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Preface

Researchers in computational sciences are faced with the problem of solving 
a variety of equations. A large number of problems are solved by finding 
the solutions of certain equations. For example, dynamic systems are math- 
ematically modelled by difference or differential equations, and their solu- 
tions represent usually the states of the systems. For the sake of simplicity, 
assume that a time-invariant system is driven by the equation x' = f (x), 
where x is the state, then the equilibrium states are determined by solv- 
ing the equations f (x) = 0. Similar equations are used in the case of 
discrete systems. The unknowns of engineering equations can be func- 
tions (difference, differential, integral equations), vectors (systems of linear 
or nonlinear algebraic equations), or real or complex numbers (single al- 
gebraic equations with single unknowns). Except special cases, the most 
commonly used solutions methods are iterative, when starting from one or 
several initial approximations a sequence is constructed, which converges 
to a solution of the equation. Iteration methods are applied also for solving 
optimization problems. In such cases the iteration sequences converge to 
an optimal solution of the problem in hand. Since all of these methods 
have the same recursive structure, they can be introduced and discussed in 
a general framework.

To complicate the matter further, many of these equations are nonlin- 
ear. However, all may be formulated in terms of operators mapping a linear 
space into another, the solutions being sought as points in the correspond- 
ing space. Consequently, computational methods that work in this general 
setting for the solution of equations apply to a large number of problems, 
and lead directly to the development of suitable computer programs to ob- 
tain accurate approximate solutions to equations in the appropriate space.

This book is intended for researchers, practitioners and students in com-
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viii Approximate Solution of Operator Equations with Applications

putational sciences. The goal is to introduce these powerful concepts and 
techniques at the earliest possible stage. The reader is assumed to have 
had basic courses in numerical analysis, computer programming, computa- 
tional linear algebra, and an introduction to real, complex, and functional 
analysis.

We have divided the material into several chapters. Each section of a 
chapter is as independent from another as possible, so the reader interested 
in a particular method/result can access directly the information without 
studying previous or following sections. Each chapter contains several new 
theoretical results and important applications in engineering, in dynamic 
economic systems, in input-output systems, in the solution of nonlinear 
and linear differential equations, and optimization problems. Sections have 
been written as independent of each other as possible. Hence the interested 
reader can go directly to a certain section and understand the material 
without having to go back and forth in the whole textbook to find related 
material.

There are three basic problems connected with iterative methods.
Problem 1 Show that the iterates are well defined. For example, if the 

algorithm requires the evaluation of F at each xn, it has to be guaranteed 
that the iterates remain in the domain of F. It is, in general, impossible 
to find the exact set of all initial data for which a given process is well 
defined, and we restrict ourselves to giving conditions which guarantee that 
an iteration sequence is well defined for certain specific initial guesses.

Problem 2 Concems the convergence of the sequences generated by a 
process and the question of whether their limit points are, in fact, solutions 
of the equation. There are several types of such convergence results. The 
first, which we call a local convergence theorem, begins with the assump- 
tion that a particular solution x* exists, and then asserts that there is a 
neighborhood U of x* such that for all initial vectors in U the iterates gen- 
erated by the process are well defined and converge to x*. The second type 
of convergence theorem, which we call semilocal, does not require knowledge 
of the existence of a solution, but states that, starting from initial vectors 
for which certain-usually stringent-conditions are satisfied, convergence to 
some (generally nearby) solutions x* is guaranteed. Moreover, theorems of 
this type usually include computable (at least in principle) estimates for the 
error xn — x*, a possibility not afforded by the local convergence theorems. 
Finally, the third and most elegant type of convergence result, the global 
theorem, asserts that starting anywhere in a linear space, or at least in a 
large part of it, convergence to a solution is assured.
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Problem 3 Concems the economy of the entire operations, and, in 
particular, the question of how fast a given sequence will converge. Here, 
there are two approaches, which correspond to the local and semilocal con- 
vergence theorems. 4s mentioned above, the analysis which leads to the 
semilocal type of theorem frequently produces error estimates, and these, 
in tum, may sometimes be reinterpreted as estimates of the rate of con- 
vergence of the sequence. Unfortunately, however, these are usually overly 
pessimistic. The second approach deals with the behavior of the sequence 
{xn} when n is large, and hence when xn is near the solutions x*. This 
behavior may then be determined, to a first approximation, by the properties 
of the iteration function near x* and leads to so-called asymptotic rates of 
convergence.

We have included a variety of new results dealing with problems 1-3.
This textbook is an outgrowth of research work undertaken by us and 

complements/updates earlier works of ours focusing on in depth treatment 
of convergence theory for iterative methods [68]-[99], and the references 
there. Such a comprehensive study of optimal iterative procedures appears 
to be needed and should benefit not only those working in the field but 
also those interest in, or in need of, information about specific results or 
techniques. We have endeavored to make the main text as self contained as 
possible, to prove all results in full detail and to include a number of exer- 
cises throughout the textbook. In order to make the study useful as a refer- 
ence source, we have complemented each section with a set of “Remarks” in 
which literature citations are given, other related results are discussed, and 
various possible extensions of the results of the text are indicated. For com- 
pletion, the book ends with a comprehensive list of references. Because we 
believe our readers come from diverse backgrounds and have varied inter- 
ests, we provide “recommended reading” throughout the textbook. Often 
a long textbook summarized knowledge in a field. This textbook, however, 
may be viewed as a report on work in progress. We provide a foundation 
for a scientific field that is rapidly changing. Therefore we list numerous 
conjectures and open problems as well as alternative models which need to 
be explored.

I. K. Argyros
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Chapter 1

Linear Spaces

The basic background for solving equations is introduced here.

1.1 Linear Operators

Some mathematical operations have certain properties in common. These 
properties are given in the following definition.

Definition 1.1 An operator T which maps a linear space X into a linear 
space Y over the same scalar field S is said to be additive if

T(x 4- y) = T(z) 4- T(y), for all x, y G X,

and homogeneous if

T(sx) = sT(x), for all x € X, s G S.

An operator that is additive and homogeneous is called a linear operator.

Many examples of linear operators exist.

Example 1.1 Define an operator T from a linear space X into it self by 
T(x) = sx, s € S. Then T is a linear operator.

Example 1.2 The operator D = mapping X = C^O, 1] into Y =
C[0,1] given by

dxP(x) = ^-=»(0. o<t<i,
dt

is linear.

1



2 Approximate Solution of Operator Equations with Applications

If X and Y are linear spaces over the same scalar field 5, then the set 
L(X, Y) containing all linear operators from X into Y is a linear space over 
S if addition is defined by

(Ti + T2)(x) = T^x) + T2(x), for all x € X, 

and scalar multiplication by

(sT)(x) = s(T(a:)), for all x e X, s G S.

We may also consider linear operators B mapping X into L(X, Y). For 
an x G X we have

B(x) = T,

a linear operator from X into Y. Hence, we have

B(zi,z2) = (B(xi))(x2) = y E Y.

B is called a bilinear operator from X into Y. The linear operators B from 
X into L(X,K) form a linear space L(X, L(X,Y)). This process can be 
repeated to generate j-linear operators (j > 1 an integer).

Definition 1.2 A linear operator mapping a linear space X into its scalar 
S is called a linear functional in X.

Definition 1.3 An operator Q mapping a linear space X into a linear 
space Y is said to be nonlinear if it is not a linear operator from X into Y.

1.2 Continuous Linear Operators

Some metric concepts of importance are introduced here.

Definition 1.4 An operator F from a Banach space X into a Banach 
space Y is continuous at x = x* if

lim ||xn-x*||x = 0 => hm \\F (xn) — F (x*)\\Y = 0 n—>oo n—>oo

Theorem 1.1 If a linear operator T from a Banach space X into a Ba- 
nach space Y is continuous at x* = 0, then it is continuous at every point 
x of space X.

Proof. We have T(0) = 0, and from limn_oo ||xn|| = 0 we get 
limn_oo ||T (xn)|| = 0. If sequence {xn} (n > 0) converges to x* in X, 
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by setting yn = xn - x* we obtain limn->oo ||3/n|| = 0. By hypothesis this 
implies that

lim ||T(xn)|| = lim ||T(zn - x*)|| = lim ||T(xn) - T(x*)|| = 0.
►oo n—*oo n—►oo pj

Definition 1.5 An operator F from a Banach space X into a Banach 
space Y is bounded on the set A in X if there exists a constant c < oo such 
that

||F (z)|| < c ||x||, for all x € A.

The greatest lower bound (infimum) of numbers c satisfying the above 
inequality is called the bound of F on A. An operator which is bounded on 
a ball (open) U(z,r) = {x € X | ||z — z|| < r} is continuous at z. It turns 
out that for linear operators the converse is also true.

Theorem 1.2 A continuous linear operator T from a Banach space X 
into a Banach space Y is bounded on X.

Proof. By the continuity of T there exists e > 0 such that ||T (z)|| < 1, 
if ||z|| <£. For e X

(i-i)

since ||cz|| < e for |c| < and ||T(cz)|| = |c| • ||T(z)|| < 1. Letting 
c = e-1 in (1.1), we conclude that operator T is bounded on X. □

The bound on X of a linear operator T denoted by ||T|| x or simply ||T|| 
is called the norm of T. As in Theorem 1.2 we get

||T|| = sup \\T(x)\\. (1.2)
l|x||=l

Hence, for any bounded linear operator T

l|T(x)||<||T||*M, forallxGX. (1.3)

FYom now on, L(X, Y) denotes the set of all bounded linear operators 
from a Banach space X into another Banach space Y. It also follows 
immediately that L(X, Y) is a linear space if equipped with the rules of 
addition and scalar multiplication introduced in Section 1.1.

The proof of the following result is left as an exercise (see also [101], 
[124]).

Theorem 1.3 The set L(X,Y) is a Banach space for the norm (1.2).
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1.3 Equations

In a Banach space X solving a linear equation can be stated as follows: 
given a bounded linear operator T mapping X into itself and some y € X, 
find an x € X such that

T(x) = y. (1.4)

The point x (if it exists) is called a solution of Equation (1.4).

Definition 1.6 If T is a bounded linear operator in X and a bounded 
linear operator Ti exists such that

TiT = TTi = /, (1.5)

where I is the identity operator in X (i.e., Z(z) = x for all x € X), then Ti 
is called the inverse of T and we write Ti = T"1. That is,

T~lT = TT"1 = I. (1.6)

If T-1 exists, then Equation (1.4) has the unique solution

® = (1.7)

The proof of the following result is left as an exercise (see also [140], 
[185], [188]).

Theorem 1.4 (Banach Lemma on Invertible Operators). If T is a 
bounded linear operator in X, T-1 exists if and only if there is a bounded 
linear operator P in X such that P-1 exists and

\\I-PT\\<1. (1.8)

I/T-1 exists, then
oo

T-1 = (1 - PT)n P (Neumann Series) (1.9)
n=0

and

s - l'r-pri- «

Based on Theorem 1.4 we can immediately introduce a computational 
theory for Equation (1.4) composed by three factors:
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(A) Existence and Uniqueness. Under the hypotheses of Theorem 1.4 
Equation (1.4) has a unique solution x*.

(B) Approximation. The iteration

zn+1 = P(y) + (/ - PT)(xn) (n > 0) (1-U)

gives a sequence {xn} (n > 0) of successive approximations, which con- 
verges to x* for any initial guess xq G X.

(C) Error Bounds. Clearly the speed of convergence of iteration {xn} 
(n > 0) to x* is governed by the estimate:

ll*n - X*|| < J^ii/JXll11^11 + 117 " Prl|BU:SOll- <112) 

1.4 Computing the Inverse of a Linear Operator

Let T be a bounded linear operator in X. One way to obtain an approxi- 
mate inverse is to make use of an operator sufficiently close to T.

Theorem 1.5 IfTisa bounded linear operator in X, T-1 exists if and 
only if there is a bounded linear operator Pi in X such that P^1 exists, and

iiPi-rii<||pr1ir1. (i.i3)

//T-1 exists, then

r-1 = £(/-p1-1T)np1-1 (i.u)
n=0

and

iij— in < llp *!! <______HPi II--------- (i 15)
II H-i-||/-pr1T||_ 1-HPr‘iiiiPi-TH ( }

Proof. Let P = Pf1 in Theorem 1.4 and note that by (1.13)

||Z - PrxT|| = llPf1 (Pi - T)|| < HPf11| • IIP1 - T|| < 1. (1.16)

That is, (1.8) is satisfied. The bounds (1.15) follow from (1.10) and (1.16). 
That proves the sufficiency. The necessity is proved by setting Pi = T, if 
T-1 exists. O
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The following result is equivalent to Theorem 1.4.

Theorem 1.6 A bounded linear operator T in a Banach space X has an 
inverse T~x if and only if linear operators P, P-1 exist such that the series

oo
52 (1 - PT)n P (1.17)
n=0

converges. In this case we have
oo

T-i = ^2 (Z - PT)n P.
n=0

Proof. If series (1.17) converges, then it converges to T-1 (see Theorem 
1.4). The existence of P, P-1 and the convergence of series (1.17) is again 
established as in Theorem 1.4, by taking P = T-1, when it exists. □

Definition 1.7 A linear operator N in a Banach space X is said to be 
nilpotent if

Nm = 0, (1.18)

for some positive integer m.

Theorem 1.7 A bounded linear operator T in a Banach space X has 
an inverse T~* and only if there exist linear operators P, P-1 such that 
I — PT is nilpotent.

Proof. If P, P-1 exists and I — PT is nilpotent, then series 
oo m—1

52 - PT)n p = 52 - pr)n p
n=0 n=0

converges to T-1 by Theorem 1.6. Moreover, if T-1 exists, then P = T-1, 
P-1 = T exists, and I — PT = I — T~YT = 0 is nilpotent. □

1.5 Fr6chet Derivatives

The computational techniques to be considered later make use of the deriva- 
tive in the sense of Frechet [185], [186], [229].

Definition 1.8 Let F be an operator mapping a Banach space X into a 
Banach space Y. If there exists a bounded linear operator L from X into
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Y such that

||F(zo + Az)-F(Io)-L(Ai)|| . ,11Q.
nm ----------------- rri—n-------------------= 0, (1-19)IIAxlHo IIAill

then P is said to be Frechet differentiable at xq, and the bounded linear 
operator

P' (x0) = L (1.20)

is called the first Frechet-derivative of F at xq. The limit in (1.19) is sup- 
posed to hold independently of the way that Az approaches 0. Moreover, 
the Frechet differential

6F(xq,Ax) = F' (xq) Ax (1-21)

is an arbitrary close approximation to the difference F (xq 4- Ax) — F (xq) 
relative to ||Ax||, for ||Ax|| small.

If Fi and F2 are differentiable at zo> then

(Fi + F2)'(xq) = F[(xq) + Fi(x0). (1.22)

Moreover, if F2 is an operator from a Banach space X into a Banach space 
Z, and Fi is an operator from Z into a Banach space Y, their composition 
Fi o F2 is defined by

(Fi o F2)(x) = Fi(F2(x)), for all x G X. (1.23)

It follows from Definition 1.8 that Fi o F2 is differentiable at xq if F2 is 
differentiable at xq and Fi is differentiable at ^2(^0) of Z, with (chain 
rule):

(Fi o F2)'(xq) = F[(F2(xQ))Fi(xQ). (1.24)

In order to differentiate an operator F we write:

F(xq + Az) - F(x0) = L(x0, △z)Az + 7?(xo, Az), (1-25)

where L(xq,Ax) is a bounded linear operator for given xq,Ax with

lim L(xq,Ax) = L, (1.26)
IIAxlHO

and

lim = 0. (1.27)
HAxll-o ||△z||
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(1.30)

Estimates (1.26) and (1.27) give

lim L(xQ)kx) = F'(xQ). (1.28)
HAxlHO

If L(xQ)Ax) is a continuous function of Az in some ball 17(0, R) (R > 0), 
then

L(xQ)0) = F'(xQ). (1.29)

We need the definition of a mosaic:
Higher-order derivatives can be defined by induction:

Definition 1.9 If F is (m — l)-times FYechet-differentiable (m > 2 an 
integer), and an m-linear operator A from X into Y exists such that

llFt™-1) (xp + Ax) - Ft™-1) (x0) - A (Ax)||
l|Ax||-.o ||Ax||

then A is called the m-Frechet-derivative of F at xq > and

A = F<m> (x0) (1-31)

Higher partial derivatives in product spaces can be defined as follows: 
Define

Xij ^L^Xj'Xi), (1.32)

where Xi, X2,... are Banach spaces and L(Xj,Xi) is the space of bounded 
linear operators from Xj into Xi. The elements of Xij are denoted by 
etc. Similarly,

Xijm = L(Xm, Xij) = L(Xm, L(X5) Xi)) (1.33)

denotes the space of bounded bilinear operators from X^ into Xij. Finally, 
we write

= L (Xjk, , (1.34)

which denotes the space of bounded linear operators from Xjm into 
The elements A = Aijxj2...jm of Xijlj2...jm are a generalization

of m-linear operators [10], [54].
Consider an operator Fi from space

X = n*ip (1.35)
P=1



Linear Spaces 9

into Xi, and that Ft has partial derivatives of orders 1,2,..., m — 1 in some 
ball U (zo> R), where R > 0 and

«-(-*•'“..... »'".’) (1.3S)

For simplicity and without loss of generality we renumber the original 
spaces so that

Ji = l,j2 = 2,...,jn = n. (1.37)

Hence, we write

a:o = (^0>,40>.---.40))- (1.38)

A partial derivative of order (m - 1) of Fi at xq is an operator

, d^-^F^xo)
At<71<72 Br ■■■fiTUXqiUXq2 OXqm_x

(in where

1 < Qi>Q2, • • • yQm-i < n.

(1.39)

(1-40)

Let P(Xqm) denote the operator from Xqm into Xiq^..^^ obtained from 
(1.39) by letting

xi = ^0’. j / «m. (1.41)

for some qm, 1 < qm < n. Moreover, if

p>(x(o)} = = ^^) (i.42)
9m dxqm dxqidxq2 • ■ • dxq^-i dxqi ■ • • dxqm

exists, it will be called the partial Frechet-derivative of order m of Fi with 
respect to xqi,..., xqm at xq.

Furthermore, if Fi is Frechet-differentiable m times at Xq, then

^(so) x x _
Xq- ~ dxS1 dx,2• • • dxSmXa' Xa- (1.43)

for any permutation Si, s2, • • • ,sm of integers qi, q%,..., qm and any choice 
of points xqi,..., Xqm, from Xqi,..., Xqm respectively. Hence, if F = 
(Fi,...,Ft) is an operator from X = Xi x X2 x ••• x Xn into Y = 
Yi x y2 x • • • x Yt, then

dmFj X
dxjt • • • dxjm ) X=XQ (1-44)
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i = 1,2,..., t, ji, j%,..., jm ~ 1,2,..., n, is called the m-Frechet derivative 
of F at Xq = (a4°\ X2°\ • • • > En°)).

1.6 Integration

In this section we state results concerning the mean value theorem, Taylor’s 
theorem, and Riemannian integration. The proofs are left out as exercises.

The mean value theorem for differentiable real functions f:

f(b) — f(a) = f'(c)(b — a), (1-45)

where c 6 (a, b), does not hold in a Banach space setting. However, if F is 
a differentiable operator between two Banach spaces X and V, then

llf(x) - F(i/)|| < sup ||F'(2)||-h-3/ll. (1-46)
xEL(x,y)

where

L(x, y) = {z : z = Xy + (1 - A)x, 0 < A < 1}. (1.47)

Set

z(A) = Xy + (1 - A)z, 0 < A < 1, (1.48)

and

F(A) = F(s(A)) = F(Xy + (1 - A)x). (1.49)

Divide the interval 0 < A < 1 into n subintervals of lengths AAf, i = 
1,2,..., n, choose points A< inside corresponding subintervals and as in the 
real Riemann integral consider sums

n
£ F(Xi)&Xt = £ F(Xi)^Xi, (1.50)
a t=l

where a is the partition of the interval, and set

|cr|=maxAAi. (1-51)
(0

Definition 1.10 If

S = lim VF(Ai)AAi (1.52) 
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exists, then it is called the Riemann integral from F (A) from 0 and 1, 
denoted by

s = J F(X)dX = J" F(X)dX. (1.53)

Definition 1.11 A bounded operator P (A) on [0,1] such that the set of 
points of discontinuity is of measure zero is said to be integrable on [0,1].

We now state the famous Taylor theorem [161].

Theorem 1.8 If F is m-times Frechet-differentiable in U(xq, R), R> 0, 
and F^m\x) is integrable from x to any y G U(xq,R), then

m—1
F(y) = F(x) + £ iF^Wy-xr + R^X'y), (1.54)

n=l

F(») - E ^(n)(*)(S/ - *)" < sup ||F<m> (x) (1.55)
n=0 x€L(x,y)

where

Rm(xty) = jT F<m> (Xy + (1 - X) x) (y - x)m ^^-dX. (1.56) 

1.7 Exercises

1.1 Show that the operators introduced in Examples 1.1 and 1.2 are indeed 
linear.

1.2. Show that the Laplace transform

d2 d2 
dx\ + dx2 + dx^

is a linear operator mapping the space of real functions x = 
x(x\, X2>^s) with continuous second derivatives on some subset D 
of R3 into the space of continuous real functions on D.

1.3. Define T : C"[0,1] x C'[0,1] -> C[0,1] by

( dP „dT(x,y)=[a^ 0Tt .1. ndy df2 +/}dt' 0<t<l.

Show that T is a linear operator.
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1.4. In an inner product (■, •) space show that for any fixed z in the space

T(x) = (x,z)

is a linear functional.
1.5. Show that an additive operator T from a real Banach space X into a 

real Banach space Y is homogeneous if it is continuous.
1.6. Show that matrix A = {%}, i, j = 1,2,... ,n has an inverse if

| > 2 I > 0, — 1,2,..., n.
j=i

1.7. Show that the linear integral equation of second Fredholm kind in 
C[0,l]

x(s) — X Kts^xfydt = y(s), 0 < A < 1,

where 7<(s,t) is continuous on 0 < s,t < 1, has a unique solution 
x(s) for y(s) G C[0,1] if

l-M < |K(s,t)|dt

1.8. Prove Theorem 1.3.
1.9. Prove Theorem 1.4.
1.10. Show that the operators defined below are all linear.

(a) Identity operator. The identity operator Ix ’ X —> X given by 
Ix(x) = x, for all x G X.

(b) Zero operator. The zero operator O : X —> Y given by O(x) = 0, 
for all x E X.

(c) Integration. T : C[a, £>] —> C[a, 6] given by T(x(t)) = x(s)ds, 
t G [a, b).

(d) Differentiation. Let X be the vector space of all polynomials on 
[a, b]. Define T on X by T(x(t)) = x'(t).

(e) Vector algebra. The cross product with one factor kept fixed. De- 
fine Ti : R3 —> R5. Similarly, the dot product with one fixed factor. 
Define T2 : R3 -> R.

(f) Matrices. A real matrix A = {aij} with m rows and n columns. 
Define T : Rn —> given by y = Ax.

1.11. Let T be a linear operator. Show:



Linear Spaces 13

(ST)-1 = T~

(a) the R(T) (range of T) is a vector space;
(b) if dim(T) = n < oo, then dim R(T) < n;
(c) the null/space N(T) is a vector space.

1.12. Let X, Y be vector spaces, both real or both complex. Let T : 
D(T) —* Y (domain of T) be a linear operator with D(T) C X and 
R(T) C y. Then, show:

(a) the inverse T-1 : R(T) —> D(T) exists if and only if

T(x) = 0 => x = 0;

(b) if T-1 exists, it is a linear operator;
(c) if dimD(T) = n < oo and T"1 exists, then dim^T) = dim D(T).

1.13. Let T : X —>Y,P:Y —> Z be bijective linear operators, where X, 
V, Z are vector spaces. Then, show: the inverse (ST)-1 : Z —* X 
of the product ST exists, and

^’1.

1.14. If the product (composite) of two linear operators exists, show that 
it is linear.

1.15. Let X be the vector space of all complex 2x2 matrices and define 
T : X —> X by T(x) = cx, where c € X is fixed and cx denotes 
the usual product of matrices. Show that T is linear. Under what 
conditions does T-1 exist?

1.16. Let T : X —> Y be a linear operator and dimX = dimK = n < oo. 
Show that R(T) = Y if and only if T-1 exists.

1.17. Define the integral operator T : C[0,1] —> C[0,1) by y = T(x), where 
y(t) = k(x,s)x(s)ds and k is continuous on [0,1] x [0,1]. Show 
that T is linear and bounded.

1.18. Show that the operator T defined in 10(f) is bounded.
1.19. If a normed space X is finite dimensional then show that every linear 

functional on X is bounded.
1.20. Let T : D(T) —> Y be a linear operator, where D(T) C X and X,Y 

are normed spaces. Show:

(a) T is continuous if and only if it is bounded;
(b) if T is continuous at a single point, it is continuous.

1.21. Let T be a bounded linear operator. Show:
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(a) xn —> x (where xn> x G D(T)) => T(xn) —► T(x);
(b) the null space N(T) is closed.

1.22. If T / 0 is a bounded linear operator, show that for any x € D(T) 
such that ||x|| < 1, we have ||T(x)|| < ||T||.

1.23. Show that the operator T : £°° —► £°° defined by y = (yi) = T(x), 
yi = x = (x,), is linear and bounded.

1.24. Let T : C[0,1] —► C[0,1] be defined by

y(t) = f 
Jo

x(s)ds.

Find R(T) and T 1 : R(T) —♦ C[0,1]. Is T 1 linear and bounded?
1.25. Show that the functionals defined on C[a, b) by

/iW = y* x(t)yQ(t)dt (t/0GC[a,&]) 

f^(x) = cix(a) + c2x(b) (ci,C2 fixed)

are linear and bounded.
1.26. Find the norm of the linear functional f defined on C[-l, 1] by

f(x) = / x(t)dt - y x(t)dt.

1.27. Show that

fi(x) = maxx(t), f2(x) = mino;(t), J = [a,b] t^j t^J

define functionals on C[a,b]. Are they linear? Bounded?
1.28. Show that a function can be additive and not homogeneous. For 

example, let z = x+iy denote a complex number, and let T : C —♦ C 
be given by

T(z) — z = x — iy.

1.29. Show that a function can be homogeneous and not additive. For 
example, consider the operator T : R2 —► R given by

T2T((X!,X2)) = ^
x2
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1.30. Let F be an operator in C[O,lj defined by

F(z)(s) = x(s) [ —^-—x(t)dt, 0 < A < 1.

Show that for x0, z g C[0,1)

F'(xq)z - xq(s) [ -^—-z(t)dt + z(s) [ —^—XQ(t)dt.
Jq s + t Jq s + t

1.31. Find the Frechet-derivative of the operator F in given by

„/x\ f x2 + 7x + 2xy - 3 \
x + y3 )•

1.32. Find the first and second FYechet-derivatives of the Uryson operator

U(x) = [ k(s,t,x(t))dt 
Jo

in C[0,1] at xq = xq(s).
1.33. Find the Frechet-derivative of the Riccati differential operator

dzR(z) = — + p(t)z2 + <?(t)z + r(t), 
at

from C'[0,s] into C[0,s] at zq = zo(t) in C'[0,$].
1.34. Find the first two Frechet-derivatives of the operator

= /x2 + p2-3\
\ x sm y J

1.35. Consider the partial differential operator

F®

F(x) = Ax - x2

from C2(I) into C(Z), the space of all continuous function on the 
square 0 < a,/? < 1. Show that

F'(xq)z = &z(a,(J) — 2xQ(ay0)z(a,0),

where △ is the usual Laplace operator.
1.36. Let F(L) = L3, in L(x). Show:

F'(Lq) = Lq[ ]Lq + Lq[ ] 4- [ ]Lq-
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1.37. Let F(L) = L'1, in L(z). Show: 

F'(Lo) = ]io *.

provided that Lq 1 exists.
1.38. Show estimates (1.45) and (1.46).
1.39. Show Taylor’s Theorem 1.8.
1.40. Integrate the operator

F(L) = L~l inL(X)

from Lq = I to Li = A, where ||Z - >1|| < 1.



Chapter 2

Divided Differences

This chapter introduces the fundamentals of the theory of divided differ- 
ences of a nonlinear operator. Several results are also provided differences 
as well as Frechet derivatives satisfying Lipschitz or monotone-type condi- 
tions that will be used later.

2.1 Partially Ordered Topological Spaces

Let X be a linear space. We introduce the following definition:

Definition 2.1 a partially ordered topological linear space (POTL-space) 
is a locally convex topological linear space X which has a closed proper 
convex cone.

A proper convex cone is a subset K such that K + K CK, aK C K for 
a > 0, and K n (-K) = {0}. Thus the order relation <, defined by x < y 
if and only if y — x G K, gives a partial ordering which is compatible with 
the linear structure of the space. The cone K which defines the ordering 
is called the positive cone since K = {a; € X | x > 0}. The fact that K is 
closed implies also that intervals, [a, 6] = {z G X \ a < z <b}y are closed 
sets.

Example 2.1 Some simple examples of POTL-spaces are:

(1) X = En, n-dimensional Euclidean space, with

K = {(xi,X2,..-»Xn) G En | Xi > 0, i = 1,2, ...,n};

(2) X = En with

K = {(xi,x2,...,xn) C En | Xi > 0, i = l,2,...,n — l,xn = 0}
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(3) X = Cn [0,1], continuous functions, maximum norm topology, point- 
wise ordering;

(4) X = Cn [0,1], n—times continuously differentiable functions with
n

ii/ii = E max (t)|, and point wise ordering;
fc=o

(5) C = L? [0,1], 0 < p < oo usual topology, K =
{/€^[0,1] |/(t)<0a.e.}.

Remark 2.1 Using the above examples, it is easy to see that the closed- 
ness of the positive cone is not, in general, a strong enough connection 
between the ordering and the topology. Consider, for example, the following 
properties of sequences of real numbers:

(1) xi < %2 < ♦ • ■ < x*> and sup {xn} x* implies lim xn = x*\ n—»oo
(2) lim xn = 0 implies that there exists a sequence {yn} with yi > y2 > 

n—*oo
• • • > 0, inf {yn} = 0 and -yn < xn < yn,

(3) 0 < xn < yn, and lim yn = 0 imply lim xn = 0. 
n—*oo n—»oo

Unfortunately, these statements are not trues for all POTL-spaces:

(a) In X = C [0,1] let xn (t) = — tn. Then xi < X2 < • • • < 0, and 
sup{xn} = 0, but ||xn|| = 1 for all n, so lim xn does not exist. 

n—»oo
Hence (1) does not hold.

(b) In X = L1 [0,1] let xn (t) = n for < t < 1 and zer0 elsewhere. 
Then lim ||xn|| = 0 but clearly property (2) does not hold.

71 OO
(c) In X = C1 [0,1] let xn (t) = £, yn (t) = K then 0Sxn < yn, and 

lim yn — 0, but |lxn|| = max l^-l 4-max Itn~11 = £ +1 > 1; hence 
n—»oo n i n
xn does not converge to zero.

We will now devote a brief discussion of certain types of POTL spaces 
in which some of the above statements are true.

Definition 2.2 A POTI^space is called regular if every order-bounded 
increasing sequence has a limit.

Remark 2.2 Examples of regular POTL-spaces are En and LP, 0 < p < 
oo, where as C [0,1], Cn [0,1] and L°° [0,1] are not regular, as was shown in 
(a) of the above remark. If {xn} n > 0 is a monotone increasing sequence 
and lim xn = x* exists, then for any ko, n> ko implies xn > Xk0- Hence 

n—»oo
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x* = lim xn > XkQ, i.e., x* is an upper bound on {zn} n = 0. Moreover, if n-*oo J J
y is any other upper bound, then xn < y, and hence x* = limn—oo xn < y, 
i.e., x* = sup {xn} . This shows that in any POTL-space, the closedness of 
the positive cone guarantees that, if a monotone increasing sequence has a 
limit, then it is also a supremum. In a regular space, the converse of this is 
true; i.e., if a monotone increasing sequence has a supremum, then it also 
has a limit. It is important to note that the definition of regularity involves 
both an order concept (monotone boundedness) and a topological concept 
(limit).

Definition 2.3 A POTL-space is called normal if, given a local base U 
for the topology, there exists a positive number q so that ifO<xGV€t/ 
then [0, z] C r;u.

Remark 2.3 If the topology of a POTL-space is given by a norm then this 
space is called a partially ordered normed space (PON)-space. If a PON- 
space is complete with respect to its topology then it is called a partially 
ordered Banach space (POB)space. According to Definition 2.3. A PON- 
space is normal if and only if there exists a positive number a such that

||x|| < a ||y|| for all x,y G X with 0 < x < y.

Let us note that any regular POB-space is normal. The converse is not 
true. For example, the space C [0,1], ordered by the cone of nonnegative 
functions, is normal but is not regular. All finite dimensional POTL-spaces 
are both normal and regular.

Remark 2.4 Let us now define some special types of operators acting 
between two POTL-spaces. First we introduce some notation if X and Y 
are two linear spaces then we denote by (X, Y) the set of all operators from 
X into Y and by L (X, K) the set of all linear operators from X into Y. If 
X and Y are topological linear spaces then we denote by LB (X, Y) the set 
of all continuous linear operators from X into Y. for simplicity the spaces 
L(X,X) and LB(X,X) will be denoted by L(X) and LB (X). Now let 
X and Y be two POTL-spaces and consider an operator G e (X, Y). G is 
called isotone (resp. antitone) ifx > y implies G(x) < G(y) (resp. G (x) < 
G(y)). G is called nonnegative if x > 0 implies G(x) > 0. For linear 
operators the nonnegativity is clearly equivalent with the isotony. Also, a 
linear operator is inverse nonnegative if and only if it is invertible and its 
inverse is nonnegative. IfGisa nonnegative operator then we wnte G > 0. 
IfG and H are two operators from X into Y such that H — Gis nonnegative 
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then we write G < H. If Z is a linear space then we denote by I = Iz the 
identity operator in Z (i.e., I (x) = x for all x 6 Z). If Z is a POTL-space 
then we have obviously I >0. Suppose that X and Y are two POTL-spaces 
and consider the operators T € L(X,Y) and S e L(Y,X). If ST < Ix 
(resp. ST > Ix) then S is called a left subinverse (resp. superinverse) ofT 
and T is called a right sub-inverse (resp. superinverse) of S. We say that 
S is a subinverse ofT is S is a left-as a right subinverse ofT.

We finally end this section by noting that for the theory of partially 
ordered linear spaces the reader may consult M.A. KrasnosePskii [184]- 
[187], Vandergraft [272] or Argyros and Szidarovszky [99].

2.2 Divided Differences in a Linear Space

The concept of a divided difference of a nonlinear operator generalizes the 
usual notion of a divided difference of a scalar function in the same way 
in which the Frechet-derivative generalizes the notion of a derivative of a 
function.

Definition 2.4 Let F be a nonlinear operator defined on a subset D of 
a linear space X with values in a linear space Y, i.e., F € (D,Y) and let 
x,y be two points of D. A linear operator from X into Y, denoted [x, ?/], 
which satisfies the condition

[x, 2/j (x - y) = F (x) - F (y) (2.1)

is called a divided difference of F at the points x and y.

Remark 2.5 IfX and Y are topological linear spaces then we shall always 
assume the continuity of the linear operator [x, $/]. (Generally, [x, 3/] € 
L(X,Y) ifX,Y are POTL-spaces then [x, 3/] e LB(X,Y)).

Obviously, condition (2.1) does not uniquely determine the divided dif- 
ference, with the exception of the case when X is one-dimensional. An 
operator [•,■]: D x D -* L (X, Y) satisfying (2.1) is called a divided differ- 
ence of F on D. If we fix the first variable, we get an operator

[x0,.] -.D^L(X,Y). (2.2)

Let x1, x2 be two points of D. A divided difference of the operator (2.2) 
at the points x1, x2 will be called a divided difference of the second order 
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of F at the points z0,^1,^2 and will be denoted by [z°, x1, x2] . We have 
by definition

[z0,®1,®2] (z1 -x2) = [z0,^1] - [z°,z2] . (2.3)

Obviously, [z0,^1,^2] € L(X, L(X,K)).
Let us now state a well known result due to Kantorovich concerning the 

location of fixed points which will be used extensively later.

Theorem 2.1 Let X be a regular POTL-space and let x,y be two points 
of X such that x < y. If H : [x,y] X is a continuous isotone operator 
having the property that x < H {x) and y > H {y), then there exists a point 
z € [z, j/] such that H (z) = z.

2.3 Divided Difference in a Banach Space

In this section we will assume that X and Y are banach spaces. Accordingly 
we shall have [z, ?/] G LB (X, Y), [z, y, z] G LB (X, LB (X, Y)). As we will 
see in later chapters, most convergence theorems in a Banach space require 
that the divided differences of F satisfy Lipschitz conditions of the form:

||[x,j(] - [x,z]|| <co||j/-z|| (2.4)
||[j/,I]-[z,x]||<c1||j/-z|| (2.5)

||[z,j/, z] — [u,y, z]|| < C2 ||z - 2/|| for all x,y, z,u G D. (2.6)

It is a simple exercise to show that if [•, •] is a divided difference of F 
satisfying (2.4) or (2.5) then F is FYechet differentiable on D and we have

F' {x) = [z, z] for all x E D. (2.7)

Moreover, if (2.4) and (2.5) are both satisfied then the Frechet derivative 
F' is Lipschitz continuous on D with Lipschitz constant I = co 4- ci.

At the end of this section we shall give an example of divided differences 
of the first and of the second order in the finite dimensional case. We shall 
consider the space \Rq equipped with the Chebysheff norm which is given 
by

||z|| = max{|zi| G |7?| 1 < I < q} for x = (xi,Z2, — >z9) € l-ft9- (2-8) 

It follows that the norm of a linear operator L G LB (|K9) represented
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by the matrix with entries is given by

(2-9)

We cannot give a formula for the norm of a bilinear operator. However, 
if B is a bilinear operator with entries bijk then we have the estimate

||B\\ < max <
<7 q

EEi^i |1 < i < q ► . (2.10)
J=1 fc=l

Let U be an open ball of \Rq and let F be an operator defined on U 
with values in \Rq. We denote by /i, ..., fq the components of F. For each 
x G U we have

F(®) = (/1(x),...,/,(x))T. (2.11)

Moreover, we introduce the notation

(*) = Dkift (x) = (2.12)
OXj OXjuX^

Let z, y be two points of U and let us denote by [x, ?/] the matrix with 
entries

[*.3/]y = Z -1 . M (®i.-.^.%+i.-.3/«) ~ fi (*i..... ^-i.%.-.?/«)) •
xj Vj

(2-13)
The linear operator [x, y] € LB (|K9) defined in this way obviously sat- 

isfies condition (2.1). If the partial derivatives Djfi satisfy some Lipschitz 
conditions of the form

\Djfi (xi,..., xk + t,..., xq) - Djfi (®i,..., xk,..., xg)| < Pjk |t| (2.14)

then condition (2.4) and (2.5) will be satisfied with

Co = max }^E’=i (pj', + ELj+iPjk) |1 < » < «} (215)

and

C1 = max {(pj3. + SUipj/o) H < i < <?} • (2-16)

We shall prove (2.4) only since (2.5) can be proved similarly.
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Let x,y, z be three points of U. We shall have in turn

[x,3/]0- - [x,z] = Ek=i {lx> (j/l>-I3/fc.zfc+l>-1z>I)]y

- [z (s/1, •■■> J/fc-i, Zk, -, z,)]y } • (2.17)

by (2.13).
If k < j then we have

[®,(j/i,2/fc,Zk+i,*g)]v - [z,(yi,...,2/jt-i,zfc,

= Xj-Zj (X1»Xj' + Zq) ~ fi (xl» xj-l» ZJ1 •••’ zg)}
~Xj—zj {fi ($1 ’ "•’ xj’ ^i+i’ •••» 2g) ~ fi (®1»•••>xj-i» zji •••> 2g)} = 0*

For k = j we have

|[x, (j/l, ...,%, Zj+1,.... z,)]y - [z, (j/1, J/j-l, Zj,.... Z,) . ] |

= | Xj^yj {fi (a'1> — > •r/> 2j + 1> — > Zl) ~ fi{xl,“;Xj—l,yi, Zj+l, ..., z,)}

“JFw {/i(X1>—>a:j>zj+1>—>z«) “ /i(I1>-.Ij-1>zj>->z<i)}|

= [ {Djfi(xi,...,Xj,yj+t{xj-yj),Zj+i,...,zq)

Jo
— Djfi (zi, ...,Xj,Zj + t (Xj — Zj) ,Zj+i, ..., Zq)} dt\

< \yj - zj\p*jj [ tdt = l - Zj\p]j

Jo

(by (2.14)).
Finally for k > j we have using (2.13) and (2.17) again

I[i, (yi, -, 3/fc, Zfc+1> -, z,)]y - [x, (j/1, ..., J/fc-1, Zfc, -, Z,)]y |

= |spT7 {/i (^1* -' xi.yj+l< ••■> Vk, Zfc+1, -> z,)

fi (®1» •■•» — 1» Vji •••» Vky ^k+l, ^q)

~ fi (iCl, ...,®j,2/j+l» •••» 3/fc-l, zki -, Zq)

+fi (®1,..., Xj-1, Vji ...» yk-liZki -, *q)}|

= [ {/i(xi,...,Xj-i,J/j + t(xj -i/j),2/j+i,...,2/fc,2fc+i,...,^) 
Jo
-fi (zi,..., Xj-1, yj +1 (Xj - yj), 2/j+i,..., yk-i, zk, -., z7)} dt\

< \yk-zk\p}k.
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By adding all the above we get

Consequently condition (2.4) is satisfied with co given by (2.15). If each 
fj has continuous second order partial derivatives which are bounded on U 
we have

Pjk = sup {\Djkfi (x)| |® e u} .

In this case p*-fc = pfcj so that cq = Ci.
Moreover, consider again three points x,y, z of U. Similarly with (2.17) 

the second divided difference of F at x,y, z is the bilinear operators defined 
by

[®>l/.zlyfc = {[1>(l'l>-.l'*»z«=+l>->z«)lij

- [x, (3/1,.... j/t-i, zfc,..., z,)]y } . (2.18)

It is easy to see as before that = 0 for k < j. For k = j we
have

[®>l'>zlijj = [ij,3/j>zjl( A(xi,...,Xt-i,i,Zj+i,...,z,) (2.19)

where the right hand side of (2.19) represents the divided difference of 
fi (xi,Xj-i, t, Zj+i,..., zq) as a function of t, at the points Xj,yj, Zj. Using 
Genocchi’s integral representation of divided differences of scalar functions 
we get 

tDjjfitxu^Xj-i^Xj>+t(yj -Xj)

4“ts (zj yj), •••» Zq) dsdt. (2.20)
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Hence, for k > j we obtain

= {fi (X1'-’Xi’%+1 ’ Vk'zk+1' -’ z’}

— fi ($1 , •••, xji xj+l,•••» Vk— 1, zk> ■••» zq)
” fi ($1 » ■••» Xj — 1 , Vji •••» 3/fc, ^fc+l , •••» Zq)
+ fi ($1»•••» xj—l» Vj»•••» Vk—1 , ^fc, •••» Zg)}

1 f1
~ ~ I {Dkfi ($1, ••♦, xj, Vj+1, ••■, Vk— 1, zk + t (yk zk) , zk+l, ■••, zq)
Xj ~ Vj JQ
-Dkfi (X1,...»xj-l, Vj, •"> Vk-i 'zk + t(yk- zk) , Zk+l, -, zq)} dt

= [ [ Dkjfitxu^Xj-uyj + s{xj -yi) ,yj+i, ...,yk-i,zk
JQ JQ
+t (yk - Zk), Zk+1,..., Zq) dsdt. (2.21)

We now want to show that if

\Dkjfi («!,..., vm + t,...»vq) - Dkjfi (vi,..., vm, ...v9)| < q^m |t| 
for all v = (yi, ...,vq) € U, 1 <i,j,k,m < q, (2.22)

then the divided difference of F of the second order defined by (2.18) sat- 
isfies condition (2.6) with the constant

C2 = max EJ=1 (+ ^1^ + |EU+^ + EU+iE^A
(2.23)

Let u, x, y, z be four points of U. Then using (2.18) we can easily have

k2/>z]y* - = Em-i {[(zi....... Xm,um+1,...,ug),y,z]ijk

[(■^1 > •••> xm—i, um, ...,Uq], y, x]ijk { - (2-24)

If m = j the terms in (2.24) vanish so that using (2.21) and (2.22) we 
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deduce that for k > j

J-1 rl rl
52 / / $tti, ^tti+I, •••» uj—1 , yj
m=lJ° J°

+s (xj - yj), yj+i,..., yk-i,Zk + t(yk- zk), zk+i,zq)
~Dkj fi (X\, ..., Xm—\, Um, ...,Uj—i, yj
+s (Xj - yj), yj+\, ...,yk-\Zk + t(yk- zk), zk+1,..., zq)} dsdt
+ [ [ {^fcj/i($i,-,$j-i,3/j + 5($j-l/j),3/j+i,-,2/fc-i,^fc 

Jq Jq

+t (Vk — Zk) , Zk+\,..., Zq) — Dkjfi (xi, ..., Xj — \, yj
+s (Uj - yj), yj+i, ...,yk-!,zk + t(yk- zk), zk+i,..., zq)} dsdt\

1 ^1
— 2 ~ UJ’I ^kj ■*" 52 ^km'

771=1

Similarly for k = j we obtain in turn

nt {Djjfi (xi,..., Xj_i,Xj + t (yj - Xj) + ts (zj - yj), zj+i,..., zq) 

-Djjfi (xi,..., Xj_i,Uj + t (yj - Uj) + ts (zj - yj), zj+i,..., zq)} dsdt
J-i rl rl

+ £ / / t{Pjj/i($i,.-.,$771, 'Mtti+i,...»^j-i, $j + t (x-j yj)
771=1 J° J°

+ ts (Zj -y)j,zj+i,...,zq)

~ ^jjfi (®1> •••, $?n —1, “^TTl, ••., Uj-1 , Xj + t (yj — Xj)
+ts (Zj - yj), Zj+1,..., zq)} dsdt\

j-1
— I lXJ — Uj\^jj + 2 52 ।Xm ~ ^jm'

771=1

Finally using the estimate (2.10) of the norm of a bilinear operator, we 
deduce that condition (2.6) holds with C2 given by (2.23).
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2.4 Divided Difference and Monotone Convergence

In this section we make an introduction to the problem of approximating 
a locally unique solution x* of the nonlinear operator equation F (x) = 0, 
in a POTL-space X. In particular, consider an operator F : D C X —> Y 
where X is a POTL-space with values in a POTL-space Y. Let xo>2/o,3/-i 
be three points of D such that

xo < yo < y-i, [xo,i/-i], 

and denote

Di = {(z,y) G X2 | x0 < x < y < yQ} , 
&2 = {(j/,3/-i) G X2 | z0 < u < yQ} , 
D$ = Di U D^- (2.25)

Assume there exist operators Aq : D3 —> LB (X, Y), A : Di —> L (X, Y) 
such that:

(a)

F(y)-F (x) < Aq (w, z) (y - x) forall (x,y), (y, w) e Di, (w,z) G D3;
(2.26) 

(b) the linear operator Ao (u, v) has a continuous nonsingular nonnegative 
left subinverse;

(c)

F (y) - F (x) > A(x,y) (y - x) for all (x,y) e Di‘, (2.27)

(d) the linear operator A (x, y) has a nonegative left superinverse for each 
(x, y) e Di

F (y) - F (x) < Ao(y,z)(y - x) for all x,y e Z?i, (y,z) e D$.
(2.28)

Moreover, let us define approximations

F (yn) + Ao (s/n, 3/n-l) (3/n+i - 2/n) = 0 (2.29)
F (xn) + Ao (yn, yn-i) (xn+i - xn) = 0 (2.30)
yn+i=yn-BnF(yn)n>0 (2.31)
xn+i=xn-BlnF(xn) n>0, (2.32)

where Bn and B\ are nonnegative subinverses of Ao (yn,yn-i) n > 0.
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Under very natural conditions, hypotheses the form (2.26) or (2.27) or 
(2.28) have been used extensively to show that the approximations (2.26) 
and (2.30) or (2.31) and (2.32) generate two sequences {zn} n > 1, {?/n} 
n > 1 such that

$0 < — ®n+l — 2/n+l — Vn — ' ' ’ — 3/1 < 3/0 (2.33)

lim xn = x* = y* = lim yn and F (x*) = 0. (2.34)
n—»oo n—»oo v

For a complete survey on these results we refer to the works of [237], 
Argyros and Szidarovszky [97]-[99].

Here we will use similar conditions (i.e. like (2.26), (2.27), (2.28)) for 
two-point approximations of the form (2.29) and (2.30) or (2.31) and (2.32).

Consequently a discussion must follow on the possible choices of the 
linear operators Ao and A.

Remark 2.6 Let us now consider an operator F : D C X —* K, where 
X, Y are both POTL-spaces. The operator F is called order-complex on an 
interval [xo>3/o] Q D if

F (Ax + (1 - A) y) < XF (x) + (1 - A) F (t/) (2.35)

for all comparable x,y e [xo,3/o] and A € [0,1]. If F has a linear 
G—derivative F' (x) at each point [zo>3/o] then (2.35) holds if and only if

F' (x) (y-x) <F(y)- F (x) < F' (y) (y - x) for x0 < x <y <yo- 
(2.36) 

(See e.g. Ortega and Rheinboldt for the properties ofthe Gateux-derivative).

Hence, for order-convex G-differentiable operators conditions (2.27) and 
(2.28) are satisfied with Aq (y, v) = A (y, v) = F' (u). In the unidimensional 
case (2.36) is equivalent with the isotony of the operator x —* F' (x) but 
in general the latter property is stronger. Assuming the isotony of the 
operator x —> F' (x) it follows that

F (y) - F (x) < F' (w) (y - x) for xq < x < y < w < yo

Hence, in this case condition (2.26) is satisfied for Ao (w, z) = F’ (w).
The above observations show to choose A and Ao for single or two-step 

Newton-methods. We note that the iterative algorithm (2.29)-(2.30) with

Ao (u,v) — F' (u)

is the algorithm proposed by Fourier in 1818 in the unidimensional case 
and extended by Baluev in 1952 in the general case. The idea of using an 
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algorithm of the form (2.31)-(2.32) goes back to Slugin [256]. In Ortega and 
Rheinboldt [227] it is shown that with Bn properly chosen (2.31) reduces 
to a general Newton-SOR algorithm. In particular,suppose (in the finite 
dimensional case) that F' (yn) is an M -matrix and let F' (y) = Dn—Ln—Un 
be the partition of F' (yn) into diagonal, strictly lower - and strictly upper- 
triangular parts respectively for all n > 0. Consider an integer mn > 1, a 
real parameter wn G (0,1] and denote

Pn — 'd)n (L)n wnLn), Qn — wn 1 [(1 — wn) Dn + wnUn], (2.37)
and = + + + (2.38)

It can easily be seen that Bn n > 0 is a nonnegative subinverse of F' (yn) 
(see, also [99]). If f : [a, b] —> | R is a real function of a real variable, then 
f is (order) convex if and only if

/W-/(y) < /W-/W
x-y u—v

for all x, y, u, v from [a, 5] such that x < u and y < v.

This fact motivates the notion of convexity with respect to a divided dif- 
ference considered by J.W. Schmidt and H. Leonhardt [253]. Let F : D C 
X —> Y be a nonlinear operator between the POTL^spaces X and Y. As- 
sume that the nonlinear operator F has a divided difference [-, •] on D. F 
is called convex with respect to the divided difference [•, •] on D if

[x, ?/] < [u,v] for all x,y,u,vQD with x<u and y < v. (2.39)

In the above quoted study, Schmidt and Leonhardt studied (2.29)-(2.30) 
with Aq (u, v) = [u, v] in case the nonlinear operator F is convex with re- 
spect to [•,.]. Their result was extended by N. Schneider [254] who assumed 
instead of (1.2.1) the milder condition

[u, v] (u — v) > F (u) — F (v) for all comparable u, v G D. (2.40)

An operator [•, •] : D x D -> L (X, Y) satisfying (2.40) is called a generalized 
divided difference of F on D. If both (2.39) and (2.40) are satisfied, then 
we say that F is convex with respect to the generalizedivided difference of 
[•, •]. It is easily seen that if (2.39) and (2.40) are satisfied on D = [xo, y~i] 
then conditions (2.26) and (2.27) are satisfied with A = Aq = [•, •]. Indeed 
for zq < # < w < z < 7/-i we have

[x, y] (y - x) < F(y)-F(x) < [y,x](y-x) < [w,z] (y-x).
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Moreover, concerning general secant-SOR methods, in case the gener- 
alized difference [yn> yn_ 1] is an M-matrix and if Bn n > 0 is computed 
according to (2.37) and (2.38) where [yn, yn-1] = Dn - Ln - Un n > 0 
is the partition of [yn>3/n-i] into its diagonal, strictly lower- and strictly 
upper-triangular parts.

We remark that an operator which is convex with respect to a gen- 
eralized divided difference is also order-convex. To see that, consider 
x,y e D, x < y, X G [0,1] and set z = Xx + (I - X)y. Observing that 
y - x = (1 - A)-1 (z - 1) = A-1 (y — z) and applying (2.40) we have in 
turn:

(1 - A)"1 (F(z) - F (x)) < (1 - A)-1 [z, ®) (z - x)

= < ]z,i/](i/-i)
^A-^z^Kjz-z)^1 (F(3/)-F(z)).

By the first and last term we deduce that F (z) < XF (x) -I- (1 — A) F (y). 
Thus, Schneider’s result can be applied only to order-convex operators and 
its importance resides in the fact that the use of a generalized divided 
difference instead of the G-derivative may be more advantageous from a 
numerical point of view. We note however, that conditions (2.26) and (2.27) 
do not necessarily imply convexity. For example, if f is a real function of 
a real variable such that

M /l5WW_m>0| ,np /W-/W.M<00 
x.v€[xo,vo] x - y s.y€(xo,vo) X~V

then (2.26) and (2.27) are satisfied for Aq(u,u) = M and A(u, v) = m. 
It is not difficult to find examples of nonconvex operators in the finite (or 
even in the infinite) dimensional case satisfying a condition of the form

A (y - x) < F (y) - F (x) < Ao (y, x), x0 < x < y < y0

where Aq and A are fixed linear operators. If Ao has a continuous nonsingu- 
lar nonnegative left subinverse and A has a nonnegative right superinverse, 
then convergence of the algorithm (2.29)-(2.30) can be discussed. This al- 
gorithm becomes extremely simple in this case. The monotone convergence 
of such an iterative procedure seems to have been first investigated by S. 
Slugin [256].

In the end of this section we shall consider a class of nonconvex operators 
which satisfy condition (2.26) but do not necessarily satisfy condition (2.27). 
Consequently from convergence theorems involving (2.29) and (2.30) it will 
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follow that Jacobi-Newton and the Jacobi-secant methods have monotonous 
convergence for operators belonging to this class (see, also the elegenat 
papers by F. Potra [235]-[237].

Let F = (/i,..., fq)T° be an operator acting in the finite dimensional 
space l-R9, endowed with the natural (componentwise) partial ordering. Let 
us denote by the i—th coordinate vector of | Rq. We say that F is off- 
diagonally antitone if the functions

9ij|K -»|K, gi} (t) = f, (rr + tej, i/j, i,j = l,...,q

are antitone. Suppose that at each point x belonging to an interval 
U = [^o, V-1] the partial derivatives diF (x), i = 1,2, ...,g, exist and are 
positive. For any two points x, y G U we consider the quotients

diFi (x) if ef (y - x) = 0.
(2-41)

Let us denote △ [x, ?/] the diagonal matrix having as elements the number 
[z, 2/],, i = 1,2,..., q. For the diagonal matrix △ [x,?/] formed by the partial 
derivatives difi (x), i = 1,2,..., q, we shall also use the notation DF (x).

Suppose now that F is off-diagonally antitone and that the operator 
DF : U —* LB (|7l9) is isotone (i.e. all functions diF : |2? —> |#) are isotone. 
In this case for all xq < x < y < w < z < y-\ and all i G {1,2, ...,g} there 
exist A, ii G [0,1] such that

fi (v) - fi (®) < fi (y) - fi(,y- ef (y - z) «i) = dtft (y - Xef (y - x) e,), 
ef (y - x) < difi (y) ef (y-x)< dtft (w) ef (y - x)

< difi (z - /xef (z - w)) ef (y - x) = [w, ef (y - x).

It follows that condition (2.26) is satisfied for Aq (w, z) = DF (w) as well 
as for Ao (w, z) = (△w, z]. With the choice Aq (w, z) = △ [w, z] the it- 
erative procedure (2.29) is a Jacobi-secant method while with the choice 
j40 (w, z) = DF (w) it reduces to the Jacobi-Newton method. For some 
applications of the latter method, see W. Torning [263].

2.5 Divided Differences and Frechet-derivatives

Let F be a nonlinear operator defined on an open subset D of a Banach 
space X with values in a Banach space Y. Choose also xq G D to be fixed.
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Definition 2.5 The operator F : D C X -> Y is Ftechet - differentiable 
at the point scq € D if there exists a linear operator L G LB (X,Y) such 
that

It is easy to see that such an operator is unique if it exists. This operator 
L is called the first Frechet-derivative of F at the point xq and is denoted 
by F' (zo).

The following facts are left as exercises:

1. If F is Frechet differentiable at the point xq then F is continuous at this 
point.

2. If A G LB (X, Y) and F (x) for all x G X, then F is Frechet-differentiable 
at every point x G X and F' (x) = A.

3. Let F and G be two operators defined on D with values in Y. If F and G 
are Frechet-differentiable at a point xo G D, then the operator F 4- 
G is also Frechet-differentiable at x0 and (F 4- G)' (x0) = F' (xq) 4- 
G' (x0).

4. Let X,t/ and Z be three Banach spaces and consider the operators F : 
Di C X -» Y, G : D2 C Y —> Z. Let x0 G D? such that ?/o = 
F(x0) is a point in D%. If F is Frechet-differentiable at xq and 
G is Frechet differentiable at y0 then the mapping H = GqF is 
Frechet-differentiable at xo and H' (xq) = G' (yo) F' (xq) .

If the operator F is Frechet-differentiable at all x G D, then we shall 
say that F is Frechet-differentiable on D. In this case we may consider an 
operator F' : D —► LB(X,Y) which associates to each point x E D the 
Frechet-derivative of F at x. This operator will be called the first Frechet- 
derivative of F.

Let x, y be two points in D and suppose that the segment

S = {x 4-1 (y - x) |t G [0,1]} C D.

Let y' be a continuous linear functional, set h = y - x and define

<p(t) = (F (x + th),y').

If F is frechet-differentiable at each point of the segment S, then is 
differentiable on [0,1] and

¥>(*) = (F' (x + th),y').
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Let us now suppose that

a= sup ||F' (z + t(y- z))|| < oo; 
t€[O,l)

then we have

IKFfo) -F(z),s/)|| = llv(l) -¥>(0)11

< sup ||¥>'(t)ll <“ ll/ll lli/ - ®|| •
t€[0,l]

But, we also have

||F(i/)-F(z)|| = sup ||(F(i/)-F(x),i/,)||, 
l|y'll<i

we deduce that

||F(i/)-F(x)|| < sup ||jF’,(x + t(i/-x))|| ■ ||2/-x|| (2.42)
«€[0.1]

so, we proved:

Theorem 2.2 Let D be a convex subset of a Banach space X and F : 
D C X —> Y. If F is Frechet-differentiable on D and if there exists a 
constant c such that

||F'(x)||<M forall x G D => ||F (x) - F (y)\\ < c ||x - j/||

for all x € D. (2.43)

The estimate (2.42) is the analogue of the famous mean value formula 
from real analysis. If the operator F' is Riemann integrable on the seg- 
ment S we can give the following integral representation of the mean value 
formula

F(x) — F (1/) = f 
JQ

F' (x + t(y- x)) dt (x - y). (2.44)

Let now D be a convex open subset of X and let us suppose that we have 
associated to each pair (x, y) of distinct points from D a divided difference 
[z, i/] of F at these points. In applications one often has to require that the 
operator (x, y) —* [z,i/] satisfy a Lipschitz condition (see also Section 2.3). 
We suppose that there exists a nonnegative c > 0 such that

111«,!/) - [«i>i/i]|l <c(ll«-«ill + lli/-i/ill) (2-45)

for all x, i/, xi, i/i G D with x / y and xi = yi-
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We say in this case that F has a Lipschitz continuous difference on D. 
This condition allows us to extend by continuityW the operator (x, y) —» 
[x, 3/] to the whole Cartesian product D x D. From (1.2.1) and (2.45) it 
follows that F is Frechet-differentiable on D and that [x, x] = F' (x). It 
also follows that

||F' (x) - F' 0/)H < ci ||x - y\\ with ci = 2c (2.46) 

and

||[x,j/]-F'(2)||<C(||I-2|| + ||j/-2||) (2.47)

for all x, y 6 D. conversely if we assume that F is Frechet-differentiable on 
D and that its Frechet derivative satisfies (2.46) then it follows that F has 
a Lipschitz continuous divided difference on D. We can certainly take

[s, y] = [ F' (x + t (y - x)) dt. (2.48)
Jo

We now want to give the definition of the second Frechet derivative of 
F. We must first introduce the definition of bounded multilinear operators 
(which will also be used later).

Definition 2.6 Let X and Y be two Banach spaces. An operator 
A : Xn —* y (n € N) will be called n-linear operator from X to Y if 
the following conditions are satisfied:

(a) The operator (xi,...,xn) —» A(xi,...,xn) is linear in each variable Xk 
fc = 1,2, ...,n.

(b) There exists a constant c such that

||A(x1,l2,...,In)||<C|lx1||...||in|| (2.49)

The norm of a bounded n—linear operator can be defined by the 
formula

MH = sup {||4(XJ,....xn)|| I ||xn|| = 1}. (2.50)

Set LB^ (X, K) = LB (X, K) and define recursively

LB(fc+1) (X, Y) = LB (%, LBW (X, Y)) , k > 0. (2.51)
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In this way we obtain a sequence of Banach spaces LB^ (X, Y) 
(n > 0). Every A G LB^ (X, Y) can be viewed as a bounded n- 
linear operator if one takes

X(xi,...,xn) = (...(^(®i)(^2)(a;3))...)(®n). (2.52)

In the right hand side of (2.52) we have

A(xi) e LB<n~» (X,Y), (4(si))(i2) 6 LB<n~2> (X, K), etc.

Conversely, any bounded n-linear operator A drom X to Y can 
be interpreted as an element of B^ (X, Y). Moreover the norm 
of A as a bounded n-linear operator coincides with the norm as 
an element of the space LB^ (X, Y). Thus we may identify this 
space with the space of all bounded n-linear operators from X to 
Y. In the sequel we will identify A (x,x, ...,x) = Axn, and

A (xi) (x2)... (xn) = A (xi,x2i ...,xn) = Axix2...xn-

Let us now consider a nonlinear operator F : D C X —> Y where 
D is open. Suppose that F is Frechet differentiable on D. Then we 
may consider the operator F' : D —> LB (X, Y) which associated 
to each point x the Frechet derivative of F at x. If the operator 
F' is Frechet differentiable at a point xq E D then we say that 
F is twice Frechet differentiable at xq. The Frechet derivative of 
F' at xq will be denoted by F" (xq) and will be called the second 
Frechet derivative of F at xq. Note that F" (xq) G LB^ (X, Y). 
Similarly we can define Frechet derivatives of higher order. Finally 
by analogy with (2.48)

[*^0, ..., Xfc] =

= [ ■ [ • ■ ■ tk-lF (xq + ti (xi - xo) + ti*2 (x2 - Xl)

Jo Jo
+ ■ • • + tit2,..., tk (Xk - Xfc-1)) dtidt2...dtk. (2.53)

It is easy to see that the multilinear operators defined above verify

[x0,—,2Cfc-i,^fc,^fc+i] (xk - Xfc+i) = fco,-,Zfc-i,Zfc+i]. (2.54)

We note that throughout this sequel a 2-linear operator will also be 
called bilinear.
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Finally, we will also need the definition of a n—linear symmetric op- 
erator. Given a n-linear operator A : Xn —> Y and a permutation 
i = (ii,i2, ...,in) of the integers 1,2, ...,n, the notation A(i) (or An (i) 
if we want to emphasize the n—linearity of A) can be used for the n—linear 
operator A (i) = An (i) such that

A(i) (zi,z2,...,zn) = An (i) (xi,T2,...,xn)
= An (xit, ..., %in) Anx^x (̂2.55)

for all xi,x2,...,xn € X. Thus, there are n! n—linear operators A(i) = 
An (i) associated with a given n—linear operator A = An.

Definition 2.7 A n—linear operator A = An : Xn —> Y is said to be 
symmetric if

A = An = An(i) (2.56)

for all i belonging in Rn which denotes the set of all permutations of the 
integers 1,2, ...,n. The symmetric n—linear operator

A = An = ^Eie«n4n(i) (2.57)

is called the mean of A = An.

Definition 2.8 A n—linear operator A = An : Xn —> Y is said to be 
symmetric if

A = An = An (i)

for all i belonging in Rn which denotes the set of all permutations of the 
integers 1,2, ...,n. The symmetric n—linear operator

A = An = 1 V An(i) (2.58)
n! iERn

is called the mean of A = An.

Notation 2.1 The notation

AnXp = Anxx...x (p-times) (2.59)

p < n, A = An : Xn —> Y, for the result of applying An to x E X p-times 
will be used. If p < n, then (2.58) will represent a (n - p) -linear operator. 
For p = n, note that

Akxk = Akxk = Ak (i) xk (2.60)
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for all i G R*, x E X. It follows from (2.59) that whenever we are dealing 
with an equation involving n-linear operators An, we may assume that they 
are symmetric without loss of generality, since each An may be replaced by 
An without changing the value of the expression at hand.

2.6 Enclosing the Root of a Nonlinear Equation

We consider the equation

L(x) = T(x) (2-61)

where L is a linear operator and T is a nonlinear operator defined on some 
convex subset D of a linear space E with values in a linear space Y.

We study the convergence of the iterations

L (2/n+i) = T (yn) + An (y, x) (yn+i - yn) (2.62)

and

L (Zn+1) = T (xn) + An (y,x) (xn+i - xn) (2.63)

to a solution x* of equation (2.61), where An(y, x), n > 0 is a linear 
operator.

If P is a linear projection operator (P2 = P) , that projects the space 
Y into Yp C Y, then the operator PT will be assumed to be Frechet dif- 
ferentiable on D and its derivative PTX (x) corresponds to the operator 
PB (y,x) ,y,x € D x D, PT'X (x) = PB (x, x) for all x E D.

We will assume that

An (y, x) = APB (yn,xn), n > 0.

Iterations (2.62) and (2.63) have been studied extensively under several 
assumptions [68], [99], [101], [227], [236], [237], when P = L = I, the 
identity operator on D. However, the iterates {zn} and {yn} can rarely 
be computed in infinite dimensional spaces in this case. But if the space 
Yp is finite dimensional with dim (Yp) = N, then iterations (2.62) and 
(2.63) reduce to systems of linear algebraic equations of order at most N. 
This case has been studied in [101), [182] and in particular in [194]. The 
assumptions in [199] involve the positivity of the operators PB (y, x) - 
APB (y, x), QTX (x) with Q = I-P and L (y)-An (y, x) y on some interval 
[2/o> ^o], which is difficult to verify.
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In this section we simplify the above assumptions and provide some 
further conditions for the convergence of iterations (2.62) and (2.63) to a 
solution x* of equation (2.61).

We finally illustrate our results with an example.
We can now formulate our main result.

Theorem 2.3 Let F = D C X —> Y, where X is a regular POTL-space 
and Y is a POTL-space. Assume

(a) there exist points xq, yo, y~i € D with

Xq < Vo < tf-i, fco, 3/-1] C D, L (x0)-T (x0) < 0 < L (?/0)-T (y0).

Set

Si = {(z,3/) X2;z0 < x < y < y0} , 
5*2 = {(u,3/-i) € X2;x0 < u < yQ}

and

S3 = Si U S2.

(b) Assume that there exists an operator A : S3 —> B (X, Y) such that

(L (y) - T (3/)) - (L (x) - T (x)) < A (w, z) (y - x) (2.64)

for all (x,y), (?/,w) G S2, (w,z) G S3.
(c) Suppose that for any (ti, u) € S3 the linear operator A (u, v) has a 

continuous nonsingular nonnegative left subinverse.

Then there exist two sequences {zn}, {i/n}, n > 1 satisfying (2.62), 
(2.63),

L (xn) — T (xn) < 0 < L (yn) — T (j/n), (2.65)

Zo < Xi < • • • < xn < xn+i < 3/n+i < yn < ■ ■ • < yi < yo 
(2.66)

and

lim xn = x*, lim yn = y*. (2.67)
n—»oo n—»oo

Moreover, if the operators An = A (yn,yn-i) are inverse nonnegative then 
any solution of the equation (2.61) from the interval [x0,3/0] belongs to the 
interval [i*, y*].
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Proof. Let us define the operator M : [0, yQ — xq] —► X by

M (x) = x - Lo (L (z0) - T (x0) 4- A) ($))

where LQ is a continuous nonsingular nonnegative left subinverse of Aq. It 
can easily be seen that M is isotone, continuous with

M (0) = —Lo (L (x0) - T (z0)) > 0

and

M (i/o - xQ) = yQ — xq — Lq (L (i/o) - T (yo))
+ Lq [(L (i/0) — T (yo)) ~ (L (zo) — T (^o)) - AQ (i/0 — zo)] 
< yo - xq - Lq (L (yo) - T (yo))
<yo- xq.

It now follows from the theorem of L.V. Kantorovich on fixed points 
that the operator M has a fixed point w € [0, i/0 — x0] • Set xi = xQ + w to 
get

L (xQ) - T (xQ) + Aq (xi - x0) = 0, xQ < xi < yQ.

By (2.64), we get

L (xi) - T (xi) = (L (xi) - T (xi)) - (L (x0) - T (x0)) + Ao (*o - *i) < 0.

Let us now define the operator Mi : [0, yQ — xj —* X by

Mi (x) = x + Lq (L (yQ) - T (i/o) - >lo (z)) ■

It can easily be seen that Mi is continuous, isotone with

Mi (0) = L0 (L (i/o)-T(i/o))>0 

and

Mi (yQ - xi) = yQ - xi + Lo (L(xi) -T(xi))
+ L0 [(I(i/o) - T(j/o)) - (i (si) - T(x,)) - A> (j/o - x,)] 
< S/o - x, + £o (L (x,) - T(£,))

<3/o-Zi-

As before, there exists z € [0, yQ — xj such that Mi (z) = z. Set yi = yQ — z 
to get

L (i/o) - T (yQ) + Ao (i/i - yo) = 0, zi < yi < yo-
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But from (2.64) and the above

L M - T(yi) = (L (3/1) - T (3/1)) - (L (3/0) - T (3/0)) - Ao (3/1 - y0) > 0.

Using induction on n we can now show, following the above technique, 
that there exist sequences {xn}, {yn}, n > 1 satisfying (2.61), (2.62), 
(2.65) and (2.66). since the space X is regular (2.66) we get that there 
exist x*,2/* € E satisfying (2.67), with i* < y*. Let zo < z < 3/o and 
L (z) — T (z) = 0 then we get

Ao (3/1 - z) = A0 (3/0) - (L (3/0) - T (y0)) - Xo (z)
= 40 (y0 -z)- [(L (y0) - T (y0)) - (L (z) - T (z))] > 0 

and

Xo (Zi -z) = A0 (x0) - (L (Zo) - T (x0)) - >lo (z)
= Ao (xo - z) - «L (x0) - T (x0)) - (L (z) - T (z))] < 0.

If >lo is inverse isotone, then zi < z < y\ and by induction xn < z < yn. 
Hence x* < z <y*.

That completes the proof of the theorem. □

Using (2.61), (2.62), (2.65), (2.66) and (2.67) we can easily prove the 
following theorem which gives us natural conditions under which the points 
x* and y* are solutions of the equation (2.61).

Theorem 2.4 Let L — T be continuous at x* and y* and the hypotheses 
of Theorem 2.3 be true. Assume that one of the conditions is satisfied:

(a) x* = i/*;
(b) X is normal and there exists an operator H : X —* Y (H (0) = 0)

which has an isotone inverse continuous at the origin and An < H
for sufficiently large n\

(c) Y is normal and there exists an operator G : X —> Y (G (0) = 0)
continuous at the origin and such that An < G for sufficiently
large n.

(d) The operators Ln, n > 0 are equicontinuous.

Then L (x*) - T (x*) = L Q/*) - T (?/*) = 0.
Moreover, assume that there exists an operator G\ : S\ —> L (X, Y) such 

that G\ (x,y) has a nonnegative left superinverse for each (x,i/) G S\ and

L(y)-T (y) - (L (x) - T (x)) > G\ (x, y) (y - x) for all (x, y) e S\.
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Then if(x*,y') € Si and L(x*)-T (z*) = L (y*)-T (3/*) = 0 thenx* = y*. 

We now complete this paper with an application.

APPLICATIONS

Let X = Y = with k = 2N. We define a projection operator PN by

Pn (v) =
( Vi, i = 1,2,... ,N
{ 0, i = N + 1,... ,k, v= (vi,v2,...,vk) G X.

We consider the system of equations

Vi = fi (vi,...,vk), i = l,2,...,k. (2.68)

Set T(v) = {fi (vi,...,Vk)} , i = 1,2,...,k, then

PnT' (v)u =

PnT(v) = , Vk) i = 1,..., N,
i = N + 1,... ,k,

, vk) Uj i = 1,2,..., N,
k

< j=l 
0

PnB (w,z)u =
k
E Fij(wi,...,wk,zi,

1 j=i
k 0, i = N + 1,..., k

,zk) Uj, i = 1,... ,N

= CN (w, z) u,

where Fij (vi, ...,vk,vi, ...,vk) = dfi (vi,..., vk) /dvj. Choose 

A> (j/,x) =C(N(y,x),

then iterations (2.62) and (2.63) become

2/t,n+l = fi (3/1,n» ■ • • j Vk,n) + CN (yi,m xi,n) (Vi,n+l ~ Vi,n) (2.69)
%i,n+1 = fi (xl,ni • • • ixk,n) + CN (yi,n>xi,n) ($i,n+l — xi,n) • (2.70)

Let us assume that the determinant Dn of the above N—th order linear 
systems is nonzero, then (2.69) and (2.70) become

52 PimFm (Vm xn)

yitn+i = , i = 1,...,N (2.71)

Vi,n+1 = fi (yin,. ..,ykn), i = N + l,...,k (2.72) 
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and
N
E DimF^(yn,xn)

Xi.n+1 = —------H, i=l,...,N, (2.73)
J-'n

$i,n+l = fi ($1, n, • • •, ^k,n) , i = JV + 1, . . ., fc (2.74)

respectively. Here Dim is the cofactor of the element in the i-th column 
and m-th row of Dn and (yn, xn), i = 1,2 are given by

k k
Fm (?/n, xn) = fm (1/1,n, • • • , 3/fc,n) + amjfj (1/1,n, • • • , Vk,n)~Qrnj3/>,n» 

i=N+l J=1

and
fc fc

Fjn (?/n, xn) = fm (xl,n> • • ■ , $fc,n)+ 2 &mjfj ($l,n» ■ ■ • , %k,n)~amjXj,n'
i=7V+l j=l

where = Fmj (yn, xn).
If the hypotheses of Theorem 2.3 and 2.4 are now satisfied for the equa- 

tion (2.68) then the results apply to obtain a solution x* of equation (2.68) 
h/o,zo].

In particular consider the system of differential equations

Qi = /i(t,Qi,92), i = l,2, 0<t<l (2.75)

subject to the boundary conditions

9i(0) = di, qi(X) = eit i = l,2,. (2.76)

The functions /i and /2 are assumed to be sufficiently smooth. For the 
discretization a uniform mesh

tj=jh, j = O,1,...,JV + 1, 

and the corresponding central-difference approximation of the second 
derivatives are used. Then the discretized given by

x = T(x) (2.77)

with

T(x) = (B + I)(x)^h2<p(x)-b, zeR2"
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where

2-10 

A + I 0

0 A + I
-1 2

-1
0-1 2

¥>(*) =
¥2 (x) PiW = (fi^Xj^Xn+j)), j = 1,2, ...,7V, i = l,2,

x € R2JV, and b G R2JV is the vector of boundary values that has zero 
components except for 6i = dx, bn = e1? 6n+1 = d2, b2n = e2. That is (2.77) 
plays the role of (2.68) (in vector form).

As a numerical example, consider the problem (2.75)-(2.76) with

/i (Mi,Q2) = ql + qi + -lg2 - 1-2 

/2 (t, qi, 92) = -2ql + q2 + 2q2 - .6 

di = d2 = Ci = e2 = 0.

Choose N = 49 and starting points

%i,o = 0, Vi,o = (tj (1 ~ tj), j = 1, —, N), with t = .1 (.1) .5.

It is trivial to check that the hypotheses of Theorem 2.3 are satisfied with 
the above values. Furthermore the components of the first two iterates 
corresponding to the above values using the procedure described above and 
(2.71)-(2.72), (2.73)-(2.74) we get the following values.
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t p = 1 p = 2
.1 .0478993317265 .0490944353538
.2 .0843667040291 .0866974354188

^l,p .3 .1099518629493 .1132355483832
.4 .1251063839064 .1290273001442
.5 .1301240123325 .1342691068706
.1 .0219768501208 .0227479238400
.2 .0384462112803 .0399528292723

$2,p .3 .0498537074028 .0519796383151
.4 .0565496306877 .0590905187490
.5 .0587562590344 .0614432572165
.1 .0494803602542 .0490951403091
.2 .0874507511044 .0866988216544

2/1 ,p .3 .1142981809478 .1132375255317
.4 .1302974325097 .1290296859551
.5 .1356123753407 .1342716394060
.1 .0235492475283 .0227486289905
.2 .0415200498433 .0399542200344

2/2, p .3 .0541939935471 .0519816281202
.4 .0617399319012 .0590929252230
.5 .0642461600398 .0614458137439

The computations were performed in double precision on a PRIME-850

2.7 Exercises

2.1. Show that the spaces defined in Examples 2.1 are POTL.
2.2. Show that any regular POB-space is normal but the converse is not 

necessarily true.
2.3. Prove Theorem 2.1.
2.4. Show that if (2.4) or (2.5) are satisfied then F' (x) = [z, x] for all 

x G D. Moreover show that if both (2.4) and (2.5) are satisfied, 
then F' is Lipschitz continuous with I = co + ci.

2.5. Find sufficient conditions so that estimates (2.33) and (2.34) are both 
satisfied.

2.6. Show that Bn (n > 0) in (2.38) is a nonnegative subinverse of F* 
(n > 0).

2.7. Let xo,xi,...,xn be distinct real numbers, and let f be a given real-
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valued function. Show that:

[iQj $1) ->xn] = e"=0 /(*j) 
9n fo)

and

[Xq, Xi , Zn] (zn Zq)— [zi,...,Zn] [zq, ..., Xn—i]

where

9n{x) = (z - z0)... (z - xn).

2.8. Let zo,zi,...,zn be distinct real numbers, and let f be n times con- 
tinuously differentiable function on the interval /{zo,zi,...,zn}. 
Then show that

[zq, $1, Zn q3<o 4“ * * * 4~ tnzn) dt\ • • • dtn

in which

Tn = {(tl, tn) |tl > 0,t„ > 0, E"=1 ti < 1} 
to = 1 — Ei=lt,-

2.9. If f is a real polynomial of degree m, then show:

[zo,zi, ...,zn,z] =
' polynomial of degree m — n— l,n <m — 1

* cifn n — m “■ 1
0 n > m — 1

where f (z) = amzn+ lower-degree terms.
2.10. The tensor product of two matrices M,N € L (Rn) is defined as the 

n2 xn2 matrix MxN = (mijN | i,j = 1,...,n), where M = (my). 
Consider two F-differentiable operators H,K : L (Rn) —> L (Rn) 
and set F(X) = H(X)K(X) for all X G L(Rn). Show that 
F' (X) = (H (X) x /] K' (X) + [l x K (X)T] H' (X) for all X € 

L(R”).
2.11. Let F : R2 —> R2 be defined by /i (z) = x%, f2 (x) = x%. Set 

x = 0 and y = (1,1)T. Show that there is no z G [z, y] such that 
F(y)-F(x) = Ff(z) (y-x).

2.12. Let F : D C Rn -> Rm and assume that F is continuously differen- 
tiable on a convex set Dq C D. For and x,y G Dq, show that

||F (y) — F (x) — F' (x) (y - x)|| < ||y - x|| w (||y - z||),
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where w is the modulus of continuity of F' on [x, y]. That is

w (t) = sup {||F (x) - F' (J/)|| I X,y e Po, II® - y|| < 0 •

2.13. Let F : D C Rn —» Rm Show that F" is continuous at z G D if and 
only if all second partial derivatives of the components /i,..., fm of 
F are continuous at z.

2.14. Let F : D C Rn —► Rm. Show that F" (z) is symmetric if and only 
if each Hessian matrix Hi (z),..., Hm (z) is symmetric.

2.15. Let M € L(Rn) be symmetric, and define f : Rn —► R by f (x) = 
xTMx. Show, directly from the definition that f is convex if and 
only if M is positive semidefinite.

2.16. Show that f : D C Rn —» R is convex on the set D if and only if, for 
any x, y G Z), the function g : [0,1] —» R, g (t) = g (tx + (1 — t) y), 
is convex on [0,1].

2.17. Show that if gi : Rn —► R is convex and Ci > 0, i = 1,2, ...,m, then 
m

9=^^9i is convex.
t=i

2.18. Suppose that g : D C Rn —* R is continuous on a convex set Dq C D 
and satisfies

1 1 /1 \ 2
~9 (x) + -g(y)-g(-(x + y)) >y ||z - y\\

for all x,y G Dq. Show that g is convex on Dq if 7 = 0.
2.19. Let M G L (Rn). Show that M is a nonnegative matrix if and only 

if it is an isotone operator.
2.20. Let M e L (Rn) be diagonal, nonsingular, and nonnegative. Show 

that ||z|| = ||Z) (z)|| is a monotonic norm on Rn.
2.21. Let M € L (Rn). Show that M is invertible and M-1 > 0 if and only 

if there exist nonsingular, nonnegative matrices Mi,M2 G L (Rn) 
such that M1MM2 = 1.

2.22. Let [•,•]: D x D be an operator satisfying conditions (2.1) and (2.44). 
The following two assertions are equivalent:

(a) Equality (2.48) holds for all x,y G D.
(b) For all points u, v € D such that 2v — u € D we have

[u, v] = 2 [u, 2v — u] — [v, 2v — u].

2.23. If 6 F is a consistent approximation F' on D show that each of the
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following four expressions in an estimate for

||F(i)-F(j/)-<5F(u,«)(i-j/)||
ci = /i (||® - «11 + ||t/ - «|| + ||« - «||) ||® - j/||, 
c2 = h (||® - «|| + ||j/ - «|| + ||« - «||) ||® - y||, 
C3 = h (||® - j/ll + ||j/ - «|| + ||j/ - «||) ||i - j/||,

and

C4 = h (II® - 3/|| + II® - u|| + II® - «||) II® - 3/11.

2.24. Show that the integral representation of [xo, •••, is indeed a di- 
vided difference of /c-th order of F. Let us assume that all divided 
differences have such an integral representation. In this case for 
x0 = xi ,= ... = Xk = x we shall have

I®,®,...,®] = l/(fc) (®). 

fc+l times

Suppose now that the n-th Frechet-derivative of F is Lipschitz 
continuous on £>, i.e. there exists a constant cn+i such that

||F(n) (U)-F(n)(«)||<Cn+1 ||U-«||

for all uyv G D. In this case, set

Hn (y) = ([*0, -, ^n-l, 2/] - ko,..., Sn-1» *n]) (V ~ ®n-l) , -, (.V ~ ^o)

and show that

Mll 77TTT H»- M • • • H» - IOH 
l71 T" L)’

and

F (i + h) - (f(®) + F' (®) h + (») h2 + ■ ■ • + ^F(n) (®) hn)

2.25. We recall the definitions:
(a) An operator F : D C Rn -+ Rm is Gateaux - (or G -) differentiable 

at an interior point x of D if there exists a linear operator L G
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L (Rn, Rm) such that, for any h G Rn

lim 11|F (i + th) - F (x) - tL (A)|| = 0.

L is denoted by F' (x) and called the G-derivative of F at x.
(b) An operator F : D C Rn —> Rm is hemicontinuous at x G D if, for any 

h € Rn and e > 0, there is a 6 = 6 (e, h) so that whenever |t| < 6 
and x 4- th e D, then ||F (x + th) — F (x)|| < e.

(c) If F : D C Rn —> Rm and if for some interior point x of D, and 
h € Rn, the limit

lim - [F (x 4- th) — F (x)] = A (x, h)

exists, then F is said to have a Gateaux-differential at x in the 
direction h.

(d) If the G-differential exists at x for all h and if, in addition

lim Aj ||/ (x + H) - F (x) - A (x, h) || = 0,

then F has a Frechet differential at x.
Show:

(i) The linear operator L is unique;
(ii) If F : D C Rn —* Rm is G-differentiable at x € D, then F is 

hemicontinuous at x.
(iii) G-differential and ”uniform in h” implies F-differential;
(iv) F-differential and ”linear in h” implies F-derivative;
(v) G-differential and ”linear in /i” implies G-derivative;

(vi) G-derivative and ”uniform in h,” implies F-derivative; 
Here "uniform in h” indicated the validity of (d). 
Linear in h means that A (x, h) exists for all h € Rn and

A (x, h) = M (x) hy where M (x) € L (Rn, Rm) •

Define F : R2 —> R by F (x) = sgn (x^) min (|xi|, |x21) ♦ 
Show that, for any h e R2 A(0,h) = F(h), bu F does not 
have a G-derivative at 0.

(viii) Define F : R2 —> R by F (0) = 0 if x = 0 and

F (x) = x2 (x2 + x|) % j [(x2 + X2)2 + ^2] , if x / 0.
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Show that F has a G-derivative at 0, but not an F-derivative. 
Show, moreover, that the G-derivative is hemicontinuous at 
0.

(ix) If the 9-differential A (x, h) exists for all x in an open neigh- 
borhood of an interior point xq of D and for all h G Rn, then 
F has an F-derivative at xq provided that for each fixed h, 
A (x, h) is continuous in x at xq.

(e) Assume that F : D C Rn —> R771 has a G-derivative at each point of 
an open set Dq C D. If the operator F' : Dq C Rn —> L (Rn, Rm) 
has a G-derivative at x G Dq, then (F')' (x) is denoted by F" (x) 
and called the second (7-derivative of F at x.
Show:

(i) If F : Rn —> Rm has a G-derivative at each point of an open 
neighborhood of x, then F’ is continuous at x if and only if 
all partial derivatives diFi are continuous at x.

(ii) F" is continuous at xq G D if and only if all second partial 
derivatives of the components /i,...,/m of F are continuous 
at xq. F" (xq) is symmetric if and only if each Hessian matrix 
Hi(xq) Hm (xq) is symmetric.





Chapter 3

Fundamental Fixed Point Theory

The ideas of a contraction operator and its fixed points are fundamental 
to many questions in applied mathematics. In this chapter we outline the 
essential ideas.

3.1 Fixed Points of Operators

Definition 3.1 Let F be an operator mapping a set X into itself. A 
point x G X is called a fixed point of F if

x = F(x). (3.1)

Equation (3.1) leads naturally to the construction of the method of 
successive approximations or substitutions

xn+i = F(xn) (n > 0) xoeX. (3.2)

If sequence {xn} (n > 0) converges to some point x* € X for some initial 
guess x0 G X, and F is a continuous operator in a Banach space X, we can 
have

x* = lim xn+i = lim F (xn) = F ( lim xn) = F (x*). n—*oo n—»oo \n—»oo /

That is, x* is a fixed point of operator F. Hence, we showed:

Theorem 3.1 IfFisa continuous operator in a Banach, space X, and the 
sequence {xn} (n > 0) generated by (3.2) converges to some point x* G X 
for some initial guess x0 € X, then x* is a fixed point of operator F.

We need information on the uniqueness of x* and the distances ||xn — 
x* ||, ||xn+i — xn|| (n > 0). That is why we introduce the concept:

51
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Definition 3.2 Let (X, || ||) be a metric space and F a mapping of X into 
itself. The operator F is said to be a contraction or a contraction mapping 
if there exists a real number c, 0 < c < 1, such that

||F(x)-F(2/)|| <c 11®-2/||, for all x, 2/G X. (3.3)

It follows immediately from (3.3) that every contraction mapping F is 
uniformly continuous. Indeed, F is Lipschitz continuous with a Lipschitz 
constant c. The point c is called the contraction constant for F.

We now arrive at the Banach contraction mapping principle.

Theorem 3.2 Let (X, ||-||) be a Banach space, and F : X —* X be a 
contraction mapping. Then F has a unique fixed point.

Proof. Uniqueness: Suppose there are two fixed points x,y of F. Since 
F is a contraction mapping,

II® - y|| = ||F (z) - F (Sf)|| < c ||x - !/|| < h - Vll.

which is impossible. That shows uniqueness of the fixed point of F. 
Existence: Using (3.2) we obtain

11^2 -xi|| < c||®i - x0||
||x3-z2|| <x ||x2-®i|| <c2||®i-®o|| (3-4)

||Xn+l - Xn|| <Cn ||®1 - ®o||

and,so

||^n+m ~ $n|| < H^n+m ^n+m— 11| + ‘ ' * + ||^n+l ^nll

< (cm+1 + • • • + C + 1) cn ||®1 - XQ|| 
cn

< ,—- hi - x01|.1 — c

Hence, sequence {xn}(n > 0) is Cauchy in a Banach space X and such it 
converges to some x*. The rest of the theorem follows from Theorem 3.1.

□

Remark 3.1 It follows from (3.1), (3.3) and x* = F(x*) that

||®n - X*|| = ||F(®n-l) - F(X*)|| < C ||®n-l ~ X* || < Cn ||x0 - ®*|| (n>l). 
(3.5)
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Inequality (3.5) describes the convergence rate. This is convenient only 
when an a priori estimate for xq-x* is available. Such an estimate can be 
derived from the inequality 

lko-®*|| < ||®o - F (^II+II-F’ (xo) - ■F’(z*)|| < ||xo-F(2O)||+c||io-x*||, 

which leads to

||:ro-®*||<r^||xo-F(xo)||. (3.6)

By (3.5) and (3.6), we obtain

cn
hn-x*||<r-||xo-F(xo)|| (n>l). (3.7)1 — c

Estimates (3.5) and (3.7) can be used to determine the number of steps 
needed to solve Equation (3.1). For example if the error tolerance is e > 0, 
that is, we use ||xn — x*|| < then this will certainly hold if

1 । e (1 - c) 
Inc ||xo-J,(xo)ir

(3.8)

3.2 Examples

These are examples of operators with fixed points that are not contraction 
mappings:

Example 3.1 Let F : R —> R, q > 1, F(x) = qx + 1. Operator F is not 
a contraction, but it has a unique fixed point x = (1 — q)-1.

Example 3.2 Let F : X -> X, x = (0, ^-], F(x) = x3. We have

|F (x) - F (y)| = |z3 - ?/3| < (|z|2 + |x| ■ |y| + |s/|2) |x - y| < | |x - y| 

That is, F is a contraction with c = |, with no fixed points in X. This is 
not violating Theorem 3.2 since X is not a Banach space.

Example 3.3 Let F : [a,6] -> [a,6], F differentiable at every x € (o,5) 
and |F' (x)| < c < 1. By the mean value theorem, if x, y G [a, 5] there exists 
a point z between x and y such that

F(x)-F(i/) = r(z)(z-2/),

from which it follows that F is a contraction with constant c.
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Example 3.4 Let F : [a, 6] —> R. Assume there exist constants pi ,p2such 
that pip^ < 0 and 0 < pi < F' (x) < p^1 and assume that F(a) < 0 < F(b). 
How can we find the zero of F(x) guaranteed to exist by the intermediate 
value theorem? Define a function P by

P(x) = x — p2F(x).

Using the hypotheses, we obtain P(a) = a — p2F(a) > a, P(d) = b — F(b) < 
b, P'(x) = 1 — p2F'(x) > 0, and P'(x) < 1 — P1P2 < 1- Hence P maps 
[a,fe] into itself and \p' (x)| < 1 for all x G [a, 6]. By Example 3.3, P(x) is a 
contraction mapping. Hence, P has a fixed point which is clearly a zero of 
F.

Example 3.5 (Fredholm integral equation). Let K(x, y) be a continuous 
function on [a, 6] x [a, 6], fv(x) be continuous on [a, b] and consider the 
equation

•b
K(x,y) f (y)dy.

Define the operator P : C[a, 6] -+ C[a, 5] by p(f) = g given by

•b
K (x,y)f(y)dy.

