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Foreword

The history of complex numbers shows that although slow to be ac
cepted, they have become quite effective in and are an integral part 
of many areas of engineering and science. The present volume ad
vances applications, theories, and trends in the promising field of 
complex-valued neural networks.

In their early history complex numbers were despised, deprecated 
and something to be avoided. Mathematicians looked upon them 
with suspicion. Gauss gave them new respectability by giving them 
his seal of approval with the publication of a memoir to the Royal 
Society of Gottingen in 1831. By the passage of time, complex num
bers have become a main staple in mathematics, engineering, and 
science (Nahin 1998).

There are basically two questions that can be conceivably raised 
about complex numbers: the first being are they necessary? Can we 
just live without them? From a mathematical point of view, their use
fulness and necessity is enshrined in the Fundamental Theorem of 
Algebra: Every polynomial of degree n with complex coefficients (or 
real as a special case) has n roots in the complex numbers. Some of 
those roots may be real, but some of them may have imaginary parts. 
Thus, the polynomial can be factored into exactly n  linear terms. This 
gives complex numbers a privileged status in mathematics. Over the 
last century, in other fields which make heavy use of mathematics, 
such as engineering and science, complex numbers have triumphed. 
From AC circuit analysis, to control theory, to electromagnetics, to 
optics, to quantum mechanics, complex numbers are omni-present 
and ever-used. To avoid them, it can be claimed that one would have
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to reinvent them or something akin to them. Consider for example 
quantum mechanics, which is done invariably in the complex do
main (Feynman et al. 1965). It is possible to be done in the real 
domain (Stueckelberg 1960), but even in that case an anti-symmetric 
operator is introduced to basically serve the role of %/^T.

The second question is “do they represent anything meaningful?” A 
similar objection can be made, and was made, for negative numbers. 
After all, who possessed - 2  cats? Complex numbers have shown an 
uncanny ability to model physical quantities, from magnitude and 
phase of current to probability amplitudes in quantum mechanics. 
In many aspects, they mirror nature in the way they behave, e.g. in 
addition and multiplication.

The history of complex neural networks can be traced to (Widrow 
et al. 1975) where the complex LMS algorithm was formulated, and 
was later widely used in filtering. Slowly in the beginning but in
creasingly so, complex-valued neural networks are employed to gen
eralize their real domain counterparts and to handle applications that 
traditionally have been handled in the complex domain. Generaliza
tions are not simply done by changing of a variable, from the real 
one to the complex one. If done in this way, singularities and other 
such unpleasant phenomena may arise (Georgiou and Koutsougeras 
1992). Neural networks have to be adjusted to the rich structure and 
environment of the complex domain if they are to operate properly 
and take advantage of its power.

Complex-valued neural networks have encompassed a wide range 
of theories and applications: from quantum neural networks to opto
electronics to satellite imaging to communications. The long-awaited 
present volume, under the able care of Professor Akira Hirose, a 
well-known pioneer in the field, highlights and brings into focus the 
rich range of applications, theories, and trends. The diverse material 
in the chapters that follow, if available, was scattered in literature. 
Now it is accessible in a single volume, the first in complex-valued
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neural networks research, which is destined to become a standard 
manual and reference. Considering the recent research activity and 
using history as a guide, it is safe to predict that the field will flour
ish.

References
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II: Analog and Digital Signal Processing, vol. 39, no. 5, pp. 330- 
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Feynman, R.P., Leighton, R.B. and Sands M. (1965), The Feyn
man Lectures on Physics, vol. 3, Addison-Wesley, Reading Mas
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Nahin, RJ. (1998), An Imaginary Tale: The Story o f y / ^ 1, Princeton 
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Preface

In recent years, the complex-valued neural networks have been ex
tending the scope of application in optoelectronics, imaging, remote 
sensing, quantum neural devices and systems, spatiotemporal analy
sis of physiological neural systems, and artificial neural information 
processing. In this first-ever book on the complex-valued networks, 
the most active scientists at the forefront of the field describe theories 
and applications from various points of view.

This book provides academic and industrial researchers with a 
comprehensive understanding of the fundamentals, features and 
prospects of the powerful complex-valued neural networks. It is also 
suitable for introducing graduate students to one of the most exciting 
and exploding fields.

The Chapters are arranged so that theoretical works roughly pre
cede application-oriented ones. However, an application often yields 
a specific theory besides common complex-valued neural network 
framework. The fact results in the variety and the plentifulness of 
this widening area.

Chapter 1 Complex-Valued Neural Networks: An Introduction pro
vides a short description on features, applications and a perspective 
of the field in general. Chapter 2 Orthogonal Decision Boundaries 
and Generalization o f Complex-Valued Neural Networks gives one of 
the typical complex-valued neural network models and discusses the 
characteristics of decision boundaries of a single, networked or lay
ered neurons. Chapter 3 Complex-Valued Neural Associative Mem
ories: Network Stability and Learning Algorithm treats the dynam
ics of associative memories based on energy and compares learning 
rules. Chapter 4 A Model o f Complex-Valued Associative Memo
ries and Its Dynamics presents another viewpoint to the associative

ix
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memory from which we can regard a set of degenerate vectors as 
a pattern embedded in the memory. Chapter 5 Clifford Networks 
a further extension of the complex-valued networks, introduces the 
Clifford algebras and proposes and analyzes a Clifford-based back- 
propagation learning rule.

Chapter 6 Complex Associative Memory and Complex Single Neu
ron Model deals with a complex-valued Nagumo-Sato neuron model 
in the complex space and presents its chaotic behavior. Chapter 7 
Data-Reusing Algorithm for Complex-Valued Adaptive Filters ana
lyzes a class of data-reusing learning algorithms for complex-valued 
adaptive filters and applies an improved algorithm to signal pre
diction. Chapter 8 Instantaneously Trained Neural Networks with 
Complex Inputs proposes the 3C algorithm which realizes a time- 
efficient and resource saving learning in combination with the qua
ternary encoding technique.

Chapter 9 Applications o f Comp lex-Valued Neural Networks for Im
age Processing describes an image retrieval system where gray-scale 
images are spatially Fourier transformed and mapped consistently 
on the unit circle on the complex plane. Chapter 10 Memoriza
tion o f Melodies Using Complex-Valued Recurrent Neural Network 
presents a efficient time-sequential data identifier and adaptive gen
erator, named MUSIC, which utilizes the high dynamics stability of 
recurrent complex-valued networks, and applies to music recall.

Chapter 11 Complex-Valued Generalized Hebbian Algorithm and 
Its Applications to Sensor Array Signal Processing describes an ap
plication of Hebbian rule in complex domain to direction-of-arrival 
problem of sensor arrays. Chapter 12 Phasor Model with Applica
tion to Multiuser Communication introduces an associative memory 
that has a zero resting attractor for application to the multiuser de
tection in code-division multiple-access communications by realiz
ing active and inactive modes. Chapter 13 Adaptive Interferometric 
Radar Image Processing by Using Complex-Valued Neural Network
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presents a lattice neural network for automatic generation of digital 
elevation map by reducing the number of phase singular points in 
interferometric synthetic-aperture-radar images.

Chapter 14 Complex Neural Network Model with Analogy to Self- 
Oscillation Generated in an Optical Phase-Conjugate Resonator 
points out the analogy between the Hopfield network and self- 
oscillating phase-conjugate resonator and reports experiments us
ing a BaTi03 crystal and an Argon-ion laser oscillating at 514.5nm. 
Chapter 15 Coherent Lightwave Neural Networks: Use o f Fre
quency Domain reports a coherent lightwave neural network system 
whose learning and processing behavior is controllable by using its 
optical carrier frequency as a modulation key.

I express sincere gratitude to Professor Lakhmi Jain at the University 
of South Australia. He gave me this wonderful opportunity to collect 
the first fruits of this field. I am also deeply grateful to Professor No- 
rio Baba at the Osaka Kyoiku University. He was the General Chair 
of the International Conference on Knowledge-based Intelligent In
formation and Engineering Systems (KES) 2001 Osaka where not 
a few researchers in the field gathered for the first time to discuss 
the complex-valued neural networks in a Special Session. Up to that 
point, the relevant researchers were connected only by point to point. 
But after this Special Session, we have got networked to extend the 
theories and applications and to involve many researchers in neigh
boring and unexpected but inspiring fields.

I also express my thanks to Dr. K.K.Phua, Chairman, and Ms. Lak- 
shmi Narayan, Senior Editor, and Mr. Loo Chuan Ming of Art De
partment at World Scientific Publishing Co. for their patience and 
kind cooperation given for this enterprising publication. With their 
kind understanding of the significance of this new field, we are for
tunate to be able to accelerate our extensive research.

Tokyo, June 2003 Akira Hirose
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Chapter 1

Complex-Valued Neural Networks: 
An Introduction

Akira Hirose

Complex-valued neural networks deal with complex-valued data 
with complex-number weights and complex-valued neuron- 
activation functions. George M. Gerogiou describes clearly in the 
Foreword the necessity of the complex-valued networks. In this 
introductory short chapter, we discuss how they are or can be useful 
and effective. We begin with the role of г =  \ / “ T in the quantum 
mechanics.

According to the quantum mechanics, the motion of an electron is 
related to the Schrodinger equation:

bl  =  ~ ^ - V 4 (r, t ) +  У(г)Ф(г, t) (1)
ot Zm

where Ф(г, t) is the electron’s wave function in terms of position r  
and time t , and h , m, V ( r , t ) and V denote Plank constant divided by 
27Г, electron mass, potential function and spatial differential operator, 
respectively.

The probabilistic interpretation argues that the squared absolute 
value of the solution |Ф|2 is the probability density of electron ex
istence. The probability is related to ensemble average. However, re
alistically, through repetitive or long-term experiment of electron ob
servation in an ergodic condition, we find that the electrons obey the 
probability |Ф|2. The equation represents experimental results suc
cessfully.

l
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The special feature of this equation lies in the fact that it contains the 
imaginary unit i in an ineliminable manner. Some physicists claim 
that fundamental equations in physics should not include г because 
they should consist of only really physical entities. Even if we regard 
|ty|2 as a probability, probabilities in general are discussed by using 
real number, and again г is not desirable.

However, we can consider the equation as follows. "The probability 
possesses an amplitude entity log(A) and a phase entity ф. Its spatial 
and/or temporal evolution obeys

\&k(r  ̂ t) =  е1об(л*(г >*))+̂ *(г ’е) (2) 

and the principle of superposition holds for plural solutions as

ф(г, t) = Y , =  £  elog(Afĉ r,t))+i^fc(r,t) (3)
к к

That is to say, the imaginary unit i plays a role in the interaction of 
amplitude and phase entities as well as the superposition of probabil
ity functions." In this sense, i is an operator to connect entities rather 
than an existence itself. In the complex-valued neural networks, i has 
the same role to combine plural quantities consistently.

Then, what is the operation of г? In the networks, we multiply in
put data by synaptic weights. If we pay attention to real and imagi
nary parts of the data, the multiplication of г, for example, converts 
the real quantity into imaginary one, and also does the imaginary 
one into real one with putting a negative sign. In this way the two 
quantities are exchanged. Multiplication of general complex-valued 
weight w mixes the real and imaginary quantities in a certain man
ner determined by the value w. In the network, the muptiplication 
of w is executed for all the parallel input data elements x  =  [x*]. 
As a result, the output maintains a certain vector-direction relation in 
the complex plane. This is one of the properties that we can utilize 
effectively to treat two-dimensional information.
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If we have a polar coordinate picture, we can regard the multiplica
tion of w = el°gN-Harg(w) ^  t^e magnification of the vector length 
by | |  and the vector rotation of an angle arg(w). In the problems 
where the weight has the amplitude and phase entities\w\ and arg(u>) 
in the real world, just like the solutions of Schrodinger equation, the 
neural operation can directly influence these entities rather than some 
other apparent phenomena. Actually, (quasi-)periodic signals can be 
processed in relation to phase because they are expressed as an in
tegration of sinusoidal wave through the Fourier transform and the 
Fourier synthesis.

Furthermore, we know in the phasor treatment of signals with carrier 
wave that a temporal differentiation realized by a capacitor C, for 
example, is analytically equivalent to multiplication of iuC  where и  
is angular frequency, while an integration is to division by iwC. Such 
relations are utilized in stabilization of dynamical or time-sequential 
behavior of neural networks. The phase topology is also related di
rectly to a cyclic metric.

These properties are very important also in the device electronics. 
The amplitude and phase of an electron probability function is ex
pressed by (1) and modulated by electrical potential, permittivity, 
magnetic field, and so on. Lightwave and electromagnetic wave also 
have a similar wave nature. The probability density of a photon is 
given by the squared absolute value of the wave function. The value 
multiplied by the energy of a single photon gives the energy of light
wave. It can be modulated by absorption and amplification of media 
in reality. On the other hand, the phase corresponds to time delay 
or advance and is modulated by permittivity, permeability and op
tical path length. In this way, the fundamental particles composing 
the world interact each other through the amplitude (energy) and the 
phase (time). (In a special case such as resonance, these two entities 
have a clear relation, the Kramers-Kronig relation, where the neu
ral holomorphy will become significant.) The complex-valued neural 
networks are highly expected to reflect such a natural world.
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Figure 1 presents the fundamental properties and application fields 
based on the discussion above. Most of the following chapters have 
a close relation to them. Recently the ideas and results have also been 
discussed in the Special Sessions in Conferences (KES 2001,2002) 
and (ICONIP 2002).

Further new ideas are also coming out to be presented in other 
Special Sessions in, for example, (ICANN / ICONIP 2003) and 
(KES 2003). The program includes quantum neural networks, radar 
imaging, array antenna signal processing, voice synthesis, spatiotem- 
poral pattern processing, and so forth. These new results will be col
lected in a sequel. The complex-valued neural networks continue to 
extend the fields both in theories and applications.

References
Special Sessions on Complex-Valued Neural Networks, International 

Conference on Knowledge-Based Intelligent Information Engi
neering Systems (KES),
KES 2001 Osaka (Sept. 6-8, 2001) Proc., N.Baba, L.C.Jain, 
R.J.Howlett, Eds., IOS Press, Ohmsha (2001) Part 1, pp. 550-580/ 
KES 2002 Crema (Sept. 16-18, 2002) Proc., E.Damiani, 
R.J.Howlett, L.C.Jain, N.Ichalkaranje, Eds., IOS Press, Ohmsha 
(2002) Part 1, pp. 623-647.

Special Session on Complex-Valued Neural Networks, International 
Conference on Neural Information Processing (ICONIP) 2002 
Singapore (Nov. 18-22, 2002) Proc., Lipo Wang, et al., Eds., 
Vol.3, pp. 1074-1103.

Special Session on Complex-Valued Neural Networks: Theories and 
Applications, International Conference on Artificial Neural Net
works (ICANN) 2003 Istanbul/ International Conference on Neu
ral Information Processing (ICONIP) 2003 Istanbul (June 26-29, 
2003) to be held.
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Chapter 2

Orthogonal Decision Boundaries and 
Generalization of Complex-Valued Neural 

Networks

Tohru Nitta

This chapter presents some results of an analysis on the decision 
boundaries of the complex-valued neural networks whose weights, 
threshold values, input and output signals are all complex numbers. 
The main results can be summarized as follows, (a) Decision bound
ary of a single complex-valued neuron consists of two hypersurfaces 
which intersect orthogonally, and divides a decision region into four 
equal sections. Decision boundary of a three-layered complex-valued 
neural network has this as a basic structure, and its two hypersur
faces intersect orthogonally if net inputs to each hidden neuron are 
all sufficiently large, (b) Most of the decision boundaries in the 3- 
layered complex-valued neural network intersect orthogonally when 
the network is trained using the Complex-BP algorithm. As a result, 
the orthogonality of the decision boundaries improves its general
ization ability, (c) Furthermore, the average of the learning speed 
of the Complex-BP is several times faster than that of the Real-BP 
The standard deviation of the learning speed of the Complex-BP is 
smaller than that of the Real-BP. It seems that the complex-valued 
neural network and the related algorithm are natural for learning of 
complex-valued patterns for the above reasons.
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1 Introduction
It is expected that complex-valued neural networks, whose param
eters (weights and threshold values) are all complex numbers, will 
have applications in fields dealing with complex numbers such as 
telecommunications, speech recognition and image processing with 
the Fourier transformation. When using the existing method for real 
numbers, we must apply the method individually to their real and 
imaginary parts. On the other hand, complex-valued neural networks 
allow us to directly process data. Moreover complex-valued neural 
networks enable us to automatically capture good rotational behavior 
of complex numbers. For example, the fading equalization technol
ogy is an application domain suitable for the complex-valued neural 
network. Channel equalization in a digital communication system 
can be viewed as a pattern classification problem. The digital com
munication system receives a transmitted signal sequence with ad
ditive noise, and tries to estimate the true transmitted sequence. A 
transmitted signal can take one of the following four possible com
plex values: - 1  -  г, - 1  +  г, 1 -  г and 1 -И  (г =  V̂ —1). Thus, the 
complex-valued neural network is suitable for this domain.

The back-propagation algorithm (called here, Real-BP) (Rumelhart 
et al. 1986) is an adaptive procedure which is widely used in training 
a multi-layer perceptron for a number of classification applications 
in areas such as speech and image recognition. The Complex-BP 
algorithm is a complex-valued version of the Real-BP, which was 
proposed by several researchers independently in the early 1990’s 
(Kim and Guest 1990, Nitta and Furuya 1991, Benvenuto and Piazza 
1992, Georgiou and Koutsougeras 1992, Nitta 1993, Nitta 1997). The 
Complex-BP algorithm can be applied to multi-layered neural net
works whose weights, threshold values, input and output signals are 
all complex numbers. This algorithm enables the network to learn 
complex-valued patterns naturally, and has an ability to transform 
geometric figures as its inherent property, which may be related to
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the Identity Theorem in complex analysis (Nitta and Furuya 1991, 
Nitta 1993, Nitta 1997). Miyauchi et al. made an attempt to apply the 
Complex-BP (Nitta and Furuya 1991, Nitta 1993, Nitta 1997) in the 
computer vision field (Miyauchi et al. 1992, Miyauchi et al. 1993, 
Watanabe et al. 1994). They successfully used the ability to trans
form geometric figures of the Complex-BP network to complement 
the 2D velocity vector field on an image, which was derived from a 
set of images and called an optical flow. To specifically, the ability to 
transform geometric figures was applied to the estimation of optical 
flows. An optical flow is a 2D vector field indicating how an object 
moves. Generally, it is difficult to obtain a complete optical flow for 
a real image. Accordingly, to complement incomplete optical flow, 
the ability to transform geometric figures of the Complex-BP net
work was applied. They built a 1-n-l complex-valued BP network, 
input a start point of a 2D vector, and got the network to learn to 
output its corresponding end point. Then, they input the coordinates 
of the missing part(s) of an optical flow to estimate its end point. 
The ability to transform geometric figures of the Complex-BP has 
the possibility of being widely used in other fields such as robot nav
igation and weather forecasting, because a 2D vector field appears in 
various actual scenes.

As we have seen above, the complex-valued neural network is useful 
and has lots of merits from the point of view of applications. It is 
important to clarify the characteristics of the complex-valued neural 
networks in order to promote the real applications.

This chapter makes clear the differences between the real-valued 
neural network and the complex-valued neural network by analyz
ing their fundamental properties from the view of network archi
tectures, and clarifies the utility for the complex-valued neural net
work which the properties discovered in this chapter bring about. 
The main results can be summarized as follows, (a) Decision bound
ary of a single complex-valued neuron consists of two hypersurfaces 
which intersect orthogonally, and divides a decision region into four
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equal sections. Decision boundary of a three-layered complex-valued 
neural network has this as a basic structure, and its two hypersur- 
faces intersect orthogonally if net inputs to each hidden neuron are 
all sufficiently large, (b) Most of the decision boundaries in the 3- 
layered complex-valued neural network intersect orthogonally when 
the network is trained using the Complex-BP algorithm. As a result, 
the orthogonality of the decision boundaries improves its general
ization ability, (c) Furthermore, the average of the learning speed 
of the Complex-BP is several times faster than that of the Real-BP. 
The standard deviation of the learning speed of the Complex-BP is 
smaller than that of the Real-BP. It seems that the complex-valued 
neural network is natural for learning of complex-valued patterns for 
the above reasons.

This chapter is organized as follows: Section 2 describes the 
complex-valued neural network and the related Complex-BP al
gorithm. Section 3 deals with the theoretical analyses of decision 
boundaries of the complex-valued neural network model. The sim
ulation results are given in Section 4. Section 5 is devoted to the 
discussion on the results obtained in this chapter. Finally, we give 
some conclusions.

2 The Complex-Valued Neural Network
This section describes the complex-valued neural network used in 
the analysis. First, we will consider the following complex-valued 
neuron. The input signals, weights, thresholds and output signals are 
all complex numbers. The net input Un to a complex-valued neuron 
n  is defined as:

un = '£ w nmx m + vn, (1)
m

where Wnm is the (complex-valued) weight connecting complex
valued neurons n and m, X m is the (complex-valued) input sig
nal from complex-valued neuron m, and Vn is the (complex-valued)
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threshold value of neuron n. To obtain the (complex-valued) output 
signal, convert the net input Un into its real and imaginary parts as 
follows: Un =  x  +  iy = z, where i denotes >/” !• The (complex
valued) output signal is defined to be

fc{z)  = f R(x) + i f R{y), (2)

where / R(u) =  1/(1 +  exp(—u)),u e  R  ( R  denotes the set of 
real numbers), that is, the real and imaginary parts of an output of a 
neuron mean the sigmoid functions of the real part x  and imaginary 
part у of the net input z to the neuron, respectively. Note that f c  
is not holomorphic, because the Cauchy-Riemann equations do not 
hold.

A complex-valued neural network consists of such complex-valued 
neurons described above. The Complex-BP learning rule (Nitta and 
Furuya 1991, Nitta 1993, Nitta 1997) has been obtained by using 
a steepest descent method for such (multi-layered) complex-valued 
neural networks.

3 Orthogonality of Decision Boundaries 
in the Complex-Valued Neural 
Network

Decision boundary is a boundary by which the pattern classifier such 
as the Real-BP classifies patterns, and generally consists of hyper
surfaces. Decision boundaries of real-valued neural networks have 
been examined empirically by Lippmann (1987). This section math
ematically analyzes the decision boundaries of the complex-valued 
neural network.
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3.1 A Case of a Single Neuron
We first analyze the decision boundary of a single complex-valued 
neuron (i.e., the number of hidden layers is zero).

Let the weights denote w  = *[1̂  • • -гип] = w T + i w l, w r =  
• • • w^}, w l = t [w\-- 'Win]7 and let the threshold denote

0 =  9r + iOl. Then, for n  input signals (complex numbers) z  =  
l [z\ '"Zn] =  x  +  iy,  x  =  *[xi ■ • • xn], у  =  г[у1 • ■ • Уп], ^ е  
complex-valued neuron generates

X  + i Y =  I r {[tw r - V l )
+ * / * ( l V  (™r]

as an output. Here, for any two constants С я , С 1 G (0,1), let

e ] + r ) = C R,

(3)

w T — *гиг1X ( x , y )  = /*([*

Y { * ,y )  =  / * ( | V  V ]  * ] + ® ‘) = C f/-

(4)

(5)

Note here that expression (4) is the decision boundary for the real 
part of an output of the complex-valued neuron with n-inputs. That 
is, input signals (ж, у)  £ R 2n are classified into two decision regions 
{(x , y ) e  й 2п|Х (х , у) > С я } and {(ж, у) е  R 2n\ X ( x , y ) < 
C R} by the hypersurface given by expression (4). Similarly, expres- 
sion (5) is the decision boundary for the imaginary part. The normal 
vectors QR{x ) y)  and Q7(x, y)  of the decision boundaries ((4), (5)) 
are given by

« * (* ,„ )  _  ( “ . “ a * . . .  “ 4
\d x i  дхп ду1 dynJ

= fR{[W -W] * ] + / ) . [ V  -V], (6)
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n f f   ̂ _  f d Y  d Y  d Y  9 Y \
V ^ i  dxn dyi d y j

• [ V  4здг]. (7)( [ V  *u;r] X
+  0 ^VL J у J

Noting that the inner product of expressions (6) and (7) is zero, we 
can find that the decision boundary for the real part of an output of 
a complex-valued neuron and that for the imaginary part intersect 
orthogonally.

It can be easily shown that this orthogonal property also holds true 
for the other types of the complex-valued neurons proposed in (Kim 
and Guest 1990, Benvenuto and Piazza 1992, Georgiou and Kout- 
sougeras 1992).

Generally, a real-valued neuron classifies an input real-valued sig
nal into two classes (0, 1). On the other hand, a complex-valued 
neuron classifies an input complex-valued signal into four classes 
(0, 1, г, 1 +  г)- As described above, the decision boundary of a 
complex-valued neuron consists of two hypersurfaces which inter
sect orthogonally, and divides a decision region into four equal sec
tions. Thus, it can be considered that a complex-valued neuron has a 
natural decision boundary for complex-valued patterns.

3.2 A Case of a Three-Layered Network
Next, we examine the decision boundary of a three-layered complex
valued neural network (i.e., it has one hidden layer). Consider a 
three-layered complex-valued neural network with L input neurons, 
M  hidden neurons, and N  output neurons. We use Wji = w£ +  iw 
for the weight between the input neuron г and the hidden neuron j ,  
Vkj = vrkj +  iv\- for the weight between the hidden neuron j  and the 
output neuron к , Qj = 9] + iQ) for the threshold of the hidden neuron 
j y syk = Yk +  i lk f°r the threshold of the output neuron к . Then, for 
L input (complex-valued) signals z  =  l[zi • • • zi\  =  x  +  iy,  x  =
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‘[xi • • • xl], у  = ь[у1 * • • Уь]у the net input Uj to the hidden neuron j  
is given by

Uj =  U] + iU)

=  [ E ( 4 i Xi “  Wji^ )  +  [ХХЧ»1* +  4 ^ * )  +  в) (8)

Hence, the output Hj of the hidden neuron j  is given by

Hj = Щ  + iH) =  /* ([ /;)  +  ifn(Uj).  (9)

And also, the net input Sjt to the output neuron к is given by

Sfc = SJ + iSi

=  [ E 0 №  -  < я ;) +  t f ]  +  < [ l > W  +  vh H 'j) + ?*] •

( 10)

Hence, the output O* of the output neuron к is given by

Ok = Ol + iOi  =  f R(Sl) +  i f R(Si).  (11)

Here, for any two constants C R, С 1 € (0,1), let

Ork( x , y ) =  C R, (12)

° к (х ’У) = С 1- ( 13)

The expressions (12) and (13) are the decision boundaries for the real 
and imaginary parts of the output neuron к in the 3-layered complex
valued neural network, respectively. The normal vectors QR( x , y ), 
Q!( x , y)  of these hypersurfaces ((12), (13)) are given by

- я ,  , (дО гк дОгк дОтк дОгк\  /1у1Л
« * < » . » > - ( a j f - s t ) ’ (l4 )

, ,  (SO I  s o ;  5 0 ;  s o ; ,
S T  S T  ' " a d -  <15)
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and their inner product is given by

QR( x ,y )  ■ tQ’ ( x ,y )  =  ^
O X \

dOl
+

do\
dxi
dOl

dyi dy}

+ +

Note here that, for any 1 <  i <  L,

doi dO{ дО\ dO\
дх{ дх, ' dyi dyt 
dfn(S i)  d f R(Si)

dS,

[£f
м

dSi

vkjWji
Ш Щ )

дЩ -  vkjwji

d fR(Si) d fR(si)
dSl d s t

dU)
\ ™ ( T r d}R{U])Е К л ------
l j = i 4  

M ,
E K X * -  
j= i4

vkjwn

dfniU}) r { 
+ vLw)i

dU)

dOl 
dxL 

>kdO I

dOi
дхь
dO\

dyL dyL
■ (16)

dM U ])
dU)

д Щ ] )tRW})\  
дЩ ).

д М Щ )
dm J.

д М Щ )Т л Щ ) \  
дЩ ).

(17)

Hence, the inner product of the normal vectors is not always zero. 
Therefore, we can not conclude that the decision boundaries (hyper
surfaces) for the real and imaginary parts of the output neuron к in 
the 3-layered complex-valued neural network intersect orthogonally. 
However, paying enough attention to expression (17), we can find 
that if

d M u j )  _ а м щ )
щ dU)

(18)
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for any 1 <  j  < M,  then the inner product is zero. In general, if 
both |ui| and |u2| are sufficiently large, we can consider that 
is nearly equal to /д (п 2). Hence, if, for any 1 <  j  < M,  there exist 
sufficiently large positive real numbers K \ , K 2 such that

then the two decision boundaries ((12), (13)) intersect orthogonally. 
That is, if, for any 1 <  j  <  M, both the absolute values of the real 
and imaginary parts of the net input (complex number) to the hidden 
neuron j  are sufficiently large, then the decision boundaries intersect 
orthogonally. Therefore, the following theorem can be obtained.

Theorem If both the absolute values of the real and imaginary 
parts of the net inputs to all hidden neurons are sufficiently large, 
then the decision boundaries for the real and imaginary parts of an 
output neuron in the 3-layered complex-valued neural network inter
sect orthogonally.

4 Simulation
We present below the simulation results on the decision boundaries 
of the three-layered complex-valued neural networks trained using 
the Complex-BP (called Complex-BP network) (Nitta and Furuya 
1991, Nitta 1993, Nitta 1997) and compare them with those of the 
three-layered real-valued neural networks trained using the Real-BP 
(called Real-BP network) (Rumelhart et al. 1986)

In the experiments, the three sets of (complex-valued) learning pat
terns shown in Tables 1-3 were used, and the learning constant e was 
0.5. The initial components of the weights and the thresholds were 
chosen to be random real numbers between -0 .3  and 0.3. We judged

\Щ\ > К  ь

\Щ I >  *2,

(19)
(20)



that learning finished, when

\ E E | T i p)- 0 < p)|2 =  0.05 (21)
V k = \

held, where T^p\  6 С  denoted the desired output value, the ac
tual output value of the output neuron к for the pattern p, i.e., the left 
side of expression (21) meant the error between the desired output 
pattern and the actual output pattern; N  denoted the number of neu
rons in the output layer, С  denoted the set of complex numbers. We 
regarded presenting a set of learning patterns to the neural network 
as one learning cycle.

Table 1. Learning pattern 1.

Input pattern Output pattern
- 0 .0 3  -  О.ОЗг 1 + г
0.03 -  О.ОЗг г
0.03 +  О.ОЗг 0

- 0 .0 3  +  О.ОЗг 1

Table 2. Learning pattern 2.

Input pattern Output pattern
- 0 .0 3  -  О.ОЗг г
0.03 -  О.ОЗг 0
0.03 +  О.ОЗг 1

- 0 .0 3  +  О.ОЗг 1 +  г

Table 3. Learning pattern 3.

Input pattern Output pattern

- 0 .0 3  -  О.ОЗг 0
0.03 -  О.ОЗг 1
0.03 +  О.ОЗг 1 +  г

- 0 .0 3  +  О.ОЗг г

We used the four kinds of three-layered Complex-BP jietworks:
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1-3-1, 1-6-1, 1-9-1 and 1-12-1 networks. After training, by pre
senting the 1,681(=41 x41) points in the complex plane [—1,1] x 
[—1,1] (x +  iy , where x =  —1.0, —0.95, 0.95,1.0;у =  
—1.0, -0.95, • •, 0.95,1.0), the actual output points formed the de
cision boundaries. Figure 1 shows an example of the decision bound
ary of the Complex-BP network. In Figure 1, the number 1 denotes 
the region in which the real part of the output value of the neural 
network is OFF (0.0-0.5), and the imaginary part OFF; the region 2 
the real part ON (0.5-1.0), and the imaginary part OFF; the region 3 
the real part OFF, and the imaginary part ON; the region 4 the real 
part ON, and the imaginary part ON. And the decision boundary for 
the real part (i.e., the boundary that the region “1+3” and the region 
“2+4” form) and that for imaginary part (i.e., the boundary that the 
region “1+2” and the region “3+4” form) intersect orthogonally.

Figure 1. An example o f the decision boundary of the 1-12-1 Complex-BP  
network learned with the learning pattern 1. The meanings o f the numerals 
are as follows. 1: Real part O FF(0.0-0.5), Imaginary part OFF, 2: Real 
part ON(0.5-1.0), Imaginary part OFF, 3: Real part OFF, Imaginary part 
ON, and 4: Real part ON, Imaginary part ON. The decision boundary for 
the real part (i.e., the boundary that the region 4 + 3 ” and the region ‘2+4” 
form) and that for imaginary part (i.e., the boundary that the region ‘1+ 2” 
and the region ‘3+4” form) intersect orthogonally.

We also conducted the corresponding experiments for the Real- 
BP networks. We chose the 2-4-2 Real-BP network for the 1-3-1
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Complex-BP network as a comparison object because the numbers 
of the parameters (weights and thresholds) were almost the same: the 
number of parameters for the 1-3-1 Complex-BP network was 20, 
and that for the 2-4-2 Real-BP network 22 where a complex-valued 
parameter z = x  + iy (where i = \ / “~l) was counted as two be
cause it consisted of a real part x  and an imaginary part y. Similarly, 
the 2-7-2, 2-11-2 and 2-14-2 Real-BP networks were chosen for the 
1-6-1, 1-9-1 and 1-12-1 Complex-BP networks as their comparison 
objects, respectively. The numbers of parameters of them are shown 
in Table 4. In the Real-BP networks, the real component of a com
plex number was input into the first input neuron, and the imaginary 
component was input into the second input neuron; the output from 
the first output neuron was interpreted to be the real component of 
a complex number, and the output from the second output neuron 
was interpreted to be the imaginary component. Figure 2 shows an 
example of the decision boundary of the Real-BP network where the 
numbers 1-4 have the same meanings as those of Figure 1. We can 
find from Figure 2 that the decision boundary for the real part (i.e., 
the boundary that the region “1+3” and the region “2+4” form) and 
that for imaginary part (i.e., the boundary that the region “1+2” and 
the region “3+4” form) do not intersect orthogonally.

Table 4. The number of parameters in the Real-BP and 
Complex-BP networks.

Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
The number of parameters 20 38 56 74

Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
The number o f parameters 22 37 57 72

First, we measured the angles between the decision boundary for 
the real part (i.e., the boundary that the region “1+3” and the region 
“2+4” formed) and that for imaginary part (i.e., the boundary that the 
region “1+2” and the region “3+4” formed) which were the compo
nents of the decision boundary of the output neuron in the Complex-
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Im

Figure 2. An example of the decision boundary o f the 2-14-2 Real-BP  
network learned with the learning pattern 1. The numbers 1-4 have the same 
meanings as those o f Figure 1. The decision boundary for the real part (i.e., 
the boundary that the region ‘1+3” and the region ‘2+ 4” form) and that 
for imaginary part (i.e., the boundary that the region ‘1+ 2” and the region 
‘3+4” form) do not intersect orthogonally.

BP networks in the visual observation under the experimental condi
tions described above. The average and the standard deviation of the 
angles of 100 trials for each of the 3 learning patterns and each of the 
4 kinds of network structures were used as the evaluation criterion. 
Although we stopped learning at the 200,000th iteration, all trials 
succeeded in converging. And also, we measured the same quantities 
of the Real-BP networks for the comparison. The results of the ex
periments are shown in Table 5(a)-(c). We can find from Table 5 that 
all the average angles for the Complex-BP networks are almost 90 
degrees, which are independent of the learning patterns and the net
work structures, whereas those of the Real-BP networks are around 
70-80 degrees. In addition, the standard deviations of the angles for 
the Complex-BP networks are around 0-5 degrees and those for the 
Real-BP networks around 20 degrees. Thus, we can conclude from 
the experimental results that the decision boundary for the real part 
and that for imaginary part which are the components of the decision 
boundary of the output neuron in the three-layered Complex-BP net
works almost intersect orthogonally, whereas those for the Real-BP
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Table 5. Comparison o f the angles o f the decision bound
aries (the average and the standard deviation). The unit is 
degree.

networks do not.

(a) Pattern 1
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 90 90 90 90
Standard deviation 0 0 0 0
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 78 72 76 80
Standard deviation 19 22 17 17

(b) Pattern 2
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 89 90 90 90
Standard deviation 6 0 0 0
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 85 77 77 75
Standard deviation 16 20 18 21

(c) Pattern 3
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 90 89 90 90
Standard deviation 0 5 3 0
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 86 76 72 73
Standard deviation 11 20 22 22

It seems that the generalization ability of neural networks can be im
proved if the decision boundaries of the network intersect orthogo
nally. Next, we measured the discrimination rate of the Complex-BP 
network for unlearned patterns in order to clarify how the orthog
onality of the decision boundary of the 3-layered Complex-BP net
work changed its generalization ability.

To specifically, we counted the number of the test patterns for which 
the Complex-BP network could give the correct output in the same 
experiments described above on the angles of decision boundaries of
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100 trials for each of the 3 learning patterns and each of the 4 kinds of 
network structures. We defined the correctness as follows: the output 
value X  +  гУ(0 <  X, Y  < 1) of the Complex-BP network for an 
unlearned pattern x  +  iy (—1 < x, у < 1) was correct if \X — A\ < 
0.5 and |У —jB| < 0.5, provided that the closest input learning pattern 
to the unlearned pattern x+iy  was a+ib whose corresponding output 
learning pattern was A + iB  (A, В  =  0 or 1). For example, the 
output value X  +  i Y (0 < X, Y  <  1) of the Complex-BP network 
for an unlearned pattern x + iy (0 <  x , y  <  1) was correct if both 
the real and imaginary parts of the output value of the Complex-BP 
network took value less than 0.5, provided that the corresponding 
output learning pattern for the input learning pattern О.ОЗ+О.ОЗг was 
0. Then, the average and the standard deviation of the discrimination 
rate of 100 trials for each of the 3 learning patterns and each of the 
4 kinds of network structures were used as the evaluation criterion. 
The results of the experiments including the Real-BP network case 
appear in Table 6(a)-(c). The above simulation results clearly suggest 
that the Complex-BP network has better generalization performance 
than that of the Real-BP network. We believe that these results are 
caused by the orthogonality of the decision boundaries.

Table 6. Comparison of the generalization ability (the
average and the standard deviation). The unit is percentage.

(a) Pattern 1

Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 92 95 97 98
Standard deviation 6 5 3 2
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 88 90 93 93
Standard deviation 8 7 4 4
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(b) Pattern 2
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 93 95 96 97
Standard deviation 6 4 4 3
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 88 91 92 93
Standard deviation 8 7 5 6

(c) Pattern 3
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average 92 94 97 97
Standard deviation 7 4 3 3
Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average 87 90 90 92
Standard deviation 9 7 7 6

Finally, we investigated the average and the standard deviation of 
the learning speed (i.e., learning cycles needed to converge) of 100 
trials for each of the 3 learning patterns and each of the 4 kinds of 
network structures in the experiments described above. The results of 
the experiments are shown in Table 7(a)-(c). We can find from these 
experiments that the learning speed of the Complex-BP is several 
times faster than that of the Real-BP, and the standard deviation of 
the learning speed of the Complex-BP is smaller than that of the 
Real-BP.

Table 7. Comparison o f the learning speed (the average and
the standard deviation). The unit is learning cycle.

(a) Pattern 1
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average
Standard deviation

10770
438

10178
472

9766
210

9529
144

Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average
Standard deviation

31647
1268

29945
944

28947
697

28230
566
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(b) Pattern 2
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average
Standard deviation

10608
418

9932
167

9713
148

9539
110

Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average
Standard deviation

31781
2126

29842
809

28902
721

28267
576

(с) Pattern 3
Complex-BP network 1-3-1 1-6-1 1-9-1 1-12-1
Average
Standard deviation

10746
740

10055
412

9713
228

9502
188

Real-BP network 2-4-2 2-7-2 2-11-2 2-14-2
Average
Standard deviation

34038
5182

29620
806

28980
603

28471
584

5 Discussion
We have proved that the decision boundary for the real part of an 
output of a single complex-valued neuron and that for the imagi
nary part intersect orthogonally in Section 3.1. Since this property is 
completely different from an usual real-valued neuron, one needs to 
design the complex-valued neural network for real applications and 
its learning algorithm taking into account the orthogonal property 
of the complex-valued neuron whatever the type of the network is 
(multi-layered type or mutually-connected type).

It is not always guaranteed that the decision boundary of the 3- 
layered complex-valued neural network has the orthogonality, as 
we have made clear in Section 3.2. Then, we have derived a suffi
cient condition for the decision boundaries in the 3-layered complex
valued neural network to intersect orthogonally in Section 3.2 (The
orem). The sufficient condition was as follows: both the absolute val
ues of the real and imaginary parts of the net inputs to all hidden neu
rons were sufficiently large. This is a characterization for the struc
ture of the decision boundaries in the 3-layered complex-valued neu
ral network. The theorem will be useful if a learning algorithm such
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that both the absolute values of the real and imaginary parts of the 
net inputs to all hidden neurons become sufficiently large is devised, 
because the orthogonality of the decision boundaries of the network 
can improve the generalization ability of 3-layered complex-valued 
neural networks as we have seen in Section 4. That is, we can uti
lize the theorem in order to improve the generalization ability of 
the 3-layered complex-valued neural network. However, the situa
tion in which the theorem is directly useful for the Complex-BP net
work cannot be considered regrettably for now, because the control 
of the net input is difficult as long as the Complex-BP algorithm 
(that is, steepest descent method) is used. The Complex-BP is one of 
the learning algorithms for complex-valued neural networks. Thus it 
should be noted that the usefulness of the theorem depends on the 
learning algorithm used. Although the orthogonality of the decision 
boundaries in the 3-layered complex-valued neural network can be 
guaranteed conditionally as described above, we can find from the 
experiments in Section 4 that most of the decision boundaries in the 
3-layered Complex-BP network intersect orthogonally. Moreover, it 
is learned from the experiments that the orthogonality of the decision 
boundaries in the 3-layered Complex-BP network improves its gener
alization ability. The decision boundary of the complex-valued neu
ral network which consists of two orthogonal hypersurfaces divides 
a decision region into four equal sections. So, it is intuitively consid
ered that the orthogonality of the decision boundaries improves its 
generalization ability. Then, we have experimentally proved that it is 
true.

It had already been reported that the average of the learning speed 
of the Complex-BP was several times faster than that of the Real-BP 
(Nitta 1997). In this connection, we could confirm this again in the 
experiments on the othogonality of the decision boundary and the 
generalization ability of the 3-layered Complex-BP network in Sec
tion 4. It was learned that the standard deviation of the learning speed 
of the Complex-BP was smaller than that of the Real-BP, which had
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Chapter 3

Complex-Valued Neural Associative 
Memories: Network Stability and 

Learning Algorithm

Donq-Liang Lee

An associative memory model called complex-valued neural net
work (CVNN) is presented in this chapter. In a CVNN states are 
represented by quantization values defined on the unit circle of the 
complex plane. Such a network is able to perform the task of storing 
and recalling gray-scale images. The stability properties under dif
ferent updating modes are investigated by using the energy function 
approach. It is proved that the model will be globally convergent to a 
fixed point when operating in a asynchronous mode and to a cycle of 
length at most 2 when operating in a synchronous mode. Then, some 
existing learning methods for this model are reviewed and discussed. 
Finally, simulation results are presented to illustrate the performance 
of this model.

1 Introduction
Conventional neural networks are usually based on two-state neu
rons, i.e., the states of the networks are usually bipolar (1 and - 
1) or binary (1 and 0). Although binary representations are widely 
used in engineering applications for their simplicity, multivalued 
representation is a much relevant and direct approximation to real 
world data. The most simple way to store multivalued patterns in a 
bipolar network is grouping a certain number of neurons into one

29
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macro neuron (Cemuschi-Frias 1989, Lee 1999) that functionally 
represents a single multivalued state. However, this scheme needs 
a much greater number of neurons and connection weights, which 
increases the programming complexity. Moreover, it is difficult to 
implement this method by hardware. In very large scale integration 
(VLSI) implementations of neural networks, reductions in the num
ber of neurons and in the number of weighting connections are highly 
desirable. This leads to the development of multivalued neural net
works. (e.g., multi-valued exponential associative memories (Chiueh 
and Tsai 1993); multivalued recurrent nonlinear associative memory 
(MAREN)(Erdem and Ozturk 1996); multilevel threshold neurons 
(Zurada et al  1997; Si and Michel 1995)).

In 1996, Jankowski et al proposed a complex-valued neural network 
(CVNN) which is capable of storing and recalling gray-scale images. 
The CVNN (Jankowski et al 1996) is composed of fully connected 
multistate complex-valued neurons and the information representa
tion is based on amplitude and phase coding. It can be referred to 
as a modified Hopfield network having complex-signum activation 
functions and complex weighting connections. In this chapter, the 
background of the CVNNs was reviewed first. The structure and 
updating modes of the CVNNs were discussed in section 2. The
orems regarding network stability under different conditions were 
examined in section 3. Then, some existing learning methods for the 
CVNNs were reviewed in section 4. Finally, simulation results were 
presented in section 5 to illustrate the performance of the CVNNs.
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2 Network Structure and Updating 
Modes

2.1 Structure of CVNNs
The complex-valued neural network (CVNN) introduced in this 
chapter is an autoassociative memory that stores complex-valued 
prototype vectors X ky к = 1 where X k = ( x \ , x ^  ...,xkN)T
and m  is the number of the prototype vectors. The components x ks 
are all quantization values defined by

x ki € ex\>\j2itv/ K ]^~q г =  1 , N. (1)

The resolution factor К  divides the complex unit circle into К  quan
tization levels so that \xk\ =  1 Vz, k. A CVNN consists of N  fully 
connected multi-state neurons. Let X  € and S  € CNxN denote 
the state vector and the connection weight matrix of the CVNN, re
spectively. The output of each neuron is determined by the following 
equation:

N

Xi (2)

in which Xi is the zth component of X\ x\ denotes the next state of 
Xi. Moreover, ф(-) is a complex-signum function

4>{z) =

exp(jO) 0 <  arg[zeJ(9°/2)] <  Oq
e x p ( j^ )  90 < arg[ze^e°/2)] < 2в0

(3)

exp \]2w(k
(K  -  l)0o <  arg[ze3'(9°/2>] 
< K 9  о

where arg(a) is the phase angle of a , 6q is a phase quantum delim
ited by К: в0 = 27Г/ К .  (3) means that ф(г) is the quantization value 
on the complex unit circle closest to z. The resolution factor К  di
vides the complex unit circle into К  separate sectors and each of
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them has an angle of Q0. Note that if К  =  2, the CVNN will be func
tionally equivalent to the Hopfield network (Hopfield 1982, 1984) 
in which all neuron states are bipolar real values (i.e., 1 or -1). The 
only difference is that the former permits complex-valued weighting 
connections but the latter does not.

As in the case of bipolar Hopfield network, there are two updating 
modes for the CVNNs, i.e., asynchronous and synchronous modes. 
A recalling process is an iterative process that starts with an initial 
vector X0 presented to the network. It is called asynchronous mode 
if neuron states are updated one at a time by following (2) with equal 
probabilities. If the neuron states are updated simultaneously accord
ing to the following equation

, the CVNN is said to be operated in the synchronous mode. Here 
^'denotes the next state of X.  We show in the following section 
that process (2) and (4) converge to one of the fixed points X /  in a 
finite number of iterations if the matrix S  =  [s^satisfys specific ma
trix conditions. Apparently, for associative memory applications this 
fixed point is desired to be one of the stored vectors. If so, the stored 
vector is said to be recalled. A fixed point X f  = [x/b x /2, ■ 
has the following properties:

Obviously, a stored vector can be recalled only if it is a fixed point. 
In the original model (Jankowski et al 1996) the m  prototype vectors 
are stored in the weight matrix according to the generalized Hebb 
rule

2.2 Updating Modes of CVNNs

X '  =  ф {SX} (4)

N. (5)

(6)



Complex-Valued Neural Associative Memories 33

where the over bar means complex conjugate. However, as in the 
case of bipolar networks (Hopfield 1982, 1984), the encoding rule 
(6) can not ensure that all the stored vectors are fixed points of (5).

3 Network Stability
In this section some existing stability results were reviewed.

3.1 Stability in Asynchronous Mode
Theorem 1: Given a CVNN with a complex weight matrix S  =  [sij] 
and assume that it is operating in asynchronous mode.

