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Preface

In the post-genomic era, we now have an unprecedented view of the 
genome of many species as well as new views of how biological processes 
occur. The availability of genomic and genome-scale information is 
changing the way biologists work and revolutionizing the way biology and 
medicine will be explored in the future.

To fully realize the value of the data and gain a full understanding of the 
genome and the proteome, advanced computational tools and techniques are 
needed to identify the biologically relevant features in the sequences and to 
provide an insight into their structure and function. Systematic development 
and application of computing systems are also needed for analyzing data to 
make novel observations about biological processes and to model biological 
systems with high accuracy. A large amount of data must be stored, 
analyzed, and made widely available to the scientific community.

This book contains articles written by experts on a wide range of topics 
that are associated with the analysis and management of biological 
information at the molecular level. It contains chapters on RNA and protein 
structure analysis, DNA computing, sequence mapping, genome 
comparison, gene expression data mining, metabolic network modeling, and 
phyloinformatics. It is addressed to academic and industrial researchers, 
graduate students, and practitioners interested in the computational aspects 
of molecular biology. The highly interdisciplinary nature of research in this 
area is providing a fruitful ground where a variety of ideas and methods 
come together. This volume is a sample of some of the major techniques 
currently in use in this cross-cutting field.

The book is the result of a two-year effort. We thank the contributing 
authors for meeting the stringent deadlines and for helping to create the 
index entries at the end of the book. Special thanks go to Hansong Sara Liu 
for assisting us with Microsoft Word software and other issues in the 
preparation of the camera-ready copy of this book. Finally, we'would like to 
thank Yubing Zhai and Ian Seldrup of World Scientific Publishers for their 
assistance.
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Chapter 1

Exploring RNA Intermediate Conformations with 

the Massively Parallel Genetic Algorithm

Bruce A. Shapiro, David Bengali, Wojciech Kasprzak 
and Jin Chu Wu

1.1 Introduction

The bioinformatics revolution has led to an exponential increase in the 
availability of data on gene location, expression, and function for thousands 
of species. In the midst of this eruption of data, however, time and resources 
are often lacking for the analysis of information beyond that encoded by 
sequence alone. While proteins are the traditional candidates for detailed 
structural analysis, RNA secondary and tertiary structural studies remain 
crucial to the understanding of complex biological systems. The RNA 
structure-function relationship list is quite long. Structure and structural 
transitions are important in post-transcriptional regulation of gene expression, 
intermolecular interaction and dimerization, splice site recognition, and 
ribosomal frame-shifting to name a few contexts. The ribozymes constitute a 
class of RNA molecules whose sequence exists primarily to define their 
structural and enzyme-like properties. The RNA folding problem clearly is a 
significant venue for the use of computational approaches. As with most such
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applications of high-powered computing, the problem of RNA structure 
determination is a difficult one. The number of secondary structures possible 
given a particular sequence varies on the order of 1.8" for a sequence of n 
nucleotides. Traditional approaches to the problem are numerous and varied. 
A wide range of biochemical and biophysical assays may be used to examine 
RNA secondary and tertiary structure. These assays generally search 
experimentally for the consequences of sequence and structure within a 
molecule, probing for accessibility to enzymes, calculating optical 
absorbency, or measuring electrophoretic migration rates over a temperature 
gradient. A given structure generally is verified through phylogenetic 
analyses, searching among members of a family for compensatory base 
changes that would maintain base-pairedness in equivalent regions. All of 
this fairly direct data often is supported, or at times even replaced, by 
theoretical structure calculations. The most familiar variety of these are 
derived from dynamic programming algorithms (DPA) such as MFOLD 
[Zuker, 1989], and which search for a molecule’s thermodynamically optimal 
structure, as well as a series of suboptimal structures. When the object is 
secondary structure, that is, a structure that can be defined as a list of base- 
paired and single-stranded regions (stems and loops), thermodynamic 
calculations are straightforward. Stems tend to stabilize a structure and most 
loops tend to destabilize it, and the energies of these stems and loops are 
additive. Thus, a search for biologically relevant structures can be driven by 
the assumption that a molecule will tend to fold spontaneously into structures 
that minimize its global Gibbs free energy with respect to the unstructured 
state. A recent version of the dynamic programming approach to energy 
minimization has been able to include H-type pseudoknots and some basic 
tertiary structure energy contributions at the cost of moving the algorithm to 
0(/i6) time [Rivas and Eddy, 1999]. By removing pseudoknot considerations 
and shifting the more precise tertiary structure energy calculations for 
multibranch loops to a post-processing reordering phase, this algorithm runs 
in 0(/i3) time [Mathews et al., 1999]. Searching experimentally and 
theoretically for these equilibrium structures, either optimal or suboptimal, 
however, is often insufficient. The biologically functional state of a given 
molecule may not be the optimal state, and how, then, does one determine the 
relevant suboptimal structure? A structured RNA molecule, moreover, is not 
a static object. A molecule may pass through a variety of active and inactive 
states over its lifetime, due to the kinetics of folding, to the simultaneity of 
folding with transcription, or to interactions with extra-molecular factors. A 
molecule may become trapped in a local energy minimum with a high
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activation energy barrier to surmount before reaching a more stable state. 
How can one begin to approach the analysis of such a moving target, a target 
with a vast and highly combinatorial n-dimensional structure/energy 
landscape over which it may travel? Methods developed using a massively 
parallel Genetic Algorithm (GA) optimization approach have proven highly 
amenable to exploration of such RNA secondary structure folding pathways. 
This algorithm was designed using the same basic considerations as the 
dynamic programming algorithm; that is, with thermodynamic calculations to 
optimize the global free energy of an RNA molecule. As such, it is 
reasonably successful at efficiently finding optimal or near-optimal 
equilibrium structures, including pseudoknots, given a particular sequence. 
The properties of this massively parallel, iterated, stochastic algorithm, 
however, have revealed themselves to be ideally suited to the problem of 
predicting the dynamic folding process of a given molecule as well. In 
addition, the algorithm allows for the incorporation of some types of 
experimental data, allowing it both to verify and to predict the outcome of 
experiments under known conditions. The Genetic Algorithm operates on a 
population of thousands of possible solution structures, evolving them toward 
thermodynamic fitness. It may be run multiple times and in multiple phases. 
STRUCTURELAB, an interactive RNA structure analysis workbench, has 
proven indispensable in analyzing the large quantities of data generated by 
such use of the GA. In particular, use of Stem Trace, a STRUCTURELAB 
component for abstract graphical comparison of RNA secondary structures, 
has given great insights into a variety of RNA structural issues, including that 
of folding pathway exploration.

1.2 Algorithmic Implementation

The massively parallel Genetic Algorithm is a member of a class of 
algorithms that use the principles of evolution to optimize a parameter within 
a population of possible solutions. In this case, the parameter is free energy, 
but the optimal structure is not the only consideration. The intermediate 
results within the population and the pathway followed by the algorithm to 
reach its final solution are equally important. Still, the basic operators are as 
one would expect: mutation, selection, and recombination. The basic 
procedure is as follows (details on each step follow in the text):
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1 Generate stem pool
2
3 Fill structures in each Population Element randomly
4
5 while (not converged) {
6 for each (Population Element), execute in parallel {
7 Find neighbors
8 Ranked-select and store two parents from self 

and neighbors
9 Create two empty children

10 Mutate children based on current structure size
11 
12
13 Crossover {
14 for each (stem in parent 1) {
15 Distribute into one of the children
16 }
17 for each (stem in parent 2) {
18 Distribute into one of the children
19 if (stem conflicts)
20 if (probability == true)
21 Try to peel stem to fit 

into structure
22 else
23 Discard stem
24 }
25 }
26
27 Replace self with better child
28 )
29
30 Output intermediate data
31 Calculate z-score and convergence
32 Increment generation
33 }

Population

The population itself is made up of an array of elements, where each 
population element (PE) represents one structure. A structure in this case is 
uniquely defined by a list of base-paired regions, or stems. Thus the 
“chromosome” for a PE is this list of stems, which may be altered by the 
basic GA operators. The population is arranged in a two-dimensional grid, 
where each PE can communicate directly with its eight nearest neighbors (see 
Figure 1). The grid is wrapped toroidally, so that the northern neighbor of a 
PE on the northern “edge” of the array is located on the southern “edge” (the
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Figure 1. Illustration of the eight-way toroidally-wrapped connected grid of 
population elements (PEs) used to control the massively parallel Genetic Algorithm. 
Each element communicates with its nearest neighbors and evolves an RNA 
secondary structure in parallel. This representation is used on SIMD or MIMD 
architectures. The red and blue PEs represent the elements chosen as parents. The 
yellow represents the PE that will contain the newly generated chosen child structure 
for this neighborhood.

same holds true for the eastern and western “edges”). The location of an edge 
is therefore arbitrary, and has no meaning to the population itself, which is 
continuous. The massive parallelism of the algorithm refers to the fact that 
this population contains thousands or hundreds of thousands of elements, all
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evolving in parallel. The original implementation of the algorithm existed for 
the Single Instruction Multiple Data (SIMD) architecture MasPar MP2, on 
which each PE was represented by a single concurrently operating physical 
processor [Shapiro and Navetta, 1994]. Population sizes were limited then to 
a 16K (16,384) maximum. The current implementation of the algorithm 
utilizes the Multiple Instruction Multiple Data (MIMD) architecture of 
systems such as the CRAY/SGI Origin 2000 and T3E [Shapiro et al., 2001a]. 
Under this implementation, a small number of physical processors run in 
parallel, each operating sequentially on its own subset of the population. The 
PEs in this case thus are virtual processors. The full logical layout described 
above is implemented by interprocessor communication via shared memory 
(shmem) library calls. Simple formulas convert between (physical processor, 
virtual processor) and (x, y) ordered pairs, and shmem synchronization 
barriers at various points within the code keep the population consistent from 
generation to generation. In actuality, the algorithm could run on any number 
(power of 2) of physical processors on any machine that implements the 
shmem library functions. Thus, the population size has no theoretical limit. It 
is difficult to define running time formulaically for this type of stochastic 
algorithm, especially when sequence-specific properties can have a large 
impact on the dynamic environment within the population. However, some 
empirical results can give an idea of the scalability of the algorithm and its 
population. (For more detailed results, see [Shapiro et al., 2001a]). When the 
size of the population is varied while the number of physical processors is 
kept constant, the algorithm’s running time appears to vary almost precisely 
linearly with respect to the ratio of virtual processors per physical processor. 
When the workload is varied by keeping population size constant while 
varying the number of physical processors, however, slight non-linearities 
arise due to interprocessor communication. A typical RNA sequence may be 
subjected to, say, twenty runs at a given population size, but we have found 
that significant information can be generated by comparing results at various 
population sizes as well, as described later.

Basic Algorithm

As the algorithm begins, a pool is generated containing all possible stems 
given a particular sequence. These stems may be either “fully zippered” or 
peeled back by a few base pairs. In addition, a secondary pool of 
“pseudostems” is generated, containing multiple-stern motifs that would be
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likely to occur simultaneously during the folding of a real molecule. 
Pseudostems are important in situations where a large rearrangement of the 
molecule must take place. If several correlated events must occur to facilitate 
this transformation, the probability of having all of the required stems present 
at one time may be too low to allow the transition. In current simulations, 
these pseudostem motifs have been limited to pairs of stems flanking a small 
symmetric internal loop across which coaxial stacking of helices may occur 
in reality, facilitating stem chain growth in natural systems. Both pools may 
be augmented by user-defined stems and motifs, or edited to delete particular 
interactions. On population initialization, each PE is randomly filled from 
these pools to generate diverse, random, and typically sparse structures 
throughout the population.

Once the population has been initialized, the iterated algorithm proper 
begins at generation 1. At each generation, the selection operator chooses and 
stores two parent structures for each PE location. Each PE generates a list 
containing itself and its eight nearest neighbors in the two-dimensional 
population layout. Conversion formulas are used to locate the virtual 
processor addresses corresponding to the neighbors in each direction from the 
central PE. This generated list then is ordered with respect to fitness, with the 
most thermodynamically stable structure in the highest position. A ranked 
rule biases probabilistic selection toward the head of the list for each parent. 
After the selection of parents, each PE generates two empty child structures, 
and mutations insert random stems into these structures from the stem pool. 
Longer sequences (with larger stem pools) are given higher mutation rates. 
Note that a pseudostem’s component stems are treated independently except 
at the time of selection from the stem pool. If a stem chosen for mutation into 
a growing structure conflicts with a stem already in that structure, a 
probability exists that it will not be discarded, and will instead be peeled back 
to fit into the structure. This mechanism of peelback proved quite necessary 
to many simulations within the GA. The GA’s basic unit of operation is a 
stem, as the algorithm inserts and deletes entire helical regions, but various 
natural structures contain helical regions that are much less than fully 
“zippered.” This conflict-driven peelback mechanism, however, gives the GA 
the ability to increase its resolution to the level of single base-pairs of 
difference between structures. Increasing resolution at the time of stem 
insertion prevents the need to flood the stem pool itself with the non-relevant 
“noise” that would be introduced by including every possible stem at every 
possible degree of peelback. The mutation rate itself is not constant for the 
duration of the run. Instead, it follows an annealing curve that decreases the
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rate of mutation within each PE as the number of stems in that PE’s structure 
grows [Shapiro and Wu, 1996]. Thus, the distribution of energy values across 
all PE’s will gradually converge and the population will reach a consensus 
structure. A score measured by calculating the weighted standard deviation, 
i.e., over a limited window of past generations, of the average population- 
wide energy is used to determine the stop-point for the algorithm. The 
recombination event is implemented via a uniform crossover operation. First, 
after mutation is complete, one parent randomly distributes its stems into 
both child structures. Then, the second parent attempts to place its stems into 
both child structures. If at any point, a stem being added to one of the 
children conflicts with a previously inserted stem, there is again a probability 
that the conflict-peelback described above will occur. After each member of 
the population has completed the recombination phase, the structure in each 
PE is replaced by the better child structure. The selection, mutation, and 
crossover operations occur repeatedly until the score described above drops 
below a specified value, at which point the algorithm halts and reports a 
solution structure.

Additional Features

A number of additional features augment this basic behavior of the GA. 
H-type pseudoknots, for example, may be incorporated into structures with a 
minimal performance reduction of the algorithm. Pseudoknot stems are 
simply maintained in a separate list from the primary structure stems, and 
both lists are consulted for crossover operations and energy calculations. An 
H-type pseudoknot consists of a hairpin loop that pairs directly to the bases at 
the foot of its own stem and satisfies specific constraints [Shapiro and Wu,
1997]. Thus, either stem in the pair can be in either the pseudoknot list or the 
primary stem list, as either stem is valid independently. The GA also can 
simulate the effects of folding during transcription, or sequential folding. In 
this mode, the GA simply restricts the valid stem pool to those stems that fit 
within the sequence length at a given generation. The sequence is lengthened 
gradually, generation by generation at a rate defined by adjustable 
parameters. Also, a “Boltzmann Filter” may be activated which enhances the 
Boltzmann-like characteristics of the population [Wu and Shapiro, 1999]. 
Additionally, the algorithm may consider the stabilization of particular 
interactions by external factors not accounted for in the energy rules. If 
experimental evidence indicates that protein or ion stabilization, for example, 
affects a certain stem, that stem can be labeled within the algorithm as a
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“sticky stem.” If a parent happens to contain this stem once selected, the 
parent is guaranteed to pass that stem on to both of its children. Thus, once 
one of these stems occurs naturally within the population, it can be 
encouraged to “stick,” if it is favorable enough. Another method of more 
closely modeling natural conditions within the GA comes with the 
algorithm’s multi-phase features. In natural systems, a molecule may pass 
through several phases during its lifetime, existing under different conditions 
in each. Within the algorithm, a solution structure from one phase can be 
seeded into a percentage of PE’s during the initialization of a following 
phase, perhaps to be subjected to processing reactions or some other change 
of conditions. When running the GA in this manner, the non-seeded portion 
of the population is filled to a higher degree during the initialization phase, so 
that the random structures have a chance of competing with and providing 
alternatives for the relatively stable seeded structures. For example, one or 
two attempts may be made to insert stems into random structures during a 
regular run, while 2000 attempts may be made on a phase 2 run. Of course, 
many of the attempted insertions cannot be added due to conflicts, but 
keeping the number this high ensures that the random structures are as filled 
and stable as possible.

%
1.3 Data Generation and Analysis

Exemplary Biological Systems

Two biological systems happen to serve as particularly illustrative 
example cases for these methods. Potato Spindle Tuber Viroid (PSTVd) is a 
type-B viroid, one of several small, circular, unencapsidated RNA molecules 
that code for no proteins and infect a variety of plants, depending on host 
enzymes for replication. For reviews, see [Gross et al., 1978; Diener, 1979a; 
Diener, 1979b; Keese et al., 1988; Riesner et al., 1990; Flores et al., 1998; 
Diener, 1999]. Monomeric PSTVd has long been known to be able to form 
two very different structures in vitro. One of these is the native state, a highly 
stable, base-paired rodlike conformation (Figure 2a) [Riesner, 1979]. The 
other is a branched metastable state, containing three separate unusually 
stable regions: HPI, HPII, and НРШ (Figure 2b). The full rolling circle 
replication cycle of PSTVd ( Figure 3 )  [Branch and Robertson, 1984;
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(b)

Figure 2. Depiction of the RNA secondary structures representing the fully folded 
monomeric PSTVd viroid 2a, and the metastable monomeric structure 2b. Both of 
these structures were predicted by the GA and have biological supporting evidence 
for their existence. The so-called HPI, HPII and HPIII unusually stable regions are 
also shown.
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Figure 3. Depiction of the rolling circle model for the PSTVd life cycle. In stage I 
multimeric negative strand copies of the plus strand monmeric circular structure are 
generated. In stage II multimeric plus strands are produced. This is followed by stage 
III cleavage into monomeric linear structures which then form the plus strand 
monomeric circles.

Ishikawa et al., 1984] involves the transcription of this circular monomer (+ 
strand) to a linear, multimeric (- strand) template. This template is then 
transcribed to multimeric (+ strand) copies, which are subsequently cleaved 
and ligated to monomeric circles. Experiments with both monomeric and 
dimeric clones of this molecule have demonstrated the potential for a number 
of structural transitions. The function of the metastable structures has been 
speculated upon at length, but the structure shown to be an active substrate 
for the cleavage reaction more closely resembles the rod-like conformation, 
with the addition of some unstable short-range interactions, which are 
stabilized by host factors.

The host-killing/suppression-of-killing (hok/sok) mechanism of E. Coli is 
a fairly complex system, meant to maintain plasmid copy number [Gerdes et
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al., 1997]. The hok gene itself codes for a protein that will kill the cell if 
synthesized. In order for translation to occur, the hok mRNA must fold into a 
specific active conformation (Figure 4), including a translational activating 
interaction, and proper positioning of the Shine-Dalgarno elements of the two 
proteins for which the message codes, i.e., hok, and its regulator, mok 
(modulation of killing) [Franch and Gerdes, 1996]. This active conformation 
also contains a specific substructure that serves as a target for sok 
(suppression of killing) molecules. The plasmid that codes for hok and mok 
also codes for sok, a small antisense RNA. If the plasmid is present in 
sufficient copy number, sok is transcribed, and it binds to hok, causing 
degradation by RNase HI and saving the cell [Gerdes et al., 1992]. If the 
plasmid is not present in sufficient numbers, the killer protein is translated, 
and the faulty cell is prevented from replicating. Mechanisms must be in 
place, however, to prevent degradation of the pool of hok mRNA before 
replication; therefore these mechanisms must prevent binding of sok. This 
requires, however, that additional mechanisms prevent premature translation 
of the killer protein. The problem is compounded by the fact that hok mRNA 
folds during transcription, and thus the highly stable translational activating 
interaction can form before the antisense target region is even 
synthesized.Various studies have determined that, during transcription, the 
molecule is likely held in an inactive state (both non-translatable and non- 
sok-binding) by a metastable structure at its 5’ end (Figure 5) [Gultyaev et 
al., 1997; Nagel et al., 1999]. Upon sequence completion, a long-range 5’-3* 
interaction locks the molecule into an inactive state (Figure 6) [Franch and 
Gerdes, 1996]. An active pool is slowly and continuously generated, 
however, by exonucleolytic processing at the 3’ end [Franch et al., 1997]. 
This processing truncates 30-40 nucleotides from the molecule, destroying 
the 5’-3’ interaction and triggering a molecular rearrangement into the active 
state (both translatable and sok-binding) (Figure 4).

Population Dynamics and Interactive Visualization

While the GA is meant to study a dynamic, complex system, it happens to 
be quite such a system itself. Within the GA, there exists a lively arena of 
structural competition, statistical trends, and unexpected turns as the 
population explores the landscape defined by the particular RNA sequence in



Exploring RNA Intermediate Conformations 13

so к

Figure 4. Representation of the secondary structure of the “active” conformation for 
the hok/sok plasmid RNA. This structure is produced during removal of several bases 
from the “inactive” structure’s 3’ end (see Figure 6) causing refolding of the 
molecule. Structures of particular importance are labeled. These include the sok 
target region where a small RNA will bind causing digestion of the RNA if the 
plasmid copy number is high enough. Also visible are the Shine-Dalgarno regions 
which have to be in their proper conformations for the hok killer protein to be 
synthesized if the plasmid copy number is too low.

use. It is important to find ways in which to monitor the progress of the 
population, and to understand its behavior in order to extrapolate from this 
environment into the reality of RNA folding pathways. The stochastic nature 
of the algorithm allows the PE’s to move both uphill and downhill on the 
structure/energy landscape. The limited (nearest-neighbor) communication 
range allows different decisions to be made in various regions of the 
population, letting different groups of PE’s explore different portions of this 
landscape and to discover information that might be passed over otherwise. 
Thus, at any instant during a particular run, there will be one or more distinct 
subpopulations present within the population as a whole. Each subpopulation 
consists of one or more contiguous regions with similar structures in each of
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Figure 5. The early stages of the folding process of the hok/sok RNA. The temporary 
enforcement of the metastable stems shown here permit the structure to remain in an 
inactive state while the molecule is being synthesized to its full size. This is 
necessary to ensure that both premature degradation and premature synthesis of the 
killer protein are inhibited.

its PE’s. There are various methods available to analyze the content and 
behavior of these subpopulations. The most direct view, however, giving at 
least a qualitative sense of algorithmic dynamics, is simply to look at them. 
The GA population may be visualized graphically in real time via several 
color-coded maps and associated histograms. These maps present displays of 
relative fitness, stem presence, and pseudoknot presence, and can provide 
information on the contents of a given PE at the click of a mouse. Figure 7 
shows a snapshot of a fitness map of the population at generation 191 for a 
simulation of monomeric PSTVd at a population size of 16K. Although the 
molecule does not tend to fold as a monomer during the natural replication 
cycle, much experimental data is available for this particular molecular type, 
and the monomer provides for more elegant demonstration of some methods 
than the larger dimeric molecule. Please see [Shapiro et al., 2001c] for a 
more detailed discussion of the dimeric PSTVd folding process.
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Figure 6. Representation of the secondary structure of the “inactive” conformation 
for the hok/sok plasmid RNA. This structure is produced upon completion of the 
synthesis of the entire RNA. Structures of particular importance are labeled. These 
include the sequestered Shine-Dalgamo regions of the mok and hok proteins as well 
as the absence of the sok binding region. A base paired region that helps retain this 
inactive conformation forms between tac and fbi.

As the evolution process continues, subpopulations will expand and 
contract, covering various ranges within the 2-D layout. In the particular 
generation shown in Figure 7, a shrinking island containing a branched 
metastable structure is visible as the subpopulation of lowest fitness (area A). 
This subpopulation once was dominant during this run, and, as additional 
evidence will demonstrate, can be identified as the GA’s solution structure 
for the PSTVd metastable state (see Figure 2b and the structure containing 
the three stems HPI, HPII, and НРШ in Figure 8C). The current dominant 
subpopulation is an intermediate structure generated by the GA. It is rodlike 
in the left-hand region, but contains a cruciform structure in the right-hand, or 
T2 domain (see Figure 7, area B, and Figure 8E). A small nucleation of PE’s 
with yet lower energy (higher fitness) can be seen forming in the upper right 
hand comer (Figure 7, area C). The structure in this subpopulation is the
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Figure 7. Fitness map depicting 16K population elements from generation 191 of the 
GA running the monomeric form of PSTVd. Each color coded pixel represents a 
fitness value of a particular structure. In this case blue represents poorer fitness than 
purple. The regions representing different structures are labeled in the image and are 
described in detail in the text.

native state, and will eventually subsume the rest of the population. When 
two structurally different subpopulations interact, the PE’s in the border 
between the two must decide between two states. A transition from a less- 
stable local minimum to a more stable local minimum requires partial 
unfolding to accommodate new interactions. In a natural system, this would
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Figure 8. Selected frames, ordered left to right, top to bottom, from a GA run of the 
PSTVd monomer from the structures generated in a particular PE. Seen are the 
changing fitness maps for the entire population (in the upper left comer of each 
frame— red meaning poor fitness, purple good fitness); the changing depiction of a 
current structure in the chosen PE (in the upper right corner of each frame); and a 
trace map for the three important stems, in the metastable structure, that form the 
regions HPI, HPII and HPIII (shown in the lower right comer of each frame). These 
stems show their isolated existence, in the trace map, by the depiction of a particular 
color. The existence of more than one of these stems in a PE is indicated by a 
grayscale. The existence of all three stems in a PE is depicted by white. The absence 
of these stems is depicted by black. These stems are also highlighted in the structure 
drawings shown.
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constitute the crossing of an activation energy barrier on the landscape. 
Within the GA, just such an event can be seen in the interaction between the 
metastable state and the cruciform state (Figure 7, border between areas A 
and B). In the “active border” region between the two subpopulations, a 
region of lower fitness develops as PE’s fill with open intermediate 
structures (Figure 8D) in order to undergo transitions to the more stable state. 
The energy of the structures in this active border region can be used to 
estimate the height of the activation energy barrier. Note that the native state 
subpopulation formed spontaneously within the cruciform population. These 
two states are much more similar to one another, and the activation energy 
barrier is thus much lower, as is visible in the fitness map (Figure 7, border 
between areas В and C). Figure 8 shows six selected frames of a GA run of 
the monomer, showing in somewhat more detail the transitions that occur in 
the fitness maps, trace maps and structures. An even more detailed analysis 
of such transitions, using Stem Trace and STRUCTURELAB, is described in 
later sections. At a first-pass level, subpopulations may be correlated with 
structures by tracing the presence of particular stems within the population 
either numerically, or visually, using a map similar to the fitness map, but 
color-coded based on a list of trace stems provided by the user rather than on 
energy values.

Stem Trace and Structurelab

Stem Trace [Kasprzak and Shapiro, 1999] and the rest of 
STRUCTURELAB [Shapiro and Kasprzak, 1996] have proven indispensable 
in making sense of the complex data sets generated by the GA. Stem Trace 
itself is an abstract graphical plot of an ensemble of RNA (or DNA) 
structures, allowing the user to compare the stems present in a large number 
of structures quickly and informatively. Essentially, Stem Trace builds a plot 
as follows: as each new structure in an ensemble is inserted into the plot, the 
structure is assigned a coordinate along the x-axis. Each stem in that 
structure, uniquely defined by its 5’ start position, 3’ stop position, and length 
(and optionally by its energy), is assigned a position along the у-axis. If the 
stem has been plotted before in a previous structure, it is assigned the same y- 
coordinate as that of the first occurrence. Otherwise, it is assigned the next 
available (integral) у-coordinate. Thus, if a stem appears repeatedly within a 
plotted ensemble of structures, a horizontal band will appear at that y-
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coordinate. All color coding of Stem Trace plots presented in this text is by 
frequency of stem occurrence (Figure 9).

Stem Trace plots may be built from a series of structures consecutively 
reported as intermediates within the GA, from ensembles of structures 
representing the final solutions from multiple runs of the GA, from a set of 
suboptimal DPA solutions, and even from multiple sequences from the same 
family, using sequence alignments to correlate stems from each sequence. 
Depending on the situation, the ordering of stems along the у-axis may vary, 
including, but not limited to, order of appearance, 5’ position, and energy. 
Any Stem Trace plot may be used to generate the associated, complementary, 
Single Strand Trace. In addition, Stem Trace functions as a graphical user 
interface to the data underlying the plot, and to other elements of 
STRUCTURELAB.

STRUCTURELAB as a whole provides a central, integrated interface, 
allowing access from a single workstation to a variety of tools implemented 
on various platforms and running concurrently. Drawing modules allow 2-D 
and 3-D visualization of structures, with automatic and interactive untangling 
and labeling features. Taxonomy tree plots may be used to compare an 
ensemble of structures, as may an interactive version of the familiar 2- 
D dot plots. Sequence and structural motif analysis may be carried out from 
within STRUCTURELAB, as may execution of the GA. For a more 
complete list of STRUCTURELAB features, see [Shapiro and Kasprzak, 
1996].

Single Run Analysis

When one considers a single run of the GA, Stem Trace has the 
advantage of allowing one to take the population data from a potentially 
lengthy series of generations, and compile that data into a single plot. 
Detailed structural analysis of the simulated folding pathway then becomes a 
possibility. Since each x-coordinate in a Stem Trace plot represents one 
structure, the intuitive way in which to build a single run plot is to select one 
representative structure from the population at each generation. A variety of 
choices present themselves at this stage. Using the visualizer, a specific PE 
can be selected as the output point, based on criteria such as its interaction 
with particular subpopulations. Each structure that exists within this PE may 
then be plotted as a stem trace (see Figure 9, single processor data plot). This
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Figure 9. Depiction of two Stem Trace Plots and their correspondences. The lop plot 
traces the progression of structural changes that take place in the PSTVd monomer, 
in a particular PE, over the course of a run of the GA. The generations that indicate 
the formation of three basic monomeric structures, А, В, С are shown. The bottom 
Stem Trace plot essentially shows the same transitions, but is based on the consensus 
structures of the entire population rather than the structures produced in a particular 
PE.

type of plot will provide a quantitative sense of the height of the activation 
energy barriers crossed by this PE as active borders sweep over its location. 
The particular structures plotted during these transitions, however, are 
difficult to analyze for significance, since they do not necessarily represent 
the behavior of the population as a whole. A second option, then, is to utilize 
the histogram of fitness values developed for the population at each
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generation. Selecting the peak in this histogram provides the most frequent 
energy value within the population. Selecting a structure with this specific 
energy value thus provides the majority structure within the population at that 
generation. A histogram peak stem trace therefore effectively plots the 
development of the population’s consensus structure. Consider, for example, 
the histogram peak stem trace shown in Figure 9. This plot was compiled for 
the same monomeric PSTVd run depicted in Figures 7 and 8. There are 
clearly three distinct stages present, each represented by a different set of 
stems. These represent stages in the run during which three different 
subpopulations were dominant. The subpopulations labeled as A, B, and С in 
the time domain in this stem trace correspond directly to the subpopulations 
with the same labels in the space domain in the fitness map in Figure 7. 
Structures in population A are the metastable structures, containing the three 
metastable regions (Figure 2b, and the metastable-like structure in Figure 
8C). structures in population В are the cruciform intermediates (Figure 8E), 
and structures in population С are the native rod (Figure 2a and Figure 8F). 
Note the intermittent appearance of stem bands from structure В within the 
structure A timeframe. This indicates that there was stiff dynamic 
competition between two similarly sized, alternative subpopulations for a 
time, but that structure A gained greater dominance until structure В evolved 
to a high enough fitness to compete more fully. The GA’s results are 
consistent with experimental results demonstrating the ability of the branched 
metastable structure (defined experimentally by the presence of the three 
regions) to undergo a transition to the native rod (easily captured as an 
equilibrium structure). In addition, however, the GA is able to provide a 
complete structure for the metastable state, beyond the three main regions, 
and also to predict an intermediate structure, providing a detailed look at the 
molecule “in action.” (Figure 8).

Multiple Run Analysis

A single run of the GA provides a compressed view of the series of stages 
that leads to a single solution, locating statistically significant structures from 
thousands of PE’s over hundreds of generations. However, the stochastic 
nature of the algorithm means that, like the structures from a single 
processor, the solution from a single run must be compared to a larger set of 
data to determine its statistical significance. The solutions from multiple runs 
of the GA are typically compiled into a single Stem Trace plot in order to
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achieve this goal. A plot of this type puts each solution structure, and its 
component elements, into context, allowing the user to draw conclusions 
about what solutions are the GA’s actual predictions, and what the 
significance of alternative structures may be. It is at this point that further 
compression of data, and therefore further determination of significant trends, 
can be performed. The mechanism for this layer of abstraction from the high 
level of complexity of the root level algorithm comes with the effects of 
population variation.

Multiple Population Size Analysis

As described in [Shapiro et al., 2001a, 2001b and 2001c], variation of the 
size of the population operated on by the GA affects more than just the 
running time of the algorithm. The reason is as follows. Certain structural 
rearrangements are triggered by certain events within the population. In this 
case, an event essentially refers to the appearance of “the right stem in the 
right place at the right time.” The smaller the population is, the more likely it 
is that the population as a whole will converge before a given event takes 
place. This situation is particularly noticeable when the energy/structure 
landscape for a particular sequence contains highly stable local minima with 
high activation energy barriers (i.e., metastable states). Subpopulations 
containing stable structures of this type can spread very rapidly throughout 
the population. If the population is small enough, this subpopulation can 
subsume the entire population before a more stable structure, which may 
occur at a later stage in the folding pathway, has the chance to arise and 
compete. The population becomes “kinetically trapped” behind an activation 
energy barrier. Certain population sizes may be particularly amenable to 
capturing specific states. As the population size is increased toward one of 
these values, the GA more and more deterministically produces the 
associated state as a solution. In this case, determinism is measured by 
comparing various values that measure the diversity within a solution 
ensemble for ensembles at different population sizes. Determinism can be 
estimated visually by comparing Stem Trace plots of these solution 
ensembles. A more deterministic set of runs has less variation in the 
ensemble, so it has a shorter Stem Trace plot with more high frequency 
stems. Note the 4K population size stem trace for monomeric PSTVd in 
Figure 10. The majority of structures at this population size are the 
metastable structure (Figure 2b), identical to that in areas labeled A in
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Figures 7 and 9. As population size is increased the GA can begin to 
surmount the activation energy barrier, and can explore more of the 
landscape, as it moves toward another peak in determinism. This peak 
theoretically represents another, deeper local minimum, that is, a later stage 
in the folding pathway ( note the 128K stem trace in Figure 10). The GA at 
this population size has located the rodlike native state (structure in Figure 
2a, present in area С in Figures 7 and 9).

The practical upshot of this phenomenon is that smaller population sizes 
capture earlier states in the folding pathway and larger population sizes 
capture later states. Therefore, comparing solution structures as population is 
increased will generate a “consensus pathway.” A Stem Trace of histogram 
peak structures over a single run compresses the data from many generations 
into a single plot. Similarly, the Stem Trace of solution structures over 
increasing population sizes compresses the data from many runs into a single 
plot. A population varying series of runs can determine which states are most 
significant to the pathway, and the order in which they occur. A single run 
can give a detailed picture of the full sequence of structures that successively 
gain dominance. And population visualization can provide the full-blown 
detail of how the structures in each PE are transforming. Each level of 
abstraction from the algorithmic processes gives hints about what is 
happening at a deeper level of complexity, and about how significant those 
happenings are to the whole story. The full range of analysis methods must 
be combined, and interpreted in the context of experimental data, to generate 
a complete picture of the folding pathway.

1.4 Biological Application

Below, we present examples of the application of these methods to multi
phase simulation of hok/sok and dimeric PSTVd. For the complete details on 
these results, please consult [Shapiro et a l 2001c].

PSTVd

PSTVd has been long the subject of numerous experiments, quite 
understandably, since it has the potential to form several very different 
structures, and can shift between these states under the appropriate
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2K 4K 8К 16К 32К 64К 128К 
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Figure 10. Depiction of Stem Trace results for the PSTVd monomer for varying 
populations sizes, i.e. 2K, 4K, 8K, 16K, 32K, 64K and 128K. Each population 
column contains the end results of 20 runs of the GA. The height of each column 
reflects the relative diversity of the structures that evolved in each population. The 
shorter the column the more deterministic the results. The levels of determinism are 
also reflected in the persistence (purple bands) of individual stems. The variation in 
the height of the columns is also reflecting the algorithm surmounting activation 
barriers (see text).

conditions. Earlier experiments in the absence of cellular extracts showed 
dimeric PSTVd molecules to assume, at equilibrium, the so-called tri-helical 
structure [Hecker et a l 1988]. This structure consists of two rodlike units 
joined by a perpendicular set of three helices, including two copies of HPI,
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version of this transition. In such secondary phase runs, it is generally 
profitable to build the single run Stem Traces by selecting the best (fittest) 
structure within the population at each generation, rather than the histogram 
peak structure. This procedure follows the refolding seeds rather than the 
noise of the highly randomly filled surrounding population described above. 
Interestingly, the first transition that appeared in this case included HPI, a 
structure whose importance to the replication cycle has been debated. HPI 
appeared able to stabilize quickly the large free-stranded region generated by 
the cleavage reaction. Subsequently, the GA indeed showed formation of the 
Loop-E structure. This structure, which theoretically contains non-canonical 
base pairs, is thought to be stabilized by Mg2+ ions [Gast et al., 1996; 
Baumstark et al., 1997]. In the GA simulation, a small hairpin stem formed in 
the upper-strand portion of Loop-E. This stem could have been an artifact of 
the simulation, but it was able to play the role of Mg2+ in stabilizing the large 
loop. In a third phase, the ligation reaction was simulated by shifting the 5’- 
3’ gap from Loop-E to the left-hand, or T1 domain, which had already 
formed a closed stem-loop. Doing so caused the Loop-E hairpin to unfold 
and open the loop once the strand became continuous.

hok/sok

The host-killing/suppression-of-killing system proved to be quite 
interesting in the context of the GA. One useful property of this system was 
that it could act as a test case for the sequential folding features of the GA. 
While at appropriate population sizes, the GA would indeed find the correct, 
inactive structure for hok mRNA; closer examination of the folding pathway 
revealed that the molecule was passing through an active conformation in 
intermediate stages. The stems identified in [Gultyaev et al.y 1997; Nagel et 
al., 1999] as inactivating metastable structures were indeed forming during 
sequential folding, and were present in nearly 100% of the population. But 
the more stable translational activating (tac) interaction would slowly replace 
them once its nucleotides had been synthesized. In order to assess the 
influence of the metastability of these stems on the folding pathway, we 
enforced it in all structures up to the point in the sequence synthesis at which 
these stems usually began to drop out of the histogram peak subpopulation. 
When enforcement was removed at this point, nothing prevented the more 
stable tac interaction from forming, yet it did not form. The structure 
remained in an inactive conformation until the 5’-3’ interaction could lock in
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the inactive state. Regardless of the pathway, however, the final structure was 
always the same. That is, the molecule would arrive in the identical inactive 
state regardless of whether it did or did not pass through an intermediate 
active state. Thus, the GA demonstrates the importance of intermediate stage 
interactions, even when they have no influence on the native state 
equilibrium structure.

The central multibranch junction in this molecule was a rather interesting 
substructure in and of itself. In the first place, it contained an unusually large 
number of stems that had to be peeled back to quite a large degree in order to 
accommodate one another. In fact, it was this molecule that demonstrated the 
need for the conflict-driven peelback method within the GA. This method 
was required to reach the correct inactive structure within the simulation. In 
addition, the correct structure for this junction was by no means optimal. One 
of the branches, labeled as a control region, in Figure 6, was required to 
maintain this suboptimal, inactive structure. Without this branch, the 
molecule was approximately 3 kcal more stable, but the Shine-Dalgamo 
element of hok was no longer properly sequestered. When marking this 
control region branch with the sticky stem mechanism, we observed 
formation of the correct suboptimal structure. This raises the possibility that 
this structure is stabilized by something not accounted for by the basic energy 
rules.

