


CONSTANTIN CARATHEODORY: 
AN INTERNATIONAL TRIBUTE

VOL. I



1:
Constantin Carath6odory (1873-1950) !

■». ■



C ' M s t a n t l n  C a r & t h & o d o r y

ш я ш ш т ш м л
IT IE 2 ©  Ш IP Ш

Vol. 3

Editor
Themistocles M. Rassias

U b  World Scientific
Y r  Singapore • New Jersey • London • Hong Kong



Published by

World Scicntific Publishing Co. Pic. Ltd.
P О Box 128, Farrer Road, Singapore 9128
USA office: 687 Hartwell Street, Teaneck, NJ 07666
UK office: 73 Lynton Mead, Totieridge, London N20 8DH

CONSTANTIN CARATHfeODORY: AN INTERNATIONAL 
TRIBUTE VOL. I

Copyright © 1991 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form 
or by any means, electronic or mechanical, including photocopying, recording or any 
information storage and retrieval system now known or to be invented, without 
written permission from the Publisher.

ISBN 981-02-0229-6
981-02-0544-9 (set)

Printed in Singapore by Utopia Press.



V

F O R E W O R D

This collection of articles by mathematicians from many countries is 
a tribute to the memory of Constantin Caratheodory. Among the leaders 
who in the first half of this century created a foundation for the future 
development o f mathematics Caratheodory was one o f the most original, 
and also one of the first to give new life to parts of classical mathematics 
that threatened to become stagnant.

His understanding of Riemann’s mapping theorem was far ahead of 
his contemporaries’ , and his feat of promoting an obscure remark of H. A. 
Schwarz to become the famous Schwarz’ Lemma was as important as it was 
generous. In the same area, I can personally never forget how impressed I 
was, and still am, by his invention o f prime ends.

Car atheo dory’s contributions to the calculus o f variations were proba
bly the most important part of his work, but I wonder if he was not equally 
proud of what he did to real variables and measure theory. This was miles 
away from complex variables, but very much in the same spirit.

The initiative for this tribute was taken by Dr. Themistocles M. Ras- 
sias, who has also been the editor and the link with the contributors and 
the Publisher. As a fellow countryman of Caratheodory, he was the right 
person for the task and deserves everybody’s gratitude.

Lars V. Ahlfors 
Harvard University



P R E F A C E

Constantin Caratheodory (1873-1950) was born in Berlin on 13 Sep
tember 1873 o f Greek parents, and he died in Munich on 2 February 1950. 
His work covered several subjects o f mathematics, including the calculus 
of variations, function theory, measure and integration, as well as applied 
mathematics. Caratheodory has also done very fundamental work in me
chanics, thermodynamics, geometrical optics and relativity theory.

The first important contribution of Caratheodory to the calculus of 
variations was his proposal of a theory of discontinuous curves. This was 
his doctoral thesis “Uber die diskontinuierlichen Losungen in der Variation- 
srechnung” written while he was a student at the University of Gottingen 
and published in 1904. This monumental work was the starting point for 
several fundamental contributions to the calculus o f variations by himself 
and other mathematicians, as well as the inspiration for certain early re
sults in optimal control. In function theory, one o f Caratheodory’s signifi
cant achievements was a simplification of the proof o f one of the most es
sential theorems of conformal representation. He succeeded in extending 
earlier results o f Picard and Schwarz. In 1912, Caratheodory proved his 
celebrated kernel theorem on sequences of univalent functions. Later, in 
1923 Charles Loewner introduced a new approach in function theory repre
senting slit mappings in terms of a differential equation. Loewner, using the 
Caratheodory convergence theorem, proved the Bieberbach conjecture for 
the third coefficient. L. de Branges recently remarked that it was precisely 
this method which finally gave a full solution to the Bieberbach conjec
ture. In measure theory, as is well known, Caratheodory is the inventor 
o f outer measures, and all that this implies in mathematics. In mechan
ics, thermodynamics, optics and relativity, besides his important scientific 
contributions, Caratheodory has significantly influenced the better under
standing and the rigorous presentation o f these fields.

An example of Caratheodory’s wide-ranging influence in the interna



tional mathematical community was seen during the first Fields Medals 
awards at the International Congress o f Mathematicians, Oslo, 1936. 
The selection committee consisted o f G. D. Birkhoff, Elie Cartan,
C. Caratheodory, F. Severi, and T . Takagi. Two medals were awarded, 
one to L. V. Ahlfors and one to Jesse Douglas. It was C. Caratheodory 
who presented both their works during the opening of the International 
Congress.

These two volumes contain a series o f scientific articles dedicated to 
the memory of Constantin Caratheodory. These articles deepen our under
standing o f some o f the current research problems and theories in modern 
topics o f calculus o f variations, complex analysis, real analysis, differen
tial equations, geometry and their applications, which are related to the 
work o f Caratheodory. This presentation o f concepts and methods makes 
this tribute an invaluable reference for teachers and other professionals in 
mathematics who are interested in pure and applied research, philosophy 
of mathematics, and mathematics education.

It is my pleasure to express my warmest thanks to all o f the scien
tists who contributed to these two volumes, and, I would particularly like 
to extend my special appreciation to Professor L. V. Ahlfors for writing 
the Foreword to these volumes. I would also like to acknowledge the su
perb assistance in editing and composition that the staff of World Scientific 
Publishing Co. has provided in the preparation o f this publication.

Athens, Greece 
November, 1990

Themistocles M. Rassias
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T he  B in o m ia l  T heo r em  in t h e  A lg e b r a  A +

Lars V. Ahlfors1 

(In memory of Constantin Caratheodory)

INTRODUCTION.

The standard Clifford algebra A N (or A ) is the associative algebra over the reals with 

unit 1 and generators e i,* * -,e w subject to the relations e2 =  —1 and е;еу =  — ejei for 

i ф j .  It is a vector space of dimension 2N with a basis formed by all products e,-, e,-2 • • • , 

in natural order, 0 <  к <  N. For к =  0 the product equals 1.

A n contains a smaller vector space Q C ^  (or Q C when N  has been fixed) formed by

all elements that may be written in the form z =  ar+y with x €  R  and у =  y ieH-------\-yN eN

with real yi , ■ • •, yN . As the notation suggests, we shall regard z as a generalized complex 

number with Re z =  x and Im z =  у 6 R N.

We shall treat Q C  as a euclidean space with square norm \z\2 =  x2 +  |y|2, |y|2 =  

У\ +  • • • +  y2N. When dealing with two elements of Q C  we shall frequently denote them 

by z — x +  у and w =  и +  v. Their inner product is defined by (z ,w ) =  xu +  (y,v), 

(У, v) = y iv i  + - - -  +  y*u*.

The Clifford product of z and w} written as zwy is rarely in Q C  and therefore of little

1 Research supported by NSF and Forschungsinstitut fur Mathematik, ETH, Zurich

1
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use. The algebraists have an easy way of avoiding this difficulty. They have invented a 

new algebra on Q C , called A + , in which the product of z and w is denoted by z • w and 

defined as |(zw  +  wz). It is easy to see that z • to is indeed in Q C , and it is obvious that 

z • w =  w - 2 , so that multiplication in A + is commmutative.

The commutativity has been achieved at the price of revoking the associative law. 

Indeed, it is clear that e,- • e,- =  —1 while e; • ej =  0 if г ф j .  It follows that (e,- • ej) - ej =  0 

and e,- • (ej • ej) =  —e,-, which shows that A + is non-associative as soon as N  >  1.

In the absence of associativity the commutative law plays only a limited role. For 

instance, it is essential to distinguish between (a • b) • с and a ■ (b • c). For products of more 

than three factors a more elaborate system of parentheses is needed.

Because a-a  is the same as aa the notation a2 may be used for both. More generally, 

an may be interpreted both as a power in the Clifford algebra and as a product of equal 

factors in A + . In the latter case it may itself occur as a factor in a product, but it should 

then be thought of as enclosed in a parenthesis. For instance, a2 • b should be read as 

(o - a) • b and distinguished from a- (a - b).

A basic formula in A + states that

( a b )  - a2 — a-  (6- a2). (1)

In terms of the Clifford algebra this is equivalent to

(ab +  ba)a2 +  a2(ab +  ba) =  a(ba2 4- a2b) +  (6a2 +  a2b)a,

which is true by the associative law. In contrast, the simpler formula a • (a • b) =  a2 • b is 

false.

Any algebra which satisfies a b =  b a as well as (1) is known as a Jordan algebra after 

Paul Jordan, a mathematical physicist who in 1933 introduced this notion in connection 

with the early development of quantum mechanics. The algebraic idea caught the interest 

of professional algebraists, and the theory has become an important topic in nonassociative 

algebra.
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The algebra A + is one of several special Jordan algebras, and as such much closer 

to complex numbers than the general notion. It is easier to use because there are many 

identities in A+  which are not true in an arbitrary Jordan algebra.

Because z € Q C  implies zn G Q C  for all n it is possible to consider power series of 

the form £  anzn with suitable coefficients, preferably in Q C. The writer believes that 

such series are a worthy subject of serious research, even though the likelihood of a close 

analogy with the complex case may be remote.

The theory of analytic continuation of complex power series makes important use of 

the binomial theorem, without which there would hardly be a starting point. The theorem 

turns out to be false in A + , but there is reason enough to look for a substitute. In this 

paper, which is of a preliminary nature, it will be shown that the binomial theorem can be 

rescued by adding a remainder term given by an explicit formula. The question of analytic 

continuation remains open.

Remark. The paper is essentially elementary and could be boring for true experts 

on nonassociative algebra. It is addressed mainly to readers who come from the side of 

classical complex analysis.
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I. INDIVIDUAL POWERS IN A + .

1. Members of the set Q C  will be called vectors. In connections where only two 

vectors are involved we shall usually denote them by suggestive letters such as z and

w, but in the case of more than two vectors the scarcity of suitable letters soon makes

Similarly, the distributive law, which by convention is true in every algebra, takes the form 

a ■ (b +  c) =  a • 6 +  a • c.

The most important feature of the algebra A + is its lack of associativity, which requires 

extreme caution. Otherwise, the multiplication is fully determined by the special rules 

e2 =  — 1 and e,- • tj =  0 for t ф j ,  together with the commutative and distributive laws. 

For purely imaginary vectors the special rules y2 =  — |y|2 and у • v =  — (y,v) are in force.

The general multiplication formula in A + reads

which is very similar to the corresponding formula in the complex case.

2. It is an important and remarkable property of Q C  that any power zn of z £  Q C  

is again in Q C . This is easy to prove by induction, but there is a much more instructive 

way. If z is real there is nothing to prove, and we may therefore assume that у ф 0. When 

this is so, z — x +  у can be rewritten as

itself felt. It is therefore more practical to permit an arbitrary choice from one or more 

alphabets. For instance, the commutative law in A + is best expressed by a • b =  b • a.

z • w =  (x +  y) • (u +  v) =  (xu -  (y, V}) +  (xv +  uy), (1.1)

where the parentheses on the right serve only to isolate the real and imaginary parts. An 

important special case is

*2 = (*г - М а) +  2*у, (1.2)

(2.1)

Because =  — 1 it becomes obvious that the subalgebra generated by z is isomorphic

to the one generated by x +  |y|t. In other words, in order to find zn it suffices to develop 

(x +  |y|t)" and replace t by -pj.
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This can be done quite explicitly by use of the binomial theorem. Even without 

carrying out the calculation one recognizes that the result will be of the form

zn =  orn(x, |y|) +  0 n(x, Ы )щ > (2-2)

where a n and /?„ are homogeneous polynomials of total degree n in x and |y|. Moreover, 

a n is even and /?„ is odd in |y|. The denominator in cancels against a factor in /?„.

For later use we display the actual developments:

-2*l.i2 к
ы

/ „  \ (2-3)

Here and later it will be understood that the index к runs through ail the integers for 

which the coefficients (  2k +  l )  3X6 ^e^ne<̂ '

It should be noted that qq =  l,/?o =  0 and ац =  x, fa =  |y|. The step from n t o n + 1  

is given by

a n+1 =  xan -  \y\Pn, /?„+ i =  |y|af„ +  хД, (2.4)

(2.5)

or in matrix form

( а"+Л  -  ( x - I y\\( aA  
V / w  ~ vm   ̂ Л fin )'

The passage from z — x +  у € Q C  to the complex number x +  |y|t and vice versa will

play an essential role in what follows. In particular, the argument <p o( x +  |y|i is defined

by cos y> =  7-r>sin y> =  -pj , 0^<pfs7r.  Because (cos <p +  t sin <p)n =  cos rup +  * sin n<p 
\z \ \z \

it follows that

zn =  |z|n(cos rup +  sin nV,'j^|) (2-6)

and on comparison with (2.1)

<*n(x, Ivl) = W" cos 0«(x> M) =  M* sin n<̂ - (2-7)

We shall refer to x +  |y|i as the complex image of x +  y. Thus x +  у and x — у have the 

same complex image, and we agree that the argument of x +  |y|* shall also be considered 

the argument of x ±  y.
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It is seen from (2.7) that <*„(x, |y|) and £„(x, |y|) are conjugate harmonic functions of 

the variables x and |y|. As such they satisfy the Cauchy-Riemann equations

docn _  dfL дрп дап 
dx ~  d\y\5 dx d\y\. -  - ^ T  (2-8)

as well as Д а„ =  Д/?п =  0.

This is an indication that the subject matter we are pursuing is not far removed from 

the classical theory of holomorphic functions.

3. From the preceding it is clear that the mapping of Q C  on itself which takes z to 

zn is analytic. It is easy to compute all partial derivatives, but we shall limit ourselves to 

finding an explicit formula for the Jacobian of the mapping z —» zn.

As a temporary notation we shall write (x +  y)n =  и +  v. The Jacobian is

/ f e  T& \
3(i, у |jj■ J

in easily understandable notation. From tt =  a n and v,- =  /?„ one obtains
\y\

du dvi у{
dx ~  n^ " -1  jyj ■

Moreover,
ди_ _  досп_ yj_ _  yj_

dyi %| |y| |y|
dvi ViVi , Р п ( г '  УгУЛ
dyj " ~ 1 Ivl2 |y| \ 13 |y|2 )  '

У l
For a more compact notation we shall henceforth write у as the column matrix

\Vn )
and its transpose yT as (yi • ■ • yN). In terms of matrix multiplication this means that 

УТУ — 1у12> a rea* number, while yyT is the square matrix ||y,yj||, i , j  =  1 , . . .  ,N . It will 

also be expedient to write norn_i =  an, n/?n_x =  bn, fin/\y\ — cn.
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With these changes we obtain

D „ =  ( a"  ~ Ьп^т Д  (3.1)

where IN is the unit matrix in N  dimensions.

4. The local quasiconformal nature of the mapping from z to zn is determined by the 

matrix D ^ D n} and does not change when z is subjected to a conformal mapping. An easy 

computation based on (3.1) shows that

D" Dn = (  " 0 " («* + Ы -  4 ) f £  + c\iH )  • (41)

Conjugate by where К  6 0 (n ) maps ^  on ej. Clearly, is replaced by
K )  |y| |yl

e^ ej, which is a diagonal matrix consisting of 1 followed by N  — 1 zeros. We conclude 

from this that D „ D n is conjugate to

( * l + b l  0 0 \
0 al +  bl 0 . (4.2)

V 0 0 d i s _ J

Provided that cn ф 0 we may set Л =  (a2 +  62 ) /c 2 . The matrix (4.2) is then a multiple of

This has two eigenvalues, A of multiplicity 2 and 1 of multiplicity N  — I.

In trigonometric terms A =  ( ”  Sm \ ) , which implies A >  1, except for A =  1 if
\ sm rup) J

n =  1 or =  0. As for quasi-conformality, the mapping z —* zn is qucuircgular with 

dilation A and maps an infinitesimal sphere on a spheroid with two major and N  — I minor 

axes. It is regular except at points where nip is a multiple of x.
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II. BASIC OPERATIONS ON THE ALGEBRA A + .

1. In the preceding section we were mainly concerned with powers, and for that 

purpose the specific properties of A + were not actively involved. We shall now shift the 

attention to the ways of dealing with the intricate nature of non-associativity.

The author’s experience is that the lack of the associative law involves many pitfalls, 

which can easily lead to serious mistakes. For this reason, when dealing with the algebra 

A + it is very helpful to make more extensive use of matrix multiplication, which by itself 

is always associative.

The writer prefers to use matrices which act from the left on vectors written as column 

matrices, as already in Sec. I. We continue the practice of denoting a purely imaginary 

vector by a single letter y, z as ^ d  its transpose as (s ,y T). The same applies to

w — I U J. The identity matrix is again denoted by IN or 1ы+1, as the case may be, and

the subscript may be omitted when the dimensionality is taken for granted.

With the vector z =  x +  у we associate the matrix 

« ■ > - ( ;  - f ) -  
interpreted as a block matrix, in the obvious manner. The letter L is a reminder that the 

matrix acts from the left.

One verifies at once that

L(z)w — z • tv,

■G)
and this is the purpose of the notation. It follows that L(z)w  =  L(w)z and L(z) \

The following basic lemma serves to compare the products L(z)L(w) and L(z • w). 

Lemma 1.

(^ ) /к0 _ у„ г ) .  ( i .i )

We recall that yTv is the same as the inner product (y,u), and that yvT is the JV x N  

matrix ||у,и,||. The proof of the lemma is an easy verification, left to the reader. The 

power of the lemma is due to the three zeroes on the right.
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The lemma implies

L (z)L (w )(j^  = Ь ( г - ю ) ( ^  =  Z ( u > ) £ ( * ) ^ ,  (1.2)

but it is not true that L(z)L{xv) — L(w)L(z). In fact, (1.1) shows that

=  y _ yuT) .  (1.3)

The special case w =  z of the lemma yields

W I ° _ yyr ) .  (1.4)

We shall use this to evaluate z -(z -w ) — z2 -w. This is precisely (L(z)2 — L(z2))w. Because 

of the zeros the product of the matrix on the right with w — *s same as with

and hence equal to |y|2v — (y, v)y, where we have dropped the superfluous zeros.C)
For many similar applications it is convenient to introduce the notation

Hy) = I" ~ W  (1’5)

We remark that Л(у) is idempotent, i.e., Л(у)2 =  A(y). As for (1.4) it may Бе 

rewritten as

L(z)2 — L(zl ) =  |jrp(q л(°у ))

2. As another application of Lemma 1 we shall derive an expression for L(zm)L(zn) -  

L(zm+n). In (1.1), z and w shall be replaced by zm and zn, respectively, while on the 

right у and v become Im zm and Im zn. If arg z =  <p we know that the imaginary parts 

are \z\m sin т<^|^| ^ d  |z|nsin wh*0*1 proves

L e m m a  2.

L(zm)L(z" )  -  L(zm+n) =  |z|m+"  sin m^sin n < p ^  ) .

This lemma will find important use in the next section.
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III. THE BINOMIAL THEOREM IN A +

1. It is a familiar fact that the theory of analytic continuation in the complex domain 

depends heavily on Newton’s binomial theorem. To recall the details, the question of 

convergence is trivial, and all that is needed is to rearrange a power series in z so that it 

becomes one in z — zq. For this purpose one appeals to the binomial theorem to obtain

* " - £ 0 0  **(*-*•  )n" ‘ - 
*=0 4 7

oo

A series ^ а „ г п becomes a double series 
о

n | At

where к and n are restricted by 0 <  к <  n. However, if we introduce m =  n —к it becomes

£ ( m * - « « г .

where к and m run independently from 0 to oo. Now, in terms of new coefficients 

we are led to the identity

=  f ; m * - * » r ,
о о

as desired.

More symmetrically, we could have replaced zq by z and z — z0 by w,  resulting in

22  °»(* +г»)П = 2 2 ( т £ к)  am+kZkWm} 
n m,k '

where the double series may be regarded as a power series either in z or in w.  Observe

(
ш +  к 

к

2. If the binomial theorem were valid in A + it would have to be written as

(* + u0" = £  wn~k.
k= о '  7

This is obvious for n =  1 and easy to verify for n =  2. We shall see that it fails for n =  3.
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By commutativity, but without open or hidden use of the associative law, one has

(z +  w)3 =  (z +  w) • (z2 +  2z • w +  w2)

=  z3 +  2z • (z ■ w) +  z • w2 +  w • z2 +  2w • (w • z) +  tv3.

By the definition of L{z) (see Sec. II) z • (z • ш) =  L(z)2w and xu • z2 =  z2 • w =  L(z2)w. 

By use of 11.(1.4-5) it follows that 2z • (z • w) +  z2 • w =  3z2 • w +  2|y|2A(y)v. Similarly, 

w2 • z +  2w ■ (u ■ z) =  3z • w2\ (v)y, so that

(r +  w Y  =  (z3 +  3z2 • w +  Зг • +  w 3) +  2|y||v| ( |» |Л (»)^ | +  l» |A (» ) |[)  • (21)

This result supports the expectation that the binomial theorem is true except for an 

additive correction, and it seems like a good guess that the vector

*(y, v) =  lylA(y)j^y + (2-2)

will play a dominant role. The matrix Л(у) was defined by 11.(1.2).

The formula (2.2) breaks down when either у =  0 or v =  0. In that case z and w 

commute, and the ordinary binomial theorem is in force. It is therefore no restriction 

to assume that у and v are both ф 0. When this is so they enclose an angle и  with 

cos cj =  (y, v)/|y||v|. One verifies that cr(y,v) can also be expressed by

*(*.») =  l»l ( p f  ■- eos « jSj)  +  M ( | j  -  COS Ы * j)  . (2.3)

3. For arbitrary n we shall denote the remainder in the binomial formula by pn{z,w) 

or simply pn> It is thus defined by

(z + tu)n = ^  * юП~к + p"(2r’ tw)*

Note that we have again refrained from spelling out the range of к.

We pass to the proof of a crucial lemma. In addition to (p =  arg z we shall also need 

ф — arg to.
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pn+i - { z  +  w) - p n

Lem m a  3.

=  ks mk y  sin(n -  к)ф^ a(y,v).

PROOF: By (3 .1), pn+i -  (z +  ttf)pn is the same as

( * + “ ’) ■ £  ( * ) z‘ ' * " " * "  £  ( "  t 1У ' u’ "+ ,‘ ‘ - (32)

We concentrate on showing that the expression (3.2) can be identified with the right hand 

side in the lemma.

Because of the symmetry of the binomial coefficients z and w  axe interchangeable. 

Therefore,

<■+»> £ ( ; ) ■ * " • - * -

On invoking Lemma 2 (Sec. II)

w ( w k ■ zn~k). (3.3)

z • (zk • ty" *) =  Z-(z*+1)tyn k +  И *+1 sin y>sin

Substitute |y| for jz|sin y> and |tu|n *sin(n — к)ф— for Im wn~k. We obtain

,*+i . wn-k+

Y2 *sin k(p sin(n ~ к)Ф |y|A(y)o-
(3.4)

M'

The same is true when z and w are interchanged. At the same time we are free to let 

к and n -  к change places in any one of the sums in (3.4). Therefore, we have also

wn+i-k  +
£  0 0 ” = £ ( * > *  •
£  ( * ) | г1*1шГ - ‘ 8‘п 1^  9in(r%- к) ф |»|Л(ч)|^.

(3.5)
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Since к may be allowed to run through all integers, nothing changes when к is replaced 

by к — 1. This implies

'■ G"i) + (!) ■ ("»‘) ,b'*" *■

(3.6)

Also, +  I ■ I =  I ■ I for all t , even when the binomial coefficients are

artificially defined.

Add (3.4) and (3.5). Because of (3.3) the left hand sides add up to the first term 

of (3.2). By (3.6) the first terms on the right cancel against the negative term in (3.2). 

Finally, by (2.1), the second terms on the right combine to form what is to the right of the 

equality sign in the lemma. This completes the proof. □

5. For convenience we shall reformulate Lemma 3 as the recursive formula

Pn+1 = (* + w) • pn + R nar(y} v) (4.1)

with

Rn =  Y .  \z\kИ "  * sin kip sin(n -  к)ф. (4.2)

Note that the Rn are real numbers. One sees at once that J?i =  0, compatible with 

=  p2 =  0, and Ri =  2|y||v|, which agrees with (2.1).

The system (4.1) is easy to solve for pn by iteration, but only after rewriting it as

pn+! =  L(z +  w)pn +  Япа(у, v). (4.3)

In fact, one obtains the explicit formula

n—2
pn =  J 2  Rn-kL(z +  ш )*-1ог(у, v). (4.4)
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The nature of the numbers R n as given by (4.2) is not immediately clear, but the 

use of the complex images x +  \y\i and u +  |v|i will be helpful. Because (x +  |y|z)fc =  

|z|*(cos k<p +  i sin k(p) and (u +  |t>|t)”~fc =  |w|n~fc(cos(n — к)ф +  i sin(n — k)ip) one obtains

=  ( i t ) Im^  +  M 0 * Im(u +  M O " ' * -  (4.5)

At first sight it could seem questionable to use the same г twice since in one factor it is 

supposed to be exchangeable by and in the other by but actually the imaginary 

parts are real numbers and we have used i only in its original sense.

It is also easy to see that (4.5) may be rewritten as

* * £  ( * ) ( *  + + M < )- ‘  -  R e E  -  MO"-*

In this form the complex version of the binomial theorem is available, and we arrive at the 

relatively simple formula

R n ------|йе{[* +  «  +  (|y| +  M )i]" -  [x +  и +  (|v| -  H )*]” }. (4.6)

Together (4.4) and (4.6) yield an acceptable answer to the problem at hand. When 

written out the result takes the form

Pn =  -•г 5 ^ Ке{1г + и  +  (М  +  М)*]П" * - ( а:+ и+(1у|-|1;1>Т_ * } Д ‘г+гу)к' 10Г(У ^ ). (4.7) 
Z fe=i

This rather pedestrian formula can almost certainly be simplified, but the writer’s 

present research along this line is not ready for publication. It is his hope that younger 

brains will be attracted to the many open problems in this area.
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ON SOLUTIONS OF SOME CLASSES OF DIFFERENTIAL 
EQUATIONS OF REEMANN—PAPPERITZ TYPE AND 

THE EXTENSION OF RIEMANN P-FUNCTION

M.A. A l-В ass am

ABSTRACT. In a previous paper ([9], p. 7) the author 
has generalized the Riemann-Papperitz second order differential 
equation, of which the Gauss hypergeometric second order 
equation is a particular case. This generalization is represented 
by an integro-differential equation of order (m-n, n) (the highest 
integral term of order m—n and the highest derivative of order n) 
with m singular points. In this article the nth order differential 
equation with (n+1) singular points has been studied, analysed 
and solved. In addition, a particular case of a class of fifth order 
differential equation with six singular points has been solved and 
its solutions have been obtained in terms of the hypergeometric
functions F^4). It has been shown that the nth order differential

о
equation with (n+1) singular points has 2n (n+1) branch 
solutions, where n is the order of the equation, (n+1) the number 
of singular points including (m) and 2n is the number of 
transformations which leave the integrals unaltered. These 
transformations have been obtained and developed here by the 
author. In general if m is the number of singular points of the 
equation then the number of branch solutions is 2mn(m+l). 
Also, in this article the extended Riemann P-Function 
(M—Functions) for these equations have been studied, discussed 
and obtained. The М-Functions associated with equations of 
different orders and nth order equations have been found. It must 
be mentioned that the study of solutions have been carried out by 
Generalized Analysis (Fractional Calculus) and the use of 
properties of the integro-differential operator of generalized 
(fractional) order.
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1. Introduction
In previous articles, ([9], [10], [12], [13], [14], [15], [22], [23]), [27] the

author has studied and developed new operational methods for obtaining
solutions of differential, integro-differential and integral equations. This
may be achieved through representation of these equations by their
equivalent operator (transform) equations. When equivalent operator
equations are obtained, then their solutions are those of the corresponding
differential or integro-differential or integral equations. Methods for solving
such operator equations are based upon the use of generalized calculus
(fractional calculus) and the operational properties of the integro-differential 

x
operator (I ) of generalized order [8].

In an article [9] the author has studied equivalence properties of 
Gauss’s hypergeometric equations and their corresponding operator equations. 
Then he has established the existence of Kummer’s twenty four solutions as 
listed in ([5], pp. 87-88).

In this article equivalence properties between a class of general 
integro-differential equations of Gauss—Papperitz-Riemann type and their 
operator equations will be discussed. In dealing with the general case, it 
would be sufficient to study first in detail a particular case as the 
treatment and approach in both cases are similar and later in the work the 
generalized Riemann-Papperitz linear differential equations will be discussed. 
So, if (i,j) denotes the order of the integro-differential equation where i 
represents the integral order and j indicates the differential order, then the 
total order of the equation will be (i+j). Thus our study will include the 
particular case of the integro-differential equations of fifth total order. 
These my be represented by equations of order (0,5) or (1,4) or (2,3) or 
(3,2) or (4,1) as they are all equivalent. It may be interesting to point 
out that the fifth order equations or the equivalent forms (i,j) (i =

d by hypergeometric functions of the

a

where у =  y(x), z =  z(x) and w =

w(x).
In addition to Gauss’s hypergeometric equations, other o rd in a i^ ^ 1̂ ^
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partial differential equations may have many branch solutions as it was 
indicated by various authors. Baily ([7], p. 78) has mentioned that the 
hypergeometric function F satisfies a certain type of hypergeometric partial 
differential equations with "at least six solutions" of this type. Also it has 
been indicated by Appell and Kampe de Feriet that there are sixty 
solutions of these equations, ([6], [7]). On similar subjects some work have 
appeared in [25]. Recently, in an article [27] the author has studied a 
class of third order differential equations and has shown that such a class 
possesses seventy two branch solutions. Also, it has been shown that it is 
associated with the М-Function (the Riemann extended P-Function).

In our work, in dealing with ordinary differential equations, it will be 
revealed that the number of branch solutions depends upon the order of the 
equation, the number of singular points of the equation and the number of 
transformations leaving the principal integrals unaltered. Thus the number 
of solutions of the general case of the integro-differential equation, presented 
in this work, with total order n and m is the number of singular points of 
the equation inlcuding (-m) or (+<*>) equals 2nm (m -l), where 2(m—1) is the 
number of transformations leaving the integrals unaltered. In dealing with 
fifth order equations of six singular points including (-oo), then the total of 
branch solution would be three hundreds as it will be shown later in this 
work.

2. Preliminaries. Definitions and Some Hypergeometric Identities
Some definitions and properties of integro-differential operators of 

generalized order, transformations and hypergeometric functions and 
identities, together with their references, will be given here as they may be 
needed in this work.
Definition 1.

If f(x) is a real-valued function of class on a < x < b and Re 
a +  n > 0, then

\ °{ =  Г{5Т57 Dx \] M )a+” -1  f(‘ ), (“ = 0,1,2,...) (2.1)

When a -» -m



19

I af =  lim  I af = D“  I a+nf , (2.2)
a x -ш

jH
where D =  — -  and Г is the gamma function. 

x dx
Details and properties of this operator may be found in [8] and [9].
Definition 2.

x
If I f =  0, Re a-n > 0, (n =  0,1,2,...) and 

(a;-oo)
( \ x n C, ( x - a ) 0̂

(1) f e C ' ' on [a,b], then I a0 =  f(x) =  E И а ^ к + Г р  (23 )
а к—1

/ 4 X n С . xi _1
(2) f  e C W  on (-*>,b], then I a0 =  f(x) =  £ - f ^ y -  , (2.4)

where C- are arbitrary constants ([9], pp. 5-6).

Remarks: When l~ aF =  0, then D3 I3_aF =  0 which implies that
a

x3-a™ тЗп о  л. ~\2I F =  ГО =  C1(x-a) H-C2(x-a)+C 3 and hence 
a a

„  „  ( x -a ) " -1 , г  (x -a )0'”2 . r  (x-a ) ^ 3
F =  C1 H ’ Sj—  +  2 V (c A T  +  3 Т [ Й Г  (25)

Cp Cg and C j are arbitrary constants. These results may also be 

obtained from (2.3) if (the arbitrary constants) are chosen such that 

=  0 for (k =  4,...,n).

Definition 3:
The hypergeometric functions in the variables Xj, (i = l,2,...,n) may 

be given by
C; xl r , ,x n) =  r (A ; ^  » 

f1 uA -1( l -u )C_A-1 П (l-u x j) B‘ du (2.6)
Jo i= l

where A,B.,C (i =  1,2,...,n) are numbers and Re С > Re A > 0; 

|Arg(l-xi)| < т. Also,

FjQ ^(A,Bp...,Bn; Cj х^,Х2,...,хп) —
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; (АЧ+
L ---------- ( Q k T ~ i  I X k j+ l j lH ^ + i ) . .TTk"n+ i ) ’

k j......kn=0 k 1+ .. .+ k n

(|xj| < 1, i =  1,2,..,,n), where 

(B)r =  B (B +l)...(B +r-l),r > 1, (BQ) =  1, В ф 0 .

From the above we may conclude the following:—
(a) The integrals (2.6) remain unaltered under the 2(n+l) transformations

(i) u =  v , (ii) u = 1-v

(ffi) u =  i - x kIv x k’ H u =  т Ц ; '

(к = l,2,...,n). (2.8)
(b) (i) is clearly the identity transformation.
(c) In applying (ii) to (2.6) we find that

F][)n)(A,B1)...,Bni C; V ..,xn) =  5 ( l -x j)  1

FDE)(C_A ’B1 '- -Bn; C: j p i -  x ^ T’ (2-9>

(d) In applying (iii) (u =  1_ х^+ух. » i =  to the integrals (2.6)

we have
F ^ )(A ,B 11...,Bn; C; xr.....хц) =  (1-Х ;Г А

F ()n )[A,B11...,Bi_ 1, С -  ! i Bi,Bi+ 1,...,Bn; С;

Xi - r Xi Xi x i+l~xi xn"xi] (2
5Ê T> (210)

(e) If we let u =  , (i =  l,2,...,n) in (2.6) we find that

(n\ C -A -B .
Ff, (A|B1>...,Bn; C; xp ...,xn) =  (l-X j)

(2.7)

j a - x ^  Br F ^ )[c-A ,B 1,...,Bi_1, С -  J i  Bk,Bi+1„. 

r# i
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Х.-Х-, X*“ Хл х.-х. л х .-х . , ,  х . -х  >■о . п. 1 1 1 2 1 1-1 „  1 1+1 1 n I (с\ 1 1 \
п’ ’ “Т ^ ," ' ,Х-хГ1 ,xi’ l-x i +  1 I2,11'

3. Equivalence Properties
It has been shown [9] that the integro-differential equation of 

Riemann-Papperitz type
p+2

m—2 W — E a. +1
<*> +  j  .  j  t  y W .У p L p+S"

p = - l  l<i1< i2< ...< ip +2<m  ̂ П (x +а^ )
k= l

f(x) (3.1)

where y(n) = <p_x =  1, <pT =  w(w -l)...(w -r),(r =  0,1,...,ш -2), ô , ad
dx

are numbers, у 6 c W  , f  e С on [a,b], m,n are positive integers and
Re(A-w) > 0, (A =  1,2,...), is equivalent to the operator equation 
x m a. x , m 1-a . x„r .-
I“ w П (x+a.) 1 I-1  П (x+a.) 1 l w" n+1 y(x) =  f(x) . (3.2)
a i= l  a i= l  a
If in (3.2) we put m =  5, n-1  =  s and f(x) =  0, then the operator 
equation
x 5 Of- x i 5 l-a -  x _
I " w П (x+a.) 1 I” 1 П (x+a.) 1 Iw_s у =  0 (3.3)
a i= l  1 a i= l  1 a
represents an integro-differential equation of order (0,5) when s =  4, of
order (1,4) if s =  3, of order (2,3) if s =  2, of order (3,2) if s =  1 and
of order (4,1) when s =  0. For example the form of order (2,3) may be
given by the integTO-differential equation

5 w -or.+ l w - a . - a . + l

У"  +  i= l W  У" +  W k ^ < 5 У' +

w -Qt.-ar av + 1  2
+  w (w -l) X , . J  , I I ,   ̂ у +  П (w-p) 

l<i< j <k<5 V x+aj ; lx+aj ) ^x+akJ p=Q

w - a j— at.- ot£ +  1 x 

l< i<j<k</<5 (*+а;Н х+ аД х+акН х + а <) {  У +



22

3 W - i- 1 “ > +  1 x2 П (w-p) ,  1-1------------- Г  у = 0 .
p=0 П (x+ a .) a

i= l 1
This equation can be transformed to an equation of any one of the order 
indicated above, and so they are equivalent regarding their respective 
solutions.

It may be more convenient to deal with and study the form of order
(0,5) represented by the fifth order ordinary differential equation

5 w -  a +  1 . w -  a .-  a- +  1

У + if 1 У + "  Ki<j<5 ( * + ^ Ц >  У" +

w — a .- a ;- ar,+ 1 2
w (w -l) s Tx+a KxTa H x+a 1 y" +  П l<i<j<k<5 l x+aiA x+ajH x+iV  p=0

w — a .- <*c ai +  1 3
l< i< j< k < « 5  Т Г + а ^ Ц ) ( х + ак) (х + а,) ? '  +  Д  (W~P>

5
w — £ + 1
- 5- ^ ± ------------- у =  0 , (3.4)

П (* + » ,)  
i= l

which is equivalent to the operator equation when s =  4: 
x w 5 a. x . 5 1-a. x ,
I_w П (x+a.) 1 I" 1 П (x+a.) 1 Iw^  у =  0 (3.5)
a i= l  a i= l a

Representation Of Fifth Order Equations By Operator Equations 
It can be easily shown that any fifth order differential equation of 

the form (3.4) can be represented by its equivalent oeprator equation if w 
and a- (i =  1,2,3,4,5) are determined. The equation:

П (x+*j)Yy + (Ax4+Bx3+Cx2+D x+E)Y1v +  (Fx3+Gx2+H x+R)Y"

+  (Jx2+K x+L)Y m +  (Mx+N)Y' +  SY =  0 (3.6)
is equivalent to the operator equation whenever:
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Н =  3w(w+l) Е a-a. — 2w Г orn Е а-а. +  ar9 Е a-a. +  
l<i<j<5 1 J L 1 2<i<j<5 1 J 1 l<i< j <5 1 J

( > . 1 * 2 )

E a-a. +  aA E a-a. +  а,. E a-a. 
l<i<j<5 1 J 4 l<i<j<5 1 J 0 l<i<j<4 
( i , j * 3 )  ( i , j  Й )

R = w(w+l) E a-a.a, -  w а, E a-a-a, +  
l<i<j<k<5 1 J * L 1 2<i<j<k<5 1 J K

а9 E a-a.a, +  E a-a-a, +
1 l<i<j<k<5 1 J * 6 l<i<j<k<5 1 J K

( i ,  j , k#2) ( i ,  j , k#3)
E a. a-a, +  a, E a. a. a,

l<i<j<k<5 1 J K 0 l<i<j<k<4 1 J KJ
( I . j .k M )

2 ^J =  10w(w - 1) -  6w (w -l) E a-
i= l  1

L =

9 5 г 5 5
4w(w - I )  E a- -  3w(w-l) а, E a- +  си E a- +

i= l  L 1 i=2 1 1 i= l  1
i #2

5 5 4 n
cto E a. + a, E a. +  aK E a. (3.6.1)

3 i= l  1 4 i= l 1 5 i= l  'J
i#3 i*4

w(w2- l )  E a-a. -  w (w -l)[a 1 E a-a. +  
l<i<j<5 1 J L 1 2<i<j<5 1 J

ous E a. a. +  а> E a-a. +  а , E a-a. +  
l<i<j<5 1 J 3 l<i<j<5 1 J 4 l<i<j<5 1 J 
( U * 2 )  ( i , j# 3 )  (I , j#4)

u5 E a. a.I 
l<i<j<4 1

о 5
M =  5w(w —l)(w—2) -  4w(w -l)(w-2) E a.

i= l 1
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N =  w ( w 2- 1 ) ( w - 2 )  S a. -  w (w -l)(w -2 )[a1 S a. +  a9 E a. +  
i= l  1 L 1 i=2 1 1 i= l 1

i *2
5 5 4 -,

^  S a. +  aA E a. +  a , E a.
6 i= l  1 4 i= l  1 5 i= l H

i*3  i^4

5
S = w(w—l)(w—2)(w—3)(w -  E Qj.+l) .

i= l  1
The values of w and a- (i =  1,2,...,5) may be easily obtained from

equations (3.6.1) above. Also, if a differential equation is given in the 
form (3.4), then it would not be difficult to find the values of a  ̂ (i =

1,...,5) and w and consequently it can be expressed by an equivalent 
operator equation.

4. Solutions of Equations
Solutions of (3.4) may be obtained by finding solutions of its 

equivalent operator equation (3.5).
4 x4—w ^_wBy applying property (2.5), by using the equality D I =  I

a a
in (3.5) and performing the inverse operations of the integro-differential 
operator of generalized order we find that

_  О JL Г A o —U- ( / ,\w -t
y(x;a) = I4“ w П (x+a,) 1 [к  +  I П ^х+aj) ' { ^  [ Щ ] —  +

where К and C- (i =  1,2,3,4) are arbitrary constants.

If we let Cx =  T (w -3), C2 =  T(w-2), C3 =  r (w -l) , C4 =  T(w), then 

the fundamental solutions may be written as

y.(x;a) =  К I4“ w П ( x + a / 1 1 (Sj)
a i= l
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y2(x;a) =  I4-w П (x+a.) 1 I П (x+aj) ‘ (x -* ) (S2)
1 a i= l 1 a i= l

x-л 5 a;- l  x 5 —a  .j._о
y3(x;a) =  I4~w П (x+a;) 1 I П (x+a;) *(x-a)w (S3)

a i= l  a i= l
x. 5 а.- l  x 5 —а- о

y.(x;a) =  I4_w П (x+«j) 1 I П (x+a,) ‘ (x -a )w (S4)
4 a i= l 1 a i= l  1

y5(x;a) =  1 ^  П (x+a.) 1 I П (x+a^ 1(x-^a)w“ 1 (S5)
D a i= l  1 a i= l 1

5 а;-1  х 5 -а - л

The fundamental solutions (S-), (i =  1,...,5) may be determined according

to the singular points of the differential equation (3.4) or (3.6). These 
singular points are: -a-, -m or +a> (i =  1,...,5). Thus, the lower limits (a)

of the integrals may be represented by these singular points. It can be 
easily seen that these solutions are linearly independent.

Now, for each lower limit we may obtain five fundamental solutions. 
Consequently thirty principal solutions are obtained by using the values of 
singular points as lower limits of the integrals. According to the 
transformations (2.8) -each fundamental solution may be expressed in ten 
forms and the total number of branch solutions would be three hundreds.

In general the number of solutions of an equation of nth order with 
m singular points including (-ш) may be estimated as follows: The 
equation has n fundamental solutions, a number of nm principal solutions 
and 2nm(m—1) branch solutions since there are 2(m -l) transformations 
which may leave the integrals unaltered as indicated by (2.8).
Verification of Solutions:

To show that S- (i =  1,2,...,5) are solutions of (3.5) we may show

that they satisfy the equation. It would be sufficient to show that any 
one of the solutions satisfy the equation. If y2(x;a) is substituted in (3.5)

and by using the operational properties of the operator of generalized order,

with the fact that I a 1̂  =  l a+^ (as shown in [8]), then the left hand 
a a a

side of (3.5) takes the form:
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I w П (x+aj) i П (x+a-) i(x-a)w_4l =  D4 I4_w(x-a)w“ 4
a i= l  1 4=1 1 J x a

=  D4 T(w—3) = 0

4. A Study of A Particular Case
A particular case of (3.5) where a ^  0, a2 =  1, a  ̂ =  -1,

a4 =  -r , â  =  -p  will be studied. In this case the operator equation

takes the form
x ,ir ал a0 aQ aA a* x 1 1-a ,  1 -ou  l -a «
I " w x (l+ x ) (1—x) (r—x) (p—x) 5 I-1  x (1+x) ^ ( 1-x ) 3 
а а

1- a .  l - a K x__ A
(r-x) 4(p-x) 5 Iw^  у =  0 (4.1)

а
which is equivalent to (3.4) when a. (i =  1,...,5) are replaced by its values

given above. This is also equivalent to the fifth order differential equation 
x (l+ x )(l-x )(r -x )(p -x )y v -  (AjX^+BjX3+CjX2+DjX+Ej)ylv -

(F1x2+H 1x+R 1)y" -  ( J ^ + K jX + L j) / '  -  (MjX+NjJy' -  =  0 (4.2)

where
5

A. =  5(w—1) — E a- 
1 i= l  1

г 5 4 л
B1 = —4(w +l)(r+p) -  r E a-+ p E & +  ot̂  -  aJ  

L i= l  i= l  J 
i^4

Cj =  3(w+l)(rp—1) -  ^ ( a j - ^ - a j )  +  (r+p)(a3-or2) + -  a4 -  a5
D j =  2(w +l)(r+p-rp) -  r(a1+ aJ) + r p ^ - O j )  -  a4p

Ej ----------4(w+l)rp -  a^rp
5

F, = 10w(w+l) -  4w E a- 
i= l

G j =  —6w(w+l)(r+p) +  3w^(r+p) E  ̂ +  p<*4 +  ra^ +  -  a3]

Hj =  3w (w +l)(rp-l) -  wjrp Ъ +  (г+ р Х ^ -Я з) ”  a4 “  <*5]



Rx =  w(w+ i ) ( r+p_rp) _  w £rp( ftg oĉ j +  +  p a j

2 5 J, =  10w(w - 1) -  6w (w -l) E a-
1 i= l 1

J

K j =  -4(w 2-l)(r+ p ) +  3w(w-l)^(r+p) c»j +  pa4 +rc»s + -  » 3j

Lj =  w(w2- l ) ( r p - l )  -  w(w-l)|rp 5^ a; +  (r+p)(a2- a 3) -  “ 4 -  “ 5]

0 5
M1 =  5w(w —l)(w—2) -  4w(w -l)(w-2) E a- 

1 i= l  1

N1 =  -w (w 2- l ) (w - 2)(r+p) -  w(w—l)(w—2) ^(r+p) E +  p<*4 +  +

a2 "
3 5

S, =  П (w-p) (w -  E Of- +  l)  (4.3)
1 p=0 i= l 1

Solutions of (4.1)
Solutions of (4.1) satisfy the equivalent differential equation (4.2). 

These fundamental solutions as in the general case indicated by (S-) may

be given by:
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X4_w ai -1  a9_1 aQ_1 аЛ~ 1 «с—1 X
y5(x;a) =  I x ( 1+x) ( 1-х )  (г-х) (p-x) I x 

a a
о

(1+x) (1—X) (г-x )  (p-x) (x-a)
Solutions y^xja), (i =  1,...,5) are determined according to the singular

points of the differential equation (4.2). These are: 0 ,l,-l,r,p and (-a>). 
Therefore the lower limit (a) of the integrals above may take these values 
of the singular points. For each singular point as a lower limit we find 
six basic solutions. Hence a number of thirty principal solutions are 
obtained. But each one of these can be expressed in ten forms by 
applying transformations (2.8), with (k =  1,2,3,4), to solutions represented 
by integrals of the forms (2.6), which may yield hypergeometric functions of 
the forms Therefore a total of three hundred branch solutions may

be obtained. Thus this number of solution forms are found when ten 
transformations are applied to the thirty solutions у^(х;а), (i =  1,2,...,5),

where a may be any one of the six singular points of the equation.
It would be sufficient to discuss some few cases of these solutions 

such as yj(x;a), y2(x;l) and yg(x,-co), as the other solutions can be

similarly studied.

By expressing y^xja) in the integral form, with lower limit a = 0,

and by applying the transformation t =  xu we find that
■nr rx 9 Qt-i —1 а* - 1 Qfn—1 aA—l 

y j(x ;0) =  (x -t) t (1+t) (1- t )  (r-t)

Ofe-1  
(p-t) 5 dt

К П о , )  a ,—w+3 aA- l  arc-1 (A\r
=  r p f £ 4) [ v - V - V - “ 4>

l - a 5; OTj-w+4; -x ,x , |J . (4.4)

In applying (2.8) for (k =  1,2,3,4) to (4.4), i.e. the tranformations:
u =  V, u =  1-v , tt =  , U =  (4.5)
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(i =  1,2,3,4), with x j =  -x , =  x, x3 =  i  and x4 =  |  , as shown 

by (2.9), (2.10) and (2.11), we would get the following ten branches:
К r ( a j )

И M1 -  Г ( o^-w+4) ■ then

aA- l  Or-I a^-w+S (A\r 
У1Д(х;0) =  M jt p X Fjj ^ e p l - O j . l - O j . l - ^ . l - a g i  

a1-w +4;-x ,x , |, 

ал -w +3 0 ,-1  a«—1 aA- l  a . - l  
y12(x;0) =  MjX 1 ( 1+x) (1-x )  3 (r-x ) 4 (p -x) 

^4  w,l 0^,1 ftjjl 01̂ ,1 otg, w+4,
X X _X_ X ]

Х+Г x-1 ’ x -r ’ x-pj

a . - l  ac-1 a ,-w + 3  ( A\f 5 
y13(x;0) =  M: r 4 p x F^ J [а р .^  а ^ , 1-а д ,1- а 4,1- а 5;

“ r w+4; xTT’ 5ЙГ’ (l+x^r- f l T ^ p ]  
aA- l  a . - l  a* —w+3 - a ,  , A\r 

У1>4(х;°) =  Mxr p x (1-x) F^ ^ a j .l -O j ,

j| j  “ r w>1_ “ 4’ ^  “ r w+4i h i '  x = r f f e S ’ f f e f p ]

a i+ a . - l  a * -l a ,-w + 3  - а ,  / л г  
y15(x;°) =  Mjr p x (г-x )  F^ ^ « 1,1- 02,1- 03,

£ a -w  1 -a  • a -w + 4 - (r+1)x (r~1)x J L  (r-p )x] i > 5’ “ l  +  ' x - r  ’ r-x ’ x -r ’ p(r-x)J

Ui—X U ltU r-l Ui-WTO —cr, / A\r
У16(х;°) =  Mjr p x (p-x) ^ « j . l - a j . l -a - j ,

1- a ,  I  a -w - о  -w+4- (? +1)x (P~1)x (P~r) x Л -1  4' i= i  1 1 x -p  > p-x > r(p -x )' x-pj

a ,-w +3 a^-w+3 a0- l  a . - l  oir-1 
y17(x;0) =  MjX 1 (1 + x )^  (1-x) 3 (r-x) 4 (p -x) 5 «
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x F^4)(4 -w, В OTj-w; l -a 3,l -a 4,l -a 5; oij-w+4; -x ,

(г+*)х (P+l)xl 
x—Г * x—p J

a^-w+3 otrr-1 a0-w +3 a ,-l  ac- l  
y18(x;0) =  M jx ( 1+x) (1-x )  3 (г-x )  (p-x) 5

D [̂ 4—w ,l-a 2, Qj-w, l - a 4, l -a 5; a^w +4;

_ 2 x {b r )x  (l-p )x l 
х + Г  5 r-x ’ p -x  J

__t a a ,-w + 3  ou-l Ло- l  a ,-w +3 aK- l  
y i j9(x;°) =  Mjr x (1+x) (1-x )  (г-x )  (p-x)

5
'[4 —w,l—o ^ l—a3, ot{- w,l-<*5; ^ -w + 4 ;

(1+  г )x (l-r )x  x (p-r)xl 
r( 1 + x ) ’ r ( l -x ) ’ r ’ r(p-x)J

Л„ А  c^-w+3 a0- l  aQ- l  aA- 1 ov-w+3
У1Д0(Х’°) = Ml?  x (1+x) (1-x) (r“ x) (p“ x)

F ^ ^ ^ -w ,1̂ , ! —а3Д—a4, c*r w; o^-w+4;

Д ± £ ) х .(Н О *  (ГР.)Х X1P (1+ x ) ’ p ( l - x ) ’ p (r-x )’ pj

yg(x;i):

This solution may be written in the integral form (after replacing a
by 1):

/ t\w^4 rx « a-,-1 On-l Oq-1 aA- l  
y2(x;l) =  |^(x - t) t (1+t) (1- t )  (r-t)

Qfe—1 г rt - a ,  -cu  yf-a^-A - a A
(p -t) 5 [ J Z X( l + z )  ^ ( 1 ^ )  3 M )

(p-z) 5 dzj dt
, ft - a ,  - a ,  w -aQ̂  - a A - a .

If u =  in I =  J z (l+ z ) ^ ( 1-z )  3 (r-z) (p-z) & dz

Then,
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I =  -*  V l )  “ V l )  “ 5( l - t )W “ 3 3 F ,̂4) (w- “ 3 -3' aP “ 2>a4 a5; 

- a j - 2; 1-t , p | ]  ,w

and

lw -1 fr-11 ° 4fD -n  ° 5 ?4-w  “ l - 1 „  vw-4y f c U  =  Н Г Ч Э Д  v ~  ( i + x )“ 2 (1 -x )'
* 3 1

(r-x) 4 (p-x) 5 P ^ [ w - a ^ - 8,e 1,e2,e4.e 5j
л « 1  1-x  1-x  1-x ]

3 ’ 1_x- T P  FT> I=pj '
The other branch solutions y2 j(x ;l), (j =  2,3,...,10) may be obtained 

by applying the same transformations (4.5) to in y2 ^(x;!).

In this case where a -* -m in y2, y^, y^ and y^, it is convenient, for

the evaluation of the integrals, to replace (x-a) in y2 by unity, in y^ by
2 3x, in y^ by x and y^ by x . This is justified by the choice of arbitrary 

constants (2.4), where in the case of y2, (C j =  1, C- =  0 for i # 1), for 

the case of y^, (C- =  0 for all i Ф 2 and C2 =  1), for y^, (C  ̂ =  0 for 

all i Ф 3, C3 =  1) and for the case of y5, (Cj =  0 for all i Ф 4 and C4 

=  1). We have

j 3( x ^ . )  =  r ( ^ w> Л  V+o*2 V -o °4 1 

M v , [f . ‘Л Л Р м ^

(p-z) 0,5 dzjdt .

г* -d о -Oo -a  a —etc
If z =  tu in I =  z \ l+ z )  (X-z) (r—z) 4(p-z) 5 dz,

~(D
then,
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5 5
1- Е а- 2- Е  а- 

i= 3  1 . i= l 1
I -  i- ^ - 5------------------------  f £4)(.S аГ 2’а2'аЗ'а4'а5' .Е. “Г 1;

V л _  1 4 = 1  1=1

_ I I Е El t ’ t ’ t’ tj

E a . — 1 
i = l  1

and consequently,

y =  Щ - ^ l -----------  x i=2 l(1+ x )“ 2- ( l - x ) ^ -
E a, -  1 “ * 

i = l  1 
aA~ 1 f A\Г 5

(г-x )  (p -x) Ffo аГ 2,а2’ “ 3’ ° 4’ “ 5;

i= l  в‘ -1 ’ ~  * ’ * ’ * ’ *1 
Also y„ -(x;—m), (j =  2,3,..., 10) may be found by using the transformations

(4.5) in the hypergeometric functions ' in the integral of y^ ^(x;-m).

By a similar approach other branch solutions may be found. These 
solutions are obtained from the five fundamental solutions yj(x;a), (i =

1,2,...,5) which take anyone of the six values of the singular points yielding 
thirty principal solutions. The three hundred branch solutions are found by 
applying to each principal solution the ten transformations (4.5).
5. Generalized Riemann-Papperitz Equations
The general case of (3.1) where m =  n and f(x) = 0.
In this case we find that the nth order linear differential equation with n 
singular points:

/ ч n w -ar.+ l , w -Q f.-a .+ l / 9\
y(n) + S - e f c -  y(n_1) + w A  |rt>. tl n  y( )i i l  7 +  W l<i<j<n (x+ a^ lx+ a T )

, .4 ч w-e j - a r ak+ l  (n_ 3)

*  w(” 1> 1S1< U  ’
w -a . -a r a k- a ,+ l  

+  w(w—l)(w—2) ( x + i j j l x + a j x + ^ n x + y  7
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n
n—2 w — E atj+1 

+... +  П (w-i) - j i = l ----------  у =  0 , (5.1)
U 0  П (x+ a . )

i= l 1

where ŷ n) =  is equivalent to the operator equation
dx11

I " w П (x+a.)"1 I-1  П ( x + a /  Iw n+1 у =  0 • (5.2)
a i= l  1 a i= l 1 a
Representation by operator Equations:
The equations in the form (5.1) can be put in the form similar to (3.6), 
that is in the form:

П (х+а.)у(“ ) +  f £ А.хпЧМ п-1) +  [ V  B.xn - i - 1M n~2) 
i= l 1 4=1 1 J 1 i = l  J

+...+  (MlX+M 2)Y ' +  SY =  0 . (5.3)

Any equation of the form (5.3) can be represented by an operator equation 
of the form (5.2) by determining w and a  ̂ (i =  1,2,...,n) from equations

similar to (3.6.1), through the establishment of equivalence properties such 
as in the case of the fifth order differential equations, which give the 
relations between the coefficients A., Bj,...,Mp M2 and S, (i =  l ,2,...,n), (j

=  l,2,...,n -l) and that of the parameters w and a- (i =  1 These

are all have become possible through the use of (fractional calculus) 
Generalized Calculus and the integro-differential operator of generalized 
order.

It may be pointed out that this writer has generalized the second 
order Riemann’s equations and Papperitz equations ([26], p. 206 & p. 283) 
to nth order integro-differential equations as given by (3.1) ([9], p. 7) and 
has found its equivalent operator equations.
A Study of Solutions:

Solutions of (5.1) may be obtained by finding solutions of its 
equivalent operator equations (5.2). By using properties of the integro- 
differential operator of generalized order as applied to (5.2). Since

Dx-1  ^ n-1)-w  = |_w, then



where C-, К are arbitrary constants.

Let C- =  T(w-i+1), then we have the n-fundamental solutions:- 
n a .-l

У;(х;а) = К l (n- ! ) -w  n (x+a;) 1 (Sj)
a l—l

x r* ,.r n ос-—1 x n —a- •. ,
У,(х;а) =  I (n_1)~W П (x+a.) 1 I П (x+a.) ’ (x-a)w_J+1 (Sj)
J a i= l  a i= l J

(j =  2,3,...,n). These fundamental solutions (Sj) (i =  1,2,...,n) may be

determined according to the singular points of the differential equation (5.1). 
These singular points are given the set {a^, ад, —ш or m}, where (â

=  —a.). Thus the lower limits (a) of the integrals in {S^} may be

determined by these singular points in evaluating the n solutions. For each 
singular point we obtain n principal solutions. Thus we have n(n+l) 
principal solutions since the number of singular points is (n+1) including 
(-m). But each principal solution amy be expressed in 2n equivalent 
integrals as indicated by (2.8). Therefore equation (5.1) has 2n (n+1) 
branch solutions. These solutions are expressed in the hypergeometric 
functions F^n_1). The principal solutions are linearly independent and they

can be easily verified that they satisfy the equation as shown in section (4) 
of this article for the case n = 5. Evaluation and other details of these 
solution can be dealt with in the same approach as the one used here in 
dealing with the fifth order differential equation. The number (a) which 
appear in (S.), (i =  l ,2,...,n) may be replaced by the singular points in

evaluating the integrals. When a =  -m the replacement and evaluation of 
solutions follow the same way as that dealt with in section 4 of the 
article.
6. The Extended Riemann P-Function

1. Riemann P-Function:
Riemann P-Function is the scheme
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А1 А2 А3 
а 0 7 х 
а' 0 ' 7 '

(6.1)

with the exponent а, 0, % а ', /?', 7' and the singular points Aj, i =

1,2,3 is associated with the Gauss’ hypergeometric equation
x (l-x )y " +  {c -  (a + b + l)x ) -  aby =  0 (6.2)

where the singular points are {1, -oo, 0}, ([5], pp. 82—104) and ([16], pp. 
206-209, 281-296). Rummer’s twenty four solutions of this equation are 
associated with six principal branch sets each of which contains four branch
solutions, i.e. {P } and { P ^ ,  p (7 ') } .  It has 
been shown that these functions have interesting properties ([5], pp. 88-92). 
In a previous work the author has shown that these sets are associated 
with the equations singular points. In fact, these solutions have been 
obtained through integrals with singular points as lower limits as shown for 
the fifth order equation in section 4. If in equation (3.1), m =  3 and n 
=  2, then the equation takes the form

3 w -a -+ l w -a ; -a ;+ 1
y" + £

i= l  x + a i
y ' +  w

+ w (w -l)

3
w -  E 

i= l  
— 3—

l<i<j<3 Tx+a^jfr+ajj y

a.+l1 X

П (x + a j) 
1=1

I у =  0 . 
a

(6.3)

This is reduced to second order differential equation of Riemann type if
3

w - E  a- +  1 =  0 (6.4)
i= l  1

This condtion is satisfied by the values of w and a- which are given by 

matrix equation
w 1 =  U a +0 +7

(6.5)
а +0  + 7  
ot'+fi + 7
a + /? '+ 7
а +/? + 7 '

where U is the (4x4) unit matrix, a, /3, 7, a7, 0 ' ,  7' are the indices of
Riemann P-Function where Е (а+а ') =  а+р+ч+а' +0 ' + У  =  1. By
applying condition (6.4) to equation (6.3), choosing the singular points 1, 0,
® and if 2̂  -* ®, then (6.3) is reduced to Gauss’ equation of the form (6.2)
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2. The М-Functions (the extended Riemann’s Р-Functions^ for the 
third and fourth order equations
If m =  n = 3 in (3.1) or (3.2) we notice that the differential 

equation
3 w -a . +1 w—a.-a .+  l

yw +  s a + x" y" +  w £ (a 4-x)(a +x) y ' +  i= l  a i + x  l<i<j<3 ta i + x Kaj+ xJ
3

w — E a- 4-1
w (w -l) — g ----------  у =  0 (6.6)

П (a j+ x )

is equivalent to the operator equation 
x 3 a- x , 3 1—or- xirr 0
I w П (a.+x) 1 I" 1 П (a.+x) 1 Iw~2 = 0 (6.7)
a i= l  a i= l  a
This operator equation is equivalent to the third order linear differential 
equation

3 9П (a-+x) у~ +  (Ax +Bx+C)yM + (Dx-fE)y' +  Sy =  0 (6.6.1)
i= l
if:

3
A =  2(w +l) -  E a.

i= l  1
3

В =  2(w +l) £^ -  [a1(a2+a3) +  a ^ + a ^  + o ^ + a ^ ]

C =  (w+1) i<i<j<3 ^  ~  ( а л а з  +  W 3  +  W 2 )
3

D =  w[3(w+l) -  2 E a-] (6 8)
i= l  1

3
E =  w (w+l) £ aj -  w [a1(a2+a3) +  a ^ + a g )  +  « 3(a1+a2)]

3
S =  w(w—l)(w — E a. +  1) . 

i= l
It is clear that (6.3) is the same equation as (6.6.1). These third order 
equations would have seventy two branch solutions, as it has been indicated

([9], pp. 8-9).
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in this article, for the equation has four singularities including (-m) and 
there are six transformations as mentioned in (2.8) with (k =  1,2). The 
number of these transformations is determined by twice the number of 
singularities excluding (-m).
If in (3.1), m = 4 and n =  3 we would have an operator equation similar 
to (6.7) with m = 4 and it would be equivalent to the integro-<iifferential
equation

4 w -a .+ l  
у" + E 1 

i= l a j-f x
w—a;-a ;+ l

V J y '

+ w(w -l) E
l<i< j<k<4

4
w — E <*. +1 

i —11 I у =  0
a

l<i<j<4 l* j+ *X * j+ x J
w -a .-a .-a s + l  

<4 (а1+ х ) ( у 1) ( а к ^  У +  w (w -l)(w -2) »

i
П (a ; +  x )

(6.9)

(6.10)

This equation is reduced to (6.6) if
4

w -  E a- +  1 =  0 
i= l  1

and a  ̂ н ± oo.

Condition (6.10) is satisfied by the values of w and a. given by matrix 

equation
w ] =  U \ a +0  + 7  +  £

(6.11)
w =  U a + 0  + 7  + 6
“ 1
a 2

a. + 0  + 7  +£
a' + 0 ' + У + 6'

az ot"+0l' + i ' + 6"

. a4 . a + 0  + 7  +£

where U is the (5*5) unit matrix, a, 0, 7, 6, a ',  0 ' ,  7' , 6 a", /?", i\  
6" are the indices of the М-Function (The extended Riemann P—Function) 
where Е (а+ а '+ а ") =  1, which may be given by the scheme

M
A1 A2 A3 A4

x, y(x) (6.12)a 0 4 6 
a ' 0 ' 7 ' 6 ' 
at" 0 " 7 " 6"

where Aj = -a- (i =  1,...,4) are the singular points of equation (6.6) or

(6.6.1). These equations possess seventy two branch solutions, twelve 
principal solutions and three fundamental solutions. The branch sets
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corresponding to the singular points are Ш ^ ,
{ m ^ .  м ( ? " Н  m W  m ( ^ )  m ( ^ )M ,. . . , }• Each one 

of these branch sets etc. represents six solutions. The study of
these sets may result in interesting properties. The branch solutions are of 
the hypergeometric forsm Fj. As to the fourth order differential equation

the M—Function may be given by the scheme:
A 1

M

1  
a p  
a '

A2 A2 A4 A5
„ 7
P'  1 '
P"
pr

6 e 
6 ' e 
6" e 
Sm e

x, y(x), z(x)

with the condition w

matrix equation

5
-  £ 

i= l
a .+ l =  0, where a- and w are given by the

w = U a +P  + 7  +£ +e

%a 2
a + 0  + 7  +£ +e
a/ +/?/ + 7, +^/ + e /

a3 a»'+^"+7'«+(5»+e,«
al a- + / r + f '+ r + e w

. * 5 . a +p  + 7  +£  +e

where U is (6x6) unit matrix and Ea + Ea' + £aM +cT  =  1. The 
principal sets of branch solutions which correspond to the singular points 
may be given by: { М ^ ,  м (а '\  м (а"1  м (а\  I M ^ , M ^ ') ,  M ^ ) ,  
м ( Я } ,  { М(7)( М(У )| м(т“\ м ( Я } ,  { м ^ ,  м (П  м ( П }  and
{ м Н  м (е \  М^е ), М^е )}. Each set represents eight branch solutions 
and so the total of branch solution for the fourth order differential 
equations of this type is one hundred sixty branch solutions in the forms of 
hypergeometric function F^3).

7. М-Function for the Fifth and nth Order Equations
If in (3.2) we put m =  6, n =  5, f(x) =  0 we have the operator equation
equivalent to the integro-differential equation of order (1,5):

6 w -a .+ l  • w—a .-a .+ l

y +  i= i  y +  w i<i<j<6 y"
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W-ttj-O j-ttk+ 1
+ W(W 1} l< i< j< k <6 I x + a jJ lx + i jJ lx + V  y" + 

£
l<i<j<k<£<6

w -a ;
+  n (w r) A  ,^6 (x+ a ;) (x + a . ) (x + a k ) ( x+a^J yi=0

3 w- a : -tt:- a k- a r am+ l

+ p=0 (W P) l<i<j<k<£<m <6 ( х + а ) ( х !а ^ ( х + а к К х + а гДх+ат )

6
w — E a ■ +1

+ П (w-q) — -  
q=0 b

i= l X
I у =  0 
a

(7)

If in (7): w — E a .+ l =  0 
i= l  1

(7.1)

and ag -» ± ®, then the equaiton is reduced to equation (3.4) and its 

equivalent operator equation (3.5). In addition w and a- (i =  1,2,...,6) are 

given by the matrix equation

(7.2)

where U is (7x7) unit matrix. Condition (7.1) and equation (7.2) implies 
that

Ea + Ea' +  Ea" +  EcT +  Eaiv =  l (7.3)
The M—Function for the fifth order equations of this type may be given by 
the scheme:

M

w = U a + 0 +7 + 6 +e +v
a l a + 0 +7 +  6 +e +v
a2 a' + 0* + 7 ' +  6' + e '
*3 a" + 0 " +7" + <5" +en +v"
a4 a" + r +7" +  Г +e"' +iT
a5 a iv + ^ i v + 7 iv + ^i v+ei v+i/ iv

. V a + 0 +7 + 6 +e + V

Ai A2 > to A4 A5 A6
a 0 7 5 e V
a ' 0 ' 7 ' 6 ' e ' v ‘
a" 0 " 7 n 6" e ” v"
of’ /Г 7~ r e ” Vю
Ol iv 0 iv rj iv 6 ^ e iv V i’

where A. =  —a. (i =  1,2,...,6) are the singular points. The principal sets
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of branch solutions which correspond to these singular points may be given 
by the following:
The sets corresponding to the singular point A1 are { M ^ ,  \

\ M (alv)}, to the singular point A  ̂ are { M ^ ,  \

)}, to the point A^ are { M ^ ,  \ M ^ lv^}, to the

point A4 are { M ^ ,  M ^ ,  м (Г ) } M ^ } ,  to the point Ag are

{м (е), M^e \ M^e \ M^e ), M(elV)}, and the sets corresponding to the 
singular point Ag are { M ^ ,  \ \ M ^ 1V)}.

Each set contains ten branch solutions and thus the total branch solutions 
of the fifth order differential equations of Riemann—Papperitz type is three 
hundreds solutions. These solutions are in the forms of the hypergeometric 
functions as shown in section 4.

The Differential Equation of nth order:
К in equations (3.1) and (3.2) we let m =  n+1, then the resulting 

equation would be an integro-differential equation of order (l,n) which is 
reduced to nth order differential equations of Riemann-Papperitz type (5.1) 
if the conditions

n +1-
w -  £ a; +  1 =  0 (7.4)

i = l  1
and an+1 -* ± oo. This condition is satisfied by the values of w and 

given by the matrix equation

w = U
г n+1

X 
i =1

a[°)

*1 n+1
£ a(°)

a3 i= l l

a
n+1

£ аИ >n i= l 1

an +l
n+1

E a[0)
- L i= l 1 |
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where U is (n+2*n+2) unit matrix. Condition (7.4) and equation (7.5)
П+1 П- 1  /-Ч

imply that E E =  1.
i= l  j =0 1

The M—Function for the nth order linear differential equation of this type

M

• A1 a 2 ... An An+1
4 ° ) 4 0) p о e ( ° )

a n + l

“ (i 1} 4 V) ••. в^1) n
a ( ! )

n+1

. 4 “ "i:
I a (n-1} л ( п- 1)

% n+1

“ n+1 x ' * l W ..... УП- г ( х)

where Aj =  -aj, (i =  l ,2,...,n+l).

The principal sets of branch solutions which correspond to the singular
(оРЬ

points may be given by: {M }, (i =  l,2 ,...,n+l), (j =  0,l,2,...,n -l).
(aJj)

For fixed i and j each set {M } contains 2n branch solutons. Thus 
the total number of branch solutions of the nth order differential equation

2 4 J)(5.1) is 2n (n+1). For fixed i M , (j =  0,l,...,n -l) are the sets 
corresponding to the singular point A..

It would be interesting and of importance if a study and analysis are done 
on such M—Functions, similar to the study made on Riemann’s P—Function 
([5], pp. 83-92).
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ON THE FUNCTIONAL EQUATION \T(x) • T(y)| =  \x-y\

C. Alsina and J.L. Garcia-Roig

We characterize all functions T from a real Hilbert space (£ , •) of dimension 

>  2 into itself satisfying the functional equation |T(x) *T(y)| =  |x -y|. We study 

also this equation in a restricted domain.

Let (22, •) be a real Hilbert space (always assumed to be of dimension n >  2) 

and consider, for a map T  from E  into itself, the functional equation

|T(x) • T(y)| =  |x • y|, for all x, у in E. (1)

It is known the solution of (1) in the case T  bijective (see [3] Theorem 3) 

and T  continuous and dim E <  oo (see [2]). Following a suggestion of W. Benz, 

here we will consider the general case.

To begin with, we observe that any solution T  of ( 1) satisfies the following 

properties, for all х, у in E  and Л in R:

(a) ||TM|| =  |NI;
(b) T (x ) — 0 if and only if x  =  0;

(c) T (x ) ■ T (y) =  0 if and only if x ■ у =  0;

(d) | cosA(:e, y)| =  |совЛ(Г(*),Г(у))|, where A (u,v) denotes the angle be

tween и and v\

(e) T(Ax) =  ±A T(x);

(f) Area (T (z ) ,T (y ))  =  Area (x ,y ).

47
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It is also important to establish, for any such T , the following

Lemma 1. If T  satisfies (1) then T  transforms planes into planes.

Proof. We can take for a plane n an orthonormal basis , e2 and extend

it to a maximal complete orthonormal system {е,}»е/ in E. Then, because of

( 1), {T (e j)}ig/  is an orthonormal set of E  which can be extended with a certain

(possibly empty) set to a complete orthonormal set. Therefore, for any

v in 7Г, v =  aiei +  a2e2, we have by ( 1) that T (v )  =  btT (e t) +  f° r
*€/ j e J

some cj and bj with |b*| =  |а̂ |, г =  1,2. Using ( 1 ) and (a) we have

I > r  =  n i 2 =  n n « ) ir  =  + E ch
i - i  i e i  j e J

whence Cj =  0, for all j  G J  and bj =  0 whenever t ^  1,2. Thus T (v ) belongs 

necessarily to the plane spanned by T (e i) and T (e2).

Remark. As a consequence of the proof of Lemma 1 , we can further assert 

that if v =  Aei +/*e2 then T v  =  ±ATei ±/iTe2. We shall write w =  ATei + ^ T e 2 

and tU =  ATei — ^Te2 (and similarly, v =  Aei — № 2 ) and use this notation 

since it reminds us of complex conjugation. So we have

T v  € {itu , ±w }.  (2 )

The study of T  is, after Lemma 1, essentially reduced to the case of R 2.

Lemma 2. Any map T  : R 2 —► R 2 satisfying the functional equation (1) is 

of the form

T { x )  =  e ( x ) . S ( x )  (3)

where 5 is an orthogonal transformation of R 2 and € is an arbitrary map from 

R 2 into the set {± 1 }.
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Proof. Obviously any function T  of the form (3) satisfies ( 1). Conversely, 

assume that T  satisfies ( 1). By applying a suitable rotation we can further 

suppose that e\ =  (1,0) is fixed under T. Then, with our previous notation, 

T v  G {± v , ± v }.

Now we distinguish two cases:

Case 1. All points in R 2 are eigenvectors for T. Their eigenvalues гиге 

obviously ± 1  and we are done.

Case 2 . There exists a noneigenvector и of T, which by (2) has to satisfy 

Tu  =  ±tz, with й  £<  и >, or in other words, if и =  (a, 6), with a • b ^  0. We 

claim that in this case we must have for all v in i?2

T (v )  — ±v. (4)

Obviously (4) is true for the lines generated by — (0,1) and u. Now if 

there exists v not in these lines and not satisfying (4), i.e., such that Tv  =  ±u, 

we would obtain

I rn, AC,Г -  I * ' ” ' -  lT (“ ) - r H I
' ( ’ )l ~  H \  ■ M l "  ! № ) !  • M l

=  | cos A (T(u ),T (v))|  =  |cosA(u,v)|

which yields the contradiction that v should be on one of the lines generated by 

e\ or 62. Prom this the lemma follows.

These results immediately entail the following

Theorem 1. Let E  be a real Hilbert space (of dimension >  2) and let 

T  : E  E  satisfy (1). Then T  =  e • 5, where e maps E  into {± 1 }  and 5 is a 

linear isometry of E  onto a closed subspace of E.
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Remark. Obviously the image of 5 is the whole of E  if T  is assumed to 

send a complete orthonormal set of E  onto another such one and only in this 

case.

We now turn our attention to the restricted functional equation

|T (x )  • T(y)| =  |x • y|, for all x, у in E  with ||s|| =  1.

We prove first the following

(5)

Lemma 3. If J? is an inner product space of dimension at least 2 (not 

necessarily Hilbert) and T  : E  —> E  satisfies (5) then ||T(:r)|| >  ||z||, for a ll 

x € E.

Proof. For any x in E } x ф 0, from (5) we have that
( i n i )

=  1 and

| т ( р ) - Г ( х ) |  =  М ,  i.e., T  • T ( x )  =  ±||x||. Then we have

Ч К н ) - й Ч 1 ’

■ К н )1 ’+т ^ - и г ( р ) ад  (6>

K T ( A ) 'T(l) = +IWI then (6) yields l|T(x)l1 - W -
If T  ' T (x ) =  — ||i|| then from (6 ) and the triangle inequality of the

norm we obtain:

l|T(*)||2

Ч К н ) - н Ч 1  ^ K i f i ) ! ^ )

, I Р Щ .  I о Ш Ш  
M *  INI ’

so that, again, ||T(x)|| > ||i||.
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In order to see that, in general, (5) is not equivalent to (1) we will exhibit 

the following

Example 1. Let E  =  I2 and take for T  Bernoulli’s shift: T (en) =  en+i, 

n =  1 , 2 ,. .., where {e,},e/v is the usual complete orthonormal set in I2 , and 

extend it by linearity and continuity except for v =  2ei which can be sent 

to e\ +  2ег. Then T  satisfies (5) but is not a solution of ( 1 ) because, e.g.,

I M  >  N .

However we can show the following

Theorem 2. If T  : E  —► E  satisfies (5) and sends a maximal orthonormal 

system of E  into another maximal such system (this is obviously the case if E  

is finite-dimensional) then ( 1) holds, i.e., in this case the restricted condition 

(5) is equivalent to (1).

Remark. The condition of T  on maximal orthonormal systems can be 

replaced by that of preservation of norms (||T(v)|| =  ||v||, for all v ) as the 

following proof makes clear.

Proof. Under the hypotheses assumed on T, if (5) is satisfied then we pro

ceed, as in the proof of Lemma 1, to consider any v =  ^ a ^ e , and
iei

T ( v )  =  ^ Ь ^ (е < ) ,  where {е , } ,€/ is a maximal orthonormal system of E  
*€/

(and so is {Т (е , ) } ,е/). Thus by (5) we immediately have that |а,| =  |b,| for 

all i £ I  and therefore ||T(v)|| =  ||v||, for all v in E. Then we have for any 

v ф 0 in E :

tw ■ К я )1  - 1- h ! -  ihi - I M  -  № IH K h )
i.e., we have equality in the Cauchy-Schwarz inequality and consequently 

T (v )  =  ±||v||T ^ om thie the theorem follows at once.
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M U L T IC R IT E R IA  O P T IM IZ A T IO N

Alexis Bacopoulos

In this presentation we define a convenient framework and give some results 
in multicriteria optimization. Theorems of existence, characterizations unique
ness and computation of best approximations are given here in three mutually 
related contexts of optimality.

The publication of these two volumes in commemoration of the math- 
latician C. Caratheodory gives me the apportunity to mention here how 
^h I have personnally been influenced in my study of Mathematics by his 

amental works in Real Analysis, Complex Analysis (Funktionentheo- 
^artial Differential Equations and Calculus of Variations [1-4]. As is 

own, these masterpieces are only part of his scientific contribution, 
*aratheodory has also contributed fundamentally, both in form and 

m various other fields of Mathematics and Physics. (For a com- 
•>f scientific works and a historical review see also other 

\ these two volumes as well as his Collected Math^^

Approxi*^



Prob lem  I. mm F (p ) ,  where F (p )  =  \\wi(f -  p ) | |o o  +  \\w2( f  -  p)||oo. 
рбП„

The (weight) functions wi and tu2 are strictly positive on [a, 6]. I f  u>i(:c) =
1 and ги2(х ) =  we may think of simultaneous absolute and relative 
approximation in the sup norm.

P rob lem  II . min F (p ) ,  where F (p )  =  II/ -  p||oo +  ||/ -  p|h- 
р€П„

In case of, say, power transmission considerations, one may think of F  
as total cost, comprised of the sum of initial cost (insulation) plus operating 
cost.

P rob lem  I I I .  min F (q ) ,  where F  (?) =  ||/ — q\\a 4-1|/ — q\\p and К
q£K q€K

is a convex and closed proper subset of S, S  is a linear space, / (E S  ~  
K } || • ||0 and || • Ц0 two general norms on S.

We remark that Problem III is much more general than I and II. For 
example, q here may be a multidimentional polynomial. К  may be infinite 
dimensional. As expected therefore, any characterizations that one gets 
will be accordingly general.

Related to the above three typical sum norm problems, we may also 
consider the corresponding max norm optimization Problems I', II ' and 
III', defined by the composite norm max {||/ — p||<*,||/ — p|l/?}. There is 
yet another framework for considering approximation with two (or more) 
criteria of proximity, which we have called vectorial or vec approximation 
[6 , 7]. Essentially synonymous terminology to vec approximation is mul
ticriteria optimization (in Operations Research) and Pareto optimality (in 
Economics) [8 , 9]. As we shall see this is a “natural” setting for imbed
ding problems of sum and max approximation, in the sense that vectorial 
approximation preserves the structure of the component norms useful for 
theorem solving and efficient computation [7 , 10 , 11 , 12].

Vectorial Approximation

Let || • ||a and || * ||̂ be two norms defined on a linear space S  and 
l e t / G S ^ i f b e a  given function to be approximated by approximations 
P € К  С S. К  is assumed to be a closed, convex, proper subset of S. Let
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G{jp) =  (II/ “  p||or, Ц/ — p\\p) and define the partial ordering < on G (I< )  by

r /_4 <: r ( n s _  Г II/ -  pIU <  II/ -  q\\p and G (p )  < G ( q ) 0  <
l II/ — p|U <  II/ - я\\р

we shall write G (p )  <  G (q ) iff G (p ) <  G (q ) and G(p) ф G (q ).

Defin ition . We say that p is a best vec approximation if there does 
not exist a q 6  К  such that G (p )  <  G(q).

Defin ition. The minimal set M  is given by

M  =  {G (p )  : p € К  is a best vec approximation} .

55

N otation . In Fig. 1 Л  is the 45° bisector of the || • ||a, || • \\p. orthogonal
axes.

Fig. l.
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L  is the supporting line to G (I< ) which makes 135° angle with the || • ||a
axis.

Th eorem  1. M  is a convex decreasing arc.

P roo f. The decreasing part follows from the partial ordering and the 
minimality of M  С G (K ) .  The convexity is a consequence of the convexity 
of the norms.

Assuming existence and uniqueness of the ordinary one-norm best ap
proximations (denoted by pa and pp relative to the norms || • ||a and || • \\p, 
respectively), we remark that

Corollary. M  is a point iff G (p a) =  G(pp).

Th eorem  2. Let p3 be a best sum approximation. Then G (p a) С 
M  П L. In case ps is unique, then G (p 3) =  M  П L. Similarly, if pm denotes 
a best max approximation, then G(pm) =  M  П A (assuming M  Г\ А  ф ф).

The proof of Theorem 2 is an easy consequence of the definitions, 
convexity and, in the case of G (p m) =  M  П Л, the continuity of the best 
approximation operator.

Main Results

In what follows we make the same assumptions as in Problem I and 
introduce a notation which is reminiscent of Chebychev’s domain of ideas.

X+! =  {x  : u>i(z)(/(z) -  p{x )) =  +||u>i(/ -  p)||}

X+2 =  { *  : u>2(z )(/ (z ) -  p (x ) )  =  + | M /  -  P)||}

2 U  =  {x  : * ! ( * ) (/ (* )  -  P {* ) )  =  Н М /  -  P)ll)
X _2 =  {x  : W2(x ) (f (x ) -  p(x)) =  - 1 Ы /  -  p)||}

X p  =  Х ц . 1  U  U  X _ i  U  Х _ 2
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< t(x )  =  —1 when x  G X 1 U X _ 2 and 

<t ( x ) =  + 1  when x £ 2L+i U X +2 •

Th eorem  3. Consider the vectorial analogue to Problem I. Then p 
is a best vec approximation to / if and only if there exist n +  2 points 
x\ <  Х2 <  . . .  <  яп+2 in Xp С [a, b] satisfying

Th eorem  4. Each best vec approximation is unique; i.e., given /x € M  

there is only one p 6  Пп such that G (p ) =  ц.

Note that this uniqueness does not contradict the fact that the min
imal set M  has, in general, an infinite number of points, all of which, by 
definition, correspond to (unique) best Vectorial approximations. Likewise, 
the easily shown existence of M  proves the existence of best solutions.

The proof o f Theorem 3 is technical and shall be omitted in this pre
sentation. For a complete proof see [7]. We remark however that from 
what we know now it would have been wrong to expect a generalisation 
of alternation alone to provide a characterization of best sum approxima
tions. This suggests that the vectorial context is better suited for these 
type of problems. For the equivalence among vectorial convex minima and 
weighted sum convex minima see [10, 11]. Now combining Theorems 2, 3 
and 4 we obtain the following

Corollary. Each best sum approximation ps (solution to Problem I) 
is characterized by the generalized alternation property of Theorem 3 with 
the added constraint that G (p a) С M  П L.

This Corollary will be used for the efficient computation of best sum 
approximations featuring quadratic convergence. In case p, is unique, we 
may think of its characterization as the generalized oscillation of Theorem 
3 with the constraint

The sign function cr(z) on Xp is defined by

( IH (/  - p . ) l l . I M /  -  p)ll) = Mn L .
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In the Remes-type computation that follows for the best sum approx
imation, we denote by ps the polynomial approximation at the s-th cycle 
of the Algorithm. Note that this superscript notation should not be con
fused with the notation ps for the best sum approximations where s here 
is a subscript. The symbol vj =  1 or 2 will signify the “activity” indices, 
which assume the values 1 or 2 depending on whether the supremum of the 
generalied alternation at the s-th cycle is attained by the 1st or the 2 nd 
norm. It is helpful in understanding the Algorithm to think of ( D s} A 3) as 
approximations at the s-th cycle of the 2-dimensional vector M  П L.

We further define the following functions and recursive relations:

E (p , x )  =  f { x ) - p ( x ) , N\(p) =  p?i(p,®)||,

£ i(p ,x ) =  w i ( x ) ( f ( z )  -  p (x ) ) , N 2 (p ) =  ||E 2 (p }x )\\,

E 2 {p ,x )  =  w2 ( x ) ( f ( x )  -  p (x ) ) ,
n+2 1

X$.+1 ~ TT 1-  11 «3+1 _  x s + l » 
j = 1 X i Xj

E 2 |AJ+1l [ l ^ - * J + l )l -  -  « i+1)/ (« i(*J +1))l
a*+i _ Lzl______________________________________

n+2

E|AJ+1I K +1- l )/ (t »a (* j+ l))
i= i
n+2 n+2

pe+iw = E 5 ; +1 П ( — *ie+1)

where

and

+1

A lgorithm . Assume that the sth cycle of the algorithm has been 
completed and we have a number A s, a polynomial p* (x ) of degree less than 
or equal to n and a sequence of ordered pairs (xj, v j), i  =  1 , 2 , . . .  , n +  2 , 
such that

<  x 2 <  . . .  <  я „ + 2^ & »
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v* is either 1 or 2 , for z =  1, 2 , . . .  , n +  2 and

i fv f  =  1, then \Е1 (р 3 , х а{ )\ =  D s 

ifv/ =  2, then \Е2 (р3 , х 3{ )\ =  •

Assume furthermore that E (p 3 ,x j )  is alternately positive and negative as 
i  varies from 1 to n +  2 .

Following an exchange-type argument it may be shown inductively 
that after the (s -f l)-cycle of this Algorithm the alternation in sign of 
E (p 3+1, z j +1) is maintained and that a contraction type argument yields 
indeed quadratic convergence to the solution ps.

The details of convergence as well as the initialization arguments may 
be found’ in [7].

A  numerical example for the case of simulataneous absolute and rel
ative approximation is given here. For let f ( x )  =  ex on [0,1], w\(x) =  

=  e“ r , f [ n =  ^ 4 ,pi be the best approximation corresponding to 
W i(x ) , i  =  1 ,2 .

Computational Example

Polynomials Pi P2 Ps

Coefficient of ж4 0.21259 0.16995 0.10692
Coefficient of x3 -0.41751 -0.18094 0.30215
Coefficient o fz 2 1.22217 0.82266 -0.33051
Coefficient of ж1 0.69981 0.90786 1.39083
Coefficient ofx° 1.01975 1.00366 1.11867

Errors

Absolute error 0.01975 0.07346 0.02346

Relative error 0.01975 0.00366 0.00908

Sum error 0.03951 0.07711 0.03254
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We now turn our attention to Problem II, which is to minimize in П п 
(efficiently) the expression ||/ -  p||oo +  \\f — р||г- As with Problem I, we 
shall deal with Problem II by imbedding it in a vectorial framework. We 
remark that the uniqueness of each best vectorial approximation here is an 
immediate consequence of the strict convexity of the L 2-norm-

It follows from Theorem 1 that the arc M  may be described by a 
convex function of one variable with domain [||/ — Pi||oo, ||/ — Р2Ц00 ] and 
range [Ц/ — P2Ц2, Ц/ — P iЦ2]- Our problem now may be stated as follows: 
Given a couple of real numbers d, d' satisfying (d, d') € M , find the p E Пп 
which is the solution of the equation G (p ) =  (d t d'). We shall denote this 
(unique) solution by p .̂

It may be easily seen that both end points of the minimal set M  may 
be obtained numerically using the standard algorithms for the max-norm 
and the 1,2-norm, respectively. We now reformulate the problem: Find the 
best vectorial approximation pd whose error in the Chebychev norm equals 
a prescribed value d} Ц/ — pi||oo <  d <  \\f — ргЦоо- It is now clear that the 
desired polynomial pd is the unique solution to the problem

min Ц/ — p||2 

subject to II/ -  p||oo <  d .

Since the number of constraints here is infinite, we proceed by solving 
a sequence of quadratic programming problems, each with a finite number 
of constraints. The sequence of solutions {p * } is shown to converge to the 
theoretical solution pd.

Algorithm. At the kth step we have from the preceeding steps a finite 
set of points X k С [a, 6]. We solve the quadratic program

min II/ -P II2 •
subject to If ( x )  -  p(z)| < d ,  x € X k .

Denoting by p* the solution of this problem, we calculate a point x * G [a, 6] 
such that

l/ ( * i ) - P * ( z t ) l  =  ll/-Pi||oo- 

We form =  X fcU{xjt} and proceed to the next cycle. At the beginning
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X 1 may be an arbitrary set, containing a maximum of \f(x) — p l ( x )|.

Feasibility and Convergence of the Algorithm

We denote by с =  (со ,.. • , cn) the coefficient vector of a polynomial p =
n
!C ci9i> where {<7*} is the orthonormal basis in of Legendre polynomials 
i — 0
shifted to the interval [a, b]. This representation of p is used in order to 
express the objective function in the quadratic form

n

II/ -  p||! =  constant +  -  Fi)2 ,
*=o

where

constant =  /  / 2 — ^ 2  F?  and F i =  [  f 9i 
Ja , _ 0 J a

Using standard Quadratic Programming notation and removing the abso
lute values from the constraints, the program at each cycle becomes

min — 2 cT F. +  ст с 

subject to — стд .(г ) <  d — f ( x ) , x € X k 

cT g . { x ) < d  +  f { x ) yx e X k >

where F. =  ( F 0 i F l t . . .  ,F „ ) and g .(x )  =  {g0 ( x ) , g i ( x ) , ... ,jfn(* ))-  
We now make the following definitions:

r ( c ; z )  =

A fc(c) =  max |r(c;z)|

A (c ) =  ||r(c;x)||

ici =  E  ic<i

ck =  the coefficient vector of the polynomial p* , 

which solves the Q. P. problem at step к .

To show now that the sequence {p * } converges to the best vectorial 
approximation pd, first note that unless pd =  p2, at least one constraint is
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active (equality), i.e., there exists x G X k such that |r(cfc;x)| =  d. Other
wise, since the L 2-norm is convex, this would imply that ||/—pfc||2 is a global 
minimum, i.e., p * =  Рг- But this is impossible since, by hypothesis there 
exists x £  X 1 С  X h such that \f (x)  -  p2(x)| =  ||/ -  p 2||oo. Next observe 
that the sequence {||/—PfclU} is bounded from above by ||/—р<*||2 =  d!. The
sequence {c * }  is thus located in the ball {c  G # n+1 : ||/ — E c*0*il2 <  d'}.

к

such that |6 — cfc| <  6 for all k >  N .  Now, for any c,d  G Д п+1 we have 

| r (c ';z )-r (c ;x )|  <  B |c '-c| , 

where В  =  maxmax |<ft(*)|- This implies the following inequalites:
% X

|r(c'; x) <  |r(c; jc)| +  B\c' -  c\

and

A (c;) <  A (c ) +  B\c' — c\.

Using the last inequalities it follows that |cfc — c*\ <  26 and that 

d <  A (b )  <  А  (с1) +  B 6

=  ^ (c7;® / )!^  В 6

<  |r(cfc; z/)| -}- 3B 6

< d + 3 B 6 .

This shows that for every cluster point b of {с* } ,  Д (6) =  d. Thus the 
sequence {||/ — р*||оо} converges to d. Since also Ц/ — p jt||г <  ||/ — PdЦ2 
and since the best vectorial approximation pd is unique, it follows from <- 
minimality that the sequence {pk} defined by the algorithm converges to 

Pd-
In the next Corollary the set D  is defined as follows: Consider the 

orthogonal system of reference with axes ||/ — p||oo, ||/ -  р||г (as in Fig. 1) 
D  is the projection of M  П L  on the ||/ — pH^-axis.

Corollary. Each best sum approximation ps (solution to Problem II) 
is the solution of the quadratic program of the Algorithm corresponding to 
each d G D. p3 is unique iff D  is a singleton.

An approximate d may be found by approximating M  by a parabola. 
C. A. Botsaris and the author are currently collaborating in finding an ac
curate d efficiently as well as devising acceleration techniques for the above
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Algorithm. In addition we investigate certain methods general enough to 
apply to Problem III.

For the sake of simplicity we have presented up to now only polynomial 
approximations. Yet, some of the above theorems are also valid for rational 
function approximations, so-called varisolvent functions, spline functions 
with variable knots etc. Some of these techniques have been used jointly 
with I. Chryssoverghi on non-convex optimal control problems [13].

We conclude with a vectorial version of Problem III. This follows from 
general results on convexity which were obtained jointly with Ivan Singer
[14]. We shall omit the proof.

In this final theorem, S  will be assumed to be a linear space, К  a 
proper convex closed subset of 5, || • ||a and || • ||̂ any two norms on S. 
Furthermore, we define the set D  by

D  =  { d :  m f II/ -  ?||a <  d <  in f Ц/ -  ?||„}

where

В  =  { г  e  К  : II/ -  т\\р =  inf II/ -  «Ир} .

Th eorem  5. An element p 6  К  is a best vectorial approximation iff 
there exists a d £ D  and Ф £ S* satisfying

l №  =  i  

ф (/ -р ) =  II/-HI/»

and
Re Ф(р — g) <  0 for all q e  К  satisfying ||/-g||a<rf.
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Constantin Caratheodory: An International Tribute (pp. 65-75)
edited by Th. M. Rassias 
(c)l991 World Scientific Publ. Co.

CARATHEODORY AND HARVARD

Garrett Birkhoff

Elsewhere in this volume, my Harvard colleague Lars Ahlfors describes 
Constantin Caratheodory’s beneficial influence on his career, mentioning 
the fact that Caratheodory served with Elie Cartan and my father, G. D. 
Birkhoff, on the Fields Committee awarding him one of its first two medals. 
I shall describe how Caratheodory also influenced crucially (if fortuitously) 
the careers of two other Harvard mathematicians: Marshall Stone and my
self. Caratheodory’s work on (Lebesgue) measure and integration, reprinted 
in [3, pp. 249-494], was an important factor in this influence, and so I shall 
first recall some aspects of it.

Caratheodory and Measure Theory

Caratheodory’s approach to measure theory is summarized in pp. 338— 
41 of his Vorlesungen uber reelle Funktionentheorie. As is explained at the 
end of [3, pp. 249-77], it stems from a beautiful 1914 paper entitled “Uber 
das linears Mass der Punktmengen” , reprinted in [3, pp. 249-75], followed 
by a two-page historical note. In 1919, he applied Lebesgue measure to give 
the first rigorous interpretation of Poincare’s 1890 Wiederkehrsatz (recur
rence theorem) [3, 296-300].

“Recurrent point-groups” were also the final theme of a major paper 
by G. D. Birkhoff printed in 1920 by the Acta Mathematica (43, 1-119), 
and several of his later papers (see [1, pp. 111-394]).

The introduction to Caratheodory’s 1919 paper observes that Poincare 
recognized many basic properties of recurrent motions arising in volume-
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preserving flows, but could not formulate them precisely because the theory 
of the Lebesgue integral did not yet exist. Twelve years later, G. D. Birkhoff 
would make the same observation in connection with ergodic theory (see 
below).

Harvard in 1928

To understand Caratheodory’s influence on Marshall Stone (and indi
rectly on ergodic theory), one needs to know something about mathematical 
activities at Harvard in the years preceding 1928. In 1923, G. D. Birkhoff 
had inaugurated a course (Math. 16) on “Space, Time, and Relativity” in
tended to explain to students familiar with second-year calculus Einstein’s 
revolutionary ideas. Its announcement read:

At the basis of the theory of relativity there lies a concept of 
space and time which is a radical modification of the concept usu
ally entertained. It is the primary aim of the course to present 
the “space-time” of relativity in a manner devoid of unnecessary 
mathematical complication, and to indicate a few simple physical 
applications. In accomplishing this purpose attention will be con
fined principally to the case of a single spatial and a single temporal 
dimension.

The text for the course was his Relativity and Modern Physics (Harvard 
Univ. Press, 1923, 1927).

By 1927, G. D. Birkhoff was also speculating about the new quantum 
mechanics, Schrodinger’s equations are not invariant under the Lorentz 
group; in his retiring presidential address to the American Mathematical 
Society, G. D. Birkhoff proposed a “perfect fluid” model for the hydrogen 
atom that is invariant.*

Von Neumann had also become interested in the Schrodinger equa
tion, which was the final topic (in §10) of a paper which he coauthored 
with Hilbert and L. Nordheim [6 , 104-33]. In a sequell [6 , 151-207], von 
Neumann explicitly reinterpreted Schrodinger’s unbounded linear differen
tial operators in the context of an axiomatically defined complex Hilbert 
space, with special attention to its spectral theory. These could not be 
treated by the earlier methods of Hilbert, Schmidt, and F. Riesz, which

*[1, pp. 737-63]
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were designed for the inverse bounded linear integral operators.

In 1925-26, he had supervised the doctoral theses of Marshall Stone 
and Bernard Koopman. Good friends, the two men had spent the year 
1924-25 in Paris as Sheldon Fellows, after graduating from Harvard College. 
Stone’s thesis, like that of G. D. Birkhoff in 1907, was concerned with 
expansions of solutions of linear ordinary differential equations in infinite 
series of eigenfunctions.* Koopman’s thesis was concerned with the three- 
body problem of celestial mechanics.

Caratheodory and Stone

Caratheodory was Visiting Lecturer at Harvard during the second half 
of the academic year 1927-28. G. D. Birkhoff was travelling around the 
world that term, analyzing oriental music and art as background for a 
primarily philosophical book on Aesthetic Measure (Harvard Univ. Press, 
1933). He was also preparing a lecture on that subject entitled “Quelques 
elements mathematiques de l’art” , to be delivered in Florence’s Palazzio 
Vecchio at the International Mathematical Congress that September.*

At Harvard, Caratheodory gave an advanced half-course (Math. 32) on 
‘The Theorem of Picard and its Generalizations” , which led through mod
ular and triangular functions and “theorems of Picard, Landau, Schottky, 
Julia” to hypergeometric functions and the computation of the constants, 
according to that year’s departmental pamphlet. He also gave Math. 16, 
which had been given by G. D. Birkhoff in 1925-26 and 1926-27.

In the previous fall, Stone had taught a standard basic graduate half- 
course (Math. 10b) founded by Byerly at least 30 years earlier, concerned 
with solutions by infinite series of linear boundary value problems arising 
in mathematical physics. This provided a preparation for the specialized 
course on the topic of his thesis (Math. 35), which he taught in the spring 
term. To all outward appearances, he was destined for a career in classical 
analysis; however, things worked out very differently!

*The history of this theory of “Sturm-Liouville series" to 1912 was reviewed by Bocher 

(International Congress of Mathematics., Cambridge Univ. Press, vol. 1, 1913, 163-95). 

^Atti del Congresso Int. dei Matematici, tomo I, 315-33.
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Two Unpublished Papers*

Caratheodory was an editor of the Mathemaiische Zeitschrift, founded 
by Julius Springer around 1920. When he left Harvard, he gave Stone 
proofsheets of articles about to appear in that journal. Among these was 
an article by von Neumann, deriving the main spectral theorem for sym
metric linear operators on Hilbert space. Stone quickly recognized from his 
thesis the relevance of the classical theory of self-adjoint unbounded linear 
differential operators, and soon was reformulating his methods in a Hilbert 
space context, publishing announcements in a series of notes to the Pro
ceedings of our National Academy of Sciences.* He also submitted a long 
paper to the Transactions of the American Mathematical Society, in which 
he presented a full and systematic treatment of his results.

Before Stone’s paper was typeset, von Neumann published a now fa
mous second derivation of the spectral theorem for unbounded self-adjoint 
operators in the Math. Annalen 102 (1929), 49-131 and 370-477, and with
drew the paper typeset by the Zeitschrift. Naturally irritated, Springer gave 
von Neumann the option of paying a large sum to cover the cost of type
setting, or of writing a book which would treat in a readable way the flood 
of new ideas that he had been publishing.* Von Neumann chose the second 
option.

When Stone read von Neumann’s new derivation, he withdrew his pa
per from the Transactions in turn. Fortunately, the editors of this journal 
(Dunham Jackson and J. D. Tamarkin) encouraged Stone to present his in
dependent methods and results in extended book form. This Stone did, in 
his celebrated Linear Transformations in Hilbert Space (A.M.S., 1932). In 
the same year, Springer published von Neumann’s Mathemaiische Grundla- 
gen der Quantenmechanik, and Banach’s Theorie des Operations Lineaires 
came out. The establishment of functional analysis as a major branch of 
mathematics may be said to date from that year [1].

*For Stone’s own description of the events involved, see his letter to me published in [1, 
p. 3091.

*Vol. 15 (1929), 198-200 and 423-25, and vol. 16, pp. 172-72.

* In a dozen papers before 1930: see # # 6 ,  8, 9, 10, 17, 18, 19, 23, 24, 25, 28 and 29, in 
addition to his withdrawn paper!



Caratheodory and Ergo die Theory

In the same exciting years, ergodic theory was also founded, essen
tially by von Neumann (already at Princeton), together with Harvard’s 
Stone, Koopman, and G. D. Birkhoff. As Caratheodory had observed in 
his 1919 paper on Poincare’s Wiederkehrsatz, one can apply Lebesgue mea
sure theory to the phase space ft of any autonomous Hamiltonian dynam
ical system. Koopman (who had gone to Columbia university) noted that 
the measure-preserving “flow” in phase space associated with passing time 
therefore induces a group of unitary transformations on the Hilbert space 
L 2 (Q )  given by the Riesz-Fischer theorem. In his third note to the National 
Academy Proceedings, Stone had provided a spectral resolution theorem for 
such unitary groups. Using Koopman’s observation and Stone’s theorem, 
von Neumann soon proved his Mean Ergodic Theorem.s

Koopman, Stone, and von Neumann were still under 30, and discussed 
their ideas freely among each other and with G. D. Birkhoff, himself not 
yet 50, who had taught two of them. Within weeks of hearing about von 
Neumann’s Mean Ergodic Theorem, G. D. Birkhoff invented a new method 
to prove a stronger Pointwise Ergodic Theorem, more closely related to 
the work that he and Caratheodory had done earlier. In a historical note 
written with Koopman [1, pp. 462-5], Caratheodory’s role is made clear.

My Undergraduate Thesis

I now come to Caratheodory’s influence on my own career, viewed 
retrospectively. This took place in 1931 and 1932, the years in which ergodic 
theory was born and functional analysis was established. It began with my 
undergraduate thesis; to understand the following personal digression, one 
should know something about the tutorial system used by the Harvard 
Mathematics Dept, from around 1928 to World War II.

In pursuance of the principle that “all real education is self-education” , 
in which Harvard’s President Lowell believed strongly, honors candidates 
were encouraged to take reading courses under faculty guidance. It was 
my privelege to have Marston Morse as my tutor, and he encouraged me 
to read Chapter V II of the third (1914) edition of de la Vallee-Poussin’s 
Cours d}Analyse Infiniiesimale. This chapter had been inserted (without

5See George Mackey’s article, Von Neumann and the early days of ergodic theory, Proc. 
Symp. Pure Maths. 50 (1990) 25-38. This does not mention Caratheodory’s role.
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exercises) as a “completely new foundation for the theory of the Lebesgue 
integral” , into what had before been a calculus text for French-speaking 
university students of mathematics.

I understood the principles involved, and then read Hausdorff’s beauti
ful Grundziige der Mengenlehre, from which I learned many things: axioms 
for “teilweise geordneten Mengen” (now called posets), rings and <r-rings of 
sets, transfinite numbers, Hausdorff spaces, and why (p. 469) there exists 
no measure in IR3 that is invariant under all rigid rotations. I also read 
Frechet’s famous 1906 thesis, which introduced me to functional analysis 
and gave me another perspective into general topology. Morse saw me for 
a half-hour every week or two, and checked up on my understanding of all 
this material.

In my senior year, I then read Caratheodory’s 1914 paper on linear 
measure [3, pp. 249-75], and admired its three axioms for outer measure. 
Its last section sketches very clearly the concept of p-dimensional outer 
measure /ij in g-dimensional space, developed by Hausdorff four years later. 
I read Hausdorff’s paper (Maik. Annalen 79, 157-79); p need not be an 
integer, and one can define the Hausdorff dimension d[S] of any Borel set 
S  С IR9 as that number d£q  such that

>rc\ _ J 00 if p<d' n\
) “  I  0 i f p > d .  ( )

My 80-page undergraduate thesis built on some of the ideas I had read 
about. I was unable to prove the following plausible (to me at that time) 
conjecture: if x (t) is a rectifiable curve in IRn, and S* denotes the Borel 
set of all points a such that x ( t )  =  a has к solutions, then

5 > ( S » )  =  / t f ( 0 l * .  (2 )

This seemed plausible, because every function of bounded variation is dif
ferentiable almost everywhere. O f course it is false: there exist noncon
stant functions of bounded variation whose derivative vanishes almost ev
erywhere.* It was good that I did not give a “proof’ of my conjecture!

*De la Vallee-Poussin’s book defined absolute continuity, but did not give a graphic 

examp/e of a function that is continuous without being absolutely continuous.
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Caratheodory and Lattice Theory

My mathematical immaturity in 1932 should be obvious from the pre
ceding discussion. My career plan was to become a mathematical physi
cist; I had taken a graduate course in quantum mechanics, and Cambridge 
University (which had no official Ph. D. program) accepted me as a re
search student, with R. H. Fowler as my advisor. But besides mathematical 
physics, topology, and measure theory, I also had a fourth interest: brows
ing in the Harvard departmental library, I had begun reading the book 
Finite Groups by Miller, Blichfeldt, and Dickson.

After learning about the two groups of orders 4 and 6 , and the five 
groups of order 8 , I became fascinated with the problem of determining all 
finite groups of given order n. Working by myself in Munich that summer, 
very naively, I did rediscover Kronecker’s fundamental theorem (of around 
1870?), which states that every finite commutative group is the product 
Ci x .. . x CP of cyclic groups of orders n,-, where each nt- is a divisor of 
n ,_i. But I was basically floundering as regards the area of research to 
pursue.

At that juncture, I fortunately asked Caratheodory to give me an in
terview. He graciously invited me to come to his home for tea, where I 
met his son and daughter. After tea, he showed me his library, a room 
perhaps 25' x 15' in size, containing many multishelved steel stacks lined 
with books. I had never seen a personal library like that before!

Dazzled, I shyly told him of my interest in finite groups. He advised 
me that, to become well-informed on that subject, I should read Speiser’s 
Gruppentheorie. He added that, to “learn about algebra in general” , I 
should read van der Waerden’s Modeme Algebra, which was “creating quite 
a stir in Germany.”

I bought both books, and studied them like bibles during the following 
year at Cambridge University. I abandoned mathematical physics, which 
I had previously intended to make my major field. While greatly enjoying 
Hardy’s brilliant lectures (he taught number theory without mentioning ide
als!), I conversed more seriously about unsolved problems in group theory 
with Philip Hall.

Gradually, I concentrated on the structure of finite groups, and by 
spring I had rediscovered the basic axioms characterizing lattices, modular 
lattices, and distributive lattices, whose importance was first recognized by 
Dedekind around 1900. My first paper on lattices was published in the
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Proceedings of the Cambridge Philosophical Society that October, which 
also published two years later a second paper concerned with the definition 
and basic properties of “algebras” in general. These papers proved to be 
very timely; lattice theory had a major renaissance in the 1930s.* Both 
owed much to the good advice given to me by Caratheodory in Munich in 
1932.

Two Representation Theorems

Many of the definitions and theorems of my 1933 paper on “lattices” 
had already been stated around 1900 in two papers by Dedekind, in connec
tion with algebraic number theory. What are now called distributive lattices 
were called “Dualgruppen von Idealtypus” by Dedekind. Hausdorff’s 1914 
book had defined rings and fields of sets in its §7, and it is obvious that 
every ring of sets is a distributive lattice.* Theorem 25.2 of my 1933 pa
per was (in different language) the converse representation theorem: every 
distributive lattice is isomorphic with a ring of sets. The proof was by 
transfinite induction, for which I referred to van der Waerden’s book.

Shortly after I returned to Harvard that fall, Marshall Stone gave a 
colloquium lecture in which he proved (among other things) a closely related 
representation theorem: that every Boolean algebra is isomorphic with a 
field of sets.* We had a friendly chat after his lecture, and agreed not to 
make priority an issue!

In the next few years, I would prove a sharper theorem relating finite 
distributive lattices to T0-spaces (it was already well-known that every finite 
Boolean algebra is isomorphic with the field of all subsets of some finite 
set.), while Stone would prove much deeper representation theorems about 
infinite Boolean algebras, in two long and famous papers.

*See the book Die Entaithung der Vtrbandsihtorit by H. Mehrtens for a scholarly ac
count of this renaissance; pp. 1-11 of my article in Trends in Lattice Theory (J. C. 
Abbott, ed.), van Nostrand, 1970, gives a more personal account.

*The word “ring” seems to have been first used in its usual modem sets by A . FYaenkel 
around 1908; HausdorfT’s meaning is of course different. I called distributive lattices 

“С-lattices” in my 1933 paper.

* Stone had announced his result in Abstract 39-5-86 of the Bull. A.M.S. See also Proc. 
Nat. Acad. Sci. 20 (1934) 197-202.
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Stone and Caratheodory, II

In the first of these papers, Stone explains that his interest in the 
subject “arose in connection with the spectral theory of symmetric trans
formations in Hilbert space” , the theory in which he had become involved 
seven years earlier by the proofsheets of von Neumann’s unpublished paper 
given to him by Caratheodory. His second paper proved the now famous 
Stone-Cech compactification theorem, which asserts that every completely 
regular Hausdorff space X  can be extended to a compact Hausdorff space 
/3(X), which contains X  as a dense subset.

The compactification P ( X )  is a maximal compactification; in a casual 
conversation with me, Stone once emphasized how many others there are. 
For example, the open unit disk A  can be compactified to the Riemann 
sphere by adding a point at infinity, or to the projective plane by adding 
a projective “line at infinity” , as well as by /?(А). I have often wondered 
whether, in this case, the imaginary “points” added to form /?(A ) are not 
the same as the “prime ends” used by Caratheodory in his well-known work 
on conformal representation, and whether he may not have mentioned them 
in lectures attended by Stone in 1928.

Algebraic Measure Theory

In two papers published in 1938 and reprinted in [3, pp. 302-51], 
Caratheodory began to develop new algebraic foundations for the theories of 
measure and integration. Because sets ( “Mengen” ) are treated as elements 
in Boolean algebra, he referred to these elements as Soma (Greek for the 
German word “Korper” ), referring to what are usually called “fields of sets” 
in English as “Korper von Soma” . These papers were clearly stimulated 
by the 1935 papers of Stone and Ore.* Since Ore’s work was stimulated by 
my 1933 paper on lattices (which he called “structures” ), Caratheodory’s 
pap'ers constitute in some sense further interaction with Harvard.

A  1942 paper [3, pp. 443-73] actually dealt with Boolean lattices, em
phasizing their definition in terms of the disjointness relation а Л 6 =  0. 
This defines a mapping a  —► ax  (or A ± ) } the set of all 6 disjoint from a, 
and one can define a <b  to mean that A 1- D B 1- . This has many interesting 
interpretations and applications, to an earlier theorem of Crlivenko and

*Cf. Stone, Am. J. Math. 37 (1935) 703-28; O. Ore, Annals of Math. 36 (1935) 406-37.
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later developments in the theory of orthomodular lattices.
In his last years, Caratheodory gave these and later papers a “system

atic and unified exposition” . Carefully edited by P. Finsler, A. Rosenthal, 
and R. Steuerwald, this exposition is available in both German and English 
editions [4].

There will never be a last word on measure theory. For example, the 
fractional-dimensional measure (2) initiated by Caratheodory and Haus
dorff is one of the two main ideas underlying the theory of fractals de
veloped by Benoit Mandelbrot [5 ], the other being that of a semigroup of 
self-similar transformations. The importance of fractals for interpreting 
many natural and mathematical phenomena is now fully recognized; since 
Mandelbrot was a Visiting Lecturer at Harvard for some years before go
ing permanently to Yale, this represents still another connection, between 
Caratheodory and Harvard.

My own changing attitudes toward the algebraization of measure the
ory are expressed in three editions of my book Lattice Theory, all of which 
pay tribute to Caratheodory. The 1940 edition (p. 99) begins by stating 
that measure theory “has been perfected by Caratheodory” . The 1948 
edition states on p. 181 that its “formulation is due to the genius of C. 
Caratheodory” . This deeper account of Borel algebras in the 1967 edition 
(pp. 254-66) attributes to Caratheodory’s 1914 paper the fundamental con
cepts of outer and regular measures (p. 363). However, all of these editions 
were written without studying Caratheodory’s highly original theory of 
soma. Some historically minded expert on measure theory should surely 
correlate this theory with other treatments!
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CARATHEODORY EXTENSION PROCESS 

AND APPLICATIONS TO WEIERSTRASS-TYPE INTEGRALS

Primo Brandi Anna Salvadori

We present the Caratheodory-type process which allows to extend 

the Burkill-Cesari integral to a Borel measure. Moreover we present 

some applications to the Weierstrass functionals of the calculus of vji 

riations.

1. Introduction

As it is well-known, the Weiertsrass functionals of the calculus 

of variations are defined by means of a Burkill-Cesari integration pro 

cess over an appropriate set function (see e.g. [5b] for a survey).

This approach presents the remarkable advantage of a direct and con

structive definition, as a limit process over a finite summation, and 

it preserves a precise geometrical meaning connected to the underlying 

variety. On the other hand, some topics - as semi continuity - appear 

harder to solve in this framework than in other ones, as Lebesgue-Sti- 

eltjes or Serrin contexts. Thus a great interest holds a connection 

among these different approaches.

In particular we refer here to the comparison between Weierstrass 

and Lebesgue-Stieltjes functionals of the calculus of variations. As 

we will show, the key result on this direction is the possibility of 

supporting Burkill-Cesari integrable set functions with a suited measu

76
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re. This idea, which Cesari primarily developed in [4bc], makes an es 

sential use of the classical Caratheodory extension process[3]. The con 

sequent applications to Weierstrass-type integrals allows to get impo^ 

tant results. In particular, the Weiertrass functionals admit a repre 

sentation in terms of a suitable Lebesgue-Stieltjes integral, both in 

the parametric and non-parametric setting. Furthermore, in the non- 

parametric setting, the Weierstrass integral is greater than the cor

responding Lebesgue one,in general,and the two functionals coincide if 

and only if the underlying variety is absolutely continuous. In other 

words, the classical Tone!Ii-type theorem (given for the length of a 

curve primarily) is still valid for the general Weierstrass functional. 

Anyway these are only some of the "capacities" developed in force of 

the associated measure.

In this note we first illustrate the Caratheodory process adopt

ed for the Burkil1-Cesari integral, in the general case of a set fun

ction with values on a Banach space; then we present the more recent 

and advanced applications to Weierstrass-type functionals.

2. Extension of Burkil1-Cesari Integral to a Measure

Let A be a metric space, we denote by and 39 the family

of all the subsets of A, that of the open sets and the Borel o-alge- 

bra, respectively. Let { \ } c j ( b e  a fixed sub-family of compact sets, 

that we shall call "intervals". For finite system D we meant а fini_ 

te collection of non-overlaping intervals, i.e. D=(I^,...,IN ) with 

1° t 0 and I°nl. * 0 , ij*j, i,j=l,...,N. Let be a given net

of finite systems such that infT max { diam(I), IeD^} = 0 .

Let s {0,1} be the function defined by s(H,K) = 1 when HcK,

s(H,K) = 0 otherwise. Let ф: {1} + E be a given interval function, 

with E real Banach space.
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The function ф is said to be integrable in the sense of Burkill- 

Cesari (BC-integrable) over M ( [ 4 b ] )  if the limit below exists

lim I s(I,M) ф(1) = / Ф .

T IeDt M

In order to provide existence and hereditarity for this algorithm, Ce 

sari introduced the following definition ([4b]).

The function ф is quasi-additive (q.a.) if:

(q.a.) given e>0 there exists such that, for every tQ» t 1 there ex

ists t9 with the property that for every t»t«, put D = [I] and
L С

Dt =[J ], we have

i) Z I I  s(0,IH(J) - Ф(1) | < e 

I 0

ii) I  fl - E s(I,J) |ф(J )П< e.
0 L I J

Moreover the function ф is said to be (o)-quasi-additive ((o)-q.a.) 

if (q.a.) holds with s(J,I) substituted by s(J,I°). Of course ((o)-q.a.) 

is stronger than (q.a.).

The function ф is said to be of bounded variation (BV) if:

lim I |ф(I) |<-н».

T I € Dt

The following proposition is a key result on the theory of BC-iii 

tegral (see Cesari [4bc],Breckenridge[2],Brandi-Salvadori[lab]).

Theorem 2.1. If  ф is q.a. and BV> the interval functions ф,|ф|* 

<г,ф>*,<2,ф> , z e E ' j  are BC-integrable on every set МеЛ'.

Thus, under the assumptions of Theorem 2.1, we can consider the fun 

ctions |v| y v* , vz R^ > zgE', defined by

|v|(M) = inf / |ф| , v*(M) = inf / <2,ф>+ v“(M) = inf‘ / <г,ф>"

G 6 Z G
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where the infimum is taken with respect to all the sets Ge<? with GdM. 

Furthermore, let + R , zeE', and v\ Jt -+ E" be respectively de

fined by

v2 (M) = v*(M) - vz(M) and <v(M),z> = v^(M) , zeE'.

Then it can be shown that |v|, v* and , zeE', are Caratheodory outer 

measures, and in force of Caratheodory extension process, the following 

result can be proved (see Cesari [4bc],Breckenridgef2], Brandi-Salvado 

ri[lb]).

Theorem 2.2. Suppose that ф is (o)-q.a. and BV3 then the functi_ 

ons |v| and  v are measures over39. Moreover |v| coincides with the 

total variation of  v.

Note that, for every G g ^, we have v(G) = /Ф and |v|(G) =/ |ф|-

G G

in other words, the measures v and |v| extend (from S? to & ) the BC-i£

tegral of ф and |ф| respectively.

2.1. Properties of the extension measure. In order to point out some

useful properties of the measures just defined, let us strengthen our

setting by assuming that a subnet (D^ exists such that:

n

- for every neN and IGD we have that I = [ J J where JeD ;

n Ocl n+1

- the intervals {1}*={1е0^ , neN} are connected;

n

- lim max{diam(I), IeD̂ . }= 0 . 
n -*• oo n

Theorem 2.3. Suppose that ф is (o)-q.a. and BVj then the measu

res v and  |v| satisfy the conditions

i) lim |v|(G - (JI° ) s 0 » 
n -*• 00

n
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гг) for every l€{I}* we have f ф= v(I°) = v(I) s / ф.

Г I

Now let X:{I} R+ be an interval function (o)-q.a. and BV and 

denote by у the measure which extends its BC-integral. We say that 

Ф is AC* with respect to X if ф is absolutely continuous with respect 

to X on {I}* In [le] the following result is proved.

Theorem 2.4. Suppose that ф and  X are (o)-q.a. and BV. Then ф 

is AC* with respect to X iff the measure v is AC with respect to y.

Let us consider now the sequence of step functions

ri : A E defined by 

n /v(II  , 861°, w(I) t  o, IeD

V ) - “ ( I )
\ 0 , otherwise 

About its convergence, the following result holds (see [lec]).

Theorem 2.5. Suppose that E is a refleocive Banach space. A

function ~  : A ■+ E exists such that n “*■ 4^  U-a.e. on A.
J 6y n 6y

Moreoverj if ф is AC* with respect to X and the (3-algebra generated by

{ I }* coincides with & t we have that ~  » where ~  denotes
6y dy dy

the Radon-Nikodym derivative.

We wish to point out that the above convergence result is proved 

by a suitable connection between ВС-integration process the theory of 

martingales.

Remark 2.6. Let us consider now a remarkable particular case of 

our setting. Let A =ĵ a0 ,b0jxj^c0 ,d0j be a closed rectangle and let 

{1} be a dense family of closed subrectangles. Consider the class of 

all the finite partitions D of A into rectangles of {1} , directed 

by the mesh function 6(D) = max{diam(I), IeD). Finally let ф:{I} -►R 

be an (o)-q.a. and BV rectangle function and let X(I) = meas(I), Ie{I>.



If the derivative 0ф of the rectangle function ф exists a.e., then

6v = D<t> a.e. .

6y

In this context the following representation holds (see fie]).

2.2. The generalized area of a BV surface and its extension measure.

R be a BV surface. As it is well-known 

>n in ja0 ,b0 J and ( y ^  injc^doj' respectively

Let z: /?0= [a0 ,b0Jx^c0 ,d( 

([Id]), two sequences (x

exist such that

f ̂ ° г
c{ | z ( V 0 »y)-z(V° »y )ldy * 0 and I  U(x,yn-0)-zn(x,yn+0 )|dx t 0

where z(xn±0 ,y), z(x,yn+0 ) denote the essential limits.

Let S ={(x,y)e/?0: x=x^ or У=УП» neN} , let Ш  be the family of all

the subrectangles of R0 and let be that of the subrectangles

whose sides intersect S in a set of null linear measure. L e t ^  be

the collection of all the finite systems D =[/?] of rectangles

such that (JR -./?€{/?}-. Finally let 5 : ^  -► R+ be the mesh function 

f?eD

defined by 6 (D) = max {meas(R0-R) , diam(tf), Re0}.

Let us consider the rectangle function Ф:{Я}-*Н defined by

Ф(Я) = [(Ф1(»))2+ (Ф2(Д))2+ (теаз (д ) )2]^ , 

wi th d b 

Ф.(Я) V (z,[a,b]) dy , Ф (Я) =/ V (z,[c,d]) dx , Я = [ a,b]x[c,d] 

c y a

where V and V denote the generalized variation, 
у x

In [id] we have proved that Ф is q.a. and BV with respect to@^j& 

and /Ф coincides with the generalized area a of the surface Z ([4 a]). 

Moreover Ф is (o)-q.a. with respect to a dense subfamily of thus 

its ВС-integral can be extended to a measure v : #  -*■ R

Among the others, in [id] we have pointed out the following property
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es of the measure v , which can be deduced by the general results 

illustrated in section 2.1

i) \>({x,y}) = 0 for every (x,y)€/?0 ;

ii) \>(ЭЯо) = 0 ;

H i )  v ( { x } x [ c , d ] )  = c/d tz (x -0 ,y ) -z (x +0 ,y )|dy  and 

v ( [ a , b ] x { y } )  = |b | z (x ,y -0 ) - z ( x ,y + 0) | dx ;

iv) v{R°) = a(z,i?) for every and  v(tf) = a ( z ,R) if

v) v(B) = va (B) + vs (B) =/ ( [ 2х ( х ' У ) ] 2 + [ Zy ( x , y ) ] Z + 1J Jdx(*y + vs (B) 

is the Lebesgue decomposition.

3. Applications to Weierstrass-type Functionals of the Calculus 

of Variations

The results summarized in section 2 have got interesting applic^ 

tions on the Weierstrass approach to problems of Calculus of Variati

ons, as we shall show in what follows.

3.1. The parametric case. Let (K,d) be a metric space, E be a unj[ 

formly convex Banach space and В be a Banach space. Consider the fun 

ctions p :{I} К, ф:{I} E and F: KxE -*• B.

Let us denote by Ф:{I> -► В the interval function

Ф(1) = F^p( l ) ,Ф(1)| ;

according to Cesari ([4b]), the BC-integral of the function Ф (when it

exists) is called the parametric Meiers trass-integral of the Calculus

of Variations and denoted by ./Т(р,ф) .

A

Let us start by recalling the more advanced result on the existe 

nee of this integral (see [1h]). On this purpose, we state first the 

key assumption.
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The couple (р,ф) is said Г-quasi additive (Г-q.a.) ([1 h]) if

(Г-q.a.) given e>0 there exist 0<o<e and t^ such that, for every

tQ» t 1 there exists 12 with the property that for every t»t ^  

we have

i) E | E Ф(0) - Ф(1)| < £
I Jerj

ii) E | E s(J,I)*(J)| < e

I J «rj

iii) E[l - E s(J,I) k(0)|j< e

where we put D «[I] , D = [J] and rT denotes a subfamily
0

(even empty) of the set {Jcl : d(p(J),p(I))<o }.

Note that : if the couple (р,ф) is T-q.a. then ф is q.a..

On the integrand F we assume the following classical condition

(F) F is bounded and uniformly continuous on KxS^, where S^={x g E:|x|=1}, 

and F(k,«) is positively homogeneous of degree one over E, keK.

Theorem 3.1. (Existence) Suppose that

- the integrand F satisfies assumption (F);

-  the couple (р,ф) is T-q.a. and ф is BV;

then the internal function Ф is q.a. and BV. Thus f Р(р,ф) exists,
M

for every WeJf*

Now, in force of the above mentioned Caratheodory extension pro

cess, we can represent the Weierstrass functional in terms of a suita

ble Lebesgue-Stieltjes integral. On this purpose, let v: 3  -+ E denote 

the vector measure associated to the interval function ф , as in secti

on 2. Moreover assume that our setting satisfies the assumptions of 

section 2 .1 .
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neN

Let us consider the sequences of step functions (Pn)neN and (n n)ne^ *

with p : A -*■ К and n : A E defined by 
n n

(p(I) , ael°f leD / v(I) , a<El°, IeD

n , nn( a ) = ( R i ) T  П ,

к , otherwise \0 , otherwise

where Лк is fixed and v(I)/|v(I)|= 0 if v(I) = 0,

In force of Theorem 2.5 we have that n + dv/d|v| v-a.e. .
n

Moreover we shall suppose that the following condition is satisfied

(c) there exists a v-measurable function U : A -*■ К such that 

p^ -*• H v-almost everywhere.

Thus we have that I

A = U  b  l6° t
l€Dt

n

F(P(I).V(U )  " f  F (P„>n „) d lv l » where J  a  " n

Moreover it can be proved that /F(p,<}>) = lim f  F(p ,n ).

