assuming that к vanishes asym ptotically 
as a power of - t f/ n t ,  we find that the f o rm  of Eq. 
(6 6 ) and of the exponents у  and 6 a re  unaltered, 
a l l  of the effects of h being confined to changes in 
the constants C1 and Ca. 22 Hence, when ft vanishes 
a s  a  power, the conclusions obtained from the 
JBW model regard ing the fin iteness of Z2 and m, 
apply to the fu ll theory as well.

III. THE ESSENTIAL SINGULARITY AND ITS 
CONSEQUENCES

We continue in the p resen t section  to w ork with 
the “vacu u m -p o lariza tio n -in se rtio n -w ise"  sum m a
tion scheme described  above in Sec. DD1.  We 
show that the argum ent lead ing to the s im p lified  
eigenvalue condition of Eq. (65) h as the fu rth er im 
plication that F [ l l (y) v an ishes at у  = a 0 with a  zero  
of infin ite o rder, I .e ., an e s sen tia l s in g u la r ity .
We find that a s  a  re su lt, the nonasym ptotic p iece  
h of the photon propagator v an ishes a sym p to tica lly  
much more slowly than any power of - t f/ m 2, and 
we d iscu ss consequences of th is  both for the e ig en 
value condition and for the asym ptotic behav ior of 
the electron propagator.

A. Existence of an Essential Singularity

Since our argument m akes extensive u se  of the 
p roperties of the sing le-ferm ion -loop  2 n-point 
functions, we begin by introducing a  com pact no
tation for these. Let u s denote the sum of s in g le -  
fermion-loop contributions to the photon proper 
se lf-en ergy  by

y ) , (69)

where we have exp lic itly  indicated the dependence 
on the ferm ion m ass m and on the coupling con
stant y. The s e r ie s  of d iag ram s defining я* 11 h as, 
of course, a lready been exhibited in F ig . 1. A c
cording to the resu lts  of Sec. IID, when -<?/m 1 
approaches infinity has the asym ptotic b e
havior

irtn (<7*;m, y)= Gl l l (y) +Ff l l (y) Xni-^/rrf) 
+vanishing te rm s , (70)

and the assumption that the Gell-Mann-Low func
tion if vanishes at y= a a im plies that the coefficient 
of the logarithm In Eq. (70) also vanishes for th is 
value of the coupling,

F l l , (ao) = 0 .  ( f l )

Let us next denote the sum of sing le-ferm ion -loop  
contributions to the genera l 2n-point cu rren t c o r 
relation function (n a  2 ) by

(72)

the se r ie s  of d iagram s defining T jJ1 is  shown in 
F ig . 5. In each order in the power s e r ie s  expan
sion in y, a l l  d istinct permutations of ex ternal and 
Internal photon v ert ice s  a re  included in As a
resu lt, T^i1 is  Independent of the gauge p aram ete r
4 appearing in the internal photon propagators and 
sa tis f ie s  current conservation with respect to the 
external photon indices,
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+ permutations + parmulalioni
2n

« pe rm u ta t ion s

FIG. 5. a im  of alngle-ferm lon-loop d lag ram i which 
defines the 2n-polnt function appearing In Eq. (72), 
with the dependence on the coupling constant > Indicated 
ex p lic it ly .

^ л д an'rf >1 -  n
Я г .  ■ ' i v  u - (73)

As was shown in Sec. HD, when the fermion m ass 
m is  zero and when > is  equal to a 9 the general 
2n-point curren t corre lation  function vanishes,

It*,! ...........V «0 ,f lre) = 0 . (74)

F inally, le t us define a modified two-point function

W\ "Ц y) (75)

by the procedure of linking 2л — 2 = 2(n — 1 ) external 
vertices of the general 2n-point function with n — 1 

free photon propagators and Integrating over the 
four-momenta c a rr ied  by these propagators, thus 
leaving a vacuum -polarlzation-like tensor of sec 
ond rank. Because we have enforced current con
servation [Eq. (73)] and because there are  no pho
ton se lf-energy Insertions, this second-rank tensor 
has only an over-a ll logarithm ic divergence which 
can be made finite by a single subtraction. A s im 
ple way to perform the subtraction is  to use the 
usual P au li-V llla rs  procedure of taking the d if
ference of Eq. (75) for two distinct values of the 
fermion m ass, giving the finite expression

[>& V ; m ,  y)  -  V ;  rtf, + qvqj) = j  - ‘ ' (“ i t
<7-i‘

_ 7 < i l'  mu

For the sake of compactness in w riting the internal 
photon propagators, we have restricted  ourselves 
to the Feynman gauge, a convention to which we 
w ill adhere henceforth.

Our next step is  to estab lish  the following funda
mental identity33 relating the modified two-point 
function iTjJ1 to a derivative of the photon proper 
se lf-energy  part u**1,

2""‘ m,  у) -  n I'Htf’.m',  y)]

= V ;  »*> y) -  m', >) •

(77)

To prove Eq. (77), we develop the right-hand side 
and the bracket on the left-hand side in power 
s e r ie s  expansions in 31,

* i4l(4*;wi, y ) -  *£l1(e“;m ',y)  = S  y >̂e '}iW\m,Tn'),
J= 0

(78)

№(?■, m, у) -  rn\ у) = Й  У Jiii] ,(<?; m, m ') ,
J =0

s o  that Eq. (77) a sse rts  that 

2 —i l ? + n - l ) t  ^  ^  = , t i l  ^  TO.)

(79)

To verify  Eq. (79), we proceed in two steps: F irst ,

‘ м jn-jU a n “ Яи • e • * Qn-it Яя-ir Qt ~Q\ ЛЦ >) 

я* • ■ PaA-ai<2i'-a'|t'(<7i> » Qn-if ~4л-и Qi "Qt зО] -
(76)

I
we show that the functions on the le ft- and right- 
hand side a re  the sam e, apart from a  m ultiplicative 
constant, and then we give a  sim ple combinatoric 
argument to show that th is constant is  In fact
2 - l0  + n - l ) I / j l .

To prove the f irs t  assertion , we re fe r  to F ig. 1 
defining nj11 as a power se r ie s  in y. We see that 
®e!1/«i»-i(<?J; m') *s jus* the sum of a ll d istinct 
single fermion loop vacuum polarization contribu
tions containing exactly j  +n -  1 in ternal v irtua l 
photons (with the logarithm ic divergence elim inated 
by taking the difference of expressions with fermion 
m asses m and m‘). Next, we re fe r  to F ig. 5 and 
Eq. (76) which respectively define and ttJJ1. 
Since the у  dependence of " i i1 com es en tire ly  from 
t£*I, we see that contains j  Internal v irtua l 
photons (the ones which appear In the У term  of 
T^') plus the и -  1 additional v irtual photons inserted 
by the definition of Eq. (76), o r a  total of j  + n -  1 
in a l l . Thus iW\m, m') is  a lso  a  sum of (m ass 
differenced) single fermion loop vacuum p o lariza
tion d iagram s containing exactly j  +n — 1 internal 
v irtu a l photons. Furtherm ore, it is  read ily  seen 
that a l l  of the relevant d iagram s appear in the sum 
with equal weight because i s  completely sym 
m etric in the v ariab le s  of the 2n external photons. 
Hence must be a multiple of the con
stant of proportionality К reflecting the fact that 
in obtaining the two-point function by linking 2 n -  2 
external v e rtice s  of the 2n-point function, there
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wi l l  be multiple counting and each relevant d ia
gram  of the two-point function w ill appear many 
tim es.

To complete the derivation of Eq. (79) we must 
calculate the proportionality constant. This is  
eas ily  done by noting that

(80)

the numerator and denominator in Eq. (80) being 
the total number of distinct Feynman graphs ap
pearing in and in respective ly . Let 
us define to be the total number of distinct 
Feynman graphs with j  internal v irtua l photons 
which contribute to the single fermion loop 2n-point 
function. Then from the definitions given above 
we c le a r ly  have

к/i J i l  \ -  W (81)" ( • t . l o - n  -  •
The com binatorics of calculating N2„kJ goes as 
follows. We hold one external vertex fixed on the 
ferm ion loop to define a  starting  point. There are  
then (2« + 2j -  1)1 d iagram s obtained by permuting 
the rem aining 2я -  1 external v ert ice s  and the 2j 
v e rt ice s  which term inate in ternal photon lines. 
However, d iagram s obtained by permuting any of 
the j  Internal photon lin es , or interchanging the 
ends of any of these lin es , a re  identical, and so 
we must divide by a factor of 2Jj l  to get the num
ber of d istinct Feynman d iagram s. Thus we getM

N.

and hence

(2я + 2j -  1)1 (82)

(2n + 2j -  1)1 / [ 2 + 2 ( ; -  1) -  1]1
2'j\ / - ш - D l

«2 ’ - ,( ;  + я -  l ) l/ j l , (83)

completing the proof of Eq. (77).
We now have a l l  the apparatus needed to show 

the existence of an e ssen tia l s in g u la r ity . L et us 
take the lim it tn, m '— 0 in  Eq. (77), with m/m' and 

fixed and with у  = a 0. The left-hand  side can 
be evaluated from the asym ptotic exp ress io n  in 
Eq. (70), giving

lntm'V™3) • (84)
*■<«0

To evaluate the lim it  of the right-hand  sid e , we 
re fe r to the definition of

V ;  »h y) -  * » iV ;  У)
given in Eq. (76). We would lik e  to be able to in te r 
change the subtraction in the square b racket on the 
right-hand side with the in tegrations, giv ing

m, y) -  m ', у ) ] ( - ^ г и» + 4,iQv) = Im~ ^

with

г f  4*q. / icr*'lM2\ (  £t pr an- 2\ . . » 
(2r)4 " '  (2b)4 \  q7~)  "  \ 0^1? ..........q'~" Ч' ~ (Be)

For gen era l va lues of y, th is interchange is  not allowed, because IM is  a  logarith m ica lly  d ivergent In tegra l 
of the genera l type

Г - %  (®7)Р + Г7Г

and hence the right-hand side of Eq. (85) is  an ambiguous expression of the form «  — When y=  how
eve r , the situation is  different, because Eq. (74) te lls  us that

-<?>.......... 9.-1, q, -q, 0, a„) = 0 <88'
and consequently

dan-j»,.-аиЛви ................. $■-!■ - 0 . - i ,  «, a 0) <89'
r

is  proportional torn2. 21 As a  resu lt, the conver- The interchange in Eq. (85) is  now le g a l , 21 and
gence of Eq. (86) is  improved by two powers of taking the lim it m, m '-  0 g ives
momentum over what it is  for genera l values of y}
and hence when у  = a w becomes a  convergent lim  [ * i i 1(^a; m, y)  -  *" '• + qv q“^
Integral of the type1"

_ « l im / , -  lim  /«‘ = 0 .
Г  c t n d p  о

j 0 (p + T ^ X p  + c m 1) '  ' 9 0 * ( 9 1 )
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Substituting Eqs. (91) and (84) into Eq. (77) we get, 
fin a lly , the fundamental resu lt

A »t*l
n * 2 . (92)

It is  important to note that Eq. (88) does not imply 
the stronger resu lt

l i m /„ = <),
ib-*0

(93)

as Is read ily  seen by taking the m — 0 lim it of the 
specific example In Eq. (90),

lim  f  
« - 0  -'o

cm 2 dp с  Inc
(p +ma)(p + cm 2) ~ с  -  1

(94)

Thus, our argum ent g ives us no Information about 
G ^(ji), the ferm ion -m ass Independent part of the 
asym ptotic expression for rfex\<f\ m, y) given In 
Eq. (70).

To sum m arize, we have learned that the function 
F [l,(}i) and all o f  its d e r iva t iv e s  a re  zero at the 
point y - a 0, where a 0 is  the zero of the Gell- 
M ann-Low function ф(у). In other words, F 111 van
ishes with an e ssen tia l singu larity  at a„. It is 
c le a r  that a  s im ila r  argument can be applied to the 
general 2n-point function by using an identity,
analogous to Eq. (77), which re la te s  the derivative 
d mT^1/dy"to  an in tegra l over the (2n + 2m)-point 
function T £!*j„ . Thus we additionally learn  that 
when the ferm ion m ass m is  zero, the single fe r
mion loop 2n-point function and a ll of its у  deriva
tives also  vanish at a a. This fact, together with 
our resu lt for F M, gives us information about a ll 
of the loop d iagram s appearing in the modified 
skeleton expansion for / (y), from which we learn  
that / also  has an infinite order zero at or0. F inal
ly , re fe rr in g  to Eq. (61), we conclude that the 
G ell-M ann-Low function ф(у) vanishes with an e s 
sen tia l s ingu larity  at у  -  ate.11 In F ig. 6 we sum
m arize  the complete chain of reasoning which we 
have used. C learly , our conclusion shows that the 
custom ary assumption, that a 0 is  a sim ple zero 
and a  point of regu la r ity  of ф, is  in fact incorrect.

B. Asymptotic Behavior of h

As we have seen in Sec. DB, the custom ary a s 
sumption about the zero of ф im plies that the non- 
asymptotic piece h of the photon proper se lf-en er

gy vanishes with power law behavior,

h~x*’(^  , (95)

as xm- q 2/m2 becomes infinite. Now that we know 
that ф actually vanishes with an essen tia l singu lar
ity , and not with a sim ple zero, we must r e e x 
amine the reasoning leading to Eq. (95). We give 
first a general, qualitative argument to show how 
Eq. (95) must be modified. Let us use the Gell- 
Mann-Low equation in the form of Eqs. (50) and 
(51),

1пх = Ф(а<С(х, а )]-Ф [«? (а )] ,

ф[и,\ С й - (96)

If ф has a zero at z = a 0, then * [u ] becomes infinite 
at u= a 0, and hence the la rg e -x  behavior of ad~ is  
governed hy the behavior of Ф in the v icin ity of a 0. 
Now if ф(г) vanishes more rap id ly than a , - 2  as 
г  — or„, then и = <&[«] w ill become infinite faste r  
than ln (a 0- u )  as u - a 0. This im plies that Ф_1[ц]
-  a 0 is  a function which is weaker than an exponen
t ia l as и — " ,  or equivalently,

adTix, а ) - а 0 = Ф ' 1[1п х ]-  a„ (97)

is  weaker than a power law as x— So we obtain 
the qualitative conclusion that if ф vanishes more 
rap id ly than with a sim ple zero as г  — a 0, h(x, a )  
w ill decrease more slowly than a  power law as x 
—

To obtain more specif ica lly  the connection be
tween the functional form of ф near a 0 and that of 
h near x = " ,  we reso rt to the study of exactly  in- 
tegrah le exam ples. As in the discussion  of Eqs. 
(32)— (35), in  constructing these exam ples we can 
ignore the fact that ф(г) vanishes at z= 0 , since 
th is region is  not relevant to the asymptotic be
havior of h. As our f irs t  illu stra tio n , we consider 
the case where ф vanishes with a  zero of finite 
order higher than the f ir s t . Substituting

ф{г)=А{а0- г ) 1̂  (98)

into the Gell-M ann-Low equation [Eq. (26)] and 
integrating, we get

_______<?(a) -  Op______
a  ' "  ~{1 +Ae[oo -  <7(a )  I'lnx}1"  £ (lnx) - I  /«

(99)

\f> (a.I-O  i
General 2n-point 
funct i oni ng)  =! 
vanishes at y * ae , 
m'O

FIl](a.)=0 
. t W  

2n

FtlJ(a.)*0*

m=0

= 0 2n = 0 y=ao
m=0

FIG. 6. Chain of reasoning which sum m arizes the dlecuseion of Secs. IID1 ала ГПА. The abbreviation 0 '  
denotes a zero of Infinite o rder (I.e., an e ssen tia l s in gu larity) in the у  v a r iab le .



382 Adventures in Theoretical Physics

S H O R T - D I S T A N C E  B E H A V I O R  O F  Q U A N T U M . . . 3035

which, as expected, fa ils  off more slowly than any 
power of x in  the lim it x - 00- As our second illu s 
tration , we study the case where ф vanishes with 
an e ssen tia l s in gu larity  of the form

111( г ) ~ е - л/<‘* - ' )Р . (100)

To get an exactly  in tegrab le expression we m ulti
ply Eq. (100) by a  power of o „ -  z, giving

( 101)

Substituting Eq. (101) into Eq. (26) and doing the z 
in tegration , we get

—A1 *p
a d c  a,> (ln lB 'M nx+ exptA /fa,,- 9 (a ) ]>}]),/f

( I n ln x ) '1*  . (102)

We see that when ф vanishes with an essen tia l sin 
gu la r ity  at a 0, the asym ptotic vanishing of ft in the 
lim it  of la rg e  x is  very  slow indeed. In Table I we 
sum m arize the connection between the type of zero 
of ф and the asym ptotic behavior of A that we have 
in ferred  from our exam ples.1*

C. Consequences of the Slow Decrease of h

In both the justification  of the JBW form of the 
eigenvalue condition [Eq. (59) and the discussion 
preceding it in Sec. IID] and the derivation of the 
sca ling  form of the asym ptotic electron propaga
tor [Appendix B] we assum e that a 0 is  a  simple 
zero , and a  point of regu la r ity , of the G ell-M ann- 
Low function ф, and that A d ecreases asym ptotical
ly  with pow er-law  behavior. Now that we have 
seen  that these assum ptions a re  fa lse , we must 
reexam ine our treatm entof the eigenvalue condi
tion and of the asymptotic behavior of the electron 
propagator, to study the consequences of the e s 
sen tia l s in gu lar ity  which we have found in ф and of 
the concomitant v ery  slow asymptotic decrease of 
ft. For the sake of defin iteness, we w ill assum e 
behavior a s  in Eqs. (101) and (102) with p= 1, so 
that h d ec rease s  asym pto tically  as

ln ln ( - f lV » !1) ‘ (103)

This restr iction , while convenient to m ake, is  not 
c ruc ia l to the d iscussion  which follows.

Let us f ir s t  reconsider the eigenvalue condition, 
picking up our discussion  of Sec. IID at the point 
where we estab lished that logarithm ic behavior of 
a  graph contributing to ле can only be asso c ia ted  
with the o v e r-a ll integration involving a ll lin es  in 
the graph. As we noted, each in terna l photon line 
in the o ve r-a ll integration contributes two p a r ts , a 
part proportional to a ,  and a  part proportional to 
ft. Let us separate ly  group together a l l  contribu
tions to *e involving no facto rs of ft, a l l  contribu
tions involving exactly  one factor of ft, a l l  those 
involving exactly two factors of ft, e tc ., a s  ind i
cated in F ig. 7. The shaded blobs in  F ig . 7, to 
which the insertions of ft a re  attached, a re  two- 
point, four-point, six-point, e tc . functions c a l
culated with a ll in ternal photons describ ed  by free  
propagators coupling with the asym ptotic coupling 
strength a 0. The piece with no facto rs of A is  ju st 
the one retained in our e a r lie r  d iscussion , which, 
as we have seen, makes the contribution

g ( a t3)+f(a^)\n(-q2/m2) (104)

to the asymptotic behavior of nc . H eu ris tica lly  
speaking, the logarithm  in Eq. (104) can be thought 
of a s  a r is in g  from the in tegra l

J. (105)

in th is language, the leading asym ptotic behavior 
of the piece of nc containing n facto rs of ft c o r r e 
sponds to the in tegral

(106)

When A vanishes as a  power of p for la rg e  p, the 
in tegral in Eq. (106) converges a t the upper lim it  
as - q 2/m2 — . Asymptotic fin iten ess of ire then 
only requ ires the vanishing of the coeffic ient of 
the in tegral in Eq. (105), giving the JBW condition 
/(a„)=0. When A vanishes much m ore slow ly than 
a  power law, a s  in  Eq. (103), the situation  is  r a d 
ica lly  changed. 30 The in tegra l in Eq. (106) i s  now 

■ ( 107>J .*  p(lnln(p/ma)]"

TABLE I. Connection between behavior of ф(г) near 
z = a „ and behavior of h(x,a) near x = “ .

Behavior of ф near a  Q Asymptotic behavior of h

Ф‘[а0- г ) x*‘
(In*)-1"

FIG. 7. Grouping of nc into contributions involving 
no factor A, exactly one factor ht exactly two factors 
A, etc. ТЪе shaded blobe denote two-point, four-point, 
six-point, etc. functions calculated with all internal 
photons described by free propagators coupling with 
the asymptotic coupling strength a fl.
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which for a ll  n is  divergent at the upper lim it as
— <7V»nJ — Thus, asymptotic fin iteness of v c re 
qu ires now that an infinite number of conditions be 
sa tisfied : in addition to the coefficient of Eq. (105) 
vanishing, the coefficient of the contribution rep
resented heu ristica lly  by Eq. (107) must vanish 
for a ll  n. It is  rem arkab le that when a„ is  chosen 
to be the root o f/ (a „ ) - 0 , this infinity of conditions 
is  in fact satisfied . The reason is  the argument 
based on the Federbush- Johnson theorem given in 
Eqs. (62)—(63) of Sec. QD 1, which shows that 
when / (a 0) = 0 and the fermion m ass m is  zero , the 
general 2n-point current correlation  function van
ishes for n>2. Hence when a„ sa t is f ie s  / (a 0) = 0, 
each shaded blob in Fig. 7 is  proportional to m z 
and therefore contributes a  convergence factor 
n ia/p to the in tegral in Eq. (107). The in tegral 
then becomes28

(108)f - ' 3 d pm 1 
Л *  ра[1п1п(р/тиа)]" *

which is  asym ptotically finite as —fl’ /m1 — The 
asym ptotically  divergent in tegral in Eq. (107) of 
course reappears when a„ is  chosen to have any 
value other than the root o f/ (a o) = 0. We conclude, 
then, that Eq. (103) s t il l  perm its one to deduce the 
JBW eigenvalue condition f ( a 0)~0, but only by a 
more involved mechanism than is  required in the 
case  of a power law vanishing of h.

Let us next examine the im plications of the e s 
sen tia l singu larity  at a ,  and of Eq. (103) for the 
argument leading to the sca ling  form for the a s 
ymptotic electron propagator. As we have noted, 
the approach used to derive the sca ling  form in 
Appendix В depends very specifica lly  on the a s 
sumptions of regu la r ity  of the theory in the v icin
ity  of a 0 and power law vanishing of h. To deal 
with the situation where a ,  is  a  point of essen tia l 
sin gu larity , we give an alternative approach, 
based on reasoning s im ila r  to that which we have 
ju st used in our discussion  of the eigenvalue con
dition. Let us consider the unrenormalized  e lec 
tron propagator S^0>)-1 in the lim it in which - f ?  
and the cutoff Л9 a re  both becoming infinite r e la 
tive to the ferm ion m ass m '. To study th is, we 
co llect together a ll contributions to the electron 
proper se lf-energy  involving no factors of h, in
volving exactly  one factor of h, exactly  two factors 
of h, e tc ., as shown in F ig . 8 . As before, the 
shaded blobs are  calcu lated  with a ll in ternal pho
tons described by free propagators coupling with 
the asym ptotic coupling strength a„. The piece 
with no factors of к is  just the unrenormalized 
electron proper se lf-energy  in the JBW model. A 
straightforw ard an a ly s is51 using the methods of 
Ref. 17 shows that if  this piece alone is  retained, 
the unrenorm alized asymptotic electron propaga-

FIG. 8 . Grouping of the electron proper self-energy 
into contributions Involving no factors h, exactly one 
factor h exactly two factors h, etc. The shaded blobs 
are calculated with all Internal photons described by 
free propagators coupling with the asymptotic coupling 
strength a„_

tor has the scaling form

/ Ar“\

(109)

Together with the fact that S i  and the s c a la r  v e r 
tex r s a re  mulH plicatively renorm alizab le, Eq.
(109) im p lies51 the resu lts of Eq. (66) for both the 
renorm alized electron  propagator and the renor
m alization constants Z, and m Q, with the modifica
tion, a lready noted in Sec. DD, that the constants 
C, and C, in Eq. (66) became dependent on nonas- 
ymptotic quantities. We must now examine whether 
the asymptotic expression  of Eq. (109) is  modified 
by the p ieces containing one or more factors of h. 
To this end, it  is  useful to note that the powers in 
Eq. (109) a r ise  in perturbation theory from infinite 
sums of logarithm s,

(-£P'-SГЫа.)Ы-/>Ула)1"
n ! (110)

and h euristica lly , the logarithm s can be thought of 
as a r is in g  from in tegra ls of the form

(111)X
In this language, the piece of the electron proper 
self-energy containing n factors of h w ill involve 
in tegrals of the form

f  ^ h ip / m 1, a)" . 
J - ?  P

(112)

If h vanishes as a power of p for la rge  p, the inte
g ra l in Eq. (112) vanishes as -р*/тг, Ла/гя! -° ° , 
and the sca ling  form of Eq. (109) is  unmodified." 
On the other hand, if  h vanishes as in Eq. (103), 
then Eq. (112) becomes

С _d£__
p[ln In (p/m2)]’

(113)
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which does not vanish50 in the lim it of asymptotic 
- p 2, Л2 and which could therefore give r ise  to cor
rections to Eq. (109). We again can salvage the 
situation if  we can use the Federbush- Johnson 
theorem to argue that the Compton-like shaded 
blobs in F ig . 8 vanish w hen/(a0) = 0 and the ferm i
on m ass m is  zero . However, this involves an ex
tension of the Federbush-Johnson theorem outside 
the charge-zero  secto r, which is  the only place 
where a  sa tisfacto ry  proof in the case of e lectro 
dynam ics has'been given.' •ш If such an extension 
is  allowed, we gain a convergence factor m 2/p in 
Eq. (113), giving

С dpm2 (114)

which vanishes as A‘/m2 ~
We conclude, then, that the JBW eigenvalue con

dition and, possib ly , the sca ling  form for the a s 
ymptotic electron  propagator rem ain  valid  in the 
presence of the e ssen tia l s ingu larity , but only by 
v irtue of an additional infinity of conditions being 
sa tisfied  sim ultaneously. This, of course, poses 
troublesom e questions of convergence (basica lly , 
i s  0x «  effective ly  0 in  these prob lem s?) which we 
have not attempted to se ttle .

IV. LOOPWISE SUMMATION AND AN EIGEN
VALUE CONDITION FOR a

Up to th is point we have consistently employed 
the “vacuum -po larization -in sertion-w ise” summa
tion schem e, both in  our review  of the JBW resu lts  
in Sec. IID and in our deduction of the presence of 
an e ssen tia l s in gu lar ity  in the preceding section.
As we have seen, th is scheme leads to a  one-pa
ram eter fam ily of asym pto tica lly  finite solutions, 
in which the asym ptotic coupling a„ is  determ ined 
to be the zero y 0 of the G ell-M ann-Low function 
ф(у) [and sim ultaneously a zero of the sim p ler 
functions f ( y )  and F Q1(}i)]» while the physical cou
pling a  is  a free  param eter, re s tr ic ted  only by 
the condition a  < a 0=;y0 following from sp ectra l 
function positiv ity [see Eq. (129) below.J The usu
a l assum ption is  that th is one-param eter fam ily 
rep resen ts the most genera l type of asym ptotical
ly  finite solution which can occur. In the present 
section , we show that the presence of a s im u lta
neous zero  in a l l  of the s ing le  ferm ion-loop d ia
gram s makes p o s s i b l e  on e additional a s ym p to t i ca l 
l y  f in i t e  so lution ,  which has the very  appealing 
featu re that the physical coupling a  is  fixed to be 
y 0. Our procedure is  not s t r ic t ly  deductive, in 
that we continue to accept the r e s u l t s  concerning 
properties of the sing le  ferm ion-loop d iagram s 
which were found in Sec . Ш А, while dropping the

identification of a 0 with y B which w as made there . 
We w ill a lso  introduce a  new order of summing 
the perturbation s e r ie s ,  involving "loopw ise" 
rather than "v acuum -p o larization -in sertio n -w ise” 
summation. Spec ifica lly , we make the following 
two assum ptions:

(1) The function F ril(y) defined by F ig . 1 and the 
2n-point current co rre la tio n  function with zero 
fermion m ass, T j j j . . .  ^2л(?ц • • • ,Ягп\т  = ° .у ) . 
vanish sim ultaneously at y= y0. As we have seen  
in Sec. HI A, the sim ultaneous vanish ing of ,F[11 and 
T jJ  im p lies that they vanish with a zero  of infin ite 
order.

(2) The photon proper se lf-en e rgy  can be co r
rectly  obtained by “loopw ise" sum m ation. That is ,  
we assum e convergence of the sum

== £  
n =1

w (115)

where i s  the contribution to the photon proper 
se lf-energy  containing exactly  n closed  ferm ion 
loops. The burden of the present section  w ill be 
to show that th e s e  two a ssum pt ion s  imply  a s ym p 
to t i c  f in i t e n e s s  o f  the photon p r op a ga to r  when the 
ph y s i ca l  f in e  s t ru c tu r e  constant i s  ch o s e n  to hav e  
the va lue a = yB. Fur th erm ore ,  w e  w i l l  sh ow  that 
f o r  this p a r t i cu la r  va lue o f  a  the fun c t ion  P(a) ap 
p ea r in g  in the Callan-Symanzik equation va n ish e s  
(when sum m ed  loopw ise)  and s o  the t h e o r y  has 
type-1 a sym p to t i c  behavior .

To proceed, we introduce some additional defi
nitions. Let /З^а) be the contribution to P(a) with 
exactly  n closed ferm ion loops, and le t  be the 
part of ir^1 in  which exactly  r  closed ferm ion loops 
rem ain  when a ll in terna l photon se lf-en e rgy  p arts 
are shrunk down to points [see F ig . 9 .] In term s 
of these definitions, we can w rite

( b )  - > 4 E S > - S -
FIG. 9. (a) T ypical d lagram e contributing to the

part of the two-ferm ion-loop photon proper se lf-en e rg y  
which contains only one ferm ion loop a fte r  the Internal 
photon ee lf-en ergy  part {enclosed by dashed lin e s) is  
shrunk down to a point, (b) Typical d iag ram s contribut
ing to *£*.2] , the part of the two-ferm ion-loop photon 
p roper se lf-en erg y  which s t i l l  contains two ferm ion loops 
a fte r shrinking away the in ternal photon se lf-en e rg y  p ar te .
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Ж « ) = Е  f»WW ,n*l (116)

We now begin our argument by considering the 
ease n -  1. Because we are  dealing with the renor
m alized theory, the coupling constant which ap
p ears is  the physical fine structure constant a, 
and so (using our e a r lie r  notation) we must study 
the asymptotic behavior of и^\я2',т, a ) .  Refer
ring  back to Eq. (70), we see that for asymptotic 
- q 2/m2 we have

r , a )  = Gfl)(o) + F [,1(a ) ln ( - fl 2/m2) 
+ vanishing term s; (117)

hence choosing a « y c guarantees the asymptotic 
fin iteness of ir f1. Next we consider the case n -  2, 
for which we can write

+ (118)

with the two term s in Eq. (118) corresponding r e 
spectively to the d iagram s in F igs. 9(a) and 9(b). 
Because the single fermion-loop vacuum -polariza
tion insertion  has a lready been shown to be asymp
to tica lly  fin ite, we can use the argument which 
was employed above in getting Eq. (58) to show 
that tt? '1', as  w ell as grows asym ptotically
at worst as  a  single power of ln(—q 2/m2),

ff? t](<72; w ,a)=Ge -1’(e)+F', -1](a)In(-ffV»n1)
+ vanishing te rm s ,

IT!?-2V ; m , a )  = Сй-2l(a ) + г\а) 1 ъ ( - Чг/тг)
+ vanishing term s .

(119)

Furtherm ore, the sam e argument te lls  us that the 
potential logarithm  is  associated  with the subinte
grations involving a ll lin es in ir^‘2\ and a ll lin es 
in u j ' 1' which rem ain  after the in ternal photon 
se lf-energy  p art has been shrunk down to a  point. 
C lea rly , these subintegrations alw ays involve at 
le a s t one single ferm ion loop 2 j-p o in t function 
(with j z 2 )  which, we have assum ed, vanishes when 
a  =ya and the fermion m ass m is  zero . As a r e 
su lt, the potentially dangerous subintegrations are  
re a lly  two powers of momentum more convergent 
than indicated by naive power counting [cf. Eq.
(90)] and hence cannot actually lead to logarithm ic 
asym ptotic behavior. So we learn  that when a= y„, 
we have /'t2 ,I1(a ) =.F[J,3l(a )  = 0 , and therefore n ? 1 
is  asym ptotically fin ite. Note that the argument 
which we have just given does not determ ine the 
actual lim iting values of я ? ' or i ^ ,  i .e . ,  we learn  
nothing about the values of Grî a ), Gb,ll(a ) , or 
Сйд)(а )  at a= y0. This is  expected, because the

G’s depend on the nonasymptot ic  theory (where m 
cannot be neglected) aa a  resu lt of the subtraction 
at q 1 - 0 which renorm alizes the photon proper 
se lf-energy. Since knowledge of the G’s  would a l
low one to calcu late a„ through the formula

£  X/ G,l’ ’’,(e )  = a 0
П=1 Г=1

(120)

we see that In our solution with a  fixed, a 0 cannot 
be determined through asym ptotic considerations 
alone.

The next step in the argument is  to prove the 
vanishing of |8 Fll(a )  at a = y0. We do this by using 
the Callan-Sym anzik equation in the form given by 
Eq. (43) which, on substituting Eq. (12) for d c _I . 
and dropping the asym ptotically  vanishing term  
proportional to f y y s ,  becomes

- р(а) + [т ^  + ̂ Ы (“ ^ - a л - 0 . (121)

The one-fermion-loop part of th is equation is

-/Зг,1(а )+ ™ ^ -а7 г? ’ " 0 .  (122)от
Substituting Eq. (70) for th is becomes

(1 |l1(a )  = - 2 a F [1,( a ) , (123)

from which we im m ediately le a rn  that £ [ll(a )  van
ishes at ct=y0.

We now continue the argument inductively. We 
assum e that when a - y B the p ieces of
the photon proper se lf-energy  a re  asym ptotically 
finite, while the p ieces f}b\ - . . ,  PW of the Callan- 
Symanzik function 0 a re  zero . We wish to extend 
these assertions to the p ieces rrj.'1'*1' and 
which contain one more closed ferm ion loop. We 
write

гГГ ,1= Е  1ГГГ ’ 'Г],
Г * 1

(124)

where, according to our induction hypothesis and 
the argument preceding Eq. (58), the piece 
can grow asym ptotically at most as a  single power 
of ln(-<7 a/»ja),

fli) = Gt",,1 'r1(a )
+ f (.M,,i(a ) i n(_ (7Y m .)

♦ vanishing term s. (125)

Again, the argument leading to Eq. (125) te lls  us 
that the potential logarithm  is  associated with the 
subintegration involving a ll lines in irj."*,,r ' which 
rem ain after the internal photon se lf-energy  parts 
have been shrunk away. This subintegration a l
ways involves at least one single fermion-loop 2 j-  
point function ( j s> 2) which, when a - y ot improves 
the u ltrav io let convergence of the subintegration
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by two powers ol momentum and hence prevents a 
logarithm  from actually appearing in Eq. (125).
So we conclude that .Fr"*1 ,rl( a ) - 0  when a  = ji0,
r  = 1 ..........n +1 , and hence я S?*11 is  asym ptotically
fin ite. To prove the vanishing of 0 In+1,(a ), we con
s id e r the part of Eq. (120) involving exactly я + 1 
closed fermion loops,

- f}h * l\a) * m  а »  (с"41*

+ £  0 W(“ )(a  l^otirc"* 1 "r l~ 0 .

(126)

Using the induction hypothesis on fi this equation 
s im p lifies , when a  = y 0, to

- 0 [**ll( a )  + m “ * an e Ml~ 0. (127a)Эти

But asymptotic fin iteness of я 1" * 11 te lls  us that

(127b)dm

so we learn  that /S1"41̂ )  = 0 when a = ji0) complet
ing the induction.

To sum m arize, we have learned , for a ll  n, that 
я 1? 1 is  asym pto tically  finite and that vanishes 
when a - y 0. Invoking now our assumption of con
vergence of the “Ioopwise” summations in Eq.
(115) and Eq. (116), we learn  that when a= y0, the 
total photon proper se lf-energy  v e is  asym ptotical
ly  fin ite, and the total Callan-Sym anzik function 
0(a)  van ishes. The vanishing of the Callan-Sym an
zik  function means that our solution with a  ■ y0 has 
type-1 asym ptotic behavior. According to the d is 
cussion  of Appendix B, the asym ptotic electron 
propagator must then have the sim ple sca ling  form 
of Eq. (66) (with a ,  = ai), leading, as we have noted, 
to the possib ility  of a  fin ite m 0 and Ẑ .

In conclusion, we b riefly  d iscu ss the relation  of 
the asym pto tically  finite solution which we have 
just found to the “vacuum -po larization-insertion- 
w ise” summation methods used e a r lie r .  As we 
have seen, in our ‘Ioopw ise” solution a  is  deter
mined by the condition F ^ (a )= 0 , with the asym p
totic coupling a 0 determ ined from a  by the func
tions G["-rl(a ) according to Eq. (120). A pr io r i ,  we 
can say  nothing about the value of a B except that 
posltiv ity of the sp ectra l function w(p, a )  appearing 
in  the Kjflle'n-Lehmann representation”  for the 
photon propagator,

йс(~Я2/m*, a )  = 1 +q2 f  w{p/m3, a) f ■■ , 
Jo Я - P - к

(128)
im p lies the sum rule*4

a 0 = a+  f  aw (p/m2,a )d (p/m2) , (129)
J  0

and hence a 0>a. This inequality r a is e s  an appar
ent paradox when we turn to the “vacu u m -p o lariza 
tio n -in sertio n -w ise” sum m ation schem e, which if 
applicable would im ply that a„ obeys the sam e 
eigenvalue condition as does a ,  F [11( a e) = 0. The 
paradox is  reso lved , how ever, when we note that 
since y 0 is an e ssen tia l s in gu lar ity  of F^(y) ,  the 
point a 0>a =ye l ie s  ou t s id e  the rad iu s of conver
gence of and so the in terchange of lim it 
and sum leading to the eigenvalue condition on a 0 

is  unjustified. Another way of stating th is is  ob
tained by w riting down the form al T aylo r expan
sion connecting the eigenvalue conditions for a  and 
“ o>

(130)

Since F fl) and a ll its  d eriv atives vanish  a t y0, na
ive application of Eq. (130) te lls  us that F ri,( a 0) = 0 . 
This conclusion is  of course in co rrec t, because 
the T aylor expansion in Eq. (130) attem pts the 
analytic continuation of outside its  region of 
regu la r ity , and therefore is  m athem atica lly  m ean
in g less . In other words, because of the e ssen tia l 
s in gu larity , we cannot free ly  re a rran ge  the “loop- 
w ise”-summed theory, w ith a = ji0, into a  “vacuum - 
p o larization -in sertion -w ise ’1-sum m ed theory.

V. DISCUSSION

We have learned that there a re  two possib le 
ways of having an asym pto tically  fin ite e le c tro 
dynam ics. The f ir s t  is  the usual one-param eter 
fam ily of solutions, in which the asym ptotic cou
pling a c is  fixed to be >0 and the physica l coupling 
a  <a0 is a  free param eter. The second i s  the 
unique additional solution found in  the preced ing 
section, in which the physical coupling a  is  fixed 
to be y a. We c o n j e c tu r e  that nature in f a c t  c h o o s e s  
this s e c o n d  type o f  solution, and h e n c e  that the 
f in e  s t ru c tu r e  constant may be ca l cu la t ed  by d e 
t e rm in in g  the loca tion o f  the infinite o r d e r  z e r o  
y 0 o f  the function  F (1)Cy).S! [Of course, if  the func
tion F tl](;yO does nol  have an in fin ite-o rder positive 
zero , then electrodynam ics cannot be asym ptoti
ca lly  fin ite .] We can advance two possib le r e a 
sons why nature may choose the solution which 
fixes a  over the solutions which fix  a a:

( 1 ) “Hie “vacuum -po larization -inaertion-w ise” 
summation procedure needed to get the solutions 
which f ix  a 0 may be divergent for a ll nonzero v a l
ues of a .  In other words, e lectrodynam ics may 
ex ist only when summed “Ioopwise,” with the spe-
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cific  choice of physical coupling a - y B.
(2) Both types of solution may be m athem atically 

valid , hut there may be stab ility  arguments which 
te ll us that when other interactions (such as weak 
or grav itational interactions) are  switched on, the 
theory chooses the la rg e s t  possible value of a , 
that is  a  = y0.

We em phasize that we have given no arguments 
which distinguish which, if e ither, of these pos
sib le reasons is  co rrect.

We conclude the paper by giving a  brief, spec
u lative d iscussion  of some further implications of 
the work of the preceding sections. F irst, we point 
out a  possib le connection of our work with Dyson’s ’ 
old conjecture suggesting sin gu larities in e lectro 
dynam ics at ar -0.  Then, we d iscuss the fact that 
the conjecture stated at the beginning of this sec 
tion gives a sp e c i e s - in d ep end en t  determination of 
a ,  and give an argument based on this which may 
Justify our neglect of strong interaction co rrec
tions.

A. Dyson's Conjecture

Dyson has argued that the renorm alized pertur
bation theory of quantum electrodynam ics, re 
garded as a  power s e r ie s  in a ,  cannot have a non
zero  rad ius of convergence. For if  it did, the the
ory would s t il l  ex ist when analy tica lly  continued 
to negative a ,  which corresponds to a  physical 
situation In which like charges, rather than unlike 
charges, a ttrac t. But in the an a ly tica lly  continued 
theory, the usual vacuum, defined as the state 
containing no p artic les , would be unstable. To see 
th is , we note that if  we create N electron positron 
p a irs , with N v e r y  la rg e , and group the electrons 
together in one region of space and the positrons 
together in another separate region, we can create 
a pathological state in which the negative potential 
energy of the Coulomb forces exceeds the total 
re s t  energy and kinetic energy of the p artic les . 
Although this state is  separated from the usual 
vacuum by a high potential b a rr ie r  (of the order of 
the re s t  energy of the 2N p artic les being created), 
quantum-mechanical tunneling from the vacuum to 
the pathological state would be allowed, and would 
lead to an explosive d isintegration of the vacuum by 
spontaneous polarization. This in stab ility  means 
that e lectrodynam ics with negative a  cannot be 
described hy well-defined analytic functions; hence 
the perturbation s e r ie s  of electrodynam ics must 
have zero radius of convergence.

If one assum es, as we do in th is paper, that 
electrodynam ics is  by itse lf  a  complete theo ry ,*  
then physical quantities in electrodynam ics a re  
described  by well-defined, calcu lab le functions of 
a  when a  Is positive. According to Dyson’ s argu-

L .  A D L E R  5

ment however, these functions cannot be continued 
to negative a ,  and therefore must have a s ingu lar
ity at a  = 0. Because the s in gu larity  o rig inates in 
a tunneling phenomenon, and because tunneling 
amplitudes are typ ica lly  negative exponentials of 
a barrier-penetration  factor, it is  plausible that 
this singu larity  should be an e ssen tia l s ingu larity  
of the form e~c/a.

We can now attempt to make a connection with 
the resu lts  of the preceding two sections. As we 
re ca ll, we argued there that the slng le-ferm ion- 
loop function F fl'(a) should possess an e ssen tia l 
singu larity  (perhaps of the form exp(—<Луа— a ) ] ,  
resem bling a tunneling amplitude) at the point a 
= y 0>0. In estab lish ing a  connection with Dyson’ s 
work, there appear to be two p oss ib ilit ie s . One 
possib ility is  that the sin gu larity  at y a is  not Dy
son’ s singu larity , hut that e lectrodynam ics ex ists 
for a range of positive a  and that F [1](a ) (or per
haps some other function in the theory) has a sin 
gularity at a  = 0 which prevents continuation to 
negative a.  An alternative possib ility  is that F fl,(c} 
is  regu lar at a  = 0 , but that the full photon propa
gator simply does not ex ist for values of the phys
ic a l coupling a  other than y„, preventing continua
tion of the complete theory to negative f in e-stru c 
ture constant. In this case , the singu larity  of F tl] 
at y0 would be a m athem atical manifestation of Dy
son's argument. In this connection, it  is  in tr igu 
ing that the c la ss  of single-ferm lon-loop vacuum- 
polarization d iagram s which we a s s e r t  to possess 
an essen tia l s ingu larity  are  just the s im p lest d ia
gram s describ ing the creation  of an a rb itra r ily  
large  number of p a irs from the vacuum, and there
fore are  the sim p lest d iagram s leading to Dyson’ s 
pathological state . For, as shown in F ig. 10, the 
single-ferm lon-loop d iagram s describe the c re a 
tion of an a rb itra ry  number of p a irs  from the 
vacuum, but with only one fermion world line a c 
tually present.

8. Species Independence

Up to this point we have assumed the presence 
of only one species of fermion in teracting so lely

FIG. 10. Ordering In which a stngle-ferm ton vacuum- 
polarization loop d iagram  describee the creation of an 
Infinite number of p a irs  from the vacuum. (We have not 
drawn in any of the in ternal photons.)
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with the electrom agnetic field. Let us now consid
er  the more general case in which there are  j  e le 
mentary charged spin-^ fermion species which, 
for the moment, we s t il l  assume to in teract only 
e lectro  m agnetically. Although these fermions 
may have different m asses, the contributions of 
m ass-d ifference term s to the photon proper se lf- 
energy are guaranteed, just by power counting, to 
be asym ptotically finite. Hence to study the effect 
of having j  fermions on the asymptotic behavior of 
the photon propagator, it suffices to consider the 
specia l case  in which they a ll have a common 
m ass m. Then, because each closed fermion loop 
in the photon proper se lf-en ergy  appears j  tim es, 
the piece of vc containing exactly n closed fermion 
loops is  multiplied by f , and so Eq. (115) is  mod
ified to read

i ( i 31> n- 1

C learly , because choosing a  = v0 makes each of the 
jr[.n1 individually asym ptotically  fin ite, this choice 
of coupling m akes the total i e asym ptotically finite 
as w ell, independent of the species number j .  
Stated in another way, when j  fermion species are 
present the single ferm ion loop function determ in
ing Уо iust j F f,,(y), and so the value of y 0 deter
mined is  the sam e as in the one-species case .
Thus we reach the important conclusion that ou r  
e i g e n v a lu e  c ond it ion  f o r  d e t e rm in in g  a  i s  in d ep en 
d en t  o f  the f e r m i o n  s p e c i e s  n um b e r .  Whether this 
species independence is  maintained in the presence 
of e lem entary charged spin-0  boson fie lds is  not 
c le a r . The requirem ent is  obviously that the func
tion Fj/^y), defined by summing the single charged 
boson loop d iagram s of F ig. 1 in analogy to our 
definition of F ^ y ) ,  must vanish with an infinite 
o rder zero  at the sam e point y 0 where F [ll(y) van
ish es . A ll that is  known about F [1 (̂jp) and F^'ty) at 
presen t is  the f irs t  few term s in the ir respective 
p o w er-se r ie s  expansions , 37

FIG. I I .  Ferm ion vacuum -po larlzation  loop modified 
by in ternal gluon (dashed line) rad ia tiv e  co rrec tio n s .

Although the basons do not them selves contribute 
vacuum -polarization loops, they could modify the 
fermion vacuum polarization  loops when they ap
pear as internal rad ia tiv e  co rrectio n s (see Fig-
11.) However, le t us now invoke the experim en tal 
observation of sca lin g  in deep»-inelastic e lectron  
scattering , one explanation for which38 is  that the 
exchanges which m ediate the strong in teractions 
are  actually  much more strongly  damped at high 
four-momentum tran sfe r  than i s  the free boson 
propagator (q2+ д 2) -1. If such an explanation proves 
co rrec t , 39 then vacuum -po larization  d iag ram s with 
gluon rad iative co rrections w ill by them selves be 
asym ptotically fin ite, and so the presence of 
strong in teractions w ill not a lte r  our eigenvalue 
condition for a.  Our schem e is  c le a r ly  incom 
patible, however, with the presence of fractio na lly  
charged ferm ions such as quarks'10; a l l  e lem en tary  
charged ferm ions must have the sam e basic  e le c 
trom agnetic coupling (±) -Jet.

Note add ed  in p r o o f .  R. F. Dashen has pointed 
out to us that in o rder у 5 and h igher the vacuum 
polarization  structu re  of charged sp in -0  boson 
electrodynam ics w ill d iffer from that of the sp in - 
? case , as a resu lt of the p resence of a boson- 
boson scattering  counterterm  in the Lagrangian . 
Hence the an a ly s is  which we have given above for 
the case  of spin - 5  electrodynam ics cannot be d i
rec tly  applied to the spin-0 case . The JBW  a rg u 
ment for fin iteness of the bare m ass a lso  f a ils  in 
spin-0 electrodynam ics. [See D. Flam m  and 
P. G. O. Freund, Nuovo Cimento 32, 486 (1964).]

Equation (132) te lls  us that the functions F 1*1̂ )  and 
F/ky) a re  not Identical, but of course says  nothing 
about th e ir behavior when summed to a ll o rders.

Returning, now, to our model with sev era l 
charged ferm ion sp ec ies , le t us suppose that some 
of these ferm ions have strong in teractions med
iated by neutral boson exchange (the gluon model).
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APPENDIX A: PARTIAL SUMMARY OF NOTATION

Johnson- Baker-W illey

physical coupling (fine-structure constant)

new coupling constant defined by subtraction at w
asymptotic coupling constant

canonical or bare coupling constant, related to a  by a l =Z,~ta  
root of д (а1) = а„, with ?(y) = y d ;( l lJp) 

photon wave-function renormalization constant 

electron physical mass

renorm alized photon propagator; dc( - q 2/m\a )  = [1 + a i r j ? 3)] _1

difference between ad c and its asymptotic lim it a 0
"asymptotic part” of the renormalized photon propagator, obtained by 
dropping in each order of perturbation theory term s which vanish as 
—q 2/m2 — «>, but keeping term s in each order which are  constant or in
c rease  logarithm ically

Gell-Mann-Low function

coefficient of logarithm ically divergent part of the sum of s in g le -ferm i
on-loop vacuum polarization diagrams

point where F ln(y) has an infinite-order zero (essential singularity) 

ultravio let cutoff

physical photon mass (infrared cutoff), bare photon mass 

bare photon propagator

gauge param eter (coefficient of longitudinal part of photon propagator)

photon proper self-energy

full unrenormalized photon propagator

full renormalized photon propagator

subtracted photon proper self-energy

dimensionless variable - q 2/m2

electron bare mass and wave-function renormalization constant 

coefficient of &/»a in the Callan-Symanzik equation

coefficient of the logarithm ically divergent part of the photon proper se lf
energy in the JBW model

electrom agnetic current operator

r e n o rm a liz e d  e le c tro n  p rop agato r

coefficient functions appearing in the Callan-Symanzik equation for the 
electron propagator
parts of * „ 0  with exactly n closed fermion loops

sing le  -fermion-loop 2„-point function (n ъ 2) with coupling >
modified 2-point function defined as a  contraction on г '* 1
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part of in which exactly r  closed ferm ion loops rem ain  when a ll in
ternal photon se lf-energy  parts a re  shrunk down to points

wlp/m1, a) Kalle'n-Lehmann spectra l function for the photon propagator

.f'M(y) coefficient of the logarithm ically  divergent part of the sum of single
charged boson loop vacuum polarization d iag ram s

j] combination a(£ -  1 ) through which gauge dependence occurs

APPENDIX B: CALLAN-SYMANZIK EQUATIONS 
AND APPLICATION TO THE ELECTRON 

PROPAGATOR

In this Appendix we derive the Callan-Sym anzik 
equations for m assive photon (i.e ., infrared cutoff) 
spinor electrodynam ics in an a rb itra ry  covariant 
gauge. We are  particu larly  in terested in the equa
tions for the electron  propagator and the electron- 
sc a la r  vertex, which can be used to derive the 
JBW asymptotic form for the electron propagator 
d iscussed  in Sec. IID2. To begin, we re c a ll that 
the gauge param eter £ en ters into the theory only 
via the quantity a t D°r {q)lal, which according to Eqs.
(2) and (7b) can he written as

Mo2 ? ’ - Л г

+ <*U- l ) M n -
9 -  A (B l)

In p articu la r , we see that (, alw ays appears in the 
combination a ( £ -  1 ), a  fact which we exploit by 
d isp laying the argum ents of the renorm alized e lec 
tron propagator 3£-1  and the electron  wave func
tion renorm alization  Zt in  the form

jj] ,

Z2 = Z2{A,

T) = a ( £ -  1 ) .

(B2)

To derive the Callan-Sym anzik equations for the 
e lectron  propagator, we s ta rt by w riting down the 
equation connecting the renorm alized  and unre
norm alized electron  propagators,

S'AP>Hm > a , 4] = 2 aS>“1

= Z j [ A , ( i , w i , a , 7 ) ] ( ^ - m 0 - £ ) ,

(ВЭ)

with S  the electron  proper se lf-energy  part. We 
now make independent variations In the physical 
e lectron  and photon m asses m  and j i ,  keeping Л 
and a ,  fixed and sim ultaneously making a  gauge 
transform ation which keeps rj =a(£ -  1 ) fixed. 
These variations a re  described  by the respective 
d ifferen tia l operators

with f}„ and defined by

(B4)

da
=z>~i m 7 Z z >

da 
' dfJ.

(B5)

in analogy with Eq. (42). Applying these d ifferen 
t ia l operators to Eq. (B4), and observ ing that the 
unrenorm alized propagator ft —m a -  S depends on 
m and ц im p lic itly  through its  dependence o n m , 
and д 0 and exp lic itly  through the factor 1 Aq2 ) 
in the gauge term , we get the C allan -Sym anzik  
equations for the electron  propagator,

(  a о 8 .  (B6)

= -2 )1* ,. + * i* (5  ~ 1 )*V  •

In w riting  this equation we have introduced the fo l
lowing additional definitions:

Z*~l m d m Zt= Ym’

Z>’ V  —

- l  d 
m° dm’"0 "* (B7)

- i  d- V  —  ? dn
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s aMo2 ’

i ' s . = z t r r .

The vertex part Г 5.. is  defined as the sum of 
term s in which each internal photon propagator 
a , ^ ) ^  is  replaced in succession  by

а<?:,?„/<7г)(<?2- д г)-а[ - л 7 ( ? 2- л 2)]. (B8)

Note that the derivative ь/йа in Eq. (B6) acts only 
on the a  dependence exp lic itly displayed in Eq.
(B2) and not on the a  dependence which is  im p lic it
ly  present a s  a resu lt of the dependence on >). Let 
us now sim plify Eq. (B6 ) in two ways. F irst we 
pass to the region of asymptotic —p2/m2, which 
allows us to drop the term s f s. and Г s„ on the 
right-hand side, since these vanish asym ptotical
ly . Secondly, we observe that we are  re a lly  only 
in terested  in keeping the infrared cutoff p2 where 
it appears in divergent term s proportional to a 
power of 1пд2. We get these divergent term s co r
rec tly  even if  we neglect those term s in Eq. (B6) 
which vanish as 0(<ja(lnp3)"J as fi2 - 0 .  Making 
these sim plifications and adding the second equa
tion in Eq. (B6) to the f irs t  gives the desired form 
of the Callan-Sym anzik equations for the asymptot
ic e lectron  propagator,

[*” im  + + а ^ а ^за + y('a ’ 4 j j ^ * 1 —  (1 + f s  .

[ ф ф - ' - о .

where41

(B9)

3 (“ ) = A. |„»=0> 
б(а) = Ь„ lp2_0, 

y (a ,  7)) = (y., + y M)l„2-0-

(B10)

A p rec ise ly  analogous procedure1" yie lds the Cal
lan-Sym anzik equations for the asymptotic e lec 
tro n -sca la r  vertex,

[m in+** A+ aPWh +r{a’v) - eH ri~° *
( Bi i )

F inally , in the lim it as д2 _ 0  Eq. (B7) for Z2 and 
can be rew ritten in the form

Г 8 8

r S T ' V  

[ % Г У*]2, = 0 -

+ a f f ( a ) ~  + y( o a a,7j)J Z2 = 0,
(B12)

closely analogous to Eq. (45b) for Z, given in the 
text.

Let us now use Eqs. (B9)-(B12) to study the a s 
ymptotic behavior of S'F and the la rg e  —Л behavior 
of m 0 and Z2 in the c ases  of type- 1  and type- 2 a s 
ymptotic behavior (cf. Sec. ПВ).

Type 1■ In th is case the physical coupling a  is  
equal to the value a , which sa t is fie s  q (a t) = a„,
0 (a ,) = O and, as shown in Sec. ПС, the asymptotic 
renorm alized photon propagator ad~ is  exactly 
equal to a 0. Because 0(a) =0, the 8/8a  term s d is 
appear from Eqs. (B9)-(B12), and so these equa
tions become the sim plified Callan-Sym anzik equa
tions used in the an a lysis  of Ref. 17 (apart from 
the change that the asymptotic coupling a„ used in 
Ref. 17 is  replaced now by the physical coupling 
a  = O!,). For the asymptotic behavior of S'F(p) and 
the large -Л  behavior of m„ and Z2 we thus get 
the scaling expressions of Eq. (66). Furtherm ore, 
we find the gauge transform ation properties de
rived in Ref. 17 to be in accord with the conclusion 
which we have reached above, that the gauge pa
ram eter £ appears only in the combination ц 
= a U -  1).

Type 2. In this case a  * a ,  and so fi(a) *■0. We 
proceed to analyze the asymptotic behavior under 
the conventional assumption that a 0 is  a sim ple 
zero, and a point of regu la r ity , of the G ell-M ann- 
Low function ф, or equivalently42 [cf.  Eq. (53)] 
that O!] is  a simple zero and a point of regu la r ity  
of /3. As we have seen in Eqs. (32)— (35), this a s 
sumption corresponds to power law vanishing of 
the nonasymptotic piece h of the renorm alized 
photon propagator. To study Eqs. (B9)-(B11) for 

and f s , we separate out the у -m atr ix  structure 
by writing

S^.*1 = $F+mG,
m  f s = ,

which gives the equations

(В1Э)

[m h  * +al3{a) h - +‘Aa' 4 F~° •

[ Э 8 3 *1m—- + fj—  + afi(a) —  + y(a, 77) m G ~ - [ l  + 6 (a)]mj, от  о д  о ct J

(B14)
Г 8 8 8 *1
[т Ш + ^  + af3{a) 8^  + * ( a - ^  ~ 0M J J ~0-

The f ir s t  of these three d ifferential equations has 
the general in tegral
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J
хф'[1п( $ +/ J  ж  ■ f /m>' 4] ■ (B15)

with Ф,[u , д '/ т ’ , tjJ an a rb itra ry  function of its  
argum ents. Let us now consider the behavior of 
Eq. (B15) a s  a  — a , .  Since /3 has a zero at г  -  f>lt 
the argument of the exponential prefactor and the 
argument u of the function Ф , both become infinite. 
The only way for the function F to rem ain  regu lar 
at а  -  a ,  is  for the s in gu lar itie s  of the exponential 
and of Ф , at a = a : to p rec ise ly  cancel. This can 
happen only if Ф , has the following asymptotic 
behavior as и becomes infinite,

Фу[и, ~  C,(/iVm*, a l t n)
H -*w

X exp [| y (a„ 7j)u] . (B16)

If we assum e Eq. (B16), then when a  is  near a ,  
we get

x finite term s, 

(B17)

which is  regu lar  because /3 vanishes with only a 
sim ple zero at г - a , .  Let us now consider what 
happens as - p 2/m* becomes infin ite, with a  fixed 
at its  physical value, different from a x. Again и 
becomes in fin ite , th is tim e because of the term  
Ы -р '/ т 2) in Eq. (B15), and so invoking Eq. (B16) 
g ives us

. (B IS )

Thus, we see that even when а Ф a lt in the a s y m p 
to ti c  l im it  F exhibits s c a l in g  b eh a v io r  with a s c a l 
ing exponent у c h a r a c t e r i s t i c  o f  the va lu e  or/ at 
which p v a n i s h e s .43 An iden tica l argum ent can be 
used to in tegrate the equations for С and J  in  Eq. 
(B14) and those for Z2 and m j m  in Eq. (B12), and 
finally  the equation

д _  Ь '^ т ц 22)
~0 (B19)

can be used to re la te  the д dependence of the r e 
sulting constants of in tegration . The procedure 
unfolds in complete analogy44 with the treatm ent 
of the JBW model given in  Ref. 17, and the r e su lts  
obtained a re  of the sam e form as in  Eq. (6 6 ), 
apart from the more complex stru ctu re  of the in te
gration constants seen in Eq. (B18).

To conclude, we reem phasize that in  o rd er to 
derive Eq. (B18), we need the twin assum ptions of 
a sim ple zero in 0 and of re g u la r ity  of the theory 
around d j. If /3 vanishes more rap id ly  than with a 
sim ple zero at a lt the exponential factor in Eq. 
(B17) is  s t i l l  not regu la r  at a „  and so the a rgu 
ment for requ iring  Ф , to have the p a rticu la r  a s 
ymptotic form given in Eq. (B16) is  no longer com
pelling. For an a lternative  derivation  of sca ling  
behavior of the asym ptotic e lectron  propagator, 
which may be valid  even when ф (or equ ivalently , 
fi) has a h igher-o rder zero , see Sec . ШС of the 
text.
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>)-■»{« (<?2: m'.y )K -«k ii l, .

with

z .  r i b . . .  A * *  L i d ” )  ■ ■.
m J (2ч)4 (2ff) \ ? i  j  \ /

........ « Г 1 . Ч И  . Я . - Ч . т . у )  

.......«Г | .Н И Л - « 0 , » 1 .
The answ er is  that although I m is  now u ltrav io let conver
gent, the subtraction term  m akes /M a logarithm ically  
d ivergent in teg ra l in the Infrared of the genera l type
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r ~  c o m }d p  m e  .  .
Q .x Q  4- I V . f . —  Q  +  COl 10 Jo (p+ m * ) (p+ cm 2) с —1
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the lim iting  behavior of the Mth term  in the perturbation  
expansion f o r a s  n - * e . For exam ple, suppose that 
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ра Ъ = £  с , / .n = 0
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y fl=llm W 1'" .

Since c„ d escrib es the ferm ion loop with n in tern a l v ir tu 
a l photons, it  is thus conceivab le that can be computed 
in a  s em ic la s s ic a l (large-photon-num ber) ca lcu la tio n . 
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ry , and becomes consistent only when other in terac tion s 
a re  taken into account.

37The s ix th -o rd er reeu lt for F ^  is  due to J .  L . R osn er, 
Phys. Rev. L etters 17, 1190 (1966), and Ann. Phys. (N.Y.) 
44, 11 (1967). The fourth-order expansion fo rF^P (y) is  
due to Z. B iafyn icka-B iru la , B u ll. Acad. Polon. Sci. 13,
369 (1965). Conflicting re su lts  in the fourth -order boson 
calcu lation have been claim ed by I . - J .  Kim and C. R.
Hagen, Phys. Rev. DZ, 1511 (1970). However, D. Sin
c la ir  (unpublished) has located an e r ro r  in  the work of 
Kim and Hagen which, when co rrected , g ives  B ia fyn icka- 
B iru la 's  reeu lt. S in c la ir  has a lso  rechecked th is re su lt  
Independently by R osner's method of ca lcu lation .

3eFor a rev iew  of this point of view , see D. J .  G ross and 
S. B. T re im an , Phys. Rev. D 4 , 1059 (1971).

MFor an a ltern a tive  explanation, which re g a rd s  sca lin g  
as an in term ediate energy m anifestation of com posite
ness of the nucleon, see  S. D. D rell and T . D. L ee . Phys. 
Rev. D 5, 1738 (1972).
* °S inceF ^ (y ) is  d ifferent from F ^ (y )  our schem e could, 

in p rinc ip le , accommodate a frac tion a lly  charged e le 
m entary boson.

4lThe renorm alization  constants m 0 and Z a a re  g au ge-in 
varian t and a re  a lso  Infrared finite a s  0. These prop
e r tie s  account, re sp ec tiv e ly , for the facts that 6 (a) and 
0 (a) a re  independent of tj and that 6  ̂ and 0 y van ish  a s  
V2 — 0. In Ref. 18, It Is shown that the gauge dependence 
of у ( а , 77) Is s tr ic t ly  additive, i .e . ,  Y { a , t j ) - y ( a f *)')
= (Л — V')/(2»r).

42We assum e that the mapping q (a )  is  w ell behaved near 
а , ,  in p a r ticu la r , that < j'( a j) * 0 .

43This was f ir s t  pointed out by K. G. W ilson, Phys. Rev. 
D 3, 1818 (1971). Our treatm en t is  suggested by the p ro 
cedure of C. G. C allan , Ref. 10.

4,ln p ar ticu la r , comparison of the second and third equa
tions In Eq. (B14) shows that G = — J  is  a p ar tlcu Jar in te
g ra l of the d ifferen tia l equation for G , and a s im p le app li
cation of W einberg’s  theorem  shows that one cannot add 
a  solution of the homogeneous equation

Inc
0 p (p+ m ‘ )

Thus, the modified version  of Eq. (85) is  s t i ll an ambigu
ous expression  of the form «»—*>. The significance of 
the special co a lition , Eq. (74), which holds w heny = Q0 
is  that it  im proves the u ltravio let behavior of without 
sim ultaneously making the Infrared behavior w orse. This 
feature has been Incorporated in the illu stra tiv e  example 
given in Eq. (90).

28After th is work was completed, we learned that 
K. Johnson (unpublished) knew a related  argument sug
gesting a zero of infinite order in ^(y), obtained by work
ing d irec tly  with the modified skeleton expansion de
scribed In Sec . П D1.

“ Equations (99) and (102) c le a r ly  illu stra te  the d istin c
tion between type-1  and type-2  asymptotic behavior.
When a 0* q (a ) ,  the asym ptotic behavior is  type 2, arxJ 
Eqs. (99) and (102) can both be developed as power s e r ie s  
In ln x . When a 0= <7 ( a ) , Eqs. (99) and (102) both degener
ate to a d ?  = a a, a s  expected for type-1  asymptotic behav
io r.

30The d iscussion  which follows depends only on the fact 
that the Gell-Mann—Low function vanishes with a zero  of 
Infinite o rder, and does not hinge c ru c ia lly  on the choice 
of Eq. (103) for h .  To see th is, we note from Table I 
that if  the Gell-Mann—Low function vanishes with a zero 
of f i n i t e  o rder N, the function A (x ,a )  vanishes asym ptoti
c a lly  as (1п*)~1/и-1) . Consequently, hn vanishes as 
(lnx)“n/lA,“1̂ and the in tegra l In Eq. (106) d iverges for a ll 
n S J V - l .  Letting W— we le arn  that in the case of an 
In fin ite-o rder zero of the Gell-Mann—Low function, the 
in tegra l in Eq. (106) d iverges for a l l  n .  Note that in 
making the distinction between the case where h vanishes 
a s  a power of x and the ca se  where h vanishes more slow
ly , it  is  Important to adhere to our convention of “vacu
um -po la r !za tio n -in sertio n -w ise” summation, which r e 
qu ire s  us to sum the logarithm ic s e r ie s  defining d" b e 
f o r e  passing to the asym ptotic lim it. This is  p ar ticu la r ly  
im portant In the ca se  of Eq. (102), where the logarithm ic 
s e r ie s  has only a  finite rad ius of convergence and so can
not be used to d escrib e the asym ptotic region.

MW. A. Bardeen (unpublished).
®The question of whether the Federhush-Johnson theo

rem  can be extended outside the ch arge-zero  sector in 
e lectrodynam ics is  an Important one and d eserves fu r
ther study. If it  can be extended suffic iently to Imply the 
van ishing of the electron-photon vertex  p art, then using 
the Ward Identity to re la te  the v ertex  part to the asym p
totic electron  propagator in Eq. (66) im plies that

U n^FjCjm "? = 0

when the eigenvalue condition is  sa tisf ied . I f F ^  0 , this 
equation then te l ls  us that Z7 m ust vanish.

MG. Kalian, Helv. Phys. Acta 25, 417 (1952); H. Leh
mann. Nuovo Cimento 11 , 342 (1954).

^Note that there is  no contradiction between the lact 
that a 0 > a  and the a sse rtio n , e ssen tia l to the argument 
of Sec. II D l, that the sp ectra l function van ishes as 
m 2—• 0. For I llu s tra tiv e  purposes le t us follow the ex
am ple of Eq. (90) and take

w (* (a ) - c / [ ( l  + x ) ( l+ c x ) l 

w ith с >0. Then Eq. (129) becomes
[ 0 3  Э  "1

m Ът +И ам +otP<a ) 0 = 0
to the particular solution.
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The various coupling-constant-dependent numbers describ ing anomalous com mutators a re  
constrained by the nonrenorm alization of the a jda l-vec to r—curren t anom aly. The n x ia l-vecto r 
cu rren t continues to behave anom alously even if  the underlying unrenorm alized fie ld  theory 
is  finite due to the vanishing of the Gell-M ann-Low eigenvalue function.

I. INTRODUCTION

It has now been estab lished that the canonical
fo rm alism  of quantum field  theory frequently
y ie ld s  re su lts  that a re  not verified  in perturbation 
theory . 1 These "anom alies” a re  of two d istinct 
kinds. F irs t ly  there a re  fa ilu re s of the B jorken- 
Johnson-Low (BJL)J lim it: Equal-tim e commuta
tors between operators, when evaluated by the BJL 
technique in perturbation theory, usually do not 
ag ree  with the canonical determination of these 
com m utators. A well-known consequence is  the 
fa ilu re  of the Callan-G ross sum ru le  for e lectro 
production . 3 Secondly there a re  violations of Ward 
iden tities associated  with exact or p a rtia l sym m e

tr ie s ; the two known exam ples being the triang le  
anomaly of the ax ia l-vecto r curren t and the trace 
anomaly of the new improved energy-momentum 
tensor . 1 (When a Ward identity is  anomalous, 
there is  also  a  corresponding BJL anom aly.) The 
Sutherland-Veltm an low -energy theorem for neu
t ra l pion decay is  fa ls if ied  as a consequence .4 
Both categories of anom alies a r is e  from the d iver
gences of unrenorm alized perturbation theory, 
which requ ire  the introduction of regu la to rs to de
fine the theory. The B JL  anomaly re flec ts  the 
noncommutativity of the B JL  h igh-energy lim it 
with the infinite regu lato r lim it which must be tak
en to define renorm alized , physical am plitudes. 
F a ilu res  of Ward iden tities a r is e  when no regulator

Copyright©  1972 by the American Physical Society. Reprinted with permission.
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exists which preserves the relevant sym m etry. ishing of the G ell-M ann-Low 7 e igenvalue function.
Although the common cause for both c la sse s  of Our conclusion, at le a s t  for the ax ia l-v e c to r  c u r-

anomalies is  evident, it has not been appreciated rent, is  that naive m anipulations continue to lead
that an intimate relationship exists between the to e rro r .
BJL anomalies and the fa ilu res of Ward identities.
In this paper we demonstrate that the very in te r- „  THE crewther ANALYSIS
esting analysis by Crewther of the triangle anom
aly in term s of Wilson’ s short-distance expansion" Assume that one is  dealing with a theory which is  
can be extended to exhibit this relationship. F ur- conformally invarian t at short d is tan ces . C onsider 
ther we show that in lowest nontrivial order of the v e c to r-v e c to r -ax ia l-v e c to r  cu rren t am plitude 
perturbation theory the ^-number anomaly in the
equal-tim e commutator of space-components of ^  = { 0 lT (V (x )^ (y )A “U))|0) . (2.1)
currents can be completely determined in term s of ’ 4
the с -number anomaly in the equal-tim e commuta
tor between the time component and space compo- Sch re ie r8 has shown that a conform ally in var ian t 
nent of the current, i .e ., the ordinary Schwinger three-index pseudotensor of dimension 9 m ust be
term . F inally we inquire to what extent the canon- proportional to the ferm ion trian g le  graph con
ic a l form alism  can be reestab lished if the unre- structed  from m ass le ss  ferm ions in free  fie ld  the- 
norm alized theory becomes finite due to the van- ory. Hence (2.1) is  given by"

------------—-------------------------------------------------------
T'T(x, У,г) = NA&°(x, y ,z )  + ■ • ■ , (2 .2a)

Д ^ °(х  v z ) A  Т г > У у У у У У ( х  -  y ) t[y -  z)((z -  x ) , (2 . 2b)
••c 16»" l(x -  y)* -  ii]5 l b - * ) 1 -  -  x f  -  it]2 '

Here JV is  a number and the dots in (2.2a) represent le ss  s ingu lar, non -scale-Invarian t contributions to 
У, z), which vanish in the sca le -invarian t (= conform ally invariant) lim it. The p re c ise  assum ption 

about these subdominant term s is  that they can be identified and separated  from дД£“(х, y , z )  in sequen tia l  
short-d istance lim its ,

lim  lim  T jj'°(x,y,z)~  lim  lim  №^£“(х, y, z) + le s s  singu lar te rm s , (2.3)

where {x(, x„ xt)  a re  any of {x, y,  z}. Thus we know that

lim  lim  Г ^ “(х, y, 0 ) = ^  +leSS sin^ la r  term s - (2' 4a)

Hm lim  TS?<*, 0 , * ) = ^ +  le ss  singular term s . (2 .4b)

Next a sc a le - in v ar ian t short-d istance expansion for current commutators is  postulated,

[^#(x), V^(0)]^=^-iSvv6(Ij(^ ,“'x2 -  2xMx*’) ~̂ —̂ ^ —̂ + iK rvd ,lee l“'a g A °(0)xB + • • • , (2 .5a)

[A J(x ), A“(0)] = - t S ^ 6„»(g^x* -  2 x ^  U K AAd ^ \ t  A ?(0)хй + . . .  , (2.5b)x ~o Г*" Л

[Vt(x\ AftO)] = i K y ^ ^ ^ V t W x 6 e(x°)a4ata) 4  ■ • ■ . (2 .5c)
»~o я

The dots indicate le ss  singu lar contributions, or operators with quantum numbers and sym m etries  d iffer
ent from the exhibited term s. S and К a re  constants which appear in the following equal-tim e com m uta
tors,

Iv l (x ) ,  V 1(0)] |,o=o = s „ h b ' 63(x) -  ~ 5 . ,s „ a 'a ,3 » 6 ’ (x) + • • •, (2 .6a)

[ v l(x ), y ' ( 0 )] |l0=0 = i K r y d . ^ A ^ 0)c3(x) + • • •, (2.6b)
etc .

Л is  a  quadratica lly  d ivergent constant, and the omitted term s have different quantum num bers. An expan-
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sion s im ila r  to (2.5) is  w ritten  for T products,

п л : т ; т ^  s . .  - к . .

- \ у ш W A ,(0))j ;  - „ r „ 2, , (^ _ , . e)I

(2.7a)

(2.7b)

(2.7c)

C rew ther’s observation is that the constants N, S, and К are not independent.® From  (2.1) and (2.7c) it 
follows that

lim  T ^ ( x ,  y, 0) = - K TA < 0 17’( V* M  17(0)) 10)

while (2 .6a) im plies that

lim  l im T v! aix  v 0 ) -S  К уЛ^х1 — gj&x2)1 'be IX, У, 0 ) - S y r К УЛ ^ {y, _ i e y {x2_ t e y  -

(2 .8a)

(2.8b)

Hence upon com paring (2.8b) and (2.4a), one finds

N = Sv r K rA . (2.9a)

Additionally, from  (2.1), (2.4b), (2.7a), and (2.7b) 
it follows that

N = SAAKr (2.9b)

If a s im ila r  analysis is perform ed on the ax ial- 
v e c to r-a x ia l-v e c to r-a x ia l-v e c to r  cu rren t am pli
tude one gets

H ' = S AAK A A , (2.10)

w here N' is  the proportionality  constant defined 
analogously to (2.2a) .10 As em phasized by Crew - 
ther, the in te re s t in re la tions (2.9) and (2.10) de
riv es from  the fact that S and К a re  m easurable 
(in princip le) in various deep-inelastic  p rocesses  -  
thus the anomaly in low -energy processes, at an 
unphysical point, is  directly  determ ined by experi
m ental h igh-energy behavior.

III. CONSTRAINTS ON ANOMALIES

We shall use (2.9) and (2.10) to probe the s tru c 
tu re  of anom alies in various models. Consider 
f i r s t  a  free  m assle ss  field  theory with

V:(x)=:Kxh»iX.Hx)--,

АЦ(х) = :ф(х)гу>‘у ^ \ аф(х):.

It Is tr iv ia l to verify that, as a lready stated  by 
C rew ther,” (2.9) and (2.10) a re  sa tisfied  with N=K 
= S =  1. The nonvanishing of S and N  is convention
ally  described  as anomalous. A naive evaluation 
of the equal-tim e com m utator (2 .6a) yields a van
ishing re su lt; the nonvanishing of S m easures the 
famous Schw inger-term  anomaly. S im ilarly a na

ive evaluation of 3 jT ^ a(*, y, z), 9l T ^ a{x,y,z),  and 
8'T J T ( * ,У> z ) yields zero since the cu rren ts  are  
conserved. N evertheless, as S ch re ier has shown,8 
one cannot consistently  se t a ll d ivergences of 
ДiZa(x, y, z) to zero , because th is quantity is sin 
gular when all three points coincide. In momentum 
space this corresponds to the well-known violation 
of W ard-Takahashi identities of the ferm ion, axial- 
vector triangle graph. Hence N m easu res the ax i
a l-v e c to r -c u rre n t anom aly . 1 Since a  naive d e te r
mination of К  from  the equal-tim e com m utator 
(2 .6b) also gives К = 1, we have a connection be
tween the anom alies: N = S; the triang le  anomaly 
is  a  consequence of the S chw inger-term  anomaly.

Next consider a ferm ion theory  with an SU(3)-in- 
varian t Yukawa in teraction  of streng th  g  involving 
neu tral vector gluons. (Spin-zero gluons render 
the ax ia l-vecto r cu rren t infinite; hence we do not 
consider them .) In o rd e r to apply C rew ther’s 
analysis , 5 i t  is n ecessary  to satisfy  h is  hypotheses:
(1) the existence of finite c u rren ts ; (2 ) the ex is 
tence of a sca le -in v a rian t expansion for products
of cu rren ts , (2.5) and (2.7); and (3) the existence
of a conform ally invarian t sh o rt-d is tan ce  lim it for
T ^ a(x,y ,z) ,  (2.2). No com plete calculation of
ТЦ£.а(х, y, z)  in higher o rd e r has been perform ed
which can be used to check the th ird  hypothesis.
We shall nonetheless assume  that this re s u lt is
valid, provided the o ther two a re  sa tisfied . This
assum ption is  m otivated by the fact that the tr ia n 
gle anomaly has no h ig h e r-o rd e r co rre c tio n s , 11 
and is  alm ost certa in ly  true  for the c la s s  of 
graphs, d iscussed  in deta il below, which contain 
only a single ferm ion loop. (See the Appendix.) 
T herefore we se t N = N' = 1, even in the presence 
o f  interactions. In o rd e r to satisfy  the f i rs t hy
pothesis, we m ust not consider SU(3) singlet vec-
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to r  cu rren ts , since these a re  not well defined in 
pertu rb a tio n  theory . The interaction with the vec
to r  gluon gives r ia e  to infinite vacuum polarization, 
which m odifies the singlet cu rren t.

In lo w est-o rd e r perturbation  theory In th is mod
el, a sca le -in v a rian t expansion for cu rren t prod
uc ts  ex is ts . T his can be seen as follows. A BJL- 
lim it determ ination  of the equal-tim e comm utator 
(2.6b) y ields a finite expression . 1 Hence the q- 
num ber portion of the expansion (2.5) and (2.7) ex
is ts . That the c-num ber p art also ex ists follows 
from  the Jo s t-L u ttin g e r calculation of the proper 
vacuum  polarization  te n so r . 12 Their re su lt is that 
in second o rd e r  of pertu rbation  theory this object 
is  no m ore singular than in the free -fie ld  model.
[in m om entum  space both the free-fie ld  graph and 
the low est o rd e r graphs of Fig. 1 go as a single 
pow er of ln(-fe2) fo r la rge  £.] However, S andK  
d epart from  th e ir  free -fie ld  values. The Jo s t-  
L u ttinger fo rm u la13 for S is  1 + 3£2/1 6 t2. Because 
N= 1, we m ust have К = { 1 + 3g2/lGn2) ' 1 = 1 -  3g 2/  
16n2; and the B JL  calculation of К gives indeed 
th is an sw er . 1 Hence we see  that the BJL anomaly 
in the com m utator of two spatia l components of 
c u rre n ts  is  determ ined  by the h igher-o rder te rm s 
in the c-num ber Schwinger te rm .

Beyond low est o rd e r , pertu rbation  theory no 
longer sa tis f ie s  the hypotheses (1) and (2). The 
ax ia l-v ec to r c u rre n t ceases  to be well defined, 
since  the graph of Fig. 2 is not rendered  finite by 
ex te rna l wave-function renorm alization  fac to rs . 1 
Also the c-num ber portion of the expansion (2.5) 
and (2.7) is  not of the assum ed sca le -invarian t 
form , since the p roper vacuum polarization  tensor 
acqu ires  quadratic  and h igher pow ers of ln (-ft2). 
(No calcu lations have been perform ed on the q- 
num ber p a rt of the expansion; but we expect that 
i t  too is  no longer sca le -in v a rian t.) However, sub
s e ts  of graphs can be chosen which probably con
tinue to sa tisfy  the hypotheses. For example if 
ferm ion  crea tion  and annihilation is  ignored, then 
the vacuum expectation value of the cu rren ts  is 
given by the one-ferm ion-loop  graphs. In th is ap
proxim ation we have11

(a)

(b)

vd > v 

vC E >  < X >  v< C ^ >

FIG. 1. Contributions to Jd4xe lkl <0|7'(l,J(r)Kj(0))|0> 
which go as lnf-fc2) for large k. (a) Free-field theory 
graph. <b) Loweat-order pertiirbatlon theory graphs.

e " '  < 0 1П  VS M  VJ(0 )) 10) —

= ( * " V  -  <?V) ^ b abF ( g 2)M ~ < f /m 2) 

+ le ss  singular te rm s  . (3.1a)

H ere F (g 2) is  the B aker-Johnson  function , 13 whose 
f i r s t  th ree te rm s in a power s e r ie s  expansion a re  
known:

F(*a) = 1 + l S - 5l2 £ +"'* (3.1b)

Also the ax ia l-vecto r c u rre n t is  no longer infinite, 
since the graph of Fig. 2 is  absen t. Evidently  the 
c-num ber term  in the expansion (2.5) and (2.7) is 
scale invariant with S = F (g 2), and it is  likely  that 
so also is the g-num ber te rm . Hence we con jec
ture that if the cu rren t com m utator w ere com puted 
in the BJL lim it, without including ferm ion  c r e 
ation or annihilation p ro cesses , one would find

K ( g 2)- 1
F (g ‘

3e l  U  £ V .
16л2 512' 1Г*

(3.2)

IV. ANOMALIES IN THE GELL-MANN-LOW LIMIT

We consider quantum elec trodynam ics, and a s 
sume that the G ell-M ann-Low  eigenvalue function 
possesses  a zero , so that Z,  is  fin ite .7 Now one 
can d iscuss cu rren ts , since the vacuum  p o la r iz a 
tion no longer d iverges. In th is lim it it should be 
possible to set the e lec tron  m ass m  to ze ro  and 
scale  invariance becom es exac t. 14 (Zlt the e le c 
tron  wave-function reno rm aliza tion  constan t, can 
be made finite by appropriate  choice of gauge.) We 
examine this (hypothetical) theory  in  the context of 
the ideas developed in Secs. П and Ш. It w ill be 
seen that singular behavior su rv ives even in  this 
finite theory and that naive canonical reason ing  
continues to be inapplicable . 15 [All ou r p rev ious 
form ulas hold with SU(3) indices supp ressed , and 
the following replacem ents: Vjf — J M, AS  — </£, dabc 
-  2, Sab-  2.] O bserve f i r s t  that, s ince  the tr ian g le  
anomaly has no rad iative co rrec tio n s, N continues 
to be equal to unity. However, because Z3 is  finite,  
the quadratically  divergent Schwinger te rm  is  ab -

■w

FIG. 2. Graph which render" the axial-vector current 
infinite.
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sent; i.e ., S = G. S in c e /f^ l /S ,  we see that the co
efficient of the ax ia l-vecto r cu rren t in the sh o rt-  
distance expansion of the product of two cu rren ts  
is  infinite. In other words the с -num ber sin g u la r
ity (2.5) is weaker than x'*, but the ^-num ber sin 
gularity  is stronger than x~3, so that the ir product 
rem ains singular as x"V Consequently the BJL 
lim it, which naively gives (2.5), is anomalous, and 
this is  true reg a rd le ss  whether o r not the elec tron  
m ass is se t to zero.

F u rther difficulties em erge if we se t the electron 
m ass to zero. In that lim it a ll vacuum m atrix  e le 
m ents of cu rren t products vanish by the F eder- 
bush-Johnson theorem , 14

However, a  seagull cannot give r is e  to the anoma
lous divergence , 1 which survives even in the G ell- 
M ann-Low sca le -in v a rian t lim it, since it  is m ass 
independent and is  not renorm alized. Consequently 
the equation ^ м(х)|0) = 0 is false.  Evidently only a 
w eaker statem ent can be true

<0 | 0 ^ ( * ) | 0>=0 , (4.3)

{0 | J M,(x,) • • ■</|l" (x ,) |0) = 0 . (4.1)

N evertheless we now show that one cannot conclude 
the strong sta tem ent that J^xJlO ) =0. For if th is 
w ere true then

T ‘,“°(xI y ,z )  = { 0 |T (J '‘(*>7"(j>)J5“ (£))|0> (4.2)

m ust be purely a seagull, since no m atter what the 
values of x°, y°, and z° a re , there  is always an 
e lec trom agnetic  cu rren t adjacent to the vacuum.

where О stands for som e, but not all, opera to rs.
In particu la r, products of electrom agnetic cu rren ts 
can com prise O, but О cannot be

J f (z \T (y)  o r r w t i z ) .

A fu rther problem  appears if we combine the 
Federbush-Johnson theorem  with the re su lts  which 
we obtained above from  C rew ther’s analysis when 
ferm ion creation  and annihilation w ere neglected. 
As Baker and Johnson ' 4 have shown, when the cou
pling g 2 is  equal to the value g B2 which m akes Z 3 
finite, and the e lec tron  m ass is zero , (4.1) holds 
even in the one-ferm ion-loop approxim ation. In 
particu lar, g 2 is  a  zero  of the function F (g 2) de
fined in (3.1a) and the four-point function sa tisfies

T““ya{xOyz) = < 0 1 T(J',(x)Ji'(0)J x(y)J °(z)) | ф = о . (4.4)

But now le t us take the lim it x -  0 in (4.4) and substitute the short-d istance  expansion of (2.7a). In the one- 
loop approxim ation Sr y =F(g02) = 0, so the leading contribution com es from  the second term  in (2.7a) and 
is  given by

T ^ ^ x O y z )  cc K ( g B2) ( 0 |T ( J f (0 ) J v( y ) J o(z))|0)°J"-r'7 io,̂ “ p. (4.5)
x~o (a * *o .—o

This is infinite, since according to (3.2) the coeffi
cient K ( g a2) is equal to F~1{ g f )  = *o, while we have 
seen that the th ree-po in t function appearing in (4.5) 
cannot vanish. So we have reached the im possible 
conclusion that 0 = ~! Evidently, if the theory has 
an eigenvalue g 0 which m akes Z3 finite, the naive 
sh o rt-d is tan ce  expansion is invalid at the eigenval
ue, even though it  may be true  o rd e r-b y -o rd e r in 
pertu rbation  theory. In particu la r, the lim iting 
operations g — g a and x -  0 do not commute. One 
can easily  w rite down sim ple exam ples which have 
th is p roperty , e .g .,

F - ( g 2)
1 +f(x)F-*(g2) ’ (4.6)

w here f  * 0 for x * 0 but / (0) = 0. For all nonzero x,
(4.6) vanishes as F ( g 2) in the lim it g 2-  g 2, but 
for x = 0, (4.6) diverges as F~l(g2) in the sam e 
lim it. W hether such behavior can actually em erge 
from  field  theory, when all the constra in ts im 
posed by cu rren t conservation  and conform al in
variance a re  taken into account, rem ains an open

question, as indeed does the question of whether 
an eigenvalue g  2 ex is ts  in the f i r s t  place.

V. CONCLUSION

We have shown that the coupling-constant-depen- 
dent num bers, describing various BJL anom alies, 
a re  constrained by the nonrenorm alization of the 
triangle anomaly. F urtherm ore the ax ial-vecto r 
cu rren t continues to behave in a singular fashion 
even in the finite theory of Gell-Mann and Low. In 
particu lar the following three phenomena a re  in
compatible:

(1) The triangle anomaly is unrenorm alized.
(2) There is an eigenvalue g 2 =g02 which makes 

Z, finite.
(3) Naive sca le -invarian t short-d istance expan

sions involving the axial-vector cu rren t a re  valid
at the eigenvalue.

C rew ther11 also applies Wilson’s method to anom
a lies of scale  invariance . 1 Unfortunately there
does not seem  to be a  “no renorm alization theo
re m ” for these anom alies since all regu lators vio-
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late  sca le  invariance. (Chiral invariance is not 
violated by boson regu la to rs; these render finite 
a ll graphs but the basic ferm ion triang le .) T here
fore re su lts  analogous to the above cannot be de
duced for sca le  invariance anom alies . 14

We have benefited from conversations with 
R. C rew ther, K. Johnson and K. Wilson, which we 
a re  happy to acknowledge. SLA and CGC, J r .  wish 
to acknowledge the hospitality  of the National Ac

c e le ra to r Laboratory , w here p a r t of th is w ork w as 
done.

APPENDIX

In this Appendix we shall give argum ents fo r our 
assertion  that the vacuum -po lariza tion -free  t r ia n 
gle is asym ptotically conform al invarian t. Our 
starting  point is the W ard iden tities fo r sca le  and 
conform al invariance. At the naive canonical lev 
el, these have the form

f d z ( 0 1Г (в(г)ф '1’(*,) • • ■ <f>w (*„))10) = i J  (x,  ■ ■—  +<it)  ( 0 | Т(фм (*,) • • • ф « (*„)) 10) , (A l)

f d z  * „ (017Че(я)ф<1)(*,) • • • Фм (*„)) 10)

= * i  (  ^ j r  + 2<(d, g„v + I*» ))< 0 1 Т(фм (Xl) • ■ • фМ (*.)) 10 ) , (A2)

w here 0  is the trace  of the “ im proved” energy- 
momentum tenso r (hence containing only m ass 
te rm s  and o ther soft opera to rs), dt is the canoni
cal dim ension of the field  and is  the c o rre 
sponding in trin sic  spin m atrix .

The b asis  fo r the naive argum ent for asym ptotic 
conform al invariance is the observation that since
0  m ust contain exp licit fac to rs  of m ass the le ft- 
hand sides of (A l) and (A2) m ust, on dim ensional 
grounds alone, be le s s  singular a t sho rt distances 
than the corresponding right-hand side.

The work of Z im m erm ann , 17 Lowenstein , 18 and 
S ch roer18 indicates that when the unavoidable di
vergences of pertu rbation  theory a re  properly  tak
en into account, the above W ard identities are  
modified by the addition to в  of operator contribu
tions of dim ension four (nonsoft). These new te rm s 
have no explicit dim ensional fac to rs and need not 
vanish re la tiv e  to the righ t-hand  side in the sh o rt- 
d istance lim it. As a re su lt, asym ptotic scale and 
conform al invariance a re  not rea lized  in re n o r
m alized pertu rba tion  theory, except in  special 
cases .

The nonsoft contributions to 0  a re  associa ted  
with the various w ave-function and coupling-con
stan t renorm aliza tion  sub trac tions needed to make 
the theory fin ite. The p ieces associa ted  with 
w ave-function reno rm aliza tion  can in fact be ab
sorbed in (A l) and (A2) by rep lacing  the canonical 
dim ensions d , by coupling-constant-dependent 
“anomalous d im ensions” dt . The p ieces associa ted  
with coupling-constant reno rm aliza tion  a re  p ro 
portional to the various in terac tion  te rm s  in the 
L agrangian and sim plify  only in (Al): The in s e r
tion at zero  four-m om entum  of an in te rac tion  term  
is  equivalent to d ifferen tia tion  with re sp e c t to the

corresponding coupling constant.
In the body of the paper we considered  a theory  

of an SUa singlet vecto r-m eson  coupling v ia  a  con
served  cu rren t to a  ferm ion. The octet v ec to r and 
ax ia l-vecto r cu rren ts  in such a theory  req u ire  no 
renorm alization  sub tractions, since they cannot be 
coupled to the singlet vector m eson by vacuum po
larization  bubbles of the type illu s tra ted  in Fig. 1. 
Thus, the SU3XSU3 cu rren ts  will, according to the 
preceding paragraph, act like fields with canonical 
dim ensions. The sam e sta tem en t applies to both 
the electrom agnetic and ax ia l-v ec to r cu rre n ts  in 
quantum electrodynam ics with v acu u m -p o lariza
tion insertions om itted. Since the vector m eson 
couples via a conserved cu rren t, the usual W ard- 
identity argum ent guaran tees that coupling-con- 
stan t infinities a rise  only from  vacuum  p o la r iz a 
tion graphs. If such graphs a re  excluded -  e ith e r 
by fiat, o r by looking a t a  sufficiently low o rd e r in 
pertu rbation  th e o ry -n o  coupling-constant re n o r
m alization is needed, and 0  in (Al) and (A2) may 
be trea ted  a s  a soft opera to r. F u rth e r, if we con
sider a G reen 's  function involving only non reno r
m alized c u rren ts , so that the re levan t dim ensions 
a re  a ll canonical, the scale and conform al W ard 
iden tities assum e their naive form  and the a rg u 
ment for asym ptotic scale and conform al in v a r i
ance becom es co rrec t.

L et us apply these rem ark s  to the VVA triang le . 
To 0 (^ ° ) (g  being the coupling constant of the glu
on), we obtain the b are  triang le , which is  tr iv ia lly  
conform ally invarian t in the sh o rt-d is tan ce  lim it. 
To 0 ( g 2) we obtain the triang le  decorated  In all 
possib le ways with one gluon. At this level, no 
vacuum polarization  is possible and the above a r 
gument indicates that asym ptotic conform al invari-



ance s til l holds. But there is only one possible 
form  fo r a conform al-invarian t VVA amplitude 
T herefore, in the short-d istance  lim it, r rVjl
-  (1 + с г 2)Г (̂ , „  where stands for the asymp
totic lim it of the bare  triangle. On the other hand, 
the PCAC (partia lly  conserved axial-vector cu r
ren t) anomaly is determ ined prec ise ly  by the 
sh o rt-d is tan ce  lim it of ГТГл 21,(1 is also known to 
be coupling-constant independent. This is possible 
only if С = 0, which is  to say that the 0 ( g 2) graphs 
succeed in being conform al invariant by vanishing. 
Now consider the 0 ( g 4) contributions to ГГУЛ. At 
th is  level there  are vacuum -polarization graphs 
and the argum ent for conform al invariance breaks 
down. N onetheless scale  invariance survives. We 
argued that when coupling-constant renorm aliza-
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tion is needed, (Al) is modified by adding a  term

W ^ { o | n ^ ( * , ) - ^ W ) | ( »

to the left-hand aide. It turns out that 0 is  0 ( ^ 3), 
so that if we need № /a g )r vrA to 0 {g A) it  suffices 
to know TYVA to 0 ( g 2). We have just argued that 
the 0(g*) contribution to Туул vaniahes m ore rap 
idly in the asymptotic lim it than naive power 
counting would auggeat. Therefore, the left-hand 
aide of (Al), computed to 0 { g 4), s t il l vanishes 
relative to the right-hand side in the ah o rt-d is- 
tance limit, leading to asym ptotic scale invari
ance. In higher o rders, scale Invariance p resum 
ably breaks down as well.
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We show that the Feynman ru le s  for vacuum -polariza tion  ca lcu la tions and the  equations of 
m otion in m a s s le s s , Euclidean quantum electrodynam ics can be tra n sc r ib e d , by m eans of 
a  s te reograph ic  mapping, to the surface  of the S-dim ensional unit hy p ersp h ere . ТЪе r e 
sulting fo rm alism  is  closely  re la ted  to the Feynman ru le s , which we a lso  develop, fo r m a s s 
le s s  electrodynam ics in the conform ally covarian t 0 (5 ,1 ) language. The h y p ersp h erica l 
form ulation has a num ber of apparen t advantages over conventional Feynm an ru le s  in 
Euclidean space: It is  m anifestly  in fra red -fin ite , and i t  m ay p e rm it the developm ent of 
approxim ation m ethods based on a se m ic la ss ica l approxim ation for angular m om enta on the 
hyp ersp h ere . The f in ite -e lec tro n -m a ss , M inkow ski-space genera liza tio n  o f our r e su lts  
g ives a  sim ple form ulation of electrodynam ics in (4,1) de S itte r space.

I. INTRODUCTION

C onform al invariance in quantum field  theory has 
a ttra c ted  renew ed in te re s t recen tly , because of its  
connection with problem s of asym ptotic h igh -ener
gy behav io r .1 Im portant re su lts  on leading ligh t- 
cone s in g u la ritie s , fo r exam ple, have been ob
tained by the use  of conform al invariance .2 Another 
question  to which conform al invariance is re levan t 
is  the study of eigenvalue conditions im posed by r e 
qu iring  reno rm aliza tion  constants to be fin ite .3 To 
see  th is , le t us consider the sing le-ferm ion-loop  
vacuum -polarization  d iag ram s in s p in - i  quantum 
e lec trodynam ics, il lu s tra ted  in Fig. 1. If we work 
in  coordinate space with separa ted  points x, x' we 
can free ly  pass  to the zero  ferm ion m ass, o r con
fo rm a l lim it. In th is lim it, however, the s tru c 
tu re  of the vacuum po larization  is unique ,2 and 
hence the sum  of d iag ram s in Fig. 1(a) m ust be 
proportional to the lo w est-o rder vacuum -po lariza
tion ten so r in Fig. 1(b),

x'; a) = -3ttF{l](a W ^{x ,  x ' ) . (1)

When Eq. (1) is  F o u rie r-tran sfo rm ed  to momentum 
space , using c u rre n t conservation  in the usual 
fashion to e lim inate  the quadra tic  d ivergence, the 
function .F ^ (a )  ap p ears  a s  the coefficient of the 
logarithm ically  d ivergen t te rm . R equiring the 
photon w ave-function reno rm aliza tion  Z 3 to be 
fin ite  then im poses the eigenvalue condition .Р ^ ( а )  
= 0 .«

O ur aim  in the p re sen t paper is to study re fo rm u 
lations of m a ss le s s  e lec trodynam ics which a re  
made possib le by its  invariance under conform al 
tran sfo rm atio n s, with the goal of developing m eth 
ods which may allow one to ca lcu la te  o r  app rox i-

6

m ate the function .F111 appearing in Eq. (1). B e
cause the singularity  s tru c tu re  in x  and x' is  no t of 
in te re s t (it is  ju s t tha t of the lo w est-o rd e r vacuum  
polarization), we make the Dyson-W ick ro ta tion  to 
a  Euclidean m etric  a t the ou tse t. Thus we deal 
with m ass le ss , Euclidean quantum  elec trodynam 
ic s . Our p rinc ipa l re s u lt is  th a t the Feynm an 
ru le s  fo r vacuum -polarization  calcu lations and the 
equations of motion in th is theory  can be sim ply 
rew ritten  in  te rm s  of equivalent ru le s  and equa
tions of motion on the surface  of the 5 -d im ensional 
unit hypersphere. In Sec. П we s ta te  the 5-d im en - 
sional ru le s  and verify by exp licit tran sfo rm a tio n  
tha t they a re  equivalent to the usual ru le s  in E u
clidean coordinate space (x space). We also  con
s tru c t and verify  a 5 -dim ensional fo rm ulation  of 
the Maxwell equations and the equation of c u rre n t 
conservation , and d iscu ss  the physical m eaning of 
ro ta tions and inversions on the hypersphere . In 
Sec. in  we d iscu ss  m a ss le s s , Euclidean quantum 
elec trodynam ics in the m anifestly  co n fo rm al-co - 
v a rian t 0 (5 ,1 ) language. W e  develop the Feynm an 
ru le s  in this fo rm alism , explore som e of th e ir  
pecu liar fea tu res, and show that they a re  re la ted  
by a sim ple pro jective transfo rm ation  to the ru le s  
on the 5 -dim ensional hypersphere. In Sec. IV we 
d iscuss possib le  generalizations and applications 
of our re s u lts . We point out that the f in ite -e le c 
tro n -m ass , M inkowski-space extension of our hy 
p e rsp h e rica l re su lts  gives a  sim ple form ulation  of 
e lec trodynam ics in (4, 1) de S itte r space . The 
e lec tron  wave equation which we use is  ju s t the de 
S itte r-sp ace  equation orig inally  proposed by 
D irac ,5 but ou r trea tm en t of the M axwell equations 
is  an im provem ent over tha t of D irac , and does 
not req u ire  the im position of homogeneity condi-

3445

Copyright©  1972 by the American Physical Society. Reprinted with permission.



R31 403

3446 S T E P H E N  L .  A D L E R в

tions. T here a re  a num ber of possib le calculation- 
a l advantages of the hyperspherical form ulation of 
e lectrodynam ics over the usual Feynman ru les in 
Euclidean space. F ir s t, because the surface of the 
hypersphere is  a  bounded domain, the calculation 
of vacuum -polarization  d iagram s in the 5-dim en
sional fo rm alism  is  m anifestly in frared -fin ite . 
Second, because the wave opera to rs on the hyper
sphere  a re  constructed  from  angular momentum 
o p era to rs , th ere  appears to be the possibility  of 
m aking sem ic lassica l approxim ations when virtual 
angular momentum quantum num bers a re  large 
com pared to unity. This con trasts  sharply with 
the situation  in Euclidean space, where there is 
no na tu ra l distance or momentum scale  which d is 
tinguishes regions w here one can approxim ate the 
wave opera to r.

П. S -D IM EN S]O N A L FORM ALISM

In th is section  we se t out the 5-dim ensional 
fo rm alism  and verify , by explicit transform ation, 
its  equivalence to the usual ru les  in x  space.
Secs. ПА—ПС contain a sum m ary of the 5-dim en
sional Feynman ru le s  and equations of motion, 
while in Secs. HD and ПЕ we d iscuss the tran sfo rm 
ation to x  space and the in terp re ta tion  of sym m e
tr ie s  on the hypersphere.

A. S um m ary o f  F eynm an  R ules 
□ n Hie H ypersphere

In w riting  down the 5-dim ensional ru les and 
com paring them  with th e ir Euclidean counterparts, 
we adhere to the following conventions and no ta
tion.® F ive-dim ensional unit vectors a re  denoted 
by jjj, rj2, . . . ;  5-dim ensional vector indices a re  in
dicated by lower case  ita lic  le tte rs  a , b , . . .  which

take the values 1 , . . . ,  5, and the 5-dim ensional 
m etric  is the Euclidean m etric  a^ . S im ilarly, o r 
dinary 4-dim ensional vecto rs a re  denoted by
*11 *21 with vector indices ji, v , . . .  taking the
values 1, . . . ,  4 and with a  4-dim ensional Euclidean 
m etric  6 fl„. The usual 4 x 4  D irac у m atrices a re  
taken to satisfy a Euclidean Clifford algebra

{ y „ ,y „} = 2V  (2)

and a re  a ll H erm itian; explicit rep resen ta tions for 
these m atrices a re  well known. In w riting the 5- 
dim ensional ru les  we need, instead of the y ’s, a 
se t of five H erm itian 8 x 8 m a trices  a , satisfying 
the Clifford algebra

{а« « * }  = 2Вл . (3)
In te rm s of the у m atrices  and the Pauli spin m a

in  explicit rep resen ta tion  of the atr ic e s  T|(2.3, 
m a trices  is

а и=Уц‘г1> ~ Ta 
Since the m atrix

(4)

a. = t, (5)
sa tisfie s  <y,a = l  and anticom m utes with the the 
trace  of an odd num ber of a m atrices  vanishes. 
Physical quantities such a s  the electrom agnetic 
cu rren t, vector potential, etc., w ill be denoted by 
capital le tte rs  (J„,A„ . . . )  in 5-dim ensional space 
and by lower case le tte rs  . . . )  in Euclidean
space. We le t f d i x = fdx ,dx2dxsdxt denote the in 
tegration  of x over Euclidean space and we s im ila r 
ly let Jdn  denote the integration of t] over the s u r 
face of the 5-dim ensional hypersphere. Finally, 
we use t r 4 and tr ,  to denote, respectively , the trace  
over the у m atrices and the a m a trices .

The connection between the 5-dim ensional co-

ТГ^и 1к,ж'-,а) * + a '
— C x p — — 

+

— С П ) —  
+

-permutations -

(a )

7 ^ ’ (* ,* ')  *

( b )

FIG. 1. (a) S lngle-ferm ion-loop vacuum -polariza tion  dinfcrams in sp in -J electrodynam ics, (h) L aw est-arder vacuum - 
po la riza tio n  d iagram .
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ord inate  r\ describ ing a space-tim e point and its 
Euclidean equivalent x is given by the s te re o - 
graphic mapping1

with the inverse transform ation

2x„
V»

l - S

(6a)

(6 b )

The 5-dim ensional electrom agnetic cu rren t Ju 
which sa tis f ie s  the constra in t equation

q* (7)

is mapped into tbe usual electrom agnetic cu rren t 
by

= (fi) 
with the inverse  transform ation

Ju = K~3j K~*XpX • j,
(9)

We can now state  the 5-dim ensional Feynman 
ru les  with, for com parison, th e ir  Euclidean count
e rp a r ts . These a re  given in Table I. The equiva
lence of the two se ts  of Feynman ru le s  fo r vacu
um polarization  (closed-ferm ion-loop) calculations 
is dem onstrated  explicitly  in Sec. IID below.

B. P h o to n  P ropagato r E q u a tio n  and M axw ell E qua tions

To w rite  the wave equation sa tisfied  by the pho
ton propagato r on the hypersphere we introduce 
the (anti-H erm itian) angular momentum opera to r

' Ч'  «4.
(10)

When sev e ra l coord inates Tja, . . .  a re  p re se n t 
we denote the angular m om entum  acting  a t  rh by 
L i, ao (.£,,)„„ = (ih).8 / 8 (i)i)b -  (i],)»8/ 6^ ! ) , ,  e tc . In 
th is notation the photon propagato r equation takes 
the form

( V - 4 )  ( * у = - 8^ М П 1-т?2), (И )

w here 6S is the hyperspherica l в function s a t is fy 
ing

J  d n ^ f i r i j G s  (г), -  tj2) =  / ( t ) 2) (12)

for a rb itra ry  / .  The constant m ultiplying the es 
function in Eq. (11) can be v e rified  by in teg ra ting  
Eq. (11) over the hypersphere:

/ dn,(Ll’ " 4)

= - 4 J dD‘ ( ^ 7

г/_1,<г(1(1 - ц а) [ 1/ 2 (1 - ц ) П  r
~ 4L ^ Ф ( 1 - м г) J j dsti

-  —8wa , (13)

w here we have w ritten  ц = 71, • and used the fac t 
that

J dal = j ф ( 1 - д а)х  azim uthal in teg ra tions .

(14)

Equation (11) can also  be v e rified  from  the expan
sion of (1 — д ) -1 in  te rm s  of G egenbauer polynom i
a ls  c ; /2Gi),e

TABLE I. The 5-d lm enelonal Feynm an ru le s  and th e ir  Euclidean co u n te rp a rts .

5-d im ensional E uclidean

E lectron - i  f ( a  • n , - l ) f (» • Ч2+ 1 ) - i  y ( x ,- X j)
p ro p ag a to r "•T  (V1-V2)* 2^  < x , - x 2)4

Photon 1 6at
propagato r 4*5 С JJi — Лг)1 4* 2 (x t - x j 2

E lectron-photon 
v e rtex  * t e a ,  = | i e ( a  • ij t , a , ) iey„

Each closed 
ferm ion  loop “ ‘«I - ‘r ,

Each v irtu a l 
coo rd inate  In tegration

j d * x

л The two Indicated form a of 5 -d lm enelanal e lec tron -pho ton  v e rtex  a re  equal when sandwiched betw een e lec tro n  p ro p a1 
gators.
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i  ^ (2Я+ з ) с ; 'аы  
1 - Д  „4i  (« + !)(« + 2) ■

Using the relation

2rt +3

(15)

£  У М У * а(щ) = CJ/2(tj, • jj2) , (16)8 я2

w here the УЛ11|(»)) a re  orthonorm alized hyperspheri- 
ca l harm onics, Eq. (15) becomes

1_____ A_3 У*т{Уз) ( ,
Ч - П , ) а .4 * 4 * &‘ + 1Hn + 2) ■ vU/

Then, using the d ifferential equation for the hyper- 
spherica l harm onics

L * Y „„(77,) = -2n(n  + 3) У„„(jjj), (18)

we find from  Eq. (17) that

( V  -  4) 1 = -вгг2 £  £  Y M Y M
И 1  *12' л = 0  «"

= -87T2es (?)1-7 J ,)) (19)

in agreem en t with Eq. (11).
To w rite  the Maxwell equations on the hyper- 

sphere  we introduce the electrom agnetic potential 
5-vecto r A.,  which sa tis f ie s  the constrain t

ij -A =0 (20)

and is re la ted  to the electrom agnetic potential a p 
in Euclidean space by

K~1a „  = A „ - x , lA , .•f, -*yj *1^5
The elec trom agnetic field strength  is described  
by the to tally  an tisym m etric  rank -th ree  tensor

(21)

Fabc~ LabAc + LbCA a + LcaA b » (22)

which is  dual to the an tisym m etric  rank-tw o ten
so r

~eobcd.nc 3jb A , . (23)

The usual dual tensor /„„  in Euclidean space is  
re la ted  to Рл  by

k"2/„„ = ^ „ 1, ~x„Fsu (24)
In te rm s  of the ten so rs  Fabc and Pai the Maxwell 
equations become

LatF'bc = 2eJc> (25a)

L . t K  = h  c  (25b>
with Jc the e lec trom agnetic cu rren t, which s a t is 
fie s  the conservation  equation’

L . ,J b=J..  (26)

An explic it dem onstration  that Eqs. (25) and (26)

indeed do correspond to the Maxwell and c u rre n t- 
conservation equations in x space w ill be given be
low in Sec. IID.

When E qs. (22) and (23) a re  used to exp ress  the 
Maxwell equations in te rm s of the potential A, Eq. 
(25b) is triv ially  satisfied , while Eq. (25a) be
comes

P„A „ -2eJc, 

with Pca the wave operator 

P „  = 2L,sL , . - 6 i „  + L25 « .

(27)

(28)

Using the angular momentum commutation r e la 
tions it is stra igh tforw ard  to verify that Pcc has 
the following p roperties:

LhcPea ~Pbc Arj =Pba )

п Л - Л л - О ,
(29)

which guarantee the consistency of Eq. (27) with 
the constrain ts on J  given by Eq. (7) and Eq. (26). 
Equation (27) can be fu rth e r sim plified if the po 
ten tia l A , is chosen to satisfy the condition

( 30 )

which is the hyperspherical analog of the Lorentz 
condition. When acting on potentials which obey 
Eq. (30) the opera to r Pct becom es simply 
( I ? - 4)6ca. Hence the wave equation becomes

(L * -4 )A c = 2eJc, (31)

and as expected involves the sam e wave operator 
as appears in the photon propagator equation, Eq. 
(11).

C. E lectron  P ropagato r E qua tion  and  F ield  E qua tion

To w rite  the electron propagator equation we 
introduce the m atrix  defined by

Г«ь = Ь '[ а „  a , ] . (32)

Using the abbreviation ул Ьл  =y ■ L, we find that 
the e lec tron  propagator obeys the wave equation

(iy  -L j + 2 ) (a  -7), -  l) (a  -т)а + 1)

= -2 i r ’Ss (j]I -  r j ,) ( a  ■ J]a + 1 ) .

(33)

= - 2л2в*(ч1 -7ja)(a -7|j - 1) ,

w here the coefficient of the Bs function in Eq. (33) 
is obtained by averaging over the hypersphere, as 
in Eq. (13). An a lternative method for obtaining 
Eq. (33) is to use the following relation  between 
the e lec tron  and photon propagators,
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( g  4 ? |  ~  l ) ( g  '  Т?! +  1 ) 

(V, -H i)4

= - 3 ( t >  • L x +  1 ) ;

Applying the wave opera to r iy  • Lj + 2 to Eq. (34) 
and using the identity

(iy  • Lj + 2)(»y ■ L, +1) = —i(L* —4) ,  (35)

we find

. nA a 'V i - l ) ( a 'T h  + l)
( , r ' L ' * 2>— —

-  - 2  n 2e,s ( t j x -  J]2) ( a  • I}2 + 1 ) ,

(36)
w here in the la s t step  we have used the photon 
propagator equation, Eq. (11).

The m a trix  у ^  is a  generalized  spin operator 
fo r the elec tron . W riting

Sab m iy ЛЬ

= » [« «  «б], (37)

we find tha t S and L sa tisfy  identical commutation 
re la tions,

[S*6> Sc<]= бас5л( -  6,  ̂Scb + 6jc5 „  -  ,

[Lai, io t]  “ Al» — fi„, Lcb + 6bc Ltf  -  ЬЫЬК , 
and that 

S2 = - 5 ,

(L-S)2 = 3 L - S - i L ‘ .

The second re la tion  in Eq. (39) leads im m ediately 
to the identity in Eq. (35).

Finally , in te rm s  of an 8 -com ponent e lec tron  
sp inor x the e lec tro n  wave equation takes the form

(38)

(39)

(40)

with the adjoint equation

* ! ,у° * М 4 ; +,'еЛ'(т,))

' n*(^7 + I’eAa(7,))] _2} =0,

x = x t (41)

The electrom agnetic  c u rre n t Jc which ap p ea rs  in 
Eq. (31) is  given by

Jc( 7 ) ) - - i tx [ a  ‘4, a J x -  <42)
Using the re la tion

( ч° ijj" ~ Vc 817") ' 1]’ “ J - l ®  *4. a . ] - 2 tij .y -L

(43)

and Eqs. (40) and (41), we see  that the c u rre n t J c 
sa tisfies  the cu rren t conservation  condition of Eq. 
(26). The co n stra in t im posed by Eq. (7) is  also  
obviously sa tisfied .

D. T ra n sfo rm a tio n  fro m  the  H y persphere  to  x  Space

We give in th is section  the exp lic it tra n s fo rm a 
tions which map the h y perspherica l Feynm an ru le s  
and equations of m otion into the correspond ing  
ru le s  and equations of motion in x  space. We be
gin w ith the Feynman ru le s  of T able I and consider 
f i r s t  a  closed ferm ion loop coupling to 2n photons, 
given by

2n
Y  Г - j  г ( а  4 ) i  - l ) l ( o i  4 i ,  +  l )  . - i  i ( a - 7 ) a - l ) i ( a - T ) 3 +  l )

p o l lu t io n ,  of 1 .... ,1л * l V  (Vl-Vz)4 lea°* (т?2 — Ч » )4

—i г(о; 4 j2„ - l ) i ( a  - 7̂  + 1)
V2 (ria n-Vi)*

In o rd e r  to obtain the corresponding 2n-point func
tion in x  space, we m ust tran sfo rm  each of the 2n 
cu rren t indices according to the rec ipe  of Eq. (8a), 
which m eans that we effectively make the re p la c e 
ment

Kt*(aVl - * „ , a 6) (45)

fo r each vertex  а Ш1. A fter this rep lacem en t has 
been m ade, we m ust then find th a t a  purely  alge-

• J -
(44)

braic rea rran g em en t of fa c to rs  gives the 2я -poin t 
function computed from  x-space  Feynm an ru le s . 
For the denom inator in Eq. (44) the re a r ra n g e 
m ent is  tr iv ia l, since substitu tion  of Eq. (6) shows 
that

(Vi -T)(+i)a =

To rea rran g e  the num erator we exploit the fac t 
that the fac to rs  a  -i)± 1 appearing in each p ro p a -
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gator a re  projection  opera to rs, allowing us to r e 
w rite  the num erator of the general propagator a c 
cording to

i(a  +

■ i(ar ■!?( - l ) l a  •(»),*, -i)i«i + l) . (47)

We next introduce the m atrix  O(x) given by 

1 + a . a  • x
o W  = 

O W - 1

( i + 0 1/a ’

1 - a sa - x  
’ ( l +xJ)i/> *

(48)

and that

0 (x )s ( l  + я  - i jX a , , -XpOt jHa ■V -  l)O (x)-1

= j ( l  + a , ) a (/i(cts - l ) .  (50)

Substituting Eq. (4) fo r the a  m atrices , we can pull 
a ll fac to rs i ( a s ± 1) = z(ts± 1) to the left, w here they 
combine to give a single fac to r |( т 3 + 1). The fac
to rs  t ,  appearing in the m atrices  a  „ then cancel in 
pa irs  ( t 12 = 1), leaving

w here a - x  denotes the 4-dim ensional sca la r p rod
uct a ux v. Some straigh tforw ard  algebra then 
shows that

- f r .  [ Mr, + 1)X{y\ ] = - t r ,  [X{y] ], (51)

0 ( x , ) i a  ■ Oh ~ n i * i ) 0 ( x t t I )~ l

a - ( x , - x u i )
[(1 + *.»)(!+ * и 1а) Г

(49)

w here X {y\  contains у  m a trices  only. The factor 
к,3 appearing in Eq. (45) p rec ise ly  cancels the fac 
to r (K|J/V «i2)3 a ris in g  from  the substitution of Eq. 
(49) and Eq. (46) into Eq. (44). Thus, we have 
shown that when the replacem ents of Eq. (45) a re  
made, Eq. (44) can he algebraically  rea rranged  to 
the form

1 Г —  i  У ' ( * i  —  * j )  . - t  у ( * г - * 3)

permuulioni
of 1.........2 я

- i  У ■ («а. -X,)  
2т!5 (^ „ -x ,)* геу. .]■ (52)

(53)

which is  ju s t the 2n-point function calculated according to the Euclidean x-space Feynman ru les .
The next step  is  to verify tha t the hyperspherical ru le,

/  dcin1d a i , J‘l(TJ ,^ b (v,) j p  (7?i _ Чг)» .

co rrec tly  describes the propagation of a v irtua l photon from  tj, to i}2. The use of the cu rren t «7 in Eq. (53) 
is  of course ju s t a  convenient shorthand for describing the 2n-point functions from  which the photon is 
em itted  (absorbed), with a ll variab les o ther than those re fe rrin g  to the v irtua l photon in question sup
p re sse d . Calculating the Jacobian of the transform ation  of Eq. (6) by use of 5-dim ensional sp h erica l co
o rd inates gives

(54)

Substituting Eq. (54) into Eq. (53), using Eq. (46) to rew rite  the denominator of the photon propagator and 
Eq. (9) to re ex p re ss  the cu rren t J a in te rm s of the combination of components j v = — Xp«/5) which is 
re lev an t to x  space, we find that the fac to rs к precisely  cancel, leaving

w ith

A„lPl(*i. *») = (*i -  b ?

г а (* Л , Ы ,  4(i +xt • x2)(x1)Ml(x3)|,,i
[ Ч - , "  l + X f  “ 1 + V  + (l+X^Kl+X,5) J

_

(х, - * , ) 8 8 (*Л 2 »(*,)„
ln(l + x,Л]

(55)

(56a)

(56b)



408 Adventures in Theoretical Physics

fi M A S S L E S S ,  E U C L I D E A N  Q U A N T U M  E L E C T R O D Y N A M I C S  O N . . 3451

In Eq. (56a) we give the lo rm  of the x-space photon 
propagator A(,i (Jj (j:1, xs) which em erges directly  
from  the substitution of Eq. (9) into Eq. (53); in 
Eq. (56b) we show that Д can be rew ritten  as the 
usual Feynman propagator plus total derivative 
te rm s (gauge te rm s), which make no contribution 
to Eq. (55) because of electrom agnetic cu rren t con
servation . Hence Eq. (53) is completely equivalent 
to the usual x -space Feynman ru le s  for propagat
ing a v irtual photon. In Sec. ПЕ we w ill show that 
the special significance of the gauge term s in Eq. 
(56a) is that they give A sim ple transform ation 
p ro p e rtie s  under coordinate inversion.

To tran sfo rm  the photon and elec tron  equations 
of motion and the cu rren t conservation equation to 
x  space, we rew rite  the d ifferential opera to rs 
э/Вт}„ and L ci in te rm s of x derivatives according 
to

Э 8
+ te rm s  proportional to jj, ,

i  = J_  J_
Ь » - * Р 8х„ ” ЭХи ’

£ +(1_,rl)S7:’

(57)

(58a)

and use the following equation [obtained from  Eq.
(6 )] to d ifferen tia te  к,

—  = -к*хa * ,
(58b)

Applying Eqs. (58) to E qs. (21)—(24) we find that 
Eq. (24) im plies the usual connection between the 
x-space  field  stren g th  and potential a ^

/ xd“ bx

(59)

S im ilarly , applying Eqs. (58) to E qs. (25) and (26), 
we find (after considerab le  a lgebra) th a t these 
equations reduce to the usual M axwell and c u rre n t 
conservation equations in x space:

Eq. (25a)=> = ej„ , (60a)

Eq. (25b)=* 8 ^ = 0 ,  (60b)

Eq. (26)=»8J1j JJ = 0 . (61)

To tran sfo rm  the e lec tron  wave equation [E q. (40)] 
and the expression  fo r the elec trom agnetic  c u rre n t 
[Eq. (42)] to x space, we f i r s t  note that the P auli 
m atrix  t 4 com m utes w ith the wave o p e ra to r in Eq. 
(40), and hence the 4-com ponent sp ino rs

X i  *= 5 (1  ±  Ta) x  ( 6 2 )

also  satisfy  Eq. (40). Defining x -space  4 -com po
nent sp inors ipt by

= ks/20 (x)x4 , (63)

we find that the pro jec tion  of Eq. (42) into x space 
takes the form

i pW = - b '( c s5f[a - 4, a„ 

with

(64)

(65)

Since a d irec t (and again som ewhat lengthy) ca lcu 
lation shows that the D irac wave o p era to r obeys 
the transfo rm ation

-  te A b(7j ) ^ - q t ^ j -  -  ieA .faj)] +2 j  i r ' ^ O W 1»  -{тгк~1у  ■ iea j ( 66 )

the x -space  sp in o rs  ф± sa tisfy  the usual m ass- 
zero  D irac equation

T his com pletes the dem onstration  tha t the hyper- 
sp h e rica l fo rm alism  is com pletely equivalent to 
the usual form ulation  of quantum elec trodynam ics 
in Euclidean x space.

E. In te rp re ta t io n  o f  S y m m etrie s  on  the  H ypersphere  

We briefly  d iscuss in th is  section  the x-space 
in te rp re ta tio n  of the ro ta tional and inversion sym 
m etrie s  on the hypersphere . As we have seen,

the photon wave o pera to r is  I? — 4, and th is  com 
mutes with the ten g enera to rs  Lab of ro ta tions on 
the hypersphere. S im ilarly , the fre e  D irac  wave 
opera to r iy  ■ L + 2 com m utes w ith the ten  o p e ra 
to rs

= (88)

which a re  the hyperspherica l ro tation  gen era to rs  
when spin is taken into account. We can in te rp re t 
the hyperspherica l ro ta tional sym m etry  a s  follows 
Six of the ro tational gen e ra to rs  Lvv (or Jvv) leave 
the 5 -ax is  invariant, and th e re fo re , by Eq. (6b),
leave x3 unchanged. These c lea rly  correspond  in
x  space to the g enera to rs  of the homogeneous
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(89a)

L aren tz  group [which of course, in the Euclidean 
m etric  which we use, has become the 4-dimension
al ro tation  group 0(4)]. The rem aining four gen
e ra to rs  Llu, which change x2, correspond to ra th 
e r  com plicated conform al transform ations in x 
space. F o r example, the 5-dimensional rotation

v - n ' -
= 7 l i , a , s  >

Vi = Vi co sa  - 7]B6in a ,

Ws~Vi  s in a  +i)s c o sa

co rresponds in x  space to the conformal tra n s
form ation

x — x'\
* 1 ,2 .3  = * 1 , 2 . з / ^  I

=[*4c o sa  -  1(1 - x a)sina]/D,

D = 1 +xasina( 2a ) +x4 s in a  .

F rom  th is point of view, the m anifest covariance 
of the hyperspherica l Feynman ru les under ro ta 
tions generated  by Lsv is a reflection of the con
fo rm al invariance of zero  ferm ion-m ass e lec tro 
dynam ics. We note, finally, that the ordinary x-  
space tran sla tio n  x —x'= x + a does not correspond 
to a linear transform ation  on t|, but ra ther to the 
nonlinear transform ation

(09b)

T j-ij ':
Чр =[t?„ + (1 +7js ) a p ] / 0 ' ,

7 1 s = [ t ) 5 -  b 2( l  + t j s ) - 4 -a]/D',
D' =  1 +  i a a ( l  +  t)5)  +7) • a,

(70)

4 - a = V V
T ransla tion  invariance of the я-space form alism  
guaran tees that the 5-dim ensional form alism  is 
covarian t under the conform al transform ations of 
Eq. (70), even though this is not manifestly ev i
dent.

In addition to the continuous-param eter rotation 
group, th e re  is an im portant d iscre te  symmetry 
operation  on the hypersphere, the inversion

7]---- Jj. OHa)

A ccording to Eq. (6), th is corresponds in x space 
to the inverse  rad ius transform ation

x ---- x / V . (71b)

B ecause the trace  of an odd number of a m atrices 
vanishes, the hyperspherical expression for the 
closed  loop 2n-point function in Eq. (44) is  in
v a rian t under sim ultaneous inversion of a ll the 
coordinates tj1( . . . ,  т]г„. S im ilarly , the hyperspher
ica l photon propagator is inversion invariant.
Hence we conclude that (as long as no divergent

vacuum polarization insertions are  made) the r a 
diative corrected 2n-point functions in the hyper
spherical form alism  are manifestly inversion in
variant. This is turn im plies simple transfo rm a
tion properties for the corresponding jr-space 2n- 
point function under simultaneous inverse radius 
transform ation of the coordinates xxt . . . ,  To 
find the form of the x-space transform ation, we 
follow the notation of Eq. (53), and let J.(tj) de
scribe the em ission of a photon from the 2n-point 
function at coordinate 7j, with the other In -  1 
variables suppressed, hi this notation, the in 
version invariance of the 2n-point function reads

L.  A D L E R  t

(72)

where, of course, the suppressed variables are  
also inverted. Projecting back to the x space 
gives

k~% (x)  = J„(ij) J5(j]), 023)

while projecting the inverted cu rren t gives

{*')-*} ,{х') = ^ п ') -х 1 ^ (т , ' ) ,  (74)

with

Л =~n,

* ' = 1 +Ui 

= 1 ~Vs,
= -x^ /x2 .

(75)

Using Eqs. (73) and (74), we can convert the equal
ity of Eq. (72) into a relation between j„(* ') and 
j^x ) ,  giving

where

Мш.(х) = 6
2x„xv

(76)

(77)
0(х) = в„0 .

Thus, the 2n-point function in x  space is left in
variant under the combined operations of (i) sim ul
taneous inverse radius transform ation Xj---- x j x * ,
j  = 1, . . . ,  2и, and (ii) application of the projection 
operator

П  ( * / ) 's П  (x,) 
j- i  )=i

to the vector indices. This recipe is just the one 
discussed by S chreier .3 In te rm s of the m atrix 
Mvv we can understand the significance of the 
gauge term s in the x-space photon propagator of 
Eq. (56): The gauge term s guarantee that under in
verse  radius transform ations the photon propaga
to r transform s covariantly, i.e .,
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-  jfi/Xi i ~x^/x? ) .

(78)

The usual Feynman propagator, of course, does 
not satisfy  Eq. (78).

Ш. CONNECTION WITH THE MANIFESTLY 
CONFORM AL-COVARIANT FORMALISM

In th is section  we d iscuss m assle ss , Euclidean 
elec trodynam ics in the m anifestly conform al-co- 
varian t 0(5, 1) language, and develop its  connection 
with the 5-dim ensional fo rm alism  of the preceding 
section . In Sec. Ш А we review  the 0(5, 1) fo r
m alism  and in Sec. Ш В  we develop, in a heuristic  
fashion, the 0(5 , 1) Feynman ru les  for elec trody
nam ics. In Sec. IH С we show that the 0 (5 ,1 ) ru les 
a re  re la ted  to the 5-dim ensional ru le s  by a  sim ple 
p ro jec tive  transform ation .

A . T h e  0 ( 5 ,1 )  F orm alism

As has been greatly  em phasized recen tly , 1 a 
la rg e  c la s s  of renorm alizab le  field theories con
taining no d im ensional p a ram e te rs  (m asses o r d i
m ensional coupling constants) a re  invariant under 
the 1 5 -p aram eter conform al group of tran sfo rm a
tions on sp ace-tim e . In p a rticu la r, quantum e le c 
trodynam ics with zero  ferm ion m ass is conform al 
invarian t. We re c a l l tha t of the 15 conform al-group 
g en e ra to rs , 10 a re  the g enera to rs  of the Poincar<5 
group, 1 g en era tes  the d ilatations

(81)

X ,  - A * „  , (19)

and the rem aining 4 genera te  the specia l confor
m al tran sfo rm ations

X„ +C,,x> 
X>‘ 1 + 2c ■ x  + c2* 2 ’ ( 8 0 )

Although the usual fo rm ulations of m ass le ss  field 
th eo rie s  a re  m anifestly  P o in care-in v arian t, th e ir  
invariance under the non linear tran sfo rm atio n s of 
Eq. (80) is not m anifestly  evident. However, a 
very  p re tty  way of achieving m anifest conform al 
Invariance was in troduced by D irac , 10 and has been 
fu r th e r developed recen tly . The b as ic  idea is to 
rep lace  the usual field  equations over the Minkow
sk i sp ace -tim e  manifold xu by equivalent field 
equations over a 6 -d im ensional p ro jec tive  m an i
fold (We adapt the convention that 6 -d im en 
sional vec to r indices a re  indicated  by capital Latin 
le t te r s  A, B, . . . which take the values 1, . . . ,  6 .) 
The coordinate x Is re la te d  to £л by the p ro jective 
tran sfo rm ation

When the m etric  in x  space is  the Minkowski m e t
r ic  (1, 1, 1, - 1), the |  space is  endowed with the 
m e tric  (1, 1, 1, - 1, 1, - 1); correspondingly , when 
the m e tric  in x space is the E uclidean m e tric  
(1, 1, 1, 1), the I space is  endowed with the m e tric  
(1 ,1 ,1 ,1 ,1 , -1 ) . In e ither case , if I is  r e s tr ic te d  
to the light cone

(82)

then it can be shown that the 1 5 -p a ram ete r lin ea r 
group of pseudorotations on { is isom orphic to the 
conform al group of nonlinear tran sfo rm a tio n s  on x. 
In the Minkowski case, the pseudoro tations form  
the pseudo-orthogonal group 0(4 , 2), w hile in the 
Euclidean case with which we a re  p rim a rily  con
cerned, they form  the pseudo-orthogonal group 
0(5, 1). So to construct a  m anifestly  conform al in 
varian t form ulation of m ass le s s , E uclidean e lec 
trodynam ics, we m ust w rite  equations which a re  
m anifestly  covariant under the operations of 0 (5 ,1 ).

Because excellent review s a re  available in  the 
li te ra tu re , 11 we w ill not actually  deta il the develop
ment of the 0(5, l) -co v a rian t fo rm alism , but ra th e r  
w ill sim ply sum m arize the re s u lts  needed fo r the 
construction of Feynman ru le s .

(1) The electrom agnetic  cu rren t is  rep re sen ted  
by a 6-vec to r homogeneous in £ of degree
-3  and satisfying the k inem atic constra in t

W ( « )  = 0 . (83)

The equation of electrom agnetic  c u rren t co n se rv a 
tion takes the form*

W aK W * « ) ,
with

,  8 _ 8_ 
^ЛВ-«АЭJ I  «Л ЩЛ .

(84a)

(84b)

and J A{4) is  re la ted  to the x-space  cu rren t j^{x)  by 
the recipe

j „(x) = )]} • <fi5)
Note that E qs. (84) and (85) a re  both invarian t un
der “gauge” transfo rm ations of the for m

J x K W ^ O + ^ A f U ) ,  <86)
with Af(4) homogeneous in I of degree - 4 .  The in 
variance of Eq. (85) follows im m ediately from  Eq. 
(81), while Eq. (84a) is left unchanged because

= ^ A f « ) ,

w here in the second equality we have used  the 
homogeneity of A f(|).

(87)
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(2) The electrom agnetic  potential is represented 
by a 6 -vecto r Л в(£), homogeneous in 4 of degree 
—1 and satisfy ing  the constra in t { • A  =0. The pho
ton wave equation takes the form

□ ,Л а«  ) = « ./,(« ),

with

_8___ 8_
° в = э ^  э р

(88a)

(88b)

(3) The e lec tron  field  is rep resen ted  by an 8- 
component sp inor x(£), homogeneous in 5 of de
g ree  —2, which obeys the wave equation

■1а( £ - л - м лт ) ] + г \ х = ° .

(89)
The m atrix  y AS is  defined by

Гаъ = Ы Р л,Рв ] ,  (90)

w here the 8 x 8 m a trices  fiA satisfy a  Clifford 
a lgebra

(91)

with gKt the m etric  tenso r. An explicit re p re se n 
tation of the 0 ’s is

@ii ~ ^5 = 1̂1 @6 = “ *^2 ' (92)
The elec trom agnetic cu rren t of the electron is  
given, in te rm s  of the spinor x, by

j a = 2£BXYbaX, I  = (93>
T hese equations completely specify the 0 (5 ,l) -c o -  
v a rian t form ulation of m assless  electrodynam ics, 
and, via Eq. (85), allow us to pro ject 2n-point 
functions in the 6-dim ensional language back into 
2n-point functions in x  space.

B. 0 ( 5 , l) -C o v a ria n t F eynm an  R ules

We proceed next to deduce, in a heuristic  fash 
ion, Feynman ru les  for the 0(5, l) -covarian t ca l
culation of c losed-ferm ion-loop p ro cesses. We 
w ill not actually  d irectly  prove the equivalence of 
these ru le s  with the usual x-space ru les, but ra th 
e r  w ill show th is indirectly  in Sec. HI С by deduc
ing the 5-dim ensional ru les of Sec. П f rom the 6- 
dim ensional ru les which we now develop. To be
gin, we infer from  Eq. (93) that the ru le for a  v e r
tex  w here a cu rren t with polarization index A  acts

at coordinate (, is

vertexcc еГ д( 0  = e* B[pB, 0 J . (94)

C learly, this ru le  autom atically sa tis fie s  the kine
matic constrain t of Eq. (83). [In Eq. (94) and sub
sequent equations of the p resen t section, we omit 
num erical proportionality constants.] Next, we 
must guess the rule for the elec tron  propagator 
S(?n £*)■ We f irs t note that since x(£) is homoge
neous in 4 of degree -2 ,  S m ust be homogeneous 
of degree -2  in £, and independently. A check 
on this requirem ent is provided by the fact that 
since is  homogeneous of degree -3 , a  2n- 
point function m ust be homogeneous of degree -3  
in each of the 2n coordinates. Since the vertex  
Гл( 0  is homogeneous of degree +1, th is  req u ire 
ment will be sa tisfied  by p ropaga to r-vertex  chains 
of the form

s u . .  t . U V t . P U . ,  O r AlUa) ■ (95)

only if the propagator is homogeneous of degree 
-2  in each of its argum ents. The homogeneity r e 
quirem ent im m ediately re s tr ic ts  the choice of 
propagator to one of two possib le form s:

S  ( r  t  ) = 2 - l L £ l i l .

s,Ul’ (,)=K 4 ^ F  ■

(96)

We can ru le out 5 , as a possib le choice, however, 
by noting that when S, is sandwiched between the 
two adjacent v ertices we get

r + i e & u »

«1  • W

.  _ 4  ‘

Ui ‘
(97)

where we have used the fact that (0 • 4)a = l 2 = 0 .
But a s  we have seen above, ‘'gauge" te rm s of the 
form  (£,)Al o r  Ui )a3 p ro jec t to a null cu rren t in 
x space, so use of S, as the propagator would lead 
to identically  vanishing 2n-point functions in x 
space. We conclude that the c o rre c t choice of 
e lec tron  propagator is S2, and that the 0(5, 1)- 
covariant expression  for a closed ferm ion loop 
coupling to 2n photons is given (up to proportion
ality  constants) by
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zреттшпйотм 
Of I . . . .  ,2n

t r . f [/»•{ (98)

Although we have constructed our ru les  to satisfy the kinem atic co n stra in t of Eq. (83) and the re q u ire 
m ents of homogeneity, we m ust now check whether they a re  consistent with the equation of c u rre n t con
servation , Eq. (34a). To do th is, we f i r s t  examine the effect of the free  D irac o p e ra to r on the p ropagato r 
fo rm s S, and 5 ,. By d irec t calculation, we find that

t o j j f + t i s & u  O - S j t t , ,  у ( ^ 1^ - 2) = о, (99a)

(99b)
+ «J) = 2Sl (?l , €a) ,

Ь К г лв1 ? й ~ 2) = -28,(4., {,),
a ll fo r [at = €2 th e re  a re  additional 6 function contributions, which we om it in w riting  Eq. (99)].
We see  that the c o rre c t propagator S2 does not satisfy the D irac equation, and tha t adding in  an  a rb i tr a ry  
multiple of S, cannot fix things up. In effect, we see that is  a  null propagator (because it  leads to  a van
ishing c u rre n t in x  space) and that Sa is a  pseudopropagator, which when acted on by the D irac wave o p e r
a to r  gives a  m ultiple of the null propagator, but not zero.

L et us now exam ine the effect of th is  pecu liar sta te  of a ffa irs  on the c u rre n t conservation  p ro p e r tie s  of 
Eq. (98). We consider the p ropagato r-vertex  chain linking the points £,, 4, 4a and ac t with the d iffe ren tia l 
opera to r LJUI = ZJlt>/4B- t Ba / 4 A, giving

ÂB * " ' [£ ' ill ^AJ(£ • ^ £ у  ’ * *

= * * ‘ \P • 4ll P ji,] ^  \fi ' 4i ^  j5 ^  ^•4^ * " * '

The f i r s t  te rm  on the right-hand side of Eq. (100) Is just the re su lt requ ired  by Eq. (84a), while the r e 
m ainder R a is  given by

+ * * * \fi ’ i n  PAl ] ^  &Улв1-‘АВ -  2) ^   ̂ ■ 5j, ^ •

Substituting Eq. (99b) and algebra ica lly  rea rran g in g  a s  in Eq. (97), we get”

f , 1  0 ' i(i»)A,0 • i* i  r ]

(100)

(101)

( 102)

Although Eq. (102) does not vanish, the f i r s t  te rm  
in the cu rly  b rackets Is a pure “ gauge” te rm  with 
re sp e c t to the index A,, while the second is  a pure 
“ gauge” te rm  with re sp e c t to the index A„ and 
hence both give a  vanishing contribution to the 2n- 
point function when p ro jec ted  back to * space. So 
we see that because Sa is  a  pseudopropagator, Eq.
(98) only sa tis f ie s  a  pseudocurrent-conservation  
condition: When we te s t c u rren t conservation  on a 
given index, Eq. (84a) is  not sa tisfied  in  the 6 -d i 
m ensional space, but does hold when we p ro jec t 
on aU of the rem ain ing  indices to tran sfo rm  back 
to  x  space.

As an exp lic it il lu s tra tio n  of th is  pseudoconser
vation p roperty , le t u s  co n sid er the slngle-loop 
tw o-point function, which accord ing  to Eq. (98) is

given by

t r . t o  • ■ s2, р„2]} i t • b g MM -  t t i W i . ) *  
( i . - i , ) 4 “  ( V i , ) 4

(103)

Acting on Eq. (84) with i gives

, T ^A , A  i i  ' is&AjXa “  (iJjt^ ia J ili
1 1  I t -  t.V

(ii • i .)4
+ Д ,

= "  ( i i - i 2)s
R = -

(104)
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Aa expected, there  is an ex tra  te rm  R which, be
cause it  contains the factor (Ь2)Лг, makes no con
tribu tion  to the two-point function in x  space. In
te resting ly , there is no way of modifying Eq. (103) 
to make the extra term R vanish. To see th is we 
note that the only o ther second-rank tensor with 
the c o rre c t homogeneity p ropertie s  and which sa t
is fie s  the kinem atic constra in t of Eq. (83) is

( l . - y 4 •
(105)

However, Eq. (87) te l ls  us that this expression 
sa tis f ie s

( l) « ,  ■ b f  "  « !  • «,)* ’ (106) 
so adding a  m ultiple of Eq. (105) to Eq. (103) can

not cancel away R. We conclude that pseudo-cur
ren t-conservation  is an unavoidable feature of the 
0(5, l) -covarian t fo rm alism .

Next, we tu rn  our attention to the photon propa
gator 0 AlJl2( ^ ,  ?s). B ecause the photon field A s(£) 
is  homogeneous in £ of degree - 1, the photon prop
agator D m ust be homogeneous of degree -1  in 
and | 2 independently. In addition, in o rder to an
nihilate the ex tra  “gauge” te rm s  which appear 
when we te s t cu rren t conservation  on indices of 
the closed loop o ther than Alt Aj, the photon p rop 
agator m ust be explicitly tran sv e rse ,

*») = 0 - (l07)

The sim plest form  which sa tis fie s  these re q u ire 
m ents is

'л ,  л, (tl. «.)■ « V -  t i . t i Pc ■S  A, (108)

w here and £2 a re  a rb itra ry  points which a re  held fixed when doing the v irtua l in tegrations over and 
£2. Because of gauge invariance, closed-ferm ion-loop expressions have no dependence on | j  and £2 a fter 
one sum s over a ll orderings, with respec t to other photons which a re  p resen t, of the em ission  and ab 
sorption  of the v irtua l photon propagated by Eq. (108). The sim plest way to verify th is statem ent, and to 
check the co rrec tn e ss  of Eq. (108) to begin with, is to transfo rm  Eq. (108) back to x  space. We find

{ | ) ^ ( { | ) = — 2j |i1(*i)^)iI|iJ(*ii *jl7(!,(*») >

with the effective ж-space propagator given by

i ч — — х^1‘2 п(-*а — *i)|i1(** — ^№1 — — *г)(1а
t & t - x J ^ - X t Y  +2 { x z - x r f t b - X t ) 3 ( X i - x t f f o - b f

(109)

(110a)

„  -i*1» | ____
(x, -  x2f  8<Xj)

• |  I  1 *

In Eq. (110a) we give the form  of the х-space p rop
agato r which em erges d irectly  from  the tra n sfo r
m ation; in th is equation x,, x„ x2, \  denote, r e 
spectively, the x-space im ages of {„ £2, £г- 1,1 
Eq. (llOh) we see that Д ' is  equivalent, up to 
gauge te rm s, to the usual Feynman propagator, 
and in p a rticu la r that a ll the dependence on x,, x, 
is contained in the gauge te rm s. T his verifie s  
that Eq. (108) is  a valid expression  fo r the photon 
propagator, and that and i 2 drop out of gauge 
invarian t quantities, such as  closed ferm ion loops. 
[The derivation  of Eq. (110) from  the conform al-

covarlant expression  of Eq. (108) indicates that 
the effect of the x -space gauge te rm s  is  to render 
Д ' covariant under x-space conform al tra n s fo r
mations, provided that the points a re  con
form ally transform ed along with x, and Xj.15]

FinaUy, calculation of the Jacobian of the tr a n s 
form ation of Eq. (81) shows that

J  d 'x  = J  dSt ^ - * , (111)

where fdSc denotes an  integration  over the hyper
sphere £,J + l 2 + U* + + С  = С .  wlth held
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fixed. Com paring with Eq. (109), we see that 

^  d^Xid л2(~2) ^ 1(х1)Др1̂ а(х1,

= /
(112)

indicating that the Feynman ru le  fo r v irtua l in te
grations is simply

v irtua l in tegration  over J  dSt . (113)

T his com pletes our specification of the 0 (5 , 1)- 
cavarian t Feynman ru le s  for calculating closed- 
loop quantities.

C. Projection onto the 5 -Dimensional 
Unit Hypersphere

We com plete our d iscussion  of the 0 (5 , l) -c o -  
varian t fo rm alism  by showing that i t  is  related ,

by a sim ple pro jective tran sfo rm atio n , to  the 5- 
dim ensional Feynm an ru le s  of Sec. П. The tr a n s 
form ation is generated  by exploiting the fac t that 
in an п-v irtu a l photon p ro ce ss , the fixed points \  
in each of the n photon p ro p ag a to rs  can  be chosen 
independently, provided tha t o v e r -a ll  B ose sym 
m etry  is m aintained. Since c lo sed -fe rm ion -loop  
am plitudes a re  independent of a ll  of the propagato r 
fixed points, they w ill be unchanged if  we in teg ra te  
a ll of the fixed points over th e ir  re sp ec tiv e  h y p er
spheres + • • • + = \ s2. The effect o f th is  in 
teg ra tion  is  to  rep lace  the photon p ro paga to r of 
Eq. (108) by the averaged p ropagato r

M * f t

The in tegrations in Eq. (114) a re  read ily  evalu 
ated, giving

^ c - ^ g ; )e jj 8°^  -  (b)c + te rm s  p roportional to (5 ,)^  o r  ( { „ ^  ; (115)

the te rm s  proportional to ( | , ) л o r  (Ы л , a re  un
in te res tin g  because they make a vanishing con tri
bution by v irtue  of the constra in t equation, Eq.
(83). The key fea tu re  of Eq. (115) is  that the quan
titie s  in  b rackets,

g^ c (U *  ’ ( U *  ( ’

both vanish when С = 6 , so the sum in Eq. (115) ex 
tends only over С = 1 , . . . ,  5. T his suggests p ro 
jec ting  onto a  5-dim ensional space, a s  follows:
(i) The 5-dim ensional coordinate ij9 is  re la ted  to 
the 6 -d im ensional coordinate by

4 . = ^ .  “ “ 1......... 5 .  (117a)

The ligh t-cone re s tr ic tio n  on £ im plies that

r? = l ,  (117b)

and sc a la r  products in  6 -sp ace  may be w ritten  in 
5 -space  a s  follows:

t n f c — (117c)

(ii) The five-dim ensional c u rre n t J„(t]) is  re la ted  
to the 6 -d im ensional c u rre n t J * ( i)  by

J„(n)=« .sW C ) - V . ( 0 ] ,  d 18)
which is  ju s t the projection  generated  by the b rack 
e ts  of Eq. (116).

We proceed now to combine E qs. (115), (117), 
and (118). Using

f dSe = f d(l4Zt\  (119)

we get

(120)

which reproduces the 5-dim ensional Feynm an ru le  
for photon propagation. To study the effect of the 
projection  operation of Eq. (118) on the 0 (5 ,1 ) -  
covarian t expression  for a closed ferm ion  loop in 
Eq. (98), we consider f i r s t  the p ro jection  of the 
v ertex  Г л(4). We find
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U3[g.A- v t geAlirA(i)= it :‘\fi • S , P ' - v A ]

=U*lfi‘ V - P „ P . - v A ]
' T) + l ) a , ( a  ■ f ) - l )  ,

(121)

w here we have Introduced m a trices  a ,  defined by

aa = ~ W ' -  (122)
Since the propagator ( i t • £2)"a can be rew ritten  as 

1 4
Gr&'foVfoWvt-V,)4 *

(123)

we see that the projection of Eq. (118) transfo rm s 
Eq. (98) into

1

perniutitiori 
ot  l , . . . , 2 r

which apart from  norm alization constants is  iden
tic a l with Eq. (44). So we have verified that the 
p ro jective transfo rm ation  generated by using the 
averaged propagator of Eq. (114) ju s t gives the 5- 
dim ensional Feynman ru les for the photon propa
gator, the e lec tron  propagator, and the e lec tron - 
photon vertex .

To conclude, we show that Eq. (118) and the 
fo rm al p ro p ertie s  of the б-dim ensional cu rren t 
«7д(£) im ply the corresponding form al p roperties 
of the 5-dim ensional cu rren t </„(tj). We begin with 
the co n stra in t equation, ? ‘ <7Л(£) = 0, which can be 
rew ritte n  as

.[ J .(« )-4 .J ,(« )1

M ,- 2W (  4 ) ,  <125)

giving the 5-dim ensional constrain t equation, Eq.
(7). Next we consider the б-dim ensional version  
of c u rren t conservation,

- » }

(126)

and use Eq. (87), w ithM (£) = | ,  1</в(1), to w rite

L abU bU) -  { Ч ,“Ч ■
(127)

Since the sum on В in Eq. (127) extends only over
В -  1.........5, and since we a re  in te rested  only in
values of the free  index A  = 1 , . .  . ,  5, no derivatives 
8/ a?B appear. Hence, on m ultiplying through by 
4,3 and using the fact that

_8_ .  8 8 8 (128)

Eq. (127) becom es the 5-dim ensional cu rren t con
servation  equation

Ь . . -M n W .fo ) .  (129)

(124)

IV. DISCUSSION

In this section we very  briefly  d iscuss possible 
generalizations and applications of the 5 -dim en
sional fo rm alism  of Sec. П. F irs t, we note that 
although we have worked with a  Euclidean x -space 
m etric  throughout, it  should be straightforw ard to 
generalize the 5-dim ensional ru le s  to the usual 
Minkowski case . The hypersphere will then be
come the hyperbolic domain

Vi + r)21 +»h2 -7 )42 + l,!i = I , (130)

which is  a (4,1) de S itter space of unit rad iu s .14 A 
fu rther generalization  would consist of giving the 
e lec tron  a m ass m and, since the distance scale 
now acquires a meaning, calling the rad ius of the 
de S itter space R, so that Eq. (130) becom es

V , - 4 ,  + Ъ ~R  - (131)

As D irac5 has shown, an appropriate wave equa
tion describ ing a m assive e lec tron  in a  de S itter 
space of radius R is

«У.,

~*eA.(n))] +2 -imfl jx = 0 ,

(132)
which is  a sim ple generalization of Eq. (40). The 
elec tron  propagator corresponding to Eq. (132) 
will of course differ from  the m assle ss  propaga
tor of Table I, but the electron-photon vertex  
and the photon propagator w ill be unchanged. The 
m assive 5-dim ensional form alism  is  not exactly 
equivalent to ordinary m assive electrodynam ics 
in Minkowski space-tim e, but as D irac5 has shown, 
in any finite neighborhood of T)S=R, Eq. (132) r e 
duces to the usual x -space  Dirac equation in the 
lim it R -  " .  It is only in the com pletely m assless 
case that the 5 -dim ensional and x -space fo rm al
ism s have the sam e physical content.

It should be em phasized that while our elec tron  
wave equation is identical (in the case m = 0 ) to
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D irac 's , our treatm ent of the Maxwell equations 
is  substantially  different. Unlike our expressions 
for the electrom agnetic field strengths, which in 
volve 8 / 8j]_ only through the angular momentum 
operator La , D irac’s expressions5 involve 8/Ът\а 
by itself. Hence, in order to avoid going off the 
hypersurface of constant ij4, D irac finds i t  nec
essary  to introduce homogeneity constrain ts on 
the electrom agnetic potential, of the type encoun
tered  in the 0(5, l)-co v arian t form alism . In our 
form ulation of the 5-dim ensional theory, such

constrain ts a re  un n ecessa ry , and an exam ination 
of the 5-dim ensional Feynm an ru le s  of Eq. (9) 
shows, In fact, that they a re  not hom ogeneous in 
the coordinates. The absence of hom ogeneity r e 
quirem ents p e rm its  eigenfunction expansions of 
the field o p e ra to rs , and should th e re fo re  make 
possib le  a  canonical quantization of the 5 -d im en
sional fo rm a lism .15 The f i r s t  s tep  in  canonical 
quantization would be to w rite  down an app rop ria te  
Lagrangian density; it is  re ad ily  seen  th a t a  v a r i 
ation of

(133)£ ‘  —n  (-Р'лс^+Х - i* A b(T))j -ieA.(r])j j  + 2 - im R  | x

gives the c o rrec t equations of motion. It should 
then be possib le to devise a canonical quantization 
procedure which reproduces the Feynman ru les  of 
Table I from  the Lagrangian of Eq. (133). A r e 
la ted  question is  that of developing the connection 
between our 5-dim ensional fo rm alism  and the 
quantization of electrodynam ics by ordering  with 
re sp ec t to x2 which has recen tly  been developed by 
Del Giudice, Fubini, and Jackiw .1"

This concludes our discussion  of possib le  ave
nues fo r generalization  of our re s u lts .17 Let us 
next b riefly  consider possib le calculational ad 
vantages of the 5-dim ensional fo rm alism  for m a ss
le s s  e lec trodynam ics. The key point to notice is  
that w hereas the wave opera to r in Euclidean x 
space Is ID,2, with a continuum spectrum  —p2
-  —(momentum)3, the wave opera to r on the hyper
sphere  is  L2 —4, with d isc re te  spectrum  — 2(ti + 1) 
x (n  + 2). This difference In sp ec tra  has two im p o r
tan t consequences. F ir s t, the fact that the sp ec 
trum  of Q, 2 contains 0 leads to the occurrence of 
in fra red  d ivergences in  x -space  calculations of 
p ropagato rs and v e rtex  p a rts . These d ivergences 
a re  known to cancel, how ever, in closed  ferm ion 
vacuum  po larization  loops , 18 and th is is  reflec ted  
in our ab ility  to map vacuum  polarization  ca lcu la
tions onto the unit hypersphere , w here the sp ec 
trum  of the wave opera to r does not contain 0. In 
other w ords, c losed-ferm ion  -loop calculations on 
the unit hypersphere a re  m anifestly  in fra red - 
fin ite . Second, it  is  d ifficu lt to see  how to in tro 

duce approxim ations in  m a ss le s s  e lec trodynam ics 
when calculating in Euclidean x space, since there  
is no natu ra l scale fo r se lec ting  one reg ion  of p2 
as being m ore im portan t than another. [We have 
p a rticu la rly  in mind the calculation  of the function 
•F[11(a) defined in Sec. I, w here no n a tu ra l scale  
fo r making approxim ations is  provided by e x te r 
nal m om enta.] The situa tion  is  d iffe ren t on the 
hypersphere , w here unity  is  a  n a tu ra l sca le  fo r 
m easuring  the spectrum  — 2(n+ 1)(я+ 2 ), and w here 
the sem ic la ss ica l reg ion  of la rg e  quantum num 
b e rs , n » l ,  provides a n a tu ra l domain fo r making 
approxim ations. The developm ent of techniques 
fo r making such sem ic la ss ica l approx im ations on 
the hypersphere is  an im portan t prob lem , which, 
hopefully, may shed light on the n a tu re  of the e lu 
sive function f t ^ a ) .

Added Note

We briefly  d iscuss h e re  two additional top ics 
connected with the 5-dim ensional fo rm alism : (a) 
the photon propagator in the 5 -d im ensional analog 
of the Landau gauge, and (b) the h y p ersp h erica l 
harm onic expansion of the 5 -dim ensional e lec tro n  
propagator.

a. 5- Dimensional Landau Gauge. The x -space  
photon propagator In the genera lized  Landau gauge 
is obtained by adding to the Feynm an p ropagato r 
an appropriate m ultiple of the gauge te rm

la(x. _ \a ____z l ___ Гл _  •> (*1 “  >(*1 “  1
(*1- * J) 4 {W a -------(TZTf-----  J 1

(A l)

ad justed  so a s  to elim inate  the logarithm ic d ivergence in the elec tron  wave function reno rm aliza tion  Za. 
Since Eq. (Al) tra n sfo rm s  covariantly  under inverse  rad ius transfo rm ations in x  space, we expect tha t it  
can be d irec tly  tra n sc rib e d  into the 5-dim ensional fo rm alism , and indeed a  sim ple calculation shows tha t
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W» „ ___ I__  Гд о (*» *2 ^2 1
W » » « W V  (i, - x j  (_ Mm* ------ (*,-'*,)>------ J

- J.fili) J tl(4.) (j)l _„2)* [  •»* “ (4l J • (A2)

R eferring  now to Eq. (56b) in the text, we note that 
the g rad ien t te rm s  which guarantee the coordinate- 
inversion  covariance of behave a t w orst
as (jtj — *^)_I aa xl — x^, and hence do not contribute 
to the logarithm ically  divergent part of Z2. In 
o ther words, Eq. (56b) is an inversion-covariant 
form  of the Feynman gauge photon propagator. 
S im ilarly , corresponding to the usual transla tion - 
invariant Landau-gauge photon propagator

Гл . o (*i *j)|ii(*i —
L (ъ-ъг J

(A3)

th e re  is an inversion-covarian t Landau gauge pho
ton propagator

-Hi Mi(x.x,)+-— т Г г
k - l j L ' W  W - x , Y -------

(A4)

Using Eq. (A2) to tran sc rib e  Eq. (A4) into the 5- 
dim ensional form alism , we find that the 5-dim en
sional Landau gauge photon propagator is given by

g-:-2 X Г _

fax ~ V2)2 + fai -  ЧгУ L 4  ”  (»»! -  V2)2 J  ’
(A5)

with X the same constant as appears in the «-space 
version in Eq. (A3).

b. Electron Propagator Expansion. We consider 
the 5-dim ensional e lectron propagator, and look fo r 
a hyperspherical harm onic expansion of the form

=J *( a ' 1,1 1 - 1u v* ~ ■ = 1 1( a -  f t - *>(«• 4 i + * ) f ; D* L  У М Г М" Д 1 ~'l2) 4=0 n

( a ‘ 4 , - l ) ( a - r ?2 + l ) f ;  (2n + 2)Dn С^/2(ч1 • i;2) . (A6)

U sing the orthonorm ality  of the Gegenbauer polynomials C*/2( (i), we find that the expansion coefficients Dn 
a re  form ally  given by the logarithm ically divergent expression

J1 C3,2t u)

with

Nn = Г  d n ( l - ц*)[С1'*(ц)]г .
J -I

We proceed by explicitly separating  out the logarithm ic divergence, w riting

(2n+3)Dn = A mI  + (2n + 3)B. ,

With

A, = -A ^ C j^ a ) = - т (2« + 3), i  = f ' d p

and with J9„ given by the convergent in tegral

< * . . * .  i . ^ s s a ^ p a .

(A7)

(A 8)

(A9)

(A10)

(A H)
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Substituting Eq. (A9) into Eq. (A6), we see that the contribution of the logarithm ically  d ivergen t p a r t  is

g j j l  (a  - i j , - l ) ( a  ■ q , + l)  £  (2n + 3)C (ij, • T),)J = ^  (a  • П, -  l ) ( a  • J7a + l ) 6s (q1 - i} 2) / ,  (A12)

which vanishes since (a  • tjx — l) (a  ■ 7j1 + l )  = 0. Thus, Dn is effectively given by the in teg ra l in Eq. (A ll), 
which can be evaluated by generating function methods. Up to an я-independent p iece [which, aa we have 
seen, m akes a  vanishing contribution to Eq. (A6)], we find

Д .=  1 +;r+ • • •  + - -  . (A13)" 2 n + 1
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We discuss single-ferm ion-loop vacuum -polarization  processes in  massless quan tum  electrodynam ics in 
the  one-photon-m ode approxim ation , in w hich  the ferm ion self-interacts (to  ail o rders  in pertu rbation  
theory) by the  exchange o f virtual photons in a single v irtual-photon eigenm ode. T he isolation o f one 
pho ton  m ode is m ade possible by using the  0(5)*covariant form ulation  of massless Q E D  in troduced  in 
tw o ea rlier papers, in w hich the  pho ton  wave opera to r has a  discrete, ra ther than  a continuous, 
spectrum . T he am plitude integral form alism  in troduced previously expresses the one-m ode 
radiative-corrected  vacuum  polarization in term s o f the uncorrec ted  vacuum  am p litude  in the presence 
o f a one-m ode external field. By exploiting the residual SO(3) X 0 (2 )  sym m etry  o f the  one-m ode 
external-field  problem , w hich perm its separation o f variables, we reduce the  external-field  problem  to  a 
set o f tw o coupled ord inary  first-o rder differential equations. W e show th a t when the tw o  independen t 
so lu tions to  these equations are  suitably standardized , the ir W ronskian gives (up  to  a constan t factor) 
the  ex tem al-field-problem  Fredho lm  determ inan t. W e study the d istribu tion  o f zeros an d  asym ptotic  
behav io r o f  the  F redholm  determ inant, relate these properties to  the coup ling-constan t analy ticity  o f the  
one-m ode vacuum  polarization, and conclude by giving a brief list o f unresolved questions.

I. IN TRO D U CTIO N

We begin in this paper the analysis of a sim ple, 
nonperturbative approxim ation to sing le-ferm ion- 
loop vacuum -polarization  p rocesses in m assless  
quantum electrodynam ics. In our approxim ation, 
the v irtu a l ferm ion in the vacuum -polarization 
loop s e lf- in te ra c ts  to a ll o rd e rs  of perturbation 
theory only by the exchange of v irtual photons in 
a single v irtual-photon eigenmode. The isolation 
of one photon mode is  made possible by using the 
0 (5 )-covarian t form ulation of m assle ss  QED in 
troduced in two e a r lie r  p a p e rs ,1,2 in which the 
photon wave opera to r has a  d isc re te , ra th er than 
a  continuous, spectrum . Specifically, our approx
im ation  is  obtained by replacing  the full effective 
photon propagator

0 4 ( n  ri ) <f = VU*Uh.4aJdi 2^ (n + 1)(и + 2) 

by the sim ple, factorizab le  form 

h ) = i  .

(1. 1)

( 1 . 2 )

which re su lts  when the sum in Eq. (1.1) is tru n 
cated to contain only one of the 10 modes in the 
sm a lle st (n= 1) photon represen ta tion  of 0(5). 
Specifically , the one mode which we retain  has 
the form

У<1*.(П) = (^1^1) v j ,  (1-

w here v t and v2 a re  a rb itra ry , orthogonal five
dim ensional unit vec to rs ,

uls = t)a2 = l ,  е ,-  ц  = 0 , (1-4)

3)

and where tj is the five-dim ensional coordinate.
As was shown in Ref. 2, the rad ia tiv e-co rrec ted  

sing le-ferm ion-loop vacuum functional in the one- 
mode approxim ation (denoted by W,[.A']) is  given 
hy the amplitude in tegral form ula

W&a' Y\\J/e l ■ JT_ <fa( J 1 exp( )

хИ'<0)[(о+в')1г(1«] , (1.5)

where №rto)[A] is the sing le-ferm ion-loop  vacuum 
functional in the p resence of an external e le c tro 
magnetic potential A, with no in te rn a l-v irtu a l - 
photon radiative co rrec tio n s (and with the depen
dence on the e lec tric  charge e elim inated by a r e -  
scaJing of the electrom agnetic potential). F o r
m ally, is  given by the expression

(Vto)U ]  = i T r  l n h r ,
(1.6)

k T = 2 - L  ■ S —ia  • rjd’A ,

with the anti commuting m atrices  a and the 0 ( 5 )  
angular momentum and spin L and 5 defined as in 
Ref. 2. If we introduce the eigenvalues д of k T 
(which, as we shall see, occur in quadruples A ,
(j, - f i ,  -  д) and define the ex ternal -field-problem  
Fredholm determ inant

д [ л ] = (  П  Л ' \  и л )
' ill eigenvalue! /

then W tol can be w ritten  aa

W ^ [ A \  = 21пД[Л] . (1.8)
As is  evident from  Eqs. (1.5)—(1.8) and as was 
developed in detail in Ref. 2, the analyticity  p rop
e rt ie s  of W, as a function of coupling e 3 a re  d e te r

10 2399
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mined by the asymptotic behavior of i‘i]
for large external-field  amplitude a , o r , what is 
essentially equivalent, by the distribution of zeros 
of the Fredholm determ inant Д in the complex a 
plane.

Let us now spell out m ore specifically the con
nection between the e2 analyticity of W, and the 
a dependence of W,(o1. In order to make Eq. (1.5) 
unambiguous, we m ust specify the integration 
contour to be used in evaluating the a integral. In 
Ref. 2 we argued that this contour should be taken 
to be along the rea l a ax is, or possibly (and very 
conjec turally) along the im aginary a axis. Equa
tion (1.5) with rea l integration contour will be well 
defined if д has no zeros (and hence W(°] no s i n 
gu larities) for a real. If И,(о) is asym ptotically 
weaker than an increasing  Gaussian in a as о 
becom es infinite along the rea l ax is , then Eq. (1.5) 
defines an analytic function of e2 in the right-hand 
e 2 half plane. If, m oreover, Д has no singularities 
in the wedge-shaped sec to rs  | R e a | > | l ma |  and the 
vacuum amplitude И,(о> is  asym ptotically weaker 
than a G aussian in these sec to rs , the integration 
contour can be freely deformed within these s e c 
to rs  from its  original position along the rea l axis, 
implying that is  an analytic function of e 2 in the 
en tire  e 2 plane, apart from a branch cut along the 
negative rea l axis f rom e2 = 0 t o e 2 = - « .  Thus, 
for rea l integration contour the questions at stake 
are :

(i) Is Д ze ro -fre e  for a rea l?
(ii) Is И,(о) asym ptotically  w eaker than a G aus

sian a s  n ~ ± '°  along the real ax is?
(iii) Is Д ze ro -free  in the sec to rs  | R e a | > | I ma | ?
(iv) Is Wb ’ asym ptotically w eaker than a G aus

sian as | a | - «>  within the sec to rs?

In the following sections we p resen t analytic a rg u 
m ents which answ er questions (i), (ii), and (iv) in 
the affirm ative , and we p resen t num erical re su lts  
(but no proofs) which also  suggest an affirm ative 
answ er for question (iii). Next le t us consider the 
speculative possib ility  of an im aginary  integration 
contour. Such a contour is allowed only If two 
conditions a re  sa tisfied : д must have no ze ro s  
for purely im aginary a, and Wrto) m ust vanish a s  a 
decreasing  G aussian (or fa s te r) as а —и along the 
im aginary axis. As shown in Ref. 2, if И'ы  o sc il
la te s  along the im aginary axis with a decreasing 
G aussian envelope, then the im aginary contour 
y ields a strong-coupling electrodynam ics in which 
IV, ex is ts  for large enough e 2 and can develop an 
in fin ite -o rd e r ze ro  a s  в 1 approaches a positive e02 
from  above. Thus, the questions a t issue for a 
possib le im aginary in tegration  contour a re :

(v) Is д  z e ro - fre e  for a im aginary?
(vi) What is  the asym ptotic behavior of И,(0* as

| a | - “  along the im aginary  ax is?

The analytic argum ents which follow answ er q u e s
tion (v) affirm atively . With re sp e c t to question
(vi) we can only give lim ited  num erica l re su lts , 
these show no signs of d ecreas ing  asym pto tic  b e 
havior, but. because the asym ptotic reg ion  may 
not have been reached , do not conclusively reso lv e  
question (vi).

The m ate ria l which follows is  organized so that 
a knowledge of the 0(5) fo rm alism  is  needed only 
to read  Sec. П, in which we consider the wave 
equation determ ining the eigenvalues ц of hT.

[2 -  L ■ S - ia a - r iQ f  = • (1-9)

and show that separa tion  of v a riab les  with re sp ec t 
to the SO(3)xO(2) subgroup of 0(5) red u ces Eq.
(1.9) to a p a ir of coupled o rd inary  f i r s t - o rd e r  d i f 
feren tia l equations within each sep a rab le  subspace. 
In the rem aining sec tions, which can be read  in 
dependently of Sec. П, we study the p ro p e r tie s  of 
this d ifferen tia l-equation  system . In Sec. Ill 
we recapitu late the re s u lts  of Sec. II and argue 
d irec tly  f rom the d ifferen tia l equations that Д has 
no ze ro s  for a in s tr ip s  containing the re a l and 
im aginary axes. In Sec. IV we construct the 
G reen’s function of the one-dim ensional sy s tem , 
and use it  to estab lish  a connection between the 
W ronskian of the two independent so lu tions of the 
d ifferential equations (suitably standard ized) and 
the Fredholm  determ inant Д. In Sec. V we use 
th is connection, combined with WKB e s tim a te s , to 
determ ine the o rd e r of growth of Д for large [a| .
In Sec. VI we construct se r ie s  solutions for the 
two independent solutions of the d ifferen tia l equa
tion, and use them to study Д(а) num erically . 
F inally , in Sec. VII we b riefly  sum m arize  the 
many rem aining unresolved questions. In Appendix 
A we explicitly calculate the G reen ’s function in 
the free case , and in Appendix В we give the d e 
ta ils  of the WKB calculation used in Sec. V.