A population-varying run identified a structure that was increasingly 
prevalent as population size was decreased from that which located the native 
state most deterministically. Instead of the long-range 5’-3’ interaction, the 5’ 
end of the molecule formed a very stable local interaction. This substructure 
tied up part of the translational activating interaction by pairing it with the 
downstream sequence normally forming the SDhok-sequestering stem. 
Interestingly, we were able to locate similar interactions in the other members 
of the hok family.

Hok mRNA offers a clear condition for a second GA phase. For phase 2, 
we seeded the inactive native state structure into the population and slowly 
truncated the 3’ end as the algorithm progressed, simulating the 
exonucleolytic 3’ processing. Indeed, a global rearrangement was triggered 
that placed the molecule into a state identical in virtually every base-pair to 
the published active structure. Closer examination of the refolding pathway, 
however, revealed a striking intermediate stage. An alternative structure to 
the solution structure clearly formed an extremely self-consistent sub
ensemble, which increased in proportion to the entire solution ensemble size 
as GA population size was decreased. At even lower population sizes,
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similarly distinct structures appeared, representing yet earlier phases. The 
most notable intermediate substructure was a pairing between the 5’ end of 
the molecule and nucleotides in the antisense target structure [Shapiro et al., 
2001c]. This interaction would not only prevent the translational activating 
interaction from forming, but it would directly prevent the antisense target 
structure from forming as well. Thus, unlike the other mechanisms of 
inactivation, this novel pairing provided a direct, steric block to both 
functions of the active structure. Moreover, phylogenetic analysis revealed 
that the interaction was extremely conserved across the entire hok family by 
significant numbers of compensatory base changes within the stem.

1.5 Conclusions

The massively parallel Genetic Algorithm seems to have great potential 
for the exploration of RNA folding pathways. When conditions for folding 
within the algorithm are adjusted to match those of experimental 
environments, the algorithm appears to report similar results to the original 
experiments. The strength of this approach is that, once one has correctly 
adjusted the computational system to match the biological system, the 
simulation can provide a wealth of information that would be difficult to gain 
from experiments alone. The algorithm offers the opportunity to catch 
detailed glimpses of intermediate structures that are challenging to capture 
and directly analyze experimentally. One could employ this capability either 
for verification or for prediction of the dynamic structural details of a 
molecule’s behavior. In actuality, a combination of both approaches seems 
most useful. The most effective use of the algorithm is not in a vacuum, but 
as applied to a system about which there already exists some information. 
Algorithmic, experimental, and phylogenetic analyses can then mutually 
support and extend one another.

The methods described here illustrate the importance of having a variety 
of effective ways of visualizing the same data from many perspectives. The 
GA deals with a complex system and generates a large amount of data very 
rapidly. The various levels of abstraction and compression of this data into 
numerical and graphical representations are crucial for making sense of it all. 
Stem Trace has proven to provide some of the most valuable of these 
representations, and has been indispensable for the generation of these 
results.
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Many hold the view that the folding process of RNA is hierarchical, that 
primary sequence first defines secondary structure, and that tertiary structure 
subsequently forms as a consequence of secondary structure. If this is the 
case, analyses of such systems as are described here can be carried out on 
each level independently, and maintain validity. However, full understanding 
of a system is only possible with the integration of analyses on all three 
levels. Thus, future directions with the GA should include an increase in its 
ability to consider the contributions of tertiary structure, as well as the 
analysis of GA-generated data by methods designed for tertiary structure 
analysis.
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Chapter 2

Introduction to Self-Assembling DNA 

Nanostructures for Computation and 

N anofabrication

Thomas H. LaBean

2.1 Introduction

DNA, well-known as the predominant chemical for duplication and 
storage of genetic information in biology, has also recently been shown to be 
highly useful as an engineering material for construction of special purpose 
computers and micron-scale objects with nanometer-scale feature resolution. 
Properly designed synthetic DNA can be thought of as a programmable glue 
which, via specific hybridization of complementary sequences, will reliably 
self-organize to form desired structures and superstructures. Such engineered 
structures are inherently information-rich and are suitable for use directly as 
computers or as templates for imposing specific patterns on various other 
materials. In theory, DNA can be used to create any desired pattern in two or 
three dimensions and simultaneously to guide the assembly of a wide variety 
of other materials into any desired patterned structure. Given diverse 
mechanical, chemical, catalytic, and electronic properties of these specifically 
patterned materials, DNA self-assembly techniques hold great promise for
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bottom-up nanofabrication in a large number of potential applications in wide 
ranging fields of technology. Starting with background for understanding 
why the physical, chemical, and biological properties of DNA make it 
extremely useful as a “smart” material for nanoengineering projects, this 
chapter traces the historic development of DNA-based nanofabrication, 
outlines its major successes, and presents some possible future applications in 
fields as diverse as electronics, combinatorial chemistry, nano-robotics, and 
gene therapy.

DNA-based nanoengineering as a field is related to computational 
biology, bioinformatics, and genome informatics rather tangentially; it is 
more closely allied with biomolecular computation (BMC) -  the engineering 
of biological macromolecules for production of artificial information 
processing systems. Rather than using binary, electronic computers for 
analyzing information extracted from biological systems, BMC seeks to 
utilize biomolecules directly as active parts of engineered computers. The 
concluding section of this chapter contains some speculation into the 
possibility of coming full circle and applying BMC and DNA-based 
nanoengineering principles and systems to the extraction and processing of 
information directly from biological DNA, that is, the possible use of natural 
DNA molecules as inputs for artificial DNA-based machines.
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2.2 Background

Chemistry> and Biology o f DNA

DNA (deoxyribonucleic acid) is a linear polymer whose monomeric 
residues are made up of one sugar group (deoxyribose), one phosphate group, 
and one nitrogenous base (either adenine, cytosine, guanine, or thymine; 
designated A, C, G, and T, respectively). Details of the structure are 
available in any biochemistry or molecular biology textbook, but a few 
pertinent points will be mentioned here. First, neighboring residues are 
joined by a chemical bond between the nlh phosphate and the (n+l)lh sugar 
group such that a polymeric backbone is formed of alternating sugar and 
phosphate groups. The backbone has chemical directionality due to 
asymmetry in the placement of phosphate groups on the sugar, with each 
sugar having one phosphate bound to its 5’ carbon and one phosphate bound
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to its 3’ carbon. This asymmetry gives the entire polynucleotide chain two 
distinct ends -  the 5’ and the 3’, as shown in Figure 1. Two DNA strands 
hybridize (form hydrogen bonds) to one another in anti-parallel fashion, thus 
the 5’ end of one strand points toward the 3’ end of its complementary strand 
in the famous Watson-Crick double-stranded form (or double helix).

The second pertinent point regarding the chemical nature of DNA is that 
the nitrogenous bases (or simply bases) form hydrogen bonded pairs in 
tongue-and-groove fashion providing specificity of annealing. The base 
groups decorate the sugar-phosphate backbone with regular spacings and 
provide the physico-chemical energy which zips the DNA together in its 
predictable helical structure. In double-helical DNA (or double-strand DNA, 
abbreviated to dsDNA), G bases pair specifically with С residues and A 
bases pair with T bases. G and С are said to be complementary, as are A and 
T. DNA strands of exact Watson-Crick complementarity will form stable 
hydrogen-bonded structures under standard temperature and solution 
conditions (see Figures 1 and 2). Some alternative base pairings have been 
found to form fairly stable hydrogen bonding (see for example [Peyret et al., 
1999J ), however, careful design of the sequences, as well as very slow 
annealing protocols, can successfully avoid alternative pairings and ensure 
that perfectly complementary strand matchings are highly favored. The third 
important point stems directly from the exceptional stability and specificity 
of dsDNA. If a short segment of single-strand (ssDNA) is appended to a 
longer strand which participates in a double-helical domain, the ssDNA will 
act as a “smart glue”, binding specifically to a complementary ssDNA 
segment located on another ds-domain. These ssDNA segments are known 
as sticky-ends. Complementary sticky-end pairs therefore act as address 
labels and can be used to specify which dsDNA domains are allowed to 
anneal to one another.

Finally, the “folding rules” which dictate the three-dimensional (3D) 
structure of DNA in solution are simple compared to other biological 
macromolecules, making DNA a more salutary engineering material than 
proteins, for example, whose folding rules have yet to be completely 
understood. Given proper pH and cation concentration, dsDNA will reliably 
adopt standard В-form helical structure with predictable dimensions as 
shown in Figure 1. In summary, important points of DNA chemistry include: 
anti-parallel alignment of backbones in hybridized strands, base-pairing 
specificity for high-fidelity annealing of sequences to their complements, and 
annealing by heating and slow cooling for double helix formation.

The task of engineering specific physical structures from DNA benefits
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Figure 1. Double-stranded DNA shown in the standard, right-handed, В-form double 
helix with four base ssDNA sticky-ends appended to the 3’ ends of both strands. 
Strand backbones are highlighted with colored ribbons; bases (light gray) are viewed 
edgewise and can be seen to point toward their hydrogen bonding partner on the 
opposite strand. One full turn of DNA has a length of 3.4 nm along the vertical helix 
axis and contains on average 10.5 bases; the helix diameter is approximately 2 nm. 
The concave faces of the helix are known as the major and minor grooves; they are 
geometrically distinct and can be used to identify strand polarity -  for example, 
when looking into the minor groove, the strand on the bottom (in this orientation) 
always has its 3’ end pointing down (toward the bottom of the page). Understanding 
the geometric constraints of DNA structure is essential to successful design of DNA- 
based objects and materials.
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Figure 2. Representations of unbranched, 3-branched, and 4-branched DNA. Fully 
base-paired, anti-parallel DNA can take on various forms depending upon the lengths 
and connectivities of the annealed strands. Normal double-helical DNA (left) 
involves two strands in a single helical domain. A 3-branched junction (center) 
involves four strands and three helical domains; it is a structural analog of a 
replication fork observed in biology. The 4-branched junction (right), involving four 
strands and four helical domains, is a structural analog of the Holliday junction used 
by biological systems in genetic recombination. Note that, in the branched structures 
shown, alternative base-pairings are available due to sequence symmetry around the 
branch point which will allow the junction to migrate up and down the helices. 
Properly designed sequences avoid such migration. 4-branch junctions have been 
used most extensively in engineered tile structures. Their four helical domains tend to 
stack into two domains in which two strands exchange between helices (as explained 
further in the next figure).

from the tools evolved during the eons of biological evolution on Earth and 
especially from those now thoroughly researched and commercialized during 
the more recent biotechnological revolution. Enzymes can be purchased 
which perform highly specific chemical reactions upon DNA molecules. For 
example, phosphatases and kinases remove, add, and exchange 
phosphategroups from the ends of DNA backbones; ligases stitch together 
breaks in the backbone to form a single chemical strand from two or more 
shorter strands; and restriction endonucleases cleave the backbone at specific 
sites dictated by local base sequence. In addition, chemical synthesis 
methods for the production of DNA have advanced to the point where DNA 
strands of any desired sequence can be ordered on-line from commercial 
production companies and shipped the next day for less than a dollar per 
residue.
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Since the publication of the 3D structure of dsDNA half a century ago 
[Watson and Crick, 1953], the vast majority of research on DNA structure 
has centered around DNA as it relates to known biological systems. 
However, twenty years ago Nadrian Seeman recognized the inherent 
potential of DNA as an engineering material and proposed visionary new 
uses for the polymer [Seeman, 1982]. Seeman’s pioneering work originally 
focused on the creation of regular 3D lattices of DNA which could be used as 
scaffolding for the rapid, orderly binding of proteins to speed the formation 
of suitable crystals for 3D protein structure elucidation in x-ray diffraction 
studies.

Seeman noted that linear dsDNA can interact with only two other double
helices since it can display at most two sticky-ends, i.e. its maximum valence 
is two. Construction materials with valence = 2 are only really useful for 
making linear superstructures like railroad cars connected in a long train. A 
larger variety of substructures and an ability to interact with a greater number 
of neighboring components is required in order to advance even modest 
fabrication goals. Seeman pointed out that DNA in biological systems can 
exhibit structures with increased valence including replication forks (valence 
= 3) and Holliday junctions found in genetic recombination (valence = 4) as 
shown in Figure 2. One problem with these natural multivalent structures is 
that they involve repeated base sequences, so base-pairing partners are not 
perfectly specified and the junctions are mobile. The junctions, or strand 
crossover points, between the dsDNA domains are free to migrate up or 
down the helices by swapping one perfect sequence match for another perfect 
sequence match (see the right-hand drawing in Figure 2, if the top helix is 
pulled up while the bottom helix is pulled down, the left and right helices will 
become shorter as the top and bottom helices become longer). Seeman 
worked out a sequence symmetry minimization strategy in order to form, for 
the first time, immobile junctions - - branch points in the dsDNA which are 
unable to migrate up and down the helix. Note that the oligonucleotides are 
still normal, linear DNA polymers; the branch junctions occur in the 
arrangement of strand exchange crossovers between the double helical arms. 
Seeman has pioneered the use of branched DNA structures for the 
construction of geometric objects, knots, and Borromean rings [Chen et al., 
1989; Chen and Seeman, 1991; Du and Seeman, 1994; Zhang and Seeman, 
1994]. These early construction projects yielded many important technical

DNA as a Structural Material



developments including the use of oligonucleotide assemblies bound to 
insoluble resin beads for control of construction.

One problem with many early DNA constructs was that the structural 
flexibility of the branched DNA complexes allowed undesired circular 
products to be formed during assembly of large superstructures from stable 
substructures. Again, innovation from Seeman’s lab solved the problem by 
producing double-crossover (DX) complexes [Fu and Seeman, 1993] which 
act as rigid structural components for assembly of larger superstructures. The 
concept has now been extended further to produce more complex structures 
including triple-crossovers (TX) [LaBean eta/., 2000b] as shown in Figure 3. 
This class of DNA objects, often referred to as ‘tiles’, contain multiple 
oligonucleotide strands (ssDNA) which base-pair along parallel, coplanar 
helix axes. The helices are connected by exchange of two strands at each 
crossover point (crossovers are structural analogs of Holliday junctions). 
Rigid and thermally stable, these multi-helix tiles carry multiple, 
programmable sticky-ends for encoding neighbor relations to dictate tile-to- 
tile interactions used in specific assembly of patterned superstructures. DNA 
tiles are formed by heating an equimolar solution of linear oligonucleotides 
above 90° С to melt out base-paired structures, then slowly cooling the 
solution to allow specific annealing to form the desired structure. Tiles are 
stabilized in solution by the presence of magnesium counter ions (Mg**) 
which allow close helix packing by shielding the negative charges on the 
DNA backbones from one another. Design of DNA tiles and superstructures 
requires two separate phases: first, geometric design and second, chemical or 
sequence design. The geometric design phase involves modeling and 
examination of strand topology (paths of the oligonucleotides through the 
tiles), spacing of crossover points to ensure proper orientation of neighboring 
helical domains (for example, to ensure flatness of two-dimensional (2D) 
lattices), lengths of sticky-ends, and overall internal compatibility of 
components with each other and the superstructure design. Once the 
geometric constraints of the target structure are established, specific base 
sequences can be designed which guarantee formation of the desired 
structure.

Design o f  Base Sequences fo r  DNA Nanoconstruction

To properly design base sequences of DNA for nanoassemblies, one must 
consider positive as well as negative design constraints: a sequence must not

Introduction to Self-Assembling DNA Nanostructures 4 1
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DAO

Figure 3. Example DX and TX tiles drawn as an idealized projection of 3D helices 
onto the plane of the page with helix axes lying horizontal on the page. Strands are 
shaded for ease of tracing individual oligonucleotides through the complexes. Each 
straight strand segment represents a half-tum around the helix. Vertical segments of 
strands indicate strand exchange (junction) sites where strands cross over from one 
helix to another. Note that two strands are exchanged at each crossover point. 
Arrowheads indicate 3' ends of strands. Thin vertical hashes indicate base-pairing 
between strands. Unpaired segments on 5' ends represent sticky-ends. The top 
complex is a DAO double-crossover, so called because of its Double (two) ds- 
helices, Anti-parallel strand exchange points, and Odd number of helical half-turns 
between junctions. The bottom complex is a TAE (Triple, Anti-parallel, Even 
number of half-tums between crossovers). Anti-parallel crossovers cause strands to 
reverse their direction of propagation through the complex upon exchanging helices. 
For example, the lightest gray strand in the DAO begins in the right-hand side of the 
top helix; it propagates left until it crosses over to the bottom helix, then it continues 
back to the right until it reaches the right-hand end of the tile. The effect of spacing 
between crossover points can be seen by comparing the strand trace of the DAO with 
that of the TAE. The TAE contains three strands (black) which span the entire width 
of the tile; they are the non-exchanging strands at each of the crossover points. With 
an odd number of half-tums between crossovers (see DAO), no strands span the 
width of the tile. Many other strand topologies are possible; these shown and several 
others have been experimentally tested. Note that the figure also shows how the 
minor groove of one helix is designed to pack into the major groove of neighboring 
helices.
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only match its desired hybridization site, but it must also hold no 
significant complementarity to any other DNA segment, thus avoiding 
formation of undesired alternative structures. Many approaches and 
strategies for sequence design have been pursued (see for example, [Seeman, 
1990; Baum, 1996; Deaton et al., 1996; Marathe et al., 2000; Reif et al., 
2001]). Primary among design constraints is Hamming distance: no 
sequence can be included which contains more than some threshold number 
of exact matches with any other sequence or the complement of any sequence 
already contained in the set. Thresholds are chosen based on the lengths of 
sequences required and known limitations from hybridization experiments. 
An example constraint might require at least three mismatches between every 
pair of subsequences of length eight. For longer strands, a sliding window is 
used to tabulate all subsequences of a given sequence. Such search and 
design problems require the use of electronic computers to keep track of the 
huge number of possibilities; therefore, custom software has been developed 
by several research groups to find good solutions to combinatorial 
optimization of sequence design. Besides Hamming distance, other design 
criteria include exclusion of certain undesired subsequences for example, 
palindromes which may form undesired hairpins, long stretches of G and С 
which, due to stronger base stacking interactions may distort the structure 
away from standard В-form double helix. Often, homogenization of base 
composition within and between strands is desirable in order to increase the 
likelihood of isothermal annealing. If individual regions of the structure have 
similar base composition they will have similar melting temperatures and 
formation of all parts of a tile will occur nearly simultaneously during the 
cooling process. Careful sequence design is critical for successful assembly 
of complex objects from synthetic DNA oligonucleotides since base-pair 
formation is the driving force of the self-organization process.

2.3 Experiments and Applications

DNA-bcised Computation

The first experimental proof of the feasibility of DNA-based computing 
came from Adleman, when he used DNA to encode and solve a simple 
instance of a hard combinatorial search problem [Adleman, 1994]. He 
demonstrated the use of artificial DNA to generate all possible solutions to a
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Hamiltonian path problem (given a set of nodes connected by a set of one
way edges, answer the question of whether or not there exists a path which 
goes through each node once and only once). For large graphs, the problem 
can be very difficult for an electronic computer to solve since there are an 
astronomical number of possible paths and there is no known algorithm 
(other than complete enumeration) for finding the correct answer. Adleman’s 
approach was to assign a 20-base DNA sequence to each node in an example 
graph, then to synthesize edge strands containing the complement to the 3’ 
half of a starting node fused with the complement to the 5’ half of the ending 
node for each valid edge in the graph. The sets of oligonucleotides encoding 
nodes and edges were annealed and ligated, thereby generating long DNA 
strands representing all possible paths through the graph. Non-Hamiltonian 
paths were then discarded from the DNA pool, first by size separation of the 
path DNA (discard strands greater than or less than the length of a 
Hamiltonian path, which is equal to the product of the number of nodes times 
the length of the node sequence), and second by a series of sequence-based 
separation steps involving DNA probes complementary to each node 
sequence (discard path sequences if they failed to contain any one of the 
required nodes). By this experimental protocol, Adleman was able to recover 
DNA strands encoding the Hamiltonian path through the example graph.

The primary contributions of Adleman’s seminal paper were the 
revolutionary concepts that synthetic DNA could be made to carry 
information in non-biological ways and that the inherent massive parallelism 
of molecular biology operations could be harnessed to solve computationally 
hard problems. His experiment showed that DNA could be used as an 
integral part of a functioning computer. Some limits have been noted on the 
size of combinatorial search problems which can be implemented in DNA 
because of the exponential growth of search spaces and the volume 
constraints on wet computing techniques [Reif, 1998]. In addition to volume 
constraints, Adleman’s original algorithm involved rather inefficient and 
tedious laboratory steps, the total number of which increased at least linearly 
with problem size. These concerns have been sidestepped by more recent 
theoretical and experimental advances including the development of 
computation by self-assembly.

Algorithmic Self-Assembly

Another fundamental insight which has shaped understanding of DNA- 
based computing and nanoengineering was made by Winfree when he
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realized that DNA annealing by itself and, specifically, annealings between 
DNA complexes being developed by Seeman were capable of carrying out 
computation [Winfree, 1998; Winfree et al., 1998b]. This line of reasoning, 
developed theoretically and experimentally by Winfree in collaboration with 
Seeman and others, follows a theoretical model of computing known as 
Wang tiling [Wang, 1961]. In the Wang tiling model, unit square tiles are 
labeled with symbols on each edge such that tiles are allowed to associate 
only if their edge symbols match. Tiling models have been designed which 
successfully simulate single-tape Turing Machines and are therefore capable 
of universal computation [Berger, 1966; Robinson, 1971; Wang, 1975]. The 
recognition that DNA tiles, exemplified by DX and TX complexes (see 
Figure 3), could represent Wang tiles in a physical system, where edge 
symbols are incarnated as sticky-ends, led to proofs that DNA tilings are 
capable of universal computation.

Computation by self-assembly of DNA tiles is a significant advance over 
earlier DNA-based computing schemes because self-assembly involves only 
a single-step in which the computation occurs during the annealing of 
carefully designed oligonucleotides. Contrast this with Adleman’s 
experiment in which the annealing step generated all possible solutions and 
where a long series of laboratory steps was required to winnow the set by 
discarding incorrect answers. Self-assembly without errors will theoretically 
only allow formation of valid solutions during the annealing step, thereby 
eliminating the laborious phase involving a large number of laboratory steps. 
The first report of a successful computation by DNA self-assembly 
demonstrated example XOR calculations [Mao et al., 2000]. XOR, an 
addition operation without the carry-bit, was performed using tiles carrying 
binary values (1 or 0) designed to specifically assemble an input layer which 
then acted as a foundation upon which output tiles assembled based on the 
values encoded on the input tiles. The prototypes also demonstrated the use 
of readout from a reporter strand which was formed by ligation of strands 
carrying single bit-values from each tile in the superstructure. The scheme is 
currently being extended to harness the massively parallel nature of the 
annealing reaction by allowing random assembly of the input layers, 
followed by specific assembly of the output layers in order to simultaneously 
compute the entire lookup table for pairwise XOR (and eventually addition) 
up to some modest input length (perhaps 20 bits) (details described in 
[LaBean et al., 2000a]).
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Programmed self-assembly of DNA objects promises further advances 
not only in biomolecular computation but also in nanofabrication as a means 
of creating complex, patterned structures for use as templates or scaffolds for 
imposing desired structures on other materials. Simple, periodic patterns 
have been successfully implemented and observed on superstructures formed 
from a variety of different DNA tiles including DX tiles [Winfree et al., 
1998a], TX tiles [LaBean et al., 2000b], triangular tiles [Yang et al., 1998], 
and rhombus-like tiles [Mao et al., 1999]. Figure 4 shows 2D lattice 
constructed from two types of TX tiles, A and B*, where the B* tiles display 
two extra dsDNA stem-loops (hairpins) protruding out of the tile plane, one 
each on the top and bottom faces of the tile. Sticky-ends on the four comers 
of each tile program neighbor relations such that A tiles only bind to B* tiles 
and vice versa resulting in the observed stripe pattern. Large lattice 
superstructures formed by such systems have been observed (at least 10 
microns by 3 or 4 microns and containing hundreds of thousands of tiles). 
Larger tiles sets with more complicated association rules are currently being 
developed for the assembly of aperiodic patterns which will be used in the 
fabrication of patterned objects useful for nanotechnology applications 
(examples are given in Figure 5). 2D tile arrays can be thought of as 
molecular fabric or tapestry which contain a large number of addressable 
pixels. Individual tiles can carry one or more pixels depending upon the 
placement of observable features or binding sites. Overall connectivity can 
be programmed either with unique sticky-ends defined for each tile in the 
array or by assembly of crossover junctions which specifically stitch together 
distant segments of a single long scaffold strand as shown in Figure 6.

Computer simulations and theoretical analysis of self-assembly processes 
have pointed to some potential difficulties including the possibility of 
assembly errors leading to trapping of incorrectly formed structures [Reif, 
1998; Winfree, 1998; Rothemund, 2000]. An experimentally observed error 
rate of 2-5%, encompassing annealing and ligation errors, was noted in the 
XOR computational complex [Mao et al., 2000]. Several approaches exist to 
address such issues including more complicated annealing schedules, 
variable length sticky-ends for non-isothermal tile associations, and stepwise 
assembly controlled by time-stepped addition of critical oligonucleotide 
components. Readout methods which sample an ensemble of reporter strands 
as well as error-tolerant designs for the overall system are also being 
developed.

Patterned DNA Nanostructures
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Figure 4. TX tile lattices formed by annealing eight strands and visualized by atomic 
force microscopy (AFM -- panel a) and transmission electron microscopy (ТЕМ -- 
panel b). Lattice displaying periodic patterns (stripes in this case) was designed 
using two types o f TX tile, A and B*. The B* tiles contained an extra hairpin o f  
DNA projected out o f the lattice plane on each side o f the tile. A tiles bind only to 
B* tiles and vice versa by virtue o f properly coded sticky-ends at the four comers of 
each tile. The hairpins impart distinct features which can be microscopically 
observed. The ТЕМ sample (panel b) was prepared by platinum rotary shadowing 
resulting in the B* tiles' extra hairpin causing them to take on a darker color than the 
A tiles.
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А' А. А< A. A* Aj At А.

Figure 5. Examples of simple and complex aperiodic structures as possible 
fabrication targets for DNA-based self-assembly. A relatively simple aperiodic 
structure such as writing a word in addressable pixels on a DNA tile array (top) 
would help improve methods for eventual assembly o f very complex structures such 
as entire circuit layouts (bottom).

Patterned Immobilization of Other Materials on DNA Arrays

Implicit in the preceding discussion of DNA self-assemblies as templates 
for specific patterning of other materials is the need for attachment 
chemistries capable of immobilizing these materials onto DNA arrays.

Materials of interest might include metal nanoparticles, peptides, 
proteins, other nucleic acids, and carbon nanotubes among others. A variety 
of strategies and chemistries are being developed including thiols (-SH), free 
amine groups, biotin-avidin association, and annealing of pre-labeled 
complementary DNA. Oligonucleotides, chemically labeled with a thiol 
group on either the 5' or 3' end readily bind to gold and have already been 
used via simple complementary DNA annealing to impart 3D ordering on 
gold nanospheres [Alivisatos et al., 1996; Mirkin et al., 1996; Mucic et al.,
1998] and gold nanorods [Mbindyo et al., 2001]. In those studies, gold was 
labeled with multiple copies of a single DNA sequence, then linear dsDNA
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Figure 6. Schematic of a grid structure formed by annealing specific short 
oligonucleotides (gray) onto a preexisting long ssDNA (black). 2D arrays might be 
assembled nol only from short synthetic strands but also making use of the larger- 
scale connectivity information available in long strands of ssDNA. Pixels on such a 
lattice would be individually addressable by virtue of their specific ordering along 
the large scaffold strand. Assembly o f multi-tile superstructures around input 
scaffold strands o f moderate size has been demonstrated [LaBean et al., 1999]. The 
possibility o f using very long ssDNA from biological sources is currently being 
investigated.

was formed between complementary strands attached to adjacent gold 
particles. More specific chemistries are available including nanogold 
reagents which make use of 1.4 nm diameter gold clusters, each 
functionalized with a single chemical moiety for specific reaction with a thiol 
or a free amino group (Nanoprobes, Inc., Yaphank, NY). These reagents 
have been used to target the binding of single gold nanoparticles to specific 
locations on DNA nanoassemblies. Figure 7 shows preliminary results of 
targeted binding of nanogold to a filamentous DNA tile superstructure, 
followed by deposition of silver onto bound gold for the fabrication of 
nanometer scale (~50 nm diameter) metallic wires. A similar technique has 
been reported for construction of a conducting silver wire on a length of 
ssDNA [Braun et al., 1998]. Ongoing studies focus on formation of smaller 
(-10  nm diameter) metal wires laid out in specific patterns on 2D tile lattices.
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manipulations of its base sequence and backbone connectivity have been 
perfected for use in recombinant molecular genetics for biotechnology 
applications. However, other polymers with programmable interactions 
might be more suitable in the long-run for some nanofabrication applications.

Possible Future Applications

Some possible fields of application for future DNA nanotechnologies 
might include electronic circuit lay-out, organization of materials for batteries 
or flat panel displays, macromolecular patterned catalysts for chemical 
assembly lines, combinatorial chemistry, sensorless sorting of nanometer- 
scale objects, DNA sequence comparison, and perhaps gene therapy.

• Electronics and Chemistry. DNA self-assemblies may find uses not 
only in templating nanometer scale electronic circuits alluded to in preceding 
sections but also in preparation of patterned catalyst arrays. For example, 
nanoparticulate metals used to catalyze the formation of single-walled carbon 
nanotubes have previously been used when randomly distributed in aerogels 
[Su et al.y 2000]. If attachment chemistries can be adapted for the binding of 
such nanoparticles to DNA tile lattices, then coordinated synthesis of ordered 
arrays of carbon nanotubes might be possible. Such ordered nanotube arrays 
might be useful in advanced electrical storage batteries, flat panel displays 
with ultra-fine pixel density, or very strong, multi-tube fibers and cables. 
This approach is especially attractive because current synthesis methods 
generally yield tangled masses of nanotubes which have been difficult to sort 
and organize. Other target catalysts include protein enzymes or surface 
catalysts which, when ordered in series, could act as macromolecular 
chemical assembly-lines. Patterned stripes of catalysts could act sequentially 
to carry out a sequence of specific reactions or even repeated cycles of 
reactions on a stream of substrate flowing past.

• Combinatorial Chemistry. Brenner and Lerner proposed the use of 
DNA for tagging chemical compounds with specific labels for use in 
combinatorial chemistry [Brenner and Lerner, 1992]. They suggested that 
DNA labels could be decoded to reveal the identity of active molecules 
drawn by a screening assay from a vast pool of candidate chemicals. It is 
possible that DNA tile structures could be used further to hold chemical 
reactants close together in space, thereby facilitating their reaction. The 
product of the reaction would remain bound to the tile, decoding of each 
strand of the tile would reveal the identity of each reactant used in the
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formation of active compounds. Encoding labels for reactants rather than 
final compounds would decrease the number of specific labels required.

• Sensorless Sorting. DNA tile lattices specifically decorated with 
protein rotary motors or environmentally responsive peptides might prove 
useful for sensorless sorting of poorly soluble nano-scale objects such as 
“buckyballs” or fragmented carbon nanotubes. Sensorless sorting involves 
an array of effectors capable of repetitive motion which act to organize 
objects into specific orientations and move them along a path comparable to a 
conveyor belt. Carbon nanotubes might be an interesting target object for 
sorting because they are poorly soluble in aqueous solution and they are 
difficult to purify and sort yet they are objects of intense study due to their 
unique structural and electronic properties. A possible scenario might 
involve a DNA array acting to organize a set of protein rotary motors which 
then provide a sweeping motion to coax nanotubes into alignment and feed 
them down a channel. Such an elaborate system could prove useful for 
simultaneously orienting large numbers of carbon nanotube into position for 
use as wires in a circuit, for example.

• General Nanofabrication. Self-assembling DNA-based structures also 
hold great potential in “seeding” for the autonomous growth of complex 
structures by bottom-up nano-fabrication. A molecular machine built of and 
fueled by DNA has been demonstrated experimentally [Yurke et al., 2000]. 
The technique introduces the possibility of setting up a cascade of annealing 
reactions which, once begun, run sequentially without further intervention, 
and result in formation of a complex structure inaccessible by simple 
annealing procedures.

• Gene Sequence Comparisons. DNA is also the perfect molecule for 
comparison of a set of related DNA sequences. If a family of genes (e.g. 
analogous genes from different organisms) are annealed together with 
synthetic strands designed to bridge between related sequences, then the 
existence or the morphology of the resulting superstructure might convey 
information about the extent of sequence similarity in the gene set.

• Gene Therapy. It is difficult to imagine any better material for the 
construction of a therapeutic agent targeted toward DNA than DNA itself. 
Target sequence specificity is readily programmable, complex structures 
which bring together fairly distant regions of a long strand may be possible, 
stability at physiologic-like temperature and solution conditions, and the 
ability to organize non-DNA materials may contribute to the usefulness of 
DNA tiles as therapeutics. As is the case with conventional gene therapy 
agents, delivery may be the key limiting factor. Experiments are planned



54 Т. Н. LaBean

which will test the encoding of complete DNA tiles on a single cloning 
vector. This will not only increase the yield and decrease the cost of tiles, but 
it may mitigate the problem of delivery of multiple strands to a target 
location. A self-assembling DNA tile structure for gene therapy could make 
use of the fact that participation in crossover complexes increases resistance 
to nuclease enzymes over that of standard dsDNA. A properly delivered 
complex which specifically hybridizes with a target site on cellular DNA or 
mRNA may act to sequester the bound nucleic acids and turn off an 
undesired cellular response. Alternatively, if distant regions of the cellular 
nucleic acid were held close together within a DNA crossover complex it 
might be possible to activate a cellular repair mechanism and cause the 
excision of some portion of a faulty gene or perhaps the delivery of a 
corrected copy. It also might be possible to design DNA assemblies which 
act as diagnostics to probe for multiple mutations or multiple, specific alleles 
simultaneously.
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Chapter 3

Mapping Sequence to Rice FPC

Carol Soderlund, Fred Engler, James Hatfield, Steven Blundy, 
Mingsheng Chen, Yeisoo Yu and Rod Wing

3.1 Introduction

In the late 1990’s, there were discussions on whether to build physical 
maps to select clones for sequencing [Green, 1997] or to use a whole genome 
shotgun strategy [Weber and Myers, 1997]. A draft sequence of the human 
genome was published by the International Sequencing Consortium [2001] 
which was based on the human FPC (FingerPrinted Contig) map by the 
International Mapping Consortium [2001], and a draft sequence was 
published by Celera which was based on the whole genome shotgun strategy 
and included the draft sequence from the public consortium [Venter et al., 
2001]. The current general attitude is that the best approach is a combination 
of the two. Regardless as to whether a map is essential for sequencing, it 
provides a mechanism for tying together information gathered over the years,
i.e. genetic, physical and sequence information. It provides a tremendous 
amount of locational and comparative information without having to 
sequence. Many large genomes will not be sequenced anytime soon as the 
cost is still prohibitive, yet the cost of mapping is acceptable. Currently, the 
price of sequencing a genome is about 3 cents per base, so approximately 
$4500 for a 150 kb clone, whereas fingerprinting а ВАС clone is 
approximately $5. If an organism has a physical map with landmarks such as
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genetic markers and ESTs, sequencing can be restricted to the interesting 
regions. As sequences become available, they can be consolidated a n d  
organized along the map, as will be described in this chapter.

Over a decade ago, the first contigs built by restriction fragm ent 
fingerprints were published. Coulson et al. [1986] used the end-labelled 
double digest method with cosmid clones for mapping the 100 Mb C .e leg a n s  
genome. Olson et al. [1986] used the complete digest method with lambda 
clones for mapping the 40 Mb yeast genome. Both genomes were 
subsequently sequenced based on the map. In both cases, the building of the 
map was largely interactive for the following reasons: First, there were many 
gaps as the clones were relatively small; i.e. lambda clones are about 15 kb 
and cosmid clones are about 40 kb. Second, there was a large amount of error 
and uncertainty in the data that makes automatic assembly difficult. Last, the 
problem is NP-hard and not near enough resources went into finding a 
computational solution. There were other attempts in the early 1990's to use 
this approach, but they also suffered from these problems. Obviously, this 
would not scale up to the 3000 Mb human genome. Hence, the method was 
thought to be unusable.

Alternative methods were suggested, such as sequencing the ends of large 
insert clones (referred to as STC for Sequence Tagged Connector, or BES for 
ВАС End Sequence). When a new clone is sequenced, the sequence can be 
compared against the STCs to find the next clone to sequence [Venter et a l . ,
1996]. A whole genome shotgun strategy was suggested, where forward and 
reverse reads are taken from 2 kb and 10 kb clones, and the sequence contigs 
are ordered based on information from the orientation and distance between 
reads and from STC sequences [Weber and Myers, 1997; Myers et a l., 2000].

Meanwhile, the Sanger Centre was still building fingerprinted contigs 
using the double digest method [Bentley et a l 2001] and the FPC 
(FingerPrinted Contigs) program was developed for this effort [Soderlund et 
al., 1997; Soderlund et a l., 2000]. FPC has the combination of automation 
and interactive graphics. It tolerates varying amount of data where the better 
the data — the better the map, it flags potential incorrect contigs, and it can 
assemble large numbers of clones. BACs were used for fingerprinting so 
there are fewer gaps as the length of а ВАС is approximately 150 kb. Marra 
et al. [1999] undertook to fingerprint the whole A rabidopsis genome using 
the complete digest method using techniques that produced a large reduction 
in error and uncertainty in the data. Since then, chromosome 2 and 3 (80% of 
the genome) of D rosophila  [Hoskins et a l., 2000] has been mapped, a whole 
genome human map [The International Mapping Consortium, 2001] and a
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whole genome rice map [Wing et al., 2001] have been built; in all cases FPC 
was used. Mouse, zebrafish, and maize are now being mapped, along with 
many other genomes. In summary, the combination of longer clones, less 
error and uncertainty, and robust software has rejuvenated this method.

The advantages of having a map for the plant community is tremendous 
as many of the plant genomes have a much higher complexity than the 
human genome. Their genomes tend to be larger, more repetitive, and they 
can have multiple distant genomes within the nucleus. For example, maize 
has a haploid genome size of 2500 Mb and 60-80% of the maize genome is 
composed of highly repetitive retrotransposons [San Miguel et a l 1996]. 
Barley is a diploid and has a genome size of 5000 Mb. Nearly 90% of the 
barley genome is composed of repetitive DNA and only one type of 
retrotransposon (BARE-1) constitute 2.8% of the barley genome [Vicient et 
al., 1999]. Wheat is an allohexaploid with genome constitution AABBDD 
and has a genome size of 16000 Mb. It was formed through hybridisation of 
AA with a В genome diploid, and the subsequent hybridisation with a D 
genome diploid [Devos and Gale, 1997]. Table 1 shows a sample set of 
genomes, sizes, percent repetitive and polyploid. Even if there were the funds 
to sequence these genomes, it would be difficult with a whole genome 
shotgun approach exclusively, i.e. without an underlying map.

Arabidopsis has been physically mapped [Marra et al.y 1999] and 
sequenced [The Arabidopsis Genome Initiative, 2000]. At CUGI (Clemson 
University Genome Institute), we have built a physical map of rice [Chen et 
al., 2002] to aid the sequencing of rice in collaboration with the International

Genome Size(Mb) Repetitive Description

Arabidopsis 125 14 Diploid

Rice 380 76 Diploid

Maize 2500 83 ancient tetraploid

Barley 5000 88 Diploid

Wheat 16000 88 Hexaploid

Table 1. Attributes of a few plant genomes.
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Rice Genome Sequencing Project (IRGSP). The sequence from these model 
genomes will be used in comparative analysis with other plant genomes that 
are not being sequenced. Regardless as to whether a plant genome will be 
totally sequenced, partially sequenced, or only have small pieces of sequence 
information available such as ESTs, the ability to map the sequence to the 
physical map is valuable. To aid this mapping, STCs are often generated for 
the clones in a fingerprinted map as this can provide a fairly even distribution 
of small pieces of sequence over the map. The STCs are used to map clone 
sequence [Hoskins et al., 2000] and marker sequence [Yuan et a l 2001] to 
the physical map.