A n*°° ■'А П П
n

As a consequence,the following representation result can be dedij 

ced (see [lhbc] for the details).

Theorem 3.2. (Representation) Assume that all the assumptions of 

Theorem 3.1 are satisfied and moreover suppose that

-  К is compact;

- the function ф is (o)-q.a. and the sequence (Pn) n satisfies (c ) ;

then for every G e &  we have

/Р(Р.Ф) = f dv \ d|v| 
r, J a '  H 1 \j I /

3.2. The non-parametric case. Let (C,d) be a compact metric space

and consider the functions q: {I} -► С, ф: {I} -► Rn , X: {I } ->• R+ and

_ _ _n _m 
f: C*R R .
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Let us denote by ^ { I }  -»• Rm the interval function 

441) = X(I) ffq(I),»(I)\ ;

1 A ( I ) '

according to Vinti ([5a]), the ВС-integral of the function Y (when it

exists) is called the non-parametric Weierstrass-integral of the Calcu

lus of Variations and denoted by /f(q,— ).

A X

As it is well-known ([5a] ), the non-parametric Weierstrass fun

ctional can be handled as a parametric one, by associating to f a suita 

ble parametric integrand F ; i.e. F: CxRn+^  Rm defined by

/ 111f(upTit) , i f  t Ф 0 
F(u;t,v) = 111

\  lim F(u ;t ,v ) , if t = 0 

т- 0

Moreover note that, if the function f satisfies the assumption

(f) f(u,*) is convex, for every ueC;

the function f(u,v)/l+|v| is bounded and uniformly continuous;

then the associated integrand F satisfies condition (F).

Thus, as an application of Theorems 3.1 and 3.2 the following re 

suits can be proved (see [lie] for the details).

Theorem 3.3. (Existence) Suppose that

- the integrand f satisfies assumption (f);

-  the couple ( q ; (Л,ф)) is T-q.a. and (А,ф) is BV;

then the interval function ¥ is q.a. and BV. Thus A f ( q , Y )  exists,
M A

for every MeJf.

Now assume that our setting satisfies the conditions of section 

2.1. Under the assumption that (А,ф) is (o)-q.a. and BV, let у and м 

denote the measures which extend the ВС-integral of X and ф respecti

vely.
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Theorem 3.4. (Representation) Assume that all the assumptions of 

Theorem 3 . 3  are satisfied and moreover suppose that

- (Х,ф) is (o)-q.a. and condition (c) holds (i.e. q -► £ ,  (v,v)-a.e.) ;  

then for every G e &  we have

т ч . { )  - j n v .  d u f e i ’ d n f e " )

Furthermore, in non-parametric setting, we can prove more; indeed 

the following result holds,which allows to compare the Weierstrass fun

ctional with the corresponding Lebesgue one, according to the classical 

theorem that Tonelli gave for the length of a curve (see [1i]) -

Theorem 3.5. (Comparison) Under the assumptions of Theorem д.4л 

assume that f is non-negativeл then for every G e f  we have

Moreover suppose that

f(u,v) > - 1 + M|v|, (u,v)€ CxRn ;

then the equality sign holds in ( * )  iff  ф is AC* with respect to X. And

. . 6v dv
гп thzs case —  -  ~T~ •6y dy

In order to illustrate the results of sections 3.1 and 3.2, we 

take into consideration the following particular cases (see [lhilmno] 

for the details).

3.3. The Weierstrass-integrals over a BV curve. Let x:[a,b]-+ Rn be a 

BV curve and denote by Z ={ce]a,b[: x(c) = x(c+0) = x(c-O)}, then 

[a,b]- z is a null set. Let { 1} be the family of all the closed inte£ 

vals in [a,b] whose end-points belong to Zand let $  be the collecti

on of the finite subdivisions of the type D =^,... , 1 ^ 1  with
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I . =|cx»B.j+iJe{I), i=l,...,N. We consider the mesh function 6 : 3 +  R* 

defined by 6(D) = max ((o^-a)»(b-aN+1), meas(I) , IeD). Let p0:(Ib R, 

Px :{I} ■* Rn » A:{I} R+ and Дх:Ш Rn be the interval functions defi^ 

ned by

p0 (I)e I , arbitrarily choosen;

px=(pi »• •• »Pn) and Pi(I)=Yi infess(x<. ,1) + (1-y.) supess(xi,I) , where 

0<у̂ <1 are given constants, i=l,...,n;

A(I) = meas (I);

Дх(1) = x(6) - x(a) , if I =[a,Bj.

Finally, let F:KxRn -► Rm and f:C*Rn R be given with Юх([а,Ь]) and 

С э graph x.

In the present particular case, the Weierstrass integrals 

Ax
/F(p ,Ax) and /f(p0,p ;-r) (when they exist) are called the parame- 

[a,bf (a, b] x

trie and non-parametric Weierstrass functionals over the curve x, res

pectively and shortly denoted by W^(x) and W^(x).

It can be proved that Дх is (o)-q.a. and BV with respect t o ^ , 6; 

thus let denote the associated measure (i.e. the Stieltjes measure 

associated to x). Moreover condition (c) is satisfied by the functj_ 

on Ux :[a,b]+ Rn defined by

fl.(t) = y. min(x.(t+0 ),x.(t-0 )) + (1- Y ^  max(x.(t+0 ),xi(t-0 )), l<i<n.

Hence, in force of Theorems 3.1-3.5 the following results hold.

Theorem 3.6. Suppose that К is compact and the integrand F sati_ 

sfies condition (F); then W_(x) exists and the representation holds

Tb
WF(x) =J F(fx, dvx/d|vx 1)d[vx |; 

a

in particular> if  x is AC » then

r b
WF(x) =J F(x(t),x'(t)) dt .
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Theorem 3.7. Suppose that С is compact and the integrand  f sati_ 

sfies all the assumptions of Theorem 3 . 5 ;  then Ŵ [x)exists and the re

lation holds

rb
Wf(x) > f(t,x(t),x'(t)) dt 

a

and the equality sign holds iff  x is AC,

3.4. The multiple Weierstrass-integral over a BV surface. Let z:/?0 -»R

be a BV surface and l e t ^  and 6 be defined as in section 2.2. Let us

2
consider the rectangle function Ф=(Ф,,<Ы :Ш  -*■ R defined by

Л  _ r b
ф1^  =J [2 (b‘0 »y)-z(a+0 ,y)]dy , Ф2(/?) =J ^z(x,d-0 )-z(x,c+0 )jdx , 

с a

2 +
where Я=(а,Ь]х[с,d] . Moreover let q:0?} ■+ R and X :{/?} + R be defined 

by q(fi)e/? arbitrarily choosen, X(R) = meas(/?).

In the present particular case, the Weierstrass integral 

DAf(q>7*) (when it exists) is called the multiple Weierstrass functio-
До ^
nal over the surface z3 and shortly denoted by W(z).

It can be proved that ф is (o)-q.a. and BV with respect to ̂ , 6 ; 

thus let v=(v^,v^) denote the measure which extends the BC-integral of ф.

As an application of Theorems 3.3 and 3.5 the following result 

can be proved.

Theorem 3.8. Suppose that С is compact and the integrand f sati

sfies all the assumptions of Theorem 3 . 5 ;  then W(z) exists and the re

lation holds

W(z)>r f(x,y,z (x,y),z (x,y)) dxdy 

-7?o y

where the equality sign holds iff zeW^*\
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A PR O PER TY  OF GENERALIZED CO NVEX  FUNCTIO NS

Dobieshw Brydak

We consider a linear two-parameter family F  of functions defined and twice 
differentiable on an interval I. Assuming the hypotheses (i)—(v) below we prove 
that a twice differentiable function xp: /—►]R is either strictly convex or strictly 
concave with respect to F  iff for every two points r i , r 2€ 1,х\<х2, there exists 
a unique c€ (xi, x2) such that =y>'(c), where tpeF is the unique function
satisfying the equalities: tp(x 1 ) =t^(xi), <p[x2)—v {* 2 ) (this theorem character
izes the strictly convex or strictly concave functions in the usual sense, where 
F  is the family of all straight lines).

The generalized convex functions with respect to a two-parameter fam
ily of functions were defined by E. F. Beckenbach [1 ]. In this paper we prove 
that the generalized convex functions with respect to a linear family of func
tions have a property similar to a property of convex functions. We shall 
apply the obtained result to linear differential inequalities of second order.

Let F  be a linear two-parameter family of real finite functions defined in 
an interval I  having their graphs in a region D  and satisfying the following 
hypotheses

(i) each <p G F  is a twice differentiable function;

(ii) for every two points (a?i,3/1), (a?2, 2/2) £ D tx\ ф x 2, there is a 
unique member of F  such that (p(x 1) =  y\ and ¥>(2:2) =  У2 ;

(iii) for every point (z 0 ,yo) £ D  and every real number yj, there is 
a unique member 9? of the family F  such that <p(x0) =  yo and 

v ^ o )  =  yj;

(iv ) there exist two linearly independent functions u}v G F  such that

91
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и'(ж) ф 0 in I  and the wronskian

(v ) the function A (z) := £7̂  for x £ I  is an increasing function.

Rem ark. Because of (iv), we have in fact

F  =  {y>: I  —* IR : =  au +  bv, (a, 6) £ IR} .

Following E. F. Beckenbach [1] we define the strictly convex (resp. 
concave) functions as follows:

Defin ition. The function ф will be called a strictly convex (resp.

and (ii) are fulfilled and for every £1, 1 2 , я £ I ,  with x\ <  x <  2 2 , we have
1ф(х) <  <p(x) (resp. ф(х) >  y>(z)), where

The following lemma will be useful in the sequel

Lem m a. Let hypotheses (i)- (iii) be fulfilled. A  function ф £ C l ( I )  is 
a strictly convex (resp. concave) function with respect to the family F  iff 
for every zo € I  we have ф (х) >  (p(x) (resp. ф(х) <  <p{x)) for x £  /\ { x 0), 
where <p satisfies

This lemma has been proved in [3].
Now we are going to generalize the well known theorem saying that 

a differentiable function is either strictly convex or strictly concave iff the 
Lagrange’s mean value theorem is fulfilled by this function at a unique 
point. Namely we are going to prove the following

concave) function with respect to the family F , provided hypotheses (i)

¥>(*1) =  ^>(*1) and <p(x2) =  ф (х2) • (1)

v ( * o )  =  l K * o ) , y>'(*o) =  ^ 4 * 0) }<p £  F . (2)

Theorem  1 . Let hypotheses (i)- (v ) be fulfilled. A  twice differentiable 
function ф is either strictly convex or strictly concave with respect to the



family F  if and only if for every two points z i, z 2 € I ,  x\ <  z 2, there eixsts 
a unique point x 0 G I  such that z x <  x 0 <  z 2 and

ip '(x0)  =  <p'(xo), (3)

where <p is the unique member of F  satisfying ( 1).

P roo f. Let ф be a twice differentiable function strictly convex with 
respect to F .  I f  ф is strictly concave, the proof is similar. Let, further, 
(p £ F  satisfy condition ( 1), where x i  <  z 2 are arbitrarily fixed points of I .  
Thus, by virtue of the Lemma, (p satisfies (2) neither for z 0 =  Zi nor for 
*0  =  S2> whence ф '(х i )  ф <p\xi )  and ф '(х2) ф <p'(x2 ). It follows from the 
convexity of ф that

V>'(*i) <  <p'(xi) and ф '(х2) >  <p'(x2) . (4)

Hence, in view of the Darboux property for derivatives, there exists a point 
z 0 € ( z b z 2) such that equality (3) holds. We are going to prove that such 
a point is unique.

It is obvious that ф is strictly convex iff ф — ф is strictly convex. 
Therefore we may confine ourselves to the case where ^ ( * 1) =  Ф (х2) =  
О, ф '(хо ) =  0 and (p(x) =  0 for x e  I .  It also follows from hypothesis (iii) 
that for every x G / there exists a unique cp G F  such that <p(x) =  ф(х) 
and (p\x) =  ф '(х ) and there are functions cr(x) and f3(x) such that

ф(х) =  a (x )u (x )  +  p (x ) v ( x ), ф '(х ) =  <*(x)u'(x) +  (S (x )v\x ) .  (5)

Hence

0 / T\ « ( * № '( * )  -  « ' ( * № (* )  n( T\ -  V( XW ( X)  -  А ХЖ * )
P( ) ~ w(7) ’ ( >~ w(x) ’ K >
Let us observe that our family F  consists of the solutions of the differ

ential equation

L [y ](x ) :=  W (x )y " (x )  -  W '{x )y '{x )  +  V (* )y (* ) =  0, (7)

where V  is the wronskian of the system of functions v! and v'. It follows 
from (5), ( 6 ) and (7 ) that a and (3 axe differentiable and
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Denote by A  the wronskian of the functions a and /?. One can calculate 

from (5 )-(8 ) that
A W  =  i l> L [r l> ] ,x e I .  (9)

Since W ( z )  is continuous, we may assume, in views of (iv ), that W ( x )  >  0 
in I. It has been proved in [3] that ф is strictly convex with respect to F  

if and only if it satisfies the differential inequality

Ц Ф ]{Х)  >  0 ,x € I .  ( 10 )

It follows from the definition of generalized convexity that ф{х)  <
0,ж E I, therefore we obtain from (9) and (10) that A ( x )  <  0yx E I .  Let 
us put

ff(*) e t * 1-** ]- ( 11 )

Since A is differentiable in J, in view of (i) and (v ), we have

// \ _  ~ а ' { х Щ х )  +  <*(*)/?'(*) V ( ,

9 { X ) ~ ------------И ---------------A ( I )

-  4 W  _  A(S4 
- Щ Х)p  Aw

(12)

x e i .
Hence g ' (x )  <  0 for x E [ i 1} 12 ], by virtue of negativity of A  and hypothesis
(v). Therefore the function g is strictly decreasing in [® i ,*2], whence there 
may exist at most one point zo E [®i>®2] such that ^ (z0) =  0, i.e., such 
that ф'(хо) =  0. And such a point actually exists what has already been 
proved.

Now let ф be a twice differentiable function on I  and let for every two 
points x i ,®2 E IyXi  <  X2 , there exists exactly one point xo E [хъжг] such 
that inequality (3) holds, for у? E F  satisfying (1). Further let us assume 
that ф is neither strictly convex nor strictly concave with respect to F.  

Thus there exist xx, x 2 e  I , x i  <  x 2 and t1} t2 E ( s i ,X2)>*i <  t2) such that

V>(*i) <  V?(ti), V>(t2) >  <p(t2)  , (13)

where, (p E F  satisfies (1). It follows from the continuity of ф and <p that 
there is a to E ($1,^2) such that ф{1о) =  ^(^o)- Denote

t3 : =  inf {t : ti <  t <  t0 , V>(<) =  ^ (0 )  » 

U  : =  sup {t : xi <  t <  t i , ф(г) =  y?(t)} .
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It follows from (1) and (13) that t\ <  t$ <  t0 and x\ <  *4 <  t\} whence 
U  <  H  <  to- Since (р,ф e  C l ( I ) ,  we have ф'(г3) >  <  <P'{U),
thus there exists an x3 E (x b *0) such that ф'{х3) =  <р'(хз), by virtue of the 
Darboux property for ф' and <p'. Similarly we can prove that there exists 
an x4 E ( t 0 ) x 2)  such that ф '(х4) =  y>'(z4). Since x3 ф z4, it contradicts 
the assumption that there exists a unique point such that (3) holds. This 
contradiction ends that proof of the theorem.

Let us consider a second order homogeneous equation

L[y ] :=  y" +  p (x)i/  +  q (x )y  =  0 , 1 6 /  (14) 

and the inequalities

Ь [ ф ] > 0 }х е 1  (15)

Ь[ф\ <  0  ,x  € I , (16)

where ф is a twice differentiable function on I .  E. F. Bonsall [2] proved that 
ф is a solution of (15) (resp. (16)) iff it is strictly convex (resp. concave 
function) with respect to the family F  of all solutions of (14). As a simple 
application of Theorem 1 and that of Bonsall we have the following

Theorem  2 . Let p and q >  0 be continuous functions on I  and let F  
be the family of all solutions of (14). Moreover, let hypotheses (i)- (iv ) be 
fulfilled.

A  function ф, twice differentiable in /, is a solution of either (15) or 
(16) if and only if for every x i ,  x 2 E /, x i  <  x2, there exists a unique point 
*o E (®i, x2) such that (3) is fulfilled, where y? is a solution of (14) satisfying 

(1).

Proo f. Let ф be a twice differentiable function on I .  We are going to 
prove that hypothesis (v ) is also fulfilled. Indeed, it is easy to calculate the 
derivative of the function Л:

y(l)=,(l)^ fotieL 
Therefore Л is an increasing function in I  and Theorem 2 is a simple con
sequence of Theorem 1.
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Let us observe that if a function ф is a solution of either

L[4>] +  r (x ) >  0 for х <E I  (17)

or
Ь[ф] +  r (x ) < 0  for x £ I , (18)

where г is a given function, then taking an arbitrary fixed solution y0 of 
equation

L[y] +  r (x ) =  0 for x e l  t (19)

we have ф (х) =  ^o(x) +  У о { х ) , х  £ I, where ф0 is an arbitrary solution of
(15), when ф satisfies (17), and фо is an arbitrary solution of (16), when 
ф satisfies (18). Therefore, as an easy consequence of Theorem 2, we have 
the following

Corollary. Let p, q >  0 and r be continuous functions in I  and let the 
family F  of all solutions of Eq. (14) satisfy hypotheses (i)- (iv ).

A  function ф, twice differentiable in /, is a solution of either (13) or 
(14) if and only if for every x i, x 2 £ J, x i <  x2, there exists a unique point 
xo £ (x i ,X2) such that equality (3) holds, where (p is a solution of (15) 
satisfying ( 1).
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Raffaele Chiappinelli

Abstract. We study the existence of eigenfunctions of arbitrary fixed 1? norm for quasi- 

linear elliptic operators with odd coefficients, on a bounded domain of IR^, in absence of 

global coercivity of the corresponding functional.

1. Introduction.

Let fl be a bounded open subset of IR7* with smooth boundary ЗП. We consider the 

quasilinear eigenvalue problem

( j  Ц J Vu) +  ao(z,«, Vu) =  /iu in n

I u =  0 on dft

where each a,- =  a,(x, t,p) ( i =  0,1 ie a Caratheodory function on fl X E  x 1R^

(ie. measurable in x for each (t,p) € 1R x JRN and continuous in (t,p) for a.a. x G ft). It 
is our aim to establish in this note, by means of the critical point theory of Liusternik and 
Schnirelmann, the existence of infinitely many distinct eigenfunctions for (1.1) under mild 

coercivity assumptions on the coefficients a*. More precisely, we shall give conditions (which 
for linear operators reduce to boundedness and uniform ellipticity of the coefficients) ensuring 

that for each r >  0 there exist eigenfunction-eigenvalue pairs (un(r ),^л(г)), n =  1,2,...,
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solving (1.1) in the generalised sense, with f n u2 (r) =  r2 for each n while

f  |Vun(r)|2 —► oo, + 0 0  (n -*• 0 0 ).
J  О

Throughout this paper, the сц are assumed to satisfy the following conditions for a.a. z € П 

and all (i, p) € IR X IR^:

HI) (Growth)

M * i «»Р)1 < с(КГ +  IpI) +  *  [i =  l , . . . , N )

|a0(x,t,p)| <  c(|t|* +  \p\9)  +  d

where (assuming for simplicity N  >  3) 0 < г <  0 < s <  , 0 <  q < Here

and elsewhere c, d denote unspecified positive constants.

H2 ) (Monotonicity)

N
t, p) -  a<(z, t, p')]1p< -  P-] >  о (p Ф p')

»= 1

H3) (Ellipticity)

N
^ 2 аДг,е,р)р» >  i/|p|2 - d  [u >  0).
<=1

Let Яц(П) denote the closure in # l (0 ) (the usual first Sobolev space over П) of Со°(П), 

the family of all smooth functions having compact support in П. We equip Hq(Q) with 
the scalar product and norm

(u,V) = f v « - V u  , ||u|l2 =  f  |Vu|2.
J n J n

An eigenfunction-eigenvalue pair (an eigenpair for short) of ( l . l )  is a pair (u, p ) with 

u €  Я ^ (П ), u ф 0 and 6 IR which solves (1.1) in the variational sense, ie.
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n . dv г г
(1.2) a ( u , v ) : = ^ y  a,(z, u, V u ) ^ -  +  J  ao (i, u, Vu)u =  ц J

for all v € Hq(CI) (integrals are over П, unless otherwise stated). a(u, v) is the generalized 

Dirichlet form associated with the quasilinear operator in ( 1.1); under the above assumption 

H i) it is well defined for all u, v €• Hq (П) and satisfies an inequality of the form

(i.3 ) |a(u, v)| <  c(||u||7 +  l)||v||, 7 =  max{r, з, q}

with с > 0 . This is a straightforward consequence of H i) via H51der’s inequality and the 
Sobolev embedding theorem Яф(П) *—► £**(0), p < see e.g. ((2 ], Lemma 3).

We further assume that the operator in ( 1.1) is an Euler-Lagrange operator of the calculus 
of variations, ie. there exists a map F  =  F (x, t, p) defined over ft X IR x 1R  ̂ and of class C l 
in (t, p) in the Caratheodory sense, such that

dF dF I ' 1 ЛП
00 =  I t '  а’ =  э ^  (— »•••■ .*).

Assuming F  obeys growth restrictions similar to those in Hi), it is then well-known (e.g. 

[2], p. 35) that setting

/(«):= J  F(x, u,Vu)

/ is of class C 1 on X  := H£{П) and

(1.4) /'(u)ti =  a(u, v) (u ,vG X ).

Here f  (u) denotes the derivative of / at the point u, which is then a bounded linear form on 

X, and /'(u)v is. the value of /'(u) at the point v € X. On the other hand, if ^(u) := 5 / u2i 

then «/(ujv — f  uv so that (1.2) can be rewritten /'(u)v =  (v e

(1.5) / ' ( u ) = M!7,H .
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Therefore, if we add the normalisation condition g(u) =  const., our original problem 

consists (in its weak form) in finding the constrained critical points of / over the manifold 

N  z= (u G X  : y(u) =  c} in X, the eigenvalues appearing as Lagrange multipliers: see e.g. 

the discussion in section 2 . Equivalently, adding the side condition /(u) =  const, one would 

look for critical points of g over M  =  {u € X  : f (u )  =  c}.

If we further assume that, for (x, t, p) € ft x IR x IRN ,

ai (x, - t ,  - p) =  -a» (x, t, p) (t =  0 , 1, . . . ,  N )

then / is an even functional (like evidently g) and this in turn allows, under further technical 

assumptions to be specified below, to make use of Liusternik-Schnirelmann’s (LS) theory and 

thereby prove the existence of infinitely many critical points.

In doing this, one haw evidently in mind the corresponding classical results concerning 

the linear uniformly elliptic eigenvalue problem

(
(1Л) J "/Ljk (««(*) + M*)» = in П

v u =  0 on dCl

having L°° coefficients сц-у =  ay,- [i, j  — 1, . . . ,  N ) and oq, whose eigenvalues (forming an infi

nite sequence tending to +oo) and corresponding eigenfunctions are related, by the Courant- 

Weyl principle, to minimax (or maximin) of the quadratic functionals associated with ( 1.6 ) 
over appropriate subsets of X.

The above program has been thoroughly developed by Browder in [2 ], in the very general 

context of eigenvalue problems of the type

Y ,  (—l )H £>°Aa(z,u...... P»>u) =  M £  .......D hu)
M<"» 10|<*

involving quasilinear operators of arbitrary even order 2к <  2m in generalized divergence 

form, considered together with the boundary conditions given implicity by a closed subspace 
V  of the Sobolev space Hm[П), with Я£*(П) С V с  Я т (П).

We concentrate for simplicity on the specific eigenvalue problem ( l . l ) ,  for which Brow
der’s result ([2 ], Thm. 23) reads as follows:

T h e o re m  1. Assume that, for a.a. x € ft and all (t ,p ) e IR x IR*',



101

Н4) ao{z, t, p)t > —cot2 — e\p\2 — d

with. 0 < e < и and 0 < cq < Ai(i/ — e), where v is as in HS) and Aj is the first eigenvalue 
of —Ли =  Au in Cl, и =  0 on dCl.

Then, for sufficiently large c, there exists an infinite sequence (un(c),/*n(c)) of eigenpairs 
of (1.1), normalized by f (u n) ~  с for all n. These are characterized by <7(un) =  cn, where

(1.7) c„ =  sup inf g(u).
я, H

In (1.7), Hn is the family of all compact, symmetric subsets H  of Mc =  {u €• X  : /(u) =  c} 
with H ) > n, where l (H )  denotes the genus of H  (Actually, in [2] the equivalent notion 

of category of H  is used: see (7j for a proof of the equivalence).

In [2 ], the LS principle is used as follows. Assumption H4) implies that

J  a0(x, u, Vu)u > -c0 J  u2 — e J  |Vu|2 -  d' > -  +êj f  lVu|2 “ d>

where we have used the Poincarfc inequality / ]Vu|2 > Ai / ti2. Therefore, the Dirichlet form 

a(u, v) in (1.2) satisfies, taking into account H3),

N . du f
i(u) := a(u,u) =  Y l j  а»(ж»и» Vu) ^ :  +  J  ao (*,«,V u )u

r - ) / |v“ |3- J"

In view of H4), we have in conclusion for all и G X

( 1.8 ) a(u) >  e||u||2 — d, c >  0

во that o(u) —► + 00  if ||tt|| —♦ oo; in other words, a is coercive on X. This implies 

([2], p. 33 ) that /(u) =  f  F{z, u, Vu) is coercive on X , too. Then for each с the manifold 

M e =  {и  € X  : /(u) =  c} is bounded; this last fact is then crucially employed, together 
with ( 1.8 ) above, when showing that g~l satisfies (for с large) the compactness condition of
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Palais-Smale on Mc. One can then conclude that the numbers cn defined in (1.7) are critical 

levels of g~l on M Ct which in fact implies that there exists (un,jun) with / '(vn) =  цпд'(ип), 

nn G M c and g{un) =  cn.
It should be noted that the coercivity of a is used again in order to show ([2], p. 49-50) 

that for с large Mc is starlike (ie. diffeormorphic to the unit sphere in X ) and therefore 

contains subsets of arbitrary genus (ie. Hn Ф ф in the above notation for all n).
We have to mention that the coercivity assumption in (2] has been here specialized to 

the present context of Я<э(П), corresponding to sero Dirichlet boundary conditions in ( 1.1), 

on separating for convenience in H3) and H4) the conditions on the top order coefficients 

from those on a<). The original assumption for a general subspace V of H x{0) would read 

(see e.g. eq. (18) in [2 ])

N
a , ( i ,  t,p)p< +  ao lz , t ,p )t  >  ^ (Ip l2 +  t2) -  d.

»=1

As remarked above, a result similar to Theorem 1 holds for a much wider class of problems, 

and even in the context of second order operators acting in # q (0 ), it allows to consider 

more general second members цЬо(х,и) rather than merely /xu. However, when considered 

for the specific equation ( 1.1), the above statement shows some inconvenients which we now 

describe. These become more apparent when looking at the linear and semilinear counterpart 
of (1.1), ie. ( 1.6 ) and

(1.9) +  ao (z,ii) =  /iu inO
»j = i

u =  0 on dfl.

We first remark that no conclusion of the kind concerning (1.6) about the asymptotic be

haviour of un and as n —► oo is explicity stated.

Let us next concentrate on the coercivity assumption H4 ). When referred to ( 1.6 ), this 
becomes

ao(®) > - cq , co<A,i/

and is for instance satisfied on imposing a smallness condition on ||ао||ь«>(п)* But the 
existence of infinitely many eigenpairs (u °,^ °) is here granted whatever а0 € £°°(П), as 
classical spectral theory shows.
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Likerwise, any simple semilinear problem such as

{
-Д и  -  |u|au =  fiu in ft 

и =  0 on dft

is not covered by the above theory if a > 0. Indeed, the corresponding functional

a(u) = J  |Vu|3 — J  |u|"+J

is not coercive on #^(Q ), for if uo is any fixed vector in #o(ft),

e(tuo) =  t2 J  IVuol2 -  ! “+2 J  M a+’  (t >  0 )

so that a(tuo) —* —oo as t —* +oo if «о ф 0 . Note that here

a0{x,t,p )t =  a0 (x,t)t =  -| t\a+2

which violates condition H4). Nevertheless, ( 1.10) does possess countably many eigenvalues 

(for restricted a) as shown for instance in [4].

Finally, the restriction ec large* for the existence of eigenfunctions on the level set 
/(и) =  с appears to be rather severe, both intrinsically (as referred to linear theory again) 

and from a different viewpoint. In fact, if in (1.9) the nonlinearity ao(x, u) is small enough 
(in a sense to be made precise) and ao(x,0 ) =  0 , one expects bifurcation to take place from 

the eigenvalues of (1.6): see e.g. Theorem 4.3 of [8 ] for a typical result of this kind, though 
in an abstract context. However, if /(u) <  c||u||* +  d (5 > 0 ), as will be the case under 

the assumptions above, then studying eigenfunctions lying on /(и) =  с with с large implies 

considering only solutions of large norm, which evidently rules out any bifurcation analysis 

of (1.9). We refer again to (4] for an investigation of this kind.

To overcome these difficulties, we propose a simple alternative approach to the LS analysis 
of (1.1). Namely, rather than considering “maximin” of g over M  =  {u : /(u) =  const}, 

we study “minimax" of / over N  =  {u : <?(u) =  const}. Note that TV is an unbounded 
submanifold of X\ nevertheless, it is plainly diffeomorphic to the unit sphere in X  for each 

с > 0, and this permits to use LS theory for / over N  once the corresponding Palais- 
Smale condition is established. But this can be done on relaxing significantly the coercivity 

condition H4). The outcome about (1.1) is indeed as follows:
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where 0 < с < v, 0 < с is arbitrary, and a <  1 +  j j .  Then for each r >  0, (1.1) has 

countably many eigenpairs fun(r), fxn[ r ) )  ^ at J un(r) — t2 (n =  1 ,2 ,...); moreover, 

fxn(r) -♦+ oo and ||«n(r)|| —♦ oo аз n —♦ oo, for each r > 0.

Here the eigenfunctions un(r) are characterized as critical points of / on 

Nr -  ju 6  X  : J  u2 =  r2 j =  |u e X  : g(u) =  у  j 

associated with the critical values

(1.11) cn(r) =  inf sup /(u)
^n(r) К

where

•^»(r) =  №  c  N r : К  compact, symmetric, l { K )  >  n}.

Note that the semilinear problem (1*10) is covered by H5) as long as а <  | .  On 
the other hand, in the linear problem (1.6 ) the above condition is satisfied with a =  1 

and с =  ||ао||х,«>(0 )- Furthermore, using homogeneity it is immediate to check that if H3) 

holds with some d then it holds with d =  0; H2) is then an obvious consequence of this. 
In conclusion, our hypotheses reduce to the classical boundedness and uniform ellipticity 

conditions for the coefficients of (formally selfadjoint) second order operators.

We shall see in Proposition 4.4 that under H5) the functional a is coercive on N r (for 

each r >  0 ) in the sense that

(1.12) a(u) —► +oo as ||u|| —♦ oo, u 6  iVr

a similar property being then enjoyed by /. It is easily seen that the requirement that a be 

coercive on Nr is equivalent to the property:

(1.13) AT* :=  {u e  Nr : a(u) <  c} is bounded for each c.

The above result will be proved as a consequence of a more general theorem which can be 

seen as an abstract version of the present way to apply the LS principle. Note that (1.5) can 
be written

T h eo rem  2. Assume that

Я5) Оо(хЛ р ) ‘ > - Ф Г +1- Ф | 2 -< *

(1.14) A u  =  fxBu
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where А, В  : X  —*• X  are defined by duality as follows:

(Ли, v) =  a(u,v) [Bu, v) I (u, v € X ).

It is shown in [2] (Lemmas 3 and 7) that A is countinuous and bounded on bounded subsets 

while В is strongly countinuous (see below). We then have from (1.4)

(Au, v) =  /'(u)v (Bu, v) =  j'(u)u ( u , vGX)

with /(u) =  / F(x , u, Vu) and g(u) =  |/u 2. This is expressed by saying that A and В are 

gradient mappings in X  with potentials /, g respectively.

Let us now consider in general a real Hilbert space and two mappings A, В in X  for 

which we recall the following definitions:

- A is of type (S )i [l] if xn —*■ a: and Axn —* у imply xn —► x (—*• and —*■ denote weak and 
strong convergence in X  respectively);

- В  is strongly (sequentially) continuous ( “completely continuous” in [2 ]) if xn x implies 
Bxn —► Bx.

We shall assume without further mention that all operators appearing in the sequel are 

continuous and bounded on bounded subsets of X. Note however that both these conditions 

are implied by strong continuity: in fact in this case the operator is evidently continuous 

and is also compact, ie. maps bounded subsets of X  onto relatively compact subsets of X , 

as is easily checked.

We also recall for further reference that, for a strongly continuous gradient mapping B, 
the corresponding potential g is weakly (sequentially) continuous, ie. g{un) —» g(u) whenever 

un —11 u in X\ see e.g. [l], p. 61.
Finally, adding a constant if necessary, we may and shall assume that the potential / of 

any gradient operator is normalized by /(0 ) =  0 .

T h eo r em  3. Let X  be a real, infinitedimensional, separable Hilbert space and let A, В : 

X  —* X  be odd gradient mappings with potentials f ,g  respectively. Assume (Bu, u) > 0 for 
u ^ O .  Then for each r >  0 the set Nr =  {u e  X  : y(u) =  r } is a C 1 submanifold of X . 

Assume further:
i) A is of type (5 )i ;  / is bounded below and coercive on Nr . 

ii j В is strongly continuous; for each u ф 0, g(tu) —* -boo as t —* +oo.
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Then the eigenvalue problem (1.14) Каз countably many distinct eigenpairs (un )fin) with 

un G Nr, ie. g(un) =  r for all n. I f  moreover 

Hi) f(u ) —» + 0 0  implies ||u|| —► 00 ; 

iv) a(u) := (Ли, и) is coercive on Nr; 

v) (Bu, u) is bounded above on Nr ,
then цп —* + 0 0  and ||un|| —» 00 as n —* 0 0 .

The proof of Theorem 3 is postponed to Section 3, after recalling a suitable version of the 

LS principle. In Section 2 we shall discuss for further reference some useful facts about the 

Palais-Smale condition. Finally in Section 4 we concentrate again on the concrete quasilinear 

eigenvalue problem ( l . l ) ,  on showing that under the given assumptions on the coefficients 

сц the above general results applies, thereby proving Theorem 2 .

2. Som e rem arks on the Pa la is -S m ale  condition.

Let / be a C l functional on X. Given a C 1 submanifold M  in X  with tangent space 

T*(M ) at x € M, the derivative of Д/ *•= f\M at x € M, denoted is just the restriction

of f '(x )  to TX[M)\ and a critical point of Д* is a point where /лЛ*) =  /Ч*)|г,(М) =  °- 
The search for critical points of a functional on a manifold rests heavily on the following 

compactness property:

D e f in it io n  2.1. / said to satisfy the Palais-Smale (PS ) condition on M  if any sequence 

zn С M  along which f (x n) is bounded and Рм(хп) —* 0 contains a convergent subsequence.

Note that f'M {xn) -*  0 means ||/м(*n)|Ua °, %n =  (^ х Л ^ ))* -  now derive
in detail some more viable criterion to verify the PS condition: compare e.g. Section 6 of 

№

L e m m a  2.2. Let X  be a Hilbert space, M  a closed linear subspace of X , and let P  be any 

liner bounded projection onto M  (ie. P 2 =  P , P [X )  — M ). Given F  6  X * , let a be the 
unique vector t'n X  such that f^s ) =  (x, a), x 6  X , and let f  =  F\m be the restriction of F  
to M . Then if Q denotes the adjoint to P , we have

(2. 1)

and

(2.2)

/(") = («■ <?“ ) (» € M)

I H | -1 « all <  ll/ll < IIQall
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where ||/|| — sup{|/(v)|/||v||, v € M , v ф 0 } is the norm of f  in M * while ||P|| is the operator 
norm of P . Note t'n particular that f  =  0 iff Qa =  0 and ||/|| =  ||P0a|| if P0 is the orthogonal 
projection onto M  ( recall Qq =  P0 and ||P0|| =  1 in this case).

P r o o f .

i) For each P, F P  := F  о P  E X* and so there exists a unique ap € X  such that 
P (P x ) =  (x, op), x € X\ moreover, ||PP|| =  ||ap||. But

F (P x) =  (P x l a) =  (*,Qa) (x € X )

which gives (2.1) (recall x =  Px iff x 6  M ) and shows that ap =  Qa, whence ||PP|| =

m i
ii) For v € Af, |/(v)| = \F(Pv)\ <  ||РР||||«||, so we get at once ||/|| < ||PP||.

As for the first inequality in (2.2), we note it is trivial if / =  0; indeed, this is equivalent 

to F P  =  0 and so ||ap|| =  ||Qa|| =  0 . Assume then F P  Ф 0; given e >  0 , let xo ф 0 be such 

that ||P(Px0)|| > (||̂ -Р|| — )̂ ||xo||• Note this implies P X о ф 0 .
As ||Px|| < ||P||||x|| for all x € X y we then have ||P(Px0)|| >  c,||Px0|| with c, =  

(||FP|| — e)||P||_ I; therefore, |/(t>o)| > c*||t>o|| with v0 =  Px о ф 0 , whence ||/|| >  ce, which 
gives the result on letting с —► 0 .

C o r o l l a r y  2.3. Let f  be a C 1 functional on X  and let Ax denote the gradient of f  at x, 
»e. (Ax,u) =  f ' [x )v , v € X . Let M  be a C 1 manifold in X  with tangent space TX(M ) at 
x € M . Given any bounded linear projection Px of X  onto TX(M ), we have for the derivative 

f u  o f f  on M

(2.3) f'M (x)v =  (v,Q xAx ) ( v 6 T*(M )) 

where Qx is the adjoint to P*i moreover,

(2.4) ия.гЧКМхИ < \\p2M = ll/«(*)ll < ll<M*ll
where ||/ĵ (x)|| is the norm of /j^(x) »n (TX(M ))*  and P ° м the orthogonal projection onto 

TX(M ).
In particular, x € M  is a critical point of fu  iff QxAx =  0 .

Assume now that M  is the level set of another C 1 functional g on X : M  =  M c(g) =  {x G 
X  : g(x) =  с}, с a real constant. If с is not a critical value of gt ie. g, (x) ф 0 for x € M e(g)y 
then M c(g) is indeed a C l submanifold of X  of codimension 1, whose tangent space at a 

point x is TX(M ) =  {v € X  : ^ (x )v =  0 }, ie.

TX[M ) =  {v e  X  : {Bx,v) =  0}

with В  denoting the gradient of g. It is then useful to recall the following:
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L e m m a  2.4. Let a,b be fixed vectors in X  with (a , 6) ф 0. Then any u G X  has a unique 

decomposition и =  ui +  u2 with (ui, a) =  0 and из =  с 6, с G IR.

P roo f. Assume u =  « i  +  с b. Then ui =  u — с b and (u i,a ) =  (u — с 6, a) =  0 , whence 

с =  Therefore,

_____(». Д) L . К»).
t L\ f L\(a, 6) (tt,6)

If we set

(2.5) P u =  u - i ^ > ( ,  <?U  =  U_ M ) 0 (U 6 X )

it is then easy to check that P, Q are linear bounded projections onto a-1, ft-1 respectively 

and (Pu, v) =  (u, Qv) for all u, v G X } so that Q is the adjoint of P. Evidently, if a =  b then 

P  =  Q =  orthogonal projection onto a-1.

Therefore, if M  =  {x  G X  : 9 (1 ) =  c} and С  : X  —> X  is any map satisfying (Bx, Cx) Ф 0 

for x ф 0 , then setting

<2-6> p*C(u>= u - ( f e S ) c i  <u 6 x >

we obtain for each i ^ O a  projection onto (B i )-1 =  {v  G X  : (Bz, v) =  0 }  =  TZ(M ), and 

the orthogonal projection JP£ is obtained taking С — В  (we assume here and henceforth 

Bx ф 0 for all x ф 0 : this implies in particular that M c[g) is a regular submanifold for each 

с ф 0 if g =  (0 ).

In conjunction with Corollary 2.3, we then have the explicit representations for /дЛх) :

(2.7) Qc (A x) =  Ax _ ( £ M Bx = ..A c [z )

and in particular

(2.8) P°,{Ax) = A x - {- ^ ± B z = - .  Л«(«)
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f'u (x )u  =  [A c [x ),u ) (u 6 l , (A f ) ) .

For this reason, A c  may be called the gradient of f^t (along C ). Critical points of /м are 

then characterized as zeros of A c , ie. points where

in the sense that (see 2.3)

(A x ,C x )
Лх~ ( в ^ Щ Вх

Note this is the same as to say Ax  =  \iBx (ie. /'(x) =  /^ (x ) in X * ) for some real ц, because 

then taking inner products we see that ц is necessarily equal to |4 *T§f)-

The relevant point in connection with the (PS) condition defined in (2.1) is the estimate

(2-9) ll-P f 1Г11ИС (*)|| <  IM oW II =  ||ЯЛ«)|| <  IIAc(x)||

which follows from (2.4) via the above definitions of Ao, A c- Indeed, the first shows that 
0” in the statement of (PS) can be replaced by M o(xn) —* 0”. However, in 

most instances it is useful to translate the (PS) condition in terms of A c  rather than Aq\ to 

this purpose, we note that from the definition (2.6) of P£ ,

U eX.

Therefore, if \(Bx,Cx)\ >  d >  0 on bounded subsets of M  then (assuming as always В, С  

bounded on bounded sets) it follows that for each bounded subset К  С M , there exists с >  0 

so that ||Pf || <  с (x € K ).

We can now conclude these remarks with the following criterion:

P r o p o s it io n  2.5. Assume f  coercive on M  and (B x , C x) bounded away from  0 on each 

bounded subset of M . Suppose that any sequence (z n) С  M  such that f [x n) is bounded and 

A c (x n) —*■ 0 contains a convergent subsequence. Then f  satisfies (P S ) on M .

P r o o f . Assume f ( x n) bounded and Ао(х,г) —* 0. Then (xft) is bounded by the coercivity 

assumption on f .  By the above remark, ||Р£|| <  с and so A c (x n) 0, because ||Лсг(®п)|| <  

с ||Ло(хп)|| by (2.9) above. The conclusion now follows.
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5. The Liueternik-Schnirelmann principle. Proof of Theorem 3.

Let us recall that given a closed, symmetric (with respect to the origin) subset A of X  

with 0 A, the genus of A, written 7 (A), is defined as

7 (A) =  min{n € IN : there exists a continuous odd map

h : A -+  IRn \ {0 } } .

If there is no such number, we put 7 (A) =  00. Furthermore, we set ^[ф) =  0. We refer to 

e.g. [7] or [8] for the properties of 7 and bound ourselves to recall the following:

(3.1) 7 (A ) =  7 (B ) if there exists an odd homeorphism of A onto B\

(3.2) If 7 (A) >  k, V  is a fc-dimensional subspace of X  and V х is a topological supplement 

to V , then А П V 1- ф ф.

We are now in a position to state the LS principle in a form suited to our context. Due 

to the cited equivalence [7] between LS category and the genus defined above, this is just a 

special version of Theorem 20 in [2].

T h e o r e m  4. Let X  be a real infinitedimensional Hilbert space, let /, g be two even C 1 

functionals on X , and let M  — M c(g) be the level set {u  € X  : <?(u) =  c ) with 0 $ M .  

Assume:

i )  ✓ ( » )  u >  0 for и 6  M , so that in particular M  is a C 1 submanifold of X ;

i i )  M  is starlike, ie. each ray through the origin hits M  in exactly one point;

Hi) f  is bounded below on M  and satisfies (P S ) on M .
For n =  1,2,... set

(3.3) cn =  inf sup /(u)
Кп к

where K n =  { К  С M : К  compact, symmetric, 7 (if ) >  n ). Then for each n there exist 

un G M  and /in € IR such that f (u n) =  cn and f '{u n) =  /*п^ (и п).

R e m a r k  3.1. We note that condition ii) is essential in two ways. First, it is shown in 

Browder (|2), Theorem 19) that in a Banach space having C l norm on its unit sphere S, a 

starlike manifold M  is C l diffeomorphic to S via the radial projection p(u) =  ] j ^ (u Ф 0)i
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this allows to “transplant” (retaining the PS condition) the original problem from M  to 5, 
ie. to a smooth manifold if X  has smooth norm, as in the present Hilbert space case. Recall 
the original requirement for the LS principle to hold is that M  be of class C 2; see [2] for the 

complete discussion.

Furthermore, if X n is any n-dimensional subspace of X , then 7 (5  П X n) =  n, a conse
quence of the Borsuk-Ulam theorem (e.g. (7), p. 180); as p is evidently an odd homeomor- 
phism of M  onto S and p (M  П ЛГП) =  S П X n, it follows from (3.1) above that K n ф ф for 
all n G IN, so that the definition (3.3) of cn is meaningful for each n.

P r o o f  o f  T h e o r e m  3.

a) We begin by showing that under the assumptions of this Theorem, the functionals /, 
g related to A, В  satisfy the requirements of the LS principle, Theorem 4 above. First, / 

and g are even since A, В  are odd. Next, since <7(0) =  0 and (f?u, u) >  0 for u ф 0, the 

assumptions 0 $ N r =  {u  : g(u) =  r } and (/(uju > 0 for u € N r are satisfied for each r >  0.
Likewise, let us prove that N r is starlike for each r >  0. Let u G X , и Ф 0; we have to 

show that there exists a unique t >  0 such that Ы ф  N r , ie. y(tu) =  r. To do this, we werely 

consider the map <p(t) :=  g(£u) and observe that, since (Bu , u) >  0 for u Ф 0 by assumption, 

then
=  ^(tu )u =  (J3(iu), u) =  t- 1(f?(tu),tu) > 0  (t >  0)

so that <p is (continuous and) strictly increasing on [0, oo(; moreover, y>(0) =  0 while <p[t) =  

<;(tu) —* +00  as t —» +00  by assumption. The result now follows.

b) Let us now show that f satisfies (РЗ) on N r . We first note that N r is weakly (se

quentially) closed: indeed, if un —1 uo for some sequence (un) С N r, then since g is weakly 

continuous we have г =  <KU« )  ~ * s (uo) an<̂  so uo € N r . Next we claim that (J3u, u) is 
bounded away from 0 on each bounded subset of N r ] for if not, there would exist a bounded 

sequence (un) С N r with (£un, un) —► 0. We can assume that (un) converges weakly to some 

uo € N r\ by the strong continuity of В , we then have Bun —*■ Bu0 and so (J3uo,uo) =  0, 
hence uo =  0 by the definiteness assumption on B t contradiction since 0 $. N r .

Therefore, in view of Proposition 2.5, with the choice Cu — it will be enough to prove 

that a sequence (un) С N r contains a convergent subsequence whenever / (un) is bounded 

and (see (2.7))

<*•<>

This can be deduced as follows. Since /(un) is bounded and / is coercive on N rt (un) is 
bounded in X  and therefore (passing to a subsequence if necessary) we can assume un —>k uq.
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By the strong continuity of B t we have Bun —♦ Brio. Moreover, as A is bounded on bounded 

sets while (Bun, un) >  с >  0 by the above remark, the sequence of real numbers is
bounded and so we can assume if converges too. By (3.4), we then have that Aun converges 

strongly in X\ and as A satisfies (S )i by assumption, we conclude that un —► u0.

The requirements of Theorem 4 are therefore all satisfied, and this proves the first state

ment in Theorem 3. However, at this stage we do not know that there are infinitely many 

distinct eigenfunctions of the pair (A, B ) on N r . Clearly, since /(un(r)) =  cn(r), this will be 

accomplished if we prove:

(3.5) cr»(r) =  inf sup /(u) —► +oo as n —* oo.
Kn(r) к

To do this, we adapt to our context an argument appearing e.g. in [6], p. 365. Let us first 

prove a result of more general interest.

L e m m a  3.2. Let X  be an infinitedimensional, separable Hilbert space, and let (t>n) be a 

complete orthonorhal system in X . Let N  С X  be weakly closed with 0 $ N .  Then given any 

bounded subset N ' of N , there exists an integer no (depending on N ')  such that N'C\X£0 =  ф, 

where X n :=  apan{vi,. .. ,  vn}  (n 6  N ) and X „  denotes the orthogonal supplement to X n.

P ro o f. For each n. let Pn denote the orthogonal projection of X  onto X n\ then u € X £ if 
and only if Pnu =  0. Furthermore, ил —11 u in X  implies Pnun —*• u; indeed, for all v €E X ,

(PnUn, v) =  (иЛ) Pnv) -> (u, v)

by the selfadjointness of Pn and the assumed completeness of (un), which implies P nv —» v.

Given N ' С  N , N ' bounded, assume by contradiction that N ' П X „ ф ф for all n; then 

there exists a sequence (un) С N ' with Pnun =  0 for all n. As N ' is bounded, we can assume 

that ( 1̂ )  converges weakly to some tio € N  (N  is weakly closed by assumption). Therefore, 

P nun —1*■ uo by the above mentioned property and so uo =  0. But 0 $ N , contradiction.

c) P r o o f  o f  t h e  c l a im  (3.5). Fix r >  0; recall N r is weakly closed by the strong continu
ity of В , and 0 ^ N r . Also note the sequence cn(r) is nondecreasing since Я п+1(г) С K n (r ). 

Assume thus by contradiction that, for some d € 1R, cn(r) <  d for all n; then by the defini
tion of cn(r), there would exist a sequence (An) of compact symmetric subsets of N r , with 

7(An) >  n for each n, such that

OO
f [u )  < d  for u G (J  An.

n= 1
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Let N ?  =  {u G N r : /(u) <  d}. By the coercivity of / on N r , N *  is bounded (see (1.13)) and 

so by the above Lemma, there exists no G IN such that N f  П X „Q =  Ф■ Then An П X „ 0 =  ф 

for all n, which contradicts the property (3.2) of the genus as soon as n >  no-

d) C o n c l u s io n  o f  t h e  p r o o f  o f  t h e o r e m  з. Let (un(r ),  цп(г ) ) be the eigenpair corre
sponding to cn(r), ie. /(urt(r)) =  cn(r) and

(3.6) Лил (г) =  /x„(r)Purt(r)

with tin(r) G N r . Since by assumption ||u|| —» oo whenever /(u) —» +oo, it follows that 

IIй" (Oil “ * oo by the fact cn(r) —> -foo just proved above.
Moreover, taking the inner product with u„(r) in (3.6) we have

fl(«n (r)) =  (A «n (r),un(r)) =/ in(r)(B un(r),un(r)).

Since (Bu, u) <  D r on N r by hypothesis, then

Mn(r) =  (Bun(r),un(r ))- 1a(un(r)) >  ^ ' ^ ( ^ ( г ) )

and the final assertion now follows from ||un(r)|| —» oo and the assumed coercivity of a on

Nr.

4. Proof of Theorem 2.

Let us first state a technical result, which is a direct consequence (via Holder’s inequality) 

of the Sobolev embedding #о (П ) «—► 2^(0), p =  (8ee e K- l5]):

Lemma 4.1. Letp  : 1 <  p <  (so that 2 <  p+1  <  p ) and let 0 =  fi(p) =  y (p - (p + l ) )  =  

(p +  l) — 4£-(p — 1). Then there exists с >  0 such that

(4.1) ||u||j£{ <  c||Vu||5+1-/’|u||J

for all u G Яо(П). (Here and henceforth, ||u||p denotes the norm of и in I f f o ) ) .

Let us now go back to (l . l ).  We recall for the reader’s convenience that the operators 

and functionals of interest are here as follows:

N . dv Г
a(u, v) =  I ai(x,u, Vu) — +  I a0[x ,v , Vu)v

» = i J  *

/(u) =  J  F (x , u,Vu) ff(u) ~ \ J u7

(Ли, v) =  o(u, u) =  /'(u)v (Bu, v) =  0' ( U)V-

(4.2)



L e m m a  4.2. Under the growth assumption H i),  f  satisfies:

(4.3) |/(u)|<c||u||4 +  d ( u e j f )  

with c, d >  0 and 6 =  7 +  1 (4  =  max{r, s, 9} ) .

P r o o f . We have

(4.4) /(u) “  /(0) — ^/(«w )rfe =  J  f , {su)uds =

— I a(su,u)ds.
Jo

By (1.3),

И « . » )1< « (М Г +1 +  М 1)

whence, for s >  0,

|а(зи,и)| =  а-1 |а(»и,аи)| <  s_1e(»',+1||u|P+1 +  j||u||) =

=  c(̂ ||u|P+, +  ||ul|).

Therefore, from (4.4),

I /M  - /(0)1 <
7 +
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which gives the result.

Lemma 4.3. Under the assumption HS) and H5), there exist constants 0 <  а  <  1 and f3 >  0 

such that

(4-5) o(u) > ci |tu|la -  сз||и||,0||и||? -  d (« 6  X )

where ci >  0, C2 , d >  0. A similar inequality is satisfied by f .



P r o o f .

i) By H5),

J  a0(z, u, Vu)u >  —с J  |u|<7+1 - с J  |Vu|2 -  d.

Using this together with the ellipticity condition H3), we get

a(u) =  a(u, u) >  (1/ -  e) J  |Vu|2 -  с J  |u|ff+1 -  d =

(4-6) = c i | | « f - c 2 m t l - d -

ii) Let us show that a similar inequality holds for /. Let u € X , ||u|l >  1; write u =  rv, 

||u|| =  1. We have

(4.7) /(u) -  /(„) =  /(rv ) -  /(„) =  J '  f '( ,v )v d , =

By (4.6), as \\v\\ =  1,

a(av, sv) >  a s 2 -  C2*<r+l |MI*+i -  d

whence, for 5 >  0,

a(au,u) >  eis -  C3e'||v||JJJ -  ds~l .

Therefore, from (4.7),

/ (u) -  f (v )  >  c 'S  -  -  d lo g r -  Л  =

=  » i l | « f - « a||uK+i-ollog||u||-d' =

> c?iiu f-4 iiu |i:«-d ".

As, by Lemma 4.2, |/(u)| <  с for all v € X  with ||u|| =  1, we conclude that (4.6) is 
satisfied by / too (with different constants ci,c2, d).
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M S i  <  « W H M l S

where 2a =  a +  1 -  /? =  (a — l )y .  Note that the assumption a <  1 +  £  is equivalent to 

a <  1. Using this in (4.6), we get the desired inequality.

With the aid of the above Lemmas, we are now able to prove Theorem 2 . This will be 

accomplished by the following:

P ropos it ion  4.4. Assume that the coefficients <ц of the quasilinear differential operator in 

( l - l )  satisfy the conditions stated in the Introduction, with H4) replaced by H5). Then the 

operators and functionals A, B, f ,  g related to ( 1.1) by (4.2) satisfy all the assumptions of 

Theorem S.

a) Proof of the assumptions concerning В  and g.

The relations (Bu, u) >  0 (u ф 0), g(tu ) —* oo if u ф 0 and t —* oo, (Bu, tt) <  D r on 

N r =  (tt : / u2 =  r3} follow trivially from the explicit expression

(J9u, u) =  2 g(u) =  J  u2.

Furthermore, В  is strongly continuous by the compact embedding X  =  #о (П ) —̂ £2(^ )-

b) Proof of the assumptions concerning A and /.
i) As the proof of Browder ([2 ], p. 27-30) shows, the monotonicity and ellipticity as

sumptions H2 ), H3) ensure that A is of type (5), ie.

un —*• u and (Aunx — Au, un — u) —► 0 imply un —* u.

But as pointed out by Amann ([l], p. 57) and as can be easily checked, (5 ) is a 

stronger property shan (S )i.

ii) From Lemma 4.3, we have that if ||u||a =  r then

a ( u ) > Cl||u||2 - c 2 ||u||2V - d  (C l > 0 )

and a similar inequality holds for /, too. Since ot <  1 (by the assumption a <  1 +  jf)>  

it follows that both a and / are bounded below and coercive on N r for all r >  0 .
iii) Finally from Lemma 4.2 we have

/ (u ) <  c||u||5 +  d ( u e x )

which evidently implies that ||u|| —» oo whenever /(u) —* -f-oo.

iii) By Lemma 4.1,
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Rem ark 4.5. Condition H5) is for instance satisfied if

M M ,p )| < cfltf + |p|) + <f ( <r< 1 + ^ )

ie. з =  a and q =  1 in the growth assumption Hi) on ao. Indeed, the above inequality 

implies

|a0 (z,<,p)f| <  c(|tr+ l +  |p||t|) +  d\t\

<c'(|tr+1 + |p||«|) + <i'-

For each e >  0 , 2 |p||*| <  7 - +  c|p|2 and so (assuming w.l.o.g. cr >  1) 

|ao(x,t,p )t|<c"|tr1 +  e|p|2 +  d" 

which implies H5) as soon as e <  v.
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D Y N A M IC A L  SYSTEMS CREATED FROM  
SEM ID YN AM IC AL SYSTEMS

Krzysztof Ciesielski

The paper presents the method of construction of dynamical systems from 
the given semidynamical systems. There are also given some theorems con
cerning this construction and characterizing the obtained systems and phase 
spaces.

0. Introduction

In the semidynamical system the movement is defined only for positive 
values of time t. However, we may ask about “the past” of a given point x 
in a phase space for a particular value of t. There may be many different 
points which reach x after time t ; on the other hand there may be no 
such point. When the system is a dynamical system, such point is always 
unique for every value of t. Thus the structure of semisystems may be quite 
different from the structure of systems, the latter being much better.

The natural question is: Can we reconstruct semidynamical systems 
to get dynamical systems? In this paper a construction is presented which 
allows us to do so. Roughly speaking, we get the better structure of systems 
but we can destroy a good structure of topological space. After “glueing” 
the points in a suitable way we get the semi-systems with negative unicity. 
The first part of the paper is devoted to the description of a new structure 
and the characterization of conditions to get dynamical systems. In the 
next chapter some necessary conditions for the systems to get “not too 
bad” topological space after construction are given. Finally, some remarks 
on planar systems are presented.

The basic properties of semidynamical systems may be found in [1],
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[10], [14], [18] and [20]. Many investigations on semidynamical systems 
were presented in many papers not cited here, in particular written by P. 
Bajaj, N. P. Bhatia, К. M. Das, S. Elaydi, S. K. Kaul, S. S. Lakshmi, M. 
Nishihama, A. Pelczar and S. H. Saperstone.

Chapter I. Preliminaries

By a semidynamical system we mean a triplet (X , IR+, 7r), where 7r is a 
continuous map from IR+ x X  ^  X  such that 7r(0, x ) =  x for every x e  X  
and =  7Г(t  +  s ,x)  for every x G X  and t, s G IR+. By тг+(х) we
denote the set tt(IR+ x  { x } )  and call it a positive trajectory through x. We 
put F ( t , x )  =  {y e X  : 7r(t, y) =  x } (and call it a cut o f a funnel through x)  
and F ([s ,f],x ) =  U {F (ti,x ) : s <  и <  t ]  (and call it a section of a funnel 
through x). By a funnel we mean the set U{F(t> x ) : t >  0}. We say that a 
point x is a point of negative unicity if F (t, x ) contains at most one element 
for each t >  0. The system is said to be the system with negative unicity 
if  every point of X  is a point of negative unicity. The point x is called a 
start point if F ( t , x )  =  0 for any t >  0. It is known ([1]) that when X  is 
a manifold (without boundary) then a semidynamical system has no start 
points.

A  function <t : (a,0] —► X  is called a solution through x if a(0) =  x, 
7r(t, <t(s)) =  a(t +  s) whenever *,t +  s G (a,0] and t >  0. When this 
function is maximal (with respect to inclusion of images) the solution is 
called a left maximal solution. By a negative trajectory through x we mean 
an image of a left maximal solution through x. By a trajectory we mean 
an union of the negative and positive trajectories through a given point. 
By L + (x )  we denote the set {у  E X  : ir(tn ,x)  —► у for some sequence 
{*n}  —► oo}. By L ~ ( x ) } where <x is a solution through x, we denote the set 
{у e  X  : <r(tn) —► У for some sequence { t „ }  such that t„ —► —oo}. A  set M  
is said to be stable if for each neighbourhood U of M  and x G M  there is 
a neighbourhood V  of x with ir(t, V)  С U for every t >  0.

Replacing in the definition of semidynamical system IR+ by IR we get 
the definition of dynamical system.

With respect to a given semidynamical system we may classify each 
point x G X  into one of the three sets. A  point x is said to be a stationary 
point if 7Г(t ,x ) =  x for each t >  0. A  point x G X  is said to be a periodic 
point if there exists a T  >  0 such that тг(T, x )  =  x  and x is not a stationary
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point. The smallest T  with the above properties is called the period of x. 
A  point x £ X  is said to be a regular point if it is neither stationary nor 
periodic. We say that a point x merges to stationary (periodic) point, if 
there is a time t such that тг(t ,x )  is stationary (periodic).

The systems (X ,IR + ,7r) and (X,  IR+,p) are said to be isomorphic if 
there is a continuous mapping ф : IR+ x X  —* IR+ such that ф(0, x)  =  0 and 
the mapping ф(',х)  : IR+ —► IR+ is a homeomorphism for each x £ X  and 
Tr(t, x)  =  р{ф(1> x), я) for each (t, x)  £ IR+ x X . Note that the isomorphism 
does not change the trajectories, it changes only “the speed of moving along 
the trajectories” . Also, it does not change the character of singular points 
and the negative unicity points.

In 1977 Я. C. McCann introduced the definition of the negative escape 
time of a point x £ X  (which is, intuitively, the minimal time length of 
all negative trajectories through ж) and proved some properties of isomor
phisms of semidynamical systems ([13]). The definition presented below is 
a little simpler than the definition given by McCann, but when the system 
has no start points, then these definitions are equivalent.

1.1. Definition. By a negative escape time N ( x )  of x we define 
N ( x )  =  in f{s £ (0,oo] : (-s ,0 ] is a left maximal solution through x }.

Then McCann’s results give us the following

1.2. Theorem . When x is a locally compact metric space and the 
system рГ,Ш,+ , 7г) has no start points, then the system is isomorphic to a 
system (J^IR+jTr7) which has infinite negative escape time for each x £ X.

We will also use B-H escape time, which is, intuitively, “the maximal 
time length of all negative trajectories through x” (see [1]):

1.3. Defin ition. By B-H escape time we mean sup{s £ (0,oo] : 
(—s,0] is a left maximal solution through x }.

We will also use the important

1.4. Theorem . ([8], [13]). If the semidynamical system on a locally
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compact space X  has no start points and it has the infinite negative escape 
time N ( x )  for each then it can be extended to the semidynamical
system 7Г* on X *, where X* — X  U { 00}  is the one point compactification 
of X  and 00 is a stationary point for the new system.

Chapter II
Assume that a semisystem (X ,lR +) 7r) is given. Let us state

2.1. Definition. We define:
1 ~ у н  there exists an s with t t ( s , x )  =  tt(s, y)

ф( * Ж М )  =  {

It can be easily verified that this relation is an equivalence relation. 
Now let us put
Х(7г) =  X/ ~  (the quotient space) and

[7r(t,x)] for t >  0

[z] : z E F(t ,  x) ' for t <  0

We have to verify if the definition is correctly stated. Let us take x ,y  
with x ~  y. Then there is an s with 7r(s,x) =  тг(s ,y ). Thus for t >  st 
of course 7r(t,x) =  ir(t,y). Let us take t E [0,s]. Then 7r(s — * , 7 г ( * , х ) )  =  
tt( s — 7r(*, y )) as 7Г( t , x )  =  7Г(t ,y ), so т г ( < , х )  ~  7Г(t ,y ). Now consider 
t <  0. Then s — t >  0. Take a z E F ( t , x )  and a t) E F ( t }y). We have 
7r(s -  t ,z )  =  7r(s,x) =  7Г(s ,y ) =  ?r(s — t,v ) and z ^  v, which finishes the 
proof.

2.2. Remark. For every t and x all the points of F (t ,x )  belong to 
the same equivalence class. By [F (<,x)] we will denote the class [y], where 
у is an element of F ( t } x).

2.3. Remark. We have: [y] =  U{7rt-1 (7r(<, y )) : t >  0} =  U {F(<, 7r(<, 
у )) : t >  0}. Note also that for a stationary point x we have [x] =  -F (x) 
(and thus also for any point which merges to a stationary point).

2.4. Theorem. The triplet (X(7t),IR,+ , ф(п)) is a semidynamical 
system with negative unicity.
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Proof. The unicity of system follows directly from the definition. We 
have to check only the continuity of <f> for t >  0. Let us take a neighbourhood 
U* of [7r(t,s)]. We look for a neighbourhood V* of [s] and a 6 with <£((* -  
M  +  b)>V*) С U*. There exists a neighbourhood U of ir(t,x) with U* =  
{[у] : У £ U}.  There are a 6 >  0 and a neighbourhood V of x with 
7r((t - 6,t + b)}V) с  U. Let us put V* = {[у] : у G V}. This set is a 
neighbourhood of [x] in X( ir ) .  Take a [z] € V * and an s € (t -  6,t +  5). 
There is а у € V  with у € [z]. Then 7Г(s,y) e  U  and ^(ir)(s, [z]) =  
[7г(5,2г)] =  [tt(s,2/)] € U*. This finishes the proof.

2.5. Rem ark. O f course the obtained semisystem need not be a 
dynamical system for an obvious reason: the value of <f>(t,x) need not be 
defined for every t <  0. It is obvious that it is defined only for t smaller 
than B-H escape time of x. However, in many cases this problem can be 
omitted after using Theorem 1.2.

2.6. Exam ple. From the planar semidynamical system with trajec
tories shown in Fig. 1 we obtain the planar dynamical system (we glue 
together the points of F (t,(0 ,0 )) for each t).

Fig. 1.
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2.7. Example. From the semidynamical system with trajectories 
presented in Fig. 2 we get the system on the ball in the plane.

Fig. 2.

The interesting chapter of the theory of semidynamical systems has its 
source in the infinite dimensional dynamical systems (compare for instance 
[11], [16], [17] and [18]). We would not develop here this aspect, but only 
present the following

2.8. Example. Consider X  =  {/  : [0,oo) —► 1R, / continuous, / 
bounded}. The function 7Г where 7r( t , f ) { s )  =  f ( s  + 1) for s >  0 defines a 
semidynamical system. The class [/] equals {g : there exists an so >  0 such 
that f ( s )  =  g(s) for s >  so}- Thus the phase space X(7r) is the space of 
germs.

Before coming to the main theorems of this chapter we present
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2.9. Proposition . The function is continuous in (0,x) for each 
x e X .

Proo f. According to Theorem 2.4 we need only to show that for each 
neighbourhood U* of [x] there is a neighbourhood V* of [ж] and a 6 >  0 
with <f>({t — 6, 0], V*)  С U*. Using Theorem 4.4 in [1] we obtain that there 
is a 6 and a neighbourhood V  of x such that F([0,6], V )  С U, where by U 
we mean the same neighbourhood of ж as in the proof of Theorem 2.3. Let 
us take a [z\ G V* and an s G (0,5). There exists a у € V  with у G [z]. We 
have F(s ,y )  e  U  and [F (s ,y )j e  U ' . But [,F(s,y)] =  [F (« ,z )] =  ^ (ir)(s,[z]) 
which finishes the proof.

2.10. Theorem . The function: t —► $(7г)(/, [x]) is continuous in its 
domain for each [x] G Х(тг).

Proo f. Because of Theorem 2.4 and Proposition 2.9 we need only check 
a continuity for t <  0. Let us take [ F ( —<,x)] and a neighbourhood U* of 
[ F ( —t } x)]. The set U =  U {y : [y] G U*}  is open in X  and contains F ( —t, x). 
Let us take a left maximal solution и through x such that a(t)  =  у and 
assume that domain cr is not equal to [t, 0]. The set U is a neighbourhood of 
y. Every solution is continuous ([1]), so there is a 6 such that (f — 6 ,t +  b) is 
contained in domain <r and <r{t—8, t + 6 ) С U. Thus for every s G ( t - M + 4  
we have F ( s t x) П U ф 0, so [ F (s } x)] С U*.

Now suppose that for each left maximal solution cr through y, domain 
ст is contained in [t, 0]. As above we find a 6 with [.F(s,x)] С U * for each 
s G [*, t+6 ).  However, for every 5 <  t the set F (s } x) is empty, so <£(tt)(s, [x ]) 
is defined only for s G [£,oo). We have shown that <f>(ir)(-,x) is continuous 
in its domain.

2.11. Rem ark. The general dynamical systems with the function 
t —► 7Г{ tyx)  continuous were investigated for instance in [14] and [15].

The following theorem gives the sufficient condition for the system to 
be dynamical.

2.12. T h eo rem . Assume that F ( t , x )  ф 0 for each x £ X  and t >  0.
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Assume also that the function F  : 1R+ x X  •—► 2X is upper semicontinu- 
ous, i.e., for every neighbourhood U of F ( t , x )  there is a neighbourhood
V  of x and a 6 such that F ( ( t  -  M  +  6), V ) )  С U  (compare [12]). Then 
(X (tt),IR , ф(тг)) is a dynamical system.

Proof. Let us take a neighbourhood U* of [F (t ,x )] (compare Remark 
2.2). From the semicontinuity of a multivalued function F  it follows that 
there is a V  and a 6 such that F ( ( t  — 6}t +  6), К ) С U. The set V* =  
{[у] : У € V }  is a neighbourhood of [x], as V  is a neighbourhood of x. To 
finish the proof we need to verify if <£(7r ) ( ( t  — +  6), V * )  С U * . Take 
an s € (t — 6 ,t +  £) and a [z] E V*. There is а у £ V  with у £ [z]. 
We have ^ (S ji/ ) С U and [F (s ,y )] С U * . By definition we obtain that 
[F (s ,y )] =  0(7r)(s, [у]) =  ф(7r)(s, [z]), so the last point belongs to U * .

Using the above theorem we can get some results stating when the 
constructed structure is a dynamical system.

2.13. Theorem. Let (Х,®^.,^) be a semidynamical system without 
start points on a locally compact and first countable space. Assume that 
for every t and every x there is a neighbourhood W  of x such that the 
closure of W  : ClW  is compact and F ( t ,C\W)  is compact as well. Then 
(X(7t),IR, ф(к)) is a dynamical system.

The theorem follows from Theorem 1.17 in [3] and Theorem 2.12.

2.14. Theorem. Let X  be a locally compact, paracompact and first 
countable space. Assume that a semidynamical system (X , IR+, 7r) (without 
start points) has an infinite negative escape time for each x E X .  Then the 
system (X (ir),lR , <̂ (7r)) is a dynamical system.

This is a consequence of Theorem 2.12 and Proposition 2.9 in [3].

2.15. Theorem. Assume that X  is a locally compact metric space 
and that the system (X,IR+,7r) has no start points. Then this system is 
isomorphic to a system ( X , ^ , * ' )  such that the system (X (tt/),IR , ф(тг')) 
is a dynamical system.

The theorem is a corollary from Proposition 2.8 in [3], Theorem 4.1 in
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2.16. Rem ark. Theorem 2.20 in [3] and Theorem 2.4 in this paper 
suggest that the obtained system could be a local dynamical system. How
ever, we cannot use the cited result, as the space X( ir )  obtained in our 
construction need not be locally compact and metric.

2.17. Rem ark. In Theorem 2.15 we use at first the isomorphism 
of semi-systems and then the construction of “getting unicity” . However, 
one may suggest changing the direction: firstly to get the unicity and then 
try to use isomorphism. The natural question is if we get the same re
sult. Example 2.18 shows that the answer is negative. Moreover, we may 
get “very bad” topological space, which will not allow us to construct the 
isomorphism.

2.18. Exam ple. Let us take X  =  IR2\ (- o o , - l ]  x {0 } and n with 
the trajectories presented in Fig. 3. The “speed of points” “along the first 
variable” is the same for all points. Thus N ((0 ,0 )) =  1. After the suit
able isomorphism we get the system homeomorphic to the semidynamical 
system presented in Example 2.6, which after the identification gives the 
classical dynamical system jr(*,(z,j/)) =  (< +  x,y)  on IR2. If we make the 
construction from Definition 2.1 at first, then we obtain the semidynamical 
system with negative unicity and with N ([x ]) =  oo for each [®]. However, 
the obtained system is not dynamical. As one can easily verify, the func
tion <j>(n) is not continuous for t <  —1 in the points [i7?( — (0, 0))] and 
the space X ( n )  is not homeomorphic to the plane (consider also the points 
[ F H , ( 0 , 0 ) ) ] f o r * < - l ) .

2.19. Rem ark. In [7] S. Elaydi introduced a completely different 
method of obtaining dynamical systems on the base of semisystems. This 
result gives a system in the space of negative maximal solutions of semisys
tems.

[13] and Theorem 2.12.

Chapter I I I

Throughout this section we assume that N ( x )  =  oo for every x £ X  in



--------------- > -----------------------

----------------------------- =*--------------------------------— -------

Fig. 3.

a given semidynamical system (X , IR+, 7r). This assumption is quite natural 
(compare [8], [13] and Theorems 1.2 and 2.15).

Using the construction introduced in Chapter II we get the better 
structure of system. However, we may destroy the structure of space. The 
obtained space X ( n )  may behave very well (compare Examples 2.6, 2.7 and 
2.8), but also very bad.

3.1. Example. Let us take the semidynamical system with the tra
jectories presented in Fig. 4. After the suitable construction we get the 
space IRx Z , but with non-euclidean topology. For an even integer к the 
basic neighbourhoods of (x,jb) are the intervals (x -  6, x +  6) x {k},  but 
for an odd integer к the basic neighbourhoods of (ж, к) are the unions: 
( x - 6 i , x  +  6i) x { k - \ } \ j ( x -  62)x +  62) x { £ }и (х - 6 з , х  +  63) x {к +  1}. 
Note that the space IR2(7r) is not Hausdorff and even not T\.

Using the basic topological properties we get

3.2. Proposition. The space Л ’('тг) is T\ if and only if the set {y  : 
у G [x]} is closed for each x £ X.
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Generally, the set {у  : у £ [ж]} need not be closed (however the set 
F ( t , x )  is closed for each t —  compare [13]), which can be seen on the 
previous example and also the following

3.3. Example. In the semidynamical system with trajectories shown 
in Fig. 5 the topological space Ш.2(тг) is not T\. The space 1R2(x ) is equal to 
IR2, but with non-euclidean topology. For each x £ IR and a neighbourhood 
U* of [(z ,0 )] the point [(x, e~s)\ £ U * . Note that {у  : у £ [(я ,е“ х) ] }  =  
{ s }  x [e_x ,0) is not closed.

The condition from Proposition 3.2 does not assure the good behaviour 
of space. Consider the following

3.4. Example. Let us take the semidynamical system with the tra
jectories shown in Fig. 6. The points (0,y) for у £ IR are stationary points,
(1,0) is not a point of negative unicity. The points (0 ,a )(a  £ [—1,1]) are
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equal to L “ (( 1,0)) for different solutions cr through (1,0). It is easy to 
verify (as in the proof of Theorem 3.6) that (0, a ) and (0,/?) do not possess 
disjoint neighbourhoods for - ! < < * < / ? <  1, so IR2(7r) is not Hausdorff.

Fig. 5.

Fig. 6.
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3.5. Exam ple. Let X  =  IR3. I f  z >  0 then the trajectories on 
the plane IR2 x { z }  are shown in Fig. 7(a), if z <  0, they are presented in 
Fig. 7(b). The system seems to behave very well, however, every neighbour
hoods of [(0, —1,0)] and [(0,1,0)] in IR3(7r) have nonempty intersections, as 
(0, —1, z) — (0,1, z) for each z >  0.

(a)

------------>■

-- ----------------------

------------------------

z  ^  0

(b)

Fig. 7

The above examples show also another application of the constructed 
systems. We may use the presented construction to observe that some
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orbits of semi-systems are “closed to each other” because of the behaviour 
of all orbits in semi-system. In particular, in Example 3.5 this is the case 
of trajectories through (0 ,—1,0) and (0,1,0).

Below we present some theorems giving necessary conditions for the 
space X  (7г) to be Hausdorff.

3.6. Theorem . Assume that X ( v )  is a Hausdorff space. Then for 
each point x £ X :  if for two left maximal solutions <7\ and <72 we have

—*■ У, cr2(t) —► z when t —»■ -oo , and y ,z  are stationary points, then 
y = z .

Proo f. Suppose to the contrary that <Ti,<r2,y ,z are as in the theorem 
and у Ф z. Take the arbitrary neighbourhoods U* o f [y] and V* o f [z]. As 
in the proof of Theorem 2.4 we construct the neighbourhoods U of у and
V  of z. For a sufficiently large — t we have <Ti{t) £ U  and cr2(<) £ V,  so 
jF(—i,x ) is not disjoint from U as well as from V.  Thus [ F ( —t,x ) ]  £ U* 
and [ F ( —t, x)] £ V* which shows that these sets are not disjoint. The space 
X (tt) is not Hausdorff.

Without loss of generality instead of locally compact spaces we may 
consider compact spaces. This is because of Theorem 1.4.

For compact spaces we have

3.7. Theorem . I f  the space X  is compact and X(7r) is Hausdorff, 
then for each x £ X  and z £ X  either the set {у  : у £ [z ]} has the nonempty 
intersection with L~ (x )  for each left maximal solution <r through x, or it 
has the empty intersection with all these sets.

P roo f. From the elementary properties of L~ (x )  we have that this 
set is closed. The space X  is compact, so L~ (x )  is compact and non
empty for each x and a. Suppose to the contrary that there exist a and 
(To with у £ L ~ (x )  and у £ [z] for every z £ £"o(x). Take a sequence 
tn —* —oo with <r(—tn) —+ y. From the compactness of X  we may assume 
that <To(—tn) —► z £ L~Q(x)  (taking a subsequence, if necessary). From 
the hypothesis we have the disjoint neighbourhoods U* of [y] and V*  o f 
[z]. The sets U and V  defined as in the previous proof are disjoint and
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for a sufficiently large n we have <r(-tn) G U t<To(-tn) 6 V. This is a 
contradiction, as [<r(-tn)] =  [<r0( - t n)], so U* П V* ф 0.

Even under the assumptions of Theorem 3.7 the sets L ~ (x ) need not 
be the same for all a. This can be seen from the following

3.8. Exam ple. Consider the semidynamical system on a compact 
subset of IR3 described below. The point A  =  (1,0,0) is a stationary point. 
For В  =  ( —1,0,0) we have two different negative solutions through В  with 
trajectories on the circle x2 +  y2 =  1, z =  0, which tend to A as t —> -oo. 
The positive solution through В  tends also to A } but along the trajectory 
on the semi-circle x2 +  z2 — l , z  >  0, у =  0 (see Fig. 8(a)). Let us take a 
point С  =  (0,0, |). In the positive direction the solution through С  tends 
to (0,0,0) on a straight line. In the negative direction we have two negative 
solutions through С  which eventually are on the surface x 2 +  y2 +  z2 =  1 
and as the negative limit sets they have two Jordan curves joining A  and 
В  described above (one of negative trajectories through С  with its limit 
set is presented in Fig. 8(b)). These two curves have different negative 
limit sets for different solutions through C. However, we can join all the 
points from these curves and construct the equivalence classes containing 
one (for z >  0) or two (z =  0) elements. The obtained dynamical system is 
presented (after the suitable homeomorphism) in Fig. 8(c). Using the same 
method it is possible to construct a similar example on a closed semi-ball 
in IR3 and get the dynamical system on a semi-ball in IR2.

Note that it may happen that Х(тг) is Hausdorff, but X*(i r* ) ,  where 
X *  is the one point compactification of X ,  is not. This can be observed in 
the following

3.9. Exam ple. Consider the semidynamical system on IRx(0,oo) 
with trajectories shown in Fig. 9. The classes of equivalence equal to the 
segments { x }  x (0,e” r ] are closed in X (n ) ,  but not in X*(7r*), as they are 
not compact and possess the convergent subsequences.

However, the converse holds.

3.10. Proposition . Suppose that the space X * (n * )  is Hausdorff. 
Then the space Х ( ъ )  is Hausdorff as well.

The proof is obvious, so it will be omitted here.



(b)

Fig. 8.

Fig. 9.
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3.11. Rem ark. Considering the change of structure from semidy
namical systems to dynamical systems, we may compare the investigated 
properties of the semi-systems and the systems created by them and find 
the similarities and differences. This seems to be an interesting subject of 
investigation which will also help to enlarge the knowledge of the structure 
of semidynamical systems.

Chapter IV

Throughout this section we assume that a semidynamical system on 
IR2 with N ( x )  =  oo for each x £ IR2 is given. Semidynamical systems 
fulfilling these assumptions have many interesting properties (compare [4],
[5] and [6]). In particular, the set F ( t , x )  for a non-stationary point x can 
be fully characterized. We recall

4.1. Th eorem  ([4]). For a non-stationary point x there is a t0 such 
that the set F ( t , x)  is a point for t <  to and an arc, i.e., the set homeomor- 
phic to the interval [0,1], for t >  to.

4.2. Th eorem  ([6]). I f  the set F ( t , x )  is an arc (for a non-stationary 
point x), then there is a 6 >  0 such that F( [ t  — 6, t +  6]t x) is homeomorphic 
to the square. The boundary of this set is equal to the union of the arcs 
F ( t  — 6, x ) , F ( t  +  S,x) and two segments of trajectories through the end
points of F ( t  +  6, x). Each non-end point of the arc F ( t , x )  is an interior 
point of this set.

Using this, we may state

4.3. Theorem . Assume that 1R2(7t) is a Hausdorff space. Then for a 
non-stationary point x the set U {y : у € [x]} is a one dimensional manifold 
(possible with boundary) or a point.

P roo f. Denote the set defined above by E  and assume that E  is not 
a singleton set. Take a point у £ E. Then, according to the definition of 
the equivalence relation, there is an 5 >  0 and an x such that у £ F (s ,x )  
and F ( s }x)  is an arc. I f  у is not an end point of F ( s } x), we may take a 
small 6 and (using Theorem 4.2) find a neighbourhood of y, required in the
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|a -  fi\ <  6). From Theorem 4.1 we have that the set F ( t  +  s,7r(*,x)) is 
an arc for every t >  0. Thus (after repeating the above construction, if 
necessary) we need only consider the case when у is an end point of all arcs 

F(< +  s,Tr(f,x)).
Using Schonflies Theorem about the planar homeomorphisms we may 

assume that F( [s  -  6}s +  6],x) is equal to [ - 1 Д ]2 with у =  (1,0) (see 
Fig. 10) and {1 }  x [—1,1] being a segment of a trajectory through y. Define 
B r as {(x , у) : (x  -  l ) 2 +  y2 <  r2, x >  1}.

Fig. 10.

Note that for t x <  t2 we have F(<i +  s ,*■(<!,x )) С F ( t 2 +  s,Tr(t2,x ) ) .  
Using Remark 2.3 we can write the set E  as ^([0,oo)) where ф is a contin
uous function with ф(0) =  0. I f  there is no un —► oo with ф{ип) —► у then 
Br П ф([0, oo)) =  0 for some r and the theorem is proved (y is a bound
ary point). Assume that у is an accumulation point of ф{1) as t —> oo 
(Fig. 11). I f  there is another accumulation point z of <£(*), then z G E,  
because IR2(7r) is Hausdorff and E  is closed. Thus z is a non-end point 
of F ( t  +  s,7r(t,x)) for some t and using again Theorem 4.2 we show (as 
in the beginning of the proof) that there is a neighbourhood U  o f z with 
U П E  — ф((ос,(3))(a <  P <  oo). We have proved that z is the only one 
accumulation point of <£(*) (t —*• oo), so <£(*) —► z as t —► oo and the set 
<H[0,oo)) is homeomorphic to the circle. This finishes the proof.

4.4. Rem ark. The one dimensional manifold may be only in one of 
four shapes. A ll of them may be obtained as a class of equivalence. We may
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obtain a segment (see Example 2.6, x =  (-1 ,0 )), a half-line (see Example
3.3, x =  (0 ,0)), a line (see Fig. 12, x =  (0,0)) and a circle (see Fig. 13, 
*  =  (0, 1)).

Consider again Examples 2.6 and 3.1. In the case of Example 2.6 we 
got a “good” space and in the system there were many trajectories with all



Fig. 13.

the points belonging to them being the points of negative unicity. This is 
not accidentally. We have

4.5. Theorem . In the planar semidynamical system there is at most 
countable number of pairwise disjoint trajectories that do not fulfill the 
condition (4.5.1):

(4.5.1) for each x belonging to the trajectory T  we have [x] =  {я }.

P roo f. Take a trajectory T  which does not fulfill (4.5.1). Thus there 
are an x and a t with F ( t , x )  П T  ф 0 and F ( t , x )  being an arc. Using
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Theorem 4.2 we may find a nonempty subset U of IR2, such that U С 
F ([<M +6], x) for some 6. Since then U is contained in the union of elements 
given by the equivalence classes of the points of T.

When two trajectories are disjoint, then all their equivalence classes 
are different, which follows easily from Definition 2.1. This means that 
the open sets, constructed for different trajectories as above, are disjoint. 
There is at most countable number of such sets in the plane, so the number 
of trajectories fulfilling (4.5.1) is at most countable.

4.6. Rem ark. Note that the set of negative unicity points in planar 
semidynamical system is large, as the set of non-unicity points is of first 
Baire category (compare [4]).

The following theorem shows that from a particular property of the 
obtained system we may conclude about the good structure of a given 
semi-system on a big set.

4.7. Theorem . Assume that there is a nonempty open subset U 
of IR2(7r) homeomorphic with an open subset V  of IR2. Then there is an 
invariant set К  of the second Baire category such that for each x £ К  the 
point x is of negative unicity and the system (K,  IR, п\т.хк) is a dynamical 
system (for a negative t we put as n(t,y) the unique point of F (t ,y ) ) .

Proo f. Define К  as the set of all points from the trajectories not 
fulfilling (4.5.1). A ll the points of К  are of negative unicity and thus 7r(t, x) 
is defined for all x £ К  and t £ IR. Using Proposition 2.9 from [3] and 
considering the restriction of tt to IR+ x К  we get that n is continuous 
on M x K  (with 7Г(*,x ) defined for t <  0 as above) and so the system is 
dynamical. We need only to show that К  is of second Baire category.

Take the function ф : IR2 Э x —► [x] € IR2(ir), which is continuous. The 
set W  =  ф~1{и )  is open in IR2. We prove that ф\Кп\у is a homeomorphism 
onto its image. It is enough to prove that Ф^Ки{00) )П\у defined on the one 
point compactification space is a homeomorphism onto its image. O f course 
Ф\(Ки{оо\)г\\У k  continuous and bijective (according to the definition of K) .  
Take [xn] С фт( К  U {o o }) П U, [xn] — [x0] £ ф*(К U {o o }) П U. We have 
to show that x„ xo.

Suppose to the contrary that there is a subsequence {x njt}  of {x n}
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not tending to x0. By the compactness of IR2 U { 00}  we may assume that 
x nk -+ y. Then [xnJ  -► [у]. But [xQ] £ £/ and [xnJ  £ U  for large к , the 
last set being a Hausdorff space, so [y] =  [x0] and у =  x0.

Now consider ЛГ =  IR2\/<f and <t>(N) П U . According to Theorem 4.5 
the set <£(iV) has at most countable number of trajectories. Let us say 

that they are given by {y n}- The set <£(N) П U  =  U U  IJ W l* )  *  +  Ц> Уп) : 
fc £ 7 ,n  £ IN } is of first Baire category in U, so ф(К)  П U is of second 
Baire category in U. We have shown that ф\кп\У is a homeomorphism, so 
if К  П W  was of first category then also ф(К П W )  =  U  П Ф{К)  would be of 
first category, which is a contradiction. Thus W  П К  is of second category 
in W.  Since then the set К  must be of second Baire category in IR2, which 
finishes the proof.
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THE PROBLEM OF THE LOCAL SOLVABILITY 

OF THE LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Andrea Corli and Luigi Rodino

1. INTRODUCTION

We want to present a survey of the problem of the local solvability, reviewing shortly 

the main results obtained in these last thirty years; emphasis will be given on methods 

involving canonical transformations and Fourier integral operators.

Let us consider a linear partial differential operator of order m:

(1.1) P = £ c a(x)Da, 
kxlSm

with СГ coefficients ca(x) defined in an open subset П of Rn; the notations are standard:

a K a j,...an)eZ 1̂  Da=Da‘ ...D0" where Dx.=-i9x, and lal=a,+...+an. Set the following
^  i J

definition.

Definition 1.1. The operator P is said to be locally solvable at xQe Q. if there exists a 

neighborhood U ofx0, contained in Q, such that for every fe С~(П) there is a Schwartz 

distribution ue (D(Q) solution of the equation Pu=f in U.

142
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The problem of the local solvability plays an important role in the theory of the linear 

partial differential operators; precisely: one wants to find necessary and/or sufficient 
conditions on the symbol

(1.2) p(x£) = X caW^“
kxl<m

in order that the corresponding operator P is locally solvable at a given x0e £1

Let us first observe that all the linear partial differential operators with constant 
coefficients are locally solvable at any point xQe Rn, in view of the existence of a 
fundamental solution. On the other hand, if we assume the coefficients ca(x) are analytic 

in Q, and there exists a multi-index a, lal=m, such that с^х^гЮ, then we can deduce, as

a consequence of the Cauchy-Kovalevsky theorem, that for every analytic function f, 
defined in a neighborhood of x0, there exist another neighborhood V of x0 and an analytic

solution u in V of the equation Pu=f.

This solvability result is not valid when we require f  to be only an indefinitely 
differentiable function, even maintaining the analyticity of the coefficients. The first 

example of a non-locally-solvable operator was given in 1957 by Lewy [1], who proved 

that the equation
(1.3) Dx u+iDX2u+i(x1+ix2)DX3U=f

has no C1 solution u in a neighborhood of the origin in R3 (actually, no distribution- 
solution in any nonvoid open subset ft of R3), for suitable functions fe C~(R3). In fact, 

by means of elementary computations one may check that, if (1.3) is satisfied in a 
neighborhood of the origin by some ueC1̂ 3) for a C~ real-valued function f depending 
on the variable x3 only, then f must be analytic there.

The example of Lewy was the starting point for the study of large classes of linear 

partial differential equations, which do not admit local solutions; among the first works 

we quote Hormander [3], Mizohata [1] and Nirenberg and Treves [1].
Hormander [3] (1960) gave a necessary condition for local solvability, involving the 

principal symbol of the operator P:

(1.4) Pm(x ^ = S c a(^ a:
taJ=m

precisely, if we have
(1.5) Pm=0, (Pm, Pm )*0
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at some point x=x0, then P is not locally solvable at x0. Hormander based the proof 

on the following remark: if P is locally solvable at x0 then there exist a neighborhood V of 

Xq and constants С, к and N such that for all f,ve С q(V)

(1.6) I Jfvdxl 5 С XsuplD°fl • XsuplDfS('Pv)l,
кхИс ipfcSN

where the formal adjoint (or transposed) lP is defined by the identity

Jyp«|)dx= J<t>I>dx, ф,уеС~(П).
n Q

One is then reduced to prove that (1.6) is contradicted by suitable sequences of test 

functions, if (1.5) is valid.

Condition (1.5) is satisfied by the Lewy example (1.3). There exist unsolvable 

operators which do not satisfy (1.5); in fact, Mizohata [11 (1962) proved that the operator 

inR2

(1.7) M=DIi+ix fo 2

is not locally solvable at the points of the x^axis if h is any odd integer, whereas (1.5) 

holds if and only if h=l.

The non solvability of M follows easily from Hormander’s estimates (1.6), and it can 
be also directly shown if we limit ourselves to consider C1 solutions in neighborhoods V 
of the origin. In fact, for any fixed neighborhood V, let us take fe Cq(V), f(x1,x2)>0 with

support in the half plane Xj>0. Assuming the existence of a solution of Mu=f in V, we 

decompose u in its odd and even part with respect to the variable xr  Letting M act on

u=uodd+ueven> h*11IS easYt0 conclude that Jf(x1,x2)dx1dx2=0, which contradicts

the assumptions on f (cf. Grushin [2]).

Starting from the example of Mizohata, in 1970 Nirenberg and Treves [2], [3] gave a 

general necessary (and sufficient) condition for the local solvability of all the operators of 
principal type, i.e. the operators for which d̂ pm(x,£)*0 where pm(x,£)=0. Their result

will be presented in Section 2; we shall also give there a cheap proof, using the Fourier 

integral operators of Hormander [7] and the related theory of the canonical 
transformations of Caratheodory [1].
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Let us now turn attention to sufficient conditions for local solvability. It will be 
convenient to recall first the definition of hypoellipticity.

Definition 1.2. The operator P in (1.1) is said to be hypoelliptic in Q if 
singsupp Pu = singsupp u, for all ue

1.e. all solutions u <?/Pu=f are C°° where f  is C°°.

The elliptic operators are hypoelliptic, in view of the well known theorem on the 

regularity of their solutions; other relevant examples of hypoelliptic operators are given by 

the heat operator and other parabolic-type operators. The Mizohata operator M is 
hypoelliptic if h in (1.7) is even.

Hypoellipticity and local solvability are closely related; in fact, we have that the 
hypoellipticity of the formal adjoint lP in a neighborhood of xqg  Q implies the local 

solvability of P at the same point (Treves [1], Theorem 52.2, or Yoshikawa [1]). So, for 
example, the elliptic operators are locally solvable.

Observe that also the strictly hyperbolic operators are locally solvable, since we can 

always solve the Cauchy problem for the related nonhomogeneous equation.

Operators of principal type with real-valued principal symbols have been proved to be 

locally solvable by Hormander [2] (1960); this class contains both the strictly hyperbolic 

operators and the elliptic operators with real coefficients. The result of Hormander [2] will 

be stated and proved in Section 2, following the microlocal presentation of Duistermaat 

and H6rmander [1]. The techniques of the Fourier integral operators, canonical 

tranformations and pseudo-differential operators will be also shortly reviewed in Section

2. We shall not dwell too long upon operators of principal type, since there are already 

several survey papers about them, referring at different times on progresses made in the 

researches: Treves [2],[3], Egorov [4], Treves [6], Dieudonn£ [1]. Moreover there are the 

books of Egorov [5] and, above all, Hormander [10].
On the other hand, there is no such a survey work concerning the field of operators 

with multiple characteristics, i.e., operators which are not of principal type. There have 

been many contributions in this area, during the last twenty years; some results have been 

proved independently at different times, and some noteworthy intersections deserve to be 

pointed out. So we think it is useful to collect local solvability results about this kind of 

operators; this will be the content of Section 3.
We shall address ourselves mainly to the results on nonsolvability. Sufficient
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conditions for solvability can be deduced from theorems of hypoellipticity, as already 

observed, or directly from the existence of a right parametrix; results of this type for 

operators with multiple characteristics will be left outside for lack of space. For the same 

reason we shall not discuss solvability and nonsolvability of systems of equations nor 

operators on Lie groups; the study of the range of unsolvable operators will be also 

omitted.

Under these restrictions, our survey will be certainly not exhaustive of all the existing 

works; however several lines of research will be discussed in detail, especially for the 

case in which the characteristics are double. Under the same restrictions the bibliography 

contains almost all papers we know about unsolvability results.

Section 4 will be devoted to the study of the local solvability in the frame of the Gevrey 

classes; relevant references in this connection are the former works of the authors, Rodino

[2], [31, Corli [1], [2], Rodino and Corli [1].

2. C A N O N IC A L  TR AN SFO R M ATIO N S AND O PERATO RS OF 

PRINCIPAL TYPE.

Changes of variables y=y(x) with C°° inverse x=x(y), are often used in
* У

the study of the local solvability. In fact, the operator P is solvable at x0, if and only if the 

corresponding operator P' in the new variables у is solvable at y0=y(x0); on the other 

hand the principal symbol p'm(y,Tl) of P' is given by 

(2.1) p'm(y,Tl) = Рт(х(у),[(Эх/Эу)1] 1Т1),
where pm(x,£) is the principal symbol of P, and a suitable choice of y=y(x) may then lead 

to easy espressions of p^Cy/n)- We want to show how we may reduce ourselves, more 

generally, to an operator P' with principal symbol 

(2-2> Р'т(У )̂ = РтОС(УЛ))
where now (x,£)=x(y;n) is an arbitrary C~ transformation involving both x and which 

is assumed to be homogeneous with respect to the dual variables, and canonical, i.e. 
preserving the symplectic two-form:

n n

X<tyjAdTij= X dxjAdSj.
H  j=l

A general study of the canonical tranformations was given by Caratheodory [1]; in
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particular, it is proved there that a canonical tranformation is always "generated" by a 
function co(x,Ti); precisely, assume 0)(x,T|) is C°° homogeneous with respect to rj of 

degree 1, and suppose also
det ^©(х/пУЭхдп Ф 0, 

then* setting £=cox(x,T|) and у=сол(х/п) and solving with respect to (x,£) or (y,T|), we 

obtain a homogeneous canonical tranformation %. In the opposite direction, given %, we 

may find the generating function со. Observe that a change of variables y=y(x) 
corresponds to the canonical transformation in (2.1) generated by G>(x,T|)=y(x)TV

We are now able to give a precise meaning to P\ transformed of P under the 
canonical transformation %. As in Hormander [7], Egorov [2], we begin by defining the 

Fourier integral operator

(2.3) Ef(x) = (2it)" J e ^ fy x .T iF W n

where the phase co(x,ri) is the generating function of % and the amplitude b(x,t|) is 

assumed for the moment =1 in Rn; F f denotes the Fourier transformation of f. The 

operator E has an inverse E’1 which can be expressed again as Fourier integral operator. 
Setting then

(2.4) P’ = E'*PE 

we obtain

P'f(y) = (2*)-" |eiyT,p'(y,'n)Ff(T|)dri

where the principal symbol p'm(y,T|) of р'(у/П) is given by the formula (2.2). Observe 

that р’(у/П) is not any more polynomial with respect to tj, in general, but it can be 

expressed by means of an asymptotic expansion

(2.5) Р'(У-11) = 1 р ’т ./У-Т1),
>■<>

where p^.jCyJl) is homogeneous in rj of degree m-j. Thus P  in (2.4) must be considered

as a classical pseudo-differential operator (Hormander [5], Kohn and Nirenberg [1]). The 
lower order terms р'^у/П), р,т.2(У»т1)» •••in (2*5) can 1x5 computed explicitly basing 
on the symbol p(x,£) of P and on the amplitude b(x/n) in (2.3), for which we assume in 

general an asymptotic expansion of the type (2.5)
oo

j=o
b(x/n) =
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with bM(x,Ti)*0. To obtain an easy expression for P' we may then take advantage of the 

choice of x> acting on (2.2), and b(x,T]), possibly simplifying the lower order terms.

How the properties of P, say hypoellipticity and local solvability, are connected to 

those of P’? A further difficulty in the study of the conjugation (2.4), with respect to an 
ordinary change of variables, comes from the fact that the canonical transformation % is 

often defined only locally with respect to the dual variables, acting from a conic 
neighorhood Г  of a point (x0,J^)e T*(ft)\0 into a conic neighborhood Г' of x_1((x0,̂ 0)) 

=(y0,'n0)GT*(Q)NO. Hormander [7] solves this problem by introducing the wave front set

of the distribution f, which describes the singularities of f  from a microlocal point of view 
(i.e. locally also in £). One may base consequently on definitions of micro-hypoellipticity 

and micro-solvability, which are invariant under conjugation by Fourier integral 

operators.

We shall not give here details, in this connection, but observe that if we can prove 
that P' is not (micro)locally solvable at (у0Д10), we may transfer the result by means of

(2.4) to (xq,^) and conclude that P is not locally solvable at xQ.

Another important remark, coming from the theory of the pseudo-differential 

operators, is that hypoellipticity and local solvability are also invariant under 
multiplication by elliptic factors, i.e., arguing on principal symbols, we are always 
allowed to replace pm(x£) by qM(x£)pm(x£), for any qM(x£ )*0.

Let us present some applications of the preceding arguments to the linear partial 

differential (or pseudo-differential) operators of principal type, i.e. the operators with 
principal symbol рт(хД) satisfying

(2.6) d^pm(x£>tO for all (x,£) in the characteristic manifold Z= {(хД)е T*(Q)4);

Р т ( * Д ) = 0 ) .

Theorem 2.1. Let P be an operator of principal type, with real-valued principal symbol 
Pm(x£), in a conic neighborhood Г of (x0,^0)e I ;  then P is (micro)locally solvable at

A local version of this theorem was first proved by Hormander [21 using other 
techniques. Here, assuming Э^рт (х,£)*0 in Г, by the implicit function theorem we write

first

P j x£) = - a(x£')),
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where qm_!(x£) is elliptic of order m-1 and a(x,£') is of order 1, with £'=(61*—5n.j)- As 
we observed before, we may ignore the elliptic factor qm.i(x,£) and limit ourselves to the 

study of the operator
P' = D - a(x,D’).лп

Let us prove that there exists a Fourier integral operator E such that
(2.7) E 1P'E = DU ;Уп
the theorem will be then proved, since D is obviously a solvable operator. Actually, itУп
will be sufficient to fix as phase function 

со(х,л) = xnTin + co0(x,n') 
where со^хдУ) is solution of the Hamilton-Jacobi equation 

ЭХпС00 - a(x,dx.co0) = 0,

“ olxn=o = xM'-
We obtain in particular for the canonical transformation x generated by ffl:

Л„ = $п-а (х£ ).
In view of (2.2) we may then conclude that the principal symbol of E_1P'E is given by T|n; 

the lower order terms in (2.5) can be eliminated in this case by means of a suitable choice 
of the amplitude function b(x,ri) of E.

In Duistermaat and Hormander [1] the identity (2.7) allows also a precise 
description of the singularities of the solutions u of the equation Pu=fe C°°: these 
(micro)singularities propagate along the bicharacteristics of pm(x,£), i.e. the integral 

curves of the Hamilton field H ^  on the characteristic manifold L (observe that the 

bicharacteristics are invariant under canonical transformations and multiplication by 

elliptic factors).
Let us now consider pseudo-differential operators P of principal type with complex

valued principal symbol

Рга(х'Ь =ЛеРт(х& + i/mPm(x£)' 
defined in a conic neighborhood Г of (x 0,^ 0)g  Z. Possibly by multiplying by i and

shrinking Г, we may assume d^?epm*0 in Г. Let us write y0 f°r the bicharacteristic of

Repm through (x0,^).

Theorem 2.2. Under the preceding assumptions on pm, suppose that Impm changes 

sign at (x0,£0) from - to + moving in the positive direction on y0; then P is not locally 

solvable at Xq.
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The proof is very easy using canonical transformations, if we assume further that 
/mpm vanishes of finite order at (Хф,^) on y0 (suppose for example pm(x£) is an analytic 

function). In fact then, on every bicharacteristic of Repm nearby there must be a zero 

(y0,T|0) where the same change of sign occurs, and we may choose it so that the order of 

the zero is minimal. In a conic neighborhood Г  of (y0,T|o) we have:

(i) in Г  the characteristic manifold L is a smooth submanifold of codimension 2;

(ii) on ЕпГ' we have /mpm=0 for j<k and HkRgpJmpm̂ 0, where к is a fixed odd

integer.
Under (i) and (ii) it is easy to construct a canonical transformation x such that 

Рт (Х (УЛ )) = T[\± iy ^ 2> modulo elliptic factors.

The lower order terms in the expression of E_1PE can be eliminated by choosing a suitable 

amplitude for E. We are then reduced to prove the theorem for the Mizohata operator 

which, as we observed in the Introduction, is not locally solvable if к is odd. The case 
when Impm vanishes of infinite order at (x0,£q) is more delicate; let us refer to Hormander

[9] for the proof.
If P in Theorem 2.2 is a linear partial differential operator, then at the point (x0,-^0) 

the principal symbol pm(x,£) satisfies the same assumptions, but with a change of sign

from + to Note that same assumptions with a change from + to - are also satisfied by 
the formal adjoint lP at (Xq,^). Therefore we have the following

Corollary 23. Let P be a linear partial differential operator of principal type. With the 
preceding notations, if Impm changes sign at (x0,^0) on y0 then P, lP are not locally 

solvable at х$.

In the opposite direction, if there are not changes of sign along the bicharacteristics, 

then P is locally solvable (see Nirenberg and Treves [3] and Beals and Fefferman [1]). 

However, it is not yet known if the converse of Theorem 2.2 is valid (but in two 

dimensions Lemer [11 has proved that the answer is positive).

As a conclusion of this Section let us just quote, for sake of completeness, some 
other works dealing with these topics: Beals and Fefferman [21, Menikoff [11, Egorov 

and Popivanov [1], Treves [71, Moyer [11, Hormander [8], Lu [1].
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3. OPERATORS WITH MULTIPLE CHARACTERISTICS

In the former section we saw how the very early seventies marked a fixed point in the 
theory of local solvability. On one hand the works of Nirenberg, Treves and Egorov gave 

satisfactory results for operators of principal type; on the other hand, the technique of 

Fourier integral operators introduced by Hormander foumished a powerful tool, capable 

of wide applications. There were then essentially two great open problems: to establish 

the converse of Theorem 2.2 of Nirenberg and Treves and to explore the field of 

operators with multiple characteristics. The first problem appeared soon very hard and 
will be not discussed here: see the last lines of the former Section and the Introduction.

As regards operators with multiple characteristics, the huge amount of papers related 

with them prevent us from giving an account of them all, especially for those dealing with 

sufficient conditions. Then, as already said in the Introduction, we limit ourselves to refer 
mainly about necessary conditions, considering in this section also some works 

concerned with operators with simple characteristics, but which are not of principal type 

in the previous sense. The proofs of the results which follow will be not reported; in most 

cases they are variants of Hormander's [3] method (see Introduction).
All pseudo-differential operators considered below are assumed to be classical. They 

will be usually denoted with P; p will be then the symbol of P.

Probably the first example of an unsolvable operator with multiple characteristics is 

due to Grushin [3] (see also Ivrii [1] for results based on Hormander's [3] condition), 

who proves that the operator, in R2,
(3.1) a f+ t ^ + a a ,

is hypoelliptic and locally solvable if and only if
(3.2) X Ф ± (2n+l), n=0,l,2,....

Thus, while in the principal type case solvability is decided only by the principal part 

of the operator, when the characteristics are higher the lower order terms may play a 

fundamental role. For a bit more general operators the same result was found 

independently by Gilioli and Treves [1].

Theorem 3.1 (Gilioli and Treves [1]). Let P be the differential operator
(3.3) P(UVDX) = (D, - iattojO), - ib f ty  + « “-'D,,
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where (t,x)e R2, a,b,c are real numbers, к is an odd integer. P is not locally solvable at 

(0,0) if and only if one of the following conditions is satisfied:
(i) ab>0;

(ii) ab<0, a*0 and, for some integer n>0, c/(a-b) - n(k+l )=0 or 1;

(iii) ab<0, Ы*0 and, for some integer n> 1, c/(a-b) + n(k+1 )=0 or 1.

With a=-b=l, c=A,-l, k=l, from (3.3) we recover (3.1). To understand the meaning of 

condition (3.2) (and of (ii), (iii) in the theorem above), we must discuss a bit Grushin[l],

[3] approach to differential operators with polynomial coefficients, at least in a particular 

case. Denote by P the operator

(3.4) p<u w -  2 / ap/D“ D f,

la+pl^m; tytemS

where aa^  are complex numbers, 6 is real positive such that m5 is integer, te Rn'\ xe R.

We assume that the following conditions of quasihomogeneity and ellipticity are satisfied:
(3.5) P(tf k M X u %)  = V"P(t,T£) for every X>0;

(3.6) P°(t,x£):= X  aa o / A P *  0 for every t*0, R, -te Rn l: ltl+^l>°.
Ia+pi=m; hyl=Tn5

The main result of Grushin [1] is then that, under these hypotheses, P is hypoelliptic if 
and only if
(3.7) ker(P(tX>t̂ ))n i(R n l) = 0 for every |§l=l.

The following standard application of this result occurs rather frequently: to prove that an 

operator P is locally solvable, one is reduced to show that (3.7) holds for the transposed 
operator.

Substituting dx with i^ in (3.1) we get, when 1̂ 1=1, the ordinary differential operator 

d^dt2 - 12 - Xsign .̂
Now it is known that the eigenvalues (in L2(R)) of d2/dt2 - 12 are Xn=-(2n+l), whose 

eigenfunctions (Hermite functions) are in 5(R). Hence the operator in (3.1) is not 
hypoelliptic if X=±(2n+1), ne Z+. The unsolvability for the values of X in (3.2) is easily

proved directly, by contradicting (a variant of) inequality (1.6). This gives, a fortiori, 
nonhypoellipticity for X=±(2n+1), ne Z+.

In general, when the condition in (3.7) does not hold we have the following more 
recent result.
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Theorem 3.2 (Popivanov [8]). Let P be the operator in (3.4), satisfying (3.5), (3.6). If  
ker(P(t,Dt,5))r\5(Rn'J)?tO for some real l£l=l, then lP is not locally solvable at 0.

This result, jointly with Grushin [1], [3], contains Theorem 3.1.

When к in (3.3) is an even integer one gets similar result of unsolvability; a bit more 

generally let us suppose that a,b,c are complex numbers.

Theorem 3.3 (Menikoff [2]). Let P be the operator in (3.3), with к an even integer, 
a,b,c complex numbers, ReZ'RebtO. Then P is not locally solvable at (0,0) if and only if 
Redi-Reb<0 and c/(a-b) - n(k+l)=l/2 for some integer n.

Moreover Menikoff proves that, for these operators, local solvability is equivalent to 

hypoellipticity. The proofs are inspired by the above works of Grushin, Gilioli and 

Treves.

In Menikoff [3] are studied pseudo-differential operators which can be reduced 

microlocally to operators P of the following type, generalizing those in (3.3):
(3.8) P(t,x,D,J);1)=(Dl+itka(t,x,Dx))(Dt+itkp(t,x,Dx))+tl7(t,x,Dx)+h(t)x,Dt,D:l)Dt.

Here a,p,y are first-order elliptic pseudo-differential operators in a conic neighborhood of 
0=(O,O;^), h is of order zero, te R, xe Rn, Rea*0, ReP*0; k,I are nonnegative integers. 

While the papers of Gilioli and Treves [1] and Menikoff [2] were concerned with the case 
l=k-l, in Menikoff [31 the case l<k-l is taken into account. The unsolvability result there 

proved, expressed for operators in the canonical form (3.8), is the following.

Theorem 3.4 (Menikoff [3]). Let P be as in (3.8) with l<2 and assume that Rea(t,x,£> 

•7?eP(t,x, )̂<0 in a conic neighborhood of 9. Define 

D(s) =((a(0)-p(0))2sJk + 4y(0)s‘ 

and suppose that
(i) D(s)e R Jor every se R;
(ii) there exists sQe R such that D(Sq)<0.

Then the operator P is not locally solvable at 0.

The meaning of D(s) and of the conditions (i),(ii) becomes more clear if we make an 

asymptotic change of variables (a symplectic dilatation in Hormander's terminology).
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This technique is introduced in Ivrii [1] and plays a fundamental role in the work of Ivrii 

and Petkov [1], as well as in many other papers on local unsolvability. Let us assume, for 
simplicity, that n=l, £0=1, and a(t,x,Dx)=aDx, P(t,x,Dx)=pDx, y(t,x,Dx)=YDx, with 

a ,p ,7 real numbers. Let p be a large positive parameter and set s=p\ y=p^x, with 

A.=l/(2k-21-2), p=X(l+2) (we make this choice of X and p, in order to "weight" the first- 

order term containing у as the second-order principal part). Call Q the adjoint operator of 

P after this change of variables and look for an asymptotic solution u of the homogeneous 
equation Qu=0 under the form u=vp-exp(ipy+ip1/2w). Then

(3.9) Qu=-p(2k*2l)Xu[(ws)2-isk(a+P)ws+sVs2kap]+o(p(2k'2,)X).

If we want that the coefficient of p(2k'2,)X vanishes, we must choose w in order that ws is a 

root of the second-order polynomial in brackets in (3.9): its discriminant is just -D(s).

The statement of the above result in terms of operators not already reduced to the 

canonical form (3.8) is a bit cumbersome; for it and for other results concerning 

constructions of parametrices and hypoellipticity, we refer the reader to the quoted paper
r\

(see also Yamamoto [1]). As an example let us consider the operator, in R ,
R = D2 + t2kD2 + Xt1DI,

with l<k-l. If ImX^O then R is hypoelliptic (and then locally solvable). If Xe R\{0) then 

R is not hypoelliptic, and if moreover 1<2 then it is not locally solvable at 0.

At last let us remark that the heavy restriction 1<2 in Theorem 3.4 is merely technical: it 

reflects the lack of complete asymptotic expansions for solutions of some ordinary 
differential equations.

Nonsolvability for operators as in (3.8), but with Re a, Re p having the same sign, is 

studied in Yamasaki [1].

Theorem 3.5 (Yamasaki [1]). Let P be a pseudo-differential operator as in (3.8), with 
a,p,y satisfying the same hypotheses. Assume l<k-l and
(i) tfea(0)>O, Re P(9)>0;
(ii) T(0)eC4R_u{O}).

Then P is not locally solvable at 0.

The proof is inspired by the paper of Cardoso and Treves [1], which we are going 
now to describe.

Let P be a classical pseudo-differential operator, defined in a neighborhood £2 of a
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point x0 in Rn. Let us assume that there exists some R'NjO} and a conic neighborhood 

Г in Т*(П)\{0} of (x0,£q) such that the principal symbol of P can be factorized in Г in the 

following way:
(3.10) pm(x£) = q(x£)((l(x,l;))2.

Here q and 1 are supposed to be positively homogeneous of degree m-2 and 1, 
respectively, and q is elliptic in Г. On 1 we make the following hypotheses:
(3.11) l(x0£0) = 0;

(3.12) d^l(xo£ o)* 0 .

Unless multiplying 1 by i and shrinking Г, from (3.12) we can assume that
(3.13) d^Rel does not vanish in Г;

let us then call y0 the null bicharacteristic strip of Re 1 through (x0,£0). The result of 

Cardoso and Treves is then the following.

Theorem 3.6 (Cardoso and Treves [1]). Let? be as above, satisfying (3.10)-(3.13). 

Assume furthermore that
(3.14) I  ml has a finite odd order zero along y0 at (Xq,^);

(3.15) the change of sign at (xQ, y  of the restriction oflml to yQ is from + to -.

Then lP is not locally solvable at x0.

Let us point out that, under the hypotheses of the previous theorem, the operator *L is 
not locally solvable at x0: see Theorem 2.2. Remark that this unsolvability result is

completely independent of the lower order terms. When P is a differential operator, the 

theorem above holds with weaker hypotheses, as it has been already observed in 

Corollary 2.3: (3.15) is not needed.
The proof of Theorem 3.6 is rather long, though the method is standard: one looks for 

an asymptotic solution u of the form u=vp-exp(ipwp) of the equation Pu=0, with v a 

smooth amplitude function with compact support and wp a complex phase depending on 

the parameter p. However the construction of u is not immediate. Firstly, there is required 

a very careful control on the remainder term in the asymptotic expression of Pu. This is 
achieved by Cardoso and Treves by giving first the asymptotic formula when the symbols 
are analytic in the £ variables; then, with a finite Taylor expansion, they can drop this 

assumption estimating the Taylor remainder term. Secondly, the lower order terms play 

an important role in the proof, though they do not appear explicitly in the statement. More 
precisely one has to distinguish two cases, depending on their "strong" or "little"
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influence in the determination of the phase function. When in (3.14) the vanishing order 

is one the result is contained also in Sjostrand [1].

Theorem 3.6 is generalized by Goldman to operators with higher order characteristics. 

Let us assume, in the notations above, that 

Pm(x&  = Ч(хЛ)(1(хД)У, 
with r^3. Denote the subprincipal symbol of P by

Pm-l(x£ ) = Pm-l(x£> + 1  S  (Э2рт/ Э х ^ )(х Д );
l<j<n

we refer to Duistermaat and Hormander [1] for its properties. Then, under hypotheses
(3.11)-(3.15) and assuming further Рт.1(х0’^0̂ ’ Goldman [1] proves nonsolvability at

x0 for the transposed operator lP. Remark that, in this case, Рт-1=Рт г

What happens when /ml has an even order zero along yQy in the notations of the 

previous theorem, it is conjectured for a simple operator in the survey work of Treves

[6]. Let P be the following second-order differential operator in R2:
(3.16) P(t,x,D,,Dx) = ((Dt+ia(t)Dx)2+b(t)DI+c(t),

where a,b,c are smooth functions; we suppose that a is real-valued and a(t)=tka°(t), with 

a°(0)*0. Here к is an even integer.

Theorem 3.7 (Treves [6]). For the local solvability at (0,0) of the operator P in (3.16) it 

is necessary and sufficient that, in a neighborhood of t=0, it results lb(t)l<Cltlk*1,/cr some 

positive constant C.

In the paper of Treves the proof is missing, but it can be recovered through the 

preceding Theorem 3.5 of Yamasaki and the works of Okaji [1], [4].

The now quoted work of Okaji [1] contains a rather precise analysis of the vanishing 

orders in the lower order terms of differential operators in R2 in order to have or not to 

have local solvability. More precisely there are considered operators of the following type:

(3.17) (Dl+ia(t,x)Dx)m+ ^ bij(t,x )D K ,

i+j<m-l

where a,by are smooth functions; a(t,x)=tka°(t,x), with a0 real-valued and nonvanishing at 

(0,0); к is a positive integer. Let us write now bij(t,x)=tk‘j by(t,x), where the functions b°j

do not vanish identically in a neighborhood of (0,0). When m=2 or 3, Okaji provides then
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some necessary and some sufficient conditions for the local solvability of operators of this 
type, in terms of the exponents к and к~. For lack of space we refer for the statements to 

the above mentioned work.

In Okaji [5] it is considered also an example of an operator of the form (3.17) but with 
an infinite order of vanishing. It is the operator

P(t,x,Dt,Dx) = (D l+iexp(-ltl'n)Dx) 2+b(t)(Dt+iexp(-ltl'n)Dx)+c(t,x)Dx+d(t).

When c(t,x)=exp(-AI(t,x)l*1), the transposed operator lP is not locally solvable at (0,0) if 
l<n or l=n and 0<A<1. We have unsolvability for lP also when c(t,x)=Ytk, with у a 

nonzero complex number and к a nonnegative integer.

As we have seen in Theorem 3.6, for a double characteristic operator whose principal 

symbol is factorized as in (3.10), with q elliptic and 1 a principal type complex operator, 

one may give suitable conditions on 1 in order that local unsolvability does not depend on 

the lower order ternis. This is not the case when 1 is real. Changing slightly notations we 
shall consider pseudo-differential operators P of order 2m, having as principal symbol 

<ЗЛ8) Р2т (х£ )=(Р т (*Ф )2.
where pm is a symbol of real principal type, positively homogeneous of degree m. Let us 

assume that there exists a point (x0,£0), £0*0, such that pm(x0,£0)=0 (and therefore 

d̂ pm(xo,5o)^0). Then we have the following result.

Theorem 3.8 (Popivanov [1]). Let P be an operator as above and suppose that

(i) ReVlm-\ (xO ^)<0;

(ii) /mp̂ m j  has a finite odd order zero at (x0,£g) along the null bicharacteristic strip of

Pm through (x0,^).
Then P is not locally solvable at x0.

When P is a differential operator it is sufficient, as above, to require that Rep^.i does

not vanish at (x0,£0). The proof of Theorem 3.8 consists in the construction of an 

asymptotic solution u of the form u=vpexp(ip^+ipy) of the homogeneous equation 

lPu=0, contradicting (1.6). The first phase function ф is real and it is the (unique) solution 
of the characteristic equation pm(x,grad<}>)=0 under the conditions grad0(xo)=£o, ф(х)=1х12 

on, say, Xj=0. The second phase function \y is complex; the hypotheses (i) and (ii) are 
used in order to have that Im\\f, though vanishing at Xq, is stricdy positive nearby. The
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amplitude function vp is sought as usual under the form Xj=ovj P f ° r N sufficiently 

large, where the are determined by the transport equations.

About Theorem 3.8 we refer also to Ivrii [1] for a condition as in Hormander [3], 

Rubinstein [1] for second-order differential operators, Wenston [2] for general differential 

operators, Menikoff [4] for a proof involving a reduction via Fourier integral operators, 

Popivanov and Georgiev [1] for microlocal solvability (see Hormander [10] for the 

definition of microlocal solvability).

As regards sufficient conditions for the local solvability of operators whose principal 
symbol is factorized as in (3.18), with pm of real principal type, Popivanov [1] proves 

local solvability when Дер^ . ^ 0  or Jw p^  ^O  in a neighborhood of x0 on the

characteristic manifold of pm. In Menikoff [4] there is proved that one has local solvability 

also when Лер^.^О, provided that Imp ^  j does not change sign (maybe having some

zeros) in a neighborhood of (x0,^), and does not vanish identically on any interval of the 

null bicharacteristic strips of pm (see also Wenston [4] for differential operators). In the 

same work there are given also some sufficient conditions for the solvability in the case 

when the subprincipal symbol vanishes.

Theorem 3.8 has been generalized in many directions; we begin by considering 

operators whose principal symbols are a sum or a difference of terms as above. More 
precisely, let us assume that the principal symbol p ^  of a pseudo-differential operator P 

can be written, in a conic neighborhood of (x0£0)e T*(0)4), О с  Rn a neighborhood of 
Xq, as follows:

(3.19) P2m(x^) = i e j(pmJ(x^))2. 
j=l

The symbols pm j are supposed to be positively homogeneous of degree m, of real 

principal type; k<n and 6j=±l. Let us denote N={(x£)eT*(C2)\0; Pmj(x£)=0, l^j^k}* 

Then we have the following result

Theorem 3.9 (Popivanov [3]). Let (x0,^0) be in N; suppose that the к vectors 

grad^pm j(x0,^0),l^j<k, are linearly independent, and that the Poisson brackets 

IPmo’Pm.h)» l-j>h^k> vanish identically on N. Assume moreover that there exists an 
index j0 such that

(i) E jtep^ i (x0,^q)<0;
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(ii) Imp has a first order zero at (xq,^) along the null bicharacteristic strip of pm j 

through (x0,§0).

Then P is not locally solvable at xQ.

As usual, dealing with differential operators, (i) can be weakened by requiring only 
that does not vanish at (Xq,^).

When in (ii) the order of vanishing is more generally odd, or even infinite, some 

further hypotheses, similar to those considered in Egorov and Popivanov [1] for the 

principal type case, permit to obtain again a result of unsolvability. In particular, when 
Imp^n i has an infinite order zero, it is assumed that Imp^ л does not vanish identically

on any interval of the null bicharacteristic strips, lying on N, of some pm For lack of

space we refer the interested reader to the paper of Popivanov [3], where he can find also 
some sufficient conditions for solvability concerning the case 6j=l, for every j=l,...,k;

they are on the lines of those stated under Theorem 3.8.

Recently Popelyukhin [2] has succeeded in proving a result of nonsolvability for the 
operators in Theorem 3.8, allowing to vanish identically on the null

bicharacteristic strip of pm through (x0,^).

Theorem 3.10 (Popelyukhin [2]). Let? be a pseudo-differential operator with principal 
symbol factorized as in (3.18); pm is of real principal type and pm(x0,£0)=0. Let (7(t); 

a<t<b} be an arc of the null bicharacteristic strip of pm through (x ^ ^ ^ O ). Assume that

(i) ^qpLn-i (Y(t))<0, for a<t<b;

(ii) ^ P S2m.i(7(a))-/mpS2in.1(7(b))<0.

Then P is not locally solvable in any subset of Rn containing the projection of the arc 
(7(t); a^t<b}.

The proof is given by using a canonical transformation and a related Fourier integral 

operator to reduce the operator to a second-order one.
Another generalization of Theorem 3.8 can be found in Popivanov [4], where there are 

studied pseudo-differential operators with real principal symbol pm such that Pm(x0,£0)=

but Э^п/Эфхо^хО for some j0.

In Wenston [1] is taken into account the '’stability" of local solvability under
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perturbations. Let P be a locally solvable differential operator of order m; an operator R of 
order l<m is called an admissible lower order perturbation o f P if P-k(>R is still solvable 

for every smooth function ф. In this work there is given a sufficient condition for 

admissibility for operators P of the type 
P(xJ))=(?j(xJ))...Qj(x,D),

where the operators Qj are homogeneous, satisfying the condition of solvability of 

Nirenberg and Treves, and their characteristic manifolds are disjoint. As regards 

necessary conditions for admissibility of a perturbation R, when P is as above, it is 
shown that if every has real (or constant) coefficients, max1<i<k{j i}=2 and l=m-l, then 

every double characteristic root £ of Pm must be a root of R ^  too.

We pass now to expose briefly some results concerning operators whose principal 

symbol is a power of order higher than two of some symbol of real principal type. In 

Wenston [3] are taken into account operators which can be written in the canonical form 
P = D ^ 1+a(t.x,Dx),

where a is a first-order pseudo-differential operator (we use here the variables te R, 

xe Rn). Referring to this canonical form it is proved there that P is not locally solvable at 
(0,0) when the following two conditions are satisfied for some ^  in R^fO ):
(i) Re a^O.O^M);

(ii) /ma^tA^) has a finite odd order zero at t=0.

In the same work there are given also some sufficient conditions for the local solvability 
of this class of operators. Let us assume that does not depend on x, Яеа^ОД^О, 

/та^ОфнО and the sign of /ma^t,^) depends only on £. In this case, for instance, we 

have local solvability. Other sufficient conditions about a class of operators with odd 

order real characteristics can be found in Roberts and Wenston [1].

We mention also the work of Popivanov and Popov [2], which deals with operators P 
having as principal symbol (pm(x,£))3, where pm is real, positively homogeneous of 

degree m. It is assumed that pm is of "principal type" in the weak sense that for some 

(xO’^o)» Pm^o^o)^ bul gradx^Pm^o^o)^- p is not locally solvable at x0 if 

the following conditions are satisfied:

Ф) /mP3m-l (Xo£o)=0> Н р ^Р зп Я  )(Х0Д0)>0-

The former paper of Popivanov and Popov [1] was concerned with the case m=l. For a
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generalization to higher order characteristics see Corli [2] and the next section.

Let us quote also the work of Okaji [2], where there is characterized the local 
solvability for the operator D^+at^D", n a positive integer.

Let us now go on considering double characteristic operators whose principal symbols 

are factorized into two different symbols of real principal type. Definitive results about a 

significative class of these operators have been obtained by Mendoza and Uhlmann [1],
[2]. Let P be a classical pseudo-differential operator on an open subset 12 in Rn, with 
principal symbol pm factorized as follows:
(3.20) Pm= P miPm2.

The operators p , pm2 are positively homogeneous of degree mp m^ respectively, both 

of real principal type; the factorization (3.20) holds true near every point in Т*(Ф)Ч). The 
following hypotheses on the principal symbol pm are assumed:

(3.21) the doubly characteristic set L= { (x,£)e T*(£2)\0; pm(x,£)=gradx̂ pm(x£)=0} 

is an involutive submanifold of codimension 2; i.e. {pmj, pm2 }=0 on 1;

(3.22) the Hamilton vector fields Hpj, and the radial direction X j" are 

linearly independent on £.