II. REDUCTION OF THE ONE MODE PROBLEM

In th is section  we ca rry  out the separa tion  of 
variab les which reduces the p a rtia l d ifferen tial 
equation (1.9) to a pair of coupled o rd inary  f i r s t -  
o rder d ifferential equations. In Sec. II A we d e 
term ine the conserved quantum num bers of Eq.
(1.9), and show that the eigenvalue problem  d iag- 
onalizes with respec t to an S 0(3 )*0 (2 ) subgroup 
of 0(5). In Sec. I I В we introduce a  rep resen ta tion  
of the 0(5) genera to rs which fac ilita tes  reduction 
of the eigenvalue problem  with re sp ec t to the con
served subgroup. The reduction itse lf  is  c a rr ied  
cut in Sec. IIC . In Sec. IID, we perform  a check 
by solving the free (a = 0 ) case and verify ing the 
eigenvalue degeneracies found in Ref. 2. We also
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work out the boundary conditions appropriate to 
the separated  equations in both the f ree and the 
in terac ting  cases . F inally, in Sec. II E we make a 
transfo rm ation  which sim plifies the equations in 
the in teracting  case, and construct the external 
field  problem  Fredholm  determ inant introduced 
in Sec. I.

A. C onserved q uan tum  num bers

To analyze the conserved Quantum numbers of 
Eq. (1.9) we choose axes in the five-dim ensional 
space so that the 1 and 2 axes lie , respectively , 
along zj, and v2. The Hamiltonian in Eq. (1.9) then 
takes the form

h T = h%) * V,

klf = 2 - L - S ,  r)(or,r)j -  a ,r j ,) ,

X =-a(15./16itJ)1/J.

(2 . 1)

(2 .2)

Introducing the 0(5) genera to rs

* L ,b + S .s

Э Э I r .

= r,‘ эт)7  ~ ’1* aij7 +

we obviously have

[«/«, й‘г ]  = 0 (2.3)

since the free  Hamiltonian ft'?1 is rotationally in- 
v arian t. F u rth e rm o re , since

[S.», ad  -  a*6te -  аь6.e  ■
(2.4)

we find, a s  expected, that a-t] is  also rotationally 
invarian t,

(2-5>
Hence the gen e ra to rs  J „  which commute with hT 
w ill be ju s t the ones which commute with the factor 
a,j)j -  in the potential term . From  Eq. (2.4) 
we find triv ia lly  that

“ 1Ч2 -  a 3T] 1 ] = [ J „ ,  a,Tj4 -<*,/),]

■ [^ i>  o ,4 j “  a,iJil 
= 0 , (2 . 6 )

indicating that h T is  invariant under the SO(3) sub
group generated  by J „ ,  •/,,, and </„. In addition, 
we have

[ J u , “ 1П3 -  Q!j4i] = -  “ зЧз “  “ (41 + «i4i+
= 0 ,  (2Л)

so that hT is  also  invariant under the 0 (2 ) sub
group generated  by J „ .  The other genera to rs Jab 
do not commute with hT. In addition to the SO(3) 
* 0 (2 ) invariance group which we have just found,

there are also two d iscre te  invariances of hT. 
Defining a coordinate inversion generator P ,

P tjP - ' . - tj, P j = 1,  (2.8)

we see im m ediately that

[ i » , * r l “ 0.  (2.9)

F inally, letting a,  be the a m atrix  which anticom 
m utes with a tl . . . .  a 5, we have

[c*e,fcT] ■ (2 . 10)

This la s t invariance perm its us to sp lit the eight- 
component spinor eigenvalue problem of Eq. (1.9) 
into two identical decoupled four-com ponent p rob
lem s. Diagonalizing the four-com ponent spinor 
with respec t to the conserved quantum num bers, 
we w rite

4> = Фш, .

(J,,2+J3i7 = - i i i *  ,

JЛS'PtnU ~ I (2 . 11)

As we will see in detail below, the separation 
constants take the values

j = u ..........

m = - j .  - j + 1 . ■••<},

t . 1 I  5 - ± г , ± г ...........

£ = ± 1 .

(2 . 12 )

Our task in the succeeding sections will be to find 
the form taken by the eigenvalue problem  of Eq.
(1.9) when re s tr ic te d  to the subspace of Eq. (2.11).

B. Explicit rep resen ta tion  o f  the O (S) genera to rs

We introduce now an explicit rep resen ta tion  of 
the 0(5) genera to rs which fac ilita tes the reduction 
of the eigenvalue problem  with re sp ec t to the 
SO(3)xO(2) subgroup. We begin with the spin 
operator Sa6 = f [  q^, о;,]. Letting a T ,.,.,.  and 
p , a , be three commuting se ts  of 2 * 2  Pauli spin 
m atrices , we rep resen t the B* 8  m a trices  a lt , 
a. in the form

ctl -<r tT2 , a^ = j j T 2 , а , - р асга т ,  ,

a « =Р |05Га . = Pl^S^2 » '
so that the spin m a trices  become

(2.13)
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^12= 3!<JSt S14= — 2>Pl0g,

S ,5 = -  2ip2CT2 > ^is = i (2.14)

= 2Ф2 * ‘̂ ls = — гФз^г i

2̂3 = гф )11! t ^ s = z*Ps*

Since the Hamiltonian hT is even in the a  m atrices
a , ......... 0!5, it  is  a  unit m atrix  in the apace of the
т Pauli m atrices. As noted above, this im m ediate
ly reduces Eq. (1.9) to two identical decoupled 
four-component eigenvalue problem s.

To rep resen t the o rb ita l angular momentum Ltb, 
we param etrize  the coordinates 7)1, . . .  , ij5 in the 
form

i], = sinfl, cos<j>,, 7]z = sinfi, sin«j),,

ij3 = cose , cosfl2 , T)4 = cosS, sin02 cos <f>j ,

»]5 = c o s0 ,s in f i js in p j, (2.15)

0 « в , « £ я ,  O « 0 , « 2it,

0 « 02 a? v , 0 < <р2 е 2т

corresponding to an 0(2) (angle 0 ,) and an SO(3) 
(angles вг,фг) combined with mixing angle в,. In 
te rm s of these angular p a ram ete rs , the coordinate 
inversion operation is

П- - 1  •
1 б2 — it -  fl2 , 0 2—0 2 + я .

The hyperspherical surface elem ent becomes

’ tlh  Oh. 3J L  ® Да
1 30, 30, 302 302

(2.15')

<Sl„ = det
П.

. . .

эе,
l ib  
э 02_

Лв1(}ф1(16г<1ф.

= соб20 , s in 0 ,d 0 ,(d0 ,)(sin02 е1в2<(ф, ) , (2.16)

which, not su rp ris in g ly , has a  m ixing-angle f ac 
to r , an 0(2) factor (d0 ,), and an SO(3) 'a c to r 
(6in0s rf02f/02). By dint of considerable algebra 
one can exp ress  the o rb ita l angular m om enta in 
te rm s  of derivatives with respec t to the angles of 
Eq. (2.15). To w rite  the re su lts  in a compact 
form,  we introduce auxiliary  op era to rs  M, , N,,
Pj,  7 = 1, . . .  ,3 , a s  follows:

Э э
M, = -  Sin фу -  J -  -  cot fl, cos Ф1—  ,

а э
M 2 = c ° s 0 , —  - c o t ^ s i n * ,  —  ,

M, 3Ф, '

Ny= -sin<?>a^ -  - c o t 0jcosip2~ -  ,

Э dN2 = c o s<£2 —— - cot02sin<p2~ ~  ,3 Вт ЭФг
(2.17)

Эфг
э „ . зP . = cos02 c o s0 2 —  -CSC02Sin<f>2—  ,a CT2 «Ф2

э a
P 2 = cos02s in 0 2 —  + csc0 2coscf>2—  , 

P»=-Sin%^; •
These satisfy  the com m utation re la tio n s  and id en 
tities

[Mt .M,]=-Mk . [M„NJ] = [Ml ,PJ] = 0,'i

[JV,,JVj = - / / * ,  > i , j ,k  cyclic

W.iM-W*, [ * . ,* , ] - - P *  . )  
(2.18) 

1   3 /  . „ э \  1 a2
02 s in 2flz Э0 22

In te rm s of the aux iliary  o p e ra to rs , the o rb ita l 
angular momentum o p era to rs  take the form

L и -  Af3 , L 53- N lt 

L 34=N2 , l 4S= n 3 ,

L „  = -  sinfij co s0 2Ms + tan 0 , с о в ф , ? , , 

L ,5 = -  sinfl2 s in 0 jAfj + tanfl, co s0 , P 2 , 

L 13 = - c o s 0 2A/2 + tan01c o s 0 ,i33 ,

L3, = sin02co s0 aA/ 1 + tan0 1s in 0 , P , , 

L s, = s in 02sin 0 2M, + tan0 , s m 0 l J?2 , 

L23 = cos02A/, + tan0, s in 0 ,P 3,

(2.19)

and by using Eqs. (2.17) and (2.18) it  is s t ra ig h t
forw ard to verify  that the expressions in Eq. (2.19) 
satisfy the 0(5) commutation re la tions

[L,t,, Lf i ) = 6acLib -  6aJ Lcb + 0tc Lat S u L ac .
(2.20)
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Using Eqs. (2.14) and (2.19), it is a sim ple m atter to express the Hamiltonian h T and the conserved gen* 
e ra to rs  J J i3, . . .  in te rm s of the angular param eters. We find

= 2 -  i[AfjCTj + N lp l + Nt pi + NJp3* (AfiC  ̂+ AfjajMp^infljCoscpj + p2sinfl2 simf>2 +p, coafl,)

+ i t a n f l ^ j f a . c o s i p j +a j f i i n ^ KP ^ i  + PjPj +Pj Pj ) ]  ,

V= A BinflJojSinff, -c o s f l1(o,1cosip1+(TjSin4il)(p l sinfl2 co s0 2 + Ps sinfl2 s in <£2 + p3 cosfl2)] ,
(2 . 21)

and

(2 . 22 )

*̂1 “  ~ **̂ 33 = “  * ̂ 1 + 2 Pi ,

Ta = — i J u  = — i N2 + 2' P s ,

T , = — i J 4S -  — i N3+ 2 pj .

C. R educ tion  o f  the  eigenvalue problem

The f i r s t  step in the reduction of the eigenvalue 
problem  with respec t to the SO(3)xO(2) subgroup 
is  to  find the eigenvalues and eigenfunctions of the 
conserved genera to rs in Eq. (2.22). This is , of 
cou rse , ju s t a standard angular momentum prob
lem . F or the 0(2) subgroup we find two eigen
functions with opposite inversion parity  for each 
eigenvalue |  of £/3,

Л § - ( - 1)*,М1и , ,
(2.23)

u =eHt->U2MLG),
The su b sc rip t a on the sp inors indicates that they 
a re  acted  on by the Pauli m a trices  a}. Because 
the o rb ita l angular momentum -  iM2 m ust have 
in teg ra l eigenvalues, the eigenvalues of J7a m ust 
be h a lf-in teg ra l; hence the allowed values of £ a re

(2.24)

For the SO(3) subgroup we again find two eigen
functions with opposite inversion parity for each 
p a ir  of T eigenvalues j,  m,

T v t =j(j  +l ) v .  , T,ut = m vl ,

(2.25)

( j  -  m + (cosSj)e

(cosfl2) e ,(” M/s,e2

Г ( j  + m)P?:№  {созв2) е ,1- 1,,,°> 

V' S j - P ; : i « (cosfls) e lC"* 1/a1̂

with .Р£(г) the usual associated  Legendre poly
nomial. The allowed values of j ,  m a re  the usual 
ones for s p in - | coupled to an orbital angular m o
mentum,

i m s , l ,
(2.26)

and the subscrip t p indicates that the sp inors a re  
acted on by the Pauli m a trices  pj. In te rm s  of 
the 0(2) and SO(3) eigenfunctions which we have 
just found, the general decom position of is

^А в=А.(в,)«*и* + C „ (f l> -u -  , 

=А_(в1)и«и_ + С .(б 1)и .и4 , 

e = ( - l ) ‘* '*J— 1 .

(2.27)

The next step  is to substitute Eq. (2.27) into 
Eq. (1.9), using the expression  of Eq. (2.21) for hT. 
To find the action of the various te rm s of hT on 
u, and vt we use the following identities, which 
may be verified by stra igh tforw ard  calculation:

а , и , = ± и ,  ,

(<7, cos<#>, +or2 sin<pt)u ,  = u , ,

( 2  - i M , u , ) u ,  = ( ! ±  .

- i{M lo l +M2<J2) u i =±u ,  + ( i ? t )  cot9, j  ; (2.

( p, sinflj соафз + p2 sinflj s in 0 , +p3 cosS2)u, = i/, ,

-ril-iS i». = - U  + s ) » . , - i S - p « _  = (>- i ) i / _  ,

P - p v . = ( j  + г)ч- . ? * ? « _ " - ( j - i ) ® *  ■

Hence we get

28)
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+ + (г -№ ,V_U _ ~ ( j  + l ) A .v .u .+ ( j  -  5)C,u_u_

+ + — 6>c°teiJj4*v_u_ -  [ ^ -  + (5 + I) cote, j Ct v t u,

-  tan0 ,(j + l)A .i)_u_ -tan<),(j - | ) C 4u ,u , + A sina0, A t v t u4 -  X sin2e, C+i/_u_

-  A sine, cosfl,A,t)_ii_ -  Asinfi, co se ,C ^v .u ,

= H W

(2.29)
Л1̂ « - «  = (г -  ?М_«/.н_ + (г + £ )С -» .и . - ( j  + f  )A_t;.n_ + ( j  - i )C_u_u* 

-  [  £  + (2 + 0  co te ,] A _v.u , + + (5 -  0  cote, j  C .v .u .

+ tanfl1(_7 + |)A_u_K. +tan0, (j  -  г )С _в,и . -  A sin26 ,A_ii.,M_ + Asin20,C_u_«,

-A  sine, cosfl,i4_ti_u* -  A sin0,cos0, C_d, u_

= д А _ ы ,и _  + fiC_V_U4 .

Equating coefficients of like te rm s then gives us the following two se ts  of coupled f i r s t -o rd e r  d iffe ren tia l 
equations for А  4(в() and С ,( 6 ,):

U  - j ) A .  -  + (2  +  0  cote, +  ( j  -  £ )tan0 ,] C , + A sin0,(A , sinS, -  C „  cos0,)= д А .  , 

{}+ 1 -  £)C„ + ~  + (1 -  0  cote, - ( j  + |) t a n 0 , j  A 4 -  A sin e , (Ct sin0,+A * cose,) = д С , ; 

- ( 4 + j ) A . +  ^ +(5  -  O co te , + ( j  -  3 ) tanfl,] C . -  A sinfl, (sin0,A _ + cos0,C_) = |iA_ ,

( ;  + 1 + ?)C_ -   ̂ + ( |  + 4) cote, -  ( j  + |) ta n 0 ,  j A_ + A sin0,(ain0,C _ -  co se ,A .) = дС_ .

(2 .30a)

(2.30b)

These two se ts  of equations can be fu rther r e -  Since a * 1} has odd inversion p a rity , Eq. (2.31)
duced to ju s t one se t of coupled d ifferential equa- te lls  us that if Фм-г is an eigenfunction of h T with
tions by exploiting the fact that eigenvalue ц, then er'i)i(iH . ,  is  an eigenfunction of

hT with eigenvalue -  д, quantum num bers j ,  m, 5 
unaltered , but (reversed) inversion  p arity  +«. 

a ' Фт~ ~-hTa -T) . (2.31) Specifically, w riting5

’K/’x - t  =[(<?, совф , +<7j simp,) sinfl, + a3(p , s in 0a cos<p2 + p, sin63 sin<p2 + p3 co s02) cos0 , ] 

x (A .(0 ,)i'* tt. +C.(fl,)u_ii*]

= ̂ . ( e , ) t i .« .+ C .( 0 l) i i-a - , (2.32)

we find from  the re la tions of Eq. (2.2B) that U - j ) A «  - [  J -  + (г + « )c o te , + ( ; - i ) t a n 0 1]  <5.

A . A _ sin e , + CL co sf l,, (2 33) + A sine, (A . s in e , -  C* cos0,) = -  M - .
= - A _ c o s 0 ,  + C_s i ne , .  (2 34)

From  the d ifferen tia l equations [Eqs. (2.30b)] s a t-  (j+  1 -  £)C. + [ —  +(5  -  5) cote, -  ( j + |) ta n e ,  A .
iefied by A_ and C_, we find that A . and C . s a t is -
ty the coupled d ifferen tia l equations _ A sin0, (C„ s in e ^ A *  cos0,)=  -  •
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As expected, these a re  identical to Eqs. (2.30a], 
a p a rt from  the re v e rsa l in sign of the eigenvalue. 
Thus, we need only study the one se t of equations 
in Eq. (2.30a).

To find the m easure with respect to which two 
eigensolutians of Eqs. (2.30a) with different eigen
values д , ц ' a re  orthogonal, we s ta r t from the 
hyperspherica l orthonorm ality  condition

/  = 0 . Д* Д' (2.35)

Using the expression  for in Eq. (2.16), and the 
fact that

u lu .  = lll(<7, cosfl), +os e in^ ,)2!*.,

v_v_ = vt (p l sinflj совф, + p, sinfla s i n 02 

+ p3 cosfl,)2u«.

(2.36)

The d ifferential equations which we m ust study 
thus are

U - ; )o  -  [  jg  + ( i+  O « r t0 + (j - i l t a n e j  с

+ A sinfl(a sinfl -  с cosfl) = ua ,
(2.39)

( j + l  -  £)c + [ ^ -  + (5 - 4)cotfl - ( j  + |)tan fl j  a

-  X sinfl(c sinfl +a cos 6) = цс ,

with the m easure for orthogonality 

г Vг
I cos2fl sinfl <ffl(a*a*+c*c') = 0 ,Jo

ц » д ' .  (2.40)

Eq. (2.35) reduces to

г rn
I cos’fl,sin fl,de,{AlA* +CJCi )  = 0 , ц * ц '

(2.37)

which identifies the m easure for Eqs. (2.30a).
Now that the eigenvalue problem has been r e 

duced to a single set of coupled f i rs t-o rd e r  d iffe r
ential equations, the subscrip ts used in the above 
ana ly s is a re  no longer needed. To expedite the 
subsequent discussion, le t us change notation as 
fa llow s:

9 , - 9 ,

А .( в , ) - в ( 9 ) ,

C ,( 9 ,) - c (9 ) .

(2.38)

D. S o lu tion  o f  the  free (X -0 )  case 

and check  an  eigenvalue co u rtin g

Let us now check the reduction leading to Eq.
(2.39) by solving the d ifferen tia l equations in the 
case of vanishing in teraction  and com paring the 
energy spectrum  with the f re e -p a rtic le  spectrum  
calculated in Ref. 2. When A = 0, the d ifferen tial 
equations sim plify to

( t - j )a -  + ({+ Ocotfl + ( j  - i) ta n f ij  c=iia,

( j  + l - 0 c +[ ^  + ( |- ? )c o tf l - ( j+ |) ta n e ]

(2.41)

а = цс .

Changing the independent variab le  to u - c o s 2fl and 
elim inating either с o r a, we find that a sa tis f ie s  
a second-order d ifferen tia l equation of standard  
Riemann type ,4

d*a / з  i i \da Г ( j+ iM i+ i i j ,  u - i ) 2 _ l __ o+ i)( .;+ 5)-H*-i)a+2 +tm -u) 1 i .
dti2 + \ 2 и + u - l ) d u + I  4 u2 ~ 4 ( u - 1)2 4 u ( « - l ) J

(2.42)

and с sa tis f ie s  a  s im ila r equation obtained from 
Eq. (2.42) by the rep lacem ents j —j  — 1, ( $  +1 • 
The ch a rac te ris tic  exponents of Eq. (2.42) at the 
reg u la r singular points at u - 0  and и = 1 a re  given

in Table I. Equation (2.42) can be solved in te rm s 
of Jacobi polynom ials, giving the following four 
se r ie s  of eigenfunctions and eigenvalues.
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a = /(c o s 0)J*1/2 (sinfl) ' - 1' 2 

x P (>/ - i . i - i / 2)(1_ 2 Cos20), 

с = (cos0)* - , /2(sinfl){ + 1/2 

x p t,/ .t+ i/d ( i_2  cos2e ) .

Series 1. (2.43)

H = 2 n  + 2 + j  + Z,  n  = 0 , 1 , 2 , . . .

/ = - ( »  + i  + 5 ) / ( « + j + l ) .

Series 2. 

f j = - ( 2« + l + j  + £), « = 0 , 1, 2 , . . .

/ = 1 -

a = /(co s0)J*112 (sinfl)1/2 _t 

x р О м . л - О ^ . з с о ^ в ) ,  

с -  (cosfl) , ~иг (sinfl)-1/2-t 

xp t,b -i/» -e> ( i _ 2 cos2e ).

S eries 3. (2.44)

H=2n + 3 + j-b ,  n = - 1 , 0 , 1 , . . .

/ = - 1 - 

S eries 4. 

ji = - ( 2n + 2 + j-£ ) ,  « = 0, 1, 2 , . . .

/ = ( «  + +i ) / ( n + l ) .

T hese solutions can be verified  by d irec t sub
stitution into Eq. (2.41), using the following four 
identities sa tisfied  by the Jacobi polynomial
p ( a ,8)(x)5.

( l - x ) - P ^  fl> '(*) = aP< “- « (* ) - («  + a  )P<“ B* %c) ,

е а - х ) Р (?-в\х)-{п+а)[1+х)Р<?-'-в*й(х)

= - 2 ( n + i ) p ' ; r ‘-a- ‘> w ,

2 d i  p ^ ’iMM  = (» + a  +0 + 2)P<„a t , -e* ,>{*).

Let us now count the to ta l degeneracy with which 
the eigenvalue и ~k +2 o ccu rs . R em em bering 
that we have reduced our problem to a four- 
component spinor, the expected degeneracy of the 
eigenvalue ( i = t +2 is

deg(ft + 2) = dlm(ft + j ,  | )

= !(fc + l)(fc + 2)(ft+3),

* = 0 , 1 , 2 ........... (2.46)

For each eigenfunction with eigenvalue ц and in 
version parity  с obtained from  E qs. (2.43) and 
(2.44), there is another eigenfunction w ith e igen
value - f i  and opposite inversion  p arity  obtained 
by inverting the transfo rm ation  of Eq. (2.33) to 
give

A . = a s in 0 -c c o s 0 ,

C_ =acosfl  + csinfl .

Hence the positive eigenvalues of hT a re

2n + 2 + j+  |£ | |\  twice each
2я +1 + j  + UIJ
n  = 0 , 1 , 2 , . . j  = j ,  I ,  . . . ,

« ■ - j .  • • •, j .  I l l ” 3 , 1 .........

and the degeneracy of the eigenvalue f t+2  is

degC* + 2) = 2 V  (2j + 1) 
n.7Jcl 

гп *) - I {|=*

( 2 .4 7 )

(2.48)

2 E  (2j  + 1) . (2.49)
a.j.l И 

2n t =» + I

The right-hand side of Eq. (2.49) is  obviously a  
cubic polynomial in ft, which by d ire c t e n u me r 
ation of the two sum s, takes the values 4, 16, 40, 80 
for ft = 0, 1, 2, 3, respec tive ly . H e n c e  i t  is  equal to 
§(fc + l)(fc+2)(ft + 3), and the eigenvalue-counting 
checks. In g roup-theoretic  language, what we 
have done is to exhibit the decom position of the 
(* + lj 2) rep resen ta tion  of 0 (5 ) in te rm s  of s ta te s  
labeled by the quantum num bers of the SO(3)xO(2) 
subgroup.

From  E qs. (2.43) and (2.44), we see  that in the 
f r ee  case the two-com ponent wave function

#» = ( “ )  (2.50a)

sa tisfies  the fin iteness boundary condition

TABLE I. C h a rac te ris tic  exponents of the d iffe ren tia l 
equations fo r a and с a t  u = cos2fl = 0 ,1 . [See the d is 
cussion  following Eq. (2.50).]

S in g u la r  p o in t :  и * 0, 8 = 1*  S in g u la r  p o in t :  u = l ,  8 = 0

a ~u °a - (cos6l^°a {sinfl)2*8

c ~ u ° ‘ = ( c o s 6)2oc c ~  a  - u ) xc = ( s in « ) ,,( c

C h a ra c te ris tic  exponents C h a ra c te r is tic  exponents

Solution 1 Solution 2 Solution 1 Solution 2

». 4o+£) -40 *J) X. i « - i >  
40-4)  -40 +4> xc 4<«+4> -4« + 4>
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^ - f in i te  at fl = 0 , в = i  jt, (2.50b)

and an exam ination of the ch arac te ris tic  exponents 
in Table I shows that Eq. (2.50b) is equivalent to 
the sq u are-in teg rab ility  boundary condition

/ */2
cos2fl sinfl d8( |o | 2 + | c | 2)< . (2.50c)

о
Since the in teraction  te rm  in Eq. (2.39) is non
singular a t 6 = 0 , 0 = iir , the ch a rac te ris tic  ex
ponents of the d ifferen tia l equation system  at fl=0 ,
6 = \ n  a re  the sam e in the interacting case as in 
the noninteracting case. Hence the boundary con
dition in Eq. (2.50), which we inferred  from the 
fre e  solution, is appropriate to the in teracting  
case as well.

E. R educ tion  o f  the  in teracting  case and construc tion  
o f  the F redho lm  determ inan t

It is convenient, for the w ork which follows, to 
reduce the coupled d ifferential equations of Eq.
(2.39) to a  somewhat s im p ler form . We work with 
the two-com ponent spinor notation of Eq. (2.50a), 
and w rite  Eq. (2.39) in the m atrix  form

Н ф  =  ц ф  . (2.51)

Introducing Pauli m atrices тг, т„ т э which act on 
the sp inor ф, it is easy to see that H may be 
w ritten  as

Я=А _(_,- _ £  -X s in ’fl + i ) r ,

-  [4 cotfl + (j  + j)tanfl +Л sinfl cosfljr,

+ | cotfl —tanflj r s . (2.52)

We now make a s im ila rity  transform ation  on E qs. 
(2.51) and (2.52), w riting

(2.53)

(2.54)

Ф=$Фя >
H=SHRS-' ,

S = (cosifl - i r ssinsfl)[(sinfl)l/“cosfl]"1 

The transfo rm ed  eigenvalue problem  is 

НяФя = Mfn •

» R = -[* (sin fl)-‘ +X sinfl ]t ,

-  O' + s )(c o se )_1r 3- i ^  t2 .

The m easure  fo r orthogonality is now
• ж/ 2

J  dвф^ф'я = 0, д * д '  (2-55)

and the boundary condition is

(sinfl)^acosflx finite at fl = 0 , fl =гя ,

or equivalently

f  / . (2.56b)
Jo

To construct the ex tem al-fie ld -p rob lem  Fredholm  
determ inant, we display the p a ram ete r dependence 
of the eigenvalue д by writing

д = д £/ (Л), (2.57)

so that the Fredholm  determ inant within the sep 
arable subspace takes the form

П
aD eigenvalues 

bl subipace

M nW

= det [Ня (2.58)

Remem bering that fo r each eigenvalue д | j( \)  
there  is an eigenvalue coming f rom eigen
functions with opposite inversion parity  [see the 
discussion following Eq. (2.31)], and that there  is 
an additional duplication of eigenvalues when we 
reconstruct back to eight-com ponent sp inors, we 
find that

П  м= П  П
>11 < - 1 /2 .V 2 . .  .  . 1 = 4 1 / 2 . 4 3 / 2 , . . .

(2.59)
iU ĉ cnvaiua 

in сиЬфш

Thus, comparing with Eq. (1.7), we see  that the 
full ex ternal-fie ld -p rob lem  Fredholm  determ inant 
is given by

4 W -  П  П  a . i M " * 1 .1/2.Э/2,. . . 1= * 1 /2 , * 3 /2 , . . ,

(2.60)

One fu rth er transfo rm ation  of this fo rm ula proves 
to be useful. F rom  Eq. (2.54), we see  that if

Нкф = щи (\)ф , (2.61)

then

H (2.62)

Since t , 2 =  1, we conclude that the se ts  of num bers 
- \)}  a re  identical. Hence

TT Д-«,(А )= П  ( - ) Д и ( - А ) ,  (2.63)ail скеп?а1ис1 «И cMcd«mJuck
in ubipacc 1л шЬфасх

perm itting  us to elim inate the negative -4  fac to rs 
in Eq. (2.60). Dividing out д[0] to elim inate an 
irre levan t (and infinite) constant factor, we get 
finally

M d ] = TT TT Г AtJ (A)A{J( - A) I 3
4 0 ]  j = 1/ a . a / a , . . .  f i / a . v a . . . .  L J

(2.56a) (2.64)
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Equation (2.64) is s til l a  form al expression, in that 
renorm alizations have not yet been made. In Sec.
V below we discuss the modification of Eq. (2.84) 
which is made necessary  by renorm alization sub
tractions, and which guarantees convergence of 
the infinite product.

HI. ZERO FREE STRIPS

For the benefit of the read e r who has skipped 
Sec. П, we briefly recapitu late the principal r e 
sults derived th e re . In te rm s of the effective ex- 
te rnal-fie ld  amplitude

(3.1)
/  15 \ U2

we found that the ex ternal-fie ld  problem  could be 
reduced to the two-component eigenvalue problem 
(т1 г  a =Pauli m atrices)

= * .  (3.2)
H = -{{(sinfl)"1 +Asinfl]r]

-  O' + i)(c o s? )-4 j - i  t , ,

with the m easure fo r orthogonality 
2

I <26 фгф'=0, д * д '  (3.3)
Jo

and the boundary condition

ф- (sinfl )^ 2cosfl * fin ite  a t fl =0, . (3.4)

Defining the Fredholm  determ inant corresponding 
to  Eq. (3.2) by

ь и М =  nяП egemijuei
(3.5)

we found that the full ex ternal-fie ld -p rob lem  
Fredholm  determ inant introduced in Eq. (1.7) is 
given (up to renorm alization  sub tractions) by

f о -  Ц  П  p д , , ( 0)5 ■J
(3.6)

The rem inder of th is paper is devoted to a study 
of the m athem atical p ro p e rtie s  of E qs. (3.2)—(3.6).

We begin by showing that Д^(А) cannot vanish in 
s tr ip s  in the A plane containing the rea l and im ag
inary  axes. F rom  Eq. (3.5) we see  that zeros of 
Д {/(А) occur a t values of A w here Eq. (3.2) has a 
vanishing eigenvalue, that is, where

Нф= 0 (3.7)
fo r  nonvanishing, norm alizab le  ф. To get our f irs t 
re s tr ic tio n  on the locations of zeros, we multiply 
Eq. (3.7) by and in teg rate , giving

/->/2
- I  [ t  (sinfl)-1 +A sinfl]^ +i Л , =0 

Jo (3.8)

Л, = ( j  + i)  Г (соавГ1ф'тгф 
“'0

* { " > ' ■  ( - < & ) ♦ «

Using the boundary condition of Eq. (3.4) to in te 
grate  by parts , we read ily  see that R 1 is  pure 
rea l, Hence taking the re a l p a rt of Eq. (3.8) gives 
the relation

-Rpx f */I(sine)"1)(iTitide
■~?g\ » -----------— — > 1 . (3.9)

I f r‘ втвфгф4в
0

We learn  from  th is re la tion  tha t д[>4] has no zero s 
for A in the s tr ip  |ReA| and in p a r tic u la r  no 
zeros on the im aginary axis. To get a second r e 
stric tion  on the locations of ze ro s , we m ultiply 
Eq. (3.7) by |/Лт3 and in teg ra te , giving 

r />
- i  I A sinfl ф̂ т2фс/в

( c ° s + i R t =0 ,

(3.10)

, t / 8 r * / 2 / J  \

= (sine ) - ^ rr ^ d e  -  ф*т1 { - 1 — )фЛв

Again, the boundary condition of Eq. (3.4) im plies 
that R2 is real, so taking the re a l p a rt of Eq.
(3.10) gives the second re la tion

ImA /.У ’ (c os вУ'ф'фЛв
1 4 " J w sinfl ф1тгф4в

(3.11)

Since t 2 has eigenvalues ±1, we have the inequality 
and so Eq. (3.11) im plies the in 

equality

(312)
j  +2 J  /2sinfl фlфdв

Thus д[<4] can have no zero s  fo r A in the s tr ip  
11mA] « 1, and in p articu la r no ze ro s  on the re a l 
ax is . Combining the re s tric tio n s  of Eqs. (3.9) and 
(3.12), we get the regions in the A plane w here Д t / (A) 
is allowed to have zeros, as illu s tra ted  in Fig. 1. 
Note that the absolute value sign in Eq. (3.12) can 
not be rem oved. In fact, since the H am iltonian H 
is  H erm itian for rea l А, Ди (А) is a re a l analytic 
function of A and sa tisfies the reflection  p rinc ip le

AU (A)* =Aej(A*) . (3.13)

Hence for each zero  A of д £,(А), there  is a c o r r e 
sponding zero  at the complex-conjugate point A*.
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IV. WRONSKIAN FORMULA FOR THE 
FREDHOLM DETERMINANT

We proceed next to derive a connection between 
the F redholm  determ inant in each separable sub
space and the W ronskian oi two suitably standard
ized independent solutions оI Eq. (3.7). In Sec. IVA 
we construct the G reen’s function for H, introduce 
the standard  solutions, and d iscuss the ir analyti
city  and ra te  of growth in A. In Sec. IVB we prove 
the connection betw een the W ronskian and the 
F redholm  determ inant.

A Green's function and standard solutions

Let H =H(6 ) be the Hamiltonian of Eq. (3.2), and 
le t S = H _1 be the G reen’s function satisfying

with 1 the 2x  2 unit m atrix . To construct an ex 
plicit expression fo r S, we introduce the solutions 
Фи фг of Eq. (3.7) which a re  reg u la r a t в =0, в =s», 
respectively:

Нфi =Нфг =0 ,

ф, = -  (sinfl)l/2x finite at 6 = 0 ,  (4.2)

фг = ^ ^ -  cosfl x fin ite at fl =^я .

We also  need the W ronskian of the two solutions, 
defined by (the su p e rsc rip t T denotes transpose)

0<sfl„ (4.1)

w (А) = ф^т3ф1 = a,  (fl )c, (A) -  a l (fl )Cj (8 ) . 

Since

(4.3)

dw d \  / .  d \ T
de ' * ' { lT' T e * ' ) - \ ! r ' T e * ' )

= (sinfl)"' +Asinfl]Г[ +(j +5 )(cosS)“1T1^ 1 (sinfl) ' 1 + Asinfl]r1 + {j + 5 )(cosfl)_1TJ}Ti/j1 =0 , (4.4)

the W ronskian is  fl-independent. Applying the 
method of varia tion  of p a ra m e te r s /  we then find 
the following expression fo r S:

SIB в ) -w~' x  ’ ®i< ®»

To verify  Eq. (4.5), we note that

ff(e1)s(e1,eJ)= о, в,<в„ e ^ e , ;  

Гв , , '^ б 1я ( е 1)5(б1,б 5)
€ -0

(4.5)

(4.6)

conditions which, as we shall see explicitly b e 
low, can be satisfied  by taking the leading te rm s  
in the se r ie s  developm ents of ф1 (ф7) about fl = 0 
(fl =iir) to be А-independent co n stan ts .7 Equation
(4.7) uniquely specifies the A dependence of i/i,, ф2

t

X [ФМФГЮ  

-♦ iW jfo j’W*)]

■fl ? ) • - ( ! : )

as requ ired . In Appendix A, a s  an illu stra tion  of 
this construction, we give a  fo rm ula  fo r S in the 
noninteracting (\ = 0 ) case .

Up to th is point the norm alization  of ф, and ifi2 
has not been specified, and tt is obviously im 
m a te ria l fo r the construction of Eq. (4.5). How
ever, fo r fu ture use we now standard ize the n o r
m alization by requiring  that

ЭА

ЭА

a s f l - o ,  

as  fl -  ,
(4.7) FIG. 1. Regions In which (A) can have ze ro s a c 

cording to the inequalities of Eqs. (3.9) and (3.12). We 
assum e {>0.
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and w, leaving a rb itra ry  only a Л-independent 
norm alization factor. It is now possible, by 
straightforw ard m ajorization argum ents, to prove 
the following result: The standardized solutions 
4jIj2 a re  entire functions of Л, bounded for large A 
by e * ^ t with с an appropriate constant.

B. P roof o f the connection

To connect the Fredholm  determ inant Д и (А) 
with the Wronskian, we s ta r t from  the form al r e 
lation8

1пд,,(А)=Тг1пЯ

= T r ln |- [4 ( s in 6 )_1 + A sinfl]t ,

- ( j  + |)(co sfl)-,Ts - i  ^  Tsj  ,

(4.8)
f rom which we get by differentiation

(4.9)

Substituting Eq. (4.5) fo r S=H ' and evaluating 
the trace , we find

(4.10)

J  d& $  i f  b  = ,im  “  I de i f 1Ja e . - 0  Jo. a*вЛж/г 1

= lim

We next show that the n u m era to r on the righ t-hand  
side of Eq. (4.10) is  ju s t equal todw(\)/dX  when 
ф1 and ф2 a re  taken to be the s tan d a rd  so lu tions.
To see this, we s ta r t  from  E q. (4.3) fo r w,  which 
yields

du)( A) 8 фТ 8 й (4.11)

Letting 0 — in  and using Eq. (4.7), only the second 
te rm  on the righ t-hand  side of Eq. (4.11) su rv ives, 
giving

die (A) , r . 8ifi 
- 1 Г ~ =№ Т* B t (4.12)

B-n /2

To proceed we consider the in teg ra l appearing  in 
the num erator of Eq. (4.10),

f  iim  f  (4 л з )  J0 ®A 9 , - a  - ’e ,  d A
9 ,-  ff/2

By differentiating the equation Нф1 = 0 with re sp e c t 
to A we get

ЭА Vx ЭА
(4.14)

and substituting this into Eq. (4.13), using the e x 
p lic it form of H and in tegrating  by p a r ts , we find

d e ^  ja  T2 ”  te(sinfi) +A sinfljr, — (j + j)(cos0) 4 3 e ,-o  J a, dti
вг-i- и/ 2 1

Sip.

ЭА*

lim  Г^2гт2 ^  -  f  d0(/fy2)Tf l
! r , L  1 Je> J

is—ir/2
dw(\)

<A (4.15)

giving the desired  re su lt. Substituting Eq. (4.15) 
into Eq. (4.10) we get, finally,

A , » - *  A)-1 ^  , (4.16)

which on in tegration  gives the connection between 
the Fredholm  determ inant and the W ronskian,

A{,(A) _ га(А) 
A{J(0 ) ic (0 ) ' (4.17)

Since ф£, ф2 a re  en tire  functions of A, we conclude

that AtJ(A) is also en tire , as expected fo r a 
Fredholm  determ inant. Obviously, A EJ(A)will 
also have exponentially bounded growth a t infinity; 
the p rec ise  asym ptotic for m of A tJ(A) w ill be 
given below. Equation (4.17) will be of g rea t u tility  
in the subsequent sections, w here it  w ill allow us 
to study Д £у(А) by applying WKB and s e r ie s  e x 
pansion methods to the solutions of Eq. (3.7).

V. ORDER OF GROWTH OF Д«у(А) AND Д |/1 |

In this section we give m ore p rec ise  re su lts  
concerning the large-A asym ptotic behavior of
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A£JU)  and of the full ex ternal-field-problem  
Fredholm  determ inant In Sec. VA we p re 
sent a  WKB form ula (derived In Appendix B) giving 
the asym ptotic behavior of Д{>(Х). Using this 
form ula, we determ ine the asym ptotic distribution 
of ze ro s of Д с>(х). In Sec. VB we d iscuss the r e 
norm alization  subtractions needed to make the 
infinite product fo r д[.Д] convergent. Using our 
knowledge of the distribution of zeros of Д, com
bined with re su lts  from  the theory of en tire  func
tions, we determ ine the o rder of growth of the r e 
norm alized  determ inant д[л] for large ex tem al- 
field  am plitude X. Combining th is estim ate with 
the absence of zeros in a s trip  containing the rea l 
ax is, we show that the rea l amplitude integral 
contour d iscussed  in Sec. I yields a function of e3 
analy tic  in the right-hand e3 half plane.

A. A sym pto tic  behavior o f  Д(/(Х)

Aa we have seen above, At J (X) is given by the 
Wronskian of two suitably standardized indepen
dent solutions of the d ifferential equation Нф = 0.
In the lim it when |x| is large, o r m ore specifically, 
when the inequalities

E' “ lxT
« 1

(5.1)

are  satisfied , we can apply WKB methods to c a l
culate approxim ate solutions of the d ifferential 
equations, and hence to get the asym ptotic form 
of A (J(x). The calculation, which is outlined in Ap
pendix B, gives the re su lt (valid fo r 4 >0)

A ,.(0) г Ъ  + i)  
t

Г(г) i  * 1)
r o  + i)  r ( i  + 5)

x  [«»■ + e ' x( - l  Г e *‘2 -a( c*1/2) (j + *)r(« + i)X-<E*I/3) ] (5.2)

showing that the en tire  function Д {>(х) is of expo
nential type. One special case of Eq. (5.2) is 
w orth noting. W henj —- 5, Eq. (5.2) reduces to

Д . , U) 
Д е/(0)

Лч/ p /4» e J—1/2 €j«l
(5.3)

(5.4b)

we w ill show in Sec. VIA below that th is is  an 
exact, and not ju s t an asym ptotic, re su lt. From 
Eq. (5.2), we can calculate the asym ptotic d is tr ib u 
tion of ze ro s  of AtJ(X) by solving the equation

0 = ex + e - x( - lV " SM2 -s ( ,*1/J)( j + i )

x r ( {  + ^ - | t 4 / , )  , (5.4a)

which we rew rite  in the form  

e2,1(-X )'i = ec‘ 

c, = € + l .

c2 = —2 ({ + j) ln 2 + InO + |)

+ lnr(£  + £)-«ir(;' + i )  •

Neglecting te rm s which vanish for large X, the 
solution is

X = uni + | c 2 -  £ctln(-jm i)

= vni + £({ + f)ln j  + ,

ReX = j({ + j)ln  ^ | wj2  ̂+ i

ImX ajrn + 0 ( i , j )  .

In the region of validity of Eq. (5.5), where |n|

(5.5)

» 4 ,  we see that ReX is asym ptotically  negative, 
as required  by the inequality of Eq. (3.9). The 
occurrence of zeros in com plex-conjugate pa irs 
is also  apparent f rom Eq. (5.5).

F o r application in Sec. V B, it is convenient to 
give the zeros of Д£ (̂Х) an index k which a rran g es 
them in o rd e r of increasing  magnitude:

X,“  =general zero  of At J (X) ,
(5.6)

F or large k the index defined th is way can be iden
tified (up to a fac to r of two, since the zero s occur 
in com plex-conjugate pa irs) with the positive in 
teg e r |n| appearing in Eq. (5.5). Since the effective 
expansion p a ram ete rs  in the WKB procedure a re  
thus

« « i  L 
I x P T " * ’ i \ P I  * ’

(5.7)

we expect the following hounds on (Л/J| to hold 
uniform ly in £ and j  :

« &*0 = C O я +«*)‘/:' ; <5-8a)

а 2+ е )и г * \ x ^ H ^ o ’ + i2) ^ .  (5 .8b)

for suitable constants A1<as and C. [Equation 
(5.8b) also  incorpora tes the lower bounds of Eqs. 
(3.9) and (3.12).] We have not constructed a proof 
of Eq. (5.8), so these inequalities should be
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considered a  conjecture, suggested by the WKB 
analysis, on which some of the argum ents of Sec.
V В a re  based.

B. O rder o f  grow th  of A M  )

We are  now ready to examine the asym ptotic b e 
havior of the full external-lie ld -problem  Fredholm  
determ inant д[А ], given by the product form ula 
Eq. (3.6). F ir s t we must deal with the question of 
renorm alization  subtractions alluded to above. By

dividing out AfJ (0)2 in Eq. (3.6), we have elim inated  
the m ost divergent vacuum  d iag ram  illu s tra ted  in 
Fig. 2(a). However, the seco n d -o rd e r d iag ram  
shown in Fig. 2(b) is a lso  d ivergen t, and m ust be 
elim inated by a  fu r th e r su b trac tio n . To do th is, 
we w rite  the sm all-X  expansion

(5.9)

and then define the ren o rm alized  F redholm  d e te r 
minant д[А] by w riting

i H ) = e ou> П  П  р ^ (ХУ ~ Х) « - д» х, 1 *i - i / i .v s , . . .  { = i/2,v a . . . .L -I
(5.10)

In this expression

Q M  = Qo + Qt^  (5.11)
is a polynomial which exp resses  the fact that the 
renorm ali2 ation counterterm s always have an un
determ ined finite pa rt. To see that Eq. (5.10) Is 
the c o rre c t recipe, we note that the renorm alized 
vacuum amplitude, which according to Eq. (1.8) is 
proportional to

ln£[A] = Q(X)+1пд[А] -1пд[0] -Л2 ^ 5-1пд[А]

(5.12)

now receives contributions only f rom the conver
gent vacuum d iagram s illu stra ted  in Fig. 3.

L et us next rew rite  Eq. (5.10) in an alternative 
useful fo rm . Since At J (A) is an  en tire  function of 
exponential type, we can use the Hadamard fac to r
ization theo rem ” to w rite  it as an infinite product 
in te rm s  of its ze ro s Xj1,

A,,(X)
Д „(0)

giving

=e ч

д,,(л)д,,(—\ )  TT[. x2 ~] 
4 (J(0 f "  АЛ  "  W ? \

= <5Л4)  

F rom  Eq. (5.14) we identify A tj  as

A -  T  1 (515)

Let us define an additional constan t B (j by

<s , e )
and combine E qs. (5.13)-(5.16) to rew rite  Eq.
(5.10) as

,.,n.....) ' m v

Хуогйм] ;

B= £  £  ( 2 j + l  )BU .
/и 1У2,У2Р. . . t - ^2,3/2, . . .

(5.17)

The constant В is the contribution of the fourth - 
o rd e r  graph which appears as the f irs t te rm  in 
the s e r ie s  of F ig . 3, and hence is fin ite. The s e c 
ond ex p ression  fo r P(\)  in Eq. (5.17) has the form  
called  a canonical product in the theory  of en tire  
functions9; Eq. (5.17) thus ex p re sse s  i[A ] as a 
canonical product m ultiplied by the exponential of 
a  fou rth -deg ree  polynom ial in X.

О  О
(a) (b)

FIG. 2. (a) D ivergent vacuum d iag ram  which is re~ 
moved by division by Д ^ (0 )2 in Eq. (3.6). (b) D ivergent 
vacuum d iagram  which is  rem oved by the fac to r 
е х р ( -А £>Л5) In Eq. (5.10).
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Let ua now introduce som e fu r th e r concepts from 
the theory  of en tire  functions.® Let /(A) be an en
tire  function of the complex variable A. Its maxi
mum modulus M (r) and minimum modulus m(r) 
a re  defined by

M<r)= max l / ( r e ‘e )| ,
Q«e 232»

m<r)= min \J<reie)\ .

The order p of /(X) is defined to be 

lnlnAf(r)

(5.18)

p = lim  sup : ln r (5.19a)

О  * Q *
FIG. 3. Convergent d iag ram s which contribute  to 

Eq. (5.10).

S a S  £ /,* * £ » * *  й * + \ % а- " / г  < < a - 3 ) ( a - 4 )

(5.24)

as claim ed. Next we show tha t Eq. (5.21) d iverges 
when a  —4. Since (lnx)/x  ^  1 /e fo r x & 1, the upper 
bounds in Eq. (5.8) take the form

< «о

if /  is of o rd e r p it is asym ptotically bounded by |*»*| € А гп ( \  + —-*Л k , k sfe 
. . . u i p  ...........  2 V 4«2 /|/(A )|«A ee'^ (5.19b)

fo r su itab le  positive constants A and B. Finally, 
le t { r v = |Aj} be the sequence of moduli of the zeros 

of /(A), arranged  in increasing o rder. The 
sm a lle s t num ber a fo r which

t  , - V - for a ll a> и (5.20)

is called  the exponent o f  convergence of the s e 
quence. A ccording to the theory  of en tire  func
tions, the o rder of an en tire  function is closely 
re la ted  to the exponent of convergence of its  zeros.

To d eterm ine  the o rd e r of A[A], we wish then 
to  ca lcu la te  the exponent of convergence of the 
ze ro s  A„ appearing in Eq. (5.17). Remembering 
that a ll z e ro s  A,u  occur with m ultiplicity 2j  + 1, 
we co n sid er the sum

S a = ^  ( 2 j + l )  ^ 2  ТТТ7Г5 •
J=1/ 2 , 3 / 2 , . . .  [ 4 / 2 . V 2 . .  .  . “  1А» I

(5.21)

In estim ating  the convergence p ropertie s of S „  it 
obviously suffices to rep lace the sum s in Eq.
(5.21) by in teg ra ls . We f i r s t  show that Eq. (5.21) 
is  convergent fo r a > 4 .  Using the lower bounds 
obtained from  Eq. (5.8),

i t k A l ^  |A ^ J | ,

| A * ' | ,  k s k

we get the estim ate

^  lA.t J l “  =  2  1л.“ Г  +  £  T a T

(5.22)

r  l^FF ■ h i  К*'Г . 4

-  C U > + ?)''*  , Г  dk_
S J c u '* ,b ‘/2 OrM,]

C'
= (>5 + ^ y d ' 1"* ’ *5-23*

(5.25)

giving, by a p rocedure identical to that in Eqs. 
(5.23) and (5.24), the estim ate

C"
( a - 4 )  ’ C"> 0 . (5.26)

We conclude that S u d iverges for a = 4, and that 
the exponent of convergence of the zero s of 
Д[А] is o = 4.

From  the fact that о = 4 we can im m ediately con
clude that the o rd e r of the canonical product P(A) 
is 4, and hence that the o rder of £[A] is  le s s  than 
o r equal to 4 .5 If the o rder of Д[А] w ere actually 
le s s  than 4, then the sum in Eq. (5.21) would con
verge8 fo r exponents a  sm a lle r  than 4, which we 
have seen is not the case. So we conclude that the 
o rd e r of Д[А] is  p rec ise ly  4.

L et us now use these re su lts  to determ ine the 
convergence p ro p ertie s  of the am plitude in teg ra l 
when taken along the rea l contour. Since a ej (A) 
cannot change sign on the rea l axis, a ll of the 
fac to rs  in Eq. (5.10), and hence £[A] itse lf, a re  
positive for A rea l, and so 1 п д [ а ]  is re a l. Since 
the maximum modulus of д [а ] is bounded as in 
Eq. (5.19b) with p -  4, we have

ln i[A ]< S |A |‘ (5.27)

so that

for an appropriate positive constant B.  In o rder 
to  r e s tr ic t  ln£[A] f rom below, it is  necessary  to 
have a lower bound on the m inim um  modulus of 
5[A] . We get this by using the following theo
rem 9: "L et P(A) be a canonical product of o rd e r 
p. About each zero  А„ (|A„|>1) we draw  a c irc le  of 
radius 1 /|A J° , a>p.  Then in the region outside 
these excluded c irc le s , |.P(A)| > e x p t- r^ * )  fo r € > 0 
and for r> r 0(e, at).” To apply this theorem , we 
note that the sum of the rad ii of a ll the c irc le s  is 
just Sffl and can be made sm alle r  than 1 by choos
ing a  la rge  enough. Since Л[А] has no zero s in 
the s tr ip  |lmA| «1, the en tire  rea l axis then lies
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in the region outside the excluded c irc les , and so 
we learn

ln i[A ]> -|A |* W  > «'o (5.28)

for r 0 appropriately large. Taking E qs. (5.27) and 
(5.28) together, we see that |1пД[Л]| is poly- 
nomial-bounded on the А-re a l ax is . The G aussian 
factor in Eq. (1.5) then guarantees that the am pli
tude integral converges when taken along the rea l 
axis, provided that Re£2> 0 , and thus defines a 
function of e J analytic in the right-hand e 1 half 
plane. Note that this conclusion does not depend 
on the fact that Д [А ]  is of o rder 4, hut only r e 
quires the weaker statem ent that the o rder of 
£[A] is finite, which is known to be tru e3 indepen
dent of the validity of the inequalities in Eq. (5.8).

VI. N U M ERICA L RESU LTS

We turn next to num erical studies of At j(A) and 
5[A], In Sec. VIA we derive po w er-series  expan
sions for the standardized solutions fa and фa. The 
c irc le s  of convergence of the two se r ie s  which we 
obtain overlap, allowing one to compute the W ron
skian, and hence At j(A), by picking fl to have any 
value in the overlap region. In Sec. VIB we nu
m erically  study the location of low-lying zero s of 
Aej(A), and find that there a re  no ze ro s  in the se c 
to rs  | Re A1 > I lmAl . Consequences of th is fact for 
the coupling-constant analyticity p ropertie s of IV, 
a re  d iscussed . Finally, in Sec. VIC we give nu
m erica l re su lts  fo r the behavior of the vacuum 
am plitude as A in c reases  along the im aginary axis.

A. Pow er-series so lu tions

Substituting

" 0 (6.1)

into Eq. (3.7) and w riting  out the coupled d iffe r
ential equations fo r the two components, we get

da
-  [ £(sine)-‘ + A sinfl] a + (j  + i)(cosfl)"‘ с = 0 ,

dc

(6.2)

^  + [£(8infl)"‘ + A sinfl] с  + (j + i)(co se )_1 a = 0 .

To construct p o w er-se r ie s  solutions regu lar 
around S = 0 and fl = j i  we make the following 
changes of variab le , m otivated by the form  of the 
noninteracting (A = 0) solutions presen ted  in Ap
pendix A.

<1) Solution regular around 6 = 0. We su b s ti
tute

ot = (tan! fl) * /(* ) . 

c, = tanfl(tan2 fl)££(x) ,  

1

(6.3)

x = l - cosfl ‘

In te rm s of the new v a ria b le s  the coupled equa
tions become

df  А/ j ,
dx + ( l - x ?  ^  + 2)* ‘ 0 '

(6.4)

We now look for a p o w e r-se r ie s  solution in the 
form

(6.5)

We find that Eqs. (6.4) a re  sa tisfied  if we take

0 /o  = - 2U + 5), So = ( j  + * b

/« L  = -̂ 7 i  [(2« - М / . - ( я - ! ) / . - .

+ U + i ) ( g n - 2g n.i*gn .i) \  (e .6 )

B"M = 2n + 2 4 +1 (̂5n + 4 * + 3 + 2k)gn

-  (in + 24 -  1 +\)g„_l + (n -

- 0  + 5)(/„♦  1 - 2 / „ + /„ _ ,)] , n * 0 .

(21 Solution ip, regular around f l=i i r .  In th is 
ca fe  we make the substitution

( г ? £ Ь Т /2ш+совв1(уП’

Ci= { r ^ b ) >t l / , [ h{ y) - c o t 6 l { y ) ] ' (6-7)

sinfl

T h e  c o u p le d  d i f f e r e n t i a l  e q u a t io n s  now  b e c o m e

dh
~dy l = 0>

(6.8)

y(2 - y ) g  + [ 2 0  + l ) - y ] /  + [ 4  + ^ 7 ]  A* ° -  

A ssum ing po w er-series  solutions in the form

/ = £ i „ y \я =0 Я Го
(6.9)

we find the solutions
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^  = *. = 0 (#< 0 ), k 0 = - 2 ( j  + l), l 0 = 4 + x ,

л "+1 = Т Т Л [2nh" "  ("  ~ 1)k"-> + ^  + X) '-  + « '« - i  ~ 2 '» -i)) , 

l "*l = 2 T ^ 7 T 4 ^ (5"  + 4  ̂+ 5 ) I " " <4” +2^ J"-‘ + (n - 1)Z» - a - ( A’ + 4)/* « i + «(2A» - * , . 1)J. « » 0 .

(6 . 10)

A num ber of observations about the above so lu
tions a re  now in o rd e r . F ir s t, we note that since

8/ tt= aA
ax 0 A 8 A (6 . 1 1 )

and since I in Eq. (6.7) appears m ultiplied by the 
fac to r cote, which vanishes a t 9 = jn , the standard
ization  conditions of Eq. (4.7) a re  satisfied . Sec
ond, we consider the greatly  sim plified form  of 
the above equations when j —- 5 . Working directly  
from  Eq. (6.2) we find in this special lim it the d e 
coupled equations

- [ ?  (sinfl)-1 + A sinfl] a - 0 ,

dc■jg +[£(sinfl) _1 + A sinfl] с = 0,
(6 . 12)

(6.13)

which can be Im m ediately integrated, giving

e 1= -2 ( ta n ie ) , (« + 5)ex<1- “ ‘s>, 

c i = 0 |
a , = -  (tan jfl)£ e " x' “,e . 

c , = -  (tansfl) -1 0*““® .

Hence the W ronskian is 

w(X) =o , c, -  a , c,

= - 2 ( «  + i ) e \  (6.14)

giving fo r the j ~  -  i  lim it of the Fredholm  d e te r
m inant the re su lt

-i/»(A) 
* !- ./» « »  "

= e . (6.15)

as was sta ted  in Sec. VA above.
F inally , we d iscuss the convergence p ropertie s  of 

the p o w er-se r ie s  solutions. Rewriting Eq. (6.4) 
as a single second-o rder d ifferen tia l equation we 
find singular points a t х - l ,  2, a n d " .  Rewriting 
Eq. (6 .8 ) as a single second-order equation we 
find singular points a t ji = 1, 2, and®,  and addi
tionally  at

= (6-16) 

Since x and у a re  re la ted  by

1 _ i ____ ,
+ (1 _  y)> '

Eq. (6.16) co rresponds to singular points in the
x variable at

x = l± К У (6.18)

(6.17)

which did not appear in the * form of the equation. 
Hence the singu larities in Eq. (6.16) m ust be r e 
movable, and a d irec t calculation shows this to be 
the case . We conclude, then, that the power- 
se r ie s  solutions for i/i, and ip, have the following 
regions of convergence:

ф,converges for |*!< l » l a c o s 0 > i « 0 « 9< 3 if,

(6.19)

^ co n v e rg e s  for |>‘|< 1 « 1  »sinfl>  .

Thus, in the angular range -£tr< fl<± ir both power 
se r ie s  a re  convergent, and so we can calculate 
the W ronskian from  Eq. (4.3) by taking fl to be 
any value in th is in terval. Since the W ronskian 
is fl-independent, a  powerful check on both the 
program m ing and the absence of serious round
off and truncation e r r o r s  is obtained by ca lcu la t
ing W for two differen t values of fl in the allowed 
range and then checking that the sam e answ er is 
obtained. In p rac tice , using double p rec ision  on 
an IBM 360/91, we found we w ere able to explore 
the region 4^80, j s 80, |A |s2 0  in good detail, 
but for ] A1 values between 20 and 24, se rious 
roundoff e r r o r s  sta rted  to set in.

B. L ow -ly ing  zeros o f Д |/(А |

N um erical re su lts  for the low-lying zeros of 
A(i(A) in the upper half plane are  given in Tables 
П and Ш. In Table П we give the locations of the 
lowest zero  (the zero of sm allest magnitude | \ | )  
fo r a range of values of £ and j .  In Table Ш we 
give the locations of the lowest four ze ro s for 
£ = j  = j .  For a ll of the zeros tabulated, the ra tio  
|Im A|/|ReA | is la rg e r  than 1. As £ in creases for 
fixed j  , the ra tio  appears to be approaching 1 
f rom above; a s j  in c reases for fixed 4, the ratio  
grows, as might be expected from  the inequality 
of Eq. (3.12). For a given £, j ,  the successive 
higher ze ro s  move up in the im aginary direction 
with a spacing ~я between the im aginary parts , 
a s  is expected f rom the WKB estim ate of Eq. (5.5). 
The pattern  of the num erical re su lts  strongly 
suggests that | ImA|/|ReA|> 1 for all zeros of
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A(j(a). If this property were true, the zero -free  
regions of £  [a] would be as indicated in Fig. 4, 
and a contour of integration in Eq. (1.5) initially 
along the rea l axis could be freely deformed to 
the positions indicated as “ # 1” and "#  2.” The 
f irs t (second) contour allows analytic continuation 
of IV[ into the en tire  upper (lower) e2 half plane. 
Hence, for the d istribution of zeros of ^[A ] shown 
in Fig. 4 one gets a rad ia tive-co rrec ted  vacuum 
amplitude IV, which is analytic in the entire e1 
plane except for a  branch cut running along the 
negative rea l axis from  0 to -*>.

C. Behavior o f vacuum  am plitude fo r X im aginary

As we have s tre ssed  repeatedly above, the pos
sib ility  of taking the contour in Eq. (1.5) to lie 
along the im aginary axis can be realized  only if 
W D) d ecreases as a Gaussian (or fas te r) as X b e 
com es infinite along the im aginary axis. Actually, 
when subtractions a re  taken into account, the 
relevan t question becom es whether (d/dx2)2 InA [A] 
decreases  along the im aginary axis. The d iffe r
entiations just elim inate the a rb itra ry  subtraction 
polynomial Q{Л) which appears in Eq. (5.10); this 
polynomial is not relevan t to the physics, and 
specifically  is not p resen t if we consider (in the 
one-m ode approxim ation for v irtua l photons) the 
se t of single-ferm ion-loop vacuum polarization

TABLE П. Low est-lying zero  with ImX>0 for various 
£,j values.

j I ReX, TmX, 1 ImA, | / |  ReX, |

1
T

i
T -1 .6 7 7.12 4.26

1
T

3y -3 .4 7 7.36 2.12
1т 7

7 -6 .4 6 8.50 1.32
i
7 л

2 -9.8T 12.57 1.27
i
7

J5
2 -13 .25 16.65 1.26

i
7

1
7 -1 .67 7.12 4.26

3
7

!
7 -1 .43 8.93 6.24

к ]
7 -1 .1 4 7.73 6.78

1
7 12 - 1.10 9,71 8.83
0
7

1
7 -1 .0 8 11.70 10.83

U2
I
7 -1 .1 7 16.60 14.19

2
l
2 -1 .1 4 18.59 16.31

1
7 1T -1 .6 7 7.12 4.26
12

Э
2 -2 .9 4 6.27 2.13

7
7

1
7 -6 .1 3 10.98 1.79

M
T 4- -9 .8 6 18.67 1.89

diag ram s shown in Fig. 5. In o rd e r to obtain good 
convergence of the sum over sep a ra tio n  p a ram e
te r s  5, j ,  we found it n e ce ssa ry  to d ifferen tia te  
once m ore with re sp e c t to Xa. M ultiplying (for con
venience) by Xa, we get, finally , as the quantity 
being studied

*"<«■> ,6-20’ 
R esults fo r IVм v e rsu s  -  tX a re  shown in Fig. 6 .
In calculating the points for th is  curve, we 
sum med on 5 from  i  to 2{ and on j  from  г to 39 2 ; 
doubling both sum m ation ranges for a subset of 
the points produced a 6% change for -  tX = l and 
negligible (< 1%) change for -  »X*5.  In fact, n e a r 
ly all of the sum for -  ik  a  5 cam e f r om AE/ s  
with £ = i ,  m ost likely a re s u lt  of the fac t that 
th is is the value of (, which gives z e ro s  of Д {, ly 
ing c lo sest to the im aginary  ax is (see Table П).
The curve plotted shows no sign of a rap id  de
c rea se , but unfortunately the d is to rtio n s in both 
the envelope of the osc illa tions and the wave form  
suggest that the asym ptotic reg ion  has not been 
reached, and so the re s u lts  a re  inconclusive. We 
did not attem pt to extend the com putations fu r th e r, 
because of the roundoff e r r o r  problem  m entioned 
above.

VII OPEN Q U E ST IO N S

We conclude by giving a b rie f recap itu la tion  of 
the rem aining unresolved questions. Within the 
fram ew ork of the one-m ode approxim ation d is 
cussed a t g rea t length above, som e key p rob lem s 
a re :

(i) determ ining the asym ptotic behavior of №'**(x) 
along the im aginary axis (ruling out a  G aussian 
decrease  would ru le  out the im aginary  contour 
possibility  and hence, a s  d iscussed  in Ref. 2, 
would ru le  out the possib ility  of obtaining a cou
p ling-constant eigenvalue when only a finite num 
ber of photon modes a re  included),

(ii) proving (or disproving) the d is tribu tion  of 
zeros illu stra ted  in Fig. 4,

(iii) if Fig. 4 is co rrec t, finding a sim ple fo r 
mula or in terp re ta tion  for the d iscontinuity  of W,

TABLE ID, F i r s t  four z e ro s  fo r 4 -  £ w ith ImA > 0.
(For each th e re  is a co rresp o n d in g  com plex -con juga te  
z e ro  in the low er half plane.)

Z e ro  num ber k ReX* ImX^ 11mA* 1 / |R e * J ImX* -  1тпА*_,

l -1 .6 7 7.12 >.26
V -1.8G 10.23 5.50 л.H
3 -1 .9 9 13.39 6.73 :i . i  e

4 -2 .1 0 1G.52 7.87 11.13
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a c ro s s  its  cut in the eJ plane, and
(Iv) finding a  com pact expression for ^ {J(A) in 

which the p a ram ete r fl in the W ronskian has been 
explicitly  elim inated.

Going beyond the one-mode problem to the case 
when a  finite num ber of photon modes a re  present, 
one can ask w hether the ze ro -free  regions shown 
in F ig . 4 p e r s is t .10-11 If so, then the rea l contour 
would give cut-p lane analyticity in e2 for any finite 
num ber of m odes, and the im portant (and un
doubtedly difficult) question of what happens when 
the lim it to an infinite num ber of modes is taken 
would be brought to the fore.
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APPENDIX A: F R E E  G R E E N 'S  FUNCTION

We give here  a closed-form  expression  for the 
G reen’s function of Eq. (4.S) in the free (A = 0) 
ca se . The re su lt is most compactly expressed 
In te rm s  of the Jacobi functions

(*)=
Г(» + a  +1)

FIG. 4. Conjectured z e ro -fre e  re g io fs au®EeSt , щ  
the num erica l re su lts  of Sec. V IВ and Tables II  ̂ ^  
The dashed lines show p erm iss ib le  deformatloD£ 
re a l-a x  la contour of In tegration  in Eq. (^-5)'

Г(|> + 1) Г (а + 1)

XF(- V, v + a + p + l ; a  + i ; { - i z ) ,  (Al)
where F(a,b;c;z) is the usual hypergeom etric 
function. [The ordinary Jacobi polynomials c o r
respond to the case where v in Eq. (Al) is a  non
negative integer. We will also use the case where 
v is a non-negative ha If-integer.] We find (for 
4>0)

/ 4
VI/

<i; = ( t a n i e ) « P ^ . - « - W ^ J _ ' ) i

c? = -  i  tanfl(tanifl)«

c0 I *
**a /

, , /  cosfl \ ^ 1/a/  sinfl d \ p l l , . , . n / A  
1 Vl + s in f l/  \ % de l 1 \ s i r

(A2)

\
sin QJ *

„ /  cose У " »  /  _ sinfl / J _ \
\1  + sinfl/ \  5 de) 1 l^sinfly"

The Wronskian of the two solutions is easily  c a l
culated by taking either the lim it fl- 0  o r the lim it 
fl “  l  n, giving

/7® fUI°=oSc°- oVc,

-Г О  + Е + 1) 
r ( i ) r (5 + i ) r ( j  + | ) • ( A 3 )

The free G reen 's function then im mediately fo l
lows from  the recipe of Eq. (4.5),

* 0  + ’ - С Е Н  +
♦ ♦

■f

FIG. 5- Single-ferm lon-loop vacuum -polarlzation d ia
gram s This set of d iagram s is finite for rf, * ij,, “ d 
requ ires no subtractions. However, if we con tract with 
r (0 (T).) IJ,) and integrate over f|, and ч2. the sho rt-
dl stance slngAilarity as 4, -  n, leads to a divergence, 
corresponding tn th e> lt , counterterm  in Eq. (5.10) and 
the finite rem ainder Q,AJ In Eq. (5.11). This divergence 
is of no physical significance, and so we differentiate 
to elim inate Cj.
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®i< ®i
S”(61, e 2) = (u;0) - | x j ei>6i '

(A4)

We note finally that the solutions p°, ф% in Eq. (A2) 
differ by constant factors from the A = 0 lim it of 
the pow er-series solutions for ip„ ifia given in Sec.
VI.

APPENDIX B: WKB EXPRESSION FOR

We derive in th is Appendix the WKB asym ptotic 
approximation for Д{,(А) quoted in Sec. VA. Our 
starting  point is the se t of coupled differential 
equations for the components a, с of ф,

~ j  -U (sin fl) " 1 + A sin 6J a + (j +^)(cos6)"‘c = 0 , 

+ [? (sine)-1 + Asinfl] с +(j +^)(cose)"’a = 0 .а a

(Bl)

These equations a re  evidently invariant under the 
interchange

(B2)

allowing us to obtain equations sa tis f ied  by с by a 
sim ple substitution once we have found the c o r 
responding equations sa tisfied  by a. E lim inating  
с and defining a new v ariab le  * = cosfl, we find the 
following seco n d -o rd er d iffe ren tia l equation s a t 
isfied  by a (a1 ~ da/dx,  e tc .)

a" + Pa'+Qa = 0 ,

1 - 2*2
P "*(l-Jf*) ’

- 2 <A Г ( j + j )2 _ J 1 _  + 
l - * 2 L ^ d - x 2) ( l - * 2)2

( \ ( i - 2x»)
' x d - x 2)2 x d - x 2) ■

(B3)

Noting that P is  unchanged by the substitu tion  of 
Eq. (B2), we introduce new dependent v a riab le s  
b and d by w riting

FIG. 6. R esu lts fo r v e rsu s  — tX. The dots denote computed points. Maximum and m inim um  points denoted by 
X w ere determ ined  by a polynomial in terpo la tion  p rocedure  from  the neighboring computed points.
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U L
A s a - x 2)2 i - х 2

L x M -x 2) ( l - * 2)1

______ X (l-2x2)
x d - x *)2 x d - x 2)

(B4)

10 M A S S L E S S  E L E C T R O D Y N A M I C S

a=ftexp̂-£ J Pduj
= Ьх_|/2(1 -х2Г 1/4,

c = dexp [ - i j "  P d w j

= <fc-1' 2 ( l -* * ) - '«  .

These sa tisfy  the d ifferen tia l equations

b/ / + V b  = 0 , d ,#+*/<*=о «

1 + 2 X 2

(B5)

It is a lso  useful to have the f irs t-o rd e r  d ifferen
tia l equations coupling £ and d, which from Eqs. 
(Bl)  and (B4) a re  found to be

•■♦‘КдгЗгАН-
“’Чг ийтгпЫ-'

^ iI V k 0,
l j * i )

x d - x 2)1' 2

(B6 )

= 0 .

Finally , in te rm s of b and d the W ronskian is 
given by

IN  T H E  O N E - P H O T O N - M O D E .

w =a2c1- a lc2 

1
x d - x 2)1' 2 .
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(B7)

We now proceed to construct approxim ate, WKB 
solutions to the above equations when | X | is  trea ted  
as a large param eter. We begin with the equation 
for b. We have

18,1

and hence

I d k j d x ]R- «  1 (B9)

for a ll x except very  near the end points at x = 0 , l .  
N ear the end points we find

2x2| X | 2 ’ 

2£ + 1

x~C

x = 14(1—x)21X | 1 1 

and so except in the in tervals

ПТГ-
I—XI

£1/2

(BIO)

(b i d

we can use a WKB solution for b and d. Applying 
the standard low est-order WKB re c ip e 12 to the 
second-order d ifferential equations fo r b and d, 
and then imposing the linear equations in E qs. (B6) 
which re la te  b and d, we find the W KB-region 
solutions

6wKB= Y eXl* " 1/2(1+Jc)“ ’ * - х И 1 * ,/2)/2 + Be - x V /2 (1 + x) - ({* ,/2)/2 (1 -x )<{ +1/2)/2,

d = Z-U + Ш  g -x ^ - , / 2  (1 +x)-(i*in)/2{1_x p-u2)/2 + JA  е к1х и2(1 +x} t+ u M {l_x )-H-u2)/2 
2X J +г

(B12)

In the end-point regions x - 0 ,  1 we m ust join Eq. (B12) on to m ore accura te  approxim ate solutions. In 
the vicinity  of the end points we find

- j ( j  + l)  X + £ -(A + 5)z + \  - H j  + D + Hox+Oix2), H0= - \ +  2€, x = 0
x2 X

- i  ( j - t ) U + i )  4X + sX -;4  + i ( t - l ) U  + i M j ( j  + D (B13)
( l - x )2 l - x  

-  f [ j ‘0 ' + D -  3- Ц Х +  f  ( e-  f ) ] 2- i ( « -  r  )2-  £  + Я ,(1-х )  + 0 ( ( l - x ) a) ,

й , = -  V i ( j  + i ) +e - 4 - ( « +  )+ * = ! •

F o r x = j/| X|, the x -2, x_l, x° te rm s  near x = 0 
a re  of o rd e r | X| 2, w hereas the term  H0x  is  of 
o rd e r  j i ,  down by a fac to r (j/| X| )(t/|x|) from 
the leading te rm s . S im ilarly, fo r l-x=4/|x|, the 
( l - x ) " 2, ( l -ж )-1, ( l-x )°  te rm s  near x = 1 a re  of 
o rd e r  | X |2, with the term  t f ,( l - x )  of o rd e r J2,

down by a factor of ( £ / | \ | ) 2 from  the leading 
te rm s. The te rm s  0(x2) and 0 ( ( l - x ) a) can be 
shown to he a s  sm all as the linear te rm s  which 
we have ju s t evaluated. Hence we identify

«, = € / | x | ,  e2= j / |X| (B14)
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as the effective sm allness param eters in the WKB 
solution, and proceed to solve the differential 
equations at the endpoints neglecting the linear 
and higher te rm s in x and 1 -*  in Eqs. (B13). Both 
at x = 0 and * = 1, the d ifferential equations can 
then be reduced to W hittaker’s equation

dfb
dz2

with the regular solution

b = e - " V /2+», * ( l  + n-K , 1 + 2 д ; г ) ,  (B16)

where Ф is the confluent hypergeom etric  function

. .  . , a z  a ( a + l )  z 2 
Ф(а, c; z) = 1 + -  —  + 27 + ' '  ‘

= е*Ф ( c - a , c ] - z ) .  (B17)

C arrying out the so lu tions exp lic itly , we find to 
the required  accuracy  the following end-point 
solutions:

fl = 0, *<=1:

6 t(z) = exp{-[x  + iU -§ )]z} z{t*1/2>/2*  + i+  (7 + i)s, ? + i ; 2 [ \  + j ( 5- |) ] z ^  , 

<*,(*) = exp{-[x +?U  t | ) W i “ ^ 4  5 +1; 2[x +1 ) ]z ) , z = 1 - x ;

e=iv, * = 0 :
( B 1 8 )

ЬЛх)=е

d,(x) = e l)z Tj*i.

Joining the W KB-region solution onto the asym p
totic f o r mu of the x = 0  end-point solution, we d e 
term ine the constants A, В in Eq. (B12) to be

T his is m ost easily  done by a com parison  with 
the explicit free  solutions given in Appendix A. 
W riting

2 A T (2 ( j + 1))
(2ХГ

r ( 2 ( j + l)) / - 1  y * U2
2X )

r ( j + l )

2  ( j  + l ) )  

r ( j + l )  I

(B19)

This perm its us to  extend the solution фг to the 
region near 6 = 0 , x= l,  which is the asym ptotic 
region for the *= 1 end-point solution фг  Substi
tuting the WKB extension of фг and the asym ptotic 
expansion of ф, into Eq. (B7), we get for the 
W ronskian

w(X) = -  2( l - ,/г)/=(2л)-с#'*'
* \ )  +2)

X ( i + 5) r u  + i ) x - ({* 1/j)] . (B20)

To complete the calculation, we must determ ine 
the value iti(0 ) corresponding to the norm alization 
of the solutions qp,, ф2 used in the above analysis.

C:L;K' (!•)’ 
CL-^G) ■

(B21)

u2 ' \-a
and letting 6—0, 5 ir to determ ine K t, K2, r e s p e c 
tively, we find f rom E qs. (B4) and (B18) that 

2(t-l/a)/ar (^ + l ) r ( j  + | )
r ( j  + 4 + l )  ’ (B22)

2 ^ 1/2r ( j  + l ) r U + l )  
r ( j  + « + l)

Combining with Eq. (A3) we then get

Ы О Ь -К  К ____Г(? + Е + 1) . (B23)«/10) K,K2 r ( i ) r ( ^ + 1) r ( i + f )

Dividing Eq. (B20) by Eq. (B23) to  get и>(Х)/и>(0), 
and then using Eq. (4.17), gives the final WKB 
form ula quoted in Eq. (5.2) of the tex t.

!S. L . A dler, Phys. Rev. D 6, 3445 (1972); 7, 3821(E)
(1973).

2S. L. A dler, Phys. Rev. D 8, 2400 (1973).
!We can om it the m atrix  тг in Eq. (2.32) because the 

sp ino rs which appear have a lready  been reduced to 
lour-com ponent fo rm .

4 The re  la, of co u rse , a th ird  reg u la r  s ingu lar point at

и = F o r a d iscussion  of the R iem ann equation and 
its  solution see G. Birkhoff and G. C. Rota, Ordinary 
Differential Equations (B laisdell-G inn, W altham ,
M ass., 1969), p. 272 ff.

5T hese may be derived from  the iden tities  on pp- 274—276 
of Y. L. Luke, The Special Functions and Their Approx- 
imations (Academic, New York, 1969), Vol. 1.
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eSee, for exam ple, G. Birkhoff and G. C. Rota, Ordinary 
Differential Equations (Ref. 4), p. 47.

TIt ie alw ays possib le  to fled solutions satisfying the 
s tandard iza tion  conditions because, as s tre s se d  in 
Sec. IID , the boundary conditions a t  &= 0, £ir a re  A-
I independent.

aL et t r  denote the P auli m atrix  tra c e ; then T r denotes 
the com plete tra c e  TrA = /<)T/* rf0 (0 |tr4 |$ .

*A. S. B. Holland, Introduction to the Theory of Entire 
Functions (A cadem ic, New York, 1973). See especially  
Sec. 1.4, Chap. 4, and Sec. 6.2.

10S. Coleman (unpublished) has conjectured th is to be the 
c a se . Coleman argues that a t the 45" se c to r boundaries 
in F ig . 4, Re(A2) changes sign from  positive to negative,

corresponding to a transition  from  “magnet! с -field  - 
like” to “e le c tr ic -f ie Id -lik e '1 behavior of the ex te rn a l- 
field problem , and suggesting very  d ifferen t analyticity 
p rop erties  on the two sid es of the boundary.

l lA. S. Wightman (unpublished) has proved, in the Minkow
ski m e tric  ca se , that the F redholm  d eterm inan t can 
have no ze ro s for a rb itra ry  purely rea l ex ternal fields.

12See, fo r exam ple L. I. Schlff, Quantum Mechanics 
(McGraw-Hill, New Y ork, 1968), th ird  edition, pp. 2 7 0 - 
271.

13Higher Transcendental Functions (Bateman M anuscript 
P ro jec t), edited by A. E rdely i (M cGraw-Hill, New 
York, 1953), Vol. 1, p. 278.

Erratum: Massless electrodynamics in the one-photon-mode approximation 
[Phys. Rev. D Ifl, 2399 (1974)]

Stephen L. Adler

In Sec. V IВ of this paper, num erical evidence 
was given suggesting that the zeros of д и (\) obey 
the condition | I m x | / | R e x | > 1, which would imply 
cu t-p lane analyticity  for the rad ia tive-co rrec ted  
vacuum am plitude W ,. R ecently, Chernin and Wu1 
have shown that th is conjecture is false by deriving 
the following approxim ate large- { expression for 
the ze ro s  („ of д {1/2(х):

2[F(fl0) +И7П'] -  5 ln( — — ^ -  | l n c o s 0o = O,
\  » /  (1)

e0 = s in -1^ - ^  , .F(0 ) = { l n t a n £ e - x c o s f l .

F o r   ̂ th is form ula gives the following p re 
dicted zeros:

n = 2: X = -11 .63  + t  9.58 ,

я = 3: X = -1 2 .5 2 + i l3 .1 4  , (2)

и = 4: X = -13 .23+»16.57 .

The n = 4 zero  is the one given in T able П of Sec.
VI B; a reexam ination of the com puter output 
which I used in p reparing  Tahle П indicates that 
the lower zeros w ere m issed by c a re le ss  reading 
of the output (the program m ing itse lf  was co rrec t), 
and a re  indeed given quite accura te ly  by the 
Chemin-W u form ula. F o r exam ple, the program  
used to get Table II gives X = — 11.66 + j9 .5 6  for the 
location of the n = 2 z e r o f o r j = 2 , |  = . F or 
fixed n, the Chernin-W u form ula shows that 
-X /£  — 1 as  4 and so in fact there a re  zeros 
with a rb itra r ily  sm all | l m x | / | R e X | ,  and hence 
no ze ro -fre e  angular sec to rs  for the Fredholm  
determ inant, which is proportional to

П [ Д£, ( х Ь „ ( - х ) Г - .
i. с

The zero s “n ea r"  the rea l axis s t il l lie  outside the 
z e ro -fre e  s tr ip  containing the re a l axis which was 
established in Sec. IV.

!D. C hern in  and Т . T . Wu (unpublished).
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Three-Pion States in the Puzzle

Stephen L. Adler and Glennya R. F a rra r*
Institute fo r  Advanced Study, Princeton, New Jersey  08540 

and

S. B. T re im an t 
National Accelerator Laboratory, Batavia, Illinois 60510 

(Received 26 O ctober 1911)

Contributions to the absorptive K L— 2u am plitude com ing from  In term ed ia te  3ir s ta te s  a re  
estim ated  on the basis of recen t soft-pion re su lts  fo r the p ro cess  3ir— 2y. T hese co n trib u 
tions tu rn  out to be fa r too sm a ll, by 4 o rd e rs  of m agnitude, to re so lv e  the К L puzzle .

All theore tica l resolutions so fa r  proposed fa r 
the KL -  2(i puzzle1 a re  forced to call upon can
cellation effects which have to be regarded as 
accidental at the p resen t level of understanding. 
Apart from  th is, the various schem es differ widely 
with respect to introduction of qualitatively new 
physics.* The m ost conservative approach is  one 
which d ism isses  the possib ility  that CP violation 
o r  new kinds of p a rtic le s  o r in teractions play an 
im portant ro le  in the puzzle. Instead, the burden 
is placed on 3 i in term ediate sta tes, which are  
supposed to provide te rm s which largely  cancel 
the contribution from  the 2y state In the unitarity  
equation for the absorptive KL -  2д amplitude.
The s tra in  on credulity here  lies  in the magnitude 
requ ired  of the Зтг contribution, a  magnitude which 
h as to be appreciably la rg e r  than f i r s t  rough e s t i
m ates would suggest.5 In the p resen t note we add 
our contribution to th is s tra in , in the form of an 
estim ate  of 3» contributions based on soft-pion 
considerations.

In o rd e r to a s s e ss  the 3ir effects in a fram e
work which ignores CP violation and accepts 
standard  photon-lepton electrodynam ics, one r e 
qu ires  inform ation on the amplitudes fo r Зя — 2y 
and 3-n— 2pt. In our conventional fram ew ork, 
the la t te r  ifi fully specified if the fo rm er is  known 
for v irtu a l as well as re a l photons. All the r e 
m aining ingredients of a  unitarity  analysis based 
on 2y and 377 in term ed ia te  s ta te s  are  well enough 
known: the 2у — 2д am plitude from  standard  e lec 
trodynam ic theory , the KL~ 2 y  and KL -  3ir am pli
tudes (or ra th e r , th e ir  moduli) from  experim ent. 
Throughout the un itarity  d iscussion we ignore all 
o ther in term ediate  sta te s . To low est o rd e r in the 
f in e -s tru c tu re  constant the 2vy and, s tric tly  
epeaking, also  the 3vy in term ed ia te  s ta te s  ought 
to be considered. However, the fo rm er has been 
shown to be unim portan t,4 and the la t te r  can r e a 
sonably be expected, on phase-space  considera
tions alone, to be even m ore  negligible. We shall

5

have a b rie f com m ent on th is  la te r  on.
At theo re tica l issu e  then a re  the am plitudes fo r 

3*“, я * * ' / - tw o  rea l o r v irtu a l photons. These 
objects a re  of cou rse  in te re s tin g  in th e i r  own 
righ t, even apart from  th e ir  ro le  in the KL — 2fi 
puzzle. In p a rtic u la r , the application  of so ft-p ion  
considerations has been d iscussed  by Aviv, H ari 
D ass, and Sawyer5; and the sub ject has since been 
taken up by o ther au th o rs .“_1° In te resting  is su e s  
concerning cu rren t a lg eb ra , p a r tia l conservation  
of ax ia l-vec to r cu rren t (PCAC), and W ard-iden tity  
anom alies a r ise  here . E specia lly  re lev an t fo r o u r 
p resen t pu rposes is the idea, proposed by Aviv 
and Sawyer, 11 that the so ft-p ion  approxim ation  
might provide a  reasonable b a s is  fo r estim ating  
contributions from  the Зя s ta te s  in the u n ita rity  
analysis of KL — 2д decay. It m ust be said  at once 
that, k inem atically , the pions in KL — Зтг decay 
cannot a ll th ree  be so very  soft, u n less  one r e 
gard s the K -m eson m ass to be “ sm a ll’' on a had 
ronic scale. With appropriate  re se rv a tio n s  on 
th is  sco re , one may neverthe less  hope tha t the 
soft-pion methods provide m ore re liab le  e s tim a te s  
than can be  gained from  purely  d im ensional and 
phase-space argum ents.

The Avlv-Sawyer ana ly s is11 of KL — 2[i decay 
was based on the 3ir— 2y am plitudes of R efs. 5 and
6 . We believe th a t these  am plitude re s u lts  a re  in 
e r ro r  and that the c o rrec t soft-p ion ex p ressio n s 
a re  as in Ref. 8 . We have th e re fo re  repea ted  the 
analysis. D espite these  co rrec tio n s, we find with 
Aviv and Sawyer that the 3® s ta te s  play a negligible 
ro le in the absorptive amplitude fo r KL — 2ц decay. 
The “ naive" un itarity  bound, based  solely on the 
2y in term ediate s ta te , is  co rrec ted  at m ost (de
pending on phases) by a fac to r of o rd e r 10 " in tbe 
decay ra le . A b rie f account follows.

The KL — 2|i amplitude has the s tru c tu re

AmpUCj -  2ji) =gS(p)ysv($), W

w here p and p denote the ц~ and fi* m om enta. The

770

Copyright©  1972 by the American Physical Society. Reprinted with permission.
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decay ra te  is given by

m t - 2 n )  = g  „ | * | » ,  (2)

w here

и = ( 1 - 4 m V M Y '3

is  the muon velocity, with m the д m ass, and M 
the К m ass. The object is to estim ate the absorp
tive  am plitude Img, on the basis of unitarity  con
sidera tions, in o rd e r to set a lower bound lo r 
KL — 2ц decay. To get at the unitarity  contribution 
from  the in term ediate  2y state we have to consider 
KL—2ry decay, whose amplitude has the s truc tu re

Amp(KL -  2y) = Ge„„poeJ0fc£1)e£,,fc?) , (3)

w here and a re  the momentum and po la riza
tion  v ec to rs  of the ith  photon. The decay ra te  is

r ( K i - 2 y ) = |£  | GI*. (4)

The contribution to  Im ^ coming from  the 2y state 
is  given by

1п( Й ) НеС- (5)
Now the modulus |G | is known from  em pirical 
inform ation on the KL— 2y decay ra te . If unitarity  
contributions coming from  Зя s ta tes a re  sy stem at
ically  ignored fo r both KL — 2y and KL -  2|i decay, 
then Im ^ = Im ^|ar, ReG = |G| ,  and one finds the 
“ naive" un ita rity  bound

r ( K i - 2 * i ) / r ( K j 2  6x10 -* . (6)

O ur ta sk  here  is  to compute the d irec t Зтг con tri
butions to ling, and also th e ir contributions to 
ImG. F or these purposes we requ ire  the am pli
tudes fo r 3»°, jr+n_nG- tw o  rea l or v irtual photons. 
We adopt, but do not reproduce here , the soft-pion 
exp ressions of Ref. 8. These expressions contain 
th ree  p a ram e te rs , of which two a re  well e stab 
lished  experim entally : F", the constant which 
de sc r ib e s  n“ —2y decay; a nd / ,  the PCAC constant. 
The rem aining param ete r, x, m easures the iso 
ten so r component of the “a te rm ” in the c u rre n t- 
a lgeb ra  trea tm en t of 17-17 scattering . One usually 
supposes, as we shall do he re , that x=0.  Unless 
x  is unbelievably la rge , of o rder lO’ -lO*, this 
neglect w ill not qualitatively a lte r our conclusion 
that the 317 s ta tes  do not reso lve the KL -  2fj puz
zle. Indeed, given the form ulas of Ref. 8, and 
with a little  thought about the s tru c tu re  of the un i
ta r ity  equations and the size of phase space for 
th ree  pions, one can read ily  a rr iv e  at th is qualita
tive conclusion from  rough dim ensional argum ents. 
N everthe less, since we have in fact ca rr ied  out 
the num erical work in detail, and because a c e r 

tain  delicacy арреагн in the deta ils , we shall 
comment here  on a few technical points. F or the 
unitarity  calculations we req u ire  not only the З17
— 2y and Э17 -  2(i am plitudes, but also the full com 
plex amplitudes fo r KL — Зтг. The la tte r  a re  known 
from  experim ent only in modulus. However, we 
can get upper bounds on the З77 contributions by 
replacing all am plitudes In the unitarity  equations 
with the ir moduli. It is these upper bounds that 
we shall report. The computations fo r ImG are  
now completely straightforw ard. For the Зя° and 
17*17*17° contributions we find

IniG|j,o£ 3 x 10"5|G | ,
(7)

ImG|I «.,-,0s 2 x l< T 5|G |.

It is evident that the З71 effects here  a re  totally 
negligible.

Computation of the d irec t 317 contributions to 
Im#, the absorptive KL — 2fi amplitude, is  som e
what le s s  straightforw ard. The form ulas of Ref.
8 are  supposed to apply (in the soft-pion lim it) for 
v irtua l as well as rea l photons, and they th ere fo re  
provide a b asis  fo r computation of the З17— 2д am 
plitude. On inspection of the fo rm ulas for Зтг — two 
rea l o r v irtua l photons one observes two kinds of 
te rm s: those which describe  em ission of a photon 
by an external pion (brem sstrahlung te rm s) and 
those which do not. C orrelation  of these d e sc r ip 
tive expressions with explicit te rm s  in the f o r mu
las should be evident and is  left to the re a d e r .
The 3 / -  2y amplitude is  purely of the nonbrem s- 
strahlung type, w hereas the я*»- »® amplitude has 
both kinds of te rm s. Computation of the b rem s- 
strah lung-term  contributions to Зи-*2ц p resen ts  
no difficulties, although it is tedious. The calcu la
tion here  has a s tru c tu re  of the kind associa ted  with 
a one-loop box diagram  and was ca rr ied  out nu
m erically . F or p rac tica l purposes we found it 
convenient to use d ispersion -re la tion  methods, 
taking the invariant squared m ass of the Зя system  
as the d ispersion  variab le . One encounters no 
anomalous thresholds he re , thanks to the m ass- 
le ssn ess  of the physical photons in the in term ediate 
sta te  З17— 2 y -  2д. For the nanbrem sstrahlung 
te rm s , the calculation of the Зя — 2ц amplitude has 
a stru c tu re  of the kind associated  with a one-loop 
triang le  diagram . But here  one encounters a loga
rithm ically  divergent in teg ra l. This com es about 
because the corresponding am plitudes fo r Зя — 
two virtual photons do not have any damping as 
the virtual-photon m asses become very large.
The soft-pion approxim ation is  unsatisfactory  in 
this regard . However, since the divergence is  
only logarithm ic, we do not think it m isleading to 
employ a cutoff. We again employ d isp e rs io n -re 
lation methods. The d ispersion in tegral is loga-
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rithm ically  divergent and we simply cut it off, at 
an invariant squared m ass taken ra ther a rb itra rily  
to be 1 GeV3.

Once the 3tr — 2д amplitudes have been estim ated, 
computation of the 3® contributions to the absorp
tive KL -  2(i amplitude is now a sim ple m atter.
We presen t the re su lts  In the form  of com parison 
of the 3v and 2у contributions to Img,

b n tf l^ o sS x K T 'lm g l;,
(8)

3 x 1 0 's Im £|jr .

In sum m ary, the Зтг sta te s , at least when trea ted  
in the soft-pion approxim ation, do nothing to r e 
solve the KL -  2(i puzzle .u

Finally, we comment briefly  an the I'v-iPy in te r
m ediate sta te , which is  the rem aining interm ediate 
s ta te  which can contribute at this o rder in a. Al-

AND T R E I M A N  “

though the decay KL -  i f v - i f y  has not been ob 
served, to leading o rd e r  i n  the photon m o m e n t u m  
(the brem aatrah lung  approxim ation) the a m p l i t u d e  

fo r th is p ro ce ss  is  re la ted  by gauge in v a rian ce  to 
the amplitude fo r KL — я+тг"тг°. The c u r r e n t-a lg e -  
b ra  coupling8 of a photon to т г can then be u se d  
to compute ir*ir"/V  — An e s tim a te  of the
relevant in tegrations Ind icates a contribu tion  to  
Img- of essen tia lly  the sam e size  as tha t com ing 
from  the Зтг in te rm ed ia te  s ta te . So the Зтгу con 
tribution  is  a lso  at le a s t fou r o rd e rs  of m agn i
tude too sm all to reso lv e  the KL -  2(i puzzle .
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Some simple vacuum-polarization phenomenology: e + e ~ > hadrons; 
the muonic-atom x-ray discrepancy and g  — 2
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W e give a sim ple phenom enological analysis o f hadronic and electronic vacuum -polarization  effects. W e 
argue  tha t the  derivative o f  the  hadronic vacuum  polarization, evaluated in the  spacelike region, 
provides a useful m eeting ground for com paring e +e ~ —'h a d ro n  annih ila tion  data (assum ed to  arise 
from  one-pho ton  annih ila tion) w ith the predictions o f parton  m odels and  o f asym ptotically  free field 
theories. U sing dispersion relations to connect the annihilation and  spacelike regions, we discuss the 
im plications in the  spacelike region o f a constan t e * e ~  annih ila tion  cross section. In  particu lar, we 
show  th a t а Па! cross section between t =  25 and 1 = 8 1  (G eV / с ) 1 w ould provide strong  evidence 
against a precociously asym ptotic  "co lo r1* triplet model for hadrons. W e then tu rn  to  a  consideration  o f 
the  appa ren t d iscrepancy between observed and calculated m uonic-atom  x-ray transition  energies.
Specifically, we analyze the  hypothesis o f a ttribu ting  this d iscrepancy to a deviation o f the  asym ptotic 
elec tron ic  vacuum  po larization  from its expected value, a possibility w hich is com patib le w ith  all 
c u rren t h igh-precision tests o f quantum  electrodynam ics. U nder the additional technical assum ption  tha t 
the  postu la ted  d iscrepancy in the electronic vacuum -polarization spectral function increases 
monotonic&lly w ith t , the hypothesis predicts a decrease in  th e  expected value o f the 
m uon-m agnetic-m om ent anom aly a й — 2) o f at least —0.96 X 10“ T, w hich should  be
detec tab le  in the  next round  o f g p — 2 experim ents and w hich is substantially  larger than  likely 
uncerta in ties  in the hadronic con tribu tion  to a f  By con trast, postu la ting  a  weakly coupled  scalar boson 
ф to  explain the m uonic-atom  discrepancy w ould im ply a (very sm all) increase in the expected value o f 
a „. B oth  the  vacuum -polarization  and  scalar-boson hypotheses (for M  ^ > 1 M eV) pred ict a reduction  
o f o rd e r  0.027 eV in th e  2p ,/3 — 2 s , n  transition  energy in [4He, /a] ' ,  an  effect w hich m ay be 
observable.

I. INTRODUCTION

A num ber of recen t experim ents have brought 
asp ec ts  of vacuum -polarization  phenomena to the 
fore. Most prom inent a re  the m easurem ents by 
the C am bridge E lectron  A ccelera to r (CEA) and 
the Stanford L inear A ccelera to r C enter—Lawrence 
B erkeley  L aboratory  (SLAC—LBL) groups of an 
unexpectedly large c ro ss  section fo r e'e~ — had
ro n s ,1 which g ives the absorptive p a rt of the had
ronic vacuum polarization . In another a rea  of 
physics, m easurem ents of m uonic-atom x -ray  
tran s itio n  energ ies, undertaken to probe the a s 
ymptotic form  of the electronic vacuum p o la riza 
tion, appear to  show a p e rs is ten t deviation from 
th eo re tica l expectations.2 Forthcom ing high- 
p rec is io n  m easurem ents of the m uon-m agnetic- 
moment anomaly g v -  2 will provide an even more 
sensitive  probe of the asym ptotic elec tronic vacu
um polarization , and of the hadronic vacuum po
la riza tio n  as well. We p resen t in th is paper sim 
ple phenomenological argum ents which b ear on 
the in te rp re ta tio n  of both the annihilation and the 
muonic experim ents. Although fundamentally 
d ifferen t physical issues a re  at stake In the two 
c la s se s  of experim ents, common elem ents of

10

fo rm alism  make it natural to consider them  to 
gether. In Sec. II we use d ispersion  re la tions to 
determ ine what the tim elike-reg ion  e'e~ annih ila
tion data say about the possib ility  of precocious 
asym ptotic scaling in the spacelike region of the 
hadronic vacuum po larization  (assum ing that the 
observed data do Indeed re su lt from  one-photon 
annihilation). In Sec. in  we analyze the muonic 
experim ents, with the aim  of distinguishing be
tween the poss ib ilitie s  that the muonic-atom  
x -ra y  d iscrepancies may a r ise  from  a discrepancy 
in the asym ptotic elec tronic vacuum polarization , 
o r from  the existence of a weakly coupled light 
s c a la r  boson. Some technical de ta ils  a re  given 
in the appendixes.

II. ELECTRO N  PO SITRO N  A N N IH ILA TIO N  
A N D  PRECO CIO U S SPA CELIK E SCALING

The experim ental data fo r e lec tron -positron  
annihilation into hadrons a re  conveniently ex 
p ressed  in te rm s  of the ratio  R(t), defined as

n f i )  °(e>e~~ hadrons; t)

with

3114
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о(«* - M  ; / ) - ( , ♦ - TJLj l 1 ----- r )

_ 4Я®3 87 x l 0~”  cm1 
C 3/ = < [In (GeV/c)a] (2)

and with t the virtual-photon four-mom entum 
squared. In Fig. 1 we have plotted (versus E = t112) 
a  smooth interpolation through all available exper
im ental data fo r R in the continuum region (ex
cluding the p, ш, and ф vector-m eson contribu
tions). The CEA and SLAC—LBL data points a re  
indicated,1 while the portion of the curve below 
/ = 2.5 is  taken from the “ eyeball” fit given by 
S ilvestrin i.1 When replotted v ersu s t, the data 
for R(t) r is e  approxim ately linearly , indicating 
a  roughly constant hadronic annihilation c ro s s  
section of 2 1 x 1 0 '”  cms. Assuming that single
photon annihilation is  indeed being m easured , th is  
behavior strongly con trad icts the asym ptotic b e 
havior expected on the basis of parton or of a s 
ym ptotically free -fie ld -th eo ry  m odels of the 
hadrons, which p red ic t

R ~ C ,  (3)

with the constants С tabulated in Table I. How
ev e r, it can alw ays be argued that while p re 
cocious asym ptotic behavior is expected from  the 
SLAC scaling re su lts  in the spacelike region, the 
annihilation reaction  involves the tim elike region, 
In which asym ptotic predictions may be approached 
much m ore slowly. T h is objection naturally  ra ise s  
the question of determ ining what the annihilation 
data te ll us about behavior In the spacelike region.

To answ er th is question we consider the re n o r
m alized hadronic vacuum -polarization tensor
( t -4 2)

п т е  =■(?„*„-

which oheys the d ispersion  relation

П (H)U) - l  Г  du fr°n |a ) (u)
Л и * "  U - t

(4)

(5)

and which is  re la ted  to  the elec tron -positron  an
n ihilation  c ro s s  section Into hadrons by

a(e'e~-  hadrons; u)

= ~ 1и П (й,(и)х (known co n stan ts). (6)

R ather than using Eq. (5) d irectly , we consider 
i t s  f i r s t  derivative

dl ( u - t ) 2
4u) (7)

which on substitu ting  Eq. (6) and using Eqs. (1) 
and (2) can be rew ritten  as

FIG. 1. “Eyeball" fit to the continuum e*e~ annihilation 
data. The p, <u, and ф vector-meson contributions a re  
not Included.

4 - n H(t)= f  x (known c o n s ta n ts ) .rff / - ( u - t )d t

<8)

R estricting  o u rse lves to  the spacelike  reg ion  
/ = —s , s  > 0 and re sca lin g  to  rem ove the c o n stan t 
fac to rs , we obtain from  Eq. (8) ou r b as ic  r e la t io n

n - > .  Г duR(u)
2 (S +«)J

= £ n  <«>(*> x (known c o n s t a n t s ) . (9 )

The quantity T (-s )  has two d e s ira b le  p ro p e r tie s  
which make it su itab le  for studying the im p lic a 
tions of the annihilation reac tio n  fo r sp ace lik e - 
region behavior:

(1) The integrand in Eq. (9) is  positive defin ite .  
and so om itting the h igh-energy ta ll  of the in t e g r a l  
m akes an e r r o r  of known sign. Specifically , i f  
experim ental data on R  a re  availab le  only up to  a  
maximum momentum tr a n s fe r  squared  tc , and ^  
we deftne T ^ - s )  by

( 10)

TABLE I. Values of С In different m odels.

Model С

Simple quark triplet 2
T

Color quark triplet 2

Color quark quartet i£3
Han-Nambu triplet 4

Han-Nambu quartet 6
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then we have

T„bt( - s ) «  T (- s ) ,  0 « s < « .  (11)

(ii) It is  the quantity T(—a ) fo r which parton 
m odels and asym ptotically  f ree field theories most 
d irec tly  make pred ic tions’; the asym ptotic p re 
d ictions for R a re  always obtained from  the p re 
diction fo r T (-s)  by a d lspersion -relation  a rgu 
m ent, which is  bypassed if we use T ( - s ) as the 
p rim ary  phenomenological object. In a model in 
which R  asym ptotically  approaches C, we have

T u ,( - s ) ~ C /s , s - - o .  (12)

In asym ptotically  free  field theories, the leading 
logarithm ic co rrec tion  to Eq. (12) is also  de
term ined . Specifically, in  the SU(3)® SU(3)'
"co lo r"  tr ip le t model of the hadrons, one has'1

■ (131 

with s 0 an a rb itra ry  momentum scale which, in 
the num erical work, we will take as 2 (GeV/c)2.

B efore proceeding to num erical applications, 
le t us b rie fly  d iscuss the question of subtractions. 
C learly , if the one-photon annihilation c ro ss  sec 
tion w ere to  rem ain  constant as / — we would 
have Д(а)сс« as u — «  and the in tegral in Eq. (9) 
would need an additional subtraction  to be well 
defined.” However, such behavior of R would in 
itse lf  con trad ict Eq. (3) for all values of C, and 
hence would ru le out all vers ions of the parton 
model o r  of asym ptotically  free  field theories.
On the o ther hand, If Eq. (3) Is  tru e  fo r any finite 
C, then the in teg ra l in Eq. (9) converges a s  it 
stands and prov ides a suitable medium fo r com 
paring  the annihilation data with theoretical ex
pecta tions in the spacelike region. Note that a 
constant subtraction  te rm  in Eq. (5), which would 
be p re sen t if we renorm alize at a  point o ther than 
< = 0, would not contribute to the t derivative in 
Eq. (7); hence the renorm alization  p rescrip tion  
is  not a  possib le  source of ambiguity.

We tu rn  now to the num erical re su lts . In Fig. 2 
we plot T ob,( - s )  [In units where unity =(1 GeV/c)2], 
as obtained f rom all experim ental data up to 
tc = 25 (GeV/c)a according to the form ula8

T „b .(-s) = T “**(-s) + T p( - s ) + T ” 01 ( - s ) ,

-гш+4/ \_5JL Y '  M r r(V — e'e )

(14)

A D L E R  10

FIG. 2. T he function T ohl(— s) as obtained from  all 
experim ental data up to t c  =25 (G ev/c)2, in units w here 
unity = (1 GeV/c)! .

The vector-m eson  p a ram e te rs  appearing in Eq.
(14) a re  given in Appendix A, while R(t) is the 
continuum contribution to R graphed in Fig. 1.
In Fig. 3 we plot a fam ily of curves, obtained by 
assum ing that fo r 25 s  tc the annihilation c ro ss  
section a(e'e ~ — hadrons; /) rem ains constant at 
2 1 x l0 '“ cm !. That is , we take

FIG. 3. R atios of T obl( - s )  to T ,„ ( - s ) ,  with T „,<-*) 
the c o lo r - tr lp le t pred iction  of Eq. (13). The i^ = 2 5  
curve uses the p resen tly  known data; the cu rves for 
h igher tc  assum e a constan t hadronic annihilation aro se  
section  of 2 1 x  1(T3S cm 2 above 25 (GeV/c)J.
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7'0bl(- s )  = T ‘‘**(-s) + 7", (- s )

(15)

■44Hi)-*FSs3W-
Rather than plotting Tot,,(-s ) we have plotted the 
com parison ratio  ^ „ .( - s J /T o .t - s ) ,  with T „,(-«) 
the "co lor" tr ip le t prediction of Eq. (13). The 
tc = 25 curve is  just the curve of Fig. 2 divided by 
Eq. (13); since th is curve lies below 1, the ex
isting annihilation data do not yet challenge the 
"co lo r” tr ip le t model in  the spacelike region. 
(However, since the tc = 25 curve lie s  well above 
j, the existing data already definitively ru le out 
a precociously asym ptotic sim ple q u ark -trip le t 
model.) Evidently, the curves in  F ig . 3 r ise  
rapidly with lc and show that if the annihilation 
c ro s s  section should rem ain  constant at roughly 
21 x 10"”  cm’ in  the region 25 « 81, which will 
be accessib le  at SPEAR П, a  precociously asym p
totic “ co lor” tr ip le t model would be ruled out in 
the spacelike region.

To explore the consequences of an annihilation 
c ro s s  section  which rem ains flat up to  large tc , 
we ignore the vecto r-m eson  contributions to  Т л , 
and approxim ate T “ °,( l ,( - s )  by taking R(t) *0, 
t< 2; R (0 = 0- 24/, 2 ^  i -s 25, giving the simple 
analytic expression

T ab,(-s )  = £  ^ ~ 5 X 0 .2 4 f

= 0-24[1П( 7 ^ )  ~ S (s ?te)(s2>+2)]

Hence,

R(tc) = 0 .2 itc , (17)

/ ( z ) = | l n ( l + 2) -  — Z = t c / g .1 + г c

A sim ple m axim ization shows that / ( г )  a tta in s a 
maxim um  of 0.22 at 2M~1 = s y / t c = 0.46, and fa lls  
to  half maximum at zL~l = s i /< c = 0.053 and 
= s u/ t c = 3.22. That is , T ^ f - s l / s r e a c h e s  a 
maximum value

[7\,*(-.s )/®- , ]я“  =0.22 X 0.24<C

= 0.053«c , (18a)

and lie s  above half th is  value in the wide range

0.053/c «  3.22ic . (18b

To give a concre te  illu s tra tio n , if a(e*e~
-  hadrons; /) should rem a in  constan t up to  the 
maximum tc of 900 obtainable in  a 15 GeV/с  on 
15 GeV/с  sto rag e  ring , the m axim um  of Tobl( - s ) /  
s would be 0.053 x 900 = 48. T his would exclude 
by a fac to r of 2 parto n  o r asym p to tica lly  free  
m odels with C «  24, thus covering  ju s t about every  
model which has been se r io u sly  proposed ,

Ш. MUONIC-ATOM X RAY DISCREPANCY AND i „ - 2

Recent stud ies of the tra n s it io n  en e rg ie s  betw een 
large c irc u la r  o rb its  in muonic a tom s have shown 
p e rs is ten t d isc rep an c ies  betw een theo ry  and ex 
perim ent. Because the muonic o rb its  in question  
lie  well outside th e  nucleus and w ell in s id e  the 
innerm ost Tf-shell e le c tro n s , one b e lieves that 
nuclear size  and e lec tro n  sc reen in g  c o rre c tio n s  
can be re liab ly  estim ated . In p a r t ic u la r , the 
disputed n u c lea r-s iz e  co rre c tio n s  to  th e  vacuum - 
polarization  potential have been reev a lu a ted  r e 
cently by th ree  independent g ro u p s ,’ in  good a g re e 
ment with one another. A su rvey  of a ll known 
theo re tica l co rrec tio n s has been given by W atson 
and Sundarasen2 (see a lso  R afelskl et al.a), with 
the conclusion that all im portan t e ffec ts w ithin 
the standard  elec trodynam ic theo ry  have been 
co rrec tly  taken into account, On the ex perim en ta l 
side, independent m easu rem en ts  by the g roups 
of Dixit et al * and of W alter et al .10 a g re e  on x - r a y  
tran sition  energ ies which deviate by 2 stan d ard  
deviations from the th eo re tica l p red ic tio n s , a s  
sum m arized in Table П. While it  m ay s til l tu rn  
out that system atic  experim ental e r r o r s  o r e r r o r s  
or om issions in the theo re tica l ca lcu la tions a c 
count for the d iscrepancy, we w ill a ssu m e  th is  
not to  be the case. R ather, we will t r e a t  the d is 
crepancy as  a re a l effect, to be explained by m od
ifications in the conventional theory .

The unique aspect of the m uonic-atom  tra n s it io n  
energ ies is  that, because the muonic o rb its  lie  
well inside the elec tron  Compton w avelength, they  
receive a la rg e  contribution from  the e lec tro n ic  
vacuum -polarization potential and (unlike the 
m ore accura te  L am b-shift experim en ts) they 
probe the asymptotic structure  of th is  po ten tia l. 
Motivated by th is observation, our p rin c ip a l focus 
w ill be to explore the possib ility  tha t the o b s e r v e d  

x -ray  energy discrepancy a r is e s  from  a n o nper
turbative deviation o f the e lec tron ic  vacuum  po
larization  from its  expected value. Such an effect 
is  qualitatively expected (but with unknown quan
tita tive form) if recen t speculations that the fine-
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TABLE П. Muonic atom  x -ray  d isc repanc ies.

E lem ent
zE

T ransition
- 6Er m 

E1 <th) —Ey (expt)
(eV)

Average 
d iscrepancy -6E y 

(eV)

Reduced average  d iscrepancy 

-6  Ey
*E r 4.35 eV x Z 2l l / ( n - l ) 2 - l / n 2]

2flCa *<*ъ/г-~гр1п
ч п ~ ~ гРгп

7 ±19 
1 1 ± 1 7 J 9 ± 13 (37.2 ± 54) x 10-3

22 Tl Ч л - V i / i
^ Б /г -^ з /г

- 3 ± 1 9 \
10 ± 18 Г 3.5 ± 13 (12.0 ± 45)x 10-3

2£ 5<1з л ~  гР\п
ldsn~~2Pin

21 ± 20 \  
10±17 J 15.5 ± 13 (37.9± 32) x 10~a

S!Sr V s/2 —3<1а n
* /т /2 ~ 3<̂ 5л

1 1 ± 20\  
0 ± 18 J 5.5 ± 13 (18.0* 43) x 10-3

41 Ag Vs/2 —3<*3/2 
ЛЛ / г ~ !(15/2

27 ± 201̂  
1 9 ± 20 J 23 ±14 (49.3± 30) x 10“3

.,C d V s /2 ^ ^ 3 /2  
V 7/2- * d5/2

13 ±19 1 
7 ± 17 J 10±13 (20.5 ± 27)X 10-a

aSn V b/2~*3‘, ]/2 21 ± 2 1 1ч 
25 ±19j' 23 ±14 (43 .5* 26)x 10~3

Я Ва V s/2“* 3̂ 3/2 
/ т Л - *’*!/* 
Km  — V  s/2
"58/2

55± 23l 
76 ± 20 f 
1 2 ± 1 7 \ 

3 ± 1 6 j

65.5 ± 15 

7.5± 12

(98.8±23)x 10-3 

(24.4±39)x 10-3

80 Hg SBin~~ Vs/2 
V 9/2 “*4/l/2

52*24 1 
3 8 ± 2 S / 45 ± 17 (71.8±27)x 10-3

..T l V 7 ^ “ V 5/2 31 ±24 \  
40±24 J 35.5 ± 17 (55.3±26)x 10“3

V l?2 V 5/2
Sf t / 2~  V ;/2

52 ±21 \  
45±18  J 48.5 ± 14 (73.7 ± 21)x lO 3̂

s tru c tu re  constant a is  electrodynam ically  de
te rm ined  prove to  be c o r re c t.1’ We will also 
briefly  consider an alternative explanation which 
has been advanced to  explain the x -ray  d iscrepan 
cy, the possib le existence of a weakly coupled 
light sc a la r  boson.12

To calculate the effects of a possible d isc repan 
cy in the elec tron ic  vacuum polarization  we s ta rt 
from  the Uehling potential w ritten  in spectra l 
fo rm ,

a W . ( i  + 2 » 2 « ! ) ( i _ ± j S . y 2 (19)

If we now assum e that the spec tra l function p ,[0  
is  changed by nonperturbative e ffec ts '3 to p,[(]
+ fip[f], then V is  rep laced  by V + 6 V, with

в П г ) = - г £ Г Д ^ ) а р И .  (20)

This potential contributes to m uonic-atom  en e r
gies through the diagram  shown in Fig. 4(a).
Since Eq. (20) is  a sm all pertu rbation  and since 
the muon o rb its  of in te re s t a re  appreciably la rg e r 
in radius than the muon Compton wavelength, in 
evaluating m atrix  elem ents of 6 V(r) we make the 
approxim ation of using nonrelativiStic hydrogenic 
muon wave functions. (The sam e approxim ation 
applied to Eq. (19) y ields the Uehling energy shifts 
for all of the levels in ТаЫе П to an accuracy  of 
about 5%.’4] Thus we take

a0= 1/ o m tfj, (2 1 )

giving fo r the change in transition  energy p ro 
duced by 6V(r),

6Ey = 6£„ — 6E„_i

= f  “r 2dr[R„ „ _,(r)2 ( r f  ]6 V(r). (22)
О
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Substituting Eq. (20) Into Eq. (22), evaluating the 
r  Integral, and using a J/(3ira0) = 4,35 eV, we find

H-fi

6 E 6 Ei
» 4.35 eV xZ J[ l / f o - l ) J -  1/и2]

- Г  ,7/ ,И М И .4 т в

Л Ю  = [i/Oi - 1)3 -  i / n 2] - ‘

A f o ] = i - (23)

Finally, for convenience in doing the num erical 
work we make the change of variab le

i = 4 w , V ,

gtving the form ulas

6Е т = Г  d w / j ( w ) 6p(w)  ,
J о

f y{w)=fy[4mt2ew), 

fip(m) = 6p[4

(24)

(25)

Evidently, in the nonrelativ istic approxim ation 
which we a re  using, the shifts in the transition  
energy 6Ey a re  j  independent, and hence the two 
tran sitio n s fo r each я , I m easure  the sam e w eight
ed in tegral of 6p(io). Thus, fo r purposes of com 
parison  with Eq. (25) we average the two d isc rep 
ancy values fo r each n, I, as shown in the fourth 
colum n of Table П.15 The "reduced d iscrepan
c ies” 6 £ T introduced in Eq. (23) a re  tabulated in 
the final column of Table П.

Before proceeding fu rth er with our discussion 
of the muonic x -ra y  d iscrepancy, let us tu rn  to 
consider another electrodynam ic m easurem ent 
which is  sensitive to the asym ptotic electronic 
vacuum  polarization , the muon g ̂  — 2 experim ent. 
H ere the conjectured deviation in the elec tronic 
vacuum -polarization  spectra l function contributes 
through the diagram  of Fig. 4(b). Introducing the 
standard  definition

au= U g iI -  2) (26)

and using well-known fo rm u las1* fo r the photon 
spectra l-function  contribution to  a , we find that 
changing the e lec tron  vacuum -polarlzation  spec
tr a l  function induces a  g v — 2 discrepancy

Z<A) /x,e

(o) (b)

*Z(A>

(c) (d)

FIG. 4. (a) Diagram by which a vacuum-polarlzation 
modification (denoted by the shaded blob) contributes to 
ji- and fi-atomic ener^r levels, (b) Diagram by which a 
vacuum-polarlzation modification contributes to g^ — 2 
and g, -2 .  (c) Diagram by which a scalar-m eaon con
tributes to ^-atomic energy levels, (d) Diagram by which 
a scalar meson contributes to g^ — 2.

M W « I.

/ .W = 2 / ' Xs + (1 - x ) t / m
Using a 2/(3na) = 1.80 x 10'* and making the change 
of variab le  of Eq. (24), we get th e  convenient 
form ula

Ьаи = 1.80X 10-ef  f  dw fa(w)6p(u>),
* 0

/ » = / , [ 4 V ) .  (28)

The re su lt of carry ing  out the in teg ra tio n s in  the  
expression fo r f a(t) Is  given In Appendix B.

Let us now re tu rn  to  our an a ly s is  of the m uonic 
x -ray  discrepancy. The k e rn e ls  f y(tv) fo r four  
rep resen ta tive  tran s itio n s  a re  p lo tted  in  Fig- 5. 
Our num erical evaluation shows tha t the six  t r a n 
sitions listed  in Table HI have w eight functions 
f y which a re  nearly  identical (the ir sp read  a ro u n d  
curve b in Fig. 5 is  le s s  than one th ird  of the 
spacing between curve b and curve a); av e rag in g  
the weight functions for these tra n s itio n s  g ives 
the function f y plotted in  F ig . 6. Substituting the 
average of the reduced d isc rep an c ies  fo r th ese  
six tran sitions into Eq. (25), we find

(54.5 ± 10)x 1 0 = average of six  ( - 6 E y)

=  -  f  d w f y ( w ) b p ( u i ) ,  (29)
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indicating that the sign of the discrepancy c o rre 
sponds to a reduction in the elec tron ic  vacuum- 
po larization  spec tra l function from its  usual value 
of Eq. (19). R eferring  back to Fig. 6, we note 
th a t the function f a is  always g rea te r th an ] y. 
Hence if we assum e that Bp(w) is  always of nega
tive sign in the region where /„ and / T are  non
ze ro  [as might reasonably be expected if we ате 
ju s t entering  a  new region of physics where the 
d iscrepancy  6p(w) is  turning on], we learn  that

S T E P H E N  L .  A D L E R

TABLE Ш. T ran sitio n s with n early  Identical / T.

10

J dw f,{w)6p(w) * - (5 4 .5 ± 1 0 )x i0 " s . (30)

Com paring Eq. (30) with Eq. (28) we then get an 
inequality for the g ^ -  2 discrepancy,

i' 5a,, «  -1 .8 0 x  10 "si(54.5 ± 10) x 10"3

в р « о = »  j ^ - ( o ^ g i o . o g i x i o - 7 ,

V b a j a v « -42  ±8 ppm . (31)

A s tro n g er prediction  follows if, in addition to 
our assum ption on the sign of Sp, we assum e that 
the magnitude of Sp in c reases  monotonically with 
t (again as might reasonably  be expected fo r an 
effect just turning on). Then defining

Elem ent T ran sitio n  
"I — " - ,l - 1

Reduced average 
d iscrepancy  -6E y

‘/ - 3d (49.3 ±30) XlO-3

4flCd V-’rf (20.5 ± 27)XlO-3

50 s11 */ — 3<i (43.5 ±26) x 10-3

««Hg 5г - ‘/ (71.8± 27) x lO -3

8.T 1 V-*/ (55,3 ±26) ж 10' 3

«5РЬ (73.7±21) x lO -3

Weighted average of six  
reduced d isc rep an c ie s a : (54.5 ±10) x 10-3

1 We have trea ted  the e r ro r s  аэ if they w ere  purely  
s ta tis tica l and have quoted the rm s e r ro r  fo r the average .

7_(») = 0, w <  0, (32)

we find that we can rep re sen t f„(w) a s  a  su p e r
position of displaced cu rves Jy,

/ » = 1 . 0 1 6 / гЫ

+ d w ’ c(w ')Jr ( w - w ’ ) , (33)

with the positive weight function с plotted in Fig.
6. Multiplying by 6p(w) and integrating we get

f  dw/a(w)6p(w) = l . 016 f  d w jy(w)6p(w)
- о J a

,-10.2 
+ / dw' c{w')

■'a

x I dwfy(w -  w‘)6p(w). 
J и

(34)

But using Eq. (32) and the assum ed monotonicity

FIG. 5.

FIG. 6. P lo ts of the k ern e ls  and / „  Isee the d ls -  
K ernels f  у fo r  som e represen taU ve tran sitio n s. CUE a ion which follows Eqs. (28) and (29) of the text).
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of Bp, we get

J  dwfr(w-u>')6p(w) = J  dw /y(w)6p(w+w')

J  dw Jy(w)bp(w), (35)

and so we learn

j  dw/Jw)6p(w) « ^1.016 + J  dw‘c{w')^j

x f  dw fy(ui)6p(ui)
■'a '

= 2. 00x j  dwfy(ui)hp(w).
a

(36)

Thus adding the assum ption оi monotonlclty dou
b les the prediction of Eq. (30), giving

6p .18)x 10"o )  ifiou * -(0 .98 ±0.1 
\  -  < (37)

I 6p| ♦  ̂ f 6 a „ /a u « -84  ± 16 ppm .

Equation (37) Is the p rincipal re su lt of our analy
sis .

Two rem ark s  about Eq. (37) a re  in order. F ir s t,  
the d iscrepancy in a„ predicted  in Eq. (37) Is 
com patible, within e r ro rs ,  with the p resen t ag ree 
ment of experim ent with the conventional e lec tro 
dynamic prediction for a BI”

a„(expt) -  a M(conventlonal QED) = (2 .5± 3 .1) x Ю-7

(38)

However, it should be read ily  observable in the 
next g v -  2 experim ent, w here it  is  anticipated”  
tha t the cu rren t experim ental e r r o r  of ±3.1 x lO "’
(= ±270 ppm in 6aM/ a M) will be reduced by a factor 
of 20. Second, the predicted effect is substantially  
la rg e r  than the likely rem aining uncertain  con
tribu tions to ap. Specifically, these a re  the fol
lowing.

(1) The 8 th -o rd e r electrodynam ic contribution 
to a,,, which has been variously  e stim ated" as
6 x 10"®—7 x 10"", with an uncertainty of perhaps a 
few p a r ts  in 10“*.

(ii) The uncertain ty  In the hadronic contribution 
to  Including the p, ш, and ф resonances and 
in teg ra ting  the annihilation continuum up to 
tc~  25 g ives a  known hadronic contribution of 
7 1 х ю ~ ‘ with an estim ated  uncertain ty  of ± 7x10"’ 
(see Appendix B). The unknown contribution of the 
e'e~ annihilation continuum beyond fc = 25 will of 
cou rse  depend on the behavior of R(f) in that r e 

gion. To get a crude  e s tim a te , le t u s  m ake th e  
(hopefully ex trem e) assum ption  th a t R(t)  r i s e s  
linearly  up to i= (460)J, w here  the one-photon a n '  
nihllation c ro s s  section  v io la te s  the c/= 1 u n i t a r f ^  
lim it,19 and cut off the in te g ra l at th is  po in t. T h ls  
p rocedure suggests a  bound on the h igh -energy  
hadronic contribution  to  <zM of 15X 10 “. (Again 
see Appendix B.)

(ill) Unified gauge th e o r ie s  of the weak and 
e lec trom agnetic  In te rac tio n s which do not have 
charged heavy leptons typ ica lly  give c o n tr ib u tio n s  
to In the range f rom a  few to ten  p a r t s  in 10 ■ 
Specifically, the W elnberg-Salam  SU(2)® U (l) 
model p red ic ts  a contribu tion  to  av of le s s  th an  
9x  10"”. T hus, from  (1), (11), and (iii) we co n 
clude tha t the sum  of unknown con tribu tions to 
av is  likely to be no b ig g er than  =35x 10 "®, and 
hence should not m ask the effect p red ic ted  In E q.
(37).

Although we have shown tha t the inequality  of 
Eq. (37) does not co n trad ic t the c u rre n t g u -  2 e x 
perim en t, we m ust s t il l v e rify  th a t i t  is  p o ss ib le  
to find specific functional fo rm s 6p(w) w hich fit 
the muonic x -ra y  d isc repancy  w ithout s e r io u s ly  
violating any of the conventional te s ts  of QED, 
including the very  high p rec is io n  g,  -  2 and L am b- 
shlft experim en ts.21 A postu la ted  v a c u u m -p o la r i
zation d iscrepancy  con tribu tes to  g. -  2 th rough  
the diagram  of Fig. 4(b), giving a fo rm ula  Iden tica l 
to  Eq. (27) apart from  the rep lacem en t of m  „ in  
f„[t] by т. .  The sm alln ess  of m ,  then  p e rm its  u se  
of the la rg e -/ asym ptotic ex p ressio n  = m ,V (3 /). 
giving the sim ple expression

6a, ==0.60x10"® f  — ^ - b p [ t ]  

= 0.15 x 10 "• j  dw e~K6p(w). (39)

Comparing Eq. (39) with the c u rre n t d ifference 
between experim ent and theory  for a, , 22

a, (experim ent) -  ^(conventional QED)

= (5.6 ±4. 4)X 1 0 ,  (40)

we get the re s tr ic tio n

f dw e-~6p{w) = (37 ± 29) x  10"s . (41)

Next we consider the Lamb shift, which re c e iv e s  
contributions f rom a vacuum -polarization  d is 
crepancy via the diagram  of Fig. 4(a). W orking 
again in the nonre la tlv lstlc  hydrogenic app rox im a
tion, we find fo r the change in the 2s-2p  L am b- 
tran sitio n  energy
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0£ = 6E„

= f r*dr[Rte(r)2 -  R2l(r?]bV(r) 
J 0

: Г  dibp\ i \
-'л.

aQa
6/r . ( I  +tl,2a0/Z)*- (42)

Since t u la ^ ~ l = ( t l,2/m ,)a~ 'Z~l »  1, we can n e 
glect the 1 in  the denom inator of Eq. (42), giving

B£ = - Z<as„
Sir ‘M O . (43)

which evidently m easures the sam e in tegral over 
6p as does g, -  2. It is  easy  to see that the form u
la  fo r the ns ~np  Lamb transition  is ohtained by 
m ultiplying Eq. (43) by (2/и)3. Hence, using the 
fact that

£ g » * 2 7 .1  MHz, (44)

we get the re la tion

f  dw e~“6p(w)
* о

n 3[£„z (conventional QED) -  £„z (expt)1 . .
Z -x271 MHz ' 1 J

In Table IV we have tabulated the right-hand side 
of Eq. (45) fo r a se r ie s  of m easured Lamb tra n 
s itio n s .23 Taking a weighted average of the four 
best de term inations [the two m easurem ents for 
H(n = 2) and the m easurem ents for D(n -  2) and 
Не+(я = 2)], we find

J  dw e~“6p(w) = (0 .2 9 ± 1 .0 )x l0 ‘ (46)

evidently a  much tigh te r re s tr ic tio n  than is  ob
tained f rom g, — 2.

Our p rocedure for searching for satisfactory  
functional fo rm s fip is now as follows. Let

5 £ 7(1), a(i) = experim ental reduced discrepancies
and standard deviations from Table II, 
<= 1.........12;

F(i) -  th eo re tica l fit to reduced d iscrepancies,
* = 1, - - - , 12;

(47)
iaJJ1 = predicted change in ац ,

61,h = predicted  value of I dwe~“6p(w).
J o

We form  two x2:

■»£>(»)'>’m J ’h  L “W
2 2 ( 6a„ 'h -  2.6X 10"1 У 

3 .1 Х К Г ' )

(48)

/б/ ,h-3 7 x iO '3V  
+ \ 29 x Ю-3 /'

/ 61 lh-0 .29 x l0 'JV  
+ \ 1.0ХЮ '3 ) ’

the f i r s t  te s ts  the fit to the muonic x -ra y  d isc re p 
ancies alone, while the second te s ts  the combined 
fit to the x -ra y  data and the g v -  2, g4 —2 and 
L am b-shift experim ents. F o r each assum ed func
tional form  of 6p, we tre a t the o ver-a ll no rm al
ization as a  free  param eter and adjust it to min
im ize e ith e r к2, or x22> corresponding respectively  
to 1 2 - 1  = 11 or  1 5 - 1  = 14 degrees of freedom . A 
sampling of re su lts  of th is procedure is shown in 
T ables V and VI. We conclude from these fits  
the following.”

(i) Functional fo rm s giving good х2г f i ts can be 
found. When these sam e functional fo rm s a re  fit 
by the x2i p rocedure the coefficients change by 
only about 25%, which is sa tisfactory .

(ii) The form s which give good x2a ti ts  a re  all 
nearly  step-function-like in ch a rac te r, with a 
tu rn -on  at w = 2 -3  [i.e ., at I ~ (30-80)m ,J ]. The 
sm allness below w~2  is  requ ired  by the Lam b-

TABLE IV. L am b-shlft m easurem ents.

System  Conventional QED (МНг) Expt (MHz) Right-hand aide of Eq. (41)

H(n =2) 1057.911 ±0.012 1057.90 ± 0.06 (0.33 ±1.80) x lO-3
1057.86*0.06 (1.50* 1.80)x 10“s

H(n =3) 314.S96iO.003 314.810 ± 0.052 (8.57 ± 5.18) x 10“3
H(n -4 ) 133.064 ±0.001 133.18 ±0.59 ( -2 2 .7 ± 1 3 9 )x l0 “3
D(n = 2) 1059.271 ±0.025 1059.28± 0.06 (—0.27± 1.92) x 10"a
He+ (n =2) 14 044.765±0 613 14 045.4 ±1.2 (-1 .1 8 ± 2 .4 9 )x  1 0 ^
Не+(л =3) 4 1 84 42 ±0.18 4183.17 ± 0.54 (7.79 ± 3.55) x 1 0-3
He* (л =4) 1769.068 ± 0 .076 1769.4 ± 1 .2 (-4 .60  ±17.7) x lO -3
Ll**(n =2) 62 702 ±9 62 765*21 (—1.1 ± 8.3) x 10~3
Cs+ (я = 2) (783.678 ± 0.251) x lO -3 (744.0 ± 7) x 10-3 (904 ± 159) x lO -3
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TABLE V. Sample functional form s giving sta tis tica lly  sa tis fa c to ry  fits .

3723

Functional form  6p(w)

(1) F its m inim izing x г

у2, 10’«au б£(И) (M Hz)1

—O.O530(u> — 3) 12.1 -1 .9 0.08

- 0 . 0 7 1 ^ - ^  J^ f l(M -S ) 12.1 - 2.1 0.08

—0.16 ^  Ve(u) — 2) 
\  *  !

12.9 -2 .4 0.08

(2) F its m inim izing

Functional form  6p(u>) vJ 10TSa^ 6£<H) (MHz)*

-0 .0666(10-3) 7.9 -2 .3 0.10

-O.OfiS -  3) 7.9 - 2.6 0.10

0 ( w - 2) 8.1 -3 .1 0,11

(3) Reduced d isc repanc ie s p red ic ted  hy the f it  -0.071[(w  — 3)/м|]0,гв(м) — 3)

Z 20 22 26 38 47 48 50 56 66 80 81 82
T ra n s itio n  л — я - 1  3 — 2 3 — 2 3 — 2 4 — 3 4 — 3 4 — 3 4 — 3 4 — 3 5 — 4 5 — 4 5 — 4 5 — 4

— 10s x i £ y (expt) 37.2 12.0 37.9 18.0 49.3 20.5 43.5 98.8 24.4 71.8 55.3 73.7
±54 ±45 ±32 ±43 ±30 ±27 ±26 ±23 ±39 ±27 ±26 ±21

-1 0 s x e £ y (flt) 40.6 46.2 57.3 30.5 42.5 43.8 46.5 54.2 21.6 40.0 40.8 41.6

* See the com m ent 1л Ref. 25.

shift data, while the slow growth above the tu rn 
on is  needed in o rd e r  not to violate the cu rren t 
lim its  on deviations in g u — 2.

(Hi) All of the good fits satisfy  6 p s  -0 .03 for 
la rg e  w. T his is  a  genera l feature  fo r any mono- 
tonic form  6p which Is  sm all in the L am b-shift 
region i c « 2 ,  since (using the fact t h a t / T =0 for 
w й 9) we have

- 5 4 .5 x l 0 _3= f  diefr(w)6p(w)
•'t

~ f  d w / r (w)6p(w)
• a

6p(9) J  dw/y(w)  = 1.6X 6p(9),

that is ,

- 0 .0 3 4  2  в р (9 ) .

(49)

(50)

P oss ib le  im plications of Eq. (50) fo r QED te s ts  
involving tim elike photon v e rtic e s  will be d is 
cussed e lsew here .2"

One additional p lace w here a  vacuum -po lariza
tion d iscrepancy  should produce in te restin g  effects

is  In the Lamb shift in muonic helium .2* Applying 
Eq. (42) to  th is system  (and noting that the 2p 
level here lies  above the 2s level), we find

а£([4Не,м]*) = 6 £ „ - „

flnQT2 f M*16* ( l +t u2a„ /ZY

= £  « z f -  J  d w fHe(u>)6p(w) ,on m „ J г

/и .® )-»13-
(51)

TABLE VI. R esu lts  of s tep -function  fits ,

Functional fo rm  6p v2 X ! 1 SJE(H) (MHz)*

—0.0046(u) — 0.5) 38 —0.23 0.08
- 0 .014e(u)-1 .5 ) 21 — 0.69 0.10
-0 .0 3 2 fl(w -2 .5 ) 14 -1 .3 0.09
—0.0726(10 — 3.5) 12 -2 .3 0.07
—O.lfifl(u) -  4.5) 13 -4 .0 0.06
-0 .3 7 8 (w -5 .5 ) 22 -6 .7 0.05
-0.396(14,-6.5) 43 -5 .0 0.02

a See the com m ent in Ref. 2^.
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N um erical evaluation of Eq. (51) shows that /н,(и>)/
0.13 l ie s  within 20% of f r (w) in the range 0 «ю  «  6 
where neither is  vanishingly sm all. Hence inde
pendent of the detailed form of 6p, we find the 
prediction

5£([, Н е ,д Г ) ~ ^ - а ^ х ( - 5 4 .5 х ю - :,)хо.13
о Л  Y fl ||

= -0 .027  eV , (52)

which may be an observable effect.
At th is point let ua conclude our examination of 

vacuum -polarization effects and turn to an a ltern a
tive explanation for the muonic x - r a y  d iscrepancy, 
the possib le existence12 of a  weakly coupled sca 
la r ,  iso sca la r  boson <p. Interest In this explana
tion has been stim ulated by the fact that such 
p a rtic le s  (with undetermined m ass) are  called 
for in unified gauge theories of the weak and e le c 
trom agnetic in teractions. Letting g au  ̂ and g w a 
denote the ф-muon and the ф-nucleon sca la r  
couplings, andA fijthe ф m ass, the potential pro
duced by ф exchange between a  muon and a  nu
c leu s of nucleon number A [Fig. 4(c)] is  the simple 
Yukawa form51

K*(r) = -  £ 2 4 .  (53)

Since a  repulsive potential is  required to remove 
the x - r a y  d iscrepancy, fitting Eq. (53) to the x -ra y  
data w ill n ecessa r ily  give < 0. As shown
in Appendix C, th is sign for the product of cou
p lings is  not possib le in the sim p lest forms of 
gauge m odels, in  which there is  only one physical 
s c a la r  meson and in which the ch ira l SU(3)& SU(3) 
sym m etry-break ing term  in the strong-interaction 
Lagrangian  transform s as pure (3,3)® (5 ,3). 
N onetheless, le t us proceed in a  purely phenome
nological fashion and make a  quantitative fit of 
Eq. (53) to the x - r a y  data. Replacing 6V{r) in 
Eq. (22) by V^(r), we find

2 .82x10W a w V P w * 1] .

(54)

with 8 1 ' the "reduced d iscrepancy” appropriate 
to a potential which couples to A rather than to 
Z. The experim entally measured values of 61^ 
a re  tabulated in Table VD. Since in a ll gauge 
models the ф-e lectron  coupling Is expected to 
be of o rder (m ./ m ,,)^ ,,;, the ф w ill have a neg
lig ib le  effect on the electron g,  -  2 and Lamb- 
shift m easurem ents. So in fitting Eq. (54) to the 
data we m inim ize x2, defined in Eq. (48), giving 
the re su lts  shown in Table УШ, in good ag re e 
ment with the re su lts  quoted by Sundaresan and 
W atson .38

TABLE VII. Reduced d iscrepancies for sca lar-m eson  
calculation.

Element
zE

Transition 
"t —"'*/ - 1

Reduced average 
discrepancy -6Ё у

50Ca (37.2±54)х1<Г’
» t i ' d - t p (11.0 * 41) x 10”3
!«Ге 3d - * p <35.1 ± 30 )x l0 "s
3«Sr (15 .5± 37 )x l0 -3
<iAK V — 3d (42.9 ±26) xlO-3
«C d (i7 .5 ± 2 3 )x io _3
иЗп V - 3<f (36.6 ± 22) xlO-3
5,Ba Ч - Ч (81.0 ± 19) x 10-3

V-*1/ (20.0 ±32) x lO -3
«<]Hg ‘jr—V (57.0 ±21) x lO '3
.1*1 sg - * f (43.9 ± 21) x 1 0 '3
(3Pb V-*/ (SB.5±17) x lO '3

Since a light sc a la r  boson, as w ell as a vacuum- 
polarization anomaly, can sa tisfac to rily  fit the 
x -ra y  d iscrepancy, let us examine w ays of d istin 
guishing between the two possib le explanations. 
F irs t  we consider the muonic-helium Lamb shift. 
Since /Не(и0 =/7(mi) for 0 « « i « 6 ,  a  sc a la r  boson 
in the m ass range from 1 to 22 MeV pred icts an 
effect within about 20% of -0 .027  eV, while for 
sc a la r  bosons ligh ter than 1 MeV (corresponding 
toto< 0), the muonic-helium Lamb shift decreases 
as

where M й is  in MeV. Hence the muonic-helium 
experiment could only distinguish between a  v ery  
light sc a la r  boson5'  and the Joint p oss ib ilitie s of 
a heavier sc a la r  boson or a vacuum -polarization 
effect. On the other hand, the muonic vertex 
correction involving sca lar-m eson  exchange 
makes a sm all positive20 contribution to a „, as 
distinct from the sizab le negative contribution 
predicted by a vacuum -polarization anomaly. So 
the next generation of g v -  2 experim ents should 
unambiguously distinguish between the vacuum-

TABLE Vm. R esu lts of sca lar-m eso n  fits .

M ф (MeV) Х21 ( г * „ jr** »» )/ 4*

0.5 8.1 —1.3 x lO -7
1 1.9 -1 .4  x lO '7
4 6.8 - 2 .0 x 1 0 'T
В 6.1 —3.8X 10-7

12 6.5 - 6 .9 x 1 0 “’
lfi 7.5 —1 .2x 1 0”*
22 10.1 -2 .5X 10 - *
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polarization and scalar-m eson  explanations for the 
muonic-atom x -ra y  discrepancy.

tion of the total for la rg e  - s )  to an accu racy  of 
about 15%.
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APPENDIX A: VECTOR-MESON PARAMETERS

For the ш and ф vector-m eson param eters we 
take30

Af ш= 784 MeV , Г (ш - е 4е ')  = 0.76 keV,  

Л/4 = 1019 M eV, Г(ф — e*e ')  = 1.36 keV .
(Al)

For F,( t ) we use the G ounarls-Sakurai formula31 
with an i i ) - 2ir in terference te rm .30

P  r . \_  Л#р2(1 + 6 Г р / М ц )

*Ae‘ M .

ж о - ^ м м и - ^ р 1)]
p

+k Sh' iM  pa)(M pa

2 k 1 ( f t + 2 b\
11 V I  \  2 т ж /

h'(M p2)

t)},

(A2)

2nM 0
f M  p + 2£ p\ 

l n \ ~ 2 ^ T I  •

k = £ l - m S ) u \

with the following values for the p aram eters30: 

6 = 0 .6 , a  = 86°,

Af p = 775 MeV , r „  = 9 .2 M eV ,

Tp = 149 MeV , BI,I(tn~ee)= 0 .9 06 x 1 0 “ 

m , - 140 MeV, В*/2( ш - 2тг) = 0 .19 .

(АЗ)

Ae d iscussed  In Appendix B, approxim ating the 
sm all-/  region in th is fashion as  a  sum of ш, ф, 
and p contributions should y ie ld  the sm a ll- t  con
tribution to ГоьЛ-®) (which Is only a  sm all frac -

APPENDIX B: FORMULAS FOR f t [/] AND THE 
HADRONIC CONTRIBUTION TO f ,  -2

The function /„[/] appearing in Eq. (27) has been 
evaluated by Brodsky and de Rafael ,sa who find

/ .[* ]■ » (/ ) ,
0 « i « 4 m „ a , т  = 1 / 4 л | Д

/C{f) = a -  4 т -  4т(1 -  2t) ln(4r)

/ т V 's / l _ T\1/a
-  2(1 -  вт+вт2) ! - —- J  a r c t a n l—- —J ;

4 > l - ( l - 4 wlBV t)1/1 
’ 1 +(1 - 4 m „V0 1/г '

K(t) = l * 2(2 -  * a) + (1 + *)’ (1 + x a)

+ i ± £ , » ln* .
1 -  X

ln ( l +x) — Х  + а Х г  

X1
( B l )

Corresponding to the d iv ision of T ^ , ( - s )  Into four 
p ieces In Eq. (15), we w rite the hadronic contribu
tion to a u as

o u = 7^3 I dto(e*e~-h ad ro n s ; t)K(t)J , .  >

= a j r e + aS+<i” "'<0 + < " ' (1)- (B2)

Working In the sam e narrow -resonance approxi
mation as in the text, we find for a f  * the ex 
pression®

. . .  v
** My

(B3)
V* u/.4

while is  given by the in tegra l

(B4)

Substituting the p aram eters  from Appendix A and 
evaluating Eqs. (B3) and (B4) num erica lly  g iv es

a f  * = 9.1 x 10-* , aS = 45x  Ю'* ,
(B5)

а™ *ra,u‘ = 54x10-"

A more elaborate evaluation of the em ail-/  con
tribution has been given by Bramon, Etim , and 
Greco ,33 who sum the contributions of the vario u s 
important hadronic sta tes  d irec tly  from Eq. (B2), 
giving

a m ‘n .- " i .( e i± 7 )x l0 '* ,  (B6 )

indicating that our method of treating  the sm all-£  
region la  good to about 15%. To evaluate a “ nl(1)
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(B8)

and a “ "‘ <2) we approximate К (<) by Its asymptotic 
form

/ - « ,  (B7)

giving [In units where unity= (1 GeV/c)s]

a ” nl(l) =6.7X10-" Г
“'о.Зв ^

а “ ”,(а )= б .7хю -« f ‘cd- m _
J 26 *

Evaluating num erica lly  using the data
plotted in F ig. 1 g ives

a “ n‘ (,) = 9.6 ± 2,

with the e rro r  a rough guess. Thus the total 
known hadronic contribution to is

(61 ± 7)X 10"' + (9.6 ± 2)x Ю-9 = (71 ± 7)x 10"*.

(BIO)

E stim ating the unm easured contribution by a s 
suming a lin ea r ly  r is ing  R(l) up to = (2.230)“, 
we get

(B9)

a “ n,<2) = 6 . 7 x l o - , x 0 . 2 4 x l n ^ (460)2\
25 }

= 15X 10-», ( Bl l )

as stated in the text.

APPENDIX C: SIGN OF THF SCALAR MESON EXCHANGE 
POTENTIAL IN SIMPLE GAUGE THEORIES

Consider a gauge theory of the weak and e lectro 
magnetic interactions in which only one sca la r  
fie ld  ф develops a  vacuum expectation, ф — ф + \, 
as  a  resu lt of spontaneous sym m etry breaking. 
Since X is  the source of the lepton m asses, the 
interaction  Hamiltonian (= - the interaction La

grangian) coupling ф to the muons is34 

ф
Жфцр -  —m • ( C l )

Since in the hadronic sector A Is the origin  of 
ch iral SU(3)® SU(3) sym m etry breaking, the in ter
action Hamiltonian coupling ф to the hadrons i s 34

Л вас,chiral breaking ■ (C2)

Hence the sign of is  the same as the sign
of (tf| Now if 63Cchll,|bltnkm, tran s
forms under SU(3)® SU(3) a s  ( 3 , 3) 0  (5,3), then 
using the notation of Gell-Mann, Oakes, and 
Renner35 we read ily  find that

,| ДГ)=
(/2 +c)/5

+ ( c - ± y N \ u t \N),

c = - / 2~ \  -Р Ц , = -1 .2 5 ,m K + jm ,
(C3)

(W| !/a|W) = baryon m ass sp litting param eter 

= 170 MeV,  

о . к м  B a ( ^  + c)(N | / 2u „  + ua|^>.

That is , we have

(N\ « ^chinibreakiniIЮ  = 1 2 .9 a ,MH -  333 MeV .
(C4)

Recent determ inations of the a term  suggest 
a value in the range 4 5 -8 5  MeV,38 making 
(N\ 63Cch„JblMWlrglN) positive and giving an a ttra c 
tive sca lar-m eson  exchange force. A value of 
о,//// sm a lle r  than 25 MeV would be needed to 
make the sca lar-m eson  exchange force repu lsive , 
as i s  required to explain the muonic x -ra y  
discrepancy.

*For a sum m ary of the recen t data, see R. Gatto and 
G. P rep ara ta , Phys. Lett. 50B, 479 (1974).

JA goad review  of the re levant experim ents and theory 
Is given by P. J . S. Watson and М. K. Sundaresan,
Can. J .  Phys. 52, 2 037 (1974). 

aL. S ilv es tr in l, in P r o c e e d i n g s  o f  t h e  XVI In t e r n a t i o n a l  
C o n f e r e n c e  on  High E n e r g y  P h y s i c s ,  C h i c a g o -B a t a v i a ,
III., 1972, edited by J . D. Jackson and A. Eoberts 
(NAL, B atav ia . Ш .. 1973), Vol. 4 . p. 1.

^T. Appelqulst and H. Georgi, Phys. Rev. D 8 , 4000
(1973); A. Zee, ibid. 8, 4038 (1973).

5See , for exam ple, С. H. L lew ellyn  Smith, CERN Report 
No. CERN TH. 1849. 1974 (unpublished); N. Cabibbo 
and G. K arl. CERN Report No. CERN TH. 1858, 1974 
(unpublished).

fiWe follow the treatm ent of the vector-m eson contribu
tions to o ( e * e ~— hadrons;f) given by M. Gourdin and 
E. de Rafael, Nucl. Phys. B10. 667 (1969).

5J . Arafune, Phys. Rev. L e tt  32, 560 (1974); L. S. 
Brown, R. N. Cahn, and L. D. M cLerran , ibid. 32,
S62 (1974); M. G yu lassy , ibid. 32. 1393 (1974).

“j .  RafelskI, B. M B ller, G. Soff, and W. G reiner, Univ.
of Pennsylvania report (unpublished).

8M. S. Dixit e t a l . ,  Phys. Rev. Lett. 27, 878 (1971).
I0H. W alter e t a l . ,  Phys. Lett. 40B, 197 (1972). 
n S. L. A dler, Phys. Rev. D 5 , 3021 (1972); K. Johnson 

and M. B aker, ibid. 8, 1110 (1973).
,гМ. K. Sundaresan and P. J .  S. Watson, Phys. Rev. Lett. 

29, 15 (1972); L, R esn lck , М. K. Sundaresan, and
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P. J . S. Watson, Phys. Rev. D 8, 172 (1973).
13To make the definition of 6f> p rec ise , we a re  assuming 

6p to he an ex tra  contribution to the vacuum -polariza
tion two-point spectra l function above and beyond the 
usual second- and fourth-order electron and muon 
contributions, of a magnitude much la rg e r  than the 
naive perturbative estim ate of the sixth- and h igher- 
order term s. Because Z o c  is  not a very  sm all param 
e te r for some of the atomic species  being considered, 
in estab lish ing the existence of the muonic anomaly 
it  is important to take Into account 4, 6 , . .  .-po int 
vacuum -polarization am plitudes in which one vertex 
em its a  photon coupling to the muon and all the r e 
maining v e rtice s  couple to the nuclear Coulomb po
ten tial. N um erically, the contribution of such d iagram s 
to the x - r a y  en erg ies Is only a  few percent of the 
Uehllng potential contribution, so we neglect possib le 
nonperturbative modifications of the higher-point func
tions.

14Ju st to se t the energy s ca le  involved, the Uehllng en
e rg ie s  a re  typ ica lly  0 .2 -3  keV out of total transition  
en erg ies  of 150—500 keV.

lsWe assum e independence of e r ro rs  and add e r rro e  in 
quadrature for both the muonic d iscrepancies and the 
Lam b-sh ift m easurem ents. If system atic e r ro rs  a re  
la r g e , then the e r ro rs  for average quantities w ill be 
la r g e r  than those quoted, making the constrain ts on 
the x2 fits  le s s  re s tr ic t iv e  than those we have assumed.

16B. Lautrup, A. Peterm ann, and E. de Rafael, Phys.
Rep. 3£ , 193 (1972).

17V. W. Hughes, in A to m i c  P h y s i c s  3, edited by S. J .
Smith and G. K. W alters (Plenum , New York, 1973), 
p. 1; B. Lautrup (unpublished).

I8B. Lautrup, Phys. Lett. 38B, 408 (1972); M. A. Sam uel, 
Phys. Rev. D 9, 2913 (1974).

1ЭС. H. LleweUyn Sm ith, Ref. 5 ; N. Cabibbo and R. Gatto, 
Phys. Rev. 124, 1577 (1961).

20R. Jack iw  and S. W einberg, Phys. Rev. D 5 , 2396
(1972); 1. B a rs  and M. Yoshim ura, ibid. 6, 374 (1972);
J .  R. P rlm ack and H. R. Quinn, ibid. 6 , 3171 (1972).

2,The atom ic ferm ium  К a  x - r a y  m easurem ents of P. F. 
D ittner e t  a l .  [Phys. Rev. L e tt  26, 103 (1971)1 only 
probe the Uehllng potential to an accuracy of about 20%. 
See B. F ricke  e t  a l . 9 Phys. Rev. Lett. 28, 714 (1972). 
C onstrain ts im posed by t im elike  photon vertex  m ea
surem ents a re  d iscussed  in S. L. A dler, R. F . Dashen, 
and S. B. T re im an , following pap er, Phys. Rev. D 10, 
3728 (1974).

MN. M. KroII, In A to m i c  P h y s i c s  3, edited by S. J .
Sm ith and G. К. W alters (Plenum, New York, 1973), 
p. 33.

23The d ata a re  taken from Ref. 16, except for L i++ , 
w here we use the m ore accurate  m easurem ents of 
P . Leventhal and P. G. Havey, Phys. Rev. Lett. 32,
808 (1974).

2iThe conclusion that sa tisfac to ry  f its  can be found has 
a lso  been reached by F . Heile (unpublished), using a 
m om entum -space p aram etrlzatlon  of the vacuum - 
polarization  d iscrepancy.

25S. L. A dler, R. F . Dashen, and S. B. T reim an (in 
preparation). We show in th is paper that a d ec rease  in 
the vacuum -polarization  sp ec tra l function n ece s sa r ily  
im p lie s  a d ec rease  in the vertex  for em ission  of a tim e
lik e  photon, and tes ts  of the effect a re  suggested . 
Obviously, modifications in vertex  p arts  w ill at some

leve l make contributions to the electrodynam ic p ro cess 
es  d iscussed  In the p resen t paper above and beyond the 
d ire c t effect of the postulated vacuum -po larization  d is 
crepancy. There seem s at p resen t to be no w ay of 
estim ating the s iz e  of such additional contributions; 
about a ll one can say is  that they a re  lik e ly  to be most 
important in the electron  Lamb shift and g A—2 e x p e r i
ments, where only one m ass s c a le  is  involved and 
the vacuum -polarization  and photon-electron vertex  
p arts a re  o ff-shell to a s im ila r  degree . Hence the 
electron ic Lam b-shift p red ictions of T ab les V and VI 
should not be taken too l i te r a lly .  On the other hand, in 
the muon energy leve l and g^  — 2 exp erim ents, two 
m ass s c a le s  (both m e  and т ц) a re  Involved, with the 
electron vacuum -polarization  loops much fu rther off- 
she ll (re la tive to th e ir  natu ra l m ass sca le ) than a re  the 
photon-muon v e rt ic e s . Thus in this c a se  the n eg lect of 
possib le vertex  m odifications, which i s  im p lic it  in a ll  
of the d iscussion  of the tex t, m ay w e ll be ju stif ied .

2eE. Cam pini, Lett. Nuovo Cimento 4 , 982 (1970); P . J .  S. 
Watson and М. K. Stm daresan , Ref. 2. As both of these 
re feren ces em phasize, In o rd er for muonic helium  to 
be useful for electrodynam ics te s t s ,  cu rren t un certa in 
t ie s  in the helium n uclear charge rad iu s and n uclear 
p o larizab ility  w ill have to be reduced.

2tThe factor (41T) " 1 In Eq. (49) appears to have been 
omitted in the basic paper of R. Jack iw  and S. Wein
b erg , Phys. Rev. D 5 , 2396 (1972) and in  subsequent 
papers quoting the ir form ulas.

28Becauee of the factor of 4ir mentioned in Ref. 26 , our 
(8фр$8фнР)/*‘Т should be com pared with 
of Ref. 2. Omitting the 2oC a i 22T1« 2GF e « and 3aSr ĉ s_ 
crepancies from the f it , as was done in Ref. 2 , we 
find an effective coupling of - 7 .6 x  10-7 a t  M ф = 12 M eV, 
in agreem ent with the magnitude of 8.0 x 10“7 quoted 
in  Ref. 2. The num erica l re su lts  of Table VTH w ere 
obtained by fitting to a ll  d iscrepancy data.

29The poss ib ility  of a v e ry  light s c a la r  meson m ay w ell 
be alm ost academ ic. An experim ent reported  by
D. Kohler, J .  A. B ecker, and B. A. Watson [Phys. Rev. 
Lett. 33, 1628 (1974)) looks, v ia  the e* e~  d ecay  m od e , 
for а ф produced In the tran s itio n  from 
160(6.05 MeV) and <He(20.2 MeV) 0+ s ta te s  to the 0+ 
ground s ta te s , and concludes that M $ cannot be between 
1.030 MeV and 18.2 MeV. Furtherm ore, neutron- 
electron  scatterin g  data ru le  out 0.6 MeV (see  
Ref. 24), leaving only a  narrow  allowed region between
0.6 and 1.03 MeV. These rem arks do not apply to the 
derivative-coupled ф d iscussed  recen tly  by S. B a r  shay 
(unpublished), where the electron  coupling Is s m a lle r  
than the ^ coupling by two, as opposed to one, powers 
of m  g/m p.

3(VThe data used a re  taken from J .  L efranqo ls, in  P r o 
c e e d i n g s  o f  t h e  1971 In t e r n a t i o n a l  S y m p o s i u m  o n  E l e c 
t r o n  and  P h o t o n  I n t e r a c t i o n s  a t  High E n e r g i e s ,  edited 
byN . B. M istry  (Laboratory of N uclear S tud ies,
Cornell U n iversity, Ithaca, N. Y . , 1972), p. 51.

MG. J .  Gounaris and J .  J .  S aku ra i, Phys. Rev. Lett. 21 , 
244 (1968).

32S. J . Brodsky and E. de R afae l, Phys. Rev. 168, 1620 
(1968); 174, 1835 (1968).

33A. Bram bn, E. Etim, and M. G reco, Phys. Lett. 39B, 
514 (1972).

3<R. Jack iw  and S. W einberg, Ref. 20.
3SM. G ell-M ann, R. J .  O akes, and B. Renner, Phys. Rev.
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175, 2195 (1968). See also  B. Renner, In S p r i n g e r  
T r a c t s  in M o d e m  P h y s i c s ,  edited by G. Htfhler and
E. A. N iekisch (Springer, New York, 1972), Vol. 61, 
p. 121.

J"H. PUkuhn e t  a l . ,  Nucl. Phys. B65, 460 (1973). See 
e sp ec ia lly  pp. 480—481. The estim ate of Eq. (C4) Is 
a lso  given by E. R eya, Rev. Mod. Phys. 46, 545 (1974).

A D L E R  10

Reya w rites M„=M{+ where Af„
la the baryon m ass In the absence of SU(3)®SU(3) 
breaking. For the (3,3)® (5,3) сане, he finds M 0 
= 1300 M eV- 1 3 0 ^ * ,  eo lo r u tSIi in the range 45-65  
MeV the m ass M Q ifl le a s  than the nucleon m ass , making 
<^|MCchWbcoku,l^> positive.
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We use a detailed d leperaion-theoretic model for pion production in the (3, 3 )-reaonance 

region to ca lcu la te  the ratio

j ,  g(fu + Я  — K„ -fn + 1Г°] + o ( v u + Р —УЦ +p + V)
2a(«M + м -* ц  +p + i^)

Id the W einberg w eak-lnteractton theory. We find that / = Д contrlbutlona do not eubatan tla lly  
modify (he e a r l ie r  static  model calcu lation of R given hy B. W. Lee.

Neutral-pion production by neutrinos appears to 
be one of the best reactions for searching for the 
hadronic weak neutral current predicted by the 
Weinberg weak-interaction theory. 1 In fact, if one 
accepts the bound

(1)

given by Gurr, Reines, and Sobel,2 the static-mod
e l calculation by B. W. Lee9 of

ш С(Уц +П— Vy +n + p -  t>„ +p + 1Г°)
2а(1>и + n -  ц~ +p + ir°)

(2)
in the Weinberg theory Is already in conflict with 
existing experiments4 in complex nuclei. Two e s 
sential cautions are necessary, however, before 
concluding that the Weinberg theory is  ruled out. 
F irst, charge-exchange effects are important in 
complex nuclei, and may result in an experimen
ta lly  measured value of R  which is sm aller than 
the true single-nucleon-target value by a factor of 
up to 2. 5 Second, the static-model approximation, 
which neglects I = j  s -channel contributions to the 
reactions in Eq. (2), has the effect of overestim at
ing R . ‘  If the / = 5 corrections are  large enough, 
then, together with charge-exchange corrections, 
they may move experiment and theory back into 
agreement.

Is this note we report the results of calculating

the I=£ corrections to R using the detailed d isper
sion-theoretic model of weak pion production in 
the (3, 3)-resonance region which we developed 
some time ago .7 The model is  basically  a gener
alization to weak pion production of the old CGLN 
model for pion photoproduction. 8 Nonresonant 
multipoles are treated in the Born approximation , 4 
while the resonant (3, 3)-channel multipoles are 
obtained from the Born approximation by a  un itar- 
lzatlon procedure. The model is  in excellent 
agreement with pion photoproduction data ,7 agrees 
well with pion electroproduction data up to a four- 
momentum transfer of /И = 0.5 (GeV/cf,1 and is  a l
so in satisfactory accord with the recent Argonne 
measurements of weak pion production. 10 Because 
a ll term s contributing to the weak-production am 
plitude in the model are proportional to nucleon 
e lastic  form factors, the model fails badly In the 
region i a »  0.5 (GeV/c)3, where scaling effects be
come visib le and leptonic inelastic cross sections 
decrease more slowly with increasing k2 than e la s 
tic form factors squared. Fortunately, this r e 
gion of large fc5 makes a re lative ly  sm all contribu
tion to the individual cross sections in Eq. (2), and 
the erro rs w ill furthermore tend to cancel between 
numerator and denominator.

In the Weinberg model, the effective Lagrangian 
for the semileptonic strangeness-conserving weak 
interactions Is

£ = ~TZ C0Sflc ̂ МУх*1 + J *' +iJ^
+ •'„ГхО +rs)‘'jilJ ?<1 “ 2 sinaflr ) + J t* -  2 sin’ e,, J i ]  + •■•}, О)

where we have shown both the charged- and the neutral-current term s contributing to Eq. (2). In term s of 
the isospin matrix elements defined in Eqs. (2B.4) and (2B.5) of Ref. 7, the hadronic matrix element of the 
neutral current is

5?(1 -  2Slnae .)  + J f  -  2 sina0„ J 1 1N) = (1 -  2 sinaflЛ  a<i'a> V^/a’ +oli l2) V(̂ a)]

-  2 s i n X e ?  V(J> +e<i/a)A(£'aW i ' aU Ci /a) . (4)

9 229
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The am plitudes appearing In Eq. (4) are a ll  ones 
which appear in either the pion-electroproduction 
or the weak-production calculations of Ref. 7, and 
ao R can be evaluated by a  sim ple adaptation of the 
computer routines used in the e a r lie r  work. The 
resu lt of such a  calculation is  shown in Fig. 1, 
where we have assum ed an incident lab neutrino 
energy k\0 -  1 GeV and a nucleon ax ial-vector e la s 
tic  form factor

gAk2)~ [ 1 +**/(1 GeV/c)2]2 ’ (5)
and have integrated over the (3, 3)-resonance r e 
gion up to a maximum isobar m ass of W = 1.47 
GeV. Curve a gives the resu lt obtained from our 
model when both resonant and nonresonant m ulti
poles are  kept; curve b is  the corresponding r e 
su lt obtained when only the resonant multipoles 
a re  kept, and hence when I = j  amplitudes are  ne
glected. Aa expected, curve a lie s  below curve b, 
but the effect of the l - \  corrections is  not d ram at
ic . For comparison, we give in curve с the resu lt 
obtained from Lee’s static-m odel calculation . 11 If 
one assum es that is restr icted  as in Eq. (1), and 
includes a safety factor of 2 for charge-exchange 
effects, curve a is  barely  consistent with the p re s 
ent experim ental upper bounds. Put conservative
ly , our calculations indicate that an experiment to 
m easure R at the leve l of a  few percent should be 
d ecisive .

Note added in pr oo f .  Recently, the possible ob
servation of neutral current events has been r e 
ported in deep-inelastic  inclusive neutrino r e a c 
tions by the CERN G argam elle group. 12 If con
firm ed, this experiment w ill establish the exi s -

L . A DL E R  9

FIG. 1. Ratio A of Eq. (2) vs Weinberg angle 9W.
Curve a —resonant and nonreaonant m ultipoles; curve b— 
rrfinn.int muitipoles only; curve с —resonant muitipoles 
In Lee 'a  static-m odel calculation.

t e nc e  of neutral curren ts ; however, more detailed 
questions, such aa whether the phenomenological 
form of Eq. (3) is  co rrec t, w ill requ ire  the inde
pendent study of many different neutral-curren t 
induced reactions, among them the plon-produc- 
tion reaction considered in this note.
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W e discuss nuclear charge-exchange corrections to leptonic pion production in  the region of the (3 , 3) 
resonance, both from a phenomenological viewpoint and from the evaluation of a  detailed model for 
pion m ultip le scattering in the target nucleus. Using our analysis, we estim ate the nuclear corrections 
needed to extract the ratio 

•R =  [ o f ^ + n - »  V ,  +  n  +  If") +  + p  - »  V H +  p  +  JT °)] / 2<r(vp +  Л +  J  +  1Г0)

from neutral-current search experiments using . ,  А Г ! and other nuclei as targets.

I. INTRODUCTION

Although w eak-in teraction  experim ents on hy
drogen and deuterium  ta rg e ts  a re  most read ily  in
terp re ted  th eo retica lly , experim ental considera
tions n ecess ita te  the use of complex nuclear ta r 
gets in  many of the cu rren t generation of a cce le r
ator neutrino experim ents. As a  re su lt, in such 
experim ents, corrections for nuclear effects must 
be made in o rder to ex trac t free  nucleon c ro ss 
sections from the experim ental data. Our aim  in 
the p resen t paper is  to analyze these corrections 
in a  p a rticu la r ly  sim ple case : that of leptonic 
s ing le-p ion  production in the region of the (3,3)  
resonance. This reaction  has gained prominence 
recen tly  because m easurem ent of the ra tio

J- +n — v„ + n+ Д°) +o(vu +p — Vy +p + n(>)
2o(i/„ + n —n~+p + n°)

appears to be one of the better ways of search ing 
for hadronic weak neutral cu rren ts .1 Experiments 
m easuring  R use aluminum (and in some case s  
a lso  carbon) a s  ta rge t m a te r ia ls , so the experi
m entally m easured  quantity i s  ac tu a lly  (7”, T" 
denote unobserved final ta rg e t states)

R'(T) = o ( vu + T ~ vu +T’ + v a)
2а(1/„ + Г - д ‘ + Г '  + я0) ’ T  = 13A 12

(2)

As Perk ins has em phasized , 2 nuclear ch arge -ex 
change effects can cause  substan tia l d ifferences 
between R and R\ which m akes re liab le  estim a
tion of these effects an important ingredient in 
co rre c tly  in terpreting  the experim ents. Fortu
nate ly , pion production in the (3, 3) region is  a lso  
a p a r t icu la r ly  favorab le c ase  for theo retica l an al
y s is , p r im a rily  because the e la s t ic ity  of the (3,3)

resonance im p lies that nuclear effects w ill not 
bring multipion or other m ore com plex hadronic 
channels into play.

Our discussion  is  organized as  follow s. In Sec.
П we introduce our basic phenomenological a s 
sumption: that leptonic pion production on a  nuclear 
targe t may be represented a s  a  tw o-step com
pound process in which pions a re  f ir s t  produced 
from constituent nucleons with the f ree  lepton- 
nucleon c ross section (apart from a  P au li-p r in -  
c ip le reduction facto r), and subsequently undergo 
a nuclear interaction independent of the identity of 
the leptons involved in the production step . T his 
assumption allows us to iso late  nuclear effects 
(pion charge exchange and absorption) in a  3x3 
“charge-exchange m a tr ix .” We analyze the s tru c 
ture of the charge-exchange m atrix  in the p a r
ticu la rly  sim ple case  of an iso tap ica lly  neutral 
target nucleus. [For 13A12’ , with a  neutron ex cess  
of 1 and a  corresponding isosp in  of 5 , the approxi
mation of isotopic neutra lity  should be quite ade
quate. For eC12, of course, no approxim ation is  
involved.] Our m ain phenomenological re su lt  is  
that param eters of the charge-exchange m atrix , 
which can be m easured in h igh -rate  pion e le c tro - 
production experim ents, can be used to ca lcu la te  
the nuclear corrections to the weak pion produc
tion process and in p articu la r  to give the connec
tion between R'  and R. In Sec. in  we develop a 
detailed m u ltip le-scattering  model for the ch arge - 
exchange m atrix . Our model i s  quite s im ila r  to a 
successfu l calculation by Sternheim  and S ilb a r3 of 
pion production In the (3, 3)-resonance region  in
duced by protons incident on nuclear ta rg e ts , and 
uses the nuclear pion absorption c ro s s  section  
which they determ ine (as w ell a s  the experim en tal 
pion-nucleon charge-exchange c ro ss  section) a s

9 2125
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Input. The principal difference between our c a l
culation and that of Sternheim and Silbar (apart 
from obvious changes stemming from the fact that 
they deal with a  strongly absorbed rather than a 
weakly in teracting p ro jectile) is  that we use an 
Improved approximation to the m ultip le-scattering 
problem, based on a one-dimensional scattering 
solution introduced by Ferm i in the e a r ly  days of 
neutron p hysics .4 Using our model for the charge- 
exchange m atrix , and a  theoretical calculation of 
electroproduction and weak production of pions 
from free  nucleons which has been described e lse - 
w here,’ we present detailed predictions for R‘ in 
the Weinberg weak-interaction theory and some of 
its  v a rian ts . We a lso  use the production model to 
test averaging approximations im plicit in the phe
nomenological d iscussion of Sec. П. In Sec. IV we 
sum m arize b riefly our conclusions. Three ap
pendixes a re  devoted to m athem atical deta ils . In 
Appendix A we formulate and solve the one-dimen- 
aionaJ scattering problem which forms the basis 
for the approximate solution of the three-dim en
sional m u ltip le-scattering  problem actually en
countered in our model. To calib rate  this approx
imation, in Appendix В we compare the approxi
mate solution with the exact m ultip le-scattering 
solution for the sim ple case of isotropic scattering 
cen ters uniformly distributed within a sphere. 
F in a lly , in Appendix С we co llect m iscellaneous 
form ulas for cro ss sections and for Pauli exclu
sion factors which a re  needed in the text.