(i) If S  is Hermitian with nonnegative diagonal entries

su >  0, г = 1, AT, (7)
then the CVNN will converge to a fixed point from any given initial 
state ( Jankoski et al  1996);

(ii) if S  is not Hermitian but it is weakly diagonally dominant in the 
sense that

Re(sii) >
1

2sin(7r/К )  zD»«- >jl I > (8)

then the CVNN will converge to a fixed point from any given initial 
state (Lee 2001b).

Proof: We first prove (ii) since (i) can be referred to as a special case 
of (ii). Let S  =  W  +  T  where W  is the cross-connection matrix,

W  =

I  0 Wi2

W21 0  

\ W N  i

w i n

W n - 1,N  

w n , n -  i 0  )
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Wa — 0 Vz, and T  is the self-connection matrix,

(  £ll 0 ••• 0
0 2̂2 •
• 0

Vo . . .  о tNN

Uj — О V i ф j.  Then, the energy function of a CVNN can be defined 
as

E (X ) 1
- - R e[X*SX]  

=  -£ R e[X * (W  +  T)X ].

Assume the transition from a state X  to its next state X  +  A X ,

A E  = E ( X  +  A X )  -  E ( X )

= ~  Re[(X +  AX)*(W  +  T ) ( X  +  Д.ЛТ)]

Re\X*(W + T)X}.

The objective is to find the condition on S  such that A E  <  0, and 
A E  =  0 if and only if A X  =  0. After some algebra one obtains

A E  = Re | - A X * ( W  + T ) X  + ^ A X * W X  

— X ' W A X  -  ^ A X * \ V A X  -  ^ A X ' T A X  J 
=  R e | - A X ‘SX  +  iA X * (V K -W *)X  -  ^ A X * T A X ^

Since the network is operated in asynchronous mode, assume A X  =  
X '  — X  and the difference between X '  and X  only comes from the
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Mi component, i.e., Д Х  =  (0 , 0,...,Да;ь ..., 0 )T and A x t =  x'i -  xit 
so

A E  =  Re {(£< -  3 )  j sijXj +  ^ A X ’{W -  W*)X  (9)

Now let

N

У ]  S i j X j  =  n e x p ( j^ ) ,  Xi  =  exp(-j'V'i), and ж' =  exp(-jV 'i). 
j= l

where r, and ф{ denote the modulus and phase angle of 
respectively. Moreover, let =  arg(xi) and ф[ =  arg(a;-). We find

Re j (x i  -  i ' )  E  sijx i |  (1 °)

=  n  Re {exp [7 (<& -  ^ ) ]  -  exp[? (& -  $ ))}
=  r;[cos(<k - ip i )  -  cos(<f>i - $ ) ]  < 0

The last inequality follows from the fact that ф[ is the quantization 
value closest to ф{. Also note that

^   ̂ ~  W j i ) X j  =  ^  ^(^tj 
j^i j^i

and
|xi| =  1, |Дх*| =  |Агг^|, and =  si£) Vz 

From (9) and (10) we obtain
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s  s ( |A x , |
-  R e ( s i i )  | Д а * | ̂ (̂S*j Sji)xj 

j^i

<  I  { |Дж»| J 2  |sy  -  Siil -  Re(sii) |д ^ | 2|

<  0.

The last inequality hold if we choose

j /»

and A E  — 0 if and only if =  0. Since E  is bounded from below 
as long as |e# | is bounded for all i and j ,  i.e.,

E =  >  - i £ £ > ( |
*=1 j =  1

Therefore, in asynchronous mode and starting with any initial vec-
’ r i a f  ways converges to a fixed point. Moreover, the mini-

asin f0 / ^ ^ 0311 °^ta*ne<̂  by examining Figure l,.i.e., |Aa?i| >  
^ ьЩтг/К). Hence we obtain (8). The proof of (ii) is complete.

Гв) wiU S e e  to "  that *  =  ** ^  > (i'e-> 5  "  Hermkian)’ 

R e (s« )> 0 , i =  (11)

^ясНпа Very S11™lar t0 (7). The difference reflects the fact that the
i • ^ P^rt 0 S" ®*ves no contribution to E. The proof of theo

rem l is thus complete.

Remark 1. If К  =  2 and S  is a real matrix, then (8) reduces to

Sii -  2 Yl Is*; -  «*1. * =  (12)
j^i
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Figure 1. Schematic representation of the relation between |д and К

That is, condition (8) generalizes the stability condition (Xu and 
Kwong 1995, Xu et al. 1996, Lee 1999) of the bipolar Hopfield model 
(Hopfield 1982, 1984). Moreover, if S  is permitted to be a complex 
matrix, ( 12) becomes

Re(su) > 5  X ) Is* "  ' i = 1 > N  (13)
rfr

The meaning behind (13) is that one can design a bipolar real state 
network (i.e., X  e  {1, -1 } ^ )  by using complex weighting connec
tions, S  G CNxN. This formalism enhances the design flexibility of 
neural networks.
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3.2 Stability in Synchronous Mode
Theorem 2 (Lee and Wang 1998): Given a CVNN with a complex 
weight matrix S =  and assume that it is operating in syn
chronous mode.

(i) If S  is Hermitian and nonnegative definite, then the CVNN will 
converge to a fixed point from any given initial state;

(ii) if S  is only Hermitian, then the CVNN will converge to a fixed 
point or to a cycle of length 2 .

Proof: We first prove (i). Define the following energy function

E(X)  =  ~ I X * S X .

Here no operator Re(-) is necessary since S  is Hermitian. The energy 
change from the current state X  to next state X ' is

A E  =  E { X ' ) ~ E { X )

= -~{x, -xys{x,-x)-x*s(x, -x )
<  ~ X * S { X ' - X )

The last inequality follows from the fact that S  is nonnegative defi
nite. Also note that — X*S(X'  — X)  G R . Applying the same nota
tions as in the proof of Theorem 1 yields

- X * S { X ’ -  X)
= -{x' -xysx

N r N

=  ~ ^ 2 ^ г - х г )
»=i ij= i

N

=  Re { e x p -  ipi)} -  exptftyi -  ф’{)]}
1= 1
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N

=  r i [ c o s ( ^  -  Ipi) -  COS(4>i -  1p'i)}
t=l

< о
As in the proof of theorem 1, the last ineqality follows because 
is the quantization value closest to ф{. Therefore, we conclude that 
AE  < 0 and AE =  0 only if X' =  X,  i.e., Vi The proof
of (i) is complete.

For the prove of (ii), the following energy function is defined,

=  - R e { [ X ( t ) ] * S X { t - l ) }

Here we use X  (t) instead of X  to represent the current state. Analo
gously, X( t  — 1 ) and X( t  +  1 ) will be used to represent the previous 
state and the next state, respectively. Now the energy E is denoted as 
a function of time because not only X  (£) but also X(t  — 1) are used 
to determine the value of E  (Goles et al. 1985). Next consider the 
energy change resulting from the state change in X  by an alternative 
form of (4), i.e.,

X ( t + l  ) =  ф{ЗХ{1)}.

The difference between the energies of the next state X( t  + 1) and 
the current state X  (£) is

A  E  =  E ( t  +  l ) - E { t )  (14)

= -±{{x(t + i)-x(t-i)}'sx(t)
+[x(tyrs[x(t +1) -  x(t - 1)]}
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Now let
N

^ sijxj(t) =  rfexp|j ф ^ )]
»= l

X i ( t -  1) =  exp[7^(«- 1)]
and

Xi(t +  1) =  ехрЦф^ь +  1)]

i ) Z l  ?his modulus of E  w W ;  ш  - 1 ) .and м +) are the phase angles of £ sijXj(t), Xi(t -  1 ), and x{(t + 1 ), 
respechydy Note that the phase angle of £ % * ,•(* ) and Xi(t +  1 )

en ica and equal to (£ 1- 1 ). Consequently, (14) can be further 
represented as

A E  =  ~  Re{ E t=i{exp[-jV'l (̂  + 1)J

=  £ t=i П Re {exp|ji(^(i) _  ,/,.(* _  щ

- e x p b ' ( ^ ( t ) - ^ ( i  +  l))]}}
N

~  £ * [ « ( * ( * )  -  -  1 ) )  -  COS ( ф { ( ь )  —  7 p i ( t  +  1 ) ) ]  
*=1

< о

^  ^°^o w s  because  i p ^ t  H- 1) is  the q u an tiza tio n  va lue  

• S* Therefore, w e co n c lu d e  that A E  <  0 an d  A E  =  0

from  к  ~~ л1 tflat *S’ ^  =  X '  ^ s o  note that E  IS b o u n d e d  
e o w  as lo n g  as |s*̂ | is  bo un ded  fo r  a ll г an d  j ,  i.e.,

^  - \ [ X ( t ) ] * S X ( t - l ) \
N N

* -E E
t=l 7=1

\Sij

the CVNN Ŝ ncllronous m°de and starting with any initial vector,
wo The nra‘!fayf ,Cr ergeS t0 a fixed P°int or a limit cycle of period two. 1 he proof Of (n) is complete.
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4 Learning Rules
From above observations we know that in a CVNN states are updated 
according to the update equation; in addition, the network dynamics 
can be described by using energy function approaches. Iterating via 
a specific update mode ensures that the corresponding energy de- 
screase so that the network eventually reaches an equilibrium state 
(fixed point) corresponding to a local energy minimum. A CVNN 
will behave as an associative memory network if these fixed points 
correspond to a set of prespecified prototype patterns. Recall that a 
fixed point X /  =  [x/i,a;/2, has the following property:

Obviously, a stored vector can be recalled only if it is a fixed point. 
In other words, we must find a weight matrix S  such that

In this section three existing learning methods were reviewed and 
discussed.

4.1 Generalized Hebb Rule
In the original CVNN (Jankowski et al. 1996) the m  prototype vec
tors are stored in the weight matrix according to the generalized 
Hebb rule

X ,  =  <j>{SXf}. (15)

(16)

(17)

Equation (17) can be written in the matrix form as

(18)
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The weight matrix obtained from (18) is Hermitian and nonnegative 
definite because the quadratic form

is always greater than or equal to zero. From the theorems in section 
3, the CVNN will always converge to a fixed point under both the 
asynchronous and the synchronous update modes. However, as in 
the case of bipolar networks (Hopfield 1982, 1984), the generalized 
Hebb rule (18) can not ensure that all the stored vectors are fixed 
points described by (16). Consider the following signal and noise 
expansion of 0 {SX fc}, i.e.,

The vector in the bracket may be viewed as a signal X k plus a noise 
term

Recall that the resolution factor К  divides the complex unit circle 
into К  separate sectors and each of them has an angle of в. There
fore, ф{БХк} =  X k if and only if all entries of the vector S X k

1 i m 
=  <fi \-f i l(xkr x k} x k +  - Y ^ l ( x r x k }x '
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locates in the same sectors as their counterparts of X k and this is 
happen only when the prototype vectors are mutually (or nearly) or
thogonal. Also note that the noise term increases in magnitude as the 
number of prototype vectors increases. Based on these reasons, the 
capacity by using generalized Hebb rule is low.

4.2 Pseudoinverse Rule
If we can find an S  such that

S X k =  X k, fc =  1 , ...,m  (19)

then each of the prototype vectors will be a fixed point of (16). The 
condition (19) is more conservative than that in (16) since the trans
formation between prototype vectors is strictly linear in the former 
case. Let

E =  { X \ X 2, . . . ,Xm).

(19) yields the matrix equation

SE =  E. (20)

One solution of this set of Nm  linear equations is given by

S — EE7 (2 1)

where E7 denotes the pseudoinverse (Albert 1972) of E . For exam
ple, if E has full column rank, i.e., (E*E) is invertable, E7 can be 
computed by using a simple matrix equation:

E7 =  (Е*Е)_1Е*.

In this case
S =  E(E*E)_1E*

will be a Hermitian and nonnegative definite matrix. As in the case of 
generalized Hebb rule, a CVNN constructed by pseudoinverse rule
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will always converge to a fixed point under both the asynchronous 
and the synchronous modes. However, when the columns of £  a r e  
linearly dependent, E 7 can be obtained by using the singular v a lu e  
decomposition (SVD) approach. In this case (21) will be the approx
imation solution of (20) which minimizes the error

E  =  ||5 E  — £ | | .

Here || • || denotes the Euclidean norm operator.

The pseudoinverse rule guarantees to stored specified prototype vec
tors corresponding to fixed points provided that the prototype vec
tors are linearly independent. This implies that the capacity of this 
method is limited to N.

4.3 A Modified Gradient Descent Learning Rule
In the following we proposed a modified learning rule to improve 
the capacity of CVNN. Analogous to bipolar Hopfield network de
sign (Perfetti 1991), here we search for solutions of (16) with the 
following two assumptions:

i) S  is Hermitian. This guarantees the stability of the designed net
work under asynchronous mode.

ii) S  is zero diagonal. This reduces the number of spurious memories 
and avoid trivial solutions.

Recall that the objective is to store m  prototype vectors X k, к =
1 ,..., га, in the CVNN. The matrix S  must satisfy the following sys
tem of m  x N  conditions:

( N
* = Ф  E

I j=l

Since ф(г) is a projection function which projects z  onto the nearest 
quantization level on the complex unit circle, the importance is the

hj%kj ^  , к — 1 , m\ г 1 (22)
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phase but not the amplitude of z. Keep this in mind, we consider the 
following cost function (Lee 1991a)

771 N

k=1 i=l

where
ч Хп.а(кл) +  Xj.b(k,i)e(k, г =  1 -  . A_L_i_2 (24)

^ a ( M )2 +  6( M )2

In (24) Жд. and xkj. denote the real and imaginary part of :rf, respec- 
tively. Moreover,

a(k,i) =  Re < > (25)
I j=i

b(k, i) =  Im Siixi j  (26)

The error б(&, г) measures the difference between 1 and the cosin 
of the phase difference between argfxf] and a r g ^ ^  Sijxf[. The 
smaller the phase difference, the smaller the value of the error.

Since S  is Hermitian and zero diagonal, i.e., Sij =  s^; Sa =  0, one 
has

N  

j - 1
i-1 N

=  ^  SjiXj 4- ^  SijXj 
j =1 j=i+l

=  У ' ( s R j i x Ri  +  s I jixkl j )  +  Y ] ( s R ijX Ri ~  s l i j X I j )  
j<i j>*
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+3 ‘j y^XsRaxu ~  SijtxkRj +  У̂ (SRijXi, + ShjXRj) !
I j<i j>i )

=  a(k,i) +  jb{k,i)

Note that only spq (p <  q) is to be updated. After learning was ter
minated, the weight spq (p >  q) can be obtain by using the relation 
Sij =  Sji. The following gradient descent learning rule is used.

Spq{ t + l )  =  ( p < q )  (27>

where 77 is a learning coefficient, 0 <  r\ < 1. The gradient in (27) 
can be derived in the following way. By the chain rule,

dJ
ds F L p q

^  f  d J  д е { к , р )  d J  &(M)\ g) 
£ r i \ d e ( k , p )  d s де( к,  q) Os r ,,, J

=  y . ( &(fc,p) de(k,q)\

I  dsRp, dsRpя j

and

ds
dJ  (fc.p) dt{k,q)\ n q )

ч г § Ь ^ + ^ ч г /  (29)

Note that

^€(fc.P) _  9e(fc, p) da(fc,p) de(fc,p)dfr(fc,p) 
dsRv, da(k,p) dsftpq db(k,p) d s ^

=  ea{k,p)xkR<i + еь{к,р) х кя

where

ea(fc,p) 4  M M ;  (31)
da(k,p)

*b(k,p) 4  | M ,  (32)
db(k,p)
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Similar derivations give

(9c (к о)
=  *Лк, q)xkRp + eb{k, q)xkIp (33)

UbRpq

дс (к j))
q ’ =  «а(^,р)(-а;*,) +  €ь(к,р)хкЛ1 (34)

I p q

d£f c ’ -  =  ta(k, q)xkJp + еь(к, q ^ -x 1̂ )  (35)

Based on (28)-(35), it follows:

dJ  . 8J
+ J ^ 7 ~  (36)d s ^  dsL

771
=  E  {£a(fc,p)x* + eb{k,p){xkIq +  j x kRq) 

k=1

+ 6a(fc,g)a;p + 6b(fc, q)(xkIp -
m

=  E  {[e“(fc>P) +  j eb{k,p)]xk + [ea(k,q) -
k= 1

where

6 ( M ) { a ( M X  - 6 ( М ) 4 Л
e« ( M  = ------f л:— ‘ , - . , , , 3/2 t =  porq-, (37)

{а(к,г)2 +  6(А;,г)2} '

and

, (38)
{a (M )2 +  b (M )2}3/2

can be obtained from (24), (31), and (32). Moreover, from (3), (22), 
and (24),

e(k,i) < 1 -  cos(7r /if ) , Vfc,z (39)
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can be referred to as a criterion to stop the learning rule (27). B e c a u se ^  
all the training vectors are stored as fixed points of (22) as long af== 
(39) is satisfied.

Finally, we summarize this learning algorithm as follows:

S t e p  2 :  Compute (24) and check if (39) hold. If so, proceed to s t e p  
4; otherwise, go to step 3.

5 Computer Simulations
xperimental results are presented here to demonstrate the capac-

rvMM е? ° Г correction capability of the CVNNs. Though the 
s are s own to be globally stable under different matrix con- 

fh 10qS an uP^ate modes, in the following simulation it is assumed 
mode 1S еГШ̂ ап anc* system is operated in the asynchronous

5.1 Capacity Test

Step 1 : Set the initial values of 
bers, for all г, j .

SRij and s^. to small random n u m -

and eb{k,i)  V k, i  by (25),(26), (31) and (32), respectively0 Then 
update Sij (г < j )  by (27) and go to step 2.

Step 4. Update ву (г >  j )  by the relation sy  =  §#, then stop.

Capacities of CVNNs u/ifh »шл __ . .. . . , •

nf tro;n- --------  d , me com ponent
mg vectors are assigned to complex random values from
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the К  quantization values in (3) with equal probabilities. For each 
combination (m, К ), there are 100 sets of training vectors and each 
contains m  training vectors. A set is called an event. An event is 
called a successful event if and only if each vector in a training set is a 
fixed point by a specific training method. For MGDR, the maximum 
number of learning cycles is set to 1000. In other words, learning 
will be terminated after 1000 learning cycles regardless of success. 
Figure 2 illustrates the percentage storage capacity with two different 
encoding methods. The improvement obtained by using the MGDR 
is evident

Figure 2. Capacities of the CVNNs with GHR and MGDR (-о-: К  =  4, 
- X - :  К  =  6 , К  =  8 ) .

5.2 Error Correction Capability Test
The error correction capability is also tested once a successful event 
occurs in the capacity test. The sizes of the training set being studied
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are m  =  3, 8 , and 16, respectively. After training was carried o u ^  
for a set of training vectors, the CVNN was tested with a testing 
which contains the noisy versions of the training vectors. The no isy  ‘ 
versions of a specific training vector are generated by replacing гг- 
components of the original training vector by some random complex 
values chosen from the К  quantization levels. For each combination 
(m, n, K) ,  10 independent sets were tested. The percentage of cor
rect recall of CVNN with two different methods at a variety of тъ 
were recorded in Figure 3 and Figure 4 . The results plotted at a va
riety of К  are also indicated. As seen from Figure 3 and Figure 4 , 
the error correction capability degenerates as К  increases. However, 
the proposed method yields a significant improvement over the Hebb 
rule training. For example, when m  =  3 and К  =  4 the GHR has 
over 90 percent of success if the number of corrupted components 
и <  6 . It can be improved to n <  8 by using the MGDR with the 
same conditions. Moreover, when m  =  3 and n =  5 the GHR has 
nearly 92 percent of success if К  =  4. Under the same conditions, 
the percent of success can be preserved by using the MGDR even 
when К  =  8 . These results indicate that the error correction capabil
ity of the CVNN is also improved by using the MGDR

6 Conclusion
Using complex representations of the states and the connection 
weights, respectively, conventional Hopfield networks can be ex
tended to complex-valued neural networks (CVNNs). Since the state 
variables are represented by complex values on the unit circle of the 
complex plane, their corresponding phase angles are defined as new 
variables. This formulation enables the training vectors of CVNNs to 
permit multivalued components, thereby enhances the design flex
ibility of the neural networks. The stability conditions of CVNNs 
under various updating modes have been presented. A learning rule, 
MGDR, is introduced to enhance the storage performance of CVNN. 
The weight matrix obtained from MGDR not only guarantees the sta-
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Figure 3. Error correction capability of CVNNs with MGDR (-о-: К  =  4,
- X - :  К  =  6 , К  =  8).

bility of the designed network, but also reduces the number of spuri
ous memories in state space. Simulation verifies that the capacity of 
CVNN with MGDR is much larger than that with generalized Hebb 
rule (GHR). On the other hand, with the aid of the MGDR, the er
ror correction capability of CVNN is also improved. Although the 
results presented here is based on a Hermitian weight matrix with 
zero diagonal, a learning rule for non-Hermitian weight matrix with 
nonzero diagonal can be derived by following a similar way. More
over, the analysis of CVNNs can also be extended to the heteroasso- 
ciative memories (Lee and Wang, 1998 and Lee 1998).

Further work in this area is worthwhile. For example, find a learning 
rule that is capable of shaping and/or expanding the attraction basins 
of the CVNNs. The analysis would subsequently be more compli
cated than that in the bipolar network.
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Figure 4. Error correction capability of CVNNs with GHR (-о-: К  =  4, 
-x-:iC =  6, -+-: iC =  8).
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Chapter 4

A Model of Complex-Valued Associative 
Memories and Its Dynamics

Yasuaki Kuroe

This chapter presents a model of associative memories using 
complex-valued neural networks and studies its qualitative behav
ior theoretically. The model is a direct extension of the conventional 
real-valued associative memories of self-correlation type. One of 
the most familiar models of associative memories is self-correlation 
type. We are interested in what will become of the conventional real
valued associative memories when they are directly extended in the 
complex domain. We investigate the structures and asymptotic be
havior of solution orbits near each memory pattern. We also discuss 
a recalling condition of each memory pattern, that is, a condition 
which assures that each memory pattern is correctly recalled.

1 Introduction
In recent years, there have been increasing research interests of arti
ficial neural networks and many efforts have been made on applica
tions of neural networks to various fields. As applications of the neu
ral networks spread more widely, developing neural network models 
which can directly deal with complex numbers is desired in various 
fields. Several models of complex-valued neural networks have been 
proposed and their abilities of information processing have been in
vestigated.

57
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One of the most useful and most investigated areas of applications
о neura networks addresses implementations of associative m e m 
ories. mong them associative memories of self-correlation ty p e  
are easy to implement and have been extensively studied. S o m e 
mo e s о complex-valued associative memories of self-correlation 
1009 ЬееП proposed (Hashimoto, Kuroe and Mori 2000, H irose
J I T ’ Hashimoto and Mori 2001 a, Kuroe, Hashimoto a n d  
Mon 2001b, Nemoto and Kono 1991, Noest 1988).

The purpose of this chapter is to present a model of self-correlation 
ype associative memories using complex-valued neural networks 

an to investigate its qualitative behavior theoretically (Hashimoto, 
uroe an ori 2000, Kuroe, Hashimoto and Mori 2001a, Kuroe, 
as imoto and Mori 2001b). The presented model is a direct ex- 

ension о the real-valued model of the continuous-valued associa- 
e memories of synchronous and self-correlation type. We are in- 

eres e in what will become of the conventional real-valued asso- 
lative memories when they are directly extended in the complex 
omain. t will be shown that the model of complex-valued associa- 

e memories possesses characteristic features that the conventional
orv ^  UC • m°de^does not P°ssess. In the model, though each mem- 

vector is an equilibrium point of the network, it is not isolate one,
° Пе ° 1 e Points belonging to an equilibrium point set which is 

° ° ne corresPond*n& t0 the memory vector. These equilibrium 
„ considered as the memory patterns in stead of the corre- 
rips Vecjfors‘ m°del of complex-valued associative memo- 
ctnHi а т1011 ШеаГ dynam*ca  ̂ system and its qualitative behavior is 
behavm П ра^ 1Си1аг’ we investigate the structures and asymptotic 
tool к  tb ° S° UtI°n orl)its near eactl memory pattern. Main analysis 
tion гЬяГ Cemer manifold theoi7- We also discuss a recalling condi-
correctly recalled" и'° П Wh'Ch that each т е т о г У Pattern is

n - d i m l n l l r ^ ’ the 'maginary unit is denoted by t (г2 =  -1 ) .  The 
comPlex (real) space is denoted by C n(Rn) and the
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set of n x m complex (real) matrices is denoted by C nxm(Rnxm). 
For A E C nxm (a E C n), its real and imaginary parts are denoted 
by AR (a R) and A1 (a7), respectively.

2 Complex-Valued Associative Memory 
of Self-Correlation Type

2.1 Model
Let 77i be the number of memory patterns to be stored and each 
memory pattern be an N  dimensional complex vector, denoted by 
s (y) £ 7  =  1,2, • • •, 7П. Suppose that the set of memory pat
terns satisfies the following orthogonal relations.

s (7)*„(0 _  f  N > 'У =  1 m
1  o, 7 ^ 1  U)

|s'7)| = l, j  — 1,2, • • •, TV (2)
for all 7 , 1 =  1,2, • • *,77i where 5* is the conjugate transpose of s 
and is the jth  element of s ^ .  Consider a complex-valued neural 
network described by difference equations of the form:

N
X j [ t + 1] =  j  =  l , 2 , - - - , N  (3)

* =  1

where Xj [ t ]  € С  is the output of the jth  neuron at time t , Wjk  6 С  is 
the connection weight from the kth  neuron to thej'th neuron and /(•) 
is the activation function which is a nonlinear complex function ( /  : 
С  —» С). Figure 1 shows the schematic diagram of the complex
valued neural network (3).

Let us determine the weight matrix W =  {wjk} € C NxN and the 
activation function /(■) so that the neural network (3) can store the 
set of memory vectors and act as an associative memory.
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The weight matrix W  is determined after the model of conventional 
ea va ue associative memories of self-correlation type as follows.

1 ;g Ы \°Unt ° f  thC orth° g °nal structure of the set o f memory vec- 
rs (s  }> we determine the weight matrix W  by the sum of the 

autocorrelation matrix of each memory vector a™:

W
1  m

7=1
(4)

vj>]n н C ™Portant Actors to characterize behavior of a complex-
vaiimH nCUra netW0r  ̂ is its activation function /(•). In the real-

r̂nnnth nei^̂ 4 netW0r ŝ’ ^ e activation is usually chosen to be a
comnlp an • 0UI)decl funct*on Such as a sigmoidal function. In the
an arti X re^1̂ n’ owever» there are several possibilities in choosing
a canHiHs10n u” ctI0n because of a variety of complex functions. As
functinr^ к e ac*ivation function /(•), we will choose a complex 
function which satisfies the conditions:

moirfol f  Sm° 0t  ̂ anc* bounded function by analogy with the sig
moidal function of real-valued neural networks, and
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(ii) each memory vector becomes an equilibrium point of (3).

The condition (ii) is accomplished by choosing a function which sat
isfies

/(s<7)) =  s<7), j  =  7 = 1, 2 (5)

In regard to the condition (i), we recall the Liouville’s theorem, 
which says that ‘if f(z)  is analytic at all z € С  and bounded, then 
f(z)  is aconstant function’ . Since a suitable f(z) should be bounded, 
it follows from the theorem that if we choose an analytic function 
for f(z), it is constant, which is clearly not suitable (Georgiou and 
Koutsougeras 1992). We choose

М  = Ы ’ 4 - l > 0  (6)1 - 1  +  1*1

as the activation function, where rj is a real number satisfying 
rj -  1 > 0. The function (6) is not analytic, but has the continu
ous partial derivatives d f R/dzR, d f R/dzIJ d f 1 /dzR and d f 1 /dz1 

and is bounded:(|/(2:)| < 77, Vz e  С  (\z\ < 00)). Note also that 
the function (6) satisfies (5), which makes all the memory vectors 
s (7), 7  =  1 , 2, • • •, m satisfying (1) and (2) being equilibrium points 
of the complex-valued neural network (3). Note also that the activa
tion function (6) does not vary the phase of its argument.

2.2 Memory Patterns as Equilibrium Sets
In the model of complex-valued associative memories (3), (4) and 
(6), each memory vector s ^  to be stored becomes an equilibrium 
point of the network. But it will be seen that is not an isolated 
equilibrium point. This property is not found in the conventional real
valued associative memories. For each memory vector s ^ \  we con
sider the vector eias where a  is a real number (a € R ). By us
ing the function (6) we can check that etas satisfies the following
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equation

N
eia ̂ (7)

(7)
fc=l

nnint f?u nUm еГ a ’ *mP^es etas ^  is also an equilibrium 
°- f  networkH en ce  each memory vector to be stored is

defined^y ate<̂  e^Û ^ r*um P°int but a point in the equilibrium set

ф(7) =  {eias ^  : Va e R}  С C N (8)
a ^ osed curve in the complex N  dimensional state space 

onsi ering this fact, we can treat the model as associative 
, mones ^  follows; For each memory vector s ^ \  we identify all 

point^ ln ^ e  equilibrium set фМ and regard as a memory
Hvpem ( gure 2)* Hence the model (3), (4) and (6) is an associa- 
uve memory which has equilibrium sets фМ 7  =  1,2 , • • •, m as 
memory patterns.

In
SN// ^

Y ‘ J 1 1

Figure 2. Memory pattern as an equilibrium set Ф<*>.
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3 Qualitative Analysis of Behaviors 
Near Memory Patterns

In this section we will study qualitative behavior of the model of the 
complex-valued associative memories (3),(4) and (6). Especially, we 
investigate the structures and asymptotic behavior of solution orbits 
near each memory pattern Ф(7>.

3.1 Linearized Model Near Memory Patterns
The qualitative behavior of a nonlinear dynamical system near an 
equilibrium point can be studied via linearization with respect to that 
point. We will derive the linearized model of the complex-valued 
neural network (3), (4) and (6) at a point eias^  in each memory 
pattern Ф(7>. Note that the activation function f(z)  given by (6) is 
not differentiable with respect to z, but its real and imaginary parts, 
f R and / 7, are continuously partially differentiable with respect to 
zR and z1. It is, therefore, possible to derive the linearized model by 
separating the model (3) into its real and imaginary parts.

Choose a real number a arbitrarily and let =  eias We sep
arate the model (3) into its real and imaginary parts and linearize 
them around each equilibrium point q^K Let := Xi[t] —
and define y[t] € R 2N by

y[t] =  (A xf [t], A x R[t], • • •, Д 4 [ t ] ,  Дя'М , Д х 'м , • • •, Д*'„М)Т
(9)

where (-)T denotes the transpose of (•). The linearized model is given 
by

y[t +  1] =  J(9(7))yM , 7  =  1,2, • • • ,m  (10)

where J(qb)) =  F ( q ^ ) Y  € R 2Nx2N. The matrices F (g w ) € 
jft2Nx2N an(j у  g  _R2iVx2,,v are given as follows.

Frr Fri v _ ' w R - w 1 ■
Fij

i — w ‘ W R
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where

F r r =  d ia g (
d f R  

d z A

d f R  

’ d z R JcsC5-IIN

d f R  

' d z R

3

z=q{J }

F r i =  d ia g (
d f R

d z 1

d f R 

' d z 1
* = 4 7> ’

d f R 

’ d z 1

F i r =  d ia g (
d f 1

d z R

d f 1 

' d z R
« - # >  ’

d f 1 

’ d z R
)

z=Qn )

F n =  d ia g (
d f 1

d z 1
’

d f 1

d z 1
* = 4 y) ’

d f 1 

' d z 1 .Л

d f R J v - m - f z ' 2

d z R
V \ z \ ( v - 1 + M F

d f 1
A v - 1 ) \ z \ +  z r 2

d z 1
\ A ( v - 1  + M ) 2

d f R d f - z R z I

d z 1 d z R M O ?  - 1 - t - M ) 2 '

3.2 Structure of Solution Orbits Near Memory 
Patterns

We now analyze the qualitative behavior and structure of the solution 
orbits near each memory pattern. This can be done by investigating 
the eigenvalues and eigenvectors of the coefficient matrix J ( q ^ )  ° f  
the linearized model (10). The following theorem holds.
Theorem 1 For an arbitrary real number ft, the matrices J(q  
and J(elPq^)  are orthogonally similar, that is, there exists an or
thogonal matrix T such that
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Proof. Choose the orthogonal matrix T  as

T  =  T (ft\=  I  cos(P) Isin(p) 
Ism(p) Icos(p)

( 12)

where I  is the unit matrix. It is easy to check that (11) holds for the

The theorem implies that all the eigenvalues of the matrix J (q ^ )  are 
the same for all point =  etas ^  and the corresponding
eigenvectors relate with each other by the orthogonal matrix. Fur
thermore each matrix J (q ^ )  has the following characteristic prop
erties with respect to its eigenstructure.
Theorem 2 Let Ai(J(q^)) be the ith eigenvalue of J(q^ ).

least one eigenvalue (rj — 1)/ t j. It also has 2(N — m) eigenvalues 0. 
The corresponding eigenvector to the eigenvalue 1 is

The proofs of Theorems 2 and 3 will be given in Appendix. Note 
that 0 < (rj -  1)/77 < 1 because 77 > 1. It is important to note that 
Theorems 1, 2 and 3 hold for all Ф(7\  7  = 1, 2, • • •, m. Then the 
associative memory (3), (4) and (6) is homogeneous in this sense.

matrix T. □

i — 1,2, • • •, 2N  are all real and less than or equal
to one:

|A i(J (g (7>)) | <  1, i =  1 ,2 , - - •, 2iV ( 13)

for all 7 =  1,2, • • • ,m.

Theorem 3 The matrix J (q ^ )  has at least one eigenvalue 1 and at

(15)

( 14)

It is known that qualitative behavior of solutions near an equilibrium 
point of a nonlinear dynamical system is determined by its linearized
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model at the point if it is hyperbolic (in a discrete time system, the 
coe cient matrix of the linearized model has no eigenvalues of unit 
mo u us) (Sastry 1999). From Theorem 3, however, all the equilib
rium points q 7 , 7  =  lj 2, • • •, m  are not hyperbolic. We introduce 

e center manifold theory in order to investigate qualitative behavior 
ot solutions near the equilibrium points q ^ \  7 = 1 , 2 ,  • • •, ra.

Center Manifold Theory (Sastry 1999) Let g be a CT map with 
fixed point at x. That is, x  =  g(x) and define Dg(x)  := dg(x)/dx.

t o  , 0 , 0  be the disjoint partition of the spectrum of Dg(x) 
with associated generalized eigenspaces E s, E u, E°, corresponding 
to eigenvalues inside the open unit circle, outside the open unit cir
cle, and on the unit circle. Then there exist C r stable and unstable 
invariant manifolds W s, W u tangent to E s, E u at x and a C r~l 
center manifold W° tangent to Ec at x.

It follows from the center manifold theory that, from Theorems 2, 
eac point q 7 on each memory pattern Ф̂ 7  ̂ has no unstable in- 
vanant manifold W u, and from Theorem 3, it has stable and center

Т м т И  h ’ аП<̂  ^Ct C number of eigenvalues 1 which 
ы у?* ^ len ^еге exist 2N  — с dimensional stable invariant 

manifold W s and с dimensional center manifold W c near the equi- 
i rium point q 7 . If c =  1, that is, J ( q ^ )  has only one eigenvalue 
1, the following theorems hold.
Theorem 4 Consider the linearized model (JO). IfJ(q™) has only

e on the unit circle, the corresponding eigenspace de
noted by £W) is given by

£ c(7) =  {ap : Va(€ R)}  с  R 2N ( 16)

* *  ^ St̂ 6A tfl̂ t ^  еуегУ solution у  [£] of the linearized model
(10) approaches ECW a s t ^ o o .

^rom Theorem 3, p  is the eigenvector associated with the

— , ; J hC f bility ° f E°{1) comes from ^ e  fact that the mag- 
all the other eigenvalues are less than one (Theorem 2). □
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Consider the neural network (3), (4) and (6) a 2N  dimensional real 
dynamical system by separating it into its real and imaginary parts. 
Denote the expressions of the equilibrium point qW  and the memory 
pattern in the 2N  dimensional real space by and ф^Ь*, 
respectively. They are given by

дЬЪ» =  ((дег)я)Тг(дМ 1)т)т

and
ф(7)**г ш (T(/3) ^ j  : V/? G Я} С R 2N (17) 

where T(p)  is defined in ( 12).
Theorem 5 If J ( q ^ )  has only one eigenvalue on the unit circle, 
the equilibrium point q ^ 2N has one dimensional center manifold, 
denoted by W c(̂ \ and 2 N —I dimensional stable invariant manifold, 
denoted by W s^ \  and W ĉ  =  ф^Ь*.
Proof The first half of the theorem is obvious. We will show 
W°b) =  фЬЪ* Note that Ф ^Ы  is invariant for the dynamical sys
tem (3), (4) and (6) because it is its equilibrium set. Calculating the 
gradient of ф^Ь* wjth respect to p  at (3 =  0, we obtain

d i bh„ /  _,ftK \  _

J ™  ) - ■ p  ( )

Then ф^Ь* is tangent to E ° ^  in Theorem 4 at P =  0. This com
pletes the proof. □

Theorem 5 implies that if J ( q ^ )  has only one eigenvalue on the unit 
circle, the memory pattern Ф^ 2N itself is the center manifold of the 
equilibrium point qW™ e  Ф (Figure 3). Note that this theorem 
holds for all points in the memory pattern Ф^Ьлг jf it holds for any 
one point q ^ 2N in ф(7Ьлг since all the eigenvalues of J ( q ^ )  are the 
same for all the points q (7) € Ф(7) (from Theorem 1).
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Figure 3. Memory pattern and center manifold

4 Discussions

4.1 Recalling Condition for Memory Patterns

thp mr>H USS *^e reca^ 'ng condition of each memory pattern of 
т л e 0 comPlex valued associative memories (3), (4) and (6). 
_• C previous action we have shown that, if J ( q ^ )  has only one 
ф(7)ПГ :  ° П Un^ c*rc*e ôr a P°*nt <7(7) in a memory pattern 
nf 9 ’ Ше15яГиСШГе ° f SOlUti0n 0rbitS near each point in фМа* consist 
centpr m sta^ e n̂variant manifold and one dimensional
rentf* an-f°i  ̂ urtbermore the memory pattern ф^Ь* itself is the
П  гяпь ТЫсЬ iS tangent t0 ЕФ)  given by (16) in Theorem 
value nn tu С0ПС Udec1, ^erefore, that 4 J(qM) has only one eigen- 
to be со гг и™ 11 ci ĉle* is a condition for each memory pattern Ф^

borhoodofCфЪ) Ipp o i t e ? SOlUti°ThStarting in the ndgh '  if рярЬ —* oo- Then we can determine
ei2envalneT°f^ т/^ыТ ^  correct^  recalled or not by evaluating the 
numerical Р° П °ГС*еГ t0 verify this* we have carried out
is enough to ^ег?теп1 *̂ ^ ote that for each memory pattern Ф(7) it 
ф(7) Va Uate 1 e eisenvalues of J ( q ^ )  at any one point in
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Table 1. Orthogonal vectors 7  =  1,2, • • ♦, 6.

5^) s (3)
s h)s l 1 .000+  20.000 1 .000+  10.000 1.000+  10.000
s h)2 -0 .021  -  z0.999 -0 .9 5 9  -  i0.282 -0 .2 9 4  +  i0.955
s h)53 -0 .6 5 9  -  i0.752 0.937 +  10.347 0.600 -  i0.799
sh)4 0 .127 -zO.991 -0 .4 9 7  +  i0.867 -0 .1 6 4  +  20.986
s h)5 -0 .8 4 4  +  i0.535 -0 .7 6 6  -  i0.642 0.525 +  i0.850
s h )s6 -0 .5 4 1  -  г0.840 0.822 +  i0.569 - 0 .8 0 0 -iO .599
s h)7 0.440 +  i0.897 0 .440+  i0.897 -0 .9 4 4  - 10.328
s h)8 0.820 -  г0.570 -0 .9 9 3  +  10.110 -0 .3 1 3  -  i0.949

(7J
9 0.444 -  г0.895 0 .44 4 -1 0 .8 9 5 0.971 + 10.238

s M 8l s) s (6)

s h)s i 1.000 +  20.000 1.000+  <0.000 1.000+  20.000
s h)S2 0 .9 9 7 - i0 .0 7 1 0.086 +  20.996 0.961 -20 .274
s h)S3 -0 .5 1 3  +  10.858 -0 .8 8 6  +  20.461 0.059 -  iO.998
s h)4 -0 .0 1 4  +  10.999 -0 .7 3 1  -  г'0.682 -0 .796  -  20.605
s h)S5 -0 .4 5 3  +  10.891 0.807 +  20.590 0.425 -  20.904
s h)S6 0.549 +  i0.835 0.941 -  20.335 0.903 -  i0.428
s h)S 7 -0 .9 8 3  — г0.182 0.347 +  г0.937 -0 .0 2 6  -  20.999

(7)
8 0.998 -  i0.050 -0 .1 2 8  +  20.991 -0 .785  -  20.619

s (7)9 -0 .8 2 5  -  i0.564 0.500 +  20.865 -0 .9 8 6 -iO .164

4.1.1 Numerical Experiment 1

Let the dimension of the neural network be N  =  9 and let rj =  2 in 
the nonlinear function (6). Six orthogonal vectors s l̂\  ŝ 2\  • • •, 
shown in Table 1 are specified. First we let m =  5 and choose the 
vectors • * •, s (5) and construct the network (3), (4) and (6).
We evaluate the eigenvalues of J ( q ^ )  of a point in each memory 
pattern Ф(7), 7  =  1,2, • • •, 5. The result is shown in Table 2.

It turns out that each J(q (7)) has one eigenvalue 1, one eigenvalue
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cirHp Ч- eigenvalues 0 and eight eigenvalues inside the open unit 
minpH fb nfCei“ Ch 9  7  ̂ *las оп*У one e>genvalue 1, it can be deter- 
thi« th 3 a iv 6 me,nory patterns are correctly recalled. To verify 
starti n Y  u" 8 test has been Performed. We ran the network (3) 
. r  „Q jf rom 1 e various initial conditions ж[0] in the neighborhood
taineH mT ° ry Pattern- Figures 4 and 5 show examples of the ob- 
ф(7) in§ Process. In Fig. 4, the directional cosine c[t] between
for -v — i ®,s°  utiona:M ° f  the network (3) versus time t  is plotted 

7  1. The directional cosine c[t] is defined by

c[t] =  - ЦФ(т)**М11 
! ( P w ll ll*MID

(19)

g , the quasi-distance d\t\ between them, defined by

d [«] = - (20)

S  Л е т е  ' ^  Pl° tted f° r 7  =  L CW -  1 and d[t) -  0 imply 
figures thafH-f ̂  ̂ paf ern is e re c t ly  recalled. It is seen from these 
the memo™ * ™ tial condition x[0] close enough to

- * w a№' “ ' hes ф<1)- •“  *• we have rhP,-i- ,-t и 1S correct'y recalled. In the similar manner, 
recalled 6 * at ^  t*le °ther memory patterns are correctly

4.1.2 Numerical Experiment 2

and choose nUm̂ r o f ‘he vectors to be stored to m  =  6

(3), (4) and (6). The eigen^lueTof j t t h * * ?  ^pattern ФМ ^  _  i 9 e s o l j (9  j) of a point in each memory
> ’ *> z ,..  . , 6 are evaluated as shown in Table 3.



A Model of Complex-Valued Associative Memories 71

T im e

Figure 4. Time evolution of directional cosine c[t] between and x[£] 
(N  =  9, m  =  5).

0 5 0  10 0  150  200
T im e

Figure 5. Time evolution of quasi-distance d[t] between Ф ^  and x[t] 
( N  =  9 , m  =  5).

Table 3. Eigenvalues of 7  =  1,2, ■ ■ ■, 6.

W № > ) ) 1 0.5 0 inside the unit disk
the number of eigenvalues 3 1 6 8
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In this case all J ( g (7)), 7  =  1,2, • • •, 6 have three eigenvalues 1. 
Therefore we cannot determine if each memory pattern is correctly 
recalled. We have performed the recalling test and examples of the 
results for the memory pattern Ф ^  are shown in Figs. 6 and 7. It 
is seen from these figures that, no matter how close we choose the 
initial condition cc[0] to the memory pattern Ф ^ \ the solution x[t] 
does not approach the memory pattern Ф ^ \ that is, the memory pat
tern is not recalled. These experimental results support the recalling 
condition.

T im e

Figure 6. Time evolution of directional cosine c[t] between Ф ^  and x[t]
(N  =  9 ,m  =  6).

4.2 Comments on Real-Valued Version of the 
Model

Here we give some comments on the characteristic of the real
valued version of the proposed model of complex-valued associative 
memories. As stated in Section 2, a set of the vectors to be stored 
3b) £ c Ny 7  =  1 , 2 , • • • ,771 are specified so as to satisfy the condi
tion (1). and (2). There is a difference between the complex domain 
and the real domain in choosing such a set of vectors. We will con
sider the relation between the maximum number m* of the vectors
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T im e

Figure 7. Time evolution of quasi-distance d[t] between and x[t]
( N  =  9, m  =  6).

satisfying (1) and (2) and their dimension N.  It can be shown that, in 
the complex domain there always exist N  vectors which satisfy (1) 
and (2) in any N  dimensional space, that is, m* =  N.  Hence in the 
complex domain we can always choose N  vectors satisfying (1) and
(2) in the space of any dimension N. On the other hand, in the real 
domain such N  vectors do not always exist, that is, m* < N,  and 
m* =  JV holds only for N  — 2n where n is a natural number.

We consider the real-valued version of the model of complex-valued 
associative memories (3), (4) and (6). Suppose that all the memory 
vectors satisfying ( 1) and (2) are real, s (7) € R N, 7  =  1 ,2 , • • •, m, 
and so is the weight matrix W  =  {wjk} € R NxN in (4). Suppose 
also that, in the dynamics of the neural network (3), Xi[f] is real and 
/(•) defined by (6) is a real function ( /  : R  —> R). Note that, in 
this real version of the associative memory, each memory vector 
is an isolated equilibrium point of the network. Linearizing the real 
version of the associative memory (3) at each equilibrium point 
we have

Д®[« +  1] =  rL ^ W A x [ t]  (21)
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where Ax[t] =  x[t\ — s ^ .  Note that the coefficient matrix ((rj -  
1 )/rj)W is independent of and the linearized models are the 
same for all the memory vectors s (7), 7  =  1 ,2, • • •, m. It can be 
easily seen from (4) that the coefficient matrix ((77 — 1 )/rj)W has m 
eigenvalues (77 — l )/ 7̂ and m* — m  eigenvalues 0. If the dimension 
of the network is TV =  2n, all the eigenvalues of the coefficient ma- 
trix ((77 — l ) / (rj))W can be found; it has m  eigenvalues (77 -  1 ) /tj 
and N  -  m eigenvalues 0. Note that 0 <  (77 -  1 )/?? < 1 because 
77 > 1 . Therefore, in the real version of the associative memory, if its 
dimension is N =  2n, it can store all the m  memory vectors as stable 
equilibrium points and the maximum number of vectors which the 
network can store is N , that is to say, its storage capacity is N.

4.3 Continuous Complex-Valued Associative 
Memories

Consider a model of associative memories using a complex-valued 
continuous-time neural network described by differential equations 
of the form:

dUj{t) /4  "
< T dt из(1)+  2_jWjkXk{t) j =  \  . ■ • N  (22)

k =  /(«#(*))

where weight matrix W  =  {w,fc} e  C NxN is given by (4) and the 
activation function /(•) is given by (6) and т € R  is the time con
stant (r  > 0). For the model of associative memories (22) (4) and 
(6), which we call continuous complex-valued associative memory, 
similar analysis can be done. In the model of associative memories 
(22) (4) and (6), each memory vector s ^  to be stored also is not an 
isolated equilibrium point but a point in the equilibrium set defined 
by (8). We can investigate the structures and asymptotic behavior 
of solution orbits near each memory pattern and obtain the results 
which are parallel to the ones of the discrete-time model (3) (4 ) and
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(6). For example, in the continuous complex-valued (22) (4) and (6), 
the eigenvalues of the coefficient matrix of the linearized model are 
all real and all less than or equal to zero. The coefficient matrix of 
the linearized model has at least one eigenvalue 0, at least one eigen
value - 1 / ( 777) and 2(N -  m) eigenvalues - 1 / r .  If the coefficient 
matrix of the linearized model has only one eigenvalue 0 for a point 
q ^  in a memory pattern then the structure of solution orbits 
near each point in ф(7Ь* consists of 2N — 1 dimensional stable in
variant manifold and one dimensional center manifold. Furthermore 
the memory pattern Ф ^ 2̂  itself is the center manifold. For details, 
see the literature (Kuroe, Hashimoto and Mori 2001b).