Existing sequence can be used to anchor contigs, close gaps and verify 
contigs. Any ВАС genomic sequence can be mapped back to the FPC map in 
one of three ways: (1) FSD (FPC Simulated Digest) will digest a sequence 
and convert it to migration rates such that it can be incorporated into the map 
as a fingerprint. (2) BSS (BLAST Some Sequence) blasts a clone sequence 
against the STC database and the sequence can be added as an electronic 
marker attached to all the clones to which it had a high hit with the STC. (3) 
BSS blasts a marker sequence against the STC or clone sequence database 
and the marker can be added as an electronic marker attached to all the clones 
to which it has a high score. All of these new features are being used 
extensively to complete our rice physical map. We display our contigs on the 
Web using a java program called WebFPC. A brief overview of FPC will be 
given, then a description of each of these features and results from our rice 
project.

3.2 Overview of FPC

For a detailed description of the algorithm, see [Soderlund et al., 1997]. 
For simulation results, see [Soderlund et al., 2000]. The following gives a 
brief overview. FPC (FingerPrinted Contigs) assembles clones into contigs 
using either the end-labelled double digest method [Coulson et al., 1986; 
Gregory et al., 1997] or the complete digest method [Olson et al., 1986; 
Marra et al., 1999]. Both methods produce a characteristic set of bands for 
each clone. To determine if two clones overlap, the number of shared bands 
is counted where two bands are considered ‘shared’ if they have the same 
value within a tolerance. The probability that the N shared bands is a 
coincidence is computed, and if this score is below a user-supplied cutoff, the 
clones are considered to overlap. If two clones have a coincidence score
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below the cutoff but do not overlap, it is a false positive (F+) overlap. If two 
clones have a coincidence score above the cutoff but do overlap, it is a false 
negative (F-) overlap. It is very important to set the cutoff to minimise the 
number of F+ and F- overlaps.

A FPC complete build bins clones into transitively overlapping sets 
where each clone in a set has an overlap with at least one other clone in the 
set and no clone has an overlap with any clone outside the set. The clones in 
a bin are given an appropriate ordering by building a CB (consensus band) 
map and the CB map is instantiated as a contig. Hence, a complete build 
guarantees that each contig is a transitively overlapping set of clones based 
on a given cutoff. The length of a clone in a contig is equal to the number of 
its bands, and the overlap between the coordinates of the two clones is 
approximately the number of shared bands. If clone CA has exactly or 
approximately the same bands as clone CB, CA can be buried in CB and CB 
will be called the parent. Clones that do not have an overlap with any other 
clone are not placed in a contig and are called singletons. Markers can be 
attached to a clone and are displayed in the contig with the clone. A clone 
can only be in one contig, but a marker can be attached to clones in multiple 
contigs (e.g. duplicated locus). An externally ordered subset of the markers 
can be input into FPC as the framework. Contigs containing these markers 
can be listed by framework order in the project window. Briefly, the 
following are some of the most salient features of FPC:

CpM (Cutoff plus Marker): FPC provides the option of defining a set of 
rules on what constitutes a valid overlap, which are entered into the CpM 
table. For example, the table can be set so that two clones will be considered 
to overlap if they (i) have less than a le -12 score, (ii) share at least one 
marker and score less than le -10, (iii) share at least two markers and score 
less than le-09, or (iv) share at least three markers and score less than le-08.

IBC (Incremental Build Contigs): The IBC routine automatically adds 
new clones to contigs and merges contigs based on the cutoff and CpM table, 
and then the clones in each modified contig are re-ordered by executing the 
CB algorithm. The IBC provides a summary of the modifications performed 
on each contig in the project window.

Q clones'. If there is a severe problem aligning the bands of a clone to the 
CB map, it is marked as a Q (questionable) clone. If there are many Q clones 
in the contig, the simulations show that this generally indicates at least one 
F+ overlap and the ordering will almost certainly be wrong. Interactive tools 
are available to fix these contigs.
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Merge: Due to the uneven coverage of restriction fragments and the 
random picking of clones, there is an uneven coverage of the clones so that 
they assemble into many contigs. Contigs can often be merged by querying 
the end clones of a contig. Interactive tools are available to detect and merge 
contigs.

The simulations verify that the better the data ~  the better the map. With 
a set of simulated clones from 110 Mb of human sequence, a simulated digest 
using EcoRl was performed. The largest contig assembled has 4783 clones 
with two out-of-order pairs, that is, when clone A should start before clone В 
but clone В starts before clone A, though they do correctly overlap. As error 
is added, the number of out-of-order pairs increases.

3.3 Mapping Sequence to FPC contigs

The following three sections describe new software developments to aid 
mapping and display of sequence on a FPC map.

FSD (FPC Simulated Digest)

FSD is a supplemental program (see Figure 1) to FPC that performs a 
complete digest in silico on a sequence that produces the sizes of the 
fragments. The sizes are converted into migration rates so that they can be 
assembled into the FPC map. Note that FPC can use either sizes or migration 
rates for each clone fingerprint. Generally, migration rates are used for FPC 
maps as they represent the bands on the gel image. The bands are assigned 
migration rates and then converted into sizes by Image (see 
http://www.sanger.ac.uk/Software/Image). The Human Mapping Consortium 
digested sequence in silico into fragment sizes, but did not further convert 
them into rates; hence, they maintained two FPC files, one in rates and one in 
sizes [The Human Mapping Consortium, 2001]. We have taken the extra step 
to convert the sizes into migration rates so that we only need to maintain one 
FPC file.

There were two main reasons for developing FSD. First, we wanted a 
way to verify both the fingerprints and the final sequence assembly. By 
simulating a complete digest on the final sequence, we should get a set of 
bands that closely match the fingerprint produced in the laboratory. This 
simulated fingerprint should automatically be positioned very close to the lab

http://www.sanger.ac.uk/Software/Image
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— I_ 
-1 FPC Simulated Digest M J
FPC Directory /home/fpc/rice/nipponbare Browse |

Sequence Directory fsd /

Sequence File A LL.FILES /

Restriction Digest hindiii / a.agctt

, Standard File |/home/imdata/lambdahilo.st Browse |
Subclone? r

Size 180000
%  Overlap 80

Minimum Fragment Size 1000

Maximum Fragment Size 200000

1 WriteDefaultsj Digest Close) I

_________ _______ _ j

Figure 1. FSD window. FSD is a stand alone tool that takes as input one or more 
sequences and outputs the band and size files in a FPC format.

fingerprint. If the simulated fingerprint is very different from the lab 
fingerprint, this could possibly indicate misnamed clones or an incorrect 
sequence assembly. The second main motivation is the large amount of data 
publicly available from Genbank, where a percentage of the sequenced clones 
are not from our FPC map. With this sequence data, many new fingerprints 
can be generated. By adding in silico fingerprints from sequences generated 
at other labs, we would confirm our contig assembly, join additional contigs 
in FPC, anchor more contigs, and provide an integrated map of sequence 
from many sources.

FSD will take as input one or more sequences, producing bands and sizes 
files. The sizes file is a list of resulting fragment sizes when a sequence file 
is cut using a specified restriction enzyme. In order to convert the sizes to 
migration rates, the standard file is used. The standard file is created at the 
beginning of the fingerprinting project. When a gel is run, the set of standard 
markers (i.e. fragments) are also run; these markers have known rates and 
sizes so that the rates of the new clones can be normalized by Image. FSD
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fits a cubic spline curve to the standard values. It then converts the sizes to 
migration rates using this spline curve.

For our rice project, a cron job downloads an incremental update file 
from Genbank every evening that contains all of the previous day’s updates 
to Genbank. This file is scanned for Genbank entries pertaining to the 
organism ‘Oryza sativa'. These entries are parsed out and put in separate 
file, named by the Genbank accession number associated with that entry. 
These files are then run through FSD to generate clones for that sequence. A 
remark file is generated at the same time that can be imported into FPC to 
comment the clones with their associated chromosome and also credit the 
clone to the person who submitted it to Genbank. The clone name is the 
Genbank accession number followed by “sd l”; if the sequence is over 180 
kb, it is split up into overlapping sequences labelled “sd2”, etc. Using this 
information we can validate clone and contig placement on chromosomes. 
We refer to these clones as the SD clones (see Figures 3 and 4).

BSS (BLAST Some Sequence)

Given that the clones in an FPC map have STCs, sequence can be 
mapped to the clones in the following two ways: The next clone for 
sequencing is selected by comparing the STCs with a new sequence, finding 
the one closest to the end of the clone and verifying the results by looking at 
the gel image [Hoskins et al., 2000]. Sequence from markers has been 
compared to STCs to anchor contigs [Yuan et al., 2001]. In both cases, much 
of this process is automated by BSS, saving the biologist time spent 
examining results, and allowing more experimentation with search 
parameters. BSS uses the popular BLAST software [Altschul et al., 1997], 
which provides results in a format that the biologist is familiar with. In 
addition to mapping sequence and markers to the STCs, the BSS allows 
mapping of marker sequence to genomic sequence associated with clones in 
the map. The BSS mappings are summarized in Table 2.

These mappings can be run on a sequence associated with a clone in a 
contig or on a directory of sequences. The database sequences (STC or 
genomic) must be associated with clones in FPC; this association is done by 
having the FPC clone name be a substring of the STC or genomic sequence 
name. The function can be run in contig mode, in which only the sequence 
within a contig is searched, or in batch mode, in which all sequences in
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Query Database
Sequence STC
Marker STC
Marker Sequence

Table 2. BSS mappings o f Q ueryD atabase.

the database are searched. In this section, we will look at three tasks that 
can benefit from such procedures.

Picking a minimal tiling path (MTP)

For this task, a minimally overlapping set of clones is selected for 
sequencing. Note that it costs a lot of extra effort if there is a gap between 
two supposedly overlapping clones, or if their overlap is large causing too 
much redundant sequencing. The MTP clones may be picked by viewing the 
fingerprints of the adjacent clones. The benefits of this method are that it 
gives orientation information and many clones can be selected without 
having to wait for the sequence of a clone. The disadvantage is that a large 
piece at the end of a clone may not be detected by electrophoresis; by only 
looking at the fingerprint, what appears to be a minimally overlapping clone 
may actually overlap a lot. Another approach is to query a database of STCs 
with a sequenced clone to determine the next clone to sequence. The 
advantage of this method is that when a hit is found near the end of a clone, 
the overlap will probably be minimal. The disadvantage is that when run 
against all the STCs, this produces a large number of false hits that the user 
must filter through. These false hits occur due to the presence of repetitive 
sequence and there is error in the STC sequence as it is single pass sequence. 
A second problem is that a large number of STCs are misnamed. A third 
problem is that this approach does not show orientation, that is, a STC may 
hit near the end of the clone but whether it extends away from the clone or 
into the clone is often not obvious. It is therefore vital to confirm these hits 
by linking each hit to a clone and viewing the results on the physical map.

With BSS, this is done by selecting a Sequence-^ STC mapping in contig 
mode, setting the query to the clone’s sequence file, and setting the database 
to the STC library. After setting any desired BLAST parameters, a Current 
Contig search is performed to search the STCs of clone within the current
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contig, and/or a Contig Ends search is performed to search the STCs from all 
clones at the end of contigs. A summary of the resulting hits and their quality 
is provided in the BSS Results display and the exact alignment details may 
also be viewed. If the hits are deemed significant, they may be added to the 
FPC map either as electronic markers or as remarks. From these results, one 
can easily select the clone with minimal overlap and confirm the overlap by 
looking at the fingerprints.

Merging contigs

Often, fingerprints do not give enough information to identify 
overlapping clones. Even with 20x coverage, this problem still exists since 
usually 70% of the bands must be shared between two clones to rule them as 
overlapping. Because of these apparent gaps in the map, the physical map of 
a single contiguous segment often takes the form of several contigs. These 
contigs must be manually examined to determine which contigs should be 
merged. Analyzing the fingerprints close to the ends of contigs with a less 
stringent cutoff is generally used to determine which contigs to merge. 
Furthermore, sequencing a clone close to the end of contig, querying it 
against a STC database, and looking at hits close to the ends of contigs 
provides additional, more fine-grained information. For this task, BSS helps 
us identify potential merges. If significant STC hits occur in another contig, 
that contig may be merged with the current one. The setup is identical to the 
one used when picking a MTP. However, a Contig Ends search will always 
be performed and using the batch mode allows many sequences to query the 
database. Figure 2 shows an example of BSSing a directory of 5x draft 
sequences against the STC database.

Anchoring contigs

When sequence is associated with genetic markers, the markers may be 
placed on the map electronically by querying the STC or clone sequence 
database for matches to the marker sequence and positioning the marker 
where hits occur. If we wish to query the STC database for hits, we will
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Figure 2. BSS windows, (a) The driver window for running BSS in batch mode. A 
list o f the result files is shown at the bottom, (b) The setup window for selecting 
function, directories and files, (c) A selected results file is shown in the results 
window for a Monsanto sequence file o f 5x coverage which assembled into many 
sequence contigs, referred to as SeqCTG. (d) The alignment of one SeqCTG to an 
STC.
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select the Marker->STC mapping. If we wish to query a set of sequences 
with corresponding clones in the physical map, we will select the 
Marker-^Sequence mapping. The batch mode would be the most useful for 
this option, as it would be typical to want to map all the markers to any 
contig.

The following scenario gives us an example of an application for the 
Marker->Sequence mapping. Sequence is downloaded from GenBank via the 
Internet, and band files are created from the sequence using FSD (previously 
described), which allows us to add the sequence as clones to the FPC map. 
Marker sequences then search these clone sequences for hits. If significant 
hits should occur, we can anchor contigs based on the information. Most 
importantly, all of these steps can be performed without any lab work.

All three problems just described demonstrate the advantages of 
integrating the physical mapping approach with sequence comparisons. By 
filtering out unwanted hits, and allowing the user to view results in light of a 
physical map, BSS effectively reduces the tedious work of sorting through 
pages of results, and opens up new opportunities for solving problems arising 
during map building and sequencing.

WebFPC

FPC is a very powerful and sophisticated program. However, there are 
some users for whom all this power is far more than they need. These 
researchers are simply interested in viewing the data, nothing more. For these 
researchers, WebFPC was created. Written as a Java applet, WebFPC 
provides the user with an easy way of viewing physical maps simply by 
clicking on a link in a web page; see Figure 3 for an example. The applet 
locates and downloads the data automatically. Because of the amount of data 
involved, a few server side scripts have been developed to separate and 
compress the data to speed up download time.

In order to integrate WebFPC maps with other relevant databases around 
the world, we have set up two mappings (see Table 3 for rice mappings). The 
first allows any external site to start up the Java Applet for a particular contig 
with a given clone or marker highlighted. The second allows any external site 
to send us a file of clones and/or markers for which they have Web-based 
information, a URL and a database name. We only need to add their file to a 
directory of files and run a script. Thereafter, their database will be listed on 
the database pull-down button for a contig, and when a clone or marker is
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Rice

WebFPC

Links:

Genbank.

Gramene

http: ://w ww.genome.clemson.edu/projects/rice/fpc

Rice

Status

Links:

WebFPC

http:://www.genome.clemson.edu/projects/rice/ccw

Gramene Links:

WebFPC

http://www.gramene.org

Table 3. URLs for Rice FPC.

selected, it will say if there is a clone or marker in the external database, and 
if so, the user can request it.

Results from Our Rice FPC Map

Rice FPC has 68k clones (~20x coverage) from two ВАС libraries, one 
cut with £coRI and the other cut with HindiII. We have 1202 markers and 
706 genetic markers from the Japanese High Density Genetic Map [Sasaki 
and Burr, 2000]. By hybridising genetic markers to clones, the contigs are 
ordered and anchored to the chromosomes. Approximately 90% of the 
genome is covered by anchored contigs. We also have STCs for about 80% 
of our ВАС clones. The CCW consortium (CUGI: Clemson University 
Genome Institute, CSHL: Lita Annenberg Hazen Genome Sequencing Center 
at Cold Spring Harbor Laboratories, GSC: Washington University Genome 
Sequencing Center) are sequencing and annotating the short arms of 
chromosomes 3 and 10.

A total of 346 sequences from chromosome 1 have been submitted to 
Genbank by the RGP (Rice Genome Program, http://rgp.dna.affrc.go.jp) as of 
September 2001. These clones are not from our rice FPC but are BACs and 
PACs from the RGP minimal tiling path. These have been downloaded, run 
through the FSD program, and added to the rice FPC file automatically. The 
map locations of the SD fingerprints were in agreement with the chromosome 
anchoring and marker orders determined during physical map construction of

http://www.genome.clemson.edu/projects/rice/ccw
http://www.gramene.org
http://rgp.dna.affrc.go.jp
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Figure 3. WebFPC with SD clones. The clones ending in ‘sd’ are from digesting in 
silico. They are coloured yellow to represent finished clones; the grey clones are the 
corresponding true fingerprints.

their contig for 305 of these fingerprints, leaving 41 clones as singletons. Of 
these 41 clones, 23 could be positioned correctly by lowering the cutoff. Of 
the remaining 18 clones, 12 were located in low coverage regions, 4 were too 
small to match standard size clone fingerprints, one clone was misassembled, 
and one clone mapped to the wrong location. The WebFPC display in Figure
4 shows the minimal tiling path of a subset of the Japanese clones. A total of 
1352 rice sequence clones have been downloaded from Genbank and can be 
viewed from the WebFPC for rice; see Table 3 for the URL.

As mentioned, we anchor contigs based on the Japanese High Density 
Genetic Map. FPC takes as input a framework file of ordered markers with 
their locations. This function was written for the chromosome specific 
Sanger Centre maps. We use it for a whole genome map as follows: The
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Figure 4. Anchored contig. The clones ending in ‘sd’ are from digesting in silico the 
Japanese clones. In the contig remark, additional information is given as to the 
amount of evidence for the anchoring:

Chrl [32 Chr2-1 ChrlO-1 Fw7 S eq 27]:: 
indicates that this contig has 7 framework markers and 27 SD clones giving a total o f  
34 hits, where 32 o f the hits were on chromosome 1, and the other two hits were on 
chromosome 2 and chromosome 10. Note that the “Update ChrN contig remark” in 
FPC puts the remark at the beginning o f the contig remark. Anything before a 
does not get removed unless explicitly requested. Automatic remarks are added after 
the



74 С. Soderlund el a l.

location can be three digits followed by a digit and one position of accuracy. 
Proceeding the three digits is the chromosome number, e.g. 1001.3 indicates 
the marker is at location 1.3 cM on chromosome 1, whereas 10001.3 is at 
location 1.3 cM on chromosome 10. The SD sequence provides a second 
way to anchor contigs and verify existing anchored contigs. A routine has 
been added to FPC, located on the Project Window/Menu Window, button 
name “Update ChrN contig remark”, which does the following: For each 
contig, it counts the number of anchors associated with each chromosome, 
and it parses the remarks associated with SD clones and counts the number 
associated with each chromosome. Figure 4 shows a contig with a ChrN 
contig remark, where there are ambiguities. WebFPC only shows the highest 
hitting chromosome that a contig hits.

We have used the BSS for selecting a minimal tiling path for rice genome 
sequencing. We have also used it to map the Monsanto draft [Barry, 2001]. 
Monsanto has generated 5x coverage of about 3000 ВАС clones covering the 
approximately 50% of the rice genome. They have made available to us the 
sequence files. Robin Buell of The Institute of Genomic Research provided 
us with 303 assembled sequence files and ВАС end sequences on 
chromosome 3 and 10. We ran the Sequenced STC function in batch mode, 
which mapped all the draft to our sequence. Due to the high amount of 
repetitive sequence, we did not add the sequence as markers as it was too 
much data. By viewing the result files, we used it to help select the minimal 
tiling clones and fill gaps. We selected minimal tiling BACs by examining 
the BSS output of distal contigs in each Monsanto ВАС. The amount of 
sequence overlap (one can get the information based on the STC alignment 
from the BSS output) was calculated between two BACs and then a few 
candidates’ fingerprints were compared from adjacent clones to select the 
best clones to be sequenced. We successfully selected more than 30 clones on 
chromosome 3 with the BSS function. Moreover, in some cases, we 
identified a sequence contig that contains STCs of two adjacent sequenced 
BACs. The direction of STC alignments was compared to the FPC clone 
order to confirm the possibility of gap or overlap. Simply, if the direction of 
STC alignments point towards each other, then it is an overlap and if STC 
alignments point in different directions, then it is a gap. By doing this, we 
closed three gaps (around lOkb or less) on short arm of chromosome 10.

Table 3 shows the URLs to web based Rice FPC maps. The Chromosome 
10 status page has links to the WebFPC map. WebFPC has links from SD 
clones back to the original Genbank record and to the Gramene clone 
description [Ware et al., 2002]. And we are working with other groups to link
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databases, e.g. the Gramene map, which is a comparative mapping resource 
for grains, links back to the Rice FPC map.

3.4 Discussion

Sequences from various sources are being generated and this sequence 
can be mapped to the FPC map using the FSD and BSS tools. Additionally, 
the FSD software helps validate clones, merge contigs and anchor contigs. 
The BSS software helps select a minimal tiling path, merge contigs, and we 
are now using it to further anchor contigs. The genome produces massive 
amounts of data. It takes time and energy to consolidate the data, and doing 
the mundane parts of this work is prone to error. Much less, the results are in 
many places. The mapping of sequence to a FPC map using FPC compatible 
functions will reduce error and make the ability to do the mapping available 
to many laboratories, even those with small to non-existent bioinformatics 
staff. The WebFPC allows everyone to view our data and link with other 
databases, hence, greatly supporting collaborative efforts.

The mapping and sequencing of rice is an international effort, and our 
software development over the last year greatly aids this international effort 
by consolidating and displaying data, as follows: we use the Japanese High 
density map to order our contigs, and then add clones from around the world 
through the SD (simulated digest) clones, and display the integrated rice map 
on WebFPC. We are now using BSS to map more of the 3267 Japanese High 
Density markers to our map based on the sequence of these markers; when a 
new marker gets added to FPC that is in the framework map, the contig gets 
automatically anchored. We will then proceed to map ESTs from various 
plants to our map, which will work exactly the same as mapping the genetic 
markers.

Mapping ESTs, marker sequence, and genomics sequence from other 
genomes will be a great aid to comparative genomics. The genomes will not 
need to be sequenced completely in order to get valuable cross information. 
And as discussed in the introduction, this is exceptionally valuable to plant 
genomes, as various laboratories generate regional or function specific 
sequences, which can be placed on a global FPC map.
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Chapter 4

Graph Theoretic Sequence Clustering Algorithms 

and Their Applications to Genome Comparison

Sun Kim

4.1 Introduction

Recent advances in both sequencing technology and algorithmic 
development for genome sequence software have made it possible to 
determine the sequences of whole genomes. As a consequence, the number of 
completely sequenced genomes is increasing rapidly. In particular, as of 
December 2001, there are more than 65 completely sequenced genomes in 
the GenBank. However, algorithmic development for the genome annotation 
is relatively slow and annotation of the completely sequenced genome 
inevitably relies on human expert knowledge. Since the accurate annotation 
of genomic data is of supreme importance, human experts need to annotate 
the genomic data. This manual annotation process on a large amount of data 
is prone to errors. The quality of annotation can be significantly improved by 
using robust computational tools. One of the most important class of 
computational tools is the sequence clustering algorithm. Recently developed 
clustering algorithms [Tatusov et al., 1997; Matsuda et al., 1999; Enright and 
Ouzounis, 2000; Matsuda, 2000] were successful in clustering a large 
number of sequences simultaneously, e.g. whole sets of proteins from
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multiple organisms. In this chapter we review these algorithms briefly and 
present our sequence clustering algorithm BAG based on graph theory.

4.1.1 Database search as a genome annotation tool

Suppose that we annotate a set of sequences S= {s1} s2> 5,,}. The most 
widely used method is to search for each sequence $,• against the sequence 
databases. If there is a strong evidence in terms of statistical analysis value 
such as E-value, we may conclude that belongs to a certain family Fj. 
Otherwise, we skip the annotation of sL

One of the main problems with the database search strategy is that the 
search result needs to be evaluated manually by human experts. This process 
requires too much human intervention, and the quality of annotation largely 
depends on the knowledge and work behavior of human experts. In addition, 
this process assumes that the database annotation and sequence classification 
are correct. If neither is correct, then annotation errors could propagate.

Issues with the database search

We limit our discussion to issues related to the sequence analysis: for 
example, the accuracy of the annotations in the database is not discussed 
here. Although the database search is probably the most widely used tool for 
the annotation of sequences, there are three main issues that users have to 
deal with.

The cutoff threshold setting issue

The database search with a query sequence returns matches that 
sometimes are not biologically related to the query, i.e. false positives. For 
this reason, each match is associated with a score that shows a statistical 
significance of the match. The statistical scores, such as Zscore and Evalue, 
are very effective in ranking the matches in relation to the biological 
significance, often termed as homology. Thus, biologists select a certain 
threshold score to filter out false positives and matches above the score are 
trusted as true positives. A strict cutoff threshold may result in discarding 
many matches that are homologous to the query sequences, i.e., too many 
false negatives, while a relaxed cutoff threshold may result in including many 
false positives. Due to this difficulty, a cutoff score is subjectively
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determined and biologists need to look at search results one by one even 
when there are many query sequences to be searched for. In addition, it is not 
possible to set an absolute threshold value for database searches with an 
arbitrary query sequence. In general this is an issue for any kind of biological 
sequence analysis.

The remote homology detection issue

There are cases where two sequences, Si and s2, are not similar but share 
the same functions. In these cases, the database search with Sj may miss the 
match s2. This problem can be effectively addressed by including 
intermediate sequences [Park et al., 1997]. We can utilize this fact to identify 
remote homology sequences by iteratively performing the search with strong 
sequence matches from the previous search (see Figure 1). Indeed, there are 
several database search algorithms that are very successful in detecting 
remote homologous sequences by automatically incorporating intermediate 
sequences. Among them is PSI-BLAST [Altschul et al., 1997], which 
iteratively searches the database with a profile constructed from a previous 
database search. The issue here is to determine which sequences should be 
included as intermediate sequences with which the search can be iterated.

The transitivity bounding issue

Iterative searches with intermediate sequences can be viewed as building 
transitive relationships from sequence st to sequence sk by chaining a 
relationship from Sj to Sj and another from Sj to s*. Unfortunately, chaining can 
lead to false positives, so care must be taken when to terminate the chain. For 
example, the fourth iteration with s4 in Figure 1 would result in identifying 
false positives.

Assuming that the geometry of sequence relationships is known, these 
three issues are illustrated in Figure 1. After the initial database search with 
q, we choose a sequence among the matches as the next query, i.e. an 
intermediate sequence. Which sequences should be the query for the next 
round iteration? Figure 1 shows the second round search with s i. Why not 
with s2 or both? This is the selection of intermediate sequences in the remote 
homology detection issue. In this example, the search stops at the third 
iteration. Another iteration would result in adding mostly false positives. 
How many iteration would be appropriate? It obviously depends on the
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Figure 1. Illustration of database searches assuming that the geometry of sequence 
relationships is known. Small circles denote sequences: filled ones are of the same 
family and unfilled ones are not. Big circles with centers, q, si, and s3, denote 
database searches with the sequences respectively. The figure represents a series of 
three iterated database searches with queries, q, si, and then s3.
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query, the database, and the sensitivity of the search tool, and there is no 
absolute answer. This is the transitivity bounding issue.

4.1.2 Clustering algorithms as a genome annotation tool

Clustering algorithms use structures of sequence relationships to classify 
a set of sequences into families of sequences, F = {Fh F2, ..., Fn}. While 
generating F, the remote homology detection issue and the transitivity 
bounding issue are systematically addressed with the structures of sequence 
relationships used by the clustering algorithm. Any two sequences, s, and Sj, 
in the same family Ft = {..., sit Sj, s*,..} are related by intermediate sequences, 
say Sk, even when there is no observable relationship between s, and s,, thus 
the remote homology detection issue is addressed. The sequences j, and s,„ in 
two different families could be related through intermediate sequences smJ, ..., 
smi but such chaining of sequence relationships is blocked if the structure of 
sequence relationships used in the clustering algorithm classifies s{ and s„, 
into two different families. Thus the transitivity issue is addressed. In 
addition, clustering algorithms simultaneously analyze all input sequences, 
not one by one. Thus there is only one analysis output, though it may contain 
a large amount of information, which needs to be verified by human experts.

In addition, clustering algorithms generally use only sequence 
information, not annotations. Consequently results from clustering are not 
sensitive to potential errors in annotations, which may be used for 
verification of previous annotations in the database.

Recently developed sequence clustering algorithms were successful in 
clustering a large number of sequences into sequence families of highly 
specific categories. These clustering algorithms used graph theory explicitly 
or implicitly. The next section will briefly summarize these clustering 
algorithms. We will then discuss our graph theoretic sequence clustering 
algorithm.

4.2 Preliminaries
In this section, terminolgies on graphs are introduced. The definitions are 

drawn from [Cormen, 1989].
A graph G is a pair (V,E), where V is a finite set and E is a binary relation 

on V. The set V is called the vertex set of G\ its elements are called vertices.
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The set E is called the edge set of G, and its elements are called edges. A n 
edge from и to v is denoted as (w,v). If (w,v) is an edge in a graph, vertex и is 
adjacent to vertext v. The edge (w,v) is incident to vertex и and vertex v. The 
degree of a vertex v, denoted by deg(v), is the number of edges incident to v. 
A path of length к from a vertex и to a vertex u! is a sequence <v0, v/,..., v*> 
of vertices such that u= v0, w'= v*, and (v,-./, v,) is in E for / = 7,2,...,/:. If there 
is a path p from и to u\ u' is reachable from и via p. A path is simple if all 
vertices in the path are distinct, i.e., v, Ф v; for 0 < i j  < k.

A graph G' = (V,E) is a subgraph of G = (V,E) if V с: V and E' q E. A 
subgraph of G induced by V  is the graph G' = (V',E'), where E' = {(u, v)e E: 
u,v e V'}. In a directed graph, a path < v0, V/,..., v*> is said to be a cycle if Vo 
-  v* and к *  0. A cycle is simple if all vertices are distinct.

An undirected graph is connected if there is a path for every pair o f 
vertices. The connected component of a graph is a subgraph where any two 
vertices in the subgraph are reachable from each other. An articulation point 
of G is a vertex whose removal disconnects G. For example, in Figure 2 the 
removal of a vertex s5 disconnects G. A biconnected graph is a graph where 
there are at lest two disjoint paths for any pair of vertices. A biconnected 
component of G is the maximal biconnected subgraph. In Figure 2, a subraph 
Gj induced by vertices {s2, s3, s4) is a biconnected graph but it is not 
maximal since another subgraph G2 induced by vertices {sJ, s2, s3, s4, 55} is 
biconnected and G; is a subgraph of G2. There are two biconnected 
components, {si, s2, s3, s4, $5} and {s5, 56, s7, s8, s9} of G.

A complete graph is an undirected graph in which every pair of vertices 
are adjacent. A hyper graph is an undirected graph where each edge connects 
arbitrary subsets of vertices rather than two vertices.

4.3 Sequence Clustering Algorithms Based on Graph Theory

Given a set of biological sequences, S = {5/, s2, .... pairwise sequence 
relationships can be established using pairwise sequence alignment 
algorithms such as FASTA [Pearson et al., 1988], BLAST and PSI-BLAST 
[Altschul et a l , 1990; Altschul et al., 1997], and Smith-Waterman algorithm 
[Smith and Waterman, 1981]. A pairwise relationship (sif Sj) can be thought 
as an edge between two vertices s, and Sj in a graph. In this way, we can build 
a graph from a set of pairwise matches. The graph can then be used to build a 
structure among sequence relationships, which represents families of 
sequences.
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Figure 2. Biconnected components and articulation points. The vertex s5 is an 
articulation point since removing the vertex results in separating the graph.

In this section, we summarize recent developments in sequence clustering 
algorithms that were successful in clustering a large number of sequences, 
e.g., whole sets of predicted proteins from multiple genomes, into families of 
specific categories. The general approach can be summarized as below.

1. Compute similarities for every pair of sequences.
2. Build a sequence graph G from the pairwise matches above a preset 

cutoff threshold.
3. Generate a set of subgraphs { G]f G2, ..., Gn } with respect to certain 

graph structures employed in the clustering algorithm.
4. The set of vertices in each subgraph G, forms a family of sequences.

We will call G the sequence graph. Graph based clustering algorithms 
need to handle multidomain sequences as they generate a set of families. 
Multidomain sequences belong to multiple families, thus the vertex sets of 
subgraphs are not disjoint. However, the edge sets of subgraphs are expected
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to be disjoint since a multidomain sequence has multiple edges, probably as 
many as the number of domains in the sequence, to other sequences. In this 
sense, the problem we are discussing is the clustering problem for pairwise 
sequence relationships rather than for sequences themselves. However, all 
sequence clustering algorithms generate a set of families, each of which is a 
set of sequences. Thus the graph problem we are dealing with is a graph 
covering problem, where subgraphs can share the same vertices, rather than a 
graph partitioning problem, where no two subgraphs share the same vertices.

This section summarizes four sequence clustering algorithms based on 
graph theory for the sequence clustering problem [Tatusov et al., 1997; 
Matsuda et al., 1999; Enright and Ouzounis, 2000; Matsuda, 2000]. Although 
GeneRAGE [Enright and Ouzounis, 2000] does not explicitly use specific 
graph properties for clustering sequences, we will provide our interpretation 
of the algorithm in terms of graph theory.

4.3.1 Matsuda, Ishihara, and Hashimoto algorithm

The Matsuda, Ishihara, and Hashimoto algorithm [Matsuda et al., 1999] 
introduced a graph structure called p-quasi complete graph for describing a 
family of sequences with a confidence measure and used the graph structure 
to generate a set of subgraphs from the sequence graph.

A set of sequences, S={sj, s2, ..., $„}, that belong to the same family, will 
have at least one conserved domain, and subsequences corresponding to the 
same domain will share certain levels of sequence similarity. If all 
subsequences are highly similar, every pairwise sequence relationship (sh Sj), 
can be detected and the resulting graph will be a complete graph, i.e., every 
pair of vertices is connected. However, some sequences in the same family 
may be distant in terms of similarity, and we cannot expect a sequence graph 
from the sequences in the same family to be complete. Thus, a graph property 
called p-quasi completeness was proposed. A graph is a p-quasi complete 
graph if deg{v) > p for all v e  V.

Multidomain proteins are handled by formulating the sequence clustering 
problem as a graph covering problem, where a multidomain sequence may 
belong to more than one subgraphs, i.e., covers. The problem is then to 
search for the minimum number of covers of the given sequences such that 
each cover is represented as a maximal p-quasi complete subgraph. Matsuda 
et al. [1999] proved that the p-quasi complete subgraph covering problem is 
NP-complete. Thus a heuristic algorithm was proposed.
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In an experiment of clustering 4,586 proteins from E. coli, they were able 
to classify the protein set into 2,507 families with p = 0.4 and 2,747 families 
with p = 0.8 with a SW score cutoff value of 100. They also reported 
discovering multidomain proteins.

This clustering algorithm used p-quasi completeness of a subgraph as a 
clustering confidence measure. Thus the remote homology detection and 
transitivity bounding issues are handled with /?-quasi completeness. 
However, the cutoff threshold setting issue still remains unresolved since 
users need to set the value without guidance. In addition, setting the 
connectivity ratio remains unresolved as discussed in the paper. The 
complexity of the algorithm is 0(n4) where n is the number of sequences.

4.3.2 Mcitsuda algorithm

Matsuda [2000] proposed an algorithm for detecting conserved domains 
in a set of protein sequences using the density of a graph for clustering 
measure. The algorithm works as below.

1. All possible subsequences (blocks) of length / are generated from a 
set of protein sequences and all pairwise comparisons of blocks 
are computed.

2. A block graph is computed using a set of pairwise matches whose 
scores are greater than a preset cutoff value.

3. A set of maximum density subgraphs of the block graph are 
computed.

4. Overlapping blocks are combined into larger blocks.

The density of a graph G, is defined as an average weighted sum of all 
edges in G„ where the weight of an edge is defined as the similarity score.
The maximum density subgraph G* of G, is a subgraph whose average
weighted sum of its edges is the maximum among all possible subgraphs. 
This can be computed in 0(\V\3) where IVI is the number of vertices. This 
algorithm was able to detect multidomain proteins in experiments with a set 
of transcription regulation proteins, a set of E. coli two component system 
proteins, and a set of 570 factor proteins.

This clustering algorithm used the density as a clustering confidence 
measure. Thus the remote homology detection and transitivity bounding 
issues are handled with the maximum density of a subgraph that does not
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require user input parameters, in contrast to the value of p in the /?-quasi 
completeness in [Matsuda et a l , 1999]. The cutoff threshold setting is still an 
issue, but a sufficiently low cutoff value can be used for the clustering 
analysis. The complexity of the proposed algorithm is 0(\\P\\3) where 11PII 
denotes the total sum of input protein sequences.

4.3.3 COG: cluster o f orthologous groups

Tatusov et al. [1997] proposed an effective method for clustering proteins 
from completely sequenced genomes and constructed a database of protein 
families called COGs (Cluster of Orthologous Groups) [Tatusov et al., 
2001].

The COG database was created using the concept of orthologous and 
paralogous genes. Orthologs are genes in different species that evolved from 
a common ancestral gene by speciation. Paralogs are genes related by 
duplication within a genome. Orthologs are modeled as a genome context 
best hits (BeTs) and extended later by clustering analysis. The outline for 
COG database construction is as follows.

1. Perform all pairwise protein sequence comparisons.
2. Detect and collapse obvious paralogs, that is, proteins from the same 

genome that are more similar to each other than to any proteins from 
other species.

3. Detect triangles of mutually consistent, genome-specific best hits 
(BeTs), taking into account the paralogous groups detected at the 
above step.

4. Merge triangles with a common side to form COGs.
5. A case-by-case analysis of each COG is performed. This analysis 

serves to eliminate false-positives and to identify groups that contain 
multidomain proteins by examining the pictorial representation of the 
BLAST search outputs. Multidomain proteins are split into single
domain segments and the steps 2 - 5 are repeated.

6 . Examine large COGs visually with phylogenetic analysis and split 
them into small clusters if needed.

The use of BeTs, the best hit in the context of genomes, for establishing 
sequence relationships handles the cutoff threshold setting issue: once a 
sufficiently low cutoff value is set, matches through BeT can be trusted as
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true positives. The requirement of a triangle of BeTs and subsequent merging 
of the trianlgles becomes an effective way of clustering sequences. From a 
graph theoretical perspective, the BeT graph is a directed graph and the 
resulting cluster requires at least being a strongly connected component. It 
would be interesting to study the characteristics of the graph structure used in 
the COG database construction.

As a result of using the strict sequence relationship, i.e., BeT, and the 
graph structure, the COG database was successful clustering proteins from 
many completed genomes into families of very specific categories. As of 
December 2001, there are 3,311 COGs from 44 complete genomes.

4.3.4 Gene RAGE

Enright and Ouzounis [2000] proposed a sequence clustering algorithm 
based on single linkage clustering after the symmetrification and the 
multidomain protein detection steps. The outline of the algorithm is as 
follows.