П. PHENOMENOLOGY

A. Kinematics*

We consider the leptonic pion-production reaction

1(60+ Г -  l'{k2)+ T ' + nUo\  (3)

with fcj and respective ly  the foar-momenta of 
the in itia l and final lepton I and V, with T a  nu
c le a r  ta rge t in itia lly  at re s t  in the laboratory, and 
with T‘ an unobserved final nuclear state. Let fc3 
= ( * ,- * , ) *  be the leptonic invariant four-momentum 
tran sfer squared, and le t kj; »  kf0-  kj;„ be the lab
oratory leptonic energy tran sfer to the hadrons. 
Corresponding to the three pionlc charge states 
in Eq. (3) we have three doubly d ifferential cross

sections with respect to the variab les  k2 and k%, 
which we denote by

d 2o(ll'T-± 0) 
dk2dkLn ‘ (4)

When the target T is  a single nucleon N (of m ass 
MH), below the two-pion production threshold the 
reco il target T‘ m ust a lso  be a single nucleon, 
and we can specify the kinem atics more p rec ise ly . 
We w rite in this case

(5)
with the hadron four-momenta indicated in paren
theses. We denote the final pion-nucleon isobar 
m ass by W,

Иг2={р, + ч)г . (ва)

This variab le  is  evidently related  to the leptonic 
energy transfer k% by

(Bb)

B. Factorization assumption

We now introduce a factorization assumption 
which Is basic to a ll of our subsequent arguments. 
We assum e that leptonic pion production on a nu
c lear targe t may be regarded as a two-step com
pound process. In the f ir s t  step of this process 
pions a re  produced from constituent nucleons of 
the target nucleus with the free le£ton-nucleon 
cro ss section. In the second step the produced 
pions undergo a nuclear interaction, dependent on 
properties of the target nucleus and on the kine
m atic v ariab les  and (possibly) k2, but indepen
dent of the identities of the leptons involved in the 
f ir s t  step. Since we a re  considering only excita
tion energies below the two-pion production thresh
old, the nuclear interaction in the second step in
volves only two types of p rocesses, (i) scattering 
of the pion and (ii) absorption of the pion in two- 
nucleon or more complex nuclear p rocesses. In 
p articu lar, the two-pion production channel cannot 
come into play, and hence the factorization a s 
sumption allows us to w rite a sim ple m atrix  r e la 
tion between the cro ss sections for leptonic pion 
production on nuclear and on free nucleon targets . 
We have

d 2o ( l l' rT A: + ) ~ 
d&dk%

d*oUl'Nr -,+).
dk2dk%

d 'o U v zt*\ o) 
d p d k i =[M(X T '-.k X )]

d 2a(ll'N r -. 0 ), 
d&dkl;

d W U 'tT * ;- ) d 2a (W Nr \ - ) »
dk2dki d&dkt
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with

d 2a(ll'N r :±0)t
dk>dkl

d 2a(ll'P ; ±0),
' Z ~ d ^ r ~

u _ d M i iX t O ) ,
*  d*dk LB (8)

ал appropriately weighted linear combination of 
free proton and free neutron cross sections. The 
subscript F  indicates that these cross sections 
are to be averaged over the Fermi motion of the 
individual target nucleon in the nucleus, which 
substantially a lte rs  the shape (but not the inte
grated area] of the (3, 3) resonance7 when plotted 
versus the excitation energy fcj. In writing Eq. (7) 
we have obviously used rotational symmetry, 
which im plies that when the angular variables of 
the pion emerging from the nucleus are integrated 
over, no dependence remains on the angles char
acterizing the in itial production of the pion. The 
m atrix M appearing in Eq. (7) is a 3x3 “charge- 
exchange m atrix” which is  independent of the na
ture of the in itial and final leptons 1 and I'. In ad
dition to including pion scattering and absorption 
effects, M also takes into account the reduction of 
leptonic pion production in a nucleus resulting 
from the Pauli exclusion principle.8 We w ill keep 
this effect in M in the ensuing phenomenological 
discussion, but when we make our m ultiple-scat
tering model in Sec. Ш we w ill separate it off as 
an explicit multiplicative factor.

C. Structu re of M

Up to this point Eq. (7) applies to a ll nuclei, even 
those with a large  neutron excess. In order to 
sim plify the subsequent discussion we now restric t 
ourselves to the case of isotopically neutral ta r
gets, with the neutron excess and isotopic spin

equal to zero .' (See Added Note preceding Ac
knowledgments.) As noted in the Introduction, this 
approximation is  reasonable for the targets of 
greatest experimental interest. With this r e s tr ic 
tion, the pion charge structure of the m atrix M /{ 
(/ , i  = ±, 0) is that of the inclusive reaction

v t + TU~ 0) — ir, + T'(unobserved) , (9a)

or equivalently, of the forward scattering pro
cess

» , + * ,+ rU = 0 )-n , + ff,+ T(/=0) . (9b)

Since the isospin of the system я, + JTy can be e i
ther 0, 1, or 2, we conclude that the m atrix Mn  
involves three independent param eters. We intro
duce them by writing

Mfl = a (c -  d)i/>f ’ Vi +Ad ‘ Ф*Ф, ‘ Ф}

+а ( 1 - с - 2 спфг ф: ф1-ф; ,  (ю )

with ф , and ф/ the isospin wave functions of and 
nt , respectively. Substituting

( i i )

and writing our Eq. (10) component by component, 
we get the basic form

/ М .. M * -\  1
( \ - c - d d с

M a.  =Л d 1 - 2  d d
\ M - M .0 M _ _ )  '\ с d 1 -  с

(1 2)

It is  useful to consider the form which the above 
equations take when no distinction is  made be
tween ir4 and я", but only between charged and 
neutral pions. Equation (7) is  then replaced by

d M l l ‘ zT*;*) d M lV  iT A\~) d M ll'N r -.+)r  d 2o(ll'NT-,-)r
dk2dk% ' dt?dk% dk2dki *■ dk*dkLB

= IW(zr-*;*2ftS)]
d M ll'z T 1-, 0) d*a(ll'NT-, 0 ),

dk2dJti
— — dk*dk%

(13)

with N a  2x2 m atrix. When the target T is  iso
topically neutral, the m atrix N can be expressed 
in term s of the param eters of Eq. (12), giving

(Н+л N*°\mA П - d  Ы  \
Wod, Woo i  \ d 1 - 2 d) ■ (14)

The dependence on the param eter с has dropped

out, leaving only two param eters which determine 
the nuclear corrections in this case.

D. Applications

Equations (13) and (14) can be applied In two 
ways. F irst, they can be used to generate a spe
cific theoretical prediction for the ratio R ‘ of Eq.
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(2 ), by in tegrating with respect to k1 and fej [with the la tte r integration extending only over the (3, 3)- 
resonance region] to give

o ^ + T - i^ + T ' + rr0)* f  <U?dkqA(T; k7k£)id(T; f tNp +)r |
J  ( L dk dk0 dk dkn J

* [ 1 -  2d(T- к Х ) ) ~ - {̂ $ ' ! 0)- } .

v l v t * T - » ‘  + T’ * i r°) = J dk*dkL0A(T; k2kL0) ^ т'> ^  ^ ^ d k 2̂ '  ~>f]

> [ l - 2d ( T ; ^ ) ] ^ ^ g r l O ) z |  . (15)

In Sec. Ш we w ill evaluate Eq. (15) (and thus R ’ ) 
using our m u ltip le-scattering model for M and the 
weak pion production calculation of Hef. 5 as in
puts . 10

The second way of applying Eqs. (13) and (14) is 
to use them in a purely em p irica l fashion to ex
trac t the charge-exchange m atrix  param eters 
A(T\k2k%) and d(T\k2k%) from a  comparison of pion

electroproduction on free nucleons with pion e lec 
troproduction on a nuclear targe t T. Specifically , 
we find from Eqs. (13) and (14) that

НееТ)-г(ееЫт) 
d(T,k fej) [ 2 - r ( e eN T) ] [ l +r ( e e T)] ’ (16)

with

. . / . . ^ ^ < i 2a( eeT:+)  d 7o ( e eT ;  -ЯГ<* V (eeT : 0)"|_1 
H e e T l - l -  dk,dki  + dk2dkS J L  dk'dkt j  '

г(жжм \ Г *)w d2a(eeNT\ - ) , ]  \d2o(eeNr; О),]-1r ( « v r)= [- - ^ d iL ~  * J L J •

electroproduction charged-p ion-to-neutral-p ion ratio s on ta rge ts  T and NT, and

Г d 2a(eeT;  +) ' * j ( e e r ,0 )  d 2a ( e e T : - W d 2a{eeNT; +), d 2a(eeNT: 0 ) , d 2a(eeNT\ - ) , " ]_1
A(T,k fe0) = [  JL dk2dki + +“  d#dk{ J  ■

(17)

(18)

Once d(T;k2k£) and A(T;k2k%) have been extracted 
from electroproduction data by use of Eqs. (16 )-
(18), they can be substituted into Eqs. (13) and (14) 
and used to calcu late the nuclear corrections to 
weak pion production on the sam e target T. Note 
that Eqs. (16) and (17) for d a re  independent of the 
absolute normalization of the electron cross sec 
tions, and that A, which does depend on absolute 
norm alization, appears as a sim ple m ultip licative 
factor in both numerator and denominator of Eq.
(2) for R'. Hence the relation  between R and R'  
given by our em p irica l procedure is  a lso  indepen
dent of the absolute normalization of the electron 
c ro ss sections used to extract A and d.

In many applications it is  convenient to deal not 
with the doubly differential c ro ss sections of Eq.
(4), but rather with these c ross sections integrated

in excitation energy over the (3, 3)-resonance r e 
gion,

d 2a(ll'T-,±0) f  LdMll 'T;±  0)
“ - W - ___ ___  dk2dkt ■

(19)
In order to w rite  sim ple form ulas d irectly  in 
term s of these integrated cro ss sections we note 
that, to a good f irs t  approximation, the k% depen
dence of the doubly d ifferential cross sections is  
governed by the dominant (3, 3) channel, and hence 
is  independent of the Identities of I and /' and of 
the pionic charge. This near-identity of excitation 
energy dependence allows us to make the averag
ing approximation of replacing Eqs. (7), (12), (13), 
and (14) by equations of identical form written di
rectly  in term s of the cro ss sections of Eq. (10),
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with M and J? the lepton-independent m atric e s

[* ( !■ ;* • ) ] - a  |
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‘doUl ’T; +) 1 ~do(ll‘ Nr ; +Л
dk2 dk2

da( l l 'T ; 0) = № ; * ’ )] dn{U'NT\ 0)
dk2 dk2

doUl'T; - ) do(l l 'Nr \ —)
dk2 dk2

(20 )

г - d 3 z
3 l - 2 2 3
с 3 l - г

23 4
1 - 2  d,1

(21)

<b(U'T\+) doUl'T; - )  
dt?  + dk*

da(U'T\ 0)
di e

= № * > ) ]

M l l ‘NT\+) do(ll'NT\ - )  
dk2 * d&

MU'N r ;0 )
— d j T ~

Because the excitation energy kf, has been in te 
grated over,1 we can use  free  nucleon c ro ss  sec 
tions on nucleon ta rg e ts  at r e s t  In the right-hand 
side of Eq. (20); hence we have omitted the sub
scrip t F which indicated sm earin g  of the produc
tion c ro ss  section over nucleon F erm i motion. 
(Any residua l effects of nucleon F erm i motion on 
the exc ita tion -en ergy-in tegrated  pion production 
c ro ss sections w ill, in th is form ulation, be ab
sorbed in the phenomenological m a tr ic e s  M  and 
7f.) The form ulas for ex tracting  Л(Т; fe2) and 
2(T;fcJ) from electroproduction data a re  iden tica l 
in fo rm  to Eqs. (16)-(18):

T(eeT) -V( eeNr )
d(T j Л2) - [2 _ ?[eetfT)][i + f(eex)] '

f  do(eeN Ti +) do(eeN T', -)"| Гda(eeN T\ 0)1_I
:2 '  dk2 JL dk2 J :L

J \ - \ d° ( e e T '>+) , M e e T ) 0 )  du{eeT; - )  ]  \da(eeNT\ +) da( e eNT\d) . do ( e eNT\ -) ]* 1
dk2 + dk2 ---- JL dP------+----- d k ^ ~  +---- dP----- J

In term s of d  and A, the expression  for R'  analogous to Eqs. (2) and (15) is

R '(T ) =
j  dk*A(T-,k2)\d{T-,k2)

2 f d t f K T - . k * )  2(Г;Лг)

d a { v u V ii N T -, +) | d a j v f !  v u N T ; - )
dk2 dk2

d c ( v uu. NT\+)+do ( vuii~NT; - ) 'i
dk2 dk2

+ [ l - 2 ? ( T ;k a)] do ( v  u VyN- 
dk1

iO )j

♦ [1 -  22(T;

(22a)

(22b)

(23)

Equat ions (20)-(23) a r e  in a f o r m  c o n v en i e n t  f o r  
d i r e c t  c o m p a r i s o n  with ex p e r i m en t a l  da ta , and  
c o n s t i t u t e  o u r  p r i n c i p a l  p h e n o m e n o l o g i c a l  r e s u l t .

We continue by introducing one further averaging 
approxim ation. To the extent that d(T;k2) and 
A(T; k2) a re  slow ly vary ing  functions of k2 (and this 
is  suggested by the numer ic a l work of Sec. Ш) we 
can rep lace  them by average values d(T)  and A(T) 
in the in teg ra ls  of Eq. (23). The param eter A{T) 
then can ce ls between num erator and denominator 
and the in tegration  over k2 can be exp lic itly  c a r 
r ied  out. We a re  left with a sim ple form ula r e 
la ting  Д ' to R.

with

r ( v v VuN.) - a ( v„ vuNT\+) + o ( v u V„NT; - )  
o(i»(1i>„N1\ 0)

=o ( v u» -N p+ )  + o ( Vil» -N T; - )  
а (у„д  NT) 0)

(25)

Я '(Г )«Л d(T)r(v„ vuNr ) + l - 2 3 ( T )  
d(T)r(v„  д -NT) + 1 -  2d(T) (24)

the charged-p ion-to-neutral-p ion  ra t io s  produced 
on an average nucleon targe t by neutral and 
charged weak curren ts, re sp ec tiv e ly . In the ap 
proximation of Eq. (24), nuclear ch arg e-exchange 
effects a re  iso lated in the sing le  param eter 3(T). 
This description is  p a rticu la r ly  useful for giving 
a sim ple com parison of the c h a r g e -exchange co r
rections expected for d ifferent nuclear ta rg e ts  T.



2130 A D L E H ,  N U S S I N O V ,  A N D  P A S C H O S 9

We conclude by pointing out an experimental 
problem which will limit the direct applicability 
of the phenomenological results of Eqs. (16)—(23). 
In all of the above equations, we have assumed 
that the angular variables of the produced pion are 
unobserved, which corresponds to an experimen
tal situation in which the acceptance for produced 
pions is 4tt sr. However, In realistic experiments 
observing the weak production and electroproduc
tion of pions, the pion acceptance will, in general, 
be rather small. Since the pion angular distribu
tions do depend on the leptons involved in the pro
duction process ,11 the Introduction of acceptance 
restrictions will tend to spoil the simple relation 
between nuclear charge-exchange corrections to 
weak production and electroproduction of pions 
which we have developed above. There are two 
possible ways of dealing with this problem. One 
would he to simply go ahead and apply Eqs. (21)- 
(23) to the limited-acceptance case, interpreting 
the cross sections on T and NT as being limited to 
the actual pion acceptance. If both the value of 3 
extracted from electroproductionu and the pion 
charge ratios observed in weak production were 
found to be only weakly acceptance-dependent, one 
would have an a posteriori justification for apply
ing the phenomenological recipe of Eq. (23) to tl̂ e 
acceptance-limited case. An alternative procedure 
would be to develop a detailed model for the 
charge-exchange parameters d, c, and A, and then 
to numerically fold these charge-exchange correc
tions into experimental or theoretical cross sec
tions for pion production on a free-nucleon target, 
taking acceptance limitations into account. A l
though, in this approach, one would forego the 
possibility of direct phenomenological application 
of electroproduction data, a comparison of the the
ory with electroproduction experiments on nuclear 
targets would still be essential to test (and pos
sibly revise) the charge-exchange model. Once 
validated in this way, the charge-exchange param
eters could be substituted into Eqs. (15) and (23) 
to generate predictions for weak-production ex
periments. The question of constructing a suitable 
model for the charge-exchange parameters will be 
pursued further in Sec. Ш.

ID. MULTIPLE-SCATTERING MODEL

We proceed in this section to develop a detailed 
multiple-scattering model for nuclear charge-ex
change corrections. Our motivations are, first, 
to get an estimate of the magnitude of charge-ex
change corrections to be expected for various tar
get nuclei, and second, as discussed above, to 
facilitate comparison with experiment in the real

E. Discussion istic case In which there are pion acceptance lim
itations.

A. Formulation o f the model

Our model closely resembles (with differences 
which we explain below) a successful sem iclasai- 
cal treatment of ir‘ production in proton-nucleus 
collisions which has been given by Sternheim and 
Silbar.3 The ingredients of the model are as fal
lows:

(1) We regard the target nucleus as a collection 
of independent nucleons, distributed spatially ac
cording to the density profile determined by elec
tron scattering experiments. For aluminum and 
lighter nuclei, it is convenient to parameterize 
the nucleon density in the so-called "harmonic 
well” form

p(r) = p(0)e - '2/Rj^l + c ^2  + c , ^ j r ] f (26)

with the values of the various parameters given in 
Table I.

(2) In discussing pion multiple scattering within 
the target nucleus, we regard the nucleons as fixed 
within the nucleus, thus neglecting Fermi motion 
and nucleon recoil effects. [A numerical estimate 
of the importance of these effects will be made In 
Sec. Ш В2 below.] This approximation allows us 
to characterize Interactions of the pion with the 
constituent nucleons by a unique center-of-m ass 
energy W, related to the lepton energy transfer
ki by Eq. (6b). Through all stages of the multiple 
scattering we approximate the target nucleus to be 
isotoplcally neutral, composed of equal numbers 
of protons and neutrons. (See Added Note.)

(3) Interactions of pions In the nucleus are

TABLE I. Nuclear density param eters.* *b

Nucleus ZTA С ct R (F) (Ref. c) Яр (0) (F)“ 2

5B10 1 0 2.45 0.251

,C“ 1.333 0 2.41 0.268

,N14 3-667 0 2.46 0.263

, o “ 1.600 0 2.75 0.247

..A l" 2.000 0.667 1.76 0.241

"The data are taken from  H. R. Coiiard, L. R. B. Elton, 
ami R. Hofstadter, in Landoit-Bomstein: Numerical 
Data and Functional Relationships; Nuclear Radii, 
edited by K.-H. Hellwege (Springer, Berlin, 1967),
New Series, Group I. Vol. 2. 

bThe density p(r) is normalized so that J ifirp {r )= A . 
cF o i  the first four nuclei, the nns charge radius is 

equal to R. For aluminum, the rma charge radius 
corresponding to the listed parameters is 2.91 F.
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treated in the approximation ol complete incoher
ence, involving the use of pion-nucleon c ro ss sec 
tions rather than scattering  amplitudes in the 
m u ltip le-scattering calculation. In the region of 
the (3, 3) resonance, pion production and more 
complex hadron production channels a re  closed, 
and so there a re  only two relevant c ro ss  sections. 
The f ir s t  is  the c ro ss section per nucleon a lb,(K') 
for pion absorption v ia  various nuclear p rocesses; 
for this quantity we use the best-fit value obtained 
by Sternheim and Silbar in  their study of pion pro
duction by protons,

J T.<0.788M .

(27)
where

T = 2 Mr

To allow for the considerable uncertain ties in th is 
expression for a^t, we examine num erica lly  the 
effect on the charge-exchange corrections of m ul
tip lying Eq. (27) by facto rs of s  or 2. (See also  
Added Note.) The second c ro ss  section needed is  
the usual e la s tic  c ro ss  section for pion-nucleon 
scatte rin g . Since in the (3, 3) region the / = j  pion- 
nucleon c ro ss  section is  v ery  sm all, we neglect it 
en tire ly  and regard  a ll pion-nucleon scattering  a s  
proceeding through the J  =| channel. The e la s tic  
c ro ss  section is  then sim ply proportional to the 
c ro ss  section

(HO (28)

for which a sim p le p aram eterization  i s  given in 
Appendix C. In o rder to so lve the pion m ultip le- 
scatte rin g  problem , we actua lly  need the d iffer
en tia l c ro ss  section for e la s t ic  scatte rin g ; in the 
approximation of (3,3)  dominance, th is is  given 
by

da,
d a ocoI +>(l^ )( l + 3 cos2ф) , (29)

with ф the pion sca tte rin g  angle.
(4) When a  pion is  produced by leptons incident 

on a  nucleus or undergoes subsequent re sc a t te r 
in gs, with sm a ll momentum tran sfe r to the nuclear 
system , the corresponding production or sc a tte r 
ing c ro ss  section i s  reduced by the Pau li exclusion 
princip le.* We take th is effect into account, with
in the fram ework of the independent nucleon pic
tu re , by m ultip lying the pion-leptoproduction 
c ro ss  section and the pion-nucleon resca tte r in g  
c ro ss section by respective  reduction factors 
g (W,  fe3) and h[W, ф). Form ulas for these factors 
a re  given in Appendix C. Neutrino qu as ie la s t ic

scattering  experim ents at sm a ll momentum tran s 
fer k3 provide some em p irica l evidence for the 
presence of the production factor g .  The argum ent 
for including h is  le s s  com pelling, s in ce  we a re  
using a sem i c la s s ic a l p icture , with fixed constit
uent nucleons, for trea tin g  the pion m ultip le  sc a t
tering in the nuclear medium , and in a  sem ic la s -  
s ic a l p icture there a re  no P au li effects. To take 
this objection13 into account, in  the n um erica l work 
below we a lso  ca lcu la te  re su lts  for the c a se  in 
which Л is  rep laced  by unity.

(5) The approximation of keeping only I  = § pion- 
nucleon scatte rin g  allow s us to reduce the prob
lem  of ca lcu la tin g  the charge-exchange m atrix  M 
to a  one-component sca tte rin g  problem . To see 
th is we let

(30)

denote the pion charge m u ltip lic it ies  in it ia lly  p re s 
ent in  a  beam of pions, a t a  fixed isobar energy 
W. A sim ple isosp in  C lebsch an a ly s is  then shows 
that when the pion beam undergoes a s ing le  sc a t
tering on an equal m ixture of protons and neutrons 
through the / = § channel, the effect is  to rep lace  
ф by  Qip, with Q the m atrix

(31)

Obviously, the natural way to describe a  m u ltip le- 
scattering  p rocess in which Q ac ts on repeated ly  
is  to decompose ф into a  sum of e igenvectors of 
Q. These eigenvectors, with their corresponding 
eigenvalues X, are

(32)

and the decomposition reads
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C, = s[ п(( О  + я((я0)+ л ,(О ] ,

Ci = i l  »|(w*) — » ( (» “) ] ,

С, = - 5 Я | ( » ° )  + i [ n , ( 0  + « (( * ' ) ] .

(33)

The effect of a m ultip le-scattering  process on Eq.
(33) w ill be to lead to a final pion m ultiplicity state 
ф, , re lated  to ф, by

(34)

with /(A) a  function of the eigenvalue A which con
ta ins a ll geom etric and dynamical information con
cern ing nuclear param eters , magnitudes of c ross 
sections, etc. Taking now ф, to be the in itia l d is
tribution of lepto-produced pions in target T,

dWWN.rl+)
dk?dk% 

dMl l 'NT\ 0)*,=g{W,k2)

and ф/ to be the distribution of exiting pions,

d 2<j(ll'T: +) 
~dk'dk{

dMU'T-.O)
db2dk$

d 2<j(ll'T;- )  
dk'dkb

(35)

(36)

we find that the connection of Eq. (34) takes the 
form of Eqs. (7) and (12), with

A=g(W,k2)a, <j=/(1) 

c = i - i/ ( J ) / / ( l ) + i/ ( i ) / / ( l )  , 

d = i [ l -/ (*)//< !)].

(37)

(6) We turn finally to the function /(л), which 
contains the dynamical d eta ils  of pion multiple 
scattering in the nucleus. The precise statement 
of the problem defining/(a) is  as follows: We in
troduce an in itia l distribution of monoenergetic 
pions into a nucleus, with the pion density propor
tional to the nuclear density [given by Eq. (26)]. 
The pions are  multiply scattered , with absorption 
cross section given by Eq. (27) and with elastic  
scattering cross section given by Eq. (29). At each 
e lastic  scattering the pion number is  multiplied 
by a factor A. The function/(A) is  then defined as 
the expected number of pions eventually em erging 
from the nuclear medium, normalized to unit in
tegrated in itia l pion density.

To get a simple (and, it turns exit, surp ris ing ly  
accurate) approximation to / (a), we rep lace the 
actual angular distribution [ Eq. (29) tim es 
h(W, co s0 )J by a modified e lastic  scattering d is
tribution, in which a ll forward-hem isphere sca t
tering (0 «ф  « я / 2) is projected onto the forward 
direction (0  = 0 ), and a ll backward-hem isphere 
scattering (ir/2 «  ф s  ir) is  projected onto the back
ward direction (ф = и). In this approximation, once 
a  pion is  produced in the nucleus, it sca tte rs  back 
and forth along its  in itia l line of motion until it 
either is  absorbed or it  leaves the nucleus. Since 
both the in itia l pion distribution and the in terac
tion probabilities are  proportional to nucleon den
s ity , the nucleon density profile along the line can 
be scaled out of the problem by an appropriate 
change in length variab le . Thus, for each line 
passing through the nucleus the expected fraction 
of pions which exit is  independent of the density 
profile along the line, but depends only on the in
tegrated density along the line (the so -ca lled  opti
ca l thickness), which we denote by L. Once we 
have solved for the one-dimensional exit fraction 
/(A, L), we need only average over the distribution 
of optical thickness in the nucleus to get an ex
pression  for /(A).

To put these rem arks in quantitative form , let 
us take the central nucleon density p(0 ) as the 
“standard density” re la tiv e  to which densities 
e lsew here in the nucleus a re  m easured. For given 
impact param eter 6 re la tiv e  to the center of the 
nucleus, the optical thickness is  then given by

« » - £  ............

...... .............Н * ! ) Ч И * ( $ Г ] } -
(38)
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Averaging over impact param eters , the relation 
between /(A) and /(A., L) is  given by

f ' b d b  L(b) f (\.L(b))
I '  bdbL(b)

/(x)=- (39)

The one-dimensional problem defin ing/(A, L) is  
formulated p rec ise ly  a s  follows: We consider a 
uniform one-dimensional medium of length L, in 
which pions a re  uniformly in itia lly  produced mov
ing (say) to the right. The pions propagate in the 
medium with inverse interaction length к, given 
in term s of the nucleon density and the absorption 
and scattering c ro ss  sections by

к =p(0)oua,

<гИ| = о.ь1(И')+ Ь 1*>(И')[А*(И0 +h.{W)].
(40)

The factors h t and h_ d escribe the forward- and 
backw ard-hem isphere projections of the Pauli r e 
duction factor h(W, ф),

h t = i  I Bin<pd<fi(l + 3 c o s 2(p)h(lV, ф) ,
•'o

h .  = i  f* sin<t> dip[l + 3 cob* <jS)h(W, ф) ,
(41)

and a re  exp lic itly  calculated  in Appendix C. At 
each interaction the pions a re  fo rw ard-scattered  
with probability and back-scattered  with prob
ab ility  f i .  (and, of course, absorbed with probabil
ity  1 -  i i+-  ц_),  with

(42)

and, concomitantly with each scattering , the pion 
number is  m ultiplied by a factor A. The desired  
quantity /(A , L) is  the expected number of pions 
eventually em erging from the medium, norm alized 
to unit in tegrated in itia l pion density. An explic it 
expression  for / is  calculated in Appendix A [see 
Eq. (A12) and Eqs. (A 25)-(A 27)], as w ell a s  ex
p ression s for f t and/_, the expected fractions of 
pions eventually em erging with and without a  net 
r e v e r s a l of d irection  of motion along the line. In 
Appendix В we com pare the approxim ate solution 
for /(A) given by Eq. (39) with the exact solution 
in the sim ple geom etry of a uniform sphere com
posed of m ate r ia l which sca tte rs  iso trop ica lly , 
and find very  sa tisfac to ry  agreem ent. Since the 
actual angular d istribution of in terest to us, 1 + 3 
cos2ф, i s  a lread y  peaked in the backward and for
ward d irec tio n s,14 our approximation should be at 
le a s t  a s  accurate  for th is case  a s  it is  for handling 
isotropic scattering .

This com pletes the specification  of our m ultip le- 
scatte rin g  model. As we have a lread y  noted, it 
c lo se ly  re sem b les the calcu lation  of Sternheim

and S ilbar, and the read er is  re fe rred  to Ref. 3 
for an excellen t, detailed  an a ly s is  of the approxi
mations and physica l assum ptions which a re  in 
volved. The aspects in which our model d iffers 
from that of Ref. 3 a re  the following: (1) We take 
into account the d iffuseness of the nuc lear edge, 
ra th er than treating  the nucleon d istribution  as a 
uniform sphere; (2) we take P au li exclusion  effects 
into account in a crude w ay; and (3) we use an 
improved approximation for solving the pion m ul
tip le -sc a tte r in g  problem. Instead of using the 
back-forward approximation described  above, 
Sternheim and S ilb ar use the considerab ly  le s s  
accurate  approximation of treating  a l l  s c a tte r in g  
as purely forward scatte rin g . A com parison of 
their approximation with the exact solution, in the 
case of a  uniform sphere composed of m a te r ia l 
which sc a tte rs  iso tro p ica lly , is  given in Appendix 
B.

B. N um erical calcu lations

We turn now to num erical ca lcu lation s, in which 
we combine our model for nuclear ch a rg e -ex 
change corrections with the theory of e lectrop ro 
duction and weak production of pions from fre e -  
nucleon targets developed in Ref. 5. For the had- 
ronic weak neutral cu rren t, we adopt the W ein
berg-m odel form 1*

J neuual _
X (43)

we w ill say  a few words below about v a rian ts  of 
this model in which Eq. (43) contains an additional 
iso sca la r  curren t. We assum e throughout an in c i
dent lab neutrino energy k\0 = \ GeV and a nucleon 
e la s tic  form factor3

* * ( * ') -
1.24

[1 + * 7 (0 .9  GeV/c)J]a
(44)

and take integrations over the (3, 3 )-resonance r e 
gion to extend from the pion production threshold 
up to a maximum isobar m ass of W -  1.47 GeV- In 
our calculations on aluminum, we weight the f re e -  
nucleon production c ross sections according to the 
actual neutron/proton ratio  in aluminum ( i.e . , we 
take NT = 13p + 14n), but as em phasized above, we 
adopt the approximation of isotopic n eutra lity  in 
calcu lating charge-exchange corrections.

1. Calculat ion o f  R ' f r o m  Eg. (15)
(with F e r m i  mot i on n e g l e c t e d )

In Table П we present re su lts  for the ra tio  R ‘ 
on an aluminum target, calculated by using Eq. 
(15) to fold the IP-dependent charge-exchange m a
trix  into the production c ro ss  sections from a 
free-nucleon targe t at r e s t  [ i .e ., we neglect the 
Ferm i-m otion average sym bolized by the sub
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scrip t F in Eq. (15)]. In the second column we 
tabulate

BtN °(v ,+NT-  i>u +N'T +пл)
' T' 2aW„*NT-  д* +JV? -ьтг0) * (45)

which is  the ratio  p redicted by the production 
model when no charge-exchange corrections are 
made. In the third  through seventh columns we 
tabulate values of the charge-exchange-corrected 
ratio  R' obtained under various alternative a s 
sumptions. The column labeled “no variations" 
is  the re su lt  obtained from the m ultip le-scatter
ing model of Sec. ША above; the next three col
umns show how this re su lt  changes when the 
Pau li factors h  in Eqs. (40) and (42) are replaced

by unity, or when the absorption cross section of 
Eq. (27) is modified. The predictions for R‘ are 
evidently quite insensitive to these variations.
The seventh column gives the result for R' when 
a ll isoscalar multipoles are omitted. Since the Iso- 
sca lar muitipoles only contribute quadratical ly to 
Д ',1" this column gives a  lower bound on R' for any 
variant of the Weinberg theory in which the had
ronic neutral current differs from Eq. (43) by 
purely isoscalar terms. In the final column we 
have used our production and charge-exchange c a l
culations to generate simulated pion weak-produc- 
tion and electroproduction cross sections on alu
minum, which are then used to evaluate the lower 
bound on R' derived by Albright et a l ."  in the iso - 
sca lar-target approximation,

л  -  и - - 2 J - ,

„ Л 1 " ) . a[vu n  ,SA1 ; 0) (46)

da(ee „А1” ; 0) 
dk3

We see  that the bound of Eq. (46) provides a s a t is 
factory estim ate of Rf for sm a ll values of sina0r .

We turn next to Table Ш, where we have tabu
lated  charged-pion to neutral-p ion production 
ra tio s  for the usual charged weak current. The 
f ir s t  column g ives the standard 5 :1  prediction for 
an iso top ica lly  neutral target, assum ing complete 
/ - !  dominance. When /=£ m ultipoles are  taken 
into account, 10 the prediction is lowered to 3 .67:1 ,

as shown in the second column. F inally, in the 
third column we give the prediction of 2.63 : 1 
which results when Eq. (15) and its analog for 
charged pions are used to (old in charge-exchange 
corrections for aluminum . 19 It would obviously be 
very desirable to try to check this prediction for 
f  simultaneously with the experimental determ ina
tion of R'.

TABLE П. Calculations of Л'(13А12Т) baaed on Eq. (15).

JJ'fljA l") Simulated
Isoscalar Albright et al .

No Pauli factors with with multipoles lower bound
8in26y R ( f lT) 2 varia tion s Л—*1 W i 2<*.ь. omitted on Д'(|3А127)

0 0.697 0.422
0.1 0.573 0.346
0.2 0.465 0.280
0.3 0.374 0.225
0.4 0.300 O.180
0.5 0.242 0.146
0.6 0.200 0.122
0.7 0.175 0 .108
0.8 0.166 0.104
0.9 0.174 O . l l l
1.0 0.198 0 .1 2 8

0.396
0.325
0.264
0.212
0.170
0.138
0.115
0.102
0.099
0.106
0.123

0.411
0.337
0.273
0 .220
0.176
0.143
0Д19
0.106
0 .1 0 2
0.109
0.126

0.435
0.356
0.289
0.232
0.186
0.150
0.125
0 .1 10
0.107
0.113
0.131

0.422
|0.346
0.280
0.225
0.180
0.145
0 .120
0.106
0.102
0.108
0.125

0.408 
0.321 
0.245 
0.179 
0.123 
0.078 
0.043 
0.019 
0.004 
0.000 
0.006

»H*htIv fimBllor than those plotted in S. Adlar
•The numbers ifl th is  column are align У the axial-vector maaa param eter
[P hys. Rev. D 9, 229 (1974)1. bec»use '̂ r e - n .  calculation, and have also weighted the
I See Eq. (44)1 from 1.0 to 0.9 GeV/с  n the n<mtron/proton ra tlo in aluminum,
production croaa sectlona accord ng
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TABLE Ш. Charged-p ion-to-neutral-pion ratio  r (v uji"T ).

2135

+P) г(У„;ГЛГ-) г ' ^ м - и А 1» ) A l")
pure (3,3) with / = i from Eq. (15) and from Eq. (48)

approximation corrections charged-pion analog

5 3.67 2.63 2.68

2. Ave ra g in g  approximat ions , compar i son  
o f  d i f f e r ent  nuc le i ,  and e s t ima t e  o f  

nuc le on mot ion e f f e c t s
We conclude with a test of the averaging approx

im ations introduced in Sec. П and a  discussion of 
re la ted  topics. To study Eqs. (20)—(23), we fold 
together the electroproduction and charge-ex 
change m odels, as in Eq. (15), to give sim ulated 
data for pion electroproduction c ross sections on 
aluminum. Substituting this data into Eqs. (21) 
and (22) then gives the values for d and A tabulated 
in Table IV. The charge-exchange param eters ob
tained this way a re  seen to be nearly  Independent 
of the incident electron  energy k\a, and are  slowly 
vary ing  functions of it3 except in the region ft2 « 0 .3 , 
where P au li exclusion effects and I = ̂  multipoles 
a r is in g  from the pion exchange graph become im 
portant. Substituting the 2-GeV/c values of d  and 
A Into Eq. (23), and continuing to use our produc
tion model for the neutrino c ro ss  sections, gives 
the values of R' tabulated in the second column of 
Table V. In the th ird  column we tran scrib e  from 
Table П the values of R' obtained d irec tly  from 
Eq. (15); the good agreem ent ind icates that the av
erag ing  approximation is  working.

We turn next to the “double-averaged” approxi
m ation of Eqs. (24) and (25). We define the tilded 
charge-exchange p aram eters  by averaging the 
charge-exchange m atrix  over the leading IV-de pen
dent p art of the production c ro ss  section as ob
tained in the sta tic  approximation20:

J d W q ( W ) - b titi)(W)  *

a=/(D,
£ = T -  т / (4 ,)//(1) + ^/(т)/7(1)| 
£= 1 -  J ( j ) / f  (1)].

(47)

E xpressions for the resonant pion-nucleon s c a t te r 
ing c ro ss  section o, (S,j)(K^) and the pion momentum 
q(W) a re  given in Appendix C. E valuating Eq. (47) 
for aluminum gives d ( ]3AlJ1) =0.162, which, when 
substituted into Eq. (24) along with the charged - 
to-neutra l ra tio s tabulated in the second and th ird  
columns of Table VI, g ives the predictions for R' 
tabulated in the fourth column. These ag ree  w ell 
with the corresponding values of R' obtained d i
re c t ly  from Eq. (15). As another test of the “dou
ble averaged" approximation, we consider the fo r
m ula giving the charge-exchange co rrection s to 
the charged-to -neu tral ra tio  r ,

M („ A l" )+ [ 1 - d ( MA l » ) ] f ( , uu _ -^ ) 
r ( v uti  1sa i  ) -  1 _ 2d (]sAlJ7)+ if(1!>Al")>:(vMM'Nr )

(48)

Substituting f  = 3.67, d = 0.162 into Eq. (48) g ives 
r '  =2.68, as tabulated in the final column of Table 
Ш. This again is  in close agreem ent with the v a l 
ue of f ' obtained d irec tly  from Eq. (15).

As we rem arked in Sec. П, the double-averaged 
approximation provides a  convenient form at for 
comparing charge-exchange effects in  different

TABLE IV. Sim ulated <f(lsA ln ;* *) airf A ( „ A l27;* *) obtained from electroproduction and 
charge-exchange co rrection  m odels.

* ft = 2 GeV/c * 10= 6 Gey /с
k5 (GeV/c)1 rff^Al27̂ 2) A (lsAlJ ,;fe *) d(„A ln ;* J) ^tuA l27̂ *)

0 0.191 0.606 0.188 0.608
0.1 0.181 0.686 0.179 0.682
0.2 0-168 0.702 0.167 0.694
0.3 0.164 0.702 0.162 0.6B4
0.4 0.160 0.698 0.158 0.690
0.6 0.157 0.694 0.154 0.684
0.B 0.156 0.6S0 0.152 0.680
1.0 0.155 0.690 0.150 0.676
1.4 0.155 0.68B 0.147 0.672
1.8 0.156 0.686 0.145 0.666
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reco il and Fermi-motion effects should be given 
by the simple randomizing approximation of r e 
garding the pion energy as a constant throughout 
its motion in the nucleus, but replacing the pion- 
production and charge-exchange-scattering cross 
sections by corresponding cross sections which 
are smeared over nucleon Ferm i motion. Evalu
ating Eq. (41) using these sm eared cross sections 
gives J ( JSA1") = 0.142, as compared with the value 
of 0.162 which resu lts when nucleon motion is ne
glected. We see that the change in d is  re la tiv e ly  
sm all and is  in the direction of reducing the size 
of charge-exchange effects; we expect these quali
tative features to survive in a  more careful tre a t
ment of nucleon-motion effects. In Table УШ we 
sum m arize the values of J („ A lal) obtained in our 
original model and when various modifications are 
made.

C. Pion angular d istributions

Up to this point we have only d iscussed charge- 
exchange corrections to cro ss sections in which 
the pion angular variab les have been integrated 
out. Our model, however, makes specific pred ic
tions for angular distributions as w ell, and a l
though they are much more subject to e rro r  than 
the Integrated predictions , 11 they a re  essen tia l for 
describing experim ental situations in which the 
pion acceptance is  lim ited . To describe the angu
la r  distribution predictions, we le t the column 
vector

/ do{NTq; + )\  
do{NTq) = I do(NTq; 0) I (49)

\do(NTb - ) /

denote the free-nucleon-target pion-production 
cro ss section, with the pion em erging in direction 
q. In the backw ard-forward scattering approxi
mation, after undergoing nuclear interactions the

TABLE VI. Test of second averaging approximation for R'  {„A l" ).

Vft N T)

Я '
From  Eq. (24)

( i jA l27)
From Eq. (15)

0 0.692 3.67 0.432 0.422
0.1 0-697 3.67 0.356 0.346
0.2 0.707 3.67 0.289 0.280
0.3 0.727 3.67 0.234 0.225
0.4 0.763 3.67 0.189 o .ieo
O.fi 0.820 3.67 0.154 0.146
0.6 0.903 3.67 0.129 0.122
0.7 1.01 3.67 0.116 0.108
0.8 1.12 3.67 0.112 0.104
0.9 1.19 3.67 0.119 o . m
1.0 1.22 3.67 0.136 0.128

TABLE V. T est of f i r s t  averaging approximation for

e ln 2̂
* '< „ A l27)

P rom  Eq. (23) From  Eq. (15)

0 0.433 0.422
0.1 0.355 0.346
0.2 0.288 0.280
0.3 0.232 0.225
0.4 0.186 0.180
0.5 0.151 0.146
0.6 0.127 0.122
0.7 0.113 0.108
0.8 0.109 0.104
0.9 0.116 0.111
1.0 0.134 0.128

nuclei. In Table VII we have tabulated the charge- 
exchange param eters a, c ,  and d  for a range of 
ligh t and medium-weight nuclei up to aluminum. 
The key point to notice is  that the param eter d  is  
slow ly vary ing , Indicating that charge-exchange 
effects in different medium-weight targets, such 
as, for example, freon (CFaBr) and aluminum, 
should be quite s im ila r .

F inally , we apply the double-averaged approxi
mation to estim ate the effect on our num erical r e 
su lts of including nucleon Ferm i motion and nucle
on reco il. Obviously, to include nucleon motion in 
a r e a lis t ic  way one would have to go outside the 
fram ework of the one-speed scattering theory used 
above, since once the nucleons a re  not regarded as 
fixed the pion changes energy in each collision. 
Rather than attempting to follow these energy 
changes in detail (which would requ ire  an elaborate 
num erical calculation), we adopt a  simple approx
im ation which can be treated by the methods used 
above. We observe that in the (3, 3)-resonance r e 
gion typ ica l nucleon reco il momenta are  of the 
sam e order as the nucleon Ferm i momentum 
( - 1.6  Mw/c)\ hence a rough estim ate of nucleon-
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TABLE vn. Averaged charge-exchange parameters 
for various nuclei.

Nucleus 2 г d

SB>" 0.846 0.0363 0.125
. c " 0.811 0.0450 0.138

0.790 0.0498 0.144
«0 “ 0.807 0.0460 0.139

»AI” 0.724 0-0642 0.162

pion can em erge either in d irection q or with r e 
versed  d irection - q .  In Appendix A, in addition to 
calcu lating the total expected fraction of em erging 
pions /(X, L), we also  calculate the expected frac 
t io n s/ t (X, L), / .(A , L) which em erge, respective ly , 
with or without a net change in direction. Using 
these to define a forward charge-exchange m atrix 
M , and a backward m atrix  Af _ in analogy with Eqs. 
(12), (37), and (39),

/1  ~ c i ~dl d{ c , \
[ M, ]  = A t d t 1 -  2d, dt

\ c . <*. 1 - C i - d J  ’ 
At =g(W,k' )at , a t =/t ( l )

=  t M i > / / i U )  +  t M W / i ( l ) .  ( 5 0 )  

(1)1,

/ i W =  I,?bdb L ( 6 ) / J \ ,  1.(6 )]

I^bdb L{b)
we get for the charge-exchange-co rrected  pion an
gu lar  d istribution

M T q )  =[M J  do{NTb) + [*f J  do(NT -  q ) . (51) 
Since

[ M j + [ M  J  = [ M] ,  (52)

Eq. (51) im p lies that

do(Tq) +do(T - q )  = [ « ] [  da(Nr q) +da(NT -  $ )],

(53)

and so Eq. (51) reduces to our previous re su lt  for 
charge-exchange corrections when in tegrated over 
pion angle.

IV. CONCLUSIONS

We b rie f ly  sum m arize the re su lts  of the p reced
ing sections, with p articu la r  em phasis on their

im plications for further experim en tal and theoret
ic a l work.

(1) Our model ca lcu lations confirm  the suggestion 
of P erk ins2 that charge-exchange co rrec tio n s to 
weak pion production a re  a  sub stan tia l effect, even 
for re la t iv e ly  light nuclear ta rg e ts . To Improve 
our understanding of these co rrec tio n s it  is  im por
tant to do the analogous pion electroproduction ex
perim ents on nuclear ta rg e ts , both to im plem ent 
the phenomenological p rocedures of Sec. II and to 
test the predictions of the deta iled  m u lt ip le -sca t
tering model oi Sec. Ш. In the context of the m ul
tip le -sca tte r ing  model these electroproduction ex 
perim ents have an independent nuclear physics in 
te re s t, since they w ill perm it a determ ination  of 
the pion absorption c ro ss section ст.ьДИ') en tering 
into the S ternheim -S ilb ar9 calcu lation , independent 
of assum ptions about the magnitude of proton ab
sorption in nuclear m atter.

(2) Again, in the context of the m u lt ip le -sc a tte r 
ing model, it is  im portant to repeat the c a lc u la 
tions of Sternheim  and S ilb ar using the improved 
scattering  approximation developed in Sec. П and 
Appendix A (as extended* to the case  of a  neutron 
excess). This w ill p erm it the ex traction  of an op
tim ized pion absorption c ro ss  section  a ^ , ( W)  ap
propriate to the p rec ise  model which we use , and 
hopefully, may reduce some of the rem ain ing 
a re a s  of d isagreem ent between the S te rn h e im -S il
bar calculation  and experim ent.

(3) Our calculations suggest that the ra tio  
,R'(iSAl” ) is  la rg e r  than about 0.18 when the Wein
berg param eter is  in the cu rren tly  in teresting2 
range sinaflv & 0.35. We do not attach g rea t s ign if
icance to the fact that th is theo retica l e stim ate  of 
R' exceeds the upper bound of 0.14 reported  by
W. L ee ,1 since the d iscrepancy is  e a s ily  of the o r 
der of uncertain ties in the predictions of our p ro 
duction and charge-exchange m odels. We believe 
that a  reasonab ly conservative statem ent is  that if 
the hadronic neutral weak cu rren t has (up to iso 
sc a la r  additions) the form of Eq. (43), and if 
sin2fl,,s  0.35, then R‘ on an aluminum ta rge t is  in 
the neighborhood of a  15% effect. Thus, an exp er
iment capable of m easuring R' to a leve l of a  few 
percent w ill provide a  decisive test of Eq. (43), 
and if Eq. (43) is  co rrect, should perm it a crude 
determ ination of sin26v.

Added note.  A more recent calcu lation  of p ro 
ton-induced pion production on nuclear ta rge ts  by

TABLE УШ. Effect of m odifications of the model onrf(13Al,T).

Nucleon motion Pauli factors with with
No variation s Included A —1 Jcr 2(7 ib,

<?(lsA ln ) 0.102 0.142 0.187 0.175 0.14S
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R. R. S ilb ar and М. M. Sternheim [ Phys. Rev. С 8 , 492 (1973)] gives a best-fit <jlb, given by

3 0 т Ъ х Г 4 з т , '

51-3 “ b ( * - S л к й : ) ’ l « 3 < r . < 3 . 4 5 5 A f . .
(AN1)

Equation (AN1) is  substantially la rg e r  than Eq. (27) 
in the region of low pion energy; S ilbar and Stern
heim  attribute th is difference la rg e ly  to the inclu
sion of various nuclear corrections in their new 
calculation . Although it may not be consistent to 
use Eq. (AN1) in a model, such as ours, in which 
most of these nuclear corrections are neglected, 
we have nonetheless repeated the computation of 
Table П using Eq. (AN1), instead of Eq. (27), for 
a,bl. The effect is  to give values of R' which are 
about 17% la rg e r  than those tabulated in column 3 
of Table II.

We have also  repeated our calculations using the 
work of Ref. 9 to take the neutron excess in laAl17 
into account. The effect is  to reduce R' by about 
2.5% a s  compared with column 3 of Table □, indi
cating that the approximation of isotopic neutrality 
is  a  good one for |SAla’ . This calculation also  sug
gests that our neglect of changes in the nuclear 
isospin  in the course of the m ultip le-scattering 
p rocess (see Sec. ША 2) should cause an e rro r  of 
perhaps 10% at most in R'. S im ilarly , in analyzing 
the structure of M in Sec. ПС we have im p lic itly  
neglected a  possib le change in the nuclear isospin 
a r is in g  from the pion production step ( i.e ., we 
continue to treat an in itia lly  /=0 nucleus as being 
in an /=0 state after the pion is  produced); again, 
for nuclei which a re  not very  light, the e rro r  r e 
su lting from making this approximation should be 
sm a ll and the three-param eter form given in Eq. 
(12 ) should give a reasonably good description of 
M ■
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APPENDIX A: ONE - DIMENSIONAL 
SCATTERING PROBLEM

In this appendix we solve the one-dimensional 
m ultip le-scattering problem on which our approx
im ate solution for pion three-dim ensional multiple

scattering is based . 11 We b riefly  recapitulate the 
formulation of the problem given In the text. We 
consider a uniform one-dimensional medium ex
tending from x = 0 to x = L, in which pions are  uni
form ly in itia lly  produced moving (say) to the right. 
The pions move in the medium with inverse in te r
action length к, and at each interaction the pions 
a re  forw ard-scattered with probability ц .  and 
back-scattered with probability ji_, with a con
comitant multiplication of the pion number by a 
factor of A. The probabilities д .  and д_ sa tisfy  
the constraint

д .  + д _ « 1 ; (Al )

when Eq. (Al )  holds with the inequality, pion ab
sorption is present. The problem Is to find the ex 
pected numbers f t of pions eventually em erging 
from the medium either moving to the right ( / , :  
no o ver-a ll d irection rev e rsa l)  or to the left (/_: 
o ve r-a ll direction reve rsa l], norm alized to unit 
integrated in itia l pion density.

We begin by rem arking that since f , (/_) is  
even (odd) in the d irec tion -reversa l probability 
д_, it suffices to calcu late

(A2)

the expected amplitude for pions to em erge in e i 
ther d irection . We then recover f t by sp litting / 
into parts even and odd in д_. To formulate the 
m ultip le-scattering problem, we let P(xj\yi)dx be 
the probability that a  pion which after co llision 
rt -  1 was at coordinate у  moving in d irection i  (t 
= I , r  = left, right) is , after co llision n, in an in ter
va l dx at x moving in direction j .  From the defi
nitions of к and д , given above, one e a s ily  finds 
that P, which does not depend on я, is  given by

P(xr  | y r )  = д , ке""ь ~л в(х -  у ) , 
P(xl\yr) = 9{x -  у ) ,
РЫ\у1) = ц . к е - к(у- г)в{у -х ) ,  
P(xr\yl)  = д _ к е " 0 ( у  -  ж),

(АЗ)

with в the usual step function. Since the composi
tion laws for condit ional  probabi l i t i e s  a re  the same 
as the quantum -m echanical composition laws for 
probability am plitudes, it is convenient to intro
duce a  Dirac state notation by writing
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ac tly  n co llisions and a re  moving in d irection  j  is  

P ^ )  = j r % £ < x j | P " b O p (oV ) .  (A5)(ж?|Р*|}>»> = f  d z ' £ ( x j \ P \ z k ) ( zk\P\yi>, (A4) 
T

(jrj|p*|yt>= f  {xi\P\zk){zk\Pn-'l \yi) .
Jo ,

Letting pw (jii) be the in itia l density of produced 
pions moving in d irection i, we then find that the 
density p M(xj)  of pions which have undergone ex-

The number of pions NM e m e r g i n g  from  the m edi
um after exactly  n Interactions is  equal to the total 
number of pions p resen t after n in teractio n s le s s  
the number of such pions which in te rac t once m ore 
in the medium,

Nw  = J [\ t e [p « ( * l ) + P w (* r )]  -  f ' Ld x [ f ' Xd z K e - Kb,-*pM(xl)+ d z к е " ,<* " )р 0,)( * г ) ] .  (A6)

Since each interaction m ultip lies the pion number 
by one factor of A, the number NM must be 
weighted by X" in forming the expected number of 
pions leaving the medium. Taking p !a]{yi) to have 
the unit norm alized value

1p m ( y i ) = -  6i r , 

we get f in a lly  

/=  £

(A1)

(A8)

Equations (A3)-(A8) constitute the statem ent of 
our scattering  problem . To w rite  these equations 
more com pactly, we introduce the additional nota
tions

< z j| l| x j)  = 0U-*)eIJI

<z\Pu , l x r )  = Ke-*(‘ - ‘ ) e ( z - x ) ,  (A9)

(z|P iet|*0 =<св‘ “(,"*) 9 ( х - * ) ,  

in  term s of which Eqs. (A 5)-(A 8) take the form

/= ( V  dzdx{[ b{z - x ) - { z \ p w \xl)] j z  V p w U 0 +[ fi(*- * ) - < *  IP J * r > ]  T .  * P « t * r ) { .  
J ° Ja  V ~ o  1

g x - Pw (* j)  = Z ^ dy ( xi\  Ё  № \ * )

(A10)

Equation (A10) can be further sim p lified  by noting 
that

8(z

I
( A l l )

with

c 4 = Хд4 . (A12)

Substituting Eq. (Al l )  into Eq. (A10) we obtain,
f in a lly,

Equations (A12)-(A14) give a form al expression  
for / ; to evaluate th is expression  e x p lic it ly  we 
m ust determ ine the Inverse operator appearing in 
Eq. (A 14). W riting

<«|(1 -X iO ’ M yj) =&(г - у ) Ь ц  +F№\yj)  (A15)

and defining

/(yj)=  f  d z ^ F i z i l y j ) ,  (A 16)
• 6 i

we find that Eq. (A14) can be expressed  In term s
a t f i y j ) as

/  = (  1 ------ 1 _ Л  ( ( i . x p j - i )  + _ L _
\ / "  o . + a . ' (A13)

with

< (1 -  ХРГ‘ >„ = I  J ' f ' d z  d y ^  < z »| (l-  XP)-■ | yr )  .

(A14)

< (1 -Х Р )-‘ )„ = 1 + | ] '% / 0 у г )

d y f { y l ) ,  (A17)= 1 +

while the re lation  (1 -  XP)(1 -  XJ3)-1 = 1 im p lies that 
f ( y j )  sa t is f ie s  the in tegra l equation



R36 477

2140 A D L E R ,  NUSSI NOV,  AND P AS CHOS

f(yj)=g{yj)+ Г dz T ' f (z i ) ( z i\\P\y j ) ,
■'o I

g i y j )  = f  d z j ^ t n Iх р 1У) >•*0

(A18)

Ая a check on Eq. (A27), we consider the special 
case in which there is  no backward scattering,
Le., д . =0 .  We find

/ - = 0 .

R eferring back to Eq. (A3) for P, we eas ily  see 
that f ( y j ) and g i y j )  have the reflection sym m etry

f ( y t i  = f ( L - y r ) ,  g ( y l ) = g [ L - y r ) .  (A19)

Substituting Eq. (A3) into Eq. (A18) and using this 
sym m etry , we find that Eq. (A18) reduces to the 
s ing le  in tegra l equation

/ ( j» 0 - ( f f .+ 0  ( l - * - " )

+ f  dz[KO. f (z l )  + KO_f(L-zl )\e~*l ,~’) . 
Jo

(A20)

M ultiplying Eq. (A20) by e K1 and differentiating, 
we find the equivalent differential equation and 
boundary condition

Kf i y l )  + f ( y l )  = {o.+C-)k +KO.f(yl )

+ K c . f ( L - y l ) ,
(A21)

/ (00  = 0 .

The solution to Eq. (A21) has the form

(A22)
with A a solution of the homogeneous equation

Kh (ji) + ft '(ji) = ка+А (у) + ко_Л ( L - y ) .  (A23)

To solve Eq. (A23), we try  an exponential ansatz 
of the form

h(y ) = e ' ° '  + ixe-*a\
which we find gives a  solution when a and д a re  
re la ted  to к and a 4 by

(A24)

It is  now a m atter of sim ple a lgeb ra to combine 
Eqs. (A13), (A17), (A22), (A24), and (A25) to give 
our final re su lt  fo r/ , and

/  =

/ .

e KaL - 1  1+tie-
ка L 1+Д

■/♦+/.. (A26)

e*°L - 1 H2e~toL -  1
ко L д2 - 1  '

(A27)
e KaL - 1 д (1 - е - * “ )

k o L

(A28)
f  = i— ---------------= — I dvU  к Ц 1 - \ д . )  L ) „ a y e

which is  just the elem entary exponential decay law 
appropriate to the case of forward propagation with 
effective absorption constant к(1 -  Ад,.), averaged 
over the length of the one-dimensional medium.

APPENDIX B: COMPARISON OF APPROXIMATE 
AND EXACT SCATTERING SOLUTIONS FOR 

A UNIFORM SPHERICAL GEOMETRY

In this appendix we ca lib rate  the accuracy of the 
approximate scattering solution used in the text by 
comparing the approximate solution with the exact 
scattering solution in the case of a sim ple geome
try . We consider a uniform sphere of rad ius R 
composed of m ateria l which scatte rs  iso trop ically . 
P artic les  (“pions") a re  produced uniformly 
throughout the sphere and propagate with inverse 
interaction length к. At each interaction the p ar
t ic les  scatter iso tropically , with the p artic le  num
ber sim ultaneously multiplied by a factor A. We 
wish to find the expected number / of p artic les  
eventually emerging from the sphere, norm alized 
to unit integrated in itia l p artic le  density. We d is 
cuss successive ly  the exact solution, two approxi
mate solutions, and the num erical comparison.

I. Euct solution

The formulation of the solution to the spherica l 
problem is c lose ly  analogous to the formulation of 
the one-dimensional problem in Appendix A, and 
we omit a ll details. Corresponding to Eqs. (A13), 
(A17), and (A18) we find33

(B l)

< (1 -A P )" )„  = 1 + f _  d 3y f ( f ) ,  (B2)

/ j ) - d s ) + Г .  У Г . 1, <B3)•Ли sr |Z—У1

г  к e - * 1* -* 1

! - i

After sp herica l-averag ing  the scattering kernel, 
sca ling  out the sphere rad ius R,  and expressing 
the solution of the in tegra l equation In iterative 
form, we find
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/ = 1 + з (  1 -  £ )  j f  u3du f ]  \"gM (p, u) , 

g M = 1 .

g M(fi,u)=p [  ? v d v g (," l)(j),v)

x[ E,(p | и -  и |) -  EL(p(v + «))]

E M =  J ' d t ^ - ,

p  = K R .

(B4)

Since we are  only in terested  in values of X which 
are  sm a lle r  than 1, the s e r ie s  in Eq. (B4) is  con
vergent and / is  read ily  calculated  hy repeated 
num erical integration.

2. Approxim ate solutions

We re c a l l  that the approximate scattering solu
tion used in the text is  obtained by projecting a ll 
forw ard- and backw ard-hem isphere scattering , 
respectiv e ly , onto the forward and backward d i
rections, solving the resu lting one-dimensional 
sca tte rin g  problem as a function of optical thick
ness, and then in tegrating over the distribution of 
optical th ickness actua lly  present. For the sp heri
c a l problem considered here substitution of Eqs. 
(A25) and (A26) into th is recipe g ives the following 
approxim ate form ula for / :

/ (1) fJ  о
du c P ° " - l  1 + д<Г<|' 

pa и 1 +ц

a  = ( l - X ) 1/J,

<7 +1

(B5)

which Is re ad ily  evaluated by a  sing le  num erical 
in tegration . We also  include in our com parison 
the scatte rin g  approximation used hy Sternheim 
and S ilb ar, in which a l l  scatterin g  is  projected on
to the forw ard d irection . In this case  the re levan t 
one-dim ensional solution becomes the pure-fo r- 
w ard -ecatterin g  solution of Eq. (A28) and we find 
a second approxim ate formula for/:

(B6)

3. N um erical com parison

N um erical re su lts  fo r/ , and/**' are  given
in Table IX for a  wide range of values of X and p. 
Agreem ent between the exact re su lt / and the ap
proxim ation / (l1 used in the text is  excellen t over 
the en tire  range of p aram eters . The approxim a
tion / й1 used by Sternheim  and S ilb ar is  q u a lita 
tiv e ly  co rrec t, but develops sign ifican t deviations 
from the exact answ er for la rg e  values of p. To

interpret the param eter p in term s of nuclear s iz e , 
we note that for a uniform sp h er ica l nucleus of r a 
dius R -1 .3 A 1/5 F, and an in teraction  c ro ss  section 
ch arac te ris t ic  of the peak of the (3, 3) resonance 
(t>m„ -210  mb = 21 Fa), we have

P~

- 2  A 1' 3

-  6 for aluminum 

~ 12 for le a d . ( Bl )

Hence for aluminum our s im p le fo rw ard-backw ard  
approximation sa lv es  the m u lt ip le -sc a tte r in g  prob
lem to an accuracy  of better than 1%; even for the 
heaviest nuclei the approximation (with appropriate 
modifications to take neutron excess into account) 
should be good to better than 3%.

APPENDIX C: MISCELLANEOUS FORMULAS

We co llect here the form ulas for c ro ss  sections 
and Pauli factors used in the text.

1. Cross sections

For о«*ДиО we use the s im p le form 

c r„ ,( in = c j(s,a,(HO + 20 m b, (Cl )

TABLE IX. Comparison of exact and approxim ate 
m ultip le -scatte r in g  solutions.

A. p / [Eq. <B4)1 / {1) [Eq. <B5)1 /Ю [Eq. (B6)l

0.5 0.5 0.827 0.827 0.835
1 0.687 0.686 0.707
2 0.489 0.488 0.527
4 0.290 0.289 0.332
Й 0.154 0.153 0.102
16 0.0790 0.0773 0.0930

0.6667 0.5 0.878 0.877 0.885
1 0.766 0.764 0.789
2 0.584 0.583 0.638
4 0.370 0.368 0.445
8 0.203 0.200 0.262
16 0.105 0.102 0.138

0.8333 0.5 0.935 0.934 0.940
1 0.867 0.865 0.885
2 0.733 0.731 0.789
4 0.524 0.522 0.638
8 0.310 0.307 0.445
16 0.166 0.161 0.262

0.9167 0.5 0.966 0.966 0.969
1 0.928 0.927 0.940
2 0.845 0.842 0.885
4 0.678 0.676 0.789
8 0.446 0.443 0.638
16 0.251 0.244 0.445
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with the f ir s t  term  the resonant cross section and 
the second term  a constant approximation to the 
nonreaonant background. (This formula slightly 
overestim ates the c ross section at and below the 
resonant peak, and underestim ates it above re so 
nance.) For afo.utWO we use the Roper para
m eterization ,34

fo ,- g J r + W  (C2)

with

T „ = 1 .9 2 1 M ,, qT = 1.840 Af ,  , 

1.262<7 VAf.Г = (<г0+«0,)(1+0.5049а/М ,3) '  

8тто тшя = » 185 mb .

(C3)

2. Pauli fictan

We calculate the Pauli factors In the approxima
tion of treating the nucleus as a  collection of Inde
pendent protons and neutrons with equal F erm l- 
sea rad ii Дл = Rt -  R = 1.6Mr . Then the fraction of 
nucleons which can contribute, for given momen
tum transfer Д to the nucleus, is  the fraction of 
the volume of a sphere of rad ius R centered at 6 
which lie s  outside a second sphere of rad ius R 
centered at A. That is , '

HW,<p) =_ f i » ) -  t o ' ,  4 * 2
I T)*2

with91

1= 1 Г 81п(|Ф)-

(С 4)

(C5)

Perform ing the integrations over ф in Eq. (41), we 
find

1 59 .  1 29 
* ♦ " “  7 Г  70 ~П VT 420

136 -  59/vT .  1 76 -2 9/ / Г  
= a------- 70----------3  -------420------

1 59 ,  1 29
* ' “ V f  7 0 - “  W  420

„ 4 _  18 4 1 59 ,  1 29
h- s2~ sa + м а - 2 1 °  ~“ 7 Г т о +а 7 Г Ш

, U a< V 5' (C6)

I, V2* « a
Л.=1 

with

a  = q/R.
For the production Pauli factor g(W, k1) we use the expression5* 

*o= fr = ( V  + l*2|),/J

g (W,h*)  = 1 , 2R ^ k - q .

(C7)

(C 8)

‘ Operated by U niversities R esearch  A ssociation , Inc., 
under contract with the U. S. Atomic Energy Commis
sion.

TPermanent a d d re ss : Tel-Avlv U niversity, H amat-Avlv, 
Tel-A viv, Israe l.

’ B. W .Lee, PhyB. Lett. 40B , 420 (1972); W. Lee, ibid.
40B , 423 (1972). 

l D. H. P erk in s , In P r o c e e d i n g s  o f  t h e  XVI In t e rn a t i o n a l  
C o n f e r e n c e  on High E n e r g y  P h y s i c s ,  C h i ca g o -B a ta v ia ,  
t i l . ,  1972, ed ited by J .  D. Jackson and A. Roberts
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(NAL, Batavia, 111., 1973), Vol. 4 , p. 189.
*M. M. Siem heim  and R. R. S llb ar, Phya. Rev. D 6,

3117 (1972). E ar lie r  studies of pion charge exchange 
Id nuclei involved the use of Monte Carlo  techniques 
ra ther than ana lytica l models. See N. M etropolis e t  a l . t 
Phys. Rev. 110, 204 (1958); Yu. A. Batusov e t a l . ,  Yad. 
F iz. 6, 158-164 (1967) [Sov. J . Nucl. Phys. 6, 116 
(1968)]; C. F ranzinetti and C. Manfredotti, CERN R e
port No. NPA/Int 67-30 (unpublished); C. M anfredotti, 
CERN Report No. NPAAnt 68-8 (unpublished).

4E. F e rm i, R ic. Sci. 7 (2), 13 (1936); Report No. AECD- 
2664, 1951 (unpublished). For a d iscussion  see
E. A m ald l, in H andbuch  d e r  P h y s ik ,  edited by S. Fliigge 
(Springer, B erlin , 1959), Vol. 38, No. 2; G. M. Wing, 
Ref. 20.

5S. L. A dler, Ann. Phys. (N.Y.) 50, 189 (1968); Phys.
Rev. D 9, 229 (1974).

®We adhere to the notations of Ref. 5 w herever possible.
’A detailed  num erical calcu lation  of the effect of Ferm i 

motion on the production c ro s s  section ind icates a 
substantial broadening of the resonance and a  s im u l
taneous sh ift of the resonance center to low er exc ita 
tion en erg ie s . Both effects in crease  with in creasing  
Л2. The effective u p p e r  e d g e  of the resonance, how
ev er , is  not shifted, and so an integration over experi
mental data from the effective threshold (which d iffers 
g re a tly  from the threahold for pion production on 
nucleons at re st) to a  fixed upper cutoff of

, ,U  _ <147 GeV)J -M /  + H
Vя 5'пм oTT2Afv

Includes v ir tu a lly  the en tire  resonance. The a re a  under 
the resonance obtained th is way is  e s sen tia lly  the 
sam e as the a r e a  obtained when F erm i motion is  
neglected . Hence, we expect production 1 erm i-m otion 
effects to be re la t iv e ly  unimportant once the excitation 
energy has been in tegrated  out, provided, of course , 
that one is  not too close to a kinem atic threshold for
(3 ,3 )-resonance production.

BS. M. B erm an , CERN rep o rt, 1961 (unpublished).
flThis re s tr ic t io n  is  of course not n ece ssa ry  in princip le . 

The extension of our m u ltip le -sca tte r in g  model to take 
a neutron a c e e s  into account w ill be given elsew here 
IS. L. A d ler, following paper, Phys. Rev. D £, 2144 
(1974)].

10Since Eq. (15) involves an in tegration over excitation 
energy k £, we expect the Ferm i-m otion  sm earin g  of 
the production c ro ss  section  to be re la t iv e ly  unim

portant, and n eg lect it  In the app lications of Eq. (15) 
in Sec. Ш.

!1The dominant resonant vecto r and a x ia l-v e c to r  m u lti- 
poles lead  to d ifferent angu lar dependences of the p ro 
duction c ro ss  section.

12Some acceptance dependence in A could be to lera ted , 
s in ce it  would tend to can ce l between the n um erator and 
denominator of R1. 

laWe a re  indebted to A. K erm an for a  d iscussion  about 
this point.

,4When Pau li effects a r e  Included, the fo rw ard  peak is  
washed out but the backw ard peak rem a in s .

,5S. W einberg, Phys. Rev. Lett. 19, 1264 (1967); ibid.
27 , 1688 (1971); A. S a lam , in E l e m e n t a r y  P a r t i c l e  
T h e o r y :  R e l c d i v i s t i c  G roup s  a n d  A n a l y t i c i t y  (N obe l  
S y m p o s i u m  No. 8) ,  ed ited  by N. Svartholm  (A lm qvist, 
Stockholm, 1968), p. 367; G. 4  Hooft, Nucl. Phys. B 35 , 
167 (1971).

leThis Is s tr ic t ly  true only when NT= Z (p  + »), w h ereas 
In the production ca lcu lation  w e have used NT=ldp  
+ 14 я . The n um erica l effect of th is change is  sm a ll.

17C. H. A lbright, B. W. L ee , E. A. Paschos, and L. W olf- 
ensteln , Phys. Rev. D 7, 2220 (1973). H ereG , 0C> and 
a  denote, re sp ec tiv e ly , the F e rm i constant, the Cabib
bo ang le , and the fin e -stru c tu re  constant. 

laThe ra tio  3.67 a lso  Includes the (sm all) effect of taking 
account of the actual n/p ra tio  In alum inum.

,9The corresponding pred iction  for incident antlneutrinos 
Is 2.32.

50S. L . A d ler, Ann. Phys. (N.Y.) 50, 189 (19 6 8 ) ,  Eq.
(4E.7).

21 Q ualita tiv e ly , both nucleon F erm i motion and the 
deviations of the sca tter in g  angular d istribution  from 
pure “fo rw ard-backw ard sca tte r in g” would be expected 
to produce an angu lar sm earin g  of the r e su lt  of Eq.
(51).

32For a  n ice pedagogical d iscussion  of one-d im ensional 
m ultiple sca tter in g , see G. M. W ing, An I n t r o d u c t i o n  
t o  T r a n s p o r t  T h e o r y  (W iley, New Y ork, 1962).

2aThe methods leading to these equations a re  d iscu ssed  
in К. M. Case and P. F. Zw eifel, L in e a r  T r a n s p o r t  
T h e o r y  (Addison-W esley, Reading, M a ss ., 1967).
See e sp ec ia lly  Sec. 3 .6.

24L. D. Roper, Phys. Rev. Lett. 12, 340 (1960).
2SWe have approximated Д by the iso b ar-fram e  momentum 

tran sfe r. The approximation Is bad only when rj i s  so 
la rg e  that h  =1.

28Equation (C8) is  obtained from  Eq. (6C.6) of Ref. 18.

Erratum: Nuclear charge-exchange corrections to leptonic pion production  
in the (3,3)-resonance region [Phys. Rev. D 9, 2 12 5  (1974)]

Stephen L. A dler, Shmuel Nussinov, and E. A. Paschos

Page 2138: In the second paragraph of the added 
note, the statem ent “The effect is  to reduce R' by 
about 2.5% .. . should cause an e rro r  of perhaps 10% 
at most in R'" should be changed to read “ The effect 
is  to reduce R'  by about 1% ... should cause an e r 
ro r of a t  most a few percent in R'

The following m isprin ts should be corrected ;
(i) Page 2127, Eq. (9b): The n, to the right of 

the arrow  should read n/.
(ii) Page 2128, Eq. (15): The quantity <j (km +T

— (±" + T'+i r°)  should read  o(i/uh- Г — (i"  + T" + ir°).

(ii i) Page 2134, Eq. (46): The quantity 
r(i/|l(i-  „ A l” ) should read i', '(*/MH" l3Al27).

(iv) Page 2139, Eq. (A14): The quantity

should read ^
/

(v) Page 2143: In Ref. 4 "G. M. Wing, Ref.  20” 
should read “G. M. Wing, Ref. 22”; in Ref. 26, 
"Eq. (6C.6 ) of Ref. 18" should read “Eq. (6 C.6 ) of 
S. A dler, Ann. Phys. (N.Y.) 50, 189 (1966).”
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A pplication  o f  Current A lgebra Techniques to N eutral-Current—Induced 
T hreshold  Pion Production

Stephen L, Adler 
National Acce lerator Ixiboi'atory. llatavia, (lUtwte tif/Tl0, Utid 
The Institute f o r  Advanced Study, Princeton. New J e r s e y  MStft 

(Rooelved 7 Ootnliar lli'M)
I apply current-algebra techniques to aturty threshold pion (iPodlintlon Iniluribil l<v thu 

weak neutral current. In addition to apenlfto |N'H(llciU(i(iu for Hie Wpliilie*'H-$Hb|ii|—fflodul 
current, I find upper bounds on the magnitude of ilirealiold ).|on огиЫмИоп flip an i«h- 
soalar neutral current ant) for ft Ronnrn) hnill'onlo iwnlrnl WH'lWlt fni'itiw! t fnf» lll« 
vector and ajdal-veotor nonots. Violation of these Iwnmdfc WMild кИцциЩ- Dm Of
new coupling typee In tho neutral eomlleptonlo liilei'tiriUOfi,

The In itia l experim en ts d iscovering  wonk neu
t r a l  cu rren te  In h igh -energy  deop-lno lastlc nou- 
tr in o  re ac t io n s1 have now been aupplomontod wltti 
the observation  of n eu tra l-cu rren t affocLs In Jow- 
en erg y  neutrino pion production.a,s Obtainable 
in v a r ia n t-m a ss  reso lu tions wi l l  p erm it tho atudy 
of ttN production in the threshold region  below 
the ( 3, 3)  reson ance, and in fact p re lim in a ry  A r
gonne d ata2 (without final co rrections for noutron 
background) r a is e  the p o ss ib ility  that the th resh 
old c ro s s  section  for ir~p production by the neu
t r a l  cu rren t m ay be appreciab le. In th is  L etter 
w e study thresho ld  pion-productlon p ro ce sse s  by 
u s in g  cu r re n t-a lg e b ra , soft-pion techn iques. 1 
b r ie f ly  d e sc r ib e  the methods used In m aking such 
an  a n a ly s is ,  and sum m arize  the r e su lts  obtained.

I beg in  by g iv ing a s im p le  analytic  treatm ent of 
th resh o ld  pion production, which, although sf/me- 
what n a ive , i l lu s t r a te s  the b asic  Ideas which we 
exp lo it in  our m ore ca re fu l num erica l c a lc u la 
t io n s . A ccording to standard  soft-pion lore/* the 
am p litu de  fo r the pion em ission  p ro cess  Q * a
— v J + (3, with a  and (i hadronic s ta te s  and Q an ex -  .

Itm tftl ОНГГФИ!, IN и 1V Of I eo Hid OH Itl i l l  I Wit INUH4; 
T l it? fli'fcl c iiiio IoIb of я pH if I Of Ми»
(loiifl 111 itdiiijli IJib pi'ill It1 1й fH»l»t III* h* 
teMikl hkiU'hiifii J1 моя iif III*» it 
+ *»-//, witHe ((is nntHiiHl Ib rtn w|ifnl (l inn i-iitti 
ttiuimot' Ie r i n  \>i‘<ip<itlVm*\ hi ih» iiiitiillliitle lift- 
the r vMlUmt l1 • » * - ft, w l l hd '  Hie Mil-
r e n t  OWalne<1 U'/lll Ilia I'Z/rntnUl nlf ir f l 1 | P I1,1! |.
In the ease  of n eui r n . l -w j r  r e a l  wesk (Очи iit>i>lnt-. 
t i on,  the curren t 4 in,  'Л f.'/'irPf, th* h*'I f ' tnl t  
weak n eu t r a l  c u r r e n t  яп'1 (he s la te *  n  *ц/1 fi **■<» 
each a s in g le  free  mtAvrt i .  f o r  *1 mfjIU-.H-J, !•rt 
us re s tr ic t  M i/sel/e* t o r  Mm rn'trnfrtl l o  /цщ+и In 
which the «quaMlrft# с'лг>тч*я1'/г t p m i '/япЫЬ^и, 
as occar.e, t o r  ч/яп,р1*, It tb* <rrt*ril ft ,n яг, 
iBo e c a l b r  V- А  tfi .rwAot* t'/titfinlnit »n ягг/11гяг-/ 
Ш лаг tzorr/tAt.&i'jr, 'A i f ,/,  ? / ,  if , * ,* ' ,*  4 
yi'/fi *гл1**У л» th e ft t’Sftinint* t i r t f i r i t y ’A
th e  ir/iArtA', •it/* ;r/*er*J//Yi >*rrr,*. K/*birt>/,y 
the»* terre.n at t«/MV/Kl ' i n t i t *  tri*> , г ,**г '1'т чп 
the '/tг.#,-.:# iirtfs ft./,,нг^Ч/ ч Л
\Щ Г.ПЯ pwri П.'ЛЯ* in Ь/l V* tifi/l tfrA
иЛиглЛлв' '/К тгеет , tbr*+ tsM  'Л'/t,
Пса i&i л « к . 'Ш /  'st'S S rt, V - i f i t , ’*1.

I do(v*N-~ v* N + y*) |
151 d ^ y J W  [„ „ „ ы » '

и2 ( n , M t  1 ** ( ,  ** '•  «* !>-!>,
Лп‘М ,*\ 4 )  H S  / t - b t S j  4 *  j

' i ,

H ere Mgt  M ,  a r e  the nuclnoii 11/id pion rna** , w  
i s  the m ass  of tho final n'N lnobur, ii]l Is thfc 
p ion momentum In tho lnobui'lc ro*t, frarnft, Ь* I* 
the leptr;n lc «quared  four-itifiinonlimi Inn i t l k r  
(spacellkfe, b'J >0), К," I il.fi l«  <»'n yUiti-MirAVifi 
coup ling constant, unit Him »n»«|<lii m ul r l x  **л 
a  talces the vsiIub* 1я1_ /2 Ini’ n1 - n‘ untl 1я1-1 
fo r  The blnrilfh'i l iw# o f  IC/J. ( I)  i'i I fait It
all/sttib ( m e  t o  IvtmnUito 101 h"ioitl  o n  lhft
с г о ь ь  f>action f u r  v,, i A * • /' « «
ОИ f t e  s i r  an# tit o f  IllrPolltitil 1‘h ‘H I'finliuU lon  //> 

k-w/< neuWul i-iirr finl,
A s f ha/*» *//ewly *тц«<!м1и1, Hif iil'^ve rl*>flv4'

/V «W СЛЛП'Лв*̂ /!
<>4 //rVyr»© l</iM (r/ l(l« Ami'lli'HH t"(,V<*li ril Miii.mly (И 111

( Г.1ЛЯ '/ / , ns*. r^ Л  a  "A P i t *
r,t a_.. ta e  « м г д .  i s *  < */»» */♦
[Л.у <a.-7_-uf *й л ч 1 w S  v ,  -.-л
4^ --.зг..г .агл1  -rf • ■»•*«
j.K4tn ^  )  '<7 ^  '•*"
t7 "ЛЯЙД J1 «пи^л №  •/**•**+*'*
rj trf t  4 т а л ю п *  -V i*
«.w-n * *  ^  >г -уйи*л л л  .1 -ЛЛ V . г ,
« .-'CJ, ?a i^ a  S f/ * ..  >.1Л j t  .*
V , « г ^ . а с л  - а *  4 я й л <  W  V. * -
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(3, 3)  resonance. We d ea l with these problem s 
by using ал extended vers io n  of a  model for weak 
pion production which has been d escrib ed  in d e 
t a i l  e lsew h ere .6 In its  o r ig in a l fo rm , the model 
included the rap id ly  v a ry in g  pole te rm s and the 
resonant (3, 3) m u ltipo les , w ith no k inem atic  ap 
proxim ations. The extensions co n sist of adding 
sub traction  constants (in the d isp ers io n -th eo ry  
sen se ) to the non-Born te rm s of the m odel, which 
guaran tee  that it  s a t is f ie s  the re lev an t soft-p ion 
theo rem s and which include the lead ing c o r r e c 
tions (of f ir s t  o rd e r  in  the pion four-m om entum  
q and zero th  o rd e r  in the lepton four-m om entum  
tra n s fe r  k) to the soft-p ion lim it. T hese la t te r  
co rrec tio n s  a re  ca lcu la ted  by the method of Low7 
and A d ler and Dothan’ ; fo r the v ec to r cu rren t 
am plitude they v an ish , w hile fo r the iso vecto r

a x ia l-v e c to r  am plitude they  a re  r e la te d  by p a r 
t ia l  conservation  of a x ia l-v e c to r  c u rre n t to m o
mentum d e r iv a t iv e s  of the p ion -nucleon  s c a t t e r 
ing am plitude at the c r o s s in g - s y m m e tr ic  point.
For an is o s c a la r  a x ia l-v e c to r  c u r re n t  the o rd e r -  
q co rrec tio n s  cannot be p r e c is e ly  c a lc u la te d , but 
a  h eu r is t ic  reson an ce-dom in an ce  a rgu m en t su g 
g e s ts  that they should be m uch s m a l le r  than in 
the iso vec to r a x ia l-v e c to r  c a s e , and so we n eg 
le c t  them .

I g ive now the r e su lts  of n u m e r ic a l c a lcu la t io n s  
using  the extended m odel in  v a r io u s  c a s e s ,  fo cu s
ing attention on the re ac t io n 0 v^ + n  — i’м+тг‘  +p.

(1) I s o s c a l a r  n e u t r a l  c u r r e n t .— F o r the v ec to r  
and a x ia l-v e c to r  form  fa c to rs  in  th is  c a s e  we 
tak e , for d e f in iten ess , a  d ipole fo rm u la  w ith c h a r 
a c te r is t ic  m ass М я ,

* ,* ( * * ) -X 1( l+ k , /MJf2) -e, 2M nF2s (k2) = A2(1 +£2/М*2)*2, (?Л5 (*2) = Х ,(1+ *2/МЛггГ 2, (2)

with X,, Аг , and A, fre e  p a ram e te rs . A ssum ing the 95% confidence bound2

o ( v„+p~ v^+p)^ 0.22a(v )I + n ~ n "  +p),  (3)

we find that the c ro s s  section  fo r v  ̂+ n — v„ + i j '  +p,  w ith тт'р in v arian t m ass  W between® 1080 and 1120 
M eV, is  bounded by”

а ( ^  + н ^  v u +ir~ +p ) «  0 .3 2 с т (^ + «-ц "  +/>)[o(v(1+ n -  v ^ i t '  +p)/o(vv + p -  v^+p j ] , (4a)

« 1 .0 Х 1 0 '41 cm 2. (4b)

The in eq u a lity  in  Eq. (4b) i s  obtained by m ax im iz ing  the ra tio  in sq u a re  b ra ck e ts  w ith re sp e c t  to v a r i a 
tion of A,, A2i and A,. We find in th is  c a se  that the naive form  of the lo w -en ergy  theo rem  in  Eq. (1) i s  
re a so n ab ly  good, p red ic t in g  a  bound about o ne-th ird  as la rg e  a s  that of Eq. (4 ).10

(2) W e i n b e r g  -S a l am SU(2) ®V(1) m o d e l .— In the s im p le s t , o n e -p a ram e te r  v e rs io n  of th is  m odel, the 
n eu tra l cu rren t h as  the form

, s - « a5X- 2 x ( S s x + 3 ‘ ,/2ffax) + Д 3 X, x = s in 20

with an is o s c a la r ,  V —A, s t ra n g e n e s s -  and 
“ch a rm ” -c u r re n t  contribution which is  conven
tio n a lly  assum ed  to couple only w eak ly  to non- 
s tran g e  lo w -m ass  hadrons. N eglecting Д#* for 
the m om ent, we can m ake an abso lu te ca lcu la tio n  
of the c ro s s  sec tio n  fo r v v+ n — + +p. We 
find,  for  n~p in v a r ian t m ass  W between 1080 and 
1120 M eV, a  p red ic ted  c ro s s  sec tion  of 0.75 
x l O ' 41 cm 2. To a s s e s s  the r e lia b il i t y  of our c a l 
cu la t io n s , F ig . 1 g iv es  a  com parison  of our mod
e l w ith the Argonne N ational L ab o rato ry  re su lts  
fo r the ch a rg e d -c u rre n t  re ac tio n  Vy+p — ц.' + jt+
+ p.  The p red ic ted  c ro s s  sec tio n  for u*p in v a r i
ant m ass  W between 1080 and 1120 MeV is  6.9 
X10 41 cm 2, in s a t is fa c to ry  ag reem en t w ith the 
o b served  c ro s s  sec tio n  of (9 .3 ± 4 .7 )x  1 0 '41 cm 2.

In c e rta in  ex tensions of the o r ig in a l W einb erg - 
Sa lam  m odel, the n eu tra l cu rren t has the g en er-

(5)

a l  form  of Eq. (5), but w ith an ad ju stab le  s tren g th  
p a ram e te r  к in front. A u se fu l upper bound on 
the m agnitude of к is  p rovided by d e e p - in e la s t ic  
n eu tr in o -sca tte r in g  n e u tr a l-c u r re n t  d a ta . In 
te rm s  of the standard  ra tio s  R v V= o(v,V + N
-  v , V + r ) / o ( v , V + N - n ' + Г ) !  we find11 the 95% 
confidence l im it1

1.5 г  3Д и+ЯГ »  к2[1 + (1 - 2 x ) 2]. (6)

Continuing for the m om ent to n eg lec t the is o s c a 
la r  addition Д 3\ we can  com bine the bound of 
Eq. (6) w ith the extended m odel to p red ic t that 
the c ro s s  sec tion  for n e u tra l-c u r re n t  ir~ p ro d u c
tion, w ith и'p  in var ian t m ass  W betw een 1080 
and 1120 MeV, i s  bounded by 1 .5 X 1 0 '41 cm 2 fo r 
a l l  allow ed  v a lu e s12 of к and x. F in a lly , we can 
include the is o s c a la r  add ition  ДЗХ by p a r a m e tr iz -
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тг* p In v a r ia n t  M a s s  ( G e V )

FIG. 1. C om parison  of the extended pion production 
m odel w ith the A rgonne N ational L ab o ra to ry  ch a rg ed - 
c u r r e n t  d a ta . Each even t re p re se n ts  an  A rgonne flu x - 
av e ra g ed  c r o s s  sec tio n  of 2.3 *  1СГ41 cm 2.

ing the to ta l is o s c a la r  contribution t o 3 „ x as  in 
Eq. (2), g iv ing  a  c ro ss  section  dependent on the 
fiv e  p a ra m e te rs  к ,  x ,  Xj, X2, and X3.  Com bining 
the bounds of E qs. (6) and (4a) w ith the extended 
m odel and m ax im iz in g  over the f iv e -p a ram e te r  
s p a c e ,12 we find that the c ro s s  section  for v  ̂+ n
— vm + jt '  +P,  w ith TV betw een 1080 and 1120 MeV, 
is  bounded by 4 .4 x lO " ’ 1 cm 1, fo r a  g en era l had
ro n ic  n eu tra l cu rren t form ed from  the usual v e c 
to r  and a x ia l-v e c to r  nonets.13

E xperim en ta l v io la tio n  of th is  g en e ra l bound, 
or the o bservation  of evidence for an is o s c a la r  
n e u tra l c u rre n t together w ith  v io lation  of the 
bound of Eq. (4b), would su gg est that the n eu tra l 
c u rre n t invo lves unusual types of coupling, in  ad 
d ition  to or in  p lace  of the u su a lly  assum ed  V - A  
s t ru c tu r e . One p o ss ib le  so u rce  of v io lations 
could be an in te rac tio n  of the V -A  type involv ing 
cu r re n ts  outside the u su a l quark -m odel vecto r 
and a x ia l-v e c to r  nonets. An a lte rn a tiv e  so u rce  
of v io la tio n s could be the p re sen ce  of S - , P- ,  
and T -type n e u tra l-c u r re n t  co u p lin gs .14 If we d e 
fine S, P,  and T hadronic " c u r re n ts” ffj, ff/, 
ffj*0 and a b s tr a c t  th e ir  com m utation re la t io n s  
from  the qu ark -m o d e l form s

( 7 )

soft-p ion  a n a ly s is  above w ill have SU(3) D- r a th 
e r  than f - ty p e  s tru c tu re . T h is w ill su b s tan t ia lly  
a lt e r  the s tru c tu re  of the lo w -en ergy  theo rem s; 
for in stan ce , the com m utator term  w ill no longer 
van ish  for an is o s c a la r  n eu tra l cu rren t . The e f 
fec t of th is  a lte re d  s tru c tu re  on the bounds g iven  
above is  p re se n tly  under study.

I w ish  to thank S. F. Tuan for s t im u la tin g  d is 
cussions about the s tru c tu re  of n eu tra l c u rre n ts ,
S. B. T re im an  for m any helpful c r it ic a l  com 
m ents in the co u rse  of th is work, and P. A. 
S ch re in e r  and W. Y . L ee for co nversa tio n s about 
the Argonne N ational L ab o ra to ry  and Brookhaven 
N ational L abo rato ry  neutrino exp erim en ts . I 
have a lso  benefitted  from  d iscu ss io n s  w ith  R. F. 
Dashen, S. D. D re ll, E. A. P aschos, and S. W ein 
berg .

q iX jO ^q ,

then the com m utato r term  S'  ap p earin g  in the

'F .  j .  H ase r t  e t  a l . ,  Phys L ett. 46B , 138 (1973);
A . Benvenuti e t  al . ,  P h y s . Hev. L e tt . 32, 800 (1974).

2P , A . S c h re in e r , in P ro ceed in gs  of the Seventeenth 
In ternational Conference on High E n ergy  P h y s ic s , Lon
don, England, J u ly  1974 (to he pub lished).

3C o Iu m h ia -R o ckefe lle r-I llin o is  C o llab o ra tion , in 
P ro ceed in gs  of the Seventeenth In ternatio na l C onference 
on High E nergy P h y s ic s , London, England, J u ly  1974 
(to be pub lished ).

'‘S . L . A d le r  and R . F . D ashen, C u r r e n t  A l g e b r a s  
(B en jam in , New Y o rk , 1968).

V an ish in g  of the eq u a l- tim e  com m utato r in  th is  c a s e  
w as noted by J .  J .  S a k u ra i, in  P ro ceed in g s  of the Fourth  
In ternational C onference on N eutrino P h y s ic s  and A s
tro p h y s ic s , P h ilad e lp h ia , P en n sy lv an ia , A p r il 1974 
(to be pub lished).

ES. L . A d le r , Ann. P h ys . (New York) 50, 189 (1968). 
[See a lso  S. L . A d le r , P h ys . Hev. D 9 , 229 (1974).]
The extended m odel is  obtained by adding a s  su b tra c 
tion constants Eq, (5A .21) fo r ~ Mo > Д| L .  and 
A T(+ )|oi Eq. (5A .22) f o r / , (+>|0, V 7 0)i 0. and 
Eq. (5A .9) f o r A 3(+)|j,; and E q .J5 A .3 0 ) fo r A ,( ' '| 0.
The o rd e r - 4  te rm s  A 3(+)|0 and A / '1) 0 w e re  assu m ed  
to have ti1 dependence (1 +k2/MN7) v a r i a t i o n  of th is  
assu m ed  dependence produced only s m a ll changes in 
the r e s u lt s .  We took the a x ia l-v e c to r  fo rm -fac to r 
m ass  a s  =0.9 GeV.

7F . E. Low , P h ys . R ev. 110, 974 (1958); S . L. A d le r  
and Y. Dothan, P h ys . R ev. 151. 1267 (1966).

8A nalogous bounds can be g iven  fo r o ther p io n -p ro - 
duction channels and fo r la r g e r  in v a r ia n t-m a s s  in te r
v a ls  than the one co n sid ered  h e re .

9The quoted bounds a r e  not co rre c ted  for p o ss ib le  
d iffe ren ces  in  the k2 d is tr ib u tio n s of the re ac t io n s  + />
— +/> and v v +и —ц ~ + р .  F o r n e u tr a l-c u r re n t  form  
fac to rs  which d e c r e a s e  much m ore s lo w ly  than the 
ch a rg e d -c u rre n t form  fa c to r s , the effect of such c o r 
re c tio n s  would be to d e c re a s e  the bounds.

l0In the c a s e  of + N — vu +ir° +N in the W einb erg -
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S a lam  m odel, w h ere  Eq. (1) should fo rm a lly  hold, we 
And that the o rd er-g  co rre c t io n s  In crease  the (g re a t ly  
suppressed ) th resho ld  pion production by an  o rd e r of 
m agnitude. A s a  r e s u lt ,  the th resho ld  я 0 production 
becom es com parab le  to that In +n — +тг" +p 
(w here the o rd er-fl co rrec tio n s  have only an ~20% ef
fect).

"E quation  (6) a s su m e s  sc a lin g , and a lso  u s e s  the fac t 
that <r(i>v +N — ii* + Г)/®(v„ +N —м~ + Г) “  g . See A . P a is  
and S. B. T re im a n , P h y s . R ev . D 6 , 2700 (1972).

16  D e c e m b e b  1974

12We s e a rc h  o ver a l l  r e a l  v a lu e s  of x , ev en  though 
only the ran ge  0 s x s  1 la  p h y s ic a lly  m ean ing fu l in  the 
SU(2)®U(1) m odel.

13T h is  hound would b e  red uced  if  Eq. (6) w e re  s tren g th 
ened to Include the I s o s c a la r  c u r re n t  co n tribu tion s on 
the r igh t-han d  s id e .

14T ests  for such coup lings in  the n e u tr a l c u r r e n t  h ave 
been d iscu ssed  by B. K a y s e r , G. T . G arv ey , E. F ia ch -  
bach , and S. P . R osen  (to be pub lished) and b y R . L . 
K in gsley , F . W ilc z e k , and A . Zee (to b e  p u b lish ed ).

APPLICATION OF CURRENT ALGEBRA TECH
NIQUES TO NEUTRAL-CURRENT-INDUCED 
THRESHOLD PION PRODUCTION. Stephen L. 
A d le r [P h ys . Rev. Lett. 33, 1511 (1974)].

An in adverten t confusion of m eaning has r e su lt 
ed from  rep lacem en t of com m as by m inus s ig n s . 
On page 1511, column 2, and page 1513, colum n
1, “V-A"  should read  UV,A.“  Only on page 
1512, colum n 1, w as the “V - A ” intended to 
m ean “ V m inus A .”
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Application of current-algebra techniques to soft-pion production by the weak neutral current: 
V, A case *

Stephen L. Adler 
The Institute f o r  Advanced Study. Princeton, New J e r s e y  08540 

(Received 21 April 1975)

We apply cu rren t-a lgebra  techniques to study the constraints Imposed on n eu tra l-cu rren t- 
lnduced soft-plon production, using a s  Input existing bounds on neutrino-proton e la s t ic  sca t
ter ing  and existing data on neutral-current-Induced d eep -lm lastlc  scatterin g , m the case of 
a purely lso sce la r  weak neutral cu rren t, a sim ple soft-plon argument re la tes  the cross sec
tion lo r threshold (In pion-nucleon Invariant m ass) weak pion production d ire c tly  to the cross 
section for neutrlno-proton e lastic  scatterin g . Hence, a bound on the la tte r  cro ss  section 
Im plies a bound on the form er. To apply the method away from threshold and to non lsoscalar 
neutral cu rren ts , we extend a model which we had developed e a r l ie r  for weak pion produc
tion In the (3,3) resonance region so as to Include the low -energy-theorem  constra in ts.
N um erical work using the extended model shows that a threshold peak (now attributed to 
background) In p re lim inary Argonne data on к+ я — i' +p + ir~ would have Implied a threshold 
cro ss  section much la rg e r  than can be obtained with any neutral current formed so le ly  from 
m em bers of the usual Vt A nonets. We analyze recen tly reported Brookhaven National Lab
oratory resu lts  for neutral-current-Induead soft-plon production under the sim plify ing a s 
sumption of a pure ly Iso scalar V, A neutral cu rren t. We find in this case that the magnitude 
of the Brookhaven observations exceeds the theoretical maximum by more than a factor of 2 
un less the assumed Isoscalar cu rren t e ith er contains a vector part with an anom alously la rge 
gyro magnetic ratio Ы -^ M ^ F ^ / F ^  o r Involves the ninth (8Uj singlet) ax ia l-v ecto r cu rren t.
A vector part with a la rg e  | g | value leads to ch a rac te r is tic  modifications In the pion-nucleon 
Invarian t-m ass spectrum for M(*N) & \A GeV, an effect which ahould be testab le In hlgh- 
s ta t ls t lc s  exp erim erts . Two other qualitative predictions of Isoscalar V,A structu res are 
(1) except for a  narrow range of values of g t constructive Kf A Interference In v  + -V — t1 ‘ _Y 
+ ir Implies constructive Interference In v +p — p +p and vice v e rsa , and (U) If V, A In terfer
ence Is observed in  neutral weak p rocesses then (as is  well-known) the neutra l Interaction 
m ay make a p arity-v io lating  contribution to the p p ,  e p , and UP lr te ra c t lo n s . These features 
may help to d istinguish V, A n eutra l-current couplings from alternative coupling types, which 
w ill he d iscussed  In deta il Is subsequent papers of this s e r ie s .

I. INTRODUCTION

The in itia l experim ents discovering weak neutral 
curren ts in h igh-energy inclusive neutrino-nucleon 
sca tte rin g1 have now been supplemented with the 
observation of n eutra l-curren t effects in the ex
c lusive channel containing a  pion-nucleon final 
state . Obtainable resolutions w ill perm it the de
ta iled  study of pion nucleon invarian t-m ass d is 
tributions in the region at and below the (3, 3) re so 
nance. Some of the issues ra ised  by recent 
Argonne National Laboratory (ANL)a and Brook
haven National Laboratory (BNL)3 data on neutral- 
current exclusive channels a re : (i) What is  the ex
pected magnitude for threshold (In invariant m ass) 
n eu tra l-cu rren t pion production? (ii) What a re  
the im plications If (3, 3) resonance excitation is  
not observed In neutra l-curren t pion production?
In the present paper we analyze these questions 
under the conventional assumption that the weak 
neutral curren t has a  VtA spatial structure. A 
p re lim in ary  account of the an a ly s is  has appeared 
e lsew h ere .4 In subsequent publications,9 the same

12

methods w ill be applied to the more general cases 
in which neutra l-curren t couplings of S, P, T type 
appear, or in which V,A neutral curren ts with 
abnormal G parity  a re  present.

The paper is  organized a s  follow^. In Sec. П we 
give a  sim ple (although somewhat naive) analytic 
treatm ent of threshold pion production in the case 
when the neutral current is  of pure iso sca la r  form, 
and use it to illu stra te  the methods employed in 
the more detailed treatm ents which follow. In Sec. 
П1 we develop the ingredients needed for a more 
elaborate treatm ent of bounds on soft-pion produc
tion. We f irs t review the standard form ulas de
scrib ing neutrino-proton e lastic  scattering and 
deep-inelastic  inclusive neutrino-nucleon sc a tte r 
ing, the la tte r  both in a  general framework and 
within the context of quark-parton-m odel assum p
tions. We then describe the modifications needed 
to make our old d ispersion-theoretic model for 
soft-pion production in the (3, 3) resonance region’ 
consistent with a ll soft-pion theorem constraints, 
and d iscuss the Inclusion of a well-defined set of 
corrections to the soft-pion lim it. In Sec. IV we
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give resu lts  of numerical studies of the pion pro
duction model, which show its  valid ity in the 
charged current case . We then apply the formulae 
developed in Sec. Ш to a detailed num erical an a l
y s is  of threshold pion production for the ANL neu
trino flux case , considering a succession of more 
complex models for the structure of the neutral 
current, leading up to the most general neutral 
current which can be formed from members of 
the usual V,A nonets. We finally analyze low-in
varian t-m ass <1.4 GeV] pion production 
for the BNL neutrino-flux spectrum, under the 
sim plifying assumption of a  pure iso sca la r  V,A 
neutral current. In Appendix A, we give the 
threshold low-energy theorem (analogous to that 
developed in Sec. П) which applies in the case of 
the SU(2)®U(1) model neutral current. In Appen
dix B, we attempt a  rough estim ate of the leading 
corrections to the soft-pion lim it in the case of an 
iso sca la r  (octet) ax ia l-vecto r current, and e s t i

mate the extent to which the corresponding co r
rections in the Isovector cu rren t case  a re  a lready  
included in the basic  pion production model a s  a 
resu lt of un ltarization  of the (3, 3) m ultipo les. In 
Appendix C, we d iscu ss nuclear charge-exchange 
corrections for lo w -in varian t-m ass weak pion 
production and give a tabulation of the ch a rg e -ex 
change m atrices  for various n uc lear ta rg e ts  of 
current theoretical in terest.

II. SIMPLE ANALYTIC TREATM ENT

We begin by giving a sim ple an a ly tic  treatm ent 
of threshold pion production, which, although 
somewhat naive, nonetheless illu s t ra te s  the basic  
ideas exploited below in our m are carefu l num er
ica l calculations. The startin g  point for our d e r i
vation is  the standard soft-pion form ula7 for pion 
em ission in the p ro cess 3 + N— t* + N, with 5 a  gen
e ra l external curren t and N a  nucleon. This re ad s ’

<*U>2) «(f) 15(0) | MA)> = -  я  N. а д  Г Х ГТ  j ;  (* -  ч)

-- .... .... _/| +Mf__ g,_ J т
2 М „ 1У'  ‘ JH.a +2/y$ J (k)  M, -  %Pi'4 * nT/

♦ possible additional pion-pole “seagu ll” contribution^ u(p,) f j  +0 (tf) ,

(1)

with

М Ю " 1’
<MA)|3(0)lMA)> ■ K ,s (A ) J ( f t - p . ) *(Л>, (2) 
<M/g I[*7 ,a (0 )]| А (А » - Я ,  u [p , ) j ;  u>2 -  Pl) u(Pl) .

In Eqs. (1) and (2), k=f>,+q-Pi denotes the four- 
momentum carried  by the external current,
£, = 13.5 is  the pion-nucleon coupling constant, 
g A =1.24 is  the nucleon ax ia l-v ecto r renorm aliza
tion constant, S(/>2), u(p,) a re  nucleon spinors (in 
cluding isosp inors), and ipj is  the isospin wave 
function of the emitted pion. The f ir s t  term  on the 
right-hand side of Eq. (1) is  the usual equal-tim e 
commutator term  which appears in soft-pion the
o rem s, while the second and third term s a re  ex- 
tern a l- lin e-in se rtio n  term s in which the soft pion 
is  em itted, respective ly , from the final and in itia l 
nucleon lin es . The additional pion-pole "seagu ll” 
piece" is  n ecessary  only when the pion-pole con
tributions of the f irs t  three term s do not add up to 
give the full pion-pole contribution expected for the 
reaction  6 + N~ r 1 + N.

Let us now sp ecia lize  to the case  of an iso sca la r  
V, A external current 3, for which the equal-tim e 
commutator term  van ishes10 and for which there  
is  no additional pion-pole " seag u ll’' contribution. 
The en tire  soft-pion em ission  amplitude then 
comes from the ex tern a l-lin e -in sertio n  te rm s , 
which a re  most conveniently evaluated in the iso - 
b aric  fram e in which the final pion-nucleon s y s 
tem is at re s t. In th is fram e, the Insertion on the 
outgoing nucleon line vanishes at threshold In in 
variant m ass, since when 5,  =q = 0 we have

Й С +M„) Ip2.^ . a =<?0й(рг) y ay s(P2 +M„) |-г . 0

= 0 .  О)

So at threshold, for an iso sca la r  V, A curren t S, 
the m atrix  element of Eq. (1) reduces to the s ing le  
term

(N[p2) л(?)|5(0)|МЛ)>

5 Й ; •

(4)

On replacing the projection operator (/, +Mk )/2Mk
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ЬУ S » “(A s ) “(A *) an<* explicitly indicating the nuc
leon isospinors x j, Xi *nd the helic ity s, of the in i
t ia l nucleon spinor uf p j ,  we find

W p , )  m i w i w p j )

= £  Я ,  ,  S(p,) J(k) u(Pls)
М , -  2p l0

x [®lA4) YoYs “(Pis i)] a , (5)
with

a =xlTlXi t '

С 1 for р  — р  + тр 
J -  1 for H—n + u°

1 /2 for n - p  + i~ 

■/? for p — n + v*

(6)

The factor in square brackets in Eq. (5) is  read ily  
evaluated hy using explic it expressions for the 
sp inors, giving

О Д Г Л - С А Л )  = ( h  * 7 ' щ , )

-  J-k/CP,o *mm)/
t ff-ic 

! ' x * a # 7 x *i

J l i e  «

M m
(V

where we have used the definition

- 5 ^ X « 1=s,X,1 (8)
of the in itiaJ-sta te  h e lic ity . Since s, = ± l, this fac 
tor d isap pears when we square and sum over in i
t ia l and final nucleon spins, so we get

i  £  К о д а М М о н о д » ! 1
ff ipim

( №  V I S)|hccshold

£  И а м *>“(а >12]
M  ip in i

j  j r - Y J g j ; « » .\ М , - 2 р 10/ Mи (9)

If we now make the approximation of neglecting 
the pion m ass in a ll  k inem atics, the factor in 
square b rackets in Eq. (9) becomes Just the 
squared, epin-averaged m atrix  element <|9H |2) for 
wN e lastic  scattering, and Eq. (9) te lls  us that

(|ЭИ r | 2 ihold

I = -* *  .

(10)

Inserting phase-space factors according to

da(w*p - i>*p )  _ 1 J _  ,  |3x 
dt  4ir E2 ^  1 '  ’

da( v + N— v + N+n)
dt dW ~ 16»’ E

(П )
1 ' 5 l m„2(i3R J 2) ,

with |if| the pion isobaric  fram e three-momentum, 
Wthe invariant m ass of the final »N isobar, and 
E the in itia l lab neutrino energy, we get finally 
the relation

1 du{v + N— v + N+n) I
I f l  dt dW llhfcihald

-  Q* ZfLrM.Y I / t \ 
4лгМ,*\2МК)  M ?  V1 4M„2)

2 Лг(и + p — v + p) 
dt

(12)
! ( ’ *2M„2)

1 for »° production

2 for v* production .

We see that in the special case which has been 
under consideration, Instead of obtaining a  soft- 
pion relation between m atrix  elem ents, we obtain 
a relation d irectly  in term s of reaction cross se c 
tions. The s i gn i f i c anc e  o f  Eq. (12) is that it a l lows  
one to t rans late an upp er  bound on the s t r ength o f  
v + p  — v + p into an upper bound on the s t r ength o f  
thr e sho l d pion produc t i on by the weak neutral  c u r 
rent.

As an illu stration , let us apply Eq. (12) to the 
ANL data2 by integrating over t and averaging 
over the ANL neutrino energy flux11 nANt (£), 
giving

/ dE nANL(£)
M J  da[v + n -  v  + p + »~)
TqT dW

do( и +p— v + P) 
dt (13)
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We have multiplied both sides of Eq. (12) by Ms 7 so that they have the dim ensions of a  c ro ss  section ; a lso  
for convenience, we assum e the flux nANL(£) to be unit norm alized,

/ « « М П .Ю - 1 ,  <14>

so that we are  considering flux-averaged c ross sections. Using the ANL 95% confidence bound13

oanl(v+£— v+p) « О .з г а ^ ^ у  + л — ц~ +p) н0.25х10"3“ cm! , (15)

and assum ing the t dependence of the charged-current qu asie lastic  and n eu tra l-cu rren t e la s tic  c ro ss  s e c 
tions to be s im ila r ,,3,M we find that the right-hand side of Eq. (13) is  bounded by 0.32 X 0.46 x  10-38 cm 2 
= 0 .1 5 x l0 “31 cm2. Using 20-MeV invariant-m ass bins, we can then estim ate a bound on the flux -averaged  
c ro ss  section in the two bins nearest threshold a s  shown in Table I, giving the re su lt

=!7(!/ + и -  v + p  + v '  ANL flux averaged, 1.08 GeV « ^ « 1 .1 2  GeV) «0 .6  XIO"11 cm2 . (16)

For comparison, the p re lim inary ANL data on 
v + n — v+p + ir~, before final background subtrac
tion, showed - 5  events in the f irs t  two bins, which 
would have corresponded to a  c ross section of

(before background subtraction)

- 20 X10 -*1 cm2 , (17)

in strong violation of the bound of Eq. (16). It is  
now considered very probable that these events do 
not  represent a true neutra l-curren t effect, but 
a r is e  from various neutron-induced backgrounds.

As we have a lready  rem arked, the above tre a t
ment is  too naive in a  number of respects. F irs t 
of a ll, the restr iction  to cases , such a s 10 that of 
an iso sca la r  neutral current 3, for which the 
equal-tim e commutator term  vanishes excludes 
from consideration such processes as  produc
tion in the SU(2)®U(1) gauge model. Secondly, the 
extern a l-line -in sertio n  term s a re  rap id ly varying 
pole term s, and so the kinem atic approximation 
of neglecting Af* in calcu lating them can be dan
gerous. F ina lly , it is  important to estim ate the 
leading 0(q) corrections to the soft-pion approxi
mation, and to ca lcu late  the effects in the thresh
old region of the ta il of the (3, 3) resonance. As 
d iscussed  in detail in Sec. Ш, we deal with these 
problems by using an extended version of a  model 
for the weak pion-production amplitude which we 
have described e lsew here .0 The extension w ill 
perm it us to study the en tire  low -invarian t-m ass

region W « 1 .4  GeV, ra th er than Just the f ir s t  40 
MeV or so around threshold. For com pleteness, 
however, we give in Appendix A the analog of the 
threshold low -energy theorem  of Eq. (12) for the 
case of the SU(2)® U (l)-m odel neu tra l cu rren t.
The form ulas of Appendix A s t i l l  neglect the pion 
m ass in the k inem atics [as w ell a s  the leading 
0 (4) corrections and the (3,3)  resonance ta il]  and 
a re  not used in the subsequent num erica l work.

III. DETAILED TREATMENT

We proceed in th is section to set out the b as is  
for a more detailed num erical treatm ent of bounds 
on weak pion production by a V,A weak neutral 
current. The basic  idea, a s  developed above, is  
to use soft-pion techniques to re la te  weak pion 
production to e la s tic  neutrino-proton scattering , 
and to use experim ental hounds on the la t te r . It 
wi l l  also  be useful, at some stages of the an a ly s is , 
to impose constraints obtained from experim ental 
data1' 15 on deep-inelastic  inclusive neutrino-nu- 
cleon scattering induced by the weak neutral cu r
rent. In Sec. 1ПА we give the n ecessa ry  vertex  
structure and cross-section  form ulas needed to 
describe neutrino-nucleon e la s tic  sca tte rin g . In 
Sec. П1 В we give the n ecessa ry  form ulas for using 
deep-inelastic information; f irs t , in a ra th er gen
e ra l form assum ing only sca ling  and the fact that

сг(1/ + ЛГ- ц+ + Г)/a(v+N~ ц~ + Г) - i  ,

TABLE I. Application of Eq. (13) to bound the cro ss  section for v  + n - * v + p  + тг” in the two 
ANL 20-MeV bins n earest Invar {ant-mas я threshold.

W at bin 
center Iq] /m „ dW/M„

Bound on 
right-hand side 

of Eq. (13)
Bound on cro ss  section in bln 

Klq|dH'/M„2)x 0 .1 5 x l0 - 3s cm 2|

1.09 6.4 x lO '2 0.021 O.IBx 10' 3I cm! 0.20X10-41 cm2
1.11 1.1 x lO -1 0.021 0.1БХ lO"31 cm2 0 .3 5 x l0 " 4i cm2
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and then in a  more re str ic tiv e  form which makes 
use of quark-partoD model and quark-model a s 
sumptions. F inally , in Sec. П1С we develop the 
extended weak-pion-production model which rem 
edies the defects in our naive treatment enumer
ated at the end of Sec. II.

A. Elastic neutrino-nuclean scattering

We shall consider in what follows the most gen- 
e ra l V,A weak neutral current which can be formed 
from m em bers of the usual vector and ax ia l-v ec 
tor nonets. We w rite  for the neutral-curren t ef
fective Lagrangian

“e *"= I T  v9k >

3* ~Sva £F„X +£k3 S3X +gvB

with J * , nonet curren ts represented in the 
quark model (with quark field  ф) by1"

We express the nucleon m atrix  elem ents of the 
neutral members of these current nonets in the 
form1”

(18)

(19)

<MA)I »,XI M PJ) = Х„Щр,)№'> (42) /  + « Ft(J> (ft2)o x** J  tjU{Pl) , 

<N(p2) | ff5x| M/>,)>- « Д У Й 1 (**> У Vs + *!»" (*2) * V 5] tjU(Pl) , 

*o = i(f) ‘ /2, *s = H .

(20)

The vector and ax ia l-vecto r form factors defined in Eq. (20) a re  related  to the standard nucleon form fac 
to rs F ^ { k 2), g A(k2), h^k2) by

* № )  = К 2(k2), g ^ ( k 2) - g A # ) ,

FCli\(>t1) » 3F * ,2(k\  Aa1 (k2) = hA(k2) .

Defining total form  factors •F'fl2(A2), g\(k2) by

j I ' . j * 3) = i ( jy ^ g v o + r M w + U gy, *\з\(ьг) +* ( i ) i/igK91 * :№ ) ,

= i  (i)‘ /J^A0gi0) (**)+ i  « Sm tfiJ>(*2) + i  (i)1/J gA, gif)(*2) ,
with € = l  fop v + p  — v+p and c = — 1 for i/ + « — v + n, the differential c ro ss section for neutrino-nucleon sca t
tering takes the form

(21)

(22)

da(v + N— v + N) _ G2
di ” ЪпЕ'Мц1 { [1 ^ | г + 1г51г ^ 1 ^ | 2][4Л/у2Я 2 - ^ +2 ^ £ ) ]

+ 5<[|^|2«+ 4 М #2) + |^Г + 2Л Г *^|а /]+Н е[^ * (^ Т  +2A#JfF2,')]/(4Afff£ -/ )}  .

(23)

For Incident antineutrinos, the sign of gH in Eq.
(23) is  reversed .

B. Dccp-ineUstic inclusive neutrino-nucleon scaltering

We turn next to the constraints on the coeffi
c ien ts appearing in Eq. (18) which a re  imposed 
by experim ental m easurem ents1-15 of the deep- 
in e lastic  inclusive neutrino-nucleon scattering 
ra tio s8

RvSo i v+N-  v  + F )M v  + N -  М" + Г) ,
(24)

R j* o ( i r  + N-V + r )MV+N-  д ’  + Г) .

The charged-current-induced reactions in the de
nom inators in Eq. (24) a re  described by the usual 
charged-curren t effective Lagrangian

£% = т у  ДУх(1 -  r s) + adjoint (25)

with

«Jch =  C O f i0 c  ( ^ i + i 2  “  <2) 

+ sinflc (!Fx« ls -  $ ^ is) (26a)

In what follows we aim  only at getting form ulas 
which hold to an accuracy of 10 o r 20%, and so we 
make at the outset the approximation of taking the 
Cabibbo angle flc to be zero, which sim p lifies Eq. 
(26a) to read

(26b)

The virtue of using Eq. (26b) is  that the vector 
and ax ia l-vecto r p arts of the charged current a re  
then re lated  by an isospin rotation to the co rre -
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sponding isovector vector and ax ia l-vecto r term s 
in the neutral current of Eq. (18).

To proceed with the an a lys is , we assum e the 
valid ity  of Bjorken sca ling17 in deep-inelastic 
charged -curren t and neutral-current-induced 
inclu sive neutrino reactions. Considering for the 
moment the charged-current cross sections 
o ( v  + N— ti~ + Г) and o ( v  + N— ц* + Г), we review a 
standard an a ly s is11 starting from the formula

o ( v  + N— ц* + Г) 
a ( v  + N -  д ‘  + Г)

fgdxas + $ £dxxaL + jodxxaR
~T'dxas + f ldxxaL + у f 'dxxaK Jb -4

, (27)

where

as  = i F 2- x F ^ 0 ,

aL = F , - t , F , * 0  ,

aK - F l+i F , b  0 ,

x m l /ш = sca ling  variab le  ,

with F l i2iJ the deep-inelastic  structure functions 
in the sca ling lim it, and where an average nu
cleon targe t N = j (n+p )  has been assum ed. Em
p ir ic a lly , it  is  found that

а(1/ + ̂ - М *  + Г)/<7(к + Л ? -д -  + Г ) в ^  ,
which im p lies that as xaR =0, that is ,

F ,(x )= -2 .^ 0 0 , F2{x)*2xF,(x) . (28)

Splitting F j and Ft into vector and ax ia l-vecto r

(29)

(30)

(32)

contributions

Ft.  . ( * ) * < « (* )♦ * • £ » (* ) ,

we may rew rite  the re latio ns of Eq. (28) a s  

i | F , ( x ) | « i № )  + / ' » ]  ,

F\{x) + F?(x) = 2* [*■?<*)+ F ?(* )].

Comparing Eq. (30) with the Schwarz in equa lity1® 

$ ! * , ( * ) [ +*■?( *) ]  (3i )  
and the positiv ity inequalities 

F r2(x)*2xF\(x)  ,

F t (x )^ 2x F * (x )  , 

we learn  that

F' ix)  = Ff(x) = ^  F^ x )  * ^  Fl (x )

’‘ - \ F i ( x ) « i F A x ) n j i F t (,x). (33)

Now let us turn our attention to the d eep -in e la s 
tic ratio s of Eq. (24). If we again  take N to be an 
average nucleon target, the isovector and iso 
sca la r  term s in the neutral curren t of Eq. (18) do 
not in terfere, and so we get a  lower bound on R» 
and Up by neglecting the iso sca la r  contributions 
to the cro ss section. Using the fact, a lread y  men
tioned, that the Isovector p ieces of Eq. (18) a re  
related  to the corresponding isovector p ieces of 
Eq. (26) by an isospin rotation, we find that

f a ) * !  fa,‘/x< er.’ [ ix F U x )+ iF Z M l+ Sr ^ [ j x F ? ( x ) +iF ? (x ) lT jr r . * , . i x F J x ) }
W /  2 ' ■ (34)

Substituting now the re lations of Eq. (33), we get 
the sim ple inequalities20

. (35)
Д г  * 2  (g r  * +gA,2 -  g r  J gA,)  .

When added in the lin ear combination ЗД„ +R? 
which e lim inates the v ec to r-ax ia l-v ec to r  in ter
ference term , and combined with 95% confidence 
lim its  in ferred  from current m easurem ents of 
Ry and Rv,  the inequalities of Eq. (35) y ie ld  the 
constraint

\ .b * 3 R „ + R z b g r i+ g A* f (36)

which w ill be used in our subsequent an a ly s is . As 
we have a lready em phasized, In getting Eq. (36) 
we have only used the assumption of sca ling  to
gether with the em p irica l observation of a

charged-current antineutrino-to-neutrino inclu
sive cro ss-section  ratio  of = j.

In order to strengthen Eq. (36) so a s  to include 
the iso sca la r  current term s in Eq. (18), it is  nec
essa ry  to go beyond the assum ptions just stated 
by using information from the quark-parton  model. 
Specifically , we w ill make u se  of the standard 
sp in - i quark-parton model for d eep -in e lastic  
scattering ,”  with the additional assum ptions that 
the strange parton and the antiparton content of the 
nucleon may be neglected22 [the la tte r  of these a s 
sumptions is  suggested by the approxim ate r e la 
tions of Eq. (33)] .  The quark-parton model in th is 
form is  expected23 to be good to an accu racy  of 
o rder 20%, and has the g rea t v irtue that a ll  x 
dependence (for an average nucleon target) ap
p ears  in a  single un iversa l o v e r-a ll factor which 
drops out in the ra tio s -Hu.iT- A straigh tforw ard  
calculation then g ives
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С ^ _ )  = 1 ( t a r .  i  ( !  У'2 +gr ,  j ( s ) ,/ j] j  + (I 8г3)г * [gM i  (§ )l/2 +g*  i ( i ) ,/2] 2+(i *Aj)’ }

*Н 1вг.*(1),Л + Л .* («1Л] ,

1.5 * Л !г + ЗД ,-[Л .Ш ,л  +gy, ( i) , / j )s + g r ,2 +[gAo(| ) I/J ♦ Л .( * ) , л ]* ^  .

(37)

One additional piece of information which w ill be 
needed, in o rder to use the constraint of Eq. (37) 
in an an a ly s is  of low-energy pion production, is  
knowledge of the renorm alization constants 
^j(o.0)(o) which describe the one-nu
cleon m atrix  elem ents of the iso sca la r  currents 
appearing in Eq. (18). The constant ^ iB>(0) is  
fa ir ly  re liab ly  fixed by SU(3) to have the value23

г ! а)(0 ) » ( 3 - 4 x Q . 66) 1.24 = 0.45 , (38a)

while the m easured value of F i s  ̂(0) is

2M JfF ' , ) (0)/f,(1s,(0) = -0 .1 2  . (38b)

For the constants £ло)(0) and F^fO ) recourse 
must be made to a quark-m odel an a lys is  of cu r- 
rent-renorm alization  constants, 11 which g ives24

(39)
* i o)(0 )= i 1.24 =0.74 , 

2 A f ,F ‘o,(0)/F<<»(0)=_0.1 

for the un itary-sing let renormalization constants.

C- Extended model for weak pion production

We turn finally to a description of the extended 
model for weak pion production which we w ill use 
in the num erical calculations of Sec. IV. As an 
aid to the discussion which follows, let us f irs t 
rew rite  the pion-production m atrix element of Eq.
(1) in an alternative form, obtained hy rearran g 
ing the pseudo vector-coupling external-nucleon- 
line-in sertion  term s which appear there into 
pseudoscalar-coupling Born term s of the usual 
form. This g ives

Iз (0) I ЛГ(Л» = -  31 ЩА) +

+ vbTJ J lk ) - J (k )  - j t -  y , Tj2M„ 5 ' v -  va w + I'b 2Mh

+ possible additional pion-pole "seagu ll” contribution"] u(/>,) ф* + 0(q) ,

(40)

with

» = (A +Pi)‘b/(2Mtt) .
(41)

va = -q -k / ( 2M H) ,

and with a ll other quantities as defined above.
The anticommutator term  which has appeared in 
Eq. (40) is  the PCAC (partia l conservation of 
ax ia l-v ecto r current) “consistency-condition” 
term 25 a r is in g  from the pseudovector-to-pseudo- 
s c a la r  rearrangem ent.

With the aid of Eq. (4), we can now proceed to 
d iscu ss the pion-production model, which Is an 
extension of a calculation of weak pion production 
In the (3 , 3) resonance region which we have de

scribed in detail elsew here .9 In its original form, 
the model included the pseudoscalar-coupling Born 
term s and the pion-pole term s of Eq. (40), with no 
kinem atic approximations. In addition, the dom
inant (3, 3) m ultipoles were unitarized by the 
method used in the CGLN treatment of pion photo
production,2'  so a s  to co rrectly  describe (3, 3) 
resonance excitation. Our basic extended pion- 
production model is  obtained by adding the com
mutator term  in Eq. (40) (evaluated at q = 0, ex
cept where a  pion pole appears) and the “consls- 
tency-condition” term  to the Born approximation 
and resonant term s of the original model, y ie ld 
ing a  pion-production amplitude which has the co r
rect soft-pion lim it. In term s of the amplitudes 
Vj *°\ j  = 1 , . . . .  6 and А^\ j  = 1 , . . . .  8 used in 
Ref. 6 the additions a re71
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д Vjr* -  \sj p  -  .
(42)

ДА '-' = - g r  
g.A [*T  W - g A g A d ? )  

+ 2Jlf„J^(ft=)] .

Note that the term s re ferred  to in Ref. в as “d is- 
persion -re latton  corrections to the sm all partia l 
w aves” a re  omitted from the amplitude, since 
including them along with the additions of Eq. (42) 
would involve double counting (and also  for the 
p ractica l reason that the num erical evaluation of 
the d ispersion -re lation  term s is  very costly in 
term s of computer tim e).

A further elaboration on the pion-production 
model consists of adding in the leading co rrec 
tions (of f ir s t  order in the pion four-momentum q 
and zeroth order in the lepton four-momentum 
tran sfer k) to the soft-pion lim it. These co rrec 
tions a re  calcu lated  by the method of Low”  and 
A dler and Dothan” ; for the vector amplitude they 
vanish (as a re su lt of vector current conservation), 
w hile for the isovector ax ia l-vecto r amplitude 
they a re  re lated  by PCAC to momentum deriva
t iv e s  of the pion-nucleon scattering amplitude at 
the cro ssing  sym m etric  point. For a s  iso sca la r  
ax ia l-v ec to r  curren t the 0 (9 ) corrections cannot 
be p re c ise ly  calculated , but an heuristic  re so 
nance dominance argument given in Appendix В 
suggests that they may be re la t iv e ly  considerably 
sm a lle r  than in the isovector ax ia l-vecto r case , 
and so we neglect them. For the isovector ax ia l-  
vector am plitudes, the calculations of Ref. 28 
te ll  us that27

bH
e r

- i
>0.36

fir yB iv* Vn ■ о

(43a)

=  2 . 8  :

l o * L

with the superscrip t В indicating the Born approx
imation and with the num erical values in units in

which M, = l .  In order to apply Eq. (43a), we must 
f ir s t  estim ate the extent to which the am plitudes 

A*** in our basic pion-production model d iffer 
from their Born approxim ations a s  a  re su lt  of 
unitarlzation of the (3, 3) m ultipo les. This is  done 
at the end of Appendix B, with the re su lt

[A<->-A<->J,]| 0ta‘lcn,od*l =0.21 , 

[A'+) -  А'*,я ] I $■* n0"  «0 .84  .
(43b)

Hence to bring the basic model into agreem ent 
with Eq. (43a) we add the 0(q)  co rrection s

=0.15(1 ,

ДА*> =1.96(1 +*7M Jp  -
(43c)

Only the k2 = 0 values of the co rrection  te rm s a re  
actually determ ined by low -energy theorem  a rg u 
ments; however, to avoid a  spurious dominance 
of these correction term s at la rg e  к1, we have in 
cluded an ad h o c  dipole form facto r”  (1 +k*/M2) *, 
characterized  by a dipole m ass M. In the num er
ic a l work of Sec. IV, M w as taken equal to the nu
cleon m ass MH = 0.94 GeV, which is  ra th e r  typ ica l 
of the dipole m ass values”  found in both the v ec 
tor and the ax ia l-vecto r form facto rs. As we w ill 
see in Sec. IV A, substantial varia tio n s of M about 
th is value have a  re la t iv e ly  sm all effect on the 
magnitude of the 0(q)  co rrectio n s to the threshold 
pion-production c ro ss sections. W hile the in c lu 
sion of the order-tf corrections m ay be an im 
provement in the amplitude near threshold (or at 
a  minimum, should give an idea of the lik e ly  im 
portance of corrections to the b asic  soft-pion m a
tr ix  element), th e ir undamped growth as  Я in 
c rea se s  makes the ir inclusion of doubtful value 
away from the threshold region. To illu s tra te  
th is, we also  evaluate the 0(q) co rrection s a c 
cording to the modified recipe

ДА1"’ 0.15(1 + кг/М*)~* ,
ДА”  =(Af„/HQ 1.96(1 +к2/М1)' г ,

(43d)

which ag re es  with Eq. (43c) at v = vm =0, but which 
grows le s s  rap id ly  with Increasing W. To sum up, 
the fully extended pion-production model which we 
have just described contains both nucleon and pion 
Born d iagram s with no k inem atic approxim ations, 
includes the dominant (3, 3) m ultipoles in u n ita r- 
ized form, and ag rees  with a ll lo w -en ergy-th e- 
orem  constraints through te rm s of f irs t  o rder in 
q and k, with an e rro r  of o rder qk at m ost. It 
should thus give a reasonably accurate d e sc r ip 
tion of lo w -invarlan t-m ass pion production, p a r 
t icu la r ly  in the region c lose to in var ian t-m ass 
threshold.
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IV. NUMERICAL RESULTS

We turn now to num erical calculations using the 
pion-production model developed above. In Sec.
IVA we give the re su lts  of num erical studies of 
the model, in which we examine the effect of the 
0(q) corrections of Eqs. (43c), (43d) and explore 
the ir sen sitiv ity  to the m ass param eter M, and in 
which we compare the predictions of the model for 
charged-current-induced neutrino pion production 
with experim ent. In Sec. IVВ we use the model 
to give bounds on the ANL neu tra l-cu rren t-in 
duced threshold pion-production cross section, 
for a  v arie ty  of different models for the structure 
of the weak neutral curren t. F inally , in Sec. IV С 
we study low -invarian t-m ass pion production in 
the BNL neutrino flux, in the special case of a 
pure Iso sca lar weak neutral current.

A. Numerical studies of the mode]

We begin our num erical examination of the pion- 
production model of Sec. ШС with a  study of the 
0(q) correction  term s added to the weak pion pro
duction amplitude in Eq. (43). In Table П we give 
theo retica l ANL 2-bin c ro ss  sections, defined as 
in Eq. (16), for the seven allowed charged- and 
neutral-curren t-induced  pion-production reactions. 
In column 2 we give the cro ss section obtained 
without the 0(q) correction [that is , from the basic 
pion-production model including the soft-pion ad
ditions of Eq. (42), but without the additions of 
Eqs. (43c) or (43d)]. In columns 3, 4, and 5 we 
give the corresponding cross sections with the 
0(q) co rrections included a s  in Eq. (43c), taking 
the ad h o c  dipole m ass M as MH, M„/V2 , and 

respective ly . In column 6 we give the 
c ro ss  sections calculated with the 0 (fl) co rrec 
tions Included a s  in Eq. (43d), w ithМ - М и. We 
see that the 0(q ) corrections have a substantial 
effect on threshold c ross sections for v+p-~ v 
+ p  + n c and v + n — v  + h  + v ° ,  a moderate effect on

the cro ss section for v  + p -  ц~ +p + n*t and a r e la 
tive ly  sm all effect on the rem aining reactions. As 
expected in the threshold region, the rec ip es of 
Eq. (43c) and Eq. (43d) for the 0(q) corrections 
give s im ila r  resu lts ; we also  see that the v a r ia 
tion in the threshold c ro ss section as  M2 is 
changed by a  factor of 2 in either direction from 
M2 - MM2 is  sm alle r than the effect of including the 
0(q) corrections, indicating that the sensitiv ity 
to the value of the m ass param eter M is  not ex
cessive . In Table m  we show the effect of the 
0(q) additions on the ANL and BNL. c ross sections 
integrated over the low -invarian t-m ass region 
W«1. 4GeV.  Again, the reactions v  + N -  v + N + ita 
a re  sensitive to the 0 (9 ) additions, with the 
effects on the other c ro ss sections ranging from 
moderate to sm all. Here, however, we see a sub
stantial dependence on whether the recipe of Eq. 
(43c) or of Eq. (43d) is  used, indicating that the 
0(q) additions do not constitute a well-defined 
correction to the basic pion production model 
outside the threshold region. A satisfacto ry tre a t
ment of the 0{q) term s away from threshold would 
requ ire the ir interpretation as  the low-energy 
lim its  of appropriate p artic le  exchange term s. In 
the num erical work on the ANL threshold cross 
sections for v  + n — v + p  + v~ described in Sec. IVB, 
we w ill Include the 0 (?) correction term s with 
М=Мм. In the num erical work of Sec. IV С ana
lyzing the iso sca la r  case for the BNL spectrum, 
we w ill neglect the O(q) correction s—they vanish 
for an iso sca la r  vector current and, a s  argued in 
Appendix B, may be re la t iv e ly  sm all (although 
hard to estim ate p rec ise ly ) for an iso sca la r  ax ia l- 
vector current.

Obviously, the best way to a s se s s  the re liab ility  
of the pion-production model developed in Sec.
Ill С is  to compare its  predictions for charged- 
current-induced pion production reactions with 
experiment. In F ig. 1 the ANL data30 for v + p
— \i~ +р + л* a re  plotted together with predictions

TABLE П. Effect of Oiq) additions of Eqa. (43c), (43d] and sena ltlv lty  to the a d  h o c  dipole 
p aram eter M in the ANL threshold region. N eutra l-curren t cross sections a re  calcu lated  in 
the W elnherg-Salam  model, with sln^S,, =0.35 and дЗ х =0 |яее Eq. (52)].

Reaction Without 0(q)

Valuea of in 10“41 
With Oiq) from Eq. (43c)

cm2
With Oiq) 

from Eq. (43d)

v + rt +P +ff13 3.8 3.5 3.6 3.5 3.6
V +/> — n"  +P +1f* 4.5 5.9 5.6 6.4 5.7
Р + И -* / | “  + И +w* 2.3 2.1 2.0 2.2 2.0

V + P  —  V +  P  + 1 ^ 0 42 0.73 0.61 0.88 0.64
v + n  —■ V + n  + ir® 0,47 0.77 0.65 0.92 0.69
11 + Я —  V + P 0.91 0.80 0.82 0.77 0.81
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TABLE Ш. Effect of 0 (q) additions of Eqs. (43c), (43d) in the ANL and BNL (3 ,3 ) r e so 
nance regions, defined by W ^ 1.4 GeV. N eutral-current crosa sections a re  ca lcu la ted  In the 
W elnherg-Salam  model, with stn2el ,=0.35 and Дс)х =0 (see Eq. (52)]. As is  evident from the 
differences between the two recipes for adding In the Oiq) term s aw ay from the threshold r e 
gion, the 0(g )  additions do not constitute a  w ell-defined correction  to the b as ic  pion produc
tion model when the en tire (3, 3) resonance region is considered. However, they do usefu lly  
indicate which channels may prove to be p articu la r ly  sensitive to co rrections to the bas ic  
model.

Reaction

a

Without 
Ohj)

Values of 
ANL(W, s  1.4 GeV)

In 10 "M cm2
With 0(q )

Eq. (43c) Eq. (43d)

a

Without
Of?)

V alues of 
BNL (W S 1 .4  GeV)

In 10-38 cm 2
With Otg )

Eq. (43c) Eq. (43d)

v  + n — p~ + p  + I1 €.0733 0.0694 0.0698 0.147 0.143 0.143
v+ p  —ц~ +p +T* 0.219 0.237 0.228 0.427 0.499 0.466
v  + n ~ n ~  + n+x* 0.0571 0.0534 0.0491 0.129 0.134 0.116

v  +p — v + p  +  TT11 0.0283 0.0348 0.0308 0.0532 0.0765 0.0629
v  + n — v  + n +T1 0.0288 0.0350 0.0311 0.0539 0.0768 0.0634
v + n — V  + P + TT~ 0.0192 0.0181 0.0181 0.0366 0.0352 0.0351
v  +  p — v + n + » * 0.0204 0.0191 0.0192 0.0383 0.0367 0.0367

of the pion production model, both with 0(<?) ad
ditions (curves b and c) and without these additions 
(curve a). The theoretical curves a re  evidently 
low by 30-40%  in the case  of curve a and by 
sm a lle r  amounts in the cases of curves b and c. 
P art of th is d iscrepancy may a r is e  from uncer
ta in ties in the absolute level of the ANL neutrino 
flux (these un certa in ties a re  included in the ex
perim ental e r ro r  bars) and in the value of the 
ax ia l-v ec to r  m ass param eter31 MA, but part is  
probably due to the known1 tendency of the pion- 
production model to underestim ate pion-produc-

FIG. 1 . Com parison of the extended plon-productlon 
model of Sec . ШС with the ANL data for v  +p —
+p + t * .  Curve a f b as ic  model containing Born, re so 
nant, and soft-pion te rm s ; curve b , basic model with 
0 (4 )  additions from Eq. (43c); cu rve c , b as ic  model 
with 0 ( ? )  additions from  Eq. (43d).

tion cro ss sections for | k2 \ s  0.6 (GeV/с)2. To 
m inim ize th is problem , in d iscussing  the BNL 
iso sca la r-cu rren t case  in Sec. IVC we w ill a lw ays 
compare r a t i o s  of c ro ss  sections computed within 
the pion production model with the corresponding 
ratio s obtained experim entally , ra th er than m ak
ing d irect com parisons of c ro ss  sections between 
theory and experim ent. In Table IV we com pare 
p re lim inary ANL values32 of the ra tio s  v(i> + n — д" 
+ p  + тг°)/сг(у + £ -  + and o ( v  + n -  ц.'  + п  + я')/
<j[v+p -  ji" +£ + ff*) with the corresponding th eo ret
ic a l predictions for the in var ian t-m ass in terval 
W s  1.4 GeV. The agreem ent is  seen to be gen
e ra lly  sa tisfac to ry . In F ig. 2 we com pare the 
a re a  norm alized theo retica l in v ar ian t-m ass  d is 
tribution for v + p — ti~ +p + v* [including 0(q)  c o r 
rections from Eq. (43c)] with the corresponding 
ANL experim ental h istogram 35; the agreem ent in 
th is case is  excellent. In F ig . 3 we g ive the sam e 
comparison for the reactions34 v  + n — + p  + v°
and v + n -  ii~ + n + v*. The agreem ent is  again  s a t 
isfacto ry . In general, the com parisons given above 
suggest that the pion-production model developed 
in Sec. 1ПС should be re liab le  to better than a 
factor of 2 in the region at and below resonance. 
The re liab ility  should be substan tia lly  better than 
this for re la t iv e  c ross-sec tio n  ra tio s  or reactio n s 
without la rge  0(q) corrections.

B. Threshold neutral-curren (-induced pion production 

in the ANL flux

We consider now the application of the fo rm u las 
develop-d in Sec. Ill to the study of n eu tra l-cu r
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TABLE TV. Comparison of theoretical predictions for charged-current pion fin a l-sta te  
ra tio s  with p re lim in ary  ANL experim ental re su lts  (Ref 32).

Ratio Experiment Without Ofq)

Theory
With Oiq) 

Eq. (43c) Eq. (43d)

a(p+n— ц~+р +7r°) 
cr(v+p-»ii~ +p +JT+) 0 .27*0.06 0.34 0.29 0.31

a(p + n — y “ + n +ir+) 
C( V +p — + p + n*) 0.31 ±0.07 0.26 0.23 0 .22

rent-induced threshold pion production in the ANL 
neutrino flux .4 We sta rt with the general s ix -p a
ram ete r neu tra l-cu rren t structure in Eq. (18), 
but we note that since the iso sca la r  ax ia l currents 
contribute only35 through the g [ a,i)y \ i term  in

their nucleon vertices , the effective number of 
p aram eters entering the pion production ca lcu la 
tion can be reduced to 5. These a re  conveniently 
introduced by w riting the one-nucleon m atrix  e le 
ment of the neutral current as

<MA)I** IМ Л »  = { [ - К S*.(k2) y \  +*2 F \(*2) /  + «X,F\(k1) о " k „ ]i  r ,

+[- x, D(*VV, + \  W 2) r 1 + «М2 « *)'* ***) ® M*,] i  }“(/>.). (44)

with Dib2) a  dipole structure characteriz ing the 
iso sca la r  current v ertices , which for definiteness 
we take a s

• (45)

To a  f ir s t  approximation, we expect31 that sm all 
changes in the iso sca la r  dipole m ass param eter 
from the assigned value of Мц can be compensated 
by making appropriate resca lin gs of the iso sca la r 
p aram ete rs  X,i 4 i , .  In term s of the param eters 
X„ . . . , X 4, the couplings £ r0. 3.ei&»o.a.« intro
duced in Eq. (18) a re  given by

g y 0( ! ) J/a + ^ ,( 5)*/l * i g v z m* i ,

\> =xi >
(46a)

with g% an effective iso sca la r  ax ia l-vecto r renor
m alization constant defined by

s ^ n(i>l/2* J o)(O)+jPjl. ( i ) l/2* i e)(0) .

In term s of these definitions, the deep-inelastic 
constraint of Eq. (36) becomes

1 .5 »  3Rv +R j > \ l2+\23i <47)

while the stronger constraint of Eq. (37), which 
follows when q u a r k -parton-model information is 
used, takes the form

1 .5 г  3R„+«i7 =X1a +XaJ + - ^ i  + i x 4J . (48)

Equations (15) and (47), or (15) and (48), a re th eb as ic  
constraints which wi l l  be imposed in m axim izing 
tfjbin over the space of p aram eters X,, . . . ,  X,.

Obviously, to recompute the pion-production and 
n eu trin o -p ro to n -e lastic -scattering  cro ss  sections 
for each distinct set of param eter values being 
studied would be a very inefficient procedure from

FIG. 2. Comparison of the area-n o rm alized  theoreti
ca l in varian t-m ass distribution  for i• +p — + P + r* 
(calcu lated  with 0 (e ) additions from Eq. (43c)l with the 
ANL histogram  for this reaction .
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A N LTABLE V. Coefficients determining a 2b,„ and

Mass (7T+n ) (GeV)
in
CVJ

сn

Ш 5 -

Ш

fJL~ 7Г° P 

P „ - o >  500  MeV/.

- A r i a  N o r in a l lz a d  C u rv a

A I
\ A

i
\.2

i r 
1.3 M

ац_Я
(.3  4.4 (.5  4.6 

Mass (p 77"0 ) (GeV)

I
4.7

FIG. 3. Comparison of the a re  a-no г m ail zed theoretical 
in varian t-m ass d istributions for v + л —ц~ + я + ir+ and 
\> + n — +p + ir° [calcu lated  with 0{q) additions from 
Eq. (43c)] with the corresponding ANL h istogram s. The 
theoretica l predictions have been folded with the exp eri
mental invarian t-m as a resolutions of 25 MeV for n + к* 
and 40 MeV for p  + ir°.

a num erical point of view . Rather, we exploit the 
fact that the c ro ss sections a re  quadratic form s 
in the p aram eters \jy taking the form

I 4 ]

<7ANL( i ' + f > - u + / 0 / 10~M c m !  = ^  Y !  E u x i x i>

(49)

so it is  only n ecessa ry  to perform the c ro s s -s e c 
tion calculation for the 15 param eter sets

Xj -0 , i Ф If J  

X/ = 1, A j  =1 I
(50)

to extract the coefficients4 P llt Etl , which are 
tabulated in Table V. The quadratic form s of Eq.
(49) a re  then used to compute the c ross sections 
when search ing over param eter values, perm itting 
a  complete survey of the five-param eter space 
using a  v ery  reasonable amount of computer tim e.

_ ANL ( v  + p  — v + >) v ia  the quadratic form s of Eq. (49).
Note the comment to Ref. 4.

Pion-production
coefficients

Elastic-s c a tte r in g  
coefficien ts

*11 0.621 x l 0 “3 Е ц 0 .6 9 2 x l0 “ ‘
P  22 0.807X10"3 En 0.767 x lO ”*
PV 0 .163x10“* *33 0.478 x l 0 _l
P a 0.244x 10“* Eu 0 .3 6 4 x 1 0 “’
P n 0.121 x 10“* Eis О.ЗООхЮ”2
P .2 0.534X 10-3 E,2 0 .6 5 6 x 1 0 “'
P a 0 .772x10“® *13 0.115
P m 0.166 x 10“* EU 0 .1 5 8 x 1 0 “'
P  IS—0.211x 10“* Ex s 0 .1 5 9 x 1 0 “'
P a -0 .3 9 3 x 1 0 “* E n 0 .55 4x 10“'
p u 0.143 x 10 “3 E u 0 .8 5 8 x 1 0 “'
P * -0 .3 1 2 x 1 0 “* Eti 0 .2 0 1 x 1 0 “'
P l i 0 .32 8x10“* Elt 0 .1 3 4 x 1 0 “'
P i  5 0 .532x10“* E1S 0 ,1 3 4 x 1 0 “*
P* 5 0 .9 9 6 x l0 “6 EK 0.229X 10-2

The resu lts , for various assum ptions about the 
structure of the weak neutral curren t, a re  a s  fol 
lows:

(1) P u r e  i s o s c a l a r  weak n eu t r a l  c u r r e n t .  Taking 
X,=Xj = 0 and m axim izing over the A„ X4, X5 
subspace subject to the constraint of Eq. (15) g ives 
the upper bound

ffitta *  LOx 10“41 cm2. (51)

(2) We inbe rg -Sa lam SU(2)9 U(l) m od e l .  In the 
sim plest, one-param eter version  of th is m odel,”  
the neutral current has the form

Зи =S,X - 5 J X -2 x (T sx +Э-,/ ,5,‘ )*Д Л \ (52)
X  = sin’ flr

with Д^х ал iso sca la r  V-A strangeness and 
"charm” current contribution which is  convention
a lly  assum ed to couple only weakly to nonstrange 
low -m ass hadrons (such as the low -energy pion- 
nucleon system ). Neglecting Д«1* for the moment 
we can make an absolute calculation  of the c ro ss 
section for v + n - v + p  +n~, giving

a tbta = 0 .75 x l0 "41 cm1. (53)

In certain  extensions of the o rig in a l W einberg- 
Salam  model, the neutral current has the genera l 
form of Eq. (52), but with an adjustab le strength 
param eter к In front,

= « [ 3 ^ - S ?  -2 x (f f* +Э“1/а&,‘ )]+ Д $х. (54)

S till neglecting дЗ х, and comparing with Eq. (44), 
we now see that the param eters \j have the values



R38 497

2656 S T E P H E N  L .  ADLER 12

X, “ K,

X,=k( 1 - 2 x), \4 = - 2 kx, (55)

X, = 0. Xs = 0.24kx.

M axim izing over the к, x param eter space 
(allow ing a ll re a l values of x, rather than re s tr ic t 
ing x to lie  between 0 and 1) subject to the con
stra in ts  of Eqs. (15) and (47) gives the upper bound

“ « к ь ,*  l . S x l O *41 cm 1. (56)

F inally , we can Include the iso sca la r  addition д£х 
by regard ing Xa, X«, Xs as free param eters , rather 
than re lating  them to к and x as 1л Eq. (55). 
Search ing now over the five-param eter k, x, X3, X„ 
X, space (again allowing a ll rea l values of x) sub
jec t to the constraints of Eqs. (15) and (47) gives 
the upper bound

tfjbin <4.6 x 10"41 cm1. (57)

We em phasize that Eq. (57) is  the upper  bound on 
а1 ш  So r  the mo s t  g e n e r a l  hadronic  neutral c urr ent  
f o r m e d  f r o m  the usual v e c t o r  and axial - ve c t or  
nonet s .  II Eq. (47) is  replaced by the stronger 
constraint of Eq. (48), and if the param eters g  
- Xj/X, and g\  a re  restr icted  [as suggested by the 
quark-m odel1'  24 values of Eq. (39)] by

1*1 « 1 .5 ,  1*51*0.74, (58)

then the bound In the general V,A case is  substan
t ia lly  reduced, to

tfibin * 1.5XlO*41 cm2. (59)

C . A nalysis o f  low-invariant-m ass ( V  <  1 .4G «V ) pion production 
■t BNL: Isoscalar current cu e

We turn finally to an ana lysis  of low -invariant- 
m ass (W 1.4 GeV) pion production in the BNL 
neutrino flux.M Recently, the Colum bla-Illinois- 
R ockefeller collaboration at BNL has reported a 
m easurem ent of the ratio

o{v +T—1> +uD +• • •)
2ct(у + Т -  Ц'  +»“ + ■ ■ ■) ’ 

T =?(jC1J) +?(„А1” ), 

with the p re lim in ary  resu lt5-5" 

Яо -0 .1 7  ± 0.06.

(60)

(61)

This m easured value of R‘a is  in accord with the 
value expected40 in the W einberg-Salam  model 
when sin J9»  is  in the currently favored range of
0 .3 -0 .4 . Hence i/(3, 3) resonance excitation, 
which is  expected in the W einberg-Salam  model 
(see  F ig. 4), is  observed in the BNL experiment, 
the presumption would be strongly in favor of the 
standard  gauge-theory interpretation of neutral 
cu rren ts . However, p re lim inary BNL invariant-

mass spectra9 for n° production In the charged - 
and neutral-current cases show a c lear (3, 3) peak 
in the charged-current case, but indicate no com
parable peaking in the neutral-current reaction, 
suggesting that perhaps the (3, 3) resonance Is not 
excited by the neutral current. In what follows we 
analyze the Implications for neutral-current stru c 
ture if this indication is confirmed both by more 
detailed analysis of the BNL data and by other ex 
periments.

Since the Isovector V and A neutral currents 
both41 strongly excite the (3,3) resonance, the ab
sence of a (3, 3) peak in the V,A case would sug
gest an Isoscalar neutral-current structure, and 
we assume this In what follows. Applying nuclear 
charge-exchange corrections as described in Ap
pendix C, we find that the nuclear target ratio  
quoted in Eq. (61) im plies the free-nucleon target 
ratio

<rBNL(ь> +n- v +n +ff°) +o,NL(i> +p— v +p +1°)
ПЯГ7(V + n-p ."+ p+ 7T

* 2 я :х  1.4= 0.48± 0.17. (62)

Let us now compare the experimental result of 
Eq. (62) with theoretical predictions obtained from 
the extended pion production model developed in

n r  4 A re a -n o rm a liz e d , BNL-nux-.ver.ged
.7* I in v a r ia n t -таяя distribution in the Weinber*-

-o-36» ,or tha reactlon:Salam model (w model containing Born,
* P * '  ' A aoft-plon term a; curve b, baalc model

asss»-
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Sec. ШС, in the case of a pure iso sca la r neutral averaged pion production and e la s t ic  c ro ss  s e c -
current. Again we param eterize the neutral cu r- tions a re  then quadratic form s in X„ X4, A.,, taking
rent as in Eq. (44), with X, = X,=0. The BNL flux- the form

[a ,NL(v+H— v+n +t°, W «  Wy) 4-o,bnl (y у +p +ir°, W&И^,)]/10- , ,  cm1 = £  X !

5 __
+ p - v  +p, Cundy cuts)/10~3* cm1 = Y* ^2 Б$Х,Х,,

i«S ssjzI
3

q BNL(n + p - v  +p, no cuts)/10~M cm2 = У  t63)
<4 asj«i

Cundy cuts: 1 GeV«  E *  4 GeV, 0.3 (GeV/c)2«  |feJ|«  1 (GeV/c)’ .

The pion-production coefficients P u  (for W„*  1.2, 1.3, and 1.4 GeV) and the cut and uncut43 e la s t ic - s c a t 
tering coefficients Etl required in Eq. (63) are  tabulated in Table VI. In m axim izing the pion-production 
cross section over the space of param eters X„ X4, Xs, we impose the constraints

o BNL(i/ +p— v +p, Cundy cuts) «  0.24ctbnl(k +n — Ц" +p, Cundy cuts) = 0.C85 x 1C"M cm ',
(64)

1 .5^ 3R„ +R- * ^prj!

the f irs t  of which i 9 the Cundy et  al .Ai 95% confi
dence-level lim it from the CERN neutrino experi
ment, which has a neutrino flux s im ila r ’ * to that 
of the BNL experim ent, while the second is  the 
deep-inelastic  quark-parton-m odel constraint of 
Eqs. (37) and (48) above. The resu lts  of the m ax i
mization are  expressed  as theoretical upper 
bounds on the ratio  2RC defined in Eq. (62), with 
both the num erator and the denominator calculated 
from the pion production model. As stressed  in 
Sec. IV A, the procedure of comparing theoretical 
c ro ss-sec tio n  ra t i o s  with experim ental ratio s 
should m inim ize the effects of d iscrepancies b e
tween the experim ental and theoretical c ro s s -s e c 
tion magnitudes. For the denominator cross s e c 
tion a BNL(v +n-  |i" +p +n°, 1.4 GeV) we use the 
value 0.143 x  10"s'  cm1 listed  in columns 6 and 7 of

Table Ш, corresponding to inclusion of 0(q)  c o r 
rections; however, as is  apparent from the tab le , 
the effect of the 0{q) corrections on th is c ro ss s e c 
tion is  very sm all.

Results of the m axim ization calcu lation44 a re  
given in F igs. 5 and 6 . Curve a  of F ig. 5 g ives 
the maximum for an iso sca la r  pure vector curren t, 
while curve b g ives the maximum when an octet 
iso sca la r  ax ia l-vecto r current is  a lso  present 
(corresponding to = 0.45), both plotted v ersu s 
the iso sca la r  current gyrom agnetic ra tio  £ = XS/X,. 
Evidёntly, both curves lie  below the BNL data, 
with a d iscrepancy exceeding a  factor of 2 un less 
|̂ | 2  4 -6 , that is , un less the iso sc a la r  vector c u r 
rent has a  \g‘ value which is  anom alously la rge  
based on quark-m odel expectations.M In teresting
ly, a vector current with a  la rg e  |#| value pro-

TABLE VI. Coefficients determ ining a  BtlL (v  + n — V 
various W ranges and a BNL (v+p — v+p), both cut and 
<63).

+ Л +ir°) +trSNL (v  + p  — v  + p  +ir°) for 
uncut, v ia  the quadratic form s of Eq.

Pion-production coefficients 
f f i l . Z  GeV 1.3 GeV W s  1.4 GeV

E lastic -sca tte r in g  coefficients 
Cundy cuts No cuts

■Pm 0.210 xlO "2 0.607X 10-2 0 .109x10“' * 8 ’ 0 .176x10" ' p  (2) 0 .55 5x 10" '

P u 0.286 x lO -3 0.638x10"® 0.994 x 10"3 0 .158x10" ' 0 .51 5x10" '

■P55 0.193 x 10"3 0.566 x lO -3 0.106 xlO "2 0.265X 10"2 *№ 0.480 xlO "2

P u 0.247 x lO -3 0.925 x 10"3 0.165 x lO -2 0 .5 5 8 x l0 " J 0 .10 5x10" '

Р*ь 0 .4 6 7 x l0 " s 0 .138x 10"2 0.258X10-2 B f? 0.558X10"2 E g 0 .10 5x10" '

-P.5 0.169X10"3 0 .519x  10-3 0.941 xlO "3 0.635 xlO "3 e № 0.142 x lO "2
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FIG. 5. R esu lts of a maximization calculation for BNL 
c ro ss-sectio n  ratio s In the invarian t-m ass in terval 
W s  1,4 GeV, plotted versus the g  value of the Isoscalar 
vector cu rren t. Curve a Is the maximum for ал iso - 
s c a la r  pure vector cu rren t; curve b Is the maximum 
when an Iso sca la r  ax ia l current la also present, with the 
ax ia l-v ec to r renorm alization constant fixed at g  j  = 0.45 
(the octet ax ia l-v ecto r cu rren t value). The dashed line 
la  the cen tra l experim ental value from Eq. (62).

duces a ch arac te ris tic  change in the da/dW plot 
predicted for the BNL flux, as shown in the dashed 
curve in Fig. 7. [The dashed curve is  calculated 
for the case of an iso sca la r  vector current con
taining only an F3 form factor; for the F , ,F ,  ad
m ixture corresponding to |̂ | =4, the curve is  sub
s tan tia lly  the sam e. S im ilarly , changing the ad 
h o c  dipole m ass in Eq. (45) from MH to Мк№ or

FIG. 6 . R esults of a  m axim ization calculation for 
BNL cro ss-sec tio n  ra tio s In the Invarian t-m ass in terval 
W S  1.4 GeV, plotted v ersu s the effective reno rm aliza
tion constant g% of the Iso scala r ax ia l-v ectn r curren t. 
Curve a la  the maximum for an iso sc a la r  pure a x ia l-  
vector cu rren t; curve b Is the maximum when an iso - 
s c a la r  vecto r cu rren t Is also  p resen t, with g  value 
fixed at -  0 .12 (the quark model and octet vector curren t 
v a lu e ) . The daahed line is  the central experim ental 
value from Eq. (62).

FIG. 7. Shapes of da/dW fo r an Iso scalar vector 
current containing an F , term  only o r an F j  term  only. 
The two curves a re  norm alized to equal a rea  for W 3  1.4 
GeV.

Мц/S2 produces only a 2% change in the dashed 
curve.] As seen in the figure, an iso sca la r  vector 
current with large |#| produces, re lative to the 
pure F, c a se / 5 a  depression in the do/dW d i s t r i -  
bution for sm all W, characterized  by an almost 
lin ear r is e  from threshold, and a corresponding 
enhancement at the large W end of the range. An 
experiment with good s ta tis t ic s  should be able to 
search for th is effect. Continuing with the resu lts  
of the maxim ization calculation, curve a of Fig. 6 
gives the maximum for an iso sca la r  pure a x ia l-  
vector current, while curve b gives the maximum 
when an iso sca la r  vector current is  also  present 
(with gyroroagnetic ratio  fixed at the quark-model 
value of —0 . 12), both platted versu s the effective 
ax ia l-vecto r renorm alization constant g\. D evia
tion of g\ from the octet value of 0.45 of course 
requ ires the presence of a  contribution from the 
SU(3)-singlet ax ia l-vecto r current. The curves 
again lie  below the BNL data, with a d iscrepancy 
exceeding a factor of 2 unless |^д|г 1.5, which 
would imply a sizab le ninth ax ia l-vecto r current 
contribution and a re la tiv e ly  large  ninth current 
renorm alization constant as compared with quark- 
model expectations.11

To sum m arize, if the observed BNL neu tra l- 
current pion production rate  is  to be interpreted 
in term s of iso sca la r  V,A curren ts, then existing 
e lastic  and deep-inelastic  constraints requ ire that 
the neutral current contain either a vector current 
with anomalously la rge  |̂f| value, or ал ap p rec ia
ble coupling to the ninth [SU(3) singlet] a x ia l-v e c 
tor current.

We conclude by b riefly mentioning two other 
qualitative features of an iso sca la r  V,A neutral 
current which may help to distinguish it from a l 
ternative phenomenological neutral-curren t s tru c-
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tu res . F irst, re fe rr in g  to Table VI we note that 
the V, A in terference term s in vp e lastic  sc a tte r 
ing and in weak pion production (for 1.4 GeV) 
a re  given by 

e la s t ic  scattering :

V,A in terference °c (positive)

xXjX^l +g),

weak pion production:

V,A in terference «  (positive)

х л 3х<(0.64 +g),

£ = *sA «.
Hence, except for the sm all range of iso sca la r  
gyrom agnetic ra tio s

(65)

(66)

the Interference term s in n eutra l-curren t e la s tic  
vp sca tte rin g  and weak pion production have the 
sam e sign . That is , except for g  values in the 
range of Eq. (66), constructive V,A interference 
in v +N — v +N +Я im plies constructive interference 
In v +p — v + p and v ice  v e rsa . A second useful r e 
m ark (which has been made by many authors) is  
that if v and v  n eu tra l-cu rren t c ro ss sections d if
fer (im plying the presence of V,A in terference e f
fects in a V,A curren t p icture), then the neutral 
in teraction m ay induce p arity-v io lating  term s in 
the pp, ep ,  and tip in teractions. The sign ificance 
of th is statem ent is  that the sam e connection be
tween v, v c ro ss-sec tio n  d ifferences and p a r ity -

violating effects does not hold in other n e u tra l- 
current phenomenologies, such a s  the S, P, T c u r 
rent p icture to be d iscussed  in the second papers 
of th is s e r ie s .
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APPENDIX A

We give here the analog of the low -energy 
theorem of Eq. (12) for the case  of the SU(2) 
® U (l)-m odel neutral curren t of Eq. (52), with 
Adx = 0. (The following form ulas s t i l l  neglect the 
pion mass in the kinem atics and so w ere not 
used in the num erical work described  in the text.) 
The threshold pion production c ro ss  section is  
given by

1 do(v + N— v + N-n r) I С2 1 / g r \*/ t \ / t \ *’  -
TIT dtdw L rellloU" 161Г5 F(2AVj I1 * ш ? ) ! 1 + 2Af7/ T'

(2M„2) ' 1 [ ( l  + i Xq )  + Мш2) + Ш 2 + « о ] [4M„2E2_ t[MN2 +2M/,E)]

+ t ["** +t i 1 + 4 & ) И*']+*Н'Н> & Ш' Е- t] ’ 

with { = 1 (—1) for и (P)-induced reactions, and with

". = ‘ «’’d - (l + ЩГ’У ^ Г  + Щ  [*,№*>♦**,>.№*)].
H ^ - P l (kt ) + ~ - F 2(k2) ,  

-  2 m , w > ]  4  . 

_ ( .,2Л/д (1 + t/2M„1) Г J _  v ]  
4 * g A (IT i T m J )  |/> ^  “  2 2 <fĉ J '

F^V?)  = K a W t * 1/ ’ ~ 4 _>](1 -  2x)+ F i x(k2W ° \-2 x ) ,

* . ( * • > «4 - 4 .

(Al )

(A2)
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TABLE VH. 1яояр!п coefficients appearing Id Eq. (A2),

rt)

СНУ* 
CM:) 
(;>-(:> 
(;M :M

1+Я + **

p tir 1
' v ?

l
7 ?

- i

l
Л

l
7T

Aa in the text, we have used the abbreviations 
x=sina6 .̂ The isospin coefficients o 4̂0' 

are  given in Table VII. As the diligent reader may 
verify , in the case of production (for which the 
low-energy-theorem equal-time commutator van
ishes) Eqs. (Al) and (A2) reduce to Eq. (12) of 
the text, with do(v + N -  v + N)/dt appropriate to the 
Weinberg-Salam-model case of Eqs. (21)—(23). 
Since Eqs. (Al) and (A2) were obtained by a lge
braic reduction from the Born-approximation ex
pressions of Ref. 6, this agreement provides a 
cross check on the extensive algebra involved in 
the extended pion-production model of Sec. ШС.

Since the over-a ll magnitudes of the leading terms 
in the axial-vector soft-pion amplitude in the 
isovector and the octet isoscalar cases are gov
erned respectively by g A and g J,’1*, a convenient 
measure of the importance of the 0{q) correction 
in the isoscalar octet axial-vector case, relative 
to its importance in the isovector axial-vector 
case, is  given by

Ь А'Г/Вл
= 0.16 1 »°/f- T\M

3vK (B3)

To estimate the derivative appearing in Eq. (B3), 
we assume an unsubtracted dispersion relation*1

\x'~ x x' + x + 2i/B

x lm A*
(B4)

We approximate the integral by supposing A 
to be dominated by those partial waves containing 
resonances which couple ir°N strongly to t)N. Re
ferring to the Particle Data Group summary,4* we 
see that the only such resonances are the N*(1535) 

and the N*(1470) ( Jp= i+). Writing the 
partial-wave expansion for .д*0*- ’ * and keeping 
only the /0+ and /i_ partial waves to which the 
N•(1535) and N*(1470) respectively contribute, we 
find49

Im-A’ 0*"

APPENDIX В

We give first a rough estimate of the 0(q) cor
rections in the case of an isoscalar octet ax ia l- 
vector current. We start from the analogy 
tt°— SU(3)-3 index, rj — SU(3)-8 index and the fact 
that A ’ l,(*) =А,0,,~’ 0и, which allows us to w rite4" 
(in units with M , = 1)

Isovector:

^  gr 
Octet isoscalar:

. (n)

•2.8 ,

(Bl)

Д Al ' S r  0vM
Here g r andg-j."1 a re , respectively, the vaNN and 
the tjNN coupling constants, which according to 
octet PCAC and SU(3) are related by

& l ! i =^ ,  3 - (4 x 0 .6 6 ) .0 21 (M )

8 r  S a ~ 7 T

4it(W - M „ )  Im
l<*.«-**> < Л . - * , ) ] * ' 1 '

(B5)

which is  independent of i>a . So in the approxima
tion of dominance by the N*(1535) and N*(1470), 
we have

(B6)

Hence, only the derivative of the explicit va in 
Eq. (B4) contributes, and we find

,  = 0) .
Э*'» Iо I* г

(B7)

Substituting Eq. (B5) Into Eq. (B7), we find the 
bound
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8 л*0* -  in

2 f “ dx' 4 я (1 Г -М „ ) . i
* * J , B (x ' f  / l '  l-

(B8 )

To proceed further, we use resonance dominance to approximate the in elastic  amplitude im aginary parts 
appearing in Eq. (B8 ) by

<B9)Im / ;. '» -  « М »  %  ir a / ;> -  *‘V )  Im/ , » ? - » ( * ' ) -  % I m / • ? “ ”0' V ) , 
i f *  ffi-

with £4‘,C the T j , n °  couplings to the resonance in question. Using the optical theorem  to evaluate the r igh t- 
hand side of Eq. (B9),

lm  / к . I
4я (BIO)

combining Eqs. (B8)-(B10) in the narrow-resonance approximation, and expressing the coupling ra tio s 
g^/g"  in term s of resonance p artia l widths Г„ .о and q values ( J , , , ,  y ie ld s the final form ula

_£_д«°Х- 1H
I a p.

■ 2 Г1 ( r n \q,\Vn f  , 'I
' Л х ' К Р и + М ' Н Р п  + М ^ ' Л Г ' О  J

.  W)“ J ' ^ l
( 1470)

(BID

Rem em bering that the branching ratio  of an /= i 
state  into »° re la t iv e  to a ll pionic modes is  f, 
and taking |g_|~182 MeV for the nominally for
bidden decay N*(1470) — JVtj (corresponding to r e s 
onance half m aximum), we find num erically  that 
the ratio  R defined in Eq. (B3) is  given by

We next estim ate the extent to which the o rd e r-g  
corrections of Eq. (43a) a re  a lready  included in 
the basic pion-production model a s  a re su lt  of 
unitarization of the (3,3) m ultipoles. Using the 
fact that at fc*=0 the e le c tr ic  and longitudinal (3,3)  
m ultipoles are  approxim ately re lated  by”

я  s  Rn + Rn • (ню) “ ° - ° l4 + 0-074 
= 0.09 . (B12)

Hence the 0(q) corrections appear to be substan
t ia lly  le s s  important in the iso sca la r  octet ax ia l-  
vector case than they are  in the isovector ax ia l-  
vector c a se , and so we neglect them. We s im i
la r ly  neglect the 0(q) corrections in the unitary 
s ing le t ax ia l-v ec to r amplitude, although an an a l
ogous argum ent is  not possib le in this case  since 
the ninth ax ia l curren t does not sa t is fy  a PCAC 
equation.’ * We caution41 in closing that the above 
argum ent is  very  crude at best, p a rticu la r ly  
since the N*(1470) contribution to Eq. (Bl l )  de
pends as  | q^ \ "*/J on the g n value assum ed for the 
N*(1470)— Nt] mode.

- i s » 1/ »»,

a sim ple calculation shows that

1 1,0 3 I . ’

(B13)

(B14)

where as in the text the sup erscrip t В ind icates 
the Born approximation. To evaluate the r igh t- 
hand side of Eq. (B14), we employ the p a r t ia l-  
wave d ispersion  relation  sa tisfied  by which
[using Eq. (B13) and making a  sta tic  nucleon e x 
pansion through term s of order A f* '1] takes the 
sim ple approximate form

(K '+ M JS ff21 _ (W+MK)S<?Jl)a X Г (W +M„) I m lS l^ '
W 'o j s l  B 'O JS I  L w o № I

w = W - M H, 0 „  = [(.Рм+Мм)(.рга +M„)]l/l .
Hence we get

S\l'2) -  S[l/2)B | 1 f “ _, ,\MU (W'+M„) I m S ^ ' l / l O  1 11 \ 
[Г Г  I , ’  ” Jm, UW LW OJ. |5'| J V9 u '  + 36M j ’

t 1 11 + 
xu/ — (j 36M u

1 - J - )
9 ш’ -ми/ ’

(B15)

(B16)
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integrating the right-hand aide num erically , using 
Eq. (40.22) of Ref. 6 for ^ /2), gives -0 .63  in 
units in which M , = 1. F inally , as a point of con
s istency , we note that a sim ple calculation shows 
that Eq. (B16) makes no contribution to the am pli
tudes [А* '1 _ Л <-)£]|0 and 0 which 
a re  determ ined by the zeroth-order PCAC re la 
tions of Eq. (42).