5 Conclusion
In this chapter we presented a model of associative memories us
ing complex-valued neural networks and studied its qualitative be
havior theoretically. The model is a direct extension of the conven
tional real-valued associative memories of self-correlation type. In 
the model, each memory pattern is not an isolated equilibrium point 
but an equilibrium set of the network, which is a closed curve in the 
complex state space. We investigated the eigenstructures and asymp
totic behavior of solution orbits near each memory pattern by lin
earizing the proposed model at a point of each memory pattern. A re
calling condition of each memory pattern, that is, a condition assures 
that each memory pattern is correctly recalled was also discussed. 
Some comments on the characteristic of the real-valued version of 
the proposed model were also given.

The contribution of this chapter is based on the studies (Hashimoto, 
Kuroe and Mori 2000, Kuroe, Hashimoto and Mori 2001a, Kuroe, 
Hashimoto and Mori 2001b) The author would like to express his 
gratitude to Prof. T. Mori and Dr. N. Hashimoto for their valuable 
and continuous discussions.
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S1S ° se^"corre â^ on *УРе complex-valued associative mem
ories, Nonlinear Analysis, vol.47, pp.5795-5806.

Kuroe, Y. Hashimoto, N. and Mori, T. (2001b), “ Qualitative Analy
ze , °ntinuous Complex-Valued Associative Memories,” Ar
tificial Neural Networks - ICANN2001, George Dorffner et. al.

Springer СШГС N° teS 1П Computer Science> 2130, pp.843 -850,

т° п  ^ ° n0’ T- (1991), “ Complex-valued neural network,” 
jJan e seT  ^  V° ‘' Л 4 ‘° - П’ n a  9’ №• 1282-1288 (in

pA.  ̂ (1988), Phaser neural network,” Neural Informaion 
^rocessmg Systems, D.Z.Anderson,ed„ pp. 584-591, AIP, New

Sastry S ( i" 9 ) ,  Nonlinear Systems Analysis, Stability, and Control, 
bpnnger-Verlag, New York.



A Model of Complex- Valued Associative Memories 77

A Proofs of Theorems 2 and 3
A.l Proof of Theorem 2
To prove this theorem the following lemmas are needed.
Lemma 1 Let A and В 6 C nxn be Hermitian matrices. If one of the 
two matrix is positive or negative definite, all the eigenvalues of A В 
are real.
Lemma 2 Let A and В € C nxn be Hermitian matrices. If\ \ j(A)  | <
1 and | A j- ( jB ) | <  1, Vj =  1,2, then \Xj(AB)\ <  1, \fj =  
1,2, • • • ,n.
Lemma 3 Let A =  AR +  iA 1 € C nxn (AR e  R nxn, A1 e  R nxn) 
be a Hermitian matrix and define

B = - A 1 
A1 AR e R 2nx2n. (23)

If A is an eigenvalue of A, then В has two eigenvalues A.
The proofs of these lemmas are omitted.

It is obvious that F ( q ^ )  is a Hermitian (symmetric) matrix. Y  is 
also a Hermitian (symmetric) matrix because W* =  W ( {WR}T =  
W Ry { W 7}T =  — W 1). First we show that F ( q ^ )  is positive definite 
and |A ,(F (^ )) ) | <  1, Vj =  l,2 ,---,2 iV . det(AI  -  F(q™)) can 
be calculated as follows.

det(AJ -  F(q™))
=  det(AI — Frr) x

det((AI  -  F/j) -  (Fjr)(XI -  Frr)~1(FrI))

JYi df R\ ( ^ dJ L \ - ^ dJ l II
-  H  V W )  d z * d z ' f  Ц ы

"  Ц 8 г " Д  »«*
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V v  v  J

=  ( A - l  ) " ( X - l Z ± \

N

N

(24)

which^m nr^9 ^ !  eigenva,ues 1 and N  eigenvalues (77-1)/»7, 
Wh*h .mphes F (9W) > 0 and |A,(F(gW))| <  1 because 0 <(V ~ l)/rj <  1 ’ v a,u < 1 because и <

Next, we show |A ,(F )| <  L From (4)> Wgh) =  eW 7 =
■*■5 ч 771. This i t т t . -
s h o w n  Г - . ™ 8 ^ P^es ^ at ^  has m  eigenvalues 1. It can be 

, m t e dimensional complex space, there always exist

ш  s r s ;  - (e! ■ * •  • ■ ■ ■ ^ > r « o * . » .  w . . . , » -

Ы  =  1, 2 , 2 ,

h” T mW/ "  ° '  m . ™ s implies J ”
values 1 and'И ™ - ! ! ,? ’ ?Г°т  "1“  “ “ Lemm* 3- Г  has 2m “ 8'" ‘ 
Then F ( q(t)) and у  cat- eig®nvalues °> which gives |А ,(Г)| <  1-
completes the proof У COnditions of Lemma 1 and 2, which

A.2 Proof of Theorem 3
Straight calculation of J (9 W)p  gives

е/(д(7))р =  F (9 W)Kp  =  F(qW)p  =  p .

is P. Similarl^wecan obtdnUe 1 ’** COrresPonding eigenvector

J(q^)r  =  TL l l r.
V
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Define the vectors g® and h by

^(0 =  ((eWR)T} (eW)T)T € R 2N

and
hW =  ( ( { i e « Y ) T, ( { i e{l)Y )  T)T e R 2N

where e ^ R and e ^ 1 are the real and imaginary parts of eW in 
(25), respectively, and {ге(̂ }я and {ге(/)}7 are the real and imag
inary parts of ie^l\  respectively. From (25), J ( q ^ ) g ^  =  о and 
J(qW)h{l) =  о for / =  1,2, . - . , JV — m. This implies that J ( q ^ )  
has 2(N — m)  eigenvalues 0. □
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Chapter 5

Clifford Networks

Justin Pearson

This chapter introduces a class of feed-forward neural networks 
which have Clifford valued weight and activation values. Clifford 
Algebras generalise the Complex and Quaternion algebras to higher- 
dimensions, thus Clifford networks are natural generalisations of 
complex valued networks. In this chapter the back-propagation algo
rithm is derived for Clifford valued networks and an approximation 
theorem is proved. Because Clifford Algebras are a generalisation of 
the Complex and Quaternion algebras the approximation results also 
shows that Complex networks are universal functional approxima
tors.

1 Introduction
The complex numbers can be motivated either algebraically as pro
viding a field where the equation x2 =  —1 can be solved or geo
metrically as providing an algebra of two-dimensional space. The 
geometric interpretation is used in engineering an signal processing 
to provide an algebraic framework that allows reasoning about fre
quency and phase information.

Clifford Algebras are bom out of geometry. A Clifford Algebra in
cludes the normal vector algebra but provides an algebraic frame
work where symmetries and geometric transformation s can be rea
soned about within an algebraic framework.

81



82 J. Pearson

!al e x L n ? Pter^ iff° rd netW° rks are P«sented which are a natu- 
orem ic ЮП °a г omP̂ ex valued networks. An approximation the- 
univerQ ai^^6 -°r ord networks which shows that they are
White l ^ T T mat° r,S 1П the SCnSe 0f (Hornick’ Stinchcombe &  

fi !s Pr00  ̂specialises and gives a proof of the approx-
g power of Complex valued feed-forward networks.

2 Clifford Algebras

гея1 i l fT er WC °n̂  consider Clifford Algebras defined over
m otive’116 Vê .t0^ sPaces- Clifford Algebras arise from geometric
bras cnrn^t-w  1C ^  sketc^ec* below, algebraically they are alge-
Drodnrtc C WIt^ ^uadratic forms. Quadratic forms allow inner
tionch' аП ”0rms t0 studied in non-euclidian spaces. The relationship is studied below.

!L!hl ? Ctl0n: firS- a direct construction of Clifford Algebras over 
sebras Ŝ aofs *s &ven> then this is generalised to Clifford al- 
then rebt^H i? \  ГОШ Quac*rat*c forms over vector spaces; this is 
a classify t' aC- *°.^е geometrical motivation given below; finally 
"пасеГчЬо 1l glVCn ° f a11 Clifford A^ b r a s  over real vectors 
bers the R^nvr* a* шапУ matrix algebras over the Complex num- 
gebras Ca Um CrS and Quaternions ^ e  in fact Clifford Al-

Geometric Motivation for Clifford Algebras

operations- ^  extension of a vector algebra. It has two
and Clifford M* ^  corresPoncls to normal vector addition
“ = T 0 ” 0" which 8' neraii“ s <*<>• “ d
Clifford Algebra г  Vectors* As an sam ple the construction of the

2 2 Й Ж 2'<“те“ | Euclkiia" Sp“‘islength bases ~ represented as the sum of two unit
g ba” S CkmenK- «■ “  «  « ш  V -  « 1  +  ,€ i ,h «„ .he scaler
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product of a vector v with itself, v • v, is equal to the square of the 
length that is x2 +  у2. If the vector is formally multiplied by its self 
then (xe[ +  ye2)(xe[ +  ye2) becomes:

x2e[2 +  y2e 2 +  ху(ё\e2 +  e2e[)

In Euclidian space the length of a unit length basis element e* is 
equal to 1, this gives the first equation true in a Clifford Algebra 
of a euclidian space, that is e 2 =  1. The elements e[e2 and e2e[ 
can be thought of as directed areas and are referred as bivectors. 
For an arbitrary pair of vectors, v[ and v2 the bi vectors v[v2 and 
v2v[ represent directed areas. Then the second main equation of in a 
Clifford Algebra (true in all Clifford Algebras) is:

ё[е2 =  —e2e[

hence:
(xe{ +  ye2)(xei +  ye2) =  x2 +  y2

giving the the normal scaler product of two vectors щ and v2. The 
symmetric inner product is defined as:

-  -Vl  • V2 =  -  (ViV2 +  V2Vi )

by cancelling out the terms ё[е2 +  е2ё[ =  0 the expression reduces 
to:

- { 2 x xx 2  4 -  У 1 У 2 )  =  x ^ x 2  +  2/ 12/2 

which is the normal scaler product of a vector.

The non-symmetrical version of the scaler product, the outer product 
is defined as: ^

v{ A v2 =  -{V\V2 ~ tSv!)

corresponds to the cross product of two vectors in three dimensions, 
but instead of giving a new vector gives a sum of directed areas, thus
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giving a dimension independent definition of the cross product which 
is intrinsic to the vector space, for example:

(xiei +  yxe2 +  £) A (x2e[ +  y2e2 +  z2e$) 

which is equal to:

{x\y2 -  y\x2)eie2 +  (zYx2 -  Xiz2)e3e[ +  (yxz2 — zxy2)e2e3

Using the above two rules, the product of any two vectors tJ[ and v2 
can be written as:

V\V2 =  Vi ■ v2 +  v[ л  y2

Clifford Algebras have applications in non-Euclidian spaces, that is 
vector spaces where e] =  —l for some elements e*. The Lorentzian 
inner product used in special relativity where:

(Xiei +  Vl 2̂ +  +  heA) • (xxei +  y xe2 +  z xe3 +  he^) 
is defined to be:

x 1^2 +  2/12/2 +  Z \Z 2 —  t i t 2

has an associated Clifford Algebra where e\ +  e2 +  e\ =  1 and e\ =

сиЫ?пп haVC been USed extensively in physics to aid cal
culations (Chisholm & Common 1986, Hestenes 1986)

2.2 A Direct Construction

forlr nS1°nal Геа1 VeCt°r Space wil1 be denoted “  nV*q <the
AteebraT? ^  + 9 WiU become cIear ^ter on). A Clifford 
Tlp+q and r J  fŴ  1 u“ *  a 2P+<? vector sPace constructed from 
tion of vectors ^  Га̂С de^nin8 multiplication and addi-

<-5 s c r : r r “using quadratic
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The vector space 7lp+q has a basis of the form:

6l, 62, 63, • • • p̂+q

From this construct a 2n=p+q dimensional vector space with basis 
elements:

{ел =  e{hx...hr)\A =  (^i, • • • »K)  € ^ (^ 0 ,1  <  Ai <  . . .  <  Лг <  n}.

(where V(Af) represents the set of subsets of the set {1, . . . ,  n}). For 
example the vector space over 1Z1'2 would have the basis,

60, 6(1), e(2) 6(1,2), 6(1,3), 6(2,3), €(ii2,3)
For notational convenience when no confusion can arise, e^i,...hr) 
will be denoted as е^н2..лг and e<b =  6o or since eo acts as the unit of 
the algebra it is often dropped when writing out elements a Clifford 
Algebra.

An element of the Clifford Algebra is written as a formal sum:

X  —  ^  ^ Х д б д  

Д
with each xA E 7?,. In what follows a summation with a capital let
ter near the beginning of the alphabet denotes a sum over the basis 
elements of a Clifford Algebra.

Addition of two elements of the algebra is defined as for vectors: 

x +  y =  5 3  (ял + Ул)еА
A

Multiplication is slightly more complicated. It is done formally el
ement by element as in expanding brackets subject to the following 
algebraic rules:

e - = 1 , t = l , . . . ,p  (0
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with 1 <  hi < . . .  hr <  n, ehl • eh2 • • • ehr =  ehl...hr. (the geometric 
motivation of these rules are as in section 2.1). This can be expressed 
more compactly in the following way,

едев =  ка^^аав ,

where:
КЛ.В =  ( - l ) # « AnB>\p> ( - l  )**•*> (4)

P  stands for the set 1 ,.. .p, and # X  represents the number of ele
ments in the set X,

p(A ,B) =  £ У ( А ,  j ) ,  p ' (AJ)  =  # { i  6 A\i >  j }, (5)
jeB

and the sets A, В and AAB(the set difference of A and B)  are or
dered in the prescribed way.

For example in Т^д given x =  3 +  4ei -H e2 and у =  e2 +  2ei2 then

ХУ =  (3 +  4ei +  e2)(e2 +  2ei2)
=  3e2 4- 6e12 +  4eie2 + 8exei2 +  e\ +  2e2ei2

By using the reduction rules e\e\2 =  e\e\e2 — e\e2 =  e2 and e2ei2 =  
- e 2e21 =  -e \e \  =  ег . So the product xy is equal to xy =  — 1 +  
2ei +  l l e 2 +  10e12 In general a Clifford Algebra is associative but 
non-commutative.

2.3 Quadratic Forms
This section is intended to show that Clifford Algebras arise naturally
as mathematical structures and in particular how the rules ( 1 - 3 )  
arise.

An orthogonal space is a real linear vector space X  together with a 
symmetric inner product (.|.) from X 2 to П which is linear in each
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component. That is, the following equations are satisfied for all vec
tors x,y and z and all reals a  and (3, first is symmetric in x and у that 
is (x, y) =  (?/, x) and further:

(ax +  f3y, z) =  a(x, z) -I- p(y, z)
(x, ay  +  0z) =  a(x, y) +  P(x, z)

These equations abstract the standard inner product on euclidian vec
tor spaces. A Quadratic form Q on X, can be constructed from an 
inner product by defining:

Q(x) =  (x\x)

The inner product is recoverable from the Quadratic form by the fol
lowing equation:

( ф )  = Q(*) + < ? ( y ) - g ( * - y )  (6)
2

Thus the Quadratic form uniquely determines the inner product and 
vice versa.

A Clifford Algebra for a vector space X  with respect to a Quadratic 
form Q is the universal real associative algebra A which has the 
vector space X  embedded in, such that for each element x of X , 
the following is true (see (Porteous 1995, Blaine Lawson Jr. & 
Michelsohn 1989) for details of the universal construction):

x2 =  -Q(x)  (7)

(where x2 is carried out in the algebra A).

There is a theorem in Quadratic form theory due to Sylvester (for 
a proof see (Lam 1973) or (Bromwich 1986, O’Meara, T.0 1999)) 
that given a real vector space and a Quadratic form, it is possible by 
change of basis to represent the Quadratic form as:

Q(x) =  - x j -  x \ ------x\ +  ip+1 +  • • • +  x2p+q



88 J. Pearson

where p, q is called the signature of the Quadratic form, and p  +  q is 
equal to the dimension of X .

Thus to get the equations (1 - 3), we apply the equation (7) to the 
basis elements of X:

ег Q(ei) =  4-1 For 0 <  x <  q (8)
ei ~  ~~Q{ei) — —1 For q < i < p  +  q (9)

( 10)

The anti-commutative law (equation (3)) can be derived from the 
following proposition.
Proposition 1 For all x, у e  X  then in A,

(xW , d EM +JEl  ( l l )

Proof: From the formula (6):

У) =  Q { x ) + Q ( y ) + Q ( x - y )  =  - x 2- y 2+ ( x - y )2 =  - x y - y x

In particular for distinct basis elements e* and e, we have (eAe*) =  0 
because e, and e, are orthogonal and

e j )  =  Ciej  +  GjCi

from the equation (11) which implies that =  0.

2.4 Some Familiar Clifford Algebras

over thl "Ь0Г ^le Algebras arising from vector spaces
various г !!! S Ш|С "и" the ComPlex numbers the Quaternions and 
(Porteous 198 raS;, a comPlete classification can be found in 
1995  ̂ Tt ic ’ T  wson Jr- & Michelsohn 1989, Porteous 
Clifford Algebra Пох ™  ^  Complex numbers are simply the
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The quaternion algebra is generated from the basis elements 1, г, j , к 
with the relations i2 =  j 2 — k2 =  - 1  and

i j  =  к =  —j i  , j k  — i =  - k j  ,ki =  j  =  —ik

The quaternions are isomorphic to TZ0)2 with the following isomor
phisms,

e0 =  1 , ег =  г , e2 =  j  , e12 =  A;

Some perhaps less familiar examples include the Dirac algebra 7£4д 
and the Pauli algebra 7£3>3.

The algebra 2TZ (often denoted as 7£ 0  К)  is defined over ordered 
pairs (X\,X2 ) with addition and multiplication defined as:

(x i , x2) +  (2/1 , 2/2 ) =  (*i +  2/1 , * 2  +  2/2 )
(xb x 2) * (2/1 , 2/2) =  (xi * 2/ь Z2 * 2/2 )

This algebra is isomorphic to the algebra 7£i>0 under the isomorphism 
ф given by:

ф(а +  Pe\) *-> (a -f- P , a -  P)
with

a +  & a ~ b  
Ф (a,b)>-> —2 ~  +  ~ 2 ~ ei

The algebra 7J10 is called the algebra of hyperbolic complex num- 
bers and can be used in relativity calculations in physics.

Riti is isomorphic to the set of 2 by 2 real valued matrices. This can 
seen by the following identification,

- ( ! ! )  - ( Г . 1)
«..«(J _0, )  - “ (J 1 )

This is a basis for 7Z(2) and defines the isomorphism of algebras. 
This can be generalised to show that 71П)П =  7Z(2n) =  End(7£n).
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2.5 A Partial Classification of Clifford Algebras
Every Clifford Algebra is either isomorphic to a matrix algebra of 
f t ,  С, H  or a direct product of such matrix algebras. Not all Clifford 
Algebras are distinct, and there is the so called periodicity theorem 
which relates higher dimensional Clifford Algebras to low dimen
sional algebras. This section is a short guide to the relationships be
tween Clifford Algebras.

All proofs in this section are omitted and can be found in Chapter
of (Porteous 1981). So far the following relationships have been 

demonstrated:

*°-o ~  n  ’ ^ .1  -  С , 7го,2 =  n  , 7Znin £* Щ2п) , П1Л =  2K

In fact all Clifford Algebras defined over the real numbers can be 
constructed in some way from 11,С or H. Table 1 extends this in- 
ormation The reader interested in the explicit construction of the 
able should again consult (Porteous 1981) or (Blaine Lawson Jr.

ic e sohn 1989). The most useful fact (again for a proof see 
(Porteous 1981)) is perhaps that 7гр+1,, -  п Ц р.

To complete the table to arbitrary algebras it is enough to know that

K,g+s  =  Пм  7г(16) S  7^,,(16).

denJotes the real tensor product of two algebras. This is the 
0 /п. - P®no lclty theorem a proof can be found in (Porteous 1981) 
or (Blame Lawson Jr. & Michelsohn 1989)

3 Clifford Back-Propagation

the back Dronao^ 0" <'*'^ord A'gebras has been setup, we derive

with CHfford valu^w T ght'an lT  * Clifford netWOrkford valued feed a synapses. The derivation of a Clif- 
valued feed-forward network is similar to the derivation of
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Table 1. A table of Clifford Algebras up to dimension 256, p  goes horizon
tally and q vertically

^ p , q 0 1 2 3 4 5 6 7 8
0 n С n - ! l H 7i (2) C( 4) 71(8) J7Z(8) 7г(1б)
1 2n 71(2) C(  2) H (  2) 2 7i (2) H (  4) C(  8) 71(16) 27г(1б)
2 П ( 2 ) 27l (2) 7*(4) C(4) H (  4) 2H (4 ) H( 8) C (16) 71(32)
3 C(  2) Щ 4 ) *71(4) Щ 8 ) C(8) X (8 ) 2H (  8) W (16) С( 32)
4 П( 2 ) C(  4) 71(8)

00N

71(16) C (16) W (16) 2 W (16) П (  32)
5 2Ti (  2) H (4 ) С (8) Я (1 6 ) 2Щ 1 6 ) 71(32) C(32) W( 32) 2Н (  32)
6 2 W (4) H (  8) C(16) 71(32) 2 7 i(3 2 ) 7г(б4) C(64) Н (64 )
7 C( 8) H (8 ) 2 7i (8) H (16) C(  32) 7г(б4) 27г(б4) тг(128) С(128)
8 71(16) C (16) H (  16) 2 H (16 ) W (32) C (64) 7г(128) 2 7г(128) 71(256)

the learning rule for a complex valued network as in (Georgiou & 
Koutsougeras 1992).

In what follows the norm on an arbitrary Clifford number, || • || will 
be used, where,

INI =  ( D * f t )  * (12)

where [x ] a  represents the A'th part of the Clifford number x.

A feed-forward Clifford network with n  inputs and m  outputs will 
have a transfer function,

Ф : (7гр,яГ  -  (Пм )т

Where (7£pj<7)n is the n-dimensional left module over the Clifford 
Algebra 7ZPiq.

To implement Clifford back-propagation an error measure E  is de
fined which measures how well the network models a data set X. 
The basic form is the same,

£  =  5 ^ 1 1 ф - ф Н2

where X  is a set of training vectors.
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И is convenient from the point of view of the derivation to define || • ||

w 2 = E k ^ i 2

where (:t), is a Clifford number representing the i ’th part of x  in the 
m-dimensional Clifford module over TZM .

l' 'at eac^ noc ê *n (he network has the same Clifford valued
ran h ЮП- unc n f  : ^p.9 ~+ Kp,q- The output Oj of the j ’th neuron can be written as, 3

° i  =  f ine t j )  =  ^ 2 u JAeA
A

With u \  a function from К ь о \о П  and

netj = ^  UJijOl 
I
neuron j .where I sums over all the inputs to

order o f^ n h * *?■ n° tice s*nce ^ p »<?ls *n general non-commutative the 
it will he ch ^  1C.atl0n in above equation is important, although 
multiplication^ ^  Section that networks with left weight

5  pX “ aT o r v*1'w ,n “pressive ̂  ■»

In the ° rt" "  number of wei8h t s t h e  ne(work
components nf и pends not оп1У on all the weights but on the 
2 7  “ °h th'  wei‘* ts- Ae*i" A L  II» -  ф||2.

d E _
~A ~  2 x

and using the chain rule,



d[netj]c
& [^i j  ] A

needs a bit of care. Using equation 3:

d[netj]c  _  d[uijXi\c _  д[ш^О{]с
d [ u i j ] A  i  d [ u J i j ] A  d [ u j i j ] A  

Then using the fact that =  Y D E [^i j ] D[o i ]E^ D^ E  and

Э[ыцо,-]с  _  9  (£ d ,s K -]d M e * U ,£ :)
& Iй* i j  ] A Э \u){j ] a

with к defined as in (4) and D , E  summing over all the elements such 
that ервЕ =  =Ьес- Since the denominator of the partial derivative 
only refers to the partial derivative will equal:

d[uJijOi]c d[uJij]A [Oi]EK>A,E r 1 -.1- .
"яг— i—  =  —  ДГ -----  =  K* E Ы е with eAeE =  ±ec

oH jU  d[oji3)A
(13)

For example in the algebra 7£2,o the table of derivatives would look 
like,
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The partial derivative

% ] s
д[иц]л

В = 0 1 2 1 2

ОII М о M l М 2 \x ji\  12
1 M i M o f o i ]  12 М 2
2 М  2 ~ [ x jl]  12 “ M i

1 2 " M l 2 M 2 - M i M o

The error derivative is now quite easy to calculate. If j  is an output 
neuron then,

алг =  Х ц Ф - Ф | |
д и \ д и \ 

d f \0j -  Ф;2|2 =  2[o, -  Ф3}л
д и \



If j  is not an output unit then the chain rule has to be used again.

dX dX ( du*g d[netk\
d u \  ~  ^  dukA d[netk}c  d u \

with к running over the neurons that receive input from neuron j .

The term
d[netk\c

d[uj]A
is calculated in a similar manner to (13),

d[netk]c  f n 
d u \

where Ka.e^a^e =  ec- The derivatives:

dukB
d[xk}c

play the same role as f '(n e tj) does in the real-valued case and de
pends on the activation function used; this will be discussed in the 
next section.

Bringing this all together we have, 

with e^es ±ec  and

\в  _  9||Ф -  ф ||2 n.
"  d7B =  2[0j"  ^ '1b

if j  is an output neuron. If j  is not an output unit then the chain ruk 
has to be used again:

94 J. Pearson



Clifford Network 95

with к running over the neurons that receive input from neuron j  and
— ec-

The choice of activation function for a Clifford network as with a 
complex network requires some care. The normal sigmoid function 

1 can not be used. In (Georgiou & Koutsougeras 1992) a 
simple complex activation is proposed:

This function extended to the Clifford Domain is a suitable activation 
function and has been used successfully in experiments (Pearson & 
Bisset 1992, Pearson & Bisset 1994, Rahman, Howells & Fairhurst 
2001, Pearson 1995) and applications.

4 Approximation Results
Now we have derived the back-propagation rules for Clifford net
works this proves that Clifford networks are universal approxima
tors: that is they any compact continuous function can be approxi
mated arbitrarily close with a feed-forward Clifford network, these 
results generalise the results in (Homick et al. 1989, Cybenko 1989) 
from real valued networks to Clifford valued networks.

There are essentially two ways of analysing feed-forward networks. 
The first views a feed-forward network as a pattern classifier and 
uses statistical techniques to assess the performance of a network; 
see (MacKay 1992). The second treats a feed-forward network es
sentially as a function approximator, that is, given a network with n 
inputs and m  outputs and a set of weight values Uij the network can 
be seen to be computing a function:

Фи : П п -> Пт

In the Clifford case the real numbers 71 are replaced by an arbi
trary Clifford Algebra 7£P)<?. The sort of question then asked is how
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well can a given class of networks approximate classes of func
tions? Various theorems have been proved (Cybenko 1989, Homick 
et al. 1989, Ito 1991, Kurkova 1991) which show that feed-forward 
networks with one hidden layer are sufficient to approximate contin
uous functions. Further results by Sontag (Sontag 1992) show that 
in certain problems two hidden layers are required; this is because 
t e function trying to be approximated is too discontinuous to be ap
proximated by a single hidden layer network.

This section first extends Cybenko’s (Cybenko 1989) proof, that 
rea valued networks with a single hidden layer can approximate 
any ounded continuous function with compact support, to networks 
over an arbitrary Euclidean Clifford Algebra (that is algebras with 
signature 0,g), these include the Complex numbers 7£o,i and the 

uatemions 7£0 2. Before the proof can be made some background

CHfford Analysis^ *П Clifford modules (section 4.1) and

4.1 Clifford Modules and Clifford Analysis

of MŜ ° n dea ŝ a generalisation of vector spaces, the theory
satinn *U CS ° Ver r*n^s: sPecifically Clifford modules. This generali-
rerm v  neCessary *n orc*er t0 state the relevant approximation theo-
tionai I  mS are Stated which * *  generalisations of tradi-
r e s e m ^  “ the Hahn~Banach theorem and the Riesz rep-
ted but th e°re|n 1966, Rudin 1973); all proofs are omit
ted, but these can be found in (Brackx, Delenghe & Sommen 1982).

where°a FnH h1 C CO™ention adopted in (Brackx et al. 1982) is used,

X  l̂ r » , S ^ , A,$ebra is refcmd “ ■“ л alsebra' Acients come a vector space, where the set of coeffi-
different geomer " ng instead of a thus modules have a 
J .  ' E“ m" n“ ' s" » « «  tom  vcc.or spaces.

+ aid „  “Z Z f J ‘fx /imod w f m “ m Abeli‘m sn'“pn (.A, /) -» Xf from A x into x (l) s.t.
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for all A, [i E A  and / ,  g E Jfy) following hold:

(A +  / i ) /  =  А / +  i i f  
(A/x)/ = A(/i/)

<4/ +  0) =  А / +  A# 

eo / =  /

We have already met an example of a Clifford Module in Section 3, 
the space 71* q.
Definition 2 Ler X щ be a unitary left А -module, then a function 
p : X(i) —> 71 is said to be a proper semi-norm if there exists a 
constant C0 > 0 s.t. for all A E A  and f ,g  E Хщ the following 
conditions are satisfied:

P ( f +  9) < v U ) +

p ( \ f )  < Co\X\p(f)
p ( \ f )  = |A|p(f)  ifX e  71

I fp( f )  = 0 then f  =  0

Definition 3 Given a module Хщ the algebraic dual X * ^  is de
fined to be the set o f left А -linear functionals from Хщ into A. That 
is the set o f functionals T  : Хщ  —► A  s.t.

T ( \ f  + g) = \ T ( f ) + T ( g )

/ , р  E X[i) and A E A.
Definition 4 The set o f bounded T  functionals with respect to a
semi-norm p is denoted X*^ С Explicitly for all function
als T  and fo r  all f  E Хщ:

\ T ( f ) \ < C p ( f )

fo r  some real constant C.
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The following theorem is a a corollary to a Hahn-Banach type theo 
rem for Clifford modules for details and proof see sections 2.10-2.1 
in (Brackx et al. 1982).
Theorem 1 Let Хщ  be a unitary left А -module provided with a semi 
norm p and let Yщ be a submodule o f Хщ. Then Уц) is dense in ^(0 
if and only if for each T  €  X*{1) such that Т |У (0 =  01 we have T  =  0 
on X(iy
Now a useful class of function spaces is introduced.
Definition 5 The space C°(/C; .A). Let К be a compact subset of 
(r > 1). Then C°(JC]A) stands for the unitary bi-A-module of 
valued continuous functions on 1C.
This can be thought of as a product of classical real valued functions
i.e.:

C°(/C; A) =  П ЛС ° (Л  K)eA (14)

where A  runs over all the basis elements in the Clifford Algebra in 
question. A norm can be defined for each /  G С°(/С; A):

ll/ll =  sup |/ (x ) | 
хек:

This norm is equivalent to the product norm taken from (14).
Definition 6 Given an open set Q c  1Zn and a sequence { р в ) в  ° f  
real valued measures on П. Then for any open set in П an A  va lu e  
measure can be defined:

в
Definition 7 An А -valued function:

f  =  5 Z  ?авА
A

is said to be \i-integrable in П if for all A and В  ranging over the 
basis elements of A  each f  д is integrable.

]T  restricted to У(1) equal to zero
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/ f(x)dfi=y2eAeB / fA(x)dns 
Jn AB Jo,

A Riesz representation type theorem can be obtained.
Theorem 2 Let T  be a bounded A  valued function in 
Then there exists a unique A  valued measure /л with support con
tained in JC such that for all f  €  A):

T ( f )  =  [  f ( x №
JfC

For a proof again see (Brackx et al. 1982).

4.2 The Approximation Result
Now all the machinery has been set up and the approximation result 
can be proved. A feed-forward network with one output neuron and 
N  inputs units and К  hidden units computes a function:

К  N

ф (х ) =  yvX i+
j=i t=i

with /  the activation function Xi the г’th input, weight values for 
the connection between the input layer and the hidden layer and aj 
the weights from the hidden layer to the output node.

The function Ф(х) can be seen as a function from 7ZN2 (where 2n is 
the dimension of A) to A  and hence a member of C ^(T lN2 ; A). 
Definition 9 An activation function f  (considered as a function from 
7lN2n to A) is said to be discriminating if for any given Clifford 
valued measure fi with support I N2n if:

Г N
/ f ( Y \ yiXi +  ° № ( х) =  0J l " 2n

for  all Уг,в e  7Zq,n implies fi(x) =  0.

Definition 8 For any (i-integrable function f  define:
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It will be shown that when networks have activation functions that 
are discriminating are universal approximators.

The following theorem is the heart of the approximation result. 
Theorem 3 Let f  be any continuous discriminating functions. Then 
finite sums o f the form:

ф (х ) =  Учх * + e i)  (15)

К  N

E > j / <  I  
j=1 1=1

are dense in C (°z)( / N2n; A)

Proof: The proof is essentially a modification of Cybenko’s Theo
rem 1 in (Cybenko 1989) using the theory of Clifford modules in the
last section.

Let S  be the function space generated by sums of the form (15). As
sume that the closure of S  is not all of C ? J I N2n\A)\  denote the 
closure of S  by R . By the Hahn-Banach type theorem 1 there is 
a bounded linear functional T  on C ^ ( I N2n;A),  with T  ^  0 but
T(R)  =  T(S)  =  0. By Theorem 2 this bounded linear functional is 
of the form:

T(h)  =  f  H ( x ) ijl( x )
JIN 2n

for some measure ц  and h € C0{l)(Ik2\  A). In particular since /  € 
C(i){lk2 , -4) is in R, for any yt:

= I  +  0)dn{x) =  0Jk2n i=1

Since /  is discriminating this implies [i =  0 contradicting our as
sumption hence S must be dense in C(°z) (I N2n ■ A)
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So to prove that the class of feed-forward networks considered in 
Chapter 3 are universal approximators, we have to show that func
tions of the form:

m  -  r a w
are discriminating. 
Theorem 4

/(* )  =  j +  X
is discriminatory.

Proof: A function f ( x )  is discriminatory if:

Г N
/  / ( У '  2HXi +  9)dfj.(x) =  0 

J n  2"  i= 1

for all yi implies that /-i(x) =  0. This is equivalent to saying that:

Г N Г N
/  f (y2y iXj+e)dn(x)  =  У ^ е Аев  /  / x ( ^ » + V w ( i ) = 0  

Jn2" ыу w  Jmn i= i

for all т.

Define 7 A(x) : I N2" —» 72. to be the limit of:

7д(х) =  lim /л  (Ax)
A—»oo

(where Ax is a Clifford multiplication, with A a real number). So

f  _ tAzb  =1а {Щ  j  +  |Лг| x +  A|2|

So
' 1 if [z)A > 0 

7 a (z ) =  < 0 if [z]a — 0 
- 1  if [z]a < 0
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In our case:

, A  f  1 if E £ i t t *  +  * ] A > 0
7 Д +  fl) =  I 0 if yiXi +  0]A =  0

I “ 1 ^  E f =1 ^  +  *]л <  0

^ l f NSetS defined by E i=1 +  0]A = о are hyper-planes, since 
^%x% A *s Just a set of linear equations in the components

^ 1 Ге8ь 0? ^  Pr00  ̂*s a m̂ost verbatim from Lemma 1 of Cybenko 
en 0 ). So let П*0 с  I 2 be the hyper-plane defined by:

N

=  0^ V i X i  + в 
i=l

and let Я *  be the half space defined by:

N

+  6>]л >  0 }

convergence theorem we have:

0 =  I n n  U >*)dnB{x) =  f  7A(x)dfiB(x) =  m( H&)
J  J  r* 2

ial but sinr'Were alWayS 3 Pos' t*ve measure the result would be triv-
positive bits'of 8 ^  ^  arbitrary measure the result is harder (since 
positive bits of ц might cancel out negative bits of Mb).

Fix the 2/j s and define:

i=l

Then by the Lebesgue bounded

*=1
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for some bounded /iB measurable function h : 1Z —> 1Z. Fa is a 
bounded functional on L°°(Tl).

Let h be the indicator function on the interval [в a , oo), then:

к

a«:
rfc2n

f  K
F(h) = h ([^2  ViXiU) = Мв(П*в) +  

Jk2n i=i

Similarly F(h)  =  0. If h is the indicator of any open interval, by 
linearity F(h)  =  0 and hence for any simple function. Since the 
simple functions are dense in L°°(1Z) , F  =  0.

In particular given the two functions s(x) =  sin(x), c(x) = cos(x) :

- к к
Fa(s (x ) +  ic(x)) =  /  S( [ £  ykxk]A) +  г с ( [ ^

Jlk2n *=1 k=1

r K= /  ехр(г [У^укхк]А)<1(1в  
Jikin fr f

=  0 (16)

for all yk. Therefore the Fourier transform of цв  is zero, hence у,в 
must be zero and hence /  is discriminatory.

One important thing to point out with this proof is that the order 
of weight multiplication is irrelevant; the whole proof could be re
peated with networks where multiplication was done on the right. 
Thus it does not matter theoretically which sort of nets (left or right 
weight multiplication) is used for a particular problem. Practically 
not much is known, but in all the examples the author has tried, the 
performance of the net does not seem to be affected by the order of 
weight multiplication.
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5 Conclusion and Related Work
This chapter has been largely theoretical, but it has been shown that 
it is possible to derive a back-propagation algorithm for Clifford val- 

eed-forward networks. Such networks are a natural extension 
of Complex valued networks by virtue of Clifford Algebras being 
t e natural geometric extension of the Complex numbers. Due to 
space limitations no experimental results have been presented, ap
plications of Clifford networks can be found in (Pearson 1995, Rah
man et al. 2001). Other work on Clifford valued neural networks 

as been done with self-organising networks with Clifford Algebras 
applied to motion modelling systems (Bayro-Corrochano, Buchholz 

ommer 19966, Bayro-Corrochano, Buchholz & Sommer 1996д, 
Bayro-Corrochano 1996).
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Chapter 6

Complex Associative Memory and 
Complex Single Neuron Model

Iku Nemoto

In this chapter, we present two different applications of complex 
neuron models. One is a complex associative memory and the other 
is a complex version of the Nagumo-Sato model of a single neuron. 
Although these two applications are on the opposite extremes of 
scale, the one with many (desirably infmite in the limit) units and 
the other with a single or at most a few neurons, the motivation for 
the use o f complex numbers is the same; we want to treat the tim
ing or the phase o f impulse trains with as simple a method as pos
sible. Therefore, the properties of the model so far found should be 
attributed to the fact that the phase of impulse trains are being taken 
into consideration. It is our future work to use this model to explain 
(to some degree of accuracy) those phenonema in the brain in 
which timing of impulses or chaotic behaviros are important.

1 Phase Information and Complex Model
It is an elementary notion to analyze the response of an electric cir
cuit to a sinusoidal input by expressing the circuit variables and 
constants by complex numbers. For example, in the complex volt
age representation E = AelG, the argument of E , в  represents 
the phase of the sinusoidal signal of amplitude A. Complex value 
representation of electric circuits greatly simplifies its analysis. In 
neural networks, we do not deal with sinusoidal waves but with

107
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impulse trains. Ал impulse train is somewhat similar to a sinusoi
dal wave in that it is a periodic signal with amplitude, frequency 
and phase. The absolute phase is irrelevant and we are mostly con
cerned with relative phase between impulse trains. When several 
impulse trains of no or little phase differences are added at the den
drite, they result in a strong membrane potential whereas they pro
duce a much weaker signal when they have random phases. Al
though this situation cannot be accurately modeled by merely rep
resenting the signals by complex numbers as in the sinusoidal case, 
complex-number representation would at least be a better ap
proximation to the real neuron than the conventional real-value 
discrete-time model. There is no question that a better model can 
be obtained by a differential equation model. However, the latter 
poses a computational problem when many neurons are involved. 
Our complex neuron is a discrete-time model and thus the 
computational load is of the same order as the real-valued discrete
time model. Therefore, we propose that complex valued models be 
used in situations where timing in impulse trains is of considerable 
importance but the computational load of the differential equation 
models is forbidding.

Needless to say, the whole algorithm can be written in a real-valued 
formulation, and we do not use those concepts characteristic of 
complex-valued functions such as homeomorphism. Therefore, the 
point in using complex values lies in the fact that it makes the 
model look more natural and moreover, more accurate than the 
conventional discrete time real-valued model and yet the computa
tional cost is not significantly greater.

2 Complex Perceptron
The results shown below are basically from our previous work

(Nemoto and Kono, 1988, Nemoto and Kubono 1992). Since then
we have seen that the performance of the complex associative
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memory is better than shown in these works. Some of the new re
sults are included in thie section.

Let Wj = a  j  + i(i j  , у = 1,...,л  be the weights where i2 = -1 and

0CjyP j e  R . Let x = {—1,1}" denote the input pattern vector and 
w=(wy) be the weight vector. Their inner product is denoted w x. 
The output of the cell is given by

0 = sgn(g(w,x,fc)) (1)
where g(w,x,&) =1 w -x  I-A (2)

f l ,  и > 0
and sgn[«]= (3)

[-1 , и < 0
The learning rule for the coefficients is

a  j (t + 1) = (Xj (t) + Adj  (t + l )J  = 1,..., n (4)
where

Accj (t +1) = e(y(0 -  sgn( g Сw(0, x(r), h))) +XAaj(t)
oOCj

in which £ > 0  and A >0 are constants and y(t) is the desired out
put (1 or -1) for the pattern x(r) presented at time t. The last term 
represents the inertia. The learning rule for Pj  is obtained by re
placing a  j  with P j . The threshold h has the same form of learning 
rule as well.

The network used for simulation consisted of 50 input cells (thus 
50 weights) and 1 output cells. One of the input cells always gives
1 and the real-valued weight connecting this cell to the output cell 
is considered as the threshold. Each element of an input pattern 
was assigned 1 o r - 1 ,  each with probability 1/2. For к patterns,
there are a total of 2k dichotomies (the ways in which к patterns 
are divided into two classes), which are too many to be tested. 
Here we chose 50-70 dichotomies for testing which were quite suf-
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ment nfH 0ur PurPose* Each dichotomy corresponds to an assign-
the fractin Slrf  UtS ^°Г £*ven *nPut Patterns. Separability is 
is estahli h л (r> hotomies that were successfully separated. It 
linearlv cp6 10° ^ ’ tbat Леге are C(m,n) homogeneously

Euclidean Гзрасе ° f  "  Р° Ш*5 “  general P° siti° n in

C(m,n) = 2 Ц  
k=о (5)

separable is ^ 6 that a randomly chosen dichotomy is

P(m,n) = —  z
/И - Г
к (6)

100. fThi«C«VS SmiU'at*°n resu^ anfi the two curves for n = 50 and 
in Nemoto япгм/^к6111̂  °btarned and better than the result shown 
t h e o r S  2 й ®  1992-> The » -  50 corresponds to the 
weights and thp m *TlCQ real-valued perceptron having 50
b S S ”  for » -  100 is a hypothetical curve for the CP 
real-valuedperception' т ь freedom” the weights compared to the 
performance f a r  a slmulation results show that the actual
the advantage of f^066 S J*16 second hypothetical curve indicating 

antage of the use o f complex values for the weights.

0 . (

I ~S“--(►------- ►---- -

■ ! \
\l
!------1I1

•
1 ■?-------I •

Г
К----- l\

t \ ' \ 1

50 li

! \J \
Ofl -ic

-\— f V I \  1
—• ----

300
on power of the complex perceptron.

350



Complex Assiociative Memory and Complex Single Neuron Model 111

3 Complex Associative Memory
In the following model o f complex associative memory (CAM), 
weights and membrane potential take complex values whereas the 
outputs take 1 and — 1. Its biological implication would be that the 
synaptic transmission is accompanied by a delay that can be modi
fied by learning whereas the output impulse trains are all syn- 
chronours. This might seem biologically unnatural. However, the 
main purpose of the present model is to investigate the complex 
associative memory as a direct extension of the complex perceptron. 
Note that if one is interested only in the fixed points realized by the 
CAM and not in the dynamics, phase differences among the out
puts will have no significance.

The associative memory can be considered as a set of perceptrons 
producing ±1 outputs forming the prescribed pattern. Thus, the 
learning rule o f the perceptron is directly extended to the associa
tive memory. The dynamics o f the network is described by

Xj(t + \) = sgn(uj(t)), j  = i...,n  (7)
where

Uj( 0 =g<Wy,x(0,Ay) = | Wy \ { t ) \ -h j  
and wj  = (wyj,..., wjn) is the weight vector consisting of the com
plex weights to the j  -th cell. At time t, one of the m patterns to be 
stored (called learning patterns or stored patterns depending on the 
context) is randomly chosen. Denote it by s(/). The learning rule 
for the real part а д  of the weight wjk is

a jk (t +1) = a jk (0  + A a jk (t +1) J ,  k = \,...,n (8)
where

/  df  Л du 
- 7 + 7 h —  (9)A a jk (f +1) = AAaJk (t) -  e{sj (t) -  f ( u } (/))) dt idee-,jk
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ere £> 0 is the learning rate and tj a constant to avoid local 
gTve™b (Tanab 3nd Komura (1992)). f  is the sigmoid function

e rule for the imaginary part is the same. The threshold hj(t)
changes according to the same rule as well except that ди I dh,  is 
set to 1.

fixerl°n!v ^  ?0tedtbat l̂e performance in terms o f the number o f  
CAM  V (Patterns) is already given by that for the CP because
not repeat ith’PrPC°nSldered “  " PercePtrons in parallel, so we do

Betnattpme°TS« ^  average attractivity (defined below) o f  the tar- 
&  * e  number o f stored patterns. Fifty dis-
one bit o f the^mS t°r -ruCk target Pattem were made by reversing 
its 50 test m tt Г̂ е i  attractivity of the target is the fraction o f 
actly. А,,рг:,еГП8 3t Ucet^ tbe network to output the target ex
taken over alHh a ttaetivity is the average o f such attractivities

Ш  J  real t o - Г о  T mS USCd “  t3rgetS- The CUfVe d6Sig-memorv (R л N/t-i ^'s result for the real-valued associative
I S ? » f w treated equaUy through- 

the RAM w ith  n j- 0ne w <rea ’̂ = 0 ’ was obtained for 
g t a  5 ?  ? 6 ? ag° nal dements ** fixed to 0 from the be- 
is seen that the^erfh °Г CAM ЭГС shown similarly. Here again, it 
the mere increase ftw™ v** и f CAM is better than exPected from 

F i m e 3 s h o l (^ 1Ce),mthe Ш тЬег o f Parameters, 
tween the target ^ lca *lme courses o f  the direction cosine be- 
test pattem with the h™ ^  ^  networ  ̂ output when at time 0 a
^ Г ь е ^ „  р * ™ Г ° П, С“ '“  “С<0) is Tl“  direMi° "
age ratio ,  = „ / „ , < 0 5  defin' f  ,0 be У ' т/п- The stor-
for unsuccessful remiu *• ! examples shown. The dc curves 

cessful recollection by the CAM show somewhat chaotic
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(a) NUM BER OF PATTERNS 
Figure 2. The average attractivity of the associative memory.

Figure 3. Time courses of direction cosine. —0 means w,/ -  0 , etc.
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Figure 4. Correlation o f the weights in RAM (left) and CAM (right).

behavior for both щ  *  0 and щ  = 0 . It was found that a typical 
( ough not every) state transition for the CAM either converged to

* Xed P°*nt а^ ег шапУ stePs o f transition (sometimes more 
an steps) or fell into a cycle o f a very long period. This be- 

avior is advantageous compared to the behavior such as shown in 
ecause one would know when recollection is unsuccessful.

Figure 4 gives a rough idea on how definitely the weight matrices 
are e ermrned by the stored patterns. It shows the average o f the 

so ute value of the correlation coefficient p  between two weight 
matrices (wy) and (Wy ) obtained by learning the same set o f pat- 

ms starting from uncorrelated initials states, p  is defined by

P I.JHVW ^ W'J |2 'Zjjl W'.. |2 where stands for

wer^piv^n ^ еП randomly made pairs o f initial value sets
i an . Pa*rs ° f  weight matrices were obtained. Both

regarding щ  were used. The correlation coefficients

lute values1 wer ^  ^  10 PairS ° f wei^ht matrices and their abso-
standard deviations^otted Г * ' Sh° WS ^  averages and theterns The j  against the number o f the stored pat-

target patterns e v e T w h V t S s t o ^ 8Ь* таЙСе8 * *  ^  SamC en the storage ratio was low, and the matri-
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ces became identical when the storage ratio tended to 1. In the 
CAM, the wegith matrices showed almost no correlation when 
learning started from independnt initial values, even when the stor
age ratio was quite large.