1. Given a set of sequences, £={$/, the pairwise sequence 
relationships are computed using BLAST 2.0 [Altschul et al.,
1997] after masking compositionally biased regions. Any pairwise 
match (Si, Sj) with Evalue < 10'10 is accepted and recorded as T (sit 
Sj) = 1 in a matrix T.

2. The symmetrification step enforces a symmetry of a pairwise 
relationship: T (sh Sj) = 1 if and only if T (Sj, si) = 1. Note that the 
pairwise comparison is not symmetric. For any pair T (sjy sj) Ф T 
(s„ Sj), a more rigorous sequence alignment with SW algorithm 
[Smith and Waterman, 1981] is performed. If the Zscore is 
greater than 10, both T(Sj, sd and T (siy Sj) are set to 1. Otherwise, 
both T (Sj, si) and T (Sj, Sj) are set to 0.

3. The multidomain protein detection step checks for a cycle among 
three proteins. If T (s s k) = 1 and T (Sj, sk) = 1, i.e., s,• and Sj are 
matched to the same sequence sk, a symmetric pairwise 
relationship between s,- and Sj is enforced. If the symmetric 
relationship does not hold, sk becomes a candidate for a 
multidomain protein. Note that both T (Sj, Sj) and T (Sj, si) are set 
to 0 if sk becomes a multidomain candidate.
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4. Single linkage clustering is iteratively performed for any sequence 
that is not already in the cluster.

The algorithm clustered the set of proteins from M. jannaschii into 61 
families. Among them, 58 families were consistent with manual annotation 
while 3 families have conflicting annotations. The multiple sequence 
alignments of 3 families were consistent, indicating possible incorrect 
annotations. (The multiple sequence alignments were not shown in their 
paper.) The algorithm was successful in finding muldomain proteins in the 
genome. The paper also reports the discovery of 294 new families in the 
PFAM [Bateman et al., 2000] database release 5.

The multidomain detection step refines the sequence relationship to have 
a triangle relationship for every protein. Thus, from a graph theoretic 
perspective, their clustering algorithm does require a graph structure similar 
to the COG database construction algorithm.

4.4 A New Graph Theoretic Sequence Clustering Algorithm

We present a new graph theoretic sequence clustering algorithm that 
explicitly uses two graph properties: biconnected components and 
articulation points (see Figure 2). A biconnected component corresponds to a 
family of sequences and an articulation point corresponds to a multidomian 
protein. Since an articulation point is the only vertex that connects multiple 
biconnected components, i.e., multiple families, it is intuitive to consider 
each articulation point as a candidate for multidomain sequence.

4.4.1 The basic algorithm

A simple version of our algorithm follows the general procedure 
described in Section 4.3.

Given a set of sequences 5= {5/, s2, •?,.},

1. Compute similarities (s,-, sj) for all 1 < i,j  <n and i Ф j.
2. Build a sequence graph G from the pairwise matches above a 

preset cutoff threshold. Generate a set of subgraphs, {Gj, G2, ...» 
Gm}, each of which G, is a biconnected component.
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3. Then a set of vertices in each subgraph G, forms a family of 
sequences and each articulation point becomes a candidate for 
multidomain sequence.

To reduce the computation time in Step 1, we can use well accepted 
approximation algorithms such as FASTA [Pearson et al., 1988] or BLAST 
[Altschul et al., 1990; Altschul et a l 1997]. We simply choose FASTA for 
the pairwise computation, and so the computation is FASTA (5/, S) for all
1 < i <n.

The complexity of the algorithm is 0(n2) for n sequences. Step 1 requires 
n x  (n-1) pairwise comparisons and Step 3, the computation of biconnected 
components, is proportional to the number of edges in the graph, i.e., the 
number of pairwise matches above a preset cutoff threshold. However, the 
algorithm runs much faster in practice. Use of the FASTA algorithm for 
pairwise matches requires n searches against S and each FASTA search with 
Sj, FASTA(.s„ S), runs much faster than (n-1) pairwise sequence comparisons 
between s, and Sj for 1 < j<  n and i Ф j  since FASTA is an approximation 
algorithm with hashing techniques. The number of edges is much smaller 
when we discard pairwise matches below the cutoff threshold. In cases where 
the clustering analysis can be done on precomputed pairwise databases such 
as [Cannarozzi, 2000; Gilbert, 2002] the complexity of our algorithm 
becomes linear in relation to the number of pairwise matches above a preset 
cutoff threshold. This computational efficiency becomes an critical feature 
for an extended version of the algorithm and addresses the cutoff threshold 
setting issue discussed in Section 4.1.1.

4.4.2 Result from application of the basic algorithm

We performed a clustering analysis of all 1,881 predicted protein 
sequences from Borrelia burgdorferifull (GENBANK accession number 
AE000783, 850 proteins) and Treponema pallidum (GENBANK accession 
number AE000520, 1031 proteins) with the Zscore cutoff of 200. 470 
families of 1,076 sequences are clustered with 42 multidomian candidates, 
excluding families that contain a single sequence (these families are 
uninformative). Most of the resulting families are clustered correctly with 
high precision according to the current annotation. For example, 102 
ribosomal proteins in the two genomes are grouped into 51 families of 2 
proteins according to subunits matching in the two genomes except SI
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subunit proteins. The S 1 subunit proteins were an interesting case with three 
families shown below. The sequence graph is shown in Figure 3.

Family 133

Articulation point: gi!3322552 to families: 133 134 135
>gil3322552lgblAAC65266.1l ribosomal protein SI (rpsA) [Treponemapallidum] 

>gil2688007lgblAAC66509.1l cytidylate kinase (cmk-1) [Borrelia burgdorferi]

Family 134

Articulation point: gil3322552 to families: 133 134 135
>gil3322552lgblAAC65266.1l ribosomal protein SI (rpsA) [Treponema pallidum] 

>gil3323244lgblAAC65881.1l tex protein (tex) [Treponema pallidum]

Family 135

Articulation point: gil3322552 to families: 133 134 135
>gil3322552!gblAAC65266.1l ribosomal protein SI (rpsA) [Treponema pallidum] 
>gil2688008lgblAAC66510.1l ribosomal protein SI (rpsA) [Borrelia burgdorferi]

From the annotations in the heading, it was not obvious that Families 133 
and 134 were clustered correctly. Thus, we performed protein domain search 
against PFAM [Bateman et al., 2000] at pfam.wustl.edu1 and Family 133 was 
confirmed to share Cytidylate kinase domain and Family 134 was confirmed 
to share SI RNA binding domain as shown in Table 1. Indeed, the sequence 
gi3322552, which was an articulation point, had both domains (see Table 1). 
The only concern was how to merge Families 134 and 135 into one. If we 
relax the cutoff threshold to Zscore of 150, the two families become one, i.e., 
single connected components as shown in Figure 4. However, the question is 
how do we know the cutoff threshold value 150 a priori? This is the cutoff 
threshold setting issue discussed in Section 4.1.1! This fundamental issue will 
be effectively addressed in the extended version of our algorithm described in 
the following section.

1 T he PFA M  version w e used is 6 .6 .
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Figure 3. A sequence graph with the Zscore cutoff threshold of 200. The numbers in 
parantheses denote the intervals o f the overlapping regions.

4.5 BAG: The Extended Clustering Algorithm

The basic algorithm in Section 4.4.1 is extended and called Biconnected 
components and Articulation points based Grouping of sequences (BAG).

4.5.1 Issues with the basic algorithm

There are several features of the basic algorithm presented in the previous 
section that need attention:
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Sequence ID from to Evalue Domain

gi3322552 129 281 1.40E-83 Cytidylate kinase
218 354 1.30E-07 SI RNA binding domain
395 432 0.0012 SI RNA binding domain
490 562 2.10E-21 SI RNA binding domain
575 649 2.50E-23 SI RNA binding domain
662 736 2.40E-17 SI RNA binding domain
749 825 1.40E-14 SI RNA binding domain

gi3323244 642 715 2.80E-22 SI RNA binding domain
gi2688007 59 211 2.30E-77 Cytidylate kinase
gi2688008 19 83 5.50E-09 SI RNA binding domain

184 257 3.40E-15 SI RNA binding domain
270 344 4.30E-21 SI RNA binding domain
357 430 2.40E-19 SI RNA binding domain
443 518 2.70E-08 SI RNA binding domain

Table 1. The Pfam search result for four proteins in Families 133, 134, and 135.

1. The cutoff threshold setting issue: as shown with the example of 
the SI and Cytidylate domain proteins, we do not know the cutoff 
threshold a priori, Zscore 150 for the example.

2. Merging families: Given a cutoff threshold, several families may 
need to be tested for merging as shown in the previous section.

3. Spitting a family: Given a cutoff threshold, a family may need to be 
tested for splitting into several ones.

4. Multidomain protein: How do we know an articulation point truly 
corresponds to a multidomain protein?

Each of these features will be explored in the following subsections.

4.5.2 Setting the cutoff threshold

We performed a series of clustering analyses with Zscore cutoff 
thresholds ranging from 100 to 1000 at 50 increment intervals for three sets
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Figure 4. A sequence graph with the Zscore cutoff threshold of 150. The numbers in 
parantheses denote the intervals o f  the overlapping regions.

of pairwise comparisons from B. burgdoiferis only, T. pallidum only and 
both genomes. Figure 5 plots the distributions of the number of biconnected 
components vs. Zscore cutoff thresholds and vs. SW score cutoff thresholds. 
We performed the two experiments to observe whether the resulting 
distribution would be significantly different for different scoring methods. 
Zscore is a statistical score that measures the likelihood of matches occurring 
by chance for a given database and its value depends on the size of the 
database. SW score is a sum of character match scores, and gap penalties and 
its value does not depend on the size of the database. The higher the score, 
the more significant a match is.

As we can observe in the figure, the number of biconnected components 
increases up to a certain value, 150 for Zscore and 100 for SW score, and 
then continues to decrease. The increase in the number of biconnected
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Figure 5. The distributions of the number of biconnected components vs. the Zscore 
cutoff thresholds (top plot) and SW scores (bottom plot).

components is intuitive, as a higher cutoff value will remove more false 
positives, thereby families of large size due to false positives being separated 
into several families. The decrease in the number of biconnected components 
is also intuitive as a higher cutoff value will remove more true positives, 
thereby more vertices become singletons, i.e., vertices without incident
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edges; note that singltons are not counted. We would expect that there exists 
a peak in the plot of the number of biconnected components vs. a score if the 
scoring method effectively models the pairwise sequence relationship. Zscore 
and SW score are well accepted scoring methods and have been verified 
empirically over the years in bioinformatics community. In this chapter, 
Zscore is used for the pairwise match score unless specified. Thus, by 
default, a stricter score means an increase in the score value, and a relaxed 
score means a decrease in the score value.

Note that the basic clustering algorithm runs in linear time in relation to 
the number of pairwise matches above a preset cutoff threshold after 
computing pairwise matches from a set of sequences. The series of clustering 
analysis with Zscore in Figure 5 took only 27 seconds on a Pentium IV 1.7 
GHz processor machine running Linux. This computational efficiency makes 
it possible to effeciently conduct the series of clustering analyses with 
varying cutoff thresholds to find the cutoff threshold, С тахыСопт that generates 
the maximum number of biconnected components. However, we need to 
consider the number of articulation points as articulation points are 
candidates for multidomain proteins. Figure 6 shows the number of

0 100 200 300 400 500 600 700 800 900 1000 
Zscore cutoff walue

Figure 6. The distribution of the number o f articulation points vs. Zscore cutoff 
thresholds.
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articulation points with respect to varying Zscore cutoff thresholds. The 
articulation points become candidates for multidomain proteins and need to 
be tested for having multidomain proteins: the test method will be described 
in the following sections. Thus, we would avoid to select the cutoff threshold 
with too many articulation points. Let NAPC be the number of articulation 
points at score C. One way to select the cutoff value is to use a ratio:

NAPC 
r =  c

where I is the interval of the score for the series of clustering analysis.

4.5.3 The overview of the extended algorithm

1. Build a graph G from the all pairwise comparisons result.
2. Run the basic algorithm with cutoff scores ranging from C| to C2 at 

each interval I and select a score, where the number of 
biconnected components is the largest, and another score, Carti, where 
the number of articulation points begins to decrease at a ratio r < A.

3. Select a cutoff score and generate biconnected components, Gi, 
G2, ..., Gn with a set of articulation points {Ai, A2, A m}

4. Iteratively split a biconnected component into several ones with more 
stringent cutoff scores until there is no candidate component for 
splitting.

5. Iteratively merge a set of biconnected components into one with 
relaxing the cutoff score to С^ысопп until there is no candidate 
component for merging.

The overall procedure can be summarized in two steps: (1) generation of 
candidate families and (2) refinement of the families by merging and 
splitting. The fundamental question is which biconnected components need to 
be refined. For this purpose, we propose two tests as below.

1. АР-TEST tests an articulation point for having potential 
multidomains.

2. RANGE-TEST tests each biconnected component for being a 
single family.
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Depending on the test result, splitting and merging operations are 
performed in a greedy fashion, i.e., once a subgraph is split or merged, it is 
not reconsidered for alternative splitting or merging. We will describe each 
test in detail.

To explain the details of this test, we introduce definition of notations.

Definition 1 MS(b„ denotes the match score between bj and eif and 
refers to the Zscore of a FASTA search unless specified.

Definition 2 Given a set of sequences, S={sj,s2,...,sJ, and its sequence 
graph G whose edges are defined by pairwise matches of S, A L IG N S  Sj) 

denotes a set o f a pair of intervals, { [(bih eu), (bjh ел )], [(bi2, ei2), (bj2, ej2)], 
•••> [(bjb eik), (bjh ejk)]} where each pair of intervals, [(Ьц, eu), (bjb ej,)] 
denotes the aligned regions between two sequences, (bn, et\) fo r s{ and (bjh eji) 
forsj.

Definition 3 Given a pair of intervals Р=[(Ьц, eu), (bj}, eji)], 
INTERVALl(P) denotes the first interval, i.e., (Ьц, eit) and 
INTERVAL2(P) denotes the second interval, i.e., (bjj, eji). LENGTH^,, 
e,)) denotes the length of the interval and is defined by e, - b, +1 if (bj < ej, 0 
otherwise.

Definition 4 Given a pair of intervals P= [(Ьц, eu), (bjj, eJ{)] and an 
interval l - ( l , , l2), PINTERSECT(I, P) returns an interval (b )h e)j), where
b ji = bjj + (bjnicrsect - Ьц) and e jj = ejj - (eu - ejntersect ) and biniersect =
MAX(bu,Ii) and eintersect = MlN(eu,I2).

PINTERSECT(I, P) computes an INTERVAL2(P) adjusted according to 
the intersection of /  and INTERVAL 1(P).

4.5.4 AP-TEST

The purpose of this test is to check for consistency in pairwise sequence 
overlapping regions at an articulation point.

We will illustrate AP-TEST using the sequence graph in Figure 3. By 
comparing two pairwise sequence overlaps in the sequence graph, 
ALIGN(gi3322552, gi2688007) = [(25,279), (1,209)], and 
ALIGN(gi3322552, gi3323244) = [(488,568), (640,721)], we find that two 
aligned regions in gi3322552, i.e., (25,279) and (488,568), do not overlap,
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which is evidence that there might be two different functional domains in 
gi3322552. Given an articulation point A,-, this procedure can be performed 
with all vertices vnfvi2t...,vin adjacent to A,-. Since an articulation point is 
expected to have multiple domains, its intersecting regions with adjacent 
vertices should not share the same interval, i.e., multiple non-overlapping 
intervals. The test AP-TEST(A,) succeeds when there is no overlapping 
interval for all adjacent vertices and fails when there is an overlapping 
interval for all adjacent vertices.

The procedure АР-TEST (A,-) can be performed as below.

bool АР-TEST (vertex v)

1 i = (0,MAXINT)
2 for each vertex w adjacent to v do
3 i = INTERSECTS, INTERV AL 1 (ALIGN(v, w )))
4 done
5 if LENGTH(/) < A
6 then return true
7 else return false
8 endif

4.5.5 RANGE-TEST

Given a subgraph G, induced by {vJt v,,}, we hope to test if all 
overlapping regions ALIGN(v,, v*) share common intervals. If all sequences 
in G, share the same domain, it is expected that the intersection of all 
overlapping regions will be greater than a certain length. To perform 
RANGE-TEST(G/), we need to order all vertices. One way to generate such 
an order is to generate a Hamiltonian path where every vertex in G, is visited 
exactly once. The Hamiltonian path problem is known to be NP. Fortunately, 
we just need only a path, which includes all vertices but vertices can be 
visited more than once, for overlapping range checking purpose. Since every 
subgraph is biconnected, we can easily compute such a path; we skip the 
details on how to compute such a path in this chapter.

Once a path p=<  v,7 , vi2 , ..., vim > is computed, we can check the 
intersections of overlapping regions using PINTERVAL(I,P). For example, 
consider a subgraph induced by a vertex set {gi3322552, gi3323244, 
gi2688008} in Figure 4. Given a path p= <gi3322552, gi3323244,



gi2688008> , the region shared among the three sequences can easily be 
computed by chaining two pairwise overlaps, i.e., (gi3322552, gi3323244) 
and (gi3323244, gi2688008) as shown in Figure 7. The algorithm, RANGE- 
TEST( G*), is described below.

As RANGE-TEST checks for consistency in overlapping regions among 
all sequences in the subgraph, the test RANGE-TEST(A,) succeeds when 
there is an overlapping interval for all vertices, and fails when there is no 
overlapping interval for all vertices.

bool RANGE-TEST (G*)

1 Compute a path p=<  v,/( v,-2, . . vin > of G*.
2 i = (0,MAXINT)
3 fory = 1 to (n-1) do
4 / = PINTERSECTO; INTERVAL l(ALIGN(v/,, vij+, )))
5 done
6 if LENGTH(/) < A
7 then return false
8 else return true
9 endif
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g i3 3 2 2 5 5 2 488 568

g i3 3 2 3 2 4  4'
640 721

g i2 6 8 8 0 0 8

740

366

The region shared among 
the three sequences.

Figure 7. The region shared among gi3322552, gi3323244, and gi2688008 can be 
computed by chaining two pairwise overlaps, i.e., (gi3322552, gi3323244) and 
(gi3323244, gi2688008).
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4.5.6 HYPERGRAPH-MERGE

HYPERGRAPH-MERGE tests for merging multiple biconnected 
components by connectivity through articulation points.

Definition 5 Given a set o f biconnected components {Gj, G2i G„} and 
a set o f articulation points { A}) A2, ..., A,„}, a hyper sequence graph H  is a 
graph where vertices are G/s and an edge (G„ Gj) is defined when there is an 
articulation point Ak between G, and Gj.

The basic idea is to test if families, Gu, Gi2> G„„, can be merged into 
one. The candidate set for merging is determined again by computing 
biconnected components on the hyper sequence graph H. The algorithm for 
HYPERGRAPH-MERGE is given on the next page.

Merging subgraphs in SG is a greedy procedure. In line 4, the condition 
requiring that any of adjacent vertices is not yet merged is necessary since 
each merging on the hypergraph results in merging a set of sequences, not a 
single sequence. For example, suppose there are two biconnected 
components, Я, = {Gy, G2) and Hj=  {G2> G3}, of H  and both are merged 
successfully in line 8. Then SG contains two new subgraphs, G/ from # , and 
Gj from Hj. Now all sequences in G2 will belong to two different families, 
i.e., G/ and G/, which is not correct unless all the sequences in G2 are 
multidomain sequences.

4.5.7 The Algorithm

The procedure CLUSTER-SPLIT(G, Ccurrenti I) described below 
iteratively computes biconnected components of G with the score Cc/irm„ and 
splits -  refines -  each component with a stricter score Ccurrent + /.

The algorithm for BAG described below is simply a three step process: 
(1) select two cutoff scores, Carti and Cmaxbico„m and compute a set of 
biconnected components at the cutoff score Cflrr„ (2) iteratively split each 
biconnected component, and (3) iteratively merge several biconnected 
components into one.
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bool HYPERGRAPH-MERGE (Ccurrenh I)

SG: a global variable for the sets of biconnected components.
SA: a global variable for the sets of articulation points.
Gcurrent : the current cutoff score.
/: incremental score.

1 bool Merged -  false
2 Build a hyper sequence graph H with SG and SA.
3 Compute biconnected components, H = { Hh H2. ..., #*}.

//Try to merge families in each component with a relaxed cutoff.//
4 for each tf, such that any vertex H} adjacent to H) is not merged do
5 Let Ghi, GH2> G Hm be vertices in
6 Create G' by merging GHh GHh ..., G„m.
7 Add new edges, ( ) ,  to G'

where Ccurrent ^  MS(5/„-,5/,y) — (GCMrrw/+7)
8 if (RANGE-TEST(G’) is true) then
9 SG = SG - { Gw , G//2,...» GHm }
10 SG = SG и  G'
11 for each vertex v € SA such that

v is an edge between GHi and GHj 
for some 1 < i , j  <m  do

12 SA = SA- { v }
13 done
14 Merged -  true
15 Mark Hi as merged
16 endif
17 done
18 return Merged

4.6 Implementation

The current prototype was implemented using C++ and an algorithmic 
library LEDA [Mehlhom and Naher, 1999] on a Redhat 7.1 Linux machine. 
Because LEDA is a commercial package, we plan to develop a free ware 
version that includes public graph libraries such as the Boost Library [Siek et 
al., 2002].
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CLUSTER-SPLIT ( G, С'm** I)

SG: a global variable for the sets of biconnected components. 
SA: a global variable for the sets of articulation points.
C„tm„f. the current cutoff score 
1: incremental score

1 Compute biconnected components, F={Gj,  G2,~, Gn} of G, and
articulation points, A = { A  1>A2,~>Am}.

2 for each Aj do
3 if (AP-TEST(y4j) is true)
4 then SA = S A v { A , }
5 done

/  /  Splitting a cluster. / /
6 for each Gj e F do
7 if (RANGE-TEST (GJ) is false) then
8 / / A s  Gj is not a family, use stricter score to refine Gj. /  /
9 F  = F  - { Gj } / /  Gj is refined by a function call below. /  /
10 CLUSTER-SPLIT(Gy, Cmmn,+1,1)
11 endif
12 done
13 SG = SG U F

The implementation can be obtained by contacting the author at 
sunkim@bio.informatics.indiana.edu or sun.kim@acm.org.

4.7 Application to Genome Comparison

In this section, we will discuss the application of our clustering 
algorithms to clustering entire protein sequences from complete genomes. 
With the current prototype, we were able to compare many different sets of 
genomes. The comparison of 63 whole bacterial and archeal genomes from 
GENBANK is underway and will be reported in a separate paper. In this 
section, we describe a complete analysis of two bacterial genomes, B. 
burgdorferis and Treponema.

mailto:sunkim@bio.informatics.indiana.edu
mailto:sun.kim@acm.org
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INPUT: a set of pairwise matches M=fa,sj) and score intervals,
I split and Jmtrge.

OUTPUT: a set of families F  and a set of multidomain sequences, A.

1 SG = ф / / A global variable for the sets of biconnected components.//
2 SA = ф / /  A global variable for the sets of articulation points. / /
3 Build a graph G by including pairwise matches (j,> sj) 

where M S fa Sj) > CaTti.
4 Get two scores, С*н and Cma.xbkonn as described in Section 4.5.2.
5 CLUSTER-SPLIT(G, C *  J**)
6 С  -  Cart,
I while ((C > C , i « )  and (HYPERGRAPH-MERGE (C, W )  

is true))
8 C = C - I mers,
9 endwhile
10 Report each G/ G JG  as a family
II Report each v e  as a multidomain protein

As shown in Figure 5, we know that the number of biconnected 
components is the maximum at Zscore of 150. To find the Zscore of the 
maximum components at a finer scale, we performed a series of 11 
clustering analysis with Zscore varying from 100 to 200 at each interval of
10 as shown in Table 2. We picked 110 for СтахЫс0пп and 200 for С ^  (see 
Section 4.5.2) and the clustering analysis starts with Zscore 200, i.e., Carti, 
which clusters 470 families with 42 articulation points. Now we go through 
the details of how these 470 candidate families are refined, i.e., splitting with 
stricter scores and merging with relaxed scores.

To verify the clustering result, we used two methods, PFAM search at 
pfam.wustl.edu and the multiple sequence alignment for the cases where 
there is no domain detected by PFAM search. When we list the 
domains confirmed by PFAM search, these are the domain hits marked !! 
which means they are above the Pfam gathering cutoffs (GA) and are very 
significant hits that we would've automatically included in the PFAM full 
alignment.2

2 The statement is from http://pfam.wustl.edu/help-scores.shtml.

http://pfam.wustl.edu/help-scores.shtml
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Zscore No. of BCCs No. of proteins No. of APs

100 330 1758 295
110 731 1504 452
120 619 1317 237
130 530 1249 118
140 516 1208 99
150 514 1188 94
160 511 1171 83
170 496 1148 66
180 487 1111 63
190 483 1092 61
200 470 1076 42

Table 2. The number of biconnected components (BCCs), the number of sequences, 
and the number of articulation points (APs) at each Zscore interval of 10 from 100 to 
200. The number of BCCs is the maximum at Zscore of 110. The higher number of 
BCCs is desirable but too many APs implies that many BCCs need to be merged into 
one.

Among 42 articulation points, 8 failed for АР-TEST, which implies 
families around these articulation points do share some domains in common. 
Among 470 families, 10 failed for RANGE-TEST, which implies that each 
subgraph has multiple families. We used Ispiit = 50 for splitting families and 
I  merge = 10 for merging families.

4. Z 1 Splitting families

The list of six families failed for RANGE-TEST is shown in Table 3. 
These families are expected to have multiple domains, which will lead to the 
failure for RANGE-TEST. Three families (7, 18, and 58) are confirmed to 
have more than one domains detected by PFAM search (see Table 3) and the 
remaining three families (452, 454, and 465), which do not have domains
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Family
Name Sequences known domains

7 3322641 3322724 3322929 
2687931 2688217 2688317 2688606

CheW CheR

18 3322451 3322737 3322802 3323075 3323208 
2687964 2688415 2688449 2688636 2688747

GTP.EFTU GTP_EFTU_D2 
GTP_EFTU_D3 EFG_C

58 3322341 3322643 3322811 3322930 
2688314 2688460 2688488 2688604 2688707

Sigma54_activat response_reg HTH_8 
CheB_methylest GGDEF

452 3322394 3322593 3322594 
3322915 3322924 3322925

454 3322399 3322400 3322413 
3322755 3322756

465 3322844 3323176 3323177 
3323179 3323180 3323181

Table 3. The list of six families failed for RANGE-TEST. All families are confirmed 
to have more than one domains detected by PFAM search or alignment in Figure 8. 
The sequence numbers are gi numbers from G en B an k . The domain names are from 
PFAM databases: CheW stands for CheW-like domain, CheR for CheR 
methyltransferase, GTP_EFTU for Elongation factor Tu GTP binding domain, 
GTP_EFTU_D2 for Elongation factor Tu domain 2, GTP_EFTU_D3 for Elongation 
factor Tu С-terminal domain, EFG_C for Elongation factor G C-terminus, 
Sigma54_activat for Sigma-54 interaction domain, response_reg Response regulator 
receiver domain, HTH_8 for Bacterial regulatory protein Fis family, CheB_methylest 
for CheB methylesterase, and GGDEF for GGDEF domain.

detected by PFAM search, are confirmed by sequence alignment as shown in 
Figure 8. The CLUSTER-SPLIT procedure split the six families into 
subfamilies of the same functional domains as shown in Table 4. After the 
splitting step, there were 480 families and they were merged with the 
HYPERGRAPH-MERGE procedure (explained in the following section).
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Family |l Zscore
Split

families Sequences Common domains

7 I 250 7.1 2688217 2688606 3322724 3322641 CheW

7.2 2687931 2688317 3322929 3322641 CheR

IS 300 18.1 2687964 2688449 2688636 
3322737 3322802 3323075

GTP_EFTU EFG_C 
GTP_EFTU_D2

18.2 2688415 3322451 GTP_EFTU GTP_EFTU_D2

18.3 2688747 3323208 GTP_EFTU GTP_EFTU_D2 
GTP_EFTU_D3

58 250 58.1 2688707 3322341 3322811 Sigma54_actival

58.2 2688488 3322811 response_reg

58.3 2688488 3322643 response_reg

58.4 2688460 2688604 3322643 response_reg

452 I 250 452.1 3322593 3322915 3322925
452.2 3322394 3322594 3322924 3322925

454 I 450 454.1 3322756 3322400
454.2 3322399 3322413 3322755 3322400

465 350 465.1 3323180 3323181
465.2 3323179 3323181
465.3 3322844 3323176 3323177 3323181

Table 4. The families failed for RANGE-TEST were separated into subfamilies of 
the same functional domains (domains not common in the subfamilies are not 
shown). Note that splitting occurred at different Zscore values. Our iterative splitting 
procedure with stricter scores was highly effective. For example, splitting of Family 
18 and 58 dealt with 4 different functional domains. Subfamilies, 58.2, 58.3, and 
58.4, are merged while HYPERGRAPH-MERGE is performed. The sequence 
numbers in boldface denote multidomain proteins which belong to multiple families, 
i.e., articulation points in the sequence graph. Note that some multidomain proteins 
do not belong to multiple families. For example, all proteins in the Family 18 are 
multidomain proteins but belong to a single family.

4.7.2 Merging fam ilies

A hypergraph was formed as described in Section 4.5.6. There were 46 
biconnected components, in each of which all families are considered for 
merging. To distinguish the biconnected components in the hypergraph from 
those in the sequence graph, we will denote the biconnected component in 
the hypergraph as BCH. Among 46 BCHs, 18 were further merged
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Family 452 3322925 -----------------------------------
3322594 ---------------
3322924 ---------
3322915 ------------------
3322394 ----------------------------------
3322593 ---------------

Family 454 3322400 ---------------------------------------------------------------------------
3322755  
3322399 ---------------------------------------------------------------------------
3322413 --------------------------------------------------------------------------
3322756  

Family 465 3323181 ---------------------------------------------------------------------------
3323180 -----------------------------------
3322844 ----------------------------------------------------------------------
3323179 ------------------------------------
3323176  
3323177  

Figure 8. Sequence alignments for the three families (452, 454, and 465) failed for 
RANGE-TEST but with no domains detected by PFAM. The alignment is with 
respect to the first sequence in the alignment which is a multidomain protein.

iteratively. In total, there were 64 cluster merging events that can be 
classified into four different types. Here, we describe each example of the 
four distinct types. The four examples for merging families are summarized 
in Table 5.

The first type of merging is to simply merge all families in a BCH. For 
example, all proteins in a BCH with Families 68 and 69, are merged into a 
new family.

The second type of merging is the same as the first type in terms of the 
merging procedure. However, this type of merging involves families that 
were previously split by the CLUSTER-SPLIT procedure. Family 7.1 (see 
Table 4) and Family 6 were merged into one and all proteins in the merged 
family share CheW domain.

The third type of merging includes only a part of families among those 
considered for merging. Family 134-135 was formed by merging two
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New
family Round Families Zscore Sequences

Common
domains

68-69 1 68,69 190 3322777 2688501 2688521 
2688621 2688620 

33222213322938 3322939 2688522

MCPsignal

6-7.1 1 1 6,7.1 |
I 190

2688606 3322724 3322641 
x____ 2688217 3322724 2688491

CheW

134-135 1 133, 134, 135|] 150 3322552 3323244 2688008 SI

369-370-371 1 369,370 190 3322962 3322518 3322963

2 369-370
371

1 7 0
3322962 3322518
3322963 2688608

Table 5. Four types of merging events. The first type of merging, the new family 68- 
69, is simply to merge all families in a biconnected component of a hypergraph. The 
second type of merging, the new family 6-7.1, is the same merging procedure as the 
first type, but involves families that were split in the splitting step. The third type of 
merging, the new family 134-135, includes only part of families that were considered 
for merging. The forth type of merging, the new family 369-370-371, is from 
iterative merging processes of biconnected components, merging Families 369 and 
370 and then merging with Family 371.

families, 134 and 135. However, the articulation point 3322552 belongs to 
Family 133 as well as 134 and 135. In Section 4.5.2, we discussed the type of 
merging in detail.

The fourth type of merging requires recursive merging of families. For 
example, two BCHs, one with Families 369 and 370 and the other with 
Families 370 and 371, were merged into a single family of proteins; merging 
of Families 369 and 370 and then merging with Family 371. All proteins in 
the resulting family are annotated as flagellar filament outer layer protein, but 
PFAM search did not find any domain.

Among 64 merging attempts, seven failed to be merged and all proteins 
in multiple families in the seven BCHs are shown to have multiple domains 
in Table 6. In total, 441 families with 1,076 sequences were classified.
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Sequence Families Multiple domains or ranges

2688314 57,58 response_reg, GGDEF
3322930 58,59 response_reg, CheB_methylest
3322379 64,65 helicase_C, UVR
2688004 138,139 (27,625)(744,895)
3322920 151,152 (42,316 )(3 4 1,474)(OmpA)

3322260 445,447 (1,125)(140,206)
3322272 446,447 (27,93X114,194)

Table 6. The seven multidomain proteins detected by failure in merging families. The 
numbers in parentheses denote the ranges that are shared among proteins in the 
family. Module names are from PFAM search: response_reg for Response regulator 
receiver domain, GGDEF for GGDEF domain, CheB_methylest for CheB 
methylesterase, helicase_C for Helicase conserved С-terminal domain, UVR for 
UvrB/uvrC motif, and OmpA for OmpA family.

4.8 Conclusion

As more sequences become available at an exponential rate, sequence 
analysis on a large number of sequences will be increasingly important. 
Sequence clustering algorithms are computational tools for that purpose. In 
this chapter, we surveyed the recent developments in clustering algorithms 
based on graph theory and presented our clustering algorithm, BAG, which 
used two graph properties, biconnected components and articulation points. 
Among the graph structures used in all five algorithms, the structure used in 
our algorithm, biconnected component, is weaker than those used in other 
algorithms. For example, the structure of triangular relationships used in 
COG and GeneRAGE is biconnected but not vice versa. Matsuda et al.
[1999] and Matsuda [2000] compute globally optimal structures, p-quasi 
completeness and maximal density, respectively. In contrast, our algorithm 
is greedy and computes a local optimum. However, our algorithm utilizes the 
computational efficiency, i.e., linear time complexity, to achieve 
clustering of families of very specific categories. In particular, our algorithm 
was successful in classifying families where the relationships among member 
sequences were defined at different scores; for example, Families 7.1 and 7.2
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can be separated at Zscore 250 but not at Zscore 200 where most of families 
were classified (see Table 4).

The future work for our algorithm includes applications of our algorithm 
to different types of sequences such as DNA and EST sequences. It would 
also be interesting to retain the hierarchical structure of the merging 
procedure so that sequence relationships can be seen at different levels. In 
addition, refining further each family in the context of genome, i.e., orthologs 
as used in COG, is an interesting topic for further research.
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Chapter 5

The Protein Information Resource for Functional 

Genomics and Proteomics

Cathy H. Wu

5.1 Introduction

The human genome project has revolutionized the practice of biology and 
the future potential of medicine. The draft DNA sequence of the human 
genome has been published [McPherson et a l 2001; Venter et a l 2001], 
and complete genomes of other organisms continue to be sequenced en 
masse. Meanwhile, there is growing recognition that proteomic studies bring 
the researcher closer to the actual biology than studies of gene sequence or 
gene expression alone. High-throughput studies are being conducted and 
rapid advances being made in areas such as protein expression, protein 
structure and function, and protein-protein interactions. Given the enormous 
increase in genomic, proteomic, and molecular data, computational 
approaches, in combination with empirical methods, are expected to become 
essential for deriving and evaluating hypotheses. To fully explore these 
valuable data, advanced bioinformatics infrastructures must be developed for 
biological knowledge management. One major challenge lies in the volume, 
complexity, and dynamic nature of the data, which are being collected and

117
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maintained in heterogeneous and distributed sources. New approaches need 
to be devised for data collection, maintenance, dissemination, query, and 
analysis. The Protein Information Resource (PIR) [Wu et al.y 2002] aims to 
serve as an integrated public resource of functional annotation of proteins to 
support genomic/proteomic research and scientific discovery. It provides 
many protein databases and data analysis tools, and employs family 
classification approach to facilitate exploration of proteins and comparative 
studies of various family relationships. Such knowledge is fundamental for 
our understanding of protein evolution, structure, and function.

The PIR was established in 1984 as a resource to assist researchers in the 
identification and interpretation of protein sequence information. The PIR, 
along with the Munich Information Center for Protein Sequences (MIPS) 
[Mewes et a l 2000], and the Japan International Protein Information 
Database (JIPED), continues to enhance and distribute the PIR-Intemational 
Protein Sequence Database. The database evolved from the first 
comprehensive collection of macromolecular sequences in the Atlas of 
Protein Sequence and Structure published under the editorship of Margaret 
O. Dayhoff [1965], who pioneered molecular evolution research.

Central to the organization and annotation of the PIR databases are 
protein family and domain relationships. Protein family classification is well 
recognized as an effective approach for large-scale analysis of genomic 
sequences and for functional annotation of proteins. We also utilize the 
classification approach for database organization and integration of protein 
sequence, structure, and function. Major protein family organizations include 
hierarchical families of proteins, such as PIR superfamilies [Barker et al.,
1996]; families of protein domains, such as those in Pfam [Bateman et al
2000]; sequence motifs or conserved regions, as in ProSite [Hofmann et al.,
1999]; and integrated family classification, as in iProClass [Wu et al., 2001].

To further support functional genomic and proteomic research, we have 
greatly improved our bioinformatics infrastructure in the last three years, 
which allows us (i) to continue to provide high quality protein sequence data 
and annotation, while keeping pace with the large influx of data being 
generated by genome sequencing projects, (ii) to develop an integrated 
system of protein databases and analytical tools for expert annotation and 
knowledge discovery, and (iii) to improve accessibility of our resource and 
interoperability of our databases. Some key developments include: highly 
automated protein sequence classification and annotation, new submission 
mechanism for bibliography data, new non-redundant reference protein 
database to provide timely sequence collection, new integrated classification



database to provide comprehensive protein information, database mi t' 
into Oracle 8i object-relational database system, database distribution1011 
XML format, and redesign of the web site for easy navigation, informatic^ 
retrieval, and sequence analysis.

The Protein Information Resource fo r  Functional Genomics and Proteomics j ^

5.2 PIR-International Protein Sequence Database

The PIR-International Protein Sequence Database (PSD) is a highly 
annotated and classified protein sequence database in the public domain. It 
currently (March 2002) contains more than 283,000 protein sequences with 
comprehensive coverage across the entire taxonomic range, including 
sequences from publicly available complete genomes.

Superfamily Classification

A unique characteristic of the PIR-PSD is the superfamily classification 
that provides complete and non-overlapping clustering of proteins based on 
global (end-to-end) sequence similarity. Sequences in the same superfamily 
share common domain architecture (i.e., have the same number, order, and 
types of domains) and do not differ excessively in overall length unless they 
are fragments or result from alternate splicing or initiators. The automated 
classification system places new members into existing superfamilies and 
defines new superfamily clusters using parameters including the percentage 
of sequence identity, overlap length ratio, distance to neighboring 
superfamily clusters, and overall domain arrangement. Currently, over 99% 
of sequences are classified into families of closely related sequences (at least 
45% identical), and over two thirds of sequences are classified into >36,000 
superfamilies. The automated classification is being augmented by manual 
curation of superfamilies, starting with those containing at least one definable 
domain, to provide superfamily names, brief descriptions, bibliography, list 
of representative and seed members, as well as domain and motif architecture 
characteristic of the superfamily. Sequences in PIR-PSD are also classified 
with homology domains and sequence motifs. Homology domains, which 
are shared by more than one superfamily, may constitute evolutionary 
building blocks, while sequence motifs represent functional sites or 
conserved regions.
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Figure 1. Genome sequence annotation - transitive catastrophe: (A) mis-annotation of 
imported entries corrected based on superfamily classification; (B) transitive 
identification error involving multi-domain proteins.