APPENDIX С

We give here the nuclear charge-exchange co r
rections calculation needed to extract the free- 
nucleon target ratio  of Eq. (62) from the measured 
value of Eqs. (60)-(61). We use the averaged 
recipe of Eq. (24) of Ref. 40, as extended“  to the 
case  of nuclei with a neutron excess. In order to 
sim ultaneously trea t a ll  of the nuclei of current 
experim ental in te re st/ 1 we have performed the 
calculation  outlined in Sec. ПВ of Ref. 50 using 
a sim ple “uniform -w ell" param eterization of the

12

nuclear density, characterized by a w ell radius 
R,  a nucleon density p, and an rm s charge radius
a , given by52

A

Л = (£)1/2а ,  (Cl)

a= (0.82J41/> + 0.58) F .

For each nucleus of in terest we have calculated 
two W -averaged charge exchange m atrices , one 
(labeled resonant) appropoiate to the (3, 3) domi
nated BNL cro ss section for v + p -  p '+ p  + it*, the 
other (labeled nonresonant) appropriate to the 
da/dWcurve labeled “Iso sca lar pure F "  In Fig.  7. 
The resu lts  a re  sum m arized ’ 3 in Table VIII. In 
the case of the / -0  nucleus 6CU, the resonant 
m atrix  of Table Vin im plies averaged charge- 
exchange param eters a = 0.812, d=0.137, £
= 0.0392, in satisfacto ry  agreem ent with the v a l-

TABLE VIII. Resonant and nonresonant averaged nuclear charge-exchange m atrices  for 
lo w -invarian t-m ass (ff<  1.4 GeV) weak plan production. ТЪе m atrix  elem ents a re  to he read 
according to the scheme

m  = /«. 0̂0 л>-
'ч , /~j  

See Appendix С for further deta ils .

U r’ I
jjnonrcj

:C

»Ne

14AI

.B ra“

0.669

0.111
0.0318

"0.606

0.117

0.0390

0.607

0.120

0.0419

*0.565

0.121

0.0453

0.428

0.119

0.0613

0.111 0.0318

0.589 0.111

0.111 0.669

0.117 0.0390

0.529 0.117

0.117 0.606

0.109 0.0348

0.534 0.113

0.124 0.619

0.113 0.0398

0.494 0.116

0.124 0.574

0.0958 0.0397

0.378 0.106

0.132 0.458

0.685 0.0866 0.0208

0.0866 0.620 0.0866

0.0208 0.0866 0.685

“0 .626 0.0914 0.0257

0.0914 0.560 0.0914

0.0257 0.0914 0.626

"0.628 0.0854 0.0229-

0.0940 0.S66 0.0879

0.0276 0.0968 0.637

0.588 0.0888 0.0263

0.0950 0.526 0.0908

0.0300 0.0971 0.594

0.459 0.0777 0.0270

0.0972 0.412 0.0846

0.0419 0.106 0.482
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lies fl =0.811, d -0 .138 , 2 = 0.0450 given in Table 
VII of Ref. 40 and obtained by using a "harmonic- 
w ell"  param eterization of the nuclear density. 
Given the m atrices [/T] of Table VIII, observed 
pion-production cross sections are  related to 
free-nucleon cross sections by the following 
recipe : Let the experim ental target contain the 
m ass fractions /T of the nuclear species with 
Z =ZT, A=AT. Then the observed cross section 
per nucleon is  given by

~o(obs; i* )“

1 ♦
__

__
__

__
!

<j(obs; О -  ^ / r U r ) a(NT;n°) (C2)

_o(obs; i ‘ )_
T

_<x(Nr ; » ’ )_

with NT an effective free-nucleon target given by

,C3)
As an illu stration , we apply Eq. (C3) in the BNL 

case of a mainly carbon and aluminum target. 
Assum ing charged-current pion production to be 
purely resonant, and neutra l-curren t pion produc
tion to be purely nonresonant, we have

p(obs;7r°E) _
0 2a(oba;vV~) ’

o{obs; it'V) = £  f t  YL [/“ ""■ a(Nr ;i 'i/ ) ,
T“C,A] o.-

(C4)

a(obs; я °д _) = £  f t  £  * V “) •
T c C . Al J K * , 0 , -

Using the BNL ta rg e t fractions f c ~i ,  f u ~\ and 
assum ing an iso sca la r  neutral curren t, which 
im plies

o(n',ir°v) = o ( p ; i av)  = -so(n;

= b ( p ; n * v ) ,  (C5)

Eq. (C4) reduces^ after some sim ple a lgeb ra  to54

„„  _ c ( n  + p; ir°v) 
' ,“ 0 - ст(п;*°д )

= 2R£x0.727(1 + 0 .22r, +0.23r,) (C8)

with r ,  a the charged-curren t jr* to я0 ratio s

: g ( p ; «V~)  r  = <*(«;**ii~)
о ( я ; » У )  ’ 1 o(n;  iraц*) ' (C7)

D irect m easurem ents of in the BNL flu* a re  
unavailable, so we have e ith er to use theoretical 
values for these ra tio s , or to extrapo late them 
from the ANL m easurem ents, neglecting possib le 
variations wi th neutrino energy. The theoretical 
c ro ss sections tabulated in the fourth and fifth 
columns of Table III give , re spectiv e ly ,

r ,  = 2 .91 , r s =0.88 without Oiq) co rrections ,

(C8a)

r ,  = 4 .01 , r ,  = 1.34 with 0(q)  co rrectio n s ,

(C8b)

while p re lim in ary  ANL data give

^  = 3 .7 4 * 0 .8 6 , r a = 1 .1 4 * 0 .3 . (C8c)

Substituting into Eq. (C8), Eqs. (C8a)-(C8c) give,  
respective ly ,

2Л0 = 2Д 'х1 .59  from (C 8a),

2A0 = 2AgX 1.34 from (C8b), (C9)

2Я0 = 2Д£х 1.52 ± 0.15 from (C 8c).

A charge-exchange correction  factor of 1.4 ha.s 
been assumed in getting Eq. (62) of the text.

•R esearch  sponsored in p art by the O. S. Atomic Ener
gy Comm ission under Grant No. A T ( ll- l) -2 2 2 0 .

*F. J .  H asert e t  a l Phya, L ett. 46B , 138 (1973); A. Ben- 
venutl e t a l . t Phya. Rev. L ett. 32, 800 (1974).

2P . A . Sch re iner, Argonne National Laboratory Report 
No. ANL/HEP 7436 (unpublished); S . J .  B ariah , B u ll. 
Am. Phya. So с . 20, 66 (1976); D. Carm ony (impub- 
liabed ).

aC o lum h la-Illino is-R ockefe lle r co llaboration , data p re 
sented a t  the Argonne Symposium on Neutral C u rren ts, 
M arch 6 , 1975 and the P ar i я Weak Interactions Sym 
posium , M arch 18-20, 197Б.

4S. L . A d ler, Phys. Rev. L e tt. 33, 1611 (1974). In tre a t
ing the О (q)  additions in our o rig in a l ANL data an a ly 
s is ,  we neglected to sub tract away the resonant m ulti- 
pole contributions, a s  we have done following Eq. (43s) 
of the tex t. The pion production coefficien ts of Table V

and the d iscussion  of S ec . IV В follow the o rig in a l 
an a ly s is , and hence a re  sub ject to sm all co rrections 
(of o rder 10% in the c ro ss-sectio n  bounds). E very
where e lse  in the paper we use 0{q) additions which 
have the resonant m ultipole contributions subtracted 
out, as in Eqs. (43c) and (43d).

5S. L . A dler, E. W. C o lg laz ie r , J r . ,  J .  B . H ealy,
I. K arlin er, J .  L ieberm an , Y . J .  Ng, and H .-S . T eao , 
Phys. Rev. D (to be published); S . L . A d ler, R . F . 
Dashen, J .  B. H ealy, I. K arlin er, J .  L ieberm an , Y . J . 
Ng, and H .-S. T saoa ibid. (to be published).

•S. L . A d ler, Ann. Phys. (N.Y.) 50, 189 (1968). (See 
also  S . L . A dler, Phys. Rev. D 9, 229 (1974).] We have 
taken the ax ia l-v ecto r fo rm -facto r m ass ав  M a =0.9 
GeV.

’See , for exam ple, S . L . Adler and R . T.  Dashen, C u r 
r e n t  A l g e b r a s  (Benjam in, New York, 1968).
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®We follow throughout the m etric and "y-matrix con
ventions of J .  D. Bjorken and S. D. D rell, R e l a t i v i s t  i c  
Quantum F i e l d s  (M cG raw-Hill, New York, 1965), 
Appendix A. A lso, throughout this paper v w ill be un
derstood to mean a muon neutrino ъ^

*For a m ore detailed  d iscussion , see S . L . Adler a м3 
W. I. W eisberger, Phys. Rev. 169, 1392 (1968). 

lQThe equal-tim e commutator term  also  vanishes for 
production hy an a rb itra ry  V, A neutral c u r r e i i ,  and 
so Eq. (12) holds in this case  as w e ll. Vanishing of the 
equa l-tim e commutator in the Isoscalar Vt A case 
w as noted by J .  J .  S aku ra l, in N eu t r i n o s—1974t pro
ceedings of the Fourth international Conference on 
Neutrino Physics and A strophysics, Philadelphia,
1974, edited by C . BaJtay (A .I.P ., New York, 1974). 

11The Argonne flux is  given, for exam ple, in P. A. 
S ch re iner and T. von Hlppel, Argonne National Lab
o rato ry Report No. ANL/HEP 7309 (unpublished).

,JSee P . A. Sch re iner, Ref. 2.
1JWe make th is assumption throughout our discussion of 

bounds on ANL threshold pion production.
Hln our d iscussion  of the BNL data In Sec . IVC, the 

effect of cuts used In setting the relevant CERN bound 
on o (  v +p — v +p) w ill be exp lic itly  taken into account. 

,8B . C . B arlsh  e t  a l ., P h ys. Rev. Let t .  34, 538 (1975). 
,eWe follow here the notation of S. L. A dler, E. W. Col- 

g la z ie r , J r . ,  J .  B. H ealy, I. K arllner, J ,  L ieberm an,
Y . J .  Ng. and H .-S. Tsao, Phys. Rev. D 11, 3309 (1975). 

n J .  D. B jorken, Phys. Rev. 179, 1547 (1969 ).
! l We follow c lo se ly  a treatm ent given in unpublished 

lectu re notes of C. G. Callan.
**£. A. Paschos and L . Wolfenatein, Phys. Rev. D 7 , 91 

a  973).
JttThese equations, in the W einberg-Salam -m odel con

tex t, w ere f ir s t  obtained by A. Pals and S. B. Treim an, 
Phys. Rev. D 6, 2700 (1972).
A succinct review  Is given In O. Nachtmann, Nucl.
Phys. B38, 397 (1972).

JJSee , for exam ple, L. M. Sehgal, Nucl. Phys. B65, 141 
a  973).

**ln equation (36a) we use the fact that for the a x ia l-  
vecto r octet, ot=D/{D + F )»  0.66. 

a*In the quark model, one finds £*?(0) “ /*(0)®  0.74 and 
г л ^ ^ О Ь ^ Г О )  -2М / ^ (0 )/ Р 1в (0 )й - 0 .1 .  The p re 
diction for -F j(0 ) la in excellent agreem ent with ex
perim ent [cf. Eq. (38b)J, and во it is lik e ly  that the 
quark-m odel prediction for .Fj^O) w ill also  be re liab le . 
Although the quark-m odel prediction for tfj^fO) Is in 
sa tisfac to ry  accord with experim ent Lcf. Eq. (38a)J the 
prediction for g  д*(0) may prove unreliab le because of 
the apparently p ecu liar p roperties (such as a possible 
d ivergence anomaly) of the ninth ax ia l-v ecto r curren t. 
Fo r a d iscussion of issues connected with the ninth 
ax ia l-cu rren t anomaly and further re ferences, see 
W. A. Bardeen , Nucl. Phys. B75, 246 (1974).

SfiS. L. A dler, Phys. Rev. 137, ВЮ22 (1965); 139, B1638 
(1965).

*^G. F . Chew, M. L . G oldberger, F , E. Low, and 
Y, Nambu, Phys. R ev. 106, 1345 (1957).

" in  w riting Eqs. (42) and (43) we have followed the nota
tions of Ref. 6 , which d iffer from those of the present 
p aper. Thus, the superscrip t (0) was used In Ref. 6 to 
denote m atrix  elem ents of the Iso scalar electrom agnetic 
cu rren t, which would be proportional to am plitudes

denoted by (8) in our present notation. S im ila r ly , 
epacelike k2 Is positive In the notation of Ref. 6, but 
negative In our present notation. In w riting Eqs. (42) 
we have replaced the off-shell pion-nucleon coupling 
^r (0) by the on-shell coupling g T . In the num erical 
evaluation of Eq. (43a) we have used u v a  3.70 and have 
taken the values of the pion nucleon amplitudes

{Ъ/hvв )АшН̂ ^ at the crossing -sym m etric  point 
from the tabulation of H. Pllkuhn e t  o l  ,t Nucl. Phys.
B65 , 460 (1973). The theoretical an a lys is  leading to 
Eqs. (42) and (43a) is  described In detail in Sec . V of 
Ref. 6. [See p ar ticu la r ly  Eqs. (5A.21), (5A.22),
(5A.9), and (5A.30).] 

aiF .E .L o w , Phys . Rev. 110, 974 (1958); S . L . A dler and 
Y. Dothan, ibid.  151, 1267 (1966 ). 

a ,The ax ia l-v ecto r form -factor dipole m ass is  0.90 
GeV, while the dipole m ass appearing in the vecto r- 
curren t Sacha form factors is  0.84 GeV.

3eThe experim ental points a re  taken from F ig . 10 of
В . M us g rave , Argonne National Laboratory Report 
No. ANL/HEP 7453 (unpublished).

“ The ANL resu lt for MA la  * ^ - (0 .9 0 *  0.10) GeV, and 
we have used the central value of 0.90 GeV in a ll  of the 
num erical work. Increasing MA above the cen tra l value 
w ill bring the theoretical curves in F ig . 1 c lo se r  to the 
experim ental points. For exam ple, an M A of 1.00 GeV 
gives cross sections 6-9%  la rg e r  than those in the 
f ig u re .

n The experim ental va lues w ere obtained from B . M us- 
g rave , p rivate communication. 

asThe histogram  was taken from F ig . 2 of P . A. Schreiner 
and F . von Hlppel, Ref. 11.

^The histogram s w ere taken from F ig . 16 of В . M us- 
grave , Ref. 30. 

asThe Induced pseudoscalar from factor h A makes a van
ishing contribution to n eu tra l-cu rren t reactions.

3tThls has been checked in one ca se , by comparing 
form ulas obtained from the X4l Л5 term s of Eq. (44) 
with the corresponding form ulas which a re  obtained 
when the nucleon iso sc a la r  electrom agnetic form fac
tors F$  2(*a) a re  used in the final two term s of Eq.
(44).

STS. Weinberg, Phys. Rev. L ett. 19, 1264 (1967); 27,
1688 (1972); A . Salam , in E l e m e n t a r y  P a r t i c l e  T h e o r y .  
R e l a t i v i s t i c  G roup s  and  A n a l y t i c i t y  (Nobel Symposium 
No. 8), edited by N. Svartholm (Almqvist and W ikse ll, 
Stockholm, 1968), p. 367.

3®The BNL flux table has been furnished to me by W. Y .
Lee and L . L ltt (private communication).

3*The e r ro r  ±0.06 la rg e ly  rep resen ts system atic  un
ce rta in tie s  ; the s ta tis t ic a l e r ro r  is  considerab ly 
am a lle r  (W. Y. L ee , private communication).

*°S. L . A dler, S . Nussinov, and E. A. Paschos, Phys.
Rev. D 9, 2125 (1974). 

iJFor exam ple, in the static  lim it the cro ss  section for
(3,3) excitation by is  0.202/0-263 -  0.77 tim es that 
for (3,3) excitation by 3 $ ; see S . L . A d ler, Ref. 6;
B . W. L ee , Phys. L ett. 40B, 420 (1972 ).

^The uncut e la stic  cro ss-sectio n  coefficients a re  not 
used in the m aximization ca lcu lation , but a re  Included 
for com pleteness. When no cuts a re  m ade, a ML(v + n
— +p) - 0  A8 * Ю -* cm1.

4iB .  C . Cundy e t  a l . ,  Phys. Lett. 31B. 478 (1970 ) .  The 
CERN neutrino flux Is given In D. H. Perkins, in P r o 
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c e e d i n g s  o f  t h e  F i f th  Hawaii T op i ca l  C o n f e r e n c e  in 
P a r t i c l e  P h y s i c s , 1973, edited by P . N. Dobson, J r . ,
V . Z. Petersoi^ and S. F . Tuan (Univ. of Hawaii P re s s , 
Honolulu, 1974), F ig . 1 .6 . Note that the absolute m ag
nitude of the flux Is Irrelevant In flux averag ing—only 
the shape of the spectrum m atters.

44A p re lim inary accout* of this d iscussion has been given 
in S . L . A dler, In a ta lk  given at the 1975 Coral Gables 
Conference, 'O rbis Scientia П, ” 1975 (unpublished), 
and IAS report. As a resu lt of a program m ing e r ro r , 
the curves given in F ig . 1 of the Coral Gables ta lk  are 
too h igh; the corrected  curvee appear as F ig . 4 of the 
p resen t paper.

45The curve shown for the pure case Is v e iy  s im ila r  
to the curve obtained for S, P , T  coupling m ixtures.
See Ref. 5 for further d eta ils .

4€Here we a re  indicating octet iso sc a la r  amplitudes by 
the sup erscrip t ( tj) j note that in Ref. 6 they were de
noted by the sup erscrip t (0), while in the text of this 
paper they a re  denoted by the superscrip t (8), with (0) 
used to Indicate sing le t iso sc a la r  quantities.

41Our notation follows that of Sec. ITT of Ref. 6 , with 
x = (W2 - M ff2)/(ZMH) . Note that writing an unsubtracted 
d ispersion  relation  is  not fo rm ally  justified  by a Regge 
an a lys is  o t A t9"~  since the leading Regge t r a je c 
to ry , the Ai tra je c to ry , has too high an Intercept for the 
in tegra l in Eq. (B4) to converge. However, a s im ila r  
use of subtracted d isp ersio n  re lations coupled with 
resonance dominance arguments gives a co rre c t e s t i
mate of the magnitude of the lsovector correction of 
Eqs. (43) and (B l) , even though In this case  a lso , the 
unsubtracted d ispersion  re lation  is  fo rm ally divergent. 
Hence, our method in the iso sc a la r  case Is an h eu r is tic  
one, motivated by methods which work in the lsovector 
c a se . I w ish to thank M. L . Goldberger for a  helpful

d iscussion  of the Reggeology of the т]ЛГ am plitude.
4aSee the Appendix of S. L , A d ler, Phys. R ev. 137, B1022 

(1965).
seS. L . A dler, Phys. Rev. D 9 , 2144 (1974).
51The CERN Gai^gamelle group has data in freon (C F jB r), 

and a bubble-chamber run at BNL In neon has been 
proposed. I w ish to thank P. M usset and C. B a ltay  
for ra is in g  the question of extending the ca lcu la tions of 
Ref. 50 to other nuclei.

ИН. R . C o llard , L . R . B .  Elton, and R . H ofstadter, in 
L an d o I t -H o rn s t e i n :  N u m e r i c a l  Data and  F u n c t i o n a l  
R e l a t i o n s h i p s ; N u c l e a r  R ad i i ,  edited by K .-H . Hellwege 
(Springer, B erlin , 1967), New S e r ie s , Group I, V ol. 2 .

53B. R . Holstein and М. M . Sternheim  a re  cu rren tly  
studying pion production in nuclei induced by incident 
protons, using the m ultiple sca tter in g  model of R ef. 50 
and varian ts on the model which take nucleon re co il into 
account in a detailed  w ay. This study should lead  to an 
improved value of the pion absorption c ro ss  section  
°аь« • which when ava ilab le  w ill be used to recompute 
the charge-exchange m atrice s  of Table V in . In c a l
culating Table VIH we have in the in terim  used the 
absorption cro ss  section given in Eq. (27) of R ef. 40.

54Under our assumption of an Iso sca la r neutra l cu rren t, 
the sim ple recipe of Eq. (24) of Ref. (40) g ives  the 
formula

2R = 2Д'0 X (1 -  2J) {1 +[J/<1 - 2J)\ ( r t + r 2)} .

Taking the effective d  for the BNL ta rg e t a s  |dAL 
+ 0*16, th is form ula g ives

2Я = 2Д^ x 0.68Ц + 0 .2 4 (r , + r 2)), 

a  re su lt very  s im ila r  to Eq. (C6).
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Renormalization constants for scalar, pseudoscalar, and tensor currents’11

Stephen L. Adler, E. W. Colglazier, Jr., J. B. Healy, Inga Karllner,
Judy Lieberman, Yee Jack Ng, and Hung-Sheng Tsao 

Institute for Advanced Study, Princeton. New Jersey 08540 
(Received 27 Jin  nary 1973)

We calcu late the renorm alization constants describing nucleon and pion matrix elements of scalar, 
pseudoscalar, and tensor (S, P, TJ current densities. For certain of the constants, expressions can be 
obtained using standard SU ] and chiral S U ]® S U j methods. To get the remaining constants, we employ 
the quark model w ith spherically sym m etric quaik  wave functions to relate the S, P, T 
renorm alization constants to known parameters of the usual vector and axial-vector ( V, A ) currents.
W e also evaluate the renorm alization constants using the MIT "bag" model quark wave functions. We 
sum m arize our results in tabular form, compare the results nf the various calculational methods used, 
and attem pt to estim ate the accu racy of our predictions.

I. INTRODUCTION

A number of recent papers have examined the 
p o ss ib ility  that neutral curren ts may involve sca
la r , pseudoscalar, and tensor (S,P , T) weak cou
p lings in addition to or in place of the usually a s 
sumed vector and ax ia l-vecto r (V,A] Lorentz 
s tru c tu res . In p articu lar, expressions have been 
given for deep in elastic  neutrino nucleon sca tte r
ing1'2 (using the quark parton model) and for v a r i
ous low -energy nuclear co rre la tion s ,1 assum ing 
a  com pletely general Lorentz structure for the 
weak neutral current. In order to make phenomen
ological studies of S,P, T weak neutral couplings 
which sim ultaneously use deep-inelastic  informa
tion on the one hand, and exclusive channel or low- 
energy nuclear resu lts  on the other, it is  essen
t ia l to know (be renorm alization constants describ 
ing the nucleon and pion m atrix  elem ents of the
S,P,  T current densities. The purpose of this 
paper is  to estim ate these renorm alization con
stants by using various dynamical models of had
ron structu re . Our re su lts  w ill be applied in a

subsequent publication to a detailed an a lysis , us
ing current-algebra techniques, of soft-pion pro
duction by a weak neutral current of arb itra ry  
Lorentz structure,

Within a general quark-model framework, the 
currents which we study have the form 
(for S,P, V,A, T structures, respectively)

3}
s ; x =

--фуХ1 к.ф, 

■-фОх"^\,

j=0, ,

(1)

I f

•,8

with ф being the quark field, оХл = (| i ) [ y x, y " ] ,
\, = (|)1/J. and with \ .......B being the usual SU3
m atrices. For describing Д5 = 0 neutral current 
effects, only the j  =0, 3, 8 components of the above 
nonets are relevant. We write the nucleon m atrix 
elements of these components as3

<Af(P,)lffy |N(pl )) = 3l#u(p J ) ^ ,(*J )</tt(/)1) ,

<MP,)I 5] |ЛГ(Р1)> = Я у«(Р а)-РУ ’(**Wj"(/>i> •

<n<P»)I sf} [N(pl ))=mtlu ( p 2i * i , 4k2)Yx + ,
W p 2)\ y*xW P,)>=^iT(/)J )[4-!/, (feah 'xy , +*!/>(** мЛу, м  />,).

W p a) l^ XoIAT(p1)>=3i»u(/.2) [3 ’lW)(*, ^ x<,+ ^ ^ i i (y>'* 0 - y 0*") +
iT{j \k2)

тУЧ?)

IP'k” - P ^ l t j U l p , )'] V
(2)

T ^ W ) s ^ J , (*a) + 2T<J ,(J!!a),

* = P ,-P ,.  -P=Pa +P1( ’

t 3 = i  r „  = < . 4 ( i ) l/a-

11 3 3 0 9

■ nonrintfid with permission.
Copyright©  1975 by the American Physical Society, м ер
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In the above expression, тэ is the nucleon Pauli 
isospin matrix and the spinors u ip j  are
understood to include nucleon isospinors. The 
vector and axial-vector form factors defined 
above are related to the standard nucleon form 
factors Лл(*а) by

(3)
/$ № * ) = 3*“? .,(**), h ^ (k 2) =hA(k3) .

The nonvanishing pion matrix elements of the sca
lar, pseudoscalar, and tensor currents are

< i7 * (p s )i f f ,  I A l > x ) )  = * ,  l „  i  =  0 ,  8

(Л Р *)I S ?  I ■*(/>,» = Я , ? p ^ - t ab3(Pxk ° - P ° k x) , 
Mn

w

3t„ = (2plB2pi0) ^ ' • = 1

Our analysis will give values at ^  = 0 (and, in 
certain cases, first derivatives at f? =0 ) for the 
various form factors which appear in the above 
expressions. Effectively, the k2 =0 values are 
the strong interaction renormalization constants 
describing scalar, pseudoscalar, and tensor den
sity couplings to nucleons and pions.

Two principal calculations methods are used 
in what follows. First, values for certain of the 
renormalization constants can be obtained by us
ing standard SU3 and chiral SU3®SU3 methods.
For the remaining constants, we use the quark 
model with spherically symmetric quark wave 
functions to relate the S ,P , T renormalization 
constants (and certain first derivatives at k2 - 0 ) 
to known parameters of the usual V,A  currents.
We also give a direct calculation in the quark 
model using the specific quark wave functions 
obtained in the МГГ “ bag” model. Our calcula- 
tional procedures are further briefly described 
in Sec. П below. Results of the computations are 
tabulated in Sec. ГП, while in Sec. IV we compare 
results obtained by the various calculational meth
ods used and attempt to estimate the accuracy of 
our predictions.

11. CALCULATIONAL METHODS 

A. SU3 and chjraJ SU3® SU 3 predictions

We begin by discussing those renormalization 
constants which can be determined within the 
framework of the Gell-M ann-Oakes-Renner 
(GMOR) model4 for SU, and chiral SU3®SUs 
breakdown. In this model, the etrong interaction 
Hamiltonian has the form

with 3C0 chiral SU3®SU3 symmetric and with 
«(So + c J J  a symmetry-breaking term .’  The 
parameter к has the dimension of mass, while 
the parameter с is determined by the pseudo
scalar meson masses to have the value c ~ -  1.25. 
Since к is not fixed in the GMOR model,5 we can 
only determine values of the scalar and pseudo
scalar renormalization constants relative to any 
one of them, say, relative to ^ a,(0 ).

We begin by getting relations for the scalar den
sity renormalization constants. Within the scalar 
octet, SU3 symmetry relates F j3 ,(0)/.F^e ,(0) to 
a j s = - 0 . 4 4 ,  the D/(D + F) value of the baryon octet 
semistrong mass splitting, giving

■Fsa'(0 ) /J ^ a ,(0 ) = 1 /(3  -  Aatss). (6)

The ninth scalar renormalization constant ^ Q'(0) 
cannot be calculated by SU, symmetry, but can be 
related to the experimentally measurable pion- 
nucleon “a term” parameter0 o rHII and the nucleon 
SU3 mass splitting parameter Aw  defined resp ec
tively by

+ c ) ( N \ J Z k S 0 + k$ b\N)

= 45±20 MeV,
(71

bm=(N\K5t \N)

= 173 MeV,

g iv in g

1 Г З о . „ / А „ ,  1
w m  i t  v z + c  j  •

(8a)

We remark that if J^ol(0) and i^8,(0) were equal, 
as is predicted in the quark model, then Eq. (8a) 
would fix o „ NN to have the value

= +c)

“ 28 MeV . (8b)

Finally, we consider the pion scalar coupling 
■flVt0). which can be evaluated relative to 
by noting that

f f i ’ (C)  . 2 A t .< » U c {F .| i i )  
j F ( 0 ) "  {N\KCSt \N)

_ 5 (AC + А р  - M 2 
■ i(MA + ME) -M w

M , 1
V2 +c  Д ni ’ (8)

(5)

where the final equality is obtained by using Eq.
(7) and the GMOR relation M 2/M.2 * (^2 -  c ) /
(У2 +c).

To get relations for the pseudoscalar density re-
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norm alization constants, we consider ax ial-vector 
current d ivergences in the GMOR model. Taking 
f ir s t  the divergence of we find

— (̂JF0 + c£FH)j

-  ■ M  + c-  * j »  i (10)

which when sandwiched between nucleon states im 
p lie s  that

2 М ^ Д= ^ £ ^ ) ( 0 ) ,  (11)

w ith ^ x = ^ 3, (0). Rewriting Eq. (7) for A w  as 

1 к
A  m  = 2 Т Г J$»>(0)

and dividing Eq. (11) by Eq. (12) we get

-^*>(0) '  7 T 7 c  Am  '

Next we take the divergence of giving

= -*[*■«. «(ifo + cJF.)!

• Г VT -  с _  J2 с  .
= гЧ — ^ + 7 T ff* ] .

(12)

(13)

(14)

which when sandwiched between nucleon sta tes 
g ives

2M „ *? '(0 ) = ^ J l £ (tjFy ) ( 0 ) + ^ . к^ро1(0).

(15)

*<лв’ (0 )= *д( 3 - 4 а>1) (16 )

[where a ,, *0.68 is  the D/(D + F) value of the bary- 
on octet ax ia l-vecto r vertex] and dividing by Eq. 
(12) gives the second relation

-c )f^ .8,(0) + 2cJ^01(0) = (3 - 4 а и) i1 el(0)

(17)

A second independent relation for ^ в,(0) and 
Fj,o)(0) cannot be obtained in the GMOR model.
We note, however, that if F*p ’(0) and ^p0,(0) were 
equal, as  in the quark model, then Eq. (17) would 
reduce to

П 9,(0) = ( 3 - 4 а л) 7| ^ 7  ^ * Г ( 0 >  

= (3 -  4 а ^ )^ э)(0 ) , (18)

an analog of the SU3 relation of Eq. (16). We r e 
mark finally  that standard pion pole dominance 
arguments give for the induced pseudoscalar form 
factor Л$131(62) the expression

1.(31/1.24 _ 2мнКл
A 1 ' M 2-k 2 ’ 

from which we get

(19)

( 2 0 )

Using
The form ulas obtained in th is section are  listed  

in column 1 of T ables 1 and П.

В Quark model predictions

We next turn to the quark model, within which we can calculate expressions for a ll of the sc a la r , pseudo
sc a la r , and tensor renorm alization constants, and for certa in  of the form -factor f irs t derivatives a s  w ell. 
We use for the nucleon the standard sp in -in terna l-sym m etry  wave functions of the nonrelativ istic quark 
model,7

l ^ , s «  = i ^  = (^ ) l/2 [2l<P + Я + <Pt)+ 2 |<$M(P ♦ 314) + 2|3Z*<P *<P*>-lCP +<P + 31 * ) -  1<P »ЗИ(Р *) ^
- lt f> + 3l t t f M) - | 3I + (Pt<P*)-|3ntf4<Pt)-|<P+<P + a U ) ] 1 e tc .,

where p denotes the proton and (P,9Z denote quarks. 
In treating the nucleon spatia l wave function, we 
assum e three colored quark trip le ts to be present, 
with the physical nucleon constructed as a  color 
s in g le t .8 The nucleon states a re  then com pletely 
an tisym m etric in the color index, and so satisfy  
F erm i s ta tis t ic s  with completely sym m etric spat
ia l wave functions, which we form from one-par- 
tic le  quark o rb ita ls . For the quark orb ita ls in a 
nucleon we assum e a  sp herica lly  sym m etric Dirac 
wave-function form:

* '* ’ -< й ь *  ( - » " < & • > ) * •  1221
with J Q and J x a rb itra ry  functions of r ,  with x 
being the quark Pauli spinor, and with the nor
m alization constant fixed by the condition

1 = /  dV</,f ( ? U ( r )

= / d V ^ - [ J » W , 2(r)|. (23)
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TABLE II. Pion p aram eters .

11

Renorm alization S llj or ch ira l Quark-model prediction, Quark-model
constant SU,® SU3 prediction in term s of i , ......... s phenomenological re lation Comment

i ’ (0) - г-5—~ (0)/2 +e Am s fM „ 3 ( l- 2 i ,) t a v 'j 'V o) Equating columns 
2 and 4 =>

f £S’(0) ^М *3(1—2Jj) Мы =0.5,1 GeV

7 V ’ «H - г * .
Fo r/= ( f ) 1" ,  
columns 3 and 4 
g ive —1.19 and 
—1.26, re sp ec 
tiv e ly .

The procedure for calculating nucleon renorm ali
zation constants is  now com pletely stra igh tfor
w ard .9 We consider the general quark-m odel cu r
rent 5 г = фГф (Г is  a combination of у  and Л m a
tr ic e s )  with one-nucleon m atrix  element

W P 2)\5r \N(Pl ))=nMu (p I)KrU>2,p l )u(p1). (24) 

Working in the b rick -w a ll fram e with 

Pi = - 2k, p2 = 2k
(25)

and using our independent-orbital construction of 
the nucleon wave function, we get the relation

APi’ Pl)u(Pi ~̂ / * | Т > г ( к ) М  iом\ 1чтЗл. I /an
(26)

with 3Hr a m atrix  in the quark sp in - in te rn a l-sym - 
m etry space given by

3Hr(k ) = j  e. iTi -TM.2 
4»

хГ (  i J o ( r )  \ 
• f J J r )  /' (27)

. r  —
Taylor-expanding e  K ‘ 1 and equating term s of 
zeroth, f irs t , and second order in к on the left- 
and right-hand sid es of Eq. (26), we get form ulas 
at zero  momentum tran sfe r for the form factors 
appearing in К r(p2,pi ) ,  expressed  in term s of 
in teg ra ls  over the quark wave function. [In ev a l
uating the order k2 re lations we drop nucleon 
reco il term s of order kV (8 Af*2) on the left-hand 
side of Eq, (26); these term s a re  re la t iv e ly  sm all 
and do not rep resen t a w ell-defined correction  
since a descrip tion  of nucleon reco il has not been 
built into the quark-m odel wave functions.] The 
quark wave-function in teg ra ls  which appear a re  
lin ear combinations of the five basic in teg ra ls

■ w ,/|= J d

7» = /d v

/>=/ dV b rj°(r)j r̂)' 

f £ r ’ J 0’ ( r ) ,

(28)

■ /
E xpressions for the nucleon sc a la r , p seudoscalar, 
vector, ax ia l-v ecto r, and tensor renorm alization  
constants and certa in  form factor d e riv a tives , in 
term s of , I s, a re  given in column 2 of
Table I. E lim inating the in teg ra ls  / ,.......,  in term s
of the norm alization condition of Eq. (23) and four 
experim entally  m easured param eters  of the v ec 
tor and ax ia l-vecto r curren ts [we take these as  
В a, r t ~  proton squared charge rad iu s ,10
fip/(2 M„) = proton magnetic moment] g ives the phe
nomenological re lations lis ted  in column 3 of 
Table I. These re lations a re  valid  in any quark 
model with a  sp herica lly  sym m etric  wave function 
of the form of Eq. (22); for exam ple, they a re  
valid  in both the MIT9 and the SLAC11 bag models 
and in the Bogoliubov model,12 even though these 
assign  the quarks v ery  different looking wave func
tions.

The procedure for calcu lating pion reno rm aliza 
tion constants is  analogous to that used for the 
nucleon, with a few d ifferences which we b rie fly  
describe . Ju st as for the nucleon, we use for the 
pion the usual sp in -in tern a l-sym m etry  wave func
tions of the nonrelativ istic  quark model, 1
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(29]

For the quark wave function we use an analog of 
Eq. (22),

0/2 (  i J o(r/f) \
\ - S  • rJ l(r//)jy-' (30>

with / being a resca lin g  factor which reflects the 
fact that quark o rb itals in a pion may have a dif
ferent rad ius from those in a nucleon. In the MIT 
bag model9/ has the value (§)l 4̂=0.90, not much 
different from unity. The antiquark wave function 
is  the sam e as Eq. (30), with the antiquark con
tribution to a current with even (odd) charge con
jugation equal to +1 ( - 1 ) tim es the corresponding 
quark contribution. The pion analog of Eqs. (24)-
(27) is  evidently

(31)

with 3ttr being the sam e m atrix function as  defined 
in Eq. (27). In applying Eq. (31) we only expand 
out to term s of f ir s t  order in k, since neglect of 
reco il in the case of the pion would be unjustified. 
To order k, the norm alization factor 31, is  just 
1/(2M,). In the case of the tensor density cou
pling to the pion this factor of M, " 1 is  just can
ce lled  by a corresponding factor of M, coming 
from K ’r , giving a  form ula for r (,J>(0) which does 
not involve the pion m ass. On the other hand, in 
the sc a la r  density case the factor M,~l surv ives, 
giving the relation

(32)

which exp lic itly  involves the pion m ass. Since, 
however, the quark model leads to a  degenerate 
meson 35-plet, instead of having a  nearly  m ass
le s s  pion, we re in terp ret the factor M, in Eq. (32) 
a s  being M„, a typ ical quark-m odel meson m ass, 
and thus write

* £ ’(<» = 4 М *(1 -2/ а) . (33)

As we wi l l  see below in Sec. IV, th is interpretation 
of Eq. (32) is  in accord with the ch ira l SU, 8  SUs 
form ula for .F$V(0) obtained above. The resu lts  of 
our an a ly s is  in the pion case a re  given in column
2 of Table П (in term s of the in tegra ls .......,)
and in column 3 of Table П (in term s of vector 
and ax ia l-vecto r current p aram eters).

We conclude this section by giving expressions
for the quark o rb itals and the in tegra ls / ,.......5 in
the MIT bag model, 9 which gives a  fa ir ly  sa t is fac 
tory account of the m easurable p aram eters of the 
vector and ax ia l-vecto r curren ts. In th is model

the quarks in a nucleon are  confined to a  finite 
spherical region of space of rad ius Д 0, with o r
b itals

J B<r)=j0{^/Ra), J l (r)=j l (ur/R0), г « Д 0 

J o{r)=J1(r) = 0, r * R 0l
(34)

ш = 2.04, Ro -0.97M,~l ,

. , Sin2 . s in -г C0S2
л>(*) = — . ;,U )=  - p --------—  ■

Evaluating the in tegra ls / ,.......5 we find in the MIT
model

/,= - .I* ■{< - 0 4 4 0 ,1 4( cu- l )

^ 4 ^ = ° 260 -

, <= ОЛ -----i-r(4o):1 +2d)J - 4ш + 3)24иГ(ш-1)

= 0.357Яо2 ,

f i n *

(35)

24ш2(ш -  1) 

= 0 .1 7 5 Д »

(4ш3 -  10ш2 +20ш -  15)

III TABULATION OF RESULTS

In Tables I and П we tabulate our re su lts  for the 
form factors defined in Eq. (2). To recap itu late , 
the quantities c, Am,  a a , atA, and о , KH, defined 
above in Sec. ПА, have the values

£ ■ - 1 . 2 5 ,

A »i  = 173 MeV,

Oss= -  0.44 , (36)

а л~ 0 .66,

45± 20 MeV ,

while the in tegra ls / ,...... , a re  defined and eva l
uated in Eqs. (28) and (35). The m ass Mu, a typ i
ca l quark-m odel meson m ass introduced in Eq.
(33), is  of order 0 .6- 0.8  GeV while the sca le  fac
tor / introduced in Eq. (30) is  close to unity, with 
the value ( j ) 1/4=0.90 in the МГГ model.13

IV. DISCUSSION
We conclude by comparing the resu lts obtained 

by the various calculational methods described 
above and by attempting to estim ate the re liab il
ity  of our predictions for the sca la r , pseudosca
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la r , and tensor current param eters . We turn our 
attention f irs t  to the isovector pseudoscalar re 
norm alization and the isovector induced 
pseudoscalar amplitude ft J *(0 ), both of which are  
pion pole dominated. From ch ira l SU3®SU3 and 
pion pole dominance we find

m < »  sa 
w i 0) n 7 c

Mu

0)= 2- ^
(37)

2MM
m 7

1.24,

while the МГГ model g ives14 

* i* ’ (0)_ . <3). . 2M„
W i o j - 3 - i -  h * (0) -  м 7  °-037- (38)

both much too sm all. Evidently, the quark-model 
predictions for pion pole dominated pseudoscalar 
quantities behave a s  if the effective pion m ass 
w ere

/ 41 V /2Vn/ =0.51 GeV from f t 34 0 ), 

(сП Й т) M* = 0 8 1  GeV {г о т й (лэ>(0 ) ,

(39)

not unreasonable values since the quark model 
does not p redict an alm ost m ass le ss  pion, but 
rather g ives a  pion degenerate with a ll other 
pseudoscalar and vector mesons in the 35 r e 
presentation of SU„. [in fact, the к а т е  MIT mod
e l calculation giving the v a lu e/  = (5)1/'' used in Eq. 
(30) above leads to a value of the 35 rep resen ta
tion cen tra l m ass of 8(<|/(3/Я0) =0.87 GeV, con
sisten t with the above e stim ates .] R eferring to 
Table П, we see  that these values for the effec
tive quark-m odel pion m ass a re  compatible with 
the value 0.53 GeV obtained by equating the ch ira l 
SU3»S U 3 with the quark-m odel predictions for the 
pion s c a la r  density coupling f£8, '(0 ).

We consider next the iso sca la r  pseudoscalar r e 
norm alization constants i^ B)(0) and f£ ” (0). As 
we have seen , ch ira l SU38 SU3 gives a  sing le  equa
tion [Eq. (17)] re la tin g  these two constants to 
F£e,(0 ), which reduces, when F^fO ) and Fk0, (0 ) 
a re  equal (as in the quark model), to the sinr.ple 
relation

/^B)(0)
' ( 3 - 4 “ л) * Н о Г (40)

T his prediction is  evidently in serio us d isag re e 
ment with the quark-m odel value

-Fj.61(0) = 1.5 . (41)

The trouble here is  most lik e ly  the quark-m odel 
prediction that f 5>o,(0 ) = f}>8, (0 ), which leads to 
near cancellation of the two term s on the le ft- 
hand side of Eq. (17) and hence to a  la rg e  p re 
diction for Fk8)(0). In actual fact, since there 
is  no light ninth p seudoscalar meson asso c ia ted  
with the SU j-singlet ax ia l-v ec to r  current it is  
lik e ly  that F ^ tO H F ^ O ). Rew riting Eq. (17) 
in term s of the ratio

n o)(Q)

we find

4 * 4 0 )
* И о )

( 3 - 4  a A)MKg A 
Д m(-f2 -  с + 2 e r )

(42)

(43)

which gives the following predictions for r  
= 0.3, 0.5, 0.7 respective ly :

r  =0.3:

r  =0.5: У

■ 0.7:

W W )
F(P*'{0)
f ? W  :

* ? ’( Q)
W W )

1.27,

1.71,

2.R5.

F ^ O )
w m
J l.o)(0) 
fF ( o)

F£»( 0) .
W W = J

(44)

in reasonable agreem ent with the quark-m odel 
value of Eq. (41).

Continuing our comparison of columns 1 and 2 
of Table I, we note that SU3 p red ic ts

i^ s)(0)/i^1)(0) = 3 - 4 a ss = 4 .7 6 , (45)

with an em p irica l sem istrong D/{D + F) ra tio  a Ss 
“ -0 . 44 ,  while the quark model g ives

F$e,(0)/F£3’ (0) = 3 . (46)

Evidently, Eq. (46) represents pure F -type b ary - 
on octet sem istrong m ass sp litting , a  feature 
which is  a well-known shortcom ing of the quark 
model. For the corresponding ax ia l-v ec to r cou
pling ratio  SU, predicts

г!*8Н0)/^л3Ч0) = 3 - 4 а д (47)

with an em p irica l value а л=0 .66 , while the quark 
model gives

^ в)(0)/^31(0)=3/5. (48)

corresponding to a  value of a A of 0.6. Although 
the quark-m odel value of is  quite good in this 
case , the fact that Eq. (47) vanishes for а д = 0.75 
m akes the predicted in the quark model differ 
by more than 60% from the value obtained from 
SU3 and the em p irica l a A. Obviously, in doing 
phenomenological calculations the predictions of 
column 1 of Table П should be used (where they 
a re  availab le) in preference to the quark-m odel 
va lues.
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F o r  the value of .F£al(0) and fo r a ll  of the ten so r 
d e n s ity  p a ra m e te r s ,  we m u st re ly  so le ly  on q u a rk - 
m odel p re d ic tio n s  s in ce  no in fo rm atio n  is  fu rn 
ish ed  by SU3 o r  c h ira l  SU3«S U 3 a lone. Hence it 
is  e s se n tia l  to have som e a priori  e s tim a te  of the 
re lia b il ity  of the q u a rk -m o d e l p re d ic tio n s .

T he follow ing five c o n s id e ra tio n s  would ap p ea r 
to be im p o rtan t in fo rm in g  such  an e s tim a te .

1. Consistency o f  the quark model with SUj and 
chiral SU3&SU} predictions, where available.
T h is  q u estion  h as  ju s t  been d isc u sse d  in d e ta il 
above. In the ca se  of .F$8 ,(0), the 60% d isc rep an cy  
betw een  Eq. (45) and Eq. (46) su g g ests  an e s tim a te  
of 60-90%  fo r  the p o ss ib le  quark  m odel u n c e rta in 
ty-

2. Comparison o f  the quark-model predictions  
f o r  the vector and axial-vector param eters  with 
their  known experimental values. R e fe rrin g  to 
T ab le  I, we se e  th a t the МГГ-m odel p red ic tio n s  
fo r  g A, g'A, iif , and r /  a ll  a g re e  with e x p erim e n t15 
to w ith in  about 30%, suggesting  30-60%  a s  the gen
e r a l  lev e l of re lia b ility  fo r q u a rk -m o d e l p re d ic 
tio n s  when o th e r  fa c to rs  (such a s  pion pole dom 
inance, se n s it iv e  can ce lla tio n s , nucleon re c o il  
c o r re c tio n s ,  o r  p o ss ib le  la rg e  “ g lue” co n trib u 
tio n s) a r e  not involved. In p a r tic u la r ,  th is  e s t i 
m ate  of the q u a rk -m o d e l u n certa in ty  m ight be e x 
p e c ted  to  app ly  to  the te n s o r  re n o rm a liz a tio n  con
s ta n t T 'a)(0 ) .“

3. Consistency between the predictions in the 
f ina l two columns in Table I. Colum n 5, we r e 
ca ll, g iv es the p re d ic tio n s  of the МГГ-m odel wave 
fu n c tio n s, w hile colum n 6 g ives the p red ic tio n s  
ob ta ined  fro m  the q u a rk -m o d e l phenom enological 
re la tio n s  of colum n 4, using  a s  input the e m p ir ica l 
v a lu e s  of g A, g'AI p.,, and r , a . S ensitive  c a n c e lla 
tio n s  a r e  un likely  to  be involved in c a s e s  in w hich 
the q u a rk -m o d e l p re d ic tio n s  a r e  re la tiv e ly  la rg e  
and re la tiv e ly  unvary ing  fro m  colum n 5 to colum n
6 , a s  fo r  exam ple , fo r r j 3 ,(0). On the o th er hand, 
w hen the  q u a rk -m o d e l p re d ic tio n s  a re  sm a ll  o r 
s tro n g ly  v a ry in g  fro m  colum n 5 to colum n 6 , as 
fo r  T{a-O1(0), f  <s)(0), and r<a,o.3)(0 ) they  m ay be 
c o n s id e ra b ly  le s s  re lia b le  than  the 30—60% e s t i 
m ated  above.

4. Possible importance o f  neglected nucleon r e 
coil te rm s .  W h ereas -F$8l<0), r<e-°-»(0), and 
f(a.<M){0 ) a r e  |.ru e  s ta tic  q u an titie s  w hich a re  in 
s e n s it iv e  to our n eg lect of nucleon re c o il,  e x p re s 
s io n s  fo r the re n o rm a liz a tio n  co n stan ts  7’(»'“->)(0) 
a r e  obtained fro m  the s e c o n d -o rd e r  te rm  in к in 
E q. (27) only when nucleon re c o il  am b ig u itie s  a re  
n eg lec ted . T h is  in tro d u c es  an ad d itio n al so u rc e  
of u n c e rta in ty  in the q u a rk -m o d e l d e te rm in a tio n  
of re la tiv e  to  the u n c e rta in tie s  p re se n t 
in  the  q u a rk -m o d e l d e te rm in a tio n s  of the o th er 
re n o rm a liz a t io n  c o n s ta n ts -

5. Possible presence o f  large "glue" contribu
tions. In the quark  m odel only quark  co n trib u tio n s 
to the v a r io u s  c u r re n t  d e n s itie s  a r e  evaluated , 
while p o ss ib le  co n trib u tio n s from  the "g lu e"  which 
binds the q u a rk s  to g e th e r a re  ignored . One p ecu 
l ia r  fea tu re  of te n so r  d e n s itie s  is  the p o ss ib ility  
of induced v e c to r  m eson couplings of the form

gF**=g{a*Ax - Э * Л ') ,  (49)

w ith A  being a  v e c to r  m eson fie ld . Such couplings 
can co n trib u te  to the induced ten so r  re n o rm a liz a 
tion co n stan ts  Ta(0) and T3(0), while not a ffecting  
the  value of T’1 (0). If a ll v e c to r gluons c a r r y  a 
c o lo r  quantum  num ber, then te rm s  like Eq. (49) 
w ill be ab sen t in the c o lo r-s in g le t te n s o r  d e n s it
ie s  of E q. (1). In th is  c a se , the q u a rk -m o d e l p r e 
d ic tio n s fo r 7^0)(0) and f£ 81(0 ) should, like that 
fo r  J^ 'fO ), be re la tiv e ly  re lia b le .  On the o th er 
hand, if c o lo r - s in g le t -u n i ta ry - s in g le t  gluons a re  
p re se n t , then  the u n ita ry -s in g le t  te n so r  c u r re n t  
Jo "  could re ce iv e  im p o rtan t "g luon" co n trib u tio n s 
fro m  te rm s  of the fo rm  of Eq. (49), in troducing  
a  p o ss ib le  la rg e  u n c erta in ty  in to  the q u a rk -m o d e l 
p re d ic tio n  fo r ^ 0l(0 ).

Added note. A pplying the m ethod of E q s . (1 0 )-  
(15) to the n inth a x ia l-v e c to r  c u r re n t  £F*X g ives 
the d iv erg en ce  equation

(50)

w hich when sandw iched  betw een nucleon s ta te s  
g ives

2MrfS,0)(0) = -д г  [V2 * £ » « »  + e .F f?> (0 )]. (51)

Dividing Eq. (51) by Eq. (15) then  g iv es the  a d d i
tio n a l c h ira l  SU,®SU, re la tio n

+ с
■с + 2cr ' (52)

w ith r  = i ri? '(0 ) / fS “, (0 ) being  the p a ra m e te r  defined 
in Eq. (42). F o r  r  = 0 .3 , 0 .5 , 0.7, Eq. (52) g ives 
the re sp e c tiv e  p re d ic tio n s  fo r g ^ ( 0) /g i0, (O),

*V”(0)
r *°-3: S w 1 - 0 ’43,

* (лв,(0)r  = 0.5: гтткг = -  ° - 38 , (53)

r  =0.7: -0 .2 8 ,

w hile fo r  the q u a rk -m o d e l value r  = 1, Eq. (52) 
re d u ce s  to the q u a rk -m o d e l p red ic tio n  that 

g 5?*(0)/p5f*(0) = 1. E q u atio n s (50)—(53) a re  va lid  
only when a n o m a lie s  a re  not p re se n t .  When an o 
m a lie s  a p p ea r, the above equ atio n s apply  to  the
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a x ia l-v e c to r  re n o rm a liz a tio n  £*“'(0 ) a sso c ia ted  
w ith  the " sy m m e try  g en era tin g ” ninth c u rre n t, 
bu t th is  Is no longer the sam e a s  the a x ia l-v e c to r  
re n o rm a liz a tio n  fo r the physical n in th  a x ia l-v e c -  
to r  c u r re n t .  (See W. A. B ardeen , R ei. 17).
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stress-energy tensor calculation in the vector particle case; again, when the lack o f  
symmetry of G^V1 and is correctly taken into account, the standard result for 
the trace anomaly is obtained. In order to avoid needless repetition o f  formulas, this 
paper has been written in the form o f a supplement to Ref. [2], with Eq. (N ) o f  
Ref. [2] indicated as Eq. (2.N) .

2. T h e  C a l c u l a t i o n

According to Eq. (2.4), the vector particle stress-energy tensor TaB is a sum o f  
Maxwell, gauge-breaking, and ghost contributions,

7 > <y»M | ' r B R  ■ j G H  / « \
afl —  ■■ ов "I J ав T  ' , | J  ■ V.1/

Since the argument o f Eqs. (2.43)-(2.45) showing that

< Г Г >  +  <7'SH> =  0 (2)

does not depend on splitting the Hadamard elementary solution G(v into (L) and (B) 
parts, it is unaffected by Wald’s observation, and so we still have, as in Eqs. (2.5)- 
(2 6 ),

(Т*в(х)У =  <Т?в(х)У

=  (£ .“ftV *  -  Puvio,
P ^o  =  «Ш \<Fuv(x) F J x ')  +  FU x') FuXx)>- (3)

Expressing the expectation in Eq. (3) in terms o f  the vector particle Hadamard 
elementary solution GJJ!, and splitting СЦ1 into (L) and (B) parts, we get [as in 
Eq. (2.48)]

< T M ) >  =  <ГаУ(х)>  +  <т£>(х)>,

< t £ / b )( x ) >  =  ( & v r  -  i g « e g u Y ° )  K T ,  ( 4 )

n(L /B ) -,„< L /B )

*  [DuDyGllUB\x ,  *')],

with the notation [ ] in the final line denoting the x' —► x  coincidence limit. We 
assume that the highly singular coincidence limit is regularized in such a manner that 
<7’пД(л-)> is finite and covariantly conserved, which implies that

D \ T ^ ( x ) }  =  -D X T % \x )> .  (5)

An explicit calculation o f the right-hand side o f Eq. (5), to be given below, shows that

D°Oi»Xx)} =  (6)
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with /^'(л:) a tensor local in the Riemann curvature and its second covariant deriva
tives. Thus, from Eq. (5), we have

Я°[<7;(аи(*)> +  d ’W ] =  Л а[ - < 7 ’а' | )(х)> +  /0(SUW ] =  0, (7)

which implies that ( T ^ ’(x)) +  l'g'(x) is a tensor local in the Riemann tensor and its 
covariant derivatives, which furthermore is covariantly conserved. Since no parameters 
with dimension of mass appear in the problem, on dimensional grounds this tensor 
must have the structure

< T ^ (x ))  +  ?a'eL,(.v) =  ClIaB(x) +  c2Ja8(x),

1*ь =  (3g )i/«  j  d * x (-g ) in  R2

=  - 2 g ,BR j  +  2 R aB -  2RRaB +  1 gaBR \  (8)

= R°'R”

=  -  5  g * * . , '  +  \  g * * R b ° R ° °  +  Я  . 8  -  r ^ . b  -  2 Л о9Л м 9В ,  ( 8 )  

with c, and c, arbitrary coefficients. The regularized stress-energy tensor thus becomes 

<7;в(дг)> =  ClI M )  +  c2J M )  -  d \ x )  + (9)

which by Eqs. (7) and (8) is automatically covariantly conserved. To evaluate the 
trace of <TaB(x )), we note that from Eq. (4) we have gae(.T^B\x)') =  0. Hence we get

g°B<TaB(x)) =  —2(3c, +  c2) R . /  -  g ^ i x l  (10)

which is the trace anomaly [and, as is evident from Eqs. (43) and (44) below, is 
nonvanishing irrespective of the value of 3f, -f- c*].

In order to evaluate r^ ’C*) we must carefully calculate Z)“<7a' | l(jc))1 keeping in mind 
the fact that while СЦ\(х, x ‘) is symmetric under the interchange v, x <-> a', x', G^!-1 is 
not symmetric and hence neither is GJJ?1. Following the notation of [2, Appendix B], 
we write

W „<x, x ’) =  iG !?(x, x'), ( 1 1 )

which on substitution into Eq. (4) gives

D“<T™> =  g / g e,D °P l&  -  H aY 6D A , (12)
with

^ 1в1е — [W'ss'.ov" +  ( '3 )

In evaluating Eq. (12) we can use the equation of motion at

-  R .*  W „ -  =  0 ,  (1 4 )
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but we cannot (as was done in [2, Appendix B]) assume symmetry o f or the 
Lorentz gauge condition of Eq. (2.B3). Beginning with the second term on the right- 
hand side of Eq. (12), and using Synge’s theorem, we get

D S 'J U  =  -  W,aJ..ayV -  (« < - /? )]

/  a <-* f}\
^v'.SVA -  W.

+ +  ^ay'.BS'A’ — И'ав'.ву’А' —

(a)

(b) 

(15)

Substituting Eq. (IS) into the second term in Eq. (12), relabeling dummy indices, and 
combining like terms, we get

=  -  « (A , -  D y \ W \ - \  -  W 'V.V)]

-  «(W'V.V — W'V.V -  »'V.Y +  W'V.V).A'].

(a)

(b)
(16)

We next consider the first term on the right-hand side o f Eq. (12). Again using Synge’s 
theorem, we have

Dap% l = (c)

(d)
(17)

Using the Ricci identity and Eq. (14) to simplify the first line o f  Eq. (17), and using the 
cyclic identity, just as is done in [2, Appendix B]; to simplify the second line o f  
Eq. (17), we get, on substitution into the first term of Eq. (12),

g t f 'D - p 'J l ,  =

+ M(W'V.V -  w \* r. -  w \- .v  +  jtV.V).»']-
Term (d) o f Eq. (18) cancels term (b) of Eq. (16), giving the result

D \ T l V >  =  -  H(X>A -  Л л- X H 'V .V  -  w ' W ) ]

+ ^

(C)

(d)
(18)

(a)

(b)
(19)

If x ') were symmetric under the interchange vx <-* a x ' , expression (a) in
Eq. (19) would vanish, and if the gauge condition of Eq. (2.B3) — — W „■ with
W  a scalar] were valid, expression (b) in Eq. (19) would banish, giving the result
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D“< n v >  ~  0 found in [2, Appendix В]. In fact, as we shall now show, expressions
(a) and (b) in Eq. (19) are both nonvanishing, providing the origin of the tensor 

appearing in Eq. (6).
We begin with the evaluation of Eq. (19a). Substituting

(4пУ
1 >1/2 (В) 1
-----  J  И* • =  ------(4 TT?

л\!2/л к , <Lh
'Ко') (20)

and noting that (i) wyo-(x, x')  is symmetric, and so makes no contribution to Eq. (19a),
(ii) in the series r(x, x ') +  wfcl-o(x, x ”)2 +  ■■■, only the first term contri
butes to the coincidence limit in Eq. (19a), and (iii) terms with Л differentiated make 
no contribution to the coincidence limit in Eq. (19a), we get

~ [(0« -  ZVXW'V.V -  H 'V  V)]

l l
=  j  - ф р  [(^ л  -  » Л ( ° < )уЛ \  -  ( * < 'V ) . V ) ]„(Dr \ *

(21)
1 I
2 (4тt)2 [5(Дд- -  D k) -  2Dy-w™ \- +  2 £ > X U a«']-(L)v

The next step is to evaluate the coincidence limits appearing in Eq. (21), following the 
procedure used by Wald [3] in the scalar case. Writing the recursion relations (2.20) 
and (2.38) for vlaa- and in the form

»,V +  = ~ \ lA ~Vt£>‘. W ‘V .0  -  
(22)

,v*L>V +  4 5 D"ds°°- =  “  I ”lV  + \  -  « " W l

with s the arc length along the geodesic joining x ' to x, one finds the unique solution 
regular at s  =  0

u'iL,V  =  —V o ’ -  - 3  f ' r t * .  *) x ') * Л . (23)S Jn

Taking the coincidence limit o f Eq. (23) and its first covariant derivative gives

[>v<L>V] =  ( - 1  -  - i  f  * i  <fi) [» ,V ]  =  - 1  М Л
У ° (24)

] =  H  -  Ts ■? Г  ** * ) [ D M  =  “  5
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Thus, making use o f Synge’s theorem and the fact that t y y' is a symmetric biscalar 
function of x  and x', which implies [ZV’iV l =  iA>[uiVl> we get the evaluations

=  -  f W v L  

u>A»v<uv ]  =  -  m ^ y ] ,

[d y-w^ \ ' )  =  m e t * ) ]  -  т .

[Z)V<L,«<] =  H D J W * -)]  -  i D J p f A  

Substituting these into Eq. (21), we get

(25)

-  \  [(/)* -  л -X ^ V .V  -  W'V. V)]

- I T G 5 r | - | w . - l  +  5 i > . h - 4  (Э Д

We trun next to the evaluation o f Eq. (19b). We will need, as auxiliary formulas, 
some consequences o f the gauge condition of Eq. (2.26),

<W .” +  Go.l- =  0. (27)

Substituting the Hadamard formulas

2 Ji/* , 2^ -  \
C"' =  ( 4 ^

(28)

( W

into Eq. (27) and equating to zero the coefficient o f In ct gives

( ^ / Ч Л -  +  (Л1̂ ) . . '  =  0, (29)

while the remainder gives 

2 Z P 'V  +  2 ( ^ ' 2gra ,);  +  j v y , .  +  * +  a (A llzw),c' +  =  0 .

(30)
Substituting the series expansions

00 00 

r̂o' J] Vnya' О , ^

(31)

j®"
n -0
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into Eqs. (29) and (30) and equating coefficients order by order in a, we get the 
recursion relations

In particular, we will need the coincidence limit o f the n =  2 case of Eqs. (32b) and 
(32c), which give

Ко'." +  t>iv] =
(33)

[wW.* +  и>, .„■] =  0, 

and the n — 1 case o f Eqs. (32b), (32c), which combined give 

(A'PwJ'O- +  (^1/2n'0»o').‘' =  ~ A 1/zWi o.a- — — A 'P o ^o * .

We now proceed as follows. Substituting Eq. (20) into Eq. (19b), and keeping only 
those terms in the series expansion o f Eq. (31) which make a nonvanishing contribu
tion in the coincidence limit, we get

where in the next to last line we have replaced by t w .  which is justified since 
и£> =  0. To evaluate term (a) in Eq. (35), we substitute Eq. (34), which gives

(34)

(35)
(a)

(b )
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=  -  -  (^ '* » w ).“ -  (^14 1'),»'

+  ( ^ ' Ч « 0.в +  з(^^Ч).л']

-  (4 ^ ) F  K ^ W ) . - '  -  ( ^ 1/2^ * ' ) . “ -  ( ^ г Л х

+  (А ',г»ив')в +  W \ h ' ] .  (36)

Substituting Eq. (33), we can eliminate the terms ( J ^ W j ) a n d  (/d1/2̂ )  л-_ which 
gives finally

0 0  =  ~  (4 ^  M 1/IH W ) .- ' -  4 ( J 1/*m-1̂ 0 . “ -  ( 4 l ' 4 / V  +  ( ^ V 1Afl) .e]

-  J ^ y r  -  4 ( ^ 0 - -  ( А ^ Ч х  +  (^ 'Ч л зО Л - (37) 

Similarly carrying out the differentiations in term (b) o f  Eq. (35), we get

(b) =  Р ,/УЙ>).-' -  4(Л1/У ^ Г  -  (̂ > V й/).*' +  (41 VS').'L (38)

which when added to the expression in Eq. (37) gives

-  И '. а - Л ']  =  - ^  [ i r ' w ^ ,  -  4 D ° w &  -  D M ° S  +

~  1D“'vm ‘ ~  4-D“iW  -  A ' l V '  +  DBvu s-]. (39)

In writing Eq. (39) we have used the fact, noted above, that derivatives o f A do not 
contribute in the coincidence limit. Equation (39) can be reduced to final form by 
using the following relations [some o f which were already given in Eq. (25) above]:

[ 0 “ fl.» ’] =  i A f a ]  +  A H V ] ,

[ o \ v l  =  -  * А Ы  

[•Da' iV ' J  =  £ А К , “'] ,

[DevUB] — J A M  +  AfoiVL
(4 0 )

[D“ *£>-] =  -  \D kК ]  -  |  A M V ] ,

[ й а< » . ]  =  § А Ы ,

[ А У и / ]  =  -  |Z > a [« V '] ,

Р У & ]  =  -  !А { » i] -  fA [» iV ] ,



which when substituted into Eq. (39) yield

M Z  ADLER AND LIEBERMAN

Combining Eqs. (6), (19), (26), and (41), determine the tensor /jg1 to be

11а\х ) — (4^2  4 £ne[uiV ] +  tui«e'] +  (42)

Using Eqs. (2.33)—(2.34) and the formulas of [2, Appendix D] to evaluate the coin
cidence limits appearing in Eq. (42),

[(,1ов'] =  i a2aS I [Ul] =  l az °>

a2oB =  M g J R  R ^ )(i gteR  — Ree) +  ? 0gaeR.e° — т  leSaBR^Rce

+  r i o ^ - R ^ X . »  -  i K B.e -  -hR ^'R orse , (43)

=  А - * 2 +  А Л .,*  +  i W r - Ч ™ .  -  T h R ’X e ,

we get as our final results for the regularized stress-energy tensor and its trace anomaly,

< а д >  =  c j a,{x) +  c,JaB(x) +  <T™(x)>

-  \  j -  \  g«Ba2У +  ° 2aB +  gaBa^~°j, (44)

g ^ T J x ) y  =  — 2(3Cj +  c2) R'Be +  (a2?  -  2a ^ ) .

Apart from the undetermined multiple of R f  arising from the undetermined multiples 
o f Î b and JaB in < X J x )> ,  the trace anomaly given in Eq. (44) agrees with that found 
by other calculational methods. We note, in conclusion, that in the present formula
tion o f the regularization calculation the “curvature-dependent modified averaging” 
prescription o f Ref. [2] plays no role, the regularized local part <7‘a<gl(x)> having been 
identified, by general arguments, to have the value given in Eq. (8).
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“No-hair” theorems for the Abelian Higgs and Goldstone models

Stephen L. A d ler and R o b e rt B. P e a rso n

The Institute for Advanced Study, Princeton, New Jersey 08540 
(Received 24 July 197SJ

We examine the question of whether black hales can have associated externa] massive vector ajid/ог scalar 
fields, when the masses are produced by spontaneous symmetry breaking. Working throughout in the spheri* 
cally symmetric case, we show that “no-hair" theorems can be proved for the vector field in the Abelian Higgs 
model, for an arbitrary \ф I1 term in the Higgs Lagrangian, and for the Goldstone scalar Held model with 
{ = 0. We also show that a Minkowski-space analog problem does have nontrivial screened charge solutions, 
indicating that the ‘'no-hair” theorems which we prove are consequences of the stringent conditions at the 
assumed horizon in the gcneraE-relativistic case, not of the interacting field or spontaneous-symmetry-breaking 
aspects of the problem.

I. INTRODUCTION

One of the s tr ik in g  fe a tu re s  of th e  p h y sics  of 
b lack  h o les i s  th e  e x is ten ce  of “n o -h a ir ” th e o re m s , 
w hich s ta te  th a t the  only e x te rn a l a tt r ib u te s  of 
a  b lack  hole (such a s  i t s  m a ss  M, a n g u la r m om en
tum  J ,  and e le c tr ic  ch arg e  Q) a r e  th o se  a sso c ia te d  
w ith m a s s le s s  f ie ld s  ad m ittin g  co n se rv ed  flux  in 
te g r a ls .  1,2 A ll o th e r ty p es  of f ie ld s  m u st decouple, 
u n d e r the a ssu m p tio n  of a w ell-b eh av ed  g e o m e try  
a t th e  h o rizo n . T h ese  th e o re m s  have been  p roved  
fo r  a  v a r ie ty  of wave eq u ations, including the 
m a s s le s s  D irac  f ie ld , v a rio u s  m assiv e  s c a la r  fie ld  
th e o r ie s ,  and the m ass iv e  sp in -1  P ro c a  Held. O ur 
p u rp o se  in  the p re se n t  p a p e r is  to extend th is  l i s t  
of eq u atio n s stud ied  to  include c la s s ic a l  wave eq u a 
tio n s  in  w hich m a s s e s  a re  g e n e ra te d  by sp o n ta 
neo u s sy m m e try  b reak in g . T h is  is  p a r tic u la r ly  
im p o rta n t in  the v e c to r-m e so n  c a se , s in c e  i t  is  
w idely b e liev ed  th a t i f  m ass iv e  sp in -1  f ie ld s  e x is t,  
th ey  g e t th e i r  m a s s e s  th rough  a  d y n am ical m ech 
a n ism  of spon taneous sy m m etry  b reak in g , r a th e r  
th an  k in em a tica lly  a s  in  the P ro c a  equation. The 
s im p le s t  re le v a n t m odel is  the A belian  H iggs m od
e l , 3 and so  the  m ain  focus of th is  p ap er is  on the  
q u e s tio n  of w h e th er b lack  ho les can  have A belian  
H iggs “ h a ir .”  We a lso  g ive  som e r e s u l ts  fo r  the  
c lo se ly  r e la te d  G oldstone s c a la r -m e s o n  m odel.
F o r  s im p lic ity , we a ssu m e  sp h e r ic a l  sy m m e try  
th ro u g h o u t, s in c e  we expect that if  in te re s tin g  
v io la tio n s  of th e  “n o -h a ir "  th eo re m s w ere  to  o c 
c u r ,  th ey  would b e  se e n  in  the sp h e r ic a lly  sy m 
m e tr ic  c a se . We find , in  fa c t, no ev idence  fo r  
su c h  v io la tio n s , and p ro v e  “n o -h a ir"  th e o re m s  fo r  
th e  c a s e s  we study . We b e liev e  it like ly  th a t our 
p ro o fs  w ill g e n e ra liz e  to the  n o n sp h e rica l c ase .

II. THE ABELIAN HIGGS MODEL

B efo re  w ritin g  down the  A belian  H iggs m odel 
L ag ra n g ia n , we beg in  with so m e g e o m e tric  p r e 

l im in a r ie s . 4 We a ssu m e  the  g e n e ra l t im e -in d e p en 
den t, sp h e r ic a lly  sy m m etr ic  lin e  e lem en t

ds2 = - e 2ad t 2 + e2*dr2 + r 3{d& + s in 2вЛфг) . (1)

Using a  c a re t  to  denote com ponents on the o r 
th o n o rm a l b a s is

сor =ead t ,  <2f = ea3 r ,
a — i  { 1d~=rd3 ,  ffl* = r s inSr f0,

and using  a p r im e  to in d ica te  d iffe ren tia tio n  d /d r ,  
the  E in s te in  te n s o r  com ponents fo r  th is  lin e  e le 
m ent a re

С Г = ^ е - 2йа ' - г - 2(1 - е - зв) ,

G, ' = V , «J9' + r - 1( l - e - , « )1 (3)

G6» = c ii

= e~2B(a" + a '2 -  a'0 ' + a'r~l -  f fr ~ * ) .

The c u rv a tu re  s c a la r  i s

Д = 2 r _a( l  -  e~2S) + 4 r _1e _a® (0 '- a')

— 2 e_as( a "  + or/J — a '/T ') , (4)

and the  B ianchi id en tity  is

(G wy  + a 'G '7 - ^ C a a + ( a ' + - j c *  = 0 .  (5 )

The A belian  H iggs m odel d e sc r ib e s  a  charged  
s c a la r  fie ld , w ith a  doub le-w ell s e lf - in te ra c tio n , 
coupled to  an  in it ia lly  m a s s le s s  A belian gauge 
fie ld . The L ag ran g ian  density  fo r  the m odel, w r i t 
ten  in g e n e ra lly  c o v a rian t fo rm , is

£ = F ^ F ^ - d ^  -  €Я|0 |2
-л<|Ф|а- О Ч ,  (6)

w ith

la  2798 © 1978 The American Physical Society

Reprinted with permission.
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_ 3 A„ ЭЛЦ
я »-11 M »

3jf (7)

The p a ra m e te r  J i s  z e ro  lo r  the u su a l "m in im a l” 
s c a la r  wave equation , w hile ( =■£■ lo r  the “ con- 
fo rm al"  s c a la r  wave equation  which is  c o n fo rm a l
ly in v arian t in the  ab sen ce  of m a s s  te r m s .  Spon
tan eo u s sy m m etry  b re ak in g  a r i s e s  b ecau se  the 
effec tive  p o ten tia l

2799

ИФ)=ММ’ -Ф -,)а (8)
has i ts  m in im um  a t 10 I = ф _, r a th e r  th a n  a t  ф= 0 .

Follow ing th e  a n a ly s is  of B e k e n s te in 2 in  th e  
s im ila r  c a se  of c h a rg e d  s c a la r  e le c tro d y n a m ic s ,  
we u se  th e  fa c t th a t in  th e  tim e - in d e p e n d e n t c a s e  
of in te r e s t  in Ы аск -h o le  p h y s ic s  we can  ch o o se  a 
gauge in  w hich ф i s  r e a l ,  A , -  0 , and  A , i s  t im e  
indep en d en t . 9 In th is  gauge th e  f ie ld  e q u a tio n s  of 
m otion w hich follow  fro m  th e  L ag ra n g ia n  of Eq.
(6 ) a re

“ N O - H A I R ”  T H E O R E M S  F O R  T H E  A B E L I A N  H I G G S  A N D . . .

(е - « “ » г ‘А;У = г 2е в- а2е2А 1ф2 , (8a)

(9b)(еа~ *г2ф')' = r 2e a* в[-е~2ае2А 2ф + 2Ьф(фг -  ф „2) ] , . “m in im a l”

(еа~ *г2ф'У = r 2ea * в[-е~ 2аегА ,гф + |-Я ф  + 2Л<£(ф2-  0 „ 2)], " c o n fo rm a l” .

The s t r e s s - e n e r g y  te n s o r  com ponents in  the  tw o c a s e s  a r e  th e  follow ing fo r  th e  " m in im a l” m o d el:

T "  = i e " 2 to * 8 >(At')2 + e -2 V  ')2 + е -2ае2А ,гф 2 * h (ф2-  фт*)2 ,

T *  = - { e -2 «“ * e>(Af') 2 + е - 2\ ф ' ?  + е~2аегА 2ф2 -  к(ф2 -  ф„2)а , (10а)

Т 6® = в>(А{)2 -  в ' 2 *(ф')2 + е -2ае2А 2ф2 -  Л(ф’ -  0  _2)2 ,

and the  follow ing fo r  th e  “ co n fo rraa l"  m odel:

Т= Т£ = 4кфи2(ф2-ф „ г) ,

j " — i  r + i « - ,<“ *BW  + * * - 2B(* '> 2 + 5« _ ,“* 4 V
+ |o r 'е - г* ф ф '- \ф 2Н + \ф г( Р  -  Ьф2к(ф2-ф „ 2) , (10b)

Т *  = \ Т - Ь е - г '“**>1А'1)2 + е -2*(ф')2 + \е -2ае2А ,2ф2

-  | ф е' в(е '*ф ') ' + ̂ ф 2Я  + $ф2СГ + Аф2Ъ (ф2 - ф .* ) ,

Г®8 = i  Т+ i e ' 2 <"*e>lAp2 -  }е-2В(ф')2 + *е '2ае2А 2ф2

-  I “ е - 28ф ф '+ - и 2Д + ±ф2С®5 + {ф2к(ф2 -  фJ2) .

In b o th  c a s e s  th e s e  co m p onen ts sa t is fy  th e  eq u a
tio n  of s t r e s s - e n e r g y  c o n se rv a tio n

(т")' + а'73', - | т 85+ (а '+ ^ т "  = 0 , (11)

w hich d e te rm in e s  7^® g iv en  T *  and  7**. 
in d ependen t E in s te in  eq u atio n s a r e  then

GJ* = 8г т “ ,
СГ = ЬпТг' .

We p ro c e e d  now to  p ro v e  a  " n o -h a ir "  th e o re m  
fo r  th e  A belian  H iggs m odel. We a ssu m e  th a t th e  
coup led  sy s te m  c o n s is tin g  of th e  v e c to r  and the  
H iggs s c a la r  f ie ld  and the s p h e r ic a lly  sy m m e tr ic  
sp a c e - t im e  g e o m e try , d e s c r ib e d  by E qs. (1) and
(2 ) ab o v e, h a s  a  h o rizo n  a t r  = r „  a t w hich a ll

p h y s ic a l s c a la r s  a r e  f in ite . We show th a t th e s e  
a ssu m p tio n s  im p ly  th a t the  v e c to r  f ie ld  A,  v a n is h 
e s  id en tica lly  o u tsid e  th e  h o rizo n . M ultip ly ing  
Eq. (9a) by  A,  and in te g ra tin g  fro m  r„ to  «> g iv e s , 
a f te r  an  in te g ra tio n  by p a r ts ,

J ~ r 2d r l e - >a * “’(A,')2 + 2e *-аегА 2ф2]
TH

= А ^ ;г 2е - 1а*в)|Гя ■ (I3)

T he c o n trib u tio n  fro m  to  th e  r ig h t-h a n d  s id e  
v a n ish e s , s in ce  A,  f a l ls  off a sy m p to tic a lly  a t 
le a s t  a s  1 / r .  The a ssu m p tio n  th a t th e  p h y s ic a l s c a 
l a r  F ltuF >‘v i s  bounded a t r  = r Him p lie s  that 
e -<a* e>^/ ig bounded a t th e  h o rizo n . H ence if  A t 
= 0 a t  r H, th e  r ig h t-h a n d  s id e  of Eq. (13) v a n is h e s , 
and the fa c t th a t th e  le ft-h an d  s id e  i s  n o n -n e g a -

The two 

(12)
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tiv e  (note that the m e tr ic  com ponents e a° and elB 
a r e  n o n -n eg ativ e  ou tside  the ho rizon) then  im p lie s  
A,  = 0 fo r  a l l  r » r t . So we get a  " n o -h a ir "  th eo 
re m  unless® A t 1**0.

The re m a in d e r  of the a rg u m e n t c o n s is ts  of 
show ing th a t having A t l/ ,*0  c o n tra d ic ts  the a s 
su m p tio n  that a ll  p h y sic a l s c a la r s  a r e  f in ite  a t 
th e  h o rizo n . 1 We do th is  by exam in ing  the  b e 
h av io r of the s c a la r  f ie ld  equation  n e a r th e  h o r i
zon . We note f i r s t  of a ll  th a t in  the  “ m in im al” 
m odel boundedness of 7** l„, and in the “ co n fo r- 
m a l” m odel boundedness of T lH, both im ply  that 
th e  s c a la r  f ie ld  ф i s  bounded on the horizon .
H ence when A , I * 0  we have

(0 ,-JO Яф + 2 кф(<Ь* — ф_2)
- е - ' “<?А,‘ф

e,a
x  (bounded) 0 , | (14)

and  th e  s c a la r  fie ld  equation  can be  ap p ro x im ated  
n e a r  th e  h o rizo n  by

(еа- вг 3ф ')' + г ге e A t ф = 0 . (15)

I t  p ro v e s  convenient a t th is  point to  change the in 
d ependent v a r ia b le  fro m  r  to X, w ith X the affine 
p a ra m e te r  of an  incom ing nu ll g eo d es ic . The d if
f e re n t ia l  equation  re la tin g  X to  r  i s

( a M s ) *

■ ■-■‘g j (16)

S ince t  i s  a  cy c lic  v a r ia b le  fo r  a  tim e-in d ep en d en t

m e tr ic ,  th e  conjugate m om entum  P 0 i s  a  co n stan t 
of the m o tio n ,1 and so  a f te r  re sc a lin g  X to m ake 
P„ = l ,  the  second  line  of Eq. (16) g iv es

dr
dx (17)

Since the  horizon  m ust be a fin ite  affine  d istan ce  
aw ay fro m  any r> r„,  the value of x a t the  h o r i
zon i s  f in ite . In te rm s  of x, and m aking the  d e fi
n itio n s

(18)

so  th a t dr/dX - p 1̂ ,  th e  ap p ro x im ated  s c a la r  fie ld  
equation  b eco m es

^ ( , , ’ g ) . r V A , V * = 0 (19)

To p ro ceed , we need  som e in fo rm atio n  on the 
b eh av io r of q and i ts  d e r iv a tiv e s  n e a r  the  ho rizon . 
T h is  can b e  ob tained  by re a r ra n g in g  Eq. (3) fo r 
the  E in s te in  te n s o r  com ponents in to  the  fo rm

1 p 1 2̂ dq pq (20a)

(20b)

с ь ь Л ± {р«*ч ) + \ % . (20c)

F ro m  the boundedness a t the ho rizo n  of the  le f t-  
hand s id e s  of th e se  eq u ations, and the fa c t that 
b o th  t e rm s  on th e  r ig h t-h a n d  s id e  of Eq. (20a) a r e  
n o n -n eg a tiv e , we deduce the follow ing:

E qs, (20a ) , ( 20b)-*/>9 | „ ^ 1/a^ |  , q ^ P 1'* | и b o u n d e d  ~  (pi /2q) J^ = bounded — />l/J9 |„  = b o u n d ed ,

E q. (20с)ж* I = bounded I =boundedd\ |и dA j ц
(2 1 )

(22)

H ence w ritin g  

e = qy2 , 

we have

—  I = у  2 | + 2 r„,j'/>1/a| 1/»bounded and » 0 , 
d \  \ H dX |«

£ » \  I + 4 r  ь 1» * 3- 1dx’ l,  \ h r "P dx  I,

+ 2 гнЯ ~~;— I + 2/> q I * = b o u n d ed , (23) dx |#
and in  te rm s  of 6 the s c a la r  fie ld  equation  n e a r  
the ho rizo n  tak e s  th e  com pact fo rm

„ d 2(4 d8 dф Кф .
Bd ? + S x d x + o m0>

K = e 2r * A , 2 | a > 0 .
(24)
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The final ingredient needed fo r the argum ent is  
the fact that boundedness of T“ \H req u ires

q ' 0 3|e = bounded (25a)

in the “m inim al” model (since in  th is model a ll 
te rm s  in  T** a re  non-negative), and

+ =bounded (25b)

in the “conform al” model, with

K, = [*/(5e2A ,2)la , K7 = [(dq/d\)/(be2A,2)]H

(25c)

two bounded constants. The s tra tegy  of the a rg u 
ment now is  to show that Eqs. (23) —(25) a re  in 
consistent. We consider separately  the two cases 
where de/dx  le >0 and where d e /d \  l„ = 0.

When dB/dX |# = C > 0 , we can approxim ate в 
= C(\-XH) near the horizon, and Eq. (24) takes the 
form

d ф 1 d-ф К ф _ _
I P  * X - X H d \  + С5" (X -  X „? ~ '

which has the g en era l solution

K 1/2
<£ = <£0cos(x + 6), х = - ^ - ln (x -X „ ) . 

Hence in  th is case we find n ear the horizon

(26)

(21)

,d \j  ' dx

a: (X -  X(f)*‘ (COS3* +  C , S in3*  

+ C , s in *  c o s * ) , (28)

which is  unbounded at X„ fo r a ll values of the con
s tan ts  Cli3. In the second case , when dd/dX le = 0, 
we make an exponential substitution ф = e? in Eq. 
(24), giving

l_tf X \ d \ )  J dX d x  в
(29)

A ssum ing

d 2f / d \ 2
(df/dX)2 = 0 (30)

then  Eq. (29) is  sim ply a quadratic  equation for 
d f / d \ ,  which can be solved to give

4 L A ( A * i . iK u*\ 
d x  Д  2 dX )

From  Eq. (31) we get

(31)

d 2f / d X 2
( df /dX)1 Я±~ K l/i * 2

idO/dX 1 9 d 2e / d \ 2 - ( d e / d x Y  
K l/2 + 2 К

which vanishes a t the horizon, justifying the a s 
sum ption of Eq. (30). So we find in  the second 
case tha t the two lin early  independent so lu tions of 
Eq. (24) have the following approxim ate fo rm  n ea r 
the horizon.

const
• gin xexp^ti\ Kx, t  J  d x / ej . (33)

Both solutions a re  singu la r a t the ho rizon , again 
giving a contradiction  with our in itia l a ssu m p 
tions. The conclusion of th is som ew hat lengthy 
analysis is  that А,  1я *0  is  not allow ed, and thus 
by our e a r l ie r  argum ents, A, m ust van ish  id en ti
cally outside the horizon. That is ,  a  b lack  hole 
cannot support an e x te r io r m assiv e  v ec to r-m eso n  
field , even when the m ass is  gen era ted  by spon
taneous sym m etry  b reak ing .

III. THE GOLDSTONE MODEL [•'MINIMAL’’ ({=0) CASE]

With A ,s 0 ,  Eqs. (1) —(12) of Sec. П d e sc r ib e  the 
Goldstone m odel of a  se lf- in te rac tin g  s c a la r  fie ld , 
as generalized  to curved sp ace -tim e . We w ill 
now show that for th is  model in  the “m in im al"
(£ =0) case , a  fu r th e r "n o -h a ir"  theo rem  can be 
proved, stating tha t ф = ф„ fo r a l l  r a r „ .  That is ,  
outside the horizon the sc a la r  fie ld  red u ces  to an 
unobservable constant, and [cf. Eq. (10a)] the s c a 
la r  field s tre s s -e n e rg y  ten so r van ishes id e n tic a l
ly. Our argum ent does not apply to the "con fo r- 
m al” (4 =й case , w here the s c a la r  fie ld  s t r e s s -  
energy ten so r has a considerably  m ore  com pli
cated s tru c tu re  than in the “m in im al’' case .

The argum ent p roceeds from  the s c a la r  field  
equation, which with A, =0 takes the form

(P 1/2я г 2ф ')' = г  2p "1/a£ У(ф),

V (0 )= /z (0 2 - < O 2 ,
(34)

and from  the E instein  equations, which with A t =0 
may be rea rran g ed  to give

p '  = -16ттгр(ф')2 ,

(Pl V ) '  =P‘ 1/2 -  8irr 2p - ,/2 Щ )
(35)

(32)

Multiplying Eq. (34) by ф' and in tegrating  frcm  r„ 
to «  g ives, a fte r use of Eq. (35) and an in teg ra tion  
by p a r ts ,

0= Г  dr Ш ф‘Гр1/2<гг +£(* ')2p - 1/2r
TH

+ гр-'*У (ф )]

+ Ц г гр - ' /2у(ф)]н -\р ''*< 1гЧ (ф ')2]н . (36)

Since a ll te rm s  in  Eq. (36) a re  non-negative ex -, 
cept fo r the final one, we see that if [р1/^{ф ')г]я
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= 0 , then  we can  conclude th a t ф * ф т fo r  r » r t , 
and th e  d e s ire d  " n o -h a ir ” th e o re m  follow s.

To co m p le te  th e  p roof, we m u st exclude the  p os
s ib i li ty  *0 . Ju s t  a s  in  the  p receding 
se c tio n , th is  i s  done by a  lo ca l a n a ly s is  in  the 
v ic in ity  of th e  h o rizo n . We beg in  by noting that 
s in c e  dq/dX \a ^ 0 ,  Eq. (20a) im p lie s

1 = bounded

(37)

F u r th e rm o re ,  s in c e  T31 l„  i s  bounded, and  s in ce  
b o th  t e r m s  in  TJi a r e  p o sitiv e  sem id e fin ite , we 
have th a t  р 1/ 2д1/2ф‘ l„ i s  bounded. Since the  f i r s t  
eq u atio n  in  Eq. (35) im p lie s  th a t d f i / d ( - r ) ^  0, 
an d  s i n c e £(■») = 1 , we h a v e р ь - 1 , w hich puts th e  
bou n d ed n ess o f р*,2д 1/2ф' in to  the  fo rm

Р1/У /1ф'\н=*> bounded .
P 1 H

Suppose now that р 1/ *д1/1ф' \и = K * 0 .  Then 

ф\H = bounded =» J  d r ^ - = bounded
TH

^ )  = convereent,

w ith

(38)

(39)

e W ^ ' V ' V * ,  a | ff = 0 .  (40)

But on th e  o th e r  hand, th e  d iffe re n tia l  equation  
fo r  ф in  Eq. (34) g ives

(p l^2q r  20 ') 'l# 'b o u n d e d  ( (41)

w hich on su b s titu tin g  ф' - К / { р 1/*д1/2) g iv es 

a ' | tf = bounded

i - _  e ( r )------ —  = bounded
r - , u r ~ ‘>H 

: ^ ) =divergent> (42)

in  co n trad ic tio n  with Eq. (39). Hence we m ust 
have K=0, w hich co m p le te s  the p roof.

IV. AN ABELIAN HIGGS ANALOG MODEL IN 
MINKOWSKI SPACE-TIME

A s o u r fin a l top ic  we b r ie f ly  in v es tig a te  a M in
kowski sp a c e - t im e  analog  of the A belian Higgs 
m odel analyzed  in  Sec. П. We c o n s id e r a  sp h e re  
of ra d iu s  r„, im p e n e tra b le  to the Higgs f ie ld , and 
c a rry in g  c h arg e  Q, su rro u n d e d  by the  Higgs s c a 
la r  m edium . The d iffe re n tia l  eq uations and bound
a ry  conditions d e sc rib in g  th e  tim e-in d ep en d en t b e 
h av io r of th is  sy s te m  a r e

( r 2A \Y  = г 22е2А,ф2 ,

( г гф')' = г 2[ - е 2А 2ф + 2кф(фг -  0 _2) ) ,

Ф(г,) = 0, A !(r„) = - ,

(43)

w hich a p a r t  f ro m  th e  a b se n ce  of the  m e tr ic  fa c 
to r s  e at e e have e s se n tia lly  the  sam e  s t ru c tu re  a s  
th e  sy s te m  of equ atio n s ana ly zed  in Sec. П. How
e v e r , unlike the s itu a tio n  found in  the g e n e ra l 
re la tiv is t ic  c a s e ,  th e  M inkowski m odel of Eq. (43) 
has a  n o n triv ia l s c re e n e d -c h a rg e  so lu tio n . 9 To 
prove  th is , we c o n s id e r  the  en erg y  fu n c tio n a l

Q) = 4» f  r 2dr[$(Al)2 + е2А ,2ф2

+Нф2- ф . 2)2\ (44)

and use  the d if fe re n tia l  equation  fo r  A,  (the c h a rg e  
co n se rv a tio n  c o n s tra in t  equation) and i ts  a s s o c ia 
ted  boundary  condition  to  w rite

A', “  Т» [ . f  <1г'г/22е2А , ( г ’)ф2( г ' ) - 0 ^  , (45)

w hich when su b s titu te d  in to  Eq. (45) g iv es  the new 
fu n c tio n al.

"E(ra,Q) = 4n j  drJr '22e1A t ( r ' t y 2( r ' ) - Q ^  +е2А ,гф2 +A (0S -  ф*2) ^  . (46)

E x tre m iz in g  *E w ith  re s p e c t  to  v a r ia tio n s  in  A,  
and  ф [w ith an endpoint condition  6ф(гн) = 0] i s  
e a s ily  v e r if ie d  to  lead  to  th e  d iffe re n tia l  eq uations 
of Eq. (43). H ence th e se  equ atio n s d e sc rib e  the  
f ie ld  c o n fig u ra tio n  w hich m in im iz e s  the  f ie ld  e n 

e rg y , su b je c t to  the  c o n s tra in t that th e  in a c c e ss ib le  
re g io n  r «  r H co n ta in s to ta l  c h a rg e  Q.

Since th e  fu n c tio n al *E i s  po sitiv e  se m id e fin ite , 
and  s in c e  th e r e  i s  a  nonem pty  c la s s  of func tions 
A t , ф fo r  w hich *E i s  bounded fro m  above, fu n c-
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tio n s  А ,,  ф w hich m in im ize  *E  m u st e x is t ,  and 
th u s the coupled equations in  Eq. (43) have a  so lu 
tio n . 10 N ear r = « ,  th e  so lu tio n  h as  th e  b e h av io r

0  = 0 "  (47)

A, * r ~ ‘ ехр[-г/(2е2ф_2)1/г] ,
and a s  ex p ec ted , the  H iggs m ech an ism  re s u l ts  in 
sc ree n in g  of th e  c h a rg e  Q f ro m  view a t in fin ity .
The co n clu sio n  fro m  th is  a n a ly s is  i s  th a t the  a b 
sen ce  of s c re e n e d -c h a rg e  Ы аск -ho le  so lu tio n s in

T H E  A B E L I A N  H I G G S  A N D . . .  2803

th e  g e n e r a l- r e la t iv is t ic  c a s e  i s  a  r e s u l t  of th e  
s tr in g e n t co n d itio n s fo r th e  e x is te n c e  of a  h o riz o n , 
not of the in te ra c t in g  f ie ld  o r  sp o n ta n e o u s -sy m - 
m e try -b re a k in g  a s p e c ts  of th e  p ro b le m .
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above. In the point charge c a se , an a n a ly s is  of the 
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(eQ)2 , th e re  m ay be a so lu tion  w hich would behave 
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p roof in th is  ca se .
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In  r e c e n t  p a p e r s  M in k o w sk i ,1 Z e e ,1 and  S m o lin2 h av e  su g g e s te d  th a t sp o n ta n eo u s  sc  a le - in v a r ia n c e  
b r e a k in g  m ay  p la y  a n  im p o r ta n t  ro le  in  a  fu n d a m e n ta l th e o ry  of g ra v ita t io n . T h e  b a s ic  m e c h a n is m  c o n 
s id e r e d  b y  b o th  in v o lv e s  a n  a c t io n 3

S= J  d4x ( - g ) 1/2[i*cp2R  -  V(ip 2) + k in e tic  t e r m s  + o th e r  f ie ld s ] ,  (1)

■with <p a  s c a l a r  f ie ld . T h e  p o te n tia l  V(<p2) is  a s 
s u m e d  to  h a v e  a  m in im u m  aw ay  f ro m  <pn 0 ,

W )  = 0, (2)
V" (к2) > 0,

so  th a t  sp o n ta n e o u s  s y m m e try  b re a k in g  in d u ce s  
a n  e f fe c t iv e  g r a v i ta t io n a l  a c tio n

S ^ 4= f d * x ( - g ) v 4 e K2R ,  (3)

w ith  e a  f r e e  p a r a m e te r .  In th is  n o te  I e x a m in e  
th e  a n a lo g  of th e  a b o v e  m e c h a n ism  in  u n if ie d  th e 
o r i e s  -which c o n ta in  no fu n d a m e n ta l s c a l a r  f ie ld s  
a n d  in  w h ic h  s c a le  in v a r ia n c e  is  sp o n ta n e o u s ly  
b r o k e n . 4 I show  th a t  in  su c h  th e o r ie s  th e  v acu u m  
a c t io n  fu n c tio n a l  c o n ta in s  an  o r d e r -Д t e r m  w hich  
i s  exp lic i t ly  ca lculable  in  t e r m s  of th e  f l a t - s p a c e -  
t im e  p a r a m e t e r s  o f the  th e o ry .  T h is  r e s u l t  i s  
b a s ic a l ly  a n  e x te n s io n , to  c u rv e d  s p a c e - t im e s ,  
o f th e  k n ow n f a c t  th a t  in  su c h  th e o r ie s  a l l  m a s s  
r a t i o s  a r e  e x p lic it ly  c a lc u la b le .

C o n s id e r  a  th e o ry  b a s e d  on a  s c a le - in v a r ia n t

©  1980 T h e  A m erican  Physical Society 1567

c la s s ic a l  L a g ra n g ia n , c o n s tru c te d  f r o m  s p in - !  
fe rm io n  and  s p in - 1  gauge f ie ld s ,  w ith  th e  g e n e r 
a lly  c o v a r ia n t  r e n o rm a liz e d  m a t te r  a c tio n

S= /  Л  (-^ )l/2(.C™*, + c o u n te r  t e r m s ) .  (4)

B e c a u se  q uan tum  e ffe c ts  in d u ce  n o n lo ca l i n t e r 
a c t io n s  w ith  th e  s p a c e - t im e  c u r v a tu r e ,  th e  v a c 
uum  a c tio n  fu n c tio n a l (3)0 cannot b e  r e la te d  to  i ts  
f l a t - s p a c e - t im e  v a lu e  by  th e  e q u iv a le n c e  p r in 
c ip le . In s te a d , w e h av e  a  fo rm a l  d e c o m p o s itio n

<3>0 - /  d4x  ( - g y ' 2(£)o,

n- 0

=  k W ° >  +  k W 2 ) * < £ > 0[ 4 1 * . . .  . <5 >

w ith  к th e  u n if ic a tio n  m a s s  of th e  f l a t - s p a c e - t im e  
th e o ry  and  w ith  ( £ ) 0<2n) h o m o g en eo u s of d e g re e  
In  in  d e r iv a t iv e s  a c tin g  on  th e  m e t r i c .  B e 
c a u s e  th e  c u r v a tu r e  s c a la r  R  i s  th e  on ly  L o re n tz

Reprinted with permission.
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s c a l a r  of o r d e r  (a ,)2, th e  se c o n d  t e r m  in  Eq. (5) 
h a s  th e  f o r m 5

<Л>о(2) = 0Д, (6)
■with 0 in  g e n e r a l  n o n z e ro . A c c o rd in g  to  a  c r i 
t e r io n  of W e in b e rg ,6 th e  c o e f f ic ie n t  /9 w ill b e  c a l 
c u la b le  in  th e  f l a t - s p a c e - t i m e  f ie ld  th e o ry ,  p r o 
v id e d  th a t  t h e r e  a r e  no p o ss ib le  L a g ra n g ia n  c o u n t
e r  t e r m s  w h ich  c o n tr ib u te  to  t h is  t e r m .  T h e  on ly  
r e le v a n t  c o u n te r  t e r m s  o f th e  g e n e r a l  f o rm

Д £ = 0 2Я , (7)

■with Oj a  g a u g e - in v a r ia n t  o p e r a to r  w ith  c a n o n ic a l 
d im e n s io n  2. H o w ev e r , in  a  th e o ry  w ith  no fu n 
d a m e n ta l  s c a l a r s ,  a n d  -with sp o n ta n e o u s  b re a k in g  
of s c a le  in v a r ia n c e  (and h e n c e  no b a r e - m a s s  p a 
r a m e te r s ) ,  th e  o n ly  d im e n s io n - 2  o p e r a to r s  a r e  
o f th e  f o rm  b uab'la, w ith  b ^  a  g au g e  p o te n tia l .
B u t su c h  o p e r a to r s  a r e  n o t g a u g e  in v a r ia n t ,  and  
h e n c e  no c o u n te r  t e r m s  of th e  f o r m  o f Eq. (7) a r e  
p o s s ib le .  T h e r e f o r e ,  in  th e  th e o r ie s  u n d e r  co n 
s id e r a t i o n ,  /3 i s  f in i te  an d  c a lc u la b le  (a s  o p p o se d  
to  m e r e ly  r e n o rm a l iz a b le ) .

F o llo w in g 7 S a k h a ro v 8 an d  K le in ,8 i t  i s  te m p tin g  
to  r e g a r d  th e  k2/3R t e r m  in  E q . (5) a s  th e  e n t i r e  
g r a v i ta t io n a l  a c t io n ,  r a t h e r  th a n  a s  ju s t  a n  a d d i
t io n a l  f in i te  c o n tr ib u t io n  to  th e  g r a v i ta t io n a l  a c 
t io n . T h is  i n te r p r e t a t i o n  i s  c le a r ly  ju s t i f i e d  if 
th e  u n if ie d  m a t t e r  th e o r y  p r e d ic ts  th e  c o r r e c t  
s ig n  an d  m a g n itu d e  o f th e  E in s te in  a c t io n  and  if  
th e  v i r tu a l  in te g r a t io n s  c o n tr ib u t in g  to  ft a r e  d y 
n a m ic a l ly  c u t  o ff a t  e n e r g ie s  w e ll b e lo w  th e  
P la n c k  m a s s .  If th e  v i r tu a l  in te g r a t io n s  e x ten d  
b e y o n d  th e  P la n c k  m a s s ,  th e n  u s e  of th e  s e m i-  
c l a s s i c a l ,  b a c k g ro u n d  m e t r i c  a n a ly s i s  g iv e n  
a b o v e  r e q u i r e s  f u r t h e r  ju s t i f ic a t io n  o r  c o r r e c 
t io n s ,  in v o lv in g  a n  a n a ly s i s  o f p o s s ib le  q u an tu m  
g r a v i ty  e f f e c ts . 10

A dd ed  n o te s .— C a lc u la t io n s  b y  H a s s la c h e r  an d  
M o t to la , 11 M o tto la , 11 a n d  Z e e 11 in  m o d e ls  o b e y in g  
th e  p r e m i s e s  of th is  n o te  a l l  g iv e  a  n o n v a n ish in g  
in d u c e d  o r d e r - R  t e r m ,  a n d  sh o w  th a t  th e  s ig n  
c a n  c o r r e s p o n d  to  a t t r a c t i v e  g ra v ity .

Guo h a s  b ro u g h t to  m y  a t te n tio n  a  n u m b e r  of 
f u r t h e r  r e f e r e n c e s  on  i?2- ty p e  g r a v i ty  L a g r a n -  
g i a n s . 12 In  p a r t i c u l a r ,  i t  i s  know n th a t  a  C IIvXa 
x c ' " l “ g r a v i ty  th e o r y  i s  r e n o r m a l i z a b l e ,  bu t 
h a s  a  d ip o le  g h o s t .  H en ce  th e  e x te n d e d  m a t t e r -  
g r a v i ty  t h e o r i e s  d i s c u s s e d  in  R e f. 10 of th is  n o te  
a r e  r e n o r m a l i z a b l e ;  th e y  c o u ld  a ls o  b e  u n i ta ry  
(by th e  L e e - W ic k 13 m e c h a n is m )  if  s c a l e - s y m -  
m e t r y  b re a k d o w n  c a u s e s  th e  d ip o le  g h o s t  to  s p l i t  
in to  a  s in g le  p o s i t i v e - r e s i d u e  g r a v i to n  p o le  a t  k 2 
= 0 , an d  a  p a i r  o f c o m p le x -c o n ju g a te  u n s ta b le

16 J u n e  1980

g h o s t p o le s  a t  k 2= M ± i T  (w ith  M  a n d  Г  o f o r d e r  
th e  u n if ic a t io n  m a s s ) .  D e ta i le d  d y n a m ic a l  s t u d i e s  
of th e  e x te n d e d  m a t t e r - g r a v i t y  t h e o r i e s  w i l l  b e  
n e e d e d  to  s e t t l e  th e  u n i ta r i ty  i s s u e .  T o m b o u l i s 14 
h a s  g iv e n  a n  in te r e s t in g  m o d e l  w ith  a  d y n a m ic a l  
L e e -W ic k  m e c h a n is m , a n d  I w ish  to  th a n k  h im  
f o r  a  d is c u s s io n  a b o u t t h is  p o in t.

B e c a u se  d im e n s io n -4  a n d  d im e n s io n - 0  o p e r a 
t o r s  a r e  a lw a y s  a v a i la b le  ( e .g . ,  £ mmcr a n d  th e  
g a u g e - f ie ld  b a r e  c o u p lin g , r e s p e c t iv e ly ) ,  th e  
a r g u m e n ts  o f th is  n o te  do n o t a p p ly  to  th e  o r d e r -  
(0) o r  -(4 )  t e r m s  in  Eq. (5). H e n c e , e v e n  in  s c a l a r -  
f r e e  th e o r ie s  w ith  sp o n ta n e o u s  s c a l e - in v a r i a n c e  
b r e a k in g ,  th e  c o s m o lo g ic a l  c o n s ta n t  c o n ta in s  r e 
n o r m a l iz a b le  in f in i t ie s .  A n  a d d it io n a l  s y m m e t r y ,  
v e ry  l ik e ly  r e la t in g  th e  b o s o n  a n d  f e r m io n  s e c 
t o r s  o f th e  th e o r y ,  w il l  b e  n e e d e d  to  g iv e  a  c a l c u 
la b le  c o s m o lo g ic a l  c o n s ta n t .  L . S. B ro w n  a n d  
J .  C. C o llin s  p o in t o u t th a t  b e c a u s e  d im e n s io n - 0  
o p e r a to r s  a r e  a v a i l a b le ,  th e  in d u c e d  R 2 t e r m  in  
th e  v a c u u m  a c t io n  c an  b e c o m e  d iv e r g e n t  in  h ig h  
lo o p  o r d e r ;  if  th i s  h a p p e n s ,  a  q u a d r a t ic  g r a v i t a 
t io n a l  L a g ra n g ia n  m u s t  in c lu d e  a n  R 2 t e r m  in  
a d d it io n  to  th e  t e r m  С v v \ aC'lvXo  d i s c u s s e d  a b o v e .

I w ish  to  th an k  L . S. B ro w n , J .  C . C o l l in s ,  D . J .  
G r o s s ,  H .-Y . G uo, B. H a s s la c h e r ,  E . M o tto la ,
M . J .  P e r r y ,  and  T . T o m b o u lis  f o r  h e lp fu l  c o m 
m e n ts .  T h is  w o rk  w a s  s u p p o r te d  b y  th e  U. S. 
D e p a r tm e n t  o f E n e rg y  u n d e r  G ra n t  N o. D E -A C 0 2 -  
76ER C 2220.

*P. M inkow ski, P h y s. I « t t .  71B , 419 (1977); A . Z e e , 
P h y s. Rev. L e tt. 42, 417 (1979).

2L . S m o lin , N ucl. P h y s . B 160, 253 (1979). S m olln  
d is c u s s e s  a  c o n fo rm a i- in v a r ia n t  s c a la r - v e c to r  th e o ry , 
w h e re  th e  eq u a tio n  g o v e rn in g  the  c la s s ic a l  m in im u m  is  
(й/Э<р — 4/<p)V = 0, r a th e r  th en  s im p ly  V ' -  0 a s  in  
M inkow sk i's  o r  Z e e 's  m odel.

h  follow the  conven tio n s o f  C. W. M is n e r , K. S,
T h o rn e , and J .  A. W h e e le r , G ravitation  (F re e m a n ,
San F ra n c is c o , 1973).

^See, e .g .,  L. S u ssk in d , P h y s . R ev . D 2£, 2619
(1979); S. W ein b e rg , P h y s. Rev. D 13, 974 (1976), and 
D 19, 1277 (1979); o r  th e  m 0 = 0 v e r s io n  o f  S. L. A d le r , 
P h y s . L e tt. 86B , 203 (1979), and “ Q u a te rn io n ic  C h ro m o 
d y n am ics as a  T h eo ry  o f  C o m p o s ite  Q u ark s  and L ep
to n s ,” P h y s . R ev. D (to b e  p u b lish ed ).

sT he te r m  < £> 0^ ,  in ad d itio n  to lo c a l  c o n tr ib u tio n s  
p ro p o rtio n a l to R 2, . . .  h as no n lo ca l c o n tr ib u tio n s  
a r i s in g  fro m  the  e ffe c ts  of m a s s le s s  f ie ld s . S ee , fo r  
e x a m p le , L. S. B row n and J .  P . C a ss id y , P h y s . Rev.
D 16, 1712 (1977). I am  assu m in g  th a t  su c h  non local
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te r m s  do no t a p p e a r  in  , but the  p re se n c e  of
su c h  t e r m s  would no t a l t e r  the  a rg u m e n t fo r the  c a l-  
c u la b illty  o f p . In n oncom pact m an ifo lds th e r e  can  be 
L o re n tz  s c a l a r s  o th e r  th an  R w hich  c o n tr ib u te  (I w ish  
to thank  S. M. C h r is te n s e n  fo r th is  r e m a rk ) , bu t aga in  
th e s e  do not a l t e r  the  a rg u m e n t g iven  fo r the  PR  te rm .

6S. W e in b e rg , P h y s . R ev. L e tt. 29, 388 (1972). F o r 
a  r e c e n t  p e d ag o g ica l rev iew  of th e  re n o rm a liz a tio n  
a lg o r i th m  im p lic i t  In the c a lc u la b ili ty  c r i te r io n ,  se e  
L . S. B row n , “ D im en s io n a l R e n o rm a liz a tio n  o f Com 
p o s ite  O p e ra to rs  in  S c a la r  F ie ld  T h e o ry ” (unpublished).

7S ee  C. W . M is n e r , K. S. T h o rn e , and J .  A. W h e e le r , 
R e f. 3 , p p . 426—428.

aA. D. S a k h a ro v , Dokl. A kad. N auk. SSSR 177, 70 
(1967) ISov. P h y s . D okl. 12, 1040 (1968)1. 

sO. K le in , P h y s. S c r . 9, 69 (1974). 
lcOne p o s s ib i l i ty  is th a t the  m e tr ic  is  not a  quantum  

v a r ia b le ,  bu t Is a  c la s s ic a l  dyn am ica l v a r ia b le  gov
e rn e d  by th e  E u le r -L a g ra n g e  e q u a tio n s , in  w hich  c a se  
th e  background  m e tr ic  a n a ly s is  g iv en  in  th e  tex t is  ex
a c t .  A n o th e r p o s s ib i l i ty  c o n s is te n t w ith the  view point 
o f  th e  te x t  is  th a t th e  m e tr ic  is  a  quan tum  v a r ia b le , 
w ith  d y n a m ic s  g o v e rn ed  by a  s c a le - in v a r ia n t  funda

m en ta l L agrang ian  (see  L. S m olin , R ef. 2). T he only  
g e n e ra liz a tio n  o f  E q. (4) to Include a  s c a le - in v a r ia n t  
g ra v ita tio n a l ac tio n  is  3 =  f d 4 x  ( - g ) l / 2  ( £ m a n e г 

+ Ĉjji/Xo СриХ° + c o u n te r te rm s ) , w ith  Си„Ха the  W eyl 
te n s o r ,  and w ith 6 a  d im e n s io n le s s  coup ling  co n s tan t. 
R ecen t w o rk  of S te lle  IK. S . S te lle , P h y s . R ev . D 16,
953 (1977)1 on  q u a d ra tic  g ra v ita t io n a l  ac tio n s  su g g e s ts  
th a t  th is  extended th e o ry  should  s t i l l  be r e n o rm a liz a b le . 
T he k20 R  t e r m  in E q. (5) would s t i l l  be c a lc u la b le , 
even w ith quan tum  g ra v ita tio n a l e ffe c ts  tak en  in to  a c 
count, but th e  P v a lu e  ca lcu la ted  f ro m  the  f la t - s p a c e 
tim e  m a tte r  th e o ry  would be  su b je c t to a  f in ite , й- 
d ependen t r e n o rm a liz a tio n . T h is  re n o rm a liz a tio n  
could  be  im p o rta n t if the  v ir tu a l  in te g ra tio n s  c o n tr ib u 
tin g  to P extend to e n e rg ie s  beyond th e  P la n c k  m a s s .
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I derive a formula for the induced gravitational constant in unified theories w ith dynam ical scale-invariance breakdow n.

In a recent note [1] I gave a simple argument showing that in unified theories with dynamical scale-invariance 
breakdown, radiative corrections in curved spacetime induce an order-/? term in the vacuum action functional 
which is uniquely determined by the flat spacetime theory. Subsequent calculations by Hasslacher and Mottola 
[2], Zee [3] and Mottola [4] in models obeying the premises of ref. [1] all give a non-vanishing induced gravita
tional constant, and show [2] that its sign can correspond to attractive gravity. Their calculations also suggest 
that it should be possible to do the curved spacetime manipulations in a formal way, giving an explicit formula 
for the induced gravitational constant involving flat spacetime quantities only. I derive such a formula below; it 
leads to a less abstract derivation of the basic finiteness theorem of ref. [1], and should provide a useful starting 
point for dynamical calculations.

Consider a theory based on a scale-invariant classical lagrangian, constructed from spin-1/2 fermions and spin-1 
gauge fields, with the generally covariant renormalized matter action

^  “ f ^ 4x -^matter’ ^matter ~ "^matter + coun êr'̂ erlns • ^

Because quantum effects are non-local, the vacuum action functional <?)q in curved spacetime cannot be related 
to its flat spacetime value by the equivalence principle. Instead, we have a formal decomposition *1

(?> 0 = / d 4x ^ <£>0 , <2 > 0  = <2 f 0at ^ t i m e  + + terms involving higher metric derivatives,
(2)

with the induced gravitational constant. I use sign conventions ф2 in which a positive induced gravitational 
constant corresponds to attractive gravity. Defining the renormalized matter stress-energy tensor

= 2( - * ) - l / 2  [ ( - * ) 1/ 2 £ matter ] , (3 )  
&HV

Eq. (2) can be rewritten as a formula for , ’

<77>o “  ̂0й* spacetime + д  + terms involving higher metric derivatives . (4)

To get a formula for G ^ ,  it suffices to calculate the change in induced by spacetime curvature, in the
special case of a conformally flat, constant curvature spacetime. For a general lagrangian variation, we have

ФЗ

* ' In  ref. [1 ], I deno ted  ОбтгСцк})-1 Ьу/Зк2 .
I use the conventions o f  Misner et al. (5 ). __

*3 Eq. (5) is obtained from  eq. (17 .22) o f  Bjorken and Drell [6] by making the replacem ents v>m~* T^*1, -  9 f l ( 0  -*1 /  d3*  \J -g  
X 6 J?, and is independent o f  m etric conventions. Neglect o f  the intrinsic m etric dependence [I take & Тц^(0) = 0] is allowed in 
a calculation to  o rder-Л, since this term s fu s t contributes in o rder-Л2 .
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5<V (0)>0 = i I d4x m * K - g ) 1/2 £ {x ) \?/(0))>0- <5[(-*)l/2 £ (* )])Q(T^(0))}

=  i / d ^ < 7 ’( 5 [ ( - g ) l / 2 £ ( Jf) ] ? MM (0)))(̂ connected . (5 )

Taking the metric to have the form near x o f * 4

gpv(x) = V 'C 1 - J s R * 2 + •••) . (6a)

and taking 5 SI to be the lagrangian change induced by the metric variation

= “ V  ' T*R *2 , (6b)

we immediately get [by a second use of eq. (3)]

(8*СМ )-1Л  = 6 < ? /(0 )> 0 = i f d * x  ( - g y l 4 - ^ R x ^ ( T ^ T x\ x ) f ^ ( 0 ) ) ) 0>connected . (7)

Dividing by R , and taking the limit of flat spacetime, gives the desired formula

(1бтгСы )-1 =  J d4* [C*0)2 • (8)

To study the ultraviolet convergence properties of eq. (8), it is necessary to regard eq. (8) as the dimensional 
continuation limit

(16иСм )-1  /  d"x [ ( х ^ - х Ц  (Г(ГхМ ^ )? /(0 )) )0П; Ж ™  ■ (9)

From a perturbative point o f view [7], the only way poles at n = 4 can appear is from terms of the form

<7ХГ/(^)Гмм (0))>^ о̂ “ ^ е= ... + X (*2)" 3 X logarithms + . . . , (10)

in the perturbative operator product expansion of the T-product, with О 2 a gauge-invariant operator of canonical 
dimension 2. But the hypothesis of dynamical scale invariance breakdown (vanishing bare masses, no scalar fields) 
excludes the presence of such operators, and so the limit of eq. (9) as n -* 4 is finite. From a nonperturbative 
point of view, the (jc2 ) - 3  term in the expansion of eq. (10) is altered, in theories with dynamical scale breaking *5, 
to either of the forms

(jc2)-3+t , 7 >  0 ; Oc2) - 3(log *2)-« , 5 >  1 , (11)

for both of which the limit of eq. (9) exists as n -*• 4. Note that although the classical lagrangian o f eq. (4) is con
formally invariant, dynamical scale breaking introduces a mass scale into the theory, and so low energy matrix 
elements of T ^ (x )  will be non-vanishing. Hence eq. (8) gives an ultraviolet-convergent, and in general non-vanish- 
ing, induced inverse gravitational constant.

I have assumed up to this point that eq. (8) is infrared finite, as is true in the calculation of Zee [3]. In the in- 
stanton gas model examined by Hasslacher and Mottola [2], the leading curvature term in C )̂q is of the form 
R lo g (lIR), indicating that eq. (8) is logarithmically divergent at a: = °°. The divergence arises from expanding the

T he local expansion o f a general conformally flat m etric is

gnv(x) = ti^O + + ...), .

Eq. (6a) results from  making the specialization 
*s See Pagels [8] for a review of models o f dynamically broken gauge theories.
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conformal factor in a power series in x  inside the x integral [cf. eq. (6a)]; the legality o f this expansion is not 
guaranteed by the ultraviolet-finiteness criteria of ref. [1].

One can attempt to carry the argument one step further, by using dispersion relations to put eq. (8) in spectral 
form. Defining

№ 2) s  / d4* e * -(-0 (7 X 7 ^ 0 0 Г / ( 0))> о % * в е • <12)

and assuming that \l/(q^) — ф(0) satisfies an unsubtracted dispersion relation, a simple calculation ф6 gives

( 1 б1гСы ) _1 = —jjr f  da2 p(a2)/o 4 , p(-<?2) = (2v)3T / 5 4(pn -  q )|< 0 |7 ^ (0 )|« > |2 . (13)
0 "

Since in canonical gauges the Hilbert space metric is positive definite, eq. (13) implies that is negative. How
ever, both eq. (13) and this conclusion about the sign of G -m are false. The reason is that in gauge theories 
contains [9] a trace anomaly term proportional to Pig2)N(F°vF^va), which makes the special function behave 
asymptotically as p ~  a4 X logarithms, invalidating the unsubtracted dispersion relation assumption needed to de
rive eq. (13). Although the trace anomaly gives rise to a singular term proportional to /З^л:2) - 4 X logarithms in 
the operator product expansion of eq. (10), the contribution of this term to eq. (9) is well behaved in the n 4 
dimensional limit.

1 wish to thank B. Hasslacher, L. Brown, E. Mottola and A. Zee for numerous discussions, and E. Mottola for 
checking the calculation. A. Zee has independently obtained some of the formulas given above, and suggested the 
role of o 4  terms in p in the breakdown of the spectral analysis. This work was supported by the Department of 
Energy under Grant No. DE-AC02-76ER02220.

** Eqs. (14) and (15) follow im m ediately from  eqs. (16 .33), (16.27) and appendix С o f  Bjorken and Orel! [6 ].
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Einstein gravity as a symmetry-breaking effect 
in quantum field theory*

Stephen L  Adler

The Institute for Advanced Study, Princeton, New Jersey 08540

This article gives a pedagogical review of recent work in which the Einstein-Hilbert gravitational action 
is obtained as a symmetry-breaking effect in quantum field theory. Particular emphasis is placed on the 
case of renormalizable field theories with dynamical scale-invariance breaking, in which the induced 
gravitational effective action is finite and calculable. A functional integral formulation is used 
throughout, and a detailed analysis is given of the role of dimensional regularization in extracting finite 
answers from formally quadratically divergent integrals. Expressions are derived for the induced gravita
tional constant and for the induced cosmological constant in quantized matter theories on a background 
manifold, and a strategy is outlined for computing the induced constants in the case of an SU(n} gauge 
theory. By use of the background field method, the formalism is extended to the case in which the 
metric is also quantized, yielding a derivation of the semiclassicaJ Einstein equations as an approximation 
to quantum gravity, as well as general formulas for the induced (or renormalized) gravitational and 
cosmological constants.
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I. INTRODUCTION

In th e  conventional fo rm u la tio n  o f general re la tiv ity , 
g rav itation  is described by rew riting  th e  m atte r  action  in  
generally co v arian t fo rm , and by add ing  to  i t  the  
E inste in -H ilbert g rav ita tio n al action

•Sgr»v =  J d * x  g  (R  —2 Л ) , (1.1)

w ith G N ew ton’s co n stan t and R  th e  cu rv a tu re  scalar, 
and w ith th e  cosm ological co n stan t Л taken  to  be zero. 
T he to ta l action  is th en  trea ted  as a  classical v aria tiona l 
principle, to  be extrem ized w ith respect to  v a ria tions o f  
the c -num ber m etric  g MV. A s discussed  in th e  survey a r
ticles in H aw king  and  Israel (1979), th e  theory  in th is 
fo rm  accounts very well fo r a ll a stronom ical g rav ita tio n 
al phenom ena and  has a s tru c tu re  w hich is understood  in 
considerable theoretical detail. O n  th e  o th e r hand , when 
trea ted  as a  fun d am en ta l q u an tu m  action , Eq. (1.1) leads 
to a nonrenorm alizab le  q u an tu m  field theory . T h is  p rob
lem has long been know n, and has stim u la ted  m uch  
theoretical e ffo rt a im ed a t achieving a sa tisfac to ry  q uan
tiza tion  o f  the  E inste in -H ilbert action  or its  supergrav ity  
extensions. [F o r reviews o f  th e  cu rren t sta tus o f  these 
approaches, see H aw king  and  Israel (1979) and Van 
N ieuw enhuizen (1981).]

A n entirely  d iffe ren t app ro ach  to  q u an tu m  gravity  
derives from  w ork  by Z el’dovich  (1967) and Sakharov 
(1967) on induced  q u an tu m  effects. Z el'dovich studied  
th e  effect o f  vacuum  q u an tu m  fluctuations on the

Copyright ©  19B2 The American Physical Society 729
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cosm ological constan t; extending this idea, Sakharov pro
posed th a t Eq. (1.1) is no t a fundam ental m icroscopic ac 
tion, but ra th e r is an effective action  induced by vacuum  
quan tum  stru c tu re  (see also K lein , 1974). T o  quote the 
two key sentences from  S ak harov’s paper, “T he presence 
o f  the action  (1) [E q. (1.1)] leads to a m etrical elasticity  
o f space, i.e., to  generalized forces w hich  oppose th e  
curv ing  o f  space. CJf) H ere we consider the hypothesis 
w hich identifies th e  action  ( 1) w ith the  change in th e  ac
tion  o f  q u an tu m  flu ctu atio n s o f the  vacuum  if  space is 
cu rved .” Sakharov’s proposal a ttrac ted  a tten tion  from  
th e  outset (see M isner et a /., 1970), bu t fu rth e r progress 
was ham pered by the  fac t th a t in the  free field m odels 
fo r w hich h e  m ade his estim ates, the  induced g rav ita 
tional constan t Gjnd is given by in tegrals w hich con tain  
b o th  q u ad ra tic  and  logarithm ic  divergences. It is only in 
the  last few years th a t th e  technology o f  q uan tum  field 
theory  has advanced to  the  p o in t w here one can  sys
tem atica lly  study  induced q u an tu m  effects in in teracting  
field  theories. T hese advances, and th e ir app lication  to  
induced E inste in  gravity , a re  th e  subject m atte r o f th is 
review.

Since the  topics discussed below span th e  areas o f  
h igh-energy physics and  re la tiv ity , in w hich d ifferen t no- 
ta tio n al conventions a re  generally used, I have adopted  
th e  follow ing com prom ise w ith  respect to  no tation . I use 
m icroscopic  units th ro u g h o u t,

h = c = 1 , ( 1.2)

so th e  only d im ensional q u an tity  is m ass =  ( len g th )- 1 . 
T h e  coord inates jc*' are taken to  have the  d im ension 
(leng th )1, m ak ing  th e  m etric  g MV dim ensionless In all 
f la t  space-tim e exam ples and  discussions, I use th e
H----------- signatu re  convention  o f  B jorken and  D rell
(1965), w hile  in  all expressions w hich involve a curved
m an ifo ld  I follow  t h e ---- h +  +  convention o f M isner
et a l ., (1970). In  th e  few places w here  it is necessary to 
ch an g e  from  one convention  to  th e  o th er, 1 will explicitly  
call a tten tio n  to  the  trans ition .

II. FIELD THEORY PRELIMINARIES

A. Actions and canonical dimension accounting

T h e  fu n c tio n al in tegral fo rm u la tio n  o f q u an tu m  field 
th eo ry  (see A bers and  Lee, 1973) expresses tran s itio n  a m 
p litu d es in th e  fo rm

Z  = f d

5 [ |^ | ] = / ^ - 2 ' [ ( 0 ) ]  , (2. 1)

d im [len g th ] =  — 1, d im [m a ss ]  — 4-1 , (2.2)

we have

d im [ S ] = 0 ,  d im [d 4jc] =  —4

= s - d i m [ ^ ] = 4 .  (2.3)

F rom  Eq. (2.3) we can  in fe r th e  can o n ica l d im en sio n a lity  
o f  th e  fields and p a ram ete rs  fro m  w hich  e lem en tary  re- 
no rm alizab le  m a tte r  th eo ries are  co n stru c ted . F o r  a 
sca la r <p4 field theory  w e have

- ^  =  T 3>.,Pa ' V - T m o<P2 - T Ao? ’4 . (2.4)

w ith  m о th e  bare  m ass a n d  th e  b are  co u p lin g , and 
w ith

d im [9 ft* 3 /3 .x * 1] =  1 d im [ip ] =  1 , 

d im [m 0] =  1 ,

d im [A ^ ]= 0  . (2.5)

F o r a spin-1 A belian  gauge field  (the p h o ton) w e have  

J?  =  — — F  F**v4 (1%>л  t

^ v  =  3 v ^ - 3 ^ v , (2 .6 )

with

d im [F (J>,] =  2 ,

dim[y4JJ ] =  1 , (2.7)

w hile fo r a  sp in - у  D irac  field  we have

-5r  =  V«(/r ^ - m 0 )V ', (2 .8)

w ith

dim[i/»] =  T . (2.9)

w ith  [ф\ the  se t o f  fields p resen t, S  th e  action , and 
th e  L ag ran g ian  (or action) density . Since th e  a rg um en t 
o f  a n  exponential o r a logarith m  m u st be d im ensionless, 
in th e  conventional acco u n tin g  o f  canon ica l d im ension  in 
w h ic h

M in im al coupling  o f  th e  p h o to n  to  a  D ira c  field  o r  a 
com plex sca la r field  w ith  b are  ch arg e  e0 yields th e  L a 
grang ian  densities fo r  q u an tu m  electrodynam ics,

-2 ' QED./2 = - T ^ V ^ ' ‘V+ ^ ' r ,‘i>/1- 'n o ) V ' .

q edo=  — 2— j m g  I <р \ 2— 7 A0  | q>\ 4 ,

=4>dim [e0] = 0  . (2 . 10)

F o r  a spin-1 non-A belian  gauge field  (the m assless gauge 
gluon) we have

•y — _  — pi pipy4 л [IV 1 I

F ^ b ^ - b ^ + g J - ^ A 1̂  , (2 .11)

w ith  i the  in te rnal sym m etry  index, f l)k th e  g roup  s t ru c 
tu re  constan ts, and  g0 the b are  coup ling  co n stan t. 
M inim al coupling  o f the  gauge field  to a D ira c  field  in 
th e  fundam en ta l represen tation  (w ith represen ta tion  m a 
trices у  A/) gives th e  basic L agrang ian  density  fo r q u a n 
tum  chrom odynam ics,
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- ^ о с о =  - 7 F l * F ‘>tr+ W Y ' 1DII- m 0t y  , 

D „  =  dlt +  ig0^ \ . 'A llt , (2.12)
from  w hich we in fer th e  dim ensional assignm ents 

d im [ / ^ v ] = 2  ,

d im [ ^ ^ ]  =  l ,  dim [t/i] =  -j- ,

d im [g 0 ] = 0 . (2.13)

A ll o f  the  field  theory  m odels curren tly  under study as 
cand idates fo r un ified  m a tte r  theories [for reviews see 
M arc ian o  and  Fagels (1978); F ritzsch  and M inkow ski
(1981)] a re  com binations o f  scalar, D irac, and  gauge field 
action  bu ild ing  blocks o f  th e  basic types enum erated  
above. T h e  ch aracte riz in g  feature  o f all such renorm al
izable  actions is th a t  th e ir coupling  constan ts (Xo,e0,g0 
above) have canonical d im ension zero.

B. Effective actions

C onsider now  a renorm alizab le  field theory  w ith  ac
tion

S[\4>L] ,№ HU =  f  3 ’[{Ф1') ,[ФИ}] , (2.14)

w here [ ) a re  “ lig h t” field com ponents whose d ynam 
ics we d irec tly  observe, w hile {фн ) are “heavy” field 
co m ponen ts w h ich  in fluence the  dynam ics o f th e  ligh t 
com ponen ts bu t a re  no t d irectly  observable. T h e  [фИ\ 
can  in  general include fields w ith h igh  physical masses 
and  h ig h -m o m e n tu m 1 com ponents o f  fields w ith light 
physical m asses. Since th e  [фн j are h idden  fro m  view, 
it is convenien t to  rew rite  the  functional in tegral o f  Eq.
(2 . 1) in  th e  follow ing form ,

Z = f d W L] d W H}eisU*LM Hn

(2.15)

w here  th e  effective action S eff[ [ $ L) ] fo r the  ligh t fields is 
d efined  th ro u g h

(2.16)

C learly , th e  effective  action , if  exactly  know n, w ould 
give a  com ple te  descrip tion  o f the  dynam ics o f  the fields 
[фь ]. In p ractice , one usually  w orks w ith only an  ap 
p ro x im a tio n  to  Srff, ob tained  by keeping leading term s in 
an  expansion  in  a sm all param eter. Some exam ples o f 
co m m o n ly  used effective actions are as follows.

1. The Heisenberg-Euler (1936) effective action in quantum 
electrodynamics (see also Schwinger, 1951).

In teg ra tin g  o u t th e  electron  fields in quan tum  electro
dynam ics gives an  effective action describing th e  non

' I  w ish to thank  B. Holdom  for suggesting the inclusion o f  a 
m om entum  criterion  in the definition, as a way o f  autom atical
ly including renorm alization  effects arising from overlapping 
divergences. F or recent discussions o f effective actions, see 
W einberg (1980a) and O vrut and Schnitzer (1980,1981).

linear in te rac tions o f  photons,

е ««гг1^1=  J  . (2 17)

F o r field s treng ths w hich  are slowly varying over an 
electron C om p to n  w avelength, can be approx im ated  
by taking F„v =  constan t, w hich gives a p roblem  w hich 
can be solved in closed form . F o r weak, slowly varying 
fields (on a scale o f  an electron C om pton  w avelength), 
Sen  can be approx im ated  by th e  firs t tw o term s in a 
series expansion

5 С« [ ^ У] =  / d*x J r *  ,

45F"  + 1 (E -H )2]+  ■ • - , |  (2.18) 
w ith  E ,H  th e  electric  and  m agnetic  fields, a  th e  fine- 
s tru c tu re  constan t, and m  th e  electron m ass. I f  in te r
p reted  as a  fun d am en ta l action  and used (or, ra th e r, 
m isused) beyond the  tree-approx im ation  level, E q. (2.18) 
w ould yield a  nonrenorm alizab le  pertu rb a tio n  expansion 
in powers o f  the  dim ensional effective coupling  
2a2/45  m 4.

2. The four-fermion effective action approximation 
to the Weinberg (1967)-Salam (1968) weak interaction 
theory

A t center-of-m ass energies well below 100 G eV , the  
weak in terac tions are described by a c u rren t-cu rren t 
four-ferm ion  effective action

5'crr[ ( fe rm io n Sj ] = / a f ^ ( ^ r*Hl +  ^ u,nJ) ,

-j,ch»ac<i_ + J^b )(j lhX + 7 ^ )  ,

j c b = ? Y k( l - Y s ) v , + H , T  term s ,

7 *1, =  y 5)(d cosflc + s  sinflc )
+ c h a rm  term s , 

j $ =  - ! ? y * ( l — )"j)e +  \ v . y H l - y s)ve 

+ 2 sin2e ly g y >‘e +Ц.Т  term s ,

J n =  \ а у Н \ - г , ) и - \ 2 г Н \ - п ) а  

— 2 sin20 ^ ( y f f V l u — r^dy^d)

-f strange, charm  term s , (2.19)

w ith e,vt ,u,d,s  the  electron , electron  neu trino , and  up, 
dow n, and strange qu ark  fields, respectively, and w ith  9C 
and  0 W the  Cabibbo and W einberg angles .2 S ince the  
ferm ion fields have d im ension 7 , th e  Ferm i co n stan t Gp 
has dim ension —2 , and  has the em pirical value

Gf s 1 .0 2 3 x 1 0 *

m .
(2 . 20)

2For a recent review o f the phenomenology o f  the  W einberg-
Salam model, see K im  et at. (1981).
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A s expected fo r a  theory  w ith a dim ensional coupling 
constant, the use o f Eq. (2.19) as a fundam en ta l action 
leads to  a nonrenorm alizab le  pertu rbation  expansion in 
Gf . T h is d ifficu lty  is resolved in the  W einberg-Salam  
gauge theory, in w hich in add ition  to  the  ferm ions, the  
fundam ental action  con tains gauge and H iggs boson 
fields, and w hich has a renorm alizab le  p e rtu rba tion  ex
pansion in the  gauge boson couplings g,g'.  W hen the 
boson fields are  in tegrated  out, according to

IS reunions)]
e

=  /< f f b o s o n s ie iSw^ - “ *mn“ lMboso,un , (2 .2 1 )

the  effective action  o f  Eq. (2.19) is obtained as a leading 
approxim ation , w ith  th e  Ferm i co n stan t related to  th e  
electric charge e, the  charged  gauge boson m ass M w , and 
s in d ^  by

J-r s2 
1 /2  F m i ,  ’

e (2 . 22 )

8  sinS »/

Let us now  re tu rn  to  g rav ita tion . T h e  action  o f Eq.
(1.1) con tains d im ensional couplings G ~ ' and  Л ,

d im [G  ']  = d im [A ]  — 2 ,

G - 1/2 =  pianck =  1 .2 2 X 1019 О еУ  =  / р ^ ск ,

IPlanck ~  1-62 X lO ”  cm  ,

I Л  I <  1 0 “ 57 c m ' 2 ,

(2.23)

(2 .2 4 a )

a _7  1/2 j  ̂ г  ___ <7 1 / 2 1r>r
^ 3 1  f i v  — — 3 ■* /iv  >

V ^ z J ' V ,

е0= г У 2е, m 0—Z mm ;

FtlvF >lv= Z 3F rllvF ,>‘v ,

W e o A ^ Z , V y r e A W ^ Z i Z ^ z Y ^ ' y V e A ^ '  ,

ipm0\ l )= Z2Z m\prmrj/  . (2 .2 4 b )

F ro m  Eq. (2.24b) and  th e  W ard  id en tity  (w hich  is  d e 
rived from  cu rren t conservation) one  learns th a t

z ] n z \ n =-~~ =  \ 
*■1

(2 .2 5 )

leaving as the  in d ependen t ren o rm a liz a tio n  c o n s ta n ts  Z , , 
Z m, and  Z 2. T h u s th e  re n o rm a liza tio n  p ro ced u re  c a l l s  
fo r the  bare  e0, m Q, and ф to  be ad ju s ted  to  a b so rb  a l l  
divergences, leaving Finite e, m ,  an d  ф' to  be id e n t i f ie d  
w ith  th e  m easured values. T o  u n d e rs tan d  w hy e, f o r  e x 
am ple, can n o t be calcu la ted , let us recall th a t  in o n e - lo o p  
o rder, th e  divergence in  Z t  has the  fo rm

“ 0 elZ e =  l + - ~  logM 2 +  0 (ao) ,  a 0= —— , (2 .2 6 )
Зтг 4тт

w ith  M  a m assive regu la to r. U n d e r rescalings M  —+ £М  
o f th e  regu la tor m ass, Z e changes to

Z ,  — l +  ^ - l o g M 2+ - % o g ?  +  O (a 20) , 
Зет 3ir

(2 .2 7 )

and , as expected fo r th e  case w hen th e  couplings are  not 
dim ensionless, leads to  a n o nrenorm alizab le  q u an tu m  
field  theory . T h e  v iew po in t o f  th is a rtic le  w ill be  th a t 
th e  g rav ita tio n al action  is no t a  fu n d am en ta l m icroscopic 
action , bu t ra th e r is a  long-w avelength  effective action  
sim ila r to  th e  ones d iscussed  above. T h e  fundam en ta l 
action  will be assum ed to  be renorm alizable, and condi
tions on it w ill be fo rm u la ted  w hich  guaran tee  th a t the  
e ffective  g rav ita tio n a l action  is calcu lab le  in term s o f 
p a ram ete rs  o f th e  m icroscop ic  theory .

C. R enorm alizability  a n d  th e  d im ensional algorithm

In  q u a n tu m  field theo ry , one  in general encounters 
d ivergences w hen ev aluating  rad ia tive  corrections. In  re
no rm alizab le  field theories, a ll d ivergences can be e lim 
in a ted  by m ak in g  d ivergen t rescalings, o r ren o rm aliza 
tions, o f  a  fin ite  n u m b er o f p a ram ete rs o f  the  theory , 
w hich can n o t be calcu la ted  from  first princip les bu t are  
rep laced  by m easu red  values a t  th e  end o f th e  calcu la
tion.

F o r  exam ple, in spin--j- q u an tu m  electrodynam ics, 
w ork ing  fo r s im p lic ity  to  one-loop order, one in troduces 
ren o rm a liza tio n  c o n stan ts  Z |  г.з.т,»» renorm alized  fields 
A'p, F'pv, iff, and  renorm alized  ch arg e  and m ass p a ram e
ters e ,m  by w riting

and hence th e  fin ite  p a r t  o f  Z t  is re g u la to r-s c h e m e  
dependent. A s a result, th e  f in ite  q u a n tity  e e x tr a c te d  
fro m  th e  d ivergent bare  ch arg e  e 0 rem ains a free p a r a m 
eter o f th e  renorm alized  theory . In  general in a r e n o r 
m alizab le  field theory , we expect to  fin d  one free  r e n o r 
m alized coupling o r m ass p a ram ete r fo r each b a re  c o u 
pling o r m ass appearing  in th e  u n ren o rm alized  L a g ra n g 
ian density.

C o n tinu ing  fo r th e  m om ent to  w ork to  one-loop o r d e r ,  
th e  renorm alization  p rocedure  given in E q. (2.24b) f o r  
the  various d im ension -fou r term s in th e  action  d e n s i ty  
can be rew ritten  in a com pact m atrix  no ta tion ,

m =

F UVF ^ F rllvF'>lv

, m -фу^е^А^ф ф у ^ е А р ф '

фт0ф фТт ф '

[Z ]  =

0 0 0

0 Z 2 0 0

0 0 Z , 0

0 0 0 Z 2Z M

(2.28a)

Beyond one-loop order, th e  ren o rm aliza tio n  c o n stan ts  a s 
sociated with the action density  term s FfivF ,lv, ■ ■ ■ a re  n o  
longer sim ply  products o f  the  ren o rm alizatio n  c o n s ta n ts
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fo r  th e  indiv idual field , charge, and m ass facto rs in tro 
duced  in E q . (2.24a), and th e  action  density  term s th em 
selves will m ix under renorm alization . T h e  appropria te  
generalization  o f  Eq. (2.28a) then  takes the  form

[4 ']  =  [ Z ] [ '1/T ,

«Иm 0

[ * ' ]  = (фу^еоАЦ\1/У 

(\1>т0ф)г

(2.28b)

w ith  [Ф ] as in  Eq. (2.28a), w ith СF ^ F ^ Y ,  . . . , the re
norm alized  action  density  term s, and w ith  [Z ]  a nond i
agonal renorm alization  m atrix .

A s we have seen from  th e  above exam ple, in  the  gen
eric  case m ultip licative  renorm alization  takes the m ore 
general form  o f m atrix  m ultip licative  renorm alization . 
T h e  set o f  operators w hich can m ix under th is renorm al
iza tion  process is characterized  by th e  follow ing rule.

The dimensional algorithm [see W einberg (1957), Z im - 
m erm ann  (1970), and  B row n (1980)]. A  com posite  
o p e ra to r in q u an tu m  field theory  is defined (up to  a  con
s tan t factor) as the p ro d u c t o f  any num ber o f fields or 
field  derivatives a t th e  sam e space-tim e po int. T h e  d i
m ensional a lgo rithm  states: (i) T h e  m ost general basis 
set o f  com posite  operators w hich can  m ix under renor
m aliza tion  are  the  polynom ials o f  th e  sam e canonical d i
m ension , and  o f the  sam e sym m etry  type (spatial and 
in ternal) fo rm ed  from  the bare fields, the bare masses, 
and  а /Э л " ,  (ii) T h e  L agrang ian  density  fo r a renorm al- 
izable  field  theory  m u st con tain  a  com plete basis set 
(ap art fro m  to ta l derivatives) o f  L orentz- and internal 
sy m m etry -in v arian t com posite  operators o f canonical d i
m ension  fou r.

L et us illu s tra te  th e  dim ensional a lgorithm  in  the  f la t 
space-tim e cases o f  scalar <p* theory, Q E D  — , and Q C D , 
an d  then  use i t  to  deduce add itional L agrangian  counter- 
te rm s w h ich  m u st be added  to assure renorm alizability  
w hen  these theories are em bedded in a curved back
g ro u n d  m anifo ld .

1. Scalar <p‘  theory in flat space-time

E xclud ing  to ta l derivatives, th e  only d im ension-four
com posites even un d er (the in ternal sym m etry  
o f  th e  m odel) a re

3 m ltp1, <p* , (2.29a)

m*a . (2.29b)
T h e  op era to rs  o f  E q. (2.29a) are ju st the ones appearing  
in  th e  L ag ran g ian  density  o f Eq. (2.4), w hile in flat 
space-tim e E q . (2.29b) is an irrelevan t co n stan t w hich 
can  be dropped .

2. QED у  and QCD In flat space-time

F o r  Q E D  y ,  the  only d im ension -fou r com posites (ex
c lu d in g  to ta l derivatives) are

(2.30a) 

(2.30b)

А ^ А » ,  (Э„ А П г . (2.30c) 
T he operators o f  E q. (2.30a) are ju st the  ones appearing  
in the  L agrang ian  density  o f  Eq. (2.10), w hile in fla t 
space-tim e Eq. (2.30b) is an  irrelevan t constan t. T h e  
operato rs o f E q. (2.30c) are  L oren tz  scalars, bu t a re  no t 
invarian t under th e  in te rnal sym m etry  (or gauge) 
transfo rm ation

А р — +  Э^Ф ,

< ,  (2.31)
and hence do  no t appear in  th e  la g ra n g ia n  density . F o r 
Q C D  the c lassification  o f  gauge-invarian t L oren tz  sca lar 
operato rs constructed  from  the  bare fields is 
analogous— one sim ply  adds an in te rn al sym m etry  index
i, and changes th e  defin ition  o f  th e  co v arian t derivative  
as in Eq. (2.12). A  carefu l p ro o f th a t A^fA 1̂ is n o t an  
in ternal sym m etry  invarian t in th e  non-A belian  case, tak 
ing account o f the  com plexities in troduced  by gauge- 
fixing and ghost term s, is given in A ppendix  A.

3. Additional Lagrangian density terms 
in a background curved space-time 
(Brown and Collins, 1980)

W hen spin-0, sp in - у ,  o r  gauge spin-1 m a tte r  fields are 
quan tized  on a  curved background  m an ifo ld  w ith  m etric  
g M„, the action  takes the fo rm

S [ №  I .Я**] =  f d * x  J ,g „ v] , (2.32)

w ith d*x V  — g  th e  invarian t volum e elem ent, and  w ith  
a sca la r w ith  respect to  genera l-coord inate  tran s fo r

m ations. A ccord ing  to  th e  d im ensional a lg o rith m , 
m ust con tain  all scalar d im en sion -fou r polynom ials 
w hich can be form ed fro m  th e  bare  fields (including now 
guv), the  bare m asses, and  d /d x * ,  and  w hich are  in v ari
an t under th e  in te rn al sym m etries o f  th e  m a tte r  fields. 
T h e  term s w hich  can th u s ap p ear in J? a re  easily 
enum erated, and  m ay  be convenien tly  grouped in to  th e  
follow ing four classes: (i) T he generally  co v arian t tra n 
scrip tions o f  the L agrang ian  densities o f  Eqs.
(2.4) —(2.13), obtained in the  usual m an n e r by replacing 
o rd inary  derivatives by co v arian t derivatives Vp w ith 
respect to the  background  m etric, (ii) T he bare m ass 
term s m J o f  E qs. (2.29b) and (2.30b), w hich  co n trib u te  to 
the cosm ological co n stan t on a curved  m an ifo ld ,3 as well

3T he term s m i  and  m lR ,  which 'appear in У  m ultiplied by 
independent renorm alization constants, m ay be considered, 
respectively, as the bare cosmological constan t л n/ G and the 
bare order R L agrangian density R /G Q. P rio r to  the discus
sion o f  the cosmological constant in Sec. V I.C , we shall not in 
troduce bare param eters Ло,G a when not required to do  so by 
the presence of dim ensional param eters in the m icroscopic 
m atter action.
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as corresponding regu la to r m ass term s M*  if  m assive re
gulators are em ployed, (iii) T erm s o f  firs t degree in the 
R iem ann curvatu re  tensor ,4

(2.33)

w ith  a general-coord inate—scalar and internal sym 
m etry -invarian t operato r o f  canonical dim ension two. 
T h e  allowed form s fo r a re3

m \ ,  M \  <p2 , (2.34)

since as show n in A ppendix  A, is excluded by
gauge invariance. T h e  d ifferen tia l opera to r <?2»»VpV,‘ is 
om itted  from  th e  list because V —g is a  to ta l
derivative, and — w ith  A 11 an  A belian gauge po
tential, is om itted  because it is n o t gauge invarian t. 
M oreover, as is also  show n in A ppendix  A , the  o p erato r 
q>2 is excluded by supersym m etry  invariance  when tp is a 
spin-0 p a rtn e r o f a m assless su p erm ultip le t.5 (iv) T erm s 
o f  second degree in th e  R iem ann  cu rv a tu re  tensor,

9  - 4 R aBR aP+ R 2 ,
%*>_/-  flivktr ay__ n 2л  ■“  ^  » «« —л  t (2.35)

w ith  #  the  G auss-B onnet density  and the  W eyl
confo rm al tensor, w hich  in fo u r d im ensions has the  form

CpivJtjir =  RpvXa ~2 8̂ ^X^v<t SfujR  vX SvK^fta  "b Svtr^fiK )

(2.36)

T h e  results o f th is  enum eration  can be  sum m arized  in 
th e  follow ing lem m as:

L em m a 1. F o r  a general renorm alizab le  m atte r field 
theory  (spin -0  +  sp in --j +  gauge sp in -1 fields) in curved  
space-tim e, q uan tized  in a  m an n e r w hich  respects all 
gauge and supersym m etry  in te rnal sym m etries, th e  L a 
grang ian  density  term s p ro p o rtio n a l to  R  a re  o f th e  fo l
low ing types,

m  ^R , m 0 =  a  bare  m ass ,

M 2R , M  =  a  m assive reg u la to r , (2.37)

<p2R ,  tp =  a s p in —0  field  not a  m em ber 

o f a  m assless su p e rm u ltip le t .

L em m a 2. I f  th ere  a re  no  bare  m asses o r  m assive  regu
la to rs  and  i f  all sp in -0  fields belong to  m assless super-

m ultip le ts, then  th ere  a re  no  te rm s  in ¥  p ro p o rtio n a l to 
R — th at is, te rm s (iii) above a re  absen t. M oreo v er, when 
these cond itions a re  sa tisfied , te rm s (ii) above a re  a lso  ab
sent, and th e  s tru c tu re  o f  J ' '  reduces to

-^[ { Ф 1 ’&pv] = | Ф | t&fiv] -̂ gravl&fiv] »
-Z’gn„ = A a& + B 0j r ’ +  C0J r  , (2.38)

w ith  th e  generally  c o v arian t tran sc rip 
tion  o f th e  fla t space-tim e m a tte r  L ag ra n g ia n  density  
# [ \ ф ] ] .  T he sp littin g  o f  in to  th e  “ m a tte r” and 
“g rav ita tio n a l” p a rts  given in  E q. (2.38) is u n iq u e, since 
in the  absence o f  d im ensional c o n stan ts  J f m,uct an<  ̂
- ^ Rfsv satisfy

-^mallert {0 } i&jjv] “ ® >

V/iv

(2.39)

D. C onditions for calculability 
ol th e  g ravitational e ffec tive  action

W e a re  now  ready  to  re tu rn  to  a  d iscu ssio n  o f  the  
g rav ita tional effective  action  in duced  by q u an tized  
m atte r  fields on a  curved  back g ro u n d . F o llow ing  E q.
(2.16), we define  th e  g rav ita tio n a l e ffective  action  by

(2.40)

*No additional counterterm s o f  firs t o rder in the cu rvatu re  
tensor can be form ed by using the  R icci tensor R fiV, since these 
m ust have th e  form  w ith a rank-tw o sym m etric
tensor o f  canonical dim ension tw o. T h e  only possibilities are 
(7?v=  Vl‘A y+ V ''A '‘, w hich can be reduced to  V b y  in
tegration  by p a rts  and use o f  th e  B ianchi identity  
V ‘R liy= - ^ ^ vR, and  ig 1"', w hich is equivalent to Eq.
(2.33) o f  the  text. Sim ilarly, no  add itional counterterm s can be 
form ed by using the W eyl conform al tensor Сигъ,, and  so the 
enum eration  given in the  tex t is com plete.

5See Fayet and F e rra ra  (1977) fo r a discussion o f  supersym 
m etry  field representations.

Since S t{{ is a  sca lar un d er g en era l-coord inate  tra n s fo r
m ations, i t  m ay  be represen ted  as th e  in teg ral over th e  
m an ifo ld  o f a sca la r density , w h ich  fo r  slow ly vary ing  
m etrics can be fo rm ally  developed in a  series expansion 
in pow ers o f  3 \gftv,6

■Scfr[g Mv ] =  / ,

-2”ЙгЕg p v \=  16^Giiid ( —2 Aind)’ . ^ c r r [ ^ v ] =  16l rC .n7 *  •

(2.41)

W hat a re  th e  conditions fo r Gj^J and A irai to  be  u n iquely  
calculable  in term s o f  th e  renorm alized  p a ram ete rs  o f  th e  
fla t space-tim e m a tte r  theory? C learly , i f  th e  fu n d am en 
tal action  5 '[ |( ^ j ,g flv] co n ta in s term s p ro p o rtio n a l to  R , 
th en  th e  fin ite  ren orm alization  am biguities a ris in g  fro m  
these term s will p roduce  an undeterm ined  fin ite  co n tri
bu tion  to  G ^ J ;  in th is case th e  induced  g rav ita tio n a l con-

*>In renorm alizable theories, massless particle loops in general 
give rise to  logarithm s of d \ g in the term s (that is, in
the  curvature-squared term s) o f  Eq. (2.41). F o r exam ple, the  
existence o f a conform al trace anom aly p roportional to Я* in 
d icates t he p resence o f  an effective action term  proportional to 
/  log*-.
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s ta n t is renorm alizable, bu t no t calculable. O n th e  o ther 
han d , i f  no  term s p roportional to  R  appear in 

then  Gj^J will be calculable, since there  will 
now  be no source of am biguity  p roportiona l to JJ . 7 In 
th is case th e  theory  will yield a uniquely determ ined  fin
ite  value fo r  G ~ j .  So we have th e  follow ing result:

T h eo rem  [A dler (1980a)]. U nder th e  conditions o f  lem 
m a 2 , a qu an tized  m a tte r  theory  in a curved background 
p roduces a  calcu lab le  induced grav itational constan t 
G ^ .

C onsider next th e  induced cosm ological co n stan t A ind, 
w h ich  ap p ears in  th e  effective action in th e  dim ension- 
fo u r com bination  A)lld/ G ind. A m biguities in A iljd can  
arise  only fro m  d im ension -fou r term s in th e  flat space
tim e  lim it o f  5 [ ( ^ ) , g ^ v] w hich are  no t determ ined by 
th e  ren o rm a liza tio n  conditions on th e  fla t space-tim e 
m a tte r  theory . T h e  decom position  o f  Eqs. (2.38) —(2.39) 
gu aran tees th a t  no  such  additional d im ension-four term s 
are  p resen t, and  so  we м ч  conclude:

T heo rem . U n d e r the  conditions o f lem m a 2, a quantized  
m a tte r  theo ry  in  a curved background  produces a calcu l
ab le  induced  cosm ological constan t Л ы , and so the  en
tire  e ffective  E inste in -H ilbert g rav itational action  is cal
culable.

T h e  basic  theorem s ju s t  sta ted  give sufficient condi
tions fo r th e  fin iteness o f  th e  induced grav itational ac
tion . O f  th e  th ree  conditions in  lem m a I, two— the ab
sence o f  bare  m asses, and o f scalar fields no t in m assless 
su p erm u ltip le ts— are also necessary conditions. H ow ev
er, the  exclusion o f m assive regulators is no t necessary, 
an d  in  A ppend ix  A  the analysis is generalized to  th e  case 
w here m assive  regu la to rs a re  em ployed. A s discussed in 
Sec. 4.4 o f  F a d d e ’ev and  Slavnov (1980), m assive regula
to rs  have  useful fo rm al p roperties, bu t they are aw kw ard 
to  use  in  exp lic it calcu la tions. A  superio r m ethod fo r d i
ag ram  evaluations is th e  techn ique  o f dim ensional regu
la riza tio n , w hicb is discussed in Sec. I l l  below. T h e  sub
sequen t sec tions o f  th is review contain  elaborations on 
th e  theo rem s o f  th is  section. F o r th e  theorem s to  have a 
no n triv ia l con ten t, we m u st have a way o f generating a 
no n zero  scale  fo r physical m asses even when bare  masses 
are  zero  (o therw ise  we get G i^ J = 0 , w hich is calculable 
bu t triv ia l); th is  requires dynam ical b reaking o f scale in 
variance, as discussed in detail in  Sec. IV . In Sec. V, we 
derive  exp lic it, fo rm al expressions for Gjnd and Aind in 
te rm s o f  expecta tions o f  operators in the  fla t space-tim e 
m a tte r  v acuum . F ina lly , in Sec. VI, I extend the  discus
sion  to  in clu d e  the  effects o f q u an tiza tio n  o f th e  m etric.

III. DIMENSIONAL REGULARIZATION

A. Survey

T h e  reg u la riza tio n  o f q u an tu m  field theory w ithou t in 
tro d u cin g  m assive regu la to rs can be accom plished by an-

7This type of argument was first used in connection with the 
calculability o f mass relations by Weinberg (1972).

735

alytic regu lariza tion  m ethods, in  w hich d ivergent in 
tegrals a re  defined by an aly tic  co n tinuation  in a  dim en- 
sionless p a ram ete r (for a review, see L eibbrandt, 1975). 
It w ill su ffice  to  lim it th e  d iscussion to  regu larization  
m ethods fo r f la t space-tim e, since w e will see below (in 
Sec. V) th a t a fte r  do ing th e  cu rv a tu re  a rith m etic  needed 
to  ex tract expressions fo r and  A ind, w e can explic it
ly take the fla t space-tim e lim it in the  resulting  fo rm u 
las. T he m ost widely used form  o f  analy tic  regu lariza
tion  fo r fla t space-tim e calcu la tions is d im ensional regu
larization , in w hich  the  d im ension o f th e  space-tim e 
m anifo ld  is con tinued  from  4 to  2ta by th e  co ord ina te  
and m om entum  space replacem ents

f  d*x  —► f  d ^ x

f d * p ^ f d ^ p ,  (3.1)

w hile keeping th e  fo rm al s tru c tu re  o f  the  action , in 
term s o f fields and field  derivatives, th e  sam e as in  d i
m ension four. A fte r  W ick ro ta tio n  to 2<u-dimensional 
Euclidean space , 8 Feynm an  in teg ran d s in th e  con tinued  
theory are evaluated by using th e  follow ing sim ple  rules. 
T he KroD ecker de lta  E% obeys the  usual com position  law

=  , (3.2a)
but its trace  is m odified  to

5£ =  2ai . (3.2b)

F rom  Eq. (3.2) th e  sym m etric  average o f m o m en tu m  fac 
tors can be uniquely  deduced, giving, fo r exam ple,

(P/iPv)symmetric =  я ^/iv ■ (3.3)
average

T he D irac  у  m atrices con tinue to obey a  C liffo rd  a lgebra

( / M. r v ) = ^ v 1 ,  (3.4a)

and are trace  norm alized  so th a t

T r( r^ y v) =  2“ T r d )  =  2“ , (3.4b)

perm itting  one to  deduce un ique  values fo r all sp in o r 
loops no t con tain ing  an odd n u m b er o f fac to rs  y 5. 9 U s
ing Eqs. (3.2) —(3.4) and  ro ta tio n a l covariance, all p e rtu r
bation theory calcu la tions can  be reduced to  m u ltip le  in 
tegrals o f  scalar-valued in tegrands over th e  m om entum  
space o f  dim ension 2to.

T he basic m om entum  space in teg ral w hich  appears is

f Ed 2°>pf{p) , (3.5)

and is uniquely specified, up to an  overall n o rm aliza tion , 
by the follow ing three conditions given by W ilson (1973),

8I will use the notation to denote a Euclidean integral, 
and will consistently use a +  +  +  +  metric convention in Eu
clidean space formulas.

9For recent discussions of the dimensional regularization 
treatment of уз, see Gottlieb and Donohue (1979) and Ovnit
(1981).
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linearity:

J ^ top [e / . ( p ) + V j ( P > ] =  a j ^ p U p )

+ b j _ d * p f 2(p ) ,
translation invariance:

J Ed ^ p f { p + q ) ^ f Ed ^ p f i p ) ,

scaling law:

^ Ed ^ p f ( s p ) = s - ^ ^ Ed ^ p n p )  . (3.6)

The normalization which is conventionally used is

(3.7)

but is fixed only at —2; Collins (1975) shows that am 
biguities in normalization away from  co — 2 can always be 
absorbed into the ambiguities o f the renormalization con
stants discussed in Sec. Il.C. Hence dimensional regular
ization gives a well-defined procedure for regularizing 
the ultraviolet divergences of quantum  field theory.10

Using the rules of Eqs. (3.5) —(3.7), we find, for exam
ple, that

J*r d 2*'p(p2+ m 2) a — ir
Г (а ) (3.8)

For co — a <  0, the integral on the left is convergent in the 
ultraviolet and yields the expression on the right, which 
is m erom orphic (analytic apart from isolated poles) in co 
and a.  The integral can then be defined by analytic con
tinuation fo r co—a > 0 ,  except at paints where it develops 
poles. For example, when a = l  we have

L
i

V w

1 —  CO 

V2

= 1 г " П  I — fu ) (m 2r - 1

-f finite , near (u =  1

2 —CO
+  finite

(3.9)
m , near a> =  2 ,

showing tha t the pole at co =  1 is associated w ith the 
two-dimensional logarithm ically divergent integral

(3.10a)

while the pole at 2 is associated w ith the four
dim ensional logarithm ically divergent integral

1 7Г2
I E^ E d  P (pS)2 2 —CO ’

co—>2 .

logM^ 1
2 — co

between the representation o f  a four-dim ensional lo g a
rithm ic divergence in the massive regulator and the d i
mensional regularization schemes. In  JV-loop order in d i 
mensional regularization, one in  general encounters 
higher powers of logarithm ic divergences 
1 /(2 —co), . . . , 1 /(2 —co)N near co =  2; these divergences 
m ust be cancelled against corresponding poles in the re 
norm alization constants Z  in order to extract finite p hys
ical amplitudes a t dim ension four.

В. Vanishing of quadratic divergences

The formally quadratically divergent (and m ^ in d e 
pendent) integral

f , i (3 .1 2 )

(3.10b)

is assigned the value 0 by dim ensional regularization , 
since the right-hand side of Eq. (3.9) is proportional to  
m 2 at <b»2. A more precise statem ent o f this fac t is 
given by the following:

Lemma. The only evaluation o f the ultraviolet d iv e r
gent, infrared convergent massless integral

!"■“= f Ed**pip2) - a, c o - a > 0 ,  (3.13)

which is m erom orphic in a  and a  and w hich agrees w ith  
the m —*0 lim it of Eq. (3.8), is I a,a=0.  The p roof fo l
lows immediately from  the observations that: (i) w hen 
co—a > 0  is not a positive integer, the lim it as m —*0  o f  
Eq. (3.8) exists, and is 0; and (ii) the only m erom orphic  
extension (to co — a  =  positive integer) o f 0 is 0 ."  W ork
ing from /* ’■“ =  0, we can now prove the vanishing of

/ “■“•*=  f Ed 2ap(p2) - a(]ogp2) - p, c o - a >  0 (3.14)

by repeated differentiation o f / “■“ w ith respect to a, and  
by repeated application of the Weyl transform  (Erdelyi, 
1954)

=  f  d ^ p [ W ^ p 2) - a](logp2r p' . (3-15)

Since

we(P2r
' = ш (р 2 г^ > 50~1(р2г

=  (p 2)-° (lo g p 2)-^ , O < 0 < 1 , (3 .1 6 )

T he integral o f Eq. (3.10b) would be represented by 
v2 log M 2 using a  conventional massive regulator, giving 
the useful correspondence

we have

(3.11)

10A detailed axiom atization  o f  the  rules o f  dim ensional regu
la riza tion , along the lines sketched by W ilson (1973), has been 
given by Collins (unpublished].

• ’A ny nonzero evaluation o f  / “ •“ (such as the one given by 
Leibbrandt, 1975) is thus necessarily not a m erom orphic fu n c 
tion o f  to. Such evaluations violate the basic philosophy o f  a n 
alytic regularization, w hich is essentially a  calculus o f  m ero 
m orphic functions. T he vanishing o f  in dim ensional reg u 
larization w as first noted by 4  H ooft and V eltm an (1972), an d  
is deduced as a theorem  in the axiom atization  o f  Collins (un
published).
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0 < | g < l i  

(-a /aa)ima-B' , (3.17)

and  so by repeated operations any value o f /? can be 
reached , sta rtin g  from  /3 — 0 , w here we have 
7 “ .“,° ™ /“ '“ ™0. By continuing th is p rocedure w ith 
respect to  the  index we can generate pow ers o f 
lo g lo g p 2, e tc ., g iving finally:

L em m a. In  dim ensional regu larization , fo r со — a > 0  we 
have

Jot,a,P,Y‘ • ■ ■ — / ^ ^ ( ^ - “ ( l o g p V f y o g l o g p 2) -» '-  ■ •

=  0 .  (3.18)

In  p a rticu la r, th e  generalized quadratically  divergent in 
tegral vanishes,

J  <L£(l0g p 2)~ 0( |o g lo g p 2)“ r  . . . _ q

(3.19)

T h is  resu lt show s th a t  com puting  rad iative  corrections to 
th e  basic q u ad ra tica lly  divergent integral o f Eq. (3.12) a l
w ays gives 0 , independently  o f w hether one proceeds o r 
de r by o rd e r in p e rtu rb a tio n  theory , w hich gives only 
positive  pow ers o f lo g p 2 (corresponding to  / 2 ,||—л), or 
w h e th er one uses th e  renorm alization  group  to  sum  
pow ers o f lo g p 2 in to  running  coupling  constan t factors 
(see Sec. IV .С  below), g iving th e  m ore general integral o f  
E q. (3.18).

C. An application: the stress tensor trace anomaly 
in gauge theories

A s an  ap p lication  o f  dim ensional regu larization , let us 
derive, to one-loop order, th e  fla t space-tim e stress tensor 
trace  an om aly  in  Q E D  y .  In  sp ino r quan tum  electro
dynam ics, th e  sym m etrized  stress energy tensor is given 
by

Тцу=

+  - ^ [ $ (Y v D r  +  r»D v)'l’- W D p Y v+ D  vYpty]  .

Dli =  dtl+ ie 0A ll, D ^  =  Ъ^ - i e o A ^  . (3.20)

C o n trac tin g  w ith  Tpv and  using  E q. (3.2b) and the  sp inor 
eq uation  o f  m otion

i Y ^ D ^ ^ m o i j ) , (3 21)

we get

Т»  =  - 2(2 - о ) ± Р ъ , Р ка + фт0ф (3.22)

A lth o u g h  th e  f irs t term  on th e  righ t-hand  side o f  Eq. 
(3.22) is p ro p o rtio n a l to 2 — со, i t  can n o t be dropped as 
cd—*-2 because th e  fa c to r F ^ F ^  con ta ins a pole series in 
(2 —to)- 1 . T o  exhib it these poles explicitly , Eqs.

(2.24)— (2.26) and E q . (3.11) a re  used  to  w rite  

P x o F ^ ^ Z . - ' F l ^ F ' ^  ,
_  Дл
Z e =  1 +  —  Iogjw 2 +  O(cto)

.1 +

Z T = 1 -

37Г 2 — CO 

«о 1

- f  O (o 5 ) ,

a 0

(3.23)

3 v  2 —со 3-n-
l

(2 - c o Y
r  +

where we have w orked to  one-loop o rd er in th e  photon  
proper self-energy, and  to  ite ra ted  one-loop o rder in 
Z ~ l. S ubstitu ting  Eq. (3.23) in to  th e  f irs t term  o f  Eq. 
(3.22), we get (in th e  lim it as со—*2)

“ о l- 2 ( 2 - o ) ) Z ~
2a  о 
3 ir

1 - -

+

3ir 2 —to 
2

a a
Зтг

1
(2 - с о )2

2a° z - i _ _2ot
(3 .2 4 )

3 t t  ‘  3 ir ’ Фп- 

H ence to  one-loop o rd er th e  stress energy tensor trace  is

(3 .2 5 )

T h e  first term  on the  r ig h t-h an d  side, found  by C olem an 
and Jackiw  (1971), C rew th er (1972), and C hanow itz  and 
Ellis (1972, 1973), w ould be lost if  one naively used th e  
equations o f m otion  w ith o u t a tten tio n  to  regu lariza tion , 
and is called the trace anom aly . T h e  derivation  given 
above can be generalized  to  all orders in p e rtu rba tion  
theory (Adler, Collins, and  D u n can , 1977; N ielsen, 1977) 
and yields

T>‘ =  ^ ( F ^ F ^ r - K  1 +  5(е)](фт0ф)г , (3.26) 
e

w ith P and S fin ite  functions o f  e w hich are  defined 
th rough  the  renorm alization  group , and  w ith  the sp lit
ting  o f  T*  in to  th e  tw o term s on the  rig h t-h an d  side 
m ade un ique  by the specifica tion  o f  certa in  zero 
m o m en tum -transfer m atrix  elem ents o f  the  com posite  
operators ( F ^ F ^ Y  and (фт0фУ. T h e  analogous fo rm u 
la fo r Q C D  (obtained by C ollins, D u n can , and  Jog lekar, 
1977 and N ielsen, 1977) read s12

П  =  t ( f L f ' ^ ) 4  [ 1 + 8№ ] $ т 0фУ . 
ц g

(3.27)

F o r a pure  S U (n) gauge theory  w ith  no quarks, the  
second term  on the r ig h t-h an d  side is absent, and  the 
trace  anom aly fo rm u la  sim plifies to

1JI have dropped equation o f m otion term s, which both van
ish at nonzero m om entum  transfer and have vanishing zero- 
m o m e n t u m — transfer vacuum  expectation values.
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T» = (3.28)
a t ?з =  0  becom es unstab le , an d  V  develops a  p a ir  o f 
stable m in im a a t

E quation  (3.28) will play ал im po rtan t role in the  
analysis, given in Sec. V .D  below, o f  G ^  and A ind in an 
SU(n) gauge theory.

IV. SYMMETRY BREAKDOWN

A. Models with elementary scalars

Spontaneous sym m etry breaking plays a crucial role in 
constructing  gauge theory  m odels, since i t  perm its gen 
eration  o f the  gauge boson m asses needed to  get realistic  
low-energy effective actions, w hile preserving th e  u ltra 
violet cancellations w hich guarantee  renorm alizab ility . 
T he sim plest m odel exhibiting spontaneous sym m etry  
breaking is the scalar <p* field theory  o f Eq. (2.4),

J f  =  T - V  ,

r - j o ,

V = \ ( b i<p)*+\m\<pl +  ̂ } Hfp* . (4.1)

F or constan t <p, the  potential V  reduces to

K (lp ) = y m ^ 2+ 7 V  , (4.2)

and has the  behavior sketched in  F ig. 1. In the  conven
tional case m o > 0 , th e  po ten tial h as a  single stable 
m in im um  at <p=0, as show n in F ig. 1(a). H ow ever, 
when th e  sign o f m l  is reversed to  m l  < 0, th e  ex trem um

(a)

(Ы

<P =±? .