4 Summary for CP and CAM
The separating power of the CP was more than predicted from the 
increase o f the number o f parameters of the network. This is due to 
the nonlinear dependence among the coefficients in the decision 
function (2). Indeed, if we put у  у =xixJ-, wy = then using

eqn (2) as a decision function is equivalent to using 
= Y<ij • If Wy were linearly related, Cover’s the

ory shows that the separability would be determined by the degree 
of freedom enjoyed by . We do not even know whether the

storage capacity is given by a linear relashionship m = a n .  It is 
possible that the storage capacity is a nonlinear function of the 
number o f weights.

We found several qualitative differences between the behavior of 
RAM and CAM. The time evolution of the direction cosine of the 
RAM looks quite flat both for w# = 0 and vtft Ф 0 and there is no
clear-cut separation o f time courses at the threshold dc(0) value, 
which is the lowest initial direction cosine that leads the state to 
reach the target pattern (or very close to it). In the autocorrelation 
associative memory with 0 diagonal elements the threshold effect is 
clearly seen (Amari and Maginu 1988). The CAM had somewhat 
similar tendency and showed clearly divided time courses depend
ing on the initial dc values. Time courses corresponding to unsuc
cessful recalls showed very different behavior from that of the 
RAM, with either a very long path to a fixed point or a very long 
limit cycle. This feature has some resemblance to chaotic associa
tive memory (Adachi and Aihara, 1997), although the present
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model has a finite number o f possible states and thus the period of 
or it is bounded. The differences in the behavior o f the weights 
was remarkable, too. These features may be more attractive than 
the increase o f the storage capacity.

5 A Complex Version of the N-S Model
The model considered in this section is obtained by allowing the 

vana es and constants in the Nagumo-Sato model o f a single neu- 
on о a e complex values. This neuron receives an external input 

outPut through a complex-valued weight and fires when 
ТтДь Va*ue membrane potential exceeds a threshold.

6 ? ,0Wm^’ we Present the basic features o f the model, such as 
_ ° Cla e W1̂  l̂xed points and period-two orbits. We also show 
Thf>e Ш ej"estlng orbits of the model including chaotic behavior, 

omp ex-valued output of the neuron at time t is given by

4{l) = в(77(М)), о = A _  1  £  ( j o)

where U /=0

©(77) = { °> (I V l< 1)
and a >  \v l \v \= e l^ \  ( j77[> 1)

P  and A are complex constants. If we convert the

variables by 2«  =1  + аД 4_ ^ ( М )  and ^  c = 1_ aA( l_ /, )> 

then the original model is transformed into
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We take c, a  and ft  to be independent parameters. Derivation o f the 
following properties is shown in Nemoto and Saito, 2002.

Simple calculation shows that:
Property 1. For any £*>0, any orbit eventually enters and then 
never exits
CRbc+£= { z : \ z - c \ < R b c +£} where Rbc = ( l + | l - c | ) / ( l - 6 ) .

The following property makes the model somewhat simpler: 
Property 2. The model dynamics has topological conjugacy ex
pressed as:

f ( z \ c J )  = f ( z \ c , / J )  and f ( T rz \Trc,p) = TTf ( z \ c , f i )  

where stands for complex conjugate and Tr is the operater which
causes the rotation by angle r  around the point 1. Hence, we can 
take as our parameter space

S = {(a,j3,c) : a  > 0, с < 1, | p  |< 1,0 < arg/? < к } .

For r , R > 0 ,  let Cr ={z: \ z -c \<r} ,  Yr = { z : \ z - \ \ < R )  and 
dCr , ЭГr be their boundaries. Then, the following property makes 
the intuitive comprehension of the mapping /  easier:
Property 3.

(i) A circle Cr centered at с is mapped by /  to the circle 
Гд(г) centered around 1 where

f rb,______ r < a
R{r) = \ ^ \ + r 2b 2 - 2 r p R , r > a

(ii) A line in a radial direction of Cr is mapped to a line.

From the above property, it is seen that the circle Ca  plays an im
portant role. We call it the critical circle. A point z satisfying 
f { z ) - z  is called a fixed point. Fixed points and their stability are



118 J. Nemoto

quite easily obtained in closed form. We have the following re
garding fixed points:
Property 4. For a point in the parameter space S, there is at most 
one (inner or outer) fixed point. Inner fixed points are stable. If 
there is an outer fixed point, then с < 1. The dynamics o f this 
model involves periodic behavior. A period-2 point is defined to

satisfy /  (z) = z . It is easily seen that both of the two points
forming a period-2 orbit cannot lie within the critical circle and we 
have:
Property 5. There are two types of period-two orbits, in-out and 
out-out (‘in (out)’ meaning in(out)side-the-critical-circle) type. 
Their traces can be calculated as functions of в  for given a>c,b. 
‘out-out’ orbits may be bom from outer fixed points.

Also, we often encounter closed-curve orbits in the dynamics. If 
we set с = 1, then we have a circular orbit centered at 1. Indeed, 
we can prove:
Property 6. When с = 1, a stable periodic circular orbit o f arbi
trary period can be realized on the circle centered at 1 with radius 
rc . Further, on the same circle, quasiperiodic orbit with arbitrary 
constant angular increment A can be constructed.

Figure 5 shows a transition of the dynamics for a  = 0.1,c =  - l ,

6 = 0.5 as 0 = arg/? increases from 0 to ;r. For 0 < # < 1 2 0 ° ,  the 
dynamics has a fixed point, and then it experiences a bifurcation

into period-two mode at around 0 = 102.5°. It eventually enters a 
closed-curve orbit and finally gets back to the period-two mode. 
Figure 6 (left) shows an example of chaotic orbit (20000 orbit 
points starting from z(0) = 0.5 ) with the parameter values

a  = 0.1,c = 0.3,/? = 0.98ez;r/18 . The larger one of the two 
Lyapunov exponents is 0.105 and high sensitivity of the dynamics 
to the initial condition was experimentally shown and thus the orbit
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is very likely of chaos. In the right is shown one o f its two period- 
two saddles (/7=0.641065+0.4434381/) and the stable (Ms) and

Figure 5. Transition of the dynamics for 0 < arg fi < n .

Figure 6. Chaotic dynamics (left) and the stable 
and unstable manifolds at its period-two point p (right).
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Figure 7. Orbits of the complex NS model for various values o f в .
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в  = arg P  [deg] 

Figure 7. Continued.

unstable (Mu) manifolds associated with it. It is seen that homo
clinic points (intersection points o f the two manifolds) seem to ac
cumulate to the saddle. Therefore, in this case it is likely that the 
chaotic behavior develops through period-two saddles, although 
there were many situations where neither unstable fixed points nor 
unstable period-two points caused chaotic behavior. The cause of 
chaotic behavior o f the model has not been theoretically elucidated.
Figure 7 shows orbits starting from 0.5+0.5/ and consisting of 

50,000 points for six values o f в  where a  = 0, \p\ = 0.98. The ini
tial point for the orbit did not make essential difference to the result 
in this figure. All the orbits are shown with the period-two points 
o f the map. In (a) they are stable periodic points and have a basin 
o f attraction. Those in (b)-(f) are all period-two saddles. Those in 
(e) and (f) look closely associated with the apparently chaotic orbits. 
Therefore, the seemingly chaotic behavior in (e) and (f) are proba
bly related to the period-two saddles, (g) shows the corresponding
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Figure 8. The values of p  shown in the complex plane such that the orbit 
is chaotic (positive Lyapunov exponent).

bifurcation diagram where the horizontal line represents the value 

of в  and the vertical axis shows a r g = 5000,...,10000.

The seemingly chaotic behavior certainly is an interesting aspect o f 
the complex N-S model which should further be studied more theo
retically. However, it is not a prevailing aspect o f the dynamics. 
Figure 8 shows the values of p  in the complex plane for which the
larger o f the Lyapunov exponents is larger than 0.01 and the orbit 
looks chaotic.

6 A Two-Neuron Network

Next we show some behavior of a network consisting o f 2 com
plex-valued Nagumo-Sato neurons. In particular, we show the or
bits when the two neurons are excited by two impulse trains having 
a phase difference between. The results we so far obtained show 
that the relationship between the phase difference o f the membrane 
potentials o f the two neurons and that in the input stimuli is often
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quite complicated. However, its possible indication in the corre
sponding brain activity is not clear and not discussed here.

The dynamics of the network is described by

17,00 = 4  IA '£01- 0+ I Щ] I
OCi 1=0 j =1 1=0

£0* + 1) = ©07,00) =

where /iiyyi,ci ,A i G С,a , >0,N  = 2 and w,y € R. Let

£00 = i+«,A4 -1"ГоД^(и-0

z i ( n )  =  £ i ( n ) + a , S , ( n )

Then, we get the dynamical system:

£ ( » ) - 1=

0 y=1

0,
z , ( n - l ) - c ,  

z/00 = £ 0 0 + « ,3 0 0

z,(n-l)-c,|>or,

(12)

(13)

(14)

(15)

(16)
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When \zj(ri)-c\>cxi, the /-th neuron is considered to fire with the 
phase of the impulse train being arg(z,- (n) - 1 ) .  If \zt (n) -  с \<  , 
then it is in the resting state.

Ak =M* |ехр{//?*}, k = \ , . . . ,N  (17)

is the input impulse train to the k-th neuron where \Ak \ is the am
plitude (or alternatively the frequency) and pk the phase of the im
pulse train. The model we study here consists of 2 neurons and sat
isfies:

N  = 2 , P k = / 3 , n = 7 , k  = 1,2 (18)

Assume that A\ — A , A2 =Ле1ф, Л е  R ,  i.e., the two neurons re
ceive input of the same amplitude but with phase difference Ф . 
Figure 9 shows an example response o f the circuit to such stimu
lus. The parameter values are:

a  = 0.2, A = 4, Ф = 2л:/9, P = 0.8e/2;r/9, y  = O.Se2* 190, 
wii -  0-5, Wy = - 1, /, j  = 1,2.

Figure 10 shows the behavior o f the network when Ф (horizontal 
axis) is varied. The vertical axis shows

Д(л) = argz,(n)- argz2(n), n = K - \ 0 0 0 , . . . K  
where К  takes a sufficiently large number such that the behavior is 
well depicted for a particular set of parameter values. In (а) Д is 
almost linearly related to Ф for all its values. The orbit in this case 
is o f period-2 and z\ and z2 take the two periodic points in turn. 
In (b), the dynamics seems to have a pseudo-periodic orbits when 
Ф is between 0.8 7C and 1.4 n. For the rest of the values o f Ф, the 
dynamics again is of periodic orbits of very large periods. The or
bits corresponding to (c) were chaotic for most of the values o f Ф. 
The relationship between Д and Ф looks quite random but still



Figure 9. Response of the network to 2 inputs of the same amplitude with 
a phase difference. The lower panel o f (b) shows the phases o f zj, z2 and 

the difference A = zj -  z2 between indicated by the ellipses.

seems to preserve some linear tendency seen in (a). The pa
rameter values used are:
(a): a  = 0.1, A = 10, p  -  0Aem, /  = 0.5, = 0.5, /, j  = 1,2;

(b): a  = 0.1, A = 10, P  = 0.4ея /4 , у  = 0.5, wy = 0.5, i j  = 1,2;

(c) a  = 0 .\,A  = 19,P  = 0.98ei*’/72, у  = 0.5e'*/l8, 
h>i j = w22 = W|2 = 0.5, W21 = 0.5.

The examples in Figures 9 and 10 show that the behavior of this 
very simple network consisting of only two elements can be very 
complicated. Although such behavior has not been associated with 
any brain process yet, it shows that combinations of comp ex 
valued neuron models may have a much sfronger power to rePre 
sent states o f neural networks in the brain than the rea -va ue 
models.
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Figure 10. The relationship between input and output phase differences.
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7 Concluding Remarks
In this chapter we looked at two aspects o f the use o f complex 
numbers in neural networks. One is the complex associative mem
ory (CAM) and the other is the complex-valued Nagumo-Sato 
model (CNS) of a single neuron. Both models use complex num
bers to represent impulse trains, treating as if they were sinusoidal 
waves. The modulus of the number is the amplitude (or it can be 
the frequency) and the argument angle is the phase o f an impulse 
train. The CAM shows some definite advantage over RAM in the 
storage capacity and the dynamics of recalling stored patterns. An 
interesting problem would be to derive storage capacity o f the 
CAM theoretically. On the other hand, the CNS and its extension 
to two-element model have been investigated of their behaviors 
without specific reference to their utility. Their apparently chaotic 
behaviors have been emphasized in this chapter although other 
properties have to be more investigated as well, because chaotic 
behaviors attract our attention and also because chaotic behaviors 
in the brain have been discussed and considered important by many 
researchers recently.

Aihara et al. 1990 introduced the logistic function instead of the 
original step function into the Nagumo-Sato model, which made 
the chaotic behavior intrinsically involved in the original model 
explicitly observable. Our use o f complex values in the Nagumo- 
Sato model brought about a different kind of chaos which is not 
intrinsic in the original model. Freeman (1995) and others pro
posed that in many aspects of the brain function, chaos can play 
important roles, such as in keeping a sensory system at high sensi
tivity, providing itinerant state transactions during perception. 
They emphasize that autonomy and creative power of the biologi
cal intelligence may be ascribed to chaos. Aihara and others have 
continuously worked on the role of chaos in artificial neural net
works for associative memory.
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Putting aside chaotic behavior o f neurons, temporal coding in im
pulse trains has been attracting many researchers. Among others 
Eckhom et al. 1988 found the importance o f synchronization of im
pulse trains in visual perception in the brain. More recently, phase 
relationship of the firings of the so-called place cells in the hippo
campus with respect to EEG theta wave have been shown to play 
an important role in locating the position o f the animal itself when 
it is moving in an area. The use o f complex values in neural net
works will probably be able to make simple models for these neura 
phenomena in which timing in impulse train is important.
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Chapter 7

Data-Reusing Algorithm for 
Complex-Valued Adaptive Filters

Danilo P. Mandic, Su Lee Goh, and Andrew Hanna

A class of data-reusing (DR) learning algorithms for complex-valued 
linear and nonlinear adaptive filters is analyzed. This class of algo
rithms has an improved convergence over the standard algorithms 
by virtue of re-using of the external input data while performing 
iterations on weight adaptation. The class of algorithms are intro
duced starting from the case of linear adaptive filters trained with the 
complex-valued least mean square (CLMS) algorithm, through to the 
case of feedforward and recurrent neural networks employed as non
linear adaptive filters trained with a complex-valued gradient descent 
(CGD) learning algorithm and a complex-valued real time recurrent 
(CRTRL) learning algorithm, respectively. Both the error bounds and 
convergence conditions are provided for the case of contractive and 
expansive complex activation functions. The improved local perfor
mance of the complex-valued data-reusing algorithm over the stan
dard algorithms is verified by simulations on the prediction of linear 
and nonlinear complex-valued signals.

1 Introduction
There has been recent interest in the research of complex-valued 
adaptive filters due mainly to the increasing trend of processing 
complex-valued signals in modem disciplines (e.g. satellite commu
nications) (Mandic and Chambers 2001), (Kim and Adali 2001). To
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this cause, a considerable research effort has been directed towards 
extending real-valued adaptive filters to the complex plane, C. The 
complex least mean square (CLMS) algorithm (Widrow et a i 1975), 
gave rise to applications of complex-valued linear filters. This in 
turn led to the development of complex-valued nonlinear algorithms, 
such as the complex-valued nonlinear gradient descent (CNGD) 
algorithm (Hanna and Mandic 2002), complex backpropagation 
algorithm (СВР), (Hirose 1990), (Benvenuto and Piazza 1992), 
(Georgiou and Koutsougeras 1992), and the complex real time 
recurrent learning (CRTRL) algorithm (Kechriotis and Manolakos 
1994). This family of complex-valued algorithms suffer from the 
same well known problems of slow convergence and a tendency 
to converge to local minima of the error performance surface as 
their real-valued counterparts. In the field of real-valued nonlinear 
adaptive filtering, the family of data-reusing (DR) algorithms is 
employed to help speed up convergence. Here, following that 
concept, we extend the data-reusing real-valued adaptation filters to 
the complex domain.

Increasing the speed of convergence of adaptive filters often 
implies a corresponding increase in computational complexity 
of the adaptation algorithm. For many applications, the class 
of gradient-type algorithms is not fast enough for a satisfactory 
performance, and Newton-type algorithms are too computation
ally complex. Recently, there has been significant interest in the 
so-called data-reusing (DR) approach which aims to provide a 
compromise solution to improve the speed of convergence of a 
gradient-type algorithm while keeping the extra computation to a 
minimum. The DR algorithm proposed in (Schnaufer and Jenkins 
1993) is a modification of the well known LMS algorithm. At every 
discrete time instant, fc, the DRLMS algorithm reuses the current 
desired response and the current input vector to update the filter 
coefficients (weights) several times every iteration. This results in 
the commonly named a posteriori updates. For linear filters, this
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class of algorithms offers an increased rate of convergence when 
compared to the standard LMS algorithm (Treichler et a l 1987), 
(Roy and Shynk 1989), (Schnaufer and Jenkins 1993). However, for 
the case of real and complex-valued nonlinear adaptive filters, the 
increase in local and global performance is dependent on the choice 
of the activation function.

2 Complex Linear Adaptive Filters
The LMS adaptive filtering algorithm is one of the most common 
approaches to linear adaptive filtering problems. The algorithm is 
computationally inexpensive and simple to implement. However, al
though robust, this algorithm is relatively slow at converging to the 
global solution.

2.1 Complex-Valued LMS Algorithm

yflO

Figure 1. Linear adaptive finite impulse response filter.

Figure 1 shows the layout of the finite impulse response (FIR) filter, 
for which the output of the filter is given by

y(k) =  wT(A;)x(A;)> 0 )

where x(к) =  [хг (к) , . . . ,  х м ( * ) f  denotes the complex input signal 
vector, w (к) =  K ( f c ) , . . .  , wM(k)]T the complex weight vector, M  
the number of tap inputs, and (-)T denotes the vector transpose oper
ator. The error signal e(k) required for adaptation is obtained as the 
difference between the desired response d(k) and the output of the



filter у (к), given as

e(fc) =  d(k) -  y(k)  =  er (k) +  j e l {k), (2)

where j  =  \ / —1 and the superscripts (-)r and (-)1 denote the real and 
imaginary parts respectively. The weight adaptation in the complex 
gradient descent algorithm is given by

w(fe +  1) =  w(fc) -  / iV w J{k) |w=w(fc) > ^

where ц  is the rate of adaptation and J(k)  is the cost function of the 
network defined by

J(k) = \ \e (k ) \2 = ±[e(k)e*(k)},  (4)

and the operator (•)* denotes the complex conjugate. The gradient of 
the cost function with respect to the complex-valued weight can be 
computed as (Widrow et al. 1975)

V J(k)  -  9J{k)  +  7 <5)
dwr(k) dw г(к)

Calculating the gradient of the objective function with respect to the 
real part of the complex weight vector gives,

v  7ГМ _  8J{k) l d\e(k)e*{k)} 
w W  “  0w(fc) ~  2 dwr(k)

= - \e(k)x*(k)  -  \e*(k)x(k).  (6)

Similarly, the derivation of the objective function with respect to the 
imaginary part of the weight vector yields,

V w<J(fc) =  i  e {k )x*{k) -J-e*{k)x(k)  (7)

therefore, substituting equations (6) and (7) into (5) gives,

V wJ(fc) =  VwrJ(fc) + jV„iJ{k)  
=  -e(k)x*(k).
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Finally the weight update can be computed as (Widrow et al  1975),

w(k  +  1) =  w(k) -  fj,VwJ(k)
=  w (k) +  це(к)\*(к),  (8)

which gives the weight update term for the complex-valued gradient 
descent based least mean square (CLMS) algorithm. We now show 
that this algorithm can be extended to conform to the analysis of the 
class of data-reusing (DR) algorithms in the complex domain.

2.2 The DRCLMS Algorithm
The DRLMS algorithm was first introduced in (Schnaufer and 
Jenkins 1993), and in some recent work, it was shown that the 
normalised LMS (NLMS) algorithm was closely related to the 
DRLMS algorithm, and could be interpreted as a limiting case 
of the latter (Roy and Shynk 1989). The NLMS algorithm offers 
low-computational complexity but due to the division in the learning 
rate of the NLMS algorithm, small values of the instantaneous input 
vector can cause the learning rate to grow very large and hence lead 
to instability and problems of dynamic range.

Following the approach from (Roy and Shynk 1989), it is clear 
that the weight update in the data-reusing complex-valued LMS 
(CLMS) algorithm can be written as

wt+i (k) = wt{k) +  iiet(k)x*(k) (9)

et(k) =  d(k) -  wJ(k)\(k),  t =  1,. .. , L  (10)

where Wj(k) = w (k), wL+i(k) = w(k +  1) and t represents the 
current data-reuse iteration. Letting L = 1, reduces equations (9) and 
(10) to the standard CLMS algorithm given in the previous section. 
Conforming with the analysis in (Roy and Shynk 1989), we can now



analyse the weight update as

w(fc +  l )  =  yyL+1(k) =  wL(fc) + v e L(k)x' (k)

=  WL-i(k)  +  fi(eL- i (k)  + ez,(fc))x*(fc)
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Y 2 et(k ) «*(*). (11)=  w(fc) +  fj,

To evaluate the error term, for t = 2 we have,

e2{k) = d(k) -  w%(k)x(k)
= d(k) -  [wf  (к) + ц е1( к) \н (к)] \ (к)
= e i(A:) -  ц  [хя (/г)х(&)] ei(k)

=  ei(* ) [ l-M (* " (* )x (J fe ) ) ] , (12)

tu . J represents the Hermitian transpose operator. Therefore, 
the t-th data-reusing error can be presented as

« - < ( i ) [ l - A Cx»(i) l( , |)] M i ( = 1 .......L  (|3)

(13), the total error et{k) from (11) can be expressed as

L  L
I > ( * o  =

1 «=i

_  e(^) [l — ( l  — /г (хя (А)х(А;)))^

Finall • м (хя (&)х(А;)) ' (И )

for а сошЫехЬМ^я!13110 к( ^  WS Can write the DR wei8ht uPdate> P LMS algorithm as (Roy and Shynk 1989),

w(fc + j ) a

(xH(k)x(k)) e№ *  ( ^
Flgure 2. gives the geometric
data-reusing gradient aleorith repf sentation of the complex-valued 
ters. m for online training of adaptive fil-
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Figure 2. Geometric representation of the complex-valued weight update.

2.3 The Convergence Analysis of Linear 
Adaptive Filters DRCLMS

It is expected that the instantaneous a posteriori (data-reusing) error, 
et(k), t  =  2 , . . . ,  L, be smaller in magnitude than the corresponding 
a priori error e\ (k) thus resulting in improved convergence and ac
curacy. In order to ensure proper behavior of the algorithm in the 
data-reusing phase, we aim to preserve the error to be uniformly de
caying, that is

\et {k)\ < 7 |e*_1(k) | J 0 < 7  <  1, t = 2y. . . , L  (16)

at each iteration of the data-reusing algorithm. The stability of a 
linear adaptive filtering algorithm can be determined from the re
lationship between the a priori and a posteriori error. It is essential 
to determine algorithms that guarantee stability for a large range of 
choices of the learning rate p(k).  Such algorithms employ the a pos
teriori error directly within the coefficient updates. The a posteri
ori adaptation for the DRCLMS algorithm is given as (Douglas and 
Rupp 1997),

w t+i(k) =  w t{k) +  fJ.F(et(k))x* (k) (17)



et(k) =  d(k) -  w f (fc)x(fc), t =  1, • • •, L

where the a posteriori data-reusing error et(k) is as defined in equa 
tion (18) and F(et{k)) is any function satisfying

sgn(F(e)) = sgn(e), and \F(e)\ > 5 M (19) 

for some 5 >  01.

We can now state that the a posteriori estimation error obtained by 
algorithm (17) is

ew (fc) >  [1 -  »{k)xT(k)xt {k)]L eL{k) (20>

To show this, we pre-multiply both sides of equation (17) by x (k) 
and subtracting d(k) from both sides, we arrive at

et+i(fe) = e,(fc) -  M(fc)F(e,(fc))xT(fc)x*(fc) (21)

Since sgn{F(e)) = sgn(e), we can deduce that sgn(et+\) — sgn{et) 
when p,(k) >  0, thus2

|e*+i(fc)l >  Ы к ) \  -  м(к) |F (e t (fc))| \xT(k)x*(k)\ , (22)

and using equation (19) we obtain

et+i (fc) >  [ l  -  M(fc)xT(fc)x*(fc)] e£(fc). (23)

Here, we assume that F(et) does not have a significant change in 
direction or magnitude at each iteration, t =  1 , . . . ,  L.  Therefore, we 
can state that,

6L+i(fc) >  [l -  pJ(k)xT (k)\*{k)]L eb{k)1
’Let z €  С and F(-) be some function. Then sgn(F(z) )  =  sg n( z )  iff 
sgn(FT(z)) =  sgn(zT) and 5р п (^(г)) =  30п(г*).
2Let q,/3 € R2, then |oc -  (3\ > |a | -  |/3|, and \afi\ =  H |/? |
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which is the bound for the error adaption for the DRCLMS 
algorithm.D

In order to maintain the error to be decreasing as shown in 
equation (16), the term [l — ц(к)хт (k)x* (k)] must have the £ 2 
norm less than unity. This way, we could set the range of the learning 
rate which guarantees stability of the algorithm. This range is given 
as

°  <  M(fc) <  x^(fc)x*(ifc)’ (25)

where fi(k) 6 M since xT(k)x*(k) € M.

For the experiments on linear FIR adaptive filters, the learning 
rate is chosen to be ^  =  0.0001, and the input signal was a complex 
AR (4) process given by

r(k) = l.79r(k  — 1) — 1.85r(fc — 2)
+1.27r(fc -  3) -  0Alr(k  -  4) -I- n(k) (26)

with complex white Gaussian noise (WGN) n(k) ~  J\f(0,1) as 
the driving input. The complex WGN can be expressed as n(k) = 
пГ(&) +  jn'(k).  The real and imaginary components of the WGN 
noise are mutually independent sequences having the same variances 
so that a2 =  <j\T -f cr^. The complex nonlinear input signal was cal
culated as (Narendra and Parthasarathy 1990),

(27)

Simulations were performed with 100 iterations of independent tri
als averaged on the prediction of the complex-valued nonlinear in
put signals. Figure 3 shows the ensemble performance curves for the 
CLMS algorithm with L  =  1, L =  3, and L =  10. The DRCLMS 
outperformed the CLMS algorithm (L =  1). As the number of data 
reuse iterations L increases, the speed of convergence improved ap
proaching to the NCLMS algorithm in the limit.
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Figure 3. Performance of CLMS and data-reusing CLMS with L=l,3 and 
or pre iction of a nonlinear input (27) and coloured input (26)

3 Complex Nonlinear Adaptive Filters
e now extend the analysis of DR algorithm to common choices 

0Ш^ e* nonlinear adaptive filters realised as a feedforward per- 

n e tw o r^s^R ^11)76111 ^erCe^tron fr°m c âss ° f  recurrent neural

The Choice of Activation Functions In 
Complex-Valued Neural Networks

be a ccmtt in s theorem, a bounded entire function must
phic function Ш ^ im and Adali 2001). To this cause, meromor- 
complex n e u i r r P[°yed ^  the nonlinear activation function in 
everywhere ex Пе WOr This class of activation function is analytic

T *  ° f C ” d “  tlle'r singularities
countering essentia! s i n g u l . S T V  г Т  1 ?  POSSibi' ky ° f  provide the np^coo panties. The Cauchy-Riemann equations 

the necessary conditions for a complex function to be ana
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lytic at the point z  € C. There are five desirable properties of a fully 
complex activation function Ф(k) given as (Kim and Adali 2001):

1. Ф(net(k)) is nonlinear and net(k) = a(k)  +  jr(k) .

2. Ф(пе1,(к)) is bounded.

3. Partial derivatives ua,u T,va,vT exist and are bounded, where
» , —  d u  __  d n  __  d v  __  d v
U<7 д<т'ит— дт'г)<7 ~ д а ’ Ут~дт'

4. Ф(net(k)) is not entire.

5. uavT ~ф v0uT.

To arrive at the Cauchy-Riemann equations, note that the partial 
derivatives of Ф(k) along the real and imaginary axes should be 
Ф'(А:) =  ua +  j v a = vT -  ju T, where ua =  vT, v„ =  - u r.

3.2 The CNGD Algorithm
As stated in the previous section, complex-valued nonlinear algo
rithms must employ a suitable activation function that exhibits 
the five properties given in Section 3.1. To this cause we employ 
functions that are analytic and bounded almost everywhere in C.

Initially we derive the complex nonlinear gradient descent (CNGD)

Figure 4. A complex-valued dynamical perceptron (nonlinear FIR filter), 

algorithm starting from a complex dynamical perceptron as shown



Ш Figure 4, for which the output is given by y(k) = Ф(хт(к)у/{к)). 
For simplicity we state that,

$(xT(fc)w(fc)) = ф(к) =  u(k) -j- j v (k )  (28)

where Ф(к) is some complex nonlinear analytic function that is
ounded almost everywhere in the complex domain. The vectors

) and w(k)  denote the complex input and complex weight vec
tors respectively.

By using^the^chain rule, and defining the following derivatives as

S i t 7  * •’ 4  =  =  x’’ =  *r - the gradient of the
unction for both the real and imaginary component of the cost 

gradient can be written as

dJ{k)  
dv/r(k) еГ^ )  [w^xF +  wTx!] -  e'(k) [vaxr +  vTx'] (29) 

8J(k)
q ~ щ  -  - e r (fc) [ uax* + Urxr] -  e'(k) [-v„x* + vTxr] (30)

Combining (29) and (30), and employing the Cauchy-Riemann equa- 
s, e gradient of the error function can be simplified as

V wJ(k) — —x (fc) [er(fc) (Ua _  _|_ j u a)\

= -x*(fe) er(fc) + j  {4̂ (jfc)}* e*(*)]
= -x*(fc) {$'(£)}* e(fc) (31)

Finally we obtain the weight update to be

w(fc +  1) =  W(fc) +  x .( k y  (32)

3.3 The DRCNGD Algorithm

-i- n  kpjn,,0  ̂ ^ata~̂cusmg relies on the updated weight vector 
'  +  Ч b™ « available brfote the ш  in p u t™ * *  x(k  + 1). The
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equations for the DR complex nonlinear gradient descent (CNGD) 
algorithm are given by

et(k) =  d(k) -  Ф (хт(к)щ(к))  (33)

wi+1 (k) = w t(k) + м {$ '(xT(fc)wt(fc))}* et(k)x*(k) (34) 

It can be clearly seen that

Wi (k) = w(k),  wL+i (к) =  w{k +  1) (35)

where L denotes the number of iterations in the data-reusing (DR) 
algorithm and if L =  1 the DRCNGD algorithm reduces to the stan
dard complex nonlinear gradient descent (CNGD) algorithm. From 
the analysis for the linear filter it follows that (Hanna and Mandic 
2002)

w(fc- f l )  =  wL+1(A;)
=  wL(fc) +  [i ^ ' ( x T(fc)wL(fc))}* eL(k)x*(k)

L

=  w (k) + t i ^ e t i k )  {Ф'(хт(к)\у1(к))}*х*{к)1( Щ  
t=l

which is the total weight update along the data-reusing iterations. 
The instantaneous data-reusing output error can be further expressed 
as (Hanna and Mandic 2002)

et (k) = d(k) -  Ф (xT(k)wt(k))
=  et_j(fc) -  [Ф (xT( k )M k) )  -  Ф (xr (fc)wJ_1(fc))] .(37)

3.4 The Convergence Analysis of 
Complex-Valued Feedforward Neural 
Networks

The performance of the data-reusing approach, working as a nonlin
ear adaptive filter depends also on the characteristics of the complex
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nonlinear activation function of a neuron, i.e. whether it is a contrac
tion or an expansion (Mandic and Chambers 2001). We address the 
relationships between the a priori and a posteriori error nonlinear 
adaptive predictor realised as feedforward, and derive bounds which 
determine a posteriori nonlinear prediction. As illustrated earlier, 
we used an example of a complex gradient descent based algorithm 
(CNGD) for a perceptron where the a posteriori adaptation is given 
in equations (33) and (34). Pre-multiplying equation (34) with xT(k) 
and applying the nonlinear activation function Ф on either side, we 
obtain (Mandic and Chambers 2000)

Ф{\т{к)у/1+1{к)) =  Ф [\т(к)щ{к) +
liet(k) {$'[xT(fc)wt(fc)]}‘ xT(fc)x*(fc)] (38)

Further analysis into the convergence of such an algorithm will 
depend on the characteristic of the complex-valued activation 
function (see Appendix).

We can now define the lower bound for the a posteriori esti
mation error obtained by algorithm (34), and a contractive nonlinear 
activation function Ф as

еь+1(*0 > [l {$'[xT(k)v/(k)}}* xT (k)x*(k)]L eL(k). (39)

To show this we apply expression (60) to equation (34), and subtract 
d(k) from both sides of the resulting equation. Due to the contractiv- 
ity of Ф, we obtain

et+i(k) >  [l -  fi(k) {Ф'[хт(к)щ(к)]Ухт(к)х*{к)] et(k) (40)

Here, we assume that ^ ' [ x T(A;)wt(A;)]}*, t = 1 , 2 , . . . ,  L  does not 
change significantly during successive iterations. Also note that et(k) 
and e*+i(fc) have the same sign. By iterating equation (40), we have

eL+i(k) > [ l  -  /м(к) {Ф'[хт(к)у?{к)]Ухт(к)х*(к)]Ь еь (к) (41)
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which is the lower bound for the a posteriori expectation error for a 
contractive nonlinear activation function. □

For the algorithm given by the equation (41) to be feasible, 
the term [l — р,(к)Ф'[хт(к^(к)]*хт(к)х*(к)] must have the C2 
norm less than unity. In that case the whole procedure is the fixed 
point iteration . This leads us to the following constraint on the 
learning rate parameter

Thus, for the case of a contractive activation function of a neuron, the 
upper bound of the weight vector update of the proposed algorithm, 
after L  data-reusing iterations at the time instant к is given by

If function Ф is an expansion, instead of considering lower bounds, 
we have upper bounds for a posteriori error estimation given as

ei+i(fc) <  [l -  ц(к) {$'[xT{k)v/t{k)]y хт{к)х*{к)] et{k) (46)

and the lower bound of the weight vector update is given as

(42)

Combining equations (36), (41), and letting

Щк) = ц(к) {Ф'[хт{к)уг(к)}}* xT{k)x*(k) (43)

yields

w(fc +  1) < w(к) +

(45)

(47)
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This why in practice we try to avoid an expansive activation 
function of an output neuron.

For the experiments for nonlinear adaptive filters, the nonlin
earity at the neuron was chosen to be the logistic sigmoid function,

(4 8 )

where z e  C. For a contractive activation function, the slope was 
chosen as (3 = 1. For the case of expansive activation function, the 
slope was chosen as (3 = 4 for the experiment on coloured input (26) 
and (3 = 8 for the experiment on nonlinear input (27). The learning 
rate was chosen to be a small value of \i — 0.001 in order to have 
a clear visualization of the performance of the algorithms. Figure

(a) Nonlinear Input (b) Coloured input

Figure 5. Performance of CNGD and data-reusing CNGD with L=l,3 and 
10 for prediction of a nonlinear input (27) and coloured input (26)

5 shows the ensemble performance curves of the DRCNGD algo
rithm for a perceptron with a contractive activation function for both 
coloured (26) and nonlinear (27) signals. It is shown that the data- 
reusing algorithm showed faster convergence than the standard algo
rithm (L — 1) for both types of input signals. The performance of
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this algorithm improves with increasing the order of the data-reusing 
iteration and saturates for large L as proven in the experiment.

3.5 The Complex RTRL Algorithm

For simplicity we start the analysis from the case of a simple recur
rent perceptron. The output у of a recurrent perceptron as shown in 
Figure 6 is given by y(k) = Ф(net(k)) where Ф(net(k)) is some 
complex nonlinear analytic function that is bounded almost every
where in the complex domain, and

м
net(k) = ^ 2  wm(k)x(k - m ) +  wM+i(k)(l + j)

m=1 
N

+ ^ 2  wn+M+i(k)y{k -  n) (49)
7 1 = 1

where x(k) = [ж(А; -  l ) , . . . ,a :( f c  -  M)\T and у (к) = [y(k -  
1 ) , . . . ,  y(k — iV)]7' denote the complex input and feedback signals 
respectively, and the complex weight vector is given by w(&) = 
K W ,. . . ,W M +N+i(i:)].

Figure 6. Recurrent perceptron

The complex input signal to the recurrent perceptron consists of the 
delayed input, delayed output and bias. The complex input vector to
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the network is therefore given as

I(fc) 4  [X(k -  1 x(k~ M), 1 + j, у(к -  1 y(k~ N)}T

The weight adaptation in the nonlinear complex gradient descent al
gorithm is given by equations (3). We want to accumulate the weight 
changes A w (k) = — ̂ V wJ(fc) at each step along the trajectory. 
Since J(k) is real valued, its gradient can be computed in a simi
lar way to the previous sections. The factor is a measure of 
sensitivity of the value of the output at time A; to a small increase in 
the value of w (k) taking into account the effect o f such a change 
in the weight over the entire trajectory. For simplicity, we repre
sent the sensitivities with the symbols given as 7тгг(А;) =

7Гг г ( к )  =  awr(2)> 7 т г г ( к )  = and 7гг г ( к )  =  dJ^ )  • The sensi
tivity 7Г is a complex-valued vector which can be shown as 7v(k) =  

+ ji r ir{k) = 7TM(fc) -  j7rri(k). From Cauchy-Riemann con
ditions, we can write the condition that, n rr(к) =  7Г*{к), irrl(k) =  
- 7 т 1 Г ( к ) .  By employing the Cauchy-Riemann condition, we finally 
obtain the weight update as

w(k + l) = w(Л) - /xVwJ(ib)
= w (к) + fie(k) (7vrT(k) — j'Ktr(k))
=  w (к) + [ле(к)7г* (к) (50)

with the initial conditions 7r(0) =  0. The update for the sensitivities 
is then derived as

7г*(к)— (Ф '(net)(k))'
N

Г (к) + Wm+M+i(k)**{k -  m)
m=l

.(5 1 )

3.6 The DRCRTRL Algorithm

A t each iteration, the adaptive weight vector is being updated by 
reusing the current tap input vector. The data-reusing weight update
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algorithm for a complex-valued recurrent nonlinear filter can be writ
ten as (Mandic and Chambers 2001)

wf+1 (к) = щ (к)+ \iet (k)n*t (k) (52)

et{k) = d(k) -  Ф(1Т(k)wt(fc)), (53)
where the cost function J t(k) is given by (4). The index t denotes 
the t-th iteration of the equations (52) and (53) and \x is the learning 
rate. Note that the weight update recursion starts with Wi (A;) = w(&) 
and ends with wL+1(k) = w(k + 1).

Following the approach from (Mandic 2002), starting from the 
last iteration in equation (52), for t = L> we obtain the final 
data-reusing weight update at t = L + 1 as

w(fc + 1) = Vfb+i(k) = w L{k) + neL{k)-K*L(k)
= w x,_i(fc) + MeL-i(A:)7r2_a(fc) + цеь(к)п1(к)

L

= w(k) + ^2,net{k)ir*t {k) (54)
(=i

The instantaneous error at the output neuron can be further expressed 
as

et(fc) = d(k) -  Ф(1Г(k)\vt(k))
=  [d(fc) -  $(IT(A;)wt_1(fc))]

-  [Ф(1 т (к)щ(к)) -  Ф(1Т(£)^-1(А;))]
= et-iik) -  [Ф(1 т (к)Мк)) ~ Ф(1т (к )ч -1(к))} (55)

From the equation above, we can see that the £-th data-reusing error 
depends on the features of a complex nonlinear activation function 
of the neuron, Ф. Pre-multiplying equation (52) by IT(fc), and then 
applying the nonlinear activation function Ф on either side, we obtain

Ф(1т (А:) ^ +1(А;)) = Ф (1т (к)Мк) + nlT(k)et(kU*t (k)) (56)

The characteristics of Ф, that is, whether it is a contraction or expan
sion will effect the convergence of the data-reusing algorithm.
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3.7 The Convergence Analysis of a 
Complex-Valued Recurrent Neural Filter

The bounds on the data-reusing error for the complex-valued RTRL 
algorithm conforms to the analysis shown in section 3.4. It is as
sumed that the value of the learning rate ^(k) is held fixed during 
the fixed-point iteration of the data-reusing algorithm. After apply
ing the data-reusing algorithm L times, the cummulative output error 
becomes

^ e t(fc) > ^ 2  [* --Р(к)1 Т(к)1 г*(к)]1 1 e(k) 
t=  1 t=  1

щь
ц(к)\т(к) [w*(fc)]

where every e t{k) decreases along the data-reusing iteration due to 
the contractivity of the term in the square brackets in the nominator 
of (57). We obtain the amount for which the weights change after L 
iterations as

< (58) 
1 {k)7v*(k)

Figure 7 shows the ensemble performance curves of the DRCRTRL 
algorithm for a perceptron with a contractive activation function for 
both nonlinear (27) and coloured input (26) signals. It is shown that 
the data-reusing algorithm showed faster convergence than the stan
dard algorithm (L = 1) for both types of input signals. The per
formance of this algorithm improves with increasing the order of the 
data-reusing iteration and saturates for large L as proven in the exper
iment. Figure 8 shows the performance of a data-reusing CRTRL al
gorithm for a recurrent perceptron with an expansive activation func
tion. As shown in the figures, the error curve does not converge and 
grows without bound. The divergence is more emphasized with the 
order of data-reusing iteration.
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(a) Nonlinear Input (b) Coloured input

Figure 7. Performance of CRTRL and data-reusing CRTRL for prediction 
of a nonlinear input (27) and coloured input (26) for a contractive nonlinear 
activation function

(a) Nonlinear Input (b) Coloured input

Figure 8. Performance of CRTRL and data-reusing CRTRL for prediction 
of a nonlinear input (27) and coloured input (26) for an expansive nonlinear 
activation function

4 Conclusions
The class of data-reusing algorithms for complex-valued linear and 
nonlinear adaptive filters has been presented and the relationships for

Number of iteration (k)

Number of iteration (k)
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the prediction error and learning rate have been provided. A lower 
bound on the data-reusing output error has been established and the 
error is proven to have uniformly smaller magnitude along the data- 
reusing iteration. The data-reusing algorithm offers a significantly 
improved convergence rate over the standard algorithm for a nonlin
ear activation function exhibiting contractive behavior.

5 Appendix — The Characteristics of 
the Activation Function

By the Contraction Mapping Theorem (CMT), function К  is a con
traction on [a, b] G R if (Gill et a l 1981):

i) x G [a, b\=> К (x) G [a, b]

ii) З7  < 1 G R+ s.t. IK(x) -  K{y)I < 7 |a? -  y \, \fx,y G [a, 6]

Using the Mean Value Theorem (MVT), for Vx,y G [a, 6], G 
(a, b) such that

IK(x) -  K(y )I = \К Ш *  -  У) I = l * 4 №  "  v\ (59>

Now, the clause 7  < 1 in ii) becomes 7  > |/f'(OI> £ ^ (a ^ )- For 
the example of the logistic nonlinear activation function of a neuron 
Ф(и) = w^h slope /?, 7  < 1 (3 < 4 is the condition for
function Ф to be a contraction.

For a meromorphic complex contractive activation function Ф, 
we can write the contractivity condition as

|Ф(а + b)\ < |Ф(а) + Ф(Ь)| (60)

For the case of meromoфhic complex expansive activation function 
Ф, we can write the expansive condition as

|Ф(а + 6)|>|Ф(а) + Ф(6)| (61)
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Chapter 8

Instantaneously Trained Neural Networks 
with Complex Inputs

Pritam Rajagopal and Subhash Как

Neural network architectures that can handle complex inputs, such 
as backpropagation networks, perceptrons or generalized Hopfleld 
networks, require a large amount of time and resources for the 
training process. Here we adapt the time-efficient comer 
classification approach to train feedforward neural networks to 
handle complex inputs and present a new algorithm called the 3C 
algorithm. This algorithm uses prescriptive learning, where the 
network weights are assigned simply upon examining the inputs. 
The performance of the algorithm is tested using the pattem 
classification experiment and the time series prediction experiment 
with the Mackey-Glass time series. An input encoding called 
quaternary encoding is used for both experiments since it reduces 
the network size significantly by cutting down on the number of 
neurons that are required at the input layer.

1 Introduction
Prior complex neural network models (Kim and Guest 1990, Noest 
1988, Sutherland 1990) have generalized the Hopfield model, 
backpropagation and the perceptron learning rule to handle 
complex inputs. Noest (1988) formulated the Hopfield model for 
inputs and outputs falling on the unit circle in the complex plane. 
Georgiou (1992) described the complex perceptron learning rule. 
Also, Georgiou and others (Benvenuto and Piazza 1992, Leung and
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Haykin 1991, Little et al. 1990) described the complex domain 
backpropagation algorithm. More recently, work presented by Li, 
Liao and Yu (Li et a l  2002) uses digital filter theory to perform the 
fast training of complex-valued recurrent neural networks.

The training processes used by the different architectures 
mentioned above are iterative, requiring a large amount of 
computer resources and time for the training. This may not be 
desirable in some applications. The comer classification approach 
(Как 1993, 1994, 1998 and Tang 1997) (algorithms CC1 to CC4), 
speeds up the training process of neural networks that handle 
binary inputs, achieving instantaneous training. A generalization of 
this approach for mapping non-binary inputs to non-binary outputs 
is presented by Как and Tang (Как 2002, Tang and Как 2002).

The comer classification approach utilizes prescriptive
earning. In this procedure, the network interconnection weights

are assigned based entirely on the inputs without any computation.
The comer classification algorithms such as CC3 and CC4 are
based on two main ideas that enable the learning and generalization 
of inputs:

1. The training vectors are mapped to the comers of a 
multidimensional cube. Each comer is isolated and 
associated with a neuron in the hidden layer of the 
network. The outputs of these hidden neurons are 
combined to produce the target output.

2. Generalization using the radius of generalization 
enables the classification of any input vector within a 
Hamming Distance from a stored vector as belonging to 
the same class as the stored vector.

Due to its generalization property, the CC4 algorithm can be used 
emciently for certain Al problems. The results of pattern 
recognition and time series prediction experiments using CC4 are 
presente у Tang (1997). When sample points from a pattern are 
presen e to the network, the CC4 algorithm trains it to store these 

mp es. he network then classifies the other input points based
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on the radius of generalization, allowing for the network to 
recognize the pattern with good accuracy. In time-series 
prediction, some samples from the series are used for training, and 
then the network can predict future values in the series.

Here the comer classification approach is generalized to 
handle complex inputs and a modification of the CC4 algorithm is 
presented, which uses a new procedure of weight assignment. The 
next section describes a new encoding scheme called the 
quaternary encoding, which will be used in different experiments to 
analyze the new algorithm. Section 3 presents the 3C algorithm, 
and in section 4 the performance of the algorithm is tested using the 
time series prediction experiment. Finally, the last section provides 
the conclusions related to the use of complex binary inputs in 
comer classification and the future of the 3C algorithm.

2 Quaternary Encoding
The quaternary encoding scheme is a simple modification of the 
unary scheme and accommodates two additional characters / and 
1+i besides 0 and 1. Due to the additional characters in this 
scheme, the length of the codewords for a range of integers is 
reduced when compared to unary. For example the integers 1 to 16 
is represented using quaternary codewords only five characters, 
whereas the unary required 16-bit strings for the same range of 
numbers. Table 1 shows the set of codewords used to represent the 
integers 1 to 16.