Note that a fixed point of P is a solution of the integral equation. We get

l|P(<h)-P (92)11= sup |p(qi(x))-P(q2(x))| 
x€[a,b]

>6= | A| sup [ k (x, y) (?i (y) - g2 (y)) dy 
x€(a,b] Ja

■6< |A| 6 f (<?i (y) — q2 (y)) dy (by Wierstrass theorem) 
J a

< |A|<5(6 — a) sup |qi (y) - q2 (y)| 
x€[a,b]

< |A| S (b - a) ||qi - q2||.

Hence, P is a contraction mapping if there exists a c > 1 such that

\X\6(b-a) <c
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3.3 Integral Equations Arising in Newton Transport

We apply the method of continuation to study the structure of the solutions 
of quadratic integral equations of the form

1 f1x(s) = y(s) + -Ax(s) / k (s, t) x (t) dt (3.9)
Js

in the space C[s, 1] of all functions continuous on the interval 0 < s < 1, 
with norm

M = max k («)|.

Here we assume that A is a real number called the ”albedo” for scattering 
and the kernel fc(s,t) is a continuous function of two variables s,t with 
0 < s, t < 1 and satisfying

(i) 0</c(s,t)<l, 0 < s, t<l
(ii) k (s, t) + k (t, s) = 1, 0 < s, t<l '

The function y (s) is a continuous given function on [s, 1] and finally 
x (s) is the unknown function sought in C [s, 1].

Equations of this type arise in the theories of radiative transfer, neutron 
transport and in the kinetic theory of gases.

There exists an extensive literature on equations like (3.9) under various 
assumptions on the kernel k (s, t) if the lower limit of integration in (3.9) is 
zero and A a real or complex number. One can refer to the recent work in 
[7], [54] and the references there.

Here, we use the method of continuation to find solutions of (3.9) in 
order, on the one hand, to suggest a new method for solving equations like 
(3.9) and, on the other hand, to improve the results in [4], [113] and [242].

For A = 0, x(s) = y(s) is the unique solution of (3.9). Using this 
simple observation, we show we can extend this solution for A € (Ai, 1) 
where Ai < 0.

The result in [242], for k (s, t) = 0 < s, t < 1 requires

0< A<.72134 (3.11)

whereas, the result in [7], requires

0<A<.848108 ••• (3.12)

for the existence of a solution of (3.9).
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We first need the following abstract results. 
Consider the quadratic equations

x = y 4- XB (x,z) (3.13)

in a Banach space X, where y G X is fixed, A is a real number and B is a 
bounded symmetric bilinear operator on X, [10], [11).

A number of existence theorem has already been proved in [7], [113], for 
(3.13).

Here we prove a number of new results for (3.13). We first introduce 
the definitions.

Definition 3.3 Let B be a bilinear operator on X and xq € X be fixed. 
Denote by B (x0) the linear operator on X defined by

B (xq) (x) = B (xo> x) for all x € x.

Note that if B is symmetric, then

B (xi) (X2) = B (xi,X2) = B (x2>2Ci) = B (x2), (xi) for all xi,x2€x.

Definition 3.4 Let B be a symmetric bilinear operator on X. Let xq be a 
solution of (3.13) corresponding to A = Ao, where Aq 1 is not a characteristic 
value of the linear operator 2B (xq) on x. Fix Ai G R. Define the numbers 
fci, k2,r and the real functions /i (r), /2 (r), /3 (k) or R by

fcj = ||(/— 2A0B (x0))-1||,

k2 =______________________ 1______________________ ,
2 (|Ai| ||B (xo)|| + x/|Xi|||B|| • ||B(a;o,xo)|||Ao + Ail) ’

_ l-2|Ai|-fc1||B(i0)||
T 2|A0 + Ai| ||B|| ’

/1 (r) = a2r2 + bYr 4- Ci,
/2 (r) = (W 4- b2, and
/3 (k) = a3k2 4- b3k 4- c3
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where

ai = |A0 + Ai|||B||fci,
6i = 2|Ai|-||B(x0)Pi-1,
«i = |Ai| II5 (zo,xo)ll fci>
<12 = 2|Ao + Aj| ||B|| fci,
&2 = —1 + 2 |Ai| ||B (io)|| fci,
<13 = 4|Aj| (|Aj| ||B(io)||2 - l|B(xo,xo)|| • ||B|| |A0 + Aj|) , 

b3 = —41^1115(10)11, and
c3 = 1.

It is easy to check that /i (r) < 0 and /2 (r) < 0 if r G [rx, r) and ki e 
(0,^2), where ri is the small solution of the equation /1 (r) = 0.

Obviously, for A = 0, x(s) = y(s) is the unique solution of equation 
(3.13). The above solution motivates us to introduce the following theorem 
on the extension of solutions. A similar theorem which makes extensive use 
of the topological degree of an operator has been proved in [185]. In our 
proof, we do not use the notion of the topological degree of an operator and 
we introduce certain items to be used later.

Theorem 3.3 Let xq be a solution of equation (3.13) corresponding to 
X = Ao, where Xq1 is not a characteristic value of 2B (xq) . Fix Ai G R. 
Assume that 61, Jci are such that

61 < 0 and ki G (0, k^)

and choose r G [ri,r), where ri,r and k^ are as in Definition 3-4- 
Then,

(i) there exists a unique w € U (r) = {v € X| ||v|| < r} such that

x = xq + w

is a solution of (3.13) corresponding to

X = Ao + Ai.

(ii) The element w G X is continuous in norm as a function of Ai and 
||w|| —► 0 as Ai —► 0.
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Proof. The element zo + w G X is a solution of (3.13) if 

xQ + w = y + (Ai + Ao) B (x0 + w, xq + w), 

or if

w = (I - 2A0B (x0))-1 [AiB (xq,xq) + 2AiB (xQ, w) + (Ao + AJ B (w,w)] 

= T(w),

since z0 is a solution of (3.13) and Aq 1 is not a characteristic value of
2B (xq) . Let wi, w2 G U (r). O

Claim 1. T is a contraction operator on U (r).
We have,

||T(wi)-T(w2)|| =
= ||(/ - 2A0B (so))’1 [2AiB (x0, wi - w2) + (Ao + Ai) b(wi - w2, wi + w2 

< /ci (2 |Ai| \\B (x0) 1| + |A0 + Ai| ||B|| • 2r) ||wi - w2||

so, T is a contraction on U (r) if

/2(r)<0

which is true, since r G [ri,r) and ki € (0,/c2).
Claim 2. T maps U (r) into U (r).
Let w G U (r), then ||T (w)|| < r if

||T (w)|| < fci (|>i| ||B (xo,xo)||) + 2 |Ai| ||B (x0)|| t + |A0 + >i| ||B|| • r2 < r, 

or, /i (r) < 0, which is true since, r G [n,r) and k G (0,/c2).
The result (i) now follows from the contraction mapping principle.
By the assumption on b\ and k\ there exists e > 0 such that 

|A1|<€.

Let AA be such that

|Ai + AA| < e, 

then

||wA1+ax-wA1|| =

= ||Ta1+aa (wa1+aa) - Tax (waJ||
< ||Ta1+AA (wa1+Aa) - Ta1+AA (waJII + ||Ta1+AA (WAi) - Txi (WAi)ll

< (/2(r) - 1) ||wa1+aa - waJI + ||Ta1+aa (waJ -Tax (waJII >
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so that

I|wa1+aa - WA1II < (2 - f2 (r))"1 ||Ta1+aa (wa,) - Tx, (wA,)|| -» 0

as AA -> 0. Moreover, ||w|| -> 0. This proves (ii) and the proof of the 
theorem is completed.

Remark 3.2 We observe from Thorem 3.3 that w, A^ are such that

|Ai| < € and ||w|| < n.

Assuming as in Theorem 3.3 that [I - 2XqB (zo)]-1 exists, we can 
choose e > 0 and n > 0 small enough so that [r - 2 (Ao + AJ B (xq + w))-1 
exists, provided |Ai| < e, ||w|| < n. If we combine this requirement on e, 
ri with the hypotheses of Theorem 1 [193, p. 92], then the solution x of 
equation (3.9) given by Theorem 3.3 is such that (7 — 2XB (x))-1 exists for 
any

Xe [Aq — 6, Aq + .

We can now apply Theorem 3.3 for A = Ao ± 6. This will wxtend the 
solution to two adjancent intervals overlapping the original one until we 
can find a pair (Ac, %c) such that xc € x and Xc is a characteristic value 
of 2B (xc).

we now return to equation (3.9). We work in the Banach space C [s, 1]. 
We define a bounded linear operator L and a bounded bilinear operator B 
on C [s, 1) by

(LV)W = I/1
k (s,t) v(t) dt,

B (v, w) (s) = v (s) (Lw) (s) + w (s) (Lv) (s)

where v, w G C [s, 1], 0 < s < 1. It is standard to show that B (v, w) G 
C [s, 1], [266].

Let A be a fixed real number, define an operator F on C [s, 1] by

F (v) = v - y - }:XB (v, v).
£

The, equation (3.9) can be written as

F(x) =0.

Finally, define the Frechet derivative of F with respect to v by 

F' (v) w = w — XB (v, w). (3-14) 
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Note that F' (v) is a bounded linear operator on C [s, 1].
We now prove the following lemma.

Lemma 3.1 Let x bea solution of (3.9) for some fixed X. Set

As = j x(s)ds, 0 < s < 1 

and

Ds = y y(s)ds, 0 < s < 1.

Then,

- 2AS + 2DS = 0. (3-15)

Proof. Integrating (3.9) and using the identity

k (s, t) = i {1 + k (s, t) - k (t, s)} 

we have

As = Ds + -XA2 + - y y {k(s,t) - k(t, s)} x (s) x (t) dsdt, 

and the last integral is obviously zero.
FYom now on we take y (s) = 1, i.e., Ds = 1 — s for simplicity.
Since XA^ — 4AS + 4DS = 0 has no real solutions when A > > a

fundamental interruption in the continuation of the solution sx (s) must 
occur at some boundary point Xc < j~ < 1. equation (3.9) can have no 
real solutions for A > □

Moreover, we can show the following:

Theorem 3.4 Let x\0 (s) be any solution of (3.9) with X = Aq. Then the 
linear operator F' (x\0) given by (3.14) is an invertible operator on C [s, 1] 
with bounded inverse if Xq / 1.

Proof. Let w be such that

F' (v) (w) = 0, t>,w€C[s, 1].
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If the lower limit of integration in (3.9) is different than zero, we set

zAo (t) = 0
v (t) = 0 for 0 < t < s.
w(t) = 0

Then by integrating (3.14), we obtain

j^ w(s)ds=^XQ j B (xXo,w) (s) ds

If Aq 1, using Lemma 3.1 in the above equation, we get

Fo
(3.16)

Let p (s) = , to obtain

P= -X0xXoL(xXop)

and

[ p(s)xXo(s)ds = 0, 
Jo

P = -2AxA°Q(rrA0p)

where,

r1 t
(Qw)(s) = ——w(t)dt.

JQ s + l

Define a subspace s of C [0,1] by

S = [p € C [0,1] [ p(s) xXo (s) ds = 0
l Jo

(3-17)

we will show that (3.17) has only the trivial solution in S. Let q e C [0,1]. 
Define E (q) by

E(9) = -|a 1 V1 f1
1 - -Ar ) / XAo (s)

/ Jo
sq (s) ds,
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where r is a root of (3.15) for the lower limit of integration in (3.9) being 
zero. The functional E is well defined since 1 — |Ar 0.

define the operator R on C [0,1] by

K(?(s)) = s(sq(s) -E(q)).

Since,

%x0L(xx0R(p)) = xxoL[s(sxxop(s) -xx0E(p))]
= xxaQ [sx>0 (sp (s) - E (p)));

(3.16) gives,

sp(s) = — |As (xXoQ (xxaP (s)))
= -±Xsxx0(Q (xXop(s)))
= -%XxxoL(sxxop(s)) (3-18)
= (1 - |Ar) E (p (s)) xXo + jAiAoQ (s^Ao) •

Hence, as x\0 is a solution of (3.9),

($Xo) = ~ 2^®Ao"I" 1 *$Ao = (^ 5^*)

we have, by (3.17)

|AzAoQ[zAo ($p(s) -#(p))]
= sp (s) - (1 - |Ar) E (p) XAo - E (p) |AxAoQ (®x0) 
= sp (s) - E (p).

Therefore, if Ao 1 and p is a solution of (3.16), then p G S, R(g) € S 
and R(g) is a solution of (3.16). Now, as L is compact, (3.16) has a finite 
dimensional solution space. hence, there exist an integer n > 1 and numbers 
{ci}”=1 with Cn 0, so that

n
^aR^g) = 0. 

i=l

The above equation implies that there exist polynomials Di and D2 so that

D2 (s2) P (s) = sDi (s2).
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The linearity of R implies that

I>-R'+1 (p) = D. 
i=l

Hence R (p) = p, so 

that is,p = 0aspGC[0,l]. The proof of the theorem is now completedD

Proposition 3.1 There exists a sheet of sokutions x\ for X such that 
0 < A < Xc and xq = 1. The seet x\ is continuous as a function of X 
uniformly over 0 < s < 1.

Proof. Obviously, for Ao = 0, xo = 1 is the unique solution of (3.9). since 
I — 2XqB (xo) = 1 is nonsingular, we can apply Theorem 3.3 to generate xx- 
The element w is a continuous function of A in each extension. Therefore 
xx is continuous as a function of A uniformly over 0 < s < 1. □

A similar proposition can be stated for some negative A values.

Proposition 3.2 The following are true:

(a) The solutions x\,X> 0 are such that

x\ (s) > 0, 0 < s < 1;

(b) For fixed s,0 < s < 1, xx (s) is a monotone increasing function of X.

Proof. (a) For A = 0 and for small positive A since xq (s) = 1, the result 
is true by continuity. Let px = inf xx (s). Then

Ipa+aa - Pa| < |sup (pa+aa - Pa)I < sup |pa+aa - PaI -» 0 as AA -* 0 

that is, px is a continuous function of A. If xx becomes non-positive, then 
there exists A© > 0 such that

Pa0 =

Therefore,

XA0 («) > 0, 
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with zero actually attained. Moreover, at A = Ao

®Ao (s) = 1 + ^O^Ao (s) ZA0 (t) k (s, t) dt > 1, 

which provides a contradiction.
(b) For 0<A<Ac<l, [I - 2AB (xx))-1 does exists and

[/ - 2AB (xA)]-‘ = I + 2XB (xA) + 4A2 (B (xA))2 + • • • .

By (a) the above series, i.e., the above inverse, is a positive operator. More- 
over, w is the limit of the iterations

wn+i = T (wn), n = 0,1,2,...,

where wq might be chosen positive. Hence, w > 0 at each extension step of 
Proposition 3.1. This proves (b). O

Proposition 3.3 The solution xx of equation (3.9) exists and is positive 
at least for A G (—1,0].

Proof. By Proposition 3.2, x\ > 0 for small |A| by continuity. Suppose 
either that continuation ceases or that px vanishes at Ai < 0. Therefore, xx 
exists and is positive on (Ai,0). We have

xx (s) = 1 - 1 ]A| xx (s) y k (s, t) x (t) dt, Ai < A < 0 (3.19)

so, ||zx (s)|| is finite if Ai is a leftward limit of continuation and A —* Ai-D

Claim. Ai < —1.
If Ai > —1, or |Ai | < 1. Since pxr = 0, xxx (s) has a zero Si. At s = si, 

we have

1 f1

1 f1
>l--zA(si) J fc(si,t)xA(t)dt>0,

since

^xA(s)^ k(s,t)xx(t)dt < 1,

by (3.19). This contradiction justifies the claim and the proposition is 
proved.

0 = xa(si) = 1--|Ai]za(si) / k(sx,t)xx (t)dt >
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Remark 3.3 In references [242] and [7], the range is

0 < A < .72134 • • •
0 < A < .848108 • ■ •

respectively, for

Q
k (s, t) =------, 0 < s, t < 1

s 4-1

the lower limit of integration in (3.9) being zero and y(s) = 1.

Here, it follows from Theorems 3.3, 3.4 and Proposition 3.1 that the 
range for A is at least such that

Ai < A < 1,

where Ai by Proposition 3.3 is such that

Ai < -1.

That is, there exists solutions x\ by continuation such that

.848108 • • • < A < 1, for example.

This justifies the claim made at the introduction.

3.4 An Efficient Contractive Method

Consider the equation

F(x) = 0 (3.20)

where F is twice Prechet-differentiable, nonlinear operator mapping a sub- 
set U of a Banach space X into a Banach space Y. We shall find it convenient 
to assume that U is a ball. Suppose that the approximation xn has been 
found. To determine the next approximation zn+i we replace (3.20) by the 
equation

F (xn) + F' (x„) (x - xn) + ^F" (x„) (x - xn, X - xn) = 0 (3.21)
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if the linear operators [F' (z) - |F" (z) (xn)] 1, [F' (z) - |F" (z) (z)] 1 
exists, then (3.21) suggests the iteration

Xn+1 — F'(z)-ir'(z)(xn)l 'fM
&

n = 0,l,2, ... (3.22)

or the modified version of (3.22)

Xn+1 — '&n
1 —1

I F(xn), n = 0,l,2, ... . (3.23)F'(z)-±F"(z)(z)

The above iterations convergence to a solution x of (3.20) if the opera- 
tors

T (x) = x - [F' (z) + B (z)]-1 F (x) (3.24)

or the modified version of (3.24)

P (x) = x - [F' (z) + L]-1 F (x) (3.25)

have a fixed point in X, where B is a bounded symmetric bilinear operator 
on X x X and L is a bounded linear operator on X (usually, but not 
necessarily B = — |F" (z), L = — jF" (z) (z)).

In this section we give sufficient conditions for T and P to have unique 
fixed points in a closed ball centered at a specific z € X and then we 
compare (3.22) and (3.23) with the modified Newton’s method

x„+i = - (F'(z))-1 F(xn), n = 0,1,2, ... (3.26)

using a simple scalar equation to show that (3.22) or (3.23) can converge 
to a solution of (3.20) faster than (3.26).

Lemma 3.2 If the linear operator (F' (z) + B (z))-1 exists for some z G 
X, then the linear operator

— 1
exists for every x eU (z,r), [/+ (F'(z))-1 B (i — z)]

where r is such that

° < r < ||------------------------j|------ •
||(F'(z) + B(z))-1|| ||B||
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Proof. By the Banach Lemma on invertible operators it is enough to 
show

||(F'(z) + B (z))-1|| • ||B (a: — z)|| < 1, 

||(F'(z) + B(z))-l|| ■ ||B|| • r < 1

which is true by hypothesis since x G U (z, r).

Definition 3.5 Let z be fixed in X. Assume that the linear operator 
C = [F' (z) + B (z)]-1 exists and set d = ||C||, e = ||B||. define the linear 
operator A on U (z,r) = {z e X| ||x — z|| < r < by

A (i) = [/ + (F' (z) + B (z))-1 B (x - z)]

Assume now that

||CF(x)||<n,
(3.27)

where x,y 6 U (z,r) and li, n are nonnegative numbers. Define the num- 
bers

h = ||CB|| 
P=l|CB(z)|| 
m=||CF(z)||.

Notethat ||4(z)|| <

||CB (z) (i - z)|| < ||CB (x - z,x - z)|| + ||CB (z,x - z)|| 
< hr2 + pr.

Define the real polynomials on R by

f (r) = ar2 + br + c, 
g (r) = a'r2 + b'r + c' 
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where

a = de (de 4- d£2 4" h), £2 = 3^1

b = dep — h — dt,2 — 2de, £3 = -y

c = 1 — p — hn
a' = (^3 4- e) d + h
b' = p — 1
c = n.

Finally, note that for any x, y E U (z, r)

T(x)-T(y)
= [F (z) + B (x)]-1 [F' (z) (x - y) - (F (x) - F (y)) 

+B (z - z) (x - y) + B (z) (x - y)
+B (x — y) (F'(z) + B (y))-1 F (y)] ,

and
F' (z) (x - y) - (F (x) - F (y)) = f (F' (z) - F' (x + t (y - x))) (x - y) dt. 

Jo
Theorem 3.5 Assume:

(i) The conditions (3.27) are satisfied for some z € X.
(ii) There exists r such that f (r) >0 and g(r) <0.

Then (3.24) has a unique fixed point inU (z,r).

Proof. T is well defined in U (z,r) by Lemma 3.2. □
Claim 1. T is a contraction operator on U (z,r) 
If x,y eU (z,r), then we get

\\T(x)-T(y)\\<
1

1 - der
hdn

1 — der II® - 2/11 ■d£2r + hr + p +

Now T is a contraction if
1 f,. , hdr

-----— \dt2T + hr+p+ -----— 
1 - der [ 1 - der

or f (r) > 0, which is true by (ii).
Claim 2. T maps U (z,r) into U (z,r).
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If xe U(z,r),

T(x)-z z))) (x — z) dt

then

+CB (x) (x - z) - CF (z)

\\T(x)-z\\<r

if

y—(d^r2 + hr2 + pr + n) <r

or 

9 W < 0,

which is true by (ii).
The result now follows from the contraction mapping principle.
We now state a theorem for the modified equation (3.25). The proof as 

similar to the proof of Theorem 3.5 is omitted.

Theorem 3.6 Let z be as in Definition 3.5 and assume that there exists 
tq e [s, t) where

l-||(^W + r)-1i,||-[(1-||(F'(.)+l.)-‘£||)a-2||(F<(z)+I,)-1||||(F'(.)-|.£)-‘F(z)||<1]1/2 

||(F'(z)+£)-‘Zl||

and

i-||(f'(z) + l)~1l|| 

||(F'(z) + L)"1||£1

provided that the quantity under the radical is positive and

||(F'(z) + L)-1||<l.

Then (3.20) has a unique solution x in U(z,ro). Moreover, the rate of 
convergence q(ro) 6 [u, 1) where

u = 1 - [(1 - ||(F' (z) + £)-* £||)2 - 21|(F' (z) + L)-'|| ||(F' (z) + L)~' F(z)|| £i] ' .



70 Approximate Solution of Operator Equations with Applications

Assume that z is sufficient for the application of Newton’s method and 
Theorem 3.6, then if is the rate of convergence in Newton’s method the 
iteration

Xn+i = Xn-[F'(z) + L]"1F(a:n), n = 0,1,2,... (3.28)

converges faster to a solution x of (3.20) if
J /2

9(ro)<QN = l-[1-2^1 J’'(z)"1|||f'(2)-1F(z)||] . (3.29)

Denote by D, D\ the quantities under the radicals in Theorem 3.6 and 
(3.29) respectively then, we have the following theorem.

Theorem 3.7 If the hypothesis in Newton's method [4] are satisfied then 
Theorem 3.6 can be applied also in (3.20) if

pi *-17ir~'P1!i|2- (3,30)
2||f'(2)-1||

Moreover, if q (tq) < qN then the iteration in (3.28) converges faster to a 
solution x of (3.20) than the iteration in Newton's method (3.26).

Proof. By Lemma 3.2

|(f'(2) + l)-1l|| |(/ + F'(2)"1l) ‘(F'WJ-^L

, [r-w-ll-UI 
i-|p?'(*)"1||-PII

by (3.30). (3.31)

Now, using (3.30) and (3.31)

( 1~2|F,(Z)~11 -llLll\2 _ 21i||f'(2)-1|| ||f'(2)-x f(2)||
~\i-||f'(z)-1|.||l|J (i-|f'(2)-1||.||l||)2

Pt - 41|F' (2)~X|| ■ ||L|| (1 - ||F' (z)-1] ■ ||L||)

(i-IIf'^H-iilii)2

so, D > 0 if

D, > 4||f'(2)-1|| • ||L|| (1-||F'(2)-1||.||L||)
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which is true by (3.30). Therefore, Theorem 3.6 can be applied. The rest
follows from the discussion after Theorem 3.6. □

The following simple example justifies Theorems 3.23 and 3.7.

Example 3.6 Let x = R x R, be equipped with the max-norm. Define a 
bilinear operator B on x by the following calculation scheme:

H1
b21 b22

w bl\

yi
V2

_ bPxi + b2ix2 6}2xi + b22x2 yi 
b^Xi + ^2lrr2 ^22x1 + 1>22x2. .3/2.

&11 Xiyi + 621X21/1 + b\2xiy2 + bl2x2y2 
b2lxiyi + b21x2yi + b^2xiy2 + b%2x2y2

(3.32)

It can easily be checked that B is a bilinear operator on x and we can define 
the norm of B on x by

||B|| = sup max £ • <3-33)
11x11=1 (•) 3=il 1

Define the linear operator B (z) on X by

B(z) (y) = B(x,y)

where,

B(x) =
b^xi + b21z2 b12zi + b22x2 
b^xi + bjlx2 b^2xi + b%2x2

Let us now consider the quadratic system on X given by

F (x) = B (x, x) + Li (z) + Li (x) + y = 0 (3.34)

where,
i i '

1 —-1___ 2
3 -1

-1 11 2 J
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Li is alinear operator on X given by

5
2

Li = (/, the identity operator on x)

and

Equation (3.34) can also be written using (3.32) as

1 2 3 2 5 1-X2i + 2X1X2 - -X$ + -11 + — = 0
2 2 2 10
3 2 o 1 2 5 1- 2X1X2 4- -x$ 4- -X2 - Yg = °-

Let us choose

and

(3.35)

Then, obviously

llilll = I,

M-i,

and using (3.33)

l|B|| =4

and

*i = 2||B||.

Note that

F' (z) = 2B(z) + Li = Li.
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Then we can easily compute the quantities

L>i = .84 
qN = .0834849 
D = .9230769 
u = .0392311 
s = .0025008 
t = 3.125.

Note that the hypotheses of Theorem 3.7 are satisfied for ro G [s, t) and by 
choosing q (tq) = u we observe that

<j(rQ) < qN

therefore, iteration (3.28) converges faster to a unique solution x of (3.34) 
in U (0, ro) than Newton’s iteration.

Indeed iteration (3.28) and (3.26) for solving (3.35) can now be written

and

10 '^n+l — xn Qe,D(xn) 
20

(3.36)

(3.37)

$n+1 — %n

respectively, where

zn —
3^1,n 

.X2,n.

%l,n

x2,n
n = 0,1,2,...Xn =

and

zo = $o =
'0 
0

Let e = (.5) 10 2 be the desired error tolerance that is

||x - Zn|| < £ for n> N,

and

||z - xn|| < € for n > N.
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Then the true solution x = 11 is given by 
[Z2j

Xi = - (24302916852540) 10-2, 
x2 = (24062003442371)10-2.

Moreover, we have by (3.36) and (3.37)

Six = - (24038461538462)10-2, 
x2,i = (23705087903960) 10-2, 
xi,i = - (25) 10-2 
x2,i = (24625) 10-2, 
$1,2 = - (24268665625) 10-2,

and

x2,2 = (24047248283457) 10"2.

We now observe that the number of steps N in (3.36) required to achieve 
the desired accuracy e is

N = l,

whereas the number of steps N in (3.37) required to achieve the same 
accuracy e is

N = 2.

Exercises

3.1. Consider the problem of approximating a solution y G Cz[0, to] °f the 
nonlinear ordinary differential equation

dv
= K(t,y(t)), 0 < t < t0, 3/(0) = y0.

The above equation may be turned into a fixed point problem of 
the form

y(t) = yo + [ K(syy(s))ds, 0 < t < to-
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Assume K(x,y) is continuous on [0, t0] x [0, t0) and satisfies the 
Lipschitz condition

max|K'(s,g1(s))-Ar(s,g2(s))| < M||g1-g2||, for all quq2 G C[0,to]. 
p,toj

Note that the integral equation above defines an operator P from 
C[0, t0] into itself. As in Example 3.2.5 find a sufficient condition 
for P to be a contraction mapping.

3.2. Let F be a contraction mapping on the ball U(x0, r) in a Banach space 
X, and let

||F(z0) — z0|| < (1 — c)r.

Show F has a unique fixed point in t7(x0,r).
3.3. Under the assumptions of Theorem 3.1, show that the sequence gen- 

eralized by (3.2) minimizes the functional

/(x) = h-F(x)||

for any xq belonging to a closed set A such that F(A) C A.
3.4. Let the equation F(x) = x have a unique solution in a closed subset 

A of a Banach space X. Assume that there exists an operator Fi 
that Fi (A) C A and Fi commutes with F on A. Show the equation 
x = Fi(x) has at least one solution in A.

3.5. Assume that operator F maps a closed set A into a compact subset 
of itself and satisfies

||F(s) — ,F(i/)|| < ||® — y|| (x/y), forallx.3/6 A.

Show F has a unique fixed point in A. Apply these results to the 
mapping F(x) = x — of the interval [0,1] into itself.

3.6. Show that operator F defined by

F(x) = x + |

maps the half line [1, oo) into itself and satisfies

||F(x)-F(y)||< lk-3/H

but has no fixed point in this set.
3.7. Consider condition

||F(x)-F(3/)||<h-3/||
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Let A be either an interval [a, 6] or a disk x2 + y2 < r2. Find 
conditions in both cases under which F has a fixed point.

3.8. Consider the set co of null sequences x = {xi,X2,...} (xn 0) 
equipped with the norm ||x|| = maxn|xn|. Define the operator 
F by

= { ?(1 + hll)> |X2,. . . , (1 - 2^) Xn,.. .} •

Show that F : 17(0,1) —> &(0,1) satisfies

||F(z)-F(!0||<h-!/||,

but has no fixed points.
3.9. Repeat Exercise 3.8 for the operator F defined in cq by F(x) = 

{l/i, • • • ,1/n, • • •}, where yn - ^xn + £ sin(n) (n > 1).
3.10. Repeat Exercise 2.8 for the operator F defined in C[0,1] by

Ax(t) = (1 — t)x(t) + tsin (|) .

3.11. Let F be a nonlinear operator on a Banach space X which satisfies 
(3.3) on £7(0, r). Let F(0) = 0. Define the resolvent R(x) of F by

F(x)f = xFR(x)f + f.

Show:

(a) R(x) is defined on the ball ||/|| < (1 — |x|c)r if |x| < c”1;
(b) - 9\\ < Wx)f - R(x)9\\ < r^Tcll/ - 5ll;
(C) \\R(x)f - fi(!/)/|| <

3.12. Let A be an operator mapping a closed set A of a Banach space X 
into itself. Assume that there exists a positive integer m such that 
Am is a contraction operator. Prove that sequence (3.2) converges 
to a unique fixed point of F in A.

3.13. Let F be an operator mapping a compact set A C X into itself with 
||F(x) — F(y) 1| < ||x — y\\ (x y, all x,y € A). Show that sequence 
(3.2) converges to a fixed point of (3.1).

3.14. Let F be a continuous function on [0,1] with 0 < f(x) < 1 for all 
1 € [0,1]. Define the sequence

xn+1 = xn + ^4 (F(xn) - xn).

Show that for any z0 € [0,1] sequence {zn} (n > 0) converges to a 
fixed point of F.
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3.15. Show:

(a) A system x = Ax 4- b of n linear equations in n unknowns 
xi,x2, ■ • • ,xn (the components of x) with A = {ajfc}, j,k = 
1,2,..., n, b given, has a unique solution x* if

n
< i, J = l,2,...,n. 

fc=l

(b) The solution x* can be obtained as the limit of the iteration 
(a/°\ x&\...}, where is arbitrary and

^(m+i) = Ax(m) + b (^>0).

(c) The following error bounds hold:

-x’|| < T——|lx(m-1) -z(m’|| < Ah(0) -(1)ll.
1 — c 1 — c

where 
n

c = max£|ajJfc| and ||x — z 
j fc=i

3.16. (Gershgorin’s theorem: If A is an eigenvalue of a square matrix A = 
{ajfc}, then for some j, where 1 < j < n,

|| = max|zi —Zf|, j = 1,2,... ,n.

\ajj

Show that x = Ax 4- b can be written Bx = 6, where B = I — A, 
and 52fc=i lajfc| < 1 together with the theorem imply that 0 is not 
an eigenvalue of B and A has spectral radius less than 1.

3.17. Let (X, d), (X, di), (X, d2) be metric spaces with d(x, z) = maxj |zj — 
Zj\, j = l,2,...,n,

n

>=i

f* n -11/2
and d2(x,z) = ^J&j - Zj)2

j=i

respectively. Show that instead of J2fc=i laJ*l < = ^>2,... ,n,
we obtain the conditions

n n n
^|ajJt|<l, fc = 1,2,... ,n and ^a2jk < 1.
j=l J=1 fc=l
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3.18. Let us consider the ordinary differential equation of the first order 
(ODE)

x'= f(t,x), z(t0) = a?0,

where t0 and xo are given real numbers. Assume:

|/(t,x)| < co

on R = {(t, z) | |t - to| < a, |z — x0| < b},

\f(t,x) - /(t,u)| < ci|x - v|, for all (t,x), (t,v) G R.

Then show: the (ODE) has a unique solution on [t0 — C2, to + C2], 
where

c2<min{a,£,X}.

3.19. Show that f defined by f(x,y) = | sini/| 4- x satisfies a Lipschitz 
condition with respect to the second variable (on the whole xy- 
plane).

3.20. Does f defined by /(t,z) = [zl1/2 satisfy a Lipschitz condition?
3.21. Apply Picard’s iteration xn+1(t) = f^ f(s,xn(s))ds used for the 

(ODE) x' = f(t,x), x(tQ) = a?o + 0, x' = 1 + x2, x(0) = 0. Verify 
that for X3, the terms involving t,t2,... ,t5 are the same as those 
of the exact solution.

3.22. Show that x' = 3z2/3, x(0) = 0 has infinitely many solutions x.
3.23. Assume that the hypotheses of the contraction mapping principle 

hold, then show that x* is accessible from any point U(xq,Tq).
3.24. Define the sequence {xn} (n > 0) by z0 = x0, xn+1 = F(xn) + en 

(n > 0). Assume:

Iknll < Ane (n > 0) (0 < A < 1);

F is a c-contraction operator on U(xq,t). Then show sequence 
{xn} (n > 0) converges to the unique fixed point x* of F in U(xq,t) 
provided that

r > tq + —.
1 - c

3.25.
(a) Let F: D C X —> X be an analytic operator. Assume:



Fundamental Fixed Point Theory 79

• there exists a 6 [0,1) such that

l|F'(x)|| < a (x € D); (1)

7 = sup ||^^fc)(z)||r~T is finite; 
x€D

• there exists xq € D such that

ho-F(xo)||<7?<^^, 7/0;

• U(xo,ri) C D, where, ri,r2 with 0 < H < r^ are the two 
zeros of function /, given by

/(r) = 7(2 - a)r2 — (1 + 777 — a)r + rj.

Show: method of successive substitutions (3.2) is well defined, re- 
mains in U(xo,ri) for all n > 0 and converges to a fixed point 
x* eU(xo,ri) of operator F.
Moreover, x* is the unique fixed point of F in U(xo,rz). Further- 
more, the following error bounds hold for all n > 0:

ll^n+2 ~ ^n-f-i || < /?||xn4-i Xn||

and

||i„-x,|| <

where

The above result is based on the assumption that the sequence

7fc = |||^(*,(i)||lil (^eP), (*>1)

is bounded above by 7. This kind of assumption does not always 
hold. Let us then not assume sequence {7O (& > 1) is bounded 
and define “function” /1 by

00
/1(r)=J?-(l-a)r+^7**-lr’:-

k=2
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(b) Let F: D C X —► X be an analytic operator. Assume for xq G D 
function fi has a minimum positive zero such that

fr(zo,r3) Q D.

Show: method of successive substitutions is well defined, remains 
in U(xo,rz) for all n > 0 and converges to a unique fixed point 
x* G U(xo,ro) of operator F. Moreover the following error bounds 
hold for all n > 0

ll^n+2 ~ $n+l|| < @1 H^n+1 ~ xn||

and

1 - P1

where,

0i = '^7k*1’)lt-1 + «•

k=2

3.26.
(a) It is convenient to define:

7 = sup||^F<fc>(x*)||lil

with 7 = oo, if the supremum does not exist. Let F: D C X —> X 
be an analytic operator and x* G D be a fixed point of F. Moreover, 
assume that there exists a such that

l|F'(z*)|| < a, (2)

and

L7(z*,r*) C D,

where,

oo, if 7 = 0

Then, if 

7T*
1 — 7r* < 1,
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show: the method of successive substitutions remains in U(x*,r*) 

for all n > 0 and converges to x* for any x0 € U(x*, r*). Moreover, 
the following error bounds hold for all n > 0:

ll^n+l ~ ®*|| < M\xn - X* || < fi\\xn - X* ||, 

where,

A) = l, /?n+1=a+ 2r2g 
1 l' Pn

The above result was based on the assumption that the sequence

7* = ||^W(i,)||’*r (t>2)

is bounded 7. In the case where the assumption of boundedness 
does not necessarily hold, we have the following local alternative.

(b) Let F: D C X —> X be an analytic operator and x* € D be a fixed 
00

point of F. Moreover, assume: max (7fcr)fc-1 exists and is at- 
r>0 k=2

tained at some r0 > 0. Set
00 

p = Z>*r°)fc-1; 
k=2

there exist a, 6 with a € [0,1), 6 6 (a, 1) such that

p 4- a — 6 < 0

and

t7(x*,r0)CP.

Show: the method of successive substitutions {xn} (n > 0) gener- 
ated by (2) remains in (7(x*,r0) for all n > 0 and converges to x* 

for any x0 € C7(x*,r0). Moveover the following error bounds hold 
for all n > 0:

00
||Xn+l - ®’|| < o||Xn - ®’ll + 5>£-1|l*n " *’ll* < <*ll*n - l’ll-

k=2





Chapter 4

Solving Equations

In this chapter we are concerned with the problem of approximating locally 
unique solution of an equation in a Banach space. The Newton-Kantorovich 
method is undoubtedly the most popular method for solving such equations.

4.1 Linearization of Equations

Let F be a Frechet-differentiable operator mapping a subset of a Banach 
space X into a Banach space Y. Consider the equation

F(x) = 0. (4-1)

The principal method for constructing successive approximations xn 
to a solution x* (if it exists) of Equations (4.1) is based on successive 
linearization of the equation.

Assuming that an approximation xn has been found, we compute the 
next xn+i by replacing Equation (4.1) by

F(x„) + F'(x„)(x„+i-x„) = 0. (4.2)

If F' (x„)-1 6 L(Y,X), then approximation x„+i is given by

X„+! = X„ — F'(x„)—1 F (x„) (n > 0) . (4.3)

The iterative procedure generated by (4.3) is the famous Newton- 
Kantorovich method [183].

We are concerned about the following aspects:

(a) Finding effectively verifiable conditions for its applicability;
(b) computing convergence rates and a priori error estimates are useful;

83
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(c) choosing an initial approximation xo for which the method converges, 
and

(d) the degree of ”stability” of the method.

4.2 The Convergence of Newton’s Method

Define the operator P by

P (x) = x — F'(x)-1 F (x) (4.4)

Then the Newton-Kantorovich method may be regarded as the usual iter- 
ative method

Xn+1 = P (Xn) (n > 0) , (4-5)

for approximating solution x* of the equation

x = P(x) (4.6)

Consequently, all the results of the previous chapters involving Equation
(4.6) are applicable.

Suppose that

lim xn = x*. (4-7)
n—»oo

We would like to know under what conditions on F and F' the point x* is 
a solution of Equation (4.1).

Proposition 4.1 If F' is continuous at x — x*, then we have

F(x*) = 0. (4.8)

Proof. The approximations xn satisfy the equation

F' (xn) (xn+1 - xn) = -F (xn). (4.9)

Since the continuity of F at x* follows from the continuity of F', taking 
the limit as n —► oo in (4.9) we obtain (4.8). O

Proposition 4.2 If

||F'(z)||<b (4.10)

in some closed ball which contains {xn}> then x* is a solution of F (x) = 0.
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Proof. By (4.10) we get

lim F(xn) = F(x*), (4-11)n—*oo 

and since

||F(zn)|| < 6 ||a:n+i — in||, (4.12)

(4.8) is obtained by taking the limit as n —> oo in (4.7). □

Proposition 4.3 If

||F"(x)||<K (4.13)

in some closed ball U (xo,r), 0 < r < oo, which contains {xn}, then x* is 
a solution of equation F (x) = 0.

Proof. By (4.13)

||F'(z)-F'(xo)||<^lk-xoll<J<r, (4.14)

for all x G U (zo,r). Moreover, we can write

||F' (z)|| < ||F' (xo)ll + IIF' (x) - F' (xo)ll, (4.15)

so the conditions of Proposition 4.2 hold with

b=\\F'(x0)\\+Kr. (4.16)

As in Kantorovich (see, e.g., [149], [152], [197] consider constants Bo,*7o 
such that

||[F'(zo)]-1||<Bo, (4-17)

||xi - ®o|| < 7/0, (418)

respectively. □

Theorem 4.1 If

||F"(x)|| <K (4-19)

in some closed ball U (xo,r) and

h0 = BoVoK < i, (4-20)
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then the Newton sequence (4.3), starting from xq, converges to a solution 
x* of Equation (4.1) which exists in U (xo,r), provided that

1 — x/1 — 2/io r > r0 =------- r---------tjq. (4.21)
riQ

Proof. We first show that (4.3) is well defined. By (4.19) we get

1|F' (X1) - F' (x0)|| < K ||xi - x0|| = K^. (4.22)

Using (4.20), we obtain

lir s *»l

By Theorem 1.4, [F' (zi)]"1 exists, and 

||[F'(xi)]-1|| <____ lllf'fco)! _1.ll___________ (4.24)
111 l-||[F'(xo)r1||-||F'(x1)-F'(xo)||

or

||[F'(x1)]-1|| < . = A- = Bv (4-25>
1 — -dotJo-K 1 — hQ

Hence, exists. To estimate ||x2 — Xi||, note that 

lb-x1|| = |l[F'(x1)]-1F(x1)|| (4-26)

and

[F' (Xi)]-1 = f £ {1 - [F' (xo)]-1 F' (x,)}”) [F' (xo)]-1 

\n=0 /

= ( £ {[F' (xo)]-1 [F' (xo) - F' (xi)]}n) [F' (xo)]-1 ■ 

\n=0 /
(4.27)

Consequently

||[F'(xi)]-1F(xi)|| < l_||[r(l0)]-.iF(a;i)|| (4.28)

or

l|x2 - X1H < —(xor^xi) |). (4.29)
1 ILQ
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To estimate ||[F' (z0)] rF (xi) || consider the operator

Note

By (4.30)

(F'Cio^FC^ii-FUx!),

and since

zi = Fi (zq)

(4.31) may be used to write (4.32) as

[F' (xo)]-1 F (u) = - [Fj (n) - Fi (i0) - F{ (x0) («1 - ®o)l, 

and

||[F' «'1^) || < sup ||F[' (x)|| I|J1 ~ *o11-. 
xGL(xo>®i) Z

Using (4.30)

F['(x) = -[F'M]-lF"(x).

Since xi € U (xo,r), if (4.31) holds, then

\\F"(x)\\<B0K

on L(xo,xi). From (4.35)

||(F'(ao)rF(x1)|]<^ = ^,

and from (4.29)

n 1lk2 -xi|| < JiT/^770 = 7?1

and obviously 771 < ^?7o- The constant

, d zz Bo 1 /io 1 < 9A2 < -hl = = 2 (77^7 - 2h° - 2’

(4.30)

(4-31)

(4-32)

(4.33)

(4-34)

(4.35)

(4.36)

(4-37)

(4.38)

(4.39)

(4.40)
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so that (4.20) is satisfied if xq is replaced by xi- Now if for

1 - VI - 2h
ri =------ (4-41)

it can be shown that

C7(xi,ri)C U(x0,r0), (4.42)

then condition (4.19) will hold with x0 replaced by xi. By direct substitu- 
tion

>/T^=(i--4-5) (4'43)
\ (1-ho) / l-h0

and

_ 1 - (1 - /lo)-1 VI - 2/io 1 h0
ri= l^o/d-ho)2] 21-ho”0

/1 — x/1 — 2/io \ (a 44}
\ ho /

Consequently, if x G U (xi,ri), then ||x — Xi|| < n = r0 — rjo and

||z - x0|| < ||x - zi|l + ||xi - x0|| < (r0 - rjQ) + rjQ = r0, (4.45)

so that x G U (x0,r0), which establishes (4.42).
It follows by mathematical induction that the Newton process (4.3) 

generates an infinite sequence {zn}, starting from an xq at which the hy- 
potheses of the theorem are satisfied. It remains to be shown that this se- 
quence converges to a solution x* of (4.1). Along with {xn} the sequences 
of numbers {Bn} , {rjn} , and {hn} defined by

Snr^ (4.46)

_ 1 ^n-l^n—1
”n - 2 1 - hn_i ’ (4.47)

hn =
1 ^n-l 

^(l-hn-l)2’
(4.48)
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respectively, are obtained for n = 1,2,... . We have

h„ < 2h2n_, < 1 (2h„_2)4 <--<| (2/i0)2" (4.49)

from (4.40) and

= 2 1 — h„_j — ^n— l^?n—1 — ^n— l^n—2^7n—2 < ' ' *

< 5L(2/lo)2"’1(2M2""’---(2Ao)’to = ^(2M2’’"1%. (4.50)

1 — D IX ||— X ||

For any positive integer p,xn+p E U (xn,rn), so that

lkn+p - Xn|| < T„ = 1~7h72'‘nqn < 2t)„, (4.51)

and thus from (4.50)

Ikn+P - Xn|| < jir (2/lfl)2"1 %• (4-52)

Therefore {xn} is a Cauchy sequence which has a limit x* € U (xq,tq), and 
x* is a solution of (4.1) by Proposition 4.3. □ 

4.3 Local Convergence

We can now show a local result for (4.3).

Theorem 4.2 If x* is a simple zero of F,B* > ||[F' ($*)]-1||, and

A = {z : ||x - x' || < 1/ (B*K)} C 0 (x0, r) (4.53) 

then the hypotheses (i) with h < | and (ii) of the Kantorovich theorem are 
satisfied at each xq e B, where

B={x:||x-x*||<(2-V2)/(2B*K)}. (4.54)

Proof. For xQ e B,

||F'(xo) - F' (x’)|| < K||x0 -x’ll < (2- ^)/(2B*) < ||[F' (x’)]-‘||”1,
(4.55) 

so that [F' (xo)]"1 exists, and

“■56>
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by Theorem 1.4. By the fundamental theorem of calculus we obtain

F (x*) - F (xq) = [ F' (xq + 0 (z* - xo)) (x* - xq) dO
Jo

=F' (xQ) (x* - xq) + (4.57)

+ [ [F' (xQ + 0 (x* - z0)) - F' (x0)] (x* - x0) d9. 
Jo

Since F (x*) = 0,

- [F' (x0)]-1 F (x0) =x* - x0 + [F' (xo)]-1 • (4-58)

• [ [F'(x0 + 6 (x* — xo)) — F'(x0)](x* — x0)de, 
Jo

and hence

||[F' (x0)]-1F (xo) || < (1 + BK ||x’ - x0|| C 8de\ ||x* - x0|| • (4-59) 
l Jo )

By (4.56) we get

1 — -B*K llrc* — Tnll” = ~B.K||x»-xo°| " 1011 - lllF' (lo)1’1F (IO) 11- (4'60)

It follows that for xq g A,

h=BK^ i|s* ~1011 < (461)
(1 - B K ||x* - xo|l)

hence (4.20) holds with h < Using the values of h and 77 given above,

(4.62)

and thus U (xo,ro) Q A C U (xo,r) C O. C $7 satisfying (4.2). O

Remark 4.1 The value (2-72) (2B*K) for the radius of fi* is best 
possible, as the following scalar example shows. Take x* > 0 real, and 
consider the quadratic

F(x) = 1K(x2-x*2), 

where K > 0. One has (2 - 72) / (2B’K) = (1 - |72) x', and for 

xo = x* - (1 - |72) x* = |72x*,
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it follows that

B=(%V2Kx*  ̂ , ??=|x/2z*,

from which h = BKr) = 

4.4 Approximating Distinct Solutions

We provide sufficient convergence conditions for the convergence of New- 
ton’s method to distinct solutions of the quadratic equation in Banach 
space.

Consider the equation

x = y 4- B (z, x) (4.63)

in a Banach space X over the field R of real numbers, where B : E x E —► Y 
is a bounded bilinear operator with values in a Banach space Y and y G X 
is fixed. We introduce the iteration

xn+i = B (xn)-1 (xn - y) > n = 0,1,2,... (4.64)

for approximating solutions x* of equation (4.63). For each fixed x € X, 
B (x) denotes a linear operator from X to Y such that B (x) (y) = B (x, y), 
for all y € X.

Special cases of (4.63) appear in many interesting problems arising in 
astrophysics, in the kinetic theory of gases as well as the theory of ordinary 
and partial differential equations [4], [54], [113], [129). Equation (4.63) has 
been studied extensively. The continued fraction approach, the contraction 
mapping theorem technique and the famous Newton-Kantorovich method 
have been used to find a solution z* of equation [7], [9], [54].

A common hypothesis for the above techniques is the estimate 
4||B|l||y||<l.

It turns out that under this hypothesis the previous mentioned tech- 
niques approximate a small solution v* of equation (4.63) for any starting 
point xq close enough to the solution. The obtained solution v* is such 
that v* = v* (y) —» 0. We make use of the ” theory of majorants” and under 
assumptions similar to the ones introduced in the above mentioned tech- 
niques, iteration (4.64) can be used to approximate a second solution x* 
of (4.63) with x* v* and x* = x* (y) —* 0 as y —♦ 0. Moreover, under 
the same assumptions we show that the Newton-Kantorovich method can 
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be used to obtain a solution zN = x* also. This result is not known not 
even for quadratic systems in Rn, n > 1. Some sufficient conditions are also 
given for the existence of more than one distinct solutions of (4.63). Our 
results are illustrated with the solution of a quadratic system in X = R2 
as well as the solution of a Riccati differential equation.

Definition 4.1 An operator B : X x Y —> Z is called bilinear if it is 
linear in each variable separately and symmetric if X = Y and B (x, y) = 
B (y, x) for all (x, y) e X x Y.

Definition 4.2 The mean B of B on X x Y is defined by

B(x,y) = | (B(x,y) 4- B(y,x)) for all (x,y)eXxY.

Definition 4.3 A bilinear operator B : XxY —> Z is said to be bounded 
if there exists q > 0 such that

l|B(x»y)|| < q||z|| • ||y|| for all (x,y) € X xY.

The quantity ||B|| = sup \\B (x, i/)|| is called the norm of B. Note 

that, for B symmetric,

B (x, x) = B (x, x) for all x € X. (4.65)

Without loss of generality due to (4.65) we may assume that the operator 
B in (4.63) is symmetric.

From now on X = Y = X and Z = Y. We can now prove a theorem for 
the existence of a solution x* of equation (4.63).

Theorem 4.3 Let B be a bounded symmetric bilinear operator on X x X 
and suppose that Xq, y E E with xq 0 and xq y. Assume:

(i) The inverse of the linear operator B (xq) : X —> X with B (xQ) (x) = 
B (xq,x) for all x G E exists and is bounded.

(ii) The estimates:

0 < c < 1 (4.66)

and

0<d< —,~,C) (4.67)
4ab
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are true, where we have denoted

a> ||b(xo)-1||, (4.68)

(4.69) 
c > ||B (zo)-1 (Z - B(x0))|| (4.70)

and

d > ||B (xo)”1 (B(zo,xo) 4- y - x0)||. (4.71)

Then:
(a) The real sequence {tn} , n = 0,1,2,... given by

tn+2 = tn+l — i+c+2abtn+i “ ^+l) ’ ^ = 0, 1, 2,...,

Z° ~ ~2ab’ = to’ ^4’72)

is positive and decreasing converges to zero.
(b) The sequence {zn}, n = 0,1,2,... generated by (4.64) is well defined, 

remains in U (xo,ro) with tq = and converges to a unique 
solution x* E U (zo,ro) of equation (4.63).

Moreover, the following estimates are true for all n = 0,1,2,...,

Il^n+l %n || _ ^n ~~ ^n+l

and

lkn“X*|| <tn< [^Pto.

Proof. (a) It can easily be seen by (4.72) that the sequence {tn}, n = 
0,1,2,... is certainly nonnegative if

(1 + c) tk+i + 2abtktk+i - (1 + c) tk > 0 for all k = 0,1,2,... . (4.73)

Inequality (4.73) is true as equality for k = 0. Let us assume that it is 
true for k = 0,1,2,..., n. We shall show that it is true for k = n + 1. Using 
(4.72), the left hand side of inequality (4.73) for k = n + 1 becomes

2ab (l±c + 2abtk) + (1 + c)2 - (1 + c)2 U
1 + c + 2abtk+i

which is nonnegative if tk+i > and that is true by our assumPtion-
By the choice of to, <1 and (4.71), to ~ > 0-
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Let us assume that

tk- > 0, fc = 0,1,2, ...,n. (4.74)

Using (4.72), we see that (4.74) is true for k = n 4-1 if

1 4- c — 2abtk+1 > 0 for k = 0,1,2, ...,n. (4-75)

Inequality (4.75) is true for k = 0 by the choice of ti. Let us assume that 
(4.75) is true for k = 0,1,2, ...,n. To show (4.75) for k = n +1 it suffices to 
show tk+2 < or by (4.72)

2ab [2 (1 + c) tk+1 + 2abtktk+1 - (1 + c) tfc] < (1 + c)2 + 2ab (1 + c) tjt+i 

or tk+1 < which is true by hypothesis.
we have now showed that the real sequence {tn} > n = 0,1,2,... is pos- 

itive and decreasing and as such it converges to some t* > 0. But using 
simple induction and (4.72) we can easily show that tn+i < [^] *n 
[^]n+110. That is t* = 0.

(b) Let us observe that the linear operator B (z) is invertible for all 
x G U (a?o,ro). Indeed we have

|b (io)-1 B (x - x0)|| < ||b (zo)-1 || • ||B|| • ||x - Xoll < ab ||x - io|| < 1

so that according to Banach’s Lemma on invertible operators

B(i)-1| = [l + B (x0)-1 B (a: — x0) 
L

'b(xo)’1 a_____
~ 1 - ab ||z - zoll 

(4.76)
We shall prove that

l|xn-xn+i|| <tn-tn+1 for n = 0,1,2,.... (4.77)

By (a) it follows that if (4.64) is well defined for n = 0,1,2,...»fc and if 
(4.77) holds for n > k then ||x0 - xn|| < t0 - tn < t0 - t* for n < k. This 
shows that (4.76) is satisfied for x = i < k. Thus (4.64) will be defined 
for n = k + 1, too. By (4.64) and (4.71) ||xi - x0|| < d < t0 - ti- That is, 
(4.77) is true for n = 0. Suppose (4.77) holds for n = 0,1,2,..., k. Observing 
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that

B (xfc+i) (sfc+i - Xfc+2)
= B^fc+i^Xfc+i) + 3/ - xk+i - B(xk,xk) -y + xk + B(xk) (xk -xk+i)
= B (zfc+i - xk, Xfc+i + xk) + xk — ifc+i + B (zfc) (xk — Xfc+i)
= B (zfc+i - Zfc, Zfc+i - xk) + B (xk — xk+1, Zfc+i - xk)

4- B (xfc+i, Xfc+i - xk) - (zfc+i - xk)
= (B (xfc+i) - I) (zfc+i - xk),

we get

Zfc+i - Xfc+2 = B (xfc+i)"1 [B (xfc+i - x0) + B (x0) - 1] (zfc+i - xk).
(4-78)

By taking norms in (4.78) and using (4.76) we obtain

n „ || [c + ab(t0 - tfc+i)] (tk - tfc+i)
hfc+1 - ^2'1 ------- l-a6(t0-tfc+1)------- tk+1 "tk+2

by choice of £q. Inequality (4.77) shows that {xn} , n = 0,1,2,... is a Cauchy 
sequence in a banach space X and as such it converges to some x* G X. By 
taking yhe limit as n —> 00 in (4.64) we get x* = y + B (x*,x*). That is x* 
is a solution of equation (4.63). Fix n and let p = 0,1,2,... . Then

ll^n ~ X || < ||zn — Xn+p|| + ||xn+p — X || < tn — tn+p+||^n+p — x II • (4-79)

By letting p —> oo we obtain

lkn-x*|| <tn-t*, n = 0,1,2,... . (4.80)

By (4.80) for n = 0 we get

ho - x*|| < t0 - f = - t* = 2a6 •

That is x* G U (xq,tq) .
Finally, let us assume that there exists a second solution z* G U (xq,tq) 

of equation (4.63).
By (4.64) we have

xn+1 -z' = xn- B (rB)-1 (y+B (xn, Zn) - In) - z*

= B (s„)-1 [B (x„) (x„ - z*) + X„ - y - B (x„, x„)

+y + B(z’,z')-z']
= -B (x„)-1 [B (z' - z0) + B (x0) - /] (Xn - z*) •
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By taking the norms in the above identity and using (4.76) we obtain

II ♦ii o [c + ||z ~ *o|| || *.|
lkn+1 — 2 || < 2 |xn % || •|_1 + c + 2abtn+i

By the choice of tq the factor of ||xn — z*|| is less than 1 so that ||xn — z*|| 
goes to zero as n —> oo; hence z* = lim xn = x*.

n—+oo
That completes the proof of the theorem. O

Moreover, we can show the following theorem:

Theorem 4.4 Let B a bounded symmetric bilinear operator in X x X 
and suppose that xq, y € X with xq / 0, xq y. Assume:

(i) The following estimate is true

4be < 1 (4-81)

where

e > ||3/|| - (4-82)

(ii) The hypotheses of Theorem 4-3 are satisfied for some xq € E such that 

||xo|| > P with a certain p € (pi,P2), (4.83)

wherepi andp2 are the two positive solutions ofthe scalar quadratic 
equation

bz2 - z + e = 0. (4.84)

Then:
(a) The iteration

vn+i = yB (vn, vn) (4.85)

remains in U (fi,pi) and converges to a unique solution v* of equa- 
tion (4.63) in U fo, 21^) for any vo (0,pi). Moreover, for all 
n = 0,l,2,... V 7

(b) The solution x* of equation (4.63) obtained via iteration (4.64) is such 
that x* v*.



Solving Equations 97

Proof. (a) The first part of the result in (a) follows from Corollaryl in 
[7], whereas the second part follows can be found in [54].

(b) We shall show that ||xn|| > p for a certain p € (pi,P2) • By (4.64) 
weobtain ||rcn - i/|| = \\B (xn,xn+1)|| < ||B|| • ||xn|| ||xn+1|| or

|. || ^ lkn-&||
l|ln+111 - iibii ■ iw

Assume that ||xfc|| > p for all k = 0,1,2,..., n. since

||xn|| >p>e (4.86)

it is enough to show

(4-87) 
HWI

or
p

By (4.86) it finally suffices to show p > which is true for p € (^1,^2) • 
By taking the limit as n —► 00 in (4.86) we get ||x*|| > p. Therefore, we 
obtain x* / v*.

That completes the proof of the theorem. □

Furthermore, we can prove the following theorem concerning the number 
of solutions of equation (4.63).

Theorem 4.5 Let B be a bounded symmetric bilinear operator on X x X 
and suppose that xq} y G X with Xq y and y / 0.

Assume:

(i) the point Xq € E is such that

B(x0) = Z; (4-88)

(ii) the inequality (4.81) is true.

Then the elements v*, x*, xq — x* and xq — v* are solutions of equation 
(4.63) with

x* x0 — (4.89)

and

V* ± xo - V*. (4.90)
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Proof. It follows by (i) that the hypotheses of Theorem 4.3 are satisfied. 
That is x* is a solution of equation (4.63). By (ii) v* is a solution of equation 
(4.63). For z = xq - x* we have

y + B (z,z) = y + B (x0 - x*,xq -x*)
= y + B (x0,x0) - 2B (x0,x*) + B (x*,x*)
= x* + x0 ~ 2x* = Xq — x*.

Similarly we show that x0 — v* is a solution of equation (4.63).
Let us assume now that

xq — x*—x*. (4-91)

Then by (4.91) and (4.63) we have

x02(y + B(x*,x*)) =2 (^y + ^B(xq,xq)

which implies

xq = 4y.

That is

x* = 2y. (4.92)

But then by (4.92) and (4.63) 2y = y + B (2y,2y) or 4 ||B|| ||y|| > 1 since 
y / 0 contradicting (ii). This shows (4.89). Similarly we show (4.90) and 
that completes the proof of the theorem. □

We can show the following.

Proposition 4.4 Let B be a bounded symmetric bilinear operator on 
X x X and suppose that xq, y € X with xq / 0, xq / y. Assume:

(i) The hypotheses of Theorem 4-3 are stisfied.
(ii) The inequality (4.81) is true.
(iii) The inequality

ho-y||> ■ ~2ft(e~r°i~V1~—= K (4.93) 
2o

is true.

Then the solutions x* and v* obtained via Theorems 4-3 and 4-4 are 
distinct.
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(4.94)

(4.95)

□

Proof. Assume that x* = v*. The solution x* is such that

115(^)11 = h’-idl

and since 2l.ro, (4.94) gives

But then from (4.95) we deduce

Iko - 3/11 < R

contradicting (4.93).
That completes the proof of the proposition.

Note that under the hypotheses of Theorem 4.5 and the above proposi- 
tion it follows immediately that

Xq — x* 7^ Xq — v*.

Remark 4.2

(a) It can easily be seen that (4.68) and (4.69) can be replaced by the weaker 
condition

||B(xo)"lB||<g. (4.96)

(b) If we know the constants at b, c, d then we may compute the se- 
quence {tn}, n = 0,1,2,... before obtaining the sequence {zn}, 
n = 0,1,2,... via the iterative algorithm (4.64). Therefore the es- 
timates on the distances ||zn —z*|| and ||zn+i — zn|| obtained in 
Theorem 4-3 may be called apriori error estimates. Moreover the 
convergence of iteration (4.64) to a solution x* of equation (4.63) 
is only linear. Let us assume that the linear operator

r0 = (Z - 2B (lo))-1 (4-97)

exists for some xq G E and

l|ro||<6o, ||ro(®o-y-B(®o,xo))|| <t?0, /lo = 26o ||B|| 7?o < 
(4.98)

Then the Newton-Kantorovich iteration

Zn+1 = zn — (I — 2B (zn))-1 (z„ - y - B (zn, zn)),
7i = 0,1,2,..., zo = xo (4.99)
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for solving (4.63) converges to a unique solution zN of equation 
(4.63) in U (xo,r/v) wit/i

rN = (4.100)
Zooq

Moreover the order of convergence is quadratic. However we do 
not know if ||zn|| > p for a certain p 6 (pi,p2) whenever ||zo|| > P- 
That is, we do not know if p or if zN v*.

It will be show later that whenever the hypotheses of Theorem 4.3 are 
satisfied then the Newton-Kantorovich hypotheses (4.98) are satisfied also 
and x* = zN.

That is, if we choose xq = zq with ||xo|| > p, then

IIznII i P and zN/v* (4.101)

even if zn > p for some n, n = 0,1,2,... . Therefore in practice we will 
prefer to use iteration (4.99) instead of (4.64) to find bounded away from 
zero solution x* of equation (4.63), since (4.99) converges faster than (4.64). 
However our main concern, that is, the property (4.100) could only be 
proved through iteration (4.64) as the following theorem indicates.
Theorem 4.6 Under the hypotheses of Theorem 4-4 Newton- 
Kantorovich iteration (4.99) for zq = xq converges to a unique solution 
ZN °f equation (4.63) in U (xq,Rn) and zN = x*. Moreover, if ||<?o|| > P 
for a certain p E (pi,p2) then

II*nII>P, (4-102)

and

ll2n - 2^11 < n = 0,1,2,... .

Furthermore, the solution zN can be written as zN = xq + h, where h is 
a solution of the quadratic equation

h = yi + Bi(h,h) (4.103)

with

3/i = (/-2B(z0))-1(B(z0,z0) + 3/-Io) and Bi = (I — 2B (xo))-1 B.

Proof. By the Banach lemma, the linear operator

B^xoT1-^I^^B^o)-1-l)-I
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is invertible since ||Z|| • Z - B (x0) 1 < c < 1 and

(b (a:0)-1 — 21) 1
1 — c’

The equation (4.102) has a solution h if

1
1 — c

—-d 
1 — c4111/111IIBJI <4 ■ ab < 1 (4.104)

which is true by (4.67). It can easily be seen now that w* = 4- h is a
solution of equation (4.63) if and only if h is a solution of equation (4.103). 
The linear operator (Z — 2B (x0))-1 exists since

(/ - 2B(x0))-1 = (b(z0)-1 - 2/)”1 B(l0)-1. (4.105)

The Newton-Kantorovich hypotheses (4.98) are now satisfied and by 
the definition of r/y, (4.81) and (4.82) we deduce that zN = w*. By the 
uniqueness of the solutions x* and zN in the balls U (xq,tn) it follows that 
ZN ~ x* (thc balls have the same center).

The rest of the theorem follows from part (ii) of Theorem 4.4 and The- 
orem 11.3 in [7, pp. 142].

all the results obtained in Theorems 4.4-4.5 and in the proposition can 
apply to iteration (4.99). Note that the result (4.102) is not known not 
even for quadratic systems in IRn, n > 1.

To cover the cases when B is not symmetric we can state the following 
theorem whose proof as identical to that of Theorem 4.3 is omitted. □

Theorem 4.7 Let B be a bounded bilinear operator on XxX and suppose 
that xq, y e X with xq / 0, xq ± y. Further, let

a> ||b(i0)"1b||, b > ||b (zo)-1 (2B- B) ||,

c> ||b(x0)-1 (2B-B) (i0) -/|,

and let A, B be defined as

— [b(a+b) t0 +2(a-c+b)] + ( [b(a+b) to+2(ac+b)]2+4(ac+b)to(a2-b ) j
A---------------------------------------- .(J-?J
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and
(l + c)(l-c) 

2a (c + 3)

Assume.-

(i) 77ie inverse of the linear operator B (xo) : X —> X with B (xo) ($) = 
B (xq,x) for all x E X exists and is bounded;

(ii) The following estimates are true:

a > b, 
0 < c < 1, 
Q < d <to — A if a>b

and

0 < d < t0 — B if a = b.

Then
(a) the real sequence {tn} , n = 0,1,2,... given by

tn+2 = tn+1 - + (t„ - tn+1) , n = 0,1, 2,...
1 — at0 + atn+i 

ti = B if a>b

and

ti = B if a = b 

is positive and decreasingly converges to zero.
(b) The sequence {xn}, n = 0,1,2,... generated by (4.64) is well de- 

fined, remains in U (x0,f0) and converges to a unique solution 
x* eU (x0,f0) of equation (4.63) with f0 = a”1.

Moreover, the following estimates are true for all n = 0,1,2,...

— 3?n|| < tn — tn+i and ||xn — X || < tn.

Remarks similar to the ones made after the proposition can now easily 
follow for Theorem 4.7.

The results obtained in the next three examples can also be obtained 
through the use of iteration (4.99). However we will only use iteration 
(4.64) for demonstrational purposes.
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Example 4.1 Let X = R2 and define a bilinear operator on X by

B (w, v) = (wi,w2)

blll &112

^121 ^122 Vi

&211 &212 LV2.

£>221 &222 

(B(w))(u) = kiHW1 + &121W2 6112^1 + 6122^2 V1 

6211^1 + ^221^2 6212^1 + i>222w2 U2

&111W1V1 + 6121^2^1 + ^112^1^2
^211^1 + b221W2Vl + b^i^VJiV^ + 6222W2V2

Consider the quadratic equation on X given by

w = y + B (w, w)

or equivalently

wi = - 3wJ + 2wiw2 - w2 (4.106)
48

1 9 9w2 = - — + w{ — 2wiw2 — w2
48

where

bin = —3 b^2i = — 1
&H2 = 1, 6222 = — 1

tai = 1» yi 
y= „Ll/2 J

bi22 = —1,
b2ii = 1, 3/1 = h
^212 = —1, and y2 = -35.

Wi
w2

For x E X, let ||z|| = max|xi|, i = 1,2,. Using the norm on L(X, X) 
(*)

one can define the norm of B on X [10] by

2 2
||B|| = sup max t E 

l|x|l=l (•) J = lfc = l

2
12 bijk^k 
k=l

2 2
from which it follows at once that ||B|| < max 52 Z2 l&Ofch ^et xo = 

(») t=ifc=i
$ . With the above values it can easily be seen that B is a bounded, 
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symmetric operator on X and

B(x0) = I, e = d = \\y\\ = ±-, b = 6, a = 1, c = 0, 
4o

r0 = ^~, R=.08690776

and

||x0 - 3/|| = .520833333.

According to Theorem 4.4 (i), equation (4.106) has a small solution v* G

U (0,pi) which can be found to be v* .0200308
.0200308

using the iteration

(4.85) for vq for vq = y. We took v& = v*. According to Theorem 4.3,
equation (4.106) has a solution in U (xq,tq) which can be found to be

x* = -.5200308’
-.5200308 using the iteration (4.64) for xq = . We took

xg = x*. Since ||zq — j/0|| > R, it was known before actually computing v*
and x* that x* v*. Note however that x* — xq — v*.

It can easily be seen that vj = 

(4.106).

-.25 
.1318813

, is the third solution of

Finally, the forth solution rr* of equation (4.106) is given by z* = xq—v{.
We have now found all four solutions of equation (4.106).

A more interesting example is given by the following.

Example 4.2 Cnsider the Riccati differential equation

x2(t) + 2z(t)x(t)+yi(t)-^ = 0, 0<t<T<l, x(0) = 0. (4.107) 
at

As X takes CQ [0,T], the space of all continuously differentiable function 
x = x(t), such that x(0) = 0, and as Y take the space C[0,T] of all 
continuous real functions. Let us equip the above spaces with the usual 
sup-norm. That is

||«||= sup |z(t)| for xGX (orY). 
o<t<r

Equation (4.107) is a quadratic equation of the form (4.63) with 
B (xi,x2) = B (xi) (z2) where B (xi) is a linear operator for fixed x\ given
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by

B(x,)(w)(t)

’dn ' 
dt

exp I

- -i
' X\W (t)

■t
exp - 2z (q) dq xi (s) w (s) ds, 

. Jo

for all w G X and 0 < t < T, and

A
dt

• -i
— 2z Yi.y —

The linear operator — 2z is indeed invertible for all x G X, in fact, the 
inverse transformation u = [^ - 2z] 1 v has the explicit representation 

>t •t
exp - / 2z(q)dq v(s)ds, 

. Jo

where u G X for v G Y. It can easily be seen that the bilinear operator B 
defined above is bounded and symmetric. Using Definition 4.3 we deduce 
for T = j,

||B|| = | sup | (1 — t2) In (1 — t2) | < .375 for z (5) = - 1 . 
2 o<t<T 1 - t

Take yi (t) = — ,14-kt^. then easily, y(t) = —.14t for all 0 < t < T and 
113/11 = -07.

The condition (i) in Theorem 4.4 is now satisfied. Moreover if the 
condition (ii) in Theorem 4.4 is satisfied for some x0, then using iterations 
(4.64) and (4.85) we can obtain the solutions x* and v*, respectively, with 
x* / v*.

Example 4.3 There are examples of interesting linear operators satisfy- 
ing condition (4.88). Indeed, with the notation of the previous example, 
let us define a linear operator B (•) by B (v) = [^ — 2z] (v). Choose
z as before and v(t) = xq (t) = fjp-- It can then easily be seen that 
B(x0)(t) = I(t) = t for all 0 < t < T, that is B(x0) = I. Therefore 
the differential equation — 2z (t) u(t) = v (t), u (0) = 0, has the unique 
solution u given by u (t) = t, 0 < t < T.



106 Approximate Solution of Operator Equations with Applications

Example 4.4 Consider the scalar equation x = 6 4- /3x2 with 5, b > 0 
and 1 - 46/3 > 0.

Let us choose < xq < The conditions (4.66), (4.67) and*p
(4.83) become, respectively,

__ 2-^
2/3+72(1-45/3)
---------- 2£---------- <Xo'

xo > p for pG(pi,P2)>
1 - VI - 450 1 + VI -

P1~ 2/3 ’ P2 ~ 20

That is, zo must be chosen such that

2/3 + V2 (1 - 45/3) 1 + VI - 45/3
---------- 4/3---------- <Xo<-------- 20------- '

The large solution of the scalar quadratic equation can now be obtained 
using iteration (4.64) for the above choice of xq.

4.5 Approximation Using Finite Rank Operators

Consider the quadratic equation

x = y 4- B (x,x) (4.108)

in a Banach space x, where y 6 x is fixed and B is a bounded symmetric 
bilinear operator on x [4]. We choose z 6 x and F to be a bounded 
symmetric bilinear operator on x in such a way that the following auxiliary 
quadratic equation is satisfied

z = i/4-F(z,z). (4.109)

We then use the solutions of (4.109) to approximate the fixed points of 
(4.108).

We make use of the following version of Theorem 4.1.

Theorem 4.8 Let P be a nonlinear operator defined onD G X such that 
P is twice Frechet differentiable on D. Let z G D be such that:

(i) To = (P' (z))”1 (ii) exists and is bounded;
(ii) ||P(z)|| ||< v;
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(iii) ||P" (®)|| ||< b if ||x - z|| < r, V (z,r) c D;
(iv) h = ||r0||%fe<i;
(v) ro = (1 - vzT^2h) V ||r0|| /h < r.

Then there exists x € U (z, r0) such that P (x) = 0. Furthermore, 
x is the only solution of P contained in U (z,r) n U (z,ri), where

H = (1 + x/1 - 2/i) ||r01| v/h.

Definition 4.4 Let z 6 X be such that

z = y + F(z,z) (4.110)

for some auxiliary bounded symmetric bilinear operator F defined on D. 
define the operator P on D by

P (x) = x - z + F (z,z) - B (x, x). (4.111)

Then every solution x of (4.111) is a solution of (4.108).
Note that

P' (x) = I - 2B (x) and P" (x) = -2B.

The following theorem now follows easily from Theorem 4.8 and the above 
observations.

Theorem 4.9 Let P, z be as in definition and such that:

(i) (/ — 2B (z))’1 exists and is bounded;
(ii) IIP (z)II ||= ||(F - B) (z, z)|| < ||F - B|| • hll2 = v,
(iii) ||F" (z)|| < 2 ||B|| = fe^ if \\x — z\\ < r, U (z,r) C D;
(iv) h = ||(/ - 2B (z))-11|% • b < j;

(v) r0 = (1 — v'l - 2h) v • ||(Z - 2B (z))-11| /h<r.

Then there exists x E U (z, r0) such that x = y+B (x, x) and x is unique 
in U (z, r) n U (z, n), where

n = (1 + V'l - 2fc) ||v (/ - 2B (z))-11| [h .

Note that if z is such that
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then the linear operator (7 — 2B (z)) 1 exists and 

||(Z-2B(z))-1|< 1|z||.

In the above case, (iv) can be replaced by 
/ -| \ 2 i
G-SIBTm)

or

M < [2vW (TPi + 711-8-^11)] '* • (4112)

We can prove the theorem.

Theorem 4.10 Let B be defined on D C X such that B (x) is compact 
for each x G D. Let F (z) be a linear operator on D for some z € X such 
that

z = y + F(z,z).

Assume:

(i) (7 — 2F (z)) 1 exists and is bounded above by some K > 0;
(ii) 4 HF (z) B(z)-B (z) B (2)|| < ||(/_2;(z))-x|t;
(iii) ||P(z)||<v;
(iv) 2 ||B|| < b if ||x - 2|| < r, U (z,r) C P;
(v) h = K2v • b, K =

l+2||(Z-2F(z))-1||-||B(z)|| 
1—4||(/—2F(z))-1 ||||F(z)B(z)—B(z)B(z)||

(vi) ro — (1 — x/1 - 2h) K • v/h < r.

Then there exists x G U (z,ro) such that x = y+B (x,x) and x is unique 
in U (z,r) C\U (z,ri), where

ri = (1 + x/1 - 2/i) K • v/h.

Proof. We obviously have that (7 —2B(z))-1 exists and is bounded 
above by K according to the lemma, (i), (ii) abd the compactness of B (z). 
The rest follows by applying Theorem 4.8 to

P (x) = x - z + F (z, z) — B (z, x).

The natural question arises now, what are the best choices for F and z?

(a) Fpr F = 0, (4.109) gives z = y and (4.112) requires 4 ||B|| • ||y|| < 1.
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(b) For F = B, (4.112) requires ||z|| < 5^.

The best choice however for F and z must be such that

z = y 4- F (z, z).

The difficulties in finding solutions of the above auxiliary equation may 
be equivalent to those of finding solutions x of (4.108). However, if Q is the 
unique symmetric quadratic operator associated with F such that

Q (x) = F (x, x) for all x € X

then (4.109) can be written as

z = y + Q(z). (4.113)

Now assume that Q is of finite rank v = dim (span (Rang (Q))) and set 
x = z — y to obtain

x = Q (x + y).

The above equation implies that the problem of solving the auxiliary 
equation can be translated to a finite dimensional one since x must lie in 
rang(Q). □

Definition 4.5 Let A denote the set of all bounded quadratic operators 
Q in X such that Q has finite rank. Denote by E, the set of all bounded 
quadratic functionals f on x.

Let f e E, d e X; the operator f 0 d : X -> X sending x e X to 
f (x) d e X is bounded quadratic operator of rank one. Thus

for any /, e E, i = 1,2, ...,n, di e x, i = l,2,...,n.
Note that if Q = X —* Y is a bounded quadratic operator and L : Y —♦ 

Z is a bounded linear operator, then LoQ ‘. X —>Zisa bounded quadratic 
operator. (Q and L need not be of finite rank.)

Definition 4.6 Denote by E 0 X the vector subspace gener- 
ated in the space of all bounded quadratic operators by the set 
{Q € A /Q = / 0 d, f e E, d e X } so Q G E 0 X if and only if

Q= 'Efi®di.
»=i
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Theorem 4.11 A = E®X.

Proof. Let {di,...,dn} be a basis for rang(Q) and choose gi such that 
gi (di) = 5ij, i.j = 1,2, ...,n. since rang (Q) is finite dimensional, the , 
i = 1,2, ...,n functionals are bounded and by the Hahn-Banach theorem 
they can be extended linear functionals on x without increasing their norms. 
Let

/,=PioQ, i = l,2,...,n.

Then the /», i = 1,2, ...,n are bounded quadratic functionals and

Q — 52 fi ® di. 
i=l □

Definition 4.7 Let f*yi = 1,2, ...,n denote the symmetric bilinear func- 
tionals associated with the /», i = 1,2, ...,n, given by

fi = i (/< (x + y) - ft (x - y)) .

Denote by C' the matrix of the linear transformation 2B (y) (o) re- 
stricted to rang (Q) relative to the basis di,..., dn. define the n x n matrix 
C, by

C = I-C'y

= fi(y), i = l,2,...,n,

the block of matrices Q, Q_ = 

/* [dj.dk)» = 1,2, ...,n.

by Ci = where cjfc =

"Mi'
define y by y = C 1 £ if |<7| 0 and the block of matrices M. =

[MnJ
with Mfc = |C|-1 Mfc where each k = 1,2, ...,n is the n x n matrix 
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which results from the determinant of the matrix C if we replace the kth
rcii ‘CMi'

column by . Define CM by
CMn

Note that M'k, k = 1,2,n is indeed a n x n matrix. for the case n =

=

C1 C12
0*2 C22

= C22C1 — C12C2.

cu Ci
C21 C2 = C11C2 - C21C1.

Theorem 4.12 The point w 6 X is a solution of the auxiliary equation 
(4.113) if and only if

w = 2/+ E&di 
t=i

where the vector £ = G Rn (orCn) is a solution of

x=£ + C'x + x+rQz in Rn (orCn). (4.114)

Moreover, if |C| = |Z — C'\ 0 the Cramer’s rule transforms the above
to

x = v+ x+rMx in Rn (orCn). (4.115)

Proof. Assume that (4.113) has a solution w 6 X. Then

w - y 4- Q (w)

= y+ '£fi(w)di- 
i=i

Apply fi, /2> •■•■>fn in turn to this vector identity to obtain for p —
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1,2, ...,n

/p(w) = /p(y + £/<(«)*] 
\ k=l /

= fp (y) + E fk (w) fP (dk) + 21 fk (w) rp (y, 4) 
k=l k=l

+ 2EA(w)/J(w)/P*(4,dj).
t/j

Letting

/< (w) = Xi, i = l,2, ...,n 

and writing these equations in vector form, we obtain 

x = £ + C'x + x+rCx

or

Cx = £ + x+rCx.

since |C| 0, we obtain (4.115) by composing both sides of the above
equation by C-1. □

Conversely, given (4.115), assume (4.114) has a solution vector £ —

• . Let w € X be defined as
_€n.

w = t/+£&4 
i=l

Apply /i, /2, ■•■, /n in tum to this vector identity to obtain for p = 1,2,...,n,

/p (w) = /p (y) + E ekfp (dk) + 2 E (y, dk) + 2 £ &/p* (y,dk) 

k=l k=l k=l

+ 2£^/p*(di>d<),
t#j

or in matrix notation,

/(w) =£ + C'£ + £+rSj.

Now since $ satisfies (4.114) we have

€ = £ + C'€ + ^+rge.
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Comparing the last two equations, we get

fi = /i(w), i = 1,2, ...,n, 

so

w = 3/ + E7=i/i(w)di, 

or

w = y + Q (w).

Therefore, w is a solution of (4.113) and the theorem is proved.

Example 4.5 Let X = C [0,1] and consider the equation

x (s) = s + s [ x2 (t) dt 
Jo

where s G [0,1]. This equation is of the form (4.113), with rank (Q) = 1,

3/ (s) = s 
d = s, and

d (s) = [ x2 (t) dt.
Jo

Using the formula,

/* (v, w) = j (/ (v + w) - / (v - w)),

we have

C = l-2/‘ (j/,d) = l-2^ 

£ =/(!/) = /«= [»2ds 
Jo

C = f(d) = f(s) = [ s2ds 
~ Jo
v = 3-| = 1

o
M = 3-i = L

o

_ 1 
“ 3
_ 1
“ 3
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Therefore, (4.114) becomes

£ = 1 + £2 in C with solutions ---- - ---- ;
&

since x = y + £ d, we finally have

*(*) = I ---- g----)S-

Now note that if the linear operator F (z) is of finite rank n then the 
linear operator I — 2F (z) is invertible if and only if for every fixed v € X 
there exists w G X such that

w — 2F (z,w) = v.

Since F (z) is of finite rank n, the above equation can be translated 
exactly as in Rheorem 4.12, for the quadratic case to a linear system in Rn, 
or Cn, similar to system (4.115).

4.6 Projection Methods for Approximating Fixed Points

Consider the problem of approximating a fixed point x* of the operator 
equation

x = T(x) (4.116)

where T (x) is a nonlinear operator defined on a subset D of a Banach space 
X with values in a Banach space Y.

we study the convergence of the Newton methods

$n+l 'R ($n) FT (xn) (xn — xn^i), n > 0 (4.117)

and

yn+i = T (yn) - PT' (z0) (yn - yn+1), xq = yQl n>Q (4.118)

to x*, where T' (xn) is the Frechet derivative of T evaluated at xn and P 
is a linear projection operator projecting X on its subspace Xp. If Xp is a 
finite dimensional space with dim(Xp) = Ny then the iterates (4.117) and 
(4.118) can be computed at each step by solving a system of linear algebraic 
equations of order at most N. The case when P = Iy the identity operator on 
X, has been examined by many authors, under different assumptions, (68), 
[99]. The iterates, however, can rarely be computed in infinite dimensional 
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spaces, since it may be very difficult or impossible to find the inverses of 
the linear operators I — T' (xn), n > 0.

In this section, we provide sufficient conditions for the convergence of 
iterations (4.117) and (4.118) to a locally unique fixed point x* of equation 
(4.116).

Finally, we illustrate our results with an example.
We can now formulate our main theorem concerning iteration (4.117).

Theorem 4.13 Let T : D C X —>Y and assume

(a) the inverse of the linear operator I — PT' (xq) exists and 

||(/-pr'(io))-1(io-T(xo))|| <v; (4.119)

(b) the following inequalities are true for all

x,y eU (x0,r) = {z G E/ ||x - rr0|| < 0 •
||(/ - PT' (®0))-1 (PT' (®) - PT' (j/)) || < M ||® - 3/||A (4.120)

and

|| (/ - PT' (®o))-1 (QT(x) - QT (y))|| < q ||® - y||A,

(c)

Q = I - P, x e [o, i). (4-121)

The conditions

W)x < 1, (4.122)

Mrx < 1, (4.123)

ed-1 
”+l-e^r (4.124)

are satisfied, where

e = (dn)A, d*-1 = c

and

c^ = c=T^m^
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(d) TheballU(x0,r)cD.
Then, equation (4.116) has a fixed point x* in U (xo,r) where r 
is chosen to be the minimum number r > 0 satisfying (4.123) — 
(4.124). Moreover, the following estimates are true

||x„-x*|| n>0 (4.125)
1 e

and

||®n+l-X„|| <c||ln-X„_l||A, n > 1. (4.126)

Furthermore, if

(dr)x < 1 (4.127)

then x' is the unique fixed point of equation (4.116) in U (zo,r) •

Proof. From (4.117) and (4.118) we get the identity

(I - PT' (x„)) (x„+i - x„) = T(x„) - T (x„-i)
— PT' (x„-i)(x„ -x„-i), n>l. (4.128)

By the Banach lemma on invertible operators, (4.120) and (4.123), it follows 
that I — PT' (z) is invertible for all x € U (xo,r) and

||(/ - PT' (x))-1 (/ - PT' (x0))|| < i_m||L-^a- < (4-129)

Let us assume that XQ,Xi,...,xn € U (xo,r), then from (4.119)-(4.121), 
(4.128) and (4.129) we get

h„+i - x„|| < ||(/ - PT' (x„))-1 (/ - PT' (x0))||

■ [||(/ - PT'(x0))-1 (PT(x„) - PT(x„-i) - PT'(x„-i) (x„ - »„-i))||

+ |(/ - PT' (x0))-1 (QT(x„) - QT(x„_i))|]

i^TTx [ |(Z - PT' (xo))-1 f PT' (x„_! +1 (x„ - x„_i)) 
LI Jo

-PT' (xn-i) - xn_i) dt\\ + q ||xn - xn_i ||Aj

— 1-Mrx [1+A Ha'n “ ||®n “ ®n-l||

< c]|zn — xn-i||A , which shows (4.126). (4.130)
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From (4.126), we get

ho - In+lll < Ikl - Xoll + 11*2 - 21111 + • • • + ||l„ - Zn+ill
< T) + CqX + C1+Aj/2 + ■ • • + Cl+M-+An-1??A“

< 7? + d-1 [(<ty)A + (cfy/2 + • • • + (tfr)/"]

< V + d-1 [(d77)A + (^)2A + • • ■ + (*?+]

< 7) + d-1e (1 + e + e2 H-----F en-1)
< 7/ + d-1e^—— ^rj + d^e—-—<r (by (4.124)).

1 — e 1 — e

hence, xn+i e U (xo,r). For p > 1,

ll^n — ^-n+pll < ||^n ~ ^n-f-l || + ||^n+l %n+21| + * ' " + ll^n+p—1 $n+p||

< d-1 (drf" + d-1 (dr?)A"+1 + • • • + d-1 (dri)Xn+P
1 _ pp

< d~1en [1 + e + • • • + ep-1l = d-1en+-(4.131)

It now follows from that the sequence {xn} is a Cauchy sequence in a 
Banach space and as such it converges to some x* € U (xo,r). By letting 
p —♦ oo in (4.131) we obtain (4.125), whereas by letting n —♦ oo in (4.117) 
we get x* = T (x*). To show uniqueness let us assume that z* is any fixed 
point of T in U (xo,r) and use the identity

(I - PT' (xn)) (xn+1 — z*)=T (xn) -T(z*)-PT' (xn) (xn - z*)

to get

lkn+1 - Z*|| < C||®„ - Z*||A < ■ ■ ■ < d~X (dr)X" 
< d-1 (dr)x" < d-1 (dr)xn -> 0

as n —♦ oo from (4.127). Hence x* = lim xn = z*. n—»oo
That completes the proof of the theorem. □
Note that for A = 1 the proof of the previous theorem can be repeated, 

but (4.122) becomes c < 1, (4.124) becomes < r, e = c, (4.125) becomes 
Ikn - 2C*|| < and (4.127) becomes c < 1.

The proof of the following theorem concerning iteration (4.118) is omit- 
ted as similar to the proof of Theorem 4.13.

Theorem 4.14 Let T : D C X —> T and assume
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(a) the following inequalities are true:

|| (/ - PT' (xo))"1 (xo - T (x0))|| < n.

||(/ - PT' (xo))-* (PT' (x) - PT' (i/))|| < M ||x - y||A

and

||(/ - PT' (xo))’1 (QT (x) - QT (J/))|| < 9 - 3/11 * ■ 

Q = I-P,X&[0,1),

for all x,y EU (xo> -R) •
(b) The conditions

ri +

(rldi)x < 1, 

^-<R
1 - 61

are satisfied, where

d = (di7?)A , dx 1 = ci

and

ci (r) = ci = 21 XMR + q.

(c) TheballU(xQiR)GD.

The equation (4.116) has afixedpoint x* in U (xq,R) where R is chosen 
to be the minimum number R > 0 satisfying conditions (b). Moreover, the 
following estimates are true

hn-a:*|| < di1, n>0
1 - 61

and

lll/n+l -3/n|| <C1 ||j/n-?/n-1||A, n > 1.

Furthermore if

(d1R')x < 1

then x* is the unique fixed point of equation (4.116) in U (xq,R) .
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Note that a remark similar to the one made after Theorem 4.13 for the 
case A = 1 can now easily follow for Theorem 4.14.

We now complete this paper with an application.

Example 4.6 Let us consider the following system in X = Y = Rk

Vio = , i = l,2, ...,k. (4.132)

Set

T(v) = {

T' (w) v = 4

/i(^i,...,Vfc)}, i = l,2,...,/c;
fc

Y,fi,AWl’-<Wk^V3 ► , i = 1,2, ...,fc;

PT' (w)v=J1 E*=i fi,j (yii,.... Wk) Vj, « = 1,2..... N
0, i = N + 1,...,A:,

where the symbol denotes dfi/dvj.

Iterations (4.117) and (4.118) can be written as

^i,n+l = fi (^l,n» * ’ ’ , ^fc,n) 

k

+ (Vl.n. • • • > ”fc.n) (Vj.n+1 “ «,.n) > » = 1, • • • , IV
3=1

««,»+!=/<(«!,„,••• ,vk,n), i = N + l,---,k (4.133)

and

^i,n+l — fi (Vi,n, • ’ ’ , ^fc,n) 

k

+ fij ($1,0, ’ ■ ’ , Vn,o) (tfy.n+1, ’ ’ • , Vj,n) , t = 1, —, N 

j=l

Hn+l = /i($i,n,”’ ,$fc,n), i = N + l,...,k, (4.134) 

respectively.
If the determinants D (xn) and Do of (4.133) and (4.134) respectively, 

are nonzero, then we have
N _
X? Dim (vn) fm (vn)

_ m=l________________
Vi'n+1~ D(vn)

Vi,n+1 =fi(yn), i = N + 1, • • 

i=l,2,...,N, 

,k
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for system (4.133) and

n _
E Dim M fm 0>o) 

Hn+1 = —----------H, i = 1,N,

«t,n+l = fi (vn), i = N 4-1,k

for system (4.134).
Here

_  k k
f m (vn) — fm (l>n) “ fmj (vn) vj,n + fmj (vn) fj (vn) ,

t=l i=N+l
_ k k
fmM= fm(vQ)~^f'mj(Vo)vjin+ fmj (v0) fj (v0) , 

j=l t=N+l

m = 1,2, ...,fc, where Dim (vn), Dim (v0) are the cofactors of the elements 
at the intersection of the m-th row and i-th column of the determinants 
D (xn) and Do, respectively.

We assume that the following conditions are satisfied on some region 
under consideration.

|/t(vi,...,vfc) - A(wi,...,wfc)| 

k

— > i=N + l,...,k, Ae [0,1]
j=i

|/ij (vi,...,vfc) - f'ij (wi,...,Wfc)| 

k
"W«|A> i = l,...,7V, j = l,...,/c, 

3=1
l-^im ('y)| < Q'im' (^)| < fl,

\flj < hij, i = l,...,N, j = l,2,...,fc.

For any v G X, set ||v|| = sup |vi|, then the constants q and M 
i<i<fc

appearing in the Theorems 4.13-4.14 can be computed by

k k

q < sup ty and M < sup CijS>
<=N+l....,k^ <=1.2,....^.^
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4.7 Solving Nonlinear Equations with a Nondifferentiale 
Term

Consider the fixed point problem

T (z) = x with T (x) = F (x) + G (x) (4.135)

where F, G are nonlinear operators defined on some convex subset D of a 
Banach space X with values in a Banach space X. We assume that F is 
Frechet-differentiable on Z), whereas G is not. Zabrejko-Nguen in [294] and 
others [298], [68] have proposed the modified Newton-Kantorovich iteration 

zn+i = Zn - (F' (zn) - I)-1 (F (zn) + G(zn) - zn), ZQ = xo, n > 0, 
(4.136) 

for approximating a fixed point x* of equation (4.135).
The above authors showed that under certain conditions, iteration 

(4.136) generates a sequence which converges to z* for G = 0, iteration 
(4.136) reduces to the classical Newton-Kantorovich method which has been 
studied in 3.2.