In this framework we state now the main condition:
(3.23) ^Pm-i d°es 9101 change sign at (xq,^) along the null bicharacteristic strip of

Pm, Pni2 trou g h  (Xq,^q).

Theorem 3.11 (Mendoza and Uhlmann [1]). Let? be a pseudo-differential operator 
satisfying (3.20)-(3.22); then (3.23) is a necessary condition for the microlocal solvability 
<«(x0£o).

The proof consists in reducing, with a canonical transformation, to the second-order 
operator DXJDX2+B(X,DX), where В is of order one; then one proceeds along the lines of

Hormander [9].
On the other hand, Mendoza and Uhlmann [2] prove that for these operators there is 

local solvability when //wp̂  j does not vanish on L. For a more precise statement, as well

as for results on the propagation of singularities, we refer to the last mentioned paper.
Local solvability for operators with double involutive characteristics, with principal 

symbol not necessarily factorized as in (3.20), is studied also in Popivanov [6], [7], [10]
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and in Popelyukhin [1].

In the early seventies, just after the papers of Nirenberg and Treves, Rubinstein [2] 

found two examples of unsolvable operators, which are not of principal type and do not 

belong to any of the classes until now discussed. Both of them were the starting point for 

some further researches, as it happened, for instance, for the pioneering work of Gilioli 

and Treves.

Theorem 3.12 (Rubinstein [2]).
(3.24) Df+№?+(l+itm)Dx,

(3.25) DI-it"Dx+itmD](, 

are not locally solvable at (0,0).

Proofs are given following the standard pattern of Hormander [3], using a suitable 

asymptotic change of variables.

These examples show once more the fundamental role played be the lower order terms 

when the operators are not of principal type. In fact, concerning for instance the operator 
in (3.24), the principal part D2+t"D  ̂ is locally solvable, but the "perturbative" term

(l+ itm)Dx, provided it is sufficiently "strong" in a neighborhood of t=0, causes the 

unsolvability of the operator. On the other hand, the above result may be explained, 
roughly speaking, as follows: the operator D2+(l+itm)Dx is not solvable when m is odd

(see Theorem 3.8), and the "perturbation" -i^D2, if sufficiently "weak", does not affect

the unsolvability. Analogously one may argue on the operator in (3.25): remark that the 

first order part is just Mizohata operator. Let us notice furthermore that the operator in

(3.25) is solvable when n<2m+l.

Operators as in (3.24) were already taken into account in the paper of Ivrii [11, where 

unsolvability in the cases n=5,6, m=l, was proved. This shows that the "threshold" 
n>4m+2 given by Rubinstein is not the best one in order to have nonsolvability. This 

appears also from the work of Karatopraklieva [1] (see also Popivanov [8]), where there 
is studied the slightly more general operator

Dj+at"Dx+(a+ipr)Dx> m odd, n>4m+2;

The operators, in R2,
m odd, n>4m+2,

n even, n>2m+l,
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a,a,p are real constants, a(M). By employing the method of Grushin [1] it is proved 

there that this operator is not locally solvable at (0,0) when a*0. On the contrary, if a=0, 

a>0 and n is even, then the operator is solvable. The same results hold for the transposed 
operator.

Let us now go on considering some classes of operators related to the example in
(3.25). Kannai [1] proved that the operator D+itDx, in R2, is not locally solvable at t=0 if

the sign + is chosen, while it becomes so in the other case. Proofs depend heavily on the 

rather particular feature of the operator: there are used techniques dealing with the heat 

operator. In Popivanov [4] there are given necessary and sufficient conditions for the 
solvability of some operators, in R2, of the form Dt+P(t,Dx), where P is a fourth-order

differential operator with polynomial coefficients. Okaji [3] (see also Okaji [2]) studies the 
same problems for the more general case Dt+P(t,x,Dx), with P of order m and (t,x) in a

neighborhood of 0 in R1+n. In this work the conditions for solvability are given by means 

of a careful analysis of the order of vanishing at 0 of the coefficients of P (see Okaji [1] 
for the same approach to different problems). As an example there is completely 
established the solvability at Oe R2 of the operator Dj+ia^D^+ib^D^, where n>m and a,b

are real numbers. At the end of the paper, Okaji proposes the following definition of 

semi-local solvability.

Definition 3.13 (Okaji [3]). Let P=P(t,x,Dt,Dx) be an operator with C° coefficients in 

a neighborhood of the origin (0,0) in R 1+n; P is said to be semi-locally solvable at (0,0) 

with respect to t>0 (resp. t<0) if  there exists a neighborhood U of (0,0) such that for 
every feCo(U +) (resp. fe Cq(U_)) there exists some ue £>'(U+) (resp. ue £>'(TJ.))

satisfying Pu=f in U Jjesp. UJ. Here U±==Un{±t>0}.

With this terminology, Lewy operator, Dt+iDx+i(t+ix)Dy, in R3, is not semi-locally

solvable at the origin neither with respect to t>0 nor with respect to t<0, whereas 
Mizohata operator, D j+ iA ) , к odd, is semi-locally solvable at the origin in R2 with

д 2 ^
respect to both sides. On the other hand, the fourth order operator Dl-itnDx-+-itmDx, in R ,

with n even, m odd, n>2m+l, is semi-locally solvable at (0,0) with respect to t>0 but not 

with respect to t<0.
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Shananin has studied intensively solvability for operators of quasi-principal type; let us 

recall briefly what this term means. Let P (x ,D )= ^ |al<daa(x)Da be a differential operator 

in Rn, and let т = ( т р...тп) denote an n-ple of positive integers: m is called a weight set. 

The weighted order M of P, with respect to the weight set m, is defined as

M=max{m*a:= X mjaj; aa ̂ °es mt vanish identically},
l<j<n

and the weighted principal symbol of P is

Рм(хЛ)= X aaW^“
m-a=M

A variable xk is then called a fundamental variable if m ^m in j^ lm j}; we shall denote by 

x' the set of fundamental variables.

Definition 3.14. A differential operator P is called of quasi-principal type (with respect 
to the weight set m) if grad^P^(x,J;)*0 when Р^(хД)=0,/ог every £*0.

We have then the following solvability result

Theorem 3.15 (Shananin [1]). Let P be a differential operator of order d, defined in an 
open subset Q in Rn; let us suppose that P is of quasi-principal type with real weighted 

principal symbol and M=d.
Then P is locally solvable at each point in £1

Remark that the condition M=d implies that there exists at least one fundamental 

variable. This result fails when the assumption M=d does not hold, as it is shown in 
Shananin [2] for the operator in R2

It is of quasi-principal type with respect to the weight set m=(2,3) and the weighted 
principal symbol, Р^хф Ц 3-*-̂ » is real; however P is not locally solvable at the origin.

As one may easily understand from this example, the behaviour of the weighted lower 
order terms is essential when condition M=d is not satisfied.

Several necessary conditions for the local solvability of operators of quasi-principal
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type have been given in Shananin [3],[4],[5]; a sufficient condition for a class of related 
operators is in Volevich and Gindikin [1].

As we pointed out several times, the results we exposed until here were otained by 

using mainly Hormander method, or variants of it; in some other cases Grushin technique 
was used. We must now recall a quite different approach to the problem of the local 

solvability, which may be applied also in the study of hypoellipticity. It is the method of 

concatenations, introduced in Treves [5]. In this work second-order abstract evolution 
operators P are studied (but it is taken into account also the first order case) of the form
(3.26) P=(af a(t,A)A)(af b(t,A)A)-c(t,A)A.

The linear operator A in (3.26) is densely defined in a Hilbert space H; it is unbounded 

but self-adjoint, positive-defined with bounded inverse A '1. Just to fix ideas, we may 
think H=L2(£2) and A as some self-adjoint extension of -Л. Moreover we have denoted 

with a,b,c some series in non negative powers of A '1 with coefficients in C~(I), where I is 
an open subset of Rt; that is, for instance, a(t,A)=^" 0aj(t)A‘1. The convergence of these

series is meant in the space of bounded linear operators on H, uniformly (on compact 
subsets of I) with respect to t and to every t-derivative. Under suitable hypotheses, some 

solvability and hypoellipticity results are then given in terms of the concatenation 

associated to P, that is, by means of a sequence of operators constructed from P. Since it 

does not seem possible to us to give in few lines a satisfactory account of the results 

obtained by Treves, we refer the reader to the quoted paper, nevertheless we would like to 

give an example of how his method works.
As we mentioned at the beginning of this section, Grushin operator

(3.27) G ^ D f+ A ^ + X D ^  (t,x)e R 2,

is not locally solvable at the origin when X=±(2n+1), n a positive integer. We want to 

sketch a proof of this result by the method of concatenations. More precisely, we shall 
show the microlocal unsolvability of Gx at 0=(O,O;O,1) for X=-(2n+l).

Take X=-l; then we can write 
G.1=(Dl+itDx)(Dl-itDx).

In this expression, the Mizohata operator appears as left hand factor; since it is not 
microlocally solvable at 0, the same must be true for G.j. Take now X=-3 and write 

(Df itDx)G.3=(Dl+itDx)P, 

where P is some second-order operator. The first factor on the left hand side is 
microlocally solvable at 0, with solutions in C°°. On the other hand, the left hand side is
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not microlocally solvable at that point, arguing as before; then G_3 is not microlocally 

solvable at 0. The general case may be easily handled in the same way by induction.

The method of concatenations has been used in Gilioli and Treves [1] and several other 

papers. In Rodino [1] (see also Mascarello Rodino [1]) are taken into account degenerate 

pseudo-differential operators P, in R1+n, of the form

P(t,x,D,JDx)=x(D,-rMt[Dsl).. .(D,-r2tDxl)(D,-r1tlDxl)+ ^ c hkthD̂ IDxl(M+hk)e,

h+k<M-l

where x, c^  (0<h,k<M-l), Tj (l<j<M) are complex constants, t*0. Here IDXI denote the 

pseudo-differential operator with symbol l£l. Under the assumption 
/mrj>0, Imv<0 for j=2,3,.. .,M, 

the hypoellipticity of P is equivalent to the local solvability of lP, which in turn is 

equivalent to a Grushin type condition on the operator.

The same method is used also in Kwon [11, where there are studied double 

characteristic pseudo-differential operators whose principal symbol is nonnegative and the 

characteristic manifold is symplectic of codimension two (Grushin type operators, for 

instance). Some generalizations of the results of Treves [51 may be found in Gilioli [1], 

Oganesjan [1], Shananin [6].

An example of a highly degenerate unsolvable first-order operator is given in Elschner 

and Lorenz [1]. It is the operator, in R2,
(х2+у2)к(хЭд+уЭу)+Кх2+у2)к(хЭу-уЭх)+1, 

which can be written in polar coordinates (г,ф) as 
12к+1Эт+и2кЭф+1.

It is proved there that this operator is hypoelliptic but not locally solvable at (0,0). 

Generalizations to higher order operators are contained in the papers of Lorenz [ 1], [2]. In 

particular in Lorenz [2] there is considered the operator 
г2ч+2Д+ц(г)г2̂ 1Эг+Х(г), xe R", i=lxl, 

where цД are real CT functions, ц(0М0)*0 and q,p are positive integers, q>2p. Under 

these assumptions this operator is not locally solvable at 0 if and only if X(0)>0 and 
ц.(0)>0. For this kind of problems see also Felix [1].

All the results until here exposed were concerned with operators having indefinitely 

differentiable coefficients. We must however quote the paper of Colombini and Spagnolo 
[1] where, among other things, there is proved that for some function A(t,x)€ C0,a(R2)
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for all a<l, satisfying C*1<A(t,x)^C for some positive constant C, the equation 
utt-(A(t,x)ux)x=x

has no C1 solution in a neighborhood of (0,0).

4. LOCAL SOLVABILITY IN GEVREY CLASSES

The aim of this section is to give an account of some recent results on local solvability 

in Gevrey classes. It is convenient, before stating the reason for this kind of problem, to 

recall the definition of these classes of functions; a standard reference is Komatsu [1].
Let 11 be an open subset in Rn, К a compact subset of £}, h,s real numbers with h>0, 

s>l; we define Gs,h(K) as the space of the functions феС“ (К) such that 

suPXe к|° аф(х)1 *  Ch^a!5, Ial=0,l,2... 

for some positive constant C. The space Gs,h(K) is a Banach space under the norm 
H>;Gs,h(K)l = supasupXGK Ь*ыа!"510“ф(х)1.

The Gevrey function classes are then defined as follows:
(4.1) G(s)(Q) = projlimKceaprojlimh_)0 GsJl(K)

(4.2) G{s,(Q) = projlim^^indlin^^ G^OfC),

with the usual topologies of inductive or projective limits of locally convex spaces. More 
precisely, we shall refer to G ^(H ) as projective Gevrey classes and to G*s*(£0 as 
inductive Gevrey classes (of order s). The strong dual spaces of G(s)(Q), Gls}(H), s>l, 

are called spaces of ultradistributions; they will be denoted by G(s)(£2), G^ŝ (П), 

respectively.
Remark that G^*(Q) is nothing else than the space of the analytic functions on £2; 

moreover from the definitions (4.1), (4.2) it is clear that
(4.3) G(s)(n ) с  Gls}(ft) с  С~(Д), for every s2>l;
(4.4) G{S)(Q) с  G(S+€)(Q), for every s>l, e>0;

(4.5) G(S)(Q) с  G(t)(Q), G{s)(fl) с  G{l)(ft), for every l<s<t.

All above inclusions are strict.
Gevrey classes arise in a natural way when dealing with partial differential equations. 

So, for instance, the solutions u of the homogeneous heat equation dtu-9xu=0 are analytic

in x and of class G*2* with respect to t; and the Cauchy problem for a weakly hyperbolic 
equation, though not well posed in C*°, becomes so in some Gevrey classes (see Ivrii
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[3]).
We can now explain which is the problem we shall be concerned with. Let P be a 

differential operator and let us suppose that it is not solvable at some point, that is, for 
some fe СГ there are no distributions u solving the equation Pu=f near that point. We may 

ask whether, by restricting the class of the data f, and allowing "worse" (i.e., in some 
classes wider than *D) solutions than before, we can solve our equation. We expect that 

the answer may be affirmative: Cauchy-Kovalevsky theorem gives solvability (in 

nondegenerate cases) when s=l, though in neighborhoods depending on the data. It is 

then natural to give the following definition.

Definition 4.1. Let P be a (pseudo-differential operator in П; P is said to be locally 
(s)-solvable (resp. {s ) -solvable) at x0e Q if there exists a neighborhood U ofxQ such that 

for every fe G(s*(Q) (feG ^ (Q )) there exists ue G(s)'(Q) (ue G^^'(Q)) satisfying Pu=f in 

U.

Thus, if an operator P is s-solvable (we omit the parentheses when dealing with both 

cases at the same time), then it is t-solvable for every t<s (by (4.5)); on the other hand, 

local s-unsolvability, for some s, implies unsolvability in C" (by (4.3)).

Definition 4.1 has been given, in the (s)-case (really, in a more general case), by 

Bjorck [1], who proved that Hormander's [3] condition is necessary also for the local (s)- 

solvability of first-order operators with analytic coefficients. His proof is a modification 

of Hormander's one. For what concerns the definition for the projective case, it may look 

a bit astonishing that is was proposed only twenty years later by Rodino [2],[3], and this 

although at the same time related problems were studied (for example, hypoellipticity in 

Gewey classes). Let us remark however that every { s} -unsolvability result, for s in an 
open interval of the type (s0,+<»), s0>l, implies immediately an analogous (s)-

unsolvability result for s in the same interval, in view of (4.4); and vice-versa. So we 

shall state all results below for the {s]-case; also the proofs, as usual not reported here, 
are given in this case.

Let us begin by considering operators of principal type.

Theorem 4.2 (Rodino [2],[3]). Let P be a classical analytic pseudo-differential 
operator, satisfying the hypotheses stated before Theorem 22. Suppose that /mpm has a 

finite odd order zero at (xQ̂ )when it is restricted to Y0 and changes its sign from - to +



moving in the positive direction of yQ. Then ? is not locally {s}-solvable at xQfor every 

s>l.

The proof is like that of Theorem 2.2; this time however one must use Fourier integral 

operators with analytic phase and amplitude functions. For details we refer to Rodino [3]. 
Also Grushin operators G^ (see (3.27)) are not locally {s}-solvable for any s>l; the

proof outlined above works equally v/ell in this case (see again Rodino [3]).

Let us now take into account a wider class of differential operators with double 
characteristics, precisely those considered in Theorem 3.6.

Theorem 4.3 (Cardoso [1]). Let P be an analytic differential operator with principal 
symbol pm(x,^)=q(x,^)(l(x,^))2, where q and 1 are differential operators of orders m-2,1,

respectively. Let us assume that q is elliptic and 1 is of principal type. Moreover let there 
exist some (Xq,^), ^ * 0 , such that l(x0,^)=0; we can suppose then that d^/?d(x0,^ )*0.

I f

I  ml has a finite odd order zero at (x0,£0) when it is restricted to the null 

bicharacteristic strip ofRel through (x0,̂ q), 
then P is not locally [s)-solvable at x0,for every s>l.

The proof of this result is along the lines of the proof of Theorem 3.6, with the 

modifications needed in the Gevrey case: see Corli [1], and below for some more 

informations.

All the operators until now considered remained {s}-unsolvable for every s>l. 

However, operators which become {s}-solvable for some sufficiently small s>l do exist; 

for instance the operator in R2

(D?+ft>x)4
is locally {s}-solvable at (0,0) if and only if l<s<2 (see Rodino [3]).

Let us now go on considering some necessary conditions for the local {s} -solvability 

of differential operators with multiple characteristics. The following result specifies 

Theorem 3.8.

Theorem 4.4 (Corli [1]). Let? be an analytic differential operator, with principal 
symbol p2m(x,£)=(pm(x,$))2, where pm is of real principal type. Let us assume that
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Pm(xo£o>=0/° r some (Х<Л))'So*0- and 

0) R«P2m-l(x0 'W ’‘°:

(ii) / m p ^ ! has a finite odd order zero at (x^^a long the null bicharacteristic strip of

Pm through (x0,^j).
Then P is not loccdly {s } -solvable at x0 when s>2.

Though the proof of this theorem is similar to the proof of Theorem 3.8, two important 

differences deserve to be pointed out. First of all, it is needed an inequality, which is 

necessary for local {s}-solvability, of the type given in (1.6). The topology of the spaces 
G ^ (^ )  does not permit to simply rephrase Hormander's proof (whereas it is so in the 

G(s) case): however one may proceeds as it is done in Ivrii and Petkov [1], introducing 
moreover a sequence of spaces defining G ^ (ft ) which is slightly different from the one 

used above. Secondly, rather precise estimates of the asymptotic solution are required, 

like those needed for the Cauchy problem by Ivrii [2].

In Corli [1] there is given also a necessary condition for {s}-solvability of a class of 

operators with higher order characteristics, making more precise a former result of 

Wenston [3].

Let us consider now differential operators whose principal symbols are powers of 

order larger than two of an operator of real principal type. More precisely let P be an 

analytic differential operator with principal symbol

Рт,(*Л)=(Рт0 Ф )Г r- 3'
where pm is of real principal type; let us suppose that pm(x0,̂ 0)=0.

Theorem 4.5 (Corli [2]). Let? be as above. We make the following assumptions:
(i) ЯеРтг.^Хо^М);

(ii) ImPtm.i has a finite odd order zero at (xQ̂ )along the null bicharacteristic strip of 

pm through (x0£q); if r is odd we require furthermore that the ensuing change of 

sign is from - to +;
Under these hypotheses the operator P is not locally {s )-solvable at Xq when s>r/(r-l).

As we mentioned in the former section, this theorem was proved in the C°° category by 
Popivanov and Popov [2] when r=3; for r>3 this theorem provides then a result of C“
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unsolvability which was not previously known. We refer again to Corli [2] for a result of 

the same kind in the case when the subprincipal symbol vanishes on the characteristic 
manifold. Both proofs deal with the techniques mentioned above.

For what concerns sufficient conditions for (s)-solvability for these classes of 

operators, when s is sufficiently near to one, let us mention the paper of Rodino and 

Zanghirati [1]. There is proved that classical analytic pseudo-differential operators, having 
for canonical model the operator 

D£+R(x,D),
1

where R is of order m-1, are microlocally {s}-solvable at 9=(0;0,^) when l<s<m/(m-l),

without any condition on R. On the other hand if we assume //wrm l(0)*O, denoting by 

rm jthe principal symbol of R, then we have microlocal {s}-solvability also in the case 

s£m/(m-l) (see Liess and Rodino [1]). We refer to these papers for more details (see also 
Rodino [3], [4]).

At last, let us quote Gramchev [1] for sufficient conditions for (s)-solvability of 

operators in R2 of the form

(DI+ia(t,x)Dx)m+ £  Bj(t,x,DI)(Dl+ia(t,x)Dx)ra'j'1
0<j<m-l

where a is a real analytic function vanishing of finite even order at t=0 and Bj are analytic 

differential operators of order j; we mention also Cattabriga and Zanghirati [1] for the 
suijectivity in G ^ (R 2) (but not in G ^ (R 3)) of the Mizohata operator (1.7) with h even, 

and Ehrenpreis [1] for some other related results on suijectivity in Gevrey classes.
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ENTROPY AND CURVATURE

Je r r y  D o n a t o

A B S T R A C T . The necessary and sufficient conditions of reversible pro
cesses and irreversible processes are given using an invariant intrinsic 
со variant curvature tensor, Л -*. Two observations sure made: entropy is 
curvature and disorder reflects path dependence. Equilibrium and sta
ble processes are specified as R*jk =  0 and non-equilibrium and unstable 
processes are specified as R jjk ^ 0. Cartan’s method of equivalence 
incorporates curvature, torsion and group properties into the analysis.

1. INTRODUCTION.

Section 2 presents the fundamental existence theorem for ordinary differential 

equations.

Section 3 restates the existence theorem of ordinary differential equations in 

a geometric form using the notions of vector fields and integral curves. The inclu

sion of a geometric object, denoted as M , in the procedure and the corresponding
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composition of functions is presented. The theory of Lie groups and their interde

pendence between the geometrical interpretation of the integral curves of the vector 

field and the one-parameter group of transformation is mentioned.

Section 4 states the theorem that any Pfaffian differential equation in R2 

admits an integrating factor. The exponential form of the integrating factor for 

a homogeneous linear first order differential equation is presented using a well- 

known ordinary differential equation. The general algebraic properties of linear 

exponential operators are mentioned. The following theorem is stated: if X  is a 

skew-symmetrix matrix, then exp X  is orthogonal and its relationship to the theory 

of Maurer-Cartan forms, Lie group theory and the first fundamental theorem of Lie 

is mentioned.

Section 5 presents the Frobenius integrability conditions for the Pfaffian equa

tion. An example is given for R3 and the symmetry and cycle properties are noted. 

A recent paper by Lacomba and Hernandez extensively illustrate these symmetry 

(reciprocity) conditions in many physical systems including thermodynamics; they 

also present the Inaccessibility Theorem of Constantin Caratheodory.

Section 6 presents Stokes’ Theorem using differential forms.

Section 7 presents Poincare’s Lemma and Its Converse and notes its relation

ship to the integrability conditions, that is, the order of taking partial derivatives 

commutes; this indicates path independent movements.

Section 8 describes a differential manifold.

Section 9 presents Gauss’s Theorema Egregium and notes that intrinsic geo

metric properties of a surface should be investigated.

Section 10 briefly presents the subject of tensor calculus and develops the three- 

index symbols The geometric notion of the parallel transport of a vector

is developed into an invariant intrinsic covariant Riemannian-Christoffel curvature 

tensor, denoted as Some algebraic properties of this tensor are mentioned.

The following important theorem is stated: In order that a Riemannian space be
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flat, it is necessary and sufficient that the components of its curvature tensor vanish 

identically.

Section 11 presents a brief review of some thermodynamic concepts. The 

inexact differentials of work, denoted as dW , and of heat, denoted as dQ  are 

presented. The first law of thermodynamics is presented and an example from 

a hydrostatic system is given where the integrability conditions of the differential 

equations are not met, that is, Poincare’s Lemma and Its Converse are violated. 

Experimentation reveals that the integrating factor for systems is a thermodynamic 

temperature that can be defined provided that the second law of thermodynamic 

exists.

Section 12 describes what a reversible process is and what an irreversible 

process is. The following statements on thermodynamics axe presented: Kelvin- 

Planck, Clausius and Caratheodory. The observation is made that natural processes 

are irreversible.

Section 13 presents the general geometric axioms of the necessary and suffi

cient conditions of reversible processes in terms of an invariant intrinsic covariant 

curvature tensor, R\jk- When R\jk exists, path dependent movements (irreversible 

processes) exists and when R\jk =  0 path independent movements (reversible pro

cesses) exist. The inexact differentials dW  and dQ are reflected in The second 

law of thermodynamics is stated, that is, the notion of entropy is presented. The 

observation is made that entropy is reflected in the curvature tensor, . This 

observation suggests the following: entropy is curvature. If entropy is viewed as a 

disorder concept, then, geometrically, disorder reflects the path dependence of the 

processes.

Section 14 briefly presents the four equations corresponding to internal energy, 

enthalpy, Helmholtz function and Gibbs function and relates them to Maxwell’s rela

tions and their corresponding characteristic independent variables that are coupled 

through the Legendre transform. The surfaces associated with these functions (and 

also the PVT system) and their thermodynamic information are noted. Gauss’s 

Theorema Egregium of 1827 and Riemann’s presentation of 1854 points to the
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mathematical investigations of the surfaces (manifolds) themselves. This suggests 

that the equilibrium/non-equilibrium processes and stable/unstable processes be 

investigated from a full geometric viewpoint. A non-equilibrium and an unstable 

concept are briefly described. The analysis suggests that equilibrium and stable 

processes can be specified as R ^ k =  0 and non-equilibrium and unstable processes 

can be specified as R ^ k ^  0. This suggests that the observer of processes should 

use the postulates of non-Euclidean geometry.

Section 15 briefly presents Elie Car tan’s method of equivalence that may be 

used in the analysis. Cartan’s method of moving frames incorporates the mathemat

ical concepts of curvature, torsion and group properties. Cartan’s method considers 

the notions of the lifting of the linear group to G  spaces and the related mapping 

of intrinsic torsion has to be considered in addition to curvature. If torsion is not 

constant and the group reduction and normalization processes are not constant, 

then many other possibilities and problems appear.

2. ORDINARY DIFFERENTIAL EQUATIONS.

The existence theorem for ordinary differential equations (ODE) is as follows:

THEOREM 2.1. ([4]) Let U  С Rn be an open set and /<, e >  0 denote the 

interval — e <  t <  e, t G R. Suppose / ‘ (t , * 1, . . . ,® " ) ,  i =  1 , . . . ,n  be a function 

of class C r, r >  1 on I eX U . Then for each x E U there exists S > 0 and a 

neighborhood V  of x, V  С U such that

(I) For each а =  (a1, . . . , ^ )  £ V  there exists an n-tuple of C r functions 

x (t ) =  (rc1̂ ) , . .. ,sn(<)) defined on Jg and mapping Is into U  which satisfy the 

system of first order differential equations

M  ^  =  « =  1...... n

and the initial conditions

(* * ) *■’(0 ) =  o’’ < =



185

For each a, the functions x (t ) =  (ж1 (<),*.. ,£"(<)) are uniquely determined in the 

sense that any other function ... ,£*(0  satisfying (**) and (**) must agree 

with x (t) on their common domain which includes Is. -

(II) These functions being uniquely determined by a =  (a1,..., an)  for every 

a 6 V, can be written as xl(t> a1,.. . ,  a"), i =  1 ,...,n in which case they are ĉlass 

C r in all variables and hence determine a C T map of Is x V  —> J7.

3. VECTOR FIELDS.

The hypotheses and conclusions of the fundamental existence theorem of ordi

nary differential equations can be restated in a coordinate free or geometric form 

using the concepts of vector fields and integral curves.

DEFINITION 3.1. ([3]) Let <p : / —► M  be a differentia] mapping on an 

open interval of the t axis into M  such that <p(0) — x £ M  and further let 

Xх : M  —» Rn (i =  l , . . . ,n )  be a mapping from M  into an admissible coordinate 

system Rn. Hence the following procedure is

I  -£ * M  -?-* Rn .

Now the ODE takes the following form

Remark 3.2. Observe the inclusion of the geometric object M  in the proce

dure and the corresponding composition of functions.

DEFINITION 3.3. ([23]) Let X  е Э С (М ) be a vector field on M n. A differ

entiable curve 7  : (a, 6) С R —> M  is called an integral curve for X  if

7 (0  =  * ( 7 ( 0 )  f o r t £ ( a , b )

or
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7* ( s ) = * u . >

T heorem  3.4. ([23]) The curve 7  : t -> 7 (t) =  (x*(t)), 1 <  i < n  is an 

integral curve for the vector field

x = Z ai( x'> £ j

if and only if xl(t )  is a solution of the system of differential equations:

where X \ ^ a b) means the restriction of X  to 7 (a  ̂b).

DEFINITION 3.5. ([23]) A  tangent vector can be defined as

dx1 d 

dt dxi
Y _ ^ d x i Э
л ~  2 -.-Й Г  

i=i

where ^ 7  represents the basis in a given coordinate system.

D e fin it io n  3.6. ([23]) Let x 6 M  and pick a tangent vector X x at x. This 

assignment

X : x - > X x

is called a vector £eld on M . With respect to a local coordinate system (x1, . . . ,  xn), 

X x can be expressed uniquely as

The n functions f* (l < i < n )  are referred to as the components of X  with respect 

to the given coordinate system. Only C °° vector £elds are considered, that is, only 

vector fields whose components are C °° functions on a neighborhood of each point 

i G M .

Remark 3.7. ([23]) The theory of Lie groups was developed by Sophus Lie 

in the study of systems of differential equations:

^  =  a\x (<)), « =
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where C°°-functions a*(x(<)) are the components of a vector field X  =  a1 

Hence the theory of Lie groups may be regarded as an interdependence between 

the geometrical interpretation of the integral curves of the vector field X  as the 

solutions xl — x (i ) of the system and the one-parameter group of transformation 

which is generated by X  = ^ ”=1 a‘ af: and which solves the system of differential 

equations.

4. IN T E G R A T IN G  FACTORS.

THEOREM 4.1. ([23]) Any Pfaffian differential equation in R2

admits an integrating factor.

Remark 4.2. ([21]) Consider the following homogeneous linear first order 

differential equation in its standard form

w =  Pdx +  Qdy =  0, P  =  P (x ,y ); Q =  Q (x ,y )

^  +  P (x )y  =  0

multiply by a factor ц to get

Apply Leibniz rule and divide by dx to get

The last two equations will be equal if and only if

The last equation is a variables separable type, hence
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H =  e J p d l .

The explicit solution for the differential equation is

y =  C e - S Pdl

where С  is the constant of integration.

Example 4.3. ([5]) An application of the exponential form of the integrat

ing factor to solve a well-known ODE can be viewed in the following way:

Consider
dx . л
—  +  Ax =  0 . 
dt

Therefore, the following function appears

Multiply by eAt to give

■Al "37 +  AeAtx =  0. at

Hence

d(xeAt)  =  0

that is, xeAt is a constant. The above procedure can also be reversed; this suggest 

a type of inverse concept.

Example 4.4. (5,9,10]) Again, consider the following well-known ODE

—  =  Ax 
dt A X '

The standard scenario used in solving the above equation is as follows:

Divide both sides by x, multiply both sides by dt and integrate:

S 4 - 4
Integrating gives the following equation:

dt

tnx — At +  constant
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and the above equation can be rewritten as

х =  еЛ‘ +  еВ =  eM eB

Geometrically, the above equation represents a one-parameter family of curves 

called integral curves. Each integral curve is the geometric representation of the 

corresponding solution of the differential equation. Specifying a particular solution 

means picking out a particular integral curve from the one-parameter family. This 

is usually done by prescribing a point normally referred to as an initial condition 

through which the integral curve must pass.

The solution of the ODE reveals that the exponential form of the constant of 

integration be multiplied by the exponential form of the parameter. In other words, 

the exponential product equals the sum of the exponentials, that is, multiplication 

commutes and addition is associative.

The solution of the ODE can also be viewed as a family of linear exponential 

operators which is a one-parameter group of linear transformations provided the 

operators, A  and Б, commute.

However, in general, the exponential operators do not commute, this means 

that addition is non-associative and multiplication is non-commutative. When this 

notion is applied to solving ODE, the exponential linear relationship between initial 

conditions and the parameter no longer holds. An obstruction to solving ODE 

has appeared. This obstruction reveals the existence of a geometric object called 

curvature; with such an object existing the analysis becomes path dependent.

T h e o r e m  4.5. ([13]) If X  is an orthogonal matrix whose elements are func

tions of any number of variables, then

(.d X )X ~ 1

is a skew-symmetric matrix of one-forms.

PROOF: гХ Х  =  I  where t denotes a transpose.

ld X X  +  lX d X  =  0 .
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For an orthogonal matrix its inverse is its transpose, that is,

Hence

lX ~ l ldX  +  d X X ~ l =  0

'(dxx-  ̂+ dxx-1 = 0

The following converse can also be established.

THEOREM 4.6. ([13]) Suppose X  is a matrix of functions defined on a 

domain U. Suppose X  is orthogonal at a single point o fU  and that

dX  =  A X

where A  is a skew-symmetric matrix of one-forms. Then A is orthogonal on all of 

U.

P r o o f : Let С  =  lX X  then

dC =  (*d X )X  +  lX (d X )  

dC =  ( -  *X A )X  +  * X (A X ) =  0

Hence С is a constant matrix on U.

Now assume С  =  I  at one point of C7, that is,

С  =  I  on U .

Then

*X X  =  / on U .

Hence X  is orthogonal.
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0d X )X ~ l

suggests the theory of Maurer-С art an forms, Lie group theory and the first funda

mental theorem of Lie.

T h e o r e m  4.8. ([13]) 

where

for the real matrix X .

5. IN T E G R A B IL IT Y  C O ND IT IO NS.

THEOREM 5.1. ([23]) The Frobenius condition du> Ли> =  0 is called integra

bility condition for the Pfaffian equation и =  0.

Example 5.2. ([2]) Given the following Pfaffian equation in R3 (which can 

be extended to Rn) where ш =  0

w =  P (x ,y ,z )d x  +  Q{x,y,z )dy  +  R(x,y,z )dz  =  0

then

Hence u> =  0 is integrable if and only if the term in the square brackets vanishes.

Remark 5.3. Observe the cycle properties of P ,Q  and Д, and x,y and z. 

These cycle properties appear in various forms in mathematical analysis especially 

from an algebraic viewpoint.

Remark 5.4. Observe also the symmetry properties. Symmetry also appears 

in various forms throughout the subject of mathematics and its applications. In a

Rem ark 4.7. The form

If X  is skew-symmetric matrix, then ex  is orthogonal

° °  y n  

n = l
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recent paper ([17]) by E.A. Lacomba and D.B. Hernandez titled “On the Role of 

Reciprocity Conditions in the Formulation of Conservation Laws and Variational 

Principles” , they observed that certain symmetry conditions occur in many field 

theories such as thermostatics (in the form of Maxwell’s relations), particle me

chanics, Hamiltonian systems and electric circuits. Their analysis is based on the 

notions of differentiable manifolds and exterior algebra. The notion of reciprocity 

is extensively illustrated in their paper using the subject of thermodynamics; they 

cover the fundamental concepts of the subject and present the very famous Inac

cessibility Theorem of Constantin Caratheodory.

Example 5.5. ([23]) Let E jP^R") be a Pfaffian which does not vanish 

then what is the solution to the following:

Under what conditions are there functions f ,g  : U —► R (where U  is a neigh

borhood of Rn) satisfying

w =  g df?

To answer the question in general, the concept of an integral manifold is needed.

Defin ition 5.6. ([23]) An (n -  l)-dimensional submanifold N  of Rn given 

by x ' =  ... ,iin-1) where (u1, . .. ,ttn-1) G U  С Rn_1 is called an infcegrai

manifold for the one-form ш if u> annihilates the tangent space TX( N )  to N  at every 

point x (= N , that is,

( « „ * ) =  «,(JT ,) =  0, V X Z € TX( N ) .

THEOREM 5.7. ([23]) A submanifold N  С Rn is an integral manifold for the 

Pfaffian и; =  2?=i aidx' € F l ( Rn) if and only if the system of partial differential 

equations

k=l

has a soJution.

Example 5.8. ([23]) Given a one-form ш € F ^R ” ) which is nowhere zero in 

a neighborhood U of the Euclidean space Rn. Does there exist a function / : U  —► R



such that df ф 0 on U  and such that the submanifold (hypersurfaces) of the type

N  := {x  G U\f(x)  constant, df(x)  ф 0}

are integral surfaces for w?

The answer is the following theorem.

THEOREM 5.9. ([23]) A necessary condition (and also a sufficient condition) 

for a function f  : U  —► R to exist satisfying above example is the condition of 

Frobenius

du A u> =  0 .

Remark 5.10. ([13]) Consider the following equation in example 5.5

ш =  д df .

Using ал inverse operation, rewrite as

df =  g~lu) .

Apply the exterior algebraic operations to the first equation to get

dw =  dg Л df

then substitute to get
dg

du> =  dg Л g uj =  — Aw .
9

Then cLo =  в Л и where

в =  g~ldg =  d£n\g\.

Hence
u) A dw =  wA0Auj =  O.
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6. S T O R E ’S T H E O R E M .

D E FIN IT IO N  6.1. ([20]) An oriented 2-manifold with boundary in R3 is 

a surface with boundary in R3 whose boundary is a simple closed curve with 

orientation; an oriented 3-manifold in R3 is an elementary region in R3 whose 

boundary which is a surface, is given the outward orientation.

THEOREM 6.2. ([20]) Let M  be an oriented k- manifold in R3(fc =  2 or 3) 

contained in some open set K . Suppose u> is a (k — 1) form on K , then

I Ш =  I du> .

эм м

7. P O IN C A R fi ’S L E M M A  A N D  ITS  CO NVERSE.

LEMMA 7.1. ([23]) If и is a p form on M  (manifold) for which there exists 

a (p — 1) for a such that doc =  w, then dw — 0.

L e m m a  - It s  C o n v e r s e  7.2. ([23]) Ifw isap-form on an open setU  с  M  

(which is contractible to a point) such that dw =  0, then there exists a (p — 1) form 

a such that u> =  da. (Exceptions: if p =  0, then и  — f  and the vanishing of df 

means / is constant.

Remark 7.3. ([10]) The above two lemmas establish the integrability con

ditions of differential equations; that is, the order of taking partial derivatives com

mutes and the conditions of path independent movements on a differential manifold. 

These notions are related to well-known theorems in calculus on path independent 

integrals and exact differentials.

8. D IFFE R E N T IA B LE  M A N IFO LD .

D efinition  8.1. ([4]) Begin with the definition of a topological manifold 

M  of dimensions n which has the following properties: 1) it is a Hausdorff space
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with countable basis of open sets and 2) each point has a neighborhood homeo- 

morphic to an open subset of Rn. Each pair U, <p where U is an open set of M  

and ip is a homeomorphism of U to an open subset of Rn, is called a coordinate 

neighborhood; to q € U assign the n coordinates x*(q) , ... ,xn(q)  of its image <p(x) 

in Rn where each x*(q)  is a real valued function on U, the ith coordinate function. 

If q also lies in a second coordinate У,ф, then it has coordinates xl(q) , ... ,£” (<?) 

in this neighborhood. Since y> and ф are homeomorphisms, the following defines a 

homeomorphisms

ф о р - 1 : <p(U П У ) ^  ф (и  П У ) .

The domain and range are the two open subsets of Rn which correspond to the 

points U  D V  by the two coordinate maps ip and ф respectively. Similarly ip о ф~1 

gives the inverse mapping.

The fact that ip о ф~1 and ф о ip~l are homeomorphisms and inverses to each 

other implies the continuity of the functions in coordinate form together with 

the corresponding identities. If U  П V  is non-empty and Û ip and У>ф are C °°  

compatible, then this implies that the change of coordinates is also C°°\ this is 

equivalent to requiring о ф~1 and ф о ip~l to be diffeomorphism of the open 

subsets ip(U П V )  and rp(U fl V )  of Rn. A differentiable of C °° (smooth) structure 

on a topological manifold M  is a family U  — {UQ,ipQ} of coordinate neighborhoods 

such that: 1) the UQ cover M, 2) for any a,0  the neighborhoods UQjipQ and Up,ipp 

axe C °° compatible and 3) any coordinate neighborhood V, ф compatible with every 

UQ,ipQ € U  is itself in U.

9. GAUSS ’S TH E O R E M A  EGREGIUM .

DEFINITION 9.1. ([18]) Let x =  x(u, v ) be a coordinate patch on a surface 

of class > 1. The First Fundamental Form of x — x(tx,v) denoted as /, is a 

homogeneous function of the second degree in du and dv with coefficients E, F  and 

G called First Fundamental Coefficients which are functions of и and v and vary 

from point to point on the coordinate patch.
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Now suppose x — x(u,v) is a patch on a surface of class >  2. Then at each 

point on the patch there is a unit normal which is a function of и and v of Class C1. 

Then the Second Fundamental Form of x =  z(u, v), denoted by II, is a homogeneous 

function of the second degree in du and dv with coefficients L, M  and N  called 

Second Fundamental Coefficients which are continuous functions of tt and v.

R em ark  9.2. ([18]) Given functions E, F, G, L, M  and N  of it and v of 

sufficiently high class, determine whether or not there exists a surface x =  x(u,v) 

for which JS, F, G, L, M  and N  are the first and second fundamental coefficients. In 

general, the surface does not exist unless certain “compatibility” (integrability) 

conditions are satisfied. These conditions arise from the fact that if rc(u,v) is 

a function of class C3, then the third order mixed partial derivatives of x are 

independent of the order of differentiation.

THEOREM 9.3. ([18]) The Fundamental Theorem of Surfaces. Let E ,F  and 

G be functions of и and v of class C 2 and let L, M  and N  be functions of и and v 

of class C 1 all defined on an open set containing (uo, t>o) such that for all (tt, v ),

(i) E G  — F 2 >  0, E  >  0, G  >  0

(ii) E, F, G, L, M, N  satisfy certain integratiblity conditions.

Then there exists a patch x =  x(u,v )  of class C 3 defined in the neighborhod of 

(u0,v0) for which E , F, G, L, M, N  are the first and second fundamental coefficients. 

The surface represented by x =  x(u, v) is unique except for position in space.

DEFINITION 9.4. ([22]) The Gaussian Curvature, K , is defined as follows:

L N - M 2 I I  

~  E G - F 2 ~  I  '

THEOREM 9.5. ([18]) The Theorema Egregium of Gauss is: The Gaussian 

curvature on a surface of class > 3 is a function only of the coefficients of the £rst 

fundamental form and their derivatives.

Rem ark 9.6. Guass showed that the geometry of a surface could be studied 

by concentrating on the surface. itself, that is, the intrinsic geometric properties 

should be looked at.
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10. P A R A L L E L  T R A N S P O R T  A N D  IN T R IN S IC  C O V A R IA N T  

CURVATURES.

Remark 10.1. ([16]) The subject of tensor calculus develops many prop

erties of the transformation processes. The display of indices abound in the subject 

and the fundamental distinction between covariant tensors (indices in the lower 

position, subscripts) and contravariant tensors (indices in the upper position, su

perscripts) has to be kept in mind. The following well-known summation convention 

is used in the analysis: any expression involving a twice-repeated index (occurring 

twice as a subscript (a covariant tensor) and twice as a superscript (a contravariant 

tensor) or a subscript (a covariant tensor of rank one and once as a superscript 

(a contravariant tensor of rank one) shall automatically stand for its sum over the 

values 1,2,3 ,..., n of the repeated index.

DEFINITION 10.2. ([16]) The tangent vector (a differential) transforms as a 

contravariant tensor of rank one (upper index) in the following way:

**-£  1 Й Г r= l

or rewritten as

А ‘ - — Т
д Г

where the unbarred coordinate system is transformed to the barred coordinate 

system and the Jacobian ~ r  is a first order partial derivatives.

A corresponding covariant vector (a differential function) transforms as a co

variant tensor of rank one (lower index) in the following way:

d _  дх* d 

dxi "  dxi dxr

or rewritten as

A - ^ A — л ЛГ
0X\

where the Jacobian Ц 7 is first order partial derivatives.
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Rem ark 10.3. ([12]) Observe that the first order partial derivatives of the 

covariant tensor of rank one axe the inverses to the Jacobians of the contravariant 

tensor of rank one. The covariant vector of rank one is the gradient of an arbi

trary differentiable function. The notions of inverses, functions, transformations 

(mappings) and Jacobians are interrelated.

DEFINITION 10.4. ([12]) The contravariant tensor of rank two can be writ

ten as follows:
ij _  dx‘ dx> - r ,  

dxrdx,

and the corresponding covariant tensor of rank two can be written as

d x r d x 9-

Aii ~  д ^ Щ Аг'  ■

There are also mixed tensors with indices in the upper and lower positions.

DEFINITION 10.5. ([12]) The Jacobians considered above are of the second 

order. This suggests that Jacobians of the third order be considered. The geometric 

objects associated with this higher order Jacobian are called Christoffel symbols 

which observes the following transformation procedure:

r.. d x r d x a d x 1 — -r — d2x r  d x 3 

1 ~  dx* dxi dx* r̂s’ ' +  r* dx'dxi dx*

where

are called Christoffel symbols of the first kind. The following Christoffel symbols of 

the second kind are:

[ij,k] =  Akn{ij,n ]

{ij,n} = A"k[ij,k].

These symbols are assumed to be symmetric in the first two indices and they 

vanish if all the A ^ ’s are constant. There axe n3 of these symbols where n is the 

space dimension.



The second term on the right hand side, that is

-  d2x dxa 
ra dxidxj dxk

makes these geometric objects non-invariant in the transformation process.

DEFINITION 10.6. ([12]) The covariant derivative of Ai is described as fol

lows

Aij =  Aij — { i j ,k}Ak 

and the covariant derivative of A * is described as follows:

A )  =  A ) +  {k j, i }Ak .

Observe the differences between the above two equations.

DEFINITION 10.7. ([12]) The following covariant tensor may also be formed 

Aijk =  Aij  к — {tfc,n}Anj- — { j k yn}Ani •

D efin it io n  10.8. ([12]) The line integral can be described in tensorial 

notation as follows:

J  Aidx*

с

where С  is the curve.

D efin itio n  10.9. ([12]) If  A tJ- is the covariant derivative of A,-, then

Aij Aji — 0

where the three-index symbols { i j } k}Ak cancel out. The above operation is similar 

to the curling of a vector Geld.

D efin ition  10.10. ([12]) In tensorial notation, Stoke’s theorem becomes

J  A,dx‘ =  - \ J J (Mi ~ Aji)d$'>
С
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where the double integral is being taken over any surface bounded by the path of 

the single integral and where the factor \ is needed because each surface-element 

occurs twice.

Rem ark 10.11. ([8]) In Euclidean space there is no geometrical difference 

between a со variant tensor and a contravariant tensor, but in non-Euclidean space 

there is a difference.

DEFINITION 10.12. ([8 ]) Consider the following contravariant tensor of rank

one:

Take the differential of the above equation to get

„ . - I .

When a cartesian coordinate system is assumed, the second term on the right 

hand side vanishes. When a curvilinear system of coordinates (a non- cartesian 

system) is used, the second term on the right hand side exists.

DEFINITION 10.13. ([8 ]) In order to define a suitable generalization of the 

differential operator in a curvilinear coordinate system, the difference between two 

vectors must be performed at the same point. This means it is necessary to transport 

one of the two vectors from its position to the infinitesimally close position of 

the other. This transport operation is to be performed so that in the cartesian 

coordinate system this difference coincides with the usual differential dA *. Because 

dA* is the difference between the components of two infinitesimally close vectors, it 

follows that during the displacement in cartesian coordinates, the components o f A * 

are unchanged: this transport is then the displacement of a vector parallel to itself. 

However, in a curvilinear coordinate system, the components of a vector undergoing 

parallel transport are, in general, changed unlike the cartesian system case. Hence, 

i f A 1 are the components of a vector in Xх and A * +  dA ', the components in Xх +  dx*
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the parallel transport of A 1 from x* to dx' produces a variation of its components, 

6A%. Hence, after the displacement the difference, D A 1, between the two vectors is 

given by

D A ' =  dA* -  6A* .

DEFINITION 10.14. ([8,12]) The parallel displacement of a vector in a non- 

Euclidean reference coordinate system is generally path dependent. Hence displac

ing a vector along a closed curve, in general, results in the final vector not coinciding 

with the initial vector.

The Riemannian tensor determines the variations of a vector A\ during its 

parallel displacement along an infinitesimal close contour.

The variation 6A{ is described as follows:

6Ai =  ± J J (A iik -  A iti)dS*k .

The quantity inside the brackets is described as follows:

A ijk -  Aikj  =  A t 

or rewritten as

Aijk ~ Aikj ~ AtRijk
where the following Riemann-Christoffel Curvature Tensor is described as

R\jt =  + {ik ,m }{m j,e } -  {i j,m }{m k ,e} .

Hence the variation 6Ai can be described as

SAt =  i R\ikAtdS>k .

Remark 10.15. ([12]) The variation SA, can be reduced to zero when 

Rijk is reduced to zero. The variation 6Ai can be reduced to zero when the order 

of covariant differentiation commutes. The variation 6A{ is reduced to zero when 

the vector Ai can be moved independent of the path taken. Hence the existence of 

R lijk reflects path dependent movements.
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DEFINITION 10.16. ([12 ]) The Riemann Christoffel Curvature tensor is an 

intrinsic covariant invariant tensor whose Jacobian is of the third order covariant 

(lower indices) and first order contravariant (upper index) of the following form:

(  _  d x r  d x 9 d x *  d x 1 — q

ijk ~  dTk W ,  r*‘ '

DEFIN ITION 10.17. ([16 ]) The Riemannian Curvature Tensor (R C T ) in 

an n-dimensional space has nn components. Many of the R C T  components are 

dependent on other R C T  components, hence, the number of independent R C T  

components will be substantially smaller than n". Without a metric, the number 

of independent R C T  components is n (w3 and with a metric, the number of 

independent R C T  components is -

THEOREM 10.18. ([19]) In order that a Riemannian space be Hat, it is nec

essary and sufficient that the components of its curvature tensor vanish identically.

11. TH E  IN T E G R A B IL IT Y  OF dQ  and dW .

Remark 11.1. ([1,24]) Thermodynamics is concerned with energy and its 

transformation. When a sufficient number of thermodynamic states are specified, 

the internal state of a system is determined and its internal energy denoted as U , 

is fixed. An equilibrium state of a system exhibits a set of identifiable reproducible 

properties which are subject to precise mathematical descriptions. When the condi

tions for mechanical and thermal equilibrium are not satisfied, the states traversed 

by a system cannot be described in terms of thermodynamic coordinates referring to 

the system as a whole. When a system is displaced from equilibrium, it undergoes a 

process during which its properties change until a new equilibrium state is attained. 

Variables that express intensity of the system are zero order in mass and are called 

intensive variables. The intensive coordinates of a system such at temperature, T , 

and pressure, P, are independent of the mass. Variables that are related to mass are 

called extensive variables. The extensive coordinates of a system are proportional 

to the mass such as volume, V.
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DEFINITION 11.2. ([1]) The simplest thermodynamic system consists of a 

fixed mass of an isotropic fluid uninfluenced by chemical reactions or external fields. 

These systems are described in terms of the three measurable coordinates PVT, 

called a P V T  system. Experiment shows that these three coordinates are not all 

independent and that fixing any two of them determines the third. Hence there 

must be an equation of state that interrelates these three coordinates for equilibrium 

states. This equation may be expressed in implicit functional form.

DEFINITION 11.3. ([1,24]) Work, denoted as W, in thermodynamics repre

sents an exchange of energy between a system and its surroundings. Mechanical 

work occurs when a force acting on a system moves through a distance. This work 

is usually defined by an integral which can be described in a differential form. In 

thermodynamics the work done by a force is distributed over an area, that is, by a 

pressure acting through a volume, for example, a fluid pressure exerted on a piston. 

Note the combination of intensive and extensive variables in the description. There 

are other modes of thermodynamic work; different kinds of systems, described by 

other coordinates, are also important and they are subject to work done by forces 

other than pressure, for example, electrical work, work of magnetization, work of 

changing surface area, etc. When considering new types of thermodynamic systems, 

experiments determine the proper identification of the forces and displacements.

The work done by a system depends not only on the initial and final states but 

also on the intermediate states, that is, on the path.

D e f in it io n  11.4. ([24]) Heat, denoted as Q, is internal energy in transit. 

Heat Bows from one part of a system to another or from one system to another by 

virtue of only a temperature difference. Heat is not known during the process.

D e f in it io n  11.5. ([24]) dW  anddQ

An infinitesimal amount of work is an inexact differential, that is, it is not the 

differential of an actual function of the thermodynamic coordinates.

There is no function of the thermodynamic coordinates representing the work
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in a body. The phrase “work in a body” has no meaning. Work is an external 

activity or process that leads to a change in a body, namely, the energy in a body. 

To indicate that an infinitesimal amount of work is not a mathematical differential 

of a function W  and to emphasize that it is an inexact differential, a line is drawn 

through the differential sign hence

d W  .

The heat transferred to or from a system is not a function of the coordinates of 

the system but depends on the path by which the system was brought from the initial 

state to the final state. Hence, heat, Q, is not a function of the thermodynamic 

coordinates but depends on the path. Consequently an infinitesimal amount of heat 

is an inexact differential and is represented by the following symbol:

d Q .

D e f in it io n  11.6. ([24]) A  mathematical differential form of the first law 

of thermodynamics is as follows:

When a system whose surroundings are at a different temperature and on which 

work may be done undergoes a process, the energy transferred by nonmechanical 

means, equal to the difference between the intemal-energy change and the work 

done, is called heat where heat is positive when it enters a system and negative 

when it leaves a system.

A  process involving only infinitesimal changes in the thermodynamic coordi

nates of a system is known as an infinitesimal process. For such a process the above 

statement becomes

dU =  dQ +  dW  .

If the infinitesimal process is quasi-static, then dU and d W  can be expressed in 

terms of thermodynamic coordinates only. An infinitesimal quasi-static process is 

one in which the system passes from ал initial equilibrium state to a neighboring 

equilibrium state.
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Remark 11.7. ([24]) The above mathematical formulation of the first law 

of thermodynamics has the following three related concepts: (1) the existence of an 

internal-energy function; (2) the principle of the conservation of energy and (3) the 

definition of heat as energy in transit by virtue of a temperature difference.

Example 11.8. ([24]) Consider any hydrostatic system contained in a cylin

der equipped with a movable piston on which the system and the surroundings may 

act. Suppose that the cylinder has a cross- sectioned area, A , and that the pres

sure exerted by the system at the piston face is P  and that the force is PA. The 

surroundings also exert an opposing force on the piston. If, under these conditions, 

the piston moves a distance dx in a direction opposite to that of the force P A , an 

infinitesimal amount of workdW  can be described as follows:

dW  =  - P A d x  .

But

Adx = dV .

Hence

d W  =  -P d V  .

Consequently, the first law of thermodynamics becomes

dU =  dQ -  PdV

where U  is a function of any two of the three thermodynamic coordinates and P  is 

a function of V  and T.

A similar equation may be written for other simple systems; for more compli

cated systems replace dW  by two or more expressions.

Choosing T and V  gives
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Hence the first law of thermodynamics becomes

The subscripts next to the partial derivatives indicate that all the other inde

pendent variables sire held constant except the one in the derivative being consid

ered.

Most importantly, observe that the above equation is not exact, the conditions 

for an exact differential are not met, that is, the order of taking partial derivatives 

does not commute.

Remark 11.9. The last equation in Example 11.8 reveals the specific vio

lation of Poincare’s Lemma and Its Converse presented in Lemma 7.1 and Lemma 

7.2. Consequently, the integrability conditions of differential equations axe not 

established; this means that the order of talcing partial derivatives is not inter

changeable. This also means that movements on a differential manifold are path 

dependent.

Remark 9.2 pointed to the integrability conditions that would have to be 

satisfied in order for a surface to exist; in that particular case, these conditions arise 

from the fact that if x(u,v) is a function of class C3, then the third order mixed 

partial derivatives of x are independent of the order of differentiation. Observe the 

inclusion of a third order differential function.

Remark 11.10. ([24]) Theorem 4.1 established that any Pfaffian differen

tial equation in R2 admits an integrating factor. Consequently the inexact differ

ential equation in Example 11.8 has an integrating factor; this is a mathematical 

property. Experimentation reveals that the integrating factor which is found for 

systems with any number of independent variables is an arbitrary function of the 

empirical temperature only, which is the same for all systems, hence, an absolute 

(or Kelvin) thermodynamic temperature can be defined provided that the second 

law of thermodynamics exist.
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Remark 11.11. ([24]) In general, a Pfaffian differential form containing 

three differentials does not admit an integrating factor. Theorem 5.1 establishes 

that the Frobenius condition dojAu =  0 is called integrability condition for Pfaffian 

equation ш =  0 and Example 5.2 presents these conditions in R3. The general 

integrability conditions also appear in Theorem 10.18 wherein it is established that 

in order for a Riemannian space to be flat, it is necessary and sufficient that the 

components of its curvature tensor vanish identically. In this latter case the concept 

of parallel transport or displacement of a vector along a closed curve was considered 

in the analysis and the observation was made that the final vector does not in general 

coincide with the initial vector, that is, the analysis is path dependent.

12. RE VER SIBLE  A N D  IRREVERSIBLE  PROCESSES.

DEFINITION 12.1. ([24]) A  reversible process is one that is performed in 

such a way that, at the conclusion of the process, both the system and the local 

surroundings may be restored to their initial states without producing any changes 

in the rest of the universe.

A process that does not fulfill these requirements is said to be irreversible.

Statement 12.2. ([24]) The Kelvin-Planck statement is as follows: No 

process is possible whose sole result is the absorption of heat from a reservoir and 

the conversion of this heat into work.

Statement 12.3. ([24]) The Clausius’ statement is as follows: No process 

is possible whose sole result is the transfer of heat from a cooler to a hotter body.

Axiom  12.4. ([24]) Constantin Cartheodory axiom (The Inaccessibility 

Theorem of Cartheodory) is as follows: In the neighborhood, however close of 

any equilibrium state of a system of any number of thermodynamic coordinates, 

there exist states that cannot be reached, are inaccessible, by reversible adiabatic 

processes.

Remark 12.5. ([24]) When taking into account all the interactions that
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accompany living processes such processes are irreversible; all natural spontaneous 

processes are irreversible.

13. G E N E R A L  A X IO M S  OF R E V E R S IB LE  A N D  IR R E V E R S IB LE  

PRO CESSES.

A xiom  13.1. The necessary and sufficient conditions for reversible paths 

(processes) is that the intrinsic со variant curvature tensor vanish.

Axiom  13.2. The necessary and sufficient conditions for irreversible paths 

(processes) is that the intrinsic covariant curvature tensor exists.

Remark 13.3. Axioms 13.1 and 13.2 are based on the following Theorem 

10.18: In order that a Riemannian space be flat, it is necessary and sufficient that the 

components of its curvature tensor vanish identically. Section 10.13 described the 

difference, DA*, of the displacement between two vectors in a curvilinear coordinate 

system as

DA* =  dA* -  SAi

where 6A 1 is a variation of the vector components. Hence, the parallel displace

ment of a vector in a non-Euclidean reference coordinate system is generally path 

dependent.

Section 10.14 describes the variation 6A, as follows

SAi =  \&ijkAtdS*

where R\^k is the Riemannian Curvature Tensor. Hence, when R\jk exists, path 

dependent movements (irreversible processes) exist (Axiom 13.2) and when R\jk =

0, path independent movements (reversible processes) exist (Axiom 13.1). The 

existence of an invariant geometric object called an intrinsic covariant curvature 

tensor reflects irreversible processes and the non-existence of these same geometric 

objects reflect a reversible process. The inexact differentials dQ  and d W  are 

reflected in the intrinsic covariant curvature tensor; when this tensor is reduced
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to zero, the differentials become exact, that is, the general integrability conditions 

are fulfilled. Theorem 5.9 establishes that these conditions are dw Л и  =  0. Recall 

also, from Remark 5.10, that the following equation was considered in the above 

result:

w =  gdf

and that

в =  g~ldg =  d£n\g\ .

The function g appears to relate u> and df and then recedes into the background 

to leave dw Aw =  0. Such an operation reflects the role played by an integrating 

factor. See also section 4 on integrating factors in R2 and Theorem 4.8 relating X  

as a skew- symmetric matrix and ex  as being orthogonal. Remark 4.7 also suggests 

the corresponding theory of Maurer-Cartan forms and Lie group theory.

DEFINITION 13.4. ([1]) There exists a property called entropy, S, which is 

an intrinsic property of a system, functionally related to the measurable coordinates 

which characterize the system. For a reversible process, changes in this property is 

given by the following equation

dQ — TdS .

Observe the relationship of the above equation to the following equation presented 

in Remark 5.10

и =  gdf

and see also Remark 13.3.

D e f in it io n  13.5. ([1]) The Second Law of Thermodynamics can be stated 

as follows: The entropy change of any system and its surroundings, considered to

gether, is positive and approaches zero for any process which approaches reversibil

ity.
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DEFINITION 13.6. ([17]) The following equation incorporates the First and 

Second Laws of Thermodynamics:

TdS =  dU +  P d V  .

Rem ark 13.7. A reversible process is one in which the invariant intrinsic 

covariant curvature tensor is zero. An irreversible process is one in which this 

tensor is not zero. See Axiom 13.1 and Axiom 13.2. This suggests that the concept 

of entropy is reflected in an invariant geometric object called an intrinsic covariant 

curvature tensor. In other words: Entropy is Curvature.

Statement 13.8. ([15]) In 1865, Rudolph Clausius presented the two laws 

of thermodynamics in the following concise form: The energy of the universe is 

constant and the entropy of the universe tends to a maximum. J. Willard Gibbs 

used these words (in the original German) as a heading for his memoir “On the 

Equilibrium of Heterogeneous Substances.”

Remark 13.9. ([24]) The entropy of a system or of a reservoir is a measure 

of the degree of molecular disorder existing in the system or reservoir. The disorder 

of a system is normally calculated by the theory of probability and is expressed 

by a quantity W  known as the thermodynamic probability. The relation between 

entropy and disorder is then shown to be

S =  constant in W  .

By using this equation, a nonequilibrium state corresponds to a certain degree of 

disorder and hence to a definite entropy.

Remark 13.10. ([9]) The concept of disorder or entropy can be reflected 

in the geometric notion of curvature, that is, disorder is a path dependent concept 

based on an invariant intrinsic covariant curvature tensor.

14. IN T R IN S IC  CURVATURE A N D  N O N E Q U IL IB R IU M /UNSTABLE  

PROCESSES.



2 1 1

DEFINITION 14.1. ([15]) The properties of a pure substance can be rep

resented in terms of the following four functions: internal energy, U ; enthalpy, 

H  =  U  +  P V ; Helmholtz function, F  =  U — TS and Gibbs function, G  =  H  — TS. 

Any one of the eight quantities P ,V ,T ,U , H, F ,G  and S may be expressed as a 

function of any two others.

Example 14.2. ([1]) Consider a hydrostatic system undergoing an in

finitesimal reversible process from one equilibrium state to another, then the fol

lowing four equations appear

dU =  T d S - P d V  

dH =  TdS 4* V  dP  

dF =  —SdT — Pd V  

dG =  -S d T  +  VdP

Since U , H , F  and G  are actual functions, their differentials are exact, that 

is, the order of taking partial derivatives commutes-the integrability conditions 

again. From these above equations, the well-known Maxwell relations can be easily 

established.

The four functions U, H, F  and G  with their corresponding characteristic inde

pendent variables S V , SP, TV, T P  respectively, are coupled through the Legendre 

transform. The surfaces of these functions encode thermodynamic information in 

different ways and hence give the criteria for equilibrium through different geo

metrical treatments. The corresponding well-known three-dimensional coordinate 

system can be labeled U S V } H S P , F T V  and G TP. Observe that each function has 

a coordinate.

D e f in it io n  14.3. ([1]) A  surface in a P V T  coordinate system can also be 

constructed and the solid, liquid, gas and fluid regions can be presented using the 

sublimation, fusion and vaporization curves drawn on the surface. The important 

triple point can also be displayed.
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Rem ark 14.4. All the differentials are exact, that is, the analysis is path 

independent, this implies there is no curvature. Also, note the application of 

the Leibniz rule. Each function UyH , F  and G  has a coordinate associated with' 

the corresponding pairs of coordinates S V ,S P ,T V  and T P . Surfaces axe then 

constructed and thermodynamic information is viewed.

As Remark 9.6 notes, Gauss’s Theorema Egregium (October 8, 1827) suggests 

that the intrinsic geometric properties of a surface should be looked at, that is, the 

surface itself should be studied. Riemann (June 6, 1854) suggested (a) that Gauss’s 

analysis could be extended to n dimensions, (b) that a quadratic differential is 

the structure to add to the notion of a surface (a manifold) and (c) that space 

and geometry axe different. Definition 10.14 summarizes the above notions in the 

following Riemann- Christoffel Curvature Tensor

R lijk =  +  { ikym } { m j , i }  -  { i j ,m } {m k , e }  .

When looking at surfaces as differential manifolds (see section 8), the fun

damental concepts of ordinary differential equations can be restated in terms of 

vector fields and integral curves (see section 2 and section 3). This suggests that a 

full geometric viewpoint be incorporated into considering the conditions of equilib

rium/nonequilibrium and stable/unstable processes.

DEFINITION 14.5. ([6,7]) The field of non-equilibrium thermodynamics pro

vides a general framework for the macroscopic description of irreversible processes. 

An unstable system can be viewed as one in which the disturbance o f a system will 

grow in amplitude in such a way that the system progressively departs from the 

initial state and never reverts to it.

Remark 14.6. ([9]) The underlying concept of non-equilibrium and unsta

ble processes is path dependence. The mathematical construct of path dependence 

is the invariant intrinsic covaxiant curvature tensor . This suggests that non

equilibrium and unstable process can be specified as

5  0
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and that equilibrium and stable processes can be specified as

Equilibrium and stable processes are path independent, that is, the integra

bility conditions are fulfilled. The three index symbols, the connection terms, are 

constant. The differential manifold is flat.

Non-equilibrium and unstable processes are path dependent, that is, the in

tegrability conditions are not fulfilled. The three index symbols, the connection 

terms, are not constant. The differential manifold is not flat.

Consequently, assuming that the 17, # , F  and G  functions in thermodynamics 

are exact differentials, implicitly suggests that the processes are in equilibrium and 

stable. The mathematical constructs assumed have limited the observer’s view of 

the process.

Hence a much broader set of mathematical postulates should be used by the 

observer in order to incorporate equilibrium/non-equilibrium processes and sta

ble/unstable processes. These postulates should be based on non-Euclidean geom

etry.

The Riemann Curvature Tensor, R*jk without a metric is a third order со variant 

and first order contravariant (with a metric, it is fourth order covariant). This 

suggests that third and fourth order terms should be included in the analysis.

A fundamental concept to be kept in mind is: intrinsic.

15. C A R T A N ’S M ETH O D  OF EQU IVALENCE.

Remark 15.1. ([11]) The following equation

u> =  gdf

used in Remark 5.10 suggests that Elie Cartan’s method of equivalence may be 

used in the analysis. Using Cartan’s method of moving frames, the mathematical 

notions of curvature, torsion and group properties can be incorporated.



214

Rem ark  15.2. The following presentation in this section is based on Robert 

B. Gardner’s 1989 monograph, The Method of Equivalence and Its Applications.

Rem ark 15.3. ([14]) The purpose of the method of equivalence is to find 

the necessary and sufficient conditions so that geometric objects be equivalent, that 

is, the geometric objects should be mapped onto each other by a class of diffeomor- 

phisms characterized as the set of solutions of a system of differential equations. The 

necessary and sufficient conditions are found in the form of differential invariants of 

the geometric object under the class of diffeomorphisms. The following presentation 

will be restricted to classes of diffeomorphisms which can be described as solutions 

of a first-order system of differential equations or equivalently by conditions on their 

Jacobians.

DEFINITION 15.4. ([14]) The equivalence problem of Elie Cartan is as fol

lows: Let Q v  =  * (Пу, . . . ,Пу)  be a coframe on an open set V  С Rn and let 

u>U — ... >W{}) be a coframe on U  С  Rn, and let G  be a prescribed linear

group in G£(n , R), then find the necessary and sufficient conditions that there exists 

a diffeomorphism Ф =  U  —> V  such that for each и € V

Ф * Ч ф («) = 'rvu {u )wu\tt ,

where 7vc/(u) 6 G.

Remark 15.5. ([14]) The ten lectures in Gardner’s presentation were sum

marized as a flow chart. The following description is based on that flow chart:

Begin with a group, coframes and open set, compute the Maurer- Car tan forms 

and defining relations, perform a principal component decomposition and a Lie 

algebra compatible absorption, compute infinitesimal action on structure tensor, 

then determine if there is a trivial action.

If there is a trivial action, then determine if there is an identity structure; if 

there is an identity structure, then the problem is solved.

If there is no trivial action, then perform a normalization and group reduction 

procedure. Then determine if the procedure is a constant type.
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If the procedure is a constant type, then change the group and coframe and 

begin the process again.

If the procedure is not a constant type, then other possibilities have to be 

considered.

If there is not identity structure, then determine if the system is in involution.

If the system is not in involution, perform a prolongation procedure and change 

the group, coframe and open set and begin the process again.

If the system is in involution, determine if the torsion is constant.

If the torsion is constant, then the problem is solved.

If the torsion is not constant, then “wild things” will appear.

Remark 15.6. When considering Cartan’s method of equivalence, the no

tions of the lifting of the linear group to G  spaces and the related mapping of 

intrinsic torsion have to be considered in addition to curvature. If torsion is not 

constant, and the group reduction and normalization processes axe not constant, 

then many other possibilities and problems appear.
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AX IO M ATISATIO N  OF TH ERM O DYNAM ICS

M. Dutta and T. Dutta

The paper consists of four sections. After the introduction in the first 
section, in the second section, as a tribute to Caratheodory, some distinctive 
features of the first of his papers in the subject, which remain unnoticed until 
now, is discussed very briefly. The third section contains a simple alternative 
proof of the well-known lemma of Caratheodory. Some concluding remarks are 
in the fourth section.

1. Introduction

In the beginning of the paper [1] of Caratheodory on thermodynam
ics, as developed in the usual traditional form, the following from his own 
remarks is to be noted: “There exists a physical quantity, which is not 
identical in nature with mechanical quantities, viz., mass, force, pressure, 
of which the characteristic properties can be determined through calori- 
metric measurements and which is named as ‘heat’. The heat has the 
characteristics comparable with those of mechanical works in certain cir
cumstances and further, always possesses the property that it follows from 
a hotter body to a colder body, when two bodies of different temperatures 
are in contact.”

The main objective of the paper [1], as stated clearly, is to build up 
a theory in which the totality of the results is in agreement with experi
ences without any specific assumption about the physical nature of heat. 
For the purpose, a new quantity which has the characteristics depending 
on the instantaneous states of different bodies under considerations and 
consequently is different from heat is introduced.

In the long paper [1] there are many features of great interest and sig-

219



220

nifLcance in mathematics and also in physics. In the second section of the 
present paper after the introduction, a brief discussion has been made about 
how Caratheodory started from mechanics developed a new theory to derive 
the basic properties of heat from notions and results of mechanics through 
introduction of a new single coordinate besides the coordinates of mechan
ical nature. No attempt is made to discuss all aspects of Caratheodory’s 
development in the paper [1], though they are of much interest and signifi
cance.

In the third section of the present paper, a simple alternative proof of 
the well-known lemma of Caratheodory which is the most interesting basic 
result of the paper [1] is given. In the alternative proof of the above lemma 
only simple notions and results of the abstract mathematics are used as in 
the papers [2], [3], [4].

The fourth section contains concluding remarks. They гиге followed by 
a bibliography of a few papers, relevant to the present paper.

In the other paper [5], written at the request of Max Planck, Caratheo
dory expressed his basic ideas and results of the paper [1], in a language 
easily understandable to physicists, familiar to usual developments of tradi
tional thermodynamics. In this paper, no discussions is made of the paper 
[5].

2. Some Fine Points of the Paper [1]

For proper understanding of the significances and importance of the 
paper [1], it is necessary to recall some facts regarding its historical back
ground, some significant points of mathematical formulation of the problem 
and then the main steps of the procedure used in proving Caratheodory’s 
lemma, which is a very important result of mathematical interest.

2.1. Historical Background

In the beginning of last century after the studies of mathematical 
foundation of mechanics by Lagrange and of its successful applications by 
Laplace and others, mechanics was accepted as the most basic of all sciences 
and then attempts were made to explain all problems in science through 
mechanics. At that time, when the paper [1] was written by Caratheodory, 
the spirit was very much dominating. In the paper [1], Caratheodory de
duced the basic results of thermodynamics as an extension of mechanics
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through the introduction of a new coordinate of non-mechanical nature.
At the end o f the thirties of the last century, from experience, ‘heat’ was 

identified finally as a form of energy and the universality of the law of con
servation of energy in different forms, i.e., the first law of thermodynamics, 
was widely accepted. At the end of the forties of the last century, limi
tation to transformations of heat to work became evident through several 
experiments and observations and the second law of thermodynamics was 
formulated, of course, in different languages by different pioneers of physics. 
Within a few years, after different formulations, their equivalence was es
tablished. In the mid-sixties of the last century, an equivalent formulation 
of the second law, known as the entropy principle, was given by Clausius 
through inequality. As basic laws of physics are generally expressed through 
equalities where as the entropy principle is expressed through an inequality, 
attempts were made by Clausius, Boltzmann, Thomson and others to show 
its plausibility from mechanics. In the mathematical theory, developed in 
the paper [1], is a new successful attempt in the direction. Some interesting 
discussions may be seen in the paper [6] and also in the introductory part 
of the book [7] o f Dutta.

2.2. Some Relevant Essential Points

In the paper [1] the main aim of the development is to introduce simul
taneously temperature and entropy, very closely related to heat and to draw 
their basic properties from basic notions and results of mechanics. With 
the aim in view, in addition to coordinates of mechanical nature, only one 
additional coordinate of non-mechanical nature, satisfying only some sim
ple obvious mathematical properties is introduced but nothing about the 
physical nature of the additional coordinate is assumed. The view-point 
is excellent and elegant epistemologically and also mathematically. Unfor
tunately, all the subsequent individuals who worked on this line including 
Born [8], Lande [9], Chandresekhar [10] failed to note this fine point and 
introduced emperical notions about temperature at the outset.

To develop a mathematical theory from the least number of postulates 
is considered as elegance of mathematics. In the paper [1] a mathematical 
theory of thermodynamics, explaining the experiences of non-mechanical 
nature, gathered from calorimetric experiments and observations, is devel
oped by introduction of a single coordinate of non-mechanical nature with 
a minimum number of simple obvious postulates about its mathematical 
nature. The epistemological excellence of the paper [1] lies in building up
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thermodynamics as a new mathematical theory, extended from the accepted 
mathematical theory of mechanics through the introduction of a single co
ordinate o f non-mechanical nature. From this point of view, the theory, 
developed by Caratheodory in his paper [1] satisfies the criteria o f ‘natu- 
ralness> or ‘Logical simplicity’ and thus ‘inner perfection’ as elaborated by 
Einstein in his notes [11].

3. Caratheodory’s Lemma

Before sketching the alternative proof of the lemma of the paper [1], 
which is now admitted as a basic result of the theory of partial differen
tial equations, basic notions and postulates of Caratheodory, on which the 
present discussion is based, are described. After that, notion of processes, 
reversible processes, reversible restricted processes like reversible adiabatic 
processes are stated and deduced along with Caratheodory’s lemma. The 
arguments used here are based on simple notions and results of equivalence 
relation of abstract algebra, o f connectedness and compactness of general 
topology and of dimension theory.

3.1. Basic Notions and Postulates

The state of a thermodynamic system, the basic undefined object, is 
postulated to be specified by (n +  1) coordinates, xo} x\} . . .  » г п, with the 
following characteristics:

i) The domain of each of the above coordinates is a one-dimensional 
continuum of real numbers, i.e., a real interval;

ii) Each of the n-coordinates, , x „, is generally referred to as 
deformable coordinate as they specify the shape, the size and the 
like of the thermodynamic system and are controllable in the sense 
that each of them can be varied in the entire domain of variability 
(i.e., from any initial position to any other position in the interval 
of its definition) by mechanical means, i.e., by adjusting relevant 
external forces.

iii) xo also varies continuously in the domain of definition but not 
controllable in the above sense.

The product space of all the coordinates is a (n +  1) dimensional con
tinuum and called the state space. The product space of all the deformable 
coordinates is an n-dimensional space and may be called the deformation
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space, similar to the configurational space of mechanics.

N ote . In most of the discussions of Caratheodory, as intervals are 
mainly considered in paper [1], connectedness plays the very basic role. 
Notion of simple connectedness of the state space is implicit in the entire 
paper [1]. In common with other branches of mathematical physics, treated 
as a continuum physics, in the paper [1], all functions are taken to be 
continuous and the function representing the energy of the system is taken 
to be continuous with continuous first partial derivatives.

Any change of states, represented by a curve joining a pair of points 
of the state space, is known as a process. Now it is well-known [1], the 
representation of a state by a point described in the above way is possible 
if the thermodynamic sytem is in equilibrium. So, any process, in which 
the intermediate states are not in equilibrium, cannot be fully represented 
by a continuous curve in the state space. A  process in which all the in
termediate states are in equilibrium (naturally, for very slow changes) is 
known as a quasi-static process and is represented by a continuous curve in 
the state-space. So, generally these processes are also reversible. Of course, 
Caratheodory [1] has discussed the possibility of the existence of some ther
modynamic system in which quasi-static processes are not reversible. But 
by Caratheodory himself and after him by all other invesitgators, theories 
for the thermodynamic systems in which all quasi-static processes are re
versible and converse are developed. So, here we take reversible processes 
only. Thus, a reversible process is a change of state where the end points 
are connected by a continuous curve in the state space.

It is simple to note that the relation between two points related by 
a reversible process is symmetric and transitive. I f we consider the set of 
all points, related to one another by reversible processes, it is the entire 
state-space and thus study of consequences of this general relation as such 
leads to triviality. To get some results of interest, one should consider a 
set of reversible processes satisfying certain specified physical restriction. 
As for example, in the thermodynamics, the specific restriction is either 
‘adiabatic’ or ‘isothermal’ or ‘isochoric’ or the like. A  relation between 
points connected by reversible processes under certain specified restriction 
to be denoted by r.r.p (reversible restricted process), is regarded as a linear 
relation and is studied firstly here. Thus, r.a.p denotes reversible adiabatic 
processes.
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3.1.1. First law of thermodynamics

In the infinitesimal form, the first law of thermodynamics is stated in 
the form:

n

d E ( x 0,х ь ... , xn) +  ^ X i ( x 0, x i , . . .  , xn) d x { =  0 (A )
*=i

where E ( x о, ® i , . . .  ,xn) is the energy o f system, X t(x0, x1} .. . ,xn) is gen
eralised forced on the system corresponding to x,-,t =  1,2,... , n.

N o te . As notion of time-derivatives of coordinates is not involved 
here, each point of the state space in the equation corresponds to a state 
of thermodynamic equilibrium. So, the variation in (A ) is through states 
of thermodynamic equilibrium.

3.1.2. Reversible adiabatic processes

As already stated, any non-directed curve between two points in the 
state space represent a reversible process. A  set of curves, which satisfies 
certain restriction by an equation or a number of equations, involving coor
dinates, are a set of reversible restricted processes (r.r.p). I f  the restriction 
is given by the Eq. (A ), it is reversible adiabatic processes (r.a.p). The set 
of points related to a given point P  by r.a.p is a r.a.s through P.

P rop os ition  1. Relation of being related by r.a.p. is an equivalence 
relation.

P roo f. Evidently the relation is transitive and symmetric. It is reflex-, 
ive trivially. So, it is an equivalence relation.

C oro lla ry  1. Relation of being related by r.a.p is an equivalence 
relation.

N ote . It is well-known that an equivalence relation induces a partition. 
Thus, the relation by r.a.p induces partitions in the state space, i.e., a pair 
of points not related by r.a.p can be in r.a. set and no two r.a. sets can
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have a common point.

P rop os ition  2. A  r.a. set is connected.

P roo f. Any two points o f a single r.a. set are connected by a number 
of arcs of r.a.p, so a r.a. set is arcwise connected. Then, by well-known 
result of general topology [12] it is connected.

P rop os ition  3. r.a. sets are compact when the set of values of each 
coordinate is bounded.

P roo f. Now a set o f values of any bounded coordinate is a compact 
set. As a finite Cartesian product of compact spaces is compact, r.a. sets 
are compact if a set o f values of each coordinate is bounded.

Corollary. Thus, the r.a. set is locally compact.

Rem ark. Though the term ‘continuum’ is frequently used in analy
sis, geometry, physics and many other branches of mathematics, qualitative 
specification of the term is rarely found in abstract mathematics. In real 
analysis it is introduced by Cantor-Dedikin axiom based on the fact that a 
real line is a continuum. As real time is locally compact (not compact) con
nected, so a locally compact connected set may be termed as ‘continuum’. 
Thus, we get the following proposition (cf. Hocknig and Young [13]).

P roposition . Each r.a. set is a continuum.

3.1.3. Caratheodory’s principle

In a state space, every neighbourhood of a point P  contains a point 
not accessible to P  by r.a.p.

Remarks. Due to the above, each r.a. set has no interior, i.e., is a 
border set.



226

Proposition 4. The dimension of a r.a. set is less than n +  1.

Proof. As every subset of the (n -f l)-dimensional state space is of 
dimension <  (n =  1) and as every (n +  l)-dimensional subset of the state 
space has non-null interior [13], so, each r.a. set has dimension <  n.

Proposition 5. It is clear that coordination is inherent in the en
tire discussion from the beginning. Now, the intersection of a small (n -f 
l)-dimensional neighbour of a point P  and the linear equation A is n- 
dimensional. I f  these intersections are taken as neighbourhood of P  in a 
r.a. set, each of the r.a. sets is n-dimensional.

Proposition 6. The Pfaffian (A ) admits a solution 

F ( xo t , . . .  , xn) =  0.

Proof. In the coordinate geometry, a n-dimensional surface in (n +  1) 
dimensional space is given by an equation

F { x o, 2>1, . . . , £n) =  0

and conversely the equation F ( x o , z i , . . .  ,xn) =  0 corresponds to a n- 
dimensional surface in (n +  l)-dimensional space. Hence the proposition 
follows.

Remark. On the assumptions of ф 0, Caratheodory wrote the 
Pfaffian (A ) as

n

dx0 +  , xn)dxi  =  0 (B )
1 = 1

where X j ( x 0, * 1, =  Х ( ( г 0, • • • , * » )  +  ( Ш ) / ( ^ )  and Proved that
the Pfaffian (B ) admits an integral. The result is referred to as Cara
theodory’s lemma.
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In the above, it is easily seen that a r.a. set is a n-dimensional hy
persurface when the restriction is expressible by a single Pfaffian equation. 
Similarly it may be proved that a r.r. set is a (n — s)-dimensional hy
persurface (n >  s), when the restriction is expressible by restriction as 
for example in isothermal isobaric (isochoric) cases, 5 =  2. Discussion of 
Caratheodory’s lemma from set topology mainly, may be seen in papers [2], 
[3], [4] o f Dutta. O f course, the original argument of the paper [1] appears 
to be much nearer to discussions of homotopy. The Caratheodory lemma 
may also be seen in standard books on partial differential equations [14].

There are many other interesting significances of the paper [1] not yet 
duly noticed. Here only few of them are discussed.

4. Concluding Remarks
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DIFFERENTIABLE SOLUTIONS OF A 
GENERALIZED COCYCLE FUNCTIONAL 

EQUATION FOR SIX UNKNOWN FUNCTIONS

Bruce R. Ebanks

ABSTRACT. The general three-times continuously 
differentiable solutions of a functional equation for six 
unknown functions is presented. The equation contains as 
special cases many well-known functional equations such as 
Cauchy, Sincov, cocycle, and cyclic equations.

1. INTRODUCTION

The ultimate goal of this paper is the presentation of the general 
solution of the functional equation

F|(x+y,z) + Fj(y+z, x) + Fj(z+x,y)
+ F4(x,y) + FjCy.z) + F6(z,x) - 0 (1)

for all x,y,z € R (the reals), with F,, F,, and F3 in the class CJ(RJ) .
The general forms of all six unknown functions F.: R2 -*■ R will be given.

Note that equation (1) contains several well-known functional 
equations as special cases. For instance, if F, - -F,, F3 - F4 - 
Fj - 0, and F„(z,x) - -F,(x,z), then we obtain the Cauchy equation

Fj(x+y,z) - F,(x,z) + F,(y, z) ,

which means that F, is additive in its first variable. If F4 - F4 - F6 

and F, - F2 - F3 - 0, then we have the cyclic equation
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F/x^y) + F4(y,z) + F4(z,x ) - 0.

A different sort of cyclic equation (cf. (2) below) results from taking 
F6 - F4 - F3 - 0 and F, - F3 - F3. Putting again F, - F3 - F3 - 0,
F4 - F3, and F4(z,x) - -F4(x,z) yields Sincov's equation

F4( x . y )  + F4( y , z )  -  F4( x , z ) .

To get the cocycle equation

F,(x+y,z) + F,(x,y) - F,(x,y+z) + F,(y,z),

take F3 - F6 - 0, F4 - F , ---F3, and F2( y ,x)---F,(x,y).

Clearly, many generalizations of these well-known equations are 
included also in (1). We shall need to solve some of these equations on 
our way toward the solution of (1). We also make use of the following 
result concerning a particular sort of cyclic functional equation.

Lemma 1 . (Ebanks2)) The general solution K: R2 -» R of

K(x+y,z) + K(y+z,x) + K(z+x,y) - 0, (2)

for x,y,z £ R, is given by

K(x,y) - A(x+y,2y-x), x ,у t R,

for an arbitrary function A: R2 -*■ R which is additive in its second 
variable.

Hence the general continuous solution of (2) is of the form

K(x,y) - (2y-x)h(x+y), x,y с R,

for an arbitrary continuous map h: R -*■ R. (Here the condition 
"continuous" in the last statement could be replaced by weaker 
conditions such as "measurable.")



2. SOLUTION OF A THREE-FUNCTION GENERALIZATION OF (2).

Now we shall consider the cyclic equation

H,(x+y,z) + Hj(y+z,x) + H3(z+x,y) - 0, (3)

supposed for all x,y,z e R. We prove the following.

Theorem 1 . The general solution H,, Ĥ , H,: RJ ■* R of (3) is given
by

H|(x,y) - A(x+y,2y-x) - f(x+y) - g(x+y) ]
H2(x,y) - A(x+y,2y-x) + g(x+y) V (A)
Hj(x,y) - A(x+y,2y-x) + f(x+y) J

for all x,y € R, for some arbitrary maps f,g: R -*■ R and an arbitrary 
A: R2 -♦ R which is additive in its second variable.

Consequently, the general continuous (or measurable) solution of 
(3) is given by (4) with

A(x,y) - yh(x), x,y € R,

for arbitrary continuous (resp., measurable) maps f,g,h: R -*■ R.

Proof: First, put x - 0 in (3) to get

H,(y,z) - -H^y+z.O) - H,(z,y), (5)

and use this to transform (3) into

Hj(y+z,x) - H^x+y+z.O) + H,(z+x,y) - Hj(z,x+y) - 0. (6)

Next, put у - 0 in (6), obtaining

H2(z,x) - Hj(x+z,0) - H,(z,x) - Hj(z+x,0) , (7)

and use this to modify (6) to

231

H3(y + z ,x )  - H j(y+z+x ,0 ) +  H3(z + x ,y )  - H ,(z ,x + y ) -  0. (8 )
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Now, putting z - 0 in (8) yields

H3(y,x) - Hj(y+x,0) - -Hj(x.y) + H3(0,x+y) , (9)

and with this (8) becomes

H3(y+z,x) - Hj(y+z+x,0) + Hj(z+x,y) + H3(x+y,z)
- H3(0,x+y+z) - Hj(z+x+y,0) - 0. (10)

Now, defining K: RJ -♦ R by

K(x,y):- H3(x,y) - 2/3 H,(x+y,0) - 1/3 H3(0,x+y), (11)

equation (10) exactly expresses the fact that К satisfies equation (2). 
Thus, by Lemma 1, there exists a map A: R3 -*• R, additive in its second 
variable, for which

K(x+y) - A(x+y,2y-x), x,y с R. (12)

Backtracking, we see from (11) that H3 is as expressed in (4), with 
f : R - R defined by f(x): - 2/3 H3(x,0) + 1/3 H3(0,x) for all x e R. 

Substituting this form of H3 from (4) into (7), we find that

H2(z,x) - A(z+x,2x-z) + f(z+x) - A(z+x,-x-z) - f(z+x)
+ Hj(x+z, 0)

- A(z+x,2x-z) + g(z+x),

where g: R -+ R is defined by g(x):- A(x,x) + H^x.O) . (Here we have 
used the fact that A(x,-y) - -A(x,y), which follows from the 
additivity.) Hence Hj is as stated in (4).

Finally, putting H, and H3 from (4) into (5) and simplifying, again 
using the additivity of A, we get precisely the assertion of (4) for H,. 

Conversely, any H ^n - 1,2,3) given by (4) with A additive in its second 
variable, satisfy (3). (Note that A(x,0) - 0.) This establishes the 
first half of Theorem 1.

The second half of Theorem 1 is a simple corollary of the first 
half. Indeed, let у - w - x in the representation for H3 in (4). Then
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H3(x,w-x) - A(w,2w-3x) + f(w).

Since x -► H3(x,w-x) is continuous for each fixed w, the map A must be 
continuous in its second variable. But that means (by additivity) that 
A has the form A(x,y) - yh(x), as asserted. Furthermore, the 
representation of H, takes the form

H3(x,y) - (2y-x)h(x+y) + f(x+y).

Choosing now x - 2y, we have

Hj(2y,у ) - f(3y), у C R.

Thus the continuity of f follows from that of H,. The continuity of 
h and g follow in a similar way, and we are done.

Remark 1 . By Remark 3 in 2] , the first half of Lemma 1 is correct 
also if К: X2 -» Y where X and Y are abelian groups which are divisible 
by 2 and by 3. It is clear from the proof above that the same is true 
of Theorem 1 here.

3. DIFFERENTIABLE SOLUTIONS OF A GENERALIZED CAUCHY-CYCLIC EQUATION

The equation of interest in this section is

[G,(x+y, z) - G,(x,z) - G,(y,z) ] + (Gj(y+z,x) - G2(y,x)

- Gj(z,x) ] + (Gj(z+x,y) - G3(z ,y) - Gj(x,y) ] - 0,

for all x.y.z € R, with G.: R2 -♦ R (n - 1,2,3). Obviously, if all G„'s 
are additive in their first variable, then they satisfy (13). Also,
(13) has a certain cyclic nature. The next result gives the general 
solution of (13) in the class C3(R2) .

Theorem 2 . The general solution G,, G2, G3 in CJ(RJ) of (13) is 
given by
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G,(x,y) - E [ h ) (x,y) - D[p+q](x,y) + xr,(y) 

G2(x,y) - E [h ](x,y) + D[q](x,y) + xr2(y) 

G3(x,y) - E [h ](x,y) + D[p](x,y) + xr3(y)

(14)

(x,y £ R) , for some h,p,q € CJ(R) and r„ £ C2(R) (n - 1 , 2 , 3 ) ,  where D 
(the Cauchv difference operator) and E are operators from {f: R -» R} to 
If: R2 -*■ R) defined for any f: R -+ R by

D[f)(x,y) - f(x+y) - f(x) - f(y), (x.y ( R)
E[f](x,y) - (2y-x)f(x+y) + xf(x) - 2yf(y).

Proof: Differentiating (13) once each with respect to x,y, and z, 
we have

G,"2(x+y,z) + G22“(y+z,x) + G312'(z+x,y) - 0,

where the superscripts denote partial derivatives. But this is equation 
(3). Moreover, G,112, G22U, and G3121 are continuous functions, by 
hypothesis. Therefore Theorem 1 yields their representation

G,m (x,y) - (2y-x)h,(x+y) - f,(x+y) - g,(x+y),
G22U(x,y) - (2y-x)h,(x+y) + g,(x+y) f 
G3ul(x,y) - (2y-x)h,(x+y) + f,(x+y)

for some continuous maps f,, g,, h(. Integrating three times, we obtain

G,(x,y) - (2y-x)h(x+y) - f(x+y) - g(x+y) + k,(x)
+ 1| (y) + xm,(y),

G2(x,y) - (2y-x)h(x+y) + g(x+y) + Ц(х) + l2(y) 
+ xrrij ( у ) ,

Gj(x,y) - (2y-x)h(x+y) + f(x+y) + Ц(х) + l3(y) 
+ xm3(y)

(15)

(x,y € R) for some maps h, f, g, k,, 1, £ CJ(R) and m„ £ G2(R) 
(n - 1,2,3).
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Next, we substitute forms (15) into equation (13). After 
simplifying, we get

- [(x+z)h(x+z) + (y+z)h(y+z) + (x+y)h(x+y)]

+ f(x+z) + g (y+z) - f(x+y) - g(x+y) + (k,(x+y) (lb)
- k,(x) - k,(y) ] + [kj(y+z) - kj(y) - kj(z)]

+  [k j ( x + z )  - кз(х) - k j ( z ) ) - l , ( z )  - 12( х )  - l , ( y )  -  0

(x,y,z e R ) . Putting x - у - 0 in (16) yields

l,(z) - -2zh(z) + f(z) + g(z) + a,, z € R, (17)

for some constant a,. Similarly, we obtain

l2(x) -  -2xh(x) - g(x) + a2, x € R, (18)
1з(У) -  -2yh(y) - f(y) + аэ, у « R, (19)

for some constants â , a3.
Now, putting x - 0 in (16) and using (17) and (19), we find, after 

some rearrangement of terms, that

[-(y+z)h(y+z) + g(y+z) + kj(y+z)]

- [-yh(y) + g(y) + kj(y) ] + [-zh(z) + g(z) + k,(z)]

+ k,(0) + kj(0) - 1,(0) - a, - a,.

This means that

-ih + g + Ц  is affine,

that is, additive plus a constant, where i is the identity map on R. 

Since all the maps are continuous (and even more, in C3( R ) ) ,  we have 
(-ih + g + kj)(x) - b2x + Cj, that is,

Ц (х )  -  x h (x )  - g (x )  +  b2x + с,, x € R, (2 0 )
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for some constants b2, c2. Similarly,

kj(x) - xh(x) - f(x) + b3x + c3, x с R,
k,(x) - xh(x) + f(x) + g(x) + b,x + ct, x < R,

for constants b,, b3, c,, c3.
Finally, substituting (17)-(22) into (16) yields only

3
S (a, + ce) - 0.

n-1

With (17)-(23), representation (15) takes the form

G,(x.y) - (2y-x)h(x+y) + xh(x) - 2yh(y)

- [ f ( x+y) - f ( x )  - f ( y ) ]  - [ g ( x+y) - g (x )  - g (y ) )

+ x[b, + m,(y) 1 - (a* + c2 + a3 + c3),

C2(x,y) - (2y-x)h(x+y) + xh(x) - 2yh(y)

+ [g (x + y )  - g (x )  - g ( y ) ]

+ x [b2 + mjCy) ] + (a* + c2) ,

G3(x,y) - (2y-x)h(x+y) + xh(x) - 2yh(y)

+ [f(x+y) - f(x) - f(y)l 

+ x (b3 + mj(y) ] + (a, + c3).

Defining p, q, rB: R -► R (n - 1,2,3) by

p ( x ) f ( x )  - (a3 + c3), q ( x ) g ( x )  - (&2 + c2) ,

r.(x) b. + mta(x) , x e R,

and expressing the solutions with the aid of the operators D and 
have precisely (14).

(21)
( 22)

( 2 3 )

E, we
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An easy verification of the converse completes the proof of 
Theorem 2.

Remark 2 . The solutions of (13) can be expressed also as follows, 
in what may be a convenient form for some purposes. Note that

E[h](x,y) - (2y-x)h(x+y) + xh(x) - 2yh(y)
- 2y[h(x+y) - h(y)] - x[h(x+y) - h(x)]
- 3y[h(x+y) - h(y)j - [(x+y)h(x+y)- xh(x) - yh(y)]
- 3y[h(x+y) - h(y)j - D[ih](x,y),

where i:R -» R is the identity map,

i ( x ) x ,  x € R.

Hence, defining new maps s, t, u: R -*■ R by 

s:- 3h, t:- p-ih, u:- q-ih, 

we can express (14) as

- D[ t+u+is] (x ,y ) + xr,(y ) , 1 
+ D [u](x ,y) + x r,(y ), У
+ D [t](x ,y ) + x r,(y ), J

G,(x,y) - y[s(x+y) - s(y)) -
G2U.y) " y[s(x+y) - s(y)J + D[u] (x,y) + xr,(y), f (14')
G3(x,y) - y[s(x+y) - s(y)

for all x,y £ R.

4. MAIN RESULT: DIFFERENTIABLE SOLUTIONS OF EQUATION (1)

We now turn to the main purpose of this paper, which is to give 
the general solution of (1) under the assumption F,, F2, F3 с CJ(R2) •

Theorem 3 . The general solution of (1) with F,, F2, Fy from the 
class C3(RJ) is given by
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(24 )

Fj(x .y) “ -xr,(y) 
F6(x,y) - -xr2(y)

а.7\л/ -г i .t \ y  j  i,v ,A -rjry,

yrj(x) - (fe+f,)(x) - (f2+f,)(y) - fj(x+y) , 
- yr,(x) + f9(x) - (f4+f7)(y) - fj(x+y)

for arbitrary maps r. € C2(R) (n - 1,2,3), s, t, u, fj € C3(R)
(j - 1, 6), and fk: R -* R (k - 7 ,8 , 9) . Clearly, we can take also
f7, ft, and f, from class C3(R) , if F4, Fs, and F6 are assumed to be in 
CJ(R2) .

Proof: We begin by putting x - 0 in (1) and solve for Fs, getting 

Fj(y, z) - -F,(y,z) - F2(y+z, 0) - F3(z ,y) - F4(0,y) - Fe(z,0). (25)

Using this in (1), we obtain

F,(x+y,z) - F,(y,z) + F3(y+z,x) - Fj(y+z,0) + F,(z+x,y) (26)
- F3(z,y) + F4(x,y) - F4(0,y) + Fe(z,x) - F6(z,0) - 0.

Setting у - 0 in (26) and solving for F6, we find that

F6(z,x) - F6(z,0) - -F,(x,z) + F,(0,z) - F2(z,x) + F2(z,0) (27)
-Fj(z+x,0) + F3(z,0) - F4(x,0) + F4(0,0).

With this, (26) reduces to

[F , (x + y ,z )  - F , (y ,z )  - F , (x ,z )  +  F ,(0 , z )  ] +  (F2(y + z ,x )
- F3(y+z,0) - FjCz.x) + F,(z,0) ] + (F,(z+x,y) - F,(z,y) (28)
- Fj(z+x,0) + F j(z ,0 )]  + [F4(x ,y ) - F4(0,y) - F4(x ,0 )
+ F4(0,0) ] -  0.

Now the substitution z — 0 in (28) yields

F4(x,y) - F4(0 ,y) - F4(x ,0) + F4(0,0)
- - (F,(x+y,0) - F,(y,0) - F,(x,0) + F,(0,0)] (29)

- [Fa(y,x) - Fj(y,0) - F2(0,x) + F,(0,0))
- [F3(x,y) - F3(0,y) - Fj(x,0) + F3(0,0) ] .
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Using (29) in (28), and defining G„: RJ -♦ R (n - 1,2,3) by

GB(x,y):- F0(x,y) - FB(x,0) - Fo(0,y) + FB(0,0), x,y € R, (30)

we see that (28) can be written in the form

[G,(x+y, z) - G,(x,z) - G,(y,z) ] + [Gj(y+z,x) - G2(y,x)
"G2(z,x) ] + (Gj(z+x,y) - Gj(z,y) - G,(x,y)) - 0,

which is (13).

Therefore, since the G.'s inherit the assumed regularity of the 
Fn's through (30), the forms of the GB's are given explicitly by Theorem 
2. We use the forms (14') provided in Remark 2 following the proof of 
the theorem. By (14') and (30), we have

F,(x,y) - ys(x+y) - D[ t+u+is] (x,y) + xr,(y) + g,(x) + h,(y),]
Fi(x,y) - ys(x+y) + D[u] (x,y) + xr2(y) + g2(x) + h2(y) , > (31)
Fj(x.y) - ys(x+y) + D[t](x,y) + xr,(y) + g,(x) + h,(y) , J

(x,y £ R) for some maps s.t.u.g^h, £ C3(R) and r, £ C2(R) (n - 1,2,3), 
where D is the Cauchy difference operator, and where g„(x) - F„(x,0) - 
F.(0,0) and hB(y) - F„(0,y) - ys(y) (n - 1,2,3).

Now, let us return to (29). With (31) and some simplification, we 
find that

F4(x,y) - -D[u+t+is+g,](x,y) - xr,(y) - yr2(x) + g,(x) + h4(y) (32)

for some g,, h4: R -♦ R. (Recall that there were no regularity 
assumptions about F4, F4, F6.) Next, turning back to (27) and 
substituting (32) and (31), we obtain

Fe(z,x) - D[t](z,x) - zr2(x) - xr,(z) + g«(z) (33)
- [xs (x) + g| (x) + hj(x) + g4(x) ) - g,(z+x),

for some map ge: R -♦ R. And returning at last to (25), by (31)-(33) we 
have
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Fs(y,z) - D[u+is](у,z) - yr,(z) - zr,(y)
- [g,(y) + M y )  + h4(y)) - (h,(z) + g*(z) ] (34)
- (g2(y+z) + (y+z)s(y+z)].

Finally, Co express the solutions more simply, we define functions 
f,, .... f»: R -* R by

With these definitions, the representations (31)-(34) take the form 
(24).

Conversely, it is easy to check that functions of the form (24) 
indeed satisfy equation (1). This completes the proof.

Remark 3 . The representation of F, in (24) can be simplified 
slightly by observing that ys(x+y) - (is)(x+y) - -xs(x+y). Thus we can 
write

F,(x,y) - -xs(x+y) + xr,(y) + f,(x) + f2(y) - (t+u)(x+y).

This entails some loss of symmetry, however, in the presentation of the 
forms of F,, F2, and F3.

5. CONSEQUENCES AND FURTHER REMARKS

Of course one can use these results to deduce the forms of 
solutions to equations which are special cases of the ones presented 
here. Although a straightforward approach may be more efficient for 
"simple" equations such as (2) and Sincov's equation, it may not be for 
more complicated equations.

As an illustration, we treat the Cauchy-cyclic functional equation

f,:- g, + t + u + is, 
6j - u. 
g3 - 

^7: "  S< +

f 2: -  h, + t + u + is, 
f 4: -  hj - u 
f«:" h, - t

G(x+y,z) + G(y+z,x) + G(z+x,y) (3 5 )
- G(x,z) + G(y,z) + G(y,x) + G(z,x) + G(z,y) + G(x,y),
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which is a special case (G, - Ga - G3) of (13).

Corollary 1 . The general solution G, among functions in C3(R3), of 
(35) is given by

G(x,y) - E[h](x,y) + xr(y), x,y e R, (36)

for some h £ C3(R) and r £ C2(R) , where E is the operator defined in 
Theorem 2.

Proof: By Theorem 2, G is of the form

G(x,y) - E[h](x,y) + D[p](x.y) + xr,(y) (37)

for some maps h, p £ C3(R) and r, £ C2(R) . Substituting this form into 
(35) and simplifying, we find that p must satisfy

P(x+y+z) - [p (x+y) + p(y+z) + p (z+x)]
+ lp(x) + p(y) + p(z)J - 0.

That is, p is a generalized homogeneous polynomial of degree (at most) 
two. But since p € C3(R), it is an actual homogeneous polynomial of 
degree at most two1]. Thus,

p(x) - axJ + bx, x £ R,

for some constants a,b. Hence

D[p](x,y) - 2axy, x,y £ R.

Substituting this into (37) and defining r £ C2(R) by

r(y):- r,(y) + 2ay, у с R,

we get (36), and we are done.
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In conclusion, let us observe that the differentiability 
assumption does not seem to be essential to the study of these 
functional equations. That hypothesis was used at only one key point, 
in the proof of Theorem 2. Moreover, most of the functions appearing in 
the solutions are arbitrary except for the smoothness condition. 
Recently, in joint work with C.T. Ng, we have succeeded in obtaining the 
general solutions of all functional equations treated here, with no 
regularity assumptions whatsoever. These results will be presented in a 
forthcoming paper.
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A major step forward in the geometric understanding of multiple integral 

variational problems obtained from the publication o f Caratheodory’s work on the 

construction o f a complete figure [1]. More modern expositions that relax certain of 

the original requirements can be found in [2, 3]. Those familiar with the complete 

figure are well aware of the inherent difficulties and the implicit nature o f this 

construction. The purpose o f this paper is to present an alternative to the 

construction o f the complete figure that often proves both useful and efficient.

The n-dimensional manifold of independent variables is denoted by M n . We  

assume that M n is orientable and that a system of local coordinates {x1 I 1 ^  i ^  

n) has been introduced. The volume element (basis n-form) of M n will be denoted 

by д . The conjugate basis for (n — l)-form s is given by {д- =  I 1 ^  i ^  n)

with the properties (see [4], Section 3.5)

(1.1) dx̂ AjUj d =  0 .

Study of first order, multiple integral variational problems requires “place 

holders” fo r the dependent variables and their first derivatives. These are 

provided by the introduction of a contact m anifold. К =  M n X R m, with local 

coordinates {x1, qa , у-* I 1 ^  i ^  n, 1 ^  a  <; N}, where N is the number of 

dependent variables,

(1.2) m =  N(n +  1) , 

and contact 1 -f o r m s

(1.3) Ca  =  dqa  -  y-3tdxi , 1 £  a  £  N .

Let Ф be an open, connected subset of a copy o f M n . A map Ф : 3) —► К is said 

to be regu la r  i f  and only if Ф*££ ^  0. The collection of all regular maps is 

denoted by R . If a regular map Ф is such that Ф * annihilates each of the 

contact 1-forms, then the y*s become the derivatives o f the dependent variables 

with respect to the independent variables on the range o f Ф (see 14], Chapter 6). 

The collection o f all regular, annihilating maps of the contact 1-forms is denoted by

1. INTRODUCTION
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(1.4) RC =  {Ф : Ф - ♦  К I Ф *д И  0 , Ф *Са  =  0) .

Let L(x\ qa , у ? ) be a given element of A^UO. The action integral 

associated with the Lagrangian L is defined by

(1.5) А(Ф] =  / фФ * а д )  ,

for any Ф € RC . The E uler-Lagrange n -fo rm s  associated with the action 

integral (1.5) are given by

(1*6) Ед =  ЛдД — dAcxA t̂j ,

where

(17 } a — 3L Ai _  9L
( ) “  _  3 ^  ’ “  “  Ъ ?  '

As is well known, a map Ф 6 RC is a critical point of the action integral А[Ф) 

if and only if

(1.8) Ф *Еа  =  0 , 1 £  а  £  N .

Cartan [5] has shown us that this information can be organized in a more 

efficient fashion by studying the closed fundam enta l ideal

(1.9) 5  =  HCa , dCa , Ea , dEa  I 1 <; a  £  N)

of A (K ). The fundamental ideal obviously contains the contact ideal

(1.10) С =  НСа , dСа  I I  <  а £  N}

as a subideal. Further, an elementary calculation and the identity dCa AAj =

—dy^A jи show that dEa  =5 0 mod C, and hence the fundamental ideal assumes the 
J

simpler form
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(1.11) <? =  I<Ca , dCa , Еа ) .

The collection o f all solution m aps  o f the multiple integral variational 

problem with action integral А[Ф] is given by

(1.12) S =  {Ф  : 3) —> К I Ф *д И  О, Ф * *  =  0 }.

The requirement Ф *д ^  0 guarantees that the range o f Ф in К projects onto 

M n as an n-dimensional region; that is, the x ’s remain independent on the range of 

Ф . On the other hand, Ф*®Р =  0 if and only if

(1.13) Ф *С а  =  0 , Ф *Е а  =  0 , 1 <£ а  £  N

because Ф*Г2 =  0 implies Ф5*^Ш =  0. The fundamental problem associated with a 

given action integral А[Ф] is to establish that the set of solution maps S is not 

vacuous. O f equal importance, at least from the practical viewpoint, is to obtain 

definite algorithms for explicit calculation o f solution maps when they exist. The  

results reported below have been guided by Cartan’s views. They may be looked 

upon as an alternative to the complete figure construct of Caratheodory.

2. CANONICAL SYSTEM S OF VECTOR FIELDS

W e noted in the previous section that the contact ideal С is a closed 

subideal o f the fundamental ideal. It turns out that much o f the analysis can be 

based solely on this subideal. This is because the generators o f the fundamental 

ideal that characterize the specific variational problem under study are

represented by the Euler-Lagrange n-forms {Ea  11 ^  a  ^  N }, rather than by 0- 

forms. Since A (K ) is a graded algebra, it proves useful to introduce the graded 

submodules o f С over A^(K ) by

(2.1) Ck =  С П A k(K) .

An essential aspect o f the Cartan approach 15] is the construction of modules 

o f vector fields on К that are annihilators of the fundamental ideal. Let T (K ) 

denote the Lie algebra of smooth vector fields on К .
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Definition 2.1 Let Я  be an ideal of A(K), let =  Х П  A k(K), and let 41 be a 

module of T (K ) over A^(K). 41 is a module of Cartan  annihilators if and only 

if every к-tuple {Up •••, U^} of elements of CU , 1 £  к ^  dim(K), satisfies the 

conditions

Uk JUk.1J-.JU1JJfk -  0 .

Modules of Cartan annihilators can be constructed for the ideal C, but the 

situation is significantly simpler because we will only have to achieve the 

construction for “normalized” bases. The reasons for this will become apparent in 

what follows. The following notation will be used for the elements of the natural 

basis for T(K ):

(2.2) 3j =  Э/Эх\ Эа  =  3/3qa  , =  Э/Эу^ .

Definition 2.2 A system of n vector fields {V - I 1 ^  i ^  n> on К is said to be 

a canonical system  (i.e., a basis for a module of Cartan annihilators of C) if and 

only if the vectors satisfy the normalization conditions

(2.3) VjJdxJ =  , 

and the Cartan annihilator conditions

(2.4) v i1l v i2l "  l v ikJck “  0 • 1 ^  k ^  n ’

Remark. Since there are only n vectors in a canonical system, the conditions (2.4) 

will necessarily be satisfied by a canonical system for all к >  n .

Theorem 2.1 A system  o f  vector fie ld s  {Vj I 1 £  i ^  n) is a canonical 

system  i f  and only i f

(2.5) Wi =  3j +  У ^ З а  +  Af-.di , 1 £  i £  n ,

where the A ’s are  any system  o f  elem ents o f  A^(K) that sa tis fy  the 

sym m etry  relations
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(2 .6)

a n d  the Lie p roduct o f  an y  two e lem ents o f  (V|> has the evaluation

(2.7) I v i. V j l  -  К < А “ >  -  V j < A “  > } Эк .

The contact m a n ifo ld  К thus adm its an  N n (n -f l)/ 2 — fo ld  in fin ity  o f  

canonica l system s, a n d  hence  С adm its an  N n (n+ l)/2— fo ld  in fin ity  o f  n - 

d im en sion a l m odu les o f  C a rta n  annih ila tors.

P r o o f . Any system of n vector fields on К that satisfies the normalization 

conditions (2.3) has the form

The system {Vj I I  ^  i ^  n) is therefore a linearly independent system. Noting 

that С is generated by the 1-forms Ca  and the 2-forms dCa , satisfaction o f 

conditions (2.4) can be achieved if and only if

The results given by (2.5), (2.6), and (2.7) then follow from elementary algebraic 

calculations. If (V- I 1 ^  i ^  n} is a canonical system, then the system (Uj =  

N jV j  I 1 <; i ^  n, Nj* G Л °(К ), det(N^) ^  0) is also a system o f Cartan annihilators 

o f the contact ideal; that is, the system (Uj I 1 ^  i ^  n) will satisfy the graded 

annihilator conditions (2.4). □

In order to clarify  some o f the properties o f canonical systems, we recall 

several standard definitions.

Definition 2.3 A vector field U is a Cauchy characteristic  o f an ideal N  of 

A (K ) if  and only if

(2.8) UJJf С  К  .

Definition 2.4 A vector field U is an isovector  of an ideal >f of A (K ) if and 

only if

v i =  9i +  -j- v - j3 a  , 1 £  i £  n .

VjJCa  =  o , v AJVjJdCa  =  0 , 1 <; a  <; N .

(2.9) £ и Х  С  X  .
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Theorem 2.2 Let {Vj I 1 ^  i ^  n)  be a canonical system  fo r  the contact 

m a n ifo ld  К . I f  U is any vector f ie ld  in the linear span o f  (Vj) over A^OO, 

then U is neither a Cauchy characteristic nor an isovector o f  the contact 

ideal C .

P roo f. We first use Theorem 2.1 to obtain VjJdCa  =  dy-* — Aydx'*. Since any 

vector field U in the linear span o f (V^) has the representation U =  n*Vj , n1 G 

A^(K), we have

UJdCa  =  nMdyf- -  A ^ d x j ) g  С .

Noting that =  ^JdCa  +  d{UJCa ) =  U jdC a  for any U in the linear span

of (Vj), the previous calculation shows that £цСа  g С . □

3. REPRESENTATIONS IN TERMS OF HORIZONTAL AND VERTICAL IDEALS

The fact that no vector in the linear span of a canonical system is either a 

Cauchy characteristic of the contact ideal or an isovector of the contact ideal 

shows that we have been dealing with the wrong ideal of A(K). We therefore 

proceed to reformulate the problem.

Definition 3.1 The vertica l ideal of A (K ) is the closed differential ideal that is 

defined by

(3.1) Г  =  Kdx* I 1 £  i £  n) .

Definition 3.2 A horizontal ideal of A (K ) is defined by

(3.2) % [A£] =  I{Ca , H f  I 1 £  a  £  N , 1 i £  n) , 

with

(3.3) Hf- =  d y f  -  A jjdxJ

for each choice of {A ^  e  A °(K )} that satisfies the symmetry conditions

(3.4)



Definition 3.3 A horizontal ideal K lA -j] serves to define an associated horizontal 

m odu le  of T (K ) by

(3.5) 3€*[Ajj] =  {U  € T (K ) I UJKIA^J С  ЭЫА-3-]} ;

that is, !>G*[Ajj) is the module of Cauchy characteristic vector fields of DG[A-j].

Theorem 3.1 The horizonta l m odu le  % * [A -j ] adm its the canonical 

system

(3.6) Vi -  +  y f a a  +  A ? j3 i , 1 <; i <; n

a s  a  basis. H ence  % * [А у ] is  a m odule o f  Cauchy  characteristics o f  % [A y ],

(3.7) VjJC01 =  0 , V jJH ^ =  0 .

a n d  D€*[A-j] is a m odu le o f  C a rta n  annihila tors o f  the contact ideal.

P ro o f . Since %lA|j] is generated by the 1-forms {Ca , H-*), any element П o f 

3G[A-j] is o f the form

П =  Са лРа  +  H ^ a Q ^  

with (Ра , Q a) elements of A (K ) o f the same degree. We therefore have 

U jn  =  (UJCa )P a  +  (U J H jO Q i mod M [A g ] , 

and hence U — u*8j +  иа Эа  +  и ^Э ^  can belong to Э0*[Ау] if and only if

0 -  U]Ca  =  ua  -  у?и‘ , 0 -  UJHf -  u f  -  A-^uk .

It thus follows that any U G 30*[A-j] is of the form

(3.8) U -  и‘ {э ; +  у ? Э а  +  А ^ Э ^ }  -

with {V -} given by (3.6). Since A -j =  A ^ , Theorem 2.1 shows that {V^ I 1 ^  i £
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n} is a canonical system. Thus, since the elements in a canonical system are 

independent, (3.8) shows that (Vj I 1 <; i ^  n) is a basis for !H>*(A-jJ. □

This result is fundamental in what follows. It tells us how to construct a 

horizontal ideal D&lAy] o f A (K ), for any given module 36*[Ajj] of Cartan 

annihilators of C, such that !№*(A?j] becomes a module of Cauchy characteristics 

of UblAjjJ. The extensive body of information associated with Cauchy 

characteristics is thus made available for the study of problems in the calculus of 

variations along the lines initiated by Cartan.

It is clear from the definition of the vertical and horizontal ideals of A(K) 

that A^(K) admits the direct sum decomposition

(3.9) a \ k )  =  ( Г  n A ^ j e f t t l A g j r i A ^ K ) )  .

This leads to the following result that will be instrumental in what follows.

Theorem 3.2 I f  f  is any smooth function  on K, then

(3.10) df =  Vi < f > d x i 4- (Э ^П С * +  (3^f)H ?  , 

and hence

(3.11) df s  V i < f > d x i mod 3G(a £ ] .

P roo f. For any f  € A °(K ), we have

df =  O kf)d x k +  O a f)dqa  +  O jx O d y f .

However, dqa  =  Ca  +  y £ d x k , dy-* =  H-* +  A ^ d x k , by (1.3) and (3.3), and 

hence an elimination of dqa  and dy-* by using these relations gives (3.10) and

(3.11). □

Theorem 33 For any horizontal ideal MA-jJ o f  A °(K ) we have

(3.12) dCa  =  -  H f  Adx* ,

(3.13) dH? -  -  1 { У „ < а £ >  -  Vk < A “ i > }d x m*dxk
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-  (Э/3А^)С^лёхк -  C9^A^)H^Adxk ,

w here  {V j I 1 £  i ^  n) is the canonica l basis f o r  % * [A -j ].  H ence  M lA -j] is  a 

closed  d i f fe r e n t ia l  ideal o f  A (K ) i f  an d  only i f

(ЗЛА ) V k < A S i >  =  V ™ < A k i>  *

P r o o f . It follows directly from Ca  =  dqa  — y?tdxi that dCa  — — dy^Adx*. 

Since dy-*- =  H-* A -jd x J by (3.3), we obtain

- d C a  =  (Hj* +  A ^ d x V d x *  =  H ^A dx1

when we use the symmetry relations A -j =  A j- . In like manner, (3.3) gives dH-*

— —dA^cAdxk. Use of Lemma 3.1 to evaluate d A ^  thus gives us (3.13) when we 

use the symmetry relations A y  =  A j - . The relations (3.12) show that we will 

always have dCa  s= 0 mod ЭДА-j]. On the other hand, (3.13) shows that we will 

have d H f  e  0 mod 30tA^J if and only if (3.14) hold. Thus, since % [a £ ] is 

generated by the 1-forms {Ca , H-*}, !№[A-j} is a closed differential ideal o f A (K ) 

if and only if (3.14) hold. □

Theorem 3.4 The fo llow ing  sta tem ents are  equ iva lent:

(i) ЭДА-j] is a closed d i f f e r e n t ia l  ideal o f  A (K ),

(3.15) dttlAg] С  Я [а £ ] ;

(i i ) f t * [A -j ] is in vo lu tive%

(3.16) I » * I A g l ,  % * [A g ]J  С  K * [A * ]  , 

an d

(3.17) IV j ,  V j l  =  0 ;

(iii ) % * [A -jl is a m odu le o f  isovectors o f  Э6[Ау),



253

(3.18) £ и « [ А ^ ]  С  % [A -j] V U G  .

The conditions that A y  G A °(K ) m ust sa tis fy  in ord er f o r  these results to 

hold are

(3.19)

and

<3*2°) v ><A“k> -  v j< Aik> •

Proo f. Theorem 3.3 has shown that !H>[A ĵ] is a closed differential ideal if and 

only if the relations (3.14) hold. However, Theorem 2.1 shows that (3.14) are both 

necessary and sufficient in order for the Lie products Ц V|, V j ]] to satisfy (3.17). 

Conversely if the Lie products ([V j, Vj]] satisfy (3.17), then (2.7) show that the 

relations (3.14) are satisfied. Now, any two vectors U j and U2 in ЭС*[Ау) are 

of the form U j *= n^Vj, U2 =  n2V j because (Vj I 1 £  i £  n) is a basis for 

36*lA-j), and a direct calculation shows that the Lie product has the evaluation

IU j, U2 1 -  n jn^IV j, V jl +  U1< n j > V j  -  U2 < n j> V .  .

Hence |[Uj, U2II belongs to 9€*lA-jJ if and only if ffVp VjJ belongs to !№ *[A-j]. 

This shows that Э&*[Ау] is involutive if and only if IIVj, VjJ belongs to Э6*[А-*р 

for all 1 £  i <  j  £  n . However, (2.7) show that fVj, V ^  belongs to K * [A ^ ] if 

and only if the relations (3.14) are satisfied. This establishes the equivalence of (i) 

and (ii). Since 3G[A-j] is generated by the 1-forms {Ca , H-*}, any vector U in 

3t*lA-j] is an isovector of !№[A^j) if and only if £uC a  an<* ^ U ^ ij are ‘n 

%lA?jj. Now,

£ и Са  =  UJdCa  +  d(UJCa ) =  UJdCa  ,

i ^ H f  -  UJdH f +  d (U JH p  =  UJdH f ,

where we have used the fact that any U G OG^lA^j) is a Cauchy characteristic of 

3€[A*j] in order to obtain the second equalities. We now use the evaluations (3.12) 

and (3.13) to obtain
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£ и Са  в  0 mod % [А ^ ]

and

£ и НГ  s  — | { v m< A “ i >  -  V k < A “ i > } u j ( d x mAdxk) mod M a “ ] .

Thus, since any U € 3€*lA-j) can be written in the form U =  n W j, we have 

U j(d x mAdxk) =  umdxk -  uk dxm G Г .  Accordingly, i ^ H f -  is in DtlA-j] if and 

only if V m< A ^ >  =  Vjc< A ^ i > , and these conditions are both necessary and 

sufficient for ЭДАу] to be a closed differential ideal by Theorem 3.3. This 

establishes the equivalence o f (i) and (iii). □

4. CLOSURE CONDITIONS AND TH E RESULTING FOLIATION STRUCTURES

Each choice of the functions A -j(x  , q , y£), satisfying the symmetry 

conditions A -j =  A j-, leads to a horizontal ideal !H>[Ajj] o f A (K ) and to an 

associated horizontal module !№*1Ау] of T (K ) that is both a module of Cauchy 

characteristic vectors of ЭДА-jl and a module of Cartan annihilators o f C . 

Theorem 3.4 shows that ЭДАу] is stable under Lie transport by any vector in 

% *[A -j] (i.e., DG*[A-j] is a module o f isovectors of !№[A-j]) and that 3t*[A?j] is 

involutive if  and only if  tH>[A|j] is a closed differential ideal of A (K ). Since 

3G[A-j] is generated by the 1-forms (Са , H-*}, the Frobenius Theorem [4] tells us 

that ЭДА-j] is com pletely integrable  if and only if !H>[Ajj] is a closed 

differential ideal. W e will therefore restrict our consideration from now on to 

horizontal ideals of A (K ) that are completely integrable.

Definition 4.1 The collection o f all completely integrable horizontal ideals of A (K ) 

is denoted by S>(K); that is,

(4.1) g(K) =  Ш А $  I dMIAfj) С  m f j ] )  .

Theorem 4.1 A horizontal ideal ЗИАу] belongs to g (K ) i f  and  only i f  the 

A ’s sa tis fy

(4.2)
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(4.3) V|< A J >  - VJ<Ag> .

where

W*4) Vj =  8j +  У ^З а  +  A -j3^  , 1 ^  i <; n

is the canonical basis f o r  the associated horizontal m odule  3G*[A-j], and  (4.3) 

are equ iva lent to

W-5) [[Vj, v jB =  0 .

The set § (K ) is not vacuous because

« • »  Af- =  aiaj£“ (xk)

sa tis fie s  the conditions  (4.2) and  (4.3) f o r  every  smooth choice o f  the 

fu n c tion s  Ка (хк) I I  ^  a  £  N}.

P roo f. Theorem 3.4 and the Frobenius Theorem show that a horizontal ideal 

is completely integrable if and only if (4.2) and (4.3) hold. It is then a 

simple computation to see that the A ’s given by (4.6) satisfy the conditions (4.2) 

and (4.3), and hence ©(K) is not vacuous. 0

If W AjjJ G §(K ), then ЗДА-j] is a closed differential ideal that is generated 

by m =  N (l-j-n ) independent 1-forms {Са , H-* I I  ^  a  ^  N, 1 £  i £  n). Since 

dim(K) =  n - f  m, the Frobenius Theorem implies that К is foliated by n- 

dimensional manifolds such that 50(A-j] vanishes when restricted to any leaf of 

this foliation. By definition, 3G*[A-j] is a module of Cauchy characteristics of 

3G[AjjJ that has the canonical basis {Vj I 1 ^  i £  n). Accordingly, any solution g 

of the system o f n, simultaneous, involutive, linear partial differential equations

(4.7) V j< g >  =  0 , 1 i £  n

will be constant on any leaf o f the foliation generated by 3G[Ajj], Since ЭДАу] £ 

ft(K) if and only if |Vj, VjJ =  0, and (4.4) show that none of the vector fields 

{V j} have critical points, the fundamental existence theorem for the system (4.7) 

asserts the existence of m functionally independent primitive integrals {g^  G A®(K)
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I I  ^  ^  m). Thus, any leaf o f the foliation generated by 3£[A-j] will satisfy  

(4-8) *Z(x1’ q0t’ У?5 "  k£ » 1 ^ ^ m

for some choice of the constants (k ^  I 1 £  Z  £  m). It thus follows that each leaf 

of the foliation generated by ЭДАу] is transverse to the fibers o f К because 

V i jdx j  -  Sf.

If we introduce collective coordinates {z A } on К by

(4.9) {z A I 1 £  A £  n +  in} — {x\ qa , yf" I 1 £  i £  n, 1 £  a  £  N ), 

then the elements o f the canonical basis take the generic form

(4.10) V j -  v A ( z b ) 3 a  , 1 <; i <; n , 

with

(4.11) JVif V j l  =  0 .

Let Pq :{zq ) be an arbitrarily chosen point of K . W e can then define a map 

J jC R  —¥ К I z A «= Z A (zq ; u 1) by solving the initial value problem

(4.12) „  у * (zf) , Z^(z®; 0) «  z£ . 
du

W e can define a map ^2^“ ^  ^  =  ^2^z 0* u** by so v̂inB tbe
initial value problem

(4.13) Щ  -  v £ (z f ) , z£(z®; u1, 0) -  z f (z ^ ; u1) . 
du

Continuing in this fashion, we thus obtain a map ♦  =  ♦ „  : J „ C R n - »  К I z A =  

Z A (z q ; u ,̂ un) by solving the initial value problem

(4.14) -  v£(Z?) , z£(z£; u1, и "'1,!)) -  Z^,<z®; u1, •••, u " '1) .