The classification allows systematic detection of genome annotation 
errors based on comprehensive superfamily and domain classification. 
Several annotation errors originated from different genome centers have lead 
to the so-called “transitive catastrophe.” Figure 1 illustrates an example 
where several members of three related superfamilies were originally mis- 
annotated, likely because only local domain relationships were considered. 
Here, the related superfamilies are: SF001258 (hisl-bifunctional enzyme), a 
bifunctional protein with two domains for EC 3.5.4.19 and 3.6.1.31; 
SF029243 (phosphoribosyl-AMP cyclohydrolase), containing only the first
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domain for EC 3.5.4.19; and SF006833 (phosphoribosyl-ATP 
pyrophosphatase), containing the second domain for EC 3.6.1.31. Based on 
the superfamily classification, the improper names assigned to three sequence 
entries imported to PIR (H70468, E69493, G64337) were later corrected 
(Figure 1A). The type of transitive identification error observed in entry 
G64337 (named as EC 3.5.4.19 when it is actually EC 3.6.1.31) often 
involves multi-domain proteins (Figure IB).

The classification also provides the basis for rule-based procedures that 
are used to propagate information-rich annotations among similar sequences 
and to perform integrity checks. These scripts use the superfamily/family 
classification system and sequence patterns and profiles to produce highly 
specific annotations. False positives are avoided by applying automated 
annotations only to classified members of the families and superfamilies for 
which the annotation has been validated. Integrity checks are based on PIR 
controlled vocabulary, standard nomenclature (such as IUBMB Enzyme 
Nomenclature, http://www.chem.qmw.ac.uk/iubmb/enzyme/), and the saurus 
of synonyms or alternate names.

Evidence Attribution and Bibliography Submission

Attribution of protein annotations to validated experimental sources 
provides effective means to avoid propagation of errors that may have 
resulted from large-scale genome annotation. To distinguish experimentally 
verified from computationally predicted data, PER-PSD entries are labeled 
with status tags of “validated’, “similarity”, or “imported” in protein Title, 
Function and Complex annotations (Figure 2A). The entries are also tagged 
with “experimentar, “predicted1’, “absent”, or “atypical’ in Feature 
annotations (Figure 2B). The validated Function or Complex annotation 
includes hypertext-linked PubMed unique identifiers for the articles in which 
the experimental determinations are reported.

Linking protein data to more literature data that describes or characterizes 
the proteins is crucial for increasing the amount of experimental information 
and improving the quality of protein annotation. We have developed a 
bibliography submission system for the scientific community to submit, 
categorize, and retrieve literature information for PSD protein entries. The 
submission interface guides users through steps in mapping the paper citation 
to given protein entries and entering the literature data. The submission form 
includes a section where the literature data are summarized using categories

http://www.chem.qmw.ac.uk/iubmb/enzyme/
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ENTRY Т48678 (А)
TITLE proteasome alpha-1 chain [validated] - Haloferax volcanii 
COMPLEX heterodimer; alpha-1 and beta-1 (PIR:T48677) chain 

[validated; PM1D:10482525]
FUNCTION ^description the predominant peptide-hydrolyzing activity 

of the alpha (l)beta(l)-proteasome is cleavage carboxyl to 
hydrophobic residues [validated; PMID: 10482525]

ENTRY XNHUSP #ype complete (B)
TITLE serine--pyruvate transaminase (EC 2.6.1.51), 

peroxisomal - human
FEATURE

2-392 ^product serine-pyruvate transaminase, peroxisomal 
^status experimental #label MAT\

390-392 ^region peroxisome/glyoxysome location signal ^status 
atypical\

2 #modified_site acetylated amino end (Ala) (in mature form)
#status experimental 

209 #binding_site pyridoxal phosphate (Lys) (covalent)
#status predicted\

367 #binding_site carbohydrate (Asn) (covalent) #status absent

Figure 2. Evidence attribution tags in PIR for (A) Title, Complex, and Function 
annotation, and (B) Feature annotation.

(such as genetics, tissue/cellular localization, molecular complex or 
interaction, function, regulation, and disease), with evidence attribution 
(experimental or predicted) and description of methods. Also included is a 
literature information page that provides data mining and displays both 
references cited in PIR and submitted by users.

5.3 PIR Non-Redundant Refence Protein Database

The PIR-NREF (Non-redundant RJEFerence) protein database is designed
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to provide a timely and comprehensive collection of all protein sequence 
data, keeping pace with the genome sequencing projects and containing 
source attribution and minimal redundancy. The database has three major 
features: (i) comprehensiveness and timeliness: it currently consists of about
900,000 sequences from PIR-PSD, SwissProt [Bairoch and Apweiler, 2000], 
TrEMBL, RefSeq [Pruitt and Maglott, 2001], GenPept, and PDB [Berman et 
al., 2000], and is updated biweekly; (ii) non-redundancy: it is clustered by 
sequence identity and taxonomy at the species level; and (iii) source 
attribution: it contains protein IDs and names from associated databases in 
addition to protein sequence, taxonomy, and bibliography.

As illustrated in Figure 3, each NREF entry represents an identical amino 
acid sequence from the same source organism redundantly presented in one 
or more underlying protein databases. The NCBI taxonomy 
(http://www.ncbi.nlm.nih.gov/Taxonomv/taxonomvhome.html/) is used as 
the ontology for matching source organism names at the species or strain (if 
known) levels. The Thioredoxin sample entry report (Figure 3) shows that 
identical sequences (of 100% sequence identity and identical length) are 
found in two strains, K12 and B, of Escherichia coll The report also displays 
identical sequences from different species or sources in the “Related 
Sequence” section, including one from Salmonella typhimurium. The section 
will soon present closely related NREF sequences and identical substrings.

The NREF database can be used to assist functional identification of 
proteins, ontology development of protein names, and detection of annotation 
errors or discrepancies. Comprehensive, non-redundant, and with source 
attribution, NREF is an ideal underlying database for sequence analysis tasks. 
The clustering with source organisms supports analysis of evolutionary 
relationships of proteins and allows easy compilation of sub-databases based 
on taxonomy to refine sequence searches. The composite protein names from 
all underlying protein databases, including synonyms, alternate names, and 
even misspellings, constitute an initial thesaurus of terms that can help 
ontology development of protein names. For example (Figure 4A), a protein 
may be variably named based on function at different hierarchical levels 
(ATP-dependent RNA helicase vs. RNA helicase), gene name (protein p68), 
motif sequence similarity (DEAD/H box-5), combinations of function and 
gene name (RNA helicase p68), and other combinations. The NREF database 
also provides composite bibliography information with PubMed cross- 
references for direct online abstract retrieval. Together, the database and the 
abstracts provide an important knowledge base for applying computational 
linguistics or natural language processing technologies to the problem of

http://www.ncbi.nlm.nih.gov/Taxonomv/taxonomvhome.html/
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Figure 3. P1R-NREF entry report with attribution of source protein databases.

jDatabase uProtein ID Accession Taxon ID (Protein Name A
PIR |IC1087 JC1087: S10181; 

S 1 4 045 ,S06377 9606 RNA helicase, ATP-dependent 
ALT_NAMES.fflK protein, nuclear, p68 protein

SwissProt |DDX5 HUMAN P 17844 9606 Probable RNA-dependent helicase p68 (DEAD-box protein 
p68) (DEAD-box protein 5)

GenPept |

p
1

C
O

roCOr3 CAA33751.1 9606 protein p68 (AA 1-614)
{GenPept 1̂ 35220 CAA36324 1 9606 p68 protein (AA 1-614)
|GenPept *2599360 AAB84094 1 9606 RNA helicase p68
1
p.efSeq HP 004387 N P 004387 9606 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 (RNA  

helicase, 68kD), DEAD/H box-5 (RNA helicase, 68kD)

Database Protein Ю
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Pm !JT40073 T40073 j14S96 1 iphosphonbosyl-AMP cyclohydrolase (EC 3.5.4.19) /  phosphoribosyl-ATP 
p [(pyrophosphatase (EC 3.6.1.31) [similarity]

TrEMBL
__________ 1

l:»59667 ! 
!

j

059667
■

' [PROBABLE PHOSPHORIBOSYL-AMP CYCLOHYDROLASE (EC 3.5.4.19) /  
И896 PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE (EC 3.6.1.31) /  

JHISIIDINOL DEHYDROGENASE (EC 1.1.1.23) (HDH)
|GenPept U-30061 ?s CAA13379 I{4896 Jprobable phosphonbosyl-amp cyclohydrolase

Figure 4. P1R-NREF composite protein names for (A) ontology development of 
protein names, and (B) detection of discrepant and/or incorrect annotations.
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protein name ontology [Yoshida et al., 2000]. The different protein names 
assigned by different databases may also reflect annotation discrepancies. 
As an example (Figure 4B), the protein (PIR: T40073) is variously named 
as a monofunctional (EC 3.5.4.19), bifuntional (EC 3.5.4.19, 3.6.1.31), and 
trifunctional (EC 3.5.4.19, 3.6.1.31, 1.1.1.23) protein. The source name 
attribution, thus, provides clues for potentially mis-annotated proteins.

Protein Sequence

PIR-PSD

Swiss-Prot

GenPept

Complete Genome

MGI

FIvBase

Yeast

Protein Function

KEGG

WIT

DIP

Gene

OMIM

GDB

I

Nucleic Acid

GenBank

EMBL

/ProClass
Sequence

Superfamily

Domain

Motif

Function

Structure

Literature

PubMed

Protein Family

P1R-ASDB

ProClass

COG

ProSite

Pfam

LnterPro

Taxonomy
NCBITaxon

Protein Structure

PDB

SCOP

CATH

PIR-RESID

Figure 5. iProClass database for data integration: modular architecture and extensive 
links.
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5.4 Integrated Protein Classification Database

The iProClass (integrated Protein Classification) database (Figure 5) is 
designed to provide comprehensive descriptions of all proteins and serve as a 
framework for data integration in a distributed networking environment. It is 
extended from ProClass [Wu et al., 1996; Huang et a l 2000], a protein 
family database that organizes proteins based on PIR superfamilies and 
ProSite motifs. The protein information in iProClass includes family 
relationships at both global (/family) and local (domain, motif, site) levels, as 
well as structural and functional classifications and features of proteins. A 
modular architecture organizes the information into multiple database 
components for Sequence, Superfamily, Domain, Motif, Structure, and 
Function.

The current version (March 2002) consists of more than 320,000 non- 
redundant PIR-PSD and SwissProt proteins organized with more than 36,000 
PIR superfamilies, 100,000 families, 3700 PIR homology and Pfam domains, 
1300 ProSite/ProClass motifs, 280 PIR post-translational modification sites,
250,000 FASTA similarity clusters, and links to over 45 molecular biology 
databases. The post-translational modifications are documented in the RESID 
database [Garavelli et al., 2001], which contains information such as names, 
formula, molecular weights, and links to PSD entries containing 
experimentally determined or computationally predicted modifications with 
evidence tags. The FASTA similarity clusters are collected in the PIR-ASDB 
(Annotation and Similarity DataBase) [McGarvey et al., 2000], which 
contains pre-computed, biweekly-updated sequence neighbors of all PSD 
entries based on all-against-all FASTA searches [Pearson and Lipman, 
1988]. Other iProClass cross-references include databases for protein 
families (e.g., Pfam, ProSite, COG [Tatusov et al., 2001], InterPro [Apweiler 
et al., 2001]), enzymes, functions, and interactions (e.g., EC-IUBMB, KEGG 
[Kanehisa and Goto, 2000], WIT [Overbeek et al., 2000], DIP [Xenarios et 
al., 2001]), structures and structural classifications (e.g., PDB, SCOP [Lo 
Conte et al., 2000], CATH [Pearl et al., 2001], PDBSum [Laskowski,
2001]), genes and genomes (e.g., TIGR [Peterson et al., 2001], OMIM 
[Wheeler et al., 2001]), ontologies (e.g., Gene Ontology [Ashbumer et al.,
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Figure 6. iProClass protein sequence entry report, example retrievable at
http://pir. georgetown.edii/cgi-bin/iproclass/iproclass?choice=entrY&id=A28153.
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Figure 7. Superfamily-domain-function relationship to reveal protein functional 
association: (A) association of ASK (EC 2.7.1.25) and SAT/CYSN (EC2.7.7.4) in 
multi-domain proteins; (B) their association in a metabolic pathway.

2000]), literature (NCBI PubMed, http://www.ncbi.nlm.nih.gov/Literature/), 
and taxonomy (NCBI Taxonomy).

The extensive protein information is organized in Sequence report 
(Figure 6) in four sections, General Information, Cross-References, Family 
Classification, and Feature and Sequence Display, with hypertext links for 
further exploration and graphical display of domain and motif regions. Built 
upon the primary Sequence reports are views of protein family relationships. 
The Superfamily report provides summaries including membership 
information with length, taxonomy, and keyword statistics, complete 
member listing separated by major kingdoms, family relationships, and 
structure and function cross-references.

http://www.ncbi.nlm.nih.gov/Literature/
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To be further implemented are the Domain-Motif components that 
represent domain and motif-centric views with direct mapping to 
superfamilies, the Function component that describes functional properties of 
enzymes and other activities, and relationships such as families, pathways, 
and processes, as well as the Structure component that describes structural 
properties and relates structural classes to evolution and function. Such data 
integration is important in revealing protein functional associations beyond 
sequence homology, as illustrated in the following example. As shown in 
Figure 7A, the ASK domain (EC 2.7.1.25) appears in four different 
superfamilies, all having different overall domain arrangements. Except for 
SF000544, the other three superfamilies are bifunctional, all containing 
sulfate adenylyltransferase (SAT) (EC 2.7.7.4). However, the same SAT 
enzymatic activity is found in two distinct sequence types, the SAT domain 
and CYSN homology. Furthermore, both EC 2.7.1.25 and EC 2.7.7.4 are in 
adjacent steps of the same metabolic pathway (Figure 7B). This example 
demonstrates that protein function may be revealed based on domain and/or 
pathway association, even without obvious sequence homology. The 
iProClass database design would present such complex superfamily-domain- 
function relationship to assist functional identification or characterization of 
proteins.

A key design objective of the iProClass database system is to address the 
database interoperability issue arising from the voluminous, heterogeneous, 
and distributed data [Davidson et al., 1995]. There are several general 
approaches for data integration. The iProClass uses database links as a 
foundation for interoperability [Karp, 1995] and combines both data 
warehouse and hypertext navigation methods. In our approach, we restrict the 
database content to the immediate needs of protein analysis and annotation 
and store a rich collection of links with related summary information. The 
latter will alleviate potential problems associated with timely collection of 
information from distributed sources over the Internet. The idea is similar to 
that of the Virgil database [Achard et al., 1998], which was developed to 
model the concept of rich links (the link itself and the related pieces of 
information) between database objects. Another iProClass design principle 
that promotes database interoperation is the adoption of a modular and open 
architecture. The modular structure makes the system scalable, 
customizable and extendable for adding new components. The open 
framework with common database schema, data format, and query interface 
allows data sharing among distributed research groups and integration of 
other database components important for genomic and proteomic studies. For
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example, the iProClass Protein Sequence module can be linked to Gene 
Expression and Protein Expression modules via gene-protein mapping and 
peptide-protein mapping, respectively.

5.5 PIR System Distribution

PIR Web Access

The PIR web site (http://pir.georgetown.edu) [McGarvey et al., 2000] 
connects data mining and sequence analysis tools to underlying databases for 
protein information retrieval and knowledge discovery. The site has been 
redesigned to include a user-friendly navigation system and more graphical 
interfaces and analysis tools. The Major PIR pages are listed in Table 1.

The PIR-PSD interface provides entry retrieval, batch retrieval, basic or 
advanced text searches, and various sequence searches. The PIR-NREF 
interface supports direct report retrieval as well as full-scale sequence search 
for list retrieval. Report retrieval is based on sequence unique identifiers,

Description Web Page URL
PIR Home http://pir.georgetown.edu
PIR-PSD http://pir.georgetown.edu/pirwww/search/textpsd.shtml
iProClass http://pir.georgetown.edu/iproclass
PIR-NREF http://pir.georgetown.edu/pirwww/search/pimref.shtml
PIR-ASDB http://pir.georgetown.edu/cgi-bin/asdblist.pl?id=H70468
Bibliography http://pir.georgetown.edu/pirwww/literature.html
PIR databases http://pir.georgetown.edu/pirwww/dbinfo/dbinfo.html
PIR searches http://pir.georgetown.edu/pirwww/search/searchseq.html
FTP site ftp://nbrfa.georgetown.edu/pir_databases/

Table 1. Major PIR web pages for data mining and sequence analysis.

http://pir.georgetown.edu
http://pir.georgetown.edu
http://pir.georgetown.edu/pirwww/search/textpsd.shtml
http://pir.georgetown.edu/iproclass
http://pir.georgetown.edu/pirwww/search/pimref.shtml
http://pir.georgetown.edu/cgi-bin/asdblist.pl?id=H70468
http://pir.georgetown.edu/pirwww/literature.html
http://pir.georgetown.edu/pirwww/dbinfo/dbinfo.html
http://pir.georgetown.edu/pirwww/search/searchseq.html
ftp://nbrfa.georgetown.edu/pir_databases/


The Protein Information Resource fo r  Functional Genomics and Proteomics 131

including the NREF Ю and sequence unique identifiers of the source 
databases. Several sequence search options are available for functional 
identification of proteins and peptides, including BLAST [Altschul et al.,
1997] Search, Peptide Match, and Pattern Match. The BLAST Search of a 
user-supplied query sequence against NREF sequences returns a list of all 
matched sequences above a given threshold. As shown in the example 
(http://pir.georgetown.edu/iproclass/NFBLASTex.htmn, for each matched 
database sequence, information is provided for NREF ID, protein IDs and 
names from associated databases (with hypertext links for retrieval of up-to- 
date source entries), organism name, and sequence match result with scores 
and visualization. The Peptide Match finds an exact match in the NREF 
database to a user-defined peptide sequence. The Pattern Match searches 
for a user-defined pattern or ProSite pattern against all NREF sequences. The 
iProClass interface includes both sequence and text searches. The BLAST 
Search returns best-matched proteins and superfamilies, each displayed with 
a one-line summary linking to complete reports. Peptide Match allows 
protein identification based on peptide sequences. Text Search supports direct 
search of the underlying Oracle tables using unique identifiers or 
combinations of text strings, based on a Java program running JDBC. The 
FASTA clusters are directly retrievable from the web interface based on PIR 
ID (e.g. http://pir.georgetown.edu/cgi-bin/asdblist.pl?id=H70468), where 
neighbors are listed with annotation information and graphical displays of 
sequence similarity matches.

Other sequence searches supported on the PIR web site include hidden 
Markov model [Eddy et al., 1995] search for PIR homology and Pfam 
domains and ProSite motifs, Smith-Waterman [1981] pair-wise alignment, 
ClustalW [Thompson et al., 1994] multiple alignment, IESA (Integrated 
Environment for Sequence Analysis) [McGarvey et a l 2000], and 
GeneFIND [Wu et al., 1999] family identification.

PIR FTP Transfer

The PIR anonymous FTP site (ftp://nbrfa.georgetown.edu/pir_databases) 
provides direct file transfer. Files distributed include the PIR-PSD, PIR- 
NREF, other auxiliary databases, other documents, files, and software 
programs. The PIR-PSD has been distributed as flat files in NBRF and 
CODATA formats. Both PSD and NREF data files are also distributed in

http://pir.georgetown.edu/iproclass/NFBLASTex.htmn
http://pir.georgetown.edu/cgi-bin/asdblist.pl?id=H70468
ftp://nbrfa.georgetown.edu/pir_databases


132 С. Н. Wu

- <NrefEntry id=’NFOOOOOOOX" update_date=“27-Sep-200x">
<protein_name>LECTIN (FRAGMENT)</protein_name>

- <taxonomy>
<species_name>Cerngene arborescens</species_name>
<taxon_id>20484</taxon_id>
<lineage>cellu1ar

orgenlsmsjEukeryotoiVJrldlplontee^treptopliyte^lnarophyt a/Em bry ophytegroup;Embryophvte;Troch0ophvte;Euphvllophvte;Spermeto|jhyte;Mogii°liophyta;
eudlcotyledons;core eudicots;Rosldae;euroslds
I;Fobales;Fabaceae;Paplllonoldeae; Galegeoe;Cerogene</lineage>

</taxonomy>
- <source_orgamsm>

- <source_org>
<organism_name>Caragana arborescens</organism_name>
<taxon_id>20484</taxon_id>

</s о  u rc e_o rg >
</source_organism>

- <seq_database>
- <source_db db=“GenPept*>

<protem_id>g381912 l</protein_id>
<proteir»_name>lQctln</protein_name>
<taxor»_id> 20484 </taxon_id>
<accession>CAA 13596. l</accession>

</source_db>
-*■ <source_db db=*TrEMBL">
</seq_database>

- <protem_seq>
<length>90</length>

<sequence>V AVEFDTFCNRD WDPEHRHIGID VNHISS VGTTA WIMLSNGD V A A V E IIYH A  VTHE

G YDRSSRPIY VLKEKVDLRRYLPE W VRIGF</sequence>
</protein_seq>

<A-lrefEntry>__________  ____ _______________________ _______
ВT - -  E n t r y :  t h e  r o o t  r l c n r n t .  - - >

t C L E M E N T  N r e f  E n t r y  ( p r o t e l n  n o n r  , t a x o n o n y T ,  s o u i - c c _ o i - g a n i s n .
b i b l i o g r a p h y ? . s r q d a t a b a s r . p r o t e i n s e q ,  r e l a t e d _ s e q ?  ) >

< T A T T L 1 S T  H r p f E n t r y  i d  I D  « R E Q U I R E D  
u p d a t r _ d a t r  С О й Т й  « i m p l i e d  >

p r o t e i n _ n a m e :  T h e  p r o t e i n  n a n e .  — >
< » E L E M E M T  p r o t r i n _ n a M  ( N P C D A T A )  > < t —  p r o t e i n  name — >

< t - -  t a x o n o m y :  i d e n t i f i c a t i o n  o f  t h e  b i o l o g i c a l  s o u r c e .  — >
< t E L E M E N T  t a x o n o m y  (  s p e c i e s _ n a m e . c o n n o n _ n a n e T ,  t a x o n _ i d ,  l i n e a g e )  >

< t E L E M E N T  s p e c l c s _ n a m e  < aPCDftTft > > < t —  s c i e n t i f i c  s p e c i e s  п а л е  — >
< T E L E M E N T  c o n n o n _ n a » f  (  BPCDftTft )  > < T —  common name — >
< t E L E M E N T  t a x o n _ i d  < МРСОйT A )  > < t —  N C D I  t a x o n o m y  I D  — >
< t E L E M E N T  l i n e a g e  < BPCDftTft > > < t —  t a x o n o m y  l i n e a g e  — >

< T —  s o u r c e _ o r g a n l S B :  i d e n t i f i c a t i o n  o f  t h e  s o u r c e  s p e c i e s . s u b s p e c i e s . s t r a i n s  o r  u a r i e t a s .
< t E L E M E N T  s o u r c e o r g a n l s n  < s o u r c e _ o r g * ) >

< t E L E M E N T  s o u r c e _ o r g  ( o r g a n i s n  n a n c . t a x o n _ i d ) >

< t E L E M E N T  o r g a n i s n _ n a n e  ( « P C D A T A »  < f —  o r g a n i s m  name — >

b i b l i o g r a p h y :  r e l a t e d  b i b l i o g r a p h y  — >
< t E L E M E N T  b i b l i o g r a p h y  (  p m l d ? .  m u i d ?  )  >

< t E L E M E N T  p m l d  (  MPCDRTft  )  > < » —  P u bM e d  i d e n t i f i e r s  — >
< 1 E L E M E M T  n u i d  (  ШРС0ПТП )  > < T —  M E D L I N E  u n i q u e  i d e n t i f i e r s — >

< t —  s e q _ d a t a b a s e :  s e q u e n c e  s o u r c e  d a t a b a s e  — >
< T E L E M E N T  s e q _ d a t a b a s e  ( s o u r c e _ d b « ) >

( p r o t e l n _ i d . p r o t e i n n a n e . t a x o n  i d . a c c e s s i o n ) >  
db  ( P I R  I S w i s s p r o i  I T r E N D L  | G e n P e p t  |

R e f S e q  | P D B )  M RE Q U I R E D >  _____________

Figure 8. PIR-NREF entry (A) in XML format, (B) with an associated DTD 
(Document Type Definition) (partially shown).
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XML format (Figure 8A) with associated DTD (Document Type Definition) 
(Figure 8B) files. The PSD and NREF sequences are available in FASTA 
format.

The PIR-PSD, iProClass, and PIR-NREF databases have been 
implemented in Oracle 8i object-relational database system on our Unix 
server. To enable open source distribution, the databases are being mapped to 
MySQL and ported to Linux system. Since February 2002, the PSD database 
has been distributed in MySQL. To establish reciprocal links to PIR 
databases, to host a PIR mirror web site, or to request PIR database schema, 
please contact pirmail@nbrf.georgetown.edu.

5.6 Conclusion

The PIR serves as a primary resource for exploration of proteins, 
allowing users to answer complex biological questions that may typically 
involve querying multiple sources. In particular, interesting relationships 
between database objects, such as relationships among protein sequences, 
families, structures, and functions, can be revealed readily. Functional 
annotation of proteins requires association of proteins based on properties 
beyond sequence homology - proteins sharing common domains connected 
via related multi-domain proteins (grouped by superfamilies); proteins in the 
same pathways, networks, or complexes; proteins correlated in their 
expression patterns; and proteins correlated in their phylogenetic profiles 
(with similar evolutionary patterns) [Marcotte et al., 1999]. The PIR, with its 
integrated databases and analysis tools, thus constitutes a fundamental 
bioinformatics resource for biologists who contemplate using bioinformatics 
as an integral approach to their genomic/proteomic research and scientific 
inquiries.
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Chapter 6

High-Grade Ore for Data Mining in 3D 

Structures

Jane S. Richardson and David C. Richardson

6.1 Introduction

The 3-dimensional structures of proteins, nucleic acids, and complexes 
are becoming an increasingly important part of bioinformatics, with the 
advent of structural genomics, protein-protein interaction analysis, and large- 
scale functional genomics. Although not approaching the extent of sequence 
data, the 3D database is huge, complex, and growing rapidly. The quality of 
3D data is very good but varies increasingly widely as more protein crystal 
structures are being done at atomic resolution, while ever-larger molecular 
machinery can be successfully tackled at meaningful but quite low resolution. 
NMR (nuclear magnetic resonance) methodology for determining 3D 
structures is currently changing even more rapidly than crystallography. As 
in any data analysis effort, an understanding and assessment of possible 
errors is a crucial aspect of doing structural bioinformatics.

After a brief review of the traditional criteria for assessing structural 
quality, this chapter will concentrate on a new validation method that is 
especially powerful yet quite accessible to non-experts. This method, called

139
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all-atom contact analysis, is also applicable to evaluating the ligand-protein, 
protein-protein, or protein-nucleic acid interactions seen in complexes.

The series of illustrations in Figure 1 a-f spans for one particular 
example the transition from ID sequence information to 3D structure, in 
increasingly detailed representations, and then to all-atom contact 
information. The sequence in Figure la  flags the 14 residues that are 
conserved across the ribonuclease-A-like superfamily from a clustal W 
alignment (http://pir.georgetown.edu). When that sequence is visualized on 
the 3D structure, it becomes apparent that the alignment missed 2 conserved 
residues (Phe8 and His 12) because of an unrecognized gap in one subfamily 
of the proteins. It is also clear that the 16 conserved residues divide into two 
groups: one group of 5 residues exposed at the active site cleft (starred in 
Figure lb) and another group of 11 structurally important residues in the two 
hydrophobic cores, including three of the four disulfide bridges. The overall

a
ketaaakFer qHmdsstsaa 

sssnyCnqmm ksrnltkdrC 
* *

KpvNTFvhes ladvqavCsq 
* *** * 
knvackngqt ncyqsystms 

itdCretgss kypnCaYktt 
* * * 

qankhiivaC egnpyvPVHf 
* ***

dasv

Figure 1. The progression of molecular information from sequence to 3D fold to 
structural details, illustrated using the structure of bovine ribonuclease A at 1.26A 
resolution (PDB file 7RSA [Wlodawer et al., 1988]). a) Sequence; the 14 residues 
shown as conserved across the ribonuclease-A-like superfamily by Clustal-W 
alignment are starred, b) Cot backbone, with sequence arranged in 3D on the 
molecule; the 5 conserved residues in the active site cleft (H,K,N,T,H) are flanked 
by stars, and the 11 structurally-conserved residues of the two domain cores are 
labelled in three-letter code.

http://pir.georgetown.edu
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Figure 1 cont'd. c) Backbone ribbon schematic, with active site sidechains and 
secondary structure (cx-helices are spiral ribbons and (3-strands are arrows), d) Stick 
figure, with all non-H atoms in the left half and all atoms including hydrogens on the 
right; the active site is starred, e) Dots outlining the solvent-accessible parts of the 
van der Waals surface, for just the H atoms, which make up 53% of the outer surface, 
f) All-atom contact dots around the structurally-conserved Tyr97 sidechain, showing 
the OH H-bond to backbone and the ring van der Waals contacts with the two 
disulfides above and below it.

fold, with its evolutionary implications, is best recognized in backbone or 
ribbon representations, as in Figure lc, although the interactions determining
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that fold involve all of the atoms, including the often-ignored hydrogens 
(Figure Id). The protein surface, over half of which is formed by H atoms 
(Figure le), provides the biologically significant interactions with substrates, 
inhibitors, and other macromolecules. All-atom contact analysis provides a 
way of both visualizing and quantifying geometrical goodness-of-fit, for 
study of internal packing or of interactions between molecules; in Figure If, 
the contact dots show why Tyr97 is especially suited to stabilizing the core of 
the righthand lobe of ribonuclease.

6.2 Traditional Quality Measures

Measures of structure quality can apply either overall or locally, and 
some measures do both. For NMR structures, the most important overall 
criterion is the number of measured restraints (such as NOE restraints on 
atom-atom distances, or J-coupling restraints on torsion angles); very well- 
determined structures might have 20, or even 40 restraints per residue. 
Another criterion is the RMS deviation among the multiple models, or the 
closeness of overlap in a figure showing the entire ensemble. Divergence of 
the models is especially important for identifying regions that either are less 
well determined or are actually mobile in the molecule.

For crystal structures, the most important overall criterion of accuracy is 
the resolution: at ЗА resolution the fold and secondary structure can be 
determined; at 2 k  resolution the detailed backbone and sidechain 
conformations are generally reliable; at lA  resolution atoms can be seen as 
individual balls of density centered perhaps within 0.1 A  of true position, and 
multiple conformations and water structure can be distinguished. The 
residual, or R-factor, measures agreement between observed and model- 
calculated diffraction data, while the "free R" measures agreement with a 
subset of the observed data deliberately left out of the refinement process for 
an unbiased evaluation [Brunger, 1992]. At 2A resolution a good structure 
should have an R of about 20% or less and a free R perhaps 4-5% higher. 
Resolution, R, and free R are reported in parseable form in the header of a 
PDB (Protein Data Bank; [Berman et al., 2000]) file, so they are readily 
available whenever a 3D coordinate file is consulted.

Another very useful criterion of overall quality is the Ramachandran plot 
(a 2D plot of the ф,у dihedral angles that define backbone conformation),
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Figure 2. The Ramachandran plot of ф versus \|/ backbone conformational angles, 
used as a structure validation tool. The points plot the individual ф,\}/ values for each 
well-ordered residue with a crystallographic 5-factor <30 in 500 protein structures at 
1.8A resolution or better [RichardsonLabWebSite, 2001]. The inner outline encloses 
the preferred "core" region containing 98% of this high-quality data, and the outer 
line encloses the region of allowed but somewhat strained conformations.

produced by "validation" software (available on the web) such as ProCheck 
[Laskowski et al., 1993] and Whatlf [Vriend, 1990]. Preferred, core regions 
of the plot have been defined empirically, and almost all ф,\|/ values in a 
structure should fall within those regions, as shown in Figure 2. The 
validation programs will produce a Ramachandran plot for a submitted
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structure, give the percentage within core regions, and compare that number 
to the scores expected at different resolutions. In the absolute sense, about 
98% of non-Gly protein residues actually have core ф,\|/ values; 2% of 
residues genuinely occupy slightly strained conformations, while any excess 
of non-Gly outliers above 2% represent errors. Like the free R value, the 
Ramachandran criterion has the advantage that it evaluates a quantity not 
directly optimized by structure refinement; this gives it more sensitivity than 
the ordinary R-factor or the ideality of bond lengths and angles, which are 
part of the target function for refinement. Ramachandran criteria are 
applicable to NMR as well as x-ray protein structures, but the equivalent 
criteria are not yet available for nucleic acids, since the database is still much 
too small to deal with the six variable backbone angles in RNA or DNA.

The most important local criterion of crystallographic structure quality is 
the В-factor, or temperature factor, which is a measure of the sharpness vs. 
broadness of the electron density seen at each atom. High В-factors can be 
caused by motion or static disorder of the atoms, or can result from errors in 
the data, the phases, or the fitting and refinement; regardless of cause, the 
position of a high-B atom is known with less precision. Average B-factors 
vary somewhat with refinement strategy and especially with resolution (the 
electron density is necessarily broader at low resolution). The most 
important differences in B, however, are within a given structure: most parts 
will be clear and well-ordered with low B's, while some parts (usually some 
of the loops, ends, or sidechains on the outside) may be quite disordered and 
have very high B's. Sometimes no density at all is visible for such atoms, in 
which case either their coordinates may be left out altogether or else their B- 
factors will refine to the maximum allowed in order to smear them into 
appropriate invisibility. Therefore, even in a high-resolution structure it is 
important to look at the В-factors for any region of particular interest. This is 
easy to do, since the В is given as the last numerical field on every atom 
record in the PDB coordinate file. In general, the highest-B regions of a 
given structure are probably unreliable, and as a rule of thumb at l k  
resolution, atoms with B>40 are suspect. Most high-B sidechains are in fact 
correctly placed, but they are more of a gamble: one with a В of 50 is ten 
times more likely to have the wrong conformation than one with a В of 10-20 
[Word et a l 1999a]. For NMR structures, the nearest analog of the В-factor 
is the local amount of deviation among models, easily judged by viewing the 
ensemble of models superimposed.

In a high-resolution crystal structure, many of the regions with partial 
disorder can be seen and fitted as alternate conformations (usually just two,
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Figure 3. Three neighboring sidechain rotamers for lysine. All examples with 
sidechain % angles within ±60° of these rotamers were superimposed, for Lys 
sidechains with fi-factor <40 in a dataset of 240 protein structures at 1.7A resolution 
or better [Lovell et a l , 2000]. Each rotamer is a different color, and the balls mark 
the average position for each rotamer. Even for the long, flexible lysine 
sidechain, conformations are clearly distinct and quite tightly clustered.

marked a and b). Such alternate conformations can represent the local 
structure better than a single conformation with a high В-factor; however, 
they still are less accurate than well-ordered single conformations, because 
such overlapping density is difficult to fit correctly. On average, the b
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conformations are more error-prone, because they are usually the ones with 
lower occupancy and also because validation programs usually do not check 
the “b” geometry.

The second traditional criterion of local accuracy is the deviation of bond 
angles from ideal values. (Bond length deviations are not very useful for 
assessment purposes, because their values are very tightly restrained.) Those 
angle deviations are tabulated and summarized by the standard validation 
programs. Genuine angle variations of 1 or 2 standard deviations, or about 2- 
4°, are relatively common, and a bit more than that is occasionally 
orchestrated by the protein where needed at an active site. Bond angles are 
often quite deviant at the junction between single and alternate 
conformations, but those are basically technical glitches and do not 
meaningfully signal whether or not there are underlying problems with the 
model. However, in our experience a deviation of >5a from ideal in any 
angle within a single-conformation region almost always indicates an 
incorrect local conformation. Bond angles at the Coc are especially 
diagnostic, since that is where sidechain and backbone meet. Some such 
cases will be discussed below, because they are also often signaled by all
atom clashes.

The third local criterion is the degree to which sidechain torsion angles 
match one of the preferred sets of values called a sidechain rotamer. In spite 
of both positive and negative interactions in the folded protein, sidechains 
adopt a discrete rather than a continuous distribution of conformations, as 
illustrated for a sub-population of lysines in Figure 3. An up-to-date library 
of the possible rotamers and an extensive discussion of the issues involved 
can be found in [Lovell et al., 2000]. For the purposes of spotting potential 
problem areas in a structure, a very simplified but useful starting-point is to 
watch out for eclipsed torsion angles around bonds with tetrahedral geometry 
at both ends. In particular, sidechains branched at CP (Thr, Val, or Бе) are 
almost certainly incorrect if they have an eclipsed X\ angle.

6.3 All-Atom Contacts for Assessing Structural Accuracy

Recently we discovered a powerful new source of independent 
information for structure validation in an unexpected place: the hydrogen 
atoms. Although crystal structures can be solved successfully and accurately
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without the H atoms and NMR structures can be solved well without treating 
hydrogens at 100% radius, their inclusion can help enormously. Nearly half 
the atoms in biological macromolecules are hydrogens. Their positions are 
mostly constrained by the geometry of the other atoms, and their packing 
interactions are extremely demanding. Any significant error on the inside of 
a structure shows up very clearly in the form of physically impossible 
overlaps of H atoms with each other or with the other atoms. An especially 
important aspect of all-atom contact analysis is that in addition to locating 
problems it can very often suggest how to fix them.

The first essential step in all-atom contact analysis is obviously to add 
and optimize the H atoms, which is done by a program called Reduce [Word 
et al., 1999b]. Most nonpolar and some polar H positions are determined by 
the heavier atoms and can simply be added in standard geometry (e.g., 
methylenes, aromatic H, peptide NH, etc.). At the other extreme, OH 
positions can rotate quite freely and must be optimized relative to their 
surroundings. We have determined from very high-resolution structures and 
neutron diffraction data that NH3 groups and the terminal methyls of Met 
sidechains can adopt equilibrium orientations significantly away from 
staggered and must therefore be optimized, but the equilibrium orientations 
of other methyls are remarkably well relaxed and can be satisfactorily treated 
as staggered. The sidechain amides of Asn or Gin and the ring orientation of 
His are fairly often misassigned by 180°, since it is difficult to distinguish the 
N vs О or N vs С atoms in electron density maps; therefore Reduce 
considers possible Asn/Gln/His flips when placing hydrogens. Finally, these 
optimizations must be done jointly in the context of entire local H-bond 
networks. Reduce handles proteins, nucleic acids, and small-molecule 
ligands and produces a commented output file in PDB format. Like all our 
software, it is freely available on our web site [RichardsonLabWebSite, 
2001].