However the iterates {zn}, n > 0 can rarely be computed in infinite- 
dimensional spaces, since it may be difficult or even impossible to compute 
the inverses of the linear operators F' (zn) - I,n> 0.

In this section we will make practical use of iteration (4.136), by con- 
sidering the iteration

®n+l n = 0,1,2,... (4.137)

where P is a projection operator (P2 = P) on D.
Let us assume that the inverse of the operator I — PF' (xq) exists and 

| (Z - PF' (x0))-1 [PF' (xx) - PF' (x2)]|| < K, (r) ||xi - x2||, (4.138) 

| (I - PF'(xo))-1 [(QF(xi) + G(xi)) - (QF(x2) + <?(x2))]||

<F2(r)||xi-x2|| (4.139)

for all xltx2 G U (xQ,r) C U (xQ,R) with Q = I - P, where Ki (r) and 
K2 (r) are nonnegative, nondecreasing functions on [0, P]. We note that 
for P = I the conditions (4.138)-(4.139) reduce to the Zabrejko-Nguen 
conditions given in [294], [298].

It is easy to see that the solution of iteration (4.137) reduces to solving 
certain operator equations in the space Xp. If moreover Xp is a finite 
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dimensional space of dimension 7V, we obtain a system of linear algebraic 
equations of order at most N.

We will provide sufficient conditions for the convergence of iteration 
(4.137) to x* as well as error bounds on the distances ||zn+i - ®n|| an<^ 
||xn — x*||, n > 0.

Finally we illustrate our results by considering a nondifferentiable non- 
linear integral equation.

We will need to introduce the constant
a = || (7 - PP'(i0))-1 (xo -T(®o))||

and the functions

(r) = [ Ki (t) dt, 
Jo

(p(r) = a+ w(t)dt — r, 
Jo

i>(r) = K2(t)dt, 
Jo

*c(r) = <p (r) + i/>(r).

We can now prove the main theorem.
Theorem 4.15 Suppose that the function x(r) has a unique zero s* in 
the interval [0, R] and x(R) < 0.

Then

(a) the equation (4.135) has a fixed point x* E U (xq,s*) , which is unique 
in U (xq,R) ;

(b) the iterates generated by (4.137) are well defined, remain in U (xq,s*) 
for alln>Q and satisfy

||®n+l - Xnll < Sn+l “ *n, n > 0 (4.140)

and

Ikn ~ z*|| < s* - sn, n>0 (4.141)

where the sequence {sn}, n > 0 given by

x(sn) / x
$n+l = Sn----------r = Sn + U (sn) ,

¥>' («n)

with u(r) =---- so = 0, n > 0
(r)

is monotonically increasing and converges to s*.
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Proof. The function x (r) is positive on [0, s*], since s* is the unique 
zero of x (r). Exactly as in Proposition 3 in [294, p. 677) we can show that 
the function <p' (r) is negative on [0, s*] and that the sequence {sn} , n > 0 
is monotonically increasing and converges to s*.

We will only show (4.140), since (4.141) will follow then immediately. 
We must show that the iterates {zn}, n > 0 belong to U (x0,sn) C 
U (z0,s*) and that the inverses I — PF' (xn), n > 0 exist. For n = 0, 
(4.140) becomes

a = ||xi - xq|| = si - s0 = a.

Hence, (4.140) is true for n = 0. Suppose the (4.140) is true for N < k; 
then

k k

II®* - ®o|| < 52II1; “ ^-‘H - 12 _ = Sk-
J=1 J=1

but by (4.138) and the result on [294, p. 676]

||(Z - PF' (x0))-1 (PF' (®fc) - PF' (io))|| < W (s*) < w (s‘) = V' (s*)+l < 1.

By the Banach lemma on invertible operators (J - PF' (x^)) 1 exists and

||(/ - PF' (x*))-1 (/ - PF' (xo))|| < • <4-142>

Using the identity

Xfc+i - X* = [(Z - PF' (Xfc))-1 (/ - PF' (x0))] {(/ - PF' (®o))“‘ 

[(PF(xfc) - PF(ifc-i) - PF' (xk-i) (xk - ®fc-i)) 
+ ((G(ifc) + QF (x*))) - (G (ifc-i) + QF (ifc-i))]}, (4.143)

(4.138), (4.139) and (4.142), we get

||(f- PF'(xo))-1 [PP(x*) - PP(x*-i)-PF'(«*-i)(»* ~®*-l)]||

- /o "PF'(PF'-^Xk~l +tx^~PF'(®*-i))||H1*-*

< [ (w((l - t) Sfc-1 4- tsfc) -w(sfc-i)) - Sk-i)dt
Jo 
f9k = / w(t)dt-w(sfc_i)(sfc - Sfc_i)
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and
||(/ - PF' (xo))"‘ [(G(xfc) + QF(xk)) - (G(z*-i) + QF(xfc-i))]||

< [ K2(t)dt = 'ip(sk)-'ip(sk-i)-
Jsk-1

With these majorizations, (4.143) becomes

||Xfc+l - Zfcll < -
<P(Sfc)-<P(3fc-l)-<P,(3fc-l)(Sk-ak-l) + V>(Sfc)--0(3k-l) 

¥>'(3fc) = Sfc+1 - sk‘
(4.144)

Hence (4.140) is true for n = k. Since, the sequence {sn} , n > 0 majorizes 
the sequence {xn}, n > Q, there exists x* G U (xq,s*) such that z* = 
lim xn. By taking the limit in (4.137) we get x* = T (x*). To show 

n—>oo 
uniqueness we consider the sequences

3/n+i = 1/n - (I - PF' (xo))"1 (3/n - T (yn)), n > 0,

Vn+1 = Vn ~ (I ~ PF'(v0))~^ (yn ~ t (yn)) , n > 0, V0 € U (x0, R) , 

Qn+1 = d (qn) , n > 0, qQ = 0, d (r) = r + x (r)

and

Pn+i = d (pn) , n > 0, pQ = R. (4.145)

Then it is simple calculus to show that the iteration {<?n} , n > 0 is mono- 
tonically increasing and converges to s*, whereas the sequence {pn} , n > 0 
is monotonically decreasing and converges to s* also.

Exactly as we derived (4.144), we get

Il2/n+l - 3/n|| < 9n+l - <?n, n > 0 (4.146)

and

\\Vn ~ vn|| < pn - qni n> 0. (4.147)

From (4.146) we get lim yn = x* € U (xq,s*) . If for vq we choose the n—*oo
second solution x\ G U (xq,s*) of equation (4.135), we get by (4.147) that 
|| x* — ij|| < pn — qn and hence x* = xj.

That completes the proof of the theorem. □

For completion we will now obtain some further error bounds. Let 
rn = ||zn - x0||, Kn (r) = K^ (rn + r) and Xn (r) = K2 (rn + r) for r 6 
[0, R - rn] and set an = ||xn+i - xn|| bn = (1 - w (rn))-1. Without loss of 
generality, we may assume that an > 0. Then by following exactly the same 
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steps as the proof of Theorem 2 in [285, p. 989] and Theorem 2 in [294, p. 
680] we can easily prove the theorem.

Theorem 4.16 Suppose that the hypotheses of Theorem J.15 are true. 
Then

(a) the equation

r = an + bn f {(r - t) Kn (t) + Xn (t)} dt 
Jo

has a unique positive zero s* in the interval [0, R — rn] and

||xn — z*|| < $n, n > 0, with Sq = s*.

(b) Moreover, the following estimates are true:

lkn+i ~xn|| < A(n)(a) = sn+i-sn, n>0

and

Ikn - z*|| < w (a(ti) (a)) = s - sn, n > 0

where

△<0)(r) = r, △<n+1) (r) = △ (△(n) (r)} , n>0

and

w(r) = f><n’(r). 

n=0

(c) Furthermore, the following estimates are true:

||xn-x*} <s*
< (s* - sn) an / Asn, n > 0
< (s* - sn) an-i / Asn-i, n > 0,
< s* - sn, n > 0.

We complete this paper with an application.

Example 4.7 Consider the integral equation

x(t)= [' K(t,s,x(sY)ds, 
Jo
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where the kernel K (t, s,x(s)) is nondifferentiable on some convex sub- 
setJ) c E = 0(0,1]. We set T(x) = fQ K (t,s,x(s))ds and F(x) = 
Jo K (*» s»x (s)) ^s> where K (t, s, x (s)) is differentiable on D. Then

PF' (x) = [ Kx(t,s,x(s)) ds, 
Jo

where
__  oo
r(M,s(»)) = E4(WM(»))

i=l

is a degenerate kernel approximating the functions T< (t, s, x), e.g., a portion 
of the Taylor or Fourier series for the function K (t, s, x) if we consider it 
as a function of t. The modified Newton-Kantorovic iteration (4.137) can 
now be written as

$n+i (t) = [ K (t,s,xn(s))ds - [ Kx(t,s,xn(s))xn(s)ds
Jo Jq

+ [ (t,s,xn (s))xn+1 (s) ds. (4.148)
Jo

Let

fn(t)= [ K (t,s,xn(s))ds - [ Kx(t,s,xn(s))xn(s)ds, 
Jo Jq

then iteration (4.148) can be written as

Zn+i (t) = fn (t) + 52 A (t) [ B'i (s, xn (s)) xn+i (s) ds, 
t=i J®

which can be solved to give a system of linear algebraic equations

[ &i(s,Xn (s)) Xn+l (s) ds — (s,Xn (s)) Aj (s) ds [ B'i (s,Xn (s))xn+l (s)ds
° i=l^° Jo

= [ fii(s,Xn(s)) fn(s)ds.
Jo

Denote by D (xn) the determinant of the above system and assume 
D (xn) 0, n > 0. Then,

/ B<(s,x„(s))xn+i(s)ds = y-l-T- [ \"Dki^Xn) B'k(s,Xn(s)) fn(.s)ds
•'O {Xn) JQ
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and

*... «> - /. «) + [' £ £ A«)°..(..)B1«...<.»A (<)
J° 1=1 fc=1 D \^n)

where Dki (xn) is the cofactor of the element in the i-th row and A:-th 
column of the determinant D (xn).

Suppose now that the operators ~Kx(t, s,rr), Q(t,s,x), G(t,s,x) and 
L(t, s,x), where

Q (t, s,x) = K (t, s,x) - K (t, s,x), G (t, s,x) = K (t, s,x) — K (t, s, x) 

and 
, vn. m

w d« (*) <s- *) -
' ' i=l Jc=l

satisfy the conditions

(t, s, x) - Hx (t, s, y) | < Ci (t, s) |x - y|

|(Q (t,s,i) - Q(t, s,y)) + (G(t,s,x) - G(t,s,j/))| < c2 (t,s) |x - j/|, 

and |L (t, s; z)| < r (t, s) on D.
For simplicity set K\ (r) = Ki and K2 (r) = K2 for all r = [0, #] 

in (4.138)-(4.139). Then the constants Ki and K2 can be computed as 
follows:

Ki < w sup / ci (y, s) ds, K2 <w sup / C2 (t, s) ds 
«€(0,1) Jq t€[0,l) Jo

where

w = 1 4- sup / r (t, s) ds. 
t€(o,i] Jo

4.8 Iteration Converging Faster than Newton’s Method

Consider the equation

F(x) = 0 (4.149)

where F is nonlinear operator mapping a subset E of a normed space X into 
a normed space Y. We assume that f is Ai-times Frechet-differentiable on 
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E. Suppose that an approximation xn to a solution x* of equation (4.149) 
has been found. To determine the next approximation xn+i, we replace 
(4.149) by the equation

F (x„) + F' (x„) (l - X„) + \F" (x„) (x - X„)2 + • • • 

+ ^F^(xn)(x-xn)k = 0, (4.150)

where F^ (xn), j = 1,2, are j-linear operators corresponding to the 
jth Frechet-derivative of F at xn, n = 0,1,2,... .

for fixed xn, z G E, n = 0,1,2,..., define the linear operators on E by

L„,fc (z) (x) = F' (x„) (x) + ±F" (x„) (z - x„) (x) + • • •

+ ^F<fc>(x„)(x-x„)fc-1(x), n = 0,l,2,... . (4.151)
/C!

Using (4.151), (4.150) can equivalently be written as

F (xn) + Ln,k (x) (x - xn) = 0, n = 0,1,2,... . (4.152)

Moreover, if we assume that the linear operators Ln,k ($) are invertible 
on E, (4.152) becomes

x = Tntk(x) (4.153)

where Tn,k are nonlinear operators defined on E by

Tn,k (Z) = Xn - Ln,k (x)"1 F (xn), n = 0,1,2,... . (4.154)

Equation (4.153) suggests that the approximation xn+i can be found 
implicitly using the iteration

®n+l — Tn,k ($n+i) >n = 0,1,2,... . (4.155)

Note that for k = 1 the above iteration becomes explicit and reduces to 
the Newton-Kantorovich iteration for solving (4.149).

Assuming that the linear operator Ln>i (xo) has a bounded inverse on 
some D C E, the Newton-Kantorovich Theorem 4.1 ensures that if

a = a (x0) = 2M ]]£„,! (x0)-1 F(x0)|| < 1, (4-156)

t = t (x0) = (1 — V1 - a) , (4.157) 
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where £ is the Lipschitz constants of Ln,i on D c E and

6=&(X0)=||in,l (®o)-1||.

Then equation (4.149) has a solution

x* € B(x0,r) C D

which is a unique solution of (4.149) in the open ball B (x0,r) with radius 

r = r (z0) = (i + 71-a). (4.158)

Moreover, iteration (4.155), for k = 1 converges to x* quadratically. 
That is,

hn+i-x*|| = 0(||xn-a;*||2), n = 0,1,2,.... (4.159)

Suppose that there exists x* G E which is obtained as the limit of the 
iteration (4.155) as n —* oo and k is fixed. They by (4.155)

F(x*) = F ( lim Xn+i) = 0, (4.160)
\n—»oo /

that is x*, so obtained is a solution of the equation (4.149).
Here we provide sufficient conditions for the convergence of iteration 

(4.155) to a solution x* of equation (4.149). We also show that if F is 
(k + 1) -times FYechet-differentiable, then the following estimate holds

ll^n+i — ®*|| = 0 (||o:n - x’||fc+1) , n = 0,1,2,.... (4.161)

The above result improves (4.159) for k > 1. However, iteration (4.155) 
becomes implicit. More precisely, (4.153) becomes a polynomial equation 
of degree k on E. Polynomial equations have already been studied in [54] 

and the references there (see also 3.3).
Due to the particular properties of polynomials, equation (4.153) is, in 

general easier to handle than equation (4.149), especially on finite dimen- 
sional spaces. There are problems where the desired error tolerance e > 0 
is such that the number of iterations required by (4.155) for k = 1 due to 
(4.159) is very large. It is in those cases where the solution of (4.153) will 
reduce the number of iterations required to achieve the same accuracy € 
due to (4.161).
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The evaluation of the iterate xn+i in (4.155) will itself require an iter- 
ation of the form

3*n+l,m+l = Tn,fc (^n+l,m) , ^n = 0, 1, 2,... (4.162)

for fixed n and some initial guess xn+i,o»
Because of rounding or discretization error in the evaluation of Tniv» 

an approximate sequence zn+1>m is produced in place of the exact sequence 
3*n+i,m« That is

^n+l,m+l = T n,fc (2n+i,m) , 771 = 0,1, 2,..., (4.163)

where the fn>k are related with the Tn>fc, n = 0,1,2,... .
In [227, 12.2.1] it was proved that if the operators Tnjk are all contrac- 

tions on some closed set D^ c E and {zn+i,m} C Z>i, then for zn+i,o G 
with Tn>fc (Dq) c Dq c D\ iteration (4.162) converges to a unique fixed 
point x*+1 of Tn,fc in Dq.

Moreover,

Um zn+i,m = x^i if and only if lini ||Tn,* (zn+i,m) - zn+i,m+ill = m—+oo
(4.164)

To illustrate the procedures described above a simple example is pro- 
vided when x = C, the set of complex numbers.

From now 6h we assume that x = y is a Banach space and state the 
main result.

Theorem 4.17 Let F : E c X —> X be a nonlinear operator which is 
(k + 1) -times Frechet-differentiable on E. Assume that the linear operators 
Ln,k ($n+i) are invertible with bounded inverse on some closed ball B* C E 
such that {xn}cB*,n = Q, 1,2,... .

Set,

||Ln,k (®n+l)-11| < Cn < C, (4.165)

and

(TTi)! ““ llF<fc+1) (2)ll - dn - d' n = 0,1,2,... (4166>

for some c, Cn, d, dn > 0 guaranteed to exists by the hypotheses on 
Ln,k (xn+i), F and the standard estimate (given in [227] for example) for 
(4.166).
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Then if

0 < cd < 1 (4.167)

the following are true:

(i) the iteration {zn} given by (4.155) converges to a solution x* € B* of 
equation (4.149);

(ii) moreover

||o;„+1 - x-|! = 0 , n = 0,l,2,....

Proof. We have by (4.155)

||$n+l || — j|-^n,A: (^n+l) -^'(2'n)||

< c ||F (xn) - F (x„-l) - F' (Xn-l) (®n - ®n-l)--------

—fiF™ (Sn-1) (in ~ Sn-l)*j|

- c(rri)! IK+1) M ■lkn" ln-ill<:+1
< Cdllln ~ Xn-l||fc+1

< (Cd) (Cd)fc+1 ||ln_l-Xn-2||

< 11«! - oio||. (4.168)

Also, for p = 2,3,...

Il^n+p ~ xn|| < ||xn+p — Xn+(p_i) || 4- ||zn+(p-i) — 3)n|| . (4.169)

Now,
ll^n+p — Xn+(p_i)|| < (cd) ||xn+(p_i) — £n+(p_2) II

< (cd)(fc+1)(p-1)+1 ||xn+i - M*+1 > (4-170)

||$n+(p— 1) ~~ Xn||
= II (Xn+(p-1) “ Xn+(p_2)) + (zn+(p_2) — ^n+(p-3)) 4 b xn+l ~ ||

< + (cd)(*+l)(p-3)+l + ... + x] ||In+1 _ .

(4-171)
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The inequality (4.169) because of (4.168), (4.170) and (4.171) becomes

ll^n+p £n|| <
1 - (cd)(fc+1)p+1

1 — cd
(cd)(fc+1)n ||X! - xoll . (4.172)

Letting n,p —> oo in (4.172) and using (4.167) we obtain that the se- 
quence {zn} is a Cauchy sequence in Banach space X and as such it con- 
verges to some z* G B* which, by the discussion made in the introduction, 
is a solution of equation (4.149).

This proves (i). The second part of the theorem is immediate from 
(4.170) and the inequality

(cd}^k+1^nl|xn-«,|l<^_cd ||*i-soll, n = 0,1,2,.... (4.173)

which follows from (4.172) by letting p —» oo. That completes the proof of 
the theorem. □

Note that we can produce the ”modified” version of (4.155) by intro- 
ducing the iteration

$n+i = Tn>k (x0) F (zn), n = 0,1,2,... for some xq G E

and then derive a theorem similar to the one stated above.

Example 4.8 Let X = C, the set of complex numbers equipped with the 
usual Euclidean norm ||. Then (X, ||) becomes a Banach space. Consider 
the equation

F (x) = x3 - 5x2 + 7x - 3 = 0. (4.174)

Let D = B (.7,1.2), x0 = .7. The linear operators Ln,2 (^) become

Ln,2 (z) (x) = (3x2 - 10xn + 7) x + (3zn - 5) (z - xn) x
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and the Newton-Kantorovich method for (4.174) gives

xq = .7
X1 = ?840816 
x2 = .917578 
X3 = .957989 
xA = .978781 
x$ = .989335 
xq = .994653 
x7 = .997323 
xs = .998661 
x9 = .99933 

xio = .99965 
zn = .999832 
X12 = .999916 
Xi3 = .999958 
«14 = .999979 
Xis = -999989 
Xi6 = .999995 
Z17 = .999998 

Z18 =

The Newton-Kantorovich theorem guarantees the existences of a solu- 
tion of (4.174) only after the 14th iterate, since it can then easily be checked 
that

a = a (xi4) = .9981914 <1, £ = 4.000126.

It is well known, however, that Newton-Kantorovich can sometimes con- 
verge even if xq B (xi4,r (xi4)) •

We can now observe that for x0 = .7, k = 2 iteration (4.155) becomes a
quadratic equation for every n, n = 1,2,3,... .

For n = 0, (4.155) gives

-2.9z? + 5.53xi - 3.266 = 0



134 Approximate Solution of Operator Equations with Applications

with solutions

si = .9534482 ± .465863*.

To apply the iteration (4.155) for n = 1,2,... we choose

Zm. = zm = Re£ (sm) , = 1,2,... .

That is, for m = 0, z\ = Re^ (si) = .9534482 and (4.155) becomes

—2.1396554^2 + 4.2728098z2 - 2.2282236 = 0

with solutions

s2 = .9984808 ± .2107835*.

The process will be terminated when m = 4 and the results can be tabulated 
as follows:

zQ = .7
z\ = .9534482
z2 = .9984808
z3 = .99999982
z4 = 1.

We now observe that starting from the same initial guess, iteration (4.155) 
for k = 2 requires almost the one fourth of the number of iterations required 
from the same iteration (4.155) for k = 1 to obtain the solution x* = 1 of 
equation (4.174).

Moreover, one can easily check that (4.164) is satisfied.
Finally, it is interesting to note that condition (4.167) is violated since,

Cn —> oo as n —► oo

and

dn = l, n = 0,l,2,... .

However, the sequence {zn}, n = 0,1,2,... converges to the solution 
x* = 1 of equation (4.174).
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4.9 Exercises

4.1. If hQ < | holds in U (xo,r*), where r* = *—^~2-Q?7O, then show: 
Equation (4.1) has a unique solution x* in U (x0,r*).

4.2. If the hypotheses of Theorem 4.1 are satisfied and hQ = then show: 
There exists a unique solution x* of Equation (4.1) in U (zo,ro) = 
U (zo,2t7o)

4.3. Let x* be a solution of Equation (4.1). If the linear operator F' (x*) 
has a bounded inverse, and lim||a._x.||_^o HF' (x) — F' (rc*)|| = 0, 
then show Newton’s method (4.3) converges to x* if xq is suffi- 
ciently close to x* and

||®n-®*|| <den (n<0),

where e is any positive number; d is a constant depending on xq 
and e.

4.4. The above result cannot be strengthened, in the sense that for every 
sequence of positive numbers cn such that: limn_oo there
is an equation for which (4.3) converges less rapidly than cn. Define

sn — Cn/2» n is even 
y/C(n-i)/2C(n+i)/2, if n is odd.

Show: sn —> 0, —> 0, and limn^oo = 0> (&>!)•
4.5. Assume operator F' (x) satisfies a Holder condition 

||F'(x)-F'(j/)||<a||*-2/||1’,

with 0 < b < 1 and U (xQ, R). Define ho = bofl77o - co> where cQ is 
a root of

= (l-c)1+6 (0 < c < 1)

and let R > = r0, where dQ = Show that New-
ton’s method (3.3) converges to a solution x* of Equation (4.1) in 
C7(xO)ro).

4.6. Let K, b0, 770 be as in Theorem 4.1. If ho — bo^oK <

rQ =
1 - yT - 27zq 

hQ
r]o<r.
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Then show: modified Newton’s method

Xn+1 = Xn - F' (xo) 1 F (zn) (n > 0)

converges to a solution x* G U (x0,r0) of Equation (4.1). Moreover, 
if

1 4- x/1 — 2/i0 
r0 < r <------- ----------t]Q,

n0

then show: Equation (4.1) has a unique solution x* in U (x0,r). 
Furthermore show: zn+1 = xn - F’ (x0)-1 F {xn) (n > 0) con- 
verges to a solution x* of Equation (4.1) for any initial guess 
xq € U (x0,r).

4.7. Under the hypotheses of Theorem 4.1, let us introduce U = 
U (xi,r0 - 77), sequence {tn} (n > 0), t0 = <n+i = tn - 
f (t) = |fct2 - t 4- 77, △ = T* - T0, 0 = V^n+1_= <n+l ” *n,

dn = ||Xn+l - xn||, An = ||xn - Xq||, Uq = (7, Un = U (xni r0 - tn) 
(n > 1), Ko = Lo = K,

sup Il^(xn)-1(F(T)-^(1/))||
xty&Un 11$ ~ y\\

**y
(n > 1),

l,- „p !Efe>- y'W 
x,y€t/ II1 ~ 3/11

&Ay

_ n /+, n\ _ _______
1 + vl - 2Lnd„ kn - u)’ “ 1 + V1 + 2K„+’

2+
1 + VI - 2Kndn (n~0)’

s2
$0 = 1, 5n = ---- --------— ------- 2n —i

2n-^V1^2h 4- sn-i (1 - x/T1^)

With the notation introduced above show (Yamamoto [279]):

lk* ~ ®n II < Kn (n > 0) < An (n > 0)
___ 2dn
1 + -y/1 - 2K(1 - KAn)-1 dn

(n>0)
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2dn

TwCTX (^0)

(n > 0)

---- , 2d" (2fc < 1) 
dn

---- ,2rf" (2/i = 1) (n > 0)l + y/l-^-dn V ' 1

TO ^n j
V^n+1

(n > 0)

2dn
1 + \/l - 2/ln 

KBX-1
- 1 + VI - 2/ln

(n > 0)

(n > 0)

= ^-4rfn-l (^O)
(V‘n)

(2A<1) 
|_^4-1 (2/i = 1) (n > 1)

<_____*4-i
VI - 2/i + ^/1 - 2/i + (Kdn-1)2

< _________l^n—1 ______
V1-2/1+ yi-2/i + (K??n-i)2 

= e-2n””dn-i (n>l)

(n>l)

(n>l)

= e2" 'dn-1 (n > 1)

'-^dn-i (n>l) 
V^n

2?7n
= ------------------ -- H t/ V J

1 4- x/1 — 2/in
f e-2” lw«$nh 2n~1VT? (2h < 1)

= [ 21—77 (2/i < 1)

= / (2/1 < 1)
I 21-"!? (2/i = 1) (n > 0)
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Sn ( 2fe V" 
2nK \1 + V1 —2/i/ n“

< 4- K (----- 7^=)2 (n > 0)
2 \1 +Vl-2/1/

< 2^T(2k)2"-1n (n>0),

||x xn|| < An (n > 0) 

Lndl

in-l<£

1 Ln—idn_ 1 4- yl — 2Z/n—idn—1

~ 1---- T-----A---- (n - ’

II1 — xn|| < Xn
<____ 2dn

1 + 71-2Lo(l-LoAn)-1dn

<  2||F'(IO)-1F(sn)ll ____
1 - LoAn + 7(1 - i-oAn)2 - 2£o||-F’Z (zo)"1 II

<  wLi
1 - ioAn + 7(l-ioAn)2-(iodn-l)2’

II®* - ®n|| > K„ (n > 0) > A„ (n > 0)
___ _______ 2dn___________  

l + 71 + 2K(l-KA„)-1d„

> 2dn
1 + 71 + 2K(l-Kt„)-1d„

=------ 2dn (n>0)
1 +Vi + 2KB„d„ 1 - ’

(n>0)

(n > 0)
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> 2dn 
1 4- \/l 4- 2hn

(n > 0)

2dn

1 + x/1 +
(n > 0),

||X* - Zn+11| < Kn+1 < «n - dn < 

||z* — Xn+i || < An+1 < An — dn <

Tp ~ ^n+l
V^n+1

Tq — tn+i 

V^n+1

dn < \Knd2n_,
< jindn-1

< iKCl-KAn)-1^-!

< (1 — KAn-i ~ Kd„-i) dn_i
< AKCl-Ktn)-1^-!

= |KB„4-1
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_  r0 ^n+l j2
" (^7 n-: 

V^n+1
" (W— 

4-, 
27a2+’’n-l

27“2 + dn-l
V^n+l 

V*n
dn-1

Vn
Vn-1

dn-i

2cosh2n-1<^n 1

< |dn-l

— 2^n—1 = 2 ^n’

and

&n < Vn
~ V^n+1

= (ro-tn+1)^"2”

= (r0 - tn+1) e2n(p

J (2^<1)
\ 2"^ (2h = 1)

△02n
~ 1 _ #2n+1 (2^ < 1) •

4.8. Let F : D C X Y be m-times Frechet-differentiable in D (rn > 2 
an integer). Assume that for some xq g D and parameters t? > 0,
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ctt- > 0 (i = 2,..., m), a > 0, F'(xq) 1 exists,

||F'(a:o)-1F(a:0)|| < »7,
imzo)-1^) - F'(i0)]|| < a||a: - zoll, 

||F'(a;o)-1F«(xo)||<ai, * = 2........ m,

||F'(xo)[FW(x) - F(m’(i0)]|| < am+i||® - ®o||

for all x € Dy and

26t?<1,

where,

6 = max{a,a2 +ja377+--- + ^^r»7’n-1}, 

and

U(x0^ZD.

Show:

(a) the real polynomial

p(t) = |t2 -1 + p

has two positive roots ri, r2 with ri < r2 and iteration {tn} 
(n > 0) generated by

to = o, tn+1=tn-^4 (n>0)
P (tn)

is monotonically increasing with limn—»oo tn = rj.
(b) Sequence {xn} (n > 0) generated by Newton’s method is well 

defined, remains in U(xq, n) for all n > 0, and converges to a 
solution x* G U(xOy rj of equation F(x) = 0, which is unique 
in U(xQyr2) if n < r2. If n = r2 the solution x* is unique 
in U(xQyri). Moreover, the following estimates hold for all 
n > 0

H^n+l ^nll < ^n+l tni

and
/ \2nlkn - x*II < ri - tn = { ) (r2 - tn).
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Let

F (x) = |z3 - (|3/2 + .23), x e [\/2 - 1, V2 + 1]

show that the Newton-Kantorovich hypothesis is violated, but 
the conditions in this result hold.

4.9. Let F be a Frechet-differentiable operator defined on some closed con- 
vex subset D of a Banach space X with values in a Banach space 
Y. Assume: there exists xq G D such that F'(xq) G L(X, Y), and 
F'(xq)~'eL(Y,X).
Show:

(a) for all £o > 0 there exists <$o > 0 such that

||F'(xq)~1 (F'(zo) - F'(x)) || < eq, for all x E U(xq, 6q).

(b) for all £i >0 there exists Ji > 0 such that

IKF'fco)-1 - F'(x)-1)F'(xo)|| < £i, for all x G U(xq,6i).

Set 6 = min{<5o,<5i} and e = max{£o,£i}.
(c) for £ > 0 there exists 6 > 0 as defined above such that

||r(IO)-1(F,(*o)-F,(*))||<e.
||(r(xo)-1-F,(x)-1)F,(zo)|| <e,

for all x G U(xq,6).
Define parameters b, c, rj by

b > c > 2e2 + 2e, for a fixed £ 6 [0, b),

(d) Assume further:

< 6, £G(0,b), and U(xq,6)QD.

Show: Sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in U(xq, 6) for all n > 0, and converges 
to a solution x* € U(xq,6) of equation F(x) = 0. Moreover, 
x* is the unique solution of equation F(x) = 0 in U(xq,6). 
Furthermore, the following error bounds hold for all n > 0

lkn+1 “ Xn|| < Cn||Xi - Xq || < CnT)

and

Ikn-^K^I^-Xoll.



Solving Equations 143

(e) Assume: hypotheses on F, F' hold, with z0 being replaced by 
a simple solution x* of equation F(x) = 0; e G (0, b).
Show: sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in (7(x*,<5) for all n > 0 and con- 
verges to x*, provided that aj0 G t/(x*,<5) G D. Moreover, the 
following error bounds hold for all n > 0

||xn+i - x*|| < c||zn - x*|| < cn||z0 - x*||.

4.10. Let m > 2 be an integer and F an m-times Frechet-differentiable 
operator defined on a convex subset D of a Banach space X with 
values in a Banach space Y. Assume:

(a) there exists xq G D such that F'^xq)^1 G L(Y,X);
(b) there exist parameters rj > 0, &i > 0, i = 2,..., m such that

||r(Io)-1F(sO)||<77, 
||F'(a:o)-1K«(a:o)||<aj, i = 2....... m

Since F is m-times Frechet-differentiable for all e > 0 there 
exists <50 > 0 such that

||F'(a:o)-1[J'W(a;)-F(m)(a:o)]||<e

for all x G U(xq,6q);
(c) the positive zeros of p' is such that

p(s) < 0,

where

p(t) = ^ - t + 2it2 + • • ■ +

Then polynomial p has only two positive zeros denoted by 6i, 
<52 (<5i < 62).

(d) U(x0,6)QD;
(e) <50 C [<5i, <52] or <50 > <52, where

<5 = max{<50,<5i,<52}.

Show: sequence {in} (n > 0) generated by Newton’s method 
is well defined, remains in U(xq, <5i) for all n > 0 and con- 
verges to a solution x* G U(xq,6i) of equation F(x) = 0. The 
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solution x* is unique in U(xq, 6q) if 5q € [5i, d2] or x* is unique 
in U{xq,$2) if 50 > 52- Moreover, the following error bounds 
hold for all n > 0

ll^n+l “ %n|| < ^n+l tn

||®n % || — t

where {tn} (n > 0) is a monotonically increasing sequence 
converging to t*, generated by

to = tn+i = fn — p\t}) (n — 0)*

4.11. (a) Let F be a twice Frechet-differentiable operator defined on a 
convex subset D of a Banach space X with values in a Banach 
space Y. Assume that the equation F(x) = 0 has a simple zero 
1* G D, in the sense that F'(x*) has an inverse F'f^x*)"1 6 
L(Y, X). Then for all > 0 there exists r* > 0 such that

|]F,(x*)-1[F,,(x) -F"(i/)]|| < for all x,y € C/(x*,r*).

Moreover, assume there exists bi > 0 such that

||F,(x*)"1F,,(x*)|| <6l.

Then if

r* < (3ci)-1, ci =

show: sequence {sn} (n > 0) generated by Newton's method 
is well defined, remains in U(x*,r*) for all n > 0 and con- 
verges to x* provided that xq G t/(x*,r*). Furthermore, the 
following error bounds hold for all n > 0:

lkn+1 - X || < 1_2ci|fsn_I.|| llxn - x ||2.

(b) Assume:

(i) there exists 77 > 0, a?o € D such that F'^xq)'1 € L(Y, X) 

||F,(xo)-1F(xo)|| < 77;

Then, for all £ > 0 there exists r > 0 such that

||F,(x0)"1[F,,(a;)-F,,(2/)]|| < £0, Vx,t/ G U(xq,t) C D;
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(ii) there exists > 0 such that

||F'(^o)-1 F"(x0)|| < *o;

(iii) cqt) < 2-^2, co = |(4 + &o);
(iv) r is the smallest positive zero of equation

3co$2 - (1 4- 2corj)s 4- rj = 0.

Show: sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in U(xq, r) for all n > 0 and converges 
to a unique solution x* € U(xq,t) of equation F(x) = 0. 
Moreover, the following error bounds hold for all n > 0

||^n+2 ^n+lll < ~2co||zC°+i-Zn|T 11$"+1 $nl|2

and

||xn+i-x*|| < i^||xn-3;*||.

4.12. (a) Let : D C X —> Y be a continuously Frechet-differentiable 
operator defined on an open convex subset D of a Banach 
space X with values in a Banach space Y. 
Assume:

— there exists x$ 6 D such that F (xq) 0;
- F' (z)-1 € L (Y, X) (x E D), and there exists b > 0 such 

that:

||F'(i)-1F'(io)||<6 (®€P;)

— for each fixed p G D with F (p) 0, there exists

<5 = <5(p,t) > t||F'(p)-1F(p)||, t€ [0,1] 

such that

||F' (i0)-1 [F' (p) - F' (pt)]|| < t||F' (p)-1 F (p) || 

for all

pt6C7(p,<5) = {zeX| ||z - p|| < <5} £ D,

and yt collinear to p\
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— there exists 77 > 0 such that:

||F'(z0)-1 •F’(®o) II < r),

c=^e(0,l);

and U = U (xq,5*) C where

Show: sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in U for all n > 0 and converges to a 
unique solution x* G U of equation F(x) = 0. Moreover the 
following error bounds hold:

H^n+l $n|| < 2lla'n $n—1|| (^ — ’

and

||^n — $ || < ^nll^n ®n—1|| (^ — 1) ’

where

On = I 52 (°2 ) “ 2(l-c^y-

j=0

(b) Assume:

— there exists a simple zero x* G D of F in the sense that 
eL{Y,X)-,

- F' (x)-1 € L(Y,X) (x e D) and there exists q > 0 such 
that:

||F'(x)-1 F'(x*) || < q (xeD)-,

— for each fixed p E D with F (p) 0 there exists 6 >
t ||p — x* ||, t G (0,1] such that:

||F'(x*)-1[F'(p)-F'(pt)]||<t||p-x*||

for all pt = x + t (x* - x) € U (p, 6) C D, 
— U* = U (x*,r*) C £), where
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Show: sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in U* for all n > 0 and converges to x* 
provided that xo 6 {7*. Moreover, the following error bounds 
hold for all n > 0:

h„+1-®-||<a||x„-a:*||2.

4.13. (a) Suppose that F', F" are uniformly bounded by non-negative 
constants a < 1, K respectively, on a convex subset D of X 
and the ball

U(x0,r0 = feLSsaM) C D.

Moreover, if

— K I1xq-F(xo)J[ < । 
ns — 2 1-a 1-a ’

holds, then Stirling’s method

Xn+1 = xn-(l- F'(F(z„))) (xn - F(x„)) (n > 0) (4.175)

converges to the unique fixed point x* of F in U(x0, ro)- More- 
over, the following error bounds hold for all n > 0:

h„ - x* || < h2;-1l|z° -J^11 • <4176>
(b) Let F: D C X —> Y be analytic. Assume:

||F'(z)|| <a< 1, forallxGZ), 
xo F(xo), xq G D,

7(l+2a)||z0-F(x0)|| i
(1—a)2 X’

To < H,
t/(x0,ri) C D,

and

0 7^7= sup < °°’
fc>i 
x€O

where,
1 3/7(l+2a)||xO-F(xo)Tl

H = - [1 - y (1—a)2 J •
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Show: sequence {xn} (n > 0) generated by Stirling’s method 
(4.175) is well defined, remains in U(xq,t0) for all n > 0 and 
converges to a unique fixed point x* of operator F at the rate 
given by (4.176) with

rr — 27
~ (1-7ro)3 •

(c) Let X = D = R and define function F on D by

F(x) = < ^(x2 - 7x - 33),
x<3
3 < x < 4 
x > 4.J(*-7),

Using Stirling’s method for xq = 3 we obtain the fixed point 
x* = Oof F inone iteration, since xi = 3—(1+|)-1(3+1) = 0- 
Show: Newton’s method fails to converge.

4.14. It is convenient for us to define certain parameters, sequences and 
functions. Let {tn} (n > 0) be a Fibonacci sequence given by

to — t\ — 1, tn+l — ^n + ^n—1 (^ — !)•

Let also c, 7) be non-negative parameters and define:

• the real function f by

/(z) = T~, zG[0,l),

• sequences {sn} (n > -1), {an} (n > -1), {An} (n > -1) by

= so = ^(c + ?)), sn =/2(sn-i)an-ian-2 (n>l), 
n—1

a-l = d-2 = 0, Un-2 = Cj, Cj = tQ + ti + • —I- tj+l» 
j=Q

An = [$n, Xn_i', .F],

for xn G X, and
• parameters b, d, tq by

b = max{(r+)^-Ti^7}> d=i^> ro = ^3-
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Let F : D Q X —» K be a nonlinear operator. Assume there exist 
x-i, xq G D and non-negative parameters c, ri such that:

Aq 1 exists, 
||a?o — ic-i || < c, 

IW Wo)|| < r), 
ll^o1 (k> y;F] - w; *1) || < *(ll® - 2II + II v - »11).

Vz, y, z G D, x 0 7, w / z,

&; < (1 - s0)2s0 = <*,

and

U(xq,tq) = {z E X | ||x - zo|| < r0} C D.

Show: sequence {in} (n > — 1) generated by the Secant method

xn+i = xn - (n > 0) (x-i,a;o G D)

is well defined, remains in U(xq,tq) for all n > 0 and converges to 
a unique solution x* G U(xq,tq) of equation F(x) = 0. Moreover 
the following error bounds hold for all n > 1:

k„-z’ll<&&°"-2hi-M,

and

||L0-1F(In+1)|| < b^s0.

Furthermore, let

r* = | - r0 - 77.

Then r* > r0 and the solution x* is unique in U(xq,t*).
4.15. Let F be a nonlinear operator defined on an open convex subset 

D of a Banach space X with values in a Banach space Y and let 
A(x) G L(X,Y) (x e D). Assume:

• there exists xq e D such that A(x0)'“1 G L(Y,X)\
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• there exist non-decreasing, non-negative functions a,b such 
that:

||A(x0) ^(x) - A(x0)]|| < a(||x — x0||), 
||A(xo)-1 bF(y) - F(x) - A(x)(y - x)]|| < b(||x - 3/11)11* " »11. 

for all x,y E'D;

4.16.

• there exist tj > 0, rQ > 77 such that

||4(x0)-lF(x0)|| < tj,
a(r) < 1,

and

d(r) < 1, for all r € (0,ro]>

where

c(r) = (1 - a(r))-1,

and

d(r) = c(r)6(r);

• r0 is the minimum positive root of equation /i(r) = 0 on (0,r0), 
where

ft(r) = 1^(7) - r<

• U(xQ>rQ) C D.

Show: sequence {xn} (n > 0) generated by Newton-like method

Xn+1 = xn - A(xn)~lF(xn) (n > 0)

is well defined, remains in I7(xo,ro) for all n > 0 and converges to 
a solution x* € t/(x0,r0) of equation F(x) = 0.

(1) Let F be a twice Frechet differentiable operator defined on a 
convex subset D of a Hilbert space H with values in H; xq be 
a point in D. Assume:
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(a) there exist constants a, b, c, d and rj such that 

||F"(x)-F"(xo)||<a||x-xo||, 
im*o)|| < b,

|M2 < |(F'(x)(2/),y)|, 
im*)|| < d,

and 

l|JF’(xo)|| < V,

for all x € D, y e H; 
(b) p = |cV + € [0,1)

and
(c) U(xq,t*) C D, 

where

r 1-p’
Show: iteration {zn} (n > 0) generated by

$71+1 — $n
(F'(in)F(xn),F(xn)) 

||F'(xn)F(xn)||2
F(xn) (n > 0)

is well defined, remains in U(xq, r*) for all n > 0 and converges 
to a unique solution x* of equation F (x) = 0 in U(xq,t*). 
Moreover, the following error bounds hold for all n > 0

l|F(xn)|| < pnv

and

hn - z’ll < t^p"
If we let a = 0, then (1) reduces to Theorem 13.2 in [187, p. 161].

(2) Under the hypothesis of (1), show the same conclusions of (1) 
hold for iteration

$n+l — $n
[|F(xn)||2

||lF'(xn)]T(xn)||2
[F'(xn)]'F(xn) (n > 0)

but with p replaced by

po = \]c2[d2 + bf]+ - 1 •
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(3) Under the hypotheses of (2), show that the conclusions of (1) 
hold for iteration

Xn+1 = “ , , 'x jz p, A^^n) (n - ^).

V (®n)-^ (^n)> ■** (®n)/

Results (2) and (3) reduce to the corresponding ones in [187, p. 163] 
for a = 0. We give a numerical example to show our results apply, 
whereas the corresponding ones in [187, pp. 161-163] do not.

(4) Let H = R, D = [—1,1], xq = 0 and consider equation

F(x) = — lx3 — lx2 + — I = 0.x ' o o o 0

The convergence condition in [187, p. 161] using our notation 
is

9 = € l°’ •*■) ®

where L is the Lipschitz constant such that

xtyeD.

Show:

^7 = 3» = 6’ c = 1’ = 1 and q = jq >1.

Hence, (i) is violated.
Moreover, show: the condition corresponding to iterations in 
(2) and (3) in [187, p. 163] is also violated since

9o = \/c2(d2 + Lvj) - 1 G [0,1),

gives

9o = | > 1-

Furthermore show: our conditions hold since for a = 1, b = 
we get

p = .7875 < 1

and

Po = < L

Conclude: there is no guarantee that iterations converge to 
a solution x* of equation F (x) =0 under the conditions in 
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[187]. But our results (1)—(3) guarantee convergence for the 
same iterations.

(5) The results obtained here can easily be extended to include 
m-times Frechet differentiable operators, where m > 2 an in- 
teger. Indeed, let us assume there exist constants a^, • • •, flm+i 
such that

||F'm>(x) - F™(a:0)|| < am+1 ||z - z0|| 

||FW(io)ll S “i> i = 2,...,m.

Show:

||F^xic+i) - F(xk) - F'(xk)(xk+i - x*)|| <
< ^nrii^+i - Mm+1n + • ■ ■+^h*+i - m2.

The results (l)-(3) hold if we replace p, p0 by

P = + • • ■ + ^n,

and

Po = yfc2 [d2 + (1 + • • • + “2)»?] - 1.

4.17. (a) Let F be a Frechet-differentiable operator defined on some 
closed convex subset D of a Banach space X with values in a 
Banach space K; let A(x) G L(X, Y) (x e D). Assume: there 
exists xq e D such that A(x0) 6 L(X, Y), ^(xo)-1 € L(Y, X), 
and

||A(x0)"1 [F'(y) - A(x)]|| < e0, for all x,y € U(x0,60).

Then, show:

(1) for all ei > 0 there exists > 0 such that

||[?l(i)“1 - 4(x0)“1]>l(so)|| < d> fOT a11 x e U(x0,6i).

Set 6 = min-fio^i) and e = max{eo>ei}-
(2) for e > 0 there exist 6 > 0 as defined above such that 

|R(xo)-1[f'(p)-^)]||<e

and

||[4(x)-1-4(so)"1]^o)|| <«> 



154 Approximate Solution of Operator Equations with Applications

for all x,y € U(xq,6).

(b) Let operators F, A, point xo G D, and parameters e, 6 be as 
in (1). Assume there exist ij > 0, c > 0 such that

||A(xo)-1F(zo)||<7?,
(1 4- e)e < c < 1,

and

£7(z0,£) C D.

Show: sequence {xn} (n > 0) generated by Newton-like 
method is well defined, remains in U(xq,6) for all n > 0, and 
converges to a solution x* e U(xq,6) of equation F(x) = 0. 
Moreover, if linear operator

L = [ F'(x + t(y - x))dt
Jq

is invertible for all x,y G D, then x* is the unique solution 
of equation F(x) = 0 in U(xq,6). Furthermore, the following 
error bounds hold for all n > 0

lkn+1 ~ Xn|| < Cn||xi - Xq || < Cn7]

and

lkn-x*|| < -x0||.

(c) Let X = Y = R, D D [7(0, .3), x0 = 0,

F(x) = 4- x - .04.

Set A(i) = F'(x) (x e D), 6z = 6^=e3 = e^ = .3. 
Then we obtain

c3 = | < 1, 
= -28 < 6 = 53.

The conclusions of (b) hold and

x* = .039230485 € 17 (i0,<5).
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(d) Let x* G D be a simple zero of equation F(x) = 0. Assume:

||[F'(t/) - 4(a:))|| < eii, for all x e t/(x*,5n), 
||[A(z)“1 - A(x*)-1]A(a:*)|| < £12, for all x e t/(x*,5i2).

Set

613 = min{5i 1,612}, c3 = (1 4- £12)611-

Further, assume:

0 < c8 < 1
xq G U(x*,613),

and

U(x\613)GD.

Show: sequence, {xn} (n > 0) generated by Newton-like 
method is well defined, remains in U(x*,613) for all n > 0 
and converges to x* with

||xn+i-x*|| < c8||zn-x*||, for all n > 0.





Chapter 5

Two-Step Newton Methods and Their 
Applications

The Kantorovich convergence analysis of Newton methods inaugurated by 
L.V. Kantorovich (Nobel Prize of Economics) [182]-[183] (see Chapter 4) has 
enjoyed a very rapid growth especially duing the past three decades. But 
the study of Kantorovich’s analysis for multipoint iterative methods is less 
developed although the fundamental theory of such methods was developed 
by Ostrowski and Traub in the early sixties [265]. The main reason is that 
it is not easy to find a scalar function g such that ||F (xn) || < g (tn) (n > 0) 
for some nonnegative sequence {tn} n > 0 and some Newton method {zn} 
n > 0, for multistep Newton methods. Note however that this is a relatively 
easy task for single step methods (see Chapter 3).

Here we develop a general theory for two-step Newton methods that 
assists us to overcome this obstacle and control F by g as it happens for 
single step Newton methods. It is known however that from the efficiency 
point of view multipoint iterative methods are much better than single 
Newton methods [66], [99], [265]. The same is true from the complexity 
theory point of view [265].

In this chapter we use two-step Newton-methods to approximate a lo- 
cally unique solution of the nonlinear operator equation in a Banach as well 
as in a POTL-space setting. The order of convergence of our method is also 
provided that shows superiority of these methods over the ones introduced 
in Chapter 4.

5.1 Two-Step Newton Methods

In this section, we introduce some new very general ways of constructing 
fast two-step methods to approximate a locally unique solution of a non- 
linear operator equation in a Banach space setting. We provide existence- 
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uniqueness theorems as well as an error analysis for the iterations involved 
using Newton-Kantorovich-type hypotheses and the majorant method. Our 
results depend on the existence of a Lipschitz function defined on a closed 
ball centered at a certain point and of a fixed radius and with values into 
the positive real axis. Special choices of this function lead to favorable 
comparisons with results already in the literature. The monotone con- 
vergence is also examined in a partially ordered topological space setting. 
some setting. some applications to the solution of nonlinear integral equa- 
tions appearing in radiative transfer as well as to the solution of integral 
equations of Uryson-type are also provided.

Let Xo>2o € D be fixed and define the two-step Newton method for all 
n = 0 by

yn^Zn-F'lxJ-'FfXn) (5.1)
®n+l — yn — (5-2)

Here zn € X are points to be determined for all n > 0. Some choices for zn 
can be given by zn = 0 or zn = F' (in)-1 F (yn) or zn = F' (y„)-1 F (y„) 
for all n > 0. The first choice gives the ordinary Newton method (sin- 
gle step). The second choice leads to a two-step Newton-method, where 
two function evaluations and one inverse are required at each step. The 
third choice leads to another two-step method, where two function evalua- 
tions and two inverses are required at each step. Here we will give general 
conditions for the selection of the zns n > 0 that will guarantee that the 
sequence {zn} n > 0 generated by the approximations (5.1)-(5.2) converges 
to a solution x* of the equation F (x) = 0.

Let xo,zo_G D and R > 0 be fixed and assume that there exists a 
function a : U (z0, R) — [0, +oo) such that

||r' (xo)-1 [F (y) - F (x) - F' (x) (y - x) + F' (y) (z - y)] II < 5 (x, y, z)

(5.3)
for all x,z e U(y,r(x,z)) C U(x0,R) C D, where r(x,z) = 
max {||s/ - x||, ||v - z||) < R _ ||y _ Io||.

Using the majorant theory and condition (5.3) we will show that un- 
der certain hypotheses the iteration {xn} n > 0 generated by (5.1)-(5.2) 
converges to a locally unique solution x* of equation F (x) = 0. The order 
of convergence of the iteration {xn} n > 0 is also examined here. Under 
special choices of the function a and the points zn n > 0 our results can be 
reduced to the ones obtained already.
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We will need to introduce the constants 

to=O, so > ||3/o-zo||> /o>lko||, (5.4)

the sequences for all n > 0

sn+l = in+l + T---- 7“---- ^n+l, £ = 2£o (5-5)
1 - -Ltn+i

^n+i = sn 4- Zn, (5.6)

^n+l = Gn+1 “ sn) “I" Otn (5-7)
£

for some fixed Lq > 0 and some given sequences {an} and {Zn} with an < 0, 
In < 0,

fc+1 fc+1
oti < IqTq + 71 and ^2 A < 72^0

i=0 i-0

(5.8)

for all nonnegative integers /c, some fixed real constants 70, 71, 72 and some 
fixed r0 G [0,7?].

Moreover, we define the sequences for all n > 0 

_  /y J
ft-n+1 = 2* ll$**+l “ Vn|| + ®n, 

where an denotes a(xn,yn,xn+i) with

an < otn for all n > 0,

and the function

TW=«o+r+[; (r — s0)2 + 7or + 71

1 — Lr 2
+ 72^

(5-9)

(5.10)

(5-11)

(5-12)

(5.13)

(5.14)

on [0, K].
We can now state the result:
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Theorem 5.1 Let F : D C X -> Y be a nonlinear operator whose divided 
difference [x, y] satisfies

F' (x0) 1 ([x, ir] -[«,«]) < Lo (||x - u|| + ||3/ -||) (5.15)

for some Lq > 0 and all x,y,uv G U (xq, R). Moreover, we assume:

(&) the condition (5.3) is satisfied;
(b) the sequences {an} , {In} and {an} n > 0 satisfy conditions (5.8) and 

(5.10) and ||zn|| < In for all n > 0;
(c) there exists a minimum nonnegative number ro such that

T (r0) < r0; (5.16)

(d) the following estimates are true:

r0 < R

and

Lo (r0 4- R) < 1; (5.17)

and
(e) the ball

U(xq,R) CD. (5.18)

Then

(i) the scalar sequence {tn} n > 0 generated by relations (5.5) — (5.6) is 
monotonically increasing and bounded above by its limit, which is 
number r0;

(ii) the sequence {zn} n > Q_generated by relations (5.1) - (5.2) is well 
defined) remains in U (xo,ro) for all n > 0, and converges to a 
solution x* of the equation F (x) = 0, which is unique in U (xq, R)-
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and

Moreover, the following estimates are true for all n> 0

||3/n 2>n|| < Sn tn, (5.19)
||^n+l ~ 7/n|| < ^n+l — Sn, (5.20)

Ikn-3J*|| <r0-tn, (5-21)
ll?/n “ ®*|| < 7-0 -Sn, (5.22)

||F'(IO)“1F(a:n+1)|| <hn+1, (5.23)

11$ — $n+l || < en4-i/ln4-i < en+i/ln4-i < r0 — tn-f-i (5-24)

Pn

1 L ||(En 2*01|
||j/n || < H$ %n || + (5.25)

(We will be concemed only with the case ro > 0; since when r0 = 0, x0 =

Proof. (i) Using relations (5.4), (5.5), (5.6), (5.8) and (5.16) we deduce 
that the scalar sequence {tn} n > 0 is monotonically increasing, nonnega- 
tive, and £o < s0 < ti < si < ro. Let us assume that tk < < ^fc+i
Sfc+i < r0 for k = 0,1,2, ...,n. Then by relations (5.5), (5.6), (5.8) we can 
have in turn

. T 1
tfc+2 — Sfc+i + Ik+i = ifc+i + i _

'L 2% (tfc+i - Sk) + oik + Ik+i

Z---- 77 (r0 ~ $o) (ifc+1 “ «fc) + «fc1 — Lr0 2

i Fl k+1 A
< • • • < So + - ------ -— — (r0 - So) (fi+1 - Si) + 2 , O!f

1-Lro [2 “ i=o .

1 [L 2
- ------ 7— -^(ro-so) +7oro + 7i1 — Lr0 2

+ 727-q = T (t'o) < T-o

by hypothesis (5.16).
Hence, the scalar sequence {tn} n > 0 is bounded above by r0. By 

hypothesis (5.16) the number ro is the minimum nonnegative zero of the 
equation T (r) — r = 0 on [0, ro] and from the above r0 = Jirn^ tn.
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(ii) Using relations (5.1), (5.2), (5.4), (5.5) and (5.6) we deduce that 
xi,xo € U (xo)T'o) and that estimates (5.19) and (5.20) are true for n = 0. 
Let us assume that they are true for k = 0,1,2,..., n—1. Using the induction 
hypothesis we can have in turn

ll$fc+i - zo|| < ||zfc+i - yo|| + ||yo - ®o!l
< ll^fc+i - Vk\\ + Wyk - 3/o|| + 113/0 - *o||

< • • ■ < (tfc+l - Sfc) + (Sfc - So) + $0 < ^fc+l - r0,

and

lll/fc+i - xo|| < lll/fc+i - 3/o|| + lll/o - M < lls/fc+i “ Sfc+ill + ~ yk^

+ lll/fc - 3/o|| + lla/o - zoll
< • • • < (Sfc+l - tfc+1) + (tfc+l - Sfc) + (Sfc - S0) + SO

= Sfc+1 = Tq.

That is xn,yn G U (xqTq) for all n > 0.
Note that by hypothesis (5.15) F' (x) = [x, x] for all x G D, and for all

Xfc G U (Xq,Tq)

||f' (xo)-1 (F' (xfc) - F' (x0»|| < Lo (hk - M + II®* -

= L ||xfc — xo|| < L (tk — to)

by hypothesis (5.17). It now follows from the Banach Lemma on invertible 
operators the linear operator F' (xk) is invertible, and

||F' (zfc)"1 F' (x0)| < ■ * .■ < j-yr- (5.26)
II II 1 — L — Xo|| 1 — l'tfc

for all k.
We can now have

F (xfc+i) = [F (xfc+i) - F (yk) - F’ (yk) (xfc+i - 2/fc)]
+ [F (yk) + F' (yk) (xfc+i - yk)]

= [ [F' (yk + t (xfc+i - yk)) - F' (yk)] (xk+i - Vk) 
Jo

+ [F (yfc) + F' (yk) (xk+1 - yk)],
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and by using hypotheses (5.3) and (5.15) we obtain

||r'(x0)_1 F(zfc+1)||

< / Ik'(io)_1 (F'{yk+*(i,t+i ■yk}} -F' (j/fc))ll||ifc+i - ^11 dt
+ ||f' (io)-1 [F (y*) - F (Xfc) - F' (ifc) (s/fc - Xfc) + F' (yk) (xk+l - j/fc)]|| 

^lkfc+i -yk\\2 + a(xk,yk^k+1)

= 2 Ikfc+i - yk||2 + = /ifc+i

L 2
< 2 (fk+i - Sk) +ak = hk+1

by hypotheses (5.10), (5.20) and relations (5.9) and (5.7). hence, we showed 
estimate (5.23) for all k > 0.

Using relations (5.1), (5.5), (5.23) and (5.26) we obtain

llw+i - Xfc+111 < ||F'(ifc+1)-1 F' (io)|| ||f'(xo)-1 (F(xfc+1))||

1 T 1 . +< 1---- Fii------------- i-----------------77---- hk+1 = Sk+1 ~ tk+1>
1 - L ||xfc+i - z0|| 1-Ltk+1

which shows estimate (5.19) for all n > 0.
similarly, from relations (5.2), (5.6) and hypothesis (ii) we obtain

l kfc+i - 3/fc|| = ||-M = h*|| < h = tk+i ~ Sk, 

from which it follows that estimate (5.20) is true for all n > 0.
It now follows from the estimates (5.19) and (5.20) that the sequence 

{zjb} is Cauchy in a Banach space X and as such it converges to some 
x* Q U (xq,tq) , which by taking the limit as k —> oo in (5.1) we obtain 
F(x*) = 0.

To show uniqueness, we assume that there exists another solution y* of 
equation F (x) = 0 in U (z0, R). From hypothesis (5.15) we get

| |F' (xo)-1 [r (x- + t(y‘- x’)) - F' (xo)]|| dt

< L [ ||rc* +1 (y* - x*) - x0|| dt
Jq

< L [ [(1 - t) h* - x01| +1 ||x* - x01|] dt
Jq
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< Lq (tq + /?)<!

by hypothesis (5.17).
It now follows that the linear operator

f' F' (x*+t(y*-x*))dt
Jo

is invertible, and from the approximation

F (jf) - F (x’) = [l F' (x’ + t (y* - x’)) dt (y* - x*), 
Jo

it follows that x* = y*.
Estimates (5.21) and (5.22) follow easily from estimates (5.19) and 

(5.20) respectively for all n > 0.
Finally, using the approximations

Zfc+i -x* = (D^F' (x0)) (f' (xq) 1 F (zfc+i)} , 

£fc+i = f F' (x* +t(xk+i - x*))dt, 
Jo

yk-xk = x* -Xk+ (f' (xfc) 1 F' (xQ)^ •

{P' (zo) 1 [F' (xk + t(x*- xk)) - F' (xfc)] (z* - xfc)} dt,

and the estimate

£ (x0)-1 [F' (x* +1 (xfc+1 - x’)) - F1 (Xo)l| dt

< L f ||x* +1 (Xfc+1 - X*) - XQII dt
Jo

< L f [(1 - t) ||®* - xQ H +1 ||®fc+i - xq ||] dt 
Jo

< Ltq <1 by hypothesis (5.17)

and

ll^fc+lF/ (^o)|| < Cfc+i, 
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we can immediately obtain estimates (5.24) and (5.25), where we have also 
used relations (5.11), (5.12) and (5.13).

That completes the proof of the theorem. O

Remark 5.1 (a) Theorem was proved by using only the weaker condition

F' (zo) 1 ([z,z] — [iz,u]) <||x —u||, L > 0, x,y 6 U (xq,R) (5.27) 

instead of (5.15).
(b)Theorem 5.1 can be further generalized if we assume instead (5.14) 

that

F' (zq) 1 ([z, ij - [u, u]) < q (r) ||a: - y ||

for all

x, u € U (xq, r), 0 < r < R

where q(r) is a nondecreasing function the interval [0,7?]. 
Let us define the functions

w(r) = / q(t)dt, <p(r) = / w(t)dt-r + sQ, 
Jo Jo

T(r) = sQ-----f w (t) dt - w (sQ) (r - sQ) + yQr + 71

v) so

(5.28)

(5.29)

+ 72^

(5.30)

and the iterations for all n > 0

^n+l [w (||l/n - XQ || + t ||Xn+l - 3/n||)

-W (llj/n - XoII)] lkn+1 - 3/nII dt + ^n,

hn+l = (p (tn+1) ~ <P (Sn) ~ <p' (sn) (*n+l “ $n) + <*n,

Cn+1 = (1 - w((l - t) ||ZO -Z*|| + t||zn+l -^oll))”1 ,

Cn+1 = (1 - W ((1 - t) rQ + ttn+1))”1 ,

Pn ~ [ (w(||xn - Xo|| + t ||xn ” ^*||) “ ^(Ikn “ ^oll)) Ikn “ 2?*||dt 

Jo
Replace in relations (5.5) and (5.25) the iterations i-n^-zol by
~yz(U+i) an(^ "^(ll^-soll) Moreover, replace condition (5.15)
with condition (5.28) and condition (5.17) with w ((1 — t)rQ + tR) < 1. 
Then following the proof of Theorem 5.1 step by step we can produce a more 
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general theorem under exactly the same hypotheses (with the modification 
introduced above) and the same conclusions. See also the proofs in [68], 
[991.

In [6], [68], [99] we saw how to choose the function q (r), when it comes 
to solving nonlinear integral equation of Uryson-type in various spaces.

(c) We will now find the order of convergence for the iterations {xn}, 
{tn} n > 0, by first showing that conditions (5.16) and (5.17) can somehow 
correspond to standard Newton-kantorovich-type hypotheses.

Let us assume that there exist nonnegative constants 77, h, a and K > 0 
such that

fiK < L, 77 < sq, a < 2h = 2Kt] < 1, (5.31)
\ 2

<Jq < 2r] and <7 = 1 — ( — — 1 ) provided that r / 0. (5.32)
vo J

If tq = 0, we choose sq = 77 = h = 0, and our conditions reduce to K < L 
only. Moreover we define a scalar function

9 (t) = 5-t2 - i + r). (5.33)

and iterations

Vn = Wn_2^nl, wo=0
9' (w„)

(5.34)

wn+i = vn — 6n, 6n < 0 for all n > 0 (5.35)
2

9i= K [9 (t>n) - 6ng'(yn)] (5.36)

with

Loqn < and — 6n < In for all n > 0 (5.37)

Furthermore, let us define

1 - 71 - 2h 
n= -h r), (5.38)

1 + 71 - 2h
F2“ -h ” (5.39)

and

«=^..
r2

(5.40)
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Note that the constants given by relations (5.38) and (5.39) are the real 
solutions of the equation g(t) = 0, where g is given by (5.33) (provided that 
2h<\).

We can now prove the following proposition.

Proposition 5.1 Let us assume:

(a) the hypotheses of Theorem 5.1 are true;
and that

(b) the hypotheses (5.31), (5.32) and (5.37) are also true.

Then the following estimates are true:

Wn < tnj Vn < $n, Wn-|-1 Vn < ^n+l $n> < $n ^n

ro = n and rQ — tn < ri — wn for all n>0.

Proof. We will use induction on n. Using relations (5.5), (5.6), (5.34), 
(5.35) and the hypotheses for n = 0, we get in turn

wi = v0 — 50 = TJ - 6qS < Sq + Iq = ti => wi < ti,
wi - vq = —<50 < Io = ti - Sq => wi — vq < ti - Sq,

K f/ '2,1V1=W1+2(1-^1) [(W1~VO) +90J

< tl +

<ti +
^(ti-so)2 + ao =si=+vi<«i, 

and from the same arguments Wi — Si < Si — ti.
That is we have showed all the inequalities for n = 0. We now assume 

that they are true forfc = 0,l,2,...,n-l. The induction can now easily be 
completed if we repeat the proof we gave for n = 0, by observing that we 
can replace the subscript 1 and 0 by k + 1 and k respectively.

From hypothesis a < 2h it can easily follow that ro < ri and by taking 
the limit as n —* oo in the estimate wn <vn> we obtain n < r0. Hence, we 
get r0 = n.

The proof of the proposition is now complete. □

Remark 5.2 From the proof ofthe Proposition 5.1 and the theorem it can 
now easily be seen that the uniqueness of the solution x* can be extended 
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in the ball U (xo,r) with n < r < r% provided that U (%o,r) < D and 
Lo (n + r2) < 1.

It also follows from the Proposition that the order of convergence of 
iterations {xn} and {tn} is comparable to the order of convergence of the 
iteration {wn} n > 0.

The conditions cr >2h and ro < are used only to show that ro < n. If 
these conditions are violated, we can still show that the order of convergence 
of iterations {xn} and {tn} n > 0 is ”at least asymptotically” equal to the 
order of convergence of the iteration {wn} n > 0. See the examples that 
follow.

Remark 5.3 Let us examine some special choices for the z'ns. Set

%n — -An ^n (yn ^n)

for alln>0, some linear operators Bn and An with An being invertible for 
all n > 0. Here the linear operators An and Bn may depend on xn or yn 
or both or neither. The condition (5.3) can now be replaced by one of the 
following three sets of conditions for all xnixn+i € U (yn,r (xn,xn+i)) 

[F' (xn + t(yn — xn)) - (F' (xn) + Bn)] (yn - xn) dt

+ (F (yn) -^n) (^n+l 3/n)] || — 0>n ||^n 3/n || 4" ^n H^n+l 3/n ||

or by

n + t (yn - Xn)) “ (F' (Xn) + Bn)] (yn “ ^n) dt

< an ||xn yn\\ ■

and

jjj*’ (zo) (F (yn) <An) (iCn+l 2/n)jj t>n ||Zn+l 3/n||

or by

[F' (xn + t(yn- xn)) - (F' (xn) + Bn)] dt < &n>

and

Hf'(xo)"1 (F' (!/n) - An)|| < bn.
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The sequence {an}, {6n} n > 0 may differ in each part of conditions 
but we use the same letters.

The above conditions can be written in the more inclusive form (5.3) if 
xn> yn, ^n+i, an, bn, Bn, An are replaced by x, y, z, a(x,y,z), b(x,y, z), 
B(x,y), A(x,y) respectively, for all x,z e U (y,r (x,z)) C U(xq,R). 
Here a(x,y,z) and b(x,y,z) functions from U (xq,R) into [0,+oo), and 
B (x, y), A (x, y) denote linear operators for fixed points x,y 6 U (xq,R) .

However we will use the discrete conditions for our purpose from now 
on.

Let us now assume that there exist sequences {an}, {6n} and positive 
numbers a and b which may depend on r0 such that

an < < a a-nd bn < bn < b.

Then we can set

an = an ||?/n - xn|| + bn ||zn+i - 3/n||, 
ctn = an (sn tn) + bn (tn+i sn)

and we will have that
k

< ar0+b (r0 - s0) = 70r0 + 71 
t=0

where 70 = a + b and 71 = -bsQ (see also relation (5.8)).
Moreover, let us assume that there exists sequences {cn}, {cn} and a 

number c which may depend on r0 such that

II^Bnll <Cn<Cn<c for all n > 0.

Then we can set

Ai = Cn (sn ^n)

and therefore
fc+i fc+i

- c^2(Sn ~tn^ -

t=0 t=o
that is by relation (5.8) 72 = c.

From now on we will assume that the function a appearing in condition 
(5.3) can be chosen by any of the three sets of conditions mentioned above.

We can now show how to choose the operators An and Bn for all n > 0.
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Example 5.1 Let An = F' {xn) and Bn = [xn, yn]~ K, in] for all n > 0. 
The iteration {zn} generated by (5.1) - (5.2) with the above choices has 
been examined in [68]. It is an Euler-Chebysheff-type method [144]-[151], 
[163], [164], [169]-[176], [181]. We can now set

bn = L ||l/n $n|| < L (sn tn) = bn < Ltq = b,
an = Lq ||i/n — xn|| < Lq (sn — tn) = an < LqTq = tz, 
— _ Lq \\yn %n|| < Lq (sn — tn) _ Lqtq

1 - L\\xn-xo|| " l-L(tn-t0) ~ " 1 — Lr0 
_ K {vn - wn)2 _ K {vn - wn)2

2 g' {wn) ’ qn g' {wn)

and for h < .48528137...

(1 ~ T?
1-^ (Wn

n - wn = / r- \3”-1

and the rest of the conclusions of the theorem hold for this method.

Hence, the order of convergence for this method is almost three.
Asymptotic Case.
As mentioned in Remark 5.1, the conditions c < 2h and tq < 2r) are 

used only to show that tq < t\. If these conditions are violated we can 
reason as follows. for sufficiently large n and since [xn, t/n] — [xn, xn] = 
[Wn>Zn] (i/n — xn), the operator [xn, yn, xn] can be ”approximated” by 
1/2 F" {xn). Here [xn, yn, xn] denotes a divided difference of order two for 
F and F" {xn) the second Frechet derivative of F evaluated at x = xn. 
Replace now the difference operator in the approximation by 1/2 F" {xn) 
and use the same letters for the new iteration {xn} n = 0. Moreover, let 
us assume that ||f' (zq)"1 F" (x)|| < M,

||f' (xo)-1 (F" (x) - F" (s/)) || < N11® - y||

for all i, y € D, ||y0 - z0|| < n, and (Af2 + f ) 1 < K.
Then the sequence {wn} n > 0 majorizes the sequence {xn} also and 

in particular ||xn — x*|| < r\ — w\ for all n > 0. For the proof of this result 
see the last section of this chapter.

Example 5.2 Let An = F'(xn) and Bn = {I - E^-^x^] - [xn,xn]) 
with En = -F' {xn) 1 ([xn,?/n] - [xn,xn]) for all n > 0. The iteration 
{xn} generated by (5.1) — (5.2) with the above choices has been examined
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in places mentioned in the previous example. It is a Chebysheff-Halley-type 
method. We can now set

bn — L WlJn ~ ^n|| — T ($n ^n) ^n — Ltq 6,
_ Lq \\yn - sn||2 + (1 - 2L0 ||xn - s||) \\yn - M 

l-Io(2||xn-XO|| + ||t/n-^n||)
< Lq (sn — tn) + (sn — tn) _ &

1 — Lq (sn — tn)
LqT% + Tq _

“ 1 — 2LqTq ’
_  ________ Lq IIyn - xn||_________ Lq (sn - tn)

~ 1 - Lq (2 ||xn - XQII + \\yn - ^nll) “ 1 - Lo (sn + tn)

^°r°<------- ----- = c,
1 — 2Loro

_ K (vn - wn)3 g' (wn)~l 
qn 2 1 4- K (yn - wn) g’ (wn)-1 

_ _ K g' (wn)~ (vn - wn)
2 1+ f g' (wn)-1 (vn - Wn) 

n - w„ = ^ ~ forall n > 0,

and the rest of the conclusions of the theorem hold for this method. 

Hence, the order of convergence for this method is almost three. 
Asymptotic Case.
For the asymptotic case we reason exactly as in Example 5.1. The 

condition on K becomes

(3M2 + ^) <K.

but the rest of the hypotheses remain as in Example 5.1. For the proof of 
this result see the last section of this chapter.
Example 5.3 Let An = F'M and + 3^" ~ ®n)) 7
F'(xn))(I - %Hn), Hn = F'M-^F'^n + l(Vn ~ ^n)) - F M) for all 
n > 0. The iteration {x„} generated by (5.1) - (5.2) with the above chomes 
has been examined in [68], [99] see also the last section.
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We can now set

— L ll?/n ^nll < L (sn tn) — bn < LTq — 6,

“" = io (2 + 11*" - *"ll * £O (2 + = «n
^Lo(2 + i^_)=Lo(H^)=«.

(1 + iifc-xtl) S 1-MU-io)' (X + i-lX-?.)) -tn)

= C"< A(l+i^) = (P&=C-
<5n = |s' (w„)-1 (g' (v„ + 5 (v„ - w„)) - g' (i>„)) ■

’ [J “ Is' (wn)-1 (g' (t<„ + 3 (v„ - w„)) - g' (v„))] ,

and for h < .46568....

n - wn =
(1 - *2) t) r- 14n-l

The rest of the conclusions of the theorem hold for this method. 
Hence, the order of convergence for this methods is almost four. 
Asymptotic Case.
for the asymptotic case we reason exactly as above. The condition on 

K becomes

(M<+£)’<K.

and the rest of the hypotheses remain as above. For the computational 
details in the remaining cases see [68].

Example 5.4 Choose zn = 0 for all n > 0 in approximation (5.2). 
Then by approximation (5.1) - (5.2) we obtain the single-step Newton- 
Kantorovich method which is of order two. Note that we can set an = 0» 
otn = In = 6n = qn = 0, tn = vn and sn = wn for all n > 0.

Example 5.5 Choose zn = M^tn, En G Ez and set Mn = F' (xn) > £n — 
F (yn) for all n > 0. That is we obtain the two-step Newton-Kantorovich 
method that requires two function evaluations and are inverse at every step. 
We can then have that

n "W" = 7 (d0)3""1 ’ (5" = L - ®n|| < i («n - <") = “" e tX )
1 — \d“)
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provided that h < , d — \fl.

Example 5.6 Choose zn = M-1en, en G Ei and set Mn = F' (yn), en = 
F (yn) for all n > 0. That is we obtain the two-step Newton-Kantorovich 
method that requires two function evaluations and two inverse at every 
step. We can then have that an = 0, an = 0, an = an = bn = bn and

n - wn = for a11 n > 0.

Other choices are also possible.

Remark 5.4 The error estimates (5.19) — (5.25) can be improved even 
further, if as we did for Newton-like methods, Ptak-type or Zabrejko-Nguen 
or generalized Zabrejko-Nguen-type conditions are assumed (see also Chap- 
ter 4 and the rest of this section).

Example 5.7 We will provide an example under the case in Example 
5.6 that shows how to choose the constants soj 7o> 7i> 72 and the functions 
Q (r), w (r), (p (r) and T (r).

Let us assume that X = Y = C = C[0,l] the space of continuous 
functions on [0,1] equipped with the usual supremum norm. We consider 
Uryson-type nonlinear integral equations of the form (2.12).

We assume for simplicity that xq = 0, and make use of the following:

Theorem 5.2 The Lipschitz condition (5.28) for the Frechet-derivative 
F' of the operator (2.12) holds if and only if the second derivative 
K'uu (*> 5, u) exists for all t and almost all s and u, and

sup f sup (t, s,u))ds < oo (5-41)
«6(0,1] Jo |u|<r

Moreover, the left hand side in relation (5.41) is then the minimal Lip- 
schitz constant

^=|f'(xo)-1|| in (5.28).

Moreover, the constants Sq and /3 are given by

sq = sup 
46(0,1]

y K(t,s,0)ds + f r(t,s) K(s,p,0)dp ds (5.42)
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and

/3 = 14- sup [ [r(t, s)|ds, (5.43)

where r (t, s) is the resolvent kemel of the equation

h (t) - [' K'u (t, s, 0) h (s) = - [ K (t, s, 0) ds. (5.44) 
Jo Jo

Let us consider a simple example. Suppose that K (t, s, u) = 
ci (t) c2 (s) c3 (u) with two continuous functions Ci and c2, and C3 € C2. 
We set

di = [ c2 (s) ds, d2= [ ci (s) c2 (s) ds. (5.45)
Jq Jo

Then relation (5.44) becomes

h (t) = [c'4c'3 (0) - d1C3 (0)] C1 (t), (5 46)

where

C4 = [ c2 (s) h (s) ds. (5.47)
Jo

Substituting relation (5.47) into (5.48), one may calculate c\ and hence find 
the resolvent kernel r (t, s) in case d2c'3 (0) < 1, to get

_(t ,, _ ci (*)ci(t)4(0) (5.48)
1-^(0) '

Using relations (5.41)-(5.43), we obtain

? (t) = I|C1 II di sup |c, (u)|, (5-49)
M<r

(5'50) 
1 — a2c3 (0)

and

(5'51) 
1 — a2c3 (u)

Thus, in this case a complete and explicit computation of the function 
T given by relation (5.30) is possible. As an example, let us choose

Ci(t) = ^t, c2(s) = ^jS and c3 (u) = |u3 + +1 
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on [0,1]. Then using relations (5.45), (5.48)-(5.51), (5.30), (5.29) and (5.8), 
we get

~ 10’ ^2 — iQQi ^2c3 (0) — looo <

r(M) = ^s> 9(r) = ^r> w(r) = Iwr2> <?(r) = ioo7"3 “r + s°’ 

[ w(t)dt=^r3, s0 = a = an = = 7o = 71 = °>
Jq

and

T(r)-r<0 if 
r3 - ,09018036r2 - 97.0762904r + 2.91823361 = 0, 

and

R = 5.688635222 = Rq.

That is, the hypotheses of Theorem 5.1 will be satisfied if we choose 

r0 = .030061239 and R = Rq.

The conclusions of Theorem 5.1 for the iteration under the case in Example 
5.6 can now follow.

Similar work can immediately follow for the rest of the cases mentioned 
earlier.

5.2 Monotone Convergence

In this section we examine the monotone converges of iteration (5.52)- 
(5.53). The results that follow can apply for single step methods by just 
setting zn = 0 in (5.54) for all n > 0 (see also Chapter 3).

We will assume that the reader is familiar with the notion of a partially 
ordered topological space, and that X and Y are POTL-spaces (see Chapter 
3).

We can now prove the result:

Theorem 5.3 Let F be a nonlinear operator defined on a convex subset 
D of a regular POTL-space X with values in a POTL-space Y. Let xq and 
xo be two points of D such that

xq < xq and F (x0) < 0 < F (xq) . (5.52)
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Suppose that F has a divided difference of order one on

xq = (z0,z0) = {z € Ei \xq<x<xq}QD satisfying (5.53)
Po = [zo,zo] has a continuous nonnegative left subinverse Qq 

(5.54)

[z,v]-[z,i/] <0 if v<y. (5.55)

Consider also the iterations

P(Xn) + Pn(yn-Xn) = O, Pn = [xn,Xn], (5-56)
zn 4- xn+1 - yn = o, (5.57)

P(^n) + Pn®n-Xn) = 0, (5.58)
zn + zn+1 - yn = o (5.59)

for some sequences {zn} , {zn} n > 0 selected so that

zn - Pn (xn - xn) > 0, (5.60)
zn “ Pn ($n ~ xn) — 0 (5.61)

(■^ — Pn [®n, ^n]) ($n ~ Xn) — En (zn ~ zn) — 0 (5.62)
zn > 0 (5.63)

and

zn<^ for all n > 0, (5.64)

where Bn denote the conditions nonnegative left subinverses of An n = 0.
Then there exist two sequences {zn} , {xn} n > 0 satisfying the approx- 

imations (5.56) — (5.59),

$0 < y0 < X1 < • • . < yn < In+1 < In+1 < yn < . . . < X1 < yQ < Xgt
(5.65)

„2So$n = $> n'™oIn = x and x,xeD0 with x < x. (5.66)

Moreover, if the operators Pn = [xn,xn] are inverse nonnegative then any 
aolution u of the equation F (x) = 0 in {xq,xq) belongs to (x,x) •

Proof. Let us define the operator

Gi : (0, xq — xq) -*Ei, Gi (x) = x — Qq (F (xq) + Pq (x)) .
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This operator is isotone and continuous. We can have in turn

Gi (0) = -QqF (x0) > 0, (by (5.52)),
G1 (Xq - Xq) =Xq-Xq- QqF (xq) + Qq (F (z0) - F (xq) - Pq (xq - Xq)) 

< Xq — Xq + Qq ([zo, Zo] - tah Xo]) (zo - Xq) 
<xq-Xq (by (5.55)).

By Kantorovich’s Theorem 1.1 the operator Gi has a fixed point ui e 
(0, xq — xq) : Gi (ui) = ui. Set yQ = xq + iq, then we have the estimates

F (xQ) + Pq (y0 - x0) = 0,
F ®o) = F ®o) “ F (*o) - Fo (Vq -xq)<Q

and

2*0 — 2/0 — $0*

Let us now define the operator

G2 : (0, x0 - y0) -> Ei, G2 (®) = x + Qo (F (x0) - Po (*)) •

This operator is isotone and continuous. We have in turn

G2 (0) = Q0F (xo) > 0 (by (5.52)),
G2 (xo - j/o) = ®o - V0 + Q0F (j/0) + Qo (F (®o) - F ®o) ~ po ~ $o)) 

< x0 - y0 + <2o ([x0,So] - ko, xo]) (®o - 5o) 

<x0-j70 (by (5.55)).

By Kantorovich's theorem there exists u2 € (0, x0 — y0} such that
<?2 (Uz) = U2-

Set yQ = xq — U2, then we have the estimates

F (xQ) + Pq (2/0 - xq) = 0,
F (i/o) = F (j/o) - F (x0) - Pa (yo - xo) > 0

and

xq < yQ < 2/o < ^o-
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From the approximations (5.57), (5.59) and estimates (5.60)-(5.64) for 
n = 0 we have respectively that

xi - Vo = ~*o > 0 => xi > yQ, 
xi~yo = -zo < 0 => < yo

and

ii < Xi.

Hence, we obtain xo < Uo < $1 < %i < Vo < $o-
By hypothesis (5.55) it follows that the operator Pn has a continuous 

nonnegative left subinverse Qn for all n > 0. Proceeding by induction we can 
show that there exist two sequences {xn}, {xn} ^ > 0 satisfying relations 
(5.65) and (5.66) in a regular space X and as such they converge to some 
x, x G Dq respectively. That is we have

lim xn = x < x = lim xn. n—»oo n—»oo
If zo < u < io &nd F (u) = 0, then we can obtain

Po (l/o -u) = Pq (xq - QqF (zo)) - Pou = Po ($o ~ u) 
-PoQo(F(xq)-F(u))
= Pq(I - Qo [x0, u]) (x0 - u) > 0,

since Qo [xo, u] < QqPq < I by (5.56)
Similarly, we show PQ (yQ — u) < 0.
If the operator Pq is inverse nonnegative then it follows from the above 

that yQ < u < yQ.
Proceeding by induction we deduce that yn < u < yn, from which it 

follows that

yn < xn < yn+l <u< yn+i <xn<yn for all n > 0.

That is, we have xn < u < xn for all n > 0. hence, we get x < u < x.
That completes the proof of the theorem. □

Remark 5.5 Conditions for x = x and F (x) = 0 can be found at the 
last case of Section 5 that follows.

Remark 5.6 let us now consider the following sets of conditions:

(Ci) Let xq and xQ be two points of D such that xq < %o und F (xo) < 
0 < F (xq) ;
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(C2) F has a divided difference of order one on

Dq = (xq,xq) C D;

(C3) Pq = [xo, 2/0] has a continuous nonnegative subinverse Qq;
(C4) Pn = [xn,xn] are inverse nonnegative for all n = 0;
(C5) Nn = [xn, t/n] are inverse nonnegative for all n = 0;

The following conditions are satisfied:
(C6) [xo, 2/] > 0 for all xn <y < x0;
(C7) [u,v] < [z,?/] ifu < x and v <y;
(Cs) [z, w] -I- [w, g] — [z, z] — [v, z] > 0 ifv<w<z for some q 6 (y, z); 
(C9) [®,2/] 4- [y,x] 4-2 [7/,y] - 2[x,x] > Q if y < x;
(Cio) There exists a positive number c such that

[®,2/] + [</,*] + 2 [i/,i/] - (c + 2) [x,x] < 0, 

and

~ [[*, 3/] + [1/, x] + 2 (sg j/]] + [z, x) < [p, 9]

for all v < y < p < q < x.

We can now provide several results using the following examples. The 
proofs as identical to the one in the last case of Section 5 are left as exercises.

Example 5.8 We choose An = Pn = [xn,xn], Bn = [xn, 3/n] - [Wn], 
zn = -Bn (yn - xn) and zn = -Bn (yn - xn) for all n > 0. Let us assume 
that conditions (Ci)-(C4), (C6)-(Cs) are satisfied. Then the conditions 
(5.61)-(5.65) are satisfied with the above choices of the sequences {zn}, 
{^n} ti > 0. Therefore the conclusions of Theorem 5.3 follow.

Example 5.9 We choose

An = Pn = [®n, Xn] , Bn = En ([xn, J/n] — [^nj $n]) i

Dn = ~Qn ([$n, 3/n] [^n> ^n]) i

= B (yn Xn) , Xn = —Bn (?/n *^n)

and En denote the conditions nonnegative left

5.3 Exercises

5.1. Prove the claim made in Remark 5.1 (b).
5.2. Verify the claim in Example 5.1.



180 Approximate Solution of Operator Equations with Applications

5.3. Verify the asymptotic case after Example 5.1.
5.4. Verify the claim in Example 5.2.
5.5. Verify the asymptotic case after Example 5.2.
5.6. Verify the claim in Example 5.3.
5.7. Verify the asymptotic case after Example 5.3.
5.8. Verify the claims made in Examples 5.4, 5.5 and 5.6.
5.9. Verify the computations following Theorem 5.2.
5.10. Verify the claims in Remark 5.4 and Example 5.8.
5.11. Follow the case of tangent hyperbolas to produce a similar analysis 

and comparison for the method of tangent parabolas.
5.19. Consider the problem of approximating a solution x* of the equation 

f (z) = 0 in the complex plane by the iteration defined by

Vn = xn + af (xn)

zn — Vn 4"
q/ (yn) 

l-/(2/n)//(Xn)

and
_ = _ , Q/ (*n)
"+1 n l-/(S/n)//(Xn)’ a > 0 (n > 0) x0 G X given.

Show:
Let / : D C C —> C where C is the complex space and D is a 
convex open domain. Assume that if f has 2nd order continuous 
derivatives on D, and satisfies:

\f"(x)\<k forall xeD, - + /' (®o) 
a

ll/o-zol <??, h = k(3r]< i

U(t*-V)aD, t* = V1 ~ 2/t- 
h

Define also the real function
s(t) = yt2-L + 1 

p
and the iterations

Sn — tn 4" af (tn)

U =S I a/(Sn)
n n+l-/(s„) /Z(tn)
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and

f j.
"+1 " l-/(s„)//(«n)’

Then the sequence {xn} n > 0 is well defined, remains in 
U (zo, t* — 7?) and converges to a solution x* of equation f (z) = 0. 
Moreover the following are true:

](En X | < t tn 
|?/n ~ ® | — t — Sn 
\zn “3*| < t* - Un

and

|®n ~ S*| < t* - tn <

for all n > 0, where

e l-y/l=2h
14-V1-2A’

5.13. Consider the problem of approximating a multiple root x* with mul- 
tiplicity m > 1 of the real equation f (z) = 0. Assume that f has 
derivatives as high as we desire. Show that 
(i) the iterative function

hM - „M_________________ /W (gW ~ J)_______________
1 ’ 9’ aif'(g(x))(g(x) — x) + aif(x) + a3f'(x)(g(x) — x)

is convergent with order three, where

g(x)
f' (z)

6 = y(x‘) = l-^, 
m

ai = — l/mbm [(m 4-1) b2 - 2mb + m — 1]
a2 = (t> - 1) [(m + 1)&2 - 3mb - t>+ 2m]/b [(m + l)t>2 - 2mb + m - 1]

and

a3 = [(m + l)t-m] / mb [(m + 1)&2 - 2mb + m - 1].
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(ii) Choose a = 1 or a = and consider comparing the resulting 
iterations with Newton*s or the modified Newton method on the 
example

f (x) = (x*x — 1) (x*x — 1) , m = 2, x* = 1. 

Then verify the results

a = 1 a = -m ■ 
771 + 1

xq = .8
Xi = .9995

zo = -8
xi = 1.0031

(IV) (7VM)
xq = .8 
xi = .9125

xq — .8 
X! = 1.025

5.14. Consider the two-step Newton method of the form 

3/n = xn — F (xn) (F (xn)), 
Zn+1 = Vn - F' (yn)-1 (F (yn)) (n = 0)

Assume:

(a) The following conditions are satisfied

\\F'&) - F'(y)\\ < K \\x - y\\
\\F'(x) ~ F'(y)\\ < q (r) \\x — y\\ 

\\F'(x + h)\\ < D(r, ||h||)

for all x,y € U(x0,R), R > 0 fixed, 0 < ||h|| < R ~r, 
k > 0, q is nondecreasing on [0,F], and D is a nonnegative 
and continuous function of two variable such that if one of 
the variable is fixed then D is a nondecreasing function of 
the other on the interval [0, R]. Also, the function dDg^ 

is positive, continuous and nondecreasing on [0, R — r] with 
D (0,0) = 0. Define the constants:

H > lll/o - ®o|| > 0, ||F'(xo)’1|| </3,

to = to = to = 0, So, SqSq > 7],
t}>So+Pli 3l>t}+p2, t?>So+P3, S?>t?+P3,

Pl = i-X(sJ)B(w’‘°’+ ’ P2 = i-X>(tl)A^w’s°’’

P3= l-/3D(0,sg)/s 

q U*P4 ~ 1-(3D (0,t?) /g D
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the functions

9(t) = |t2 - |t+g, w(r) = ^ g(t)dt, 

Ti (t) = + x_/^<ry ( w (t) dt,

T2 (r) = »g + £ D (r, t) dt,

and for all n > 0 the scalar iterations

«n+l ‘n+1 + j _ ^l^) A (^^n^n.tn+1) • 

tn+1 = sn + (si j B (w, t'n, S*) , 

f^n+1A (w> Sm ^n+l) = / W (t) dt — W (s^) (tn+1 — sn) >
*'Sn

B (w, tn,sn) = [ w (t) dt-w (t1) (s1 - ti) , 
J*ln

s2 - /2 4-sn+l - rn+l +
/3 

l-/W(0,t2+1)
ftn+1 T)/ D(s2n,t)dt,

t2 - c2 4.Cn+1 — sn +
0 

l-(3D^s2n)

(Note that the supperscripts 1,2 here are not exponents). 
(b) The condition

h = kr](3 < j is satisfied.

Set r2 = —2h'0i and ri =
(c) There exists a minimum positive number r} satisfying r} < R 

and Ti (r1) < r}. The number R satisfies w (R) < jj.
(d) There exists a minimum positive number r2 satisfying r2 < R 

and 7*2 (r2) < r2. The number R satisfies (3D (0,R) < 1.
(e) The following conditions are satisfied:

/3
1 — 0w (r)

dt + w (r) r < si-ti, or 9(r)
9' (r)
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and

___ _------ [ w(t)dt + w (r) r 
l-/5w(r)Uo < ti — or

9(r)
~ 9' (?)

provided that $o = 5o f°r r € [0, J?].
(f) Moreover the following conditions are also satisfied for all t G 

[O,KJ :

£> (0, t) < w (t), D(r2,t)<w(t)

provided that sj =
Then show that:

(i) The sequences {tn} , {tn} , {tn} are monotonic ally increasing 
and bounded above by their limits r2, r£ and rj respectively.

(ii) The sequence {xn} n > 0 is well defined, remains in U (xq,v) 
for all n > 0 (v = r2, or rj or r^) and converges to a unique 
solution x* of the equation F(x) = 0.