Since all o f the vector fielde <Vj) commute, the map ♦  that results from this
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sequential in tegra tion  o f  the orbital equations f o r  (Vj) f r o m  the point Pq 

is independent o f the order in which we select the basis vectors {V j}. It is then 

easily seen that ♦  maps Jn С  F n into the leaf JUPq) of the foliation generated 

by W A -j ] that passes through the point Pq G К . We will thus refer to such 

maps ♦  as le a f  m aps. Since 36lAjj] restricted to any leaf of the foliation 

generated by 3G[A-jJ vanishes, we have

(4.15) ¥ * C a  -  0 , =  0

for any leaf map ♦ .  Noting that ♦ *  commutes with exterior differentiation and 

that V n J V ^ J  — JVjJ^ — 1, we obtain

(4.16) ¥ * C a  =  0 , ¥ *dC a  =  0 , ^  0 .

Thus, any leaf map of the foliation generated by ЭДА-j] £ £(K) is a solving map 

of the contact ideal. These results are summarized in the following theorem.

Theorem 4J2 F or each  ЭДАу] in  £(K), the space К is folia ted  by 

m a n ifo ld s  o f  d im ension  n that a re  transverse to the fib e rs  o f  К and  ЭДА-j) 

vanishes when restricted  to any lea f o f  this foliation . I f  {Vj I 1 ^  i £  n} is 

the canonical basis f o r  DG*[Ajj], then the leaves o f  the foliation are given in  

im plicit f o r m  by

M.17) q0 , y f )  -  kj- , 1 £  Z  <£ ш -  N(1 + n ) ,

w here the fu n c tion s  {g^  I I  £  £  ^  m} constitute a complete, independent 

system  o f  p rim itive  integrals o f  the com m utative system  o f  partial 

d iffe re n t ia l equations

(4.18) V j< g >  =  0 , 1 <; i <; n .

Sequential integration o f  the orbital equations o f  the system  {Vj} f r o m  a 

point Pq G К gives the lea f m ap  ♦  : Jn С  F n —» К that m aps  Jn into the 

le a f  JUPq) that passes through  Pq. Any such lea f m ap  ♦  is  a  solving m ap  

f o r  both the horizontal ideal K lA -jl and the contact ideal С .
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5. AN EXISTENCE THEOREM FOR E U L E R -L A G R A N G E  EQUATIONS

Any DtlAjj] in £ (K ) has been shown to lead to a foliation of К by graphs 

of solution maps o f the contact ideal С . W e also know that С is a subideal of 

the fundamental ideal Ф =  I{Ca , dCa , Ea  I 1 ^  a  £  N), where the E ’s are the 

Euler-Lagrange n-forms given by (1.6). These facts prompt us to ask whether we 

can find a leaf o f the foliation generated by DtlA-1-] that contains the graph of a 

solution map o f the fundamental ideal. Since ¥ *C  =  0 fo r any leaf map ♦  , the 

leaf map ♦  will annihilate the fundamental ideal if and only if  ¥ * E a  =  0. On 

the other hand, we also know that У*!№ [Ау] =  0, and hence the following lemma 

proves to be useful

Lemma 5.1 Let 3t(A-j] € §(K ), let ♦  be any le a f  m ap  associated  with the 

fo lia tion  gen era ted  by % lA-j], and let {Vi I 1 ^  i ^  n) be the canonica l bas is  

f o r  !№*[A?j]. We have

(5.1) Ea  =  Fа д mod Э0[Ау] , 

w here the F’s a r e  elem ents o f  A °(K ) with the evaluations

(5.2) Fa  -  Ла  — V i <A j)t>  , 

an d  hence

(5.3) ¥ * E a  =  * * (F a /i) .

P roo f.  The Euler-Lagrange n-forms are defined by Еа  =  Ла д — dA^A/^. If we 

use (3.11) to evaluate the indicated exterior derivative dAjx> we obtain

Еа  -  Аа д -  V j < A jt> d x JA^i mod 36[a £ ] .

The relations (5.1) and (5.2) then follow upon noting that dxJA ^  =  sffi .  Thus, 

since any leaf map ¥  of the foliation generated by ЭДАу] gives ¥*ЭС[Ау] =  0, 

we obtain (5.3). □

W e now have all o f the results that are necessary in order to establish the 

following existence theorem.
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Theorem 5.1 Let !№[A[j] belong to £ (K ) and let fffA-j] be the point set in К 

that is d e f in ed  by

I f  *  is the m ap  associated  with a lea f o f  the folia tion  generated by ЭДАу) 

and the graph o f  V  in tersects  ff[A -j] in a point set that is pulled back to an  

open subset 3) o f  F n by ♦ * ,  then the restriction  o f  the dom ain o f  V to 3) 

d efin es  a solution m ap  o f  the fund am enta l ideal.

P roof. Any map ♦  associated with a leaf of the foliation generated by ЭДА-j] is 

such that ^  0. Thus, Lemma 5.1 shows that V *E a  =  0 if and only if

— 0. Noting that the F ’s are 0-forms on K, =  0 can be satisfied

only on those regions %  of К where the graph of ♦  intersects the point set 

fflA-jJ. Let 3) =  then 9) can be the domain of a solution map only if 3)

is an open subset of R n. If denotes the map that results from ♦  by

restriction of the domain of ♦  to 3), then V jE a  =  0. □

The point set QrtA^j] is the set of simultaneous zeros of the N functions 

F a  *  Aa  — V j< A jx > , and hence it depends on the choice of {A-j} because {Vj} 

depend on the choice of (A -j}.  This explains the notation Qr[Ajj]. This notation 

is used in order to emphasize the fact that we have to test every possible choice 

of {A -j} fo r which 56lA-j] is contained in $0 0  in order to use Theorem 5.1 to 

obtain all solution maps o f the fundamental ideal that are accessible by this method.

We have explicitly restricted our considerations to completely integrable 

horizontal ideals. It might therefore appear that this restriction could eliminate 

some or all solutions of the fundamental ideal (i.e., we could miss some of the 

solutions o f the Euler-Lagrange equations under study). That this is not the case, 

at least for smooth solutions, is shown by the following result.

Theorem 5.2 Any smooth  (C^) solution m ap o f  the fundam enta l ideal 

can be rea lized  as an open , n-dim ensional subset o f  a lea f o f  the foliation  

generated  by a com pletely integrable horizontal ideal.

P roo f. Let Ф : J„ С  F n —> К be a smooth (C^) solution map of the fundamental 

ideal. Since Ф*д ^  0, Ф has a local presentation

(5.4) ff[A^] =  {P 6 К I Fa  =  0 , 1 £  a  £  N} .

(5.5) Ф I x1 -  u1 , qa  =  * a (uk) , yf -  —
9*a (uk)

Эи1
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■ a _ эУ(ик)
U Эи* Эц^ ’

then X [A jj) G 6 (K), as is easily checked. Sequential integration o f the orbital 

equations of the canonical basis {Vj I 1 £  i £  n) for !№*[Ау] gives the leaf maps

(5.6) x1 -  xj) +  u1 , qa  =  q£ +  y *  u1 +  ^a (xJ +  uk) ,

a  a  , 3 *“ (x k +  uk)

Vi -  y* +  — b —  •

where {u1 I 1 ^  i ^  n) is a system o f coordinates on a neighborhood Jn of F n 

that contains the origin. It is then easily seen that the solution map with the local 

presentation (5.5) coincides with the leaf map given by (5.6) with all integration 

constants set equal to zero. □

In the simplest cases, QT[Ajj] will be a submanifold o f К of codimension N .  

It is well known, however, that the sets of simultaneous zeros of N smooth 

functions on a manifold К o f dimension n +  N(1 + n ) can have a very  complicated 

structure. The conditions o f Theorem 5.1 further compound the problem by 

requiring us to determine intersections of fflA -j] with the n-dimensional leaves of 

the foliation generated by ЭЫА-j], and then to test whether any such intersection 

pulls back to R n to give an open set. It is thus abundantly clear that these tests 

can fail, and we would be unable to establish existence of a solution map of the 

fundamental ideal. Further, if the tests associated with Theorem 5.1 are positive, it 

could happen that only one leaf of the foliation generated by ЗДАу] will intersect 

ff lA y ] in a point set that is the image of an open set 3) С  Kn under the leaf map 

♦  . This is also not unexpected because systems o f relatively simple Euler-Lagrange 

equations are known to have solution sets that do not foliate К . There is 

therefore an obvious question that presents itself at this point. Can we find 

restrictions on the choices o f {A y } for which these intersection problems become 

simpler? In particular, can we find whole leaves of the foliation of К that are 

graphs o f solution maps, and when is every leaf of the foliation the graph o f a 

solution map? Some answers to these questions are presented in the next section.

If we set
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6. REDUCTION BY ISOVECTORS OF THE EULER-LAGRANGE IDEAL

Many of the questions associated with the determination of the structure of 

the point set ЭДАу] can be answered by studying yet another ideal of A(K). 

Definition 6.1 The E u ler -Lagran ge  ideal of A(K), associated with the Euler- 

Lagrange n-forms {Ea  I I  <; a  <; N), is given by

(6-1) 6IA-j) =  I<Ca , H“ , Ea ) -  I(Ca , H f, Fa u ) .

Theorem 6.1 I f  ЭМАу) € 8 (K), then the E u ler -Lagrange ideal is a closed  

d if  5erentia l ideal o f  A (K ).

Proof. If ЭДА-j] 6 £>(K), then ЭДА-j] is a closed differential subideal of S[A-j]. 

Thus, in view of (6.1) it is sufficient to check that dFa A^ belongs to S (A -j]. We 

know, however, that dFa  =  V j< F a > d x J mod ЭДА-jj], by Theorem 3.2, and hence 

dFа лд =  0 mod 3G[A-j]. □

It is not hard to prove that 3G*(A-j] is not a module of Cauchy 

characteristics o f the Euler-Lagrange ideal S[A-j], so we will not labor the reader 

with the details. The important question is whether the canonical basis vectors for 

3G*[A-j] are isovectors of S [A y ]. The following result is therefore useful.

Lemma 6.1 I f  ЭДА^] 6 S (K ) and  (Vj I 1 £  i ^  n) is the canonical basis 

f o r  3€*lA$. then

(6.2)’ £ v _Ea  =  £ v .(Fa A«) s  V j< F a > i i  mod ЭДА*) .

P roo f. Since ЭДА-j] is stable under transport by any element of W *[A -j], and 

Ea  s= Fa fjL mod ЭДАу], we have

£ v  Ea  ^  £ v .(Fa  Д) mod ЭДА*] .

The result then follows because Lie differentiation acts as a derivation and

£ v  a =  d(VjJ/i) -  -  0

for any canonical system {Vj I 1 £  i £  n). □

Theorem 6.2 I f  ЭДА^] € ©(К) an d  i f  {Vj I 1 £  i £  n) is the canonical
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basis f o r  Dfc*[A-j), then e ve ry  vec tor  f ie ld  in  DG*[A-j] is  an  isovector o f  the 

E u ler -L a g ra n ge  ideal S lA y ] i f  and  only i f

(6-3) V i < F a >  =  L ^ F fi , 1 <; a  <; N

a r e  sa tis f ie d  f o r  som e choice o f  the nN2 elem ents  { L ^ }  o f  A °(K ).

P roo f. Since S lA jj] =  I{Ca , H^, Fa /i}, Dt(A-j) e 6 (K), and И *1А ^ ] is a module 

o f isovectors o f the subideal ЗДАу] by Theorem 3.4, it suffices to show that

£ v  =  0 mod S[Af|] .
i J

When the congruences given by Lemma 6.1 are used, we obtain the conditions

V i < F a >M  =  L ^ F ^ / i  mod » [ A $  ,

and hence the conditions (6.3) must be satisfied fo r some choice of the elements 

{ L ^ }  o f A °(K ). Now, any U 6 tt*[A?j] has the form U =  n W j, and hence

£и(раД ) -  n1 £v .(Fa ^) +  dni A(FctVi j^) .

Thus, when we use dn1 =  V j< n 1> d x J mod % [А у ] and (6.3), we obtain

£ ц (Ра д ) s  (n’ L^ j +  V j< n * > 6a )F 0 V mod M a “ ] .

The result then follows upon noting that the right-hand side belongs to S [Ay ]. □

Theorem 6.3 Let Э6[А у ] be an  elem ent o f  Sj(K) such that the A ’s sa tis fy  

the conditions  (6.3), let {V- I 1 ^  i ^  n) be the canonical basis f o r  !H>*[A-j], and  

let £ (P0) be the le a f  o f  the fo lia tion  o f  К that conta ins the point PQ. I f  Pg 

is in  ff[A y ], then  £(Pq) is conta ined in  ff[A -j]. I f  Nk is the m ap  f r o m  Jn С  lRn 

that is constructed  by sequentia l in tegration  o f  the orbital equations o f  {V j} 

starting  f r o m  Pq, then 'If is a m ap f r o m  Jn to £(Pq) that is a solution m ap  o f  

the fu n d a m en ta l ideal.

P roo f . Since Pq belongs to ЭДА-j] by hypothesis, we have

(6.4) Fa(P (P  =  0 . .1 <: a  £  N .
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If we sequentially integrate the orbital equations of {Vj) starting with the point 

Pq, we obtain a map ♦  from Jn С  R n into К such that the image of the origin 

in F n is the point Pq and the range of ♦  is contained in the leaf K P q) that 

contains Pq . Accordingly, (6.4) give us the evaluations

(6.5) * * (F a (P0)) =  ( * * F a )| i Q =  0 .

Noting that all Vj restricted to the range of ♦  are tangent to the range of ♦  , 

satisfaction of the conditions (6.3) imply that ♦ ’’‘F a  satisfy

(6.6) dOi^Fa) _  Oir*L£j)(**F0) ,
du

where {u1 I 1 ^  i ^  n} is a system of local coordinates on Jn С  R n. Sequential 

integration of the system (6.6) on Jn subject to the initial data (6.5) thus gives

(6.7) * * F a  -= 0 , 1 £  a  £  N .

Thus, ♦  is a solution map o f the fundamental ideal by Theorem 5.1. □

An examination o f the conditions (6.3) shows that there are basically three 

ways in which they can be satisfied.

Definition 6.2 The subset § S(K) of 0 (K ), that obtains for those choices of (A-j) 

for which

(6.8) Fa  =  Aa  — Vj < A a >  =  0 , 1 <: a  £  N ,

is termed special. Any ЗДАу] 6 $ S(K) and the associated % *[А у ] will also be 

termed special. The subset C r00 of © (Ю —£ S(K), that obtains from the choices 

° f  (A jj) for which

(6-9) Vj < F a >  =  0 , 1 £  a  £  N ,

is termed restricted . The subset $g(K) o f 5 0 0 —©s(IO—фг(К), that obtains from 

the choices of {A y } for which



264

« • И »  V j< F a >  =  l?a iF e  , 1 £  a  £  N ,

Q
fo r some not identically zero choices of the functions will be termed

gen era l.

Theorem 6.4 I f  ЭДА-j] belongs to £ S(K ), then e v e ry  le a f  o f  the fo lia tion  

gen era ted  by ЭДА-j] is  the graph o f  a solution m ap  o f  the fu n d a m en ta l ideal; 

that is, К is fo lia ted  by graphs o f  solution m ap s o f  the E u ler -La gra n ge  

equations  Ea  =  0. The cond itions that the A 's  m ust s a t is fy  in  these 

c ircu m sta n ces  a re

(6.11)

(6 . 1 2 )

A *  -  Aj- , V .< A “ >  -  V j < A fk > ,  

“  Лд , 1 ^  a  ^  N ,

w here

(6.13) V j =  3j +  y ? 3 a  +  A ^ a i  , U i < . .

P ro o f . The definition o f ©S(K) shows that the F ’s vanish throughout К for 

any ЭДА-j] G 5 S(K). Hence every point in К is a point Pq fo r which Theorem  

6.3 is applicable. This shows that every leaf of the foliation o f К generated by 

ЭДА-j] is the graph of a solution map of the fundamental ideal. The conditions

(6.11) and (6.12) that the A ’s must satisfy  in order that ЭДАу] £ ®s^Ay] follow  

directly from previous results. □

Theorem 6.5 I f  ЭДАу] belongs to © r (K ), then each  Fa  is constant in  

va lue  on  any lea f o f  the fo lia tion  o f  К generated  by ЭДАу]. T h u s , any lea f  

o f  this fo lia tion  that touches the point set Ш А у ] is  the graph  o f  a solution  

m ap  o f  the fu n d a m en ta l ideal. The conditions that the A ’s m ust sa t is fy  in  

these c ircum stances  a re  (6.11), (6.13) a n d

(6.14) V ^ F ^  =  V i < A a  -  V j< A J x > >  =  0 ,  1 £  a  <; N , 1 £  i £  n .

P ro o f.  By definition, ЭДАу] belongs to ©r (K) if and only if  the A ’s are such 

that V i < F a >  =  0 , 1  £  a  N, 1 £  i £  n. Thus, each of the F’s is a solution 

of the system of simultaneous, linear partial differential equations (V i < g >  = 0 1 1
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й  i ^  n). Since IVj, VjJ =  0, the known properties of solutions of such systems 

shows that we must have Fa  =  f a (g£>, where {g^ I 1 £  £  £  m) is a system of 

independent primitive integrals of the system (V j< g >  = 0 1 1  ^  i £  n). We have 

shown previously, however, that the leaves of the fbliation generated by !№[A^j] 

are given in implicit form by the system of relations {g^  =  k^  I 1 E ^  m). 

This shows that the F’s are constant in value on the leaves of the foliation of К 

generated by !H>[Ay]. Theorem 6.3 then shows that any leaf of this foliation that 

touches the point set *ЯАу] is contained in ЭДАу], and hence any leaf o f this 

foliation on which all o f the F’s vanish is the graph of a solution map of the 

fundamental ideal. The conditions that the A ’s must satisfy in order that M [Ay] 

belong to S>r(K) follow directly from previously established results. □

Theorem 6.6 I f  M [Ay] belongs to ?jg(K), then the F ’s are constant in 

va lue only on those leaves o f  the foliation generated by M lAy] that intersect 

ff [A -j]. Thus, any lea f o f  this foliation that in tersects  ЭДАу] is the graph o f  

a solution m ap o f  the fund am enta l ideal. The conditions that the A ’s m ust 

sa tis fy  in  these c ircum stances are  (6.11), (6.13), and

(6.15) V j < F a >  =  , 1 £  a  £  N ,

f o r  som e collection o f  functions  not all o f  which vanish throughout К . 

P roo f. By definition, 3G[A-^] will belong to ©g(K) if and only if У ;< Р а >  =
а в

4xi^/3 ^or some not identically zero choice of {La - } . The F’s can thus be 

constant in value on a leaf L  of the foliation generated by M [Ay] only when all 

of the F ’s vanish at some point on L , in which case the F’s vanish on the 

whole leaf. This shows that any leaf JI that intersects ЭДАу] is contained in 

Or [A y ], and hence L is the graph of a solution map of the fundamental ideal by 

Theorem 6.3. The conditions that the A’s must satisfy in order for M [Ay] to 

belong to $ g(K) follow directly from previously established results. □

7. ISOVECTORS OF THE HORIZONTAL IDEAL

We are interested in studying the set of all isovectors, ISOlAy], o f the 

closed horizontal ideal Ml A y ], i.e., those vector fields U € T(K ) such that

(7.1) С  K [A $



It has already been established by Theorem 3.4 that t№*[A^] is a module of
n

isovectors of ЭДАу] over A  (K) with the canonical system

(7.2) V j — 3j +  У ^ Э а  +  а £ э £  , 1 <; i <; n ,

as its basis. Therefore, {V- , Эа * За.) is an admissible basis fo r T (K ). Thus

(7.3) U -  n W j +  г/а Эа  +  Т)? 3{x

will be an isovector o f ЭДАу] =  HC^, I 1 0 <; N, 1 ^  i <; n) if and only if

(7.4) £ и Са  =  0 mod ЭДА?-] 

and

(7.5) XyH f- s  0 mod ЭДАу] .

By means of the identity

(7.6) =  UJdn +  d(UJQ) 

fo r any differential form Г2, it is found that

(7.7) £ и Са  =  { V i <r?a >  -  ry^Jdx1 mod ЭДА^] 

and

(7.8) £ „ H f  =  { v j < n “ >  -  Л0 де < А ? ->

-  ’)k3/3<Ai j> } dxJ mod К(АЙ] '

Hence U is an isovector o f ЭДАу] if and only if

(7.9) V i <77oc>  =  7?̂  ,

(7.10) v j < T?iX>  *  (Г̂ Э0 +  ®^) < A i j >  •
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Therefore, the complete set of iso vectors, ISO( A jj] , can be characterized in the 

following manner.

Theorem 7.1 A vector field U £ T(K ) is an isovector of the horizontal 
ideal M(A-jJ € Sj(K) i f  and only i f it is of the form

(7.11) U =  nW j +  r?a  Эа  +  V i <7?a >3|x

for any choice of the n functions {n‘ € A^(K) I I  ^  i ^  n} and for any choice 

of the N functions {?7a  I I  <> a  £  N} that satisfy

(7.12) Vj Vj<77a >  =  rfbg + Vk <T),5> 3 ^ )< A ^ >  .

It can be shown that (7.12) is an over-determined system whose integrability 

conditions are satisfied identically for any completely integrable horizontal ideal 

ЭЫА-j] E § (K ). Since (7.12) constitute a system of linear equations in the variables 

07^ I I  ^  /3 й  N}* we see that

(7.13) W [A ^ ] =  {W ^  =  T\°-Эа  +  V j<?7а >э|х V 77a  satisfying (7.12)}

is a vector subspace of T(K), and that ISO[Ay] admits the direct sum 

decomposition

(7.14) ISOlAy] =  Dt*[A-j] 0 W [A -j ]

as a vector space. We have seen that !№*[A-j] is a module over A®(K), but 

W [A jj) is not. Nonetheless, if we restrict consideration to the associative algebra

(7.15) ^ lA -jl -  { f  6 A °(K ) I V j < f >  =  0, 1 £  i £  n) ,

the linearity of the system (7.12) in {Г}а )  shows that VlA-jJ becomes a module 

over ^ [A -j ].  Accordingly, since is a subalgebra of A^(K), we have the

following result.

Theorem 7.2 The collection ISO[A-jI of all isovectors of 3G[A-j] 6 ©(K) is 

a vector subspace of  T(K ) that admits the direct sum decomposition
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(7.16) ISOlAy] =  № *[A y ] 0 WIA?j]

o f  subm odules o ver  the associative algebra  ^P[A-jj o f  all sm ooth functions  

that a re  annih ila ted  by the action o f  all e lem ents o f  ЭС*[Ау].

It is well known that TOO forms a Lie algebra with product Ц , 1 given by 

the commutator. Since

(7Л7) V j — £ y £ v  — £ у £ и ,

the definition of ISO [Ay] shows that

(7.18) IIISOlAgl, ISOIAy] 1 С  ISQtA-j] ,

and thus ISOlAy] is a Lie subalgebra o f TOO .

Due to the direct sum decomposition o f ISO [Ay] established in Theorem 7.2, 

one is interested in the Lie algebraic properties of the submodules !№*lAy] and 

W lA y ].  By virtue of the relations

(7.19) IlnW j, UJ =  nH V j, Щ  -  U < n i > V i 

and

(7.20) [V j,  UJ =  V i< u J> V j  +  {V -< ц а >  -  и“ )Эа

+  <Vj<u?> -  и^Э(3<А^> -  u fa ^ < A ^ »a i  ,

where

(7.21) U =  и1 ̂  +  иа Эа  +  u f a k

is any element o f T (K ), we see that !H>*[Ay] is an ideal of ISO [Ay). Therefore,

(7.22) II DG*! A y ], ISOIAy] 1 С  %*[ A $  .



Noting that ISOlAy] is closed under the Lie product and that

I WlAjj], W[Ag]l П =  0 ,

we have the following results.

Theorem 7.3 // ЭДА-j] € ©(К ), then the d irect sum  decomposition

(7.23) ISO[Ay] =  M*[A-j) 0  W[A-j)

in du ces  the Lie algebra decom position
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(7.24) I3S*[A g ], Э6* [А д ] 1 С  K * [A -jl ,

(7.25) [% * [A jj ] ,  V [A -j ] J С  K * [A °j] ,

(7.26) 11 W [A ij), C  W A ij1 •

8. TRANSPORT PROPERTIES

As we shall now see, one of the reasons for studying isovectors of ЗДАу] is 

that they provide mappings between solution maps of DtlA-j]. This is done by 

means of the transport operator

(8.1) T jj(s ) =  exp(sU) , 

for any U 6 ISO[A-j], which is such that [4]

(8.2) * 5 (8) =  exp(s £ jj)

Recall that ♦  is a solution map of M [Ay] if and only if ^  0 and

**:№ [А^] =  0. Transport of *  by U G ISOlA-j] satisfies

(8.3) ( T ^ o * ) *  =  * * o ? u (s )  =  ♦ *  exp (s£y ) .



270

Theref ore

(8.4) ( ^ ( s )  о ¥ )* д  =  ♦ * е х р (з £ и ) < д >  И  0

for all sufficiently small s near s =  0. Furthermore, we have

(8.5) ( T u W o ^ K I A g ]  =  ♦ ’•‘ ( е х р и Х ц К Э Д А ^ )  =  * *Э Д а £ ] =  0

since U G IS 0 [A y ]. Thus, we have the following result.

Lemma 8.1 I f  V  is  a  solution m ap  o f  the horizonta l ideal ЭДАу] G £ [K ], 

then  T y (s )o ^  is a solution m ap  o f  the horizon ta l ideal f o r  all s in a 

su ff ic ie n t ly  sm all neighborhood o f  s =  0 .

In our procedure the solution maps are obtained as leaves o f the foliation 

generated by ЭДАу] G £>00. They are given by

(8.6) gE (x\ qa , y f )  =  kz  , 1 <: Z  £  m -  N(1 + n )  ,

where {g^.} is any system o f m independent elements of the associative algebra

The submodule decomposition o f ISOlAy] gives rise to two different kinds of 

transport of the leaves. If V =  n‘ Vj G !№ *[Ay], then

fo r all f  G ЭДАу]. Thus transport by an element of 3G*[Ay] takes any leaf of 

the foliation generated by ЭДАу] into itself. On the other hand, if W  G W [A y ],  

then (7.20) yieids IV j, Wfl = 0  and thus RVj, T w (s)]] =  0. Hence,

V i < g 'w ( s ) < f > >  =  IIVj, f w ( s ) l < f >  +  T w ( s ) < V j < f > >  =  0

fo r all f  G ЭДАу]. Therefore, g =  U * ^ (s )< f>  is in ЭДАу] and thus, in general, 

the action o f any nontrivial element of W [A y ] will transport a leaf o f the 

foliation generated by ЭДА-*-] into another leaf o f that foliation. Note that T^y(s)

(8.7) ? lA y ] = ( f  6 A °(K ) I V j < f >  =  0 , 1 £  i £  n}

(8 . 8) 3 *y (s )< f >  =  exp(s V )< f  >  =  f
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leaves the base manifold M n invariant. These considerations lead to the following 

result.

Theorem 8.1 I f  3G[Ay] G £>(K), then T y (s ) is a m ap o f  ЗЧА-jJ into 3*1 A-j] 

f o r  all U G ISOlA-j] and fo r  all s in a su ffic ien tly  small neighborhood o f  s =

0. M o re o ve r , i f  V £ % * [A y ], then 4Ty(s) is the identity m ap fo r  34 A y ].

9. CALCULUS OF VARIATIONS

Using our formalism, the action integral for a multiple integral problem in the 

calculus of variations is given by

with boundary 33). The ideal of A(K) that is naturally associated with this 

action integral is the closed Euler-Lagrange ideal

Therefore, a solution map ¥  of the Euler-Lagrange ideal S lAy] is a solution map 

of the horizontal ideal M [A^ ] G § (K ) such that the Euler-Lagrange equations are 

satisfied, i.e.,

(9.1)

where L G A®(K) and 3) is an n-dimensional, arcwise connected point set of M n

(9.2) SfAjjj] =  I{Ca , H f, Ea >,

where Ea  are the Euler-Lagrange n-forms

(9.3) — dA|xA/ij »

and

(9.4)

(9.5) y * E a  =  0 , 1 £  a  £  N .

As discussed in Section 8, transport of a solution map ♦  of the horizontal 

ideal Э€[Ау] G 9 (K ) by an isovector U G ISO[Ag] is given by * и (s) =  

^T^j(s) о ¥ .  By means of (8.3) the resulting action integral becomes
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(9.6) А1*и (8)] «= / ф * >,'e xp (s£ u )< L M >  .

Thus the fin ite  variation  of the action integral generated by U G ISO lAy], 

defined by

(9.7) Ay (s)A lV ] =  A tV ^ s )] -  A [V ] , 

reduces to

(9.8) A u (s )A [ir] =  / j  ♦ * ({e x p (s £ u ) -  1 }< Ь д > )  .

Much information can be gained from the finite variation by studying the 

expression £ jj< L / z > . An equivalent expression which facilitates calculations is 

obtained from the Cartan n-form

(9.9) CarL =  L/i +  J , 

where

(9.10) J =  Л ^С а лд1 G ЭДА^]

because Ca  G ЭДАу] for all admissible choices of (A y ).  Thus, for any U G 

ISOlAy], we have

(9.11) £ y j  =  0 mod ЭДАу] .

Therefore, £ у (Ь д ) ш £yCar^ mod ЭДАу] -  £y(L/z +  J) for every U G ISOlAy] . 

Theorem 7.1 shows that U G ISOlAy] if and only if

(9.12) U ■= ni V i +  >7a 3a  +  Vj <Г7а  >  ajx , 

for any n* G A®(K) and for any 7?a  G A®(K) that satisfy

(9.13) V jV i <rjCL>  =  +  v k < ^ > 3 j ) < A i j >  •



(9.14) £ и (Ьд  +  J) =  UJd(L/z +  J) +  d{UJ(L/i +  J)) , 

we start by finding that

(9.15) d (Lд +  J) =  Ла Са лд +  d A jx A ^ A ^ j .

Thus,

(9.16) UJd(L/i - f  J) == Г7а (Ла д -  d A ^ j )  mod K [A ^I .

Since

(9.17) d{UJ(L/i +  J)} =  d{nJLMj +  TJ0 A ^ j )  mod % [А ^  , 

we have

(9.18) £ и (Ьд  *f J) =  ?7a Ea  +  d<nj L +  77^Л^)лдj mod MtAgj] .

This expression can be simplified to

(9.19) £ и (Ьд  +  J) =  77а Еа  +  d « j L ^ j  mod % [A^ ] , 

if we define

(9.20) e1 -  n‘ +  £ т А ]з

provided L И  0. At the same time U E ISOIA^] can be resolved with respect to 

a new basis {Vj, Т а , Эд} as

(9.21) U =  ^ V j  +  Г?а Т а  +  Vi < f7a > 8tt , 

where
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In view of the identity



(9.22) Т а  =  Эа  — .

These considerations serve to establish the following result.

Theorem 9.1 I f  U E ISO(Ay) is given by

(9.23) U =  +  17а Т а  +  V i <??cx> 8jx ,

where {£*, т?а I 1 £ i £ n, 1 £ a  ^ N} belong to A®(K), the T)'s satisfy

(9.24) V jV j <J?a >  =  {TjP Ър +  V k <77^ >  < A ij >  , 

and L ^ 0 , then

(9.25) £ у (Ь д ) =  r/a Ea  +  d ^ L U ^  mod К [А *1  .

If the solution map ♦  of the horizontal ideal !№[A-j] satisfies the Euler- 

Lagrange equations, i.e.,

(9.26) * * E a  =  0 , 1 £  a  £  N ,

and if transport is by a U G ISO[A-j] such that Г* =  0 ,1  <; j ^  n, then (9.25) 

shows that

(9.27) ^ £ иа д )  =  0 , 

and hence

(9.28) A u (s )A W  =  0 .

W e therefore have

(9.29) A lV ^ s )] =  A m

by (9.7). Therefore, if {A -j) is such that every leaf of the foliation generated by 

MlA-j) € § (K ) gives rise to a solution of the Euler-Lagrange equations, i.e., M [A -j]
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€ Bs(K)> then transport o f such a solution by an isovector preserves the value of 

the action integral provided f 1 =  0 , 1 £  i £  n . The reader should note, however, 

that this transport process will, in general, alter the region 3> of integration.

Some insight concerning this situation can be gained by resolving the 

isovector U with respect to the natural basis {3j, 3a , 3^) for T(K),

(9.30) U =  и Ц  +  ua 3a  +  ( u ^  +  V j< u a  -  yjx ui » 3 i  .

The conditions ^  =~ 0 then become

(9.31) А ^и а  =  u1 , 

where {H -1} is the Ham iltonian complex  given by

(9.32) H j =  y f  л£  -  Lffj .

Thus =  0 are the well-known conditions of transversa lity  in the calculus of 

variations. We therefore have the following results.

Corollary 9.1 I f  'If is a solution m ap o f  the E u ler -Lagrange ideal and  

L ^  0 , then the action integral is constant in value under transport by 

tra nsversa l isovectors  U o f  the horizontal ideal o f  a special system  K[A-*jJ G 

SsOO, i.e.,

(9.33) U =  r)a T a  +  Vi <r7a > 3 jx 

w here

(9.34) V jV j <7?a >  =  (Т)0 д0 +  V k <T]^ >  3^) <  A- j >  .

Remark. Note that if ЭДА-5-] G § 0 0 — § S(K), then transport of a solution map ♦  

by a transversal isovector will not result in solution maps for all values o f s in a 

sufficiently small neighborhood of s =  0 .

Remark. The basis {Vj, T a , 3^} of TOO and the transversality conditions both 

arise in the complete figure construction of Hamilton-Jacobi theory in the calculus 

of variations of multiple integrals [1, 2, 3]. We do not make use of that
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construction, but it can be seen that the two approaches have several features in 

common.

Theorem 9.1 ie also useful when considering the infinitesimal variation, which 

is defined by

ГДи (8)А Щ
(9.35) $uA № ] = l ™ o| - t L -------J .

In view of (9.9), the infinitesimal variation can be expressed as

(9.36) ffy A m  «  / ф ♦ * £ и а д )  .

Theorem 9.1 can then be used to establish the following result.

Corollary 9.2 The in fin itesim al variation  o f  the action in tegra l that is 

generated  by the isovector U € ISOlA-j], i.e.,

(9.37) U =  { ‘ V j +  ria T a  +  V i <r7“ >3 ix 

w here  Г)а  belong to Л®(К),

(9.38) V jV , <Tla  >  -  (V0  Ъ0 +  Vk < r f  >  3^) < A “ j > ,  

and  L ^  0, is given by

(9.39) « „ A W  =  / 5 ♦*(Г )а  Ea ) +  / 33)* * ( f j L u j  .

The simplest problem in the calculus of variations is where 3) is a given 

fixed region and the dependent variables are specified on the boundary, 33), o f that 

region. The first condition restricts the variations (transport by isovectors) to 

those that do not alter the independent variables, i.e., n1 =  0, while the second 

condition can be expressed as the Dirichlet data conditions

(9.40) ¥*77a  = 0  on 3 $ .

These conditions imply that — 0 , 1 £  i £  n, on ЭЗ) and the boundary integral 

in (9.39) vanishes. Thus, we have
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(9.41) « „ A M  -  / „  * * (г )а  Еа ) .

This same result also obtains under homogeneous Neumann data conditions

(9.42) * * ( A ^ j )  =  0 on 33)

(see (9.20)). In both situations, satisfaction o f the Euler-Lagrange equations is a 

sufficient condition for the infinitesimal variation to vanish. We note, however, 

that the 77’s must be solutions of the system (9.38), and hence (9.41) shows that we 

can not obtain necessary conditions for the infinitesimal variation to vanish by 

means of these methods. Necessity of satisfaction of the Euler-Lagrange equations 

is easily shown, however, by considering isovectors of the contact ideal [3, 4].

One of the authors (R.J.K.) would like to express his gratitude to Lehigh 

University for the hospotality extended during his sabbatical year.
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ON SOME UNIVALENT INTEGRAL OPERATORS

Otto Fekete

Let A denote the set of functions J(z) = * + a 22:3+... that are analytic in the 
unit disc, and let S denote the subset of A consisting of univalent functions.
W ith some suitable conditions on the constants a and с and on J,g,h£A, the 
author shows that the function F  given by the integral operator

П‘ )= /J Ua
is stralike in U or in other subclasses of 5.

1. Introduction

In the theory of univalent functions, the class of functions with positive 
real part, known also as Caratheodory functions in honour of Constantin 
Caratheodory, who studied first the coefficients of this class ([1]), plays an 
important role. Let V  denote the class defined by

V  =  {p\p{z) =  l  +  c i* +  .. . ,Rep(z) >  0 ,z € U }  , (1)

where U  =  {z\ \z\ <  1}.
Let A  denote the set of functions f ( z )  =  z +  a^z1 +  ... that are 

analytic in U  and let S  denote the subset of A  consisting of univalent 
functions. Let C V ( a ) , S T ( a )  and C C ,  0 <  a <  1, denote respectively the 
classes of convex functions of order a, starlike functions of order a and 
close-to-convex functions, i.e.

C V ( a )  =  { f e  Л|Ке (1 + z f " ( z ) / f ' ( z ) )  >  a , * 6 U ]  ,
S T ( a )  =  { f  6 A|Re ( z f { z ) / f { z ) )  > a }z e U } 1

C C  =  {/ E A\3 g e C V ( 0), Re ( f ' ( z ) / g ' ( z ) )  >  0, * G U ]  .
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In [5], S. S. Miller and P. T. Mocanu investigate the integral operator 
J ( f )  defined by

J ( f ) ( z )  = I '  r  (< )* (< )■ • - *
VP

(2)

where or,/?, 7 ,6  G С and ф, Ф are analytic functions which map subsets of 
A  into S T ( 0), and extend and sharpen many of the previously obtained 
results.

In [7], T . N. Shanmugam considered the integral operator 1 ( f )  defined
by

F ( z )  =  I ( f ) ( z )  =
1/or

=  Z +  .. . (3)

where a, с >  0, cr +  1 >  c, /, g, h € C V ( 0) and prove that 1 ( f )  € S T ( 0).
In this paper we extend the integral operator (3) for a,c  E (D and 

improve some results from [7], using te differential subordination technique 
and the method from [5].

2. Prelim inaries

I f / and g are analytic in U, then the function / is subordinate to g } 
written / x  g, if g is univalent, /(0) =  <j(0) and f ( U )  С g (U ) .  We need to 
introduce a special mapping from U  onto a slit domain, called “open door” 
function.

Let a 6 €, Re a >  0 and let

N  =  [|a|(l +  2 Re a )1/2 +  Im a]/Re a . (4)

I f H  is the univalent function H ( z )  =  2 N z / ( l  — z2)  and b =  H ~ l (a )  then 
we define the “open door” function Q a as follows

Q a( z )  =  H [ ( z  +  Ь)/( 1 +  bz)\, z e u .  (5)

Qa is univalent, Qa(0) =  a and Q a( U )  =  H ( U )  is the complex plane slit 
along the half-lines Re w =  0, Imtu >  N  and Re w =  0, Im u> ^  — N .  For 
a =  1 we have

(6)
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Lem m a 1. ([6]) Let Q a be the function defined above and let P  be an 
analytic function in U  satisfying I f p is analytic in U,p (0 )  =  V е
and p satisfies the differential equation

zp' ( z )  +  P ( z ) p { z )  =  1, (7)

then Re p(z )  >  0 in U.

Lem m a 2 ([4]) Let or, с G С with Re a >  0 and

—Re c/Re a =  po £  p <  1. (8)

If G  E A  and
Re [ a z G ' ( z ) / G (z)] >  pRe a

then the function

F { z )  =  [(a  +  c ) z ' c Г  G“ ( i ) t e- l dt]1/“  =  г +  ... (9) 
Jo

is analytic in U  and satisfies

Re [ a z F ' ( z ) / F { z ) ] ^ w { p ) K e a  =  ln i {H { z ) \ z  £ U }  (10)

where

H ( z )  =  (1 ~  * )2('~ 1)Re *
/0V +‘ - 4 1  +  *2) ^ - * )R e o<rt

This result is sharp and p^w(p ) .

Rem ark 1. In the special case when a and с are real and p >. (or — с — 

l)/2a, the value of w(p )  as given in (10) can be simplified. In particular, 
if (8) is replaced by

Max { (a  — c — l)/2a; -c / a } =  p o ^ P  <  1

then (10) can be replaced by

(10')



281

where 2jFi is the hypergeometric function. As in Lemma 2, w(p )> .p  and 
(10') is sharp.

Lem m a 3. ([2]),[3]) Let if> : <D2 x U  —► С satisfy the condition

R e ip ( i x , y \ z )£ 0  for all x,y  e  R  with y £  -  ^(1 +  z 2) (11)

and all z £ U.  I f  p is analytic in (7,p(0) =  1 and Re Ф (р ( г ) } zp ' ( z ) ]  z )  >
0} z € U ,  then Re p (z )  >  0 in U.

3. T h e  R ea l Case

First we will prove that there exists a regular function F  satisfying (3).
Let

я ( г ) = ( М ) а ( £ ^ у л Чг ) = 1 + * г + ...

and choose the branches which equal 1 when z — 0. For 

G ( z )  =  f a (z ) g c~ 1( z )h ' ( z )  =  za+c~ 1H ( z )

we have

K [ Z )  = 1 ^ L  GWd< = 1 + a + t + I <flZ+ - - ’

hence К  is well defined and regular in U. Now let

F ( z )  =  [zaK { z ) f l a =  z [ K ( z ) ] l ' a

where we choose the branch of [/ f(i ) ]1/0 which equals 1 when z =  0. Then 
F  will be regular in U  with F (0 ) =  0 and F '(0 ) =  1 and F  will satisfy (3). 

From (3) we see that

zcF ° ( z )  =  (a  +  c) f  f a( t )gc~ 1( t )h l(t )dt  
Jo

and differentiating we obtain

a F a~ 1( z ) F \ z ) z c +  czc~ 1F a( z )  =  ( a  +  c )/ " (z )s '_1(z )A '(z ) . (12)
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FOT оЫ  -  z F ' ^  ГШ
P (Z )- " F ( T ’ (13)

differentiating (12) logarithmically we obtain

, л . 2P 'W  .. z / '(z ) c - l z j ' ( z )  1 /  zh " ( z )\  с

^  +  - J W  +  ~  » (* )  +  Л  +  fc'W J « • ( }

Theorem  1. Let a >  0 , c^0 and / G S T ( 0). If

S(z )  V h' (z )  J l c - £ ,  for с* >  с

then F  defined by (3) is in S T ( 0).

P roo f. From (14) we obtain

(  \ , ZV\Z)  , i \ z f ( z )  ,

^  +  ^ у Г с - ш  =  Ж  (16)
where

* ( , )  =  c- ^ P { z )  +  i o w  -  £ ,  (17)

п о - ^ - ю м - и -  ’Щ -  ( » )

Let Tpi : <D2 x U  —► С be defined by

1>1(u ,v ,z ) =  u +  ^ £ ^ - < l > 1(z ) .

We will show that satisfies the conditions of Lemma 3. From / G ST (0 ) 
and (16) we have ipi{p{z), zp\z)\z)  >  0 for z G U. We have

Re у ; z) =  Ite(ix +  ^   ̂ -  <£i(z))

_  —[c +  2a2 Re <fti(z)]s2 -  [c +  2c2 Re <̂ i(>g)]
2(c2 +  a 2x2)

if у ^  — |(1 +  x1). Condition (11) is verified if

f c +  2a2 Re <f>i(z) >. 0 

\ с +  2c2 Re <f>i(z) ^  0.
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A  simple calculation shows that the previous condition is equivalent to (11) 
and applying Lemma 3 we conclude that F  G S T ( 0).

Theorem  2. Let oc >  0 , c^0  and / 6 C V ( 0). If

/ * * '(* )  о  Л  f o r a g e(c -  I Re +  Re 1 +  - - V  >  4 2 2c ~  (19)
9(z )  V * '( * )  У c - f - £  for a >  с 1 ;

then F  defined by (3) is in ST(0).

P roo f. From (14) we have

, ZP ' ( Z)  i M  _  */ '(* ) 1 
+  Ы г ) - Л Т " 2

where

fc (* )  =  ^ * 4 * ) + £ < ? ( * ) - ;Of ОТ Z

and P  and Q  are given by (18). Using the fact that convex functions are 
star like functions of order 1/2 we have

'l>2 (p {z ) ,zp,( z ) ] z )  >  0 in U

where

Ф2 • € 2 x U  —► €  is defined by

Ф2 {uyv\z) =  u + ;----- Ф 2 ( 2 ) .
OcU + с

Condition (11) in Lemma 3 is verified if

f  c +  2a2 Re 02 0 

1 c + 2 c 2 Re tf2( * ) ^ 0

Like in the proof of Theorem 1, a simple calculation shows that the previous 
condition is equivalent to (11) and from Lemma 3 we conclude that F  £ 
S T (  0).

Rem ark 2. For с >  0, a >  c + 1 and CK(0) we obtain Theorem
1 from [7].

Up to this point we have considered the function F  given by (3) as a 
function defined by an integral operator 1 ( f ) . By using the same method,
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we can consider the function F  given by (3) as a function defined by an 
integral operator 1(g)  or 1(h). In this case we can prove the following two 
theorems in a similar way as Theorem 1 and Theorem 2.

Theorem  3. Let a >  0 , c^0  and h E С У (0 ). I f

a R e f £ ( f ) + ( c _ 1 ) Re ^ J - f .  (20)
f { z )  g ( z )  I  с -  £  , for a >  с

then F  defined by (3) is in £T(0).

Theorem  4. Let a > 0,c >  1,<7 E S T ( 0). If

z f ' ( z )  (  z h " ( z ) \  f c — 4 -  for a >  с
“  В* 4 r V  +  Re 1 +  - tttV  ^  .  (21)

f ( z )  V Л ( * )  J I е - f b  for a  <  с 

then F  defined by (3) is in S T ( 0).

4. T h e  Com plex Case

We again consider the operator 1 ( f )  defined by (3), but now allow a 

and с to be complex and / to be in more general subsets of A.

Theorem  5. Let а, с E C ,Re(a  +  c) >  0 ,a ф 0 and f , g ,h  E A.  I f /
QO 11 QTl

<г2)
where Q a is defined by (5) and F  is defined by (3) then F  E A, F ( z ) / z  ф 0 
and

Г z F '

Г Ц
R* 1 < * Ч ^  +  с

*)
>  0 for z e u .  (23)

P roo f. From (22) we see that F ( z ) / z  ф 0 in U. Let

Г П » , - ‘ m m  < *>zgc~ 1( z ) h ' ( z ) f a (z )  J0
and
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f W  =  < < - 1 )5 Й £ )+ „ £ £ М  +  ^ М  +  1.
S (z) / (2 ) Л '(г )

(25)

We obtain

° < * >  =  ( ^ " ( f  Г ‘ * ' w  ■

a +  с

analytic in i7 with G(0) =  —J—. By differentiating (24) we deduce that G
satisfies the differential equation (7). By using (22) we see that G  satisfies 
Lemma 1 and so we have Re G ( z )  >  0 in U } hence G ( z )  ф 0 in U . By using 
(24) and (3) we obtain

n o  = G {z ) z g ‘ - \ z ) h ' { z ) r { z )
l/o

=  z [ (a  +  c )G ( z ) h ' ( z ) ] 1̂ [ g ( z ) / z ] ^ ~ iy a[ f ( z ) / z ]  =  z + . . . ,  

and differentiating logarithmically, a simple computation shows that

z F

n
hence

Re +  CJ >  0 for z G 17,

F  is analytic in U  and F ( z ) / z  ф 0.

Theorem  6. Let a, с € (D, Re or >  0, Re(a +  c) >  0, /, g, h € A  and

'(* )Re U - Щ  Г №  .

a- Re a (26)

where a <  1. I f  there exists a real number p <  1 such that

Re

for z 6 17, then the function F  defined by (3) is analytic in U , f ( z ) / z  ф 0 
and

Re Г * n * Y  
[  П * )  .

>  w(p )Re a (28)
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where w(p )  is given by (10) or (10').

Proo f. Conditions (26) and (27) imply

z f ' ( z )  zh " ( z )  zg ' ( z )

“ 7 ( T  ■ 'Ф Г  ( 0 a + c ’

hence by Theorem 1, F  G A  and F ( z ) / z  ф 0. From (26) we deduce that 
f ( z ) / z  ф 0 and hence the function

G ( z )  =  f ( z )
h ' ( z )g ‘ - ' ( z y

r C - 1

1/a

is in A.  From (26) and (27) we obtain

Re * & ( * >  
G ( z )  J

/ « * / '( * ) zh- ' (z )

1 / « +  h ' ( z )  + < - * > 3 8 4
> p  Re a

and from (27) we see that p satisfies (8). Hence G  satisfies the conditions 
of Lemma 2 and from

F { z )  =  [(a  +  c )z~e [  G a( t ) t c~ 1dt]1,a =  z +  . . .
Jo

we obtain F  analytic in U  and Re

Th eorem  7. Let a, с G IR, a >  0, a +  с >  0, po given in (8) or (8 ') and 
suppose that there exists p E [po, 1] such that 0 £  tu(/>), where w is given 
by (10) or (10'). I f  / G S T {  0), </, h e  A  and

+ I + ,2,)

then F  G ST (0 ) .

Proo f. Condition (29) implies (27) and from a £ IR we have

R e o ^ { ^  =  a E e i £ M i °  for <7 =  0.
/ (* ) / (* ) “
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Hence by Theorem 6, F  =  /(/) G A  and Re ~ ^ > w ( p ) ^ p  > 0 i.e., 
F e S T (  0).

I f  we take p in Theorem 3 to be the critical values p =  —c/a,p  =  
(a  — с — l)/2a and p — 0, we obtain the following three corollaries.

C oro lla ry  1. Let с* >  0, с* +  с <  1, a +  с >  0, / G S T (  0) and g , h e A .

Re{ ? w +1+(c" 1)7Pr}-° (30)
and w ( - c / a )  >  0 then F  € S T ( w ( - c / a ) ) .

C oro lla ry  2. Let а  > 0 , а  +  с ^ 1 , а - с ^ 0 , / G S T (  0), and g } h e A .

(31>
then F  6 5 r (2 j£ ) .

C oro lla ry  3. Let a > 0 ,  a +  c > 0 , / 6  S T (0 )  and g, Л gA. If

then F  G S T ( w ( 0)).

Rem ark 3. For particular values of a and с real, the results of Sec. 3 
are not included in the results of Sec. 4.
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T h e  V a r i a t i o n a l  St r u c t u r e  o f  G e n e r a l  R e l a t i v i t y

Marco Ferraris & Mauro Francaviglia

Abstract

The variational structure of General Relativity is revisited. After 

discussing conditions which ensure that second-order Lagrangians 

linear in the second-order derivatives generate second-order field 

equations and first-order Poincar6-Cartan forms, it is shown that the 

Hilbert Lagrangian of General Relativity satisfy these conditions. An 

equivalent first-order covariant Lagrangian formalism is shortly 
discussed.

1. Introduction

It is a widely accepted axiom in Mathematical Physics that field equations of 
physical field theories should follow from some variational principle. As is well known 

also the gravitational equations of General Relativity can be obtained as the Euler- 

Lagrange equations of some suitable Lagrangian (this was first proved by Hilbert [23] 

and slightly later by Einstein but in a more general physical situation [3]).

However, in spite of the fact that the variational character of Einstein’s 

gravitational equations has been known for more than seventy years, it is our opinion that 

the "variational structures" associated to General Relativity (together with its 
generalizations) still deserve some attention, in order to better clarify a number of 

interesting features of Einstein's theory.
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It is well known, in fact, that Einstein equations follow from a variational 

principle involving a second-order metric Lagrangian (the Hilbert Lagrangian L=RVg),

i.e., a Lagrangian containing a (Lorentzian) metric g together with its first and second- 

order derivatives. One should expect thence to obtain fourth-order field equations in g, 

while Einstein equations are in fact second-order ones, as if the Lagrangian which 

generates them be a first-order one. According to Calculus of Variations this indicates that 

the Hilbert Lagrangian is somehow "degenerate", its dependence on second-order 

derivatives being in fact linear and hidden in a full space-time divergence.

It has also been known for a long time that not only in respect of the order of 

field equations, but in a much wider range of problems, General Relativity behaves 

essentially as a first-order theory. This emerges clearly, for example, in all the various 

attempts to a consistent Hamiltonian formulation of its field equations, as well as in a 

variety of investigations about the conservation laws and the notions of energy and 

momentum in General Relativity (see [6, 7]).

This essentially first-order behaviour can be easily explained, as it was soon 
realized by Einstein himself, by reducing the Hilbert Lagrangian RVg to an equivalent 

"first-order Lagrangian", by just dropping a full divergence containing the second-order 

derivatives of the metric field [4]. (Here two Lagrangians are said to be "equivalent" if 

they generate the same field equations). This procedure, however, is manifestly 

conflicting with one of the cornerstones of Einstein’s construction, namely "full 

covariance", as the ensuing "first-order Lagrangian" cannot be properly considered as 

being a "Lagrangian" (at least in a fully meaningful sense) since it is not in fact a 

(covariant) scalar density! Although this new object, which has no satisfactory 

transformation properties under arbitrary changes of coordinates, still generates the 

correct (and covariant) field equations, its non-covariance is reflected in all kind of 

problems arising from its use. As an example, when using it (or some similar object) to 

generate conservation laws one necessarily generates pseudo-tensorial quantities (e.g., 

the pseudo-tensor of Einstein [4] or the so-called "Landau-Lifchitz complex" [27]) 

which do not obey satisfactory covariance properties and impose ad-hoc prescriptions or 

corrections to restore the necessary invariance under local diffeomorphisms of space

time. Analogously, when attempting a Hamiltonian formulation of General Relativity £ la 

ADM [1], by using other first-order and non-covariant equivalent Lagrangians, full 

covariance breaks down and has to be restored a posteriori "by hands", e.g., by adding 

appropriate boundary terms to the action (see [22]).
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Let us now mention that all variational principles can be conveniently formulated 

by means of the so-called "Poincare-Cartan formalism", whereby an appropriate 
differential form @(L), the Poincar6-Cartan form, replaces the given Lagrangian L. The 

possibility of replacing a Lagrangian by a Poincar£-Cartan form was long ago realized in 

the context of Classical Mechanics, and also guessed for the Lagrangians of "higher- 

order mechanics", while the extension of the method to field theory is more recent. A 

satisfactory geometrical formulation for first-order field theories appeared in 1968-1973 

([15, 16, 19] ), while the general case of higher-order field theories was solved only in 

this decade, through the contributions of several authors (see, e.g., [5, 17, 20, 24, 

25] and Refs, quoted therein). It turns out that for any given Lagrangian L  there exists 
a whole family of Poincar£-Cartan forms, parametrized for example using an arbitrary 
linear connection in the base manifold M of the given Lagrangian field theory (B,M,tt;L); 

this family reduces to a single and unique Poincar£-Cartan form if the base M is one

dimensional (mechanics) or in the first-order case. However, in the other physically 

relevant situation, namely for second-order field theories, one can show the existence of a 

"canonical" Poincard-Cartan form, so that it is in fact physically meaningful to speak of 
"the" Poincar6-Cartan form of any physical theory.

Now, the Poincar6-Cartan form 0(L) turns out to be the most appropriate object 

to discuss a number of relevant notions for field theory, such as the notion of "regularity" 

of the Lagrangian (see e.g. [17, 26, 29]), the notion of phase space (see e.g. [21]) 

and the notion of conservation laws (see e.g. [8, 11]). In particular, if a Lagrangian L 

depends on derivatives of order k, its Euler-Lagrange equations should in principle be of 

order 2k, while the Poincare-Cartan form should depend on derivadves of order 2k-1. 

However, if the Lagrangian is "degenerate", field equations will be of lower order and 

the degree of degeneracy of the Lagrangian will be reflected directly in the Ротсагё- 
Cartan form, which will in this case depend on derivadves of a lower order s, with 

k<s<2k-l.

From the above remarks, we see that the Poincar6-Cartan formalism is well 

suited to discuss the degree of degeneracy and the variational characterization of 

conservation laws for General Relativity. To our knowledge, the Poincare-Cartan form 

for the Hilbert Lagrangian was first deduced by Szczyrba [30] by relying on an ad-hoc 
procedure, while a derivation from the general formula of second-order field theories may 

be found in [6]. As we said, a second-order theory should produce a third-order
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Poincar€-Cartan form (and fourth-order field equations), while the Poincard-Cartan form 

of the Hilbert Lagrangian turns out to be of first-order only (with second-order field 

equations). This fact further supports the idea that General Relativity behaves as being 

obtainable from a first-order variational principle.

Nevertheless, the first-order Lagrangian of Einstein suffers the aforementioned 

drawbacks about covariance and, moreover, it is classically known that no scalar 

density can be constructed out by just using a metric g together with its first derivatives, 

except of course the trivial one Vg, which does not in fact depend on derivatives of g! 

This apparent contradiction has however a rather simple solution: one can show in fact 

the existence of a whole class of first-order global and covariant Lagrangians which are 

totally equivalent to the second-order Lagrangian of Hilbert. This class is again 

parametrized by the choice of an arbitrary linear connection in space-time M, hereafter 
referred to as "a background", which plays no dynamical role and may be considered, in 

a suitable sense, as a gauge fixing compatible with the dynamics of g (see [6]). A 

completely analogous result holds when attempting to reformulate General Relativity in 

terms of tetrads; in this case the counterpart of Einstein's first-order Lagrangian is not 

invariant under Lorentz rotations, while fixing a "background" allows to obtain an 

invariant first-order Lagrangian ([10, 28]).

Motivated by the above remarks, in this paper we shall shortly revisit the 

variational structure of General Relativity. We shall first discuss conditions under which 

a second-order Lagrangian which is linear in second-order derivatives produces field 

equations and Poincard-Cartan forms of order lower than four and three respectively. The 

Hilbert Lagrangian will of course satisfy these conditions. We shall then briefly review 

the results of [6] about the existence and the properties of covariant first-order 

Lagrangians equivalent to the Hilbert Lagrangian.

2. Notation and Preliminaries

This paper will closely follow the notation introduced in our previous papers on 
the same subject, which may be found in [6] or [9]. A review on the geometric 
structure of Calculus of Variations and the Poincard-Cartan formalism, together with its
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notation, is given in the Lecture Notes [13]; notions from Differential Geometry are 
standard and we follow the notation of [14].

As is well known, a physical field theory is usually based on the choice of 
a fibration

В — -----> M

together with a Lagrangian (of order к > 1), i.e., a bundle morphism:

(2.1) L  : JkB — > A°m(M) (m=dim M)

from the k-th order jet prolongation JkB onto the bundle of all skew-symmetric tensors 
of rank (0,m) over the base M. The Lagrangian L  can also be viewed as a horizontal 

m-form of JkB and locally one has:

(2.2) L  = L(x\ ya, уац , ..., yV,..^K)ds * 

where:

(2.3) ds = dx!A ...a dxm

is a local volume element in M. The quadruple (В,М,я; L) is called a variational 

principle (of order k).
In the geometrical formulation of Calculus of Variations one frequently 

encounters the following concepts. The structural forms of В are the (vector-valued) 
differential 1-forms 6“ u !+,B)®V*(n) locally defined by :

(2-4) вацг .ц5 =dy*lll...„s - У*ц,._ц,хйхХ . lSs<«

where V*(rc) denotes the dual of the vertical bundle У(я)=Кег(Тл:)£ТВ. A 

form сое QP(J kB) is called a contact form iff QKo)* 0  = 0 for any section a, i.e., 

if it factors through the structural forms above.

Moreover, one has an operator

D : C°°(JkB) ->  n 'hor(Jk+1B)
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for all orders к > 1, called the formal differential and intrinsically defined by the 

requirement

(2.5) DF о f +1o = d(F о f a )

for any section oe Г(л). The local expression of DF is

(2.6) DF *  (d^F) dx11 , 

with d|[F defined by:

3F . ь 9F . . b 9F
(2'7) ^ S ^ +yV + -  + y « 3 y » x,..,k

One defines also the vertical differential dvFe Q1hor(Jk+1B) by

(2.8) DF = ( 4 +1)* dF - dvF 

which gives locally:

(2.9) dvF = | ^ 6“ + 2  ----- 0* ( I S t S k )  ;
3У 1 9 y p ip t  p' - pt

this is of course a contact 1-form.

For any compact domain DcM the action functional (s ) (over D) are defined 

by setting:

(2 .10) a \ c ]  =  I L 0 =  I L o j * o= = f t . j «  
D D

where jKae Г(лК) is the k-th order jet-prolongation of a, locally defined by :

(2-П) У ^ -и / Р о ) =

The section о is called a critical section if the "first variation" of the action 

a-[o] vanishes along all infinitesimal deformations of a, i.e., all vertical vectorfields Xa 

(which respect some given boundary conditions). One finds
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(2.12) 5а = J[ea(L)]Xads +
D

J ( f / X *  + f/ P X -p  +  ... +  f/ P i-P K -, X a% r ..P)(_ i) d s ll+

3D

where:

(2.13) d s ^  3^j ds = ( - l ) ^ d x 1 a  ...a dx^A...Adxm 

Here ea(L) is defined by:

(2.14) ea(L) = pa - dpp/ + d (ldppJw  - ... + d ^  p / i " ^

and the "momenta" appearing in the boundary term are defined by recursive relations: 

faWV~Pk-i - p W>i~Pk-i

f.W i-Pi + dpf/pi-pip = p/Pi-Pt 0 < t < k-2
(2.15)

being

(216) Pa = fH . = P = Г Т к -  •Эу Эу ц Эу (1|...дк

These are the leading coefficients of the differential dL, which can be easily identified 

with a section of the k-th order phase bundle (see [8]):

(2.17) JPk(jt)s IP (nk)= A°m(M )® V *(K k)

where 7tk:JkB ---- » M is the natural projection. Requiring Ьа = 0 with jk ,X
vanishing on 9D, we see that a section a is critical if and only if it satisfies the local 

equations ea(L) = 0, which are equations of the order 2k in a. We have in fact a global 

Euler-Lagrange morphism

(2.18) e (L ) : J^B— > IP(jt)

and the intrinsic form of Euler Lagrange equations is :
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(2.19) e (L ) о j2ltO = О

The (local) expression (2.6) for the variation 5a substantially states that "the 

differential of the Lagrangian can be split into the sum of fields equations and a boundary 

term which is a pure divergence". This rough statement is in fact the naive formulation of 

an important relation, called the first variation formula, whose global validity is 

equivalent to the existence of suitable forms called the Poincari-Cartan form(s) of L. 

These suitably generalize to higher-order field theory a concept classically known in 

Mechanics, whereby the Poincard Cartan form is uniquely defined by

e  = Ц 1, q*. q‘ ) dt + —  (dq* - q“ dt)
3q*

For any given variational principle (B,M,rc,L) of order к we define in fact the k-th 

order momentum bundle of тс by setting:

(2.20) 1Мк(тс) = A°m.1(M) <8> V*(7ik l )

Local coordinates in 1Мк(л ) are denoted by (x \ y a, f â . . . , f / pi** pK -i) and they are 

defined by identifying A°m.1(M )® V * (7tk l ) with Hom (V(7tk’ 1), A °m.1) and 

setting:

f(v) = ( f/ v a + f/Pt vaPj + ... + faW>,-PK-, vaPi Р)С1 )ds^

for any element fe IMk(7t) and any vertical vector v «  (va,vaPi>...,vaPj p̂  )̂ in Jk lB.

We have then the following result: For any linear connection у in the base M there 

exists a global bundle morphism

(2.21) f  (L,y ) =  f :  12ЫВ ---- > 1Мк(тс)

such that the following holds :

(2.22) TL( j4  )l0 = < e(L) о j2ka I v > + d < f  о j2k‘!a I jk_1 v >
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for any oe  Г (к) and any vertical vectorfield v g ^ v (tc) projecting over a (see 

[5]). Equation (2.16) is the global first variation formula.. Now, the morphism f 
defines uniquely a contact form 7 (L,y) by:

(2.23) 7 (L ,y ) = (7 W>i~Pt) eapj л  ds^ € Q m (J2k-iB )

The contact form 7  defines then the global Poincari-Cartan form of L  (associated to 
the connection y )  as the m-form 0(L,y) over J2k_1B given by:

(2.24) 0 (L ,  Y) =  (7C2kk-]) * L  +  7

where (л 2̂ 1)*!, is the pull-back to J2k*!B of the Lagrangian L .This form satisfies a 

few characteristic properties which form in fact the basis of the "axiomatic theory of 

Poincard-Cartan forms" (see, e.g., [5]); besides some verticality conditions, these 
properties are mainly summarized by the requirement that a section oe Г(я) is critical 

for L  if and only if the following holds

(2.25) ( j 2kla ) * [ i4d0(L,Y)]=O

for any vectorfield ifi ̂ '(J2k'1B).

As we said, uniqueness of the Poincard-Cartan form is lost in the higher-order 

case over a basis with dimension greater than one, whereby globality is achieved at the 

expense of introducing a linear connection in the basis M (as an extra parameter which 

helps in the globalization procedure). Of course, there are particular cases in which a 

global Poincard-Cartan form can be obtained without having to resort to a suitable 

"globalization procedure" as above. Apart from the cases k=l, dim(M) arbitrary ^first- 

order field theory) and k arbitrary, dim(M)=l (=higher-order Mechanics), a global 

Poincard-Cartan form can be obtained at once if: (i) the basis M has a global frame (which 
can be used as a substitute for the connection у ); (ii) a linear connection у already 

appears among the variables (i.e., if В is a fibered product of the bundle of 
connections C(M) with other fields). Notice that case (ii) covers a priori all the 

applications to relativistic theories, whereby a preferred linear connection is fixed by 

Physics itself. In any case, it is known that for a Lagrangian of the second-order there 

exists a canonical Poincard-Cartan form, given by setting:

(2.26) e  S L + [ f/  (L  )6*+ f / X(L )0‘x ] Ads„ = L ds +
ln r s l l v



+ f/ (d y a- y apdxp)A d s ^  f / x (dy \  ~ y axpdxp)Ads^ ,

with:

(2.27) f . ^ L )  = p.*1 - dppW , 7,■* ( t )  = p/*- 

For first-order theories this reduces to:

(2.28) 0 (L ) = L ds + p/ (dya - yapdxp ) a  ds^
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3. Desperate Second-OrfcL. Lagran.gia.ns

According to the general theory outlined above, a k-th order Lagrangian L will 

generate field equations of order 2k and a Poincare-Cartan form of order (2k-1). In 

particular, a first-order Lagrangian should produce second-order field equations and a 

first-order Poincare-Cartan form, while a second-order Lagrangian should produce, if 

completely "regular", fourth-order Euler-Lagrange equations and a third-order Poincare- 

Cartan form. As is well known all the various notions of "regularity" can be suitably 
stated in terms of the Poincare-Cartan forms; naively, one says that a higher-order
Lagrangian L  : JkB ---- » A°m(M) is "degenerate" (i.e., not "regular") if the Euler-

Lagrange equations (which should in principle be of order 2k in аП variables ya) are of 

a lower order p < 2k. In fact, if a Lagrangian L of order к is degenerate, then its 

Poincare-Cartan form has to live in a jet prolongation JSB of order s lower than 2k-1, 

and the orders gives a measure of the degree of degeneracy of L (see, e.g. ,[18, 29]). 
In particular, if the Poincar6-Cartan form @ (L ) is defined in some odd jet- 

prolongation J2r lB, with r<k-l, this might signal the existence of an equivalent regular 

Lagrangian V  of lower order r < k-1 (where by "equivalent" we mean such that the 

critical sections of L and L' are the same, although the corresponding variational 

principles have an apparently different order. A few the remarks on this still open 
problem may be found in in [9]).

In this Section we shall shortly address sufficient conditions which ensure that a 

second-order Lagrangian L is degenerate enough to produce field equations of the 

second-order (rather than fourth) and a Poincare-Cartan form of the first-order (rather
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than third). These conditions signal that there should be an equivalent first-order 
Lagrangian L\ (locally) differing from L  by a divergence.

Most of the Lagrangians governing field theories are (covariant) functions of 

affine combinations of the highest derivatives they contain (see [91 for a discussion on 

this point). In particular this is true of the (first-order) Lagrangian of Yang-Mills theory 

and of the Hilbert (second-order) Lagrangian of General Relativity. Let us first remark 

that a second-order Lagrangian linearly depending on second-order derivatives 
уацу cannot produce fourth-order equations. To see this, in fact, it is enough to observe

that the momentum p/v = ^  will no longer depend on second-order derivatives, so
HV

that paMV will be a function of j*y = (уа,уац) only. Accordingly, the structure of the 

Euler Lagrange equations will be the following:

Pa (J2y) - рац G2y)l + ty M  РжЦУ0 !У)1 = 0 *

and pa will contribute to them only by j2y, while the other two terms will at most 

generate third-order derivatives.
Let then L = L(x^,ya,yâ ,yYv)ds be a second-order Lagrangian linearly 

depending on all the second-order derivatives у*цу. We have the following result:

Proposition 3.1 The Euler Lagrange equations of a linear second-order 

Lagrangian

(3.1) L  (j2y) = ( A ,'" '(j ‘ y) У*цу + B (iV ) }ds

are linear in the third-order derivatives yâ Vp- Moreover, they are of the second order if 

and only if the following condition is satisfied:

(3.2) Э ,®  A = 0 .

Proof. Let us first calculate the naive momenta (pa ,рДра̂ )  of L. We have:

P. (j2y) = (Э.Аьро ) уЪро + Э.В

(3.3) Р«ц (jJy) = (Э,цАьр а ) уЬр<, + Э /  В

P . ,1V ( j ‘ y) = A / v
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where all the coefficients Aapv, ЭаАьр0, Э/Аьро, ЭаВ and Э/ В depend only on 

(j1y). The corresponding Euler-Lagrange equations will have the following structure, 

where non-essential terms containing second-order derivatives are denoted by

e.(L> - (.. .) + ObpA / v) уьрцу - (ЭацА ьра) у ЬРсц .

Thus, from the symmetries of ybpHV it follows:

(3.4) ea(L) = (second order) + (ЭьрАацу - 8apA bpv) ybp̂ v

From this, condition (3.25) follows. (Q.E.D.)

We shall now discuss how the Poincard-Cartan form © (L) behaves under the 

hypothesis that L  has the form (3.1). Calculating the momenta f ap and f apv we find:

(3.5) f  * (L) = p.p - dv р Г  = 0 / A bPv ) ybpv + Э /В - dvA / v =

= (3apAapv - 9bpA/v ) ybpv + ( first order terms ) ;

(3.6) f / v ( L ) S РаЦУ = A apv (j !y) .

This shows that the Poincard-Cartan form of any linear Lagrangian (3.1) never depends 

on third-order derivatives, since its coefficients depend at most on j2y. Moreover, 

being L  = Lds and f ap (L) both linear in the second-order derivatives yâ v, it follows 

th a t0 (L )is  in fact a form in £22(J2B) which is linear in the second-order 
derivatives у“цу . More precisely, one has:

6 (L) = L  + [ f  *  (L) 0“ + f / x (L) 0\  ] Ads,, =

= <A/vy V  B)ds + A/ V (dy ‘ у  У V dxP)Adsn +

+ ( 0 / A bPv - 8bpA / v )ybpv+ ...}(dy a- y,pdxp)Adsp =

= ( A / vyVv )ds + Bds + 0 / A bpv - abpA ,pv )ybpve ,Ads|1 +

+ Aapv dy * v - Aapv у

and hence:
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(3.7) 0 (L ) = Bds + (Э/АьРу - ЭЬРА/У )ybpv 0aAdsH

+ AaMV dy avAds}i + ( first order terms )

Recalling that the coefficients A / v are symmetric, i.e. A / v= Аауц, the following 

proposition is an immediate consequence of eqn. (3.7):

Proposition 3.2 A linear second-order Lagrangian (3.1) admits a Poincari- 
Cartan form 0 (L ) which does not contain second-order derivatives yâ v if and only if

the following holds:

(3.8) a/AbPv -ab(PAav)^ = 0

We remark that the two conditions (3.2) and (3.8) are different, so that they 
define in fact different classes of second-order (linear) Lagrangians. However, they will 
be identically satisfied together if the coefficients Abpv satisfy the simpler condition

(3.9) Э /А ьРу =0  V a,b, V}i,p,v

which corresponds to the simpler case of a Lagrangian of the form:

(3.10) L  = ( A / v (x,y) yVv + B (j'y) Ids

i.e., when L is linear in уацу with coefficients depending at most on the zero-th order 

derivatives of у itself. Many cases of physical interest fall in fact into this category.

In this case (3.3) are simplified to

Pa (i2y) = 0 ,A bpO ) ybpo + Э.В ,

(3.11) p . V y )  = Э.^в 

p / v (j°y) -  Ar

and the corresponding Euler-Lagrange equations will be

(3.12) ea(L) = (first order ) + (ЭаАьр11 - ЭьрЭац В - ЭьА арц) уьрц t

i.e., they turn out to be linear in the second-order derivatives ybp̂  . For the "true" 

momenta one finds instead:



f / ( t )  = ? /  (j‘ y) = Э/В - 0 bA / v ) y \  - avA / v
(3.13)

i r ^ ) = A r a ° y )  .

Hence, the appropriate Pomcar6-Cartan form © (LJefi^ j'B ) is given by

(3.14) 9 (L ) = B(j!y)ds + f /  eVdSj, + A,*,v dy av Ads,, , 

and it is manifestly independent on second-order derivatives of y.

302

4. Variational Structure of General Relativity

As is well known Einstein's (vacuum) equations

(4.1) G^v s R^v - ~ g v̂R = 0 ,

have variational character, i.e., they are derivable from a variational principle. The 

dynamical field у is a Lorentzian metric g on the (4-dimensional) space-manifold M,
i.e., a (local, smooth) section of the fiber bundle Lor(M )---- » M of all Lorentzian

metrics over M. The appropriate functional space of field variables is J=  1^ (Lor(M)),

which is a Frdchet manifold under the topology of C°°-uniform convergence on all 
compact domains Dc;M. 7  turns out to be an open cone in the vector space S formed 

by all (local, smooth) sections of the bundle S°2(M), i.e., of all (local, smooth)

symmetric twice-covariant tensor fields over M. The Frechet space S □  У  is thence the 

model of the manifold 7  itself, so that at each point ge 7  the tangent space Tg7  is 

isomorphic to S itself; this expresses the fact that all infinitesimal deformations of a 

Lorentzian metric g are symmetric tensors of the same rank. Locally we shall denote by 

g = g^dx^®dxv any element of 7  and by h = ĥ vdx^®dxv any element of S .

As it was first shown by Hilbert in 1915 [231, the functional which generates 

Einstein's vacuum equations is the integral of the scalar curvature R(g). The "Hilbert 
Lagrangian" is hence the horizontal form LH=LHdse ^ ^ {J ^ L o ^ M )!} locally defined 

by:
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(4.2) LH(j2g) = R(gWi = (g^° Rj!0)Vg ,

which depends on the 2-jet j2g through the Christoffel symbols and their first 
derivatives. The Hilbert action are the functional(s)

(4.3) a Hfgl= jR(g)Vgds
D

(for all compact domains DcM). The first variation of а-нШ» i*e > Gateaux derivative 

in any tangent direction h is known to be expressible as follows:

with g h = gP°h^a. Assuming that h vanishes on the boundary together with its first 

derivatives one finds that Euler-Lagrange equations are in fact (4.1). The structure of the 
boundary term (4.5) gives moreover some information about the structure of the 

Poincare-Cartan form which will be discussed later.

Let us now analyze the above result in view of the "regularity" discussion of 

Section 3. The Hilbert Lag^gian (4.2) is second-order degenerate, because it is linear in 

the second-order derivatives of g. In fact, the Riemann-Christoffel tensor is linear in the 

second-order derivatives of g, being

where the boundary term is given by

(4.5) Ba = [ V ^ a -g^% (g-h )]Vg

(4.6)

where (...) denotes terms which depend on j !g only; from this it follows

(4.7) R = (g^gPT-g^g^ )3^g7E + (...)

This last expression can in fact be recast as follows
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(4.8) R = | GPto [Э2 pgET + g ^ r ^ r ^ ]

where = {ар,ц} are the Christoffel symbols of the first kind of g and

(4 9) = gotEgP̂  + ga ĝP£ - 2g°PgeT

is the so-called "De Witt's metric" (see [2,12]). Its "inverse" is given by:

(4 -W ) ^eyXp =  j  ( gcxg-jp + SepSyX. " 3 Se-ySXp )

and satisfies

(4.11) G ^ Ge* p = 8 $  + 8 $

Equation (4.8) tells us that the Lagrangian L H(j2g) is highly degenerate: it is in 

fact linear in the second-order derivatives d^g^ and, moreover, the coefficients of

these derivatives depend only on g and not on first-order derivatives, so that the 
Lagrangian LH(j2g) has the very particular form (3.10). Accordingly, the Euler-Lagrange 

equations have to be of the second-order only and linear in the second-order derivatives 

(i.e., "quasilinear second-order equations"). In fact, from (4.6) one sees immediately that 

the Einstein tensor G^v is indeed a linear function of d ^g^  . Moreover, from our

discussion of Section 3 it follows that the corresponding Poincare-Cartan form © (LH), 

whose explicit expression will be discussed later, will live neither in J3[Lor(M)] nor 

in J2[Lor(M)], but more simply in J^LorCM)], i.e., it will depend only on first-order 

derivatives of g. This should suggest the existence of a (covariant) Lagrangian of the 

first order in g, equivalent to the second-order Hilbert Lagrangian itself, in spite of the 

well known fact that there exist no scalar density f(pg)Vg containing only a metric 

tensor together with its first derivatives (but no other geometric object), except the trivial 

density Vg (which does not depend on first derivatives either!).

In order to obtain a covariant first-order Lagrangian L  able to generate 

Einstein’s equations one should therefore renounce the hypothesis that the Lagrangian 

contains only a metric, allowing a dependence on some extra geometric object. All 
"metric-affine" theories, whereby an extra linear connection Г is allowed among the 

fields, satisfy a requirement of this kind, and it is known that metric-affine Lagrangians
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exist which generate equations for both g and Г which are a posteriori equivalent to

(4.1). This, however, has the disadvantage of introducing an extra dynamical field. As it 

was shown in [6] there is however a further possibility, i.e., to let some extra object 

enter the Lagrangian as a fixed "background" (i.e., as a parameter but with no dynamics), 
allowing to define a whole class of purely metric first-order covariant Lagrangians 

equivalent to the Hilbert Lagrangian. To conclude this paper we shall shortly recall this 

result and we shall discuss the relations among the corresponding Poincar£-Cartan forms. 
Setting for simplicity

(4.12) it1"' = Vg

one can easily realize that the following decomposition holds

(4.13) R = ax[Ax(jlg)] + UoO'g) 

where UoO'g) and A ^ j'g ) are given by :

(4.14) A x(j'g) = ^ a r ^ a - i t ^ r ap

(4.15) U0 = - r V r \ > )  •

This decomposition, first noticed by Einstein, provides a non-covariant first-order 

Lagrangian UQ which still generates Einstein equations (4.1), since it differs from RVg 

by a pure divergence. It has of course the disadvantage of being non-covariant, a rather 

disturbing fact in General Relativity, which is known to have serious consequences for a 

coherent description of conservation laws (see [7]). To overcome this difficulty, one first 
defines, for any given symmetric connection Г^у, the following object:

(4.16) u\ V(T ) = T \ v -  i  (8ХЦ Г°от ♦ б\  Г°0(1)

which satisfies the obvious symmetry u^v = и\ц . This defines in fact a coordinate 

change in the bundle CS(M) of all symmetric connections, its inverse being given by:

(4.17) r \ v(u ).u \ v - ^ ( 8x|1u0ov + 8xv u00|J) , m=dim(M) .

Using these relations and taking 7t̂ v as independent variables, we can rewrite (4.13) as 

follows:
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(4.18) RVi = Эх[лцо u^jCj1*)] + U0(jlTt).
* xWe fix now a background symmetric connection Г in (M,g) and we denote 

by и\у, its corresponding u-field. The following remarkable identity holds:

(4.19) q\iv = (\iv)g " ^ jiv = 2 ^   ̂ + ~ ^рбцу ) »

* *
where V denotes the covariant derivative with respect to Г. As a consequence, (4.18) is 

transformed into the following:

JIOVJ ,fc'j '  U fiO(4.20) RVg = дх ( [ u^ G1*)] - u* } + L* (xx; j 1*: )

with:

(4.21) l . -  T t ^ i y j 'n  + ^ p ,  - q % q x-Xp

Here L* is a covariant first-order Lagrangian which depends explicitly on space-time

* ^coordinates through the a priori assigned connection Г(х ) and an easy calculation 

shows that each Lagrangian of the family (4.21) still generates Einstein (vacuum) 

equations. Moreover, the background connection Г has no dynamics, since the first
*

variation of L* with respect to Г is a total divergence.

If one wants now to express the Poincard-Cartan form 0 (L H) in the basic 
variables g^, the relevant contact forms are the following:

^V ёцу =  dgjiV ’  (guv»p)dxp ,
(4.22)

^V ёцУ.О = ŜjlV.O " (S|iV,Op̂ X̂

and the coefficients of 0(LH) are given by

7nv.x = 9 (R ^ ) _ a(RVg)
^SjivX P Xp

(4.23)

7 ц у ,Х р  =

Xp *
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which can be easily calculated with the aid of (4.8). We end up with the following 
implicit expression:

(4.24) 0 (L h) = RVg ds + { i  G0* »  V i gPo (Гар.рГ^) +

- i  dp(G ^ v V i))(d vgpv)Adsx + i  Gxp|lv Vi(dvgpv p)Adsx •

which only apparently contains also second-order derivatives of g v̂, although these have 

to cancel out. To express 0 (LH) in an alternative way one can apply directly the relevant 

form of eqn. (3.10), where now В is the second addendum of (4.8), namely ^Ga £̂Y 

VggP° Гар pr cY>a , while the coefficients A / v are just ^Gxp*lvVg . This gives soon 

the equivalent expression:

(4.25) 0 (LH) = V i gP° +

+ i  { G ^ V i  gPa- g ^ ( r aP,pr Er,0) - dp(GXp|lv V i ) } (dvgpv)Ad^

+ | (G ^ v dgpv,p)Adsx .

which now does not contain j2g but only j'g  .
This suggests to take immediately into account the fact that 0 (L H) has to live 

in Jl[Lor(M)] and change variables in this bundle, first from (gRV, g^V(C) to (7t̂ v, rcPvx)

and then to (k v̂, u* v), which turn out to be in fact more convenient for this purpose. In 

terms of these new variables the relevant contact forms will be: 

dv7tMV = d7^v - (dp7t̂ v) dxp ,

(4.26)
dvu цу = du цу ” (dpu цу) dxp ,

and, after some manipulation, one ends up with the following expression:

(4.27) 0 (LH) = RVgds + (л^  dvi/pv)Adsx , 

which, using (4.26) and (4.18), can be finally rewritten as:
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(4.28) 6 (L „) = ( « Г  du\v)Adsx - # v ( Г?цХ V \ v -  Г \ )  ds .

We notice that the coefficient of ds in (4.28) is minus the (Г Г -Г П -Lagrangian we 

called U0. The expression (4.28) is in any case the local representation of a globally well- 

defined form on Л[Ьог(М)], which, in each local chart, can also be written as follows:

(4.29) © (LH) = ( -u\„  dvTOAdsx + ио(Л 7t)ds + d(7tpv u \ v dsx ) .

Although the decomposition (4.29) has only a local validity, it is nevertheless an 
interesting one. Formally, it expresses the Poincard-Cartan form 0 (L H) as the sum of a 

non-covariant differential and the (first-order) Poincare-Cartan form of the non-covariant 
(first-order) Lagrangian U0. This local decomposition corresponds to the local (or non

covariant) decomposition (4.18) for It can be covariantized in much the same way as 

we "covariantized" the decomposition (4.18) itself, i.e., by fixing a background 

connection Г. In doing this, after some manipulation the following can be shown to 

hold:

(4.30) 0 (LH) = 0 (L^) + d<D

where the global (m-l)-form Oe-Qro-^PfLortM)]) is given by:

(4.31) Ф = # v(ux„y - dsx

and the Poincar€-Cartan form 0(L*J of the first-order Lagrangian = L*^ds is 

given by:

(4.32) 0(L*J = { ( uxRV - ихцу )dv 71цу) AdsjL + L^(xx; j 17t)ds

Equation (4.30) ensure us that the differentials d©(LH) and d©(L * )  are the same. This

is enough to guarantee the dynamical equivalence of the two Lagrangians, since it ensures 

that they will give rise to the same critical sections in Lor(M). Moreover, the global 

decomposition (4.32) reflects the likewise global decomposition (4.20) at the Lagrangian 
level.

Applications of this first-order Lagrangian and of its Poincard-Cartan form to the 

problem of gravitational energy can be found in [6, 7].
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ft- ADDITIVE FUNCTIONS ON TOPOLOGICAL GROUPS

Gian Luigi Forti -  Luigi Paganoni *

ABSTRACT. In this paper we describe by means of local and 
global homomorphisms the solutions of the functional equations

f ( x)f (y) =  f(xy) , f i ( t ) h { y )  = / з (а г у )

where / .Л ,/*,/ , are functions from a topological group X  
into a group S and Q is a subset of X 2 with non-empty 
interior.

1. Introduction

In the last years Cauchy functional equations on restricted domains have 

been extensively studied : for a rich bibliography see Ref. 1, 4, 12, 13 (see also 

Ref. 5, 8, 14, 17, 18). Among the aims of these researches one is to establish 

conditions which guarantee that all solutions axe homomorphisms. A field of

* Partially supported by M.P.I. : Research funds (60%).
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research as much rich of results concerns alternative functional equations (see 

Ref. 1, 2, 4, 6, 7, 9, 10, 12, 13, 15) and the methods used to investigate both 

problems have many connections. In particular the search for the solutions of the 

alternative Cauchy equation

f i x ) f ( y )  Ф f { * y )  implies g (x )g (y ) =  g (xy)

requires a preliminary study about the solutions of the Cauchy equation on an 

open subset of a topological group.

In the present paper the following Cauchy and Pexider equations

m m  =  f ( xy ) > ( * »y) e ( ! )

/i(s)/2(y) =  h (x y ) , (x } y )e £ l  (2)

are studied, where /,/ь/г,/з are functions from a topological group (A ’,-) 

into a group (5, •) , under the fundamental assumption that the set ft where 

the equations are satisfied has non-empty interior.

We describe, by using homomorphisms, the solutions of (1) and (2) on 

suitable projections of the interior of ft . Starting point of this paper are some 

results due to L. Giudici (personally communicated to the authors) which have 
been presented to an international meeting on Functional Equations (see Ref. 16).

2. Notations and Preliminaries

Here we present the notations we shall use in the following.
О  denotes the family of all open neighbourhoods of the identity element 

e in the topological group X  and U  С О  is a fundamental system of neigh

bourhoods of e .

If Y  С X  , Y °  is the interior of Y  .
By P i,P2,Рз we denote the continuous and open functions from X 2 into 

X  given by

P i (x ,y ) =  x , Р2(х,у ) =  у у P i (x ty ) =  x y .

If В  С X 2 , we define

7г(B )  := P i (B ) U р ? (В ) U P i {B ) .
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Let (x0,yo) € X 2 and U 6 О  ; define

Г(хо,уо)(^) :={(*> У) € X 2 : ж € x0U , у E Uy0 , xy E xotfyo} 

=РГ1(хО^) П P 2 l (JJ Уо) Пр^^Хо^Уо) .

Г(Г0)У0)(17) is an open neighbourhood of (xo,yo) - If xo =  yo =  e we simply 

write Г(С7) instead of Г(е>в)(?7) .
A local homomorphism from U  E О  into 5 is a function a : U  —* S 

such that

a(x)a(y) =  a(xy) , (x, y) E T (U ) .

Н оту (J\T, 5) is the set of all local homomorphisms from U  into S .

For a given group S , Я (5 ) denotes the family of all topological groups 

X  with the following property :

there exists a fundamental system U  of open neighbourhoods 

of e such that every a E Hom ^X, 5 ) , U  € U  , is the 

restriction of a suitable b E Нот(Л", S ) .

7?o(S) is the subset of 71(5) of the groups without open proper subgroups. 

A function f  : Y  ->  S , Y  С X  , is called locally affine in the point 

x0 E Y  if U  E О  , U C Y  , and a E Н оту (Т , S ) exist such that

f {x 0t ) - f ( x 0)a (t ) , * E t f .

Given a function / : X  —► S we define the following three sets :

Ef z= {x E X : f  is locally affine in x }

л / := P 7 l (E f )  ftP2l ( E f )  ПрГЧ-Е/)

А/ := {(x>y) E X 2 : / (x)/(y) =  / (xy )} .

Lemma 1. Лззите / w locally affine in xq with a E Homv (X ,S )  •
Then

f(tx o ) =  b (t )f (x o ) with b e  Horn x(X ,S )
xouxo

and, if u0vо =  xo ,

f {u 0tv0)  =  f (u Q)y c (t )f (v 0) , with с e Нот _ l (X ,S )  and 7 E S .«О V/

T/ie converge w also true.
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is a local homomorphism on xqU x q 1 . Let x0 € -С/ and t G , then

f ( t xo) =  f (x 0XQl tx0)  =  f (xo )a (xQ 1txo) =  / (гоМ ^Ч хоЛ Д ^о )]-1/^!)) = 

=  b (t )f (x 0) , b g H o m ^ W S ) .

If * G VqU v q 1 ,

/(uo*i>o) =  /(woVoV^4u0) =  /(wot’o)a(t^4i;o) =

=  /(«o){[/(Ko)]“ 1/(«owo)[/(vo)]“ 1}/(wo)a(w^1<vo)[/(ro)]” 1/(wo) =  

=  f M l c ( t ) f ( v 0) , с G HomveVi)_, (X, 5) .

The converse follows immediately.

Lemma 2. Tfce jets Ef and Л/ are open.

Proof. Let x0 £ Ef , then there exist U € О  and a G Homl/(X 5 )  
such that

f (x 0t) =  f (x 0)a {t ) , t G U .

If <o G £7 and we choose У e O  with V” С U  and toV  С » then

f (x 0t0v ) =  f (x o )a (t0v ) =  f (x 0)a{t0)a {i ') =  f{xoto )a (v ) , v G V

and so xqU С E f . Л/ is open since P\*P2,Pz are continuous.

Lemma 3. Let X  be a group  without open proper subgroups.

If a , 6 G Hom(X, S ) and a , J3 £ S (S  is any group) are such that

a a (x ) =  p b (x )

315

Proof. If a € Homl/(JV, 5 ) and a G 5 then the function

on a non-empty open set О  , then at =  ft and a =  b .
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Proof. Fix x0 G О and U  G О  such that xo U  С О  . For every t G U 

we Ьалте

aa (x0)a (t ) =  aa (x0<) =  j3b(xQt) =  f3 b(x0)b (t ) 

so a(f) =  b(t) for t e U  .

By our assumption on X  we have _Y =  U n . If x G X  then x =  tit2 * * **n
n > l

with #,• G У , thus

a(x) =  a(*x •••<„) =  a (ti) * • -a (t„ ) =  6(<i) • • • b(tn) =  b{ti •••*„) =  6(x ) ,

i.e. a =  b and a =  (3 .

3. Main Results

This section contains the main results about local and global solutions of 

equations (1) and (2). Some results of this section extend to a more general 
setting known results obtained in the special case of euclidean spaces (see Ref. 1, 
13).

Theorem 1. Fix (x0,y<>) G X 2 and U  GO . The functions 

/i : xqU —► 5 , f 2 'U y o -> S  , f z :x o U y o -> S  

are solutions of the equation

f i {x )h {y )  =  h {x y ) , ( i , v ) e r (lt i„ ) ( [/ )  (3)

if and only if they have the form

fi M  =  aa (t) , f2(ty0)  =  a (t )p  , h (x 0ty0)  =  a a (t ) 0 ( t e U )  (4) 

where a G Homu(X ^ S ) and а,(3 G S.

Proof. ^  /1 > /21 /3 have the form (4) then obviously they solve equation 
(3). Conversely assume that / i, / 2, / 3 solve (3) and set

oc := /i(x0) , 0 := /2(y0) , a (t) := а^/зОМ Уо)/?-1 > t e U .



Replacing in (3) (x ,y ) with (x 0*,yo) (x o , t y o ) , t e U  , we obtain 

f i (x 0t)(3 =  f i (x 0t )f2(y0) =  M xotyo ) =  aa(t)j3

and

<*/2(fyo) =  f i (x 0) f 2(tyo) =  /з(*о*Уо) = <*a(t)fl

whence

f i (x 0t ) -  aa (t) , /2(<Уо) = a{t)0 .

Furthermore

(t,u) £ T (U ) implies aa(t)a(u)j3 =  f i (x 0t )f2(uyQ) =  h(xotuy0) =  aa(tu)fi , 

that is a (t)a (u ) =  a(tu) . Thus a € Hom^C-V,S ) .

The next topological theorem is the main tool for solving equation (1).

Theorem 2. Let f  : X  —► 5 . Then

A ) C \ f

and A°j is closed in Л/ (with respect to the relative topology).

Proof. Assume we are in the non-trivial case A°f ф 0 . If ( * 1ьУо) € A°j 

and we choose U  G О  so that Г (*0>J,0)(£0 c  A °f then » by Theorem 1, we have

f { x 0t)  =  a a (t )  , f ( ty o )  =  a ( t )0  , f(x<>tyo) =  <* a(t) 0 ( f  €  17)

with a € Hom^ (A", 5 ) . It follows

f(xoyot)  =  /(*оУо<Уо‘ 1Уо) =  <* aCyotyo1) 0 =  1 a( y0 <Уо”Х) /̂ ] =  <*£b(«)

and

/(yot) =  /(уо<Уо'1Уо) =  «(Уо^Уо"1)/* =  ^ [^ “ 1а(Уо^Уо'1)/?] =
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where t G yol Uyo and b G Homy-it/yo(-Y, S ) .

Thus х0,у<ьх0уо G Ef , i.e. (x0,yo) € Л/ , and so AJ С Л/ .
Assume now AJ not closed in Л / . Then there is a point (xo,yo) ^ ^/\AJ eac  ̂

neighbourhood of which meets AJ . By the definition of Л/ and by Lemma 1 

there exists V  G О  such that, for all t G V  ,

/(x0ty0) =  /(я0)7азОО/(Уо) ^

/(so*) =  /(x0)a iW  , Д*Уо) =  a2(*)/(yo) 

with аь а2,аз 6 Homv(X, 5) and 7 € S .

Moreover, since Г(ХО)УО)(У )П  AJ ^  0 , there exist (<i,tti) G Г (У ) and W  £ О  

such that (xoti,uiyo) G A°f and r ( „ „ , , „ ) W  с  r „ „ w )( V ) n ^  . By 
Theorem 1 there exists a G Homlv(-Y, S ) such that, for all < € Ж ,

f (x 0tit ) =  /(x0ti)a (t) » /(wuiyo) =  a (u )f (u iy 0)  . (6)

From relations (5) and (6) we obtain /(x0*i<) =  f (x o t i )a (t ) — / (x0)a i(< i)a (0  

and /[x0(<iO] =  /(xo)ai(<ii) =  / (*o )a i(< i)a i(t) •
Thus a(t) =  a i(t) for all t G ТУ . Analogously a{t) =  a2(f) on ТУ .
We now confine our considerations to the set Г (1(ьуо)(ТУ) . The same construction 

as above gives a point (t2, u2)  € Г(ИГ) and a set \\\ G О  such that

(xo*2i ̂ гУо) G AJ and r '(i0t2)u2j/o)(^'1) Г (,в|Л)(И0  ^ ■ 

Therefore for every point (t,u) G I\W i) , by (5), we have

f {x o )^ a 3(t2tuu2)f (y 0)  =  f (x 0t2tuu2y0) =  f (x Qt2t )f (u u 2yo) 

and, since t2t,uu2 G W  ,

f (x 0t2t) =  /(x0)a! (t2<) =  /(x0)a(*2*) ,

/(wu2y0) =  a2(wu2)/(y0) =  a(uu2)f {y 0) .

It follows

a(t2<)a(wu2) = 7 a3(f2tuu2) , (*,u) G r (W i) .

Take t =  e , W2 =  (и^И^иг) П VTi and и =  u2wu2l , u> G И̂ г • Then 
for every tu G W2 we have

а(*2)а (и2ш) =  7 a3(t2u2u>) (7)
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If we put in (7) w — e , we get

a(t2)a (u2)  = a(t2u2) =  i a 3(t^ i2) . (8)
Then, by (7) and (8),

1 az (hu2)as(w ) =  j a 3(t2u2w) =  a(t2)a (u2w) =

=  a(t2)a (u2)a (w ) =  a(t2u2)a (w ) =  7 az{t2u2)a (w ) 

and from this it follows

a{w ) =  a3(i£>) , w E W2 . (9)

Finally, by (7) and (9), we get 7 =  e and so we can conclude that the point 

(20,2/0) belongs to AJ , contrary to our assumption. By contradiction A j  is 
closed in Л/ .

Theorem 3. Let V  E О  with r (V ) connected. If a function p • V  —* S 

is locally affine in every point of V  then

<p(x) =  a a (x )

where a E Homv (X ,S )  and a E S .

Proof. Define f (x )  := [v?(6)]~V (-r) • / is a solution of equation (1) 
in a neighbourhood of (e,e) , hence A°j ф 0 ; moreover by hypothesis we have 

E f =  V  . By Theorem 2 the set A°j П Г(1Г) is open and closed in Г(Т ') 

thus, since T (F ) is connected, A ^ D T ^ V ) =  Г(Т') . Then f (x )  =  a(.r) with 

a€H om v (X, 5 ) and ^ ( i )  =  a a H  , a =  <s(e) .

The following example shows that in Theorem 3 the connectedness of T(V ) 
cannot be dispensed with. Moreover the connectedness of F (V )  doesn t follow 

from that of V  .

Example 1. Take X  =  T the unidimensional torus which we identify 

with the interval [—|, |) С R  . Let V  =  ( - 5, |) . then

Г('V )  =  { ( * ,y ) E  T 2 : or,y,r +  y £  V } .
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The set T (V ) can be identified with the square (—j ’ i )2 wifchout the two 

segments x 4- у =  and it is not connected.
Let v? : V  —♦ R  be the function defined by y>(x) =  x . The function 9 

is obviously locally affine in every point of V  ; nevertheless y? £ Homv (T , R ) 

since for x =  J, у =  j  +  t (0 < e <  J-) we have x +  у =  с — \ . So

p(x +  y) =  € -  i  ф ^ +  с =  *>(x) +  V>(y) •

Corollary 1. Let V  G О  with r (V )  connected. Fix xq € X  and assume 

that : x0V  —♦ 5 is locally affine in every point of x0V  . Then

tp(x) =  O r^x^x) 

wAere a G Яото*, (X, 5) and a G 5 .

Proof. Apply Theorem 3 to the function ф : V  —► 5 defined by 

V’(x ) := 9 (x0x) .

The following two theorems describe the solutions of equations (1) and (2).

Theorem 4. Let f  be a solution of equation (1 ) on a set ft with ft° Ф 0 • 

Then f  is locally affine in every point of 7r(ft°) . Furthermore :

й ) if e € 7r(ft°) and r (7r(ft°)) is connected then f  G H o m ^ .^ X ,  S ) ;

b ) if 7r(ft°) =  A' and X  is connected then f  G H o m (X ,S ) .

Proof. By Theorem 1 and Lemma 1 / is locally affine in every point of 
7r(ft°) . By Theorem 3 we have

f (x )  =  a a(x) , a G Homx(n0) (X , 5 ) .

И (®о,Уо) G ft° , then /(x0y0) =  aa (x0y0) =  aa (x0)a(yo) and /(xoyo) =  

=  /(*o)/(yo) =  aa(x0)a a (y0) .So a =  e .
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Example 2. Let X  =  Q and 

ft =  {(*>У) G Q2 : x <  y/2,у < \/2,x +  y < \/2}U{(a:,y) G Q2;*  > > \/2}. 

In this case ft is open , 7r(ft) =  Q and Q is not connected. The function

is a solution of equation (1) on ft but / £ Hom(Q, R ) .

Theorem 5. Let (/ь/2,/3) be a solution of equation (2 ) on a set ft 
with ft° ф 0 .

If  X  G 7?o(S) and at least two of the projections p i(ft0),p2(ft°)ip3(ft°) 
are connected then there exist a G S om (X , S), a ,/? G S such that

' f i (x )  =  oca(x) , x G P i(ft°)

< f2(x ) =  a (x )P  , x G p2(ft°)

/з(аг) =  a o (i))3  , iG p3 (ft°) •

The representation is unique.
Furthermore when two of the projections equal X  the representation above 

holds if instead of X  € TIq(S )  we require X  connected.

Proof. Let U  be a fundamental system of neighbourhoods of the identity 

of X  related to the property X  G I^ [S ) . Assume p i(ft°) and P2(ft°) 

connected. For every x G p i(ft°) we choose у such that (x ,y) G ft° ■ By 

Theorem 1, there exist Ux GW , arx G S and ax G Homt/je(-Y, 5) such that

f i (x t ) =  axQx(t) » t &UX . (10)

Since X  G 72o(5) , ax can be uniquely extended to a global homomorphism 
that we still denote by ax . We claim that ax doesn’t depend on the point 

x G p i(ft°) . Indeed the subset of p i(ft°) for which (10) holds with the same ax 

is open (f i (x t v ) =  axax(tv ) =  =  [azai(<)l ax(v )  =  ^*«ax(^)); and since p i(ft°) 

is connected we get

f i (x t ) =  axa (t) , t e U x .
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f i {x ) =  /i(x0*) =  a I0a(t) =  Qrioa(xo)“ 1a(xo)a(t) =

=  a Ioa(.t0<) =  <*x0a(x) , t e UTо ,

so the subset of pi(Q°) where the representation / i(x ) =  a a (x ) holds with the 

same a is open and, as above, from the connectedness of we deduce

/1 (x) =  a a(x) for all x € p\ (ft° ) .

Analogously we get

/2(x) =  a (x )0  for all x G p2(ft° ) ,

and, from equation (2), we get also

/з(х) =  aa(x)/£? for all x € Рз(П°) •

In the other cases the proof is analogous.

The uniqueness of the representation follows from Lemma 3.

Assume now p i(ft°) =  & (№ ) =  X  . By Theorem 1 the functions /1 and /2 are 

locally affine on X  . Then, by Theorem 3, /1 (x ) =  a a(x) with a 6 Hom(X, 5 ) . 

Analogously /2(x) =  0 b (x ) =  [0 b (x )0 ~ l )0  =  c(x ) 0 , с G Horn(X ,S )  . By 

Theorem 1 a and с coincide locally on X  ; then, by Lemma 3, a =  с .

Remark 1. If 5 is a topological group we can ask for the continuous 

solutions of equations (1) and (2). It is immediately seen that all results of 

this section remain valid if local and global homomorphisms are always supposed 
continuous.

Fix x0 G P i(n ° ) , then

4. Qn the classes 72(5) and 7?o(5)

Most of the results of the previous section give conditions under which a 

function is representable as a product of a constant time a local homomorphism. 
It is obviously interesting to know if every local homomorphism is, in a suitable
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neighbourhood of the identity, the restriction of a global one, that is, following 

the notation introduced in Section 2, if X  G Щ Я ) . This property holds for some 

classes of topological groups (see Ref. 3 and 11); in this section we give some 

other conditions.

Note that, if X  G 7?o(S)» Lemma 3 implies that the global homomorphism 

is uniquely determined.

Theorem 6. Let (5 ,+ ) be a group (not necessarily commutative) and 

assume (X ,  + )  is a uniquely p-divisible abelian group. Suppose a subset Y  С X  

satisfies the following two conditions :

i ) if x E Y  then £ x 6 Y  , 1 <  i <  p;

ii) for every x € X  there exists no € N  such that -p^x G Y  .
If a : Y  —► S satisfies

a(x +  y ) =  a (x ) +  a (y ) , x , y , x + . y e Y  

then there exists b G H om (X , S ) such that 6jy* =  a .

(П)

Proof. If X G Y  , by i) and (11) it follows а(лг) =  a (p j ) =  p a ( j )  . 

Now, by induction, we have a (x ) =  pna (jz )  , n > 1 . Indeed if we assume this 

property true for n , then

,n+l р а ф p "a (y ) =  pna( — ) =  o(x) .

Given x 6 X  we define no :=  no(-r) =  min{n 6 N  : ф; € К ) and 
b(x ) := pn°a (^ 5-) . By (ii) the function b is defined on the whole X  and 

6|y =  a . Let z G X  , then for every n > n$(z) we have

М*) =  р п° « ( ^ ) = рп” p »— « ( £ )

Given x,y G X  let v := max{n0( i ) ,  по{у), no{x +  i/)} » then

b{x +  y ) =  pva ( ^ - )  =  +  ^ 7) =  p" а (^ г ) +  а(р г )

=  Р,' а (^ г ) +  P“a( p t )  =  6̂ x ) +
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thus b 6 Hom(X, S ) (Note that in the previous chain of equalities we used the 

property that, by (11), a(-pr) and a (^ r ) commute ).

Corollary 2. Let (X , + ) be a topological torsion-free divisible group and 

assume it has a fundamental system U  of absorbing neighbourhoods of the iden
tity, i.e.

for each V  € U and x G X  there exists r € Q + such that 

sx € V  for all rationals 0 < s <  r .

Then X  €1Z(S ) for each group S .

Proof. Each V  € U  satisfies properties (i) and (ii) of Theorem 6.

Corollary 3. Every topological vector space X  over Q belongs, as an 

additive group, to K q(S )  for each group S .

Proof. X  has a fundamental system U  of absorbing neighbourhoods of 

the origin, so each V  € U  satisfies conditions (i) and (ii) of Theorem 6 and 
^  =  U „>1n V .

Remark 2 . The following example shows that if X  E 1Z(S) and 

<P • X  Y  is a continuous homomorphism, it is not generally true that 
Y  € Щ З ) as well.

Take X  =  R  £ 7£(R) (Corollary 3) and Y  =  T  , the unidimensioned torus which 

we identify with the interval [-£ , i )  С R  . Let V  =  ( - } ,  \ ) and a : V  ->  R  

given by a(z) =  x . Obviously a G Homv(T, R ) and it is continuous. Any 

b € Hom (T,R) extension of a must be continuos, but it is well known that this 
implies b =  0 (see Ref. 3). Thus T  £ ft (R ) .

Remark 3 . The class 7*o(S) is in general a proper subset of 72(5) 
as we can see if we take X  =  S =  R* (the multiplicative group of the reals).
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Obviously R *£7?o (R *) since r ;  is an open subgroup of R* . Nevertheless, 

by Corollary 2, R+ G 7l(R*) and each a G Hom (R+,R*) can be extended to 
a G Hom (R*,R*) by defining

a ( - x )  =  a (x ) , x G R+ .

Note that the extension is not unique because we could also take

a (-x ) =  -a (x ) , x G R+ .

Theorem 7. Let X  be a topological group and assume there exists U G О  

with the following properties :

i) [J £/" = JV ;
П>1

ii) for each x G X  and for each n >  1 the set U n П xU ~l is connected 

(possibly empty).

Then if a G Homv (X ,S ) , where S is any group, there exists 

b G H om (X , 5 ) such that a =  b\u .
If there exists a fundamental system of neighbourhoods U  such that every 

U  G W  satisfies conditions ( i )  and (i i ) then X  G H o (S ) for every group S .

Proof. Let a G Hom^X, 5) , i.e.

a(xy) =  a(x)a(y) , (x, y ) G Г(Е/) .

We define inductively a sequence of functions a„ : U n —► 5 in the 

following way :

a i ( t )  :=  a (t )  ;

an+1(t )  := an(x)a, (у) , г  € U n , у 6 V  , t =  xy 6 U n+1 .

Note that a„+i \un =  a„ . We must prove that the functions a„ , n >  2 , are 

well defined. For each n > 1 and t € U n+I set

X ,  : =  { ( x , y )  € X  X X  : xy =  t} 

T„(t) := {(x,y) 6 X, : x & U " , y € U )  .
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We have Tn{t ) =  { (x ,x "4 ) : x G U n П «7 -1 }  , so P i (T n( t ) )  =  U n m U " 1 and 

by hypothesis it is connected . Since pi is a homeomorphism of X% onto X  , 

T „(t ) is an open connected set in X t (with the induced topology).

First we prove that a2 is well defined. Fix t G U 2 and let (x i ,y i )  G T i(t ) , 

choose now V  G О , V  С U  symmetric and such that if e G V  then

(x,y) =  (xi6,€_1y i) G 7i(<) .

We have

a i ( * K (y )  = e i ( i i€ )a 1(€_1yi) =  a i(x1)a1(6)ai(6_1)a i(y1) =  a ^ i j ja ^ y i )  .

This means that, for each A 6 5 , {(x ,y ) G T i(t ) : a i (x )a i (y ) =  Л} is open in 

Ti (<) . Since Ti ( t ) is connected, it follows that,

for each pair (x,y),(a:o,yo) 6 T i(t) , a i(x )a i(y ) =  a i(x0)a i(Уо) »

that is a.2 is well defined. We now proceed by induction assuming an, n > 2 , well 

defined. Let t G £/n+1 and (x i,y i) G Tn(t ) , where xi =  uv , и G JJn~ l , v G U. 

Choose V  G О  , V  С U  symmetric and such that, if 6 G V  then

(s,y ) =  (xie, c—1 y !) G Tn(t ) and ve G U .

We have

an (x )a i(y ) =  a„(xi€)ai(6_1yi) =  a„(ut>e)ai(e~ l y i ) =  an-i (u )a i (v e )a i (e  *yi) 

=  an-i(w)a2(uyi) =  an-i(u )a i(v )a i(y i) =  an(x i )a i (y i )

and, as for n =  2 , we conclude that an+i is well defined. Let now b : X  —> S 

be the inductive limit of the sequence {a n} . Obviously b\u — a and b(xy) =  

=  b (x )b (y ) for all x G X  and у G U . If we take у € X  then, by (i), it is 

У =  У1У2 ‘ "У п  for some n and with у,- G U  . So

b(xy) =  6(ху!у2 ■ ■ • y„) =  b(xyi • ■ ■ yn_i)6 (yn) =  • • • =  b (x )b (y ) ,

that is 6 G Hom(X, S) .

The next result shows the possibility of constructing groups in 'R o (S ) 

starting from other groups in the same set. We recall here the definition of
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topological semi-direct product of groups; for all details see Ref. 3. Let N  and 

L  be two topological groups with identities e1 and e" respectively and let A  

be the group of automorphisms of the (non-topological) group structure of N  . 

Let cr : L  —> A  be a homomorphism and suppose that the map

(*>y) -> °y (x )

of N  x L  into N  is continuous. On G =  N  x L  the following internal law of 

composition

(x ,y ) (x ,,y ')  =  (xcry(x ') ,y y ')

defines a group structure compatible with the product topology on N  x L . 

Moreover the canonical injections

j\ : N  —► G  and j 2 : L - *  G

are bicontinuous isomorphisms of N  and L  onto j i { N )  and j 2(L )  respectively. 
The topological group G  defined above is called semi-direct product of N  and 
L  relative to a .

Theorem 8. Let X \ ,X 2 G 7?o(S) and let X  be the topological semi- 

direct product of X\ and X 2 relative to a given a . Then X  £ 'R o {S ) .

Proof. Let U\ , U2 be fundamental systems of neighbourhoods of the 

identities c' G l j  and e" G X 2 related to the property X i,A '2 G 7?o(5) • Let 

U  be a neighbourhood of the identity (e' , e") G X  of the form U  =  U\ x U 2 

with U\ G U\ and U2 G U2 symmetric. Таке a G Hom^X, 5 ) . Since 
X i x {e " }  and {e '}  x X 2 are isomorphic to A’i and X 2 respectively, then 

a|l/2x{e"} and a|{e'}xl/2 are local homomorphisms in -Yi and X 2 , so there 

are unique G Hom(A"i,5) and b2 G Hom(-Y2,S ) such that

bi\ux =  a|(/xx {«" } i b2\u2 =  a\{t')xUi

Define b : X  —► 5 as follows

b (x i,y i ) := h i x ^ i y i )  .

We have to prove that b G Hom(A.5 ) . If (x i ,y i ) j (-̂“2»У2) € X  then 

( « 1, У1 ) (*2, У2) =  (* i *yi (* 2), yi У2)

and
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Ь ((х ь У 1 ) (х 2 ,У2 ) )  =  К (х 1 ( х2 ) » У1 У2 ) )  =  bi(Xi<Tyi( x 2) )b 2 (y iy 2 )  =

=  bl (x i )b i {a y l ( x 2 ) )b2 ( y i )b 2(y2 ) .

То get our goal we have to prove that

b i ( * * ( * 2 ) )  =  ba (»i )bi (*a  )* 2 (УГХ )  •

Since the function (x ,y ) •— * ^y (x ) is continuous on X\ x  X 2 , we can find Vi 

and V2 , neighbourhood of e' and e" respectively, such that (x , y ) G Vi x V2 

implies 0 y(x )  G U\ . Let now x € U\ П V\ and у G U2 П V2 ; then

bi(<ry(x ) )  =  e (a F(x )>e ") =  а((<ту(х ) ,у )  • (e ,,y “ 1) )  =  a ( (e \ y ) (x ,  e " ) )a (e ',y _1 ) =  

=  a (e ',y )a (x ,e " )a (e ',y -1 ) =  b2 (y )b i (x )b 2 (y _ I ) •

For a fixed у G J/ 2 П V2 the functions Д  : X\ —♦ 5  and $2 : X\ —*■ S  defined 

by

A ( x )  :=  6i ( * » ( * ) )  , A ( x )  :=  b2 (y )b 1 ( x ) 62 ( y - 1)

are both homomorphisms of X i into 5  and agree on U\ П V\ .

Since X i  G 7?o(5 )  , from Lemma 3 , we have (3\ =  fl2 , i.e.

bi(<7y(x ) )  =  b2 (y )b i (x )b 2 (y “ 1) ( 12)

for each fixed у in U2 C\V2 and for all x G X i  . Since X 2 =  [ J  (t / 2 П V2) , to
n > l

finish it is enough to prove by induction that (12) holds for every у G (U 2 П V2) n - 

The property is true for n =  1 ; assume (12) true for n and take 

у G (U 2 П V2 ) n + 1  . Then у =  yiy2 with yi G (£ /2 П У2) п and y2 G J/ 2 П V2 , 

thus we have

bi{<ry( * ) )  =  bi{<TylV3(x ) )  =  6i(<7yi (<T„2( x ) ) )  =  ^ ( y i J b i ^ f x W ^ f y f 1) =

=  b2 (y i)b 2 (y2 )b i (x )62 ( y r 1 )&2 ( v r 1) =  b2(y )b i (x )b 2(y ~ 1)  .

Since it is easily seen that (J  C7n =  X  , we have A’ G (5 )  .
n>l
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THE BRST FORMALISM AND THE QUANTIZATION  
OF HAMILTONIAN SYSTEMS WITH FIRST CLASS 

CONSTRAINTS

J. GAMBOA
and

V.O. RIVELLES

After a brief review of the Batalin - Fradkin - Vilkovisky formalism 
(B FV ) , we quantize the bosonic and fermionic relativistic particles. Several 
points not discussed in the literature are pointed out and we find the correct 
expressions for the Feynman propagator.

INTRODUCTION

Gauge invariance plays an important role in the present theoretical 
physics. In the past gauge invariance permited to solve important problems 
in quantum field theory and particle physics [1].

Along the hamiltonian lines the gauge symmetry appears when the 
theory under study has first class constraints [2].

We suppose that when some theory is given with 4>a{p,<l) =  0 then we 
say that фа(р , q) is a first class contraint iff,

[Фа, Фь] =  С1ьФс, С1-1)
here [ , ] means Poisson braket.(l.l) is usually called in the physical litera
ture ” gauge open algebra” ,because generally (1.1) is not a closed algebra(in
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the sense of ordinary Lie algebras).Here in general is not constant.
Algebras like (1.1) describe systems such as the relativistic particle, 

strings ,membranes,gravitation,etc( and of course, their supersymmetrie re
latives ) .

The quantization of these theories is plagued with difficulties and for 
this reason it is necessary to study new quantization methods for which 
these systems can be studied.

In the last ten years, it has been discovered a general quantization 
method which permits to study these systems. This method, called BFV 
formalism is reviewed briefly in section 2. Section 3, is devoted to study 
some simple applications . Here the quantization of the relativistic particle 
is worked out in detail. Several points not discussed in the literature are 
pointed out and we find the correct expression for the Feynman propagator 
in both cases.Section 4 contains conclusions and an outlook.

2.- The B FV  Formalism : Review

In this section we review the BFV formalism. As it was explained in 
the introduction, this method is a procedure for quantizing systems with 
first class constraints and is the most general method known today to treat 
this class of systems.

We consider a dynamical system described by a phase space F\ whose 
coordinates axe (pt',9*) ,i=l,2,3,...,N ;the canonical hamiltonian is Ho and 
and the dynamical system is subject to M first class constraints фа satisfying 
the algebra ( 1.1).

The action for this system is taken to be:

Jti
dtfac? - Н о -  \ афа),  (2*1)

where the Aa axe lagrange multipliers. Then in the BFV  formulation , we 
consider that the lagrange multiplier can be treated in the same foot as the 
canonical variables (p,q). This oblige us to introduce conjugate canonical 
momenta to Aa , say 7ra :

[A „ ,*6] =  6$, (2.2)

and,in order that the dynamics of the theory does not change ,they must
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be imposed as new constraints,i.e,

7ra =  0. (2.3)

In the BFV  notation,the set of 2M constraints (фа, 7г“ ) is denote by G a 
and they obviously satisfy the gauge algebra

[G a,G b] =  K cabG c. (2.4)

In the algebraic sense,the procedure of treating the Lagrange multiplier 
on the same foot that as the coordinates (p,q), is equivalent to replace the 
old phase space F i by an other phase space F i ,such that :

(p \ x i ) — » (p \ x i ) © (ira, A“ ). (2.5)

The next step in BFV construction consists in incorporating a pair 
of canonically conjugated ghosts (r}a, V a)  (with opuest statistic) for each 
constraint,i.e,

{V a ,V k}  =  - 6 l  (2.6)

Thus the phase space is replaced by :

(p \ x i ) —  (p \  Xi) 0  ( * . ,  A“ ) e  T)a). (2.7)

The hamiltonian structure (2.7) has remarkable properties .We would 
like to enumerate some of them: a)In (2.7) ,we have replaced the local gauge 
invariance by a global supersymmetry (BRST symmetry).This name is due 
to Becchi,Rouet, Stora and Tyutin ,who discovered a similar symmetry in 
the context of Yang-Mills theory [4 ,5 ].

The BRST symmetry is a name given by the physicists to a symmetry 
deeply rooted in cohomology theory[6].

b)the symmetry generator Q (usually called BRST charge) for a theory 
with the gauge algebra (2.4) , has the form :

Q  =  T]aGa +  ^ Р аК ьасг,ьг,с +■■■ ,  (2.8)

(2.8) is anticommutative and is , by construction ,nilpotent,i.e.

{<?,Q } =  0. (2.9)

c )A t quantum level ,in the extended phase space (2.7) , there exist the 
following theorem proved by Fradkin and Vilkovisky [3] .
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Theorem

Let a hamiltonian system with G a constraints be described by the the 
effective action Sef  / given by ,

Sef f  =  Г  dtip i#  +  rj aV a +  тга\ а - H o -  {Q , ip }), (2.10) 
Ju

where Q is the BRST charge and ф is an arbitrary function (gauge fixing 
function). Then , the path integral:

г Ф =  J D p e x p [ i S eff ] ,  (2.11)

where D u  is a Liouville measure , is independent of the choice of ip ,i.e.

Ẑ f, =  Z^pi.

This remarkable theorem is useful to prove the unitarity of theories 
and it permits to calculate off-shell propagators (generally a complicated 
problem ).For a demostration of the theorem see the ref. [3].

3,- Aplications

A-Relativistic Particle

The massive relativistic particle is described by the following action :

rii
S =  / d r ^ X n - N H ) ,  (3.1)

Jii

where N is a Lagrange multiplier and H  is a constraint defined by

It is easy to verify using ,

[Жд,#!/] =  0 =  [PjmP iv],

У. =  ^ (p 2 +  m2) =  0 (3.2)
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[ w 1  =  ^  (3.3)

that the constraint algebra (3.2) is,

[H , Ti] =  0, (3.4)

and by consequence , (3.4) is a first class algebra . Thus , to quantize the 
relativistic particle , we can use the BFV formalism developed in the section
2. The extended phase space (2.7) in this case is :

(p„, i " ) ©  , JV) ® ( V , r i , V , T ) ) ,

where is the canonical momenta of N and the V ' s  and rj's are the 
anticommutative ghosts that in this case satisfy :

{ t) , P }  =  -1 =  { f j ,V },

{r,,fj} =  0 =  { V ,P } .

The action in the extended phase space is now: 

h
d r^ js iN  +  fjV  +  f j V +  РцХ** +  {Q , ф} ) ,  (3.5)

using the prescription (2.8) , the BRST charge is :

Q  =  r)K +  V k n , (3.6)

and the gauge fixing function is chosen in the form :

ф =  N V .  (3.7)

The choice of ф , according to the Fradkin-Vilkovisky theorem is arbi
trary , nevertheless here it is convenient the election of (3.7) because it is 
equivalent to choose the proper time gauge N  =  0 . This gauge choice is con
sistent with the reparametrization invariance .Using the Fradkin-Vilkovisky 
theorem , we obtain :

Z  =  [  D N D T rD r jD p D fjD V D p ^ D x ^ .
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г и
.exp [i (1т(тгн1У +  r}V +  r jV+Рцх1* +  N H  +  VV)\.  (3.8)

Jt i

The integrals in (3.8) can be calculated imposing the following BRST  
invariant boundary conditions :

z (* i ) =  s i  x(t2) =  S2,

T/a^l) =  0 =  77o(*2)j (3«9)

77(<i) =  0 =  77̂ 2),

7Ta(* l) =  0 =  7Ta(*2)-

Integrating тг̂  , we obtain the 6[N] factor and the integration in the 
ghosts momenta give the usual expression for the trasition amplitude in the 
proper time gauge [7].

To integrate in x^ and рц it is convenient to eliminate the zero mode 
associate to N (t ) , we then write :

N { t )  =  N (0  ) +  M (< ), (3.10)

where we have the following boundary condition for M (t)

M (0 ) =  0. (3.11)

Using (3.10) the 6[N] factor can be written as :

6[M]  =  J  dN(0)S[M(t )  -  N  (0)}det(dT)~ 1, (3.12)

thus (3.8) becomes :

Z =  M  J  dN{  0) J  DnDfjDx^Dp^detidr) -1

ехр[г / d r ^ X p  +  N{0)7i +  rjf})]. (3.13)
Jtj
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The determinant that appears in (3.13) is indeterminate and it can be 
taken out of the path integral as a factor absorbed by an overall normaliza
tion .

Following Teitelboim arguments [7] , the integral in N(0) can not be 
taken in the range ( —oo, +oo) because we are obliged to choose only one 
classical trajectory . This observation is physically very satisfactory and it 
is crucial to obtain the correct result .

Integrating on 77 and fj , we obtain det(—dr2)  .This expression can be 
calculated using the boundary condition (3.9) and ^-function regularization 
. The result is (£2 — * i) and the integral (3.12) is :

Z  =  A f {  dT f  D x^D pn  exp[i [  * d r ^ x »  +  N (0)W)], (3.14) 
Jo J Ju

where T  =  N (0 ) ( t 2 ~ T i )  and Af is a normalization constant.The integration 
on рц gives :

Z =  ATjo dN(0) J  Dx^ exp[i rfr(2jv(o) + (3'15)

Note that the effective action in (3.15) is precisely the einbein version 
of the relativistic particle.To integrate (3.15) we make the following change 
of variables :

^ W  =  * x + ^ ( * - * x ) +  » " (* ) .  (3.16)

(3.16) is consistent with (3.8) iff:

^ (< i )  =  0 =  y“ (<2). (3.17)

Using (3.16) , (3.15) yields :

Z = N L  dT exp[î ir" + 2F '),‘ (зл8)
The determinant in (3.18) can be calculated using ^-function regular

ization and the boundary condition (3.17) and the result is :

Я 2
d e t ( - ^ )  =  T.

KN (  0)2'



kf! [  d°p  exP ip-(x2 - Xl)

J (2n)D p2 + m2 — ie
This expression is the Feynman propagator for the relativistic particle . 
Recently , two different derivations of this result has been obtained in the 
literature [8 , 9 j.Also Giannakis , Ordonez ,Rubin and Zucchini have ob
tained similar results using the lagrangian formalism [10 ].

В -Spinning Particle
The massive spinning particle is described by the following constraints

[11]:

W  = | (p 2 +  m2)  = 0,

S =  6>‘ppL +  mB5 =  0, (3.19)

where в  ̂ and 65 axe grassmanian variables that obey the following algebra

{вь ,e5}  =  i, (3-20)

and the even variables satisfy the algebra (3 .3 ).
Using (3.19) and (3.3) it is easy to verify that the constraint algebra

is :

[W,W] =  0,

[H,S} =  0,

{ S , S } = 2 i H .  (3.21)

It is easy to see using (2.8) that the BRST charge is :

Q =  rfh +  'P'Kn  +  cS +  7Г\PC 4- iVcc, (3.22)

where (ri,f},P,V)  are the coordinates and the ghost momenta (anticommu- 
tative) associated to H  and (c, c, V Ci V c) are the coordinates and the ghost
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momenta (commutative) associated to S  . The commutative ghost algebra 
is :

[c}P c] =  1 =  [c,7>], (3.23)

and zero in the other cases . n\ is the canonical momenta of the fermionic 
Lagrange multiplier A.

The fixing gauge function xf> is chosen as :

ф =  P N  +  \PC. (3.24)

Using the Fradkin-Vilkovisky theorem we obtain :

Z  =  j  D N D 'k^ D X D n xD rjD P  D f jD V  D V cD c D P cD cD $  ̂  D95D p^D x^

In order to calculate (3.24) we impose the following BRST invariant 
boundary conditions :

*^(^l) — *^lj*^(^2) —

4(h )  =  r){h) =  c( ti ) =  c(t2) =  0,

V(tx) =  f)(t2) =  c{ti ) =  c(<2) =  0, 

nN(t i )  =  7rN(t2) =  TTA( < l )  =  7Г x(t2) =  0,

I ( ^ ( * , ) +  <?"(< 2) )  =  7 ",

^ № (« i )  +  e5(<2 ))=75 . (3.26)

Integrating over пц , тг> ,V ,P , Vc and Vc , we obtain :

Z =  [  DNDXDriDfjDcDcDe^ Ш 5

ж" +  N H  +  XS +  P P -  P CP C -  2 iP c\ )]. (3.25)



D jfD x ^ 6 [N ]i5[Л] 

exp [г d r ( p ^  +  ^0505+

+ N 7 i  +  \S  +  rjf} +  2ic\f} +  cc)] , (3.27)

(3.27) is the hamiltonian expression for the path integral in the proper time 
gauge.