The second step is using the all-atom coordinate file to calculate the 
favorable and unfavorable contacts between the atoms. This is done by the 
program Probe [Word et al., 1999a], which calculates all-atom contacts for 
display or quantification, using an algorithm illustrated schematically in 
Figure 4. A small spherical probe 0.25A in radius is rolled over the surface 
of each atom, and a dot is generated only if the probe sphere touches another 
not-covalently-bonded atom. Favorable van der Waals contacts, with a 
minimum of 0A and a maximum of 0.5A gap between the atom surfaces, are 
shown as surface patches of dots color-coded by gap size. Favorable 
overlaps between H-bond donor and acceptor atoms are shown as pale green
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Figure 4. Calculation and display of all-atom contacts illustrated on a thin slice 
through a small piece of protein structure. Fine gray dots (here for didactic purposes 
but normally not shown) show the van der Waals surfaces of all the atoms including 
hydrogens. A small spherical probe (gray ball) just 0.25A in diameter is rolled over 
the surface of each atom, leaving a color-coded contact dot wherever the probe also 
touches or intersects another atom not within three covalent bonds of the first. As 
labelled in the figure, the resulting pairs of contact patches come in three types. 
Favorable van der Waals contacts are shown by dots that are blue when the local gap 
between atomic surfaces is near the 0.5Л maximum, shading to green as the gap 
aproaches zero. The favorable overlaps of suitable donor and acceptor atoms that 
constitute H-bonds are shown by pale green dots, forming lens or pillow shapes. 
Unfavorable overlaps of all other, non-compatible, atom pairs are emphasized with 
"spikes" rather than dots, color-coded from yellow for the slight overlaps that still 
represent good contacts through to red and hotpink for the physically-impossible 
atomic overlaps that cannot occur in the real molecule and must represent model 
errors.
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Figure 5. Examples of all-aiom contacls for well-packed, accurate structures, a) 
Contacts around active-site His 12 in the 7RSA ribonuclease, with H-bonds (pale 
green dots) for each ring N and dense, well-fitted van der Waals contacts to 
surrounding backbone and sidechains. The pale orange balls are waters, b) All
atom contacts for the entire molecule of the 1RB9 rubredoxin structure at 0.92A 
resolution (Dauter et a l , 1999], showing the blues and greens of dense, well-fitted 
packing throughout except for one apparently misfit Lys sidechain at the left, which 
has three serious clashes, poor x angles, and high 5-factors.

dots, forming lens or pillow shapes. Unfavorable atomic overlaps, or 
“clashes”, are emphasized by spikes rather than dots: yellow for slight 
overlaps, shading to bright red and hot pink for the worst cases. Interpreting 
these displays is thus very easy: red spikes are bad, while lots of cool green 
is good; for example, Figure 5a shows the excellent contacts around His 12 in 
the 7RSA ribonuclease.

For numerically analyzing goodness-of-fit inside or between the 
molecules in a model, the following 3-term Probe score combines the 
contact, H-bond, and clash components:

contactscore = ' £ e~(saplerr)2 + 4  x  Vol(Hbonds)~ 10 x  Vol(overlaps)
dots
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This “contact score” is formulated geometrically rather than 
energetically, because a bad overlap means a mistake in the model, not a high 
energy. A good contact score is positive rather than negative, to emphasize 
that distinction. For assessing crystallographic model quality, the simpler 
"clashscore" is just the number of clash overlaps >0.4A, normalized per 1000 
atoms (a good clashscore is low). As expected for a measure of structure 
quality, the overall clashscore is highly con-elated with resolution, and the 
local clashscore is even more strongly correlated with В-factor [Word et a l, 
1999a]. Contact score can be directly calculated by Probe, and a Unix script 
called Clashlistcluster is available that gives both clashscore and a spatially- 
clustered list of the serious clashes in a structure.

The clashscore is not as easily applied to validate NMR structures, 
because H-H distances are directly used in NMR refinement and with some 
methodologies the clashes can be avoided simply by expanding the entire 
model somewhat (indicated by a sparseness of contacts and H-bonds). 
However, most NMR structures show clashes in their problem areas, and a 
clash list or display is very useful for finding and fixing those problems.

The most powerful form of all-atom contact analysis is actually the visual 
display, because the local pattern of clashes and contacts often suggests the 
origin and solution of the problem. Such display is most easily done in our 
Mage display program [Richardson and Richardson, 1992; Richardson and 
Richardson, 2001], which allows turning on or off the different contact types 
and choosing to color the dots by gap size or by atom type. In Probe's default 
mode all internal sidechain-sidechain and sidechain-backbone contacts, plus 
contacts with ligands and waters, are calculated for the entire molecule and 
can then be displayed and explored. (Note, however, that for nucleic acids it 
is vital to calculate backbone-backbone contacts as well.) Such a contact 
display is shown in Figure 5b for the 1RB9 rubredoxin [Dauter et a l, 1999] 
at 0.92A resolution. As typical of most structures at atomic resolution, 
almost all of the model fits the all-atom criteria beautifully, with no bad 
clashes, no flips needed, and dense, well-fitted packing shown by the green 
dot patches. Also quite typically, there is one isolated region with a set of 
serious clashes; in this case the problem was apparently caused by fitting a 
Lys sidechain into what should have been water density and vice-versa, 
losing potential H-bonds and necessitating a very poor Lys rotamer.

Even in very excellent structures, therefore, it is worth watching out for 
the few isolated problems, while at more modest resolutions there are almost 
always clashes indicating errors that could be fixed by the depositors or that 
can flag locally unreliable regions for the bioinformatician. Equally
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importantly, a well-packed region with extensive green contacts and no red 
spikes can validate the accuracy of that region even at lower resolutions.

6.4 Patterns of Common Misflttings

As mentioned above, the 180° flip state of Asn, Gin, and His sidechains 
are easy to misassign in crystallographic structures due to the ambiguity of 
atom type in electron density maps. Analysis of H-bonding can determine a 
majority of these cases, and if potential clashes of the larger NH2 group are 
also considered, then flip assignments become blatant rather than subtle, 
except for about 15% of these residues on the protein surface that almost 
certainly adopt both conformations [Word et al., 1999b]. Figure 6a and 6b 
show an Asn-Gln-Asn H-bond network in 7RSA [Wlodawer et al., 1988], in 
its best arrangement (as deposited; part a) and again with each amide flipped 
and all donors and acceptors interchanged (part b). As found for all cases 
where both H-bond and clash aspects are unambiguous, the two criteria agree 
on the answer: here 8 rather than 4 H-bonds are clearly preferable, and zero 
rather than 3 serious clashes are clearly preferable. If considered in isolation, 
the central Gin would only be fairly weakly determined by H-bond geometry 
to the water, but in combination with the two flanking Asn the entire network 
is determined overwhelmingly. Occasionally, even buried Asn/Gln make no 
H-bonds, but the orientation can then be determined by clashes of the NH2 
group in the incorrect flip state.

Amide flip problems should not occur in NMR structures if the NHo 
protons were assigned and they had NOEs. If not, then the orientation may 
well be wrong, but not necessarily by 180°. For crystal structures, the 
Asn/Gln/His flip may be automatically corrected by Reduce in its "-build” 
mode, producing a modified and commented PDB file in standard format 
with H atoms added and flips corrected. Since we do not believe that even 
the best automatic algorithms should be accepted without scrutiny, a script 
called Flipkin is available for analyzing Reduce's decisions: it produces a 
kinemage file for display in Mage, with a view for each Asn/Gln/His 
sidechain that animates between contacts for the two best flip states. The 
comparison pairs in Figure 6 were taken from the flip kinemage for 7RSA.

Sidechains with tetrahedral geometry, somewhat surprisingly, are also 
fairly often fit backwards. In NMR, this happens because the stereospecific 
assignment of resonances to the methyls of the sidechain branch of a Val or 
Leu either could not be done or were erroneous. In crystallography, it
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Figure 6. Assigning amide flip orientations within an H-bond network around Gln69 
in the 7RSA ribonuclease structure, a) The best combination of orientations (in 
green, as found in 7RSA), with 8 H-bonds and no clashes, b) The combination with 
all amides flipped (in pink), which keeps 4 H-bonds but is ruled out by bad clashes of 
all three NH2 groups.

happens because less-than-optimal electron density for a tetrahedral branch 
can often appear straight across rather than showing the tetrahedral angle, so 
that either fitting looks equally plausible as in the lower half of Figure 7a.

Although 7RSA has no problems of this sort, it corrects two Thr that 
were fit backwards in the earlier 5RSA [Wlodawer et al., 1986] structure at 
2 k  resolution. In Figure 7b the two conformations for Thr 87 are 
superimposed, showing that angles around the C a  and C(3 had to be strongly 
distorted in order for refinement to get the bulk of the sidechain 
approximately into density. The misfit Thr also has an eclipsed j \  angle. 
Figure 8a shows the diagnostic clashes produced by the misfit conformation 
in the deposited structure, while Figure 8b shows that the problem could have
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1LYS Thr b 51

Figure 7. a) Unambiguous electron density for a Thr sidechain that clearly shows the 
CP position (above) contrasted with ambiguous electron density (below) that makes 
the eclipsed conformation (as shown) appear to be just as good a match as the correct 
one (rotated 180°); from PDB file 1LYS [Harata, 1994]. b) Such a misfit Thr 
sidechain (from 5RSA at 2.0A resolution [Wlodawer et al., 19861), superimposed on 
the corrected version (from 7RSA at 1.26A resolution); the misfit Cp position was 
shifted by 0.7A in order to force the Cy and Oy into density.

been successfully corrected by using our tools on the 5RSA structure. On 
Unix or Linux, Mage has the capability of idealizing sidechain geometry and 
interactively updating the all-atom contact display as rotamers are tried or 
individual torsion angles are adjusted [Word et al., 2000]. Both CP-branched 
sidechains (Thr, Val, lie) and longer sidechains such as Leu or Met can have 
problems of this sort; such cases can often be located by their deviant bond 
angles or torsion angles, but they can nearly always be found by their severe 
all-atom clashes.

A third common type of misfitting involves cases, usually in backbone, 
where there are too many variable conformational angles per observable. 
Glycine residues in proteins are more error-prone than other amino acids
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Figure 8. How the interactive all-atom contact tools could have corrected the misfit 
Thr in Figure 7b, using only the original structure, a) All-atom contacts for Thr 87 
in 5RSA, with eclipsed Xu bad bond angles, and serious clashes around the Cy 
methyl, b) Ideal-geometry Thr rotamers were tried and adjusted in the interactive 
M age/P r o be  system [Word et al., 2000], producing the excellent fit shown, with a 
slightly long H-bond. Further refinement would probably move the backbone 
slightly, but one could be sure this is close to the right answer, confirmed by the 
7RSA structure.

because there is no observable Cp to help show the orientation; an example 
is discussed in [Word et al., 1999a]. Nucleic acid backbone has an even 
more serious form of this same problem, for both x-ray and NMR structures, 
since there are six variable angles per residue along the sugar-phosphate 
backbone. The bases have large flat ring structures that are easy to locate 
accurately, and their all-atom contacts are almost always excellent in crystal 
structures, as for the tRNA example in Figure 9a. В-form DNA, and to a 
somewhat lesser extent А-form RNA, has been very well characterized 
structurally, so that the regular double-helical backbones generally show very 
good all-atom contacts. However, the less regular conformations, especially 
common and functionally important in RNA, show a high rate of physically 
impossible clashes such as the one in Figure 9b. Phosphates are readily 
positioned by their high, distinctive electron density; the approximate 
position of the backbone would seldom be wrong, but the detailed angles and
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Figure 9. All-atom contacts in nucleic acid structures, illustrated from the IEHZ 
tRNA at 1.93A resolution [Shi and Moore, 2000]. a) Base-base contacts near the 
CCA end, showing base-pair H-bonds and very well-fitted base stacking interactions, 
both for successive base pairs and for single-base stacking, b) A local region with 
backbone-backbone all-atom contacts: one nucleotide residue shows a bad clash 
while the next residue has a closely similar conformation but favorable interactions. 
A backbone rotamer library might help improve RNA structures by replacing the first 
sort o f conformation with the second sort.

orientations can often be incorrect. We hope in the future to provide tools to 
help increase the accuracy of RNA structures, such as a comprehensive 
backbone rotamer library containing only conformations free of serious 
clashes. In the meantime, however, the display or listing of all-atom clashes 
can be used to assess relative levels of local accuracy, especially when 
making functional comparisons among RNA molecules.
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6.5 All-Atom Contacts for Characterizing Molecular 
Complexes

The calculation and display of all-atom contacts between two molecules 
can, of course, be effective in finding any problems with the 3D model at the 
interface. However, it also provides an intuitive but very detailed analysis of 
the specific atomic contacts between the molecules. As an example, Figure 
10 shows the binding to ribonuclease A of a uridine vanadate inhibitor which 
mimics the 2',3' cyclic phosphate intermediate in catalysis. The contacts are, 
indeed, very tight and specific, with 7 strong H-bonds and much good van 
der Waals contact. Two stretches of mainchain and 7 sidechains, including 
the active site H isl2 and His 119, interact with two-thirds of the inhibitor 
atoms.

Larger protein-protein complexes can also be studied effectively with 
these tools in the interactive mode, but the contacts are hard to show in a 
small static image. Figure 11 shows the complex of ribonuclease A (ribbon) 
with the large horseshoe-shaped oc/p molecule of ribonuclease inhibitor 
(mainchain), with contact dots calculated between them. Ribonuclease is, 
indeed, held between the two ends of the horseshoe, but one loop also makes 
substantial contact with a Trp cluster on the inner face of the inhibitor. A 
sulfate is bound at the active site, between the enzyme and the inhibitor. 
Although the interface is extensive, its contacts are actually rather sparse as 
compared, for instance, with the very tight packing seen in Figure 10.

6.6 Discussion

When "validating" structures, it is important to keep in mind that not all 
problems can be resolved and that some errors are very significant while 
others really do not matter. A partially disordered surface loop genuinely 
does not have a single equilibrium structure but might in actuality be a 
mixture of three mostly-overlapping possible conformations each in equally 
favorable local energy minima. It may never be possible to disentangle them 
correctly in the 3D model, and there are very few purposes for which that 
would matter. Similarly, we are not concerned here with inaccuracies where, 
say, one or two torsion angles might be off by 20-30° but the conformation is 
in the right local minimum. Such inaccuracies typically change atom 
positions less than an A, and usually they only produce clashes smaller than
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Figure 10. All-atom contacts between ribonucease A and the cyclic uridine vanadate 
intermediate-analog, in the 1RUV complex at 1.3A resolution [Ladner et al., 1997]. 
The ligand is nearly surrounded by interactions to both backbone and sidechains of 
the protein, with 7 H-bonds including those to the active-site His 12 and His 119 an 
extensive van der Waals contact.
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Figure 11. All-atom contacts between ribonuclease (ribbons) and the large a /p  
horseshoe o f ribonuclease inhibitor (mainchain in peach) from the 1DFJ complex at 
2.5A resolution [Kobe and Deisenhofer, 1995]. The enzyme is bound between the 
two ends o f the horseshoe, with the active site covered by the larger contact area at 
left, but there is also a significant contact o f one loop with the inner face o f the 
horseshoe. Although the contact surface at left is large, it is actually rather sparse, 
with about the same area of all-atom contact as the smaller but denser interaction o f  
the uridine vanadate ligand in Figure 10.
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our cutoff of 0.4A. They would be crucial to a detailed chemical analysis of 
an enzymatic mechanism, but they would not change a bioinformatic analysis 
of fold, homology, function, or molecular interactions. When a local 
conformation is in the wrong energy well, however, such as a sidechain fitted 
backwards, that almost always does matter since it typically changes atom 
positions by 4 or 5A. A flipped amide or His at an active site could make a 
functionally important H-bond network look absent; a backwards Leu in the 
core could seriously compromise homology modeling; and, any backwards 
sidechain at a binding site is likely to prevent successful ligand docking or 
drug design.

The application of all-atom contact analysis to the database of 3D 
biological structures has two quite distinct purposes. One is to provide 
simple, user-friendly tools that help anyone using the database to assess and 
thus take into account the relative accuracy of the structures, especially the 
local accuracy of any features of special interest. Our website provides a 
service called MolProbity that runs these tools on any user-designated file. 
The second purpose is to enable and encourage the use of these methods by 
structural biologists (see for instance [Richardson and Richardson, 2001] for 
a description of crystallographic tools), in order to correct as many problems 
as possible before structure deposition and thus to improve the 3D data 
directly. The latter aim would improve the grade of ore available for 3D data 
mining, while the former would improve the extraction process.
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Chapter 7

Protein Classification: A Geometric Hashing 

Approach

Xiong Wang and Jason T. L. Wang

7.1 Introduction
Protein classification has been a very important research topic [Kihara et 

al., 1998; Pasquier and Hamodrakas, 1999; Wang et al., 1999]. Traditionally, 
proteins are classified according to their functions. However, recently, many 
approaches have been proposed to classify proteins according to their 
structures, including secondary structures and three dimensional structures. 
Many of these methods complemented the traditional approach. We introduce 
here an algorithm that discovers frequently occurring patterns in a set of 
proteins, represented by 3D graphs, and use these patterns to classify the 
proteins. Our approach is a variant of the geometric hashing technique.

Proteins are large molecules, comprising hundreds of amino acids 
(residues) [Pu et a l , 1992; Wang et a l , 1999]. In each residue C«, Cp and N 
atoms form a backbone of the residue [Pennec and Ayache, 1994]. Following 
[Vaisman et a l , 1998] we represent each residue by the three atoms. Thus, if 
we consider a protein as a 3D graph, then each node of the graph is an atom. 
Each node has a label, which is the name of the atom and is not unique in the 
protein. We assign a unique number to identify a node in the protein, where

163
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the order of numbering is obtained from Protein Data Bank (PDB) [Bernstein 
et al., 1977; Abola et al., 1987], accessible at http://www.rcsb.org. We 
construct substructures from a given set of proteins and evaluate the number 
of occurrences of each substructure in the data set. Those substructures that 
occur frequently are considered useful patterns and are used for classification.

7.2 Constructing Substructures

We discuss three different ways for constructing substructures. The first 
method segments a protein into consecutive substructures. The second and 
third methods construct substructures from the surface structure of the 
protein.

Segmenting a Protein

We decompose each protein into consecutive substructures, each 
substructure containing 6 atoms. Two adjacent substructures overlap by 
sharing the two neighboring atoms on the boundary of the two substructures 
(see Figure 1). Thus, each substructure is a portion of the polypeptide chain 
backbone of a protein where the polypeptide chain is made up of residues 
linked together by peptide bonds. The peptide bonds have strong covalent 
bonding forces that make the polypeptide chain rigid. As a consequence, the 
substructures used by our algorithm are rigid.

The Intuitive Protein Surface

Significant studies have shown that the structure of a protein surface is more 
related to the function of the protein. For example, Chirgadze and Larionova 
[1999] found that sign-alternating charge clusters are a common feature of 
the surface of a globular protein and they play a general functional role as a 
local polar factor of the protein surface. Rosen et al. [1998] examined 
the reliability of surface comparisons in searching for active sites in 
proteins. They suggested that, the detection of a patch of surface on one 
protein that is similar to an active site in another may indicate similarities in 
enzymatic mechanisms in enzyme functions, and implicate a potential target 
for ligand/inhibitor design.

http://www.rcsb.org
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0(N)

HC«

13(C J

(a)

H C a )

4(Ca )

8(C«)
13(C a)

I2(N)

(b)

Figure 1. Segmenting a protein.

In our second method, we extract the surface atoms from a protein and 
construct substructures from the surface. Since each atom is represented by 
the coordinates of its center in a three dimensional space, for presentation 
purposes, we also use points to refer to these atoms. The idea here is to draw 
grids along each dimension and pick up the points with the maximal and 
minimal coordinates inside each strip. Figure 2 shows a two dimensional 
example. Inside each strip that is parallel to the У-axis, the points with the 
maximal Y and minimal Y coordinates are surface points. Surface points are 
highlighted by solid balls in Figure 2. The lines connecting the surface points 
delineate the shape of the surface (see Figure 2).

Notice that, the width of the strips is a parameter, which can be adjusted.
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Figure 2. The surface o f a protein.

For the same protein, the set of surface atoms can be different if this 
parameter is set to different values. Figure 3 shows a different set of surface 
atoms for the same protein in Figure 2.

У

P

Figure 3. Another surface o f the same protein.
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Figure 4 shows the surface extracting algorithm along one dimension. 
Range is a parameter that can be adjusted. Notice that the algorithm in 
Figure 4 only finds the surface points along the Z axis. The same algorithm 
can be used to find surface points along the X and Y axes. These points are 
then combined together to form the surface of a protein.

P r o c e d u r e  Find_Surface
I n p u t : A set of points D with coordinates.
O u t p u t : A set of points S that form part of the surface of D.

let X  (X  ) be the minimal (maximal) X  coordinates of allmin '  m a x '  4
points in D, respectively;
let Y (Y ) be the minimal (maximal) Y  coordinates of all points

nun 4 m ax *  4 '

in Д  respectively;

for (x = X min- x < X rKa;x = x + 2 * R a n g e )  do 

for ( y  =  Ymn; y < Y ma, y  = y  + 2*  Range) do 

begin
in those points (Xp , y p,Zp) ,  such that 

x p e  ( x - R a n g e , x+ R an ge]  and 

y p e  (y  -  Range, у  + Range],

find the point p mn (P mu ) whose 2  coordinate is the smallest 

(largest), respectively;

^  Рш„ * S then
insert into S;

i f  P m a x  «  5  t h e n

insert into J; 
end _____

Figure 4. The surface extracting algorithm.
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Let
d  -  V  _у  d  — V  —  Y  R  __ 7  __ 7

X л  max min ’ l X y 1  max 1  min » ^ m a x  ^ m in

and
c _ Rx Y . R , + R , * R t + R x x R t 

2 x  Range
The complexity of the algorithm is О (С x  IDI), where IDI is the size of the 
protein.

Let D be the set of all the atoms in a protein and S be the surface atoms 
of the protein. For any atom p  e  S , our second method considers p  and its 
к -nearest neighbors in D as a substructure.

The a-Surface

Our third method employes a more formal definition of surface atoms, 
called а -surfaces. Our definition of а -surfaces is inspired by the definition 
of а -shapes, introduced by Edelsbrunner and Mucke [1994].

Definition 1 Given a point О in the three dimensional Euclidean space R3 
and a real number a  (0 < a  < oo) , an а -ball is the set o f points B ( 0 , a )  ={P 
I P e  R3 and II P -0  II < a), where II P -0  II is the Euclidean distance 
between P and О . A closed a -ba ll B ( 0 , a )  is the a -b a ll B ( 0 , a )  plus 

its bounding sphere, i.e. B( Oya )  = (P I P e R3 and II P -0  II < a}.

Definition 2 Given a finite set D of discrete points in R3 and a real number 
a  (0 < a  < oo)} the a  -surface S of D is defined as S = { P I P e  D and (3
O eR 3 such that B ( 0 , a ) n D  =Ф and PeB(0,CC) )}. When B (0 , a ) n D

= Ф andP e  В (О, a )  n  D, we say that a  -ball B ( 0 , a )  touches P. P eS  is
called a surface point with respect to a  (or simply a surface point when the 
context is clear).

Figures 5 and 6 show two а -surfaces of the same point set, with respect 
to two different a  values.
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Figure 5. An а -surface in R2.

The definition of а -surfaces is general. In the context of protein data, we 
need some adjustments. First of all, the surface of a protein is important to its 
function, because the protein reacts to its surroundings through its surface. 
Thus we are not concerned with those parts of а -surfaces that are not 
visible, namely those surface atoms that are enclosed inside the protein. 
Secondly, when a  is small, the а -surface of D could be split to two 
pieces. A protein is one molecule. Its surface should be in one piece. e 
specify the adjustments in the following definition.

Definition 3 Let a ( 0  < a < ° ° )  be a real number and S be the a  -surface of 
a finite set D. S is connected, if for any two surface points Pi, P2 E * ere 
are a finite number o f a-balls: B ( 0 ltcc), B(Oi,Ct), —> B(On,(X) , such 

that:

(i) B(On a )  nD=<P U £  i^ n ).

(ii) В (0, jx)  n  В (Oj+i , a ) n S * < P  (1 £  ‘ £ n -l) .

(Hi) P se~B (O, ,a).
(iv) P2e  В (0„ ,ci).
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Figure 6. Anther а -surface w.r.t a different a  value.

Notice that, (ii) requires two contiguous а -balls to touch on at least one 
common surface point. Imagine that the а -ball is solid, so are the points in 
Д  and we roll the а -ball along the surface of D. Intuitively, if an a-surface 
is connected, we can roll an а -ball from one surface point to another along 
the surface.

Starting from the point with the maximum X-coordinate in Д  the surface 
extracting algorithm rolls the а -ball to any surface point that can be touched 
in a breadth first manner.3 The algorithm maintains a queue Q which holds a 
subset of the а -surface S that is under extension. The basic rolling procedure 
of the algorithm rolls the а -ball around one surface point in Q, so that all its 
neighboring points in S will be touched at least once by the а -ball. These 
neighbors are added to Q. Figure 7 illustrates the procedure. The а -ball is 
rolled around P0 so that P0's neighbors Pi, P2, P3, P4, P5 and P6 are touched 
by the a-ball.

Since the neighboring surface points are within distance 2 a  of the current 
surface point, to speed up the process, we partition D at the very beginning. 
Let xmin ( jw )  be the minimum (maximum) X coordinate of all the points 
in Д  respectively. Let x0i xl , xn be defined as follows:

3 Obviously, the point with the maximum X coordinate in D is a surface point with respect to 
any a.
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Figure 7. Rolling an a-ball.

Ш x0 = xmin;
(ii) xM  = Xj + 2a  (0 < i < n-l)\ and
(iii) x„.i <xnuu and Хщах <Xn.

We cut the range [xmin, xmax] to segments [xb xi+i] (0 < i < n-1) with 
length 2a. Similarly, let ymin (ymax) be the minimum (maximum) Y 
coordinate and zmin (zma.x) be the minimum (maximum) Z coordinate, 
respectively. We cut the ranges [ymin, >w J an(  ̂ [Zmin, zmax] to segments with 
length 2a. Each partition Pt^k is a cube PtiJik = {(x, y, z) \ Xj <x < xi+J, yj < 
у < yj+u and zk< z <  Zk+i }• Figure 8 shows a two dimensional example.

For any given point P = (x, y, z) e  D, let

~ X -^min У У min and к = * ^min

2 a
» j  - 2 a 2 a  •_

P  belongs to partition Ptij.k and the points that are within distance 2a  of P 
are all located in the partitions surrounding / \ , >

Assuming that the points in D are evenly distributed, the complexity of 
the surface extracting algorithm is:
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Figure 8. Partitioning points in a two dimensional space.

V V

where IDI is the size of D and

X — Уmax min V
Г Y - Y  1шах пип V

7  - 7max min
2а

А

2а
А

2 а

is the total number of partitions.
Let S be the а -surface of a protein. For any atom p e  5, our third method 

considers p and its k-nearest neighbors in S as a substructure. Notice the 
difference between this third method and the second method depicted earlier.

7.3 Discovering Frequently Occurring Patterns
Given a set of substructures of proteins, this section presents the 

algorithm to evaluate their frequency of occurrence. The algorithm proceeds
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in two phases: the hashing phase and the evaluation phase. In the hashing 
phase, given a substructure Str of a protein, we attach a local coordinate 
frame, called a Substructure Frame SF, to a node P0 in Str (see Figure 9).

Suppose the coordinates of P 0 are (x0, yo, Zo)- This local coordinate frame 
is represented by three basis points P bI, Ры  and P bj , with coordinates Pbi 
Уо, Zo), P b2 (xo+1, yo, Zo)> and P b3 (Хо, y0+1, zo\ respectively. The origin is Pbi 
and the three basis vectors are VbJib2, Уы.ьз and Vbi,b2 x  Уы.ьз- Here, Vbi.b2 
represents the vector starting at point P bj and ending at point P b2. VbIb2 x 
^ы.ьз stands for the cross product of the two corresponding vectors. We hash 
all three-node combinations, referred to as node-triplets, in the substructure 
Str to a 3D hash table. Notice that, three sorted nodes uniquely determine 
another coordinate frame (see Figure 10).

Let Pj, Pj and Pk be three nodes, such that II P, -  P j II < II Pi -  Pk \\ <W P j -  
P k W, where IIP i - P jW ,  IIР , - Р к \\, and \ \ P j - P k W stand for the Euclidean 
distance between each pair of the nodes. The local coordinate frame, 
denoted LF[i, j, k], is constructed, using Vit j, Vit k and Vit j x Vit k as basis 
vectors. With respect to LF[i, j, k], the coordinates of Ры, Рь2» Ръз are 
geometric invariants. We store these coordinates together with a protein 
identification number and a substructure number in the hash table. The hash 
bin addresses are calculated using II Pi -  Pj II2, II P, -  Pk II2 and II Pj -  Pk II". At 
the end of the hashing phase, all substructures are stored in the hash table.

In the evaluation phase, the algorithm considers each substructure as a 
candidate pattern and rehashes it to evaluate its number of occurrences in the 
training data. In this phase, we again take each node-triplet from the 
candidate pattern and utilize the lengths of the three sorted edges to access 
the hash table. All the triplets that were stored in the accessed hash bin are 
recognized as matches and their local coordinate systems SFs are recovered 
based on the global coordinate system in which the candidate pattern is 
given. The triplet matches are augmented to larger substructure matches 
when they come from the same substructure and their recovered local 
coordinate systems match each other (see Figure 11).

A candidate pattern M occurs in the protein or on the surface of a 
protein if M matches any substructure from the protein within one mutation. 
A candidate pattern M matches a substructure Str with n mutations if by 
applying an arbitrary number of rotations and translations as well as n node 
insert/delete operations to M, one can transform M to Str (see [Wang et 
a l ,  1997; Wang et a l, 2002] for details).
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Str

Figure 9. A substructure and the SF attached to the substructure.

S F

Pj

L F [i ,  j ,  к ]

Pi

Pk

Figure 10. A node-triplet and the local coordinate frame LF[i, j , к].
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x / °*  C

Two Triplets from the Hash Table

Global Coordinate Frame

Figure 11. Two triplet matches that are augmentable.

7.4 Classifying Proteins
We applied our techniques to classifying three families of proteins. Since 

the а -surface technique achieves the best result, we report that result only. 
For each family i of the proteins, we identify two types of patterns on the 
surfaces of the training data, the pro patterns and the con patterns. The pro 
patterns occur more frequently in family i than in the other two families. The 
con patterns occur more frequently in the other two families than in family /. 
Each candidate pattern M found on the surfaces of the training data is 
associated with two weights pro ' and con1 where
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Here ill is M 's  occurrence number in the training data of family i. We add 
denominators to both weights because we observed that some patterns are 
common to proteins from different families. Although they may still occur 
more frequently in some family, they really are not specific to any family. 
For each family we collect all the patterns having a weight greater than zero 
and use them as pro patterns and con patterns of that family, respectively. It 
can be proved that any pattern M that occurs in the training data is either a 
pro pattern or a con pattern of some family, unless M 's occurrence numbers 
tie in all the three families.

We classify a test protein Q in the following way. Let M \ , ..., M'pi be 
all the pro patterns for family i. Family i obtains a pro score

the family i with maximum N ‘pro. We add the denominator to make the score

fair to all families. Notice that the maximum possible score for any family is 
1. If we can not decide a winner from the pro scores, e.g. the scores are the

where

1 if M [ occurs in Q
d>c =

0 otherwise

and pro[  is the weight associated with M [ . The protein Q is classified to

same for two families, the con patterns are used to break the tie. Let Tj1, • 

T'qi be all the con patterns for family i. Family i obtains a con score

Y U  , d k xcon[\JI __ jL̂ k=1 *____
con ,
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where

177

1 if 77 occurs in Q

0 otherwise

and con[ is the weight associated with T 'k . The protein Q is classified to

the family i with minimum N'con . If we still can not decide a winner, then the 
no-opinion” verdict is given.

7.5 Experimental Results
We have implemented all algorithms using C++ on a Sun Ultra 10 

workstation running Solaris 8. We selected three families of proteins from 
SCOP [Murzin et al., 1995]. SCOP is accessible at http://scop.mrc- 
lmb.cam.ac.uk/scop/. The three families pertain to Transmembrane Helical 
Fragments, Matrix Metalloproteases — catalytic domain, and 
Immunoglobulin — I set domains. In determining the structure of a protein, 
we consider only Ca, Cp and N atoms. Figure 12 shows a protein whose PDB 
Code is lcqr. It has 1089 atoms in the backbone. Figure 13 shows an a- 
surface found by the proposed algorithm, with respect to oc=7.5. It has 242 
atoms.

We classified the proteins as described in Section 7.4. When adjusting a  
in the surface extracting algorithm, we found that a  = 7.5 yielded the best 
result. When constructing substructures (patterns), we found the substructures 
with 6 points yielded the best result. In each of these substructures, there was 
a surface point together with its 5 nearest neighbors on the а -surface. The 
algorithm produced a set of surface points from a protein that were on 
average 25% of the size of the protein.

We use recall (R) and precision (P) to evaluate the effectiveness of our 
classification algorithm. Recall is defined as

т- Y 3 m '
R = ----- ----------- X l00%

T

http://scop.mrc-
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Figure 12. A protein (lcqr).

Figure 13. An а -surface o f  the protein (lcqr) in Figure 12.
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where T is the total number of test proteins and Af is the number of test 
proteins that belong to family i but are not assigned to family i by our 
algorithm (they are either assigned to family j ,  j  */, or they receive the “no- 
opinion” verdict). Precision is defined as

г -Y  \ g 1
P  = ------^ — x l0 0 %

T

where G' is the number of test proteins that do not belong to family i but are 
assigned by our algorithm to family i. With the 10-way cross validation 
scheme,4 the average R over the ten tests was 93.7% and the average P was 
95.2%. It was found that 4.3% test proteins on average received the “no
opinion” verdict during the classification.

7.6 Conclusion
We investigate approaches to the discovery of frequently occurring 

patterns in three dimensional structures and their application to protein 
classification. Some ideas described here have appeared in [Wang, 2001a; 
Wang, 2001b; Wang and Wang, 2001; Wang et al., 2002]. Future work 
includes extending our algorithms to build a structure-based search engine for 
proteins.
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Chapter 8

Interrelated Clustering: An Approach for Gene 

Expression Data Analysis

Chun Tang, Li Zhang, Aidong Zhang and Murali Ramanathan

8.1 Introduction
Array technologies are capable of simultaneously measuring the signals 

for thousands of messenger RNAs and large numbers of proteins from single 
samples. Arrays are now widely used in basic biomedical research for mRNA 
expression profiling and are increasingly being used to explore patterns of 
gene expression in clinical research [Schena et a l 1995; DeRisi et al., 1996; 
Schena et a l , 1996; Shalon et a l , 1996; Heller et a l , 1997; Chen et a l , 1998; 
Ermolaeva et al., 1998; Welford et a l , 1998; Iyer et a l , 1999]. The 
customary approach in array analysis is to obtain data from fluorescence 
scanners or phosphorimagers and to analyze the array images using dedicated 
image analysis software, usually provided by the array manufacturer. 
Minimally, these software identify spots and analyze spot intensities, map 
spots to genes, and condition of the data. The normalized results are exported 
as flat tables to other software where a typical preliminary analysis may 
involve exploratory cluster analysis, biostatistical analysis and bioinformatics 
research for interesting genes.

183
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The raw microarray data are images which can then be transformed into 
gene expression matrices where usually the rows represent genes, and the 
columns represent various samples. The numeric value in each cell 
characterizes the expression level of the particular gene in a particular 
sample. Innovative techniques to efficiently and effectively analyze these fast 
growing gene data are required, which will have a significant impact on the 
field of bioinformatics. But the high-dimensionality and size of array-derived 
data poses challenging problems in both computational and biomedical 
research, and the difficult task ahead is converting genomic data into 
knowledge. Various methods have been developed using both traditional and 
innovative techniques to extract, analyze, and visualize gene expression data 
generated from DNA microarrays.

The existing data-clustering methods fall into two major categories: 
supervised clustering and unsupervised clustering. The supervised approach 
assumes that additional information is attached to some (or all) data; for 
example, samples are labeled as diseased vs. normal. Using this information, 
a classifier can be constructed to predict the labels from the expression 
profile. The major supervised clustering methods include neighborhood 
analysis [Golub et al., 1999], the support vector machine [Brown et al., 2000; 
Furey et a l 2000; Pavlidis et al., 2001], the tree harvesting method [Hastie et 
al., 2001], the decision tree method [Zhang et al., 2001], statistical 
approaches such as the maximum-entropy model [Jiang et al., 2001], and a 
variety of ranking-based methods [Moler et al., 2000; Park et al., 2001; 
Thomas et al., 2001].

Unsupervised approaches assume little or no prior knowledge. The goal 
of such approaches is to partition the set of samples or genes into statistically 
meaningful classes [Ben-Dor et al., 2001]. A typical example of 
unsupervised data analysis is to find groups of со-regulated genes or related 
samples. Currently most of the research focuses on the supervised analysis; 
relatively less attention has been paid to unsupervised approaches in gene 
expression data analysis which is important in a context where little domain 
knowledge is available [Spellman et al., 1998; Barash and Friedman, 2001]. 
The hierarchical clustering method [Eisen et al., 1998; Alizadeh et al., 2000; 
Zou et al., 2000; Hakak et al., 2001; Herrero et al., 2001; Martin et al., 2001; 
Virtaneva et al., 2001; Welsh et al., 2001], the к-means clustering algorithms 
[Hartigan, 1975; Tavazoie et al., 1999; Han and Kamber, 2000] and the self
organizing maps [Kohonen, 1984; Golub et al., 1999; Tamayo et al., 1999; 
Holter et al., 2000; Mody et al., 2001] are the major unsupervised clustering 
methods which have been commonly applied to various data sets.
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Information in gene expression data can be studied in two angles 
[Brazma and Vilo, 2000]: analyzing expression profiles of genes by 
comparing rows in the expression matrix [Eisen et a l 1998; Ben-Dor et al.y 
1999; Perou et al., 1999; Tamayo et al., 1999; Alter et al., 2000; Brown et 
a l , 2000; Manduchi et a l 2000; Hastie et a l , 2001] and analyzing 
expression profiles of samples by comparing columns in the matrix [Golub et 
a l , 1999; Azuaje, 2000; Slonim et a l , 2000]. While most researchers focus 
on either genes or samples, in a few occasions, sample clustering has been 
combined with gene clustering. Alon et a l  [1999] proposed a partitioning- 
based algorithm to study 6500 genes of 40 tumor and 22 normal colon tissues 
for clustering genes and samples independently. Getz et a l  [2000] proposed a 
coupled two-way clustering method to identify subsets of both genes and 
samples. Xing and Karp [2001] proposed a clustering method called CLIFF 
which iteratively uses sample partitions as a reference to filter genes. None of 
these approaches offers a definitive solution to the fundamental challenge of 
detecting meaningful patterns in the samples while pruning out irrelevant 
genes in a context where little domain knowledge is available.

In this chapter, we will introduce an interrelated two-way clustering 
approach for unsupervised analysis of gene expression data. Unlike previous 
work mentioned above, in which genes and samples were clustered either 
independently or both data being reduced, our approach is to delineate the 
relationships between gene clusters and sample partitions while conducting 
an iterative search for sample patterns and detecting significant genes of 
empirical interest. The performance of the proposed method will be 
illustrated in the context of various data sets.

The remainder of this chapter is organized as follows. Section 8.2 
introduces the interrelated clustering approach. Section 8.3 presents the 
experimental results on the multiple sclerosis data set and other data sets. 
And finally, the conclusion is provided in Section 8.4.

8.2 Interrelated Clustering

8.2.1 M otivation

Gene expression data can be viewed as matrices where rows represent 
genes, and columns represent samples such as tissues or experimental
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conditions. Let G = { g I,.. . ,gh...)g ll} be the set of all genes, S={sj, . . . ,s j , . . . ,sm} be 
the set of all samples, and be the intensity value associated with each gene 
gi and sample Sj in the matrix. Thus the gene expression matrix W={ w,.y-11 <
i < n, l < j  < m } has n rows (genes) and m columns (samples). Clustering can 
be used to group genes that manifest similar expression patterns for a set of 
samples [Eisen et al., 1998; Ben-Dor et al., 1999; Alter et al., 2000; Brown et 
a l 2000; Hastie et a l , 2001]. This view considers the N=g„  genes as objects 
to be clustered, each represented by its expression profile, as a point in a 
D = s m dimensional space, measured over all of the samples. Another type of 
clustering is to cluster samples into homogeneous groups which may 
correspond to particular macroscopic phenotypes, such as clinical syndromes 
or cancer types [Golub et al., 1999; Azuaje, 2000; SJonim et al., 2000]. In 
this instance, the N = s m samples are viewed as the objects to be clustered, 
with the levels of expression of g„ genes playing the role of the features, 
representing each sample as a point in a D - g „  dimensional space.