(iii) The following estimates are true:

\\Vn ~~ ^nll < 5n tn, 
||xn — SC*)| <r2~tni

hn - X*II < r2 - Sn,

||?/n “ ®n|| < Sn — tn, 
||®n ~ X*|| < r£ — t*, 
lll/n ~ Xn|| < $n — tn, 
llXn — X*|| <rl-tt

5n ~ tn < Sn — tn, 
r2 “ tn < r2 ~ tn,

||®n+lVn|| < ^n+l 5n,

r2 Cn — 1 _ Q4n

ll^n+1 — 2/n|l < tn+i — Sn, 

lli/n ~ ®‘ll <»2-S*, 

||$n+l “ 3/n|| S ^n+l ~~ sn, 
hn-s*|| <rl~sn, 
^n+l Sn < tn_|_j Sn,

r2 - < ^ - sn,

(5.67)

e = -, 
ri

(5.68)

(5.69)

(5.70)

and

sl-t2<sln-t\, t2n+1-s2<tln+1-s\, 
r!-t2n<H-s2n<ri-si (n>0). (5-n)

In particular conditions (b), or (c), or (d) or (b), (c) and 
(e), or (c), (d) and (f) imply the results (5.67), or (5.68), or 
(5.69) or (5.67), (5.68) and (5.70) or (5.68), (5.69) and (5.71) 
respectively.
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(iv) Conditions (f) can be replaced by the weaker

l — f}D(0,r)/o l-0w(r)f W®dt

for all r G [0, K].
Note:

1 ] A choice for the function q can be given by

in which case q (r) < k for all x, y E U (xo, r). 
2 ] The function D can be chosen by

•r+||M
£(r,IN)= / q(t)dt

£(r,IM) = sup ||F'(x + A) -F'(x)||. 
x,yEU(xOtr)

||A||<rt-r

We will then have with either choice

P(r,||M)<*IIM

and

fr+||/i||
D(r,\\h\\)< J q(t)dt

for all 0 < r < R and 0 < ||/i|| < R - r.

Finally note that in Chapter 2 we have justified in detail these 
choices.

5.15. Consider the midpoint method (4.5.264) introduced in 4.5.2 for solv 
ing equation F(x) = 0.
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Define the constants
77 > II3/0 - $o|| > > ll^ ($o) X||» to = O, sq > 77, ti > «o»

@7) [w (| (tQ + s0) - w(t0))]
s* = $0 -|-------—--------- -r——, the scalar iterations

1 - /3w (5 (t0 + sq))

Sn+1 = tn+l + (“>■ ‘n, Sn) ,

ftn+l
A(w,tn,Sn) = J W (t) dt - W (sn) (tn+1 - Sn)

+ [W (| (*n + Sn) - 2W (tn)) ] (Sn - tn) +

X [w (sn) - w (| (tn + sn))] [w (| (tn + sn)) - w (tn)] (sn - tn), 

tn+2 = tn+i + (W» *n, «n) (n > 0)

and the functions

q W dt,

TW=* + i=fafi [ w (t) dt + w (r) r + (r)2 r
0

on [0, RJ with 0 < r < R, where q is & nondecreasing function on 
[0, R] such that:

||FZ (xi) - F' (x2)|| < q(r) |]xi — z^ll for all Zi,£2 € U (xQ,r).

Furthermore, Assume:

(a) there exists a minimum number Ri satisfying

T (^i) < Hi, Ri < R and U (x0, Ri) Q D.

(b) R\ also satisfies

w((l-t)« + tH1)dt<l forall ie[0,l).
J 0

Then show:
(i) the sequence {tn} n > 0 is monotonically increasing and 

bounded above by its limit R^
(ii) the iteration {xn} n > 0, is well defined, remains in U (x0, Ri) 

for all n > 0_and converges to a unique zero x* of equation 
F(z) = 0inC7(Xo,K).
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(iii) the following estimates are true:

lkn-3:*|| < Ri -tn

and

hn - z*|| < Ri -sn (n>Q).

(iv) Under the hypotheses of Theorem 4.5.11 denote by t„ and s\ 
the scalar sequences defined there. Assume that

---f [ w(t)dt + w(r)r + ----- f — w(r)2r 
1 - pw (r) [Jo 1-/3w (r)

for all r E [0,1?]. Then show:

Sn - tn < «„ - tj, (n > 0) ■

That is under Ptak-type hypotheses the bounds on the dis- 
tances ||zn - yn\\ can further be improved.

5.16. Let F:Z)CR—>Rbea function with continuous derivatives of 
second order on an open interval and let xo € D be fixed. 
Assume:

||f’"(x)|| < K forall x€P, - 1 < F' (x0) < -1,

n _ 1
11/0 - Zol < u (yo, ri-y) QD, h = Kfiy < -

consider the iterations

yn = Xn + aF (ln) , ^n+l = 3/n + —-jCT ~
1 F(x„)

Sn = tn + Oclp (tn) , tn+i = Sn + to = ° ~

1 vM

where
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Then show:
(i) there exists a unique solution x* of the equation F (x) = 0 in 

U (t/o> ri — rf) 5 where ri is the small solution of the equation 
<p(t) = 0 (r2 is the large solution).

(ii) Moreover, we have

2n —1
x*l < r. t <(1 + 9)Vn-i 0 = -.

|3/n * | 2: ’1 &n u
°n fc=O

\Vn ~ Z*| < 7*1 - Sn,

0 = t0 < Sq < ti < Si < • • * < ri,

and

lim tn = lim sn = n, 
n—»oo n—»oo

lim Zn = $*• 
n—»oo

5.17 Let F : D C R -» R be a function with continuous derivatives of 
third order on an open interval D, and Xq G D be fixed.
Assume:

|yo-®o|<n, |F"(x)|<M,

/ 2 NM
\F'"(x)\<N forall x € D, (W3 + -^~ 

h = K07]<i and 0 < a < 2.

Consider the iterations

l+<+fe)
yn = xn - $n+l — yn ~~ (n>0)

Sn — t,
y(tn) 
'P'(tn)’ t0=0

fn+1 — Sn —
y(«n) !+“^

¥>'(t„)l + (a_2)^
(n > 0)

where
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Then show:
(i) There exists a unique solution x* of the equation F (x) = 0 in U (zo> n), 

provided that U (xq,ti) C P, where n is the small solution of the 
equation (t) = 0 (n is the large solution).

(ii) Moreover, we have

h/n -s*| < n - sn, |zn+1 -x*| <n -tn+1 (n>o)

0 = t0 < So < tl < S1 < • • • < tn-l < $n-l < ' ’ ’ < H

and

lim tn = lim sn = n , lim xn = x*. 
n—+oo n—►oo n—»oo

Furthermore, we have

n - tn (q) >
(l±^04’-l=n_<n(o) 

^n

where

4n—1 
bn = £ 

i=0
and 0 = —. 

T2

(iii) Finally, let us assume that h = kflr] < 2^5 
(1+^5)

then, we have:

1-04»
< n - t„ (a)

(i-02h
1 - (^)

(n > 0).

5.18. Assume F € C4 [a, 5], F' (x) / 0, x* € (a,b), F(x*) = 0, 
H = H (x,y) = F' (x - |u) - F' (x). consider also the iterative 
functions

3 H (5.72)

F'(y(X))-F'(x) 
F'(x)

F>(V(x))-F'(xl » 
F'(x)

$ (x) = x 4- au + /3u
F(y(i))-F'(z)l + e

F'(x) 1 + S
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where

u = u (x) =
F'(x) and ip (x) = x — Xu.

Then show that (5.72) converges to the solution z* of the equation 
F (x) = 0 with order four if the parameters a, /?, A and 0 are chosen 
to satisfy the equations

1 + a = 0,
l + £A = 0, 

f(A-2)A-2 = 0,

and

^ + /?A(2-<5A)+/30A2 = O.

5.19. Let a and b be real numbers such that b > 0, 0 < a < j. We set 
“o = 1, co = 1, b0 = a, do = $2-, and, for n > o, an+t =
Cn+^= an+i [i + (1 — cfS, bn+1 = |an+iCn+i, dn+i =

i-bn+i ’ rn = do + di 4------ 1- dn and r = Ihn rn (if the limit exists
1) . we denote by R (a, 6) = {an, cn,bn,dn} we say R (a, b) is positive 
if an > 1 (n > 0,) stable if there exists a constant M > 1 such that 
g>n < M for all n > 0, and convergent if there exists lim rn = r. 
Prove the result: n—°°
Let X and Y be Banach spaces. Let D be an open convex subset 
of X. Let F be from D into Y, an operator which is twice Frechet- 
differentiable on D. Assume:

(a) there exists a constant k2 such that

II F" (z)|| < k2 for all x € D\

(b) there exists a constant kz such that

||F (z) — F' (t/)|| < kz ||x - y|| for all rr, y G D.

(c) Let ®o € D be fixed with ||f'(x0)-1|| < B, ||f'(i0)-1 F(z0)|| < V 

and F{x0) 0, such that if we set a = k2Br] and 6 = k3Br)2,
R{a,b) is positive, convergent and U (x0,rn) C D, where r = 
M(do + --- + <in).
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Then
(i) the Halley iteration

$n+l ~ (/ — T ($n)) F ($n) F(xn)

where
T (x) = > (x)-‘ F" (x) F' (x)"1 F (x) ,

is well defined and lies in U (xQ,rr)) for all n > 0. Moreover the 
sequence {xn} n > 0 converges to a point x* G. U {xQ,rr)) , such 
that F{x*) = 0.

(ii) The following estimates are true:
||^'(Xn)-1|| <anB, ||F'(sn)-1F(in)|| <CnTl,

IIT (^n)|| < &nj U^n+l ^n|| < dnfy
||x*-®n+1||<(r-rn)j? = 52 dkT) (n^°)>

fc=n+l

and
.. .. 4M (b 5a2M\ . „3 / nlkn+1 -Zn < Y"2 ( z + —TT- ) ||xn -Xn-l|| (n > 1) .

3t/2 \o 10 /

(iii) For all 0 < a < | there exist a second degree polynomial F and a point 
xq such that R(a, 0) produces optimal estimates for the Halley 
method, i.e., for such F and xq the above estimates (excluding the 

last one) hold as equalities.
(iv) For all 0 < a < |, R(a,0) is convergent with

2^dk =-------a •
Jfa=0





Chapter 6

The Secant Method

Different treatments of the Secant Method (or Method of Chord) are given 
here.

6.1 The Modified Secant Method

In this section we study the iterative procedure

®n+l f{xn) (6.1)

to approximate solutions x* of the equation

/(*) = 0 (6.2)

where / is a nonlinear operator between two Banach spaces X and Y, 
X-i and xq are two points in the domain of f, and 6f is a consistent 
approximation of f'.

The Secant method has been known since the time of early Italian al- 
gebraists [228] and it was extended to the solution of nonlinear equations 
in Banach spaces by Sergeev [254] and Schmidt [252], [253].

The iterative procedure (6.1) called the modified Secant method was 
first considered by Uhn [268].

Here we provide a priori and a posteriori error estimates which are 
proven to be better than the ones presently in the works mentioned above 

under the same assumptions.
Finally a simple example is provided where our results are compared fa- 

vorably with the corresponding results obtained in [235], [252], [263], [268].
In the study of the modified Secant method we shall use the method 

of nondiscrete mathematical induction. This method was developed by V.

193
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Ptak by refining the closed graph theorem [240].
Let T denote either the set of all positive real numbers or an interval of 

the form (0, e] = {x 6 R | 0 < x < e}.
We will need the definitions:

Definition 6.1 A function w : T —> T is called a rate of convergence on 
T if the series

oo
<7(r) = ^w(n)(r) (6.3)

k=Q

is convergent for each r G T, where the iterates w^ of w are defined as 
follows

w(0) (r) = r, w(n+1) (r) = w(n) (w (r)), n = 0,1,2,... (6.4)

Definition 6.2 Let X and Y be two Banach spaces and let V be a 
convex and open subset of X. Let f : V —> Y be a nonlinear operator which 
is Frechet-differentiable on V. A mapping 6f : V x V -> L (X, Y) will be 
called a consistent approximation of /', if there exists a constant H > 0 
such that

W (x,3/) - f' (2)|| < H (||x — z|| + ||2/ - z||) for all x,y,ztVcV.
(6.5)

The above condition implies the Lipschitz continuity of f'. In this case 
using deduce the following:

II/ (w) - f (v) - /' (v) (u - v)II <H\\u- u||2 ; u, v G V (6.6) 

and

II/ (u) - / (y) - 6f (z, y) (u - u) ||
< H (||u - v|| + ||z - v|| + Hj/ - v||) ||u - v||. (6.7)

Let C (h0, q0, r0) be the class of all the triplets (/, x0, z-i) satisfying the 
following properties:

(Pi) / is a nonlinear operator having the domain of definition V C X and 
taking values in Y.

(P2) x0 and x_\ are two points of V such that

||xo — X-i|| < qo, Iko — X-i|| < with q0,/j>Q. (6.8)
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(P3) f is Frechet-differentiable in the open ball

U = U (a?o,/x) and continuous on its closure U.

(P4) There exists a consistent approximation 6f of f' such that Do = 
6f (x-i,xq) is invertible and

|po1(<7(*.y)-/'(*))||
</lo (||x - z|| + II?/- z||) forall x,y,zeU. (6.9)

(P5) The following inequalities are satisfied:

||^o7(^o)||<ro, (6.10)

hoqo + 2\//ioro < 1, (6-11)

p. > —J— | 1 - hoqo - 7(1 - h0q0)2 — 4/ioro ) = Mo- 
2/io \ /

(6-12)

Using the iterative procedure (6.1) Potra showed in [7, Thm. 3] and [8, 
Thm. 1) that if (/,xo.x-i) € C(h0,q0,r0) then the equation f (x) = 0 has 
a locally unique solution x* and certain error estimates are valid.

In particular he showed:

Theorem 6.1 If (f, x0) G C (hOl q0, r0), then by the iterative algo-
rithm (6.1) one obtains a sequence {zn} > n = 0,1> 2’ ••• °f points belonging 
to the open ball U (xo>Mo)> which converges to a unique root x of the equa 
tion f (x) = o in U (xo, Mo) and ^be following estimates hold.

Ikn - z*|| < <r0 (w™ (r0)} = sn - ao> n = 0,1,2,... (6.13)

||xn - Z*|| < C (n) = 7a0 + /l0 1 Ikn - ^n-lll ” a0> n~ 2’ — 

(6-14)

lkn+1 - Xnll < W^n) (to) = g M = $n ~ H = 0,1, 2,... (6.15)

and

||xn — ®*|| < co (n) = b0 - ||a:n — xo||
- [ (6o - ll®n - 101|)2 ~ (ll®n ~ «0ll + hn-1 “ *OII

+ ||X0-X-lll)lkn-®n-lll]1/2. " = 1.2>- (6‘16> 
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where

Oq = \/(1 — hoQo)2 “ 4/i0r0, (6-17)
2/io

b0 = (6.18)
2/io

w0 (r) = r ^hQr 4-1 — 2^/h0c0 + » (6.19)

<To (r) = \Ja% + h^r - a0, (6.20)

9 (s) = hQ (s2 - a£) (6-21)

and the sequence {sn}, n = 0,1,2,... given by (6.15) with s0 = $o (r) — 
\Joq + h^r is decreasingly convergent to aQ.

We can now improve the error estimates (6.14) of Theorem 6.1 as follows: 

Theorem 6.2 Under the hypotheses of Theorem 6.1 the following in- 
equalities hold for n— 1,2,3,...

||zn - z*|| < o-n-i (wnl\ (rn_i)} , (6-22)

l|zn - x*|| < Ci (n) = y/a^+hQ1 ||zn -zn-i|| - an-i, (6-23) 

ci(n)<c(n) (6.24)
if 9n<qo and rn < r0, n = 0,1,2,..., (6.25)

where we have denoted

wn (r) = r (hQr 4-1 - 2\Jhla\ 4- hQr^ , (6.26)

<7n (r) = yja^ + h^r - an, (6-27)

an = zy- [(1 - hQqn)2 - 4/iorJ , (6-28)

rn = ||Xn-Xn+l|| t6'29)

and

Qn = ||xn - xn-i||, for all n = 0,1,2,.... (6.30)

Proof. Let us consider the triplet (f,X-i,xQ) G C(hQ,qQ,rQ). We shall 
show that (f,xn-i,xn) G C(hQ,qn,rn). It suffices to show the inequality

hQqn 4- 2y/hQrn < 1.
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But, by (6.29), (6.30) and (6.11)

hoqn + 2\/horn < hoqo + 2>//ioro < 1, n = 0,1,2,... .

By applying Theorem 6.1 to the triplet (/,xn-i,Zn) € C (ho,qn,rn) we 
deduce (6.22) and (6.23).

Let us define the real function P on I = [0, <?o] x [0? ro] by

P (q, r) = [(1 - hQq)2 - 47ior]

The function P is well defined on I since by (6.11).

1 — hoq > 1 — hoqo > 0 

and

(1 - hQq)2 > (1 - hQqo)2 > 4/i0r0 > 4/i0r.

It can easily be checked that P is decreasing with respect to each one 
of the variables q and r (if one variable remains fixed).

Therefore the function P is decreasing in the sense that qi < q2,r\ < r^ 
implies

P(q2,r2) <p(gi,n). (6-31)

Indeed we have

P (<7i,n) > P(q2,ri) > P(q2>r2) • , 

Using (6.14), (6.17), (6.23), (6.25), (6.28), (6.31) we get 

an-i > clq, n = l,2,...

which implies (6.24) for all n = 1,2,... .
That completes the proof of the theorem.

Note that inequalities (6.25) will hold after a finite number of steps. 
Moreover it can easily be seen using induction on n that (6.25) holds or 
all n = 0,1,2,... if r0 < qo-

We can now improve the error estimates (6.13) as follows.

Theorem 6.3 Assume:
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(a) the triplet (/,x_i,x0) e C(h0,q0,r^), where rj = min(r0,r0) and r0 
is the minimum nonnegative number such that the real continuous 
function Fn given by

holFn (r) = 4/ior3 + h0 (4/iga2 - 5) r2 + (1 - 8/iga2) r 
+/i0a2 (1 — 4/i0a2), n = 0,l,2,... (6.32)

satisfies

Fn (r) > 0 for all r G [0, fo]; (6.33)

(b) Inequalities (6.25) hold for ro = r* and the sequence {gn} > n ~~ 
0,1,2,... is decreasing.

Then

||xn - x*|| < an_i (w{n\ (rn_i)^ < a0 (w^ (rj)} , n = 1,2,... . (6.34)

Proof. By (6.4), to show (6.34), it suffices to have

w^(rn^)<w^+k\r-0). (6.35)

We shall use double induction. For fc = 0 and n = 1, (6.35) is trivially 
true. Assume that

(rm_i) < w‘m) (rj), m = 1,2, ...,n. (6-36)

We show that (6.36) is true for m = n 4-1.
By (6.26) we obviously have that wm an its iterates are decreasing in an 

for fixed r. Moreover it is simple calculus to show that the partial derivatives 
of wm and its iterates with respect to r are positive for an fixed if (6.33) 
holds. Note that the existence of ro is guaranteed by the fact that

Fn(O) = hoa^(l-4^)>O

and the choice of an.
With the above remarks we can get

w<rl) (tm) < w^A1’ (rm) < w^Y’ (rm-i) < wm_! (w^x (^-r)) 

<(^\r'o))=w^+1\r’o),

which shows that (6.36) is true for m = n 4-1.
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Moreover assume that

(r„-i) < wj+‘(rS) forall n = l,2,..., i = 0,1,2, ...,fc - 1.
(6.37) 

We shall show that (6.37) is true for i = k. Using (6.37), (6.35) and (6.26) 
we have

4"+i+1) (r„) < w£+i+1) (r„) < w£+1+l) 

< W0 (w^L+l> (rn-l)) < wo

(r„-i) < (w„_i (w<"+1) (r„_i))) 

(4n+i)(rS))=w'n+i+1) (rj).

That completes the double induction and the result follows. □

We can improve the error estimates (6.16) as follows:

Theorem 6.4 Assume:

(a) the hypotheses of Theorem 6.2 are satisfied;
(b) the linear operator 6f (x, y) is such that 

tf(x>y)(x-y) = f(x)-f(y)> for all x,yeV. (6.38)

(c) there exists an integer N > 1 such that for n> N 

||xn_1-x*||<||xn_1-xn||. (6.39)

Then, the following are true:

(i) there exists an integer N > N such that

||xn-Xn-i|| + ||x-i-Xn-i|| < ||®n-a:o|| + ||®o-x-ill for all n>N 
(6.40)

(ii) For n > N, the following estimates hold:

lkn-X*||< [1 - /lo (2 ||ZO - Zn|| + <Tn-l (rn-1)}}] ||-^0 V (X«)||

(6-41)

and
II ell _ , . 1-2h0||x0-Xn II-7(1-2ho||xo-II)2-4^01| OJ*1/(«n)||

Il®n - x || < C2 (n) = ----------------- y------- 2h0--------------------------
(6-42)

(iii) The following is true:

Ikn - z*|| < C2 (n) < Co (n) for all n>N. (6.43) 
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Proof. (i) The inequality (6.40) is true for all n > for some fixed 
integer Ni, because if we assume otherwise and let n —* oo

||x_i - x*|| > ||zo - x*|| + ||x0 - x-iH

which is a contradiction.
(ii) Let us consider the linear operator D, given by

D = 5/(x’,x„-i). (6-44>

We will show that D is invertible for all n > N = max (N, Ni). Indeed 
we have by (6.9), (6.13), (6.15), (6.21), (6.39), and (6.44) that

||P0'1 (J'(xo) -P)||
< h0 [||l0 - X’|l + l|l0 ~ ^n-lll]
< ho [2 ||x0 x„_i|| + ||x„—i x 11]
< ho [2 ||xo - X„-l|l + h„-l - ®n||)
< h0 [2 (Mo - <70 (t0))) + w(n-1) «o)]

< h0 2 (<7 (r0) - <7 (w(n-1) (to)) + w(n-1) (to) + 9o)]

= w(n) (t0) g(s„) s^-ag < .
wi"-1) (to) g(sn-l) s’-l - “0 ”

since sn < sn-i for all n = 0,1,2,... .
According to Banach’s lemma it follows that the linear operator D is 

invertible for all n > N and that

|(D01D)-1| < [1 - ho (2HX0 - Xn-lll + l|Xn-l - ^ll)]’1 ■ (6'45>

Using the identity

D(xn_i-z*) = /(zn_i)

and (6.45), we obtain

II1"-! - ®‘|l < |(D^D)-1| • ||Do’1/(^n)||

< [1 - ho (2 ||xo - Xn-ill + ||x„-i - x’11)]-1 |]Z>0 1 / (X„-1)II •
(6.46)

The inequality (6.41) follows from (6.46) and (6.22), whereas the in- 
equality (6.42) follows from (6.46).

That completes the proof of (ii).
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(iii) Using the identity

f (Zn) = f (®n) - f (Xn-1) + 6f (z0, Z-l) (xn - ,

(6.7) and (6.39) we have

Po 7(Xn)|| < ho(||a;n -Xn-lll + ||x0 -®n-l|| + ||X-1 - Xn-11|) ||xn “ Xn-11| 

< ho (||Xn - Xo|| + hn-1 “ ®o|| + ||xo ~ X-l||) ||xn ~ ®n-l|| , 

n = N,N + 1,.., . (6.47)

By (6.18) we see that

1 — 2h0 ||x0 — || > 2ho (6o — Ikn — zq||). (6.48)

Using (6.47) and (6.48) it can easily be checked that

C2 (n) < cq (n), for all n > N.

That completes the proof of the theorem. □

A lower bound on ||rrn - x* || can be given by the following:

Theorem 6.5 Under the hypotheses of Theorem 6.1 the following in- 
equality holds for n = 1,2,...

||xn-i - x*|| > q = 7(/io,lkn -zn-i||,||zn -zoll), 

where q is the positive root of the quadratic equation in ||xn — z*|| given by, 

ho ||xn - x* ||2 + [1 + /l0 (||xn - ®n-l II + ll®n “ ®0II)] ll®n - «* II - llxn ” ®n-l II = 0-

Proof. Using the identity

Xn — Xn-i = X* - Xn + Dq 1 [f (z*) - f (xn) - &f (Zn-l > ^o) ($* ” xn)] > 

(6.7) and the triangle inequality, the result follows immediately. □ 

Example 6.1 Let us now compare our estimates (6.23) and (6.42) with 
(6.14) and (6.16) respectively on a very simple example.

We consider the quadratic 

f (x) = x2 - 16. (6.49)

Take x_i = 3, x0 = 3.2 and 6f (x, y) (x - y) = f (x) - f (t/) • Then h0 - 
qo = .2 and r0 = .92903225.

The condition (6.11) is satisfied, since
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It is easy to see that (/, x_i, x0) G C (h0, g0, r0).
The modified Secant method for (6.49) becomes

Xn+1 = xn - ~ 16 , n = 0,1,2,.... (6.50)
X—i X0

Using (6.50), (6.28), (6.29) and (6.30) we can compute the following:

xi = 4.12903225, x6 = 3.99971974
x2 = 3.95985363, x7 = 4.00008134,
x3 = 4.01139544, xs = 3.99997638,
x4 = 3.9966707, x9 = 4.00000685,
x5 = 4.00096478, x10 = 3.999998,
ao = do = 1.800000012, d5 = 3.099978406,
dj. = 2.428346725, de = 3.099993739,
d2 = 2.96194909, d7 = 3.099998183,
d3 = 3.07408061, d8 = 3.099999474,
d4 = 3.092594588, d9 = 3.099999848,

and

bo = 3.

Using the above values and noting that x* = 4, we can tabulate the follow- 
ing results:

n Error (Potra) 
estimates (6.14)

Error (Argyros) 
estimates (6.23)

Error (Potra) 
estimates (6.16)

Error (Argyros) 
estimates (6.42)

1 1.99999987 1.99999987 .32334261 .25675937
2 .0270967753 .207137151 .07249864 .06930382
3 .086679416 .0534616 .02095686 .02003286
4 .02518311 .014813202 6.0499141 • 10“3 5.78657584 * 10“3
5 7.38023 • 10"3 4.3013711 • 10-1 1.7551266 • 10“3 1.67939703 • 10"3
6 2.1429599 • 10~3 1.2447987 • 10~3 5.095243 • 10“4 4.8738448 ■ 10"4
7 6.226478 • 10"4 3.615796 • 10“4 1.47922 • 10“4 1.41465214 • 10"4
8 1.807553 ■ 10“4 1.039582 • 10“4 4.29406 ■ 10“5 4.1069141 ■ 10"5
9 5.24753 • 10"5 3.04698 • 10“5 1.2466 10“5 1.190214 • 10"5

10 1.52416 • 10“5 8.8499 • 10“6 3.6205 • 10“6 3.451476 • 10~6

The above table indicates that our estimates (6.23) and (6.42) are better 
than the corresponding ones given by (6.14) and (6.16) respectively. Note 
however that the additional information on ||D01/ (xn)|| is used by (6.42).

Similar favorable comparisons can be made between the lower bound 
given by Theorem 6.5 and the corresponding one in [235].
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All the above strongly exhibit the usefulness of our results in numerical 
applications.

6.2 Error Bounds for the Secant Method

In this section we study the iterative procedure

Xn+l = Xn - Sf (Xn-l,Xn) 1 f (*n) (6-51)

to approximate solutions x* of the equation

/(x)=0 (6.52)

where f is a nonlinear operator between two Banach spaces X and Y, 
X-i and xq are two points in the domain of f, and 6f is a consistent 
approximation f'.

The iterative procedure (6.51) is called the secant method but it is also 
known under the name of regular falsi or the method of chords.

Here we provide a priori and a posteriori error estimates which are 
proven to be eventually better than the ones presently in the literature 
[252], [254], [268], [235], under the same assumptions.

Finally, a simple example is provided where our results are compared 
favorably with the corresponding results obtained in the references given 
above.

using the iterative procedure (6.51) Potra showed in [235, Thm. 3] (see 
also 6.1) that if (/,x0,x_i) € C(/iO,<7o,ro), then the equation f (x) = 0 
has a locally unique solution x*, and certain error estimates are valid.

In particular he showed:

Theorem 6.6 If (f, x0, z_i) G C (h0, qo, r0), then via the iterative pro- 
cedure (6.51) one obtains a sequence {in} , n > 0 o/ points from the open 
ball U (xq,plq) which converges to a unique root x* of the equation f (x) — 
in U (z0,At0) and the following estimates are satisfied:

Ikn -X*|| < O-Q (w<"’ (to)) , to = (9o,ro), n = 0,1,2,... (6.53)

= [og + ||xn - Xn—1|| (||xn-l - x„-2ll + Ikn - In-lll)]I/2(”
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n = 1,2,...

||xn+i - xn\\ < w{n) (t0), n = 0,1,2... (6.55)

||xn - x*|| < Co (n) = SO - ||zn - 2?0II - [ (so - ||$n - $oII)
11/2

- (||xn - xn-l|| + ||xn-l - xn-2II) ll$n - $11 ] » 

n = 1,2,..., 

whcre

aQ = -J- [(1 - ho<7o)2 ~ 4/iorol 
Z/io L J

1 — Qcho
S0 = ~2^
w0 (t) = w0 (q, r) =--------\ . "5

V V r + lyfr (q + r) + ag 

and

a0 (t) = c0 (q,r) = r — a0 + yr(q + r) + a%.

We can prove the following theorem:
Theorem 6.7 Under the hypothesis of Theorem 6.6 the following inequal 

ities hold for n = 1,2,3.....

(6.57)

(6.58)

(6.59)

(6.60)

hn-x’|| <ci(n)
= [an-1 + ll^n ~ Xn-l|| (|kn-l “ ®n-2|| + ll^n ~ ®n-lll)]

„ (6.61)— an-i v

where
h = SUD llDn (*/(*.y)-/' (*))|l (6.62)

x,v,zeu lk - z|| + h - zll

D„ = 5/(xn_i,xn), (6-63)
q„+! = rn = ||xn - xn+i II, (6-64)

and

1/2 n = 0,l,2,....

(6.65)
an (hn,qn,rn) -On = — j(l - hnqn)2 - 4hnrnj



The Secant Method 205

Proof. First let us observe that with the constant ao given by (6.57) we 
have aQ (ro) = /io- hence the closed ball with center xQ and radius /xo is 
included in U. consider the triplet (/,x_i,xo) € C'(/io,go)’"o) - We will 
prove that (/,xn_i,xn) G C(hn,qn,rn). It suffices to show inequality

hnqn 4- 2\/7inrn < 1. (6.66)

Using (6.55) and (6.60), we have:

||£>01(Z>0-Pn)||
< Po1 (Do - f' (xn_1))|| + ||D0-> (/' (xn_,) - Dn)||

< h0 [||x0 - xn-i|| + ||a;_i - Xn-1 II + ||xn - Xn—111]
< h0 [2 ||x0 - x„_1|| + ||x_! - rcoll + hn-1 - Xn |||
< h0 [2 (p0 - <70 (won l) (t0)) + qo + Wo* l) (to))]

< 1 - h0 w^-1’ (t0) + 2 Jw<n-l) (t0) (®> + w(on~l) (t0)) + a20

According to Banach’s lemma this implies that

IkP^Pn) l|| <{l-/lo[||xo-Sn-lll + l|X-l-Xn-lll + K-l-Xn||]} *

(6.67)
From the identity

D~l (6f (x, y) - f' (z)) = (Po^Pn) 1 Do' (6f (x, y) - f' (z)),

(6.67) we obtain

ll^n* {6f(x,y) -f' (z))|| < ho ||(Do ‘Pn) 1|((l|x-^ll + h-z||) (6-68) 

that is

hn < Zn = hQ {1 - hQ [||x0 - xn-11| 4- ||x-l - ®n-l|| + lkn-1 - ||]}
(6.69)

By (6.67) we can easily obtain that

^”-1’ (t0) + 2 . (6.70)
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To show (6.66), using (6.64), and (6.70), it suffices to show

______________ w<n 1}(to)

w<"-l) (to) + 2^w<n-1) (t0) (go + w<n-1) (to)) + a§

+ 2
---------------------- won) (to) _ < 1. (6.71) 

w<n-1) (*o) + 2^w£n-1) (t0) (<?o + w£n-1) (t0)) + a§

Set v = Wq1 (t0), then by (6.59)

won) (*o) = w0(r0,v) = v (r0 4- v)_____
v 4- 2y/v (r0 4- u) 4- Oq

The left hand side of (6.71) now becomes

v 4- 2^/v (r0 4- v) 
v 4- 2y/v (r0 4- v) 4- a0 “

By applying Theorem 6.6 to the triplet (/, xn_i, xn) we deduce (6.61). That 
completes the proof of the theorem. □

We can now improve the results of Theorem 6.6 through Theorem 6.7 
as follows:

Proposition 6.1 Under the hypotheses of Theorem 6.6 the following are 
true:

(a) For all n = 1,2,..., the triplet (J,xn-i,xn) G C (zniqn,rn),

||xn-x*|| <c2(n) i/2
= [^n-l + li^n - Xn-l|| (||zn-l - ^n-^H + ||®n - ^n-l II)]

-dn-! <672)

and if

dn>ao, n = 0,l,2,..., (673)

then

c2 (n) < c (n) (6.74)
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where we have denoted

dn (^n, Qm rn) = dn = [(1 ~ znqn) — 4znrn] ,

n = 0,1,2,... . (6.75)

(b) //

> ao, n=l,2,... , (6.76)

then

ci(n)<c(n) for all n=l,2,... . (6.77)

(c) Moreover, for all n = 1,2,..., the triplet (f,xn-itxn) € C(hOiqn,rn), 

lkn~x*|| <c3(n)
= [®n—1 ll^n Xn— 11| (||xn—1 — Xn—21( + ||xn Xn—i||)]

-Cn-1 (6.78)

and if

en>aOi n=l,2,..., (6.79)

then

ca(n)<c(n) for all n = l,2,..., (6.80)

where we have denoted
1 r 2 ii/2en (9n, rn) = en = — (1 - hoqn) - 4h0rn , n = 0,1,2,... . 

2/ln L J (6.81)

Proof. (a) By (6.69)-(6.71), it follows that the triplet (f,xn-i,xn) e 
C(2n>9n,rn). By applying Theorem 6.6 to the triplet (/,xn-i,xn) we 
obtain (6.72). Using (6.54), (6.72) and (6.73), inequality (6.74) follows 
immediately.

(b) Using (6.54), (6.61) and (6.70), the result (6.77) follows.
(c) The triplet (/,xn_i,xn) G C (hOiqOirn), since the proof of (6.66) 

can be repeated with hn = h0 and h0 dominated by the right hand side of 
(6.70). Applying Theorem 6.6 to the triplet (/.xn_i,xn) we obtain (6.78). 
Using (6.54), (6.78) and (6.79) the result (6.80) follows.

That completes the proof of the proposition. □
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Facts. The functions an, dn and en are decreasing with respect to each 
one of their variables separately. Therefore, they are decreasing in the sense 
that if P is a function of three variables h, q and r, hi < /12, <71 < Q2 and 
ri < T2 implies

P(/i2,92,r2)<P(hi,9i,n). (6 82)

Indeed, we get

P(hi,<?i,ri) > P(h2,Qi,ri) > P (^2,92,^1) > P (^2, <72, ^2). (6.83)

Note that:

(a) Inequality (6.73) holds if

9n < 90, (6-84)
rn < ro, (6.85)

and

zn < zq, for all n = 0,1,2,... . (6.86)

(b) Inequality (6.76) holds if

Qn < <7o,
Tn < TQ,

and

hns < ho, for all n = 0,1,2,... . (6.87)

(c) Inequality (6.80) holds if

rn <tq

and

Qn < Qq> for all n = 0,1,2,... .

Moreover, since the sequence {zn}, n = —1,0,1,2,... converges, 
there exists an integer N > 1 such that (6.84) and (6.85) hold for 
all n> N.
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With the exception of the scalar case, the cost of computing hn may be 
very high. However, the dns and zns can be computed.

By (6.69) we can easily check that (6.86) is true if

||l0 -Xn-l|| + lk-l - ®n-l|| + hn-l - *n|| < 2^0 fol all 71 = 0,1,2,... .
(6.88)

It turns out that under certain assumptions the conditions (6.84) and 
(6.85) are satisfied.

In particular, we can show the following:

Proposition 6.2 Assume:

(a) the hypotheses of Theorem 6.6 are true.
(b) The following estimates are true:

tq <qo, (6.89)

and

2/io(ro + ?o)<l- (6'9°)

Then

w£n) (to) < w(n-1) (to) < T0, for all n = 1,2,.... (6.91)

Tn < T0.

and

qn < qo-

Proof. It suffices to show (6.91). The rest will follow from (6.54), (6.64) 
and (6.89). We first show that (6.91) is valid for n = 1.

That is

w(0) (to) < r0 (6’92)

which is true by (6.59) and (6.100).
Assume now that

V1 = w(n-1) (to) < w(n-2) (to) = v2.

We must show that

w(n) (to) < w£*-1) (to) 
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or equivalently

vi (ro + t>i) v2 (rp + V2)
vi + 2^1 (r0 + vi) + 0% ~ v2 + 2y/v2 (r0 + v2) + a0

which is true since the function w0 is increasing in r.
That completes the proof of the proposition. O

Let us denote by A and B the left hand sides of (6.90) respectively. It 
can easily be seen that

A < 1 & B < 1, 

but both can hold at the same time.
Let us take for example:

hQ = 1, Qo = -5 and r0 = —; then A = .785744285
49

and B = 1.040816327

or

ho = 1, Qo = .29 and r0 = .2, then A = 1.184427191 and B = .98 

or

hQ = 1> Qo = t'o = ‘1, then A = .732455532 and B = .4.

Furthermore, we can produce the following a posteriori error estimates 
on the distances ||xn — x*||.

Theorem 6.8 Assume:

(a) the hypotheses of Theorem 6.6 are true 
and

(b) the linear operator 6f (x,y) is such that

6f (x> y) (x - y) = f (x) ~ f (2/) > for all x,yeV. (6.93)

Then the following inequalities are true:

C2 (n) < ||®n+l - X„|| (6-94)

and
l-2/io||io-Xn||-x/(l-2ho||xo-Xnll)2-4ho||Do_1/(I-)|l

Ikn - x II < C4 (n) =- - - - - - - - - - - - - - - - - - - - - - - - - - *- - - - - - - - - - - 27^- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >

n = l,2,... . (6.95)
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Proof. Using (6.69) and (6.72) it can easily follow that lim dn > n—*oo i-ho(l|zo-^|+||z i-z ||] > Q, impiies (6.94) for sufficiently large n. 
By reordering the sequence {xn} , n = —1,0,1,2 we can assume that (6.94) 
is true for n = 1,2,.... Let us consider the linear operator D, given by

D = 6f (x*,zn) • (6.96)

We will show that D is invertible for all n > N. Indeed, we have by (6.55), 
and (6.60) and (6.94) for n > N,

\\Dol (f'(x0) — D)\\

< ho [Iko - x*|| + ||x0 -xn||)
< h0 [2 ||z0-zn|| + |kn-z*||]
< h0 [2 ||x0 — xn|| + c2(n))
< h0 [2 ||z0 - zn|| + ||xn+i - xn||]
< h0 |2 (p,0 - a0 (w{n) (t0)} + wQn) (t0))]

< 1 - h0 wQn) (t0) + Qo + 2a/w^h) (t0) (qo + won) (*o)} + Go < 1.

According to Banach’s lemma it follows that the linear operator D is 
invertible for n > N and that

||(Dq1D) 'II < [l-/io(2ho-Xn|| + hn-a:’ll)l *• (6.97)

Using the identity

D (xn — X ) — f (^n) j 

(6.96) and (6.97), we obtain

hn - X’|| < || (D0 ljD) l|| ■ ||A>7(®n)||

< [1 - h0 (2 Hxo - ®n|| + Ikn - Z’11)]"1 ||DO 7 Ml ' t6’98)

The inequality (6.95) follows now from (6.98).
That completes the proof of the theorem. □

We now compare the estimates C4 and cq.
Proposition 6.3 Under the hypotheses of Theorem 6.6 the following in- 
equality is true:

C4 (n) < c0 (n), n = 1,2,... (6.99)
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c4(n) = ||P07(x„)|| (2

(6.102)

where C4 and co a.re defined by (6.95) and (6.56) respectively.

Proof, Using the identity

f (^n) = f (^n) f ($n—1) 4" $f ($n—1 > ^n—2) (®n $n—1)

we obtain

||Z>o 1 / (^n)|| < hQ (||xn ~ Zn-l|| + ||®n-2 “ ^n-l ||) ||$n “ ®n-l|| • (6-100)

Moreover, it can easily be seen that

1 - 2h0 ||x0 - Zn|| > 2/10 (so - Ikn - $oII) • (6.101)

The estimates C4 (n) and co (n) can be written respectively

l-2h0 ho-Xnll

1 /2+ ((1 - 2ho ||XO - Znll)2 - 4ho Po 7 (Xn)||)

and
Co(n) = hQ (||®n - Zn-l|| + ||®n-l “35n-2||) ll^n - Xn-l||(>lO [(«0 ~ ||®n “®o||)l

1 /2 1 1
+ ((SO - ||Xn “ Xoll)2 - (||Xn “ ®n-l|| + ||3Cn-l -3Cn-2||) ll^n - ^n-lll) J '

(6.103)

Using (6.100) and (6.101) it can easily be seen that the numerator of 
(6.102) is smaller or equal to the numerator of (6.103). Whereas the de- 
nominator of (6.102) is greater or equal to the denominator of (6.103). The 
estimate (6.99) now follows.

That completes the proof of the proposition. □

Moreover we can show:

Proposition 6.4 Assume that the set Ci (hn,qn,rn) denoting the class 
of all triplets (f,xn-i,Xn) G C(hn,Qn,rn) satisfying the estimates (6.86), 
(6.89) and (6.90).

Then the following inequalities are true:

Ikn - ®*|| < (w<n) (tk)^ , with tk = (qklrk) (6.104)

and

ok (tfc)} < <t0 (w^ (t0)) for all n = 0,1,2,..., k = 0,1,2,..., n — 1
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where we have denoted:

Wk (t) = wfc (g,r) = —2jy+r)r)^ (6105)

and
(?k (t) = r-dk + y/r(q + r)+ dj. (6.106)

Proof. The result (6.104) follows immediately by applying Theorem 
6.6 to the triplet (/,Xfc-i,Xfc) € C (hk,qk,rk) C C(hk,qk,rk), & = 
0,1,2, ...,n — 1.

By (6.106) we have

a0 (w<"> (f0)) = ao ((ro, w'-1’ (to))) (6-107)

and
<Tfc (tfc)) = (Tk wfcn-1) (**))) » /c = l,2,...,n-1. (6.108)

We first show that

w<m) (to) > w<m) (tfc), m = 0,1,2, ...,n- 1

which is true for m = 0.
Assume

= W<m) (to) > W<m) = J/2, m = 0,l,2.....n-2. (6.109)

Then we must show
w<"_1) (to) > w'"'1’ (tfc) (6U0)

or equivalently by (6.105)
yi (r0 + yi) > + 2/2)

yi + 2y/Vl (r0 + yi) + rt “ 2/2 + 2^/^^+^) + ao 

which is true since qn > q0, dk > uq, rn < ro an<^ (6.109) are true.
The induction is now completed. g
That completes the proof of the proposition.
A lower bound on ||xn — $*|| can be given by l^e foUowing 

Proposition 6.5 Under the hypotheses of Theorem 6.6 the follovnng i 

equality holds for n= 1,2,...

||x„-l -X*ll > «
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where q is the positive root of the equation

hO|(Pol£n-l) 1||||X„-1-X*||2 +

(1 + ||(D0-1Pn-i)"1|| ||xn—i - X„_2|| h0) ||xn-l - I*|| - kn-1 - M = 0.

Proof. Using the identity

xn ^n—1
= X* - Xn + (L>0 ^n-l) 1 r>0 1 [(/(**) - /(Xn-1)) ~ Dn-l(X* - X„-l)] ,

and the triangle inequality, the result follows immediately.
That completes the proof of the proposition. □
Note that q depends on || (Do ^n-i) » which in practice can be re-

placed by the right hand side of (6.106). Denote by q the resulting quantity. 
Then we will certainly have

||xn_i - rr*]| > q > q for all n=l,2,... .

Applications
Let us now compare the estimates (6.72) with (6.54) and (6.95) with 

(6.56), on a very simple example. We consider the quadratic equation

f (x) = x2 - 16. (6.111)

Take x_i = 3, and tq = 3.2 and of (x,y) (x — y) = f (x) — f (y) ■ Then 
/i0 — Qo = -2 and r0 = .92903225.

The condition (6.66) is now satisfied, since

hoqo + 2\AOro = .806451609 < 1.

It is easy to see that (/,x_i,xo) € C (/io»Qo»ro). 
The secant method for (6.111) becomes

^n+l —
Xn-!Xn +16 

Xn-i + Xn ’
n = 0,l,2,... .

Note that z* = 4.
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We can now compute

Zi = 4.129032258, 
x2 = 3.985915493, 
x3 = 3.999776048, 
x4 = 4.000000395, 
x3 = 4, 
a0 = 1.8 
do = a0
di = 2.461392145, 
d2 = 3.014220162, 
d3 = 3.092844865,

and

d4 = 3.099887432.

Using the above values, (6.71), (6.54), (6.95)jmd (6.56), we can tabulate 
the fbllowing results (within a precision of |10" ).

n error error
estimates (6.72)

error
estimates (6.54)

error
estimates (6.95)

error
estimates (6.56)

1 .12903226 .27096774 .27096774 .25675941 .27096774
2 .014084507 .030974961 .042129881 .02443182 .03492694
3 2.23952 • 10"4 3.608997 • 10“4 6.042855 • 10“4 3.8946524 • 10'4 4.945036 • 10“4
4 3.95 • 10-7 5.108 • 10~7 8.777498 • 10"7 6.8693502 • 10~7 7.182 • 10~7
5 1.1 • 10~u 1.4- 10"11 2.46 • 10~8 1.9 - 10~n 2.0- 10~n

The above table indicates that our estimates (6.72) and (6.95) are better 
than the corresponding ones given by (6.54) and (6.56) respectively. Note, 
however, that the additional information (computation) (xn)|| is 
used by (6.95).

All the above strongly recommend the usefulness of our estimates in 
numerical applications.

6.3 Exercises

6.1. Let F : D C X —► Y and let D be an open set. Assume:



216 Approximate Solution of Operator Equations with Applications

(a) the divided difference [x, i/] of F satisfies

[x, y](y — x) = F (y) — F (x) for all x, y € D
III®,sd - Mlll < A II® - s/ir + h 11® - 3/11” +h h - u||p

for all x,y,u G D where > 0, I2 > 0 are constants which do not 
depend on x, y and u, while p G (0,1];
(b) x* € D is a simple solution of equation F (x) = 0;
(c) there exists e > 0, b > 0 such that ||[z, p]-11| < b for every 

x,y € U (x*,e);
(d) there exists a convex set Dq C D such that x* € Dq, and there 
exists £1 > 0, with 0 < €1 < e such that F' (•) G Hd0 (c,p) for 
every x,y G Dq and U (z*,£i) C Dq.
Let r > 0 be such that:

0 < r < min |ei (q (p))” ? }

where

9 0) = [2p (A +/2) (1+-P) + c].
p + 1

Then
i. if xo,3?i € U (x*,r), the secant iterates are well defined, remain 
in U (x*,r) for all n > 0, and converge to the unique solution x* of 
equation F (x) = 0 in U (z*, r). Moreover, the following estimation:

ll®n+l ~ ®‘ll < 71 ||®n—1 - ®*||P ||®n “ ®*|| + 72 hn “ ®*I|1+P

holds for sufficiently large n, where

bc
71 = b(Ji + h) 2P and 72 = 7— •

1 +P

ii. If the above condition hold with the difference that xq and xi 
are chosen such that

lk* - ®o|| < cd0\ ||x* - xi|| < min {ad^, ||rr* - zoll} »

where 0 < dQ < 1, a = (q(b))-i, while ti is the positive root of 
the equation:

t2 - t - p = 0, 
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then show that for every n G N, xn E U = {z G X | ||z - z*|| < a} 
and

#n+l

lkn+i -s*|| <adol (n > 0).

6.2. Let F : D C X —> Y and let D be an open set. Assume:
(a) xq € X is fixed, and consider the non-negative real numbers: 
B,v,w,p G (0,1], a,/3,q> l,Ii,l2 and I3, where

w = Ba (jiBp + hf3p + I3Bpap ||F (x0)||!’(,-1))

and

v = ||F (xq)|| .

Denote r = max {B, /3} and suppose U (xo,r*) C D, where

HJp+q-1
»

(b) Condition (a) of the previous exercise holds with the last I2 
replaced by /3;
(c) for every x, y G U (xq, r*), [x, p]-1 exists, and | [x, p] 1 | < B\ 

(d) for every x G U (xo,r*), ||F(p(z))|| < a |F(z)||9 where 
g : X —> Y is an operator having at least one fixed point which 
coincides with the solution x* of equation F (x) = 0;
(e) for every x G U (xQ,r*), ||z - p(x)|| < /?||F(x)||;
(f) the number v is such that: 0 < v < 1.
Then show that the Steffensen-type method

Xn+l = Xn ~ [®n,S (Xn)]'1 F M n > 0

is well defined, remains in U (xo,r*) for all n > 0 and converges to 
a solution x* of equation F (x) = 0 with

rw^p+q^
iyp+9-i (1 — vp+q *)

(n > 0).

6.3. (a) Consider conditions of the form

IM;1 ([z, y;F) - [z, w; F])|| < w(||® - z||, ||y - w||), (6.112)
M0-1([I,J/;f’]-A))|| <wo(h-®-i||,Hl/-ioll) (6.113) 
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for all x,y,z,w G D provided that Aq1 € L(Y, X), where 
w,wq: [0, +oo) x [0,+oo) —> [0, +oo) are continuous nondecreas- 
ing functions in two variables.
Let F: D C X —> Y be an operator. Assume:
there exists a divided difference of order one such that [x, y, F] C 
L(X,y) for all x, y G D satisfying (6.112), (6.113); there exist 
points x_i,xo € D such that Ao = [sc_i, zo; F]-1 G L(Y, X) and 
set

Mo Wo)ll < n;

equation

co(t)ci(t) 
1 - c(t)

+ Co(t) + 1 7/

has at least one positive zero. Denote by t* the smallest such zero;

w0(t* + < 1;
c(t*) < 1;

and

5(x0,t*) £ D.

Show: sequence {zn} (n > 0) generated by the Secant method is 
well defined, remains in U(xQ,t*) for all n > 0 and converges to a 
unique solution x* of equation F(x) = 0 in U(xQ,t*).
Moreover the following error bounds hold

||x2 — XE1II < Collxi — rc0||

ll^n+l ^nll — c||zn — Xn—i|| (n > 3)

and

cn“2hn-*’|| < T--- Il®3- Zsll (n>2),1 — c
where,

C0 = C0(t*), C1 = Ci(t*), c = c(t*).
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(b) Assume: x* is a simple zero of operator F such that:

A;1 = F'ix")-1 e L(Y,X);
M.-1([*,1/;F] - [^x'; F])|| < v(|jy — x*||),

F] - F(®*))|| < v0(h - x'll, 111/ - ®’ll)

for all x, y G D for some continuous nondecreasing functions 
v: R+ —> R+ and vQ: R+ x R+ —» R+\ equation

uo($,<7o) + v(qQ) = 1

where,

qQ = ||x_i - 5D*||, x-i € D

has at least one positive solution. Denote by q* the minimum 
positive one;
and

U(x*,q*)QD.

Under the above stated hypotheses, show sequence {xn} (n > 
0) generated by the Secant method is well defined, remams in 
U(x*,q*) for all n > 0 and converges to x* provided that xQ 6 
U(x*,q) for some X-i e D.
Moreover the following error bounds hold for all n > 0:

||xn+i -x*|| < 7n||zn -x*||

where,

= »(h-i -s*ll)______
7" l-Vo(||Xn-X-||,lkn-l-X-||)-

6-4. (a) Let io,x-i € D with xq x-i. It is convenient to define the
parameters o, n by

a= Hzo —05-111» 
||L0-1F(Io)|| < n,
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and functions a, b, Ln by

w(a,r)a(r) =

d(r) =

1 — w(a, r) ’ 
2w(a 4- r, r)

1 — w(a + r,r) ’
-t'n [^n-1»j ^**] (^ — 0).

We can now state and prove the following semilocal convergence 
theorem for the secant method.
Let F be a nonlinear operator defined on an open convex subset D 
of a Banach space X with values in a Banach space Y. Assume: 
(1) there exist distinct points zo»^-i such that Lq1 6 L(Y, X);
(2) condition

||[x-i,x0;F]“1([x,j/;F] - [z_1,z0;F])|| < w(||x - z_i||, ||3/-x0||),

holds for all x,y 6 D\
(3) there exists a mininum positive zero denoted by r* such that:

a(r)b(r)
Ll-b(r) + a(r) + 1 7] for all re(0,r*];

(4)

w(a + r*,r*) < 1, 
6(r*) < 1

and

U(xo,r*) C D.

Show: sequence {xn} n > — 1 generated by secant method is well 
defined, remains in t/(x0,r*) for all n > — 1 and converges to a 
solution z* of equation F(x) = 0, which is unique in t7(x0,r*).
(b) Let us consider the two boundary value problem:

v" _l vi+p _ n
(6.114)

considered first in [68]. As in [68] we divide the interval [0,1] into 
m subintervals and let h = d_. We denote the points of subdivi- 
sion by ti = ih, and y(ti) = y^. We replace y" by the standard 
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approximations

y"tf) = + h) - 2y(t) + y(t - h)]/h2
y”{ti) = (?/i+1 - 2yi + 2/,_i)//i2, i = 1,2,..., m - 1.

System (6.114) becomes

2</i - h2y\+p -1/2 = 0,

-2/t-i + 2yi - h2y\+p - yi+1 = 0

~ym-2 + 22/m_i - /i2j/i^?i =0, i = 2,3,..., m - 2.

Define operator F : Rm-1 —► F1"1 by

F(y)=H(y)-h2g(y),

where

y = (i/lw....... ym-i)*, g(y) = (y\+p,y?v.........J/m-J'.

and

‘-2 -1 0 ••• 0'
-1 2 -1 ... 0

H = 0 -1 2 ••• 0
... ................

. 0 0 0 ••• 2.

We apply our Theorem to approximate a solution y* of equation

F(y) = 0. (6.115)

Let x € Rm-1, and choose the norm ||x|| = max |x«|. The 
l<t<m—1

corresponding matrix M G Rm-1 x Rm-1 is
m—1

11^11=!<?<“-!

A standard divided difference at the points x,y 6 Rm-1 is defined 
by the matrix whose entries are

k,2/;^]tj = ^T~7[Ft(a;i,...,x;2/j+i,...,J/fc)
— Fj(xi,... ,Xj-i,3/;,... >3/fc)]> h = m — 1.
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We can set [z, ?/; F] = F'[x 4- t(y — z)]dt
Let z, v G R771-1 with |rc»| > 0, |v<| > 0, i = 1,2,... ,m — 1. Using 
the max-norm we obtain

\\F'(x) - F'(u)|] = \\diag{h2(l+p)tf - z?)}||

l<i<m—1
< (1+ p)h2 max |v? - xp | l<i<m—1
< (1 +p)/l2|lli - Si|p = (1 + p)/i2||v - z||p.

Hence, we get

ll[z.S,;-F’] - [v, w; F]||

< [ ||F'(x + t(p-x))-F'(v + t(w-v))||dt
Jo

<h2 [ (l+p)||(l-t)(l-v) + t(p-w)||Pdt
Jo

<h2(l + p) I [(1 - t)p||x - v|]” + tp||3/ - W||p] dt 

= /i2(||x- v||p + ||p- w||p).

Define the function w by

w(ri,r2) = ||[i/_i,3/o;F] 11|Ai2(r*f -F rg),

where 3/—1, y$ will be the starting points for the secant method

1/n+i = yn - [yn-i,yn, F^F^yn) (n > 0)

applied to equation F(y) = 0 to approximate a solution j/*. Choose 
P = | and m = 10, then (6.115) gives 9 equations. Since a solution 
of (6.115) vanishes at the end points and is positive in the interior, 
a reasonable initial approximation seems to be 135sinnt. This 
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choice gives the following vector

z-i =

41.7172942406179
79.35100905948387

109.2172942406179
128.3926296998458
135.0000000000000
128.3926296998458 
109.2172942406179
79.35100905948387
41.7172942406179 .

Choose yo by setting zo(ti) = — 10 5, i = 1,
secant method, we obtain after 3 iterations

!,..., 9. Using

33.64838334335734
65.34766285832966
91.77113354118937

109.4133887062593
Z2 = 115.6232519796117

109.4133887062593
91.77113354118937
65.34766285832964 
33.64838334335733J

and

' 33.57498274928053
65.204528678501265
91.56893412724006 

109.1710943553677
Z3 = 115.3666988182897

109.1710943553677 
91.56893412724006
65.20452867501265
33.57498274928053

Set ?/_! = and yo = z$. Show:
We obtain

a = .256553, rj = .00365901.
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Moreover, show:

< 26.5446,

r* = .0047, w(a+r*,r*) = .153875247 < 1 andb(r*) = .363717635. 
All hypotheses are satisfied. Hence, equation has a unique solution 
y’ e U(yo,r*). Note that in [175] they found r* = .0043494.



Chapter 7

Newton-Like Methods

Efficient Newton-like methods are discussed in this Chapter

7.1 Stirling’s Method

Let F be a nonlinear operator defined on a closed and convex subset D of 
a Banach space X and with values into itself.

Consider Stirling’s method [258]:

x„+i = xn-(/-F'(F(x„))-1(xn-F(x„))), n = 0,l,2,... (7.1)

for approximating a fixed point x* of the equation

F (x) = x. (7.2)

Iteration methods of the form (7.1) have been studied extensively. Bar- 
tle [102] studied (7.1) under the assumption that a modulus of continuity is 
known for F' (z) as a function of x. Rall [244], gave general convergence re- 
sults under the assumption that the Frechet-derivative F' of F is uniformly 
bounded. Relevant work can be found in [68], [99] and the references there.

Stirling’s method (7.1) can be viewed as a combination of the method of 
successive substitutions and Newton’s method. It is consequently reason- 
able to examine the convergence of (7.1) under conditions which guarantee 
the convergence of the method of successive substitutions. In terms of com- 
putational effort, iteration (7.1) and Newton’s method require essentially 
the same labor per step, as each requires the evaluation of F, F\ and the 
solution of a linear equation (or the inversion of a linear operator) inde- 
pendently. Example where iteration (7.1) can be applied where Newton's 
method fails can be easily be constructed (see e.x. [244]).

225
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One has remarked that from the view of the numerical efficiency it is not 
advantageous to change the operator (1 — F' (F (xn)))-1 at each step of the 
iteration. Optimal recepts can be prescribed according to the dimension of 
the space (see [252]).

In this section will study the iteration (7.1) in case for each n, the linear 
operator Tn can be such that

{(Z-F'(F(zPn)))-'}, n = 0,l,2,... (7.3)

where {pn} , n = 0,1,2,... is a nondecreasing sequence of integers satisfying 
the conditions

Po = 0, 0<pn<n, n = 1,2,3.... (7-4)

The iteration

^n+i = xn - Tn (xn - F (xn)), n = 0,1,2,... (7.5)

can be viewed as a generalization of (7.1) for pn = n, n = 0,1,2,....
In what follows we will give sufficient conditions for the convergence 

of (7.5) to a locally unique fixed point x* of equation (7.2). The error 
estimates obtained here are better than the ones previously obtained.

Finally an example is also provided.
We will need the definitions:

Definition 7.1 Let F be as in the introduction and let xq € D. The 
Frechet-derivative F' of F is said to be locally bounded if a constant a > 0 
exists such that

\\F'(x)\\<a. (7.6)

for all x G U (x0, R) C D with R > 0 and sufficiently large.

Definition 7.2 The Frechet-derivative F' of F is said to be Lipschitz 
continuous if a constant 7 > 0 exists such that

H-F' (z) - F’ (p)|| < 7 ||x - y\\ for all x,y e D. (7.7)

In what follows we assume that F' satisfies (7.6) and (7.7) on D.

Definition 7.3 Let xo C D be such that the linear operator I — 
F’ (F (xQ)) is invertible and || (Z - F' (F (x0)))-11| < p, for some p > 0.
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For 0 < a < 1, we define the quantities Ri, 6, c, d, i = 0,1, ...5 by

*o = —, yap
_ 1 - <5 — y/52 - 2J (1 + p + 4ap) 4- 1

P7(l + 4a)
D 1 — 5 + x/<52 — 2£ (1 + p + 4ap) + 1 

=--------------- ---------------------------
P7(l + 4q)

||xo-F(xo)||*3"——2—,

Ra = max(7?i, R3),

P7(l + 5a) ’ 
where

5 = 6 (x0) = ||x0 - F (x0)||, (7-8)

*o = —, ap
$1 = 1 + p + 4ap - ^/(1 + p + 4ap)2 - 1,

_ 2 (1 - apyR4)
2 1 + 2a ’

<$3 = —3 2 + 3a
<54 =2,
. _ 1 + p + 4gp + g + 3a2 - \/A
5 “ 24a2 + 10q + 1
c _ P7 [(1 + 3a) Ri + |ko - F (^o)||] 

2(l-op7Fi)
and

P7(1 + 2q)
2 (1 - apyR4) ’

where

△ = △ (a) = (1 + P + 4aP + a + 3a2)2 - 4a (1 + 4a) (24a2 + lOa + 1) .

The following can easily be verified:
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(i) if

5 < min (<5o, <$i) (7.9)

then

0 < Ri < F2 < Ro- (7.10)

(ii) if

6 < min (<5o, <$i, £2) (7.11)

then

R4 < Rz and 0 < dp ||zo - F (zo)|| < 1- (7.12)

(iii) if

6 < min (£0, ^2,^3) (7.13)

then

R3 < R^- (7.14)

(iv) if

6 < min (<5>o, , <52, <^4, <^s) (7.15)

then

R2 < Rs and 0 < c < 1. (7-16)

Finally by the form of △ and, since

△ (0) = (p + l)2>0

there exists a with 0 < a < 1 such that

△ (a) > 0.

We can now prove the following theorem concerning the convergence of 
(7.5) to a fixed point x* of equation (7.2).

Theorem 7.1 Let F : D C X —> X be a nonlinear operator and xo € D 
be such that the linear operator I — F' (F(xo)) w invertible and

||(/ - F' (F (xo)))-11| < P> for some p> 0.

The following are true:
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(a) i/(7.9) is true, then the sequence {xn} generated by (7.5) is well defined 
for all n = 0,1,2,... and remains in U (xq, R) C D with Ri < R< 
R2.

(b) 7/(7.13) is true andpn = n, n = 0,1,2,..., then the sequence {xn} , n = 
0,1,2,... converges to a unique fixed point x* € D in U (xq,Ra). 
Moreover x* is unique in U (xq,R2) .
The error is given by

1 00 ||xn-x-||<i£(dho-x1||)2’ 
a 

3=n

< 3 52 (rfP bo - F (®o) II)2* > 
d

j=n

<b-^y,(dP\\x0-F(x0)\\f , 
2 3=0

b=i^T(dp ||z0 - F(to)II)2’ ,n = 0,1,2....... (7.17)

j=0

(c) if (7.15) is true and 0 < pn < n, n = 0,1,2,..., then the sequence 
{xn}, n = 0,1,2,... converges to a unique fixed point x* € D in 
U (xq, Ri) . Moreover, x* is unique in U (xq, R2).
The error is given by

_x.|| < < Plko-F^cn, n = 0, 1,2,....
1 C 1 c (7.18)

(d) Under the hypotheses of (b) or (c) the following estimates is true:

l|In _x’|| > [1 + n 7p(V2q)-7iFII1- -^ll] h"+1'M• 
L I-optII^-M J

and if

P7 I2 Ikpn ~ Xoll + “ II®* - ®Pn II + II10 ~ F (^o) III < 2’ 
n,pn = 0,1,2,... (7-20)

then

ll®n-®*||< 2-P7(2||xp„ -xoll+a||x^„ -x' II+l|xo-f(xo)ll) HX" ^Xn H'
(7-21)
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Proof. (a) First let us observe that the linear operator I - F' (F (x)) is 
invertible for all x e U (xq, R) with all R such that 0 < R, Rq.

Indeed form (7.6) and (7.7) it follows that

||z - (Z - /' (F (x0)))-1 (Z - F' (F(x)))||

= ||(Z - F' (F (x0)))-1 (F' (F (x)) - F' (F (x0)))|| 

< pay ||x — zoll < pa'fRo < 1

so that according to Banach’s lemma I — F' (F (x)) is invertible,

(Z —F'(x))-1 <-----------%--------- jp
1 — pa7 ||x0 — x0||

(7.22)

and

|[(Z-F'(F(xo)))-1(Z-F'(F(x)))]’1| <

We will show that xn € U (z0, R) with R\ < R< R2 fc>r all n = 0,1,2,... 
. By the choice of R, it follows that xi € U (xq,R) . Let us assume that 
Xk+i G U (xq,R) . Then Tk+i and consequently Xk+2 are well defined. we 
will show that Xk+2 € U (z0, R) ■

We have

||^fc+2 - zo|| = lkfc+i - xq - Tk+i(xk+i - F(xk+i))||
= ||(Z - F'^F^,)))-1^ - F'(F(xPfc+I))(xfc+1 - xo)

-(xfc+i-F(xfc+l)))]||

= ||(Z - F'(F(xPt+1)))-1(F(xfc+1) - F(x0)
-F'(F(xPk+1))(xfc+1 - xo) + (F(x0) - xo)]|| • (7-24)

Using the identity

F(x)-F(j,)-F'(w)(x-i/)
= [ [F' («x + (1 - 6) y) - F' (0w + (l-0)w)](x-10<# (7-25) 
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for x = Zfc+i, y = xq, w = F (xPk+1) , (7.22) and (7.7), the identity (7.24) 
becomes

lkfc+2 -x0||

- 2(1 — pa'yR) ~ F (xPfc+i)|| + Iko — F ) |(] lkfc+i “ xo||

xn+1 — xn+2
= (I-F'(F(xPn+1)))-1 [F(x„) - F(xn+l) - F’(F(xp^))(xn - x„+i)J 

(7.29)

+ (7-26)

But

H^fc+i ~ F (xPk+l)||
= ||(xfc+i - ®o) + (x0 - F(z0)) + (F(x0) - F (zPk+1))||

< R + ||xo - F(x0)|| + aR = R(a + 1) + ||x0 - F(x0)|| (7.27)

and

Iko - F (xPt+I)|| = ||(xo - F(x0)) + (F(x0) - F (zM+l))|| 

< ho-F(a;o)|| + aK. (7.28)

Therefore by (7.26), (7.27) and (7.28), ||ifc+2 - M < R if

77,--^ p. [K(2a +1) + 2 ||i0 - F(x0)||] R 
z (1 — pa'^K)

or

P7 (4a 4-1) R2 4- 2 [7p ||zo - F ($o)II — 1] + 2p ||zo - F (®o)II 0 

which is true by the choice of R and J. That is xn € U ($o> 7?), 7?i < 7? < 
7?2.

(b) For R4 < R < Rz and 6 < min (<$o> > ^2, fo) > using the identity
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with Pn+i = n 4-1, inequality (7.22) and the fact that xn+i € U (xo, R) we 
obtain

||^n+2 ^n+l|| < - ------------- rp--------------- r
1 - yap ||xo - Xn+i||

■ U [||xn - F (xn)|| + ||F (xn)||] ||xn - xn+i|| (7.30)

- 2 (1 [(1 + a) ,,3!n ~ ®B+111

+qi ||xn — Xn+i ||] ||xn — Xn+11|
<d||xn-xn+i||2, n = 0,1,2,.... (7.31)

But,

||^n+2 ®n+l || < d ||xn — Xn+i || < d • d2 ||xn—1 — Xn||

< 3 (d||x0 — xi||)2n+' 
d

< ^(dp||xo-F(xo)||)2n+‘.

Therefore, for q > 1

ll^n+l ^n+qll

= IK^n+1 “ ^n+2) + ($n+2 “ $n+a) H---------1" (^n+g-l ” xn+q) II

fc+q-1
<-d £ (dp||x0-F(x0)||)2'. (7.32)

j=k+l

Since, dp ||xo ~ F(xq)|| < 1 by the choice of R and 6, it follows that the 
sequence {xn} , n = 0,1,2,... generated by (7.1) is a Cauchy sequence in a 
Banach space, and as such it converges to some x* G D. By continuity, it 
follows from (7.2) that x* = F (z*).

Moreover, letting q —> 00 in (7.32) we obtain (7.17) which proves (b).
(c) For Ki < R < R2 and 6 < min^o,^,^,^,^), using (7.30), (7.7)
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and (7.9) we obtain

ll^n+l “ ^n+2 II

- 2[l-7Qp|£-Ip„+1||] [II1" “ F

+ ||F(IPn+l) ~F (®n+l)||] hn-Zn+lll

< 2(l-£pM Ifll (3a + x) + ho - F(Io)lll ll®» - In+lll

= c ||xn zn+i || .

Therefore, for q > 1 we easily obtain that

||zn+, - xn|| < c"l^- Ikl - ®oll • (7-33)
X c

But 0 < c < 1, that is the sequence generated by (7.5), is a Cauchy sequence 
in a Banach space and as such it converges to an element x E D. By 
continuity it follows from (7.5) that x* = F(x*).

Moreover, letting q —♦ oo in (7.33) we obtain (7.18) which proves (c).
(d) Denote by L the linear operator given by

L= F'(0xPn +(1-0) x*)d0.
Jo

The linear operator I — L is invertible if (7.20) holds. Indeed from (7.7), 
(7.20) and the identity
I - (Z - F’ (F (xo)))-1 (/-!) = (/- F' (F (^o)))-1 lL ~ F' (F (Io))l ’

it follows that

\l-(I-F'(F(x0)))

<P [F' (6xn + (1 - 0) x") - F' (F(zo))] d9

< P7 fX lhp„ - aroll 0 + h’ - xoll«(1 - 0) + ll*o - F(xo)|| 0] dd 
Jo

= |p7 [2 ||xp„ - zo|| + a ||i* - xp„ || + ||io - F (®o)||J < 1

so that according to Banach’s lemma I — L is invertible and

1 2
[7 - F' (F (xo)))-1 (I - I)] 2-P7[2||xP„-xoll+o||x--xP„ll+ll+°-Hy^- 



234 Approximate Solution of Operator Equations with Applications

The result (7.21) now follows from (7.34) and the identity

*n - x* = ((I - - L))-\I - F'(F(x0)))~l(xn - F(xn)).
(7.35)

Finaliy, using the identity

Xn+1 - x„ = x* - xn + [(/- F' (F(z0)))-1 (/ - F' (F (xPn)))]-l • 

{I-F' (F (x0)))~l [F (x*) - F (zn) - F' (F (zPn)) (x* - x„)| 
(7.36) 

and the estimate

Ikp. - F(xPn)|| < (1 + a) ||zPn - z*|| (7.37)

we obtain (7.19).
Finally it is routine to show that in either case (b) or (c) the fixed point 

x* of equation (7.2) is unique in the corresponding balls and that completes 
the proof of the theorem. O

Remark 7.1 (i) Note that (7.17) and (7.18) indicate quadratic and linear
convergence respectively.

(ii) The condition (7.20) in practice may be replaced by the condition

P7[R6(l + a) + ||xo-F(xo)||] <2 

where

Rq = R4 in case (b) 

or

Re = Ri in case (c).

Moreover, the inequality

ll«P. - x*|| < ||zPn - Z0|| + ||xo - x’|| < ||zPn - z0|| + Rs

can be used to replace ||zPn — z’|| on the right hand side of (7.21) or (7.19).
(iii) By definition 62 depends on R4 which in tum depends on 6. In 

practice we may like to have 62 independent of R4.

It can easily be checked that if

99
0 < p < — and 6 < (7.38)
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where

2 (1 - q) [4a2p - (2 4- 3p) a - (3 + p)] 
8a2 + 14a + 3

then R3> Ri. That is R4 = max{Ri,Rz} = R3.
Define the number 62 = con<^ition <$ < ^2 is now easier

to check than 6 < 62- The number R3 can replace R4 in the previous 
theorem if 62 replaces 62 and (7.38) holds.

Theorem 7.2 Let F : D C X —> X be a nonlinear operator and xq G D
be such that the linear operator I — F' (F (zo)) is invertible and

|(/ - F' (F(x0)))-1| < p, for some p > 0.

Assume:

(a) the estimate

6 < min (tfo^nfo) 1 is true (7.39)

CLTld

(b) the sequence {tn} , n = 0,1,2,... generated by

_ p7(l + 2a) (t„ -tn+i)2 
tn+2-t„+1 2[1_Qp7(to_tn+1)] ’ n = 0,1,2,... (7.40)

ti = to - P Iko - -F (zo)ll

is positive, and converges to some t* > 0 for a particular to > 0. 
Then

(i) the sequence {tn} , n = 0,1,2,... is decreasing
(ii) the sequence {xn} generated by (7.5) forpn = 0,1,2,... is well defined, 

remains in U (xq,Ri) C D and converges to a unique fixed point 
x* of equation (7.2) in U (xq, Ra) •

The following estimates are true:

||x„-x’|| <tn-<* (7-41)

and

||In - x’|| > [1 + , (3 + y^-r (tpn - f)l -1 (‘n - ‘"+1) <7’42) 
[ 1 - apy (t0 - tPn) J
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Proof. By (a) above and part (a) of Theorem 7.1, the iteration {xn}, 
n = 0,1,2,... is well defined and remains in U (xo, Ra) • We shall now prove 
that

||l„—£„+l|| <t„-t„+l, 71 = 0,1,2....... (7-43)

By the choice of to and ti it is easy to see that (7.43) is true for n — 0. Let 
us assume that (7.43) is true for n = 0,1,2,..., k, where k > 0. Using (7.6), 
(7.7) and (7.30) we obtain as before that

||^n+2 ^n+l || <
P7(l + 2a) ||xn - Xn+l||2 
2 (1 — ap^ ||x0 — xn+i||)

2
P7 (14-20:) (tn-^n+1) 
2[l-ap7(t0-tn+i)J

= tn+1 — ^n+2-

We thus have proved that (7.43) holds for all n. By hypothesis the sequence 
{tn} converges to t* and X is a Banach space, therefore there exists a point 
z* G D such that lim xn = x* and 

n—+oo

|| Xn X || < ^n t •

By continuity, x* is a fixed point of the equation (7.2) and that proves 
(7.41). It is routine to show that x* is the unique fixed point of equation 
(7.2) in L7(x0,H4).

Finally, the estimate (7.42) can be proved using (7.36), (7.37) and (7.43).
That completes the proof of the theorem. □

We now cover the case when 0 < pn < n, n = 0,1,2,... . The proof of 
the following theorem is omitted as similar to Theorem 7.2.

Theorem 7.3 Let F, xq be as in Theorem 7.1 and 0 < pn < n> n 
0,1,2,... .

Assume:

(a) the hypothesis (7.9) is true 
and

(b) the sequence {tn} , n = 0,1,2,... generated by

t„+2=tn+l-2llTain^+;)1

x p„ + (1 + 2a) tp„+1 - 2t„+i - (1 + a) tPn+2] (t„ - t„+i) ■ 

n = 0,l,2,...

ti = *o - P Iko - F(x0)||
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is positive, decreasing and converges to some t* for a particular 
tQ > 0.

Then the sequence {in} generated by (7.5) for 0 < pn < n, n = 0,1,2,... 
is well defined, remains in U (xQ, Ri) and converges to a unique fixed point 
x* of equation (7.2) in U (xq,Ri) C D.

The following estimates are true:

||xn ~ x* II —

and

h»-x'||> 1+ (3 + 3a)^—(tPn-f) (t„-tn+i), ” = 0,1,2......
1 - apy (to - tPn)

We now proved some sufficient conditions for the convergence of the 
sequence {tn} given by (7.40), n = 0,1,2,... for a special choice of to- 
Similar conditions can be given for the sequence {tn} , n = 0,1,2,... .

Proposition 7.1 Let F, xQ be as in Theorem 7.1. If the real number 6 
given by (7.8) satisfies:

6g < 6 < min ( ^0—, 5i, 63 > 5?^ V 1 “ e + r 0
y“ \r + 1 /

or

51,63, $8

where

if 1 _ e + r = 0 for some (finite) r > 0,

_ 2 + r — \/r2 + 4e
07 = -----------------------------2(1 -e + r)ap

<5g =----- ------(2 + r) ap
yto fl + 2y/2e (2e - l)j 

=------------- -----------------
4er

and
l + 2a 

e~ 2a

Then
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(i) the real sequence {tn}, n = 0,1,2,... given by (7.40) for to = «
decreasing converging to some t* = t* (r) > rp ||zo ~ F ($o)II • 
The following are true:

tn+1 “ tn+2 < 5 (tn — tn+1) (7-44)

1 n—1 j
tn-t' <b’---- 52 lS (to ~

S=0

< - - 52 _ ■F(i°)in2 ’ «=0,1,2,...
S J=° (7.45)

and

e<r (7-46)

where

e
S~ rp l|sc0 - F (zo)||

and

i °° 1 00 2*b* = 1^2[s(t0-t1)f and bj = - [sp ||x0 - F (x0)||] • 
s j=o S j=o

(ii) Moreover, the sequence {xn} > n = 0,1,2,... generated byjj^) for 
pn = n, n = 0,1,2,... is well defined, remains in V (zo,^i) 
and converges to a unique fixed point x* of equation (7.2) in 
U{xq,R4) C D.
The following estimates are also true:

||®n+l ^n+^H < ^n+l ^n+2

and

||x„-s*|| n = 0,1,2....... (7-48)

Proof. We will first show that

rp||z0 - F(io)|| < tn+i < tn < t0 = for all n = 0,1,2,....
QyP (7.49)
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The sequence (7.40) now becomes

to = —, ayp
ti = to - P ||zo - F (^o)ll

and

tn+2 = *n+l-n = °>1>2........  <7'50)
tn+1

It can easily be seen that

<50
to > rp ||x0 - F (lo)ll if S^~

6q
ti > rpl|x0 - F(®o)II if <5 <

and

( 8 < S7 if 1-e+r^O 
t2>rpho-F(xo)ll if x-e + r^o.

We now assume that

tk > rp ||x0 - F (xo)||, k = 0, l,2,...,n + 1.

To show

tk+2 > rp ||z0 - F (x0)||, 

by (7.40) it suffices to show

tk+i - {tk - tfc+i)2 > rPlko - ^(zo)|| 
tk+i

or

(e - 1) tl+l - [2etk - rp ||x0 - F (x0)||) tk+i + et2k < 0. (7-51)

But, since

tk < t0, k = 0,1,2, ...,n+ 1

we have

(e - a) tk+1 - {2etk - rp ||z0 - F (x0)||) tk+i + etk
< (e - 1) t% - 2e (rp ||x0 - F (z0)||)2 + rp ||x0 - F (t0)|| i0 + et0.
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To show (7.51) it suffices to show

(e - 1)4q - 2e(rp||z0 - F(z0)||)2 + rp ||x0 - F(x0)|| t0 + et0 < 0

which is true if 6 > 59.
The induction is now completed. It follows now from (7.49) that there 

exists t* = t* (r) > rp ||x0 - F (x0)||, such that

lim tn = t* < t0. n—»0

Moreover, the sequence {tn} , n = 0,1,2,... is decreasing and by (7.50)

^n+l — tn+2 = - (tn — tn+i)2 
tn+1

< S (tn — tn+i)
< s[s(t0 - ti)]2 + < s[sp||x0 - F(x0)||]2 + .

From the above inequality it follows that

sp|ko-F(xo)|| < 1

or

e < r

since the sequence {tn}, n = 0,1,2,... is a Cauchy sequence (as conver- 
gent to t*). The rest of the proof follows as the proof of Theorem 7.1 
part (b). □

Note that r is not difficult to be determined, in practice and due to 
(7.46), the following is certainly true

It can easily be seen by referring to the papers mentioned in the m- 
troduction that our results are better than those given in the literature for 
different particular cases. They are also obtained under weaker assumptions 
in general.

For simplicity we only compare our results with the ones obtained by 
Rall [244, Theorem 4], which are the most recent ones concerning iteration 
(7-1).
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Assume that X = JR and consider the interval (—2.2,1.8] on which (7.6) 
is true, the number xq = — .2 and the equation

F(x) = x (7.52)

where

F(z) = i(x2-2).

Using the definitions 7.1, 7.2 and (7.3) we can easily calculate the fol- 
lowing numbers

a = .55,
7 = .25 
p = .942285041, 
6 = .010600706,

50 = 1.909090909,
51 = .12651649,
52 = .633848081,
63 = .123287671, 

min(50,5i,53) = .633848081.

According to Theorem 7.1, part (b) the condition (7.13) is satisfied, 

since

6 < min (5q, 5i,52,63).

Therefore iteration (7.1) converges to the fixed point x' = -.24264087 of 

equation (7.52).
Our error estimate (7.17) becomes

hn-i*||< l£(dp||io-^(io)||)

j=n
oo

< (2.690685107) (•015759119)2’, n = 0,1,2,... . (7.53)
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The corresponding error estimate (3.10) of Rall becomes:

1 - Ot
< (.1) (.05833333)2”-1, n = 0,1,2,... . (7.54)

Moreover, the iteration (7.1) becomes

_ zn + 2xn — 3
n+1 " 34^1------- n = 0,1,2,... .

We can now tabulate the following results:

x* = -.242640687 Results by Rall (7.54) 
Ikn -X*||

Results by Argyros (7.53) 
||xn ~ X-||

xo = -.2
xi = -.2424028

.1
.00583333

.043071219

.000668393

The above table clearly indicates the superiority of the estimates (7.53) 
or (7.54) in this case.

7.2 Convergence for a Certain Class of Newton-Like 
Methods

Let F be a nonlinear operator mapping some subset D of a real Banach 
space E into a subset of a real Banach space E. we are concerned with 
hnding solutions x* g D of the equation

F(x) = 0. (7.55)

number of very interesting iterations have been introduced to approximate 
n X D (7.1). Most of them can be described, through the so 

called Newton-like methods of the form

*n+i = xn - A~yF (xn), n = o, 1, 2,... for some xQ G D. (7.56) 

sequence {4n} denotes invertible linear operators that constitute a 
nscious approximation of the first Frechet-derivative F' (xn) of F evalu- 

ated at xn. v 7

for An = F (xn), one obtains the Newton method, whereas
n (in-i,in), one can obtain the secant method.

im±le7t W0* on <7-56) (O' sPecial cases of (7.56)) can be found in the 
investigations of Kantorovich [183], Ortega and Rheinboldt [227], Gragg 
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and Tapia [160], Dennis [132], Potra and Ptak [160], [68), [99] and the 
references there.

In particular, Dennis in [132], [239] did work of the following type. 
Given an operator F and a rule A which assigns to each x an approximate 
Jacobian A (z), a simple technique is given to build a scalar function f and 
a scalar rule a (x) such that if the corresponding Newton-like method for 
f converges, then so does the vector method for F. He then presented an 
error analysis based on the majorant theory.

Here, under the same assumptions, and using the same information, 
we show that our lower and upper bounds on the distances ||zn —x*||, 
||zn+i — zn||, n = 0,1,2,... are sharper than the corresponding ones in 
[132].

An example is also provided.
We will need the definition:

Definition 7.4 Denote by F' (z) the first FYechet-derivative of F evalu- 
ated at x e D. We say that F' E Lipk0D if

||Aq 1 (F'(z) — (y))|| </cq ||z - j/ll for all x,yeD, (7.57)

provided that the inverse of the linear operator Aq exists.

We state the following version of Theorem 2.6 in [132, p. 435]:

Theorem 7.4 Let F' € LipkoDQ, where DQ is the closure of an open 
convex set with Do C D.
Assume:

(a) for all n = 0,1,2,..., there exist positive numbers bt a, an, such that

ao = l, <7-58)
b < an < a, (7.59)

and

||(40-lAn)-1||<a;t, n = 0,1,2,.....  (7.60)

where An € l(e,e} is a boundedly invertible operator for all 
n = 0,1,2,... . V
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(b) For a > 1 and △ > 0 both independent of n the following estimate 
holds

||Xo 1 (F' (X„) - A>)|| “n + ak° 53 ” A’
5=1

for all n = 0,1,2,... . <7-61)

(c) Denote by ho, s0°\ and r0 the following:

h0 = (7.62)

(0) _ 1 - y'l - 2/ip (7.63)
S° " vk0
r0 = ||Ao1F(xo)|| <7'64)

and assume that

k. < 1

and

u(xo,^)cDo. (766)

Denote by fo (t) and tn^ the following

fo (t) = — At 4- O'Oi'o (7-67)

and

+ t<°>=0. (7-68)
fln

Then the sequence generated by (7.56) remains in U so°^) an(^ ^071' 
verges to a unique solution x* of the equation F (x) = 0 in U si ) 
with

s^<s^ (7-69)
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where

s(0) -
si —

i - yi - 2/ip 
ako

(7.70)

=
kpTQ (7.71)

U a0 (1 - <5«»)

and

^(o) _ HV^fro) M (7.72)
ao

Moreover, the following estimates are true:

(7-73)

Ikn^-^Ks^-e, (7.74)

|lkn+i-Xn|| < ||xn-x*|| for all n = 0,1,2,..., (7.75)
£ 

and

Ei|.,-.,-.l<«><^>a(4"’)-“- <”6>
J=o

Note that the linear operator Aq* does not appear in the estimates (7.60) 
and (7.61) of the original theorem. However, it can easily be seen by just 
repeating the proof of the original theorem [132, p. 435) that Theorem 7.4 

above stands as it is.
Let us denote by C (fco, ho, ro) the class of all pairs (F,xq) satisfying the 

hypotheses of 7.4.
Then we can improve the above theorem with what follows. But firstly 

we must define certain quantities.
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Denote by h.m, som), rm, km, fm and t„m) the following quantities

, _  &kmrmam
m ~ £2 ’

(m) _  1 “ — 2/lm A
s0 — ----------- 7-------------crkm

rm = U^m+l 3'mll >

km = sup
||4-‘(F'(x)-F(y))||

II® - 3/11
fm (t) — -<rkmt? — At 4- amrm,

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

and

=t<r>+-X (7-82> 

an

for each fixed m, m = 0,1,2,... and alln = m, m + 1,... with

e>=0. (7.83)

Theorem 7.5 Let F' G LipkoD0 is the closure of an open convex set with 
Dq c d.
Assume:

(a) the pair (F, xQ) G C (Jcq, h0, tq) ;
(b) the sequence {an} , n = 0, .1,2,... is increasing;
(c) the following are true for each fixed m, m = 0,1,2,...

u(xm,s^)cD0, (7.84)

b > 1, (7.85)

< -, (7-86)
a

| [ak0 (t£» + <"») - 2A + 2<7k0 (4m) - <m))] '

(fn' - tnm)) + aoro - amrm + (ko - hm) (4m)) - °> (7-87)

On + iako (t<,m) + ‘k0’) - A > o, (7.88)
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and

(4<r + l)2 - 1 
2(4<z + l)2

(7.89)

Then for each fixed m, m = 0,1,2,..., (F,xm) € C (km, hm,rm), 
the sequence generated by (7.56) remains in U (xm,SQm^ and 

converges to a unique solution x* of the equation F (x) = 0 in 
U , with

J™) < Jjn) 
si -S 5o (7.90)

where

s(m) = 1----0 2/t'm _ d(m)) (7 91)

ft' =------_ (7.92)

and

^(m) _ II^Q 1 (F' (^m)0^m)|| (7.93)
Om

Moreover for each fixed m, m = 0, 1,2,... and alln = m, m + 1,..., 
the following estimates are true:

Ikn+I-M^^-^. (7.94)

I|®n+1 - X*|| < So"*’ - ‘n+1. (7.95)

c(n) < ||zn - x*||, (7.96)

£ ll^ - XJ-III < <m) < 4m) = <+l. /m
j=m

(4m)) = °.

(7.97)
< S^, (7.98)

t(m> < e, (7.99)

(7.100)
s(m) _ ^m) < s(0) _ f(0) (7.101)
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and

(7.102)

where we have denoted

n = 0,1,2,... .

(7.103)

Proof. We shall first show that

rn < < r0, n = 0,1,2,... . (7.104)

By (7.73), (7.79), and (a) to show the relation (7.104) it suffices:

‘n+i ~ tj?’< r0 forall n = 0,l,2....... (7105)

The above inequality is true as equality for n = 0 by (7.67), (7.68), (7-64) 
and (7.56). Let us assume that

e - e, < t'°> - t<°> = ro, n = 1,2,... . (7-106)

We must show that relation (7.105) holds for all n = 0,1,2,... .
The function /o given by (7.67) is decreasing on ^0,Sq°^ and the se- 

quence |tn^j is increasing. Using (b) and (7.68) we get

tW) t(Q) _ /o V»-x) - t(0) tm (7.107)
‘'n+l t'n ~ — cn t'n-l* v

Qn-1

The relation (7.105) now follows from (7.107) and (7.106).
We shall show that the pair (F,xm) € C (km, hm,rm) for each fixed m, 

m = 0,1,2,... by showing that

hm < 1 (7-W8)

and

C (xmi$Q C Dq. (7.109)
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The results (7.94), (7.95) and (7.97) will then follow by applying Theo- 
rem 7.4 to the pair (F, xm).

By (7.80) and (7.57) we get

«-»« (7110)
By (7.65), (7.77), (7.105) and (7.110) we obtain

, _  aa^korQam = , <. 1 (7.111)
- ^2 - A2 - 2

That shows (7.108) and (7.109) follows immediately from (7.84). 
using the identities

Xn+1 ~ Xn = X* - Xn + (Aq 1 A„) -1 +o 1 I1*) “ F M ~ A” I1* ~ ’
v (7.112)

F(x')-F(xn)-An(x’-xn) =
F (x’) - F (xn) - F' (xn) (x’ - Xn) + (F' M - An) (x' - Xn), (7-H3) 

the triangle inequality on (7.112) and (7.113), (7.57), (7.60), (7.61) the 
inequality (7.96) follows immediately.

To show relation (7.98) we must first prove that

fm(t)<f(t) foreachfixed m,m = 0,1,2,... and all t > 0. (7.114)

But by (7.67), (7.81), (7.85), (7.86) and (7.110) we easily get

fm (t) = iafcmt2 - At + amrm < |<rfcot2 - △« - Wo = fo (t) ■ 
2 *

Let us assume that G ^O, s^)

/m(soO))>° foreachfixed m,m = 0,1,2,... . (7.115)

Set t = s(00) in (7.114) and using the second relation in (7.76) we get

coMfdHlng rslation (7.US). 11» «uH (MS) Mlo«. imnnodiatoly^
We shall show the relation (7.99) using induction on n-m,m+, - 

for every fixed m, m = 0,1,2,... . The relation (7.99) is true or n ,
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since by (7.83) and (7.68)

w=o < e>.
Assuming that (7.99) holds for every fixed m, m = 0,1,2... and all n - 
m,m + 1,we shall show

Arn) < ,(0) 
rn+l — Si+1’ (7.117)

By (7.67), (7.68), (7.81), (7.82), (7.99) and (7.114), the relation (7.117) is 
true if

or if

«n (e> - e)+(e> - e) (e>+e) - △ (<m) -
The above inequality is true by (7.99), (7.88) and the first relations of (7.76) 
and (7.97) respectively.

To show (7.100), it suffices by (7.68) and (7.82) to prove

fm — /o f°r eac^ m, m = 0,1,2,... (7.119)

and all n = m, m + 1,....
By (7.67) and (7.81) the relation (7.119) is true if

iafco [(e*’)2 - (e>)2] - △ (e> - <o)) + G>mTm ~ OqTq — (7.120)

since (7.85) and (7.110), fcm < fc0.
Moreover by (7.86)

omrm < aoro. (7.121)

But the relation (7.120) is certainly true if (7.121), (7.86) and (7.99) hold.
This argument shows the relation (7.100).

Let us now assume contrary to (7.101) that

s^-t^+t^>s^ (7.122)

for each fixed m, m = 0,1,2,... and all n = m, m + 1,... .
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The function /o is decreasing on [o, Sq0)] and

/0 (t) > 0 for all t € [o, s£0)] . (7.123)

Therefore by (7.122) we deduce that

/o(4m)+4o)-4m))<°. (7-124)

But by (7.67) and the second relation of (7.97),

/o (4m) + e - <m>) = (4m))2 - As0m) +

+ 1 po (e + t<”*>) - 2A + 2afc0 (4m) - 4m))] (4o) - 4m))

4- aQr0 - amrm + -a (fc0 - (so)

> 0 (7-125) 

by hypothesis (7.87), contracting (7.122) and (7.124). The relation (7.101) 
now follows.