^ ( - m j / i o )1
(4.3)

as show n in F ig . 1(b). E ith e r  th e  m in im u m  a t <р=ф or 
the  m in im u m  at <р=—ф can  be used as th e  z e ro th -o rd er 
ap p rox im ation  in a p e rtu rb a tio n  expansion , by m ak in g  a 
sh ift

<р=+ф-\-<р' (4.4)

and tak ing  <p‘ as th e  new field  variable . M ix in g  betw een 
th e  tw o co n fig u ra tio n s is n o t  possible, because  in  the  
lim it o f  an in fin ite  space-tim e vo lum e, th ey  a re  separa ted  
by an in fin ite  q u an tu m -m ech an ica l tu n n e lin g  barrier. 
T hus th e  d iscrete  <p*-*—q> sy m m etry  o f  th e  L ag ran g ian  is 
broken by th e  choice o f one o f  th e  tw o  classical m in im a  
as th e  q u an tu m  m echan ical v acuum  state.

T h e  s im p lest Field th eo ry  m odel in  w h ich  a  co n tin u o u s 
sym m etry  is b roken  is ob tained  by m ak in g  ip a com plex  
sca la r field

tp=<p\+iq>2 , (4-5)

w ith  L agrang ian  density

J f  =  \ d ll<pd>‘<p* — - jm lq j‘<p — - j k 0{<p‘ <p)2 . (4-6)

W hen m j < 0  th e  po ten tia l V  h a s  th e  beh av io r sk e tched  
in  Fig. 2, and  a su itab le  q u an tu m -m ech an ica l vacu u m  is 
obtained by m ak in g  th e  sh if t

<p— *<р+ф' , (4.7a)

w ith  ф any  com plex co n stan t sca lar sa tis fy in g

|$ 5 |2= — m l /ко  . (4.7b)

In  th is case a  con tinuous sy m m etry  is b roken , a n d  th e  
excitation  <p' w hich  generates an in fin ites im al ro ta tio n  o f  
ф is a  zero-m ass G oldstone  m ode. W hen  th e  com plex  
sca la r field o f Eqs. (4.5) — (4.6) is m in im ally  coup led  to  a 
sp in -1 gauge field , th e  zero-m ass m o d e  decouples fro m  
th e  physical degrees o f  freedom , and  th e  sp in -1 field  be-

F IG . 1. (a) P o ten tial V  o f  E q . (4.2), fo r 0. (b) Potential 
V o f  E q. (4.2), fo r m  J  < 0 .

F IG . 2. Potential V in the complex scalar m odel, obtained  by 
substituting q>2—*ip*<p in Eq. (4.2). The curve show s an arb i
trary  section ]m(^?e,e) = 0  of the potential surface, 0 - ^ 0  < 2 ir3 
plotted vs R e l^ e 1®).
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com es m assive. T h is is the  so-called H iggs m echanism , 
w hich  is used in the  W einberg-Salam  m odel to  generate 
in te rm ed ia te  vector boson m asses. (For a detailed 
pedagogical review o f  these ideas and fu ll references, see 
B ernstein , 1974).

T h e  suggestion o f  link ing  spontaneous scale sym m etry  
break ing  w ith  generation  o f  th e  g ravitational constan t 
f irs t appeared  in th e  con tex t o f  sca lar m eson m odels [see 
Fu jii (1974), E ng lert, T ru ffin , and  G astm ans (1976), 
M inkow ski (1977), C hudnovsky  (1978), M atsuki (1978), 
Sm olin  (1979), Zee (1979), L inde (1979, 1980) and N ieh
(1982)]. T h e  basic m echanism  o f the  above-cited papers 
is to  s ta r t  from  a L agrang ian  density o f the  form

J f  =  e<p2R + T - V ( < p 2) , (4.8)

w ith  V a sym m etry -b reak ing  poten tial as in Eq. (4.2). In 
th e  unstab le  sy m m etric  phase $> =  0  there  is no  o rder-Л 
te rm  in J f ,  bu t in  th e  stable broken-sym m etry  phase  
w ith  tf?— —т ^ /Х о  an induced g rav itational action  is 
generated  w ith

1
16irGind =  4> (4.9)

In  such  m odels, since bo th  scalar fields and dim ensional 
param ete rs  (/ti0=/:0 ) appear, the  induced grav itational 
co n stan t is no t ca lcu lab le13; e  is an additional curved 
space-tim e p a ram ete r o f  the theory w hich is no t deter
m ined  by th e  f la t space-tim e renorm alized param eters 
(B row n and  C ollins, 1980).

B. Dynamical symmetry breaking: 
the renormalization group 
in asymptotically free gauge theories

In  o rd e r to  get a calculable and nonvanishing induced 
g rav ita tio n a l co n stan t, we m ust tu rn  ou r a tten tion  to 
field  theo ry  m odels w ith  dynam ical scale-invariance 
breaking. S uch  theories, by defin ition , are form ally  scale 
in v arian t a t  th e  classical L agrang ian  or tree- 
ap p ro x im atio n  level, bu t exhibit spontaneous scale- 
invarian ce  b reak ing  as a  resu lt o f q u an tu m  corrections in 
one- o r h igher-loop  order. T here  are two reasonably well 
understood  m echan ism s by w hich  dynam ical scale- 
inv arian ce  break ing  can occur. T h e  first, w hich will be 
d iscussed  in  th is  section , is th rough  the  renorm alization  
process itself, in in frared -sin g u la r theories such as unbro 
ken non-A belian  gauge theories. T h e  second, w hich will 
be  described in Sec. IV .С  below, is th rough  the genera
tion  o f  a m ass g ap  and a ferm ion pa ir condensate in  rela- 
tiv istic  versions o f  the  B ardeen-C ooper-Schrieffer (BCS, 
1957) theory  o f  superconductiv ity . T h e  two m echanism s 
a re  no t really  d isjo in t, and  bo th  are believed to be opera
tive  in non-A belian  gauge theories. T h is fact and som e

13Strictly  speaking, to get a renorm alizable model an addi
tional term  8m оЛ m ust be included in Y \  the spontaneous 
sym m etry  breaking then  generates a change in the constant 
fac to r m ultip ly ing  R from  6 m о to Sm l + еф ■

fu rth e r gauge theory -superconducto r analogies a re  d is
cussed briefly in Sec. IV .D . T h e  m ate ria l w hich  follow s 
has been organized so th a t th e  reader w ho w ishes to  
proceed m ost d irectly  to th e  g rav itational app lications o f 
Secs. V and V I can  do so a fte r  reading Sec. ГУ.В alone.

T he m ost im p o rtan t class o f  field theory  m odels exhi
biting  dynam ical spontaneous scale-invariance break ing  
are asym pto tically  free gauge theories [see ’t  H o o ft (un
published), G ross and  W ilczek (1973), and P o litzer 
(1973)]. C onsider an SU(n) non-A belian  gauge field cou
pled to  N f  m assless ferm ions in  th e  fun d am en ta l repre
sentation , as is described, fo r exam ple, by -2“q c d  o f  E q. 
(2.12) w ith  m 0 = 0  and  w ith  ф rep licated  N f  tim es. In  
tree  approx im ation  th is theory  con tains no  d im ensional 
param eters, and so scale invariance is unbroken; m ore
over, since th ere  are no scalar fields, all o f  th e  conditions 
o f th e  theorem s o f  Sec. II a re  satisfied. L et u s  now  con
sider th e  effect o f  q u an tu m  correc tions to  th e  tree- 
ap p rox im ation  theory. W hen  rad ia tiv e  co rrec tions are 
included, th e  coupling co n stan t g  appears in calcu la tions 
th ro u g h  the ru nn ing  coupling  constan t

g H - f ) - ---------------------
1 +  y b o g 2(/x2 )log( — q 2/ f i 2) +

(4.10)

w ith q 1 th e  fou r-m o m en tu m  squared , f i2 an  a rb itra ry  
su b traction  po in t, and g 2(fi2) th e  value o f  the  coupling  
co n stan t a t —q 2= y.2. T he appearance o f the  sub trac tio n  
m ass f i2 is necessitated by th e  fac t th a t rad ia tiv e  co rrec 
tions to  m assless gauge theories are h igh ly  in frared  
d ivergent, m ak in g  it im possible to  in troduce  a ren o rm a l
ized coupling param eter by specifying th e  value o f  g 2 a t 
q 2 — 0 , as is done in th e  m ore fam ilia r  case  o f  q u an tu m  
electrodynam ics. T h e  p a ram ete r b0 is de te rm ined  by 
one-loop rad ia tive  corrections to  be

1
8 it 2

11 2 „ ——n — — N r (4.11)

and is positive, provided th a t N f  is not too  large. W hen 
b0 is positive, Eq. (4.10) show s th a t th e  ru nn ing  coupling 
vanishes at large fo u r-m om entum  squared , and  the  
theory in th is case is said to  be asy m pto tica lly  free.

L et us exam ine th e  s tru c tu re  o f  Eq. (4.10) in  th e  ap 
p ro x im ation  in  w hich  only one-loop rad ia tive  co rrec tions 
are  retained, w hile th e  h igher-loop  con trib u tio n s to  th e  
runn ing  coupling constan t, denoted  by . . . ,  a re  neglected. 
(As discussed in A ppendix  B .l,  th ere  is a w ell-defined 
sense in w hich  a one-loop analysis is exact.) E v alu atin g  
E q. (4.10) a t  —q 2~ ( i 2, we get

1 1 r i

e V t >

1 — y io lo g f*2 , <4 -12>
g V >

show ing th a t th e  scale m ass . ^ ( g ( / i ) , / i )  defined by
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- i / l v V n (4.13)

is subtraction-point independent. In technical term inolo
gy, the  scale mass ^4f(g(fi),n)  is said to be renorm aliza
tion g ro u p14 invarian t to  one-loop order, since it is left 
unchanged to  th is o rder by transform ations o f the  renor
m alization point f i 2 and the  renorm alized coupling  con
stant g 2(/i2). W hen radiative corrections to all orders are 
kept, Eq. (4.13) generalizes to (Gross and Neveu, 1974; 
Lane, 1974a)

with

0 ( g ) = - j t > o S J+ O ( g s )

(4.14)

(4.15)

the  function  appearing  in th e  trace anom aly  fo rm ula  o f 
Eq. (3.27), and again ^ f (g , f i )  is said to  be renorm aliza
tion group  invarian t. A n  alternative, and frequently  
used, way o f  specifying th a t  has th e  functional form  
o f Eq. (4.14) is obtained by requ iring  th a t satisfy  the  
C allan (19701-Symanzik (1970) d ifferen tia l equation

оц  3g
^ ( g , f i )  = 0 (4.16)

L et us now apply  th e  above analysis to  determ ine the 
stru c tu re  o f physically  observable param eters, such  as ef
fective action  param eters. Since observables m u st be 
sub traction -po in t independent, they  can depend on ц  
only th rough  th e  scale m ass ~J?l,g,fi), and  so we get the  
follow ing im p o rtan t result:

T heorem  [G ross an d  N eveu (1974)]. A ny physical 
pa ram ete r P(g,fi)  w hich  h as canonical d im ension dp in 
the  accoun ting  o f Sec. II.A  m u st be equal to  [ S ( g , i i ) ] dp 
up to a calculable num ber,

P(g ,fx) =  calcu lab le  n u m b e r X [ ^ ( g p/x)]d'’ . (4.17)

E quivalen tly , P(g,fi)  m ust sa tisfy  th e  hom ogeneous re
n o rm aliza tio n  group  equation

P(g.H) = 0  , (4.18)

w hich  fo r a  q u an tity  o f  canon ica l d im ension  d P im plies 
E q . (4.17).

A ccord ing  to  th is th eo rem , i t  is th e  d im ensional scale 
m ass , ra th e r  th an  th e  d im ension less (but sub trac tio n - 
p o in t dependent) renorm alized  coup ling  g 2(f i2), w hich  in 
a sy m p to tica lly  free gauge theo ries p lays a ro le analogous 
to th a t  p layed  by th e  renorm alized  fin e-s tru c tu re  con
s ta n t a  in q u a n tu m  electrodynam ics. In  o th e r w ords, the 
re n o rm a liza tio n  process has replaced a o ne-param eter 
fam ily  o f u n renorm alized  theories, ch aracte rized  by their 
values o f  th e  d im ension less u n ren o rm alized  gauge cou
pling  go, by  a  o n e -p aram e ter fam ily  o f  renorm alized

theories, ch aracte rized  by th e ir  v a lues o f  th e  d i m e n s i o n "  
one scale  m ass ^ ( g , f t ) .  T h is  ch an g e  in d im e n s io n a l i ty  
o f th e  effective p a ram ete r, w h en  ra d ia tiv e  c o rre c tio n s  a r e  
included, clearly  im p lies th a t  th e re  h a s  been a d y n a m ic a l  
b reaking o f  scale in v ariance . T h e  general p h e n o m e n o n  IS 
called d im ensional tra n sm u ta tio n , a f te r  C o lem an  a n d  
W einberg (1973), w h o  d iscovered  s im ila r  b e h a v io r  i n  
m assless Q E D  0 (a th eo ry  w hich , like  th e  m assless n o n -  
A belian gauge theory , is h ig h ly  in fra re d  d ivergen t.)

C. Dynamical symmetry breaking: relativistic 
generalizations o f the superconductor gap equation

H isto rica lly , the  earliest suggestion  th a t  d y n a m i c a l  
sym m etry  break ing  plays an  im p o rta n t ro le  in p a r t i c l e  
physics was co n ta ined  in th e  c lassic  p ap er o f  N a m b u  a n d  
Jona-L asin io  (1961), w ho p roposed  a m odel fo r  n u c le o n  
m ass gen era tio n 13 based on an  analogy  w ith  th e  B C S  
theory  o f  su p e rco n d u c tiv ity .16 T h e  N a m b u — J o n a -  
L asinio m odel s ta rts  fro m  a  L ag ran g ian  co n ta in in g  m a s s 
less, in te rac ting  ferm ions, a n d  then  sets up  a  s e l f -  
consisten t eq uation  fo r th e  d y n am ica lly  g enera ted  f e r 
m ion m ass in analogy  w ith  th e  “ gap  e q u a tio n ” o f  s u p e r 
co nductiv ity . In th is  sec tion , I  g ive a very sc h e m a tic  a c 
coun t o f th e  basic ap p ro x im atio n  m eth o d  used  in  t h e  
BCS and N am b u  — Jo n a-L asin io  m odels, a n d  sh o w  th a t  i t  
gives a  dynam ical version  o f  th e  tre e -a p p ro x im a tio n  
m odel fo r sym m etry  break ing  described  in Sec. IV .A .

L et us consider a  fe rm ion  w ith  b a re  p ro p a g a to r  G q , 
p ro p er self-energy p a r t 2 ,  and fu ll p ro p a g a to r  G ~ l, r e 
lated to one an o th er as usual by

G - ' ^ G o ' - Z -  (4 1 9 )

A ssum ing  th e  ferm ions in te rac t th ro u g h  a po ten tia l V, a  
sim ple se lf-consis ten t ap p ro x im atio n  fo r  th e  p ro p er s e lf 
energy is ob tained  by tru n ca tin g  the  D yson  eq u atio n  fo r
2  to  include only th e  low est-order skeleton  d iag ram  i l 
lu stra ted  in F ig . 3. T h is  gives

2 =  /  VG

=  f  V (G q '+ S ) [ G ^ 2 —Z 2] - 1 , (4.20)

where f  indicates sym bolically  a  su m m atio n  o r in te g ra 
tion  over in te rm ed iate  s ta te  (closed loop) variables. In  
m odels w ith dynam ical sym m etry  breaking, th e  u n broken  
sym m etry  o f the  classical L agrang ian  can be show n to

14F o r a pedagogical discussion o f  the renorm alization  group 
stru c tu re  o f  non-A belian gauge theories, see Stevenson (1981).

ISA very im portan t aspect o f  the  N a m b u  —Jona-L asin io  
model, which is not dealt w ith in th is review, is the generation  
o f the pion as a zero-m ass bound state . T here has been recent 
interest in analogs o f  this phenom enon in w hich the Higgs 
scalars o r pseudoscalars in unified theories are dynam ically  
generated com posites o f m ore fundam ental fields; see E nglert 
and Brout (1964); Jackiw  and Johnson (1973); C ornw all and  
N orton (1973); W einberg (1976); and Susskind (1979).

l6For texts on the BCS theory, see Schrieffer (1964) and 
F etter and W alecka (1971). The G inzburg-L andau  phe- 
nomenoJogical theory is also described in these books.
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E =
FIG . 3. Truncated Dyson equation for the self-energy part. 
The dashed line and dots denote the potential V in the BCS 
case, or the photon propagator and emission and absorption 
vertices in the JBW model case. The heavy line denotes a full 
electron propagator G s lG o -1 - ! ) -1 , giving a nonlinear in
tegral equation (the gap equation) for 2 .

im p ly  th a t

/ r a o ' l G i - 2 - ! 2] - 1^ .  (4.21)

S u b stitu tin g  Eq. (4.21) in to  Eq. (4.20) then  gives th e  gen
eral fo rm  o f  th e  “gap eq uation” fo r 2 ,

2  =  J > Z [ G o 2 - 2 :2]- (4.22)

E q u a tio n  (4.22) alw ays h as a  triv ial solution £  =  0, analo 
gous to  th e  triv ia l roo t <p=0  o f  the  equation

0 =  +  , (4.23)

w hich  governs th e  vacuum  stru c tu re  o f the  scalar meson 
m odel d iscussed  in Sec. IV .A . How ever, when V  has th e  
(a ttractive) sign  fo r  w hich  dynam ical sym m etry  breaking 
occurs, th ere  is also a nontriv ia l so lu tion  to E q. (4.22), 
co rrespond ing  sym bolically  to  th e  root o f

(4.24)

l = N V f “D —  =Aryiog
J cA  Qi

Ct)o
С A

(4.28)

with N  the density o f states a t th e  Ferm i surface  and с a 
num erical facto r o f o rder unity . Solving Eq. (4.28) fo r A 
gives

1
N V (4.29)

show ing th a t the energy gap has a  non p ertu rb a tiv e  
dependence on th e  in te rac tion  streng th  V, w ith  an  essen
tia] singularity  a t V =  0. T h e  detailed analysis o f  the  
BCS m odel show s th a t the  energy gap A is p ro p o rtio n a l 
to th e  g round-sta te  expectation  value o f a  p ro d u c t o f  
creation  (or ann ih ilation) operato rs fo r two electrons, 
w ith opposite  m om enta  lying near the Ferm i surface  and 
opposite  spins,

(4.30)

an d  analogous to  th e  sym m etry-break ing  roots <р— +ф o f 
Eq. (4.23).

T o  solve E q. (4.24) explicitly  in  th e  case o f the BCS 
m odel, we m ak e  substitu tions app ro p ria te  to the  nonrela- 
tiv istic  k inem atics o f th e  superconductor problem  [see 
S ch rie ffe r (1964)],

f = i f ^ f d >k ,

G o 2= k £ - ( k 2- k 2 ) 2+iE , (4.25)

2 2= A 2 ,

w here k F is th e  Ferm i m om entum , and we carry  ou t the 
k 0 in teg ratio n . E q u atio n  (4.24) then  yields an algebraic 
eq uation  fo r  the  energy gap characteriz ing  the  low -lying 
e lectron ic  excitations in a superconductor,

w ith  (Dq th e  D ebye frequency, w hich serves as an effec
tive  u ltrav io le t c u to ff  in  the  BCS m odel. Because phase 
space  in  th e  ne ighborhood  o f th e  Ferm i m om entum  is ef
fectively  one dim ensional,

d 3k  ss4rrk}dk  , (4.27)

E q . (4.26) is logarithm ica lly  d ivergent a t the low er lim it 
w hen A = 0 ,  an d  fo r  sm all A can  be approx im ated  by

T hus, the  presence o f  a nonvanishing energy gap in a 
superconducto r im plies the  existence o f a  g ro u n d -sta te  
condensate o f corre lated  electron pairs.

A n analogous reduction  o f Eq. (4.22) (now using rela- 
tiv istic  k inem atics) can  be carried  ou t fo r th e  
N am bu  — Jona-L asin io  m odel an d  fo r its m ore  recent 
gauge-theoretic  extensions, in  w hich th e  nonrenorm aliz - 
able local fou r-ferm ion  in te rac tion  used by N am b u  and  
Jona-L asin io  is replaced by a  renorm alizab le  in te rac tio n  
m ediated  by vector m eson exchange. [See Johnson , B ak
er, and W illey (1964), Jack iw  and Johnson  (1973), 
C ornw all and N o rto n  (1973), and  L ane (1974b).] F o r  de
finiteness, let us consider the  case o f  the  Johnson-B aker- 
WiUey (JBW , 1964) m odel fo r  fe rm ion  m ass generation  
in A belian e lectrodynam ics. T hese  au th o rs  consider 
zero-bare m ass sp in o r e lectrodynam ics [that is, -S^qed \ n  
o f Eq. (2.10), w ith  m 0 =  0] in  th e  ap p rox im ation  in 
w hich ail pho ton  self-energy p a rts  are neglected. T h e  
dashed line in F ig . 3 then  represents a  bare p h o to n  p ro 
pagator; thus to leading o rder o f  p e rtu rb a tio n  theory  fo r  
the  vertex parts , the  analog o f  E q. (4.22) is

1
2 ( p ) ~ ; a 0/  d * k ~ 1 i p - k )

X [(p  - k ) 2- H p  - & ) 2] (4.31)

w here ~  indicates th a t num erica l constan ts o f  o rd e r u n i
ty have been om itted . In  add itio n  to  th e  triv ia l so lu tion  
2 = 0 ,  Eq. (4.31) has a  n o n p ertu rb a tiv e  so lu tion  in w hich  
2  has the  asy m pto tic  behavior

2(p )- S —Oq (4.32)

E q u atio n  (4.32) gives self-consistency because

k 2 (p - к )2 — ip —k )2

1
~ 6 m - P

2  ip)
a 0

(4 .3 3 )
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w hich follows from  angular averaging and the e lem enta
ry integral

dB (4.34)

T he param eter m in Eq. (4.32) is an a rb itrary  in tegration  
constant in troduced by the boundary  condition

2 (p 2= —m 2):=m  , (4.35)

and clearly  corresponds to  an  electron physical mass. 
W e see th a t as a result o f  dynam ical sym m etry  breaking 
a m ass scale has appeared in  the  so lu tion  to E q. (4.31), 
even though  no m ass scale appears in the  in tegral equa
tion itself o r in  the  fundam ental L agrangian  from  w hich 
it was derived. T he vanishing o f  m 0 is m irro red  in the  
fact th a t Z (p) has a softer u ltrav io le t behavior

2 <p) — 0  
f 1- *

(4.36)

than  w ould be found  if  a  m ass scale were in troduced  
k inem atically  in to  the  Lagrangian . Such u ltrav io le t so ft
ness (seen also in th e  discussion o f asym pto tically  free 
gauge theories in Sec. IV .B above) is a very general 
feature  o f  field theo ry  m odels where the  m ass scale is in 
troduced  th ro u g h  dynam ical scale-invariance breaking. 
T h e  detailed  analysis o f th e  JB W  and o th er 
N am bu  —Jona-I.asin io  type m odels show s th a t, assoc iat
ed w ith th e  generation  o f  a nonvanish ing  ferm ion  physi
cal m ass, th e  ground sla te  con tains a  fe rm ionic  conden
sate, th is tim e involving a nonvanish ing  ferm ion- 
an tiferm ion  expectation  value o f th e  fo rm  {ifn/i)p.

D. G auge theo ry -su p erco n d u cto r an a log ies

C o m paring  Eq. (4.13) w ith  E q. (4.29), w e see th a t 
th ere  is a  close sim ilarity  betw een th e  n o n p ertu rb a tiv e  
s tru c tu re  o f  th e  gauge theory  one-loop scale m ass 

g , f i ) and th a t o f  the  superco n d u c to r energy gap &. 
A s was noted  in connection  w ith  Eqs. (4.26) —(4.28) 
above, th e  e ~ i/NV fo rm  in  th e  su p erco n d u c to r case arises 
fro m  th e  effectively one-dim ensional phase space near 
th e  Ferm i surface , w hich produces a logarithm ica lly  
d ivergen t one-loop p e rtu rb a tio n  theory  co n tribu tion

I
d*k Г m*i dk

k - k f
(4.37)

p(s)
- 4 m 1

I n
(4.39)

and vanishes a t th resh o ld  fo r  m  >  0 . H ow ever, w h en  
m = 0 ,  Eq, (4.39) reduces to  p ( s ) = l ,  w h ich  is n o n v a n ish 
ing a t th resh o ld  as req u ired  by E q . (4.38). C o n seq u en tly , 
the  one-loop p e r tu rb a tio n -th eo ry  in teg ral

r 'm u  ds’p { s ' (4.40)
Jo

is lo garithm ica lly  d iv erg en t a t  g 2 —0 .
A s suggested by th is  p h ase-space  an a ly sis , an d  as d is 

cussed in m ore de ta il by G ro ss a n d  N eveu  (1974) a n d  
L an e  (1974a, 1974b), th e  re n o rm a liza tio n  g ro u p  m e c h a n 
ism  fo r dynam ical sy m m etry  b reak in g  on  th e  one h a n d , 
and th e  superco n d u c to r gap eq u atio n  m ech an ism  on th e  
o th er, a re  really  tw o  co m p lem en ta ry  asp ec ts  o f  th e  
dynam ical sy m m etry  b reak in g  w hich  o c cu rs  in  n o n -  
A belian gauge theories. T h e  gauge th e o ry -su p e r
co n d u cto r analogy  can  be c a rried  co n sid erab ly  fu r th e r .  
Ju s t as a  su p e rco n d u c to r co n ta in s  an  e lectron  p a ir  c o n 
densate p ro p o rtio n a l to  th e  energy gap  A, q u a n tu m  c h ro 
m odynam ics co n ta in s a  fe rm io n ic  con d en sa te  (фф)о  p r o 
portiona l to  th e  th ird  pow er o f  th e  gauge th e o ry  
scale m ass Л , a n d  very lik e ly 17 co n ta in s  a  g luon ic  c o n 
densate ( F \a F ,ko)a p ro p o rtio n a l to  W h en  a su p e r
c o n d u cto r and its energy gap are  p e rtu rb e d  by a  w eak ly  
varying e lectrom agnetic  field , th e  resu ltin g  d y n am ics  is  
described by th e  induced  effective  action  o f  th e  
G in zb u rg -L an d au  th eo ry .16 C o rresp o n d in g ly , w hen a 
non-A belian  gauge theo ry  an d  its  sca le  m ass are  p e r 
tu rbed  by a w eakly vary ing  m etric , th e  resu ltin g  d y n a m 
ics, as we will see in deta il below , is described by an  in 
duced effective ac tio n  o f  th e  E in s te in -H ilb e rt fo rm .

V. INDUCED GRAVITATIONAL 
AND COSMOLOGICAL CONSTANTS 
FOR MATTER THEORIES 
ON A BACKGROUND MANIFOLD

A. Pa th-in tegral derivation  of fo rm ulas fo r <3(йв an d  Atnd

F ro m  th e  v iew point o f  th e  theo rem  o f  G ro ss a n d  
N eveu discussed in  Sec. IV .B , th e  induced  g ra v ita tio n a l

S im ilarly , th e  e _ l / * fo rm  in th e  gauge theory  case arises 
from  th e  lo g arith m ic  divergence o f  the  one-loop co n tri
bu tion  to  g 2( — <J2)-1  a t <j2 — 0 , w hich  in tu rn  com es from  
th e  nonvan ish in g  and  effectively one-dim ensional phase 
space  fo r  a  m assless p a rtic le  to  decay in to  tw o m assless 
pa rtic les , as expressed  in th e  iden tity

| k , |  | k 2 | 6 3(k  —к , —k 2)6 ( | к  | — | k] | — | k 2 1 )

=  2тг f o dx  6 3(k 2 — k x )5 3[k i — k ( l — * )]  . (4.38)

T o  see th e  effect o f  Eq. (4.38), let us recall th a t th e  S- 
w ave phase  space fo r a  p a ir  o f  partic les o f m ass m,  at 
c en te r  o f  m ass energy у/ s , is

l7For discussions o f gluon pairing see Batalin, M atinyan, and 
Savvidi (1977); Savvidy (1977); Pagels and Tomboulis (1978); 
Vainstein, Zakharov, and Shifman (1978); Ambjom and Olesen
(1980); Fukuda and Kazam a (1980); Kazam a (1980); and M il
ton (1981). See also Sec. V.D below.

l8The superconductor phase space analogy is discussed briefly 
in the "photon pairing” paper of Adler et al. (1976). One con
clusion of their paper, that photon ladders cannot generate a  
graviton in flat space-time, is a special case of a recent general 
theorem of Witten and Weinberg (1980). The remainder o f 
their paper and a subsequent paper of Adler (1976) attempted, 
unsuccessfully, to generate a gap equation as a curvature effect 
in a model which has no gap equation in the absence of curva
ture.
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co n stan t G j^j and  cosm ological constan t Alnd o f  a gauge 
field  theo ry  are  sim ply  physical param eters o f  canonical 
d im ension  tw o, defined th ro u g h  the  response o f th e  
gauge field  system  to  local pertu rba tions in the space
tim e m etric . T h is  suggests th a t it should  be possible to 
tak e  fo rm al derivatives w ith respect to  deviations o f  the  
m etric  g MV fro m  th e  M inkow ski m etric  ij/ivi thereby ex
trac tin g  expressions fo r G “J  and  in term s o f flat 
space-tim e vacuum  expecta tion  values. Such an analysis 
will be carried  o u t in th is section, using th e  m etric  and 
cu rv a tu re  conventions o f  M isner et al. (1970).

T h e  s ta rtin g  p o in t o f  th e  derivation  is the basic defin i
tion  o f  th e  g rav ita tional effective action  given in  Eq.
(2.40) above,

(5.1)
w ith

•5’r f r [ ^ v ] =  / d *x  v / ~ l
1 I R -  2 A ind)

+  0 [O aS.u,>4] (5.2a)

2g a v W SguvO')

(5.2b)

I will assum e th a t th e  m icroscopic  action  density  IF  is a 
function  o f the  m etric  and  its firs t and second deriva
tives,

* 1  1Ф JTI { * ) ,* „ . ,  a ^  tividxdogpr) • (5.3)

m aking the  derivation  general enough to  encom pass the  
case, discussed in Sec. VI below, w here th e  m etric  itself 
(and not ju st the  m atte r  fields ) ^ ) )  is pa th  in tegral q u an 
tized. To proceed, let us calcu la te  the confo rm al va ria 
tion o f  E q. (5.1) around  a genera] back g ro u n d  m etric. 
T h is is done by acting  on th e  left- and rig h t-h an d  sides 
w ith  the  d ifferen tia l o p erato r 2gJiv(j>)S/6g (lv(;y), w here у  
is an a rb itrary  space-tim e p o in t w hich  w ill shortly  be 
chosen as the origin, and then  div id ing  by i exp(i'Scff). 
Inserting th e  expansion o f  Eq. (5.2a) in  th e  left-hand  side 
gives

16irG„
- ( л - 2лЬк,) - |-о [ (а ^ )4]

f d
-----. (5.4a)

w here th e  qu an titie s  J f ,  R  inside the  х -in tegral are 
values a t space-tim e p o in t x ,  and w here th e  functional 
in teg ral f  d\<f>] is still an  in teg ration  over th e  values o f 
th e  m a tte r  fields a t all space-tim e points,

р ж  =  п / * ( * < * »  • (5.4b)

E q u atio n  (5.4a) can  be evaluated  using standard  fo rm ulas 
fo r th e  firs t varia tions (with T l‘v, as before, th e  ren o r
m alized  m a tte r  stress-energy tensor),

=  i v ^ = g g ' iv&g/iv ,

Ы R ) ------( R ^ ~  - g ^ R  ,6gllv

+  to tal derivatives , (5.5)

6J r = \ T ^ b g u¥ , 

ЪУ’

(5.6)

=  2 - aa xa t a ^ v) + 3 j.a  „
a(axa0gMV)

S ubstitu ting  these, and defining the poin t у  to be the  o ri
gin 0  in  o rder to  sim plify the subsequent form ulas, we 
get

1 - [ ^ ( 0 ) - 4 A ind] +  O [ ( a ^ v )4]

.В (|* |.«„,М I К.....U I
(5 .7 )

87tG:,

f d t f U " П г ^ . о ]

$ * \ Ф  I

w ith T[gvv,x] the  stress-energy tensor trace  functional 
defined by

7 '[£ Uv»x] =  v ^ g 7 '£

= 2g;J,

»*

a l ?

3gMv

+ a.a„

- Э х
Э-4*

a t a ^ j  

a ^
эО л А ,*  ’•

(5.8a)

T aking  th e  fla t space-tim e lim it o f  E q. (5.7) and  in tro 
ducing the  abbreviated no tation

r u ) = r [ V x ] = r ; i (5.8Ы

we obtain a fo rm u la  fo r the  induced  cosm ological term ,

1 A;, 
2ir G;,

(5.9)

In  o rder to  ex tract a  fo rm ula  fo r th e  induced g rav ita 
tional constan t, we m ust take a fu rth e r m etric  varia tion  
o f Eq. (5.7). Since the left-hand  side o f  Eq. (5.7) has no 
tensor s tru c tu re , it suffices to specia lize19 to  a m etric  
w hich a round  x  = 0  has th e  conform ally  flat, constan t- 
cu rv a tu re  form

,9F or a derivation w hich does not m ake th is specialization, 
but instead proceeds from  the general R iem ann norm al expan
sion =  . see Adler (1980c). See

also Brown and Zee (1982).
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g?v(x) = 1 - - ~ R  (0 )x 2+ 0 (V R ,R 2)]
=  ̂ MV + 6gpr .

SgMV( x ) = —TiMr- ^ R ( 0 ) x 2, x 2= (x ' )2—( x 0)2 . (5.10)

V arying Eq. (5.7) a ro u n d  a M in k o w sk i b ack g ro u n d , an d  
dropping term s w h ich  a re  h ig h er th a n  second  o rd e r in  
the  expansion in  pow ers o f  Эxg^v, w e get

1 [Л  (0 ) —4A ind]
8n-Gin

- Л ( 0 )

f  <1 \ф }e 1 V fi7*[g„v>0]

f d  1Ф]
(i)

f  f  d * x 8j r
+

f d W
(ii)

Г ( 0 )1 [ /< * № )  e W tW ,,H J V x S P ]
1 2

1

(iii) (5.11)

T erm s (ii) and (iii) on th e  rig h t-h an d  side can  be evaluated by using  E qs. (5.6), (5.8), and  (5.10), w h ich  give 

i f d 4x S ^ = - - ^ R ( 0) f  d * x x 2T (x )  .

T o evaluate term  (i), we no te  th a t since 6g ^  vanishes as x 2 a t x  = 0 ,  th e  only term s w hich  c o n trib u te  to  6 Г [ ^ У,0 ]  a re  
those in w hich 5g^v is acted  on  by tw o derivatives. A fte r  a certa in  a m o u n t o f algebra, we find

8 П « ^ , 0 ] =  2Д ( 0 )Г/(0 ) ,

w ith  U{x)  th e  functional defined by

(5.12)

(5.13)

U ( x ) = ^ g IIVg a0 g\e
Ъ2&

a 2P

— d 2JT Ъ2~2
a ^ a o e a ^ ) ' + g w 3 x  а г а ^ ж э д г , * )  

d21F
d O kdl7g /lv)d(deg afi) — Яв4<Н.да (5.14)

V

Inserting  Eqs. (5.12) —(5.14) in to  Eq. (5.11) and d iv id ing  by 2R  (0) gives th e  desired fo rm u la  fo r G ilKJ, 

1 f  d W e ^ ^ U i O )

/ < * m

___L  r d 4x
96 J

/  d [ ^ . ] e iStl* 1,,,' 'vIr ( 0 )7 '( jc ) /  d{<6je'S tl*),4'“'17 '(0 ) ! * [ Ф \ e <SII* , ', 'nJr < * )

■
(5.15)

I f  we define  th e  su b tracted  fu n c tio n a l T  by 

T ( x ) = T U ) - (5.16)

F inally , recalling  th e  co rrespondence (A bers an d  Lee, 
1973) between expecta tions o f fu n c tio n als and v acuum  
expecta tions o f  tim e-ordered  p ro ducts o f  th 6 c o rre sp o n d 
ing operators,

an d  n o te  th a t  the  second te rm  on th e  rig h t-h an d  side is a 
c o n stan t, we can  rew rite  Eq. (5.15) as

(A{  0 )>0 =
f< U * l * A  (0)

(5.18)

16irG ind f

I f  4 2 / r f | ^ l « ISIWI’, ' " ,r ( 0 ) f ( x )  
- 9 b J d X X  J d[<f> je e i l ^

(5.17)

f  d \ S \ e iS[[*U,l'']A ( x ) B ( 0 )  
(3~{A (x )5  (0)) ) 0=  —------------------  „  , ■--------  ,

we can rew rite Eqs. (5.9) and (5.15) —(5.17) in th e  c o m 
pact form

_ i ^ = < ™ )>0- (5-,9a)
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1
\ 6n G ini =  { U ( 0 ) ) 0- ~  f  d \ x 2[ ( У ( Г ( х ) Г ( 0 ))> 0

- < Л  0)>J ]

=  { U ( 0 ) ) 0~ ~  J  d 4x x 2{ S r ( f [ x ) f ( 0 ) ) ) o ,

Г ( х ) = Г ( х ) - < Г ( х ) ) 0 . (5.19b)
A s no ted  above, we have so fa r carried  along som e ex

t ra  generality , w hich will be needed to  d iscuss th e  case 
w hen th e  m etric  is a q u an tu m  variable. W hen th e  m etric  
is no t qu an tized , th e  trace  functional ftg ^y .O ] depends 
on derivatives o f  th e  m etric  only20 th rough  term s o f  o r
d e r R 2, w hich  com e d irec tly  from  the Lagrangian  term s 
& o f  E q. (2.35). T h e  variations o f  these term s 
vanish  in f la t space-tim e, and so when the  m etric  is not 
q u an tized , th e  fu n c tio n al U vanishes. H ence fo r m atte r 
theories on a  b ackground  m anifo ld , Eq. (5.19b) reduces 
to  th e  form

I =  - ~  f  d * x x 2(S~{T(x)T(O)))0 (5.20)
16n-Gind 96 

given by A d le r (1980b) and  Zee (1981).

B. Convergence and spectral analysis

F ro m  th e  exp lic it fo rm u la  o f  Eq. (5.20), we can again 
analyze  the  conditions fo r G to  be calculable. Since 
E q . (5.20) is a  f la t space-tim e form ula, it will be con 
venient a t  th is p o in t to  sw itch  to  the B jorken-D rell 
(1965) s ig n a tu re  convention , in w hich Eq. (5.20) becom es

\ 6rrGind

2=(x° )2- ( x ‘)2 (5.21)

- =  ~  lim  [ d ^ x  x 2{ S r { T ( x ) T ( 0 ) ) ) t  ,Qh J

A s d iscussed  in Sec. I l l  above, we define the  fla t space
tim e  m a tte r  theo ry  by a renorm alization  procedure based 
on d im ensional regu lariza tion , and so Eq. (5.21) is to  be 
in te rp re ted  as a d im ensional con tinua tion  lim it

____1_
16 irG ind 96  <u-»2 ■

(5.22)
w here ( )c denotes th e  vacuum  expectation  in  th e  2a>- 
d im ensiona l theory . E q u atio n  (5.22) will give a calcu l
able Gj^j1 i f  th e  in tegral on th e  rig h t-h an d  side is regular 
a t  <a =  2 , and  as we have  seen, the  singularity  stru c tu re  in 
th e  a  p lane is d irectly  de term ined  by th e  u ltrav io le t 
d ivergence s tru c tu re  o f the d im ension-four in tegral o f 
E q. (5.21), T h is can  be studied  by using the  W ilson 
(1968) o p e ra to r p ro d u c t expansion o f th e  tim e-ordered  
p ro d u c t ,21

< - S H f ( x ) f ( 0 ) ) ) o =  ^ X  logs
u 2r  

( ^ 2^0
X logs +  О

( x 2)2
(5.23)

2°T he L agrangian density У  also contains m etric derivatives 
in the  spin connections used in constructing the sp inor kinetic 
term s, but these do not appear in the trace functional T.

where “ X logs” indicates the  presence o f pow er series in 
logx , and where are  L oren tz-scalar, in ternal
sym m etry-invarian t operators o f  canonical d im ension 0  
and 2 , respectively [corresponding to  th e  fac t th a t  f  has 
canonical d im ension four, and hence the left-hand side o f  
Eq. (5.23) has canonical d im ension eight]. W hen Eq. 
(5.23) is inserted in Eq. (5.21) th e  o rd er i x 2)~* term s give 
form ally  quadratica lly  d ivergen t integrals, w hich  vanish 
by the  lem m a o f  Eq. (3.18) above, w hile th e  o rder tx 2) - 2  
and h igher term s are  u ltrav io le t convergent. H ow ever, 
th e  o rder (x 2)- 3  term s give logarithm ically  d ivergent in 
tegrals and th u s generate poles at <u= 2  in  th e  d im ension
al con tinuation , unless no  operators <?2 are p resent in the  
theory, in w hich case G ^ 1 is calculable. W e have there
fore recovered th e  sam e calcu lab ility  criterion  as was ob
tained from  the dim ensional a lg o rith m  in Sec. II .D  
above.

Let us next a ttem p t to  pu t E q. (5.21) in to  spectral 
fo rm , w hich i f  possible, w ould yield in fo rm atio n  about 
the sign o f G-Inlj. F rom  th e  s tan d ard 22 spec tra l analysis 
fo r a sca lar o p erato r q>, we have

— i(^~(<p(x)cp(0)))0= f o dcr2p(o2)AF(.x,o) , (5.24) 

w ith p  the spectral func tion  defined by23 

p (q 2) =  ( 2 v 9 ' ^ J b \ p „ - q )  \ < 0 | ? ( 0 ) | л )  | 2> 0  , (5.25)
Л

and w ith Д/г the sca la r Feynm an  p ropagato r,

MJc,<t)= f  1 — 7“ • (5.26)
J (2v )  k 2 — a 2 + te

Ignoring  fo r th e  m om ent questions o f  convergence, let us 
set in th e  above fo rm ulas and  su b stitu te  in to  Eq.
(5.21), giving

1 ^ 5 ~ л = -k  [■- x2A' (x' ° } ]
(5.27)

A  sim ple  calcu la tion  then  show s th a t 

- f d 4x x 2A F(x ,a ) =
Э ^ З /с*  ( к 2—a 2)

- 8
_4

and so E q. (5.27) yields 

1 - -- ------— f12 J o d o i p i u 2)

(5.28)

(5.29)
\f>TTG,„A \ i  - v  t r

w hich  i f  co rrec t w ould im ply  th a t  has m anifestly
th e  w rong sign to  give a ttrac tiv e  g rav ita tio n . H ow ever, 
Eq. (5.29) is valid only if  th e  in tegral on  th e  rig h t-h an d  
side converges, w hich  requires th e  van ish ing  o f  p(o2) / o 2 
as a  becom es in fin ite . B u t in  gauge theories, we have 
seen in  Sec. Ш .С  above th a t T  con ta ins a  trace  anom aly

21 F o r a p roof o f  the operato r product expansion in pertu rba
tion theory and a detailed discussion, see Z im m erm ann (1970). 

22See Bjorken and  D rell (1965), pp. 138 — 139 and pp. 
3 8 7 -3 9 0 .
2JSince p  is gauge invariant, it can be evaluated in a canonical 

gauge to establish positivity.
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term  proportiona l to  the  h a rd  operato r [(/'a*, )2]r, as 
a result o f w hich p ia 2) behaves asym ptotically  as a* 
X logs, invalidating  th e  spectral representation  o f  Eq. 
(5.29). T h e  fa ilu re  o f  the spectra l representation, as ind i
cated  by th e  q u ad ra tic  divergence o f Eq. (5.29), is ju s t a 
reflection o f  th e  fo rm al q u ad ra tic  divergence o f  Eq. 
(5.22), arising  from  th e  leading (jc2)- 4  term  in th e  opera
to r  p ro d u c t expansion o f Eq. (5.23).

T h e  breakdow n o f E q. (5.29) can  also be rephrased  in 
th e  language o f  d ispersion relations, by defin ing

sive ferm ion o r sca la r m eson th eo ry , in w h ich  th e  lead 
ing co n tribu tion  is th e  one-loop d iag ram  o f  F ig . 4(a), and 
to include explic it, fin ite -m ass P au li-V illa rs  reg u la to rs  to 
contro l the u ltrav io le t divergences. T h is  c a lcu la tio n  has 
been perform ed by S ak harov  (1975), A k a m a  et a l .2* 
(1978), and Zee (1981), and  Z ee’s re su lts  in  p a r tic u la r  
were im p o rtan t in m o tiv a tin g  th e  general d e riv a tio n  lead
ing to  Eq. (5.21). Zee considers a  fe rm io n  loop  o f  m ass 
mo =  m , and by inc lu d in g  tw o P au li-V illa rs  reg u la to rs
w ith  m ass finds 

X ( k 2)=  f  d * x e li x( - i K ^ ( n x ) f ( 0 )))0 . (5.30) 1 _  2i t 1 .

I f  X ( k 2)—AT(0) obeyed an  un su b tracted  d ispersion rela
tion, th en  Eq. (5.29) cou ld  be derived, bu t in  fa c t one 
m ust m ake an  add itional sub traction , as in 
ДГ(/с2) —Л"(0 ) — Л:2ЛГ'(0 ), before getting  a q u an tity  w hich 
obeys an un su b tracted  d ispersion relation. Substitu ting  
th is d ispersion re la tio n  in to  Eq. (5.21) then  yields 
Gind «ДГЧ0), w hich  furn ishes no a priori in fo rm ation  
about the  sign o f  G imJ, T he calcu la tions discussed in the 
next tw o sections suggest, in  fact, th a t the  sign o f G ind is 
sensitive to  deta ils o f  the  in frared  behavior o f  th e  m atte r 
theory .

C. Early model calculations of G^J

A ccord ing  to  E q. (5.21), th e  leading pertu rb a tiv e  con
tr ib u tio n s  to  G(nj a re  those in w hich tw o insertions o f 
th e  stress-energy tensor trace  T  are m ade in connected  
m a tte r  d iag ram s o f  low -loop order, as show n in F ig . 4. 
In  theories w ith  dyn am ica l spon taneous sym m etry  b reak 
ing, such  as SU(n) gauge theories, th e  d iagram s o f Fig. 
4(a) and  4(b) a re  typ ically  absent and th e  leading co n tri
b u tio n s to  Gj]^J begin  a t th ree-loop  order. H ow ever, one 
w ay o f  s im u la tin g  th e  u ltrav io le t so ften ing  p roduced  by 
dy n am ica l sca le-invariance break ing  is to consider a  m as-

16tt G<„ 3 (2 ir)4

/ = 2  Cimilogm2, w ith  j  с,-
1=0 /= 0

= 0 2  ctm r  
,=  0

=0 . (5.31)

By som e sim ple  algebra, E q . (5.31) can  be re w ritten  as

(5.32)I = m \
_  2 2 m ] —m „  2m  j m  j

lo g — 5- — m  - lo g — 5- 
m  22

m 2

an expression w hich is positive  as long  as m 2 < m ]  2> bu t 
w hich can change sign w hen the  re g u la to r m asses are 
sm alle r th an  m,  i llu s tra tin g  th e  sensitiv ity  o f  th e  sign  o f  
G ^ J  to dynam ical deta ils . In  o rder to  give th e  observed
m agn itude  o f G E q. (5.31) req u ires
m ~ m P|>rck=  I .2 2 X  10,y G eV , suggesting  m o re  generally  
th a t to  get a  realistic  theory  o f E inste in  g ra v ita tio n  as an 
induced q u an tu m  effect, th e  physics o f  d y n am ica l scale- 
invariance breaking m u st tak e  p lace a t energ ies n ear th e  
P lanck  mass.

A ccord ing  to  the  d iscussion  o f Sec. IV .B  above, th e  
sim plest field theory  m odel w hich has calcu lab le  induced  
grav itational and cosm ological co n stan ts  is a  p u re  SU(2) 
gauge theory . A  d irec t evaluation  o f  Eq. (5.7) has been 
given in th is case by H ass lach er and  M o tto la  (1980), u s
ing the  approx im ation  o f  sa tu ra tin g  th e  E u clid ean  c o n 
tinua tion  o f the func tional in teg ral by a d ilu te  gas o f  in- 
s ta n to n s .23 T h e ir  resu lt can  be  w ritten  as

1
8irG;„

-(R  - 4 Л ind) +  0 ( K 2)

=  C "  +  < V *  +  ‘ ■ P < W »  > (5.33)

w here th e  in tegral is over th e  in stan to n  size p a ram e te r p , 
and w here p m, x(R)  sym bolically  ind icates a  c u to f f  on  th is 
in teg ration , o f  unknow n form  at p resen t, p ro d u ced  by 
the  in frared  vacuum  s tru c tu re  o f th e  gauge th eo ry . T h e  
in stan ton  gas calcu la tion  gives a defin ite  expression  fo r  
the  in teg rand  o f  Eq. (5.33), w ritten  as a series expansion  
in R  tim es the  fla t space-tim e in stan to n  den sity 25 D(p.p),

FIG . 4. Typical diagrams contributing to G i^  in (a) one-, (b) 
two-, and (c) three-loop order, respectively, with the solid lines 
indicating m atter field propagators. In an SU(n) gauge theory, 
the contributions of one- and two-loop order vanish, and the 
perturbation series for GaJ  begins at three-loop order, with a 
leading term proportional to g*.

24See also Terazawa et al. (1977a,b) for related earlier work 
by this group.

2,For a pedagogical review of instanton gas methods, see 
Coleman (1979), A simplified derivation of the instanton den
sity D (fip) (with /1 the subtraction mass discussed in Sec.
IV.C) is given by Bernard (1979).
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C , =  f 1 A h

C 2 =  - 7 < a * + a p + « j - T 0 >  .

1 1 i 7 .  a p = T lo 8
48

p*R 24

(5.34)

In  E q . (5.34), C | gives the con tribu tion  to the  cosm ologi
cal co n stan t aris ing  fro m  the instan ton  gas expectation 
o f  th e  trace  anom aly  o f Eq. (3.28), w hile C 2 gives the 
co rresp o n d in g  co n trib u tio n  to the  induced gravitational 
co n stan t, ob tained  by sum m ing  contribu tions from  the 
v arious sm all flu ctu atio n  m odes around  an instanton. 
Specifically , a z, a fi, and  a f  are, respectively, the co n tri
b u tio n s from  the  transla tiona l, d ila ta tional and gauge 
zero  m odes, w hile  0  is the  con tribu tion  from  th e  nonzero 
m odes. T h e  logR term s in  a p and a g arise because these 
zero  m odes m ake  a  co n tribu tion  to Eq. (5.21) w hich is 
in fra red  d ivergen t. Since an exact evaluation  o f th e  E u 
c lidean  c o n tin u a tio n  o f  the correlation  function  

is expected to  show  an exponential de
cay law  fo r  large  separa tions x  (see Sec. V .D  below), Eq. 
(5.21) sho u ld  in fac t be strongly  convergent in the  in 
fra red . T h u s th e  divergence leading to th e  presence o f 
logi? in  a p and  a t  appears to  be an a rtifac t o f the  d ilu te  
in stan to n  gas ap p rox im ation , and one expects the  R  logJ? 
te rm s in th e  in teg ran d  o f Eq. (5.33) to be cancelled by 
co rresp o n d in g  term s in the  in tegration  c u to ff  р тах(Я) 
a n d /o r  in co rrec tions to  th e  instan ton  p ictu re, leaving a 
rem a in d e r o f o rder R  w hich is determ ined by th e  de
ta iled  d y nam ics o f  the in frared  region. T h is m eans th a t 
th e  d ilu te  in stan to n  gas calcu la tion , while dem onstra ting  
the  ex istence and  u ltrav io le t finiteness o f  th e  induced 
g rav ita tio n a l action  in the  gauge theory case, does no t 
y ield  a  q u an tita tiv e  calcu la tion  o f G “J.

D. A strategy fo r calculating G i^j and 
in an SU(n) gauge theory

B ecause a  p u re  Y ang-M ills theory is the sim plest field 
th eo ry  m odel w ith  dynam ical scale-invariance breaking, 
i t  w ould  clearly  be desirable to  carry  ou t q u an tita tive  
ca lcu la tio n s o f  Gjj„j and  A inli in th is case. I shall ou tline  
below  a general stra tegy  fo r doing th is, assum ing that 
one can , in princip le, m ake arb itrarily  good M onte  C ar
lo26 ev a luations o f  th e  various gluon field vacuum  expec
ta tio n s  w h ich  a re  needed, together w ith calcu la tions to 
any  f in ite  o rd e r o f p e rtu rb a tio n  theory.

L et us begin w ith  th e  induced cosm ological term  
A jn j/G j„4. S u b stitu tin g  Eq. (5.8b) in to  Eq. (5.19a) and 
con v ertin g  to  the  B jorken-D rell m etric  convention  (which 
w as used in th e  deriva tion  o f Sec. III.C ), we get

2eF o r a review o f statistical physics applications o f  M onte 
C a rlo  m ethods, see B inder (1976). L attice gauge theories were 
in troduced by W ilson (1974); see also K ogut and  Susskind
(1975) and the  review by C reu tz  (1978). T he application o f 
M onte C a rlo  m ethods to lattice gauge theories was initiated by 
C reu tz , Jacobs, and Rebbi (1979) and C reutz (1980).

=  < 7 p 0 . (5.35)2ir G ind

T he vacuum  expectation  on  the  r ig h t can be expressed in 
term s o f the  gluon field s treng th  by using the  trace 
anom aly relation o f Eq. (3.28), g iving

< 7 'S > o = ( ^ i (F jUrF '^ ) ^ o (5.36)

A t th is po in t it is convenient to  choose a defin ition  o f 
th e  coupling constan t (see A ppendix  B .l fo r details) fo r 
w hich the one-loop ren orm alization  group s tru c tu re  o f 
Eqs. (4.11)—(4.13) is exac t.27 C om bin ing  E q. (5.36) w ith  
Eqs. (4.11) and (4.15), we then  find

AiBd- =  < r s )01
2ir G ind

a - = i n

11 2 „ 
T T '

(5.37)

w here fo r a pure  SU(n) Y ang-M ills theo ry  one w ould set 
N f —Q. E quation  (5.37) expresses th e  induced  cosm ologi
cal term  as a m u ltip le  o f  th e  extensively s tu d ied 17 g luon 
pairing  am p litu d e  ( ( a , / i г )((Р ц „ )2)г) 0. Since the  gluon 
p airing  am p litu d e  has canonical d im ension  four, it is 
p roportiona l to the  fo u rth  pow er o f  th e  renorm alization - 
g ro u p -invarian t scale m ass in tro d u ced  in Sec. IV .В 
above,

0=

- l / t i o f 2) (5.38)| Яй.**1

w ith с a num erical co n stan t o f o rd e r un ity . A ccord ing  
to  E q. (5.38), the  p a iring  am p litu d e  has an essential

singu larity  o f th e  form  e 1 a t g 2= 0 , and  vanishes
identically  in p e rtu rb a tio n  theory . T h is  agrees w ith  w hat 
w ould be found  by m aking  a F ey n m an  d iag ram  expan
sion o f  the left-hand  side o f  Eq. (5.38) and  evaluating  th e  
form ally  quartica lly  d ivergent m o m en tu m  space in tegrals 
by using the lem m a o f  Eq. (3.18).

In o rder to  express Eq. (5.38) d irectly  in  te rm s o f an 
observable q u an tity , it is custo m ary  to  in tro d u ce  th e  
string  tension  or, defined as th e  coefficien t o f  th e  asym p
to tic  linear term  in th e  heavy q u a rk -an tiq u a rk  s ta tic  po 
tential,

A R )  ~ o R  + 0 ( 1 )  . (5.39)

Since the  s trin g  tension  has canonical d im ension  two, it 
is p roportiona l to  the  sq u are  o f ,

о = с '~ 4 г , (5.40)

w ith  c ' a second num erical co n stan t o f  o rder unity . 
E lim inating  from  Eqs. (5.38) and (5.40), we get

2 ,If  the transform ation  o f A ppendix B .l is not m ade, the  gen
eral definition o f  the gluon pairing am plitude w hich corre
sponds to th a t o f Eq. (5.38) is (— 2 /? /b o g JK (fl£ ,/irH (/1i*F) ) )o.
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№ ; ( F i eF4U y ^ * = c ”o2 , 

c " = c / ( c ' ) 2 , (5.41)

which when substitu ted  in to  Eq. (5.37) gives a relation 
between the  induced cosm ological term  and the  string  
tension,

^in
t ' i n d

(5.42)

M ethods fo r m aking a  M onte  C arlo  estim ate  o f  c"  in 
pu re  SU(2) and SU(3) gauge theories ( n = 2 ,3 ;  N f  =  0) 
have been discussed by K rip fg an z  (1981), by B anks et al. 
(1981), and by Di G iacom o and P affu ti (1982).

Let us consider next the  expression fo r th e  induced 
grav itational constan t G given in  Eq. (5.21), w hich , we 
have seen, m ust be in te rp reted  as a d im ensional con
tinua tion  lim it. A gain  su b stitu tin g  th e  trace  anom aly 
equation, and defining the coupling co n stan t so th a t the 
one-loop renorm alization  group  is exact, w e get

1 - = х х 2У ( - х г) ,
16trG iKl 96 

44 —x 2)= (& ~ (T ( .x )T № )))0— ( T ) q  ,

T = - i b 0g 2lF ‘ieF a a r  .

(5.43)

T o  evaluate  Eq. (5.43) it is convenient to  m ake a W ick 
ro tation  to  the  E uclidean  section, w hich is fo rm ally  ac
com plished by m aking  th e  substitu tions d * x - + —i  d*x,

* x  , giving

(5.44)

In o rd er to  devise a  p ractica l m ethod  fo r  im plem enting  
the  d im ensional c o n tin u a tio n  lim it im p lic it in  Eq. 
(5.44),M we sha ll sp lit th e  in teg ratio n  over th e  variab le  
x 2 =  t in to  an u ltrav io le t (UV) p a rt 0 £ t £ t 0, and  an  in 
fra red  (IR) p a r t t0 < t  <  OO,

1 ■n2
16 ^ G ind‘ - _ ? 6 ( / u v + / , R ) ’

/ u v = / 0 d t t 'm t )  , 

I \ R — Г “ Л 12Ф (1) .

L et us suppose th a t th e  co rre la tio n  function  4 4 /) has

been determ ined  to  h igh  accu racy  by  M o n te  C a rlo  s tu d 
ies. In  th e  in frared  region, Ф behaves fo r  larg e  t as

i|/(f) ~  e ~m’ ,'/1 , (5 .46 )

w ith  mg a  p a ram ete r, c a lled  th e  g lueball m ass, w h ic h  is  
related  to th e  s trin g  tension  by

(5 .47),.g — — c g ic ' y '  ,

with ct  a num erica l constan t- [N u m erica l M o n te  C a r lo  
estim ates o f cg fo r an  SU(2) gauge th eo ry , o b ta in ed  b y  
studying  th e  p laq u e tte -p laq u e tte  co rre la tio n  fu n c tio n , 
have been given recently  by B erg  (1981) an d  by B h a n o t  
and Rebbi (1981).] A s a  re su lt o f  th e  good a sy m p to tic  
behavior o f  E q. (5.46), th e  in fra red  in teg ra l I iR o f  E q .  
(5 .4 5 ) is convergen t a t f =  oo, an d  can  be eva lu a ted  b y  
num erica l in teg ration . T u rn in g  nex t to  th e  u l tra v io le t  
in tegral / u v , let us w rite  it in th e  fo rm

/ u v = / u v  +  M u v  ,

^uv =  f Q dt  *2ФС(1) ,

M w =  f ^ d t t 2[V ( t ) -4 > cU)] , (5 .48)

w ith  4 'f (r) a com p ariso n  fu n c tio n  chosen  so  th a t: (i) t h e  
in tegral A /uv converges a t  t = 0 , a n d  hence  can  b e  
evaluated by n u m erica l in teg ra tio n ; and  (ii) th e  d im e n 
sional con tin u a tio n  needed to  evaluate  /{jv  can  be e a r n e d  
ou t explicitly , leaving a convergen t in teg ra l w h ich  c a n  
again be done num erically . T h e  m o tiv a tio n  b e h in d  th e  
in tro d u c tio n  o f  \PC is th e  evident fa c t th a t ,  w h ile  d is c re te  
m ethods can be used to  evaluate  co n v ergen t in te g ra ls ,  
they  can n o t be used to  m ak e  an a ly tic  co n tin u a tio n s.

T h e  general fo rm  requ ired  fo r  th e  c o m p ariso n  f u n c 
tio n  Ч ^ и ) can  be in ferred  fro m  th e  o p e ra to r p ro d u c t e x 
pansion  o f  Eq. (5.23). T h is  expan sio n  can  be  “ i m 
p roved” by using th e  ren o rm aliza tio n  g ro u p  an d  a s y m p 
to tic  freedom , w hich p e rm it a p a rtia l re su m m a tio n  o f  
th e  pow er series o f  logarith m s in th e  leading term  o f  E q . 
(5.23) in to  a jo in t pow er series in th e  ru n n in g  c o u p lin g  
c o n stan t g 2(t) and  (since we have m ad e  th e  tr a n s fo rm a 
tion  o f  A ppendix  B .l)  in its lo g arith m  lo g g 2(f). D e f in -

(5 .4 5 ) ing th e  coord ina te  space ru n n in g  coup ling  by 29

1 t r
- j b 0l o g ( ^ 2t) l - ± b 0g 2log(fi2‘)

(5.49)

we have30

28Use o f  a coordinate space form alism  is n o t necessary in or
der to im plem ent the dim ensional continuation  limit. F or ex
am ple, one could equally well rew rite the  spectral representa
tion o f  E q. (5.29) as

1
: — j y Muv + ^ i* ) ,

J *1 a  J o
and evaluate J w  by dim ensional continuation . However» it is 
likely to  be easier to ex trac t the  coordinate  space function 
У (х 2) th an  the spectral function  p{a2) from  M onte C arlo s tu d 
ies o f  th e  in frared  region.

29T he use o f  the sam e scale m ass in Eq. (5.49) as in th e  o n e - 
loop version o f  Eq. (4.10) is a  m atter o f  convenience; re d e f in 
ing U / by a  constan t facto r sim ply redefines the  ex p an s io n  
coefficients appearing in Eq. (5.50).

w In general, such renorm alization-group-im  proved o p e ra to r  
p roduct expansions contain an additional frac tional p o w e r  
[ l o g ( ^ 2f)]4, with the exponent 5 p roportional to the  d iffe ren ce  
in anom alous dim ensions o f  the operators on the  left- a n d  
right-hand sides. Since T £ and 1 both have z e ro
anom alous dim ension, this fractional pow er is absent from  th e  
leading term  in the expansion. See G ross and W ilczek (1974), 
p. 982, fo r a detailed discussion o f  th is point.
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r4( - l o g ^ 2f )2
I +  -

1

( —log^ / 2t)
[<2,0 + 0,, loglogl^ ()-1] + + 0 ( t~ 2) (5.50)

T h e  leading te rm  in  E q. (5.50) is p roportiona l to 

ccg4( t ) , (5.51)
( — l o g ^ 2r )2

because, as seen fro m  Eq. (5.43), the  pertu rbation  expan
sion fo r  Ф begins in o rd e r g 4; th e  co n stan t Cy  is com 
p u ted  from  low est-order pertu rb a tio n  theory in A ppendix
B.2, w ith  th e  resu lt

2 ><2i (f, 2_ i )
(2тг)4

(5.52)

[The tw o-loop  co n tribu tion  to th e  glueball p ropagator, 
w hich  gives th e  coefficients a w,a ц in the series o f  Eq. 
(5.50), has recently  been calculated  by K ataev et al. 
(1982).] N o  o rder t ~3 term  is p resen t in the expansion 
o f  Eq. (5.50) because o f the  absence o f d im ension-tw o 
operato rs w hile the  o rder 1 “ 2 and h igher term s m ake 
co n trib u tio n s to  J u v  w hich  are convergent at t = 0 . 
H ence it suffices to tak e  as the com parison  function  4^ 
th e  leading t ~ 4 p a rt o f 'V(t),

% ( t ) = C v I
- l o g ^ 2t )2

i +  S  2
л = I m  >0

f l o g l o g H 'M - ' r  
( - lo g ^ 2t)n

(5.53)

and  to  re stric t t0 by the  condition

^ 2f0 < l ,  (5.54)

so th a t  the  logarithm  l o g t ^ 2/) does no t vanish in the  in 
teg ra tio n  range 0 < t ^ f 0 o f  I { jv- Substitu ting  Eq. (5.53) 
in to  ■fuv and  m aking  th e  change  o f  variable и —^ 2t 
gives

- W u  0<u)
/ u v  = Cii,~4f2 f o

и 2 (logu )2 ’
f0 ,

0 (и ) =  1+  2  2  an.
( log log и

( log u )*
(5.55)

T h e  evaluation  o f th is in tegral by d im ensional co n tin u a
tio n  is carried  out in A ppendix  B.3, w ith th e  resu lt

J i ,v  =  R e
im

log r0 )
d v ^ r e i e - " )  

1 v
(5.56)

w here  R e  ind icates the  real part, and  w here th e  in teg ra 
tion  co n to u r is show n in Fig. 5. [A s discussed in A p 
pendix  B.3, the  need to  take a real p a rt in E q. (5.56), re
flec ting  th e  existence o f  a cu t in th e  со plane, arises from  
th e  fa c t th a t  the  runn ing  coupling  co n stan t variable g 2(t) 
used in  the  “im p roved" expansion sum s an  in fin ite  n u m 
ber o f  F eynm an d iagram s. T he d im ensional co n tin u a 
tio n  o f  ind iv idua l Feynm an d iagram s rem ains m ero- 
m o rp h ic  in  <u.] T h e  in tegral o f  Eq. (5.56) can  be done by 
num erica l in tegration , and  so the problem  o f  evaluating

Eq. (5.43) has been reduced to  a sequence o f  steps w hich 
can each be im plem ented by d iscrete m ethods.

Up to  this po in t in the  discussion I have used the 
one-loop exact running  coupling constan t defined in Eq.
(5.49), w hich tran sfo rm s th e  renorm alization  group  to  its 
m inim a], exponential fo rm . How ever, in doing an actual 
calculation  it is no t advantageous to m ake the nonanaly t- 
ic transfo rm ation  o f A ppendix  B .l; instead, it is bette r to 
w ork w ith a tw o-loop exact o r  m ore general defin ition  o f 
the  runn ing  coupling  co n stan t g 2(t), in term s o f w hich 
^(.(r) takes the  fo rm  o f a sim ple pow er-series expansion

v cu ) = j b l c v 1 +  2 c , [ s 2u > r
n =*> I

. (5.57)

C orresponding to  this, Eqs. (5.55) and  (5.56) take t£e  
form

0 ( u ) = I +  2  cn[ g H u / ^ 2)]n ,

/ ^ v  =
Я I 03

du e'

X [ g 2( e - V ^ 2)]2 0 ( e - ‘’) (5.58)

w ith the coefficient C| know n from  th e  above-cited w ork 
o f K ataev et al., and w ith  the h igher coefficients yet to  
be com puted. In doing a calcu la tion  it  is o f  course 
necessary to m ake an explicit choice bo th  fo r th e  d iv id 
ing p o in t t0, and fo r the  accuracy to w hich th e  p e rtu rb a 
tion  expansion 4^ is to  be com puted . A  reasonable  s tra 
tegy fo r doing th is, I believe, is as follow s:

(i) C hoose tc fa r  enough in to  the  u ltrav io le t so th a t 
p e rtu rb a tio n  theory  is valid  a t l 0l and  so th a t 
| Д 7 ц у //]ц  | is sm all. Such a  choice is alw ays possible, 

since the fac t th a t Л /ц у  is  a  convergen t in teg ral im plies 
th a t

F IG . 5. C ontour o f in tegration  С to be used in evaluating Eq. 
(5.56). T he con tour begins a t и =  lo g u i '1 =log(_W,2/o)_ l and 
m ust avoid the singularity  at u = 0 .
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lim A JUV —0 . (5.59)

(ii) Then, keeping f0 fixed, com pute a large enough 
num ber N  o f pertu rbation-theory  coefficients c„ so th a t 
/y v  is well approx im ated  by

7 u v =  ( / 0 ° Л / гЧ '* (/)]

=  7 6 ^C * ^T JRe

dimcniiorully regularized

/ > I OD
_  > ,d v e °

X [ g 2( e - V ^ 2) ] 2 &N(e - • ) (5.60)

lim  4'iv( r ) = 4 /c(/)
N—m

im plies that

lim  /цХt —/Jjv

(5.61)

(5.62)

(iii) A ccord ing  to  Eqs. (5.59) and (5.62), the to ta l in 
tegral w hich we are  calcu la ting  is given by the  double 
lim it

' = 'rR  +  ̂ u v +  A /u v  

=  lim  lim  ( / IR+ / cAr
<s —Urt- UV ) , (5.63)

w hich  w ith  r0 and  N  chosen acco rd ing  to  (i) and  (ii), is 
well app rox im ated  by

7 » f i R + / u v  • (5.64)

H ow ever, fo r fixed N  we m u st be careful no t to let t 0 be
com e a rb itra rily  sm all in th e  approx im ated  expression o f  
Eq. (5 .6 4 ^ b ec a u se  as a resu lt o f th e  m ism atch  betw een 
/ i r  and / [ r V and the  q u ad ra tic  divergence o f  th e  u n regu
larized  in tegral, we find

lim ( / ]R + / f ^ ) =  qq 
frt—*0 (5.65)

In  o th er w ords, th e  o rd er o f  the  lim iting  operations in 
E q. (5.63) is sign ifican t, and is reflected in  th e  p rocedure  
fo r choosing t0 and  N  given in (i) an d  (ii) above.

In a recent paper, Zee (1982a) has given a  m odel in 
w hich th e  in frared  region is exp lic itly  know n, perm ittin g  
the  com plete  in tegral / u v + / ir to be evaluated  explicitly  
by  d im ensional reg u lariza tion , and  th u s giving a sim ple 
illu stra tio n  o f  th e  m eth o d s ou tlined  above. Zee’s m odel 
is a  gauge th eo ry  in  w hich  th e  one-loop Д-fu n ctio n  coef
fic ien t b 0 is positive  and  sm all, w hile  th e  tw o-loop 0- 
fu n c tio n  coefficien t A, is negative  [cf. A ppend ix  B, E q.

3 ,I f  the series fo r 4>,(f) is only an asym ptotic series, a sum- 
m ation  procedure [such as Pade approx im ants o r Borel sum 
m ation; see Sim on (1981)] is needed to extract, from  the  per
tu rbation  coefficients c . ,  a  sequence o f approx im ants which 
satisfy Eq. (5.61).

(B l)], as happens, fo r  in stan ce , in  Q C D  w ith  16 quark  
flavors. Such a  theo ry  is still a sy m p to tica lly  free, but 
has a non triv ia l in fra re d  stab le  fix ed  p o in t a t  a  sm all 
coupling co n stan t g 2,  =  — * 0/ ( 2 6 ,) .  In  th e  a p p ro x im a
tion  o f  re ta in ing  on ly  th e  lead in g  te rm  in  an  expansion  in  
pow ers o f  g l ,  one finds

4 '( / ) = 4 /c(f ) = i * 2 C  - L g 2(t) g 2U)
g l

(5.66)

w ith and Q N(u), respectively, the trunca tions of
the series o f  Eq. (5.57) and Eq. (5.58) to  the  f irs t N  
term s. Such an  approx im ation  is possible because31

w ith th e  tw o fa c to rs  g 2( t ) [ l —g 2( t ) /g l ]  a r is in g  d irectly  
from  the  tw o facto rs @(g)/g, w h ich  a p p ea r in  4* when 
the  trace  anom aly  fo rm u la  o f  E q . (3.28) is used. H ence, 
in th is m odel th e  en tire  answ er is g iven by th e  pow er- 
series expansion o f  E q . (5.57), an d  th e  series te rm in a tes  
a fte r only a fin ite  n u m b er o f  term s. T h e  ex p lic it ca lcu la 
tion  show s th a t  th e  sign  o f  G mll in  th is  m odel depends 
strongly  on th e  values o f th e  /З-fu n c tio n  co effic ien ts  b0 
and A1( an d  th u s  again  is sensitive  to  in fra re d  details. 
[F o r a  fu r th e r  d iscussion , in  th e  c o n tex t o f  a  survey  of 
induced  g rav ita tio n  generally , see Zee (1982c).]

VI. EXTENSION TO A QUANTIZED METRIC

A. The general-coordinate invariant effective action, 
and derivation of the background metric Einstein 
equations

U p  to  th is p o in t th e  m etric  has been trea te d  as a 
purely classical variable, w hich  d e te rm in es th e  b a ck 
g round  geom etry an d  thereby in fluences th e  d y n am ics  oi 
the q u an tized  m a tte r  fields, bu t w h ich  is n o t i ts e lf  q u a n 
tized. W hile th is  classical m e tric  fo rm u la tio n  is useful 
as a m odel, there  a re  a nu m b er o f  a rg u m en ts  in d ica tin g  
th a t it is not a sa tis fac to ry  s ta rtin g  p o in t fo r  a  fu n d a 
m ental theory . F o r  exam ple, D u f f  (1981) has pointed  
ou t th a t  i f  th e  m etric  is no t quan tized , th en  th e  system  
o f  equations com prising  the  q u an tized  m a tte r  fie lds anc! 
th e  classical E inste in  eq u ations fo r  th e  m etric  is no t in 
v arian t under m etric-dependen t red efin itio n s o f  th e  
m atte r  fields. Such redefin itions sh o u ld  be a llow ed  in  £ 
com pletely  consisten t fo rm u la tio n , an d  D u f f  show s th a t 
they are in fact p e rm itted  i f  the  m etric  is q u an tized . A 
second argum en t is s im ply  th a t i f  th e  m etric  is trea ted  as 
a  classical variable, th en  th e  E in s te in  eq uations o r  th e  
equ ivalen t E in s te in -H ilbert a c tio n  p rin c ip le  m u st be p o s
tu la ted  on an ad hoc basis. A s we will see below , w hen 
th e  m etric  is quan tized , the  E inste in  equations fo r  the  
background  m etric  em erge au to m a tica lly  as th e  lead in g  
long-w avelength  ap p rox im ation  to  th e  e ffec tive  a c tio n  
fo rm alism .

In  d iscussing th e  dynam ics o f  a q u an tized  m a tte r-  
m etric  system , it is necessary to  give a p ro ced u re  fo r  
iden tify ing  th a t p a rt g^v o f  th e  m etric  w hich  we observe  
as the  “ classical” m etric  and  a m eth o d  fo r  c o m p u tin g  its  
effective action func tional. I do  th is  by using  th e  b a ck 
g round  field m ethod  o f  D eW itt (1965), in  w hich  th e  to ta l 
q u an tu m  m etric  g^v is sp lit, in a se lf-consis ten t fa sh io n , 
in to  th e  sum  o f  a  background  m etric  g a n d  a  q u a n tu m  
fluctuation  A„„,

Rev. Mod. Phya.. Vol. 54. No. 3. July 1982



R44 561

Adler: Einstein gravity as a symmetry-breaking effect

• (6 . 1)

E lab o ra tin g  on earlier w ork  by 4  H o o ft (1975), recently 
B oulw are  (1981) and  D eW itt (1981) have given an exten
sio n 32 o f  th e  background  field m ethod  w hich  preserves 
m an ifest general-coord inate  covariance w ith  respect to  
th e  b ack g ro u n d  m etric , and  hence is an  ideal vehicle fo r 
th e  d iscussion w hich follows.

T o  in tro d u ce  th e  general-coordinate invarian t effective 
action  fo rm alism , let us consider firs t the  case in w hich 
no m a tte r  fields a re  p resen t, so th a t the  to ta l m icroscopic 
action  density  consists solely o f  th e  term  Krav[g (lv] in 
troduced  in Eq. (2.38). T he p a rtitio n  function  is then 
given fo rm ally  by

‘S g r a v [ £ j iv ] =  f  d  *  ^ —& ¥ grav[?/xv] * (6 .2 )

b u t th is  expression is divergent because o f the general- 
co o rd in a te  invariance o f  the  action . T o  get a useful ex
pression fo r 7.% a gauge-fixing term  and  a com pensating  
F a d d e ’ev-Popov (1967) de te rm in an t m u st be in troduced  
in to  E q . (6.2). L et us choose the  gauge-fixing term  in 
th e  action  to  have  th e  form

V tS & >S «*]=  / d *x . (6-3)
w ith  g*p an a rb itra ry  fixed reference m etric  (which fo r 
th e  tim e being is d istin c t from  g^v), and  w ith ^  con
s tru c te d  so as to  tran sfo rm  form ally  as a  general- 
co o rd in a te  sca lar w ith  respect to  g ^ ,  when th e  to ta l 
q u a n tu m  m etric  g MV is treated  as a  tensor w ith respect to  
Sap- A  suitable gauge fixing fo r  quan tiz ing  the  
cu rv a tu re-sq u ared  action  o f Eq. (2.38) w ould be33

=  , (6.4)

w ith  Vj, th e  co v arian t derivative  w ith respect to  g**, and 
w ith  G v form ally  a  co v arian t vector w ith  respect to 
g iven by

G v = V S * „ v-  j g K^ V R, g ^  . (6.5)

E q u atio n s (6.4) and  (6.5) are a na tura l generalization  o f  
th e  usual h a rm o n ic  coordinate  condition; how ever, the  
p recise  fo rm  o f  (beyond the fact th a t it depends ex
p lic itly  on th e  aux iliary  m etric  g f y  will no t play a  role

11 So- also F radk in  and Vilkovisky (1976), who use the gauge 
fixing

to  quan tize  the Einstein theory form ally, and who suggest that 
it gives a generally covariant effective action for gMv. F or the 
use o f  the gauge-invariant background field m ethod to com 
pute two-loop counter term s, see A bbott (1981) and lchinose 
and O m ote (1982).

33F o r a discussion o f  the complexities involved in representing 
higher-derivative gauge fixings in term s of a local "ghost” ac
tion  density , see K allosh (1978) and Nielsen (1978).

in the  follow ing discussion. T he gauge fix ing  o f  Eqs.
(6.4) and (6.5) com pletely breaks the  invariance o f  th e  
grav itational action  under the  group  o f  general- 
coord inate  transfo rm ations g MV—«-g®,, w hich has th e  in 
fin itesim al fo rm 14

, (6 .6)

w ith 80* an a rb itra ry  in fin itesim al co n trav arian t vector. 
The F adde’ev-Popov com pensating  d e te rm inan t fo r  the 
gauge-fixing action  o f Eq. (6.3) is defined by35

1 =  J d [ 0 , (6.7)

w ith d  [fl] the invarian t m easure  on the m an ifo ld  o f  the  
general-coordinate tran sfo rm atio n  group. Since th e  in 
varian t m easure  satisfies

d[ee ' ]=d[e 'e ]=d[e]  (6.8)
fo r any fixed general-coord inate  tran sfo rm atio n  gMV 

we learn  from  Eqs. (6.7) and (6 .8 ) th a t the  co m 
pensating  de te rm in an t is invarian t un d er general- 
coord ina te  tran sfo rm atio n s on g^„,

=  • (6.9)

A ccording to th e  F ad d e ’ev-Popov a n sa tz ,35 a  convergen t 
pa th -in teg ra l represen tation  fo r th e  p a rtitio n  fu n c tio n  is 
then  given by

(6 . 10)

MA s pointed out by F radk in  and Vilkovisky (1975) and re
viewed by Batalin and F rad k in  (1979), the presence o f  a  term  
dig,,* in 6«g^y leads to a nonvanishing variation o f  the  in tegra
tion m easure under general coordinate transform ations,

Std[g„r] o c T r t S t f i e g ^ lx ) ) / ^ ^ ) ]

f  d*x a iS’tO JS^U ) .

T he ддб4(0] term  vanishes in covariant calculations using d i
mensional regularization, and is ignored in the discussion of 
the  text, where 4 [ g MV] is treated  as being general-coordinate in 
variant. T he variation  o f  the integration m easure cannot be ig
nored in setting up  a canonical, H am iltonian  form alism  using 
a massive regulator scheme; in this case it leads to an extra 
Jacobian facto r in the path -in tegral form ulas, w hich can be 
represented by a quartic  local “ ghost” action density. F or a 
related analysis o f the connection between Jacobian facto rs in 
the path-in tegrai m easure and chiral and conform al anom alies, 
see Fujikaw a (1981).
3SThe discussion o f Eqs. (6.7) —(6.14) is based on Sec. 3.3 o f 

F adde’ev and Slavnov (1980). Strictly speaking, the L agrang
ian form  o f the path -in tegral form ula given in Eq. (6.10) m ust 
be derived from  the m ore fundam ental H am iltonian  form , and 
the standard  textbook discussions describe this step only for 
second-order actions. T he derivation o f  Eq. (6.10) from  the 
H am ilton ian  form alism  in the case o f  fourth-order, curvature- 
squared gravitational actions has been carried ou t by Boulware
(1982).
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T o verify th a t Z  is independent o f  th e  choice o f  the  
reference m etric  gjjp, let us m ultip ly  th e  integrand o f Eq.
(6 . 10) by unity  in  th e  form

(6 . 11)

g iv in g

y g ^ r . v l M + 'V l  *Ь.*Яу] + Вж/1* ^ '* ^  (6 12)

Л — 1
M aking the substitu tion  g^y—*gj,v , and using the  fact 
th a t the  action 5 grav[gpt.], th e  com pensating  de term inants 
Л and the  in tegration  m easure34 d  [g,jV] are all general- 
coordinate invariant, and also using th e  invariance p ro p 
erty  d [ 6] = d [ 6~ ]], Eq. (6.12) becom es

z = / r f [ e - l ] d [g (lv] A [ g ^ )g® ;, ^ [ g J >g)JV]

^  aff'tpv 1 + ̂ j / l f  ^

B ut now applying Eq. (6.7) once m ore (with в  replaced 
by <?~') we get

Z  =  f  d[gMJ A [ g - J , g /lv]eIŜ ' ' 1+‘Ŝ t ' - ^ 1 , (6.14)

w hich d iffers from  the orig inal form  in Eq. (6.10) by the  
replacem ent o f  g £ ,  by g'ap.

L et us now in troduce  an external source J** coupled 
to  the  m etric  g^„, so th a t the  p a th -in teg ra l fo rm u la  o f 
Eq. (6.10) is m odified to read

=  /  rf[g „v ]A [ga0 .g„v]

(6.15)

B oth and g ^  a re  ind ica ted  as a rg u m en ts  o f  Z  in Eq.
(6.15) because th e  source  term  breaks th e  general- 
co ord ina te  invarian ce  o f the  action . A s a  resu lt, when

0  th e  a rg u m en t o f  Eqs. (6.11) —(6.14) can n o t be ap 
plied, and hence th e  previously  derived zero-source  in 
variance,

0 = -A -Z [0 ,g ^ ]  =  TV ^ [ 0 ,g ^ ]  ,
Ogaff bgae

(6.16)

c an n o t be ex tended  to  the  case  w hen a source is p resen t. 
F ro m  th e  fu n c tio n al W,  we can  calcu la te  th e  expecta tion  
value gxu o f  th e  m etric  in th e  presence o f  th e  sou rce  J ka 
by using  the  fo rm u la

(6.17)

action fu n c tio n al Г  defined  by

Г  = W +  f  d ' x g x v J ’"  . (6.19)

V arying Eq. (6.19) (fo r fix ed  g*p) a n d  using  E q . (6 .1 7 ), 
we get

6 Г  =  6 Ж +  /  d ^ x i g ^ S J ^  +  b g ^ J ^ )

=  J V x 6* r ^ ,  (6 .2 0 )

w hich show s th a t Г  is a  fu n c tio n a l on ly  o f  a n d  g  Qp,

r = r [ ^ e,g2/#i ,

and satisfies 

ЙГ

6g'xt.
= 7 *

(6 .2 1 a)

(6 .2 1 b )

w hich  can  be inverted  to de te rm in e  J*"  im p lic itly  as a 
fu n c tio n al o f  gxj, (and o f  g ^ ) ,

J * - - / * • [ * * * & ]  . (6.18)

L et us now  in tro d u ce  th e  L egendre-transfo rm ed  effective

T h e  p a rtitio n  fu n c tio n  Z t / ^ . g n p ]  can  b e  r e e x p r e s s e d  in  
term s o f  th e  e ffective  action  Г  th ro u g h  th e  fo rm u la

e / ^ . . ; „ i = e x t^  ] t (6 22)

w here e x t ^ t  ) ind ica tes th a t  one is to  tak e  th e  e x 
trem um  o f the  p a ren thes is over all values o f  g*". E q u a 
tion  (6 .2 2 ) is verified  by n o tin g  th a t  th e  ex p o n en t o n  th e  
r ig h t-h an d  side is ex trem ized 36 a t th e  m e tric  g ^ —g  
fo r w hich  E q. (6.21b) is sa tis fied , an d  th a t a t  th e  e x 
trem um  it can  be rew ritten , by using  E q. (6.19), to  g iv e

W ith  these p re lim inaries com ple ted , w e a re  re ad y  to  
in tro d u ce  th e  g en era l-coord inate  in v a ria n t e ffec tiv e  a c 
tion  fu n c tio n al Г ,„ Л я 'П  defined  by id en tify in g  th e  
reference m etric  g *3 w ith  th e  exp ec ta tio n  value g ap in  
the  fo rm ulas given above,

Г ^ ] е Г [ ^ , ?0>] . (6-23)

T o  get an  explicit fo rm u la  fo r  r inv, let us m u ltip ly  Eci
(6.15) by exp(i f  d*x gxaJ x~'’) a n d  ch an g e  to  h ^ v, definec  
in E q. (6.1), as th e  new  fu n c tio n a l in te g ra tio n  v a ria b le . 
M ak ing  use o f th e  iden tity

S g f  [  g  a  0  > g f i  v A f t  v ] =  1 g*a 0  > ̂  /1v ]

=  T g Xa? ‘v1 xGll1 vG v ,

Gv=V'1A ^ - y r XVvAMA (624)

(which follow s from  th e  fac t th a t Vi f /Jv» '0 ), we ge t th e  
follow ing func tional in tegral rep resen ta tio n  fo r Г jnv,

e « W f » 4

=  /  d l h ^ b l g ^ g ^ + h ^ ]

(6.25)

36I will assum e here, and later on, th a t  th e  extrem um  p ro b -
lems which are encountered always have a unique solution.
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T he source cu rren t in E q. (6.25) is im plicitly  deter
m ined as a fu n c tio n al o f g by the  requ irem ent

0  = { h ^ ) j ------ 6 Г
(6.26)

w hich  is equ ivalen t to

°=  J  <*[Ь»*]&№ае’2»у + ЬИу1кХг
X e  “ v . . t v +

(6.27)
T o  see th a t Г jnv is a  general-coord inate  in varian t fu n c
tional o f  its a rg u m en t, we note th a t we a re  free to  take 

w hich  is a dum m y in teg ration  variable, to  transfo rm  
as a  tensor w ith  respect to  general-coord inate  tran sfo r
m ations o f By construction , Sr f  is then  a scalar 
w ith  respect to  such  transfo rm ations, and therefore  from  
Eq. (6.7), th e  com pensating  de te rm in an t +  
is also a scalar. E q u atio n  (6.27) then  determ ines J to 
tran s fo rm  as a  tensor, and so the  rig h t-h an d  side o f  Eq. 
(6.25) is m anifestly  invarian t under general-coord inate  
tran sfo rm a tio n s  o f  g^y.

L et us nex t show  th a t th e  source-free p a rtitio n  fu n c
tion  Z  can  be obtained by extrem izing  the  gauge- 
in v arian t effective  action  functional. A ccord ing  to  Eqs. 
(6 .2 2 ) and  (6.16), in the  absence o f an external source we 
have

Z = e x t t l a (e ) ,

- Z  = 0  .

(6.28a)

(6.28b)

T h e  ex trem u m  in Eq. (6.28a) determ ines g to take a 
value g** [я£д] a t w hich

8 Г (6.29)

and  w hen expressed in term s o f g Xa, th e  reference-m etric  
in v ariance  o f  Eq. (6.28b) takes th e  form

8g V
(6.30)

Since g**[gag] is a con tinuous m ap  from  th e  m an ifo ld  o f  
reference m etrics in to  itself, th ere  is3’ a fixed p o in t 
g*B=*g'ae fo r w hich = £**"• A t th e  fixed point,
E qs. (6.29) an d  (6.30) becom e

7 ^ r [ g * ^ ] = - V r [ g * ^ ] = o , (6.3D 
°g °Ba0

w hich  to g eth e r im p ly  th a t

-  6  _  r  Г*,А<П = 0  '"vie J w»

an d  so36 we have

Z = e x V J e ' r ‘~ 1' l V

(6.32)

(6.33)

37I am  assum ing th a t g£g and g*" lie in a closed convex set, 
so th a t the  conditions o f the Schauder fixed point theorem  are 
satisfied . I wish to thank J. and L. Chayes for a conversation 
about the conditions fo r the  existence of a fixed point.

An a lte rna tive  way o f  deriving Eq. (6.32) is to  no te  that 
when varia tions o f  g£g a re  included, Eq. (6.20) is m odi
fied to  read

5 Г  = f d * x

+

Sgaff

W  + Sba S J ^  + 8g ka J ^ (6.34)

(6.35)

w hich im plies th a t

- 5 - r " 4 f * " ] =  - A -  *  { j ^ l g ^ . g a f i U a e  1
8g>.a ogij, I J

■

A t th e  solu tion  g ag —g'aB o f  th e  equation

• ^ [ g ^ . g a f l H  0  , (6.36)

we leam  from  Eq. (6.16) th a t bo th  term s on th e  righ t- 
hand side o f  Eq. (6.35) are zero, th u s  rep roducing  Eq. 
(6.32).

H aving now established the procedure  fo r iden tify ing  
the background  m etric  and calcu la ting  its  dynam ics, let 
us restore th e  m atte r  fields to th e  analysis. Follow ing 
the no ta tion  o f  Eqs. (2.1) and (2.38), th is is done by m ak
ing the substitu tions

*̂ grav matter [ f * b s * v ] + . W s „ v ] ,

•Sm»tlcr[ i Ф 1 igpv] =  f  ̂  X V ' g  J f „ tHer[ j ф]

(6.37)
in Eq. (6.10), g iv ing38

Z  =  J  d l g ^ d W ^ g Z p y g ^ ]

L et us next divide the  m atte r  Fields | ^ j  in to  “ lig h t” and 
“heavy” com ponen ts35 as in  Sec. II.B , and  find  th e  effec
tive action  equations governing th e  dynam ics o f  th e  ligh t

38As in the earlier sections, I do not explicitly indicate the 
gauge-fixing procedure for the m atter gauge fields.
39T he heavy “m atte r"  fields can include any fields w hich are 

not directly observable, including ones which are  basically 
geom etric o r  pregeom etric in nature, and auxiliary fields. The 
only essential requirem ent for the discussion o f Secs. V I.A  and
V I.В is th a t the partition  function be representable in the  form 
o f Eq. (6.38) for some choice o f  heavy fields ( 0 й ). T he dis
cussion, as given, applies only to the case when the observed 
m atter fields \4>L\ appear as elem entary fields in the funda
m ental action. If, as has been m uch discussed recently, some 
o f the light fields are  effective fields for com posites form ed 
from  the tru ly  elem entary fields, an extended effective action 
form alism  is needed, along the lines discussed by Cornw all, 
Jackiw , and Tom boulis (1974). F or a discussion of the  effec
tive action  fo r com posites in a nonrelativistic solid-state phys
ics context, see KJeinert (1978).

Rev. Mod. Phyi.. VoL 54, Nc. Э, J iiy  1982



564 Adventures in Theoretical Physics

754 Adler: Einstein gravity as a symmetry-breaking effect

fields. T he m ost stra igh tfo rw ard  way o f doing th is is to  
in troduce external sources [J*') and expectation values 
[$L] for the  light m a tte r fields f ^ £ l, as well as an  exter
nal source J and expectation value fo r the  m etric, 
and to  construct th e  L egendre-transform ed effective ac
tion functional r [ j ^ L], g ^  in analogy w ith Eqs.
(6.15) —(6.21) above. Following Eq. (6.28), th e  p a rtitio n  
function  Z  o f Eq. (6.38) can be expressed in th e  form

, 'H I»1!.** '.»;,!.
"  j ^ |  '  *

z=o , (6.39)

and the  fixed po in t a rgum ent o f Eqs. (6.28) —(6.33) can  
then be used to  show th a t Eqs. (6.39) are  equivalent to

Z  extgo& ■), (6.40)

w ith Г ШУ the general-coordinate invarian t effective action

r in, = r [ j ^ ) >g A- , f n e ] . (6.41)

=  f  d \ 1
i frrrG^ (/Г —2A,_

gives the  classical E in s te in  eq u a tio n s40 and  th e  e ffec tiv e  
classical equations fo r  th e  m a tte r  fields,

1

8ttG " r ( ^ v+ A indr v)

_ TPV
J mailer

- S ' St.mu,"[ \Ф L },ga,,]

(6 .44)

E quation  (6.40) gives an exact descrip tion  o f  th e  d y n am 
ics o f  the ligh t m atter-m etric  system  in  term s o f a classi
cal varia tional p rincip le

T ^ r inv[ {ф1-}, r e ) =  7 7 f z 7 r inv[ (? 4 , r e ] = °  ;
Og °1<P J

(6.42)

th a t is, fo r an iso lated  system , th e  background  m etric  
and  the  ligh t-field  expectation  values m u st evolve ac 
cord ing  to a p rincip le  o f s ta tio n a ry  effective action .

T o  pu t Eq. (6.42) in  a m ore fam ilia r fo rm , let us a s
sum e th e  background  m etric  to  be slowly vary ing  on  the  
leng th  scale o f  th e  heavy fields, so th a t  th e  cu rv a tu re  
dependence o f  Г inv can  be ap p rox im ated  by w riting

г;„У[ [ 4>L ) ,Г*1= scfftmuter[ [ ) ,r"]+se!T,triv[gai>]
+  sm all co rrections ,

"Sefr.matier[l$i | . f afl] =  m in im al generally  co v arian t 

extension o f

г ' М ь и ае] - г т, [ [ о } ^ а1>] .

•Scrr, g r . v  [ g  1 / »  ] =  r L n v [  (0 ) , ^ p] +  O  [ (0  ) 4  ]

O f  course, m ak in g  th e  ap p ro x im atio n s  o f  E q. (6.43) is  
only a m atte r  o f convenience in  d ealin g  w ith  slo w ly  
varying background  m etrics , an d  th e  exac t d y n am ics o f  
g aB and  \ 4>l \, includ ing  th e  effect o f  h ig h e r  d e r iv a tiv e  
term s in r inv[ j 4>Lj , g ^ \ ,  is a lw ays governed  by E q . 
(6.42).

A n  a lte rn a tiv e  w ay o f  d escrib ing  th e  d y n am ics o f  th e  
lig h t fields is to  keep them  as q u a n tu m  variab les a n d  to  
in troduce, inside th e  j фг'} fu n c tio n a l in teg ra tio n , a n  e f 
fective action  w hich in co rp o ra tes  th e  q u a n tu m  e ffec ts  o f  
the  heavy fields [cf. E q. (2.15) above]. T o  do th is , w e  
rew rite  Eq. (6.38) in th e  fo rm

(6.45a)

X e

(6 .45b)

T h e  dependence o f  W  on g*p resu lts  fro m  th e  fa c t t h a t  
th e  general covariance o f E q . (6.45b) is b roken  by th e  
fixed (nonscalar) lig h t fields j фь ], w h ich  ac t in  th e  s a m e  
m an n er as does th e  sou rce  te rm  in  E q. (6.15), a n d  
p reven t the  ap p licatio n  o f  th e  a rg u m e n t o f  E q s . 
(6.11) —(6.14). L et us now  in tro d u ce  an  a d d itio n a l e x te r 
nal source J Xa fo r th e  m etric  and  use it to  c o n s tru c t a  
L egendre-transform ed  effective ac tio n  fu n c tio n al fo r  th e  
m etric , as in E qs. (6.15) — (6.22). [T h e
prim e on Г ' is to  d is tin g u ish  i t  fro m  th e  fu n c tio n a l  
Г [ j ? 1') ,g * " ,g ap ] in troduced  follow ing E q. (6.38), w h ic h  
was constru c ted  by L egendre  tran sfo rm in g  w ith  re sp e c t 
to  bo th  th e  m etric  and  the  lig h t fields.] T h is  a llow s u s  
to  rew rite  Eq. (6.45) in  th e  fo rm

Z =  J r f | * 4 « t ^ < , ' n ' f l -| - '4 , b , ) , (6.46)

(6.43)

w ith  j r = K [ g ep] th e  c u rv a tu re  sca lar constru c ted  from  
g ag. A s defined J n  E q. (6.43), co n ta in s term s in
r inv w h ich  are  фГ dependen t and are  o f zero th  o r first 
o rd e r in sp ace-tim e  derivatives o f g ^ ,  w hile  5 ^ ^ . ,  
c o n ta in s te rm s in d ependen t o f  th e  m atte r fields фь, 
w hich  are  o f  zero th  th ro u g h  second o rd e r in space-tim e 
de riv a tiv es o f  g ^ .  S u b s titu tin g  Eq. (6.43) in to  Eq. (6.42)

^ D eriv a tio n s o f the E instein equations sim ilar to  th a t o f  E q s .
(6.38) —(6.44) have been given by F rad k in  and  V ilkov isky  
(1977a, 1977b), by D eW itt (1979), and by H orow itz  (1981). 
F radkin  and Vilkovisky (1977a, 1977b) and  D eW itt (1979, 
1981) have em phasized that Eq. (6.42) con tains correc tions t o  
the Einstein equations which are needed fo r rap id ly  v a ry in g  
m etrics. For discussions o f the “ou t-in”  form  o f  the  sem ic las- 
sical gravitational equations, see K ay (1981) and  H o ro w itz
(1981).
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w hich  gives an  exact fo rm ula tion  of the  quan tum  
dynam ics o f  the  ligh t fields and th e  background m etric, 
expressed in term s o f a general-coordinate non invarian t 
effective action  Г '.  Because the  in teg rand  in  Eq. (6.46) 
still depends on  g*g, th e  fixed p o in t a rgum ent o f Eqs.
(6.28) —(6.32) can n o t be used to  in troduce  a gauge- 
in v arian t effective action  inside th e  light-field  functional 
in teg ration . A n  a lte rna tive  way o f seeing th is is to  note 
th a t  th e  ex trem um  in E q. (6.46) m akes g*°  a func tional 
o f  th e  in teg ra tio n  variables {^L), and so the  fixed refer
ence m etric  can n o t be equated to  g^°  inside the  
fu n c tio n al in tegration . T o  proceed fu rth er, let us consid
er th e  m ean-fie ld  ap p rox im ation  to  Eq. (6.46), obtained 
by pu lling  the  ex trem um  over g ^  to  the ou tside  o f  the 
fu n c tio n al in teg ratio n  (w hich should  be a  physically 
reasonable  ap p ro x im atio n  fo r the slowly varying com 
pon en ts o f g ^ ) ,

j d [ ? (6.47a)

Since Z  is independent o f  Z mj, is independent o f  
to  w ith in  th e  accuracy  o f  the  m ean-field  approx im ation , 
and  so we have

(6.47b)

E q u atio n s (6.47a,b) have  th e  sam e stru c tu re  as Eqs. 
(6.28a,b) above, an d  thus w ith in  the m ean-field  ap prox i
m atio n  we can  app ly  th e  fixed point argum en t o f  Eqs.
(6 .2 8 )-(6 .3 2 ) , giving

Z m / ^ e x t ^ / _ <6.48)

w ith  Г 'пу th e  general-coord inate  invarian t effective action

Г |ПУ= Г ' [ ( ^ ] , ^ а/)] .  (6.49)

A ssu m in g  a slow ly varying background  m etric  and m ak 
ing an  expansion  o f the  prim ed  effective action  analo
gous to  th a t  o f  Eq. (6.43), we can  approx im ate  Eq. (6.48) 
by

Z ^ / a e x t ^ / d\<f>L\

x  l ^ l  W ,

(6.50)

T h is  gives th e  field  equations fo r the background  m etric  
in  th e  fo rm

A |ndr v)
kind

f W L\ e cff.m nttr P T 'm tn e

f d  [ф1

=  <о+ | г ж , ег] о - > ,

2  6

1 1̂  1 -fafi I

(6.51a)
(IV _

miller —

w ith | 0 + ) and | 0 “ ) the "ou t” and “ in” vacuum  states 
for the  observable m atter fields. Thus, the  background 
m etric  form alism , w ith the m ean-field approxim ation  of 
Eq. (6.47a) and an expansion for slowly varying m etrics, 
gives th e  “out-in”  form 40 o f the  semiclassical g rav itation
al equations. The quantum  field dynam ics for the 
m atte r fields then follows in the usual fashion from  the 
approxim ation to the partition function given in Eq.
(6.50). Because the  induced constants G'lrd and  do 
no t include the quantum  effects o f  the  light m atter 
fields, they are not identical to the  constants G jnd and 
Ajn(j defined in Eq. (6.43), which do include such effects. 
However, since one expects

Cind/£?b¥j» 1 +  0 [(fpiu\ck//p .J 1] . (6.51b)

w'th  ^pmton the proton C om pton w avelength, the  d iffer
ence between the prim ed and unprim ed constan ts is n u 
m erically very small.

B. Formulas for G j  and Лы  with a quantized metric

T o  com plete the analysis begun in Sec. V I.A , we m ust 
derive expressions fo r the induced grav itational and 
cosm ological constants in term s o f functional in tegrals 
over and the m atter fields,41 and d iscuss th e  condi
tions under which these expressions yield fin ite  answers. 
Since the  gravitational effective action relevant to  a stron 
om y and  astrophysics is insensitive to the  sta te  o f  m otion  
o f  th e  long-wavelength com ponents o f the m atte r fields, 
i t  is m ost convenient to sta rt the derivation  o f  this sec
tion  from  the form ula

(6.52)

ra th e r than from  the functional r inv[ 1 0 ) , f afl] o f  Eq.
(6.43). It is also convenient at th is point to  represent33 
the gravitational com pensating determ inant 
by an added action density V ^ g  - ^ ghotl, and to adopt 
th e  convention th a t a  functional a rgum ent v im plicitly  
indicates a dependence on the ghost fields and th a t the  
integration  m easure d[fc„v] im plicitly  includes the ghost 
in tegration  measure. By substituting the  expansion of 
Г  « S j r  ™v f r ° m Eq. (6.43) in to  the left-hand  side o f 
E q V"(6 -52 )!™and noting th a t the righ t-hand  side o f  Eq. 
(6 52) has a functional integral representation  obtained 
by m aking the substitutions

d l h ^ — d lh ^ ' l d M ]  ,

S gny- * S  milUr+S g“ "

(6.53)

V ^ g  6g„

411 old» ' <«rminoIogy. we m ust compute expressions for
nbzed gravitational and cosmological constants, in- 

! ! ! l ren0™ d iid S  corrections arising from  virtual m etric and 
after” fluctuations, in terms of the bare param eters appear.,,* 

i n th e  fundam ental Lagrangian.
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in Eq. (6.25), we can  rew rite  Eq. (6.52) in th e  fo rm *2 

e / /d * * |v C i ( l / |6»Gbld)(ff-2Ailld) + 0(t9:kf (lv)4])

=  /  d [ h fly ] d M } e ' f d*x  •*'I I* , - W V 1 _

=  V ^ g  [ - S 'm. l,CTt |< # i , g t lv ] +  - ^ gn i v [ ^ v ]

“b -^ghosit^afli^jtv] )

+  ^  — £  X h y ^ J ^ l g a g ]  ,

Sftv &fiv~^~hpv . (6.54)

Since we now w ish to  study  th e  effective action  a t gen
eral values o f  g ap, w here it is no t sta tionary , it is essen
tial to  re ta in  the  source  te rm  -/Хо[£ а5 ] in  T h e  p ro b 
lem o f  ex tracting  expressions fo r G ind' and Amd from  Eq. 
(6.54) has the  sam e fo rm al s tru c tu re  as th a t set ou t in 
Eqs. (5.1) and  (5.2) and  solved in Sec. V .A . H ence the  
desired fo rm ulas a re  ob tained  by m aking  the  follow ing 
substitu tions in E qs. (5.8), (5.14), (5.18), and (5.19),

f d M \ ^ f d [  ] =  J d [ V № )  .

S [  \ Ф] « - S *  J * d*x  j ф},Т1а0 >к)1 у] I 

^ ^ [ [ ф \  , gaf),h uv ] ■ (6.55)

In  o rder to  ind ica te  explicitly  th e  appearance o f the  
source cu rren t in th e  follow ing fo rm ulas, i t  is useful to 
in tro d u ce  the no ta tion

& М Ф )  ,ga0 ,h„v ] =  & [ \ ф ] . g a B . h ^ - h ^  ,

* ^ [  f Ф) » £ a 0 » ^ /iv l  =  ^  g  I matter “t" grav “b  ghost]

■r^lgae.y]  

6

+  V - g j f t /

==* 9

■'*'1 ^ 1  L - v ,Sg^v(x)  

in  term s o f  w hich

S = f d * x [ 2 W ] ,  V a ^ h ^ - h ^ ^ ]

T he tensors an d  M̂V a re  im p lic itly  defined  by 
th e  re la tions

, (6.56)

0 =  <A*<0 )> ]?oe_ , oe

cc / d [  le '^ A ^ O )  ,

0 = ----- - ----- <Aer( 0 ) ) L  .
S g ^ i x )

* f d [  ]ей Г ( х ) ^ ( 0 )  ,

(6.57)

(6.58a)

(6.58b)

K'1V(X) =  2 T ^  S d ' X 1f ^ - w

V?v(x) =  2

S g ^ x )

=  К Г ( х ) + К Г ( * ) ,  

a a
a ^ v a * x a O x f MV)

a a a 
+  a x x d x °  a o ^ a ^ j

X - ^ U ^ b g a p . ^ . ; * ]

К Г ( х ) = - 2 / d * z h ka( z ) ^ \ » v[z,x) .

A fte r sim plifica tions using E q . (6.58), th e  fo rm u la s  foj 
Amd/f?jnd and G ^ d tak e  th e  fo rm

=  < ^ , ( 0 )> 0 ,
27r Gi„d

1
16irGind

=  <C/(O))0

U ( 0 )> 0 =

f d 4x x 2 j  {У~( V i (x ) V \{0)))o

-  < ^ - ( F 2U ) K 2(0 ))> 0 ] >

f  d[ ]e^A(0)

(3T{A  U )B (0 ))>0= -

42In Eq. (6.34) we have not required th e  to tal space-tim e 
volume to  have a fixed value. M odifications required by a 
volum e constra in t and by the presence o f boundaries are d is
cussed by H aw king (1979). A  volum e constrain t can be includ
ed by add ing  a L agrange m ultip lier term  k^ S  —g to 5", w hich 
plays the role o f  a bare cosm ological term  and is discussed in 
m ore detail in  Sec. V I.С  below. Space-tim e boundaries require 
the  add ition  to the E instein -H ilbert action o f  a surface integral 
over the boundaries. H asslaeher and M ottola (1981) show that 
w hen th e  q u an tu m  fluctuations hUY in Eq. (6.54) are  con
stra ined  to have zero  norm al derivative on a boundary, so th a t
the  boundary  does no t fluctuate , a surface term  o f  the expected 
form  au tom atically  ap pears in th e  induced gravitational effec
tive action.

f d [  > '*  ’

f d [  ] e ^ A (x )B {  0)

f d [  И  ’

F 1U ) = ^ , U ) - < K 1U )> 0 ,

У М = 11„ у У {г ( х ) ,

V2( x ) = VltvV4v{x) , ( K2U ) > o = 0  ,

!7(x) =  E q. (5 .14) w i th g „ v— f „ v, 5 s — <6-59)

A  second useful fo rm u la  fo r Ai„d/G4„d can be o b ta in ed  
by using Eq. (6.35) to  calcu la te  the  confo rm al v a ria tio n
o f Г , giving 

1 A ind
“  2^  G 3 = 2Vka

fig
(6.60)
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Since

w h e n / A<, =  0 , (6.61)
ogka

w e learn  fro m  E q . (6.60) th a t th e  condition  fo r the 
cosm ological co n stan t Ajnd to  vanish is the  vanishing o f  

3- T h is  is o f  course expected, since when 
A jnd vanishes, th e  induced  grav itational action  r inv[gofl] 
is s ta tio n a ry  a t  a  M inkow ski background  m etric  т)ад. 
W hen 7j„0  is th e  stab le  g round  state , th e  second-order 
f lu c tu a tio n  o p e ra to r a round  r)ap has no  negative eigen
values, and  th e  fu n c tio n al in tegral fo rm ula  o f Eq. (6.59) 
is th en  guaran teed  to  give a real value for Gj^J.

U n lik e  th e  situ a tio n  found in Sec. V .A, where 
(C /(0 ) ) 0 van ished , th e  term  ( U ( 0 ))0 in Eq. (6.59) con
ta in s  n o nvan ish ing  con tribu tions q u ad ra tic  in the  flu c 
tu a tio n  m etric , such  as ((d/i/ly/ d x k )2)0. H ence th is 
term  in  th e  fo rm u la  fo r is qualitatively  s im ilar to  
th e  re la tion

G j ~ < * [ A „ vl>o (6.62)

proposed  by M ansouri (1979, 1981), in papers suggesting 
th a t E inste in  g rav ita tio n  is generated by dynam ical 
sca le-invariance break ing  in conform ally  invarian t, 
o rd e r-Л 2 g rav ita tio n al m odels. H ow ever, Eq. (6.62) 
[w hich o m its  the nonlocal V 2 term s o f Eq. (6.59)] is not 
a q u an tita tiv e ly  co rrec t expression fo r G,~d'.

C. Conditions for (triteness of G fJ  and Л!га1 
and for the vanishing of Л1п1

L et us tu rn  now to  the  issue o f  w hether the fo rm ulas 
fo r  G j  and  A fnd given in Eq. (6.59) are finite . By con
s tru c tio n , th e  fundam ental L agrangian  density  
-4°m«tier +  -^ ’gnV contains a com plete basis o f dim ension- 
fo u r  o p erato rs fo rm ed from  the fields w hich are present, 
to g e th e r w ith a num ber (say, N) o f d im ensionless u n 
ren o rm alized  couplings. T he dim ensional a lgorithm  o f  
Sec. П .С  then  guarantees th a t G j^j and A ind will be ca l
cu lab le  in  term s o f  th e  corresponding  N  renorm alized  
co u p lin g s .43 I f  scale invariance rem ains unbroken, we 
get G~^  = 0  =  A imJ. I f  dynam ical breaking o f scale in 
v a rian ce  occurs, we expect one o f th e  N  d im ensionless 
couplings to  he replaced by a scale m ass u f ,  as discussed 
in  Sec. IV .B , and  the  theory  will then  yield nonvanishing 
p red ic tio n s fo r G jjJ and AiluJ in term s of Л  and the  
rem ain in g  ЛГ — I dim ensionless couplings. T h e  ideal 
case, o f  course, w ould be th a t in w hich th e  fundam en ta l 
ac tio n  con ta ins only one dim ensionless coupling, so th a t 
a f te r  d y n am ical sym m etry  breaking and dim ensional

43N ote, however, th a t there is a dim ension-tw o intem al- 
sym m etry  scalar operator /?2= Л [Л ^ .]  w hich transform s as a 
L oren tz  scalar with respect to  fjMV, the lim iting value o f  the 
background m etric  £ MV appearing in Eq. (6.59). As a conse
quence, the  U and V1 term s in Eq. (6.59) in general will each 
be d ivergent, w ith the  infinities cancelling only in their sum.
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transm uta tion , no free dim ensionless coupling constan ts 
rem ain .

L et us consider next th e  conditions under w hich the 
induced cosm ological constan t Aind vanishes, assum ing 
initially  th a t malUr + g n v  has a unify ing sym m etry  
w hich leaves only a single dim ensionless coupling co n 
stan t, and w hich requires the vanishing o f  th e  bare 
cosm ological constan t. T hen  a fte r dim ensional tran sm u 
tation , A ind will be calculable in term s o f  th e  scale m ass 
Л  (which is expected44 to  be in  th e  range 1014— 1019 
GeV), bu t in general A ind/ ^ 2 will be a num ber o f o rder 
unity , in violent co n trad ic tion  to  Eq. (2.23). T h e  only 
way to save th e  situ a tio n  is fo r the  underly ing  theory  to 
have a “ h idden” sym m etry  w hich guarantees th e  van ish
ing of A ind, as discussed recently by Pagels (1982). T he 
d ifficu lty  w ith im plem enting  th is m echanism  is th a t in 
o rder fo r th e  h idden sym m etry  to  restric t Aind it m u st be 
an unbroken sym m etry , and no n a tu ra l can d id a te  for 
such a sym m etry  is k n ow n .45

A n in teresting  a lte rna tive  possibility  is suggested  by 
recent w ork in  w hich  O v ru t and W ess (1982) use a  
cosm ological constan t as a  m echanism  fo r b reaking su
persym m etry . Suppose th a t the  un ify ing sy m m etry  a l
lows only a single d im ensionless coupling co n stan t bu t 
does no t re stric t th e  value o f the  b are  cosm ological con
stan t. so th a t we can  freely add a term  f  d Ax V —g kb to  
the fundam en ta l action . Because к0 has d im ension  four, 
any polynom ial fo rm ed  fro m  k0 and th e  fields w ill have 
d im ension greater th an  o r equal to  fou r, an d  so th e  ad 
ded term  does no t requ ire  the  in tro d u c tio n  o f  any d im en 
sional ren o rm alizatio n  co n stan ts  w ith  d im ension  sm aller 
th an  four. A fte r  dynam ical sym m etry  breaking, the  
theory  now  has tw o dim ensional param eters, and  Л , 
or equivalently , Aj„d and Л . W e can then  im pose as a 
ren orm alization  co n d ition  th e  requ irem ent th a t in th e  ab
sence o f real (as opposed to  v irtual) m a tte r, th e  M in 
kow ski m etric  iipy be th e  stab le  background  m etric, 
w hich  will require44

A ind =  0 = ^  . (6.63)

T h is  leaves only one d im ensional p a ram ete r , in term s 
o f w hich all p a rtic le  m asses and  N ew ton’s co n stan t are  
calculable.

In  o rder to  im p lem en t th is a lte rn a tiv e  m echan ism , we 
m ust have ju s tific a tio n s  bo th  fo r assum ing  th a t  th e  bare 
cosm ological co n stan t x0 is nonzero , and  fo r im posing

MT his range extends from  the so-called "g rand  unification 
mass'* o f particle physics [see W einberg (1980b) fo r a review] 
to the P lanck mass.

45A n unbroken “hidden*' sym m etry is also required if  the un i
fying sym m etry  specifies a definite nonzero value for the bare 
cosm ological constant. F o r a recent survey of quan tum  gravi
ty w ith a cosm ological constant, see C hristensen and D uff
(1980).
^ T h e  fact th a t stability o f  the  M inkow ski m etric requires the 

vanishing o f  Льц is noted and used as a renorm alization condi
tion in B rout el at. (1980).
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th e  renorm alization  condition  th a t the  induced (or renor
m alized) cosm ological constan t A ilKl vanish. A  possible 
ra tionale  fo r  assum ing  th a t  k0 is nonzero  has been given 
by H aw king (1979), w ho po in ts ou t th a t in o rder to  con
s tru c t a p a rtitio n  function  2. fo r a fixed to ta l space-tim e 
volum e one m ust include a  L agrange m ultip lie r fo r th is 
volum e, and th is is fo rm ally  equivalent to  includ ing  a 
bare cosm ological term  in  th e  fundam en ta l ac tio n .47 A  
possible ra tionale  fo r  th e  renorm alization  condition  
A ind= 0  cou ld  be provided by the  observation th a t  in a 
tw o-param eter theory , th e  ra tio  A wi/ ^ 2 is no t constan t 
in nonequilibrium  situations. I f  one could show  th a t 
nonequilibrium  processes in the  early  universe, such as 
back-reaction  effects from  p artic le  p roduction , resulted 
in the  decay o f  A in() tow ards an  equ ilib rium  value o f 
zero ,48 then  use o f  th e  renorm alization  condition  A ind =  0  
in th e  equilibrium  analysis o f  Sec. VLB w ould be ju s t i
fied.

D. Structure and properties
of the fundamental gravitational action

In  th is  final section I w ill co m m ent very briefly  on the  
s tru c tu re  and on som e o f th e  p roperties o f  the  fu n d a 
m ental g rav itational action. I have assum ed in the  
p receding discussion a general o rd e r-Л 2 g rav itational ac
tio n  density  o f the  form

w ith  & defined  in  E q . (2.35). T h e  s tu d y  o f  g ra v i
ta tional actions o f  th is  ty p e  w as in itia te d  by U t iy a m a  
and D eW itt (1962), and  a  p ro o f  th a t  th ey  lead  to  a  r e n o r 
m alizable p e rtu rb a tio n  th eo ry  h as  been given b y  S te lle  
(19 7 7).49 W hen  d im en sio n a l re g u la riz a tio n  is em p lo y e d , 
all th ree  term s in  E q . (6.64) a re  in  general n eed ed , as 
show n in de ta il fo r  th e  case  o f  a  sca la r  field  by B ro w n  
(1977) an d  by B row n an d  C o llin s  (1980). E ven  th o u g h  
th e  action  fo rm ed  fro m  5? is a  to p o lo g ica l in v a r ia n t  in  
fo u r d im ensions, it is n o t a  top o lo g ica l in v a ria n t in  2a  
dim ensions, and  so m akes a n o n triv ia l co n trib u tio n  w h e n  
m ultip lied  by th e  pow er series in (<u —2 ) _1 c o n ta in e d  in  
th e  coefficient A 0. T h e  on ly  c irc u m stan c e  u n d e r w h ic h  a 
term  — Sf, Ж , o r Ж )  can  be o m itted  fro m  E q . (6 .64) 
is when th e  theo ry  w ith  У  dele ted  h as  sp ec ia l s y m 
m etries, w hich  guaran tee  th a t  n o  d ivergences w ith  th e  
s tru c tu re  o f  У  a re  encoun tered . T h u s , fo r  ex am p le, a  r e 
norm alizab le  theo ry  o f  m a tte r  a n d  g ra v ita tio n  c o u ld  b e  
fo rm u la ted  w ithou t in c lud ing  any o rd e r-/?1 te rm s in  th e
fundam en ta l action , only i f  X „ i ts e lf  h ad  e n o u g h

(6.64)

• l l l f l l  bv i -

sym m etry  so th a t n o  d ivergences w ith  th e  s tru c tu re  o l
У , o r  Ж  w ere encoun tered . W h e th e r su ch  m a t te r  
actions can be c o n stru c ted  is n o t  p resen tly  k n o w n . A  
m ore realis tic  possib ility  fo r  o m ittin g  te rm s fro m  E q . 
(6.64) is a ffo rd ed  by th e  case o f  c lassically  co n fo rm a ll}  
in v arian t theories, in  w h ich  th e re  a re  h in ts 50 th a t  th e  i n 
duced Ж  term  m ay alw ays have a f in ite  co effic ien t, p e r 
m ittin g  one to  tak e  C 0 =  0  in  E q. (6.64). I t  is possib le  to

47T he value of kq would then presum ably be a param eter characterizing  the initial quan tum  fluctuation  w hich  led to  the b ir th  o f  
th e  universe.

*®For a review o f gravitational particle production, see P arker (1977), while for an effective action  form alism  for partic le  p ro d u c 
tion in the early universe, see H artle  (1977). In  an  earlier article, Parker (1969), p. 1066, postu lated  th a t " th e  reaction  o f  the  p a r t i 
cle creation  (or annihilation) back on the  g ravitational field will m odify th e  expansion in such a way as to reduce the c rea tio n  
rate .”  Since A lnd>  0  corresponds to  positive vacuum  energy, a naive extension o f  th is postu late suggests th a t a sta te  o f  the  earl} 
universe w ith A ^ > 0  will decay by gravitational particle p roduction  to  an equilibrium  w ith  A |n<i =  0 ! a t w hich  point partic le  p r o 
duction ceases. V ariants o f th is idea have appeared in models for the creation o f  the universe through  a q uan tum  tunneling event 
given by B rout et al. (1978), B rout et al. (1979), G u th  (1981), A katz  and Pagels (1982), and G o tt (1982). T h e  m odels o f B ro u t 
et al. and  G o tt postulate a transition  from  a particle producing de Sitter phase w ith A iMl= 0 ,  T — »rg''v, к — l pi.\,ck to a s ta n d 
ard  equation o f  sta te  w ith  P =  y p  (P — pressure, p — density) as a result of back-reaction effects o f partic le  production . W hen th e
term  —Kg*" is transposed  to the  Л .r.&^y side o f the  Einstein equations, к  is equivalent to an  initially nonvanish ing  A jn d /^ i^ '

A ttem pts to find  an instability  associated w ith Л wi t hi n the fram ew ork o f  the sem iclassical approx im ation  fo r the  coupled  
m atter-m etric  system  [cf. Eq. (6.51) o f  the text] have not been successful. A bbott and D eser (1982) have show n th a t  the  de S itte r  
so lutions obtained when the  E instein equations are  solved w ith 0 are classically stable  against sm all p e rtu rb a tio n s .
P artic le  production  calculations in de S itter spaces using the sem iclassical form alism  have n o t yielded an unam biguous answ er; see 
P arker (1977), p. 136, and G ibbons (1979), p. 666, for a discussion and references. H ence a dynam ical argum ent to explain w hy 
А ы г О  would have to involve nonequilibrium  phenom ena a n d /o r  higher-loop quan tum  effects w hich are  ignored in the  sem iclassi- 
cal approxim ation .

49F or fu rth er references, see the  review o f W einberg (1979).
KT h e re  are tw o pieces o f  evidence th a t a  bare J T  term  m ay not be needed in conform ally invariant theories, both com ing from  

th e  study of conform ally invarian t m atter theories on an unquantized  background m anifold. T he firs t is th a t ap a rt from  a to ta l 
divergence, th e  conform al trace anom aly has only Sf and term s, w hich im plies th a t the one-loop L agrangian  coun terterm  c o n 
tains no divergences proportional to  JT . [For a succinct discussion and references, see Tsao (1977).] T he second is a  general fo r
m ula w hich Zee (1982b) has recently derived fo r the  coefficient C |nd o f the induced X "  term ,

in the  notation  o f  Eq. (5.44). Since in an asym ptotically  free gauge theory one has 4/ ~ ( j ( 2)_<(lo g x 5)* 2 for large x 1 [cf. Eq. (5.50)], 
the  integral fo r is ju s t barely convergent. Zee’s fo rm ula also shows th a t С  ra is negative definite, and so the theory  is free o f  
tachyons; in th is connection see also H orow itz (1981) and Yanrngishi (1982). Since the gravitational theory o f  Eq. (6.66) is asy m p 
totically  free, it seems a reasonable conjecture th a t Zee's results will generalize to the caae in  which the m etric is also quantized .
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co n stru c t re n o n n a lizab le  o rder- й 2 g rav itational theories 
o f g rea te r com plex ity  th an  Eq. (6.64) by adding new field 
degrees o f  freedom  in a  num ber o f  w ays (for exam ple, by 
in c lud ing  to rs io n 31 o r  superfields52). A  prim e considera
tio n  in search ing  for th e  co rrec t g rav itational action will 
a lm o st certa in ly  be th a t i t  should  unify in a natu ral way 
w ith  th e  fun d am en ta l m a tte r action  when th a t is
finally  know n; th is  m ay  involve the  in troduction  o f  “ pre- 
geom etric” fun d am en ta l variables39,53 w hich are not 
d irec tly  classifiable as " m a tte r” o r  “m etric .”

T h e  m om entum  space g rav iton  p ro p ag ato r calculated 
fro m  th e  fu n d am en ta l action  density o f Eq. (6.64) con
ta in s a  te rm  p ro p o rtio n a l to

1
( i t 2 )2

=  lim 1
k 2

I
k 2 + m 2

(6.65)

Since th e  second pole-term  in Eq. (6.65) has an unphysi
cal, negative residue, o rd e r- /? 2 theories do  not satisfy 
u n ita rity  (w ith positive  probabilities) a t the tree level. 
H ow ever, u n ita rity  is a  sta tem en t abou t the asym pto tic  
sca tte rin g  sta tes o f a  field theory and their 5 -m atrix , and 
hence un like  renorm alizab ility , is a dynam ical, ra th e r 
th an  a  k in em atic  sta tem ent. T h u s if  radiative co rrec
tions play  ал im p o rtan t role in th e  dynam ics (and they 
certa in ly  do  in  theories w ith  dynam ical scale-invariance 
breaking), v io la tions o f  tree-level u n ita rity  do no t neces
sarily  im p ly  v io la tions o f  u n ita rity  in the  full theory . 
T h is  p o in t w as f irs t m ade a  decade ago by Lee and W ick 
(1969, 1970), w ho show ed th a t i f  fields w hich have 
negative-residue “g h o st” p ropagators a t th e  tree  level be
co m e unstab le  as a  resu lt o f  rad ia tive  corrections, then  
th e  S  m atrix  fo r  th e  asym pto tic  scattering  states can 
obey u n ita rity  w ith  positive probabilities. T he relevance 
o f  th e  L ee-W ick m echanism  fo r q u an tu m  gravity  was 
firs t po in ted  ou t by T om boulis (1977) and has since been 
d iscussed  by a  nu m b er o f a u th o rs .54 A s a  concrete ex
am p le  [see H ass lach er and M o tto la  (1981)], let us consid 
er a  co nfo rm ally  invarian t o rder-R 2 theory  w ith the fu n 
d am en ta l action

, B 0 m — —  ,

& =  G auss-B onnet density  [E q . (2 .3 5 )] ,

(6 .66)

w ith  the  sign o f B 0 chosen to  guarantee  th a t the  E u clide
an  co n tin u a tio n  o f  the p a rtitio n  function  is represented

5'M odels w ith torsion have been discussed by Neville (1980) 
and hy Sezgin and van Nieuwenhuizen (1980), who give fu r
th e r  references.
12F o r a discussion o f  conform al supergravity see K aku, 

T ow nsend, and van Nieuw enhuizen (1978).
53F o r attem pts at pregeom etric theories o f gravitation, see 

A m ati and Vencziano (1981), Terazaw a and A kam a (1980a, 
1980b) and T erazaw a (1981a, 1981b).
^ S e e  A dler (1980b), H asslacher and M ottola (1981), Tom- 

boulis (1980), and also SaJam and Strathdee (1978).

by a convergent functional in tegral. (The 9  term  in the 
action plays no role in the  follow ing discussion and in 
general does not affect the  field equations.) T ak ing  in to  
account the fact th a t rad ia tive  corrections induce an ef
fective N ew ton’s constant, and assum ing th a t G ind has 
the  correct positive sign, a  sim ple calcu la tion  show s th a t 
the  spin -2  p a rt o f  the  full grav iton  p ropagato r has the  
form

p<2)
_________ г  _________
* 2[£(fc2) - 2fc2 +  m 2( * 2)]

Pm

т г( к 2) k 2
1

k 2 + $ (k 2)2m 2( k 2)
(6.67)

H ere is a spin-2 projection m atrix , m 2( k 2) is the
am plitude [analogous to ( d / d k 2)X(k2) o f Eq. (5.30)] 
w hich gives G jiJ in the  zero-m om entum  lim it,

m ( 0 ) = 1
Ib rrG ^

(6.68)

and g (k 2) is the (one-loop) runn ing  coupling co n stan t fo r 
th e  action  o f  Eq. (6 .6 6 ),

£ ( * 2)2=
l +  y i £ ( ^ 2)2log(*V M 2>

(6.69)

In  the  tim elike region, w here fc2 < 0 , both £(& 2)2 and 
m ( k 2) have im aginary  parts, and  consequently  th e  p ro
pagato r o f Eq. (6.67) has tw o com plex conjugate unstab le  
ghost poles ra th e r th an  a single stab le  ghost pole. T h u s 
it appears th a t the Lee-W ick m echanism  is app licab le  to 
order-.fi 2 g rav itational theories; m o re  deta iled  checks on  
th is are now needed.

A  fu rth e r p roperty  o f  o rder-J? 2 g rav ita tio n a l theories, 
w hich is illu stra ted  by Eqs. (6.67) an d  (6.69), is th a t they 
are  asym pto tically  free. T h is  follow s from  w ork  o f  Julve 
and T onin  (1978), as co rrected  and  extended by F radk in  
and T seytlin  (1981) [see a lso T om boulis (1980) and 
C hristensen  (1982)], show ing th a t b > 0  in Eq. (6.69) and 
in the  analogous equation  fo r th e  ru n n in g  coupling con
stan t associated  w ith  th e  Ж  term  in  E q. (6.64). T he 
scale m ass Л  w hich ch aracterizes th e  s tro n g  coupling 
region fo r the  fu n d am en ta l theo ry  is presum ably  the  
P lanck  m ass m P|M<:k. A t energies m u ch  h igher th an  th e  
P lanck  m ass, the  theory  becom es w eakly coupled, and so 
no  singu larities a re  expec ted .53 A t energies m u ch  lower 
th an  the  P lan ck  m ass, the  induced g rav ita tional term  
dom inates,

£(fc2)~ 2fc2 +  m 2(fc2) —+ m 2(0 ) =
1

16-jrGj.
(6.70)

reflecting  the  p resence o f  an  ex tra  pow er o f  k 1 m u ltip ly 
ing £(fc2) - 2  in E qs. (6.67) and  (6.70), and giving g rav ita 
tion  th e  fo rm  seen in  observational astronom y.

55F or discussions o f singularity  avoidance in order-Л 3 
theories, see H u  (1979), Tom boulis (1980). and H asslacher and 
M otto la (1981).
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APPENDIX A: DETAILS FOR THE BASIC 
THEOREMS

1- Arguments excluding dimension-two 
Lorentz-scalar operators

a. Pure non-Abelian gauge theories in axial 
and covariant gauges

T h e  necessity fo r gauge fix ing  and ghosts requires, in 
th e  case o f  nonA belian  gauge theories, th a t we give a 
som ew hat m ore carefu l a rg u m en t fo r the  absence o f 
d im ension-tw o L o ren tz-sca lar and  in te rnal sym m etry- 
m  v a n  an t o p erato rs th an  w ould be needed in the 
A belian  case. L et m e give f irs t th e  a rg u m en t w orking in 
axial gauge

Л г' = ° .  (A1)

Since axial gauge is a  canonical gauge (H anson et al., 
1976), no  ghost fields a re  present. H ence invariance 
under the subgroup  o f  the  L o ren tz  g roup  w hich leaves 
th e  z axis in v arian t and  in variance  un d er global in ternal 
sy m m etry  tran sfo rm a tio n s restric t a  cand idate  fo r a ,  to 
have  the  form

^ l = A ‘xA ix+ A ‘A ‘y+ A ‘lA ,‘ . (A2)

C onsider now the  local gauge tran sfo rm a tio n

S K = W - g o f IJkAl<t>k , (A 3)

w ith  ф*=ф*(х,_у,г) independent o f  z, so th a t

6Л = Э,Ф 7- gaf ‘ikA Jz<t>k= 0  . ( A 4 )

U n d e r th e  tran sfo rm a tio n  o f  E q . (A3) we have

8<?'2=А]'дл Ф1+А1ау Ф1+ А !д 1Ф1=£0 , (A5)

and  so <Уг is not in v arian t u n d e r th e  subclass o f  local 
gauge tran sfo rm a tio n s w h ich  preserves th e  a ‘ *-0 gauge 
condition . T h u s Eq. (A2) is no t a  physically  observable 
d im ension-tw o L oren tz-sca lar operato r.

I give n ex t a  co v arian t gauge a rg u m en t, fo llow ing  the 
no ta tio n  o f  K u g o  an d  O jim a (1979), w hich  uses an  inner

p roduct (■) and  an  o u te r  p ro d u c t (X )  to  deno te  c o n t r a c 
tion  o f  in te rn a l sy m m etry  in d ices w ith  6{ a n d  f ‘Jk, 
respectively. In co v arian t gauge, w e hav e

( A 6 )

w ith the gauge-fix ing  (G F) an d  F a d d e ’ev-Popov (F P ) L a 
g rangian  term s given by

* G f = - & B A u +  ^ B B

2a0 2

^  =  ам -£ о Л ц Х , c f = c ,  f

B  +  —  & A ,
<*o

’ - c  . (A 7 )

In E qs. (A 6 ) and (A7), Я  is an  a u x illia ry  sca la r f ie ld , ccq 
is a  gauge p a ram ete r, an d  с is th e  F a d d e ’ev -P opov  g h o s t  
field. T h e  L ag ran g ian  d en sity  o f  E q . (A 6 ) is i n v a r ia n t  
under th e  B ecch i-R o u e t-S to ra  (B R S, 1976) t r a n s f o r m a 
tion

SA p ^ X D ^ c  ,

8 c = A g „ ( c X c ) /2  ,

6 ? = i k B  ,

SB = 0  , (A S )

w ith A. an JC-independent p a ram ete r w h ich  a n tic o m m u te s  
w ith с and  c, and  all physically  observab le  o p e r a to r s  
m ust be sim ila rly  in v arian t. In  co v arian t gauge, L o re n  t r 
invariance and invariance  u n d e r g lobal in te rn a l s y m m e 
try  tran sfo rm atio n s re s tr ic t a  c an d id a te  fo r  /92 to  h a v  > 
th e  fo rm  (for any co n stan t jS0)

^ = V ^ + / V - c  . (A  9)

U n d er th e  tran sfo rm a tio n  o f  E q. (A 8 ), th e  ch an g e  in 
is

8^ '2= 2А “-Хдцс +  Д ,[/Х Вс + y A g 0c - ( c Х с ) ] ф О  ,

(A  10)

and  so is n o t a BR S inv arian t. H ence  Eq. (A9) d o e s  
no t give a physically  observable d im en sio n -tw o  L o re n tz -  
sca la r operator.

W e have th u s concluded, by w ork ing  in e ith e r ax ia l o r  
co v arian t gauge, th a t in  a pu re  non-A belian  gauge th e o ry  
there  a re  no L o ren tz  and  in te rn al sy m m e try - in v a ria n t 
operato rs ^ 2, and hence n o  action  den sity  term s f f  1R  in  
curved space-tim e.

b. M assless supersym m etric theories with sp in -0  fields

A n  extension o f  the above a rg um en t excludes L o re n tz -  
and in ternal sy m m etry -invarian t d im en sio n -tw o  o p e ra 
tors <#*2 in m assless supersym m etric  theories w ith  sp in -0  
fields. Let <p be a m assless spin-0 field w hich  has a M a -  
jo ran a  sp inor supersym m etry  pa rtn e r tp. U n d e r su p e r-
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sy m m etry  tran sfo rm atio n s, <p tran sfo rm s5 as

8< р= И .$а-аф ) , ( A l l )

w ith a  an ^ -in d ep en d en t param eter w hich anticom m utes 
w ith  ifi. L o ren tz  invariance  allows a  candidate  fo r 0 г o f  
th e  form

^ 2 = < P 2 .  ( A  1 2 )

hu t u n d e r su p ersym m etry  transfo rm ations th e  change in 
is

(A13)

H ence is no t an in ternal sym m etry  invariant, and an 
action  d ensity  term  0 \ R  is excluded. (A dim ension-tw o 
su p ersy m m etry  in v arian t is readily constructed  by adding 
to  a fe rm io n ic  piece proportional to ф ф /т 0, bu t th is 
requ ires th e  in tro d u c tio n  o f a m ass param eter m 0.)

2 . E x tension  to  m assive  regulator sch em es

W hen  m assive regu lators are em ployed, we learn from  
th e  en u m era tio n  o f  Sec. II .С  th a t there  a re  L agrangian  
density  te rm s o f th e  form

7” = M 4, U‘ =  M 2R  , (A14)

w ith  M * and  M 1 schem atically  ind icating  polynom ials 
w hich  are, respectively, q u a rtic  and q u ad ra tic  in the  re
g u la to r m asses. T h e  term  T'  con tribu tes to the  induced 
cosm ological co n stan t Aind /G inll th rough  the o p erato r 
T ( 0) o f  Eq. (5.19a), while th e  term  U' con tribu tes to  th e  
induced  g rav ita tional constan t G ind th rough  the operator 
1 /(0 ) o f E q . (5.19b). T h e  coefficients o f T '  and  U' 
(w hich in general depend logarithm ically  on the  regula
to r  m asses) are determ ined  by th e  requ irem ent th a t 
Ajnd/ G ilul and  G~J  rem ain  fin ite  as the regu la tor m asses 
ten d  to in fin ity . C onsider now  th e  differences

S(A ind/ G ind) =  (A ind/ G i„d ) massive - ( A iBd/G ind  ̂ dimensional > 
regulator regularization

^ ( ^ i n d  ) =  ) massive ind ) dimensional » ( A  15 )
regulator regularization

betw een th e  fin ite  induced  constan ts calcu la ted  using 
m assive  regu lato rs, and th e  fin ite  values calculated  using 
d im ensional regu larization . A ccord ing  to  th e  d im ension
al a lg o rith m , differences such as these betw een th e  fin ite  
values o f connected , one-partic le  irreducib le m atrix  ele
m en ts evaluated  in tw o d ifferen t regu lariza tion  schem es 
m u s t be represen tab le  as the  corresponding m atrix  ele
m en ts o f  a L agrang ian  density polynom ial 8J f  form ed 
fro m  th e  bare  m asses, th e  bare fields, and Э /Э х^. T he 
po lynom ial canno t contain  th e  term s T'  and  U'  o f  
E q . (A 14), since any nonzero  m ultip le  o f these bases is 
necessarily  a t least q u adratica lly  divergent as the  regu la
to r m asses ten d  to  in fin ity . T he polynom ial also 
can n o t co n ta in  any field-dependent d im ension -fou r L a 
g ran g ian  te rm s w hich  survive in the flat space-tim e lim 
it, since these w ould give rise to  differences in th e  f la t 
space-tim e S  m atrices calcu la ted  in th e  tw o regu lariza

tion schemes. W hen th ere  are no  bare m asses and no 
scalar fields ap art from  m em bers o f m assless superm ul- 
tiplets, no o ther d im ension-four operato r is p resent in 
curved space-tim e, and 6-2” then  vanishes. W e conclude 
th a t

fi(Aind/G ind) = S ( G j ) = 0 ; (A16)

th a t is, under th e  necessary conditions discussed in Sec.
II.D , th e  renorm alized  induced grav itational action  ca l
culated using m assive regu lators is unique, and  agrees 
w ith th a t calculated  by using th e  m ethod  o f dim ensional 
regularization.

APPENDIX B: DETAILS FOR THE CALCULATION 
OF G ,J  IN SU(n) GAUGE THEORY

1. Transformation to one-loop exact 
renormalization group

In an  SU(n) gauge theory , th e  b ehav io r o f  physical 
param eters under changes in th e  ren o rm aliza tio n  sub
traction  po in t ц  is governed [th rough  Eq. (4.18)] by th e  
function  /3(g), w hich h as  th e  pow er-series expansion

( B l )

Only th e  first tw o coefficien ts b 01 a re  gauge inv arian t, 
and only these coefficients a re  in v arian t under coupling 
constan t tran sfo rm atio n s g —*g‘ o f  the  fo rm

1л + 1 (B2)

w hich are  an aly tic  in a  ne ighborhood  o f g = 0 .  ’t H o o ft 
(1979) poin ted  ou t th a t the  n o n invariance  o f  Ьг, ■ ■ ■ 
un d er the  tran sfo rm a tio n  o f Eq. (B2) cou ld  be exploited 
to  define a  tran sfo rm a tio n  w hich , in a fo rm al pertu rba- 
tive sense, m akes the  tran sfo rm ed  coefficien ts ■ • ■ 
vanish. G lobal conditions fo r  the  ex istence o f  a  non
singu lar 4  H ooft tran sfo rm  w ere stu d ied  by K h u ri and 
M cB ryan  (1979); if  sin g u lar tran sfo rm a tio n s  are  no t ex
cluded [see F rish m an , H orsely , and  W o lff (1981) fo r a r 
gum ents suggesting  th e  physical re levance o f s ingu lar 
coupling co n stan t tran sfo rm atio n s], th en  a tran s fo rm a 
tion to  a  tw o-loop exact ren o rm aliza tio n  g ro u p  can  a l
ways be m ade, g iving

/0(g) =  —(Tbog3 +  b ]g:) (B3)

Follow ing A d le r (1981), let us now m ak e  a fu rth e r, non- 
analy tic  tran sfo rm a tio n  to  a  new  “ reduced" ru nn ing  cou
pling co n stan t gn fo r  w hich  a  one-loop ren orm alization  
group  s tru c tu re  is exact. (In  the  app lications o f  the  one- 
loop exact ru n n in g  coupling co n stan t in  Sec. V .D  o f th e  
text, th e  su b scrip t R  is om itted .) W riting  ЯЛ “ £ я , 
5 s g J, th e  tran sfo rm a tio n  is sim ply

1 1 , r 4 5 '
2 ~ u JB  p m 1) ’

$ { a )= g f3 ~  — (-5-Ь0й 2 +  Ь |й 3) , (B4)

Rev. Mod. Phya., Vol. 54. No. Э. July 1982



762
A dle r Einstein gravity as a symmetry-breaking e ffect

w hich is easily seen to  give a nonsingular m apping  from  
th e  half-line 0 < 5 <  oo to the  half-line 0 < й л <  oo. T he 
renorm alization  group  s tru c tu re  in the new variable a R 
is determ ined by &R(a R), given by

Э ( а » ')) = Д ( а ) ^ 1  = /3 (а )(  _ 5 ^ )
a“ aa

(B5)
and so has exactly  a  one-loop form .

E xplicitly  in tegrating  Eq. (B4) gives fo r th e  tran sfo r
m ation

1 1 _  
ая a

a —

log 1
+  10g( 1 + д й )

a a

(B6 )

Which fo r sm all а д  ^  be deve,oped in t0  a  series 
Sion, r

_ L  i ._  =  — — a log 
“ л a

1
a n

(-да)"
n (B7)

E q u atio n  <B7) can be inverted  to  give an  expansion fo r a  
in  term s o f  and lo g g e r* ),

* = a R( l + a Rf )  ,

/= i  a*/*.
*=o

/ о —a lo g fo ff j t)  ,

/ > = / S W o - < * 2 ...........  (B8)

Because / 0 con ta ins a  log arith m , th e  tran sfo n n a tio n  is
f  a * = 0 ’ w hich  is w hy th e  coefficient b i 

can be transfo rm ed  to  zero. Substitu ting  Eq. (B8 ) in to  a 
pertu rb a tio n  series w hich has been brough t t o ' t  H ooft's  
form  yields a  m odified pertu rb a tio n  series in term s o f  the  
new  ru n n in g  coup ling  co n stan t gR, fo r  w hich th e  one- 
loop  ren o rm alizatio n  group  is exact. T h e  m odified ex
pansion  h as the  form  o f  a  jo in t  pow er series in a R and

nrd  Г  Г  '  a  PhyS/ Cal Чиап‘^У w ith  leading-
fo ™  &k' th e  generaI te™  ha* the
^ - . £ й г * >к " “ ь  ^

2. Leading short-distance contribution to ♦ {/)

A sy m p to tic  freedom  im plies th a t th e  leading short- 
d is tan ce  co n trib u tio n  to  9 ( t i  is obtained by do ing a 
low est-o rder p e rtu rb a tio n  theo ry  calcu la tion , w ith the  
co up ling  co n stan t g  rep laced by th e  runn ing  coupling 
c o n stan t g 2U). T h u s  fro m  E qs. (5.43) and (5 .4 9 ) we get

ЧЧ' ) * ' 4  < ^ F 2M 2(0)))oe

- < F 2( x ) ) I e ] , (B9)

w ith  J?2 a  sh o rth a n d  fo r / t <rF rtA<r, a n d  w ith  th e  s u b s c r ip t  
0 E  in d ica tin g  th e  E u c lid ean  v acu u m  e x p ec ta tio n . In  
low est-o rder p e r tu rb a tio n  th eo ry , th e  sq u are  b r a c k e t  in  
Eq. (B9) is given by

{ ^ ( F 4 x ) F 4 0 ) ) \ e - { F 1)Ie

= 2 H ^ ( F ,ka(x )Fjivm ) ) 0E]1

= 2[<5r(3[x,/<i1u )a (̂ { J(o))>0£]2 , <Bio)
w ith [ ,]  in d ica tin g  a n tisy m m e tr iz a tio n  o f  in d ices. S u b 
s titu tin g  th e  E u clid ean  F e y n m an  p ro p a g a to r

{ ^ A ‘a(x )A {{ y ) ) )0E = ------ f 5"  , ( B I D
(2тг)Чх —у )2

and carry ing  ou t th e  d iffe re n tia tio n s  an d  c o n tra c t io n s ,  a n  
e lem entary  ca lcu la tio n  gives

[ < ^ ( a l v ^ , ( * ) 3 t^ i , ( 0 ) ) > o i r ] 2

3 X 2 1 , 2 I

- T S * 4 "  - " 7

i ) ----------- !-----------
(2 ir) /*( — log~s?2t )2

(B  1 2)

yielding the value o f  C *  given in  E q. (5.52) o f  th e  t e x t .

3. Dimensional continuation evaluation 
of comparison integrals

I give here  tw o  ev aluations o f  th e  in teg ra l o f  E q . (5 .5 5 )  
by d im ensional co n tin u a tio n . In  th e  f irs t  c a lc u la t io n ,  
only th e  pow er o f  и in  th e  in teg ran d  is d im e n s io n a l ly  
continued, w hile  the  lo g arith m s are  k e p t in d im e n s io n  
four. In the  second ca lcu la tion  [res tric ted  fo r  s im p l ic i ty  
to the  leading term  in 0 (u)] bo th  th e  p ow er o f  и a n d  t h e  
logarithm s are  d im ensionally  con tin u ed , c o rre sp o n d in g  t o  
use o f  the  2<u-dimensional vacuum  exp ec ta tio n  in  E q .  
(5.22). T he tw o calcu la tions give th e  sam e  answ er, a s  e x 
pected w here a fin ite  rad ia tiv e  co rrec tio n  is  ev a lu a te d  b y  
different reg u lariza tion  m ethods. In  th e  c o n tex t o f  t h e  
second calcu la tion , we can co m p are  th e  an a ly tic ity  p r o p 
erties in a> o f  th e  d im ensional c o n tin u a tio n  o f  a  f i n i t e  
sum  o f  F eynm an d iag ram s, w ith th e  an a ly tic ity  p r o p e r 
ties o f  the  in fin ite  sum  o f  F ey n m an  d iag ram s c o n ta in e d  
in  th e  runn ing  coupling  co n stan t fa c to r g 4(t).

In 2a> d im ensions, the  fa c to r d 2ax  in E q . (5.22) is p r o 
portional to  and since T (x )  has c an o n ica l d i 
m ension 2to, th e  leading pow er b ehav io r o f  th e  v a c u u m  
expectation  is H ence w h en  t h e  
lo g arith m ic  sum  © (u ) /( lo g i<)2 is kep t in fo u r  d im e n s io n s  
(and when a no rm aliza tion  fa c to r  o f  i t 'V j t2 is  o m it te d ) ,  
th e  con tinuation  o f  th e  in tegral o f  E q . (5.55) is

r “ оГ Ы и и ш- * 0 % . е ы
(loga )?- = L ° d u u

___  0 Ы

(logu )J

(B 13)

and is convergent a t и = 0  when Re<u <  1. In o rd e r  to  
pu t Eq. (В 13) in a form  w here i t  can be an aly tically  c o n -
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tinued  to  ai =  2, let us first m ake th e  change o f variable

Г  AJ logUo- 1

_(<u— 1 )u
- 0 ( e —  ] , (B 14)

w ith  th e  c o n to u r o f  in teg ration  runn ing  along the posi
tive  real axis. W hen  Rera <  1 and I m a  >  0, the in tegra
tion  c o n to u r can  be deform ed to  the  con tour С  o f Fig. 5, 
w hile  w hen Reto <  1 and Im<u < 0 , th e  con tour can be de
fo rm ed  to  a  c o n to u r C m, obtained by reflecting С  in the  
real axis. O nce the  co n to u r has been deform ed to  С  or 
C*, th e  in teg ral o f  Eq. (B14) converges fo r any value o f 
Rem, and we can  con tinue  Re<u to  2. Since H erm iticity  
o f  a  q u a n tu m  field theory  requires th a t th e  regu lariza
tion  p rescrip tio n  be m anifestly  real (contour prescrip tions 
can  en te r on ly  th ro u g h  Feynm an propagators), th e  lim it 
as со *2 m u st be defined as the  average o f  dim ensional 
co n tin u a tio n s to  со— 2 + ie  and  to  <a =  2 — ie. T h a t is, we 
m u st average th e  evaluations of Eq. (B14) w ith со= 2  on 
th e  co n to u rs  С  and  C*, or equivalently , take the  real part 
o f  th e  evaluation  on th e  co n to u r С  alone, yielding the 
fo rm u la  given in  E q. (5.56) o f  the  text. T he in 
equivalence o f  th e  evaluations on С  and C* im plies th a t 
th e  an a ly tic  co n tin u a tio n  o f Eq. (B14) to R e a  >  1 has a 
b ran ch  cu t ru nn ing  along th e  positive real axis from  
to — 1 (space-tim e d im ension two) to a>.

T o  study  th e  effect o f dim ensionally  con tinu ing  the 
lo g arith m ic  term s in  Eq. (5.55), we note th a t a  m om en
tu m  space fa c to r log к 2 continues in to

( k 2)a~2 . (fe2)“ - 2-  1
- +  co un terte rm  = -----------г----- . (BI5)

a  — 2 со— 2

a n d  co rrespond ing  to this, a  coord ina te  space fac to r 
lo g (—jc2) =  log/ continues into

( x 1)2—
2 —0

( x 2)2- " - l
2 —co

H ence let us consider th e  in tegral

1/ 0
du и

u ' - l

(B16)

(B17)

w hich  w hen y = 2 —<u describes the  co n tinuation  o f the  
leading logarithm ic  term  in 6 (u), and when y = 0 
reduces to the  in tegral, studied  above, in w hich the  loga
r ith m ic  fac to r is not continued,

I(eo,0 ) =  f  du и a 
J  о

1

(laga )
(B18)

T o  study  th e  <u-plane analy tic ity  o f Eq. (B17), we expand 
th e  fac to r ( 1 — u r)~2 in to  a pow er series in  u r (since 
u 0 <  1, th is  is p e rm itted  fo r ^ > 0 ), and  then do the  и in 
teg ra tions assum ing Rea>< 1, giving

I(co,y) =  y 2 f t> °du u 2  +  l ) u " r

Mor + l ~ M 
n y +  I — CO

(B 19)

W hen у  is regarded as a  param eter independent o f со, 
Eq. (B19) shows th a t I(co,y) is a m erom orphic  function
o f ш, w ith  poles a t co*=\+ny,  n = 0 , 1 ,___  In the lim it
as y —>0 fo r fixed eo, these poles coalesce in to  a  branch 
cut running from  co= 1 to  < u = -fo o , w hich is ju s t the  
analyticity  s tru c tu re  o f I(co,0) w hich was in ferred  from  
the discussion follow ing Eq. (B14) above. W hen the 
value у = 2 —<u, corresponding to co n tinuation  o f th e  log
arithm , is substitu ted  in to  Eq. (B19), we get 

H a , 2—со)
..2л + I — <ц(п +1)uo_______

2л  +  1 —coin + 1)

= ( 2 - Co )u l0~ a 2F l 1 = »
2—co 2 — co

(B20)

w ith the  hypergeom etric  fu n c tio n  (a —2 ,b;
c = b  +  l;z) defined by

(B21)

T he singularities o f  Eq. (B21) a re  poles a t b„ =  — n, co r
responding to  poles in со a t a ,  given by

, 2n + 1 „
1 <<a. = --------т  <2  ,n +  l

(B22)

and a cu t along the  real z axis fro m  z  — 1 to  z -  tc , co r
responding to a  c u t along the real со axis from  co =  2 to  
со — xi.  H ence there  is an in fin ite  accu m u la tio n  o f  poles 
on th e  real axis to  the left o f co=2 , and  a b ran ch  cu t on 
the real axis to  th e  rig h t o f  as —2. A s a result, the  lim it 
со—*2 can n o t be taken along th e  real axis, and  instead  
m ust be defined as the  average o f  Limits from  above and 
below th e  real axis, giving the  real p a r t  p rescrip tio n  o f  
Eq. (5.56). T he fa c t th a t со — 2 is a  b ran ch  p o in t is a 
d irect resu lt o f  the  fa c t th a t I(co,2—co) is th e  sum  o f an 
in fin ite  num ber o f  F eynm an d iag ram s. I f  the  sum  in 
Eq. (B20) is tru n ca ted  a t n = N ,  co rresponding  to  re ta in 
ing only co n trib u tio n s to  th e  ru n n in g  coup ling  co n stan t 
th rough  W-loop order, one gets a m erom orph ic  function  
o f  со w hich is regu lar at <a =  2. T h is  is the  resu lt expec t
ed from  th e  d iscussion  o f  th e  d im ensional con tinuation  
o f  ind iv idual F ey n m an  d iag ram s given in Sec. III .

W e m ust still show  th a t, as со—*2 in  a  real p a rt o r 
p rincipal value sense, I  (со,2 —со) app roaches the  leading 
term  o f  E q. (5.56) o f th e  text. T o  do  th is , let us again 
m ake  the  change o f  variable и = e ~ “

„  „(«-D u
I(co,2 - c o )  =  J' loguj

dv-

giving

1

1 —e (o>—2Iu

(2 — co)v

(B23)

F o r  Rea) <  1, Im <B>0, and  и in th e  f irs t q u ad ran t, we 
have

R e [(<в — 1 )i>] =  Re(a>— 1 )Reu — Im(<u — 1 )Imu < 0  ,
(B24)

Re[(<u —2)u] =  Re[(d>— l)u ] — Reu < 0  ,
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and so the  con tour o f  in teg ration  can be deform ed to  С  
w ithou t encountering  poles com ing from  vanish ing  o f  
th e  d enom inato r in  E q. (B23). W e can th en  set 
g>—2 + j'c , giving

R e [ / ( 2 + / e , — i 'e ) ]= R e

w ith  F (v ,e ) given by 

F ( u , f ) = -

logu0 1 u 2

(B25)

i ?( u , e ) = H - 0 {62 |i) | 2), | v | « 6  

F (v ,e h  1

— ]

s in h y  | ev |

t I ^ I

< 1 ,  и im a g in a ry  . (B26)

Since the  in tegral o f  Eq. (B25) is absolutely and  u n ifo rm 
ly convergent fo r all e > 0 , we can tak e  th e  lim it as e —»0 
inside  th e  in tegral, g iving

/ ( 2 ,0 ) =  lim  R e [ / ( 2 + / e , —i'e)le—*0

= R e du
v 2 (B27)

T h e  resu lt o f  th is ra th e r tedious analysis th u s  reproduces 
the  leading, 0 = 1 ,  te rm  o f  E q. (5.56).
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Erratum: Einstein gravity as a symmetry-breaking effect
in quantum field theory
[Rev. Mod. Phys. 54, 729 (1982)]

Stephen L. Adler
The Institute fo r Advanced Study, Princeton, New Jersey 08540

The following clarifications should help in reading Sec. 
V I:

(1) Equation (6.11) is obtained by substituting Eq. (6.9), 
with в ' —в ,  into Eq. (6.7). The step from Eq. (6.13) to
(6.14) then makes use of Eq. (6.11), with в  replaced by 
в ~ 1 and with g j j  replaced by g *B .

(2) Equation (6.30) is obtained by combining Eq. 
(6.28b), which rain be rewritten as

.M l! r t f ’ ,gal?] +

with Eq. (6.29), which implies the vanishing of the first 
term on the left-hand side o f the above equation.

(3) In Eq. (6.58), </1̂ .(0 ) ) is a shorthand for ( A ^ tO ))j ,  
with J  [gap ] the externa] source current.

(4) In deriving Eq. (6.59), use has been made o f the 
identity

0 =  /  d U e*V > lv( x ) V ? ( y )  , 

which follows from Eq. (6.58b) and the fact that
linear in h From  this identity we then get

0  =  <-5Ч[ K, (x) +  K2U )]  K2(0 ))  >0 

= > ( ^ г ( [ У , ( х ) + У 2( х ) ] [ У 1( 0 ) + У 2(0 )])> о

=  < ^ ( F ,U ) F ,( 0 ) ) > 0- < ^ - ( K 2( x ) F 2(0))>o •

I wish to thank A. Zee for comments on Sec. VI.
In the references, the paper o f Brout, Englert, and Gun 

zig (1978) appeared in Ann. Phys. (N .Y.), not in Ann. 
Phys. (Paris). The citation o f U tiyam a and D eW itt (1962) 
in Sec. V I.D  should also refer to DeW itt (1950) [D eW itt,
B .S., 1950, Ph.D . thesis (Harvard University), unpublish- 
ed].

Rev. Mod. Phy*., VoL S4, No. 3, Ju*y 1982
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APPENDIX A: SCALAR PROPAGATOR CONSTRUCTION

I construct in this ap p end ix  the s c a la r  p ro p a g a to r  
л “*(*, j )  defined in Eq. (81) of the text, which sa t
isfies

DuDu у) = (Do Do + у)

~ - 6 ‘b63( x - y ) ,

c ;w (* )  = X„(*)x w(at),

D‘ w(x)~ + &0(x) x j w (x), (Al)

Copyright ©  1978 by the American Physical Society. Reprinted with permission.
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*«(*) = (1 -  r  co th r),

where I have set к *  1. To change to general к one 
simply uses the scaling law

= к&а,1(кх, ку; 1). (A2)

The rev ersa l in sign of Хц as compared with Eq. 
(49) [which I have made because the sign in Eq.
(A l) corresponds to the convention I used in my 
calculations] has no effect on л°ь, since D“D“ is 
even in X,. As in the vector propagator calculation 
in the text, I make extensive use of the resu lts  of 
Brown el a l .2° for propagators In pseudoparticle 
fields. The firs t  step of the calculation, following 
Manton,31 Is to make a  complex gauge tran sfo rm 
ation which changes the potentials from X£, bj* of 
Eq. (A l) to with

XJ = XJ= -p  (1 - r  cothr) ,

5 J '=  — —  (1 -  r  cothr) + i6 ‘* .  

Introducing a m atrix  M°\x) given by 

M°i (x) = c o sh r^5" -

(A3)

- i  sinhr€“JI —  + ■ ■x?_ x-x1 
r (A4)

M“J(x)M*, W = 6 ‘,b, 

it is  straightforw ard to verify  that

(AT)

we get the desired  propagator Д““ by transform ing 
both SU(2) indices with th e m a tr ix  M,

Д”6(х, у) = M°i (x)Mbb[y)X?l'(x, у). (A 8)

From  this point on I w ill w ork exclu sively  with 
the gauge-transform ed potentials of Eq. (A3). F o r 
notations! convenience I w ill drop a ll b a rs , but it 
should be kept in mind that I am now constructing 
the propagator X in the new gauge, not the final 
propagator Д given by Eq. (A8). T he advantage of 
the potentials of Eq. (A3) is  that they take the form 
used by Brown et a l. as the startin g  point for their 
analysis,

A1" (*) = (AJl i J l) *  -7)<* ’“ ■’‘V  lm (x ),

n*> e  r  • e e *° ’ axJ
(A9)

— 7]*1'  )v  110 V' V
Note that although ir(x) depends on x°, the potential 
j4““ (*) depends only on the spatial com ponents x1 
of x. Hence if I define a Euclidean tim e-dependent 
propagator Л°ь( * , ? ,х ° ,у 0) by

D f D ;^ f x ,y ,  x°, y°) = -V b6*{x -  y),
(A10)

D“ w(x) = j - ^  + K o M x Jw W ,

then it w ill actually depend only on the tim e d iffe r 
ence X = x " - y ° ,  and the desired  propagator a ^ f x ,? )  
is  obtained by integrating over the tim e d ifferen ce ,

Д*‘ (Х ,У ) = /  <fXA‘ * (x ,y ,X ) . (A ll)

The final observation needed, in ord er to make 
contact with the work of Brown et a l . ,  is  that ir(x) 
can be w ritten as a contour in tegral,

* (* )  =
е ,г° sinhr

1 /-—lit i
K > r .

(A12)

which im plies that

о!сМ‘*(х) = М'а {х Щ . (A6)

So once we have obtained the sca la r  propagator 
S ^ U ) satisfying

I now will l is t  a number of re su lts  from  the an - 
a lysis of Brown et a l . ,  with occasional sm all 
changes in notation, Brown et a l.  construct the 
general s c a la r , isovector propagator Ь л {х ,у ,з? ,У °) 
satisfying Eq. (A10) for potentials A “ (x)
= - V " >*“"’a"lnir(x) representing a general W -pseudo- 
p artic le  (instanton) configuration

ir(x) = ( l ) + 5 2  , x , = x - £ , . (A 13)
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Their result takes the form of a sum of two pieces 
(with x ,y  Euclidean four-vectors)

д ‘ Ч *,:у) = Д“Ч * ,з') (1> + Д‘,ь(* , :у) (3). (A 14)

The first piece is constructed in term s of spin-? 
propagators by the recipe

Д“Ч* -------- и°Ь{х ’ У}____
КХ'У) 4*4x-yYir(x)ir(y)’

V°',<.x,y) = b t r [ f ‘F " ' ( x ,y ) W ' ( y ,x ) ] ,

F " b , y ) = ( D + ' Z p ; 1^
a * j  Уз

(A 15)

^  = (1,7^), T** = ( - i l Ti),

■Н = 8и(2) Pauli m atrices, x1 = x - z sl y1 = y - z l 

The second piece has the form

Д04/* V)12) =
’ 4ir*ir(x)ir(y) ’

c.tu,y)= E ф̂мс,,„ ;̂ы,

* £ ( * ) =  £ v i “*r  * i
C = 6ru6Jlr6ru6» u _______1

( z , - 2 , ) 2 (гг - г „ ) 2

(A16)

у /Р.сНдд _
\ P .P .  SV P .P .  “  PrP„ '

p.p,
PrPn " /  U u- 2 j

and with the numbers35 AJD determined by the 
matrix inversion problem

g „ h
P ,P v

■U! = 6 (A17a)

(A 17b)

To make use of these rather formidable looking equations, I note that Eq. (A13) becomes identical to Eq. 
(A12) under the substitutions

( D - 0  ,

z , - ( s , 0 ) ,  xs2- ( x ° - s ) 2 + x2 ,

E - f ds• A—(1/Z”)e,s,

(A 18)

so that the Sommerfield-Prasad solution is in effect a continuum of complex instantons. Corresponding to 
the substitution (1) — 0, the terms (1) in Eqs. (A15) and (A17) must also be deleted. The transition from 
sums to integrals can he made with no ambiguity in A ^ jc.y)111, giving (recall that X =У, - у 0)

Д“6(х, y)<ns f dx Д“‘ (х, у, X)(1)

■ f dX 1̂ 1
« „ • Щ - у П Ч  Л 5 Д Г  • (д ц )

, 1 f ,  I, t  • x + i(x° -  s) т • y - i { y ° - s )
F<*'(x,y) = - Tir j u s e  ъ  + {х6 _ $)Г -  r  + (yl_ - s-)-T- ■

Making a shift s - s  + *° in the integration over s in F (,)(x,y) and a shift t~t  + x° in the corresponding in
tegration over t in F {*\y,x),  gives

ДаЧ x y)<u = —--------- — --y 1  f  ds e 13 f  dt e “ f  л  r y'  ,У1 (2irY sinh |xI sinh|y| J J  J  <x-y)2 + *
Г т -x + r t .  т - x - is т *y + i(s + \) _t T - y - { ( t  + \)~\

x * tr L1P77^T iPTp- 7M s+'*F' f  + v+xy J '

(A 2 0 )

Now make, in the order indicated, the following changes of variables:

(i) X — z -  £(s + 1) = г -  w ,

(ii) a/ = 5<s + 0 i v = f ( s - 0 ,  dsdt = 2dwdv

(A 21)
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T his gives as the final result the following sym m etrical-looking form ula:

* * < „ , » .  . •  - J j i  f  *  [ • ■ "  * ,  d  . C C - - »
(2тг)« sin h  |x| S in h ly l  ) шЩ J . m . i g  J  - - . n r  ( +  (z -  •»)

. . .  Г т • x + i(w -  v) _c r  ■ x -  i{w  + v) т ■ у + i{z  + v) _ b f  • у -  г(г -  v) 1 
Л  £* + («/- u ) 2 ' t 2 + (w + v ) 1 y2 + (z + u) 2 ' y2 + ( z - u ) 2 J

(A22)

Turning next to the second piece, I note that 
tim e-translation  invariance im plies that hla 
= h(s -  u), Anticipating the fact that only H 
= v) is  needed, I proceed f ir s t  to extract
this quantity from the m atrix inversion problem of 
Brown et a l .  stated in E q . (A17). Because the ex
p ressions of E q s. (A16) and (A17) contain singular 
facto rs  ( z „ - z j ' 2, e tc ., it is necessary to sepa
rate the various integration contours r ,s ,u ,v  by 
sm all imaginary displacem ents. In order to do 
this in a way which preserves the validity of 
various algebraic operations used by Brown et a l. 
in getting their solution,”  it is necessary to sym
m etrize over all possible "stacking o rd ers” of the 
contours on the com plex plane, a procedure which 
w ill eventually lead to the appearance of principal- 
value integrals in the answ er. Summing over v in 
E q . (A lia ) gives

» - ? * < ■ - > -  1A25’ 
As a consistency check , note that if we multiply 
Eq. (A23) by p( and sum , we get

Я  £  K il „ V "  pr3- p J
s , t  P| тфа \ т

= o=  E  Рзг ,
j

but in the continuum lim it

?  C .l l  dse'" °

(A26)

(A27)

so that Eq. (A26) is  in fact sa tis fie d . P assin g  to 
the lim it in E q . (A 25), and rem em bering  that we 
must average over the ca se s  where the r  contour 
goes over and under s ,  we get

(A 23)

Dropping the (1) in the expression for g 3t in Eq. 
(A 17b) gives

T  I s . ' =D T  P'1/P‘ , ~ 1
■ n - U r - Z . ) 2. PI 

so that

(A 24)

The final step in the calcu lation  i s  to make the 
transition from s sum s to in teg ra ls  in Eq- (A16), 
bearing in mind the n ecessity  of sym m etrizing 
over the ordering of integration contours. Noting 
that

4'-)№'"‘ xTllx ,v = - x 4 r - s )  , <A29)

we get from E q . (A16) (again with x.=*°-y°)

Д " ( 5 ,у ) , и *  j  dx Да*(х, у ,

1 lx|______ lyl . J
(SiP  sinh |5f I sinh I? |

/  _ Л  г  мИ . Л  | j d r  e ir f d s
[ X 2 + (x °  -  Г)2] [ V  + (X° -  S )2] [ r + ( У  -  rY ] [ Г  + U  -  s ; 1 

4 Г ir f  j  Г ds dv h(s -  v)
’ Ш 3 i d r e J  d u e Jc( r - s ) ( u ^ v )

[ 3P + (x° -  r )2l [ P  + (*° -  s )2jly* + ( 3»'3 -  u )2] [ y: 

Again it is  n ecessa ry  to make, In the order indicated, the following changes of variab les

+ ( y ° — ^*1 }
(A 30)
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F ir s t  term  in {  }:

(i) r - r  + x°, s - s  + x° ,

(ii) X - z - i ( r  + s ) = z - w  , (A31a)

(iii) u) = K r + s ) , v *  f ( r  — s), drds = 2duidv .

Second term  in {  }:

(i) r - r + x ° ,  s - s + x ° ,  u - u  + x°, v - v  + x ° ,

(ii) X - ^  -  |(и + и) , (A31b)

(iii) z , = ± (r + s ), u> = ±(u + v), u2 = ^ ( r - s ) ,  vt = H u -v ) ,  

drds = 2dzjivv dudv -  2dwdvl .

A lter these transform ations, the only place where w appears is  in

J d w  h(z3 -  v2 + v l -  w) = -  1/ir , (A32)

giving as the final answer

4 * ' ( i  »)(*> > ___ _*i______l£J__ xy"
(2я)4 sinh |S| sinh|yi

U-  d iv eiu f — ‘* d z e “
. * J mmmlg [y ’ + ( z - v V ] [ F  + (z + v)>\

1 f m e iv* f mm iK dz2e ia2
+ * р Л . Л -.., [ i ,+(*,-«,),][*,+(«,+»,),I

(■ "  eioi f  <ir rfz, e1*» 1
x p  Л .  1 "^Г Л - . , 1Г

s.