As in the bosonic relativistic particle case , we would like to eliminate 
the zero modes . For this reason we write the analogous of (3.10),

N {  0) = N (  0) + M (t ) ,  

A(0) =  A(0) +  C№, (3-28)
where we have the following ’’boundary conditions” ,

M {  0) =  0, 

c(0) = 0. (3.29)
The equivalent of the equation (3.12) is

6[JV(0)] =  J  dN(0)6[M(t) -  N{0)]det(dr) - \  

<5[c] =  J d \ ( 0 ) s m  -  A(0)\det(dr)+1. (3.30)

Such as in the relativistic particle case the determinants that appears in
(3.30) are indetermined because we have not sufficient boundary conditions 
, nevertheless , in this case the bosonic and fermionic determinants are 
precisely cancelled . Replacing (3.30) in (3.27) and using the Teitelboim 
arguments to choose one classical trajectory , we obtain :



+ N (0 )H  +  A(0)S +  rjfj +  2ic\(0)fj +  сс)], (3.31)

(for the integration in A(0) we do not write the integration range because 
such concept not exist for the Berezin integral).

Using the boundary conditions (3.26) the ghosts integrals can be ex
plicitly calculated . Integrating in pM :

Z =  M  j  dN (  0) J  d\( 0) J  De„De5Dx„ 

U j  i * 2 , rn2N (0 )  i ;  . • ;  a , A(0)6>Mi "
exp [г / dr( 

Ju
H------ -̂----- Ь -f -^ 5^5 H-----гттт̂ ;— Ь

fl 2iV(0) 2 2 * 2 ЛГ(0)

тЛ(О)05] (3-32)

In (3.32) the effective action is the one-dimensional supergravity action if 
N(0) and A(0) are interpreted as the graviton and the gravitino respectively. 

Making the change of variables

^ ( <) =  T5y +  ^ ( i ) ,  (3.33)

^ 5 (0  =  75 +  ^ (* )>

and using (3.26) consistency imply :

yM(t1) =  0 =  y ',(<2)- (3-34)

Using (3.33) and (3.34) in (3.32) and integrating in А (0 ) , ^ ( * )  
and yM(t),we obtain :

Z := A r L  ^ {Ъ \ Ах- +TO75̂exp̂ llr + ~
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(3.35) is the Dirac propagator [8] .

Conclusions
In this paper we have studied the quantization of hamiltonian systems 

with first class constraints using the BFV formalism .
Using the two examples studied above we saw that the B FV  formalism 

is a powerful method for quantizing theories with gauge fredom .
For more complicated theories , such as strings and membranes , the 

problem is not completely solved .The main difficulty is that at quantum 
level there are anomalies .

Using the BFV formalism this problem is not undertood at the path 
integral level.
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INFINITE-DIMENSIONAL STOCHASTIC DIFFERENTIAL GEOMETRY IN 
MODERN LAGRANGIAN APPROACH TO HYDRODYNAMICS OF VISCOUS 

INCOMPRESSIBLE FLUID

Yuri E.Gliklikh

ABSTRACT. A class of stochastic processes on the 
group of diffeomorphisms such that their (in a 
certain sense) expectations, the curves in this 
group, are flows of viscous incompressible fluid 
is described. These processes satisfy a special 
stochastic analogue of the Newton's equation of 
motion written in geometrical terms. The corres
ponding equation on the tangent bundle is smooth 
and does not use any additional " internal1’ for
ces etc. The cases of fluid motion in the flat 
torus Tn and in a bounded domain in Rn are con
sidered. The latter is represented by means of 
a special constraint system of the diffeomorphisms group of T11.

1. Introduction.
In the volume dedicated to the memory of C.Caratheodo

ry this paper is connected with the idea of geometrical 
and in some sense probabilistic description of the nature, 
the development of which was significantly affected by the 
work of 0.Caratheodory.

We deal with the modem Lagrangian approach to hydro
dynamics suggested in where the geometry of the hyd- 
rodynamical configuration space, the i n f i n i t e -dimensional 
manifold (group) of diff eomorphisms, was involved in the 
investigation of the fluid motion. In terms of this app
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roach the viscous inccmpressible flu id  was considered 
in but as compared with the perfect incompressible 
f l ui d1 that theory did not possess completely natu
ra l geometrical properties: the additional force of the 
f  orm V Д  (where Д  is  Laplacian), which lost the deri
vatives, was taken into account. This gave some limita
tions, e.g. the diffeomorphisms of a too high differen
t ia b ility  were needed (belonging to the Sobolev class Hfl 
fo r  s > §  + 5 * where n is  dimension of the manifold M 
in which the f lu id  moved), only M without boundary was 
studied etc.

We introduce another way to the Lagrangian description, 
of viscous incompressible flu id  involving constructions 
of the stochastic d ifferen tia l geometry on the group of 
diffeomorphisms. The class of stochastic processes is  de
termined which satisfy  a certain stochastic analogue of 
the Newton* s law of dynamics (o f ordinary geodesics equa
tion i f  the external force vanishes). The expectations 
(in  a certain sense) of these processes are the curves in  
the group of diffeomorphisms which describe the motion of 
the viscous incompressible flu id . This way seems to be na
tural. I t  does not use additional forces, the correspond
ing equation on the tangent bundle deals with smooth vec
tor fie ld s  only, the Sobolev class of the diffeomorphisms 
is  Hs fo r  s > j  + 1, etc.

Ve consider the motion of the flu id  on the f l a t  n -d i- 
mensional torus T0, (section 4) and in a bounded domain© 
with a smooth boundary in the Euclidean space B11 (sec
tion 5)* The la tter is  investigated via the approach sug
gested in ^*2), inhere the flu id  motion in ©  is  consider
ed as a constraint system on the group of diffeomorphisms 
of T11 so that the tangent bundle to the group is  replaced 
by a certain subbundle 2  •

Section 2 gives a b rie f survey of the geometry of 
groups of diffeomorphisms and Lagrangian approach to hyd
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rodynamics of perfect incompressible f lu id  which is  a ba
sis for further constructions. Section 3 is  devoted to 
stochastic differential equations on manifolds. We study 
the relations between Ito equations and equations in  mean 
derivatives introduced by E.Nelson (see e.g.

We assume the reader to be fam iliar with ordinary co- 
ordinates-free differential geometry (see e.g. 
with the stochastic d ifferen tia l equations in linear spa
ces (see e.g. We should point out that a l l  the ne
cessary preliminaries are given in ; we also re fe r the 
reader to 9ДЭ) for the detai-ls about the manifolds of
diff eomorphisms and to 7»10,16,18) fo r  stochastics.

13-15)Some constructions of section 4 were announced in

2. Survey of Modem Lagrangian Approach to Hydrodynamics.

Let M be n-dimensional compact oriented Riemanniam ma
nifold without boundary, <( , У the Riemannian metric on M. 
Let s> |  + 1. Denote by DS(M) the set of a l l  C1-d i f f  eo
morphisms of M belonging to the Sobolev class Hs . Recall 
that when s>£  + K, K>0, the space of Sobolev maps Hs is  
continuously imbedded in the space of CK maps.

I t  is  possible to define the structure of 0° ° -smooth 
Hilbert manifold on DS(M) (see Here the tangent
space TeDs(M) at the point e=id is  a separable H ilbert 
space HS(TM) of a ll Hs-vector f ie ld s  on M (the scalar pro
duct in HS(TM) is  naturally generated by the Riemannian 
metric <C , )  on M) and the tangent space T^DS(M) at the
point DS(M) consists of a l l  mapping Y s M---- >TM such
that ‘TC-Y = ti , where тс t TM— >M is  natural projection  
(i .e .  Y = where Xe HS(TM) = TeDs (M )).

LS(M) is  a topological group, where the superposition® 
is involved as a multiplication. For each DS(M) the
right-hand translation R^ : DS(M )----►DS(M), = в °*1 ,
is  a С00 -smooth mapping with the derivative TR^X = »
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X<£ TD (М). The left-hand translation Ъ^О is  only con
tinuous on DS(M), but when ^  is  of the calss Hs+1, L is  
(^-smooth with the derivative TL^X = T^°X , Xe TDS(M)^

Obviously one can define right-invariant vector fie ld s  
on DS(M). Let X be such a f ie ld  and X be a vector of this 
f ie ld  belonging to T0DS(M). The following property of X is  
very important fo r  us: X is  Ck -  smooth on DS(M) i f f  the 
vector f ie ld  X on M belongs to the class Hs+\  where к =
= l ,2 , . . . , o o  , H°°= C°° . Any right-invariant vector f ie ld  
X (C^-smooth in the general case and continuous, when 
s>^n  + 2) has the flow on DS(M). The integral curve £ ( t ) e 
beginning at e is  the flow of X on M; ^ (t )^  = Ч (Ъ )е°в *
© e  DS(M ).

Denote by D^CM) the submanifold in DS(M) consisting of 
a l l  diffeomorphisms which preserve the form of Riemannian 
volume on М. DjJ(M) is  also a subgroup in DS(M). The tan
gent space TeDjJ(M) is  the space of a ll  zero-divergence Hs 
vector fie ld s  on M, T^DS(M) -  {y  = Xo^j Xe Т^ДСМ)
4  € D^(M)}, A ll  the properties of right(left)-hand trans
lations, right-invariant vector fie ld s  etc. mentioned fo r  
DS(M) are valid  fo r D® (M).

Let D (M), X, Y £. T̂ D (M ). Determine the scalar pro
duct ( » )^  in T^DS(M) by the formula

(X ,Y ) = f  <X (m ), Y(m)> „ (m) ^ (d m )  (1 )

where ^ (dm ) is  the form of Riemannian volume. Notioe that 
X(m) and Y(m) belong to T ^^M  and they are multiplied with 
respect to the metric tensor ^s^nS Cl)
fo r  a l l  € DS(M) we define the Riemannian metric on DS(M). 
Obviously this metric introduces the topology of the fun
ctional space L2 = H° in the tangent spaces, which is  wea
ker than the in it ia l topology Hs.

The restriction of ( l )  to TD^(M) is  a weakly Rieman
nian metric on Ds (M) which is  evidently right-invariant.

vT"
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Consider the connector К : TTM— *TM of the L ev i-C iv i- 
ta connection of the metric <C , У  (see e.g. Re
ca ll that the covariant derivative .b of the Lev i-G iv i-

6L
ta connection fo r vector fie ld s  a and Ъ on M is  d e fi
ned by the formula V Qb = К ° Tb(a), and the covariant de-

SL

rivative of a vector f ie ld  a (t )  along a smooth curve m(t) 
is  defined by the formula ĝ jr- a = K> -j^a (see e.g.
For vector fie ld s  X,Y on DS(M) define the covariant deri
vative V jY  by the f  ormula

= К ° TY(X). (2)

One can easily  see that at each >7̂  DS(M) TY(X)^ is  a map
ping of M into TTM, so (2) defines V -Д correctly. I t  is 
shown in that V  со variant derivative of the Levi- 
Civita connection of the metric ( t ) on DS(M). The geo
desic pulverization Z of this connection is  described as 
follows:

Z (X) = Z о X (3 )

fo r  X € TDS(M), where Z is  the geodesic pulverization of 
the Levi-Civita connection on M (i<e . the vector f ie ld  on 
TM). One can easily  obtain from (3) the following state
ment: Z is  DS(M )-right-invariant and С00 -smooth on TDS(M). 

Recall the Hodge decomposition

HS(T M) = Gs е в 8 Ф ker Д  (4 )

where Gs is  the space of gradients of a l l  Es+1 functions 
on M, Es is  the space of a l l  Hs co-gradients on M, Ker A  
is  the space of a l l  harmonic ( i .e .  both gradient and co- 
gradient) vector fie ld s  on M and $  denotes the orthogo
nal direct sum with respect to 1^ -  scalar product ( l )  in  
TeDs(M). By a co-gradient we mean a vector f ie ld  correspon
ding to a co-exact form on M with respect to the Riemanni
an m etric^, У . Notice that Ker A  is  a finite-dim ensio- 
nal space and consists of C°° smooth vector f ie ld s .
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Denote Ъу P0 : TeDs(M) = HS(TM)— > Es ф КегД *
= ^  tlie  ̂ ~ orthogonal projection in (1 .4 ). Con
sider the mapping P i TDs(M)|Ds ^ — ► TD^(M) determined
for each D^(M ) by the formula

Ри = TRh ° P_ о TR"1.t  t  e 4
I t  is  obvious that P is  D® (M )-right-invariant. There is

ir q\
an important and a rather complicated result (see P
is  a С00 -smooth mapping. Notice the important consequence 
of (4 ) and of the definition of P0 1 fo r every Y e. TgDs(M) 
we have

Pe(Y) = Y + grad p (5)

where p is  a certain Hs+1-function on M unique to with
in the constants.

According to the standard construction of d ifferential 
geometry now we may define the connector К and the cova
riant derivative V  the Levi-Civita connection on 
D^_(M) by the formulas

К = P e К (6)

V x Y = P о V XT = К о TY (X )  (7)

where X,Y are vector fie ld s  on D^_(M). Of course the Levi- 
Civita connection H it s e lf  is  equal to Ker К с. TTD^(M).

The geodesic pulverization S of this connection is  a 
vector f ie ld  on TD\(M) of the formj* '

S = TP о Z (8)

I t  evidently follows from (8) that S is  D^ -  right-inva
riant and С00 -smooth on TD ^M ). Denote by exp the cor- 
responding exponential map of a neighbourhood of the zero 
section in TD^(M) onto D^.(M ); exp is  D ^(M )-right-inva
riant, С 00 -smooth and covers some neighbourhood of each 
point in Ds (M ) (see 9 Д З ))# According to the standard de-

с/л- #
fin it ion  we determine the covariant derivatives ^  and
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^  of a vector f ie ld  X (t) along a curve in DS(M) and 

Б^(М ) respectively Ъу the formulas

X(t) = к о ̂  X(t), (9)

^ X ( t )  - F  о | g X (t )  = K  о X ( t ) .  (10)

Let F e TJDS (M) and F be right-invariant vector f ie ldс, в
on D^(M ) corresponding to F. Consider the mechanical sys
tem with the configuration space D ^ (M ), with the kinetic  
energy ОС generated by ( , ) according to the usual 
formula DC(X) = ^(X,X), Xe TD^(M ), see 13\  and with the 
external force T  (using the Riemannian metric we do not 
distinguish vectors and 1-forms). The Newton’ s law fo r  
this system has the form

-зге-  i  = F>

The trajectories of this system describe the motion of 
perfect incompressible flu id  on M. Indeed, le t  ^ ( t )  be a 
solution to (11). Consider the vector u (t ) = TR ^ ^ ( ^ ( t ) )  
£ TeD ^(M ). As a consequence of (10), (6 ) and (5 ) the ze- 
ro-divergence vector f ie ld  u (t ) on M satis fies  the equa
tion

Ц  + V u u + grad p = P (12)

which is  a well-known Euler equation of hydrodynamics.
Here V  is  bevi-C ivita covariant derivative on M.

Notice that the curve of velocities ^ ( t )  on TDSM_(M) is  
an integral curve of the vector f ie ld

S + Рг (15)
_  0 _  

where F is  natural vertical l i f t  of F.
I t  is  easy to prove the local existence and uniqueness

т o+2
of integral curve fo r (13) i f  s > £  n + 2 (or i f  F^H
when s>^r n + 1) and consequently to obtain the local



351

existence and uniqueness of solutions to the Euler equa
tion (12), see 9*13)#

I f  F = 0, ( l l )  turns into the equation of geodesics

(t )  = 0 (14)

and ^ ( t )  becomes an integral curve of S on TD^(M) the 
local existence and uniqueness fo r which is  obvious becau
se S is  a C °°  vector fie ld .

For the case when a compact oriented Riemannian mani
fo ld  M has a smooth boundary ЭМ we should note that 
DS(M) and D^(M ) are well-defined. Evidently any d iffeo - 
morphism of M maps 1> M into it s e lf  so that T_DS(M)
f S q 6
(TeD (M), respectively) consists of a ll  H vector fie ld s  
on M tangent to 9 M (zero-divergence vector fie ld s , tan
gent to Э M). Other properties of DS(M) and D^(M ) fo r M 
with boundary and the description of flu id  motion by means
of a mechanical system on D®(M) can be found e.g. in

2 Ъ)Below we shall use another approach, suggested in ' \  
see fo r details. In this approach the flow of perfect 
incompressible flu id  on M with boundary is  described as a 
constraint motion on D® (N) where N is  an auxiliary mani- 
fo ld  without boundary and the constraint is  considered as 
a subbundle of TD^M_(N), cf. e.g.

Let M be a compact oriented Riemannian manifold with 
boundary, N be an arbitrary compact oriented Riemannian 
manifold without boundary such that dim M = dim N = n,
M is  imbedded in N and the Riemannian metric on M is  ob
tained as the restriction of the Riemannian metric of N 
(one may use N equal to double of M with the metric smooth
ly  extended beyond the boundary). Let s>^n  + 1.

Theorem 1.^»5»13) тьеге exist 0 ° °  smooth righ t-invari- 
ant subbundle 2 S ^  T D ^ (N )  and C ° ° -smooth righ t-in vari- 
ant map R : TD ^(N )—> 2  S» the projection in fib res, which 
have the following properties:
(i)Gonsider the restriction operator j : HS(TN) »HS(TM)
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of vector fie ld s  on N to M, and the fib re  of 2 S in e*
s  яThen j • S o — >T0B (M) is  an isomorphism.

( i i )  The subbundle 2  is  no^ integrable, it s  f ib re s  are 
infinite-dimensional and have an in fin ite  codimension in  
the fibres of TD^CN).v/ _
( i i i )  Consider the geodesic pulverization S on TD ^ (N )  
mentioned above. Let X (t) be an integral curve of the vec
tor f ie ld  = TR о Son  s with the in it ia l  condition 

X(O) = I £  • The curve *1 W  * ic x (t )  in  D ^ (N ) con- 
sists of the diffeomorphisms mapping M into M and the res
triction ^ (t )|  jj is  a curve in D^.(M) describing the mo
tion of perfect incompressible f lu id  without external fo r 
ces on M with the in it ia l velocity = j Y,

We should note that the restriction  ^ ( t )  | does not 
describe the flu id  motion on N\ M.

Corollary. Let F € be an external force. Replace in  
( i i i )  the f ie ld  Ss = ТЙ • S hy the f ie ld  TR(S + ) =
= S 3 + TR»P^ . Then t£_(t)|M is  a curve in D^.(M) desc- 
ribing the motion of perfect incompressible f lu id  on M un
der the action of the external force P = j F.о

According to ( i )  F and T are in one-to-one correspon
dence with PQ and т , respectively.

For the sake of further applications we should note that 
fo r  each Hs-vector f ie ld  I  on N the action of R0 :
---- is  described in terms of the restrictions of vec
tor fie ld s  onto M as follows

5e<T> | M = *  I M + 6rad P Cl5)
( c f . (5 ) )  where p is  a unique (to within the constants) 
Hs+1 function on M and grad p is  orthogonal to the boun
dary ЭМ (See 1^ ) .  I t  follows from the properties ofQ g I-
right-invariant vector fie ld s  on D ^ (N ) that fo r  Y tH  , 
k ^ l ,  R0Y is  also a Hs+k vector f ie ld  on N.
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3* Basic Constructions of Stochastic Differential Geomet
ry and Equations in Mean Derivatives.
In  what follows we sha ll consider stochastic processes 

with continuous time t€.[o,&] defined on a probab ilis tic  

space ( j l  , , (P) on which one can specify a Wiener pro

cess w(t) assuming values in  a certain space Rn. By E we 

denote the expectation and by E ( |(b) the conditional ex

pectation with respect to the G* -subalgebra (b of the СУ- 

algebra . (see e.g. The subalgebra & may be ge

nerated e ither by a random variable j  (v ia inverse imag

es of Borel sets) or by a certain condition u; the cor

responding notations are as follows: E( |^) and E ( |u). 

Any stochastic process 'T (t) defines three fam ilies of б*- 

subalgebras of the 6" -algebra : "the past11 (P£ ge

nerated by ^  (s) fo r  s ^  t , "the future” generai?- 

ed by ^ ( s )  fo r  s ^  t, and "the present" generated 

Ъу ^ ( t ) .  These fam ilies are assumed to be completed with 

a l l  sets of zero probab ility .

By an Ito  stochastic d iffe re n tia l equation in  a sepa

rable H ilbert space one means the integral equation

= T$0+ J a('C ,J(r))d'C + |A(‘t,j('c))dw ('c) (16)

where the f i r s t  term in  the right-hand side is  the Lebes- 

gue in teg ra l, the second term is  the Ito  in tegra l; a (t,x ) 

is  a vector f ie ld , A (t,x ) : Rn— i s a f ie ld  of linear 

operators. Equation (16) is  usually written in  the symbo

l i c  d iffe re n tia l form

<3-5 ( t )  = a (t , J ( t ) ) d t  + A (t ,|  (t))dw (t).

The theory of stochastic integrals and d iffe re n tia l 

equations has been presented in  many monographs and text

books (see, fo r example, ‘̂ ) .

D e fin ition  1 . A process J ( t )  is  called non-anticipat

ing w ith respect to the non-decreading fam ily of -alge-
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bras ©j. i f  fo r every t  4£(t) is  measurable w ith res

pect to (Bt *

The theory of stochastic equations deals w ith two types 

of solutions, strong and weak. In  th is  paper we need only 

strong solutions.

D e f in it io n ^ . We say that equation (16) has a strong 

so lution i f  fo r every Wiener process w(t) there exists 

a stochastic process J (^ )»  defined on the same probabi

l i s t i c  space as w(t) is , and non-anticipating w ith res

pect to (P^ , so that fo r 2? (t) wC'fc) equa lity  (16) 

is  va lid  almost surely (a .s .)  fo r  each t  belonging to a 

certa in  in terva l.

Remark 1 . Without loss of generality  we may assume tha t 

fo r  any strong solution ^ ( t )  to (16) = (p̂  a t each

t .  This property is  shown as corollary to the c la ss ica l 

strong so lution existence theorem c f. theorem 3
below.

Everywhere in  th is  paper the process ^ C t )  i t s e l f  w i l l  

be also ca lled  the (strong) so lution .

D e fin ition  5. A process J ( t )  is  ca lled  a lo ca l strong 

so lu tion  to (16) i f  i t  is  a strong so lution u n t i l  i t  leaves 

a certa in neighbourhood of i t s  i n i t i a l  pos ition .

Note that every solution to (16) may be represented as 

a superposition of some loca l solutions (see ^ ) .

We reca ll that under smooth changes of coordinates 

equation (16) is  not transformed according to a tensor law. 

bet ?£,= Rn and le t  ¥ : Rn— >RP be a smooth mapping, 

then *Р(Ч£) sa tis fies  the follow ing equation (the I to  fo r 

mula; see, fo r example,

df(j(t)) = (*4a(t,p) + £  tr4>"(A,A))dt + ^A(t,|))dw(t) 

n n
where t r ’P (A,A) = Г11 ̂ ,(A(J)ei , А(Тре±) ;  ег e2 , . . . ,  en 

is  an arb itrary orthonormal basis in  Rn . The non-tensor
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tenn^tr (A, A) appears in (17) as a contribution due 
to the integral with respect to (dw)2 while integrating 
the Taylor series of the function 4> . Unlike the Le
besgue integral with respect to (dt)2 , the I to integral 
with respect to (dw)2 does not vanish.

In what follows in this section we consider a smooth 
manifold M modelled on a separable Hilbert space and equi
pped with a smooth exponential exp corresponding to a cer
tain connection. Sometimes M will be a finite-dimensional 
Riemannian manifold; in this case we always use the Levi- 
Civita connection and its exponential map.

Let a(t,m) be a vector field on M, A(m) be a field of 
linear operators A(m) s Rn-- w(t) be a Wiener pro
cess in Rn . Consider a class of stochastic processes 
(a(t>m), A(m)) in the tangent space TmM which consists of 
solutions to stochastic differential equations.

in TmM, where a(s,X) and A(s,X) are Lipschitz, vanish out
side a certain neighbourhood of the origin in ТщМ, and are 
such that a(s,0) = a(t,m) and A(s,0) = A(m). Note that 
the solutions of (18) are strong.

The expression (see 5-7))
d J(t) = exp Tr(t)(a(t, J(t)), A(|(t))) (19)

is called the Ito equation in the form of Ya.I.Belopol1s- 
kaya - Yu.L.Daletski£. It means that the process ^(t + /u) 
for > О belongs to the class exp j(t)(a(fc,5(b))» A(j(t))) 
until it leaves a certain neighbourhood of 1-(t) (cf. de
finition 3)*

We do not present the description of (19) in local co
ordinates but we should point out that it has the form of 
I to equation in a linear space where the local connector 
of the connection is involved; this local description is
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с ovariant under changes of coordinates.

Remark 2. Equation (19) is  compatible w ith mappings of
■----------------------------------- p

manifolds. Let f  s M— *N be a С - mapping and there be 

a connection on the manifold N w ith the exponential map 

expw such that f  (exp X) = exp^(TfoX) fo r  each Xe TM. One 

can easily  show that fo r ^ ( t )  on M sa tis fy ing  (19) the 

process f ( J )  on N sa tis fie s  the equation

A more detailed description and ju s t if ic a t io n  of th is  

construction can be found in  5“7 )e

A sample trajectory of a stochastic process J ( t )  is

a .s . non-differentiable, i .e .  the derivative d4 f/d t does 

not ex ist. Following Nelson we define the "mean fo r 

ward derivative" by

* t ( t+ A t)- t ( t )
DT ( t )m = lim  E( -------- ---  ''F (t) = m) (20)

* m A t-*+0 A t  ^

where A t—>+ 0 means that A t — >0 and A t > 0. I f  

( t )  is  a solution to (19) one can show tha t the l im it  

(20) exists and D J ( t )m= a (t , m). Here one must use the 

properties of Ito  equations, of w(t) and the fa c t  tha t 

fo r  strong solutions to (19) , see remark 1 .

The "mean backward derivative" is  defined by

? ( t )  - 1  (t- At)
D*5 (t)m = lim  E< —-------------  5  ( t )  = m) (2 1)

^  m At-^+O A t ^

I t  should be noted that in  general D ^ ^ m  ^ D* 5 ^ m e 

Following Nelson 18  ̂ we c a ll ^ т )=  ^ ( ^ ( t ^ + D ^ t ^ )  

andu(t,m)= ^ сш?геп^ 011(1 osmotic ve loc i

tie s  of the process ^ ( t )  respectively.

For the case when M is  a n-dimensional Riemannian mani

fo ld  le t  us assume that the f ie ld  A in  (19) has the form

A = (5Г a! where Q > 0 is  a constant, Al(m) 1 Rn-- is  an

orthogonal operator (TmM is  considered as n-dimensional
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Euclidean space with respect to Riemannian scalar product). 

Now the osmotic ve locity  can be described as follows. I t  

is  known that there exists a probab ility  density j>(t,m) 

on [О,*] * M such that fo r any continuous function f(t}m) 

on [o ,e j x M we have

i f p d \> = J f (T(t)) d IP dt
[o,e]«M. [o,l\*SL

where v) is  Lebesgue measure on [o,£]x M. F ina lly , one

obtains u =52grad l o g . Using th is  fac t one can show

fo r a so lution ^ ( t )  to (19) that the l im it  in  (2 1) exists

and D *T (t)m = a*(t,m) = a(t,m) - 2u(t,m ). The detailed
18}

presentation of these results can be found in  ',
Let Y(t,m) be a smooth vector f ie ld  on M. Define the 

"mean forward" and f,mean backward" covariant derivatives 

of Y along ^ ( t )  by the relations

k  Tl- • K '' ! £ «  «

т) Y ( t , t ( t ) )  -Y(t-At,|(t-At))
Yi = К O lim  E( --- ------------ -------  1  ( t )  =m)

A t-*+0 A t г
(22)

involving the connector К of the given connection (cf. sec

tion  2) .

When M is  n-dimensional Riemannian manifold and A =

= Gf A* (see above) using the Ito  formula (17) we obtains

h *  = h  Y + У а 1 + 1 2 д 1 -

§1* = h X+ Va.Y - A x ,  (23)

where Д is  Laplace-Beltrami operator V ° V (see 

13% 18)^ £/\ y corresponds to ^  tr  Y,,(A,A) in  Ito  formula.
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Formula (23) is  easily  ve rified  in  a normal neighbourhood 

of a point. See for the de ta ils .

Let us f ix  smooth vector f ie ld s  a(t,m ), a*(t,m ) and a 

smooth f ie ld  of operators A(m). The problem arises: to 

describe by means of the Ito  equations the processes which, 

sa tis fy  the equations

D | ( t )m = a (t, m) (24)

D * | ( t )m = a*(t,m) (25)

a t each t,m for the given a, a*, A. As i t  is  mention

ed above sa tis fie s  (24) i f  i t  is  a so lu tion  to (19)- 

For equation (25) the answer is  more complicated.

Consider a Wiener process w(t) in  Rn , tc [ o ,# ]  and 

fo r  t€ CO, £] define the process D*w(t) by the equa lity

w(t)-w(t-At) I
D,w(t) = lim  E(--------------  w (t)) . (26)

A t -*+0 A t

I t  is  obvious that fo r  x С Rn D*w(t)x = - 2uw( t ,x ) ,  

where uw(t ,x )  is  the osmotic ve locity  of w (t) a t x. 

Recall that uw(t ,x ) = grad log V ^ ( t 7x), where the den

s ity  J>w(t ,x ) = (27ct)~^ ^ ^  » e“(x*x/2t ) # cal-

culations give grad logVPW' = - \ • x • Thus D*w(t) =
= w £t) # 0 *

Note that is  not determined fo r  t  = 0 but the

in teg ra l fo is  well-defined fo r  t  a [o ,& ] a .s .

This follows from the estimate E( | HjL§)<is | ) < C ‘Vt~ 

where the constant С > 0 depends only on n.

Consider on M the follow ing equation

d j ( t )  = exp^( t ) (a * ( t ,5 ( t) )- A (| ( t) )D #w ( t ) ,A ( | ( t ) ) )  (27)

where (a t (t,m)-A(m)D*w(t),A(m)) means the class of sto

chastic processes in  TmM which consists of so lutions to 

equations
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Х(>с) = i[ a .(a ,X (a ) )d s- [ l(3 ,X (s )2 ^ )ds+ fi(s ,X (s))dw (s)
0 о о

(28)

a*(s,X) and А(в,Х) are analogous to a(s,X ), A(s,X) in

(18). Note that the second in tegra l in  the right-hand s i

de of (28) is  well-defined because A(s,X) is  bounded.

Theorem 2 . Let *^ (t) , = mQ , be a loca l strong so

lu t io n  to (27) in  a certain neighbourhood U э a Q, Then 

^ ( t )  sa tis f ie s  (25) fo r m € U, t  > 0.

Proof. For the sake of s im p lic ity  suppose that t  and 

m are su ff ic ie n tly  close to 0 and mQ respectively. Under 

th is  assumption consider X в Tm M such that exp X = m.

Let Ot) = exp„, X W , where ° 
m0

= f a .(s ,X (s))ds-  [ A(s,X(s)) fl(s ,X (s))dw (s)
о J0 3 J0

is  a process in  ®moM, . Such X(*t) exists because

“J  ( t )  is  a so lution to (27)* I t  is  su ffic ie n t to show 

that D ,X (t)z  = a .( t ,X ) .

The d irec t ca lcu la tion  gives

D .X ( t )Y = E ( a , ( t ,X ( t ) )  | X (t)= X ) - E ( i( t ,X (t ) )D .w (t)| x (t )= X )+
t-At

+ limE ( fo A(s,X(s))dw(s)-Ig A(s,X(s))dw(_sl | x(t)=x), (29) 

t  +0 Д t

The f i r s t  two summands in  the right-hand side of (29) are 

obtained in  such form because the corresponding processes 

have d iffe ren tiab le  tra jectories . I t  is  easy to see that 

the sum of the la s t  two summands in  (29) is  equal to zero. 

Indeed, A(s,X(s))dw(s)- J ^ ^ K s ^ s ) ) d w ( s )  is  measu

rable with respect to • Then the assumption (p̂_w =

= (PtX fo r a strong solution X (t) of the Ito  equation (see 

remark 1), the Markov property of w(t) and the properties 

of the conditional expectation and of Ito  in tegra l give
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lim EC ^A(s,X(s))dw(s)- Jô A C s ,X(s))dw(3)|3C(t)_I) „
A t  —H-0 A t

= i m  B(E( I°A(x,X(3))dw(s)- Iot~AtA(3X(s))dw(S)|(rX )L (t).3:)_ 
At-»*-0 Д t 17 “

= E( lim E(A(t,X(t)) ^ I w(t))| X(t)=X) =Д t-»+ 0 A ” 
= E(A(t,X(t))D.w(t)|x(t) = X). Thus D.X(t)x =

= E (a,(t,x(t))|x(t) = X) = a.(t,X). Q.E.D.
Theorem 3- bet a,(t,m) and A(m) be at least - 

smooth in  m and le t  a*(t,m) be continuous in  t  . Then 

fo r each mQG M there exists a unique lo ca l strong solu

tion  ^>(t) to (27) with the i n i t i a l  condition ^J(O) = mQ, 

and (p̂ _ = (p̂_w fo r each t  fo r  which ^ ( t ) ex ists .

Theorem 3 is  a consequence of the existence 

and uniqueness theorem see also

4-* Stochastic-Geometrical Lagrangian Approach to Viscous 

Incompressible Hydrodynamics. General Construction.

Now we can transfer the developed stochastic machinery 

to the systems on the groups of d if f  eomorphisms. We sha ll 

do i t  fo r the special case of the groups of d i f f  eomor

phisms of the f l a t  n-dimensional torus T11, i . e .  T11 w ith 

the Riemannian metric obtained from the Euclidean metric 

in  Rn afte r fac toriza tion  with respect to the in teg ra l l a t 

tic e . For the sake of s im p lic ity  we suppose tha t the to ta l 

Riemannian volume of T11 is  equal to 1 .

Consider on Dj^T11) the weakly Riemannian metric ( , ) 

(1 ), i t s  Levi-Civita connection, exponential map exp and 

a l l  other geometrical objects defined fo r  the general case 

in  section 2 .

I t  is  a well-known fac t that a l l  tangent spaces to Tn
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are na tu ra lly  isomorphic to Rn . Denote by A(m) : R1̂-->

T̂ T11, m€ Tn , th is  natural isomorphism. Thus the f ie ld  A 

of lin e a r  isomorphisms of Rn onto tangent spaces to Tn is 

constructed.. Obviously fo r each giveny<£Rn the vector 

f ie ld  A*y : Tn — ► TTn on Tn is  constant ( i .e .  one may ima

gine that the same vector у is  applied at every point of 

Tn) and consequently A • у is  a -smooth zero-divergent 

vector f ie ld .  Moreover, the constant vector f ie ld  A<>y is  

harmonic because evidently d(A<^) = 0.

Thus the fie ld . A may be considered as a linear opera

tor 2(e) : Rn— »TeDs(Tn). For ^  £  D^,(Tn) denote by 

A(^) : Rn-- ^T^Ds(Tn) the operator determined by the fo r

mula S(^)«y =[ A (e)°y]°^ = U ° y]°1 . So the f ie ld  A of 

linear operators mapping Rn into  tangent spaces to D^T11) 

is  constructed. Obviously X is  right- invariant. Since the 

f ie ld  A on Tn is  С°*-smooth, the right- invariant f ie ld  A 

on D^(Tn) is  С ~-smooth.

The construction of the f ie ld  A is  a variant of the ge

neral construction of

Fix a rea l constant (Г > 0. I t  is  obvious that fo r a g i

ven vector f ie ld  on Ds (Tn) we may consider the stochastic
сЛ

equations of type (19) and (27) involving the exponential 

map exp , the operator f ie ld  A and a Wiener process 

w(t) in  Rn .

For each X€ TeDs^ (T n) consider the natural decomposi- 

tion  = Vx + Kjj. where Vx = TjT^^D^CT11) is  verti-

cal subspace and is  Levi-Civita connection at X. Define 

the weakly Riemannian metric ( , )Ton T D ^T 11) determining 

the scalar products in  V̂ . and as inverse images of ( , ) 

w ith respect to К and Ttc respectively (reca ll that 

Тю s ^ — »'\xDj^Tn) and К : Vx— are 

and assuming that and are orthogonal to each other. 

The application of calculus of variations shows that 

s tra igh t lines in  tangent spaces to D^XT11) and only they
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are ve rtica l Levi-Civita geodesics of ( , ) and a l l  other 

such geodesics are mapped by Тто onto Levi-C ivita geode

sics of ( , ) on D^uXT31) . Denote by exp^ the exponential 

map of the Levi-Civita connection of ( , )T on TD^c(Tn) .

I t  is  obvious that fo r  every TTD^jjT11) we have 

exp^Y = exp TtcY (c f. remark 2) .

Define on T D ^T 31) the f ie ld  of operators 2^(X) =

= Т - п ^ К т сХ )^  s Rn — >1^ TD^(Tn) . Let FeT gD^jT 11),

F be the corresponding right- invariant vector f ie ld  on 

D ^(T n), F^ the natural ve rtica l l i f t  of F on TD^CT11). 

Let us consider a Wiener process w(t) in  Rn and determi

ne the stochastic equations, on TD^JT11) as fo llow s:

a ^ (t) = exp|( t ) (S(^( t))-SATC ^(t))*D ,w (t), СГAT(j ( t ) ) )  (30)

m

where S is  the geodesic pulverization of the Levi-Civita 

connection on T D ^T 11) (see sect.2 ).

Let P € H on (Гл Theorem 3 is  va lid  fo r  equations

(30) and (31). Indeed, the f ie ld s  S and AT are С -smooth 

and the f ie ld  F^ is  C1 - smooth on TDŝ jCTn). Let be

a (lo ca l) strong solution to (30) or (31)- Consider the

process £ ( t )  =T D j(t) on I й) where TC: TD^(Tn)--->
D3̂ ! ? 11) is  the natural projection.

The main purpose of the rest of th is  section is  to show 

that J ( t )  is  natura lly  connected with the motion of v is 

cous incompressible f lu id , namely the expectation ( in  a 

certa in  sense) of T j(t) is  a flow on Tn of the f lu id  men

tioned above.

Consider a solution ^ ( t )  to (30) or (31) w ith the i n i 

t i a l  condition ^(0 ) = uQ€. TeD^u.(Tn) . For t ,  such that 

^ ( t )  exists, and fo r coeSi ^ ( t ,c o )  is  a vector in  

^ (t jb o )^3*^ ) * Deno'be ЪУ u (t,co ) the vector TR^(^i)^tjtO) 

TeD^jL(Tn) , u(t,«o) is  a random vector in  TeD ^(T  ) ,
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i .e .  a random vector f ie ld  on T11. Denote by u (t) the ex

pectation of u(t,a>)» We should point out that the vector 

u ( t )m fo r  each me Tn is  the expectation of the random vec

tor u ( t ,^ )  ет тп.
Consider a certa in value x ( t ,u ) , £ = E ^ ( t ,“ )eD^XT11) 

and the random vector E (^(t) I n- ^<t) = D^CTn) .

lemma 1 . E (E (^(t) |tc j ( t )  = g)) = T R^u(t).

Indeed, TR^_1E (E (^(t)|TC^(t) = £) = E(E(TR^_1j ( t )  |^J(t)= 

= Й) = E(E(TR-^( t ) ^(t)|T u^(t) = * ) )  = E(TR^(t)(p ) )  =

= u ( t ) .

Lemma 2 . D *J(t)^  exists and i t  is  equal to TR^u(t).

Proof. F irs t consider the case when "g(t) is  constructed 

from ^ ( t )  satisfy ing  (30). I t  is  obvious that ^  ( t )  has 

independent increments. The d irect ve r ifica tion  of the in 

dependence property shows that J ( t )  = also has in 

dependent increments. Since J ( t )  and J ( t )  - J ( t- A t )  are 

independent, E (J(t) - J ( t- A t)|  'J ( t)  = *2.) = E (E (J(t) -

- £ ( t-  A t) | 4g(t) = £,)). As a consequmce of theorem 2 one 

obtains the equality  D#J(‘fc)x = S(X) X^TD^(Tn).

Recall that TicS(X) = X. So D .T (tl = E lim  E (Е2Ш ± Е21££$|
* г A t-»+0 A t  1

Jl ( t )  = £.) = ET-rcClim E( = fc) =
0 A t -»+0 A t

= ETrtS(E(^(t)|Tu J ( t )  = £ ))  = E(E(^(t)|TC.j(t) = г ) ) .

The application of lemma 1 completes the proof. I f  ^ ( t )  

s a tis f ie s  (31), then by theorem 2 D*^(t)x = SOO+F^GO 

where F^(X) is  ve rtica l. So T?c(S(X) + F^(X)) = X and the 

same arguments are va lid  fo r th is  case too. Q.E.D.

Denote by b * (t, £) the right- invariant vector f ie ld  on 

Dŝ i>(Tn) generated by u ( t)e  T0 D ^(Tn) . I t  follows from 

lemma 2 , equations (30) and (31)» remark 2 and the re la 

t io n  between exp and ёхр^ that T^(t) sa tis fie s  the equa

tio n
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d j( t )  = SqPj( t j ( b * ( t t| (t))-€ rI(5 (t))D .w (t),6 rA C S (t))) . (32)

Using £he Levi-Civita connection determine the mean back

ward covariant derivative along 1£ (t)  on D ^(T n) 

according to the general formula (22) w ith connector К 

defined in  (6).

Theorem 4-. Let ^ ( t )  sa tis fy  (30) ((31)» respective ly). 

Then *J(t) sa tis fie s  the equation

= 0 (53)

(the equation

« »  (3^)

respectively) at each point €. D ^(T n) .

Proof. Since the f ie ld s  S, b*, A are righ t- invarian t, 

we may suppose that e without loss of generality .

Thus D *J(t)e = u (t) by lemma 2. F irs t consider J ( t )  sa

t is fy in g  (30). Using theorem 2 and according to (30) and 

( 32) we obtain

E( ^ ( t-  A t)| ^ (t)) = u (t)  = expT (-S(u(t))A t) + o (A t ) ,

E( ^ ( t-  A t)| ^ (t) = e) = exp (- u ( t )A t)  + o( t ) .

By de fin it io n  of u (t) we have u ( t- A t)  = ECj,(t-At)® ̂ ’( ‘Ь- 

- A t) )  = E(E(Vt-At)<> ^ ( t- A t) )  J ( t )  = u ( t ) ,  ^ ( t )  = e) =

= expT(-S(u(t;)At) о (exp(-u(t)At) ) ”1  + o( t ) .  Then

E(b*(t-A t,£(t-A t))|  £ ( t )  « e) = E(u(t-A t> 4£(t-A t)| j(t) =

= e) = u(t-At>E(£(t-At)| *J(t) = e) = expT(-S(u(t) )At) +

+ o(At). Thus

|§D . 2 ( t ) e = g . l im  E( (t-A t)i | | ( t )  =
A t—*+0 A t

= e) = К» S .
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Since Se н, K°S = 0 which proves (33)*

I f  ^  ( t )  sa tis fie s  (31) one should replace S by S+F  ̂

in  the above arguments, so ^  = ^(S+F^) = F.

Q.E.D.

Note that (34) is  one of stochastic analogues of the 

Newton1s law (1 1 ) , in  particu lar ( 33) is  an analogue of 

geodesics equation (14). I f  S' = 0, (34) and (33) turn in 

to (1 1 ) and (14), respectively.

Let us f in d  an analogue of Euler equation (12) fo r the 

case under consideration.

Theorem 5. Let j ( t )  satisfy  (30) ((31)» respectively). 

Then the vector f ie ld  u (t) on Tn sa tis fie s  the Navier- 

Stokes equation

u + Vu u - v A u  + grad p = 0 (55)

(respectively

3̂ -u + V u u + grad p = F ), (36)
n Г  2

where Д  is  Laplace operator on T , = -75-
Proof. Fix t  such that exists. Without loss of

generality  we may assume that 4£(t) = e. I t  is  a conse

quence of the fa c t that S, b ,, £  are right- invariant. The 

process ^ ( t )  may be considered as a stochastic flow on T11 
(see Ю Д З ))# So f or QZQfr meT21 we can f in d  D ,j ( t )  =

= u (t,m ). According to formula (23) we obtain ^ “ ^*3Ct)m=
~  D

= ^  u + V u n -vAu. The construction of by general

formula (22) with К defined by (8) and property (5) of P

lead to D .| (t)e = Pe( ^  u +VU «  - ^A * ) = &  u +

+ Vuu “ VA u + grad p. The application of formulas (33) 

and (34) completes the proof. Q.E.D.

Corollary 1 . Under the conditions of theorem 5 the flow 

g (t) of the vector f ie ld  u (t) on T11 is  a curve in  D ^u(Tn) 

describing the motion of viscous incompressible f lu id  on
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Tn with the viscosity V in  the case of zero external fo r 

ce (under the action of the external force F, respective

ly)*

Corollary 2 . ( i )  Let s > ^  + 1, the zero-divergence 

vector f ie ld  (external f  orce) F on Tnbelong to the class 

H3+1, the zero divergence vector f ie ld  ( i n i t i a l  ve locity) 

uQ on Tn belong to Hs. Then fo r  any > 0 the unique so

lu t io n  u ( t ) c  TgD^T11) to the Navier-Stokes equation(36), 

u(0) = uQ, and the corresponding flow of viscous f lu id  

g (t) D^r (TrL) exist on a certain in te rva l t  с  [o,fc) .
( i i )  The same is  va lid  fo r  F€ Hs, uQ€ Hs when s > ^  + 2.

Proof. Statement ( i )  is  a consequence of the existence 

and uniqueness theorem 3 applied to equation (31) (see the 

beginning of th is  section) and of theorem 5* To prove ( i i )  

note that under these assumptions the manifold Ds'^(Tn) is  

well defined so that the r ig h t invarian t vector f ie ld  F 

on D3“̂ (Tn) is  C1 - smooth. Thus theorem 3 is  v a lid  fo r 

equation (31) on TDs“^ u,(Tn) . Q.E.D.

Analogously to the theory of stochastic d if fe re n tia l 

equations in  vector spaces we may c a ll g (t)  the mathema

t ic a l  expectation of T-(t).

Theorem 6 . Let F be a zero-divergence H vector f ie ld  

on Tn , l ^ k ^ o o ,  and uQ be a zero-divergence H3**1 vector 

f ie ld ,  l ^ q ^ k .  Then u (t) belongs to the class H3+̂  fo r  

a l l  t  fo r which i t  exists in  H3.

Corollary 1. Under the conditions of theorem 6 the cur

ve g (t) lie s  in  ^ " ^ (Т 11) fo r  a l l  t  fo r  which i t  exists in

Corollary 2 . I f  F = 0 then theorem 6 and corollary  1 

are va lid  fo r a l l  q ^ l ,  in  particu lar i f  uQ£  C "9 then 

u ( t ) c  С 00 and g (t) lie s  in  D^Kt11) fo r a l l  t  fo r  which 

they exist in  H3.

The statements of theorem 6 and i t s  co ro lla r ies  are 

called the regularity  properties.
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Proof of theorem 6. Denote by "ttie solution to

(31) w ith the i n i t i a l  condition ^y(O) - Y and consider

the random mapping : TD^(M)--*-TD® (M) determined

by the formula Jpj_(X) = ^  x ( t ) , X e T D ^ ^ ) .

Lemma 3* The mapping ^  is  D^CT11)-right-invariant 

and С - smooth in  square mean metric (s.m.C^-smooth).

The r ig h t invariance is  a consequence of the same pro

perty of S,A^, F^ . The s.m.C^-smoothness of Г. is  a
oo /s/П ” Ъ-

consequence of 0 - smoothness of S and A and С -

smoothness of the right- invariant vector f ie ld  P (see
—Z к

section 1), i .e .  F is  also 0 - smooth. The arguments

fo r  the proving of smoothness here are completely analo

gous to those of ^» ? )e a simple modification connected 

with the presence of the term -eATD,w(t) is  le f t  fo r the 

reader as an exercise. Q.E.D.

Consider the right- invariant vector f ie ld  uQ on 

D^u(Tn) constructed from uQ€. Te D^Tn) by right-hand 

translations. Since uQ is  Hs+ ^ vector f ie ld  on T11, uQ

is  C^ - vector f ie ld  on D^CT11). I t  follows from lemma 3
" athat Tl0 is  right- invariant random s.m.C4-smooth vec

tor f ie ld  on D^XT11). Thus R rcpjlfc ° (jft is  a random 

s.m. Hs+q--vector f ie ld  on T11 and ° u (t) = E(R^  ̂  e (f ’t ^ o ^

is  an Hs+(̂  vector f ie ld  on Tn . Q.E.D.

5. The Case of a Bounded Domain with Boundary.

In  th is  section by combining the constructions of sec

tion  4 and of theorem 1 we consider the viscous f lu id  mo

tion  in  a bounded domain in  Rn with fr ic tio n le ss  bounda

ry. In  the end of the section we say some words about the 

case of the f lu id  adhering to the boundary.

Let («) be a bounded domain in  Rn with a smooth bounda

ry "3(h)* Without loss of generality we may assume that 

(ч) belongs to the un it cube in  Rn , so after fac toriza

tion  of Rn with respect to the in tegra l la t t ic e  (^becomes
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imbedded in  a f l a t  torus Tn . Let us apply the construc

tion  of theorem 1 to the case M =@  , N = Tn .

Consider the right- invariant C°° subbundle S S of

TD^(Tn) and the projector R : TDŝ (T n) -- which ex ist

by theorem 1. Let H be Levi-Civita connection on TD^^T11). 

Then = T§£f is  a connection on the bundle where

H is  considered a t the points of £ s . Using the connec

tions TRH on and H on TD3 (Tn) we may construct, ac-
t r n N  iS*

cording to J the (a ffine ) connection on the manifold

^ s . Denote by e x p 2  . <p "r s-- ^ 3 s the exponential map

of th is  connection.

Consider the vector f ie ld s  = T5 S and TRF^ (where

P £  |TJS) on 2 S introduced in  theorem 1 and i t s  coro lla ry .

Note that obviously S ^C  TRH. We should also mention the 

evident property TtcSs  (X) = X fo r  every X G ^ S, where

тс : 2 s--* D^j(Tn) is  the natural p ro jec tio n .^

A tX  € GLS determine the line ar operator P  (X) =

= TR T?(X) t --*TX 3 s where A^ is  described in  sec

tion  4. I t  is  evident that Tr£As °y  = Aoy (see section 

4). Note that the f ie ld s  S E , TR , 2s on 2 S are 

D^.(Tn)-right- invariant, S3 and A" are C°° -smooth and
TO T? ^  A ~  r f c  _ ----------  .i-V  J. -P-P ТЛ *7- r r S + k  1 - ' s  г\TR is  0K - smooth i f f  F e  Hs , к > 0, on T11.

Thus we may consider on 2  s the stochastic d iffe re n ti-  

a l equations

d^ (t) = e x p S ^ ( SS (j(t))-<o-AS ( j( t) )«D .w (t)  , erl3( j ( t ) ) ) ,

d ^ (t) = e x p ^ ^ C S 3 (^(t))+TR f ^ ( j ( t ) ) - ^ A ‘;'(^ (t))«D .w (t),

C  I S ( ^ ( t ) ) )  (58 )

(c f . (30) and (31))• Note that according to theorem 3 f ° r  

each S S there exists a unique lo ca l strong so lution

^ ( t )  to (37) with the i n i t i a l  condition = Xo *
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because S £  and A° are С 00 -smooth and the same is  va

l i d  fo r  (38) i f  F is  at least Hs+1-vector f ie ld  on Tn,

i .e .  TR Fe is  C1 on 3 s.

Let ^ ( t )  be a loca l strong solution to (37) or (38) 

on 2 S* Consider i t s  projection = те. ^  (t)  on

Dŝ (T n) and the vector u (t) = E ^R " 1 ^ ( t ) )  which
_, <5 * 5 ( t )

evidently belongs to ?  .
1—* e

Lemma 4. For each ^  c. D^/LC(Tn) the vector D,1 [ (t)^  

exists and is  equal to TR^ u ( t)€  •

The proof of lemma 4 is  analogous to the proof of lem

ma 2. Note that the analogue of lemma 1 also holds for 

th is  case.

Let us introduce the backward mean соvariant deriva-
Ds s

tive  i t  along ^p(t) with respect to 2  by the gene

r a l formula (22) with the connector defined by the re

la t io n

K 3  = R-K . (39)

By analogy with theorem 4 we obtain

Theorem 7. Let ^ ( t )  on £  s satisfy  (37),((38 ), re

spectively). Then J ( t )  = 7 t j ( t )  on D ^(aP ) sa tis fie s  the 

equation

§£ d . |(t) = о (ад)
(the equation

rp

- t
respectively).

Theorem 8. Let j ( t )  on 3 S satis fy  (37) ((38), res

pective ly ), 7;( t)  and u (t) be defined as 

i t  is  mentioned above. The res tr ic tion  u(^|@ is  a 

zero-divergence vector f ie ld  on ©  tangent to 3 ©  and 

i t  s a tis fie s  i n 2©  the Navier-Stokes equation with the 

v iscosity  v -g— and the zero external force (external
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force F | ̂  , respectively).

Proof. Since u (t) belongs to ^  , u ( t )|0  is  zero- 

divergence vector f ie ld  tangent to Э ©  by d e f in it io n  of 

(see theorem 1). As in  the proof of theorem 5 the 

process ^ ( t )  in  DSt̂ (Tn) may be considered as a stochas

t ic  flow on T11; using the fa c t that ТтсА^= 2 (see above),
TN

one can show that D* S ( t )m = ^ u  + V uu “ v A u * Tben 

the construction of by the general formula (22) with

the connector Ks  defined by (39) , the property (15 ) of 

R and formulas (40), (41) complete the proof. Q.E.D.

Corollary 1 . The flow g (t) of u ( t)  on T11 may be res

tr ic ted  onto 0  and g("b)|0  is  a curve in  Dŝ ( © )  

describing the motion of incompressible f lu id  w ith visco

s ity  v> in  ©  with fr ic t io n le s s  boundary 'd ©  under 

the action of the zero external force (external force F|^ , 

respectively).

Recall that the words "fr ic t io n le ss  boundary41 mean that 

u ( t )|0  is  not necessarily equal to zero, but is  tan

gent to 9 ©  only, i .e .  the f lu id  does not adhere to the 

boundary.

Note that F e 3 is  uniquely determined by the exter

na l force F |0 , see theorem 1 ( i ) .

Corollary 2 . ( i )  Let s > ^  + 1, the vector f ie ld  (ex

ternal force) F€ T0D^W.(© ) belong to the class Hs+1 on ©  . 

Consider the i n i t i a l  ve locity  vector f ie ld  uQ€: T0 Dŝ ( © ) .  

For any \) > 0 the unique solution u ( t)C T eD^(@) of the 

Navier-Stokes equation with the force F and the corres

ponding flow g ( t )c D e (© )  of the viscous f lu id  ex ist on 

a certain in terva l t e  [o,£) . ( i i )  The same is  v a lid  fo r  

F€ Hs, uq£H s when s > ^  + 2.

Here the arguments in  the proof are the same as fo r  co

ro lla ry  2 to theorem 5. Of course, TD^(Tn) and TDs^;(Tn) 

should be replaced by £7 s and 2  respectively.

Theorem 9» (Regularity theorem). Let uQ,F €L 2 ^  such
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tha t the external force F j^ is  Hs+k vector f ie ld  and 

the i n i t i a l  ve locity  uQ|0 is  Hs+<1 vector f ie ld  on ©  , 

l< q< [k . Then u(t)|^ belongs to the olass Hs+<1 on the 

entire 0  including the boundary Э ©  for a l l  t  

fo r  which i t  exists in  Hs .

Proof. By theorem l ( i )  F and uQ on the whole T11 belong 

to the same Sobolev classes as F[^ and on ©

So we can use the arguments as in  theorem 6 replacing the 

bundle TD^(Tn) by s. In  particu lar, uQ is  - 

smooth D^CT11)-right- invariant section of hence

^ t uo is  s.m. Ĉ- -smooth and D^(Tn)-right-invariant ran

dom section of 2 S (the notations are sim ilar to the 

proof of theorem 6) . Since is  a subbundle in  TD^(Tn) ,

sections of ГГ* 3 are vector f ie ld s  on Ds„(Tn). The rest of 

the proof is  the same as in  theorem 6 . Q.E.D.

Corollary 1 . Under the conditions of theorem 9 the cur

ve g(t)|@ lie s  in  Ds+<̂ ( © )  for a l l  t  fo r which i t  

exists in  Dŝ ( © ) .

Corollary 2 . I f  F = 0, then theorem 9 and corollary 1 
are v a lid  fo r a l l  q > 0, in  particu lar i f  uQ£  C00 then 

u ( t ) c  C04 and g(t)[<g> lie s  in  D^*(©) for a l l  t  fo r 

which they exist in  Hs.

Note that the right-invariance with respect to the 

whole group Dŝ (Tn) is  necessary in  the proof of theorem 

9 when we are interested in  obtaining the regu larity  on 

the entire ©  including Э ©  .

To consider the viscous f lu id  adhering to the boundary 

one can take in to  account the generalized fr ic t io n  force 

w ith the fr ic t io n  coeffic ient » minus surface

de lta  function on Э ©  (roughly speaking, the fr ic t io n  

coe ffic ien t must be equal to zero in  T ^X ^©  and to minus 

in f in i ty  at the points of 3 ©  ) . The corresponding right- 

invarian t generalized force f ie ld  on D^.(Tn) should be 

constructed, l i f t e d  onto s and added to TR F  ̂ in  (3>S) •
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We sha ll describe th is  idea in  d e ta ils  elsewhere.
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APPLICATION OF C. CARATH EODORY ’S T H EO REM  TO A 

PROBLEM  OF THE THEORY OF ENTIRE FU NCTIONS

A. A. GoVdberg

A theorem of C. Caratheodory is used to construct the example which 
demonstrate that the distribution of a-values of nonvanishing entire functions 
may have pathologic character.

A particular case of C. Caratheodory’s general theorem [1] which is 

considered can be formulated as follows.

Theorem C. Let F\ D i*2 Э . ..  Э Fv Э -. • be a sequence of simply 

connected Riemann surfaces, and the projection of F\ on the finite complex 

plane С is a bounded domain. Let F, =  int f l ^  Fv ф 0, F  is a connected 

component of F ^  . Let a be some point of F  but not an algebraic branch 

point. Let the function /„ be analytic in D r  = { z  : \z \ < R} maps 

conformally D R onto Fl/, f l/(z0) = a, |z0| < R ,a e  FVi arg / '( z 0) =  в. Then 

uniformly on compact subsets of D r  where /  is an analytic function 

in D r  which maps conformally D r  onto the simply connected Riemann 

surface F  so that f{z0) = a,bTgf'(z0) = в.

In order to formulate the problem of the theory of entire functions 

which we are going to solve let us give some notations. Let C* =  €\{0}, 

and E * be the class of nonvanishing entire functions with the function 

identically equal to zero added. By n(r, a, /)  we shall denote the counting 

function of а-values of the entire function / ,  by A(r, /)-the mean sheet 

number of the Riemann surface



375

f (D r) that is , [2]

At t\ - 1 /  [ \f'(z)\2dxdy •
(Г' Я- JDr У (1 + |/(z)|2)2 ■ * "  * + '* •

The main result of the paper is

Theorem 1 . There exists a function /  G E* with the following prop

erties:

1) for all a, b 6 C* ,a ф 6 ,

lim n(r, a, /)/n(r, 6, / )  =  oo,r — * oo
lim n(r, a, /)/n(r, 6, /) = 0, (1)
r— oo

2) for all a € C*

lim n(r, a, f)/A (r , / )  = oo,Г— >oo
3) for all a € €

lim n(r, a, f)/A(r, / )  = 0 .
Г — >■ oo

The existence of an entire function (without demand of the lack of 

zeros) with properties l)-3) where (C* is substituted by С was for the first 

time proved by the author [3], and only with the property 1) by S. Toppila 

[4] and independently by the author [3]. In [3] the Caratheodory’s theorem 

was used. It was also used in [5] and [6] in this reach of questions.

In fact we shall prove some stronger result than Theorem 1. Let us 

define for the set E  of entire functions the topology of uniform convergence 

on compact subsets of (D. It is well-known that one can metrize E  so, that 

E  become a complete metric space. The set E* as closed subset of E  is 

also a complete metric space.

The set is called a residual set [7] if its complement has first category 

in the sense of Baire. It follows from Baire’s theorem ([7], theorem 9.1), 

that the residual set in E * is non-empty. That is why it is obvious that 

Theorem 1 is contained in the following theorem.

Theorem 2 . The set of functions from E* satisfying the properties
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l)-3) is residual in E *.

Proof. Denote by E* the set of functions from E * satisfying the 

property n), n = 1,2,3. We shall denote by ft the set { / E E* : /  =  const}. 

For the determinacy let us assume that / E f t  has none of the properties

1)—3). Because the intersection of a finite number of the residual sets is a 

residual set, to prove Theorem 2 it is sufficient to show that each of the 

sets E*,n  =  1,2,3, is a residual one.

Let us designate by irA(F) the area of the Riemann surface F  in the 

spherical metric. We shall denote by the symbol => the uniform convergence 

on compact subsets. Let (Kn) be such a sequence of disks, K n С that 

their radii tend monotonically to zero as n —► oo, and every value of (Сф is 

covered by infinite number of disks K'ni that are concentric to K n but have 

twice smaller radii.

For each m E IN we shall designate by no(m) such a natural number, 

that when n > no(m)

Let us show at first that the set is residual. Let us introduce 

E 2m« =  { /  e E*\Q : (3a € 7fn)(Vr, m < г < oo)[n(r,e,/) < mA(r,/)]} 

when m € IN ,n  E IN, n > no(m). It is not difficult to verify that

Let us show that the sets E ^ n U ft are closed. Indeed, let f j E E ^ n U ft, 

and f j  => / .  The case /  E ft is trivial. Let /  ^ ft. Then such aj E K n 

exist, that n(r, < mA(r}f j)  when r > m. Without loss of generality

we can assume that а;- —* a E K'n. Then fj — aj => f  — a. If f(z ) ф a when 

\z\ =  r, then

and when j  > j 0(r) then n ( r , =  n (r ,a ,/). As A (r,fj) —* A (r ,f)  

when j  —* oo, then n(r, a, /) < mA(r, / )  when r > m. But if the function

A(I<n) < (2m ) " 1 (2)

holds.

E J = E"\ (
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/  has a-values on dD r , then we obtain the same inequality by tending r' to 

r from the right-hand side in the inequality n (r ',a ,/) < mA(r\ /). Thus 

/  G E^n  and the set E ^ n U Q is closed.

And now we are going to show that the set E ^ n U Q is nowhere dense. 

In other words for any function /  G E ^n U ft, for any r, m < r < oo, 

and for any e > 0 there exists a function h G U ft} such that

| f(z) — h(z)| < e when z e Dr . Let us regard at first that /  G E ^n. 

Let Fo be a Riemann surface onto which /  maps Dr+1. Let zq G D\ be 

such a point, that wo =  f(zo) G Fo is not an algebraic branch point of 

Fq. A s /  G E* then 0 < q =  inf{|w| : w G /(A-+1) U Kn] < sup{|it>| : 

w G f{D r+1) U Kn} = Q < oo (in this place we mean f (D r+1) is an image 

of D r+1 in C* but not the Riemann surface jPo)- Let us designate by K„ 

a s-sheeted disk covering Kn with an algebraic branch point of the order 

s — 1 over the centre of Kn. Let (Sv) be a sequence of one-sheeted Jordan 

quadrilaterals AVBUCUD V (the vertices are listed in the order of positive 

orientation of dSv) with the following properties:

a) {w : q/2 < И  < 2Q} Э Si D S2 D . . . ,

b) arc A\B\ D arc A 2B2 D . .. , arcCijDi D агсСг^г D • • •,

c) int -  0,

d) on the boundary of the surface there is a sequence (arc В'^А'^), 

dF0 D a.icB[A'l D aicB'2A'2 D ...

the projection of arc B'uA!v coincides with arc AVBV but has opposite ori

entation. By sewing arc AVBV С dSv with arc B'VA'V С dFo and arc 

CVD V С dSv with arc D'VC'V С ЬК*п we will obtain a simply connected 

Riemann surface F(y> 5). We will take s so large, that

s/(sA(Kn) + A(Sx) + A (f0)) > (2A(Kn))~l > m (3)
V'

(the second inequality follows from (2)). After having fixed s in such a 

way, set Fv =  F(i/, s). It is easy to verify that the sequence (Fv) satisfies 

all the assumptions of Theorem С with Foo = Fo U K „}F =  Fo,a — w0. 

Now let us define the sequence (/„) as in Theorem С, в =  arg/;(zo). Then, 

according to Theorem C, /„ =* /  in D r+ь Now let us fix such a value of i/, 

that \fv(z) - f (z )| < e/2 when z G D r. The pre-image under the mapping 

/„ of the part of K„ С Fv covering ~K>n is contained in DTl, r < ri < г + 1. 

Therefore n (r i,a ,/„ ) > s for all о G ~K*n- On the other hand A (ri,f„) < 

M r  + 1, U ) < A{F0) + A(SX) + sA{Kn). By (3)

n(ri )/A{r\, fv) > m. (4)
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The function f v does not vanish in Dr+ь Therefore we can choose a branch 

of log f v in Д.+1- One can find a sequence of polynomials (P j) tending 

uniformly in Dr^,rx < r2 < r + 1, to log /„ as v —► oo. Then taking into 

account the boundedness of /„ we obtain the sequence (h j),h j =  exp Pj, 

tending uniformly to /„ in Д .3. If j  is large enough we will have \hj(z) — 

f v(z)\ < e/2 in Dr and on account of (4) for all a G K n

n (r i>о.Л ;)/A(r 1 ,hj) > m (5)

is valid. So let us fix this number j .  The function h =  hj is the sought for. 

Indeed h G E* ,\h(z) - f(z)\ < \h(z) - f v(z)\ + \fv(z) - f(z)\ < e for z G D r 

according to (5) h £ E ^ n and obviously h £ Q.

If /  G ft, i.e., /  =  с £ €, then instead of F0 we take any one-sheeted 

disk K ,K  CC*, lying in (e/2)-neighbourhood of point c. When construct- 

ing (/„) we take (instead of /)  any linear fractional function mapping D r+1 

onto К . No other changes in the previous reasoning are needed.

So far as it has been shown that E ^ n U ft is nowhere dense in E * , then 

E% is a residual set.

Let us show now, that the set E£ is a residual one. So far as the 

reasoning are similar to the proof above of the residuality of the set E% we 

shall mark only the differences. Instead of E ^ n let us take

E l n = { /  G ET\Q : (За 6 7f„)(Vr, m < r < oo)

[n(r,a,f)  > (l/m)j4(r,/)]} ,m,n € IN

(here we shall not use the inequality (2), and we may take no(m) =  1). 

The property of being closed of Е ^ п U ft can be proved exactly in the 

same way as the property of being closed of E^n U ft. But the surfaces 

Fv are constructed differently. Let /  € Е ^ п maps Dr+i,r > m, onto 

the Riemann surface Fo. We take s-sheeted disk Qsn , that covers a disk 

Qn,Qn С €*,Q„ П К =  0, and sew it to F0 via Jordan quadrilateral 

in the same way as we previously sewed a s-sheeted disk K„ to Fo- We 

obtain the Riemann surface F„. Let no =  max{n(r + 1 ,а ,/ )  : a G K n}- 

Then for all a E K ntn(r+  1 — 0,a , fv) < n0 + 1 is satisfied (summand 1 

may appear if S„ covers the point a). We choose number s so large that 

(no + l)/(sA(Q'n)) < 1/m, where Q'n is the disk concentric with Qn but 

with a twice smaller radius. It is clear that A (r i,fv) > sA(Q'n) holds for 

some »*i, г < ri < г + 1. Then

п(г1 ,а,/„)/Л(г1 ,/„) < (n0 + l)/(si4(Q^)) < 1/m
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for all a G K n. This inequality plays the same part as inequality (4) in 

the previous reasonings. All the rest is almost a literally repetition of the 

previous proof.

Finally we are going to show the residuality of the set E{. First of all we 

will note that from the first inequality in (1) the second one follows, and on 

the contrary, because they are satisfied for all a and 6, а ф b. Therefore E{ 

can be defined as the set of functions from E *, for which the first inequality 

from (1) holds. Similarly to the beginning of the proof of Theorem 2 let us 

define the sequences (K n) and (K'n)f but we do not need (2) to be satisfied, 

and assume n0(m) = 1. Let (n,l) £ IN2. Let us say that (n,/) G P, if 

Kn П K l = 0. Let us define

E L l  = { /  e E'\n : (3a 6 < ) ( »  € Kl)(Vr,m < r < oo)

K » -,a ,/ )  < mn(r,b,/)]},m 6 IN,(n,/) 6 P .

Then

E l =  £ '\ U ( „ , i )E f. U " =1 ( E L ,u n )  .

The proof of the residuality of E{ proceeds exactly in the same way as the 

proof of the residuality of the set E2, but when constructing the sequence 

of the Riemann surfaces Fv the number s is chosen differently. Let n0 =  

max{n(r+ 1,6, / )  : b £ Я^}. Then n(r +1 —0,6,/ у) < n0 + l for all b G 

We choose the number 5 so large that s > m(n0 + l). We choose the number 

ri, r < ri < г + 1, in the same way as when proving that the set E2 is a 

residual one. Then n(ri, a, /„) > s for all a G K nl and n (ri,b ,fv) < n0 +1 

for all b G Ж\. Then n(rl t at f v)/n(rl t b, f v) > m. This inequality plays the 

same part as (4). In other aspects we repeat the proof of the residuality of 

E l
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SIM PLY CONNECTED DOMAINS 

W IT H  FIN ITE LOGARITHM IC  AREA 

AND R IEM A N N  M A PPIN G  FUNCTIONS

A. Z. Grinshpan and I. M. Milin

Studying univalent functions in plane domains plays an important part 

in the geometric theory of functions of a complex variable (GTFCV). A 

function is called univalent in a domain В in the extended complex plane 

if it is meromorphic (in particular, regular) and one-to-one in B. The clas

sic Riemann mapping theorem establishes a direct correspondence between 

univalent functions in the unit disk and simply connected domains. Some 

new properties of regular and univalent functions in the unit disk are ob

tained in the present paper.

Characteristic for GTFCV necessity of joint investigation of geometric 

and analytic properties of the functions under consideration is often con

nected with big difficulties. It was already revealed in the papers of the early 

investigators of our century L. Bieberbach, C. Caratheodory, P. Koebe, E. 

Lindelof, C. Loewner and others. The Leningrad school of GTFCV — the 

authors are among its representatives — was founded by professor G. M. 

Goluzin. It was decisively influenced by his papers (the 30-40s.) as well as 

by his well-known book [1] first published in 1952. Both G. M. Goluzin’s 

papers and his Leningrad followers’ ones are exclusively aimed to overcome 

the abovementioned difficulties when analysing various univalent function 

properties and when solving the corresponding extremal problems.

381
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1. Area and Logarithmic Area of a Domain

Let E  denote the open unit disk in the complex г-plane. For any 

regular in E  function

/ (z) = 53 Ctzk let = ZD(f) >

where jD(/)-Dirichlet’s integral

area element).

Hence

* (/) =  ] С * 1с*12- 
k=l

If the function f(z) is univalent in E , then the area of image В =  f (E )  in 

the complex plane is equal to 7rcr(/). By ^(l?) we denote also divided by 7r 

the area of any measurable plane set B. By polar coordinates (p, 6)

a(B) =  i  J  J  pdpdO .

By the same coordinates the value

Jb J  p~l dpdB = J  J  |(log W )fd a

is the logarithmic area of a set В  not containing 0 in the comlex W-plane. 

Let function f (z )y /(0) =  0, is regular and univalent in E. For any p >  0 

we introduce power coefficients Dk(p)(k =  0, 1, . . . )  of the function f(z). 

Let

W  = (1)
L  J  Jfc=0

fixing in case of ambiguity any branch of the function [f(z)/z]p. Logarith

mic coefficients of the considered function f(z) are defined by expansion

Ь « ^  = Х > Л  (2)
z t=o
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We have

4i°gZr ) =£ ^ ‘|2- 
4 '  *=i

This value independent of /'(0) is usually called the logarithmic area of 

the funciton f(z) and the set В  =  f(E ) Э 0. Note, though we do not 

need it here, that power coefficients (for p > 0) and logarithmic coefficients 

of a function f(z) that does not vanish, are defined naturally as Taylor 

coefficients of functions [f(z)]p and log/(z) respectively.

When additionally normalized c\ =  1, functions f(z) =  C\z+C2Z2 + ... 

regular and univalent in E  form class S — the major object of univalent 

function theory. In this class the Koebe function kx(z) =  z( 1 — z)~2 and 

its rotations kx(z) =  X^i(xz)y\x\ = are °f particular importance. It 

was the Koebe function that turned out to be extremal when traditional 

functionals were estimated on the class S. It was most brilliantly revealed 

in the famous Bieberbach conjecture of 1916: for f(z) = z + c2z2 + ... 6 S 

and for each n =  2,3, . . .  the inequality \cn\ < n holds with equality only 

for the functions kx(z), |x| =  1, to which solution L. de Branges came in 

1984 [2]. For f(z) € S logarithmic coefficients are generally represented as 

Pk = 27k, that is,

l o g ^  =  2 f > z * .  (3)

*  4 =  1

For kx(z) we have 7* =  Xk/k an(^

Dk(p) =  dk(2p)Xk (* = 1 ,2 ,...) ,

where d'jt(A) are binomial coefficients that are defined by the expansion

( 1 - г)-л =  Х > ( А ) г*,Ло(А) =  1. (4)

k=0

Various inequalities for coefficients of formal power series particular of ex

ponential kind are of considerable importance in the theory of univalent 

functions [3; 4; 5, Ch. 2; 6; 7]. We need the following Theorem for formal 

series. Here and further for a regular function g(z) in E  and real p by

[  \g(z)\p\dz\
J\z\ = l

where

Po =  lo g /;(0) .
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Km /  |j(rz)Hife|.
r - 1 - 0  Лг ,= 1

we imply

Theorem 1. Let {-Л* }f° be an arbitrary consequence of complex
oo

numbers, < oo, generating coefficients of formal series D(z) by
k=l

expansion
oo . ( oo 'j

d (z) = Y ,D ^ k =  exp \ } •
Jfc=0 U=1 J

Then for any A > 0 the inequality holds

<5)

where <ffc(A) are defined by (4).

When A =  1 and 2 the stronger inequalities hold

^  /  (|1)(г) р  + р ( г)|-2) | * | < 1 + |Л1|2 + е х р { £ < :|Л*|2} (6)

and

(7)

fc=l

respectively.

Equality in the inequalities (5), (6) (for A = 1) and (7) (for A = 2) 

occurs if and only if

Ak = \£ (k = 1 ,2 ,...),С e £ .

First the inequality (5) in case A =  1 was obtained in [3]. For any A > 0 

this inequality is proved in [5, Ch. 2]. It is obtained there as a special 

case of the more general inequality where an arbitrary entire function П(и>) 

with nonnegative coefficients is taken as the generating function instead of
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exp{iu}. Extension of these inequalities for norms of linear combinations of 

formal series in corresponding Hilbert spaces is given in [6]. The strength

ened inequalities (6) and (7) are half-sums of inequalities for the generating 

functions

fti(tu) = exp(tu) + exp(-iy)

and

ft2(w) — exp(w) — exp(-w) .

We take into account that D(z) ф 0 is regular in E. See more details of 

the proof of inequality (6) in [8]. The proof of inequality (7) is similar. The 

case of equality for any functions ft(tu) with strictly positive coefficients is 

given in [5, Ch. 2]. The case of equality for odd functions is proved in 

a similar way. Hence the conclusion on the sign of equality in inequalities 

(6) and (7) follows.

By Theorem 1 there proves the following effective Lemma for univalent 

functions practically earlier used in [9].

Lemma 1 . Let f(z ) G 5 and r £ (0,1). Then the inequality

log {a^Xi-i|/(г2)|Иг|} -

holds, where the coefficients 7* are defined by (3).

The sign of equality in this inequality holds if and only if

f(z) = kx(pz)/p, P e (0,1], 1x1 = 1,

or

f(z) = z.

Proof. According to (I) we have

00

= г5>»(1/2)|*г», A>(l/2) = 1 • 
k=0
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Applying the inequality (5) for A =  1 to the identity

by (8) it completes the proof.

Remark 1. The proof of the following inequalities for f(z )  =  z + 

C2*2 + ...  £  S

< 1 + Й + М ^ + „ р { 2 £ 1 Ы *|

via inequalities (6), (5) (for Л = 2) and (7) is similar to the proof of Lemma 

1.

The assertion on the sign of equality in all of the three inequalities is 

the same as in Lemma 1. Except the case p =  1 in the last two inequalities, 

where we suppose the logarithmic area to the finite.

We note that the results of the investigation on estimating the mean 

modulus via some values generated by odd functions of the class S  were 

published in [10; 11]. These results allowed their authors to predict the 

effective mean modulus estimate via the image area (see (25)).

Now we suppose that w = f(z) £ S and \f(z)\ < M  in E. By the 

logarithmic area definition we have for p £  (0, 1)

a =  - I  log darg/(z).
\ 2 /  * J/(|«|=,) *
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From here by the Green-Ostrogradski formula and evident nonnegativity 

of the logarithmic area of the set

{w : И  < M )/f(E )  

it follows the known inequality (see Sec. 3)

и ^log < 2 log M  .

Hence and from (3) turning to the function f(rz)/r E S, r 6 (0,1), we 

obtain

f > * | V ‘ < 5 b g ^ A  (9)
i= i 1 r

where

M (r ,/)  =  max |/(z)|.
|z|=r

The inequality (9) is efficient in applications. In particular, by it and 

Lemma 1 via the Cauchy integral formula we have for f(z) =  z+C2Z2 + . .. 6 

S and r G (0, 1)

|c„| (n =  2 ,3 ,...) . (10)

From the estimate (10) which though is not the best result of that kind 

(see Remark 3) it follows immediately that

lim = 0 П—ЮО n

if Hay man’s index for the function f(z) [12]

a =  lim Af(r, /)(1  — r)2 (11)
r —>1—0

is equal to 0. The known proofs of this fact are more bulky [12; 5, Ch. 3] 

though Hayman’s asymptotics of coefficients cn for а  ф 0 is obtained rela

tively easy [5, Ch. 3]. On the other hand the inequality (9) does not allow 

us to obtain the following exact uniform estimate on the class S

£ * Ы 2г2* < 1о8 г - ^ ,  Г 6 (0, 1), (12)

* = 1
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with the sign of equality only the functions kx(z), \x\ =  1. As it was first 

noted in [9] the proof of the inequality (12) known before as the Bazilevich 

conjecture is provided by the more deep properties of logarithmic coef

ficients, conjectured in [5, p. 72] and then proved by L. de Branges [2] 

for the Bieberbach conjecture solution. The properties are such that for 

n =  1,2, . . .  and Xk = n + 1 - к (к =  1,2, . . .  , n) the functionals

I>*M* <13)
Jfc=l

attain supremum on the class 5 only for the functions

M z)>lxl = !■

As this fact is of great stimulating importance, in [7] there considers the 

problem of defining all the admissible vectors, that is, such vectors (a?i,... , 
x„)(n =  1 ,2 ,...)  for which the Koebe function realizes supremum on S of 

functionals of the form (13). By the variation of Schaeffer-Spenser type 

there establishes [13; 9] that the admissible vectors necessarily satisfy the 

condition
n

min Xk sin(ke) =  0, (14)

which, however, in general case is not sufficient (A. Z. Grinshpan pointed 

out two-parameter family of disproving examples) [7]. Recently in [14] the 

condition (14) is proved again by the boundary Schiffer variation. The 

papers by P. Duren and Y. Leung and T. Koornwinder [15; 16] adjoin the 

problem on admissible vectors. The following conjecture is formulated in 

[17]: for functions f(z) € 5

E  < I  log , r € (0,1), (15)
* = 1 Г

and in [17; 18] it is proved for some special cases. It is clear that the 

inequality (15) (if it holds) implies (12) as for each г sup M (r ,f)  on the 

class S is realized by the Koebe function and its rotations. In connection 

with the inequality (9) and the conjecture (15) we note that by the Cauchy 

inequality and Lemma 1 the inequality

log I < y > b .| V -

J Jb=l
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Research in the logarithmic areas of nonnormalized univalent functions 

and the area formulas in polar coordinates led in [19] to the introduction of 

Л-measure concept for simply connected domains containing 0 and for Rie

mann functions mapping onto them. For Л-measure a number of nontrivial 

properties were established there. In [19] it is actually proved that for sim

ply connected domain Л-measure is equivalent to the Teichmuller reduced 

logarithmic area introduced by him in 1938 [20]. Inequalities in terms of 

Л-measure are more subtle than similar ones for the reduced moduli much 

applied (see also there and in [21]). In Sec. 2 we remind the definition and 

some properties of Л-measure and consider the corresponding class As of 

Riemann mapping functions.

follows.

2. Simply Connected Domains with Nonpositive Л-measure
oo

Let function f(z) = ^2 ckzk be regular and univalent in E  and В =  
k=l

f{E). Л-measure of the domain В or the function /  is defined by the 

equality [19]:

A(B) = 2 log R + a (log ^  j  ,

where R  =  |ci| is the conformal radius of the domain В  with respect to 0. 

Taking for any complex t ф 0

Bt = {zt : z 6 B ) ,

we obtain A(Bt) =  2 log \t\ + A(B).

Therefore for any original domain В  for which A(B) < oo at the ex

pense of selecting multiplier t, value A(Bt) can be made nonpositive. Such 

normalization is convenient in applications. The following properties of 

Л-measure hold [19]:

1) A{{w:\w\< R}) = 2\ogR-

2) A-measure is monotonic, that is, if D is a simply connected sub- 

domain of В and D Э 0 then

A(B) =  A(D) + p-'dpdO,
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in particular, for D  = {tu : |tu| < Я} we get a formula for the Teichmiiller 

reduced logarithmic area [20]

A(B) = 2 log Я  + — /  f p-'dpdd ] 
n J  Jb /d

3) А-measure satisfies the inequality

A(B)<\og<r(B)

with the sign of equality if and only if В  is a disk with the centre at the 

origin of coordinates, where a set of zero area is removed;

4) If for any points v £ В and w £  D the product v - w ф 1 then

A (B )+ A (D ) < 0

with the sign of equality if and only if

<t(C /B /{w : w~l e D } )  =  0 ;

here В Э 0 and D  Э 0 are simply connected domains in the complex plane.

Note that in I960 E. Reich and S. E. Warschawski (see, for instance, 

[I, Addition]) proved the inequality for regular univalent and bounded func

tions in the disk with concentric circular slits which corresponds for these 

functions to the property (3) of A-measure.

Denote by As the class of regular and univalent in E  functions f(z ) =  

c\z -f ...  with nonpositive A-measure. This class contains

- bounded functions: |/| < 1,

- functions with bounded image area: 0 (f) < 1 (see the property 

(3) of Л-measure),

- Bieberbach-Eilenberg functions (see Sec. 3) and others.

According to the definition of the class As, for any function f(z ) £  As

we have

21ogLFM i- (16)
Hence we obtain immediately: sup |/;(0)| = 1 and all the extremal functions

■As

№  = x*\ |xl = i .
are of the form
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The exact estimate of modulus of a function f(z) E As follows also di-

Bieberbach-Eilenberg functions (see Sec. 3) onto the class As. 

Theorem 2. Let f(z) E As and (  E E. Then the inequality

From this and the condition of equality in (16) we obtain Theorem’s asser

tion.

To study further properties of the class As the following Lemma is 

useful.

Lemma 2 . Let function f(z) = c\z + ...  E As- Then for any p, e > 0 

the inequality holds

where Dk are defined by (1) for the function f(z) and cf* are the binomial 

coefficients from (4).

rectly from the inequality (16) [19] and extends Jenkin’s inequality [22] for

1/(01 -  ( J  _  |£|2)l/2

holds.

Proof. From (2) and (16) it follows that

- (i - Ic!2)1' 2 exp

(17)

The sign of equality in the inequality (17) holds if and only if

/(*) =  cl2/( 1 - Cr)*, ы  = (1 - |<|2)‘ э/2, (18)
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k i s t t t -

Proof. From (1) and (2) for f(z) we have the identity

oo f oo ( oo ^

°ь(р)*к = exP S £ p A * *  > =  <̂  exp -j I .
Jb=0 U=o J U=i J

Assuming in the inequality (5) of Theorem 1, A* =  pfik (fc =  1 ,2 ,.. .)  and 

A =  ep we obtain the inequality

From this and (16) in view of (2), (17) follows.

For equality in (17) according to Theorem 1 it is necessary that

/(z) =  Cl2/ ( i- c * ) ‘ , C e s ,  (19)

and besides

It gives the function (18). Any function f(z) of the form (19) for € < 

1 + 1СГ1 is univalent and regular in E  and maps E  onto a star like domain 

with respect to 0. It follows from the fact that its normalized logarithmic 

derivative zf'(z )/f(z) belongs to the Caratheodory class of functions with 

positive real part in E  [23] (see, for instance, [24, p. 41]). For e >  2 and 

|C| > (c — l )-1 each function of the form (19) is obviously nonunivalent and 

therefore does not belong to the class As. It completes the proof of the 

lemma.

where for e <  2, £ is any number in E  and for e > 2

Theorem 3. For each function f(z) =  c\z + ...  £  As and for any 

p >  0 the inequalities hold

-5- /  l /M H & l < M ' (1 
27r J|*|=l

I  f f Щ  
* J e J\ z

-P/2)

der <  Ы * 1

(20)

(21)
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The sign of equality in these inequalities occurs if a„H r „  >

b , (18) when ,  = 2/p in the b .q u .B ., „ „ )  » " £  « '*'> Г  

inequality (21). "  £ = 4/p m th®

Proof. Like (8) from (1) we have

h i
,z|_1 k=о

We obtain the inequality (20) by Lemma 2 when substituting in (17) p by 

p/2 and e by 2/p. From (1) and by integration we obtain the identity

= w

From this and (17) when p is substituted by p/2 and e by 4/p we obtain 

the inequality (21). The signs of equality in (20) and (21) follow from the 

proof.

It follows from Theorem 3 that the class As is subclass of the class Hp 

of regular functions in E , f(z) =  cq + c\z -b ... which satisfy the condition

i-  [  \f(rz)\p\dz\ < 1 , г € (0, 1) ,

'M

for p =  2.

Remark 2. Let functions f(z) = c\z + ... and f(z) = l\z + ■ • • be 

regular and univalent in E, В  =  f(E ),B  = f(E ) and A(B) -1- A(B) < 0. 

Denote for any p,e,p,£ > 0,p/e = p/e, by I  and /  the left side in (17) 

respectively for f (z ) tp}e and f (z )}p,e. Then like inequality (17) we prove 

the inequality

I  \ci\M l~e~l) ■ |ci|v(1" £“1) (23)

with the sign of equality only for functions f(z) and f(z ) of the form (19). 

The definition of А-measure and the class As might be extended to regular 

functions in E }f(z) = c\z+... satisfying the condition f(z)/z ф 0 with the 

assertion of Theorems 2, 3 and that of Lemma 2 being unchanged, but the
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exponent in formula (18) for the extremal functions can be any nonnegative 

number for any С € E.

Further in this paragraph it is convenient to formulate the results for 

the normalized regular and univalent functions in E , f(z )  =  z + c2z2 + ...  

that is, for the class S. It is clear that for f(z ) G St <r(f) > 1 with the sign 

of equality only for the function f(z) =  z. The property (3) of A-measure 

gives much stronger inequality

with the sign of equality if and only if f(E )  is disk with the centre at 

the origin of coordinates and with slits of zero area. The latter inequality 

allows us of course to strengthen the inequality (9). Add to it that D. 

Aharonov and H. Shapiro [25] investigated inf <r(/) for the functions of 

the class 5 with \c2\ fixed. In all the abovementioned cases and many 

others it is worth speaking only about the functions with finite image area. 

Using interconnection between such functions and the class As we prove 

the following Lemma.

Lemma 3. For power coefficients from (1) of each function f(z ) € S 

(o-(f) < oo), for binomial coefficients from (4) and for any p > 0 the 

inequality holds

with sign of equality only for the function f(z) — z. The exponent p/2 in 

(24) cannot be decreased simultaneously for all the functions of the class

(24)

S.

Indeed, via the property (3) of А-measure we obtain

A{9(E)) <bg<r(?) < 0 .
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Applying Lemma 2 for e — 2 to the function g(z) =  a 1̂ 2(f)z + . . . ,  we 

find

Ь ■

where At(p, </)(& = 0, 1, . . . )  are power coefficients from (1) of the function 

g(z) unlike the values Dk{p) =  At(p, /)  in (24). It follows from the equality 

(1) that

Dt(p,g) = <T-p/4f)Dk(p,i) (*=0,1....)-
In view of it, from the latter inequality we obtain (24). For equality in 

(24) it is necessary that the function g(z) to be defined from (18), where 

e =  2. Hence /(z) = z/( 1 — £z)2 and a(f) =  (1 - |C|2)-4 where С 6 E. 

It is possible only if £ = 0 and therefore /(z) =  z. The assertion on the 

exponent in the inequality (24) is confirmed by the family of functions

Indeed, for <pr(z) we have

, ч 1 + r + 4r2
=  (l-- )4 ■

ад=Ё“

It follows from this that as г —► 1 : 7x(<pr) —> oo if x < p/2. This 

completes the proof of the Lemma.

Theorem 4. For each function /(z) G S with finite image area the 

inequalities hold

^  I  l /M I\dz\<^{f). (25)
I *  J\z\=l

* JBJ (26)
Equality both in (25) and (26) occurs if and only if /(z) =  z. The exponent 

1/4 in (25) cannot be decreased simultaneously for all the functions of the 

class S. It is similar for (26).

Proof. In view of the formula (8) for the mean modulus as r —► 1 

via the inequality (24) for p = 1/2 we obtain (25). By the identity (22)
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for р =  2 and the inequality (24) for p = 1 we have (26). Assertions on 

equality and exponent both in (25) and (26) follow from Lemma 3.

Remark 3. The inequalities (25) and (26) can be strengthened by the 

inequalities (6) and (7) of Theorem 1 (see Remark 1). Namely for functions 

f(z) =  z + Ciz1 + ...  G S (v(f) < oo) the inequalities hold

/  (I/Ml + I/Ml-1)!*! < 1 + I f  Г + V ).
™ J\z\ = l 1 * 1

/М

/М

Equality for these inequalities is realized only by the function f(z ) = z.

The inequality (25) was formulated by N. A. Lebedev and I. M. Milin 

as a conjecture in the joint paper [11] in 1951. This conjecture remained 

so far unproved. It follows from (25) that

(27)

The exponent 1/4 in (27) as well as that in (25) cannot be decreased. Indeed 

for the functions applied in the proof of Lemma 3

(PrM>r =  1 — n 1 (n =  2 ,3 , . . . )

we have

«К ^г ^б п 4 and |{у>г(г)}п| ~ e~lf2n

as n —► oo.

Note that the nonstrict inequality (27) is obtained by another way as 

well, that is, by the Fitzgerald inequality for the class 5 [26]:

Ы 4 < 2 * Ы 2+ (2n-fc)|cb|2 (n =  2 ,3 , . . . ) ,

k=l *=n+1

where the right side < tr(/).

Though the estimate (27) like (10) is nonsharp, it is applied [27]. In 

connection with the inequality (25), it is necessary to note that I. E. Bazile

vich in 1959 using a number of his estimates (see, for instance, bibliography
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in [I, Addition]) proved the following result. If f(z) £  S and \f(z)\ < M  in 

E  then the mean modulus does not exceed the value

hMin+a'
where a is an absolute constant. The main term in this estimate as M  —*• oo 

is sharp as it is realized by the functions

Mk~1(kx(z)/M ), |x| = l.
Assume now for f(z) £ S and r 6 (0,1), <rr =  <r(f(rz)) and p = 

l im ^ f lv ^ l  — г)2. From this and (11) we have for the Hayman index of

function f (z ) ,a  > /?. On the other hand it is known [12] that

( i - r 2)^- /  \f(rz)\\dz\ =  a .
2ir У|1(=1

Therefore (25) gives a < 2/?1/2. Thereby for the functions f(z) G S the 

inequalities hold

( ! ) ’ < * < . .

For the Koebe function we have a =  1 and /? =  (3/8)1/2. The inequality 

(26) is equivalent to the following inequality in terms of the Taylor coeffi

cients of the function f(z) =  z + c2z2 + • •. € S

By the identity

1 + ( 2 + м ) и + ( 2+2м + и ! ) м + . „ = ( | и : ) •

we see that this inequality follows from the sharp coefficient estimates |cn | < 

n for all n.

It is interesting to compare the inequality (26) with (21) and with the 

Goluzin inequality [28]
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for the functions of the class H i .

3. Bieberbach-Eilenberg Domains

Let a simply connected domain В ,0 6 be Bieberbach-Eilenberg 

domain, if for any points vtw € В the product v ■ w ф  1. Let R  be 

the class of functions f(z) =  c\z + . . .  regular in E  and such that f(E )  

belongs to some Bieberbach-Eilenberg domain. For functions of the class 

R  which axe called Bieberbach-Eilenberg functions, W. Rogozinsky in 1939

[29] introduced the conjecture: |cn| < 1 (n = 1,2, . . .) with equality only 

for the functions

f{z) =  xz\ 1x1 =  1 -

W. Rogozinsky himself proved his conjecture for n =  1 and 2. This con

jecture was completely proved by N. A. Lebedev and I. M. Milin in 1948. 

Its short solution was published in 1949 [10] and the more detailed one 

appeared in 1951 [11]. In fact in [10; 11] it was proved that the class R  is 

a subclass of Hi, that is, for f(z) 6 R  the inequality holds

i /  |/WII*I<1. (28)
J\z\=l

In 1961 N. A. Lebedev [30] obtained a stronger inequality than (28) for 

functions f(z) of the class R

i - /  |/(z)|2|dz|<l, (29)
27r J\*\=l

that is, he showed that the class R  E # 2. In [30] there established all the 

extremal functions for the inequality (29) (see Corollary 1 of Theorem 5). 

N. A. Lebedev deduced this inequality as a corollary of the inequality for 

the product of two integrals for univalent functions without common values 

(see [30] and |1, Addition]). In its turn he established this inequality for 

two univalent functions by means of his generalized theorem of areas for 

any finite number of functions without common values [30]. The inequality 

equivalent to the property (4) of A-measure can be deduced from the Lebe

dev generalized Theorem of areas as well. Hence it follows immediately 

that the class R* which is the subclass of univalent functions of the class R  

is subclass of the class As. In other words Bieberbach-Eilenberg domains



399

have nonpositive А-measure. In particular, it implies the above-mentioned 

in Sec. 1, sharp estimate of logarithmic area for bounded functions of the 

class S. The important fact that for functions f(z) = cxz + ... € R* the 

inequality (16) holds was proved several times in the 60-70s by the vari

ous authors (see bibliography e.g. in [5; 24] and the short proof in [31]). 

The interest in the class R* and the inequality (16) is connected with the 

exponential Lebedev-Milin inequalities appeared in 1965-67 [3; 4]. The 

matter is that the combination of the inequality (16) and one or another 

exponential inequality gives easily the inequality (29), its extensions, sharp 

in the sense of the order of growth of coefficient estimate, sharp modulus 

function estimate etc. Such kind of applications of the inequality (16) for 

Bieberbach-Eilenberg functions was first published independently by Z. Ne- 

hari [32] and D. Aharonov [33] in 1970 and then by A. Z. Grinshpan (see

[19] and [5, Ch. 3]). It is clear that the inequalities for the class R* proved 

by (16) hold for the whole class As. The results for two functions without 

common values are conveniently formulated in terms of the class m of pairs 

{/> /}  of functions

f(z) =  ciz + ...  and f(z) = c\z + ...

regular in E  and such that for any points z,z E E  the product f(z )f(z) ф 

1. Such successful generalization of Bieberbach-Eilenberg functions was 

introduced by D. Aharonov [34]. We denote by m* the subclass of pairs of 

univalent functions of the class m. Let a pair of functions

B = f (E ) ,B  = f (E ) .

It follows from the definition of the class m* and the property (4) of A- 

measure that A(B) + A(B) < 0. Thus the conditions of Remark 2 are 

satisfied. Therefore for any pair of functions of the class m* the inequality 

(23) holds. In particular, if /  =  /  then f  € R* and by (23) we obtain 

the corresponding inequality for the class Rm which gives (17). Point out 

particularly two cases for Bieberbach-Eilenberg functions e =  1 and 2.

Theorem 5 . Let f(z) =  ciz+... € R* and p > 0. Then the inequality 

holds

h  m  *'•



400

where D k are power coefficients defined by (1) for the function f(z ) and 

dk are binomial coefficients from (4), with equality in this inequality if and 

only if

f(z ) =  ± i*(1 € E . (30)

Proof. In view of f(z) £ As we obtain the desired inequality by (17) 

for e =  1. The assertion on equality follows from (18) and the definition of 

the class R*.

Corollary 1. For f(z) £  R  the inequality (29) holds with equality in 

it if and only if f(z) is defined by (30).

The assertion of Corollary 1 follows from Theorem 5 for p =  1 and in 

view of the properties of subordinate functions [29; 35].

Corollary 2 . For f(z) £ Я* the inequality holds

with equality in (31) if and only if f(z) is defined by (30).

The assertion of Corollary 2 follows from Theorem 5 for p =  2 and 

from the identity (22) for p = 4.

Theorem 6 . In terms of thorem 5 the inequality holds

£ < |t, r  ( « ,  

The exponent in the right side of (32) cannot be increased simultaneously 

for all the functions of the class R *.

Proof. The inequality (32) follows from (17) for e = 2. Apply the 

example as in [19]: for each n =  1,2,... the function gu(z) =  z[n - (n —

1 )z]~2 =  zn~2 + ... £  Д*, its power coefficients Dk(p} gn) are equal to

n~24 k(2p)(l - n " 1)* (* = 0, 1, . . . ) .
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Therefore for the function gn(z) the left side in (32) is equal to (2n — l)~2p. 

It implies that already for all the terms of sequence gn(z)(n =  1,2,.. .) the 

exponent in the right side of (32) cannot be increased simultaneously.

This completes the proof of the Theorem.

Corollary 1. For f(z) =  c\z + ... £  R* and for n =  2,3,... the 

inequalities

Ы <±-[ №\\dz\ < ы 1/2 (зз)
Zn J M=1

hold. The assertion of Corollary 1 follows from Theorem 6 for p = 1/2, 

the identity (8) as r —► 1 and the Cauchy integral formula. From (33) (by 

the properties of subordinate functions) the inequality (28) for the class 

R  follows. The example like that of Theorem 6, as shown in [19] for the 

inequality weaker than (33), verifies that in the inequality |cn| < |ci |x/2 the 

exponent at |ci| cannot be increased simultaneously for all functions of the 

class R * and n =  2,3, . . .  .

Corollary 2 . [19] For f(z) =  c\z + . . . € # *  the inequality

holds. The exponent at |ci| in this inequality cannot be increased simulta

neously for all functions of the class R *.

The assertion of Corollary 2 follows from Theorem 6 for p =  1 and the 

identity (22) for p = 2.
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A NEW CONTRIBUTION TO THE 

MATHEMATICAL STUDY OF THE 

CATTLE-PROBLEM OF ARCHIMEDES

Carl C. Grosjean and Hans E. De Meyer

ABSTRACT The Problema Bovtnum of Archimedes is a mathemat
ical question, verbally formulated by way of a Greek epigram, about 

the composition of an imaginary herd consisting of four kinds of bulls 
and corresponding cows. The eight unknown numbers are related by 

seven homogeneous linear equations with very simple coefficients and, 
in addition, there are two constraints. The complete system of equa
tions admits an infinity of positive integer solutions. In the course of 
time, the problem has been studied and discussed by at least twenty 
authors. One of them, named J.F. Wurm, proposed a different inter
pretation of part of the epigram leading to modification of one of the 
constraints which simplifies the problem tremendously. Both Wurm’s 
version and the originally accepted formulation of the problem were 

satisfactorily treated by A. Amthor in an article published in 1880. In 
the present paper, the cattle-problem is reconsidered, here and there 

using different techniques, some algebraic, some numerical, giving rise 
to some complements and minor corrections to Amthor’s work.

Solving the subsystem of seven linear equations, the eight unknowns 
are expressed as integer multiples of an integer parameter. In Wurm’s 
version, taking into account the unmodified constraint yields a small
est solution which at the same time also satisfies the modified one. 
That solution involves numbers of twelve and thirteen decimal digits.
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In the originally accepted formulation of the cattle-problem, the two 

constraints lead to a Pell equation with a fifteen-digit coefficient. A 

general method to obtain all the positive integer solutions of a Pell 

equation based upon the continued fraction development of the arith

metic square root of the coefficient is described, but if it were applied 

to the special case encountered in the cattle-problem, the calculations 

would be of an enormous volume. Using a clever artifice, Amthor ar

rived at another Pell equation of which he determined all the positive 

integer solutions yielding a solution of the cattle-problem, by the use 

of seven lemmas. In the present paper, the continued fraction expan

sion of the square root of the coefficient in Amthor’s Pell equation is 

obtained by computer, the structure of its period is analyzed in detail 

and the convergents corresponding to the elements of the first period 

are also calculated by computer. The smallest positive integer solution 

of Amthor’s Pell equation consists of a 45-digit and a 41-digit num

ber. Via a homogeneous linear difference equation of second order, 

the general representation of all positive integer solutions of that Pel- 

lian equation is obtained, expressed in terms of the smallest solution. 

That representation contains an integer parameter j  and it is only for 

j  =  2329 n with n =  1 ,2 ,3 ,... that one finds the numbers which in turn 

yield the infinite set of solutions of the cattle-problem. The smallest 

among these solutions results from j  =  2329. The iterative cycle of a 

computer program by means of which one can let a machine compute 

this number is described in detail. Finally, the first twenty or twenty- 

one decimal digits of the values of the eight unknowns constituting the 

smallest solution of the cattle-problem, as well as the first twenty-one 

digits of their sum are calculated, together with the number of digits 

of which each of these values consists. The number of digits is either 

206544 or 206545, and so if a printer filled a page with fifty lines each 

comprising fifty decimal digits, the eight integers and their sum would 

occupy a book of 744 pages.

0. FOREWORD

This article has been written in consequence of a talk held in February 1989 

by the first author at a meeting of the Permanent Commission for the History 

of Science, established within the Royal Academy of Science, Literature and Fine 

Arts of Belgium. In order that it be accessible to everyone interested in the history 

of science, but perhaps less familiar with mathematical expositions, the paper has



406

been written more explicitly than is customary for professional articles. Only very 

few compact mathematical symbols have been used.

1. INTRODUCTION

Around 1773, the known German writer G.E. Lessing discovered an old 

manuscript in the Wolfenbuttel library, comprising a Greek epigram in twenty- 

four verses. This epigram verbally states a problem purporting to be one proposed 

by Archimedes to the mathematicians of Alexandria, by way of a letter to 

Eratosthenes. Lessing 8) published the epigram, together with a scholium giving a 

false solution, and also a long mathematical discussion by C. Leiste. The problem 

consists in finding the composition of an imaginary divine stock of cattle, i.e. the 

numbers IV, X, У, Z of white, black, piebald and brown bulls, and the numbers 

w,x,y,z of cows of the corresponding kinds, between which the following relations 

exist:

W =  {\ + l ) X + Z ' * = ( J  +  ^  +  Z ,  Y = (\ + l-)W + Z ,

w =(5 + jK* + *)> 1 =(j + j)(y + y). 

y = ^  + ^ z  + z) ’ г = ^  + yHM' + u').
W + X  = a square integer number = p2, p € IN0 , (*)

Y + Z = a triangular integer number = q[q + l)/2 , q € IN0 , (1)

so called on account of

total q

1 1 1

1 1  3 2

1 1 1  6 3

1 1 1 1  10 4

1 1 1 1 1  15 5

(*) The condition reads: p represents a number belonging to the set {1,2,3,...}.
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where q labels the successive lines in the triangle of l ’s and where the total number 

of l ’s in the first, the second, ... and the gth line equals q(q + 1)/2.

The first seven relations are homogeneous linear equations with strikingly 

simple coefficients. As they involve eight unknowns, they do not suffice to define 

a unique solution. The eight unknowns can be expressed in terms of one degree of 

freedom, i.e. one parameter which can take on any positive integer value. The last 

two equations may be regarded as constraints. It turns out, however, that when 

one joins them to the first seven equations, they do not isolate one or a finite 

number of solutions. The complete system (1) still admits an infinity of solutions, 

but these solutions form a tiny portion of those which satisfy only the first seven 

equations. As will be shown further on, the two constraints are extremely selective; 

they restrict the solutions tremendously.

In the course of the two centuries following the year 1773, some twenty au

thors published a variety of comments and opinions concerning the cattle-problem. 

Since the history of the problem can be found in the existing literature 5"7), we 

shall not go into details on that matter. Because of its mathematical significance, 

we solely mention a variant of the cattle-problem originating with J.F. Wurm

10). This author argued that the part of the epigram formulating the constraint 

W + X  = a square integer, can be interpreted in a different way. Indeed, translat

ing that passage into English, we have: “when the white bulls joined in number 

with the black, they stood firm with depth and breadth of equal measurement; and 

the plains of Thrinakia, far-stretching all ways, were filled with their multitude”. 

Hence, the white and the black bulls, packed as a matrix, seem to cover a square 

figure, but the animals not being square individually, Wurm remarked that in this 

interpretation, W + X  Is not a square number. Rather, that sum should be the 

product of two integer numbers of the same order of magnitude, preferably with 

a ratio approximating that of the length and the breadth of an average bull. In 

this manner, there is a version of the cattle-problem known as Wurm’s problem. 

It was fully treated by A. Amthor a German mathematician, and it is in fact 

sufficiently simple so that nothing worthwhile can be added to the solution. The
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so-called complete problem (Amthor called it MDas Hauptproblem”), correspond

ing to the system of nine equations as given in (1), was also solved in extenso by 

Amthor The treatment of Wurm’s problem and an abridged account of the 

solution of the complete problem can be found in T.L. Heath’s book on the works 

of Archimedes e). Amthor’s solution of (l) is undoubtedly remarkable, especially 

because in his time he did not dispose of modern automatic computational facil

ities and therefore had to rely solely on non-numerical algebraic methods. For 

instance, in his article he had to establish seven “Hilfssatze” to determine the 

smallest solution of a Pell equation which satisfies a supplementary condition of 

divisibility.

With the present article, it is our aim

- to expound how we treated certain parts of the complete cattle-problem by 

computer;

- to give analytical explanations of certain partial results;

- to make some additions and minor corrections to Amthor’s calculations.

2. SOLUTION OF THE CATTLE-PROBLEM

When one eliminates X  and Y from the first three equations in (1) by suitable 

linear combination, one finds

297IV = 742 Z or 33.11 W = 2.7.53 Z. (2)

In a similar manner, one also obtains

99 X  = 178 £  or 32.11X  = 2.89 Z (3)

891Y =  1580 Z or 34.11 Y = 2*.5.79 Z . M

and



409

W, X , Y  and Z  symbolizing positive integers, Z must be divisible by the smallest 

common multiple of the coefficients appearing in the left-hand sides of (2)—(4), 

namely 34.11 or 891. Hence, the result

W =  2226m, X  =  1602m, Y  = 1580m, Z = 891m (m = 1,2,3,...)

represents all positive integer solutions of the first three equations in (l). This 

was Leiste’s first result. When one inserts (2), (3) and (4) into the next four linear 

equations of (l) and solves for tu, x, у and z, one obtains these unknowns also in 

terms of Z\

1383 129 w =  2 402120 Z or

461043 x =  543 694 Z or

125 739 у = 106 540 Z or

461043 г = 604 357 Z or

33.11.4657 w = 23.5.7.23.373 Z (5)

32.11.4657 x = 2.17.15991 Z (6) 

3s.4657 у = 22.5.7.761 Z (7)

32.11.4657 z = 13.46489 Z . (8)

Again, since the eight unknowns in the problem can only take on positive inte

ger values, Z should now be divisible by 34.11.4657, being the smallest common 

multiple of 34.11 and the coefficients appearing in the left-hand sides of (5)-(8). 

Thus, all solutions of the subsystem consisting of the first seven homogeneous 

linear equations of (l) in terms of positive integers are comprised in

w =  2.3.7.53.4657 n = 10 366 482 n

X = 2.32.89.4657 n = 7 460 514 n

Y = 22.5.79.4657 n = 7 358 060 n

Z = 34.11.4657 n = 4149387n

w = 23.3.5.7.23.373 n = 7 206 360 n

x -= 2.32.17.15991 n = 4 893 246 n

У == 22.3.5.7.11.761 n = 3 515 820 n

z == 32.13.46489 n — 5439213n

(n = 1,2,3,...) (9)

Note how many decimal digits are already required at this stage to write even the 

smallest solution of the linear subsystem comprised in (1), despite the simplicity
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of the coefficients in these equations. The reason lies in the fact that a system 

of seven linear equations can no longer be called a small system. After all, its 

solution(s) written a la Cramer require(s) determinants of seven rows and seven 

columns.

As can be concluded from their decomposition into prime factors, the great

est common divisor of the eight proportionality coefficients in (9) is equal to 1. 

It is somewhat astonishing that Leiste obtained these coefficients each multiplied 

by 20. Under this circumstance, when the parameter in his result runs over all 

positive integers, he only gets one solution out of twenty for the subsystem of seven 

linear equations. The values appearing in the scholium cited in Lessing’s publica

tion correspond to setting the parameter in Leiste’s solution equal to 4, which is 

equivalent to putting n = 80 in (9). This, however, does not yield a solution of 

the entire set of nine equations constituted by (l) because

W + X  =(10366482 + 7 460 514)80 = 1 426 159680 = (37 764,528 .. .)2 ,

Y + Z = (7 358 060 + 4 149 387) 80 = 920 595 760

_  42908,607... x 42 909,607...

2

which shows that W + X  is not a square integer and Y + Z not a triangular number.

Amthor l) proved that in order to solve Wurm’s problem, it is sufficient to 

find the smallest positive n in (9) for which У + Z  is a triangular number, i.e.

y  + ^  = i k ± i l i , 6lNo.

He easily obtained q = 1643 921, which corresponds to n =  117423 in (9). An 

average bull measures from muzzle to tail approximately three times its breadth. 

Hence, when the white bulls mingle with the black to form a rectangular grid 

packed on a square meadow, the above solution of Wurm’s problem yields 861102 

rows and 2430954 columns:

W + X  = (10366482 + 7460514)117423 = 861102 x 2430954.
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In the spirit of Wurm’s interpretation of the condition on W + X y this is a more 

logical decomposition of that sum into a product of two integer factors than the 

one given by Amthor, namely, 1485 583 x 1409076. The smallest solution of 

Wurm’s problem demands integers of twelve and thirteen decimal digits, the total 

number of cattle being 5 916837175686. But this is almost nothing compared 

to the smallest solution of the complete problem which, as we shall see, involves 

numbers of more than 206 thousand decimal digits.

Continuation of the Solution of the Complete Cattle-Problem 

Next, we turn to the eighth equation of (1):

W + X = p\ p e Wo •

From (9), it follows that

p2 =  2.3 (7.53+ 3.89) 4657 n = 17 826 996 n 

=  22.3.11.29.4657 n

and the right-hand side is a square integer as soon as

n = 3.11.29.4657 N 2 (10)

where N  is a new, not yet determined, positive integer. At this stage, all solutions 

of the first eight equations in (l) are comprised in

w = 2.32.7.11.29.53.46572 N 2 = 46 200 808 287 018 N 2 '

X = 2.33.11.29.89.46572 N 2 = 33 249638 308 986 N 2

Y = 22.3.5.11.29.79.46572 N 2 = 32 793 026 546940 N 2

Z = 35.112.29.46572 N 2 = 18 492 776 362 863 N 2

w = 2S.32.5.7.11.23.29.373.4657 N 2 = 32116937 723 640 N 2

X = 2.33.11.17.29.4657.15991 N 2 = 21807969217 254 N 2

У = 22.32.5.7.I I 2.29.761.4657 N 2 = 15 669127 269180 N 2

z = 3s.11.13.29.4657.46489 iV2 = 24 241207098 537 N 2
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resulting from combining (9) and (10). It remains to determine N  so that 

y  + z  =  £(£± i)

or

l- =  3.7.11.29.353.4657* N 2. (12)

Putting q — 2s — 1 (odd) or 2s (even) and N  =  u.v, as Amthor did in his way of 

solving Wurm’s problem, would lead to much too voluminous calculations. Hence, 

preference is to be given to multiplying both sides of (12) by 8 which yields

4q2 + 4q =  2S.3.7.11.29.353.46572 N 2 (13)

and setting 2q + 1 = M. Then, one obtains a quadratic diophantine equation, 

known as a Pell equation because of its typical form:

M 2 - 410 286 423 278 424 N2 = 1 . (14)

The final part in solving the complete cattle-problem is in this manner reduced 

to determining the couples of positive integers M , N  satisfying this equation. The 

couple of smallest values yields the N  which in turn produces the smallest solution 

of the problem of Archimedes when inserted into (11).

Positive Integer Solutions of a Pellian Equation 

A Pellian equation, say,

M 2 - AN2 = 1 , (15)

whereby A can be any positive integer which is not a square, hence

[ N =  1 ,2 ,3 ,...) ,

A € {2,3,5,6,7,8,10,11,12,13,14,15,17,18,...} ,
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is known to have infinitely many positive integer solutions, e.g., when A = 3:

(М.ЛГ) =  (2 ,1),(7,4),(26,15),(97,56),... (16)

A method to find the complete set of such solutions in the case of (15) consists in

i) developing y/A into a continued fraction of the kind

ai H------- j------ , symbolized by [ab a2, a3, a4, ...] ,

<*2 H------- j--
a3 +

a4 + . . .

where ab a2, as, a4) ... are positive integers. It is well-known that, for any A, 

the continued fraction is of infinite length and of the mixed-periodic type. More 

precisely, for the arithmetic square root of any non-square positive integer number 

A, there comes:

y/A = [a; b i, 62, ... , bh ; 6X, 62, ... , 6* ; ...] , (17)

where a is the integral part of the decimal representation of \J~A, being the single

element aperiodic part of the expansion, and 6i , 62, ... , bh is a sequence of ele

ments called the period (of length /i), repeating itself an infinite number of times;

ii) calculating the sequence of convergents (or approximants) {R i/S i, R2/S2 , 

. . . ,  Rn/Sn ,...} of the continued fraction, obtained by truncation after the first, 

the second,..., the nth element,—  In the case of (17), this gives:

Ri a R2 1 abi +1 R3 _  1 _  06̂ 62 + 62 + a

S i  1 ’ S 2  61 6j э 61 +  ( l/ 6 2) 6162 4* 1

and so on.

It is also well-known that the recurrence relations connecting successive nume

rators and successive denominators are, in general, for any continued fraction 

[<*1 > 0-2 , a* , 0.4 , • • •] :

К  =  OnK-i + Rn-t I  („ =  3 ,4 ,5 ,...) (18)
o„ = an5n_i + i>n-2 )
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starting from R Y = aY, Sx = 1, R2 = axa2-\-1, 52 = a2. Note that the calculation 

of the numerators is entirely separated from that of the denominators;

iii) If h is the length of the period in the case of the continued fraction 

development of \[A , then

- when h is even, i.e., h G {2,4,6,...} , the infinite sequence of couples

(Rh,Sh), (RihySih), •••> {Rjh, Sjh), .. .  (19)

constitutes the complete collection of positive integer solutions of eq.(l5);

- when h is odd, i.e., h € {1,3,5,...}, the infinite sequence of couples

(R2h>S2h), (Я*/»,$чл), [RijhySijh)) ■■■ (19f)

forms the complete set of positive integer solutions of (15). The reason that 

the couples bearing an odd multiple of h as subscript are absent in (19') is 

that they satisfy

M 2- A N 2 = -1.

In this connection, see (31) — (31').

The method may be tested by the reader on the particular case of M 2-3N2 =

1 in order to confirm (16).

Therefore, in order to solve (14), one should start by calculating the period 

in the continued fraction expansion of the square root of the fifteen-(decimal) digit 

coefficient of N 2. This is an enormous task when it is carried out by hand. In 

1867, C.F. Meyer 9) gave it a try but did not succeed as he stopped at the 240th 

quotient without having found the period. Later, more precisely in 1895, A.H. 

Bell found the smallest solution of the system (1), based on the Pell equation 

(14)(*),but did nothing more than confirm Amthor’s solution obtained fifteen years 

earlier. Amthor made the problem connected with (14) more tractable by noticing 

that in this equation the coefficient of N 2 comprises 22.46572. He therefore sets

(*) The continued fraction development of the (arithmetic) square root of the fifteen-digit coeffi

cient in eq.(l4) has a period of length h =  203254.
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with u a new positive integer. He also puts 4q2 + 4q = t2 — 1 in (13) whereby 

t = 2q + 1 and so arrives at the Pell equation

t2 - 4 729 494 u2 = 1 (4 729 494 = 2.3.7.11.29.353). (21)

This equation also admits infinitely many positive integer solutions, but in contrast 

to (14), it is not its smallest solution which leads to the smallest solution of (1). 

Indeed, (20) shows that и should be divisible by 9314. Thus, in replacing (14) 

by (21) which entails a tremendous simplification as far as the continued fraction 

development of the square root of the coefficient is concerned, Amthor had to pay 

the price of obtaining the smallest positive integer solution of (21) in which u is 

an integer multiple of 9314. This has necessitated the formulation and proof of 

no less than seven lemmas pertaining to the Pellian equation and its solutions in 

general.

2.4657 N = и (20)

On the Continued Fraction Development of \/4 729494

In Amthor’s paper one finds in full detail the way of obtaining the con

tinued fraction expansion of V where V means y/4 729494. The algorithm is very 

simple:

V = 2174,739... = 2174 + Г! with 0 < rx < 1 ,

4 729 494 — 21742 3218 1
rx = V - 2174 =

V + 2174 V + 2174 ( V + 21744

V 3218 /

r2 =

1,351379... V ~ Ю44 1 + r2

3218

V - 1044 4729494 - 10442 1131

with 0 < r2 < 1,

3218 3218(K + 1044) V + 1044 / У_ + Ю44Ч

\ 1131 J

* * * with 0 < r3 < 1,
2,845 923... л . V - 1218 2 + r3 

2+ 1131
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V - 1218 4 729 494 - 12182 2870 1

Г* “  1131 “  1131(К + 1218) ~ V + 1218 ~ ( V + 12184

V 2870 J

1 1 

1,182139... ~ V ~ 1652 

2870

etc. When the algorithm is repeated over and over again, one arrives at the 

following mixed-periodic continued fraction expansion of V:

\/4 729494 = [2174; 1,2,1,5,2,25,3,1,1,1,1,1,1,15,1,2,16,1,2,1,1,8,6, 

1,21,1,1,3,1,1,1,2,2,6,1,1,5,1,17,1,1,47,3,1,1,6,1,1,3, 

47,1,1,17,1,5,1,1,6,2,2,1,1,1,3,1,1,21,1,6,8,1,1,2,1,16, 

2,1,15,1,1,1,1,1,1,3,25,2,5,1,2,1,4348; 1,2,1,5,2,25,3,

1,1,1,...]. (23)

Besides the aperiodic element 2174, there is a period of 92 elements repeating itself 

indefinitely. Amthor found this period, but on account of his slightly confusing 

way of presenting the result (23), most authors after him, as for instance T.L. 

Heath and L.E. Dixon, have talked about a period of 91 elements, in contradiction 

with the true length h = 92. Yet, as we have seen, the length of the period is 

important to select the convergents whose numerator and denominator provide 

solutions of the Pellian equation (21).

The period in (23) has the following structure :

- its first 91 elements exhibit mirror symmetry with respect to the element in the 

middle which is a 6 (printed in bold type);

- its last element is equal to twice the aperiodic element.

Such a structure is far from being exceptional among the continued fraction ex

pansions of irrational numbers of the form \J~A where A is a positive non-square 

integer(*).For instance, in the case of A = 14, we have:

\/l4 =  [3;1,2,1,6; 1,2,...]

(*)The condition non-square stems from the fact that for a square A, у/A  is an integer, and 

so having no decimal part, it also has no non-vanishing continued fraction expansion. This is in 

harmony with M? —AN7 = 1 then having no non-negative integral solutions except M  — 1, N  =  0.

1 +r4
with 0 < r4 < 1, (22)
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and other examples are

n/19 = [4; 2,1,3,1,2,8; 2,1,3,...],

уДб = [6; 1,3,1,1,2,6,2,1,1,3,1,12; 1,3,1,...] ,

\/57 = p ; l , 1,4,1,1,14; 1,1,4,...],

y/62 = [7; 1,6,1,14; 1,6,1,...],

\/67 = [8; 5,2,1,1,7,1,1,2,5,16; 5,2,1,...],

y/79 = [8; 1,7,1,16; 1,7,1,...],

y/94 = [9; 1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18; 1,2,3,...],

VTsi = [12; 3,2,7,1,3,4,1,1,1,11,1,1,1,4,3,1,7,2,3,24;...],

n/152 = [12; 3,24; 3,24;...],

y/244 = [15; 1,1,1,1,1,2,1,5,1,1,9,1,6,1,9,1,1,5,1,2,1,1,1,1,1,30;...].

In fact, for 2 < A < 360, hence on a total of 342 cases, one finds 280 cases involving

a period of even length (in which we include

I 2k
y * 2 + —  = [Ar;c,2/c;c,2*;...] (k = 1,2,3,...)

whereby 1 < с < 2k and с a divisor of 2k, constituting all possible cases with 

period length 2). The cases with period length h = 2g whereby g =  2 ,3,4,..., all 

have the above-mentioned characteristics: mirror symmetry with respect to the 

gth element of the period and the last element of the period equal to twice the 

aperiodic element. Only occasionally does one encounter a period of odd length. 

For 2 < A < 360, one finds 62 such cases among which eighteen of period length 

h =  1, with the period element equal to the double of the aperiodic element, these 

cases being of the form y/~A = у/k2 + 1 (A: = 1,2,3,...), and 44 cases of period 

length h = 2g + 1 whereby g = 1,2,3,.... Examples are:

V lS =  [3; 1,1,1,1,6; 1,1,...], 

y/29 =  [5; 2,1,1,2,10; 2,1,...], 

v/41 = [6; 2,2,12; 2,2,...],
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v/58 = p ; l ,  1,1,1,1,1,14:1,1,...],

л/61 = [7; 1,4,3,1,2,2,1,3,4,1,14;1,4,...],

n/73 = [8:1,1,5,5,1,1,16:1,1,...],

n/74 = [8:1,1,1,1,16:1,1,...],

>/130 = [11:2,2,22:2,2,..],

\/l81 = [13:2,4,1,8,6,1,1,1,1,2,2,1,1,1,1,6,8,1,4,2,26:2,4,...].

The periods of odd length h (= 2g + 1) > 3 still have the same properties, except 

that the mirror symmetry is now with respect to the gth comma in the period.

Now, some details about the characteristics of the period. Let A again be 

any positive non-square integer and let

у/ а  =  [a;6b 62,6 j,. . . , 6Л; 6lf 62, ...] .

Inspired by (22), we can write the algorithm to generate the 6-elements as follows: 

A ^n-i == dn-1 x dn ,

\fA + cn_ i
= 6ni (n = 1,2,3,...,/i) (24)

dn

6n dn — cn_i — cn ,

with do =  1, c0 = a = integral part of \/~A and whereby [i] means the largest 

integer smaller than or equal to the real number x. In this nth cycle, the numbers 

cn-i and «£„_! stem from the preceding cycle when n > 2. Since do =  1, d\ 

is obviously a positive integer, but that d2, d$, . . .  are integers has to be proved. 

That A — c2_j is divisible by dn-i for n > 2 can be shown by complete induction:

A - <£-2 = dn-2 x dn-i => A — c2_! =  dn-i x dn .

Indeed,

A ~ Cn-1 =  A — (6n-i dn-i - cn_2)2

= [A — cn_2) — 62_j d^-i + 2cn_2 6n_i dn-1 

{dn-2 — 6n_j dn~i ■+• 2cn_2 6n_j) dn_ i .



419

The nth cycle given by (24) stems from the following s w  

development of е/Л: '

-
\/~A cn_ j

In-1 \/A + c„_i ( у/ а

( ^ )

у/л + cn_i , у/ а (bndn — cn_j)

L d "  J + d„

where

rn+i
Va  - (b„<i„ - c„-i) _  y/A -

(n = l,2 ,...,fc) 

(25)

(25')

Still by complete induction, one can deduce from the equalities in (24), (25)—(25'):

1 < e„ < a (< >/a ) , dn > 1, 6„>1 (n=  1,2,3.......h)

all the symbols in (24) representing integers except s/A.

In the case of A =  4 729 494, the computations show that Cq.Cj.Cj,... are all 

different up to c45, but then something exceptional occurs: it appears that c45 is 

divisible by d46, i.e., c45 =  1827 and die = 609. In this manner, there comes:

1
Г 46

v/4 729494 - c4S _ <*46

<*45 \/4 729494 + c4S л/4 729 494 + c4S

<*46

1

6,571001... C45 y/4 729494 - C 4s

2 <*46 +  <*46

Hence, c46 = c<b and in (24), we find for n — 46:

4 729 494 - 18272 = 2285 x 609 (being A - c\s = <*45 * <*<e) >

=  6 (= & 4 б ) ,
У 4 729 494 + 1827

609

6 x 609 - 1827 = 1827 (= c46)
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This, in turn, has as consequence:

y/4 729 494 - c46 у/4 729494 - c45 dA5
r47 =  —

4̂6 4̂6 \/4 729 494 -+- c45
1 1

/ \/4 729494 + c45\ 64s + r48

v S  i

because c45 =  c46, cf45 = d47, 645 = 647, and r48 can be written as 

\/4 729494 — c44
»-48 =

«45

since

645 4̂5 — C44 — c4s

is an equality which was already obtained in (24) for n =  45. In the same way,

v/4 729494 - c44 <i44
r 4g = —

d4s v/4729494 + c44 / v/4 729 494 + c44

V ^  .
1

644 + r49

with

x/4729494 - c4S
Г4® = ---- ~1-----  »

«  44

etc. Therefore, as the subscript of r increases, those of с and decrease, and 

647 = 645, 648 = 644 >..., showing the mirror symmetry with respect to 646. The 

symmetry property ends when Ьм = bi is attained. Something similar happens in 

infinitely many other cases when \/~A is expanded into a continued fraction.

As for the last element in the period associated with %/Л, on account of the 

aperiodic part in the development being composed solely of the element a (= the 

integral part of \/A) and the mirror symmetry discussed above, the last element 

is equal to 2a. Indeed, when

у/ а  [ a ; by, 6j , . . . , 62 , b\, с ; b j , 62» • • ■ J
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with period length Л, then we have: 

у/A  =  a + r i ;

A - a 2

ri =
VA  + a (  y/A + qN bi + r2 

\ A = * )

with

y/A + a

A - a2 1

л Л _  _ J L _ V
УЛ _  / _  a \ = (Л-а»)» V 1 Л - а У

1 - a* V 1 A - аг)  y/A (  a \

' I*1 "  A ^ JA - a7 

1

( y/A + ((A - a2)bi - a) \ b2 + rs

\l + 2abi - (A 

with

_  \\/A + ((A - a2)bi - a)

[ 1 + 2aby - (A - a2)b\

etc. Consequently, when the period ends as 62, bl} c, we have:

________ 1
h 2 62(= Ьл_2) + гл_i

and if r^_x gives rise to the element 6j by way of

_ 1 

K 1 M =  6Л_х) + r* ’ 

then, necessarily,

_  y/A - ((A - a2)bx - a)

because

r‘ _1 1 + 2 abi - (A -  o*)6?