Finally, we shall show relation (7.102). Using (7.103), (7.63), the first 
relation of (7.76) we can easily deduce that (7.102) holds if

K-xn+1||<^^. (7126)

But, by the first relation of (7.76) 

||xn-xn+1||<tn+1<40). (7'127)

By (7.127) and (7.63), to show (7.126) it suffices

(0) - 4\/l — 2ho 
s° * fco-’

which is true by (7.89).
That shows relation (7.102) and completes the proof of the theorem. □

The estimates on the distances ||xn — $n+i II an<^ ll^n+i ~~ x II given 
Theorem 7.5 are sharper than the ones given in [132, p. 435, 453). However, 
the computation of the sequences |tn involves the evaluation of the 
sequence {km} given by (7.80). The cost of such computation may be very 
high in interesting cases (excluding the scalar case).
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In the theorem that follows we show how to overcome this diffi- 
culty and still obtain sharper estimates on the distances ||zn — zn+i II an^ 
||^n+i — $*|| than the corresponding ones in Theorem 7.4.

Let us first denote by hm, km, v^m), gm, v£ji, and £m the following 
quantities for each fixed m, m = 0,1,2,... and all n = m, m + 1,...

, __ akmrmam
m A2

= aj/co,

9m (t) — + amTm,

= 0,

„(m) _ 1 - 
1------ f-----akm

Vom> = _linLWn+l

and

___ kmTm 
am (l-<5(™))2’

Then we can show:

Theorem 7.6 Let F' € Lip^D^, where Dq is the closure of an open 
convex set with Dq c D and assume that the hypotheses of Theorem 7.5 
are true.

Then with the notation introduced above, for each fixed m, m — 0,1,2,... 
the pair (F,xm) € C (km, hm>rm) y the sequence generated by (7.56) re- 
mains in U (xmiVQn)>^ and converges to a unique solution x* of the equa- 

tion F (x) = 0 inU (xm, .
Moreover, for each fixed m, m = 0,1,2,... and all n = m,m + 1,... the 

following estimates are true:

||Xn+l - X„|| < W^l - w£m), 

||X„+1 - X'|| < - W^l.

(7.128)

(7.129)
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E hj - ^-i|| < w<7> < v<m>, gm (y™) = 0, 
j=m

*o — VO — SO ’
‘nm’ < W<T> < <0),

- <m) < 471 - 4m’ < <71 - <0). (713°)

and

4m) - < ^m) - 4m) < s(00) - (7.131)

Proof. The proof is identical to Theorem 7.5 with hm, s(m), &m, /m, 
*n+i> sim), h'm replaced respectively by hm, v^m), km, gm, w(̂ \, v(m) and 
£m for each fixed m, m = 0,1,2,... and all n = m, m 4-1,... . □

Remark 7.2 (a) If inequality (7.61) holds for n = 0 and a > 1 then 
Theorem 7.4 gives

x' eU (z0,4°’) cU (z0,40)) 

with

s<°> < s<°>. (7.132)

Then the relation

hm-xoll + 4m)<4O) (7.133)

for each fixed m, m = 0,l,2,..., implies that

x’eu (Im, <m>) C U (xo, 4°’) C Do (7.134) 

by hypothesis (7.66). The relation (7.132) holds for sufficiently large m. 
Indeed otherwise since lim s^ = 0, t/iere exists M such that ifm> M, 

m—»oo
then by (7.133),

s<°> > h* - ®oll > 4°’
contradicting (7.132).

Due to the conservative nature of our estimates one may expect that 
the relation (7.133) holds for sufficiently small m. If this is the case due to 
(7.133), Theorems 7.5 and 7.6provide better information on the location of 
the solution x* Theorem 7-4-
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(b) The relations (7.95), (7.96), (7.100), (7.101), (7.128), (7.129), 
(7.130) and (7.131) indicate that our estimates on the distances ||rcn_|_i — x*|| 
are sharper than the corresponding ones in (7.74) and (7.75). A similar ob- 
servation can be made for the distances ||xn+i — xn|| • Moreover, these re- 
sults are obtained with almost the same hypotheses as the ones in Theorem 
7.^.

Note, however, that only the estimates (7.96), (7.128), (7.129), (7.130) 
and (7.131) are always computable in the most interesting cases (excluding 
the scalar case).

(c) It is often the case that does not wish to recalculate the approx- 
imate derivative at every iteration but will instead use An in place of 
Ai+i,An+fc and then calculate An+fc+1 and use it for q iterations. Let 
{Pn} be a nondecreasing sequence of nonnegative real numbers such that

Pq = 0, and pn = Pn^ or pn = n.

Then the general iteration referred to above can be written as

^n+i = xn - A~'F (xn), n = 0,1,2,... . (7.135)

The conclusions of Theorem 7.4 hold for iteration (7.135) [132, Th.2.6, p. 
435]. Therefore, by just repeating the proofs of Theorem 7.5 and 7.6 and 
interchanging the role of n with pn we can easily produce the corresponding 
results (7.195) - (7.102) and (7.128) - (7.131) of Theorems 7.5 and 7.6 
respectively for iteration (7.135).

(^•) By following arguments similar to the ones introduced in the proofs 
o Theorems 7.5 and 7.6 one can easily produce bounds on the distances 
llxn+i x || and ||zn+i — xn|| that are sharper than the corresponding ones 
given in [132, p. 457] for Newton's or the secant method.

Note that in [132, p. 457] by appropriate choices of An, an, a and △ 
the zteration 2 can be reduced to Newton's or the secant method.

The detazls of this approach are left to the motivated reader.
(e) The condition (7.87), due to (7.125) can be replaced in practice by 

the equivalent relation

/0 (s0 * + *n0) “ tnm)) > 0 for every fixed m, m = 0,1,2,... 

and all n = m,m 4-1,... .

We now prove a more general theorem which at first seems to reduce 
a mmimum the assumptions necessary to apply the majorant technique.
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Second it gives an easy semilocal convergence theorem for the class of meth- 
ods using ”consistent derivative approximations” [68].

Theorem 7.7 Let F' G LipPkQDQ, where Dq is the closure of an open 
convex set with Dq C D and assume:

(a) there exist nonnegative real numbers 6n, 6 and y such' that for every n 
for which zq, ...,xn as defined by (7.56), are in Dq, with

||1 (4n - F' (xn))|| < <5n + 7£>,- - ; (7.136)

i=i

and

6n < 6 for n = 1,2,... .

(b) Let xq € Dq and Aq be an invertible element of L \ E,Ej with

IHo^MKro.

(c) The following conditions are satisfied:

clq > 60 + 26, 
1 , (27 + k0) aorQ
2~°~ (ao-^o-25)’

(7.137)

(7.138)

and

U ($o> eo) C Dq,
1 - x/1 - 2d0

Where eo= (27 + fcoF (clq — 6q — 26).

Then
(i) the sequence {xn} , n = 0,1,2,... generated by (7.56) exists in U (xq, cq) 

and converges to a unique solution x* of the equation F [x) — 0 in 
U (xo,eo), where we have denoted

and
, _ aofcoro
° (ao - <*)2
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(«) If

d'o < 5

then the solution x* is unique in Dq n U (xo,6q) where we have 
denoted

eo =-----° (ao “ ^o) •
kq

(iii) For all n > 1 and with t^ = fq the following estimate is true

ll^n+i — x || < e0 — ^n+i

where the sequence {t^}, n = 0,1,2,... is as defined in (7.68) 
with

fco + 27 
kQ ’ 

△ = aQ — 50 — 25, 
aQ = 1

and

n
50 + 5n + (fc0 + 7) 52 “ ^’-1 II

k j=1
n = 1,2,... .

(7.139)
(iv) Let us denote by Cj (kQ,dQ,rQ) the class of all pairs (F,xQ) satisfying 

the hypotheses of this theorem. If for each fixed m, m = 0,1,2,..., 
Tm < r0, km < fco and U (xm,em) C DQ then the pair (F,xm) G 
Ci(km,dm,rm) where

. _ (27 + km) amrm (7.140)
(aQ — dQ — 25)2

and km and rm are as defined before.
(v) The sequence generated by (7.56) remains in U (xm, em)_and converges

to a unique solution x* of equation f (x) = 0 in U (xm,em) • V 
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d'm < ± then the solution x* is unique in Dq Cl (xm, em), where we 
have denoted

em = --------- Z------------(a0 - M ,Km
it _  O'mhmTm
m" (a0-<5)2

and

„ i + .
em = ----- 7-------- (ao - <W ,

Km

and for each fixed m, m = 0,1,2,... .
(vi) Moreover for each fixed m, m = 0,1,2,... and all n = m,m+l,... the 

following estimates are true:

llxn+l ~ $n|| < ^n+l “

||^n+l — $ || < em — ^n+l’

y? II Xj ~ xj-lll — ^n+l — 6m = n^o ^n+l 
j=m

fm (^m) — 0.

Purthermore, if the rest of the hypotheses of Theorem 7.5 are sat- 
isfied excluding (7.85) and (7.86), then

^m ^O, 
t(m) < f(O),

and

em-t^<e0-t^

where the sequence (t$>m’j is as defined in Theorem 7.6 with a, & 

and an as defined in (iii) above.

Proof. We will make use of Theorem 7.4. Let us assume that xq, ..., xn G 
n

U (x0, e0) and e0 > £ IIxj “ xj-i II • 
i=i
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Using (7.136) and (7.57) we get

||Ao,(An-4o)||

< ||Ao1 (An - F' (xn))H + || Ao’ (F' (®») - F' (xo)) || + Ho * (F' (»«) " A>)ll 

n
< <5n+7 52l|z> +/CO H^n “ Zo|| + <5()

J=1
n

< <5o + <5n + (ko + 7) 52
J=1

< 60 + 6 + (fco + 7) eo

by the choice of e0.
By the Banach lemma on invertible operators the inverse of the linear 

operator An, n = 1,2,... exists and is bounded. In particular

||(4o14n) ‘II <a~x, n = 0,1,2,...

where the sequence {an} , n = 0,1,2,... is as defined in (7.139).
With the above choices of a, △ and an it can easily be seen that for all 

n = 0,1,2,...,
/ n \ n

1 - I <5o + <5n+ (fco + 7) 52IIJJ “ XJ-1II ) + <^0 52 “ &
\ J=1 / J=1

n

j=l

We now observe that (7.136) is (7.61) and (7.138) is (7.65). The results 
(i)-(iii) follow now immediately from Theorem 7.4.

We now show that (F,zm) e Cj (fcm,4jm) for each fixed m, m = 
0,1,2,... . We only need to show

dm < |. (7-141)
£

Using the hypothesis rm < r0, (7.138) and (7.139) we easily deduce

dm<d0. (7.142)

By (7.137) and (7.141) we can obtain (7.140). The results (iv)-(vi) now 
follow immediately through Theorem 7.6.

That completes the proof of the theorem. □
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Remark 7.3 (a) Note that by defining e'o (or em) earlier in the statement 
of this theorem we could have given a less restrictive existence statement 
based on Theorem 7.^. This can be a very useful type of result (see the 
discussion on p. 441 in [132] and the reference [109] for an application).

But we wanted to leave our main concem, the convergence of (7.56) as 
uncluttered as possible.

(b) Using (7.139) we can easily see that the sequence {an}, n = 0,1,2,... 
is increasing if

II II $n 3n+l
lkn+1 - ®n|| <

provided that

<Sn+i < for all n - 0,1,2,... .

We shall now compare the estimates (7.74) and (7.95) on a simple scalar 
example. Let us consider the operator F defined on the real line by

F(.)-l (>’-«)■ <7143>

Let us choose

(7.144)

It can easily be seen that

km — am 
h0 = .312162162.

The iteration (7.56) for solving (7.143) with the above values becomes

_ (3n+l)^ + 16(n+l) (7.145)
Xn+1 “ 2 (2n + 1) xn
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Let us choose xq = 3.7. Using (7.144) and (7.145) we obtain

ii = 4.012162162, ai = 1.626552228 
x2 = 4.004066343, a2 = 1.803633488 
x3 = 4.001627776, a3 = 1.892661786 
x4 = 4.000697807, a4 = 1.94628542 
x3 = 4.00031017, a5 = 1.98213567 
x6 = 4.000140992, a6 = 2.007792776 
x7 = 4.000065075, a7 = 2.027060004 
x3 = 4.000030368, a8 = 2.042057545 
x9 = 4.000014291, a9 = 2.054061393 
iio = 4.000006769 a10 = 2.063885556.

We can now set b = 1 and a = 2.162162162. FYom (7.63) and (7.78) for 
m = 5 we obtain

s(00) = .38707612

and

s<5) = 3.35362132.10"4.

Using (7.68) and (7.82) we obtain

t£” = 0, 45) = 0
4°’ = .312162162, 45) = 1.69178.10“4
40) = .342116692, t^5) = 2.530086635.10“4 
t(0) = .357955489, 45) = 2.945504381.10"4 
t^0) = .367610007,45) = 3.151367587.10"4 
40) = .37383762, and
t(0) = .377975492, t(s) = 3.25339009.10"4.
t(0) = .38077424,
40) = .382689577,
40) = .384010911,
t™ = .384927846,

It can easily be seen that the hypotheses of Theorem 7.4 and 7.5 are sat- 
isfied with the above values and by observing that x* = 4, we can tabulate 
the following results:
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n Actual error estimates Error estimates (7.74) Error estimates (7.95)

1 1.2162162.10"2 7.4913958.10~2 —

2 4.066343.10"3 4.4959428.10~2 —

3 1.627776.10"3 2.9120631.10~2 —

4 6.97807.10"4 1.9466113.10"2 —

5 3.1017.10"4 1.32385.10~2 —

6 1.40992.10"4 9.100628.10~3 1.66184132.10~4

7 6.5075.10~5 6.30183.10-3 8.2354.10~5

8 3.0368.10"5 4.386543.10~3 4.0812.10~5

9 1.4291.10~5 3.065209.10~3 3.8485.10~5

10 6.769.10~6 2.148274.10~3 1.00224908.10~5

The above table indicates that our estimates are sharper that the corre- 
sponding ones obtained in [132]. Note, however, that both approaches use 
the same information.

All the above strongly recommend the usefulness of our results in nu- 
merical applications.

7.3 Newton-Like Methods Under Mild Differentiability 
Conditions

Consider an equation
F(x) = 0 (7-146)

where F is a nonlinear operator between two Banach space X, Y. A Newton- 
like method can be defined as any iterative method of the form

xn+i = xn - L^Ftxn), n = 0,1,2,...; x0 pre-chosen (7.147) 

for generating approximate solutions to (7.146). The {Ln} denotes a se- 
quence of invertible linear operators. This is plainly too general and what 
is really implicit in the title is that Ln should be a conscious approximation 
to F' (xn), since when Ln = F' (xn), the method reduces to the Newton- 
Kantorovich method. The convergence of (7.147) to a solution of (7.146) 
has been described already in 7.2 and the references there. The basic as- 
sumption made is that F is twice Frechet-differentiable in some ball around 
the initial iterate. We relax this requirement to operators that are only once 
Frechet-differentiable. An error analysis is also provided.

Our results can be compared with the ones obtained in [132], [160], 
[183], [227] when Ln = F'(xn), n = 0,1,2,... . But, even then, they are 

proved to be stronger.
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From now on we assume that F is once Frechet-differentiable at a point 
x E X and note that F' (x) € L (X, Y), the space of bounded linear oper- 
ators from X to Y.

Definition 7.5 We say that the Frechet-derivative F' (x) is Hdlder con- 
tinuous over a domain D if for some c > 0, p G [0,1]

||F' (x) - F' < c||z - i/||p , for all x,y€D. (7.148)

We then say that f' (•) G (c,p).

Definition 7.6 Let to and t' be non-negative real numbers and let g 
be a continuously differentiable real function on [tojto + t7] and P be a 
continuously Frechet-differentiable operator on

U(xOit')cX

into Y. Then the equation

t = 3 (t)

will be said to majorize the equation

x = P(x) on U (x0,t') 

if

l|F (x0) - x0|| <g(t0)-t0

and

\\p' (z)|| < g' (t) for ||z - Xo|| < t - t0 < t'.

We will need the following results whose proofs can be found in [183] 
and [227] respectively.

Lemma 7.1 Let {xfc}, k = 0,1,2,... be a sequence in X and {tfc}, = 
0,1,2,... a sequence of non-negative real numbers such that

Ikfc+i ~ Xfcll < tk+i - tfc, k = 0,1,2,...

and

tfc —► t* < 00 os k —> 00.

Then there exists a point x* G X such that

x^ —* x* as k —> 00
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and

lk* - Xfc|| < t* - tfc, k = 0,1,2,... .

Lemma 7.2 Let F : X -* X and D C X. assume D is open and that 
(•) exists for every x € D. Let Do be a convex set with Do Q D such that

^' (•) € Hd0 (c,p), then

WF(x)-F(y)-F'(x){x-y)\\< — forall x,y G Do.

We can now prove the following:

Proposition 7.2 Let F' (•) € Hdq (c,p), where Do is the closure of an 
open convex set and Do c D. Assume that for every n with {zjt} C Do, 
k = 0,1,2, ...,n, there exists an invertible operator Ln G L(X,Y) and a 
positive real number dn such that:

IMI<V- (7149)

For a and b > 0, both independent of n with

and

a > 1 if p = 0,

assume:

(
\ ? n \

- Xj-i || I - b, n = 0,1,2,... .

j=i / (7.150)

Set

= ^71‘P+1 ~ + <MLo1*’Cro)||, t € [0,oo) (7.151)

and

tn+l = tn + t0 = 0. (7.152)
On

Then if {zn} c Do, (7.152) majorizes iteration (7.147).
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Proof. We will use induction on n and Definitions 7.5 and 7.6. Note:

||®1 - ®o|| = IILo *F (x0)|| = ti - t0. 

and assume that:

{xfc} CDO, k = 0, l,2,...,n

and

||zj - Zj-ill < tj - tj-i for J = l,...,n.

The iterate zn+i is well defined since F (xn) and Lnx are. we will use 
the obvious estimate

n

-Xj-lll <t„
3=1

to compute:

ll^n+i-x„||<||L-1||||F(xn)||

< Vll|F(x„) - F(x„-1) - F'(xn-i)(xn - xn_i)||

+ l|L„-i-F'(xn_i)||||xn-xn-i||]

- ~ In~1HP+1 + (+-» + arf£-l)Ha:n ~ ®n-lll

£ dn' [^(‘n - t„-i)p+1 + (a<_! - 6)(t„ - t„_l) + d„-l(t„ - t„-l)

— dn [2^ (tn-l)(t„ — t„-l)2 + /'(tn-l)(tn — tn-l) + /(t„-l) •

(7.153)

But

f (fn) = f (tn-i) 4- f' (tn-i) (tn — tn-i) 4- -f” (tn-i) (tn — tn-1) 

+l/"'(t„)(t„-t„-l)3

1 2> f (t„-i) + /' (t„-i) (t„ - t„_i) + i/" (t„_i) (t„ - t„-i)
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since

f'" (t) = p (p - 1) ca (tn)p~2 > 0 for some tn G [fn-i>*n] C [0, oo) 

and

tn _ tn—i

by the induction hypothesis.
Therefore (7.153) becomes

||^n+l — $n|| < f (tn) = in+1 ~~

and the induction is completed. □

Proposition 7.3 Let F' (■) G Hd0 (c,p) > where Dq is the closure of an 
open convex set and Dq G D.

Assume:

(i) Inequality (7.150) holds for n = 0;
00

||F(xo)-Loll <gl<1. 
a0

and
(iii) the function f (t) defined by

J (t) = —— tp+1 + (<5‘ - 1) dot + do ||Lo lF (xo)|| > 4 6 t°> °°) 
P+1 (7.154)

has a minimum positive solution r0 such that U (x0,r0) Fo*

Then, F has a unique solution x* € U (xo,r'o) • Ifr0 is the unique fixed 

point of the equation

s(t)_t+

on someinteruallr^r'^^r'o^r'i, thenx’ is also unique in D0CiU (io,r}) • 

Moreover:

(a) Iteration
x'n+1=x‘n-LqXF(x'n)-, 

converges to x* for ||zq — zo|| < r2 < ri an<^ U (x0’r2) &0’
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(b) The following estimate is true:

where {tJJ is generated by

tn+l~tn+~dT-

Proof. define the nonlinear operator P on Do by

P(x) = x-LolF(x).

We will show that if t! € [fq, r[), then g (t) majorizes P (x) on U (zo, tOriPo-
We have

||P (xo) - XO|| = ||L0 lF (x0)|| = g (0) - 0.

Let x, t be such that x e U (x0, t') n Do and ||x - x0|| < t < t'. Then

||P' (x)|| = 11 - L-ip' (l)|| = ||L-1 ((£o _ F, (a.o)) + (F, (a.o) _ F, (a;)))||

- I Lo1II dlF' (®) - F' (x0)|| + ||F' (Io) - Lo||)
1 fp +4=s'w- 

a0

By hypothesis rj is the unique fixed point of g (t) in [0, t'] and g (t) < t' 
with equality holding if and only if t' = rj.

The results now follows from the well known classical theorem on the 
existence and uniqueness of solutions of equations (7.146) via majorizing 
sequences given in Kantorovich [5, p. 697] or in Theorem 3.2.4.

We remark that if {tn} converges to t*, then t* is the least upper 
bound for ||xj — Xj_i||, independent of n. Therefore, if we assume that 

U (xo, t ) c DQi using Lemma 7.1 we obtain that {xn} exists and converges 
to a solution x* of (7.146).

Usually we not wish to calculate the derivative of each Ln but instead 
pSe_ n y1 Place ^n+i,...,Ln+q and then calculate Ln+q+1 and use it 
or q calculations. That is why, as in [5), we find it useful to define a 
nondecreasmg sequence of non-negative real numbers {en} such that

e0 = 0
and

en = en__i or en = n.
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We then replace (7.147) by the iteration 

xn+1=xn-L^F(xn), n = 0,1,2. (7.155)
□

We can now prove a basic result.

Theorem 7.8 Assume:

(i) The hypotheses of Proposition 7.2 hold:
(ii) the sequence {dn} is uniformly bounded above 

and
(iii) the hypothesis (iii) of Proposition 7.3 is true.

Then (7.155) converges to a solution x* of (7.146) according to 

hn+1 -1*|| < ro - tn - < (/(tn)); to = 0, n = 0,1,2,... . (7.156)

Moreover if

(iv) the hypothesis on r{ in Proposition 7.3 holds then x* is a unique so- 
lution of (7.146) in U (zo,rl) ODo-

Pro of. Let us define Cn = Len and Cn = deni n = 0,1,2,... . The proof 
will be a consequence of the following steps. □

Step 1. We will show that {xn} C U (zo,ro) C Dq and that the rest of 
the hypotheses of Proposition 7.3 hold.

We easily note:

(i) (7.149) holds for Cn and c^, n = 0,1,2,...;
(ii) (7.150) holds by the choice of a and dn < n.

we now estimate

||<7n-F'(x„)|| = ||Le„-F'(l„)||
= ll(ie„ - F' (®«„)) + (F' (^e) " F' 

<l|ie„-f'(Xe„)ll + F'(^e„)-^(^n)ll 

(\ p
Ikj" II1 _ b+c

>=i J
(\p n, \

I -&•
/
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Let f be defined by Proposition 7.2, rQ is the smallest positive zero of 
f. By Proposition 7.2

||$n+l — xn|| < 9n (tn) “ ^n>

where the function gn (t) is defined on [0, oo) by

9n(t) = i+—, n = 0,l,2.......
Cn

Assume that

tn < rQ-

Then via the mean value theorem we can find zn 6 (tn,r0) such that 

rQ tn+1 = 9n (r0) 9n (tn) ~ 9n (zn) (rQ tn)

= 1 + — v 0 - 
L .

= c”1 [Cn + cazr - b] (r0 - tn).

Using (7.150) we easily get

0 < c”1 [ch + cazr - b] (r0 - tn) < rQ - tn+i 
< Cn1 [Cn + carg - 6] (r0 - tn) < r0 - tn.

Therefore {tn} is bounded and convergent to some t* < r0.
The estimate,

0= lim (tn+i-t„)= lim i^-> lim 
n-»oo n—>oo Cn n—>oo C

where e denotes the uniform upper bound on {dn} , implies that

that is

/(t*) = 0,

t* = r0

and (7.156) holds.
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Step 2. We show that z* = lim xn is a solution of F. We have n—»oo

(n \ P
£>>-^-111)

J=1 /
< ll-F' (zo)ll + C ||zo - ^nll” + Cn - 6 + apr%

<||F' (x0)|| + (c + ap)rp-6 + e = B.

Therefore the inequality

||F(zn)||<||Cn(zn+1-Xn)||
— Il^nll ll^n+l ~ $n||
< B||zn+1 -zn|| -> 0 as n —> oo

implies that F(x*) = 0.
The unicity results will now hold if (ii) of Proposition 7.3 is satisfied 

and the hypothesis (iii) and (iv) of the theorem hold.
for n = 0 in (7.150) we obtain

0 < b < do - H-F' (xo) - Lq||

that is

0 < -£- < 1 —tf1, 
OQ

so (ii) of Proposition 7.3 is satisfied. It can easily be checked that r0 < 
ro < r* and the proof of the theorem is now completed.

We now state a theorem which seems to reduce to a minimum of the 
assumptions necessary to apply the majorant technique.

Theorem 7.9 Let F' (•) G HDq (c,p), where Do is the closure of an open 

convex set Do c D.
Assume:

(i) If x0 G D, let LqEL (X, K) be an invertible operator with

||Lq 1F(xo)|| < a

and

IMI^-
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(ii) There exist real numbers 6 and such that if {xfc} C Dq, k — 
0,1,2, ...,n then

6n — <$o = <$> n = 0,1,2,... .

(iii) The following estimate holds:

306 < 1.

(iv) There exists an interval [0,tq] such that for r G [0, ro]

206 4- 0 (7 + c) rp < 1,

and U (x0,r) C Dq. z
(v) Assume that there exists a nonempty interval [^3,^4] = [0>ro] A [ro>ri 

where ro is the small positive solution of (7.151).
Then the following are true:

(a) for a, b such that:

a > max 27+ c 2 
p ’p(p + l)

and

-x3-i|| j <dn + ap
>=1 /

where

d?=!3 l-^(5 + 5n)-j3(7 + c) 

n = 0,1,2,... and dn < cfo.
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(b) The sequence {xn} given by (7.155) exists in U (xq, r), r$ < r < and 
converges to a unique solution x* of (7.146) in U (2:0,73). More- 
over, the solution x* is unique in U (2:0,74).

(c) The following estimate holds if ti = a

||x„+i-x’||<r0-t„-<(/(<„))

where f is given by (7.151) with

a = a,b = b and dn = dn, n = 0,1,2,... .
n

Proof. Assume {2:^} C U(xQ,ro), k = 0,1,2, ...,n and 52 llxj ~ 1II <
2=1

7 with 73 < 77 < 74.
We have

l|i„ - Loll < ||I„ - F' (x„)|| + lir (x„) - F' (xo)ll + ||F' (xo) - M 
(\ p

-2Jj-l|| J 4- c ||27n — 27o||P -1- <5 

j=l /

< 5o + 6n + 7 (r)p + crp
< 25 + (7 + c)7p < i.

Therefore,

(\ p n \
Eii^-^-iii • 

J=i /

The Banach lemma can now be used to show that L”1 exists and is 
bounded in norm by the (dn) 1, n = 0,1,2,.... Moreover, {dn} is uni- 
formly bounded by d0. _

It is now easy to check that (7.66) is satisfied by the choice of dn, a and 
b.

The rest of the theorem now follows from Theorem 7.8. O

When we solve equation (7.146) numerically using iteration (7.155) we 
generate instead of the sequence {2:n} the perturbed sequence {zn} given 
by

Z„+1 = z„ + [Le„+iz„]-1[F(z„) + az„]-gz„. n = 0,l,2,...,

assuming zq = 2:0 and [Len + LZn] exists for n = 0,1,2,... .
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The problem of estimating the bound on ||xn — zn|| when LCn = F' (xn) 
and under certain assumptions, basically on the norm of the linear operator 
LZn and on the norm of the elements of LZn, aZn and qZn has been solved 
in [250].

Here we can easily prove the analog of Lemma 2 and Theorem 3 in 
[250] for the more general iteration (7.155). However, we leave that to 
the motivated reader and we show that the order of convergence of (7.147) 
when Ln = F' (xn) to a solution x* of (7.146) is 1 4- p.

We then show that iteration (7.155) under appropriate choice of the 
LCn s converges to x* with order 1 4- 2p.

This improves the results in [250] where the order of convergence is not 
given. If the second Frechet derivative of F is bounded and p = 1, our 
results coincide with the one’s in [243].

Proposition 7.4 Let LCn = F' (xn) in (7.155).
Then under the hypotheses of Theorem 7.9, the obtained solution x* of 
(7.146) via iteration (7.155) is such that

lkn+i - x*|| < k ||zn - x*||1+p , n = 0,1,2,... (7.158)

where

k = cd0 
(p+l)2'

Proof. We have

3-n+l — 3>n ® r (xn) F (xn)

= (F' (xn))-1 [F' (xn) (xn - x‘) - (F (x„) - F (x*))] • 

By taking norms in the above identity we obtain

hn+i — x*||

< ||f' (xn)-lli II f (F' (Xn) - F' (Xn +1 (x* - Xn))) dt
11 11 ||J0

<^7hn-X*||P+1 f t”dt
P + 1 JQ

< k\\xn - x*||p+1, n = 0,1,2,....

||zn -x*||

□
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Proposition 7.5 Consider the iteration (7.155) for the solution of 
(7.146) given in the form

Vn = x„ - F' (xn) 1 F(xn)> n = 0,1,2,...! 

®n+l = Vn - F' (xn)”1 F (j/„), n = 0, 1, 2,... J
(7.159)

with xq pre-chosen.
Then under the hypotheses of Theorem 7.9 the obtained solution x* of 

(7.146) via iteration (7.159) is such that

||xn+i-x*||<fci||x„-x*||1+2p, n = 0,1,2,... (7.160) 

where,

2” (cdp)2
1- (P + 1)3 '

Proof. We have

x„+l - x’ = Vn - X* - F' (x„)~1 F(yn)
= F' (Xn)’1 (F' (Xn) (y„ - X*) - (F (?„) ~ F (x*))] .

By taking norms in the above identity we obtain

|]xn+i -x'H < (F' (x„) - F' (x* +1 (yn - 1*)))

■ 111/n-l’ll

< 1|(x„ - x-) + t (yn - x*)||p IIyn - X*ll
p + 1

< (II1" - +11»" “ ^ll)” 11»’*_
p + 1

< ||x„ - x*ir ||j/„ - X*|| (since ||y„ - x*|| < ||x„ - x*||).
p + 1 (7.161)

similarly,

3/n — Xn — X — F (xn) F (Xn)
= F' (xn)-x [P' (x„) (x„ - X*) - (F (x„) - F (x*))].
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Therefore,

Il3/n ~ ®*|| < F' (x’+t(x„-i’)))dt

< cd°
“ p+ 1

• hn - X’ ||P+1

kn-x’||P+1.cdp
(p + 1)2

(7.162)

Finally, by (7.161) and (7.162) we obtain

||X„+1 - X*ll < hn - X’||P hn - *T+1 
P + 1 (P 4- 1)

<fci h„-x’||1+2p.

Definition 7.7 Define the efficiency X of an iteration {xn} f°r solving 
(7.146) by

X = (7.163)

where k is the order of convergence of {xn} and T denotes “time per step • 
That is, the number of function evaluations required to compute each iterate 
xnt n = 1,2,... .

Let Ei,jE?2 denote the efficiencies of iterations (7.147) and (7.159) re- 
spectively. Take p = | then

p -

2 ’
Ei =

t,n2
E2 ~ ~3~

and

E\ < E2.

7.4 Perturbed Newton-Like Methods

Let F be a nonlinear operator mapping some subset D of a real Banach 
space X into a subset of a real Banach space Y. The most popular methods
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for approximating solutions x* of the equation

F(z) = 0 (7.164)

are the so-called Newton-like methods of the form

Xn+1 = xn - A(xn)-1 F(xn), n = 0,1,2,.... (7.165)

Here x0 G D is given and {>1 (xn)} , n = 0,1,2,... denotes a sequence of 
invertible linear operators.

Yamamoto [284] has unified the study of finding sharp error bounds for 
Newton-like methods of the form (7.165) under Kantorovich type assump- 
tions. He obtains results that improve error bounds obtained before by 
Rheinboldt [248], Dennis [132], Miel [202], Moret [209], Potra [235]-[240]. 
Relevant and interesting results for the local and semilocal case can be 
found in Catina§ [110j-[112].

The results obtained by the above authors however have great theoret- 
ical but little practical value, since the sequence generated by (7.165) can 
rarely be computed exactly.

In this section we find it useful to consider that the iterative procedure 
(7.165) is perturbed. We suppose that all the elements contained in the 
construction of these procedures are known only approximately. Moreover 
we suppose that at each step the solution of the respective linear system is 
also performed approximately.

In particular, we consider the iterative procedures corresponding to 
(7.165) to be of the form

xn+l = xn- (A(xn) + Ln)-1 (F(xn) + yn) + zn, x0 = ®o, n = 1,2,...
(7.166)

zn+i = xn - (F'(x0) + Lo)-1 (F(zn) + yn) + zn, x0 = x0, n = 0,1,2,...
(7.167)

where

Ln€L(X,Y), yn€Y and zn G X.

We provide upper bounds on the distances ||xn — xn|| and ||xn — x ||.
Finally, our results are applied to an ”ill conditioned” scalar equation 

considered also in [192].
To make the section self-contained we will reproduce some of the results 

obtained in [284] to fit our purposes.
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Let F, D and xq be defined and consider the iterative procedure (7.165). 
According to Dennis [132], Schmidt [252] and Yamamoto [284), we assume 
the following:

||/l(xo)-1 (F’(x)-F'(y)) < K ||® - 2/||, x,y E D, K > 0, (7.168)

||a(Io)-1 (A(x)-4(xo)) < L ||x — ®o|| + x G D, L > 0, t>0, 
(7.169)

||a(xo)-1(F(x)-A(x))| | < M ||® - ®o|| + 771,

x G D, M >0, m>Q, (7.170)

t + m<l, a = max(l,LL^Y F(Xo)0O, (7.171)
X A J

7J=||a(xo)-1K(xo)||, h = aKn/(l-e~m)2 <±, (7.172)

t’ = (1 -1 - m) (1 - v/TTih) / (aK), (7.173)

t” = (1 - m + y(l-m)2-2K7j/K,) , (7.174)

S = S(xi,t' -n) C D. (7.175)

Under these assumptions, define the sequence {tn} by

«0=0, tn+l=tn + /(tn)/p(tn), 71 = 0,1,2,... (7.176)

where

f(t) = ±aKt2-(l~e-m)t + n (7177)

and

g(t) = l-£-Lt. (7.178)

We can now state the following result [284, Th. 4.1].

Theorem 7.10 Wzth the above notation and assumptions, we have the 
following:

(a) The iterative procedure (7.165) is well defined for every n > 0, xn € S 
for n > 1 and {zn} converges to a solution x* G. S of the equation 
(7.164)-
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(b) The solution x* is unique in

( S(x0,f)nD (if 2Kr]<(l-m)2) (7 n9)
[S(io.t**)nL> (if 2Kr><(l-m)2).

Moreover, the following estimates are true:

||xn - x*|| < t* - tn, n = 0,l,2,... (7.180)

where the nonnegative sequence {tn},n = 0,l,2,... is increasingly 
converging to t*.

We will finally need the result [189, Cor. 4.1.1].

Theorem 7.11 Consider the modified Newton method

X„4-i = X„ — F'(xq)~1 F (x„) , n = 0,1,2,... (7.181)

where we assume the following:

xq € D, F' (zo)-1 exists, (7.182)

||f'(xo)-1(F'(i)-F'(xo))|| <K||x-x0||, xeD, (7.183)

^ = ||f'(x0)-1 F(x0)|| > 0, h = Kr)<^ (7-184)

? = (1 - y/1^2hj /K, t" = (1 + V1 - 2h) /K, (7.185)

Si = 3i (xi, ? - rj) C D. (7J86)

Then:

(a) the iterative procedure (7.181) is well defined for every n > 0, x„ € Si 
for n > 1 and {zn} converges to a solution of equation x* (7.1).

(b) The solution x* is unique in

3 _ J S1 (xo,?') n D (if 2h < 1) (7.187)
S (Si(xo,t”)nP (if 2h=l).

Moreover, the following estimates are true

||x„-x*|| <?-tn, n = 0,l,2,... (7.188)



278 Approximate Solution of Operator Equations with Applications

where the nonnegative sequence {tn} , n = 0,1,2,... is given by 

to = 0, tn+1 = |^ + 77, n = 0,1,2,... (7.189)

and is increasingly converging to t*.

In what follows we shall suppose that there exist three possible numbers 
€i, €2, and €3 such that

hn||<€i, ||Ln||<€2, ||zn|| < €3 for all n G N. (7.190) 

In Theorems 7.10 and 7.11 we have seen that the sequences produced by 
the iterative procedures (7.165) and (7.181) remain in the open balls S 
and Si respectively and consequently in D. However, in the perturbed case 
we have to suppose that F is defined on the balls S* = S* (zo»r) 
S* = S* (z0,ri) respectively with r > n > t** and S*,S{ C D. Set 
S2 = S*\JS{.

In the perturbed case it is more convenient to suppose that the following 
conditions are satisfied for all x, y G S2 :

||A (x)-1 (F' (x) - F' (j,)) || < K ||x - 3,11, (7-191)

||4(I)-1(A(i)-A(Io))|| <L||x-Io||+£, (7.192)

and

||^ (®)-1 (F' (j/) - A(3,))|| < M ||3, - xo|| + m. (7.193) 

These conditions are more restrictive than conditions (7.168), (7.169) and 
(7.170) respectively but they are satisfied by the usual examples of approx- 
imation.

In order to assure the invertibility of A (xn) 4- Xn for all n = 0,1,2,... 
we shall suppose that A (x) is invertible for all x G S2 and that the norms 
||A (x) || are bounded. More precisely, in the perturbed case we shall 

unpose one, or both, of the following conditions:

(Ci) The open ball S2 is included into the domain of definition of F and 
conditions (7.191)-(7.193) hold for all x,y € S2.

(C2) The linear operator A (x) is invertible for all x G S2 and there exists 
a positive number a such that

a-1 > sup (||j4(x)-l|| ;a: € . (7.194)
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We can now prove the following theorem concerning the iterative pro- 
cedure (7.166).

Theorem 7.12 Assume:

(a) The hypotheses of Theorem 7.10 are satisfied and let {xn}, 
n = 0,1,2,... be the sequence generated by (7.16.5);

(b) the conditions (C\) and (C2) are satisfied;
and

(c) the inequalities

(1 - fi)2 — 4q7 >0, a > C2, (7.195)
0<1, (7-196)

, (U97)
2a

are satisfied, where

= q(K + 2L) (7.198)
2(a —€2)

P = [(K + L) e0 + m +1 + ej + 4 + L£ol £o = f’ “ fo.

. «1 . _ «2 (7.199)
el — —> e2 ~’a a

and

7= —(2L + «o + ^ + 4)£o + £3- (7-20°)
a - €2

Then the iterative procedure (7.166) is well defined and for each n G N 

we shall have the estimates
||x„-£„||<w„<5, (7 201)

where the real sequence {wn} is given by:

W„+1 =a„+iwj +/3n+iw„+ 7„+i, wo = O, n = 0,l,2,... (7.202)

with 
_ a (2L + K) (7.203)

a"— 2(a-e2)’
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j0„ = [(K + L) (t„ - t0) + m +1 + «5 + L (t„+i - *„)] (7-204) 

and

7n — (2L (tn tQ) + + 6<2 + (^n+l ~ ^n) ----------  + €3, n — 1» 2, •
a — €2 (7.205)

Proof. For n = 0 the inequalities (7.201) are trivially satisfied as equali- 
ties. Suppose they are satisfied for n = 0,1,2,..., k, k > 0. From (7.201) it 
follows that xk G In this case, condition (C2) implies, according to the 
Banach lemma on invertible operators that the linear operator A (xk) + Xk 
is invertible and

7.206 ||(A(xfc) + Xfc)-1| = (l + Alxk)-1 Lk) *4(x*)

< (a - e2) 1 (7.206)

From (7.165) and (7.166) we obtain the identity

= (1 + A (xfc)-1 Lfc) 1 A (xfc)"1 {[F (xfc) - F (xfc) - F' (ifc) (xk - £*)] 

+ [(F' (xk) - A (xk)) (xk - Zfc)l + Vk + [Lk (xk - Zfc)!

+ [(4(jfc) - A(xfc)) A (xfc)-1 F (Xfc)] + [LfcX (xfc)'1 F(x*)]} +

Using (7.191), (7.201) and (7.206) we obtain

||a (Zfc)-1 [F (Xfc) - F (Xfc) - F' (Xfc) (ifc - Xfc)]|| < ||xfc - £fc||

<
(7.208)
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By (7.191)-(7.193) and (7.201) we get

||A(xfc)-‘ (F'(xfc)-X(xfc))||

= ||[(F' (xk) - F' (z0)) + (F' (x0) - A (xo))
+ (A (x0) - A (xjb))] (zjk - xjt)||

< [K ||xfc - xq|| + L ||xfc - x0|| + + m] ||xfc - xfc||
< [K (tfc - tQ) + Lwk + L (tk - to) + m + £] wk
< (Xc0 + Lwk + Le0 + m + £) wk. (7.209)

From (7.190) and (7.201) we get

|| A (ifc)-1 Lfc (Xfc - Zfc)|| < 62 ll^fc - 3*11 c2wfc- (7.210)

Using (7.165), (7.192) we obtain

||4(x*)-l(A(xfc) - 4(xfc))|

= ^(x*)-1 [(A(zfc) - 4(s0)) + (4(x0) ->l(xfc))l (®* -®*+i)||

< (L (||zfc - xQII + ||xfc - x0II) + 2^) ||zfc - Xfc+1 II

< (Lwfc + 2L (tfc - t0) + 2£) (tfc+i - tfc)

( since, by Theorem 7.10, ||zjt — Xfc+i || < tk+i —^k^^ eo )

< (Lwjt + 2L (t* - t0) + 2£) (t* - to). (7.211)

Finally, by (7.175) and (7.190)

|| A (xjt)”1 LkA (xfc)”1 F (zfc)|| < cj ||xfc - Xfc+i || < €2 (^+i ”

< ejeo. (7-212)

With these majorizations in (7.207), using (7.206), (7.190), (7.195)- 
(7.200), and (7.202) we can easily obtain that

||xfc+i - Xfc+i || < Wfc+i < a52 + + 7 = £ (7.213)

That completes the induction and the proof of the theorem. D 

Concerning the perturbed iteration (7.167) we have:

Theorem 7.13 Assume:
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(a) The hypotheses of Theorem 7.11 are satisfied and let {xn}> n = 
0,1,2,... be the sequence generated by (7.181);

(b) the condition (C\) is satisfied and (7.191) with A(x) = F' (x) and 
y = xQ-

(c) The inequalities

d > 62, with 0 < d < ||F' (z0) 1|| ,

(l-^i)2-4ai7i >0, 

01 < 1,

(7.214)

(7.215)
(7.216)

_ 1 - 01 ~ \/(l-/?i)2 -4qi7i
-------------------< n -1* + n 2oii

(7.217)

are satisfied, where

dK (7.218)

(7.219)

2 (d — €2) ’ 
zj _ f-odK 4- €2 
Pi , jd - €2

and

_ €2^0 + €1 4- €3 (d — €2)
71 d — e2 (7.220)

Then the iterative procedure (7.181) is well defined and for each n G N 
we shall have the estimates

||xn xn|| < Sn < 5i, (7.221)

where the real sequence {Sn} is given by:

•Sn+i = <+1s’ + ^+1sn + 7;+1) s0 = 0, 11 = 0,1,2,... (7.222)

with

, dK (7.223)

(7.224)

" 2(d-t2)’
_ dK (tn — t0) 4- €2 

d - €2
and

* _ e2 (^n-n — tn) 4- €1
7n . 4-e3, n-1,2,... .d - g2

(7.225)
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Proof. By the Banach lemma on invertible operators it follows that the 
linear operator F' (xq) + Lq is invertible and

(Z + F'^o)*1) 'f'(xo)|(F'(Io) + Lo)’1| =

(7.226)

This fact, together with the remark that (7.217) and (7.221) imply xn G 
shows us that if (7.221) is satisfied, then the iterative procedure (7.181) 

makes sense.
We will show that (7.221) holds for all n = 0,1,2,... . For n = 0 the 

inequalities (7.221) are trivially satisfied as equalities. Suppose they are 
satisfied for n = 0,1,..., k. We shall prove that they hold for n = k + 1 too.

From (7.167) and (7.181) we obtain the identity

Zfc+i - Xfc+l

= (1 + F' (xo)"1 Lo) "* F' (x0)-1 {[F(£*) -F(xk)-F' (x0) (xk - «fc)l 

+2/fc + Lo (xn - xn) - LoF' (x0)-1 F (xn))} - zn. (7.227)

By taking norms in the above inequality and using (7.191), (7.227), 
(7.190), (7.181), (7.188), (7.189), (7.214)-(7.225), we obtain as in (7.213) 
that

ll**+i - $k+i|| < - (||xo - x*ll + Iko - Jfcll) h* - Sfcll
2 (a - e2)

+ 9----- ---  [e2 - Zfc|l + 62 Ikfc “ Zfc+l|| + €1] + 63
z — C2

- 2~(/(2 II10 “ ®*ll + llx* ~ X*ID Hx* - 2*H

+ ^_£2 I62 HX* — X*ll + e2 llX* - x*+l II + ell + £3

~ 2 (d - e2) t2 ^k ~+ Sk + f5* + (**+1 ” + £1J + <3

= Sfc+1 < [2 (? - t0) + <5i + -j-l—(<5i+?-to + ei)+«3

= <5!. (7.228)

That completes the induction and the proof of the theorem. O
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The following result follows immediately from Theorems 7.10-7.13.

Corollary 7.1 Under the hypotheses of Theorems 7.12 and 7.13 the fol- 
lowing estimates hold for n = 0,1,2,...

||xn - z*|| < wn +1* — tn (7.229)

and

\\xn-x*\\<Sn + t'-tn (7-230)

for iterations (7.166) and (7.167) respectively.

Finally, we remark that the approach employed here applies for the rest 
of the error bounds obtained in [284, pp. 550, 555].

We shall apply Theorem 7.13 to an ”ill conditioned” example proposed 
by Wilkinson [280] and considered also by Lancaster [192].

Example 7.1 Consider solving iteratively the quadratic equation 

x2 - 2.0288888001 + 1.02876900 = 0 (7.231)

using a computer characterized by the accuracy ei = «2 — (3 — -5 x ' 
Starting with zq = 1.032567321 and using (7.181) we get

zi = 1.032567323 
z2 = 1.032567326 
z3 = 1.032567329 
zn = 23, n > 3.

If we take xo = 22 and max(r, ri) = .03624585, then we can eas- 
ily obtain from (7.214)-(7.225) K = 55.17872776, 77 = 2.75893638.10" , 
h = 1.52234599.10“7, ? = 2.75903425.10"9, ?* = .0362445849, eo = 
?, d = .036245852, ax = 27.5893654, /?i = 1.660346909.10"7, 71 = 
1.42946827.10“8 and <5X = ll.3630739.10"9.

We want to find an estimate for the distance [23 — x*|. The hypotheses 
of Theorem 7.13 being satisfied we can use the Corollary.

From (7.230) we get [23 — x*| < 21 x 10"9.
Taking advantage of the fact that we know that the sequence {zn) 

comes constant beginning with n = 3, we easily obtain that |z3 — £*l — 
11.3630739.10"9. This is very close to reality because x* = 1.032567332 is 
the solution of equation (7.231).
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7.5 Projection Methods and Inexact Newton-like Iterations

We consider the inexact Newton-like method

xn+i = xn + yn, PA (xn) yn = - (F (xn) + G (xn)) + rn, n > 0 (7.232) 

for some xq € U (xq,R), R > 0, to approximate a solution x* of the 
equation

F (x) + G (z) = 0, in U(xq,R). (7.233)

Here A (x), F, G denote operators defined on the closed ball U (xq, R) with 
center xq and radius R, of a Banach space X with values in a Banach 
space Y, whereas rn are suitable points in Y. The operator A (x) (•) is linear 
and approximates the Frechet derivatives of F at x € U (xq ,R). P is a 
projection operator in X such that P2 = P. we will assume that for any 
x, y G U (xq, R) with 0 < ||x — y\\ s < R - r,

||P (F'x +1 (x - y)) - A (x)|| < Bi (r, ||x - Xoll + *lb “ ®H) - te l°> X1 
(7.234)

and

||P (G (x) - G(y))|| < B2 (r, ||x - S/||) • (7-235)

The functions Bi(r,r') and B2(r,r') defined on [0, B) x [0, B| and 
[0, B) x [0, B - r) are respectively nonnegative, continuous and nondecreas- 
ing functions of two variables. Moreover B2 is linear in the second variable.

Note that Newton method, the modified Newton method and the secant 
method are special cases of (7.232) with A (xn) = F (®n) > (xn) — F (®o) 
and A(xn) = S(xn,x„_i) respectively (when P = / the identity operator 
on X, or not).

If we take
w(r') + c (7236)

and
e(r'), (7-237>

where w, e are nonnegative, nondecreasing functions on [0, R r], to b 
the right hand sides of (7.234) and (7.235) respectively, then we o am 
conditions similar but not identical to the Zabrejko-type assump lons 
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considered by Chen and Yamamoto [116]. They provided sufficient condi- 
tions for the convergence of the sequence {zn} , n > 0 generated by (7.232) 
to solution x* of equation (7.233), when rn = 0, n > 0 and P = I.

Moret [212] also studied (7.232), when G = 0 and condition (7.236) is 
satisfied.

In this section we will derive a criterion for controlling the residuals 
rn in such a way that the convergence of the sequence {xn}, n > 0 to a 
solution x* of equation (7.233) is ensured.

We believe that conditions of the form (7.234)-(7.235) are useful not 
only because we can treat a wider range of problems than before, but it 
turns out that under natural assumptions we can find better error bounds 
on the distances ||xn - x*||, n > 0.

The iterates {xn} generated by (7.232) when P = I can rarely be com- 
puted in infinite dimensional spaces. It may be difficult or impossible to 
compute the inverses A (xn) at each step. It is easy to see however that the 
solution of equation (7.232) reduces to solving certain operator equations 
in the space Ep. If, moreover Ep is a finite dimensional space of dimension 
N, we obtain a system of linear algebraic equations of at most order N.

We will need the following proposition.

Proposition 7.6 Let a > 1, a > 0, 0 < M < 1, 0 < p < R, s > 0 be real 
constants such that the equation

<P (t) := da — t (1 — /z) + s = 0 (7.238)

has solutions in the interval [0,7?) and let us denote by t* the least of them. 
Let v > 0, /i1 > 0 such that

v(l-/z)~ (I-/21) <0. (7.239)

Then, for every s1 satisfying

0 < s1 < v (R,p + e)d0 + B2 (R,s) + sp (7.240)

and for every p1 such that

0 < P1 < P + s, (7.241)
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the equation

tp1 (t) := ava
f Bi (R, p1 +e)dd + B2 (R, t)l - t (1 - p1) + s1 

Jq
= 0

(7.242)
has nonnegative solutions and at least one of them, denoted by t**, lies in 
the interval [s1, t* — s] .

Proof. We first observe that since tp (t*) = 0 and 0 < < 1» we obtain
from (7.238) that s < t*. We will show that

ip1 (t* - s) < 0. (7.243)

Using (7.238)-(7.242), we obtain

<pl (t* — s) = ava f ‘ B^p1 +0)de + B2(R,t* 
Joo

-*)

-(f-s)(l-/?)+*'

vfacrf [ Bi(R, p + 6)d0 + B2(R,t ) ~ B2(R, s)

e)<w + B2(ft.s))
V

< v I acr '.,p + 0)d0 +B2(R,t') -f(l-p) + s

+ t*(l - p) - s + sp - — (1 - /?)

< «(t’ - s) [(1 - M) - (1 -] < 0, by (7.239).

Hence, tp1 (t) has nonnegative real roots and for the least of them t , it is

s1 < f * < f - s.

Moreover, from (7.242) we get /i1 < 1.
That completes the proof of the proposition. □

We can now prove the following result.
Theorem 7.14 Let {s„}, {p„}, {<r„}, n > 0 be real sequence, with
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sn > 0, pn > 0, an > 0. Let {pn} be a sequence on [0, R), with pQ = 0 and

Pn+i < 52 5>»
J=0,l,2,...,n

n > 0. (7.244)

Suppose that 1 — > 0 and that, for a given constant a > 1, the function

<po (t) := acrQ
[ Ri (R> Pq + 0) d0 + B2 (R, t) — t (1 — pq) + sq (7.245) 

Jo

has roots on [0, R).
Assume that for every n > 0 the following conditions are satisfied

sn4-l S

where vn = 71 <Tn

Then,

(JJ Bi(7?,p„ + 0)d0 + B2(.R,sn))+sn,pn , (7.246)

vn (1 Pn) ~ (1 — pn) < 0, (7.247)

(a) for every n > 0, the equation

<Pn (t) := avnan
•t

#l(K,pn + 0) dO + B2(R,t) -t(l-Mn) + sn
(7.248)

has solutions in [0,K) and, denoting by t* the least of them, we 
have

S3 — tn
j=n,.. ,,oo

(7.249)

(b) {^n}) n > 0 be a sequence in a Banach space such that 
iRn+i — xn|| < sn. Then, it converges and denoting its limit by 
i*, the error bounds

||x xn|| < tn

and

||x xn+i || < tn — sn

(7.250)

(7.251)

are true for all n > 0.
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(c) If there exists hQ G [0, R) such that

V?o (M < 0, (7.252)

then (pQ (t) has roots on [0, R).

Proof. (a) We use induction on n. Let us assume that for some n > 0, 
1 - Mn > 0, </?n (t) has roots on [0, R) and t* is the least of them. This is 
true for n = 0. Then, by (7.244), (7.246), (7.247) and the proposition, by 
setting s = sn, s1 = sn+i, p. = pn, /i1 = /xn+i and v = vn, it follows that 
tn+i exists, with

5n+l < ^n+l — ~ Sn

and 1 - /xn+i > 0.
That completes the induction and proves (a).
(b) This part follows easily from part (a).
(c) Using (7.252), we deduce immediately that (p0 (t) has roots on [0, R).
That completes the proof of theorem, O

We can now prove the main result.
Theorem 7.15 Consider the method (7.232). Assume that for s0 > 0, 
tfo > 0, 0 < pQ < 1 and a > 1, (7.252) is true. Then, the function (p0 (t) 
defined by (7.245) has roots on [0, R). Denote by tQ the least of them and 
suppose that

t'0<Ro<R- (7-253)

Let sn > 0, /zn > 0, an > 0, n > 0 be such that liminf an > 0 as n -> oo 
and condition (7.246) is true for alln>0.

Theorem 7.16 Assume that, for all n>Q,
hnll < S„ < <rn l\P(F(xn) + G(x„))|| (7.254)

and
||Pr„|| < (7-255)

Then the sequence {xn}, n > 0 generated by (7.232) remains in U (x0,tQ) 
and converges to a solution x* of equation (7.233). Moreover, the error 
bounds (7.250) and (7.251) are true for all n > 0, where t* is the least root 
in [0, R) of the function <pn (t) defined by (7.248), with pn = ||zn ~ xo|| > 

n > 0.
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Proof. The existence of tj is guaranteed by (7.252). Let us assume that 
xn, xn+i € U (xo,to) ♦ We will show that for every n > 0, condition (7.246) 
is true. Since ||?/o|| < so, this is true for n = 0.

Using the identity

P (F (xn+i) + G (xn+i))

= [ P[F' (xn 4-1 (xn+i - xn)) - A (xn)] (xn+i - xn) dt 
Jo
+ P(G (xn+i) - G (zn)) + Prn,

(7.234), (7.235), (7.254), (7.255), setting pn = ||xn - x0|| and by taking 
norms in the above identity we get

^n+l < ^n+l ||P (F (xn+i) 4- G (xn+i))||
< Vn j^n (Ry Pn + 0) dd + Bz (R, Sn)^ + Snpn

which shows (7.246) for all n > 0.
The hypothesis (b) of Theorem 7.14 can now easily be verified by induc- 

tion and thus, by (7.249) and (7.254), the sequence {xn} , n > 0 remains in 
U (xQ,to), converges to x* and (7.250) and (7.251) hold. Finally, from the 
inequality

IIP (F (xn) 4- G (xn))|| < ||P (A (xn) - F' (x0))II \\VnII
+ \\PF' (xo)|| hn||4-||Prn||,

(7.234), (7.255) and the continuity of F and G, as lim inf an > 0 and sn —* 0> 
as n —> oo it follows that P (F (x*) + G (x*)) = 0. Hence F (x*) + G (z*) = 
0.

That completes the proof of the theorem. □

Remark 7.4 (a) In the special case when Bi and B2 on given (7.236) 
and (7.237) respectively, then our results can be reduced to the ones obtained 
by Moret [5, p. 359] (when G = 0 and P = I).

(b) Let G = 0, P = I, A(x) = F' (x) and define the functions <Pq (t)» 
^nW bV

Pq (t) = octq [ (t - e) k (0) d0 - t (1 - po) + s0,
Jq

(t) = avnan [ (t-e)k(pn + e)d9 - t (1 - pn) 4- sn,
Jq
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where k is a nondecreasing function on [0,1?] such that

||F' (x) - F' (y)|| < k (r) ||x - i/||, x, y € U (x0, r) (r < Rq).

Assume that B\ can be chosen in such a way that

v>n (i) < Pn W » n > (7.256)

Then under the hypotheses of Theorem 7.15 above and Proposition 1 in 
[212, p. 3591, using (7.256) we can show

||x*-xn|| <t*n<m^ n>Q 

and

||z* - Xn+l II <tn~ Sn<mn- Sn> 71 > 0 

where by mn, we denote the least solutions of the equations

7pn (t) = 0, n > 0 in [0, R).

7.6 Exercises

7.1. Consider the Stirling method

2n+1 = 2n - (Z - F' (F(2n))]-1 [Zn - F(2n)]

for approximating a fixed point x* of the equation x = F (z) in a 
Banach space X.

Show:
(i) If ||F'(z)|| < a < then the sequence {xn} (n > 0) converges to 

the unique fixed point x* of equation x = F (x) for any xo E X. 
Moreover show that:

ii * ii ||®o — ? (2o)ll / nx
II* - ^ll < J —(n -*

(ii) If F' is Lipschitz continuous with constant K and IJ2** (x)|| < 
a < 1, then Newton’s method converges to x* for any xq x X such 
that

1 ||x0-F(xo)|l j
hN = 2K (l-a)~
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and

h„ - x*|| < (M2’-1 l|Xo~F(:ro)l1 (n > 0).
1 — a

(iii) If F' is Lipschitz continuous with constant K and \\F’ (z)|| < 
Q < 1, then {zn} (n > 0) converges to for any zq € X such that

2 1 — a 1 — a
7.2. Let H be a real Hilbert space and consider the nonlinear operator 

equation P (x) = 0 where P : U (xo,r) C H —> H. Let P be 
differentiable in U (z0, r) and set F (x) = ||P (z)||2. Then P (x) = 0 
reduces to F (x) = 0. Define the iteration

Zn+l = xn - -' (Xn) (n-°)
2 IIQ (Zn)||

where Q (x) = P’ (x) P (x), and the linear operator P’ (x) is the 
adjoint of P’ (x). Show that if:

(a) there exist two positive constants B and K such that

B2K < 4;

(b) \\P’ (x) T/|| > B-1 ||t/|| for all y G H, x G u (xq, r)
(c) HQ' (x)|| < K for all x G U (x0,r);
(d) Iki - x0|| < 7/o and r =
The equation P (x) = 0 has a solution x* G U (xq,t) and the sequence 

{znJ (n > 0) converges to x* with

an
ll®n ~ x*|| <770-------1 — a

where

a =

7.3. Consider the equation

x = T(x)

in a Banach space X, where T : D C X -> X and D is convex. 
Let T\ (x) be another nonlinear continuous operator acting from X 
into X, and let P be a projection operator in X. Then the operator 
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PT\ (x) will be assumed to be Frechet differentiable on D. consider 
the iteration

$n+i = T (xn) + PTr (xn) (xn4-i — xn) (ti > 0).

Assume:
(a) ||(/-PT{(xo)]-1 (xo-T(xo))|| <n,

(b) T (x) = r = [I — PT{ (x)]-1 exists for all x e D and ||r|| < 6,
(c) PT{ (x), QTi (x) (Q = I - P) and T (x) - 7i satisfy a Lipschitz con- 

dition on D with respective constants M, q and f,
(d) U (zo> Hrf) C D, where

00 > h
= 1 + /1=6+2»

j=i i=i

Ji = b + —«7i • • • Ji—1, i > 2, Jq = Tji 
£

(e) h = BMtj < 2(1 — 6), b = B (g + f) < 1. Then show that 
the equation x = T (x) has a solution x* E U (xo,Htj) and the 
sequence {xn} (n > 0) converges to x* with

n 
K-x-nc^n^- 

i=l

7.4. Let H be a real separable Hilbert space. An operator F on H is said 
to be weakly closed is

(a) xn converges weakly to x, and
(b) F (xn) converges weakly to y imply that

F(x) = y.

Let F be a weakly closed operator defined on U (xo,t) with values 
in H. Suppose that F maps U (xo,r) into a bounded set in H 
provided the following conditions is satisfied:

(F (x), x) < (x, x) for all x G S

where S = {x e H \ ||ce|] = r}.
Then show that there exists x* 6 U (xo,r) such that

F(x*) = x*.
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7.5. Let X be a Banach space, LB (X) the Banach space of continuous 
linear operators on X equipped with the uniform norm, Bi the 
unit ball. Recall that a nonlinear operator K on X is compact if 
it maps every bounded set into a set with compact closure. We 
shall say a family H of operators on X is collectively compact if 
and only if every bounded set B C X, Upgh # (^) kas compact 
closure.
Show:
(i) If

(a) H is a collectively compact family of operators on X,
(b) K is in the pointwise closure of H, 
then K is compact

(ii) If
(a) H is a collectively compact family on X,
(b) H is equidifferentiable on D C X.
Then for every x € D, the family {P' (x) | P G H} is collectively compact.

7.6. Consider the Newton-like method. Let A : D —♦ L(X, Y), xo € D, 
M_\ eL{X,Y), X C Y, L-\ eL{X,X). For n > 0 choose Nn € 
L{X,X) and define Mn = Mn-\Nn + A{xn) Ln-\> Ln = Ln-\ + 
Ln-\Nn, xn+\ = xn + Ln {yn), yn being a solution of Mn {yn) = 
— [F {xn) + zn] for a suitable zn G y.

Assume:
(a) F is Frechet-differentiable on D.
(b) There exist non-negative numbers a, ao and nondecreasing functions 

w, wq : R+ —♦ R+ with w (0) = Wo (0) = 0 such that

||F(x0)|| < a0, ||Bo(?/o)||<^
IIA {x) - A (x0)|| < w0 (||® - ®oII)

and

IIF' {z + t{y-xy)-A (x)|| < w (||x - zoll + ‘ II® " 3/11)

for all x,y G U {x0, R) and t G [0,1].
(c) Let M-i and L_j be such that M_\ is invertible,

||M:}II < /3, IIL-ill < 7 and ||M_i - A (x0) i-1 II < S-

(d) There exist non-negative sequence {an}, {an} , {3>n} an<3 {cn} 
such that for all n > 0

||Xn|| < an, ||1 + AT„|| < an, llAfrJII • ||M-1 - Mn|| < bn < 1
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and

||Zn||<Cn||F(MI-

(e) The scalar sequence {tn} (n > 0) given by

^n+l = tn+l + Cn+ldn+1 (1 + Cn+1) 

n
In + hiW (*<) ” *<~1) + W (tn+^ ^n+X " tn^

t=l

(n >), to = 0, ti = a is bounded above by a with 0 < tj < R, 

where
eo = ?ao, en = In-ian (n > 1), dn = f d' (n °)

Zn = en£n_i . . . EqQq (n > 0) En = pndn (1 + Cn) + Cnt

Pn = Qn— l<ln (ft •> 1) , P0 = ^a0,

Qn = Pn + Wq (tn+i) en (n > 1)

and
n

hi = JJ em (i<n).

m=i

(f) The following estimate is true En < E < 1 (n > 0).
Then show:
i. the scalar sequence {tn} (n > 0) is nondecreasing and convergence to a 

t* with 0 < t* < t^ as n —* oo.
ii. The Newton-like method is well defined, remains in U (xo, t*) and 

converges to a solution x* of equation F (x) = 0.
iii. The following estimates are true:

||^n+l ~~ ^nll < ^n+l — tn

and

||Xn-^*|| <t*-tn (n>0).

7.7 (Application of Newton’s method to differential equations). Consider 
the boundary value problem

^-g(t,X)=O, X(O)=O.
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We want to find a solution x = x(t) in C' [0, c]. The operator 
F : C' [0, c] -> C [0, c] given by

^(x) = ^-P(t,x) 
at

corresponds to the given equation, assuming that g is continuous 
for 0 < t < c, and x G C' [0, c). If g is differentiabie with respect to 
x, then at xq = x0 (t), we have that the derivative of F is

F(io) = ^-9Ut,®o(t))A
at

a linear differential operator from C' [0,c] into C [0, c), where

Pi(t,xo(t))= 
ox

0 < t < c.

Set xn+1 = xn+1 (f) (0 < t < c), xn+1 (0) = 0,

0>n (t) — $n+l (^) *^n (0 ,
&n (t) = ~P2 (t, xn (t)) ,

cn (t) = -F (zn) = - + g (t, xn (t)),
at

dn (t) = [ bn (s) ds, 0 <t < c.
Jo

Show that Newton’s method can now be written as

Xn+1 (t) = xn (t) + f (s), ds, 0 < t < c,7? > o,
Jo

(with x0 (0) = 0).
7.8. Establish Euler’s identity

1 . 2
- ------= 1 + c + C2 + •
1 — c -n (i+O 

n=0
or^scalar c with |c| < 1. Extend this to the Neumann series of 

, assuming that ||Z - ML\\ < 1 (see earlier exercise). Compare 
e rate of convergence of the partial sums of the Neumann series 

with the rate of convergence of the corresponding partial products.
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7.9. (a) Let F: D G X —> K be a Frechet differentiable operator and 
A{x) G L(X, y) (x G D). Assume there exists a point xq E D, 
7] >0 and nonnegative continuous functions a, b, c such that

j4(x0)—1 6 L(Y,X),

|| A(x0)-‘ [.F'(x) - F'(x0)]|| < a(||i - x0||), 
M(x0)-1[/’'(x0) - /l(x)]|| < 6(||x - x0||), 
||A(x0)-’[j4(x) - >l(x0)]|| < c(||x - x0||)

for all x G. D; 
equation

a[(l - t)r]r dt 4- (d(r) + c(r) - l]r + rj = 0
Jo

has nonnegative solutions. Denote by tq the smallest. 
Point tq satisfies

a(r0) + 6(r0) + c(r0) < 1,

and

U(xq,tq) =C D.

Then show sequence {xn} (n > 0) generated by Newton-like 
method is well defined, remains in U(xq,tq) for all n > 0 and con- 
verges to a unique solution x* G U(xq,tq) of equation F(x) = 0. 
Moroever the following error bounds hold for all n > 0

ll^n+2 ” ^n+l|| <?ll$n+l ^nll

and

hn-*’|l< j4/‘+1

where,

_ a(r0) + b(r0) 
q~ 1 - c(r0)

Furthermore x* is unique in U(xo,R) for R> t' and

U(x0,R)QD
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[ a[(l - t)r0 + tR]dt + 6(0) < 1.
Jo

(b) Let F : D C X C Y be a Frechet-differentiable operator and 
A(x) G L(X, V). Assume: there exist a simple zero x* of F and 
nonnegative continuous functions a, /?, 7 such that

^(x*)"1 e£(y,x),

IIACr*)-1^) - F'(x*)]|| < a(||x - x*||), 
||A(z*)"x[F'(x*) - A(x)]|| < 0(\\x - x* ||), 
||A(x*)-1[A(x)-A(z*)]||<7(lk-x*||) 

for all x € D\ 
equation

[ “1(1 - t)r]dt + /3(r) + 7(r) = 1
J0

has nonnegative solutions. Denote by r* the smallest; and

&(x*,r*) C D.

Show. Under the above stated hypotheses: sequence {xn} (n > 
) generated by the Newton-like method is well defined, remains 

’r ) f°r all n > 0 and converges to x*, provided x0 € 
t/(x*,r*).

Moreover the following error bounds hold for all n > 0: 

ll®n+i-x’||<dn||*n-®’||, 

where

Sn - £ Q[(X - *)hn ~ ^Hldt + £(||xn - S»||) 

i-^dkn-X*!!)
7.10. (a) Assume:
there exist parameters K > 0, M > 0, L > 0, £ > 0, p. > 0, r) > 0, An Atz, 

A3 G [0,1], 6 € [0,2) such that:

a2
+ m+(1 + Ai)
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and
/ \ A3

where,

q = T+xT’
Then, show: iteration {tn} (n > 0) given by

<0 = 0, <1 = 7Jt
■(tn+i -tn) {n -0)

is non-decreasing, bounded above by
t-=A-.

1-g

and converges to some t* such that

0 < C < t”.

Moreover, the following error bounds hold for all n > 0
0 < t„+2 - tn+1 < 9(tn+l - tn) < ?"+1’7-

(b) Let Ai = A2 = A3 = 1. Assume:
there exist parameters K > 0, M > 0, L > 0, £ > 0, /x > 0, tj > 0, 

6 G [0,1] such that:

hs = (k + M+^)»7 + « + 2m<<J,

L<K,

and

^ + 2/x < 1, 

then, show: iteration {tn} (n > 0) is non-decreasing, bounded 
above

+** = -ZlL
1 2—5

and converges to some t* such that
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Moreover the following error bounds hold for all n > 0

0 < tn+2 — ^n+l < “ ^n) — (f)

(c) Let F: D C X —> Y be a Frechet-differentiable operator. As- 
sume:

(1) there exist an approximation A(x) € L(X, K) of F'(x), an open convex 
subset 2?o of D, x0 G Do, parameters r/ > 0, K > 0, M > 0, L > 0, 
M > 0, £ > 0, Ai G [0,1], A2 € [0,1], A3 G [0,1] such that:

A(zo)-1 G L(K, X), ||A(z0)" Wo)|| < n, 
||A(x0)-l[F'(x) - F'(j,)]|| < K||x - y||A*, 
HA^o)-1^'^) - 4(i)]|| < M||x - xollA2 + M.

and

IIAfro)’1^) - A(z0)]|| < L\\x - x0||A3 + £ for all x,y G Do-,

(2) hypotheses of (a) or (b) hold;
(3)

&(x0,t*)CL>0.

Then, show sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in j7(x0,t*) for all n > 0 and converges to 
a solution x* G U(x0,t*) of equation F(x) = 0.

Moreover the following error bounds hold for all n > 0:

ll^n+l Xn|| < tn-j-i — tn

and

||xn x || < t tn.

Furthermore the solution x* is unique in U(x0,t*) if

1 K
l-£-L(t*)A3 + (t*)1+Al +M(t*)Xi +v <1,

or in U^Rq) if Rq > t', U(x0,R^) C Do, and

1
l-£-L(t*)A3 [i + A1 (K + t*)1+A1 +M(t*)Xa <1-

(d) Let F: D C X —♦ Y be a Frechet-differentiable operator. As-
sume:
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(a) there exist an approximation X(a:) € L(X, Y) of F'(x), a simple solu- 
tion x* € D of equation F(x) = 0, a bounded inverse A(x") and 
parameters K, L, M, p,l>0, A4, As, A6 e [0,1] such that:

MCc’)-W) - F'(3/)]|| < Kh - 3/||a‘, 
IMCr*)-1^) -4(x)]|| < M||x — x*||As +p,

and

IIx(z*)-W) - ^(^)lll < £|k - *T8 + t

for all x, y G D\
(b) equation

&
----- —rXi 4- LrXfi 4- MrXs 4-/24-^—1 = 0
1 4- A4

has a minimal positive zero ro which also satisfies:

Lrfr+£<1

and

t/(z*,ro) C D.

Then, show: sequence {xn} (n > 0) generated by Newton’s method 
is well defined, remains in £/(x*,ro) for all n > 0, and converges 
to x* provided that xq G C/(x*,ro). Moreover the following error 
bounds hold for all n > 0:

||xn+i -x*|| < ~X II

4- M\\xn - x* ||As 4- /1] ||xn - z*||.

7.11. Zet F be a nonlinear operator defined on an open convex subset 
D of a Banach space X with values in a Banach space Y and let 
A(z) G L(X,r) (x G D). Assume:

(a) there exists xq G D such that A(xo)-1 € L(Y,X)\
(b) there exist non-decreasing, non-negative functions a, b such that:

IIA^o)"1^^) - A(z0)lII < a(lk " ||),
MCro)"1^) - F(x) - A(x)(y - z)]|| < &(||z - 2/ll)lk " 2/11

for all x, y G D\
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(c) there exist rj > 0, r0 > rj such that

IM(xo)-1F(xo)||<77, 
a(r) < 1, 

and

d(r) < 1 forall re(O,ro], 

where

c(r) = (1 -a(r))"1, 

and

d(r) = c2(r)d(r);

(d) r0 is the minimum positive root of equation h(r) = 0 on (0, ro] 
where,

h^ = T-^-r- 
1 — a(r)

(e) tf(s0,r0) C D,
Then show. sequence {zn} (n > o) generated by Newton-like method is 

well defined, remains in U(xq,tq) for all n > 0 and converges to a 
solution x* G U(xq,tq) of equation F(x) = 0.

~ be differentiable. Assume:
There exist functions fa : [0,1] x (0, oo)2 -» [0, oo), f2, f3 : [0, oo) -> (0, oo), 

nondecreasing on [0, oo)2, [0, oo), [0, oo) such that

||4 (®o)-1 [F' (x +1 (y - x)) - F' (x)]||

^/i(‘.h-!/||,||x-Xo||,||y-io||),
^(xo)"1 [F'(x) - A(x)]| < /2 (||x - xoll), 

A (xo)-1 [4 (x) - A (x0)j | < f3 (||x - Xo||), 

hold for all t e [0,1) and y e D.
F°r ^(xor'F^ll^^equation

r, + b0V+ -^L=r
1 — b (r)
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has non-negative solutions, and denote by tq the smallest one. In 
addition, r0 satisfies:

U (xQ,ro) Q D.

and

Moro, r0, r0) dt + f2 (r0) + f3 (r0) < 1,

where

, Jo fa (*’ °’ ^)dt + /2 (°)60 =-------------- ------------------------------ 1

, fo fl T1’T1 + bOTl') dt + /2 fo) Oi = ——------------------------------------------------ ——
1 - /3 fr? + lWT)

and

b = b(r) =
fi (*■ bibpri,r,r) dt + /2 (r)

1 - /3 (r)

Then, show iteration {xn} (n > 0) generated by Newton-like 
method is well defined, remains in U (x0,r0) for all n > 0 and 
converges to a solution x* G U (xo.ro) of equation. Moreover, the 
following error bounds hold

||x2 — xx|| <bQrj
||x3 -x2|| < bi ||x2 — Xi ||.

||xn+i - x*|| < b2 ||xn - xn_ 11|, (n > 3)

and

ii * ii bobib^ rj .||X - Xn|| < —> 3) >

bn
(n>0)

where b2 = b (r0).
Furthermore if r0 satisfies

/i (t, 2r0, r0, r0) dt + f2 (r0) + /3 (^o) < 1,

x* is the unique solution of equation F(x) = 0 in U (x0,r0).
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Finally if there exists a minimum non-negative number R satisfying equa- 
tion

[ fi (t,r + r0,r0,r)<ft + /2(r0) + /3(r0) = 1, 
Jq

such that U (zo, H) C B, then the solution x* is unique in U (z0, #)• 
(b) There exist a simple zero x* of F and continuous functions /4 : [0,1] x 

(0,oo) —> (0,oo), /5,/e : [0,oo) —> [0,oo), non-decreasing on [0,oo) 
such that

|| A (x*)’1 [F' (x +1(x* - x)) - F' (x)]|| < /4 (t, II®’ - ®ll) ■

||A (x*)’1 [F' (x) - A (x)]|| < /5 (||x* - x||),

and

Iptx’)-1 [A(x) - A(x*)]|| < f6 (||x* - x||),

hold for all t G [0,1] and x G D\ 
Equation

[ fa (t,r) dt + /5 (r) + /6 (r) = 1
Jo

has a minimum positive zero r*, and

tf(z*,r*) C D.

Then, show iteration {zn} (n > 0) generated by Newton-like se- 
quence is well defined, remains in U (x*,r*) for all n > 0 and con- 
verges to x* provided that z0 c U (x*,r*). Moreover, the following 
error bounds hold for all n > 0

/q‘ f 4 (t, ||x„ - X*||)<ft + /5 (]|Xn - X*ll) 

i-/6(h„-x*||)
7 ll®„ - x*||,

where

_ /o1 /4 (t, ||xo - X*||)dt + /5 (||xo - x*||) 

l-/6(||X0-X*||)
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(c) Let X = Y = R, D = (—1,1), x* = 0 and define function F on 
D by

F(x) = x H------- -, p > 1.
p +1

For the case A = F' show
2 2

rR=3p<r =2 + p'

where fr stands for Rheinboldfs radius (see section 4.1) where tr 
is the convergence radius given by Rheinboldfs [247].

(d) Let X = Y = C [0,1], the space of continuous functions defined on [0,1] 
equipped with the max-norm. Let D = {0 G C [0,1]; ||0|| < 1} and 
F defined on D by

yl
F (<f>) (z) = <f> (x) - 5 / xt<f> (t)3 dt

Jo
with a solution </>* (x) = 0 for all x e [0,1].

In this case, for each <t> € D, F' ($) is a linear operator defined on D by 
the following expression:

yl
F’ (0) [i/] (x) = v (x) - 15 / xt<t> (t)2 v (t) dt, ueD.

Jo
In this case and by considering again A = F',

2 * 1
rfl=45<r = 15’





Chapter 8

Two-Point Newton-Like Methods

We discuss two Point-Newton like methods in this Chapter.

8.1 Two-Point Newton-Like Methods in Banach Space

In this section we are concerned with the problem of approximating a locally 
unique solution z* of the nonlinear equation

F(x) + G(x) = 0, (8-1)

where F, G are operators defined on a closed ball U(w, R) centered at point 
w and of radius R > 0, which is a subset of a Banach space X with values 
in a Banach space Y. F is Frechet-differentiable on U(w,R), while the 
differentiability of the operator G is not assumed.

We use the two-point Newton method

y-i,3/0 e U(w, R), yn+l. = y„- A(yn-i,yn) 1 + <?(s/n)) (n > 0)
(8.2)

to generate a sequence converging to x*. Here A(x, y) € L(X, Y), the space 
of bounded linear operators from X into Y for each fixed x, y € U(w,R). 
Yfe provide a local as well as a semilocal convergence analysis for method 
(8.2) under very general Lipschitz-type hypotheses (see (8.25), (8.26)).

Our new idea is to use center-Lipschitz conditions instead of Lipschitz 
conditions for the upper bounds on the inverses of the linear operators 
involved. It turns out that this way we obtain more precise majorizing 
sequences. Moreover, despite the fact that our conditions are more general 
than related ones already in the literature, we can provide weaker sufficient 
convergence conditions, and finer error bounds on the distances involved.

We note that our analysis is also useful in particular in the numerical 
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solution of problems appearing in visco-elasticity. However we leave the 
details to the motivated reader. Finally we mention that our approach 
compares favorably with the classical and elegant work of J.W. Schmidt on 
the Secant method (see [68], [99], [252], [253], and our Example 8.2).

Several applications are provided: e.g., in the semilocal case we show 
that the famous Newton-Kantorovich hypothesis (for its simplicity and 
transparency, see (8.5)) is weakened (see (8.20)), whereas in the local case 
we can provide a larger convergence radius using the same information (see 
(8.134) and (8.135)).

Part A: Motivation

Deuflhard and Heindl have proved the following affine invariant form 
of the Newton-Kantorovich theorem which is the motivation for this study 
(see also Theorem 4.2.4 for the nonaffine invariant form)

Theorem 8.1 Let F: D C X -> Y be a Frechet-differentiable operator 
on an open convex set D. Suppose that do E D is such that F'^do)"1 exists 
and

(do)ll < n, (8-3)
||F'(do) 1[^’,(3:) — F'(j/)]|| < 7i||i — j/ll for all x,y 6 D and 71 > 0,

(8.4) 
h = 27177 < 1, (8-5)

U(<k>,d1)CD, (8-6)
where,

d1 = 1 - VI - fe (8.7)
71

Then, sequence {dn} (n > 0) generated by Newton's method

dn+l = dn- F'^d^F^dn) (n > 0), (8-8)
is well defined, remains in U^do^d1) for all n > 0 and converges to a unique 
solution d* of equation

F(d) = 0 (8-9)
in^do^^U^Dn^dcd2)), where

71
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Moreover the following error bounds hold:
\\dn+1-dn\\<dn+1-dn _ (8.11)

||dn - d’|| < d1 - dn, d1 = Jto, dn (8.12)

where sequence {dn} (n > 0) is given by
do = o, di= 7/, dn+2 = dn+i 4- ^~n+1 -”-y • (8.13)

2(1 -7idn+i)
Condition (8.5) is the famous Newton-Kantorovich hypothesis which is 

the essential sufficient convergence condition for the semilocal convergence 
of Newton’s method (8.8). However Newton’s method may converge to a 
solution of equation (8.9) even when (8.5) is violated.
Example 8.1 Let X = Y = R, do = 1, D = [p,2-p], p € [0, j), and 

define F on D by
F(d)=d3-p. (8-14)

Using (8.3), (8.4) and (8.14) we get

t/^hl-p). 71=2(2-p), 
o

(8.15)

which imply
h = -(l-p)(2-p) > 1 forallpG 0,-Y (8-16)

That is there is no guarantee that method (8.8) converges since (8.5) is 
violated. However one can find values of p in [0, |) such that met o 

converges.
For example if p = .48, then using (8.8) we find d* = v^48- Hence, 

we wonder if (8.5) can be weakened. Hypothesis (8.5) is used to show that 
majorizing sequence {dn} is monotonically increasing and converges to d1. 

We have noticed that sequence {dn} (n > 0) given by

dn = 0, di=p, dn+2 = dn+i + —-------= -2(l-7odn+i)
is also a more precise majorizing sequence for Newton s method (8.8) than 
(8.13), where 70 is the center-Lipschitz constant such that

||F'(d0)-1[F'(x) - ^Wlll < 7olk - doll for all x € P. (8.18)
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In general the inequality

7o <71 (8.19)

holds. Note also that in practice finding constant 71 requires the computa- 
tion of 70. Hence no additional computational effort is required to compute 
(7o >71) instead of 71. As it is shown in a more general setting in what 
follows (see Application 8.2) in this case (8.5) can be replaced by

hi = (70 + 71)77 < 1 (8.20)

(see also (8.72)). By comparing (8.5) and (8.20) we get /11 > |/i. Moreover 
note that:

h < 1 => /ii < 1 (8.21)

but not vice versa unless if 70 = 71. Futhermore as it is shown in a more 
general setting for all n > 0 (70 < 7i)>

ll^n+1 - dnII < dn+i - dn < dn+1 - dn, (8.22)

ll^n-^||<d3-3n<di-dn, (8.23)

and

d3 = lim dn < di n—>oo
(8.24)

(see Remark 8.5). Hence we also obtain finer error bounds and at least as 
precise information on the location of the solution d* as in Theorem 8.1. 
Returning back to Example 8.1, since 70 = 3 — p we find that (8.20) holds 
if p G [—|), which improves Theorem 8.1.

Part B: Main Results

In order for us to show that these observations hold in a more general 
setting we first need to introduce the following assumptions:

Let R > 0 be given. Assume there exist v, w E X such that A(u, w) 1 € 
L(Y,X), and for any x,y,z G Z7(w,r) C [7(w,R), t E [0,1], the following 
hold:

HA(v,w) 1[A(s,J/)-4(v,w)]|| </i0(||x-<||S/-w||) + a, (8.25)
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and

||A(v,w)-1{[F'(i/ + t(z ~ y)) - A(x,3/)](z - y) + G(z) - G(i/)}|| (8.26)
< [hi(||i/ - w|| + t||z - y||) - /z2(||y - w||) + h3(||z -1||) + 6]||2 _

where, h0(r,s), h^r + f) - /i2(r) (f > 0), h2(r), h3(r) are monotonically 
increasing functions for all r, s on [0, #]2, [0, 7?]2, [0,/?], [0,7?] respectively 
with /i0(0,0) = /ii(0) = /i2(0) = /13(0) = 0, and the constants a,b satisfy 
a > 0, 6 > 0. Given $/_i, y0, v, w in X, define parameters c_i, c, ci by

II3/-1 -v|| <C-1, ||?/-i-2/0II <c, ||v-w||<ci. (8.27)

Remark 8.1 Conditions similar to (8.25), (8.26) but less flexible were 
considered by Chen and Yamamoto in [116] in the special case when 
A(x,y) = A(x) for all x,y € U(w,R) (A(x) G L(X,Y)) (see also Theo- 
rem 8.4). Operator A(x) is intended there to be an approximation to the 
Frechet-derivative F'(x) of F. However we also want the choice of operator 
A to be more flexible, and be related to the difference G(z) — G(y) for all 
y,z 6 U(w, R) (see also Application 8.1). Note also that if we choose:

A(x,y) = F'(x), G(x) = 0, w = d0, ho(r,r)=yor, (8.28) 
/ii(r) = h2(r) = 71 r, /13W = 0,

for all x,y € U(w,R), r e [0,R], and a = b = 0 then conditions (8.25), 
(8.26) reduce to (8.18) and (8.4) respectively. Other choices of operators, 
functions and constants appearing in (8.25) and (8.26) can be found in the 
applications that follow.

With the above choices, we show the following result on majorizing 
sequences for method (8.2).

Lemma 8.1 Assume: .
there exist parameters rj > 0, a > 0, b > 0, C-i > 0, c > 0, G [ , ), 

r0 e [0,1?] such that:

2 [ f h, (r0 + eri)dd - h2(r0) + b + h3(c + T)) 
Jo JUo

+ [a + h0(c + c-i,r> + r0)]<5 < 5,

+ r0 + c < R,
Z — 0

h0
-d)"+1 , l-(l)n+2

Y-y-77 + c + C-!, 
1 2 2

T) + r0 + a < 1,

(8.29)

(8.30)

(8.31)
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and

[i _ (i)n+1

2 hl M n + *JO I 1 2

n+l
77 4- r0 dO — 2/12

- (f)n+1
1-5

+ 2/i3 [(l)n(i + fb] + 8h0

7? + 7*0

7}+ 7*0

+ 2b + 6a < 6 (8.32)

for all n > 0.
Then, iteration {tn} (n > —1) given by

t-i—T0, t0 = c + r0, ti = 0 + 7*0 +7), tn+2 = tn+1 (8.33)

, {JnPllCtn-to+ro+flCtn+l-tn^-Mtn-to+roHfeJdfl+Mtn+l-tn-lW^+l"^)

1 — a—ho(tn— t-i+c_i,tn+i — to+ro)

is monotonically increasing, bounded above by 

and converges to some t* such that

0 < t* < t** < R. (8-35)

Moreover the following error bounds hold for alln > 0.’

0 < tn+2 - t„+i < f (t„+i - t„) < (0 r). (8-36)

Proof. We must show:

{/0 ~ to "*■ F° + ®(4fe+l ~ tfc)) — ^(tfc — to + To) + + tl3(tfc+l “ Oc-1)}

+ 6[a + ho(tfc - t-1 + c-1, tjfc+1 — to + ro)] < S, (8.37)

0 < tk+i - tfc,

and

h0(tk - t-i + c-i, tfc+i - to + ro) + a < 1 (8.39)

for all k > 0.
Estimate (8.36) can then follow from (8.37)-(8.39) and (8.33).
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Using induction on the integer k > 0, first for k = 0 in (8.37)-(8.39) we 
must show:

f M(ro + OrfidO — /i2(ro) + b + /13(0 + 77) +J[a+/io(c+c-i,7?+ro)] < b 
0

0 < ti - t0,

/io(c + c_1,77 + r0) + a < 1, 

which hold by (8.29) and the definition of t\.
By (8.33) we get

0 < t2 - ti < ^(ti - to).

Assume that (8.37)-(8.39) hold for all k < n + 1. Using (8.37)-(8.39) we 
obtain in turn

/q ^1^fc+1 — t0 + r0 + 0(t*;+2 — tk+i))

~ h,2(tk+\ — t0 + ro) + b]d0 + /1-3(^fc+2 — tk)

+ 5[a + h0(tfc+i — t-i + c-i, tk+2 - t0 + ro))

+ 6 a + h0
-&)w l-(f)*+2

—V + c + C-1’ , _ j—17 + r°
1 2 1 2

III
1111111

by (8.29) and (8.32). Hence we showed (8.37) holds for k = n+2. Moreover, 
we must show:

tk < t” (8.40)

t-i=r0<t**, t0=r0 + c<t**, ti = c + ro + *7 < ***,

t2 < c + r0 + 77 + = ^-^77 + r0 + c < t**.
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Assume that (8.40) holds for all k < n 4-1. It follows from (8.33), (8.37)- 
(8.39):

< tk+1 + 9 (tfc+1 — tfc) < tk + -(tfc — tfc-i) + ~(tfc+l — tfc)

6
•••<c + r0 + 77+-77 + 

2^- (f)fc+2 >? + n> + c<
1 2

———r0 + c = t**. 
z — 0

(8.41)

Hence, sequence {tn} (n > — 1) is bounded above by t**. Inequality (8.39) 
holds for k = n+2 by (8.30) and (8.31). Moreover (8.38) holds for k = n+2 
by (41) and since (8.37) and (8.39) also hold for k = n + 2. Furthermore, 
sequence {tn} (n > 0) is monotonically increasing by (8.38) and as such it 
converges to some t* satisfying (8.35).

That completes the proof of Lemma 8.1. O

We provide the main result on the semilocal convergence of method 
(8.2) using majorizing sequence (8.33).

Theorem 8.2 Assume:
hypotheses of Lemma 8.1 hold, and there exist

y~i e U(w,R), yo G U(w,r0) (8-42)

such that:

+ G(j/o)]|| < »?. (8+3)

Then, sequence {j/nJ (n > —1) generated by Newton-like method (8.2) 
is well defined, remains in U(w,t*) for all n > —1, and converges to a 
solution x* of equation F(x) + G(x) = 0. Moreover the following error 
bounds hold for all n> —1;

||?/n+l ?/n|| < tn+J tn (8.44)

and

hn-x*|| (8.45)

Farthermore the solution x* is unique in U(w,t*) if

[ hi((l + t)f)dt-/i2(f) + Mt,) + Mt*+ci,t‘) + a + &< 1, (8-46) 
Jq
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and in U(w, Rq) for Rq G (£*,/?] if

[ /ii(t* + t7?o)dt-/i2(t*) + /i3(^)) + /io(t*+ci,t*) + a + 6< 1, (8.47)
JQ

provided that y~i = v and yo = w.

Proof. We first show estimate (8.44), and yn € U(w,t*) for all n > —1. 
For n = -1,0, (8.44) follows from (8.27), (8.33) and (8.43). Suppose (8.44) 
holds for all n = 0,1,..., k + 1; this implies in particular (using (8.27), 
(8.42))

llz/fc+l - w|| < I|yfc+1 - yk\\ + ||l/fc -J/jfa-ill + ••• + ||yi - 7/o|| + Hj/o - w|| 
— Gfc+1 — tk) + (tk — tk-l) 4------ F (ti — to) + r0
= tk+1 — tQ + To < ifc+i < t*.

That is, yk+i G U(w,t*). .
We show (8.44) holds for n = k + 2. By (8.25) and (8.33) we obtam for 

all x,y G U(w, t*)

||A(v,w) ^(z,!/) - A(v,w)]|| </io(lk-vll,ll2/_ wll)+a- (8.48)

In particular for x = yk and y = yk+i we get using (8.25), (8.27),

||A(u,w) 1 [^4(l/fc,i/fc+1) - A(v,w)]|| </io(||s/fc-^||,||j/fc+i _ w||) + a 
< /*o([|3/fc - 3/-i || + H1/-1 - v||, ||2/fc+i - xq|| + ||3/o - w||) + a 
< ho(tk — t-i + c-i,tfc+i — to + tq) + a

< h,Q
_(6}k—^-7/ + c + c_i,----- —rj + r0 +a<l, (by (31)).
1 ~ 2 1 “ 2

(8.49)

It follows frorn (8.49) and the Banach Lenuna on invertible operators that 
^■(yk^yk+i)^1 exists, and 

ll-+(l/fc,yk+i) ^(v,w)|| < [1—a—h,Q(tk—t-i+c~i,tk+i £o+ro)] ♦ (8-50)
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Using (8.2), (8.26), (8.33), (8.50) we obtain in tum

IIVfc+2 ~ Vfc+111 = IMVfc> Vfc+l)-1[F(Vfc+l) + GCVfc+l)]!!