Sample clustering presents interesting but also very challenging 
problems. In typical microarray data sets, the sample space and gene space 
are of very different dimensionality, for example, 101—102 samples versus 
10 ~10 genes. Clustering on the original high dimensional data is not 
guaranteed to capture a meaningful partition corresponding to empirical 
interest because [Xing and Karp, 2001 ]:

(1) A gene expression matrix is usually generated according to some 
actual empirical interest, like diseased vs. healthy condition for samples. But 
the same set of samples may also display gender, age, or other variability.

(2) Microarrays are not typically task-specific and most of the genes are 
not necessarily of interest. Sample-pattem detection is subject to interference 
from the large number of irrelevant or redundant genes which should be 
pruned out or filtered when clustering samples.

(3) For unsupervised analysis, uncertainty about which genes are relevant 
makes it difficult to construct an informative gene space to detect real sample 
partition.

To address these problems, we propose a framework for the unsupervised 
gene expression data analysis. In this framework, a pre-processing procedure 
is first applied to identify the relative important genes. Then an interrelated
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two-way clustering approach is applied to the gene expression matrix W. The 
goal of the interrelated two-way clustering involves two tasks: detection of 
meaningful patterns within the samples and selection of those significant 
genes which contribute to the samples’ empirical pattern. To be more 
specific, they are:

(1) To select a subset of genes, usually called important genes, which are 
highly associated with the samples’ experimental distributions. This can also 
be considered as genes filtering.

(2) To cluster the samples into different groups. According to the most 
popular experimental platforms, the number of different groups is usually 
two, for example, diseased samples and health control samples.

These two tasks are actually interconnected. Once the important genes are 
identified, the dimensions of the data will be efficiently reduced so to allow 
conventional clustering algorithms to be used to cluster samples. Conversely, 
once the salient sample patterns have been found, genes can be sorted for 
importance using similarity scores, such as correlation coefficient with the 
pattern. In general, if either an accurate sample partition or a set of significant 
genes is known, the other can then be easily obtained by supervised 
approaches [Golub et al.y 1999; Jorgensen, 2000; Jiang et al., 2001]. With 
unsupervised clustering, however, factors such as the sparsity of data, the 
high dimensionality of the gene space, and the high percentage of irrelevant 
or redundant genes make it very difficult either to classify samples using 
traditional clustering algorithms [Hartigan, 1975; Hartigan and Wong, 1979] 
or pick out substantial genes in a context where little domain knowledge is 
available.

Since the volume of genes is large and no information regarding the 
actual partition of the samples assumed to be available, we cannot directly 
identify the sample patterns or significant genes. Rather, these goals must be 
gradually approached. First, we use the relationships of sample clusters and 
gene groups thus discovered to post a partial or approximate pattern. We then 
use this pattern to direct the elimination of irrelevant genes. In turn, the 
remaining meaningful genes will guide further sample pattern detection. 
Thus, we can formulate the problem of pattern discovery in the original data 
via an interplay between approximate partition detection and irrelevant gene
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pruning. Because of the complexity of the matrix, this procedure usually 
requires several iterations to achieve satisfactory results.

8 .2 . 2  Pre-processing

In the gene expression matrix, different genes have different ranges of 
intensity values. Thus, the absolute intensity values of genes alone may be 
difficult to be compared, and thus may not indicate any significant 
relationships among the genes. But the relative values are more intrinsic. So 
we first normalize the original gene intensity values into relative values 
[Schuchhardt et a l 2000; Yang et al., 2001].

Our general formula for normalization is

ill

w] j =  - -  ~~ , where Д, —  Ш
m

In Formula 1, w'jj denotes normalized intensity value for gene i of sample 
j> Wjj represents the original intensity value for gene i of sample j, m is the 
number of samples, and m, is the mean of the intensity values for gene i over 
all samples.

As we mentioned earlier, among thousands of genes, not all of them have 
the same contribution in distinguishing the classes. Actually, some genes 
have little contribution. We need to remove those genes which have little 
reaction to the experiment condition. We believe that genes whose intensity 
values keep invariant or change very little among samples should be the ones 
to be removed. Figure 1 shows an example of gene distributions. In the 
figure, the horizontal axis represents samples. Each polygonal line indicates 
that a gene changing level varies among samples. The red-solid lines 
represent the genes whose relative intensity values vary little through all 
samples, and the blue-dash lines represent the genes whose intensity values 
vary much among samples.

Lets assume we have n genes and m samples. We denote each gene 
vector (after normalization) as

Si =  ( w ' / . / , * / , - * . . . ,  w ’itm), (2)
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Figure 1. Genes intensity value distributions after normalization.

where i = 1,2,...n for genes. We use vector-cosine between each gene vector 
and a pre-defined stable pattern E to test whether a normalized gene intensity 
value varies much among samples. The pattern is denoted as E= (£/. e2, •••» 
ent), where all e, are equal.

COs(0) =  - 5 M i - ,  , -------- (3)

where 0 is the angle between two vectors g{ and E  in /и-dimensional space.
If the two vector patterns are highly similar, the vector-cosine will be close to 
1. The extreme cases are when two vectors are parallel, the vector-cosine 
value is 1, but the vector-cosine value of two perpendicular vectors is 0. After 
calculating vector-cosine values, we can choose a threshold to remove those
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genes which match pattern E closely (that is, those genes whose vector- 
cosine values with E are higher than the threshold, which means these genes 
change little during the experiment). Usually we can remove twenty to thirty 
percent of genes by this step, thus facilitating clustering in the next stage.

8.2.3 Interrelated Clustering

To perform interrelated two-way clustering, a distance measure to be 
used during the clustering procedure should be carefully chosen. One 
commonly used distance is the Euclidean distance. But for gene data, the 
similarity of the patterns between gene vectors seems more important than 
their spatial distance [Golub et al., 1999; Jorgensen, 2000]. So we choose 
correlation coefficient [Devore, 1991], which measures the strength of linear 
relationship between two gene vectors. This measure has the advantage of 
calculating similarity depending only on the patterns between gene vectors 
but not on the absolute magnitude of the spatial vector. The formula of 
correlation coefficient between two vectors X=(xlfx2,...xk) and У=(уьу2,.-.ук) 
is defined as:

к ( ^ х1'ХУ1) - С ^ х !) х ( У у , )

where к is the length of vectors X and Y.
In interrelated two-way clustering, both genes and samples are 

simultaneously clustered. Dynamic relationship between gene clustering and 
sample clustering is used to reduce the number of genes into a reasonable 
size and perform class discovery. Our algorithm, illustrated in Figure 2, is an 
iterative procedure based on G with nj genes after pre-processing. The idea is 
to dynamically use the relationships between the groups of the genes and 
samples while iteratively clustering through both genes and samples to 
extract important genes and classify samples simultaneously. Within each 
iteration there are five main steps:

Step 1 : clustering on genes. The task of this step is to cluster iii genes 
into к groups, denoted as G, (1  < i <k), each of which is an exclusive subset 
of G. The clustering method can be any method for which we can give the
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Figure 2. The structure of interrelated two-way clustering.

number of clusters, such as К-means or SOM [Hartigan, 1975; Hartigan and 
Wong, 1979].

Step 2: clustering on samples. Based on each group G, (7 < i < k), we 
independently cluster samples into two clusters (according to the most
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Gi or G inHp Г * S c ûster «su its on samples based on gene groups

s s - s s t t ;  ? \ r sampte - * •  « •cluster rpQuifc ко a r?  * use color (second line) to represent 
By combination SCf ° n aiK* C0*0r ^ ne) f°r results based on G2.
samples mar ked’ “ г * 1® gr° UpS “ * §enerated: C > includes 
includes w m nb i , d on and marked as “a” based on G 2; C2
C3 includes ыт  ̂ ^  & based on and marked as “b” based on G2;
G2* and С inri ^ eS таГ e<̂  aS ^ 5 base<  ̂on Gi and marked as “a” based on
basedonG* $атР * * * * *  38 “b” baSed on G> and marked as “b”
of possible ' ! т  e' gbt Poss'b*e sample groups. In general, the number

“ " " ,s U s" ,I ly  * is s“ ,0 be 2  “  red““ ,he 

Cy we^chomlit!^ нetero8eneous groups. Among the sample groups Cj to 
is inThe di^ferenTH ^  ПС t , ^ oups C.and C, such that each sfmple in Cs 
(С C) is called Ub 61 W1 CaCh samP*e G  during clustering in Step 2.

c * r r r Г ‘ р - F o r i f ^
t £ 4 )  which satisfv 'th?; n4’ We tW0 distinct groups C' and C' {I - s- 
and v are samples t f „ e  с ° Wlng C0ndltl0n: for V« eC „  Vv e  C„ where и
i <k)  (С С I k  t’J  u V 6 ir2’ then n  *  r2 (r' ’ r2 s  {a,b}) for all i (1 <

heterogeneous group ^ w h e T f - T b S T '  ?°u (C" Q )  iS SUCh 3) because all samples in group С/ are

192
С. Tang el al.



Interrelated Clustering: An Approach fo r  Gene Expression Data Analysis 193

clustered into Si>a (1 < i < k), while all samples in group C4 are clustered into 
S,\b (1 < i <k).  For the same reason, (C2, C3) is another heterogeneous group. 
We use these heterogeneous groups as the representation of the original 
sample partition.

Step 5: sorting and reducing. In this step, we reduce genes based on the 
sample patterns in the heterogeneous groups. To find genes whose expression 
patterns are strongly correlated with the class distinction within the 
heterogeneous group, we build on-off patterns according to the class 
distribution of each heterogeneous group and sort genes by their degree of 
correlation with the patterns. For example, for the heterogeneous group (С/, 
Q ,  two patterns ( )  and (1,1,...1,0,0,...0) are introduced. The 
pattern (0,0,...0, 1 ,1 ,...!) includes I С/ f (number of samples in group С,) zeros 
followed by C4 (number of samples in group Q ) one's. Similarly, 
(1,1,...1,0,0,...0) includes I С,I one's followed by IC4\ zeros. For each pattern, 
we use it to calculate vector-cosine defined in Equation (3) with each gene 
vector, then sort all genes according to the similarity values in descending 
order, and keep the first one third of the sorted gene sequence by cutting off 
the other two thirds of the gene sequence.5 By merging the remaining sorted 
gene sequences from two patterns, we obtain the reduced gene sequence G 
where at least one third of the genes in G are cut off.

Similarly, for the other heterogeneous group (C2, Cj), another reduced 
gene sequence G" is generated. Now the question is which gene subset 
should be chosen for the next iteration, G' or G"? The semantic meaning 
behind this is to select a heterogeneous group which is a better representation 
for the original distribution of samples because G  and G" are generated 
based on the corresponding heterogeneous groups. Here we use the cross- 
validation method [Golub et a l 1999] to evaluate each group. In each 
heterogeneous group, we first choose one sample and build on-off patterns 
using similar procedure mentioned above, but only based on the remaining 
samples. We then sort genes by their degree of correlation with the pattern to 
select important genes and predict the class of the withheld samples. The 
process is repeated for each sample, and the cumulative error rate is 
calculated. When the heterogeneous group which has lower error rate is
found, its corresponding reduced gene sequence is selected as G  with n2 
genes for the next iteration.

5 This two thirds threshold is a trade-off o f information preservation in each iteration and time 
cost o f  the whole approach.
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Figure 3. Clustering results combination when k=2. sh s2, ... sm in the first line 
represent samples.

After Step 5, the gene number is reduced from n/ to n2.
The above steps can be repeated by clustering n2 genes, and so on. The 

iteration will be terminated until the termination conditions are satisfied, 
which is discussed in the following subsection.

8.2.4 Termination Condition

After one iteration involving detection of sample pattern and selection of 
genes, a certain number of genes will be pruned. The remaining genes and 
the entire samples then form a new gene expression matrix from which a new 
iteration starts.

We will now discuss the issue of determining when sufficient iterations 
have been performed. Ideally, iterations will be terminated when a stable and 
significant pattern of samples has emerged. Thus, the iteration termination 
criterion involves determining the measurement and threshold which 
identifies a “stable and significant” pattern.



The propose of clustering samples is based on identify 
empirical interesting patterns in the underlying samples. In general^01*^ 
that the samples in a given group will be similar (or related) to ^ n e ^  110136 
and different from (or unrelated to) the samples in other groups ^ eanotller
the similarity (or homogeneity) within a group, and the greater the difference 
between groups, the better or more distinct the partition.

As described above, after each iteration, we use the remaining genes to 
classify samples and then use the coefficient of variation (CV) to measure 
how “internally-similar and well-separated” this partition is:

"  <5> 

where N  represents the cluster number, }1 к indicates the center of group к, and 
<7* represents the standard deviation of group к. Assuming there are t objects 
{v,,v2,...,v ,}  in group к, each object is a л-dimensional vector

Vj =< m ,, m2,...mn > . The center of group к is defined as:

A t = <  Ш1.к- %  ’- M nJc >  - (6)
where

_  1 ^
m.
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h* =~Ъп,П (i = 1,2,...,«) (7)
1 j=\

And the standard deviation of group к is defined as:

O, = (8)

It is clear that, if the data set contains an “internally-similar and well- 
separated” partition, the standard deviation of each group will be low, and the 
CV value is expected to be small. Thus, based on the coefficient of variation, 
we may conclude that small values of the index indicate the presence of a 
“good” pattern. In the interrelated two-way clustering approach, we examine 
the coefficient of variation values after each iteration and terminate the 
algorithm after an iteration with a CV value much smaller than the previous.

Another applicable termination condition involves checking whether the 
number of genes is small enough to guide sample class prediction. This 
number is highly dependent on the type of data. For example, in a typical
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biological system, the number of genes needed to fully characterize a 
macroscopic phenotype and the factors determining this number are often 
unclear. Experiments also show that, for certain data, gene numbers varying 
from 10~200 can all serve as good predictors [Golub et al., 1999]. For our 
microarray data experiments, we have chosen 100 as a compromise 
termination number; e.g. when the number of genes falls below 100, the 
iteration stops. This termination condition is used only as a supplementary 
criterion.

Genes that remain will be regarded as the selected genes resulting from 
this interrelated two-way clustering approach. They are then used to cluster 
the samples for a final result. Since the number of genes is relatively small, 
the traditional clustering methods can be applied to the selected genes. The 
remaining genes can also be treated as “predictors” to establish cluster labels 
such as disease symptoms and control condition for the next batch of 
samples.

8.3 Experimental Results
We will now present experimental results using four microarray data sets. 

The first two data sets are from a study of multiple-sclerosis patients 
collected by the Neurology and Pharmaceutical Sciences Departments of the 
State University of New York at Buffalo. Multiple sclerosis (MS) is a 
chronic, relapsing, inflammatory disease of the central nervous system that 
causes physical and cognitive disability in adults of working age between 16 
and 60. Interferon-P (EFN-(3) has offered the most important treatment for the 
MS disease over the last decade [Yong et al., 1998]. The MS data set 
includes two groups: the M S JF N  group, containing 28 samples (14 MS, 14 
EFN), and the CONTROL_MS group, containing 30 samples (15 MS, 15 
Control). Each sample is measured over 4132 genes. The other two data sets 
are based on a collection of leukemia patient samples reported in (Golub et 
al., 1999). One matrix includes 38 samples (27 ALL vs. 25 AML), and the 
other contains 34 samples (20 ALL, 14 AML). Each sample is measured over 
7129 genes. The ground-truth of the partition, which includes such 
information as how many samples belong to each cluster and the cluster label 
for each sample, is used only to evaluate the experimental results.

During the data pre-processing procedure for MS_IFN group, by sorting 
gene vectors using vector-cosine calculated from Equation (3), we choose 
threshold 0.89 and then remove gene vectors for which vector-cosine with
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pattern E is higher than the threshold, which means that these gene intensity 
values vary little among the samples. Figure 4 shows the situation, where 
horizontal axis represents gene vectors and vertical axis represents vector- 
cosine values. Gene vectors are sorted in an ascending order, and then we 
choose threshold 0.89 to reduce 4132 genes to 2682. Thus, 1450 genes are 
removed from 4132. К -means clustering method is used during the 
interrelated two-way process, and correlation coefficient (Equation (4)) is 
used as the distance measure.

In Figure 5, a linear mapping function which maps the /2-dimensional 
vectors onto two dimensions [Bhadra and Garg, 2001] is used to show the 
distribution of samples before and after the interrelated two-way clustering 
procedure. As indicated by this figure, prior to the application of the 
approach, the samples are uniformly scattered, with no obvious clusters. As 
the iterations proceed, sample clusters progressively emerge until in Figure 
5(B), the samples are clearly separated into two groups. This visualization 
provides a clear illustration of the iterative process. The green and red dots 
indicate the clusters resulting from the interrelated two-way clustering

Figure 4. Distribution of gene vectors' vector-cosine calculated from Equation (3).
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Figure 5. Clustering results on the MS_IFN group.

approach, while the two dashed circles show the actual partition of the 
samples, with arrows pointing out the incorrectly-classified samples. Here, 
the clustering approach selected 96 genes and classified 28 samples into two 
groups. 11 samples are in group one, matching the MS disease samples. 
Another 17 samples are in group two; of these, 14 are from the IFN treatment 
group and 3 are incorrectly matched.

Similarly, for the CONTROL_MS group, we removed 1474 genes using 
the same threshold as above for the MSJLFN group in the pre-processing step 
and performed the interrelated two-way cluster on the remaining 2658 genes. 
The result is eight samples being incorrectly classified out of 30 samples.

For the purpose of comparison, we also directly performed K-means 
clustering method and self-organizing maps on both the M S JF N  and 
CONTROL_MS groups data after normalization. These approaches are 
applied on both original gene data and the gene data after pre-processing. 
Figure 6 illustrates the sample clustering accuracy rate achieved by these 
methods. Figure 6(A) shows clustering results on the MSJUFN group which 
includes 28 samples. The first bar is the accuracy rate by ITC, the second bar 
is the accuracy rate by applying SOM on 4132 genes matrix, the third bar 
shows the result by applying SOM on 2682 genes matrix after pre processing, 
the forth bar shows the result by applying К-means on 4132 genes matrix,
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Figure 6. Comparison of accuracy rate achieved by interrelated two-way clustering 
(denoted as ITC), self-organizing maps (SOM), and K-means clustering methods.

and the last one shows the result by applying K-means on 2682 genes matrix. 
Figure 6(B) shows clustering results on the CONTROL_MS group which 
include 30 samples. The order of the rates shown is same as (A). Two bars 
for SOM and two bars for K-means as well are the accuracy rate on 4132 
genes matrix and 2568 genes matrix after pre-processing, respectively.

From Figure 6, we can see that using our approach, the accuracy of class 
discovery is higher than those of traditional methods, which illustrates the 
effectiveness of the interrelated two-way clustering method on such high 
dimensional gene data.

We also applied interrelated clustering, self-organizing maps (SOM), and 
K-means clustering methods on two leukemia patient data sets. The accuracy 
rates reached by these algorithms are shown in Table 1. Note that we applied 
all three approaches on the original data sets, since the data they provided are 
already pre-processed. The performance of each method is measured by 
wrongly classified samples number (Error #). From the table, we can see that 
interrelated two-way clustering performs much better than the other two 
methods on these data sets.
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Dataset interrelated two-way SOM k-means

Error# of Set 1(38 samples) 5 10 15

Error# of Set 2(34 samples) 1 11 12

Table 1. Experiment results on leukemia patient samples reported in [Golub et al., 
1999].

8.4 Conclusion

In this chapter, we have presented a new framework for the unsupervised 
analysis of gene expression data. In this framework, an interrelated two-way 
clustering method is developed and applied on the gene expression matrices 
transformed from the raw microarray data. This approach can detect 
significant patterns within samples while dynamically selecting significant 
genes which manifest the conditions of actual empirical interest. We have 
shown that, during the iterative clustering, reducing genes can improve the 
accuracy of class discovery, which in turn will guide further genes reduction.

We have demonstrated the effectiveness of the above approach based on 
the experiments conducted on the multiple sclerosis data sets and two 
leukemia data sets. These experiments indicate that interrelated clustering 
appears to be a promising approach for unsupervised sample clustering on 
gene array data sets.
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Chapter 9

Creating Metabolic Network Models using Text 

Mining and Expert Knowledge

J.A. Dickerson, D. Berleant, Z. Cox, W. Qi, D. Ashlock,
E.S. Wurtele and A.W. Fulmer

9.1 Introduction
RNA profiling analysis and new techniques such as proteomics (the 

profiling of proteins) and metabolomics (the profiling of small molecules) are 
yielding vast amounts of data on gene expression. This points to the need to 
develop new methodologies to identify and analyze complex biological 
networks. This chapter describes the development of a Java™-based tool that 
helps dynamically find and visualize metabolic networks. The tool consists of 
three parts. The first part is a text-mining tool that pulls out potential 
metabolic relationships from the PubMed database. These relationships are 
then reviewed by a domain expert and added to an existing network model. 
The result is visualized using an interactive graph display module. The basic 
metabolic or regulatory flow in the network is modeled using fuzzy cognitive 
maps. Causal connections are pulled out from sequence data using a genetic 
algorithm-based logical proposition generator that searches for temporal
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patterns in microarray data. Examples from the regulatory and metabolic 
network for the plant hormone gibberellin show how this tool operates.

The goal of this project is to develop a publicly available software suite 
called the Gene Expression Toolkit (GET). This toolkit will aid in the 
analysis and comparison of large microarray, proteomics and metabolomics 
data sets. It also aids in the synthesis of the new test results into the existing 
body of knowledge on metabolism. The user can select parameters for 
comparison such as species, experimental conditions, and developmental 
stage. The key tools in the Gene Expression Toolkit are:

• PathBinder: Automatic document processing system that mines 
online literature and extracts candidate relationships from publication 
abstracts.

• ChipView: Explanatory models synthesized by clustering 
techniques together with a genetic algorithm-based data-mining tool.

• FCModeler: Predictive models summarize known metabolic 
relationships in fuzzy cognitive maps (FCMs).

Figure 1 shows the relationship between the different modules. The 
PathBinder citations are available to the researcher and smoothly 
transferable for use in annotating displays in other parts of the package and as 
links in building models. ChipView searches for link hypotheses in 
microarray data. The FCModeler tool for gene regulatory and metabolic 
networks is intended to easily capture the intuitions of biologists and help test 
hypotheses along with providing a modeling framework for putting the 
results of large microarray studies in context.

9.2 Structure of Concepts and Links

The nodes in the metabolic network represent specific biochemicals such 
as proteins, RNA, and small molecules (metabolites), or stimuli, such as 
light, heat, or nutrients. Three basic types of directed links are specified: 
conversion, regulatory, and catalytic. In a conversion link (black arrow, 
shown as a heavy dotted line), a node (usually representing a chemical) is 
converted into another node, and used up in the process. In a regulatory link 
(green and red arrows, shown as solid and dashed arrows respectively), the 
node activates or deactivates another node, and is not used up in the process.
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Figure 1. The Gene Expression Toolkit consists of PathBinder, FCModeler, and 
ChipView. The inputs to the system are the literature databases such as PubMed, 
experimental results from RNA microarray experiments, proteomics, and the expert 
knowledge and experience of the biologists that study an organism. The result will be 
a predictive model of the metabolic pathways.

A catalytic link (blue arrows, shown as a thick line) represents an enzyme 
that enables a chemical conversion and does not get used up in the process. 
Figure 2 shows a small part of a graph for the Arabidopsis metabolic and 
regulatory network. There is also an undirected link that defines a connection 
between two nodes and does not specify a direction of causality.

In the metabolic network database, the type of link is further delineated 
by the link mechanism and the certainty. Some of the current mechanisms 
are: direct, indirect, and ligand. Direct links assume a direct physical 
interaction. Indirect links assume that the upstream node activates the 
downstream node indirectly and allows for the existence of intermediate 
nodes in such a path. The ligand link is a “second messenger” mechanism in 
which a node produces or helps produce a ligand (small molecule that binds) 
and either “activates” or “inhibits” a target node. Often the nature of the link 
is unknown and it cannot be modeled in the current framework. The link 
certainty expresses a degree of confidence about the link. This will be used 
for hypothesis testing.

Other key features include concentrations of the molecules (nodes), 
strengths of the links, and subcellular compartmentation. These data can be
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Figure 2. This is a map of a simple metabolic model of gibberellin (active form is 
GA4). The sequence is started by translation of 3_beta_ hydroxylase_RNA into the 
3_beta_ hydroxylase protein. Bold dashed lines are conversion links, bold lines are 
catalytic links, thin solid lines are positive regulatory links and dashed thin lines are 
negative regulatory links.

added as they are identified experimentally. Currently the biologist user 
can include or ignore a variety of parameters, such as subcellular 
compartmentation and link strength. Since the node and link data is entered 
into a relational database, individual biologists can easily sort, share, and post 
data on the web. Future versions will distinguish between regulation that 
results in changes in concentrations of the regulated molecule, and regulation 
that involves a reversible activation or deactivation.
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9.3 PathBinder: Document Processing Tool

PathBinder identifies information about the pathways that mediate 
10 ogical processes from the scientific literature. This tool searches through 
ocuments in MEDLINE for passages containing terms that indicate 

reevance to signal transduction or metabolic pathways of interest.
lcroarray data can be used to hypothesize causal relationships between 

genes. PathBinder then mines MEDLINE for information about these 
putative pathways, extracting passages most likely to be relevant to a 
particular pathway and storing this desired information. The information is 
presented in a user-friendly format that supports efficiently investigating the 
pathways.

Related Work on Knowledge Extraction from  Biochemistry Literature

An increasing body of work addresses extraction of knowledge from 
biochemical literature. Some works compare documents, such as MEDLINE 
abstracts, and extract information from the comparisons. For example, 
Shatkay et al. and Stapley assess the relatedness of genes based on the 
relatedness of texts in which they are mentioned [Shatkay, 2000; Stapley,
2000]. Shatkay et al. get documents containing a particular gene, compare the 
set of documents to the set relevant to other genes, and if two sets are similar 
then the two genes are deemed related. Stapley compares the literatures of 
two genes and assesses relatedness of genes based on the rate at which papers 
contain both of them. The system presented by Usuzaka et al. learns to 
retrieve relevant abstracts from MEDLINE based on examples of known 
relevant articles [Usuzaka, 1998].

Other works directly address the relationships among entities such as 
proteins, genes, drugs, and diseases. An initial requirement for such a system 
is identifying relevant nouns. This can be done by extracting names from free 
text based on their morphological properties. Sekimizu et al. [1998] parse 
text to identify noun phrases, rather than concentrating on the nouns 
themselves. The GENIA system and the PROPER system address the need to 
identify relevant terms automatically to enable automatic maintenance of 
lexicons of proteins and genes [Fukuda et al., 1998; Collier, 1999]. Proux et 
al- [1998] concentrate on gene names and symbols.

Once the lexicon problem has been addressed, text can be analyzed to 
extract relationships among entities discussed therein. Andrade and Valencia
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[1998] extract sentences that contain information about protein function. 
Rindflesch et a l  [1999] concentrate specifically on binding relationships 
(among macromolecules). Rindflesch et a l  [2000] emphasize drug-gene-cell 
relationships bearing on cancer therapy. Thomas et a l  [2000] use automatic 
protein name identification to support automatic extraction of interactions 
among proteins. Sekimizu et a l  [1998] use automatically identified relevant 
noun phrases in conjunction with a hand-generated list of verbs to 
automatically identify subject-verb-object relationships stated in texts in 
MEDLINE. Craven and Kumlien [1999] extract relationships between 
proteins and drugs. They investigate two machine learning techniques in 
which a hand-classified training set is given to the system, which uses this set 
to infer criteria for deciding if other passages describe the relevant 
relationships. One machine learning technique is based on modeling passages 
as unordered sets of words, and assumes word co-occurrence probabilities are 
independent of one another (the Naive Bayes approach). Tanabe et a l  [1999] 
extract relationships between genes and between genes and drugs. Their 
MedMiner system supports human literature searches by retrieving and 
serving sentences from abstracts on MEDLINE over the Web, based on their 
keyword content. MedMiner is tuned to finding relationship-relevant 
sentences in abstracts that contain a gene name and relationship keyword, 
pair of gene names and relationship keyword, or a gene and a drug name and 
relationship keyword. MedMiner can also handle Boolean queries, such as 
those containing two protein names. In such cases MedMiner takes a query 
consisting of an OR’ed list of “primary” terms and an AND’ed list of 
“secondary” terms. A returned sentence must contain a “primary” term and a 
relationship word. Relationship words are from a relatively large lexicon of 
such terms predefined by the system.

A number of works address extracting relationships among proteins from 
biochemical texts. A solution enables both automatic construction of 
biochemical pathways, and assistance to investigators in identifying relevant 
information about proteins of interest to them.

Humphreys et a l  [2000] specifically address enzyme reactions extracted 
from Biochimica et Biophysica Acta and FEMS Microbiology Letters. Such 
interactions are intended to support metabolic network construction. 
Rindflesch et a l  [1999] apply non-trivial natural language processing (NLP) 
to extract assertions about binding relationships among proteins. Noun 
phrases are identified by a sophisticated combination of text processing and 
reference to existing name repositories.
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Other systems have been reported that extract many interartmnc „ 
diverse proteins. Blaschke et al. [1999] extract such interactions byT m  
identifying phrases conforming to the template p r o t e i n . . v e r b c la s s  
. . . p r o t e i n ,  where v e r b c l a s s  is one of 14 sets of pathway relevant 
verbs (such as “bind”) and their inflections. Protein names and synonyms are 
provided as an input and sentences containing extracted phrases are returned 
The BioNLP subsystem, a component of a larger system, extracts sentences 
containing pathway relevant verbs determined by the user and applies 
templates to them to identify path relevant relationships among proteins [Ng, 
1999; Wong. 2001]. Protein names are determined automatically. The 
subsystem, CPL2Perl, thresholds the results so that it ignores interactions 
with a single relevant sentence. This is useful if the sentence analysis was 
mistaken. Such a thresholding strategy tends to increase precision at the 
expense of reducing recall. Thomas et al. [2000] distinguish between verbs 
that are relatively more and less reliable in indicating protein interactions. 
Their system automatically recognizes protein names and relies on the 
strategy of tuning an existing sophisticated general-purpose natural language 
processing system to the protein interaction domain. Ono et al. [2001] use 
part-of-speech (POS) tagging, key verbs, and template matching on phrases 
to extract protein-protein interactions. Their system has an information 
retrieval effectiveness measure of up to 0.89 [Ding et al., 2002].
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PathBinder Operation

The PathBinder system, like previous works, extracts relevant passages 
about protein relationships from MEDLINE. The PathBinder work differs 
from these due to a combination of system design ecisions. a 
avoids syntactic analysis of text in favor of word experts or pa wa 
verbs. Word experts are sets of rules for interpreting wor s er ’ 
PathBinder also is oriented toward assisting humans in construe mg p У 
rather than fully automatic construction, thus avoiding some 
retrieval precision limitations. We are also investiga mg 
performances of several algorithms for identifying re evan »
including verb-free algorithms that rely instead on protein term c o 

occurrences. PathBinder relies on the sentence unit rather than abstracts 
phrases, or other units because sentences rate highly on in orma ion r 
effectiveness under reasonable conditions [Ding et al., 2002].
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How PathBinder Works

Step 1: user input. Keyboard input of biomolecule names in pathways of 
interest by the user.

Step 2: synonym extraction. A user-editable synonym file is combined 
with a more advanced module that will automatically access the HUGO 
(http://www.gene.ucl.ac.uk.publicfiles/nomen/nomenclature.txt) and OMEM 
(www.ncbi.nlm. nih.gov/htbinpost/OmimA) nomenclature databases, and 
extract synonyms.

Step 3: document retrieval. PubMed is accessed and queried using terms 
input in Step 1. The output of this step is a list of URLs with high relevance 
probabilities.

Step 4: sentence extraction. Each URL is downloaded and scanned for 
pathway-relevant sentences that satisfy the query. These sentences constitute 
pathway-relevant information “nuggets.”

Repetition of steps 2 through 4, using different biomolecule names 
extracted from qualifying sentences. These new biomolecule names are 
candidates for inclusion in the pathways of interest.

Step 5: sentence index. Process the collection of qualifying sentences into 
a more user-friendly form, a multi-level index (Figure 3), with the number of 
levels dependent on the sentence extraction criteria. This index conforms to a 
pattern, displayed by a Web browser, and the sentences in it are clickable. 
When a sentence is clicked, the document from which it came appears in the 
Web browser.

Step 6: integration with the rest of the software and the microarray data 
sets. The index can be used to create a graphical representation in which 
verbs are represented by lines, interconnecting the biomolecule names and 
forming a web-like relationship diagram of the extracted information.

PathBinder is useful as both a standalone tool and an integrated 
subsystem of the complete system. The multilevel indexes transform 
naturally into inputs for the network modeling tools. The networks that 
PathBinder helps identify will form valuable input to the clustering, display, 
and analysis software modules.

http://www.gene.ucl.ac.uk.publicfiles/nomen/nomenclature.txt
http://www.ncbi.nlm
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Protein A 
Protein В

Associates/Associated/etc. 
Sentence 1 
Sentence 2

Binds/Binding/Bind/etc. 
Sentence M 
Sentence M+l

Regulates/Regulating/etc.

Protein С
Associates/Associated/etc. 

Sentence M+N

Binds/Binding/Bind/etc.

Protein В
Protein D

Associates/Associated/etc. 
Sentence M+N+P

Figure 3. The long and somewhat disorganized sentence set that PathBinder extracts 
is converted into a multilevel index which is more suited to a human user. “Protein 
A”, “Protein B”, etc. are placeholders for the actual name of a path-relevant protein, 
and “Sentence 1”, “Sentence 2”, etc. are placeholders that would be actual sentences 
in the PathBinder-generated index.

Example o f  a Sample PathBinder Query

The query is to find sentences containing (either gibberellin, gibberellins, 
or GA) AND (either SPY, SPY-4, SPY-5, or SPY-7). Three relevant results 
were found and incorporated into the metabolic and regulatory visualization. 
A single sentence example is shown below.

Sentence: “The results of these experiments show that spy-7 and gar2-l 
affect the GA dose-response relationship for a wide range of GA responses
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and suggest that all GA-regulated processes are controlled through a 
negatively acting GA-signaling pathway.”

Source Information: UI—99214450, Peng J, Richards DE, Moritz T, 
Cano-Delgado A, Harberd NP, Plant Physiol 1999 Apr; 119(4): 1199-1208.

9.4 Chip View: Logical Proposition Generator
Gene expression data is gathered as a series of snapshots of the 

expression levels of a large number of genes. The snapshots may be 
organized as a time series or a sequence of organism states. When multiple 
gene expression experiments are performed, the choice of genes, time points, 
or organism states often varies. Finally, the data gathered often contain many 
unusable points for a number of reasons. The variation in which data is 
collected, the noisy character of the data, and the fact that data is often 
missing mean that a gene expression analysis tool must be designed with all 
these limitations in mind. Current analysis tools, mostly built around 
clustering of various sorts, are quite valuable in cutting through the thickets 
of data generated by gene expression technology to find nuggets of truth (see 
for example [Eisen et a l 1998; Brown et al., 2000]). These tools, however, 
do not currently suggest possible interpretations to the researcher and 
incorporate many ad hoc assumptions about the mathematical and 
algorithmic behavior of various clustering techniques.

One possible way of addressing both the data collection limitations and 
lack of theoretical foundation is the Logical Proposition Generator. The key 
features of this tool are:

• Filtration of data items by behavioral abstractions that yield both 
interpretation of data and partial resistance to variations in data 
collection.

• Incorporation of a vast space of clustering techniques into the tool to 
create data driven, problem-specific clustering on the fly.

• Designing the tool so that its basic data objects are logical 
propositions about the data it is working with.

This makes the analogy to clustering in the logical proposition generator 
one that transparently supplies multiple potential interpretations of the data. 
The output of the tool is in the form of logical sentences with atoms drawn
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from absolute and differential classifications of expression profiles and 
relative abstractions of pairs of gene expression profiles. The prototype tool 
was written for gene expression profiles that are time series. Extending the 
logical proposition generator to have logical primitives that are appropriate 
for non-time series data is one of the goals as well.

Operation o f  the Logical Proposition Generator

Let us now specify the atoms and connective of the logical proposition 
language that is the target of the tool’s search of the data for meaning. The 
tool permits the user to specify the expression level E that they believe 
specifies up or down regulation of a gene and the minimum change in 
expression level D that represents a significant change between adjacent time 
points. The tool recognizes classes of expression profiles given by the 
regulation state at each time point. Thus, “up, not down, not unchanged, 
down, down, not up, unchanged,” specifies one of the possible classes of a 
seven point time series. Likewise, if +/— means significant change up or 
down since the last time step “-H-+00 — ” would represent a class of profiles 
that first increased, then stayed level, and later decreased their regulation 
between time steps. These two types of classes of expression profiles form 
the single expression profile atoms of the language.

The tool also uses logical atoms that compare pairs of profiles. These 
compute representative facts about the profiles, such as “profile one has its 
maximum before profile two”, “the maximum change in regulation of the 
second profile exceeds that of the first”, or “upregulation in the first profile 
does not occur unless a change in regulation has occurred in the second . The 
absolute and differential (single expression profile) atoms and the relative 
(two expression profile) atoms both return a “true” or ‘false result. With 
these atoms available we then use traditional Boolean connectives AND, OR, 
NOT, XOR, etc. to build logical propositions.

Once we have the ability to make logical statements about gene 
expression profiles, the problem then becomes locating interesting and 
informative propositions. Statements that are always true, tautologies, are not 
interesting. Instead, we use a form of evolutionary computation, genetic 
programming [Koza, 1992; Kinnear, 1994; Koza, 1994; Angeline, 1996] to 
locate propositions that are true of subsets of the expression profiles. While 
this can be done blindly, with utility similar to clustering, it is also possible to 
force the expressions to be true when one of their arguments comes from a
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restricted class of genes of interest, e.g. a class we are trying to modify the 
expression of by some intervention. Thus, to find genes important to the 
upregulation of a class of genes X, we would search for propositions P[x, у ] 
that are often true when x is in X, seldom true when x was not in X , for some 
substantial but not universal collection Y of values for y. These vague 
statements about “usually true” and “substantial” become mathematically 
precise when embedded into the evolutionary search tool as a fitness 
function. One target of the research is an understanding of which fitness 
functions among those possible provide results useful to biological 
researchers.

The relation {x e  2233333} л  { y e  5566666} л  {x f ir s t  up before y }  
defines a binary relation of expression profiles, x  must not change 
significantly at first while у  must change at first. Later, x must not go down 
while у  must not go up OR the first significant upregulation of x must be 
before that of y. Evolving such expressions permits the computation of 
interesting hypotheses about relations between profiles including 
relationships that use edges in the graphical models.

The logical proposition generator, by working with abstractions of the 
data in the form of the logical atoms described above yields the advantage 
that it is resistant, though certainly not immune, to variations in exactly 
which data are collected. The absolute and differential expression classes 
represent primitive fragments, which Boolean operations fuse together into 
data partitions, i.e. clusters. This means that the clustering techniques 
required to make sense of gene expression data are incorporated transparently 
into the logical proposition generator. Finally, in addition to locating genes 
that are implicated in the regulation of genes of interest, something clustering 
tools can do to some degree, the logical character of the tool will sometimes 
simultaneously suggest the “what” or “why” of the relationship, easing the 
work of interpretation and providing a source of tentative links for the other 
tools. This tool is not intended to replace clustering tools but to complement 
them. One way to locate a target set of genes, for example, might be to 
choose a tight cluster containing a few genes of interest and use this as a 
group of interest for the logical proposition generator.
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Code Measurement Change

1 Upregulated
2 Didn't change significantly
3 Didn't downregulate
4 Downregulated
5 Changed significantly from the baseline

6 Didn't upregulate
7 Matches anything

Table 1. Codes for changes in the expression profiles.