Л - a
>•*-1 =

\Гк + a 

In turn, there comes:

v/Л + ((Л - a2)bi - a) ( y/A - a + (A - a*)6] 

1

*.+ 1
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1 ________ 1 _  1 _

у/А + а 2 а + (у/А - а) 2а + гх 2д +

6i + г2 

etc. Hence, с =  2а.

Note that bg) the element in the middle of 6b 62, . . .  , 62,&i when h =  2g, is

not necessarily even, as it is the case with v4 729494. For instance, in the case of 

A =  67, we find:

n/67-2 1 1
Г 4 =

Ж 9

v/67-7 1 1

Ж

re =

2

v/67-7 1 1

>/67-2  ’ 
1 + ——---

etc. In the case of A =  4 729 494, we had 

b 1827 _ fi 
б4в" 2 ^ - 2 Ж - 6’

even on account of the divisibility of c45 by d46. Here,

6‘ = 2 i i r 2 i  = 7-

In general, when the period length is 2g, the element bg is 

^ г. . I even when c„_, happens to be divisibeven when happens to be divisible by dg, 

odd when cg-y/dg is half -odd integral.
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Calculation of the Convergents of the Continued Fraction Expansion of

\/4 729494

It is an easy task for an automatic computer to calculate the convergents 

one after the other:

Ri 2174 R2 2175 R3 6524 R< 8699

Si 1 ’ S2 ~ 1 ’ 53 “  3 ’ “  4 ’ ** *

#20 2 Д19 + Д18 327 826696818

S20 “  25i9 + Sis ~ 150 742 939

whereby use is made of the formulae in(l8). The numerator and the denominator

of each convergent remain of the same order of magnitude when the integral part

2174 is split off, i.e.,

with

Qi _  2 Q2 _  1 Оз _  2 Qa _  3 

St ~ 1 ’ S2 ~ 1 ’ S 3 ”  3  ’ S4 ~ 4 ' ‘ ‘ *

Qn/Sn being the nth convergent of [0; 1,2,1,5,2,25,...], with the numerator and 

the denominator generated separately by

Qn =  Qn_i + Qn_2 = 6n_i 5n_i + 5n_2 (n =  3 ,4,5,... ,93.). (26)

These convergents approximate in an oscillatory manner the irrational number 

\/4 729 494-2174 (= 0,739984 457...). It is preferable for checking purposes to let 

a machine compute the Q's and the S ’s, and afterwards obtain any Д-numerator 

required by means of Rn = 2174 Sn + Qn .

In order to find the smallest positive integer solution (t|,ui) of (21), one 

should calculate the ninety-second convergent Rg2/Sg2i because

ti — Rq2 — 2174 Sg2 + Q92» Uj = Sq2 . (27)
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It turns out that ti consists of 45 decimal digits and U! comprises 41 decimal digits:

=  Rg2 =  109 931986 732 829 734 979 866 232 821 433 543 901088 049 (28)

Ul =  S92 =  50 549485 234 315033 074 477 819 735 540 408986 340. (28') 

The correctness of this solution has been verified by calculation of t\ and 4 729 494 u\

+1, both yielding the same number of 89 decimal digits. More theoretically, that

it is the ninety-second convergent which provides a solution of the Pell equation

(21), may be checked as follows. If we put

\/4 729494 =  2174 + 1 ,

then in virtue of the periodicity of the continued fraction expansion of the left- 

hand side, we have

i

1 1 1
1 T

0 1 1
z +

1 1 1
1 +

5 + ■
1

1 + 4348 + x

_ (4348 + x)Qg2 + Qqi _  Qqs + QgjX

(4348 + х)5э2 + Sqx Sqz + Sg2x

so that

Sg2X2 + (5q3 — Qq2)x — Qq3 =  0 .

This quadratic equation with integer coefficients has a positive and a negative 

root, the positive one being

y/4 729494 - 2174 .

The negative root is necessarily —\/4 729494 — 2174 , and consequently,

—  Г  9*1 -  43481 4 729 494 - 2174* =  3218. (29)
O92 Sg2
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Now, it is a well-known property of any two successive convergents that their 

numerators and denominators satisfy

Qn Sn+i Qn+i Sn =  (—l) n (я. =  1»2 ,3 ,...) . (30)

Combining (29) with (30) applied to n =  92, we get :

( 'f g -  4348') g”  = Q np»  = QnSin + 1 =32i8 + l 
V 092 / Sg2 Sg2 Sq2 $92

and so, by addition of 21742 on both sides,

S93 ____\2 ____ , ______ 1 4 729494 S& + 1
( - ^ -  2174) =  2174* + 3218 + -^-
\ 092 / 6q2 So,

But,

^ - 2 1 7 4  = ^  + 2174 = ^ .
O92 O92 092 .

and therefore

Д|2 =  4 729 494 Sg2 + 1 

5|2 Sg2

Equalities like those in (29) may serve to check the correctness of the calculated 

integer values of Q92, Q 9 3 , S92 and S93, but the most remarkable check stems from

Q 92 =  Sgi (= 37 405 833 428 853 075 951452 716 368 694 764 784 889)

which holds on account of the first equality in (29) and the second equality in (26) 

applied to n = 93 :

£93 =  4348 S92 + Sgi.

The preceding proof may be repeated for the continued fraction development 

of any irrational y/A whereby A is an integer. Let

y/~A — [a;6|,62). . .  >&*;&!>̂ 2» •• ■ »&*»• • ■]
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and

Rn/Sn be its nth convergent, 

then,

- if h is even : R\ - AS£ = 1 ;

- if h is odd : R l ~ A S l  = - 1 .

Actually, along the same lines, one can also prove more generally :

Д’а - Л 5Д = (- 1)'\ V je lN o ,  V Л 6 1N0,

so that

- for even h : R2jh - ASfh = 1 , V j  £  IN0 ; (31)

- for odd h : R)h - ASjh = (-1)', V j6 lN o . (31')

Construction of a General Expression Comprising all Positive Integer 

Solutions of Eq.(2l)

In accordance with (19), the complete set of positive integer solutions of 

eq.(2 l) is given by the infinite sequence of couples

(Rq2, S92) , (Яш, Sm) > • • • » № 2y, S$2j) , • • •

whereby the R's and the S ’s are generated separately by the recurrence relations 

in (18) with

d i  —  a. =  2174, <*2 — 61 = 1 , a3 = 62 = 2, = 63 = 1 , . . .

Oqi = 6®o = 2, 0̂ 2 =  691 = 1, 093 = 692 = 4348, 094 = 61 = 1,

095 = 62 =  2 , 096 = 63 = 1 , . . .  (with periodic repetition),

starting from Ri = 2174, R2 = 2175, Si = 1 , S2 = 1. As indicated previously, 

the smallest of these solutions (corresponding to a convergent in the first period 

of the continued fraction development of %/4 729 494) is
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*1 =  #92 » Ux =  Sq2 ,

explicitly given by (28)-(28'), and the jth  solution can be represented by

tj = #92, , U, = 5q2,' (У = 1,2,3,...)- (32)

It is of considerable importance, within the present context, that all these solutions 

can be described by one couple of formulae with j  as unique variable integer para

meter.

By repeated application of the first recurrence relation in (18), it is possible 

to establish a new recurrence relation involving three consecutive ^-values, say 

tj+1, tj and tj-i. In extenso, the way in which such a relation is established, 

proceeds as follows. We have first of all 91 linear relations involving 93 # ’s :

#92(,41) -  #92(,41) —1 “  #92(,41)-2 =  0  ,

# 9 2 ( ,4 l )—1 — 2#92(;+ l)-2 _  #92 (,4 I)-3  =  0  i 

#92 (,+ l)-2  -  #92(,+ l)-3 ~  #92(,41)-4 =  0 j 

#92(,41 )-3 “  5#92(,+  l)-4 ~  #92(,41)-5 =  0  *

#92 ,43  -  2#92J+2 — #92,+  1 =  0 >

#92, + 2 — #92,+ 1 - #92,- =  0 . (33)

Rewriting the last two equations as

#92,+3 — 2#92 j +2 =  #92,+1 

#92,+2 =  #92 ,41 +  #92 , »

the entire result is now an inhomogeneous system of 91 linear equations with 

91 unknowns in the left-hand sides. The determinant of the coefficients of this 

Cramer system is equal to 1, because the elements below the main diagonal which 

is composed of ones, are all equal to zero. Thus, solving for #92(y+i) by means of
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Cramer’s rule, one gets :

#92(y+i) —

0 1 --2 1 0 . 0 0

0 0 1 1 -1 . 0 0

0 0 0 1 -5 . 0 0

■#92; + ! 0 0 0 0 . 1 -2

#92 j+l + #92; 0 0 0 0 . 0 1

-1 --.1 0 0 . 0

1 --2 -1 0 0

0 1 -1 -1 0

(#92j+l + #92 i) 0 0 1 -5 0

0 0 0 0 . -1 -

0 0 0 0 1 -

-1 -1 0 0 ... 0 0

1 -2 •1 0 . 0 0

0 1 -1 ■1 . 0 0

— #92j + l 0 0 1 5 . •• 0 0

0 0 0 0 . -1 -1

0 0 0 0 .• • 0 1

1 1 0 0 0 0

-1 2 1 0 . 0 0

0 -1 1 1 ., . 0 0

#92j + l 0 01 -1 5 •• • 0 0

0 0• 0 0 1 1

0 01 0 0 •• • -1 3

1 1 0 0 0 0

-1 2 1 0 0 0

0 -1 1 1 0 0

+#92j 0 0 -1 5 ... 0 0

0 0 0 0 1 1

0 0 0 0 -1 2

(34)

Along the main diagonal of these two determinants (with 90 rows and 90 columns),
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one finds the first 89 elements of the period associated with у/A 729 494, followed 

by the 90th element plus 1 in the case of the first determinant and by the 90th 

element itself in the case of the second. Each time, the main diagonal is flanked 

by elements 1 above and -1 below it.

Similarly, one deduces from the first recurrence relation in (18), ninety-

one other linear equations involving #920-1)11 #920-1)+1> #93

jR92y-.it # 92;- That system permits the expression of #920-1

and #92; •

0 1 -1 0 0 . . .  (3 0

0 1 2 -1 0 . . .  (3 0

0 0 1 1 -1 . . .  (3 0

#92(j—1) = 0 0 0 1 5 . . .  (3 0

#92;i-1 0 0 0 0 . .. 1 2

#92; —#92; _ ! 0 0 0 0 . . .  (3 1

1 -1 0 0 . . .  0 0

1 2 -1 0 . . .  0 0

0 1 1 --1 . . .  0 0

=  ■ И1

«?1 0 0 1 5 . . .  0 0

0 0 0 0 . . .  1 -1

0 0 0 0 . . .  1 3

1 -1 0 0 . . .  0 0

1 2 -1 0 . . .  0 0

0 1 1 --1 . . .  0 0

+ #92; 0 0 1 5 . . .  0 0
■

0 0 0 0 . . .  1 -1

0 0 0 0 . . .  1 2

(35)

If, in the last two determinants, one multiplies consecutively the first row, the first 

column, the third row, the third column, ..., the 89th row and the 89th column 

by —1, one obtains the two determinants in the right-hand side of (34). Hence,
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adding (34) and (35) side by side yields :

#92(;+ l) +  # 92 (;- l) “  (#92;+  1 ~  # 9 2 ;- l)

+2#92j

1 1 0 . 0 0

-1 2 1 . 0 0

0 -1 1 . 0 0
lj-1) I : ;

0 0 0 . ,. 1 1

0 0 0 .• • -1 3

1 1 0 0 0

1 2 1 0 0

0 - 1 1 ... 0 0

0 0 0 1 1

0 0 0 • • . -1 2

(36)

Finally, there is the relation between Rnj+u #92; and #927-1 which we did not 

use so far, since it is located right in between the system (33) and the other one 

from which we deduced (35). We have

#92;+ 1 = 4348 #92;' + #92;— 1 , 

which enables us to eliminate (#92̂ +1 — #92>— 1) from (36). There comes :

#92(;+ l) +  # 92 (;- l) = 4348

+ 2

1 1 0 ... 0 0

-1 2 1 ... 0 0

0 -1 1 ... 0 0

0 0 0 ... 1 1

0 0 0 ..., -1 3

1 1 0 ... 0 0

-1 2 1 ... 0 0

0 -1 1 ... 0 0

0 0 0 ... 1 1

0 0 0 ... -1 2

# 92; 1 (37)

which may be rewritten as
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#92(; + 1) +  #92(/-1) =  2

1 1 0 0 ... 0 0 0 0
-1 2 1 0 ... 0 0 0 0

0 -1 1 1 ... 0 0 0 0
0 0 -1 5 . . . 0 0 0 0

0 0 0 0 ... 1 1 0 0
0 0 0 0 ... -1 2 1 0
0 0 0 0 ... 0 -1 1 1

0 0 0 0 ... 0 0 -1 2174

R*2j (38)

whereby the determinant now has 92 rows and 92 columns.

Indeed, when one develops this determinant with respect to its last row, one finds

4348

1 1 0  0 
■ 1 2  1 0  
0 - 1  1 1  

0 0 - 1 5

0 0 
0 0 
0 0

0 0 

0 0 
0 0 
0 0

1 0 
2 1 
1 1

+2

1
-1

0

1
2

-1
0

0
0
0

0 0

1 0 

1 1 
-1 5

0 0
0 0
0 0

о 0 

о 0 

о 0

0 0

1 0 
2 0 
1 1

It now suffices to add the last column to the preceding column in the first of these 

determinants in order to effectuate a last row of the form 0 0 0 ... 0 0 1 which 

enables us to delete that last row and also the last column. These operations give 

the first determinant in (37) with the right coefficient in front. The similar form of 

the last column in the second determinant again permits us to delete the last row 

and the last column in that determinant. This then yields the second determinant 

in (37) also with the right coefficient in front, and so the proof of the equivalence 

of (37) and (38) is completed. Note that the main diagonal in the determinant 

appearing in (38) is composed of the first ninety-two elements of the continued
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fraction expansion of \/4 729494 arranged in reversed order. Once more, that main 

diagonal is flanked by l ’s above and - l ’s below, with all other elements equal to 

zero.

On account of Rq2j =  (38) is the linear relation connecting i,+i, tj and 

tj-i which we announced earlier. The determinant in (38) could be calculated by 

computer, but this is not necessary since it can also be evaluated algebraically. 

Ftom the first recurrence relation in (18) in which we insert successively n =

92,91,90,... ,3, .we obtain :

# 9 2  “  # 9 1  -  # 9 0  “  0  1

# 9 1  — 2# 9 0  — # 8 9  =  0  ,

# 9 0  — # 8 9  ~  # 8 8  =  0  ,

# 8 9  — 5  # 8 8  ~  # 8 7  =  0  ,

# 3  — 2 # 2  — # i  =  0  ,

and this system can be complemented with

# 2 - # ! =  1 , # i =  2174 .

In this way, we have 92 linear equations forming an inhomogeneous system. More 

precisely, it is a triangular Cramer system which yields for # 92 :

0 -1 -1 0 0 ... 0 0 0
0 1 -2 -1 0 ... 0 0 0
0 0 1 -1 -1 ... 0 0 0
0 0 0 1 -5 ... 0 0 0

0 0 0 0 0 ... 1 -2 -1
1 0 0 0 0 ... 0 1 -1

2174 0 0 0 0 ... 0 0 1
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-1 -1 0 0 0 0 0 0

1 -2 -1 0 . .. 0 0 0 0

0 1 -1 -1 0 0 0 0

0 0 1 -5 ... 0 0 0 0

0 0 0 0 1 -2 ■1 0

0 0 0 0 . .. 0 1 -1 1

0 0 0 0 . . . 0 0 1 2174

1 1 0 0 0 0 0 0

-1 2 1 0 . « . 0 0 0 0

0 -1 1 1 • • . 0 0 0 0

0 0 -1 5 ... 0 0 0 0

0 0 0 0 -1 2 1 0

0 0 0 0 0 -1 1 1

0 0 0 0 . . . 0 0 -1 2174

the last determinant being precisely that occurring in (38).

In conclusion, we derive from (38) and (39) :

tj+i — 2titj + tj-i = 0 (40)

valid not only for j  = 2 , 3 , . . but also for j  = 1 if one agrees to set to = 1, being in 

fact the first number in the trivial solution (1,0) of eq.(21). Indeed, (18) holds for 

n = 2 if one agrees upon Ro = 1, S0 = 0 and also for n = 1 if R-i = 0, =  1. 

In that convention, t0 = 1 and u0 = 0 hold and extend (32).

Eq.(40) may be regarded as a homogeneous linear difference equation of sec

ond order with constant coefficients. Such an equation accepts particular solutions 

of the form С AJ with С an arbitrary proportionality factor and A a root of the 

quadratic equation

A2 - 2tjA + 1 = 0

which one obtains after substitution of the proposed expression into (40) and 

deletion of С AJ_1. The roots of this quadratic equation are

A± =  «1 ± vA i- 1
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A± =t!±Uj\/4 729494.

The theory of homogenous linear difference equations of second order shows that

C+X{ + C_Ai (41)

with arbitrary proportionality factors C+ and C_ comprises all solutions of (40), 

hence among others the solution ty. Consequently,

tj =  Ci\+ + CiXL [j =  0 ,1 ,2 ,...),

this time with well-defined Сi and C2, determined by

Ci + C2 =  to =  1 ,

CiA+ + CiX- — t\ (= #92) ■

The (unique) solution is C\ — С2 — 1/2 and so,

tj =  ^ {(*, + Ui\/4 729 494 )J + (t, - u,V4 729494)'} (j =  0 ,1 ,2 ,...) . (42)

As for the u-numbers, it is not surprising that the outlined method leads to 

a difference equation with the same coefficients as in (40) :

uJ+1 - 2 * ^  + Uj.x = 0, (40')

since the second recurrence relation in (18) contains the same coefficients as those 

in the first one. Therefore, u;- is also comprised in (41) and so,

tt, = CSA’+ + Ct \L  (j = 0, 1,2, . . . ) ,

with

Cs + C4 = uo = 0

СзА+ + C4A_ = ux (= S92) .

or, in virtue of (ti, t*i) satisfying eq.(2l),



435

The solution is C3 =  -C 4  = l/(2\/4 729494) and in this way, the formula associ

ated with (42) reads

“i =  2^729494 + U'V4 7 2 9 ~ (<■ ~ 729494)J}

(j = 0 ,1 ,2 ,...) . (42')

(42) and (42') represent the trivial solution (1,0) (for j  =  0) and all positive integer 

solutions of the Pellian equation (21), expressed in terms of the smallest solution 

(*i>Ui) given explicitly by (28)-(28;). That smallest solution clearly corresponds 

to j  =  1. It is easy to verify that any (J,-,u; ) satisfies (21) :

tj ± u ,V 4 729 494 =  (tx ± uxy/A 729 494)y ,

t) -  4 729494 u) = (tj + tt,V4 729 494) X (tj - UjV4 729 494)

=  («1 + u 1v/4 729 494)i x (*, - щл/4 729 494)' =  (** - 4 729494 u*)y =  1.

That (42) and (42') represent integers for any j  6 INo can be seen in two ways :

1) by the use of Newton’s binomium :

tj =  tj + 4 729494 (  3Л  tj-’ uf + 4 729 4942 ^  j  + . . . ,

=  (  1 )  ‘ l’ 1 “ 1 + 4 729 494 (  * j  i f 3 uj + 4 729 4942 ^ j  j  t{~s uj + . . . ,

whereby . . .  does not mean an infinite series but the presence of a finite number 

of further terms. Indeed, tj is a homogeneous polynomial in t\ and ux consisting 

of [jf2] + 1 terms whereas Uj is also such a polynomial but involving [(j + l ) / 2] 

terms;

2) by their expression in terms of the Chebyshev polynomials of the first and the 

second kind, respectively. Indeed, in virtue of

(*i + tt!\/4729494)(^  - uix/4729494) =  1,

one can set

t\ + U!\/4 729494 =  e9
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and consequently, one has

t\ — u\y/A 729494 =  e~$ , ^(e* + e“fl) =  t\ =  cosh в ,

-(e1 — e_#) =  U!\/4 729494 = sinhfl .
It

Then,

tj =  \(e>' + e-") =  cosh/0 =  T,(cosh в) =  Tj(t,)
It

=  Гу (109931986 ...088049), (j =  1 ,2 ,3 ,. . .) ,  (44)

as well as

1 f i t  -H\ sinhyfl sinh в
Uj =  — 7 [eJ - e  J ) = —г ■ =  =  =  £/._i(cosh0)

2%/4 729494 \/4 729 494 y/A 729494

=  u i^y - ip i) =  50549...340C/y_1 (109931... 049), (/ =  1 ,2 ,3 ,. . .) .

(44')

Additional Comments on Eq.(40)

Eq.(40) considered within the context of the continued fraction development 

of y/A where A is a non-square positive integer and the Pell equation t2 - Au 2 =  1, 

is a general result since it holds for any A whereby iy_b  tj, <y+1 represent the t- 

part of three successive positive integer solutions of the Pell equation arranged 

in ascending order and t\ is the i-part of the smallest positive integer solution. 

Indeed, if one repeats the proof which precedes (40) from the linear system (33) 

onward with 4 729494 replaced by A and 92 replaced by the period length h 

associated with the expansion of y/A, one obtains

- for even h :

R [ j+ i)h  ~  R jh  + i?(y_i)A = 0 [ j = 1 ,2 ,3 ,...),

with #o = l,  and hence eq.(40) if one sets

*o =  #o = 1» 0 =  1,2 ,3, . . . ) ;
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R { j+ i)h  -  2R h  R jh  -  R ( j- i)a = 0 0 = 1» 2,3,...).

In this proof, it appears necessary to make use of the properties

bm =  bh-m (m =  1, 2, . . . ,  ф )  , bh =  2 a

with the symbols stemming from (17). That the result for odd h  is different from 

that for even h  and therefore does not yield directly eq.(40), is a consequence of 

(31') differing from (31). But, inspired by (19'), let us replace j  resp. by 2j  +  1 

and 2j  — 1. In this manner, we get

R{2j+2)h — 2R h  R (2 j+ l)h  — #2;7i = 0 >

R 2 jh  — 2R h  R (2 j- l)h  — R{2j-2)h — 0 >

and by subtraction,

R{2j+2)h -  2R h{R [2 j+ l)h  -  R (2 j- l)h ) -  2 R 2jh  + R(2j-2)h =  0

or

R(2j+2)h — 2(2 R\ + l)#2j/i + R{2j-2)h — 0.

For j  =  1, the recurrence formula yields

R2h - 2R\ — 1 = 0

and so, for odd h ,

R(2)+2)h — 2 R 2h R 2 jh  + R(2j-2)h = 0 (j =  1 ,2,3,...).

Putting t j  = R 2jh  yields eq.(40) amd in agreement with (19') and (31*), the R 2jh~  

values are the t-parts of the positive integer solutions of the Pell equation.

Again, because the second equation in (18) contains the same coefficients 

as the first, entirely similar results are obtained for the 5-denominators in the 

convergents of the continued fraction development of y /A . There comes

- for odd h :
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- for even h :

S{j+i)h — 2Rh Sjh + S[j-i)h =  0 (j =  1*2 ,3 ,...) ,

with So =  0, thus

uy+i ~~ 2*i uj + uy-i = 0 

whereby

u0 =  S0 =  0 , Uj =  Sjh ;

- for odd h :

S(2j+2)h ~ 2 R2h S2jh + S(2j-2)h = 0  (j = 1>2,3 , . . .)

or again

uy+i — 2ti Uj + Uj-i = 0 

whereby

u0 =  S0 =  0 , Uj =  S 2jh •

As a consequence, the formulae between (40) and (44') hold if one replaces 

4 729494 by A. Hence, in general, the positive integer solutions of t2 - Au2 =  1 

may be written as

1з =  \  { ( * i  +  ui'/A )3 +  (*i “  * 1 > / Л ) ; }

= t i + ( J2 ) ^ r 4 + ( J4 )  « ;+ •••

= а д ,

Uj = {(*i + Ui\Za )3 - (ii - u^y/A)1]

=  ^ ^ j  1 u i +  ^ з  j  3 u i +  ^ 5 j  A2t\ 5 u i +  • * •

=  UxUj-ilti) {j =  1 ,2 ,3 ,. . .) ,

in which (ti,u i) is the smallest positive integer solution of the Pell equation, ex

plicitly given by
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tx =  R h , uj = 5л when the period length h is even,

and

*1 = R i h , Wi = S-ih when the period length h is odd,

in other words, to find (tb tij), one has to look for the convergent belonging to 

y/A whose subscript is equal to the length of the smallest even period in the 

development of y/A. Indeed, when h is odd, putting together two consecutive 

smallest periods yields an entity of length 2k which is also a period of the continued 

fraction expansion of y/~A.

Positive Integer Solutions of Eq.(21) with U Divisible by 9314

According to (20) the positive integer values of N to be inserted into (11) in 

order to find all solutions of the cattle-problem, stem from the positive integer solu

tions of the Pellian equation (21) whose u-part is divisible by 2.4657. Hence, the re

maining problem consists in selecting from the solutions ( f i ,^ ) ,  (*2,u2), (*3,u3) , .. 

precisely those for which u is a 9314-fold, in other words, we have to determine 

the /-exponents in (42') for which uy is divisible by 9314.

First, we point out that in every solution (ty,u,) the u-part is even. This 

is a consequence of being divisible by Ui according to (44') and Uy being even. 

But, without knowing ux and the result (44'), one arrives at the same conclusion 

as follows, for any j  G INo :

ty — 1 = 4 729494 u2 is even => tj is odd => tj is odd => tj — 1 and tj + 1 are 

even with a 4-fold among them => t2 — 1 is an 8-fold => u2 is a 4-fold ^  U j 

is even.

The j-values for which u, is divisible by the prime number 4657, are in virtue of 

Amthor’s lemmas all the positive integer multiples of some lowest У-value, p say 

(^, Lehrsatz 5). This is verified by the consideration that unp is divisible by up on 

account of an — bn being divisible by a - 6.
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Amthor determined p as a consequence of his seven lemmas formulated and 

proven in l). He obtained

p  = 2329

being the upward rounded half of the prime number 4657 by which u had to 

be divisible. In what follows, this result is rederived by means of a mixture of 

numerical and algebraic methods.

Since very fast computers with very extended memory capacity exist nowa

days, determining p could be effectuated by calculating u2,u3, . ..  ,uy, . .. and di

viding every u by 4657. But this would involve dealing with rather large integer 

numbers. Indeed,

t i  +  U iV 4 729494 = 2 tx = 2,19863973 ... x 1044, 

t j- u jv /4729494 = 0,454 82668 ... X 10~44 ,

and so, the number of decimal digits of uy is roughly equal to the integer part of

(44 + log10 2,198 639 73 .. .)j - log10 2 - - log10 4 729 494
z

or 44,342154.7 -3,638437.

Thus, for j  =  2329, the number of decimal digits of u2329 exceeds 100000. Manip

ulating such large numbers in examining the divisibility of иу by 4657 is, however, 

absolutely unnecessary. The artifice consists in calculating “modulo 4657” , which 

means working with the remainders of the division by 4657 instead of with the 

integers themselves during a sequence of additions, subtractions and multiplica

tions.

Let us reconsider uy in the polynomial form as in (43) and let us divide the 

45-digit number ti and the 41-digit number Ui (see (28)-(28')) by 4657. We get :

t i  — 4657 k + т = т (mod 4657) with r = 4406 ,

Ui = 4657/ +w = u  (mod 4657) with w = 3051, (45)

as well as
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4 729 494 =  1015 Х4657 + 2639.

t{~ 1 щ  = r,_1 о/ (mod 4657),

4 729 494f{"suf =  2639 r>~V (mod 4657),

etc. Consequently,

U j = ~^ 6 3 g  [O' + wV2639)' - (r - wv/2639)JJ(mod 4657) (46)

and U j is divisible by 4657 if and only if the remainder appearing in the right-hand 

side is an integer multiple of 4657, in other terms,

U j divisible by 4657 <=> *___[(r + wV/2639)J - (r - w>/2639)yJ
2y 2639

= 0 (mod 4657).

Next, we describe the cycle of an iterative process according to which an automatic 

computer can be programmed to calculate p. Let R (q )  be the abbreviation of

<£. the non-negative remainder of the division of the non-negative integer q by 

4657 »  ,

so that for any q € IN,

0 < »(?) < 4657.

Suppose that the case of j  = 2m— 1 (with m € INo) did not yield U j divisible 

by 4657 and that just before going over to j  — 2m, the computer has in memory 

the following vectors :

1, 2639 and »(26392),S(2639s) , . . . ,  S(2639n_1); (47)

1 ^standing for ^ 2m0 1 j j  and Ж ^  ^  1 j  j  , »  ^  2™2 1 j  j  .

••• • * ( (  2m-2 ) )  ’ “  We“ “  1 (r*preSenting ( 2m — 1 ) )  ; (48) 

Щ т2т~гш ), » ( r Jm-4u»s) ........ (49)

Then,
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Each of these non-negative integers requires two bytes of storage. The case of 

j  = 2m necessitates the consideration of

(  2im  j  r2"- 1 u> +  2639 (  2™ j  r 2“ -s W3 + 26392 (  2™ j  r*”- 5 ws + . . .

+ 2639"-1 ^ 1 j  ™ !- ‘ . (50)

One applies the well-known rule

(? )- (?- ,*  М ~ “ )

to calculate 9? ( (  T  ) )  any Г ^ {!»2* * • • >2m _  *} » ‘-e->

9? ^  ^  j  j  + ^  ^ r 1 j  j  ^  this sum is < 4657 ,

* ( ( 2r - V ) ) +SR( ( 2mr_  1 ) ) - 4657ifthe
sum

of the first two terms is > 4657, 

and one lets the vector (48) be replaced by

1 (51)
«•*((?))■■((?))....* ( ( - . ) ) •

which is one component longer than (48). Next, one calculates

*(*((2i*)) хЖ(г’т'Ч) •

!R ^2639 x !R ^  2™ j  j  x !R (rJm-< w3) j  ,

Ж ^3?(2639!) * . ( ( - ) ) „  » (r2m-6u 5)j ,

^Df(2639m_1) x s | |  l j  j  x !R(wJm-‘) j . (52)

These are m integers > 0 and < 4657. According to (46), u2m and (50) differ from 

each other by an integer multiple of 4657. To examine whether u2m is divisible
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by 4657 or not, it suffices to calculate the sum of the m quantities in (52) and to 

divide it by 4657. Indeed, that sum differs by an integer multiple of 4657 from 

the sum (50) after the factor r has been split off and divisibility of (50) by the 

prime 4657 cannot be caused or helped by the presence of the factor r (= 4406). 

So, if the sum of the terms in (52) happens to be an integer multiple of 4657, then 

p — 2m and the machine can stop the computations. Note that for j  of the order 

of magnitude 4000 which means m of the order of 2000, the sum of the terms in 

(52) still yields a number of at most seven decimal digits.

If, on the contrary, j  — 2m does not yield divisibility by 4657, one lets the 

machine proceed to j  — 2m + 1. Then, the right-hand side in (46), after leaving 

out (mod 4657), is

 ̂2m +  1 j r2mw + 2639 ̂  2m + 1 j тгт-гиз + 26392 ̂  2m +  1 j T,m-tuJs +

+!Ы8" ( г т ^  ! ) " — '• <“ >

((“V 1))
One applies the same procedure as in the case of j  = 2m to generate 9? 

where r =  1 ,2 ,. . . ,  2m and one lets the vector

^  ....... » ( ( > ” ; ■ ) ) , ,

replace (51) on the understanding that one integer memory unit is added. After 

that, one calculates

*  ( *  ( ( 2mi+ 1 ) ) x и(»-г,п" М ) .

Sf ^2639 x * | |  2m3+ 1 j  j  X 0f(r,m- V ) j  ,

9f |ж(2639г) x j | |  2m5+ 1 j  j  x S(rJm- V ) j  ,

!R ^(гбЗЭ” ' 1) x ж ( (  2m - 1 ) )  X ’

obtains their sum, multiplies that sum by 2460 (which is 9R(r2) because r2 =  

44062 =  4168 x 4657 + 2460) and determines the remainder of the division of the
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product by 4657. Let the result be o. It differs from the sum of the first m terms 

in (53) by am integer multiple of 4657. Finally, to take the last term in (53) into 

account, one lets the machine compute

- 9R(2639 x З^гбЗЭ"1" 1))

which yields 5R(2639m). One lets this value join the vector (47);

- 9?(3915 x D^w2"1" 1)) (54) 

which yields »(w2m+1) because u 2 = 30512 = 1998 x 4657 + 3915;

- »(3?(2639m) x &(u2m+1)) = и

- 9?(<j + u) which is the remainder of the division of (53) by 4657.

If 9?(<r -+- i/) = 0 , divisibility of u2m+i is attained, p = 2m + 1 and the computer can 

stop the calculations. If, however, 9?(a + t/) > 0, then the machine must proceed to 

j  = 2m + 2, but first it has to adapt the vector (49) to the following cycle. It has 

to calculate 9i(r2mu;), 9?(r2m-2u/3) , 9R(r2u;2m-1) by means of the components 

of the vector still stored in (49). It is clear that for r = 0,1,2, .. .  ,m — 1,

9?(r2m_2ru;2r+1) = »(2460 x 9?(r2m-2r- V r+l))

since 9R(r2) = 2460, and these m values are made to replace those in (49). Comple

menting this new vector with 9?(w2m+1) already calculated (see (54)), the iterative 

cycle which started with j  = 2m — 1 is completed since the vectors (47), (48) and 

(49) are now in memory with m replaced by m + 1.

Because Ui is not an integer multiple of 4657 (see (45)), the described iter

ative cycle which permits the transition to j  = 2,3, j  =  4,5, j  =  6,7, . . . ,  may 

be started at j  = 1, in other terms, m = 1. The Siemens 7570 computer of the 

Central Digital Computing Laboratory of the University of Ghent has needed less 

than one minute to yield

P =  jmin =  2329 (55)
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in agreement with Amthor’s result, after having tested all the smaller 7-values 

(2 < j  < 2328 => 4657/uy).

In order to explain why

2329 =  i  (4657+ 1) (56)

in an elementary way, let us consider

“ <668 = 2/4  729494 + ^  729494)<658 ~ (*■ ~ U]vAl 729494)<65e]

=  [(r + w\/2639)46S8 - (r - u\^639)“ ] (mod 4657) (57)

or

u« 58 = | [ 46158 j  r,eS7u  + 2639 (  46358 j  r465V  + ...

+2639” ”  (  4655 )  + 2639Ш8 (  4657 )  - <657} (mod 4657> • (57-)

The binomial coefficients

(  4658 ^ (  4658 \ I  4658 \

( 3 J ' ( 5 J ■ ( 4655 J ’ (58>

are integers resulting from the ratio of two products whereby the numerator prod

uct contains the prime factor 4657 which cannot be cancelled against one or more 

factors in the denominator product. Therefore, all terms of the sum between 

braces in (57') except the first and the last one, are integer multiples of 4657 and 

so,

u4658 =  (4658г4657а> + 4658(2639) 2328ru/4657) (mod 4657)

=  {ru>(r4656 + 26 39M,V 6S6)} (mod 4657).

Now, we can make use of the well-known minor theorem of Fermat :

ap 1 — 1 = an integer multiple of p (or = 0 (mod p)) (59)
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when a is a non-zero integer and p a (positive) prime number which is not a divisor 

of a. Setting respectively a = т and a = w, with p = 4657, we have :

r<656 __ j  _  44 0 64656 - 1 = a multiple of 4657,

w4656 _  i  — зоб!4656 - 1 = a multiple of 4657,

or equivalently,

r4656 =  1 (mod 4657), (60)

w4656 =  1 (mod 4657). (61)

As far as 26392328 is concerned, we deduce from the application of (59) with a = 

2639 and p =  4657 :

26394656 - 1 = (26392328 - 1)(26392328 + l) = a multiple of 4657 .

Since 4657 is a prime number, divisibility stems a priori either from the first factor 

or from the second. That in reality it is from the second factor, can be seen as 

follows :

26392328 = (26392)1164 = 21061164(mod 4657)

= (2 1062)582(mod 4657) = 1772582(mod 4657)

= (l77 22)291(mod 4657) = 1166291(mod 4657)

= (H663)97(mod 4657) = 415397(mod 4657)

=  4153 x 253848(mod 4657) = 4153 x 81324(mod 4657)

= 4153 x 433212(mod 4657) = 4153 x 31716(mod 4657)

= 4153 x 7783(mod 4657) = 4153 x 4426(mod 4657)

=  4656(mod 4657).

Thus,

26392328 =  -1 (mod 4657) (62)

and
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u4658 = {4406.3051 [l + (—l)l]}(mod 4657) = 0 (mod 4657). (63)

Furthermore, to examine whether or not j  = 4658 is the smallest exponent in (42') 

for which 4657 is a divisor of u,-, we combine (63) with (57) and deduce from this 

combination :

[(r + wv 26 39)2329 + (r - wv/26 39)2329)

X--̂ 6 3Q[(r + ws/2639)2329 - (r - w\/26 39)2329] = 0 (mod 4657). (64)

It can be shown ad absurdum that the divisibility of the left-hand side by 4657 

cannot be ascribed to the first factor. Indeed, if this factor were a multiple of 

4657, one would have by squaring

(r + o>v2639)4e58 + (r - w\/2639)4658 + 2(r2 - 2639w2)2329 = 0 (mod 4657). 

But,

r2 — 2639u>2 = 44062 - 2639 x 30512 = (2460 - 2639 X 3915) (mod 4657)

= (2460 - 2459) (mod 4657) = 1 (mod 4657) (65)

and so,

(r + w\/2639)4658 + (r - uv/2639)4658 = -2 (mod 4657) (66)

or

2639 (  46258 j  r465V  + 26392 (  46458 j  T*a W  + ...

+ 2639” ”  (  4658 )  т2ы4656 + 2639” 2V 658 = -1 (mod 4657). (66')
\ 4656 J

The binomial coefficients

being just as those in (58) integers which are divisible by 4657, the preceding 

congruence reduces to
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г4658 + 26 3 92329u/4658 = -1 (mod 4657) (67)

or, in virtue of (60), (61) and (62),

r 2( l  + mult, of 4657) + 2639(-l + mult, of 4657)

xw2(l + mult, of 4657) =  -1 (mod 4657). (68)

Thus,

the hypothesis [(r + w\/26 39)2329 + (r - w\/26 39)2329J =  0 (mod 4657)

= >  r2 - 2639w2 = -1 (mod 4657) (69)

and this is in contradiction with (65). The contradiction excludes the hypothesis. 

If, on the contrary, the second factor in (64) is assumed to be divisible by 4657 

and one repeats the previous reasoning, one obtains (66)-(69) but with plus signs 

replacing the minus signs in the right-hand sides and so, there is agreement with 

(65), this time. In conclusion,

^ = [ ( r  + Ц,л/2639)” га - (r - ui л/2639)2329] = 0 (mod 4657) 

which entails

w2329 — 0 (mod 4657) (70)

on account of (46) applied to j  = 2329. This j-value being odd, one cannot repeat 

exactly the same reasoning in order to halve the subscript of и once more. But,

2329 = 17 x 137

and therefore, in

(r + wv/2639)2329 - (r - u»\/26 39)2329

one could split off, as a factor, either

(r + ы%/2639)17 - (r - u>\/2639)17
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or

(г + wv/2639)137 - (г - u V 2639)137.

Such factors, divided by 2\/2639, could a priori be the cause of 4657 being a divisor 

of u17 or U137. That this is not the case stems from the fact that the computer 

which carried out the iterative process described above, did not stop at j  =  17 

and j  =  137, but proceeded as far as j  =  2329 before coming to a halt. That 

the machine in its search for a u-value which is divisible by 4657 would only need 

carry out a finite number of cycles was predictable on account of our direct proof 

that 4657 is a divisor of u4658. Deriving the divisibility of u2329 by 4657 from that 

property constitutes an explanation of (56).

The Positive Integer Solutions of the System of Equations (1)

The complete set of positive integer solutions of the Pell equation (21) 

whereby the u-part is a multiple of 9314, is described by

*2329n =  l2329n(*l)

=  2 {(*2329 + u2329\̂4 729494)” + (£2329 — 729 494)n j

=  ^  {(ti + u lV/4 729494)мг<|" + (f, - и,л/4 729494)гзг9"} , (71}

u2329n =  UiC/2329n-l(*l)

=  2^/^729494 { ^ 2329 + u2329\̂4 729494)” — (£2329 — «2329>/4 729494)”}

=  • . 1 { (tx + Ui\/4 729494)2329n - (tj -  A 729 494)2329"}
2\/4 729494  ̂ iv  ; v j

(n = 1,2,3,...). 1 J

Setting

Mn =  tlaKn, Wn =  ^ v ( e lN o )  (n =  1 ,2 ,3 ,...) ,
Уо14

one finds at the same time the complete set of positive integer solutions of the 

original Pell equation (14) since
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M l - 410 286 423 278 424 N*n = t\,„n - 4 729 494 <4J9n = 1 (n = 1,2,3,...). 

Inserting the integers

( я ? ) '  ( « “ 1. 2.3, . . .)

into the place of N 2 in (11), we obtain all positive integer solutions of the system 

(1). The smallest among them corresponds to choosing n = 1 :

u2
W = 46 200 808 287 018

93142

X  = ...

The number of decimal digits in each of the eight integer values composing this 

smallest solution, as well as some twenty initial digits, may be calculated by the 

use of decimal logarithms. Knowing that tx consists of 45 digits (cfr.(28)), we have

1 1
t! + u,V4 729494 = t, + J t\^ l  = 2f, ^  g(3 

= 2ti — 0(10~44) ,

1 , - ^ 4  729494 =  -L + -L + . . .  =  0 (KT44)

and so,

2329

2y4 729 494 L *.b|

= ■ ^  [l - 0(0,5 x 10~85)] .
2 %/4 729494 L V

Thus, to attain a precision of the order of twenty decimal digits, approximating 

u 2329 by the first term is sufficient. There comes :

log10U2S29 = 2329(44 + log10 2,198639 734 656 . . . ) -log102

log10 4 729 494 = 103 269,238 397 377 801537626168 .
L
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and

«2329 = 1,731399858951771056429417 x Ю103269 ,

N 2 ~  О  =  3 ’ 4 5 5  5 9 0  6 3 5  4 5 5  9 3 7  0 5 0  6 3 0  3 8 0  x  1 0

Upon insertion into (11), the results are

206530

W  =  159651080467114 453143

X  =  114897138772828999971

Y  =  113 319 275 443 863 807 711

Z  =  63 903 464 823 090 286 500

vj =  110982989 237 331903 972

x =  75 359414 205 454 263981

У =  54 146089457145 667 802

z =  83 767688 241852443 869

and the total number of cattle in the herd

=  776027140648681826953 <206 524> ,

<206 524>

where <206524^ means that there are 206 524 more digits to follow (a notation 

used by Amthor and by Heath).

In his paper Amthor obtained final results for W  and the total number of 

cattle which are in error in the fourth decimal position, i.e.,

W  =  1598 <206541> , total =  7766 <206 541> ,

because he used Briggs logarithms with only four digits following the comma in 

the last steps of his calculations which is rather hard to understand. In contrast, 

the total number of digits is correct and agrees with our results :

W, X , У, w and the sum each involving 206 545 digits, and 

Z ,x ,y ,z  each consisting of 206544 digits,
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as far as the smallest solution of the system (1) is concerned. It is almost unbe

lievable that a system of equations of such simplicity as (1) ultimately leads to 

solutions of colossal magnitude.

Calculating all the digits of Wy X , . . . ,  z in the smallest solution as well as 

the sum of these eight numbers, is a task which falls within the capability of 

some modern computers, but such an undertaking would be nothing more than 

a stunt. If it were carried out, nonetheless, writing out the nine numbers would 

require several hundreds of pages. Indeed, the nine integer values involve in total 

1858901 decimal digits, and if every page were filled with fifty lines of fifty digits 

each, printing the smallest solution of (l) would demand a book of 744 pages.
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ON N O N LIN EA R  M ONOTON E OPERATORS 

W ITH  VALUES IN  L(X ,Y )

N. Hadjisavvas, D. Kravvaritis and G. Pantelidis

1. Introduction

Let X  be a locally convex Hausdorff space and X * its topological dual 

with (x* , z) written instead of x*(z).

A multivalued mapping T : X  —> X* is called a monotone operator if

(* i -  x2) >  0

for all Xi e D(T) and х* e Т(х,*), * =  1,2.

The properties and the applications of these operators have been dis

cussed in detail in several monographs (cf. [1], [14], [16]). Among other 

properties, it is known that in case X  is a Frechet space, a monotone oper

ator is locally bounded in the interior points of its domain.

In recent years the notion of monotone operator has been extended 

by replacing the dual X * = L(X,1R) by the space L (X tY ), where У is 

an ordered topological vector space (cf. [3], [5], [6], [7]). An important 

class of such monotone operators consists of the sub differentials of convex 

mappings from X  into У ([8], [9], [10], [15], [17]).

In this work we establish various versions of local boundedness of mono

tone operators when X  is a Frechet space and У a normed lattice. We also 

discuss the special case of the sub differential of the indicator function of a 

convex body.
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2. Prelim inaries

Let X  be a Frechet space and У a normed lattice. We endow the space 

L = L (X , У ) of all linear and continuous mappings from X  into Y with the 

topology of simple convergence.

Let T be a nonlinear multivalued operator from X  into L. The effective 

domain and the graph of T are defined as the sets

D(T) = {x e x  : T(x) Ф 0}
and

G (T )= { ( x ,A ) : x e D (T ) ,A e T (x ) ) ,

respectively. T is said to be monotone if

{A1 - A 2){xl - x 2) >  0 for all ( x i ,A i ) e G (T ) , i =  1,2.

A monotone operator is called maximal if its graph is not properly contained 

in the graph of any other monotone operator. An operator T : X  —*■ L is 

said to be locally bounded at x0 e D(T) if there exists a neighborhood V of 

such that the set

T(V) = U{T{x) : x ev}

is bounded in L (X tY).

3. Main Results

When Y  =  IR, it is known that a monotone operator is bounded at 

any interior point of its domain ([2], [11]). The same result is known to 

hold when X  is a Banach space with D(T) = X  and У a normed lattice 

[6]. The following theorem establishes the local boundedness of monotone 

operators in our more general setting.

Theorem 1. A monotone operator T : X  —*• L is locally bounded at 

all interior points of its domain.

Proof. Suppose T is not locally bounded at x‘ e intD(T). Without 

loss of generality, we may assume that x' = 0. Let d be a metric defining the 

topology of X . If Un =  {z e X  : cf(0,x) < -}, then T(Un) is not bounded.
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Hence, there exists x'n G Un and An G T(Un) such that ||Anx̂ || > n. 

Therefore, {An} is not equicontinuous. Let xn G Un be such that An G 

T(xn). Set an =  max{l, ||Лпхп||} and Bn =  An/an. Then {Бп} is not 

equicontinuous, hence not bounded ([13, p. 83]). It follows that there exists 

xo E X  such that {||£nx0||} is not bounded. Now let Л > 0 be such that 

±zQ G D(T), where z0 =  Ax0. For A0 G T(z0))A,0 G T (-z0) we have

(An - A0)(xn - zo) > 0 

(An - Л'оХхп + zo) > 0 .

so

BnZo < — (zo - xn) 4- BnXn := un 

A!
-BnZo < -- ~(^o + Xn) + BnXn := Vn .

On

It then follows that

l|£„z„|| < 1К11 +  1КЦ.

However, it is easy to see that the sequences {||«п||}, {||vn||} are bounded 

while {||Bnzo||} is not, a contradiction.

Actually, the theorem states that if T is a monotone operator and 

xo G intZ)(T), then there exists a neighborhood U of xo such that for all 

x G X  one has

sup{||-Ax||,x' G U}A G T(x')} < oo.

When Y  is order complete, one can also prove:

Proposition 2. Let Y  be order complete and T : X  —*■ L be a mono

tone operator. Then for any xo G int D(T) there exists a neighborhood U 

of xo such that

sup || sup Ах'Ц < oo. 
x,x>eu AtT(z)

Proof. Assume that xo = 0. Let В be a neighborhood base of 0 in X . 

By theorem 1, there exists U\ G В such that T(U\) is bounded, hence it is 

equicontinuous. So, there exists U2 G В such that ||2fe|| < 1 for all x G U2
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and В  G T(Ui). LetU G В be circled and such that U+U С U\C(U2C\D(T). 

Given x,x' G U , fix Bx G T(x + s'), £2 £ Г(* — x'). By the monotonicity 

of T, one has for all A G T(x)

(5 i — A)(x + x' - x) > 0, (f?2 - A)(x - x* - x) > 0,

hence

B id  < -Ax' < 5 ix '.

Thus one obtains

B 2X' < sup Ax' < B\x*
A €T (r)

and

|| sup Ax'\\ < \\Biz'\\ + Hex'll < 2.
Л€Т(г)

Consequently,

sup || sup Ax7|| < 00 .
*,* '€</ A €T (r)

These boundedness properties may not hold for other points of D(T) 

as shown by

Proposition 3. ([4]) Let T : X  —► L be a maximal monotone operator. 

If int(coD(T)) ф 0 and xo G D(T )\int (coD(T)), then T(xo) contains at 

least a half line.

An important class of monotone operators consists of the sub differen

tials of convex vector valued mappings. A mapping F  : X  —► Y  U {+00} is 

called convex if

F (Ax + (1 - A)y) < AF(x) + (1 - A)F(y)

for all x, у G X  and 0 < A < 1. The effective domain of F  is, by definition, 

the set D (F ) =  {x E X  : F(x) G Y] which we suppose to be nonempty. 

The sub differential of F  at xq G X  is the set

dF(x0) = {A G L : A(x - x0) + F(x0) < F(x) ,for a li i  e X ) .
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The subdifferential operator dF  is monotone. When D (dF) =  X , it is also 

a maximal monotone operator [5].

It is not known yet, whether dF  is a maximal monotone operator 

whenever D (dF) ф X . However, one can prove that if F  is the indicator 

function of a convex body, then dF  is a maximal monotone operator. This 

case is a basic tool for the study of monotone operators [12].

Proposition 4. Let M  be a convex body in X  and F  : X  —> Y  be 

the mapping defined by

w  ч f 0, x E M  

^  ~~ { +oo, x £ M  *

Then T := OF is a maximal monotone operator.

Proof. We may assume that 0 E int M . The gauge p of M  is a 

sublinear function. It is not difficult to see that

T(x) =

{0} , p(x) < 1

{A e  L : Ax' < A x , for all x' E M } , p(x) =  1 

k 0 , p(z) > 1.

In addition, when р(я) =  1 ,T(x) is a cone containing non-zero elements. 

Indeed, there exists x* E X*\{0} such that (x* }x') <  (x*} x) for all x' E M. 
If у E У +, then A E T(x)} where A is defined by

A x ^ i x ^ x ^ y . x ' e X .

In order to prove that T is a maximal monotone operator, let

(A0 -A)(x0 - x ) > 0  for all ( x , A ) e G ( T ) .  (1)

First, we prove that p(xo) < 1- If this is not the case, we may take x =  

and A E T(x)\{0}. Then A E T(x) for all Л > 0, hence

\A(xo — x) < Ao(zo — x)

from which it follows that A(x о — x) < 0, i.e., Ax о < 0. On the other hand, 

for all x; E M  we have

Ax' < Ax < 0 ,
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which leads to A =  0, a contradiction. Hence p(xo) < 1. Now for x E M

we have 0 E T(x). Therefore (1) implies

Aq(xq — x) > 0

i.e.,

Aq(x — xo) + F{xo) < F(x) ,for x £ X .

Hence Aq E ^(zo) and T is a maximal monotone operator.
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FIRST CLASS FUNCTIONS WITH VALUES IN 
NONSEPARABLE SPACES

Roger W. Hansell

Let / : T —> X be a function with values in a metric space X. By a function base 

for /  we mean a collection Г of subsets of T such that, for any open set U in X, 

/ _1(U) is a union of sets from Г. Various types of first class functions, such as 

pointwise limits of sequences of continuous functions and functions whose restriction 

to any nonempty closed set has a point of continuity, are characterized in terms of the 

existence of certain kinds of function bases. This yields nonseparable versions of some 

classical theorems due to R. Baire. In many instances the proofs are more informative 

and simpler than their classical counterparts. All spaces in this paper are assumed to be 

at least Hausdorff, and all functions are assumed to take their values in a metric space.

1. Baire Class 1 And FCT Measurable Functions

A function / : T -> X is of Baire class 1 if it is the pointwise limit of a se

quence of continuous functions, and is Fa measurable if /'4U) is an Fa set in T 

for each open set U in X. If X is a metric space, then it is easy to see that every 

Baire class 1 function with values in X is Fc measurable [16, p. 386]. The converse 

may fail however, even when X is a two-point discrete space and T = [0,1 ] (take /  to
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be the characteristic function of any point in T). A classical theorem of Baire states that 

the converse will hold whenever T is a separable metric space and X is the closed 

unit interval [0, 1] or the real line IR (see, for example, [2, p. 67] or [16, p. 391]). 

This provides a very useful “internal” criterion for a function to be of Baire class 1. We 

will show that this result holds more generally when T is assumed only to be a normal 

space.

In order to obtain a similar result for Fameasurable functions taking values in 

an arbitrary Banach space X something more is needed, even when the domain T is a 

subspace of IR . This follows from the fact that Martin’s Axiom plus the negation of 

the Continuum Hypothesis implies the existence of an uncountable set T с  IR with 

the property that every subset of T is a relative FCT set [17]. Thus, if /  is any one-to- 

one function from T onto a discrete subset of a suitably large Banach space, then /  is 

an example of an Fc measurable function which is not of Baire class 1, since any 

continuous function defined on T (hence also f) would necessarily have a separable 

range. We will see that the needed additional property is for the function to have a a- 

discrete function base. This concept was recently employed in [11] and [13], although 

it was introduced previously in [9, §3] where such functions were called “c-discrete.”

Recall that a collection of subsets of a space T is discrete if each point of T 

has a neighborhood meeting at most one member of the collection. The collection is 

said to be а-discrete if it is a countable union of discrete subcollections. It can be 

shown that all Borel measurable functions defined on a complete metric space have a cr- 

discrete function base [9, Th. 3]. Also, Fleissner [6] has shown that this result con

tinues to hold for any metric space provided one assumes the existence of super com

pact cardinals. Note that any function with values in a separable metric space has a 

countable (and thus cr-discrete) function base. The following lemma shows that the 

class of all functions having a ст-discrete function base forms a “Baire system” in the 

sense of Hausdorff [15, p. 191]. In particular, it shows that any Baire class 1 function 

with values in a metric space has a ст-discrete function base.

Lemma 1.1. Let T be a Hausdorff space and X a metric space. Then the 

class of all functions from T to X having a с -discrete function base contains all 

continuous functions and is close to pointwise limits of convergent sequences.

Proof. Since X is metrisable, the topology has an open base of the form A = 

U n >  l^iv where each An is a discrete collection in X.
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If / :  Т-> X is continuous and Гп = {/^(U) : Ue An}, then it easily fol

lows that [)п̂ хГп is a о-discrete function base for f.

Now let g : T -> X be the pointwise limit of the sequence of functions gn, 

and suppose each gn has a function base Um>lr nm where the collection Гпт is 

discrete in T for each m>l. For each set В in Un,m^l^nm» which we may take to 

be nonempty, we can enumerate as a sequence , Ub2) , ... the members of 

{UeA : B e  g^CU) for some n> l), 

since each point of X can belong to only countably many members of A. It follows 

that each of the families

Г„тк = {B r> g ' a f g )  : Be r nm} ( n, m, к > 1 )

is discrete in T, and it remains only to show that together these form a function base 

for g.

Let te g_1(VV) for some open set W in X, and choose UeA such that 

g(t)e U and U cW . Since gn(t) -» g(t), for some n we have gn(t)eU. By the 

property of a function base, we can find m > 1 and Be Гпт such that te В and

Be g^(U). Now for some k> l we have и = Ц^к\ and so

te В n  g-Hl/e10) с  g-l(U) с  r '(W), 

and this is what we needed to show.

Recall that a topological space T is collectionwise normal if, for each discrete 

family {Ea}aeA of subsets of T, there is a discrete family of open sets {Ua} a6A 

such that cl(Ea) c U a for each aeA. All paracompact spaces (hence all metric and 

compact spaces) are collectionwise normal. Any normal space has the above separation 

property for any countable discrete collection [5, p. 379].

The following theorem gives the precise relationship between Fa measurable 

and Baire class 1 functions.

Theorem 1.2.

(a) Suppose T is a normal space and X is either the real line IR or the closed 

unit interval [0, 1]. Then f :  T->X is of Baire class 1 if and only if f  is Fa 

measurable.

(b) Suppose T is collectionwise normal and X is any closed convex subset 

of a Banach space. Then /: T-»X is of Baire class 1 if and only if f  is Fa 

measurable and has a а-discrete function base.
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Remark 1.3. In each of the above two cases the key property between the 

spaces T and X is that any continuous function defined on a closed subspace of T 

and taking values in X can be continuously extended to all of T. In case (a) this is 

just the classical theorem of Tietze-Urysohn [5, p. 97]. Now Dugundji [4, Th. 4.1] 

has shown that any convex subset X of a locally convex linear topological space has 

the above continuous extension property for any metrisable space T. Further, by a 

theorem of Dowker [3, Th. 2], whenever a space X has the above extension property 

for metrisable spaces and X is topologically complete (i.e., X is homeomorphic to a 

closed subspace of a product of complete metric spaces), then X will also have this 

extension property for any collectionwise normal space T.

The following lemma isolates the technical part of the proof of Theorem 1.2. In 

particular, it enables us to eliminate the restrictive assumption that the domain space T 

be “perfect” in the sense that all open sets are Fc sets. To my knowledge, this has 

always been assumed in proofs of part (a) of Theorem 1.2. Note that a similar as

sumption was made in [10, p. 197] where we gave a nonseparable version of part (a) 

(see also the correction of [10, Th. 6] given in [12, pp. 389-390]). In addition to 

being applicable to general paracompact spaces, our present Theorem 1.2 has a much 

more direct proof.

Lemma 1.4. Let T be a collectionwise normal space, X a metric space, and 

suppose f :  T->X is FG measurable and has a а-discrete function base. Then f  

has a а-discrete function base consisting of closed G§ sets. The same result holds 

with "c-discrete" replaced by “countable” in the case when T is assumed only to be 

normal.

Proof. Let A be a о-discrete open base for the topology of X, so each point 

of X belongs to only countably many members of A. Let Г = be a a-

discrete function base for f. By the collectionwise normality of T, for each n > 1 

there is a discrete collection {Vg : Be Гп } of open sets in T such that cl(B) с  VB 

for each Be Гп. In the case when Г is countable we may take T = Vb for each 

Be Г. The remainder of the proof, which requires only that T be a normal space, 

now applies to either case.

Given Ue A and Be Г with В с  / -1(U) we first show that there is a se

quence of closed G$ sets in T such that
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B c Ukaiz k<=VBn/-l[cl(U)]. (1)
Since /  is FG measurable, we can write

Uk>lFk =/-1(U)c/-l[cl(U)]=nja iGj, (2)

where each Fk is closed and each Gj is open in T. Since T is normal, for each j, 

k>l we can find a closed G5 set Zkj such that

Fk n  cl(B) с  Zkj с  Gj n  VB . (3)

It follows that the sets Zk = i z kj are closed C§ sets in T satisfying (1).

Now, for each nonempty Be Г, let Ug1 \ be an enumeration of

the sets UeA such that В с / _1(и), and let { Z ^ } k^j be the sequence of closed

G§ sets associated with В с / _1(и^т)) according to the above construction. Let

r„mk = {Z(Bk) : B srn}

and let us show that IJn.m.k^l^nmk a ̂ -discrete function base for /.

Since Z Ctt< =V B by (1) and {VB : Be Гп} is discrete, it follows that each

of the collections Гптк is discrete in T. Now suppose te / _1(W) for some open set 

W in X and let Ue A be such that /(t)e U and cl(U)cW. Since G is a func

tion base for /, we have t e B c / ' ](U) for some Be Гп and n>l. Thus U =

U(Bm) for some m>l, and so te for some k>l by (2). It now follows from 

(3), the definition of and (2) that

te Z ^ c  n j>iGj =/-1[cl(U)]c/-1(W).

That completes the proof.

Proof of Theorem 1.2. It suffices to assume that X is itself a Banach space, 

or IR in the case of (a), since this easily implies the result for any retract of X (cf. 

[12, Lemma 7]). In view of Lemma 1.1 it is enough to show that if f:T  -» X is FG 

measurable and has a cr-discrete function base, then /  is of Baire class 1.

For a given e > 0 we first prove that there is a Baire class 1 function g : T —> X 

such that || /  - g || < e. It will then follow that f  is of Baire class 1. To see this, 

choose Baire class 1 functions gn such that that || /  — gn II < 2~n, and let {gim}m>i 

{gnm)m>l be sequences of continuous functions converging pointwise to the 

Baire class 1 functions gj and gn+i-gn respectively. Furthermore, we may assume 

that || gnm || < 2-n+1 for each m £1 and n £2. It then follows that the continuous 

functions
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Sin + S2n + + 8nn 
will converge pointwise to /  (cf. [16, p. 392]).

Given e > 0 let A = (Ua : a  < X} be an open cover of X by sets having 

diameter less than 8. By Lemma 1.4, /  has a function base of the form l j n^i^n 

where each Гп is a discrete collection of closed G5 sets in T. (In case (a) we may 

further assume that each Гп consists of only a single set.) For each n >1 and a  < X 

define

Zan = \J[Ze Гп : a  is the least ordinal with Z с  } (4)

and let Zn = lJ{Zan : a  < X }. Now it is easy to show that in a normal (resp. 

collectionwise normal) space the union of a countable (resp. arbitrary) discrete 

collection of closed G5 sets (equivalently, zero sets) is again a closed G§ set (see [5, 

p. 100]). Hence 7^ is a closed G§ set and {Zan : a  < A.} is a discrete collection 

of closed Gg sets in T for each n>l. Note that

U n > lZ an<=.f IflJo) and ^  = Ua<X Un^l-^an >

the latter following from the fact that i j n> 1 *s a function base for /.

Consider the canonical partition of T associated with the family {Zan : n >1 

and a  < A.) by defining

Dal = Za] and Don = Zan \ ̂ Jm=i Zm (n > 2 ) .

The important point is that each of the sets i j n> \ is an FG set in T, since each 

Dan is of this class. Choosing an Fa representating for each Dan and then re- 

indexing, we can find, for each a<X , a sequence {Fam}m>j of closed sets in T 

such that

Un>l l^an = Um^l Fam c Un>l ^ a n c /  4U a)> (5)

{Fam : a  < A) is discrete in T for each m £1, and (6)

FamnFpjc = 0  whenever a * p  and for all m, k>l. (7)

It follows that the sets

Fn = U ( F am : and m = 1, n) 

form an increasing sequence of closed sets covering the space T.

We define a sequence of continuous functions gn :Fn-»X by first fixing a 

point xaeUa for each a<A, (and independently of n) and defining

gn(0 =xa whenever t€ Um=iFam

It follows from (6) and (7) that gn is well defined and continuous. By Remark 1.3, 

gn extends to a continuous function on all of T, which we will also denote as gn. 

Since gn(t) = xa for all n > m whenever te Fam , it follows that the sequence gn 

converges pointwise to the Baire class 1 function g : T -> X given by
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g(t) = xa whenever te U~=1Fam c / ' 1̂ ) .

Since xae Ua and diamCU^ < e, we have || /  - g || < e as required.

2. Functions With The Point Of Continuity Property

Another well-known theorem of Baire states that, for any complete separable 

metric space T and real-valued function /  : T —> IR , /  is Fa measurable (and 

hence Baire class 1) if and only if / 1A has a point of continuity for each nonempty 

closed set А с  T (see [16, p. 394] or [2, p. 67]). Any function with the latter property 

will be called a PC function (for “point of continuity”).

In order to characterize PC functions in terms of a function base we need to 

introduce a concept which is substantially weaker than a discrete collection of sets. A 

collection Д of disjoint subsets of a space T is said to be scattered if, for each 

nonempty subset A с  ijA  , some set of the form A n  D, with De A, is nonempty 

and open relative to A. Equivalently, A is scattered if we can write Д = {Da : a 

< X} and find open sets Ua in T such that

D0 <=Ua \Up<aUp (8)

for each a < X (cf. [18, Lemma 2.1] and [14, §2]). Note that a topological space is 

scattered in the usual sense (each nonempty subset has an isolated point) if and only if 

the collection of all one-point subsets is scattered. The following lemma gives an 

important property of scattered collections.

Lemma 2.1. If A is a scattered collection of sets of the first category in T, 

then \JA is also of the first category in T.

Proof. Let A = {Da : a < and let Ua be open sets in T satisfying (8). 

By the Banach Category Theorem [16, p. 82], it suffices to show that each point of 

I jA  has a relative open neighborhood of the first category in (JA. Proceeding 

inductively, we may assume that this is true whenever A = {Da : a  < for some 

£ < X. But then, if te Da for some a < X, then Ua is an open sets containing t 

such that

Ua n l j A  = U|3<aDp

is of the first category in IjA .
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By a FnG  set in a space T we mean a set that is the intersection of a closed 

and an open set (equivalently, the difference of two open or two closed sets). A 

(FnG)a set is a countable union of FnG  sets. A topological space T is said to be 

hereditarily Baire if each closed subspace has the Baire category property. All com

plete metric spaces and all locally compact Hausdorff spaces are hereditarily Baire. 

Lemma 2.1 enables us to give the following relationship between PC functions and 

functions having a о-scattered function base.

Theorem 2.2. If f  is a PC function from a space T to a metric space X , 

then f  has a о-scattered function base of FnG  sets in T. Conversely, if T is 

hereditary Baire, then any function from T to X having a a-scattered function base 

of FnG  sets in T is a PC function.

Proof. Suppose /  is a PC function. For each e >0 we define inductively an 

open cover Ге = {Ua : a  < A,} of T such that, if

Da = U«\U|3<aUp, 

then the diameter of /(D <*) is less than e for each a < X.

Since /  has a point of continuity we can find a nonempty open set Uq in T 

such that the diameter of /(Uq) is less than e. Assuming we have defined for all 

£ < a ,  if

Аа = Т\ и*«хЦ *0>
then / 1 Aa has a point of continuity. Hence there is an open set Ua in T such that 

Ua Aa is nonempty and /(Uan  Aa) has diameter less than e. This defines the 

desired open cover of T.

Doing this with e = 1/n for each n >1, we obtain a а-scattered collection Г = 

Un>l^n such that each D in Гп is a F n G  set in T and the diameter of /(D) is 

less than 1/n. It easily follows that Г is also a function base for /.

Conversely, suppose that f  has a function base Г = (Jn^ \ Fn where each Гn 

a scattered collection of Fn G sets in T. Since the restriction of f  to any closed 

subspace of T will have a function base of the same type and T is hereditarily Baire, 

it suffices to show that /  has a point of continuity. For each Be Г, let B = F0nGB 

where FB is closed and Gg is open in T. It follows from Lemma 2.1 that 

Mn = U{[FB\int(FB)] n G B : Be Г„} 

is a set of the first category in T. Since T is a Baire space, there is a point te T 

such that te Mn for each n >1, and let us show that /  is continuous at t. Let U
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be any open subset of X containing /(t), and use the property of a function base to 

find Be Гп such that te В and B c / -1(U). Since t« M n, we have 

te int(FB) n G Bc B c / _1(U), 

proving that /  is continuous at t.

Corollary 2.3. For any space T and metric space X, if /: T—> X has a a- 

scattered function base of (Fn G)c sets in T, then the set of points of discontinuity 

of f  is a set of the first category in T.

Proof. Note that the assumptions imply that /  also has a а-scattered function 

base of FnG  sets in T. From the proof of Theorem 2.2 it follows that the set of 

points of discontinuity of /  is contained i j n> \ Mn and this is a set of the first cate

gory in T.

Corollary 2.4. (Fort [7, Th. 2]) For any space T and metric space X, if 

g : T —»X is of Baire class 1, then the points of discontinuity of g is a set of the first 

category in T.

Proof. The proof of Lemma 1.1 shows that g has a ст-discrete function base 

of sets of the form B n g _1(U) where В is open in T and g_1(U) is an Fc set. 

Since discrete collections are clearly scattered, it follows that g has a function base of 

the type required in Corollary 2.3.

As noted above, if T is a complete separable metric space, then / : T —» IR 

is a PC function if and only if it is Fa measurable. For a general domain space T it is 

more appropriate to try to relate PC functions with (Fn  G)CT measurable functions. 

For example, if T is a weakly compactly generated Banach space, then the identity 

function on T will be weak-to-norm (FnG)CT measurable, but it will be FG measur

able if and only if T is separable (see [ 14]).

It is easy to give examples of real-valued PC functions which are not Borel 

measurable, even when the domain space T is a compact Hausdorff space. For exam

ple, if T is the ordinal space [0,©!], then any function defined on T is a PC func

tion (since all nonempty subsets contains an isolated point), but not all characteristic 

functions on T are Borel measurable, since T conains non-Borel sets [8, p. 231]. 

As we will show, the problem is that T has a scattered partition (in this case the one-
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point subsets) which is not (Fn G)a additive, i.e., the union of some subcollection is 

not a (FnG)c set in T.

Theorem 2.5. For any space T, all PC functions defined on T and taking 

values in a metric space will be (Fn G)c measurable if and only if every scattered 

partition of T is (Fn G)a additive.

Proof. Suppose that all PC functions defined on T and taking values in a 

metric space are (Fn G)a measurable, and let {Da : a  < X} be some scattered parti

tion of T. Thus l j a<£ Da is open in T for each £ < X. Choose any point xae Da 

and let X = {xa : a  < k} have the discrete topology. Define /: T -»X so that /(Da) 

= {xa} for each a  < X. Then f  is a PC function, since, for any nonempty set A с  

T, if a  is the least ordinal such that A r iD a * 0 ,  then /|A is continuous at each 

point of A n  Da. By assumption, /  is (Fn G)c measurable. Since each subset of 

X is open, it follows that the union of any subcollection of {Da: a  < X} is a (Fn 

G)CT set in T.

Conversely, suppose that every scattered partition of T is (Fn G)c additive, 

and let /: T—> X be a PC function taking values in the metric space X. As was 

shown in the proof of Theorem 2.2, for each n >1, T has a scattered partition Гп of 

FnG  sets such that the image under f  of each set in Гп has diameter at most 1/n. It 

follows from our assumption that the union of each subcollection of IJn>l *s a 
(Fn G)a set in T. But (Jn>i Гп is also a function base for /, and clearly this 

implies that /  is (Fn G)0 measurable.

It is well-known and easy to prove that any discrete collection in a space T can 

be expanded to a discrete collection of closed sets in T (by taking closures), and the 

union of any discrete family of closed sets will again be a closed set. Consequently, 

any o-discete family of Fc sets in T is Fc additive. The following lemma, proved in 

[14, §3], shows that for FnG  sets this continues to hold for the weaker notion of a 

relatively discrete family. Recall that a collection of sets Г is relatively discrete if it 

is discrete relative to the subspace У  Г ; equivalently, each set in Г has a neigh

borhood not meeting any other member of Г.
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Lemma 2.6. The following hold in any topological space T.

(a) Each relatively discrete collection in T can be expanded to a relatively 

discrete collection of F nG  sets in T.

(b) The union of a relatively discrete collection of FnG sets in T is again of 

this type.

(c) If each collection of open sets in T has a с-relatively discrete (resp. ̂ -dis

crete) refinement, then so does each scattered collection.

A topological space is said to be weakly 6-refinable (resp. subparacompact) if 

each open cover has a ст-relatively discrete (resp. a ст-discrete and closed) refinement 

(see [1, Th. 3.7]). The topological assumption in part (c) of Lemma 2.6 is equivalent 

to assuming that each subspace of T is weakly 0-refinable (resp. subparacompact 

for a regular space T). Since metric spaces are hereditarily paracompact, they have the 

property that each scattered collection has a ст-discrete refinement. It was recently 

shown in [14] that the weak topology of a Banach space will be hereditarily weakly 0- 

refinable for a significantly wide class of nonseparable Banach spaces, including those 

Banach spaces Z which have an equivalent norm || • || such that the norm and weak 

topologies coincide on {z : || z || = 1}. The ordinal space [0,0)!) is an example of a 

space which is not weakly 0-refinable.

THEOREM 2.7. Let T be any Hausdorff space, X  a metric space and let 

f :  T —»X be a PC function.

(a) If each open collection in T has a о-relatively discrete refinement, then f  

is (Fn G)c measurable and has a ct-relatively discrete function base of FnG sets in 

T.

(b) If each open collection in T have a о-discrete closed refinement, then f  

is Fa measurable and has a о-discrete function base of closed sets in T.

Proof. Suppose the space T satisfies the assumption in part (a). By Theorem 

2.2, /  has a function base Г = У П̂ !ГП with each Гп a scattered collection of 

FnG  sets in T. By (c) of Lemma 2.6, for each п>1, Гп has a refinement of the 

form IJn^iTnm where each collection Гпт is relatively discrete. By (a) of Lemma 

2.6, for each n, т>1, Гпт has a relatively discrete expansion { В * :В е Г пт} 

where В с  В* and each В* is a Fn G sets in T. It follows that, for each n, 

m >1,

Лпт = {В*Г\С : В€Г„га,С б Г пап<1 B c C )
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is a relatively discrete collection of FnG  sets in T (since B c C  for only one 

Ce rn).

To see that A = Un,m>^nm ls a function base for /, suppose te / _1(U) 

for some open set U in X. Then, for some n>l and Cg Гп , we have te С and 

C c / _1(U), since Г is a function base for /. Since Un^l^nm is a refinement of 

Гп , there is а В e Гпт with B c C  for some m > 1. It follows that 

te B* n  Ce Anm and B ^ n C c fH U )

as required.

Finally, since the union of any subcollection of A is a (Fn G)g set in T by

(b) of Lemma 2.6, it follows that f  is (Fn G)0 measurable.

The proof in the case of (b) is identical using the alternate part of (c) of Lemma 

2.6 and the standard properties of discrete collections.

Lastly, we seek to find conditions on T for which all (Fn G)c measurable 

functions defined on T and taking values in a metric space X are PC functions. We 

conjecture that this is true precisely when T is hereditarily Baire. Here we will show 

that this holds if, in addition, X is separable or T has countable tightness (i.e., if 

te cl(E) for some E с  T, then there is a countable set С с  E such that te cl(C)). 

Clearly all metrisable spaces have countable tightness. The space Cp(K) of all real

valued continuous functions defined on a compact Hausdorff space К with the point- 

wise topology is known to have countable tightness.

Theorem 2.8. Let T be hereditarily Baire, X a metric space and suppose 

f :  T —» X is a (Fn G)a measurable function. If X is separable or T has countable 

tightness, then f  is a PC function.

Proof. If X is separable, then it has a countable base of open sets U j.U ^ 

and /'HUn) is a (FnG)a set in T for each n >1. This easily implies that /  

has a countable function base of FnG  sets, and thus /  is a PC function by Theo

rem 2.2.

Next we show that f  will be continuous at each point of a dense subset of T 

whenever T is separable. Let D be a countable dense subset of T. For each open set 

U in X we let

/ _1(U) = Um£lFUmnG Um and Ми = Um>ll^m\int(FUm)]n G Um’
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where FUm is closed and Gymisopenin T for each m £l. Note that My is of the 

first category in T and / _1(U)\Mu is open in T for each U. For each n >1, let 

An be a locally finite open cover of X by sets having diameter at most 1/n, and let 

Mn = U MU : Ug An and D n / -1(U)* 0  }

Wn = U{U : Ue An and Dn/-l(U) = 0 } .

Then Mn is of the first categoiy in T as a countable union of such sets. Further, we 

must have /•*(Wn) = MWn since otherwise /'4W n)\Mwn would be a nonempty 

open set in T not meeting D. Since T is a Baire space, T *M nu M Wn and so 

Vn = U( : Ue An and D n /*1 (U )^0 )

is a dense open set in T. It follows that Пп>1^п is dense in T, and clearly any 

point of this set is a point of continuity for /  (cf. the proof of Theorem 2.2).

Now assume that T has countable tightness. Since this property is inherited 

by any subspace, and since for any nonempty close subspace F of T, F is a Baire 

space and /  |F is (Fn G)a measurable, it is enough to show that f  has a point of

continuity. Suppose /  has no point of continuity, and for each n >1 let

Fn = { te T : diam /(V) > 1/n for each open neighborhood V of t }.

Since the sets Fn are closed and cover the Baire space T, we must have W = int(Fm) 

nonempty for some m >1. Now each se W belongs to the closure of the set of all 

te T such that dist[/(t), f(s)] > 1/m, so by countable tightness we can find a count

able set Csc W  such that

s e cl(Cs) and Cs с  { t e T : dist[/(t), /(s)] > 1/m }. (10)

Since this is true for each point of W, we can iterate (10) to find a countable set С с  

W such that Csc C  for each se C. Since cl(C) is a closed separable subspace of 

T, it follows from the above that g = f\ cl(C) has a point of continuity te cl(C).

Hence we can find an open set V in T such that

te Vncl(C) and diam[g(Vncl(C))] < 1/m. (11)

Let se V n C  and use (10) to get some s 'e V n C s. But then dist[/(s0,/(s)] ^ 

1/m, by (10), and s, se Vncl(C), and this contradicts (11). That completes the 

proof.

The latter part of the preceding proof establishes the following corollary.

Corollary 2.9. Let T be hereditarily Baire and have countable tightness, and 

let X be a metric space. If f  : T -> X is such that f  |S has a point of continuity

whenever S is a nonempty closed separable subspace of T, then f  is a PC function.



3. First Class Functions Defined Qn .Complete. Metric, Spaces.

We combine the above results to obtain the following nonseparable extension of 

the classical theorem of Baire on characterizing Baire class 1 functions defined on a 

complete separable metric space. (While this paper was being prepared the author ob

tained from C. Stegall the preprint [19] in which he proves the following theorem 

using methods quite different from ours.)

Theorem 3.1. For a complete metric space T and a Banach space X the 

following are equivalent for any function f : T —»X .

(i) /  is of Baire class 1;

(ii) go/ is FG measurable for each continuous g : X —> IR;

(iii) f  is F0 measurable;

(iv) /  is a PC function.

(v) / 1S has a point of continuity for each nonempty closed separable subspace

S of T;

Proof, (i) —> (ii) This follows from the fact that /  is /^measurable [16, 

p. 386].

(ii) —» (iii) If U is any open set in X, we can find a continuous g : X -> IR 

such that xe U if and only if g(x) *  0. Since go/ is /^measurable, it follows 

that /^(U) is Fa in T.

(iii) -»(iv) This follows from Theorem 2.8 since any complete metric space is 

hereditarily Baire and has countable tightness.

(iv) —» (v) This is clear.

(v) -» (iv) This follows from Corollary 2.9.

(iv) -> (i) This follows from part (b) of Theorems 2.7 and 1.2.
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A  N E W  Q UAD RA TIC E Q U A T IO N

HIROSHI H ARUKI

The purpose of this paper is to solve a new quadratic equation on the Gaussian plane and to give 
its geometric interpretation.

1. Introduction And Statement Of The Result

We consider first the quadratic equation
(see (1), p. 82, (2). pp. 165-200, [4]. [6], |8]-[10], (13), (14], (17])

/ ( *  + V) +  / ( *  -  v) =  2 /(x )  + 2 /(y ) , (1)

where /  is an entire function of a complex variable z and x,y are complex variables. We can 
prove the following theorem:

Theorem A. The only entire solution of (l) is given by f ( z )  = 'jz2 where 7 is an arbitrary com
plex constant.

Proof. Since the proof is easy, we omit it.

In this paper we adopt the following definition:

Definition. If the only solution of a given functional equation F  whose unknown function is /  is 
/ ( 2) = I * 2 where 7 is an arbitrary complex constant, i.e., the monomial of degree 2 in г

476
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(including the identically zero function), then the functional equation F  is said to be a quadratic 
equation.

Now we are going to give a new quadratic equation. To this end we give preliminary considera
tions. We consider the following two Cauchy equations (see [l], pp. 31-42, (2], pp. 11-24)

/(* + У) -  /(*) + / Ы  , (2)

and

/ ( *  + У) -  / ( * )  / ( y ) , (3)

where /  is an entire function of a complex variable and z,y are complex variables. If we replace 
x and у by 9 and it in (2), (3) respectively, where e,t are real variables and we take the absolute 
values of the resulting equalities, then we obtain the following two functional equations:

|/(« + »'0| = )/(«) + / ( « )  | (Robinson’s functional equation; see [5], (l5j)

and

|/(« + •*) | -  |/(«) /(»•*) j (Hill*'» functional equation; see [5], (11], [12], [16]), 

where /  is an unknown entire function of a complex variable and e,t are real variables.

In a similar way, replacing x and у by t  and it in (l) where e,t are real variables and taking the 
absolute values of the resulting equality yields the following functional equation:

|/(« + ft) +  /(«  -  ft) | -  2 |/(«) +  /(f t) |, (4)

where /  is an unknown entire function of a complex variable z and a,t are real variables.

The purpose of this paper is to solve (4), i.e., to prove the following theorem:

Theorem 1.1. The only entire solution of (4) is given by J (z )  = -7z2 where 7 is an arbitrary 
complex constant.

To prove the above theorem we shall use a special trick (see Lemma 2.1 in the next section).

2. Lemmaa

We shall apply the following three lemmas to prove the theorem in Section 1.

Preceding to state Lemma 2.1 we shall explain some notations.

Let /  be an entire function of a complex variable z. Since /  is an entire function, we can 
expand /  in a power series at any point. Let its power series expansion at z *= 0 be



/ ( , )  = t  cnz* , (5)
n-0

where each of c*(n — 0 , 1, 2, • * • ) is a complex constant.

If we set

a* -  Re(cn), Ья = Im(c„) (n =  0, 1, 2 , ...) , (6)

then, by (5) we obtain

/ (* )  =  F  (o. +  .'6. ) z *  (7)

for all complex z, where a„, b„ (n ■= 0, 1, 2, ...) are all real constants by (6).

We may now state Lemma 2.1.

Lemma 2.1. We use the same notations as above. If we set
+co +oo

ф(г) = £  anzn and ip(z) = £  bnzn , (8)
n-O n-0

then we obtain

1 ФП = \  [/(*) + /(*)) and V<*) -  (/(*) -  /(*)) • (9)

for all complex r;

(ii) ф(г) and rf>(z) are entire functions of a complex variable z;

(iii) ф{г) =  ^(F) and if>{z) = Ц z) for all complex z\

(iv) if z is real, then ф(г) and iftz) are also real.

Proof, (i) By (7) we have

7 m  -  F  (о. + <».)Г = F  (a. + r t j r  (10)
П-0 я -G

= iT  (a„ -  <bK)z*

for all complex z.

Adding (7), (10) side by side yields
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* Н  = j  (/ (* )+  / й )

Гог all complex z.

Subtracting (10) from (7) side by side yields

m  = j -  (/ (о  -  7 я )  •

Q.E.D.
for all complex z.

(ii) Since, by hypothesis, /  is an entire function of г, so is /(F). Hence, by (i) of Lemma 2.1
Q.E.D.

ф(г) and 0(г) are entire functions of z.

(iii) By (8) we obtain

*(*) = E* anz" = E* ^  апГ  = ф(1)

for all complex z.

Similarly we can prove that ф{г) = i(j(z) holds for all complex z.

Q.E.D.

(iv) By (iii) of Lemma 2.1 ф(г) = ф(Г) and z ) = rp(z) holds for all complex z. If г is real, then 
z = z. So, if г is real, ф(г) = ^(*) and V<(z) = V*(*) hold.

Q.E.D.

Lemma 2 .2 . Let g be an entire function of a complex variable z. Then the only entire solution 
of the functional equation

g(2z) = 16y(z) (11)

is given by y(z) = d4z4 where dA is an arbitrary complex constant.

Proof. Since g is an entire function of a complex variable z, we can expand g in a power series 
at any point. Let its power series expansion at z = 0 be

ф )  -  E° i .  z' , (12)
я-4

where each of <f„(n «* 0, 1, 2, ...) is a complex constant.
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Substituting (12) into (11) and equating the coefficients of zn(n = 0, 1, 2, ...) yields

2" dH -  16dn (n -  0 , 1, 2, ...),

and so

dn -  0 (n «  0, 1, 2, 3, 5, 6, ...)

if n *  4.

Hence, by (12) we obtain

g(z) -  d , 2* . (13)

Direct substitution shows that (13) satisfies our original equation (11).

Q.E.D.

Rem ark. About Lemma 2.2 see [3].

Lem m a 2.3. Let h be an entire function of two complex variables x,y. Then the only entire 
solution of the functional equation

Л(2х,2у) = 1бЛ(х,у) (И)

is given by Л(х,y) =  d^x4 + d3\**У + + d,3xy3 + dMy* where </«, dzi, d^, d l3, dM are
arbitrary complex constants.

Proof. Since h is an entire function of two complex variables x,y,  we can expand h in a double 
power series at any point. Let its power series expansion at (x,y) = (0 ,0) be

Ч-oo +oo
M *.») - E E  dmn x myn , (is)m —0 n-0

where each of dmn(m = 0, 1, 2, • • • ; n = 0, 1, 2, • • • ) is a complex constant.

Substituting (15) into (14) and equating the coefficients of 
z my"(m = 0, 1, 2, • • • ; n = 0 , 1, 2, • • ) yields

2",+" dmn -  16 dmH (m -  0 , 1, 2, • • • ; n = 0, 1, 2 , • • • ) ,

and so

dmn = 0

if m + n ^ 4.

Hence we obtain dmn = 0 except d d31, dи, dlSl dM.
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Therefore, by (15) we obtain

h(x ,y) *  cf«o x 4 + rf31 x3y + dn  x2 y2 + rf13 xy3 + </<* y4 .

Direct substitution shows that (16) satisfies our original equation (14).

Remark. About Lemma 2.3 see (3].

S. Proof Of The Theorem

We may now prove the theorem in Section 1.

We may assume that f ( z )  ^ 0.

If we set в =  0, t =  0 in (4), then we obtain

/(0) *  0 ,
and so, by (9),

^(0) = 0 and V<0) = 0 .

We show first that /  is an even function of z. Setting e = 0 in (4) and using (17) yields

[/ (*)+ / (-■ < ) I -  2 !/(•'<) I

for all real t .

Replacing t by — t in (19) and using (19) again yields

| / (*)| - [/(—•*) |

for all real t.

By the triangle inequality for complex numbers we have

|/(>'<)|+ |/H ‘ )| >  |/(«) + / H 0 1

for all real t .

Combining (21) with (19), (20) yields

2 |/(*0 I = |/(й)|+ | / (-« )| >  |/('<)+ /(-*'<) I “  2 |/(.0 |

for all real t.

(16)

Q.E.D.

(17)

(18)

(19)

(20) 

(21) 

(22)



Consequently, by (22) the equality

| / (*)| +  | / ( - o | -  |/(*'0 + / ( - « )  I

occurs for all real t .

By (23) and by a well-known fact there exists a real number Л(*) for each real t such that

Л (0  >  0

and

/ ( - i t )  -  A (l) /( it )

hold in R.

(If f { i t 0) = / (—*<o) *= 0 (<o € й )  (see (20)), then we adopt the convention that A(f0) = !•) 

By (20), (25) and by the above convention we have

h i = 1
for all real t.

By (24), (26) we obtain

* ( 0 - 1

for all real t, and so, by (25),

/ Н 0  = /(*0

for all real t.

Therefore, by the Identity Theorem we obtain

/ н о  = /(*)

for all complex z.

So /  is an even function оГ a complex variable z.

We use the same notations as those in Lemma 2 .1. By (7), (8), (10) we have 

f{ z )  = ф(г) + i i { z )  and f { z )  = ф{г) -  ixftz)

for all complex z.

By (4) we obtain



|/(*)+ №  |J -  t| / (.)+  /(•■!) |! ,
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and so

( / ( * )  +  / ( ? ) )  ( / ( * )  +  д ю )  -  4 ( / ( « )  +  /(.•<)) ( / ( « )  +  /(•'<)] . (28)

where z =■ в + i t (e,  t € Я ).

Substituting (27) into (28) and observing t = — t yields

( * ( r )  +  Ф (Г) +  , ■ « , )  +  v<7))) ( щ +  * (? )  -  i  W )  +  « * » )  (29)

”  4 (♦(*) +  ♦(«*) +  'M > ) + W ‘ ))J (Ф(в) + Ф(’<)~ *‘M *) +  'K'OD •

Since, by Lemma 2.1, we have ___
H z ) = Ф(*)> Ф(*) ш Ф(*)> ) = М*), V<*) = ф ) ,  ф(в) = ф(л), ф{И) = *(-«<), Ц а) = %К*) and
V{«0 = Ц - i t ) ,  by (29) we obtain

( * ( * ) + # ( л ) 2 +  ( l« r )+ y < J ))a -  4 (* (.) + * (« )

+ » (v<«) + V<1«))) (*(») + *(-•'<) -  i(v<«) + v<—■<))] ,

and so

(^(« + ft) + ^(«—i t ) ) 2 + (\K«+*0 + ф - * о ) 2

-  4 ( * ( . )  +  *(.'<) +  . '( « < )  +  «■ < ))) [* (* )+ # (-• '< )  - • ' ( « * )  4 - * - • '< » )  (30)

for all real a ,t .

By (30) and by the Identity Theorem we obtain

(*(x+y) + * (* -y ))2 + (ф+У) + V<x-y))2

= 4 |̂ (i) + (̂y) + «(\KX) + (̂y))| (̂ (x) + Ф(—у)  -  W *) + V{-y))) • (31)

for all complex z,y.

Since, as already proved, /  is even, by Lemma 2.1 (i) ф and V» are also even.

Hence we have



By (31), (32) we have the functional equation

(#(i+y) + * ( i -y ) )s + (v<i+y) + V {*-v))2 

-  < (*(*) + * ( » ) ] ’  + 4 (v < x )+ v < y ))a . (33)

If we set у =* z in (33), then we have

(*(2x) +  # (0))s + [ i i i z )  +  ^ 0) ) S _  ie#(i)2 +  16 <Цх)7 (34)

for all complex z.

By (18), (34) we obtain

*( 2z)2 + V<2z)2 = 16 (ф(х)* + Цх)*) (35)

for all complex z.

Setting

,{x )  -  Ф(х? +  « x f  (36)

for all complex z and using (35) yields

y(2x) ■= 16y(z) (37)

for all complex z.

By (37) and by Lemma 2.2 we obtain

y(z) =  Ar< , (38)

where A is a complex constant.

By (36), (38) we have

ф(х)г +  V<*)2 = Ax* . (39)

By (33) we obtain

(*(z + y)2 + i {x  + у)2) + [ф{х -  у)2 + -  У)а) +

484

Ф{ у) -  * М  and V<-y) «= v<y) (32)

for ail complex y.

2 [ф{х + у) Ф{х -  у) +  V<z + у) Ц х -  у))
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= 4 (*(х)2 + 0(х)2) + 4 (*(у)2 + V<y)2) + 8 (*(х) ф(у) + Ц х) V<y)) • (40)

By (39), (40) we have

2 \ф{х + у) ^(х -  у) + V(x + у) Ц х -  у) j -  4Ах4 + 4Ау4 -  А(х + у)4 -  А(х -  у)4 +

8 ^ (х) *(у) + Ц х) \Ку)) • (41)

IT we set

Мх.у) -  Ф(х) ф{у) + # х )  уЦу) (42)

and

R{x,y) = 4Ах4 + 4Ау4 -  А(х + у)4 -  А(х -  у)4 , (43)

then, by (41), we have

2Л(х + у, х -  у) = Л(х,у) + 8Л(х,у) . (44)

Replacing х,у by х + у, х — у in (44) yields

2А(2х,2у) = R(x  + у, х -  у) + 8А(х +  у, х -  у) . (45)

By some simple calculations and by (43) we have

R(x +  y, x -  y) = —4/?(x,y) . (46)

Substituting (44), (46) into (45) yields

2A(2x ,2y) = —4R{x,y) +  4(/?(x,y) + 8Л(х,у))

or

Л(2х,2у) *  1бЛ(х,у) (47)

for all complex x,y.

By (47) and by Lemma 2.3 we obtain

Л(х,у) = A, x4 + A jx sy + A3 x2 y2 + A, xys + A* y4 , (48)

where Aj, Â , A3, A<, Af, are complex constants.

d x 'd y 1

d*

Applying -— -  to both sides of (48) yields

dx'dy*

for all complex x,y.

Л(х,у) «  0 (49)
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By (42), (49) we obtain

Ф "'Н Ф Ъ )  + Г ( * ) П у ) = 0 (50)

for all complex x,y. 

dApplying —— to both sides of (50) yields 
a y

ф»'(х) фт(у) +  Г ( х )  Г ( у )  -  0 (51)

for all complex x,y.

Setting у = x in (51) yields

V "(x )2 + V'\x? «  0 (52)

for all complex x.

When x is real, by Lemma 1.1 (iv) ^(x)and ф(х) are also real, and so, so are ^'"(x) and 4f"{x). 
So by (52), when x is real

ф"'(х) =  0 and rp\x) m 0 . (53)

By (53) we obtain

ф(х) = ax2 +  a,x + a2 (54)

and

ф(х) = Ьхг + 6,x + 62 » (55)

where a , a x, a2, b, b]t fc2 are real constants.

As already proved, f ( z )  is an even function of a complex variable z. Consequently, by Lemma
1.1 (i) each of ^(*) and iftz) is an even function of z. Hence we obtain

*'(0) = 0 and ^(0) = 0 . (56)

By (18), (54), (55), (56) we have

a, «  a2 = »  62 = 0 . (57)

By (54), (55), (57) we have

^(x) = ax2 and rp{x) = 6x2 (58)

when x is real.

By (58) and by the Identity Theorem we obtain
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for all complex *, where a ,b are real constants. If we set 7 = a + ib, then, by (27), (59) we 
obtain

/ w  -  -r*8 .

Q.E.D.
where 7 is a complex constant.

4. A Geometric Interpretation Of The Functional Equation f4) From  The Stand
point Of Conformal Mapping (see [5], [7])

In this section we shall state a geometric interpretation of (4).

To this end we shall apply the following mapping property of w — f[z )  «  г2.

Horizontal and vertical lines on the z-plane are mapped into an orthogonal family of confo- 
cal parabolas with common focus at tv = 0 and with common principal axis on the real axis 
of the u>-plane under the mapping function w — f(z ) = z2. Consider an arbitrary point 
z — e + it on the г-plane where e,t are nonzero real numbers. Then, under the mapping 
function w = f(z ) = z2, the horizontal and vertical lines passing through the point 
z = в + it on the z-plane are mapped on two parabolas with common focus F  and with 
common principal axis on the real axis of the w-plane. Let the vertices of the above two 
parabolas be AJB  and let the point of intersection of the common chord and the common 
principal axis AB  be C. Then

A F — BC

holds.

Since the proof is easy, we omit its details

f[ e  + it) + f ( e - i t )
2

ф{г) = az2 and ^(z) = bz2 (59)
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The Characterization of
Determinant and Permanent Functions by the 

Binet-Cauchy Theorem

Konrad J. Heuvers and Daniel S. Moak

1  IN TRO D U CTIO N

Throughout the paper К will denote a field of characteristic 0. A function 
ц : К —► К satisfying the multiplicative form of Cauchy’s functional equation,

(1) K*y) = KxMv)
for all x}y E K , is called a multiplicative function on K.

Let Mn(K ) denote the set of all square n x n matrices over К and let Mnxn(K ) 
denote the set of all rectangular m x n matrices over K . For any square matrix 
A = (ajj) £  Mn(K) two matrix functions from Mn(K ) to К are defined in terms 
of the two linear characters of the symmetric group Sn. The permanent of A  is 
defined in terms of the identically one character via

(2) per A = ^  • • • an,(n)

and the determinant function is defined in terms of the alternating character ((<7) =  
±1 via
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(3) det A =  £  C(<7)a„(1) • • ■ о , , , , ,  [10,11].
»€Sn

If /  : Af*(K) —► К satisfies the Cauchy equation

(4) f(A B ) = f(A )f(B )
for all A}B  G M *(K) it is well known that f(A ) =  /z(det A) for all A G Mn(K) 
where ц is an arbitrary multiplicative function on К [1,2,3,8,9].

2  NOTATION

In order to simplify our notation we have adopted a formal “product” notation for 
repeated terms inside n-tuples. Accordingly,

(#1, . . . , , xn)...,  xn̂

will be denoted by (® i'V  • •, хп'л) or (x*) where «; is the number of times that ®,- 
appears together inside the n—tuple. If a, =  0 then Xi does not appear. Thus, each 
*i is a non-negative integer and for the n— tuple s =  of non-negative
integers we will let \s\ = 9г +  •• + *„ . Let A =  [ab . . . ,  am] be an n x  m matrices 
with n x 1 columns aj} j  = l , . . . , m ,  and let В  =  (tyi), • ■ ■, b(ro)) be an m x n 
matrix with 1 x n  rows 6(i), i =  1 , . . .  , m,  where n <  m. Let A' =  
and B, = (bJJj,... ôr M = n the square n x n matrices corresponding
to 3 which are formed from A and В .

Let Z+ = { 0 , 1 , 2 , . . . }  be the set of non-negative integers. If a  =  ( a i , . . . ,  arf) G 
Z,+ is a q— tuple of non-negative integers we let |o| =  aH ------ • For an m—tuple

s =  («1, G Z+ let a! =  5 i ! . . . 5 m! and if |л| =  n then denotes the

multinomial coefficient

n * — n * _  (  n  \ 
s\ •■••«/

If J  denotes the square n x n matrix with all entries one then E  =  ( J ) J  is the 
square n x n matrix with all entries J .  If a  G Sn and A E Afn(K ) is the square 
matrix A =  [ei, =  (a(i), . . . ,  0(„)) with columns a, and rows a(i) then
A9 -  [°r(i),.- .Л (» ) ]  and A'  =  (ar(i), . . , а*{п))■ Let e ,, * =  l , . . . , n ,  denote 
the columns and e^), j  =  l , . . . , n ,  the rows of the n x n identity matrix. Then 
D =  . . . ,  dne ^ )  is the diagonal matrix with diagonal
entries di , . . .  ,<4Я.
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3  BINET-CAUCHY THEOREMS

Both the determinant and permanent functions satisfy Binet-Cauchy Theorems. Let 
A £ Mnxm(K) and В £ Mmxn( K) for n < m. Then for the determinant function 
its Binet-Cauchy Theorem is given by

(6 ) d e t(y iS ) -  ^ 2  det A '  det B ,
M="

where each s, =  0 or 1 [10,9]. For the permanent function its Binet-Cauchy Theo
rem is given by

(6) per (AB) =  ^  £  СЛ  per A' per B,
' |»|=i» '  '

where

{ » )  =  „ ! . . .  j „ !  [1° ' 11]

For /  : Mn(K ) К,  n < m , A £  Afnxm(K ), and В £ Mmxn(K )

(7) }(A B) =  ^  £  ( n] f(A ')f(B .)
' |»|=» '

will be called the Binet-Cauchy functional equation. It is the intention of this article 
to summarize the solutions of this equation.

4  SOLUTIONS OF THE BINET-CAUCHY FUNCTIONAL EQUA
TION FOR SQUARE MATRICES

In 1988 Heuvers, Cummings, and K. P. S. Bhaskara Rao [4] established the following 
result for square matrices A and В .

Theorem  1. I f f  : Mn(K) —► К  is non-constant and satisfies the Binet-Cauchy 
functional equation (7) for А, В £ Mn(K) and if f(E ) ф 0 where E = ( J ) J  then 
the general solution of (7) is given by f(A ) =  $per.A) for A £ M *(K) where ф 
is an isomorphism from К into К .

In 1989 Heuvers and Moak [6] solved (7) for square matrices A and В  when 
f(E )  = 0 and /  is non-constant.
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Theorem 2. I f  f  : МЯ(К) -► К is non-zero and satisfies the Binet-Cauchy func
tional equation (7) for А, В  E M„(K) and if f (E )  =  0, then the general solution 
to (7) is given by f(A ) =  ^(det A) for A E Af„(K) where ц is a non-constant 
multiplicative function on К .

Thus for f(E )  =  0 and f  ф 0 the solution of (7) for square matrices A and В 
is the same aa the solution of (4).

5  SOLUTIONS OF THE FUNCTIONAL EQUATION FO R SQUARE 
AND RECTANGULAR PAIRS OF M ATRICES.

In 1964 S. Kurepa [9] showed the following for matched pairs A and В  of square 
or rectangular matrices one dimension away from being square.

Theorem S. I f  a non-zero f  : Mn(K ) —► К satisfies

(8) /(AB) = £  f {A ’) f(B .)
1*1=»

where each j ,  = 0 or 1 , n <  m < n +  1 , A E М„хт(К ) and В  E -Mmxn(K) then 
f(A ) =  <£(det A) for A £ M„(K) where ф is an isomorphism of К into K .

It was this pioneering work which initiated the investigation which led to Theo
rem 1 and the next result.

In 1989 Heuvers and Moak [5] showed the following for matched pairs A and В  
of square matrices or rectangular matrices one dimension away from being square.

Theorem  4. I f  f  : M„(K) -► К is non-zero and satisfies (7) for A ,B £  M „(K) 
and for A e  Mnx(n+l)(K ) and В  G M(n+1)x. ( K ) ; and if f (E )  =  0 , then f(A )  =  
ф( det Л) for A E Mn( K) where ф is an isomorphism of К into К .

Thus, the solution of (7) under the same condition as in Theorem 3 leads to the 
same solution.
Remark.

In equation (7) if each = 0 or 1 then =  1 so (7) and (8) are the same. 

If furthermore A and В  are square matrices then (7) reduces to (4).
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6  SOLUTION OF THE FUNCTIONAL EQUATION FOR RECTAN
GULAR MATRICES.

In 1989 Heuvers and Moak [7] obtained the following result for A £ Mnx(n +o (K )  
and В £ M(n+r)Xn(K ) for a fixed r >  0.

Theorem  6. Let f  : M„(K) —► К be a non-constant function such that for a fixed 
r > 0 /  satisfies (7) for A £ Afnx(n+r)(K ) and В £ Af(n+r)Xn(K ). Then the 
general solution of (7) for A £ Mn(K) is given by f(A) = <£(регЛ) if f(E ) ф 0, 
f(A ) =  <£(dety4) if f(E )  =  0 and r > I, and f(A) =  /i(det>4) if f{E )  = 0 
and r = 0 where ф is an isomorphism of К into К and ц is a non-constant 
multiplicative function.

On of the major tools used to prove Theorem 1, Theorem 2, Theorem 4, and 
Theorem 5 was the following theorem of multinomial type which was proved in 1988 
by Heuvers, Cummings, and K. P. S. Bhaskara Rao [4, Theorem 3]

Theorem 6. Let X be a non-empty set and let V be a vector space over K. Let 
Ф, Ф : X n -+ V be functions satisfying

M=»

for fixed constant c, depending only on the 

In particular if

then

(12) 0 = £
1*1=» W
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Prom these results we see that (7) the Binet-Cauchy functional equation is the 
source of the common properties of det A and per A . The value of f (E )  is sufficient 
to distinguish between the two functions. Thus, equation (7) characterizes these 
important functions.
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P R O B L E M S  IN T H E  TH E O R Y  OF UNIVALENT 
FU N C TIO N S

Liubomir Jliev

To my teacher on conformal mappings, Constantin Caratheodory

1. Let us denote by S * , fc = 1 ,2 ,. . .  (Si = S) the class of functions 

/*(*) = * + c<tv +l + 4t)*2i+1 + ...
( S i c )  =  Z +  Ct + 1 z k +  1 +  C2k + l Z 2 l + 1  +  ■ ■ ■

which are regular, univalent and Jr-symmetric in the disc D : \z\ < 1.
In 1928 Szego showed that if f ( z )  6 S, |*i| < 1, \z2\ < l , * i  Ф z2, then 

(see [1]):

f { z l )  -  f ( z 2 )
> 1

( 1 - N > I 2 11 Z2 Zij

Zl -  Z2 +  lZ2|>' ( k l - Z 2 | +  | l - Z 22 i | ) 2

With the help of this inequality he proved the following

Theorem  (S*). The partial sums of a function f (z )  £ S:

a n(z) =  z +  c2z2 +  . . .  +  c„zn , n =  1 ,2 ,. . .

are univalent in the disc \z\ < 1/4. The constant 1/4 cannot be substituted 
by a greater one.
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Later on, Iliev [2] (1949) proved

Theorem  (I). If f k (z) e  Skt к =  1 ,2 , . . .  and \zx\g.r < l ) \z2\^.r,z1 ф 
z2} then

1 “  r
Zi -  z2

Inequality (I) is exact for к =  1 and к =  2.

Using this inequality Iliev proved in [2], [3] and in [4], [5] respectively 
the following theorems.

Theorem  (Ix). If

f 2(z) =  z +  c3z3 +  . . .  6 S2 ,

then its partial sums

° n X z) =  z +  сз*3 +  • ■ • +  c2n+ iz2n+1, n = 1 ,2 , . . .

are univalent in the disc \z\ < 1/-УЗ- The constant l/\/3 cannot be substi
tuted by a greater one.

Theorem  (I2). If

h ( z )  -  z +  4 3)z4 +  . . .  E S3 ,

then its partial sums

°n3)(*) =  * +  ci3)*4 +  • • • +  c£3)2r3n+1, n =  1 ,2 , . . .

are uinvalent in the disc \z\ < V̂ 3/2. This constant cannot be replaced by 
a greater one.

Using the Szego’s inequality, in 1939 V. Levin [6] proved that in the 
case n > 16 the partial sums a^ \ z)  are functions univalent in the disc 
|z| < 1 -  61nn/n.
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(A) For n > 14 the partial sums <r£\z) are univalent in the disc 
\z\ < 1 — 41 nn/n;

(B) For n > 11 the partial sums a^n\z) are univalent in the disc 
\z\ < (1 — 31nn/n)

(C) The partial sums <r£\z) (cf. Th. (I2)) are univalent in the disc 

И  <  j 1 -  § !!Ц £ г ) } 1/3. *  =  7 ,9 6 3/8 .3 l /4 .2 7' 8 .

Further, Iliev found discs in which the polynomials a,n'\z)/z) am\z)/z  
and o ^ \ z ) /z  do not vanish.

These applications show the importance of the results of the kind of 
Theorems (Sz), (I).

2. Let L(zi, z2) be a curve z =  z(s),0^ s£s, z\ — z(0),z2 =  z(s), \zi \ < 
|z2| for which z'(s) and r'(s) =  |z(s)|' exist and are continuous functions 
except for a finite number of values of 5. Here the parameter 5 denotes the 
length of the arc.

Denote by C(zi, z2) /) the image of L(zi, z2) by means of /(z) £ S. The 
denotations £ (z i,z 2) and £ (z i,z 2,/) are used for the lengths of L (zi,z2) 
and £ (z i,z 2,/), respectively.

In [8], [9] Iliev established the following theorems.

Theorem  I. If /(z) E S  and \zi\ < |z2| < 1, then

1 - Ы Ы  .  3 (z i,z 2>/)  ̂ 1 |zi.11z21 
( 1  +  |Z l |)2(1 +  Ы У  ~  L ( Z U Z2 )  -  ( 1 -  k l | ) 2( l -  k2|)2 ’

where the upper estimate is true provided r'(s)^0.

For |z|<r < 1 we obtain

Theorem  Г .  If /(z) G 5  and |zi| < |z2|^r < 1, then

1 -  r Z(zb z2>/) 1 +  r 
( l  +  r ) 3 -  L(zu z2) (1 -  r)s ’

By means of inequality (I) Iliev [5], [7] proved:



498

where the upper estimate is true provided r '(s )^ 0 .  

As a corollary we obtain the following

T h e o re m  I. If f ( z )  E S  and |zi| <  \z2\<r <  1, then

(1  +  Ы ) 2(1  +  Ы ) 2 -

/ ( * i )  -  / (z 2) 1 -  М Ы
z 1 -  z2

where the left inequality holds if the segment joining the points f ( z i )  and 
/ ( * 2) lies entirely in the image f(D )  of the unit disc by means of f ( z ) } 
while the right inequality is true if, on the segment joining Z\ and z2,\z\ 
only increases or only decreases.

If f ( z )  E S  is a convex function, then under the same conditions the 
following inequalities hold:

1

(1 + ЫХ1 + Ы ) -
f ( z l) -  Z(z2) 1

-  ( 1 - Ы Х 1 - М ’z 1 -  z2
If fk (z ) E Ski ^ e n  under the conditions of Theorem I we have the 

inequalities:

1 f M  1f 1 _ r * V  dr <
fk(z i )  -  f k ( z 2)

U  +  r V  ( 1  - r fc)2/ f c - z\ -  z 2

,Ы  / 1  + r * Y

L i  v - t * )

dr
=  Ы - Ы  J m  \ l - r k J  (1 +  rk )2 /k  ’ 

and if fk {z ) E Sk is, in addition, a  convex function, then under the same 
conditions we get:

1 /*|za| dr

Ы - Ы У м  ( i  +  >-‘ ) 2' *  -

4 ^ \ L-  Iz2l

M z i ) -  f k {z2) 
z i -  z i  

Ы  dr

|z.| ( 1 - Г * ) * / * -

For these theorems to have corresponding applications, it is necessary 
that some of the conditions in their statements could be discharged. Thus, 
the following problem arises.

P ro b le m  I. Is the condition r '(s )> 0  necessary in Theorems I, Г ?

For к > 3 the following problem remains open.
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|c<*>| = c?(n“ 1+2/*)  as n —> oo.

This estimate was suggested by the Littlewood’s inequality

|«& | =  |c„| <  e n .

For к =  2 Littlewood and Paley [10] established that |c^| = o (l). V. 
Levin [11] proved this estimate for к =  3. On the contrary, as it was shown 
by Littlewood [12], the assumption is not true for к > 3, even if /*(z) is 
bounded in the unit disc.

Therefore, we can calculate that there exist three positive constants 
A\}A2y Л3, not depending on n, such that for any n the following inequality

Szego supposed that

<A kn~1+2,k , k  =  1,2,3

holds. By А\уА2,Аз we denote the smallest of these constants.
On proving the Bieberbach conjecture, it was established that A\ = 1. 

Further, according to V. Levin, A2 < 3,4. K. Joh found that A3 < 7,96. 
In this manner, the Bieberbach conjecture concerning the coefficients of 
univalent functions is extended as follows: Which are the exact values of 
A i ,A 2)A3? After the conjecture has been established (i.e., A\ — 1) the 
following problem still remains open.

Problem  II. Find the exact values of A2 and A3 .

As for the applications of Theorems I, Г  and I, it is necessary to solve 
the following

Problem  III . Which is the order of <£l ) | for к > 3?
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S Y S T E M S  D E V E L O P M E N T  SIM U LA TIO N  P R O B L E M S 
AND C. C A R A T H E O D O R Y ’S C O N C EPTS

V. V. Ivanov

Recently, the necessity of mathematical simulation multiple precision was 
one of the reasons for integro-functional models creation and their extensive 
propagation. The problem arose of transference and development of the given 
results in the differential equations theory and the optimization theory on 
the basis of differential models for the case of the more general models. The 
present article has been devoted to the generalization of several well-known 
results, including that of C. Caratheodory, for the case of simulation of the 
developing (evolutionary) system (DS) with the prehistory. In addition the 
appropriate software and some applications were described in brief.

1. On M athem atical Models of Systems Development

According to [3], any DS to which one can practically refer any natural 
DS and any artificial DS being created or already created by human be
ings and functioning with their participation, contains the following main 
specific features:

(i) the subsystem for realization of the internal functions of the sys
tem perfection as a whole including itself, that is self-perfection of 
the subsystem perfection;

(ii) the subsystem for realization of the external functions of interac
tion with the environment;

(iii) the inflow of deficient resources from the outside;
(iv) allocation of the system resources among their internal and exter

nal functions;
(v) the out of date products and the prehistory of DS.

The formalized representation of the above-mentioned features results
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in the base mathematical model (m.m.) of DS:

m («)= f  a(t,r)X (t,r)i/(r)m (r)d r,0<  y(r),X (t,r) < 1,
Jo

c ( 0  =  f  ^ ( < . r ) / i ( t , T ) [ l - j / ( r ) ] m ( r ) d T , 0  <  n ( t , r )  < 1 ,
J t  о

P(<)= /  {A(<,r)y(r) + ^(t,r)[l-j/(r)]}m (r)dr,
Jo

M(t) =  J  m (r)d T ,

G(t) = M(<) -  P(t), f ( t )  > f ( t )  =  m(t) +  c(t) , t >  «о > 0 , (1)

where m(t) is the rate of creation of the first kind of new products (re
sources) number at the time instant t which provides the fulfilment of the 
internal functions of DS, that is restoration of itself and creation of the 
second kind products; y(r)m (r) is a share of m (r) for fulfilment of internal 
functions in the subsystem A of restoration and perfection of the system 
as a whole; A(t,r) is a relative share of the intensity of j/(r)m(r) products 
utilization at the instant i ;a ( f ,r )  is the efficiency index for functioning of 
the subsystem A along the channel A (t,r)y(r)m (r) — m(t), i.e., the num
ber of units of m(t) created in the unit of time starting from the instant 
t per one unit of X(t, т)у(т)т(т)\ c(t) is the rate of creation of the second 
kind of new products number at the instant t which provides the realiza
tion of the external functions of DS; and (3(t}r)  are similar to A 
and o r ,  respectively but for the subsystem В  of creation of the second kind 
products; P(t) is the total number of the first kind products functioning 
at the instant t\M(t) is the total number of the first kind products to be 
created during the time t; G{t) is the total number of the out-of-date prod
ucts at the time t\f(t) is the rate of the resources inflow from the outside 
(m(*) and c(t) are measured in units of f ( t ) , t 0 is the starting point of mod
elling; [0, to] is the prehistory of DS for which all the functions are given 
(their values will be noted by the same symbols but with index “0” , e.g. 
m(t) =  m0(< ),t€  [0,to]).

It is obvious that all relations (1) are faithful representations by defi
nition. And here, the functions a  and (3 can depend on m, c, A, /i, y, P } /, in 
the general case. Thus in the general case, m.m. (1) is a system of nonlinear 
integro-functional relations which consists of 5 equalities and 9 inequalities 
connecting 14 values, namely: m, с, А, у, P, t , a, to, G, f ,  0.



503

The typical suitable examples used to interpret all the above-mentioned 
values can be as follows:

1. The economics as a whole. Then (see [3],[6]) A is a subsystem (a 
group) of the capital goods industry and В is a subsystem of the consumer 
goods industry; m(t) is the rate of production of the new work places (WP) 
number in A and В ; a ( t }r)  is labour productivity in the group A, i.e., the 
quantity of WP created for the unit of time starting from the time instant t 
by one worker from the group A at WP created at the time instant r; P(t,r) 
is labour productivity at WP created in the group В  at the time r; P(t) 
is the total number of functioning WP at the time t , which can be equal 
to the quantity of labour resources; G(t) is the total number of obsolete 
(or lying in reserve) WP at the time t\f(t) is the rate of the inflow into 
economics from the outside, e.g., from the biosphere or the cosmos [6].

2. The biosphere. Then [6] A is a subsystem of re-creation of the living 
substance of the planet, mainly of the phytomass by way of photosynthesis; 
В  is a subsystem of creation of the so-called bioboned substance, mainly of 
the oxygen; m(t) is the rate of creation of the new living substance quantity; 
P(t) is the total quantity of the functioning living substance at the time 
t\G(t) is the total quantity of the dead substance for the time t which is 
mainly equal to the humus by mass; a  is the specific rate of reproduction 
of m(t))P  is the specific rate of production of c(t) and so on.

We should note three special cases of m.m. (1) when Л and have the
form

A(t,r) =  A (< -r),;i(< ,r) = /|( < - r ) ;  (2)

A ( * , r M t , r )  =  f  ° '  ° - T < “ ( ‘ ) ' ( 3)v ; , h \ , ) ^ ^  t < T > a ( f ) ;

\(, ч /  ° . ° < r < a i ( 0 .  _ x _  /  0 , 0 < T < a 2( 0 ,
-  U ( < - r ) , t  > r > MO; "  M *  - T ) . t >  r  >  *1(0(4)

The case (2) corresponds to the stationary process of the intensity; the 
case (3) means that the products created previous to a certain temporal 
threshold a(*),a(*) < t , at the instant t, are never used but those created 
after a(<) are used entirely; the case (4) extends the previous ones.

Instead of the relations (1), in particular, we shall have

m(t) = / a ( t } r )y (r )m (r )d r , (5)
Ja(t)
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P ( t ) =  f  m (r)dT , (6)
Ja(t)

c( 0  = /  W .T )[l-!l(f)]m (r)(lr, (7)

/■<■(«)
G (t)=  / m (r )d r ,  (8)

Jo
0 < y(r) < 1 ,a (0  < i , t  > t0 >  a(t0) =  0 , (9)

and maybe

^ > < M > 0 .  ( 1 0 )

Denoting -P'(t) by p(t) we convert (5),(6) to the form (assuming a necessary 
smoothness of m and a and m(a) ф 0):

m(<) =  f  a (t,r)y (r)m (T )d T , ^  ■ ( n )
J  a(t) Л m(a)

As one can see, even in the simplified formulation, the m.m. (11) is re
duced to the relations in which along with nonlinear integral equations 
of the unusual form (where a variable lower bound a(<) can be the de
sired unknown function) there appears the nonlinear differential-difference 
(functional) equation.

It is not hard to introduce different additions and generalizations of the 
m.m. (1) [3], [6], [15], [17]. Really, n-products mathematical model of DS, 
n > 2, can be formally written almost in the same form (1) under condition 
that m(<), c(£),p(J) and G(t) are the vector-functions and a,/?, A,/i,y are the 
appropriate functional matrices (1 is the identity matrix and the inequalities 
for vectors and matrices signify inequalities of the same name for all of their 
appropriate components). However, the relation f ( t )  > f ( t )  = m(t) +  c(£) 
constitutes the exception now. It should be replaced by

/ (< ) >  / ( < ) = m < ( 0 + с* ( 4) >r + * =  n  • 
i = 1 Jfc=l

It is also not hard to describe a continuous m.m. of DS in the sing
ular form considering t and r  as many-dimensional independent variables 
and examining the appropriate integrals as multivariate ones. A stochastic 
similarity of (1) can be obtained by considering a  and /3 as functions of a
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random factor w. A discrete similarity of (1) can also be represented in the 
form (1) if the integrals of (1) are understood in the sense of Stieltjes.

It is easy to show that we can obtain [3] a greate many of the well- 
known m.m. as the special cases of (1) by means of selection of the functions 
a  and /?. We shall dwell on the connection of m.m. in question with 
the classical models, among them the models [1], Bd 1. Everybody is 
familiar with the approach of the so-called “black-box” when only the input 
X  =  , xn) and the output Y  =  (у1э. . .  , yp) of a dynamic system are
given. We have in the linear approximation

У ( < ) = / ' K (t ,r )X (r )d T t (12)
J t -T

where T  is the upper bound for all transients termination time, К  the 
matrix of the pulse transition functions K ji( t ,r )  which are the response 
functions of a system when x ;(r) = 6(t — t) along the channel i — j  at 
the input i, where 8 is Dirac’s 6-function, and at the rest of inputs all 
x x (t) =  0. Nonlinear dynamic system can also be represented as (12) but 
К  will depend on X .  The m.m. (1) deals with the so-called “grey box” 
when the structure of a dynamic system is partly revealed. Indeed it is 
possible to say that in the case (1) the matrix К  has been factored into 
three factors a, A and у or /?,/i and I — у such that each of them has its 
applied sense. In addition, several of the outputs of the system in the case 
(1) have served as its inputs. At last, due to functions P{t), G(t) and f ( t )  we 
deal with the so-called open dynamic system in the case (1). The essential 
difference consists more in that all the values in (1) are non-negative by 
definition and a diminution of the output values is regulated not by a sign 
but for example, by the rate of a(t) growth in the relations (7)—(11).

In the case of adiabatic quasi-static processes the variation of a sys
tem’s entropy [1], Bd. 1; [2], [14] is as follows:

— ■ <is > 

where С  is constant. Therefore, assuming in (1) A,/i =  l,or(t,r) =  a (r), 
P(t,r)  =  P(t) we obtain for t > to

m(t) =  m0 +  /  c t ( T ) y ( T ) m ( r ) d T  }c(t) =  f Р(т)[1 -  у(т)]т(т^т,
Jo  Jto

df  =  dm  +  d c , dm — ot(i)y(t)dt — a (x )d x , dc = /?(*)[! — y(t)]dt — (3(x/)dy.
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f !  « ( « ж о *  Г  &(x )d*m(t) =  m0eJ<° =  m0eJ *° =  m0 , ^

а /  =  (1 с  =  р т - у Ю № -

The last relation means that in the case of adiabatic processes the whole 
external work is perhaps the result of the internal energy of a system. From 
(14) it follows that for any t > t0 there existed a state m(t) ф m 0 which 
cannot be accessible according to the Caratheodory’s concept of adiabatic 
inaccessibility.

The very detailed comparison between the m.m. under consideration 
and various similar contemporary ones by other authors can be found in 
[12].

Concluding the section we shall dwell on the question of completion of 
the given class of m.m. or determination of the so-called “light box” , i.e., 
the construction of additional set of relations so that it would be possible 
to determine all the elements of DS in future knowing its prehistory and 
predicting only its separate elements or parameters of exogenous nature.

Believing that new “technologies” a ( t , r) and /3(t, r) are also the “prod
ucts” of DS of m(£)-type and admitting for the sake of simplicity [3] that

“ (<> I-) = =  a (r )e~ c‘ (, ~T) , (15)

where ca defines the rate of deterioration of previously created technologies 
we have instead of (5)—(7):

a(/) =  km j  Qf(r)e“ c“^ " T̂ a;(r)m(r)(fr,
Ja(t)

m ( 0  =  f  o c (r )e~ Ca^ ~ T^ z (T )m (r )d T ,
Ja (i)

P(t) = f m (r)d r, 1 + 2 =  у ,
•M«)

c(t) =  f  or(r)e-c“(‘-T)[l -  y (r)]m (r)d r,
• 40

a(t) < t,0  < x ,y ,z  < 1 ,T  > t > t0 >  a(<0) =  0 , (16)

Hence on the strength of (13):

where km is coefficient with dimensionality a / m .



507

Other approaches to the completion of m.m. (1) can be based on (see
[3] p. 329-333) the system disaggregation and aggregation methods as well 
as on application of several extremal concepts.

2. Existence and Uniqueness Theorem s
Considering a (t,r )y (r) and P(t) as assigned (у is usually found from 

solution of some optimization problem) we shall examine explicitly the ques
tion about the existence and the uniqueness of solutions for the system (5),
(6) relative to m(t) and a(t) on any given segment [toyT]. The other cases 
of solutions of equations for the proposed mathematical model shall be 
considered briefly later on.

Theorem  1. Let m o}a y ,P  be positive functions and here

m o €  C [otto] , a y  £  ^ [o ,t]x [o,t] >p  G 4 ! ! t ]  >

where С  and С ^  are continuous and continuously differentiable spaces of 
functions, respectively. Then over [t0}T] the system (5), (6) has the unique 
positive solution m(<) and a(t) with m and a € an<i a(0  < *•

Proof. Let us introduce formally the relations

m(t) = Ф (т )(< ) =  Ф(<0) -  Ф {M ^ [M (t) -  P(<)]}

+  f  a(t,r)y(r)m(r)<Jr;  (17)
Jt0

a ( t ) = M ^ [ M ( t ) - P ( t ) ] ,M ( t ) =  f m (r )d r } (18)
Jo

where

Ф(*) =  J  а(< ,т)у о(т)то(г)< /г ,Mo(t) =  J  т о (т )с? г ,t  G [0,<o]• (19)

Since Ф and Mo and hence Mq 1 are continuously differentiable monotone 
increasing functions, the Volterra-type operator Ф effects contracted map
ping of C[t0)tx] into itself, where t\ > to, and has the property: a(<) <
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io ,t  €  [fo,<i]- By virtue of (18), (19) and M (t0) -  P(to) =  0 such <i will 
always be found. It follows that the unique positive solution of the equation 
m =  Ф(ш) on the segment [*oj*i] can be found by the method of simple 
iteration

m k+i =  Ф (т * ) , к =  0 ,1 , . . .  ; m0 =  0 ;

m  =  lim mk =  ] Г ( т * +1 -  m k) . 1
k=o

On the strength of the well-known Weierstrass theorem, we have from (20) 
that m is the continuous function. But then it follows from (17) that 
m G C[totly  It a ŝ0 follows from (18) that a(<) defined after m(t) also

pertains to And now it is easy to see that m(t) and a(t) obtained
by virtue of (17)—(20) is the desired solution of the initial system (5), (6) 
on the segment [£o>*i]- The first instant t\ for which a(*i) =  to> is hitherto 
unknown and found in the process of solution. If a(t) < to for to < t < T  it 
follows that the constructed solution is valid over the whole given segment 
and the theorem is proved. In the similar way it is proved that for T  > t\ 
the problem has the unique positive solution over [<i,<2] ,а(<г) =  *i> then 
over [<2|*з]> а(*з) =  *2 and so on until the solution over the whole segment 
[t0)T] has been obtained. The latter is possible by virtue of the conditions 
of the theorem

p {t) < HWXj m(0 [( -  «(<)] < | ,^0afo] m°W + 0< ^ < r[“ (‘ . r )y(T)l x

“  p ( o l  x [t — a(*)], t £ [to.T],
»>T J J

max
<e[t0,

whence

t — a(t) > min P (0 / s max m o(t) 
telto.T) lt€ [0 .to ]

+  max 
0 <r<t< T

[a(t,r)j/(r)] max P ( t ) } > 0 .
(2 1 )

As it was already noted above, in the general case the function a  can 
depend on the unknown function m. Therefore we shall consider the system

m(t) =  / or(f, r, m(r))cfr, a(t) < t ,
Ja(t)

P(t) =  j  m(r)dr ,T  > t > t0 > a(t0) =  0 , 
Ja (t)
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where or(t,r, m), for T  > t > т > 0 and m G R+ , i.e. m > 0, and 
P(t) > 0 are the given functions and m and a are the unknown ones. The 
appropriate theorems of solutions existence and uniqueness for the system 
(22), moreover for the very general assumptions extending the conditions 
of the theorem (1), will be obtained on the base of the widely propagated 
concepts and results of C. Caratheodory [1], [16] holding to the notations 
and succession of presentation just as it has been done by J. Warga in [16].