= ll^(Vk>Vfc+i)”1[F(Vfc+i) + G(Vfc+i) - A(yfc_i,Vfc)(vfc+i - Vfc) “ ^(Vfc) “ G(Vfc))ll

< M(Vfc,Vfc+i)-1^(v,w)|| ||A(v,w)_1[F(i/fc+i) - F(j/fc)

- >i(yfc-i> Vfc)(vfc+i - Vfc) + G(vk+i) - GQ/fc)]||
< Uo [hi(llyfc-w||+t||i/fc+i-yfc||)-h2(||i/fc-w||)+bl<ft+/t3(||yfc-n-Vfc_ill)}IIVfc+l-Vfcll 

l-a-ho(tfc—t_i+e_i ,tfc+i—to+ro)

< {Jq [M(tfc-to+ro+t(tfc+i-tfc))-h2(tfc-to+ro)+b]dt+h.3(tfc4.i-tfc_i)}(tfc+i-tfc)
— l-a-ho(tk-t-l+c-13k+l— *o+ro)

= tfc+2 - tfc+i, (8.51)

which shows (8.44) for all n > 0.
Note also that

lll/fc+2 - 1/fc+l || < llVfc+2 - S/fc+11| + hfc+1 - «11
< tfc+2 - tfc+1 + tfc+1 - to + ro = tfc+2 - to + ro < tfc+2 < t‘- (8-52)

That is, yk+2 € U(z,t*).
It follows from (8.44) that {yn} (n > —1) is a Cauchy sequence in a 

Banach space X, and as such it converges to some x* € X G l/(w,t ) 
(since t/(w,t*) is a closed set). By letting k —> oo in (8.51) we obtain 
F(x*) 4- G(x*) = 0. Estimate (8.45) follows from (8.44) by using standard 
majorization techniques (see Chapter 4 or [68], [99]).

To show uniqueness in U(w, t*), let y* be a solution of equation (8.1) 
in C/(w,t*). We define Newton-like iteration {xn} (n > —1) by

= V, X0 = W, xn+1 = Xn - + G(zn)] (" > 0)
(8.53)

Iteration {xn} (n > —1) is a special case of {?/n} (n > — 1). Hence, we have

Ilxfc+1 — Zfc|| < tfc+1 — tfc, lim xn = x*
n—»oo

and

ll®‘-®*|| <t’-t*, limtfc = f, 

where {t„} is {tn} (n > -1) for r0 = 0.

(8.54)
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We shall show:

IIk* -zfcll < t* -tk. (8.55)

For k = 0 (8.54) holds since y* G U(w, t*). Suppose (8.54) holds for all 
n< k. Then as in (8.51) we obtain the identity:

y* - xk+i = y* — xk + ^(sjb-ijifc)"1^^) + G(xk))

= [A(xfc_i,o;*:)-1A(2;_i,xo)]X(x-i,2;o)“1[F’(a;jfe) -F(2/*)
- A(xk^xk)(y* - xk) + G(xk) - F(t/*)]. (8.56)

Using (8.56) we obtain in turn:

II?/* -^fc+ill

< - Uq M (IIgfc ~xp ||+t ||y * -ife || )dt- /12 (||Xfc - Jp ||)+/13 (||y * -gfc-1II)ily * ~II
~ 1 - a - ho (||xfc -1 - 1II । Ikn - zo II)
< (Jp ^i((l+t)t*)dt-h2(f)+/i3(t*)+&] ii* _ 11
- l-a-/io(f+ci,f) iiy
< llv* - Zfe|| < t* - tk —> 0 as k -+ oo. (8.57)

That is, x* = y*.
If y* G U(xq,Rq) then as in (8.57) we get

_ [/o1 htf + - W) + M^o) + &]„„. _ ^II
113/ a*+i||< l-a-/l0(f + ci,f)

<!>•-..11-

Hence, again we get x* = y*.
That completes the proof of Theorem 8.2.

Remark 8.2 Conditions (8.31), (8.32) can be replaced by the stronger 
but easier to check

Ao[^5+c + c-i,^+ro]+a<l, (8’59>

and

2 ['h te+e!+ro]^-2/l2[^+’-o]

+ 2/13 [(1 + |) T7] + 6ho + C + C-1, & + roj + 2b + 6a

(8'60)
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respectively. Note also that conditions (8.29) — (8.32), (8.59), (8.60) are of 
the Newton-Kantorovich-type hypotheses (see also (8.5)7 which are always 
present in the study of Newton-like methods.

Application 8.1 Let us consider some special choices of operator X, 
functions hi i = 0,1,2,3, parameters a, b and points v, w.

Define

A(x,y) = F'(y) + [x,y-G], (8.61)
v = w = 7/o,

and set

r0 - 0,

(8.62)

(8.63)

where F', G] denote the Frechet-derivative of F and the divided differ- 
ence of order one for operator G respectively. Hence, we consider Newton- 
like method (8.2) in the form

yn+i^yn-kF'M + lyn-i^G^-^F  ̂+ GM) (n > 0). (8.64)

The method was studied in [112], [68], [99]. It is shown to be of order 
“^2^ 1-618... (same as the order of Chord), but higher than the order
of

z„+1 = zn-F'(2n)-»(F(^n) + G(z„)) (n > 0) (8.65)

and

Wn+1 = wn - AlwnT'tFlwn) + G(wn)) (n > 0), (8.66)

where A(-) is an operator approximating F'. Assume:

ll^-njfo)-1^) - F'(i,o)]|| < 72II3/ - S/o||, (8-67)
Mfr-Lj/o)-1]^) - F'(j/)]|| < 73HX - 3/H, (8.68)

Mfr-i,Sfo) l(ks/;G] - [s/-i,!/o;G])|| <74(111-3/-1II + ||s/-s/oll), 
(8.69)

and

P(s/-i,!/o)-1([s,j/;G] - [z,i;G])|| < 75||z - j/H (8.70)
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for some non-negative parameters 7,, i = 2,3,4,5 and all x,y €U(yo,r) Q 
U(y0,R).

Then we can define

a = b = Q, /ii=/i2, M?) = 739, ^3(9) = 759 and 

^0(91,92) = 7491 + (72 + 74)92- (8-71)

If the hypotheses of Theorem 8.2 hold for the above choices, the conclusions 
follow.

Note that conditions (8.67)-(8.70) are weaker than the corresponding 
ones in [109, pp. 48-49]. Indeed, conditions ||F'(z) — F'(y)II < 7el|z — 3/ll> 
IM(®,3/)-1 II < 7t, ||[z,3/,z;G]|| < 7s, and

|| [x, y, G] - [z, w; G] || < 79(h - zll + 113/ - u'll)

for all x, y, z,w G U(yo,r) are used there instead of (8.67)-(8.70), where 
[x,i/, z; (?] denotes a second order divided difference of G at {x, y, z), and 
7t3 = 6,7,8,9 are non-negative parameters.

Let us provide an example for this case:

Example 8.2 Let X = Y = (R2, || • ||oo)- Consider the system

3z2j/ + y2 - 1 + - 1| = 0 
x4 + xy3 - 1 + |y| = 0.

Set hU = ||(x',x")||oo = max{|z'|,|z"|}, F = (Fi,F2), G - (Gi,^)- 
Forx = (x',x") e R2 wetakeFi(z',z") = 3(z')2z"+(z") -1, F0(x ,x ) - 
(z')4 + x'(x")3 - 1, Gi(z',z") = I*' - 1|, G?(x'>x") ,= l1"!’ We sha11 
take [x,j/;G] e M2X2(R) as [z,j/;G]i,i = G’^ y’G^''2 -
Gi(x'tx") ■ i 2 

y"-x" t l —
Using method (8.65)with zq = (1,0) we obtam
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n
Ji)
Zn

J2) 
zn || ~ ^n—1II

0 1 0
1 1 0.333333333333333 3.33315 - 1
2 0.906550218340611 0.354002911208151 9.344E - 2
3 0.885328400663412 0.338027276361322 2.122E-2
4 0.891329556832800 0.326613976593566 1.141E-2
5 0.895238815463844 0.326406852843625 3.909E - 3
6 0.895154671372635 0.327730334045043 1.3232? —3
7 0.894673743471137 0.327979154372032 4.8091? - 4
8 0.894598908977448 0.327865059348755 1.1401? —4
9 0.894643228355865 0.327815039208286 5.0021? —5
10 0.894659993615645 0.327819889264891 1.6761? — 5
11 0.894657640195329 0.327826728208560 6.838E - 6
12 0.894655219565091 0.327827351826856 2.420E - 6
13 0.894655074977661 0.327826643198819 7.086E-7

39 0.894655373334687 0.3278826521746298 5.1491? — 19

Using the method of chord (i.e. (8.66) with A(wn) = [wn_1, wi; G]) with 
w-i = (5,5), wo = (1,0), we obtain

n w£> ■ (2) w\ || Wn ~ Wn-1||
0 5 5
1 1 0 5.000E+00
2 0.989800874210782 0.012627489072365 1.262E-02
3 0.921814765493287 0.307939916152262 2.953E-01
4 0.900073765669214 0.325927010697792 2.174E-02
5 0.894939851625105 0.327725437396226 5.133E-03
6 0.894658420586013 0.327825363500783 2.814E-04
7 0.894655375077418 0.327826521051833 3.045E-04
8 0.894655373334698 0.327826521746293 1.742E-09
9 0.894655373334687 0.327826521746298 1.076E-14
10 0.894655373334687 0.327826521746298 5.421E-20

Example 8.3 Using our method (8.64) with y~i = (5,5), yo = (1> 0), we 
obtain
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n ,.(1) yn ,/2) Vn lll/n - S/n-l||
0 5 5
1 1 0 5
2 0.909090909090909 0.363636363636364 3.636E-01
3 0.894886945874111 0.329098638203090 3.453E-02
4 0.894655531991499 0.327827544745569 1.271E-03
5 0.894655373334793 0.327826521746906 1.022E-06
6 0.894655373334687 0.327826521746298 6.089E-13
7 0.894655373334687 0.327826521746298 2.710E-20

Example 8.4 We did not verify the hypotheses of Theorem 8.3 for the 
above starting points. However, it is clear that the hypotheses of Theo- 
rem 8.3 are satisfied for all three methods for starting points closer to the 
solution

x* = (.894655373334687, .327826521746298)

chosen from the lists of the tables displayed above.

Hence method (8.2) (i.e. method (8.64) in this case) converges faster 
than (8.65) suggested in Chen and Yamamoto [116], Zabrejko and Nguen 
[295] in this case and the method of chord.

In the application that follows we show that the famous 
Newton-Kantorovich hypothesis is weakened under the same hypothe- 
ses/information.

Application 8.2 Returning back to Remark 8.1 and (8.28), iteration 
(8.2) reduces to the famous Newton-Kantorovich method (8.8).

Condition (8.29) reduces to:

h& — (71 + 570)77 < 5. (8.72)

Case 8.1 Let us restrict 5 6 [0,1]. Hypothesis (8.32) now becomes

2Z71 [& O-ctr1)+*(£**%] <»

— 271 [ OrjdO + fyoTj 
do
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or

[^-7r] [1 - (f)fc+1] < 1.

which is true for all k > 0 by the choice of 6. Furthermore (8.31) gives

< 27on < 1-

Hence in this case conditions (8.29), (8.31) and (8.32) reduce only to (8.72) 
provided <5 6 [0,1]. Condition (8.72) for say 5 = 1 reduces to (8.20).

Case 8.2 It follows from Case 1 that (8.29), (8.31) and (8.32) reduce to 
(8-72),

2.70H < I (8.73)
2—6 —

and

^<7r (8-74)

respectively provided 6 G [0,2).

Case 8.3 It turns out that the range for 8 can be extended (see also
Example 8.5) . Introduce conditions:

70^7 < 1 ~ for 8 G [<$o, 2),

where,

So = b = a and 70 o.

Indeed the proof of Theorem 8.2 goes through if instead we show the weaker 
condition

7i(f)fc+1 + ^[l-(fH<<5.

or

(f)fc+1 <o.

or

6 — *o,

which is true by the choice of 50.
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Example 8.5 Returning back to Example 8.1 but using Case 8.3 we can 
do better. Indeed, choose

p = po = .4505 < = .464816242....

Then we get

?? = .183166 ..., 70 = 2.5495, 71 = 3.099, and 60 = 1.0656867.

Choose 6 = 60. Then we get

7o7? = .466983415 < 1 - ^ = .46715665.

That is the interval |) can be extended to at least [po>

In the example that follows we show that can be arbitrarily large. 
Indeed:

Example 8.6 Let X = Y = R, d0 = 0 and define functions F, G on R 
by

F(x) = cox 4- ci + C2sineC3X, G(x) = 0, (8.75)

where, c,, i = 0,1,2,3 are given parameters. Using (8.75) it can easily be 
seen that for c0 large and c^ sufficiently small can be arbitrarily large.

Part C: Specialization to One-step Methods

In order to compare with earlier results, we consider the case when 
x = y and v = w (single step methods). We can then prove along the same 
lines to Lemma 8.1 and Theorem 8.2 respectively the following results by 
assuming:

there exists w € X such that ^(w)*”1 € L(Y\ X), for any x, y € 
U(w,r) C U(w, R), t € [0,1]:

||X(w)-1 [>l(x) - ^(w)]II < Po(h - w||) + a (8.76)

and

mCw^lfFfz 4- t(y - x)) - -4(x)](i/ - z) 4- G(y) - £($)}II
< [si(h-w||+th-a:||)-fl2(h-w||)+S3(r)+^l|y-a:||. (8-77) 

where g0, glt g2, g3, a, /? are as h0, (one variable) hlt h2, h3, a, and b 
respectively.

Then we can show the following result on majorizing sequences.
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Lemma 8.2 Assume:
there erist 77 > 0, a > 0, (3 > 0, 6 € [0,2), r0 G [0, R] such that:

■i
h6=^[j + 0??)d0 - 02(ro) + £3(r° + 7?)+/?

+ <5[a + po(ro + ??)] < 5, (8.78)

+ r0 < R, (8.79)

9o “ (f)^ ) + ro] + o < b (8.80)

^Pi^^i-dr^+ro+edr1!,]^

- 2g2 (1 “ (f)n+1) + r°] + 203 (1 - (f) ) + r°]

+ $9o ~ (I) ) + r°] + 2/3 +

6 (8-81)

for all n > 0.
Then, iteration {sn} (n > 0) given by

So = To, si = rQ + 7), Sn+2 = «n+l
/o{91(3n + e(Sn4-l-S„))-g2(S„) + Z? W„+l -Q + C*1 9^^

1 - a - Po($n+1)

is monotonically increasing, bounded above by

s =r^+ro’
and converges to some s* such that

0 < s* < s**.

(8.83)

(8.84)

Moreover the following error bounds hold for alln>0
n+1

0 < Sn+2 $n+l < z(sn+l — $n) < (8.85)
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Theorem 8.3 Assume:
hypotheses of Lemma 8.2 hold and there exists yo G C/(w,ro) such that

MfrorWo) + C(3/o)]|| < rj. (8.86)

Then, sequence {wn} (n > 0) generated by Newton-like method (8.66) is 
well-defined, remains in U(w, $*) for all n > 0, and converges to a solution 
x* of equation F(x) 4- G(x) = 0. Moreover the following error bounds hold 
for alln>0

||Wn+l - Wn|| < Sn+1 “ $n (8‘87)

and

||w„-x’|| <«’-«„• (8.88)

Furthermore the solution x* is unique in U(w,s*) if

[\gi(s’ + 0s") - g2(s')]M + 93(s’) + go(s') + a + 0<l, (8.89)
Jo

or in U(w, Rq) if s* < Rq < R, and

[ [9i(s* + «>7lo)-ff2(s’)l^ + 93(s* + flo)+9o(s’) + a + ^<l> (8-90) 
Jo

provided that wq = w.

We state the relevant results due to Chen and Yamamoto [116, pp. 40].
We assume: A(w)-1 exists, and for any x, y € U(w,r) C U(z, R):

0 < ll^w)-1^) + G(w)|| < fj, (8-91)
||X(w)-1(/l(a:)-yl(w))|| <9o(h-wll) + 5> (8-92)

Mtw)-1^ + t(y - x)) - 4(x))|| < 31(11» - WID + ‘h “ ^H)
- 9o(ll» - wll) + P’ te l°>x)’

(8.93)

||4(w)_1[G(x) - 0(9)111 93(r)h - < (8-94)

where g0, , a, are as go, gi, a, 0 respectively, but g0 is also differentiable
with g'0(r) > 0, r € [0, A], and a + 0 < 1.
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As in [116] set:

<p(r) = rj-r + [ gx(t)dt, i]>(r) = [ p3(t)dt, (8-95) 
Jo Jo

X(r) = 0(r) + V'(r) + (a + /3)r. (8.96)

Denote the minimal value of x(r) on [0, K] by x*, and the minimal point by 
r*. If x(^) < 0, denote the unique zero of x by rj G (0,r*]. Define scalar 
sequence {rnJ (n > 0) by

roe[0,K], rn+i=rn + ^4 (n > 0) (8.97)
$(rn)

where

u(r) = X(r) - x* (8.98)

and

9(r) = l-So(r)-5. (8-99)

With the above notation they showed:

Theorem 8.4 [116, pp. 40] Suppose x(^) < 0. Then equation (8.1) has 
a solution x* € U(w,ro), which is unique in

tt _ / U(w,R) if x(R) = 0 ori/j(R) = 0, and rj < R. infn
l U(w,R) ifx(R) = 0 and rj < R. *

Let

D' = tfr€1o,r-) {i/ eI7(w,r) I Mfo)-1^) + G(!/)]|| < ^} • (8101> 

Then, for any y$ e D, sequence {i/n} (n > 0) generated by Newton-like 
method (8.66) is well defined, remains in U(w,r*) and satisfies

hn+i - 3/n|| < rn+i - rn, (8.102)

(LTld

lll/n-x*||<r’-rn (8.103)

provided that r^ is chosen as in (8.97) so that ro € Ryo, where for y € D*

= [r e [0,r’) | \\A(y)-\F(y) + G(y))|| < h - z|| < r} .
1 l/(r) )

(8.104)
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Remark 8.3 (a) Hypothesis on gQ is stronger than the corresponding one 
on gQ.

(b) Iteration (8.97) converges to r* (even if ro = 0) not rQ.
(c) Choices of y_\, yQ other than the ones in Theorems 8.2, 8.3 can be 

given by (8.101) and (8.102).

Remark 8.4 The conclusions of Theorem 8.4 hold (i.e. the results in 
[116] were improved) if the more general conditions (8.76), (8.77) replace 
(8.92) - (8.94), and

9Q(r) < g2{r), r € [0, R], (8.105)

is satisfied. Moreover if strict inequality holds in (8.105) we obtain more 
precise error bounds. Indeed, define the sequence {fn} (n > 0), using (8.77), 
92 instead of (8.93), gQ respectively (with g\ = g\, a = a, /3 = /3) by

rQ = 70, H = n, fn+l-fn = ^(rn)-u(Fn-l)t(l-g2(rn-l)-S)(r n-rn^)
(8.106)

It can easily be seen using induction on n (see also the proof of Proposition
8.1 that follows) that

{■'

Fn+l “ Tn < fn+1 “ Tn, (8.107)
fn <rn, (8.108)

f* — fn<r* —rn, f* = lim fn, (8.109)
n—»oo

and

f* < r*. (8.110)

Parthermore condition (8.77) allows us more flexibility in choosing func- 
tions and constants.

i
Remark 8.5 Peturing back to Newton's method (8.8) (see also (8.28)/ 
the iterations corresponding to (8.97) and (8.106) are (8.13) and (8.17) 
respectively. Moreover condition (8.105) reduces to (8.19), and in case 70 < 
71, estimates (8.22) — (8.24) hold.

Remark 8.6 Our error bounds (8.87), (8.88) are finer than the corre- 
sponding ones (8.102) and (8.103) respectively in many interesting cases. 
Let us choose:

a = a, fl = fl, gQ(r)=gQ{r), g\{r) = g^if) =9\(r), and

^3(r) = 93 (r) for al1 T e
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Then we can show:

Proposition 8.1 Under the hypotheses of Theorems 8.3 and 8.4, further 
assume:

sj<r,. (8.111)

Then, the following hold:

S„ < rn (n > 1), (8.112)
Sn+i — sn < rn+i rn (n > 0), (8.113)

s* - sn < r* - rn (n > 0), (8.114)

and

s* < r*. (8.115)

H suffices t0 show (8.112) and (8.113), since then (8.114) and 
(8.115) respectively can easily follow. Inequality (8.112) holds for n = 1 by 
(8.111). By (8.82) and (8.97) we get in turn

s2 - S1 = lo1 + g(si - so))<&> - 92(s0) + tt}(si - s0) + gsWdff

1- P- 9o(si)
c Jo (9i(ro + 0(n - r0))dfl - g2(rp) + 5}(ri - r0) + 9z(&)d0

= u(ri)~u(ro2 + fl(ro)(ri-ro) = «(n) _ (8 116)
i-jS-9o(n) 9(n) 2

Assume:

. r (8117)Sfc+1 < Hc+1, v

and

(8.118)Sfc+l - Sfc < Tfc+1 - Tfc k

hold for all k < n.
Using (8.82), (8.88), and (8.118) we obtain

Sfc+2 - Sfc+i

_ /p1 {91tsfe + e(«fc+l - Sfc)]dfl - 92(Sfc) + a)(Sfc+! ~ Sfc) + K,*+1 g3(g)—

1 - 0 - 9o(sk+i)
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„ /oW* + *(r*+i - r*)]<W - s2(rfc) + a}(rfc+I - rfc) + Q+' g3(6)d0 
<--------------------------------------- —--------------------------------- £-------------

l-^-9o(r*+i)
_ “(rfc+i) - u(rfc) + fi(rfc)(rfc+1 - rfc) u(rfc+i)
-----------------------7------7 = —-------r = rk+2 ~ rk+i- 

9(rk+l)-9\rk+l)

That completes the proof of Proposition 8.1. □

In order for us to include a case where operator G is nontrivial, we 
consider the following example for Theorem 8.2 (or Theorem 8.3):

Example 8.7 Let X = Y = C[0,1] the space of continuous functions 
on [0,1] equipped with the sup-norm. Consider the integral equation on 
U(tq, %) given by

x(t) = [ k(t, s,x(s))ds, (8.119)
Jo

where the kernel k(t, s, x(s)) with (t, s) G [0, Ij x (0,1] is a nondifferentiable 
operator on U(x0, y). Define operators F, G on U(xq, y) by

F(x)(t) = Ix(t) (I the identity operator) (8.120)

G(x)(t) = - [ k(t,s,x(s))ds. (8.121)
Jo

Choose xo = 0, and assume there exists a constant 0q 6 [0,1), a real 
function 0i (t, s) such that

||A:(t,s,x) - fc(t,s,i/)|| < 0i(t, s)||x -1/|| (8.122)

and

sup [ 0i(t,s)ds<0o (8.123)
te[o,i] Jo

for all t,s E [0,1], x,y e f7(x0, f).
Moreover choose in Theorem 8.3: r0 = 0, yo = 2/-i, A(x,y) = A(x) = 

J(x), I the identity operator on X, go(r) = r, a = /? = 0, gi(r) = g^(r) = 0> 
and g3(r) = 0O for all x,y € U(x0,$), r,s € [0,1] (similar choices for 
Theorem 8.3). It can easily be seen that the conditions of Theorem 8.2 

hold if
_ < - (8.124)

1 ” 1 - flo " 2 '

Local Convergence.



330 Approximate Solution of Operator Equations with Applications

In order to cover the local case, let us assume x* is a zero of equation 
(8.1), A(x*,x*)-1 exists and for any z,y € L/(x*,r) C L/(x*,R), t 6 [0,1]:

||4(x’,x’)-1[4(x,j/) - A(x’,x’))|| < S0(||x - x’||, Hi/ - x’||) + a, (8.125) 

and

||A(x’,x’)-1(F'(x’ + t(j/ - x-)) - 4(x,j/))(j/ - x‘) + G(y) - G(x’)]|| 

< [h.(||j/ - x’||(l +t)) - X3(|ly - x’||) + K3(1|x - x’||) + &]||j/ - x’||, 
(8.126)

where, /i0, /ii, h,?, /13, a, b are as /i0, /ii, /i2, /13, u, b respectively. Then 
exactly as in (8.56) but using (8.125), (8.126), instead of (8.25), (8.26) we 
can show the following local result for method (8.2).

Theorem 8.5 Assume:
there exists a solution of equation

/(A)=0, (8127)

in [0,71] where

fW = [ pi((l + t)A) — 7i2(A)]dt + h3(A) + 7i0(A, A) + a + 6 — 1- (8.128) 
Jq

Denote by Ao the smallest of the solutions in [0, K). Then, sequence {^n} 
0* > — 1) generated by Newton-like method is well defined, remains in 
L/(x*,A0) for all n > 0 and converges to x* provided that x_i,x0 € 
tf«A0).

Moreover the following error bounds hold for all n > 0.'

||x’-x„+i|l <pn, (8.129)

where,

Pn = {/o'thiCd+OHxn-x-ID-KaaiZn-x-IDIdt+a+hadlxn-i-x-ll)} ||x _x> || 
l-b-hadl^-,.!,) " (gi30)

Application 8.3 Let us again consider Newton’s method, i.e., F’(x) = 
^(x»3/), G(x) — 0, and assume:

IIF'^*)-1^^) - F'(x*)]|| < AiHx - x*||, (8-131)

and

l|/?'(^)-1[F'(x) - F'(j/)]|| < A2||x - j/|| (8.132)
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for all x, y € U(x*, r) C t/(x*, R). Then we can set:

a = 6 = 0, /13 = 0, /ii(r) = hz(r) = X^rt and ho(rtr) = X^r for all r € [0,K].
(8.133)

Using (8.131), (8.132) we get:

Ao = —■ (8134)
2Ai 4- A2

Local results were not given in [116], [295]. However Rheinboldt in [247] 
showed that under only (8.132) the convergence radius is given by

A3 = ^. (8-135)
0A2

But in general

A, < A2. (8-136)

Hence we conclude:

A3 < Ao. (8-137)

The corresponding error bounds become:
||Xn+l-®’ll<en. (8J38)

Ikn+i-®'ll<ei. (8’139)

where,

_ A2||in ~1 II2 (8.140)
e"- 2(l-Al||Xn-®*lll

and
1 _ A2||x„ — J*ll2 (8.141)

e" - 2(1 - A2||x„ - X’||]

That is

e„ <e\ (n > 0). (8.142)

If strict inequality holds in (8.136) then (8.137) and (8.142) hold as strict 
inequalities also (see also Example 8.6).
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Remark 8.7 As noted in [2], [68], [99], [108], [287]-[291] the local results 
obtained here can be used for projection methods such as Amoldi's, the 
generalized minimum residual method (GMRES), the generalized conjugate 
residual method (GCR), for combined Newton/finite projection methods and 
in connection with the mesh independence principle to develop the cheapest 
and most efficient mesh refinement strategies.

Remark 8.8 The local results can also be used to solve equations of the 
form F(x) = 0, where F' satisfies the autonomous differential equation [68], 
[99], [166]:

F'(x) = P(F(x)), (8.143)

where, P : Y —» X is a known continuous operator. Since F'(x*) = 
P(F(x*)) = P(0), we can apply our results without actually knowing the 
solution x* of equation (8.1).

Example 8.8 Let X = Y = R, U(x*,R) = £7(0,1), G = 0, A(x,y) = 
F'(x), and define function F on U(0,1) by

F(x) = ex - 1. (8.144)

Then we can set P(x) = x 4-1 in (8.143). Using (8.132) we get A2 = e. 
Moreover by (144) we get

F' (x) - F’ (x*) = ex - 1 = x + + ■ ■ ■ + + • • •
2! n!

= (1 + £ + ---+^- + --->)(x-O (8.145)
\ 2! n! /

and

F'(x*)-1[||F'(I) _ F'(I»)||] < (e _ i)^ - x‘||.

That is Ai = e — 1. By (8.134) and (8.135) we get

A3 = .245252961 (8.146)

and

Ao = .254028662. (8.147)

That is our convergence radius Ao is larger than the corresponding one A3 
due to Rheinboldt and our error bounds (8.140) are also finer than (8.141) 
so that (8.142) holds as a strict inequality. Finally note that all these 
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improvements are made using the same hypotheses/information as in the 
earlier results. This observation is important in computational mathemat- 
ics, since a wider choice of initial guesses xq becomes available (see also 
Remark 8.7).

The results obtained here can be extended to m-point methods (m > 2 
an integer) [68], [99] and can be used in the solution of variational inequal- 
ities [267], [274]-[277].

8.2 A Fast Convergent Method

In this section we are concerned with the problem of approximating a so- 
lution x* of the nonlinear equation

F(x) = 0, (8.148)

where F is a Frechet-differentiable operator defined on an open subset D 
of a Banach space X with values in a Banach space Y.

The secant method is the most popular iterative procedure using two 
previous iterates and divided differences of order one for approximating 
x*. The order of the Secant method is 1.618... . In the elegant paper of 
F.A. Potra [236] a three point method was used and divided differences of 
order one (see also (8.26) and (8.27)). This method is of order 1.839.... 
More recently Secant-like methods of order between 1.618 ... and 1.839... 
were introduced in the works of Hernandez, Gutierrez et al. [144]-[151], 
[169]-[176]. The question arises if it is then possible to realize an iterative 
method using two previous iterates and divided differences of only order 
one with at least quadratic convergence.

It turns out that this is possible. Indeed we introduce the method

Zn+l = xn-pln-Xn-ljXn-l]"1^^) (X-itXQ € D) (n > 0) (8.149) 

for approximating x*. Here, a linear operator from X into Y, denoted by 
[x, y\ F] or simply [x, ?/] which satisfies the condition

[x,2/](x-j/) = F(x)-F(3/), (8-150)

is called a divided difference of order one. Iteration (8.149) has a geomet- 
rical interpretation similar to the Secant method in the scalar case.

In Section 2 we provide a local and semilocal convergence analysis for 
method (8.149) using Lipschitz-type conditions and the majorant princi-
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ple. The monotone convergence of method (8.149) is examined on partially 
ordered topological spaces in Section 3.

We can show the following local convergence result for method (8.149).

Theorem 8.6 Let F be a nonlinear operator defined on an open subset 
D of a Banach space X with values in a Banach space Y. Assume: 

equation F(x) = 0 has a solution x* € D at which the Frechet derivative 
F'(x*) exists, and is invertible; 

operator F is Frechet-differentiable with divided difference of order one 
on Dq Q D satisfying the Lipschitz conditions:

- F'(x*)]|| < aHz - x’||, (8.151)
ll^'(^)-1([x,!/) - [x,x*])|| < &1|V - x*|| (8-152)

and

ll^’'(a:*)-l([l/,!/] — [2j/— a:,a:])|| < c||j/— x||2; (8.153)

the ball

W = U(x',r")CD0, (8.154)

where,

r* =------------ - 4 ; (8.155)
a 4- b 4~ -^/(a + b)2 32c

F' (z) = [x, z] for all x € D\ (8.156)
for all x,y e Do => 2y-x G D. (8.157)

Then, sequence {xn} (n > 0) generated by method (8.149) is weW de- 
fined, remains in U(x*,r*) for all n > 0 and converges to x* provided 
that z-i, xo belong in U(x* ,r*).Moreover the following error bounds hold 
for all n > 0;

hn+i ■ - Avy|Yi-iniiii> - (8-i58)1 - a||xn - x*|| - c||xn_! - zn||2

Proof. Let us denote by L = L(x, y) the linear operator

L=[2y — x,x]. (8.159)

Assume x,y G U(x*,r*). We shall show L is invertible on U(x*,r*), and 

||L-1F,(I*)|| < [l-a^-x‘ll-cllz-3/112]-1 < [l-a^-^c^*)2]"1. (8.160)
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Usiug (8.149), (8.151)—(8.157), we obtain in turn:

HF'(x*)-1[F'(x*) - L]||
= ||F(x*)-1[([x*,x*] - [j/,3/)) + ds/,3/1 - [2y - x,x))]
< <x||j/ — x*|| + c||y — x||2
< ar" + c[||t/ - x*|| + ||x* - x||]2
< ar* 4- 4c(r*)2 < 1 (8.161)

by the choice of r*.
It follows from the Banach lemma on invertible operators and (8.161) 

that L-1 exists on L/(z*,r*), so that estimate (8.160) holds. We can also 
have:

ll^*)-1([2/,x*]-L)||
= lir'(x*)-1 [([i/, x*] - [3/, 3/]) + ([3/, j/] - £)] ||
< ||F'(x*)-1d3/,x*] - [1/,3/1)11 + ||F'(x')-1([3/,3/] - I)||

< i»||s/ — x* || + c||i/ — x||2
< 6r* + 4c(r*)2. (8.162)

Moreover by (8.149) we get for y = xn, x = zn-i

l|Xn+l -X*|| = || - Ln^lXn,!*) - L„)(x„ - X*)||
< ||L-1F'(x*)|| • ||r(x*)-1([x„,i*] - L„)|| • ||x„ - x*||.

(8.163)

Estimate (8.158) now follows from (8.161)-(8.163). Furthermore from 
(8.158), (8.161) and (8.162) we get

||x„+i — x*|| < ||x„ — x*|| < r* (n>0). (8.164)

Hence, sequence {x„} (n > —1) is well defined, remains in U(x ,r ) for a 
n > — 1 and converges to x*.

That completes the proof of Theorem 8.6.

Let x, y, z G Dq, and define the divided difference of order two of oper- 
ator F at the points x, y and z denoted by [x, y, z] by

[$,3/> z](y ~ z) ~ “ [x,z]* (8.165)
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Remark 8.9 In order for us to compare method (8.149) with others [236] 
using divided differences of order one, consider the condition

- [u,v])|| < a(||® - «11 + 111/“ «ll) (8.166)

instead of (8.151) and (8.152). Note that (8.166) implies (8.151) and 
(8.152). Moreover we have:

a<2a (8+67)

CLTld

b < 25. (8168)

Therefore stronger condition (8.166) can replace (8.151), (8.153) and 
(8.156) in Theorem 8.6.

Assuming F has divided differences of order two, condition (8.153) can 
be replaced by the stronger

- [2y - x,x,y])(y - z)|| < c||j/ - z||, (8.169)

or the even stronger

||F'(x’)-l([u,x,3/]-[v,x,j/])(3/-x)|| < c||u-t>||. (8.170)

Note also that

5<c (8-17D

and we can set

c = c (8-172)

despite the fact that c is more difficult to compute since we use divided 
differences of order two (instead of one). Conditions (8.166) and (8.170) 
were used in [236] to show method

Vn+l =yn- ([z/n,3/n-l] + [j/n-2,t/n] “ [j/n-2, l/n-l])”^^) (n y °)
(8.173)

converges to x* with order 1.839... which is the solution of the scalar 
equation

t3 - t2 - t - 1 = 0. (8.174)
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Potra in [236] has also shown how to compute the Lipschitz constants ap- 
pearing here in some cases. It follows from (8.158) that there exist co, N 
sufficiently large such that:

lkn+i -x*|| < c0||xn - z*||2 for all n > N. (8.175)

Hence the order of convergence for method (8.149) is essentially at least two, 
which is higher than 1.839.... Note also that the radius of convergence 
r* given by (8.156) is larger than the corresponding one given in [[236], 
estimate (8.169)]. This observation is very important since it allows a wider 
choice of initial guesses z_i and xq.

It turns out that our convergence radius r* given by (8.156) can even 
be larger than the one given by Rheinboldt [247] (see, e.g., Remark 4.2 in 
[236]) for Newton’s method. Indeed under condition (8.166) radius r*R is 
given by

tH = ^. (8-176)

We showed in 8.1 that J (or |) can be arbitrarily large. Hence we can have:

r*R < r*. (8.177)

In 8.1 we also showed that rR is enlarged under the same hypotheses and 
computational cost as in [247].

We note that condition (8.157) suffices to hold only for x, y being iterates 
of method (8.149) (see, e.g., Example 8.9).

Condition (8.171) can be removed if D = X. In this case (8.154) is also 
satisfied.

Delicate condition (8.156) can also be replaced by stronger but more 
practical one which we decided not to introduce originally in Theorem 8.6, 
so we can leave the result as uncluttered-general as possible.

Indeed, define ball Ui by

Ui=U(x*,R*) with R* = 3r*.

C TL (n > o) • This
If zn-i,xn € U* (n > 0) then we conclude 2xn — xn-i 
is true since it follows from the estimates

||2xn — Xn_i — x*|| < ||xn — I*|| + ||ln — (n > 0) •
<2||in-o;*|| + hn-i-I*ll< r
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Hence the proof of Theorem 8.6 goes through if both conditions (8.154), 
(8.156) are replaced by

t/i C Dq. (8.2.7')

We can show the following result for the semilocal convergence of 
method (8.149).

Theorem 8.7 Let F be a nonlinear operator defined on an open set D 
of a Banach space X with values in a Banach space Y. Assume:

operator F has divided differences of order one and two on Dq C D;
there exist points X-i, xq in Dq such that 2xq — X-i G Dq and j4o —

[2rco — is invertible on D;
Set An = [2xn — xn— i,xn_i] (ft > 0).
there exist constants a,/3 such that:

IMo ^(l1.!/] - [“.“1)11 < - “II + 111/ - “II). (8-178)
ll-^l(ll/.a:,!/]-[2j/-x,i,j/])|| < j3||® - !/|| (8.179)

on interval (0, r].

for all x,y,u,v G D, and condition (8.157) holds;
Define constants by

ll^o - z-ill <7, (8.180)

IIAo Wo)ll < <5, (8.181)

2/3? < i; (8.182)

define 0,r, h by

9 = {(a +/37)2 + 3/3(1 —/372)}1/2, (8.183)

(8.184)r =
a + (Fy + O'

and

h(t) = —/3t3 - (a + /37)t2 + (1 - /372)t. (8.185)

r - L/ . 1 q + /37 + 29 2
5S/l(r)= 3 1 — 2/372 T' (8.186)

Uq = U(xQ,rQ) C Dq, (8.187)

where tq € (O,rj is the unique solution of equation

h(t) = (1 - 2/372)<5 (8.188)
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Then sequence {zn} (n > “1) generated by method (8.149) is well de- 
fined, remains in U(xo,ro) for all n > —1 and converges to a solution x 
of equation F(x) =0.

Moreover the following error bounds hold for alln> —1

lkn+1 - 3?n|| < tn - Ub (8.189)

and

||Xn-z’||<<n, (8'19°)

where, 

t-i = r0 + 7, tQ = r0, (8.191)

70 = a + 3/?r0 + /?7, 71 = 3/?rg “ 27oH) - /?72 + 1, (8.192)

and for n > 0

, _ 70*n - (*n - tn-l)2Z? ~ 2^n _ . f (8.193)
n+1 - 71+270tn-(tn-tn-l)2-3/?^

Furthermore if D is a convex set and

2a(7 + 2r0)<l, <8'194)

x* is the unique solution of equation (8.148) in U(xq^tq}.

Proof. Sequence {t„} (n > -1) generated by (8.191)-(8.193) can be 
obtained if method (8.149) is applied to the scalar polynomial

/(t) = -/?t3 + 7ot2 + 711- (8.195)

It is simple calculus to show sequence {t„} (n — —1) converges monotoni 

cally to zero (decreasingly).
We can have:

^n+l in+2

= 7727^7^773 Atn+i) (8-198)
/(2*n+l ~ tn) “ f\tn)

= {[70 ~ (2tn + tn+i)/3](tn - tn+i) + (tn - tn-i)20}(tn - tn+1)__
1 — /Fy2 — 2(to — tn+i)a — [3(to — tn+i)(3to + tn+i) ~ (tn — ^n+i)2]/?

< ^"~<n+1)a + (fn-1~(n^(tn - t„+1). (8-197)
1 - 2(tQ - tn+i)a - 0T



340 Approximate Solution of Operator Equations with Applications

We show (8.189) holds for all n > -1. Using (8.180)-(8.185) and

‘o - = I1 - = c <8'198)

we conclude that (8.189) holds for n = -1,0. Assume (8.189) holds for all 
n < k and x* G t7(xo,^o)- By (8.157) and (8.189) Xk+i G C7(xo,ro). By 
(8.178), (8.179) and (8.189)

IIA) T(A) - Afc+i)||

= Mo ^([^O - X-1,X-1) - [xo, X-1) + [x0, X-1] - [20,20]

+ [20,20] - [Zfc+1,20] + [Zfc+1,Xo] - [Xfc+1, Xfc]

+ [®fc+i,Xfcl - [2xfc+i -Xfc,Zfc])||
= Mo 1 (([23:o - X-1, 2-1, Xo] - [xo, 2-i,20)) (^O - 2—1)

+ ([20,20] - [Xfc+1, 20])

+ ([2fc+l, 20] - [Xfc+1, 2fc]) + ([Xfc+1, Zfc) - [2Xfc+i - 2fc,2fc]))||

< /h2 + („20 - 2fc+i|| + ||zo - 2fc|| + ||Xfc - 2fc+i||)a

< trf + 2(to - tfc+i)a < 2/+y2 + 2ar < 1. (8.199)

It follows by the Banach lemma on invertible operators and (8.199) that 
exists, so that

Mfc+i^oll < [!—/572—(||20—2fc+i|| + ||a;o—2fc|| + ||rrfc—2fc+i||)or]—X- (8.200)

We can also obtain

||Ao ([2fc+i,Xfc) — Afc)||

= Mo ^fe+l^fc] - [Xfc, Xfc]

+ [2fc,2fc] - [2fc,Zfc-i] + [2fc,Xfc-i] - [2Xfc - 2fc-l,2fc-l])||

= Mo^Q^fc+l^fc] - [2fc,Zfc])

+ ([2fc,2fc-i,Zfc] - [2xfc - 2fc-i,Xfc-i,Xfc))(Xfc - 2fc-i))||

< a„2fc - 2fc+i|| + /?||2fc_ 1 - xfc||2. (8.201)
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Using (8.149), (8.200) and (8.201) we get

ll^fc+2 -Xfc+i||

= 11^1^+1)11 = M;;i(F(xfc+i) - F(®fc) - xfc(xfc+j - ®fc))||
< MrlMoll IMo ‘(l^+i^l - >U)II • Ik* - xk+11| 

__ __________ olkfc - gfc+l II + j?||xfc-1 - Zfc||2_____________ 

1 - Z?72 - a(||io - Xfc+i II + ||x0 - xk|| + ||zfc - xfc+i ||)
||zfc - xk+i ||

[q(tfc - tfc+1) + ^(tfc_i - tfc)2](ifc - tfc+i) 
1 - 0'f2 - 2(t0 - tfc+i)a

< £fc+l - £fc+2j (8.202)

which together with (8.188) completes the induction.
It follows from (8.189) that sequence {xn} (n > —1) is Cauchy in a 

Banach space X and as such it converges to some x* G £7(zo>ro) (since 
U($o> ro) is a closed set). By letting k —» oo in (8.202) we obtain F(z*) = 0.

Finally to show uniqueness, define operator

Bq = / [y* + t(z* -1/*), y* + t(x* - y*)]dt (8.203) 
Jo

where y* is a solution of equation (8.148) in U(xo>ro)- We can have 

Mo1(Ao-Bo)||

<ot[ [||2io - ^-i - y* - t(x* - 3/*)|| + lk-i - y ~t(x — y )IIJ^ 
Jo 

n ii ii *n । IIx° ~ y*H + IIJ° ~
< a ||x0 - z-ill + Iko - y II +-------------2

.. .. ... . ||xo-a:*|| + ||xo-y*J
+ ||zo - Z-11| + Iko - 3/ II 4------------- 2

<2a(7 + 2r0) <1. (8 204)

It follows from the Banach lemma on invertible operators and (8.204) that 
linear operator B is invertible.

We deduce from (8.203) and the identity

F(x‘) - F(y’) = B^x’ - y') (8-205)

that 

x-=/. (8-206>

The proof of Theorem 8.7 is now complete.



342 Approximate Solution of Operator Equations with Applications

Remark 8.10 (a) It follows from (8.189), (8.190), (8.197) and (8.202) 
that the order of convergence of scalar sequence {tn} and iteration {xn} is 
quadratic.

(b) The conclusions of Theorem 8.7 hold in a weaker setting. Indeed 
assume:

ll-^O ^d^Of^o] — [x, Xo])|| < Qoll® — zo||, (8.207)
ll-^o (I1, ^o] — [x, y])|| < ai||j/ — xo||, (8.208)

IIAo *([»,»] - [2y - x,x])|| < x||, (8.209)
IMo'ds*,®] - [®,a:])|| <a3||j/-x||, (8.210)

||40 - z_1)l0] _ [z, j,])|| < a4(||2z0 - z_! - z|| + ||z0 - J/||)
(8.211)

and

||Ao1([2zo-z_1,z_i,zo]-[zo,z_1,zo])|| < ^olko - ®-i|| (8-212)

for all x,y E Do.
Itfollows from (8.178), (8.179) and (8.207) - (8.212) that

at<2a, i = l, 2,3,4 (8.213)
and

(8.214)
For the derivation of: (8.200), we can use (8.207) — (8.209) and (8.212) 
instead of (8.178) and (8.179), respectively; (8.201), we can use (8.210) in- 
stead of(8.178; (8.204), we can use (8.212) instead of (8.178). The resulting 
majorizing sequence call it {sn} is also converging to zero and is finer than 
{tn} because of (8.213) and (8.214).

Therefore if (8.157), (8.207) - (8.212) are used in Theorem 8.7 instead 
of (8.178) we draw the same conclusions but with weaker conditions, and 
corresponding error bounds are such that:

||xn+l - Xn|| < S„ - Sn+1 < tn+1 - tn (8.215)
and

I|xn - z’|| < sn < t„ (8.216)
for all n > 0.
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Define

(8.218)

(8.219)

(8.220)

(8.221)

(c) Condition (8.179) can be replaced by the stronger (not really needed 
in the proof) but more popular,

||Ao - [u,x,i/DII < /?i||w - v|| (8.217)

for all v,u,x,y G D.
(d) As already noted at the end of Remark 8.9, conditions (8.157) and 

(8.187) can be replaced by

U2 = U(xo,Ro)QD0 with fto = 3ro (8.2.40')

provided that x_i G U^-
Indeed if xn-i,xn €.Uq (n > 0) then

||2x„ - x„-i|| < 2||x„ - zoll + K-i - ®oll < 3n>-

That is 2xn — xn-i € U2 (n > 0).
We can also provide a posteriori estimates for method (8.149).

Proposition 8.2 Assume hypotheses of Theorem 8.150 hold. 
scalar sequences {pn} and {<7n} for <dln>l by:

Pn = tt||x„-l - X„||2 + /3||Xn-l - Xn-2||2hn-l "

and

qn = 1 - 2a||xn - ®oll + (rf-

Then the following error bounds hold for alln> 1.

||Xn-X*|| <£n <*n»

where, 
en^a^n + ten-40?")172} lpn’

Proof. As in (8.199) we can have in turn:
Mo‘(4o - [x„,z-])|| = Mo’1^ - Iol+ 110,101 7 lln’^11

< 0~l  + a(ll®0 - xnII + ho - 1 II)2
< /3y  + Oc(2t0 ~ tn)2
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It follows from (8.218) and the Banach lemma on invertible operators that 
linear operator [xn, x*] is invertible, and

l|[zn,z*]“1A0|| < (gn-a|kn-z*ll)-1- (8.223)

Using (8.149) we obtain the approximation:

x„ - x‘ = ([x„,x‘]-Mo)(Ao ^(Xn)). (8.224)

By (8.201), (8.223) and (8.224) we obtain the left-hand side estimate of 
(8.220).

Moreover we can have in turn:

< _____ _______
?n-a||»n-®*||

< a(t„-l tn)^ + /3(t„—1 t„)(tn—1 t„—2)
- 1 — /372 - 2a(to - t„) — at„
- {[70 - £(2tn-i + t„)](tn-i -1„) + /3(t„-2 - tn_i)2}(t„-i - Q

— 1 — jS-y2 - 2a(t0 -1„) - at„ - (3ro + 7)(to - t„)Z? - ftn ~ ^r°

< + ot2 + 71 = (8.225)
“ -/3r2+atn + 71

That completes the proof of Proposition 8.2. °

A simple numerical example follows to show:

(a) how to choose divided difference in method (8.149);
(b) method (8.149) is faster than the Secant method

X„+1 = x„ - K.x^-1]-1^) (n > 0) (8-226)

(c) method (8.149) can be as fast as Newton’s method

X„+1 = x„ - F’(xn)-lF(xn) (n > 0). (8.227)

Note that the analytical representation of F'(xn) may be complicated which 
makes the use of method (8.149) very attractive.

Example 8.9 Let X = Y = R, and define function F on Po = =
(•4,1.5) by

F(x) = x2 - 6x + 5. (8.228)
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Moreover define divided difference of order one appearing in method (8.149) 
by

(8.229)

In this case method (8.149) becomes

„ _ Sn-5
2(xn-3)'

(8.230)

and coincides with Newton’s method (8.227) applied to F. Furthermore 
Secant method (8.226) becomes:

xn—ixn 5
Xn^~ xn_,+xn-6

Choose X-i = .6 and xq = .7. Then we obtain:

(8.231)

n Method 2 Secant method (8.231)
1 .980434783 .96875
2 .999905228 .997835498
3 .999999998 .99998323
4 l = x’ .999999991
5 — 1

We conclude this section with an example involving a nonlinear integral 

equation:
Example 8.10 Let H(x, t, x(t)) be a continuous function of its arguments 
which is sufficiently many times differentiable with respect to x. It can 
easily be seen that if operator F in (8.148) is given by

F(x(s)) = x(s) - H(s,t,x(t))dt, 
Jo

(8.232)
o

then divided difference of order one appearing in (8.149) can be defined as 

. / ' H(s,t,2xn(t) - Xn-ift)) - H(s,t,xn-i(t)) (8.233)
2(xn(t) - Xn-lW)

provided that if for t = tm we get xn(t) = xn-i(t), then the above function 
equals H'x(s, tm, xn(tm)). Note that this way hn(s,t) is continuous for all 

t € [0,1].
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We refer the reader to Chapter 2 for the concepts concerning partially 
ordered topological spaces (POTL-spaces).

The monotone convergence of method (8.149) is examined in the next 
result.

Theorem 8.8 Let F be a nonlinear operator defined on an open subset 
of a regular POTL-space X with values in a POTL-space Y. Let x0, y0, 
y~i be points of D such that:

Xo<yo<y-1, £>o = (zo,2/-i) C D, F(x0) < 0 < F(y0). (8.234)

Moreover assume: there exists a divided difference [•,•]: D —♦ L(X,Y) such 
that for all (x, y) € Dq with x <y

2y-xZ Do,

and

F(y) ~ F(x) < [z, 2y - x](2/ - x).

(8.235)

(8.236)

Purthermore, assume that for any (x, y) G Do with x < y, and (x, 2y — 
x) 6 jD0 the linear operator [x, 2y — rc] has a continuous non-singular, non- 
negative left subinverse.

Then there exist two sequences {xn} (n > 1), {?/n} (n !)> an<^ tw0 
points x*, y* of X such that for all n > 0:

F(Vn) + [l/n-l,2yn - yn-l](yn+l - yn) = 0»
F(xn) 4- [yn-l'%yn - 3/n-l](®n+l -
F(xn) < 0 < F(yn),

X0 < 11 < ' • • < xn < Xn+l < yn+1 <yn < • • • <y^ - 2/°’ 
lim xn = x*, lim yn = y*.n—»oo

(8.237)
(8.238)
(8.239)
(8.240)
(8.241)

Finally, if linear operators An = [j/n-i,2i/n — J/n-1) are inverse non- 
negative, then any solution of the equation F(x) = 0 from the interval 
Dq belongs to the interval {x*ty*) (i.e., Xg < v < yo and F(v) = 0 imply 
x' <v < y").

Proof. Let Ao be a continuous non-singular, non-negative left subinverse 
of Ao. Define the operator Q: (O,i/o - xo) —1 X by

Q(x) = x- Ao[F(xo) + A)(s)]-
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It is easy to see that Q is isotone and continuous. We also have:

Q(0) = -XoF(xo) > 0,
Q(yo ~ x0) = yo - x0 - A0(F(z/0)) + A0(F(y0) - F(x0) - A0(y0 - x0))

<yo-xo- 4o(F(t/o)) < yo - x0.

According to Kantorovich’s theorem on POTL-spaces [99], [272], operator 
Q has a fixed point w G (0, y0 — x0). Set xi = x0 4- w. Then we get

F(x0) + Ao(zi - zo) = 0, x0 < xi < y0. (8.242)

By (8.236) and (8.242) we deduce:

F(xi) = F(xi) - F(x0) + A0(x0 - xi) < 0.

Consider the operator H: (O,yo - Xi) —> X given by

H(x) = x + A0(F(y0)-A0(x)).

Operator H is clearly continuous, isotone and we have:

H(0) = AoF(?/o)>0,
H(yo - xi) = y0 - zi + A0F(zi) + A0[F(y0) - F(xi) - A0(y0 - xi)]

< yo - xi + A0F(xi) < y0 - xi.

By Kantorovich’s theorem there exists a point z E (0,i/o — Xi) such that 
H(z) = z. Set yi = y0 — z to obtain

F(y0) + A0(j/i - yo) = 0, xi < yi < yo- (8.243)

Using (8.236), (8.243) we get:

F(yi) = F(yi) - F(y0) - A0(yi - yo) > 0.

Proceeding by induction we can show that there exist two sequences {^n} 
(n > 1), {yn} (n > 1) satisfying (8.237)-(8.240) in a regular space X, and 
as such they converge to points x*, y* € X respectively. We obviously have 
x* < y*. If x0 < u < yo and F(u) = 0, then we can write

A)(yi - u) = A0(y0) - F(y0) - A0(u) = A0(y0 - u) - (F(y0) - F(u)) > 0

and

>lo(xi - u) = Xo(zo) - F(XO) - Ao(u) = >lo(zo - “) - (F(xo) ~ F(u)) °' 
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If the operator Ao is inverse non-negative then it follows that zi < u < yi. 
Proceeding by induction we deduce that xn < u < yn holds for all n > 0. 
Hence we conclude

x* <u<y*.

That completes the proof of Theorem 8.8. O

In what follows we give some natural conditions under which the points 
x* and y* are solutions of equation F(x) = 0.

Proposition 8.3 Under the hypotheses of Theorem 3, assume that F is 
continuous at x* and y* if one of the following conditions is satisfied:

(a) x* = 3/*,-
(b) X is normal, and there exists an operatorT: X —♦ Y (T(0) = 0) which 

has an isotone inverse continuous at the origin and such that An < T 
for sufficiently large n;

(c) Y is normal and there exists an operator Q: X —> Y (Q(0) = 0) con- 
tinuous at the origin and such that An < Q for sufficiently large n;

(d) operators An (n > 0) are equicontinuous.

Then we deduce

F(x*) = F(y*) = 0. (8.244)

Proof. (a) Using the continuity of F and (92) we get

F(i‘) < 0 < F(y‘).

Hence, we conclude

F(x*) = 0.

(b) Using (90)-(93) we get

0 > F(xn) = An(xn — Xn+i) > T(xn — xn+i), 
0 < F(yn) = An(yn - yn^) < T(yn - ?/n+i).

Therefore, it follows:

0 > T~lF(xn) > xn - Xn+i, 0 < T~'F(yn) <yn~ 3/n+i-

By the normality of X, and

lim (xn - Xn+i) = ihn (yn - yn+i) = 0, w n—>oo 
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we get limn_oo T^F^Xn)) = lim T~\F(yn)) = 0. Using the continuity 
of F we obtain (8.244).

(c) As before for sufficiently large n

0 > F(xn) > Q(xn — 2?n+l), 0 < F(yn) < Qfyn ~ Vn+l)-

By the normality of Y and the continuity of F and Q we obtain (8.244).
(d) It follows from the equicontinuity of operator An that lim Anvn = n—»oo

0 whenever lim vn = 0. Therefore, we get lim An(xn — zn+i) = 
n—»oo n—»oo

Jij^nG/n - 1/n+i) = 0. By (8.237), (8.238), and the continuity of F 
at z* and y* we obtain (8.244).

That completes the proof of Proposition 8.3. O

Remark 8.11 Hypotheses of Theorem 8.8 can be weakened along the 
lines of Remarks 8.9 and 8.10 above and the works in [236, pp. 102-105], or 
Chapter 5 on the monotone convergence of Newton-like methods. However, 
we leave the details to the motivated reader.

Remark 8.12 We finally note that (8.149) is a special case of the class 
of methods of he form:

^n+l = xn - [(1 + Xn)xn - Anln-l^n-l]"1^^) (n > 0) (8-245)

where Xn are real numbers depending on xn-i and xn> i-e.

Xn = X(xn-!,Xn) (n>0), X : X2-> R, (8.246) 

and are chosen so that in practice, e.g.,

for all x,y G D => (1 + X(x, y))y - X(x, y)x € D. (8.247)

Note that setting X(x,y) = 1 for all x,y € D in (8.245) we obtain (8.143)-

Using (8.245) instead of (8.149) all the results obtained here can imme- 
diately be reproduced in this more general setting.

8.3 Exercises

8.1. Let F : S C X -> Y be a three times Frechet-differentiable oper- 
ator defined on an open convex domain S of Banach space X with 
values in a Banach space Y. Assume F'^xq)^1 exists for some xq E S, 
ll^'(xo)-1 II < /?, ||F'(x0)-1F(x0)|| < r], ||F'(x)|| < M, ||F'"(x)|| < N,
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||F"'(z) — F,"(t/)|| < L||z — 7/11 for all x, y G S, and U (z0,7'7?) C S, 
where

A = M/3r), B = N/3ti2, C = L0r?, 
ao = l = co, &o = ^, do = f(l + A), 

0,71+1 ~ l-Aan(cn+dn) ’ ^n+l = “g'^n+lCn+l, 

27[4+(l+|bn)2] A3a^+18ABan+17c 
-----X~3t V-------------- an+1d<, 

bn(1+2fen)
^n+l = jbn+1 (1 + |&n+l) Cn+1 (n > 0) ,

and r = limn-.<x>E?=oJ + <4)- If A e [0,|], B = 
[0> i?a (■P(A) ~ 17c)] and c e [o,-^l], where P(X) = 

27(X-l)(24-l)(42 + A + 2)(42 + 2>l + 4). Then show [145]: 
Chebysheff-Halley method given by

yn = Xn-F'(xn)~' F(xn)

Hn = F' (Xn)-1 [F' (xn + | (Vn - Xn)) ~ F' (x„)] 

®n+i yn ^Hn [z jf^n] (yn xn)

is well defined, remains in U (xo,r?7) and converges to a solution x* € 
& (xo,r7j) of equation F (x) = 0. Moreover, the solution x* is unique 
in U (x0, — rTj). Furthermore, the following error estimates hold

for all n > 0

hn - X’|| < £ (a + di) 7, < [1 +1(1 + A)] ^3 fy,/3.

i=n i=l

where 7 =
8.2. Consider the scalar equation [147]

/(x) = 0.

Using the degree of logarithmic convexity of f

Lf(x) = fj^r(x) 
f'(x)2

the convex acceleration of Newton's method is given by

Xn+l — F (xn) =xn- f_Jn) 
f'M

Lfjn) 
2(1-Lf(xn))

(n>0)
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for some zq € R. Let k > 1754877, the interval [a, 5] satisfying a 4- 
2(fcZj) -f^ < b &nd xQ G [a, 6] with f (xQ) > 0, and rr0 > a+
If \Lf (z)| < i and Lf' (x) e [|,2(fc - l)2 — in [a, 6], then show: 

Newton’s method converges to a solution x* of equation f (x) = 0 and 
$2n > $*, X2n+1 < for all n > 0.

8.3. Consider the midpoint method [68], [149]:

Vn — Xn — ($n) , Tn — F (xn) ,
Zn = Xn + | (yn “ Xn) ,

$n+i = xn — LnF (xn), rn = F (zn) (n > 0),

for approximating a solution x* of equation F(x) = 0. Let F : Q, C 
X —> Y be a twice Frechet-differentiable operator defined on an open 
convex subset of a Banach space X with values in a Banach space Y. 
Assume:

(1) To G L (Y, X) for some i0 € 9 and ||r01| < /3;
(2) ||roF(so)||<77;
(3) ||F"(s)||<M (zgQ);
(4) ||F"(x)-F"(2/)||<A:||x-2/|| (x,yeQ).

Denote a0 = M/3r], bQ = K(3r]2. Define sequence an+i = 
an/(a„)2 </(an,6„), 6„+1 = 6„/(a„)3ff(a„,6„)2, f (x) = and

9(x,y) = + Jf. If 0 < a0 < |, 60 < 6(a0), where

6(1) = u(x0,Rti)cq,

A = /(no)-1.

then show: midpoint method {£„} (n > 0) is well defined, remains 
in U[xq, Rr]) and converges at least 7?-cubically to a solution x of 
equation F (z) = 0. The solution x* is unique in U(x0, — Ry) H fl
and

9||z„+1-x’||<5^7 2 W
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8.4. Consider the multipoint method [173]:

Vn — (xn) , rn — F (xn) i
zn = Xn + 0 (yn — Xn) ,

^n = irn[F'(xn)-F'(2n)], ee (0,1], 

$n+l = Vn 4“ 2^n (^n $n) (^ — 0) >

for approximating a solution x* of equation F (x) = 0. Let F be a twice- 
Frechet-differentiable operator defined on some open convex subset Q 
of a Banach space X with values in a Banach space Y. Assume:

(1) r0 e L(Y,X), for some x0 e X and ||r0|| </3;
(2) ||r0F(x0)||<Ti;
(3) ||F" (x)|| < M, (xeO); tn11
(4) ||F" (x) - F" (y)|| < K ||x - y\\P, (*.») € fi, X > 0, p e [0,1).

Denote a0 = M/3r), t0 = K/3r)l+p and define sequence

2
$n+l = G>nf (an) 9& (^n> &n) , 
fen+i = W(an)2+p^ (an,dn)1+p,

f W ~~ 2-2x-s2 and
9e {x, y) = s3*4*2 + [2+(p+2)0p]y

2(p+l)(p+2) *

Suppose gq 6 (0, |) and bo < hp (ao, 0), where

hp *) = (1 - 2x) (8 - 4x2 - x3).

Then, if U(x0,Rn) c fi, where R = (1 + ga) _L_ A =
ow. iteration {zn} (n > 0) is well defined, remains in U (xo,Rtj) for 

__ and converges with 7?-order at least 2 + p to a solution x* of 
qua lon (®) = q. soiutjon is unique in 2 _ p Q.

Moreover, the folfowing error bounds hold for all n > 0

ll^n “ X*|| < 1+^^)17(<^) △n
1_7(2+p)"A’?’

where 7 = ^-' a0
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8.5. Consider the multipoint iteration [176]:

Vn = %n FnF (xn) > Ln — F (^n) >
zn = %n ~ f FnF (xn) > 

Hn = rn [F' M-F' (xn)),
Zn+1 =2/n-| [7+ ^Hn]'1 Hn(yn-xn) (n > 0),

for approximation equation F (z) = 0. Let F : Q X —> K be a three 
times Frechet-differentiable operator defined on some convex subset 
fi of a Banach space X with values in a Banach space Y. Assume 
F' (xo)”1 G L(Y,X) (x0 € Q), ||r0|| < <*, ||r0F (rr0)|| < A llF"(z)H 
M, ||F'" (x)|| < N, and ||F'" (x) - F'" (j/)|| < k ||z - y|| for all x,y € H. 
Denote 6 — Ma/3, w = Na(32 and <5 = Ka/33. Define sequences

^O — Co — 1, 60 — g 0, d0 — 2(1—5) ’

an+l = i-9andn ’ ^n+l = |^n+10n+l>
+sesy] -■<

and

<in+l = i^Cn+l (n>0).

Moreover, assume: U (xq,R/3) C Q, where

t=0
0 < J < 27(2g-t)(53-85^+165~8)

O < z . 3(25—1)(53—852+165—8) 17<y
- 45(1-5)2 365’

Then show: iteration {xn} (n > 0) is well defined, remains in 
(xq,R/3) for all n > 0 and converges to a solution x* of equation 

F (x) = 0. Furthermore, the solution x* is unique in U {xq, — R0)

and for all n > 0

hn - X’|| < ^di/3 < YT'4<+,/3’

i>n j>n

where 7 = r1.1 b0
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8.6. Consider the multipoint iteration [148]:

Vn = Xn - F' (Xn)-1 F (xn)

Gn = [F' (a:n + p (j/n - xn)) - F' (xn)] (j/n - xn), pe (0,1], 
®n+i = yn = ^F' (yn) 1 Gn (n > 0)

for approximating a solution x* of equation F (x) = 0. Let F : Q C 
y be a continuously Frechet-differentiable operator in an open 

convex domain Q which is a subset of a Banach space X with values 
in a Banach space Y. Let x0 G Q such that To = F' (xo)-1 € L (Y, X); 
l|r01| < 0, ||*/o - x0|| < 77, p = |, and ||F’ (x) - F' (y)|| < K ||x - t/|| for 
all x,y G Q. For b0 = K/fy, define bn = bn-if (6n-i)2 9 (bn-i), where

= -d S(I)=±^.

If bQ < r = .2922..., where r is the smallest positive root of the poly- 
nomial q (x) = 2x4 - 17x3 + 48z2 - 40z + 8, and £7(x0, ^) C Q, then 
show: iteration {zn} (n > 0) is well defined, remains in t7(x0, ^) and 
converges to a solution x* of equation F(x) = 0, which is unique in 
^(x0, ^g)-

8.7. Consider the biparametric family of multipoint iterations [150]:

yn = xn - rnF (xn), Zn = xn + p (yn - xn), p € [0,1],
^n = |rn[F'(zn)-r(xn)],

®n+i = yn - |Hn (I + aHn) (yn - xn), (n > 0)

where Tn = F’ (zn)-1 (n > 0) and a = -20 G R. Assume To = 
F'(xo) 1 G L(Y,X) exists at some xQ G Qo X, F : Qo Q 
X -♦ y twice Frechet-differentiable, X, Y Banach spaces, IIFoll < & 
HroF(zo)|| < tj, ||F"(x)|| < M, x G Qo and ||F" (z) - F" (j/)|| < 
^lk“l/|| for all x,y G Qo. Denote a0 = M0ri, bQ = k0T]2. Define 
sequences

an+i = anf (an)2 g (an, bn), bn+i = bnf (an)3 g (an,bn) y 

where

/(z) = 2[2-2z-s2-|a|z3]-1, 

and

9 (x,y) = + 12lx4 + lillalx® + + ^xy +
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for some real parameters a and p. Assume:

ao e (0, j), b0 < p = 3(g-is * * 18 * * * * *«»-4«o+Ta8+M)

is of third order for an appropriate choice of xo- This result is due to
Gander. Note that function G can be chosen

G (x) = 1 + j (Chebyshev method);
G(x) = 1 + (Halley method);
G (x) = 1 + (Super-Halley method).

8.9. Consider the super-Halley method [68] for all n > 0 in the form:

F (xn) + F' (xn) (yn - xn) = 0,
^F (xn) + 3F' (xn) [xn + | (yn - xn)] (yn - xn)

+ 4F' (yn) (xn+1 - yn) = 0,

|a| < min {6, r}, p G (0,1] and p < h (|a|), where r is a positive root of 

h & = 6t,o(i-ao) [ (24 - 48“o - 12ag + 21a0 + 6a40 - 2b0 (3a0 + 2)) 

+ 6a0 (2a0 + 3a0 - 6a0 — 2) x + 3a0 (2a0 — 1) x2j,

U(x0,Rri)GQ0, R = [1 + ^1(1 + 101^)]^^= 21, A = /(a0)-1.

Then show: iteration {xn} (n > 0) is well defined, remains in 
(*o, Rij) for all n > 0 and converges to a unique solution x* of equa- 

tion F(x) = 0 in U(xq, — Rrf) n Qo- The following estimates hold 
for all n > 0:

hn - I*|| < [1 + a0 (1 + lal^^Oo)] 7^

8.8. Let f be a real function, x* a simple root of f and G a function 
satisfying G (0) = 1, G' (0) = | and \G" (0)| < +oo. Then show [158]:
iteration

Xn+i=xn-G(£/(xn))^4, (n>0)

where 

Lf(x) = /'W2
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for approximating a solution x* of equation F (x) = 0. Let F : Q C 
X —♦ Y be a three-times Frechet-differentiable operator defined on an 
open convex subset Q of a Banach space X with values in a Banach 
space Y. Assume:

(1) r0 = F' (x0)-1 e L (Y, X) for some x0 € fi with ||r0|| < /3;
(2) ||r0F(x0)||<«j;
(3) ||F" (x)|| < M (x € O);
(4) ||F'" (x) - F'" (y)|| < L ||x - y|| (x,y G Q), (L > 0).

Denote by ao = Mfrq, cq = Lprp, and define sequences

&n+l — (tnf (&n) 9 ($n? Cn) >

Cn+1 = Cn/(&n) {/(^njCn) >

where

f (z) = Xfa+2 and 3(i>3/) = s [(Tzljr + '

Suppose: a0 6 (o, |), co < /i(ao), where

h( \ - 27(2x-^-l)(x-3^-y/5Yx-3-y/5) 
W--------------------- 17(1—i) 2----------------------’

a(x0,^)CQ, £=[1 + ^]^,

and △ = f (ao)-1. then show: iteration {rrn} (n > 0) is well defined, 
remains in U (xq, Rrf) for all n > 0 and converges to a solution x* of 
equation F (x) = 0. the solution x* is unique in U(xq, — Rrj) O 
and

4n —1 ■
14-

2(l-a0)
4n —i An

7 3 (n > 0),

where 7 = ^ •
8.10. Consider the multipoint iteration method [68], [151]:

Vn = Xn - F' (xn) ^FtXn)
Gn = F' (xn)-1 [F' (xn + 1 (Vn - xn)) - F' (xn)] , 

*n+i = Vn - |G„ [Z - |Gn] (yn - xn) (n > 0),

for^pproxunating a solution x» of equation F(x) = 0. Let F : C 
e a t ree times Rrechet-differentiable operator defined on an 
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open convex subset Q of a Banach space X with values in a Banach 
space Y. Assume:

(1) To = F' (®o)-1 € L (y, X) exists for some x0 e fl and ||ro|| <
(2) ||r0F(x0)ll<»>;
(3) ||F"(x)||<M(x€ft);
(4) ||F'"(x)|| < N(x e Q);
(5) ||F'" (®) - F'" (y)|| < L ||x - p|| (x,y € ft), (L > 0).

Denote by a0 = Mfrq, b0 = N/3q2 and cq = LQrf. Define the sequence

an+i =an/ (an) g (an, 6„, c«),
3 bn+l =bnf (an) 9 (,anibn, Cn) ,

Cn+1 =Cnf (CLn)4 9(an> bni Cn) »

where

f ($) = 2—2x—x2—x3 ’

and

9 (®, y, z) = sfe [27®3 (®2 + 2® + 5) + 18xy + 17*].

If a0 € (0,1), 17c0 + 18a060 < p(a0), where
p (i) = 27 (1 - x) (1 - 2i) (®2 + x + 2) (®2 + 2® + 4) , 

l/(xo,Kq)cn, R = [1 + (1 + ao)] r^A>

7=2i, △ = /(ao)-1,

thenshow: iteration {®n} (n > 0) is well defined, remains in t/(i0, Fr?) 
for all n > 0 and converges to a solution z* of equation F (x) — >' 
is unique in U(xq, - Rrf) A Moreover the following error oun 
hold for all n > 0:

||®n-l’|| < [1 + ^7^ (1 + O07-5-)] 1-r4"a’’’

8.11. Consider the Halley method [68], [126]

xn+! = xn - [1 - Lp (®n)l-1 F' (®n)-1 F (®„) (n > 0)

where
Lf(x) = F'(x)-1F"(x)F'(x)-1F(x), 
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for approximating a solution x* of equation F (x) = 0. Let F : Q C 
X —> be a twice Frechet-differentiable operator defined on an open 
convex subset of a Banach space X with values in a Banach space Y. 
Assume:

(1) F' (x0)-1 € L (Y,X) exists for some xq G Q;
(2) ||F'(*o)"lF(io)||<0;
(3) ||F' (xo)’1 F" (x0) || < 7i
(4) ||F' (xo)’1 [F" (x) - F" (?/)) || < M ||x - j/|| (x, y 6 fl).

If

< 2[2y72+2M+7]
~ 3[y/'Ti+2M+'y]* ’

U (xo,ri) C Q,

(n < r2) where ri, r2 are the positive roots of h (t) = /3-1 + ^t2 + %t3, 
then show: iteration {zn} (n > 0) is well defined, remains in U (zo,ri) 
for all n > 0 and converges to a unique solution x* of equation F (x) = 0 
in U (xo,ri). Moreover, the following error bounds hold for all n > 0:

l|x‘ - Xn+ill < (n - t„+i) (++r1)'1.

M-CM)3" ^2 ~ T1) - ri “tn - M-GM)4" ^2 — ri) ’

0 = n Ai = A/(r°~r2^4~r^ <1, A2 = 
r2 ’ 1 y (ro-ri)2+rori ” 2

-ro is the negative root of h, and tn+i = H (tn), where

H (t) = t — /i(t) /h' (t) 
l-lih(t)’ Lh(t) =

fe(t)/A"(t) 
h'(t)2

8.12. Consider the iteration [68], [149]

Zn+i = z„-[7 + T(xn)]rnF(zn) (n>0),

“5 r.” ~ F (ln) and = |rn4rnF(xn) (n > 0), for ap- 
P ^mating a solution x* of equation F (x) = 0. Here A : X x X -+ Y 
diff /T. °perator with M = a, and F : Q C X Y is a Frechet- 

ia e operator defined on an open convex subset C of a Banach 
space X. with values in a Banach space Y. Assume:

(2) ^oF(x )|T< ° L (^’ eX1StS f°r SOme X° S wit11

(3) ||F' (X) _ F> (j/)|| < k )|a. _ Q)
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Let a, b be real numbers satisfying a 6 [0, |) , b G (0, a), where

cr = 2 [2a2 —3a — 1 + ^/l+8a-4a2] 
------- a(l-2a)----------

Set ao = 1, cq = 1, b0 = | and d0 = 1 + |. Define sequence

°n+1 = l-aandn’ 671+1 = "2^ [a + (l+l)*] ^n’ 

^n+l = ^^n+l^n+lj dn+i = (1 + ^n+l) ^n+l

and rn+i = dk (n > 0). If a = n(drj e [0, |), U (x0,rrj) C Q, 
r = limn^ooTn, a e [0, ^), then show: iteration {xn} (n > 0) is well 
defined, remains in U(xo, rr?) and converges to a solution x* of equation 
F (x) = 0, which is unique in U(x0, — rrf). Moreover the following
error bounds hold for all n > 0

H^n+l ^nfl < dnT)

and
oo||z*-Zn+i|| < (r-r„)j? = 52 dkT>-

k=n+l

8.13. Consider the Halley-method [68], [164] in the form:

yn = xn — TnF (xn), Tn = F (xn) ,
®n+i = yn + \Lf (xn) Hn (yn - xn) (n > 0),

LF(xn) = rnF"(xn)rnF(xn), Hn = [I - LFfe)]-1 (n > 0),

for approximating a solution x* of equation F (x) = 0. Let F : Q C 
X —*■ Y be a twice Frechet-differentiable operator defined on an open 
convex subset Q of a Banach space X with values in a Banach space 
Y- Assume:

(1) Lo e L (Y, X) exists for some x0 G with ||ro|| <
(2) ||F"Cr)|| < M (xeQ)\
(3) || F" (x) - F" (y) || <N\\x- j/H (x,y e fi);
(4) ||roF(xo)||<77;
(5) the polynomial p (t) = |t2 - jt + where M2 + < k2 has two

positive roots ri and r^ with (ri < r^).
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Let sequences {sn}, {tn}> (n > 0) be defined by

Sn = tn- £(H> tn+1 = Sn + --- (sn - tn) (n > 0) .
P \ln) 1 — -kp {tn)

If, U (io>n) C then show: iteration {xn} (n > 0) is well defined, 
remains in U (z0,ri) for all n > 0 and converges to a solution x* of 
equation F (x) = 0. Moreover if ri < the solution x* is unique in 
& ($o>r2). Furthermore, the following error bounds hold for all (n > 0)

h,-xn||<r1-tn= *=£•

8.14. Consider the two-point method [68], [144]:

Vn = Xn - F' (xn)-1 F (xn) ,

Hn = JF (xn)-1 [F' (xn + p (j/n - xn)) - F' (xn)], P € (0,1],

®n+l Vn 2^n [f + ffn] (j/n Xn) (n > 0) ,

for approximating a solution x* of equation F (x) = 0. Let F : Q 
X —♦ Y be a twice-Frechet-differentiable operator defined on an open 
convex subset Q of a Banach space X with values in a Banach space 
Y. Assume:

(1) Tq = F' (xo)"1 € L (K, X) exists for some xq G Q with ||To|| < #
(2) ]ir0F(z0)||<T7;
(3) I1F"(s)||<M (xefi);
(4) \\F,,(x)-F"(y)\\<K\\x-y\\i x,ye(l.

Denote by clq = M/??/, b0 = Kfrq2. Define sequences

^n+l =0>nf (an) 9p (^nt^n) >

^n+l =bnf (dn) Qp (an> bn) ,

where /(x) = and ^(x^) = If
a° (0, ^)> b0 < hp (h0), where

M ' 2(l-i)[(l-6p)z+2+3p] ’ u\xo,ao)-

then show: iteration {xn} (n > 0) is well defined, remains in U(xq, ^) 
for all n > 0 and converges to a solution x* of equation F (x) = 0,
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which is unique in U(x0,£). Moreover, the following error bounds 
hold for all n > 0:

< [1 +
3n —1 

Qo7 2 
2(1- a0)

3n —IJ7 ’

where 7 = ^- and △ = f (a0) X-
8.15. Consider the two-step method:

Vn = %n F ($n) F (^n)
Xn+1 =yn-F' (Xn)"1 F (yn) (n > 0);

for approximating a solution x* of equation F (x) = 0. Let F : Q C 
X C Y be a Frechet-differentiable operator defined on an open con- 
vex subset Q of a Banach space X with values in a Banach space Y. 
Assume:

(1) r0 = f' (Xq)-1 € L (K, X) for some z0 G Q, ||r01| < /?;
(2) ||r0F(z0)||<77;
(3) ||F' (x) - F' (y) || <K\\x- y\\ (x,y G Q).

Denote a0 = k/3r) and define^ the
sequence an+i = f (an)2 g (an) an (n > 0), where f (x) = 2-2x-x,J an(^ 

g (x) = x2 (x 4- 4) /8. If a0 G (0, |), U (x0, Rrf) QSl, R= , 7 = 
and △ = /(a0)-1, then show: iteration {zn} (n > 0) is well defined, 
remains in U (x0, Rrf) for all n > 0 and converges to a solution of 
equation F (x) = 0, which is unique in U(x$, — ^???) CQ. Moreover,
the following error bounds hold for all n > 0





Chapter 9

Variational Inequalities

We study the convergence of Newton’s method to solve variational inequal- 
ities.

9.1 Generalized Equations Using Newton’s Method

In this section we are concerned with the problem of approximating a locally 
unique solution z* of the generalized equation

F(x) + G(x) 3 0, (9-1)

w ere, F. Dq Q D C H —>Zfisa continuous operator which is FYechet- 
erentiable at each point of the interior Dq of a closed convex subset D 

of a Hilbert space H with values in H, and G is a multivalued maximal 
monotone operator from H into H (to be precised later) [180].

The generalized Newton iteration

F'(xn)(xn+1) + G(xn+1) 9 F'(zn)(zn) - F(xn) (n > 0) (9.2)

has already been used to generate a sequence approximating x*. In partic- 
ular Uko [267] has provided local and semilocal convergence results for 
method (9.2) as well as a procedure for the computation of the inner- 
iterative procedures for the computation of the generalized iterates xn 
(n > 0). This way he extended the classical Newton-Kantorovich results 
to hold for nonsmooth generalized equations. His results extend earlier 
works on nonsmooth equations [180], [249], [267]. As in the classical cases 
Uko used Lipschitz differentiability conditions on F' and the maximality 

properties of G.Here using a combination of center-Lipschitz and Lipschitz conditions 

363
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we provide local and semilocal convergence results for method (9.2) with 
the following advantages over earlier works and in particular [267]:

(a) our results hold whenever the corresponding ones in [267] hold but not 
vice versa;

(b) in the semilocal case our Newton-Kantorovich hypotheses sufficient for 
the convergence of (9.2) is weaker than the corresponding one in [267];

(c) our error bounds on the distances ||xn+i -xn||, ||xn — x*|| are finer and 
the information on the location of the solution x* more precise;

(d) in the local case and under weaker hypotheses our convergence radius 
can be larger. This observation is very important in computational 
mathematics (see also Remark 9.3).

Problems that are special cases of equation (9.1) have been in the lit- 
erature for a long time. For example if H = R? and G (xi,..., Xj) = 
Gi ($1) x • • • x Gj (xj), where Gi, are suitable functions i = 1,2,..., j then 
(9.1) is called separable [249]. Moreover set

F(ii,x2,...,a:3) = (Fi (si,...,x3),...,F,- (xi,...,x3)),

in which case (9.1) reduces to

Fi (xi,...,xj) 4- Gi (xi) 3 0, i = l,...,j.

Moreover as in [267] let

Gi = {0} x (—oo, 0) U (0, oo) x {0} (i > 0)

to obtain the complementarity problem

3
Fi (xi,...,Xj) > 0, Xi > 0, i = l,...,j, y^XjFj (xi,...,xj) = 0. 

i=l

These type of special cases of (9.1) have been studied extensively [249]. 
Furthermore if </> : H —* (—oo, oo] is a proper lower semicontinuous convex 
operator and

G (x) = dip (x) = {y € H : 92 (y) — (p (w) < (y, v — w), for all w € H} , 

then (9.1) becomes the variational inequality

F (x) + d<p (x) B 0.
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Other examples of special cases of (9.1) can be found in the references 
above.

Throughout this section we assume:

||F'(x)-F'(y)||<?h-3/ll (9-3)
||F(s)-F'(zo)||<?oh-*oll (9-4)

for all z, y e Dq and some fixed xq G Dq. G is a nonempty subset otH x H 
so that there exists a > 0 such that

[z, 1/] G G and [v, w] G G => {w — y, v — x) > a||x — v||2, (9.5)

and which is not contained in any larger subset of H x H.
We will use Lemma 2.2. from [267, pp. 256]:

Lemma 9.1 Let G be a maximal monotone operator satisfying (9.5), and 
let M be a bounded linear operator from H into H. If there exists c € R 
such that c > —a, and

{M{x),x) > c||rr||2 for all x G H, (9.6)

then there exists a unique z G H for any b € H such that

M{z) + G{z) 9 b. (9-7)

We provide the following result on majorizing sequences (see also 
Lemma 8.1:

Lemma 9.2 Assume: there exist parameters L > 0, Lq > 0 with Lq < L, 
7/ > 0, and 6 e [0,1] such that:

hs = (6L0 + L)r) < S. (9-8)

Then, iteration {tn} {n > 0) given by

+ <«2») <“>

is non~decreasing, bounded above by t** = ^6 an(^ °°n'l)er9es sorne t 
such that

0 < t* < t**.

Moreover, the following error bounds hold for alln>0

0 < tn+2 - in+1 5(^+1 - 4») - (l) (9,U)
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Proof. The result clearly holds if 6 = 0, or L = 0 or 7] = 0. Let us 
assume 6 0, L 0 and tj 0. We must show for all n > 0

L(tn+1 — tn) + 5Lotn+l < tn+1 — > 0 and 1 —Lo^n+1 > 0- (9.12)

Estimate (9.11) can then follow immediately from (9.9) and (9.12). Using 
induction on the integer n we have for n = 0

L(ti — to) + 5Loti = Ltj + ^Lqt? < <Mi > *o, and 1 — LqT) > 0 (by (8)).)

But then (9.9) gives

0<t2-ti < 5(ti-t0).

Let us assume (9.11) and (9.12) holds for all n < k + 1.
We can have in turn

L(tfc+2 — tfc+i) + 5Lotfc+2
< Lr/(|) + + [ti + f(ti — to) + (f) (ti — to)

+ • • • + (f) Gi- to)]

<LV(l)M+6L0ri 1*4—
1-5

=^(Dfc+1+w[i-(fH

={^fc+1+^[i-(i)fc+2]b- (913>

By (9.8) and (9.13) it suffices to show

i(l)fc+1 + ^[l-(f)fc+2]<i + ^o 

or

or

[^-L][l-(f)fc+l]<o,

or

(9.14)
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which is true by the choice of 6. Hence, the first estimate in (9.12) holds 
for all n > 0. We must also show:

t* < t**.

For k = 0,1,2 we have

to=O<t**, ti = T) < t** and t2 < r) 4- %r) = ^rj < t**.

It follows from (9.11) that for all k > 0,

tk+2 < tk+l + f (tfc+l - tk) <tk + ((tfc - tk-l) + f (tfc+1 - «*) 

< - - - < tl + f (tl — to) + ' ‘' + (f) (tfc — t*-l) + f(tfc+l - <k) 

<t? + fr?+(f)\ + --- + (5)l:+1’?

< [i + 5 + (i)2 + -” + (f)*+1]’?

< v< £^ = t”-
‘-5

Moreover, we have

Lotk+2 < ^? < 1 (by (8))- (9.15)

Hence, sequence {tn} (n > 0) 's bounded above by t**. It also follows from 
(9.9) that {tn} (n > 0) is non-decreasing and as such it converges to some 
t* satisfying (9.10).

That completes the proof of Lemma 9.2.
Remark 9.1 It follows immediately from the proof of Lemma 9.2 that 
condition (9.8) can be replaced by the weaker

h{<5, ^C<L, ^<1 and 6 6 (0,2). (9.16)
2 — 6 2 — 0

We present the main semilocal convergence theorem for method (9.2) 
using Lipschitz (9.3) and center-Lipschitz conditions (9.4).

Theorem 9.1 Let F and G satisfy (9.3), (94) and (9.5), (9.6) respec- 
tively, for M = F'(xq). For xq 6 Dq assume there exists yo G H such that 
G(xQ) B 3/o and ||F(x0)4-yo|| < bo for bo > 0. Moreover suppose (9.8) holds 

for

9o r - _J— n = - —, (9+7)Lo = ^+^’ L co + a’ 00 + 0
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and

U(x0,t*)QD. (9.18)

Then sequence {zn} (n > 0) generated by generalized Newton's method 
(9.2) is well defined, remains in U(x0,t*) for all n > 0, and converges to 
a unique solution x* of equation (9.1) in U(x0,t*). Moreover the following 
error bounds hold for alln>Q

||®n+l ^nll < tn+i (9.19)

and

\\xn-x*\\<t*-tn, (9.20)

where {tn} is given by (9.9).

Proof. We use induction on k = 0,1,2,... to show:

xkeU(xOit*), (9.21)
lkfc+i - Xk|| < tfc+i - tfc, (9.22)
I7(xfc+1,t* - tfc+i) C I7(xfc,t* - tfc), (9-23)
3j/fc G H such that yk G G(zfc), (9.24)
3bfc > 0 such that ||F(xk) + 2/fc|| < 6fc, (9.25)
3cfc > — a such that (F'(xk)(x),x) > Cfc||rc||2 for all x G H. (9.26)

The induction is true if k = 0 for (9.21), (9.24)-(9.26) by the hypotheses of 
the theorem. It then follows from (9.26) and Lemma 9.1 that there exists 
a unique Xi G H satisfying (9.2). By (9.5), (9.6), (9.9), (9.17) and (9.2) we 
obtain in turn

a||xi - xo||2 + <?/o + F(x0) - F'(x0)(x0 - xi),xi - x0) < 0,

or

a||xi - xq||2 + (F'(x0)(xi - x0), xi - x0) < (-F(x0) - y0, Xi - x0) (9.27) 

or

||zi — x0|| < a0 = —-— = ti — t0. (9.28)
c0 + a

For every z € U(xi,t* - fy),

II2 ~ x0|| < ||z - xi|l + ||xi - x0|| < t* - ti + ti = t* - t0, (9.29)
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(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

implies z G U(xo,t* —10)- It follows from (9.28) and (9.29) that (9.22) and 
(9.23) hold for k = 0. Given they hold for n = 0,..., k and again using 
(9.26) and Lemma 9.1 we conclude that there exists a unique Xk+i € H 
satisfying (9.2),

fc+l k+l
lkfc+1 ~ XQ || < ^2 Iki - $i-lll < 1) = ^fc+l -to = tk+1 < t*,

t=l t=l
(9.30)

ll^fc + fl(zfc+i - xk) - Io|| < tk + 0(tk+i - tk~) < t* 0 6 [0,1]. (9.31)

Hence (9.21) holds if k is replaced by k + 1. As in (9.27) we obtain in turn

a||zfc+i - xk||2 + (yk + F(xfc) - F'(xk)(xk - Xfc+i),s*+i -1*) < 0

or

“llik+i -M2 + (F'(xk)(xk+i -xk),xk+i — xk) < (~F(xk)-yk,xk+i -xk)

or

||zfc+i - Zfcll < ^+i - *fc-

That is (9.22) and (9.23) hold for k replaced by k +1.
By (9.4) and (9.30) we get

||F'(zfc+1) - F'(x0)|| < golkfc+i “ ^oll < $o*fc+i-

Set

Cfc+l = co — Qotk-

Then by hypothesis (9.8) we get

Cfc+i > -«•

Therefore
(F'CroXz) - F'(xk+i)(x),x) < ||F'(i0) - ^'(^+i)ll IMI2 5 «oMkll2.

(9.3

for all x e H. Hence (9.26) holds for k replaced by k + 1.
Define

yk+i = -F(xk) - F'(xk)(xk+i - xk). (9.38)
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Then (9.24) holds by (9.7) and

||F(xfc+1) + mill < ||F(xfc+1) - F(xk) - F'(zfc)(xfc+1 - xfc)||

= [ [F'(xk + 0(xk+i - xk)) - F'(zfc)](zfc+1 - xk)dt 
Jo

<|||xfc+i-xfc||2 = 6fc+i, (9.39)

where

ak = -^- (fc > 0). (9.40)
cfc + a

Thus for every z G U{xk+1,t* — tfc+i), we have

||z-Zfc|| < ||z-Xfc+i|| + ||xfc+1-Zfc|| < t*-tfc+i+tfc+1-tfc = t*-tk. (9.41)

That is

z e U(xk, t* - tfc). (9.42)

The induction for (9.21)-(9.26) is now completed.
Lenuna 9.2 implies that {tn} (n > 0) is a Cauchy sequence. By (9.9) 

and (9.33) it follows that {zn} (n > 0) is a Cauchy sequence too, and as 
such it converges to some x* G U(xo,t*) (since U(xo,t*) is a closed set). 
By letting m —> oo in

k+m—1. fc+m—1
lkfc+m-^fc||< 52 lkt+1 -Zill < 52 (<<+1 “ **)= tk+m ~tk (9>43) 

i=fc i=fc

we obtain (9.20). Moreover, since lim Xfc+i = i*, 
fc—»00

lim [F'(xfc)(xfc - xfc+i) - F(xfc)] = -F(x‘), and 
fc—»0O

G(xfc+1) 9 F'(xk)(xk+i - xk) - F(xk)

it follows that G(x*) 5 —F(x*). Hence x* is a solution of (9.1).
Finally to show uniqueness in U(xo,t*), let us assume there exists a 

solution y* € U(xo,t*). Then we obtain in turn

ahk+1 - y"II2 + (F'(xfc)(xfc+1 - y"),Xk+i - /) 
< (F(i/’) - F(xfc) - F'(.xk)(y* - xk),xk+i - y') 
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or (as in (9.32))

Ikk+i - y*|| < x, g ' Ikfe - y*||2 < hfc - y’II (9-44)
2(Cfc + a)

(since 2(?fcg+a) llxfc — 2/*II < 1 t»y (9-8). Hence we get x* = ^^xk = 3/*-
That completes the proof of Theorem 9.1. □

Remark 9.2 Note that t* can be replaced by in condition (9.18).

Remark 9.3 In order for us to compare our Theorem 9.1 with earlier 
ones, and in particular to Theorem 2.11 in [267] we define the scalar func- 
tion p by

p(s) = ^s2 - s + ao, (9.45)

where L is given by (9.17). Uko’s Newton-Kantorovich hypothesis (see 
(2.14) in [267]) becomes

h = 2La0 < 1, (9.46)

whereas ours for 6 = 1 reduces to

hi = (L-V Lo)ao < L (9-47)

But

Lo<L (9-48)

holds in general. Hence (9.46) always implies (9.47) but not vice versa 
unless if L = Lq. If strict inequality holds in (9.48) then (9.47) may hold 
but not (9.46). Moreover define sequence {sn} by

■ 50=0 (”^0)’
1 — L/Sn

(9.49)

and

s* = lim sn. n—+oo
(9.50)

Then it is known (see Chapter 4) th'O-t

w _ 1 - x/1 - 2Loao (9.51)
S “ L

_ PM = f ~ (n > 1), (9.52)
Sn+1-Sn- p/(Sn)
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and

Uko essentially showed error bounds (9.19) and (9.20) with sequence {sn}> 
and point s* replacing {tn}, and point t* respectively.