Example o f  Logical Proposition Generator Operation

The logical proposition generator operates on sets of expression profiles. 
It characterizes desired sequences as a series of numbers, e.g. Y in L: 124 
means that Y is in the set of profiles that are in the state “Upregulated, didn’t 
change, and downregulated”. Table 1 gives the codes used in this example. 
An example logical proposition is given below:

(NAND

cNOR
(Y in L: 757243126155)
(NAND (SamePro Y X ) F))
(AND T (NOT (NOT (NOR F T)))

)
)

This is a logical proposition that acts on two 12-time-point expression 
profiles X and Y. It uses the logical operations NAND, NOR, NOT, and AND 
and the constants T and F. The logical proposition uses the binary predicate
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“SamePro” which is true if two profiles are significantly up-and-down 
regulated in the same pattern. It also uses the unary predicate “У in 
L:757243126155” which tests to see if У is in the class of profiles that 
displays a particular pattern of up and down regulation in its twelve time 
points according to the scheme in Table 1.

Logical propositions of this form have the potential to encode very 
complex classes of expression profiles in very short statements. The 
following logical proposition also uses OR and Say, which we use to encode 
the logical identity, as well as differential classes, e.g. “X in D:73512467452” 
which check for changes in regulation since the last time step rather than as 
compared to the baseline:

СNOR (Say (X in D:73512467452))
(Say (OR (OR (X in D:71661716551) (X in L: 177621456644))

(NAND T (Say (Y in D: 13376357161))))

)
)

The Say operation does nothing but it leaves space in an expression that 
makes it easier for the evolutionary training techniques we use to move 
around sub-expressions that form coherent logical units.

9.5 Fuzzy Cognitive Map Modeling Tool for Metabolic 
Networks

The FCModeler tool for gene regulatory and metabolic networks captures 
the known metabolic information and expert knowledge of biologists in a 
graphical form. The node and link data for the metabolic map is stored in a 
relational database. This tool uses fuzzy methods for modeling network 
nodes and links and interprets the results using fuzzy cognitive maps [Kosko, 
1986a; Kosko, 1986b; Dickerson and Kosko, 1994]. This tool concentrates 
on dynamic graphical visualizations that can be changed and updated by the 
user. This allows for hypothesis testing and experimentation.
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Metabolic Network Mapping Projects

Two existing projects for metabolic networks are the Kyoto Encyclopedia 
of Genes and Genomes [Kanehisa and Goto, 2000] (KEGG 
http://www.genome.ad.jp/kegg) and the WIT Project [Overbeek et al., 2000] 
(http://wit.mcs.anl.gov/WIT2/WIT). The WIT Project produces “metabolic 
reconstructions” for sequenced (or partially sequenced) genomes. It currently 
provides a set of over 39 such reconstructions in varying states of completion 
from the Metabolic Pathway Database constructed by Evgeni Selkov and his 
team. A metabolic reconstruction is a model of the metabolism of the 
organism derived from sequence, biochemical, and phenotypic data. This 
work is a static presentation of the metabolism asserted for an organism. The 
purpose of KEGG is to computerize current knowledge of molecular and 
cellular biology in terms of the information pathways that consist of 
interacting genes or molecules and, second, to link individual components of 
the pathways with the gene catalogs being produced by the genome projects. 
These metabolic reconstructions form the necessary foundation for eventual 
simulations.

E-CELL is a model-building kit: a set of software tools that allows a user 
to specify a cell's genes, proteins, and other molecules, describe their 
individual interactions, and then compute how they work together as a system 
[Tomita et al., 1997; Tomita et al., 1999; Tomita, 2001]. Its goal is to allow 
investigators to conduct experiments “in silico.” Tomita's group has used 
versions of E-CELL to construct a hypothetical cell with 127 genes based on 
data from the WIT database. The E-CELL system allows a user to define a 
set of reaction rules for cellular metabolism. E-CELL simulates cell behavior 
by numerically integrating the differential equations described implicitly in 
these reaction rules.

EcoCyc is a pathway/genome database for Escherichia coli that describes 
its enzymes, and its transport proteins [Karp et al., 2000] 
(http://ecocyc.DoubleTwist.com/ecocyc/). MetaCyc is a metabolic-pathway 
database that describes pathways and enzymes for many different organisms. 
These functional databases are publicly available on the web. The databases 
combine information from a number of sources and provide function-based 
retrieval of DNA or protein sequences. Combining this information has aided 
in the search for effective new drugs [Karp et al., 1999]. EcoCyc has also 
made significant advances in visualizing metabolic pathways using stored

http://www.genome.ad.jp/kegg
http://wit.mcs.anl.gov/WIT2/WIT
http://ecocyc.DoubleTwist.com/ecocyc/
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layouts and linking data from microarray tests to the pathway layout [Karp et 
a l ,  1999].

Visualizing Metabolic Networks

The known and unknown biological information in the metabolic 
network is visualized using a graph visualization tool. Figure 4 shows a 
screenshot of the FCModeler tool display window. The graph visualization is 
based on for visualizing and interacting with dynamic information spaces. 
FCModeler uses Diva, a Java-based software information visualization 
package (see http://www.gigascale.org/diva/) for its basic graph data 
structure, rendering, and interaction controls. In addition, it extends Diva to 
provide custom graphics-related features such as dynamic figures, graph 
layout, and panning and zooming. This allows for a greater variety of 
visualization objects on the display. The front end of the FCModeler tool is a 
Java ™ interface that reads and displays data from a database of links and 
nodes. The graph layout program is dot, which is part of the Graphviz 
program developed at AT&T research labs (see http://www.research.att.com/ 
sw/tools/graphviz/).

The nodes and edges in the FCModeler graph have properties, which can 
be specified in an XML file or created at run-time by the user. There is a set 
of properties for nodes and also one for edges. In a bioinformatics 
application, a node property may be “type of node” . Then each node would 
have a specific value for this property, such as “DNA”, “RNA”, “protein”, 
“environmental factor”, etc. Similarly, an edge property could be “type of 
reaction” with the specific values “conversion” or “regulatory.” Figure 5 
shows the visual property window from FCModeler for some of the nodes 
and edges of the Arabidopsis graph shown in Figure 4.

Interaction

FCModeler currently supports several forms of user interaction with the 
graph model and view. One basic form of interaction is selection. Node and 
edge figures can be selected individually by clicking on them with the mouse, 
or by dragging a selection rectangle around a group of them. The selected 
node and edge figures are then visually distinguished from the rest by some

http://www.gigascale.org/diva/
http://www.research.att.com/
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Figure 4. Screenshot of an FCModeler graph. The bold blue arrows represent catalyst 
links. The dashed arrows are conversion links. The proteins are shown as ellipses. 
The rectangles are small molecules. Nodes of interest can be highlighted by the user.
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form of highlighting. Selection of node and edge figures can provide a 
starting point for other operations on the graph.

The user can reposition the nodes and edges on the screen by dragging 
them with the mouse. All of the selected figures will then be translated in the 
direction of the mouse movement. In addition, edge figures are rendered as 
Bezier curves [Angel, 2000] and dragging with the mouse relocates the edge 
figures’ individual control points.

FCModeler supports graphical modification of the underlying metabolic 
map model. Node and edge figures can be added to and removed from the 
view. The user can also change the tail or head node of an edge by dragging 
the desired edge end to a new node figure.

Zooming and panning allow the user to examine different parts of the 
graph in varying levels of detail. The graph may just be too large to be 
viewed as a whole on the screen, or a layout algorithm could use more space 
than is viewable at once for its layout. The view port can also be 
programmatically set to arbitrary coordinates.

Graph Layout

Any Diva graph view can use an arbitrary graph layout algorithm to 
compute the positions of its node and edge figures. Diva comes with several 
layout algorithms, but opens its views to custom implementations. 
FCModeler uses the Dot graph layout engine, which is part of the Graphviz 
graph drawing software from AT&T labs (http://www.research.att.com/ 
sw/tools/graphviz/). Dot produces fairly nice layouts, and is easy to use. 
However, other more specialized layout algorithms may produce better 
layouts for the specific kinds of graphs visualized in FCModeler [Becker and 
Rojas, 2001]. Diva makes pluggable layout algorithms easy by separating the 
view logic from the layout logic.

Database and Object Properties

FCModeler allows nodes and edges in the graph model to have 
properties. The specific values of these properties determine the visual 
attributes of the corresponding node and edge figures in the view. These 
mappings from properties to visual attributes are encapsulated by a set of 
mapping rules, which can be specified in an XML file or created at run-time 
by the user.

http://www.research.att.com/
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The node and link information is stored in a relational database that 
interacts with the graphical modeling program. The purpose of this database 
is to store information such as links and nodes data, search results, literature 
sources, and microarray data in a searchable database to support development 
of the Gene Expression Toolkit. This system will be used to model the 
structure of metabolic networks using data provided by users. It will also 
track the results from the tests. Figure 6 shows a property window that 
displays the database information about the highlighted nodes and links.

Animation

The visual attributes of the node and edge figures can be changed over 
time, producing an animation of the graph view. This animation consists of 
discrete time steps, each having a set of mapping rules. An animation 
controller in FCModeler applies the mapping rules to the node and edge 
figures for each time step in order, with a configurable delay between time 
steps. The node and edge figures are set back to a permanent state at the 
beginning of each time step, and then the new mapping rules are applied to 
all figures in the view. Thus, the mappings only last for a single time step, 
and then the figures revert back to their previous state. The user specifies the 
sets of mapping rules for each time step of the animation in an XML file. 
This file is similar to the attributes XML file, but with the addition of time 
step tags. Users can produce these animation files to show how the nodes 
interact with each other in the graph.

M etabolic Network Modeling using Fuzzy Cognitive M aps

The FCModeler tool models regulatory networks so that important 
relationships and hypotheses can be mined from the data. Some types of 
models that have been studied for representing gene regulatory networks are 
Boolean networks [Liang et a l , 1998; Akutsu et al., 1999], linear weighting 
networks [Weaver et a i,  1999], differential equations [Tomita et al.y 1999; 
Akutsu, 2000] and Petri nets [Matsuno, 2000]. Circuit simulations and 
differential equations such as those used in the E-cell project require detailed 
information that is not yet known about the regulatory mechanisms between 
genes. Another problem is the numerical instability inherent in solving large 
networks of differential equations. Boolean networks analyze binary state
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Figure 6. The property viewer displays information about the selected nodes and 
edges. The properties are defined in an XML graph file generated by the relational 
database.

transition matrices to look for patterns in gene expression. Each part of the 
network is either on or off depending on whether a signal is above or below a 
pre-determined threshold. These network models lack feedback. Linear 
weighting networks have the advantage of simplicity since they use simple 
weight matrices to additively combine the contributions of different 
regulatory elements. However, the Boolean and weighting networks are 
feedforward systems that cannot model the feedback present in metabolic 
pathways. Petri nets can handle a wide variety of information; however their 
complexity does not scale up well to systems that have both continuous and 
discrete inputs [Alla and David, 1998; Reisig and Rozenberg, 1998].

Fuzzy cognitive maps (FCMs) have the potential to answer many of the 
concerns that arise from the existing models. Fuzzy logic allows a concept or 
gene expression to occur to a degree— it does not have to be either on or off 
[Kosko, 1986a]. FCMs have been successfully applied to systems that have 
uncertain and incomplete models that cannot be expressed compactly or 
conveniently in equations. Some examples are modeling human psychology 
[Hagiwara, 1992], and on-line fault diagnosis at power plants [Lee et al., 
1996]. All of these problems have some common features. The first is the 
lack of quantitative information on how different variables interact. The 
second is that the direction of causality is at least partly known and can be 
articulated by a domain expert. The third is that they link concepts from 
different domains together using arrows of causality. These features are 
shared by the problem of modeling the signal transduction and gene 
regulatory networks.
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We use a series o f + /- links to model known and hypothesized signal 
transduction pathways. Another link type suggests a relationship between 
concepts with no implied causality. These links will be constructed by mining 
the literature using PathBinder and from Gene Expression Toolkit Database 
that contains the expert knowledge of biologists. Given the metabolic 
network, FCModeler contains advanced tools that:

• Locate and visualize cycles and strongly connected components of 
the graph.

• Simulate intervention in the network (e.g. what happens when a node 
is shut off) and search for critical paths and control points in the 
network.

• Capture information about how edges between graph nodes change 
when different regulatory factors are present.

M etabolic Network M odeling

Fuzzy cognitive maps are fuzzy digraphs that model causal flow between 
concepts or, in this case, genes, proteins, and transcription factors [Kosko, 
1986a; Kosko, 1986b]. The concepts are linked by edges that show the 
degree to which the concepts depend on each other. FCMs can be binary state 
systems called simple FCMs with causality directions that are +1, a positive 
causal connection, -1, a negative connection, or zero, no causal connection. 
The fuzzy structure allows the gene or protein levels to be expressed in the 
continuous range [0 ,l]. The input is the sum of the product of the fuzzy edge
values. The system nonlinearly transforms the weighted input to each node 
using a threshold function or other nonlinear activation. FCMs are signed 
digraphs with feedback. Nodes stand for causal fuzzy sets where events occur 
to some degree. Edges stand for causal flow. The sign of an edge (+ or -)  
shows causal increase or decrease between nodes. The edges between nodes 
can also be time dependent functions that create a complex dynamical 
system. Neural learning laws and expert heuristics encode limit cycles and 
causal patterns. One learning method is differential Hebbian learning in 
which the edge matrix updates when a causal change occurs at the input
[Dickerson and Kosko, 1994].

Each causal node Ctft) is a nonlinear function that maps t e ou pu
activation into a fuzzy membership degree in [0, l] . Simple or trivalent FCM
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have causal edge weights in the set {-1,0,1} and concept values in (0,1} or {- 
1,1}. Simple FCMs give a quick approximation to an expert’s causal 
knowledge. More detailed graphs can replace this link with a time-dependent 
and/or nonlinear function.

FCMs recall as the FCM dynamical system equilibrates. Simple FCM 
inference is matrix-vector multiplication followed by thresholding. State 
vectors C n cycle through the FCM edge matrix E, which defines the edges e& 
where к is the upstream node and i is the downstream node. The system 
nonlinearly transforms the weighted input to each node С

Sty) is a monotonic signal bounded function such as the sigmoid function:

In this case c=1000 and 7}= 0.5 for all nodes. This is equivalent to a step 
function with a threshold at 0.5. The edges between nodes can also be time 
dependent functions that create a complex dynamical system.

Regulatory Links: The regulatory edges are modeled using a simple FCM 
model that assumes binary connecting edges: ej  ̂ = {—1,1}for the single edge 
case. When there are multiple excitatory or inhibitory connections, the 
weights are divided by the number of input connections in the absence of 
other information. As more information becomes known about details of the 
regulation, for example how RNA level affects the translation of the 
corresponding protein, the function of the link models will be updated. The 
regulatory nodes will also have self-feedback since the nodes stay on until 
they have been inhibited.

Conversion Links: Conversion relationships are modeled in different 
ways depending on the goal of the simulation study. The first case 
corresponds to investigating causal relationships between nodes. The node is 
modeled in the same manner as a regulatory link in which the presence of one 
node causes presence at the next node. When information about the rate of 
change in a reaction is available, a simple difference equation can model the 
gradually rising and falling levels of the nodes. When stoichiometric 
information is available, the links can be modeled as a set of mass-balance

Q  {*n+ \ ) ~~ $ {hi )O c { fn )]
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equations. The step size depends on the reaction rate and the stoichiometric 
relationship between the nodes.

Catalyzed Links: Catalyzed reactions add a dummy node that acts upon a 
conversion link. This allows one link to modify another link. In the current 
model, the catalyzed link is simulated by weighting the inputs into the 
dummy node in such a way that both inputs must be present for the node to 
be active. Another method of modeling catalyzed links is an augmented 
matrix that operates on the edges between the nodes. The catalyst node acts 
as a switch that allows a reaction to occur when the proper substrates are 
available. Since all of the compounds must be present in these links for a 
reaction to occur the pieces must be modeled as a logical AND operation. 
This operation is commonly modeled as a minimum function; however, it can 
also be modeled as a product of all the input values [Kosko, 1992].

Forcing functions: In biological systems such as cells, many of the 
metabolic network elements are always present. This is modeled as a node is 
active unless it is being inhibited:

Q  (^л+l ) = S[_Heki (hi )Ck {hi) + 1]

9.6 Example of PathBinder-FCModeler Integration

This example shows how the pieces of the Gene Expression Toolkit can 
be used to create or update metabolic maps of a system using expert 
knowledge. The process starts with a map created by an expert or an existing 
metabolic pathway from a database such as KEGG or WIT [Kanehisa and 
Goto, 2000; Overbeek et al., 2000]. The next step is to perform a PathBinder 
literature search for new relationships between the nodes of the existing 
graph. These relationships can then be assessed and added into the metabolic 
map. FCModeler models the effects of the changes for biologist user. An 
expert in the area of gibberellin metabolism constructed the map shown in 
Figure 7. Next a PathBinder Query is performed as shown below.

Query: Find sentences containing (either gibberellin, gibberellins, or GA) 
AND (either SPY, SPY-4, SPY-5, or SPY-7).
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Figure 7. Hypothetical network o f gibberellin metabolism and regulation in 
Arabidopsis. Heavy lines are catalyzed links, heavy dashed lines are conversion 
links, and thin lines are regulatory links. All proteins are shown in elliptical boxes.

Sentence: “Here we describe detailed studies of the effects of two of these 
suppressors, spy-7 and gar2-l, on several different GA-responsive 
growth processes (seed germination, vegetative growth, stem elongation, 
chlorophyll accumulation, and flowering) and on the in plant amounts of 
active and inactive GA species.” Source: UI—99214450 Peng J, Richards 
DE, Moritz T, Cano-Delgado A, Harberd NP, Plant Physiol 1999 Apr;l 19(4): 
1199-1208. Figure 8 shows the new graph after the information provided by 
the new links is added into the graph.

9.7 Example of Network Modeling

The metabolism and signal transduction of the plant hormone gibberellin 
in Arabidopsis [Hedden and Phillips, 2000; Sun, 2000] was used to test this 
modeling scheme. Figure 7 shows the nodes used in this test. An expert



Figure 8. The updated map based on the PathBinder query result. The new nodes are 
shaded.

researcher in the field created the link types and causality directions. The key 
element in this graph is the block labeled GA4. This compound regulates 
many other regulatory mechanisms in plants. GAI, GRS, SPY, and 
GA_MYB had forcing functions applied to them. Figures 9 and 10 show 
visualized networks at different time steps to analyze the interactions in the 
network. Figure 9 shows the operation of the catalyzing node, 
3_beta_hydroxylase. When the node is active, GA4 is produced. These 
figures show how GA4 can regulate its own production through the 
transcription factor SHI. The result is a homeostatic control of GA4 levels. 
The oscillation of the GA levels directs the generation of biomolecules that, 
in the absence of other constraining factors, are implicated in the formation 
of new cellular proliferation centers, referred to as meristems. Many key 
features of this model, including timing, can be tested experimentally and 
relatively rapidly by globally monitoring temporal profiles of mRNA, 
protein, and metabolite.
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Figure 9. The catalyst, 3-beta-hydroxylase is present at this step. This allows GA9 to 
be converted into the active form of gibberellin, GA4. Active nodes are shaded. The 
nodes, SPY, GRS, and GA1 are forced high in this simulation.

9.8 Conclusions

The integration of a graph visualization tool with literature mining and 
directed searches in microarray data allows biologists to gather and combine 
information from the literature, their expert knowledge, and the public 
databases of mRNA results. Metabolic and regulatory networks can be 
modeled using fuzzy cognitive maps. Future plans include: simulating 
intervention in the network (e.g. what happens when a node is shut off), 
searching for critical paths and control points in the network, and capturing 
information about how edges between graph nodes change when different 
regulatory factors are present.
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Figure 10. GA4 regulates its own production in part through the putative DNA 
regulatory factor SHI. SHI inhibits the 3-beta-hydroxylase-RNA, which eventually 
shuts down the production o f GA4.
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Chapter 10

Phyloinformatics and Tree Networks

William H. Piel

10.1 Introduction
All organisms on Earth are related to one another through an enormous 

"tree of life" that had its origins some four billion years ago. This unifying 
aspect to life means that genomics, evolution, and development are 
inextricably linked, and understanding how, for example, genotype becomes 
phenotype, requires that we know phylogeny almost as well as we know 
genomics [Eisen, 1998; Mizuno et al., 2001]. Indeed, the concept of 
homology among genes, and homology among the functional behaviors of 
genes, goes to the very heart of phylogeny: homology arises when a derived 
trait is shared among descendant species as seen on a phylogenetic tree. 
Many biologists believe that phylogenetics will play a crucial role in 
bioinformatics and functional genomics, not to mention ecology, evolution, 
and behavior [Pennisi, 2001].

In recent years, the number of publications that describe new phylogenies 
appears to have grown almost exponentially. Between 1989 and 1991, 
Sanderson et al. [1993] compiled a list of the number of trees published in as 
many journals as they could find phylogenetic reports. They found 
approximately 40% growth in just three years. Separately, the Jungle
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database (http://smiler.lab.nig.ac.jp/jungle/jungle.html) collected trees from 
twelve selected journals over periods ranging from four to twelve years. The 
curve of the sum of regression lines for the growth among these twelve 
journals approximates the slope of [Sanderson et a l 1993] over the same 
three-year period, but the Jungle data confirmed that the trend continued for 
another six years (Figure 1). Judging by these trends, one could estimate that 
by the year 2000 probably over 1,000 publications per year would have 
contained phytogenies. Given this growth rate, the data generated by this

Year of Publication

Figure 1. The growth o f phylogenetic data, as compiled by [Sanderson et al., 1993] 
and the Jungle database (Saitou et al., http://smiler.lab.nig.ac.jp/jungle/jungle.html). 
The shaded sections of the graph indicate the time periods when the twelve selected 
journals were scanned for trees. For each journal a regression of its growth curve was 
calculated. These lines were stacked on the graph to produce a sum total. The 
summed growth rate among the twelve journals over the 1989-1991 period is only 
marginally lower than the estimates of [Sanderson et al., 1993] for all journals. 
Therefore it is probably safe to extrapolate the [Sanderson et al., 1993] data, thereby 
predicting that by the year 2000 over 1,000 publications per year contained 
phylogenies.

http://smiler.lab.nig.ac.jp/jungle/jungle.html
http://smiler.lab.nig.ac.jp/jungle/jungle.html
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discipline will get out of hand unless the results are properly complied and 
informaticized.

Despite the growth of phylogenetic data, methods for organizing, data 
mining, and inferring a synthesis of phylogenetic knowledge are poorly 
developed. Storing phylogenies in a database is, by itself, a challenging task, 
as the data elements are diverse and complex. The essential information that 
needs to be stored is recorded in the topology of hierarchically nested nodes, 
the distances between them, and their identities. Consequently, the usual data 
searching methods, such as pattern recognition as used in sequence databases, 
are not useful here: a whole new conceptual approach is in order.

In 1994 work began on TreeBASE, a database of phylogenetic 
knowledge [Sanderson et al., 1994]. The initial purpose was to develop a 
simple means of storing phylogenetic trees and the aligned data matrices used 
to produce them, if nothing else but to grasp a handle on the burgeoning 
growth of published works in the field. Initially, it merely resembled an 
enhanced, specialized literature database, in which trees and matrices were 
stored in addition to the usual citation and abstract. However, it soon became 
apparent that the user needed specialty tools for data mining and meta 
analysis so as to better navigate the data. To this end, "tree surfing" was 
implemented as a means of locating neighboring trees [Piel et al., 2002a], 
and the concept of the "tree-graph" was described for identifying clusters of 
candidate trees for supertree construction [Sanderson et al., 1998]. Seamless 
connection with a supertree server (http://darwin.zoology.gla.ac.uk/cgi- 
bin/supertree.pl) facilitated subsequent supertree construction.

While tools for more effective data searches are useful, ultimately the 
database should be designed so that an overall phylogenetic picture 
continuously emerges with the growth of individual phylogenetic elements. 
This improvement would, in effect, incorporate a computational symbolic 
theory into the database model — i.e., it would implement a formal ontology 
which is then available for computational analysis. The effect is to transform 
a database of phylogenetic publications, in which the burden is on the user to 
reexamine the data and infer the "big picture," to one that resembles an 
artificial intelligence, in which the burden has shifted to the computer [Karp,
2001]. Karp [2001] argues that a computational symbolic theory would allow 
inferences to emerge from the computer that are otherwise too complex for 
any one biologist to grasp, such as the web of biochemical pathways in 
Escherichia coli as is stored in the EcoCyc database.

In this chapter I illustrate how networks of trees can help locate 
"neighborhoods" of trees and ultimately interconnect all trees in a database.

http://darwin.zoology.gla.ac.uk/cgi-
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In addition, I discuss how the structure of the database could be modified so 
as to make the stored phylogenies more readily available for computational 
analysis.

10.2 Small-World Networks
Small-world networks belong to a special class of disordered networks 

that has short characteristic path lengths despite appearing to be highly 
clustered and non-random [Watts and Strogatz, 1998; Watts, 1999]. This 
phenomenon is popularly known as the "six degrees of separation," in which 
it is thought that no two people on earth are separated by a chain of 
friendships that exceeds six people, despite the fact that each person's 
friendship clique is largely local and non-random. For epidemiologists, this 
notion has important ramifications for disease propagation [Watts and 
Strogatz, 1998], where, for example, it is thought that just a few promiscuous 
individuals have a disproportionately large impact on the spread of venereal 
disease [Liljeros et al., 2001]. For molecular biologists, small-world 
networks of cellular proteins can help identify the most vital molecules for 
cell survival on the basis of high levels of connectivity [Jeong et al., 2001].

Phylogenetic trees can be connected with one another by sharing the 
same taxonomic identities, much the way two people might be connected by 
having a friend in common. The web of connections among members of a 
collection of trees forms a network that is neither completely random nor 
completely regular [Piel et al., 2002b]. Navigating through this web of trees 
is what, in TreeBASE, is called tree surfing. This tool involves searching on 
all taxa in a set of trees to recover a larger set of trees, et cetera, and with 
each subsequent iteration a new set of trees is found with yet one more 
"degree of separation" from the previous set. The collective dynamics of 
small-world tree networks have important implications as to how effective 
automated supertree tools might be at turning a neighborhood of trees into a 
single consensus phylogeny. Supertree methods themselves are still primitive 
and under development [Sanderson et al., 1998; Semple and Steel, 2000], but 
mining a phylogenetic database to recover the best candidate trees is a critical 
preliminary step, and that is where tree networks play an important role.

The collective dynamics of tree networks can tell us, for example, 
whether the diameter of the network —  as measured by the characteristic 
path length (L), that being the average degree of separation between any pair 
of trees —  will expand as the database grows until surfing the network
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becomes too laborious. Alternatively, the diameter of the network might 
implode, rendering tree surfing too coarse. We can also examine progress in 
connecting trees so as to minimize the persistence of disconnected satellites 
within a database. Recent research in disordered networks has shown how 
these characteristics can be probed, such as by examining the distribution 
function of connectivities [Watts and Strogatz, 1998; Barbasi and Albert, 
1999; Watts, 1999; Amaral et a l, 2000; Strogatz, 2001; Piel et al., 2002b].

10.3 Tree Networks vs. Random Networks

As compared to random networks, small-world networks are 
characterized by a relatively small diameter (L) while retaining 
neighborhoods that are seemingly non-random [Watts, 1999]. To examine 
these two characteristics in small-world networks, Watts and Strogatz [1998] 
used a clustering coefficient (C) to estimate non-randomness, defined as the 
fraction of possible edges in each vertex's neighborhood that actually exist, 
averaged over all vertices:

where k-, is the number of neighbors of the ith vertex, v, is the number of 
edges among these neighbors, and N  is the number of vertices.

By comparing actual networks with rewired (or permuted) networks, 
Watts and Strogatz [1998] showed there to be a greater relative difference for 
С than for L when comparing actual and randomized networks. Analysis of 
tree networks also showed the same effect (Table 1), albeit to a lesser 
degree [Piel et al., 2002b]. The larger diameter of the tree network (L = 5.11) 
and the high cliquishness of trees (C = 0.813) probably reflects the fact that a 
concealed tree of life invariably shadows and shapes the topology of all 
separately published sub-trees. It is only the wide-ranging, deep phylogenies 
that join together distant neighborhoods of trees, and even this process is 
theoretically less random than, for example, the chaotic fluidity that 
characterizes distant friendship connections. But in any case, the fact that it 
takes over five degrees of separation on average to surf the entire tree 
network serves our purposes because it makes each iteration of the process 
more discriminating.
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Network Vertices ^actual ^rand ^actual Q and

Film Actors* 225,226 3.65 2.99 0.79 0.00027

Power Grid* 4,941 18.7 12.4 0.08 0.005

C. elegans* 282 2.65 2.25 0.28 0.05

TreeBASE1 989 5.11 2.00 0.813 0.182

Table 1. Characteristic path length (L) and clustering coefficient (С) for four actual 
networks compared to permuted ones. Sources: ‘Watts, D.J. and Strogatz, S.H. 
(1998) “Collective dynamics of'small-world' networks.” Nature 394, 440-442.

10.4 The Growth of Tree Networks
As journals publish new phylogenies, and as the systematics community 

gears up to tackle the entire tree of life [Pennisi, 2001], it is not obvious how 
a database of phylogenies will grow. In particular, to what extent will a 
single, well-connected island network emerge from a growing collection of 
trees? Since supertree algorithms can only function properly once pairs of 
trees in a network share at least two connections between them, it is worth 
exploring how many trees are needed before a supertree could possibly 
emerge.

If TreeBASE is a fair sample of published trees in the literature, it would 
appear that collections of trees begin assembling into a single, large island 
(i.e., a dominant grouping of interconnected trees) even after only 250 trees 
[Piel et al., 2002b]. Random subsets of the database show an initial drop in 
the size of the largest island as a percentage of all trees, indicating that when 
new trees are added to a database of less than 250 trees, they are more likely 
to be disconnected than connected (Figure 2). However, between 500 and 
700 trees, the largest island jumps from 20-30% to 60-70% of all trees, 
equivalent to the sudden coalescence among components of a random graph 
[Erdos and Renyi, 1960]. By 1,200 trees, the largest island holds almost 80%
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of all trees (Figure 2), and will, in theory, eventually reach 100%. Similarly, 
the growth in the absolute number of islands indicates that after about 1,200 
trees it reaches a stable point of about 100 islands (Figure 2, solid diamonds), 
and these will, presumably, decrease in number as new trees succeed in 
bridging them to the main island. This stable point could be called "island 
parity," wherein new trees no longer cause a net growth in the number of 
islands.

Although island parity first occurs with surprisingly few trees in the 
database, the definition of neighbor used here requires only one taxon shared 
between two trees in order to achieve a connection. Seeing that supertree 
algorithms usually require more than one taxon in common, it is worth 
considering how more stringent definitions of neighbor affect the emergence 
of island parity. The number of islands plotted against database size for more 
stringent definitions is also shown in Figure 2 (squares, triangles, and 
circles). None of these have achieved island parity with the 1,300 trees 
available in TreeBASE; however all curves closely match second order 
polymorphic regressions (R2 = 0.99). These regressions predict that parity 
will occur at about 1,700, 2,300, and 3,000 trees for stringencies of two, 
three, and four taxa respectively. These predictions appear to follow a simple 
linear function, where parity happens after 6005 + 550 trees, given stringency 
S. The bottom line is that a database of trees would seem to agglomerate into 
an interconnected network without needing to be excessively large, even with 
stringent definitions of neighbor.

10.5 The Distribution Function of Tree Networks
Examination of the cumulative distribution function — a curve depicting 

the running sum of the probabilities or frequencies of connecting to к vertices 
plotted against к — helps to identify idiosyncrasies and tendencies particular 
to a large network [Barbasi and Albert, 1999; Amaral et al., 2000]. The so- 
called scale-free power-law distribution comes about when new vertices 
connect preferentially to the more popular pre-existing vertices [Barbasi and 
Albert, 1999]. Other types of distribution functions include single-scale 
networks with fast decaying tails, and broad-scale networks with sharp cut
offs to their power law regimes. These functions can be shaped by such 
factors as the aging of vertices, as seen when members of the film actors 
network retire. Or, for example, when the cost of adding new edges rises with 
the popularity of vertices, such as when airports in the airline network reach
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a Largest island as a percent of total

Figure 2. The growth of islands among trees in TreeBASE as a function of database 
size. Open squares (□) indicate the size of the largest island as a percent of database 
size. Closed markers indicate a tenth of the number of islands in the database given 
different levels of stringency for the definition of neighbor. Datab^es of different 
sizes were created by randomly selecting studies in TreeBASE and building subsets 
of trees based on each selection of studies [Piel et al., 2002b]. Markers: diamond (♦) 
stringency of > 1 edges between vertices, regression у = -1Е-04х2 + 0.244x, R2 = 
0.92; square (■), stringency of > 2 edges, у = -1Е-04х2 + 0.394x, R2 = 0.99; triangle 
(a ), stringency of > 3 edges, у = -8E-05x2 + 0.37lx, R2 = 0.99; circle (•) , 
stringency of > 4 edges, у = -6E-05x2 + 0.383x, R2 = 0.99.

capacity [Amaral et a I., 2000]. While trees in tree networks do not age as 
such, it is likely that taxa commonly encountered in trees will become ever 
more popular since more of their sequence data become publicly available. It 
is expected that various artifacts and idiosyncrasies associated with 
phylogenetic work, and with the collection of phylogenetic results, will cause 
unusual effects on the distribution function of tree networks.

Indeed, tree networks seem to have a distribution function unlike any 
class of network reported thus far [Amaral et al., 2000]. This function could
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be called a dual-scale power law regime, in which there is a sudden change in 
the log-Iog function among trees with more than 25 neighbors (Figure 3, lines 
A and A'), not unlike the elbow joint in an arm [Piel et al., 2002b]. The 
probability distribution exponent of the first part is 1.9 while the second is 
4.8. These values compare with 2.3 for the actors network, 2.1 for the WWW 
network, and 4 for the US power grid [Barbasi and Albert, 1999]. While the 
cause of this unusual curve is not known, excluding redundant most 
parsimonious trees that are largely superfluous helps to straighten the 
function (Figure 3, lines В and B'), but fails to eliminate it entirely [Piel et 
al., 2002b]. The effect of this correction confirms that artifacts in the way in 
which biologists produce and collect trees might be responsible for the

к

Figure 3. The distribution function o f connectivities for the main island in 
TreeBASE. Line A and A' represents the cumulative sum of the frequencies with 
which each tree connects to к other trees for an island of 989 vertices with an average 
connectivity ( к) = 14.99. Line В and B' represents the same island after excluding 
redundant most parsimonious trees that are otherwise linked to identical sets o f taxa.
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curious network dynamics. This unusual distribution function might imply 
that different supertree strategies should be applied to different classes of 
more or less densely packed neighborhoods as revealed by the distribution 
function.

10.6 Future Developments with Tree Networks

Ultimately, networks of trees should allow databases to generate three- 
dimensional graphs where a diffuse shape of points takes on the vague 
appearance of the tree of life — each point being a tree, where tree-to-tree 
distances are a function of degrees of separation under various levels of 
stringency. Supertree algorithms can then go to work on different parts of 
these clouds, trying to whittle them down to a single, common consensus 
phylogeny.

However, with this approach the database model does not take the 
topology of trees into consideration. Instead, it can only sort out the patterns 
of overlapping sets of taxa among neighborhoods of trees. Perhaps this 
approach is not sufficiently sensitive to differences between trees, instead 
treating each tree as a single unit. It would be better if trees were built into 
the database model so that details of their topologies participate in 
assembling tree-graphs and the like.

Published phylogenies usually appear in a graphical form that reports the 
hierarchy of nested clades, the names of taxa, and possibly the amount of 
support for clades, branch lengths, or the names of clades (Figure 4A). In 
digital form, trees are usually stored using Newick notation, where nested 
parentheses correspond to nested clades, and commas represent branches 
(Figure 4B). TreeBASE uses this method to store trees because it takes up 
very little disk space and it is readily understood by most phylogenetic 
analysis software. One disadvantage of Newick is that trees do not 
incorporate into the database model, and so calculations cannot be performed 
directly on the trees without first decoding them.

An alternative to Newick is to disassemble each tree into its component 
nodes, and then store each child node and the identity of its parent node as 
records in a table (Figure 4C). With this method, each node receives a unique 
node ID number that can then identify both parent and child. Like links in a 
chain, the tree can be reassembled with an algorithm that recursively works it 
way along every branch in the tree, looking up database records of nodes as it 
goes. Although retrieving trees may be slower than with Newick notation,
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Figure 4. Parenthetical notation and parent-child records as alternative methods of 
storing trees. Trees in the published literature frequently appear as in 4A, a 
hierarchical series of nested clades. A tree's leaves are named (taxa А, В, C, and D), 
as are internal nodes in some instances (taxon E). The lengths of branches are 
sometimes represented, as are measures o f branch support, such as the 83% and 92% 
bootstrap support exemplified here. This tree can be represented in so-called Newick 
notation or parenthetical notation (4B). Alternatively, the nodes o f a tree can be 
stored as separate parent-child records in a database (4C).

this parent-child method can store lots of auxiliary information about each 
node (such as branch length, bootstrap, or Bremer support), which is harder 
to do when using Newick.

Moreover, storing each node separately means that the database has 
access to nested sets of clades, and therefore ultimately to the topologies of 
stored trees. The challenge is to make use of this added information in the 
process of building networks of trees. For example, instead of having vertices 
represent trees and edges represent taxa, the network could have the reverse 
arrangement, where distances between taxa are judged by degree of 
separation via the clades or nodes that make up trees. Taxa will cluster in 
taxon-graphs due to the tangled web of interconnecting nodes that attract 
them together, and selecting these taxa has the effect of selecting an 
appropriate collection of trees for subsequent supertree construction.
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The MinCutSupertree algorithm for building supertrees blends many 
trees together into a single network of taxa, and then recursively cuts away 
the taxa that stem from the roots of the original trees [Semple and Steel, 
2000]. With each step, the trees shorten from their bases, the network of 
remaining taxa shrinks, and the taxa that are cut away attach themselves to an 
ever emerging supertree. The parent-child method of storing phylogenetic 
information lends itself well to this general approach of supertree 
construction, in the sense that the database will have already built a giant 
network among all taxa.

Somewhat similar to MinCutSupertrees, reconciliation of host/parasite 
trees can be achieved using a network of possible solutions (a Jungle) 
connecting the nodes in two conflicting trees [Charleston, 1998; Page and 
Charleston, 1998]. After weighing possible solutions (e.g., host switching vs. 
lineage sorting, etc.), dynamic programming finds the shortest path through 
the network, and hence the most optimal solution. A MiniCutSupertree 
method can use a similar approach to resolve among conflicting trees, by 
weighing possible solutions using bootstrap or Bremer support values stored 
with child node records in TreeBASE.

Ideally, we would want a phylogenetic database that could store the 
results of calculations among existing trees in the database such that when 
new trees are added only a smaller subset of these calculations need to be 
modified to accommodate the new tree. Making use of previously stored 
calculations in this giant network among taxa might greatly accelerate the 
process of building a supertree, not unlike the way dynamic programming 
avoids having to recalculate those pathways in a network that it has already 
encountered. The bottom line is that phyloinformatic databases need to move 
beyond acting as highly specialized literature databases, and instead take on 
the role of actively building a synthesis of accumulated phylogenetic 
knowledge.
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