2.1 Length of the Codewords
An important issue is to decide the length of the codewords 
required to represent a desired range of integers. Let / be the length 
of the codewords for a range of С integers. Consider the integers in 
Table 1. For this range С = 16 and 1 = 5. We can now examine 
how 16 codewords can be formed with 1 = 5. The 16 codewords 
can be classified into three groups. The first group represents 
integers 1 to 6, where the codewords are constructed without using
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characters i or 7+*. The codewords in the second group represent 
integers 7 to 11 and don’t use 7+/, while in the third group the 
codewords representing integers 12 to 16 use 7+/.

Table 1. Quaternary codewords for integers 1 to 16

Integer Quaternary code
1 0 0 0 0 0
2 0 0 0 0 1
3 0 0 0 1 1
4 0 0 1 1 1
5 0 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 i
8 1 1 1 i i
9 1 1 I i i
10 1 i I i i
11 i i I i i
12 i i I i 1+i
13 i i i 1+i 1+i
14 i i 1+i 1+i 1+i
15 i 1+i 1+i 1+i 1+i
16 1+i 1+i 1+i 1+i 1+i

We see here that the first group has 6 codewords. The other two 
have 5 each, corresponding to the length of the codewords as the 
next new character fills up one position after another in each 
successive codeword. For any C, the set of codewords would 
consist of three such groups where the first group has / + 1 
codewords, and the second and third have / codewords each. This 
can be summarized as follows:
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C=(/+ 1) + / + / 
C=3 * /+ 1 
l = (C -  1) / 3

( 1)
(2)
(3)

Equation 3 is valid only when (С — 1) is divisible by 3. For cases 
when this is not true, we obtain:

When (С -  1) is not divisible by 3, the number of codewords that 
can be formed using the / obtained from Equation 4 is more than 
required. In this case any С consecutive codewords from the 
complete set of words of length / may be used.

The 3C algorithm (from Complex Comer Classification, CCC) is a 
generalization of the CC4 and is capable of training 3-layered 
feedforward networks to map inputs from the alphabet {0, 1, i, 1+i} 
to the real binary outputs 0 and 1. This algorithm uses a different 
procedure for the assignment of the input interconnection weights 
when compared to the CC4 algorithm. Therefore the combination 
procedure of these weights with the inputs is also different. The 
features of the algorithm and its network are:

1. The number of input neurons is one more than the number 
of input elements in a training sample. The extra neuron is 
the bias neuron which is always set to one.

2. A hidden neuron is created for each training sample; the 
first hidden neuron corresponds to the first training sample, 
the second neuron corresponds to the second sample and so 
on.

3. The output layer is fully connected; each hidden neuron is 
connected to all the output neurons.

/ = ceil [ (C - l)/ 3 ] (4)

3 The 3C Algorithm
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4. The interconnection weights from all the input neurons 
excluding the bias neuron are complex. Each input of the 
alphabet {0, 1, i, 1+i} is treated as complex for the weight 
assignment.

5. If the real part of the input element is 0 then the real part of 
the corresponding input interconnection weight is assigned 
as -1. If the real part is of the input element is 1 then the 
real part of the weight is also set as 1.

6. Similarly if  the complex part of the input is 0 then the 
complex part of the weight is assigned as -1 or if the 
complex part of the input is 1 then the weight is also 
assigned as 1.

7. The weight from the bias neuron to a hidden neuron is 
assigned as r -  s + 1, where r is the radius of generalization. 
The value of s is assigned as sum of the number of ones, Гs, 
and twice the number of (1+i)s in the training vector 
corresponding to the hidden neuron.

8. If the desired output is 0 the output layer weight is set as an 
inhibitory -1. If the output is 1, then the weight is set as 1.

9. The altered combination procedure of the inputs and the 
weights causes the hidden neuron inputs to be entirely real. 
Thus the activation function required at the hidden layer is 
simply the binary step activation function. The output layer 
also uses a binary step activation function.

When an input vector is presented to the network, the real and 
imaginary parts of each input element of the vector are multiplied 
to the corresponding interconnection weight’s real and imaginary 
parts respectively. The two products are then added to obtain the 
individual contribution by an input element in the vector. This is 
done for each element and their individual contributions are then 
added together to obtain the total contribution of the entire vector. 
Using this combination procedure, each hidden neuron always
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receives only real inputs. Thus only a binary step activation 
function is required at the hidden layer. As an example consider 
the vector (1 1+i i). The corresponding weight vector is (1-i 1+i - 
1+i). The input vector now combines with this weight vector to 
yield a total contribution of 4. This contribution is computed as 
follows:

(Re (l)*Re (1-i) + Im (l)*Im (1-i))
+ (Re (l+i)*Re (1+i) + Im (l+i)*Im (1+i))

+ (Re (i)*Re (-1+i) + Im (i)*Im (-1+i)) = 4

The 3C algorithm can be expressed as a set of simple if-then rules. 
The formal algorithm is as follows: -

for each training vector xm [n] do
sm = no of 1 s + no of i’s + 2*(no of (1+i) s) in xm[l:n -l]; 
for index = 1 to n-1 do // wm [ ]: input weights

if Re(xm [index]) = 0 then 
Re(wm [index]) = -1; 

end if
if Re(xm [index]) = 1 then 

Re(wm [index]) = 1; 
end if
if Im(xm [index]) = 0 then 

Im(wm [index]) = -1; 
end if
if Im(xm [index]) = 1 then 

Im(wm [index]) = 1; 
end if 

end for
wm [n] = r - s m+ 1; 
for index 1 = 1 to к do

if ym [index 1] = 0 then 
owm [index 1] =-1; 

else
owm [index 1] =1;

// к = no of outputs у 

// owm [ ]: output wts
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end if 
end for 

end for
Let r = 0, now when an input vector is presented to the network 
each input neuron receives each element in the vector as input. 
These inputs combine with their respective weights and all input 
neurons together, except the bias neuron, provide the hidden 
neuron corresponding to the input vector with a contribution equal 
to the s value of the vector. And since r is set as zero, the 
contribution from the bias neuron is equal to -s + 1. Thus the total 
input to the hidden neuron is 1. All other hidden neurons receive 
zero or negative input. This ensures that only one hidden neuron 
fires for each input.

The following examples illustrate the working of the 
algorithm. The first example is similar to the XOR function but 0 
is replaced by i and 1 is replaced by 1 +z. The next example shows 
how the algorithm works with two output neurons.
Example 1
The inputs and outputs are shown below in Table 2. The 3C 
algorithm can be used to train a network to map these inputs to the 
outputs. The network architecture is shown in Figure 1 and the 
various network parameters are tabulated in Table 3.

Table 2. Inputs and outputs for Example 1.

Inputs Output
X, x 2 Y
i i 0
i 1+i 1

1+i i 1
1+i 1+i 0
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Figure 1. The Network Architecture for Example 1.

Table 3. Network Parameters in the input/output mapping of Example 1.

Input to Output of Output

Inputs s Weights H, H2 H3 H 4 H, H2 H3 H 4 of у
i i 1 2 -1+i -1+i -1 1 0 0 -1 1 0 0 0 0
i 1+i 1 3 -1+i 1+i -2 0 1 -1 0 0 1 0 0 1

1+i i 1 3 1+i -1+i - 2 0 -1 1 0 0 0 1 0 1
1+i 1+i 1 4 1+i 1+i -3 -1 0 0 1 0 0 0 1 0
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Each input vector has two elements and so three input neurons are 
required including the one for the bias neuron. All four samples 
are required for the training. Thus four hidden neurons are used. 
The inputs need to be mapped to just one output in each case and so 
only one output neuron is used here. Also since no generalization 
is required we have r = 0. The weights are assigned according to 
the algorithm and the network is then tested with all inputs. It is 
seen that all inputs have been successfully mapped to their outputs.
Example 2: Network with two output neurons
The 3C algorithm can also be used to map inputs to a network with 
more than one output neuron. The inputs and outputs are shown in 
Table 4. The input vectors have five elements and the 
corresponding output vectors have two elements.

Table 4. Inputs and outputs for Example 2

[nputs Out]puts
X, x 2 x 3 X4 x 5 Yi y 2

0 1+i 1+i 0 i 1 1

1+i 0 1 1+i 1 0 1

1 1 i 0 1 1 0

A total of six input neurons are required including the bias 
neuron. All three samples need to be used for training and hence 
three hidden neurons are required. The output layer consists of two 
neurons. The input and output weights are assigned according to 
the algorithm as each training sample is presented. No 
generalization is required so r = 0. After the training, the network 
is tested for all inputs and outputs. Again it can be seen that the 
mapping is accomplished successfully. The network architecture is 
shown in Figure 2 and the various network parameters obtained 
during the training are tabulated in Table 5.
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Figure 2. The Network Architecture for Example 2.
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Table 5. Network Parameters in the input/output mapping o f Example 2.

Inputs s Weights
0 1+i 1+i 0 i 1 5 -1-i 1+i 1+i -1-i -1+i -4

1+i 0 1 1+i 1 1 6 1+i -1-i 1-i 1+i 1-i -5
1 1 i 0 1 1 4 1-i 1-i -1+i -1-i 1-i -3

Input to Output o:* Output
H, H2 H3 H, H2 H3 yi У2
1 -8 -4 1 0 0 1 1
-8 1 -5 0 1 0 0 1
-4 -5 1 0 0 1 1 0

These above examples show how well the network can be 
trained to store vectors and then associate the vectors with their 
appropriate outputs when the vectors are presented to the network 
again. However the generalization property cannot be observed 
since in both examples r is set to 0. This property of the 3C 
algorithm can be analyzed by a pattern classification experiment. 
The algorithm is used to train a network to separate two regions of 
a spiral pattern. The original pattern is shown in Figure 3 (a). The 
16 by 16 area is divided into a black spiral shaped region and 
another white region. A point in the black spiral region is 
represented as a binary “1” and a point in the white region is 
represented by a binary “0”. Any point in the region is represented 
by row and column coordinates. These coordinates, simply row 
and column numbers, are encoded using 5-character quaternary 
encoding. These two codes are concatenated and then a bit is 
added for the bias. This 11-character vector is fed as input to the 
network. The corresponding outputs are 1 or 0, to denote the 
region that the point belongs to.

The training samples are randomly selected points from the 
two regions of the pattern. The samples used here are shown in 
Figure 3 (b). The points marked “#” are the points from the black
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region and the points marked “o” are points from the white region. 
A total of 75 points are used for training. Thus the network used 
for this pattern classification experiment has 11 neurons in the 
input layer and 75 neurons in the hidden layer. The output layer 
requires only one neuron to display a binary “0” or “1”.

After the training is done the network is tested for all 256 
points in the 16 by 16 area of the pattern. The experiment is 
repeated then by changing the value of r  from 1 to 4. The results 
for the different levels of generalization achieved are presented in 
Figure 3 (c), (d), (e) and (f). It can be seen that as the value of r  is 
increased the network tends to generalize more points as belonging 
to the black region. This over generalization is because during 
training, the density of the samples presented from the black region 
was greater than the density of samples from the white region. A 
summary of the experiment is presented in Table 6. This table 
contains the number of points classified and misclassifled during 
the testing.

Table 6. No. o f points classified/misclassified in the spiral pattern

No. of points

r=  1 r -2 r =3 r =4

Spiral Pattern
Classified 230 232 233 220

Misclassifled 26 24 23 36

4 Time Series Prediction
The Mackey-Glass time series, originally developed to model white 
blood cell production as presented by Azoff (1994), is commonly 
used to test the performance of neural networks. The series is a 
chaotic time series making it an ideal representation of the 
nonlinear oscillations of many physiological processes. The 
discrete time representation of the series was used by Tang (1997) 
to test the performance of the CC4 algorithm. The same will be 
used here to test the performances of the 3C algorithm.
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Figure 3. Results o f spiral pattem classification.
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The discrete time representation of the Mackey-Glass 
equation is given below: -

x {k+1)- x  (k) = ax (k-о) / {1 + /  (k-o)} -  a x (k)
The values of the different parameters in the equation are assigned 
as follows: -

a = 3, a = 1.0005, a = 6 ,<5=3
Since 6 = 3, four samples are required to obtain a new point. Thus 
the series is started with four arbitrary samples: -

x (1) = 1.5, л: (2) = 0.65, x (3 ) = -0.5, л: (4) = -0.7
Using these samples a series of 200 points is generated and it 
oscillates within the range -2 to +2. Of these 200 points about nine 
tenths are fed to the network designed by the 3C algorithm for 
training. Then the network is tested using the remaining points. In 
the training and the testing four consecutive points in the series are 
given as input and the next point is used as the output. Thus a 
sliding window of size four is used at each and every step. So if 
nine tenths of the points are to be used for training the total number 
of sliding windows available is 175, where the first window 
consists of points 1 to 4 with the 5th point as the output, and the last 
window consists of points 175 to 178 with the 179th point as output.

The range of the series is divided into 16 equal regions and 
a point in each region can be represented by the index of the region. 
These indices ranging from 1 to 16 can be represented using the 
quaternary encoding scheme. Since four points are required in 
each training or testing, the 5 character codewords for each of the 
four inputs are concatenated together. Thus each input vector has 
21 elements, where the last element in the vector represents the 
bias. Unlike the inputs, output points are binary encoded using 
four bits. This is done to avoid the possibility of generating invalid 
output vectors that would not belong to the class of expected 
vectors of the quaternary encoding scheme. Hence 21 neurons are 
required in the input layer, 175 in the hidden layer (one for each 
sliding window), and 4 in the output layer.
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After the training, the network is tested using the same 175 
windows to check its learning ability. Then the rest of the windows 
are presented to predict future values. The inputs are always points 
from the original series calculated by the Mackey-Glass equation to 
avoid an error buildup. The outputs of the network are compared 
against the expected values in the series. The performance of the 
3C algorithm for different values of r is presented in the Figures 5,
6, 7 and 8. The values of r here are 4, 5, 6 and 7 respectively.

In each of the figures only points 160 to 200 are shown for 
readability. The solid line represents the original series and the 
lighter line represents the outputs of the network designed by the 
3C algorithm. The lighter line from point 160 to 179 shows how 
well the network has learnt the samples for different values of r. 
The points predicted by the network are represented by a “x” on the 
lighter line. The actual points generated by the Mackey-Glass 
equation are represented by a “o” on the solid line. The first point 
that is predicted is the point number 180 using the original series 
points 176, 177, 178 and 179. The next point that is predicted is 
181 using the points 177, 178, 179 and 180. The point number 
180, which is used as input here, is the original point in the series 
generated by the Mackey-Glass equation and not the point 
predicted by the network. Similarly the last point to be predicted is 
the point number 200 using the actual points 196 to 199 from the 
series. The network always predicts one point ahead of time and 
most of the points from 180 to 200 are predicted with very high 
accuracy. Also the network is able to predict the turning points in 
the series efficiently. Thus the network is capable of learning the 
quasi-periodic property of the series. This ability is of great 
importance in financial applications where predicting the turning 
point of the price movement is more important than predicting the 
day to day values.

Stability of networks is another important feature in 
deciding the network performance and is governed by the 
consistency of the outputs when network parameters are changed.
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Figure 5. Mackey-Glass time series prediction using 3C, r  = 4. Dotted line till 
point 180 -  training samples, “o” -  Actual data, “x” -  predicted data.

Figure 6. Mackey-Glass time series prediction using 3C, r — 5. Dotted line till 
point 180 -  training samples“o” -  Actual data, “x” -  predicted data.
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Figure 7. Mackey-Glass time series prediction using 3C, r = 6. Dotted line till 
point 180 -  training samples, “o” -  Actual data, “x” -  predicted data.

Figure 8. Mackey-Glass time series prediction using ЭС, r ~ 7. Dotted line till 
point 180 -  training samples, “o” -  Actual data, “x” -  predicted data.
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Figure 9. Mackey-Glass time series prediction using 3C, r  = 10. Dotted line till 
point 180 -  training samples, “o” -  Actual data, “x” -  predicted data.

The use of different values of r shows its robustness with regard to 
generalizability. The normalized mean square error of the points 
predicted for each value of r is shown in Table 7.

Table 7. Normalized mean square error.

Normalized Mean Square Error of predicted points for varying r
r = 4 r = 5 r = 6 r = 7 r=  10

0.0238 0.0112 0.0193 0.0221 0.0275
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5 Conclusion
Previously, training of complex input neural networks was done 
using techniques like the backpropagation and perceptron learning 
rules. These techniques require considerable time and resources to 
complete the training. The 3C algorithm, which is a generalization 
of the CC4 algorithm accomplishes the training instantaneously and 
requires hardly any resources. Its performance was tested using the 
pattern classification and time series experiments and its 
generalization capability was found to be satisfactory.

A new encoding technique called quaternary encoding was 
introduced. This technique makes some modifications to unary 
encoding so as to accommodate all four characters of the input 
alphabet.

Like the CC4, the 3C algorithm has its limitations. First of 
all it can handle only four input values. Also, as with the CC4, a 
network of the size required by the 3C algorithm poses a problem 
with respect to hardware implementation. However its suitability 
for software implementation due to low requirement of 
computational resources and its instantaneous training make up for 
the limitations.

In the future the 3C algorithm should be modified and 
adapted to handle non-binary complex inputs. This would remove 
the need for encoding the inputs in many cases and greatly increase 
the number of areas of application. The 3C algorithm can be 
applied to applications such as financial analysis and 
communications and signal processing. In most financial 
applications it is not enough to predict the future price of an equity 
or commodity; it is more useful to predict when the directionality 
of price values will change. One could define two modes of 
behavior, namely the up and down trends and represent them by the 
imaginary 0 and 1. Within a trend, the peak and trough could be 
represented by the real 0 and 1. This gives us four states namely 0,
1, i and 1+i, which can be presented as inputs to the 3C algorithm.
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In communications and signal processing, the complex inputs of
many passband modulation schemes could be directly applied to
our feedforward network.
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Chapter 9

Applications of Complex-Valued Neural 
Networks for Image Processing

Hiroyuki Aoki

We consider a complex-valued neuron model which can take К 
(K>=2) states on the unit circle in the complex plane as the exten
sion of a well-known binary neuron which can take only two values 
(1,-1). In the network in which all the complex-valued neurons are 
fully connected with each other, we determine the state transition 
rule of each neuron under the condition that the state transition al
ways deceases the network energy by a maximum amount. Next 
discussed is how a grayscale image can be expressed using the 
complex-valued neural network obtained above. We present a 
method for image representation using only phase. This is accom
plished through embedding of the amplitude data into the phase 
data after the 2-dimensional discrete Fourier transform of an image. 
The embedding of the amplitude data into the phase data can be 
realized by a phase shift operation. We show that adjusting the 
phase shift quantity enables us to control the arbitrary frequency 
component of an input image.

We demonstrate two examples of image processing using complex
valued neural networks applying the aforementioned. They are an 
image filtering, and a grayscale image associative memory which 
can memorize grayscale images and recall one from a noisy or im
perfect version of the memorized image. Note that we propose two 
novel types of neuron when implementing these networks. One is a
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model in which a phase of complex-valued output signal is shifted 
by an amount corresponding to the amplitude of a complex-valued 
input signal. The other is a model, in which the output signal is 
generated as the projection to the real or imaginary axis of a com
plex-valued input signal.

1 A Complex-Valued Neuron Model
We consider a fully connected complex-valued neural network as 
an expansion of the well-known binary Hopfield network. In the 
Hopfield network, state transition of each neuron is basically stabi
lized in only two values, so it can handle two-valued images natu
rally. However, it cannot easily handle multi-valued images or 
grayscale images. On the other hand, a complex-valued neuron can 
take multi-values, so introducing it enables us to deal with gray
scale images easily. Let us consider the fully connected complex
valued neural network, which is composed of N neurons. Each 
neuron can take К states on the unit circle in the complex plane 
(Noest 1988, Jankowski et al. 1996, Aizenberg 2000). The state of 
complex-valued neuron к , denoted by x(k), is given by

х(к) = е ,в к т , вК=2л/К, s(k) = 0 ,\ ,- ,K -l.  (1)

Figure 1 (a) illustrates a simple case where the number of states К 
is set at 8. Let W  = (wkJ) be the weight matrix among neurons,
where wkj denotes the connecting weight from neuron j  to neuron
k . Let x be a N dimensional column state vector of the complex
valued network. Then the energy function of the neural network for 
an arbitrary state x can be defined as follows:

(2)
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Figure 1. (a) States o f a complex-valued neuron ( К  = 8 ) and its state transition 
rule, (b) The state transition rule for К —> .

where x*' denotes conjugate transpose of x . In order to obtain the 
state transition rule of the complex-valued neuron, we assume the 
following condition.

Condition: The weight matrix W is given by an Hermitian matrix 
( wu* = wji ) and the state transition of each neuron always de
creases the energy E{x) by a maximum amount.

Energy E(x) is calculated to be a real value since W is an Hermi
tian matrix. Now we consider the state transition rule. Let y(k) be 
the input of neuron к , i.e., y(k) = wkJ x(j) and x\k) be the

renewed state of neuron к . It is assumed that the state vector tran
sits from x to x' due to the state transition of neuron к . Energy 
change AE can be calculated as follows:
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Furthermore, assuming x(k) = exp (iOxs(fc)), x'(k) = exp (iOKs'(k)) 
and Я * )  = |и|ехр(/0„),

AE = -\u\{cos{eKs\k)-eu ) -  cos (6Ks(k) -<?„)}• (4) 

Thus, to satisfy the condition mentioned above,

cos(QKs\k)-Qu ) > cos(0Ks(k)-6u) (5)

and the new state s'(k) may be decided so that 16Ks'(k)-0u | may
be as small as possible. From this result, we can obtain the follow
ing state transition equation for the complex-valued neuron:

x(k) = csga(y(k)) (6)

where x\k) is a renewed state after the transition and a function 
csgn() is also defined as follows:

csgn (Я&)) = exp(/ eK s\k)) (7)

arg(.y(*))+{0*s'(k) =
Ok

, (mod K) (8)

where the symbol [0] presents the maximum integer not exceeding
в . The operation of csgn is also illustrated in Figure 1 (a). If К 
takes a large number, Eqs. (7) and (8) can be expressed as the fol
lowing:

csgn (y(k)) = exp (i arg (Я * )) )  • (9)
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In this chapter, a neuron having the input-output characteristic de
scribed by Eq. (9) is called np{k) neuron. The operation is also
illustrated in Figure 1 (b). The renewed state is determined by only 
phase of the input y(Jc) .

In order to use the network as a complex-valued associative mem- 
ory (CAM), the weight matrix W can be given by the following 
form. Let P vectors xff (a = 1,2, *••,/>) be memorized into CAM 
and S = (x ‘ x2 ••• Xя ) be a N xP  matrix, then

W = S S +, S+= (S S r 'S * r (10)

where notation S+ indicates the Moore-Penrose pseudoinverse ma
trix of S . Note that Eq.(10) is based on the idea of the optimized 
associative mapping (Kohonen 1987). Making the weight matrix 
by this equation implies that W becomes an Hermitean matrix and 
enables the memorized vectors to be fixed points of CAM.

2 Image Representation Using Com
plex-Valued Neurons

In order to represent grayscale images using complex-valued neu
rons described in the previous section, each element of image data 
should take the value on the unit circle in the complex plane. So 
discussed in this section, is how a grayscale image can be repre
sented by using only phase. In order to accomplish this, phase ma
trix image representation is proposed (Aoki et al. 2000).
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2.1 Two-Dimensional Discrete Fourier Trans
form Pair

For the convenience of later discussion, we rewrite the form of the 
2-dimensional discrete Fourier transform (2-D DFT) and 2- 
dimensional inverse DFT (2-D IDFT). The 2-D DFT pair of an 
LxL image u(m,n) is defined as

v (A ,/ )= } X X  и {т ,п )е ‘в‘ (кт+ы) , 0< k ,l< L -l (11)
L  m=0 n=0

и(т,и ) = v(k ,l)e iedkm+,n) , 0<m,n<L-\ (12)
L  k=0 1=0

where 6L = 2k/L (Jain. 1989). Here we define a discrete function 
/<„,„)(*>0  as follows:

/м (к,1) = е ^ ' " К  (13)

Then a matrix of size LxL can be defined as

k „ ,  = {/ (.,)(* ,/ ); 0<A,/<L-1}. (14)

The set of matrices f(mn)(/w,/j = 0,1,-••, 1,-1) composes complete
orthogonal discrete basis functions. Using Eq.(14), 2-D DFT 
Eq.(l 1) and 2-D ЮРТ Eq.(12) can be expressed as

v = T - £ £  u ( m , n ) = D F T ( u) (15)
m=0 n=0
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“ = } l I v ( ^ / ) f (M)=/Z)/T(v) (16)
L  k=0 1=0

where v and u are LxL matrices, respectively. They are ex
pressed as a linear combination of the complete orthogonal matri- 
ces fuur

2.2 Phase Matrix Image Representation

Let v(&,/) = | v(kj) | eia(kJ), where | v(k,l) | represents an amplitude 
and a(k,l) a phase. In order to represent an image using complex
valued neurons, let an a(k,l) correspond to a state of a complex
valued neuron x(k,l) . What we are concerned here with is how to 
handle |v(&,/)| since the amplitude of the complex-valued neuron 

should be|x(&,/)| = l . Considering conjugate symmetries, i.e.,

v(k,l) = v(L-k>L-l) and f(M)= C * .i-/ )’ Ecb(16) can be repre“ 
sented as

“ = 7  x £ Re(v(*>of(JM))
L k=о /=o ( 17)

L  k=0 1=0

We next consider the normalization of |v(&,/)|. Let vmax be the 

maximum value of | v(k,l) |, i.e.,

Vmax = max{|v(fc,/)|, 0 <*,/< i —1}- (18)

For 0 < | v(k,l) | / vmax < 1, we can calculate y(k,l) as either
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У (к, I) = cos'1 (| v (M ) | / vm„  ) (19)

or

7 (^ ,0  = sin-' (|v(*,0|/vmax) . (20)

Then, we can define a new LxL phase matrix x = { x(k,l) } as

x(k,l) = eiiaik'l)+rikJ)\ (21)

In the equation, note that | *(£,/) | = 1 and x(kyl) can be represented
as a state of complex-valued neuron. The state is set by shifting the 
2-D DFT phase a(k,l) by the phase shift /(&,/) defined in either 
Eq.(19) or Eq.(20). The amplitude information is embedded into 
the phase information. In this chapter the matrix x = {x(k, /)} is the 
phase matrix image representation for the original image
и = {м(ет,и)}-

On the other hand, the original image u can be reconstructed from 
the phase matrix x in the following way. The IDFT of the phase 
matrix x can be represented as

IDFT{x} = | X X  ei(a(M)+r(M))fW)
L * - » «  (22)

L Jt=0 1=0

Note that we used the property of the conjugate symmetry, or 
у(к,1) = у(Ь-к,Ь-1) and а(к,1) = -а(Ь-к,Ь-1) . Using either 
Eq.(19) or Eq.(20) for y(&,/) calculation, the original image u 
given by Eq.(17) can be represented as either
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u = vnax7 X £  cosy(k,l)Re{e,a<*’/J f(i,, } (23)
L  k=0 1=0

or

«  = vmax I I I  siny(&,/)Re{e'a{k'n f(t „ }, (24)
L  k=0 1=0

respectively. Substituting Eq.(22) for Eqs(23) and (24), we can ob
tain the following relation as either

u = vmaxRe{/D/T(x)} (25)

or
u = vmaxIm {lDFT(x)}f (26)

respectively. In the above equations, the variable vmax is just a
constant value. From Eqs.(25) and (26), it follows that the original 
image u can be obtained by extracting either the real part or the 
imaginary part from the 2-D EDFT of the phase matrix x .

2.3 Block Diagrams for the Phase Matrix Trans
form Pair

In this section we display block diagrams for the transformations 
between an original image and its phase matrix described in the 
previous section. Figure 2 and Figure 3 show the block diagrams 
for the transform of an image and the inverse transform of a phase 
matrix, respectively. What follows is an explanation of the indi
vidual blocks in the diagrams.
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The transform of an image into its phase matrix :

1. The 2-D DFT of an LxL image u(m,n) is performed. A com
plex number v(kj) = | v(fc,/) \e'a{k,l) is obtained. For each v(k,l), 
amplitude data |v(£,/)| and phase data a (k j)  are separated. A 
v(k,l) at к = 0 and / = 0 is calculated from Eq. (11) as

v(0,0 )  = j ' £ ' £ l u ( m , n )  (27)
L m=0 n=0

and is called the Direct Current(DC) or zero-frequency component, 
which affects the brightness or bias of the whole image. We set 
v(0,0) = 0. This eliminates the variation in brightness or bias of 
the input image u(m,ri).

2. For amplitude data |v(fc,/)|, vmax is selected. Let us assume 
here that the value of vmax is determined as a common parameter 
for all images, although the value of vmax is essentially different in 
each image.

3. Phase shift data /(&,/) is calculated by using either Eq.(19) or 
Eq.(20).

4. For phase data a(k,l), phase shift operation a(k}l) + y(k,l) is 
performed. As a result, a phase matrix {.x(k,l)} is generated.

5. The quantized phase matrix {jc9 (&,/)} is quantized by the fol
lowing (if it is necessary):

x4(k,l) = csgn(x(k,l)) (28)
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Phase
Data
a{k,l)

x(k,l)

Figure 2. Block diagram for the transform o f an image into its phase matrix.

The inverse transform of a phase matrix into its image:

1. The 2-D IDFT of a state of the complex valued neural network 
is performed. This provides a complex-valued matrix / 7) } .

2. Either the real part or the imaginary part of the matrix 
{ и y (m, n)} represents the output image {wcl// (m,«)} .

x{kj)

2-D
IDFT

Extract
w

u,(m ,n)
Real / Imaginary 
Part

w
u0J m ,n )

Figure 3. Block diagram for the inverse transform of a phase matrix into its im
age.
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2.4 Reducing the Number of Complex-Valued 
Neurons

In a natural scene image, energy of the image tends to center on the 
low frequency region. Using these properties, we can remove the 
high frequency components in the phase matrix at the degree in 
which the image degradation is not conspicuous. As a result, it is 
possible to reduce the number of neurons. Let us explain a case in 
the concrete using an 8x8 image. Figure 4 shows the frequency 
numbers of the DFT coefficients v(k,l) in the case of L = 8. The 
range of the frequency numbers is from 0 to 8. The frequency 
number 0 is called the Direct Current (DC) or zero-frequency. The 
frequency number 8 is the highest frequency. A DFT coefficient 
v(k,l) corresponds to a neuron np(k,l) . For example, if we remove
the high side frequency numbers 5 to 8, only the low side ones 0 to 
4 (shaded area) are employed to build a neural network. As a result, 
the number of employed neurons can be reduced from 64 to 39.

1
2
3
4
5
6 
7

k !
Figure 4. Frequency numbers of the DFT coefficients v(k,l) for an 8 x 8 im
age.

0 1 2 3 4 5 6 7
0 1 2 3 4 3 2 1
1 2 3 4 5 4 3 2
2 3 4 5 6 5 4 3
3 4 5 6 7 6 5 4
4 5 6 7 8 . 7 6 5
3 4 5 6 7 6 5 4
2 3 4 5 6 5 4 3
1 2 3 4 5 4 3 2
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(a) an original image (b) N=421, K=50 (c) N=1201, K=50

(d) N=421, K=200 (e) N= 1201, K=200

Figure 5. (a) An original image, (b)-(e) Reconstructed images from the quan
tized phase matrices o f the original image in various conditions.

We next examine the relation between image quality and both the 
number o f neurons N and the number o f states К (phase quantiza
tion). Figure 5 shows the images reconstructed from the quantized 
phase matrices in various conditions. The original image is 50x50 
with [0, 255] integer-valued gray levels as shown in Figure 5 (a). It 

has 2500 frequency components. Removing v(k,l) with high fre
quency numbers, we can reduce the number o f neurons. Although 
the number o f neurons is reduced to 1201 from 2500 especially in 
Figure 5 (e) image, image degradation is not conspicuous. From 
these reconstructed images, we can see that 1) it is required that К 
takes the value o f more than 200 to obtain a clear image, however,
2) image degradation is not conspicuous, even i f  around 50% o f all 
components in the high frequency bands are removed. Therefore, 
we can reduce the number o f neurons.
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3 Phase Matrix Transform Pair im
plementation Using Complex-Valued 
Neural Networks

3.1 A Phase Matrix Transform Neural Network
In this section let us consider the implementation of the phase ma
trix transform described in the previous section using complex
valued neural networks. Let us use Eq.(20) and Eq.(26) as the cal
culation of y(k,l) and the image reconstruction, respectively.
Suppose that | v(/r,/) | /vmax«  1 holds, Eq.(20) is given by the fol
lowing approximation:

y(k,l) = \v(k,l)\/vmlx. (29)

Then, each element in the phase matrix given by Eq.(21) can be 
rewritten as the following:

x(k, I) = exp {/' (arg v(k, I) +1 v(k, I) | /vma x ) }. (30)

Here, we introduce a novel complex-valued neuron model denoted 
by пА(к,Г), whose input-output equation is defined by Eq.(30). In 
the equation, the variables v{k,l) and x(k,l) represent complex
valued input and output of the neuron, respectively. In the neuron, 
output is determined by shifting the input phase by the phase shift 
quantity which is proportional to the input amplitude.
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Figure 6 shows the input-output operation of the nA neuron model. 
Introducing the nA neuron model easily enable us to perform the 
phase matrix transform using the complex-valued network as 
shown in Figure 7. Neurons nA(k,l) and pixels of an image 
u(m,n) are linked with the connecting weight described by the 
function f(k ^(L-m^L-n) defined by Eq.(13). Since

|л*.0 (L-m,L-n) | equals 1, only phase operation is performed and

the amplitude information is invariant in all connecting weights. 
The phase matrix can be obtained from nA(k,l) neurons’ output.

Figure 6. State renewal operation o f a nA neuron model, (a) The amount o f 

phase shift is large, (b) The amount o f phase shift is small.
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Figure 7. A complex-valued neural network to perform the phase matrix trans
form of an image u(m,n) using nA neuron models.

3.2 An Inverse Phase Matrix Transform Neural 
Network

Next, we can deal with the implementation of the inverse phase 
matrix transform using complex-valued neural networks. The out
put image uout is obtained by Eq.(26). The equation for a pixel
value uout(m,ri) is rewritten as the following:

1 f L~x L~l }
Mouf(m,n) = ^max j.

L /=o J
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Im

Figure 8. Input-output operation o f a nB neuron model.

Here, we introduce another type of complex-valued neuron model 
denoted by nB(m,ri), whose input-output equation is given by the 
following:

x\m,n) = ̂ y-]m {y(m ,n)}, (32)
Ju

where the variables y(m , n) and x\m , n) represent complex-valued 
input and real-valued output, respectively. The output of nB(m,n)
neuron model is obtained from the projection onto the imaginary 
axis of the input. Figure 8 shows the input and output operation of 
the nB neuron model. Introducing it enables us to perform the
processing described by Eq.(31) using the complex-valued neural 
network shown in Figure 9. The output images can be obtained 
from output of nB neurons directly.
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Figure 9. A  complex-valued neural network to perform the inverse phase matrix 
transform using nB neuron models.

4 Examples of Image Processing Using 
Complex-Valued Neural Networks

In this section, we present two examples of image processing using 
complex-valued neural networks.

4.1 DFT Filtering

Figure 10 shows the basic idea of the image enhancement by DFT 
filtering. A pixel-by-pixel multiplication is performed on a trans
formed image followed by the inverse transformation.

u(m ,n) v(k, /) v ,(* ,/ )  uou,(m>n)

Figure 10. Image enhancement by DFT filtering.
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The function of the DFT filtering shown by Figure 10 can be real
ized by using the complex-valued neural network which is com
posed of nA and nB neurons as shown in Figure 11. The informa
tion of g(k j)  which is called a zonal mask is reflected to y(k,l) 
as the following:

Y(k,l) = g(k,l) | v(k,l) I/ vmax . (33)

The operation of multiplication by g(k,l) shown in Figure 10 can 
be replaced with the operation of a phase shift in nA(k,l) neuron. 
Adjusting the phase shift data in nA neurons enables us to control
freely the arbitrary frequency component of an input image u . 
Consequently, image filtering can be realized. Remember that 
y(kJ) = y(L-k,L-l) holds because of the conjugate symmetry of 
v(k, /). Especially if we set y(k, /) = y(L-k, L-l) = 0 , then the cor
responding frequency components f(kl) and f(L̂kiL̂n can be elimi
nated from the output image uoul. Alternative means of this is to 
replace nA(k,l) neurons with np(kj) neurons, respectively.

Figure 11. DFT filtering using complex-valued neural networks.
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f (к, I) L-ri) /(*,/)(»»,")

Figure 12. A Grayscale image associative memory using complex-valued neural 
networks.

4.2 A Grayscale Image Associative Memory
A grayscale image associative memory can be realized by combin
ing use of CAM with the phase matrix transform and the inverse 
phase matrix transform. The block diagrams are as shown in Fig
ure 12. In general, there are two phases to the operation of associa
tive memory; they are 1) the storage phase, and 2) the retrieval 
phase. First, in the storage phase, memorized images are input 
through the phase matrix transform, and then connecting weights 
among np neurons can be, for example, determined by using
Eq.(10). Secondly, in the retrieval phase, CAM will retrieve one of 
the corresponding complete stored images when a noisy or incom
plete version of a memorized image is given as an initial image. 
The output image uoi/, is obtained through inverse phase matrix
transform.
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an initial image

a recalled image

Figure 13. A recalling process o f CAM, when a partial broken version of a 
memorized grayscale image shown in Figure 5 (a) is given as an initial image.

Let us here build a grayscale image associative memory which 
memorizes 120 50x50 images including the image shown in Fig
ure 5 (a). The numbers of neurons N  and of states К  (phase 
quantization), are set at 1201 and 200, respectively. We removed 
52% of all components in the high frequency bands from images. 
Figure 13 displays a recalling process when a partial broken version 
of a memorized image is given as an initial image. The complete 
image is perfectly recalled in 18 iterations. The synchronous opera
tion is used when iterating. (All neurons are updated simultane
ously.)

Figure 14 displays the dependence of signal-to-noise ratio (SNR) in 
rate of successful recall when a noisy version of a memorized im
age is given as an initial image.
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Р=40
Р=120
Р=240

Figure 14. Dependence of SNR in rate o f successful recall in the grayscale image 
associative memory.

The noisy image is generated by adding some white Gaussian noise 
to the memorized images. The SNR is defined in decibels (dB) as

£WR = 101ogIO—y (34)

where a 2 and cr2 are the variance of the original image and noise
data, respectively. For three different numbers of memorized im
ages, i.e.,P = 40, 120, 240, simulations are performed. In Figure 14 
the horizontal axis indicates the SNR, signal-to-noise ratio. In the 
number of SNR increases, the noise level is getting smaller. The 
vertical axis indicates the rate of successful recall. We call an 
event a success if the memorized image can be retrieved perfectly. 
In the case of P  = 240, if the SNR is more than 2dB, the rate of 
successful recall reaches almost 100 %. However, if the SNR is 
less than -4dB, successful recall is almost impossible. The actual 
noisy images with 2dB and -4dB additive white Gaussian noise for 
the original image shown in Figure 5 (a) are shown in Figure 15 (a) 
and (b), respectively.
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(a) SNR=2dB (b) SNR= -4dB

Figure 15. Images degraded by 2 dB and -4dB additive white Gaussian noise for 
the original image shown in Figure 5 (a).

5 Conclusions
We presented applications of complex-valued neural networks for 
image processing showing two examples: an image filtering and a 
grayscale image associative memory. We presented a method for 
image representation using only phase in order to easily deal with 
grayscale images using complex-valued neural networks. The fol
lowing three types of complex-valued neuron model are demon
strated in this chapter:

np m odel: x'(k, /) = exp { i arg(y(k, /)) },

nA m odel: x \k ,  I) = exp{ i (arg(y(£,/)) + a | y(k , /) | ) },

and nB m odel: x'(k, /) = b Im { y{k , / ) },

where y ( k j )  and x'(k j)  are input and output, and a and b are 
constants, respectively. In an image filtering using nA models, let
ting a equal a (k j )  (let a take a different value for each neuron) 
enables us to control the amplitude of the arbitrary frequency com
ponent of an image. Especially, setting a(k,l) = a(L-k,L-l) = 0 , 
we can remove frequency components f(Jt>/) and f(L_ktL. {) from the
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image. We also showed that a grayscale image associative memory
can be realized by combining a complex-valued associative mem
ory composed of np neurons with both pre-processing using nA

neurons and post-processing using nB neurons.
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Chapter 10

Memorization of Melodies Using 
Complex-Valued Recurrent Neural 

Network

Makoto Kinouchi and Masafumi Hagiwara

To deal with temporal sequences is very important and difficult prob
lem for applications of neural networks. In this chapter, we aim at 
constructing novel recurrent neural network which can process tem
poral sequences. The memorization ability of temporal sequences 
can be used in a lot of fields e.g. control, information processing, 
thinking support systems, and so on.

In section 1, the background and the purposes of this chapter is de
scribed.

In section 2, a Multilayer Network using Complex neurons with lo
cal Feedback (MNCF) is explained. A complex neuron model can 
keep previous information more easily than a conventional neuron 
models because of the phase component. A simple learning algo
rithm based on the back-propagation for temporal sequences which is 
named Complex Back-Propagation for Temporal sequences (CBPT) 
is derived. It can be considered as a generalized original back
propagation. It is shown in some computer simulations that the net
work has better ability than the conventional ones, including Elman’s 
network.

In sections 3 and 4 , a music retrieval system using a complex-valued 
recurrent neural network which is named MUSIC (MUltilayer net-

205



206 M. Kinouchi & М. Hagiwara

work for Sequential Inputs using Complex neurons) is described. In 
the system, melodies are treated as temporal sequences. In the con
ventional associative memory models, melodies should be given at a 
time and they are treated as static patterns. MUSIC can treat a num
ber of melodies by some smaller networks. Such architecture has an 
advantage that the pattern matching process is not required. MUSIC 
uses a part of the melodies as a key instead of the text information.

In section 5, the results mentioned in this chapter are concluded.

1 Introduction
A lot of associative memory models using neural network have been 
proposed. Most of them are devised to memorize static patterns. Let’s 
think about human memory. We can memorize not only static pat
terns like pictures but also temporal sequences like movies, speech, 
melodies, and so on. For example, when we memorize a melody, we 
can recall it from a part. Such a behavior comes from our associative 
function of brain for temporal sequences. Memorization of tempo
ral sequences is very important not only from a theoretical point of 
view but also from the applications: it can be used in a lot of fields 
e.g. control, information processing such as database of melodies and 
database of movies, thinking support systems, and so on.

The conventional techniques to deal with temporal sequences can be 
classified into the following 3 methods:

1. Turn the temporal sequences into spatial patterns and they are pro
cessed by a conventional static network.

2. Addition of time-delay elements to feedforward connections: One 
of the examples is the Time Delay Neural Networks (TDNN) 
(Waibel et al. 1989, Day and Davenport 1993). The longest time 
length to be dealt is limited by the longest delayed path.
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3. Addition of time-delay elements to feedback connections: Recur
rent networks are their examples (Jordan 1986, Frasconi et a l  
1992, Nishi et a l  1993, Parlos et a l  1994, Tabuse et a l  1997). 
Several learning algorithms have been proposed. This technique 
has an ability to deal with longer temporal sequences because of 
the recurrent signal flow. However, the number of connections in
creases as the network becomes large. In addition, the learning 
algorithm also tends to be complicated and long training time is 
required.

Methods 1 and 2 can only deal with the limited lengths of the se
quences. Moreover, method 1 cannot treat the temporal sequences 
in an on-line manner. Method 3. has an ability to deal with longer 
temporal sequences because of the recurrent signal flow.

From a technical point of view, it can be considered that the rest of 
the melody can be determined by leading some notes. However, the 
numbers of the notes which can determine the rest of the melody 
are not always the same. Thus method 3 is the most suitable for the 
purpose.

We have proposed novel multilayer neural networks using complex 
neurons with local feedback to deal with temporal sequences (Ki- 
nouchi and Hagiwara 1995). Since a complex number has a phase 
component, it can express a time concept. And the local feedback 
enables a recurrent signal flow. Therefore the combination of com
plex neurons and recurrent networks is an excellent method to deal 
with a time concept.
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Figure 1. Complex neuron with local feedback.

2 A Recurrent Neural Network Using 
Complex Value

In this section, we describe novel multilayer neural networks us
ing complex neurons with local feedback to deal with temporal se
quences. It is named MNCF (Multilayer Network using Complex 
neurons with local Feedback).

2.1 Multilayer Network Using Complex Neurons 
with Local Feedback (MNCF)

Figure 1 illustrates a complex neurons with local feedback. A com
plex neuron uses complex numbers in the input, output, connection 
weights and threshold. The output of jth  neuron in the nth layer at 
time t  can be expressed by

i4n)w  =  f (u {; \ t ) )  со

^ n\ t )  =  , ? \ t  - 1 )  +  e ?  (2)
t

where u f \ t )  is the input sum to the neuron, w f t  are the connection 
weight from the ith neuron in the (n -  l)th layer to the j th  neuron 
in the nth layer, vf* is the feedback weight and is the threshold. 
f(x) is the following function for a complex number.
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: Complex Neuron with Local Feedback

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

Figure 2. Multilayer Network using Complex neurons with local Feedback 
(MNCF).

f (x )  =  g { R e x )+ jg ( lm  x) (3)

We use g(x) =  tanh(x).

Figure 2 shows the structure of the Multilayer Network using Com
plex neurons with local Feedback (MNCF).

2.2 Complex Back-Propagation for Temporal 
Sequences (CBPT)

In this section, a learning algorithm for the network is briefly ex
plained. The algorithm is based on the back-propagation.
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Changing each at time t  is expressed as

(4)

where 77 is the learning coefficient and T  is the time length to be 
considered for learning. T  =  oo corresponds to the gradient descent 
rule in a strict sense. E (t)  is the error function at time t , which is 
defined as

(5)

where d\ \ t )  is the desired output of zth neuron in the A'th (output) 
layer.

We define Ŝ n)( t , r )  as follows:

(i) For hidden layers (n /  N)

, r \ , r )  J  V e - » . { & ; (()
+v^n)Ŝ n\ t , T  -  1 ) |

I (T > 0)
(ii) For an output layer (n =  N)

5(n)(t rl =  I ® (T 7̂  0) n \
’ (t  =  0) (?)

where a is a complex conjugate of a, operator * is defined as

x * у  =  (Re x Re y) -f j ( Im a; Im у) (Ю

and f ' ( x )  is defined as
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By using Sjn\ t ,  т), Eq.(4) can be expressed as

A ,«#>(*) =  - n Ti : y t i){ t - T ) 5 f \ t , r ) . (10)
r=0

Changing and 6^ \ t )  is derived in the same way,

(П)
r=0

(12)
r = 0

Since this is a generalized algorithm, it can be reduced to the con
ventional real-valued back-propagation algorithm (Rumelhart et al. 
1986).

2.3 Computer Simulation Results
We show computer simulation results of the network. We made tem
poral patterns by the following equation,

where x(t) has an integer value and forms a cyclic sequence deter
mined by m  and n. We give some examples.

m  =  3, n =  3 :

(13)

0 ,1 ,1 ,1 ,0 ,0 ,... (repeat)
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Table 1. Processing time for an epoch (MNCF=100).

T MNCF LFMN
RMLP

Elman’s(full connection) (coupled)
1 100 69 152 79 55
2 166 117 283 134 103

Table 2. Numbers of neurons.
] input layer hidden layers output layer

MNCF I 3 25 25 3
LFMN, RMLP 3 50 50 3
Elman’s j 3 + 50 50 3

m  =  3 ,n  =  5 :
1 .3 .0 .4 .2 .1 .2 .0 .3 .0 .3 .1 .4 .3 .3 .0 .1 .4 .0 .0 .4 .4 .3 ,
1 .3 .7 .1 .1 .4 .1 .1 .1 .3 .0 .... (repeat)

The network is learned to predict x(t +  1) using x(t). During the 
recall process, after some samples are presented to the network, the 
output of the network can be used for the next input. In this way, 
the network can recall a whole sequence. This ability is, so to speak, 
compared to memorizing melodies and recalling them from a part.

We compared the network (MNCF: Multilayer Network with Com
plex neurons with local Feedback) with the following networks:

1. Local Feedback Multilayered Network (LFMN)(Frasconi et a l  
1992): The LFMN has local feedbacks in hidden layers. The layer 
is called dynamic layer.