That is for all n > 0:

ll^n+1 $n|| < $n+l $n

and

||xn-x*|| < s* — sn. (19)'

We show that our error bounds are finer and the location of the solution 
x* more precise:

Proposition 9.1 Under hypotheses of Theorem 9.1 (for £o < t) an^ 
(9.46) the following error bounds hold:

t„+l < Sn+1 (n > 1), (9.54)
tn+1 - tn < Sn+1 -Sn (n> 1), (9-55)

t’ - tn < s‘ - Sn (n > 0), (9-56)
t’ < s’, (9-57)

o < tn+1 - tn < a2”"'(Sn+i - s„) (n >1), a = *_ € [0,1)

(9.58) 

and

0 < t‘ -1„ < a2”-' (s‘ - s„) (n > 1). (9-59)

Moreover we have: tn = sn (n > 0) if £ = £q.

Proof. VJe use induction on the integer n to show (9.54) and (9.55) first. 
For n = 0 in (9.9) we obtain

. _ ^rj2 __
2 2(l-£oi7) - ~S2 S1

and

t^ < S2-
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Assume:

tjb+i < Sfc+i, tfc+i - tk < Sfc+i - sk (fi < n + 1).

Using (9.9), and (9.49) we get

ffc+2 — tfc+i =
f(tfc+l -tfc)2

1 - ^O^Jfe+l

f (Sfc+1 - Sk}2 

1 - ^Sfc+l
= Sfc+2 — Sfc+1<

and

tjfc+2 — ^Jfe+l < 5*+2 “ Sk+1-

Let m > 0, we can obtain

tfc+m - tfc < (tfc+m - tfc+m-1) + (tfc+m-1 “ tfc+m-i) + '' ’ + (**+> “

< (Sk+m ~ Sk+m-1) + (5fc+m-l

< Sk+m Sk-

- Sk+m-2) 4------ F (5fc+i - Sk)

(9.60)

By letting m —♦ 00 in (9.60) we obtain (9.56). For n — 1 in (9.56) we get 
(9.57).

Finally, (9.58) and (9.59) follow easily from (9.9) and (9.49). Note also 
that (9.58) holds as a strict inequality if n > 2.

That completes the proof of Proposition 9.1.
Remark 9.4 We now use two numerical examples when G — 0 on D. 
In the first one we show that hypothesis (9.46) fails whereas (9.47) hol ■ 
In the second example we show estimates (9.19), (9.20) compare favora y 

with (18)', (19)', respectively.
Example 9.1 Let H = R, D = [x/2 - 1, x/2 + 1], and define

function F on D by
1 /23/2 \F(x) = ±x3-( — + .23 .
0 \ o /

(9.61)

Using (9.3), (9.4), (9.5) and (9.6) we obtain

a = 0, c = 2, a0 = .23, L = 2.4142136, Lo = 1.914213562, 
h = 2Laa = 1.1105383 > 1, (9-62)

and (9.8) for S = 1

(L + Lo)ao = .995538247 < 1. (9.63)
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That is, there is no guarantee that Newton’s method {xn} > 0) starting 
at xq converges to a solution x* of equation F(x) = 0, since (9.46) is 
violated. However since (9.63) holds, Theorem 1 guarantees the convergence 
of Newton’s method to x* = 1.614507018.

Example 9.2 Let H = R, zo = 1-3, D = [a?o — 277, a:o + 277] and define 
function F on D by

F(®) = |(x3-1). 
o

(9.64)

As in Example 9.1 we obtain 

a0 = .236094674, L = 2.097265501, Lo = 1.817863519
h = 2Lr) = .990306428 <1, hx = (L + L0)rj = .92434111 < 1, (for 6 = 1) 

t* = .369677842 and s* = .429866445.

That is, we provide a better information on the location of the solution x* 
since

U(x0,t*) C U(x0,s*). (9.65)

Moreover using (9.2) and (9.64) we can tabulate the following results:

COMPARISON TABLE

Xn Estimates (9.19) Estimates (9.20) Estimates (18)' Estimates (19)z
xi = 1.0639053254 .236094674 .133583172 .236094674 .193771771
x2 = 1.0037617275 .102400629 .031182539 .115780708 .0779910691
x3 = 1.0000140800 .028585756 .002596783 .053649732 .024342893
i4 = 1.0000000002 .002575575 .000021208 .020186667 .004156226

n = 5 .000021207 .000000001 .003987206 .00016902
n = 6 .000000001 0 .000166761 .000002259

Throughout the rest of the section we assume:

||F'(x) - F'(x,)|| <£||x — x‘|| for all x 6 Do. (9.66)

We can show the following local result for method (9.2);

Theorem 9.2 Let G be a maximal monotone operator satisfying (9.5). 
Suppose (9.6) holds for M = F'(x*) and the generalized equation (9.1) has 
a solution x* in DQ such that

U(x*,T*)CDOi (9.67)
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where,

2 , 
r =^(a + c). (9.68)

Then sequence {xn} (n > 0) generated by generalized Newton's method 
(9.2) is well defined, remains in U(x* ,r*) for all n > 0, and converges to 
x* provided that Xq € U(x* ,r*).

Moreover the following error bounds hold for all n>0:

hi-^’ll<^-vho-x’ll2, 
2{a 4- c)

ll^n+i ~ || < _________r________ II x 
2(a 4- c - ^||zo - s*||)

(9.69)

-x*\\2<dod2n (n>l)

(9.70)

where,

dQ — 2(a 4- c — ^ll^o ~ x II) (9*71)

and

d=\\xo-x*\\dol. (9-72)

Proof. We first establish the existence of solution x,. Using (9.6) and 

(9.66) we obtain in turn for all x 6 H
([F'(x’) - F'(x0)](x),x) < ||F'(x’) - F'(x0)|| ||x||2 

<f||xo-x’llhl|2 (9-73)

or

c||x||2 - f||xo - X’ll IM2 <

or
(c - f||x0 - x'IDIkll2 < (F'(x0)(x),x). (9.74)

It follows by the choice of xq that
—£||x0 - z’|| > -a. (9-75)

Hence by Lemma 9.1 xi exists, and solves (9.1). By (9.5) we obtain

a||xi - x’||2 < <F(x’) - F(x0) - F'(x0)(xi - x0),xi - x’)
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or

a||ii - x*||2 + (F'(x0)(xi — x*),xi - x*)
< (F(x*) - F(x0) — F'(x0)(x* — x0),xi—x*) (9.76)

or

(a+-c)||xj — x’|| < ^||x0 — x*||2,

which shows (9.69), Xi G (7(x*,r*), and in particular

||xi — x*H < ||x0 — x’||. (9.77)

Assume Xk G C7(x*,r*), Xk solves (9.1) and

||xfe-x*||< ho-x*ll (fc>l). (9.78)

As in (9.75) we get in turn

([F'(x') - F'(xk)](x),x) < ||F'(x*) - F'(xt)|| ||x||2 < <||®’ - ®*|| IM2 

or

(F'(x*)(x),x) - (F'(xk)(x),x) < «||xo - x’H ||x||2 

or

(c-£ho-x*||)ll®l|2<(F'(a:fc)(x),a:)

which establishes the existence of ifc+i. Moreover by (9.5) we get

a|]xfc+i - x'||2 < (F(x*) - F(xk) - F'(xk)(xk+i - xk),xk+i - x*) 

or

a||rcfc+1 - z*||2 + (F’(xk)(xk+i - x*),xk+i - x*)
< (F(x*) - F(xk) - F'(xk)(x* - xk), xk+i - x*) 

or
p

(a + c — ^||x0 — x*||)||xfc+1 -i*|| < -||xfc - x*||2,

which shows (9.70), Zfc+i € L7(z*,r*), and lim Xk = x*. fc“~*OO r—
That completes the proof of Theorem 9.2. L
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Remark 9.5 A local result similar to Theorem 9.2 is given in [268, Thm. 
2.5] where the stronger and more difficult to verify conditions are used.

\\F'(x) - F'(y)\\ < 7lk - 3/11 f°r al1 xeD° (9‘79)

there exists c\ > -a such that (F' (z)(x),x) > ci||x||2 for all x € D^ 

The coercivity condition (9.80) which implies F'(x) 1 exists for all x € Dq 
is rather strong, and may not hold in many problems occuring in applica 
tions. Note also that it is possible to obtain a larger convergence ra ius 
despite the fact that we use weaker conditions.

9.2 Exercises

9.1. Consider the problem of approximating a locally unique solution of 

the variational inequality

F(x) + d<p(x) 3 0, (1)

where F is a Gateaux differentiable operator defined on a Hilbert space 
H with values in <p: H -* (-oo, oo] is a lower semicontinuous convex 
function.
We approximate solutions x* of (1) using the generalized Newton 

method in the form
F'(i„)(®„+1) + M*„+1) 3 K'(s„)(x„) - F{xn) (2)

to generate a sequence {xn} (n > 0) converging to x*.

Define: the set

D(<p) = {xeH: <p(x) < oo} and assume D(<p) 0 </>;

the subgradient

3^(1) = {Z e H- <p{x) - <p{y) <{^~ y^y e

and the set

D{d<p) = {x € D{<p): d<p{x) 0}.
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Function d(p is multivalued and fbr any A > 0, (1 + Xd(p) 1 exists (as 
a single valued function) and satisfies

||(1 + A^)"x(x) - (1 + A^)-1^)!! < ||z - y\\ (x,ye H).

Moreover d(p is monotone:

/i € d(p(x\),f2 € d(p(x2) => </i - /2,^1 “ xz) > 0- 

Furthermore, we want D((p) — D(d(p), so that D(d(p) is sufficient for 
our purposes.
We present the following local result for variational inequalities and 
twice Gateaux differentiable operators:

(a) Let F: H —♦ H be a twice Gateaux differentiable function. As- 
sume:

(1) variational inequality (1) has a solution x*;
(2) there exist parameters a>0,6>0,c>0 such that

\\F"(x) — F"(y)\\ < a\\x — y\\, 
\\F"(x^)\\<b,

and

c||l/ - ZII2 < {F'(x)(y -z),y — z)

for all x,y,z € H\
(3) xq € D((p) and zo € U(x*,r) = {x € H | ||rr — x*|| < r}, 

where

r = 4c b+y/tf + ^ .

Then show: generalized Newton method (2) is well defined, re- 
mains in U(x*, r) and converges to x* with

||xn — x* || < p ■ d?n, (n > 0)

where,

P-1 = c [iallx* “ ®o|| + and d = p~l\\x* - zoll-

(b) We will approximate x* using the generalized Newton method in 
the form

/"(zn)(in+1) + d^Xn+l) 3 f"(xn)(xn) - v/(xn). (3)



Variational Inequalities 379

We present the following semilocal convergence result for varia- 
tional inequalities involving twice G~ateaux differentiable opera- 
tors. Let twice G'ateaux differentiable Assume:

(1) for xq G D[(p) there exist parameters a > 0, /? > 0, c > 0 
such that

((/"'(*) - f"'M)(y,y),z) < «11® - xo|| M2||<

ll/"'(*o)||</?

and

c||y - z||2 < (f"(x)(y x)

for all x, y, z € H\
(2) the first two terms of (3) xq and x\, are such that for

r] > Iki - xoll

f c[(3 + 2^/oc]-1, 02 — 4ac 0 
< <

(c(2/?)-1, /?2-4ac = 0.

Then show: generalized Newton’s method (3) is well defined, re- 
mains in t/(xo,ro) for all q > 0, where cq is the small zero of 
function J,

6(r) = crqr2 — (c — /fy)r 4- ct/, 

and converges to a unique solution x* of inclusion \yf(x) + 
d<p(x) 9 0. In particular x* E t/(zo,ro). Moreover the follow- 
ing error bounds hold for all n > 0

I|xn-x*|( <yd2 ,

where,

7-i = and d = irr~^

9.2. Let M, (-, •), || • || denote the dual, inner product and norm of a Hilbert 
space H, respectively. Let C be a closed convex set in H. Consider an 
operator a: H x H -> [0, +oo). If a is continuous bilinear and satisfies

a(x,y) > co||?/||2, !/€#, C1)
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and

a(z, y) < ci Ikll • llvll. z> y e H, (2)
for some constants co > 0, Ci >0 then a is called a coercive operator. 
Given z G M, there exists a unique solution x G C such that:

a(x,x - y) > (z,x - y), y € C. (3)

Inequality (3) is called variational. It is well known that x* can be 
obtained by the iterative procedure

Xn+1 = Pc{xn - pF{G{xn) - z)), (4)

where Pc is a projection of H into C, p > 0 is a constant, F is a 
canonical isomorphism from M onto H, defined by

{z,y) = {F{z),y), y € H, z e M, (5)

and

a(x, y) = {^(x), y), y e H. (6)

Given a point-to-set operator C from H into M we define the quasi- 
variational inequality problem to be: find x € C(x) such that:

a(x,y — x) > (z,y — x) y^C(x). (7)

Here, we consider C(x) to be of the form

C(x) = f(x) + C, (8)

where f is a point-to-point operator satisfying

ll/(x‘)-/(2/)||<c2K-yllA &
for some constants c^ > 0, A > 1, all y € H and x* a solution of (7). 
We will extend (4) to compute the approximate solution to (7).

(a) Show: For fixed z G H, x G C satisfies

(x - z,y — x) > 0 y € C (10)

<=> x = Pc(z), (11)

where Pc is the projection of H into C.
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(b) PC given by (11) is non-expansive, that is

||Pc(x) - Pc(2/)|| < ||x - 3/||, x,y G H. (12)

(c) For C given by (8), x € C(x) satisfies (7) <=>

x = f(x) + Pc(x - pF(G(x) - z)). (13)

Result (c) suggests the iterative procedure

Xn+i = f(xn) + Pc(xn - pF(Gn) - z) - f(xn)) (14) 

for approximating solutions of (7).
Let us define the expression

e = 0(X,p) = 2c2\\x0 - x||A-1 + i/l + p2c?-2co/>.

It is simple algebra to show that 9 G [0,1) in the following cases:

(1) A = 1, c2 < co > 2c1x/c2(1-C2), 0 < p <
c0 + v/cg-4C?C2(l-C2) 

----------------------------------------- ’

o<P<±±vf±^, 
C1

(3) A > 1, Cq > Cl, ||xo - 2?|| <

C1

/ , \ i/A—1(+) = c4, 0 < P <

Denote by HQ, Hi the sets

Ho = {s/ 6 H | ||j>—r*|| < C3} and Hi = {y € H | ||j/—x*|| < C4}.

(d) Let operator f satisfy (9) and C be a non-empty closed convex 
subset of H. If a(x, y) is a coercive, continuous bilinear operator 
on H, x* and xn+1 are solutions of (7) and (14) respectively, then 
±n+1 converges to x* strongly in H if (1) or (2) or (3) above hold.

It follows from (d) that a solution x* of (7) can be approximated by 
the iterative procedure

(1) x* e C(x*) is given,
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(2) xn+i = /(in) + Pc(xn - pF(G(xn) — z) — f(xn)), 
where p, xq are as in (1) or (2) or (3).

If X = 1 our result (d) reduces to Theorem 3.2 in [223] (provided that 
(9) is replaced by ||/(x) — /(i/)|| < cJHx — y|| for all x, y G H). Note 
also that since c| > c^ in general our error bounds on the distances 
||xn — x* || (n > 0) are smaller. Moreover, if C(x) is independent of x, 
then / = 0 and = 0, in which case (c) and (d) reduce to the ones in 
[222].

9.3. Let xo e D and R > 0 be such that D = U(xq, R). Suppose that / is 
m-times Frechet-differentiable on D, and its mth derivative is in 
a certain sense uniformly continuous:

- /<m)(io)|| < w(||x - xoll), for all x € D, (1)

for some monotonically increasing positive function w satisfying

Jim w(r) = 0, (2)

or, even more generally, that

||/(Tn) (x)-/<m) (gc0) || < w(r, ||®-Xo||), for ® € D, r € (0, R), (3) 

for some monotonically increasing in both variables positive function 
w satisfying

lim w(r, t) = 0, r G [0, R]. (4)

Let us define function 0 on [0, R] by

<’« = ^[’7+^’-m + '-- + 1fr2

pVm-2 fVl n
+ / ••• / w(ym^i)(r - vi)dvi' •' dvm-i -r (o)

Jo Jo J

for some constants a, c, rj, a^, i = 2,..., m; the equation,

6(r) = 0; (6)

and the scalar iteration {rn} (n > 0) by

A ^(rn) (7}ro-0, rn+i - rn - .
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Let g be a maximal monotone operator satisfying L(z) + g(z) 3 3/, and 
suppose: (1) holds, there exist a^ (i = 2,... ,m) such that

ll^(i)(*o)|| <aiy (8)

and equation (6) has a unique r* G [0, 7?] and 0(R) < 0.
Then show: the generalized Newton’s method {xn} (n > 0) generated 
by

f (2n)xn+i 4* p(^n+l) 3 f (zn)(xn) — f(Xn) (n — ^), ($0 € L?)

is well defined, remains in V^Xoj^*) for all n > 0, and converges to a 
solution x* of

f(x) + g(x) 3 x.

Moreover, the following error bounds hold for all n > 0:

lkn+i ~ xn|| < rn+i - rn, (9)

and
|kn — s*|| < r* - rn, r* = lim rn. (10)

9.4. Let xq g D and R > 0 be such that D = U(xq,R). Suppose that f 
is Frechet-differentiable on D, and its derivative f' is in a certain sense 
uniformly continuous as an operator from D into L(H,H)\ the space 
of linear operators from H into H. In particular we assume:

ll/'(»)-/'(iOII<w(ll®-vll). W

for some monotonically increasing positive function w satisfying

lim w(r) = 0, t—*oo

or, even more generally, that
ll/'W - /'(y)ll < w(n h - »ll). S.S/ 6 5, r € (0, R), (2)

for some monotonically increasing in both variables positive function 

w satisfying
lim w(r, t) = 0, r G [0, K].

Conditions of this type have been studied in the special cases w(t) — 
dtx, w(r, t) = d(r)t\ X G [0,1] for regular equations; and for w(t) = dt 



384 Approximate Solution of Operator Equations with Applications

for generalized equations of the form f(x) 4- g(x) 3 x. The advantages 
of using (1) or (2) have been explained in great detail in the excellent 
paper [6]. It is useful to pass from the function w to

w(r) = sup{w(t) + w(s) :t + s = r}.

The function may be calculated explicitly in some cases. For example if 
w(r) = drx (0 < A < 1), then w(r) = 21-Adr\ More generally, if w is 
a concave function on [0,7?], then w(r) = 2w (^), and w is increasing, 
convex and w(r) > w(r), r G [0,7?].
Let us define the functions 0,0 on [0,7?] by

0(r) = 3^ \r) + y w(t)dtj - r, for some a>0,?7>0, c>0

®(r) = +[’?+ / ®(t)dt] - r

and the equations

0(r) = 0, 
0(r) = 0.

Let g be a maximal monotone operator satisfying

there exists c > — a such that {f'(z)(x),x) > c||z||2, 
for all x G 77, z G 7?,

and suppose: (1) holds and equation 0(r) = 0 has a unique solution 
r* e [0,7?].
Then, show: the generalized Newton method {xn} (n > 0) generated 
by

/'(xn)xn+1 + p(zn+i) 9 f'(xn)(xn) - f(xn) (n > 0), (x0 € D)

is well defined, remains in U(xo,r*) for all n > 0, and converges to a 
solution x* of f (x) + g(x) 3 x. Moreover, the following error bounds 
hold for all n > 0:

l|$n+l ~ £n|| < Tn+1 rn

and

l|zn-z*|| <r*-rn,
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where,

. _ _
ro-O, rn+i-rn 0'(rn)’

and

lim rn = r*. n—»oo





Chapter 10

Special Topics

We discuss the convergence of certain iterative methods to solutions of 
equations involving outer or generalized inverses.

10.1 Methods Involving Outer or Generalized Inverses

In this chapter we are concerned with the problem of approximating a 
solution x* of the equation

F'(x0)*F(x) = 0, (10.1)

where F is an m-times Frechet-differentiable operator (rn > 2 an integer) 
defined on an open convex subset of a Banach space X with values in a 
Banach space K, and x0 e D. Operator F'(x)# (x 6 D) denotes an outer 
inverse of F'(x) (x e D). Many authors have provided local and semilocal 
results for the convergence of Newton’s method to x* using hypotheses on 

the Frechet-derivative [68], [117].
Here we provide local convergence theorems for Newton’s method using 

outer or generalized inverses given by

®n+i = xn - F'(xn)*F(xn) (n > 0) (zo € D). (10.2)

Our Newton-Kantorovich type convergence hypothesis is different from the 
corresponding famous condition used in the above-mentioned works (see 
Remark 10.1 (b)). Hence, our results have theoretical and practical value. 
In fact we show using a simple numerical example that our convergence ball 
contains earlier ones. This way, we have a wider choice of initial guesses 
than before. Our results can be used to solve undetermined systems, non- 

387
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linear least squares problems and ill-posed nonlinear operator equations 
[68], [117].

In this section we restate some of the definitions and lemmas given in 
the elegant paper [117].

Let A e L(X, V). A linear operator B: Y —> X is called an inner 
inverse of A if ABA = A. A linear operator B is an outer inverse of A 
if BAB = B. If B is both an inner and an outer inverse of A, then B is 
called a generalized inverse of A. There exists a unique generalized inverse 
B = satisfying ABA = A, BAB = B, BA = I - P, and AB = Q, 
where P is a given projector on X onto N(A) (the null set of A) and Q is a 
given projector of Y onto R(A) (the range of A). In particular, if X and Y 
are Hilbert spaces, and P, Q are orthogonal projectors, then Ap,Q is called 
the Moore-Penrose inverse of A.

We will need five lemmas of Banach-type and perturbation bounds for 
outer inverses and for generalized inverses in Banach spaces. The Lemmas 
10.1-10.5 stated here correspond to Lemmas 2.2-2.6 in [117] respectively. 
See also [104] for a comprehensive study of inner, outer and generalized 
inverses.

Lemma 10.1 Let A G L(X,Y) and A* € L(K,X) be an outer inverse 
ofA. Let B 6 L(X,Y) be such that ||A*(B - A)|| < 1. Then B* = (I + 
A*(B — /1))_1j4* is a bounded outer inverse of B with N(B*) — N(A*) 
and B(B#) = B(A#). Moreover, the following perturbation bounds hold:

||B# _ A#|| < M*(B-A)A*|| ||A*(B-A)|| ||A*||
11 - 1-||A#(B-A)|| - 1 - ||A#(B - A)||

and

||B#A|| < (1 - ||A*(B - A)||)-1.

Lemma 10.2 Let A,B e L(X,Y) and A*, B* € L(Y,X) be outer 
inverses of A and B, respectively. Then B*(I — AA*) = 0 if and only if 
N(A*) C N(B*).

Lemma 10.3 Let A c L(X,Y) and suppose X and Y adm.it the topo- 
logical decompositions X = N(A) ®M,Y = R(A) ® S. Let Af (= A]MtS) 
denote the generalized inverse of A relative to these decompositions. Let 
B g L(X,Y) satisfy

Mt(B-A)||<l
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and

(I+(B-A)A*)~*B maps N(A) into R(A).

Then B^ = W(At) ezists ond is equal to

Bf = Af(/ + TAf)-1 = (/ + AtT)-1^t,

where T = B — A. Moreover, R(B^) = R(A^), N(B^) = N(A^) and 
||Bt4||<(l-||>lt(B->l)||)-1.

Lemma 10.4 Let A 6 L(X,Y) and +f be the generalized inverse of 
Lemma 10.3. Let B 6 L(X, Y) satisfy the conditions ||4t(B — >4)|| < 1 
and R(B) C R(A). Then the conclusion of Lemma 10.3 holds and R(B) — 
B(X).

Lemma 10.5 Let A € L(X,Y) and be a bounded generalized inverse 
of A. Let B G L(X,Y) satisfy the condition ||Xf(B - X)|| < 1. Define 
B* = (I + At(B- A))-1/!1. Then B* is a generalized inverse of B ifand 
only if dimfV(B) = dimN(.A) and codimB(B) = codimB(X).

Let A € L(X, Y) be fixed. Then, we will denote the set on nonzero 
outer inverses of A by

△(>1) = {B € L(Y,X): BAB = B, B # 0}.

In [681, we showed the following semilocal convergence theorem for New- 
ton's method (10.2) using outer inverses for m-Frechet-differentiable oper- 
ators (m > 2 an integer).

Theorem 10.1 Let F: D C X -> Y be an m-times Frechet-differentiable 
operator (m>2an integer). Assume:

(a) there exist an open convex subset Do of xo e DQ> a n
inverse F'^xq)# of F'^xq), and constants oti, tj — suc a 
x,y G Dq the following conditions hold:

\\F'(x0)*(F^(x) - F(m)(10)ll < «• « > °' Vl e tZ(lO’<5o)’5O(io°3)

||F'(xo)*F(xo)ll<’?,
||F'(t0)*FW(io)|| <ai, i = 2,3,...,m;

the positive zero s ofp'(s) = 0 is such that.

p(s) < 0, (10-6)
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where

f(t) = n-t + ^ + --- + ^tm. (io.7)

Then polynomial p has only two positive zeros denoted by t*, t** (t* < 
***)•

(b)

U{xOit*) = {z € X : ||z — zo|| < 5} C Dq, 8 = max{5o, t*,t**}.
(10.8)

(c) 50 G [t*,t**] or 5q > t**.

Then

(i) Newtoris method {xn} (n > 0) generated by (10.2) with

F'(xn)* = [Z + F'(io)*(F'(in) - F'(z0))]-1F'(z0)* (n > 0)

is well defined, remains in U(x0,t*) and converges to a solution x* G 
U(x0,t*) of equation F'(xq)#F(x) = 0;

(ii) the following error bounds hold for all n> 0

||®n+l $n|| < ^n+l tn (10.9)

and

(10.10) 

where {tn} (n > 0) is a monotonically increasing sequence generated by 

to = O, tn+1=tn-^4; (10.11)
J xjn)

(iii) equation F'(xq)# has a unique solution in U C{R(F' (xq)#)+xq} , where 

rj __ f {xq, t ) n Dq if 6q G [t , t ], /1q j2)
\U{xQ,t**)C\DQ if 60>t**

and

R(F'&q)*) + xq := {x + x0 : x G R(F'(z0)#)}.

We provide a local convergence theorem for Newton’s method {$n} 
(n > 0) generated by (10.2) for m-FYechet-differentiable operators.

Theorem 10.2 Let F: D C X —>Y be anm-times Frechet-differentiable 
operator (m > 2 an integer). Assume:
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(a) F(,)(i), i = 2,3,..., m satisfies

\\F^(x)-F^(y)\\<q0, 
||F«(x) - F(i)(j/)|| < - j/H, for all x,y € D;

(b) there exists x* e D such that F(x') = 0 and

||F(i)(x*)|| < bit i = 2,3....... m; (10.14)

(c) let r0 be the positive zero of equation g'(t) = 0, where

ff(t) = p + ... + k/2] -t + b0, foranyb0,p>0 (10.15)

and such that U(x*,r0) C D\
(d) there exists an F'(x*)* e △ (F'(i*)) such that

||F'(a:*)*|| < P. (1016)

and for any x € C7(z*,ri), for given e0 > 1, n is the positive zero of 
equation gi(t) = 0, where

9i(t) = pe0 [^^tm + • • ■ + fet] + (1 -eo). (10.17)

the set △(F'(x)) contains an element of minimal mean.

Then, there exists U(x*,r) C D with r € (0, r,) such that for any 
x0 € U(x* ,r), Newton's method {zn} (n > 0) generated by (10.2) for

F'(x0)* e argmin{||B||: B e &(F'(x0))}

with F'(xn)* = [1 + F'(x0)*(F'(xn) - F'(xo))]_1^'(^o)*, converges to 
y € U(x0,r0) n{R(F'(x0)*) + x0} that F'(x0)*F(y) = 0. Here, we 
denote

R(F'(x0)*) + x0 = {x + x0:xe R(F'(x0)*)}.

is an outer inverse F' (x), and

||F' (x)* || <------- f---- --------------------------  < pe0, (10.18)
i-p[^rr1+---+62nj

by the choice ofr^ and e0. That is, for any x0 € U(x* ,r), the outer inverse

F'(x0)* e argmin{||B|| : B e A(F'(x0))} and ||F'(xo)*ll < peo-
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We can then obtain for all x,y G D

\\F'(x0)*(F<m\x) - F™(y))|| < peoll^to - F(m)(y)|| < p£o9o = 9, 

ll^'^o)*F(m) (®o)II < peo ||F(m)(zo) || < pe0[bm + bm+m] = am 

(by (10.13) and (10.14)),

and

\\F'(xq)#F&(x0)|| < peQ^bi + bVi) = aiy i = 2,3,... ,m - 1, 

0 < \\F'(xq)*F(xq)\\ <peQ<s-^s2----------^sm,
(10.19)

by the choice of e and e^. Hence, there exists a minimum positive zero 
t* < n of polynomial f given by (6.7). It also follows from (6.15), (6.17) 
and the choice of e2 that /(r0 - n) < 0. That is,

n +1* < r0. (10.20)

Hence, for any x€U(x0)t*) we have

llz* - z|| < Iko - x* || + ||xQ - x|| < n + t* < r0 (by (6.20)). (10.21)

Itfollows from (6.21) that U(xOit*) C U(x*,rQ) C D. Consequently New- 
toris method {xn} (n > 0) stays in U(xq, t*) for alln>0 and converges to 
a solution y of equation F'(xq)^F(x) = 0.

In the next theorem we examine the order of convergence of Newton 
method {zn} (n > 0).

Theorem 10.3 Under the hypotheses of Theorem 10.2, if F'(xq)#F(y) = 
0, then

11» - ®n+l|| < gSFgl|xn-yr-2 + - + ^
l-a2||xn-y||---------

for all n > 0,

h-Znll2.

(10.22)

and, if y g U(x0,rz), where r0 is the positive zero of equation gz(t) — 0, 

92(t) = fe+^m+i)tm-i +... + 2ait _ 1( (io.23)

then, sequence {xn} (n > 0) converyes to y quadratically.
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Proof. We first note that rz < r0. By Lemma 10.1 we get R(F'(x0)*) = 
R(F'(xn)*) (n > 0). We have

in+i - xn = F'(xn)*F(xn) e R(F'(xn)*) (n > 0), 

from which it follows

x„+i 6 R(F'(xn)*) + xn = K(F'(x„_1)*) + x„ = R(F'(x0)*) + x0,

and y e R(F'(xn)*) + xn+i (n > 0). That is, we conclude that

y e R(F'(x0)*) + x0 = R(F'(xn)*) + x0,

and

F'(xn)*F'(xn)(y-xn+1)
= F'(xn)*F'(xn)(y - x0) - F'(xn)*F'(xn)(xn+1 - x0) 

= y ^n+l •

We also have by Lemma 10.2 F'(xn)* = F'(xn)*F (x0)F 
F'(xo)*F(y)=0a.ndN(F'(xo)*) = N(F'(xn)*),^getF'(xn) F(y) - 
Using the estimate

IIV-®„+l||

= ||F'(xn)#F'(xn)(3/-xn+i)||

= ||F'(x„)#F'(x„)[j/ - x„ + F'(xn)*(F(xn) - F(j/))]||

< ||F'(x„)#F'(xo)||-

• F'(xo)#{ j[jf" K+"t)dt(y ■In)2

+ ±F"(x’)(y - x„)2}

^K-yF-2+ ••• + %
1 - «2||®„ - 3/11-----------^SH^n - y||m

lly - ^nll2 (n > 0),

which shows (10.21) for all n > 0. By the choice of r2 and (10.21) there 
exists a e [0,1) such that ||y - xn+i || < tt||y - xn|| (n > 0), which together 
with (10.21) show that xn —* y as n —»oo quadratically. O
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We provide a result corresponding to Theorem 10.2 but involving gen- 
eralized instead of outer inverses.

Theorem 10.4 Let F satisfy the hypotheses of Theorems 10.2 and 10.3 
except (d) which is replaced by

(d)' the generalized inverse F'(x*) exists, ||F'(o;*)t|| < p,

dim 2V(F'(x)) = dim N(F'(®’)) (10.24)

and

codim R(F'(x)) = codim R(F'(x*)) (10.25)

for all x G U(x*,ri).

Then, the conclusions of Theorems 10.2 and 10.3 hold with

F'(z0)# € {B : B e MJF'(x0)), ||B|| < ||F,(x0)t||}. (10-26)

Proof. In Theorem 10.2 we showed that the outer inverse F'(x)# € 
argmin{||B||: B € A(F'(x))} for all x e U(x*,r), r € (0,ri) and 
||F'(x)# || < pe0. We must show that under (d)' the outer inverse

F'{x)* 6 {B : B e A(F'(x))> ||B|| < ||F'(z)t||}

satisfies ||F'(x)#|| < pe0. As in (10.21), we get

IIF'Cc’)^®) - F'(x’)|| < p + ■ • • + 62ro] < 1-

Moreover, by Lemma 10.5

F'{x)' = [7 + F'{x*Y{F'{x) - F'(x’))]"1F'(x’)t (10.27)

is the generalized inverse of F'(x). Furthermore, by Lemma 10.1 as m 
(10.18) ||F'(o;)f|| <pe0. That is, the outer inverse

F'{x0)* e {B : B e &{F'{x0)), ||B|| < ||F'(x0)tll}

satisfies ||F,(x0)*|| < p£0> provided that x0 G C/(x*,r).
The rest follows exactly as in Theorems 10.2 and 10.3. □
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Remark 10.1

(a) We note that Theorem 6.4 was proved in [68] with the weaker condition

\\F'(x0)*(F<m\x) - F(m)(x0))ll < am+ill® - ®oll

replacing (6.3).
(b) Our conditions (6.3) — (6.7) differ from the corresponding ones in [110] 

(see, for example, Theorem 3.1) unless if cti = 0, i = 2,3,... q = 
0, in which case our condition (6.6) becomes the Newton-Kantorovich 
hypothesis (3.3) in [118, p. 450]:

Kr)<$, (10-28)

where K is such that

||F'(x0)*(F'(x) - F'(y))|| < K|k - y|| (10-29)

for all x,y € D. Similarly (if at = 0, i = 2,3,. - -, m), our r0 equals 
the radius of convergence in Theorem 3.2 [118, p. 450].

(c) In Theorem 3.2 [118] the condition

||F'(x) - F'(i/)|| < coh - ?/|| for all x,y e D (10-30)

was used instead of (6.29). The ball used there is U(x ,r ), (corre 
sponding to U(x*,ro)) where

. = j_ (10.31)
COP *

Finally, for convergence xq G U(x*,ri), where

r. = |r._ (10.32)

Below we consider such a case. For simplicity we have taken F (x) 

F'(x)~l (x E D) and m = 2.
Remark 10.2 Methods/routines of how to construct the appropriate ac 
tions of the required outer generalized inverses of the derivative can 
at a great variety in the elegant paper [4]-

Example 10.1 Let us consider the system of equations

F(x, y) = 0,
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where F : R2 -> R2,

F(x, y) = (xy-l,xy + x- 2y).

Then, we get

F'(x,y) = y x
y 4-1 x — 2

and

F'(x,y)~l = _J_ 
x+2y

2 — x x 
y + 1 -y

provided that (x,y) does not belong on the straight line x + 2y = 0. The 
second derivative is a bilinear operator on R2 given by the following matrix

0
1

0
F"(x,y) =

1

1'
0

1
0.

We consider the max-norm in R2. Moreover in L(R2, R2) we use for

flH 012 

021 «22

the norm,

||A|| = max{|aH| + |ai2|, |a2i | + |a221}-

As in [6], we define the norm of a bilinear operator B on R2 by
2

||B|| = sup max 
11*11=1 * j=1

2 -i.

/c=l

where,

Z = (*1,Z2) and

622

For m = 2 and (z*,y*) = (1,1), we get cq = |, rj = .5, 02 — 1- We can 
set q = .001 to obtain r2 = .666444519. Note that r2 > r{.
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10.2 Exercises

10.1. (a) Assume there exist non-negative parameters AT, M, L, /*, t?, 
6 G [0,1] such that:

L < K, . W
t + 2/z < 1, (2)

and

hs = (k + L6 + 7) + it + 2fi < S- (3)

Show: iteration {tn} (n > 0) given by

to = 0, ti = t/,
t -t ■ K(*n+1 ~ tn^ + 2(Mtn + ^-(tn ■ x - *n) (n > 0) 
tn+2 ~ tn+1 +-------2(1-C-Ltn+T) [tn+1 n)

is nondecreasing, bounded above by t** and converges to some t such 
that

Moreover, the following error bounds hold for all n > 0 

tn+2 — tfi+1 < f (tn+1 “ in) — (?)

(b) Let F: D C X -» Y be a Frechet-differentiable operator. Assume: 
there exist an approximation A(x) € L(X, Y) of F (x), an open convex 
subset Do of D, x0 € Do, a bounded outer inverse A* of/W’ ““ 
parameters rj > 0, K > 0, M > 0, L > 0, n > 0, l > su a 
(l)-(3) hold

||A*F(xo)ll < V, 
||A*[F'(x) - F'(3/)lll < KWX~ »H> 
||A*[F'(a:) - 4(x))|| < M||x - zoll +

and

||A*[A(x) - A(io)lll < ^ll®- X°H +1

for all x,y e Do, and

U(x0,t')CD0
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Show: sequence {xn} (n > 0) generated by Newton-like method with

A (xn)# = [/ + A*(A(xn) - AMf'A*

is well defined, remains in C7(xo,s*) for all n > 0 and converges to a 
unique solution x* of equation A#F(x) = 0, U (xo,t*) fl Dq 
Moreover, the following error bound hold for all n > 0

H^n+l ~ %n|| — ^n+l ^n>

and

|| %n ~~ % || _ t ^n

(c) Assume:
- there exist an approximation A(x) G L(X,Y) of F'(x), a simple 
solution x* € D of equation (1), a bounded outer inverse A# of A(x*) 
and non-negative parameters K, L, M, fi, £, such that:

||4#[F'(x)-F'(j/)]||<Kllx-J/||,

M#[F'(x) -4(x)]|| < M||x —x*|| + fi,

and

||A#[A(x)-A(x*)]||<Ih-x*||+/

for all x,y€ D; 
- equation

+ M + L^ r + p, + £ — 1 = 0

has a minimal non-negative zero r* satisfying

Lr + £ < 1,

and

U(x*,r*) CD.

Show: sequence {xn} (n > 0) generated by Newton-like method is well 
defined, remams in U(x*, r*) for all n > 0 and converges to x* provided 
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that zo € t/(z*,r*). Moreover, the following error bounds hold for all 
n > 0:

II2' ^n+l ||

1 /---- jj—7- [4lk’ - M + ( W - Znll + /*)] lk* - M
1 - L||x* - xn|| - £ L J

(f+ M)r* +ji 
1-LV-l

||x* -®n||-

10.2. (a) Let F : D C X —> Y be an m-times Frechet-differentiable oper- 
ator (m > 2 integer).
Assume:

(ai) there exist an open convex subset Dq of D, xq E Dq, a bounded outer 
inverse F' (xq)# of F' (xq), and constants rj > 0, > 0, i = 2,..., m+1
such that for all x,y E Dq the following conditions hold:

ll^'(io)*(F(’n)(x)-F<’n>(xo))ll <e, e > 0, (1)

for all x € U (zo, <5o) and some

||F'(io)*F(xo) II <n, 

\\F'(x0)*F^ (xo)ll <

the positive zeros s of p' is such that

p(s) < o,

where,

p(t) = r? - t + + • • • + 3^tm.

Show: polynomial p has only two positive zeros denoted by t*, t’ 

(t* < f*).
(aa)

(/(xo, f ) = {x 6 X I ||x - z0|| < J} c Z?o, 6 = max{<50, f, t**}- 

(aa) <5o € (f,f*J or So > t".Moreover show: sequence {:<+} (n > 0) generated by Newton s method 
with F'(In)# = [/ + F'(x0)*(F'(x„) - F'fxo^F'fxo)* (n > 0) is 
well defined, remains in U(x0,t*) and converges to a solution x G 

^(xQ,t*) of equation F'(x0)*F(x) = 0;
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- the following error bounds hold for all n > 0

||$n+l ‘Cn|| < ^n+l ^n

and

||^n $ || < ^ ^n,

where {tn} (n > 0) is a monotonically increasing sequence converging 
to t* and generated by

‘0 = 0, tn+1 = t,
P(<n)

P'(tn) ’

(b) Let F: D C X —» Y be an m-times Frechet-differentiable operator 
(m > 2 an integer). Assume:

(bi) condition (1) holds;
(bj) there exists an open convex subset Do of D, x0 6 Do, and constants 

Q>Z?>P > 0 such that for any x e Do there exists an outer inverse 
F'(x)* of F'(z) satisfying N(F'(®)#) = N(F'(x0)*) and

||F'(xo)*K(xo)|| < V,

||F'(y)# jf* F"[® + t(y - x)](l - t)dt(y - x)2|| <

< [^irllv - *r2 + ■ • • + $] llst - ®ll2>

for all x,y G DQy

and

t/(x0,r) C Dq with

where,

ro=[^”-2 + ... + ax]^.

defir. se<luence {xn} (n > 0) generated by Newton's method is well 
t' nf ^^■ro’r) f°r all n > 0 and converges to a solution

(®o) F(x) = 0 with the iterates satisfying N(F'(xn)*) =
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N'(F'(z0)#) (n > 0). Moreover, the following error bounds hold for all 
n > 0

ll^n+l $n|| — 7*0 II2'! — 2'0|(,

II2' xn|( < j_oro ||Xi Xq||,
and

ll2'n — a?o|| <

10.3. Let X and Y be Banach spaces, and let L be a bounded linear 
operator on X into Y. a linear operator M : Y —* X is said to be an 
inner inverse of L if LMA = L. A linear operator M : Y —♦ X is an 
outer inverse of L if MLM = M. Let L be an m x n matrix, with 
m> n. Any outer inverse M of L will be an n x m matrix. Show:

(a) If rank(L) = n, then L can be written as

where I is the n x n identity matrix, and A is an m x m invertible 
matrix.The n x m matrix

M = [IBJA'1

is an outer inverse of L for any n x (m — n) matrix B. 
(b) If rank (L) = r < n, then L can be written as

L = A '10 
00

C,

where A is an m x m invertible matrix, I is the r x r identity matrix, 
and C is an n x n invertible matrix. If E is an outer (mner) inverse of

the matrix 10
00

then the n x m matrix

M = C~lEA~l

is an outer (inner) inverse of L.

(c) E is both an inner and an outer inverse of 

be written in the form

70' 
0 0.

if and only if E can

£=[7 M] = npM].
[ccmJ [cj1 1
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(d) For any (n — r) x r matrix T, the matrix E = I 0 
ro

is an outer inverse

/0
00

10.4. Let F : jD C X y bea Frechet-differentiable operator between two 
Banach space X and Y, A (x) € L (X, Y) (x G D) be an approximation 
to F' (e). Assume that there exist an open convex subset Dq of D, xQ G 
Dq, a bounded outer inverse A# of A (= A (xq)) and constants r),k > 
0,M,L,ij,,1 > 0 such that for all x,y € Dq the following conditions 
hold:

(x0) II < v, M* (F' (z) - F' (y)) II < k ||x - 3/11.

||A* (F' (x) - A (i)) || < M ||x - x01| + n,
||4* (A (x) - A) || < L ||x - xoll + 2, b := /i +l < 1.

Assume h = trri < | (1 — b)2, & := max(fc, M + L), and U = 

U (x0,t*) C D0,t* = —■ ~2\ Then show

• (i) sequence
{xn} (n > 0) generated by rcn+i = xn - A (xn)# F (xn) (n > 0) 
with A (zn)# = [/ + A* (A (xn) - A)] ~‘ A* remains in U and 
converges to a solution x* G U of equation A#F (z) = 0.

(ii) equation A#F (x) = 0 has a unique solution in UC\{R (A#) 4- xQ }, 

where

U =
(xo,t*)nZ)o if h= |(l-&)2 
U(xQ,t”)C\DQ if h< |(l-6)2,

R(A#) + xQ := {x + xQ : x € R(A#)} ,

and
l-b+y/(l-b)2-2h

(iii) ||xn+i xn|| <: tn+1 _ u^* _ Xn|| < t* — tni where tQ = 0,
«n+l =tn+JjSi,/(t)= £t2_(1_6)t + j? and ff(t) = !_it_f.

5. Let F . D C X —>Tbea Frechet-differentiable operator between two 
anach spaces X and Y and let A (x) e L (X, Y) be an approximation 

(x). Assume that there exist an open convex subset Do of D, a 
pomt x0 € Do and constants rj,k > 0 such that for any x e Do there 
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exists an outer inverse A (z)# of A (x) satisfying N(A (x)*) = N(A#), 
where A = A (xq) and A# is a bounded outer inverse of A, and for this 
outer inverse the following conditions hold:

IM*F(x0)||<77,
IM (y)* (F' (x + t(y- x)) - F' (x)) || < kt ||x - j/H

for all x, y G Do and t G [0,1], h = ^krj < 1 and U (xq,t) C Dq with 
r — Then show sequence {xn} (n > 0) generated by zn+i = 
xn - A (xn)# F(xn) (n > 0) with A(xn)# satisfying N(A(xn)#) = 
N (A#) remains in U (xq,t) and converges to a solution x* of equation 
>l#F(z) = 0.

10.6. Show that Newton’s method with outer inverses xn+i ~ xn~~ 
F (xn)# (n > 0) converges quadratically to a solution x* G U n 
{-R(F'(z0)#) + x0} of equation F’ (z0)# F (x) = 0 under the condi- 
tions of Exercise 10.4 with A (x) = F' (x) (x G Dq) .

10.7. Let F : D C X —> Y be Frechet-differentiable and assume that F' (x) 

satisfies a Lipschitz condition

||F' (i) - F' (y) || < L ||x - 3/||, x, y e D.
Assume x* € D exists with F (i*) = 0. Let a > 0 such that U (x , j) £ 

D. Suppose there is an
F' (z*)* e n (F' (x*)) = {B e L (y, X): BF' (x')B = B, B / 0} 

such that ||F' (x*)* || < a and for any x e U(x",^), the set 
Q (F' (x)) contains an element of minimum norm. Then show there ex- 
ists a ball U (x*, r) C D with cr < such that for any x0 e U (x , r) 
the sequence {zn} (n > 0) xn+i =xn- F' (xn) F(xn) (n > 0) w*t

F‘ (x0)* € argmin {||B|| |B € (F' (x0)) } 
and with F' (xn)* = (I + F' (x0)* (F' (xn) - F' (x0)))~lF' (x0)* con- 
verges quadratically to x* e U (x0, D {R(B' (x0) ) + ®o}, which is 
a solution of equation F' (x0)* F (x) = 0. Here, R(F (x0) ) + x0 — 
{x +10 : x € R(F' (x0)*)}.





Chapter 11

Operator Equations and Their 
Discretizations

11.1 The Mesh Independence Principle Under Holder con- 
tinuity

Consider the equation

F(z) = 0 (11-1)

where F is a nonlinear operator defined between two Banach spaces Ei, E. 

The Newton‘s method

xn+1 =xn-F' (Xn)-1 F (xn), n = 0,1,2,... (11.^

has been used extensively to approximate a solution x* of (11.1). The 
iterates {xn}, n = 0,1,... can rarely be computed in infinite dimensional 

spaces.
That is why we replace (11.1) by a family of discretized equations

Fh(z) = 0, h>0 (u-3)

where Fh is a nonlinear operator between two finite dimensional spaces 
Eh and Eh. The discretization on Ei is defined by the linear operators

The Newton's iteration for (11.3) is given by

4 = M*o), 2n\i = 2nh-^«). ^0’1 (U-4)

_ fol it is shown that under certain In the excellent paper in reference [2], it

405
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assumptions the solution z£ and the iterates z„ satisfy the relations 

z'h = Ln(x*) 4-0 (^), 
^-^ = Ln(xn-x*) + 0(^),

zn+l ~ zh~ Lh. (®n+l “ xn) + 0 (7l5) , q > 0,
and for any € > 0

|min{n > 0, ||xn - s*|| < e} — min {n > 0, ||z£ — zj|| < e}| < 1 

for h sufficiently small and xq in a ball centered at x* and of some specific 
radius r > 0.

One of the basic assumptions in [2] is that the Frechet derivative of F 
is Lipschitz continuous on a subset E2 C E^.

Here we show that the above results can be extended to include the case 
when the Frechet-derivative of F is only (7, A) — Hdlder continuous (to be 
precised later) for some 7 > 0 and A G [0,1]. Our results reduce to the ones 
in [2] for A = 1.

An example is also provided for A = | for a scalar, second order, two- 
point boundary value problem, where our results apply where the ones in 
[2] do not.

To make the section as self-contained as possible we will use some of 
the techniques developed in the proofs of the results in [2], [68], [99].

The norms in all spaces will be denoted by the same symbol || ||.

Definition 11.1 We say that the Frechet-derivative F' (x) of F is 
(7, A) —Holder continuous on E2 C Ex if for some 7 > 0, A G [0,1]

||F' (z) — F' (?/)|| < 7 ||z - t/||a for all x, y € E2. (H.5)

We then say that F' (•) e HE. (7, A).
It is well-known that if E2 is convex then 

l|F(x) F(2/)-F'(x)(x-J,)|| < —Lu* _ ^i+x foraU XtyeE2.
A 1 A

(11-6)
assume that (11.1) has a solution x* G E2 which is simple in the 

ense that F (x ) has a bounded inverse with norm 7 = ||f' (x*)~ 11| . 

^^>rTnp11’J: ,LetE E1 E- Assume F’ (•) e HE2 (7, A) °n a convex 
2 C Ei. If x e E2 is a solution of

F (x) = 0
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for which F' ($*) is nonsingular, set

U* = U(x*,r'),

with

0 < r* <
r i+a i1/A

(2 + A)/?7
,Ae (o,ij (11.7)

such that U* CE^. , »
Then, for any x0 e U', Newton’s iteration (11.2) converges to x ana 

the iterates satisfy

h„+i -®’|| <
02 hn-s-||1+A

1 + A 1 —/?7 ||a:n — x*||A ’
n = 0,l,... • (11.8)

Proof. By the Banach Lemma on invertible operators it follows that 

F' (x) is nonsingular in C7* and

F'(x)-1ll<______ ______ r> forall xGU'. (H-9)
W II-1-/M*-**II

Hence Newton's iteration function

P(x) = x — F'(x) ^(x), xeU'

is well defined on (7* and from

P (*)-*’II < F’ (x)-11| ||F (x’) - F(x) - F’ (x) (x' - x)II

0
1 - 0y ||a: - x*||A

7l|s-®’ll‘+A

a (r) ||x — 3J*||, for all x € U

and

«(r).---------(A+D(i-/hM )

we obtain the results.
We now state a theorem that can be found in [187, pp 

proof follows exactly as the proof of the Newton-Kantorovi

□
145], whose 
theorem for

A = 1 [187, pp. 143].

Theorem 11.2 Let F : Ei —► E- Assume.
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(a) the linear operator F' (■) G He* (7, A), where = U (xq, R) C Ei for 
some Xq € Ei and R > 0;

(b) the linear operator F’ (zo)-1 exists and satisfies

||f' (xo)-1 || < bo, ||f' (io)-1 F (xo)|| < %, e0 = » (1110)

where s is the minimum positive root of the equation

= (l-s)1+A in (o,|) with 0 < A < 1. (11.11)

If

R>r0 = where Po = , —yr (11.12)
1 — Po (1 + A) (1 — to)

then Newtoris iteration (11.2) converges to a unique solution x* of the 
equation

F(z) = 0

in U (zo,ro).
As in [2] consider a subset W* C E± such that

x'eW, xneW, xn-x*EW‘, xn+i - xn e W, n = 0,l,2.......
(11.13)

Consider the discretization method given by the family

{Fh,Lh,Ln}, h>0 (u-14)

where

Fh : Dh C E[ -> Eh, h>0

are nonlinear operators and

Lh : E\ —■» Efoy Lh : E —♦ Eh,} h > 0,

are bounded linear discretization operators such that

LbfW'DU^cDb, h>0. (11-15)

The discretization (11.14) is called X-Hdlder uniform ifthere exist con- 
stants w > 0, £ > 0 such that

U(Lh(x’),w)cDh, h>0 (1116)
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and

K(W1)ZFHW2)II<^|W1-W2||\ Ae[0,1), h>0, , ,
wt,w2 e U(Lh (z‘),w). 1 ■ ’

Moreover, the discretization (11.14) called: bounded if there is a constant 
b> 0 such that

||Lh (u)|| < b ||u||, ueW', h > 0, (11.18)

stable if there is a constant d.0 such that

||*a(L* («))"* || <d, uew'ou*, h>0, (11.19)

consistent of order^ q>0 if there are two constants Co > 0, Ci >0 such that

\\Lh(F(x))-Fh(Lh(x))\\<cohq, xeW'nU', h>0 
(11.20)

F* (u)) (v) - F'h (Lh (u)) Lh (v)|| < d/i’, 6 W H U', 
v e W', h>0. (11.21)

We can now prove the main result:
Theorem 11.3 Let F : E2 C E. - E be an operator satisfying the 
hypotheses of Theorem 11.1 and consider a uniform discretizatwn 
which is bounded, stable and consistent of orderq. Then (11- ) a 

unique solution

zh = Lh (x’) + 0(hq) (11.22)

for all h> 0 satisfying

0 <h<h0 = min
e YZ’ ( * Y/<?'

Cpfaj 'ymdco/
(11.23)

withe^l andm=Tll+^k.
Moreover, if the following condition are satisjiea.

C<B (11-24)
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with

A = (A + 2)ctf
B = A + 1, Ag(0,1)
C = 2r* (A + l)£b
B = 2(A + l)c, c = max(co,ci).

Then there exist constants h^ G (0, /10] , H. € (0,r*l suc^ ^ew^ons 
iteration (11.4) converges to and that

z* = Lft(xn) + 0(h’), n = 0,1,2,... (11.25)
z^-zj = Lh(xn-x‘) + 0(h’), n = 0,1,2,... (11.26)

for all h G (0,/iij, and all starting points zq G U (z*,ri).

Proof. For simplicity, we will prove the theorem for A G (0,1). By The- 
orem 11.2, when

<o = £0 (h) = d£ ||Fh (Lh (x‘))|| < s = s (h) < e (U-27) 

rQ = r0 (h) = -——ttt < w,
1 - Po (h)

with

n (H-28)Po(h)“ (1 + A)(1-«O)

then (11.3) has a unique root zh e U (Lh (z'), r0) •
By (11.20), (11.21) and (11.23) we get

to < d2£ ||Fh (Lh (x*)) - Lh (F (x’))|l < d^coh" < e

and

r0 < mdcoh9 < w, (11.29)

which shows that (11.27) and (11.28) hold for all h satisfying (11.23).
Thus (11.22) follows from

llzn ~ Lh, (a;*)|| < r0 < mdco/i9. (11.30)



Operator Equations and Their Discretizations 411

By applying Theorem 11.3 to (11.3) we see that the Newton sequence 
(11.4) converges to if

/ \ 1/A
!IU1’

U (zj, ||Lh (xo) - *:il) C u (Lh (x*), w). (11.32)

But (11.32) holds if

- Lh (x*)|| + ||Lh (zo) - zH < w, (11.33)

and by (11.18) and (11.30) we have

||Lh (®0) - zh\\ < ||Lh (®o) - Lh (z*)|| + ||Lh (**) - z:il
< b ||x0 - x* II + mdcohq. (11.34)

Hence (11.33) is satisfied if

i||z0-z*ll + 2™icoh’< w. (U-35)

Since,

(*:)=-f: (Lh (z*)) [z - f: <Lh (z*»1 <Lh (x*)) - ph (*:))] 

using (11.17), (11.14) and (11.30) we get

II , . -HI ___lkh (Zfc) II - i _ £ ||rh (Lfc (z*))-1|| ll^ (®*) ~ Z*I|A

d (11.36)
” 1 - £d (mdcohrf

Thus, (11.31) holds when

a\11/a
e (1-^d (mdcohq) 1 (11.37)

b ||x0 - x*|| + 2mdcohq < I d J

By setting,
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and

= min
w 1 (e (1 — £dwx} \ 1/ZA 
26’ 2b \ £d ) (11.39)

it can easily be verified that (11.34) and (11.37) hold for all h € (0, h2\ and 
Xq G U (z*,r2) •

That is, for these h and x0, the sequence (11.4) converges to z^. Let us 
now define the function v by

v = v(h) = c2hq, c2 > 0.

We now prove that for h G (0, hx) and x0 € U (z*, rj and all n = 0,1,... 
the estimate

||4-i4^)||<v (11.40)

holds, where

hi = min h0, h2,
_ rp\l/2 / |
~D~) \£dc$) (11-41)\ 4AD )

and

ri = min (r2,r*). (11-42)

we use induction. for n = 0 (11.40) is trivially true.
Consider the identity,

~ Lh (Xi+1)
= n WT1 {[n (*?) - Lh (x4)) - Fh (z?) + Fh (Lh (Xi))]

+ [(Fh (^) - (ih (Xi)) Lh (f' (Xi)-1 F(Xi)))]

+ [JX (Lh (ii) Lh (F' (Si)’1 F (Xi)) - Lh (F(Xi)))]

+ Ph (F (xi)) - Fh (Lh (Xi))]} . (11-43)

As in (11.36) we can obtain
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Using a standard argument we have that

II** (^) (*? - Lh (zj) - F' (z*) + Fh (Lh (z.))||

-WUw
< (11.45)

Also,

|| (** (4) - F'h (Lh (zj) (Lh (f' (zO'1 F (*,)))) ||

<^H-LA(zj)||Ah<-zj+1||

< 2lbvx ||x0 - a:*||
< 2ft?ri (11.46)

(since by Theorem 11.1 ||zj+1 - z’|| < ||«i - z*||).
Finally, from (11.20) and (11.21) we obtain

||** (ifc (x<)) Lh (F' (h)"1 (F (Xi)) - LhF (Zi)) || < cjh’ < ch" (11.47) 

and

||Z*F (zi) - Fh (Lh (Zi))|| < coh" < ch". (11-48)

Using the above estimates in (11.43) we obtain that

- Lh (®i+1)|| < -J— M-7^A+1 + + 2ch"\. (11.49)
" 1 — zdvA [A + 1 J

Define the real functions f and g by

f (v) = Ava+1 - Bv + Cvx + Dhq (11.50)

and

g(v) = Av2 + (C-Bjv + Dh". (H.51)

By the choice of rj and hi
C < B, (11.52)

(C - B)2 - 4ADhq > 0, (11.53)

and f has two positive solutions.
Therefore, the function g has a minimum at

(11.54)
2>1
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and

f(vm)=T + Dh" (11.55)

which according to (11.24) and the choice of h is negative. Since f (v) is 
continuous, f (0) = 0 and f (v) > 0 for v sufficiently large we are assured 
that f (v) has two positive solutions. Denote by vi the smallest positive 
root. then the right hand side of (11.49) is equal to vj.

Moreover,

t>i - B + = —Dhq (11-56)

or

1>1 = ---------- ---------r-rh" (11.57)
B - Av£ ~ Cv*-1

with

B-Av^- Cv^1 > 0. (11-58)

By (11.58), there exist t>2) t>3 sufficiently close to vi with t>2 < vi — v3 
such that

B — Av$ — Cv^ 1 > 0. (11.59)

Therefore, by (11.57), we obtain that

Vi < D
—-----—r-----------= C2hq
B — Av$ — Cv£ 1

(11.60)

by setting

_ D 
C2~ B-Av^- Cv^-1 ’

This proves (11.25) since, we have

||^-Lh(x„)||<vi<c2h’. (U61)

Finally, by (11.30), (11.40), and (11.61), we get

l|(zn - zh) - Lh (xn - X*)|| < ||4 - Lh (,X„)|| + ||Zfc ~ Lh (®*)H 

< mdcoh" + c2h’ = c3h’ (11.62)

by setting c3 = mdco + c2, which shows (11.26) and that completes th^ 
proof of the theorem.
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We can now prove the following to justify the claims made in the intro- 
duction.

Theorem 11.4 Assume:

(a) the hypotheses of Theorem 11.3 are true;
(b) there exists a 8 > 0 such that

liminf||Lh(u)|| ><5M for each u&W. (H-63) 
/i>0

Then for some r € (0,ri), and for any fixed e > 0 and xqEU(i , r) 
there exists a constant h depending on e and zq with h € (0,/ii] such 
that

|min {n > 0, ||xn — z*|| < 0 “ mm {n - llz« “

for all h € (0,7T| .

Proof. Let k be the unique integer defined by

and fi3 > 0 such that
l|Lh(zi-z*)||><5|ki-z*ll. with 0<h<h3. (H.66)

Set,

(- \ i/a\1 ( b \ | (11.67)
ri’2kCT/ )'

dl
a~ 1 + A’

/ 1 <5A (11.68)
i = min^’26’2j’

and

We will prove the theorem for the above choices of r and h.

By (11.62) and (11.69) we obtain that
IK+1 - 2;|| < ||L„ (x,+1 - x*)|| + c3h“ <be + c3h< < 2be, (11.70)
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and from (11.34), (11.67), (11.69) and (11.8)

< d£||z<+1-^||1+A
(1 + A) [l-d£||zj+1-^||A

<2bbe<e. (H.71)

By (11.66) and (11.62) we get

e < ||Xi - z’|| < J ||Lh (Xi - x*)ll < | (||4 " 411 + (11-72)

or

114-411 > 6e — c3hq >6e — y = y. (11-73)

If H2?-! — 2J|| < €, then as in (11.71) we get

which contradicts (11.74). That is,

||4-i - 4|| >e (U-75)

The result now follows from (11.65), (11.71), and (11.75). □

Remark 11.1 (a) The condition (11.63) follows from

lim \\Lh (u)|| = M , r (1L76)
h—+0

(b) For some discretizations we have

lim \\Lh (it)|| = ||u|| uniformly for u e W*. (11.77)
h—»0

Both conditions above hold in many discretization studies [2], [68], [99], 
[227], [247].

The following result is now immediate:

Corollary 11.1 Assume:

(a) the hypotheses of Theorem 11.3 are satisfied;
(b) the condition (11.77) holds uniformly for ueW*.
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Then there exists 6 (0, n) and, for any fixed e > 0, some hi 
h\ (e) G (0, /ii] such that

|min{n > 0, ||xn - x*|| < e} - min {n > 0, ||zn - ^X|| < e}l - 1

holds for all h G (0, hi] and all zq € U (x* ,n).

Example 11.1 Consider the differential equation

y" 4" y1+X = 0, for A G (0,1)
2/(0) = 3/(1) = 0.

Define the operator

F:McC2[0, 1]->C[0,l] xR2, 
F(y) = {y" + a/1+A;0 < ® < i,?/(o),!/(i)} •

Assume that M is such that the equation

F(y) = 0

has a unique solution x* € M and set

U(x*,w) = {(si,X2,®s) 6R3;
o<s;<i, \xi - £*(z{)i ixs-1 (ii)i-“'i'

It can easily be seen that x* G C3 [0,1] •
The Frechet derivative of F is given by
r(J/)u={u" + (l + A)y(tn)Xu, 0<x, t„<l, “(0). “W}

and hence Newton’s iteration becomes

x"+1 = -x^ + (1 + A) (tn) -In+l)

with

xn+l (0) = ^n+l (!) "

Define the norm on Cm [0,1), ^n > 0 with

||u|| = {(max|U‘(x)|, 0<x<l, ^0-1.....
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Choose x0 G C2 [0,1] then xn+i € C3 [0,1], n = 0,1,2,.... We will assume 
also that x0 € C3 [0,1]. By the convergence of xn to x* in the norm of 
C2 [0,1], there exists K > 0 such that

xn 6 Wk = I® e C3 [0,1]; sup |x« (t)| < K, i = 0,1,2,3 j, n = 0,1,2,...

By choosing sufficiently large K we assume

x* € Wr-, xn — x* G Wk and xn — xn+i G Wk, n = 0,1,... .

We now divided the interval [0,1] into n subintervals and set h = we 
denote the points of subdivision by

p0 = 0 < pi < • • • < pn = 1

with the corresponding values of the function yi = y (pi), i = 0,1,2,..., n. 
A simple approximation for the derivative at these points is

y'! ~ + , f = 1,2, ...,n — 1.
n

Since, yo = yn = 0 this leads to the following system of nonlinear equations

h2y{+X - 2yr + 1/2 = 0,
i/i-i + h2y1+x - 2yi + yi+1 =0, i = 2,3,..., n - 1, 

yn-2 + - tyn-i = 0.

We therefore have an operator H : Rn-1 —+ Rn-1 whose Frechet-differential 
may be written as

1 0--• 0

(1 + A) h2yx - 2 1
0

1
0 1 (i + W-i-2.

Choose A = | for simplicity and let x 6 R"-1 with norm given by 

hll = N •
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The corresponding norm on Q € Rn-1 x IR71"1 is

Then for all y, z € Rwith \yi| > 0, |zt| > 0, i = 1,2,n — 1

\\ff'(y)-//'(z)\\ =
(»r-•;'■)}

312 I 1/2 1/2|
= -h2 max \yj - zj

2 i<j<n-i I J 1
3 r 11/2

< |/z2 max \yj- zjl
2 [i<j<n”i

= |h2||s/-z||1/2. 
£

Here t = |/i2 and A = j, therefore the results in [2], [227^ [247] cannot 
be applied here. As in [2] the discretization method {7k, Lh, !</>} is defined 
as follows:

Gh = {Pi = ih, i = 0,1,..., n}, Gh = Gh\ {0,1},

Eh = {y ChR}, rji=rj(Pi)^ i = 0,l,...,n,
£/> = {(77, a, b); r) € <7® —♦ R, a, b € R} ,

Lh (y) = y/Gh, Lh (y, a, b) = (y/G°h, a, b),

Fh (??) = 1+ ,V2; i = 1,2,.... n - 1, no, Vn

The following norms are used in the corresponding spaces

||3/|| = max {fj/1 (z)|, 0 < x < 1, i = 0,1,2}, y G C2 [0,1]
||7|| = max {|u(z)|, a,b\ 0 <$<!}, 7 = (n, a, b) 6 C[0,1] x R2

IMI =max[fa|,p<+1 %, + ?t-~-1|, i = l,2,...,n-lj, yeE}, 

IICH = max{|a|, |d|, |?7t-|, i = 1,2, ...,n - 1} , <= (rj,a,b) G Eh.

It can now easily be seen that (11.8) is satisfied for b = 1 and (11.20), 
(11.21) are satisfied with q = 3/2.
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Moreover, we can easily see with the above norms that

+ + for ueWK,
\o J

diac is. (11.77) is satisfied.
Tberefore. Theorem 11.3 and the corollary may now apply.
F'^nher examples on differential equations can be found in the refer-

11.2 Exercises

11.1. Consider an equation

F(z) = 0 (11.78)

where F is a nonlinear operator between the Banach spaces F, E. Unde 
certain conditions, Newton’s method

Zn+^zw-F'^jv^FCzn), n = 0,1,..., (11.79)

produces a sequence which converges quadratically to a solution z* of 
(11.78). since the formal procedure (11.79) can rarely be executed in 
mfinite-dimensional spaces (11.78) is replaced in practice by a family 
od discretized equations

^(0 = 0 (11-80)

—indexed by some real numbers h > 0—where now is a nonlinear op- 
erator between finite-dimensional spaces F^, Eh. Let the discretization 
on E be defined by the bounded linear operators △>l : F —* Eh. Then, 
under appropiate assumptions, the equations (11.80) have solutions

Ch = Ahz* + O(/ip)

which are the limit of the Newton sequence applied to (11.80) and 
started at ^hzQ\ that is,

Co = Ahzo, tf+1 = - & (tf ), n = 0,1,... (11-81)

In many applications it turns out that the solution z* of (11.78) as 
well as the Newton interates {zn} have ”better smoothness” properties 
than the elements of E. This is a motivation for considering a subset
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W* c E such that

z* zneW*, zn — z* (=W*, zn+1-zneW*,n = Q,l,... .
(11.82) 

The discretization methods are described by a family of triplets.

{0fc,Afc,Afc}, fc>0 (11.83)

where

</>h : Dh C Eh —♦ Eh, h>Q

are nonlinear operators and

△h : E —» Eh, &h : E —» Eh, h > 0, 

are bounded linear (discretization) operators such that

△h (W* n B*) eDh, h> 0. (11.84)

The discretization (11.83) is called Lipschitz uniform if there exist 
scalars p > 0, L > 0 such that

B(^h,z*,p)GDh, h>Q, (11.85)

and

K (n) - <t>'h (011 < L11, - <11, h > o, ,, < e u (&hz‘,p). (11.86) 

Moreover, the discretization family (11.83) is called: bounded if there 
is a constant q > 0 such that

||△/lu|| < g||u||, ueW*, h>Q, (11.87)

stable if there is a constant o > 0 such that

<a, ueW'*nB*, A > 0, (11.88)

consistent of order p if there are two constants cq > 0, ci >0 such that 

llAhF (z) - </>h (△fcz)|| < coh”, zeW'QB', h>0, (11.89)

II(f'(u)V-</>'h(△/,«)△fcv)||<Cih”, ueW‘aB‘,veW‘, 
" (11.90)

h > 0.
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Let F : D C E -> E be a nonlinear operator such that F' is 7 Lip- 
schitz continuous on U (z*,r*) C D with z* such that F (?) = 0, 
||f'(z*)-11| = p and r* = and consider a Lipschitz uniform dis- 

cretization (11.83) which is bounded, stable, and consistent of order p. 
Then
Show:

(a) (11.80) has a locally unique solution

Ci = A^* + O(^) (11.91)

for all h > 0 satisfying

0 < h < hQ = 1 
----- min
2(7Co

(11.92)

(b) there exist constants hi € (0, /io] , H € (0,r*] such that the discrete 
process(11.81) converges to CJ, and that

<n = △hZn + O(/i’>), n = 0,1,..., (11.93)

MCn) =AhF(zn) + O(h”), n = 0,1,..., (11.94)

^-^ = Ah(zn-z*) + O(/i”), n = 0,1,..., (11.95)

for all h G (0, /ii], and all starting points zq G B (z*,ri).
11.2. Suppose that the hypotheses of Exercise 11.1 hold and that there is 

a constant 6 > 0 for such

lim ||A/iii|| > 26 ||u|| for each u G W*. (11.96)

Then show that for some r € (0, rj, and for any fixed e > 0 and 
zq eU (z*,r) there exists a constant h = h (e, zq) g (0, hi] such that

|min {n > 0, ||zn - z*|| <e}-min{n > 0, ||Cn — Ca|| < e}| < 1 
(11.97) 

for all h G (0,S] .
11.3. Suppose that the hypothesis of Exercise 11.1 is satisfied and that 

lim/i-^o = M holds uniformly for u G W*. Then_show_there 
exists a constant Fi G (0, n] and, for any fixed e > 0, some h\ = h (e) G 
(0, /ii] such that (11.97) holds for all h G (0,Ki] and all starting points 
z°GC/(z*,ri).
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11.4. Consider the operator

F:PcC2[0,l]-.C[0, l]xR2,
F (?) = {y"-f (x, y, y'); 0 < x < 1, y (0) - a, y (1) - 0} , 

where D and f are assumed to be such that (11.78) has a unique solu- 
tion z* £ D, and

feC3(U(z*,p)),
u(z\p) = {(xi,X2,z3) €R3;0<Z! < 1, 

lx2 - x* (a?!)! < p, |z3 - z*' (xi)| < p}.

Under these assumptions it follows that z* G C5 [0, Ij. Indeed from 
z ~ f ($» z*‘) we deduce that z*‘“ exists and

Z*‘“ = /(l,0,0) z.f) + /(0,l,0) (x> z.f) 

+ /0’0’15 (x,?,r/)z*,/

which, in turn, gives the existence of z*(xv\ etc. Here /(1,0,0) etc. de- 

note the partial derivatives of f.
As usual we equip C* [0,1], k > 0, with the norm ||u|| = 
{(max |i? (x), 0 < x < 1) , i = 0,..., A:} . The FYechet derivative of F is

F' (y) u = {u" - /(0’1,0) (x, y, y') u - (x, y, y') u',

0 < x < l,u(0) ,u(l) J

and hence, for given zn 6 D, Newton’s method specifies zn+i as the 

solution of the linear equation

Zn+1 = f (^, Zn, z'n) - /(Oll’O) (x, Zn, Zn) (zn - Zn+1) 
-f(0M(x,zn,z'n)(z'n-z'n+1) (11.98)

subject to the boundary conditions zn+i (0) = a, zn+i (1) = (3. 
From (11.98) it follows easily that if zq e C3 [0,1] then zn+i 6 
C4 [0,1], n = 0,1,2,... .We shall assume also that zq G C4 [0,1]. More- 
over, (11.98) and the fact that zn converges to z* in the norm of C2 [0,1] 
hnply that there exists a constant K > 0 such that

zn E WK = (z 6 C4 [0,1]; sup |z(<) (z)| < K, i = 0,1,2,3,4),
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n = 0,1,... . By choosing, if necessary, a larger K it is not restrictive to 
assume that z* G Wk, zn- z* e WK and zn — zn+i G Wk, n = 0,1,... 
which is (11.82).
The discretization method {^, Ah} is specified as follows

h = l/n, n = l,2,...,

Gh = {®i = ih, i = 0,1,..., n}, Gk = Gh\ {0,1} ,
Eh = {rj: Gh -> R} , ??i = ^(^i), i = 0,l,...,n,
Eh = {(p, a, b); T}: Gh —* R, a, b G ,

△hj/ = vIgx > △/> (y, a, b) = (j/|<jh, a, b) ,

^h („) = {[*■-%*-■ _ f ;

i = 1,2, ...,n - 1; (j?0 - a), (r)n - /?)} •

We use the following norms

||i/|| = max (z)| ,0 < z < l,i = 0,1,2} , y G C2 [0,1],

M = max {|u (x)|, a, b', 0 < x < 1} , v = (u, a, b) G C [0,1) x R2,

hll = {ta>l, Kl, tol, | | > , i = 1, •..,«-1}.

77 G Eh- It is easily seen that for y € Wk we have

|*±^| < iKh2, - 2,"! < ^Kg2,

where yi = y (x<), y[ = y' (x<), y" = y" (x,), i = 1,2, ...,n — 1. It is now 
difficult to prove that, with the above norms, (11.87) holds with q = 1 
and (11.89), (11.90) are satisfied with p = 2. It is also easily seen that

II Ah«|| < IMI < IIAhull + K (| (h + 1)) h 
\0 /

for u 6 Wk and hence that lim^—o ll-Dhu|| = ||u||.
Thus the conclusions of Exercises 11.1 and 11.2.

11.5.
(a) Let F be a Frechet-differentiable operator defined on a convex subset 

D of a Banach space X with values in a Banach space Y. Assume that 
the equations F(x) = 0 has a simple zero x* G D in the sense that 
F'(x*) has an inverse F'^x*)"1 € L(Y,X). Moreover assume

IIFXx*)-1^'^) - F'(z*)]|| < £i||x - ®*|| for all x 6 D. (11-99)
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Then, show: sequence {zn} (n > 0) generated by Newton’s method is 
well defined, remains in f7(z*,r*) for all n > 0 and converges to x* 
with

l|Xn+1 .||]hn 5^

provided that xq € C7(x*,r*) and U = U(x*,r*) Q D.
(b) Let F be as in (a). Assume:
(1) there exists xq G D such that F'^o)”1 € L(Y,X)\
(2)

||F'(x0)-1[F,(x) - F'(z0)]|| < £0||x - xoII for all x e D\ (11.101)

(3)

||F'(x0) 1F(z0)|| < 77 some 77 > 0, (11.102)

(5 + 2x/6Xo?7 < 1, (11.103)

(4) U(x0,r2) C D, where, ri,rg are the real zeros (ri < r%) of equations

f(t) = 3£0r2 - (1 + £07])r + 77 = 0. (11.104)

Then, show: sequence {zn} (n > 0) generated by Newton’s method is 
well defined, remains in U(xOyr\) and converges to a unique solution 
x* of equation F(x) = 0 in U(x0,r\). Moreover the following error 
bounds hold for all n > 0. The solution x* is unique in U(x0yr2).

hn+2 - X„+11| < -^p-\\xn+l - X„|| (11.105)
1 - <Ori

and
z»n

||x„+1 - s‘11 < +-U®„ - x'll, (11.106)
x C

where,

C" l-Vi'
(11.107)

(c) Let F:DQX->Kbea nonlinear operator satisfying the hypotheses 
of (a), and consider a Lipschitz uniform discretization which is bounded, 
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stable and consistent of order p. Then equation 7\(v) = 0 has a locally 
unique solution

yl = Lh(x') + O(h>) 

for all h > 0 satisfying

0 < h < hQ = 1---- mm cQa
p 5-2\/6
2’ £a

Moreover, there exist constants hi G (0, hQ\ and r3 G (0, r*] such that 
the discrete process converges to for all h G (0, hi\ and all starting 
points xQ € L7(z*,ri).

11.6.
(a) Let F be a Frechet-differentiable operator defined on a convex subset 

D of a Banach space X with values in a Banach space Y. Assume that 
the equations F(x) = 0 has a simply zero x* G D in the sense that 
F'(x*) has an inverse F'(x*)-1 G L(Y, X). Then

(1) for all £i > 0 there exists £i > 0 such that

||F/(x*)-1[F'(^)-^(3/)]ll<^i

for all x,y € U(x*,£i) C D.
(2) If £i G [0, |) and zo € U(x*,£i) then sequence {xn} (n > 0) generated 

by Newton’s method is well defined, remains in U (x*, £i) for all n > 0 
and converges to x* with

l|x„+1-x’||<r^-|[xn-x*|| (n > 0).
1 - £1

(b) Let F be as in (a). Assume:
(1) there exist 77 > 0, x0 € D such that F'(zo)_1 G L(Y, X), 

||F'(xo)-1F(xo)||<n;

Then, for all £0 > 0 there exists £0 > 0 such that 

||F'(x0)-1[F'(x) — F'(y)]|| < e0 

for all x,y € U(xQ,£Q) C D;
(2)

■nQ - ep) 
1 —2e0
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and

1 
£° < 2'

Then, show: sequence {xn} (n > 0) generated by Newton's method is 
well defined, remains in U(xq, £q) and converges to a unique solution x* 
of equation F(x) = 0 in U(xq,£q)- Moreover the following error boimds 
hold for all n > 0

lf^n+2 ~ ^n+l || < T ll^n+1 “ xn ||
1 — £o 

and

where

(c) Let F. D C X —> K be a nonlinear operator satisfying a Frechet 
uniform discretization , h > 0 which is bounded, stable
and consistent of order p. Then show equation Th(v) = 0 bas a locally 
unique solution

y^LhW + O^)

for all h > 0 satisfying

0 < h < ho =
F p(l - 2lcr) 1 
[(1 - £a)acoj

i/p

Moreover, there exist constants hi € (0, fio] and ri 6 (0, r ] such that 
the discrete process (4) converges to y*h for all h e (0, M] ab starting 
points xq e U(x*,ri), where r* = minp{^, 1}.
11.7.

(a) Let F: D C X -> Y be continuously FYechet differentiable with F'(x) 
invertible for all x G D, D open and convex. Moreover, assume:

F'fo)-1!^ + t(y - x)) - F'(x)](y - x)dt 
JQ

for all x,y e U(xq,6)‘,

<e||y-a:||

(11.108)
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e € [0,1);

where,

||F'(IO)-1F(IO)|| < y,

and

l7(zo,<*)CD.

Show: sequence {xn} (n > 0) generated by Newton’s method is well 
defined, remains in U(xQ,6) for all n > 0 and converges to a solution 
x* 6 U(xQ,6) of equation F(x) = 0. Moreover the following error 
bounds hold:

ll^n+l $n|l < ^U^n ®n—1|| — 1)

and

EnIkn - Z*|| < II (n -

Furthermore, if the linear operator

L = [ F'(x + t(y - x))dt, x,y eU(xQ,6) 
Jo

is invertible, then x* is the unique solution of equation F(x) = 0 in 
U(x0,6).

(b) Show: condition (11.108) can be replaced by the stronger

||F'(»)-1[F'(x + t(y - x)) - F'(a;)](j/ - x)|| < 2te||j/ - x|| (11.109) 

or

l|F'(3/)-1[F'(x + t(j/-x))-F'(a:)l(J/-i)|| <e||j/-i|| (11.110)

for all x, y € U(xQ, 5) C D\ t G [0,1].
11.8. Let F be a twice continuously Frechet-differentiable operator defined 

on an open convex subset D of a Banach space X with values in a 
Banach space Y. Assume:

F'fr)-1 eL(Y,X) (xCZ>);
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there exist constants a > 0, b > 0, rj > 0, xq G D such that

II^M 1 [^"(w) — — x)2|| < a||u — z||2, u, x, z G D collinear

||F(y)-1r"(a;)||<&, x,yeD,
||F'(xo)-1F(a;o)||<77;

h = < 1, c = a 4- b,

U(xq,t) C D,

where,

t=0
- 1 — h

Show, sequence {xn} (n > 0) generated by Newton’s methodjs well 
defined, remains in U(xq,t) and converges to a solution x* e U(xq,t) 
of equation F(x) = 0, which is unique in S, where S is given by S = 
U"o (xk, ^) H D. Moreover the following error bounds hold for all 
n > 0:

lkn+2 “ ^n+lll 2^n+1

and
ll^n+l - S*ll 9 Ikn - S*l|2-





Chapter 12

Convergence on Generalized Spaces

The local and semilocal convergence of iterative methods in generalize 
spaces with a convergence structure under weak conditions is examined in 
this Chapter.

12.1 Iterative Methods on Banach Spaces with 
a Convergence Structure

In this section, we are concerned with approximating a solution x of the 

nonlinear operator equation
F(x) + Q(x) = 0, (121)

where F is a Frechet-differentiable operator defined on a convex subset D of 
a Banach space X with values in X, and Q is a non-differentiable nonlinear 
operator with the same domain and range as F-

We generate a sequence {xn} (n 0) using the perturbed Newton i e 

method scheme given by
x„+1=x„ + 5n (n>0) (12-2)

where the correction 6n satisfies
A(xn)6n = -(F(xn) + Q(xn)) + rn (n > 0) (12-3)

for a suitable rn € X (n > 0) called residual. The importance of study- 
ing perturbed Newton-like methods comes from the fact that variants o 
Newton's method can be considered as procedures of this type. In , act, t 
approximations (12.2) and (12.3) characterize any iterative process m which 
the corrections are taken as approximate solutions of the Newton equations.

431
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This happens when approximation (12.2) is solved by any iterative method 
or when there in the derivative is replaced by a suitable approximation. In 
[99] we provided sufficient conditions for the convergence of iteration (12.2) 
to a solution x* of equation (12.1), by assuming that X is a Banach space 
with a convergence structure (to be precised later).

Here we derive sufficient conditions for controlling the residuals rn in 
such a way that the convergence of the sequence {xn} n > 0 to a solution 
of equation (7.164) is ensured.

We also refer the reader to [99], [199], [200] and the references there 
for relevant work, which however is valid on a Banach space X without 
a convergence structure. The advantages of working on a Banach space 
with a convergence structure have been explained in some detail [99], [199], 
[200].

Preliminaries

We will need the definitions:

Definition 12.1 The triple (X, V, E) is a Banach space with a conver- 
gence structure if

(Ci) X, ||*|| is a real Banach space;
(C2) (V, C, ||-||v) is a real Banach space which is partially ordered by the 

closed convex cone C\ the norm ||*||v is assumed to be monotone on 
C;

(C3) E is a closed convex cone in X x V satisfying {0} x C C E C X x C;
(C4) the operator |*| : D —> C is well defined:

|x| = inf {q G C| (x, q) € E}

for

x E S = {x E X|3gGC: (x, q) € E} ;

and
(C5) for all x E S, M<|||x|||v.

The set

U(a) = {xeX\(x,a)eE} 

defines a sort of generalized neighborhood of zero.
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Definition 12.2 An operator L G Cl (Vi —» V) defined on an open sub- 
set Vi of an ordered Banach space V is order convex on [a, 6] C Vi if

c,d G [a, 6], c < d => L' (d) - L'(c) e L+ (V),

where for n > 0

L+ (Vn) = {L e L (yn) |0 < Xi => 0 < L {xi, z2,xn)}

and L (Vn) denotes the space of multilinear, symmetric, bounded operators 
on V.

Deflnition 12.3 The set of bounds for an operator A G L (Xn) is defined 
to be

B (4) = {L e L+ (Vn) |(xil9i) e E => [X(n ,L (91..... «„)) eE}.

Definition 12.4 A partially ordered topological space V is called regular 
if every order bounded increasing sequence has a limit.

We will need the following proposition due to Kantorovich [183].

Proposition 12.1 Let V be a regular partially ordered topological space 
(POTL-space) and let x,y be two points of V such that x < y- If H . 
t$, 3/] —* V is a continuous isotone operator having the property that x < Hx 
and y > Hy, then there exists a point z € [x, y] such that z = Hz.

Convergence Analysis

We will need the following basic result:

Lemma 12.1 Let V be a regular partially ordered topological space, an 
operator L € C1 (Vi -> V) with [0, a] C Vi C V for some atV,an operator 
MgC(V^ V), operator R < I, B > I, T, K G L+ (V), a point c e V 
with c > 0 and a point p G [0, a].

Assume:

(a) The equation

g (q) = BT{L(p + q) - L(p) - L'(p)q + M(p + ?) 
- M(p)+K(p + q)-K(p)]
- (I - r)q + c = 0 (12 4)

has solutions in the interval [0, a] and denote by q the least of them.
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(b) Let G € L+ (V) be given and R+ G L+ (V), c+,p+ G V be such that 
the following conditions are satisfied:

R+ < min{(G - 2I)BTL'(p) 4- BTGL'(p+) + G(R - I) + Z, 1} = a
(12-5)

0 < c+ < BTG(L(p+) + M(p+) + K(p+)) + GBT(L(p) + M(p)
+ K(p)) - 2BT(L(p) + M(p) + K(p))
+ (B+ + G -1 - BTGL'(p+))c = 0 (12.6)

and

0 < p+ <p + c, (12.7)

where a and 0 are functions of the operators and points involved.
(c) The following estimate is true

M(p)<M(p + q) (12.8)

for all p,q G [0,a].

Then the equation

9+ (?) = (p+ + q) - L (p+) - L' (p+) q + M (p+ + q) - M (p+)

+ K(p+ + q)-K(p+)] — (I — R+) q + c+= 0 (12.9)

has nonnegative solutions and the least of them, denoted by q+ lies in the 
interval [c+,g* — c).

Proof. Using the hypotheses g (q*) = 0 and R < I we deduce from (12.4) 
that c < q*. We will show that

9+(Q*-c)<0. (12.10)

From equation (12.9), and using (12.6), we obtain in turn

9+ (<1* ~ c) < [BGTL (p + c + q* - c) - L (p+) - L' (p+) (q* - c)

+ M(p + c + q*-c)-M (p+)
+ K(p + c + q*-c)-K(p+)] -(Z-K+)(/-c) + c+

= 9(q*) ~ BT[L(p + q*) - L(p) - L' (p)q* + M (p + q*)

- M(p) + K(p + q*)-K(p)]
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+ BTG[l (p + q‘) — L (p+) - L' (P+) (?• — c) + M (p +q‘) - M (p+)

+ K(p + g’)-K(p+)] + (I - R)q’ - c- (I - R+)(q‘ - c) + c+

= [BTL' (p) - BTGL' (p+) + (I — R) — (I — /?+)] q’
+ (G-!){(!-R)q’ -c-BT[L(p) + M(p) + K(p) + L'(p)q']}

+ BT [l (p) + M (p) + K (p) - GL (p+) - GM (p+) ]

+ BTGL' (p+) c + (Z - K+) c + c+ — c
= [ (27 - G) BTL' (p) - BTGL' (p+) + R++ G(I - R) - /] q‘

+ 2BT (l (p) + M(p) + K (p)) - BTG (L (p+) + M (p+) + K (p+))
- GBT (L(p) + M (p) + K(p))+ (BTGL' (p+) - G +/ - R+) c + <+ 

<0,

since (12.5), and (12.6) are satisfied.
Moreover from (12.9) for g = c+, we obtain

<7+ (c+) > 0. (12.11)

By inequalities (12.10), (12.11), the fact that g is continuous and isotone 
lc+, Q — c], and since V is a regular partially ordered topological space, 

°m the proposition, we deduce that there exists a point q*+ with

P+(?;)=0 (12.12)

and

c+ <q± <q* — c. (12.13)

We can assume that q^ denotes the least of the solutions of equation (12.9).
That completes the proof of the lemma. O

The following result is a consequence of the above lemma.

Theorem 12.1 Let {c„} e y, {rn}, {>!„}, {G„} £ L+ (V) (n > 0) be 
sequences and V as in the above lemma. Assume:

(a) There exists a sequence {pn} e [0, a] C C V for some a G V with

Po = 0, and

pn+i< 23 Cjforn>0. (12-14)
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(b) Rq < I and the function

g0 (q) =BTo [l (po + q) - L (p0) - L'(p0) q + M (p0 + q) (12.15) 

-M(p0) + K(p0+q)-K(p0)] -(I-R)q + co = O

has root on [0, a], where B, L, M, K are as in the above lemma. Denote 
by the least of them.

(c) The following conditions are satisfied for all n > 0

Rn+l < Qn+li (12.16)
0 < Cn+1 < /3n+l, (12.17)

and

0 < Pn+l <Pn + Cn- (12.18)

(d) The linear operators Tn are boundedly invertible for all n > 0, and set 
Gn=Tn+1T^ (n > 0).

(e) Condition (12.8) is satisfied.

Then, the equation

gn (q) = BGnTn [l (pn + q) - L (pn) — L'(pn)q +M (pn + q) (12.19) 

- M (pn) + K (pn + g) — ■R'(pn) ] — (I — Rn) q + cn = 0

has solution in [0, a] for every n > 0 and denoting by the least of them, 
we have

52 C1 - - °) • (12.20)
j=n,..,oo

Proof. Let us assume that for some nonnegative integer n, I — Rn > 0» 
gn (g) has roots on [0, a] and denote by q* the least of them. We use 
introduction on n. We also observe that this is true by hypothesis (b) for 
n = 0. Using (12.14), (12.16), (12.17), (12.18), the lemma, and setting 
c = Cn, C+ = Cn+1, R = Rn, R+ = Rn+i, G = Gn we deduce that <?*+i 
exists, and

Cn+l < «n+l <qn-Cn- (12.21)

The induction is now complete and (12.20) follows immediately from 
(12.21).
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That completes the proof of the theorem. FYom now on we assume that 
A" is a Banach space with a convergence structure in the sense of [200]. □

The following result is an immediate consequence of Theorem 12.1.

Theorem 12.2 Assume:

(a) the hypotheses of Theorem 12.1 are satisfied;
(b) there exists a sequence {xn} (n > 0) in a Banach space X with a con- 

vergence structure such that |zn+i — xn\ < Cn.

Then,

(i) the sequence {xn} (n > 0) converges to some point x*;
(ii) moreover the following error bounds are true

-xn| < qn, (12.22)

and

|x* — 2?n+i| < qn - Cn, for all n > 0. (12.23)

We can introduce the main result:

Theorem 12.3 Let X be a Banach space with convergence structure 
(X, V, E) with V = (V, C, ||-||„), an operator F e C1 (D —> X) with DQX, 
an operator Q e C (D —» X), an operator A (x) 6 C (X —> D), an operator 
L e C1 (Vi -» V) with Vi C V, an operator M e C(Vi -» V), an opera- 
tor K e L+ (V), and a point aeC such that the following conditions are 
satisfied:

(a) the inclusions U (a) C D, and [0, a] C V\ are true;
(b) L is order-convex on [0, aj, and satisfies

K + L' |i| 4- |j/| - L' (|z|) 6 B (A (x) - F' (x + y)) (12.24)

for all x,y eU (a) with |x| + |z/| < a;
(c) M satisfies the condition

Afdii + is/D-wdsDeBWW-QCi + a/)). Af(o) = o (12.25)

for all x,y e U (a) with (x| + |y| < a;
(d) for the sequences {cn}, {T„}, {M» {<?-}> <n S 0) the hyPotheses 

(12.14), (b), (12.16), (12.18) and (d) of Theorem 12.1 are satisfied;
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(e) the following conditions are also satisfied

\Sn\<cn<Tn\-(F(xn) + Q(xn))\<'1n<0n (n > 1), (12.26)
|-rn|<T-lKnC„, (12.27)

where,

7n = Tn[i (Pn + Cn) - L (pn) ~ L' (pn) Cn + M (p„ + Cn) - M (pn) 

+ K(pn + cn)-K(pn)] +RnCn (n>l). (12.28)

Then,

(i) the sequence {xn} (n > 0) generated by

xn+i = xn 4- 5n, with xq = 0

remains in U (xo> ^o) an(^ converges to a solution x* of equation F (x) = 
0;

(ii) moreover, the error estimates (12.22) and (12.23) are true where qn 
is the least root in [0, a] of the function gn (q) defined in (12.19), with 
Pn = Ikn - z01| (n > 0).