The set {a (t ,- ,-)}  will be called the collection of the Caratheodory 
functions B t, B t =  B ( t }t ,V ;R ) where t is a paramater of the collection if 
for any fixed t, 0 < t < T

(i) for any т G t =  [0, t] the function or(t, r, ■) G C(V, R) where V С R\
(ii) for any m £ V the function or(t, •, m) is measurable;
(iii) there exists the integrable function фа : T  —> R  

such that

The function a(*,r, m) will be considered continuous over T  = [0,T] for 
any r  and m, 0 < r  < • and m 6 V. In the notations [16] one can also write

Theorem  2. The existence of local solutions. Let T  = [0,T),T  > t0 
and a  G B t} and let a  be continuous by t for any t G T tP  be absolutely 
continuous over [<o,T],mo be integrable over to = [0, to] and mo G V, all 
the functions a, P  and m0 be positive and also

The set B t will be the normed space if we assume

a G C(T, B (T , V; R))t a (t, r, m) = 0 , r  > t .

0 <m« < inf m0(t) < sup m0(t) < m f < oo,
<€<o <€t0

sup ar(t, r, m) <  a + < o o .
0 <r<t<T 

“m e f
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Let us also assume T  =  [to,t], where

t =  т т (*1 ,*2 > *з ) > 

t a =  sup{i G [<o,TIIH*o) +  4(< “  0̂) +  J°(<) -  J°(*o) <  <o^o }  ,

t2 =  sup{t G [to,T\\ f  ar(t,r, -)euPd r  <  61}  ,
Jt*

i - 4  > m o
h - to + 2 ^

and introduce the number b >  0 such that

•^r{[m(t0) + b)(t -  t0) + P{t) -  />(<„)} + b1 <b,t€f.  
m 0

If a closed sphere S F (m (to)}b) С У , then there exist the positive functions 
m  : T  —* V  and a : T  —► to such that they are the solutions of the system  
(22) over T. And here, m will be continuous and a is absolutely continuous 
over T.

P ro o f . Let us introduce formally the equation

m (i) =  т ( ^ ) - Ф [ М 0- 1( М ( 0 - Р ( 0 ) ] +  Г  oc(ttT}m (r))d r  =  * ( m ) ( t ) ,  (23)
Jto

where

Afo(i) =  f  m o (r)d r ,Ф(<) =  f  a (t, r , m 0(r))<fr, t G to (24) 
*/0 7o

and assume

=  {m  G C ( f , A)||m(t) -  m (t0)| <  6 ,t  G f } .

Since the restriction a|t,t x К pertains to B (t ,t }V\R) for any t E T  the 
function r  —► or(t, r, m (r)) \ i  —* R  is integrable for any t G T  and m E K .  
Consequently, the function F (m ),

F(m)(t)= f  or(t,r,m(r))dr 
Jto

(25 )
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is defined for any t €  T  and m G K ,  and F(m ) £ C (T }R). Further, on the 
strength of the condition of the theorem

|*(m)(<) -  m(<0)| <  —r-[(m(<o) +  b)(< -  <o) +  P(t) -  P(t0)] +  b1 < b , t e T .  
m 0

This means that Ф(ЛГ) С К .  And what is more

|*(m)(*) -  * (m )(0 |  < J ‘ <*(t, r, )sup<fr +  ((' -  io K ( (  - 1')

+  £ [ ( m ( f o )  +  b)(t - 1') + P(t) -  P(t')) +
m

J M . , 1 + >K. - n  ± p w  -  m  j  m € K )}

where u a is a continuous module for the function a  over the first variable t. 
Consequently, Ф(Л’) is the bounded and uniformly continuous subset from 
C (T }R). It follows [16] that 4t(K) is a compactum. Now let lim rrij — m

in К . Then it is obvious that for the operator

* l ( m ) ( < )  =  Ф M o 1 Q f  m(r)dT -  P (i)] , t e f  (26)

the relation lim ¥ i(m j)(i) = ¥i(m )(*) in K ,t  G T  is valid and therefore 

[16] for the operator Ф it will also be И т Ф (т ; )(*) = Ф (т)(<),* £ T. Thus,

the mapping Ф : К  —*■ К  is continuous. At last it is easy to see that К  is 
a closed and convex set. By Schauder’s fixed point theorem it follows that 
the mapping Ф : К  —> К  has the fixed point m on T. But then on the 
strength of (23), (24) and (18) (with replacement of m and a by rh and a, 
respectively) m and a will be the solutions of (22) which have automatically 
the desired properties by virtue of the conditions assumed and the structure 
of (22) itself.

Theorem  3. The extension of local solutions. Let conditions of the 
Theorem 2 take place and there exists an integrable function ф : T  —+ R  
and positive increasing and continuous function <p : (0,oo) —► (0,oo) such 
that

f r ds
sup or(f, r, m) < (р(т)гр(т) (r  E T } m  £ R )t lirn̂  / ——  = o o . (27)
j g j T  T—*oo J  о  'PyS)
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Then there exist the positive functions m : T  —► R  and a : T  —► T a ,Ta < T  
which are the solutions of (22) on T. In addition m will be continuous and 
a absolutely continuous on T .

Proof. Let

0 < P~ < inf P(t) < sup P(t) < P + <  oo . 
t e f  t€f

Then similar to the case (21) it is not difficult to obtain

t - a { t ) > p - / ( m i  +  a +P +) >  0 (28)

for any t £ [to,*'] f°r which the solution of Eq. (23) exists. The relation (28) 
means that the behaviour of the function a cannot serve as an obstruction 
to the extension of the solution m(t) and a(t) over the whole T. But as 
shown in [16] the property (27) can be used as the sufficient condition for 
extension of the solution on any segment T  in the case of equations of 
the form m(<) =  m (t0) -f F(m )(t), where the operator F  is given by the 
relation (25). The analysis of the corresponding proof in [16] shows that 
the operator Ф1 given by the relation (26) and the operator Ф =  F  -  Ф1 

possess just the same properties as F . This fact provides the extension of 
the solution of (23) over the whole segment T.

Theorem  4. The uniqueness of solution. Under the conditions of 
Theorems 2 and 3, it follows that if there exist integrable functions V'l and 
rp2 °n T  such that

K * i , T , m o ( r ) ) - a ( t 2, r,mo(r)| <  V>i(r)|*i -  t2\(r €  T ; tltt2 £ T ) ;
(29)

|or(t ,T ,m i) -  a ( t , r ,m 2)| <  ф2(т)|m! -  m 2|(t,r £  T ; m b m 2 £  V С R)
(30)

then m(t) and a(t) (on the strength of Theorem 2) are the unique solutions 
of the system (22).

Proof. If m i(t)  and m 2(t) are two solutions of the Eq. (23), we have 

m i ( t ) - m 2(t )=  t  [a ( t ,r ,m i(r ) -o t ( t ,r ,m 2(r))](ir
•^0

-  -  P(t))} -  tt[M o\ M 2(t) -  />(<))]} .
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lm i ( 0  “  ™ 2 ( 0 I  <  f  ^ 2 ( T ) \ m i ( r )  -  m 2 { r ) \ d T  +  a +  +  [  V»i[ r ) d r  
Jto Jo

1 f 1
X —  / I™i0") -  m2(r)\dr. 

m0 J (0

But from Granuola’s inequality [16] there follows |mi(*) — m2(<)| < 0 and 
hence m ^*) =  m 2(t).

If the functions a, a and P  or more generally Л,/i,ar,/? and P  are 
assigned, for determination of mi =  ym and m2 — (1 — y)m in (1) we have 
the system of linear integral equations of Volterra-type:

rai(t) +  m2(t) =  f  Q(t1T)X(ttT)m1(r)dTi 
Jo

P(t) =  f  A(t,r)m i(r)rfr +  f  /x(t,r)m2(r)(fr,T  > t > t0 > 0. 
Jo Jo

(31)
The problems of solutions existence and uniqueness for the system (31) 
and several similar linear systems are examined in [3], [15] and [17]. Many 
results obtained in these works can be strengthened by the way of intro
duction of the appropriate classes of the Caratheodory functions.

Let us dwell in brief on the nonlinear system (16). We shall assume 
that functions P tx and z, and parameters km and ca , and also all the 
elements of the system (16) on the prehistory are given. Then the first 
three equations in (16) are Volterra-type system relative to three unknown 
functions or,m and a on the segment T  =  [*o»Tl- ^  obvious that in 
this case the existence of a local solution (see Theorems 1 and 2) will also 
take place but the similarity of Theorem 3 will not be applicable since the 
condition of the type (27) will be violated. However, it is not hard to find 
the sufficient condition such that any solution (16), provided that they exist 
on [t0,T\} will be bounded on this segment.

Theorem  5. Let ca > 0, x(t) and z(t) be integrable, and P(t),z(t)  be 
positive for t e f ,  and also

[1 -  e-< * (‘ - ,o ) ]m (<o) < — , c  =  km max ( max z(t) . (32 )  
с i e r  \ z ( < ) /  <€T

whence on the strength of (24), (29) and (30)
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Then any non-negative solutions (16) m (t),or(J) and a(<) possess the prop
erties

m(t) < m(to)
1 -  [ i  _  e - c . ( « - i 0)] ’

a(t) < km max f  m (t), (33)
t€T

, - . « ) >  p<'>
max m(t)

о о с т  4 7

P ro o f . It is easy to see that

ori(t) =or(*)eCe(t) = km [  oci (t ) x (т)т(т)с1т ,m {t) 
Ja(t)

ее*г

°(t)

from which

= / Qfi(r)z(r)m (r)rfr,
J  a(t)

<*i( 0  <  m ax m ( t ) e C a i , 

m ( t ) e Cai < km m ax  ̂ m ax z e CaTm 2(r )d r  -f m ( t o ) (

= c f  [e^LTm(r)]2<fr +  c0 ,
J u'to

c0 =  m (t0)eCa,io ,

and hence

[m ^ e5*1]2 < e Co,< j c  [е^ т (т )]2(1т +  c0| .

Assuming t; = /t*0 [ e ^  m (r)]2dr we find

dv < e“Ce<(cv +  co)2d t , v(*o) =  0 ,

hence

I  (ct) +  c0)2 - L e~C"'dt =

g—C t̂ _ g Cor to



515

cv +  C0 <  ^  cm(l0) n _  e—ce(<—to)]
ca 1

p - C a ( t - t 0)

m(t) < m(t0)-

and

1 _  c m ( < o I [ i  _ g - c a ( t - < o ) ]Co, L
SO the first inequality in (33) is proved. After that, the second and third 
inequalities in (33) become obvious.

As a consequence, from Theorem 5 on the basis of similarities of the 
Theorems 1-4, it is not difficult to prove the existence and uniqueness of 
solutions for the system (16) provided the conditions (32) are realized.

3. Exam ples of Optimization Problem s
3.1. The external DS function maximization problem:

h = f  c(t)dt=  f  \ f  f 3 ( t , T ) [ l  — y(T)]m(r)dT l Л = max (34)
Jio Jto \Ja(t) J y

provided that the relations (5)—(10) or (15) and (16) are observed.

3.2. The average internal DS expenditures minimization problem:

h = /  ^(0Л = /  f  m(T)dT Jto Jt0 J<*(t)
dt = min (35)

у

provided that the restrictions (5) - (10) and maybe the restrictions on c(£) : 
c(0  > c~(t), where c~(t) is given, are observed.

3.3. The problem of DS’s high speed of operation:

I3 = T  —10 =  min (36)
у

provided that (5) - (10) and the conditions c(t)dt € С * and P  6  P * , 
where sets С * , P* are given, are observed.

3 .4 . The DS viability maximization problem:

/4 =  m in[m +(*)-m (t),m (t)-m “ (*),c+(*)--c(0 ,c(*)-c~ (< )] =  max (37)
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provided that (5)—(10) and the inequalities m“ (t) < m(<) < m+ (<) and 
c " ( 0  < c(t) < c+(t) with the assigned functions m± (<) and c *^ ) , are 
observed.

3.5. The problem of out-of-date DS products minimization: 

rT rT  ra (t)
h  — G{t)dt =  I I m(r)dT  

Jto Jto [Jo

provided that (5)-(9) are observed.

dt =  min 
у

(38)

3 .6 . The external DS function minimization problem:

h  = f c(t)dt =  min (39)
Jto у

provided that (5)-(10) or (15) and (16) are observed.

3.7. The active DS’s “life” maximization problem:

/3  =  T  — to =  max (40)
у

provided that (5)-(10) or (15) and (16) and the restriction c(<) > c°(t) 
where c°(t) is given, are observed.

In the case of the example 1 (Sec. 2) when DS is economy as a whole,
3.1 is the maximization problem for the number of consumer goods during 
the design period T  —10; 3.2 is the minimization problem for the average 
labour inputs; 3.3 is the minimization problem for the time of consumption 
preassigned level attainment provided that the preassigned labour inputs 
are given. In the case of the natural DS as opposed to the artificial one the 
problems 3.6 and 3.7 can have more sense than 3.1 and 3.3. If, for exam
ple, a DS is a population of viruses in the human organism, in particular, 
the population of HIV [8] and c(<) is the aggressive factor of HIV, then 
just the problem 3.6 makes sense. If a DS is a human being himself, the 
attractiveness namely the problem 3.7 is obvious [6].
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4. Q ualitative Investigation of Optimization Problem
Let us investigate the problem (34) in detail. The results of this in

vestigation are transferred both on the problems (35)-(40) and some other 
optimization problems [17].

4.1. The existence of solutions
Proof of solution existence for problem 3.1 is based on the results of 

the monograph by J .  Warga [16]. However, as is shown brilliantly by L. C. 
Young [18], one of the essential sources for creation of contemporary means 
of the optimal control theory based on the so-called generalized nonsmooth 
classes of an admissible control circuit is furnished by the earlier mentioned 
notions and other C. Caratheodory’s concepts and results.

Let us introduce the details of the appropriate proof following Ju. P. 
Jacenko’s presentation [17].

1°. In order to adapt theorems of [16] to problem 3.1 let us represent 
it in the form adopted in [16], namely to determine

inf 9o(x,y, a) (41)

on the set

H (Y) =  {(* , y, a) 6 X  x Y x B\x = F(x t y, a)} (42)

under the restriction
0i(*>y><O =  0 ,  (43)

where x =  (m,c) are the state variables, у is a control function, a is a 
control parameter,

9o(xty ,a) = f  c(t)dt ,
(44)

m(r)dT — P(t)
(0

and a state equation x =  F x  has the form

9i ( x , y ,  a) =  y

* (0 =  [  f[t,T,z(r),y(r),a(t)]dT 
Jo

(45)
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or

n {t)=  f / i[t,r ,m (r),y (r ),a (0 ]d r , 
Jo

Ф ) =  / /2[< ,r,m (r),y (r),a (t)]d r,
Jo

(46)

/ 1  =  <

/ 2  =

o‘( t , T ) y 0 ( r ) m 0 ( T ) , a ( t )  < T < t 0 ,

“ (*> r M r ) m ( r )> “ ( 0  < T < T ,
0 >0 < r  < a ( t ) ,

/ ? ( « , г ) ( 1  -  г / о ( т ) ) т о ( г ) ,  a ( t )  < r  < t 0 

-  y(r))m (r),a(<) < r  < T , 
0, 0 < т < a ( t ) ,

a(t) =  m ax[to,a(t)]. (47)

Let us introduce also the set

A(Y)  =  {(x ,y ,a ) £ X  x Y  x B\x = F(x,  y, a) ,g i(x ,  y, a) =  0}

and accept X  =  C[t0|T] x C[tQtT]}B  =  {a(<) G C[tO(T]|0 < a(<) < T }.
Following [16], as a control space У we shall consider the space U of 

ordinary (Lebesgue measurable) controlling у functions: [to,T] —► R  and 
V that of generalized controlling functions <7 representing functions of the 
time with the values of the set of measures. Respectively let us determine 
the admissible sets of control values

R'(i) =  [ym\n( t ) , l ] c R ,

the control functions

u ' =  { y e  U\y(t) e  R '(t)}

and the generalized control functions

V* =  { a  e  V\a(R*(t)) =  1} .

Following [16] we shall call:
(i) the point (x ,y ,a) E H{U*) as a minimizing {/-solution of the 

problem if it minimizes the function go on the set A(U)\



519

(ii) the sequence (x j}y jtaj)  in H(U) as an approximate minimizing 
[/-solution if

lim g i ( x j , y j , a j )  = 0,
lim gt(x} ,yf ,a f ) <  lim inf g0(xj t y j ,a , ) ;

(iii) the point (x }<r,a) £ H(V*) as a minimizing generalized solution 
if it minimizes the function go on the set A (V ).

The state equation (45) is substituted by [16]

x =  F ( x }a, a) =  f  dr f  /[t,r,x(r),r,a(*)]<7(r)(<fr) (49) 
Jo J r *(t)

under transition from ordinary controls у £ U to the generalized controls
<r e v .

The physical sense of the substitution consists in that for every t , r ,x  
and a we calculate not a function itself but its mean value by r £ R*(t) 
and here < t ( t )  determines what kinds of values r and of what weight are 
involved in averaging.

2°. Let us prove the existence of a generalized solution of the problem 
(41)-(47). Let V С R  x R  and let V be the set of values for a state variable 
x under у £ R* and a £ B. There are the following facts:

(i) on the strength of continuity and monotonicity of the operator in 
a state equation (45) the set V is bounded and closed;

(ii) the set В  is compact;
(iii) the function g = (yo, <7i) : X  x V* x В  —► R  x R  is continuous;
(iv) the set A(V) ф 0(by virtue of ymin (0  < 1> t €  [*o.TD- 

Furthermore, the following properties of the function /(/ь/з) are true:

/ : [t0,7 ] x [0 ,T\ x V x R * x B —> R x R }

(i) f  is continuous over t under (t,z ,y ,a ) £ [0,7*] x V x R m x B\
(ii) / is continuous on (x,y ,a) under (t , r ) £ [totT] x [0,7*];
(iii) f  has discontinuity under r  = a(<) but it is measurable by r  under 

(*,ж,у,а) £ [t0,T] x V x R' x B\
(iv) there exists <p : [0,7^ —► R  x R  such that

sup |/(-,r,-, v)| < ^(r )»r  € t0»^] •
[t0,T]x У х Я * х В
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Thus all the conditions of Theorem V II.I.l from [16] have been realized 
and hence the problem (41)-(47) has the minimizing generalized solution 
(x,<r,a) E V  x V* x B.

3°. Let us prove the existence of the ordinary solution у on the set 
of measurable functions for the problem (41)-(47). Indeed there are the 
following properties of the problem:

(i) g(x,cr,a) =  ^(z,a), <?(x,a) : X  x В  —► R  x R  for all (x,<r,a) E 
X x V ' x B ]

(ii) the set R*(r)  is closed for all r  £ [0, T\\
(iii) the set of functions ip(r) =  /(•, т, x, г ,а ) }ф : R  —► L̂ to Tj

makes up a convex subset {^ (Г)1Г £ Я ф(т)} *п the space of measurable 
functions [to,T] —* R x  R (it follows from the formula (47)) under any fixed 
(r ,x ,a )  E [0}T\ x V X B.  Thus for the problem (41)-(47) the theorem 
VII.I.4 is valid on the strength of which the problem under consideration 
has the minimizing U-solution (x,y, a).

4.2. A problem solution structure investigation
The first essential result on the properties of solutions of the problem

3.1 has been obtained by V. M. Glushkov and V. V. Ivanov (see [3]) and 
consisted qualitatively in that for “small” T —to the desired y(t) is minimally 
possible (y(t) = ym\n(t) by virtue of the restriction > 0) but for “large” 
T  — to the desired y(t) may differ from the minimally possible on the larger 
initial part of the segment [t0) T\ and only on the smaller final part of [to,T] 
the desired y(t) is minimally possible. The notions “small” and “large” 
depend on the values of functions a  and /?, namely, the greater the functions 
in question, the nearer to to is the boundary between “small” and “large” 
segments. The obtained result was in essense an implication of the fact that 
for “large” T  — to & growth of m (r)[l — y(r)] overtakes a diminution of 1 — 
y(r). The result has obtained, in the sequel, the important qualitative very 
general interpretation: the record of an external function for any DS can 
be obtained only under conditions of its sufficiently comfortable guarantee, 
that is, under very significant fraction of resources sent to internal needs of 
DS.

The solution structure of the problem 3.1 and other optimization prob
lems has been investigated in detail mainly by Ju. P. Jacenko. Let us refer 
to the appropriate results below without proofs (detailed proofs can be 
found in [17]).
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Lem m a [3], [17]. The variation of Lagrange function for the optimal 
control problem 3.1 has the form

f T fSL- J t I - j, (“(<'T)^i(T) + ̂ (<.T)]drm(<)^(0 + [V,i(<)

x a(t, a(t))y(a(t)) -  /?((, a(<))[l -  y(a(<))] +  lfe(*)]m(e(0 )e<*(0 |л  .

(50)
where 6y and Sa are variations of independent variables у and а, фi and ф2 
satisfy the equation

гйГЧ Ъ
V-lO) =  / {<*(<, т)у{1)х1ч(т) +  ф2(т) -  P(t,r)[  1 -  y(t)]} dT ,

(51)
— _  f  a_1W. t o < t < o ( T ) ,

-  u  а(т) < t < T .

The following results are obtained, in particular, in [3], [17] on the 
basis of (50) and (51).

Theorem  6. There exists the instant 0,to < в < T  such that 1[у(ут1Л) 
<) < 0 under t E (0,T)  and y*(t) =  ymm(*)- If # > <o then the segment 
[<o, 0] consists of subintervals, on the every one of them either 
and y*(t) =  1 or riy(y*,t) < 0 and y*(t) =  ymm(t) or I'ly(y* ,t) =  0 and 
У тт(0  < У*(0 < 1> an<l here, all of these cases are possible depending on 
the given functions of the problem.

The more refined results can be obtained in the special cases [17]

A. /?(t, r) =  K(t)a(t, t) (then фх(1) =  - K ( t ) )  (52)

B. It is known a priori that

a*(T) < t0 (then a_1(f) =  T  and у(а(т)) =  Уо(а(т))) . (53)

Theorem  7. For the problem 3.1 in the cases (52) and (53) there exists 
the “best” function a(t),t € [^о,^ such that /iy(<M) =  0,* € [*о>0]»*о < 
в < T  and /(у(М ) < 0,* £ (0tT). Depending on the values of a disagree
ment

Aa =  |a(*o) -  a(*o)l > =  I5'(*o) “  «Ч*о)|
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and a length of the planning interval T  — to , the problem solutions a(<) and 
y(t) can have the following behaviour variants:

( i )  3 / ( 0  =  2/min(0>* £  [ « 0 . П ;

(ii) y(t)
t £ [<o,n],a(0 does not intersect a(t) 

2/min(0> * ^ [*1 » i

(iii) y(t) = {  l ' t e  ^ . - i . f i ) , ____ (54)
I  2/min(0« < €  ( n , n + l ) , l  =  l,N,To = t 0)TN =  T ,  

a(t) intersects a(<) N times, N > 1.

The case of unlimited quantity of switchings is possible.

4.3. On the uniqueness of solutions
The above mentioned investigation of the possible solutions structure 

for the problem 3.1 allows us to prove the uniqueness of its solution (in 
cases A and B). Since on the strength of previous theorem the problem 
solution a*,y*, and m* is determined by the function a, the uniqueness of 
solutions follows from that of a.

Theorem  8 [17]. If the conditions A and В are fulfilled, y m i n ( 0  <  

1,* G [to,?], a function 0  is monotonous by r  and a  and P  are slowly 
varying functions (i.e., arj,aj. and P'(t) <C 1), the problem 3.1 has the 
unique solution a * , y* and m *.

Theorem  9 [17]. If ymin(0 < M  € [to,T]} and it is known a pri
ori that a*(T) < t o  and (3(t}r)[ 1 -  t/o(r)] and a(<,r ) y o ( r )  are monotone 
increasing functions of r, the problem 3.1 has the unique solution.

In the case when /?(*, r) is not a monotone function of r  in [3], [17] the 
instance of the nonuniqueness of solution for the problem 3.1 is constructed.

Theorem  10 (on a highway) [17]. Let the following conditions
(i) p(r)  =  bT,b > 1 or /?(т) = t \ s  > 0;

(ii) is a rapidly enough decreasing function of t
be fulfilled. Then for the problem 3.1 there exists the “best” function a(t) 
( “highway”) and also for any в > to there exists T(9) such that for all 
T  > T(0) the behaviour of a(<) does not depend on the values T  — to 
on the segment [<O)0] and is determined only by functions /3 and a. In
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addition the problem 3.1 solution a*(<) -► a(t) under T ,tyT  -  t -*  oo if 
0 < ym\n{t) < y*(t) < 1.

5. On N um erical M ethods DS Simulation and Appropriate 
Software and Applications

One can draw information on numerical methods for simulation of 
DS in [4], [5], [9], [11]. Taking into account the great “stiffness” of the 
corresponding systems of Volterra-type equations in the sense of the great 
magnitude

max[a(T -  *0), P(T -  *0)]

it has been necessary to construct and apply the so-called optimal, in accu
racy and the number of the necessary basic computer operations, algorithms 
for their solution. On the strength of significant complexity of the desired 
optimal controls structure it has been necessary to develop the so-called 
adaptive algorithms of optimization [11].

The appropriate software is contained in [7], [13]. The peculiarity of 
this software consists in that the so-called estimating subroutines are fre
quently contained in it, side by side with the ordinary solving subroutines. 
The former subroutines estimate the number of the necessary basic opera
tions, the required computer memory capacity and different kinds of errors 
accompanying a process of the applied problems solution on a computer, 
namely, the errors due to input data inaccuracy and incompleteness, inac
curacy of approximate methods and round-of-errors during realization of 
the corresponding algorithms on a computer.

Among various possible numerous applications we dwell briefly on 
those stated in [6], [8] and [10].

Along with m.m. of the economy and biosphere two other bonds are 
introduced as well in [6]: what a human being takes from the nature and 
what he gives it in return. As a result, the interconnected m.m. of DS, 
namely, the mathematical model of human activities and biosphere which 
was defined and investigated by academician V. I. Vernadsky as noosphere, 
was obtained. A qualitative and numerical investigation of this m.m. re
sulted in the following conclusions:

1. The volume of consumption c(T) cannot be preassigned if natural 
resources remain limited.
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2. There are critical fractions of a living, bio-boned substance and hu
mus of biosphere consumed by human beings, the exceeding of which results 
in irreproducible losses during a process of bio-geo-chemical circulation of 
substances in a biosphere.

3. The similar result will take place if a fraction of a solar energy 
utilized by human beings exceeds also a certain threshold.

4. Even insignificant harmful anthropogenic effects on biosphere (in 
the form of out-of-date products of human activity G(<)) can serve as a 
motive of significant disasters in ecology.

5. On the other hand, on the strength of the laws of nature, just a 
component G(t), which turns into a certain fraction of natural resources, 
can serve, due to human intellect, as a source for a noosphere prosperity 
with unlimited growth of its resources.

The analysis of mathematical model [8] for the immune network of 
an AIDS patient leads to the new probable immunological methods of the 
struggle with HIV consisting in a creation of conditions for the extreme 
possible tolerance to the component of m(*)-type and simultaneously for 
the maximum possible aggressiveness to the component of c(t)-type for the 
whole population of HIV as DS in the human organism.

The mathematical model [8] is based on the very complicated and per
fect m.m. of an immune network which have been developed earlier in [10]. 
One of the implications of a tendency to the construction of the more pre
cise m.m. of an immune network was the fact that the desired m.m. turns 
out to be not differential but integro-differential ones. A qualitative and a 
numerical investigation of m.m. [10] resulted in its subsequent refinement 
in the article [8].
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ON C O N TIN U O U S SO LU TIO N S OF TH E EQUATION 
OF IN V A R IA N T C U RV ES

W itold Jarczyk

Given a transform

T {x ,y )  = (f ( z ,y ) ,g (x ,y ))

of the real plane one can ask about curves which are invariant under T, 
that is curves С  satisfying the condition T (C ) С С. If С is the graph of 
a function, say (p, the fact that С  is invariant under T  means analytically 
that (p is a solution of the equation

( E ) ¥ > (*))) =  f f ( * .  ¥> (*)) •

Equation (E) has been extensively studied by many authors (cf., for in
stance, Hadamard [2], Lattes [4] and Montel [5]). It is also the main subject 
of Chapter XIV of the monograph [3] by M. Kuczma, where the reader can 
find many further references concerning Eq. (E).

The approach to Eq. (E) presented here is an extension of some ideas 
used by J .  Dhombres in the study of the equation

(D) (p(x +  <p(x)) =  c<p(x)

being a special case of (E) (see [1, Ch. 6, Sc. 2]). Theorem 1 below is 
a general result from which we shall derive two theorems concerning the 
equation

(A) <p(x +  <p{x)) ~ p(<p(x) ) .

527
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As a corollary we shall obtain the result of Dhombres [1, Theorem 6.4].
To begin with we are going to prove the following fact.

Lemma. Let I  be a real interval and let h : I  —► I  be a continuous 
function satisfying the condition

if x G I , n G IN and hn+l(x) = hn(x) then h(x) =  x .

Assume that for every x e  I  the sequence (hn(x) : n G IN) converges in I. 
If the function H : I  —► J, given by

H(x)  = lim hn(x) ,
n —*oo

is continuous then there exist a G [—oo,-|-oo) and b G (—oo,4-oo] such that 
a < b and

а, i G / n f - o o . a ) ,
H(x) — < x t iG/ f l [a , t ] ,

б, x G /  П (b, + oo) .

Proof. Since 

we have 

Thus

hn о h =  hn + l , n G IN 

H o h  =  H . (i)

H o  hn =  H ,  nglN,  

whence, by the continuity of Я,

H o H  =  H .

Therefore X  = H(I)  is an interval which is a closed subset of I  and

H(x) = x , x e x .

Put a = infX and b = supA\ Assume that b < sup I  and suppose 
that H(x) ф b for an x G I П (6, +oo). Then H(x)  < b and, in particular,
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а <  b. Thus, by the equality tf  (6) =  6 and the continuity of Я , we can find 
an x 0 E (6, +oo) with the property

я ( * 0) е ( « , б ) .

Choose a number n E IN in such a manner that Лп(хо), Лп+1(хо) E (a,b). 
Then, on account of (1),  (E ) and again (1),  we have

Л"+1(*о) =  Я (  An+1(*o )) =  Я (Л п( г 0)) =  A "(*0) •

By the assumptions this means that Л(хо) =  xo, i.e., # (x o ) =  xo, whence 
x o E X  which is impossible. Consequently,

t f  (x ) =  6 , x E /  П (6, + o o ) .

Similarly, if a >  inf I  then

# ( x )  =  a , х £ / П ( —oo, a) ,

which completes the proof.

Let us consider the following hypothesis.
(H) I  and J  are real intervals, 0 E J .  The functions /  : I  x J  —► I  and 
g : I  x J  —► J  are continuous and satisfy the conditions

/ ( x ,  y) =  x iff у =  0 , x E / ,  у E J  , (2)

g(x, у) =  0 iff у =  0 , x E / ,  у E J  . (3)

Given functions /  and g such that hypothesis (H) holds, put 

F i ( x , y)  =  / ( x , y )  and Gi ( x , y)  =  g(x,y ) ,

Fn+ i(x , y) =  /C Fn(* , У), <?n(x, y))

and

Gn+1(x,y) = ff(Fn(i ,y ) ,G n(j;,!/))

for every n E IN and x £ I ,y  €  J .
Our main result reads as follows.

Theorem  1. Let hypothesis (H) hold and assume that for every 
( x , y)  E I  x J  the sequence (F n(x ,y )  : n E IN) converges in I  and the 
function F  : I  x J  —> I ,  given by

F (x ,y ) =  lim Fn(xj y ) ,
n —*OQ
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is invertible with respect to the second variable and continuous.
If <p : /  —► J  is a continuous solution of Eq. (E) then there exist 

a G [— o o ,4-oo) and b G ( —o o ,+ 00] satisfying the conditions

(i) a < * ,
(ii) if a G IR then for every i G / f l  ( —0 0 , a) there is а у G J  such that 

F (x ,y )  =  a, if b G IR then for every i G / f l  (6 , + 00 ) there is а 
у G J  such that F (x ,  y) =  6,

(iii) if a < b then

/(z ,F (z ,- ) -1 (a)) < a , i € / n  (—со, a ) ,

/ ( * . ^ ( * . - ) - 1 W )  S  *  e  I n  ( 6 , + 00)  ;

and
r F ( x ,  , i G / n  ( - 0 0 , a)  ,

y ? ( x ) =< 0 ,  x G /  П [a, 6] ,  (4)

k i ^ x ,* ) " 1^ )»  *  G /  П (б .+ о о ).

Conversely, for every a G [ -o o ,+ o o )  and 6 G ( —0 0 , 4-00] satisfying 
conditions (i)-(iii) the function <p : /  —► J  given by (4) is a continuous 
solution of Eq. (E).

Proof. Using (3) and a simple induction one can easily show that for 
every n G IN

G>»(x,y) = o iff y = o, x e i }y e J  
whence, on account of (2),

Fn+ i(x ,y )  =  Fn(x,y) iff у =  0 , x € l , y € J .  (5)

Since / ( x , 0 )  =  x for every x G / ,  it follows from (5) that

Fn(x, 0) =  x ,  x G / ,  

for every n G IN. Therefore ^ ( х , 0 )  =  x for every x G I ,  whence

^ ( х , у )  =  х iff y =  0 ,  x G J , l / G  J ,  (6 )

because of the invertibility of F  with respect to the second variable. An
other simple induction yields the condition

^n+i(x,y) =  ^п(/(х,у),0 (х ,у )),  x G 7,y G J ,
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F (x ,y )  = F ( f(x ,y ) ,g (x ,y ) ) ,  x e l . y e J .  (7)

Let (p : I  —► J  be a continuous solution of Eq. (E ). The function 
h : I  —* I ,  defined by

h(x) =  / ( * ,y > ( i ) ) ,  

is continuous. We shall show that for every n £  IN and x £ I

hn(x) =  F n(x,ip(x)) and f>(hn(x)) =  Gn(x,<p(z)). (8)

In the case n =  1 the first relation is clear and the second follows imme
diately from (E ). F ix  a positive integer n and assume (8) for all x £ I. 
Then

A"+‘ (x ) =  h(hn(x)) = f ( h n(x )M h " (* )))

=  f ( F n(x ,<p(x)),Gn(x,<p(x)))

=  F„+i{x,(fi(x))

and, in view of (E ),

р (Л "+1(* ) )  =  ^(Л (Л "(х))) =  g(hn(x),'p(h"(x)))

=  9(Fn(x > P(x))’ Gn(x,<p(x)))
=  Gn+i(x,ip(x))

for every x £  7, which proves (8) for n +  1.
If x £  7 ,n  £  IN and hn+1(x) =  hn(x) then, according to the first 

of conditions (8) and relation (5), we obtain <p(x) =  0 which, due to (2), 
means that

h(x) =  f(x ,  <p(x)) =  f(x , 0) =  x .

Consequently, the function h fulfils the assumptions of the Lemma.
By virtue of Lemma there exist a £  [— oo, +oo) and b £  ( —oo, +oo] 

such that a < b and

for every n 6  IN, so we have

' a ,  x £ I П (—oo, a) , 

F (x t<p(x)) =  < x , x E /  П [a, 6],

6, x E /  П (6, +oo) .
(9)
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If x G I  fl [a, 6] then, in view of (6), we have <p(x) =  0. Thus statements 
(i) and (ii) hold true and <p has form (4). To prove (iii) assume that a < b 
and fix a point x G I П (—oo,a). Making use of relations (E), (7) and (9) 
we have

F ( f (x , ip (x ) ) , ¥>(*))))

=  F(f(x,<p(x)),g(.x,<p( x)))
=  F(x,<p(x)) =  o ,

whence, by (4), (9) and the inequality a < 6,

f(x ,F (x , ■)~1(a)) =  f(x,<p(x)) < a.

Similarly, if x G I  П (b, +oo) then

/ ( * , * ■ ( * , - r l W ) > * -

Now fix any a G [—oo,+oo) and b G (—oo,-|-oo] satisfying conditions 
(i)-(iii) and define the function <p : I  —► J  by formula (4). Then (cf. (6)) 
equality (9) holds true. Clearly (p is continuous in the set I Q (a, 6).

Assume that a G IR and fix a point xo G / П (—oo,a]. Suppose that 
there exists a sequence (xn : n G IN) of points of I  such that lim xn =
xo, lim y?(xn) =  yo G cl I  and y0 Ф ¥>(xo). According to (9) we have

n  —► oo

lim F (x n,<p(xn)) = a .  (10)
n—» oo

The functions F (x ,-),x  G I,  are strictly monotonic. Assume, for instance, 
that F(xo, •) is strictly increasing (due to the continuity of F  this means 
that all functions F(x,  •) are strictly increasing) and yo > ^>(xo). In the re
maining cases the argument is quite similar. Fix a point y* G /П(<р(хо), yo)- 
The function F ( ,y*) is continuous and (cf. (9))

F {x 0)y*) > F (x 0i(p(xo)) =  a .

Thus there exist a number с > a and a positive number e such that

F (x ,y*) > c, x e / n ( x 0 - e , x 0 +  e).
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F ( x t y) > с , x £ I П (x0 -  e, x0 -I- £), у £ J  П (y* , + 00).

So, choosing a number no £ IN in such a way that xn 6 (zo — zo + e) and 
<p(xn) > у* for n > n0, we have

F (x n,(p(xn) ) >  c >  a ,  n > n 0 ,

which contradicts property (10). This proves that the function (p is contin
uous in the set I П (—00, a). Analogously one can show the continuity of ip 
in the set I П [bf + 00).

Finally we shall verify that (p is a solution of Eq. (E). At first let us 
consider the case a =  b. Then necessarily a £ IR. Moreover, due to (9),

F(x,<p(x)) =  a (11)

for every x £ I.  Fix ап x £ I.  Then, by virtue of (11) (used for x and then 
for f(x,ip(x)))  and (7), we get

F(f(x,<p(x)),<p(f(x,<p(x)))) = a
= F(x , <p(x)) =  F(f(x,<p(x)),g(z,<p(x)))

which, since F  is invertible with respect to the second variable, means that 
equality (E) is fulfilled.

Now assume that a < b. If x £ 7П (—00, a) then, according to (iii) and
(4), f(x,(p(x)) < a. Thus, by (9), relation (11) is satisfied by x as well as 
f(x,ip(x)).  Hence and by (7)

F(f(x,<p(x))} <p(f(x} <p{x))))
= ^ (x ,?>(*)) =  F (f(x ,(p (x ))}g(x}<p(x)))

and equality (E) holds true. If x £ 7 П (6, + 00) we proceed similarly. In the 
case x £ I П [a, b] it is enough to observe that (cf. (4)) <p(x) =  0, so, due to 
conditions (2) and (3),

Therefore, since the functions F (x , •), ж £  I , are increasing,

f ( x t <p(x)) =  x and g(x} <p(x)) =  0 =  <p(x)
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Now we shall apply Theorem 1 to Eq. (A).

Theorem  2. Let p : IR —► IR be a continuous function such that 

p(x) = 0 iff x = 0 , x G IR .

oo
Assume that for every x £ IR the series £2 P n ( x )  converges and the function

n=0
P+ : IR —* IR, given by

P+ (z) =

and (E) follows immediately. This completes the proof.

n = 0

is invertible and continuous.
If <p : IR —*► IR is a continuous solution of E q .  (A) then there exist 

a  G [—o o,+ oo ) and b G ( —oo,+oo] satisfying the conditions
(iv) a <  6,
(v) if a 6  IR then (0 ,+ o o ) С  P+(IR), if b G IR then ( —o o,0) С  P+(IR),
(vi) if —oo < a  < b then

p + \ x )  <  X ,  X G ( 0 , + o o ) , 

if a <  6 <  -f oo then

p ; \ x )  >  X ,  X G ( - 0 0 , 0 ) ;

and

' Р + Х(а -  x ) , x E ( o o ,a) ,

<p(x) -  < 0 ,  x €  IR П [a, 6], (12)
k P + l ( b - x ) t x G (6, + o o ) .

Conversely, for every a G [—o o,+ oo) and b G ( —oo,+oo] satisfying 
conditions (iv)-(vi) the function (p : IR —̂► IR given by (12) is a continuous 
solution of E q .  (A ).

Proof. Put / =  J  =  IR,

/(x ,j /)  =  x +  y and g(x,y) =  p(y),  x , y G  IR.
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Then hypothesis (H) is fulfilled. Moreover,

n - l

F n(x,y) =  x + Y ,̂Pk(y) and Gn( x , y ) = p n(y), 
k= 0

for every n £ IN and x, у £ IR, whence

F ( x }y) =  z +  P+(y), * , y £ l R .  (13)

In particular, F  is invertible with respect to the second variable and con
tinuous.

Let <p : IR -h► IR be a continuous solution of Eq. (A). Then, by virtue 
of Theorem 1, there exist a £ [—oo,+oo) and b £ (—oo,-f-oo] such that 
conditions (i)-(iii) and equality (4) hold. If a £ IR and x £ (0,+oo) then, 
by (ii) and (13), there is a у £ IR for which

( a  -  x )  +  P + (y )  =  a  ,

i.e., x =  P+(y). This means that (0,+oo) С P+(1R). Analogously one 
can check that (—oo,0) С P+(IR) provided 6 £ IR. Now assume that 
—oo < a < b and fix гш ж £ ( 0 ,+ o o ) .  Then, using (13) and (iii), we get

■f + Ч* )  =  (a -  * )  +  P+ ‘ (a -  (a -  x)) +  (x -  a)

=  (a -  * )  +  F(a -  x, )_1(a) +  (*  _  a)

=  /(a -  x ,F {a  -  x, -)_ l (a)) + (*  -  <0 
<  a  + (x — a )  = x .

Similarly we can verify that if a < b < +00  and x £ (—00,0) then Р^Г1(ж) > 
x. Equality (12) follows directly from (4) and (13).

The converse also can be proved by reduction to Theorem 1. Never
theless we present here some immediate argument.

Fix a £  [ - 00, + 00) and b £ ( - 00,+ 00] satisfying conditions (iv)-(vi) 
and define the function <p : IR —► IR by (12). Clearly <p is continuous. We 
shall check that (p is a solution of Eq. (A). It follows from the definition of 
P+ that

Р + Ш )  =  Р + ( х ) - х ,  I E E .  (14)

If a =  b then
tp(x) =  P + ^ a - s ) ,  z £ l R ,



536

■P+M* + ¥>(*))) =  a - x -  <p(x)

=  P+{<P(x)) -  f>{x) =  P+(p(f(x)))

for every x E IR, i.e., (A) holds. Now assume that a < b. If x < a then 

a — x E (0, +oo), so, by (12) and (vi),

x + <p(x) = x + P+ *(a — x) < x + (a — ж) =  a

whence, using (12) and (14), again we get (A). A similar argument can be 

used if x > b.

Also the next result is a consequence of Theorem 1 although the as

sumptions considered here are different from those imposed in Theorem 2.

Theorem 3. Let p be a homeomorphism mapping IR onto itself.
oo

Assume that for every x E IR the series P~n(x) converges and the
n=1

function P_ : IR —► IR, given by

p _ ( « )= £ > - » ( * ) ,  
n = l

is invertible and continuous.

If <p : IR —► IR is a continuous solution of Eq. (A) then there exist 

a E [—oo,-|-oo) and 6 E (~oo,+oo] satisfying the conditions

(vii) a < 6,

(viii) if a E IR then (-oo, 0) С P . (IR), if b E IR then (0, +oo) С P- (IR),

(ix) if —oo < a < b then

> x  , X  E ( oo, 0),

P~l (PZl (*)) < x > x G (0,+oo);

whence, on account of (14),

if a < b < +00 then

and



537

P Z l {x - a) , x E (—00, a) ,

0, x £ IR П [j , 6], (15)

< P l 1( x - b ) i x e ( b ,+  00).

<p(x) =

Conversely, for every a E [—00,+00) and b £ (—00, +00] satisfying 

conditions (vii)-(ix) the function <p : IR —♦ IR given by (15) is a continuous 

solution of Eq. (A).

Proof. It follows from the assumption that

lim p~n(x) =  0, x E IR,
n-*oo

whence, by the continuity ofp-1, we get p-1(0) =  0. Therefore

p(x) = 0 ifF s = 0, x E IR.

Let <p : IR —► IR be a continuous solution of Eq. (A). The functions 

h : IR —► IR and h* : IR —► IR, defined by

/i(x) =  x + y>(x) and Л*(х) = x — p_ 1(y>(x)), x £ l R ,  (16)

are continuous and, in view of (A),

^ (Л (х ))= р (^ х )) , x E IR. (17)

According to (17) we have

Л(г) - P ^ M H x )) )  =  h(x) - V>(x) =  x 

for every x E IR, i.e.,

h*(h(x)) =  x , x E IR , (18)

which implies the invertibility of h. So the function h is strictly monotonic 

and, consequently, there exist limits

и =  lim h(x) and v =  lim h(x) .
x — ♦ —  00 r — ► +OO
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If и £  IR then by (16) lim <p(x) =  +00 whence, by virtue of (17),
x—♦ ■—oo

|p(«)l = lim |vKb(z))l = lim |p(p(*))| = +00X—► — OO X—► — OO

which is impossible. Therefore it £  {—oo, +00} and, similarly, v £ {—00, 

+00}. Moreover, due to the monotonicity of h} we have и ф v. Thus, since 

the function h is continuous,

h(JR) =  IR .

Hence and from (18) we deduce that h* =  A"1. Therefore, by (17), we 

obtain

<p(h'(x)) =  p_1 (tp(h(h*(x)))) =  p~l ((p(x)) , x e  IR , 

which means that the function (p satisfies the equation 

(A*) 4>(x-p~ l (<p(x))) = p ~ 1(tp(z)).

Putting /  =  J  =  IR,

f(x,y) =  x-p~1(y) and g{x,y) = p~1(y), x,y e iR, 

we see that hypothesis (H) holds. Moreover,

n

Fr,(x,y) = x - '£ i p~t (y) and G„(i,y) = p~n(y) 
fc = 1

for every n £  IN and x, у £ IR and

F (x , y) =  x -  P_(y ) , x, у £  IR .

Applying Theorem 1 in a similar way as in the proof of Theorem 2 one 

can show that the function <p has form (15) with some a £  [—00, 4-00) and 

b £  (—00,4-00] satisfying (vii), (viii) and (ix).

Now fix any a £  [-00,4-00) and b £ (- 00, +00] satisfying conditions 

(vii)-(ix) and define <p by formula (15). Making use of Theorem 1 or pro

ceeding as in the proof of Theorem 2 we infer that (p is a continuous solution 

of Eq. (A*). Define h : IR -> IR and h* : IR —► IR by (16). Then we have

* € * ,  (19)
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for every x £  IR, whence

/i(/»*(x)) = x , z £ l R .  (20)

In particular, the function h* is invertible. Repeating the argument used 

in the first part of the proof one can show that

/T(IR) = IR .

Therefore, due to condition (20), h* =  h~l whence, by virtue of (19), we 

obtain

v(h(x)) = p(<p(h*(h(x)))) =  р ( ф ) ) , x e IR , 

and, consequently, (p satisfies Eq. (A).

Remark. In connection with Theorem 2 (as well as Theorem 3) it is 

desirable to know some simple conditions ensuring the convergence of the
oo

series pn(x) and the continuity of its sum. One of the possible answers
n = 0

to this problem is the following.

Let p : IR —► IR be a continuous function such that

0 < p(x)/x < 1, x e IR\{0} . (21)

If p has the continuous derivative in an interval [—<5, is positive), 0 < 

p'(0) < 1 and there exist positive numbers M  and fi such that

И * )- р '(0 )| < л /к Г , [-M L

(the latter condition is certainly fulfilled if p has the second derivative at
oo

zero) then the series pn(x) converges for every x £ IR and its sum is a
n=0

continuous function.

To see this fix u}v £ IR such that -oo < и < 0 < v < +oo and put 

5 =  p'(0). Since p'(0) > 0 we can assume that 6 is so small that the function 

p increases in [—6,6]. It follows from (21) that
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and

lim pn(x) = 0
n —»oo
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uniformly on the interval [ti,v]. Choose an n0 6 IN in such a way that

P n ° ( * ) e [ - M L  *  £  [ « , v ]  . ( 2 2 )

According to a result of G. Szekeres [6] (see also [3, Theorems 6.3 and 6.2]) 

the sequence (pn(x)/sn : n € IN) converges for every x £  [—6, <5] and its 

limit q : [—6,6] —* IR is a continuous (even of class C 1) function. Since the 

functions pn/ sn, n £  IN, increase in [-6,6] it follows that

lim pn(x)/sn =  q(x)
n—*00

uniformly in the set [-6,6]. Put

К  =  sup ?([-«, (5])

and let ni £ IN be such that

Ipn(x)/s" - }(l)| < 1 , X 6 [-M], n > " 1 •

Fix n >  no + n i and x £ [«,«]. Then, by (22), we have pn°(x) € [— Й] 

whence

0 < p " (x )= p "- n°(p"°(x))

< sn-n°(q(pno(x)) + 1 ) < ( K  + 1 )sn" n° .

OO

Since s £  (0,1) this means that the series Pn(x) converges uniformly in
n=0

[tx, v] and completes the proof.

Finally we shall find the form of all continuous solutions (p : IR —► IR 

of Eq. (D) where с £ IR\{—1,0,1}. This is the main part of Theorem 6.4 

from the book [1] by J. Dhombres. The special cases where с =  —1,0,1 

{considered also by Dhombres) are classical. If с =  — 1 then putting h(x) =  

x + (p(x) for every ж £ IR, we see that h is an involution, i.e., it satisfies the 

equation

h2(x) =  x .

The form of all such continuous functions is well knwon (cf. for instance [3, 

Theorems 15.3, 15.2 and Lemma 15.2]). In the case с — 0 the function (p 

satisfies Eq. (D) if and only if h is a solution of the equation of idempotence

h*(z) = h(x).
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The reader can easily observe that a continuous function h : IR —► IR 

satisfies this equation if and only if there exists an interval X  (maybe a 

singleton) such that h\x  is the identity function and /i(IR) = X . If с = 1 

Eq. (D) becomes the well-known Euler’s equation

y>(* + <p(x)) =  <p(z)

whose only continuous solutions defined in IR are constant functions (see

[7]).

The remaining cases are described in the following result.

Corollary. Assume that с G (0,+oo)\{l). A function <p : IR —► IR is 

a continuous solution of Eq. (D) if and only if there exist a G [-oo, +oo) 

and b G (—oo, +oo] such that a < b and

V>(z) =

(c- l)(*- a ) , z € (—oo,a),

0, i  6 Ю. П [a, 6],

(c- l)(z-6), i€(6,+oo).

(23)

Assume that с G (—oo, 0)\{—1}. A function <p : IR —► IR is a continuous 

solution of Eq. (D) if and only if either

<p(x) =  0, zG IR ,

or there exists an a G IR such that

(p(x) =  (c — l)(r  — a) , x E lR .  (24)

Proof. Assume that 0 < |c| < 1 and put 

p(x) =  cx , x G IR.

oo
Then the series pn(r) converges for every x G IR and

n=0

IR.

n=0
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Let (p : Ж —♦ IR be a continuous solution of Eq. (D). By Theorem 2 the 

function (p has form (23) with some a £  [—oo, +oo) and b £  (—oo, -foo] 

satisfying conditions (iv)-(vi). If, in addition, с is negative then, by (vi), 

either a =  — oo and 6 =  +oo or a = b £  IR, i.e., either (p is the zero function 

or (p is of form (24).

To see that all functions of form (23) satisfy (D) in the case с E (0,1) 

and all functions of form (24) are solutions of Eq. (D) provided с £  (—1,0) 

one can apply Theorem 2 or simply a direct calculation.

If |c| > 1 then we can proceed in a similar way recalling Theorem 3 

instead of Theorem 2.
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ABSTRACT

An object is expected to be located at a certain point in the 
plane. Its position coordinates are assumed to be independently 
normally distributed. In this setting a summary of an earlier analysis 
that gives an optimal searching procedure to maximize the probability 
of detecting the object at all times during a search using an imperfect 
detecting apparatus is succinctly provided. New to this paper are 
bounds for the existence of feasible solutions (searching procedures) 
to detect the object and their impact on an analysis to produce the 
optimal solution. The mathematical context of this paper is the 
minimization of a nonlinear function of several variables subject to 
linear constraints where both the number of variables to use as well 
as their values must- be determined.

1. Introduct ion

The mathematics in this paper deals with optimization and is 

explained in the context of an optimal searching procedure. We assume 

that an object (particle, vehicle) in the plane that is to be found 

follows a bivariate normal distribution in the independent variables 

x and y. As usual, their means and standard deviations are denoted 

11̂  and respectively. Of all regions in the plane with a

fixed probability of the object being within it, an ellipse centered at 

the origin and coaxial with the coordinate axes has the smallest area 

[5,p. 328]. In this paper to optimally search for the object in 

question, assuming that one searches only small regions sequentially, 

means to maximize the probability of locating the object at all times 

during the searching procedure. The actual object being pursued might 

be a satellite and the apparatus used to find it might be a radar with a 

well focused beam pulsing and scanning the sky, or the object might be
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a small tumor and the searching apparatus that of a laser gun which 

destroys with each firing a small amount of tissue as it is moved from 

position to position in the hunt for the tumor.

We assume that the apparatus used to carry out the search is not a 

perfect detector. In the case of the radar this means that the radar 

will not always say that it is seeing the satellite when it actually is, 

or in the case of the laser, that the laser will not always destroy the 

tumor even when it has it as its target. We do not assume, then, that 

the probability of detection on one pulse of the radar, PfDj), is 1.

To maximize the probability of finding the object, certain concentric, 

coaxial elliptical regions will be searched and some of them will be 

searched multiple times. A context involving the use of a radar to 

carry out the search and an accompanying analysis is more fully 

described in [3]. Some highlights of that mathematical analysis are 

presented in the remainder of this introduction.

The mathematical circumstance with which we deal becomes this. We

wish to minimize the nonlinear function
N

(1) A = - 2тгсг a Z In [1 - P(E )]
x y к = 1 k 

subject to the linear constraints

(2) P (A) = P(D1) [P(E1) + q P(E2) + ... + qk"T P (Er) + ...

+ qN *P(En )], where q = 1 - P(D^)

P(Ek) > 0, к = 1, 2, ... , N

where P(A) is the probability of acquisition, i.e., the probability of 

actually finding the object upon completion of the search—P(A) is a user 

input value. *s the probability that the vehicle exists in the kth

innermost ellipse in the family of concentric, coaxial ellipses to be 

searched; again see [3] for details. N denotes the total number of 

ellipses in the family of ellipses to be searched and also represents 

the maximum number of times any one ellipse is searched. Finally, Â . 

denotes the total area to be searched, where if a given region (always 

an ellipse) is searched twice, then its area is added in twice.

Mathematically interesting in this setting is the fact that both
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the number of ellipses to be used in the searching procedure as well as 

their sizes must be determined. Saying the latter in mathematical terms 

is to say that we wish to minimize a real valued function of several 

real variables by not only specifying the values of the variables but 

also the number of them that must be used.

In the earlier work [3] it is shown that the area of the kth 

ellipse, an arbitrary member of the family of elliptical regions to be 

searched to obtain a feasible solution, is

(3) A = 21Г О a  In [N P (D,) qk‘'/(l - P (A) - qN)J
к  X  У

where the Lagrange multiplier method and/or bordered Hessian can be 

employed to establish this result. By a feasible solution we mean a 

searching procedure which, when completed, yields the probability of 

acquisition, P(A), the input value.

2. Bounds for Feas ible Solut ions

In this section we establish four results. These are:

1. There is a smallest N for which there is a feasible 

solut ion.

2. There is a largest N for which there is a feasible 

solut ion.

3. The values of A^ decrease with increasing N if q < \/k.

**. The optimal solution occurs for the feasible solution

with the largest N when q < 1/4.

Lemma 2.1. There is a smallest N for which there is a feasible 

solution, and it is the smallest N for which

(h) I - P(A) - 4N > 0

Proof: To establish this claim all we need show is that

(5) N PCDj) qk_I/ (1 - P(A) - qN) > 1, к =* 1, 2, ... , N 

The numerator is smallest when к = N. Thus (5) holds when

(6) [I - P(A)]/qN_l < I - P(Di) + N P(Dj)

We observe that the left side is less than or equal to 1 because
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(7) I - P(A) - qN"' < 0 

since N is the smallest N for which

(8) 1 - P(A) - qN > 0

The right side is greater than or equal to 1; it equals I if N = 1.

Note that (5) remains true if N = 1. QED

Lemma 2.2. There is a largest N for which there is a feasible 

solut ion.

Proof. A^ becomes negative as N gets large since the numerator 

in the quotient in the logarithm in (3), when к = N, goes to zero by 

the nth term test appl ied to the convergent series

(9) E N qN' '

Feasible solutions exist only when A^, k =  1, 2, ... , N, are positive. 

Here, A^ is the area in the kth ellipse of the family of ellipses to be 

searched. QED

Lemma 2.3. For feasible solutions and q < ] A ,  the values of Â . 

are strictly monotonically decreasing as N increases.

Proof. In [3] we find that AT (given by (1) above) is also expressed

(10) A_ = 2тта a In [N P (D1) q^N l^ 2/(t - P(A) - qN )]N1 x у

Letting b^ be the quotient in the logarithm that is raised to the Nth 

power, we find that

(11) bN+|/bN < [{N+O/N] [q,/2l [I - P (A) - qN][l - P(A) - qN+lf ’

< [ (N + I)/N ][q l / 2 )

< 1  if q < 1 A

Hence, A^ is strictly monotonical ly decreasing under the given conditions. 

QED

We note that P(Di) > 0.75 is a practical range of probability of 

detection values.
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Lemma 2 .k , If 1 - P(Dj) < ]/k, then the optimal solution occurs 

for the largest N for which Â . > 0.

Proof. Lemma 2.k follows at once from Lemma 2.3 since Lemma 2.3 

tells us the area to be searched is smallest when N is largest. QED

There are other ways to formulate conditions for determining the 

value of N for which the optimal solution occurs. One can always 

compute (by computer methods) the total area to be searched for each 

feasible solution—we know there are finitely many feasible solutions 

as a result of the propositions proved above--and take the value of 

N to be the one that corresponds to the feasible solution for which 

the total search area Aj. is least-
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ON ANALYTIC PATHS

1. In many contexts a useful technical role is played by the intersection 

and composition properties of analytic curves. These questions seem to have 

been treated first in a complete and precise manner by Minda [2] and, as he 

has said, the statements and purported proofs of other authors are frequently 

vague or actually erroneous. Our present purpose is to show how, by 

reordering the material, a very significant technical simplification of the 

treatment of the primary results can be obtained.

2. Since our terminology is rather different from Minda's we will first give 

a summary of a number of definitions. There is no significant difference in 

working on a general Riemann surface or in the plane so to avoid unnecessarily 

pedantic phraseology we will assume that all entities lie in the plane.

Definition 1 . A path is a continuous function z(t), 0 < t < 1 . An 

open path is a continuous function z(t), 0 < t < 1 . A closed path is a 

path for which z(0) = z(l). An arc is the homeomorphic image of a closed
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segment. An open axe is the (1 ,1) continuous image of an open segment. Two 

paths z^t), z2(t) are said to be equivalent if there is a homeomorphism A(t) 

of the interval [0,1] onto itself (sensed) so that Zj(A(t)) = z2(t), 0 < t < 1, 

(This is evidently an equivalence relation.) A path z2(t) is said to be a 

subpath of Zj(t) if it equivalent to a path z ^ a,^ (t),

Zl(a,b)(t) = Zj(a + (b - a) t), 0 < a i  b < 1.

The set of points given by z(t), t 6 [0,1], is denoted by {z(t)}.

Definition 2. An analytic path z(t) is one for which there exists a 

domain A symmetric under reflection in the real axis, containing the segment 

[0, 1] and a function f(z) regular in A with f'(t) Ф 0, 0 < t < 1, with 

z(t) = f(t), 0 < t < 1 . An analytic closed path z(t) is one for which there 

exists a domain A containing |z| = 1, symmetric under reflection in this 

circumference and a function f(z) regular in A withf'(z) Ф 0,|z| = 1, 

with z(t) = f(e2nt), 0 < t < 1 .

Definition 3. A locally analytic path z(t) ;.s one for which for every t, 

0 < t < 1 , there is a neighborhood A of t symmetric in the real axis 

containing an open interval ( t ' , t " )  with t ' < t < t "  and a conformal 

mapping <p(z) of A onto a neighborhood = of z (t) such that z (t) =  p(t), 

t 6 (t 'jt7') П [0,1]. A locally analytic closed path z(t) is one for which for

every t, 0 < t < 1, there is a neighborhood A of e2rit symmetric in

2 j i t 1
| z | = 1 containing an open arc of that circumference with end points e , 

e2rit and a conformal mapping <p(z) of A onto a neighborhood = of z(t) 

such that z(t) =  p(e2lit), t = t* (mod 1), t* e (t',t")-

3. It is immediate that ад analytic path is locally analytic. The converse is
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essentially true.

Theorem 1 . *A /aca//y ana/y&c fiaM  id Ja <zn <zna/y/cc fia/A .

Let z(t) be a locally analytic path. Let T be the subset of (0,1] such

that, for r € T, z(°'r)(t) is equivalent to an analytic path. We have at once

that T is non-void and open relative to (0,1]. To see that it is closed

relative to (0, 1] we take t € (0,1] which is the limit of a sequence of values

{tn} in T. (Evidently we may assume tn < t.) Let =, <p be the

neighborhood and function of Definition 3. For p sufficiently small the image

С of |z —t| = p under ip will lie in = meeting {z(t)} in points z(tp,

z (t '7) with t ' < t < t ' ' .  We choose t so large that t ' < tn < t. 
v p ' p p n °  p n

There exists A as in Definition 1 with z^0, ^ (A (t)) =  z(t), an analytic 

path with corresponding domain and function A, f as in Definition 2. Let 

A_ 1 ( t 'p  = t. Let A6(a,b), 0 < a < b < 1 , denote the subset (defined for 

e > 0 sufficiently small) of A consisting of points within e of [a, b]. We 

choose t*, f  < t* < 1 , and e sufficiently small that f is univalent on 

Ae(t*,l) and f(Ae(t*,l)) lies inside С . For suitable <r, 0 < a < p, an arc 

on will provide a crosscut 0  of f(Ae(t*,l)) dividing this domain into 

subdomains A' and B' so that z(t*), z(l) lie in A 'and В ' is bounded 

by and a crosscut 7 of the inside of dividing the latter domain into 

subdomains B' and C '.‘ The image b of 0 under f -1 divides Af (0,l) 

into subdomains A, В with В = ^ ( B 7). The image с of 7 under <p 1
_j /

divides |z-t| < a into subdomains В, С with В = <p (B ),
_ _-j / ,

С = <p (C ). Then there exists a domain 2  symmetric in the real axis

and divided by crosscuts А, ц (also symmetric in the real axis) into
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subdomains ^  3 , tf for which there exist conformal mappings F of 

(0,1) onto ^ L l A u ^ a n d  Ф of | z—11 < <ronto ,#U/xUff(both 

possessing reflectional symmetry in the real axis) such that fF—1 = on

3 . This follows of course from the General Uniformization Theorem but from 

an expository point of view it is worth noting that is requires only the simplest 

step of blending of domains, see for example [1, pp. 98,99]. We can further 

assume that [0,1] lies in 2  with fF-*(0) = z(0), <j&~l (l) = z(t). Setting

f = fF- 1  on Ли 

f = on 3\}p U 

we obtain a regular function in 2  which provides an equivalent analytic

parametrization of z ^ ’^(t). Thus T is closed relative to (0,1] and 

T = (0,1].

The preceding proof can readily be modified to prove the corresponding 

result for closed paths.

Theorem l 7. /аса/ty anaty& cdatedfia/A& tputuz/orU/a an ana/y/cc

4. Theorem 2. z^(t), z2(t) & ana/y/ic fia /Ад . SfAm /Аогеa u  /им

I. J  A te an/у  fazde/y many tuz/ucd \, 6 itcA /A a/z^) — z2( t )  fa l

0 < t < 1. J n /А& cate Мг бей (z^t)}, {z2(t)}

common faun/d.

II. JAcfta/Ad z^(t), z2(t) Atz&ea сольтпап 6a^uz/A Jn  diut cate 

Z2(t) atedutya/Ad arfan ana/y/icfia/A .
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Suppose there is a sequence of distinct values {tj} such that 

z1(tj) = z2(tj), j =  1 ,2,... We can assume that the values tj converge to 

t* and that also tj converge to t|. There exist neighborhoods of Zj(t*), 

z2(t*) as in Definition 3 images of Л, A under conformal mappings <p, <p. In 

a neighborhood of t* <p~V  is a conformal mapping ф. In particular from a 

certain stage on the tj are distinct. Thus f*'(t*) is real and from the 

symmetry properties of y?, 4> is follows that i/> maps a segment on the real 

axis onto another such. Thus z^(t), z2(t) have a common subpath.

If we choose this subpath to be maximal it is seen at once that at least 

one of the corresponding intervals on [0, 1] for z^t) or z2(t) has an end point 

at 0 or 1 . Thus there are one, two, three, or four subpaths of z^(t), z2(t) 

which can be parametrized consecutively so as to obtain a path z(t) which 

has Zj(t), z2(t) as subpaths. Clearly this can be done so that z(t) is locally 

analytic and so analytic by Theorem 1 .

Analogues to Theorem 2 with one or both of z^(t), z2(t) closed 

analytic paths are readily formulated.
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STABILITY OF REACTION-DIFFUSION SYSTEM 

W IT H  SELF- AND CROSS-DISPERSION IN  

M ATHEM ATICAL ECOLOGY*

Xinhua Ji

In this paper, the effects of self and cross-dispersion on the global stability of 
interacting and dispersing species systems have been studied in homogeneous 

habitat and also in heterogeneous habitat which arises due to ecological and 
environmental factors. First, two and three species are to be studied, then a 

model of several species. It has been shown that for n-number species the sta
bility of the positive equilibrium state requires the dominance of self-dispersal 

of the species over the cross-dispersal in the way as da djj >(n!— 1) dijdji,iji 
j ; where da,djj are self-dispersion and djj ,dj{ are cross-dispersion.

Outline

1. Introduction

2. Mutualistic model of two species in homogeneous habitat

3. Stability of three species in homogeneous habitat
3.1. Mutualistic model
3.2. Competition model
3.3. Prey-predator model

4. Stability of several species in homogeneous habitat

5. Stability of several species in heterogeneous habitat

1. Introduction

We consider the dynamics of interacting and dispersing species, first 

in a one dimensional homogeneous habitat, then in heterogeneous habitat 

in which heterogeneity is due to ecological and environmental characteris

tics. The effects of environmental and ecological factors can be studied by 

dividing the habitat into p-number of patches (/*_! < x < к =  1, .. .  ,p)

Research supported by the National Natural Science Foundation of China
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such that the growth rate of the species, their interaction and dispersion 

coefficients are constant but different in different patches. In such a case 

the system governing the dynamics of several interacting and dispersing 

species in the Лг-th patch can be written as,

du<ik) =  / . « ( um  UM ) + A y '  d{k)du<i>:)
dt }> (Ul ...........> + d z f ^  '’ x ' ( i . i )

i =  1,... ,n;  к = 1,... ,p,

where * = 1,... , n; denote the density of the i-th species in the Ar-th 

patch. djP and djp(i ф j)  are self and cross-dispersion of the г-th species 

in the k-th patch respectively. In general, d\*\i ф j , may be positive, 

negative or zero depending upon the interaction between the species. If 

are thought of as the sum of two terms, then because of usual natural 

dispersal due to environmental/ecological factors, da may also be taken to 

be positive, negative or zero.

We first consider the cases of two and three species, then consider 

Lotka-Volterra mdoel of several species. By employing Liapunov function 

we have proved that the stability of the positive equilibrium state requires 

the dominance of self-dispersal of the species over the cross-dispersal in a 

way as dadjj > (n! - 1 )dijdjit i ф j ,  where diitdjj are self-dispersion and 

d{j}dji are cross-dispersion. A simple example shows that the equilibrium 

state may become unstable in the case when cross-dispersion coefficients 

dominate over self-dispersion.

2. M utualistic Model of Two Species in Homogeneous Habitat

In paper [4], J. B. Shukle, V. N. Pal and S. Gakkhar investigated 

the stability of competition model and prey-predator model of two species 

with self and cross-dispersion in a one dimensional heterogeneous habitat. 

Carrying on we consider first the following mutualistic model as

dui . 5 ( n  дщ du2\
—  =  « ,(*! - anUl + a12«2) + —  ( Д , —  + d i— j  , ^

du2 .. , . , d (  dui du2\
—  =  u2(b2 + аи щ - a22u2) + ^  {d2—  + D2- ^ j  , ^
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where 61, 62,0111012,021,022 are positive constants. £>i,jD2 are self-disper

sion, d\y d% are cross-dispersion.

The non-trivial positive equilibrium state (6 lf й2) for the systems (2.1) 

and (2 .2) can be obtained by solving

61 — antix + аи й2 =  0 ,

62 + 021«1 — 0221*2 =  0 .

Using the transformations

щ =  + ы ,t =  1,2 , 

the systems (2.1) and (2.2) can be written as

^  =  u l (-au v1 + a12«2) + A  + d l^  , (2.1)'

Ж  = U2(anVl ~a22Vv) + ' k i d2̂  + D2S f )  • (2‘2)'

which may be associted with the initial and boundary conditions as follows:

«i(*i 0) =  F i ( x ) , t =  1,2, (2.3) 

Vi(L, t) =  Vi(0, t) =  0, i =  1,2. (2.4)

The condition (2.3) shows the initial distributions of two species. By con

dition (2.4), we mean that the species densities are at equilibrium at the 

boundaries of the habitat.

We discuss the global stability of the systems (2.1)7 and (2.2)' with the 

conditions (2.3) and (2.4). To this end we consider the following Liapunov 

function E y as

e = l  Iй1 ft - iog (>+ £ ) ] +cu2 [a - iog 0  ■+ й ) ] } dx ■
(2.5)

where positive constant с is to be determined. Differentiating the function 

E  with respect to t along the solution of system (2.1)' and (2.2)' with 

conditions (2.3), (2.4) we get dE/dt, as

(2.6)
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P  = an v\ - (a12 + ca2i)v1v2 + ca22v\ (2.7)

and

where

(2.8)

By using Sylvester criterion for positive definiteness we have the following 

statement

(i) Set

r2=(  j 011 , - * ( « » - “ я ) У  
\ “ M®12 “  Cfl2l) ca22 J

Then P  is positive definite if and only if

det R2 > 0.

(ii) Set

с - (  D i u i / u l  5( d iu ! / u l  + cd2u 2/u l\

2 \ % (d iu i/u l + cd2u2/ u l )  cD 2u2/ u\ )  '

Then Q is positive definite if and only if

Di > 0 and det S2 > 0 (with u\ > 0, u2 > 0).

Theorem 1. Suppose D i > 0 and D2 > 0. If conditions

аца22 > ai2<*2i , (2.9)

D XD2 > did2 (2.10)

are satisfied, then the equilibrium state (tii, «2) is global stable in bounded 

region

A = {(tib U2) :0 <  «?<«.- < 17?,» =  1,2}
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Proof, (i) It can be seen that det R 2 >  0, iff

can a22 -  j ( a i2 + ca2i) 2 > 0. (2.11)

And (2.11) is equivalent to

g(c) =  c2a21 - 2(2an a22 - аи а21) + a\2 < 0 .

Let

Xi =  [2аца22 — Ol2a21 — ^ V an^22{dllO-22 — ai2«2l)j j a2l

and

x2 =  2̂ац а22 — <212^21 + 2>/аца22(аца22 “  <*12^21 > ] /  а21 ♦

Under the condition (2.9) we see that

x2 > x\ > 0.

Thus we have that if (2.9) is satisfied, then

y(c) < 0 for Xi < с < x2 .

(ii) If dl 4- d2 ф 0, e.g. d2 ф 0, proceeding in a same manner as for (i), 

we get

(where u f ,^ 0 are positive constants).

У l

У2

_  ( {2D\D2 — d\d2) — 2y/D iD2(D iD 2 — d\d2)

'  « ( S )
_  f  ui\ & D xD 2 — d\d2) + D iD 2(D\D2 — d\d2)

=U) ^
Under the condition (2.10) we see that

У2 > 2/1 > 0
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which implies that if (2.10) is satisfied, then we have 

det S2 > 0 for 2/1 < с < y2

in the region

A =  {(t*i, «2) : ,i =  1,2} (2.12)

provided

(*1|*2)П(я,й) ф 0, (2.13)

where u° are the lower bounds and Uf are the upper bounds for щ, and 

are positive constants.

In case of d\ + d\ = 0, it is obvious that det S2 > 0 for any с > 0 in 

region A. Thus, (2.13) is satisfied naturally in this case.

Therefore we can conclude that dE/dt < 0. The equilibrium state 

(«1, U2) is global stable in region A. The proof of Theorem 1 is complete.

The condition (2.10) implies that the stability of the equilibrium state 

requires the dominance of self-dispersal of the species over the cross-dis- 

persal.

The assumption (2.13) expresses a relationship between the growth rate 

of the species, their interaction coefficients and their dispersion coefficients.

Therefore from Theorem 1 we have the following stable cases: Suppose 

D\ > 0, D 2 > 0, and ац а22 > 012021, under the hypothesis (2.13),

(1) dx =  0, d2 =  0,

(2) di = 0,d2 #0 ,

(3) <*i^0, <f2 =0 ,

(4) di < 0 }d2 >0 ,

(5) dY > 0, d2 < 0,

(6) di > 0, c?2 > 0, D 1D 2 > d\d2y

(7) d\ < 0, d2 < 0,JDiDa ^  ^1^2-

In any one of the above seven cases the equilibrium state (й^йг) is global 

stable in region A given by (2.12).

Next we consider unstability of this model. On linearising the system

(2.1)' and (2.2)', we get

дщ d (  dv1 dv2\
—  =  - “l l " ! " 1 + + fo  yD l~fa + d l~fa )  ’

(2.14)

dv2
—  =  a 2iU 2 V1 - 122U2V2 + A  (d2̂  + . (2.15)
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H = I Viv2dx .
Jo

Differentiating the function tf with respect to t along the solutions of sys

tems (2.14) and (2.15) with (2.3) and (2.4) we get dH/dt as

£  - j f V + e x .

where

P  = a2iu 2v\ - (оцйi + a22u2)viv2 + a i2Uiv2

and

By means of the same method as above we can draw the conclusion that 

in case of 012021 > ац а22) if d\d2 > D i D 2) then under certain conditions 

we have P  > 0 and Q > 0 which implies dH/dt > 0. That is to say, if the 

cross-dispersion dominates over the self-dispersion, the equilibrium state 

may become unstable and the species .may not survive.

3. Stability of Three Species in Homogeneous H ab ita t

3.1. Mutualistic model

For mutualistic model of three species a model of interaction function

is

/ i(u i,u 2,u3) = tii(^1 - A ll«l + Ol2«2 + a i3u3) ,

/ 2 ( ^ 1 , « 2 , « з )  =  ^ 2(^2 +  <*21u l  ~  <*22^2 +  ^ 23^ 3 ) >

/з(«1,«2, «з) = «з(Ьз 4- <*31̂ 1 + «32^2 — азз^з) •

The considered corresponding system in this section is

dv\ . d / _  dvi ■. dv2 j  Зуз\
-ft- -  « i(- e u « i + au v 2 + a13v3) + ^  + du - jg  + d13 dx )  .

(3.1)

We employ the following scalar function
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дУ2

~dt = «2(021^1 — (I22V2 -f a2 3V3) + ^  {^2 l~dx ^ 2~dx ’

(:

dv3 , s d f , dvi dv2 ^  6уз\
- f t  =  « з (а з т  + а32г, 2 - a33v3) + ^  ^ 3 1 ^  + d^  + D 3j ^  j

(3.2)

) '

(3.3)

associated with Initial conditions

uf(x,0) =  Fi(z), i =  1,2,3, 

and Boundary conditions

V i(L ,t )  =  V i(Q ,t) =  0, i =  1,2,3.

(3.4)

(3.5)

To discuss the global stability of systems (3.1), (3.2), (3.3) with conditions 

(3.4), (3.5) we consider the Liapunov function E  as follows

E = J  jx ^ c* Vi “ “*log (x+i^)

From (3.6) we get

dE [ь \ш n ( dyi dv2

~dt =  ~ Jo [p (v i’U2,,'3) + <3( ' a ^ ' ^

dv3
dx

dx

where

and

P(vi,V2, v3) = ^2  cj Qj j vj ~ 5 3  (c*a*'i +  cj aji)vivj 
i= i i,j=1

*Yi

^  (  “ *' J  , U J  J  I 5 v *'

+  1 2  ( C iu ? d» + C ju?  J i )  dx  dx  '
*,;= 1 
i/ j
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In the same way as in Sec. 2 we get

/  cian  -\(c2a21 - cxa12 -|(c3a31 - cxai3) \

R 3 =  “  5(^1012 — C2<l2i) C2022 — |(c3a32 — C2d23)

\ —|(ciai3 — c3a3i) —|(c2a23 — с3а3г) c3a33 /

and

 ̂ Jici-Di I  (j|c2rf2i + \ c3rf3x + ^Ci</13) ^

*̂ 3 =  2 ( u jc1̂ 12 + ^JC2<f2l) ^ C 2 D 2 \ ( ^ C 3 d3 2 + ^ C 2 d23)

 ̂2 ( ^ C ir f ia  + ^Jc3rf3i )  5 ( ^ 2^23 + сз^зг) ^ c 3D 3 ^

Corresponding to (i), (ii) in Sec. 2, we have the conditions (I) and (II) under

are positive definite respectively. They are:

(I) -P(vi, t>2> *>з) is positive definite if and only if

(1) det R2 > 0 and

(2) det R3 > 0

are valid simultaneously.

(II) Q(dv\ldx>dv2 ld x )dv3 /dx) is positive definite if and only if

(1) Dx > 0,

(2) det S2 > 0, and

(3) det S3 > 0

are valid simultaneously.

Theorem 2. Suppose D\ > 0,D 2 > 0 and D 3 > 0. If the conditions

which

aa ajj ^  4at'jd j i , i ф j  \ i, j  — 1,2,3 (3.7)

and

DiDj > Adijdji ,* ф j ; i j  =1 ,2 ,3 (3.8)
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are satisfied, then the equilibrium state (щ, «2, «3) is global stable in a 

bounded region, under certain hypothesis expressing a relationship between 

interaction coefficients and dispersion coefficients.

Proof. We first calculate det Я3,

det Я3 =С1С2Сзаца22взз — тс2а22(с1а13 + сзазг)2
4

— ^ c3a33(ci<ll2 + C2<l2i)2

— ^ с1аи (с2«23 + С3а32)2

— ^(cifli2 + C2a2i)(c2a23 + сзаз2)(сзаз1 + cia13) .

By means of the same method as in Sec. 2, from condition (3.7) we have 

the following estimate

схсгацагг > (ciai2 + C2<i2i )2 , (3.9)

С2Сза22<*33 > (c2a 23 + C3CI32)2 , (3.10)

сзсхаззаи > (c3a3i + схахз)2 , (311)

where ci,C2,03 are positive constants. Combining (3.9), (3.10) and (3.11) 

we get

С1С2Сзаца22азз > (ci<ii2 + c2a2i)(c2023 + сзаз2)(сзаз1 + схахз). (3.12)

Then from (3.9), (3.10), (3.11) and (3.12) we immediately obtain that there 

exist positive constants Ci,C2,C3 such that

det R3 > 0 ,

provided (3.7). From (3.7) we also have

аца22 > 4a12a2i > ai2a2i

which means that

det R 2 > 0

with с = ci/c2- Therefore we have the positive definiteness of P(v 1, t>2i V3). 

Thus (I) has been proved.
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Proceeding in a similar way we can also obtain (II). That is, if D\ > 

0, then there exist positive constants с1}с2,сз such that det S3 > 0 and 

det S2 > 0 with с =  Ci/c2 under the condition (3.8).

There are certain intervals which the positive constants ci/c2 and с2/сз 

belong to. They are

ci/c2 e (z j2, x\2) and c2/c3 € (x\3} x\3) (3.13)

where

T12 T12xl yx2
011^22 - 2ai2a2i =F \/аца22(аца22 — 4oi2a2i)

12

_23 23 _ 
X 1 ) x 2 -

_ Q22Q33 — 2Q23Q32 T \/д22Дзз(о22Азз ~ 4fl23Q32~)

23

(3.13) expresses a condition under which (I) is true. On the other hand 

from the omitted details of the proof of (II) we obtain

C1/C2 e (j/}2,S/22) and C2/C3 e (y|3,y i3) , (3.13’)

where

y l 2 y l 2 _  ^ ^ 1̂  ~ ^ UĈ21 ^  У̂ ^ ^ 2̂ 1̂ 2 ~ ^ 12<̂21)^

23 23 _ f  f  2 f  D 2 D 3  —  2 2̂3^32 T  х/^2̂ з(^ 2 ^ 3  ~ 4 2̂3 3̂2) ^
1 ’ 2 \U2 J U s /  \ <*23 )

in the bounded region

A =  {(«!, u2, u3) : u? < щ < U? , i 1,2,3} (3.14)

where u° and U f, i =  1,2,3, are bounded positive constants. So, the as- 

sumption corresponding to (2.13) is that

( x M ^ y ” ) * ®  (3.15)

and

(*?3,x l3) n  (yP .y i3) ^  0. (3.16)
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We thus have dE/dt < 0 in region A given by (3.14). Theorem 2 is therefore 

proved.

From Theorem 2 we have following twenty stable cases: Suppose D\ >

0,D 2 > 0,D3 > 0 and > 4atJai;-, i ф j] i , j  = 1,2,3, also under the

hypothesis (3.15)—(3.16),

(1) j =  0, i ф j ; t, j  =  1,2,3;

(2) dkj =  djk = dki = dik = 0, dijdji = 0 with d?- + d){ ф 0,

* Ф j  Ф = 1,2,3;
(3) dkj =  djk =  0, dkidik = 0 with d2ki + d2ik ф 0,

dtj d ji =  0 with d?- + d]{ ф 0, i ф j  ф k\ i, j, к =  1,2,3;

(4) d , ^  = 0 with d?. -f d]{ ф 0 }{ф j\ i , j  = 1,2,3.

(The cases (l)-(4) may be summarized as the case that М л  = 0.» # 

j ' , i , j  =  1,2,3, i.e., if we say dy and d;l- to be a pair, then the product of 

every pair of cross-dispersion coefficients of species vanishes.)

(5) dij =  dji =  djk = dfcj- = 0, dkidik < 0,

* Фз Ф к] i tj, к =  1,2,3;

(6) dy =  dji =  dyjt = d*, = 0, dkidik > 0 with DkDi > 4dkidikt 

гф j  Ф k\i j ,k=  1,2,3;

(7) dy =  dji =  0}djkdkj = 0 with d2kj + d]k ф 0, 

djkt'dtfc < 0, t ф j  ф k\ i}j , = 1,2, 3,

(8) dij =  dji =  0,djkdkj =  0 with d2jk + d2kj ф 0,

dkidik > 0 with D iDk 4.dikdki , i ф j  Ф k ,i}j,k  — 1,2,3,

(9) d^dji = 0 with d?- 4- dj{ ф 0, 

djkdkj = 0 with djk + d2kj ф 0, 

dikdki < 0, i ф j  ф k\ i , j y к — 1,2,3.

(10) dijdji =  0 with d?- + dj- /  0, 

djkdkj =  0 with d?fc + dj^ ^  0, 

dikdki > 0 with DiDk > 4dijkd*i ,

* ^  У Ф k ; i , j}k =  1,2,3.

(The cases (5)—(10) can be summarised as the case that dij dji =  0, djkdkj =

0, dkidik ф 0 with D kDi > 4dikdki t i.e., the product of only one pair of 

cross-dispersion coefficients of species does not vanish.)

(11) dij ~  dji — 0 , djkdkj <  0 , dkidik <  0, 

x ф j  ф к; i , j, к =  1,2,3;

(12) dij =  dji = 0, djkdkj < 0,

dkidik > 0 with DkDi > 4di*djti, 

i ф j  ф k\ i, j, к =  1,2,3;
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Proceeding in a similar way we can also obtain (II). That is, if D\ >

0 , then there exist positive constants Ci,C2,C3 such that det S3  > 0 and 

det S2 > 0 with с = ci/c2 under the condition (3.8).

There are certain intervals which the positive constants ci/c2 and с2/сз 

belong to. They are

(3.13) expresses a condition under which (I) is true. On the other hand 

from the omitted details of the proof of (II) we obtain

D 1D 2 — 2di2d2i >/£>i£>2(-Di£>2 — 4rfi2d2i j \

D 2D 3 ~ 2c?23<*32 T \/Р2Рз(Р2Рз — 4<*23̂ 32)

where and 17°, i = 1,2,3, are bounded positive constants. So, the as

sumption corresponding to (2.13) is that

C1 /C2 e  (x\2, x\2) and c2/c3 e (zj3, x%3) (3.13)

where

Ci/C2 e (з/Р,У22) and c2/c3 G (yl3, yj3) , (3.13’)

where

in the bounded region

A = {(ub «2, u3) : u? < щ < , i 1,2,3} (3.14)

( * M ) n ( s M ) # 0 (3.15)

and

( * ? ,« ? )  n t f » , , ? ) *  I . (3.16)
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We thus have d E / d t  <  0 in region A  given by (3 .14). Theorem 2 is therefore 
proved.

From Theorem 2 we have following twenty stable cases: Suppose D \  > 
0 } D 2 >  0, D 3 > 0 and a a a j j  > 4 atJat;-,i ф  j ; i yj  = 1, 2 , 3 , also under the 
hypothesis (3 .15)—(3 .16),

(1) d{j = 0, i ф j ; *, j  = 1,2,3;

(2) d k j  = d j k  = d k i  = dlJb = 0, d i j d j i  = 0 with d?- + d ] { ф  0, 
i ф j ф  k \ i , j } к  = 1,2,3;

(3 ) d k j  = d j k  =  0 , d k i d i k  =  0 with d 2k i + d 2i k  ф  0 ,
d i j d j i  = 0 with d?- + d ] { ф  0, i  ф  j  ф  k \  i , j ,  * = 1,2 ,3 ;

(4 ) d ^ d j i  = 0 with d?- + d ] { ф  0 , i  ф  j \ i , j  =  1 , 2 , 3 .

(The cases (l)-(4 ) may be summarized as the case that d i j d j i  =  0 , i ф  
j \  i ,  j  = 1 , 2 , 3 , i.e., if we say dy and d j i  to be a pair, then the product of 
every pair of cross-dispersion coefficients of species vanishes.)

(5 ) d i j  = d j i  —  d j k = d k j  —  0 , d k { d i k < 0 , 
i  Ф  j  Ф  k ]  i , j ,  к  = 1 ,2 ,3 ;

(6) d ^  = d j i  =  d j k = d k j  = 0, d k i d i k  > 0 with D k D i  > i d k i d i k )
i  Ф  j  Ф  k ' , i t j , k =  1 , 2 , 3 ;

(7 ) d ^  =  d j i  = 0 , d j k d k j  = 0 with d 2k j + d?* ^ 0 , 
d k i d i k <  0} i  Ф  j  ф  k \ i } j , k  = 1 , 2 , 3 ;

(8) d i j  =  d j i  =  0, d j k d k j  = 0 with d?fc + d .̂ ^ 0,
d k i d i k  > 0 with D i J D k  ^ '4 d|jfcdjfct*,t Ф  j  Ф  t k  = 1 , 2 , 3 ,

(9 ) dijdji = 0 with d?- + d?t- ф  0 , 
d j k d kj  = 0 with d 2j k  + d̂ - ^ 0,
d i k d k i < 0 , i ^ j  *> J i  k  = 3 .

(10) dydji = 0 with d?- + d?t- ^ 0, 
djtdtj = 0 with d ] k +  dĵ * ^ 0, 
d i k d k i  > 0 with D i D k  > 4 dijfcdjfci, 
г ф  j  Ф  k ; i , j , k =  1 , 2 , 3 .

(The cases (5 )-(10) can be summarised as the case that dy-dj,* = 0} d j k d k j  =
0 , d ^ d i k  ф  0 with D k D i  > 4 di*db-, i.e., the product of only one pair of 
cross-dispersion coefficients of species does not vanish.)

( 11) dij — dji — 0 , djkdkj <  0 , dkidik <  0 ,
* Ф  j  Ф  M J . *  = M . 3 ;

(12) dij = dji — 0, djkdkj < 0,

dfcidit > 0 with D k D i  > 4 dijtdjfci,
i  ф  j  ф  к ; fc = 1 ,2 ,3 ;
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(13) dij =  dji =  0,

djkdkj > 0 with DjDk > 4djkdkj ) 

dkidik > 0 with DiDk > 4dikdki,

* Фз Ф k\itj tk =  1,2,3;

(14) d^dji =  0 with dfj + dj{ ф 0,

djkdkj ^  О» d^dik < 0,г ф j  ф k\iyj}k =  1,2,3;

(15) d^dji =  0 with d2{j + d){ ф 0, 

djkdkj < 0,

dkidik > 0 with DkDi > 4dkidiki

i Ф j  Ф k\ijyk =  1,2,3;

(16) dijd ji =  0 with d2{j + d2-{ ф 0, 

djkdkj > 0 with DjDk > 4djkdkj, 

dkidik > 0 with DkDi > 4dkidikt

i Ф j Ф k;i,j}k = 1,2,3.

(The case (11)—(16) can be summarized as the case that there is only one 

pair of species, the product of whose cross-dispersion coefficients vanishes.)

(17) dijdji < 0 yi Ф j> к — 1,2,3;

(18) dijdji < 0, djkdkj < 0,

dkidik > 0 with DkDi > 4dikdki, 

i ф j ф k\ i}j} ̂  — 1,2,3;

(19) dijdji < 0,

djkdkj > 0 with DkDj > 4djkdkj} 

dikdki > 0 with DiDk > 4dikdki, 

i Ф j Ф k,i,j,k = 1,2,3;

(20) dkjdjk > 0 with DkDj > 4dkjdjk,k ф j\kyj  =  1, 2, 3.

(The cases (17)-(20) can be summarized as the case that there is only 

one pair of species, the product of whose cross-dispersion coefficients van

ishes.)

In any one of these twenty cases the equilibrium state (й1,й2>йз) is 

global stable in the bounded region A given by (3.14).

3.2. Competition model

For competition model of three species, a model of interacting function

is

/l(u i,tl2>1i3) = wl(bl “  allUl -  ° 12U2 -  fll3«3 ) , 

/2(^1, U2, из) = и 2{ Ь 2 -  a2lUl -  a22«2 -  023 3̂) ,

/з (« 1 ,г*2 ,«з) =  «з(Ьз -  fl3iUi -  a32i*2 -  азз«з) •



567

Processing and calculating in the same way as in Sec. 3.1, we get in this

C1<*11 2(ClGl2 + C2<221 2(^1013 + C3a3i)\

case

Rs = \(c l a l2  +  C2fl2 l) С2Я22 J(C2«23 +  ^ 32)

V |(c ia i3 + c3a3i) |(c2a23 + сза32) с3азз

and S3 is the same as for mutualistic model of three species. Omitting the 

proof we give a theorem on global stability of competition model of three 

species with self and cross-dispersion as follows

Theorem 3. Suppose Di > 0,(i = 1,2,3). If

diiCLjj >  3aij d ji

and

D iD j > Adijdji (3.17)

for i ф =  1,2,3, then the positive equilibrium state («1,1*2,«3) is

global stable in the bounded region A, under certain hypothesis expressing 

a relationship between interaction coefficients and dispersion coefficients 

similar to (3.15) and (3.16).

3.3. Prey-Predator model

For prey-predator model there are many different cases. Here in this 

section we only choose a model that is easy to deal with. Other different 

models can be dealt with in the same way.

The interacting function of the model is

' /1 =  « 1(^1 -  а ц « 1  ~  <*12^ 2) ,

* /2 =  u2 (—b2 + a2i« i — 022^2 — Дгз^з)» (3.18)

k /3 =  из(—Ьз + a32U2 — 033113),

whose matrix R 3 is

/  cian  |(ciai2 - c2a2i) 0 \

R3 =  I | ( c i a i 2  -  C 2 d 2 i)  c 2a 22 f  (c2<*23 -  сза32) j  .

\ 0 \(с2а2з - 03032) сзазз /



By calculating we know that in this case there always exist positive con

stants Ci,C2,C3 such that det #3 > 0. Therefore we have the following 

theorem.

Theorem 4. The positive equilibrium state of prey-predator model 

(3.18) with self and cross-dispersion is global stable if Di > 0, i =  1,2,3, 

and (3.17) is satisfied in the bounded region A under (3.13)'.

4. Stability of Several Species in Homogeneous Habitat

In this section we will show that the skill used to analyse the stability 

of two and three species in the preceding sections is effective to deal with 

the stability of system of n-number species.

For the Lotka-Volterra model of n species the interaction function is

The considered system with self and cross-dispersion is

(4.1)

i =  1,.. .  , n ,

associated with initial conditions

1>|(ж, 0) — E{(x) , i — 1, . . . , 72 , (4.2)

and boundary conditions

v,(0,t) = Vi(L,t) = 0, i s ! , . . .  ,n. (4.3)

To analyse the global stability of system (4.1) with conditions (4.2) and 

(4.3) we employ the Liapunov function E as follows,
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where c\,. . .  , cn are positive constants. Differentiating E with respect to t 

along the solutions of system (4.1) with conditions (4.2) and (4.3) we get

™  =  - j o [w W  + T F ( g ) ] d * ,

where

W(v) =  -v(CA + ATC)vT ,

* ( £ ) - ( £ )
V= (vU ... ,v„),

_  f  dyn \

dx \ dx ’ * dx )

С  = diag(ci,... ,cn),

5  =  diag ( c 1^ , . . . , c „ ^ | )  ,

A =
'lfl

Omitting the proof we have the following Theorem which furnishes 

a sufficient condition for global stability of the positive equilibrium state 

(ti i , . ..  , t2n) of system (4.1).

Theorem 5. If there exists a positive diagonal matrix С  =  diag(ci, 

. . .  , cn) such that matrix С  A + ATC  is negative definite and matrix BD  -f 

D TB  is positive definite simultaneously. The functions W(v) and W  ( f j )  

do not vanish along the solutions of the system (4.1). Then the positive 

equilibrium state (ti i , . . .  , tin) of system (4.1) is global stable in bounded 

region

Л = { ( « ь ... , u „ ) : u ? < t i i < t ? , i  = l .......n} (4.5)

(where it? and Uf are positive constants).

Based upon Theorem 5 we have the following Theorem which will also 

provide a sufficient condition for global stability to system (4.1).

Theorem 6. Suppose du > 0,a« < 0,i =  1,.. .  ,n. If the conditions 

aiiaj j  ^  (n ‘ — l) ai;ai* » * Ф j  ih J  =  lj * • • > n j (4-6)
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and

dudjj > (n! — 1 )d{jdji, i ф j  ; t, j  =  1, .. .  , n , (4.7)

are satisfied, then the positive equilibrium state щ =  (t£1}. . .  , йп) is global 

stable in region A given by (4.5) under the hypothesis

(* i >** ) П  (s'?-!#) #  M <  j ;  i , j  =  !>••• ,n ,  (4.8)

where

i j  tj __ d j j  XcLijdji  2 \ J d i i d j j ( f l j , d j j  \ d i j d j i }
*1 i x2 — Aa?.

ij i j _ { **i\ ( “ i  ^ (2dlt’d jj X d ijd ji) ^  2y /d iid jj(d iid jj Xdijdji'j

* • » ■ - [ £ )  U J  щ

with Л =  n! — 1.

A brief proof (for the details see the reference [5]):

det Л { С А  + АТС) = sgn<Trlff(1). . . r n<r(n) .

where
!/  ч •rn =  - C i d a  , r,j =  —-(сх-а,-;- + С; а;1) , г ф j  ,

and the sum runs over all n! permutations a of the n items {1,... ,n} and 

the “sign” of a permutation cr, sgn cr, is +1 or —1, according to whether 

the minimum number of transpositions necessary to achieve it starting from 

{1,2,... ,n} is even or odd. Thus,

det ~ { C A  + ATC

П П гн /  | \

= Y s  s®n<r Y .  П  П  ( “ o )  + ch a h S k )
a m-0 *=1 k,h=l ^ '

i&k&k k?h
n n j  n m

^  П  C,l — a**l ~  От П  C*la«l П  \cjk ajkjh +  cj h aj k j
*=1 a m—2 i= l k , h = l

k^h

From (4.6) we have
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which implies

n i г» m

det j —i(C>4 — j4tC)| > 0 .

Therefore we have proved that the matrix С  A -f ATC  is negative definite

provided (4.6) and a# < 0, i =  1,... , n. In the same way we can prove that 

B D  — DTВ  is positive definite if du > 0, i =  1,... , n, and (4.7) valid under 

the hypothesis (4.8) in the region A. The proof of Theorem 6 is finished.

5. Stability of Several Species in Heterogeneous Habitat

As mentioned in the beginning of this paper, in this case we divide the 

habitat into p-number of patches (/*_! < £ < / * ,&  = 1,2,... >P) such that 

the growth rate of the species, their interaction and dispersion coefficients 

are constant but different in different patches. In such a case the system of 

n species in the k-th patch can be written as

i — 1,... ,7i, к — 1,... }p .

The system (5.1) may be associated with the following initial conditions

=  Fi k\x)> 

F?\ h) =  F ? +1\h),
(5.2)

boundary conditions

(5.3)

matching conditions

r=h

(5.4)
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The condition (5.2) implies that the initial distributions of the species in 

different patches are continuous on the common boundaries, i.e., at the 

interface of the two patches. The conditions (5.4) prescribe the matching 

of species densities and fluxes across interfaces of the patches.

The employed Liapunov function is

E = t X - . { p ‘ [’ “  ■s!>>iog ( ‘ + $ ) ] } м

Differentiating E  with respect to t along system (5.1) with conditions

(5.2),(5.3),(5.4), we get

where

+ { A ^ )TC ) ^ k'>f , with Ф 0,

w (tt) = Ю  + ( f ) '  ■
dvW  

with Ф 0>

л ,,>- д а . » .  ■b < 4 ' № ) „ . ■

C  =  diag (ci........c„),

........с- ~ т )  ■

=  (•?> ........vW ) ,

dvW _  ( dv[k) dv™\ 

~ \ d x  ........ dx )dx

From the results obtained in Theorem 6 we have

Theorem 7. If the following conditions are satisfied for the positive 

integer Jk, к =  1,. . . ,p,

(1) <f> > 0, $><#> > (n! - 1 ) .} ? «У  , j  ф S ,

(2) < 0, >  (n! - , j  ф s ,
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where i tj , s =  1, .. . , n. Then the positive equilibrium state is global stable 

in a bounded region under a hypothesis similar to (4.8).
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PARAMETRICALLY ADDITIVE SUM FORM INFORMATION MEASURES 

PL. Kannappan and P.K. Sahoo

ABSTRACT

In this paper we seek the representation of a class of information mea

sures that possess the sum form and satisfy parametric (2,3)-additivity. The 

measures we obtain contain some well known information measures such as 

the Shannon’s entropy Hn(P) = — £ " =i p> logp,- and the entropy of degree /3 

H&(P) =  (21-̂  — l) _1(]Cr=iPf ~~ !)• This paper fills some gaps left out in [8,9].

1. INTRODUCTION

Let R be the set of all real numbers and let IQ be the unit open interval 

]0,1[. Let Г° = {P = (pi,p2,...,pn)|0 < Pk < 1, E L i P *  =  l ) and let Tn ~ 

{•P = (Р1,Р2,...,Рп)|0 < Pk < 1, £ £ =i Pk = 1} denote the closure of Г®. An 

information measure is & sequence of mapping /„ : Г® —► R(n = 2,3,...). If there 

exists a generating function f  : IQ —► R such that

j . ( p ) - £ / ( w )  p z n ,  (i-1)
»=i

then {/„} is said to have the sum form. A fundamental information measure is an 

information measure which possess the sum form. A brief survey of results related 

to fundamental information measures can be found in [1].
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In this sequel we study certain parametrically additive fundamental informa

tion measures, Jnt that is those {/„} satisfying

I,m(P * Q) =  h(P) + Im(Q) + A h(P )Im(Q) (1.2)

for all P e 17, Q € Г^, P * Q := (pi9i,P24i>-»«P*4i>-iPf9m) € Tfm and A € R. 

Moreover, if the sequence {/„} satisfies (1.1), we arrive at the functional equation

l m I m I m

E E f<*v) = E /(w)+E /(«) +A E /<*) E /(«*) (1Л) 
i= l  j - l  i= 1 >=1 «=1 i = l

where P 6 Г®, Q € and A € R.

The ftinctional equation (1.3) was solved in [3,6,7,11] under various regularity 

conditions and in [13] without any regularity condition. In all these cited papers

[3,6,7,11,13] the functional equation was solved with the use of О-probability and 1- 

probability, that is allowing P and Q to be in the closure of Г® and Г„, respectively. 

The use of these extreme values of the probabilities makes the functional equation 

(1.3) easily solvable. Also, the use of О-probability and 1-probability requires 

awkward definitions like 0  ̂ = 0, OlogO = 0. It is also apriori quite possible that 

there may exist solutions other than those on [0,1] restricted to ]0,1[ as shown in [2] 

for a fundamental equation of information. If the О-probability and 1-probability 

are excluded from the domain of (1.3), then the corresponding domain is referred 

to as open domain.

On open domain, the (Lebesgue) measurable solution of (1.3) with /, m > 3 

was given in [7,8] for Л ф 0 and in [4,15] for A = 0. The case when I = 2 and 

m = 3 was left out for А ф 0. We would like to point out that the general solution 

of (1.3) when /,m > 3 and А ф 0 is known [12]. When A = 0, the general solution 

of (1.3) with no regularity assumptions on /  is still an open problem. Here we find 

the measurable solution of (1.3) when / =  2, m = 3 and A € R, that is of the 

equation

E  E  /<««> = E  /си )+ E  / ( « ) +A E  /(?■) E  / (« )  (L4) 
i= l  j = l  t= l >=1 »=1 j =  1

for all p  e Г2, Q e Г5.



2. SOLUTION OF (1.3) ON Ic

The case A .= 0 is covered in [4] and the measurable solution is given by

/(p) = ap logp + bp + b (2.1)

where a and b are arbitrary constants.

Now we consider the case when Л ф 0. Then (1.4) reduces to

s(P'b) = 5Z s(p.) (2-2)
,=i j=i »=i j=i

where

$(p) := A/(p)+p. (2-3)

Lemma 1. Let g : I 0 R be measurable and satisfy (2.2) for all P  G TJ and 

Q E Г3. Then g is given by either

g(p) = pa (2*4)

or

g(p) = ap + b (2.5)

where a is an arbitrary constant and a and b are constants satisfying

(a + 6b) = (a + 26)(a + 36). (2.6)

Proof: Letting p2 = p, where p E J0, in (2.2), we obtain Y?j=i K<lj) = where

Кя) ■= Ы ря ) + s((l - p)q) - g(g)(g(p) + 9(1 - p))}- (2-7)

Then from [15], we obtain

g(p9) + $ ( ( i -  р)я) -  9(я){д(р) + p ( i -  p)} =  ~ 1] (2-8)

where ф : I0 —► R. Now for x G]0,1] we replace q by xq E I0 in (2.8) to obtain

g{xpq) + g(x( 1 - p)q) - g{xq){g(p) + g( 1 - p)} = ф(р)[3хд - 1]. (2.9)
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Similarly replacing q by x(l — q) € I 0 in (2.8) we get

s(zp(l-e)) +  ff(z (l-p )(l-j))-s (x (l-9 )){< /(p )+ 9 (l-p )} =  ^(p)[3z(l-g)-l]. 
(2.10)

Adding (2.9) to (2.10), we obtain

д(хря) + ff(*(l “  p)q) + 9(*P( 1 “  Я)) + 9(x(i  - p)(i - я))- 

~{д(хя) + g(x( 1 - 9))Ш (я) + р(1 - p)} = ф(р) [Зх - 2] (2.11)

for x E]0,1] and p, j  G J0. Putting x = 1 in (2.11) and using the symmetry of the 

left side of (3.12), we get

Ф(р) = Ф(я) — (constant). (2.12)

By (2.8) and (2.12), (2.11) becomes

д(хря) + у(*(1 - p)q) + <K*p(i - ?)) + g(x( l - p)(i - $))-

“ <?(*) {<?(p) + 0(1 —p)}{^(g) + g(l - q)} =  a0[3x - 2] + {^(p) + $(1 -p)} a0[3x -1].

(2.13)

Again using the symmetry of the left side in p and q, we have

a0[3x - 1 ]{g(p) + g( 1 - p)} = a0[3x - 1]{^(^) + g(l - $)} (2.14)

for all p, q £ I0. If a0 ф 0, then

g{p) + g( 1 - p) = Co (constant). (2.15)

Now (2.15) and (2.12) in (2.8) yields,

y(u) + y(u) = c0g(tt + v) + a0{3(u + v) - 1} (2.16)

with и = pq and v = (1 — p)g, which is a Pexider equation. Thus <j(p) = ap + 6, 

where a and b are constants. Letting g into (2.2) we get (2.6). Next suppose 

a0 =  0. Then (2.8) with (2.13) becomes

д(ря) + $((! - р)я) = д{я){д(р) + 0(1 - p)}- (2Л7)
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g(p) = pa (2.18)

where a is an arbitrary constant.

This completes the proof of Lemma 1.

Theorem 2. Let /  : I a -+• R be (Lebesgue) measurable and satisfy the functional 

equation (1.4) for all P G Tj, Q G П  A ^  0. Then /  is given by either

/(p) = e-t £  (219)

or

/(p) = ( ° - y  + 6 (2.20)

where a and b are constants satisfying (2.6). The constant a in (2.19) is an 

arbitrary real constant.

Proof: Follows from (2.3) and Lemma 1.

3. ADDITIVE FUNDAMENTAL INFORMATION MEASURES

In this section we display the form of all measurable sum form information 

measures that satisfy parametric (2,3)-additivity.

Theorem 3. Let I n : Г° —► R(n = 2,3,...) be an information measure possessing 

the (Lebesgue) measurable sum form, that is

/п(Р) = Е / Ы ,  P£ К (3 !)
fc=l

and satisfying parametric (2,3)-additivity, that is

h (P  * Q) = I2(P) + I3(Q) + A I2(P)h(Q) P  G Г|, Q G TJ.

The measurable solution of (2.17) can be obtained from [10,14] as

Then In is of the form

In (P ) =

( aH„(P) 5f A =  0 

\ья£(Р) i fA^O ,
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where a and b are arbitrary constants, and H„(P) = — 23?=i Pi l°gp« ^ d  H&(P) =
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NEAREST AND FARTHEST POINTS OF CLOSED SETS 

IN HYPERBOLIC SPACES

W. A. Kirk

ABSTRACT. It is shown that for a wide class of uniformly convex 
hyperbolic metric spaces, the set of points of the space which have a nearest 
point in a given closed set S is dense in the space. If S is also bounded 
the same is true of the set of points of the space which have a farthest point 
in S. The algorithm involved is essentially one devised by Edelstein for 
uniformly convex Banach spaces.

1. INTRODUCTION. In [11] the writer observed that Krasnoselskii’s iteration 

process for nonexpansive mappings extends from a Banach space setting to a much 

wider class of spaces —  the so-called metric spaces of ’hyperbolic type*. This 

class of spaces includes all normed linear spaces as well as the Hilbert ball endowed 

with the hyperbolic metric ([10], also see [9]) and the cartesian product of such 

Hilbert balls ([13]). Other examples are discussed by Reich and Shafrir in [16], 

who propose this class of spaces as an appropriate background for the study of 

nonlinear operator theory. We note in particular that investigations of hyperbolic 

metrics in spaces of more than one dimension originate with Caratheodory [5].

Our purpose here is to show that results of Edelstein [7, 8] on nearest and 

farthest points of closed sets in uniformly convex Banach spaces also extend to this 

wider setting. In doing so we show that these results are essentially ’geometric* in 

nature, requiring no additional underlying topological structure and only the linear 

structure associated with the hyperbolic nature of the metric. (Corresponding 

results in Banach spaces (cf., [1], [2], [14], [15]) are formulated either in reflexive 

spaces or involve weak compactness assumptions.)
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2. HYPERBOLIC METRIC SPACES. We suppose (X,/>) is a metric space 

containing a family of metric lines such that distinct points x,y e X lie on 

exactly one member <fx,y) of We shall use the symbol s[x,y] to denote the 

metric segment of /x,y) which joins x and y. For each t e [0,1] there is a 

unique point z in s[x,y] for which

p(x,z) = tp(x,y) and p(z,y) = (1 - t)p(x,y).

Adopting the notation of [9], we shall denote this point (1 — t)x ® ty.

We shall say that p is a metric of hyperbolic type if the following condition

holds:

p( be ® ly, ix ® !z) < \p{y,z)

for all x,y and z in X. Since this condition with strict inequality is an axiom of 

hyperbolic geometry (cf., [18]), if p is a metric of hyperbolic type we shall refer to 

(X,p) as a hyperbolic metric space.

The modulus of convexity 6 X * (0,a>) * (0,2] —»[0,1] of a hyperbolic

metric space (X,p) is defined by setting

sx(a.r.e) = inf{l - p(a,bc ® ly)/r>

where the infiraum is taken over all points x and у satisfying p(a,x) < r, p(a,y)

< г and p(x,y) > cr. If 6 is always positive, X is said to be uniformly convex.

Several examples of uniformly convex hyperbolic metric spaces are given in

[16]. In particular, the (infinite dimensional) Hilbert ball H is a uniformly 

convex hyperbolic metric space. (A precise formula for the modulus is given

in [9, p. 107].) The Hilbert ball, as well as all of the hyperbolic metric spaces 

alluded to in the Introduction, satisfy another assumption we shall need. 

Specifically, we shall assume the hyperbolic inequality is uniform in the following 

rather weak sense:
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(*) Given any bounded set S in X, for each e > 0 there exists e* > 0 such 

that if x,y,z 6 S and p(y,z) > c, then p(lx © ly, be ® !z) > e.

We shall also assume the that motions (surjective isometries) of X are 

transitive in the sense that given any two points x,y e X there exists a motion of 

X which maps x to y. The Hilbert ball satisfies this property as well ([9, p. 98]). 

This assumption effectively means that the modulus 6 no longer depends on the 

point a.

We shall use standard notation. In particular, the symbol B(a;r) will 

denote a closed ball centered at a € X with radius r. For a given space X we 

set 6 = 6^.

3. MAIN THEOREMS. The following theorems were originally formulated in a 

uniformly convex Banach space setting. The first is due to Edelstein [7] and the 

second, independently, to Edelstein [8] and Steckin [17]. (Steckin’s version of 

Theorem 2 asserts further that the complement of С2 is of the first category.)

Theorem 1. Suppose X is a uniformly convex hyperbolic metric space 

which is complete, has transitive motions, and satisfies (*). Let S be a nonempty 

closed and bounded subset of X and let

Cj = {с € X: 3 s € S such that p(c,s) = sup{/?(c,x): x € S}}.

Then Cj is dense in X.

Theorem 2. Suppose X is as above. Let S be a nonempty closed subset of 

M and let

C2 = {c € X: 3 s 6 S such that p(c,s) = inf{p(c,x): x € S}}.

Then C2 is dense in X.

We should mention that each of these theorems has been extended in 

Banach space settings. Asplund [1] has shown that if S is a bounded and closed
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subset of a reflexive locally uniformly convex Banach space, then the set of

points of X which have a farthest point in S contains a dense G^ set.

Subsequently, Lau [14] showed that if S is assumed to be weakly compact then 

the result follows if X is an arbitrary Banach space. Further extensions of 

Theorem 1 may be found in Zizler [19] and Deville-Zizler [6]. In [15, Theorem 10] 

Lau shows that in any reflexive space with Kadec—Klee norm, if К is a 

nonempty closed set then the set of points of X\K with a nearest point in К is 

of the second category. Since Konjagin [12, Theorem 9] has shown that if X is a 

Banach space which does not belong to this class then there exists a closed 

nonempty set К for which the set of points of X\K with nearest points in К is 

not dense, this class characterizes the density property for closed sets. (For related 

results, see Borwein [2] and Borwein and Giles [3].)

Our proofs will require the following:

Proposition 1. Let X be a uniformly convex hyperbolic space which 

transitive motions and satisfies (*), and let r and d be fixed positive numbers. 

Suppose с, с’ € X satisfy p(c,c’) = r. Then

(1) lim diam [B(c;d)n(X\B(c’;d+r-{))] = 0;
£--♦0

[2) lim diam [B(c;d-r+nn(X\B(c’;d))] = o.

Moreover, the convergence in (1) and (2) is uniform for all such c, c* lying in a 

bounded set.

Proof. Since (1) and (2) are equivalent (replace d in (1) with d+r-f 

and reverse the roles of с and c’) we shall only prove (1). The proof is by 

contradiction.

Suppose there exist e > 0, a sequence {£■} of positive numbers with fj 

—» 0, and sequences {^} and {c^} lying in a ball B(a;R) с X satisfying 

p(c.,c.*) = r for which diam(Sj) > e, where
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S. = B(ci ;d)n(X\B(ci>;d+r- î)).

Moreover, since X has transitive motions, we may assume с.’ = a 6 X. Next, for 

each i, let u-€ X satisfy

Cj E seg[a,Uj] and Xc^Uj) = d.

Then Uj € Sj, so by assumption there exists w. 6 S. for which p(uj,w.) > б/2. 

Select

h. e seg[a,w.] satisfying p(a,hj) = d. Since p (u- ,W j) > e/2 for all i the condition 

(*) implies that {h.} is bounded away from {c.}; thus there exists e} > 0 such 

that

/’(hj.Cj) > e’r-

Now observe that

lim [r + p(hi,wi)] = lim p(a,Wj) < r + d;
i — » cd i — 'ш

hence lim p(hj,w.) < d. Since lim p(c.,W|) < d, it follows that 
i—*00 i—

lim ® 2Ц) * d-
1-> (D

Since 6 =  6(a,r,c’) > 0  it is possible to choose tj >  0 so that 

(1 — tf)r + d + 77<k<r + d.

Also, since p(a,c.) = p(a,h.) = r, we have
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Thus for i sufficiently large

This clearly contradicts lim p(a,w.) = r 4- d.
i—> oo

We are now ready to prove the theorems. A reformulation of Proposition 1 

will facilitate the proofs.

Proposition 2. Let X be as in Proposition 1 and let S be a bounded subset 

of X. Then if c, d, and r are fixed positive numbers there exist f = f(6,d,r) > 0 

and

f  = {’(e,d,r) > 0 such that if c, c’ e S satisfy p(c,c’) = r, then

Proof of Theorem 1. Fix cQ € X and let dQ = s u p { p (C q ,x ) :  x  G S}. 

Clearly we may suppose dQ > 0. Let r 6 (O^q) be arbitrary and let {^} and

= ^(cpdQjrj) as in condition (1*) and choose xQ € S so that p(xq,Cq) > dQ - 

Now let Cj 6 X be chosen so that

(10

(20

diam[B(c;d)n(X\B(c’;d4-r-£))] < t; 

diam[B(c;d-r4-£)n(X\B(c,;d))] < e.

{fj} be sequences of positive numbers satisfying Er̂  < r and €• —» 0. Select

c0 6 segfCpXg] and p(cvcQ) = rp

set dx = sup{p(Cpx): x 6 S}, and let £2 = f(c2,dpr2). We Proceed ЬУ 

induction. Having defined сд, хд, and dn, with
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cn-l 6 seg[cn’xn—ll and ^(cn'cn-l) = rn'

dn = sup{p(cn,x): x 6 S}, and p(xn,cn) > d„ - £n+1 where (n+1 =

^ £n + l'V n + l)- set dn+l = suPW cn+i>x): x 6 S) where cn + leX ischosen 

so that

cn 6 se®tcn+l’xnl and ^°n+ l'Cn) = rn+l-

Since

dn+l i  ^ cn+l-xn) = rn+l + ^ cn'xn)-

and since the argument terminates if equality holds, we may suppose it is possible 

to choose xn+1 € S so that both the following hold:

<*> p(cn+l,xn+l) > dn+l - «П+2 and ^ cn+l'xn+l) > rn+l + ^ cn>xn)>

where ^n+2 = f (fn+2'dn+l,rn+2)‘ In Particular- for n > к the triangle 

inequality and the second inequality in (3) imply

n + 1

^ ck+l>xn+l) * ^ cn+l-xn+l) - I  ri > ^ ck+l-xk+l)'
i=k+2

Hence

^ ck+l’xn+l) > rk+l + ^ V k )  > rk+l + dk “  fk+1- 

Since clearly *n+1 6 B(c^;d^) for all k, we have for all n > k:
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xn+l € B(ck'dk)n(X\B(ck+l;dk + rk+l ^k+1^'

Therefore, if n, m > k, P(xn>xm) i  ^+ 1  proving that {xR} is a Cauchy 

sequence. Thus {xR} converges to a point s e S and, since P(cn+i>cn) = rn 

with Er| < г, {cn} is also Cauchy with limit с € В(с^;г). Clearly p(c,s) = 

sup{/?(c,x): x e S}, completing the proof.

Proof of Theorem 2. This proof is dual to that of of Theorem 1, using (2’) 

instead of (1*). Fix Cq € X and let dQ = inf{p(cQ,x): x € S}. Assume dg > 0

and let r€(0,d0) be arbitrary. As before, let {r.} and {c-} be sequences of

positive numbers satisfying Еь < r and e. —» 0. Select f j = f ’Cfpdg,^) as in

(2’) and choose Xq € S so that p(Cq,Xq) < dQ + f j. Now choose с  ̂€ seg[c0,x0]

satisfying /^CqjCj ) =  r^ let dj = inf{p(Cpx): x€ S}, and set

2̂ =  ^ £2,(̂ Гг2^ ^ ow suPPose cn» xn* an(* n̂ ^ave ^een defined wit^
Cn 6 seg[cn_ i.xn_ 1]. dn = inf{p(cn,x): x e SJ, and so that p{\,cn) < dn +

?>+l where

*A+1 = ^ fn+l>dn>rn+l^' Let cn+l 6 se6lcn'xnl satisfy ^ cn'cn+0 = rn+l 

and then set dn+1 = inf{p(cn+1,x): x € S}. Since

dn+l ^ ( cn+l-xJ  = ^ cn-xJ  - W

with the argument terminating if equality holds, it is possible to choose xn+ ̂  € S 

so that both the following hold:

^ n + l- W  < rn+l + <A+2 and ^ xn+l,cn+l) < ^ Cn-Xn)>
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where in+2 = f  ( 6n+2)Ĉn+l,rn+2^ Рг00̂  таУ now completed exactly as 

in Theorem 1.

Acknowledgment. Part of this work was done while the author was visiting the 

University of Milan. He wishes to thank Peter Kenderov for bringing much of the 

literature, and in particular [14], to his attention.
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ON CARATHEODORY’S THEORY OF DISCONTINUOUS EXTREMALS 

AND GENERALIZATIONS

Manfred Kracht and Erwin Kreyszig 

ABSTRACT

This paper concerns Caratheodory’s fundamental work 
in the calculus of variations, its origins (Secs. 1, 2), 
its basic ideas (Sec. 3) and their impact on modern 
work in optimal control (Sec. 4), minimal surfaces 

(Sec. 5), and functional analysis (Secs. 6, 7).

0. INTRODUCTION

Constantin Caratheodory (1873-1950) was born in Berlin, descending from 

an old and highly respected Greek family. He wrote his doctoral thesis while 

he studied at the University of Gottingen and had it published in 1904. This 

thesis “Uber die diskontinuierlichen Losungen in der Variationsrechnung” (On 

discontinuous solutions in the calculus of variations)8!’̂ 3-79 opened a long series 

of fundamental contributions to the calculus of variations, one of Caratheodory’s 

main fields of work.

In this paper we show that, whereas activity in the calculus of variations 

proper, as measured in terms of numbers of publications, has been decreasing for 

some time, the impact of the main ideas in the field has infiltrated, transformed, 

and fertilized various other areas. Selecting some important ones of the latter, 

we shall observe particularly ideas initially resulting from Caratheodory’s work, 

whose profound effects deserve to become known in more detail. A main theme 

to be considered is that of the reduction of differentiability assumptions, typical 

of a central trend in functional analysis and its application to partial differential
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equations. Another theme is the interrelation between the calculus of variations 

and functional analysis in general.

Other fields of Caratheodory’s work include complex analysis and measure 

and integration. Since we shall not deal with these, be it permitted that we add 

at least a few lines from a highly important, little known document5! ,226“229, the 

letter of application of October 1917 from Berlin University to the Minister of 

Education to appoint Caratheodory to a professorship, signed by E. Schmidt,

H.A. Schwarz, Schottky, Planck, and others:

Caratheodory succeeded in proving the Landau-Picard theorem in 

a surprisingly simple way, in shedding bright light on the mysterious 

character of this theorem [and] in making it substantially more precise 

... [His investigations give] a complete solution of the extremely difficult 

problem of the behavior of the boundary under conformal mapping of 

general regions ... All his papers in Analysis axe penetrated by the spirit 

of Geometry. [He] uses his extraordinary spatial imagination [“Rauman- 

schauunff1] as a most powerful tool ...”

It is this “spirit of Geometry” that we shall sense as the background of much of 

his work to be investigated here.

I. ON THE CLASSICAL BASIS OF CARATHEODORY’S WORK

In this section we characterize the development of those main ideas of the 

so-called classical theory of the calculus of variations that were most relevant as 

a basis of Caratheodory’s work. This theory was created stepwise by Euler, La

grange, and Jacobi, and completed by Weierstrass. We recall that in the simplest 

case, one is concerned with the extremization (minimization or maximization) of 

a functional (integral)

J[y}= F(x,y,y') dx, y(x0) = y0, y(x!) = yb X 0 < X i  (1.1) 
Jx 0

in a given class of functions, subject to the indicated boundary conditions. For 

any variational problem, the functions у in the domain of the functional satisfy

ing the additional conditions are called the admissible functions of the problem. 

Presently we assume that у € ^([xq,xi]).
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Early theory concerned necessary conditions for an extremal (solution у = 

y(x), solution curve of the problem). Then came sufficient conditions and fi

nally existence questions, the latter with some delay because problems arose 

from physics or geometry, where the existence of an extremal was “obvious”. Ex

istence was first treated by theorems on differential equations and later by “direct 

methods” (Sec. 2).

Johann Bernoulli gave the earliest impetus to the calculus of variations, 

in 1696, by posing the famous problem of the brachistochrone (curve of fastest 

descent): Find the curve

С : у = y(x) from Pq : (хо,Уо) to Pi : (xi,yi), yi > y0

in a vertical plane (with horizontal x-axis and downward у-axis) such that a mass 

particle, being initially at rest, slides down С  without friction in the shortest 

possible time; thus, minimize (1.1) with

Р(Х1У>У') =  M(1 + У'2)/{У ~ yo)]S к constant.

Caratheodory wrote two little known interesting critical articles в ] ю т . ю в —i 28 

on Bernoulli’s work in which he convincingly demonstrated that the work al

ready contained rudiments of ideas of Weierstrass on fields. He also discovered 

and developed an elegant extension of Bernoulli’s method to other problems 

(“Caratheodory’s method”, cf. Sec. 3).

The earliest general necessary condition for an extremal appeared in a paper 

by Euler of 1736 and again in Euler’s book of 1744, the first systematic treatment 

of the calculus of variations (from a modern viewpoint authoritatively commented 

on by Caratheodory8̂iV"'111-174): If у = y(x) is an extremal of (1.1) [of class 

C2([x0,*i])], it must satisfy the Euler-Lagrange equation

pv - = °. (i 2 )

written out,

Ру'у'У 4" Ру'уУ 4" Py'z Fy — 0.

This suggests to call (1.1) a regular problem when Fy>y> is never zero, and then 

to assume that Fviy> > 0. Equation (1.2) is obtained from

У = У + €»?} V € C2([io,xi]), T)(x0) =  j?(*i) =  0 (1.3)
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A remarkable claim of Caratheodory [I.e., 165] states that the famous Mau- 

pertuis’s principle of least action (i.e., minimize the action integral f  mv ds over 

the path; m =  mass, v =  speed, s = arc length) was the driving force (“der 

treibende Faktor”) of Euler’s work on the calculus of variations.

With the publication of his famous Memoir in 1760-1761, at the age of only

24, Lagrange became the main initiator of the theory of the calculus of variations. 

He is also the founder of analytical mechanics, which he related to the calculus 

of variations by deriving his equations of motion from the minimization of the 

action integral. A great advantage of his method over Euler’s is its extendibility 

to double integrals (to which he turned in 1760-61), triple integrals, etc., for 

instance, to the extremization of

J[A = J J F ( x yy,z,zZizy) dx dy (1.4)

and dJ[y]/de\e-o = 0 .

over a domain П in the xy-plane subject to given boundary conditions. The 

corresponding Euler-Lagrange equation is

* - £ л - | ^ = о; <ij>>
Lagrange also was the first to express the need for denoting the first variation 

by a special symbol 6, for which he gave rules of operation (but no definition). 

In modern terms, the first variation of у in (1.3) is

Sy =  67](x), (1.6)

and the first variation of the functional (1.1) is

SJ =  e ^ P l (=0 = + * W )  dx. (1.7)

The second variation of (1-1) is

Й ? 1 « = о  = j  j f V w ^  + a w + *•»'»•'/*)dx- (1-8)
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It was introduced by Legendre in 1786, formally motivated by Taylor’s theorem

J[y + erj] = J[y] +SJ + 62J, (1.9)

and conceptually by a beginning search for sufficient conditions for an extremal, 

by Legendre, Jacobi, and others, an evolution brought to completion by Weier

strass, whose work provided a basis for Caratheodory’s (see9!Preface). (In (1.9), 

the tilda means that the arguments are у + er), у1 + h}' with e € (0, б].)

In 1836, in a letter to Encke, Jacobi16b/vr»39-55 communicated a sufficient 

condition for a weak minimum of (1.1) (A. Kneser’s term17!»54), that is, a mini

mum when a family of admissible functions у satisfying

|y-y|<p (p > 0) (1.10)

as well as

|y'-y'l<p (1.11)

is considered a neighborhood of y. Sufficient for an extremal to give a weak 

minimum is [cf. (1.2)]

Fy.y' > 0 (1.12)

together with the so-called

Jacobi condition. The conjugate point of xo> defined as the smallest zero of 

a solution of

5* ( i?y/y' c îr) ”  ( ^ уу ~ ~itFyy'') w = ° ’ = ° ’ ^  ^  13̂

is greater than x\. Here w(x) = ду/дос\а=о and a =  0 corresponds to у in the 

family of extremals у = y(x,a).

Proceeding with proverbial “Weierstrassian rigor”, Weierstrass became con

vinced that it would be essential to extend the domain of (1.1) by considering 

also a strong minimum (A. Kneser’s term, I.e.), that is, a minimum when a fam

ily of admissible functions satisfying only (1.10) is considered a neighborhood of 

y. “In fact, if one realizes the question with which the calculus of variations is 

concerned, one recognizes that the problem must be solved in this sense”23!’187,
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(unpublished). A sufficient condition for a strong minimum needed new con

cepts, that of a field and the excess function (£?-function), the latter of which 

Weierstrass introduced in 1879, “a turning point in the history of the calculus of 

variations” (Bolza6!’846).