2. Recurrent Multilayer Perceptron (RMLP)(Parlos et a l  1994): The 
RMLP is a multilayer perceptron having delayed connections 
among the neighboring neurons in a hidden layer. We prepared
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Time (epochs)
Figure 3. Learning Curve when T  =  1.

two types: One is ‘full connection’ type in which all the neurons 
in a hidden layer are fully connected; another is ‘coupled’ type in 
which coupled neurons are interconnected. The latter one is sim
ilar to MNCF, because a complex neuron is composed of a real 
neuron and an imaginary neuron and they are interconnected.

3. Elman’s Network (Elman 1990): There is a context layer which is 
copied from a hidden layer.

We did not use Jordan’s network (Jordan 1986) because the problem 
is not suited to the Jordan’s network. Learning algorithms for the 
networks (l)-(3) are derived from Eq.(4).
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Time (epochs)
Figure 4. Learning Curve when T  =  2.

Table 1 shows the processing time for an epoch which is one period 
of x(t). Each network used the same number of neurons as shown in 
Table 2.

Figure 3 and figure 4 show the learning curves, where m  =  5 and 
n =  3 in both cases. Each line is based on average of 100 trials. It 
can be observed from these figures that learning of MNCF is very 
fast and that the residual error is extremely small. In addition, learn
ing curve of MNCF when T  =  1 is better than those of the other 
networks even when T  =  2. This is owing to the superior learning 
ability of MNCF.
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input

* ( 0 ------------- 4  M N C F  -------- -- jc(r-hl)

desired output

Figure 5. Memorization.

initial input output

* (f+ D

Figure 6. Recall.

3 MUltilayer Network for Sequential 
Inputs Using Complex Neurons 
(MUSIC)

In this section, we apply MNCF to memorize melodies and demon
strate the effectiveness and practicability. It is named MUSIC (MUl
tilayer network for Sequential Inputs using Complex neurons).

3.1 Coding
The notes and rests are coded into 9-bit bipolar patterns. 7 bits are 
used for ‘a ’ to ‘g ’ (A to G) and 1 bit is used for ‘r* (rest). The 
remaining 1 bit means the continuance of the previous note. Each 
code does not include information on the length of the note.

M N C F

output



Table 3. 7 melodies from Bart6k’s Mikrokosmos.
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#1 c d e - fe d re fg fe d c -
#2 c d e d e fg - fe d c d - e - fg fe d c d - e fe d c -----
#3 edcdcba-bcded-c-babcded-cbaba-----
#4 a - g - fe fg a ----- g - f - g fe d e -----f - g - g - e - fg a - g -----fe d e d -----
#5 b c d -c d e -d c d e f-e - fe d -e -d c b c d -c -----
#6 a b c -d -c b a ------b c d -c -b a b -----c b a g a -b -c d c b a -g -a b c-b -a g a -
#7 gab-cba -b ab cd----- c d c -b a b -ra b c b -a -g -----

3.2 Memorization
Figure 5 shows how to memorize the melodies. The recurrent net
works are learned by giving the next note as the desired output.

3.3 Recall
Figure 6 shows how to recall the melodies. The network has been 
learned so that it can predict the next note. After some notes are 
presented to the network, the output of the network can be considered 
as the next input. Therefore, the output can used for the input. As a 
result, the network can recall the rest of the sequence.

3.4 Computer Simulation Results
In this section, computer simulation results are shown. We used 7 
melodies from Mikrokosmos Vol. 1 composed by Bela Bartok. Ta
ble 3 shows the coded melodies. To show the superior ability of 
MNCF, we compared it with the Elman’s network. The numbers 
of neurons used for the simulation are 9-30-30-9 in the MNCF and 
9+60(context)-60-9 in the Elman’s Network. The learning coefficient 
is rj =  0.01 and the time length to be considered for learning is T  =  2 
in both networks.

Figure 7 shows the learning curves of them. It can be observed from 
this figure that the learning of the MNCF is much better than that of
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Epoch

Figure 7. Learning curves.

the Elman’s.

Figure 8 shows the numbers of the incorrect outputs when the whole 
notes of the melodies are given after learning. It can be observed that 
the MNCF can recall almost all of the correct notes. The Elman’s 
Network recalls much more incorrect notes because the residual error 
is not small enough (see Figure 7). In the case of the MNCF, there 
are some (only 3) incorrect outputs produced, however, they cannot 
be recalled theoretically because some melodies are exactly common 
at the beginning.

Table 4 shows some samples of the recall of the melodies from some 
parts. It can be observed that the MNCF can recall the melodies per
fectly and that the Elman’s network cannot recall the melodies cor
rectly because of the incorrect outputs.
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Figure 8. Number of incorrect notes.

Table 4. Presented and recalled notes. Incorrect notes are underlined. ‘M ’ 
and ‘E ’ represent MNCF and the Elman’s Network, respectively.

presented recalled

#2 cded
M e fg - fe d c d -e -fg fe d c d -e fe d c ----
E  e fc r-fe d c d -e -fc rfe d c---- f - q - f - a

#3 edcd M cba-bcded-c-babcded-cbaba----
E  cba-bcded-c-bab----cbaaa-b-cd

#4 a-g- M fe fg a ----g - f- g fe d e ---- f- g - g - e - fg a - g -----feded-----
E  f e f ста----c r-f-e rfed --b -aaa ------ bed---- cdc-bab-rab

#5 bcd- M cde-d cd e f-e -fe d-e -d cb cd -c ----
E  cde- f - сdcba- q— fbacqq-

#6 abc-
M d-cba----bcd-c-bab---- cbaga-b-cdcba-g-abc-b-aga-----
E d-cbaqa-b-cb^qa-b-cdcba-q^bcd---cdc.-b.ab-a-q---fe

#7 gab- M eba-babed----ede-bab-rabeb-a-g----
E  eba-babed----ede-bab-qed^---- pbaaa

It has been confirmed that the MNCF can recall the 7 melodies sep
arately in one network when some notes are given. That is not the 
same by the Elman’s network.
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4 Melody Retrieval System Using 
MUSIC

When MUSIC is applied to actual melody retrieval system, the num
ber of melodies memorized in MUSIC must be increased. Gener
ally, a memory capacity of neural network depends on the number 
of neurons. The method for enlarging MUSIC itself is considered. 
However, there are the following problems.

1. Since the number of neurons increases, the calculation time per 
input becomes enormous.

2. Since the number of memorizing patterns increases, the calcula
tion time per epoch becomes enormous.

3. Since the leaning of MUSIC is pattern by pattern, it becomes un
stable easily. The learning coefficient must be small and therefore 
the learning speed slows down.

4. When the correlation between memorized patterns is large, learn
ing seldom completely finishes.

As mentioned above, there will be a limit in order to memorize many 
melodies even if a large-scale MUSIC is used. In order to handle the 
large-scale problem, we use small-scale and multiple MUSICs. As 
the technique that divides and integrates small-scale and multiple 
neural networks, Comb NET and the improved CombNET-II (Iwata 
et al. 1991) are proposed. These have succeeded in handling the large 
and static pattern.
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INPUT

Figure 9. Melody retrieval system using multiple MUSICs.

4.1 Melody Retrieval System Using Multiple 
MUSICs

Figure 9 shows the melody retrieval system using multiple MUSICs. 
The melodies are divided into N  groups, and N  MUSICs are pre
pared. The number of melodies in a group is decided so that the 
irrational may not exist in the learning of MUSIC. Each group is 
memorized only by one MUSIC.

In a recall process, a key input is given for all MUSICs. Each MU
SIC starts to output the notes in proportion to the inputs. When they 
are part of a melody that is memorized, the MUSIC may gradually 
output the note equal to the next input. In the meantime, the random 
note is output, when it is not memorized. So, when the input-output
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Original Melody (Zousan to Korisu)
g-edc-ccf-
e-ddd-ddd-ggg-eeedccc-d-g-cde-d-g-cde-ddd-ddd-

dgggccc-
e-ddd-ddd-ggg-eee«*—  presented as a key 

#1 +* + ***** + *** + ** *
#2 ++**********+***
#3 ******* + * + ******
#4 *++* + * *+++++++++dccc-d-g-cde-d-g-cde-ddd-ddd- 
#5 *********++****+ dgggccc-
#6 +★★+***+*******★#7 output without key mput
#8 —  (Recall Mode)
#9 ********+**++***
#10 ++****+*+**+★***

+ : MUSIC outputs the correct note.
*: MUSIC outputs the incorrect note.

Figure 10. Example 1 of the melody retrieval.

equalization in a MUSIC is observed, the MUSIC can be chosen. By 
switching the chosen MUSIC to the self recall mode, the melody af
ter the key input is output, and it becomes the retrieval result. The 
above aspect is shown by two examples.

In figure 10, a part of a melody is input as a key. Within 10 MU- 
SICs, this melody is memorized only in #4. Each MUSIC carries out 
an output one by one, when the key input is given. In figure 10, + 
represents that the output is equal to the next input (correct), and * 
represents that the output is not equal to the next input (incorrect). It 
can be observed that correct notes are not output continuously before 
7th note of the key input. After 8th note of the key input, MUSIC #4 
outputs the correct notes continuously, although the other MUSICs 
output the incorrect notes. Therefore, it is shown that this melody is 
memorized in MUSIC #4. After the end of the key input, in making 
chosen MUSIC in the recall mode, the continuance of the melody is 
output. Here, it is shown that the melody has been reproduced cor-



222 M. Kinouchi & М. Hagiwara

Original Melody (Haru no Ogawa)
egagegccaagecdere
gagegccaagedecrdedgaagaccbaggeregagegccaagedecr 
gagegccaagedecr*—  presented as a key 

* * * * * * * * * * * * * *

#2 *+***+********
#3 *+++*+*++***+*
#4 *****+*******+
#5 *+*****+*** * + *
#6 *****+*++**++*
#7 *+++*+++++++++dedgaagaccbaggeregagegccaagedecr
#8 *++*****++*++* output without key input
#9 *+****+***★+★* . .  , vZ*  ̂ (Recall Mode)#10 *+***+********

+: MUSIC outputs the correct note.
*: MUSIC outputs the incorrect note.

Figure 11. Example 2 of the melody retrieval, 

rectly by MUSIC #4.

In figure 11, a part of another melody is input as a key. This melody 
is memorized in MUSIC #7. On the beginning of the input, MUSIC 
#3 and #7 output 3 correct notes continuously. However, MUSIC #3 
outputs incorrect notes after that, although MUSIC #7 outputs the 
correct notes. So, MUSIC #7 is chosen. As in Figure 10, after the 
end of the key input, in making chosen MUSIC in the recall mode, 
the continuance of the melody is output correctly.

4.2 Computer Simulation Results
We chose 79 melodies for Japanese children. All melodies contain no 
modulation. Each melody consists of 32-192 notes. There are 5862 
notes in total. We divided 79 melodies into 10 groups. Ten MUSICs 
were learned to memorize 7-8 melodies. The number of neurons in 
MUSICs are 9-30-30-9.
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Table 5. The number of incorrect notes.

# incorrect outputs 0 1 2 3 4-
# melodies 24 34 14 4 3

The learning coefficients are 77 =  0.01, and the time lengths to be 
considered for learning are T  =  3. Because the internal state of the 
MUSIC is reset before each melody is input, the beginning of the 
melody is learned as there is no note before it.

The learning situation was checked at every 200 epochs. The error 
of every MUSIC did not decrease after 600 epochs. MUSICs were 
learned 1000 epochs. Table 5 shows the number of the incorrect notes 
when the correct notes of the whole melody are presented. The num
ber of the memorized notes in 10 MUSICs was 5862 and the number 
of the incorrect notes was 101.

These errors occurred by the following reasons:

1. There is the theoretically inevitable error since the beginnings of 
some melodies are exactly the same.

2. In order to treat refrains, some mechanism is required.

On the recall, when 8 outputs (considered as a phrase) of a MU
SIC were continuously the same as the next inputs, the MUSIC was 
chosen as it memorizes the presented melody. In this condition, the 
system was investigated by many parts of the 79 melodies.

In 60 melodies, only a MUSIC outputs the correct notes. When the 
feedback of the outputs were presented as the input, the MUSIC was 
able to recall the whole melody.

In the rest 19 melodies, only one MUSIC was responded. However, 
after the feedback was started, the recall of MUSIC was looped or
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shorten by the omission of the refrain.

The defect of the system is the vulnerability by refrain in a melody. 
When there is a long refrain part in a melody, the system is not able 
to know the number of the refrains. However, when human recalls a 
melody, the same error often might occur.

5 Conclusions
We have explained a Multilayer Network using Complex neurons 
with local Feedback (MNCF). A complex neuron can keep previ
ous information by the phase component. We have derived a simple 
learning algorithm based on the back-propagation to deal with tem
poral sequences. It has shown in computer simulations that the net
work has much better ability than the conventional ones, including 
Elman’s network.

We have applied MNCF to memorize some melodies. It is called 
MUSIC (MUltilayer network for Sequential Inputs using Complex 
neurons). It can be considered as an associative memory for the tem
poral sequences. It has shown by computer simulations that the net
work can memorize plural melodies and recall them correctly from 
any part.

A melody retrieval system using multiple MUSICs has been con
structed. It can treat a number of melodies by some smaller networks. 
Such architecture has an advantage that the pattern matching process 
is not required. The system uses a part of the melodies as a key in
stead of the text information.

Melody is an example of temporal sequences. Memorization of tem
poral sequences can be used in a lot of fields e.g. control, information 
processing, thinking support systems, and so on.
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Chapter 11

Complex-Valued Generalized Hebbian 
Algorithm and Its Applications to Sensor 

Array Signal Processing

Yanwu Zhang

Principal component extraction is an efficient statistical tool that is 
applied to feature extraction, data compression, and signal process
ing. The Generalized Hebbian Algorithm (GHA) (Sanger 1992) can 
be used to iteratively extract principal eigenvectors in the real do
main. In some scenarios such as sensor array signal processing, we 
encounter complex data. The Complex-valued Generalized Hebbian 
Algorithm (CGHA) (Zhang et al. 1997) is presented in this chapter. 
Convergence of CGHA is proved. Like GHA, CGHA can be im
plemented by a single-layer linear neural network. An application 
of CGHA to sensor array signal processing is demonstrated through 
Direction of Arrival (DOA) estimation.

1 Review of Principal Component 
Extraction and the Generalized 
Hebbian Algorithm (GHA)

Consider the autocorrelation matrix of an iV-dimensional random 
column vector X: R Xx  =  E [X X H] where H stands for conjugate 
transpose. R x x  can be expressed as (Strang 1993):
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R x x  =  j t W i U ?  (1)
t=l

where U{ is the zth eigenvector (column vector) and A* is the corre
sponding eigenvalue. Here the eigenvectors are normalized and or- 
thogonalized. In the real domain, conjugate transpose H  reduces to 
transpose T.

If we sort the eigenvectors by their associated eigenvalues in de
scending order, the leading eigenvectors are called the principal 
eigenvectors because they span the major portion of R x x •

Due to their statistical significance, principal eigenvectors find ap
plications in various realms. Their usefulness to sensor array signal 
processing will be demonstrated in Section 3.

Data compression also relies on principal eigenvectors. The tech
nique of principal component extraction (also called principal com
ponent analysis) (Sanger 1992), (Oja 1992), (Haykin 1994) linearly 
reduces the dimensionality of input data while retaining major statis
tical information (Bannour et al. 1995), (Plumbley 1995), shown as 
follows.

Consider an iV-dimensional zero-mean random vector

X  =  [xi x 2 • • • xn]T (2)

We desire to reduce its dimension from N  to M  (M < N). First, we 
find the M  principal eigenvectors of the input’s autocorrelation ma
trix R x x , denoted as t/i, U2, • • •, Um (orthonormalized and arranged 
in descending order of their associated eigenvalues). These column 
vectors constitute an N  x M  mapping matrix
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(3)

Then we map the Л/'-dimensional input vector X  to an M -  
dimensional output vector Y  through Q:

Elements of vector Y  are called principal components.

Since M < TV, dimensionality of the input vector space is reduced. 
Data are thus compressed. Compression generally induces informa
tion loss, but it can be proven (Homik et al. 1992) that the linear 
transform in Equation (4) is optimal in the sense that it minimizes 
the mean squared error when reconstructing X:

Sanger presented the Generalized Hebbian Algorithm 
(GHA) (Sanger 1992) to iteratively derive principal eigenvec
tors using a single-layer linear neural network. The algorithm can be 
summarized as follows.

The TV x 1 input vector X  is expressed in Equation (2). The eigen
vectors of R x x  are denoted as ■ • ,U n  (arranged in de
scending eigenvalue order). We randomly initialize N  x 1 vectors 
VU V2, - - - ,  VN. GHA then updates Vf iteratively. The updating rule 
for Vj at iteration step n is given by Equation (6) and Equation (7).

Y  =  Q H X (4)

X  =  Q Y (5)

V̂ (n + 1) = Ц(п) + 1х{п)у,(п)[Х(п)-Уз{пЩ{п)-^м(пШп)}

(6)
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yj {n) =  V]'{n)X{n)  (7)

where is a learning rate factor. Sanger proved that Vj converges 
to Uj (Sanger 1992).

GHA possesses the following features: snapshot-based processing 
instead of eigendecomposition, parallel processing, and good ex
pandability. Hence this algorithm facilitates fast and distributed pro
cessing. It has been applied to image coding and texture segmenta
tion (Sanger 1992).

2 Complex-Valued Generalized 
Hebbian Algorithm (CGHA)

GHA is applicable only in the real domain. In some scenarios, we 
encounter complex data. For example, in sensor array signal pro
cessing, typically the received real signal at each sensor is quadra
ture demodulated to a complex signal (Van Trees 2002). We are in
terested in the principal eigenvectors of the array’s autocorrelation 
matrix because they contain key information about the signals’ in
coming directions. Therefore, an extension of GHA to the complex 
domain is needed.

2.1 Formulation of CGHA
Now we present the Complex-valued Generalized Hebbian Algo
rithm (CGHA) (Zhang et al. 1997). Randomly initialize N  x 1 vec
tors Vj, V2, • • •, Vjsf. CGHA then updates Vj iteratively. The updating 
rule for Vj at iteration step n is given by Equation (8) and Equa
tion (9):
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V j(n+1) =  Vj (n)+ ц{п)у* (n) [X  (n) - y j { n ) V j { n ) - E y i  (n) vi (n )l
i< j

(8)

to(n) =  У,И{п)Х{п) (9)
where у](ть) denotes the complex conjugate of yj(n), and fj,(n) is a 
learning rate factor. Vj(n) will converge to the j th normalized eigen
vector of R x x • Proof is given in the next subsection.

As shown in Figure 1, each block represents an N-dimensional 
weight vector Vj (j  =  1,2, • • •, N). The output of the jth  block is 
Уз =  As the input vector X  flows through each block, yjVj
is subtracted from X  to form the updating vector that is contained in 
the bracket in Equation (8).

Figure 1. Implementation of CGHA.

2.2 Convergence of CGHA
Convergence analysis of CGHA extends that of GHA (Sanger 1992) 
to the complex domain. Let us rewrite Equation (8) in matrix form 
to include all eigenvectors:
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W{n + 1) = W(n) + ii(n)lx(n)XH (n)W(n)

- W (n ){U T [Y (n )Y H(n)]}} (10)

where W (n) is an N  x N  matrix:

W (n) =  [Vi(n) : V2{n) : ••• : VN(n)], and

Y(n) =  W H(n)X{n)  (11)

Operator UT[] (standing for upper triangle) sets all elements below 
the diagonal of the square matrix to zero, thereby producing an upper 
triangular matrix.

Assume temporal stationarity. Then R x x  — E [X (n )X H(n)\ does 
not vary with n. Taking expectation on both sides of Equation (10) 
and incorporating Equation (11), we have

W(n + 1) =  W{n) + fJ,{n)^Rx x W{n) 

-W(n){UT[WH(n)Rx x W{n)}} J (12)

The convergence property of the above discrete-time difference 
equation is the same as that of the following continuous-time dif
ferential equation:

j W ( t )  =  RXXW{t) -  W {t){U T [W H{t)R xxW {t)}}  (13) 

We prove the convergence in two steps:



§1 Prove that V\ (t) converges to the eigenvector associated with the 
largest eigenvalue.
Vi is the first column of matrix W. According to Equation (13), 
variation of Vi(t) is governed by

j V i ( t )  =  R x x V .i t)  -  V ^ V f i W x x V m  (14)

Assume RXx  is positive definite with N  distinct eigenvalues 
Ai > A2 > • • • > XN which correspond to orthonormalized eigen
vectors Ei, , En . Note that since Rxx  is Hermitian, all of 
its eigenvalues are real.
Expand Vi(t) as

Vi(t) =  J 2 ck(t)Ek (15)
k=l

Ek {k =  1 ,2 ,  • • •, N) is an orthonormal base. Premultiply Ek to 
both sides of Equation (15) and we have

Ck(t) =  EjfVi(t) (16)

Plugging Equation (16) together with RxxEk — АкЕк into Equa
tion (14) gives

E  d- ^ E k =  E  ck(t)XkEk-  ( E  |«(*)|2A»] E  ck(t)Ek (17) 
k= 1 at k= 1 /=1 k=1

where | • | denotes norm of a complex variable.
Premultiply Ek to both sides of Equation (17). The orthonormal
ity of base Ek leads to

^  =  c* (< )[A * -E M * )|2A/] О»)
at t=i
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We now study the convergence of Ck(t) in two cases: when fc > 1 
and when fc =  1.

(a) When fc > 1.
Define rk{t) =  assuming c\(t) Ф 0. Take differentiation 
of rk{t) with respect to t:

drk(t) 1 fdck(t) , dci(t), / 1p\

Plugging Equation (18) into Equation (19), we have 

dJf - -

—r/b(t)ci(t)[Ai -  5Zlc'W|2̂
1=1

which can be simplified to

^  =  Tk(t)(Afc -  A*) (21)

The solution to the above differential equation is

rk{t) =  Гк{0) e(Afc"*Al)t (22)

We know that Xk < Ai for fc > 1. Therefore, with any initial 
value, rk(t) exponentially decays to 0 when fc > 1.

(b) When fc =  1.
According to Equation (18) and definition rk{t) =  we 
have

] }  (20)

dci (t) N
- 1 =c,mi -  id(t)iaAi -  iPiWpDhwpAi] (23>

1=2
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We have shown that rk(t) exponentially decays to 0 when 
к > 1. So at a large t , |ci(£)|2Ai dominates over 
lci(£)|2 12 ^ 2  For convergence analysis, we can thus
drop the last term. Then Equation (23) reduces to

^  =  Ci(*)[A! -  IdWfAj] (24)

Let us define another function

F«) = [|Cl(*)|2- l]2 (25)
Utilizing Equation (24), we have

~dl~  =  —4Ai |c1(<)|2[|ci (<)|2 — l]2 (26)

Equation (25) gives that F(t) >  0, and Equation (26) shows 
that <  0. Therefore F(t) must converge to 0. Equiva
lently, |ci(£)| converges to 1, according to Equation (25).
By Equation (15) and definition rk(t) =  we have V\(t) =
Ci(t)Ei -fCi(£) J2 k=2 rk(t)Ek. In la, it is shown thatr*(£) con
verges to 0 when к >  1. In lb it is shown that |ci(£)| converges 
to 1. Hence V\(t) converges to E\ with a complex factor of 
norm one.

§2 Prove that for j  > 1, Vj(t) converges to the eigenvector associated 
with the jth  largest eigenvalue.
We resort to the method of induction. Given that Vj (t) —> Ely 
we only need to show that if Vk(t) converges to Ek for к =
1,2, • • • , j  — 1, Vj(t) converges to Ej.
According to Equation (13), variation of Vj(t) is governed by

^ M t )  =  RxxVjit) -  £  Vk(t)[VkH(t)RXx V M  (27) 
at k<j
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Vk(t) can be expressed as

Vk{t) =  Е к +  e k{t)Gk{t) (28)

where Gk(t) is a unit-length vector and ek(t) is a scalar.
The premise of the induction is that Vk(i) converges to Ek for 
к <  j , so ek(t) converges to 0 for к <  j .  Combining Equation (28) 
and Equation (27), we have

j V j i t )  =  R x x V ^ t)  -  V M ^ m x x V M

-  E  Ek{E“ {t)R x x V M  
k<j

+ 0 (e) -f 0 ( |e |2) (29)

where 0(e) represents a term converging to 0 at least as fast as the 
slowest vanishing б*(£) for к <  j . 0 ( |e |2) has a similar meaning. 
At a large t , we neglect terms 0(e) and 0 ( |e |2).
Expand Vj(t) as

Vj(t) =  E  h ( t ) E k (30)
k= 1

where bk(t) =  E^Vj(t)

Plugging Equation (30) together with R x x E k =  AkEk into Equa
tion (29) (neglecting vanishing terms), we have

=  - E E I ^ W P a  i}h (t)E k 
k= 1 a l  k < j  1=1

+  Ъ хк - Ъ ш \ 2Ь М Е к (31) 
k=j 1=1
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Premultiplying to both sides of Equation (31), and utilizing 
the orthonormality of Ek, we have

=  - b k(t) E  l^(<)|2A, for к <  j  (32) 
m i=i

=  bk{t)[Xk -  E  IM4)I2̂ ]  for k >  j  (33) 
ai i=i

(a) For к <  j ,  the solution to differential equation (32) is

bk(t) =  6fc(0)e-[£i=i lbi(t)l2At]t (34)

R x x  is positive definite, so Л/ > 0. Hence
— E z li  IM£)|2A/] < 0. Consequently, bk(t) exponentially 
decays to 0 for A; < j .

(b) For к > j ,  define Sk(t) =  assuming bj(t) Ф 0. Then 
Equation (33) leads to

(35)
/=1

which can be simplified to

=  Sk ( t ) ( A* -  Xj) (36)
at

The solution to the above differential equation is

Sk(t) =  sk( 0 ) e ^ - x*  (37)

Since A* < Xj for any к > j ,  sk(t) exponentially decays to 0 
for к >  j .
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(с) For к — j ,  Equation (33) becomes 

dbJt)
- j j r  =  -  \ b M 2^

- f o W I 2 £ l « i W l aAi -  E l i » ( 0 l aA«] (38) 
l>j l<j

It has been shown in 2a that bt(t) 0 for Z < j ,  and in 2b 
that si(t) —̂ 0 for I >  j .  We thus drop the last two terms in 
Equation (38) for a large t , and the equation reduces to

=  6 . ( * ) [ A . _  \bj(t)\%]  (39)

To show that bj(t) converges, we define another function

t f ( * ) = [ M * ) |2 - l ] 2 (40)
Using Equation (39), we have

dH(t)_ i i  =  - 4 A . | 6 .W |2[|6 .(t )|2 _ l ] 2  (41)

Equa^ "  (40) gives that H{t) >  0, and Equation (41) shows 
Therefore H(t) must converge to 0. Equiva

lently, |6j(t)| converges to 1, according to Equation (40).
We know the expansion V3(t) =  Ь& )Е , +  T,k<jbk(t)Ek +  
z2k>jbk(t)Ek■ It has been shown that bk(t) —* 0 for к <  j ,  
Ш  0 for к >  j  (because sk(t) —*• 0 for к >  j ) ,  and 
|6j(t)| —» 1. Therefore Vj(t) converges to Ej  with a complex 
factor of norm one.

Analyses in §1 and §2 establish convergence of CGHA: VAn) con
verges to Ej for j  =  1,2, N.
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2.3 Implementation of CGHA
As illustrated in Figure 1, CGHA can be implemented by a single
layer linear neural network. The slanted arrows in the figure repre
sent updating of Vjy j  =  1,2, • • •, N.

Like GHA, CGHA possesses the following features:

§1 There is no need to estimate the autocorrelation matrix Rxx-  Its 
eigenvectors are derived directly from the input vector. In sensor 
array signal processing, the input vector is just a snapshot of re
ceived signals at all sensors at one sampling instant.

§2 The implementation architecture has good expandability. Updat
ing of Vj is affected by 14 of к < j , but not by 14 of A; > j .  
If convergence has been reached for the first M  eigenvectors, the 
additional learning of the (M + l)th eigenvector will leave intact 
the preceding M  eigenvectors.

§3 The algorithm can be carried out by parallel processing. Equa
tion (8) can be rewritten as

Vj(n +  1) =  Vj(n) + ii(n)y*{n){Xj{n) -  yj{n)Vj{n)\ (42) 

where

Xj{n)  =  X(n)  -  £ > (п Ж (п ) (43)
i<j

can be deemed the “net” input for updating Vj.

Equation (42) gives a uniform rule for updating Vj. Thus CGHA 
can be carried out by multiple processors in parallel.
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3 Application of CGHA to Sensor 
Array Signal Processing

3.1 Transformation of Real Signal to Complex 
Signal by Quadrature Demodulation

Consider a linear array composed of N  equally spaced sensors with 
identical directivity. Suppose D narrowband signals impinge on the 
array as plane waves from directions 0i , 02, a s  illustrated 
in Figure 2. Assume the received noise is spatially white with zero 
mean, and is uncorrelated with the signals.

Suppose the narrow-band signals have a carrier frequency /о- At sen
sor No. N , the received narrow-band signal of incident angle 9k can 
be expressed as

Sfcjv(t) =  fk{t)cos[2 irf0t +  фк(1)} С44)
where amplitude f k(t) and phase фк(Ь) have narrow bands that sat
isfy (Van Trees 2002)

B fk ATk <  1 (45)

Вфк ATk <  1 (46)

where Bjk and ВФк are the bandwidth of f k(t) and ^ ( t ) ,  respec
tively. ATk is the plane wave’s travel time from sensor No. 1 to 
No. N. Hence variations of f k(t) and фк(£) over ATk can be deemed 
negligible.

Relative to the signal received by sensor No. N , the received signal 
at sensor No. m  (m =  1,2, • • •, N  — 1) has a time delay:



S k m ( t ) =  f k ( t  -  T km ) COS[2-Kf0 ( t  -  Tkm) + -  Tkm )}  (47) 

where
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[(N — m)d]sin(9k) (48)

is the delay; d is the spacing between adjacent sensors, and с is the 
propagation speed of the plane waves.

Under the narrow-band conditions in Equation (45) and Equa
tion (46), we have

The received signal is carried at a center frequency / 0. To lower 
the sampling frequency and hence reduce the system’s cost, the sig
nal is typically quadrature demodulated (Van Trees 2002) prior to 
analog-to-digital conversion. Quadrature demodulation is illustrated 
in Figure 2. Two branches of the received signal are multiplied by 
2cos(27cfot) and — 2 sin(27rfot)i respectively, and then low-passed to 
keep only the base-band components. The two branches then add up 
to a complex base-band signal. After quadrature demodulation, real 
signal Sfcm(£) in Equation (51) is transformed to a complex signal

f k ( t  -  T b n )  w  fk ( t )

<l>k{t-Tkm) <pk(t)

(49)
(50)

Then Equation (47) is simplified to

Skm(t)  =  fk{t) cos[27rfo(t -  Tkm) + 4>k{t)\ (51)
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Figure 2. Quadrature demodulation of sensor array signals. At each sen
sor’s output, the imaginary part (the right branch) is multiplied by j  prior 
to summation.

Skm{t) — /fc(^) COs[0fc(t) ‘Z'ftfoTkrni

sin[4>k(t) -  27r/0r/tm] |

=  f k{t) e>Mt) e~j2wf°Tkm (52)

where the real part f k{t)cos{<fik{t) -  2тг/0ткт] is called the in-phase 
component, and the imaginary part f k(t)sin[<j>k{t) -  27r/ 0тьп] is 
called the quadrature component.

The original signal Skm{t) can be restored from Skm(t) by using both 
the in-phase and the quadrature components:

skm(t) =  R e{skm(t)

=  f ie j[ / fc(t) e- j2nfoTkm] e?2nfot}  (53)
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where Re{-}  takes the real part of the argument.

Note that Skm(t) cannot be restored by the in-phase component or 
the quadrature component alone. Hence we need to keep both com
ponents to preserve the information contained in Sbn(2). Complex 
signal Skm{t) in Equation (52) is thus an equivalent representation of 
the original real signal Skm{t)-

3.2 Direction-Of-Arrival (DOA) Derived from 
Principal Eigenvectors of Array’s 
Autocorrelation Matrix

Equation (52) gives the signals’ phase-shift relationship between 
sensors. Now let us combine Equation (52) and Equation (48), and 
introduce notation

7fc =  M s i n m  (54)

Then for the signal of incident angle 0*, demodulated signals at all 
sensors can be expressed by an УУ-element column vector:

Sk(t) =  •••
=  f k(t)ej,f,k(t)[e~:iMN~iyrk ■■■ e - jM N ~Nbk]T 
=  f k{t)ePM t)e - iM N ~lhh[ 1 ••• e?2'n{N- iyik}T

=  h{t)Z k  

where f k(t) =  f k { t ) e ^ e ~ iM N- iyik
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zk =
>j'2tnrfc

gj2ir(N— l)7fc

(56)

is the steering vector of the fcth signal. It carries information of the 
signal’s direction, yet is independent of t.

The sum of the D  signals received by the array is

S(t) = £ s k ( t )  
k= 1 

£  h(t)zk 
k=i

Z i : z2 \ ■ ■ • ;  zD
Ш

№ )

fo ( t )

(57)

With addition of noise, the total output of the array is represented by 
an ЛГ-element column vector X  (t ):

X {t)  =  S(t) +  B(t)

Z\ : Z2 \ • • • Zd

' Ш  ■ ' Щ  '

Ш bz(t)
+ :— 

- 
1 

so _ b^it)

(58)
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where column vector B(t)  =  [bi(£) b2(t) • * • &лг(£)]т  denotes noise 
received by the N  sensors. The noise is assumed to be spatially white 
with zero mean and variance <r2, and uncorrelated with the signals.

The autocorrelation matrix of X ( t )  is R x x  =  E [X { t ) X H(£)], an 
N  x N  matrix. Denote the eigenvectors as Vj, j  =  1 ,2, • • •, N. As
suming the signals do not contain coherent pairs (Van Trees 2002), it 
can be shown (Schmidt 1986) that D  eigenvectors have eigenvalues 
larger than a 2. Vj {j — 1,2, ■ • •, D)  span the signal subspace (Van 
Trees 2002).

Signals’ directions can be estimated from these principal eigen
vectors (Tufts 1998). Utilizing properties of Vandermonde vectors 
(the steering vectors Zk in Equation (56) are Vandermonde vectors), 
Reddi proposed a method (Reddi 1979) to estimate the signals’ di
rections based on the signal-subspace eigenvectors.

It can be shown (Cadzow 1988) that the signal-subspace eigenvectors 
are linear combinations of Zk, к =  1,2, • • •, D:

Vj =  otjkZk j  =  1 |2 ,•••,£> With А,-><72 (59) 
k=1

where a jk is a coefficient.

By Equation (54) and Equation (56), Zk can be regarded as a sinu
soid of spatial frequency 7k —  ̂ ^  and of length N.  Then Vj 
(j =  1,2, • • •, D) can be regarded as a one-dimensional sequence 
composed of multiple sinusoids.

Utilizing Equation (59), we look for signals’ directions in three steps.

•  Obtain the signal-subspace eigenvectors Vj (j  =  1,2, • • •, D)  by 
CGHA.



• Find the frequency components 7* (k =  1,2, • • •, D) of Vj.

•  Derive 9k by relationship 7* =  fQds™(ekl  (Equation (54)).
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Convergence of principal eigenvectors

Figure 3. Learning curves of the first and the second principal eigenvectors.

Consider a 15-sensor uniform linear array. Two acoustic signals 
impinge on the array. The first signal is of normalized frequency 
fi  =  0.2 (normalized by the sampling frequency) and incident angle 
вi =  10°. The second signal is of normalized frequency /2 =  0.15 
and incident angle 62 =  40°. The sensor spacing is d =  |A i =  |Аг 
where Ai =  and A2 =  are the wavelengths of the two signals, 
and с is the sound speed. Signal-to-Noise-Ratio (SNR) is 20 dB for
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the first signal, and 14 dB for the second. Using demodulation fre
quency 0 .2, the two signals are quadrature demodulated to f[  =  0 
and /2 =  —0.05, respectively.

Running CGHA, the simultaneous learning curves of the first and 
the second principal eigenvectors of R x x  are shown in Figure 3. 
The relative error of the fcth principal eigenvector is defined as

Relative error =  И ~  (60)
II V k , p re c is e  ||

where Vfc>preci5e is the precise eigenvector, and Vkt c g h a  is the eigen
vector learned by CGHA. || • || denotes Euclidean norm. After 3000 
iterations, the relative errors are 2% for the first principal eigenvector 
and 1% for the second. Using AutoRegressive (AR) modeling (Kay 
1988) to analyze the principal eigenvectors obtained with CGHA, we 
get the spatial spectra of the first and the second principal eigenvec
tors, as shown in Figure 4.

With the first principal eigenvector, the two spectral peaks lie at spa
tial frequencies 0.087 and 0.240. By the spatial frequency definition 
in Equation (54), the peak frequencies correspond to direction esti
mates <9i =  10.0° and 02 =  39.8°. With the second principal eigen
vector, the two spectral peaks lie at spatial frequencies 0.085 and 
0.241, corresponding to Q\ =  9.8° and 02 =  40.0°. These estimates 
are very close to the true values 0i =  10° and 02 =  40 .

4 Conclusion
The Complex-valued Generalized Hebbian Algorithm (CGHA) is 
presented in this chapter. Its convergence is proved. The m
can be implemented by a single-layer linear neural networ . n ap 
plication of CGHA to sensor array signal processing is demonstrated. 
Converged principal eigenvectors provide good estimates of signals
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Spatial spectrum of the 1st principal eigenvector

Spatial spectrum of the 2nd principal eigenvector

Figure 4. AR spectra of the first and the second eigenvectors, 

directions.
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Chapter 12

Phasor Model with Application to 
Multiuser Communication

Teruyuki Miyajima and Kazuo Yamanaka

In this chapter, we introduce a phasor model of neural networks 
where the state of each neuron possibly takes the value at the ori
gin as well as on the unit circle and show some important properties 
concerning the stability of an equilibrium. Moreover, an application 
of the phasor model to multiuser detection in code-division multiple- 
access (CDMA) communication is considered. In the CDMA system 
considered, transmitted data take complex values, and users are al
lowed to be in the inactive mode as well as the active mode. Simula
tion results show that a detector using the phasor model can outper
form a conventional detector.

1 Introduction
In some recently proposed neural network models, the state of each 
neuron takes the value on the unit circle on the complex plane (Noest 
1988, Hirose 1992, Zemel et a l  1995, Aoki 1995, Agu et a l  1996, 
Jankowski et a l  1996). The network model with a local state (state 
of a neuron) on the unit circle is called the phasor model. On the 
other hand, neurons are allowed to have the resting state “0” as well 
as the firing state “ 1” in the binary networks proposed earlier, e.g. 
(Hopfield 1982). This observation makes us recognize the lack of 
the resting states in phasor models. We have proposed a new model 
in which neurons are allowed to take the value at the origin as well
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as on the unit circle (Miyajima et a l  2000). The model considered 
here will be referred to as a phasor model with resting states.

In neural network applications such as associative memory or opti
mization problems, an equilibrium corresponds to a memory or an 
optimum solution. However, an equilibrium is useful as a memory 
or an optimum solution only if it is stable. Agu et al. (Agu et al. 
1996) studied a stability property of equilibria in terms of the energy 
landscape of the phasor model, and showed a relation between the 
neural connection and the stability of an equilibrium. We have con
sidered the same issue for the phasor model with resting states, and 
have obtained a stronger result (Miyajima et a l  2000).

In this chapter, we begin with a review of a phasor model with rest
ing states and its stability properties and then consider an application 
of the phasor model with resting states to a communication system 
(Miyajima et a l  2001). Neural networks have been successfully ap
plied to the problems of detection in communications, i.e., demod
ulation of transmitted data symbols (Yuan et al. 1990, Yuhas et al. 
1994, Bang et al. 1996). We focus on the detection in code-division 
multiple-access (CDMA) systems which have been employed in 
many wireless communication standards such as IS-95 and IMT- 
2000. In CDMA systems, many users transmit data symbols simulta
neously through a channel using a preassigned code. Because these 
codes are not always an orthogonal set, the transmitted signals from 
the separate users can interfere with each other. This interference 
is called multiple-access interference (MAI). At the receiver side, a 
multiuser detector is used to detect the data symbols from received 
signals corrupted by MAI. A real-valued Hopfield model was used 
for multiuser detection in CDMA systems where the data take real 
values and all users are always active (Miyajima et a l  1993, Kechri- 
otis etal. 1996).

In more practical situations, effective modulation schemes such as 
QPSK where the data takes complex values are employed, and users
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are allowed to be inactive as well as active; e.g., the voice-activation 
technique (Gilhousen 1991). The phasor model with resting states is 
expected to be successfully applied for multiuser detection in such 
a CDMA system, because the complex-valued data of an active user 
can be represented by the state of an active neuron, and that of an 
inactive user can be represented by the resting state of a neuron. We 
derive a multiuser detector using a phasor model with resting states 
by relating the likelihood function of the optimum multiuser detec
tor to the energy function of the phasor model. Moreover, we show 
through simulation examples that the detector provides better perfor
mance than a conventional detector.

This chapter is organized as follows. In Section 2, we describe the 
phasor model with resting states. We then discuss the stability prop
erties of an equilibrium in Section 3. In Section 4, an application to 
CDMA communication is discussed.

2 Phasor Model with Resting States
Consider a neural network with N  neurons. The local state (output) 
of the ‘̂th neuron is denoted by Xj. A local state is allowed to be 
either at the origin, Xj =  0, or on the unit circle, Xj =  exp(гфу), 
where denotes the argument of Xj.

A local state is assumed to be asynchronously updated based only on 
its membrane potential given by

N
Uj — ^   ̂'WjiXi1 0 )

*=1
where Wji represents the complex-valued connection weight between 
the jth  and zth neuron. It is assumed that the Hermitian property 
Wji =  w*j holds, where (•)* stands for the complex conjugate. It 
is usually assumed that there is no self connection; i.e., Wjj =  0. 
The following discussion, however, applies to the case with self-
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Im Im

(a) |u j | >  с (b) \u j\ <  с

Figure 1. Updated state.

connections as well as the usual case. When a neuron is updated, 
the new local state is determined by the following rule:

where с > 0 is a given threshold. Figure 1 illustrates the relation 
between the destination of the state and the membrane potential of a 
neuron. To summarize the updating rule, we can state as follows: If 
the magnitude of the membrane potential is smaller than the thresh
old, let the local state be at the origin; otherwise, let the local state be 
on the unit circle with the same argument as the membrane potential.

3 Stability Analysis
An equilibrium state is a global state where none of the local states 
ever change. The phasor model with resting states has equilibrium 
states, and here we consider a stability property of an equilibrium 
state. That is, we investigate whether an equilibrium state is retriev
able against a small disturbance.

X j  =
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3.1 Energy Function
To discuss a stability property along the lines of Lyapunov’s method, 
let us consider an energy function defined by

U(x) =  - 5  £  £  x'wjiXi, (3)
Z j=l 1=1

where x =  (x\ X2 • • • xn) denotes a global state. The energy 
decreases monotonically as the global state changes in the phasor 
model without resting states (Agu et al. 1996), while this is not al
ways true in the phasor model with resting states because of the pos
sible local-state transition between the unit circle and the origin (see 
Appendix). However, the energy function can play a similar role as 
long as local properties are considered as described below.

Consider an equilibrium x =  {x\ X2 • * * &n) =  
(exp(z<^i) ехр(г^г) * * * ех р (г^ )). Let the set of indices of 
the local states on the unit circle be denoted by / ,  i.e.,

I  й  { j \  \Xj\ =  1},

and the number of these neurons be denoted by |/ |.  We assume

0 < с < min \v,j\, (4)ie/

where Uj is the jth  neuron’s membrane potential at x. This assump
tion is needed for x to be an equilibrium. We define 5-neighborhood 
of the equilibrium as

ft ^  {x| Xj =  0 , j i  I  and I arg(sj) -  a rg fe ) | < 6, j  € /} ,

for an arbitrary real number 5 >  0. That is, the ^-neighborhood of x 
is the set composed of the global states obtained from x by changing 
axg(Xj), j  € I within ±5 from <pj and leaving Xj , j  ^ /  at the origin.
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In the following we write “neighborhood if there is no need to 
specify S. Considering the energy change in П, we now obtain the 
following result.

Lemma 1: The function U decreases so long as the state transi
tion occurs in a neighborhood £1 o f an equilibrium.

Proof: Suppose the jth  component of x =  (rci • • • Xj ♦ • • хм) € Cl 
changes to get to the new state x' =  (zi • • • #'■ • • • x N) E 0 . Then, 
the change of the energy AU  can be written as

AU  =  t/(x ')-< 7 (x )
=  Re(u*jXj) -  R e ( ^ 4 )  . (5)

By assumption, if the jth  local state Xj is on the unit circle, then x '• 
is also on the unit circle. Since the argument of x '• is the same as that 
of Uj from (2), the first term in (5) which is the inner product of Uj 
and Xj is always smaller than the second term. Hence, A U  < 0 . ■

3.2 Stability Property
3.2.1 Stability

In phasor models, an equilibrium x has an inherent property, i.e., the 
global state хехр(г0) obtained by multiplying x by ехр(г0) with an 
arbitrary 0 is also an equilibrium. This can be easily verified since the 
energy [/(x) is equal to С/(хехр(г0)). As for the phasor model with 
N  neurons (Agu et a l 1996), any one of the local states is clamped 
and the behavior of the other N —l  local states in the neighborhood of 
the equilibrium is considered. Despite the discontinuity of the phasor 
model time evolution, it has been shown in (Agu et a l  1996) that 
if the energy function is locally convex in the neighborhood of the 
equilibrium as a function of an arbitrary set of N  — 1 phase variables 
4>j, the state stays in the neighborhood regardless of a small initial 
disturbance. This leads to the notion of persistent equilibria. This 
“persistency” is a property similar to stability in a weak sense.
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As for the phasor model with resting states, neurons at the origin can 
be ignored since the neurons never affect the dynamics so long as 
the state transition occurs in a neighborhood П of an equilibrium. In 
other words, the phasor model with resting states can be regarded as 
a phasor model with | / |  neurons. Hence, we can expect to get a result 
regarding stability for the phasor model with resting states similar to 
that for the phasor model. In fact, we get the following result.

Proposition 2: Choose an arbitrary i € I. Suppose that ф{ is 
fixed to & and U is convex in a neighborhood Q as a function of the 
other \I\ -  1 variables ф,,] e l -  {i}. Let Q.\ G £1 be an arbitrary 
neighborhood ofx. Then, all the sequences of the global states with 
initial states in a neighborhood fio С stay in fij.

Unlike in the phasor model, we have to take into consideration the 
state transition between the origin and the unit circle. If such a transi
tion never occurs, we can prove Proposition 2 in a similar way as for 
the phasor model (Agu et a l  1996). To prove Proposition 2, we first 
show that such a transition never occurs during one-step transition.

Now, let a sequence of the global states generated by (1) and (2) be 
denoted by Xo, хь  • • •, x*, • * •, where the subscript к increases when 
the global state changes. This state transition can be described for
mally as follows:

xjfc+l =  Ф(х*). (6)
Then, we have the following result.

Lemma 3: The function Ф is continuous at x in terms of the neigh
borhood defined above.

Proof of Lemma 3: Let 6' >  0 be arbitrarily given and fi' be 
the ^'-neighborhood of x. Take a sufficiently small e > 0. Then,
| Дг/j] < e means

|Auj| < ||G,| — c|, j =
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and
I aig(uj +  А щ ) -  arg(xj)| < S', j  e  I.

Furthermore, take a sufficiently small 6 >  0, which may depend on 
e. Then, |фу — фу\ <  6 assures \Auj\ <  e, because of the contin
uous dependence of щ on фj. This implies that if x is taken in the

Lemma 3 means that the state transition between the unit circle and 
the origin never occurs during a one-step state transition. Lemma
3 also means that the updated state still stays near x regardless of 
a small initial disturbance at x. By Lemma 1 and 3, we can prove 
Proposition 2 which means that the state always stays near x pro
vided the initial state is sufficiently close to x.