(A33)

Although it took a more involved argument to extract Eq. (A33) from  the work of Brown et a l. than was 
needed to get Eq. (A22), the evaluation of the contour integrals appearing in Eq. (A33) ia relatively easy. 
W riting x  = |xj , у = |y |, the answer is

< y*(5 ,y )'2' = - i  - f  —4)7 sinh* sinhy

cosh* coshy -  i  (у- ~ — coshy + si .̂hy cosh*^ j

1 x- у ь \ 1 / sinhx . sinhy . \ sinhx sinhy= - -------- ------- < - —  i ---------------- coshy + --------— c o s h * ------- -—  — —
‘lir sinhx sinhy [ 2*y \ x  у I х У

+ * (  ±  + Д>, [Ч "Ы * -У )  _  s i n h t ^ y n  1 (A34h)
4 \ X2 y V L  X — у x + y J  (

The fact that the final term  in Eq. (A34a), which a check that the lim iting argument leading to Eq.
com es from the product of principal-value inte- (A28) has been carried  out correctly . The evalua-
g ra ls  in Eq. (АЭЗ), cancels away the leading large- tion of Д“*(х ,у )<и, in which x and ^dependences 
у asymptotic behavior of the f ir s t  three term s is are  highly correlated , involves straightforward

but very lengthy computations, on which I am now 
working.
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Excerpt from S. L. Adler, Classical Quark Statics, 
Phys. Rev. D. 19, 1 1 6 8 -1 1 8 7  (1979).

APPENDIX A: PROPAGATOR FORMULAS

In giving form ulas fo r the sca la r  propagator Да* 
in the Prasad-Som m erfield  background field , it is 
convenient to set к - 1 ;  to change to general к one 
uses the scaling law

У „ « л - Ч л с . У ; * )

= кЬаЬ(кх, ку, 1 ) .  (A l)

Writing

4ir sinhx sinhy 

1 find the following expression for S “b:

* * = £  < ( x ,y ) \ ,(x ,y ) ,

o**= 8*‘ + £ X * v - £ 5 l .  * X -7 y r x y  ^  7 "  *

<=x«y‘ , 
o J » = jf V -  6"‘X • ?,

”5 7 1 ) .

x« = 2Д lA<*~>+A ( 0 + / , U . . ) + / , ( 0 J

(A2)

(A3)

2Д

2_ 
' Д j f  -  а ) е '“л coshax coshay ,

x _ * /coshx coshy -  e~A sinhx sinhy\
* xV  V д ------------ — J

~ 2хуД 2 Ẑ a(z --)+/ a(*.-)+/a( « .J ]  

= _ i  / * < g ( l  _  „)„-■* alnhay sinhay
a  Л  ж V *

^ - S S M A ( 0 + A ( * j ]

- • - [ Л Ю + Л Ю ] }

~ f  d a  e -” 4 cosh ay  — ~ a ^* 
л  -'о x

” е "*[Л (■*-.)+Л  (*•♦)!}

~ т [  dot e'®4 co sh a x  —nh^  ~ °^~
л Л у

Д = 1 * - ? |  ,

* . . = х + у - Д ,  г „ = х - у - Д, 

z . .  = - x  + y - Д, = - х  -  у -  д  ,

A W - ^ .  А (*)- — р —

(А4)

It is easy to verify  that, despite the fa c to rs  x'% 
and y'1 in the ff’s ,  E q . (A3) is  in fa c t analytic near 
x  = 0 and near у = 0 . N ear X = f ,  E q . (A2) has the 
expected short-d istance singularity

*• *< *• *!>  ~ e * 7  - - o i l ) , (A5)

while the lim iting behavior fo r large y , with x 
fixed, is

^ * ( x , y ; l ) ^ l - ^ ( c o t h x - i )  

+ ° ( ? )  '
(A6 )

which has 6J°(x) as the x-dependent fa c to r . The 
expression fo r the d ifferential operator D*D* used 
in verifying the propagator d ifferential equation is

D°'D°- щ * l ) • (iJ r ) V + q r + v  ^  ф*+c,t » * v +c .* 'J L  * '+ey*

l = x (s in h x  _ c o th * ) .  C2 = 2 ( j -c o th x )  , € ,  = 1 + 0 , ,

4 ~ ~ 2 ( x  ~  s in h x )  ’ Ci S ~ C4 -

Ф >

(A 7)

^x sinhx /

The p ro jected  covariant derivative of the sca la r  G reen ’s function, defined by Eq. (46) of the text, is given

Copyright © 1979 by the American Physical Society. Reprinted with permission.
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by the following form ulas:

C L A S S I C A L  O l A R K  S T A T I C S

1 / j . f  8X,\ X
Т‘ (* ’ 3' ,И S t a t e d -  —  I  £ } ~ sinh2x

U v) = ( - J —  _  x c o s ^ , , + _ J L _  + * * - » • ?  I k
2 ’ \sinhx sinh2x )  ^  sinhx ax Д sinhx ад »

_ .Л_ 1 эхд ж 
Тз(*|У) - -  A oirih„ яд -  cinh!^ *1 >Л sin Ire ЭД sinh2x 

; \ / 1 ICOShxN v
т*и *у ) Ч ^ - ж г ) ^ + 11

х 2уг эх,

x__  bx^
sinhx Эх A sinhx Эл '

т,(*,у) = - A sinhx 8Д sinh ж

with

BXt
SA = -  ( ! + x )  x* + Ш  {•*[/,U . J + / . U J ] - • - [/ ,< * .> / ,( *  j ] } ,

эх2
ад = ? 7 r  ( “

coshxcoshy -  e '

8Xj 2 
8*

1 Г sinhx coshy f  cosh* sinhx \ sinhy ~1
3?  ' L д “  V *  “  x1 /' у J

In the region y » x ,  у »  1 the following form ula is useful:

+ ~ r  (у , - * , ^ £ ) т ; ] + о ( в - » ) 1

1 1 x ^ X - y  coahx
Tj y3" x3 Ay x sinh2x A*y x3 sinhx ’

_t у  coshx x 1 / 1 ^ 1 l 
T= -  I s" sinhx “  sinhJx A \ y + A -x  y + A + x / "

1163

(A 8)

(A9)

(A10)
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I. INTRODUCTION

Over the last few years, numerical methods have played 
an increasingly important role in theoretical physics 
l t a r  Prom>nence is attributable both to improvements in 
computers and decreased computational costs, and to the 
increased attention of theorists to nonlinear, nonperturba-

Reviews of Modern Physics, Vol. 56. No. 1. January 1984

tive problems in quantum field theory, for which purely 
analytical methods are inadequate. In treating quantum 
field theories computationally, two strategies are possible. 
The first, which has been intensively pursued recently, is 
to set up a discrete lattice analog of the full quantum field 
theory, and then to numerically evaluate the Feynman 
path integral by Monte Carlo techniques. This method 
has the advantage of giving results which can in principle 
be made as accurate as desired. Nonetheless, the necessity 
of using a four-dimensional computational lattice and of 
generating a large ensemble of field configurations makes 
simulation very costly, and in practice this has been a 
severe limiting factor. A second strategy is to first make 
analytic approximations, which replace the field theoretic 
problem by a classical variational problem involving an 
effective Lagrangian functional, leading to a system of 
partial differential equations which are then solved nu
merically. This approach is necessarily approximate, 
since exact knowledge of the effective Lagrangian is not 
possible without an exact evaluation of the Feynman path 
integral. However, the second strategy has the advantages 
that symmetries of the physical problem can be exploited 
to reduce the dimensionality of the computational prob
lem, and that only a single equilibrium field configuration 
need be generated, permitting the study of very large com
putational lattices even on small computers. We believe 
that the two strategies are, in a sense, complementary; 
eventually, simulations may be used to infer the form of 
effective Lagrangians, which can then be used to analyze 
large classes of problems of physical interest.

Our aim in this article is to give a pedagogical review 
of the numerical analysis methods required by the second 
strategy. Assuming that an approximate nonlinear classi
cal effective Lagrangian has been given, we show how re
laxation methods can be used to solve the partial differen
tial equations which govern the equilibrium field configu
rations. We focus on problems which arise in gauge field 
theories of current interest and in Sec. II introduce and

Copyrlghi ©1004 The American Physical Society 1

Reprinted with permission.
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analytically characterize three nonlinear models which 
will be studied as illustrative examples. In Sec. I ll  we give 
a self-contained introduction to the theory of relaxation 
methods and to practical aspects of their implementation, 
with special emphasis on treating nonlinear problems with 
singular (6 -function) source terms. Readers primarily in
terested in numerical analysis can proceed directly to Sec.
I ll, after reading only the brief survey and theoretical dis
cussion of Secs. II.A and II.B. In Sec. IV we give specific 
details of the application of the methods of Sec. I ll  to the 
models of Secs. II.С, II.D, and II.E, together with a small 
sampling of numerical results. Certain technical details 
of the analytical structure of the three models are 
described in the Appendixes.

II. THEORETICAL ANALYSIS OF MODELS 
TO BE STUDIED

A. Introduction

In this section, we give a self-contained theoretical 
analysis of the models which later on will be studied nu
merically. All of the models discussed below describe 
time-independent three-dimensional problems with a rota
tional symmetry axis, and hence lead to two-dimensional 
computational problems in cylindrical coordinates. Our 
primary focus will be on the statics of classical charges in 
nonlinear Abelian and non-Abelian gauge field theories, 
as formulated by using classical action functional 
methods. In Sec. II.В we give the basic formalism for 
classical Lagrangian statics and illustrate it by briefly 
considering the case of classical electrostatics. In Sec.
II.С we discuss the statics of classical sources in the 
Abelian Higgs model, in which external source charges 
are screened. In Sec. II.D  we discuss the statics of classi
cal sources using the leading logarithm semiclassical ef
fective action functional for an SU M  non-Abelian gauge 
theory, and show analytically that this model describes 
flux and charge confinement. As a secondary topic we 
consider non-Abelian gauge field configurations with 
topological quantum numbers, as exemplified by the 
axially-symmetric SU(2) topological monopole solutions, 
the theory of which is discussed in Sec. II.E. In the analy
ses of Secs. II.C—II.E, we place particular emphasis on 
identifying special features of the models under study 
which must be taken into account when solving them nu
merically.

B. Classical Lagrangian statics

Consider a classical dynamical system described by the 
action

<2 . la) 

(2.1b)

ta, where H  is the Hamiltonian, and where the prime in
dicates that those coordinates which have identically van
ishing canonical momenta are omitted from the sum. We 
will be specifically interested in systems for which the 
equations of motion implied by extremizing S  have non
trivial time-independent solutions, and want to find a 
variational principle for calculating the energy

(2.2)

associated with such static solutions. For time- 
independent solutions, extremizing S  is equivalent to ex
tremizing L  (q ;q  —0), and so evaluating Eq. (2.1b) at q — 0 
gives

ie «  =  e x t ,L (9 ;? = 0 )

=  - H  =  - V Mtic . (2.3)

Equation (2.3) gives a variational formulation o f  the prob
lem o f  calculating Vsalie and is the fundam ental equation 
o f  classical Lagrangian statics.

As an illustration of Eq. (2.3), let us consider the fa
miliar example of classical electrostatics. The Lagrangian 
for the Maxwell field coupled to an external static source 
density j °  is1

L =  J  rf3x [y < E 2 —В 2) - / Л ° ]  , (2.4)

where the fields E  and В are related to the scalar potential 
A 0 and the vector potential A by

E = —V-4°—A, B =  V x A  . (2.5)

Specializing to static solutions with A =  0 , we have

iM ° ,A ;A  =  Q]= f  d }x l } [ ( V A 012- ( V X A ) 2] - j ° A 0) ,

(2. 6)

which is stationary when the potentials satisfy

V - E = - V l 4 ° = / ° ,  (2.7a)

V X B  =  V X (V X A )= 0  . (2.7b)

I f  the potentials are required to vanish at infinity, the 
general solution to Eq. (2.7) is

.n. . г  i i  i /° (^ )
A ( * ) =  I d  x — 1--------ГГ •J 4jt x —* (2 .8 )
A (x) =  V'P(x) ,

with 4* an arbitrary gauge function. Substituting Eqs. 
(2.7) and (2.8) back into Eq. (2.6), we get, after an integra
tion by parts ,

£ „ . =  /  j/ l°V 2/l0- / U 0) = - - j -  /  d'xj°A °

----- i f  = - K , ude , (2.9)
'  J  Air x —x

where qt and p t are the canonical coordinates and momen-
'Boldface will be used throughout to denote spatial vector in

dices.

5 8 5
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in agreement with the general formula of Eq. (2.3). As a 
final remark, we note that this example shows that Eq.
(2.3) is not a minimum principle; although Eq. (2.6) is sta
tionary at B  =  V X A = 0  , this value of В maximizes, rath
er than minimizes,2 the Lagrangian L.

C. The Abelian Higgs model

The first, and simplest nonlinear model which we shall 
discuss is the Abelian Higgs model, coupled to an external 
source charge density. The fields of this model are an 
Abelian gauge potential A* together with a complex sca
lar field <p of charge e . The Lagrangian is3 

f  ,
(2. 10)

^  =  | ( E 5 —В 2) - ; ° 4 °  +
' f - K °  a t

-  | (iV  +  eA)p | 2 — yC( | <p 12—/о2)2 1

with E  and В constructed from the potentials A and A0 
as in Eq. (2.5), and with \<p\1*(p<p*, where <p' is the 
complex conjugate of <p. When specialized to time- 
independent fields by setting A and ip to 7.ero, Eq. (2.10) 
simplifies to

- ^ - H t V / i 0)2— (V X A )2] — / U °

+ e 2M °)2 |9>|2-| (/ V + eA ),p | 2

- | C (  l ^ l 2- * 2)2 , (2.11)

which is invariant under the time-independent sauge 
transformation

<p — <pel* ,

A  ► A + e - 'V ^  - (2 . 12)

By a suitable choice of gauge3 we can make the scalar 
field cp real, so that Eq. (2.11) becomes

2For neutral charge distributions (with J *  d 3j° = 0 )  the varia

tional principle 6L M °,A ;A = 0]= 0 is minimax. the fields of 
classical electrostatics minimize L  with respect to variations in 
A , while max,mizing L with respect to variations in A  A 
funcuonal which (for neutral charge distributions) is minimized 
by the fields of classical electrostatics is

C[A°,A ]=  f  dJ*| ± [(v ,40)2+ (V x A )2] - / U 0J

Functionals o f this form can be useful for mathematical pur
p o se  [see, e.g., Adler (1981a, 1981b] and Footnote 13 below], 
but unlike L  have no direct physical interpretation.

For a pedagogical discussion o f the Abelian Higgs model, see 
Bernstein (1974). The analysis described in Sec. II.C  was carried 
out by Adler and Pearson (1978, and unpublished): see Appen
dix В  o f Adler (1978a).
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-2’ =  |[(V/t°)2- ( V X A ) 2] - ^ 0

+ e 2W 0) V - ( V f ) 2- e 2A V 2- | C ( ?)2-/ (2)J .

(2.13)

As our final simplification, we note that since Eq. (2.13) 
has no source term coupled to A, it is stationary with 
respect to variations of A around A —0 . Hence to calcu
late Kiulic it suffices to consider the A  =  0 specialization 
of Eq. (2.13), giving

Ц А 0, <p]= f  d ' x i i ( V A 0)2- j 0A0+ e 2(A°)2<p2

~(v<?)2- j a ? 2- * 2)2) ,

ŝtatic “  0 _JL\A ,̂<p] .

Varying the action of Eq. (2.14), we get the Euler- 
Lagrange equations

(2.14)

ЧгА *= 2 егАV - f  , 

V2< p = -e2(A0)2q>+Ctpl(p2- K 1)
(2.15)

These equations will be solved numerically in Sec. IV .В 
for a source j °  describing point charges located symmetri
cally on the z axis,

/ °= Q S(jc)S(>>)[S(z — a ) —fi(z + a )] , (2.16)

for which A  ̂ is an even function and <p is an odd function 
of 2. A straightforward analysis3 shows that the leading 
behavior o f A 0 and <p, at infinity and in the neighborhood 
o f the source charges, is given by the following formulas. 

At oo :
.< 00 )

<p~K +  £ — e x p [-r(2 C ir2)1' 2] , (2.17a)

A°~A0,m)

А „ Г 0 :

' ’J
exp[— r(2 e 2ir2) l/2] .

X = - |  + ± eQ
4 4tt

1/2

A °~ (±)
4vr ■+A WO)

(2.17b)

(2 .18)

with <p(“ ’, Aa<“‘\ <pi0), Л®01 constants and with 

r =  (x 2+ y 2 + z 2) ' * ,

,'| i]  =  Jjc2+^2 +  (z :Fa)2]1/2 .

At large distances, the Higgs field <p approaches the con
stant к (there is a second solution to the equations with 
<p —► — <p) and the scalar potential A0 shows the charac
teristic exponential decay expected in a Higgs phase, 
which arises from the screening of the source j °  by the 
charged Higgs field. Close to the source charges, the 
Higgs field becomes infinite as r j ,  j with — j- < X < 0 for
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weak source charges Q satisfying the inequality^

Фгг <  T (2.19)

and the scalar potential has Coulomb-type singularities. 
The removal of the infinite Coulomb self-energies from 
the formula for Kslatjc will be discussed in detail later on, 
in Sec. III.E  of the text and in Appendix C.

D. Non-Abelian statics in the leading logarithm model

The second nonlinear model which we shall discuss is 
constructed from an SU(n) non-Abelian gauge theory cou
pled to an external source charge density. The fields of 
this model are an SU(n) non-Abelian gauge potential A 
with 6 =  1, . . . , n 2 — 1 the internal symmetry index. 
Making the conventional rescaling of the gauge potentials 
by the coupling constant g, the action and Lagrangian for 
this theory are

S =  f  Ldl, L =  J  d 'x X ’ ,

^  =  _ i - ( E “ E'1 —Ba B “) — j^ A " 0 ,
2g

with the field-potential relations given now by

E aJ= — S  A °°— —  A‘i 
* ' dt ’

(2.20)

(2 . 21)

B aJ- E Jkl ——rA  c/-f- у  f abcA bkA cI 
dx * 1

In Eq. (2.21), е̂ и denotes the usual three-index antisym- 
metric tensor defined by

e/w= e '/*=£4/, e123=  1 , (2.22)

f abc are the SU(n) group structure constants [for SU(2), 
f abc—z‘lbc], and 3 )j is the covariant derivative defined 
(for arbitrary w“) by

1 dx1
(2.23)

Static (and nonstatic) extrema of the action of Eq.
(2.20) have been extensively discussed in the literature,5 
and can be found numerically by the same algorithm 
which we use later on to solve the topological monopole 
model. Hence instead of basing a numerical example on 
Eq. (2.20), we consider instead the much more interesting

4T h e  fa c t that X becomes com plex for large Q is an indication 
th at, fo r large Q, pair production is im portant and that a  field- 
theoretic discussion is needed. In a full field-theory treatm ent 
o f  the A belian Higgs model, E q . (2.14) is replaced by

^ u iic ^  ех*,о  f L d flA  ,<p] ,

w ith L .it  ал effective action functional which includes the e f
fects o f virtual quanta. W hen radiative corrections are  ignored, 
L eit reduces to the Lagrangian o f  Eq . (2.14).

3F o r an exhaustive survey, see A ctor (1979].

model in which L  is replaced by an effective action L tfj, 
which (for slowly varying fields) incorporates the effect of 
radiative corrections to leading logarithm order, while 
keeping j a0 a classical6 source. Both explicit one-loop 
calculations for the special case of constant field- 
strengths,1 and more general renormalization-group argu
ments,8 show that the action L &  is obtained by replacing 
the coupling constant g 2 in Eq. (2.20) by a field-strength- 
dependent “running” coupling constant g 2( y ) .

^Two types o f  approxim ation schem es have been discussed in
the literature for reducing SU(n) quantum  chrom odynam ics 
with quantized source charges to classical source charge models.
F or methods involving a direct replacem ent o f  the SU(3) color 
charges by quasi-A belian effective charges which respect the tri- 
ality selection rules fo r color singlet states, see M andula (1976) 
and Adler (1982). F o r m ethods involving a study of the alge
braic properties o f the SU(n) color charges, see K hriplovich
(1978); Adler (1978b); G iles and M cLerran  (1978); Cvitanovi6, 
G onsalves, and N eville (1978); R ittenberg and W yler (1978); Lee
(1979); Adler (1979); Lee (1980); Adler (1980); Bender, G rom es, 
and R oth e (1980); A dler (1981a); M ilton, Palm er, and Pinsky 
(1982); and M ilton, W ilcox, Palm er, and Pinsky (1982).

7T h e one-loop Y an g -M ills effective action functional for con
stant field strengths has been calcu lated by a number o f authors. 
See, for an early calcu lation, B atalin , M atinyan, and Savvidy
(1977), and for recent discussions and references, Schanbacher 
(1982) and Anishetty (1982). M ethods for constructing gauge- 
invariant effectiv e action functionals beyond one-loop order 
have been given b y 't  H ooft (1975a), D eW itt (1981), Boulware 
(1981), and Abbott (1981).

8M atinyan and Savvidy (1978) and Pagels and Tom boulis
(1978) have shown how the structure o f  the renorm alization- 
group improved effective aciion can be inferred from  the con- 
form al trace anom aly. Renorm alization-group arguments give 
an expression for У ( У )  o f  the form

1 + 861 logloglУ / е к 2) 
hi, log { F / e K 1)

+ 0(^ 1 ,

with b Q and b| the usual ^ -function  coefficients defined in one- 
and two-loop orders. A dler (1981b) has argued that this expres
sion may give the leading two term s in the effective action for 
w eak  fields | У / е к 2 j « 1 as well as for strong fields 
| У /е к * \  » 1 , because the m agnitude o f  the running coupling 

constant o f  Eq . (2.24) is sm all in both regions. T h is  argument 
suggests th at, very generally, the effective dielectric constant 
changes sign between the strong and weak field regions, which 
is the essential feature responsible for confinem ent in the lead
ing logarithm  model.

T h e corrections o f  order У  are not determined by 
renorm alization-group argum ents and in general are highly non
local (i.e., they depend on derivatives o f  the field strengths). 
A dler (1983) gives argum ents indicating that the nonlocal terms 
in L efr becom e im portant in the ultraviolet (short-distance) limit, 
but are  unim portant relative to the local term s in the infrared 
(long-distance, o r confining) lim it. T he order-У  terms also can 
have im aginary parts; for exam ple, if  к 2 in E q . (2.28) is replaced 
by — к2, an additional im aginary term  appears in at the
order-»?" level. H ence even the sign o f  У  at the extremum of 
У  cannot be determ ined by a renorm alization-group argument.
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g 4 f ) = ------ -------8S I (2.24)
1 +  т 6 о в 31о8(^-/^‘ ) ’

with У  the field-strength invariant

(2 .25)

which appears in the classical action. The constant fc0 in 
Eq. (2.24) is the asymptotic freedom constant9

V - S H K a w w i - i * . . (2.26)

while the mass ц  is the renormalization point and g 2 is 
the value of the running coupling constant at У = и * .  
Combining Eqs. (2.20Ы 2.25) and defining the one-loop 
renorroalization-group-invariant parameter

Kl = U*_e -
(2.27)

we get the effective action for the leading logarithm 
model,

L 'B =  f  d 3x J f dr=  f  d ' x [ J ? ( D - j ' ° A ' ° ]  _ (2 .2 8 a)

■&’(•?') =  T b0? lo g (3 r /eK2) . (2.28b)

When specialized to time-independent fields10 Eo. 
(2.21) for E aJ becomes

E al= - 3 > jAa ° ,  (2 29)

and Eq. (2.3) for ИП1ЙС yields the variational problem

=  - a A A.',ut'J{ L ^ A  °°,A °j ] ) (2.30)

The Euler-Lagrange equations for Eq. (2.30) are

(2.31a)

t kimB j[tB ' ‘m) = - f abcA b°£Eck , (2.3lb)

where we have introduced a field-strength-dependent ef
fective dielectric constant e defined by

(2.32)

Applying a covariant derivative 3 )k to Eq. ( 2.31b) gives 
the equation

j  tklm[B  k,3)j K e B 0™) =  ®  kA bo)tE'k

- f ‘ i*Ab0& kU E‘k) . (2.33)

Using the easily verified identity (which holds for arbi
trary w"),

[3>k, 3>j]wa= t l>,f abcB b,wc , (2.34)

we find that the left-hand side of Eq. (2.33) is

j z kimekJlf abcB b!zBcm= 0 , (2.35a)

while on substituting Eq. (2.29) the first term on the 
right-hand side of Eq. (2.33) becomes

fobctEbkE ' k= 0 . (2.35b)

Hence the second term on the right-hand side of Eq. 
(2.33) must also vanish. A fter substitution o f Eq. (2.31a), 
this gives the constraint

/ « * * “ >/0=0 , (2.36)

which states that to get a static solution, the scalar poten
tial and the source charge density must locally lie in com 
muting directions in internal symmetry space.

In particular, for a source density j c0 describing a par
ticle with effective classical charge Qc at and an an
tiparticle with effective classical charge Qe at x2 ,

j e0= Q ' b h x - * 0 + F b \ % - x 2) , (2.37)

the constraint of Eq. (2.36) becomes

/ ^ bo( x , ) e c= 0  ,

f abcAb0(x2)Q' = 0 .

By making a suitable time-independent gauge transforma
tion, we can align Qc and Qc to he in antiparallel direc
tions in internal symmetry space,

QC= ? Q  , ( Р = - Г < 2  , (2.39)

with §  a fixed internal symmetry unit vector. The con
straints of Eq. (2.38) can then be satisfied by making the 
quasi-Abelian ansatz

(2.38)

Aa0=q*A ° ,

A -^ ^ A l,  (А\А\А') =  A ,

(2.40)

’ In SU<3) quantum chromodynamics (QCD) with N, massless 
fermion flavors, Eq. (2.26) for bc becomes

* . - £ ( 1 1 -  \ S ,) .

' “Since the physically relevant extrema of the effective action 
are the mean potentials induced when a source j ‘ ° is added to 
the standard functional integration quantization formalism [see, 
for example, Abers and Lee (1973)], they must be time indepen
dent when the source is time independent.

which describes a conserved electric flux of magnitude Q 
running between the two point sources, as is appropriate 
to a model for the quark-antiquark confinement prob
lem ." For the potentials of Eq. (2.40), the field-potential 
relations of Eq. (2.21) become

' 'T h e  quasi-Abelian ansatz of Eq. (2.40) excludes “ charge- 
screening” solutions o f the type discussed by Sikivie and Weiss 
(1978, 1979), Kiskis (1980a), Jackiw and Rossi (1980), and H ilf 
and Polley (1981). Such solutions may be relevant as models for 
the behavior o f an SU(n) gauge field with adjoint representation 
sources. Fundamental representation sources, such as quarks 
and antiquarks, cannot be screened by the gauge gluon field.

Rev Mod. Phye., Vol. 56, No. 1. January 1984
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£ ■ '= $ • £ ' ( £ ‘, £ 2, £ 3) - E = - V i 4 °  , 

B a‘ =q*B>, [B ',B 2,B 3)m B = V x A .
(2.41)

The internal symmetry structure of the problem can now 
be completely factored away. Equations (2.301 and (2.28) 
simplify to

=  ~ e7LtAo Aj l ° , A 1]} ,

L<st— f  d3x [Jf(S r )—f cA°] , (2 42)

y = ( V / ) ! - ( V x A ) ! ,

; 0= e 6 U ) 6 ( y ) [ 5 ( z - a ) -S ( z + e ) ]  ,

where we have again located the source charges symmetri
cally on the z axis, and the Euler-Lagrange equations of 
Eq.' (2.31) become

V -(e E )= /°  , 

V X ( eB ) = 0  ,

(2.43a)

(2.43b)

with the dependence on У  of J?  and e given by Eq. 
(2.28b) and Eq. (2.32), respectively. We have thus reduced 
our model to a problem in nonlinear Abelian electrostat
ics.12,13

As in the discussion of classical electrostatics in Sec. 
II.B , the extremum over the vector potential in Eq. (2.42) 
can be carried out by inspection. From Eq. (2.43b) we get

0 =  f  d 3x A V x (e B )

=  f  d 3x eB2-  f  rfS -e (A x B ) , (2.44)
■* J  s u r fa c e  I I  со

and so if we restrict ourselves to solutions with a vanish
ing surface integral at infinity, we must have

eB 2= 0  , (2.45a)

giving three branches (la, lb, and II, respectively),

B = 0  , E2> k2 ,

B = 0 ,  Е 2< к * ,  (2.45b)

E= 0  =e- B 2 =  E 2 —к2 .

In the strong-field region near the source charges, the 
asymptotic freedom of non-Abelian gauge theories re-

12Dielectric models for confinement in QCD have been dis
cussed in a qualitative way by a number of authors; see, for ex
ample, Kogut and Susskind (1974), ’t Hooft (1975b), Fagels and 
Tomboulis (1978), Friedberg and Lee (1978), Callan, Dashen, 
and Gross (1979), and Nambu ( 1981).

13Pagels and Tomboulis (1978) and Mills (1979) showed that 
when a single isolated charge is present, the leading logarithm 
model gives a linearly divergent infrared energy. A proof that 
the model of Eq. (2.42) gives a linear static potential for large 
source separations was first given by Adler (1981a), using the 
related minimum principle in which У  is replaced by 
(VA °)2 + (V X A )2. (See the comments in Footnote 2 above.)

quires that the solution of Eqs. (2.43) approach a 
Coulomb-type solution with E large and В vanishing; to
gether with continuity, this implies that a finite domain 
containing the source charges lies on branch la. Special
izing the analysis, for the time being, to this branch, we 
set B =  A =  0 and rewrite Eqs. (2.41) and (2.43a) as

V D = y ° , V X E  =  0 ,

D =  t (£ )E  ,

E(£) =  7 i 0log(£2/K2) , £  =  |E| .

(2.46)

A graph of the nonlinear dielectric constant e(£ ), show
ing its intersection (for B =  0 ) with the three branches of 
Eq. (2.45b), is shown in Fig. 1.

Equations (2.46) are the basic statement of the problem 
which will be studied numerically in Sec. ГУ .С. In order 
to get a tractable numerical method, it is necessary (for 
reasons discussed in Appendix A) to rewrite the equations 
in manifestly flux-conserving form. To exploit the axial 
symmetry of the problem, let us work henceforth in 
cylindrical coordinates defined by

p = ( x 2+ y 2)l/1, <fi =  tan -'(y /x ) , (2.47)

in which the coordinates of the point sources of Eq. (2.42) 
are p — 0, z =  ±a. We then note that D can be 
parametrized in terms of a single scalar function Ф(p,z) 
by writing14

D = - - J - V ,* X V < l> = - - ^ - X V < l>  =  V X2тг 2 irp

(2.48)

The representation of Eq. (2.48) automatically satisfies 
V 'D  —0 at points off the axis, and at points on the axis 
where Ф is sufficiently smooth. The physical interpreta
tion of Ф follows from calculating the total flux through 
a surface of revolution S  (with element of area <fA) 
bounded by a circle С of radius p (with element of arc 
length d i—еИф), as shown in Fig. 2. We get

flux through 5 — J  d A D =  J^ d A  V X ^ р Ф

=  Ф , (2.49)

showing that Ф is simply the flux through S. If we draw 
the surface 5  so that it always intersects the z axis on the 
segment z > a , as shown in Fig. 2, the flux function Ф as-

l4The flux function formulation was introduced in Adler 
(1981b). The analysis of the characteristic form of the Лих 
function equation, and its numerical solution, were given by 
Adler and Piran (1982a).
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E / К

E /K

FIG. !. (a) Plot of e(£) of Eq. (2.46), showing its intersection 
(for B=0) with the three branches of Eq. (2.45b). (b) Corre
sponding plot of —E J) of Eq. (2.28b).

sumes the following boundary values on the axis of rota
tion and at infinity:

Ф = 0 , p = 0 , | z | > a  , 

Ф =  С, p = 0, |z | < a  , 

Ф —► 0 as p2+ z 2 —* oo

(2.50)

To verify these, we note that Ф is an even function of z, 
and that on the segment p = 0, z > u , the surface 5  degen
erates to a point and intercepts no flux. Similarly, on the 
segment p — 0 ,  \z\ < a , the surface S  intercepts all of the 
flux in a positive sense, as illustrated in Fig. 3. The re
quirement that Ф should vanish on the sphere at infinity

FIG. 3. Surface S (bounded by an infinitesimal circle Cl used to 
evaluate Ф on the axis at |z | <a.

ensures that no additional flux sources or sinks lie at spa
tial infinity.

The dynamical equation for Ф is obtained from

V X E = V X ^0 . (2.51)

Defining D =  | D |, we can algebraically invert the consti
tutive equation D =  e[E)E  to get

e(£(Z ))) =  e[2)] , (2.52)

so that Eq. (2.51) becomes a differential equation for D,

D
V X

E [D]
= 0  . (2.53)

This equation can be rewritten by using the vector identi
ty

V-(V1X V 2)= V 2-(V X V I) - V , - ( V X V 2) ,

with

V - Д  V - £
V l"  E * p

V X V ^ O ^ X V J ,  

which when simplified by using ф-ЧФ — О gives 

У[ст(р, | У Ф | )У Ф ]= 0,

ст(р, | УФ |) =  —r-j—  , D |7Ф|
P‘e[Z>]

(2.54)

(2.55)

(2.56)

2vp

Equation (2.56) is the formulation of the leading loga
rithm model which will be studied numerically in Sec.
IV.C. As a check, we note that in the case of classical 
electrostatics, where t [ £ ) ] a l ,  Eq. (2.56) and the boundary 
conditions of Eq. (2.50) are satisfied by

Ф«7Й(С05'&2 —cosdi) ,

d| =  tan 1 , ■92 =  tan z +  a

(2.57) 

0  i  д , 2<1Г ,

FIG. 2. Surface of revolution S with circular boundary С used 
in Eq. (2.49) to evaluate the flux function Ф.

which, when substituted into Eq. (2.48), gives the expect
ed result
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D =
Qn Qfi
4irr\

' 'B l - 1 —

4i тг\

* 6 Г Л Й1
(2.58)

i'ti) =  [x 1+ y 1 +  (z+ a)2]'/2 .
HI

In the case where e(E) is given by Eq. (2.46), the coeffi
cient function a  is given on branch la by

2пк
p |УФ ■/

I V Ф I
T rb a K p

(2.59)

with flw) implicitly defined by the transcendental equa
tion

w = fio g f ,  f z  I - (2.60)

For small w and large w, the behavior oiflw ) is given by

I « 1  ,/ = 1 + ш - у ш 2 +  0 (ш 3) , 

/  = IflgUJ
] + loglogE + 0

logUJ
loglogm

logui

(2.61a) 

uj» 1 , 

(2.61b)

as shown in Fig. 4(a), giving a  the behavior graphed in 
Fig. 4(b). The fact that a  becomes infinite as / —Е /к  ap
proaches 1 from above (i.e., as w «  D approaches 0) means 
that a solution which is initially on branch la can ap
proach branch II only as a degenerate limit and cannot 
cross back and forth between branch la and branch lb. In 
the vicinity of the source charge at p =  0, z = a , Eqs. 
(2.50), (2.56), and (2.59)—(2.61) can be integrated to give 
the leading behavior13

Q?\
D  =  —— j-+  0 (  1) ,

4 ir r ,  

E =  r W
2тгкЬ0г 1

» ш ж ГJ r i
d rx' f

+  0 (1 )  , 

___£L
(2.62)

+  0 ( r , )  ,
2отг60(Г|')2 

Ф =  Су< 1 -c o s d [)  +  0 (rfs in 2̂ ,)  ,

where the structure of the subdominant terms 0 (  ) has 
been indicated up to powers of logr j . The corresponding 
behavior at p =  0, z — — a is obtained by reflecting the for
mulas of Eq. (2.62) in the z = 0  plane.

Once Ф has been determined by solving the boundary 
value problem formulated above, the static potential can

15Since G y U — c o s ^ )  exactly satisfies the boundary condi

tions o f  E q . (2.50) around z = a ,  the leading subdom inant term 
in Ф m ust vanish at ^ | = 0 ,д | = т г . T his boundary condition el
im inates a possible term  in Ф behaving as 0 [Г ](а  + 6 cos^|)], 
giving the structure shown in Eq . (2.62).

F IG . 4. (a) Plot o f  the function J\w) defined in Eq. (2.60). (b) 
Plot o f p 2a ,  defined in Eqs. (2 .59)—(2.61), as a function o f  D / k .

be calculated by substituting V*D =/° into Eq. (2.42) and 
integrating by parts. This gives

S ta tic  =  f  d 3x { E D - J f l E ( D ) 2] +  J f l E ( 0 ) 2^ K 2]}  ,

(2.63)

where an infinite constant f  d 3x J f ( i r2) has been added 
to Eq. (2.63) to render the integral convergent at spatial 
infinity. A little algebra shows that Eq. (2.63) is 
equivalent to the following computationally convenient 
formula:

2
( 1 + ? ) .*W ic =  /  d \ \ a  

£ = (/ J —1)/(2/ш) ,

V<J>
2ir

(2.64)

with a, /, and ш as defined above. A second useful ex
pression for KIlltic is obtained by using the identity

r EID) я  J f lE ' 2)
X [ E (D ) > ) -X [E ( 0)2] =  f Etm dE' —‘ £(0) 

.E(D)

'£(0)
dE'D(E')=  rJ e

—E D — f" d D ‘E{D') , j  о
(2.65)
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which when substituted into Eq. (2.63) gives the familiar 
formula

Vsu* c =  f  d 3x J T ,  (2.66a)

with Ж  the field energy density

f DdD'E(D') . (2.66b)

Since we have noted above (and will see in greater detail 
below) that the region of support of D is confined to 
branch la, where E(D ) ;> к, Eq. (2.66) gives the inequality

. Ж f d 3x D . (2.67)

(2 .6 8 )

To turn Eq. (2.67) into a useful lower bound on the large 
distance behavior of VSMK, we must exclude the infinite 
Coulomb self-energies. This is most easily done by ex
cluding from the x  integration small spheres of radius e 
around the source charges, motivating the definitions

fl  =  domain{ | x —x, | > e , | x —x2 1 > e) >

K » .ic =  f a d 2x ^ x ) > K  $ a d lxD .

When we write d 3x =dldA, with I the length along and 
dA the element of area perpendicular to the flux lines of 
D, Eq. (2.67) then yields the lower bound16

^su.iic(^)£/c J  dAD J  dI-2KQImin=K Q (R —2E),
(2.69)

R =  | x j — x2 1 = 2a  ,

showing that Fslalic increases at least linearly for large 
source separations. A more detailed discussion of the re
moval of the Coulomb self-energies from the formula for 
^sutic is given in Sec. III.E  below.

A great deal of insight into the behavior of Eq. (2.56) is 
obtained by putting it into the standard form for a 
second-order, quasilinear differential equation,

а ы(л:1Ф ,7Ф )Э ^ ^ Ф + с(д :,Ф ,У Ф )=0 , (2.70)

and analyzing the structure of its characteristics. Defin
ing the inward directed unit normal и and the correspond
ing norma] derivative Э„,

7Ф  Я -1 7n — - __ v  , d , =  B - v  ,
| УФ j

(2.71)

we can see through a straightforward calculation given in 
Appendix A that Eq. (2.56) is equivalent to

[О ^ + Э ^ -а ^  +  а Э ^ Ф -а р - 'а ^ Ф ^ О  . 

The coefficient a  is given by

aiogg d(\ogf) wf'(w)

(2.72)

a = l  +
aiog I У Ф I rf(logiu) / ( w) w + /(w ) ’

2 л  (2.73)
Э„Ф 2D

ттЬ0кр Ь0к

l6The flux estimate of Eq. (2.69) is due to 't Hooft (1975b).

FIG. 5. Plot of the function a(w) defined in Eq. (2.73).

the function a (w ) is graphed in Fig. 5 and [from Eq. 
(2.61)] has the following approximate forms for small and 
large m:

a  =  w + 0 ( w l ) , | Lt> ] « I , 

1
(2.74)

a =  1 —
logu;

+o loglogu»
(login)2

U J» 1  .

From Eqs. (2.73) and (2.74) and Fig. 5 we see that a  lies 
between 0 and 1 for D >  0, but vanishes when D =  0. 
Hence Eq. (2.72) is of degenerating elliptic type,17 and has 
a real characteristic at a surface of constant Ф, where 
| УФ | = 0 . The second normal derivative Э2Ф is discon

tinuous across this characteristic, which acts as a free 
boundary, dividing space into two causally disconnected 
regions. From the boundary condition of Eq. (2.50), we 
learn that the exterior of the free boundary is completely 
surrounded by surfaces on which Ф =  0. Hence Ф яО  out
side the characteristic, giving the solution the qualitative 
form graphed in Fig. 6. In the vicinity of a point В on 
the free boundary where p = p a and where the radius of 
curvature of the free boundary is Rg, a simple analysis 
given in Appendix A shows that Ф has the leading 
behavior

2, ттЬ0крв 
Ф « т — -------

" “ H i
+  0 ( n 2,/4) (2.75)

with n and I normal and tangential Cartesian coordinates 
at В (see Fig. 7). Since Ф is increasing towards the interi
or, we must have Дв > 0, and so the free boundary is 
everywhere convex. As indicated in Fig. 6, the free boun-

,7The theory of equations of this type, and extensive refer
ences, are given in Oleinik and Radkevic (1973). This book 
treats only the linear case [see Eq. {A 18)], rather than the quasi
linear case encountered in the leading logarithm model. An im
portant difference found in the quasilinear case is that the loca
tion of the characteristic depends on the solution to the equa
tion, rather than being a priori known. This is why the real 
characteristic of Eq. (2.72) behaves as a free, as opposed to a 
fixed, boundary.
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dary intersects the axis of rotation at a point p —0,z= zA- 
in Appendix A it is shown that zA > a, with the possibility 
zA = c  excluded. Apart from this statement, we have been 
unable to characterize analytically the structure of the 
free-boundary—rotation axis intersection.18 Once Ф and D 
have been determined in the interior region, A0 can be cal
culated from the formula

A °(p,z)=  — f ‘ dz'— D^ ,Z  ̂ .
J o e [D(p,z')] (2.76)

An interesting alternative method, discussed in Appendix 
A, is to determine A° from the known solution for e by 
solving the linear differential equation

V-(EV A ° )= - j°  (2.77)

within the free boundary.
Since Ф and D vanish identically outside the free boun

dary, continuity requires that e remain zero in the whole 
of the exterior region. Thus the exterior scalar and vector 
potentials are constrained only by the requirement that 
the electric and magnetic fields satisfy the branch II con
dition

e 2- b 2=*-2 , (2.78)

,8T h e  num erical results given below suggest that the free boun
dary intersects the rotation axis at a right angle (rather than at a 
cusp), but we have no proof o f  this.

15A  question w hich rem ains to  be clarified  in the field- 
theoretic context is whether the degenerate exterior solutions 
should be interpreted as vacuum structure. F o r articles advo
cating this view see, for exam ple, Savvidy (1977), Pagels and 
Tom boulis (1978), and Nielsen (1981); fo r possible problem s 
w ith this interpretation, sec K isk is (1980Ы  and Cabo and Sha- 

bad (1980).
20T h e М ГГ "b a g "  model was introduced by Chodos et al. 

(1974); for a review, see H asenfratz and K u ti (1978), and fo r a 
reinterpretation within Q C D , see Johnson (1978).

but are otherwise undetermined. In other words, the 
functional L cfl has an infinite equivalence class of C 1 ex
trema A0, A, corresponding to all possible ways of satisfy
ing Eq. (2.78) outside the free boundary. All members of 
this equivalence class19 give the 5атеЛ °,Ф  inside the free 
boundary, and make the same physical predictions.

The solution to the leading logarithm model is clearly 
qualitatively similar to the confinement domain found in 
the M IT “bag” model,20 but there are important differ
ences. At the boundary of an M IT “bag” the fields (the 
first derivatives of the potentials) are discontinuous, cor
responding to the presence of a step function in the varia
tional principle formulation. In the leading logarithm 
model, the boundary is a characteristic across which the 
fields are continuous, with only the first derivatives of the 
fields (the second derivatives of the potentials) having 
discontinuities. This behavior corresponds to the fact 
that the variational formulation of the leading logarithm 
model involves a smooth action functional L ctt-

F IG . 6 , Qualitative appearance o f the solution o f Eqs, (2.50), 
(2.56), and (2.59)—(2.61).

E. Axially symmetric fiogomol’nyi-Prasad- 
Sommerfield monopoles

As our final nonlinear example, let us consider a non- 
Abelian generalization of the Abelian Higgs model of Eq.
(2.10), in which an SU(2) non-Abelian gauge field is cou
pled to a real scalar field tp“, a =  1,2,3, in the adjoint rep
resentation. The Lagrangian is

L = f d ^ x J f ,  (27g) 

3 ’  =  j ( E a-Ea- B ° - B a)

+  j < < ^ “)2- j ( . @ ; , p a)2- j C ^ » ) 2- * 2]2 ,

with the field strengths and covariant derivatives given by

B aJ= z Jkl

Э t

-2 -гА а1+ ± Е аЫАькА'1
dxk

й . ш '= - ^ 7 ш '+ Л ^ ш ‘ for uia=q>a or A“ 
dxJ

[3>k,3>j]wa= z kilzabcB b,wc .

(2.80a)

(2.80b)

(2.80c)

In writing Eqs. (2.79) and (2.80), we have for simplicity 
taken the gauge field coupling g to be unity. We will

F r e e  b o u n d a r y  
( r a d iu s  of c u rv a tu r e  H e '

F IG . 7. G eom etry near the free boundary used in Eqs. (2.75) 
and (A 10)—(A 12).
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again be interested in static solutions for which all time 
derivatives vanish, but this time (since no external source 
charge-densily coupling to Aa0 has been included) we will 
take A" = 0 . After making these simplifications we have

—L  =// =  f  d 3x JT , (2.81)

with Ж  the field energy density

J T =  + j ( W ) 2—к2]2 . (2.82)

We will be interested in what follows in the finite ener
gy extrema of Eq. (2.81), which clearly must satisfy

lim (2.83)

Defining a unit SU(2) interna] symmetry vector n“[r) on 
the sphere at spatial infinity by

lim tpa(rr)/к  ,

r =  \ /r  ,
(2.84)

we see that the complete specification of the boundary 
condition for <p° requires specifying the number of times 
the two-sphere on which n“ lies is covered, when the 
two-sphere on which rlies is traversed once. This number 
(which must be an integer when n“ is a continuous func
tion of r ) is the winding number or topological quantum 
number

n =  lim —  f
r— « Off J  sphere al CO QXJ 3x

(2.85)

Hence the problem of finding finite energy extrema of H 
breaks up into discrete topological sectors.

Extrema of H  for С ф 0 are called ’t Hooft (1974)—Po
lyakov (1974) monopoles. A very interesting special case, 
introduced by Prasad and Sommerfield (1975) and 
Bogomol’nyi (1976) and extensively studied since then,21 
is obtained by setting C =  0 but retaining the boundary 
conditions of Eqs. (2.83)—(2.85), giving

H =  f  d }x\(B°iB4+&j<p°@j<p°) , 

lim q>Q=Kn" ,
(2 .8 6 )

winding number of n“ — n .

The Euler-Lagrange equations obtained by varying the 
functional H of Eq. (2.86) are

(2.87)
3)jS>y<p“=0 ,
Zk im 3 > j B c m =  — £ аЫ <рЬ@ к < р С ,  

while the field-potential relations of Eq.(2.80) imply that

2 ,F o r recent reviews on m onopoles, see Ja f fe  and Taubes
(1980) and O 'R a ife a rta ig h  and R ouh an i (1981).

& jB ' i= 0 ,

ckim3>jS>mq>a=  - t abccpbB ck .
(2 .8 8 )

Although Eqs. (2.87) are complicated second-order dif
ferential equations, they are satisfied by any <pa,A satis
fying the first-order differential equations

- < 2 ^ а= £В °1 , | = ± I , (2.89)

with the cases £ = 1  ( — 1) termed, respectively, self-dual 
(anti-self-dual).22 To see that Eq. (2.89) suffices, we note 
that by Eq. (2.88) we have

3 ) j3 )  j<p° =-£,& > jB a>=0 ,  (2.90a)

while by using Eq. (2.80c) we get

t k>m3>,Ban=  -£ e .kjm3>j3>m<pa

= | e" V S ' l =  • (2.90b)

Remarkably, Eq. (2.89) is also a necessary condition for a 
minimum of H, as may be seen by the following23 rear
rangement of Eq. (2.86),

H = Я , + Я 2 ,

Я , =  /  d \ \ (B al+£@j<p°?  , (2.91)

H i =  - g  f  d \ B ai@j<pa 

=  - i  f  d 3x 3 > j(B °Y )

=  - £  f  d 1S JB “Iq>“ .
*  s p h e r e  a (  со

Since //j reduces to a surface term, the functional H  can 
be extrema] only for fields for which H ] vanishes, giving 
the condition of Eq. (2.89). The surface term Н г can be 
evaluated by noting that in order for the integral of Eq. 
(2.86) to converge, must vanish at large r, giving
the following relation between Aa> and n“ on the sphere at 
infinity,

A aJ^rtaniA .
dx1

(2.92)

Combining Eqs. (2.80a) and (2.92), one finds, after some 
algebra,

B°iha = ~ - r (  ̂ k,ff°A ° ' ) - t  EJk'e abcrf° Л г ' Л » '  • 
a * *  2 a x '

(2.93)

22T h is term inology stem s from  the fa c t  that can be
form ally  reinterpreted as a sta tic  Euclidean electric  field 
strength —S ) A ‘l ,,  А "п»< р‘ , in term s o f  which JC
=  — у ( В ° - В “ +  Е|й£>-Е°£|). T h e  self-dual (| =  1) solutions satisfy  

w hile the an ti-self-du al ( £ = - 1 ) solutions satisfy  
E tki =  —B ‘j- C learly , a £ =  1 solution can be converted to a 
£ =  — 1 solution sim ply by changing the sign o f  q>“.
23T h is  argum ent is due to Bogom ol’nyi (1976) and to C olem an,

Parke, N eveu, and Som m erfield  (1977).
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The surface integral of the first term on the right-hand 
side of Eq. (2.93) vanishes; and so, referring back to Eq. 
(2.85), we get

Н 2 =  Лттк£п . (2.94)

Since the positivity of H  implies that H 2 is positive when
H , vanishes, we conclude that

i /2 =  4mc[n | , i= n /\ n \  . (2.95)

Hence the minimum of И  in each topological sector is 
determined solely by the topological quantum number.

The minimum of H  in the n =  1 topological sector is 
given by the simple expression

<pa =  — —r ( l — /<rcoth*r) ,
(2.96)

A °J= -
r*

1 -
sirth/fr

which satisfies Eqs. (2.89) with f = l .  This solution is the 
simplest of a family of solutions of Eq. (2.89), in which 
the Higgs field q>“ and the potentials A “J are axially sym
metric and reflection symmetric, as described by the fol
lowing ansatz:

+ А Л  -

А°>=ф> ------z  + -- P ,T
p  p

A£Ja , + p Ja 2)ft„

(2.97)
p = ( x 2+ y 2)'/2, ф =  1ап-'(у/х) , 

f =  (0 ,0 , 1) ,

p„ =  (cos/i0,sin/i<J,O), £ = p , ,

фп = (  — sinn<^,cosn^,0 ), ф=ф\ ■

The potentials A| 2, /i,2> a i,2 аге functions of p and z, 
with z*-*—z reflection symmetry and behavior on the 
z =  0  and p = 0  axes as follows:

h 2, f\ ,a l even in z ,

Ai,/ 2,02 odd in z ,

A| = / 2= a 2= 0  at z =  0 ,

а , = / 2 =  й2 =  0 , / , - я  at p = 0 , л > 1  .

Although analytic forms for the solutions of Eq. (2.89) 
within the ansatz of Eqs. (2.97) and (2.98) are now 
known,24 we will treat the problem of finding the axially 
symmetric, reflection-symmetric minima of H  as a nu
merical example in Sec. IV.D. In Appendix В we give ex
plicit expressions for the functional H  when expressed in

24por the analytic construction o f axially sym m etric m ul
tim onopole solutions and references, see Prasad and Rossi 

(1981).

terms of the potentials . . . ,  and discuss the residual 
Abelian gauge invariance of the six-function ansatz and 
the choice of a gauge-fixing term for numerical work. 
From the equations given in Appendix B, a straightfor
ward calculation shows that the leading behavior of the 
potentials at infinity25 is given by the following formulas 
(in which terms of order e are omitted):

A|=Acosd, A2=Asinft ,

sind cosd 
0] =  -  —  , o 2- -------  .

r r

/i =/cosd, f 2 =/sind ,

n ”  a\m'P,icos») / , = * _ - +  J  ------ ----- ------

(2.99)

« a/” ’/5, i(cosd)

1 — 2 
I even

t r i+ \

/• =  (p2+ z 2)l/2, d =  ta n - ‘(p/z> •

The leading behavior at the origin25 is also calculated in 
Appendix B, where it is shown that even in the higher 
topological sectors n > 1, the Higgs field tp“ has only a 
first-order zero at /■ =  0 .

III. RELAXATION METHODS FOR THE NUMERICAL 
SOLUTION OF ELLIPTIC PAHTIAL 
DIFFERENTIAL EQUATIONS

A. Introduction

In this section we give a detailed introduction to both 
the theoretical and practical aspects of the numerical 
solution of elliptic partial differential equations of the 
type encountered in Sec. II. We assume that the reader 
has read Sec. II.A and especially Sec. II.B, and has at 
least glanced over Secs. II.C—II.E. However, the discus
sion of numerical methods which follows is essentially 
self-contained, and makes only minimal references back 
to the formulas in Sec. II. Motivated by the fact that the 
numerical solution of the models of Secs. II.C—II.E  can 
be reduced to a sequence of solutions to linear differential

25Equations (2.99) and ( Bi l l  are the expansions calculated in 

the gauge 8*01 +  3,^2 =*0- F ° r n — th is gauge condition does 
not uniquely fix  the order r  term s in j ,  2 near the general

solution for n — 1 is a* =  — b p iу  + a )  +  0 (r ~ )ta 2= b z ( - j  — a )  

+ 0 { r 2), with a  a free parameter. T he и =  I case o f  E q . I B I i l  
corresponds to  a  =  y ,  while the standard form  o f  the single 

m onopole solution given in E q . (2.96) corresponds to a —0. [To 
put Eq. (2.96) in the form o f Eq. (2.97), one uses 

? = ? cosO e“t1? 1= (р вф*—р^ф )cosd +  (£
X s in d .]  T h e  expansions o f  Eqs. (2.99) and ( Bl l )  were derived 
by A dler (unpublished), Rebbi and Rossi (1980), and Houston 
and O 'R aifearta ig h  (1981).
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FIG. 10. Computational mesh extended by one unit cell to form 
a border. At the half nodes within the border, the h factors of 
Table I are assigned the value zero. The corresponding summa
tion limits for the four coverings of Fig. 9 are given in Table II.

signed to <p at nodes on the outer edge of the border, since 
these nodes automatically appear multiplied by an h fac
tor of zero. When this procedure is used, the summation 
limits for the four coverings of Figs. 9(a)—9(d) are as 
given in Table II.

C. Iterative methods of solution

Let us now suppose that the discretization procedure of 
the preceding section has been carried out on a computa
tional lattice with n, +  \,nj +  \ nodes in the p,z directions, 
respectively. Equation (3.25) then gives us a set of 
JV=(n, +  1 )(tij +  1) linear equations in the N unknown 
variables tpt Since N  is typically a very large number 
(up to я 4 х Ю *  in the computations described in Sec. IV), 
the direct solution of this set of equations by matrix in
version is not feasible, and we must resort instead to an 
iterative method of solution.

Before describing the specific algorithms used to solve 
Eq. (3.25), let us first discuss a simple and familiar itera
tive method which will also be needed in the applications 
of Sec. IV. This is the Newton iteration for finding the 
roots of the equation

(3.35)

which is constructed as follows. Given an estimate tu1"1 
of a root tii* of Eq. (3.33), we Taylor expand J[w) around 

giving

f ( w ) = f { w tn)) + ( w - w in))f' {w l"))

+  |(ш —ш<"))2/ ',(ш(л))+  - - • . (3.34)

When substituted into Eq. (3.33), Eq. (3.34) gives an exact 
power-series equation for w*. When Eq. (3.34) is approxi
mated by the first two terms in the series expansion, it 
gives a new approximation to m*,

f l w M)

The error of the new approximation can be estimated by 
subtracting the two equations

0 = / (ш |я)) +  (ш(|1 + 1)—ш|я))/'(10|я)) , (3 36a)

0 = / ( w i" )) +  (w* - w(" Y W " ,) +  7<w* - ui(b¥ / ' V " ’>

+  0 [ ( ш * - ш (л))3] , 

giving

f ' ( w ' )

« | ( ш |- |- ш , )г 'Г (ц ,‘ ) -f 0 [ (ш |я|—ш*)1] . 
f ( w  )

(3.36b)

Hence the error after я +  I iterations is of order the 
square of the error after n iterations, and convergence 
proceeds very rapidly to w*, provided that the initial 
guess w[0) lies close enough to i d * .  Rewriting Eq. (3.36b) 
as

| Ц)(П —Ц1* |
| IT — w

/"(ш *)

+ О [(ш (0)—ш*)2] ,

we see that a sufficient condition on „101

/ (ш )= 0 ,

(3.37a)

to guarantee
(3.33) that the Newton iteration converges to the root ui* is

TABLE II. Summation limits for the coverings of Fig. 9, using the "bordered” mesh of Fig. 10.

Unit cell Lower i j  limits Upper i  limit Upper j  limit

Mp-derivative covering” Fig. 9(a) 0 Л/ -1 nJ

“z-derivative covering” Fig. 9(b) 0 nj- 1

“nonderivative covering” Fig. 9(c) 0 Л/ nJ

**p  ̂ derivative covering” Fig. 9(d) 0 Л/ -1 n j - l

cempviollMtl
m«ih
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f" (w * ) 
f'(w ')

« 1 (3.37b)

If  Eq. (3.33) has several roots u>t ,u>5,. . . ,  there will be 
an interval around each root щ,* within which the Newton 
iteration converges to that root.

Let us now proceed to the simplest case in which we 
encounter the iterative method which will be used to solve 
Eq. (3.25). We consider the discrete functional 

at w n
L  =  1  2  . (3.38)

r  =  1 I  =  1 r  -  ]

with A„ a real, symmetric matrix with positive eigen
values. Since the matrix An is invertible, L  attains a 
unique minimum when the nodal variables 
ipr,r  =  1,. . . ,  N  satisfy the N  linear equations

я i  -v
o = ^ = > (3.39)

An iterative method for finding this minimum can now 
be constructed as follows. Let us repeatedly sweep 
through the <pr, proceeding from <p, to and then start
ing over again with tpu

<Pu ■ ■ ■ ,<PNt<Pli • • ■ .<Pn . ■ ■ ■ • 

first sweep, second sweep, . . . ,
(3.40)

at each step replacing the variable tpR being considered by 
the value which minimizes L  when all other variables 
(p„r=£R are held fixed. Specifically, let <р1гл> be the values 
of all the nodal variables when the sweep reaches the vari
able <ptj ,  so that at this stage L  has the value

l w- i i i  i  ^  • (3.4D
r=l s=l  r=1

Regarding L  as a function of the single variable q>Ri with 
the other variables fixed, we have

+ T  I  • a 4 2 )
r*R  s*R  r*R

Choosing <p{? + 1) to minimize Eq. (3.42) with respect to 
<pR, we get

a r r
2  ^Ri V^ — J r 
:*R

_-in) , А (л)
— <Pr t  ^<Pr •

(3.43)

giving as the corresponding change in the action

£ ,” +1,- ь ("’= т [ < ? * +1’)1-(р ',Г ,>2]Л я

+  [<pR - <pR )
s^R

— у Д?4" ’(Aip/J11 +  2q>x1 )A л

=  - | ^ яя(Д,р^)2 < 0 .  (3.44)

(In the final line we have used the fact that since the ma
trix A„ has positive eigenvalues, the diagonal matrix ele
ments ARR are all positive.) Hence, under the iteration of 
Eq. (3.40), the Lagrangian is monotone decreasing. In 
problems of physical interest with positive definite A„, we 
expect the Lagrangian with the source term included to be 
bounded from below, Equations (3.44) and (3.43) then 
guarantee that in the limit as n becomes infinite, the 
Z,tn)’s converge to the minimum value of L, while the 
pj.nl’s converge to the solution of Eq. (3.39). This method 
of solving the system of Eq. (3.39) is known as the 
Gauss-Seidel iteration.

As we have just seen, in the Gauss-Seidel iteration each 
nodal variable is successively relaxed to the value which, 
at that stage of the iteration, minimizes L. An important 
variant of the basic method, called the successively over
relaxed (SOR) Gauss-Seidel iteration, is defined by the 
recipe

= a j9>K,+ 1, + ( l-4 > )* 4 "1, «>£1 . (3.45)

with (Pr +1) and Д<p^ given by Eq. (3.43). In other 
words, instead of relaxing i 1 to the value which mini
mizes L, one systematically overshoots beyond this value. 
Using the over-relaxed iteration, the change in the La
grangian is

i *R
£ (« + i ),sor _ L (»)= | [ ( ^ + ,, 'SOR)J - ( f )(*', , )2]^ RR+(<pi? + llsOR- ¥ ’* 1)

=  |<вДрд,(«Д?)1? 1 + V n ":')AKK +сиД|p r ’( - А к!{ь<р‘н ' - А рксрк)\ 

=  — уй>(2 — <o )Ar r (A<P‘r ') 2 ■
(3.46)

Rev. Mod Phys., Vol. 56, No. 1 , January 19Я4



598 Adventures in Theoretical Physics

20 Adler and Piran: Relaxation methods for gauge field equilibrium equations

Thus provided that 

0< co< 2  , (3.47)

the Lagrangian remains monotone decreasing, and the 
SO R iteration still converges to the solution of Eq. (3.39).

For a general, symmetric matrix A„, each individual 
iteration step in Eq. (3.43) involves evaluating a sum of N 
terms, which would be computationally costly for large 
N. However, in the specific problems to which we will 
apply iterative methods, r and s are composite indices

(3.48)r =  (i,j) , 

s = ( i ' J ' ) ,

denoting nodes of the computational lattice, and An is a 
______________________________________________ i

(л) (л + ll.SOR_ In +119uj-*<Pt,j = a(Pi,j + u — m ,j  ■

sparse matrix in which ARs is nonvanishing only for a 
small number of index values s for each R. Because we 
have followed the prescription of squaring before averag
ing to ensure that the discretized action contains only 
nearest-neighbor couplings, we find in fact that A/  ̂ is 
nonvanishing only for the five index values 5 correspond
ing to the node R and its four nearest neighbors. Hence 
each iteration step involves only a short computation 
which is independent of the size of the computational lat
tice. I f  the sweep is performed28 in “typewriter ordering”

(j,;):(0,0),< 1,0), . . . ,  («,.,01,(0,1 ),(1 ,1 ),. . . ,  (n„ 1) ,

. ..,(0 ,f ij ) ,n ,n j ) , . . .A n i ,nj ) , (3.49)

then the over-relaxed iteration for Eq. (3.25) is

<?i.J =
Az
Ap + Az (*| + 1/2,;-Ы/2 +  Л|+1/2,У-1/2 +  Л|-1/2,У + 1/2 +  ̂ /-1/2,;-1/2)

~7~  ( * i  +  l / 2J  +  ! /2 +  ̂ i  +  l /2,;  — +  A ( h i _ ] /2'j +  ] / 2 + h j_ \ / 2 j - l / 2 ) < p l?'-+l
До Ap i-U J

.A e .+  (hl+ l/-2j  + l/2 +  hi _ I/2ij  + l/2)<PjJ + \+ (̂ / + ]/2iy_l/2 +  ftf-l/2,;-l/2)<Pi,y-Al

+  ^ -6 (,0 (S;> c - 8 y,_ .e ) ^ l '+ l/2 J  +  l/2 ® P i +  l/2 ei +  !/2 .J-H /2 (3.50)

Equation (3.50) applies to all i j  in the range 
0 £ i '-£ n , ,0 ^ j  <^nj, since, by virtue of the “bordering” 
procedure discussed above in Sec. III.B , al] nodal values 
with indices outside this range appear in Eq. (3.50) multi
plied by vanishing h factors. An initial guess qflj must be 
supplied as an input to the iterative process. In practice, 
to achieve a poor-man's version of the ‘‘hierarchical” 
iterative schemes (see below), we follow the procedure of 
first iterating to convergence on a very coarse mesh start
ing from a specified <Рц, which is chosen to be reasonably 
close (without sacrificing simplicity)25 to the anticipated 
solution of the problem. We then successively double the 
mesh and iterate to convergence, taking as the new initial 
guess after each doubling a linear interpolation o f the 
converged <p̂ j values on the preceding coarser mesh.

According to the discussion of Eqs. (3.41)—(3.47), an 
iteration with co =  1 produces the largest possible single- 
step reduction in the Lagrangian L. Hence at the begin
ning of an iterative solution one always makes three to ten 
complete passes through the computational lattice with 
co — 1 (or with an co which is gradually increased starting

from 1) to eliminate the largest deviations between the ini
tial guess <p\j and the fully converged solution J. 
After these initial iterations, the optimal strategy is to use 
an oi value larger than 1. The reason is that a general 
analysis30 of the iterative process shows that in the 
asymptotic large-n limit, the 
behaves as

difference <p\"- — tp\“ 1

,  — яу(ш) (3.51)

with the decay constant y(oi) attaining its maximum at an 
co value <u =  (Bopl ,1 <<uopl< 2 . Hence one clearly achieves 
the maximum rate of convergence by letting co tend to 
<aopl from below after the initial iterations. Values of co 
larger than <aopt should be avoided, since in general they 
produce slower convergence than values of co an 
equivalent distance below шор„ and since they can lead to 
instabilities in nonlinear problems. The optimum value of 
co can be estimated from the formula [Garabedian (1956)]

" op,~  1+СЛ '
(3.52)

MThis terminology has been borrowed from Hockney and Eastwood (1981), who discuss alternative sweeps as well.
29In practice, there is no great gain in convergence to be achieved by using elaborate functional forms in the initial guess. 
30See the books cited at the end o f Sec. III. A for details.
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with

h = (n ,n ,) - 'n  (3.53)

a measure of the fineness of the computational lattice, 
and with С a constant which depends on the lattice 
geometry and the boundary conditions. (For the two- 
dimensional Laplace equation in rectangular coordinates 
with Dirichlet boundary conditions, C ~ 3.) An empirical 
method for estimating the value of <uopl is discussed below 
in Sec. III.G ; from the general form of Eq. (3.52) we infer 
the useful fact that when the computational mesh is dou
bled, so that

n,-^2nh rij-*2nj , 

h —*h /2  , 

the corresponding change in <aopt is

4со,o p t
" o p l - 2+<a,

(3.54)

(3.55)
o p t

An intuitive (and mathematically correct) way to visu
alize the over-relaxation algorithm is to think of л as a 
time step and of the algorithm as a time-dependent dissi
pative process, with a steady-state equilibrium at the con
verged solution <p\“ \ The starting guess in general 
deviates from q>\"  by both large localized transients and 
by relatively smooth errors. The initial iterations with 
co=  \ are used to rapidly eliminate the localized tran
sients. The later iterations with co=coov, minimize the 
relatively long time constant [j'(fi))]^1 with which the 
smooth errors damp away. The optimal use of the over
relaxation method requires attention to eliminating both 
localized transients and smooth (or long-range) errors. 
One method of doing this in a systematic way is the 
“Chebyshev acceleration” method described by Hockney 
and Eastwood (1981), in which the lattice is scanned using 
an “even-odd checkerboard ordering" (as opposed to 
“typewriter ordering”) and in which a  is incremented 
from <u =  1 to co=cocpt in a prescribed way at the begin
ning of each even-semilattice and each odd-semilattice 
sweep. A second way of accomplishing this is through 
various “hierarchical” schemes31 in which the full compu
tational lattice is scanned in only a fraction of the sweeps, 
with the remaining sweeps used to scan sublattices of the 
basic lattice, constructed by using a larger unit cell con
taining two, four, etc., fundamental unit cells. The Che
byshev acceleration and hierarchical schemes can be 
proved to be optimal ones, according to well defined cri
teria, for solving elliptical partial differential equation 
problems based on the Laplacian (VJ ) and similar linear 
operators. Since for nonlinear problems it usually is not 
possible explicitly to construct an optimal algorithm, we 
use instead a simpler method which is effectively

equivalent. As discussed above, what we do is to start the 
iteration on a very small (typically 7 x 7 ) computational 
lattice, iterate to convergence, and then use an interpola
tion of this solution as the initial guess for iteration on a 
computational mesh which has been doubled as in Eq. 
(3 54), and so forth. After each doubling, со is reset to 1 
for several iterations to eliminate transients arising from 
the interpolation (these are strongly evident in the unit 
cells along the axis of rotation) and then increased to the 
“ opi appropriate to the new mesh spacing h. This pro
cedure gives very satisfactory convergence and automati
cally generates a sequence of fully converged L  values on 
progressively finer meshes, permitting an examination of 
the convergence of the discrete solution as the mesh spac
ing A approaches zero.

Let us consider next the imposition of boundary condi
tions in carrying out the iterative solution. From Eqs.
(3.1)—(3.3), we see that the differential equation and 
boundary conditions of our dielectric model are invariant, 
and the source current j °  changes sign, under the reflec
tion operation z —►—z. This implies that the solution <p 
also has odd reflection symmetry, and vanishes on the 
equatorial plane z =  0. Although this symmetry emerges 
automatically if  the boundary value problem of Eqs.
(3.1)—(3.3) is solved over the full physical space 
0-sp <ao, — ao < z < c o , we can clearly save computer 
time if  we impose the symmetry at the outset, by solving 
instead a boundary value problem on the half space 
0 ^ p <  oo,0^z < со. Similarly, if the source current j°  
were replaced by

/°=QS(x)6(>>)[S(z —a ) +  5(z + a )] , (3.56)

^ H ierarch ica l over-relaxation m ethods have been discussed, 
fo r exam ple, by Brandt (1977) and Press (1978).

which is invariant under the reflection z—»—z, then the 
corresponding solution <p would have even reflection sym
metry, and Эzq> would vanish at z = 0. Again, although 
this symmetry would emerge automatically from the 
full-space boundary-value problem, we can halve the com
putational effort by using the symmetry to reduce the 
computation to an equivalent half-space boundary-value 
problem.

When we solve the numerical problem on a half space, 
we introduce an inner boundary z = 0 ,0 < p  < oo on which 
a boundary condition must be specified, together with the 
outer boundary condition of Eq. (3.3). On this inner 
boundary, the appropriate boundary conditions are, 
respectively, the Dirichlet or Neumann conditions,

0 at z —0, j °  odd [Eq. (3 .1)] , (3.57a)

д2ф =0  at z =  0, j °  even [Eq. (3.56)] , (3.57b)

and we must translate each of these into a corresponding 
updating algorithm for the lattice nodes on the lin ez = 0 . 
(The more general Robin or mixed boundary condition 
а<р+рЗгф =0  can also be implemented computationally, 
but will not be encountered in any of the models studied 
in this paper.) In addition, in either the full-space or half
space problems, there is an inner coordinate boundary
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the iteration will depend strongly on what is being mea
sured at the end of the iterative process.

IV. NUMERICAL SOLUTION OF THE MODELS 
OF SEC. II

A. Introduction

Let us proceed now to apply the numerical methods 
described in Sec. I ll  to the nonlinear models formulated 
in Sec. II. In Table III we summarize which dependent 
variables in the three models are discretized on the node 
lattice, and which are discretized on the half-node lattice, 
together with the boundary conditions which are imposed 
during iteration. In the brief sections which follow we 
discuss aspects of the numerical analysis which are specif
ic to the three models and give sample numerical results.

B. The Abelian Higgs model

Following the analysis of Sec. III.E  and Appendix C, 
we explicitly subtract off the Coulomb self-energy from L 
by making the substitution

A °= A l +  B a , (4.1)

with Ac the Coulomb potential of Eq. (Cl) and with B°  a 
new dependent variable. Because Ac and <p are both 
singular at the charges [cf. Eq. (2.17)], the charge coordi
nate z = a  is taken to lie midway between nodes of the 
computational lattice:

а =  (ле + 7 )Д г  , (4.2)

with Hq an integer. We choose the unit of length so that 
* = 1 ,  giving cp—>1 as the boundary condition on <p at in
finity. Since this boundary condition follows from requir
ing L  to be extremal (L is infinite if <p-M at infinity), it 
can be enforced computationally by simply iterating the 
nodal values for <p which lie on the outer boundary of the 
computational mesh. An alternative procedure would be 
to set <p= 1 on the outer boundary; the two methods give 
the same result in the limit as pmlJ—► oo,zm„ —*■ oo, but the 
iterative boundary condition is preferable for finite 
meshes.36 To get a good approximation to the infinite

36In general, fo r  solutions with r ~" asym ptotic behavior at in
fin ity , using an iterated boundary condition on the com putation
a l outer boundary gives greater accuracy  than using a D irich le t 
boundary condition (Y o rk  and P iran , 1982). F o r  linear prob
lem s, fo r  exam ple, C an to r (1983) has proved that a sequence o f 
solutions with the iterated boundary condition and w ith in creas

ing (pm u,2niiil will converge to the true solution with 
and this sequence can even be used to 

study the asym ptotic behavior o f  the true solution at r =  co. 
Such strong statem ents can n ot in general be m ade when a D ir
ich let boundary condition is used on the o uter boundary. In the 
A belian H iggs m odel, where <p approaches its asym ptotic value 
exponentially at in fin ity , the d ifference between th e two types o f 
boundary conditions is not expected to  be as m arked as in the 
case o f power-law asym ptotic behavior.

volume solution, pmJJ and zra„  must be chosen large com
pared with the characteristic exponential decay lengths 
appearing in Eq. (2.17), requiring (for к =  1) that

min(pm„ ,z !„ „ )» m a x [ (2 C ) -1/:z,(2 e2)-,/ 2 ] . (4.3)

Sample results for the Abelian Higgs model, calculated 
with

K =  C  =  e = < 2 V ( 4 i r ) = l  ,
(4.4)

Ртпях * 3, 0 = 1 .6 2 5  ,

are shown in Figs. 12(a)—12(d). These figures give values 
of <p and A0 (plotted vertically) on a plane passing 
through the axis of rotation (represented by the horizontal 
plane in the figures). One can see clearly the peaks in <p 
and A° at the charges, as well as the exponential decay of 
<p towards 1 and of A0 towards 0 at infinity. In Figs. 
12(c) and 12(d), in which the vertical scale has been mag
nified by a factor of 10, one can also see that the structure 
of the solution extends to the computational boundary, in 
marked contrast to the behavior found below in the solu
tion of the leading logarithm model.

C. The leading logarithm model

In discretizing the leading logarithm model, we put the 
charge coordinate z =  a on a node of the computational 
lattice,

а = п е Д г , (4.5)

with nq an integer, and enforce the step function boun
dary condition of Eq. (2.50) by requiring

Фоj = Q ,  0 < j< n Q ,

фо./ =  т 2 >  j = nQ > (4-6>

Фоу= 0 , nQ< j< .n j .

[An alternative procedure would be to put the charge 
coordinate midway between lattice nodes by taking 
a = ( n G +  y)Az, giving the boundary condition 
фо,; =  С .О </'<ле and Ф0у = 0 ,л 0 +  1 < .j< r ij]  Because 
the solution for Ф is confined within a finite free boun
dary, the numerical solution is independent of pm„  
provided that these are large enough for the fully con
verged free boundary to lie entirely within the computa
tional mesh. To facilitate picking values of p mhx,zmtI 
which are large enough to contain the free boundary but 
are not excessively so, we have included a control parame
ter option in the program which permits the adjustment 
of the limits of the computational mesh during iteration.

In carrying out the iteration we do not let the dielectric 
function e  assume the value 0, but rather impose a 
minimum value emin by computing e  and a  from the for
mulas
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M odel
D efined on 
node lattice

D efined on 
half-node lattice p  =  0

Boundary conditions (or remarks)
O uter boundary

z =  0

A belian  H iggs 
Sec. I I .C

B°
(cf. Appendix C ;

a ° = a £ + b 0)

(charge coordinate 
z =  a midway 
between nodes) 

B a iterated

B °= 0 B°  iterated

Leading 
logarithm  
Sec. I I .D

A xially 
sym m etric 
m onopole 
Sec . I I .E

ft,
A2
/,
f l
Я|
“2

<p iterated

(charge coordinate 
z =  a  on node)
Ф =  Q, z < a 
Ф =  \Q , z =  a 
Ф =  0, z >  a

<p iterated

Ф iterated

<p iterated
(could also use <p =  1)

Ф =  0

<7 determined at all half-node points within 
com putational mesh by updating from  Ф

A i iterated 2Г "ii 0 A, = ( 1  —n/ r)cos&

* 2 = 0 h i  iterated A2 =  ( I —л/ г) sin#

/  i= n / 1  iterated / , =  n cos!0

/ 2 = 0

011 f 2= n  s in d co sS
a  | = 0 a  1 iterated a ,  =  —< l/ r )s in 8

a 2 iterated Q j—0 a 2 =  (l/ r)co s-3

F IG . 12. Sam ple results for the Abelian Higgs model, calcu lated for the param eter values in Eq. (4.4). T h e ДОР1” »*ow  
(b) A \  (c) v  with the vertical scale m agnified by a facto r o f  10, and (d) A w ith th e sam e vertical scale m ag n .fica t,on fa ll Plo» ed 
cally  over ,  horizontal plane through the rotation axis. T h e  values o f  „  and A* a . the base o f  the figures are „ - I  and A - 0 .  

respectively.

flev. Mod. Phys., vol. 56, No. 1. January 1904



602 Adventures in Theoretical Physics

32 Adler and Piran: Relaxation methods lor gauge field equilibrium equations

E^m axtx^oIogtfiV^J.En,^] ,

2пк
P i  V O  |

/
I VO I
rrb0Kp * 2 

P m̂in

(4.7)

This procedure avoids floating point underflows and over
flows, and corresponds to keeping the differential equa
tion for Ф just barely elliptic even outside the free boun
dary. Provided that £min is chosen to be very small (we 
have used values ranging from 10“ 15 to 10-35 with equal
ly satisfactory results), the results for Kst.,ic are essentially 
independent of emin. Although convergence of the itera
tion is improved by over-relaxation, we have found that 
the nonlinearity of the combined iteration of Eqs. (3.86a) 
and (3.86b) leads to instabilities in the free boundary 
shape, if one attempts to use eo values as large as the op
timum eo appropriate to the linear subiteration of Eq. 
(3.86a). These instabilities are avoided by limiting eo to at 
most <u=1.7 when iterating on meshes larger than 
2 5 x 2 5 . Full convergence within the free boundary re
quires about 1—2 min of CPU time on a VAX 11/780 
computer for a 2 5 x 2 5  mesh, and around 1 h for a 
100X 100 mesh. Sample results on a 2 5 x 2 5  mesh [Adler 
and Piran (1982a)], computed for the parameter values

k = 1  , Q = (\ )U1, b o ^ A S v 2) ,
(4.8)

are given in Figs. 13(a)—13(d). These figures show, 
respectively, the flux function Ф, the field energy density 

with a vertical scale magnification of 100, and the 
logarithm  of the dielectric constant e ,  all plotted vertically 
over a horizontal plane through the rotation axis. In the 
plot of Ф the p = 0  boundary condition of Eq. (4.6) is 
clearly visible, and in both plots of ^  one can see the 
Coulomb energy peaks. The plot of Ф and the magnified 
plot of show that the flux and energy are confined 
within an oval curve, approximating the continuum limit 
free boundary, which is also clearly visible in the contour 
plots of Ф and T  shown in Figs. 14(a) and 14(b). Both be
cause we have imposed a cutoff e>  E m j n =  10“ l5, and be
cause of finite mesh-spacing effects, the computational 
problem has low-level residual structure extending outside 
the continuum free boundary (but lying within a second, 
computational, free boundary), as can be seen in the plot 
of loge in Fig. 13(d). This residual structure, together 
with the fact that the location of the free boundary is not 
stationary under small variations around the equilibrium

F IG . 13. Sam ple results fo r the leading logarithm  m odel, calcu lated for the param eter values in E q . (4.8). T h e graphs show (a) the 
flux function  Ф, (b) the field energy density ЯГ, (с) Ж  with the vertical scale m agnified by a facto r o f  100, and (d) the logarithm  o f  
the d ielectric constant e, all plotted vertically over a h orizontal plane through the rotation axis. T h e values o f  Ф, Ж , and e a t the 
base o f  the figures are 0 , 0 , and £„ !„ =  1 0 “ IS, respectively, with e fallin g  14 decades from  the top o f  (d) to the base. [W hen Emi„ is re
duced to 10-33 , the residual stru ctu re along the axis at th e base o f  (d) is elim inated.)
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solution Ф, makes an accurate determination of the free 
boundary location more difficult computationally than an 
accurate measurement of Ksllllj(., which is stationary 
around equilibrium [cf. Eq. (2.42)]. An analytic investi
gation by Lehmann and Wu (1983), described briefly 
below, shows that in the limit as R —*a>, the continuum 
free boundary approaches an ellipsoid of revolution. 
Rigorous proofs of the existence of a continuum free 
boundary have been given by Lieb (1983) and by Gidas 
and Caffarelli (1983).

As described above in Sec. III.E, to measure И!и1|с(Л) 
we make a sequence of measurements of 

îtatic(R) — Уsutic(^ /2), with mesh geometries at the 
separations R, R /2  chosen so that the Coulomb self- 
energies cancel. For R values between 128 and 1, the cal
culation can be done in the original p,z coordinates, with 
uniform mesh spacings Др.Дг in the p  and z directions. 
For R values smaller than 1, a Jacobian transformation as 
described in Sec. III.D  is necessary. A simple 
“stretching”-type transformation which gives good results 
down to the smallest R values is given by

p=H (p',0 .Sa) ,

z= H (z',a )  ,
(4.9)

Я (2 ',0 )  =

Z‘, z ' z l a  
3a

4 — —

7J-, 3a <z' <4a ,

to be used with z 'mal =  4<3,p'[tlaJ1 =  3.2a. This transforma
tion has continuous first derivatives, leaves the mesh uni
form near the source charges (so that Coulomb self
energies still cancel), and has an outer region in which 
mesh points are distributed so as to sample in a roughly 
uniform way the field energy of a dipole source, as indi
cated by the following estimate,

dipolê  11
(1 +  3cos2t>)

_1_
3

p

4 r

= 0 .0 5 ^ -  , S  =  0 
a

= 0 . 0 3 ^  , -9=ir/2 .
a

(4.10)

In the calculations for R values much smaller than 1 the 
free boundary cannot be resolved even on a 100X 100 
mesh, but at small separations the infrared contributions 
to the static potential are no longer dominant, and so 
there is no difficulty in making an accurate determination 
of by using the transformation of Eq. (4.9). An al
ternative method for doing the calculation at short dis
tances is to use the transformation to bispherical coordi
nates given in Eq. (3.63). [This transformation is in fact 
useful at large distances as well; in Fig. 14(c) we show a 
contour plot of the flux function Ф in bispherical coordi-

Relation axis - tx>< z<-a

To chorge 
ol-o»- 

Cc)

Rotation axis o<*<® 
Equatoriol pion* >

4 Rotolion axis -o s is a  J
— M—  „ JSphere oround /  

chorge ol *a 
with rodius О 001

F IG . 14. C ontour plots obtained from  the num erical solution o f 
the leading logarithm  m odel, with the param eter vaJues o f  E q . 
(4.8). T h e plots (a) and (b) show contours o f  the flux function Ф 
and the energy density in uniform Cartesian coordinates, 
corresponding to the elevation plots o f  F igs. 13(a) and 13(c), 
respectively. Sp ecifically , (a) contains 21 equally spaced con
tours ranging from  0.001 to I , while (b) contains 21 equally 
spaced contours ranging from  0.0001 to 0.01 (with the m ax
imum  o f Ж  scaled to  1). T h e  plot (c) shows contours o f  the flux 
function Ф obtained on a bispherical grid. T h e coordinates are 
f i  and costj, and th e charges are located at ju =  ±oo- T h e free 
boundary is ju st inside the contour line < b/Q = 0 .0 5 .
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nates, calculated for the distance a = 4  at which the free 
boundary is clearly resolved.] The results of the calcula
tions using "stretched” cylindrical coordinates and using 
bispherical coordinates agree to better than 1% at all dis
tances, and are presented in the form of a parametrized 
analytic fit to in Adler and Piran (1982b).

In solving a complicated problem numerically, it is im
portant to check the computer program, wherever possi
ble, against analytic expressions which are available in 
limiting cases. In the case of the leading logarithm 
model, systematic analytic approximations can be 
developed in the small-A limit (Adler, 1983) and in the 
large-Л limit (Lehmann and Wu, 1983). At small R a 
perturbation analysis in powers of an appropriately de
fined running coupling £(Д) gives

= n 7 ^ - [ ^ ) + 0 ( f 3)] ,

« - 0  4irrtyft0

£ Ш =
/(m<)

wR

log u>R
+  0

loglogw*

(logUJfl )'
+ 0 1

(logtujj V
, (4.11)

F sutic<*) =  kQ R + Q 1'1-
R - *  CD J vbr.

K,/2log(K1/2/0

(4.13)

This formula shows that the large R bound on the linear 
potential derived by Adler (1981a) is saturated. The nu
merical results for H!Utic in the range Д ~ 1 0 — 100 yield 
coefficients of the R and log(/cl/2R ) terms which agree 
with the analytic results of Eq. (4.13) to better than 1% . 
According to Eq. (4.12), at large R the limiting behavior 
of the free boundary is an ellipsoid of revolution

z1 , irb0 1/2 OK'n  2

- 4  f b r  ’ 14141

with the major axis along the axis of rotation growing as 
R, and with the minor axis growing as R W2. A study of 
the structure of the free boundary using the numerical 
solutions for R ~ 5 0 —103 shows that the outer contours 
of Ф have a shape agreeing well with this formula. Hence 
in both limiting cases in which analytic approximations 
are available, they are in excellent agreement with the re
sults of the numerical solution for Ф.

Ur =  ~  j  _ j  • ЛР =  2.52(с
A d/\

IП
D. Axially symmetric monopoles

When the numerical results for Hsu,jc in the range 
k1/2R ~  10~6 — 10~8 are fit to the functional form of Eq.
(4.11) with Лp adjustable, we find A/> =  2.49, in excellent 
agreement with the analytic result. At large R, a sys
tematic expansion of the differential equation for Ф in 
powers of \/R gives37

ф =  ф '°\ p/R '/2,z /R )+ ^ < b n \ p /R ]/2,z /R )  +

(4.12)

<t><0) =  Q 1-1
irbr.

2 Q

i n
a p 2KW2

, a = 7 * ,

permitting the determination37 of the leading two terms in 
the large-distance behavior of the static potential,

In solving numerically for the axially symmetric mono
poles, we use the leading terms of the asymptotic formu
las of Eq. (2.99) as Dirichlet boundary conditions on the 
outer boundary, without including the / — 2 or higher 
terms in the expansion. Consequently, the potentials ob
tained computationally will contain errors of order 
l/pm„,l/z^,„, which can be made small by choosing pmaj 
and zm„  large enough. An important check on conver
gence is to verify that the bound

Я  =  4отс I n | (4.15)

is attained. Since the leading terms which are retained in 
Eq. (2.99) make a contribution to the energy density given
by

(4.16)

37T h e  solution Ф 101 positions the charges on the free boundary, 
reflecting  the fa c t th at the distance between the charges and the 
free boundary —a  in F ig . 6) vanishes relative to R  as R  —>■«;. 
T h e derivation o f  th e logarithm ic co efficien t in E q . (4.13) as
sum es the stronger statem ent that (zA—a ) / R  vanishes faster 
than R ~ 1 log ^  as R —>oo. T h e  agreem ent o f  Eq . (4.13) with 
the num erical results gives a  posteriori evidence fo r the validity 
o f this assum ption; for an an aly tic  investigation o f  th is issue see 
L ehm ann and W u (1983).

-yn.p.o.-c (p2+ Z 2)2 ’

we must include an analytic correction for the energy ly
ing outside the boundary of the computational mesh when 
we test Eq. (4.15). Following the notation of Eq. (3.70), 
we do this by writing

with

(4.17а)

(4.17b)

determined computationally, and with a simple integra
tion giving

R e v .  M o d  P h y s . .  V o l .  5 6 ,  N o . 1 , J a n u a r y  1 9 8 4

Note: In Eq. (4 .1 4 L  к 1/2 should read k} ^ .
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F IG . 15. Sam ple results for the axially sym m etric Bogam ol'nyi-Prasad-Som m erfield monopole problem. T he graphs show the field 
energy density (a) for n =  1 and (bl for л = 2 ,  plotted vertically over a horizontal plane through the rotation axis. T h e two cases 
can be characterized, respectively, as a fuzzy “ b all"  and a fuzzy “doughnut" o f energy.

tfouaid.- / outsidê ° *  /ouuitlê “ ymj*«,c

m̂ax
(,o 1 + Z 1 ),/2 '' r m m  m u  '

(4.17c)

As illustrations of the solution of the monopole equa
tions, we have solved the л =  1,2 cases on a mesh with 
Pmai= z maj=  10. >n units in which jc=1 (and with the 
gauge function ф of Appendix В taken as O).58 For the to
tal energy H calculated from Eq. (4.17), we get (on the 
relatively coarse mesh plotted in Fig. 15)

n =  l, H =  12.88 ,
(4.18)

n = 2 , H =  2 5 .2 2 ,

in good agreement with the values of 12.57, 25.13 expect
ed from Eq. (4.15). In Fig. 15 we give plots of the energy 
density Э1Г for the solutions. The n =  I solution shows, in 
the large, the expected spherical symmetry, while the 
n —2 solution has the form of a fuzzy “doughnut,” in 
agreement with a variational calculation of Rebbi and 
Rossi (1980) and with the recently found analytic solution 
for this case.39 However, we also observe that the л =  1

numerical solution has a dip in Ж  along the rotation axis, 
whereas in the exact л =  1 monopole solution given in Eq.
(2.96) above, Ж  decreases monotonically away from the 
axis. This dip is a remnant of the second-order errors in 
the discretization procedure which, in the present in
stance, weight too heavily the lattice cells along the axis, 
and thus lead to a reduction in the Я * value of the con
verged discrete solution at the axis. When the lattice 
spacing is made finer, the dip becomes smaller, but the 
correct monotinicity properties of at p =  0 appear only 
in the limit of zero mesh spacing.
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38A s a check on the com puter code, we have verified that the
energy H o f the num erical solution is unchanged when a choice

$=£0 is used.
39por a discussion o f the axially sym metric solutions realizable

within the six-function ansatz, see, for exam ple, Prasad and

Rossi (1981).

A P P E N D IX  A : M A T H E M A T IC A L  F E A T U R E S  

O F  T H E  L E A D IN G  L O G A R IT H M  M O D E L

We discuss in this appendix a number of mathematical 
features of the leading logarithm model. We begin by 
analyzing the structure of the real characteristic (the free 
boundary) of the differential equation
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v H p ,  | у ф | >у ф ] = о , (д  I) dinates xB on the free boundary, we have

with a  defined in Eqs. (2.59) and (2.60) of the text. Using 
the chain rule and dividing by a , we see that Eq. (Al) be
comes

У Ф + з е ^ г »<,о8 |7Ф |1 УФ + ^ Э , Ф - 0 .

This can be further rewritten by substituting

y ^ a ’ + a i + j r ' a , ,

(A2)

( A 3 )

vtiog | уф  | )-у ф =  у(Э ,ауФ)
э.ф э.ф  1 / •
| УФ |!

=  ffiffjdid j0

= л,Э 1п; ЭуФ— | УФ | fi.ftfrfij 

= ъ\ Ф ,

with n the unit normal defined by

VФ л „ .fl — -  _  , л-и =  1 ,
I УФ I

(A4)

thus giving

(a2+ a 22- a 2 )+ 1 + aiogg 
aiog | у ф  [

aiogg

ф

i + aiogp р -'Э ^ Ф = 0 . (A5)

Now from Eq. (2.59) we have

log<7=log(2m() — logp — log | УФ | -flog/ Ы ) ,

1УФ! ЭЛФ
(A6)

ттЬ0кр trb0Kp ’

and so the derivatives of о  appearing in Eq. (A5) can be 
expressed in terms of f(w ) .

l +  

l +

aiogcr aiogj  wf'(w)
aiog | уф  | aiog | уф  | f ( w )

aiog<7 _  aior/~ w f’(w)
(A7)

aiogp aiogp /(w ) ’ 

yielding Eqs. (2.72) and (2.73) of the text, 

{(Э ;+ Э г2- а 2 )+ а Э 2] Ф - а р - ,а ,Ф = 0  ,

wf'(ui)П  ж  —t---------
f(w )  w + flw )

In the vicinity of a general, off-axis point В with coor-

-ap  'ЭрФ a ~ w p  ’арФ ~  | УФ | (A9)

so to first order in | УФ |, Eq. (A8) can be approximated 
by

а ф
- 1 — - a 2 +  ■ d„irb0KpB

Ф =  0 , (AIO)

with I and n, respectively, tangential and normal Carte
sian coordinates at the free boundary, as shown in Fig. 7. 
When the radius of curvature of the free boundary (and of 
the nearby level surfaces of Ф) is R B, then to the needed 
accuracy the behavior of Ф near the free boundary has the 
form

Ф =  ̂ , F(0) =  0 (AU)

Substituting Eq. (A ll) into Eq. (AIO) determines the 
function F(z) to be

i ттЬ0крв 
F(z) =  T — ------ z (A 12)

giving Eq. (2.75) of the text.
Let us consider next the point p =  0 ,z = z /<, where the 

free boundary intersects the axis of rotation. From Eq. 
(2.62) we know that A ° =  +  oc at the source charge Q, and 
A0 is arbitrarily large within a sufficiently small neigh
borhood of the point p = 0 ,z  =  a. On the other hand, since 
A0 can be determined along the free boundary by integrat
ing a tA °—K out from the plane z = 0 , where A0 vanishes, 
we have

A °(p = 0 , z = za ) = k L  , (A 13)

with L  the (finite) length of the segment of the free boun
dary lying within the quadrant drawn in Fig. 6. Hence A0 
is finite at p =  0 ,z = z /(, and so we must have zA > a ,  with 
the possibility zA = a  excluded.

Let us suppose now that we have solved Eq. (2.56) or 
(A8), and hence know e= (p 2a)~' as a function of x. As 
mentioned in the text, one way (not the simplest way!) to 
determine A 0 is to solve the linear differential equation

У - ( е У Л ° ) = - / ° (A 14)

within the free boundary. Since Eq. (A 14) is the Euler- 
Lagrange equation corresponding to minimization (for 
fixed £ > 0) of the functional

/  </Мт £(у л °)2- / л 0] , (A 15)

(A8)

solutions will exist. To see that the solution is unique, 
even without the imposition of a boundary condition on 
the free boundary, let us suppose that Eq. (A14) has two 
C 1 solutions A® and A°, so that A° satisfies

У-(еУйЛ ° )= 0  . (A 16)

Multiplying by SA0 and integrating over the interior of
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the free boundary, we have 

0 =  f  d 3xSA°V (EV8A°)

=  f  d 3x V (8 A°,eV8 A °)- f  d 3xe(V8A0)2 

=  L  - _  dS-(8A°eV8A0)— f  d }xE(V8AH)2 .J  free boundary J

(A 17)
The first term in the final line of Eq. (A 17) vanishes, be
cause E vanishes on the free boundary, and so Eq. (A17) 
implies that У 6Л °= 0 in the interior. This, together with 
the requirement that 8A n be an odd function of z, implies 
the vanishing of 8A 0 within the free boundary.

The seemingly paradoxical fact that Eq. (A5) requires a 
Dirichlet condition Ф =  0 on the free boundary, while Eq. 
(A 14) requires no boundary condition for A0 on the free 
boundary, has an interpretation in terms of the general 
boundary-value problem for second-order equations with 
non-negative characteristic form, given by Fichera (1956). 
The generalized Dirichlet problem takes the form17

L ( u ) = a kJ(x)dkdjU +  b k(x)dk u + c(x)u  = f( x )  in Cl ,

и = g  on 2 2U 1 3 , (A18)

with /  and g functions defined on П and on X2U 2 3, 
respectively. The sets 2 2 and -̂3 are subsets of the boun
dary X of the domain Cl, specified as follows. Let nk be 
the inward directed normal to the boundary. The set 
is defined to be the noncharacteristic part of the boun
dary, where a k'nkn j> 0 . The characteristic part of the 
boundary, where a kjnkrij=Q, is divided into sets 
2 0,2 | Д 2, defined by

b =  0 on 2 0 ,

b > 0  on 2 ,  , 

b < 0 on X j , 

b = n k(b k — d ja kJ) .

(A 19)

According to Eq. (A 18), a Dirichlet boundary condition is 
required on 2 2 and while no boundary condition is 
needed on the subsets 2 0 and of the boundary.

Let us now analyze Eqs. (A8) and (A 14) using this for
malism. In discussing Eq. (A8) it suffices to use the ap
proximate form of Eq. (A10), with I and n fixed Cartesian 
axes as in Fig. 7, giving

a " =  1, a ‘" = 0, а "л=  а* Ф , b '= b " = c = 0 ,  (A20)
1гЬ0крв ’

so that

i  =  _ ___ I___
an ттЬ0крв R

Thus for Eq. (A8) the free boundary is in I 2, and the im
position of a Dirichlet condition Ф = 0  on the free boun
dary is required. [Note that this condition, together with 
the discontinuity of Ф at the source charges given by Eq. 
(2.50), then implies that Ф =  (? on the interior line seg
ment p = 0 , |z | < a  ] In Eq. (A 14), we have

a ,J=  e8'j , Ь *= Э *е, с —0 

= * 6 * - Э ; а * '= 0  , (A22)

so that the free boundary is in 2 0. Hence no boundary 
condition for A° on the free boundary is needed when E 
has been determined as a function of x  by first solving the 
equation for Ф.

Suppose, on the other hand, that we attempt to solve 
the full nonlinear problem for A0 given by Eqs. (2.41) and 
(2.46) directly, with e not known a priori. These equa
tions, when recast in the standard quasilinear form of Eq. 
(2.70), yield

tijd,djA0= - j ° , (A23a)

with 6y the field*strength dependent dielectric tensor

E/>=8(7T6olog[(V^°)2/(f2] +  y i 0^  • (A23b)

The unit vector is defined by 

diA°
T, = - VAC

and since

Г ^ Ф а О  7 Ф а ( ^ Х 7 Ф ) ’7Ф  =  0 ,

(A24a)

(А24Ы

I is orthogonal to the unit vector n of Eq. (A4). Compar
ing Eq. (A23) with Eq. (A 18), we see that

a 'J =E,i, i ‘ =  c =  0 , (A25)

and so Eq. (A23) is elliptic in the interior region and de
generates on the characteristic, with

Ь =  -а „ [т *о 1 о Е (£ 2/ ^ ) ] - т 6 ол,Э; (/10)

=  — {b o iE -'S „ E + n ld,ti ) . (A26)

At a point В on the free boundary where the radius of 
curvature is Rg, we see from Fig. 7 that

1
=  —  . n e

(A27a)

while from Eqs. (2.61), (2.75), and (A6) we get the leading 
behavior of E  in the vicinity of the free boundary,

£a:K (l-t-U l)=K 1 +
ЭПФ

1тЬ0кра l + £

> £ - ‘a „ £ = - L- 1
Kb

Э„ Ф =  — < 0 . (A2l) giving

b0
b =  -  —  < 0 .  

ЛЯ

( A 2 7 b )

(A28)

Hence according to the Fichera criterion of Eq. (A 19), a 
Dirichlet boundary condition for A0 is required at all 
points Хд on the free boundary. This boundary condition 
is implicitly available in the form
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А°(хв ) = Г \  , dld,A °= Г ”' d U ,г — 0 plane **2—0 plane (A29)

with J  dl a line integral along the characteristic, but 
since A°(xB) thus becomes a function of the geometry of 
the free boundary (which is not known a priori), this con
dition is difficult to implement in a numerical calculation. 
An important advantage of the flux function reformula
tion is that it replaces Eq. (A29) by the explicit Dirichlet 
boundary condition Ф(хя )= 0 .

APPENDIX B: STRUCTURE AND PROPERTIES 
OF THE SIX-FUNCTION ANSATZ

Substituting the six-function ansatz of Eq. (2.97) into 
the field-potential relations of Eq. (2.80), we get the fol

lowing expressions for the various field-strength com
ponents (with a1=a/az,ap=a/8p):

{3)j<p')i<‘P = b l h l + a xh 1, B ‘,j£af J = p - H d (f l + a 2f 2) ,

( ^ “) ^ = Э 1Аг - в1Л1, ,

( ^ ; < р «)£^ = Э / 1+ а 2Л21 B°‘z ° P = - p - \ d J x+ a , f 2) ,
(B l)

Ш ]Ч,а)р‘„р1=дрИ2- а 2Иь  B ' % p = - p - 4 * lh - a J y) , 

(& j<p°)$°$i = p - 4 h 2f l - h lf 1), В Ч № = Ъ ,р х~ Ъ 0 г  ■

Substituting these expressions into Eq. (2.86) gives a for
mula for the Hamiltonian H  directly in terms of 
A 1,2. ■ ■ •.

H = 4 tt f “ pdp  / o dz3T ,

Я Р — у [ (3 ,Л  j - f a  i ^2 )2 +  (3 2Лз — Q\h j )2H-(0p/j j +  2 — fl2^ ] )2]

+ A [ o I/ , + a 1/ 2)2+ (a z/ 2- fll/ 1)2+ ( a / 1+<l2/2)2+ o A/ 2- fll/ 1)2]

+ у ( а 1а 2- а ^ 1)2+ ^ Г (Л1/ 2- А 2/ 1)2 .

(B2)

Equations (B l) and (B2) and the boundary conditions at 
p = 0, z = 0 , and r — 00 given in Eqs. (2.98) and (2.99) have 
a residual Abelian gauge invariance of the form

A i —*A | cos5 — AjsinS ,

Л2 —►A2cosS-f-A iSinS ,

/i —>/|COsS— /jSinfi , 

f  i *y 2cos6 +  У] sinfi ,

a ,— fl] +azs , 

a2—a2+ap6 ,

with S a function of p,z satisfying 

5 =  0 at z = 0 ,  p —0, r—y oo .

(B3)

(B4)

Hence in order for H  to have a unique minimum, it is 
necessary to add to it a gauge-fixing term

=  f o P dP fa  d z Jrt<- (B5)

In the numerical work of Sec. IV.D, we shall use the fol
lowing choice of gauge-fixing:

(B6)

with \J> an arbitrary function which vanishes at the boun
daries. Minimization of H +  H t( then picks out the 
member of the gauge-equivalence class of minima of H 
which satisfies

3 ,a , + 3 ^ 2 — ^ =  0 . (B7)

Since the differential equation for S,

(aJ2+ a ^ ) S = 0 - ( a Ia l -i-apfl2), o < z < ® ,  o < p < o = ,

(B8)

with the boundary conditions of Eq. (B4), gives a well- 
posed Dirichlet problem, the gauge condition of Eq. (B7) 
is always attainable and completely breaks the gauge de
generacy.

Adding Eq. (B6) to the kinetic term for a 12 in Ж  gives 

y (3 I fl2 —3 ^  | )2+  -j-(Эг<2| + 3pa2 — ̂ )2

=  l [ ( a I fl1)2+ (a pfl|)2-i-(aI<i2)2+ (a pfl2)2+ ^ ]

— ^(aia 1+ 3 pfl2) - f3 ja i3 pfl2 —a2a 23pfli . (B9)

Although the final term in Eq. (B9) is a total derivative, it 
does not vanish when integrated over a finite domain 
0 ^ z  5 zmajt,0 $ p  < p mM, and so should not be dropped in 
the numerical work.

As discussed in the text, the minima of H  in the sector 
with topological quantum number n are self-dual or anti
self-dual gauge fields. In the self-dual case, where 

the use o f Eq. (B l) gives the differential
equations

Hev. Mod. Phys., Vol. se, No. 1, January 1984



P H Y S I C A L  R E V I E W  D V O L U M E  2 3 ,  N U M B E R  1 2
15 J UNE 1981

E ffe c t iv e -a c t io n  a p p ro ach  to  m e a n -fie ld  non-Abelian statics, and a model for bag form ation

Steph en  L  Adler 
The Institute fo r  Advanced Study. Princeton. Ntui Jtney 08540 

(Received 10 November 1980; revised manuscript received 19 January 1981]

1 propose a simple set of equations for mean-field non-Abelian statics with с -number sources, at general inverse 
temperature/?, working from the Euclidean path-integral representation of the Hamiltonian partition function. The 
problem of finding the background-field configuration, and the mean-field potential, for point sources can be 
reduced to a classical differential equation problem involving a suitably defined thermal effective action functional.
As an application 1 study the interaction of a pair o f static classical sources coupled to a quantized SU|2) gauge field, 
using tbe simplified model defined by keeping only the leading-logarithm renormalization-group improvement to the 
local Euclidean action functional. I prove that the mean-field potential in this model grows at least linearly with the 
source separation, giving a simple model for bag formation. The use of these methods to construct a leading 
approximation to the qq  binding problem in SU(3) quantum chromodynamics is discussed in two appendices. 
Appendix A describes the use o f color-charge-algebra methods to generate an equivalent classical source problem, 
while Appendix В develops the properties o f the transformation to a running coupling constant for which the one- 
loop renormalization group is exact. As a consistency check, in Appendix С I calculate the total mean-field ground- 
state energy, with source kinetic terms included, and show that it has the expected form.

L EFFECTIVE-ACTIO N  FORM ALISM FO R  
NON-ABELIAN STATICS

I analyze In this paper the question of calculating 
the m ean-field potential of c la ssica l point sou rces 
coupled to a quantized SU(2) gauge field, at zero 
and at finite tem perature. This problem is  of in 
te re st both in Itself as a mathematical model, and 
because arguments based on the use of c o lo r- 
charge algebras suggest1 that с -number sou rce 
models should give a leading approximation to the 
problem of calculating the heavy quark-antiquark 
static  potential in quantum chromodynamics.

My analysis proceeds from  a field -th eo retic  gen
eralization  of the Euclidean (im aginary-tim e) v e r
sion of Feynman’s sum over h is to ries . In poten
tia l scattering in one dimension, with Minkowski 
Lagrangian

1 (dx
2 [dt ) ' V{x),

the Euclidean sum over h istories reads

(1)

(2)

On the left-hand side of Eq. (2) I* ,)  and | x /)  are 
position eigenstates and И  is  the Hamiltonian, 
while on the right-hand side N  is  a norm alization 
constant and S is the Euclidean action

’= 1 4 0 )  + Hx)] ■ (3)

and f [ d x ] denotes a functional integration o v er all 
paths x(t) obeying the boundary conditions x (0 )
~ x „  x(0) =  X/. Setting and integrating over
in itia l states gives a form ula for the partition  func
tion,

23

T r(*-“ ) = /  dx^x,

= N fdx, f (4)

where the paths in Eq. (4) now run from jc(0) = Jtj 
back to x(0) = x,. The generalization of Eq. (4) to 
a boson field theory containing spin-0  scalar fields 
and spin-1 gauge fields, denoted collectively by ф, 
can he written as

Z = TT(e~,H) = N f  d<p, [ * '  [d$]e~‘ * . (5)

On the left-hand aide of Eq. (5), H is the Hamil
tonian operator defined from the stress-energy 
tensor

я =  J  A t"', (s)

while on the righ*, St  is the Euclidean action

St  = f ‘ d i f d 1x £ t , (7>

obtained by continuing gao from  - 1  to 1 in the gen
e r a lly  covarian t form  of the Minkowski Lagrangian 

density2

£ ж« 1-l -focT1’ ^

The trace on the left is understood to be evalu- 

paths, With ф(0) Ф& I intuitively plausi-

^ “d e“ e *  

© ,9 8 1  И *  American Physical Society
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field s, the generally covariant Lagrangian density 
is linear in

Since

(9)

with £ (0, 1) independent of g oc, whence from Eq. (8) 
we have

(10 )

(1 1 )

£ *  — £<oi-  ^(n  >

£ B= - ( £ t o > +  •

But forming the Minkowski energy density 7’00,

Tso _  „00 о  0  1 - g  *» « - 2
5£ oo

=  (—l)(^(o> — £(i> )-  2 £ ( i ) =  £ * ,

we see that it is  identical to the Euclidean Lagran
gian density £ л. Hence, the Euclidean action oi 
Eq. (7) is  a functional representation of the opera
tor pH, ju st as in the potential theory ca se . A de
tailed justification of Eq. (5) can be obtained by a 
transform ation from  the conventional canonical 
form alism  given by B ern a rd .3

I now apply Eq. (5) to an SU(2) gauge theory 
(with gauge potential bv and e le c tr ic  and magnetic 
fields E J and B J) coupled to a system  of m assive 
sou rces, and replace the source current density by 
its  expectation, represented by a  time-independent 
c-num ber external source j B. The equilibrium 
gauge field can be studied by keeping only the 
term s in H and Sa which explicitly  depend on the 
gauge field v a ria b les ,4 while omitting the source 
dynamics (hence, H in the following form ulas is a 
truncated Hamiltonian, and not the Hamiltonian 
fo r a closed system ). With this sim plification, we 
have

Z[U) =  Tr{e~,H) =  N (12)

where on the left

H = f  B')-bM-T,) <!3)

is  an operator, while on the right

St = J ‘ dt f  d \ ( \  \ (E>- E '  + B ' - B>) -  b „ -Г.)

(14)

is  a functional. The m ean-field potential5,6 a s 
sociated  with the s ta tic  external source distribu
tion £ ,=  ( j0 * 0 ,  f, =  0), including se lf-e n e rg ie s , is  
defined as

- ( f  -«joi)

=  T r ( e " " '  f  d3x b c ■ в й )/ т г (в - м ) . (15)

f  Л ь ,  ■ 6^ = -  f  d3x6ia • ,
'  OJo

(16)

we can reexp ress the m ean-field potential d irectly  
in term s of the partition function6

6 V'mem IfcU =  4 -  (  d?X  6 In ■ l n Z [ i ]
/9 j  J □]„ l J“J

=  б - 1 п 2 [ Г ц] , (17a)

=» I'mcM n<ld=- -̂ ] — lnZ[o]} , (17b)

where I have fixed the constant of integration so 
that vanishes for vanishing sou rce density.
The problem of calculating Z[ff ] can be fu rther r e 
expressed in term s of a c la ss ica l d ifferential equa
tion problem Involving a c la s s ic a l background field  
c u and a vacuum effective action functional Г [с„ ]. 
To do this, we w rite

(18)Z [ U = e - ‘ wtI>\

and we introduce the time-independent c la s s ic a l 
background field c MGc) induced by the tim e-in d e
pendent external source distribution j „(ж),

• e f.W

= z -'n  j r ' * b Bw ) e -s « .

(19)

In this notation, the m ean-field potential is  given 
by

^ n e 1d = - M T J + n 4 J ] .  (20)

Defining the Legendre-transform ed functional 
Г [С ,] by

H f J  =  r [ c j  -  f  d \  l t {x) • f„ (x ) , (21)

( 22)

a standard calculation shows that

* 5 b i - r W
B c .w  “

Equations (18)—(22) are the principal resu lt of 
this section. They show that the m ean-field po
tential, for any inverse tem perature 0, can be ca l
culated by solving the c la ss ic a l d ifferential 
equation problem of minimizing the functional 
Г -  / d 3x 5  • Г , with Г  the therm al effective action 
f u n c t i o n a l . I n  the lim it fi — =>, where Г reduces 
to the Euclidean vacuum effective action functional, 
this minimum problem reproduces the variational 
principle of the “Euclidean s ta tic s ” method which 
I have advocated elsew here,1 but with some sig n ifi-
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cant d ifferences in physical interpretation.10
According to E qs. (28 )-(22 ), the problem of 

studying the mechanism for confinement in the 
model d iscussed here can be rephrased in term s of 
the following two related questions.

(1) Is there a physically reasonable class of vacu
um action functionals for which Eqs. (18)-(22) give 
a confining potential for static point sources?
This question is answered in the affirm ative in the 
following section.

(2) Does the exact vacuum action functional ca l
culated from  the functional integral of Eq. (20) be
long to the confining c la ss?

The methods appropriate to studying these ques
tions are quite different. For a given functional 
or c la ss  of functionals Г , the firs t  question is  one 
of c la ss ic a l analytic or numerical methods for in
vestigating partial differential equations. In the 
following section, Eq. (22) is investigated analyti
cally for the leading-logarithm approximation to 
the renorm alization-group improved local effective 
action functional, for which Г takes the simple 
form  г [с„ ] = Г (Е У ■ E J + B J ■ B J); numerical methods 

_______ ___________________________________________1

OACH TO M E A N - F I E L D . . .  2007

of solution applicable to this c lass  of lunctionals 
are currently being developed.1,11 The second 
question is  probably best studied by numerical 
Monte Carlo methods for doing the functional in
tegral. Since confinement is  an infrared effect, 
it should suffice to establish the properties of Г 
for slowly varying source currents f ,  and back
ground fields c„. In this case, appropriate lattice 
transcriptions of the functional integral of Eq. (19) 
may give quantitatively accurate estim ates of the 
behavior of the continuum effective action.

П. A SIMPLE MODEL FOR ВАС FORMATION

As an illustration of the form alism  developed in 
S ec. I, I analyze the following sim ple model, ob
tained by keeping only the leading-logarithm re - 
normallzation-group improvement5 to the local 
Euclidean action functional

Г [с ,]  =  J" d3x(£>tn -  Z'S" ) ,  (23)

with

£.rr =  £ .f, ( ^ )

1 ( E ' - E '  + B '- B ') [ \  . / Е '- Ё '  + В '- В 'М
-  2 — ? ----------- L1 + 4 — i r ~ “ Al

=  l n t f 2/ ( г * * ) ]  ,

£ 3 ? = £ ,,г ((с 2) =  - 4 м г >

. ь . - Ъ  T c ’ l s w , 1 - 1 7  T -  ■

Е* = -  c* -  Z* x c* • -JDyC*,QxJ

в '  =  « ' * ' ( ^ 7 c 1 , f *  =£•1 ■ + b j ■ в ' .

As has been extensively discussed in the lite ra 
ture/ 2 the minimum of £ eff occurs at the nonzero 
field  strength F = k . The source density j 0 is 
taken to be a pair of c la ss ica l sources of equal 
magnitude,

fo =  Qifi3( * - X i )  + $2«3( * - * s) ,  (25)

|*i — I<5i| = 1Q2I = Q ■

In analyzing the model defined by Eqs. (18)—(25),
I make the physically plausible technical assumpj- 
tion that it  suffices to minimize over potentials с„ 
fo r which E J • E J is  axially sym m etric around the 
line joining the sources.

The variational equations following from E q s . 
(22)—(24) are

» ,(« Е ')  =  Го,

<* '“ » / сВ ")  =  с 0х (€ Ё » ),

€=£(jrJ)=̂ fSr=̂ oln(WK

(26a)

(26b)

(26c)

Acting with on E q . (26b) and using Eq. (26a) 
gives the constraint

O = c” x f0 ; 

hence, if we write

с”(х) =  Л х)<:(*), c * c = l ,  

we have

£ (* i ) x <5i = c (* i) xQ j = 0 ,

(27)

(28) 

(29)
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which implies tbat

с o(x) • Л,(дг) =  c(x)j(x), 

with either

j(x) =  - * i ) - B 3( x - * 2)j

or

j(x ) = [e s(x -  x i ) + est*  -  * 2)1 .

(30)

(31a)

(31b)

From  here on it w ill be convenient to work in the 
gauge with c(x) =  S, in which we have

+ с г(с , х г ) г + В ' - В ' .  (32)

I now w ill show that the minimization of W with 
resp ect to the vector potential c* can be carried  
out explicitly, with the result

min Wа Щ,с] =  J  d8* |c.rr{^( —r'j j  -  , 

Дгг[(йг)]=01ог(й') (33)

fimln"*'еЛ for

To prove Eq. (33), we note that J2eft(.FJ) -  £ егт(к2) is 
a monotonic decreasing function of its  argument 
fo r 0 -S-P2 « к 2, and is  a monotonic increasing func
tion of its  argument for * ! « f 2. Hence, W is  min
im ized by the following choice of vector potential,

? = z z la (p ,z ) ,  р = (х 2 + уг)1/г,

a {p ,z ) — f  dp'A (p’, г ) ,
0̂

/8с \! (34)A (p',z) =  0 ,  where f j p - j  > к2,

A(p', * ) = [ * * - ( ^ r )  ]  , where ( ^ j  « <2 ,

which gives (with ф1 the azimuthal unit vector) 

с 'х г  =  0 ,

В  * =  - г ф ‘А(р, z ) - *

^  =  ma x [ ( g r J , « 2] >

and from  which Eq. (33) im m ediately follows.
(Note that it  is  at this point in the argument where 
the axial sym m etry assumption has been used.) 
What is  happening is  that w herever the c o lo r -e le c 
tr ic  field  is  le ss  than к in magnitude, a co lo r-m ag
netic field  fills  in to bring the total squared field 
strength up to the value к2 at which £ (I( is  mini
m ized.

(35)

We are now left with the purely A belian problem 
of minimizing W[c], to which we apply sim ple flux 
conservation estim ates introduced b y ’t H ooft.18 
Varying W, we get the flux conservation equation

D‘ ± I E ' , E > = -
8 * ' C ’

with

-_ jt(E 'E < )  where E 'E ‘ > к2 

to where « к г .

(36)

(37)

Evidently, w herever the E field  strength is  le ss  
than к, the D field vanishes. T his fact can be 
exploited to get a lower bound on УтыпПги and an 
upper bound on W, which by E q s. (33), (36), and 
(37) can be rew ritten as

equilibrium =  f  dl х[£,.П(Е> E>) -  E>D>] , (38)
*'X»0

with the integral extending only over the region 
where D1 is  nonvanishing. Dividing the integrand 
of Eq. (38) by D = (D>D>)u l, we get

^ Ч я 'д ' - . с . л - М Ь - Ч / Ы ]  (39)

with14 (in the domain where Z)>0) 

и = (Е>Е'),п / к » 1 ,

■ J-1 (40)
/(*) = и lnu *  1 .

To turn Eq. (38) into a meaningful inequality, it 
is  necessary  to exclude the divergent se lf-e n e rg ie s  
of the charges by defining TPr to be the contribution 
to Eq. (38) coming from  the ex terio r of sm all 
spheres of radius r  centered on the charg es. We 
then get

WT * - kI t ,

^mean field ^  K i  T (41)

I d  > o

I r=  ft^ x D ,  A =  domain< U - *]|

f \x -  хг I a  r  .

The final step of the argument is  to w rite d5*
= dldA  with I the length along the flux lines of D1 
and dA an elem ent of area  perpendicular to the 
flux lin es. Denoting the flux by Ф, we have

dAD = d\$\>d$ ,

f d 3x D »  f  4 *Ц Ф )*Ф 1а,1т,„ 
•A Jk

(42)

with l„iB the length of the sh ortest flux lin e. F o r 
the charge orientations of Eq. (31b), where the
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(43)

flux lines term inate at infinity, we have 

t̂ot =  2 Q ,

m̂ln“  00 f

and I r is  in fin ite .1s For the charge orientations of 
Eq. (31a), the flux lines run from the positive to 
the negative charge, giving

Ф|<1! —Q ,

Zrntai =  R 2У , 

Wr * - KQ ( R - 2 r ) ,

^ m « i n  field  ®  KQ(R — 2r )  ,

(44)

which proves that the m ean-field potential in
c re a se s  at least linearly for large R . In the lim it 
of sm all R, a sim ple calculation shows that

«  -  se lf-en erg ies -  ^  1 + 6^ 4 (1/ ^ )  ,

(45)
as expected from  a leading-logarithm renorm aliza- 
tion-gToup improved form alism . Hence, the sim 
ple model of Eqs. (18)—(25) interpolates smoothly 
between asym ptotically free behavior at sm all 
source separations, and ‘ta g lik e , ”16 confining be
havior at large separations. The above analysis 
readily generalizes to the full renorm alization- 
group improved local effective action functional,9 
provided that the effective action minimum remains 
at nonzero Euclidean field strength к . 17 More gen
era lly , the resu lts obtained above support the con
jectu re  that a bag will form for large source sepa
rations, irresp ective  of the functional form of 
r [c»], whenever the minimum of Г occurs at po
tentials e ,  with nonvanishing m ean-square field 
strength.
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APPENDIX A: CONNECTION WITH SU<3)
QUANTUM CHROMODYNAMICS

I briefly describe in this appendix how the meth
ods of the text, together with the color-charge-

algebra analysis of R ef. 1, can be applied to give 
a leading approximation to the qq  binding problem 
in SUj quantum chromodynamlcs (QCD). In the 
static quark lim it , 1 the gluon source current for 
the qq  binding problem in QCD is

}* '=  0 ,
1 ’ (A l)
r “ =  <tfe3( * - * i )  + <?4e3( x - * , )

with Q* and Q f the quark and antiquark co lo r- 
charge m atrices. As discussed in R ef. 1, the 
gluon source current Is now a 9 x 9  m atrix opera
tor acting on the nine-dimensional Hilbert space 
spanned by the q , q  color sta tes . The analysis of 
S ec. I can be extended to this case by including a 
factor -j t r , t r -  in a ll form ulas and symmetrizing 
all Inner products, so that Eq. (12) becom es

z U t] =  r  tr ,  tr ,-T r

where on the left

H =  J  d3* [ p -  |(-Ел,£ х , + г луД/*1)

(A3)

is an operator in the product of the q , q  and gluon 
Hilbert spaces, while on the right

s„ = dt j  ^(ЕЛ1Е Л* + В Л>ВЛ>)

(A4)

is a functional in its  dependence on the gluon v ari
ables, but is s till a m atrix operator in the finite 
dimensional q , q  color H ilbert sp ace . 18 Using 
cyclic  invariance of the tra ce , the steps leading to 
E qs. (18) — (22) go through ju st as before, giving

Z b i } = e - ' wtl* \  (A5)

neid =  -V V lji] +W[0A] , (A6 )

—j: t r ,  tr,- (  j  c P x c iM a jt ix i j  , (A7)

w\j*] = r [ c * ] -  -y t r , t r j  , (A8 )

e r [ c i ]  = | t r ,  t r -  ( f d 3x  . (AS)

Note that Eq. (A7) defines c *  to be a potential 
which, like the source current j * ,  is  m atrix valued 
in the nine-dim ensional qq  H ilbert space. To con
stru ct a QCD analog of the analysis of Sec. П, we 
must calculate a leading approximation to the ef
fective action. In the c la ss ic a l lim it, the effec
tive action density is given by19
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-F2 =  j  t r ,  t r j ( £ A,E Ai + B A‘B A‘) ,

р Л )  лс + i p A (  I 0\*■ -  bx, c  tt ' ff .C .C ),  (A10)

^  =  с > * '( ^ г е Л|- | р ; (с * ( с ') )  ,

P } ( u ,v ) * i- f Aac(uBvc  + vcut ) .

The renorm alization-group improvement of Eq. 
(AIO) is obtained by taking g2 to be a running-coup
ling function of the argument g*£el giving, in lead
ing-logarithm  approximation (cf. rem arks in 
R ef. 28),

Г И ]=  J  -  £.„U 2)1, (All)

CP1) =  T 6»*-11 п (*7 е к г) , к2 =  —  е- 4/(̂ * ,

» ° = ^ f C2[su(3)]= i ?  •

(A12)

To ca rry  out the rem ainder of the analysis of 
Sec. П, we must reexp ress E qs. (A 8)-(A 12) in 
term s of number valued, as opposed to m atrix 
valued, source density and gluon variab les. To do 
this, let us re c a ll1 that the qq color-charge alge
bra is  spanned by a basis  w ft . . . , w}, which 
sa tis fie s  the S U (2 )x U (l) outer product algebra

Р / wT, w4) =  0 ,

is  orthonorm al in the c o lo r-tra ce  inner product,

j t r . t r ^ t t ^ j O - - ^ -  6 „ ,  (A14)

and over which the quark and antiquark color 
charges have the expansions

Q* = \ u^+u4 + ~ - w t ,

&
(A15)

[As a check, we note that r t r  tr ,(Q 4(2A) = (8/27) 
x(18/4) = 4 / 3 . J 

Expanding QA, Q ;,} * ,  с A, EAl, and B A‘ over the 
b asis  wA, with с -num ber coefficients, reduces the 
variational problem

6 Г [ с £ ] - { 1 г ,1 г ; ( / d3 x t>cA(x)jA(x)J — 0 (A16)

to a c la s s ic a l SU (2)xU (l) problem , analogous to 
that d iscussed in S e c . II. According to Eq. (A1S), 
the U(l) effective q and q  charges are opposite in

sign, while the SU(2) effective charges have equal 
magnitudes. Hence, the quark and antiquark ef
fective charges can be made antlp arallel by an 
SU(2) gauge transform ation,20 leading to a solution 
with the same form as that obtained from  E q . (31a) 
in S ec. П, apart from  the substitutions21,22

b
11
8яг

(A17)

APPENDIX B: TRANSFORMATION OF THE 
RUNNING COUPLING CONSTANT TO EXACT 

LEADING-LOGARITHM FORM

As already noted, the argument given in the text 
for a confining m ean-field potential gen eralizes to 
the full renorm alization-group improved lo c a l-e f-  
fective-action  functional, provided that the e ffe c - 
tive-action minimum rem ains at nonzero E u cli
dean field strength. When expressed  in term s of 
the /3 function, this condition tra n s la tes8 into the 
requirem ent that the integral

J " « * ' )
( B l )

should be convergent at its  upper lim it. Assuming 
convergence of the integral In E q . (B l) ,  I show in 
this appendix that one can make a nonanalytic 
transform ation to a new running coupling constant 
gR for which the one-loop renorm alization-group 
structure is  exact. The transform ation is  sim ply 
(with a R= g\, a = / )

(A.M (B2)

where P = gl3 has the p o w er-series  expansion [with 
the coefficients given fo r SU(3) QCD with Nf  light 
quark flavo rs23]

/3(a) = - [ {  й0а 2 + 6 , a 3 + 0 (e*)J,
(B3)

Ь о = ^ Г (П - | л д ,  =

Substituting the expansion of Eq. (B3) into Eq.
(B2), we learn that for sm all running coupling con
stant,

2 ь
a R = a  -  a a 2(lna + const) + ■ • • , a =  ~TL (B4)

&o

and so Or — 0 when a —0. On the other hand, the 
convergence of Eq. (B l) im plies that

(B5)

and в о а я - « в а 8 а - " о .  Hence the transform ation of 
Eq. (B2) gives a  nonsingular mapping from the half
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(B2) gives a nonsingular mapping from the hall 
line 0 *  a  <«» to the half line 0 < a ,  < «>. The re - 
norm alization-group structure in the new variable 
а  л Is determined by Дя( а я), given by

^ -  =  0 ( а ) ( - а „2)

( B 6 )— —7  » 
and so has exactly one-loop form .

A particularly  interesting case of Eq. (B2) ie  ob
tained when &(<*) term inates at two-loop order,

Д(“ ) =  - (т Ь о ° '2 +  Ь|«3) ,  (B7)

a  situation which can always24 be achieved {pro
vided Eq. (B l)  converges25] by an analytic trans
form ation of the running coupling constant [ i .e . ,  
by a rearrangem ent of the perturbation series  
which does not introduce coupling-constant logari
th m s], In this case , Eq. (B2) can be explicitly 
integrated to give the transform ation

^ Г = а _ а [ 1П& )  + 1п (1+ аа)] ’ tB8)

which fo r sm all да can be developed into a series  
expansion

<*я а  \а“ / я '

The s e r ie s  of Eq. (B9) can be inverted by sub
stituting

а = а я(1 + < !*/ ), (BIO)

which after some algebra gives

••I

r*
n

л-I

( - a a . ) ' ( H a . f ) ' 1 ( B l l )

S u b s t i t u t in g  

/ - £  <***/.

into Eq. (BIO), and equating the coefficients of like 
powers of а я , gives explicit expressions for the 
coefficients f k as polynomials in 1п(аая),

/о =  а 1п (а а я) ,

Л - / о *  +  « / о - в * . - (В13)

Hence, starting from any convenient calculation- 
a l schem e (for example, minimal subtraction in 
dim ensional regularization), the QCD perturbation 
s e r ie s  can be reexpressed in term s of я by a 
tw o-step transform ation: F irs t , one transform s 
to a running coupling constant for which £ (a ) is 
given by Eq. (B7), and then one substitutes the

inverse transform ation given by E qs. (B 10)-(B 13), 
yielding a series  expansion in powers of a R and 
1п(аая) . 28 In this se r ie s , the term s of order a j  
contain only powers 0 , 1 , . . n -  1 of 1п(дая).

An important property of the one-loop running 
coupling а я is that it  simultaneously maximizes 
the domains of analyticity of the renorm alization- 
group improved local effective action ^ „ ( F 2) and 
of the Д function Д(аг). F o r  a general running coup
ling a(t), the renorm alization-group improved lo
cal effective action density is  given by9

t =  7  lnC fV e*2) .

( B 1 4 )

Substituting the one-loop running coupling a Kt

1
“ яМ

- bet (Bis)

gives

£ .ия(-Рг) =  7*о-Р2 1п(^/еК2) ,  (B10)

as used in Eq. (23) of the text. As a function of 
complex F3, Eq. (B18) is  analytic apart from  a 
cut in the F 2 plane running along the negative rea l 
axis from -F2 =  0  to F* =  — «>. Such a tim elike cut 
1b expected from unitarity, and so £ a(f „ has the 
maximum allowed analyticity domain in F2. To 
study the analyticity properties of the general 
£ <tf(J^), le t us calculate the derivative

d(F*)

From  E q s. (B2) and (B IS ), we get

d / 1 \ g(a) 
dt \a(t)}  - i a 1 ’

and so

(B17)

( B 1 8 )

(B i2 ) ■ (B19)

We have seen above that at the spacelike F1 
where t vanishes, both а я and a  become infinite. 
Hence, d £ ltt(F1) /d (F 1) is singular at spacelike F3 
unless £(<*)/or2 is bounded as a  becom es infinite. 
This is possible with 0 (a) an entire function [which 
corresponds to the maximum allowed analyticity 
domain for the function ffla)] only if 0 ( a ) / a 2 is  a 
constant. Hence, the one-loop running coupling 
gives the m axim al analytic extension of the renor
m alization-group substructure of QCD . 27 This re 
sult suggests that the one-loop model of S ec. П 
may give a universal, leading, sem ic la ss ica l ap
proximation to the confinement problem . 28
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APPENDIX C: TOTAL GROUND-STATE ENERGY

As a consistency check on the form alism  of Sec. 
I, I show here that when source kinetic term s are 
included, the ground-state expectation of the total 
Hamiltonian for a system  of two w ell-localized 
sou rces, in m ean-field approximation, is

(0 |йт |0) = Vm„ neid (*ii * 2) + reco il term s + con stan t.

( C l)

To most simply parallel the discussion of the text, 
I consider only the case of m assive distinguishable 
ferm ion sou rces, with c la s s ic a l29 SU2 charges, for 
which HT has the form

H T =  j  Л Т ° "= З С  +3Ckin ,

K  =  (C2)

^0=  + ФтО-гФг >

Кк1о = J  ̂ х(ф\гВ0ф̂ + .

Taking the ground-state expectation of Eq. (C2), 
we have

(0 |йг|0>=(0 |зс|0>+<0 |зс111„|0) . (C3)

To apply m ean-field theory, one assum es a  Har- 
tree factorization of the ground state (g  = gluon, 
s  — source)

(O) = |o>,|o>, (C4)

with

,<0 |0) , = .<o|o).= l ,  {CfiJ

,<0| J 0 jo>. = Q !fl3( * - x 1) + Q 283( x - * 2) =  jo - 

Hence, for<o|3C|o) we get

<0 |зс|0>=,<0 |я|0) „
(C6)

which involves the truncated Hamiltonian intro
duced in S e c . I . Since in the lim it fi — «  only the

(C8)

ground state contributes to the partition function, 
from  Eqs. (12), (18), and (20) of the text and Eq. 
(C6) we learn that

(0|3C]0>=R,[j’S] =  - V n,eM,ntu(xi,*2) + co n sta n t. (C7)

To evaluate the second term  in E q . (C3), we use 
the source field equations of motion

t 80(&, =  Qiip, • b0(*) +  reco il term s ,

i80if2 = Q 2̂ 2 ■ S0(x) + reco il term s ,

which, together with E qs. (C4) and (C5), give

<0|jCtln|0> = ,<0| f  d3xS0(x ) - f0(x )jo )t . (C9)

The right-hand side of Eq. (Cfl) can be reexp ressed  
in term s of the /3 — «■ lim it of the partition function 
and then further rew ritten using E q . (16) of the 
text, giving

,<0| f  d * x • fo(x)10>f  =  lim  ln^[xf0]) j

=  J  d3x c 0(x) • Г0(зс) . (ClOb)

X I

(ClOa)

Hence, we have

(0 j3Ck,„ I 0) =  c0(*i) ■ Qt + c 0U 2) ' $ 2 . (C U )

and we can complete the proof of Eq. (C l) by show
ing that

c 0(*i) 'Q i = ^ шипneid(xi, x2) + constant, (C12a)

c0(*2) -Q 2 =  (kidUu^j) + co n stan t. (C 12b)

To prove Eq. (C12a), le t us w rite с 0Ы  in the 
form

c„{x) -  CqA)(x, xi, x2) + c„B>(x, X\) (C13)

with c ^ 1 chosen so that c j '41 is regular near x=-x\
and sa tis fies

[e^SJA>(* ,* l ,4 ) ]| I4ll- 0 .  (C14)

Using Eq. (15) of the text, in the /) —«0 lim it, we 
get

nddUi, * 2) =  J  dsxc„(x)’ Q,6^63(x~  x\)

=  J  ■ф вч б3( ж - * 1) + j  rf3* c j a>( x ,Ж|) ■ 5iB Z|63( x - * i )  • (CIS)

The f ir s t  term  on the right of Eq. (C15) can be rew ritten, by use of Eq. (C14), as

BI , /  d3x c iA'(x ,xt,x 2) Q i6 \ x - x ,) -  J  ds*[fl,|CoA>( * i * i .*2 ) ] -Q i5 3U - * i )  =  5 ,1[coa>(*u X i,X j) -Q i]  , (C16)
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while the second term  on the right of Eq. (C15) la 
independent of * 2. Hence, Eq. (C15) implies

^ mean field (* li Хг) -  • c 0(*,) =  V ,(*,) + Кг(*2) , (C17)

with independent of xi and independent of x ,. 
But since translational, rotational, and local SU2 
gauge invariance imply that both term s on the left- 
hand side of Eq. (C17) depend only on the relative 
distance X \- х г , the term s V, and Чг on the right 
must be constants, proving Eq. (C12a). A sim ilar 
proof, using B jj, gives Eq. (C12b).

According to Eqs. (C ll)  and (C12), a consistent 
m ean-field  approximation to the source wave equa
tions is  given by

2913

f80$| = c 0(xj) + reco il term s

-Iv mt.tr n<*i(*ii хг) + constant]^ + recoil te rm s , 

гйоФг = c 0(xj)-Q iih  + reco il term s

=  [Уп«.гп*1<|(.*1|Хг) + сопв1ап[]^2 + гесо11 term s .

(C18)

These are ju st the usual one-body wave equations 
obtained from the potential theory of two sources, 
interacting through a potential V r c m iA x i ,x2), in 
the lim it that the sources are well localized. 
Hence, the form alism  of S ec. I reproduces all of 
the expected potential theory re su lts . 30

! R . G iles and L . M cL erran , Phya. L e tt. 79B , 447 (1978); 
S . L . A d ler, Phya. Rev. D 17, 3212 (1978 ) ;  s .  L . Ad* 
l e r ,  ibid. 20 , 3273 (1979). F o r a review , see S. L. 
A d ler, In The High Energy L im it,  proceedings of the 
o f the 18th International School of Subnuclear Phyalca, 
“E tto re  M ajoran a", edited hy A. Z lchlchi (Plenum,
New Y o rk , to be published). Fu rther referen ces are 
given h ere . [In QCD, the quantized gauge field Is the 
underlying SU fl) gauge field, while the effective c- 
num ber sou rces He In an unquantlzed, overlying SU(2) 
x l ) ( l )  gauge field . See Appendix A for a detailed d is 
cussion .]

2I define to he a sca la r , ao that

SM= f  d lx

SC. W. B ern ard , Phya. Rev. D 9 , 3312 (1974). I thank 
L . Dolan for bringing this re feren ce  to my attention. 
F o r  a d iscussion  of the generalization of Eq. (5) to the 
ca s e  when ferm ions axe p resen t, see D. J .  G ro ss,
H. D . P ls a r s k i, and L . G. Y affe , Rev. Mod. Phys. 53 ,
43 (1981). Equations (12 )-(14 ) rem ain valid for m as
s iv e  ferm ion sou rces at r e s t .

4The functional m easure In Eq. (12) la understood to In
clude the exponential o f the gauge-fixing term , and 
the com pensating Faddeev-Popov determinant (which 
can be represented  as an additional functional integral 
over ghost fie ld s). When the kinetic term s and func
tional Integrals for the source fields produclnglM are 
included, Sg Is properly gauge invariant, Justltylng 
use of the Faddeev-Popov functional m easure. In the 
situation studied in this paper, where the only sources 
p resen t a re  infinitely m assive sou rces at re s t ,  the 
so u rce  cu rren t can always he made tim e Independent 
by an appropriate tim e-dependent gauge tran sform a
tion . In such s ta tic -so u rce  gauges, the source func
tional Integral can be om itted, leaving the expression 
fo r the partition  function given in E q s. (12)—(14), with 
Ip = (To *  0, j ,  =0) and with J0 tim e Independent. The 
s ta tlc -so u rce  form alism  Is no longer invariant under 
a ll gauge transform ation s, hut rem ains Invariant under 
the su b c lass  o f tim e-independent gauge transform a
tio n s. S in ce In a  stationary state we have d(b j)/dt 
—dCj/dt  - 0 ,  we are assured that the m ean-field  po

tential can be calcu lated from  the expectation o f the 
sc a la r  potential ( S q ) - ^ .  

sIn a linear system  the increm ental potential 6V mem field 
can be defined as e ith er ( j ■ d j0) , which gives the 
mean energy change when an Lncrement In source den
s i t y ^  Is brought in from  infinity, o r as (d jd 3x%EJ • E V  
g 2) , but in general these exp ressions are not equiv
alent: only the form er can be used for nonlinear 
system s and Is renorm alization  group invariant. When 
we study the n onrelativ istlc  motion of the so u rces , the 
leading coupling of the sou rces to the gluon field In
volves only the values of Ьц at the sou rce positions. 
Hence, an average potential calcu lated from  ( f d 3x bfl 
■ (5 Jo) is the c o rre c t  startin g point for a mean Held, 
potential theory analysis of the sou rce m otion. See 
Appendix С for fu rther d e tails.

6From  Eq. (17) we can see  that the zero tem perature
— «) m ean-field  potential Is not the sam e as the 

sta tic  potential calcu lated  from  the W ilson loop, which 
In the notation used here is

VWic = 11m {R 'li 'lJ  -  ИЧ01}.

The physical interpretation  of Vnaiic Is that It Is the 
ground-state elgenenergy of a s ta tic  qq system . [See, 
fo r exam ple, the derivation  of the W llson-loop form u
la  given by L . S. Brow n and W. I. W eisb erg er, P hys. 
Rev . D 20, 3239 (1979).] Since elgenenergles a re  de
fined only by continuation back to Minkowski sp ace- 
tlm e , It is not su rp risin g  that an Im aginary source 
o ccu rs when we form ally rep resent Viiaifc by a Eu
clidean path In tegral. The m otivation fo r introducing 
Уте&п ibid ta that It can be calcu lated s tr ic t ly  within the 
Euclidean form alism . In a perturbation  expansion in 
the extern al sou rce strength jpi the m ean-field and 
W llson-loop potentials agree In ord er (]р)2, but d iffer 
beyond this o rd e r . In the Abelian c a s e , th ere are no 
te rm s of higher o rd er than Пц)*, and so the two form 
a lism s give the sam e sta tic  potential. In the non-A bel- 
ian c a s e , the fo rm alism s a re  Inequivalent, and give 
different form ulations of the confinem ent problem . It 
appears that the sim ple effectiv e action approach to 
confinem ent developed In this paper can be obtained 
only by using a mean value fo rm alism . I wish to thank 
R . F .  D ashen for sev era l d iscussion s o f these points.
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(See also Appendix С and R ef. 30 below.)
TE . S . A bers and B . W. L e e , P hys. R ep . 9 C . 1 (1373).
8Slnce Г  Is not gauge Invariant, the gauge-fixing condi

tions used in solving fo r m ust be chosen to be com 
patible with the gauge nonlnvarlance of Г .

•The use of an effective action in this context was f ir s t  
suggested by H. P agels and E . Tom boulis, Nucl. Phys.
В 1 43 , 485 (1978).

16In p articu lar, is  not to be used as Minkowski space 
Cauchy data and tim e evolved, as was implied In R ef.
1 . In canonical gauges, the physical interpretation of 
Su la that it is  the expectation o f ^ , and is  Minkowski 
tim e independent. A lso , in R ef. 1 I used the in co rrec t, 
renorm alization-group noninvariant form ula for the 
potential (see R ef. 5 above).

llS . L . Adler and T . P iran , In High Energy P h y s ic s —
1980, proceedings of the XXth International Conference, 
Madison, W isconsin, edited by L . Durand and L . G. 
Pondrom (AIP, New Y ork, 1981), p. 958.

A. Batalin , S . G. M atinyan, and G. K . S a w ld l, Yad. 
F l i .  26 , 407 (1977) [Sov. J .  Nucl. P hys. 26, 214 (1977)];
G . K . Savvidy, P hys. L e tt. 7 1B , 133 (1977); H. P agels  
and E . Tom boulis, R ef. 9 .  See J .  A m bjom  and P .  O le - 
sen , Nucl. Phys. B 1 7 0 , 60 (1980) for a d iscussion  of 
co rre ctio n s to the loca l effectiv e action approximation, 
and extensive re fe re n c e s . Many o f th ese re feren ces  
consid er only constant co lo r  fie ld s, which has tended 
to o bscu re the fa c t that the gauge theory vacuum lead
ing to the effectiv e  action of Eq. (23) la L oren tz  In - 
v arian t, with ф| E^O) = fl>| S ‘ \0>= (0|Й110> = 0 In the 
absence of so u rces . The vanishing of th ese exp ecta
tions Is re flected  In the fa c t that the m inim ization of 
T f ? и] of E q . (23) lead s to a  partia lly  Indeterm inate 
variational problem , solved by any random c o lo r -e le c 
tr ic  and m agnetic field s E J  and B J satisfying 
+ B J  • B J  =k2. When so u rces  a re  added, the variational 
problem  of E q . (22) is fully determ inate only In the In
te r io r  of the £̂ ag ” , where D  > 0, but rem ains p a rti
ally indeterm inate (In the sen se described above) In 
the e x te r io r  region where D  = 0 . As a re su lt, one 
cannot argue that th ere  a re  nonvanishing gluon gauge 
potential o r gauge field  vacuum expectations by con
sid ering the lim it o f the e x te rio r  solution as a weak 
sou rce is  turned off; this line of reasoning applies only 
when the variational problem  In the presen ce of sou rces 
is  fully determ inate In a ll of sp ace.

1SG. 4  Hooft, In Recent P ro g re ss  in Lagrangian F ie ld  
Theory and A pp lications  . proceedings of the M a rse illes 
Colloquium, 1974, edited by C. P . K brth es-A ltes et 
a l .  (Centre de Physique Theorlque, M a rse ille s , 1975). 

u T o p r o v e / (« )^ l ,  let#>=/— 1 , <£ = 2/(m lnu2). A sim ple 
calcu lation  shows that ф s a t is f ie s  the differential equa
tion

^  + Ф41 = 
du

(u - 1 )
u b u 1  > 0 fo r и > 1 .

Integrating up from  и =1 (where ф = 0 ), th is Im plies 
that ф Is positive fo r  и > 1 .

15In th is c a s e , one cannot n eg lect the su rface te rm  (as 
was done In the text) in the Integration by p arts  leading 
from  E q . (33) to E q . (38) but ra th e r , one must work 
d irectly  from  E q . (33). F o r  the charge orientations of 
E q . (31b), sim ple estim ates (see H. P agels  and
E .  T om boulis, R ef. 9) show that W  has a positive In

fin ite Infrared divergence at eq u ilib riu m , co rre sp o n d 
ing to a vanishing p artition  function Z .  H ence, the 
configuration with nonvanishing co lo r  flux a t  Infinity Is 
autom atically  excluded from  the p h y sica l sp ectru m .
Note that when the corresp on d en ce with QCD Is  made 
as in Appendix A, ch arg e-co n ju g atlo n  sy m m etry  or 
perm utation sym m etry  w ill s e le c t  e ith er the e ffectiv e  
charge orientations o f E q . (31a) o r  those o f E q . (31b), 
but not both. In the qH[ p ro b lem , the averaged  poten
tia ls  с j j  a re  ch arge-con ju gatlon  odd, se le c tin g  E q .
(31a). F o r  the qq s e c to r ,  the averaged  p oten tia ls c jf  
a re  sym m etric  under perm utation o f the so u r c e s , s e 
lectin g  Eq. (31b), and giving a vanishing p artitio n  func
tion contribution. T his Is the exp ected  re su lt fo r a 
system  which cannot b e  In a  co lo r s in g let s ta te . 

leA. Chodos, R . L .  J a f f e ,  K . Joh n son , С . B .  T h o rn , and
V . F .  W elsskopf, P hys. R ev . D 9 ,  3471 (1974).

1TIf attains Its minimum at F  = 0 , and van ish es th ere  
as F a , a sim ple estim ate  shows that the asym ptotic 
behavior o f the potential Is V  mm пм  ~  «
T h is  confines fo r a  > 3 , but gives a lin e a r  potential 
only in the l im it  a  — (See H. P a g e ls  and E .  T o m 
b o u lis, R ef. 9 .)

18I am assum ing a standard canon ical quantization, In 
which only the constrain ed  com ponents o f  bjf a re  m a
tr ix  valued. H ence, the d iffere n tia ls  and d [b f  ] 
in E q . (A2) a re  ordinary n u m bers. The assum ption 
o f canonical quantization Is co n sisten t with th e conclu 
sion reached at the end of the a n a ly s is , th at the m ean 
m atrix-valued  potential c *  Is A belian ap art from  a 
tim e-Independent gauge tran sfo rm atio n . T his m eans 
that c f  is  nonzero, while c f  contains only a sin g le  
spatial degree o f freed om . The two sp atia l d eg rees of 
freedom  in b f  which a re  orthogonal to c f  can then be 
canonically  quantized by the standard D ira c  b ra ck e t 
proced ure. F o r  exam ple, taking the q and q to l ie  on 
the,? a x is , the gauge tran sform ation  rotating the q 
effectiv e charge to be ant Ip ar all e l  to the q e ffectiv e  
charge can be chosen to depend o n z  only, giving c f  , 
c ,  *  0 , but v = 0 . This m atrix-valu ed  stru c tu re  In 
the potentials is com patible with ax ial-gau ge quantiza
tion .

leThe c la s s ica l lim it of the effectiv e action can  be read  
off from  E q . (A2) by approxim ating e ~ SE  by

e ~ s B t s l  — S s ,

and so Is given by the fie ld -stren g th  te rm s In E q . (A 4), 
acted on by the quark co lo r  tr a c e ^  t r 0 t r a . 

^ C o lo r-ch a rg e -a lg eb ra  solutions of th is form  have been 
discussed by I .  B en d er, D. G ro m es, and H. J .  R othe,
Z . P hys. 5C , 151 (1980).

2iIn the form ulation of R ef. 1 , th ere  arose the issu e  o f 
how to fix  the Integration constants * « >  in the L a 
grangian fo r the overlying a lg eb ra . The p re sen t analy
s is  corresponds to taking the K } ’s a ll equal, which 
d iffers from  the ru le which I had orig in ally  postulated. 

MThe effectiv e Lagrangian analysis of the qq binding 
problem  has the following Feynm an diagram  in te rp re 
tation: Working In Coulomb gauge, the effectiv e L a 
grangian for the Coulomh gluons a r is e s  from  Feynman 
diagram s which may be ch aracterized  as a  cen tra l 
“ bloh, ” containing one or m ore c losed  gluon loops, 
from  which n 5=2 Coulomb gluons em erge. The e ffe c 
tive Lagrangian contribution to q$ binding Is obtained



R48 619

E F F E C T I V E - A C T I O N  A P P R O A C H  T O  M E A N - F I E L D . . .

by string in g  auoh "b lo b s "  between q and J  lin es, 
attaching each  em erging Coulomb gluon to either the q 
o r the if lin e . T his procedure yields the usual r e 
n orm alization-grou p Improved one-Coulomb-gluon ex
change graph, and its nonlinear generalizations, which 
a re  resp on sib le  for the weak field -strength  m odifica
tion In the effective action which leads to confinement. 

23P rev lou sly  in this paper, I have taken to be 0.
MG, 4  Hooft, In The Whys o f Subnuclear Ph ys ics , p ro 

ceed ings of the International School o f Subnuclear 
P h y s ic s , E r ic e ,  1977, edited by A. Z lchichl (Plenum, 
New Y o rk , 1979), pp. 9 4 3 -9 7 1 . *t Hooft re s tr ic ts  his 
d iscu ssion  to the ca se  of analytic running coupling 
constant tran sform ation s. Nonanalytlc transform a
tions s im ila r  to those of Eq. (B8) have been recently 
Investigated by Y . F rish m an , R . H orsely, and 
U . W olff, P hys. L e tt, (to be published) and Welzmann 
Institu te rep ort (unpublished).

MN . N. K huri and O. A. M cBryan, Phys. Rev. D 20, 881
(1979).

2eS im lla r  coupling-constant logarithm s have been found 
in three-d im ension al QCD (which Is related to the 
behavior of the four-dim ensional theory at hlgh- 
tem p erature phase transitions) by R . Jackiw  and 
S. Tem pleton, P hys. B ev . D 23, 2291 (1981), and In 
ch ira l perturbation theory by H. P agels, P hys. Hep. 
16C , 219 (1975). In using the modified expansion to 
evaluate Euclidean G reen 's functions, it  may be im 
portant to beep the —i€  in the Feynman denominators 
even a fte r  continuation to the Euclidean section . This 
gives a definite p rescrip tion  for c irc lin g  the spacelike 
pole In a R and chooses a definite branch of the sp ace- 
lik e  cut In 1пая . The rearranged power se r ie s  will in 
gen era l contain im aginary contributions to the Euclid
ean G reen ’s functions in each ord er, but (under the 
conventional assumption that the Euclidean G reen 's 
functions in QCD are  rea l) these will cancel when the 
en tire  s e r ie s  is summed. Hopefully, the rearranged 
s e r ie s  will give rea l contributions to the Euclidean 
G reen 's  functions which converge fast enough to give 
useful estim ates (as, for exam ple, is  the case In the 
W ilso n -F lsh e r  expansion In c r itic a l phenomena when 
applied in 3 or 2 dim ensions). Good convergence of the 
re arran g e d  s e r ie s  would be an Indication that the In fra
red  behavior of QCD is effectively  controlled by a weak 
coupling reg im e.

^ T h e re  appears to be a close  analogy between tra n s
form ations o f the rad ial coordinate In the theory of 
Schw arzschlld  b lack  holes in general re lativ ity , and 
tran sform ation s of the running coupling constant In 
QCD, with the concept of maximal analytic extension 
playing a  key ro le  In both c a s e s . In both theories the 
natural coordinate (or coupling) In which one does c a l
culations does not give the maximal analytic exten 
sion . M oreover, the transform ations which yield the 
m axim al extension have very  sim ilar functional form : 
E q . (B8) relating  to a " 1 closely  resem bles the

2915

transform ation r *  = r + 2 A f  In | r/ 2 M -l|  which Is used 
to remove the coordinate singularity at the horizon In 
black hole physics.

MA second Interesting analogy Is the fact that the leading 
logarithm  effective action

r e e f  d , x F , (x )\ a F , (x)

has the sam e stru ctu re as the quantum -m echanical 
entropy

S=  -  kB T r p ln p ,

which has many special and useful form al p rop erties 
[see A. W ehrl, R ev . Mod. Phys. 50 , 221 (1978)1. P e r 
haps this analogy can be exploited to understand the 
thermodynamic asp ects of hadronic behavior. As a 
sim ple application o f the entropy analogy, suppose that 
In the discussion  o f Appendix A we had applied the r e 
norm alization group Im provem ent argum ent loca lly  in 
the q, q co lor sp ace, thus obtaining

l . „  (/J>= tr - [

f 2 = ^ ( E Af E A i + B AJB A i),

instead of E q s. (AIO) and (A ll) ,  which In te rm s o f / 2 
read

£ e( r ( f J)=Tbo<lr,tr_/2] In (tr.tTy/V e*2).

Since Ze(f yields the sam e s tre ss -e n e rg y  ten so r tr a c e  
anomaly as does £ err, It Is also an acceptable form  for 
the effectiv e action density. By som e sim ple algebra , 
we find

l,n  (/2) - £ e r r ( f J )= ?i| l(tr„ trT/ 2)tr(1tr j-(p ln  P ),

P=/V<t r . t r ;/ 2) . t r „ t r - p = l .

Since p Is a co lo r density m atrix , we can use the p o s l-  
tlv lty  o f the entropy to conclude that

l.,r(/2) « £ err t*11),

and so the use of ft would give at le a s t as strong a 
lin ear potential as Is obtained w lth £ eff . 

a The d iscussion  o f Appendix С Is readily generalized to 
the QCD c a s e  by taking 3<0| •«■ | 0 ) a to  be an exp ecta
tion with re sp e ct to the so u rce  spatia l (but not color) 
wave functions, and including the sou rce co lo r wave 
functions In | 0)x. Follow ing Appendix A, the only 
changes a re  then the rep lacem ent o f arrow s by o ctet 
co lo r ind ices, and the inclusion of a fa c to r -j tre t r ? in the 
inner products involving c$ appearing in E q s. (CIO) — 
(C18).

MIn co n trast to the mean field approach, the W llgon- 
loop form ula evaluates (0|ffT |0) d irec tly , without ap
proxim ation , In te rm s of a Euclidean functional Inte
gra l with im aginary so u rc e s . (See a lso  the rem arks In 
R ef. 6 above.)

Erratum : Effective-action approach to mean-field non-Abelian statics, 
and a model for bag formation 

[Phys. Rev. D 23, 2905 (1981)]

Stephen L. Adler

The discussion of Appendix С contains several e rro rs . The conclusion that < 0 |3Ckl0 10) = 2 V шшлт is 
c o rre c t, but in QCD this m atrix element cannot be expressed in the form  of Eq. (C U ). M oreover, in 
general the decomposition of Eq. (C13) is  not possible, and so the argument leading to Eq. (C12) is  erron
eous. A corrected  version of Appendix С appears in S. Adler, in P ro c e ed in g s  o f  the F ifth  Joh n s H opkins 
W orkshop on C urrent P ro b lem s  in P a r t ic le  T h eory , edited by G. Domokos and S. K. Domokos (Johns 
Hopkins Univ., Baltim ore, to be published).

In the sentence preceding the final paragraph of Sec. I, Eq. (20) should read Eq. (12).
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FL U X  CONFINEM ENT IN THE LEADING LOGARITHM  M ODEL

Stephen L. A D LER and Tsvi PIRAN 1
The Institute fo r  Advanced Study, Princeton, N J 08540, USA
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We study the statics of quasi-abelian quark and antiquaik source charges in the approximation in which leading loga
rithm radiative corrections are retained in the gauge gluon effective action functional. We show that the partial differential 
equation for the flux function is of degenerating elliptic type, leading to flux confinement within a free boundary which is 
a characteristic. The static potential increases linearly for large source separations, with a logarithmic subdominant term.

1. Introduction. As shown in a recent letter [ 1 ] ,  by 
making a mean field approximation and a quark 
source charge approxim ation, the partition function 
for quantum chiom odynam ics (QCD) can be reduced 
to a relativistic model in which quarks couple to a 
pair o f classical abelian background gauge fields obey
ing effective action dynamics. For the case o f a single 
massive quark flavor, the functional integral formula 
for the 5-m atrix in this model is

| e x P ( i r i n v H ] )

X J d[i//] d [^ ] exp^i j  d4x  ,

j  1,2,4,5,6,7 _  о А 3' * Ф 0 ,

£1,2,4,5,6,7 = 0> £3,8 = 2X 3,8 ( ! )

In eq. (1 ) , the matrices X3>8 are quasi-abelian quark ef
fective charges, the functional Г ^ у [/1 ] is the gauge-in
variant gluon * 1 effective action, and the notation

1 Also at Racah Institute for Physics, Hebrew University,
Jerusalem, IsraeL

*  More generally, when there are light quarks which are ob
served only through their effect on the massive quark sys
tem, Tjny [A ] is the gauge-invariant effective action of the
gluon plus light quark subsystem.

ext^j" {  }  indicates the extrem um o f  the curly bracket 
over all values o f  the quasi-abelian gauge potentials 

. Making the standard rescaling by the coupling 
c o n s ta n ts  - * A /g , introducing an effective action den
sity by writing

, n ' i  - J V (2 )

and specializing to  the case o f  static, infinitely massive 
sources, eq. ( 1) gives a formula for the static potential

S  = lim exp (—i V 
T - - static

= lim e x t J e x p ( i r  f  d ? x ( £ e i { [A/g] - A aQJ aQ

л\
+ mass term s) I ) ,

J a J  0 (3)

which can be rewritten (dropping the mass term s) as

f  d3x ( £ e f { [A/g] • (4)= —ex t / static A

When solved using the classical approxim ation to the 
effective action,

a  j « i p- 2 c
'- e f f   ̂ ^ ------2 '

eq. (4 ) gives classical abelian electrostatics. The leading- 
logarithm m od e l  is defined by including radiative cor-

9 т - _ 1 ( Э  A a -  Э A a f ,
*  4 f l  V V n '  7

(5)

©  1982 N orth -H olland 405
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rections to i ? ef f  to leading logarithm order, giving

£ eff Ч * " 2 * [ 1  + t y , * 2 Iog(^/M4 )] , (6 )

where й0 ( > 0 ) is the one-loop /З-function confinement 
and ц  is the subtraction point, g 2 = g 2(p.2).

The model o f eqs. (4 )  and (6 ) was studied for iso
lated quark sources by Pagels and Tomboulis [2 ] ,  who 
showed that the infrared energy is linearly divergent. 
The leading logarithm model with a pair of oppositely 
charged point sources (as is appropriate to a qQ sys
tem ),

J°0 = Q<ia l & \ x - x 1) - 8 \ x - x 2) ] ,  (7 )

where q a is the unit internal vector, was studied by 
Adler [ 3 ,4 ] ,  who gave a variational argument show
ing that for large source separations, H'static is 
bounded from below by a linear potential. In this let
ter we give the results o f  a detailed analytical and nu
merical study o f  the leading logarithm model, with 
particular emphasis on the structure o f  the domain 
within which the flux is confined.

2. A nalytic form ulation . Introducing scalar and vec
tor potentials ф and .4 by writing

A% = q a<t>, A aj = q aAjt (8 )

the variational problem o f eqs. (4)—(8 ) can be rewrit
ten as

S ta t ic  = ~ tX\ ,A  { 7 d3*  "  *'<)] >

V  = E 2 - B 2, Е = - ? ф ,  B =  \  X A ,

JQ = f i [ 5 3 ( *  -  * j ) -  5 3( *  -  <

with in the leading logarithm model given by 

£ e{{( ? )  = l b 0 7\og(<}/eK2),

к 2 = (p.4/ e )  exp [ - 4 / 0  ̂  ) ] .  (1 0 )

The Euler—Lagrange and constraint equations implied 

by eq. (9 ) are

The analysis of refs. [3,4] used a euclidean version of the 
vaiiational principle of eq. (4), in which 7 -  (E0)2 -  (fl0)1 
was replaced by (Ea)2 + (,Ba)2. The two descriptions coin
cide in the interior of the confinement domain, where Ba -  0.

1 July 1982

V-Z)=/0, VX £ =  0,

V X tf  = 0, V -B= 0,

D = e E , H =  eB , e = 3 £ eff/ 3 ( } 7 ) ,  (1 1 )

with the field-strength dependent dielectric constant e 
given in the leading logarithm model by

e = * b 0 \og(9/K2). (1 2 )

The source-free Euler—Lagrange equation for H  can 
be satisfied by taking

eB  = 0 , (1 3 )

giving two branches

(I)  В  = 0 ,

( I I )  e = 0  -+B2 = E 2 - k 2 . ( 1 4 )

Near the source charges, asym ptotic freedom requires 
that the solution approach a Coulomb-like solution 
with E  large and В  vanishing; together with continuity, 
this implies that a finite domain containing the source 
charges lies on branch (I).

Specializing the analysis to  branch (I) , we are then 
left with a problem in nonlinear electrostatics,

V fl= / 0, V X £  = 0,

D = e (E )E ,  € ( £ ) = a £ f f ( £ 2 ) / 3 ( { £ 2) . (1 5 )

Let us work henceforth in cylindrical coordinates 
p  = (jc2 + y 2) l l 2 ,z ,  в ,  with the source charges located 
symmetrically on the z-axis at z “  ±a , and let S be the 
azimuthal unit vector. As shown by Adler [ 4 ] ,  eqs.
(1 5 ) can be rewritten in manifestly flux conserving 
form by introducing a flux function Ф(/0, z ), in terms 
o f which D is given by

D  = —(1/2jt) Vd X У>Ф = -(в / 2 л p )  X ? Ф

= VX [(§/2тгр)Ф] . (16)

The physical interpretation o f  Ф follows from calculat
ing the total flux through a surface o f revolution S 
(with elem ent o f area d .4) bounded by a circle С o f 
radius p and z-intercept z (with element o f arc-length 
Al = d/0),

PHYSICS LETTERS

4 0 6



622 Adventures in Theoretical Physics

Volume 113B , number 5

flux through S = JA A - D

S ( П )

= /(1/1 ■ V X  [(8/2яр)Ф] = j d/-(0/2jrp)<I> = Ф.
S С

From eq. (1 7 ) we learn that Ф assumes the following 
boundary values on the axis o f rotation and at infini

ty ” ,

Ф = 0 , p = 0 , |z| > a ,

Ф = (2 p  = 0 , |r| < a ,

Ф -+ 0  a sp 2 + z 2 - » » ,  (1 8 )

which together with eq. (1 6 ) guarantee that the equa
tion V D  = / 0 is satisfied. T o  get a differential equa
tion for Ф we rewrite the equation V X E  = 0 in the 
form

V- { (в /P) X [(-в/2ггре[£>]) X УФ] }  = V -(Vfl X E )

= E - ( V X  V 0 ) — V 0 - (V X  E ) =  0. (1 9 )

Expanding out the triple product on the left-hand side 
o f eq. (1 9 ) and using Й-^Ф = 0 , we obtain

V -[o (p , | ?Ф | )?Ф ] = 0 ,  (20a)

о (р ,1 У Ф 1 )= 1 / р 2 е [П ] , (20b )

D = l \ Ф|/2пр, e[D ] =  e(E(D )),

with E(D ) obtained by inverting the equation

D = E e { E ) ^ b £ ^ E 2)lb E . (21)
Eqs. (1 8 )—(2 1 ) are the basic statem ent o f  the bounda
ry value problem for Ф. Once Ф has been determined, 
the static  potential can be calculated by substituting 
V -D  = ;'q into  eq. (9 )  and integrating by parts, giving

V  , 
static

= / d3x  [ED  -  £ e f( (E (D )2) + <?e ff( A 0 ) 2) ] , (2 2 )

* 3 T h e se  b o u n d ary  values co rresp o n d  to  th e  co n v en tio n  o f  al
w ays draw ing th e  su rface  S  so th a t it  crosses th e  z -ax is  at a 
p o in t z 0 >  a.

1 Ju ly  19 8 2

where an infinite constant has been added to  eq. ( 2 2 ) 
to render the integral convergent at in fin ity . B y using 
the identity

£ e[{(E(D )2)  -  J2e{{(E (0 )2)

E(D) E(D)
= J  d E '  3 £ e ff/ 9£ ' = J  A E 'D (E ')

E(0) E(0)
D

= ED  -  J  E(D ') AD', (2 3 )

0

eq. ( 2 2 ) can also be rewritten in the fam iliar form

D

S ta t ic  = / d^ ( 4  6 ( x ) =  f  A D 'E (D ’). (2 4 )
0

Considerable insight into the behavior o f  the solu
tions o f  eq. (2 0 )  is obtained by rewriting it to  exp licit
ly show the structure o f the second derivative term s 
(including those arising from the ^ Ф | -dependence o f  
o). Defining the inward-directed unit norm al ri and the 
corresponding norm al derivative 3n>

п* = ?Ф/|?Ф|, Зл = n - V ,  (2 5 )

a straightforward calculation shows that eq. ( 2 0 ) is 
equivalent to

[Ъ2 + Ъ2 + ( а -  1 )3 2 ] Ф - а р - 1Э/5Ф = 0 ,  (2 6 a )

а  = а (p , ^ Ф | ) = 1 + Э log о/3 log | VФ|. (2 6 Ь )

Letting I be the unit tangent to the surfaces o f  co n 
stant Ф and 31 be the corresponding tangential deriva
tive, we have

д2 + д 2 = д 2 + Ъ2 + first derivative terms, (2 7 )

and so the characteristic form o f eq. (2 6 a ) can be w rit
ten as

Э ^ + а Э 2 . (2 8 )

Thus, eq. (2 6 a ) is elliptic, parabolic or hyperbolic ac
cording as to whether a  >  0 , a  = 0 or a  <  0 . Before 
proceeding further with the analysis o f  the characteris
tics, let us use eq. (2 6 a ) to study the structure o f  z- 
axis translation-invariant solutions, for which Ф = Ф (р). 
We then have Э2Ф = 0 , Э2 Ф = Э2Ф, and eq. (2 6 a ) re
duces to

PH YSICS L E T T E R S
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а ( ^ - р _ 1Эр ) ф = 0 , (29)

which on branch (I)  (where а  Щ 0 ) has the solution

Ф = Ф0 + т г£ 0р 2 . (3 0 )

Eq. (3 0 ) describes a uniform flux D  = zD n filling all 
o f space; we see that eqs. ( 2 0 ) and (2 6 ) do not admit 
solutions describing a translation-invariant bounded 
flux tube.