Proof. Let us assume that xn, xn+i € U (xq^q), where the existence of 
Qo is guaranteed from hypotheses (d). We note that |<5o| < co- Using the 
approximation

*" (^ (^n+l) "b Q (®n+l)) =

= (F (ln) - F (xn+i) + A(xn) (Xn+l -Xn)) + (<2 M “ <2(xn+l)) ~ rn,
(12.29)

(12.24), (12.25), (12.27) and setting pn = |zn - zo|> we obtain in tum

l— (F (^n+l) + Q (^n+l))!

< |F (xn) - F (zn+1) + A (Xn) (xn+1 - Xn)| + |Q (Xn) ~ <2 (®n+l)l + Hr«l

— [ [L (Pn + t |$n+l — £n|) “ L (pn) + Jf] |^n+l ” ®n| 

Jq

+ M(pn + |zn+i - Xn|) - M (pn) + |-rn|
< L (jpn + Cn) - L (pn) - L' (pn) Cn + KCn + M (pn + cn) - M (pn)

+ T^RnCn.
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hence, by (12.26) we get

Cn+l < Tn+1 |- (F (Xn+1) + Q (®n+1))l < 7n < A> (»»>!)>

which shows (12.17).
It can easily be seen that by using induction on n, the hypotheses of 

Theorem 12.1 are satisfied. Hence, by (12.24) and (12.27) the iteration 
{xn} (n > 0) remains in U (zo,<7o) an<^ converges to x* so that (12.22), 
and (12.23) satisfied. Moreover, from the estimate

|- (F (xn) + Q (xn))| < |4 (xn) - F' (xn)| Cn + |F' (xn)| Cn + |-r«l, 

(12.24), (12.27), the continuity of F, F', A, T„, Rn, and c„ -» 0 as n — oo, 
we deduce that

F(x*) + Q(x*) = 0.

That completes the proof of the theorem. i_i

We will complete this study with an example that shows how to choose 
£, M, in practical applications. For simplicity, we assume that A (x) = 

F' (x) for all x G D.
Example 12.1 We discuss the case of a real Banach space with norm 
II’II • Assume that F' (0) = I and there exists a monotone operator

f : [0, a] -> R

such that
||F" (x)|| < /(M), for all x G U (a) (12.30)

and a continuous nondecreasing function £ on [0, rj, r < a such that

IIQ(x)-Q(y)|| < ^(r) (12.31)

for all x,y G U (j).
We showed in [99], (see also [220]) that (12.18) implies that

l|Q(z + /i)-Q(z)|| < A (r + ||/i|() -/i (r), x€U(a), ||/>||<a-r,
(12.32)

where
/i(r) = [ e®dt- 

Jo

(12.33)
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Conversely, it is not hard to see that we may assume, without loss 
of generality, that the function h and all functions h (r 4-t) — h (r) are 
monotone in r. Hence, we may assume that h (r) is convex and hence 
differentiable from the right. Then, as in [99], we show that (12.32) implies 
(12.31) and (r) = h' (r 4- 0). Hence, we can set

Li(<?) = L(9) = ||F(0) + Q(0)||+ / ds / f(t)dt, (12.34)

and

M(g)= / £(t)dt. (12.35)

Define the functions /i, /2> /3 on [0, a] by

/1 (<?) = L (?) - q, fz (q) = /1 (q) + h (q) and /3 (g) = / f (t) dt.

Choose B = Tq = 1, Rq = K = 0 and pQ = 0. Then by (12.15) we get

9o (g) = /2 (?) -

It can easily be seen that with the above choices of L and M conditions 
(12.24) and (12.25) are satisfied.

Suppose that the function gQ has a unique zero qQ in [0, a) and gQ (a) < 0- 
It is then known [99], [200] that equation (12.1) admits a solution x in 
U (qo), this solution is unique in U (a), and the iteration {xn} (n > 0) given 
by (12.2) is well defined, remains in U (qQ) for all n > 0 and converges to 
x*. By applying the Banach lemma on invertible operators we can show 
that A(xn) is invertible and ||A (xn)~l || < — f[ (||zn||)-1 — Tn (n ^).

Moreover, suppose that (12.30) is satisfied. furthermore, assume that 
instead of conditions (12.16) and (12.17), the weaker condition (12.10) is 
satisfied. Using (12.30) and the approximation

rn = [(F' (xn) - F' (x0)) + F' (x0)] 6n + F (xn) + Q (xn),

12.2 Exercises

12.1. Let L, M, Mi be operators such that L G C1 (Vi —> V), Mi G L+ (V), 
M € C (Vi —> V), and xn be points in D. It is convenient for us to
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define the sequences cn, dn, an, bn (n > 0) by

dn+l + + do = 0,
l^n+l $n| >

an = (L + M 4- M\)n (a) for some a G C,
bn = (L + M + MY)n (0),

and the point b by

b=(L + M + MJ00 (0).

Prove the result:
Let X be a Banach space with convergence structure (X, V, E) with 
y = (V, C, ||• ||v), an operator F e C1 (D —> X) with D C X, an oper- 
ator Q e C (D —> X), an operator L € C1 (Vi —» V) with V[ C V, an 
operator M € C (Vi -> V), an operator Mi € L+ (V), a point a 6 C, 
and a null sequence {zn} G D such that the following conditions are 
satisfied:

(Ce) the inclusions U (a) C D and [0, a] C VI are true;
(C7) L is order-convex on [0, aj, and satisfies

L' (|x| + |3/|) - L' (Ixl) € B (F' (x) - F' (x + y))

for all x, y € U (a) with |x| + |t/| < a;
(C8) M satisfies the conditions

0 < (Q (x) - Q (x + y)), M (|x| + |y|) - M (|i|) 6 E

for all x,y eU(a) with |x| + |y| < a, and

M (wi) - M (w2) < M(w3) - M (w4) and M (w) > 0

for all w, wi, w2, w3, w4 € [0,n] with Wi < w3, w2 < w4, 
W2 < Wi, W4 < W3;

(C9) Mi, xn, zn satisfy the inequality
0 < (F' (Xn) (Zn) ~ F' (Xn-1) (Zn-1) , M1 (dn - dn-l)) G E

for all n > 1;
(Cio) L' (0) € B (I - F' (0)), and

(- (F (0) + Q (0) + f' (0) (z0)), L(0) + M (0) + Mi (0)) 6 E-, 
(C11) (L + M + Mi) (a) < a with 0 < L + M + Mf, and 
(C12) (M + Mi + L’ (a))n a -> 0 as n 00.
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Then,

(i) The sequence (xn,dn) G (X x V)N is well defined, remains in 
En , is monotone, and satisfies for all n > 0

dn < b

where b is the smallest fixed point of L + M + Mi in [0, a].
(ii) Moreover, the iteration {xn} (n > 0) generated by

^n+l = Xn + F' (xn)* [- (F (xn) + Q (zn))l “ *n, = 0

converges to a solution x* G U (b) of the equation F (x)+Q (x) = 
0, which is unique in U (a).

(iii) Furthermore, the following estimates are true for all n > 0:

bn < dn < b, 

bn < an, 

l^n+l ~ ^nl < dn+i dn, 

|Xn x | < b dn,

and

|xn — z*| < an - bn, for Mi = 0, and zn = 0 (n > 0).

12.2. We will now introduce results on a posteriori estimates for the it- 
eration introduced in Exercise 12.1. It is convenient to define the 
operator

^(^^(i-rd^Dr^M + cn

where,

s„ («) = (L + M + Mj) (|xn| + g)-(L + M + M,) (|x„|)-i' (W) («).

and the interval

In — [0, a — |xn|] •

Show:

(a) operators Sn are monotone on In;
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(b) operators Pn : [0, a — dn] —> (0,a —dn] are well defined. and 
monotone. Hint: Verify the scheme:

dn 4~ Cn < => R (a) —
— a — dn — Cn => Sn (a — dn) 4- L' (|xnj) (a — dn — Cn) 
< a - dn - Cn (n > 0);

(c) if q G In satisfy Rn (q) < q, then

Cn<Rn(q)=P<q, 

and

An+1 (p - Cn) < p - Cn for all n > 0;

(d) under the hypotheses of Exercise 12.1, let qn 6 In be a solution 
of Rn (q) < g, then

|z*-*m|<am (m>n), 

where

an = qn and am-|-i = Rm (crn) Cm, 

and
(e) under the hypotheses of Exercise 12.1, any solution q € In of 

Rn (q) < q is such that

|z*-xn|s<^(0)<g.

12.3. Let A e L(X -^X) be a given operator. Define the operators 
P,T(D-^X) by

P(x) =AT(x + u),
T(x) = G(x) + R(x), P(x) = F(x) + Q(x), 

and

F(x) = AG(x + u), Q(x) = AR(x + u), 

where A € L (X -> X) G, R &re as F,Q respectively. We deduce 
immediately that under the hypotheses of Exercise 12.1 the zero x 
of P is also a zero of AT, if u = 0.
We will now provide a monotonicity result to find a zero x of AT. the 
space X is assumed to be partially ordered and satisfies the conditions 



444 Approximate Solution of Operator Equations with Applications

for V given in (Ci)-(C5). Moreover, we set X = V, D = C2 so that 
|-| turns out to be I.
Prove the result:
Let V be a partially ordered Banach space satisfying conditions (Ci)- 
(C5), Y be a Banach space, G G C1 (D -> K), R e C (D -> Y) with 
D C V, A e L(X -> V), M G C(Z?-> V), G L+ (V) and u,v G 
V such that:

(C13) [u, u] C D\
(C14) I - AG' (u) + M + Mi e L+ (V);
(C15) for all wi, W2 G [u, u] : wi < w2 => AG' (wi) > AG' (w^);
(Ci6) AT (u)+AG' (u) (z0) < 0, AT (v)+AG' (v) (z0) > 0 and AT (v)- 

M\ (v — u)> 0;
(C17) condition (C6) is satisfied, and M (v — u) < — Q (v — u);
(Cis) condition (C9) is satisfied ;
(C19) the following initial condition is satisfied

- (Q (0) + AG' (u) (zQ)) < (M + Mi) (0);

and
(C20) (Z - AG' (v) + m + Mi)n (v — u) —> 0 as n —> 00.

Then the Newton sequence

yQ = u, yn+i = yn + (AG' (j/n))* [-AT (yn)] - zn (n> 0)

is well defined for all n > 0, monotone and converges to a unique zero 
x* of AT in [u, v].

12.4. Let X be a Banach space with convergence structure (X, V, E) with 
V = (V,C, IMIv), an operator F € C1 (Xf —> X) with Xf C X, an 
operator L G C1 (Vl —> V) with Vl C V and a point of C such that

(a) U(a)CXF, [0,a]C VL\
(b) L is order convex on [0, a] and satisfies for x, y C U (a) with 

kl + \y\ < a\

L' (|x| + \y\) - L' (|x|) G B (F' (x) - F' (x + y));

(c) L' (0) G B (I - F' (0)), (-F (0), L (0)) G E\
(d) L (a) < a;
(e) L' (a)n —> 0 as n -> 00.
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Then show Newton’s sequence xq := 0, xn+i = +
F' (xn)* (—F(xn)) is well defined, and converges to the unique zero 
z of F in U (a).

12.5. Under the hypotheses of Exercise 12.4 consider the case of a Banach 
space with a real norm ||-||. Let F' (0) = I and define a monotone 
operator

fc : [0, a] —» R Vx e 17 (a) : ||F" (®)|| < k (||®||)

and

L(t) = ||F (0)||+ [ ds [ d6k(£). 
Jo Jo

Show (d) above is equivalent to ||F (0)|| + -5A: (a) a2 < a. Under what 
conditions is this inequality true.
If conditions (a)-(c) or Exercise 7.4 are satisfied, and

G (0,1) : L (o) < ta,

then show there exists a' G [0, ta] satisfying (a)-(e). The zero z G
U (a') is unique in 17 (a). .

12.6. Let L G L+ (V) and a,e € C be given such that: Let a < e and 
Lne —> 0 as n —* oo. then show: operator

(J — L)* : [0,a] —♦ [0,a],

is well defined and continuous.
12.7. Let A e L (X), LeB (.4), y 6 D, and e e C such that

Le + |i/| < e and Lne —* 0 as n —♦ oo.

Then show x := (I - A)" y is well defined, x e D, and |x| <
(I - L)" |j/| < e. r c

12.8. Let V be a partially ordered Banach space, Y a Banach space, G 6
C1 (VG -> y), A E L {X -> Y) and u, v E V such that

(a) [u, v] C VG;
(b) I - AG' (u) € L+ (V);
(c) Vwj, w2 e [u, v] : wi < w2 => AG' (wi) > AG (w2),
(d) AG (u) < 0 and AG' (y) > 0;
(e) (/-XG'(v))n(v-“)-,0asn_,o°'
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Then show: the Newton sequence

UQ = u, Un+1 := u+ [AG' (un)]* [-AG (un)] (n > 0)

is well defined, monotone, and converges to the unique zero z of AG 
in [u, v].

12.9. Consider the two boundary value problem

-x" (s) = 4 sin (x (s)) + f (s), x (0) = x (1) = 0

as a possible application of Exercises 12.1-12.8 in the space X = 
C [0,1] and V = X with natural partial ordering; the operator /■/ is 
defined by taking absolute values. Let G € L+ (C [0,1]) be given by

Gx (®) = 2^(2) I/ sin (2t) S‘n (2 - 2S) X (*) dt

+ [ sin (2 - 2t) sin (2s) x (t) dt >
Jq )

satisfying Gx = y <=> —y" - 4y = x, y (0) = y (1) = 0. Define the 
operator

F : C [0,1] -♦ C [0,1], F(x) := x - G (4sin (x) - 4x + /).

Let

L : C [0,1] -» C [0,1], L (e) = 4G (e - sin (e)) + \Gf\.

For x,y,w € C [0,1]

|z|, |x| + \y\ < .5?r =>
|[F' (x) - F' (x + y)] w\ < [L' (|x| + \y\) - L'L' (|z|)] |w|.

Further we have L(0) = \Gf\ and L' (0) = 0. We have to de- 
termine a G C+ [0,1] with |a| < .5tt and s G (0,1) such that 
L (a) = 4G (a — sin (a)) + \Gf\ < sa. We seek a constant function 
as a solution. For eo (s) = 1, we compute

pdlGeolL^S (j^-1)-

Show that a = te^ will be a suitable solution if

4p(t-sin(t)) + 110/11«, < t.
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12.10. (a) Assume: given a Banach space X with a convergence 
structure (X, V,E) with V = (V, C, |H|V), an operator F € 
C1 (%o Q X —> X), operators M, Lo, L G L1 (VqCV -* V), and 
a point p e C such that the following conditions hold:

t7(p)CX0, [0,p]CVb;

M, Lo, L are order convex on [0, p], and such that for x, y, z e U (p) 
with |x| < p, Ij/J + |x| < p

4(M) - 4(0) B(F' (0) - F' (x)),
L' (|3/| + |x|) - L' (Ij/I) € B (F' (y) - F' (y + x)),

M (p) < p
Lo(po) < M(p0) for all po G [0,pj,
Lq(Po) < M'(p0) for all p0 € [0,p], 

L'o G B(I - F' (0)), (-F(0), Lo(O)) e F, 
M' (p)n (p) —» 0 as n oo,

M' (dn) (b — dn) + L (dn) < M (b) for all n > 0,

where

do = O, dn+1 = i(dn) + 4(|x„|)(c„), c„ = k„+1-x„l (n>0) 

and

b = M°° (0).

Show: sequence {x„} (n > 0) generated by Newton's method is well 
defined, remains in is monotone, and converges to a unique 
zero x* in U(b), where b is the smallest fixed point of M in [0,p]. 
Moreover the following bounds hold for all n > 0

dn<b, 
\x^-xn\<b-dn, 
\x* — xn\ < Mn (p) — Mn (0), 

Cn + dn< dn+i,

and

Cn — l^n+l *^n| •
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(b) If r G [0,p — |xn|] satisfies Rn(r) < r then show: the following 
holds for all n > 0:

Cn < Rn(r) = p<r, (1)

and

R{n+l}(p-Cn) <P-Cn

(c) Assume hypotheses of (a) hold and let rn G [0,p - |xn|] be a 
solution (1). Then show the following a posteriori estimates hold for 
all n > 0

|x $m| < Qm>

where

Qn — rny qm+\ — Rm(Qm) Cm (m > n).

(d) Under hypotheses of (a) show any solution r E [0,p — |zn|] 
/^(r) < r yields the a posteriori estimate

|x*-xn|<^(0)<r (n > 0).

Let X be partially ordered and set

X = V, D = C2 and |-| = Z.

(e) Let X be partially ordered, Y & Banach space, G C 
C      (Xo C X -> Y), A G L(Y -> X) and x,y G X such that:12345

1. [x,y]eXQ.
2. I — AG'(x) E L+(X),
3. Zi < z2 => AG' (zi) < AG' (z2) for all zi, z2 G [x, y],
4. AG(x) <0, AG(y) > 0,
5. (I - AG' (y))n (y - x) -> 0 as n -> oo.

Show: sequence {yn} (n > 0) generated by

yo = x, yn+i = yn + AG'(yn)*[-AG(yn)]

is well defined for all n > 0, monotone and converges to a unique 
zero i/* of AG in [x, $/].
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12.11. Let there be given a Banach space X with convergence structure 
(X, V, E) where V = (V, C, ||-||v)> and operator F € C" (Xo - X) 
with Xo C X, and operator M € C' (Vb —» V) with Vo C V, and a 
point p 6 C satisfying:

tf(p)Uo, [O,pJ C Vo;

M is order-convex on [0, p) and for all x, y G U(p) with |x| + < p

M' (|x + 2/|) - M' (x) G B ([F" (x) - F" (x + p)J (p))
M' (0) G B (I - F'(0)), (-F(0), M (0)) G E\

M (p) <p\

and

M' (p)np —>0 as n —» oo.

Then, show sequence (xn,tn) € (X x 7)N, where {xn} is generated 
by Newton’s method and {£n} (n > 0) is given by

= 0, tn+i = M (tn) + M (Jxn() (&n) , an ~ l^n+1 ^n|

is well defined for all n > 0, belongs in EN, and is monotone. 
Moreover the following hold for all n > 0

tn —

where,

b = M°° (0),

is the smallest fixed point of M in [0, p).
b) Show corresponding results as in Exercises 12.10 (b)-(c).

-•12. Assume hypotheses of Exercise 12.10 hold for M — L.
Show: (a) conclusions (a)-(e) hold (under the revised hypothesis) 
and the last hypothesis in (a) can be dropped;
(b) error bounds |x* — xn| (n > 0) obtained in this setting are finer 
and the infromation on the location of the solution more precise 
than the corresponding ones in Exercise 12.4 provided that Lq (po) < 
L (po) or L'o (po) < L' (po) for all p G [0,p].
As in Exercise 12.5 assume there exists a monotone operator ko •

[0, p] -* R such that
||F'(z) - F'(0)|| < k0 (M) |k||, for all x G Z7(p),
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and define operator Lq by

L0(t) = ||F (0)|| + f ds P d0ko(O).
Jo Jo

Sequence {dn} given by d0 = 0, dn+i = L(dn) 4- Lo(|zn|)cn con- 
verges to some p* G [0, p] provided that

(ko(p) + ||F(0)|| < 1.

Conclude that the above semilocal convergence condition is weaker 
than (d) in Exercise 12.4 or equivalently (for p = a)

2fc(p)||F(0)|| < 1.

Finally, conclude that in the setting of Exercise 12.12 and under 
the same computational cost we always obtain and under weaker 
conditions: finer error bounds on the distances |xn — z*| (n > 0) 
and a better information on the location of the solution x* than in 
Exercise 12.5 (i.e., [199], see also [99], [200]).



Chapter 13

Dynamic Processes

In this Chapter we examine the point-to-set convergence.

13.1 On Time Dependent Multistep Dynamic Processes

In the context of nonlinear programming Zangwill [297] presented a general 
theory on convergence of iteration processes based on point-to-set map- 
pings. He investigated only one-step stationary iterations, and he proved 
ihat the process either terminates after a finite number of steps or the limit 

any convergent subsequence is a solution. Special but practically useful 
iriteria were derived for example by Brock and Scheinkman [106], Fujimoto 
155], Szidarovszky and Okuguchi [259] based on special selections of the 

-»iapunov function.
In this section the convergence theorem of Zangwill is generalized and 

ixtended to nonstationary multistep iteration processes in partially ordered 
opological spaces. In addition, monotone convergence and the speed of the 

:onvergence of the processes are examined.
Let S C X be a set such that u* G S, and for k > 0 the point-to-set 

nappings f (fc; •) are defined on

Sz = SxSxS---xS,

•nd for all t™,- ■ ■ , t™ € S and fc > « - 1, f (*! *(1)>' ’ ' ><W) nonemPt* 

i S. Define the iteration sequence

a>fe+l e f(kk-M,Xk-l+2,--- >®*)

>here fc > l - 1, xQ, x,,.... 6 S, and an arbitrary element from the set

an be selected as the successor of Xk-

451
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Definition 13.1 A function v : Se —> R+ is called the Liapunov function 
of process (13.1), if for arbitrary t^ G S (i = 1,2, ...,£, u*) and
y e f (fc > £ - 1),

v(t<2>......t«\y) <y(t<»,t(2>....... tW).

Definition 13.2 The Liapunov-function V is called closed, if it is defined 
onS = SxSx-"XS, furthermore, if ki —> oo, t^ —> t^*

(t^ES for i>0 and j = 1,2,...,£,t^* / u*) ,

Vi£ f (ktji-1), ...,t<^) (i > 0) and -> j/*, then

v(t^*,...,t^,y*)

Remark 13.1 Assume that f (k\ •) = f (■) for all k,S = S, and mapping 
f (•) is closed (for the definition of closed mappings see e.g. Zangwill, [297, 
pp. 88], then any Liapunov-function is also closed.

Our main convergence result can be formulated as follows:

Theorem 13.1 Assume that X is a topological space and

(A) For all k > £ - 1, f (fc; t^,..., t&,u*) = {u*} with arbitrary 
t^,...,t^~^ G S, ifu* G S C X\

(B) The iteration process (13.1) has a continuous, closed Liapunov func- 
tion;

(C) There exists a compact set C in X and that for all k> £ -1, $fc € C. 
Then —> u* as k —> oo.

Proof. Condition (A) implies that if for fc > l - 1, xk = u‘, then all 
successors of xk are also equal to u*. Hence we assume that xk 0 u' 
~' 358111116 that Xk u*, then since the sequence is in a compact

set there is a subsequence x^ which tends to x* / u*. The construction 
o t e iteration sequence and the definition of the Liapunov function imply 
that for all i > 0,

^(^i+i-^b-1%1) < y (xfci-<+2,...,xfci,xfc<+i)

v (^fci-z+i,...,^). (13.2)
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Without loss of generality assume that all sequences {zfci 
{xfc<-<+2},...,{zfci}, and {xfci+i} are also convergent, otherwise take fur- 
ther subsequences of {xfci}. Let x£_i,...,$i an^ 2/* denote t e imi o 
the above subsequences, then the continuity of the Liapunov-function an 
relation (13.2) imply that

V (xj_2,...,^l,^*,3/*) ~ V (®?-i>—’

Since the Liapunov-function is closed, strict inequality must hold 
above relation. This contradiction compietes the proof.

Remark 13.2 Assumption u* € S is need in order to obtain u as 
limit of sequences from S. Assumption (A) guarantees that i a 
eration step the solution u* is obtained, then the process remai 
solution. We may also show that the existence of a Liapunov 
not a too strong assumption. Consider the special case when ts 
space and f is point-to-point from S to S, and assume thateta^^ 

arbitrary initial solution xq & S the process converges o e
. . r., v • C -> Rj. be constructed as follows. untnofequatzon x = f (x). Let V . S - «+ define

selecting xq = x consider sequence xfc+i — J l — /

f 0 if x = u* 
v (*) = S max ||it - u' || otherwise.

I
Obviously V (f (x)) < V (x) for ollxeS^ The
m (B) are also natural, smce vnthout certal^ necessariiy satisfied, for 
vergence can be established. Assumption ( ) B > 0 there
example, if x = Rn, and either S' is bouri ed ortf f
exists a Q > 0 such that $ II II
index j) imply relation

if P = 1) this last condition can
In the case of one-step processes (that zs, j / 
be reformulated as

lim V (x) — 
HxlHoo
*es

Remark 13.3 Iteration processes in this general form have real practical 
importance. Note first that one of the most popular solvers of nonlinear 
equations is the secant method, which is actually a two-step process. Many 
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dynamic economic processes are based on the selection of optimal strate- 
gies by the participants at each time period. If the optimal solution is not 
unique, then the strategy for the next period can be selected from the set 
of optimal solutions. hence the iteration is based on a set-valued mapping. 
In addition, if the participants ’ decisions are based on extrapolative expec- 
tations on the other's behavior, then the process becomes multistep. Time 
dependency of the process follows from price changes, technological devel- 
opment, etc. For the description of such models in the oliopoly theory see 
Okuguchi Szidarovszky [260].

Assume next that the iteration process is stationary, that is, in recursion 
(13.1) function f does not depend on k. In this case Theorem 13.1 reduces 
to the following.

Theorem 13.2 Assume that X is a topological space, S C X, further-
more

(i) S = S;
(ii) For all

f (t^,...,^1^,^^ = {«*};

(iii) Function f is closed on S;
(iv) The iteration process has a continuous Liapunov function;
(v) There exists a compact set C C X such that for all k> £ — 1, Xk € C.

Then x^ —> u* as k —> oo.

Remark 13.4 This result in the special case of t = 1 can be considered as 
the discrete-time-scale counterpart of the famous stability result of Uzawa 
[271].

Sufficient conditions will be now given for the monotone convergence 
of the iteration scheme (13.1). Assume now that X is a partially ordered 
topological space, and S C X.

Definition 13.3 The sequence of point-to-set mappings f (k; •) from S 
to S is called increasingly isotone on S if for arbitrary k > £ — 1, t^ € S 
(i = 1,2, ...,£ + 1) such that t^+V > t^ • •• > t™ > t(1) and for any yi G 
f (k;t™,...,t&) and y2 G f (k + 1;, 3/1 < y2-
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Definition 13.4 Point-to-set mapping f (k : •) : S* —> S, for a fixed 
fc (k > t - 1), is called increasingly isotone if t(<) € S (i = 1,2, ...,£ + 1) 
such that t(*+1) > t(z)... > t(2) > t(1) and e f (Jc; t(1),..., *(*)) and 
J/2 € f (fc;f(2), ...,t(£+1)) imply that yi < y2-

Remark 13.5 Note that if f (k\ •) does not depend on k, then Definition 
13.3 and 13.4 nre equivalent.

Remark 13.6 In the literature a point-to-set mapping f(k\-) is called 
isotone if for all t(<) G S, s(<) € S such that t(<) < s(<) (i = 1,2,...,(), yi < 
y2 for all yief (fc; t(1),..., t(z)) , 92 6 f (k\ s(1),..., s(Z)) . It is obvious that 
an isotone mapping is increasingly isotone, but the reverse is not necessarily 
true, as the example of set S = [0,1] C R1 ond function

. X ( /(2) if t(1) > 2t(2) - 19 (t(1)t(2)) = (t(i) _ t(2) + X) if t(1) < 2t(2) - 1 

illustrates. Let partial order < be defined as (s(1),s( ’) (* ’* ^fingiy 
only if S(D < f(*) and s™ < t(2). First We sKow tha 9 -^mgl 
monotone. Select t(1) < t(2) < t(2). Note first hat 5 (t >,< <
f(1) > 2t(2) - 1, then g (t(1),t(2)) = < 2<< '

9
t(2) + ! = f(2).

Note next that g (t(2),t(3)) > t(2)- //«(2) > 2t(3) - 1, then g (t(2),t(3)) 

t(3) > t(2); and ift<» < 2t(3) - 1, then

9

Hence

W'e can also verify that mapping q is not isotone on S. c®ns _ 
(t, 1) and (t, 1 - e) (t, e > 0; t + 2e < 1) • Then g (t. 1) = t andg (t, 1 - e) - 

t - (1 - e) +1 = t + e > g (t, 1) • Hence g is not isotone.

Theorem 13.3 Assume that in iteration (13.1) the sequence
f {k\ •) is increasingly isotone, furthermore Xi G S (0 < i < 
xi • • • , < xt-i < xt. Then for all k>0, x^+i > xk> 

Proof. By induction, assume that for i (i < k), Xi+i > x+ Then relations 
xk e f(k- l,xk-t^k-i). xk+i e f(xk-^xk) and the defiiution
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of mcreasingly monotone family of mappings imply that Xk < since 
this inequality holds for k = 0,1, — 1, the proof is completed. □

Consider next the modified iteration scheme

2/fc+i € /(fc;?/fc,3/fc-i,...,3/fc-M-i) • (13.3)

Using finite induction, similarly to Theorem 13.3, we may prove the follow- 
ing:

Theorem 13.4 Assume that the sequence of mappings f (k', •) is increas- 
ingly isotone, furthermore y± G S (0 < i < £ — 1) and

2/o > 3/i > ••• »> ite-i > yt-

Then for all fc > 0, y^+i > yk-

Corollary 13.1 Assume that X = Rn and for k —* oo, the sequence {zfc} 
and {yk} have the same limit u*, and < is the usual partial order ofvectors. 
(That is, a = (a (i)) < b = b (i)) if and only if (a (i) < b (t) for all i). 
Under the conditions of Theorem 13.3 and 13.4, for 0,

Xfc < w* < yk.

This relation is very useful in the error analysis of the iteration methods 
(13.1) and (13.3), since for all coordinates Xk (i),3/fc (i) and u* (0 °fvect°rs 
Xk, yk, u* respectively,

0 < u* (i) - xk (i) < yk (i) ~ xk (i)

and

®<yk (i) - u* (i) < yk (i) ~ (i) •

Furthermore, we can show:

Theorem 13.5 Assume that X is a regular POB-space, S C X and

(A) The sequence of mappings f (k‘, •) is increasingly isotone in iteration 
fl3.1) with Xi e S (0 <i < £ - 1) and

XQ<Xi <••• < Xt-\ < Xt\

(B) There exists a set defined by = {x € S', x < xq} unth the prop- 
erty that if for any points t^ ,t^, in Hi with

t^<t^<---<t^<x0,
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then
Zfc+i<z0 for any xk+1 G f (k;t(1\t(2\ , k>£-l.

Then the sequence {xn} , n > 0 generated by the iteration (13.1) pro- 
cess (13.1) is monotonically increasing, remains in H\ and converges 
to some u*

Proof. From (A) and Theorem 13.3 it follows that the sequence {xn}, 
n — 0 is monotonically increasing, whereas from (B) we get that the se- 
quence is bounded above by z0. since X is a regular POB-space the sequence 
M , n > 0 converges to some u* with u* < xq. hence u* G Hi.

That completes the proof of the theorem. □

These monotonic properties of the iteration processes are very useful, 
but in cases where the convergence is very slow the above methods have 
only very limited practical importance. In the next section of this paper the 
convergence speed of the above iteration schemes is estimated and practical 

error estimates are derived.
We can now formulate estimates on the speed of convergence using 

following theorem.
Theorem 13.6 Assume that X is a normal POB-space, S C X and

(A) the sequence of mappings f (k; •) is increasing isotone in iteration 
(13.1) with Xi € S (0 < i < t - 1) and Xq<x\ < • • • < ^z-i < xt.

(B) There exists a constant b with 0 < b < 1 such that
^n+2 - xn+i < b (xn+1 - xn), for all n > 0. (13.4)

Then the sequence {xn}, n > 0 generated by the iteration process 
(13.1) is monotonically increasing and converges to some u* with

||ln~U,||< «>0. (1.3.5)

Proof. From (A) and Theorem 13.3 it follows that the sequence {xn} is 
monotonically increasing and inequality (13.4) can be rewritten as

0 < xn+2 - xn+1 < b (xn+1 - xn), n > 0.

Using the above inequality we get

0 < xn+p - xn = 72(^n+t+i “ xn+1) < _ P



458 Approximate Solution of Operator Equations with Applications

Since X is normal we deduce

lkn+p-Xn||<a^^6".
l — o

It now follows that the sequence {zn}, n > 0 is a Cauchy sequence in 
a Banach space and as such it converges to some u*. By letting p —* oo we 
obtain (13.5).

That completes the proof of the theorem. O

Note that an identical theorem can be proven if the assumptions (A) 
and (B) in the above theorem are replaced with the condition

0 < Xn+2 ~ ^n+l < (^n+l *^n) >

for all n > 0 and some b, 0 < b < 1. Let us define the set H2 by H2 = 
{x € S; xq < x, ||x — xq|| < /1} for some h > 0.

Then we can show the following theorem.

Theorem 13.7 Let X be a normal POB-space, S C X and assume that 
the following conditions are satisfied

a II11 ~ 10II < (13.6)
1 - c2

(^n ^n—1) < *Cn+l *^n < C2 (xn — Xn_j) , n > 1, 0 < Ci < C2 < 1«
(13.7)

Xo < Xn (13.8)
\\xn-xQ\\<h (13.9) 

and

0 < $n+i - xn < c$ (xi - xq) for all n = 0,1,2, ...,£ — 1. (13.10)

Then the sequence {xn} , n > 0 generated by the iteration process (13.1) 
is monotonically increasing and converges to some u* with

lkn-u*|| —^cj forall n > 0. (13.11)
1 - c2

Proof. We will show that the estimates (13.8), (13.9) and (13.10) are 
true for all n > 0. For n = 0,1,2, ...,£- 1, they hold by hypothesis. Let us 
suppose that they are true for n = 0,1,2,..., k with k > l — 1. From (13.8) 
and (13.10) for n = k it follows that

xo<xk< xk+i 
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and thus (13.8) is true for n = k + 1.
Using (13.10), the above inequality, and the properties of the partial 

order <, we have successively:

\ ' 1 < X^
o < Xk+1 - x0 = 2_J (*<+! - $*) = (X1 ” *o) 2^^ = ! _ C2 

i=o i=1

where from (13.6) we deduce that (13.9) is true for n = k + 1.
From (13.7), (13.10) and the induction hypothesis we get

0 < Zfc+2 - Xk+l < C2C2 (371 - 37o) = ^2+1 (X1 ” X°) ’

It now follows that (13.10) is true for n = k + 1. Moreover for p > 0 we 
get

f \ < *i ~£ocn
0 < Zn+p “ = 2> (^n+t+l “ X"+«) = 1 - C2

t=0

where from we obtain

The above inequality shows that the sequence {^n} ’ n — qq in 
in a POB-space and as such it converges to some u . By et ing p
(13.12) we obtain (13.11). q

That completes the proof of the theorem.
Remark 13.7 Note that a similar theorem can be proven if the condition 

(13.7) is replaced by the relation
0<Xn+l-Xn<C2(Xn-Xn-l)> n - 11 0 = C2 < L

Remark 13.8 Assume that there exists a seguence c^, n 0, such that 

more generally

o^n+1-s„g4n)(*»-*-• -*)• nS1- °^c’n) = 9<1-
Then similarly to (13.12) we have that

p-i
Xn+p - = 52 (Xn+»+l ”

t=°
g (XI - Xq) (l)n + Vn+1 + • ■ • + Vn+p-0 >
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where

Vn=^...c(n)

Hence

$n+p - xn g (xj - x0) vn (1 + q + q2 + ...)
- Xq

l-g
and therefore (13.11) is modified as

||xn-u»||ga^-MUn
1-q

In the special case when c^ is a decreasing sequence we may select q = •

13.2 The Monotone Convergence of General Newton-Like 
Methods

his section examines conditions for the monotone convergence of Newton- 
e methods. Using the famous Kantorovich lemma on monotone map- 

PmgS’ (see Chapter 2) we derive several convergence results. The speed of 
convergence of these processes is also examined.

In particular, let us consider the Newton-Like iterates

**+i = Gk (zk) (k > 0), (13.13)
where

Gk (zk) = zk — Ak (zkl z^)-1 fk (Xk) (k>Q). (13.14)

fky Gk . D C B —> Bi (k > 0) are nonlinear mappings acting be- 
ween two partially ordered linear topological spaces (POL-spaces), whereas 

* ~* -^1 > 0) are invertible linear mappings. We pro-
vi e su cient conditions for the convergence of iteration (13.13) to O. we 
may ave this assumption without loosing generality, since any solution

e transformed into O by introducing the transformed mapping 
(x) — fk (x 4- x ) - x* (k > 0). Iterations of the above type are ex- 

e y important in solving optimization problems, as well as linear and 
near equations. A very important field of such applications can also 

e oun in solving equilibrium problems, in economy and in solving non- 
linear mput-output systems (see e.g. Fujimoto [155], Krasnoselskii [184], 
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Okuguchi [226], Szidarovszky [259], [260], Tishydhigama, et al [262], Tars i 
[265]. Our results can be reduced to the ones obtained earlier by Argy- 
ros [68], Baluev [101], Dennis [132], Kantorovich & Akilov [183|, ras- 
noselskii [184], Potra [237], Slugin [256], Tishydhigama et al., [262] wnen 
A = /(fc>0).

We assume that the following conditions hold:

(A) Consider mappings fk : D C B —> B\ where B is a regular 
space and Bi is a POTL-space. Let x0, yo, V-i be three p0 
D such that

xo < yo < 3/-i, (xo,2/-i) C D,f0(x0) < O < fo(yo), (13.15)

and denote

Si = {(z,y) € B2/xq <x<y <yo} ,
S2 = {(u,j/_i) G B2/x0 <u<y0},

S3 = Si U i$2-

assume mappings Ak (.,.) ■ 83 LB(B,B\) such that

fk(y)-fk(x)<Ak (w,z)(y-x) (13.16)

for all k > 0, (x,y), (y,w) £ S,, (w,z) E S3.
Suppose for any (u, v) G S3 the linear mappings Ak (u, v) (k > 0) 
have a continuous nonsingular nonnegative subinverse. Assume fiir- 

thermore that

fk (x) < fk-i (x) for all x G (x0, y0) (k > 1), fk-i (x) < O,
(13.17)

Sk (y) > fk-i (y) for all y G (x0, y0) (k > 1), fk-i (y) > O.

We can now formulate then main result.

Theorem 13.8 Assume condition (A) is satisfied.
Then there exist two sequences {z*:}, {3/fc} (^ an Potn x > V 1
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Oq, such that for all k > 0;

fk (yk) + Ak (yk, Vk-i) (1/k+i - Vk) = O, (13.19)
fk (xk) + Ak (yk,yk-i) (xfc+i - xk) = O, (13.20)
fk (xk) < fk-i (xk-i) <0< fk_! (yk-t) < fk (yk) (k > 1) (13.21)
XQ < X1 < ... < xk < xk+1 < yk+1 <yk< ... < 2/1 < 3/o (13.22)
xk —> x*, yk —> 2/* os k —> 00, x* < y* (13.23) 

and

fk(xk)->xlt fk(yk)^y* as k^> 00, withx\<0 <y*. (13.24)

Proof. Let Lo be a continuous nonsingular nonnegative left subinverse 
of Ao (2/0,2/— 1) — A) and consider mapping P : (0,2/0 ~ x0) —> B defined by

P (x) = X - Lq (fQ (xQ) + A) (x)),

where Ao (x) denotes the image of x with respect to mapping Ao = 
Aq (2/Oj2/-i) ■ It is easy to see that P is isotone and conditions. We also 
have

p(0) = -L0(/o(z0))>0,
P (yo - xQ) = y0-x0- Lo (fQ (yQ)) + Lo (f0 (y0) - /0 (zo)) - A) (yo ~ xo) 

<yo-xo-Lo (f0 (2/0)) < 2/0 - XO.

According to Kantorovich theorem of fixed points (see Chapter 2) mapping 
P has a fixed point w G (0,2/0 - xo). Taking xi = x0 + w, we have

fo (x0) + Ao (xi - xo) = 0, xo < 2?1 < 2/0 -

Using (13.16), (13.17) and the above relation we get

/1 (zi) < /0 (zi) = /0 (zi) - /0 (zo) + Ao (x0 = xi) < 0.

Consider now mapping Q : (0,2/o ~ x^) —> B given by

Q (x) = x + Lo (f0 (2/0) - Ao (x)).

Q is clearly continuous, isotone, and

Q (O) = Lofo (y0) > O,
Q (yo - xi) = 2/o - xi + Lo/o (zi) + Lo (/0 (2/0) - /0 (^i) - Ao (2/0 - $1)) 

< yo - zi + Lo/o (xi) < 2/0 - zi.
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Applying the Kantorovich lemma again, we deduce existence of a point 
z € ($>2/o — zi) such that Q (z) = z. Taking y\=yo~ z,

fo (yo) + Ao (y\ - y0) = O, x\ < y\ < yo-

Using the above relations and conditions (13.16), (13.18) we obtain

/i (2/i) < fo (y\) = fo (2/1) - fo (yo) + Aq (yo - yi) >

By induction it is easy to show there exist four sequences {xk} > {z/fc}, 
{/* (xk)} , {fk (yk)} (k > 0), satisfying (13.19)-(13.22). Since space B is 
regular, from (13.21) and (13.22) we know that there exist x*, y*, xj, 
y{ E B satisfying (13.23)-(13.24), which completes the proof. D

In the next part we give some natural conditions which guarantee that 
points x*, y* are common solutions of equations fk (x) =0 (k > 0).

Theorem 13.9 Under the hypotheses of Theorem 13.8, assume further- 

more that
(i) There exists u E B such that xq < u < yo and fk (u) =0 (k > 0), 
(ii) Linear mappings Ak (w,z) (k > 0), (w,z) G S3 are inverse nonnega- 

tive.

Then

Xk <u<yk (k>®)

and

x* <u< y* •

Moreover if x* = y*, then x* = u — y*-

Proof. Using (i)

Ao (s/i - «) = Ao M ~ fo («>)" A°
= Ao(yo~u)-(foM-fo(n))>0

and
Aq (xi -u) = Ao (x0) - fo (x0) - Ao (u)

= Ao (x0 -u)- (fo (x0) - fo (u)) < 0.
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By (ii) it follows x\ < u < yi. By induction it is easy to show that xk < 
u < yk for all k > 0. Hence, x* < u < y*. Moreover if x* = y*, then 
x* = u = y*, which completes the proof. □

Moreover we can show:

Theorem 13.10 Under hypotheses of Theorem 13.9, assume that either

(i) B is normal and there exists mapping L : B —* Bi (L (O) O) which has 
an isotone inverse continuous at the origin and

Ak (yk^yk-i) < L for all sufficiently large k > 0; 

or
(ii) Bi is normal and there exists mapping T : B —> Bi (T ((?) = O) con- 

tinuous at the origin and Ak (yk,yk_i) < T for sufficiently large 
fc>0;
or

Mappings Ak (yk,Vk-i) (k > 0) are equicontinuous.
Then fk (xfc) -> O, fk (yk) -> O as k —> oo.

Proof. (i) Using relations (13.18)-(13.22) we get

O > fk(xk) = Ak (yk,yk-i) (xk - xk+i) >L(xk- xk+i), 
O < fk(yk) = Ak (yk,yk-i) (yk - yk+i) < L(yk- yk+i).

Hence,

o > L~xfk (xfc) > xk - Ifc+1, O < L~'fk (Xfe) < Vk - s/fc+i-

Since B is normal and both xk — xk+i and yk — yk+i converge to zero, 
L~lfk (xk) —> O, fk (yk) —> O as k oo, from which the result follows.

(ii) Using relations (13.19)-(13.22) we have

O > fk(xk) = Ak (yk,yk-i)(xk-xk+i) >T(xk- xk+i), 
O <fk (yk) = Ak (yk,yk-i) (yk - yk+i) <T(yk- yk+i) ■

By letting k —> oo we obtain the result.
(iii) From equicontinuity of mappings Ak (yk,yk-i) follows 

Ak (yk,yk-i) (zk) —* O as whenever zk —> O as. In particular, we have

Ak (yk,yk-i) (xk - xk+i) —> O, Ak (yk,yk-i) (yk — Uk+i) —♦ O as k —> oo.

By (13.19) and (13.20) and above estimate the result follows. O
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The uniqueness of a common solution of equations fk (x) = O (k > 0) 
{xo,yo) can be proven assuming a condition which is complementary to

(13.16). More precisely we can prove the following:

Theorem 13.11 Let B and B\ be two POL-spaces. Let fk (•) •' D C 
P -* B\ be nonlinear mappings and suppose there exist two points 
xo,Vo € D such that xq < yo and (xo,yo) C D. Denote by S\ = 
{(x>3/) € B2\xq < x < y < yo) and assume there exist mappings Lk (•>•) • 
*Si L(B,B\) such that Lk (x,y) has a nonnegative left superinverse for 
each (x,y) € 5i and

fk(y)~ fk(x)>Lk(x,y)(y-x) for all (x,y) € Si-

Under these assumptions if (x*,y*) G S\ and fk (x*) = fk(y ) > ^en x 
y*-

Proof. Let by Tk(x*,y*) denote a nonnegative left supennverse of 
Lk (x*,y*) for all k > 0. We have

O<y* -x* <Tk (x',y*) Lk (x', /) (y* - **) 

< Tk (x*,y*) (fk (/) - fk (**)) = a
TJ C □Hence, x* = y*, which completes the proof.

Remark 13.9 The conclusions of Theorem 13.8 hold if iteration 
(13.19) — (13.20) is modified as

fk (yk) + Ak (y*, s/t+i) (Vfc+i " v*) ~ °’ 
fk (Xfc) + Ak (s/fc+1, !/*) (ifc+1 -Xk) = O (k>0),

This modification seems to be advantageous (see e.g- Slugin [256]) 
applications.

Remark 13.10 Conditions (13.17) and (13.18) of Theorem ISSry 
natural and they hold in many interesting problemsjn nume _
See for example, Krasnoselskii [184]. ^et us c°nst^r*^ ordered
(^ + 1)^ + 2)-^, k > 0 on 1-1,1) = 
with the usual ordering of real numbers. the f 
and y e [0>yo), conditions (13.17) and (13.18) are when fk = f [k > 0), the same conditions are satrsfied as eguahtres.

Remark 13.11 The regularity of space Bwhich u' essentially
rem 13.8, is a rather restrictive conditton. m/ am ><
used in prvving that the iterative procedure (13.19) - (13.20) »
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(i.e. there exist sequences {zfc} , {yk} , {fk ($k)} , {fk (yk)} {k > 0} satis- 
fying (13.19) — (13.22) and they are convergent. Next, we present a method 
to avoid this regularity assumption. Consider now the following explicit 
method:

Vk+i = yk- (ykiyk-i) fk (yk) (fc > 0) 
Xk+i = xk-A2k (yk,yk-i) fk (xk) (k > 0).

(13.25)
(13.26)

where -Aj. (3/fc, 3/fc—i) and Ak (yk, yk-i) are nonnegative subinverses of 
Ak (yk.yk-i) (k > 1). Without the regularity it is impossible to prove that 
sequences {xfc} , {yk} , {fk (xk)} , {fk (yk)} (k > 0) produced by (13.25) - 
(13.26) are convergent. However, we can verify that for any common solu- 
tion u G (xq, 1/0) of the equations fk (x) = O (fc > 0),

xk < xk+i <u< yk+i <yk (fc > 0).

This result becomes important when the existence of the solution is proven 
by other methods, but it has to be enclosed monotonically (see the next 
section).

Theorem 13.12 Consider mappings fk : D C B —> Bi (k>0), where 
B and Bi are two POL-spaces and let xq, yo, y~i be three points of B for 
which condition (13.15) holds. Define S\, S2, S3 as in Theorem 13.8 and 
assume that there exist mappings Ak (•) : S3 —» L(B, Bi) (k > 0), satisfy- 
ing conditions (13.16) — (13.18) and such that Ak (u,v) has a nonnegative 
subinverse for any (u,v) G S3.

Then, iteration (13.25) — (13.26) defines four sequences {xfc}, {yk}» 
{fk (xk)} , {fk (yk)} (k > 0) and they satisfy properties (13.21) - (13.22).

Moreover for any common solution u G (xq,pq) of equations fk (z) = O 
(k > 0),

Xk < u < yk (k > 0).

Proof. For k = 0, by denoting A^ (0; yo, y-i) = Aq and Aq (O; yo, y-i) — 
Aq we have

xo<yo, fo{xo)<0<f0(y0), A^O, A20>O, I > A0A%, 
I^A^Aq, I>A0A% and I > A20A0. (13.27)
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Therefore

3/o - J/i = Aj/o (3/o) > O,

3/1 - Xq = y0 - xQ - Aofo (3/0) > 3/o - (/0 M “ fQ
> Aq(Aq (3/0 - zo) - (/0 (3/0) - /0 (*o)) O (13.28)

xi - xo = —Aofo (x0) > O,
3/o - xi = y0 - x0 + A%fo (xo) > 3/0 - ^o - ^o (/0 (3/o) " f°

> A$ (Ao (y0 - x0) - (/0 (3/o) - /0 (x0))) > O. (13-29)

Hence both ij and yi belong to interval (xo, J/o) •
R-om (13.16)-(13.18), (13.25), (13.26) and (13.27) we get

/i (i/i) > fo (t/i) = fo (yi) + Ao(yo~ y-i ~ Alfo (j/o))

= fo (yi) - AoAlfo (yo) + Ao(yo-yi)
> fo(yi)-fo(yo) + Ao(yo-yi)^°,

fi (xi) < fo (X1) = fo (xi) - Ao (j/o, y-1) (*i - xo + (Xd"

= fo (XI) - AoA&o (x0) - Ao (X1 - xo)
< fo (xi) - fo (xo) - Ao (xi - xo) < O, 

and

yo - Xi > yi - Xi + A^fi (xi) = yo - X1 + Al (fi &») - /a ((M)
>Ai[Ao(yo-xi)-(fi(yo)-fiMy^a t(

Thns. we have proved x0 < xi V\ 3/o

fi(xi) < fo(xi) <O<fo(yi)<fiM-

By induction we can easily obtain (13.21) and (13.22). Consider new 
u 6 [xo, yo] such that /* (u) = O (k > 0). We have

yj — u = yo — u~ A^fo(yo) Aofo(u)
> A'o [4o (yo - «) “ (fo (yo) - fo (“»1 °’ 

u — xi = u — xo + Aofo (xo) ~ Aofo (u)
> Al Mo (u - x0) - (fo (») - fo (*»))] s a

Hence, xi < u < yi- By induction it follows x* < « < !/*• which P 
the proof.
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If the space B is regular then from (13.21) and (13.22) it follows that the 
sequences {xt} , {yk} , {fk ($k)} , {fk (yk)} (k > 0) are convergent. In some 
cases the convergence of these sequences can follow from other conditions 
than regularity.

In the following theorem we provide some sufficient conditions for the 
convergence of iterations {fk (xfc)} , {fk (Vk)} (fc > 0).

Theorem 13.13 Under hypotheses of Theorem 13.9, assume:

(i) Bi is a POTL-space and B is a normal POTL-space;
(ii) Xk —» x* and yk~* y* as k —> oo,
(iii) There are two continuous nonsingular nonnegative mappings A1 and 

A2 such that Aj. (yk,yk-i) > A1 and A2k (yk,yk-i) > A2 for suffi- 
ciently large k.

Then

fk (xk) —► O, and fk (yk) -» O as k —> oo.

Proof. Note first that

O < Arfk (xk) < Ak (yk,yk-i) fk (xk) = yk ~ 2/fc+i- 

Xk - xk+i = Ak (yk,yk-i) fk (xk) < Ak (yk,yk-i) fk (xk) < O

for sufficiently large k. The normality of B implies that

A1 fk (xk) -> O, and A2fk (yk) -* O as k —> oo,

from which the result follows. □

Remark 13.12 Instead of the algorithm (13.25), (13.26), we may con- 
sider, more generally, an iteration scheme of the form

Vk+i. = Vk~ Alk(yk,yk_i)z[ (fc > 0), 
x*+i = xk - A2k (yk, yk-i) zl (fc > 0) >

where zk, zk are arbitrarily elements satisfying the inequality

fk (xk) <zl<O<zl< fk (yk) (k > 0).

similar to the previous results it can be shown'that under hypotheses of 
Theorem 13.9 this iteration is well defined and the resulting sequences sat- 
isfy (13.21) and (13.22). This shows, roughly speaking, that if fk(xk) 
approximate from “below” and fk (xk) is approximated from “above” then 
monotone convergence is preserved.
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This observation is important in many practical computations.

Remark 13.13 In Theorem 13.9, we assumed that Ak(u,v) (k > 0), 
have nonnegative subinverses for (u,v) G S3. If we make the stronger as- 
sumption that Ak (u\ v) is inverse nonnegative for (u, v) G S3 then in it- 
eration (13.25) - (13.26) Alk(yk,yk-i) and A2k(yk,yk-i) can be taken as 
any nonnegative right subinverses of Ak (yk^yk-i) (k > 0) • Note that the 
property that it is a left subinverse was used only in proving inequalities 
(13.28) — (13.30). Observing that

Ao (yi — xq) = ylo (yo - xq — A^fo (3/0)) 

> (yo — ^o) - /0 (yo) 
> Ao (yo - *o) - (/0 (*o)) > O

and using the inverse nonnegativity of Aq we deduce that xq <yi-

The inequalities xi < yo and xi < yi can be proved analogously.

Remark 13.14 Note that replacing condition (13.16) by the milder con- 
dition

fk (y) - fk (x) < Ak (y, z)(y - x) ,k>0, (x,y) G Si, (y,z) G S3 (13.31)

we can still prove that iteration (13.19) is well defined and that iteration 
sequence satisfies yk l y* > xq whereas fk (yk) —♦ O as k —* 00. However, 
assumption (13.31) does not imply these properties. However by replacing 
(13.16) by (13.31), we can only prove that sequence (13.25) satisfies

xq < yk+i <yk<yo (k > 0) •

As the conclusion of this section we will now give some examples which 
satisfy conditions (13.16) and indicate how the general results of this section 
can be applied to obtain monotone convergence theorems for Newton s and 

secant methods.Let us consider mappings fk : D C B —* Bi (k > 0), where B and Bi 
are POTL-spaces. We recall that fk is called order-convex on an interval 

(xo,yo) c D if
fk (Xx + (1 - Az) y) < Xfk (x) + (1 - A) fk (y) (k > 0) (13.32)

for all comparable x, y G (xq, yo) and A G [0,1]. If B and Bi are POTL- 
spaces and if fk (k > 0) has a linear (7-derivative fk (x) at each point x G



470 Approximate Solution of Operator Equations with Applications

(zo, yo) then (13.32) holds if and only if

fk(x)(y-x) < fk(y)~fk(x) < fk(y)(y-x) (fc>0) for x0<x<y<yQ.

Thus, for order-convex G-differentiable mappings (13.31) is satisfied with 
Ak (u,u) = fk (u). In unidimensional case (13.32) is equivalent with isotony 
of mapping x —> fk (x) but in general the latter property is stronger. As- 
suming isotony of mapping x —* fk (x), we have

fk (y) - fk (x) < fk (w) (y - x) (k > 0) for xQ < x < y < w < yo

so, in this case condition (13.16) is satisfied for Ak (w, z) = fk (w) (k > 0). 
The above observations show that our results can be applied for the

Newton method. Iteration (13.19)-(13.20) becomes

fk (yk) + fk (yk) (yk+i - yk) = O, (13.33)
/* M + fk (Vk) (xfc+1 - xk) = O, (13.34)

whereas iteration (13.25)-(13.26) becomes

i/*+i = yk- f'k (i/*)-1 fk (yk) > (13.35)

xk+i = xk — fk (l/*)-1 fk (x*) • (13.36)

Moreover, if in addition

||/*(z) ‘(/K®)-/*(1/))|| <7ll®-3/||> for x,y,z e (xo,yo) (13.37) 

then

hfc+i - Xfc+i|| < .57 ||i/* - ifc||2 (fc > 0), 

lll/fc+i-!/,||<.57lll/fc-2/*ll (fc>0)

and

Ilifc+I - X’ II < .57 ||ifc - x’ ||2 (fc > 0).

These results follow immediately by using (13.35)-(13.37), since

hfc+i - xfc+i[| = ||i/fc - ifc - /i (i/*)-1 (/* (yk) - /* (z*))|| 

||/* (i/*)-1 [/* (1/*) (1/* - x*) - (/* (w) - A (®*)))|| 

< -57111/* -x*H2 (fc>0).

we note that iteration (13.19)-(13.20) with fk = f (fc > 0) and Ak (u, v) = 
f' (u) is exactly the same algorithm which was proposed by Fourier in 1918, 
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(see e.g. [183]) in the unidimensional case and was extended by Baluev 
[101]) in the general case.

fk •* [a, b] —> R is a real mapping of a real variable then fk (& > 0), is 
order convex if and only if

(/* W - fk (y)) (X - 3/)’1 < (/* (u) - h (v)) (u - v)-1

for all x, ?/,?/, v € [a, 6] such that x < u and y < v. This fact motivates the 
notion of convexity with respect to a divided difference discussed earlier for 
the case fk = f (k > 0).

Let fk'- D Q B Bi be nonlinear mappings between two linear spaces 
B and B\. A mapping 5fk (■■>.) - D x D —> L(B,B\) is called a divided 

difference of fk (k > 0) on D if

8fk (u,v) (u - v) = fk (u) - fk (v) (k > 0), u, v 6 D.

If B and B\ are topological linear spaces then linear mapping 6fk (u, v) 
is supposed continuous (i.e. 8fk(u, v) € LB (B,B\)) Now suppose 
are two POL-spaces and assume nonlinear mapping fk (’) • D C B i 
(k > 0) has a divided difference 6fk on D (k > 0). Then fk (k > 0) is ca 
convex with respect to divided difference 6fk (•) on D if

Sfk(x,y) <Sfk(u,v)(k>0), forall x,y,u.v e D, (13.38) 

with x < y and y < v. (13.38). Moreover mapping Sfk (■,■)'■ D x D -> 

L (B, B\) (k > 0) satisfying
Sfk (u, v) (u-v)> fk (u) - fk (v) (k > 0) for all comparable u, v € D> 

is called generalized divided difference of fk (k > 0) on D. If both co 
(13.38) and (13.39) are satisfied, then we say fk (k>0) * convex ™th 
respect to the generalized divided difference Sfk (k > )■ ea®' ’
that if (13.38) and (13.39) are satisfied on D = (x°<y~f 
(13.16) is satisfied with Ak (u,v) = Sfk(u,v) (k > 0). n ee , or zo _ -

V < vj < z < y~\, we have
sfk (X, y) (y-x)< fk (y) ~ fk (x) < (y< (y - x}

<Sfk(w,z)(y-x).

That is, our results can be applied also for secant method
In what follows we reformulate list two fixed pomt theorems wMch hold 

in arbitrary complete lattices. These theorems are due to Tarski 1261J.
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The first theorem provides sufficient conditions for the existence of a 
fixed point of mapping f : S —> S where S is a nonempty set. The second 
theorem provides sufficient conditions for the existence of a common fixed 
point x* of a sequence fk : S —* S (k > 0) of mappings.

We will need some definitions:

Definition 13.5 By a lattice we mean a system Q = {5, <} formed by a 
nonempty set S and a binary relation <; it is assumed that < establishes 
a partial order in S and that for any two elements a, b G S there is a least 
upper bound (join) a U b and a greatest lower bound (meet) a A b. The 
relations >, < and > are defined in the usual way in terms of < .

Definition 13.6 The lattice Q = {5, <} is called complete, if every sub- 
set Si of S has a least upper bound USi and a greatest lowever bound 
ClSi. such a Lattice has in particular two elements 0 and 1 defined by the 
formulas

0 = nS and 1 = US.

Given any two elements a, b G S with a < 6, we denote by [a, b] the interval 
with the end points a and 6, that is the set of all elements x € S for which 
a < x < b\ in symbols [a, b] = Ex[x e S and a < x < 6]. system {[a, 6], <} 
is clearly a lattice; it is complete if Q is complete.

We consider functions f on S to S and, more generally on a subset Si 
of S to another subset S2 of S. Such a function f is called increasing if, 
for any elements x,y G Si, x < y implies f (x) < f (y). Note that this 
assumptions is the same as isotony.

We can now present the following theorem whose proof can be found 
for example in Tarski, [261].

Assume that

(Bi) (i) Q = {S, <} is a complete lattice;
(B2) f is an increasing function on S to S;
(B3) P is the set of all fixed points of f.

Theorem 13.14 Assume conditions (Bi)-(Ba) are satisfied

Then set P is not empty and system {P, <} is a complete lattice. In 
particular,

UP = \JEX [f (x) >x]eP
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and

uP = nEx[/(z) <z] eP.

By the above theorem, the existence of a fixed point for every increasing 
function is a necessary condition for the completeness of a lattice. The 
question arises whether this conditions is also sufficient. It has been shown 
that the answer to this question is affirmative (see [261]).

A set W of functions is called commutative if

(i) All functions of W have a common domain, say, Si and the ranges of 
all functions of W are subsets of 5i;

(ii) For any /, g e W, 

f(ff(z)) = ff(f(*)) forall xeSi.

Assume that
(CJ (i) Q = (S, <) be a complete Lattice;
(C2) W is any commutative set of increasing functions on S to , 
(C3) P is the set of all common fixed points of ali functions / G

We can provide the following.
Theorem 13.15 Assume condition (Ci)-(C3) are sattsfied.

Then set P is not empty and the system {P, <} is a complete La 

In particular, we have
UP = UPX [/ (z) > x for every / G W] G P 

and
nP = n£x[/(z) <x forevery / G W] G P.

The proof of this theorem is found also in Tarski [261], and * cm1 be 
used in connection with the theorems of the previous section. 
all monotone convergence methods introduced in the previous s , 
be used to approximate fixed points x of mappings fk — 
existence is guaranteed under hypotheses of the above t

13.3 Convergence Methods and Point to Point Mappings

This chapter examines conditions for the convergence of special single-step 
methods generated by point-to-point mappings. The speed of convergence 
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is also examined using the theory of majorants. In particular, we assume 
that X is a Banach space,

U = U (0, R) C X.

We will consider Newton’s method 

Xk+1 = 9k (xk) (k > 0) (13.40)

where

<Zfc(s)=z-/£(*)’*/*(*) (fc>0)

with fk :U —> X continuously differentiable on X, and a point x* = 0 is a 
common fixed point of functions gk-

Note that this method is a special case of the general single step algo- 
rithm examined in Chapter 2 [68], and hence, we can directly apply the 
general convergence conditions. For example, note that g'k (0) = 0, and 
therefore under continuity assumptions on the derivative we know that in 
a neighborhood of 0, (x)|| is small, which according to Theorem 2.9 [68]
implies local convergence. However, based on the special structure of the 
method more advanced convergence conditions can be derived, and bet- 
ter error estimates can be presented than those obtained from the general 
theory especially in Chapter 5 in [68]. Therefore, this advanced theory is 
introduced here.

Using the majorant theory, we provide sufficient conditions for the con- 
vergence of the Newton method (13.40) to 0. We also show when fk = f 
(k > 0), the Potra-Ptak [240] estimates are simple consequences of the clas- 
sical majorant method due to Kantorovich and Akilov [183]. Moreover, we 
provide error estimates for the speed of convergence of process (13.40).

Condition (K): We assume that for all k (k > 0), fk is Frechet differen- 
tiable at every point at the interior of U (0, R), R > 0, fk (0) is invertible, 
and the following condition is satisfied for each fixed r € [0, B]

||/fc(0)-1 (/!(«) - /fc(w))|| < /i(r) ||v- w||, forall v,weU(0,r),

(13.41) 
and

II fL (0)’1 [f'k (v) - f'k (0)] || < h0 (r) IMI (13.42)

where /i, ho : [0, R] —* R_|_ are nondecreasing functions.
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Let xq G U (0,7?). It is convenient to define the constant a by 

lko|| < a (13.43)

and the functions

w (r) = [ h (s) ds, wq (r) = [ ho (s) ds (13.44) 
Jo Jo

and

x (r) = (wo (r) + w (r)) r - [ w(s)ds — r. (13.45) 
Jo

Later developments will require the following lemma.

Lemma 13.1 Let g be a Frechet-differentiable Junction which is defined 
on U (0, R) with values in B, such that g' (0)-1 is invertible, and which for 
each fixed r G [0, satisfies a Lipschitz condition

L' (0)’1 (g' (v) - g' (w))|l < d (r) ||v - w||, for all v,weU (0, r) 
" (13.46)

with some nondecreasing Junction d : [0,7?] —» R+ ■ Then

||s'(0)-1(p'(x + h) - S'(z))|| < G(r + ||/i||) - G(r), for all x € U(z,r), 
and ||/i||<K-r (1347)

where

G(r) = [ d(s)ds. (13.48)
Jo

Proof. UtxeU (0, R) and ||/i|| < R - r. Then, by hypothesis (13.46), 
for any positive integer m, 

m
IIg'-1 (0) (g' (x + h) - /(x))|| < E lls"1 (0) (g' ^ + jm-^h)

-g' (z + m-1 (j - 1) /i))ll 
m

< d (r + ||M)771-1 II^H ■

7=1

Letting m tend to infinity, by the monotonicity of d and the definition of 
the Riemann integral (13.48), we get estimate (13.47), which completes the 

proof.
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We can now formulate the main result.

Theorem 13.16 Under condition (K), assume that xq E B and R > 0 
exist such that 0 is the unique zero of function x (r) given by (13.45) in 
[0, R]. Moreover, assume that a < R and x (r) < 0. Iterates generated by 
relation (13.40) are well defined for all k, belong to U (0, R), and converge 
to 0 with

hitll <pk (fc > o), (13.49)

where sequence pk, which is monotonically decreasing and converges to 0, 
is defined by the recursive formula

Pk+i = Pfc + a: (pfc) (1 - w0 (p*))-1 (fc>0), po = R. (13.50)

Proof. The sequence generated by relation (13.50) is monotonically de- 
creasing and converges to 0. since 0 is the unique zero of function x (r) in 
[0, R) and x (R) < 0, it follows that

x (r) < 0 for all r G (0, /?]. (13.51)

By relations (13.45) and (13.51) we obtain that for all r 6 (0, H],

0 < rw W - [r
Jo

w (s) ds < r (1 — wq (r)).

From the above inequality it follows

1 - wq (r) > 0 for all r 6 (0, K]. (13.52)

Relations (13.51) and (13.52) imply that sequence pk is monotonically 
decreasing. Iteration (13.50) can also be written as 

Pk+l =
rpk 

w(pk)pk~ / w(s)ds 

Jq
(1 - w0 (pfc))-1 > 0 (fc>0). (13.53)

hence, we showed that

0 < pk+i <Pk (k > 0),

from which it follows that a p* € [0, R] exists such that pk —♦ P* as k —> oo. 
However, from iteration (13.50) and the uniqueness of 0 as a zero of x (r) 
in [0, R) we obtain p* = 0.
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By induction on k we will show estimate (13.49). For k = 0, estimate 
(13.49) becomes ||xo|| < Po = R which is true, since a < R by hypothesis. 
suppose estimate (13.49) holds for i < k. Since

= fk (0) [z + fk (0)-1 (f'k (xk) - fk (0))], 

from relation (13.42) and (13.47) we obtain

l/UO)-1 (/n^)-/*(0))||<"(P*)<1- 

where relation (13.52) is used in the last step.
By using the Banach lemma on invertible operators we conclude that 

f'k (xit) is invertible and

H/tfe) 1 f'k (0)|| < (1 - a>(rk)) 1 (k>0). (13.54)

Usmg relations (13.40)-(13.42), (13.47), (13.53) and (13.54) we find

« = (((/£ fe)-1 f'k (0)) f'k (0)-1 £ (f' (tXk) - f' (Xk))XkdtH

- f (^ (Pk) - w (tpk)) Pkdt (1 - uj (pk)) r=Pk+L- (13.55) 
Jo

Thus, estimate (13.49) hoids for k 4-1. By estimate (13.55) it foliows that 
3-fc+i G U (0, R). Finally, by ietting k —♦ oo in estimate (13.55) we get 
xk —» 0 as k —♦ oo, which completes the proof. D

Hemark 13.15 (a) The above theorem can be illustrated by the special 
case h (r) = hQ (r) = h for au r € [o, R). Then using relations (13.44),

(13.45) and (13.50) we obtain

w (r) = Ar, 
(r(r) = 0.5(3Ar-2)r

and
Pk+i = 0-5hpk (1 - hpk)-1 (k > 0).

Ry finite induction it is easy to show that

Pk+L = P (po)2 [1 ~ P (Po)2 -1] (k>0),
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where

p(r) = [(h2 + 8h (1 - hr))°'5 - /»] (4 (1 - hr)]-1.

Moreover, the hypotheses of Theorem 13.16 are satisfied if

3ah < 2, and a < R <2 (3/i)-1 (13.56)

(b) The following estimate holds in general

hQ (r) < h (r) for all r G [0, R]. (13.57)

Moreover we have shown that can be arbitrarily large. Assume again 
h(r) = h and ho (r) = ho with ho < h. Then conditions (13.56) are weak- 
ened since they become

2
(2/io + h) a < 2 and a < R< —----- (13.58)

2/io + h

respectively. Furthermore, scalar sequence pk converges faster to zero.

The following is a simple consequence of Theorem 13.16.

Theorem 13.17 Using condition (K), assume that functions h(r) = h, 
ho (r) = ho and conditions (13.56) or (13.58) are satisfied. Then the iterates 
generated by (13.40) are well defined for all k > 0, belong to U (0, R), and 
converge to 0 with

11**11 <p* (k>0),

where the sequence pk, which is monotonically decreasing and converges 
quadratically to 0.

As a simple application for Theorem 13.17 we consider the following 
example.

Example 13.1 Let X = R and consider iterates (13.40) where 

/*(3:) = (fc + l)(fc + 2)-1x2 + i (fc > 0).

Obviously x* = 0 is a common fixed point of functions (13.40). It is easy 
to see that

||/* (0)-1 (/£ (*) - /£ (y))|| = 2 (fc + 1) (fc + 2)-1 h - 3/11 

<2111-1/11 (fc > 0).
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By setting h (r) = h0 (r) = h = 2, conditions (13.41) and (13.42) are 
satisfied, whereas conditions (13.56) become, respectively,

a < 3-1

and

a </? < 3-1.

Choose x0 = 0.25 = R and a = ||x0|| = 0.25. Hypotheses of Theorem 
13.17 are now satisfied with the above values. Moreover, iterates (13.40) 
become

^t+i = xk - (2 (k + 1) (k + 2)-1 xk + 1) 1 {(k + 1) (k + 2)-1 x2k + x*) , 

x0 = 0.25 (k > 0),

and are dominated (in absolute value) by iterates pk for po = R which 
converge quadratically to 0 as k —♦ 00.

In the following part of this section we give some natural conditions 
under which sequence fk (xk) (& > 0) converges to 0 as k —> 00.

Theorem 13.18 Under hypotheses of Theorem 13.16, assume that the 
norms of the derivatives f'k (xk) are uniformly bounded above by some b > 0. 
Sequence fk (xjt) then converges to 0 as k —> 00 and

ll/fc (x*)|| < &(h*+i|| + ||x*||) < b(pk+1 +pk) (k>0).

Proof. Using relations (13.40), (13.49), and the hypothesis we obtain

II/* (^)ll = II/* (**) (Xk - X*+1)|| < &l|x* - xfc+i|| < 6(||X*|| + ||x*+i||)

< b(pk + pk+i)>

which implies that fk (%k) —♦ 0 as k —> 00. □

Remark 13.16 The main advantage of our approach is the fact that the 
convergence problem of approximating a fixed point x* of equation (13.40) 
under very general conditions can be reduced to the solution of a simple 
scalar equation x (r) = 0 on interval [0, R), which can be carrzed out by 
completely elementary methods of classical analysis.

We now provide further sufficient conditions for the convergence of iter- 
ations of the form (13.40). These results are analogous to those discussed 
earlier in the chapter, but are more applicable in certain practical cases.
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Let xq G B. We assume that (L): linear mappings (xq) are invertible 
on C7(xo, R) for some R > 0 and that the following conditions are satisfied 
for all k > 0, x, y G U (x, r) C U (x, R)

||/i (*o)_1 (fk (x) - fk-1 (x))|| < «1 (h - *o||) (13.59)

and

||/fc (*o)-1 (f'k-1 (*) - f'k-i (3/)) || < «2 W II* - 3/11 ■ (13.60)

Here, vi (r) and v^ (r) are nondecreasing functions on interval [0,7?].
It is convenient to define function

a(r) = f V2(s)ds (13.61)
Jo

and iteration

Pk+i =Pk + [vi(pfc) + a(pfc) - a(pfc-i) 
- vi(pk-i)(Pk - Pk-1 )](1 - afpkfr1,

k > 1, po = 0, 0 < pi < R. (13.62)

As in Theorem 13.16, we can find several alternative sufficient conditions 
for the convergence of sequence pk to some p* 6 [0,7?]. For example, if the 
sequence is bounded above by 7? and 1 — a (R) > 0, then it is monotonically 
increasing. hence, it converges to some p* 6 [0,7?].

Using the approximation

^fc+l ~ $fc = ~fk (xk) fk ($o) fk (^o) [fk ($fc) — fk—1 (xk) 
+fk-l (*fc) - fk-1 (*fc-i) - f'k-1 (Xfc-1) (Xfc - Xfc-1)] ,

and relations (13.47) and (13.59) through (13.62), by following the steps 
of Theorem 13.16, we can show that the following alternative convergence 
theorem holds.

Theorem 13.19 Under condition (L), assume that an xq 6 B and a 
positive 7? > 0 exist such that

(a) pi,P2 in iteration (13.62) can be chosen such that ||rci — Zo|| < Pi 
P2 < 7?;

(b) Sequence pk given by iteration (13.62) is bounded above by R, and 
l-a(R) >0.

Then
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(i) Sequence pk is monotonically increasing and converges to some p* G 
[0,/ZJ;

(ii) Moreover iteration (13.40) is well defined for all k > 0, remains in 
($o,R) and converges to somex*tU (xq,R) such that

lkfc+i ~ SfcH < Pfc+i - Pk (k> 0) 

and

lkfc-x*|| <p* -pk (*>0).

Remark 13.17 Consider the special case of the stationary process, and 
assume that f and f'-1 are continuous in the neighborhood of x*. Then by 
letting k —> oo in recursion

Xk+i =xk- f' (xk)-1 f(Xk)

we get

f'(x')~'f(x') = 0>

which implies that f (x*) = 0.

The computation of the iterates generated by recursion (13.40) requires 
the evaluation of the inverses of the linear operator fk (xk) at each step. 
^11 many applications it is more convenient to evaluate only the inverses 
of the linear operators f'k (xq) at each step. For example, if the process is 
stationary, f' (xq)-1 must be evaluated only once. We therefore consider 
the modified Newton iterates.

xt+i=it-/t(^o)_1A(i*) (*^°)‘ (13-63)

Our convergence theorem is based on the sequence {sk} defined as

Pk+l = Pk + [t»l (pk) + a (pk) - a (p*-1) - V2 (Pk-1) (Pk ~ Pk—l)l ’
Po = 0, 0 < Pi < R, k > 1. (13.64)

By using the approximation
zfc+i - xk = -fk (xo)-1 [fk (xt) - fk-i M + fk-i M ~ fk-l (Xk-l)

-f'k-l (xo) (xk - a*-l)]
in a way similar to Theorem 13.16 we can prove the followmg result.

Theorem 13.20 Under condition (L), assume xo £ R and R > 0 
with:
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(a) pi,p2 in iteration (13.64) can be chosen such that ||xi — xo|| < p\ < 
P2 < R',

(b) Sequence pk given by iteration (13.64) is bounded above by R.

Then

(i) Sequence pk is monotonically increasing and converges to some p* € 
[0.A);

(ii) Iteration (13.63) is well defined for all k>Q, remains in U (xq,R) and 
converges to some x* CU (xq,R) . Burthermore,

lkfc+i - Zfc|| < pk+i - Pk (k > 0)

and

||z* - z*|| <p* -Pk (k>0).

As a conclusion of this section a new modification of Newton’s method 
is analyzed.

Let us now define the following iterates

Xk+i=Xk-/i(0)_1A(ifc) (k>0). (13.65)

We can then show exactly as in Theorem 13.16 the following.

Theorem 13.21 Assume xq G B and R > 0 exist such that 0 is the 
unique zero of the function x(r) = J^wq (s)ds - r in [0,2?]. Moreover, 
assume a< R and x(R) < 0. Then iterates generated by (13.65) belong to 
U (0,2?) and converge to 0 with

lkfc||<qfc (fc>0),

where sequence qk which is monotonically decreasing and converges to 0 is 
defined by the recursive formula

Qfc+1 =qk + x (qk) (k > 0), qQ = 2?.

Remark 13.18 The above result can be useful, especially when the func- 
tions fk satisfy the autonomous differential equations

fk(x) =Tk(fk(x)) (fc>0),

f'k (0) can be evaluated without knovnng the true value of the solution x* 
(x* = 0 was selected in the above theorem).
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So f or we assumed that mappings fk are differentiable at every point 
x € U (0, R). Sometimes this condition may not hold. In many such cases 
mapping fk can be decomposed as

fk (z) = fik (x) 4- /2fc (x) , 

where fik is differentiable, whereas the differentiability of f?k is assumed 
for all k > 0. Assume that for all k (k > 0) and each fixed r 6 [0, RJ, the 
following conditions are satisfied:

M forall v,weU(0,r)

ll/lfc(/ffcW-/ffc(0))||</«o(r)IM,

and

||/i'fc(0)"1(/2fc(v)-/2fc(w))|| </ii(r)||v-w||, forall v,weU(0,r) 

where h0, h, hi : [0, R] -> R+ are nondecreasing functions.
Define functions

Jo
xi (r) = (w0 (r) 4- w (r)) r + / 

jo ro

Finally, let us consider the more general process
= xk - f[k (xk)"1 (fik (xk) + f2k (xk)) • (13.66)

Then, following the lines of the proof of Theorem 13.16 we can show 

that the following theorem holds.
Theorem 13.22 Under condition (M), assume x0 e B and R> 0 exist 
such that 0 is the unique zero of function Xi (r) in [0, R). Moreover, assume 
a< R and Xi (R) < 0. Then iterates generated by iteration (13.66) are well 
defined for all k, belong to U (0, R), and convergence to 0 with

IMI<Pk (fc>o),
where sequence qk which is monotonically decreasing and converges to 0, is 

defined by the recursive formula
Pk+i = Pk + xi (pk) (1 ~ (Pk)) 1 (^ > 0), Po — R-
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Next, the modified scheme

xk+i = xk - /[fc (O)-1 (flk (xk) + /2k (xk)) (k > 0) (13.67)

is examined. Similarly to Theorem 13.21 we can show that the following 
result holds.

Theorem 13.23 Under (M), except the (13.64) condition assume Xq € 
B, R > 0 exist such that 0 is the unique zero of function xi (r) in [0, R). 
Further, assume a < R and xi (R) < 0. Then iterates generated by iteration 
(13.67) belong to U (0, R) and converge to 0 with

Ikfcll < Qk (fc > 0), 

where sequence q^ which is monotonically decreasing and converges to 0, is 
defined by the recursive formula

Qk+i =qk + xi (qk) (k > 0), q0 = K.

Note that in this case w is wq in the definition of function xi.
In many interesting cases the inverses f'k (xfc)-1, fk (0)-1 — 0) are

very difficult, expensive, or impossible to find. In such cases it is useful to 
consider two Newton-like iterates

Zfc+i = Xfc - Afc (xfc)-1 (/ifc (xfc) + /2fc (xk)) (13.68)

for approximating a common root x* = 0 of equations fk (x) = 0 with 

fk(x) = flk(x) + f2k(x) (k>0), (13.69)

where Ak (xfc) denotes a linear mapping approximating the Frechet deriva- 
tive f'ik °f /ifc (’) at x G U (0, R). We assume that for all k, k > 0 and each 
fixed r G [0, R],

(N) Ak (0)-1 exists, and for all x, y G U (0,r),

|Afc (O)’1 (Ak (x) - Ak (0))|| < w0 (||x||) + b, (13.70)

|>lk(0)"l(/lk(ta)->lk(:C))||<w(tM)+C, te[0,l] (13.71)
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and

||>L* (O)’1 (f2k (x) - f2k (y))|| < e (r) ||x - y||, (13-72)

where Wo, w, and e are nondecreasing, non-negative functions, and con- 
stants 6, c are selected so that b > 0, c > 0 and b 4- c < 1. Note that the 
differentiability of f^k is not assumed here.

The above conditions are more general than those considered in Theo- 
rems 13.16 and 13.22. Argyros (1987, 1988a, b), Zincenoko (1963), Rhein- 
boldt (1968), Zabrejko and Zlepko (1987), Dennis (1971); and Zabrejko and 
Nguen (1987) have considered some special cases of the above conditions 
when fk = f (k > 0). They provided sufficient conditions for the conver- 
gence of the Newton-like iterates (13.68) to 0 in this special case. We will 
proceed in a similar manner, but for the more general case described above.

Define now the functions

z*(r) = fw(s)ds + f e(r)ds + (b + c-l + wo(r))r, (13.73)
Jo Jo 

and

g(r) = l-b-w0(r) foraU re[0,R). (13-74)

Introduced the difference equation

Pk+i = Pk + x* (Pk) 9 (pk) 1 (^ - ’ Po ~ R' (13 )

In this more general case Theorem 13.16 can be modified as fol

Theorem 13.24 Under condition (N), assume xo G B and R >C» 
such that 0 is the unique zero of function x (r) given y™0, aenerated 
[0, R). Moreover, suppose ||x01| < a < R andx' (R) f 0. Iteratesigenerated 
by iteration (13.68) are well definedfor all k > 0, belong to U(0,R), 
converge to 0 with

||X*|| < P* (^ °)' (13‘76)

where seguence pk which is monotonically decreasing and converges to 0 is 
given by iteration (13.75).

is monotonically decreasing and converg 
of function x* (r) in [0, R) aad x (^) —

x-(T)<0 foraU re[0,7?)- <13-77>
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By using relation (13.73) we get

0< / w(s)ds+ e(r)ds < (1 -b-c- wo(r))r, 
Jo Jo

which implies that

g (r) > 0 for all r G [0, R). (13.78)

Using relations (13.75), (13.77), and (13.78) and finite induction we can 
routinely show that sequence pk is monotonically decreasing. Furthermore, 
iteration (13.75) can also be written as

Pk+i =
’ fPk 1 1/ w(s)ds + e(pk)pk + g(pk) > 
L/o

for all k > 0, 

(13.79)
which implies that

0 < Pk+ < Pk (£ > 0).

Hence, a p* € [0, R) exists, with pk —* p* as k —* oo. Note that from 
iteration (13.75) and the uniqueness of 0 as a zero of x* (r) in [0, R) we 
conclude that p* = 0.

By induction of k we will show that estimate (13.76) holds. For k = 0, 
estimate (13.76) becomes ||zo|| < Po = R, which is true, since a < R by 
hypothesis. Assume estimate (13.76) holds for k. From relations (13.70) 
and (13.78) we get

(^(O)-1 (Ak(xk) -4fc(0))||< w0 (pk) + b<l.

By the Banach lemma on invertible mappings Ak (x^) is invertible. By 
using identity

Ak (xk) = Ak (0) [/ + Ak (0)’1 (Ak (xk) - Ak (0))] ,

we see that

|| (a* (i*)-1 Ak (0)) || < g (p*)-1 (fc > 0). (13.80)

Using relations (13.68), (13.69) (for x = 0), and (13.70) through (13.75),
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the triangle inequality and the induction hypothesis we get

Il®*+1 II = [/4* (x*)-1 Ak (0)] Ak (0)-1 (((/(* (txk) - Ak (xk)), xkdt 

+ (fik (xk)-f2k (0)))]}||
< (J [w (t ||z*||) + c+e (h*||)J 111*11 dt) g (||x*||)-1

- w(s)ds + J e (pk) ds + cpkj g (Pk) 1 = Pk+i- (13.81)

Hence, estimate (13.76) holds for fc +1. From relation (13.81) we conclu 
that xk+1 G U (0, R). Finally, by letting k -> oo in estimate (13.8 ) we ge^ 
xk —> 0, which completes the proof.

The analysis for the speed of convergence of iteration (13.76) is ’ 
that presented in iteration (13.56). In particular cases we can seec k;
«• b. * (ll) „ /;. m m o.» <»*-;■» “pp“s‘)

or any other linear mappings satisfying relations (1 • )
Case studies , solving the following
Case Study 1. We illustrate Theorem 13.17 by soivmg 

two-point boundary value problem for all k > 0

+ = ^(0) = ^(l) = 0, for all k > 0.
K *T" £

Remark 13.19 Note that the actual majorizing sequence is given by 
(13.81). A direct convergence analysis of this iteration lends to weaker con- 
vergence conditions, and finer error bounds (see earlier Chapers for point 

to point mappings.
We divide the interval [0,1] into n subintervals and we let l = (1) / (n). 

We denote the points of subdivision by vq = 0 < vi < • • • < vn = 1> 
with the corresponding values of the fimction yo,k = Vk (vo) > yi,k — 
Vk (vi),..., yn k = yk (yn). A simple approximation of the second deriva- 

tive at these points is

_ yi-i,k-^yi,k + yi+i._k i = 1 2,...,n -1.
Vk ~ J2 ’

Noting that y0,k = 0 and y„,k = 0 this leads to the following system of
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nonlinear equations

“ 2Vl.fc + = °>K *i &
£ । 1

3/i-i,fc + T~r^l2y2i,k - 2Vi.k + j/i+i,fc = o, i = 2,3,n - 1
K t Z

J/n-2,fc + - 2Vn-l.t = 0. (13.82)
K T Z

The left-hand sides define an operator fk : Rn 1 —* Rn 1 for all k > 0 
whose Frechet derivative may be written as

Let x G Rn 1 and select the norm
M = ,max |z,|. 

l<j<n-l

The corresponding matrix norm is

k=l

where a,jk is the (j, k) element of matrix A. 
Then for all y, x G Rn-1 and k > 0,

( U I 1 "I
ll/k (x) - f'k (l/)ll = diag 2^-P (Xi - y() 

=4rk111 -2/11 •

Let n = 4, and since a solution must vanish at the end points and be 
positive in the interior, a reasonable choice of initial approximation seems 
to be zq — [0,0.1,0.1,0]T . Notice that

‘-21 0 ’
/i(0)= 1 "2 1 

0 1-2
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and

/Ho)’1
3 2 1
242
123

Since a = 0.1, for h < 0.025, the condition (13.57) is now satisfied. The 
conclusions of the theorem now apply for R satisfying condition (13.58). 
Note also that x* = (0,0,0,0) is the common fixed point of equations 
fk (x) = 0 where mapping fk is defined by iteration (13.82).

Case Study 2. Select X = R, and consider equations
(x) = e(*+D*/(*+2) _ x = o (k>0), (13-83)

and the iteration equation
Xfc+1 = Xfc - (e^^k+2) - 1) ■

Notice that

/i(*) = /*(®) + 1;
that is, the iteration method satisfies the conditions of the remark following 
Theorem 13.21. Observe also that the above iteration converges to x* = 0 

if zq is selected sufficiently small.

13.4 Exercises

13.1. Maximize F = 240xi + 104x2 + 6OX3 + 19^4 subject to

20xi + 9x2 + 6x3 + X4< 20 
10xi + 4x2 + 2x3 + x4 <10

Xi >0, i = 1» •••> 4.

13.2. Minimize F = 3xi + 2x2 subject to

8x1 - X2 > 8
2xi - X2 >0
xi + 3x2 > 6
Xi + 6x2 > 8

Xi >0, X2 > 0.
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13.3. Find an interval [a, 5] containing a root x* of the equation x = | cosz 
such that for every xq 6 [o,b] the iteration xn+i = |cosxn will 
convergence to z*. solve the equation by using Newton’s or the 
secant method.

13.4. Solve the following nonlinear equations by the method of your choice:

a) In x = x - 4
b) xex = 7
c) ex In x = 7.

13.5. Find (Z - A)-1 (if it exists) for the matrix

Performe three steps.
13.6. Repeat Exercise 13.5 for the matrix

13.7. Solve problem

x = x-y — 11 (0) = 0 
y = x + y 2/(0) = 1.

Performe three steps.
13.8. solve the boundary-value problem

x = tx-i—l, x(0) = x(l) = l

by the discretization method. Select h = 0.1.
13.9. Solve

xw=j x^ds~7-

13.10.

x W — [ (t + s)x ($) ds — 4. 
Jq

13.11. Consider a continuous map P : Rn —♦ Rn such that P € 
C1 and P(0) = 0. Set $i = {x | ||P (z)|| < M)» S* = 
{x | ||P (x)|| > ||z||). Assume that

a) Si is invariant under P, P (Si) C Si, and
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b) For all a € S?, there exists a positive integer i(a) such that 
PiW (a) E Si.

Show that for all x € R", Pm (z) -» 0 as m -♦ oo.
13.12. Assume that there exists a function h : (0, oo) —» R such that 

|j/| < h (r) |a:| for all m > 0, r > 0, \x\ < r, x e X and y 6 Fm (z). 
Show that

|^m| < 7m>

where

<7m+l ~ (?m) Qm, QO — 1^01 ■

Provide a convergence analysis of iteration xm+i € Fm (xm) based 
on the above estimate.

13.13. To find a zero for G (x) = 0 by iteration, where G is a real function 
defined on [a, 6] rewrite the equation as,

x = x 4- c • G (x) = F (x)

for some constant c 0. If x* is a root of G(x) and if G' (x*) 0,
how should c be chosen on order that the sequence xm+i = F (xm) 
convergence to z*?

13.14. Solve the initial value problem

x (t) = 1 + cos (x (t)), x (0) = 0.

13.15. The predator-prey population models describe the interaction of 
a prey population X and a predator population Y. Assume that 
their interaction is modeled by the system of orderinary differential 
equations

1 2 1 .1

1 ,1 □.2j,= __Jz+-Iy+-.

(Assume x (0) — y (0) — 0.) solve the system.)
13.16. Assume that Fm = F (m > O), O is in the interior of X, and F is 

Frechet-differentiable at O, forthermore the special radius of F' (0) 
is less than 1. Then show that there is a neighborhood U of O such 
that xo € U implies that xm —» O as m —> oo.
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13.17. Let F : Rn —> Rn be a function such that F (0) = 0, F G (7°, and 
consider the difference equation x (t 4-1) = F {x (t)). If, for some 
norm, ||F(x)|| < ||x|| for any x O, then show that the origin is 
globally asymptotically stable equilibrium for the equation.

13.18. Assume that there exists a strictly increasing function g : R —* R 
such that g(O) = 0, and a norm such that g (||F (x) ||) < <7(||z||) 
for all z 0 0. Then show that O is a globally asymptotically stable 
equilibrium for equation x (t + 1) = F (x (t)), where F (O) = 0.

13.19. consider the following equation in R2:

Xi (t + 1) = 8sin (zi (t) + j) + -2a;2 (t)

X2 (t + 1) = 8xi (t) + .1X2 (t).

13.20. Solve the Fredholm-type integral equation

13.21. Solve the Volterra-type integral equation

x(t) = l^-^-ds + 1.
JQ -W

13.22. Solve equation
sinx 

x= + 1-

13.23. Complete the proofs of Theorems 12.5-12.8.
13.24. Provide the weaker conditions claimed in Remark 12.5 along the 

lines of the earlier chapters on single step point to point mappings.



Appendix A

Glossary of Symbols

R” real n-dimensional space
cn complex n-dimensional space
XxY,XxX = 1 X2 Cartesian product space of X and Y

the coordinate vectors of Rn
*=(*i,...,*n)T column vector with component Xi
X1 the transpose of x
^)n>0 
n ii sequence of points from X
ll-ll norm on X
IMIp Lp norm
l-l absolute value symbol
// norm symbol of a generalized Banach space
ix<y} set {z 6 X\z = tx 4- (1 — t)y, t e [0,1]}
U(x0,R) open ball {z € X\ Hxq — z\\ < R}
U (x0,R) closed ball {z G X\ Hxq — z\l < R}
U (R) = U (0, R) ball centered at the zero

element in X and of radius R
U,U open, closed balls, respectively

no particular reference to X, xq or R
M = {™ij} matrix 1 < i, j < n
M-1 inverse of M
M+ generalized inverse of M
det M or |M| determinant of M
Mk the A;th power of M
rankM rank of M
I identity matrix (operator)
L linear operator
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L-1 
nullL 
radL 
F:DCX->y

inverse
null set of L
radical set of L
an operator with domain D included in X, 
and values in Y

F' (z), F" (z) first, second Frechet-derivatives of F evaluated at x
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