Proof of Proposition 2: The local states Xj on the unit circle are 
renumbered as X j,j =  1, • • •, \I\ and Xj at the origin are X j,j  =  
\I\ +  1, • • •, N . Without loss of generality, the state of the 1st neuron 
is fixed to exp(z0i) and we consider the behavior of the other N  — I 
phase variables ф̂  , j  =  2, • • •, N  after they are slightly disturbed 
from x. We define the new state vectors as

z has a one-to-one correspondence to x under the condition that ф\ is 
fixed to </>!. We define a function V  as

У(ъ1) — и(ф\ ф2 • • • ф\ц 0 • • • 0) — (/(</>! ф2 • • * ф\ц 0 ■ * • 0). (10)

5-neighborhood П of х then Ф(х) е  П'.

and

(7)

(8)

(9)

Let S be an appropriate positive number. Then, \zl \ <  S and z° =  0 
is equivalent to x € ft and X\ =  X\ where ft is the ^-neighborhood 
of x and |zx| < S means \ф{ -  ф{\ <  5, г =  2, • • •, \I\. From the
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assumption regarding the convexity of U, V  is convex in jz11 < S as 
a function of \I\ — 1 phase variables j  — 2, • • •, |/ |.  Therefore, 
we can take positive numbers a, b and бо such that

a V l 2 <  V (z l ) <  b2 \zl \ \  for |z2| < 60. (11)

Take an arbitrary e € (0, e0 ) and let С П be the neighborhood of 
x defined by |z* | < e and z° =  0. Clearly, x €  Qi means z° =  0 since 

С According to the prescribed updating rule, the sequence of 
the state x0, xb  * • •, x*, • • • can be obtained. Then, the function V  is 
monotonically decreasing along this sequence so long as x* remains 
in Пх. From (11) and the non-increasing property of V, we have the 
relation

<*2l4 |2 < V(zI) <  V(zI) <  b2 |zj|2, к =  1,2, • • •, (12)

so long as xfc € Ox and х г =  X\. From Lemma 3, we can take a 
positive number h < e such that |zj| < h and z°k =  0 assure |zj+1| <
e and z®+1 =  0. Now choose |zj| < 6o =  h(a/b) and Zq =  0, and 
suppose that x* jumps out of Пь i.e. |z^| > e and/or z° ^  0, for the 
first time. Then Xo, • • •, xK_i lie in i.e. |z2| < 6  and z° =  0, and 
lzi_il < h and z°K_x =  0 must hold due to (12); this contradicts xK 
Oi from the definition of h . Hence, all the sequences starting from 
|zj| < <J0 and Zq =  0 stay in fii. ■

Proposition 2 ensures that the global state stays near an equilibrium 
if the initial disturbance is small enough. Hence, we can conclude 
that the equilibrium is stable if U is locally convex.

3.2.2 Asymptotic Stability

In the above discussion, we have considered the stability of an equi
librium. Now, we are interested in the asymptotic stability of the 
equilibrium. We have the following result.

Proposition 4: Choose an arbitrary i £ /. Suppose that ф\ is fixed 
to fa and U is convex in a neighborhood as a function of the other
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| J | — 1 variables 4>j. Then, there exists a neighborhood such
that

xk —> x (к —> oo)

whenever the sequence of the global states starts from the inside of 
neighborhood ft0-

Proof of Proposition 4: From Proposition 2, it is sufficient to 
consider only \I\ neurons, described by z1. Take a sufficiently small 
6 >  0. The transition in the sequence zj, zj, • • •, z£, • • • can be de
scribed formally as

=  (i3)

Clearly, Ф(0) =  0. The Lyapunov function V  defined in (10) satis
fies К(Ф(г*)) < V (z l ) for 0 < jz11 < 6 by Lemma 1. Moreover, 
the function V  is positive definite in |z*| <  6 by assumption. Then, 
although the system (13) is a discrete-time system, we can adopt a 
stability analysis similar to that used for continuous-time systems 
(Krasovskii 1963).

Since the sequence V (zJ) has a lower bound and is monotone de
creasing, there exists

13 =  lim V(zI) >  0.
к—*oo

Suppose that (3 is not 0. Define a set В  as follows with sufficiently 
small a  > 0.

В =  {z1!/? <  ^(z1) < P +  a}  С {0 < Iz1! < 6}.

Then we can take \x >  0 such that

V'(z') — УР(Ф(г1)) >  д, z1

since the function V^z1) — У(Ф(гх)) is continuous and positive ex
cept at z1 =  0. On the other hand, since z \ € В  for all к after some



number, we have the relation

lim {V (z i)  -  V (z \+1)) >  м > 0.
к —ю о

This creates a contradiction. Thus, (3 must be 0. ■

Proposition 4 means that the equilibrium is asymptotically stable if 
the energy is locally convex.

3.3 Sufficient Condition
Now a sufficient condition for the local convexity of the energy is 
derived as in the phasor model (Agu et a l 1996). The condition is 
that all the ( |/ | -  1) x ( |/ | -  1) principal sub-matrices of the Hessian 
matrix of the energy are positive definite. A sufficient condition for 
the positive definiteness of the principal sub-matrices is

Rc(x*jWjiXi) > 0  j , i  — •••, |/ |.  0 4)

For example, this condition is satisfied when the connection weights 
are determined using the Hebbian rule to store a single pattern as x.

3.4 Simulation Examples
In this section, we show simulation examples to illustrate the results 
described above. We consider two networks consisting of five neu 
rons. Both networks have an equilibrium at

x =  (1 i — г 0 0).

We consider the motion of x2 and x$ with a small initial disturbance 
when the state of the first neuron is fixed at X\ — X\.
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First, we show a stable case. The connection weights of the first net
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work are

0 -З г 6г - 1 2 )Зг 0 - 9 2 —г
—6г - 9 0 г 2
- 1 2 —г 0 г

2 г 2 —г ч

( щ )  =

The weights satisfy the condition in (14). Therefore, the energy func
tion is convex in the neighborhood of the equilibrium. The threshold 
с is set to 6.5, which is smaller than minje j \Uj\ =  9. Figure 2a shows 
the behavior of x 2 and x3 starting from

xo =  (1 ie*”'20 -  ie™/10 0 0).

From this figure, one can observe that the disturbed state approaches 
the equilibrium asymptotically. Moreover, we observed that states x4 
and x$ remain at 0.

Second, we show an unstable case. The connection weights of the 
second network are

0 Зг 4г -0 .1 0.2 \
-Зг 0 - 5 0.2 —0.1г
—4г - 5 0 0.1г 0.2

-0 .1 0.2 —0.1г 0 0.1г
0.2 0.1г 0.2 —0.1г о )

(Wij)

The threshold с is set to 0.75, which is smaller than minj€j \uj\ 
Figure 2b shows the behavior of x 2 and x3 starting from

x0 = ( l  iei7r/10° -  iei7r/200 0 0).

From this figure, one can observe that although the initial state is very 
close to the equilibrium the disturbed state moves far away from the 
equilibrium.
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(b) unstable case 

Figure 2. State transition.

4 Application to Multiuser 
Communication

4.1 Communication System
Let us consider a synchronous direct-sequence/code-division 
multiple-access (DS/CDMA) system (Verdu 1998). The system 
structure is shown in Figure 3. QPSK is used as a modulation 
scheme. The fcth user has a preassigned code denoted by aki € 
{+1, —1}, I =  0,1, * • •, Lc — 1, where Lc is the length of the code.
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The fcth spreading waveform is generated using the code {aki}.

Lc- 1
Sk{t) =  £  akiPTc{t -  ITC), 0 < t < T b, (15) 

1=0

where Prc{t) is a rectangular chip pulse defined by Prc(t) =  1(0 < 
t < Tc), 0 (otherwise), Ть is the data symbol duration, and Tc(= 
Tb/Lc) is the chip duration. Then, the complex baseband representa
tion of the transmitted signal can be written as

rk(t) =  J 2 A'M i)sk{ t - i T b), 
i

where bk(i) is a complex-valued data symbol which takes a value 
from {1, eJ7r/2, eJ7r, e*3*/2} with equal probability or 0, and A'k € R  is 
the transmitted signal amplitude. Users are allowed to be either active 
or inactive. If the ith user is inactive, both the transmitted symbol and 
amplitude are zero, bi =  0 and A\ =  0.

The received signal can be written as 

к
r ( t ) - E A S E bk{i)sk(t -  гТь -  r fc) +  n (t), (16) 

k=l i

where Ak is the received signal amplitude, which is the product of A'k 
and the channel gain, n(t) is a zero mean white complex Gaussian 
noise process with power spectral density N0/2 , К  is the maximum 
number of users and rk is the delay of the A;th user’s signal. .In this 
chapter, a synchronous CDMA system — i.e., n  =  r 2 =  • • ■ =  t k  
— is considered, which is a typical transmission from a base station 
to mobile stations in cellular communication systems.

A conventional receiver uses a matched filter (MF) which maximizes 
the output signal-to-noise power ratio in an additive white Gaussian 
noise channel with no interfering users. The output of the matched
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Im

filter is given by

(b) receiver 

Figure 3. System structure.

1 r(i+l)Tb
Ук(г) =  Tf /  r{t)sk(t -  iTb)dt 

J- b J
К

—  Akbk(i) + Aibi(i)hki + я* 00 j 07) 
¥k

where hki is the cross-correlation between the waveform Sk(t )  and 
S/(£) defined by

hu =  ^  P  sk(t)s,(t)dt,
lb Jo

(18)



266 T. M iyajim a & К. Уатапака

and nk(i) is the noise component given by

In the following, we will consider the demodulation of the г — Oth 
data and omit the index i for simplicity.

In (17), the first term represents the desired component, while the 
second term represents MAI. Clearly if a set of orthogonal codes can 
be chosen, there will be no MAI. In practice, however, orthogonal
ity cannot be ensured because of the asynchronous arrival of signals, 
the bandwidth limitation, and so on. Thus, codes with small cross
correlations, such as the Gold codes, are usually used. However, even 
if the cross-correlations are small, the effect of MAI cannot be ig
nored if the interference signal amplitudes Ai (l Ф fc) are large com
pared to the desired signal’s amplitude A k. This is called the near-far 
problem which is the main disadvantage of DS/CDMA systems.

To overcome this problem, many researchers have proposed mul
tiuser detectors; these detect the data symbols from MAI corrupted 
signals by using knowledge regarding the codes and signal ampli
tudes for all users (Verdu 1998). The most important of these is the 
optimum multiuser detector which selects the most probable data 
symbols {6fc, fc =  1, * ■ •, K }  for active users given the received sig
nal r(t) observed over the time interval 0 < t <  Ть (Varanasi 1995). 
The optimum maximum-likelihood multiuser detector computes the 
log-likelihood function of b =  (b\ • • • Ьк)т

where (-)T represents the transpose of a matrix. If we expand the 
integral in the above equation, we obtain

2

1(b) =  2Re{yHAb} -  b ^ R A b , (19)
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where A =  diag(.Ai • • • A K ), R is the correlation matrix whose 
(к, I) component is hki defined in (18), у =  (z/i • • • у к )т» and (*)я  
represents the conjugate transpose of a matrix. There are AK' possible 
choices of the symbols where K ' is the number of active users. This 
optimum detector has a complexity that grows exponentially with 
the number of users K . When К  is large, this approach is too com
plex computationally to be implemented in practice. Thus, this has 
motivated us to develop a lower complexity sub-optimum detector.

4.2 Multiuser Detector Using the Phasor Model 
with Resting States

We will now show how a phasor model with resting states can be 
used for low-complexity sub-optimum multiuser detection. The key 
idea is that the phasor model is used to solve the maximization prob
lem of (19).

If there is the Nth neuron whose output is always 1, the energy func
tion can be rewritten as

U ( \ )  =  ~  ] T  W j i X * X i -  R z ( WN ix i )  — \ w N n \%n \2- (2 0 )
2  j= i  i= i  i = i

Comparing the energy in (20) and the likelihood function in (19), the 
parameters of the phasor model can be determined as follows,

N  =  K  + 1,
f  - 2 h i j A i A j ,  i , j  ф  N j

Wij =  < 2yiAi, i ф N ,j  =  N, (21)
[ 0, i = j  =  N,

xn  =  1
Given these parameters and appropriate initial state, the phasor 
model updates its state according to the rule described in Sec.2. The 
output of the kth neuron, Xk> after the dynamics converge is the esti
mation of the kth user’s symbol, 6*.
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In practice, the treatment of the self-connections {-ш*} is an impor
tant issue. The self-connections determined by (21) are not zero. 
The properties presented in the previous section hold for non-zero 
self-connections. For the real-valued case, though, it has been rec
ommended that the self-connections be set to zero to obtain better 
performance (Miyajima et a l 1993). The contribution of the self
connections to the energy function, which is

£  wn \xi\2’ 
j  =  1

is constant as long as the state transition between the origin and the 
unit circle does not occur. Therefore, the relative energy landscape 
can be maintained even if the self-connections are forced to zero. In 
our simulation, the self-connections were set to zero.

An interesting interpretation of the detector is obtained by look
ing into the membrane potential of the ith neuron with zero self
connection:

Ui =  *2А{ ^   ̂ .

Since Xj corresponds to the estimate of the data symbol bj, the sec
ond term in the parentheses can be regarded as a replica of the MAI. 
Hence, the ith neuron estimates the data symbol bi by canceling the 
MAI replica from the corresponding matched filter output у» given in 
(17). This cancellation principle is used in common among conven
tional multiuser detectors, such as the parallel interference canceller, 
serial interference canceller, and so on (Verdu 1998). Note that the 
data symbol estimate is refined iteratively through the dynamics of 
the phasor model in the phasor-model detector.

Note also that the optimum solution can be obtained only if the state 
of the phasor model converges to the global minimum of the en
ergy function. If the state converges to one of the local minima,
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the performance of the phasor-model detector may deteriorate. How
ever, we expect the performance deterioration to be as little as in the 
real-valued cases (Miyajima et al. 1993). The convergence depends 
strongly on the initial state. Fortunately, there exists a reasonable 
initialization strategy in this application. The output of the matched 
filters can be used as an initial state. To obtain better performance, 
we may use the outputs of the other conventional multiuser detec
tors such as the decorrelator or minimum mean-square-error detector 
(Verdd 1998) as an initial state.

The hardware complexity of the proposed detector will clearly in
crease linearly with the number of users. On the other hand, the 
computational complexity is hard to evaluate since it depends on the 
number of iterations needed for convergence. The number of itera
tions depends not only on the number of users K , but also on other 
factors such as the received signal amplitudes Ak, the magnitude of 
the channel noise No, the codes a*/, and so on. In practice, as in the 
conventional iterative detectors, the proposed detector may provide 
acceptable performance even if the iteration is terminated at the pre
determined number.

Note that the threshold с should be chosen carefully. The condition 
(4) must be satisfied to make the desired point an equilibrium. How
ever, the receiver cannot know the minimum magnitude of Uj in ad
vance since the desired point is unknown. Thus, in our simulation, 
we used a threshold of

d  should be chosen so that it is not too large to satisfy condition (4).

where I  =  { j| Aj ^  0} and 0 < d  <  1. Since

N N

\ U j \ =  Y ^ W j i X i  < £ K i | .
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Moreover, if the threshold is too large, the detector fails to detect 
active users. Thus, the threshold should be set as small as possible.

4.3 Simulation Results

Through computer simulation we have evaluated the performance of 
the detector using the phasor model with resting states. The max
imum number of users was К  =  4, and the fourth user could be 
inactive; i.e., Л4 =  64 =  0. The signal energy per bit for the first 
user was equal to that for the third user; i.e., E x =  E3. The second 
user s signal energy E 2 was varied. The spreading sequences used 
were Gold sequences of length 7:

( 1 1 -1 - 1  1 - 1 - 1 ) 
( 1 1 1 - 1 - 1 1 1 )
( 1 ~ 1  1 1 1 - 1  1 ) *
( “ I “ I -1 -1 - 1 - 1  1 )

The dynamics were terminated at 1,000 iterations regardless of 
whether they had converged. The results were obtained by averag
ing over 100,000 symbols.

First, we considered the effect of the threshold. Figure 4 shows the 
detection probability of the active users. Observe that for a threshold 
parameter larger than 0.2, the detector failed to detect active users. In 
the following simulation, the threshold parameter d  was set to 0.01.

wo examples of the transmitted symbols and the dynamics of four 
neurons are shown in Figures 5a and b. In both figures, the upper 
rows show the data symbols, and the lower rows show the time de- 
ve opment of neural states. In the first case in Figure 5a where all 
users are active, the state of the neurons correctly converged to the 
point corresponding to the transmitted data symbol. In the second 
case in Figure 5b where the fourth user was inactive, the state of the 
lourth neuron converged to the origin.
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Figure 4. Detection probability.

Finally, we compared the performance of the proposed detector with 
that of the conventional matched filter detector. In Figures 6a and b, 
the bit error rate performance for the first user is shown. The perfor
mance of the conventional detector deteriorated as the interference 
became stronger, and the proposed detector performed better than 
the conventional one. State X4 always converged to 0.

5 Conclusion
We have introduced a phasor model where the state of each neuron 
can take the value at the origin as well as that on the unit circle, and 
have shown that its equilibrium is asymptotically stable if the energy 
function is locally convex. Moreover, we have considered the appli
cation of this model to multiuser detection in a CDMA system where 
the data take complex or zero values. Simulation results showed that 
use of the new phasor model enabled the detector to outperform the 
conventional matched filter in terms of interference reduction.
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Figure 5. Data symbols and neuron dynamics.

Appendix: Energy Change for Global 
State Transition
Suppose the jth  neuron changes its state. Denote the state be
fore and after the transition as x =  (a?i • • -Xj • • -Xn ) and x' =  
(#1 • • • x'j • • • хдг), respectively. Then, the energy change is given by

tsU  =  Rc(u*jXj) -  Re(u*a^).
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(a) BER vs. E i / N 0 ( E 2/ E i =  20dB) (b) BER vs. E 2/ E i ( E i / N 0 =  8dB) 

Figure 6. Performance comparison.

If the jth  neuron changes its state from the origin to the unit circle, 
then

A U  =  —\uj\ cos(arg(o;'-) -  arg(wj)),

Since arg(a^) =  arg(ttJ), the energy decreases. If the jth  neuron 
changes its state from the unit circle to the origin, then

A U  =  |ttj|cos(arg(sj) -a rg (u j)) ,

which can be positive. This implies that the energy does not neces
sarily decrease.
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Chapter 13

Adaptive Interferometric Radar Image 
Processing by Using Complex-Valued 

Neural Network
Andriyan Bayu Suksmono and Akira Hirose

This Chapter presents an application of the complex-valued neural 
network (CVNN) for interferometric radar (InSAR-Interferometric 
Synthetic Aperture Radar) image processing. The InSAR image, 
whose pixels are naturally represented by complex numbers, is 
modeled by CMRF (Complex-valued Markov Random Field). 
Then the InSAR image that is corrupted by noise-induced singular 
points (SP) is mapped to a CMRF lattice neural network (CMRF- 
LNN). By evolving the states of the CMRF-LNN toward a 
minimum energy value, the SP number is eventually reduced. The 
advantages for phase unwrapping are demonstrated for a simu ate 
as well as real InSAR images.

1 Introduction
Radar imaging system is a valuable tool to study the earth in a 
global scale. The usage of radio waves in the radar system is an 
advantage due to its capability of observing the earth in a wea er 
conditions, day or night.

By using aperture synthesis technique, a SAR (Synthetic Aperture 
Radar) system is capable of achieving high reso ution wi a 
moderately small antenna. The SAR system transmits со er 
microwave radio signals, receiving the echoes reflected by ten  
surface and storing the data. Then, a process to syn esize
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aperture is performed to obtain the radar image. By applying 
interferometry principle, the SAR system in the InSAR 
(Interferometric SAR) is capable to measure terrain altitude. Figure 
1 shows InSAR imaging system by a satellite.

There are two kinds of information obtained by the InSAR system, 
the amplitude and the phase. The amplitude corresponds to surface 
reflectivity, while the phase to height variation. Usually these data 
are used separately for different purposes. For example, the 
amplitude is used for land classification while the phase is for 
DEM (Digital Elevation Map) construction.

Artificial neural network (ANN) is an interconnected 
multiprocessor system that can be used for adaptive signal 
processing applications with many advantages. Recent progress 
shows that the ANNs that possess complex-valued weights, the 
CVNN (Complex Valued Neural Network), have more advantages 
in some applications, especially for those that involved complex
valued information to be manipulated (Hirose 1999). The 
possibility to apply the CVNN in a phase sensitive adaptive radar 
imaging system has been proposed in (Hirose and Sugiyama 1998).
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This Chapter presents a novel method for adaptive processing of 
InSAR images by treating the amplitude and phase image as a 
single complex-valued image. Extension of the Markov random 
field (MRF) to complex-valued MRJF (CMRF) as a model of the 
complex image is performed. The CMRF will be embedded in a 
lattice neural network (LNN), resulting in CMRF-LNN 
architecture, to manipulate the InSAR images.

This Chapter is organized as follows. Section 2 introduces the basic 
of InSAR imaging concepts and coherent phase noise. The CMRF 
model as an extension of conventional MRF is introduced in 
Section 3. In Section 4, two new methods that utilize the CMRF- 
LNN system to filter the InSAR image adaptively are proposed; the 
first method employs stochastic Monte Carlo Metropolis algorithm 
and the second one utilizes the steepest descent. Experiments that 
demonstrate the capability of the methods are also presented in this 
Section. Section 5 concludes this Chapter.

2 InSAR Imaging and Phase Noise
To measure the topography by means of electromagnetic sensing 
we need phase difference of the electromagnetic wave reflecte } 
the object observed from two nearby positions. There are two main 
techniques in the InSAR imaging: single-pass interferometr) an 
repeat-pass interferometry. In the single-pass interferometry, an 
aircraft or spacecraft (such as in SRTM-the Shutt e a ar 
Topographic Mission) is equipped with two receiver antennas a 
capable of measuring phase difference between e **ece1^  
electromagnetic waves. In the repeat-pass technique 
system visits a region in two different times at a s ig t^y i 
position such that the phase difference can be °^tain^ ■ e ” 
image used in this experiment is obtained by e repe 
interferometry of JERS-1 SAR satellite.
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Figure 2 shows a simple geometry of InSAR observation, relating 
some important parameters. In the figure, Si and S2 are two satellite 
positions that are separated by a baseline b. The normal component 
of the baseline, bn, is called the effective baseline. The distance 
between a radar source in Si and point P is r, and the distance 
between a radar source in S2 with P is r+Ar. The phase difference 
0, the interferometric phase, is related to the wavelength A and Ar 
as:

Air
Ф = Ф1 -Ф 2 = - — Аг (l)

where Ф1 and ф2 are the phase received at Si and S2 respectively. By 
knowing Si, S2 and the satellite altitude h from the orbit 
information provided by single look complex (SLC) data, the 
position of point P can be determined. It is obvious that P and its 
height from a predetermined reference point on the ground Az 
depend on the interferometric phase ф. The further it is from the 
satellite, the greater is the phase. Therefore, to construct a 
topography map, an absolute phase value is needed.

Figure 2. A Simple InSAR observation geometry.
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To obtain the interferometric phase ф, two SLC data that represent 
observation from two different positions are needed. Then these 
SLC data are со-registered, which result in two complex images:
Zj =|zj|*ey*' and z 2 = |z 2|.e^2 , where у = л /-1  . Phase image is
obtained by taking the argument of the product of the first image 
with the complex conjugate of the second one:

Zm, = V Z2 = Ы |22 И ^ !>

The phase difference (ф/-ф2) is determined from the real and 
imaginary parts of z int by arctan function. Therefore we only get 
the principal (wrapped) value ^  of the phase:

v  = w{<t>l -<i>2) (3)

where W is an operator that wraps the phase into interval (-я,я].

Coherence interference due to reflection by random scatterers 
degrades the complex (-valued) image. Using the complex- 
amplitude model, the noise can be treated consistently as complex
valued multiplicative noise. It is obvious that the noise effect on e 
amplitude will be multiplicative while the effect on the phase wi 
be additive.

To construct a topography map, we must obtain the absolute value 
of the phase image by phase unwrapping (PU) process, t is 
performed by adding/subtracting a multiple of 2n whenever a 
fringe edge is detected. However, this procedure wi ecome 
complicated in the presence of residues/singular points (SP).

The SPs are the points where Vxi^* 0, i.e., the points that violate 
the nature of the conservation of altitude. In the presence о 
error at one location is propagated to the entire image.



The SPs can be detected as follows (Ghiglia et.al 1996). Let y/m„ 
denotes the wrapped phase image of size MxN. Horizontal and 
vertical phase differences f mn and gmn are defined as:

282 А. В. Suksmono & A. Hirose

If rmn > 0, we have positive SP at (ти,л). If rmn < 0, negative SP, and 
if rmn = 0, then there is no SP.

In the following Section, we present an adaptive method that 
capable to reduce the SPs significantly by employing CMRF-LNN. 
After the SPs in the phase image are reduced, the PU process is 
become easier to be performed.

3 MRF and CMRF Model for Image 
Processing

3.1 Conventional MRF Model

, otherwise

The SPs are detected by computing

rmn= g  mn S m +1 n J mn J m+1 n (6)

We follow the definition of MRF in (Chellappa et.al. 1991) and 
(Cross and Jain 1983). A site (pixel position) is denoted by s , while
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the intensity (gray scale) value is denoted by xs. The ‘colour’ of the 
pixel corresponds to the brightness.

Let a finite rectangular MxN  lattice L represents an image. A G- 
levels colouring of lattice L denoted by xs is a function at the site-s 
in L to the set {0,1, ... , G-l}. Sites teN s are called neighbours of 
site s if the conditional probability of the colour xs depends only on 
the sites teN s, i.e.,

Markov random field  (MRF) is defined as a field that has a joint 
probability density on the set of all possible colourings xs for all 
sites-s of the lattice L subject to the conditions of positivity, 
Markovianity and homogeneity.

According to the Ising model (Cross and Jain 1983), the probability 
value is determined by the pixel’s energy Ej(xs) and environment’s 
temperature T. The energy depends on the neighbourhood 
configuration, order of the model and interaction strength between 
sites. The probability of a site-s, whose intensity is xs, with a 
neighborhood t (e Ns) can be expressed as:

where Z is the partition function for normalization, tts and Ost are 
MRF model parameters, and Ns is the neighborhood set of site s. 
The model parameter Gst is the interaction strength between sites s 
and t, while ocs corresponds to the strength of the external field.

)= p {x s\x ,- t e N s ) (7)

1 - £k )  1 r
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This model is called autobinomial model, which is an extension of 
the two-valued Ising model to multi-valued one. In (Chellappa 
et.al. 1991), the definition of energy has a slightly modified form. 
Assuming a homogenous field, a similar energy E can be defined
as:

P ( * , ) = r

4 * s )  = 2сг (Г)

/  N
*,2- 2 Х 0 Л * ,

teNj

(10)

(11)

where c?(T) is variance that corresponds to the temperature T. We 
use these expressions (8)-(ll) to obtain the energy function based 
on the CMRF model and the restoration procedure in the next 
section.

3.2 Complex-Valued MRF (CMRF)

An InSAR image consists of amplitude and phase images. 
Therefore, we have to combine both of these images into a single 
complex-valued image because the amplitude and the phase are 
physically inseparable properties of the electromagnetic wave used 
in the radar system. We are going to model the combined image 
using the CMRF. We cannot directly extend equation (9) by 
replacing the real-valued pixel x with a complex-valued pixel z 
because it will give an ambiguous complex-valued energy E(z). 
This can be verified by observing its terms, zs and the product 
(0stZsZt), which are generally complex-valued. We propose two 
possibilities.
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1) The Error Energy: E(xs) in eq. (11) is a function of xs. 
Assuming that Ostxt is invariant, we can reinterpret E(xs) as a 
squared-error energy

I€Ns

where xs is the estimated value of xs. Therefore, generalization into 
CMRF will be:

£ ( Z ^ = 2 ( 1 2 )

(13)
leN,

The CMRF parameters As, can be estimated by least square 
method. In this method, the estimation criteria is the minimum 
mean square error (MMSE), that is to say, it has to minimize t e 
following function:

E* 2o 2 ( T ) ( M x N ) ^ Zs (14)

Based on the least square method (Chellappa et.a . ) or 
parameter estimation, it can be verified that the comp ex v 
forms are given by the following equations.

A =
_seL  _

Yj &Qs

-1
(15)
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« W - ^ X k - A - eM x N seL (16)

Qs =

'*+r_ ,

5+T,2

Lz— J
(17)

where Qs is neighborhood vector consisting of 5th order neighbor 

values z s+Xi , (.) means the estimated value, (.)* is complex

conjugate operation, and d ( r ) 2is the estimated variance for the 
initial image. Here we consider 5th order neighborhood Ns that has 
the structure shown in Fig. 3.

Z i+f_u ^5+T!

7
i+r_io Z 5 -H _9 ^5+r4

*

^S+*-8 Z S-H S

5 5̂+C_4 Z S + t10

Z3+r_2 Z 5+C_i Z s + t ]2

Figure 3. MRF (or CMRF) neighborhood configuration.
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2) CMRF complex Ising energy: A paper on complex-valued 
Hopfield network (a type of fully connected neural network) 
described in (Hirose 1992) gives a clue to solve this problem by 
taking the real part of a complex-valued energy E(z). It is well 
known that the Hopfield neural network is isomorphic to the Ising 
(spin glass) model (refer to Haykin 1994, pp.308 for example), 
whose energy is in the form of (9) with a restriction that the pixel 
value is -1 or +1. We will follow this analysis by taking the case of 
as =0 (no external field).

Based on equation (5) of (Hirose 1992), by changing the matrix 
notation from W into Л, the vector x  by z (in component form. xs), 
and by regarding only the neighborhood interaction such that our 
field satisfies the Markovianity condition instead of the fully 
connected network (which means interaction of a site with all other 
sites), we can write the complex-valued lattice energy (comp ex
valued Ising energy) Ec\ as

Ea =-I^Ref I  A„z>, )=-X̂ ReU' I  A » z‘
seL 2  ,eNs teN> (18)

When the value z5 is ideally estimated by its neighbors and the 
CMRF parameters, the estimate z5 should become (13). T en t 
energy (without the external field, i.e. ccs=0) can be rewritten as

Ec\ =-X^Re(zX)
stL ^ (19)

Both the Ea  and Et are useful in Monte Carlo method tecause the 
two energies are almost the same. However, by observing the 
following expression:
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k - M 2 = I K ir + P 3i r - 2 R e [z ;z J  (20)

we see that Ez is more suitable in the present application because 
the brightness ||z5|| and \\zs\\ may vary largely.

4 Adaptive Phase Noise Filtering and 
InSAR Image Restoration Using CVNN

4.1 System Construction and Neurodynamics

In the InSAR images, each pixel at a certain location of the 
amplitude image is associated with its counterpart in the phase 
image. They are both combined to yield a complex-valued image.

Each pixel in the image corresponds to a point of a two- 
dimensional complex-valued lattice. From the CMRF point of 
view, a point in the lattice has influence of only its nearest 
neighbors. During the restoration process to be explained, an 
energy function depending on the value of a pixel and their 
neighbor values is defined. Then, by a certain dynamics, the energy 
is reduced toward equilibrium point of minimum energy 
configuration. The mapping of complex-valued pixels and the 
energy reduction process define the dynamic of the CMRF-LNN. 
Figure 4 illustrates the interaction between a pixel and its nearest 
neighbors for a second order CMRF- LNN. In contrast to a 
Hopfield neural network where all of neurons interact with each 
other, a neuron in the CMRF-LNN only interacts with its nearest 
neighbors.

During the restoration process, the complex-valued image is 
divided into small windows where stationary statistical condition is 
assumedly be satisfied. In this research, a window with size 64x64 
pixels is chosen. In each window, SPs are detected and it as well as
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its neighbors are marked. The CMRF parameter is estimated by 
choosing the unmarked area whenever possible, or it can be used as 
it is anyway if the image is greatly corrupted. Then the restoration 
algorithm is applied. The diagram block of the system is depicted 
in Fig.5. In the diagram, filled circle indicates a SP position while 
the gray ones are its neighbors. These pixels form a mask where the 
image value should be updated. The size of the mask can be chosen 
adaptively. Here two filtering methods (the Adaptive Algorithm 
block) are proposed, i.e., the Monte Carlo Metropolis (MM) and 
the steepest descent methods.о о о о о

о 
о 
оо о о о о

Figure 4 . Neighborhood interaction in CMRF-LNN.

4.2 CMRF Filtering by Monte Carlo Metropolis 
Algorithm
In this method, the estimation criteria is the MMSE evaluated to the 
entire complex-valued image in a MxN block, that is to say, it as 
to minimize (14). The restoration process is a c h i e v e d  by decreasing 
the energy function (14) by using the Monte Car о e ropo
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1. Estimate A  and ст2(г) . Set the initial 

temperature T=T0 .
2. If convergent, go to Step 9.
3. Detect SPs and mark blocks around the SPs.
4. Choose a site s in the marked block at 

random

5. Generate a small complex number A z at 
random, update the current site to

z 3 ( k +1) = z s { k ) +  A z  

where к denotes time step. j

6. Calculate the energy Et { z s ) before and after 
the update as:

£ e(zJ;*) = |K(A:)-zJ(*:|2

Et (zs; к + 1) =  \\zs (k + 1)-£, (к + 1|2

If AEt (z s ) (= Et ( z s ;k+1)  -Et { z s ;k) )<0, 

accept the update and go to Step 8. j

7. Calculate transition probability I

~ A £ c( z J  j

P = e T

If a generated random value ([0,1])<P/ then I 
accept the update, otherwise reject it. i

8 . Decrease Г and go to Step 2. j
9.Stop

Figure 6. Detail of Monte Carlo Metropolis Algorithm for InSAR image restoration.
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(ММ) algorithm. In the process, we choose a corrupted pixel 
randomly and update it by adding (or subtracting) a small 
(complex) random value. If the update brings the system to a lower 
energy state, then we accept the update. But if the energy increases, 
we accept it with some probability. We iterate the update process 
until a certain convergence level is achieved. In the cycle of the 
restoration algorithm, some SPs are eliminated due to combination 
of -1 and +1 SPs or it disappears by itself The detail of the 
algorithm is shown in Fig.6.

In the experiment, firstly we use a simulated phase image. The 
phase image represents a wrapped linear slope in vertical direction. 
We assume homogeneous amplitude (unity). An area in the 
complex image is then multiplied by zero mean complex Gaussian 
multiplicative noise (variance=0.5). The effect of complex 
multiplicative noise is then multiplicative in the amplitude, while 
additive in the phase inevitably.

Figure 7 (a) shows the simulated phase with noise (left part) and its 
corresponding SP distribution (right part). The number of detected 
SP is 115. We apply the MM algorithm where the initial chosen 
temperature To = 0.26 and final temperature 7fmai = 0.00026. The 
detected current temperature Тсшеп{= 0Л \, is equal to the estimated 
variance (<т2(г)). The system is evolved for 7500 cycles. The 
restored phase image is displayed in Fig. 7 (b). For a comparison, a 
restoration/ filtering result using complex boxcar filter is provided 
in Fig 7 (c).

We observe that the result of the MM algorithm is better than the 
boxcar filter. Because of the averaging process in the boxcar filter, 
areas that contains noise is smeared out such that important fringe 
detail is lost as it is observed in Fig. 7. (c). On the other hand, our 
method restores the fringe detail as well as slopes in the corrupted 
areas (Fig.7 (b)). Additionally, while boxcar method reduces the 
SPs from 115 to 4, our method eliminates all the SPs.
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(a)
pmЩЩЩЩЩ

(c)

Figure 7. Simulated phase image (left part) and its corresponding SP distribution 
(right part): (a) original simulated phase has been degraded by noise (SP ), 
(b) restoration by the proposed method (SP=0), and (c) restoration by comp ex

boxcar method (SP=4).

Figure 8 displays the evolution of energy (a) and phase error (b). 
The phase error is calculated as the averaged absolute value о t e 
phase difference between the estimated phase image and t e 
original noiseless image. We observe that the energy as well as t e 
phase error decreases monotonically. In both of the curves, we 
observe a high fluctuation in the initial iterations and it fa es 
afterwards. The fluctuation is due to configuration changes ot die 
image in the corrupted area. This behavior is in concor ance wi 
the MM nature that allows transition to a higher energy in the early 
iterations (high T) and reduces such transition at latter iteration
(low 7).

w m m m m m m
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(а)

(Ь)

Figure 8. Curves of (a) energy and (b) phase error as a function o f iteration
number.

4.3 CMRF Filtering by Steepest Descent Method

In the steepest descent method, after the parameters are estimated, 
the value of pixel with masks are updated as follows
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z * ( * +1)= * , ( * ) + (21) 

t e s (k) = zs (k)~ A’ (lc)Qs (k) (22)

where fj. is the learning constant (0</x<l). This algorithm decreases 
the energy exponentially. The process is repeated by feeding the 
estimation output of the network to the input recurrently, until a 
certain amount of SPs number is achieved.

In the experiment, we use an unfiltered phase difference image. We 
compare our result with those of the Lee filter’s (Lee et.al. 1998) 
and the Goldstein-Werner (G-W) filter’s (Goldstein and Werner 
1998). Figure 9 (a) shows the unfiltered original image, (i) 
amplitude, (ii) phase and (iii) SP map. Before the processing, 540 
SPs are detected. Firstly we apply the Lee filter to the origina 
image. The result is depicted in Fig. 9 (b): (i) coherence map, (ii) 
filtered phase, and (iii) SP map. It is found that the SP number is 
reduced to 242. Secondly, we apply the G-W filter. The result is 
shown in Fig. 9 (c): (i) phase image and (ii) SP map. The SP is 
reduced to 157 after a strong filtering (by setting filter parameter 
Of=l, (Goldstein and Werner 1998)). At last, we apply our proposed 
method. The result is depicted in Fig. 6(d): (i) amplitude, (и) p ase 
and (iii) SP map. It is found that the SP number has been reduced
to 63.

It is observed that the proposed method not only reduce the SP 
more than others, but also give a better phase image resu 
follows. In the middle area of the Lee-filtered image, we °bse™e 
smearing effect that join fringes together and erase some e ai 
objects. The similar behaviour is also found in the - 1 ere  ̂
smearing effect occurs in the left and right parts о ^ 1Ша. * h 
contrast, the propose method gives a lower smearing effect 
fringe, so that the detail is more preserved.
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W (ii) (iii) (#SP=63)

Figure 9. Performance comparison of the proposed method with the Lee and G-W 
filters: (a) unfiltered ((i) amplitude, (ii) phase, (iii) SP map), (b) Lee filtered ((i) 
coherence (n) phase, (iii) SP map), (c) G-W filtered ( (i) phase, (ii) SP map), and 
(d) filtered by proposed method ( (i) amplitude, (ii) phase, (iii) SP map).

(iii) (#SP=540)

(iii) (#SP=242)

(ii) (#SP=157)
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4.4 Application to Phase Unwrapping

In this section we demonstrate the effectiveness of SP noise 
reduction method in improving PU result of a real InSAR image. 
We unwrap the phase by using MST (Minimum Shortest Path) 
branch cut method (Chen and Zebker 2000). Figure 10 (al) shows 
phase images of an InSAR data captured at a region around the top 
of Mt. Fuji in Japan (Shimada 2000), each of them is 512x512 
pixel size. Firstly the SPs are detected. We find 611 SPs in the 
original phase image. In the next step, we determine the MST that 
connects those SPs. Because there are so many numbers of SPs, we 
perform the MST block by block. Then these MSTs are merged 
together. The result is depicted in Fig. 10 (a2). At last, unwrapping 
process is performed using flood fill process. The result is shown in 
Fig. 10 (a3).

As a comparison, we firstly apply our restoration process before 
performing the phase unwrapping. By using the steepest descent 
method (the Monte Carlo Metropolis method will work in a similar 
fashion), we are able to reduce the number of SPs to 100 (aroun 
83% reduction). The filtered phase is shown in Fig. 10 (bl). The SP 
reduction gives a great advantage in the phase unwrapping process. 
Furthermore, the less number of SPs will theoretically reduce our 
computation complexity of unwrapping by about 8.5 times. e 
MST of the filtered phase is shown in Fig. 10 (b2), while the 
unwrapping result is shown in (b3).

It is observed from Fig. 10 (b2) that the filtered phase has 
branches in the MST than the original one in (a2). This means a 
more areas can be unwrapped successfully. Observation in 
unwrapped phase in (a3) and (b3) justifies our analysis. at is о 
say, the mountain top region of the raw phase data has ense 
and, hence, the unwrapped phase in (a3) includes unnatura ei 
variation. On the other hand, (b3) using our propos s ows a m 
detailed mountain shape. As a result, our propos is oun 
useful in phase unwrapping.
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(аЗ) (ЬЗ)
Figure 10. Applicability o f the proposed method in improving the PU result: 
(a l) original InSAR phase image, (a2) cut-lines map o f (a l), (a3) PU result without 
filtering, (b l) phase image after SP filtering, (b2) new cut-lines map and (b3) new 
PU result. (See also Cover Illustration o f the book.)
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5 Conclusion
New adaptive phase noise reduction/ image restoration methods of 
InSAR image have been described. The novelty lies in the 
treatment of the InSAR image as a complex-valued image, the 
usage of newly proposed CMRF model embedded in complex
valued neural network, and SP based adaptive mask. The proposed 
method employing the Monte Carlo Metropolis algorithm as well 
as the steepest descent method have successfully reduced the 
number of SPs, while maintained geometric information. We have 
also applied it to solve phase unwrapping problem. In combination 
with the MST branch cut phase unwrapping algorithm, it has been 
shown that the proposed method gives a better unwrapping result.
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Chapter 14

Complex Neural Network Model with 
Analogy to Self-Oscillation Generated in 

an Optical Phase-Conjugate Resonator

Mitsuo Takeda and Takaaki Kishigami

This chapter reviews our early papers on a complex phase- 
conjugate neural network model with a Hopfield-like energy func
tion. The complex neural network of the proposed model can 
change both the amplitude and the phase, and their dynamics has a 
close analogy to the dynamics of self-oscillation generated in an 
optical phase-conjugate resonator. It is shown that the optical gain 
medium should have a phase conjugate property in order for the 
generated complex optical fields to have an energy function that 
decreases monotonically with the time evolution of the fields. The 
results of experiments and computer simulations are presented that 
demonstrate the behaviors of the complex neural fields predicted by 
the theory.

1 Introduction
Optical implementation of neural networks attracted much interest 
in the years from latel980’s to early 1990’s (see, for example, Denz 
1998). The purpose of this chapter is to review our early papers 
(Takeda and Kishigami 1992, 1993) on complex neural fields that 
have a Hopfield-like energy function and an analogy to optical 
fields generated in an optical phase-conjugate resonator. The work
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was motivated from the all-optical implementation of neural net
works, in which the states of neurons are represented by coherent 
optical fields (Anderson 1986, Soffer et al. 1986, Yariv and Kwon 
1986), rather than by the nonnegative intensities of the optical fields 
as in the incoherent optical implementation based on opto
electronic hybridization (Psaltis and Farhat 1985). In the coherent 
optical implementation, the states of neurons take complex values 
whose amplitude and phase correspond to those of the optical fields. 
The same is true with the synaptic weights that are represented by 
complex amplitude transmittance or reflectance (Psaltis et a l  1988). 
That both the states of neurons and the synaptic weights can take 
complex values is one of the most important features of coherent 
optical implementations that distinguish themselves from other 
implementations such as those based on VLSI technology. At that 
time, however, this fact did not seem to have attracted much atten
tion of researchers working on optical implementations of neural 
networks, with only a few exceptions (see, for example, Little et al. 
1990, Hirose 1992).

Noest proposed a model for complex neural networks, which he 
referred to as phasor neural networks, and studied their characteris
tics as an associative memory (Noest 1988). He has shown that a 
Hopfield-like energy function exists when synaptic weights of the 
network have the form of a Hermitian matrix Tmn = T*m, where *
denotes a complex conjugate. Noest’s work was a very significant 
first step since it clarified the importance of complex neural net
works, and pointed out their relevance to optical computing, such as 
the resonator memories demonstrated by Anderson and Erie 
(Anderson and Erie 1987). However, his model of phasor neurons 
is not suitable for coherent optical implementations, because it does 
not incorporate amplitude variation, which is one of the most fun
damental physical characteristics of actual optical fields building up 
inside an optical cavity with a gain medium. The purpose of our pa
per was to propose a more general model that allows the change o f



both amplitude and phase, and whose dynamics has a closer anal
ogy with that of self-oscillation generated by degenerate four-wave 
mixing. Whereas Noest dealt with a model of networks with Her- 
mite conjugate synapses 7^  = T*m , we proposed an alternative 
model of networks that have symmetric synapses Tmn = and neu
rons with phase-conjugate gain. We first review the two models and 
point out that there exists a kind of dual relation between these two 
models. Next, we give some physical interpretations to our model in 
terms of optical physics, and show that the optical gain medium 
should have a phase conjugate property in order for the generated 
complex optical fields to have an energy function that decreases 
monotonically with the time evolution of the fields. We also show 
that, in the weak-field limit, the energy function can be physically 
interpreted as being proportional to the negative-signed time deriva
tive of the optical power of the self-oscillating beam; this means 
that the energy function is a quantity observable by experiments. 
After presenting some examples of computer simulations that dem
onstrate typical behaviors of the complex neural fields predicted by 
the theory, we experimentally demonstrate the corresponding be
haviors of the complex neural fields by using а ВаТЮз crystal as a 
phase-conjugate medium. We also show by experiments that, in the 
weak-field regions, the energy function of the complex optical neu
ral fields decreases as the oscillation builds up inside the phase- 
conjugate cavity. To our knowledge, this was the first prediction 
and experimental demonstration of the Hopfield-like energy func
tion of the complex optical neural fields generated by phase- 
conjugate gain and feedback.
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2 Energy Function for a Complex Neu
ral Network

We propose two different models of complex neural networks that 
are composed of discrete neurons with feedback.

2.1 Phase-Preserving Neurons with Hermite 
Symmetric Synapses

Let us first consider a Noest-type complex neural network in which 
neurons change their states according to the following equations of 
dynamics:

= -а и п + У \ т у т , (1)I - n /  j  nm m > 4 7
Tt\

K = 8 (\ « „ I K / K I  , (2)

where Vn and un denote, respectively, complex external and internal
states of neurons, and Tnm is a complex synaptic weight for the
complex signal flowing from neuron m to neuron n ; т  and (X are 
constant real parameters, and g(*) is a nondecreasing nonnegative
real function. Equation (2) states that, while the amplitude un of the 
internal state is transformed by the nondecreasing function #(•) as 
in conventional real networks, the value of the phase is preserved; 
we term such neurons as phase-preserving neurons (PPNs). Note 
that the model includes the Noest's phasor neuron model (Noest 
1988) as a special case; it can be obtained by putting g(*) = l and 
a  = 0. We can show that, when the synapses have Hermitian sym- 
metry Tmn = Tnm, these phase-preserving neurons change their states 
in such a manner that the Noest-like energy function defined by
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<з >
^  n m n

reduces its value monotonically with the time evolution o f the sys
tem. In Eq.(3), g _I(*) is an inverse function of g ( •), and s  is a real 
parameter for integration. Note that due to Hermitian symmetry the 
energy function E becomes a real function. The proof of the energy 
minimization characteristic of this phase-preserving neural networ 
is given in the original paper (Takeda and Kishigami 1992).

2.2 Phase-Conjugate Neurons with Symmetric 
Synapses

Here we propose an alternative model for a complex neural network 
that has phase-conjugate neurons (PCNs) connected by symmetn 
cal synapses Tmn = Tnm. Equations of dynamics for this model are
given by

dun , V r  v  (4)т -----— —ccu„ ~ь /  Tnm m у
dt m

Vn= g (\u n \)uJ\u„\ • (5)

The only, but important, difference from the previous ^  ^
internal states are transformed into external states wi we
their phases reversed (or phase-conjugated) as seen /ргм 5). If 
therefore term such neurons as p h a s e -c o n ju g a te  n eu r  ^  networjc 
the complex synaptic weights have symmetry Tm nm» 
has a Hopfield-like energy function (Hopfield 1984)
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which reduces its value monotonically with the time evolution of 
the system; Re denotes real part, and the proof is given in the 
original paper (Takeda and Kishigami 1992).