The analysis o f  eqs. (8 ), (9 ), (1 1 ) and (1 3 )—(30) 
applies generally to any effective action density o f the 
form J3e [ f ( F 2 ); let us now specialize to the case o f  the 
leading logarithm model, as given in eqs. ( 10 ) and ( 12). 
Eqs. (2 0 b ), (2 1 ) and (2 6 b ), which implicitly define о 
and a , are conveniently written in terms o f a dimen
sionless function f( w )  defined as the solution to the 
transcendental equation * 4

w = f  log f y f >  1, (31)

giving

o (p , |?Ф|)= (2тгк/р|?Ф|)ДиО,

a  = w f'(w )/f(w ), w = b ^ / n b 0Kp = 2D /bQK. (3 2 )

For small w  and large w, the behavior o f/ (w ) is given 
by

/ =  1 + w + 0 (w 2), | w | « l,

/ =  (w/log w )[l + 0 (log  log w/log w )] , w §=• 1, (3 3 ) 

giving for the corresponding behavior o f a  

a  = w + 0 (w 2), | w | ^ l,

a  = l  — Qogw)- 1+0(loglogH '/(logH ’) 2) , 1 .(3 4 )

Comparing eqs. (3 4 ), (3 2 ) and (2 8 ), we see that the 
differential equation o f eq. (26a) is o f degenerating el
liptic type [ 5 ] ,  and has a real characteristic at a sur
face o f constant Ф where D «  | ^ф| = 0. The second 
normal derivative Э2Ф is discontinuous across this 
characteristic, which acts as a free boundary, dividing 
space into two causally disconnected regions. From

1 Ju ly  1982

the boundary condition o f eq. (1 8 ) and the continuity 
of Ф, we leam that Ф = 0  on the free boundary. Since 
the exterior o f the free boundary is completely sur
rounded by surfaces on which Ф = 0 , Ф vanishes identi
cally outside the characteristic, and therefore the ex
terior solution lies on branch (П) o f  eq. (1 4 ). At a 
point В on the free boundary where p = p B and where 
the radius o f  curvature o f  the free boundary is Л в , eq. 
(26a) can be integrated to give an approximation to 
the interior solution,

Ф * { ( i , b 0 KpB/R B)(n  -  |/2/Яв )2 , (3 5 )

with n and I normal and tangential cartesian coordi
nates which are zero at B. Since Ф is increasing to 
wards the interior, we must have R  B >  0 , and so the 
free boundary is everywhere convex. This in turn im
plies that all points on the free boundary lie within a 
finite distance o f the origin, with the free boundary in
tersecting the z axis at points p = 0 , z = ± z B . Since ф 
= 0 a t z  = 0 and, from eq. (1 2 ), E  = | V0| = к on the 
free boundary, we have ф(р = 0 , z = ± z B ) = ± k L ,  with 
L  the length o f the segment of the free boundary lying 
in the quadrant p >  0 , z >  0 o f  the p , z plane. But 
since the scalar potential ф becomes infinite at the 
source charge coordinates p = 0 , z = ± a, this implies 
that zB >  a. The only qualitative feature o f the solu
tion which we have been unable to characterize analy
tically is the detailed structure o f  the free boundary—z- 
axis intersection; the numerical results strongly suggest 
that the free boundary is sm ooth, with no cusp at the 
z-axis, but we do not have a proof o f  this. Turning fi
nally to the static potential, we leam from eqs. (3 1 ) 
and (3 2 ) that inside the free boundary E  is bounded

by

E(D)Ik (3 6 )

which when substituted into eq. (2 4 ) gives

П ,,.«  > « / Л о .  (37)

Writing d 2x  = d i d  A , with I the length along and dA 
the element o f  area perpendicular to the flux lines o f
D, eq. (3 7 ) yields the lower bound +s

PHYSICS LETTERS

* 4 T he choice o f  branch is again dictated by the requirement
that the solution be continuously connected to the strong- For a discussion o f  the removal o f  the infinite Coulomb
field, asym ptotically free regime. self-energies from eq. (38 ), see ref. | 3].
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R  = \x1 - x 2\ = 2 a . (3 8 )

In determining Kstatic com putationally, we use eq.
(23 ), which in the leading logarithm mode! can be con
veniently rewritten in the form

^static = / d 3* jo ( ? < W 2 »r)2 ( l + { ) ,

* = ( / 2 - l )/ (2 / w ) .  (3 9 )

We believe that the connection found above be
tween degenerating elliptic operators and a linearly in
creasing static potential is a very general one. For ex
ample, let us briefly consider the case in which 
J2e{{(E2), rather than attaining its minimum at a non
zero value o f  E  as in the leading logarithm model, at
tains its minimum at E  = 0 and behaves there as J?eff 
~ E т . Then for an isolated charge at r = 0  in spherical 
coordinates, one has r~ 2 ~ D  ~ £ T r _ 1 , giving [2 ] for 
the infrared energy in a box o f  side L  (and presumably 
for the long-distance behavior o f  the static potential 
o f two opposite charges)

in frared  ~ ^ ~ £ (7 - 3)/(Т_1)- (4 ° )

Substituting J2e i i  ~  E^  into eqs. (2 1 )—(2 6 ) above, we 
find that

a(D  = 0 )  = 1 + d(log E 2~ y )jd(\og Г * - 1)  = (7  -  I ) " 1 .
(4 1 )

Thus for finite 7 , where the infrared energy grows less 
strongly than linearly w ith L , the characteristic form 
o f  eq. (2 6 a ) is always elliptic, while in the limit as 7  
-■» 00, where the infrared energy grows linearly, the 
characteristic form again degenerates * 6 from elliptic 
to parabolic at D  = 0.

3. N um erical results. We have developed a numeri
cal m ethod for solving eq. (2 0 ), based on a two-step

* s These estimates do not determine the structure of the con
finement domain. Very likely, whenjGeff has an infinite 
order zero at E  = 0, the confinement domain fills all of 
space. (We wish to thank J. Chayes and L. Chayes for dis
cussions about this case.) For a renormalization gioup argu
ment suggesting that the minimum ofjC eff in fact lies at 
non-zero E, see ref. (4 ].

procedure in which Ф is updated by a single over-re
laxed iteration o f  eq. (2 0 a) for fixed a , and then a  is 
updated by using eqs. (2 0 b ), (3 1 ) , and (3 2 ) ,  w ith a 
Newton iteration used to solve the transcendental 
equation for/. The boundary conditions o f  eq. (1 8 )  
are applied on the rotation axis, while the boundary 
condition Ф = 0  is imposed on the perim eter o f  the 
com putational grid, which must be chosen large 
enough to com pletely enclose the ultim ate free bound
ary. A detailed discussion o f the theoretical and practi
cal aspects o f  the numerical algorithm will be given 
elsewhere [6 ] ;  we give here some sample results from  
our calculations, done for Q = (4 / 3)^  2 and b 0 = 9/8л2

Fig. 1. (a) The flux function Ф on a plane through the z-axis, 
plotted vertically on a linear scale. The base of the figure is at 
Ф = 0. (b) The energy density £ ,  similarly plotted.

4 0 9
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F ig . 2. T h e  d ie lec tric  co n stan t e o n  a plane through th e z-axis, 
p lo tted  v ertica lly  on a log arith m ic scale. From  the to p  o f  th e 
figure to  th e  base spans 14 decades, corresponding to  ет ц!
= 1 0  l s . (W hen e jn jn  is reduced to  1 0 - 3 5 , the residual stru c
tu re  a lon g  th e  ax is  a t the base o f  th e figure is elim in ated .)

[corresponding to SU (3) QCD with three light quark 
flav o rs]. The results shown in figs. 1 and 2 were com 
puted for k.V 2R  = 8 , and required roughly 1—2 min o f 
CPU tim e on a V A X 1 1/780 computer, for conver
gence on a single-quadrant 25 X 25 computational 
mesh. The figures all show elevation plots o f physical 
quantities measured on a plane passing through the ro
tation axis. Fig. la  shows the flux function Ф plotted 
on a linear scale starting at Ф = 0 ; the discontinuity o f 
eq. (1 8 )  was enforced by taking the charges on lattice 
sites where Ф -  QJ2, and taking Ф = Q (Ф = 0) on the 
axis for |z| < a  (|z| > a ) ,  as is clearly visible on the 
p lot. Fig. lb  shows the field energy density 6 (x )  
plotted on a linear scale starting at 6  -  0 , with the 
Coulomb energy peaks (which rise by a further factor 
o f  100  before being cut o ff by the finite mesh size) 
clearly visible. From fig. 1 we see that Ф and С are 
nonzero only within an oval-shaped curve, which is 
the continuum-lim it free boundary, and which crosses 
the axis o f  rotation with no visible cusp in £ .  The 
com plete independence o f the interior and exterior re
gions can be seen from fig. 2 , which shows e plotted 
on a logarithm ic scale ranging from an imposed lower 
lim it o f  emin = 1 0 ^ 15 at the base to a maximum (gov
erned by the mesh spacing) o f  e ~  0.1 at the Coulomb 
peaks. A logarithmic plot o f С looks very similar,

1 Ju ly  1 9 8 2

apart from having more pronounced dimples at the 
charge sites. Repeating the com putation on meshes up 
to a factor o f 4  finer shows good convergence as the 
mesh spacing goes to zero . We find that in the 
range 0 .25 <  R <  128, the large-distance behav
ior o f P rtatic(R ) is fitted by the formula

Static (* ) = (4/3)1/2кД + 1-95 к Ш  log (к 1/2*)

+ constant -  0.40/Л, (4 2 )

with uncertainties o f  order 1 in each final decimal 
place. Thus, the com putational results indicate that 
the bound o f eq. (3 8 ) is saturated and that the leading 
correction to the linear potential is logarithmic, in 
marked contrast to the AR + В  + C R ~ l form ex
pected [7] in the string model and in strong-coupling 
lattice gauge theories. This feature o f  the effective ac
tion approach should eventually have testable experi
mental consequences. In subsequent work we plan to 
map out ^ statjc for all distances and to determine the 
ratio o f the string tension to in both the leading 
logarithm model and in the extended model in which 
log log renormalization group corrections are included 
in 6 .

This work was supported by the Department o f 
Energy under Grant Number D E -A C 02-76E R 02220.

M ore p recise ly , to  e lim in a te  th e  C o u lom b self-energy diver
gences we stud y o n ly  d iffe r en c e s  P st a t i c ( K i)  -  • ' s t a t i c ^ ) ,  
w ith  id en tica l m esh s tru ctu re  around th e charges. T h ese  
q u a n tities  con verge as the m esh spacing is d ecreased .
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S.L. Adler and T . Piran, Flux confinement in the lead
ing logarithm model, Phys. Lett. 1 13B (1 9 8 2 ) 405.

On page 4 0 6 , first line below eq .(6 ), “confinement” 
should read “ coefficient” .

On page 40 , ref. [2 ] , “J .  Phys.” should read “Nucl. 
Phys.” .

Ref. [6] should read: S .L . Adler and T. Piran, 
Relaxation methods for gauge field equilibrium equa
tions, Rev. Mod. Phys., to be published.
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TH E H EA VY QUARK STATIC POTENTIAL 

IN THE LEADING LOG AND THE LEADING LOG LOG MODELS

Stephen L. A D LER and Tsvi PIRAN 1
The Institute fo r  Advanced Study, Princeton, N J 08540, USA

R eceiv ed  21 Ju n e  1 9 8 2

W e give num erical and an aly tical results for the sta tic  p o ten tia l o f  qu asi-abelian  quark and an tiquark  sou rce ch arges, in 
th e  m od els in w hich radiative co rrectio n s  to  leading log order, and to  leading log plus leading log log o rd er, are retained  in 
th e gauge gluon e ffe c tiv e  d ie lectric  fu n ctio n a l. W hen th e scale length o f  th e la tte r m od el is fixed  to give a second o rd er fit 
to  M artin ’s p h en om en olog ical heavy quark p o ten tia l, th e  p o in t o f  tangency  with M artin 's curve lies at 0 .5 1  ferm i (in  th e 
ce n ter o f  th e  c5  and bb quarkonium  region ), and th e long- and sh ort-d istan cc lim its y ield , resp ectively , a string tension  o f  
3 2 0  M eV , and an asy m p to tic  freedom  scale mass o f  Л ^ р г=  2 2 0  M eV  [al] fo r co lo r S U (3 )  w ith  3 light quark flav o rs]. T hu s 
e ffe c tiv e  actio n  m eth o d s, using only ren orm alization  group-im proved p ertu rb a tio n  th eo ry  as in p u t, give a reason able a c 
co u n t o f  th e  behavior o f  the heavy q u a rk -a n tiq u a rk  sta tic  p o ten tia l at all length scales.

In a recent letter [1 ] , we gave a qualitative analysis 
o f  non-linear effective action models for heavy quark 
statics, and showed that in the renormalization group 
approximation they predict both total flux confine
m ent, and a linear static potential at large source se
parations. As a continuation o f  our study o f the re
norm alization group models, we present here results 
o f  a numerical com putation o f  the static potential at 
all length scales, from which we extract theoretical 
predictions for several parameters characterizing the 
strong interactions.

The models under consideration can be written as 
a problem in non-linear electrostatics,

V ” D  =/0 , V X £ = 0 ,  (1)

w ith /q a source density corresponding to static, quasi- 
abelian quark and antiquark source charges,

/0 = C?[53( *  - * i ) - 5 3( * - * 2 ) 1  . (2)

<2 = (4/3)!/2 , \xx - x 2 \ = R ,  

and with D related to E  by the non-linear constitutive 
equation

1 A lso  at th e  R acah  In stitu te  o f  Ph ysics, T h e  H ebrew  U niversity, 

Je ru sa le m , Israel.

©  1982 North-Holland

D = e(E)E  . (3 ) 

In the leading log and leading log log models, e(E) is 
given by * 1 

e(E ) = 5 b Q log (Е /к ), leading log , (4a) 

e(E )  = 5 b Q [log (Е /к )  + £ log log (£■/«)], leading log log, 
(4b ) 

with &q and £ the renormalization group constants 
[for S U (3 ) quantum chromodynamics (QCD) with 

N f light quark flavors]

i 0 = (l/ 8 tf2) ( l l - | W f) ,

& = 2 ( 5 1 - - y 4 ) / ( l l - i i V f) 2 .

Throughout our calculations we will take N f = 3 , 
giving

* 1 T h e e ffe c tiv e  a c tio n  correspond ing  to  eq . (4 a )  co n ta in s a 
single leading log arith m  term . T h e e ffe c tiv e  a ctio n  co rre 
sponding to  eq . (4 b )  co n ta in s  the standard ren orm aliza
tio n  group log and log log term s, plus ad d ition al su b d om 
in an t term s w h ich  vanish as I log(£"/K)| beco m es in fin ite . 
A Jte m ativ e ly , i f  th e  log log  m od el were d efined  by taking 
th e e ffe c tiv e  a c tio n  fu n ctio n a l to  have e x a c tly  a log plus 
log log  fo rm , the corresp ond ing  effe c tiv e  d ie lectric  fu n c
tio n a l w ould d iffe r from  eq . (4 b )  by su b d om in an t term s.

Reprinted with permission from Elsevier.
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b 0 = 9/ 8tt2 = 0 .1 1 4 0 ,  1 = 0 .7 9 0 .  (6 )

This fixes all parameters in the model apart from the 
scale mass к , which is set equal to unity to define 
dimensionless units for the numerical computations, 
and then is reinserted below and determined by com 
paring with Martin’s fit to the heavy quarkonium 
spectra. According to the standard renormalization 
group analysis [ 2 ] ,  eq. (4b ) gives the leading two terms 
in an asymptotic expansion o f e(E )  for strong fields E .
At strong fields, the corrections to the expression in 
square brackets in eq. (4 b ) are expected to be o f  order 
unity and, to  the extent that they are slowly varying, 
can be absorbed into the scale mass к */2 . We will, 
however, be using the formulas o f  eqs. (4a) and (4b ) 
outside the strong field region, in fact for all fields 
£ т ;п  < E  <  <*>, where е ( £ т ;п ) = 0 . A rationale for 
this extension has been given by Adler [3 ] ,  who points 
out that renormalization group estimates are formally 
valid whenever the running coupling

& b 0 log {Е /к )  + . . . ] - !  ,

is small in magnitude, which is true both when Е /к  > 1  
[giving g 2(E )  small and positive] and when Е /к  <S 1 
[givingg^(E ) small and negative]. This argument sug
gests that there is a second w eak fie ld  asymptotically 
free regime, where eq. (4 b ) again gives the leading be
havior o f  e, and where e (or more precisely, the real 
part o f  e) is negative. Although renormalization group 
estimates cannot be used at intermediate field 
strengths, the statem ents that e <  0  for Е /к <  1 and €
>  1 at Е /к >  1 imply that e must cross from 1 to 0 at some 
intermediate field strength jn , and this is the essen
tial feature o f  our model. The numerical results ob
tained below  suggest that, in fact, the corrections to 
eq. (4 b ) are o f  the form

e ( E )  = {  b 0 [log (£/«) + £ log log (£/«) + 0 ( 1 ) ]  , (7 )

with 0 ( 1) representing non-constant terms which are 
effectively o f  order unity in the entire range £"min <  
E < ° ° * 2 .

As discussed in ref. [ 1 ], the numerical procedure 
for solving the model o f  eqs. ( 1 ) —(4 ) treats the D  
field as the fundamental dynam ical variable, in terms 
o f  which E  is obtained by inverting the constitutive 
equations o f  eq . (4 ) . This gives

* 2 For footnote see next column.
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E /к = f(w ) ,  w = 2 D /b0K , ( 8 a)

with f (w )  a transcendental function defined by 

w = / lo g / , log m o d e l,
(8 b )

w = / (lo g / + £ lo g lo g / ) , log log m o d e l,

from which we can calculate the m inimum electric 
field

E mj K  = / (0 ) =  1 log m o d e l,

= 1 .680  log log model .

Once the/) and E  fields have been solved for by  the 
numerical algorithm o f  ref. [ 1] ,  the static  potential 
can be calculated from the form ula

D

^ staticW  = / d J *  /  E (D ')dD '
0

= f d 3x  {  b QK 2 w f(w )  + \ 1f ( w ) 2 -  / (0 ) 2 ]

+ i  S [y  (2 log A w )) ~ y (  2  lo g / (0 ))]} , (9 )

with.y(:>c) the exponential integral

y (x )  = / 7  d r ,  ( 10 )

which is available in the 1MSL function library. Som e 
useful results concerning the large-/? and sm allJ? 
lim its o f K j,atjc can be deduced by analytical m ethods. 
A simple flux conservation argument [1 ,6 ]  shows 
that the static potential has a linear lower bound for 
large R ,

Possihle theoretical support for the idea of a weak field 
asymptotically free regime is given by recent work of 
4  Hooft [4] and of De Calan and Rivasseau [5],  showing 
that the sum of planar skeleton diagrams has a finite ra
dius of convergence as a function of coupling constant. 
Assuming that renormalization effects can be taken into 
account by using running couplings in the skeleton expan
sion, this result implies that in the large Л;с limit, where 
planar diagrams dominate, the color dielectric constant 
will be an analytic function of the running coupling for 
small g2(£')[. Renormalization group estimates will then 
apply for small negative as well as small positive g2(E~), 
and if the Nc = 3 theory behaves qualitatively like the Nc 
= "  limit, one is led to the model discussed in the text.

PHYSICS LETTERS
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p's t a t i c ( * ) > £ 'm in2^ + c° n s t ,  R - * ° ° ,  (11)

and our numerical results (accurate to a few tenths o f 
a percent, and extending out to к 1/2/? or order 100) 
show that this bound is saturated. Hence we have

string tension = к I/2 [Q f(0)] */2 . (12)

A detailed analysis [7] o f  the short-distance perturba
tion theory o f  the leading log and log log models 
shows that

* W * )  = - ( № / ?  \ bQ) [ f  + 0 ( f  3 ) ] ,  R -  0 ,

S = f ( w p)lw p, Wp =  l /ЛрЛ2 , (1 3 )

with Ap given by a numerical integral, the evaluation 
o f  which [7] yields

A P = 2 .5 2  k 1/2 . (14)

Since from  eq. (8b ) we find

f  = 1 /log vvp + О [log log Wp/(log wp)2]

+ О [(1/log wp) 3] , (1 5 )

Лр corresponds to the standard definition o f the scale 
mass associated with the static potential * 3 , which is 
in turn related to the scale mass Л , associated with 
the force law,

= ( б 2/4 я Я 2 5 £>(-,)( 1 /Iog w F 

+ О [log log  w F/(log W p)2] + 0 [ l / ( lo g w F) 3] }  , 

w F =  1/A r2* 2 , ( 16)

by [8]

A j = Ap/e . ( 17)

Since A r is related to the standard strong interaction 
scale mass A ^  by the formula [8 ,9] (with y E = 
0 .5 7 7 2 ...  Euler’s constant)

\ / AMS = e x P f a  “  i + ( № 2* o ) ( f  _ , i Arf)]

= 0 .9 6 7  for N { = 3 ,  (1 8 )

* 3 As discussed in ref. [7], the log log model does not give 
the correct value of the coefficient of the log log term in 
the expansion of eq. (16) (where £ should appear, the log 
log model gives £ — 1), and so it is not good beyond one- 
loop order at short distances. Nonetheless, the model per
mits a meaningful determination of the scale mass Ap, 
because this involves only a one-loop calculation which is 
independent of the value of the parameter

4 November 1982 

combining eqs. (1 4 ), (1 7 ) and (1 8 ) yields

AM S = 0 959  K1/2 ■ (19)

Taking the ratio o f  eq. (1 9 ) to eq. (1 2 ), the scale mass 
к */2 drops out, and we get

A ^/string tension = 0 .9 5 9 / [0 / (0 )] I/2

= 0 .8 9 2  log model ,

= 0 .689  log log model . (2 0 )

Experimentally, i f  the string tension is identified with 
that computed from the slopes o f  Regge trajectories, 
we have

string tension ~  4 0 0  MeV . (21a)

Recent determinations o f  Aj^g give values

100 MeV ^ A y r ^  4 0 0  MeV , (21b )

-+ 0 .25< , (A ^j/string tension)expt £  1 , (2 1 c )

with the values at the lower end o f the indicated 
ranges currently favored [1 0 ] .

Since И д д , ;^ )  as given by eq. (9 )  contains infinite 
additive self-energy contributions, the quantity which 
can be measured com putationally is y s(a,iC(R i )  — 
Kstatj c(/?2 ). where identical mesh structures around 
the source charges must be used at the two separa
tions./? j ,R 2- By using standard over-relaxation m eth
ods [11] we have made a sequence o f measurements 

0 f  Л 2 35 -  » W R / 2 ) ,  With К 1/2*
ranging from ~  100 to 1 0 - 7 , for both the leading log 
and the leading log log models. For к !/2/? smaller 
than 1 the use o f  jacobian  transformations is neces
sary to get good accuracy; this and other details o f  
the com putational methods will be described in a pe
dagogical review article which is in preparation [1 2 ] . 
As already noted, the large-distance results show that 
the bound o f eq. (1 1 )  is saturated. For the smallest R  
values studied ( 1 0 “ 7 < k 1/2R <  10 - 5 ) , the measure

ments o f  ^ 2  ^static a6ree wit^ l^e leadin8 term o f 
asym ptotic formula o f eqs. (1 3 ) and (1 4 ) to within a 
few tenths o f  a percent. The entire sequence o f 
Д 2 ^static values has been fitted to the analytical 
formula

У * * *  = k V 2 [F (k U *R ) + C] , (2 2 )

with F log(r) and F log log(r) as given in table 1, and 
with C a n  undetermined overall constant. We estimate 
the combined accuracy of the measurements and the

PHYSICS LETTERS
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Table 1
Functions Fiogtr) and F i0g iog(r). The coefficients are given in 
table 2.

r range Fir)

r<  0 .0125  F(r) = -(Q 1 !4*r\bo) [/(ivp)/>vp|(l+o,r0 j )
wp = 1/(2.52г)г , /(w) as in eq. (8b)

0 .0125  < r  < 0 .1 2 5  F (r) = .K + a (r/ 0 .12S )£ '
£  = 0 + 7 1п(1/л) + 6 [ ln (l/ r )]2 + £ [ln (l/ r)]3

0 .125  < r <  2 F(r) = / Г + о '1 о § г + р '(^ г )2 + У ( ^ т - ) 3 
+ 6 '( lo g r )4 + e '( lo g r)s

2 <s т F(r) = K "  + (4 /3) ' ' 2f ( 0 )r + a "lr in
+ p"/r+ y" logr

fitting for A 2 ^static t0 better than 2% for all R ,  and 
better than 1% for very large and very small R  values.

To determine the scale mass к appearing in eq. 
(2 2 ) , we fit the potentials o f table 1 to the phenomeno 
logical formula given by Martin [13]

^ c  = - 8 . 0 6 4 Gev  + 6 .8 7 0  (G eV )1 1 /?0 1  , (2 3 )

which is known to give a good description o f  the cc 
and bb quarkonium spectra. Writing R  = г/к Ч 2 , with

Table 2
Coefficients o f  functions F io g M  
table 1.

and F ]0g |0g(r) as given in

coefficient log model log log model

« I 5.38 5 .14
а г 0 .545 0 .556

К - 2 .3 2 3 2.569
a - 1 5 .1 1 8 -1 5 .7 1 7
(3 - 0 .3 0 5 - 0 .3 0 5
7 0 .0 0 3 6 8 0 .0 6 9 6 4
6 -0 .0 0 8 8 5 - 0 .0 2 8 4
e 0 .0 0 0 4 3 0 .0 0 2 1 2

K ‘ - 9 .6 8 6 - 5 .9 5 0
a 3 .5 1 8 3 .8 4 0
ft 0.355 0 .807
V 0 .2 5 6 0 .395
6‘ 0 .0 4 3 9 0 .0 6 8 3

•€ 0 .0 1 2 7 0 .0 1 1 0

K" -1 0 .5 2 0 - 7 .7 8 1
a" 0 .139 0.465
<3" - 0 .4 6 - 0 .5 8
l" 1.966 1.604
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r dimensionless, and differentiating to elim inate the 
additive constant C, we Find that the choice

к !/2(r*) = [0.687/(r*)°-9F '( r * ) ] (1/L1)GeV ) (2 4 )

makes the slope o f eq. (2 2 ) identical to  that o f  M artin’s 
potential at r = к 1/2/? = r* . A plot o f  eq. (2 4 )  shows 
that K^l2(r*)  vanishes a s r *  -*■ 0 and as r*  -» and has 
a single maximum in betw een. A t the m axim um  o f  
к 2(r * ) ,  the potential o f eq. (2 2 )  has a second order 
contact with M artin’s curve, giving the closest f it .
From the formulas o f table 1, we find that * 4

x U l  = 0 .2 2 9 1  G eV  at r *  = 0 .7 8 9  log m odel,шах °  9 (25)

= 0 .2 2 7 4  GeV at /■* = 0 .5 8 9  log log m odel .

When reexpressed in physical distance un its, the m atch 
points are

e *  = r* iKm
n  r ' max

= (0 .789/ 0.2291  G eV) X (/ =  0 .1 9 7 3  GeV ferm i)

= 0 .6 8  fermi log model ,

= (0 .5 89/ 0 .2274  G eV ) X (/= 0 .1 9 7 3  G eV ferm i)

= 0 .51  fermi log log m o d el, (2 6 )

which lie in the middle o f  the heavy quarkonium  re
gion o f  0 .1  fermi <  R  <  1 ferm i, thus giving a non
trivial check on both the fitting procedure and the 
models. Adjusting the additive constants С to bring 
the potentials o f eq. (2 2 )  into coincidence with 
Martin’s curve at the match points, we get the form u
las

^static W  = 0 .2 2 9 1  GeV

X [F log(0 .2 2 9 1  G e V R )  + 9 .2 5 0 ] , (2 7 a )

F static(/?) = 0 .2 2 7 4  GeV

x  [^ iOglOg(0-2274G eV / ?) + 5 .5 8 2 ] , (2 7 b )

for the static potential in the log and log log m odels,

An interesting feature of the fitting procedure is that al
though KstatjC changes significantly from the log to the 
log log model, the values of the scale mass к1/2 deter
mined in the two cases agree to better than a percent.

PH YSICS L E T T E R S
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F ig . 1. T h e  p o ten tia ls  o f  eq . (1 7 a )  [log m od el; short dash es], 
eq . ( 2 7 b )  [log  log m od el; long d a sh es], and eq . (2 3 )  (M artin ’s 
f i t ;  solid lin e ). T h e  cc  and bb qu arkonium  region lies betw een 
0.1 ferm i and 1 ferm i, and th e  validity o f  eq . ( 2 3 )  is restrict
ed to  th is in terval.

respectively. These are plotted, together with Martin’s 
curve o f eq. (2 3 ), in fig. 1. The potentials o f  eq. (27 ), 
particularly that for the log log model, are clearly in 
good agreement with Martin’s curve in the heavy 
quarkonium region.

Substituting eq. (2 5 ) back into eqs. (1 2 ) and (19) 
we get the string tension and A ^ j in physical units,

string tension = 250  MeV log model ,

= 3 2 0  MeV log log m odel,

Aj^5 = 2 2 0 M e V  both models . (28)

T o summarize, effective action models, which use 
only renormalization group-improved perturbation 
theory as input (but which employ nonperturbative 
methods to solve the resulting differential equations), 
give a reasonable account o f the heavy quark static 
potential at all length scales. This suggests that the 
following directions for further investigation using 
these methods will be o f  interest: (i) The study o f  the 
spin—spin and sp in -orb it potentials in heavy quark sys
tems. A formalism for doing this has been set up by 
Hiller [1 4 ] ,  and will give parameter-free predictions 
using the potentials o f eq. (2 7 ) as input, (ii) The use 
o f  the relativistic effective action model proposed by 
Adler [15] to study binding in light-quark systems, 
and in particular to investigate chiral symmetry 
breaking effects, (iii) The study o f whether a rear

rangement [15] o f  QCD around a zeroth order ap
proximation based on the use o f  the renormalization 
group-improved effective action can be used to give a 
systematic approximation scheme for treating bound 
state problems, which are currently inaccessible using 
the standard perturbative QCD methods.

We wish to thank H. Pagels for calling our atten
tion to ref. [1 3 ]. This work was supported by the De
partment o f  Energy under Grant Number DE-AC02- 
76 E R 0 2 2 2 0 .

N ote added. Where the term “string tension” is 
used in the text, what is meant is the square roo t a W  
o f the string tension as conventionally defined by the 
formula

^static(^) = + 0 ( 1 )  •
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S.L . Adler and T. Piran, The heavy quark static poten
tial in the leading log and the leading log log models, 
Phys. Lett. 117B (1 9 8 2 ) 91 .

On page 9 2 , first column, the argument for the 
existence of an at which € (£ ,mjn)  = 0 implicitly 
makes the physically motivated assumption that e (E )  
is a continuous function o f E. Continuity o f e, togeth
er with the statements e <  0  for Е/к  1 and e >  1 for 
Е/к >  1, implies that evanishes somewhere in the inter- 
mediate-field-strength region where E ~  к and where 
the running coupling is large, even though renormaliza
tion group arguments cannot be directly used there. In 
a recent letter by Elizalde [E. Elizalde, Is the next-to- 
leading log model confining?, Phys. Lett. 1 15B (1 9 8 2 ) 
3 0 7 ], renormalization group arguments are used un
critically in the intermediate field strength region. This 
leads to a spurious infinite discontinuity in е(/Г), and 
hence to Elizalde’s erroneous conclusion that log log 
renormalization group corrections spoil the confining 
property o f the leading log model.

On page 94 , in the first line o f table 1, “ J ” should 
read “i ” .

In both parts o f e q .(2 6 ), "I = 0 .1973  GeV fermi” 
should read “ 1 = 0 .1973  GeV fermi” , and in the sec
ond part o f e q .(2 6 ), should read “k^ x” .

On page 95 , in the first line o f the caption to fig. 1, 
“e q .(1 7 a )” should read “eq. (2 7 a )” .

Ref. [7] should read: S.L. Adler, Short distance 
perturbation theory for the leading logarithm models, 
Nucl. Phys. B ., to be published.

Ref. [12] should read: S .L . Adler and T . Piran, 
Relaxation methods for gauge field equilibrium equa
tions., Rev. Mod. Phys., to be published.
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In the quasi-Abelian approximation as well as in the large-W,. limit sources in the adjoint 

representation cannot be screened Nevertheless, the two phenomena are different because the 

string tension is proportional to the square root o f the Casimir operator in the first case and to 

the Casimir operator itself in the second.

It is p o ss ib le  that the respon se o f  a n on -A b e lia n  

gau ge  th eo ry  to th e in trodu ction  o f  ex te rn a l co lo r  

sou rces can be m od e led  by the respon se  o f  a n o n 

lin ear A b e lia n  system  to approp riate ly  d e fin ed  e x te r 

nal ch arges . I f  w e restrict ou rse lves  to  local and 

g a u ge - in va r ia n t system s the m od e l is d e fin ed  by an 

action  o f  th e  fo llo w in g  type:

Q -  J d * x  [ f [ F ^ 4 x ) ] F tiv4 x ) + j " lA , (1)

B y loca lity  w e m ean that /  depends on ly  on  f M„2( jc) 

and n o t on  h igh er d e r iva tiv es . System s o f  (h e  type 

(1 )  h a ve  been  in vestiga ted  late ly  fro m  an e f fe c t iv e -  

action  v ie w p o in t .1 In a lim itin g  case they reduce to 

the m o d e ls  used in bag com p u ta tion s .2

T h e  A b e lia n  m od e l en cou n ters on e  ob v iou s d i f f i 

cu lty : T h e  m ed iu m  cannot screen  ev en  zero -tr ia lity  

[ fo r  S U (3 ) r i sources. T h e r e fo r e , the ex is ten ce  o f  

lin ea r fo rc e s  b in d in g  quarks im p lies  the sam e fo r  

c o lo r  octe ts  separated  by arb itrary large distances. 

T h e  A b e lia n  vacu u m  cannot s im u la te  co lo r-oc te t pair 

crea tion .

It  w as n o ted  so m e  tim e ago that a som ew h at s im i

lar p h en o m e n o n  occurs in the N  — °°  lim it o f  a non - 

A b e lia n  S U ( jV )  gau ge th eo ry 3: A t  in fin ite  N  the p ro 

b a b ility  o f  creatin g  a pair o f  partic les in the ad jo in t 

rep resen ta tion  w ith the co lo r  con ten t necessary to 

screen  a f ix e d  ex tern a l charge va n ish es .* A ga in  the 

e x is ten c e  o f  lin ear fo rces  b in d ing charges in the fu n 

d a m en ta l rep resen ta tion  im p lies  the sam e fo r  the ad 

jo in t  rep resen ta tion .

T h e  pu rpose  o f  this B r ie f R ep o rt is to po in t out 

that th e a b o v e  s im ilarity  does not w ork  on  a m ore  

q u a n tita tiv e  le v e l.

W e  start by using an a rgu m en t due to L ieb  rega rd 

ing Eq. ( I ) . 5 F o r the static p rob lem  w e take

j £ u “  s m0<7 [S 3( x  -  l e )  - S 3( x  + le  ) ]  . (2)

e is a un it ve c to r . W ith  fix ed  q and /, a variation  o f  

th e  action  w ith  respect to A ^ (x )  w ill d e te rm in e  the 

fie ld  F p „ (x ) .  T h en  the en ergy  o f  the system ,

E  (<?,/) ,  can be com p u ted . I f  w e now  scale q and / by

(3)

w e obtain

E ( q , l )  =  - ~ E (X * q ,  k l ) E i q . l ) =  l i f ( q / l 2) (4)

T h e  linear co n fin in g  and C o u lo m b  cases, resp ec tiv e 

ly, are g iv e n  by

E ~ q l  , 

E  ~ q 2/1 (5)

E qu ation  (5 )  tells us that the string  tension  goes  as 

the square roo t o f  th e c o e ff ic ie n t  o f  the C o u lo m b  p o 

tential. F o r  m ost app lications to n o n -A b e lia n  statics 

th is im p lies  that the string  ten s ion  is p rop ortion a l to 

the squ are roo t o f  th e C as im ir  op era to r  in the 

rep resen ta tion  o f  the ex te rn a l sources.

W e  turn n ow  to  the n o n -A b e lia n  large-VV case. T h e  

fo rce  b e tw een  the e x te rn a l sources is ex tracted  as fo l 

low s6:

F u i U ) - - # lim  In - j -  ( х м О * ' , - . , ) )  
“  к  i

( 6 )

In (6 ) [ r ]  d en o tes  the rep resen ta tion , d [r ] is its 

d im en s ion , X|,i its ch aracter, W T:, is th e parallel 

transporter (u n tra ced  W ils on  lo o p  o p era to r ) a round a 

planar rec tan g le  o f  len gth  T and w id th  I, and (  • ■ • ) 
d en o tes  the ex p ec ta tion  va lu e. A t  in fin ite  jV, S U (A ' )  

is u nd is tin gu ish ab le  fro m  U ( jV )  and th e re fo re

1 1
XlfunltW') (7)

B ecause o f  fa c to r iza t io n  at in fin ite  N  Eq. (7 )  holds 

also fo r  th e  ex p ec ta tion  va lu es  and , hence

f  ladjlO) =  2f|r„i,|(/) • (8)

E qu ation  (8 )  is co rrec t in d ep en d en tly  o f  I. T h e r e 

fo re , i f  w e  h a ve  c o n fin e m e n t , the str ing  tension  

scales p rec ise ly  as the c o e ff ic ie n t  o f  the C ou lom b  

fo rc e , that is, as the C a s im ir  op era to r  and not its 

squ are root.
A s  a ch eck  on  ou r rea son in g  w e consider the ap

p rox im a tion  in w h ich  the in teraction  betw een  sources 

is assu m ed to be g iv e n  so le ly  by the tw o -p o in t

27 1960 ©1983 The American Physical Society
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( А и ( х ) А r ( y ) )  G r e e n ’ s fu n ction . A  partial resu m 

m ation  o f  F eyn m an  d iagram s has been cla im ed  to 

g iv e  a 1 /p* s ingu larity  in the in fra red , lead in g to a 

linear poten tia l (a lb e it w ith ou t flu x  c o n fin e m en t) at 

large d is tances.7 S ince the d iagram s w hich w ere  

su m m ed  w ere  all planar o n e  sh ou ld  obta in  a result 

consis ten t w ith  the la rg t - N  a rgu m en t. T h e  use o f  

on ly  the tw o -p o in t fu n c tion  a llow s A b e lia n  m od e lin g . 

N o w , h o w e v e r , the req u irem en t o f  locality  cannot be 

m et, and, in fact, a p ~4 sin gu la rity  in the p ropagator 

co rrespon ds to  an add itiona l З^2 in the term  o f  

(1 ) .  T h is  p rec ise ly  a lters the scaling argu m en t in the 

correct way.

*H. Pagels and E. Tom boulis, Nucl. Phys. В И З , 485 (1978); 
S. L. Adler, Phys. Rev. D 23, 2905 (1981); S. L. Adler 

and T. Piran, Phys. Lett. Ц ЗВ . 405 (1982); 117B. 91
(1982); see also Y. Nam bu. ibid. 1Q2B. 149 (1981).

3P. Hasenfralz and J. Kuti, Phys. Rep. 40£. 75 (1978), and 
references therein.

3Yu. M Makeenko and A . A . M igdal, Nucl. Phys. B188.
269 (1981).

4T. Banks and A . Casher, Nucl. Phys. B167. 215 (1980).

T o  con c lu d e , loca l n o n lin ea r  e f fe c t iv e -a c t io n  

m od e ls  fo r  c o n fin e m e n t  (g e n e ra l iz e d  f lu x - tu b e  

m o d e ls ) and th e  la rg e -Л/ lim it  p re d ic t  d i f fe r e n t  ch arge  

d ep en d en ces  fo r  th e  lin ear c o n fin in g  p o te n tia l. T h is  

resu lt, to ge th er  w ith  the fa c t that th e  g a u g e  g rou p  

cen ter  is not fe lt  at in f in ite  N ,  su gges ts  that d i f fe re n t  

c o n fin e m e n t  m ech an ism s m ay be o p e ra t iv e  at in fin ite  

N  and at fin ite  Л '.* I f  th is w e re  th e  ca se , th en  no  d e 

c is iv e  lesson  rega rd in g  N  =  3 c o n f in e m e n t  c o u ld  be 

ob ta in ed  fro m  stu d ies o f  th e  la rg e -Л/ lim it.

T h is  w ork  w as su p p orted  by th e  U .S . D e p a r tm e n t  
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531 (1981); 5Ш 6. 560 (1981); S. M andelstam , Phys. R ev. 
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We analyze chiral symmetry breaking in QCD in Coulomb gauge. Using the Ward identities, 
we derive the renormalized gap equation from the renormalized Dyson equation for the vector 
and axial-vector vertices. We work within the ladder approximation, in which the Bethe-Salpeter 
kemel is a sum o f longitudinal and transverse terms, depending only on momentum transfer. This 
relates the chiral symmetry breaking parameters to the static quark potential. When transverse 
gluon exchange is neglected, our gap equation agrees in the infrared with that obtained by Amer 
et al. from a non-normal-ordered Coulomb gauge hamiltonian, while disagreeing with the gap 
equation obtained by Finger and Mandula using a normal-ordering prescription. The corrected 
gap equation leads to infrared-finite formulas Гог the effective quark and pion parameters, in which 
integrals for physical quantities converge for an infrared-singular confining potential Vcoc we 

present the results o f a numerical solution in this case.

1. Introduction

Quantum chrom odynam ics (Q C D ) is w idely  accepted as the candidate theory o f  

strong interactions. Asym ptotic freedom  allows a perturbative treatment o f  Q C D  at 

high energies [ I ] ,  permitting the theory to be tested in such processes as e +e “  

annihilation and electroproduction. Unfortunately, the bound state spectrum o f  

Q C D  is still an unsolved problem . Progress in this d irection  has been made via 

M on te C arlo  techniques in lattice gauge theories. H ow ever, the inclusion o f  ferm ions 

on the lattice is still problematic, particularly for massless ferm ions [2].

A  pertinent question to ask o f  Q C D  with massless ferm ions is whether chiral 

symmetry is spontaneously broken, and by what mechanism. Form al arguments 

using the ’ t H oo ft anomaly conditions [3 ] indicate that chiral sym m etry in Q C D  

must be broken in the N am bu-G oldstone mode. H ow ever, these arguments are 

essentially kinematical in nature, and the detailed dynam ical mechanism o f  chiral 

symmetry breaking in Q C D  remains elusive.

* Supported by Department o f  Energy grant no. DE-AC02-76ER02220.

1 SERC (U K ) Advanced Fellow.
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A  popu lar approach to the dynam ics o f  chiral sym m etry breaking is to  w rite dow n  

a gap equation fo r  the generated mass 1, which is then discussed an a lytica lly  in 

the linearized approxim ation  [4]. U sually  this is done in the Landau gauge, w here 

there is no wave function renorm alization, y ie ld in g  a gap equation which is fin ite 

w ithout renorm alization. H ow ever, m Landau gauge it is d ifficult [4 ] to  im plem ent 

renorm alization  group corrections to the gluon exchange potential. An  a lternative 

approach, p ioneered  frv F inger and M andula [5J, is to construct the gap  equation  

in C ou lom b gauge- Oner advantage ot’ using C ou lom b  gauge, which m otivated  the 

work.at' r e f  [5], is mux. dm  C ou icc in  propagator correction* g ive  the com p lete  Q C D  

Д -i'uncnan. T ins  perm its »  шзр&ентЛайоя of  renorm alization -group-

im nm vetb теггш-зттцтп ЁЬанго.. A  tfaraibfr advantage o f  C ou lom b  gauge, w h ich  we  

w jil f f i jw i t ;  in; зван. 3  tbdMwu № <&ш tibt gap  equation can be derived  by  m ak ing  the 

some? impn>::tminiar. a o ih e  ди гЛ -алйдиагк  B eihe-Salpeter kernel as is used in the 

TTTisnTimsninpgicai xnalysK  [/6] o f  charm onium energy1 levels. Th is perm its the use 

nr -phsnamsno logical static potentials in the study o f  chiral sym m etry breaking. 

■HcwpvEi. л  nontrivial prob lem  with the C ou lom b gauge is that, in this gauge, the 

w h v s  function renorm alization :is infinite, and the gap equation requires ren orm a liz

ation.

At. first sight it may seem rather strange to use the non-Lorentz-covariant C ou lom b  

gauge, which singles out a preferred rest frame, to study a problem  in vo lv in g  massless 

quarks. H ow ever, as seen below , as a result o f  dynam ical chiral sym m etry breaking, 

the efiective  quasi-particle excitations which arise from  solving the gap equation  

have a nonzero mass. Thus, a preferred rest fram e is defined: the fram e in w h ich 

the quasi-particles are al rest. The existence o f  this preferred fram e gives an a postiori 
justification  fo r  the use o f  C ou lom b gauge in setting up the gap equation.

In constructing the C ou lom b gauge gap equation for a pairing-type m odel, F inger 

and M andu la  [5 ] proceed  from  a norm al-ordered C ou lom b gauge ham iltonian. An  

analogous C ou lom b-gauge gap equation, based on a non-norm al-ordered ham il- 

tonian, has been studied by A jner et al. [7]. These pairing m odels are rev iew ed  in 

sect. 2, using the equ ivalent formalism s o f  the B ogo liu bov-V a la tin  transform ation 

and the Dyson equation to derive the gap equation. For a pure C ou lom b  poten tia l, 

the m odels o f  refs. [5 ] and [7 ] can be shown to correspond to the use o f  a renorm alized  

and o f  an unrenorm alized gap equation, respectively. H ow ever, fo r  a general 

ph en om en olog ica l potentia l, the two m odels have qualitatively d ifferent in frared 

behavior. F or exam ple, the gap equation o f  Am er et al. exists for a con fin ing 

poten tia l, whereas that o f  F inger and M andula does not. N o w  renorm alizations to 

rem ove u ltrav io let d ivergences should not change the infrared behavior o f  a theory. 

Thus fo r  a general phenom enolog ica l potential, the m odels o f  ref. [5 ] and ref. [7 ] 

d o  not s im ply  correspond to the renorm alized and unrenorm alized versions o f  the 

same pa irin g  m odel. There is clearly a paradox here: either the equations o f  A m er 

et al. d o  not, in general, g ive  the correct unrenorm alized theory, or the equations 

o f  F inger and M andu la do not in general g ive the correct renorm alized theory.
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Our prim ary aim in this paper is to find the correct form  o f  the renormalized gap 

equation in Coulom b gauge. This is done in sect. 3, starting from  the renormalized 

D yson equation fo r  the vector and axial-vector vertex parts. W e  proceed by making 

the ladder approxim ation to the quark-antiquark Bethe-Salpeter kernel, which 

introduces phenom enological potentials. Application o f  the W ard identities unam

b iguously yields the correct form o f  the renormalized gap equation. From this 

analysis we reach the fo llow ing  conclusions:

( i )  The equations o f Am er et al. give in general the correct unrenormalized 

equations. This corresponds to the fact that, since the co lo r matrices are traceless, 

the interaction term in Q C D  does not require normal ordering. For potentials which 

do not lead to ultraviolet divergences, such as a pure confining potential Vc<x:q *, 
VT = 0, the gap equation o f  ref. [7 ] is the correct one as it stands.

( i i )  The renorm alized gap equation differs from  the unrenorm alized one by a 

po lynom ial counterterm, as expected from  the standard B PH Z  renormalization 

algorithm . The F inger-M andu la norm al-ordering prescription does not correspond 

to a polynom ial counterterm. Thus, it is incorrect, except fo r  the case o f  a pure 

C ou lom b potential.

A  second principal objective o f  this paper is to study the infrared properties o f  

the corrected gap equation. In sect. 4 we summarize an analysis o f  pion properties 

in the pairing m odel given recently by Govaerts, M andula and W eyers [8]. W e show 

that, when used in conjunction with the unrenorm alized or correctly renorm alized 

gap equation, all physical quantities are infrared-finite. That is, even for an infrared 

singular confin ing potential K o c ^ -4, al! physical quantities are g iven  by infrared- 

convergent integrals as a result o f  detailed cancellations between singular terms in 

the integrands. Furthermore, the infrared cancellations are shown to arise in a 

general way from  the operator structure o f  the in frared singularity in the interaction 

hamiltonian. This feature is illustrated by a numerical exam ple in sect. 5, where the 

gap equation and the pion vertex equation are solved num erically fo r  the case o f  

a pure q 4 potential.

T o  recapitulate, the plan o f  this paper is as fo llow s. In sect. 2 w e review  the 

pairing m odels o f  refs. [5 ] and [7 ] and exam ine alternative renorm alization  prescrip

tions. In sect. 3 we determ ine the correct form  o f  the renorm alized gap equation by 

studying the Dyson equation for the renorm alized vertex part. W e demonstrate in 

sect. 4 the infrared finiteness o f  physical quantities when the correct gap equation 

is used. In sect. 5 we numerically solve the gap equation fo r  the case o f  a confin ing 

potential. F inally, we summarize our findings in sect. 6.

2. Coulomb gauge pairing model

There are two equivalent approaches to setting up the C ou lom b  gauge pairing 

m odel, both o f  which are used in the paper o f  F inger and M andula. The first is to 

make a B ogoliubov-Vala tin  transformation to a vacuum contain ing a qq  condensate.
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This is then optim ized variationally, to g ive an equation (the gap equation ) fo r  the 

condensate wave function W{p ) .  The second is to use the Dyson equation fo r  the 

quark propagator, in the Hartree approxim ation, to set up an equation fo r  the quark 

proper self-energy l ( p ) .  This is the gap equation rewritten in a d ifferent notation. 

In this section we outline both methods, fo llow in g  the notation o f  F inger and 

M andula, but w ithout norm al-ordering the interaction term in the ham iltonian. 

The C ou lom b gauge effective hamiltonian fo r  a single* quark flavor q is

H c(i =  4 v  ( - i V ) q - 2 i r E q y 0{ A aq ^ q y 05Aaq .  ( 2 . 1)
a V

The sum mation is over the co lo r index a, and a — g 2/4-n can be taken to be either 

a constant or (as we shall do b e low ) a running coupling a =  a ( —V 2). W e wish to 

m in im ize H cff over trial states containing a coherent superposition o f  qq  pairs. The 

trial w ave function is taken to be

I =  ТТ77Г п  [ l - * П р ) т Ь ы>'{р, , Г ( - Ц  s ) W . P =  \p \ . (2-2)

with b a) ( p .  s )  and d “"  ( p , s )  the creation operators fo r  a quark and antiquark 

with m om entum  p, co lo r  index a and helic ity  s. In eq. (2 .2 ) r  is the volum e o f  an 

elem entary cell in momentum space, and xP ( p )  =  Ф * ( р )  is the m om entum -space 

pa ir w ave function. The norm alization factor N ( t f ' )  is determ ined such that

(У | ^ > = 1 ,  (2 .3a )

to g ive

N ( ^ ) =  П +  # ( p ) 2 - (2 .3b )
p.s.a

T h e  calcu lation o f  matrix elements in the vacuum state | Ч' )  is facilita ted  by m aking 

a B ogo liu bov-V a la tin  transform ation to an operator basis which annihilates I'/'), 

as described in append ix A . For the equal tim e quark Feynm an propagator we obtain

т ш * .  о ) , ш о ) ] | * > =  f  f  ^ s (4W )
J (2 ir )  J 27Г

,  f  e .> u - J  n P ) _ i  i ^ 2(p ) . ‘
J {2n)~ L l + ^ 2(p) 2\ + Ч '\рУ  И. а/

(2 .4 )

where p  is the unit vector p/\p\. This enables us to obtain the fo llo w in g  expression

The generalization o f  the analysis to more than one quark flavor is easy.
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fo r  the expectation o f  H t„ in the state \V),

( W ) .  Г .J 12p V 2( p )

53(0 ) й ГS ( 0 )  J y l +  V 2( p )

_ j _  f  d V d V (| p ~ ? ! 2) г  щ р ж ч )  1
* * J  | p -*| 2 L [ l + ^ 2( p ) ] [ l + ^ ( 9 ) ]  4

(2.5)
(  V 2 

\ \  + 4
i p )  \ \ (  * 2(q )  1\„ ;  
" 5 7 ^ - ;  Г  Чv 2( p ) 2 / '

The optim al condensate vacuum is obtained by minim izing with respect

to V { p ) ,

- ^ ~ ( * \ Н СЙ\ * )  =  0 ,  (2.6a)

which gives the “ gap equation”

3-7Г J | p -? |  1 +  У  ( ? )

A n  alternative derivation o f  the gap equation is obtained from the Dyson equation 

for the quark propagator. M aking a non-relativistic ansatz for the proper self-energy 

part X,

I  =  2 ( р )  =  p A ( p )  + y  ■ p B ( p ) , (2.7)

the propagator can be written as

I
S (p, Po) =

УоРо ~ У P - Z

Уорд -У  P [*  + B ( p ) ]  +  pA(p)  
p l ~ w ( p ) 2

w ( p ) = p J A 2( p ) + [ \  + B ( p ) f  . ( 2 -8 )

A fte r  integration over p0 this gives

Limn. ,2,,
and com paring eqs. (2.8) and (2.9) with eq. (2 .4 ) we see that

M P ) _ j n p l _ = ci

7 л 2( р ) + [ 1 + в ( р ) ] 2 i + ^ 2( p )  

1 + й ( р )  _ i - ^ ( P l ^ C 0C 9,- к , ) .  <2- 10>

V a 2( p ) + [ 1 + 5 ( p ) ] 2 i +  ^ 2( p )
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with d ( p )  the rotation angle o f  the B ogo liu bov-V a la tin  transform ation defined  in 

eq. (A .4 ). In the Hartree approxim ation the Dyson equation fo r  2  is

d a a j p — (j|_) g (3 ) ( q )  ' (2 .1 1 )

I Р~Ч'

which, on substitution o f  eq. (2 .9), yields separate equations for A ( p )  and B ( p ) ,  

и  \ 2 \ нз V ( q )  i i  \
p M p ) - j p j  d  9 - | ^ p i T ~ ¥ W y  ( 2 Л 2 а )

4 2 f j5 a(|p-<7|2) 1 l - ^ 2(q )  .  .

a i 2 b )

W hen eqs. (2.12a) and (2.12b) are substituted into the identity

p ^ ( p )  =  i [ l  -  ^ 2( p )1p M p ) - ^ ( р ) р В ( р ) , (2 .13)

we obtain again the gap equation o f  eq. (2 .6b).

Eqs. (2 .1 )—(2.13) are equivalent to the analysis o f  Am er et al. [7 ] w ho, as discussed 

in sect. 1, proceed from  the non-norm al-ordered C ou lom b gauge ham iltonian. Th e  

calcu lation o f  F inger and M andula [5 ] instead starts from  a ham iltonian analogous 

to that o f  eq. (2 .1 ), but norm al-ordered with respect to the perturbative vacuum  |0), 

which yields the fo llo w in g  results. For the gap equation, F inger and M andu la  obta in

pxfr(p ) = - 1—  (" d 3? ^ p —  
Зтг j  I p — *

i - q |2) П д ) [ i -  * \ p ) ] + 2 p ■ д П р ) * \ д )

■ ч\2 1 + * 2(q)
(2 .6b ')

wh ich , in the G reen  function approach, corresponds to the “ D yson -lik e”  equation

2 ( P ) = A  [ d V j P- ^  } Уо[SW(q )-S£ \q )]y0, (2.11')
5-ir J \ p - q \

with Si  the free zero-mass propagator

S o \ p ) ~ '  =  - h -  P -  (2-14)

Since pa ir ing  is a low -m om entum  effect, the condensate w ave function  Ф  is expected 

to vanish rap id ly  at high momenta,

П Р ) ----- * 0 .  (2 .15)
p~»oo

Consequen tly  eq. (2.11) and eq. (2.11') exh ibit very d ifferent h igh-m om entum  

behavior. For a C ou lom b  potential

“ (Ip ~  fl|2) -  c o n s t, (2.16a)

or fo r  an asym ptotica lly  free C ou lom b-lik e potential

“ (|p -  q|2) =  const/ log [| p -  g|2//l2]  , (2.16b)
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the integral in eq. (2.6b') converges at high momenta as a result o f  the overall factor 

' f ' ( q )  in the integrand, while the integral in eq. (2.6b) has a high-momentum 
d ivergence given by

divergent part o f  eq. (2.6b) =  ( Z  -  l ) p ' f ' { p ) ,

where

Z - l ■Mf  .3  d a ( q 2)

J d V l я2 J
5 Ч- (2-17)

Hence, the F inger-M andu la  gap equation is ultraviolet-finite, while that o f  Am er 

et al. has an ultraviolet d ivergence given by eq. (2.17). How ever, since the divergence 

in the Am er et al. equation is proportional to the kinetic term on the left-hand side 

o f  the gap equation, it can be elim inated by the standard renorm alization procedure 

o f  adding a counterterm

A H  =  ( Z - \ ) H y { - i V ) q  (2.18)

to the ham iltonian o f  eq. (2.1). This gives an alternative subtraction scheme to the 

one used by Finger and Mandula. Taking the difference between eq. (2 .6b ') and eq. 

(2 .6b) gives

eq. (2 .6b ')-eq . (2.6b) =  [ Z ( p ) - \ ] p 4 ' ( p ) ,

rr, , , 1 1 f  “ (lp -< »|2) - -
Z ( p ) - 1 * - — -J ; d q — ------- тг-p  q -  (2.19)

p Зтг J \p-q\

Thus, the two alternative schemes are equivalent on ly in the case o f  a pure Cou lom b 

potential (eq. (2 .16a)), fo r  which Z ( p )  in eq. (2.19) reduces to a constant. That the 

F inger-M andu la  subtraction scheme corresponds to use o f  a m om entum -dependent 

renorm alization constant leads one to suspect that it is incorrect. This conclusion 

is confirm ed in the next section, where eqs. (2 .1 )—(2.13) and (2.18) are derived, via 

the W ard  identities, from  the Dyson equations for the renorm alized vertex parts.

3. The renormalized Coulomb gauge gap equation*

In the theory o f  superconductivity, the gap equation is part o f  a m ore general 

system o f  equations fo r  the electron propagator and the e lectron -ph oton  vertex part 

[9 ], in which the W ard identity is satisfied. Hence, in choosing between alternative 

subtraction schemes fo r  the pairing m odel o f  sect. 2, it is natural to proceed in an 

analogous fashion, using the W ard identities to derive the renorm alized  gap equation 

from  suitable approxim ations to the vertex parts. Specifica lly , we start from  the 

renorm alized Dyson equation for the vector and ax ia l-vector vertices, making the

* In this section, we use q and p to denote four-vectors, whereas in all other sections 0Г this paper, 

the momenta q and p denote the three-vector magnitudes 4 =  |f|,p —|p|.
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ladder approxim ation that the Bethe-Salpeter kernel depends on ly on the m om entum  

transfer. Consistent with this approxim ation, we exclude quark annih ilation  graphs, 

so that there are no anomalies, and neglect terms arising from  the non-com m utativ ity  

o f  co lo r matrices on the quark lines, so that we can use the W ard identities o f  Q E D  

(rather than the more com plicated S la vn ov -T ay lo r  identities o f  Q C D ) and can om it 

all co lo r  indices.

Our analysis therefore proceeds from  the fo llo w in g  equations fo r  the ren orm alized  

vector and axia l-vector vertex parts [10],

W e are thus anticipating the fact that, i f  we make a non-covariant approxim ation

have d ifferent renorm alizations. Since anom alies have been excluded , the vector 

and ax ia l-vector vertex parts have the same renorm alization  constants [11], and 

satisfy the W ard identities

Let us now  make our fundam ental approxim ation. This is to assume that the

transfer q, w ith Loren tz vector couplings* on the quark and antiquark lines,

x K a 0 .rs ( p + q , p '  +  q, q)  ■ (3 .1 )

In eq. (3 .1 ) Sp is the full renorm alized quark propagator, K aP yS is the renorm alized  

quark-antiquark Bethe-Salpeter kernel, and ( Z y „ )  is a shorthand fo r

(3 .2 )

to the u ltraviolet tail o f  K, the ц  = 0  and /л =  1,2, 3 com ponents o f  the vertex can

( р ’ - р Г ? Л р ' , р ) =  S ' i ' ( p ' ) - $ ' i \ p ) , 

( р ' - р Г Ъ ( р \ р )  =  у Л - ' { р )  +  §'р- \ р ' ) у >. (3 .3 )

B ethe-Salpeter kernel К  of3 yS( p  +  q, p'  +  q, q )  is a function on ly o f  the m om entum

K ap.ys ( P + q ,  p'  +  q, q ) * = k aPyB( q )

4 ■»!•/( y 0)  ад ( Г о ) ауЪ v c (k l )

(3 .4 )

* The introduction o f  scalar couplings would lead to explicit (as opposed to spontaneous dynamical) 

breakdown o f chiral symmetry.
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This approxim ation  is the usual one made in potential theory treatments o f  heavy 

quark bound states. In lowest-order perturbation theory, Vc  and VT are given 

respectively by single Coulom b and single transverse gluon exchange,

«  oc

Vc =  ̂ ’ =  (3 '5) Ч <7o ~ Я

In higher loop  order, renormalization group improvements make or in Vc a running 

function o f  q at high momentum, while multiple Cou lom b gluon exchange [12] 

produces an infrared-singular confining contribution to Vc at low  momentum. For 

exam ple, corresponding to the frequently used [6] coordinate space potential

V { r ) ~ a r - \ - , (3.6)
3 r

the m omentum-space potential (defined as the Fourier transform o f  V ( r )  with a 

factor —y n  d iv ided  out) would be

v c (k l )  =  ^ + ^ p ,  (3 .7)

with a in eqs. ( 3 .6 ) - ( 3 .7 ) either a constant or a running logarithm ic function o f  the 

coord inate or momentum, and with the term proportional to к the confin ing 

potential.

Before using specific assumptions about the form  o f  Vc and VT, we first carry 

the analysis as far as possible using only the approxim ation to the form  o f  К  given 

in eq. (3 .4 )* . Substituting eq. (3.4) into eq. (3 .1 ), eq. (3 .1 ) into the W ard identities 

o f  eq. (3 .3 ), and using the W ard identities a second time to rearrange the integrands, 

we obtain from  the vector vertex equation

( p ' - p r r j p ' , p )  = s ' i \ p ' ) -  S ' i  '(p )

=  ( Z y J ( p ' - p r  +  j  ^ , [ / S ' F(p ' +  q)

+ q)~ S'F~'(.p + q))iS'F(p +q ) ]f, j c.p jq )

f  d4a
= (2т„ ) Г  + \ s'Ap'+q)pJ«t>.Aq)

- ( Z y „ ) p M - j - ^ - A S f ( . P + q ) p a k ap , . ( q )  ■ ( 3 -8 >

* The derivation o f eqs. (3 .8M 3 I2) is in fact independent o f  the choice o f  gauge, since it uses only 
the assumptions that k depends solely on the momentum transfer q and has vector couplings on the 

fermion lines.
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Sim ilarly, from  the axia l-vector vertex equation w e get

( p ' - p r ^ 5(p\p) = ys§'F- l(p )+S ' f ' {p ' )ys

=  (Z % 1y5) ( p ' “ P )M + 1 +  ^

* { y s S ' i ' ( p  +  q )  +  S ' i \ p '  +  q ) y s)iS'F( P +  q ) ] pak*0 . A q )

=  75 ( Z y j p "  +  J ^ ^ 4 S ^ ( p  +  q )p X p .. . . (9 ) j

+  (Z - y J p "1 + |  ^ ^ ^ W p ' + q b X p . J q ) ^ ,

(3-9)

where the Loren tz vector structure o f  к has been used in anticom m uting the y 5's 

to the outside on the right-hand side. Because the p and p‘ dependence in eqs. (3 .8 ) 

and (3 .9 ) has separated, we deduce that the renorm alized p ropagator must satisfy

5'F- l ( p )  =  ( Z ^ ) p - + | ^ ^ ( p + q )3afcoP....(<?). (3 .10 )

N o te  that the presence o f  an additive constant (a  k inem atical mass term ) in eq.

(3 .10), which would be allow ed by the vector W ard identity o f  eq. (3 .8 ), is exc luded  

by the ax ia l-vector W ard identity o f  eq. (3 .9 )! In troducing the self-energy E  by w riting

S ' i ' ( p ) = y ^ - Z ( p ) ,  (3 .11)

we see that 2  must satisfy the integral equation

^ (p )s y  =  [7 t. - ( Z r ;i) ]s TP M- J  5'F(p  +  q ) pakap,y6( q ) . (3 .12)

This is the renorm alized gap equation corresponding to the ladder approxim ation  

to the Bethe-Salpeter kernel.

T o  make contact w ith the non-relativistic pairing m odel o f  sect. 2, let us now  

make the further approxim ation o f  neglecting the transverse gluon exchange term  

in fc. Thus, к becom es

^afl.Ts (9 ) =-47Г|('Уо)5/3 (7 0 )^ 5  V'c(|«|) ■ (3.1 3a)

Further, let us assume that 2 { p )  is given by the non-relativistic ansatz

2  =  Z { p )  =  |p|A(|p|) + y  ■ p.B(|p|). (3.13b)

W hen eq. (3 .13 ) is substituted into the integral equation fo r  the fi = 0  com ponent 

o f  the vector vertex at zero momentum transfer, this equation sim plifies dram atically. 

It is so lved  by

r o(p ,p )  =  Zoy0. (3.14)
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T o  ve r ify  this, we note that when both eqs. (3.13) and (3.14) are substituted into 
eq. (3 .1 ), the g-integral

I d*q . .
(2 tr )4 Р + Ч )Го ( Р + Я < Р +  q)iS'f ( p  +  q) ] fi„Kap rS( p  +  q,p +  q ,q )

(3.15)

reduces to

i

2ir J

эО Л/ Of
. ~  r o ^ F r o 5 Fro>

J-oo 2-rr

S'F =  L y o (4 o + P o ) - y  ■ ( q + p ) (  \ +  B ) - \ q + p \ A y '  . (3.16)

Evaluation o f  the ^„-integral shows that /=*0. Since asym ptotic freedom  requires 

*o(p,  p )  to approach y0 at large momentum, we conclude that, in the Cou lom b 

gluon exchange model,

Z „ = l .  (3.17)

Substituting eqs. (3 .I3 ) and (3 .I7 ) into eq. (3.12), the gap equation then simplifies 

to

Z ( p )  =  ( Z - \ ) ? P + - ! - 2 \ d 3q V c (\P - q \ ) y 0S " \ q ) y 0 , (3.18)
J  7Г J

which, when reexpressed in terms o f Ч'  by fo llow in g  the analysis o f  eqs. (2 .10)—(2.13), 

takes the form

\p\n\p\) =  ( i - z ) \ p \n\p\)

i f . , ................. * ( M ) [ I  -  * 2(|p|)] -  * ( W ) [ !  -  * \ Ш р  ■ 4
+i ? J d * Vc(|p _  ,П -------------- •

(3.19)

W hen the obvious identification

V c (| p -g l )  =  ° y _ ^ p  <3-2° )

is made, eq. (3.18) (eq. (3 .19 )) is identical in structure to the gap equation 0 Г eq.

(2.11) (eq. (2 .6b )), apart from the addition o f  a renorm alization  counterterm  with 

precisely the form  derived from  A H  o f  eq. (2.18). Thus, our rederivation  o f  the gap 

equation from  an analysis o f  the vertex parts shows that the standard renorm alization 

algorithm , rather than the F inger-M andu la norm al-ordering prescription, gives the 

correct method for elim inating ultraviolet divergences.
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4. Infrared finiteness o f  physical quantities

H aving  established the correct renorm alization prescription, let us now  con sider 

the in frared behavior o f  the gap equation. As m entioned brie fly  in sect. 1, the 

F inger-M andu la  gap equation (eq. (2 .6b ')) has very different in frared  beh av io r from  

that o f  the Am er et al. unrenorm alized gap equation* (eq . (2 .6b )) and o f  the correctly  

renorm alized gap equation (eq. (3 .19 )). Specifica lly, as p ^ q  the integrand o f  eq. 

(2 .6b ') sim plifies to

у с (1р - « 1 Ж р ) . ( 4 Л а )

while the integrand o f  eqs. (2.6b) and (3.19) reduces to

Vc(|p -  д а  - ( q - p )  * ‘( р )  + 0 ( ( «  -  p )2) ] . (4 .2a )

Hence, when Vc is an infrared-singular con fin ing potential d iverg in g  as |p-<?|-4 as 

p - *q ,  the g-integral in eq. (2 .6b ’) behaves as

| d3q \ p - q \ -An p )  (4 .1b )

and diverges, w h ile  the corresponding integral in eqs. (2 .6b ) and (3.19) behaves, 

after angular averaging, as

d3q \ p - q \ -A0 ( ( q - p ) 2)  (4 .2b )

and converges. Thus, the corrected gap equation and the pair wave function Ф  exist 
for a confining potential W e w ill refer to Ф, and to any other quantity in the pairing 

m odel which exists fo r  a confin ing potential, as being “ in frared-fin ite.”

A  second feature o f  the correctly renorm alized gap equation, related to its 

infrared-finiteness, is that it is invariant in form  when the coord inate-space potential 

is shifted by a uniform  constant,

V (r )->  V { r ) - ' i - r r C .  (4 .3a)

In terms o f  the momentum space potential o f  eq. (3 .7 ), the transform ation o f  eq. 

(4 .3a) takes the form

Vc < | p - «| ) - * V c ( | p - 9 | )+ (277 )3CS3(p  —q ) .  (4 .3b )

This is obviously  an invariance o f  eqs. (2 .6b ), (3.19) and (4 .2a ), since the coefficien t 

° f  ^ c (| p _ 4l) vanishes at p  =  q in these equations. For reasons exp la ined  below , 

we expect physical observables very generally  to be invariant under the transform a

tion o f  eq. (4 .3 ). Th is, in turn, means that in the form ulas fo r  all physical observables, 

Vc  must appear m ultip lied  by a coefficien t w hich vanishes at p =  q. So by the angular

* Strictly speaking, Amer et al. [7] give only the linearized form o f  eq. (2.6b). The full gap equation, 

and the observation that is infrared-finite, appear in a subsequent paper by Le Yaouanc et al. [13].
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averaging argument used in eq. (4.2), we conclude that all physical observables are 

infraredfinite. In the remainder o f  this section, we will illustrate this general statement 

by an explicit, case-by-case examination o f  various physical observables which can 
be form ed in the pairing model.

Let us begin with the quasi-particle energy eo(p). Accord ing to eqs. (2 .8 ), (2.10), 

(2 .12a) and (3.20), this can be written as

sin 2 d ( q )  

sin 2 d ( p )

_i3 ,, , s in 2 t f (| p - « 7 |)
d Я Vc ( q )  ■ • (4-4)

sin 2 d ( p )

U nder the shift in potential o f  eq. (4.3b), coip)  changes to

aiip) -* w ip )  + f i r C . (4 .5)

H ence the quasi-particle energy is not a physical observable and is clearly not 

in frared-fin ite*. H ow ever, since the shift in w in eq. (4 .5) is a constant, the excitation 

energy w { p ) - w i 0) is a physical observable, and is given by either o f  the two 

equivalent infrared-finite formulas,

j ( p ) - < u ( 0 ) = - - 1 [  d3q V c i J r 2^  ^  ’ —sin 2S iq )
3 tr J L sin 2i>( p)

ш ( р ) - ш ( 0 )  =  ш ( р )  - < й ( 0 ) ,

(4.6a)

" ( p ) " 3 ? l li’ , ' ,c(l' ’ ' , l l [ s i n l l w _ l ] '  t46b ’

In w riting eq. (4.6a), we have used the fact that the gap equation o f  eq. (3.19) 

im plies that

^ (0 )  =  1 =>sin 2 i? (0 ) =  1 . (4 .7)

The form ula in eq. (4.6b) has advantages in numerical work, since sin 20  appears 

on ly in the radial integral over q, not in the angular integral over q.
N ext we consider the quark condensate (flu ) for a single quark flavor u. F o llow ing  

ref. [5 ], this can be evaluated in terms o f  the propagator S<3>(q ) ,

(au)  =  (V\qq\ V )  =  3SaP( ^ [< fe (0 ), <?= (0 )] + з {^ (0 ) ,  <?„(0)}| V )

where the color factor, 3, arises from  the trace over the suppressed co lo r index. 

A lthough u ( p )  and pA ip ) are ind ividually not physical observables and are not

*  We thus again differ here with Finger and Mandula, who interpret ш (0) as the quasi-particle mass, 

and circumvent the infrared finiteness problem by using only potentials which are cut off in the infrared.
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infrared-finite, eqs. (2 .8) and (2.10) show that the ratio pA (p ) / < o (p )  can be expressed 

entirely in terms o f  the condensate w ave function Ч', and so is in frared-fin ite,

p A (p )  2 Ф (р )  • 

w (p )  I +  Ф (p )

з f “
( Н и ) - ----- j  I p 2 dp sin 2 d (p )  . (4 .9 )

•я- Jo

Finally, w e turn to pion properties in the pairing m odel. These have been investi

gated by G ovaerts, M andula and W eyers [8 ], who use the B ethe-Salpeter equation , 

w ith the approxim ated kernel o f  eq. (3.13a), to com pute static p ion properties in 

the chiral symmetry limit. Their a lgebraic calculation is unaffected by changing the 

subtraction scheme for the gap equation from  eq. (2 .6b ') to eq. (3 .19 ), so w e on ly  

quote their final results. These are summarized by the formulas

= < й « >, (4 .10a)2 mq

- N / „  =  N 2 =  3 |Г - ^ 5т 2 0 ( p ) A £ l .  (4 .10b)
J (2 ir ) to ( p )

In eq. (4.10) is the pion mass, mq the constituent quark m ass,/ , the p ion  decay  

constant, and N  the norm alization o f  the pion Bethe-Salpeter w ave function. Th e  

pion vertex part form  factor, P (p ) ,  satisfies the integral equation

P { p ) = p M p ) + - ~ ~ i  [  ^  [ p A { p ) q A ( q ) + p -  q C ( p ) C { q ) ] P { q ) ,
37Г J a) ( q )

C { p )  =  1 + B ( p ) . (4 .11)

Introducing the abbreviated notation

g ( p )  =  4 4 ,  (4-12)
“  ( P )

Eq. (4.10b) is equ ivalent to

- N = / „  =  ^ j J  p 2 d p s in 2 i ? (p ) g (p ) j  , (4 .13)

and w ill be in frared-fin ite i f  g ( p )  is infrared-fin ite. Substituting eq. (4.12) into eq.

(4 .11 ), d iv id in g  by ш (р )  and using eq. (2 .10), the equation determ ining g ( p )  can 

be written as

j  <•

g ( p M p )  -  sin 2 i ? (p )+ — 2- I d3q V c (\p~q\)  
j  TT J

x [s in  2 -d (p )  sin 2d { q )  + p  ■ q cos 2 i? (p ) cos 2 d (q ) ] g ( q )  . (4.14)
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T o  show that eq. (4.14) is infrared-finite, we express the unrenorm alized* gap 

equation o f  eq. ( 2 .6 b) in terms o f  i? (p ),

p sin 2 # (p )  =  J  d3<j Vc (|p -  f|)

x [s in  2 -d{q)  cos 2 - d { p )—p-  q cos 2iJ (q )  sin 2 i ? (p ) ] , (4.15) 

and use this to rewrite eq. (4.4) as follows,

=  [  d3? Vc(\p -  g|) sin 2i?(g)/"sin 2 t? (p )
3-n- J \ sm 2 d ( p )  J

cos 2i?(n) f 1 f ,

x [s in  2-d(q)  cos 2 d ( p )  - p  ■ q cos 2 d ( q )  sin 2 t? (p )]J

=  p cos 2 d ( p )  + ^ — 5 f  d3<? Vc (|p -  q\)
JTT J

x [s in  2d ( p )  sin 2d ( q )  + p  - q cos 2 d ( p )  cos 2 i? (< j ) ] . (4.16)

Substituting eq. (4.16) into eq. (4.14), the equation determ ining g (  p )  finally becomes

g ( p ) p  cos 2 i? (p ) =  sin 2d ( p ) + 7 ~-i
J  7Г .

d 3<? Vc (\p -q\ )

x [s in  2 i? (p ) sin 2 i9(q)  + p  ■ q cos 2\? (p )  cos 2 i? (< j)]

x[g(q)-g(p)L

which is manifestly infrared-finite.
A  useful insight into the infrared-divergence structure o f  the pairing m odel is 

obtained by writing the propagator o f  eq. ( 2 .8 ) in the form

» _____________R + b ) __________ + ___________ R ~{p ) --------------
P ’ P  д , - » ( 0 ) - [ ы ( р ) - « ( 0 ) ]  po +  « ( 0 ) + [ f t » ( p ) - « ( 0 ) ] ’

with the residues R ±(p )  given by the infrared-finite expressions

(4.18a)

p A ( p )  , 1 + B ( p )  
7 o ± — 7 ~ T  i

ш ( р )  J  ь ' ( Р )

2 П р )  1 I 1 1 - У \ р ) 

У о ± \ + Ч ' 2( р ) Г 1У Р р  \ +  V \ p )

cos 2 - д (р )  , .  .
=  i [ y 0± s in 2 t ? (p ) ] T i7 p ------ — ------ (4.18b)

* Use o f the renormalized gap equation o f  eq. (3.19) in the following analysis would add a polynomial 

counterterm to eqs. (4.16) and (4.17), but would not change their infrared structure.
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The on ly infrared-divergent quantity in eq. (4.18) is the term ш (0 ) in the 

denom inators. This structure is a reflection o f  the fact that as a result o f  con finem ent, 

an infinite amount o f  energy is required to create a single quasiparticle state from  

the vacuum.

The fact that the infrared divergences take the form  o f  eq. (4.18) has a s im ple 

operator interpretation. T o  see this, we consider the extension o f  the ham iltonian 

o f  eq. (2 .1 ) to a general phenom enological potential V (r ) ,

W hen the interaction term in eq. (4.19a) is rewritten in terms o f  the m om entum  

space potential Vc o f  eq. (3 .7), we get

H ence the in frared-d ivergent part o f  the interaction term has the operator structure

under the shift in potential o f  eq. (4 .3 ), the change in the ham iltonian is

and is again proportional to the color-squared operator. Because color-squared is 

govern ed  by a superselection rule, any eigenstate ф o f  H  w ith energy E  and 

co lor-squared  С 2(ф )  is also an eigenstate o f  the shifted H  o f  eq. (4 .22 ), w ith the 

energy sh ifted to E  +  2ттСС2(ф) .  By the same reasoning, the linear in frared d iver

gence o f  eq. (4.21) appears sole ly  as an energy level shift

The contribution o f  this term to the energy difference w (0 ) betw een the single 

quasi-particle state ( С 2 =  з) and the vacuum (C 2 =  0) is

in agreem ent w ith eqs. (4 .4 ) and (4.18). M oreover, com paring eqs. (4.22) and (4 .23), 

w e see that the in frared d ivergence can be com pletely  elim inated from  all quantities,

H =  J d3x<77 ’ (-iV )g—3 j  d3x  d3j V ( * ) 5 A  V * ) j  V (| *-.H )<7 t(.>>)5A‘1<7(.v) ■

(4.19a)

H =  d3x Q y  • ( - i V ) q  + —  - j
(2  77 )

J d3q p a( q ) p a( - q ) V c (\q\), (4 .19b)

with

p ° ( q ) =  d3x e - * y ( * ) i A ' * ( * ) . (4 .20)

(4.21)

and so is p roportional to the color-squared operator F 2«= p a (0 )p “ (0 ). S im ilarly,

H ^ H + 2 n C F \ (4.22)

(4 .23 )

<i)(0) = — 2 I d 3q Vc (|q|) + in frared -fin ite  , (4.24)
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unphysical as well as physical, by making the potential shift o f  eq. (4 .3) with

c = ^  • (4 -25a) 

corresponding to the use o f  a m odified momentum-space potential

V fc (M )-*  Vc (\q\ ) -83( q )  |  d\  Vc (|,|) . (4.25b)

By this m ethod, we can get manifestly infrared-finite analogs o f  eqs. (2.12a,b) for 

A  and B, perm itting a numerical computation to be carried out w ithout the introduc

tion o f  the pair wave function 4/. The ideas just outlined will p lay an essential role 

in an extension o f  the numerical solution o f  sect. 5 to include transverse gluon 

exchange, since when retardation effects are included there is no analog o f  the pair 

wave function 4', and one must work directly with the gap equation in the form  

given in eq. (3.12).

5. Numerical solution for a pure confining potential

T o  verify  the infrared-finiteness properties discussed in the preceding section, we 

have solved the Cou lom b gauge pairing m odel numerically fo r  the case o f  a pure 

con fin ing potential,

V (r )  =  x r ,  Vc(|q|) =  - ^ j .  (5.1a)
(4  )

Eq. (5 .1a) o f  course does not correctly represent the high-m om entum  behavior o f  

Vc , which is dom inated by single-Coulom b gluon exchange. H ow ever, at high 

momenta the transverse ( Vx) term in eq. (3 .4 ) is expected to be as im portant as the 

C ou lom b (V c ) term, and both should be included in any realistic analysis o f  the 

high-momentum regim e and o f  renorm alization effects. W e hope to extend our 

analysis later on to include high-momentum com ponents o f  the Bethe-Salpeter 

kem el.
Since the potential o f  eq. (5.1a) does not lead to ultraviolet d ivergences, we work 

with the unrenorm alized gap equation o f  eq. (2 .6b), and with the corresponding 

equation fo r  the pion vertex g given in eq. (4.17). Introducing the angular integration 

kernels

f 1 4 k

W p >  <?)=J  d ( P ' <?) yc(\P ~  ? l) =  ^ „'2_  „ 2^
( p - - q 2)

Al)(A<?) = J d(p- q)p- q vc{\p-q\) 

p + qp 2 + q 1 . . к
 1 W a 1 ) - T 1 1o82 pq p q p - q

(5 .1 b )
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Eqs. (2 .6b ) and (4.17) reduce to one-dim ensional integral equations

, I a ) (p, д ) П д ) [  1 -  у \ р ) ] - Ы р , ч ) П р ) Ц  -  * \ я ) ]
у

(5 .2а )

2

2 Г "  

" i d .

g (p )p  cos 2 f l (p )  =  s in 2 i? (p ) +
377 ,

* OO
2r

d q q [sin 2iJ ( p )  sin 2 d ( q ) I a ) (p,  q )

+  cos 2 d { p )  cos 2 d ( q ) I it)(p,  <?)][g(<j) - g ( p ) ] . (5 .2b )

T o  so lve  these equations numerically, we use relaxation methods appropriate fo r  a 

nonlinear problem , as discussed in a recent pedagogica l review  by A d le r  and Piran 

[14]. The equations are reduced to discrete form  on a mesh contain ing node and 

ha lf-node points, w ith p values on the node mesh and (to  avoid  singularities o f  

/(1-2) at p =  q )  with q values on the half-node mesh. As a function  o f  a particu lar 

node value ф =  ' I ' ipj ) ,  eq. (5.2a) clearly takes the form

Ф ( \ - Ф 2)
фС ' + ' I л. ia C 2 + a - ^ 2) Q  =  0 ,  (5 .3 )

1 + ф

with С  u j  functions o f  the node values ' f ' ip,) , i *  j. The basic iteration used fo r  ф 

begins w ith tw o N ew ton  iterations o f  eq. (5 .3 ), starting from  the old  value o f  ф as 

the in itial guess. The N ew ton  iterations y ield  an im proved value o f  ф which is then 

used to update the o ld  value through use o f  the over-relaxed G auss-Seidel a lgorithm . 

(T h e  procedure is the same as that used to solve the classical abelian H iggs m odel 

in ref. [14 ].) O nce Я' has been iterated to convergence, s in 2 t f (p j )  and c o s 2 t? (P j) 

are com puted from  eq. (2.10) and are substituted into the discrete form  o f  eq. (5 .2b ). 

This y ields a linear discrete problem  fo r  the node values g ( Pj ) ,  which is again solved  

by iteration  using the over-relaxed G auss-Seidel algorithm .

The num erical solution for ' f ' ( p )  is p lotted in fig. 1, using m om entum  units in 

w h ich 1 =  k “ 350 M eV . For small m om entum , ' f '  decreases linearly as

' f ' ( p ) I  -  a p , a  *= 5 . (5 .4 )

The value o f  the small-momentum  slope o f  Ч'  can be related to an e ffective 

quasi-particle mass m*,  as fo llow s. C onsider first the propagator for a free massive 

D irac particle,

____ 1 УоРо-уР+т
У о Р о - Ч Р - т  \_p0- ' j p ' >+ m 2] [p0+ J p 2 +  m 2]

p0- J p 2 +  m2
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Fig. I. The gap function 'i ' (p )  for the pure confining potential o f  eq. (5.1), plotted versus momentum 
in units with k i/2= | . The numerical computation employs a jacobian transformation p = v 2/( l - u ) ,  

with a mesh o f 200 points uniformly distributed in the interval O s  v *  1.

with the residue R ( p ) at the positive frequency pole given by

2-Jp + m  2m
(5.5b)

Let us com pare this with the propagator in the pairing m odel as given by eq. (4.18), 

1 R , ( P ) ,- + analytic at p0=  o i ( p ) , 
У О Р О - У Р - Z  P a - u ( P )

with the residue at the positive frequency pole now given by

1 l - V ^ p )

(5.6a)

=  ^ (1  + Г о ) “ 27 ’ Pa + ° ( P 2) • (5.6b)

The small-momentum expansion o f  eq. (5.6b) clearly has the same form  as that in 

eq. (5 .5b ), with an effective mass m*  given by

m* =  i  =  ±x350  M e V  =  70 M e V . 
a

(5 .7 )

From  the solution for V ( p ) ,  we can also evaluate the quark condensate (йи)  by 

evaluating the integral in eq. (4 .9), with the result

(й и ) =  ( - 9 5  M e V ) 3 . (5 .8 )
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Fig. 2. The pion vertex function g ( p )  corresponding to the gap function o f  fig. I.

The numerical solution for g ( p ) is p lotted  in fig. 2, again using m om entum  units 

in which к |/2=  I. Using this solution, w e can calculate the pion decay constant / „ 

by evaluating the integral in eq. (4 .13), w ith the result

/„==11 M e V . (5 .9 )

Experim enta lly, the constituent quark mass m*,  the quark condensate ( йи )  and 

the p ion  decay constant / „ have the values

m * pI =  300 M e V ,

(< iu>„pl =  ( - 2 3 0 M e V )\

/ „ „ „ ,  =  95 M e V . (5.10)

Thus, the pairing m odel with a pure con fin ing potential gives values fo r  these which 

are consistently too small. Since the high-m om entum  part o f  Vc  has the same sign 

as the con fin ing term  (c f. eq. (3 .7 )), its inclusion should have the same qualitative 

effect as increasing the string tension k i/2, which in the m odel o f  eq. (5 .1 ) increases 

m * ,  ( йи )  and f „ .  H ence, im proved  agreem ent with experim ent is likely  to result 

when high-m om entum  com ponents o f  the B ethe-Salpeter kernel are included in the 

calculation.

F inally , in fig. 3 we p lot the excitation  energy w ( p ) - w ( 0 ) ,  as calculated from  

the numerical solution using eq. (4 .6b ). Both the numerical work and analytic 

estimates obta ined from  eq. (4 .6 ) show that the excitation energy vanishes at small 

m om enta as p 2 (up  to a possible factor o f  |log p21), and at large m om enta approaches
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О  4

3

3  2

0
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5 1.5 2
P

Fig. 3. The excitation energy u » (p )-u (0 )  corresponding to the gap function o f  fig. I. 

the excitation energy for a massless free particle to within a finite additive constant,

Hence although the Coulom b gauge pairing model is not Lorentz-covariant, the 

high-momentum behavior o f  the excitation energy in this m odel nonetheless jo ins 

sm ooth ly onto a relativistic dispersion law.

By use o f  the renormalized vector and axial-vector vertex equations and W ard 

identities we have constructed the correctly renorm alized gap equation fo r  chiral 

sym m etry breaking in Coulom b gauge Q C D . M aking the ladder approxim ation  to 

the Bethe-Salpeter kernel relates the chiral symmetry breaking condensate, and the 

other chiral parameters, to the static quark potential. This allow s a phenom enological 

potential to be used in the study o f  chiral symmetry breaking. W e have demonstrated 

the infrared-finiteness o f  all physical parameters, and have elucidated the structure 

o f  the infrared divergences. Neglecting the effect o f  transverse gluons we have 

num erically evaluated (йи),  /„ and the effective quark mass for a pure confining 

potential, Vc ( q ) ~  \/q*■ The values we obtain are rather low  com pared with those 

deduced from  experiment. H ow ever, inclusion o f  the high m om entum  tail should 

give better results.
Inclusion o f  transverse gluons and the C ou lom b tail in our gap equation will 

perm it a more detailed investigation o f  the relationship between chiral symmetry

ш ( р ) - ш ( 0 )

6. Conclusions
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breaking and confinement in Q C D . Further, extending our analysis to finite tem 

peratures w ill a llow  a study o f  the relationship between the deconfinem ent transition 

and the chiral symmetry restoration transition. W ork  on these questions is in progress.

Appendix A

B O G O L1U B O V -V A LA T IN  T R A N S F O R M A T IO N

The B ogo liu bov-V a la tin  transform ation fo r  the pairing m odel relates the operators 

b, d w hich annihilate |0) to a new basis set fl, D  which annihilate

B<'>( p , s )  =  ^ L = [ b M ( p , s ) + s V ( p ) d (a)t( - p , s ) ] ,
V I + ' P \ p )

D la\p,  » )= »  , - - 1 2  ■ [ d l°\p ,  s ) - s n p ) b (a)\ - p ,  s ) ] .  ( A . l )
V I + 4 r\ p )

The quark field can be reexpressed in terms o f  this basis, g iv in g

9<a)(* ,0 ) =  [  [ B (° )( p , s ) M l ( p , s ) e » *  +  D w ' ( p , s ) M A p , s ) e - in ,J (tTT) s

M\ {p,  s )  =  1 (1 +  y04 ' ) U ( p , s ) ,
V I +  ' P \ p )

M 2( p , s ) =  1 ( l - y o ^ )  V ( p , s ) ,  (A .2 )
V I + V  ( p )

with U, V  helic ity  spinors which satisfy

Уо* V ( - p ,  s ) =  U ( p , s ) ,

I  U ( p ,  s )  U \ p , 5 ) =  I  V (p ,  s )  V \ p ,  s )  =  |( 1 - 7  ■ pya) . ( A .3 )
s s

It is o ften  conven ient to characterize the B ogo liu b ov-V a la tin  transform ation by a 

rotation angle 19 (p )  defined by

Ф ( р )  l
sin =  - ' -  , cos # ( p ) =  , ■ (A .4 )

V l + y 2(/>) V I + V 2( p )
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G ap Equation  M odels fo r  C h ira l Sym m etry  B re a k in g

Stephen L. A d le r  

The Institute for Advanced Study, Princeton, New Jersey 08540

(R ece ived  October 26, 1985)

W e  g iv e  a critica l discussion o f gap equation m odels fo r  chiral sym m etry breaking, and 

form ulate an extended Coulomb gauge model which includes one gluon exchange (but does not 

resolve the problems pointed out in our critique).

§ 1. Introduction

Quantum chromodynamics (QCD) is now widely accepted as the theory of the strong 
interactions, and gives a concrete realization of the prophetic idea of Nambu and Jona- 
Lasinio" that the pion is an almost massless fermion-antifermion bound state. A  number 
of recent pairing model calculations,2),3) based on approximations to QCD, have shown that 
chiral symmetry breaking, and the accompanying generation of a Nambu-Goldstone pion, 
necessarily occur when the instantaneous potential has a confining piece. However, the 
quantitative results for a phenomenological pure confining potential are not good, leading 
to values for the quark condensate [— <йи> ]1/3 and the pion decay constant f n which are 
too small by factors of 2-5. W e show below that assuming a dominant confining 
potential is in fact problematic, since the chiral breaking model requires a Lorentz vector 
instantaneous potential, whereas recent quark spectroscopic data4’ shows that the 
confining potential is predominantly Lorentz scalar. One natural way to try to improve 
the model is by including the leading high-momentum components of the quark-antiquark 
potential, which arise from one gluon exchange and are Lorentz vector in structure. In 
this article we work out (but do not attempt to solve) the equations for this extension of 
the model. In §2 we review the general gap equation formalism, critically discuss 
confining-potential models, and show that including the instantaneous Coulomb potential 
without including transverse gluon exchange is inconsistent. W e formulate an extended 
model including both Coulomb and transverse gluon exchange, and give the integral 
equations for this model in §3. In §4 we conclude with a brief discussion.

§ 2. General form alism  and discussion of gap equation  

potential models

We sketch a method31 for obtaining the gap equation, including renormalization 
counter-terms, in a general gauge in which the vertex renormalization is not finite. The 
basic idea51 is to use the Ward identities to derive the renormalized gap equation from 
suitable approximations to the vertex parts. Specifically, we start from the renormalized 
Dyson equation for the vector and axial-vector vertices, making the ladder approximation

Copyright ©  1986 by the Publication Office, Progress of Theoretical Physics. Reprinted with permission.
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that the Bethe-Salpeter kernel depends only on the momentum transfer. Consistent with 
this approximation, we exclude quark annihilation graphs, so that there are no anomalies, 
and neglect terms arising from the non-commutativity of color matrices on the quark lines, 
so that we can use the Ward identities of QED and can omit all color indices. With these 
simplifications, the renormalized vector and axial-vector vertex parts satisfy the integral 
equations

Г Л р  , p )sr =  (Z?u ) i t  +  2 д у  US' F( p' +  q )  Г„(р ' +  a, P  + q ) i 5 '  F{p + q)\ta 

X K„>,,Ap +  q , p' +  q, q),

Г ms(/>', P)tr =  (Z7vYs)t7 +  J ~ ^ y [ i S ’ F{p' +  q) Г иЪ{р‘ +  q , p +  q ) i S 'F(p  +  q ) ]* i

X Kat.rAp +  q,  p' +  q,  q )  (1 )

with S ' f the full renormalized quark propagator and with Rat.rt the renormalized quark- 
antiquark Bethe-Salpeter kernel. Since anomalies have been excluded, the vector and 
axial-vector vertex parts have the same renormalization constants, and satisfy the Ward 
identities

( p ' - p y r A P ' , P )  =  S 'F- ' ( p ' ) - $ ' F- l(p),

( p ' - p ) ,,r A p ’ , P )  =  r * S ' F- ' ( p )  +  S ' F- ' ( P ' ) r s .  ( 2 )

We now make the fundamental approximation of assuming that the Bethe-Salpeter 
kernel K at.rAp +  q, P ’ +  q, a)  is a function only of the momentum transfer q,

Kat.rAp +  q, P '  +  q, q) *  kat,rAq ), (3a)

and has Lorentz vector couplings on the quark and antiquark lines so that there is no 
explicit breaking of chiral symmetry,

k mt,T‘t{q) ( 7s) r' 7  ~  ( 7s)ал' Ha't.rA <?),

kat.rl’iq ) ( 7s) i'S =  ~  ( 75) W kat‘ , 1  Aq). (3b)

Substituting Eq. (3) into Eq. (1), further substituting Eq. (1) into the Ward identities of 
Eq. (2) and using the Ward identities a second time to rearrange the integrands, we find 
that Eqs. (1) ~  (3) imply that the renormalized quark propagator must satisfy the integral 

equation

S V ' ( j ) = ( Z r , ) /  +  f ^ 0 7 S ' F( p  +  q ) ^ ~ a , , - ( q )  ■ <4 a >

Introducing the self-energy £  by writing

5 V ‘ (/>) =  /*/>" “ £ (/ > ) .  (4 b )

and writing out all Dirac indices explicitly, we see that E  must satisfy the integral 

equation
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This is the renormalized gap equation corresponding to the ladder approximation to the 
Bethe-Salpeter kernel.

As discussed in Ref. 3), if one assumes that kat,n(g) contains only an instantaneous 
potential

tf) =  ~  4 ni ( Го) м ( Го) « у  Vc(\q\) , (6)

then Eq. (5) is readily reduced2' 3’ to the gap equation for a non-relativistic pairing model. 
If one takes Vc to be the pure confining potential

Vc=  (q iy ’ ■ о =  string tension , (7)

the gap equation has a non trivial solution, indicating a spontaneous breakdown of chiral 
symmetry; but as noted above, use of the phenomenological value o 1'2 —400MeV gives poor 
results for the parameters characterizing chiral symmetry breaking. However, there is a 
serious inconsistency in assuming the gap equation to be dominated by a 
phenomenological confining potential. The derivation of the gap equation requires the 
instantaneous potential to have the Lorentz vector couplings of Eq. ( 6), since a Lorentz 
scalar instantaneous potential

k'cf.rsiq) = -4;n(l )  м(1) «у Vs(|g!) (8)

would manifestly break chiral symmetry. On the other hand, experimental data on heavy 
quark spectroscopy4’ shows that the confining potential in heavy quark systems is 
predominantly Lorentz scalar. Moreover, theoretical arguments6’ based on the behavior 
of electric flux tubes also suggest that in the phenomenological confining potential

V { r )  =  o r - ± - f ,  (9)

only the Coulombic piece —(4/3) (a/r) is Lorentz vector, while the-confining piece ar is 
Lorentz scalar. W e conclude that there is a puzzle here, and quite likely an indication 
that the approximations leading to the gap equation are not valid for the confining part 
of the potential.

T o  get a possibly more realistic model, within the framework of the approximations 
leading to Eq. (5), one should clearly include the Coulombic piece (which is Lorentz 
vector) in Vc, by replacing Eq. (7) by

V c = j m  

However, as shown in Ref. 3), Eq. (10) leads to the non-covariant counter-term structure
r

Го, M =  0,
‘Z r S  = (11)

Zrs, H =  j  =  1,2,3, Z  =  log divergent,

whereas the 0 and j  components of the vertex are expected to have the same logarithmic 
divergence even in a non-covariant gauge. Thus, Lorentz covariance of the counter-term 
requires inclusion o f transverse gluon exchange along with the Coulomb gluon term, by
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writing

kat . r t— kat.T» { q )  +  kZt,Jt( q )  ,

k h . A q )  -  - 4n i ( r>), в( г к) а, ( Sjm~ v r ( q ) ,
\ q / i

V A q ) = ~ ^ V -  (1 2 )

A  simple calculation shows that when Eqs. (12), (10) and (6) are substituted into the gap 
equation of Eq. (5), all divergences are removed with a covariant counter-term Z y with

Z - l - ^ f d ’ q - f - T T + f i m t e . (13)

One further point must be addressed to formulate a model with Coulomb gluon 
exchange included. The coordinate-space potential of Eq. (9) is undetermined up to an 
additive constant, and this corresponds to the freedom to add to the Fourier transform Vc 
a multiple of 53(oi). We will choose this multiple so that 1 / (e 2) 2 is replaced by

[1/(в*),]кс =  1/(а2) , - « ,(в ) f d V H q ' 1)* ,  (14a)

which by construction satisfies

f d 3q [ l / ( q 2V U c  =  0. (14b)

The infrared subtraction in Eq. (14) guarantees that the confining piece represents a linear 
potential which vanishes at r  — 0; without the subtraction, the Fourier transform of 
Eq. (10) gives a linear potential which equals a linearly divergent constant at r — 0. Use 
of Eq. (14a) yields a gap equation which is manifestly infrared finite, even when retarded 
potentials are included. [When retarded potentials are neglected, Eq. (14a) makes the A 
and В functions of Ref. 3) infrared finite, whereas if one uses Eq. (7), only the gap function 
W (which has no analog in the retarded case) is infrared-finite.] Of course, given the 
problems with the Lorentz structure of the confining potential, one can question whether 
it should be included at alt! If it is omitted, and only the one-gluon exchange potential is 
retained, Coulomb gauge is a poor choice: For the pure gluon-exchange problem, it has 
long been known that the retarded integral equations take a much simpler form in a 
covariant gauge,71 especially in Landau gauge where the vertex renormalization Z  is 

finite.

§3 . E qu a tion s  o f  th e  r e ta rd e d  m od e l

To summarize, the retarded model has a gap equation given by Eq. (5), with 

k * . r t =  - 4 T i(r « )w (y o )« r y {y o [- (^ p —  &3( q ) f  + ‘7 r }

-  4 ы  м( Г»)« (  S j k  ~  q i - q '  • (15)
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We assume for I  the general Ansatz

Z  =  pA(p, po) +  y p B ( p , po) ~  Уоро0(р,  po),

P =  \p\■ (16)

After rotation to the Euclidean section where pa — ico, X  has the form 

S E =  pA\j>, ш] +  г 'р В \ р , co] — iroO)D\p, co],

A[p, c o ] -A (p ,  ico), etc., (17)

and the quark condensate is given by

<au> =  3 f ^ ^ y r T r [ r o i c o - r ‘P - Z E Y 1. (18)

After some algebra, the gap equation can be reduced to the following coupled integral 
equations for A, В and D  on the Euclidean section,

ЪА\Ъ c o ] = - ± -  Г а  fd3a i 3(7/2 , ’ 2(lA\q,K] _2pA[fi, f ]  1 pAip, со] Ал, Jo d t j d  _

, 2qA[q, £ ]Г  4 a . 4 a__________

d[q, £] 1 3  {q ~ p Y  3 ( f - w ) 2+ ( a - p ) 2

+ _ 3 ( ?  +  й>)г + ( д - р ) 2 ] } ’

р в и , .  « 1 - X Z - D + ^ f

I 2qC[q, Cl Г 4 ац  4 д р ( 1 + у 2) - ( р 2+ д 2) у  
d[q, ?] L3 ( q ~ p ) 2 3 p2 +  q2 — 2pqu

" D I P ,  « ] « e K Z - l ) + .

XJ3 a [ ( i ; - C o ) 2 +  ( q - p ) 2~  (Z + c o )2 +  ( q - p ) 2]  (19a)

with

E\p, co\-\ + D [p , a>\, C[p,  co] =  \ +  B[j), co], 

d[p, co]*co2E 2[p, co\+p2{C2\i>, w ]+ A 2{p, &]},

U - P - q /  (pq) .  (19b)

In writing Eq. (19), we have made use of the following reflection symmetries,

А, В, C, D,  E  are invariant under ш —<y. (20)
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§ 4. Discussion

Getting a quantitative realization of the Nambu-Jona-Lasinio model within QCD has 
turned out to be more difficult than one would have hoped. Coulomb gauge gap equation 
models based on an instantaneous confining potential give chiral symmetry breaking, but 
are at variance with the observed Lorentz structure of the phenomenological confining 
potential. Extending the model to include Coulomb gluon exchange does not cure the 
Lorentz structure problem and requires the inclusion of transverse gluons as well; this 
leads (after angular averaging) to a set of coupled two-dimensional integral equations, 
which will be much harder to study analytically8’ and to solve numerically than the 
one-dimensional integral equations of the instantaneous potential model. Moreover, the 
retarded equations are renormalization scheme dependent, since Eq. (19) contains the 
finite part of the renormalization constant Z  as a parameter. Thus comparison of the 
extended model with experiment will have to take the renorm alization scheme 
dependence9’ of <йм> into account, a complicating feature which again was absent in the 
instantaneous potential models. The situation is sufficiently complex that, without a 
resolution of the Lorentz structure problem, the motivation for a further elaboration of the 
Coulomb gauge gap equation model seems much diminished.
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I formulate a successive over-relaxation (SOR) procedure for the Monte Carlo evaluation o f the Euclidean partition 
function for multiquadratic actions (such as the Yang-Mills action with canonical gauge fixing]. A  convergence 
analysis for the quadratic-action (Abelian] case shows that as thermalization proceeds the mean nodal fields relax 
according to the difference equation arising from the standard SOR analysis o f the associated classical Euclidean 
field equation. Hence, SOR should accelerate the thermalization process, just as it accelerates convergence in the 
numerical solution o f second-order elliptic differential equations.

A s has been much emphasizedj'the Euclidean par
tition function Is a fundamental tool for studying quan
tum field theories. For the case of a boson field 
theory2 containing spin-0 scalar and spin-1 gauge 
fields, denoted collectively by ф, the partition func
tional inverse tem perature^ is givenby the func
tional integral1

Z =  J"d<*>, e x p (-S ) ,

s = f 4 ‘<Px£.,
OJ

In Eq. (1 ) i »e is  the Euclidean action density, 
including source term s, and the path integral ex
tends over periodic paths, with $ 0) = <К/Э) = ф{ .
I  w ill restrict my attention in the following dis
cussion to the case where £ л is a multiquadratic 
form  (that is , It is at most quadratic in each 
individual field component), and w ill assume that 
the Euclidean action S is bounded from  below.
This restriction excludes interacting spin-0 fields  
from  consideration (renorm alizability for scalars  
requ ires а Ф' term  in the action), but allows ф 
to contain any number of non-Abelian spin-1 
gauge fie lds, since the outer-product form of the 
gauge-fie ld self-interaction is  easily seen to imply 
a multiquadratic action.4-9 Of course, when gauge 
fie lds are present, the partition function as 
written in Eq. (1) is  form ally infinite, as a result 
of integrations over gauge transformations which 
leave the action invariant. In reducing Eq. (1) to 
a discrete form  for Monte Carlo  evaluation, there 
are two natural strategies for dealing with the 
gauge infinities. The first, introduced by Wilson* 
and extensively studied1 over the past few years, 
consists of using a discrete procedure in such a 
way that an exact, but compact gauge-invariance 
group rem ains, which can then be safely included 
in the Monte C arlo  integration.’ While this ap
proach has many interesting features, it suffers

from  the drawbacks that ( l j  it is expressed in 
term s ol unitary-m atrix link variab les, and has 
no natural discrete analogs of the gauge potentials 
and gauge fields, and ( 2) the multiquadratic form  
of the action Is lost. A second natural strategy, 
which I w ill pursue in this paper, is to use the 
Faddeev-Popov method1 to break the gauge in
variance. In particular, 11 one chooses the canon
ical gauge fixing8

6ls =0 in R t : - «о  < x l t . . .  ,ж4 < “  ,

6a = 0 in Л ,: x 1= 0 , - x  < x 3, x , , x i < 'x‘ , 

b3 = 0 in =Xj = 0, - « K i , ) i 1< «  ,

b,‘ = 0 in i? l : x i = x 2= x , = 0 , - ° c < x t < x

(2 )

fo r each gauge potential b" in ф, the gauge de
generacy is  completely broken, with a Faddeev- 
Popov determinant which is constant. The func
tional integral can then be made discrete by 
taking the nodal values of the gauge potentials as 
the variables, and applying the standard replace
ment" of derivatives by finite differences to the 
action S. Denoting the set of node variab les  which 
are integrated over by {<£} = {<£<!), i = 1, . . .  ,ЛГ}, 
this procedure yields a multiple integral of the 
form

* - [ n  / ” * ♦ «> ] (3)

with S a multiquadratic form  which is bounded 
from below. Thus, for any node variable ф(1г), S 
can be decomposed as

+ A „>  0 (4 )

with A k, Bt , and C , functions of the subset of 
node variables {ф },=  {<#> (*), i = 1, . . .  ,k  -  1,

Since in typical applications the dimensionality 
N  of the multiple integral is  very large, the

23 2901 ©1981 The American Physical Society
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numerical estimation of Eq. (3) requires use of 
the Monte Carlo  method.7-10 Starting from any 
initial configuration {<£„}, one generates a se
quence of successive configurations, or Markov 
chain, {ф J , {ф ,}, . . . ,  . . .  by repeated ap
plication of a transition probability W [{4> }-*{$ '}]- 
The transition probability W is chosen so that in 
the limit as Af becomes infinite, the configura
tions in the chain are distributed according to the 
equilibrium probability density ^ „ [{ф }],

* J f c } ] « e - e lU n . (5)

Sufficient conditions11 on W  to guarantee an asymp
totic equilibrium probability distribution are the 
normalization condition

[ r t  / й ф (ex ] -{(#>'}] = 1 fo r a U {^ } ,  (6a) 

the ergodicity condition

^ [ W ] > 0. ^ [ { ф ' } ] > 0 -.И 1 { ф } - { ф ' } ] > 0 , (6b)

and the detailed-balance condition

- Р Л Ы М Ы Ч ф ' И ^ М М ф ' Ы ф } ]  • (6c)

In numerical work it is generally most convenient 
to change only a single node variable at a time. 
When specialized to this case, the form of W, for 
a step in which the node variable ф(Л) is changed, 
is

И '=и’[{ф }, ;ф (к )-ф (& ) '] ,  (7)

with w required to be ergodic and to satisfy the 
normalization and detailed-balance conditions

|  * ф № М {ф } , ;ф С * ) -ф < * ) ' ] -1 , (8a)

Л Л М » .  Ф Ы {ф }„ \ ф О г ) -ф < М У ]

= p M „ Ф <*YМ О Д Ф ^ У - ф О г ) ] .  <8Ь)

As is well known, the conditions of Eq. (8) do not 
fix  to uniquely. The choice used in most Monte 
Carlo  studies of gauge theories, motivated by the 
intuitive idea’ of successively thermalizing the 
individual node variables, is

« ' [ { * } , ;  ф О г)~ф  m  = t f [W , ] - le-SCU'*' •<*)' , .
(9)

Жф}*] = J Ч (к)'*-*'1*'*- •<*)',,
which makes the distribution of new values ф (ft)1 
completely independent of the old value фОг) being 
replaced. For a multiquadratic action, where the 
dependence of S on ф (kY is known explicitly from  
Eq. (4), the transition probability of Eq. (9) be
comes

п Н Ф Ъ - . Ф Ы - ф Ь У ] *  (10)

23

This evidently corresponds to choosing a Gaussian 
distribution of the newftth-node value around a 
central value Ckl where C, is the value of <p(k) 
which minimizes S f^ } , ,  ф (A)].

As motivation for the generalization of Eq. (Ю) 
which I am about to discuss, let us briefly consi
der the problem of minimizing the discrete action 
functional ЗЦф}]. This can also be accomplished 
by an iterative procedure, the simplest form of 
which consists of starting from an initial con
figuration {ф0), and then successively replacing
each node value ф (ft), ft = 1........ N  by the value
^ [ {ф }» ]  which minimizes S. Since S is nonin
creasing under this relaxation procedure, in the 
limit of an infinite number of steps the minimum 
of S (assuming it exists and is unique15) w ill be 
attained. However, it is weU known0 that the 
procedure just outlined is not the optimal point- 
iterative algorithm for minimizing S; much more 
rapid convergence to the minimum can be ob
tained by using the success ive  over -relaxation  
(SOH) method in which ф (ft)' is given by

Ф QiY = шС, + (i -  <1>)ф (ft)

= С ,+  ( 1 - ы ) [ф ( * ) - С 4] ,  (11)

with ш a parameter called the relaxation param 
eter. Convergence is guaranteed provided that S 
remains nonincreasing at each step of the itera
tion, which requires

0 ^ 5 [ {ф } » ,ф ^ ) ] - 5 [ {ф }„ ф (* У ]

= А„[ф  (ft) -  ф (ft)’ ][ф (ft) +ф  (ft)' -  2C J

= Л [ Ф ( * ) - Ф ^ ] 1( ^ - 1 ) .  (12)

giving the restriction

0 <a)<  2 . (13)

When cu = 1, Eq. ( l l )  reduces to ф (MY = C t , co rres 
ponding to the simple minimisation procedure in 
which the new value ф(кУ  is  independent of the 
old value ф (ft). When the new value ф (MY
clearly retains a memory of the old value ф (к)- 
bi practice, optimum convergence is  obtained by 
doing several iterations with a) = 1, and then doing 
many iterations with a value aj = a)otl close to 2, 
adjusted to maximize the rate of final approach of 
S to its minimum.

Let us now return to the problem of evaluating 
the partition function of Eq. (3), and ask whether 
there is a param etrized, over-relaxation gen
eralization of the Gaussian transition probability  
of Eq. (10). A  simple investigation shows that 
such a generalization does exist, and is given by

S T E P H E N  L .  A D L E R
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- Н Л ; *  fe>- *№>' 1= { "  b f c t f ]  ^ fe)' ‘  wC‘ " (1 "  w32}  > (14a)

which can be rewritten as

ю[{ф}»;<>(Ь)-|#>(Ь)']= M 1cosh2e ) 'l/2exp {-> l>[cosheC#i(fe)' - C >)+ a in h e (< ^ (* )-C ,)]J} I ш -  l  = tanh6 . ( i 4b)

To verify Eq. (14), we note that it obviously satisfies the normalization condition of Eq. (8a), while since

A t[<p (ft) -  C J *+ ^ [c o s h 0 (0 (ft ) ' -  C * )+  sinh0(0 (ft) - C , ) ] a

coshafl{[0 (ft)- С , ] 2+[ф (ft)’ - C k] 2} + 2 A t coshfl sinh0[0 (ft)- С Д ф (fe)' - C j

= A JN[ifi (ft )'-C 1] a+ylk[coshe(0 ( f t ) -C , )  + sinhfl(^(ft)' - C 4) ]J, (15)

it also satisfies the detailed balance condition of Eq. (8b). Hence, the transition probability of Eq. (14) 
provides an SOR method fo r the Monte Carlo evaluation of the Euclidean partition function fo r m ulti- 
quadratic actions.

To determine whether SOR accelerates the thermalization process, let us analyze in detail the case  
where the action 5 is a quadratic (as opposed to a multiquadratic) form , corresponding to an Abelian  
gauge theory with external sources. Let ф (ft)“ denote the value of the ftth-node variable after M  complete  
iterations, let

Ы .М ф  ( i  ) * , . . . ,  ф fe -  1>“ ,ф f e + 1) * -1, . . .  , ф м * ' 1}

denote the set of node variables which are passive when the fcth-node variable ie being altered during the 
Mth-iteration sweep, and let Р [{ф };М М  - l )  + ft - 1] be the joint probability distribution of the node v a r i
ables after N ( M  - 1 )  + Jif - 1  individual node replacements. Then we evidently have

Р [ { Ф }Г , Ф (к )м-,Щ М  - 1 )+  * ] *  J T  Ф (кГ *  -  0 ( f t W W ,  Ф (к )и-1-,Щ М  - 1 )+  ft - 1 ] , (1 6 )

which tells ua how the joint probability distribution evolves from  step to step. Integrating E q. (16) with 
respect to ф(&)- , and using the normalization condition of Eq. (8 a ), we learn that

Г <ж*т{Ф}?, Ф (к )и - , ш  - D+ *]= Г йф№)“',р[{ф}{,,<.(й)--1;жм - D+ к - и, (i7)
which means that the joint probability distribution for the subset of node variables {Ф }, [with ф(к ) integrat
ed out] is unchanged during the iterative step in which <f>(ft) is altered. This in turn implies that the mean  
value of any node variable ф(к ),  defined by

♦ « - [ S J T H  j r < w * w * ) - p [ { * b - - - ] ,  <i8 >

changes only during an iteration step in which ф(к) Is altered, and so is uniquely specified by the notation 
0 (ft)", which gives its value after M  complete iterations. To  study the evolution of the mean values, we 
multiply Eq. (16) by Ф (к )“  and integrate, giving

J [ ^ / " d<#>(*)-<#.(ft)^[^j[ / * й ф (г ) '- ‘] р [ { ф } ? , ф (Л ) - ^ ( М - 1)+ й ]

x JT" 4ф(кГ {[ф(Л)* -  «ОС, -  (1 -  ш)ф(кГ-%, + [ооС,+ (1 -  а.)ф(й)“ ->]„,}

х н '[{ф }?;ф (£ )* ‘ 1 -  ф (к Г  ] Р [ {ф } 'M k Y ^ ' , N ( M  -  1 )+ ft - 1] .  (19)

Com paring with Eq. (14a), we see that the contribution of the term labeled [  ] (1| vanishes, while using 
Eq. (8a) the contribution of the term labeled [ ] (2) sim plifies to give
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= [ j l  < *♦ «> “ ]  ] ♦  (1 -  ш ) « ( * ) » - « ] Р [ { ф } ' , 0 ( * ) ' ' - , ; ^ (М  -  1 )+ ft _  1 ] . (20)

Up to this point the analysis is completely general, 
and applies to multiquadratic as well as quadratic 
actions. Specializing now to the case of quadratic 
actions, for which C , is a linear functional of US’ 
arguments, Eq. (20) becomes

Ф (Ь Г = ш С к[ { ф } ; ]+  (1 - ш )ф ( * ) * - ‘ ,

{ ^  = { * ( 1 ) * ..........Ф ( Л - 1 Г , Ф ( И + 1 Г -1...........Ф Ш ? - 1} .

(21)
Thus, under SOR thermalization for a Quadratic 
action, the mean nodal values evolve according 
to Eq. (21), which is just the difference equation 
encountered in the SOR minimization of the action 
S. Since SOR is known to accelerate the minimi
zation process, Eq. (21) implies that it w ill ac
celerate convergence of the thermalization pro
cess as well. Although the precise statement of 
Eq. (21) can be made only for quadratic actions, 
the general conclusion reached here, that SOR ac
celerates thermalization, is very likely to carry  
over to the general multiquadratic case aa well, 
much as SOR accelerates the minimization4 of 
multiquadratic as well as quadratic actions.

A s compared with the conventional®*7 lattice 
gauge theory approach, the strategy for evaluating 
the partition function outlined above may have 
severa l advantages. First, since the potentials 
remain as the variables, there are natural discrete

i
analogs of the gauge potentials and gauge fields, 
which should permit the study of such questions13 
as the behavior of the effective action for weak 
fields. Second, since the mean node variables for 
the Abelian theory thermalize according to the 
SOR equation encountered in minimizing the d is 
crete action S, and since this equation is just the 
conventional® discrete version of the classical 
Euclidean field equation derived from the con
tinuum 5, the Abelian theory will never give a 
confining potential for static sources. Thus, if 
confinement is found in the non-Abelian case, it 
should not be as an artifact of the discrete pro
cedure. Finally, the SOR method outlined above 
may well be computationally faster than the lattice 
gauge theory method, both because of the possi
bility of acceleration of the thermalization pro 
cess, and because the Gaussian distribution of 
Eq. (14a) can be obtained from an array of pre
stored, normally distributed random numbers by 
the calculation of a single square root and a r e l
atively sm all number of arithmetic operations. 
Detailed numerical experiments w ill, of course, 
be needed to see if these conjectured gains are  
realized in practice.
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W e study overrelaxation algorithms fo r  the therm alization o f  lattice field theories w ith  m ulti

quadratic and more general actions. O veirelaxation algorithms are one-param eter generalizations 

o f  the heat-bath algorithm  which satisfy the detailed-balance condition; the parameter is the relax

ation parameter <u, 0 < < u < 2 , with < u = l corresponding to the heat bath. First, we show  that the 

<u—»0  (extreme underrelaxation) lim it o f  the overrelaxation algorithm  is equivalent to  the Langevin  

equation approach. W e analyze the thermalization o f  a free-field action, and show that fo r ш ~  2 

an overrelaxed Gauss-Seidel algorithm  yields a critical slowing down which is independent o f  

wavelength, and has a correlation time which is a factor N  smaller than that fo r an unaccelerated 

Jacobi iteration, w ith N  the linear dimension o f  the lattice in lattice units. F or a general nonmulti- 

quadratic action, we give a generalized overrelaxation algorithm  which satisfies detailed balance 

w ith respect to an effective action which is explicitly computable in terms o f  the orig ina l action.

In the case o f  S U (n ) lattice gauge theory w e use this construction to form ulate an overrelaxed al

gorithm  which has exact lattice gauge invariance, and which satisfies detailed balance w ith respect 

to an effective action differing from  the W ilson action only by terms o f  relative order a 2 in the 

continuum lim it, w ith a the lattice spacing.

I. O V ER R E LAX ATIO N  A N D  ITS RELATION  
TO TH E LA N G E V IN  APPR OACH

T h e  g en e r ic  la t t ic e  fie ld -th eo ry  p rob lem  is that o f  
e v a lu a tin g  the E u c lid ea n  p a r tit io n  fu n c tion

(1)Z =  J  £*М]е-даП*11 ,

w ith  S  th e  E u c lid ea n  a c tio n  on  a la tt ic e  and w ith  

/  * [ ф ]  an in te g ra t io n  o v e r  d is c re t iz ed  la tt ice  va riab les . 

In  th e  M o n te  C a r lo  m e th o d  fo r  eva lu a tin g  th is  in teg ra l, 

o n e  gen e ra tes  a  M a r k o v  ch a in  o f  co n figu ra tion s  \ф! ],  
i = l , 2 ( . . .  b y  a p p lic a t io n  o f  a tra n s ition  p ro b a b ility  

Я 'И Ф ]  —>>!<£') ], w h ic h  is ch osen  to  sa tis fy  th e  d e ta iled - 
b a la n ce  co n d it io n

* - « ч * И И М ^ | Л ] = е - < и ц 4 '| ]и Ч | Л ^ Ж Ь

(2)

as w e ll as n o rm a liz a t io n  and e ro g o d ic ity  c o n d it io n s . ’ 
T h e s e  c o n d it io n s  gu a ran te e  th a t in  the l im it  i —* oo, the 

e n sem b le  o f  c o n fig u ra t io n s  \<j>, | is d is tr ib u ted  a cco rd in g  

to  th e  eq u ilib r iu m  p ro b a b ility  d en s ity  ex p ( — J3S[ ( ф] ] ) .  
In  w h a t  fo llo w s , I w il l  r e fe r  to  th e  p rob lem  o f  g en e ra tin g  

su ch  an eq u ilib r iu m  d is tr ib u t io n  o f  co n figu ra tion s  as the 

therm a liza tion  p rob lem . I f  w e  n ow  co n s id e r  th e /3—► oo 

(z e ro - te m p e ra tu re ) l im it ,  o n ly  th e  c o n figu ra t io n  w h ich  

m in im iz e s  S  co n tr ib u te s  to  E q . (1 ). H en ce  th e  ze ro -  

te m p e ra tu re  l im it  o f  a th e rm a liz a t io n  a lg o r ith m  w ill  be 

an  a lg o r ith m  fo r  th e  m in im iza tion  p rob lem  o f  fin d ing  

c o n fig u ra t io n s  |ф| w h ich  sa tis fy

=  0 (3)

C o n v e rs e ly , w e  m ay  ex p ec t  th a t b y  g e n e ra l iz in g  m e th o d s  
w h ich  h ave  been  u sefu l in  s o lv in g  th e  m in im iz a t io n  

p rob lem , w e  can  get usefu l a lg o r ith m s  fo r  th e  th e r m a l i

za tion  p rob lem .
F o llo w in g  th is  lin e o f  rea son in g , a  n u m b er  o f  y ea rs  

a go  I sh o w e d 2 th a t fo r  the sp ec ia l case o f  m u lt iq u a d ra t ic  

ac t ion s  (w h ich  in c lu d es3 th e  c la ss ica l Y a n g - M i l ls  a c t io n ),  

th e  s tandard  G a u ss-S e id e l o v e r r e la x a t io n  a lg o r i th m  fo r  
th e  m in im iza t io n  p ro b lem  can  be g e n e ra liz e d  to  an o v e r 

re la x a tio n  a lg o r ith m  fo r  th e  th e rm a liz a t io n  p ro b le m . 

S ince this e a r lie r  w o rk  fo rm s  th e  s ta rt in g  p o in t  f o r  th e  

analys is o f  the p resen t p aper, I  p ro c e e d  n o w  to  b r ie fly  

su m m arize  it. A  m u lt iq u a d ra tic  a c t io n  is o n e  w h ic h , fo r  

any n od e v a r ia b le  фк, can  be d e c o m p o s e d  as

S [ ( * ) ] = S [ ( * U , t f * ] = ^ < ^ - C * ) 2 + l ? * ,  A k > 0  ,

(4)

w ith  A k , B k , and  C k fu n c tion s  o f  th e  rem a in in g  n o d e  

va r iab les

(5)

A  G au ss-S e id e l ite ra t io n  fo r  th e  m in im iza t io n  p ro b le m  

consis ts  o f  th e  su ccessive  r ep la c em en t o f  each  n o d e  v a r i 
ab le  фк by  th e  va lu e  C k w h ich  m in im iz e  th e  a c t io n  as a 

fu n c tio n  o f  that s in g le  va r ia b le , w ith  th e  o th e r  v a r ia b le s  

j ^ ] ^ *  h e ld  fix ed . A lth o u g h  th is  p ro c e d u re  g iv e s  th e  

la rges t s in g le  step  red u c tio n  in  S, it is in  fa c t  n o t  th e  
m os t e ffic ien t p ro c ed u re  w h en  co h eren t e ffe c ts  o v e r  th e  
en tire  la tt ic e  a re  tak en  in to  a ccou n t. A  b e tte r  m in im iz a 

tion  a lg o r ith m , w h ich  is n o  m o re  d e m a n d in g  c o m p u ta 
t io n a lly , is th e  overrelaxed  G au ss-S e id e l a lg o r ith m

I4i Фк —*Ф‘к ~ CJC k + (  1 — й))фк (й )

Reprinted with permission. 37 458 ©1988 The American Physical Society
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w ith  a> th e  " r e la x a t io n  p a ram ete r.”  C on vergen ce  is 

gu a ran teed  p ro v id e d  that S  rem ains non increasin g at 
each  step , w h ic h  requ ires

=  А к (фк - ф к ) 2 1 - 1
Cl)

(7)

g iv in g  the r e s tr ic t io n

0  <  <u <  2 . (8)

W h e n  ш =  1, E q . (6 ) reduces to the G auss-Seidel p rescr ip 

tion  ф'к = С к, in w h ich  the new  va lu e  ф'к has no m em ory  

o f  the o ld  va lue фк. In  p ractice , op tim u m  co n ve rg en ce  

is obta ined by d o in g  severa l ite ra tion s  w ith  < u = l ,  and 

then do in g  m any ite ra tion s  w ith  a va lu e o f  eo c lo se  to 2.

L e t us now  turn to  the th e rm a liza tion  p rob lem  fo r  the 

action  o f  Eq. (4 ). T h e  th e rm a liza tion  a n a lo g  o f  the 

Gauss-Seidel itera tion  is the heat-bath  a lgo r ith m , in 

w h ich  a heat bath o f  tem pera tu re  f ) ~ ] is tou ch ed  in  su c

cession to  each node va r iab le  фк, w ith  the o th e r  v a r i

ables \Ф\^к he ld  fix ed . In  R e f. 2, I  sh ow ed  that the 

heat-bath a lgo r ith m  fo r  Eq. (4 ) adm its  a on e -p a ram eter 
g en era liza tion , an a logou s to  E q . (6 ), in  w h ich  the n o r
m a lized  trans ition  p ro b a b ility  W  is g iven  by

*41 Ф ) + к ’ Фк - * Ф ' к ] = ‘
0 A k

\n
0 A k I

iro)( 2 —0))
exp

<a(2— со) I
\[ф‘к — aiCk — (1 —<о)фк ] 2 (9)

W h e n  cj=  1, E q . (9) reduces to  the heat-bath a lgo rith m , since the new  values ф‘к a re  d is tr ib u ted  a cco rd in g  to  the eq u i

lib r iu m  a c tion  and  a re  in dependen t o f  the o ld  values фк. T o  see that Eq. (9) satisfies d e ta iled  ba lance fo r  gen era l со, le t 

us in tro d u c e  a h y p e rb o lic  ang le  в  defined by

аз— l  =  tanh<5,
I

- = c o s h 0 ,
1 — o)

- =  — sinhfl ,
[co(2  —ci>)],/2 ' [< a (2 — <u )]‘

in  te rm s o f  w h ich  E q . (9 ) takes the fo rm

W [ [ ф\фк>Фк —*Ф'к ] =  (/?A kcosh26 / гг )] /2exp\ — P А к [со&Ьв(ф'к — C k l +  sinhW i^* — C k ) ] ' ) . 

D e ta i le d  b a la n ce  n o w  im m ed ia te ly  fo llo w s  from  the fact that

(Ф к - С к )2 +  [c o s h в(ф'к - C k ) + s in h < 9 (^ - C k ) ] 2 =  co sh 20[(</>*- C k )2+ (Ф к - C k ) 2]

4 -2 cosh fls in h e (<^ l  — C k )(ф'к — C k )

=  sym m etr ic  in фк,ф'к ■

( 10)

(11 )

( 12)

S in ce  the tra n s ition  p rob a b ility  o f  Eq. (9) is a G auss

ian , it  can  b e  c o n ve n ien t ly  represented as a stochastic 

d if fe re n c e  eq u a tion . L e t  л  by a fic titiou s “ t im e ”  index 

w h ich  in creases b y  one fo r  each update o f  the en tire  la t

t ice , an d  le t г/ k be a set o f  G aussian  noise variab les d is 

tr ib u ted  a c c o rd in g  to

sition  p ro b a b ility  o f  E q . (9 ) to  each  n od e  o f  th e  la tt ic e , in 

som e spec ified  sw eep  o rd e r .] L e t  us n o w  re w r ite  E q . (15 )

by using 

3 5  /дфк ,
the fa c t th a t фк — C k is p ro p o r t io n a l to

2P A k ( Ф1 - C k ) = 0 - ^ - [  ( Ф1 I ,  ( ф”г k ) ] ,

И Ч М Ы 1
n.k V  4ir

an d  h en ce  w h ich  ob ey

(Vn.kVn '.k ' ) i i  =  2&n,n‘&lc,k' ■

W r i t in g  фк ==фпк, ф'к = ф ’к +  l 

e q u iv a le n t  to

Eq.

a>(2 — eo)

(9)

(13)

(14)

is e v id en tly

4p A k
Vn.k

and by d e fin in g  ek a c c o rd in g  to

- = £ - - 4 [ № 3 f M t f a * n « b  •2 p A k

g iv in g

i n  +  1(15) ф1 + 1- ф пк =  - с к0
as

дфк
,  1/2 
ek Vn.k

(16 )

(17)

(18)

w ith  C k and  A k fu nctions o f  the ф" + l fo r  those nodes 

w h ic h  p re c ed e  фк, and o f  Ф" fo r  those nodes w h ich  fo l

lo w  фк , in the sw eep o f  the la ttice . [T h is  ju st c o r r e 

sp on d s to  the fa c t that an u pdating o f  the w h o le  la ttice  
is a cco m p lish e d  by the successive a p p lica tion  o f  the tran-

A p a r t  fro m  th e  ex tra  fa c to r  o f  ( 1 — <u /2)l/2, w h ich  a p 
p roa ch es  u n ity  as <u— 0, E q . (18 ) is ju st the d is cre te  fo rm  
o f  the L a n g e v in  e q u a t io n  w ith  v a r ia b le  step  s ize  £k and a 

G a u ss-S e id e l in te rp re ta t io n  o f  d S /дф, and  app roa ch es  

the c o rre s p o n d in g  L a n g e v in  s to c h a s tic  d if fe re n t ia l equa-
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tion as *0. Hence the Langevin equation ap
proach corresponds to the extreme underrelaxation lim
it4 o f the overrelaxation algorithm of Eq. (9).

II. CH ITICAL S LO W IN G  D O W N  
FOR A FREE-FIELD ACTION

In this section we give a detailed theoretical analysis 
of the performance o f the overrelaxed minimization and 
thermalization algorithms, motivated by the fact that 
numerical studies by W hitm er,5 Creutz, 4 and Brown and 
W och6 suggest that ovenelaxation can improve the 
correlation time, as well as the speed o f thermalization, 
in Monte Carlo simulations. W e consider for simplicity 
the case o f a single massless scalar free field ф in d di
mensions; the inclusion o f interaction and mass terms is 
not expected7 to change the qualitative conclusions 
reached below. The node variable is thus

........'*

and the action is taken as

<19)

+  ( * V |  +  I........

+  ■ ■ ' ........i , ' 1! »

( 20 )

with homogeneous (Dirichlet or Neum ann) boundary  
conditions applied at the edges o f the lattice. 8 Introduc
ing the notation

ф( ip ±  1) в  <0j ] .......id | ^  fiKd, /(i ±  | (21)

we can now write the dependence o f 5  on a given node

........j-rf as

s = j  2  {[Ф(/м+ 1 ) - ^ ] Ч [ Ф ( ^ - 1 ) - ^ ] 2)+ 5  ,

S  independent o f ф1 ■ (22)

From Eqs. (4) and (11) o f Sec. I, we see that an overre
laxed transition probability for the update ф1—*ф) can 

be constructed as

\ У [ ф , - +  < ^ ]= jV e x p - 7 0  2  ({c o sh 0 [^ (/  + l ) - ^ ] + s i n h 0[^ ( i  + l ) - ^ ] j 3

+  jc o s h (9 [^ ( i  - l ) - ^ ]  +  s in h e [^ ( i  - l ) - ^ ] ) 2) (23)

with the normalization constant jV  independent o f ф, and ф). Rewriting the ф', dependence by completing the square, 
and then substituting Eq. (10), Eq. (23) can be reexpressed as

W  [ ф, —► ф) ]  =  JV exp _  J _ coshO
4d 2d i \ -  2  [ * ( i „ +  1 > +  * ( « ' „ - D ]  

i
+  sinh0 2dфI — 2  [ф И ^ +  1 )+ $ ( i j ,  — 1) ]

=  jV exp
\ 40
4 dco(2 — a>)

+ ф 1,ф'/ -independent

2

4 ф ' , - ( \ - й > Ы ф , - ± ( о  2  [ф (|^ +  1 ) +  ф ( / ^ - 1 ) ] +  ф,, ф'/-independent

(24)

Apply ing the procedure o f  Eqs. (13)-(18), Eq. (24) can be rewritten as a Gauss-Seidel stochastic difference equation

d
2

n = i (25)

<Vi.nVr.r' >,“=25, a  =
dw( 2 — cd)

4 0
, 6/ /* =  6. .! * ' ‘ 6. .i 

V ' l  ‘i - ‘4

It will be informative, in what follows, to also analyze the corresponding Jacobi stochastic difference equation, in 
which the old values флИ „  — 1) are used for the earlier nodes in the sweep, instead of the updated values ф" +  (i'M — 1)»

4ф*,+ , - ( \ - < о М ф 1 - ± Ш 2  [Ф " ( « м + П  +  ф" +  , (|(1- 1 ) ] = - а 7 г/1Я , (26 )

Although Eq. (26) is not equivalent to the iteration o f an algorithm which satisfies detailed balance with the action o f  
Eq. (20), it has been extensively studied by Batrouni et al.,9 and so furnishes a useful point o f comparison.

T o  solve Eqs. (25) and (26), we proceed by introducing a Green 's function
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/ —- /7 я.л' 
l ....... .................

w h ich  sa tisfies the s toch as tic  d iffe ren ce  equation ,
G a u ss-S e id e l case:

d e p j ■ • " '- ( 1 - « w c flfT -  2  [ G , + 1 )+G,*.+ '•"■(/ -1  ) ] = 6 , .
m- i

Ja cob i case:

dG?.r - n -<o)dG t;p: 2  [<?;.•* (/„+1 ) + g ?.-h’u i1- d]=6 ,,.6„
м- i

461

(27)

(28a)

(28b)

and th e  b o u n d a ry  c o n d it io n

G f f l  =  0 .  (29)

T h e n  th e  so lu tion  o f  Eqs. (25 ) and (26 ) can be w ritten  as

2  i r . n - + $ i . (30)
Г,п‘

w h ere  ф "  is th e  s o lu tion  o f  the < 7 = 0  (noise-free, o r  zero  
tem p e ra tu re ) ite ra t io n ,

G a u ss-S e id e l case:

m = I

+  £ ' , + l ( r i - l ) ]  =  0 , (31a)

Ja cob i case: 

d f l  +  ' - H ~ c ) ) d f l - \ a ,  2  [ ? я( « м +  1)

(31b)

w ith  th e  in it ia l c o n d it io n  фЧ =  ф<}. S ince E q . (30) im plies 

th a t

(32)

w e  see that in tro d u c t io n  o f  the G ree n 's  fu nction  has pe r

m itte d  us to  sepa ra te  ф1} in to  a m ean va lue term  and in 

d iv id u a l n o ise  con tr ib u tion s . T h e  rap id ity  o f  th erm aliza - 

t ion  is d e te rm in ed  b y  th e  ra te  o f  decay  o f  ф J w ith  n,

I----------------------------------------------------------------------— --------------

w h ile  the co rre la t io n  t im e  (th e  nu m ber o f  updates re

qu ired to e v o lv e  fro m  on e  th e rm a liz ed  co n figu ra tio n  to  
an independent on e ) is d e te rm in ed  by the rate o f  d e ca y  

o f  G f f  w ith  n. F o r  a g en e ra l M o n te  C a r lo  ca lcu la tion  

the th erm a liza tion  and the c o rre la t io n  t im es are 

d ifferen t, but they w il l  tu rn  ou t to  be equ a l fo r  the o v e r -  
relaxed qu adra tic  a c tion  case s tu d ied  in  th is section .

Since w e are rea lly  in te res ted  o n ly  in the a sy m p to tic  
lim it o f  sm all m esh sp ac in gs o r  la rg e  la ttices, w e  d o  n o t 

a ttem pt to  so lve  th e  d iffe re n ce  equ ation s  (28 ) and (31 ) 

d irec tly . (A n  a lte rn a t iv e  m eth od , w o rk in g  d ir e c t ly  fro m  
the itera tion  m a tr ix  fo r  th e  d iffe ren ce  eq u a tion s , and 

y ie ld in g  s im ila r con c lu s ion s , has been g iv e n  b y  G o o d m a n  

and S o k a l.10) In s tea d  w e  fo l lo w  th e  m eth o d  o f  G a ra -  

b ed ia n 11 and c o n v e r t  th e d is c re te  eq u a tion s  to  an 

equ iva len t con tin u u m  p ro b lem , fo r  w h ich  th e  c o r r e 

spond ing  p a rtia l d if fe re n t ia l equ ation s  can  be sa lved  by 

standard m ethods. L e t  us d e n o te  th e  m esh  sp ac in g  b y  a 
and in trod u ce  co n tin u u m  va riab les  х ,̂1 by  the 

co rresp on d en ce

f  d x ^ i -a  2 >  d / d X p * * ! -1  Д, ,

J* 7 2 ’ d / d t * - ~ a , (33 )
Л

a d + l6 (jc , — x  \ ) ■ ■ ■ b (x d — x j  )5 ( f  — ,  „■ ,

w ith  Д the fin ite  d if fe re n ce  o p e ra to r . T r e a t in g  first th e 

Jacob i ite ra t ion  case, w e  r e w r ite  E qs. (28b ) and (31b) as

d

1
t*=  I

a - ' d a - H G t f ' - ” ' - G t f  ) - ± а а - 2 2  [<?г'"Ч+ 1 >+<?,* ■ '(/ „  “  1 ) ~ 2Gi . r 1 = ° “  ~ -
(34 )

а - ^ а - Ч ф Т  + ' - ф ^ 1 ) - > о “ 2 2“ 2 ^  № ■ %  + I ) +  £ % - ! )  — 2 < ? ? ]= 0  .

(35 )

M a k in g  th e  co rresp o n d en ce

G ”jp. + + G (x ,x ' ; t , t ‘ ), ф",'^ф{х,1) 

an d  r e fe r r in g  to  E q . (33), w e  see that Eqs. (34 ) are the d iscrete  a n a lo gs  o f  th e  co n tin u u m  p a ra b o lic  p a rtia l d .ffe ren tia l 

eq u a t io n s

—  4 - G U . x ‘; i . t ' ) -  4  ^ r - T G ( x , x ' ; t . t ' ) = j - a ' l - ' 8 ( x l - x \  )■■■ b U d - x ^ ) 8 l i - Г )  .
coa dt я - l (36)

ua a< ax..
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with the initial conditions

G {x ,jc' ;0 , » ')= 0 1 <‘ >0, ^ (jc,0 )=  smooth interpolation o f ф, . (37)

Turning next to the Gauss-Seidel iteration case, we follow the Garabedian analysis and anticipate the fact that the op
timum cii is related to the mesh spacing a by

<u =  -“ T  . <38>1 - f Co

with С  a constant o f  order unity. Substituting Eq. (38) into Eqs. (28a) and (31a), these can be rewritten in the form

dCa ~ \ G H t - G f f  ) - a  ~ 2 2  [G " .1"  ( i , ,  + 1  ) +  G p n'U )l -  l ) - 2 G ? f  ]
p - i

+ а ~ г 2  !G ;.+ I -" ( i  ) - g ; . +1-,,'(/ - d - [ g ; . ’,,,(/ ) - g , - 1 ) ] )  =  — а ‘' - ,в “ ‘, - ,б,./.бл л. ,
* = i

d C a - ' l t l + ' - i D - a - *  f  [ * %  +  1 > + * % - 1 > - 2 *  2  +  +  1и , - 1 )

(39)

- [ ^ % ) - ^ % - D ] ] = 0  •

Again making the correspondence o f Eq. (35), we see that Eqs. (39) are the discrete analogs o f  the continuum hyper
bolic partial differential equations:

d C ^ - G U , x ' u , t ' ) -  2  -r-rG U ,*';*.«')+ 1  G ( x , x ' ; t , f ' ) = — a‘,_l6(jc,-^;) • • ■ 6 ( x j - x j ) 8 ( t  -/ ') ,

„  T  -  2 “  (40 )
d C j - S ( x . t ) -  2  т ^ т Ф (х , г ) +  2  ~ — ф (х ,1 )=0  ,

аг „ = i  д х /  дгдхм

with initial conditions12 as in Eq. (37). N ow  making the change o f variable

s = i + { 2 , i . .2 ' •> 
» i= l

(41)

some straightforward algebra shows that Eq. (40) is transformed into the canonical hyperbolic form 

3 J  a2
d C -r -G [x ,x ' ;s ,s ' )  +  l j - ~ j G ( x , x ' ; s , s ' ) — 2   ̂ ■ G (x , x ' ; s , s ' ) = — a‘i ‘6(jc, — x \) • ■ ■ 5 ( x j — x j )8 {s  — s ' )  , 

“  4  os M_ ,  <i

d C ~ t # * ’ * ) + $ £ i * x , s ) ~  f
/4—1 ^

(42)

W e assume that the boundary conditions are such that 
there are no normalizable zero modes. (This implies that 
the corresponding Laplace equation with inhomogeneous 

W3a) boundary conditions has a unique solution.) Then we 
have

with the boundary conditions 

G (x , . x ' ; s , j ' ) = 0  ,

$(x,s )  =  smooth interpolation o f ф° 

imposed on the surface

S ~ 2  X  ■

Let us proceed now to solve Eqs. (36) and (42) by sep- w i«h the minimum eigenvalue k , o f  order L ~ l- In the 
aration o f  variables. Let ifr„(x) be a complete set o f  Jacobi iteration case, we expand

(43b)

Ч ' Ф „ = - к т2фт ,

8<X , — * ' , ) • ■  ■ 6 (x d - x j ) =  2  >
(45)

eigenfunctions o f the d-dimensional Laplace operator

d д2
v2= 2

fj =  ■ ЭдСр2
(44)

G ( x , x ' ; t , t ' ) =  2  G m { x ' - , t , t ' ) i P J x )  ,
m

ф(х,1)=  2 ^ ( , ) ^«n(jc) •

(46)

subject to homogeneous boundary conditions on the with the coefficients Gm and фт obeying the differential 
edge o f  the cube O ^ jc ^ Z .  which bounds the lattice. equations
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=  — o '  V *  U ' ) 6 ( f - r ' )  ,
Ci)

(47)

Expanding the initial condition on £  as

ф (х,0 ) =  . (48)
m

Eqs. (47) are readily integrated to give 

G ( x , x ' , t , t ' ) - = ~ -  2 <•*'>« i "  ,~/ ' d i t - t ' )  ,

Continuity across s = s '  requires

G ^ U V . s ' ^ G ^ * ' ; * ' , * ' )  , (56)

while the 8 function on the right-hand side o f  Eq. (51) 
requires the first derivative discontinuity to be

t mg' CO

To solve these, let us make the ansatz

G J - 0

(57)

(58)

v a k j

Id

and then show that this does in fact satisfy the boundary 
(49) condition o f Eq. (43). Assuming Eq. (58), a little algebra 

shows that Eqs. (56) and (57) are satisfied by

W e turn next to the Gauss-Seidel iteration case. We 
now expand

G > ( jc'

G  (x ,x ';s ,s ')  =  2  Gm(x ’;s ,s ')ilr„(x ) ,
m

ф (х ,5Ы ^ ф т(з )ф п ( х )  ,

(50)

with the coefficients Gm and obeying the differential 
equations

d c i Gi" l x ’;s' s ' ) + i j ^ G"  { x ' is' s ' ]

+ k m1G „ ( x ,;s,s’ ) = — ad- ^ ,„ W ) 8 ( s  - s ’ ) ,
Ci)

d d 1 T

(59)

as can be verified by inspection. Hence G (x ,x ';s ,s ’ ) is 
given by

G (x ,x ';s ,s ')=  4  ~ o d - l  
a a)

x 2  * „ < * ) « , ( * ' )
m

p _\ s ’ —s)

X — ------- — ---------- f l ( s - i ' )  (60)
Я  m P n

(5 1 ) and corresponds to taking a solution to the hyperbolic 
equation Eq. (42) which has support only inside the for
ward light cone:

1/2

r f c * £ » ( s ) + 7  j ^ * m b ) + k m2f ml * ) = 0  .

The general solution for $m(s)  has the form first given 
by Garabedian:11

K ( s )  =  a„e Pa‘ + b me ,

pn<= 2 [ C - { C 1- k m2/ d ) l/1] ,

qm = 2 [ C + ( C 1- k m1/ d ) ' n ) ,

J  1/2is  —s ')  . (61)

Now  the Schwartz inequality implies

(52)
± 2 >£

^ = i

d 1/2 i 1/2

2  i 2  ( Х р - Х ^ ) 2
1

with the coefficients am,bm implicitly (but not explicitly) 
determined by matching to the initial condition on ф of 
Eq. (43). The values o f am,bm in fact do not matter; all 
we need for what follows is that ф decays as a function 
o f  time at least as fast as

e x p [-/ rn in m(Rep„,,Re<?m )] .

T o  solve the equation for Gm, we write

G ^ U 'is .s ') ,  s > s ' ,

G* (x ' \s ,s ‘ ), s <s '  ,

= d in 2 >J
X - l

(62)

and combining the inequalities o f  Eqs. (61) and (62), we 
see that inside the forward light cone we have the ine- 

(53) qualities13

Gm(.* ' :s, j ' )  = (54)

I — t
(63)

M -l

with

G > -< { x ' ; s , s ' ) = a > -<(x'-,s')e Pm,+ b > - <{x';s')e

Thus for t '> 0 ,  the surface 1 =  0 lies entirely outside the 
forward light cone, and hence the initial condition that 

‘ G  vanish at f =  0 is satisfied by Eq. (60), even though the
differential equation is not separable in the x,t coordi- 

(55) nate system. From  Eq. (60) we learn that G  also decays
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as a function o f time at least as fast as Eq. (53).
Let us now determine (following again Ref. 7) the 

value o f  С which maximizes the decay exponent

*43S =  minm (Repm, Re<jm ) , (64)

where GS denotes Gauss-Seidel. For km 2 large enough 
so that km2/d  ^  C 2, we have

R e p m = R e q m = 2 C  . (65)

On the other hand, for values o f  km 2 small enough so 
that (C 2 — km2/ d V n  is real, we have

min(Re/)m,R e^m ) = p m > p , = 2 [ C - ( C 2- k  ,2/rf),/2] .

(66 )

Hence

m i n ^ R e / ^ . R e O

=  m in j2 C ,2 [C -R e (C 2- ) t 12/ d ),/2]] , (67)

(68 )

and this expression is maximized for

Copt= k i/d }/2 .

A t the optimum С  we have

■̂gs — — R ^ m = 2Copl =2k  | / d 1/2 (69)

and all modes have the same time decay exponent. By 
contrast, for the Jacobi iteration the decay exponent [Eq. 
(49)] varies quadratically with wave number

= o ) j a k J / d (70)

and becomes very small at the largest wavelengths, g iv
ing for the most slowly decaying mode

kj -=cjjak * /d  .

Comparing Eqs. (69) and (71) we have

^ GS _  2 j l / 2  1 
X j  o j k ta

(71)

(72a)

^ ~ — d ' /2N  . 
Kj (i )j

(72b)

which with the correspondences (cf. Sec. I) and
p 2 +  m г~ к т2 becomes

Since k \ ~ L  1 and L / a  —N,  with N  the dimension o f 
the lattice in lattice units, we get our fundamental result

N.~
V j K

- ~ k
- I (74)

and so our result agrees with theirs. Second, as a check 
on the reasoning leading to Eq. (60), we have explicitly 
evaluated the time dependence o f  the Gauss-Seidel 
Green's function for the L - *  oo lim it in which the фт 
are infinite-space mode functions. Details o f  this calcu
lation are given in the Appendix; the result is

4 2 a* 7 г ddle i,{x- ' \ ( l , t - f )  ,
d co (2ttY1 

1
(75)

4 (C  + i l ^ / d W2)

( i 11)2- f t / 1)2
Xexp - f

U")2+ C 2d

X ( C - i l ' V d ,/2) 6(t )  ,

Hence the overrelaxed Gauss-Seidel algorithm dramati
cally improves both the rapidity o f  thermalization and 
the correlation time as compared with the Jacobi algo
rithm, and makes critical slowing down independent o f  
wave length. This improvement becomes even more pro
nounced when compared with Langevin-Jacobi pro
cedures, for which (as shown in Sec. I) one has oij « 1.

W e conclude this section with two checks on the 
analysis given above. First, the Jacobi case analyzed 
above is just a continuum version o f the model for the 
correlation length studied by Batrouni et al.9 In units 
with a — 1, they find

* c ~  —  2~ 2, ’ (73 )Up + m 2)

with and l L the components o f  I parallel and perpen
dicular to the fixed vector (1 ,1 .........1). The presence o f
the factor 9(t —/') implies that G  vanishes at
f = 0  for f ’ > 0 , and so Eq. (60) does indeed satisfy the ini
tial condition o f  Eq. (37). For С  =  к j / d  1 /2, Eq. (75) im 
plies that the decay exponent is — Jt, for wave numbers 
|/ | larger than /с,, in agreement with Eq. (69). [F or 

wave numbers 11 | smaller than k\ Eq. (75) is no longer 
relevant, since the difference between infinite space and 
finite box mode functions becomes significant.]

III. A G E N E R A LIZE D  O V E R R E LA X A T IO N  
A LG O R ITH M , A N D  A PP L IC A T IO N  TO  SU (n ) 

LATTICE FIELD  A N D  G A U G E  T H E O R Y

The results o f  Sec. I I  indicate that overrelaxation 
should be o f computational value for the thermalization 
problem, and so we proceed next to construct overrelax- 
ation algorithms for the Yang-M ills action (which, as 
noted above, is multiquadratic in the components o f  the 
gauge potential), and for the Wilson lattice gauge action 
(which is not multiquadratic). The construction employs 
the following generalization o f  the overrelaxation algo
rithm o f Sec. I: Consider a field theory with field vari
ables which can be divided into two disjoint classes 
[ф\, j0| , with functional integration measure

" t  N*
df i=  f l  J" d<fr Ц  /  dip (76a)

i i

and with the general (nonmultiquadratic) action

5 = S 1[ [ 0 ) > | ^ ) ] + S 2[[V -n  . (76b)

For this theory, consider an updating \Ф\—+\Ф'\ ' n 
which only the (0 j variables (or some subset o f  them) is 
changed, and let ,?[ ( ф ), j ф' ), 10 ) ; fl] be any auxiliary! 
functional o f  the indicated field variables and the relaxa
tion parameter 0 which is symmetrical under the inter
change {ф ]*-»|0'|. For this updating, we take the tran
sition probability to be
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(78)

— f^ ( ]= .^ T [^ l . ( 'A I ;< 9 ]e x p (-^ c o s h 20 5 1[ | f  [ . ( iAI]

-^ s in h 2051[ ^ j , | ^ ) ] - ^ [ ( 1/ i),(<# '),!^| ;6 ]) (77a)

with the normalization JV[ { ф\, j ф];в]  given by 

N*
*  ‘ [ { ^ ! .  П  /  rf^'expl —/?cosh2ftS, [ |<6’ j, (0 )  ] —/?sinh20S , [ |0j, [0 !  ] —# ? [ {  0 ] ,  |^ '], [ф\;в] )  . (77b)

Then W  satisfies detailed balance with respect to the effective action

5 e( r [ f ^ | . ( ^ ] ; f l ] = 5 [ { ^ j , | 0 j ] + ^ - |ln (jV I|^ ]I ( ^ ] ; f l ] / ^ l ( v!-J;e]) ,

—  N° f  / N 
• W ) ; 0 ] =  П  /  4фщ\ф\, [ф\- в ] /  n  /  rf* .

The proof follows directly from the fact that

К [ { Ф \ - * [Ф ' \ ] * * р ( -№ [ \ ф \ , [ ф } ] - Ш Щ [ф ) , \ ф \ - , в ] / 7 1 \ \ Ф ] \ 6 ] ) )

= -^1 Ж ;в ]ехр <  -0 c o s h 20 (S ,[|0 ’ j , j 0 ) ] + S , [ {0 j , ( 0 ) ] ) - / ? S [ ( 0 | , | 0 '| , {0 ) ; e ] - / J S 2[ {0 | ] )  

=  symmetrica] in \ф\,\ф'\ . (79)

The multiquadratic case o f  the generalized algorithm is recovered by taking

ij

with the Z,1 linear functionals o f the subset o f variables [ф].  The overrelaxation algorithm o f  Secs. I and I I  then cor
responds to the choice o f auxiliary functional

$ 1 1 *1 ,1 *4 . ( * ! ; в ] = я п Ь в с и Ь в 2 < М | * г 1 * ) ] 4 , 1 ( * ) ] М 1 * М * 1 ]
4

^ [ \ ф \ , [ ф ) } А ^ [ \ ф } Щ [ \ ф ' Ш \ ] )  , <8D

for which the transition probability W  o f Eq. (77a) becomes

^ [ W - 4 f ) ] = ^ e x p  f - 0  J  (coshSL,[ ( j. Ж  ] + sinhflL,[ Ж , f ^ ) J)
U

X Л ^ ф ]  ](cosh0L; [ j, ( ф j ]+ s in h 0 £,[\<b J, j 0| ] )  I ; (82a)

in terms o f a relaxation parameter to related to в as in Eq. (10), this can also be written as 

М ' И ф ] —* [ ф ' ] ] = Л  exp — r r — T 2 < M I * 'U * | ] - « i - ® > M I * U * l ] )co(2 — со) г :

x  ^ [ i * i ] ( M i * ' i >  |0| ] - < i - < D ) L , { m .  ( 0 I D (82b)

Since by the linearity o f L  we have

cosh(9iI [ ( ^ ] , { 0 ) ]  +  s in h 0 £ ,.[(^ | ,| 0 | ]= i,[| co sh 0 ^ '+ s in h 0 0 !,{0 )] , (83)

the normalization is now given by

•/V ~ 1 =  П  f  аФ'ех P( — #M (cosh0^ '+sinh0<6\,1ф] ]Лц[\0 ] ] L j [  (cosh0<£’ -t-sinhe0), [ 0  j ] )
1

=  (cosb6)~N* П  /  ^ * ’exP( —Д М  l * ’ l> \Ф\]АуЦФ)  ]L y[ \Ф'\,{Ф \ ] )  =  independent o f  ) , (84)
1

and so the second term on the right-hand side o f Eq. (78) vanishes, giving in the multiquadratic case 
s  Г, - j [0 ) - < n = S [ f * ) , (< H ] .  In the application o f the generalized algorithm  to the W ilson lattice gauge theory 
gi'ven below, the second term on the right-hand side o f Eq. (78) w ill be nonzero, but is arranged to be a higher-order 
correction in the continuum limit as compared with the original action S.
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(85)

(86)

Let us now apply this algorithm to the Yang-M ills action

0 S =  f  d*x^Tr (FHVFMV), F liV= F j lvTJ, T r (Г Г ' )  =  i5„. ,

with the field-strength F related to the potential A^ by

F llv= d l iA v - d vA l l+ i g 0[ A ll, A v]  .

T o  formulate a discrete version o f Eq. (85), we set up a cubic lattice with unit cell o f  side a, and associate the potential 
variables with the centers o f  the links. Then for a plaquette in the х^ -ху plane with center ( x eil,xcv), as shown in Fig. 
1, we have, for the field-strength component F^w at the center o f  the plaquette,

F /. * F , lv(x c;l,x Cv ) « a -1M v<*c ;I+ T a'* c v ) -  A v(xcfl- ± a , x ev) -  ^ ( x ^ . j e ^ + i a ) - ) -  А ц(хс11,хс„ - ± а ) ]

+ 'go-H A p U ' p X ' v — ^a), A v{jtfJ1+  ya,i-cv)]

+  '£o| [ /<M(JcCM,xcv+ i o ) ,  A vU e>4- j a , x cv) ]  +  0 ( e : ) , (87)

where the dependence on coordinates other than x and x v is not shown explicitly. Summing over plaquettes, and 
noting that each plaquette is shared between two unit cells, we have for the discretized action

0 S =  ^ a * T T ( F P2) . ( 88 )

Consider now an update in which the potential А/ on a single link I is changed. By Eq. (87), for each plaquette P~Dl, 
the field strength F P is a linear functional o f A h while for all other plaquettes the field strength has no dependence on 
A Hence i f  we let (ф] be the set o f  potential components А/,  and |0] be all other potential components, then in 
terms o f  these variables the action o f Eq. (88) has precisely the form o f Eqs. (76b) and (80). M oreover, i f  we choose 
any canonical gauge fixing (or i f  we do not gauge fix), then the integration measure has the form

dt1= И  f  dA{ H  f  <89>

required by Eq. (76a). Thus the conditions for validity o f the algorithm o f Eq. (82) are satisfied, and so an overrelaxed 
algorithm  for the update A t—* AI  is

W\A ,

FP = F P

■ y4/ ]= jV exp  f — 2  a*Tr(cosh 0Fp+sinh flFp )2 |=Ж ехр  
I rot

- 1

6 )(2  — <u) P o t
(90)

Although Eq. (90) exactly satisfies detailed balance with respect to the discretized action o f  Eq. (88), it is not exactly 
gauge invariant, and this limits its usefulness in simulations where maintaining exact gauge invariance is important. 
T o  get a computationally useful algorithm, we must construct an analog o f  Eq. (90) within the framework o f W ilson ’s 
lattice gauge th eory .14 Because the lattice gauge theory action is not a multiquadratic form, it is not possible to con
struct an overrelaxed algorithm which exactly satisfies detailed balance with respect to the Wilson lattice action.

a .  ( * „  - 1 «,

■ U

F IG . 2. U n itary matrices associated w ith the links o f  the 
F IG . I. Plaquette and potentia l variables in the 1 , - x ,  plane plaquette o f  F ig. 1, which are used to form ulate SU (/ i) la ttice 

used to form ulate Y an g-M ills  la ttice field theory. gauge theory.
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However, this is a stronger requirement than is needed, since the lattice action is in any case only an order-а2 approx
imation to the continuum action, and any member o f the equivalence class o f local, gauge-invariant lattice actions 
which differ from the Wilson action by relative order-а2 terms in the continuum limit is equally suitable as a lattice 
action. W e will show that it is possible to construct an exactly gauge-invariant lattice gauge theory transition proba
bility by the procedure o f  Eqs. (76) — (78) above, which satisfies detailed balance with respect to an explicitly comput
able effective action differing from the Wilson action only by terms o f relative order a 2 in the continuum limit.

T o  carry out this construction we rewrite Eq. (90) as

W [ A i —* A I ]  =  JVcxp j —sinh6cosh0 2  a^TrlFp+Fp)1 — (cosh2S — sinhflcoshfi) J  а*Тг(Р'Р )2 
t />э/ />3/

— (sinh20 — sinhflcoshfl) J  a*THFP ) :
P^Sl

(91)

and look for lattice gauge theory realizations o f a ^ r l F p ) 1, a*TT(FP-)2, and a *T t {F f -\ -F P )2. Consider the plaquette P 
drawn in Fig. 1; in Fig. 2 we have redrawn this plaquette with the links labeled by the SU (n ) matrices to which they 
correspond in lattice gauge theory. Let us assume that the link potential being updated is A, =  А ̂ х е/1,хег— -ia), or in 
terms o f lattice gauge theory variables, Ut »  We define

Vf =u„_u¥+u ^ u ¥_, u'P= u’„_u,+ и„+ {/„_ = uP \ и^ и. . m)

Then the lattice gauge theory analog o f Eq. (91) is

f V [ U , - * U ! ] = M e x  p -sinhdcoshd 2  A )
PT>U .

1 — — R eT r ( UPUP )

(cosh20 —sinhfl coshfl) 2  Po
P Z )U ,

— (sinh20 —sinh0cosh0) 2  Po
PDU,

I - - R c T r  U*  
n

l - - R e T r  UP 
n

= jV exp
a){ 2 — cd)

1 — — Re Tr( UPU P )
Я 7Г 2  Po

Р эи ,
1— -R e  TrI/,. 

n

1— 0}
2  Po

P D U ,

1 - — Re T r UP 
n

(93)

with Re denoting the real part, with fixed by the re
quirement

(94)f  d [u ; ]w [u , - *u ; ]= l ,

and with the parameter fixed in terms o f n and the 
bare coupling g 0 by the usual relation15

=  j . (95)
2л

W e note that Eq. (93) is independent o f  the cyclic order
ing o f  the link factors in Up, as long as U'P and Up are 
ordered in the same way; in other words, by cyclic in
variance o f the trace we have

т  r[( t/„_ uv+ и; + uv_ >( i/„_uv+ ии+ C/v_ )]

= T r [ (  uY_ u„_ uv+ u„+ )(uv_ t/;_i/v+ U„+ )] 

=тг [ ( u ^  uY_ u„_ uv+ к u„+ uv_ ?/;_ uv+)]

______ (96)

The gauge invariance o f Eq. (93) follows from the fact 
that since Ut and Uj have the same behavior under 
gauge transformation, so do U p and U'P:

UP - > u gU pUg U'p—*ut U'pug (97)

and hence again by cyclic invariance o f  the trace the 
quantities T r ( U P UP ), T tU p, and T tU'p are exactly gauge 
invariant. Finally, since the I// dependence o f  Eq. (93) is 
o f  the form T r(i//& ), with 0  a linear combination o f 
SU (n ) matrices, in the case л = 2  the efficient SU(2) algo
rithm o f C reutz1* can be applied to the generation o f 
links Uj  distributed according to U) —» I// ].

The argument that Eq. (93) is an acceptable algorithm 
now runs as follows: Comparing with Eqs. (76) — (78), we 
see that Eq. (93) has precisely the form o f the general
ized algorithm, with j<£| corresponding to Uh with (t f ) 
corresponding to the other links in the plaquettes 
P 'DU , ,  and with S, corresponding to those terms in the 
Wilson action involving plaquettes P O U i -  Hence Eq. 
(93) exactly satisfies detailed balance with respect to an



6 7 8 Adventures in Theoretical Physics

468 STEPHEN L. A D LE R 37

effective action, which differs from the Wilson action by 
a term proportional to ln(jVJ Uh j ф] ;6 ]/ jV [ { i/rj, 6 ]), 
with J\f the average o f  jV [ Uh ( V» j ;в ] over Ut. Since Eq. 
(93) only involves couplings o f  the link I to links in pla
quettes P  containing /, and since the entire construction 
is manifestly lattice gauge invariant, the effective action 
is local and lattice gauge invariant. Suppose that we can 
show that Eq. (93) differs from Eq. (91) by terms o f rela
tive order a 2 (absolute order a 6) in the continuum limit; 
then to leading order (absolute order a 4) the normaliza
tion factor .Л/Ц/( , ( 0 ) ; 0 ]  is independent o f  Uh since by 
translation invariance W  in Eq. (91) is independent o f 
A).  It then follows that ln (jV [C // ,j^ ];0 ]/ ./V [[^ );6 ]) is 
o f  order a 6 in the continuum limit, and the equilibrium 
effective action for the algorithm o f Eq. (93) is a member

o f  the equivalence class o f acceptable lattice actions.
To verify that in the continuum lim it Eq. (93) reduces 

to Eq. (91) up to an error o f  order a 2, we start from  the 
continuum limit o f  the individual link variables,

U ll_ = t x p [ i g 0a A l ) ( X ' ll , x cv- \ a )  +  O { a 1) ]  ,

(98)
U v+ =exp[ ig0a A v(xcll +  la,xcv) +  O ( a * ) ]  ,

Vp+ = e * p [ - i g 0a A tl(x cll,xev+ ± a )  +  O ( a i ) ]  ,

U v_  = e x p [ - i g 0a A J x clt- \ a , x cv) +  O ( a i ) ]  ,

with T r 0 ( a 3) =  0 since the Г/’s are all S U (n ) matrices 
and hence have unit determinant. F or the products o f  
adjacent links which appear in Up, we have

J

<t> + 5 ,
exp [ig0a ^ ( j c r;j, j a ) ] e x p [ i g 0a/ iv(.)c + l a , x cv)] =  e + + ,

(99)

with

<t> + = ‘g o a A l i ( x C)1, x cv- l a )  +  ig 0a A J x C)l+ \ a , x <.Y)

~  f g o  ^ f  ^  1 i

( 100)

Ф _  =  -  igoa A M <*e|,**ev+ 7 ° *— 'Soa A -  \o>x cv >

-  T »o 2fl 2[ A ^ x clt,xcv+ ± a ), A v(xeil -  -ja .jc ,,)] .

The errors 6+ and 8 _  satisfy 6+ = 0 ( a 3), 8 _  =  0 ( a 3), 
T r6 + = T r 6 _ = 0 .  M oreover, since 6 _ = 6  + (a —► — a ) and 
Ф _  =  Ф + ( в —► — a), we have that 8+ +  8 _ = 0 ( a 4) and 
that the commutator [Ф  + ,Ф _ ]  is odd in a. Hence for 
the plaquette product Up we have

uP= u fl_ u v+ufl+uv_

=  ехр [Ф  + +  Ф _  + | [ Ф + ,Ф _ ]  +  0 ( а 4)] , (101)

with у {Ф  + ,Ф _ ]  =  0 ( а 3), with T r 0 ( a 4)= 0  and [refer
ring to Eq. (87)] with

Ф + + Ф _ = i g Qa 2F J> . (102)

For a general altered set o f  potentials A ' we have

=  exp j Ф'+ +  Ф '_ +  у [Ф '+1Ф '_ ] +  О (a 4 )j , (103)

again with у [Ф '+ ,Ф '_ ] =  0 ( a 3), with T r 0 ( a 4) =  0, and 
with

Ф '++<*>' - =  ig0a 2Fp . (104)

From  these equations we find

TrUp = n  - ^ 02а ^ 1 ( Р Р )2 +  О ( а 6) ,

T r U ‘p =  n — y g 02a 4T r(FJ ,)2+ O ( a 6) , }

T r {U P U'P ) = n  - \ g 02a*TT(Fp + F p ) 2+ A + O ( a 6) ,

Д = Т г ( ( Ф + +  Ф _  +  Ф +  + Ф '_  ) ( у [Ф + ,Ф _  ]

+  | [Ф '+ , Ф ' - ] ) |  .

which when Д = 0  can be combined with Eqs. (95) and 
(93) to give Eq. (91). (Because o f  the identity 
T r ( a [ a , y ] ) = 0 ,  terms analogous to Д do not appear in 
TtUp  and Trl/p. )  Since the error term Д is potentially 
o f order a 5, to complete the derivation we must show 
that Д = 0 . N ow  repeated use o f  the identity

Т г ( а [ Р , у ] ) = Т т ( [ у , а ] Р )  , (106)

which follows from cyclic invariance o f  the trace, shows 
that Д can be reduced to the form

Д =  {Т г ( [Ф '+ - Ф  + , Ф '_ - Ф _ ] ( Ф + +  Ф _ ) )  . (107)

In general Д^ьО, but for the special case in which A ' 
differs from A by the change o f  only the single link vari
able A li{xcil,xcv— \a)  or equivalently U^_ ,  we have 
Ф '_ =  Ф _  and Д vanishes. Hence we have verified that 
Eq. (93) is a suitable overrelaxed algorithm for lattice 
gauge theory, for the case in which a single link at a 
time is updated.

T o  conclude this section, let us compare the small-ш 
continuum limit o f  the overrelaxation algorithm o f  Eq. 
(93) with the continuum limit o f  the lattice Langevin al
gorithm o f Batrouni et al.; according to our analysis o f  
Sec. I, these should correspond. Taking the continuum 
limit o f  the overrelaxation algorithm from Eq. (90), we 
have
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T H F L —Fp +coFP )2= T r -<  A ; - A , ) + ± i g  0f( ^ ldjKcnt] + (y^ (108a)

with y4>dj>ccnt the potential on the leg o f  the plaquette adjacent to and following A,. Referring to Eq. (98), we recall 
that in the continuum limit g0aA  is the effective expansion parameter; approximating Eq. (108a) to leading-order ac
curacy in this expansion gives

2

=  — Al1— /4(j )2+  — ( AjJ— Aj)coFj, +  ^/-independent . (108b)
2. (i О

T r (F"p —F p +(nFp )J= :Tr —■( A l — A, ) +  coFp 
a r

In four dimensions there are six plaquettes P  containing /, and so

2  Tr (F}>— Fp+eoFp  )2*s—j-( A[-i— A j ) 2+ — ( A lJ~~ Aj)ai  2  +  -^/-independent
P D I

=  3 +  A /-independent .

Substituting Eq. (109) into Eq. (90), dropping ^/-independent terms and approximating 2 —o)~2,  we have

H'l A / —* /4/ ]»jV exp  — j-o4— ± l A; J - A j ) + f  2  Ff.
0 6 rz>\

(109)

( 110)

which can be rewritten as the stochastic difference equa
tion

(П 1 )
a 1

N ow  the lattice Langevin algorithm o f Batrouni et al., 
in the notation used above, takes the form

U ; = e  F,U, ,

( 112)

F , = i T J

Substituting

- ‘ Pa
f  2

РЭ1 2 /i
T r i T H U p - U ^ ^ + e ' ^ V j

U , = e J*oa<4/ U p= e (113)

into Eq. (112) and working to leading order in the ex
pansion in powers o f g 0aA,  we get, for the continuum 
limit.

igQa ( Aj*— Aj)T^sz —iT*
iPo

In

+ (W)t/2Vj

2  k n P ' H
РЭ1

(114)

which on substituting /?(£02/(2и) =  1 and factoring away 
the generators TJ becomes

j /1

М Л { > - Л { ) ш — ^ 2 ^ “
0 go PDl go

(115)

Equations (111) and (115) have precisely the same struc
ture, and give the identification

(116)

I------------------------------------------------------------------------------------------

again showing that the Langevin approach corresponds 
to the small-<u limit o f  the overrelaxation algorithm.