3 Analogy and Physical Interpretation
In this section, we point out that our PCN model for complex neural 
networks bears an interesting analogy with certain physical systems 
with phase conjugating gain and optical feedback. Let us consider 
an optical system as shown in Figure 1, where self-oscillation is

Figure 1. Analogy of the PCN model with the dy
namics of optical field generated in a phase- 
conjugate resonator.

generated inside the cavity formed by a reflector and a phase conju
gate mirror (PCM) with gain. Energy for the gain is provided by 
pump beams through degenerate four-wave mixing; self-oscillation 
in such a system was predicted by Yariv and Pepper (Yariv and 
Pepper 1977) and was experimentally demonstrated by Feinberg 
and Hellwarth (Feinberg and Hellwarth 1989). Actual dynamics of 
the optical fields in such a physical system may be too complex to 
be expressed by simple equations of motion. However, our aim here

Phase Conjugate 
Ч'ктеяяг Mirror

Reflecting ^  
Surface r
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is to find an analogy between the PCN model and the physical sys
tem with phase conjugate gain and feedback, rather than to discuss 
the detailed physics of such a system. For this purpose, we first 
show that a somewhat fictitious yet plausible model for the dynam
ics of the optical fields inside the cavity can be derived from our 
PCN model. Based on this quasi-physical model for the dynamics of 
the complex optical fields, we then give some physical interpreta
tions to the PCN model and clarify the role played by the phase con
jugating neurons.

3.1 Dynamics of Complex Neural Fields
The equations of dynamics, Eqs.(4) and (5), for spatially discrete 
neurons can easily be modified to describe the dynamics of spatially 
continuous neural fields:

T ^ ^ -  = -a u (r ,t)  + ^ T (r ,r )V (r ,t)d r  , (7)

V(r,t) = g(\u(r,t)\)u*{r,t)l\u(r,t)\ . (8)

Likewise, we can show that these complex neural fields change 
their states in such a manner that the energy function defined by

£  = “ Re( £  [ j( r ,r )V (r ,t)V (r )d rd i^

+аЛ I ( olg~1cy) ^ r

reduces its value monotonically with the time evolution of the sys
tem. Referring to Figure 1, we interpret the state of a complex neu
ron V(r, t) as the complex amplitude of the optical field emitted 
from a point at r in the crystal. Similarly, we interpret the internal 
state of the complex neuron u(r,t) as the complex amplitude of the
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grating formed at r  by the interference between one of the pump 
beams and the beams that originate from other sources K (r,/)at 
points r  in the crystal and that reach the point at r  through reflec
tions at the reflecting surface. We interpret the complex synaptic 
weight T(r , r ) as a transmission function that describes the propa
gation of the beam from the point at r to the point at r . Based on 
these interpretations, Eq.(7) may be considered to represent a writ
ing process of the grating where the complex grating amplitude 
w(r,/) increases in proportion to the sum of the complex fields of

the writing beams ^JT (r,r)V (r9t)dr . The decay term -a u (r ,t)

may be considered to express a rate of erasing that the grating un
dergoes during the writing process. Likewise, Eq.(8) may be con
sidered to represent a read-out process where we read out a beam 
that is phase-conjugated to the writing beam and whose amplitude is 
transformed by a nondecreasing real function g(«). We may incor
porate the effects of gain saturation and/or thresholding into this 
amplitude transform function. These two equations of dynamics, 
Eqs.(7) and (8), together form a set of simultaneous equations, so 
that they may reflect the fact that both the writing and reading proc
esses occur simultaneously in the degenerate four-wave mixing.

3.2 Symmetric Synaptic Weights and Helm
holtz’s Reciprocity Theorem

Since the complex synaptic weight Г(г,г) has been interpreted as a 
transmission function of the optical field, we may expect that the 
vast majority of optical feedback systems have symmetric synapses 
because of the reciprocity theorem of Helmholtz T(r,r)  = T(r , r )  
(Bom and Wolf 1970). This in turn means that the PPN model, 
which includes Noest's model as a special case, is less suitable for 
optical implementation because its synaptic weights need to have



Hermitian symmetry, a condition that is generally not satisfied by 
physical law of wave propagation.

3.3 Role of Phase Conjugating Neurons
We are now ready to consider the role played by phase conjugating 
neurons in the PCN model. Suppose the phase conjugation mecha
nism were not necessary and that the phase-conjugate neurons 
could be replaced by ordinary phase-preserving neurons. Then any 
optical feedback systems with gain should have an energy function 
since we have already seen that the condition of symmetric synaptic 
weights is automatically fulfilled by the Helmohltz’s reciprocity 
theorem. Because of their energy minimization characteristic, opti
cal fields inside any such optical feedback systems with sufficiently 
large gain should always converge into some stably oscillating 
modes, irrespective of the shape of the reflecting surface. Obviously, 
this is not what we usually experience with laser oscillations, where 
stable oscillations are generated only when the reflectors form a 
stable cavity. Now the role played by the phase conjugating neurons 
in the PCN model has become clear. Their role can be physically 
interpreted as making the cavity stable in order to guarantee the 
convergence of the optical fields into a stable mode. The fact that a 
phase conjugating mirror can always form a stable cavity is well 
known (Yariv 1985), and Feinberg and Hellwarth’s demonstration 
of a kitchen spatula laser (Feinberg and MacDonald 1989) is fa
mous. To our knowledge, however, it has never been discussed 
from the viewpoint of its relation to the existence of the Hopfield- 
like energy function for the optical fields inside the cavity.

3.4 Energy Function and Total Intensity of Os
cillating Fields

It is of interest to examine if we can observe the predicted energy 
function of the complex optical neural fields, Eq.(9), by experi
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ments. It is generally not possible to specify the synaptic weights 
Г (г ,г ) for all the possible optical ray paths between the distributed 
neurons. We, therefore, eliminate them by substituting Eqs.(7) and 
(8) into Eq.(9), and obtain (Takeda and Kishgami 1992)

This relates the energy function to the modulus of the field ampli
tude V(r,t) . In most cases where the oscillation grows rather 
slowly, both the field amplitude and the grating amplitude remain 
small for some time period after the start of oscillation, so that 
| V(r, t) |«: 1, | w(r, /) \<к 1 for 0 < t< tw. In such a weak-field limit,
we may expect that the gain function can be approximated by a lin
ear function g(| V(r,t) I) «  a \ V(r,t) |, and we have

where a is a positive constant. Substituting E q .(ll) into Eq.(lO), 
we have

where I is the total intensity or the power of the optical field de
fined by

(10)

(И)

dl_
4 a dt

(12)

(13)

Thus we have shown that, in the weak-field limit, the energy func
tion is proportional to the time derivative of the sign-reversed total
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intensity of the fields. In other words, the energy function (with its 
sign reversed) is proportional to the rate of the intensity growth of 
the oscillating beam. Since we have already shown that dE/dt < 0 , 
we have

d2I 4a dE
dt2 r dt

which states that the total intensity /(/) grows as a downward con
vex function of time. Finally we point out again that, since the total 
intensity of the oscillating beam /(/) is a measurable quantity, e 
behavior of the energy function in the weak-field region can be ob 
served by experiments.

3.5 Computer Simulations
We performed computer simulations to examine the behaviors of 
the complex neural fields and their energy function. one 
dimensional PCN model was adopted to save the time an ™er”° 
for computation. Parameters are chosen so that the mo e âr 
analogy to a physical system of an optical resonator 
concave parabolic mirror and a phase conjugate пиши* ( 
mg each other. We regard the optical fields leaving om 
toward the parabolic mirror as the complex neura ie s , > 
and make the distance between the two mirrors equal to t 
length /  of the parabolic mirror. For such a system w 
called / -/  geometry, the synaptic weights take (asi e om 
stant factor) the form of a Fourier transform ^en ê ’ , 
exp(-2xixx/АЛ (with X being the wavelength) so that the 
emitted from the PCM as V{x,t) and reflected by the 
ror back to the PCM becomes the Fourier transform of the ongina
field:
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£ , Т (*> x)V (х, t)dx = 0  exp I
-2/rixx л

, ,  dx. (15)
'V

To incorporate the fact that the amplitude of the self-oscillating 
field saturates as it reaches full growth, we used a gain function of 
the form

g(x) = tanh(x/T) (x> 0) , (16)

which is a positive part of a bipolar sigmoid function whose gain 
slope at g(0) = 0 is determined by the parameter T . Although our 
interest is in complex neural fields whose equations of dynamics are 
space-time continuous, we had to discretize the model to perform 
the simulations by digital computer. The one-dimensional neural 
fields V(x,t) were represented by 501 complex discrete neurons 
arranged with equal separations to cover the effective PCM size of
0.72mm determined by the spot size of the pump beams. The gain 
parameter of these neurons was chosen as T -  240 . The focal 
length of the parabolic mirror was /  = 500mm, and the wavelength 
was A = 500nm. The differential equations were approximated by 
difference equations with the parameters chosen as a  -1  and r  = 2 . 
We changed the states of the neurons asynchronously in order to 
avoid an artifact that may manifest itself as the oscillation of the en
ergy function when such a discrete-time approximation is made 
(Takeda and Goodman 1986); we later found that synchronous 
transition models also worked well, which allowed us to use an FFT 
algorithm for the calculation of Eq.(15). For the initial state, we 
used a weak random field whose intensity and phase distributions 
are shown in Figure 2(a). The neurons first change their states to 
have a smoother phase distribution as shown in Figure 2(b) and 
Figure 2(c). The graphs show the intensity distributions (left) and 
the phase distributions (right) after 1 time unit (b), and after 15 time 
units (c), where the time unit is defmed as a period during which all 
the neurons renew their states. Physically, this
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Figure 2. Examples o f simulated complex neural fields that con
verge into a mode that looks like a fundamental Hermite- 
Gaussian mode. The graphs at left and right show the intensity 
distributions and the phase distributions, respectively, (a) at the 
initial state, (b) after 1 time unit, and (c) after 15 time units.
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Figure 3. Examples o f simulated complex neural fields that con
verge into a mode that looks like a fundamental Hermite- 
Gaussian mode. The graphs at left and right show the intensity 
distributions and the phase distributions, respectively, (a) after 20  
time units.(b) after 26 time units, and (c) after 50  time units.
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process of phase smoothing may be interpreted as being performed 
by spatial lowpass filtering. The Fourier transform kernel of the 
synaptic weights produces the spatial frequency spectrum distribu
tion of the neural fields over the PCM from which they originated. 
Only very low spatial frequency components of these spectrum dis
tribution will be returned as a phase conjugate beam because we 
have limited the effective size of the PCM. Since the spatial fre
quency spectrum distribution is most sensitive to the phase distribu
tion of the original fields, we may consider it natural that the phase 
of the complex neural fields first tries to take a smoother spatial dis
tribution. Once the smooth phase distribution is achieved, the fields 
become more and more concentrated onto the effective area of the 
PCM, and the intensity starts to grow.

w <«*»
Figure 4. (a) Sign-reversed total intensity, (b) energy function 
(solid curve) and time derivative o f the sign-reversed total inten
sity (dashed curve), exhibiting similar behavior in the weak signal 
region, which lasts until 20 time units.

The behavior of the simulated complex neural fields was found to 
be in agreement with that predicted from the physical picture de
scribed above; Figure 3 shows the intensity distributions (left) and 
the phase distributions (right) after 20 time units (a), after 26 time 
units (b), and after 50 time units (c). In this example, the fields con
verged into a mode that looks like a fundamental Hermite-Gaussian 
mode as shown in Figure 3(c). Illustrated in Figure 4(a) is



318 M. Takeda & Т. Kishigami

Space Axis X
(»)

ш гм mi <i
Space Axis A”

Space Axis A'
(b)

Space Axis A"

t -! 5 i i ; ;
:
j

Jll
1 I j  j _

i i j j • ‘ """ "V '' t :t i : :i » : 1 BA 1 4___ I __J__ . L„: : i 1
lie
Bi

i I ; : I i ; t
— j.... -S— i

! 1 !
j-----....
f * j

Tf 
1 . ___ j___\ jC \ . ~

1 j 1L 1 HI : ; ; i
| !

i 5 * i ; ;  ̂ ) ;
[ *

....

*10
-lie

p - j  | —

! * j Л i ....1 —

: :
! ;

-»7I
-3M

- - • -- i- i -• «г :
1Й m 300

Space Axis A'
(c)

lit 260 )C« 41
Space Axis A*

Figure 5. Examples o f simulated complex neural fields that con
verge into a mode that looks like a higher-order Hermite- 
Gaussian mode. The graphs on the left and right show the intensity 
distributions and the phase distributions, respectively, (a) at the 
initial state, (b) after 1 time unit, and (c) after 15 time units.
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Figure 6. Examples o f simulated complex neural fields that con
verge into a mode that looks like a higher-order Hermite- 
Gaussian mode. The graphs on the left and right show the intensity 
distributions and the phase distributions, respectively, (a) after 20  
time units, (b) after 30 time units, and (c) after 500 time units.
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Figure 7. (a) Sign-reversed total intensity, (b) energy function 
(solid curve) and time derivative o f  the sign-reversed total inten
sity (dashed curve), exhibiting similar behavior in the weak signal 
region, which lasts until 20  time units.

100

the time variation of the (sign-reversed) total intensity, which starts 
to saturate at around 25 time units. In Figure 4(b), the solid line 
shows the energy function, which reduces its value monotonically 
as predicted by the theory. The broken line shows the time deriva
tive of the sign-reversed total intensity -dl(t)/dt scaled by a factor 
r/4a . Note that, as predicted by Eq.(12), it can well represent the 
energy function (apart from the constant scale factor) in the weak- 
field region that appears to last until 20 time units. This means that 
we can observe the behavior of the energy function in the weak- 
field region experimentally by detecting the total intensity of the 
fields and computing its sign-reversed time derivative. Figures 5 
and 6 show another example of simulation where we increased the 
weak-field gain to T = 200 and the effective size of the PCM to
0.90mm. In this example, the behavior of the phase distribution is 
of particular interest. First it tries to take a smoother distribution as 
in the previous example. Then it finally finds out a solution with a 
phase jump by n , and produces a higher-order mode with the sign- 
reversed twin peaks, as shown in Figure 6(c). As shown in Figure 7,
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the behaviors of the energy function and the total intensity look 
similar to the previous example. Thus our theoretical prediction 
again holds in this example where the neural fields converge into a 
higher-order mode.

4 Experiments
Based on the analogy that we have found between the complex neu
ral fields of our PCN model and the optical fields generated in a 
phase conjugate resonator, we carried out experiments to observe 
the behavior of the energy function in a physical system as shown in 
Figure 8. The phase conjugate resonator is formed by combining a 
conventional mirror, M4, with a PCM that consists of а ВаТЮз 
crystal and a pair of pump beams, pumpl and pump2, mutually 
counter propagating from mirrors М2 and М3. The optical power 
for the pump beams is supplied from an argon-ion laser operating at 
the wavelength of 514.5nm. Experiments of self-oscillation using 
such degenerate four-wave mixing have already been reported by 
many people. It should therefore be emphasized that our aim is not

A r  I o n  L u i r

Figure 8. Experimental setup for observation o f the Hopfield-Iike 
energy function o f the optical fields generated in a phase- 
conjugate resonator: M1-M4, conventional mirrors, BS, beams
plitter; PD, photodetector; A/D, anlog-to-digital convertor.
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т

Figure 9. Complex neu
ral fields generated in a 
B aT i03 crystal.

to demonstrate the self-oscillation 
itself but to observe the predicted 
behaviors of the energy function 
that we have associated with the 
optical fields in the phase conjugate 
resonator. Likewise, studying the 
behavior of the total intensity of the |; ЩЩЦ\Ц & 
oscillating beam may not be of in
terest by itself, since it may have 
also been done by many people.
However, we consider that the sig
nificance of our experiments lies in 
that they are conducted with the un
derstanding that the Hopfield-like
energy function of the optical fields in the phase conjugate resona
tor can be observed through the measurement of the total intensity 
of the oscillating fields and the computation of its sign-reversed 
time derivative. Returning to Figure 8, we observe the field intensity 
distribution in the PCM by a CCD camera focused on the ВаТЮз 
crystal, and take it into a frame memory for display and analysis. At 
the same time, we detect the total intensity of the oscillating field 
with a photo detector and take it into a personal computer to com
pute its sign-reversed time derivative. Strictly, what we are detect
ing in this experiment is not the total intensity of the neural fields

that we defined by /(/)= £ j  V(r,t)\2d r ; remember that we have

associated the neural fields with the optical fields leaving from the 
PCM toward the mirror M4. Instead of I(t) ,  we are detecting the 
total intensity of the fields propagating from the mirror M4 toward

the PCM, which is given by I{t) = £  ^JT(r,r)V(r,t)dr dr . Gen

erally, the observed I(t) is not equal to I{t) , but in our experiment, 
where the transmission function T(r,r) (representing the synaptic
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weights) has the form of the Fourier transform kernel, we can re
gard I(t) as being equal to I(t) because of Parseval’s theorem of 
the Fourier transform.

Figure 10. Intensity growth o f optical fields in phase-conjugate 
resonator: (a) after 80s, (b) after 100s, and (c) after 150s.

Time (Second») Time (Second*)

Figure 11. Sign-reversed total intensity o f the optical fields (left) 
and its time derivative (right) representing the energy ction 
that decreases monotonically in the weak-field region (ignore the 
noisy fluctuation enhanced by differentiation).
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Figure 10 shows an example of the intensity growth of the optical 
fields observed by the CCD camera, which resembles the first ex
ample of the computer simulations depicted in Figures.2 and 3. In 
Figure 11, the left graph shows the sign-reversed total intensity of 
the optical fields, which resembles the result of simulations shown 
in Figure 4(a). Its time derivative is shown in the right graph in Fig
ure 11. Ignoring the noisy fluctuations enhanced by differentiation, 
we can see that it decreases monotonically in the weak-field region 
which appears to last approximately until 150 seconds after the start 
of pumping. According to Eq.(12) and to the result of the computer 
simulation shown in Figure 4(b), we consider that the derivative of 
the sign-reversed total intensity shown in the right graph represents 
the Hopfield-like energy function of the optical fields in the region 
where the signal is small. Next, we increased the pump power to

Figure 12. Intensity growth o f optical fields in phase-conjugate 
resonator: (a) after 20s, (b) after 30s, and (c) after 45s.

realize the situation analogous to the second computer simulation 
where we increased the weak-field gain by choosing T = 200. Fig
ure 12 shows an example of the intensity growth of the optical 
fields, which resembles the second example of the computer simula
tions depicted in Figures 5 and 6 though the mode of this experi



ment looks more complicated. The left graph in Figure 13 shows 
e sign-reversed total intensity of the optical fields which resem- 
cs e result of simulations shown in Figure 7(a). Its time deriva- 

ve is shown in the right graph. Again, we can see that it decreases 
monotonically in the weak-field region. We consider that this de
rivative of the sign-reversed total intensity corresponds to that 
s own by the broken line in Figure 7(b) and represents the Hop- 

e - ike energy function in the weak-field region which appears to 
ast approximately until 40 seconds after the start of pumping.
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Figure 13. Sign-reversed total intensity o f  the optical fields (left) 
and its time derivative (right) representing the energy function 
that decreases monotonically in the weak-field region (ignore the 
noisy fluctuation enhanced by differentiation).

5 Conclusion
We have proposed a complex phase-conjugate neural network 
model that has a Hopfield-like energy function. We have pointed 
out that the dynamics of our complex PCN model has a close anal- 
ogy with the dynamics of self-oscillation generated in a phase- 
conjugate resonator. From the physical interpretation of the model, 
we have found that the optical gain medium should have a phase 
conjugate property in order for the generated optical fields to have a
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Hopfleld-like energy function that decreases monotonically with the 
time evolution of the fields. We have shown that, in the weak-field 
limit, the energy function can be approximated by the time deriva
tive of the sign-reversed total intensity of the fields, and is observ
able by experiments. We have conducted experiments and computer 
simulations, and demonstrated the behaviors of the complex neural 
fields predicted by the theory.

Finally, we should emphasize the importance of finding analogies 
between neural networks and physical systems. Historically, Hop- 
field proposed his neural network model and the concept of the en
ergy function based on the analogy to the physics of spin glass 
(Hopfield 1982). And the analogy to statistical physics has moti
vated Kirkpatrick, Gelatt and Vecchi to think of simulated anneal
ing (Kirkpatrick et al. 1983), and led Hinton and Sejnowski to the 
idea of the Boltzmann machine (Hinton and Sejnowski 1987). On 
the other hand, majority of researches in optical neuro-computing 
appear to have been focused on the technical issues of how to opti
cally implement the existing neural network models and/or learning 
schemes. Our approach in this study is more like that of the people 
mentioned above, because our aim is to propose a new neural net
work model (the PCN model) based on the knowledge of (optical) 
physics, rather than to discuss the (optical) technology issues for the 
implementation of the existing neural network models. Possibilities 
and limitations of our complex PCN model in applications to in
formation processing and/or storage are yet to be studied. Should 
we find some interesting applications, the optical implementation of 
the model would be quite easy and natural because the model was 
bom from the analogy to optical physics.
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Chapter 15

Coherent Lightwave Neural Network 
Systems : Use of Frequency Domain

Sotaro Kawata and Akira Hirose

The spatial coherence of lightwave extends the ability of optical 
information-processing systems based on the spatial parallelism. Or
thogonally to space, the temporal coherence also raises their poten
tial by make good use of the vast optical frequency domain, i.e., 
the frequency domain multiplexing. The frequency domain attracts 
neural network systems because many of the neural specific dynam
ics originate from the distributed and parallel architecture. Further
more, the optical carrier frequency can become the key informa
tion for modulation of the network behavior such as learning, self
organization and adaptive processing. In this chapter, we treat the 
complex-valued neural networks from the viewpoint of frequency- 
sensitive coherent lightwave information processing. We describe the 
theory and experimental results where the carrier frequency is found 
useful to control the learning and processing behavior of the neural 
networks.

1 Introduction
The neural networks have two characteristic features. First, the pro
cessing dynamics is embedded in simple synaptic weights. Second, 
simply operating neuron elements work together to yield an infor
mation processing dynamics. These facts are compatible with par
allel processing architecture. Therefore it is important to investigate
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parallel hardware (Kolinummi et al. 1997).

However, in the conventional electronic hardware, we have a serious 
limitation on the operation speed. Because we need a cooling con
figuration, we cannot make the circuit smaller than a certain size. 
We also have the circuit capacitance and inductance. Then we are 
not free from a large signal-propagation delay. On the other hand, 
lightwave is expected to overcome the restriction.

The lightwave has a potential to realize a high-speed, flexibe and 
massively parallel three-dimensional interconnections. The only lim
itation is caused by the diffraction. A spatial lightwave modulator 
(SLM) modulates the lightwave patterns two-dimensionally in am
plitude, phase or polarization. The SLM solves the connection delay 
problems in the electronic neural weights.

Though many ideas on optical neural networks have been proposed 
up to now (Psaltis et al. 1989, Ishikawa et al. 1989, Nitta et al. 1992), 
most of the systems use only the lightwave intensity or power. That 
is, they aim to utilize the spatial coherence, the straightness of prop
agation. The temporal coherence, i.e., the phase and frequency, are 
not in use. Besides, the lightwave has polarization. By using such 
a variety of lightwave variables, we will be able to realize an ul
timately highly functional neural network hardware (Hirose and 
Eckmiller 1996). We call such systems the coherent neural networks 
where we utilize the wave and interference phenomena. Figure 1 il
lustrates the pioneering of the new dimensions.

In this Chapter, we describe the architecture, designs and experi
mental results of coherent lightwave neural network systems. They 
process the information by optical modulation, addition, coherent 
detection and nonlinear conversion, if needed, of lightwave. First 
we show the fundamental operation of a coherent associative mem
ory system that embeds complex-valued signal vectors (Hirose and 
Kiuchi 2000). Then we expand the system into a frequency-domain
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Amplitude

Figure 1. New dimensions o f lightwave information space.

multiplexing network (Kawata and Hirose 2003) by which we show 
explicitly the use of the frequency domain as a new resource of the 
parallelism.

2 Coherent Neural Networks
2.1 The Amplitude-Phase Complex-Valued 

Neural Networks
In physiology we observe the membrane potential in the real-number 
domain. However, we can construct a complex-valued neural model 
as an extension of the real-valued one. The complex-valued expres
sion is useful in many fields such as control and electrical circuits. In 
particular, when we deal with wave, the complex-valued treatment is 
essential to obtain a useful physical picture.

The research of the complex-valued neural networks can be traced 
back to the generalized threshold functions discussed in (Aizenberg 
et a l 1971). They extended the real binary threshold function to a 
multiple-valued threshold one that yields one of the discrete points 
on the unit circle in the complex plane. They suggested that such 
a machine is implemented by converting the phase information into 
pulse timing and by using a controllable time delay. In 1975, the 
complex-valued adaptive filter was proposed by Widrow s group 
(Widrow et a l 1975). They considered a linear system and described
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Real-valued type Complex-valued type

comni J y *п о̂ г т а Поп space between the real-valued and the
axes resn networ^s w here Re and Im stand for real and imaginary 
axes, respectively, and i  is signal vector component index.

‘l T Plr ValUed least mean square algorithm. In 1988, Noest pro-
«тНянГ ^ ^ ° r neura  ̂network and analyzed the capacity of the as-
nentc ^  Phase value has information compo-
eral гряГ  XC а т Р^Шс̂ е (Noest 1988). On the other hand, sev-
DoseH гм-n a^lnf2^ comPlex-valued neural networks were pro-
PiDenbera и к т  ^Шуа Nemoto and Kubono 1996, Birx and
function Wj  еГе Геа  ̂anc* *т а ё*пагУ parts o f the activation
entiahlp ^  Г̂ е Separate1^  ^ en function is partially differentiable in each real or imaginary domain.

was a™Pj*tucie-phase type complex-valued neural network
This netw^t к lr°Se. ^ ^ a ,  Georgiou and Koutsougeras 1992). 
network н amplitude and phase as the basis vectors. Then the 
is the evr^namiCS^ S Г̂ее Г̂°т  coordinate setup. That
The f a r t . reSS10n oes по[ depend on the real and imaginary axes, 
ical nhen VCr̂  lmPortant *n particular when we deal with real phys- 
Though thmena w ^  intrinsically independent of coordinate. 
попгедиЬНнГ^ ltU e’^ ase act*vation function is not analytical, the 
learning J n l 1S П°* * Ser*ous Pr°blem. The reason is that the neural 
individual Processm£ are performed realistically by a gradual and
two basis siSnals and weights that are projected onto the
two basis vectors on the two-dimensional complex plane.

eneineerino^fi6 , ^ ase r̂amework is suitable for applications in many 
e s such as the optical information processing sys-
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xI = Ы exp (icu)
/ JWvji = \wji\ exp (/0/7)

yj = \yj\ exp (ifi/)

Figure 3. Complex-valued Neuron.

terns, presented in this Chapter, and the amplitude modulation, 
phase modulation and frequency modulation in electromagnetic- 
wave communications and radars.

With the amplitude-phase type complex-valued neural-network the
ory, we can easily deal with a wave phenomenon where the phase 
value varies smoothly as shown in Fig. 2. When we design future 
neural networks with lightwave, electromagnetic wave, sound wave 
and quantum wave such as electron wave, the theory of this type will 
play a fundamental roll.

In particular, the use of high-frequency and short-wavelength light
wave will realize highly dense parallelism in both the spatial and 
frequency domains. In this section, we describe the complex-valued 
neural network theory for the coherent neural networks.

2.2 Neural Dynamics on Complex Number Plane
Figure 3 shows a complex-valued neuron. The neuron operation 
is expressed in terms of input signal from г-th neuron Xi = 
|a:j| ехр(шг), synaptic weight Wji = \wji\ ехр (г^ ) and output signal
Уз = Ы  exPЩ )  ™

(1)
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Phase shift

Figure 4. Weight multiplication, product summation and nonlinear conversion.

where /(•) expresses a certain nonlinear function and N is number 
of the inputs. Though several neuron nonlinear functions have been 
proposed, we choose the function so that the amplitude and the phase 
are converted separately as

f(z) = A tanh(p|z|) exp (г arg(z)) (2)

where A (€ Re) and g (€ Re) denote output sigmoidal saturation 
amplitude and input amplitude gain. The function converts the am
plitude nonlinearly while it leaves the phase component unchanged 
(Hirose 1992b). Figure 4, on the other hand, illustrates the weight 
multiplication and the neural summation of the network on the com
plex plane as well as the nonlinear conversion.

2.3 Coherent Neural Networks
A coherent associative memory dealing with phase information was 
proposed by Takeda and Kishigami (Takeda and Kishigami 1992).
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Figure 5. Two types o f coherence.

The phase utilization leads to the multiplexing in the frequency do
main. In particular, when a short-wavelength electromagnetic wave,
i.e., lightwave, is introduced as the carrier, not only the spatial paral
lelism but also the vast frequency domain are available. The advan
tage originates from the coherence.

There are two types of coherence. One is the spatial coherence and 
the other is the temporal coherence. These concepts are veiy impor
tant when we design and construct a coherent system.

Figure 5(a) shows the spatial coherence. The coherent type neural 
network is a network that utilizes interference phenomena. There
fore, the constant phase surface should be well ordered on, for ex
ample, a plane or a sphere. A high directivity of the carrier lightwave 
realizes a flexible and massively parallel connections. The directiv
ity, or the straightness of propagation, is based on Huygens’ princi
ple. Hence an effective control of the wavefront requires a well or
dered phase surface in space. In other words, it needs a high spatial 
coherence.

On the other hand, Fig.5(b) shows the temporal coherence. The co
herent system requires a reference lightwave to detect the phase of 
signals. Generally, the signal and reference lightbeams propagate
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Input Layer Output Layer

Figure 6. Associative memory network.

along optical paths different from each other. Two lightbeams yield 
a meaningful phase information by an interference only when they 
have a stably comparable phase values even if the optical path lengths 
are different. Therefore, the phase noise of the lightwave should be 
low enough. That is, the temporal coherence should be high.

We use a laser as a high spatial- and temporal- coherence light 
source. We choose a semiconductor laser diode in particular in the 
frequency-domain controllable system in which we can make good 
use of the frequency resource.

3 Coherent Lightwave Associative 
Memory System

3.1 Dynamics of Complex-Amplitude Associative 
Memories

Associative memories have a recurrent single-layer (fully connected) 
structure shown in Fig. 6. A connection weight Wji from г-th neuron 
to j -th one is determined by complex-amplitude vectors to be em
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bedded (memorized) sM = sifjL (index /i = 1 ,2 ,...) as (Hirose 1994)

where (•)* denotes Hermitian conjugate. This scheme is called the 
correlation learning. As to the neuron nonlinearity, the neuron ac
tivation function / employs saturant nonlinearity in the amplitude, 
whereas only a weak nonlinearity or simply a linear transfer func
tion is used in the phase (Hirose 1992a). Input signals x(l) = Xi(l) 
at /-th iteration are transformed by a single neural network process 
to yield output signals x(l + 1) as

where N denotes neuron number. In most associative memories, the 
saturation works only as an amplitude limiter. Therefore, precise 
properties of the activation function / are not significant in the neural 
dynamics.

Iterative neural processing by the recurrent signal flow performs a re
call of a memorized vector. That is to say, a noisy initial input signal 
vector ж(0) goes through the neural network iteratively to converge 
finally at one of the embedded vectors s  ̂ which is most similar to 
the input x(0).

3,2 System Construction
Figure 7 is a schematic illustration of the optical part of a (forward- 
processing) coherent lightwave neural network (Hirose and Kiuchi 
2000). A laser lightwave of angular frequency и is used as the 
information carrier. The optical circuit forms totally parallel self
homodyne interferometers (Hirose and Eckmiller 1996).

Complex-amplitude input signals x = [x,] is fed to spatial light mod
ulators (SLM’s). The SLM’s modulate the amplitudes and the phases

Wji — (3)

(4)
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SLM ’s for generating SLM ’s for neural 
input signal lightbeams connection modulations

Input signals xt Connection weights щ  
''Amplitude Phase4  Transparency Delay 

LEiig. i I o ti Ivv/i I X ji

Figure 7. Schematic construction.

of the lightbeams to generate parallel signal lightwaves. The electric 
field of zth signal light £sig)i can be expressed in amplitude and phase 
terms with time t  as

S sig .i =  \Esigii\exp(i(ujt + ai))
= exp(iut) • Xi (5)

where the phase angle a* expresses delay or advance to the reference 
phase mentioned below. These input signal lightbeams propagate in 
parallel and are incident upon the neural connection SLM’s. Here 
they are modulated according to the transparency \wji\ and the time 
delay Tji = в^/ш of neural connections W  = [wji\ which have been 
given by (3) (Hirose and Eckmiller 1996). The modulated signals 
are written as

Wji • £ s ig,t = \wji\ |£ Sig,i| exp(z (cot + uJTji -f a»)) (6) 

Then they are summed optically to yield output signals expressed as 

Es\g,} = l-^sigjl ехр(г (ujt + Pj))
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— * ^sig.i) CO
i

where the amplitude |^Sigj| and the phase are related to the input 
lightwaves Esig i. The neuron activation function (4) can be imple
mented, for example, by using the saturation characteristics in optical 
amplifiers or optoelectronic transducers. The equation corresponding 
to (4) is written by using a saturation electric-field value E0 as

/(#sigj) = Eo tanh l^sigjl exp (г (cot + 0j))
= ехр(го;£) • yj (8)

This expression is mostly consistent with physical realizations. In 
most neural dynamics, however, precise profile of the nonlinearity 
has less importance. Therefore, in the experiment below, no explicit 
nonlinear processing is introduced for simplicity.

The summed signal lightbeams ESiSj  are mixed with a reference 
lightwave ETef = |£ref| exp(icot). The homodyne process generates 
electrical output currents I  = Ij which are expressed with a response 
coefficient of the detectors R (detector sensitivity) as

Ij = R I £sigj + r̂ef|2
=  R  ( | £ s i g J |2  +  | £ r e f |2  +  2\Esigj\ | S re f| C O S(Щ )  )  ( 9 )

Therefore, in the case that l^sigjl ^  l^refl» or l^sigjl is almost con
stant, the output complex amplitude (except for the dc component) is 
proportional to I-Esigjl cos(ify)-

To obtain both the in- and quadrature- phase components, we em
ploy a time-division phase-diversity method in this experiment. The 
reference lightwave phase фтеf (i.e., Ere{ = |-̂ refI ехр(г (cot + фгеf))) 
is also modulated as 0, 7t/2, 7t, and 37t/2 cyclically in time. Then, the 
difference between the detected signals at 0 and тг yields the in-phase 
value, whereas 7t/2 and 37r/2 the quadrature value. The zero phase is
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chosen by the detected values without the signal modulation. Ac
cordingly both the amplitude and phase information is extracted.

Thus the input complex-amplitude signal vector x  yields an output 
vector I  as a result of the neural processing. In the above expla
nation, a single-layer forward-processing system is taken as an ex
ample. However, more complicated neural circuits can also be con
structed (Hirose 1994). In the following experiment, the output sig
nals I  obtained for x(l) at iteration number I generate electrically 
iterative input signals x(l + 1).

3.3 Experiment
Figure 8(a) shows the experimental setup. A He-Ne laser lightwave 
(0.63/zm) is used as the information carrier. After collimation, the 
lightbeam provides both the signal and reference lightwaves in par
allel. The upper half of the beam is the signal light, and the lower 
one is the reference. They are modulated by an SLM, separated by 
a comer mirror, mixed to generate interference, and detected at a 
CCD camera. The SLM is a parallel-aligned nematic liquid crystal 
type (PAL-SLM, Hamamatsu X6345: 20mm x 20mm area, video in
put signal). It is originally for phase modulation. However, in this 
experiment, half of its SLM surface is combined with a polarizer to 
enable itself to modulate the amplitude.

The SLM surface is divided into eight divisions as shown in Fig.8(b). 
The upper four divisions are used for the following modulations: in
put amplitude generation l-E’sig.zl* input phase generation neural- 
connection transparency modulation \wji\, and neural-connection 
time-delay modulation r^. One of the lower divisions is used for ref
erence phase modulation to realize the time-division phase diversity, 
whereas other three divisions are not in use (i.e., simple mirrors).

The input-signal generating divisions |jE7sigii| and have strips (sub
divisions), each of which corresponds to an input signal (amplitude
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Figure 8. (a) Construction o f the coherent optical associative memory and 
(b) SLM  surface divisions.

or phase value). The neural connection divisions \wji\ and have 
pixels (subdivisions), each of which corresponds to a neural connec
tion weights (transparency or delay value). This mapping realizes the 
neural and homodyne processes in cooperation with the following 
optical circuit.

As shown in Fig.8(b), the signal and reference lightbeams are inci
dent in parallel only on the left two divisions slightly at the skew. 
Then the beams make four round trips between the SLM and a fac
ing plain mirror with a constant displacement horizontally. These
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Figure 9. Experimental setup.

reflections realize the signal light generation and the neural weight
multiplication at the upper divisions, as well as the reference phase
modulation at the lower division for the time-division phase diver
sity.

The neural-processed signal and reference lightbeams are separated 
at the comer mirror, mixed, and summed up by a cylindrical lens to 
be detected at the CCD. The order of the mixing and the summa
tion is also reversed from the explanation ((6) and (9)) only for ex
perimental simplicity. The detected interference is fed to a personal
computer where the CCD pixel data are averaged in each neuron re
gion.

Figure 9 is a photograph of the experimental setup. Associative mem
ories require a recurrent structure which feeds the output signals to 
the neural inputs. In the present system, the output signals obtained 
in the personal computer generate a recurrent input signal vector and 
controls the the SLM input-signal divisions. The phase modulation 
signal required for the time-division phase diversity is also generated 
by the personal computer.

The maximum neural connection number is about 64 in this setup. 
It is limited by the available SLM surface area and the lightwave
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Figure 10. Time evolution o f normalized inner products o f memorized sM 
and output x  vectors for various initial input signals versus iteration number
I.

diffraction. The corresponding neuron number is \/64 = 8. The scale 
is slightly too small to employ a numerical analysis using the sta
tistical neurodynamics. However, we take a general and empirical 
result of the statistical theory as a yardstick. The memory capacity 
of complex-valued associative memories is theoretically calculated 
as 7r2/8 times as large as that of real-valued memories (Noest 1988). 
Non-sparse real memories have generally a capacity of 0.15 times the 
number of neurons. Then the capacity of the present system is esti
mated around 1.5. Therefore the number of the memorized vectors is 
chosen two, i.e., Si and its inverse s2 = —S\ which is automatically 
memorized in this case.

Figure 10 shows the recalling-process evolution versus iteration 
number I when various initial input vectors are fed to the associa
tive memory. The normalized inner product of the signal vector x(l) 
and the embedded vector s i is shown as the similarity. It should be 
unity when the recalling process is successfully completed. The at
tracting basin seems to be a region where the inner product is larger 
than ~0.7 in this case. Because of the scale smallness, a quantitative 
comparison with the mean field approximation theory is not avail
able. However, a similar result is obtained by a programmed numer
ical simulation.
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4 Extension to a Carrier-Frequency 
Controllable System

4.1 Basic Idea
Figure 11 presents the basic idea of the coherent associative mem
ory that has a carrier-frequency dependent behavior (Kawata and 
Hirose 2003). The coherent network behavior can potentially be 
carrier-frequency sensitive. When the system has a carrier frequency
fi = ^i/27r, it constructs a metric in the information space. If 
a signal vector xi(ui) at ил is fed to the system, the system re
calls the nearest attractor S i(^ i). For X2(ui), it recalls S2(u;i) in the 
same way. On the other hand, when the system carrier frequency is 
f 2 = u>2/27t, the metric is changed and the dynamics is varied. That 
is, for example, #2(^2) approaches si(u>2) because a?2(u;2) *s near t0 
s 2(u;2) in this metric, while xi(u2) may be far from all the attractors 
and trapped into a local minimum.

The above recalling story is only an example of the behavior of 
the frequency-dependent associative memory. The dynamics is de
termined by a learning process which is also frequency dependent. 
The details are presented in the follows.

4.2 Complex Hebbian Learning Rule

The weighting matrix value Wji = \wji\ exp(iuTji) is determined by 
a Hebbian learning rule to construct an associative memory network. 
The conventional Hebbian rule changes the weight according to the 
product of signals presented (or obtained) at the input and output 
layers, x  and y , respectively. We extend the rule into a frequency- 
sensitive complex-valued version. The complex-valued Hebbian rule 
is expressed in terms of the amplitude \wji\ and the delay time Tji of
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Figure 11. Conceptual illustration o f the carrier-frequency dependent be
havior o f the associative memory.

the weight Wji for an input signal x{ = \xi\ exp (га*) and an output 
supervisor yj = |y; | ехр(г^) as (Hirose et al. 2001)

where К  denotes learning gain. The process (10) and (11) is repeated 
sequentially for various input-output signal sets.

4.3 Optical Implementation
Figure 12 shows the construction of the system. Frequency / = 
tc;/27r of the light source (laser diode: LD #1) can be controlled 
by choosing the injection current appropriately. The light beam is 
divided into halves corresponding to signal and reference waves. 
The former is modulated by an SLM#1 yielding a signal vector

= —\wji\ + K\yj\\xi\cos(Pj — a< — arg(u^i)) (10)

(10

* ( 0  =  [*<(/)]•
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Figure 12. Construction o f the carrier-frequency-controllable coherent op
tical associative memory.

SLM#1
(a)

SLM#2
(b)

Figure 13. Signal assignment on SLMs and CCD surfaces in the case o f  
3 neurons and 9 synapses as an example: (a) SLM#1, (b) SLM#2 and (c) 
CCD.

The following SLM#2 multiplies the signal, which is incident on the 
read surface, by the neural weights W  = [wji] optically. That is, 
the write surface of SLM#2 is illuminated by LD#2 with an optical 
weighting mask. At the both SLMs, only the phase (or, actually, time 
delay Tji) is modulated. The amplitude |х*| and \wji\ is always unity 
in this experiment for simplicity.

Figures 13 (a) and (b) show the use of the SLM modulation surfaces 
(when the numbers of the neurons and the synapses are 3 and 32 = 9, 
respectively, as an example). Both of them modulate the lightwave 
phase pixelwise by changing their permittivity which is equivalent to 
delay time.
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Figure 14. The frequency-dependent recall and the relation between delay 
time and phase.

Figure 14 illustrates the carrier-frequency-dependent recall process 
and the relation between delay time and phase. The weights ex
pressed by the delay time rji are determined at certain values by 
learning, the phase values coTji are changed by the frequency modu
lation. Therefore, even for an identical input and the delay, the sys
tem recalls a different output pattem depending on the frequency. 
That is to say, the dynamics is modulated by the change of the car
rier frequency value.

4.4 Frequency Sensitive Learning
In Fig. 15, the difference between the optical path lengths of the sig
nal and the reference AL = Ls\g — Lre[ determines the dependence 
of the homodyne interference on the lightwave earner frequency u. 
The fringe at the screen changes cyclically against the light carrier 
frequency и with a frequency period of с/AL where с denotes the 
light speed. The initial value of the time delay т ^ ьъ of a weighting
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Figure 15. (a) Optical path difference between the signal path and the ref
erence path and (b) an equivalent diagram.

matrix before the frequency-sensitive Hebbian learning is expressed 
with a basis arbitrary frequency (arbitrary value) uq as

Hebb
rjiO

_  0o AL
UJq С

(12)

where 0O denotes a initial phase value in the range of [0 ,2тг) chosen 
at random. According to the theory (Hirose and Eckmiller 1996), a 
large time delay has a large influence on the phase change even for 
a small frequency variation. In our setup, AL/c works as the large 
time delay to realize an appropriate frequency sensitivity.

The weighting matrix is adjusted in the PC according to a set of 
desired attractors where /x and v are indices showing attractor 
number and intended (recalling) frequency number, respectively. As 
we provide both the input and output terminals of the memory with 
attractors s^v at a frequency the vector s^v is embedded in the 
weighting matrix associated with the frequency value.

4.5 SLM Modulation and Detected Phase Value
Following are the equations expressing the relation between delay 
time and phase of the weighting matrix when we take into consider
ation the difference of the optical path lengths. The synaptic phase 
modulation value в^и^2(ujq) at SLM#2 is expressed as

е Т * 2Ы  EE CO0Tf ™ * 2 =  W0 ( r ” ebb - (13)
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where rj*LM#2 ancj r Hebb denote the SLM delay time corresponding
to ^ LM̂ 2(o;o) and the total synaptic delay time of the weight gener
ated by the learning process (11), respectively. The equivalent phase 
of the weights ф^{/) is expressed as

Ы » )  =

-  (14)Шо с

where u> is the carrier frequency used for the phase detection. When 
the frequency deviates from the intended recalling frequency i.e., 
v  = + Аш, the equivalent synaptic phase (ши + Ли) is calcu
lated as

М ь ъ  +  Ь » ) = —!— ——0j,LM#2(uo) + {<*>1/ + Aw)——
U)q J С

-  (15)
Uo с

When Aco <  uj0 in (15), the second term on the right-hand side is al
most zero because Аш/u0 = 0. However, the last term A i n f l u 
ences the phase shift in proportion to A и and AL, resulting in mod
ulation of the recalling behavior. Consequently, the recalling process 
is successful only when the frequency deviation Au  is related to the 
optical path-length difference AL as

A u—  = 2птг (16)
С

where n stands for integer.

4.6 Experiment
Figure 16 shows the experimental setup. In Fig. 12, the frequency 
of the light source LD#1 (SHARP LT051PS, wavelength 635[nm]
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Figure 16. Experimental setup o f the carrier-frequency dependent system.

/о = 472[THz]) is changed by injection current control. The fre
quency sensitivity is 10.5[GHz/mA]. The temperature is stabilized 
electrically. The frequency controllability (resolution) is better than 
0.016[GHz]. SLM#1 (Hamamatsu Photonics X6345) is addressed 
with a video input, while SLM#2 (X7665) is with a spatially parallel 
optical input.

The optical path-length difference is about AL=6.8[mm], resulting 
in the frequency period of с/AL = 44.1 [GHz]. Numbers of neurons 
and synaptic connections are 9 and 81, respectively. We select four 
vectors s u , s 1>2, s 2,i and s 2)2 (where = S i)2 , s2,i = s 2,2 
and s = s îujy)) to be memorized for two carrier frequencies 
a>„(i/=l,2). We intend that s^x be recalled at and s 2j2 at oj2y respec
tively. The amplitudes of all the elements of both of them are unity. 
The frequencies are chosen as = u0 and cj2 = cj0 + (kc)/(2 AL) 
so that the network behavior becomes independent.

We generate input vectors asu (= x^2) and ж2д(= x 2i2) by adding 
phase noise whose distribution is homogeneous within 30 % range
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(a) (b)

Figure 17. Experimental results o f recalling process showing evolutions o f 
the inner products o f embedded- and signal-vectors R e ^ s ^ ) *  • x] versus 
iteration number for different carrier frequencies.

of ±7r. The elements’ amplitudes of both the input vectors are unity 
again. The learning process generates the weights Wji on a PC. First, 
we initialize the delays Tji by choosing the initial phase 0O in (12) 
at random. Then the learning process based on (11) is iterated 1000 
times, with which the weights settle at a sufficiently steady state. The 
learning gain К  is 0.5.

Figure 17 shows the recalling result for noisy input vectors x X}\ (near 
to 5i i) and ж2,2 (near to s2,2) when one of the carrier frequencies 

or lu2 is chosen. In the case of cji shown in Fig. 17(a), the inner 
product Re[(su )* • Жхд] converges almost at unity, which means 
that the system recalls the corresponding vector s^i. On the other 
hand, the inner product Re[(s2,i)* * #2,1] shows oscillatory behavior, 
resulting in a failure in the recalling process of $2,1- In Fig. 17(b), 
contrarily, the system recalls s2)2, while it does not Si)2. We actually 
carried out experiments many times for various input vectors. When 
the inputs are somewhat near to one of the attractors, we typically 
observe similar results. On the other hand, when they are far from the 
attractors, then the overlaps converge at around zero. Accordingly, 
it is found that the experiments demonstrate a frequency-dependent 
behavior.
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5 Conclusion
We have demonstrated the coherent optical associative memory 
whose behavior can be changed by the control of carrier frequency. 
The system has a homodyne construction where the signal and the 
reference optical path lengths are slightly different from each other. 
We have introduced a carrier-frequency dependent complex-valued 
Hebbian rule to realize the learning process. The result leads to a 
future frequency-domain parallelism in the optical neural networks.
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Complex-Valued 
Neural Networks

Theories and Applications

In recent years, complex-valued neural 
networks have widened the scope of 
application in optoelectronics, imaging, 
remote sensing, quantum neural devices 
and systems, spatiotemporal analysis of 
physiological neural systems, and artificial 
neural information processing. In this 
first-ever book on complex-valued neural 
networks, the most active scientists at the 
forefront of the field describe theories 
and applications from various points of 
view to provide academic and industrial 
researchers w ith a com prehensive 
understanding of the fundamentals, 
features and prospects of the powerful 
complex-valued networks.
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