IV. D ISCUSSION

In closing I comment briefly on the comparison be
tween the acceleration strategy pursued above and that 
proposed by Batrouni et al.4 Let us adopt as the “ figure 
o f m erit" for an acceleration scheme the ratio o f  its in 
verse correlation time Л. to that for an ш — \ Jacobi itera
tion. As we have seen in Sec. I I,  for an optimally over- 
relaxed Gauss-Seidel iteration, the figure o f  merit is then 
N, the length o f a side o f  the lattice in lattice units. By 
contrast, Batrouni et al. employ a Langevin method 
based on the Jacobi algorithm, and propose a method o f 
Fourier acceleration in which the Langevin step size is 
taken to have a momentum dependence which compen
sates the critical slowing down at long wavelengths. In 
principle, their method can yield (up to logarithms) an 
inverse correlation time o f  with a the lattice
spacing and € the small parameter which governs the 
Langevin step size. Thus, recalling Eq. (71), for the 
method o f  Batrouni et al., the figure o f merit can be as 
large as

la
ak

- ~ e \ L / a ) 1= l N 2 . (117)

For lattices o f  moderate size, where F/V — 1, the overre- 
laxation method should be competitive with Fourier ac
celeration, but for very large lattices the Fourier method 
wins out, irrespective o f  the step size t. Clearly, an op
timal algorithm would combine the advantages o f  both, 
by permitting a step size o f  unity, as in the overrelaxed 
Gauss-Seidel approach, while replacing the factor 
k t~ L ~ '  in Eq. (69) by a wave number o f  order a~ . 
One possible way to try to achieve an improved algo
rithm is to combine overrelaxation with a mesh-doubling
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lattice refinement scheme, as is done in the case o f  the 
minimization problem by the “ hyper-overrelaxation”  al
gorithm o f Press17 or the mesh-refinement-interpolation 
scheme o f  Adler and Piran.7 A  closely related approach 
is the “ multigrid”  Monte Carlo method advocated by 
Goodman and Sokal.10 I hope to pursue these issues in 
future work.

Note added

In Sec. I I  we determined an optimum value o f co— let 
us call it cob-defined as the value o f  co which minimizes 
the correlation time т. By definition, this value o f  co 
maximizes the asymptotic rate o f  decay o f  the correla
tion between two lattice configurations, as the “ time”  
separation A T  =  AMa  between the two configurations 
becomes infinite (n =  lattice spacing, AA f=num ber o f  
iterations separating the two configurations). However, 
in an actual Monte Carlo calculation this asymptotic de
cay rate is not the quantity which directly governs er
rors. What one does in a Monte Carlo calculation is to 
perform some total number M  o f iterations, but to only 
take every mth iterate as a member o f the ensemble o f 
configurations used for measurements, where m ~ r / a .  
Taking more configurations than this increases the 
amount o f  effort spent in measurement without im prov
ing the statistics, since the additional configurations are 
not statistically independent, while taking fewer 
configurations than this needlessly dilutes the statistics. 
Hence the quantity to be optimized is the absolute corre
lation between two configurations separated by m itera
tions, not the asymptotic rate o f  correlation decay.

This optim ization problem also arises in the overrelax
ation solution o f  differential equations, and the solution 
is as follows: For the iterations i = 0 ,1 ,. . . one uses 
overrelaxation with a sequence o f relaxation parameters 
(Oj with coq — 1 and with a), —» tob for large i. In the case 
o f  iterations based on “ odd/even”  or "checkerboard”  or
dering, as opposed to the “ typewriter”  ordering used in 
Sec. II, the optimum co,’s can be computed explicitly in 
terms o f  i and cob using Chebyshev polynomials. In the 
M onte Carlo application, one would use a “ sawtooth” 
pattern o f a/s, returning co to 1 for the initial iteration 
after each configuration selected for measurement, and

37

then stepping through the first m members o f the Che
byshev or other optimal sequence. Taking сошсоь for all 
iterations can actually make the correlations worse after 
a finite number o f  iterations than simply using co=  1, 
while the simple expedient o f  taking co0— 1 and 

already guarantees monotonically decreasing 
correlations. For a brief and lucid discussion o f these is
sues see Hockney and Eastwood,18 while for a detailed 
theoretical analysis see Vargas.19 A  simple, explicit, 
“ checkerboard” iteration version o f  the calculation o f 
Sec. I I  has recently been given by Neuberger,20 and the 
Chebyshev method is directly applicable to Neuberger’s 
scheme.
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APPENDIX: E VALU ATIO N  OF THE INFIN ITE-SPACE 
GREEN’S FUNCTION

We evaluate here the time dependence o f  the Gauss- 
Seidel Green’s function o f Eq. (601, in the infinite-space 
limit in which the mode functions are

Ф т < -*> = 7 — ^ Т п е ‘к'*> k x =  ^  k * x *  ' (A 1 )
\ i i r r  м -1

Substituting into Eq. (60), and noting that because o f  
translation invariance there is no loss o f  generality in 
setting x ' = t ' = 0 ,  we have

C U '0 i ' - 0 ) = :  I  ^  к e  —---------------------- e- -------------------9(t - f y X - n )  ,
d co (2ir) J q - p

n =  ( I , l ......... I), n x  =  2  х ц, p = 2 [ C - ( C 1- k 1/ d ) wl) , (A2 )

4 = 2 [C  +  ( C 2—k 2/ d ) l/2], k 2= ^ k 2 .

W e wish to evaluate the Fourier transform g (/,/) defined by

G(x ,0 ; t ,0 ) = ± ~ ^ 2  f  d dl e ilEg ( l , t )  . (A3 )
d oi ( 2 i r )  J

Taking the inverse Fourier transform o f Eq. <A2), the jc and к integrations in the d — 1 directions perpendicular to n 
can be done immediately, leaving [with n =  d ] /2n, x =  x n, I =  I -ft, к = k -n , (/ i )2 =  /2 — /2]
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g d , l L, t ) =  f  — e - ' ^ f d k e ^
g  -  p i -  pd ,2x  П  _  e  -  q i - q,d 1 n x  П

q - p Л / +  Ы ' /2х ) ,

= 2 { C T \ C 2— [ k 2+ ( l L)1] / d ) ,/2) .

To  do the x integration, we make the change o f  variables 

t + \ d ' /2x = u  , 

giving

■ =  L " du
,H k  - l)2 u / d w2 в

q - p q - p p —i (k —I ) 2 /d 1/2 q - i l k  - l ) 2 / d ' n

(A 4 )

(A5)

( A 6 )

pq - i lk - l ) 2 ( p  + q ) / d W2- 4 ( k - l ) 2/d  '

Substituting p and q from Eq. (A 4 ),  and setting к —I =w,  we are left with the single integral

g U ’ l i ’ t ) = ~ 7 w 2  Г  d w e - “ 2,/d' n -
1

TTd'n  J -=. A[ l2 +  ( l l )2+ 2 l w ) / d - i w i C / d ' n  '
(A 7 )

Since the denominator has a single zero in the lower half o f the w complex plane, for /<0  we can close the contour up 
t0 get g  =  0, while for / > 0  we can close the contour down to get the answer quoted in Eq. (75) o f  the text.
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Let u '—M u + N f  be a general linear iterative process for salving the system Lu  —/, with L  —L T and 

with I —M + N L .  Provided that Г г  j  (£  - l  — M L  ~ 'M T ) -1 is a positive-definite matrix, it is shown that 

one can explicitly construct a corresponding stochastic algorithm which satisfies the homogeneous-state 
condition with respect to the prohability distribution exp ( — /)S), where S — т u r L u —f Tu. W hen 

M TL  —L M ,  the algorithm also satisfies the detailed-halancc condition.

PACS numbers: 11.IS.Ha, 02.70.+d

Over the last few years there has been considerable in
terest in the idea o f the construction o f accelerated 
Monte Carlo algorithms by analogy with acceleration 
schemes for solving deterministic systems o f equations. 
For the physically interesting case o f quadratic or multi- 
quadratic actions, I showed1 a while ago that one can 
construct an exact stochastic analog o f the classical suc
cessive overrelaxation method, and this observation has 
had a number o f applications.2 Recently, several authors 
have proposed applying more powerful methods for 
deterministic systems, such as the multigrid iteration3 or 
fast Fourier transform direct-solution techniques,4 to the 
problem o f accelerating Monte Carlo calculations. In 
this Letter I show, in the case o f a quadratic action, that 
all o f these proposals are closely related, and in fact are 
special cases o f a theorem relating the most general 
linear iterative process to a corresponding stochastic al
gorithm.

Theorem.—  Let L ~ L T be a real, symmetric 1*1 ma

trix and /  a real /-dimensional vector, from which we 
construct the action

S ( u )  — j u TLu ~ f Tu, 

with variational equations 

L u - f

( 1 )

( 2 )

P(.u —  и ' )  -  ( p /n )  //2(d e tD  ,/2exp[ -  (и ' -  Mu -  N f )

Г ~ ' М Т) ~ ' - Г Т, 

which satisfies the homogeneous-state condition

J d u e  ~AS(u)/>(u —1» u ')  ™e (6 )

The transition probability o f Eq. (5 ) satisfies the 
stronger detailed-balance condition [which is sufficient 
but not necessary for Eq. (6)1

Let us consider the general linear iteration for solving 
Eq. (2 ),

u ’ - M u + N f ,  (3 )

where M  and N  are a splitting o f L  defined by

1 - M  +  NL.  (4 )

Then provided that Г  as defined below is a positive 
definite matrix, corresponding to Eqs. (3 ) and (4 ) we can 
construct a stochastic process with normalized transition 
probability

Tp r ( u ' - M u ~ N f ) ] ,
(5 )

I

e - f S M P ( u ^ u ' )  - A u ) (7 )

i f  and only if  M TL —LM ,  or equivalently N  —N T.
Remarks.—  (1 ) The overrelaxation5 and multigrid6 

methods are special cases o f the iteration o f Eq. (4 ) with 
M i* 0 and with spectral radius p ( M )  <  1, while direct 
solution methods correspond to taking M  — 0, N —L ~ ] . 
The matrix Г  generalizes the temperature rescaling 
found, in the case o f stochastic overrelaxation, in Ref. 1. 
The particular significance o f stochastic overrelaxation,

within the general framework o f the theorem, is that one 
can show that it is the unique limiting case o f the algo
rithm o f Eq. (5 ) in which the node variables are updated 
one at a time.

(2 ) Equation (5 ) can be equivalently written as a sto
chastic difference equation. Letting О  be the real, or
thogonal matrix which diagonalizes Г,

О тГО  “  у “ diagonal, (8 )

we have

u ' - M u + N / + ( . 2 P U2) ~ 1O t,, (9 )

with Tji Gaussian noise variables normalized according to 

“ 2 ( y - l ) y .  (1 0 )

(3 ) The positivity condition on Г  can be reexpressed in

Reprinted with permission. ©  1988 The Am erican  Physical Society 1243
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a number o f equivalent forms. Rewriting Г  as

r - H l/2( i - s Ts ) " ‘ i l/2,

S - L ~ ' n M TL  l/\
( 11)

we see that Г  is positive definite i f  and only if S TS has 
no eigenvalues larger than 1. This requires

||S||J—p (S TS )  ~ p ( L M L  - I M T) £  1, (12)

with p ( )  (as above) the spectral radius and || || the spec
tral norm.7 Convergence o f the iteration o f Eq. (3 ) re- 
quires

p (A f )  “ p (A fT) —p (S )  ” p (5 T)  <  1, (13)

but since p (S )  <  ||S|| for a non-Hermitian S, Eq. (13) 
does not imply Eq. (12).

(4 ) Even when positivity o f Г  can be demonstrated, 
the practical implementation o f the algorithm depends 
on the ease o f constructing the matrix О o f Eq. (8 ) 
which diagonalizes Г, or equivalently, of find the matrix 
T - O r ~ U1 which factorizes Г -1 according to

p - i- 7 7 -т (14)

so that the generalized noise can be constructed as

O t) — T ij, ( f j i t j j ) - 2 S i j . (15)

Conversely, in cases (such as those discussed in Refs. 
1 -4 ) in which a stochastic differential equation has been 
constructed with Eq. ( I )  as its equilibrium action, the 
factorization o f Eq. (14 ) is explicitly established and this 
guarantees the positivity o f Г.

(5 ) Although the theorem applies only to quadratic 
actions, it is directly relevant to the Yang-M ills action 
and other multiquadratic8 interacting theories. More 
generally, most practical methods for dealing with non
linear problems are based on generalizations from linear 
methods,9 and so our theorem can be expected to have 
implications for the development o f Monte Carlo algo
rithms for nonlinear problems.

Proof o f  the Theorem.—  W e assume in intermediate 
steps o f the proof o f existence o f M  -1, but since the final 
results only involve M , the case where M  is not invertible 
can be obtained by continuity as a limit from the case 
where A / -1 exists. Making the shifts u —v +  L '/, 
ы' — u '+Z . - l / in  Eqs. (6 ) and (7 ) permits one to factor 
away the explicit /  dependence; hence it suffices to prove 
the theorem in the case / “  0. Doing the integral in Eq.
(6 ) by completing the square gives us

(d e tr/d etr ) l/2e

§ ( и ' ) - и ,тГ и ' - Ш тГ и ‘ ) тГ  1 А/тГи (16)

Г =  \  L  +  M Tr M .

Equating the left- and right-hand sides o f Eq. (6 ), we get

overall normalization,

I E W  l e t t e r s

two conditions: (i) 

detr —detr;

(ii) u ^  • . . „ - •
“  term ,n exponent,

Г ~  Н - Г М Г - I M IT. 

From the definition of г  we have
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(17)

(18) 

(19)
i f  we multiply Eq (18) by M  0„  lhe right and use E 
I I»J  to eliminate М ТГ М  we eetTAf we get 

ГА/ — i Ь М —Г М Г ~ ,( Г -  ± L )

This implies

( 20)

(21)
the determinant of which gives Eq. (17). The elimina
tion of Г by use of Eq. (19) gives

r - L M L ~ 4 H M ~ ] +  M TD  

- T L  +  L M L ~ ' M Jr, (22)

which can be immediately solved to give the result Г 
quoted in Eq. (5). For Г, we then get

(23)

I f  in addition to the stationary-state condition we im
pose the detailed-balance condition on P , we get the ad
ditional constraints; (iii) uT • • ■ и term in exponent,

Г  - Г ;  (24)

(iv ) uT • ■ • u'  term in exponent,

Г М - М ТГ. (25)

Substituting Eqs. (24) and (25) into Eq. (16) for Г, we 
get

r - U + Г  M \  (2 6 )

which implies

Г - U ( 1  -  M 2) -  * ( £  ~ l - M 7L - 1) -1. (27)

The comparison o f Eq. (27) with Eq. (5) then implies 
L  - , A/T “ M L - l , or equivalently

M TL ~ L M .  (28)

Since by Eq. (4), N  —L ~ l ~  M L ~ \  Eq. (28) is also 
equivalent to

N - N T. (29)
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S tu d y  o f  a n  Overrelaxation Method for Gauge Theories
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W e study the overrelaxation algorithm developed by one o f us (S.A.) for the SU (2 ) gauge theory in 

four dimensions. W e  find improvement in the decorrelation time for the plaquette by a factor of 2 to 3. 
However, our results suggest that the Monte Carlo application of overrelaxation behaves quite differ

ently from the classical differential-equation analog. In particular, the optimum value of the overrelaxa
tion parameter ш may depend on what order parameter one measures. In addition, there are order pa
rameters that do not appear to  improve by overrelaxation.

PACS numbers: 11.15.Ha

S ta t is t ic a l system s c lose to  c r it ic a l i t y  are difficult to 

s im u la te . T h is  is because m ost s im u la tion  algorithm s use 

lo ca l u p d a tin g  w h ich  results in a h ig h ly  correlated se

q u en ce  o f  con figu ra tion s. In fo rm a tio n  about the update 

spreads am on gst th e va r iab les  via a  diffusion process 

and, hence, to  d e co rre la te  the system  ov e r  length scales 

o f  th e  o rd e r  o f  th e co rre la t io n  length  £, takes on the order 

o f

t ~ « 2 (1 )

steps, т in Eq. ( 1 )  is u su a lly  c a lle d  the decorrelation 
tim e .

S e v e ra l m eth od s to  d ecrea se  t  h a ve  been suggested. A  

v e ry  p o p u la r  recen t m ethod  is to u se overrelaxed a lgo 

r ith m s .1 H e re , in a n a lo gy  w ith  m eth od s  invented for 

d if fe re n t ia l equ ations , an o v e rre la x a t io n  param eter 

co G [1 ,2 )  is in trodu ced  in to  the s im u la tion . T h e M arkov 

process is d e fin ed  so that fo r  any co one obtains the 

c o rre c t  a sym p to tic  d is tr ib u tion . Q) ”  1 corresponds to the 

usual (n o n o v e rr e la x e d ) u pda tin g , w >  1 g ives overrelax- j

ation. In this Letter, we test a specific overrelaxation a l

gorithm  for pure-gauge-theory simulations2 suggested by 

one o f  us (S .A  ). It is simplest to implement for the 

S U (2 ) gauge theory and so we restrict ourselves to this 

case in d — 4 dimensions with periodic boundary condi
tions on a hypercubic lattice.

Th e aim is to generate independent configurations dis
tributed as

P (U i )  - e x p l - p S ( U i ) ]  ,

with

£ (£ / / )-  I  [ l - * t r ( I / , ) l .
PZ>Ut I J

(2)

(3 )

Here, the U\ s are link variables and Up is the ordered 

product o f  the link variables around a unit lattice square 
(p laquette). It was shown in R e f. 2 that an overrelaxa
tion param eter can be introduced into the M arkov evolu

tion by the generation o f  new values U! from  Ui accord

ing to the probability function

W ( U , —* U p  “ jV e x p
1 — to

<u( 2 — 0 ) )  p ? u , ‘
£  /311 * t r ( L W f ) ] - —  X  0El -  T t r ( t/ > ) l

2 (i )  P ? U ,

I - a )
£  / J l l -  i t r (t/ y .) ]  

P?U,
(4 )

w ith  Л '  fix ed  b y  the n o rm a liza tio n  co n d it ion

J*dWi\ Ж(1/,— Ui) “ 1. (5)
T h e  rep la c em en t £//—• £// is a ccep ted  w ith  probab ility

. I M U i ~ U , ) c x D l - 0 S ( V i ) ]  (6 ) 

’ W (U , -+  U i ) c x j > [ - p S (U , ) ]

I t  is easy  to  see that this p roced u re  sa tis fies  deta iled  bal 
an ce  w ith  respect to  the des ired  B o ltzm a n n  distribution

o f  E q . ( 2 ) . 3
P A can  be s im p lified  to

and JV can be exp lic itly  evaluated [fo r the S U (2 ) case] 

to be

( 8)
• M ~ A e i , ( 2 k )  '

with A  *  numerical constant. /, «he modified Bessel 

function o f  first order, ^

j t - ( D e t  М ) ' П .

P A “ m in 

Reprinted with permission

(7 )
J -  У  Us

m  2со рэЬ,

\ —  (V f .
-  1 +  --------U r

2 — co
( 10)
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where Up — U/Us , and

R -----------Г Г — ^  2  P — ^  I  Д[1 -  i t r ( t / ^ ) l
a)(2 — a )  p^u,  a) p ^ u,

( I I )

The simulation procedure is to preselect a Ui with Eq.
(4 ) and then to use Eq. (7 ) to decide whether or not to 
make the replacement £//—1► U{. Since W o f Eq. (4 ) is 
linear in Ui  one can generate it by a heat-bath algorithm 
(we use the method o f Kennedy and Pendelton4). Also, 
the whole procedure is readily vectorizable. Finally, al
though the formulas above [Eqs. ( 8 ) - ( l l ) ]  look formid
able, they are easy to implement in a real simulation 
since R  and M  are readily available in the course of a 
standard heat-bath update. The increase in computer 
time for each update over the <u"=l case was about 20% 
to 25% in our study. The main extra work is in the gen
eration o f / 1, which can be vectorized.

Suppose one is measuring the expectation value of 
some operator O. Consider first the case when О  is the 
plaquette operator ytr(t//>). This operator probes the 
field on scales o f the order o f a unit lattice spacing. 
When £ <3C I (i.e., P  is small), the decorrelation time will 
be small and no improvement will be necessary since one 
update is sufficient to decorrelate on length scales o f or
der unity. On the other hand, when £ »  1, the plaquette 
is a very local operator and again should decorrelate 
quickly. The worst case for the plaquette is when £ ~ 1 .  

Generalizing from this, if an operator gets dominant con
tributions from variations o f the field over length scales 
o f the order o f /, then its decorrelation time will be max
imum when 4 ~ l -  What this argument suggests is that 
the optimum value o f the overrelaxation parameter щ 
may have to be determined separately for each operator 
one wants to measure. This is very different from the 
differential-equation case where there is a unique mean
ing to the “ best value o f to,”  based on optimization of the 
decorrelation o f  the longest-wavelength modes.5 Indeed, 
there may even be operators that are sensitive to many 
length scales whose decorrelation time cannot be im
proved by overrelaxation.

Let us measure the expectation value £(/,/?) “ ( 0 )  o f 
<D from N  successive configurations after I q thermalizing 
updates o f the lattice. / labels the iteration number, 
/ = /o+ l,/o +  2 ,. . . ,/о +  ЛЛ One defines the autocorrela
tion function CC/,/?) as

(12a>

/0 + /V-7

D { J tp )  -  X  [£ • (/ ,/? )-£ (/01  
/ -/ 0+1

x [ £ ( / + 7 ,/3)- £ ( £ ) ]  - (12b) 

Here E(p) = -N  ~ 'X / -/ *+ i£ (/ ,/ J ) is the average value

o f E in the simulation.
I f  the system is dominated by a single decorrelation 

time r, then for large J,

. (13)

In Fig. 1 we show C(5,/3) and C(10,/3) for the plaquette 
as a function o f /3 at a>” l on 44, 64, and 84 lattices. 
Note that  ̂ is a monotonically increasing function o f P, 
and that for fixed J, т is a monotonically increasing func
tion of С  [see Eq. (13 )]. Hence, Fig. 1 is a practical 
realization o f the argument presented above which pre
dicted a peak in т as a function o f £. Indeed, it is known 
that in the S U (2 ) theory, £—-1 near /3“ 2.2 and this is 
just where the peak is. Incidentally, this peak is also 
correlated with the peak in the specific heat and the loca
tion of the crossover from strong to weak coupling.

Figure 1 also shows the analogous situation for the 
magnitude o f the Polyakov loop. N ote  that now, C (S ,P ) 
and C(\0,p)  become nonzero only for larger p values 
and the “ turn on”  value o f P is different for different lat
tice sizes. Note also that there is no peak in C U , p )  for 
the Polyakov loop as a function o f p. This implies that 
the Polyakov loop gets contributions from all length 
scales on the lattice up to the lattice size. One might 
suspect that such operators might not have their correla
tion time decreased by overrelaxation methods, because 
as shown in Refs. 2 and 5, optimized overrelaxation 
speeds up the decorrelation o f the longest-wavelength 
modes while simultaneously slowing down the decorrela
tion o f the shortest-wavelength modes.

To study overrelaxation, we first studied C(5,/3) and 
C(l0,/3) for the plaquette at /3“ 2.2 on lattices o f size 4 4, 
64, 84, and 124. The overrelaxation was done by one

f> P

FIG . 1. Autocorrelation function C { J )  at J “ 5 and J “  10 
for the plaquette (P laq .) and the magnitude o f the Polyakov 
loop ( | Pol. | )  at и - 1 as a function o f /3. C ircles, plusses, and 
squares represent data for 4\  64, and в* lattices, respectively. 
Note the peak in С near p — 2.2 for the plaquette and its ab 
sence for the Polyakov loop.
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c(io)

12 1.4

0.30

0.25
C (5 )

0.20

0.15

F IG . 2. Th e bottom  two plots show C (5 )  for the plaquette 
on 8* and 1 2* lattices at /3— 2.2 as a function o f со. N ote the 
sharp im provem ent in decorrelation time near ш — i 025 for an 
8 4 lattice and near gj — 1.05 for a I2 4 lattice. The upper plot 
shows C ( I 0 )  for the Po lyakov loop. There is no improvement 
in decorrelation tim e in this case.

sweep o f the lattice with ш“ 1 followed by four sweeps 
during which the overrelaxation parameter was increased 
linearly to its target value. 1000 such sequences o f five 
sweeps were done at each /3 value starting from an or
dered configuration ( U i ~  I V / )  and C(5,/3) and C(10,/3) 
were computed from the last 4000 lattices generated. 
The idea o f changing <u in this sawtooth fashion was 
motivated by the Chebyshev acceleration schemes in 
partial-differential-equation theory.4 The results are 
shown in Fig. 2. Only results far an 8* and 124 lattice 
are shown because we did not see any improvement for 
smaller lattice sizes. The optimum value o f со is cleary 
near o i~  1.025 for an 84 lattice and near ш =  1.05 for a 
124 lattice. I f  т is estimated from Eq. (13), the improve
ment is a factor o f 2 or 3 in decorrelation time for the 
average plaquette. Figure 2 also shows results for a 
similar simulation for the magnitude of the Polyakov 
loop on an 84 lattice at /3 — 2.5. Here, there does not 
seem to be an improvement.

W e have also computed, at /3=2.2, the autocorrelation 
function for the following two order parameters: The 
average adjoint plaquette,

£ | ( / J W < [ t r ( t / , ) ] 2) ,  ( H a )

and the plaquette-plaquette correlation function at dis
tance unity,

£г(/3) — т  (tr [t/ f> (x )]tr IC / p (x+ / i)]). (14b)

H ere /1 denotes a lattice axis direction and the correla
tion o f Eq. (14b) is computed for face-to-face plaquettes. 
Since these are both order parameters dominated by 
short-distance effects, they should improve if £o “ 7
*  (tr(C//-)). This is indeed true and is shown in Fig. 3.

FIG . 3. C (5 )  for the order parameters E\ and E i  [see Eq. 
(14 ) o f the text] at 0  — 2.2 on an 8 4 lattice. N o te  the im prove
ment near со — 1.025 in all cases.

Finally, one must address the issue o f acceptance 
rates. Since the optimum value o f со is close to unity, the 
acceptance rate at the optimum со is close to that at 
<u “  1. In Fig. 4, we show the acceptance rate relative to 
со — 1 as a function o f /3 at о>“ 1.4 and as a function o f со 
at /3- 2.5 on an 84 lattice. W e found that the accep
tance rate was almost independent o f lattice size.

In the classical6 (or free-field2) analysis, the optimum 
со is related to the lattice size for large lattices by

Wopl '
1 + C / L

(15 )

with С an appropriate constant. Thus, as the lattice size 
L increases the optimum m also increases, approaching

— 2 in the large L-limit. This trend can be seen inu opl

the two lattices for which we have determined £Uop, for 
the plaquette, but Eq. (15 ) only roughly holds: The cal
culation o f С from C —L (2/ajopt-  I )  gives С  =  8,11 for 
the /. — 8,12 simulations. Since C / L  is o f order unity for

2.5 <y -  1.4

CJ /J

FIG . 4. The left-hand plot shows the acceptance at p — 2.5 
as a function o f oi on an 84 lattice. The right-hand plot shows 
the acceptance at со - 1 .4  (re la tive to the acceptance al со — 1) 

as a function o f P, also on an 8 ‘  lattice.
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these lattices, the 1 / L 2 corrections to Eq. (15) can be ex
pected to be important, and so the variation in the fitted 
С  values is perhaps not surprising. The value o f С  ob
tained is considerably larger than the classical value 
C =  3 for similar boundary conditions, and in accor
dance with our discussion above, is likely to vary with 
the order parameter being probed.

In summary, we have presented a study o f overrelaxa
tion which shows that it can be a useful tool in the study 
o f certain order parameters. Left unanswered are the 
questions o f how to determine a priori which measure
ments benefit from overtaxa tion  and which do not, and 
how the systematic^ o f optimizing co differs from the 
classical case. It will be important to resolve these is
sues, by further empirical study or theoretical analysis,5 
before overrelaxation methods are applied to large-scale 
simulations in gauge theory.

The work o f S. A. and G. B. was supported in part 
by the U.S. Departmetn o f Energy under Grant No. 
DE-AC02-76ER02220 and Contract No. DE-FC05- 
85ER250000, respectively. W e would like to thank Her
bert Neuberger for many illuminating conversations. G.
B. thanks the Institute for Advanced Study for hospitali
ty during the inception and completion o f this work and

Khalil Bitar for discussions.
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A LG O R ITH M S FOR PURE GAUGE T H E O R Y  

Stephen L. AD LER

The Institute for Advanced Study, Princeton, New Jersey 08540, USA

In this talk I review recent progress on algorithms for pure gauge theory, co n cen tr »»™  m , iniv Qn 
methods, with some brief comments on Fourier accelerated Largevin and'multigrid algorithms at the end

1. TH E  CRITICAL SLOW ING DOW N PROBLEM
Let m  be the mass gap or characteristic mass scale of 

the physics being studied, and let a =  L _1 be the lattice 

spacing. The ratio of the characteristic length m " 1 to a 

is called the correlation length

£ =  тп~1/а =  L/m  , (1 )

and becomes infinite in the continuum limit L  —* oo. In 
a Monte Carlo calculation, noise Introduced at x ,t  must 
diffuse to z ', \x'— x\ ~  (  to yield an independent lattice 

configuration; this requires a characteristic “decorrelation 

tim e ’1 or “autocorrelation time" r .  In the free field case 
т  ~  £5; more generally

г  ~  V  , (2 )

with z a dynamical critical exponent. Let W  be the 

computational work needed to get an independent con
figuration. For an ideal “fast" algorithm

W  ~  L d x  logs of L  , (3 a )

but from eq. ( 2) we in fact have 

W
—  ~  ~  L z as L  с »  , (34)

and so if z >  0, W  is much larger than ideal for large 

lattices. This is the “critical slowing down problem;" 

ways of alleviating it are the subject m atter of this talk.

2. RELATION B ETW EEN TH E R M A LIZA TIO N  AND  

M IN IM IZ A T IO N
In Monte Carlo we study the partition function

,  =  /  d[U] e - ' W  , (4 )

and corresponding Green's functions, by generating a se

quence o f configurations { t ^ }  distributed according to 

the probability distribution

P {U )  =  e-0s(u) . (5)

Regarding 0  as T - 1  with T  a "temperature," let us con

sider the T  —» 0 or /3 —» oo limit o f eq. (4 ). In this limit 

fluctuations in U  are frozen out, and z is dominated by 

the minimum o f S (U )  at which

Su S ( U )  =  0 . (6 )

Any Monte Carlo algorithm, in the /3 —» co limit, be

comes an algorithm for the minimization problem of 

eq. (6 ); conversely, we may expect that certain algo

rithms for eq. (6 )  can be generalized to  finite /3 to provide 

useful new Monte Carlo algorithms.

з. TH E  GAUSSIAN OR FREE FIELD MODEL

To develop the relation between thermalization and 

minimization, it is instructive to  consider in detail the 

Gaussian or free-field model.

3.1. Gaussian minimization

Let L  =  L T be a real, symmetric I  x  I  matrix and

и, /  real ^-dimensional vectors, and consider the action

\ uTL u  ~  f Tu , ( 7)

for which the variational equation SuS (u )  =  0 gives the 

linear system

U  =  f  . (8)

A general linear iteration for solving eq. (8 ) is defined by 

un+a =  +  N f  , (9 )

©  Elsevier Science Publishers B.V. 
(N orth -H olland Physics Publishing Division)

Reprinted with permission from Elsevier.
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with M ,N  a “splitting" of L  which obeys

1 =  M  +  N L  . (10)

The condition of eq. (1 0 ) guarantees that if u „+i —* 

u„ —* then

=  М -Un +  N f  ( 11 )

is equivalent to Z u „  =  / ,  so that is the desired 

solution of eq. ( 8). Subtracting eq. (11) from eq. (9 ), 
we have

(^B+l tlao) t ( 12)

hence errors in the initial guess decay as M " ,  and the 

dominant error decays as />” , where

p =  “spectral radius" =  " f  |AfJ ,
(13)

M i =  eigenvalue of M  .

The iteration converges if p <  1 which requires M{ =
1 — 2 >  £; >  0 and the dominant error clearly decays 

with characteristic time

Terror iuain ~  Cm,n ■ (1 4 )

But from eq. (10 ), 1 — M  =  N L  and hence we expect

~  L mi„ =  smallest eigenvalue of L  , (15)

i.e., the smallest eigenvalue of L  gives the slowest de
caying errors. For example, in the dimension d free 

field case, where L  is the discretization of V J . we have 

im in  ~  a J ~  I _a, which implies t„ , „  Jccav ~  I J, or

z =  2.

3.2. Gaussian thermalization
The minimization algorithm of eq. (9 ) for the ac

tion of eq. (7 ) can be generalized into a Monte Carlo 

algorithm as follows.1 Let P (u  —» u ') be the normalized 

probability for the transition from u  =  u„ to u ' =  u „+1, 
given by

P (u  - . « ' ) =  ( f ) //2 C^et Г ) 1 /5 х

exp [ - ( u '  -  M u  -  N f ) T 0  I V  - M u -  N f } ]  ,
(16 a)

with Г =  Г т  a generalized inverse temperature matrix 

related to L  and M  by

Г  =  i  ( Z - 1 -  M L - 1 M T) - '  . (161)

A straightforward calculation shows that P {u  —* u ')  sat
isfies the homogeneous state condition

J du P (u  ->  u ') =  , (17)

which is necessary for Monte Carlo; P  satisfies the 

stronger detailed balance condition

e - f lS (u )  _  u , )  =  e - $ s w  p ( u , _  (

which is sufficient but not necessary for Monte Carlo, if

M TL  =  L M  N  =  N T . (19)

3.3. Stochastic difference equation form of Gaus
sian thermalization 

Let О be the real, orthogonal matrix which diagonal- 

izes Г, so that От ГО =  7  =  diagonal . Then eq. (16 ) 
can be written as a stochastic difference equation

u ^ M u  +  N f  +  ^ O y - ' / ' v  , (20 )

with 17; Gaussian noise normalized as (jj;iy ) =  2Sij. It
erating eq. ( 20) n  times we see that the autocorrelation 

(u it+„Utf), averaged over и к .  behaves as

( u * +„ u * ) 4iUw ~  M "  . ( 2 1)

Hence, as first shown by Goodman and Sokal,5 in the 

Gaussian case the stochastic decorrelation time r  is the 

same as the deterministic error decay tim e T„rar <UolV. 
and thus from eq. (1 4 ) we have

r  ~  ■ ( 22)

3 4 . Local algorithms— minimization 

Consider now the specialization of the iteration of 
eq. (9 ) which acts only on a single node variable и * . As 

a function of this node,

S (u ) =  A * (u *  — C *)3 +  B k ,

Ai,, Bk, Ck independent of 11*  , (23)

and for stability we assume Ak >  0 . The simplest lo
cal minimization algorithm is the Gauss-Seidel iteration 

Uk —» u'k =  Ck, in which one replaces the old value 

of Uk with the value Ck which minimizes the action. 
The Gauss-Seidel algorithm discards the information con
tained in the old value of u*; a more efficient algorithm, 
when coherent effects over the whole lattice are taken 

into account, is to replace H i by a linear combination of 
Ck and the old value,

-*  ul =  ш Ck +  (1 -  u )u4 . (24)
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Equation (24) is called the overrelaxed Gauss-Seidel algo
rithm, and ш is called the overrelaxation parameter. The 
iteration of eq. (24) will cause the action to decrease if

0 <  S(uk, . . . ) - 5 ( « i ,  . . . )  = 

Л к(«*  -  u i)>  -  l )  ,
(25)

which requires 0 < ш < 2. Theory shows that conver
gence is optimum for a value which scales, for large 
L, as

2
W°T> *  i ' c ->  * ^1 +  L

with Ctf, a constant.
3.S. Local algorithms— thermalization 
Since the algorithms of sect. 3.4 are special cases 

of eq. (9), they will have thermal generalizations. The 
thermal version of the Gauss-Seidel algorithm is the heat 
bath, for which P(ui, - *  u i )  is

(27)

and is independent of the old node value и*. The thermal 
generalization of the overrelaxed Gauss-Seidel algorithm, 
proposed by Adler1 in 1981, is

P(uk « i )  = [ 4 b j ]  *

exP [“ * - w Ck -  (1 - w)u*]J } ,
(28)

which satisfies detailed balance with respect to the action
S of eq. (23). Again, ш must lie in the range 0 < ш < 2. 
For 1 < ш < 2, the mean in the distribution of eq. (28) 
isu^ = С* + (ш — l ) (C * - u * )  and is displaced beyond C* 
in the opposite direction from the old value u*. hence the 
name overrelaxation. In addition to displacing the mean, 
eq. (28) reduces the width by a factor of 2 -  ш) <  1 

as compared with heat bath. The case ш = 2 is of spe
cial interest; it corresponds to a deterministic reflection 
of u* around Ck, since for ш — 2 the width of the dis
tribution is zero and the mean is й[ =  Ck +  Ck — и». 
The corresponding action change [eq. (25)] is A S  = 0 
for ш = 2 , and so the ш = 2 limit of eq. (28) is micro- 
canonical, or action conserving. This fact is exploited, as 
discussed below, in the Brown and Woch, Creutz 5 f/ (n ) 
implementation of overrelaxation.

3.6. Eigenvalue analysis of the iteration matrix M  
for V J

In the free field case, the eigenvalue spectrum of M

for the overrelaxed algorithm has been calculated.4'1'1 It и 
convenient to Fourier analyze and look at the submatrix 
M k  for wave number к; in Neuberger's‘  calculation, using 
red-black ordering with periodic boundary conditions, Mk 
is a 2 x 2 matrix and the analysis is particularly simple. 
For the Gauss-Seidel or heat bath algorithms one finds

T* = e* = const x , (29)

where

and so

*m.„ -  0(1 ), L .  -  0(L) , (30a)

Л о щ  wavelength ~  ^  i
(304)

r ihort wavelength *'w 1 i 

and the critical exponent z defined by eqs. ( 1) and ( 2) is 
x = 2. For the overrelaxed Gauss-Seidel and heat bath 
algorithms, there is an optimum value ш =  for which

Tkl = «* = const x Кч, all k , (31a)

and so

T.ll wavelengtha ~  L  (314)

which implies z  = 1! Note that while o ve rta x 
ation speeds up the decorrelation of the long wavelength 
modes, it slows down the decorrelation of the shortest 
modes. As noted above, for large L the optimum ш scales 
as w ^, = 2/ (l- f  Coft/L), and the detailed analysis shows 
C^t ~  Jfen.in/ff1/’ . More generally, for the family scaling 
towards 2 for large L  as u> = 2/(1 + C /L ) , С  ф С  
one still has z = 1, but the coefficient of proportionality 
r / {  is not optimal. Thus, in the free-field case, over
relaxation reduces z  = 2 to z = 1, and goes half-way 
towards solving the critical slowing down problem.

3.7. w-fixing
In the minimization problem, it can be shown7 that 

ы = 1 maximizes the initial rate of error decay, while 
the choice ш — maximizes the asymptotic rate of 
error decay for large computational time, but can actu
ally increase errors for some finite number of early iter
ations. Hence the optimal strategy to get the small
est error at each stage of computation is to use for 
sweep t an w value with u 0 = 1, 1 < <*>, < 
for i  > 1, and Wi-oo = under certain assump
tions about the errors, the sequence ш, can be explic
itly constructed in te rm  of Chebyshev polynomials. In 
the Monte Carlo case, the noise injected at each up
date behaves as a new initial error term, and so the 
decorrelation strategy suggested by Chebyshev overre



692 Adventures in Theoretical Physics

440 S.L. Adler/Algorithms for pure gauge theory

taxation is to use a "sawtoothed" sequence of ui's,
1, 1, 1, with
“ i , l  <  » < N  increasing towards and with the 
sequence length N  chosen of order the effective decorre
lation time r .  (Note that this gives an implicit, self- 
consistent specification of N .)  Then taking one lat
tice configuration for measurement per sawtooth sweep 
should give the maximum number of statistically inde
pendent configurations per unit of computational work. 
The ‘ OR n” methods discussed below will be seen to be 
analogs of the sawtooth scheme.

3.8. Multiquadratic generalizations 
The algorithm of eq. (28) is valid for any action 

which, as a function of each individual node variable u*. 
has the form of eq. (23). This defines the class of multi- 
quadratic actions, which is larger than the class of Gaus
sian actions. Some interesting interacting multiquadratic 
actions are:

■ The continuum Yang-Mills action S = 
which is multiquadratic* because the interaction 
term in is an outer product

• Non-compact discrete Yang-Mills, for the same rea
son;

• The discretized ф* and Higgs actions with ф* point 
split® according to ф *(х )  -* ф1(х )ф '2(х  + a/i), with 
(i a unit lattice displacement.

4. N O N -M ULTIQ UADRAT IC  IM PLEM EN T A T IO N S  
OF O V ER R ELA X A T IO N
Most non-multiquadratic implementations of overre

laxation make use of the generalized Metropolis algo
rithm, consisting of the following two steps:

1. Given u, pick a trial и ' with normalized probability 
distribution W (u  —* u1).

2. Accept u ' with conditional probability

A \  - H i ' )  С - Я М /  ■ (  )

This procedure gives an overall transition probability 
P [u  —» « ')  which satisfies the detailed balance condi
tion of eq. (18). I will group the algorithms to be dis
cussed into two basic types, (a )  microcanonical analog 
algorithms, and (b ) tunable-ш algorithms.

4.1. Microcanonical analog algorithms 
The simplest implementation of overrelaxation for 

SU(n) gauge theories is the microcanonical analog al
gorithm proposed by Brown and W och10 and Creutz.11 

Let Ut be the link being updated, and let Sw  be the sum 
of terms in the Wilson action which depend on Ut\

p S w {Ut) = const — £  Re Tr (  Ut £  tfs ) . (33)
П  \  i t a p l e i  }

Let Ua be the value of (7/ which minimizes Sw\ in terms 
of Ua and the old value of the link Ut. we wish to con
struct an analog of the ш = 2 limit of the multiquadratic 
algorithm of eq. (28), which we rewrite as

u'k = С* — и* + Ci, . (34a)

Exponentiating eq. (34a) gives

е<и1 =  е, с * (e* “ * ) ” * e ' c * , (34b)

which suggests the unitary group analog

U[ =  U0 U j1 U0 . (35)

The algorithm of Brown and W och and Creutz consists 
of using eq. (35) as a Metropolis trial selection; since the 
inversion of eq. (35),

Ut = tr* (tf;)-1 u0, (36)

is just eq. (35) with Ut and U[ interchanged, the ratio 

W[U't Ut) /W { U t -► Щ) in eq. (32) reduces to unity, 
and detailed balance with the Wilson action of eq. (33) is 
satisfied by accepting the trial selection of eq. (35) with 
the conditional probability

PA = min { l ,  . (37)

For SU(n) with n > 3, the acceptance probability 
Pa is smaller than unity. The case of S U {2) is special, 
since the sum over staples in eq. (33) is then proportional 
to an S {/(2 )  group element which we call

E  us = k Uq1,
staple»

pSw[Ut) = const -  ^  T i f lW T 1) - (38) 
n

We see from eq. (38) that indeed Ut = Uo minimizes 
Sw(Ut), and since



R58 693

S.L. Adler/Algorithms for pure gauge theory 441

Tr ( № )  = t ,(u0u - 1uc)u^  = Ъ(и0и - ' )

= ъ { и 0и г 1) - 1 = Tr vtu; ' ,
(39)

we have Sw(Ufl = Sw(Ut ). So for 5(7(2) we have 
Pa = 1. and the Brown and Woch, Creutz algorithm 
is microcanonical. To get ergodicity one adds standard 
Metropolis steps, defining “ OR n Metropolis" as follows:

OR 0 Metropolis =

Brown and Woch, Creutz algorithm

of eqs. (3S) and (37); (40)

OR n Metropolis =

OR 0 +n standard Metropolis steps.

Clearly, OR n  is similar in spirit to the “sawtoothing" 
procedure discussed in sect. 3.7.

In analogy with the above S (7 (n ) algorithm, Gupta, 
et al.13 have given an overrelaxed Metropolis algorithm 
for the X Y  model. The action here is

S = const -  0  £<ij) cos(0i -  9j)

= const -  0  k E ;  R e ( S E ! )  , (41)

Si — 6 k E ; =  Y^j € (ij ) Sj ,

where (i j ) indicates the restriction of the sum to near
est neighbor pairs, eq. (41) has the same structure as 
eqs. (33) and (38), so a corresponding overrelaxed, mi
crocanonical algorithm is

S i  —  S I  =  S i  S,-1 S ; (42)

4.2. Tunable-ы algorithms
Adler4,13 has given an overrelaxed algorithm for 

SU (n) incorporating a tunable ш parameter. The al
gorithm is constructed by first doing a non-compact dis
cretization of SU (n) and using eq. (28) to write the 
corresponding overrelaxed transition probability W {u  —# 
u '). One then writes the Wilson lattice gauge theory 
transcription of W , which takes the following form. Let 
t  be the link being updated, with Ut the old value, U[ 
the new value, and Us the staple joining with Ui in the 
plaquette P . In terms of Up = UtU$, Up =  U[Us we 
have

(43a)

W[U( I /'] =  A /x

« Р  Z p o tP  [1 -  k  R ' Tr [UpU’p)]

- b  E j- m  /3 [ l  -  i  Re Tr U'P\

E ™  / 9 [ l - i R e T r t f P ] }  , 

with the normalization constant M  fixed by

I  d[Ul\ W[Ut U't] =  l  . (43b)

W e then use W  as a Metropolis preselection, and accept 
U[ with the conditional probability

Pa = m i n { l ,

=  m i n { l ,  A f'//f} =  m i n { l ,  1 +  0 ( a 5) }  ,
(44)

giving an efficient algorithm for which Pa —» 1 in the 
continuum limit. In the case of 5 (7 (2 ), the normalization 
J\[ can be readily calculated in closed form .13

An alternative tunable-<i> algorithm, for the special 
case of 5 1 /(2 ), has been given by Brown and W och .10 

They proceed by mapping 5 (7 (2 ) onto R3 in such a way 
that the Wilson action transforms into a unit Gaussian. 
They then do an overrelaxed heat bath update using 
eq. (28), and finally remap back to 5 (7 (2 ). Explicitly, 
they start from eq. (3 8 ) and set

Ut =  e4 * f *U0 , (45)

with 5  the S U (2) matrices, so that Sw becomes

0  Sw(Ui) = const — 0k cosfl . (46)

They then map в into r  = / (fl) defined by 

Z - 1 £ = m  e - '/ 'd x  =
(47)

( о iinJ“  ^  CO,“ <^ > 

with Z, Z' appropriate normalization constants. Defining 
f  —  t t , they do an overrelaxed update

г ' =  (1 — <*>)f +  u(2 -  u )ij ,

(ViVj)r, = 28ц , (48)

and then remap to get

U't = e* ! ~ W - * U a . (49)
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This algorithm exactly satisfies detached balance by con
struction, and so does not need a Metropolis correction 
step.

Finally, Heller and Neuberger14 have given a tunable- 
ш algorithm for the nonlinear c-model, with action

S.L. Adler/Algorithms for pure gauge theory

Cp{uu U2) =  ~ Y 1  (w ?  -  W ) ,  (W p  -  ( W ) ) i  -

(54)

(50)

Defining фс to be the value of ф [х ) which minimizes S 
for fixed x, their procedure is to draw a geodesic in the 
O (n ) manifold through ф and parameterized by u, 

thus defining an ы -dependent mean ф', and to take ф' 

distributed around ф1 with a distribution which approxi
mates the narrowed distribution of eq. (28). in the 0 (4 ) 
case, this recipe can be written in terms of SU (2) ma
trices as

и  =  фа + {  <таф ° ,

U' = (U0U-l)“ U ,

w  =  v  0 ‘ ,

with V  a noise matrix distributed as

7

(51)

(52a)

P<Y) = e x p { ; tr(V) (52b)
[2 w {2  - w )

where 7  is read off from the conditional distribution of 
U as determined by its nearest neighbors, written as

p[U) = exp ^  7  tr (U a 0-1)j . (52c)

As before, the new value U' is used as a Metropolis pre
selection in a final accept/reject step which enforces de
tailed balance with respect to the action of eq. (50).

5. N U M ER IC A L  R ESU LT S  ON O VERRELAXAT IO N  
A number of studies of the utility of overrelaxed al

gorithms have been carried out in the last two years; we 
group them by algorithm type as in Sec. 4.

5.1. Studies of microcanonical-analog algorithms 
Creutz11 studied the algorithm OR 0 [cf. eq. (40)] 

for SU (3 ) at /3 = 6.0 o n a 7 x 7 x 7 x 6  lattice. For the 
non-gauge-invariant lattice correlation (n* = number of 
links)

C{UU V,) = —  £  Re Tr [ £ V  ,
71̂ 71 L 1 (53)

he found that OR 0 outperformed 128 hit Metropolis 
(which is effectively equivalent to heat bath). For the 
gauge-invariant plaquette correlation ( np = number of 
plaquettes)

T i p

1
W p  = — Re Tr Up , 

n
OR 0 was somewhat slower at d e co lla tin g  plaquettes 
than heat bath or 10-hit Metropolis. Creutz showed that 
the plaquette was improved by using an algorithm with a 
tunable parameter intermediate between O R 0 and stan
dard Metropolis, but he did not study OR n.

Brown and W och10 assessed O R 71 by studying au
tocorrelation times for the average action and for the 
"Polyakov loop"1' defined by

“ Polyakov”  = Tr П  Di
.lire through lattice

(55)

Letting p (A ) be the autocorrelation between sweeps t 
and i +  Д, they defined the truncated sum

Pm =  £  P(A ) >
Д = - т

(56)

in terms of which the autocorrelation time т of eq. ( 2 ) 
is given by

т  -  \  Poo i (57)

in practice they estimated from They found that 
overrelaxation gives a dramatic improvement in decorre
lation for SE/(3) for 0  = 5.6 on a 4* lattice, with up 
to a factor of 3 improvement for interesting observables. 
The Polyakov loop was best for OR 0. while the action

Table 1: Correlation time r in sweeps (error ~  20).

OR 1
20 hit 

Metropolis
Pseudo 

Heat Bath

0 R T R T R T
6.5 40 90 90 200 130 170
7.0 40 60 110 180
7.25 40 60 100 170
7.5 40 60 140 210

decorrelated best for O R 10 but was worse for OR 0 or 
OR 1 than for conventional 10-hit Metropolis, consistent 
with Creutz's results.

Gupta et al.1* compared the following algorithms for
SU[ 3);



R58 695

S.L. Adler/ Algorithms for pure gauge theory 443

• 20 hit Metropolis,

• OR n,

■ pseudo heat bath (the Cabibbo-Marinari S U (2) sub
group algorithm),

■ hybrid Monte Carlo. (58)

They measured small Wilson loops on blocked lattices, 
blocking in five levels by v/3/level starting from a 9* 
lattice, and measuring autocorrelations of the blocked 
loops at each level. Their results for rectangular loops 
(Я )  and twisted loops ( T )  are in Table 1. Gupta et 
al. conclude that OR 1 is the optimal algorithm for pure 
gauge simulations over the entire range of accessible /?.

In another, independent investigation, Gupta et al.13 
studied the X Y  model using the algorithm of eq. (42). 
For an iteration consisting of 15 steps of eq. (42) followed 
by 2 standard Metropolis steps, they found a sizable re
duction in critical slowing down, measuring

r  = 0.15f13 . (59a)

For comparison, a pure standard Metropolis iteration 
gives

r  = bC . (59i)

5.2. Studies of tunable-u algorithms
Brown and W och10 studied the tunable-ш algorithm 

of eqs. (45)-(49) for the S U (2) subgroups of ££/(3), at 
/3 = 5.6 on a 4* lattice. They found that the Polyakov 
loop decorrelated best at u> = 2, where a factor of 3 
gain was realized, while the action decorrelated best at 
an intermediate ш of 1.25. However, more recent work 
shows that on the Columbia 64-mode machine,17 a mixed 
algorithm consisting of 9 u  = 2 iterations followed by
1 conventional Cabibbo-Marinari iteration was not no
ticeably better than a non-overrelaxed algorithm on a 
243 X 16 lattice at /3 > 6. ( It  is not possible, with cur
rent software, to implement the tunable algorithm with 
ш <  2.)

Adler and Bhanot1* tested Adler's algorithm of 
eqs. (43)-(44) for S I/ (2 ) at 0  around 2.2. A factor of 2 
improvement in plaquette correlation was observed (with 
sawtoothing) at very small ш, with ~  1.025 on 8* 
and ~  1.05 on 12* lattices. For the magnitude of the 
Polyakov loop, no distinct minimum was observed, but 
larger ш values were found to be better than и = 1, con
sistent with the Polyakov results of Brown and Woch.

Heller and Neuberger14 studied the nonlinear a- 
model in 1 dimension using the algorithm of eqs. (50)-

(52). They point out that interactions can renormal
ize the starting value of ш into an effective value ш ,ц. 
They determine ujtj /  computationally by studying the 
field-field autocorrelation matrix and fitting to free-field 
formulas for the overrelaxation of i  ^(3* ф)г + m 3 <£3], 
with m  the mass gap, getting ш ,ц  = и  — 0.77m, as 
compared with the theoretical formula u»„* (m )  = 2 - 2m. 
These formulas show that there exists an ш < 2 for which 
ш ,ц (и ,т )  > Wopi(r7i), and hence (in d = 1 at least) a 
dynamical critical exponent of z = 1 is attainable.

5.3. Conclusions from the numerical work 
The following conclusions can be drawn from the nu

merical work synopsized above:

1. Overrelaxation works! It is the local algorithm of 
choice in most pure gauge system applications, and 
for many allied lattice spin and field theories as well.

2. г = 1 is not a free field artifact, but is attainable in 
interacting systems.

3. Sawtoothing of some sort is desirable; in the micro- 
canonical analog versions, one should use OR 1 at 
least.

4. The decorrelation for the plaquette is best for 1 < 
‘•’opt < 2, while the Polyakov loop is most improved 
for ы ~  2. However, the systematics of (a ) which 
form of overrelaxed algorithm is best, (b ) how to 
pick u>. and (c ) which measurements are helped and 
why, is far from settled— more theoretical and em
pirical work is needed.

6. FU R T H ER  Q U EST IO N S AND D ISCUSSION
6.1. How does overrelaxation work?
Neuberger16 has proposed an interesting field- 

theoretic model for overrelaxation, based on the fact 
that his "red-black" analysis of the free field case re
duces to a 2 x 2 matrix problem. Let fli(z ,i) be a free 
field, governed by an action which is the discretization of 
j  [(д^фУ +  т 2ф1]. Let ф* be the fields with support at 
the “ red" and “black" sites,

* ± » j [ l ± ( - l ) x ' e' ] *  (60)

and let ф1 =  +  i>~ =  Ф and ф* = =
be respectively the sum and difference of the 

red and black site fields. Neuberger shows that the over
relaxation analysis for ф can be mapped into a stochastic 
field model for the fields ф1,1, with action
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S =  j  < ?х £ . ,

с  =  \ [ (a ^ 1)’  +  (a ,* ’ )1] + \ [* !(** )*+ ,

(6i)
and evolving according to the stochastic differential equa
tion

Г  =  - ( 1  -  7 J)1/a £  -  7 «*» $  +  (1 -  7*), / 4 .  , 

a , P  ~  1 ,2 ,

(>7o(*,0 V -  * ')  S(t -  t') .
(62)

When 7 = 0 eq. (62) is the usual Langevin equation, 
which corresponds13 to the extreme underrelaxation limit 
ш — 0; for 0 < 7  < 1 eq. (62) differs from the Langevin 
equation by the addition of a "reversible mode cou
pling” term с^В Б /Э ф ?, which enters the Fokker-Planck 
equation as [д/в ^ “ )(Е“ ^ Д 5 /8фР) =  0 and so leaves 
exp(— f}S) as the equilibrium distribution. According to 
Neuberger, the model of eqs. (61)-(62) maps into the 
overrelaxation analysis as follows:

m\ = m 3 <C 1 = light field mass,

77l|  = 4d =  heavy field mass, (63)

with 0 < 7  <  1 mapping into 0 <  ш <  2. His conclu
sion is that overrelaxation works by adding a reversible 
coupling between pairs of long and short wavelength 
modes. The effect of the reversible coupling is to speed 
up the stochastic evolution of the long wavelength modes 
while slowing down the evolution of the short wavelength 
modes; the fact that the heavy modes are slowed down 
presumably explains why the observed results of overre
laxation depend on the operator being measured. Based 
on his analysis, Neuberger suggests that there is a dynam
ical equivalence class of overrelaxed algorithms which will 
be tunable to z = 1.

6.2. Two questions about overrelaxed Metropolis
An important issue to be answered is whether OR n, 

or its generalization O R n ii i j ,  defined as Пг steps of the 
Brown and Woch, Creutz algorithm followed by n , steps 
of standard Metropolis, can attain z = 1 for appropriate 
n or appropriate щ ,  n ,. Or do these algorithms merely 
give an approximation to a fully tunable и  for small lat
tices?

A second, related question is whether a fully tun
able ш can be introduced into overrelaxed Metropolis by 
an extension of the Brown and Woch, Creutz construc
tion. An interesting possibility is to use a new Metropolis 
variant proposed by Creutz, Gausterer and Sanielevici,™ 
based on unitary link matrices Ui and auxiliary “ noise” 
matrices Vj, with U{, V; с S£/(n), iterated according to

Щ =  и л [ { и }  ] V t ,
(64)

(V/)-1 =  * [{£ 0 1  v ; * [ {£ / '} ] ,

and with the primed update accepted with conditional 
probability

Pa “  min [1, c x p ( ) ( -H ‘ +  H)] ,
(65)

Я  =  5 ( { £ / } )  +  £ (  -S (V i).

Here Fi t SU(n) are arbitrary functionals of the { t / } ,  and 
exp [-/3 S (V )] is an arbitrary imposed distribution for 
V. In this generalized setting, OR 0 corresponds to the 
choices V; 3  1 (no noise), / ([ { l^ } ]  = U ^ U ioU ^ U io , so 
that l/;.Fi[{E/}] = UioUr^Uia. An interesting question 
is whether one can get an efficient tunable-ш algorithm 
along the lines of the Heller-Neuberger construction of 
eqs. (51)-(52), by choosing

= [О Т Ч * . ] "  , 0 < ш < 2 , ( 66 )

and making an appropriate choice of £ (V ) .
6.3. Can z — 0 be attained by nonlocal algorithms? 
So far we have discussed local algorithms. W e  now 

address the question of whether non-local algorithms can 
give a further improvement in critical slowing down from 
z = 1 to z = 0 . Two methods have been discussed in 
the literature: (a ) Fourier acceleration in the Langevin 
equation31 and (b ) stochastic multigrid.5 In Fourier ac
celerated Langevin, one performs a Langevin update

Ф{х,тп+1) = ф{х,тп) -  Ъ [ф ,q] , (67)

with the driving term f  at x coupled nonlocally to the 
action variation SS/бф  at y,

“  E v  [E*,K 6ф(и,г„) + V е*’» Ч (У 1Гп)] 1
(68 )

=  E „  ’  • <*-*> Ф )  ■

Usually one takes f (p ) = e(pa - fm ’ ) -1, as motivated by 
the analysis of critical slowing down in the free field case. 
In stochastic multigrid, one performs sweeps on succes
sively coarser grids according to the following recursive 
procedure:
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• Do m i heat bath sweeps on а I /  lattice;

• Compute the conditional action5 on the next coarser 
(X / 2) li lattice;

■ Do 7 multigrid iterations on the ( i / 2 )1' lattice; and

• Add the coarse grid result back on the Ld lattice 
and do 771] further heat bath sweeps.

According to this definition, for each initial sweep on 
the Ld lattice there are 7  on the lattice of dimension 
( I / 2 )d, 7 5 on the lattice of dimension ( L /4)d, and so 
forth.

Let me now briefly discuss a number of problems 
which will have to be surmounted in order to apply these 
methods as lattice gauge algorithms:

1. For both Fourier acceleration and multigrid— the 
problem of non-smooth approximate zero modes.32 

W e have seen in sect. 3.1 that the worst errors typi
cally come from the smallest eigenvalues of L. Both 
Fourier acceleration and multigrid assume that the 
dangerous modes are localized around the origin in 
Fourier space (as they are in the free field case): 
Fourier acceleration through the explicit choice of 
£»„, and multigrid through the blocking scheme. 
However, as is well-known, non-Abelian theories can 
have zero eigenmodes which are not localized around 
zero in Fourier space— in fact, as exemplified by in
stanton zero modes, they can be arbitrarily rapidly 
varying. To deal with this problem adaptive versions 
of the Fourier acceleration or multigrid algorithms”  
will be needed.

2. In Fourier acceleration, the choice of step size is an 
issue. If the step size Is small, the algorithm is accu
rate but the stochastic evolution is slow. If a large 
step size is used to get rapid evolution, there are 
detailed balance errors, or the danger of small ac
ceptances if detailed balance Is restored by a global 
Metropolis step.

3. In multigrid, attention must be paid to the work 
estimate. If the Lagrangian is a polynomial of order 
p, the conditional action on level 2* is computable 
in O (p ) steps from the action on level 2t_1, giving 
the work estimate3

W  ~ L d + '1{ L l i y + ~ < \ L l i y  +  . . .  (69)

However, for non-polynomial Lagrangians, such as

the Wilson action, the conditional action on level 2* 
must in general be computed on the finest lattice 
and requires Ьл steps, giving the work estimate1

w  ~  (1 + 7 + у  + ... + 7log,ь) Ld

~  Ld log, L 7 = 1  (70)

~  i d+ 7  > 1

Now according to Goodman and Sokal,1 in the Gaus
sian case one can prove that critical slowing down 
is completely eliminated for 7  > 2. But according 
to eq. (70), this gives гсц  — log, 7  > 1 and so 
multigrid does no better than is possible by overre
laxation. Thus, in order for multigrid to beat overre- 
laxaticn, one will have to either (i) eliminate slowing 
down with 7 = 1 (this is conjectured54 and could be 
studied numerically in lower dimensional examples 
even in the absence of proofs) or (ii) find a clever 
method to reduce the work needed to compute the 
conditional lattice gauge theory action.

6.4. Conclusion
To conclude, overrelaxation is very simple to imple

ment, and goes half-way towards solving the critical slow
ing down problem for pure gauge theories— one can get, 
in principle, from z = 2 to z = 1. To get from z — 1 to 
z = 0 will require further good ideas!
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IN T R O D U C T IO N  A N D  B R IE F  R E V IE W  OF 
V IE W IN G  T R A N S F O R M A T IO N S  O F A  P L A N A R  

O B J E C T

A central issue in pattern recognition is the efficient 
incorporation o f invariances with respect to geometric 
viewing transformations. We focus in this article on a 
particular method for handling invariances, called “im
age normalization” , which has the capability o f extract
ing all o f the invariant features from an image using only 
a small amount o f information about the image (such as 
a few low order moments). The great appeal of normal
ization is that it isolates the problem of finding the im
age modulo the effect of viewing transformations, from 
the higher order problem of deciding which features of 
the image are needed for a specific classification deci
sion. Intuitively, normalization is simply a systematic 
method for transforming from observer-based to image- 
based coordinates; in the former the image depends on 
the view, whereas in the latter the image is viewing trans
formation independent. From a mathematical viewpoint, 
our method consists o f placing a set o f constraints on 
the transformed image equal in number to the number 
o f viewing transformation parameters, permitting one to 
solve either algebraically or numerically for the param
eters of a normalizing transformation. Since the con
straints are necessarily viewing transformation noninvari
ants, their construction is in general simpler than the 
direct construction o f viewing transformation invariants.

Let us begin our discussion with a quick review of the 
viewing transformations o f a planar object, since these 
transformations will be used as illustrations of our gen
eral methods. Under rigid 3D motions the image I(x ) ,  
with x  =  ( i i ,  X2 ) the two dimensional coordinate in the 
image plane, is transformed to / ( £ ') ,  with £ '  related to 
x  by the planar projective transformation

transformation

x '  =
1 +  E m = l  Pm X„

n  =  1,2 (1)

When the depth of the object is much less than its dis
tance from the lens, then the parameter pn in Eq. (1) 
can be neglected, and Eq. (1) reduces to the linear affine

^ * G nm x m -f* tn . (2)

[An affine transformation, with Gnm replaced by Gnm — 
tn Pm, also results when Eq. (1) is expanded in a power 
series in x m and second and higher order terms are ne
glected.] Additionally, when the viewed object is con
strained to lie in the plane normal to the viewing or 3 
axis, Eq. (2) specializes further to the similarity trans
formation group o f scalings, rotations, and translations, 
in which Gnm is simply a multiple (the scale factor) o f a 
two dimensional rotation matrix. The projective trans
formations, the affine transformations, and the similarity 
transformations all form groups, and this will be the char
acterizing feature o f the viewing transformations studied 
in our general analysis.

In applications, it will be convenient to use subgroup 
factorizations, which are readily obtained from the group 
multiplication rule for the transformations of Eqs. (1) and
(2). For example, a general planar projective transforma
tion can be written as the result o f composing what we 
will term a restricted projective transformation

(3)
1 +  E m = 1 Pm X '„

with the general affine transformation of Eq. (2). An
other subgroup factorization expresses the general affine 
transformation o f Eq. (2) as the result o f the composition 
o f a pure translation

x "  =  x'n +  tn (4a)

with a homogeneous affine transformation

2

X n  — ^   ̂ G n m  З'тп (^ b )
m=l

Yet a third subgroup factorization expresses a general ho
mogeneous affine transformation as the result of compos
ing what we will term a restricted affine transformation, 
which has vanishing upper right diagonal matrix element,

m= 1
9nrt 9 12 =  0 (5a)
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with a pure rotation

2

% n  =  ^  R n m ^ m  i 
m =  3

Ли  к  Л22 =  cos в, R 12 — - R 21 =  — sinfl (5b)

A variant o f Eqs. (5a,b) is obtained by requiring that the 
matrix g have unit determinant, so that it has the two- 
parameter form pi 1 =  u, 012 =  0, S21 =  w, g22 =  
and then including a scale factor Л in Eq. (5b), which 
now reads

2

X n  — A ^  Rnm'^m' (5c)
1

G E N E R A L  T H E O R Y  O F IM A G E  
N O R M A L IZ A T IO N

We proceed now to formulate a general framework for 
image normalization, with the aim of understanding the 
common elements of the various normalization methods 
which appear in the literature and o f generalizing them to 
new applications. As a preliminary to the mathematical 
discussion o f Subsecs. 2A-E, we specify our notation for 
viewing transformations. Let Q =  { 5 }  be a group of 
symmetry or viewing transformations S, which act on 
the image I (x )  according to

I ( x ) -> l s (x) =  I (S (x ) )  . (6a)

Our notational convention, that we shall adhere to 
throughout, is that x ' =  S (x )  is the concrete image co
ordinate mapping induced by the abstract group element 
S. [A specific example o f such a transformation would be 
the planar projection transformation of Eq. (1), in which 
S would be the abstract element of the planar projec
tive group characterized by the parameters Gmn, tn, pm 
specifying the concrete coordinate mapping ] In this no
tation, the result of successive transformations with Si 
followed by S2 is given by

J (£ ) -> J SlSl( f )  = / ( & ( & ( £ ) ) )  - (6b)

The transformation groups of interest to us are in gen
eral ones with continuous parameters, in other words, Lie 
groups. However, very little o f the formal apparatus of 
Lie group theory is required in what follows; basically, 
all we use is the group closure property and the enumer
ation of the number o f group parameters. In particular, 
no knowledge o f the representation theory of Lie groups 
is needed.
A. The normalization recipe. We begin by giving the gen
eral prescription for an image normalization transforma
tion. Let Nj(x) be a transformation o f x which depends

on the image I , and which is constructed so that under 
the image transformation of Eq. (6a), it behaves as

N Is(x) =  S ~ \ N i (x ) )  , (7a)

with S_1 the inverse transformation to S o f Eq. (6a),

5 { 3 ~ 1(Х)) =  Х . (7b)

Also, let M i(x )  be an optional second transformation of 
x  which depends on the image I  only through invariants 
under the group of transformations <y, that is,

M /S( f )  =  M j( f ) ,  all S e  G • (7c)

Then

J ( f ) = J ( J V / ( M / ( x ) ) )  (8 )

is a normalized image which is invariant under all trans
formations o f the group G■ This is an immediate conse
quence o f Eq. (6a) and Eqs. (7a-c), from which we have

/ s ( f )  =  l s { i t l3 (M ,s (£ )))

= / д а - 1(ЛГ7(М /( f ) ) ) ) )  (9)
=  I i N r i M j i x ) ) )  =  / ( f )  .

B. Uniqueness. Before specifying how to actually con
struct a map N 1 obeying Eq. (7a), let us address the 
issue o f uniqueness. That is, given two maps N\j(£) and 
N2 i{x ) ,  both o f which obey Eq. (7a), how are they re
lated? By hypothesis, we have

JV1/ s (x) =  S ~ \ N u (£ ) )  ,
N2Is (S) = S-^N^ix)) . (10)

Since for any f ( x )  and g(x)  we have

f m r 1 =  9  - \ r l w ) , (* la )

we can rewrite the first line o f Eq. (10) as

t i u s W  =  N ~ \ S ( x ) )  . ( l i b )

Let us now define a new map M j(x )  by

M j{x )  =  N ^ \ N 2I{S)) , (12)

which reduces to the identity map when N\; =  Nii\ then 
by Eq. ( l ib )  and the first line of Eq. (10), we have

M f s ( x )  =  N ^ s (N2I s (x ))

=  t f r / (S (J M ( t f2, ( f ) ) ) )  (13a) 

=  N r f ( N 2I(x ))  =  M , ( x )  .

In other words, M i ( x )  depends on the image I  only 
through invariants under transformations o f the group G\
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and from Eq. (12), the normalizing map N 21 is related 
to the normalizing map N u  by

N u ( £ )  =  N u ( M i { x ) )  . (13b)

This is why in writing the general normalized image cor
responding to a particular normalizing map in Eq. (8), 
we have included in the x  dependence the possible ap
pearance o f a map M i  which depends on the image only 
through invariants under transformation by elements of 
6-
C. Construction o f  N 1 by imposing constraints, and 
demonstration that normalization yields a complete set 
of invariants. We next show that one can construct 
an image normalization transformation obeying Eq. (7a) 
by imposing a suitable set of constraints. We shall as
sume now that Q is a К -parameter Lie group which 
is continuously connected to the identity. Let Ск[1\ =  
Cfc[/(£)] , к =  (where 1 is a dummy variable)
be a set o f functionals of the image I (x )  with the property 
that the К  constraints

C k[Is'] =  C fc[/(S '(£ ))]  =  0 , к =  1......К  (14a)

are satisfied for a unique element S' =  N 1 of Q, so that

С * [ / ( ^ ( г ) ) ] = 0 ,  к =  . (14b)

Then, as we shall now show, N j(x ) is the desired nor
malizing transformation.

We remark that the condition that Eqs. (14a,b) should 
have a unique solution can be relaxed in applications to 
the condition that there be only one solution in the range 
o f relevant viewing transformation parameters. Clearly, 
either form of the uniqueness condition requires that the 
constraint functionals not be invariants under Q, and thus 
their structure will in general be simpler than that of 
directly constructed viewing transformation invariants. 
In many cases, the constraints can be constructed from 
viewing transformation covariants, which have simple al
gebraic properties under the transformations of Q, per
mitting closed form algebraic solution for the parameters 
o f the normalizing transformation.

To see that the construction o f Eqs. (14a,b) gives a 
transformation N j(x )  that obeys Eq. (7a), let us con
sider the effect of replacing /  by Is in Eqs. (14a,b). By 
hypothesis, the constraints

Ck[Is (S'( f ))] =  0 ,  k = l , . . . , K  (15a)

are uniquely satisfied by a group element S' =  Nis o f Q, 
so that

Ck[Is (Njs (x))}=  0 ,  k =  (15b)

with Nis (x ) the proposed normalizing transformation 
corresponding to I s ■ But using Eq. (6a), we can also 
write Eq. (15b) as

С - * [ / ( е д , ( * ) ) ) ] = 0 ,  k =  l , . . . , K ,  (15c)

which has the same structure as Eq. (14b). Therefore, 
by uniqueness of the solution Nj of Eq. (14b) we must 
have

З Д . , ( х ) )  = N i ( x ] ,  (16a)

which by Eq. (7b) is equivalent to

N Is№  =  S - l ( N , W ) , (16b)

showing that the N 1 produced by solving the constraints 
does indeed obey Eq. (7a). Hence the imposition of con
straints gives a constructive procedure for generating im
age normalization transformations.

We note that this construction makes the normalizing 
transformation Nj  an element of the group Q, and the 
quotient M /(x ) =  N~; '' (N 21 (x))  of two normalizing maps 
constructed by imposing different sets of constraints will 
likewise be an element of Q. When both N 1 and М / in 
Eq. (8) belong to Q, we can invert Eq. (8) to express the 
original image I  in terms of the invariant, normalized 
image I  according to

I(x )  =  i ( M f l ( N f l {x)))  . (16c)

This equation shows that normalization leads to a com
plete set of invariants, in the sense that the information 
in the normalized image, plus the К  parameters deter
mining the viewing transformation suffice 
to completely reconstruct the original image. By way of 
contrast, representation-theoretic and integral transform 
methods, although attacking the same problem as is dis
cussed here, yield only a small fraction o f the complete 
set o f invariants. Moreover, normalization has the fur
ther advantage of requiring only a minimal knowledge of 
the kinematic structure of the group; the full irreducible 
representation structure is not needed, and the methods 
described here are applicable to noncompact as well as 
to compact groups. We note finally that the discussion 
o f this section is slightly less general than that of Subsec
tions A ,В above, where we did not require either Nj  or 
M i  to belong to Q\ the most general normalizing map N 1 

is obtained from one generated by constraints by using 
as its argument a map M i  which does not belong to Q 
but that is invariant under transformations o f the image 
I  by Q.
D. Extension to reflections and contrast invariance. We 
consider next two simple extensions of the constraint 
method for constructing the normalizing transformation. 
The first involves relaxing the requirement that Q be sim
ply connected to the identity, as is needed if Q contains 
improper transformations such as reflections. Reflections 
are said to be independent if they do not differ solely by 
an element o f the connected component of the group; for 
each independent discrete reflection R in G, the set of 
constraints of Eq. (14a) must be augmented by an ad
ditional constraint -D [/(5 '(x ))] >  0, where £>[/(£)] is a
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functional o f the image which changes sign under the re
flection operation R ,

£ [ /(Д (х )) ]  =  -£ > [/(£ )] . (17)

The second extension involves incorporating invariance 
under changes o f image contrast, that is, under image 
transformations of the form

/ ( f )  —* c / ( f ) ,  с >  0 . (18a)

To the extent that illumination is sufficiently slowly vary
ing that it can be treated as constant over a viewed ob
ject, changes in illumination level as the object is moved 
to different views take the form of changes in the con
stant с in Eq. (18a), which is why incorporating contrast 
invariance can be important. If we require that the con
straint functionals Ck [and D  if needed] should be invari
ant under the change of contrast o f Eq. (18a), then the 
image normalization transformation N i(x )  and the aux
iliary transformation M /( f )  can be taken to be contrast 
invariant. A contrast invariant normalized image Ic(f )  is 
then obtained by the obvious recipe

Ie (x) = m
J <PxI(x)

(18b)

E. Use o f subgroup decompositions. Suppose that for a 
general element S of the group Q, there is a subgroup 
decomposition of the form

S — S2Si (19a)

with S2 belonging to a subgroup S2 of S, Si belonging to 
a subgroup Si of S, and with the respective parameter 
counts K , K i ,  and K 2 of S, Si, and S2 obeying

К  =  K !  +  K 2 . (19b)

(Such subgroup compositions for a general Lie group are 
obtained by constructing a composition series for the 
group, but we will not need this formal apparatus in 
the relatively simple applications that follow.) Let us 
suppose further that we can solve the problem of image 
normalization with respect to the group Si, and that we 
wish to extend this solution to the full invariance group 
S. The subgroup decomposition allows this to be done by 
imposing K 2 additional constraints to deal with the S2 
subgroup, as follows. Let C2fc[/(f)], with к =  1 , . . . ,K 2, 
be a set o f functionals o f the image chosen so that the 
constraints

C 2k[I(N 2 i (S l (x))))  =  0 ,  к =  1......K 2 (20a)

are independent o f Si €  Si- In particular, taking Si as 
the identity transformation, Eq. (20a) simplifies to

which if we impose the requirement o f a unique solu
tion over transformations N 2 € S2 determines a “partial 
normalization” transformation N2i ■ Note that a suffi
cient condition for the constraints of Eq. (20a) to be 
independent of Si is for the functionals C2k to be S i -  
independent, but this is not a necessary condition; we will 
see examples in which, as Si traverses Si, the functionals 
are merely covariant in some simple way that guarantees 
invariance o f the constraints obtained by equating all the 
functionals to zero. To see how N 2i transforms under the 
action of the group S, we replace I  by Is  in Eq. (20b), 
giving

C2k[Is {N2Is{ x ) ) ] =  0 , к == 1, K 2 ; (21a)

again making use o f Eq. (6a) this becomes

C » [ I ( 5 ( t f a, e (* )))) =  0 . к =  1,..., i?2 • (21b)

Since the argument S(N2js (x )) appearing in Eq. (21b) is 
no longer a member of the S2 subgroup, we cannot con
clude that it is equal to the argument N2i {x ) appearing 
in Eq. (20b), but the arguments can differ at most by a 
transformation o f f  by some member SJ of the subgroup 
Si which leaves the constraints invariant, giving

N21s(*)  =  5 - ‘ ( f lu  ( $ ( * ) ) ) (22a)

as the subgroup analog of Eq. (7a). Corresponding to 
this, the partially normalized image defined by

/ ( f )  -  I (N 2, ( x ))

transforms under the group S as

(22b)

/ ( f )  -> I s {x) =  I s {N2is {x ))

=  I (S (S ~ \ N 2I(S[(  f ) ) ) ) )  (22c)

=  i ( n 2 I ( s [ (  f ) ) )  =  i & m ,

and thus changes only by a transformation lying in the 
Si subgroup. Further image normalization o f I  using the 
constraints appropriate to Si then gives a final normal
ized image

/ ( 2 )  =  J ( t f « ( t f , K J & ( * ) ) ) )  . (23)

C 2k\I(N2I(£))] =  0 ,  к =  1 , . . . ,K 2 , (20b)

which is invariant with respect to the full group of trans
formations S, where as before М / is any transformation 
which is constructed solely using S invariants of the im
age.
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Abstract— W e apply the general framework for image normalization to the problem  o f the similarity and 
affine norm alization o f  partially occluded planar curves. An algorithm is given using first derivatives to give 
a similarity norm alization, and first and second derivatives to give an affine normalization, dependent on a 
finite interval around a chosen point P o f  the curve. ©  >998 Pattern Recognition Society. Published by 
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1. IN T R O D U C T IO N ,  A N D  N O R M A L IZ A T IO N  W IT H  
R E S P E C T  T O  T R A N S L A T IO N S  A N D  R O T A T IO N S

T he prob lem  o f  efficiently incorporating invariances 
plays an im portant role in m achine vision, and m uch 
w ork has gon e  into m ethods for extracting features 
invariant with respect to  classes o f  geom etric viewing 
transform ations. An appealing way to deal with this 
p rob lem  is to  use im age norm alization , in w hich the 
transform ed im age is reduced to a standard form  
w hich effectively “ m ods ou t”  the viewing transform a
tion group ; the norm alized im age and al! o f  its fea
tures are then invariants, while the param eters o f  the 
norm alizing transform ation give the pose o f  the o r ig 
inal im age, so  there is n o  loss o f  inform ation. A d le r '1’ 
recently gave a general form al fram ew ork for im age 
norm alization , and illustrated it by using it to  rederive 
and generalize know n m ethods for the norm alization 
o f  a n on -occlu d ed , isolated image. T he m ethod  is not, 
how ever, lim ited to  this rather special case, as we 
d em onstrate here by applying it to the m ore realistic 
p rob lem  o f  the sim ilarity and affine norm alization o f  
a partially occlu ded  planar curve, such as that charac
terizing the im age o f  the bou ndary  o f  a partially 
o cclu ded  planar object.

T here has been m uch discussion in the literature o f  
the prob lem  o f  the recogn ition  o f  partially occlu ded  
curves, using m ainly the approach  o f  constructing 
view ing transform ation invariants using strictly local 
in form ation  at a point P (obtained  by com p u tin g  
a finite num ber o f  derivatives; see reference (2) and 
references cited  therein), or  as in recent w ork o f  
Bruckstein et al.(3) using “ sem i-lo ca l”  inform ation

•Author to whom  correspondence should be addressed.

constructed from  a finite n eigh borh ood  o f  P. O ur 
approach  is sim ilar in spirit to this latter w ork, but 
instead o f  directly constructing invariants we instead 
use viewing transform ation covariants, that is quantit
ies which are not invariant but have sim ple algebraic 
transform ation properties under the transform ations 
o f  interest, to  construct a norm alization algorithm . 
T he advantage o f  focusing on  covariants is that they 
often can be constructed in a m ore com putationally  
robust fashion (for exam ple, using on ly  low -ord er 
derivatives or  m om ents) than is possible for invari
ants.

Let us assum e that we are given a set o f  closed 
planar tem plate curves, C u C2, ... ,C N, with Cj speci
fied by giving its param etric form  Xj(tj) =  [x/tj), y/tj)] 
in which the param eter tj increases as the curve Cj is 
traversed coun terclockw ise. W e are n ow  given a c o n 
vex target curve segment x,alll<:1(t,„ ,,,,)  =  (г,,,,*,),
У гэгв«1(^ la r g e i) ]  Л arg el m in  —  ^ la rg c l ^  ^ larg e l m a n  w h i c h

represents a fragm ent o f  the jth  template as distorted 
by both  an affine viewing transform ation and a p os 
sible reparam eterization t„,rgcl =  U(tj) with unknow n 
function U. T he prob lem  is to identify the fragment 
with the correct corresp on d in g  segment o f  the correct 
template. In the discussion that follow s, we shall om it 
the subscripts j  and “ target”  from  the curve para
meters, w hich will sim ply be referred to  by the generic 
label r, the fact that t has a different m eaning for each 
o f  the different curves will be taken into account by 
fram ing the entire a lgorithm  in terms o f  reparam eter
ization invariant quantities.

W e proceed  by using the su bgrou p  m ethod (see 
reference (1), and A ppen dix  A o f this paper, where the 
m ethods o f  reference (1) are adapted to the norm aliz
ation o f  p lanar curves), in w hich we successively solve 
the prob lem  for translations and rotations, for the full

1551
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sim ilarity g rou p , and finally for the full affine group. 
F or  translations and rotations the procedure is o b v i
ous. O n e  first associates with each point P  o f  the 
target and  tem plates the reparam eterization invariant 
unit norm alized  tangent vector

f  =  T/|T|, (la )

w here the unnorm alized  tangent vector is given by

T = (*’, / ) .  ( lb )

and where the prim e d enotes differentiation with re
spect to  the generic param eter r. O n e first takes a par
ticu lar point P o f  the target curve, translates it to  the 
origin , and rotates the target so that it is tangent to 
the v axis at the origin  and has its tangent vector 
poin tin g  into the upper half-plane. O n e next picks 
a point P' on  the first tem plate, translates it to  the 
origin , and rotates the first tem plate so  that it is also 
tangent to  the y-axis at the origin and has its tangent 
v ector poin ting  in to  the upper half-plane. M aintain
ing these con d ition s, on e  sweeps P' over the first 
tem plate and lo o k s  for  a m atch, proceed ing  in this 
fashion from  tem plate to  tem plate until a m atch is 
found. If n o  m atch is fou nd, one then repeats the 
p roced u re with the tangent vectors o f  target and tem 
plate at the origin  poin ting  in op p osite  d irections. T he 
search im plicit in this p roced u re  is necessary because, 
w ithout identifying landm arks on the curves, there is 
n o  w ay o f  k n ow in g  a priori (i) w hich point P' o f  the 
correct tem plate corresp on d s to  the given point P on 
the target, and (ii) whether the param eter o f  the target 
runs in the sam e o r  the op p osite  sense to that o f  the 
tem plate. Apart from  the search over the possibilities 
for  P' and the relative sense o f  the tem plate and target 
param eters, the algorithm  consists sim ply o f  im posin g 
the sam e translational and rotational norm alization  
on  the tem plate and target curves.

2. N O R M A L IZ A T IO N  W IT H  R E S P E C T  T O  S I M I L A R I T Y  
T R A N S F O R M A T IO N S

W e turn next to  the prob lem  o f  n orm aliza tion  with 
respect to  the full sim ilarity transform ation group , 
com p ris in g  translations, rotations, and scalings. Let 
us p ick  a specific point P o f  the target, a n e igh bor
h o o d  o f  w hich will be used to  construct the sim ilarity 
n orm aliza tion . As before, we perform  a translational 
and rotation al n orm alization  by translating P to  the 
origin and rotatin g  the target so  that x' =  0, у  >  0  at 
P W e begin by observ in g  that the tangent v ector  to 
the target at a general poin t with param eter r m akes 
an angle with respect to the у -axis given by

tv(f) — tan в =  — , (2)
У

w hich is reparam eterization  invariant, and w hich by 
o u r  translational and rota tion a l norm aliza tion  van
ishes at P. Let us co m p u te  w(t) for  each i on the target 
segm ent and store its value a lon g  with x(t), y(r) . Let

n ow  dF(w ) ^  0  with Г(0) =  0 be a m easure for  integ
ration over the target curve; because w is invariant 
under the coord in a te  rescaling x  - » Ax, у  - »  Xy, so  is 
this measure. A lso  let A s >  0 be a param eter g ov ern 
ing the size o f  an integration interval a lon g  the target 
segment starting from  P, assum ed to  lie entirely w ith 
in the segm ent. F inally, let FD(x, y) be  an y  n o n 
negative function o f  x , у  w hich is h om og en eou s  o f  
degree D under coord in a te  rescaling, that is

F в(Лх, Xy) =  XDFD{x, y). (3)

W e n ow  use the quantities just defined to  form  the 
constraint (with ц #  v arbitrary real num ber para 
meters)

jo* d r (w )F p(Xx(t), Xy(t))11 =

Jo‘ dr(w)F0(Xx(f), Xy(0)' ’

w hich using the h om ogeneity  o f  FB can  be solved  
a lgebraically  for  the scale param eter X to  give

X=R~  v)]

R  # с Щ > у ) Ы х ( 0 ,у ( 0 Г  
“ £ d r ( w ) F D( x ( t ) , y ( f ) r

T hen accord in g  to the general n orm aliza tion  pre
scription  o f  reference (1) and A ppen dix  A , the n or 
m alized curve С with the param eterized form  x(t) =  
[X x(t), Xy(r)] is invariant with respect to scaling, as 
well as to translation and rotation , o f  the target seg
ment. N ote  that the resulting sim ilarity n orm alization  
d epends not on ly  on  the param eter A s , the expon ents 
fi,v and the chosen  functions T(w) and FD(x, y ) , but 
also on the ch o ice  o f  the fiducial point P, and hence 
the norm alized  curves corresp on d in g  to  different 
ch o ices  o f  P will not in general be  congruent to  on e  
another.

T o  determ ine the corresp on d en ce  betw een target 
segm ent and the tem plates, we n ow  d o  a search over 
the tem plates, over the ch o ice  o f  fiducial point P' on  
each tem plate, and over the tw o  possib le  senses o f  the 
tangent v ector  at P', app lyin g  the sam e n orm alization  
recipe as w as applied  to  the target segm ent and lo o k 
ing for a m atch. T h e  search for a m atch is d on e  by 
com p a rin g  the norm alized  target and tem plate using 
any convenien t m easure for  the degree to which they 
co in c id e  (such as, e.g. the integral over all poin ts o f  the 
norm alized  target o f  the m inim um  distance to the 
norm alized  tem plate). In som e app lications it m ay 
suffice to  use a m easure based on  on ly  a sm all num ber 
o f  features extracted from  the norm alized  curves, in 
w hich case an alternative procedure w ou ld  be to d is
pense with n orm aliza tion  and directly construct in
variant features by the m ethods o f  references (2, 3).

3. A F F I N E  N O R M A L IZ A T IO N

W e turn finally to  the prob lem  o f  norm alization  
with respect to  the affine transform ation group. Again 
let us pick a specific point P o f  the target, a neigh bor-
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h o o d  o f  which will be used to  construct the affine 
norm alization . As before, we perform  a translational 
an d  rotational norm alization by translating P to  the 
orig in  and rotating the target so  that x' =  0 ,  /  >  0  at 
P. T h e  con d ition s that P lie at the origin and  that 
x  — 0 at P are preserved on ly  by a subgroup o f  the 
full affine group , consisting o f  hom ogeneous affine 
transform ations o f  the form

(6)

S ince we have been im plicitly dealing on ly  with 
p rop er  transform ations (as op posed  to reflections), we 
assum e that the matrix o f  equation (6) has a positive  
determ inant, and so  ay >  0.

U nder the action o f A , the coord inate vector 
*  =  (x . У) is transform ed to xA =  (xA, yA) =  (ax, 
fix +  yy). Let us now  follow  Vaz and Cyganski*41 and 
in trodu ce  a new arc length parameter d t defined  by

Let us now impose a set o f four constraints to 
uniquely fix the affine transformation parameters 
a, j}, у and the interval o f  integration T = noo<

Ил-.оАТл) ж Ц 4 .М  =  I. №a;1 i(Ta) = TA =f,
(10)

with /  a positive constant characterizing the normal
ization. Because the ft's have been defined as central 
moments, these conditions are always attainable for 

/  in the range o f Тл. Substituting equaton (9). the first 
three conditions o f equation (10) can be solved alge
braically in terms o f T by solving a quadratic equa
tion. Writing

V =* - f - - .
з

(П а)

the solution takes the form 

l*20(T)
dz =  |x ’y" -  x ' y j I/3dr, (?)

y = - /? =  - Я п (Л

w hich is show n in reference (4) to be reparam eteriz
a tion  invariant. Under the action o f  A, d t is trans
form ed  to dt,, =  (det A)'12 d t  =  (ay)1'3 dt, an d  so 
althou gh  d t is not an affine invariant, it transform s 
linearly under affine transformations and thus is 
a convenient integration measure. Clearly, the differ
ence between the upper and lower limits o f  an integra
tion  over t  also sim ply rescales by (or)01/3 un der the 
affine transform ation A; henceforth, we shall ch oose  
the constant o f  integration in the integrated version  o f  
equ ation  (7) so  that t =  0  at P.

W e n ow  define “ center o f  mass" coord in a tes  
х см. Уем and central moment integrals / i „  =  firs(T), in 
the n e igh borh ood  o f  P, by

Q\ 12 • f- Q 41

& = М20(Т)М02(Т1 — Ц1 l(T)2,

* =  P 2 o (T )-3' s - r 1/e,(cr)-)'/3 =  ® - 1'e.

(H b )

The final condition o f equation (10), which determines 
the integration interval T before normalization, is 
implicit and must be solved by an iterative method. 
Writing

F(T) =  J V oo  —/■ (12a)

the desired value o f  T  is a solution o f F(T) =  0, which 
always exists for / i n  the range o f  S ~ ,,sUo 0. For 
simplicity, we solve this equation using Newton's 
method, for which the desired solution T is the limit 

o f the iteration defined by

Уем) =
fo  d t p ( r ) ,  y ( Q ]

and

А . ( Л -J>-хСмУ(у -  УемУ,

(8a) =  T „ -
F(T)
F‘(T)'

(12b)

( 8 b )

where the upper limit T will be specified th rou gh  the 
norm alization procedure. Under the action o f  the 
affine transform ation with matrix A, the centra l m o 
m ents transform to

,'T.
Ил, i.TA) — d tA(x -  ХсмУА(у -  УсиУл,

JO
(8c)

with TA =(ay),/3T. Substituting the transform ed 
quantities and making a change o f  integration vari
ab le  from  rA to t, we get

•J>

with the prime here denoting differentiation with re
spect to T, and with the initialization o f  T, specified 
below. The result o f  this iteration, when substituted 
into equations (11a) and ( l ib ) ,  is the set o f  parameters 
a, ft, у o f  a normalizing affine transformation matrix 
A with the form o f  equation (6). In order to get 
a normalizing transformation that behaves sm oothly 
as T  -* 0, we take as the final normalizing transforma
tion the rescaled matrix A =  ^unii circi*^ with 
A ■ , the transformation obtained by applying the 
above procedure to a unit circle passing through the 
origin and tangent to the y-axis there. Corresponding 
to this choice, we parameterize /  as / = / ( Д л). with 

the arc length along a unit circle and with
(12c)

Ha.JTa) =  (ay)113 \ d t[> (x  -  xCm)Y 

x [P(x -  XCM) + y(y

so that the

Ф - t )

J'cm) ]1 nient 
( F o r m u l a s

ся - u* com

/ (& a ) =  ^uni/cirelc(^^)^.4*

limit o f vanishing normalization interval is 
0. With this choice o f  f  a conve- 

vton iteration is Tt = A a. 
for the central moment integrals and

puted from such a uni. c rc le  are given m

. .L Kmit A -* () Wit!! tnlb CIIU1VC UI J* “  -  cim olv the limit - -r
ent initialization for the N e w t o n e ? t on, s T
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Fig I N orm alization  results. Ellipses related by affine transformation (upper left) norm alize to the 
same unit circle (upper right). G eneric curves related by affine transform ation (lower left) norm alize to 
the same curve (lower right). The solid portion  o f  each curve is the segment used for norm alization. 

Typically 5 - 6  N ewton iterations were used.

A ppen dix  B.) T h e  m atrix Я again has the form  o f  
equ ation  (6), with param eters а, Д, y, and the final 
norm alized  curve С has the param eterized form

ВД = *i(i) = [« (t), h ( t ]  + МИ- (13)

T h e  transform ation  Я has the useful prop erty  that it 
transform s any ellipse С through the origin , and tan
gent to  the у -axis there, into a unit circle with 
Дл the arc length on  the unit circle o f  the segm ent used 
for  norm aliza tion  (see Fig. 1). Again, the norm alizin g  
transform ation  depen ds on  the ch o ice  o f  the point 
P in add ition  to the interval size Ьл.

T o  determ ine the corresp on d en ce  betw een target 
segm ent and the tem plates, w e n ow  d o  a search over 
the tem plates, over ch o ice  o f  fiducial point Р' on  each 
tem plate, and ov er  the tw o  possib le  senses o f  the 
tangent vector at P\ ap p lyin g  the sam e n orm aliza tion  
recipe as was applied  to  the target segm ent and lo o k 

ing for a m atch. T h e  search for  a m atch is again d on e  
by com p a rin g  the norm alized  target and tem plate 
using an ap p rop riate  m easure for the degree to which 
they coincide.

V ariants on  this p roced u re  are possible. F or  in
stance, we cou ld  instead (see reference (1)) use the 
affine su bgrou p  defined by m atrices o f  the form

» - ( ;  ; ) •  " 4 > 

w hich give a general affine transform ation when c o m 
bined with a sim ilarity transform ation. In this case 
on e  w ou ld  on ly  require цл 0г(Тл) =  ^x-.2o(T’/i) as a n or
m alization  co n d ition  on  the m om en ts цл.02 and ^ * 20, 
w ithout requiring the co m m o n  value to  be  unity. O n e  
w ou ld  then have to  d o  a scaling n orm alization , using 
the m eth od  described  in Section 2, fo llow in g  the par
tial n orm aliza tion  with respect to  the affine trans
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form ation  o f  equ ation  (14), and this scaling norm aliz
a tion  w ou ld  have to  be placed inside the N ew ton  
iteration  lo o p  w hich determ ines the integration inter
val T.

T o  con clu d e , we have sh ow n  that the norm alization 
m eth ods o f  reference (1) are not limited to the case 
o f  n o n -o c c lu d e d  im ages. W hen applied  to partially 
occlu d ed  curves, they give a m ethod  for sim ilarity 
n orm aliza tion  using on ly  the tangent vector (which 
requires on ly  first param etric derivatives), and 
a m eth od  for  affine norm alization  using on ly  the tan
gent v ector  and curvature (which requires on ly  first 
and secon d  param etric derivatives).

4. S U M M A R Y

W e extend the general theory o f  im age norm aliz
ation  develop ed  by A d ler111 to the case o f  planar curve 
segm ents. Specifically , we sh ow  that the m ethod can 
be used to  obtain  a norm alization , and hence all the 
invariants, o f  partially occlu ded  planar curves su b
jected  to  sim ilarity and affine transform ations. The 
sim ilarity norm alization  uses on ly  the tangent vector 
(w h ich  requires on ly  first param etric derivatives), 
w hile the affine norm alization  uses on ly  the tangent 
v ector  and the curvature (which requires on ly  first and 
secon d  param etric derivatives). Thus, our algorithm  
gives a substantial im provem ent over previous 
m eth ods in the literature for constructing sim ilarity 
and affine invariants o f  partially occlu ded  planar 
curves. O u r algorithm  is based on  the su bgroup 
m e th o d /11 in w hich we solve in succession the norm al
ization  prob lem  for planar curve segm ents under 
translations and rotations, sim ilarity transform ations, 
and finally affine transform ations. T he sim ilarity n or
m alization is given by an explicit param etric integral 
over the curve segm ent; the affine norm alization  is 
given in terms o f  param etric integrals over the curve 
segm ent by a single, rapidly convergent N ew ton  iter
ation. W e give all the form ulas needed for construct
ing the norm alization  algorithm , and a figure 
illustrating typical com putational results.
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A P P E N D IX  A

W e derive here a fram ew ork for the norm alization  
o f  p lanar curves, starting from  the general theory o f  
im age norm alization given in reference (1). Let С be 
a planar curve segm ent x =  x c (t) param eterized by t, 
w hich in the term inology  o f  reference (1) corresp on d s 
to an im age intensity per unit area I{\) given by the

reparam eterization invariant expression 

Г '- .
/ ( x )  =  | df|T|<52(x — xc (0). (A la ) 

J'~

In Equation (A la ), <52(x) is the tw o-dim ensional D irac 
delta function, defined by <52(x) =  0 for x Ф 0, and 

d 2x<52(x) =  1, so  that <52(x ) is a distribution o f  unit 
weight with support at the origin x =  0. A lso in equa
tion (A la ), T  is the tangent vector defined in equation 
(lb ), so that ds =  df|T| is the differential o f  arc length, 
and therefore equation (A la ) describes a distribution 
with support on the curve segment С having uniform  
weight per unit o f  arc length. The total image intensity 
integrated over area, correspond ing  to equation 
(A la ), is given by

J d 2x / ( x )  =  ^  i 

-£
d 2x 5 2(x — хс (г))

dt|T| =  Sm (A lb )

and so is just the total arc length o f  the segment.
Let now  <§ =  {S } be a g rou p  o f  sym m etry or  view

ing transform ations S, which act on  the im age i (x )  
a ccord in g  to

/ ( x )  -*  ^s(x) =  /(S (x ) ) , (A  2a)

with x -> S (x ) the im age coord in a te  m apping induced 
by the g rou p  elem ent S. Substituting E quation (A la ) 
into equation  (A2a), we have 

f t ..
/s(x ) =  I dr|T|i52(S (x) -  XcW )

J '...

- Г

with J (x ) the Jacob ian  o f  the transform ation S(x). 
F or the case o f  sim ilarity and affine transform ations 
discussed in this paper, the Jacob ian  J is sim ply a 
constant and plays no further role; the im age trans
form ation  o f  equ ations (A 2a) and (A 2b) is then equiv
alent to  the replacem ent o f  the curve segm ent С by the 
transform ed curve segm ent Cs described by the para
m etric expression

x Cl(0  =  S ' ‘ (xc(f))- (A3)

U sing equ ation  (A3), the various results for image 
norm alization  given in reference (1) can be taken over 
to the planar curve case, with due attention to the fact 
that the inverse transform ation appears in equation 
(A3). In particular, since

f ( B ( x ) ) - l - g - ‘ ( f , W ), (A4)

expressions in reference (1) which involve multiple 
transform ations will have the factors reverse ordered 
when expressed as an action on the parameterized 
curve. F or  exam ple, the general norm alization recipe 
for the param eterized curve reads

XcW  =  M c(N c (xc(r))), (A5a)
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w here N c (x ) is a norm alizing m ap constructed from  
the curve w hich transform s under the image trans
form ation  as

Д20<Г) =  1 (  1 +  ? ! ^ I ) - I ( s i n  T )\

N Cj(x) =  N c (S (x)), (A 5b ) ^ ^ ( l - ^ - ^ s i n l ) 4.

, T {  T 2 . T\ 
Hu(T) =  sin T sin — I c o s y  -  у  s m - j j ■

(B2a)

and where M c (x ) is an op tion al second  transform a
tion w hich depends on  the curve С on ly  through 
invariants under the g rou p  o f  transform ations that 
is,

M c,(x ) =  M c(x ), all SeS?.

and the corresp on d in g  small T beh av ior is

(A 5c)

W e can easily check  the validity o f  equation (A5a) 
d irectly,

Sc,(t) =  Mc,(Nc,(xc,(t)))

=  M c ( N c (S (S -1(x c (t))))) (A6)

= Mc(Nc(xc(f))) =  XcW-

T he other general statem ents in reference (1) are sim 
ilarly converted  to  results for  the norm alization  o f  
param eterized curves.

APPENDIX В

W e give here the centra] m om ents for  a unit circle 
passing through the origin  and tangent to  the y-axis 
there. T h e  param eterized form  for  the circle  is

x uni, circic(f) =  ( -  1 +  co s  I, sin t), 0  £  t <  2n, (B l)

and the origin  lies at t =  0. E quation (7) for  the affine 
covariant arc length reduces to  dt =  dt, and we 
ch o o se  the constan t o f  integration so  that т =  0 at the 
origin . Integrating over a segm ent o f  the unit circle
0 S  t  =  I S  T , we find the fo llow in g  form ulas fo r  the 
center o f  mass coord in a tes  and the second  central 
m om ents,

(.хсм, уем) = T ~ l( — T  +  sin T, 1 -  c o s  T),

(хсм, Уем ) »  ( - g  T 2, -

м л

(B2b)

- I»(T) =  [M2o(T)fio2(T ) - M n (T )2r ,'e

•  e M O ' ^ T - ^ l + g g T 1^ .

REFERENCES

1. S. L. Adler, General theory o f image normalization, Com- 
puter Vision and Im age Understanding, submitted. (Also 
a Lecture at Int. W orkshop on Computer Vision and 
Applied Geometry, Nordfjordeid, Norway, 1-7 August, 
1995.)

2. A M. Bruckstein and A. N. Netravali, On differential 
invariants o f planar curves and recognizing partially oc
cluded planar shapes, Ann. M ath. A rtific ia l In te ll. 13, 
227-250 (1995).

3. A. M. Bruckstein, E. Rivlin and I. Weiss, Scale space semi
local invariants. Image Vision Comput. 15, 335-344(1997).

4. R. F. Vaz and D. Cyganski, Pattern  Recognition Letters
11, 479-483 (1990).

About the Author— STEPHEN L ADLER received his A.B. from Harvard University in 1961, his Ph.D. in 
theoretical physics from Princeton University in 1964, and was a Junior Fellow in the Society of Fellows, 
Harvard University, from 1964 to 1966. Since 1966 he has been at the Institute for Advanced Study in 
Princeton, as a Long Term Member (1966-69), Professor (1969-79), and New Jersey Albert Einstein 
Professor (1979-). His research interests include neural networks and pattern recognition, as well as 
continued work in theoretical high energy physics.

About the Author— R A N G A N A TH AN  KRISHNAN received his B.S. from the Indian Institute o f Techno
logy in Madras in 1989, his Ph D. in theoretical physics from the Massachusetts Institute of Technology in 
1994, and was a Member o f the Institute for Advanced Study in Princeton from 1964 to 1966. He is 
currently employed at Dragon Systems, in Newton MA, working on computer methods for speech 
recognition.



R61 709

Reprinted from F o u n d a t io n s  o f  Ph y s ic s Vol. 26. No. 12, December 1996 
Printed in Belgium

Nonadiabatic Geometric Phase in Quaternionic 
Hilbert Space
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We develop the theory o f the nonadiabatic geometric phase, in both the Abelian 
and non-Abelian cases, in quaternionic H ilbert space.

1. IN TR O D U C TIO N

The theory o f geometric phases associated with cyclic evolutions o f a physi
cal system is now a well-developed subject in complex Hilbert space. The 
seminal work o f Berry on the adiabatic single state (Abelian) case111 has 
been extended to the non-Abelian case o f the adiabatic evolution o f  a set 
o f degenerate states,'21 and both o f these have been further extended'3-41 to 
show that there is a geometric phase associated with any cyclic but non
adiabatic evolution o f a single quantum state or o f a degenerate group o f 
quantum states.

In this paper we take up another direction for generalization o f the 
geometric phase, from quantum mechanics in complex Hilbert space to 
quantum mechanics'5’ 61 in quaternionic Hilbert space. The generalization 
of the adiabatic geometric phase to quaternionic Hilbert space was given in 
Ref. 6, where it was shown that for states o f nonzero energy the adiabatic 
geometric phase is complex, as opposed to quaternionic, with a quater
nionic adiabatic geometric phase occurring only for the adiabatic cyclic
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evolution o f zero energy states. Consideration o f nonadiabatic cyclic evolu
tions was also begun in Ref. 6, but the discussion given there is incomplete. 
While Sec. 5.8 o f Ref. 6 constructed a nonadiabatic cyclic invariant phase, 
it did not address the problem o f separating this phase into a dynamical part 
determined by the quantum mechanical Hamiltonian, and a geometric part 
that depends only on the ray orbit and is independent of the Hamiltonian.

The purpose o f the present paper is to give a complete discussion of 
the nonadiabatic geometric phase in quaternionic Hilbert space. In Sec. 2 
we give a very brief survey o f the properties o f quantum mechanics in 
quaternionic Hilbert space that are needed in the analysis that follows. 
In Sec. 3 we consider the cyclic nonadiabatic evolution o f a single quantum 
state, and show how to explictly generalize to quaternionic Hilbert space 
the construction o f a nonadiabatic geometric phase given in Ref. 3. In Sec. 4 
we extend our analysis to the case o f a degenerate group o f states, thereby 
obtaining a quaternionic nonadiabatic non-Abelian geometric phase 
corresponding to the complex construction given in Ref. 4. A brief sum
mary and discussion o f our results is given in Sec. 5.

2. Q U A N TU M  M ECHANICS IN Q U ATE RN IO N IC  HILBERT SPACE

Only a few properties o f quaternionic quantum mechanics are needed 
for the discussion that follows; the reader wishing to learn more than we 
can present here should consult Ref. 6. In quaternionic quantum 
mechanics, the Dirac transition amplitudes are quaternion valued,
that is, they have the form

<Ф\Ф> = r 0 +  r l i +  r2j  +  r3k (1)

where r0 , 2 , are real numbers and where i, j,  к are quaternion imaginary 
units obeying the associative algebra i2 =  j 2 — k2— ~  1 and i j = —ji  =  k, 
j k = —k j = i , ki =  —ik =  j. Because quaternion multiplication is noncom - 
mutative, two independent Dirac transition amplitudes (ф\фУ and <k|'7> 
in general do not commute with one another, unlike the situation in 
standard complex quantum mechanics, where all Dirac transition 
amplitudes are complex numbers and mutually commute. The transition 
probability corresponding to the amplitude o f Eq. (1) is given by

Р( Ф, Ф) =\<Ф\ФУ\2 = < Ф \ Ф >  < Ф \ Ф > = г 1  + 1-2, + г 1  + г1 (2)

where the bar denotes the quaternion conjugation operation { i , j , k }  -*■ 
{ — i, —j ,  —k) and where we have assumed the states \фУ and \ф} to be
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unit normalized. Since the quaternion norm defined by Eq. (2) has the 
multiplicative norm property

k i? 2l = l?il \q2\ (3)
the transition probability o f Eq. (2) is unchanged when the state vector \фУ 
is right multiplied by a quaternion со o f  unit magnitude,

\фУ~*\фУсо, \со\ =  \^>Р(ф,ф)~* Р(ф,ф) (4)

Hence as in complex quantum mechanics, physical states are associated 
with Hilbert space rays o f  the form { \фу со: \ш\ =  1}, and the transition 
probability o f Eq. (2) is the same for any ray representative state vectors 
11РУ and \фу chosen from their corresponding rays. In the next section, we 
shall follow Ref. 3 in denoting quaternionic Hilbert space by Ж, and the 
projective Hilbert space o f rays o f Ж  by &.

Time evolution o f the state vector \фУ is described in quaternionic 
quantum mechanics by the Schrodinger equation

д- ^ - = - й \  ФУ <5 a >

with

R = - H f (5b)

an anti-self-adjoint Hamiltonian. From Eqs. (5a) and (5b) we see that the 
Dirac transition amplitude < Ф\ФУ is time independent,

=  < ф \ й - й \ ф у = 0  (6)

and thus the Schrodinger dynamics o f state vectors preserves the inner 
product structure of Hilbert space. The dynamics o f Eqs. (5) and (6) is 
evidently preserved under right linear superposition o f states with quater
nionic constants,

т , . й № > , т , - я 1Ф}
dt at

д(\ФУ ? i +  1ФУ <h)
*  dt

= - Н ( \ ф У  q,  +  IФУ q 2) (7)
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Equation (7) illustrates two general features of our conventions for quater
nionic quantum mechanics, which are that linear operators (such as H) act 
on Hilbert space state vectors by multiplication from the left, whereas 
quaternionic numbers (the scalars o f Hilbert space) act on state vectors by 
multiplication from the right. Adherence to these ordering conventions is 
essential because o f the noncommutative nature of quaternionic multiplication.

3. THE NON ADIABATIC ABELIAN Q U ATERN IO N IC G E O M E TRIC  
PHASE

Let us now consider a unit normalized quaternionic Hilbert space 
state ||Д(0 )  which undergoes a cyclic evolution between the times / - 0  and 
t =  T. Since physical states are associated with rays, this means that

and so the orbit <6 o f  \i/ 4 0 )  in J f  projects to a closed curve <£ in the 
projective Hilbert space

Let us now define a state ]i^(/)> that is equal to |i^(/)> at 1 =  0, that 
differs from |«̂ (/ ) > only by a reraying at general times, i.e.,

\ Ф ( Т ) > - № 0 ) > а ,  |<2| =  i ( 8 )

\Ф( 0 > =  1Й 0 > d>U) 

И О !  =  1 

<a(0) =  1

(9a)

and that evolves in time by parallel transport, i.e.,

(9b)

The conditions o f Eqs. (9a) and (9b) uniquely determine cb{t), and hence 
the state | i a s  follows. Substituting the first line o f Eq. (9a) into the 
Schrodinger equation o f Eq. (5a), we get
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Taking the inner product o f this equation with the state (ф(1)\, and using 
the unit normalization o f the state vector \ip(t)} together with the parallel 
transport condition o f  Eq. (9b), we get

ddb(t) , _ .
- ~ = - < Ф 0 ) \  й м о у т  ( i n

This differential equation can be immediately integrated to give

й(г) =  Г,е~*»‘л’ <*,г>|'?|*,",> (12)

where T, denotes the time-ordered product which orders later times to the 
left, and where we have used the initial condition on the third line o f 
F.q. (9a). In particular, Eq. (12) gives us a formula for the value (b(T) at 
the end o f the cyclic evolution. We shall see that this has the interpretation 
o f  the dynamics-dependent part o f  the total phase change Q.

To relate Eq. (12) to the total phase change, we use Eqs. (8) and (9a) 
to write

|ф (Т ) }  d>(T) =  \ф(Т)> =  №(0)> =  №(0)> Q (13a)

so that taking the inner product with < ^ (0)| gives

Я =  <|Д(0)| ф ( Т ) ) й ( Т )  (13b)

To complete the calculation, we must now evaluate the inner product 
appearing in Eq. (13b). To do this, we introduce a third state vector |Й0> 
which differs from |^(/)> by a change o f ray representative, by writing

\ Ф (0 >  = ! $ ( ' ) >  <й (0

|й(/)| = 1 (14a)

o j {0 )  =  1

and by requiring that ф should be continuous over the orbit

\Ф(Т)У =  \ф(0)У (14b)

Differentiating the first line o f Eq. (14a) with respect to time, we get

o s )
dt dt at
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Taking the inner product o f Eq. (15) with <5(f) < $ (f)l. using the parallel 
transport condition o f Eq. (9b) together with the first line o f Eq. (14a), and 
abbreviating the time derivative d/dt by a dot, we obtain

o = < $ ( o i  ф  k o >  т + < т \ т у  m )  о б а )

Since the second line o f Eq. (14a) implies that the state |^(/)> is unit nor
malized, Eq. (16a) simplifies to

“ (/))= —<$(/)] $(f)> <3(/) (16b)

which can be immediately integrated to give

<5(0 =  (17)

with T, as before indicating a time-ordered product. In particular, Eq. (17) 
gives us a formula for a>(T). But from Eqs. (14a) and (14b) we have

\ф(Г)> =  \ФСГ)> (Ь(Т) =  |«A(0)> с5 (Г )=  1 Й 0 »  d>(Т) (18а)

and so taking the inner product o f Eq. (18a) with (ф (0)| we get

<^(0)| Ф(Т)]> =cb(T )  (18b)

determining the inner product appearing in Eq. (13b).
We thus get as our final result,

^  ^  gcomclric ̂ dynam ical (  19 a )

with

^ c o m c n c  = & ( T ) = T , e - ЬГ* < Л * М * « >  (1 9 b )

and with

= ( b ( T ) = T , e - X * < * ....... '*■»> (19c)

The dynamical part o f the phase is so called because it depends explicitly 
on Й, as well as on the orbit <i in the projective Hilbert space it is 
uniquely determined by the conditions o f Eqs. (9a) and (9b), since these 
conditions uniquely determine the state |i^(r)>. The geometric part o f the 
phase is so called because, as we shall now show, it depends uniquely on
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the projective orbit #  up to an overall quaternion automorphism transfor
mation. To see this, let us make the reraying

М Ф  - » |£'> co'(t), W  1 = 1 (20a)

with co'(t) continuous over the orbit Щ so that

w'(T) =  co'( 0) (20b)

Then (as shown in detail in Sec. 5.8 o f Ref. 6) the properties o f the time- 
ordered integral in Eq. (19b) imply that under this transformation,

^geometric -  d>'(T) £2geome„ Kco'(0) (21a)

which by the continuity condition o f Eq. (20b) reduces to the quaternion 
automorphism transformation

^ gCon,e,riC« ' ( 0) (21b)

Since for any two quaternions q t , q 2 we have Re q ,q 2 =  Re q2q , , with Re 
denoting the real part, Eq. (21b) implies that

COS Уgeometric "  ^  ĝeometric (2 2 )

is a reraying invariant, and thus уе<:оп1(;,пС is a nonadiabatic geometric phase 
angle that is a property solely o f the projective orbit The fact that the 
nonadiabatic geometric phase in quaternionic Hilbert space is only deter
mined modulo я is a reflection o f the fact that e ‘v is changed to e ~ ,y by the 
quaternion automorphism transformation

e~ 'y =  je 'yj  (23)

Thus, to recover the result that the complex nonadiabatic geometric phase 
is determined modulo 2it by embedding a complex Hilbert space in a 
quaternionic one and using Eqs. (19a)-(19c), one must exclude the possi
bility o f making intrinsically quaternionic automorphism transformations 
involving the quaternion units j  or к , as in Eq. (23).

In geometric terms, f2gcomeIrj<. is the holonomy transformation o f  the 
connection A a  <^|dip}. But since this connection is quaternion-imaginary 
valued, it is analogous to an 5 0 (3 )  gauge potential. Therefore, the 
corresponding curvature is o f  the Yang Mills type and is given by 
F =  dA +  А л A.
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An alternative expression for the total phase change Q  can be 
obtained'71 by writing

№ Ф = \ к о > т
(24)

X(t) =  db(t)a>(t), * (0 ) = 1

Substituting Eq. (24) into the Schrodinger equation and then talcing the 
inner product with |, we obtain

- « й о 1  R  k n » x ( D  (2 5 a )

which can be integrated from 0 to Г  to give

Q  =  Tte ~ rf,,<< л lit*•»> + <Jd')i jtDi>j (25b)

This procedure and the resulting formula o f Eq. (25b) are direct analogs o f 
the derivation given in Ref. 3 for the complex Hilbert space case, but in 
quaternionic Hilbert space the two terms in the exponential are noncom - 
mutative, and so the exponential in Eq. (25b) cannot be immediately 
factored into dynamical and geometric phase factors. As we have seen, to 
achieve this factorization it is necessary to use a two-step procedure, 
involving the parallel transported state |i£(0 )  as well as the state |$(0 > 
that is continuous over the cycle.

4. THE N O N AD IABATIC N O N-ABELIAN Q U ATE RN IO N IC  
G EO M ETRIC PHASE

We turn next to the quaternionic Hilbert space generalization o f the 
complex nonadiabatic141 non-AbelianUl geometric phase. We consider now 
a cyclic evolution in an л-dimensional Hilbert subspace V„, i.e., V„{T)  =  
^„(0). Let |i/f „ (/))>  a =  1,...,n be a complete orthonormal basis for V„, so 
that the reraying invariant projection operator for V„ is

Pn(t)=  t  I ^ O X W O I  (26a)
и = 1

in terms o f which the cyclic evolution condition takes the form

Pn(T) =  p n{ 0) (26b)
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The principal difference from the complex case treated in Ref. 4 is that in 
the quaternion case, the unitary matrix factors must always be ordered to 
the right o f ket state vectors, whereas in the complex case the ordering is 
irrelevant, and in fact in Ref. 4 the matrix factors are ordered to the left. 
The results o f Ref. 4 can be obtained by the complex specialization o f the 
results obtained in this paper. However, we have introduced here a new 
technique o f using parallel transported states |i^„) to cleanly separate the 
non-Abelian geometric phase and the dynamical phase, which in general 
(even in the complex non-Abelian case) do not commute with each other.

5. SU M M ERY AND DISCUSSION

To summarize, we have shown that both the complex Abelian and 
non-Abelian nonadiabatic geometric phases can be generalized to quater- 
nonic Hilbert space. These results are both o f theoretical interest and o f 
experimental relevance for possible tests for complex versus quaternionic 
quantum mechanics. Long ago, Peres|!il proposed testing for quaternionic 
quantum mechanical effects by looking for noncommutativity o f scattering 
phase shifts. However, the result o f Ref. 6 that the S-matrix in quaternionic 
quantum mechanics is always complex valued (for nonzero energy states) 
implies that there are no quaternionic scattering phase shifts, and the Peres 
test necessarily gives a null result. An alternative but related method is to 
look for interference effects in cyclic evolutions that could show the 
presence o f quaternionic effects. The fact161 that the adiabatic geometric 
phase is always complex (for nonzero energy states) is a counterpart o f the 
complexity o f the 5-matrix, and implies that a null result will always be 
obtained for cyclic interference experiments involving adiabatic state evolu
tions. However, the results obtained here show that for cyclic evolutions 
that are nonadiabatic, one could in principle devise interference 
experiments to place meaningful bounds on postulated quaternionic com 
ponents o f  the wave function.
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We develop Perelomov’s coherent states formalism to include the case of a qua- 
temionic Hilbert space. We find that, because of the closure requirement, an at
tempted quaternionic generalization of the special nilpotent or Weyl group reduces 
to the normal complex case. For the case of the compact group SU(2), however, 
coherent states can be formulated using the quaternionic half-integer spin matrices 
o f Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog o f co
herent states. © I 997 American Institute o f  Physics. [S0022-2488(97)01005-0]

I. INTRODUCTION

The coherent states formalism is an important part of the apparatus o f complex quantum 
mechanics, and in this framework has been given a general and elegant form through the work of 
Perelomov.1 However, in a recent systematic study o f quantum mechanics in quaternionic Hilbert 
space,2 the issue of whether there is a quaternionic analog of coherent states was left open; filling 
this gap is the object o f the present paper. In Sec. II we show that the general Perelomov con
struction readily extends to quaternionic Hilbert space, even when the subtleties arising from 
projective group representations3 are taken into account. In Sec. Ill we demonstrate that when this 
quaternionic generalization is applied to the special nilpotent or Weyl group, the requirement o f 
group closure reduces the structure of the coherent states so obtained to a quaternionic embedding 
o f the standard complex construction. Hence, as suspected by Klauder,4 there is no nontrivial 
quaternionic generalization of the standard complex coherent states based on the Weyl group. As 
an application of our formalism to a case in which the quaternionic coherent states are not simply 
embeddings o f the corresponding complex ones, we discuss in Sec. IV the case of the quaternionic 
coherent states constructed by the Perelomov method based on the intrinsically quaternionic half
integer spin representations of the rotation group.

II. GENERAL PROPERTIES OF PERELOMOV COHERENT STATES IN QUATERNIONIC 
HILBERT SPACE

Let | <Д0) be a fixed state in a quaternionic Hilbert space V For some Lie group G and its 
irreducible unitary representation, {T (g ) :g  e G }, consider the set of states {| ^ )} , where

Consider transforming from a state |il/g]) to another | I n  terms o f |^4]).

l^o> =  7 ' " ‘ ( ^ i ) | ^ 1) =  7 ' ( « r 1)l •/'*,).

hence,

‘ 'Electronic mail address: adler@ias,edu
b>Elecironic mail address: amillard@phoenix princeIon.edu

J. Math. Phys. 38 (5), May 1997 © 1997 American Institute of Physics 2117

Reprinted with permission.
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or, in other words, | t//g )̂ and | ^ )  differ only by a phase factor and hence determine the same 
physical state.

Let H be the set of elements {A} in G such that

Then Я  is a subgroup of G, being the stationary group for the ray containing I^q)- Forming the 
set of left cosets M =  G/H, for each coset x e M , one representative g(x)  can be selected to form 
the set of states {| ф^х))} — {!*)}• The following definition may then be made:

Definition 1: The system o f  coherent states o f  type (Г,| ф0)) is the set o f  states {| фя)}, where 
| фе) =  7(g ) (До) and g runs over G. The coherent state | фе) is determined up to a quaternionic 
phase by the coset x = x(g), which is an element o f  G/H, corresponding to the element g; that is

where \ ф0) is henceforth abbreviated as |0).
Consider A ,, h7eH .  A general element of G is g = g(x)h, where g(x) is a particular element 

corresponding to a coset in G/H and g (0 )=  1. From before.

so for g t = g (x )h i  and g 2 = g(x )h 2,

ТХ£|)|0) =  |л)ш(д:,А|) (1)

and

7 ' ( «2 )| 0 )  =  |-*>ш(дс,А2) ; (2)

similarly, if

g \ 7 = g (x )h ih 2 = g \ h 2 .

then

Now consider the case where |д:) =| 0); Eqs. (1)—(3) then become

(3)

7’ ( ^ 1)|0) =  | 0 )ш (А 1) ,  7 - (g 2)|0> =  | 0 M A 2), 

n « i 2 ) ( 0 >  =  |0)W( A , A 2).

J. Math. Phys., Vol. 38, No. 5, May 1997
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However, since g (0 )= l  implies that g\ = h ] and g 2= h 2, then g]2= g ih 2 — g lg 2; allowing for 
projective representations,

7'(«,2)|0)=7'(81« 2)|0) =  Г(8 !)Г (82)|0) а , ; , (81.82) =  7'(81)Д 82 )| 0 )а );, (Л1,А2)

=  T(g l )\0)a,(h2) a , ; , (h l ,h2)=\0)a>(hl)a>(h2)<o ;I(h l ,h2),

giving

ш(Л]Л2) =  <и(Л ])ш(А2)ш ” '(Л, ,h2). (4)

If 7  is a true representation, as opposed to a projective representation, then the projective phases 
are unity and

w ( A ] A 2 )  =  < 0 ( A i ) w ( A 2 ) ,  

in correspondence with the complex phase relationship

ехр[/а(й|Л2)] = ехр[/,а'(А1)]ехр[»а'(Л2)]

given by Perelomov.
Consider now elements g e  G and A e H and the action of the corresponding operators on |0). 

Now

7(Л)|0) =  |0)«(М  

г(*)ЮН*(в)>«(в),

and similarly

7(gA)|0) = \x(gh))<o(gh);

7 (g A)|0) =  7 (8 )7 (A ) !0 )w ;l(g )A) = |x(g))a)(g )a>(A)6) ; 1(g,A),

and since x (g h )= x (g ) ,  this means that

(o(gh) =  a)(g)a)(h)to~'(g,h), (5)

which is the same phase relationship as in Eq. (4) but with one of the elements of G now not in
H.

Finally consider the action o f an arbitrary operator, T(g') ,  on an arbitrary coherent state, 
I j c )  . This may be written

7'(g')|.c> = 7(g')|.>c(g)) = 7(g')7(g)|0}tJ~1(g) = 7(g'g)|0)<Ji,(g ',g)arl(g)
=  |x(g 'g ))^ (g 'g )b> /,(g ',g )w _ 1(g ) =  |A :(g 'g ))e(g ',g ), (6)

where we have defined the new phase

6 (g\ g ) = <o(g'g)<Dp(g' ,g)(x)~\g).

Replacing g by gA, where h is an element o f H, and using Eq. (5) gives

J. Math. Phys., Vol. 38, No. 5, May 1997
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# {g ' ,g h )  =  u { g '  gh)a>p( g ’ ,gh )w  \ gh )

=  a>(g'g)<D(h)ojp ' ( g ' g,h)o)p{g ' ,gh )(op{g ,h )w ~ \ h )w ~ \ g )\  

from  the associa tiv ity  con d ition  fo r  p ro jective  representations,

b>p(g '  ,gh)a)p(g ,h )  =  a)p(g 'g ,h )Q )~ ](h)(Dp(g '  ,g)(o(h),

w e see that the m idd le  five  factors o f  the last expression  for 6(g' ,gh)  are sim ply equal to 
M p(g'.g ) ,  g iv in g

H en ce , ch an g in g  g  to gh,  where h is any elem ent o f  H, g ives the sam e в, so  it may be written 
6 { g ' ,x ) ,  s in ce  it on ly  depends on the cose t  x (g )  and not on  g  itself.

W riting  tw o coherent states as

<*ll*2>  =  ( * ( g , ) l * ( S 2 ) )

= w(£l)(0|7(£|~1)r (g 2)|0)&-(g2) = <u(gl)(0|7'(g;"l,?;,)|0)ct)p(£1' ' l,g2)^£2) 

=  b)(g,)d)p(g2  l , 5 i ) { 0 | 7 ( ^ " lg 2)| 0 )f ir («2) ;

(x , l x 2) =  <o(gih)a}p(g 2 l,g\h){0lT(h~' g \ '  g 2)\Q)to(g2)

=  to(gi)to(h)a)p l( g ] ,h)a)p i ( g ; l , g 1h)<i>p(g2 ' g i ,h){0\T(h~ l)T (g i  ' g 2)\0)a)(g2)

=  a>(gi)[a)(h)a>~, ( g l ,h)<o~l( g 2 \ g lh)<op( g 2 'g  i ' (Л ) ] ( 0 | Г ( ^ ^ '^ 2)|0)<й (^2)

= (t)( g 1) w ; l ( s 2 l ^ . ) < o | ^ r 1« 2 ) | o ) ^ 2 )  

=  « ( « i ) « - p ( 5 2 ' , . « . ) < o | n g r 1« 2 ) | o > s ( g 2) ,

w here, in a very sim ilar w ay to b e fore , the secon d  to sixth factors in the third line have been 
contracted  via the pro jective  representation associativ ity  con d ition  to g iv e  wp l( g 2 1 , g i )  in the 
fourth line. Thus, as im plied  by our notation, the inner product d oes  not depend specifica lly  on  
g i  but just on  the coset яг, = j t ( ^ ] ) ,  and this can sim ilarly  b e  sh ow n  fo r  g 2. I f  ail coherent states 
are operated on  by  the sam e T(g),  then the inner p roduct o f  tw o  o f  the new  states, using Eq. (6 ), 

is

L et us n ow  assum e that the invariant m easure dg on  the group  induces an invariant m easure 
dx  on the set o f  cosets M =  G/H. G iv en  su fficient con v erg en ce , con sid er  the operator

6 {g ' ,g h )  =  to (g 'g )o jp(g',g)tD~ [(g).

1*|>Ш1*(*|)) = П*|)|0>“ -1(«|) = П*|)|0)«3{«,). 

k 2 ) = | - t ( « 2 ) ) = 7 '( « 2 ) | 0 ) w “ l (« 2 )= 7 '(^ 2 )| 0 )5 J (^ 2 ) .

their inner product is

rep lacin g  g ,  by  g ,h ,  w here A is an elem ent o f  H , in the last line g ives

(■ * («£ i ) ! * ( £ S 2) )  =  0(S.-»: iK -*i|7 '- I ( £ ) 7' ( s ) I j : 2 ) 0 (S . -*2) -  0 (в .* | Х * | | * 2 )0 (£ -* 2 ) -
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from the definition of В and the invariance of the measure, Eq. (6) implies that

T(g)BT~I( g ) =  J  T(g)ly)(ylT(g~ ‘ ) d y = J  lx (gy ))0 (g ,y )0 (g ,y )(x (gy )l  dy 

=  f |x)<jc| dx— B,

so В commutes with all of the operators T(g). By the quaternionic generalization o f Schur’ s 
Lemma,5 this means that В is o f the form B01 + B J ,  where B0 and S, are real, 1 is the usual 
identity operator, and /  is a unit anti-self-adjoint operator, / ,=  - / ;  however, since В is clearly 
self-adjoint, В , must vanish, so S is a multiple o f the identity as in the compex case. Given a 
coherent state |̂ ) that is normalized, (}’|>')= 1,

Ш Ш  dx= f \(y\x)\2 dx= J  |<0|*>|2 dx;

hence,

—  J  |х)<лс| dx=l.

With this form of the identity, an arbitrary state may be expanded over the coherent states,

1Ф)=h f dx=т0 \ \х)ф(х) dx' (7)
where

ф(х)ш{х \ф).

Then,

( Ф \ j Ф(х)(х\у)ф(у) dx dy,

however,

ф(х) = (х\ф) = (х\ —  J  | у ) 0 # )  dy= —  J  (х\у)ф(у) dy, (8)

so,

\Ф(*)\2 dx.

Defining

* ( * • > ) =  7 Г  < * !> ) . 
a  о

Eq. (8) implies that this is a reproducing kemel.
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and the fu nction

/00 =  J  K(x,y)f(y) dy

satisfies Eq. (8 ), in the p lace  o f  ф(х),  fo r  an arbitrary function f ( x ) .  I f  | ф) is itself a coherent state 
I y ) , then, from  Eq. 7,

so  the coh eren t states are not linearly independent, m eaning that the system  o f  coherent states is 
ov ercom p lete .

III. THE CASE OF THE SPECIAL NILPOTENT OR WEYL GROUP

H aving extended  P e ro lo m o v 's  form ulation o f  coherent states to a quatern ionic H ilbert space, 
w e con tin u e  to fo l lo w  his paper and con sid er the case o f  the nilpotent group. In the com p lex  case, 
this group  leads to the fam iliar coherent states w id e ly  used in quantum  optics. T he specia l n ilp o 
tent or  W ey l group  is generated by a set o f  annihilation operators, { a , } ,  w here i runs from  1 to 
N, their con ju gate  creation operators, { a j } ,  and the identity operator, 1. T he com m utation  rela
tions betw een these operators are

[ a ( ,aj] =  [a ]  , e j ]  =  [ e ,- , l ]  =  [ e j , l ]  =  0

and

0 . . e j ] = < V -

Let the EA , w here A runs from  1 to 3, be three quaternion im aginary operators6 w ith an algebra*
isom orp h ic  to the algebra o f  i, j ,  and к and all o f  w h ich  com m u te  with the a , and the aj . T hen , 
an an ti-self-ad jo in t7 elem ent o f  the L ie algebra o f  the group  m ay be written

f + 2  fra}.

w here t is a quaternion im aginary operator,

A

and the Д  are quaternion operators,

/ 3 , = А о 1  +  2  Р , л Е л -
A

F or con v en ien ce , the generator is written using a shorter notation,

t +  ( 3 a - (3a] .
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The group is then obtained from the algebra by means of the exponential mapping, so that for a 
general element g e G,T(g) may be written

T(g) = ( t , f i )  = exp(t + /3a-fia').

In the case o f a complex Hilbert space, as considered by Perelomov, group closure follows 
quickly. However, in the quaternionic case, t and the /3, may be noncommutative, and requiring 
group closure will impose significant restrictions. Consider, then, the product o f two group ele
ments,

(s,a)(r,/3) = exp(j+  aa — aa*)exp(t + fia — fia^)\ 

using the Baker-Campbell-Hausdorff formula to second order,

exp X exp У = е х р (Х + У + j{X ,y,] + ■ •

the product may be written

exp{j + t + (a  + fi)a — (a  + /?)a1+ I {j  +  aa -  aa^,t+ fia — /3a1']}, 

and so, to obtain a group, this requires that

j[s  + aa -  a a \ t+  fia — fia^] = u + y a —ya'. (9)

In particular, the coefficients of a,a; and a ja j must vanish, which requires that

for each i and j\ hence, all a, and Д  must belong to the same ff(\, I) subalgebra rather than 
being free to range over any quaternion. With this constraint, the coefficients o f a ,a j and ajaj also 
vanish, and Eq. (9) implies that

“ = Й * .0 .  У|= К 5 . А ] + К « ( . 0 -

However, the y, must have the same structure as the a ; and fi, and thus belong to the same 
2? (1, / )  subalgebra, which requires that s and t are simply proportional to I— consequently, и and 
the yj vanish. Therefore, for group closure, the representation can only be W{ 1, /)  embedded in 
the quaternionic Hilbert space rather than fully quaternionic. For the case of the nilpotent group, 
then, there is no quaternionic generalization of standard complex coherent states.

IV. THE CASE OF INTRINSICALLY QUATERNIONIC IRREDUCIBLE REPRESENTATIONS
OF SU(2)

We consider now the anti-self-adjoint generators o f SU(2), Sx , Sy and such that8

[S /,S m] = 2  elmnSn.
П

It can readily be observed that a quaternionic realization of this algebra is

S .  =  2*. S y, “  i / . 5 , - 2 * .

which is a one-dimensional quaternionic irreducible representation of SU(2). Consider eigenstates 
o f Sz ; these can be chosen to be
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|-i>=y
such that

s,|±i>=±il±D*.

Then choosing either of these states as |0), the stationary subgroup is

# = {e x p  о"5г}.

Following Perelomov,1 a coherent state based on such a |0) may be characterized by a vector n or 
by a polar angle в and an azimuthal angle ф. For the purposes of an example, choose |0) to be 
15) and then

then

and hence

so that

Correspondingly,

|n) = exp фБг exp fl5),|0) = exp \фк exp \6j\ 

(iT|n) = e x p -\9'j exp 1(ф -ф ' )к  exp {Oj 

К 0 1 n ) 12 =  1

B0 = J  l(0|n>|2dn= 4-77-.

T i  f |n,<n|
d n= 1,

as expected.
Since, with the above definitions for the Sn,

this can be seen to be a one-dimensional spin 5 representation of SU(2). This is a special case of 
a general result due to Finkelstein et al.4 which states that besides the real, integer spin 
(Frobenius-Schur class + 1) and the half-integer spin (Frobenius-Schur class -  1) representa
tions, there are quaternionic representations for half-integer spin o f precisely half the dimension o f 
the Frobenius-Schur class -  1 representations for the same spin. For instance, one choice for the 
spin 5 representation is

1 / 2  7 3 ; \ 1 / 2  - А Л  i f 1 0 л . sy= x j I .. „ I. s 7~ - k L  „

Then,

V \ j 3 j  0 ) '  dy 2 J[ j 3 j  0 j '  z~ 2  \0 3

1 5 /1  0\ 
l)'
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so the spin is indeed Consider, as before, eigenstates of Sz ; these may be chosen to be

6 H 3 - виз- Ю -&  i - h i

Again, when one of these is chosen as |0), the stationary subgroup is

tf= {exp  aSz}.

As an example, choose |0) to be ||) so that

n) = exp <̂ >5г exp

1 Ik 0\  1 I 2j v3\/0\1 Ik  1 I 2 j  v3W0\
* ' Xp2 < %  0 j (  1J

1 Ik  0 

* “ Р ? Л о  3*

1 i к 0 \ з

V3 3 
J3 o ]  4

- Ф Ш

* ' ч ’ И о  3jfc) 4
j  3 I

- \~jil /3  C*P 2 +
! L \

exp \фк I 3

3 .. J \ 77exP j eJ +
e x p  2  ^ 3 !  2

1
I exp -  фк

2  z  L  - J3

\ exp I фку j  exp \ Oj +  e x p -  5 f l /]  ,

exp \  Фк -4  j 1
2  v3 exp -  -  Oj 

\ exp f  фк j

\

-e x p  -  fl/ +  exp -  -  0j
J3

where the calculation has been carried out efficiently by decomposing (f)  into Sy eigenstates. 
From this, we find

(n '|n)= & [  j  (  - e x p -  I fl'y +  exp 5 f l '; ) e x  p {  (ф 1 -  ф ) к ( - е х  p \ fl/ +  ex p -  5 f l /)  

+ (  5 exp— § 0‘j  +  ex p j  fl './)exp  \ (Ф ~ Ф')к(  j  exp \ fl/ +  e x p - j  f l / ) ] ,
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and hence

J<0| n) |2 = f+  f  cos 26,

so  ihat

ГВn= I |<0|n>|2 dn=2n.
J ..............

Correspondingly,

3 r I sin2 в х(в,ф)

with

I f  3 f  sin 0 х(О.Ф) I

5 v J l”>("idn=571 { т Ф) ) + t o s !  «/

х (в ,ф )=  —  и  sin2 ве~2фк + $т 2ве~*к), 
V5

which on doing the ф integration becomes

3 { „ ( s in 2 в 0 \ / i o

4 - J „ (  0  . Г

as expected. These examples can be readily extended to the general half-integral spin quaternionic 
irreducible representations of SU(2).
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We extend the discussion of projective group representations in quaternionic Hil
bert space that was given in our recent book The associativity condition for quater
nionic projective representations is formulated in terms o f unitary operators and 
then analyzed in terms of their generator structure. The multi-centrality and cen
trality assumptions are also analyzed in generator terms, and implications of this 
analysis are discussed. ©  1996 American Institute o f Physics.
[S0022-2488(96)01105-7]

I. ASSOCIATIVITY CONDITION FOR QUATERNIONIC PROJECTIVE GROUP 
REPRESENTATIONS

In quaternionic quantum mechanics, all symmetries of the transition probabilities are gener
ated by unitary transformations acting on the states of Hilbert space.1-3 In the simplest case, the 
unitary transformations Ua ,Ub ,... form a representation (or vector representation) o f the symme
try group with elements a ,b ....

U b U a =  U b a . (1)

A more general possibility is that the group multiplication table is represented over the rays 
corresponding to a complete set of physical states, but not over individual state vectors chosen as 
ray representatives. This more general composition rule defines a quaternionic projective repre
sentation (or ray representation), and takes the form (Ref. 4, Sec. 4.3)

UbU„\f)=Uba\f)w(f-,b,a), | и ( / ;М )| “ 1, (2)

for one particular complete set o f states ( /)  and a set of quaternionic phases <u(/;b,a). When we 
change ray representative from \f) to \f ф)ш \^ф, with ]<̂| = 1, the phase defining the projective 
representation is easily seen to transform as

а>Уф\Ь,а) =  ф<оУ\Ь,а)ф, (3)

with the bar denoting quaternion conjugation. Equation (3) shows clearly that the projective phase 
w must depend on the state label /  as well as on the group elements a,b\ failure to take this into 
account can lead4 to erroneous conclusions (as in Ref. 5) concerning quaternionic projective 
representations.

The defining relation for quaternionic projective representations given in Eq. (2) can be 
rewritten in operator form by defining a left-acting operator f l (b,a),

fi(i>,a) = 2  \f)b>(f',b,a)(f\, (4a)
/

“'Electronic mail address: adler@sns.ias.edu
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which, using Fq. (3), is seen to be independent of the ray representative chosen for the states |/). 
Multiplying Eq. (2) from the right by (J\ and summing over the complete set of states |/ ) ,  we 
obtain the operator form of the projective representation,

и ьи а= и ЬаП(Ь,а). (4b)

It is also immediate from the definition of Eq. (4a), and the fact that |ш| = 1, that the operator 
f l (b,a) is quaternion unitary,

П(Ь,а)'П(Ь,а) =  Щ Ь,а)П(Ь,аУ=\. (5)

Note that if we were to make the definition o f a quaternionic projective representation more 
restrictive by requiring that Eq. (2) hold for all states in Hilbert space, rather than for one 
particular complete set of states, then we would require Cl(b,a) =  1, since the unit operator is the 
only unitary operator which is simultaneously diagonal on all complete bases in quaternionic 
Hilbert space. Hence this more restrictive definition excludes quaternionic embeddings of complex 
projective representations, whereas these are admitted as quaternionic projective representations 
by the definition of Eq. (2).

A nontrivial condition on the projective representation structure is obtained from the associa
tivity of multiplication in quaternionic Hilbert space, which implies

(UcUb)Ua= U c(UbUa). (6)

Applying Eq. (4b) twice to the left-hand side of Eq. (6), we obtain

(■и си ь) и а =  и сЬП {с ,Ь )иа = и сЬи аи : 'П { с ,Ь ) и а =  и сЪМ с Ь ,а )и -а '£1{с,Ь)иа, (7a)

while applying Eq. (4b) twice to the right-hand side of Eq. (6) gives

Uc(UbUa) = U cUban (b ,a )  =  UcbaC l ( c ,b a m b ,a ) .  (7b)

Upon multiplying from the left by U~btt, Eqs. (7a) and (7b) give the operator form of the asso
ciativity condition:

n (c ,ba )n ,(b ,a )  = ( l ( c b ,a ) U ; lQ.(c,b)Ua . (8)

We can also express the associativity condition as a condition on the quaternionic phase 
<u(f;b,a) introduced in Eq. (2), by applying the spectral representation of Eq. (4a) to the operator 
form of the associativity condition given in Eq. (8). From Eq. (4a) we obtain

f l (c ,M = 2  |/М/;с,йа)(/|, (9a)

which when multiplied from the right by Eq. (4a) gives

П (с,Ьа)П (Ь ,а) =  2  \f)<i>(f',c,ba)<i>(f;b,a)(f\. (9b)

Equation (4a) and the unitarity o f f l (cb,a)  also imply that

f l ( c b ,a )~ l =  Y  \f)<o(f;cb,a)(f\, (9c)

and so the associativity condition of Eq. (8) can be rewritten as

J. Math. Phys., Vol. 37, No. 5, May 1996
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U~lCl(c,b)Ua= t l ( c b ,a ) ~ ]Cl(c,ba){l(b ,a) =  X  \f)w(f,cb,a)(o(f\c,ba)(ii(f-,b,a)(f\.

‘  ( 10)

Hence U~]Cl(c,b)Ua is diagonal in the basis spanned by the states |/). Taking matrix elements 
of Eq. (10), and using the unitarity of Ua, the associativity condition gives the two relations

w (/;cb ,a )w (/;c ,b a )< u (/;6 ,a) =  2  (f"\Ua\f)o)(f"\c,b){f"\Ua\f), (11)
f

and, when

0 = 2  <f\Ue\f)e>W ,c.b)(r\U.\f')-  (I2)
Г

We conclude this section by comparing the quaternionic Hilbert space form o f the associa
tivity condition with the simpler form which is familiar from complex Hilbert space.6,7 In a 
complex Hilbert space, the phase w{f\b,a) introduced in Eq. (2) is a complex number, and 
commutes with the phase ф, also now complex, which we introduced in Eq. (3) to describe a 
change o f ray representative. Hence Eq. (3) implies, in the complex case, that w(J\b,a) is inde
pendent of the ray representative chosen for the state |/), and it is then consistent to assume that 
oj(J%b,a ) is independent o f the state label / ,  so that

oo(f;b,a) = o){b,a) complex Hilbert space. (13a)

Substituting Eq. (13a) into Eq. (4a), we now obtain

f t ( b .a ) = S  \/)ш(Ь,а)(/\ =  ш(Ь,а)У, \f){f\ = o>(b,a)l, (13b)

where 1 denotes the unit operator in complex Hilbert space. Since the complex phase ш(Ь,а) is a 
с -number in complex Hilbert space, on substituting Eq. (13b) into Eq. (4b) we learn that

UbUa= U bM b ,a )= < o (h ,a )U ba, (14a)

which is the standard definition of a projective representation in complex Hilbert space. Moreover, 
since Eq. (13b) implies that Cl(b,a) commutes with the unitary operator Ua , the associativity 
condition of Eqs. (8) and (11) reduces to the familiar complex Hilbert space form

ш(с,Ьа)ш(Ь,а) = ш(сЬ,а)ш(с,Ь). (14b)

II. THE ASSOCIATIVITY CONDITION IN GENERATOR FORM

Let us now assume that the symmetry group with which we are dealing is a Lie group, so that 
in the neighborhood of the identity e the unitary transformations Ua ,Ub ,Uba ,... can be written in 
terms of a set o f anti-self-adjoint generators GA as

t/* =  e x p (E  ^ С л) ,  t /ft =  e x p ( 2  0*Ga) ,  l / ta- e x p | ^  (15a)

with 8\= 0 and U, =  1. Then Eq. (4b) implies that fl (b ,a)  must be unity when either a or b is the 
identity, and thus the generator form for this operator is
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f t ( 6 , a )  =  ex p * 2  
*  BA

. (15b)

where the parentheses ( )  around a set of indices indicate that the tensor in question is symmetric 
in those indices, and where we use the tilde to indicate operators which are ami-self-adjoint. The 
parameters must be functions of the parameters в аА and в ьв,

f t  =Ф с { № ) № } ) =  <>c+eac +  j ' 2  W ^  + <?(03). (15c)
BA

where in making the Taylor expansion we have used the fact that Ubeш Ub and Uea= Ua , which 
fixes the linear terms in the expansion and requires the quadratic term to be bilinear.

We proceed now to derive a number of relations by combining the generator expansions of 
Eqs. (15a)-(15c) with the formulas of Sec. I. We begin by substituting Eqs. (15a)-(15c) into Eq. 
(4b) using the Baker-Campbell-Hausdorff formula,

exp X  exp У = ехр(Х+ У] + - - ) ,  (16a)

to combine exponents arising from the factors on the left and right. From the left-hand side of Eq. 
(4b) we obtain,

u bu = c x P( 2  ^ c fi+ 2  eaAGA+ ^ 2  ebBe°A[ c B, GA] + o ( e 3)\ ( i6b)
\  Я  A ^  BA J

while from the right-hand side of Eq. (4b) we obtain

i _  j 1 _  \ 
[/*аП ( М )  = ехр| 2  ( 0£ + < £ )G c+ - 2  Сж ^ С с + г 2  вьв (ГА1ВА + 0 { в ъ) |.

\  С  ^  CBA *■ BA I

(16c)

Equating Eqs. (16b) and (16c) thus gives the relations

[С д , Ga\ = C [ BA]c G c + 1[ba] (17a)

and

0 = 2  C(BA)CGc + Ьва) • (17b)
с

where the square brackets [ ] around a set o f indices indicates that the tensor in question is 
antisymmetric in these indices. We shall restrict ourselves henceforth to the case in which 
C(8A)c=0, which by Eq.J17b) implies that / (дд)=0; making this assumption then implies that 
C b a c = C [b a ]C and Ь а ^ ^ в а i ■In other words, we are assuming that the structure constants C BAC 
for a projective representation have the same antisymmetric form as holds for a vector represen
tation. Changing the summation index С to D in Eq. (17a), and then taking the commutator of Eq. 
(17a) with Gc , we find

[G c , [G B, G J ]  = 2  C[ba]d[G c , Gd] + [G c , V , ] ;  (18a)

J. Math. Phys., Vol. 37, No. 5, May 1996



734 Adventures in Theoretical Physics

2356 Stephen L. Adler: Quaternionic projective representations

adding to this identity the two related identities obtained by cyclically permuting A,B,C,  using the 
fact that the left-hand side of the sum vanishes by the Jacobi identity for the commutator, and 
substituting Eq. (17a) for the commutators appearing on the right-hand side of the sum, we obtain 
the identity

2  (С [я л ] в С [ с о ] £ + ^ [ с я ] о ^ [ а о ] £ + ^ [а с ]л С [ я с ] £ )С £
D E

+ 2  (c[BA]Di[CD]+c[CB]Di[AD]+ clAC]DT[BD])

+  [ G C , / [в л ] ]  +  [ С д , /[ c B ] ]  +  [ G e , / [ д с ] ]  =  0- (18b)

We next substitute Eqs. (15a)-(15c) into the associativity condition of Eq. (8), now keeping 
cubic terms in the exponent of the form в^вьд всс , but dropping cubic terms, such as в°А that 
do not contain all three of the upper indices a,b,c.  For the first factor on the left-hand side of Eq. 
(8), we find from Eqs. (15b) and (15c) that

1 1  I  _

П(с,£>а) = ехр| — 2  ( @b&a ^я^л ^с^вЦлс)

= exP| j  2
i £  BA D E

[О£]Л0£>0£М[вЛ]

+  2 2 ,  ffgO1̂ O c^ b (ac ) 

while for the second factor on the left-hand side of Eq. (8) we have

fi(fc,a ) =  exp| -  2
BA

(19a)

(19b)

Since the exponents in Eqs. (19a) and (19b) both begin at order fl2, through order 03 we can simply 
add exponents to get the product on the left-hand side of Eq. (8). Proceeding similarly for the first 
factor on the right-hand side of Eq. (8), we obtain

ft(ci>,a) — exp|  ̂ ^  | ®в*®д [̂ял] + 2  &c ®л- (̂вс)л

1
= e x p| т  z

BA

1  ̂ ~ 
ecB+ebB+ - '2  c [DE]BtfDebE\rAi[BA]

D E  /

+  2 ^  ^ B ^ C ^ A ^ B O A (20a)

while for the second factor on the right-hand side of Eq. (8), use of the Baker-Campbell- 
Hausdorff formula gives

t /^ n t c .^ C /^ e x p j  —2  ^ G j e x p l  j g  <?с вьвТ[св] j exp| £  6aAG/
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exP^2 §  0с®в~1[св) 2 ^ 2  0a 0c&b[G a • ^[ся]]|- (20b)

Since the exponents in Eqs. (20a) and (20b) begin at order fl2, it again suffices to simply add the 
exponents to form the product appearing on the right-hand side of Eq. (8). Thus, to the requisite 
order, the content of Eq. (8) is obtained by equating the sum of the exponents in Eqs. (19a) and 
(19b) to the corresponding sum o f exponents in Eqs. (20a) and (20b). The quadratic terms in flare 
immediately seen to be identical on left and right, while the cubic term proportional to fl^flfiflc 
gives (after some relabeling of dummy summation indices) the nontrivial identity

?C(ba)+  4 2  c {ba-\d1[cd]=J\cb)a +  4 2  C[CB]DT̂DA]- -  [ Ga , T[Ca]], (21)

On totally antisymmetrizing with respect to the indices A,B,C, the terms in Eq. (21) involving 
drop out, and we are left with the identity

2  ( C [ b a ] d I [ c d ] +  C [ c b ] d I [ a d ] +  C [ a c ] d I\_b d ] )  +  \ . G c , ^ [ в л ] ]  +  [ С д  J ( c s ] ]  +  [ G fl • ^ [ л с ] ] ” : 0-

(22a)

In other words, associativity implies that the sum of the second and third lines of Eq. (18b) 
vanishes separately; hence the first line of Eq. (18b) must also vanish, and since the generators GE 
are linearly independent this gives the Jacobi identity for the structure constants,

^  (C[ba]dC[cd]e+ C[cb]dC[ad]e+ C[aC]dC[bD]e) — 0. (22b)

In the complex case, in which D.(a,b) =  (o(a,b)l is a c-number, the tensor I[ABj is a c-number 
“ central charge”  and the commutator terms in Eqs. (18b) and (22a) vanish identically. Therefore, 
in the complex case, Eq. (18b) implies both Eq. (22b) and the identity

2  (Сгвлр /[ с о }+ С [Сд]о/[Лд]+С[^С]О/[вг)]) =  0 complex case, (23)
D

and so one obtains the entire content of the associativity condition from the simpler analysis 
leading to Eq. (18b), without having to perform the third-order expansion needed to obtain Eq. 
(22a).

III. GENERAL, MULTI-CENTRAL, AND CENTRAL QUATERNIONIC PROJECTIVE 
REPRESENTATIONS

The analysis of Sec. П applies to the general case (apart from the restriction C(SA)C=0) of a 
quaternionic projective representation; in order to obtain more detailed results it is necessary to 
introduce further structural assumptions. In Ref. 4 two special classes of quaternionic projective 
representations are defined. A quaternionic projective representation is defined to be multi-central 
if

[ f l (* .a ) , 1/в] =  [П (Ь ,а), t /b] =  0, all a,b, (24a)

while it is defined to be central if

[П (£ ,а ), Uc] =  0, all a,b,c.  (24b)
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Expressed in terms of the generators introduced in Eqs. {15a)—(15b), the multi-centrality condition 
takes the form

X  ^a®j^c[G c. ^[B/t]]=  2  &b&c[G c > ^ ( b a ) ] ~ a >b< (25a)
AB C A B C

while the centrality condition becomes

2  в°Авьа(fc [ Gс , 1[BA]] = 0, all a,b,c.  (25b)
ABC

Making the definition

A[ab]c= [G c - /(дл)]. (25c)

we see from Eq. (25a) that multi-centrality requires that A[Afl]c be antisymmetric in A ,С and in
B,C  as well as in A,B; thus in the multi-central case Д is totally antisymmetric, which we will 
indicate by writing it as A[Abci ■ Erom Eq. (25b), we see that centrality requires that Д(Лд)с must 
vanish.

Using the generator formulation, we proceed now to discuss successively the general, multi
central, and central cases in the light of the associativity analysis of Sec. II.

(1) The general case. An example given in Eqs. (13.54g) and (14.23a) o f Ref. 4 shows that 
one can have a quaternionic projective representation which is neither central nor multi-central. 
The example is constructed from n independent fermion creation and annihilation operators b]r, 
b/, which commute with a left algebra quaternion basis E0=  \,E,=  / ,Ег — J =  К .
Consider the set of three generators GA defined by

Ga = - \ E aN , A =1,2,3, (26a)

with N the number operator

N = Д  (26b)

The commutator algebra of these generators has the form of a projective representation of SU(2),

з

[G B, Ga] = - £  е[в л с)^ с+ J[ba].

(26c)

V  1
6 [ b a c ]  5" E CN ( N -  1),

with e  the usual three-index antisymmetric tensor. A simple calculation now shows that

[ Ga * I[bc]\=  ~ N (N — \)(SabG c ~  Зас^ в) ’ (27a)

which is not antisymmetric in either the index pair A, С or the pair A,B, and so the multi-centrality 
condition is not satisfied. Another simple calculation shows that

^  ( 6 [ S A D ] ^ [ C D ] + e [C f l£ > ] J [A D ]+ e [ A C D ] ^ [ B D ] ) = 0 .  ( 27t>)
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by virtue of the Jacobi identity for the structure constant e, and also

[ ^ c  J[ba]\ +  [G a J[CB}] + [ GB J [AC]\ = 0. (27c)

Hence the associativity condition o f Eq. (22a) is satisfied, with the first and second lines each 
vanishing separately.

(2) The multi-central case. Let us now consider the multi-central case, in which A[i4fl|c 
defined in Eq. (25c) is totally antisymmetric in /1 ,5 ,C, as indicated by the notation \ ABC]. The 
associativity condition of Eq. (22a) then simplifies to

2  (^ я /д о ^ со ] + С[св]о^,1В]+ ^лсрА вД ]) + з д Мяс]“ 0. (28a)

A further equation involving Д is obtained from the Jacobi identity

\Gd , [G c , /[sA] ] ] - [ G c ,[G b , /[вл]]]= [^[ял]. [ Gc , C D]], (28b)

which on substituting Eqs. (17a) and (25c) becomes

[ &D’ Д[А8) с ]_ [ 6 с -  A[/ie]D] = - X  ClCD]E&[AB]E + lIlBA]- ^CD]]. (28c)

an equation which holds even in the general case in which Д is not totally antisymmetric. Spe
cializing Eq. (28c) to the multi-central case and contracting it with SACSBD, the left-hand side 
vanishes because of the antisymmetry of Д, while the commutator term on the right-hand side 
becomes , / (Ae]] =0, leaving the identity (after relabeling the dummy index E as C)

С [л 8 ]сД [д в с ] =  0. (2 9 )

Thus in order for a multi-centra] projective representation to exist which has Д^О and so is not 
also central, there must be a three-index antisymmetric tensor ДfABc] which vanishes when all 
three indices are contracted with the structure constant Ĉ ABjC. This condition is not easy to 
satisfy and so we pose the question, which we have not been able to answer: Can one construct an 
example of a multi-central quaternionic projective representation which is not centra], or can one 
prove (in general, or with a restriction, e.g., to simple or semi-simple groups) that a multi-central 
quaternionic projective representation must always be central? The application of multi-centrality 
in Ref. 4 sheds no light on this issue; multi-centrality was used there (e.g., in Sec. 12.3) to show 
that quaternionic Poincare group projective representations outside the zero energy sector can 
always be transformed to complex Poincare group projective representations, which in the sector 
continuously connected to the identity are known8 to be transformable to vector representations.

(3) The central case. Let us finally consider the central case in which Д=0, which by Eqs. 
(25c) and (28c) implies that / |gA] commutes with both Gc  and I[CD] for arbitrary vaJues of the 
indices. Thus I[BA] behaves as a central charge, justifying the name ‘ ‘central”  for this case. The 
various results obtained in Bargmann6 can be immediately generalized to the quaternionic central 
case; for example, the analysis of Ref. 6 can be easily extended to show that the central charges 
associated with a quaternionic central projective representation of a semi-simple Lie group can 
always be removed by redefinition of the generators; and again, the nontrivial illustration6 of a 
complex projective representation, constructed in terms of the phase space translation generators 
in nonrelativistic quantum mechanics, can be embedded4 in quaternionic quantum mechanics as a 
central projective representation.
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In a series o f papers published in this journal, a discussion was started on the 
significance of a new definition o f projective representations in quaternionic Hilbert 
spaces. In the present paper we give what we believe is a resolution of the semantic 
differences that had apparently tended to obscure the issues. © 1997 American 
Institute o f  Physics. [S0022-2488(97)01709-X]

I. WIGNER’S THEOREM REVISITED

We must first harmonize the notations in papers1-4 that were written more than 30 years apart, 
and for different audiences. Let j b e  a quaternionic Hilbert space. In order to facilitate the 
transcription to Dirac’ s bra-ket notation, we write the multiplication by scalars on the right, with 
the scalar product defined to be linear in its second term:

(Фр,Фя)=р*(Ф,Ф)я< 0 )

in conformity with \<t>q)=\4>)q.
Under the initial assumptions of Wigner,5 reformulated hy Bargmann,6 or the assumptions of 

Emch and Piron,7 a symmetry /i  is defined as a map that preserves transition probabilities between 
rays, or equivalently as an automorphism of the orthocompiemented lattice the elements
o f which are the closed subspaces (i.e., the projectors) of the Hilbert space S&w.

The theorem known as Wigner’s theorem (by physicists), and as the infinite-dimensional 
version of the fundamental theorem8 o f projective geometry (by mathematicians) asserts that every 
symmetry is implemented by a counitary operator U, satisfying

P^S\5%k)^>iA_P\=U*PV, (2)

with

U(i/iq) =  (UiJi)au[q]y фе^&ц and qe.3&, (3a)

= f°r some with шиши= i; (зь)

i.e., aty is an automorphism of the field of quaternions. The counitanty o f U means that

U *U =U U * = I, so that (иф ,и ф ) = о1и[{ф,ф)~\, (3c)

which reflects the fact that for a colinear operator A the adjoint is defined by

(А*ф,ф) = ад \(ф,Аф)\. (4)

Conversely, every counitary operator implements a symmetry.

4758 J. Math. Phys. 38 (9), September 1997 © 1997 American Institute of Physics
Reprinted with permission.
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Finally, a symmetry determines the counitary operator that implements it, uniquely up to a 
"phase;" specifically the quaternionic form of Schur’ s lemma1 implies that two counitary opera
tors U i and U2 implement the same symmetry if and only if there exists a unit quaternion a>, such 
that U2= U\CU, where Сш is the counitary operator defined by

Сшф~ фш. (5)

Indeed,

Р е & \ Ж п) ~ С 1 Р С ы = Р .  (6 )

Hence, for every symmetry separately, one can choose a unitary operator to implement this 
symmetry; and this unitary operator is unique up to a sign.

So far, and as long as each symmetry is treated separately, the above approach covers the 
premises of both Adler2 and Emch.1

II. STRONG AND WEAK PROJECTIVE REPRESENTATIONS

When an abstract group G is represented as a group of symmetries, i.e., when a symmetry 
fi(g)  is assigned to every g e G in such a manner that

M ( £ i M g 2) =  M ( £ i « 2 ) .  v ( £ b « 2 ) e G x G ,  (7a)

i.e.,

P e 5 zl (^ ,ll)'-^/x(g l )[M(g 2) [ p ] ] = M(5|g2) [p ] , V ( g l ,g2) e G X G ,  (7b)

one can repeat the above procedure for each g separately, and obtain a lifting by unitary operators 
U(g), satisfying

u ( g i m g 2) = ± m 8 ] g 2) .  (8 )

When G is a Lie group, and ц  is a continuous representation, the brutal lifting just described 
may, however, not lead to a continuous unitary representation. As physics needs continuity to 
define the observables corresponding to the generators of the unitary representation, it is reassur
ing to know that continuity is obtained, nevertheless,1 as a result of the following procedure.

First, one shows that there always exists a continuous local lifting by counitary operators, thus 
satisfying the condition

U (gi)U {g2) = U { g lg 2)C a(g]gi). (9)

In this expression Сш is a counitary operator, defined as in (5), where now ш = с о ( - , )  is a 
continuous function of each of its arguments, takes its values in the unit quaternions, and satisfies, 
besides the trivial conditions w (g ,e )=  aj(e,g), the 2-cocycle condition:

b>(g\,gig-i)b>(g2,g3) =  o>(g\g2,g3)otu-i[u(gi,g2)]- , (10a)
<3

for the purpose o f ulterior comparison with (13), we rewrite ( 10a) as

Second, one shows that such a lifting is always equivalent to a continuous, unitary, local, but 
true representation (i.e., no ш, not even a ±  sign, ambiguity).

J.  Math. Phys., Vol. 38, No. 9, September 1997
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Third, whenever the Lie group G is simply connected, this can be extended to a continuous, 
unitary representation of the whole group G. In cases where the group is doubly connected (e.g., 
the rotation group in three dimensions), one only obtains the above result for its covering group; 
it is when one has to consider the group itself that the ±  ambiguity o f (8) can possibly manifest 
itself. As the latter amendment (covering multiply connected groups) is not germane to the issue 
on which we want to concentrate in this paper, we will not pursue that part of the discussion here.

The straightforward generalization we just sketched, extending to quaternionic Hilbert spaces 
the analysis familiar from the complex Hilbert spaces situation presents one remarkable feature: 
the “ phase reduction”  is always locally trivial. Mathematically, this can be understood1 from the 
fact that the local phase reduction amounts to finding, up to equivalence, all the extensions9 of the 
Lie algebra of G by the Lie algebra of the group of automorphisms of the field of quaternions; as 
the latter happens to be the semisimple Lie algebra su(2,C), all such extensions are trivial.10 In 
this respect the complex case is much more involved, as shown by Bargmann.11 In particular, the 
phase reduction is not locally trivial for the Galilei group, a fact that is interpreted as viewing the 
mass as parametrizing the sectors o f a superselection rule. Two attitudes are possible in this 
juncture. The first, which was chosen by Emch,1 was to accept that Galilean QM is different in its 
quaternionic realization from what it is in its complex realization. The second is to pursue the 
issue, and to generalize the definition of a projective representation; this was recently proposed by 
Adler.2

Translated in the notation of this paper, Adler’ s proposal2 is to replace condition (9) by the 
weakened condition,

U (gi)U (g2) = U ( g lg 2)Lcl{g^i2), (11)

where is the linear operator,

L n(*,.X 2>^= ^  Фк^к(.8 1 »^2) ( Фк 'Ф)-> (1 2 )

with u>k(g\^ г ) * шк(8\ ^ g i )~ 1 “ d Ф ~ {ф к\к= 1,2,...} is a complete orthonormal basis in 
the same for all pairs (g i ,g 2 ) o f elements of G. Note Lhat

^ 'П и 1.*2|} )^П (*2.»з) =  ̂ П (*1*2,* з )^ <з L n ( t , . g 1) u i y  (* 3 )

III. DISCUSSION

While {11,13} look somewhat similar to {9,10fc}, there are major differences between these 
two formulations; our purpose in this paper is to delineate sharply the scope and reach of these 
variations.

First, (9) is a direct consequence of the condition (7). Hence one should expect condition (7) 
to be violated by (11). This is indeed the case: see (16) below. Recall that (7) is the defining 
condition for the usual definition of a projective representation, as ^ (J^n ) is the projective space 
associated to the vector space . It is, in fact, equivalent to (9), and it is the condition Adler 
refers to as the defining property o f a strong projective representation, in opposition to (11), which 
is equivalent to (16), and which he introduces as the definition o f a weak projective representation.

Second, (9) is a relation among essentially counitary operators. It is true, as we just men
tioned, that a powerful theorem1 allows us to reduce the phases and thus to obtain a locally trivial 
continuous unitary representation, so that (9) becomes ultimately a relation between linear opera
tors. Nevertheless, this reduction is not instructive in the present juncture since it is (9) itself [not 
(8)] that serves as a motivation for the extension (11). By contrast, (11) is in its very essence a 
relation between unitary operators; in particular, L is a linear operator (in fact, a unitary operator)

J. Math Phys., Vol. 38, No. 9, September 1997
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that involves the choice o f a complete orthanormal basis Ф = {0*|^= 1,2,...}; i.e., the focusing on 
one complete set o f commuting observables, or more precisely, on a discrete, maximal Abelian, 
real subalgebra,

the minimal projectors o f which are the projectors P on the one-dimensional rays corresponding 
to each element фк of the chosen basis Ф. We denote by the Boolean sublattice o f

generated by these projectors.
Third, as a consequence of the above remark, whereas the colinear operators Сщ(8] in (9) 

implement the trivial symmetry [see (6)]— and are, in particular, independent o f any choice o f a 
Hilbert space basis— that is not the case for the symmetry implemented by the linear operators 

Indeed, we have genetically only

Hence, the symmetry implemented by C/(gig2) coincides with the symmetry implemented by

This, compared to (7), is the major difference between the conditions defining weak versus strong 
projective representations. While both require, for each symmetry separately, that /i (g )  be an 
automorphism of the whole system (a condition necessary to support the use of Wigner’ s theo
rem), the difference appears when it comes to the representation of a group of symmetries: the 
strong definition requires (7h), i.e., that fi is a representation on the full whereas the
weak definition requires only (16), i.e., that this condition hold on

This is the price one must be prepared to pay for the relaxing from the “ strong”  condition (9) 
to the “ weak”  condition (11)— which is the generalization proposed by Adler.2 At this price, it 
has become possible12,4,13 to classify the irreducible weakly projective representations of con
nected Lie groups; to embed complex projective representations into weakly projective quater
nionic representations (even when the Bargmann complex phase reduction is not locally trivial); to 
construct quaternionic coherent states (including the weakly projective case); and to discuss how, 
in the complex case, the weak condition (11) already implies the stronger condition of (9).

After comparing their original motivations, the authors realized how they both had hoped to 
take advantage of the SU(2) symmetry of the quaternions: Emch1 was interested in finding some 
natural coupling between the inhomogeneous Lorentz group of special relativity and the internal 
symmetries then known in elementary panicle theory; Adler2 was similarly interested in finding a 
source in the ray structure of Hilbert space for the color symmetry. It seems fair to say that, even 
with the generalization proposed by Adler,2 the structure o f the current quaternionic models for 
quantum theories is not (yet) rich enough to accommodate dreams that extend beyond the complex 
Hilbert space formalism.
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