Weierstrass defined a field of extremals of (1.1) to be a domain ft in the 

xy-plane such that through every point of ft there passes precisely one extremal 

of a one-parameter family of extremals of (1.1) depending continuously on the 

parameter. To define the .E-function, he started from the slope function p = 

p(x, y), the slope at (x, y) of the extremal of a field of extremals у = h(x, a); thus

p(x, y) = ti(x , a)|0=a(i,y)- (1.14)

With this he defined the E-function by

£(z,y ,p ,y ') =  F(x, y, y ')-F (x ,y ,p )- (y ' -p)Fy>(x,y,p) (1.15)

where у =  y(x) is any C1 -curve in the field of extremals. He was then able to 

prove that if for an extremal у =  y(x) of the field the above sufficient conditions 

for a weak minimum are satisfied and if E > 0 at every point in the field and for 

every y', then y(x) gives a strong minimum of (1.1).

“It is perhaps a unique case that the ideas of a great master which revo

lutionized a whole science [mathematics] became [generally known] only slowly 

and through underground channels”, wrote Caratheodory 8!,V’343 in 1927 when 

Weierstrass’s “Vorlesungen iiber Variationsrechnung”31!,vv/ were finally officially 

published.

2. CALCULUS OF VARIATIONS IN GOTTINGEN AT HILBERT’S TIME

In 1902, when Caratheodory came to Gottingen from Berlin, where he had 

been H.A. Schwarz’s student, he found a stimulating atmosphere for the calculus 

of variations. Indeed, in Problem 23 of his famous Paris talk of 1900 on unsolved 

problems, Hilbert had drawn attention to Weierstrass’s work and to A. Kneser’s 

book17!, which Caratheodory8!’^ 337 called “the first presentation on the modem 

calculus of variations, [which was] enormously successful” in greatly increasing
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research activities in the field between 1900 and 1910. Five of the over twenty- 

five doctoral theses supervised by Hilbert between 1900 and 1907 were on the 

calculus of variations. Hilbert’s interest in this area, so fax remote from his famous 

“Zahlbericht”, was most likely motivated by the state of Analysis at that time: 

with complex analysis securely founded and impressively developed, activity had 

shifted to boundary value problems, with the Dirichlei problem for the Laplace 

equation

Au = 0 in ft; u|an=/> « € C2(ft) П С°(П), С R2 or R3 (2.1)

and eigenvalue problems for the wave equation in the center.

Now an existence “proof” for (2.1) in general domains had been based on 

the so-called Dirichlei principle, which may be stated as follows. There exists a 

unique function и that minimizes the functional (Dirichlet integral)

J[ti] = /  |grad u|2 dx, u|*n = /  € C\dO), ft С R2 or R3 (2.2)
Jn

among all functions u € C'1(ft) П C°(ft) which take on given values /  on the 

boundary 5ft of ft and that function и satisfies (2.1). - Note that (2.1) is the 

Euler-Lagrange equation of (2.2). - But in 1870 Weierstrass3i],11,49-54 pointed 

out that the Dirichlet principle in its general form is invalid, the faulty conclusion 

of existence being a consequence of a conceptual confusion of “minimum” and 

“greatest lower bound.” His counterexample is (I.e., 53)

АФ] = J  [x<f>'{x)]2dx, <£(-1) = а, ф( 1) =  Ь ф а  (2.3)

where ф € C 1̂ —1,1]). Clearly, 1[ф] > 0, but 1[ф\ =  0 for no such ф. Although 

this merely shows that there are variational problems without solution, rather 

than directly implying that the Dirichlet principle is faulty - because the latter 

concerns a different integral - (a fact that is often overlooked), it is clear that the 

situation for the latter integral is basically the same.

Now after this criticism there was no more general principle for handling 

corresponding problems, but each had to be attacked by a different method,



599

ingenious in nature (C. Neumann, Schwarz, Poincare), but confusingly hetero

geneous, even after Poincare’s great effort in unification. It seems that in this 

lamentable situation, Hilbert set his hope in the calculus of variations because 

it had produced general principles in the past (cf. Sec. 1). Not intimidated 

by Weierstrass, Hilbert15!’777»10-37 was able to re-establish the Dirichlet princi

ple within proper limits as a valid method of proof, in two papers of 1900 and 

1901 (reprinted 1905). In his first paper [I.e., 11] he proposed the following more 

general formulation of the Dirichlet principle.

“Every regular problem of the calculus of variations [Sec. 1] has a solu

tion as soon as with respect to the nature of the given boundary condi

tions suitable restrictive assumptions are satisfied and, if necessary, the 

concept of a solution is suitably generalized. - In what way this princi

ple can serve as a guiding star for finding rigorous and simple existence 

proofs will be shown by the following examples.”

These are (a) shortest arcs on a surface, and (b) the Dirichlet problem for the 

Laplace equation in a plane domain with continuously curved boundary and class 

C 1̂ )  boundary values. This initiated the direct methods (methods without the 

use of the Euler-Lagrange equations), which became of basic importance in the 

existence theory of the calculus of variations. (A forerunner of these methods 

was Euler’s almost forgotten “direct difference method”32!’289-291.) Another so

lution of the Dirichlet problem by direct methods was given later, in 1907, by 

Lebesgue20!’7 v,91_122.

Apart from this splendid beginning of his intentions to uniformize Analysis by 

methods of the calculus of variations, Hilbert made no further effort to employ the 

calculus of variations for that goal, but soon turned to integral equations as the 

seemingly more promising tool for a uniform approach to the central problems of 

Analysis mentioned above, and was soon able to progress far beyond the landmark 

set by Fredholm in 1900-1903. Nevertheless, the Gottingen atmosphere remained 

receptive to ideas in the calculus of variations, as subsequent doctoral theses 

document, Caratheodory’s of 1904 being the most outstanding of them. We shall 

discuss Caratheodory’s thesis and work resulting from it in the next section, and 

then turn to applications related to Carathedory’s theory.
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3. ON CARATHEODORY’S WORK

In 1903, Hans Hahn, having just completed his doctoral work under von 

Escherich in Vienna, came to Gottingen and gave a talk on von Escherich’s the

ory of the second variation. Caratheodory8̂ ’405 reported that “all were very 

surprised that according to that theory there are exceptional cases in which no 

solutions of the variational problem seem to exist.” And he tried to find a simple 

example: project an open hemisphere S from its center into its tangent plane at 

the South Pole and find a curve of given length L on S with given endpoints A 

and B, of spherical distance ds(A, B) < L, whose image is as long as possible or 

as short as possible. He conjectured that the image must consist of two segments 

that make a comer, and he was able to calculate the ^-function and solve the 

problem. We emphasize that this example is typical because in an isoperimetric 

problem, in which an integral (1.1) is to be extremized, whereas another integral

/  G(±, y, y') dx 
Jio

is to have a given value, the above exceptional case occurs if the Euler equation 

(1.2) has the same solutions as that for G> and this case occurs in the example 

because geodesic arcs on the sphere are mapped onto geodesic arcs (straight 

segments) in the plane.

A few weeks later, Caratheodory had constructed the framework of his doc

tored thesis “On discontinuous solutions in the calculus of variations” 8!’7,3 ~79, 

where the unfortunate term 11 discontinuous solution” means extremal with cor

ners. Not much on such solutions had been done before. The earliest publication 

on them appeared in 1871, written by Todhunter. Serious shortcomings of it were 

corrected in 1876 by Erdmann, in a paper that also contained the Weierstrass- 

Erdmann comer conditions6!’37~38, that had been used first by Weierstrass eleven 

years earlier in his lectures. A reason for the lack of further work may have been 

that the situation in the case of the catenoid8!*7,3 had been regarded as typical 

- which it is not. Hence when Caratheodory started his work, the corner condi

tions were known, but a further theory of discontinuous solutions was missing. 

Caratheodory created such a theory, resulting from his own ideas under the influ

ence of the stimulating Gottingen atmosphere, but without having a supervisor
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of his thesis in the usual sense. Being too shy to approach Hilbert or Klein, in 

1904 he presented his thesis to Minkowski, with whom he had closer contact.

In his thesis, Caratheodory treated (1.1), but in parametric form, writing

J =  [  F(x,y,x',y') dt, (t0 < ty) (3.1)
Jto

a form which also Weierstrass had found very advantageous in most of his work, 

and he was able to develop his theory in a detailed and lucid way. He obtained 

necessary and sufficient conditions for the occurrence of broken extremals, proved 

the existence of a field of broken extremals in the neighborhood of a cusp, and 

developed the theory of conjugate points. He also considered isoperimetric prob

lems; here the above example appeared in full8!’7,57-69.

After the Heidelberg International Congress of Mathematicians (1904), Cara

theodory came into closer contact with Klein and Hilbert, who insisted that 

he should immediately write his “Habilitationsschrift”. This work entitled (in 

German) “On strong maxima and minima for simple integrals” was completed 

already in 1905 (and published in 1906 [I.e., 80-142]).

It concerned strong extremals (functions that give a strong extremum of 

single integrals) and generalizations of Hilbert’s results, which had already been 

extended in 1904 from Problem (a) [above] to more general problems, by Bolza, 

who recognized that the success of Hilbert’s method depends on the two facts 

that

(1) the problem is “definite”, that is, the integrand must have the same sign 

on each curve element of the domain ft, and

(2) each point P  in ft must be “regular”, that is, P  has a neighborhood which 

can be covered simply and without gaps by strong extremals beginning 

at P.

In Chap. I, Caratheodory showed that (2) is essentially a consequence of (1) 

if one also admits discontinuous solutions; here, “essentially” means that there 

may be exceptional points (along certain curves only) that are not regular. He 

then showed that Hilbert’s method can be readily extended to positive definite 

problems, whereas the regularity of all points in ft alone is not sufficient for such
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an extension, as is proved by a simple discussion of the “isoperimetric integral” 

[I.e., 141-142]

J =  / V y  + I ^ + y '2)*)*-  (3-2)
Jto

Beginning with the thesis, Caratheodory’s work had profound influence on 

the general long-term trend that concerns efforts of achieving increasing gen

erality by weakening differentiability assumptions. In an appendix to his thesis, 

Caratheodory proposed a generalized Bernoulli method for positive definite prob

lems and published his new approach, later known as Caratheodory’s method, in 

19088l,/,17O“187. This method has the advantage of reduced differentiability as

sumptions on F  in (3.1). He assumed (l.)-(3.):

(1.) F  is positive homogeneous in s',y' of first degree,

F(s, y, fcs', ky’) = fcF(s, у, s', у'), к > 0. (3.3)

(2.) For fixed s,y the curve F(x,y,^r}) = 1 is a strictly convex oval in the 

£?7-plane containing the origin in its interior, so that F  is a positive 

definite function of its last two variables.

(3.) Fzi,Fyi exist and are continuous.

Hence the Euler equations do not make sense in this case. He called a family of 

curves ф(х, у) = t geodesically parallel if the equation

Fx, = фх, Fyi = фу (3.4)

give the same angle в = 0(s,y). Note that by (1.), the left-hand sides Fx> and Fy> 

are homogeneous in x\y' of degree zero; thus they depend only on в determined 

by

x1 =  (s'2 +y'2)^ cos0, y' = (s'2 +y/2)’ sintf.

Then for a curve С  intersecting such a family and at each point (s,y) making 

the angle 0(s,y) with the positive s-axis, we have by differentiating (3.3) with 

respect to fc, setting fc = 1, and using (3.4),

Fx/s' + Fy>y' = F(s,y,s',y') = фхх' + фуу' = ~  =  1,
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whereas F(x}y,x', у') > 1 along every other curve, as can be shown. Hence С  

minimizes the integral J  in (3.1).

The nature of this method becomes most perspicuous in dynamical (or opti

cal) applications, where it is related to Hamilton’s ideas. Then F  in (3.1) is the 

Lagrange function L of the dynamical system, and Caratheodory introduced an 

arbitrary family of surfaces S(t, x, y) = const, imposing conditions that led to 

the Hamilton-Jacobi equation

dS
+ H(t, x, y, grad 5) =  0 (3.5)

(H  the Hamiltonian of the system), and defining S as a solution of (3.5). Then 

for any path,

S(t i ,  xu  y i)- S (t0i x0, Уо) > /  L(t , x, y, x', y') dt
Jto

with equality for trajectories intersecting those surfaces (surfaces of constant least 

action, wave fronts in optics) in geodesic descent. The direction of the latter may 

not be unique, so that discontinuous solutions arise quite naturally.

It seems surprising that Hamilton, Jacobi, and other classical masters work

ing also in partial differential equations never fully developed and exploited the 

relations between the calculus of variations and partial differential equations. 

The idea of making this relationship the basis of a new approach to the calcu

lus of variations became the theme of Caratheodory’s classic, which appeared 

in 1935 under the title “Variationsrechnung und partielle Differentialgleichungen 

erster Ordnung”9!, and in 1965, 1967, and 1982 in translation under the title 

“Calculus of Variations and Partial Differential Equations of the First Order”, a 

masterpiece which, over fifty years after its first appearance, still provides “une 

presentation extrement lucide, et, a beaucoup d’egards, etonnamment modeme.” 

(Rene Thom,29!’580.) Caratheodory’s approach entails substantial gain in simplic

ity and depth of insight as well as novelty of presentation, even in the discussion 

of the standard parts of the theory. The tx-space Rn+1, x = (xj, . . . ,  x„), is used 

from the very beginning and throughout. Extremals are defined to be curves in 

Rn along which the integral (3.1) (with x i, . . . ,x n instead of x, y) locally has
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at least a weak extremum. There is no need for going into further details, but we 

can refer to a profound (English) Zentralblatt review [11 (1935), 356-357) by Ti- 

bor Rado, whose advice helped to improve the book (see8l,/,4°2). In the Preface, 

Caratheodory remarks that the book also emphasizes physical and differential 

geometric applications and incorporates Weierstrass’s ideas, and as two other ap

proaches he mentions “the variational calculus of Lagrange, which now forms a 

part of the tensor calculus [and], second, the theory of Tonelli, in which the more 

subtle relations of the minimum problem to set theory are developed.”

Whereas Caratheodory’s results were many-sided, his approach was uniform 

and based on his theory of geodesic fields. H. Rund (in29!’496-536) has shown 

that this theory is less restrictive than H. Weyl’s field theory, which is more 

popular in physics, probably because of its greater calculational accessibility. 

Caratheodory’s theory was generalized by Boemer [Math. Z. 46 (1940), 720- 

742] and by Le Page [Bull. Acad. Roy. Belg. (5) 27 (1941), 27-46], who used 

exterior differential forms as a natural tool, together with the generalized Stokes’s 

theorem. Boerner later called this very elegant treatment a “Konigsweg” to 

the calculus of variations. But there remains a substantial discrepancy between 

the necessary and the sufficient conditions obtained so far in this “generalized 

Caratheodory theory”, for m-fold integrals depending on n functions to be varied 

independently. This theory thus presents various open questions for further study.

Other trends that result directly or indirectly from Caratheodory’s ideas 

will be investigated in Secs. 4-7 in terms of important ongoing developments. 

To the latter also belongs Morse theory (Calculus of variations in the large), 

which we have not included here because the leading ideas of the earlier devel

opment in the field, as created by Poincare30!, G.D. Birkhoff, Morse, Lustemik, 

and Schnirelmann, can be seen from21!' 25)> 261> 271 and recent activity from the 

excellent survey by R. Bott7!.

4. OPTIMAL CONTROL

Whereas the number of research articles in the calculus of variations proper 

has been decreasing over the years, the influence of the calculus of variations 

in other fields - optimal control, minimal surfaces, functional analysis, partial
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differential equations - has been steadily increasing. In many of these applica

tions, the ideas in the work by Caratheodory and extensions to Lagrange, prob

lems (problems with side conditions that result from differential equations) by 

Caratheodory, Bliss, Hestenes, and others had profound impacts during the initial 

and later stages of evolutions.

This is true for optimal control, which initiated from engineering problems 

short before 1960, has developed into a large field of its own, and is presently 

expanding into various directions, making it virtually impossible to survey even 

special portions of it. In view of this, as well as of the availability of compre

hensive monographs (for instance2!’ 331), we shall attempt to provide a general 

understanding of this new area, which abunds of unsolved problems, by explain

ing some general concepts and leading ideas in the center of the development. 

It is interesting to note that, beginning in 1968, Mathematical Reviews officially 

recognized the close interrelation between optimal control and the calculus of 

variations by extending the headline of subject #49 to “Calculus of Variations 

and Optimal Control.”

Many control problems arise in connection with nonlinear dynamical systems 

governed by a system of differential equations

у' = F(y, u), y(*0) = y0 (4.1)

where ' = d/dt, t is time, у = [у,-] is an n-vector whose components axe functions 

of i, and и = [u*] is an r-vector whose components are functions of t. For instance, 

when n = 2, then у = y(t) may be the displacement of a linearly damped system 

[with (4.1) converted to a single second-order differential equation]

v" + cy' + ky = u(t), y( 0) =  yo, y'(0) = yi. (4.1*)

The control u(t) is the effect of a servomechanism to be designed so that the 

system be brought to its rest position у = 0, у' = 0 in minimum time, at some 

later time t\. Since the voltage available is limited, we have a constraint of the 

form of an inequality

K O I < Uo (Uo constant). (4.2*)
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If yo >0 , y'0 > 0, then u should initially be directed in the negative y-direction 

with greatest magnitude, u(<) = — Uo. At some instant we should switch to 

u(t) =  +{/<)} to avoid overshooting. A control that takes only the two values 

±Uo is called a bang-bang control. Engineers believed on intuitive grounds in 

the time-optimality of this type of control with properly chosen switching times. 

Later theories (by Bushaw 1952 [Annals of Math. Studies 41 (1958), 29-52], 

Bellman et al. [Quart. Appl. Math. 14 (1956), 11-18] and others) confirmed this 

under relatively general assumptions for problems in the case that (4.1) involved 

is linear. Here, when u =  [«i,. .. ,ur]T, instead of (4.2*) we have

M<)| < Uoj, j  =  (4.2**)

and bang-bang means that Uj takes only the two values it/oj-

Furthermore, the bang-bang principle asserts that if a system can be trans

ferred to the origin by some control, time-optimal or not, then there is a bang- 

bang control that transfers the system to the origin in the same time.

Engineers like bang-bang controls because these controls need only “on-off” 

servomechanisms; hence they are technically simpler than general controls.

A frame for a general theory, as motivated by our discussion and the na

ture of practical control problems, is obtained as follows. Instead of the special 

constraints (4.2*) or (4.2**), one often has constraints

C/(*,y(*),u(<))> 0, £ = l , . . . ,m .  (4.2)

Also, instead of a single initial condition (<о,Уо) €i Rn+1, one considers (*<ьУо) € 

T0 С Rn+1. The given set T0 is called an initial set, и =  u(t) in (4.1) is called a 

control, and у = y(t) (describing the time evolution of the system) a trajectory. 

The control is supposed to transfer the system from an initial state (*о>Уо) € 

to a terminal state ($i,yi) in a given terminal set T\ С Rn+1. A control и is 

called admissible if there exists a corresponding trajectory [solution у of (4.1)] 

such that the constraints (4.2) are satisfied and the system is transferred from a 

(*o,Vo) € To to a (*b yi) 6 T\. This у is called an admissible trajectory and (y,u) 

an admissible pair.
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In the above time-optimal control problem we minimize

t i - t 0 =  f  11 dt. (4.3*)
Jto

Instead of the integrand 1, with a control problem we more generally associate a 

‘performance function Fo = Fo(t,y,u) and a performance index (or payoff)

ti
*o(t,y(<),u(<)) dt. (4.3)

)

The optimal control problem then is the problem of finding an admissible pair 

that minimizes J[y, u].

Finally, to be able to apply to our problem the theory of the Lagrange prob

lem of the calculus of variations, as developed by Caratheodory and others, we 

must convert the inequality constraints (4.2) to the form of differential equation 

constraints. This can be done by introducing a new variable z =  [zi] defined by

z't =  C/(*,y,u) £=

with Ct as in (4.2), as was first shown by Berkovitz [J. Math. Anal. Appl. 3 

(1961), 145-169].

5. MINIMAL SURFACES AND BERGMAN OPERATORS

As a first motivating example in his doctoral dissertation, Caratheodory 

mentioned a special minimal surface (see below). This is not merely by chance, 

but many ideas in the calculus of variations were, and are still being, sparked 

by minimal surfaces, a large and active field of present research that has been 

attractive for a long time, apart from its intrinsic beauty mainly because of 

its relations to complex analysis (Weierstrass formulas!), to physics (Plateau’s 

problem, crystals) and to partial differential equations, where the nonlinearity 

makes the minimal surface equation a particularly worthwhile object of study.

We begin by recalling some basic facts that we shall need in our investigation.

A minimal surface S С R3 is a surface whose mean curvature H  = |(/ci -М2) 

is identically zero; here *i, k2 are the principal curvatures (see, for instance19!,91).

If S is represented in the usual parametric form

r  =  r ( v \ v 2), (5.1)

u\= I
Jt,
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(v1,^2) € П, of class С 2(П), with gap and bap denoting the coefficients of the 

first and second fundamental forms, respectively, then

H  = \ba0gafi, (5.2)

where we use Einstein’s summation convention, and gapg^y = 62, the Kronecker 

tensor. We also recall that the Gauss curvature of S is

K = ±  (5.3)

with the discriminants g =  <711(722 — 9\г & = &11&22 ~ ^12-

Instead of “portion of a surface” we shall briefly say “surface”; this will cause 

no misunderstandings.

If С С R3 is a simple (rectifiable) closed curve and S minimizes the area 

functional J  in the class of all C2-surfaces bounded by С  and homeomorphic to 

the unit disk, then 5 is necessarily a minimal surface. This explains the name 

as well as the connection with the calculus of variations. If S is represented by 

(5.1), then

J[r(yl ,v2)\ = J  J  y/g dv1 dv2. (5.4)

ft

The corresponding Euler equation, called the minimal surface equation, is

Ьардар = 0 [cf. (5.2)]. (5.5)

A basic characterization of minimal surfaces by Bonnet and Christoffel is 

given in

Theorem 5.1. A surface 5, not a sphere, is a minimal surface if and only if 

its spherical mapping

S —► Sq

r(vl ,v2) « ( v ^ v 2), n =  g~*rvi x r vt

(5.6)
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into the unit sphere So is conformal.

For a Cartesian representation

S :z  = z(x,y) (5.7)

the minimal surface equation takes the form

( w 0 * + (w 0 „  = ° ’ W 2 = l+ z l+ z l  (5.8*)

already given by Lagrange in 1760, or

( l  z y ) z x x  2z T Z y Z Xy (1 -j- z x ) z y y  =  0. (5.8)

Caratheodory began his doctoral dissertation by pointing to the earliest high

light, Euler’s discovery (published in his 1744 book) of the minimal surface of 

revolution, the catenoid, whose meridian is a catenary (the curve of a hanging 

chain or cable). In 1776 followed Meusnier’s discovery that a right helicoid (a 

“staircase surface”) is a minimal surface. It was also Meusnier who showed that 

the left-hand side of (5.8) divided by 2W2 is geometrically the mean curvature. 

Scherk’s minimal surfaces

z =  In (cos у sec x) and z =  arcsin (sinh x sinhy) (5-9)

(and three others) appeared in 1831 and 1835. This, together with the great 

general interest in minimal surfaces in view of the calculus of variations, physics 

(Plateau’s problem) and complex analysis (Weierstrass’s formulas, 1866), resulted 

in a great number of important discoveries in the field during the second half of 

the nineteenth century, which Nitsche28!’4 calls “the Golden Age in the theory of 

minimal surfaces”. For details, we can refer to Nitsche’s book28! or to Darboux10!.

Caratheodory mentioned minimal surfaces as an example of a problem in 

which extremals may have discontinuous tangent directions where Euler’s equa

tion or the integrand cease to satisfy conditions imposed. For instance, the merid

ian of a surface of revolution of minimum area may degenerate into two segments 

perpendicular to the axis and a joining segment of the axis itself.
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We consider next an application of Bergman operators in the theory of min

imal surfaces.

For a second-order partial differential equation

Lu = uzz* + 6(z, z*)ux. + c(z, z*)u =  0, (5.10)

from which we have eliminated one of the two first partial derivatives in the usual 

fashion, a Bergman integral operator T is defined by

«(*,*•) =  T / ( * ,0  = j f ‘ E(z,z\t)f Q 2( l - t2))  (1 - t2)~i dt. (5.11)

For и to be a solution of (5.10), the kernel E  must satisfy the kernel equation

(1 - t2)Ez. t - + 2ztLE  =  0. (5.12)

T is called a class P operator if its kernel E  is a polynomial in <, with 

coefficients depending on z,z*. The class of equations admitting such operators 

(“equations of class P ”) is rather large and can be characterized in a number of 

different ways; see18̂ 45-107. Thus a class P kernel is of the form

£ (* ,* V )  = £ > ,( * >  O * 2"- (5.13)
л=0

We have omitted odd-power terms in t, without restriction, since these would not 

contribute to the integral (5.11) representing it.

The equation

Lu = uzz. H— -u = 0, uj =  1 + zz* =  1 +x2 +y2 (5.14)
и1

is of class P and plays a role in connection with minimal surfaces, as we shall 

prove.

From (5.12) it follows that the simplest kernel for (5.14) is

B(*,z*,t) = l - —  t2. (5-15)
w
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Now solutions obtained from a class P  operator can be cast into integral-free 

form [I.e., 51]. For (5.15) this yields

“ (*.**) = /'(*) - “ /(*)• (5-l6)

The relation to minimal surfaces is now accomplished as follows. Let я, у 

be the Gaussian coordinates on the unit sphere So (with center at the origin) 

obtained by inverse stereographic projection of (s,y) € R2 into 50- Then the 

invariant second-order differential operator associated with the third fundamental 

form of a surface S (the first fundamental form of the spherical image of S in 5o) 

for any S is defined by (see28!’51)

Д ш и =  i  cj2A u . (5.17)

Now if S' is a minimal surface, one has the Jacobi condition

Дши + 2ti = 0. (5.18)

Неге и is the Minkowski support function of S (the distance of the tangent planes 

of S from the origin). Since

z = x + ty, z* = x — iy, A и = 4uxx•,

we see that и satisfies (5.14), as we wanted to prove.

From (5.17) we have the result that the general form of the support function 

[i.e., the general solution of (5.14)] is obtained without the use of the Weierstrass 

formulas for minimal surfaces, by using class P  operators converted to integral- 

free form.

Important minimal surfaces correspond to simple Bergman associated func

tions f(z), for instance, Enneper’s surface to z3 and the helicoid to iz/2(l — lnz).

For the Dirichlet problem for (5.14) on a disk of radius R , Agostinelli1! proved 

the interesting result that there is a unique solution when R < 1, no solution in 

general when R  = 1, and infinitely many solutions when R > 1. To this there 

corresponds the following for minimal surfaces (see28!’95’104).
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Theorem 5.2. К the spherical image Is of a minimal surface S is contained in 

the interior of a hemisphere, then its area is a relative weak minimum compared 

to the area of neighboring surfaces with the same boundary. If Is  contains a 

hemisphere in its interior, then the area of S is not minimum compared to that 

of other surfaces with the same boundary.

The second statement follows by associating with (5.14) the eigenvalue prob

lem

uzz. + + A^ u = 0 in U, и — 0 on д£1> (5.19)

noting that

«(*,*•) =  ( l - * 0 / «  (5*2°)

is ал eigenfunction of (5.19) for the unit disk and A = 0, and that Amin( ^ )  < 0 

when П contains the unit disk in its interior.

It should be noted that equation (5.14) is a special case of

Lnu = uzx. + — = 0, =  1 + zz*, (5-21)

which has been investigated extensively and is of class P  for every n G N (see18!). 

The Dirichlet problem for (5.21) on a disk can be solved by using class P  operators 

as follows.

Theorem 5.8. For the operator defined by (5.11), (5.13) the associated func

tion corresponding to boundary values

(5.22)
<r=0

/(z) = (5.23a)

<7 = 0

where

on the unit disk is
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-(*. *•) - ±  ( - « 'С ; ") ( f » ‘■r* *

where 77 = zz* and u) =  1 + zz*. On \z\ =  1, thus,

m = ± (- *r(nz ; )  £  ̂ f  ( f  ̂  - *2)) (i -<2)~’ л

°o n /  .

<t=0 M=0 4 ^ '

The integral is J3(/x + a + \). This gives

oo
U(6) =  Y ,  А п ^ а>, An, =  Hn,a n„ (5.24 a)

<7=0

where

=  Г(<̂  +Л  \ Ч_2)" ( П + ̂  + j } (5.246)
П<Т 20, ^  J [ 2m )  (m + v)1

FVom this, (5.23) follows. This completes the proof.

The form of the coefficient of (5.21) suggests to search for solutions that 

are functions of w alone. We show that all such solutions can be characterized 

explicitly, even when the constant in the equation is left unrestricted.

Theorem 5.^. All C2-solutions u = u(u>) of

u „ . + ^ u  = 0, M  = k(k-  1), k€  R, (5.25)
иr

are of the form

u(ui) = u kV(u) (5-26)

where V(s) is a solution of the hypergeometric equation

a(l - s)V" + [2k - (2k + 1 )s] V  - k2V = 0. (5.27)

Proof. For the present equation the Bergman representation (5.11) is

[Thus к = 2 for (5.14).]

) f - / _  t » ( i- e y - * d t .
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Proof. This follows by substitution, using zz* =  u> — 1 and observing that 

the indicial equation has the roots к and 1 — k.

Equation (5.25) has a uniqueness property among all equations of a certain 

family, in the sense of

Corollary 5.5. Equation (5.25) is the only equation among

M
uxx* + — ti = 0, p e  N, (5.28)

U)P

that has solutions of the form (5.26) with V a solution of the hypergeometric 

equation.

Remark. The parameters in (5.27) are a = (3 = h, 7 =  2k\ thus 2, 2, 4 in 

the case of (5.14). For integer к - the case of a positive integer к is precisely that 

in which the equation is of class P  (see before) - these parameters axe integer, so 

that the equation is degenerate in the sense of the theory of the hypergeometric 

equation; hence it has a polynomial solution, as follows from that theory. More 

precisely, from Erdelyi12J,/,72(20), we have in our case

a = m + I = k, fl =  m + £ + l  =  k} 7 = m + n + £ + 2 =  2fc;

thus m = к — 1, £ = 0, n = к — 1. Hence one of Kummer’s 24 solutions, namely,

(-,)-**■ ( *  + i - 7 , A 0  + i - e , i )

listed as formula (13) on p. 105 in12!’7, gives as polynomial solution of degree 

к — 1 in 1/lj

и = и)kV{u) — u>k(—u>)~kF  ^1 — к, к, 1,

For instance, for к = 2 [equation (5.14)] we get from (5.29), except for an irrele

vant constant factor, the solution

u =  1 - 2u~l (5.30)

which agrees with (5.16) when }(z) = -z.

These results are in harmony with those on class P  operators, for instance, 

on equation (5.21), in which n = к — 1 and one gets a polynomial solution for the 

kernel when cast back into integral form, which has degree n in t2.

t)- (5.29)
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Agostinelli aleo obtained an interesting relation to the biharmonic equation. 

More generally we have

Theorem 5.6. If и satisfies 

M
uxz• H— -u = 0, и = 1 + zz*, M E  R, (5.31)

UJ

then U = tou satisfies

Mo
I7X„ . Z. + - ^U  = 0, M2 = M (2 - M). (5.32)

Thus M  =  2 [equation (5.14)] leads “just by chance” to the biharmonic 

equation. A generalization of Theorem 5.6 will be published elsewhere.

6. IMPACTS ON FUNCTIONAL ANALYSIS

The two most important formative factors in the early evolution of functional 

analysis (a name coined by P. Levy in 1922) were the impacts of the calculus 

of variations and of integral equations, the former from the very beginning in 

Volterra’s work of 1887, and the latter since the appearance of Fredholm’s theory 

in 1900-1903.

Functional analysis originated in Italy, and it is generally agreed to regard 

1887 as its birth year, the year in which Volterra [Opere I, 294-328] published 

five notes on classes of functionals. Those papers were intended to generalize 

Riemann’s methods of complex analysis, but Volterra modeled his methods after 

those in the calculus of variations. Near the beginning, he said: “If ... у depends 

on all values of a function <f>(x) ... in (A ... 5), we write

В
y|[^(x)]| or simply у\{ф(х)]\.”

A

He assumed ф to be continuously differentiable on (A, B). He then defined a 

“variation”

&У = y|№ + 0]| -2/IMI

y'IW*)>i]| = . f a  SA  ° =  / V )  dx,

as well as a “derivative”
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where в has constant sign and [m,n] contracts to a point t. This theory, created 

at a time when topological tools were not yet available, was ad hoc, and was later 

criticized for that (Dieudonne11!’86), but also used in further work (Hamilton & 

Nashed14!; see also A. Weil [Oeuvres II, 532]).

A very substantial effect on nascent functional analysis resulted from the 

breakdown of the Dirichlet principle considered in Sec. 2, along with the remark 

that new methods of existence proofs for the Dirichlet problem were invented by 

Schwarz, Poincare, and C. Neumann. Most important of these in view of func

tional analysis was the latter “method of the arithmetic mean” (1870), which led 

directly to integral equations and helped to spark the great interest in Fredholm’s 

fundamental work of 1900-1903 as well as Hilbert’s activity on integral equations 

resulting from it.

Hilbert’s proof of the Dirichlet principle (Sec. 2) was still by means of classi

cal analysis, but it is interesting to note an earlier, not quite successful attempt of 

a functional analytic proof, namely, by Arzela in 1896, based on the Arzela-Ascoli 

theorem (Monna24̂ 108-113).

A characteristic feature of the further evolution over the next four decades 

was a deeper and deeper intuitive functional analytic understanding of the cen

tral concept of the calculus of variations, the functional. This began with an 

important step forward, made in 1903 by Hadamard [Oeuvres I, 405-408], who 

initiated the idea of a general representation of a well-defined class of functionals 

by a general formula. He gave such a representation in a very important case, 

namely, for all bounded linear functionals U on C[a, 6] by the formula

U[f] =  I'm [Ь f(x)Hm(x) dx, Hm 6 C[a, 6]. (6.1)
Г П - OO J a

Hadamard was very much impressed by Volterra’s use of variational techniques 

in his new developments of 1887. The significance of (6.1) and its novelty is 

perhaps often not fully appreciated because of the two shortcomings that the Hm 

are not uniquely determined by U and that (6.1) involves the limit of an integral 

rather than an integral, shortcomings that were removed by F. Riesz in 1909 

when he published his representation of the same class of functionals in terms of
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a Riemann-Stieltjes integral,

Ш  =  !  /(*)<**(*). (6.2)

where a =  at(x) is of bounded variation on [a, b] and for given U is unique (if we 

require a(0) = 0 and right continuity of a).

It seems practically unknown that Caratheodory influenced Riesz by his 

works8)’777’54" 77 of 1907 and8]’7" . 78" 110 of 1911, as Riesz [Oeuvres 819, 823- 

826] acknowledged in 1911, in a paper extending his work on (6.2) as well as 

Caratheodory’s of 1907. This made the latter the earliest trace of the famous 

Bochner-Weil-RaiJcov theorem of 1932/1940 in abstract harmonic analysis, stating 

that a function u(s) on a locally compact abelian group G is “positive definite” 

if and only if there is a nonnegative measure /i on the character group G of G 

such that

“ ( * )  =  J  x ( « )  Mx)-
G

The calculus of variations continued to exercise its influence on develop

ing functional analysis during the first decade of our century, which included 

as a landmark the appearance of Frechet’s thesis (1906) and, at the end, the 

publication of Hadamard’s book on the calculus of variations, because of which 

Caratheodory8!’v>309 called 1910 a “historical date in the calculus of variations”.

In his thesis “Sur quelques points du Calcul fonctionnel” [Rend. Circ. Mat. 

Palermo 22,1-74], Frechet defined metric (called ecart), metric space (Hausdorff’s 

later term, 1914), completeness, (sequential) compactness, and separability, in 

connection with infinite dimensional function spaces, and gave various concrete 

special spaces to illustrate his abstract concepts. Most remarkable is that he 

defined metric axiomatically and by the same axioms that we use today.

The variational ideas of Volterra influenced Frechet, perhaps more indirectly 

through Hadamard than directly, because Hadamard was Frechet’s high school 

teacher and later his professor at the university and his personal friend, work

ing in the calculus of variations himself and emphasizing that problems such
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as Bernoulli’s brachistochrone problem was “au coeur meme de ce Calcul [fonc- 

tionnel]” [Oeuvres I, 438]. Also, Frechet remained fully aware of the variational 

roots of functional analysis, later stating that “l’Analyse fonctionnelle tire son 

origine du Calcul des Variations” [“Les espaces abstraits” (1928), 4]. In one of 

his notes [Comptes Rendus Paris 139 (1904), 848-850], in which he generalized 

Weierstrass’s theorem of the existence of minimum of a continuous function on 

a compact set, he mentioned the Dirichlet principle. In his thesis [ p. 31] he 

extended Hilbert’s generalized Dirichlet principle (cf. Sec. 2) to functionals on 

metric space. In connection with C[a, 6] he mentioned Weierstrass [p. 36], but 

one should realize that it was a big step forward from Weierstrass’s neighborhoods 

(Sec. 1) to Frechet’s system of axioms of metric.

Mandelbrojt [Comptes Rendus Paris 277 (1973), Vie Academique 74] claimed 

that it was the lack of rigor in Volterra’s method “de passage du fini a l ’infini” 

that let Frechet search for “une methode directe, generale et tres rigoureuse.” 

It seems that this is at best only one factor motivating Frechet’s path-breaking 

work. A.E. Taylor [Archive Hist. Exact Sciences 27 (1982), 233-295] attempted 

to describe further factors, above all Hadamard’s work, and furthermore the in

fluence of Riemann, Weierstrass, Cantor, Hilbert, Borel, and Lebesgue, whose 

thesis had appeared in 1902. But Taylor actually hesitated to reach a conclusion 

of his sixty-page discussion by stating [p. 286] that

“if Hadamard was fully frank in what he wrote about Frechet for the 

Academie des Sciences, Frechet’s decision to go at things in a totally ab

stract way was his own decision ... There were, of course, certain trends 

lending to facilitate Frechet’s move into abstraction. The works of Rie

mann, Weierstrass and Hilbert contributed to that trend ... Abstraction 

was “in the air” at that time ...”

One could make these statements more precise by pointing to Dedekinds “Was 

sind und was sollen die Zahlen?” (1888) and Hilbert’s “Grundlagen der Geome

tric” (1899) as instrumental in paving the way to axiomatics. A factor completely 

missing in Taylor’s paper is the influence of the ideas of Poincare, in particular 

those in “La Science et l’hypothese” (1902), Poincare’s most important book on 

the philosophy of science and mathematics, and “La valeur de Science” (1905).
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The great effect of the latter work can be seen from F. Riesz’s “Die Genesis des 

Raumbegriffs” [1906; published in German 1907; Oeuvres 110-161], a remarkable 

early axiomatic attempt into general topology, more promising than Frechet’s the

sis, as far as non-metric properties are concerned4! ,296“297. Unfortunately, that 

paper was published in an obscure journal and before the publication of Riesz’s 

Oeuvres in 1960 became only partially known by a summary of a portion of it in 

1908, as ал abstract at the International Congress of Mathematicians.

Frechet’s work was very much encouraged by Hadamard, who in 1910 in his 

“Legons sur le Calcul des Variations, recueillies par M. Frechet” attempted to 

present the calculus of variations as a chapter of developing functional analysis. 

Along with Bolza’s second edition entitled “Vorlesungen uber Variationsrech- 

nung” (1909), Caratheodory enthusiastically welcomed Hadamard’s book in a 

detailed review8!'^,309-326. Defending the abstract approach, he pointed out (in 

another review, [p. 306]) that functional-analytic ideas were already present in 

lectures of Hilbert and Minkowski and in “the fundamental memoir of Hadamard 

of 1907 [Oeuvres II, 515-629] on boundary curves of plane domains which cor

respond to certain extremal properties of Green’s functions” for the biharmonic 

equation. Although to Caratheodory, hopes for the calculus of variations looked 

perhaps greater than they actually were, the review shows that the new ideas 

were rapidly spreading, but details were not yet at the fingertips of the reader, 

not even in France, because we see that Caratheodory gave them in some detail 

in his review for the French Bulletin des Sciences mathematiques.

7. SOBOLEV SPACES IN THE CALCULUS OF VARIATIONS

On p. 316 of the review just discussed, Caratheodory mentioned that Hada

mard used (and generalized) an ingenious idea of 1879 by du Bois-Reymond 

[Math. Ann. 15, 289-314] by which differentiability assumptions in connection 

with extremals can be reduced. Du Bois-Reymond proved that if у = y(x) € 

Ca([xo,a;i]) is an extremal of the functional J[y\ given by (1.1) whose integrand 

is a C1 -function, then Fy> is differentiable and the Euler-Lagrange equation (1.2) 

makes sense. This is accomplished as follows. For у an extremal and any C1-
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/  (FyT) + Fy>r}’) dx =  0. (7.1)
J Xo

Integration by parts to get rid of 77' would give (1.2) because of 77(2:0) =  ^(^l) =  0 

by assumption. But we can also integrate by parts so that 77' is retained as a 

factor of the integrand of the resulting equation

f h(x)rj'(x) dx = 0,
J ю

where ^

h(*) = - f Fy(t,y(t),y'(t)) dt + Fy'(x,y(x)ry'(x)).

FVom the above assumption it follows that h is continuous, and du Bois-Reymond 

proved that h is constant, so that its derivative must exist. Hence the other inte

gration by parts becomes permissible and leads to the Euler-Lagrange equation.

The functional-analytic significance of this work lies in the fact that this is an 

early appearance of the idea of weak solution, and in the proof, du Bois-Reymond 

used test functions (C°°-functions with compact support), probably for the first 

time.

It is known that a more pressing need for generalized solutions had arisen 

much ear Her in connection with the wave equation

utt =  c2uxx

where d’Alembert’s solution of 1746,

u(x,t) = f(x + ct) + g(x - ct)

defines a “generalized solution” when /  and g are no longer C2-functions in 

the domain considered. Quite generally, whereas the initial phase of functional 

analysis was closely related to the calculus of variations, later other factors took 

the lead in the development, namely, integral equations beginning around 1900, 

ideas from algebra beginning around 1925, quantum mechanics in 1925, general 

topology about ten years later, and partial differential equations at about the

function 77, in (1.3) we have (1.7):
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same time. Important to us is the progress on functionals during that period, 

by F. Riesz on Hilbert space in 1907 and 1934-1935, on C[a, 6] in 1909, and on 

Lp[a, 6] in 1910, and then by Hahn (1927) and Banach (1929) in connection with 

the Hahn-Banach theorem; and these results, basic in themselves, also reflect 

the growing intuitive understanding of functionals. We follow this process by 

dissecting ideas that led to Sobolev spaces and distributions, and afterwards 

show how it relates to the calculus of variations.

Preceded by some notes between 1933 and 1935, in 1936, in the hands of S.L. 

Sobolev [Mat. Sbomik (2) 1, 39-72], functionals became the basic instrument in 

developing a systematic theory of generalized, or weak, solutions of initial and 

boundary value problems for linear partial differential equations, as follows. First, 

Sobolev defined the space Ф5 of functions ф £ ^ (R " )  with compact support, with 

convergence фп А  ф of {фп} С Ф* to mean convergence of the sequence {фп} 

to ф uniformly on Rn together with every sequence of derivatives to order s, the 

supports of all фп lying in a certain bounded domain. Then he defined the space 

Z3 of all linear functionals p on Фл continuous in the topology just defined, that

here (ф, p) is the value of p at ф. Clearly, every integrable function p generates 

such a functional according to

but Za also contains elements not generated in this way.

Now if L is a linear partial differential operator with sufficiently smooth

is,

{Фп, p) -> (Ф, p) when фп Ф\ (7.2)

coefficients on a domain ft С Rn and L* is its adjoint, then for a (classical) 

solution u of Lv. — 0, multiplication by а ф 6 Ф3+k (& the order of L) and 

integration gives

(1и,ф) =  0

and Green’s formula produces, because of the compactness of support,

{.1и,ф) =  (и,Ь*ф).
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Now for a p € Z9 the functional (p} L*<f>) makes sense by what has just been said, 

and Sobolev called this generalized function p a generalized solution of Lu =  0 if

(p,L*4>) = 0 for every Ф € Ф.+*. (7.3)

In his paper of 1936, Sobolev developed and applied these ideas to the existence 

and uniqueness of solutions of the Cauchy problem for a second-order linear 

differential equation.

This approach to Cauchy problems (as well as to Dirichlet problems for el

liptic equations) motivated the important practical question for conditions under 

which a generalized solution is “more regular” than it follows from its definition, 

in particular for conditions under which it is (a.e. equal to) a classical solution. 

Answers to this and other questions were provided in 1938 by Sobolev [Mat. 

Sbomik (2) 4, 471-497] in his theory of Sobolev spaces and their relations to each 

other as expressed by the famous Sobolev embedding theorems. He first defined 

the generalized derivative (or distribution derivative)

D au =  d ^u /dx *1... dx“n, |a| = «1 + ... + a n,

of a real-valued function u, locally integrable on a domain fi С Rn, to be the 

function v such that for every “test function” ф € (^ '( f t ) , the zero meaning 

compact support in ft,

[  иПаф dx = (-I)'"' [  уф dx, (7.4)
Jn Jn

a formula motivated by integration by parts (Green’s theorem).

He then defined Wjf(ft) to be the Banach space of real-valued functions и 

whose generalized derivatives Dau, |or| < t , exist on Q and are in Lp(£l) with 

respect to Lebesgue measure on ft, p > 1, with norm defined, for instance, by

Thus W'p(ft) =  Xp(ft), and W% is a Hilbert space. Other norms are possible, and 

Sobolev found general criteria for the equivalence of different norms on W£.
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His most important discovery in this theory was his so-called embedding 

theorems, which give a special ordering of the spaces so that one space lies entirely 

in another (and the identity mapping of each function onto itself, regarded as an 

element of the “larger” space, is continuous, by the definition of “embedding”). 

Specifically, if ip > n, then u 6 implies that и is continuous on Q. More

generally, if ip  > n + Jcp, then

W‘(Q) с

This embedding results from “Sobolev inequalities” between the norms of one 

and the same function when regarded as an element of different spaces. These 

inequalities contain special earlier integral inequalities by Poincare, F. Riesz, 

Hardy-Littlewood, and others.

Whereas fully developed basic theories of Sobolev spaces and distributions by 

Sobolev in 1936-1938 and L. Schwartz in 1945 resulted from partial differential 

equations, the Heaviside calculus, and earlier work on Fourier transforms (by 

Plancherel, Wiener, and Bochner), it seems little known that the first traces of 

Sobolev spaces appeared in connection with the calculus of variations, at the 

time when Caratheodory had just completed his Habilitationsschrift. Indeed, 

in addition to Hadamard’s functional-analytic approach to variational problems, 

culminating in his book of 1910, to which Caratheodory devoted a long review 

article (see Sec. 6), in 1906, B. Levi opened up another avenue to the calculus of 

variations that combined functional-analytic aspects with ideas of the “modern” 

(Borel-Lebesgue) theory of real functions. We recall that classically, admissible 

functions for (1.1) were assumed to be at least C1, and that it was Caratheodory 

who in 1904 took the first step in extending J[y] to a more satisfactory domain 

and developed a corresponding theory that included admissible functions y(x) 

with bounded and piecewise continuous derivative y'(x). As a next major step, 

in 1906 and 1907, in papers on the Dirichlet problem, B. Levi [Rend. Circ. Mat. 

Palermo 22, 293-359] and Fubini [I.e., 23, 58-84] used the Lebesgue integral and 

continuous functions of two variables which are absolutely continuous in each 

variable for almost all values of the other and have partial derivatives in L2; these 

functions are elements of W% ■ Essentially the same functions were employed by
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Evans in 1920 [Rice Institute Pamphlet 7, 252-329] in his generalized potential 

theory. In 1926, Tonelli [Atti Reale Accad. Lincei 6, 633-638] used functions

those as Levi’s was suggested in 1933 by Nikodym [Fund. Math. 21, 129-150] 

and others.

The most remarkable link in the chain of steps of extending the generality 

of admissible functions was taken in 1940 by J.W. Calkin and C.B. Morrey, Jr. 

[Duke Math. J. 6, 170-215] by introducing new function spaces, in order to get 

a more satisfactory existence theory of weak solutions. These new spaces can 

now be identified with Sobolev spaces Wjf(ft), which have thus found another 

important field of application, in addition to partial differential equations; in 

particular, this applies to PV^ft).

Furthermore, in 1952, Morrey, Jr. [Pacific J. Math. 2, 24-53] related sequen

tial lower semicontinuity of

on an appropriate Sobolev space to quasi convexity of F. Here, ft С Rn is open, 

bounded, and smooth, у : ft —* RN is sufficiently regular, and quasiconvexity 

means that

for all open G С Rn, all matrices AnXN € M nxN, and all ф G C l (G] RN) that 

are identically zero on dG. This result is basic for the existence theory when 

n, N > 1. To see this, we state a relatively recent result (Acerbi & Fusco [Arch. 

Rat. Mech. Anal. 86 (1984), 125-145]).

Theorem 7.1. Let F  : M nxN —► R be continuous and let

0 < F(B) < C( 1 + |£|?) with С > 0 and 1 < g < oo given.

similar to those of Levi’s in his work on surface area, with partial derivatives in 

Li (instead of L2). A systematic application of Hilbert-space theory to functions

(7.6)

(7.7)

Then J[y] in (7.6) is weakly sequentially lower semi continuous on Sobolev space 

W^(ft; Rn ) if and only if F  is quasiconvex.
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Note that in the scalar case N =  1, quasiconvexity is equivalent to convexity 

with respect to y', whereas for iV > 1 it is weaker than convexity.

In conclusion it follows that the direct methods initiated by Hilbert in 1900 

and popularized since 1911 in papers and books by Tonelli, have become the main 

tool to treat the problem of existence of minima, and the use of Sobolev spaces 

Wp is related to the need of working in a function space with a sufficiently weak 

topology, so that minimizing sequences do converge. Now existence theorems for 

generalized solutions in themselves axe of secondary interest, and conditions on 

C1- or C2-regularity axe an important aspect of the whole theory, just as in the 

theory of partial differential equations. Briefly, a weak existence theory should 

be supplemented by a regularity theory. Such a theory was given by Morrey in 

1940 and in a simplified form in 1960 [Ann. Scuola Norm. Pisa (III) 4 (1960), 

1-16]. An intuitive reason for the suitability of Sobolev spaces in this respect 

results from the Sobolev embedding theorems stated before.

In regularity theory, the latest developments concern efforts toward direct 

approaches to regularity, by various authors. It would be impossible to present 

details here, but an impression of the present (still rather imperfect) state can 

be obtained, for instance, from a paper by Giaquinta [Proc. Int. Congr. Math. 

Berkeley 1986, II, 1072-1083] and its references.

From the stages of the developments investigated we may gain the over

all impression that the observable increase in generality and abstraction in the 

calculus of variations resulted mainly for reasons of intrinsic necessities, rather 

than from external factors, and it seems most remarkable that also in this re

spect Caratheodory’s work in the field, which initiated and directed much of the 

evolution over several decades, was typical and trend-setting.
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AN EXISTENCE THEOREM  FOR STRONGLY 

N O N LIN EA R  EQUATIONS

D. Kravvaritis

1. Introduction

Let G be an open bounded subset of IRn such that the Sobolev Imbed

ding Theorem holds on G. We consider a semilinear partial differential 

equation of order 2m of the form

A(u) + B(u) =  f  (1)

where

A (u )=  (_1 )M D aa ^ (x )D pu

is a linear differential operator and

5 («)= J2  (—1
|7|<m-l

is a term of lower order which is strongly nonlinear in the sense that no 

growth restriction is imposed on the coefficient functions By. In this paper 

we are concerned with the existence of solutions for equations of the form 

(1) on a closed subspace V of the Sobolev space Wm,p(G), where 1 < p < 

+oo and p ф 2. Our result is based on an abstract existence theorem of 

Browder [1] for a class of mappings of monotone type which are not defined 

everywhere.
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The case p — 2 was treated by Hess ([2], [3]). Boundary value problems 

for strongly nonlinear elliptic equations have been studied by many authors 

(cf. [1], [4], [5] and their references).

2. Notations

Let G be an open bounded subset of the Euclidean space IRn , such 

that the Sobolev Imbedding Theorem holds on G. The points of G will be 

denoted by x =  (a?i,®2i • •• ,xn)-

If a =  (or*,. . .  , orn) is a multi-index of non-negative integers and |a| =  

22 «I) then D a denotes the differential operator

r»or
D ~ '

Let W m,p(G) be the Sobolev space of real valued functions и defined on G 

whose distributional derivatives of order < m belong to LP(G). The norm 

on W m*(G) is

IMImj. =  £  \\D°U\\1, .
|or|<m

The expression W™,P(G) will denote the closure of testing functions in 

W m’P{G).

Let N  be the number of multi-indices у with \y\ < m — 1. Then for 

each rj £  IR^ we write tj =  { t^  : |?| <  m — 1} and rj(u)(x) =  {jD7u (x ) :

M  <  m -  1}.

If V is a reflexive Banach space and V* its dual, then (u*,iz) denotes 

the duality pairing between elements и* £  V* and и £  V . The symbols 

►” and mean strong and weak convergence Respectively.

3. Statement of the Result

First, we give the following definition.

Definition 1. Let V be a Banach space, V’ a dense linear subspace 

of V and T an operator of a subset D(T) of V into V*. T is called of type 

(M) with respect to V  if the following conditions hold:
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(i) V' С D(T) and for each finite-dimensional subspace F  of V\ T : 

F  —► V* is demicontinuous.

(ii) If {tin} is a sequence in V7, и £ V and w £ V* such that un —• и 

in V, (T(un),v) —»• (w,v) for all v £  V' and limsup(T(un), un) < 

(tu,ti), we have и £ D(T) and T(u) =  w.

Our result is based on the following abstract existence theorem given 

by Browder in [1, Theorem 7].

Theorem 1. Let V be a reflexive Banach space, Vo a separable dense 

linear subspace of V and T an operator from D(T) into V* such that for 

each dense subspace V' of Vo, T is of type (M) with respect to V' . Suppose 

that

(T(u), u) • IH Iv1 —* +oo as ||u||k -*■ OO (u e Vo) , 

then R(T) =  V-.

We impose the following conditions upon the linear part.

(A l) aa/, 6 l “ (G) for all |a|,|/?|<m 

(A2) £  aap{x)(aZ0 > 0.

The assumptions which we make upon the strongly nonlinear perturbing 

term B(u) are:

(Bl) For each 7 with I7 I < m — 1, B-,(x, rj) is a function from G x ШЛ to 

IR satisfying the Caratheodory condition: By(x, rj) is measurable in 

x for each fixed rj £  and continuous in rj for almost x £  G.

(B2) For each 7 , ^ ( 2:,»?) is essentially bounded for (77! bounded and 

ф(х, rj) =  J2 V)Vy > 0 for all rj £  IRN.
|7|<m-l

(B3) For each 7 , there exists a function and a constant К  such that

|Br(*. ч)1 < МЙ1Ж*. v) + К ,

where tj denotes the variables which occur in B-1{x, rf), and S7(t) —> 0 

as t —> oo.

Let V be a closed subspace of W m>r(G) with W™'P(G) С V such that the 

following condition holds:

(*) Vo = V П Cm(G) is dense in V .
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The Dirichlet bilinear form

a(ti,t>)= ^  f  a0'pD(3uD ocvdx

associated with A(u) is well defined for all u € Vo and v E V. For a fixed 

и E Vo this form defines a functional 7i(u) E V* by the relation

a(u, v) =  (Ti(ti), v) for all v £ V .

The Dirichlet form

is also well defined for all и £ Vo and v £ V and defines a functional 

T2(u) E V* by

b(ui v) =  (T2(u)1v) for all 

Let V\ be the subset of V defined by

V\ = {«  E V : for each|7| < m - 1 ,i?7(77(11)) E G ) , ф(х, r)(u)) E L l (G)

and Зи* E V* : (u*tv) = ^  f  aQpD^uDavdx

M.I P\<™J g

4- f  B7(rj(u))Davdx for all v E Vo} .

Clearly Vo С Vi С V. For и E V\ we set T(u) =  и* and c(u,v) =  

(T(u),v) =  (u*,v) for all v € Vo-

Definition 2. A function и is a variational solution of the boundary 

value problem for the equation A(u) + B(u) =  / , ( / €  V* given) if (i) и E V\ 

and (ii) c(u,v) = (/, v) for all v E V0, i.e., if T(u) = / .

Theorem 2. The operator T : V\ —► V* is of type (M ) with respect 

to V1 for each dense subspace V7 of Vo.

Proof. Let V' be a dense linear subspace of Vo. The assertion (i) of 

Definition 1 follows immediately. In order to prove the assertion (ii), let
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{un} be a sequence in V\u G V and w G V*. Suppose that u„ —*• u in 

Vy (T(ttn),v) —► (w,v) for all v G V' and limsup(T(un), un) < (w,u). We 

shall prove that ti G D(T) = V\ and T(u) =  w.

For all \p\ < m the sequence {D^un} converges weakly to D^u in 

LP(G). It follows that

(T1(un) ,v )=  f aa/3D fiunD avdx-> £  f aa0D0uDavdx.

M.I0I < m J a  |aj,|/3|<m

for all v G Vo.

By the Sobolev Imbedding Theorem, un converges strongly to и in 

W m~1’p(G). Hence, we may find an infinite subsequence which we again 

denote by {un} such that for each 7 with |t| < m — 1 tDyun(x) converges 

almost everywhere to £)7«(r). Now, we have

liminf (Ti(un), un) -f limsup(72(tin), un) < limsup(T(un), un) < (w ,u ).

From this inequality and the condition (A2) we get that

limsup(T2(u„),ixn) < {wtu) = К1 .

The sequence {^(xtrj(un))} converges almost everywhere to tj(u)) and 

by Fatou’s lemma we have

/ Ф(х , v(u))dx < liminf / ф(х, rj(un))dx < K\ .
J g J g

Hence ф(х}т)(и)) G Ll (G). For a fixed 7 , there exists for each 6 > 0 a 

constant C(6) > 0 such that for any rj and almost all x in G either

(*)))! < Щ *М *п (* )))  + К

or

\D̂ un(x)\<C(6) (by (ДО).

Hence, for any measurable set A of G,

[  \B-,(r)(un(x)))\dx <Ci(6)meas(A) + 6 f  ф(х,1](un))dx .
J a J g
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Given e > 0, let S be such that 6K\ < § and let meas(A) < гс\(б) ■ Then 

Vitali’s convergence theorem implies that By(rj(un)) —► Ву(т)(и)) strongly 

in L l (G) (|7 | < m — 1). Hence, for any v E Vq we have

№ (« « ) ,» )=  £  f  B1(4 (un))D',vdx-► £  f  S 7(»j(ii))Z77vdi. 

I"r I < m ~  1 G  |7 | < m - l  G

It then follows that

(T(u„),v)-> £  f aaPD0uDavdx+ £  [  By(r)(u))Dyvdx

l« I.W <m G 1т|<т—1

for all v G Vo.

Since (T(un),v) —► (tu,v) for all v € V7, it follows that (T(un)}v) —► 

(wyv) for all v E Vq. Hence и E D(T) and T(u) = w, which completes the 

proof of the theorem.

We can now state our existence theorem.

Theorem 3. Let G be a bounded open subset of IRn such that the 

Sobolev Imbedding Theorem holds on- G, V a closed subspace of W m,p(G) 

for which the assumption (*) holds. Let A(tt) and B(u) be differential op

erators which satisfy the hypotheses (Aj.),(A2) and (Вх)-(Вз), respectively. 

Suppose that

M u , u) + b(u,«)} • M y 1 -» +00

as ||u||v —» +00,и E Vo- Then the boundary value problem for A(u) + 

B(u) =  f  has a variational solution for each /  E V*.
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THE PROBLEM OF OPTIM IZATION OF THE ENSURED R E S U LT: 

UNIM PROVABILITY OF F U LL“ MEMORY STR A TEG IES

Л. V. Kryazhlmsklt

Abstract
For a control system described by an 

ordinary differential equation the problem of 
optimization (minimization) of the ensured 
result [13 Is considered. A subset W of the 
set V of all dynamical disturbances admissible 
for the system is fixed. The class of control 
strategies with full memory of trajectories Is 
called unimprovable (with respect to W), If the 
optimal ensured result achieved In this class 
coincides with that achieved in the class of 
abstract control procedures with full memory of 
disturbances (provided disturbances lie In W). ? 
Unlmprovablllty conditions for W compact In L 
different from those for W = V C2] are stated.
Through the sup-operatlon over all L2-compact 
subsets of V a new definition of the ensured 
result (with respect to V) Is Introduced, and 
corresponding unlmprovablllty conditions are 
formulated.

1. Introduction

A controlled dynamical system described by an ordinary 
differential equation In a flnlte-dimenslonal space Is the
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classical object studied by the theory of optimal control 
СЗ]. The controllability Is reflected by the fact that the 
right hand side of the system equation depends on the 
values of a flnite-dlmenslonal function of time (a control) 
which is an argument of the basic optimization problem. The 
concept of a Caratheodory solution (of the system equation) 
Is fundamental for the theory. The tool of classical 
solutions Is not adequate to the problem, for optimal 
controls found practically or provided by necessary 
conditions of optimality are ordinarily non-contlnuous, and 
corresponding optimal trajectories satisfy the system 
equation only almost everywhere (a.e.). The transition from 
piece-wise continuous controls to measurable ones makes 
Caratheodory solutions natural for describing trajectories. 
It can be noted that the class of measurable controls ls In 
general not wide enough to ensure existence of optimal 
controls (even for simple optimality Indexes); its 
expansion to the class of the so called relaxed controls 
[4, 5] ls necessary. Though relaxed controls are no longer 
flnite-dlmenslonal functions of time, corresponding 
trajectories remain Caratheodory solutions of ordinary 
differential equations (we deal with relaxed controls in 
Sec. 6-8).

Another problem leading to the necessity of 
substituting non-contlnuous functions of time Into the 
right hand side of the system equation (Implying 
Caratheodory solutions) ls that of guiding a system under 
dynamical disturbances. A disturbance ls normally a 
flnite-dlmenslonal function of time acting upon a 
trajectory the way controls do. Disturbances can in 
particular be formed by a controller's opponent whoose goal 
Is contrary to that of the controller; this ls a situation 
of a differential game [61. So the controller ls forced to
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react to each disturbance from a certain set estimated a 
prlorl.The latter contains non-contlnuous functions In a 
number of practical cases. At least, a natural way to 
counteract disturbances by feedback generates as usual 
non-contlnuous controls too.

The problem of constructing an optimal feedback 
(closed-loop) control law Is treated by the theory of 
optimization of the ensured result. The ensured result Is 
the worst (the maximal. If a minimization problem Is 
considered) value of the optimality Index on the 
trajectories generated by all disturbances with a fixed 
closed-loop control law. The basis of the theory Is set 
forth in the monographs [7, 8] where fundamental 
game-theoretical aspects of the problem are Investigated 
and special solution methods are worked out. A general 
solution methods based on stochastic program constructions 
Is suggested In the monograph [1].

In the book [2] an Important property of closed-loop 
control laws that can be called unlmprovablllty Is 
described. It says that the transition from the practically 
realizable closed-loop control laws to the "Ideal" control 
procedures called quasl-strategles does not change the 
optimal value of the ensured result (controls formed by a 
quasl-strategy satisfy the single condition: their values 
in present do not depend on the future values of 
disturbances). If only the values of disturbances are 
constrained, the major condition of unlmprovablllty Is 
existence of a saddle point for the Hamiltonian of the 
system. Note that this case Implies non-compactness of the 
set of disturbances in the space L2. In this paper we 
obtain new unlmprovablllty conditions for compact classes 
of disturbances. They differ from traditional ones; In 
particular the Hamiltonian saddle point condition Is
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removed, and continuity properties of the optimized 
functional are weakened; on the other hand, the role of the 
full memory of a trajectory ls strengthened, and existence 
of special one-to-one "trajectory-disturbance” mappings Is 
required. The Importance of the conditions ls Illustrated 
by examples. Using maximization over all compact classes of 
disturbances we Introduce a new definition of the ensured 
result (a c-unlform ensured result); Its optimal value Is 
In general better than that defined traditionally. The 
corresponding conditions of unlmprovablllty are stated.

2. Notations and Basic Objects

We set in = { 1,2,... ), [k : 13 = { i e in : к < i<
1 > ( k,l € in ), and fix : n, p, q e in, a segment I =

V  where tQ < , non-empty compacta P с o?P , Q с 
, and a continuous function f : I x Rn x p x Q »—> Rn . 

The Eukl Idean norm In ( к e м ) is denoted by | ■ | ; 
xTy denotes the scalar product of vectors x and у In 

. Measurability, measure and Integral are understood In 
the sense of Lebesgue. For the restrictions of a function 
у defined on I to Intervals [tQ , tC and [t ,
( Et , #], If d = £o ) notations у11 and y|t,$ are 
used, respectively; for a set E of functions defined on 
I we put E|t = ( у11 : у € E >, E|t,0 = С y|t,0 : у e E }. 
Spaces C(I.Rn). C(tt0, tl, Rn) ( t e l )  and L^I.R*)
( к,1 с м ) are denoted briefly by C, Ct and L • ,

for their norms notations |-|c , |-|c and | ■ |Ll.lc are
t

used. Symbol x stands for the derivative of an 
(absolutely continuous) function x : I >—> .

3. The Problem of Optimization of Ensured Result
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Let us consider a controlled system described by the 

ordinary differential equation

x(t) = f(t, x(t), u(t), v(t)) (3.1)

In к11 at the time Interval I ; here x(t) is a state of 
the system at time t ; u(t) e p and v(t) e Q are values 
of a control parameter and an (uncontrolled) disturbance 
parameter at time t , respectively. The Initial state Is 

given by the condition

x(tQ) = xo . (3.2)

Hereafter xo e k11 is fixed.

Each measurable function u : I »—> P (resp., v : I 
b-> Q) will be called a control (resp., a disturbance).
The set of all controls (resp., disturbances) will be 
denoted by U (resp., V). We assume that for each $ e I , 
u e и and v e V there exists the unique Caratheodory 
solution of the Cauchy problem (3.1), (3.2) at [to , 0] ; 
for d =§o we call this solution the trajectory generated 
by u and v, and denote it by x(- |u,v) .

The problem In question Is that of minimization of a 
functional J defined on trajectories, provided a 
disturbance v (belonging to a given set W) Is not fixed 

a priori. The tool of minimization Is a control law 
(strategy) forming values u(t) In real time without using 

Information of future values x(r) and v(r), r > t .
Since a disturbance Is not fixed, a strategy does not 
determine a single trajectory. According to the "mlnlmax" 

approach, a maximal value of J over a class of all 
trajectories compatible with a chosen strategy (an ensured
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result) Is actually minimized. An optimal ensured result 
depends naturally on a class of admissible strategies 
playing the role of arguments of an extremal problem.

N.N. Krasovskll stated and Investigated the problem in 
[11 for W = V . He considered the class of positional 
strategies. These strategies need minimal Information : 
u(t) Is formed on the basis of a current position (t, 
x(t)) , on the other hand the class of positional 

strategies Is unimprovable (see Introduction) In many 
typical cases. This paper deals with W compact in L . 
Unlmprovablllty conditions for strategies not depending 
explicitly on disturbances (strategies with full memory of 
trajectories) are studied.

Now we pass to formal definitions.
Each family

s  = ((Ti • V \  e tO:m] (3'3)

where m « w . t =?r < •• • < т < # = r , and u. :* О О m О m+1 w i

CT >—> U|r.,rUi (i e [0:m3) will be called a
i.

(full-wemory) strategy; mappings гг. will be called 
feedback controls of the strategy S . The elements of S
(3.3) have the following sense: rt Is a time Instant the 
controller takes a decision to correct his control, and \ 
Is an algorithm to form control values at [r. , r.+it 
having information of the history of a trajectory at fto , 
t J  . This corresponds to the following definition of a 
trajectory. A trajectory generated by a strategy S and a 
disturbance v is a function x e с such that 
x = x(- |u,v) where u « U satisfies the equality 
ulr.,т. = и.(xlr.) for each i € [0:m] ; we denote this

1 l* V+l l ' 1 V
trajectory by x(- |S,v) (It obviously exists and Is 
unique); the above mentioned function u (determined
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uniquely) will be called the control generated by S and 
v . For any strategy S and any set W с V , we put

X(S.W) = { x(- |S,v) : v € W } . (3.4)

The set of all strategies will be denoted by у* .

Let

X = { x(- |u.v) : u e U , v e V } (3.5)

and J : X ►—> R1. In Sec. 3-7 a non-empty set W с V ls 
fixed.

The ensured result on W for a strategy S ls 
defined to be the value

p(S.W) = sup { J(x) : x e X(S.W) ) . (3.6)

The optimal ensured result on W for a (non-empty) class 
у с у is defined to be the value

p0ir  ,W) = inf { p(S.W) : S e r  } . (3.7)

The discussed optimization problem ls set formally as that 
of finding the optimal ensured result on W for a chosen 
class of strategies.

We fix the class of positional strategies. A strategy 
S (3.3) will be called positional (Glosed-loop), if for 
each i e [0:m] the feedback control u. ls a function 
of the "terminal point of a trajectory", I.e. %(x) =
w'(x(r.)) (x «  CT ) where « '  : Rn  i-> U|T.,TU1 . The

i
set of all positional strategies will be denoted by .



4. Quasi-Strategies. Unimprovable Classes of Strategies

A quasl-strategy (we follow the terminology of [2]) Is 
a most general way of forming controls In real time without 
using Information of future. It Is connected with the 
concept of a Volterra operator [9] and was Introduced In 
[10, 11].

The equality w' |t = w"|t , where w' and w" are 
disturbances or controls and t e I will further be 
understood as w' (r) = w"(r) a.e. т € [то, т]. A 
quasl-strategy on W is a mapping S : W »-> U such that 
for any v 't v" e w and t e I satisfying v' |t = v"|t 
It holds S(v# )|t = S(v")|t . The trajectory x(* |S(v),v) 
where S Is a quasl-strategy and v Is a disturbance 
will be said to be generated by S and v and will also 
be denoted by x(* |S,v) . The set of all quasl-strategles 
on W will be denoted by Q(W) . For each quasl-strategy
S on W Introduce the notation (3.4) and define the 
ensured result by (3.6). The optimal ensured result on W 
In the class of quasl-strategles Is defined to be the value

P0(Q(W)) = Inf { p(S.W) : S e q(W) } . (4.1)

Theorem 4.1.

poP%W) * P0(Q(W)) . (4.2)

Proof. Let S be an arbitrary strategy. Define the 
mapping S' : W •—> U setting S' (v) (v e W) to be the 
control generated by S and v . It is easy to prove that 
S' Is a quasl-strategy on W and X(S' ,W) = X(S,W). The 
latter Implies that (see (3.6)) p(S',W) = p(S,W) . Since



S is arbitrary, we have (4.2).

Corollary 4.1. For each non-empty class г с r  it

holds po(r ,W) > p0(Q(W)> .

A (non-empty) class г с r  will be called 

unimprovable on W f if P0(^ ,W) = po(Q(W)) .

Let us give several unlmprovablllty results for the 
case W = V .

5. Classes of Strategies Unimprovable on V 

Consider the following conditions.

Condition 5.1 (growth condition). There exists a К 
> 0 such that |f(t,x,u,v)| < K(1 + |x|) for all t e l
X € R n , U € P , V « = Q .

Condition 5.2 (local Llpschltz condition). For any 
bounded set E с Rn there exists a K(E) > 0 such that 

|f(t,x',u,v) - f(t,x",u,v)| < K(E)|x' - x"| for all t €
I , X' ,X" e E , U € P t V € Q ,

Condition 5.3 (saddle point condition). For any 1 
Rn , t e I and x e Rn it holds

min max lTf(t,x.u,v) = max min lTf(t,x,u,v) .
UeP VeQ VeQ UeP

We shall say that the functional J is uniformly 
С-continuous on a (non-empty) set X' с X , if
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sup I  |J(x) - J(y)| : x,y € X' , |x - y|c < p | — > 0 

as (3 —> 0 . (5.1)

Theorem 5.1. Let Conditions 5.1, 5.2, and 5.3 be 
fu lfilled  and the functional J be uniformly C-contlnuous 
on X. Then

1) the class r  (of all strategies) is unimprovable 
on V ,

2) if  J has the form

J(x) = *>(x(0o» + / V>(t,x(t))dt . (5.2)

where <p : Rn »-> к1 and ^ : I x Rn ■—> r 1 are 
continuous, then the class <rc (of all positional 
strategies) is unimprovable on V .

Statements 1) and 2) follow from [8, Lemma 96.1] and 
[2, Theorems 4.4.3 and 4.4.4], respectively.

Remark 5.1. The above results from [81 and [2] Imply 
actually that statements 1) and 2) are true, If r  and 
are replaced by the classes of all strategies and all 
positional strategies, whoose feedback controls take 

constant values.

Remark 5.2. Condition 5.1 In Theorem 5.1 can be 
replaced by the more weak one: X Is bounded In С .

Remark 5.3. Condition 5.2 In Theorem 5.1 can be 
replaced by the more weak one requiring unlqeness of a 
trajectory generated by an arbitrary relaxed 
"control-disturbance" input [5] (it follows from [121).
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Let us give two examples showing that Condition 5.3 
and the uniform C-contlnulty of J on X are Important 
for Theorem 5.1.

Example 5.1 (Importance of Condition 5.3). Let n =

1 , 1  = [0,1] , P = Q = {-1,0 , the system (3.1), (3.2) 
have the form

x(t) = u(t)v(t) , x(0) = 0 ,

and J(x) = x(1) . Conditions 5.1 and 5.2 are fulfilled, 
Condition 5.3 ls violated. It is easily seen that po(Q(V))
= -1 (consider the quasi-strategy v ►-> -v on V ). On 
the other hand for any strategy S the set X(S,V) (see 
(3.4)) contains the function x : t i—> t ; hence po(*>%V) 
= 1 . The class у Is not unimprovable and statements 1) 
and 2) of Theorem 5.1 are not true.

Example 5.2 (Importance of the uniform C-contlnulty 

of J on X). Let n = 1 , I = [0,1] , P = Q = [-1,11 , 
the system (3.1), (3.2) have the form

x(t) = u(t) + v(t) , x(0) = 0 ,

and J(x) = |x|l2,1 . Conditions 5.1, 5.2 and 5.3 are 
fulfilled, but J ls not uniform C-contnuous on X . It 
ls easily seen that p0(Q(W)) = 0 (consider the 
quasi-strategy v »-> v on V ). On the other hand for 
any strategy S there exists a v « V such that 
|x(t|S,v)| > 1 a.e. t « I ; hence po(«>%V) - 1 • 
Statement 1) of Theorem 5.1 ls not true.



647

6. Unlmprovablllty Conditlong for the Class_£

on W : W Compact In

In this Section W compact (In general not closed) In 
L2,cl will be considered (this obviously Implies 
compactness of W In Ls,ct for each s e II, « 1 ). 
Introduce the

Condition 6.1. The set

X(W) = { x(- |u,v) : u e u , v € V > (6.1)

Is bounded In С .

Remark 6.1, Condition 6.1 Implies by the Arzela's 
theorem that the set X(W) Is compact in С . Note that 

Condition 5.1 Is sufficient for Condition 6.1.

To formulate other conditions of unlmprovablllty we 
use the concept of a relaxed control. Introduce It 
following [5, Ch.IV]. Let s be the set of all functions 
b : I x p i—> ir1 such that b(-,u) Is measurable for each 
u € p f b(V) Is continuous for each t e l ,  and sup
i |b(t.u)| : u e p } < X(t) a.e. t e l  for a certain 
integrable X : I ■—> R1 . A relaxed control Is a function 
Щ on I taking values In the set of all Borel probability 
measures on P . Measurability of ju is understood In the 
following sense : for each b e & the function t «—> 

b(t,ju(t)) Is measurable; hereafter

g(ju(t)) = s g(u)(ju(t))(du) 

for any continuous g : P ►—> - The set of all relaxed
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controls will be denoted by RU . A trajectory generated 
by. a relaxed control p. and a disturbance v ls a 
Caratheodory solution of the Cauchy problem

x(t) = f(t,X(t),{U(t).V(t)) , x(to) = xo

on I . If 6Z (z « P) ls the Borel probability measure on 
P such that 52({z)) = 1 (the measure consentrated at 
point z ), then for each (ordinary) control u and each 
disturbance v the trajectory generated by u and v 
coincides with that generated by the relaxed control t >~> 

^u(t) an(I the dIsturbance v ; this allows us to Identify 
the above relaxed control with u E5, Ch. IV]. Thus, we 
consider U as a subset of RU . Assume also that the 
metric generated by the - - weak norm of the space 
conjugate to L1(I,C(P)) is fixed on RU [5. Ch. IV).
Note that a sequence (ju.) converges to a ju In RU ,
If for each b « я

f  b(t,ju. (t)) — > f  b(t.ju(t»dt . ( 6 . 2 )

1 1

Now formulate the conditions.

Condition 6.2. Each ju <= RU and each v from the 
closure of W In generate the single trajectory.

Condition 6.3. If t с I , u « и , v' ,v" € w and 
x(* |u,v' )|t = x(* |u,v")11 , then v' |t = v"|t .

For each function у : I »—> , define Its positive 
and negative 6-shifts (6 > 0) y+<5̂ : I •—> and y_<? : I 
—> R* by
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y(t + 6) [t . в« - Я

(6.3)

y_5(t)
y(t - 6)

]t

here y0 Is a fixed element from Rk ; If у Is a control 
(k = p) or a disturbance (k = q), then we denote yo by 
uo and vo , respectively, and assume uo e p and vo €

Q ; If у = x for x e X (k = n), we put yo = 0 .
Fix a r > 0 . We shall say that the functional J 

Is uniformly (Lr,̂ -continuous on a (non-empty) set X' 
с X , If

sup | |j(x) - J(y)| : x,y e X' ,

|x+<? - y|Lr,n £ ( ? , 0  < < /? j  —>0 

as p —> 0 . (6.4)

Example 6.1. Let r = 2 , J(x) = |x|22,n and a set 
X' с X be bounded In С . Then J Is uniformly 
(Lr,^-continuous on X' . Indeed, If x,y « X' , |x+(̂  - 
y|L2,n < p and 0 < 6 < p 9 then

| |x|j;2.n - |x+<?|f;2,n | < K2<? 5 К2/3

where К = sup | vralmax |z(t)| : z e X' j  (K .< +® , sincevralmax 
t € I

X' Is bounded In С and f Is continuous), and

| |x+<?|f;2.n - |y122,n | s /?(|x+<?|L2,n + |y|L2.n) £ K f
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where К1 = 2K(£o - to)1/2 . From these Inequalities we get

| |x|22,n - |y|̂ 2tn | < (К2 + Кfp  ;

(6.4) Is true. Note that J Is In general not uniformly 
C-contlnuous on X' .

Remark 6.3. If the functional J ls uniformly 
C-contlnuous on X', then It Is uniformly 
(L^tfbcontlnuous on X' .

Below the basic theorem ls formulated.

Theorem 6.1. Let the set W be compact in L2,<3 , 
Conditions 6.1, 6.2 and 6.3 be fu lfille d , and the 
functional J be uniformly (Lr ,6)-contlnuous on X(W) . 
Then the class у (of all strategies) is unimprovable.

Here we do several comments (the proof of Theorem 6.1 
ls given In Sec. 6). Statement 2) of Theorem 5.1 ls In 
general not true under the conditions of Theorem 6.1 (the 
class of positional strategies ls not unimprovable for
J having the form (5.1)).

Example 6.2. Let n = 1 , I = [-1,1] , P = Q = [-2,
2] , the system (3.1), (3.2) have the form

x(t) = g(t)u(t) - v(t) , x(-1) = 0 ,

0 . t < 0
g(t) = (6.5)

t , t > 0
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2 , -1 < t < -1/2
-2 , -1/2 < t < 0
0 , 0 < t < 1/2
2 . 1/2 < t < 1

V_1 = - V1 and J(x) = |x(1)| .

All conditions of Theorem 6.1 and of statement 2) of 
Theorem 5.1 are fulfilled. It is easy to calculate that 
PG(So,W) = 0 for the quasi-strategy So on W determined 
by (So(v1))(t) = 2 and (So(v_1))(t) = -2 . Since J Is 
non-negative, po(Q(W)) = 0 . Let S be an arbitrary 
positional strategy. Denote y1 = x(- IS.v^ and y_1 = 
x(* IS.v.p . It Is easily seen that y^O) = y.^0) = 0 . 
Taking Into account that S Is positional and v^ 0,1/2 = 
v_l|0,1/2 we get y ^0,1/2 = y_110,1/2 .Let b = y^l/2)
= y_-j(1/2). Assume that b > 0 . Since y_*|(t) > -2t + 2
а.e t e [1/2, 1] , we have у_^1) > 1/4 . If b < 0 , the 
analogous Inequality ŷ (1) < -1/4 Is true. In both cases 
p(S,W) > 1/4 . But S Is arbitrary, thus, po(^c,W) ^ 1/4 . 
The class Is not unimprovable.

Let us Illustrate the Importance of Conditions 6.2 and

б.3 for Theorem 6.1.

Example 6.3 (Importance of Condition 6.3). Let n =
4 , 1  = [-1,1] , P = {-1,1} , Q = [0,1] , and the system

(3.1), (3.2) have the form

x^t) = u(t)
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X,(t)
x^(t)|t| , t > 0 

. t г 0

x,(t)
f  X , ( t

1 g e t .

xt(t)|t|v(t) , t < 0 

X2(t), x3(t)) , t 2 0

X4(t) = vet) . (6.6)

x^-1) = X2 (-1) = X3 (-1) = X4 (-1) = 0 ;

here

g(t. x2, x3) =
tx31/2 , x3 > |x2|

,3/2
. tx 3 / | х 2 | f 0 < x3 < |x2

Let W be the set of all absolutely continuous 
disturbances v such that v(-1) = 0 and |v(t)| = 1 
a.e. t e l  (it ls clear that W ls compact In L2’1 ). 
All assumptions from Section 3 are true as one can easily 
verify. Conditions 6.1 and 6.3 are fulfilled (see the last 

equation In (6.6) and Remark 6.2). Condition 6.2 ls 
violated, since the relaxed control t »—> 1/2(6  ̂ + 6_̂ ) 
(together with an arbitrary disturbance v) generates two 
trajectories x' and x" having different third components

f 0 . t < 0 
( xM) = 0 and x$(t) = < л , respectively ).

6 6 I t 4/16 , t > 0

Put J(x) = x3(t) . The functional J ls uniformly

C-contlnuous and consequently uniformly (Lr, 5 )-contlnuous 
on X(W) (see Remark 6.3). Let us show that Theorem 6.1 Is



653

not true. Consider the quasl-stratagy So : v »-> -v on W 
For any v « W the trajectory x = x(- |S0,v) satisfies 
the equalities x^t) = -v(t) ( t e l ) ,  x3(t) = - v^(t) 111 
(t < 0) , x3(t) = x3(0) < 0 (t < 0) ; therefore J(x) = 
x3(1) s 0 . Hence p0(Q(W)) < p(So,W) < 0 . Take an 
arbitrary strategy S . It Is clear that there exists a v 
e W such that tte  trajectory x = x(* |S,v) satisfies the 
equality x1 = v . Then x2(t) = x3(t) > 0  (t с 1-1,0]). 
Hence, taking Into account the differential equation for 
x3 , we get x3(t) = (t2/4 + x3(0)) (t > 0) . Consequently 
p(S,W) > J(x) = x3(1) £ 1/16. Since S Is arbitrary, 
pe<J\W) ^ 1/16 . The class r  Is not unimprovable.

Mote that If one change the places of u and v in the 
equation (6.6) and puts J(x) * -*3(1) . all conditions of 
Theorem 6.1 are also fulfilled, except Condition 6.2 : the 
disturbance v : t >—> 0 belonging to the closure of W 
In L2*1 generates (together with an arbitrary control) 
two different trajectories. Following the previous pattern, 
one can show- that Theorem 5 J  la not true.

Ехаля?1е 6.4 (importance of Condition 6.3). Let n =
1 ,1  = [-1,1], p = q = {-1,1} , and the system (3.1),

(3.2) have the form

x(t) = u(t) + g(t)v(t) , x(-1) = 0

where g Is determined by (6.5). Let W = {v_.,, v^ where 
v4 (t) * -1-. v^t) = 1 and J(x) = a(x(1)) where a Is 
a non-negative continuous function on R1 such that

f  0, [y| 2: 5 /2  
a(y) = <

L 1. |y| *  3 /2
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All conditions of Theorem 6.1 are fulfilled, except 
Condition 6.3 (It ls violated due to (6.5)). For the 
quasl-strategy So : v ■—> v on W we have X(So,W) = 

{x_1,x1} and ix^DI = 1x (̂1)! = 5/2 . Thus, po(Q(W)) < 
p(So,W) = 0 . Let S be an arbitrary strategy. Denote y_1 
= x( |S,v__1) and y1 = x(- |S,v1) and put b = y.^0) = 
y^O) . Assume that b > 0 . Since 1 > y_1(0) > 0 and 
1-t > y_.,(t) > -1-t a.e. t e [0,1], It holds 3/2 > 
y_-j(1) > -3/2 . I f  b < 0 , we have the analogous 
Inequalities 3/2 > y^1) £ -3/2 . In both cases (see the 
function a) p(S,W) > 1 . But S Is arbitrary, therefore 
pQ(J\W) ^ 1 . Thus, the class у Is not unimprovable.

7. Proof of Theorem 6.1.

Lemma 7.1,
1) [5, Theorem IV.2.1] RU is a compactum.
2) [5, Theorem VI. 1.1] if  a sequence ((ju., v., x.)) 

from RU x V x С converges to (ju, v, x) € RU x V x С in 
RU x L2*̂  x С , and x. is a trajectory generated by ju. 
and v. (i € w) , then x is a trajectory generated by ju 

and v .

Lemma 7.2. Let ju. —> pt in RU , 5. > 0 (v e  in) ,

—> 0 and y. e RU be such that R(t) = |U.(t-5.) for 
t e [t0 + $0] (i e in) . Then y. —> ju in RU .

Proof. Let s' be the set of all functions b e s
к

having the form b(t, u) = ^g j(t)b j(u ) where к € in , g :

I i—> R and bj : P i—> R1 (J e [ 1:kl) are continuous. 

Since & ls dense in L1(I,C(P)) = s [5, Theorem 
1.5.18], it is sufficient to show that the convergence
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(6.2) where ju. is replaced with ь>. is true for all b 
e з ' . Take an arbitrary b « x . It is clear that

W(tf) = sup I  |b(t',u) - b(t",u)| : t',t" e I , |t' - t"|

£ 6 . u e p j  —> 0 as ff —> 0 .

Hence

pi = f (b(t,b>.(t)) - b(t - 6 ,v (t)))dt —> 0
l o + 6 i

Note that

to+<5\
a. = / b(t,R(t))dt — > 0 ,

y. = /  b(t,(U (t))dt —> 0 .
K-6-О x.

Those convergences and the convergence (6.2) Imply

*0
/ b(tfi>. (t))dt = a. + / b(t,R(t))dt =
I 1 1 tc+5t

Vo
= a  + p. + * b(t - 5.,i>.(t))dt =

1 t„+«y. 1 1
О  \
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Ф -<5\о v
= а. + (3. + / b(t,<u.(t))dt =

V 1 V j_ '  I
о

а. + /?. -  ri + / b(t,ju. (t))dt — > / b(t,ju(t))dt

Lemma 7.3» Ie *  а se* IV' сИ/ be non-empty and 
compact in L * ^  , and Conditions 6.1 and 6.2 be fu lfilled . 
Then

sup | |x+<5V  |u-<5> )  -  x(-1u,v)|j_r*n : u € u, v e W' | — > 0 

as 6 — > 0 (7.1)

Proof. Suppose that (7.1) ls not true. Then there
exist an € > 0 and sequences (ii) from U , (v.) from
W' and (5.) of positive numbers such that fo r  x. = 

v + 6  ~S v
x (-|u ,v .) and x* = x l ( - l u i l . It holds

|x+ -  x. |Lr,n > e (i <= w) . (7.2)

Since RU ls a compactum (Lemma 7.1, 1) ), W ls compact 
In L2,(I and X(W') ls compact In С (It fo llow s from 
Condition 6.1 by the Arzela 's theorem), assume without loss  
of generality that

U — > jU «= RU to RU , (7.3)
v. — > v e W to L2,ct , (7.4)
\  — > X € с In С , (7.5)

x* — > x+ € С In С ; (7.6)

In (7.4) W stands fo r  the closure of W In L2^  . Let
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у be the trajectory generated by pt and v (It Is unique 
by Condition 6.2). The convergence (7.3) Implies by Lemma 
T.2 that

- 6.

u. v —  > ju in R U  . (7.7)

By Lemma 7.1, 2) convergences (7.3), (7.4) and (7.5) Imply 
x = у , and convergences (7.7), (7.4) and (7.6) imply 
x+ = у . Consequently (see (7.5) and (7.6))

lxi - <lc — > 0 • (7-8)

Let E be a compactum In Rn such that 
{ x(t) : x e X(W), t  «  I }  с E (see Condition 6.1),

w(/3) = sup | | f (t ',x ',u ',v ') -  f(t",x",u",v")| : t '. t "  <= I,

X ' , X "  <= E, U ' , U "  «  P, V ' , V "  e Q,  |t' -  t "  | £ p , |X' -  X"| S 

p ,  |V' -  V"|  < p  | (/3 2 0) .

с = sup | vralmax |x(t)| : x «= X(W) j

(Condition 6.1 ensures с < -к» ), and

r f i )  = max {  <5-., |x. -  x+|c , |v.(t -  S .)  -  v.(t)| } .  (7.9)

Then (taking Into account that x*(t) = 0 fo r t «  C£0 -
& , $Q]) we have

do ' 6i
ix+ - x. i r n - ; 1 |r(t+^* ^ (t)> u (̂t)* -L 9 t
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f (t , x.(t), u (t ) ,  v.(t))|r  + cr <S. <

*  -S.о

(T.10)
о

Note that the last Integral exists (the function [3 — > 

w(/3) Is continuous and the function t — > f . (t )  Is 
measurable and bounded; therefore the superposition t »—> 
w^yCt)) Is Integrable [5, Theorem 1.4.221). Fix а б  > 0 
such that

where c1 = sup { w(/3) : p > 0 } (obviously, ĉ  < ). 
The L^-com pactness of W' yields |vjA  -  v J L2tq — >
0 . Therefore, assume with no loss of generality (taking a 
subsequence, If It Is necessary) that |v.(t-5.) -  v.(t)|
— > 0 a.e. t e [to, Oo-(5'] . Then (7.8) and (1.9) give the 
convergence f. (t ) — > 0 a.e. t e [to, Oo-<5'1 . By the 
Lebesgue's theorem

From (7.10) , (7.11) and (7.12) we get that fo r  all 
sufficiently large i

« £  + СГ)<5- < £Г/4 , (7.11)

This contradicts the assumption (7.2).
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The following notion ls basic for the proof of Theorem
6.1. Define the negative 6-sh ift {6 > 0 ) of a 
quasi-strategy S on a set W' c V  to be the mapping 
S~s  : v ->  S-5(v) = (S (v)r'5' : W' >-> U ; It ls easily 
seen that S-<? ls a quasl-strategy on W' .

Lemma 7.4. Let a set W' с W be non-empty and 
compact in , and Conditions 6.1 and 6.2 be fu lfilled .
Then fo r  each quasi-strategy S on W'

sup ^ Inf |x+<? - y|Tr»n —> 0
xeX(S"°,W') yeX(S,W') L

as <5* — > 0 . (7.13)

Proof. Let S be a quasl-strategy on W' , 6 > 0 
and x be an arbitrary element from X(S“^,W') , I.e. x = 
x(- |(S(v))“ ^, v) for a certain v e W' . Then

inf | x+(  ̂ - у 11 r,n £ |x+i5(- |(S(v)r<?, V) - 
yeX(S,W) L

x(- |S(v),v)|Lr,n < 0 (6 )

where a(6') Is the value given In (7.1). So far as x ls 
arbitrary, the value given In (7.13) Is no larger than 
o{6 ) too. By Lemma 7.3 o{6 ) —> 0 as 6 — > 0 ; this 
completes the proof.

Lemma 7.5. Let Condition 6.3 be fu lfilled , S be a 
quasi-strategy on W , and 6 e ]0,0o-to С . Then for any 
t 6 I , x «  X(S~ ,̂W) 11 , v' ,v" e W such that



X = х (■ |S“ ^(V# ),V' )|t = X(* |S-(?(V "),V ")| t (7.14)

it holds

v' (t) = v” (r) a.e. r e tto,t] , (7.15)

(S_(?(v '))(r ) = (S_^(v"))(r) a.e. r «e [t0,t+61 n I . (7.16)

Proof. We put

r. = t o + (i e in), ш = max {  i e in : r. < 0o )  . (7.17)

Let us show that the statement of the Lemma Is true for t 
< r 1 . By the definition of S~&

(S-‘V  ))(r) = (Sv' )~6 ( t )  = uo = (S (v"))_<?(r) = 
(S_5(v"))(r) ,(r 6 [ t ^ ] )  . (7.18)

Let x <= X(S-<5,W) |t and v '.v " <s W satisfy (7.14). 
Introduce the control u : r — > uo . Rewrite (7.14) In the 
form

x(-|u,v')|t = x(* jufv")|t . (7.19)

Applying Condition 6.3 we get (7.15).
Hence

(S(v'))(r) = S(v"))(t) a.e. т € [to.t] . (7.20) 

Consequently

(S-(?(V' ))(r) = (S(v' ))(t-5) = (S(v"))(r-<5-) = (S-<Sr(v"))(T) 
a.e. r e [r^t+tf] n I . (7.21)

660
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This condition and (7.18) Imply (7.16).
Now we use Induction. Suppose that the statement ls 

true for all t < r. , where t e II : ml . Let us show 
that It ls true for t  e (r. ,t.+i ] . L e t  x e X(S_<?,W)|t 
and v' ,v" «  W satisfy (7.14). By the assumption, V' (r)
= v"(r) a.e. r «  tto, т.] . It implies that (S(v*))(r) = 
(S(v"))(r) a.e. r «= tt0,r.] . Hence by the definition of 
S~s

(S~6 (y- ))(r) = (S(v' ))(r)(r-<5-) = (S(v"))(r-<5-) = (S_<?(v")(r)
a.e. r e .

Taking into account (7.16) we get

(S~s (v  ))(r) = (S“V ' ) ) ( r )  a.e. r *  tto,r.+i] .

Introduce a control u such that u(r) ls equal to both 
sides of this equality a.e. r e [tQ,ri+1] . Rewrite (7.14) 
In the form (7.19) and applying Condition 6.3 obtain
(7.15). The latter leads (as In the case t < r1 ) to 
(7.20) and (7.21) which Imply (7.16).

Lemma 7.6. Let Condition 6.3 be fu lfilled , S be a 
quasi-strategy on W and 6 e ]0,$o-to[ . Then there 
exists a strategy S' such that for any v € w

x(-IS '.v) = x (-IS^ .v ) . (7.22)

Proof. Here we use notations (7.17). Introduce a 
strategy S' = ((т., « Д е [ 0:т] • whoose feedback controls 

(v e (0 : ml) satisfy the following conditions : If x 
«  X(S-<?,W)|r. , then w.(x) ls an arbitrary element from
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(7.23)

then

u (x ) = S -5(vJ|r..TUl (7.24)

where vn «  W Is such that

x = x(- I S”^(Vj,V.) IT. . (7.25)

Fix an arbitrary v «  W . Let у * x(- |S# ,v) and u be 
the control generated by S' and v . So, у = x(- |u,v) .
To prove (7.22), It Is sufficient to show that u = S“^(v) . 
We shall show by induction that

for each i «  И : m+13 . Le t  1 = 1 .  Since y(ro) = x0 , 
we have (7.23) for x = y|ro . Consequently,

where vw «  W satisfies (7.25) (for i = 1). By the 
definition of S~6  .

(S_<j(v. )) (t) = (S(v„))-<5(T) = uo = (S(v ))_<?(t) = 
(S_<?(v))(T) a.e. т «  (te.t0+tfl = It^ t,] .

This and (7.27) Imply (7.26) (for i = 1).
Suppose now that (7.26) Is true for a certain i «  И 

: ml. Let us show that

u(r) = (S"5(v))(r) a.e. т (to ,т.) (7.26)

u l^  = w0(x) = S <Sr(vJ|r1 (7.27)
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u(r) = (S <5'(v))(r) a.e. r «= tt0.ri+1) (T.28)

(It will complete the proof). It follows from the 
assumption (7.26) that

y|r. = x(- |u,v)|T. = x( • |S~5(v),v)|r. . (7.29)

Denote the function given In (7.29) by x . We see that x 
satisfies the Inclusion (7.23). Therefore according to
(7.24)

U(T) = (U(X))(T) = (S '<5'(vJ)(r)
a.e. r e [r..rUi] (7.30)

where v. «  W satisfies (7.25). From (7.25), (7.29) and 
(7.30) follows

x(* |S_<?(v),v)|r. = x (• |S-<?(V.).Ve)|r. .

Thus, by Lemma 7.5

(S_5(v))(r) = (S-<y(v.))(r) a.e. r e [t0, r . J  .

The last equality, (7.30) and (7.26) Imply (7.28).

The next lemma will be given In a form more general 
than It ls necessary for the proof of Theorem 6.1 (we shall 
use It In Section 9 considering another variant of the 
problem). The restriction of a quasl-strategy S on W to 
a (non-empty) set W' с W will be denoted by S|W' (It ls 
clear that S|W' ls a quasl-strategy on W' ); the 
notation p(S,W') = p(S|W',W') will also be used. If S'
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Is a strategy, S Is a quasl-strategy on W , 0 W' с W , 
e > 0 , and p(S,W') = -00 (the latter can not be excluded, 
In general), then the Inequality

p(S' ,W') < p(S,W') + e (7.31)

will mean that Its le ft hand side Is .
Note that the following lemma does not require W to 

be L2,cI-compact.

Lemma 7.7. Let Conditions 6.1, 6.2 and 6.3 be 
fu lfilled , and the functional J be uniformly 
(Lr ,6 ) - continuous on X(W) . Then there exists a mapping 

Ту : ]O,0o-to[ x l“ > y  ^  following property :
for  any e > 0 and non-empty L2^-compact set W' с W 
there exists a 6o e 30,0o-tQ[ such that for any 6 €
10,<5o l and S e q(W) tfie strategy S' = ^W(<5\S) 
satisfies the inequality (7.31).

Proof. Let for any 6 e 30,$o-to [ and S e q(W) , 
r w(^S) = S' where S' is a strategy satisfying the 
equality (7.22) for each v e W ; Lemma 7.6 ensures the 
existence of S '. Fix an arbitrary s > 0 and a non-empty 
L2^  compact set W' c W . Putting X' = X(W') denote the 
values written out In (6.4) and (7.1) by <x{(3) and o{<5), 
respectively. Take an (3 > 0 such that <x(/3) < e ((3 
exists, since J is uniformly (Lr ,^-continuous on X '), 
and choose a 6o «  30,So-to [ such that sup {  o(<5) : 6 e 
30,^3 }  < (3 (5o exists by Lemma 7.3). Consider arbitrary 
6 e 30,(5'o3 and S «= q(W) . Let у be an arbitrary element 
from X(S|W',W') , I.e. у = x(* |S(v),v) for a certain v 
6 W' . Then X = x(- |(S(v)r5,v) = x(- |(S|W' )~6 ( v ) ,v )  «= 
XKSIW'T^.W') ; by the definition o f 0 (6 ) , |x+c5’ -  y|Lr,n
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 ̂ o{6) < р . Hence |J(x) -  J(y)| < cx(/?) < e . But by the
definition of S' = r w((5*.S) (see (7.22)) x * X(S' ,W') .
Therefore, due to the arbitrary choice of у we have the 
Inequality (7.31).

Proof of Theorem 6.1. Let all assumptions of Theorem
6.1 be fu lfilled. Taking Into consideration that W Is 
compact In L2,c* and using Lemma 7.7 we conclude that for 
any e > 0 and S «  Q(W) there exists a strategy S' ( S' 
= S) f ° r a sufficiently small 6 ) such that
p(S' ,W) < p(S,W) + e . Since S and e are arbitrary, we 
have the Inequality p (r, W) < p(Q(W)) which completes the 
proof (recall Corollary 4.1).

8. с-Uniform Ensured Result

Denote by comp(V) the set of all non-empty 
L2^-compact subsets of V , put q = q(V) , and denote by 

(<аД, resp.) the set of all families S = (S ^ )^  of 
elements of у  (q , resp.).

The value

(8.1)

where 5  = ( S ^ J ^ q  e  u  q a  will be called the 
с-uniform ensured result for S . The values

(8.2)

and
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pA(Q) = inf | рл(5) : S <= «А } (8.3)

will be called optimal с-uniform results for the classes r  
(of strategies) and Q (quasl-strategles), respectively.

Theorem 8.1.

Proof. For an arbitrary quasl-strategy S on V and 
an 5 = <̂5̂ 6>0 where S^ = S , It holds pA(S) < p(S,V) 
(see (8.1) and (3.6)). Hence (see (8.3)) pA(e) < p(S.V) , 
which due to the arbitrary choice of S Implies (8.4).
The Inequality (8.5) can be proved in a similar way. Take 
an arbitrary strategy S . Like In the proof of Theorem
4.1, we build up a quasl-strategy S' on V such that 
X(S' ,W') = X(S,W') for any W' с V . This obviously 
Implies (8.6).

The Inequalities (8.4) and (8.5) may In general be 
strict, If the functional J ls uniformly 
(L^tfbcontlnuous on X(W') for each W' e comp(V) .

Example 8.1. Let n = 3 ,1 = М.1]. P = Q = 01,
1>, the system (3.1), (3.2) be of the form

Po<«> 5 P„(«) . 

Po^) 5 Po(JO-V> •

P o ^ )  5 Po(Q ) •

(8.4)

(8.5)

(8.6)

X ^ t )  =  u(t) .
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x3(t) = V(t) ,

x^-1) = X2 (-1) = X3 (-1) = 0 . 

For each function x = (x^ x2, x3) € X we put

J(x) = |x3(t+|x2(0)|) -  X1(t)|dt + X2(0) . 

It can easily be proved that J Is uniformly
(L ^ -continuous on X(W ') fo r each W' e comp(V) . Let 
us show that

For each б > 0 let mftf) = min { m «  in : 1/m > 6 > and

the strategy ss  = « ^ W o r a n O T - IJ  be
determined by the following conditions : r ^ .  = -1 +

. ( ^ L(x))(t) = (-1)1 (i < т(б)) , й ^ .(х ) = 
x3 |r5 i _i , r ^ .  (i > т(5 )) . For any v e V the 
trajectory x* = x(-|S^,v) satisfies the relations |x.,(t)|
* G (t e [0,1]) , |x2(0)| < 5 , X|(t) = x3(t-tf) = v(t-tf)
a.e. t e [0, 1] . Thus, fo r each W' e comp(V) we have

p ® 6.W ) = J(x(- | S *  V)) < sup sup X |v(t+£) -

Therefore, p^ (^ ) = 0 which due to (8.6) Implies (8.7).

p f ( « )  = pfr) = 0 . (8.7)

v(t-<5^|dt + e — > 0 as 6* — > 0 .



Let us show that po(Q) > 1/2 (the inequality (8.4) 
and consequently the Inequality (8.5) (see (8.6)) are 
strict). Consider an arbitrary quasl-strategy S on V 
and show that

p(S,V) £ 1/2 . (8.8)

Introduce fin ite  sequences (v.)k=0 of disturbances and
(и ^=0 of controls. Put vo(tV =  1 (t € I) , uo = S(vo ) ,
and 6 = |x2(0)| where x2 is the second component o f x
= x(* |uo>vo) (it is clear that 6 <= 30, 1/23 ). Determine
к e in by ktf > 1 , (к-1)5 < 1 and denote r. = (j €
[0 : k-13) , r. = 1 . I f v. e V and u. e U fo r  a j e [0 к j j
: k-1] are defined, then determine v.+i e V and uj+1 «
U by the conditions vj+1(t+<y) = _Ujb ) (t e ]t ._i# t.3), 
Vj+1|T. = v.|r. , u.+1/ = S(V.+1) . It follows from the 
firs t  condition that |vj+1(t+5) -  v.(t)| = 2 (t € Зт._4, 
г.] ; two other conditions Imply u. It. = u.It. . From
j r 17 1 j j 1 j

these relations we deduce the following Inequalities for  
x = x(- |S,vk) :

V ,
J(x) * / |vk(t+5) -  u^tt) 1 dt + S >

JC_1 T.

E / |v. (t+5) -  u (t) | dt + tf >
J=1 tj-i

2(k-2)tf + 6  = 2k5 - 3tf > 1/2 .

This implies (8.8).

Let us provide conditions ensuring the inequality



(8.4) to turn Into the equality. In this Section we assume 
that the functional J Is defined on the closure X of 
the set X in С ; Its uniform C-contlnulty on X is 
defined by (5.1) where X' = X . Introduce the following 
strengthened variant of Conditions 6.1 and 6.2

Condition 8.1. The set X Is bounded In С , and 
each e RU and v «= V generate the single trajectory.

Now we give several definitions assuming that 
Condition 8.1 Is fu lfilled ; the trajectory generated by a 
ju e RU and a v € V will be denoted by x(-|ju,v) (note 
that, since U Is dense In RU [5, Theorem IV.2.6], 
x(- |ju,v) e X ). Denote by *(RU) the set of all non-empty 
closed subsets of RU . The closure of a set E In RU 
will be denoted by clE . A mapping H : V •—> ^(RU) such 
that fo r each v' ,v" «  V and t e l  v  |t = v"|t 
Implies H (v')|t = H(v")|t will be called a generalized 
quasi-strategy (on V ). The set of all generalized 
quasl-strategles will be denoted by Rq . The ensured 
result fo r  a generalized quasi-strategy H define as

p(H) = sup { J(x(- |ju,v)) : ju e H(v) , v € v } ; 

the optimal ensured result in RQ Is

po(RQ) = Inf { p(H) : H e Rq ) .

It Is clear that po(RQ) < p0(Q) .

Theorem 8.2. Let Condition 8.1 be fu lfilled  and the 
functional J be uniformly С -continuous on X . Then

Po<R Q ) = Po<Q) •
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Proof. If Conditions 5.1, 5.2 and 5.3 are fu lf i lle d  
(this Implies Condition 8.1), then the theorem fo llow s from 
[8, Lemma 96.1]. If Condition 8.1 ls fu lfilled , then a 
statement analogous to the above Lemma (Implying the 
statement of the theorem) can be proved by the method of 
[123; we omit the details.

Lemma 8.1. Let Condition 8.1 be fu lfilled , the 
functional J be uniformly C- continuous on X , 5 =
( S ^ ^ o  e QA and H : V •—> *(RU) be o f  the form

H(v) = n cl( S*(v ) : tf e [0, 1/s] }  (v e V) (8.9)
S^N

Then H e Rq and p \ 5) 2 p(H) .

Proof. Prove the fir s t  relation. Let v' ,v" e V , t e
I and

v' |t = v" 11 . (8.10)

Let us show that H (v ')|t = H(v")|t . Consider an arbitrary  
ju' € H (v ') . So fa r  as v# and v" are arbitrary, It ls 
sufficient to prove that

pr |t e H(v")|t . (8.11)

According to (8.9), there exist tfg «= ]0, 1/s] (s e in) 

such that u^ = S^ (v#) — > ju' In RU . Consider the

sequence (u”) , u" = Stf (v") . Since It ls compact In RU

(Lemma 7.1, 1) ), we have u" — > p "  In RU fo r  a
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certain subsequence. As It Is seen from (8.9), jir e H(v") 
The equality (8.10) yields u^|t = u"|t , thus, pt' \t = 
ju"|t , and (8.11) Is proved.

Put

* (v ) = ГШ  J(x( ■ |S*(v).v)) (v e V) . (8.12) 
<5->0 °

Let us show that

p A(S) > sû > * (v ) > p(H) (8.13)

(It w ill complete the proof). The firs t  Inequality (8.13) 
fo llows obviously from (8.1) and (8.12). Now It Is 
sufficient to show that fo r  any v «  V

#(v) > *"(v ) (8.14)

where

**(v ) = sup ( J(x(- |ju,v)) : ju e H(v) }  . (8.15) 

Taking (8.12) Into account we have

*(v ) = 11m sup J(x(- |S^(v),v)) =
S - > oo M  0,1/s] °

11m sup (  J(x(* |u,v)) : u e {  s^(v) : 6 e ]0,1/s] > }  =
S—>oo I \
11m sup (  J(x(- |ju,v)) : pt e cKS^(v) : 6 e ]0,1/sD j  . 
s->0  I }

The last equality follows from the uniform C-contlnulty of 
J on X and Lemma 7.1, 2). Take arbitrary e > 0 and s 

e in such that



672

*(v ) > sup | J(x(-|jupv) : ju € clCS^(v) : 6 e ]0,1/s]> j -  e

The right side of this Inequality ls no smaller than * w(v)
-  e as It Is seen from (8.15) and (8.9). Hence due to 
the arbitrary choice of e we have (8.14).

Theorem 8.3. Let Condition 8.1 be fu lfilled  and the 
functional J be uniformly С -continuous on X . Then

Po(G> = * <8-16>

Proof. Lemma 8.1 Implies p f ( « )  2 po (Rq) . This 
Inequality and Theorem 8.2 lead to the Inequality opposite 
to (8.4). Since (8.4) ls true (Theorem 8.1), we have
(8.16).

9. Conditions fo r c-Unlform Unlmprovabll Ity of the C lass

The class у  will be called с -uniformly unimprovable, 
If the Inequality (8.6) turns Into the equality. Introduce 
the following strengthened variant of Condition 6.3.

Condition 9.1. For each t «  I , u e U , v' ,v" <s V 
such that x(*|u,v' )|t = x(-|u,v")|t it holds v' |t = 
v"|t .

Theorem 9.1. Let Conditions 8.1 and 9.1 be fu lfilled  
and the functional J be uniformly (Lv 96)~ continuous on 
X . Then the class у  is с-uniformly unimprovable.

Proof. Note that Conditions 8.1 and 9.1 Imply that
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the set W = V satis fie s  Conditions 6.1, 6.2 and 6.3. 
Therefore, fo r  this set the statement of Lemma 7.6 Is true. 
Fix a mapping : Ю, $o- t Q[ x Q »—> given by 

statement of Lemma 7.7. Consider an arbitrary 5 = (S^O^q 
e qa and an e > 0 . Determine the family S' = (S^)5>0 e 
r *  by S£ = {6 e ]0,$o-t o [). By the definition
of fo r  any W' e comp(V) there exists a 6o e ]0,

such that for each 6  € Ю. < V  1г holds 
p(S£ ,W ') < p (S^ ,W ') + £ . Thus,

TTm p (S ^ ,W ') < TTm p(S/r,W ') .
5->0 0 (5->0 6

Hence (see (8.1)) due to the arbitrary choice of W ', 
p A(S ')  < p A(S) . This Implies p A(^) < p A(Q) , since S *

Is arbitrary. The last Inequality and (8.6) complete 
the proof.

Theorem 9.1 (together with Remark 6.3), Theorem 8.3 
and Theorem 8.1 (see (8.5)) yield

Corollary 9.1. le t Conditions 8.1 and 9.1 be 
fu lfilled  and the functional J is uniformly C-continuous 
on X. Then

P & )  = Po(«) = P0(G> - P(r-V) •

Remark 9.1. Under the conditions of Corollary 9.1 the 
last Inequality Is strict. If and only If the class r  Is 
not unimprovable on V (note that r  Is c-unlformly 
unimprovable) ; such a situation Is described In Example
5.1.
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LIMITS OF RANDOM MEASURES INDUCED BY AN ARRAY 

OF INDEPENDENT RANDOM VARIABLES

H i r o s h i  K u n i ta

Let {£ .},n,j=l,2,... be an array of random variables such 
n * j

that for each n, f; . ,j=l,2 ,... are independent with identical
П  » J

distributions. The object of this paper is to study the weak 

covergences of three sequences of random measures induced by

.}. The first two are

..[nt] [nt] E ,
В (t , E) = - t  2 {XE U n f)-E[XE «Sn 4) ] > . N _(t,F). 2
n Л  j = l E n,J E n,J n j = l Л

where xE is the indicator function of the Borel set E. Under 

some conditions we will show that the sequence {Bn (t,E)> 

converges weakly to a Gaussian random measure and the sequence 

{Nn (t,E)> converges weakly to a Poisson random measure. These 

weak convergences will be applied to the the study of the limit 

theorem for sums of nonlinear functions of £ .:
Г1 f J

, [nt]

x-(t> = 4  2 V « n>J> - a"(t)’
/П j=l

where {an (t)> are certain centralizing functions.

0. Introduction

There are extensive works on the limit theorems for sums of

independent random variables. Let {£ n,j=l,2,... be an
*1 p J
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array of Rm - valued random variables such that for each n, f;
n • j

j = 1,2,... are independent with the identical distribution к
n

(i.i.d. random variables). Then one of the typical limit

theorems states that under a suitable conditions on the sequence

{л }, the distributions of the linear sums (l/Vn)!1? , - a
n j = l n ,j n

converge to an infinitely divisible distribution, where {an > is 

a sequence of suitable centralizing constants. See Gnedenko- 

Kolmogorov’s book [2]. More strongly, the sequence of stochastic 

processes Yn (t ) = (l/ У п ) j-an t’ ti0 converSes to a time 

homogeneous process with independent increments. Here [nt] is 

the integer part of the number nt. See Jacod-Klopotowski-Memin 

[5] and Jacod-Shiryaev [6].

In this article, we will study the limit theorem for sums 

of non-linear functions of j :

, [nt]

(ол) x" ( t ) - ^ f" (W - V tb

where {fn ) are continuous R^-valued functions and {an (t )> are

certain centralizing R^-valued deterministic functions. Since

f U  i )• j = l »2,... are i.l.d. random variables for each n, it 
n n , j

is clear that the limit should be a process with independent

increments if it exists. We wish to know how the limit is

related to the functions {fn } and the array of random variables

{f; To study this problem, we will introduce three
n , j

sequences of random measures induced by the array and

discuss their weak convergences.
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We first consider a sequence of random measures with time 

parameter t defined by

where *E (x) is the indicator function of the Borel set E. It 

may be regarded as a stochastic process with values in additive 

set functions. It's mean is 0 and covariance is

X n (t) is represented as the integral of the function fn (*) by 

the random measure Bn (t,dx), i.e.,

We can show that If the sequence (лп> converges weakly to a 

distribution n, then the sequence of stochastic processes 

{Bn (t,E)> converges weakly and the limit B(t,E) is a Gaussian 

random measure for any t. whose mean is 0 and covariance is 

t ( n ^ n E g ) -тс(Е1 )я(Е2 ) ) . See Section 2, Theorem 2.1.

Now suppose that the sequence (fn ) converges to a function

(0.2) Bn (t.E)

Then, setting

(0.3)
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f uniformly on compact sets. A simple question is whether the 

weak limit of stochastic processes {Xn (t )} exists and the limit 

X(t) is represented by

The answer is yes if f(A) is a bounded function or more 

generally if lim, , If(x)I/ Ix|=0. In this case X(t) is a
I A  I -»00

Gaussian random variable for any t and moreover, the stochastic 

process X(t), t^O is a Wiener process. However If the above 

limit is not zero, the representation (0.4) does not hold in 

general. At least a Poisson random measure will be needed for 

the representation of X(t), if the distribution of X(t) ls not 

Gaussian.

We will obtain an integral representation similar to (0.4) 

by introducing another two random measures. The second random 

measure is defined on Rm -{0} by

(0.4) X(t)
IR

(0.5) Nn (t.F)

The expectation of Nn (l,F) is given by

(0.6) Mn (F) e nP( €F) = nTCn (/nF).

It is a Radon measure on Rra-{0}. We call that the sequence {дп}
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converges vaguely to a Radon measure д if /^dMn converges to 

/fdji for any bounded continuous function f on Rm such that its 

support is included in IRm-{0} . Now if the seqeunce (дп) 

converges vaguely to д, then we can show that the sequence of 

stochastic processes {(B (t,E),Nn (t,E))} converges weakly to 

(B(t.E),N(t,F)) where N(t,F) is a Poisson random measure with 

mean ^ ( F )  for any t. Moreover B(t,E) and N(t,F) are independent 

processes. See Section 2, Theorem 2.1.

In order to introduce the third random measure, it is 

useful to represent points of Rm-{0} by polar coordinate (r,0 ), 

where r€(0,®) and 0€Sm 1 (m-1 dimensional unit sphere with 

center 0). Then Rm-{0} is homeomorphic to (0,«)xSm_1 and 

(0,«*»]xSm 1U{0} is a compactif ication of |Rm . We can regard 

{®}xSm 1 as the boundary of IRm and denote it by 0Rm . Now for 

e>0 let x (t), tiO be the function such that x (t)=l if t<e. =0
о  Б

if Define the random measures by

(0.7)

Its mean is 0 and covariance of K ^ t . G ^  and K^(t,G2 ) is 

t(v^(G1nG9)- t )), wheren vol' ,u2

( 0 . 8 )

(0.9)
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Assuming that the sequence {v®} converges weakly in Rm as n— *», 

we can show that the sequence {(K®(t.G),Nn (t,F)} converges 

weakly to ( K ^  (t,G) ,N(t,F)) and the measure Ke (t,G) is 

decomposed to the sum of the three:

(0 .10)  Ke ( t .G )  = Г (1+l i l ) " 1B ( t , d i )  ♦ f nlK( e ) (t,dA.)
GOR J Gn3Rm

* f m U I X . (  U I ) N ( t . d x )  .
J Gfl(R -{0}) B

where B(t,d;0 is equivalent to B(t.dx) in the sense of law,

f <x> )
К (t.dx) is a Gaussian random measure supported by the 

boundary 8Rm and N(t,E)= N(t,E)-Ьц(E). See Section 2, Theorem

2 . 2 .

Now suppose that the sequence {fn ) defining (0.1) converges 

to f uniformly on compact sets and that the asymptotic function

fn (/ru)
(0 .1 1 ) h U )  = lim -----

n->® /n|>U+l

exists (uniformly on comapct sets of Rm-{0}) and

h( 0 ,0)=lim h(r,0) exists. Our goal is to show that 
r*+®

{(Kn (8 )(t),Nn (t),Xn (t))} converges weakly to (K(e)(t),N(t),X(t)) 

and X(t) is represented by

(0.12) X(t) = J m f ( A ) B ( t , d A )  + J m _1h(O,0)K(e)(t,d0) 
R. S
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+ I m U l h U ) * g ( U I  ) N ( t .dx)
^Rm-{0) 

♦ f
Rm-{0}

1лl h ( x ) ( l-Xg (X ) )N ( t , d i )

The proof will be given at Section 3.

In particular, if the random variables £ . satisfy
n,j

sup E[ IE 4l2 + &]<ee for some 6>0, then both K (e) and N(t,*) are
n  П  » J

identically zero. Hence we again obtain the representation 

(0.4). This will be shown at the end of Section 3.

Finally we will consider the special case where fn (x)=f(x) 

= X. We have f (л) = I X Ih(A)-X. Therefore X(t) is represented by

(0ЛЗ) X(t) = rEmAg(t'dA) * fsm-l0K(")<t'd9>

J,
m xxc ( U I  )N(t  ,dx) 

R -{0} 8

I A(l-Xc (X ) )N (t ,dx )  
R  - { o }  6

Set

(0.14) Xc (t) = J mxS(t.di) ♦ Ct.dfl) .
IR ®

It is a Brownian motion and the above (0.12) is written as

(0 .15)  X ( t )  - X ( t )  ♦ Г X X . ( U I ) N ( t . d i )
°  R -{0} 6
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+ Г rn A(l-Xc (A))N(t,dA).
JRm-{0} 8

This coincides with the Levy-Ito’s representation of the process 

with independent increments. See [4].

The representation (0.12) provides us an additional 

information on the limit distribution of sums of independent 

random variables. In fact (0.12) shows that the Gaussian part 

is related to the function f(A) directly and the Poisson part is 

related to the asymptotic function h(A) defined by (0.11). 

However in representation (0.13) this fact is not clear since 

f (A ) and I a Ih(a ) are the same function.

The next section is a preliminary part. We define the 

orthogonal and relatively orthogonal random measures. Then we 

define the law of a process with values in additive set 

functions.

1. Orthogonal random measures

Let Л be a locally compact separable metric space. Let 

9(A) be a ring of subsets of Л consisting of countable sets 

such that the a-field generated by the ring 5(A) coincides with 

the topological Borel field Я(Л) of A. We assume that any 

element of S(A) ie relatively compact.

Let <Z(E);E€?(A)> be a family of real random variables 

defined on a probability space (Q,?,P) having the finite 

additive property Z(EJLuE2)= Z(E1 )+Z(E2) a.s. if Е^Е^ф. Suppose



684

that Z(E) is integrable for any E of 9(A). Set д(Е)=E(Z(E)]. 

Then it is an additive set function on 9(A). We assume that д 

is extended uniquely to a Radon (signed) measure on A. Then the 

system (Z(E);E€5(A)} is called a random measure uith the mean 

measure д.

Now assume that Z(E) is square integrable for any E of Sf(A) 

and satisfies the orthogonal property:

(1.1) E[(Z(Е)-д(Е))(Z(F)-M (F))] = 0  if EnF = ф.

Set

( 1 . 2 ) л ( Е )  = E [ ( Z ( E ) - u ( E ) ) 2 ] .

Then 7i is a positive additive set function because of the 

orthogonal property. We have further

(1.3) E ( ( Z ( E ) - M( E ) )( Z ( F ) - M( F ) )] = 7t(EnF), V E . F€ g ( A ) .

If the above л is extended to a Radon measure on A. Z is called 

an orthogonal random measure uith the characteristic (д.я).

We denote by IдI the measure of the total variation of д. 

The following proposition is more or less known.

Proposition 1 .1 . (1 ) Let {Z(E);Ee»(A)} be an orthogonal

random measure with characteristic (д,л). Then Z(E) can be 

extended continuously to any E of JB(A) such that |д!(Е)<« and
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л(Е)<°°. Further.

п
(1-4) Z( и Е.) = lim 2 Z (Е,) (in probability)

i = l A n-+«» i = l 1

holds for any disjoint sets Ei . i = 1 . 2 ....  such that I m K u ^ E j )

and rt(Ui“1Ei) are finite.

(2) If f(x) belongs to L1 ( U I ) n L 2 (K), / f U ) d Z U )  is well 

defined. It satisfies

(1.5) E [ J f U ) d Z U ) ]  = J f U J d t f U ) ,

( 1 . 6 )  E [  | J f U ) d Z U )  -  J V u ) d M U )  I 2 ]  = J f U ) 2 d 7 i U ) .

We shall extend the orthogonal random measure. Let к and v
2

be Radon measures on A satisfying Tt(E)iv(E) for any E of SKA).

A random measure Z(E) is called relatively (л. v ) -orthogonal if 

Z ’(E)= Z(E)-m(E) satisfies

(1.7) E(Z'(E)Z’(F)] * TC(EnF)-v(E)v(F). VE,F€S(A).

A relatively (к.v)-orthogonal random measure Z(E) has 

properties similar to those of Proposition 1.1. Indeed, 

property (1) of Proposition 1.1 Is valid. Further if f is a 

function belonging to L*(|дI)nL2 («)nL1 (v). then /f(A)dZ(*) is 

well defined and it satisfies
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(1 .8 )  E[ i J f U ) d Z ( x )  -  J f U l d j i U )  I 2 ] 

= J* f ( x )2djt(j.) - ( J f ( x ) d v U ) ) 2 .

The triple (д,я,У) is called the characteristic of Z. Note that 

in the case where v=0, Z is an orthogonal random measure.

We give two important examples of relatively (л,у)- 

orthogonal random measures. An relatively (я.v)-orthogonal 

random measure {G (H );E€9(A)> is called Gaussian if it is a 

Gaussian system of random variables. For a Gaussian orthogonal 

random measure, G(E^),...,G(En ) are independent whenever 

E i .....En are disjoint.

Next, let {N(E);Е€#(Л)} be a random measure with values in 

nonnegative integers with mean measure д. It is called a 

Poisson random measure if it satisfies two properties. (a) For 

any E€9(A), N(E) is subject to a Poisson distribution with

intensity д(Е). (b) If E ^.... En are disjoint, then

NCE^),...,N(En ) are independent. It is then an orthogonal 

random measure. Since the mean and variance are the same for 

Poisson distributions, we have д=я.

Let (Z(t,E);t€[0,®),E€9(A)} be a family of real random 

variables such that for each fixed t, it is a relatively

orthogonal random measure. Of course for fixed E ^ .... En ,

{ (ZCt.E^), . .. ,Z(t ,En )); t€[ 0 , *>)} can be regarded as an Rn valued 

stochastic process. If It is continuous in probability and has

independent increments with respect to time t for any .....En ,

{Z (t,E);E€S(A)> is called a Levy process vith values in
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relatively orthogonal жеазигез.

Let Z(t.E) be a Levy process with values in relatively 

orthogonal measures. We assume that Z(t) is stationary, i.e., 

the law of {Z (t+h,E)-Z(h,E) ;Е€#(Л)} does not depend on h and 

Z (0 , E) =0 a.s. Its characteristic is (t/i.tn.tv), where (д,я,1>) 

is the characteristic of (Z(1,E);E€0(A)}. Set 

Z((s,t]xE)=Z(t,E)-Z(s,E). Then Z is extended uniquely to a 

random measure on the product space [0 ,»)xA, whose 

characteristic is (т®д,т®я,т®у), where m is the Lebesgue measure 

on [0 ,®). It is called the tine-space randon measure associated 

uith Z(t,E).

Finally we define the law of a random measure. Let Ж(A ) be 

the set of all finitely additive set functions on 0(A). It is 

a complete mertic space by the metric

- , 1д(Е )-v(E )|
<1.9, d U .w , . J  L  . <En >-S(A).

The law of the random measure Z is defined on Ж С A) by

(1.10) P (A) = P({«;Z€A}), А€Я(А(Л)).

where Я(*(Л)) is the topological Borel field of *(A).

The law of a Gaussian random measure is determined by its 

characteristic (д.л.у). The law of a Poisson random measure is 

determined by its characteristic (0 ,д,д).

Let Z(t,E), t€[0 ,«), Е€$(Л) be a stochastic process with
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limits) with respect to t. Let D=D([0 ,~);Л(Л)) be the set of 

all cadlag maps from [0 ,*) into A(A). We associate D the 

Skorohod's J^-topology (See Billingsley [1]). The law of Z(t,E) 

is then defined on D in the same way as (1 .1 0).

2. Weak convergence of random measures induced by l.i.d. random 

variables

Let { ^ n  j ) ,  n ,J = 1 ,2 , . . . be an array of IRm  valued random 

variables such that for each n £n j , j-1 ,2 ,... are independent, 

identically distributed (i.i.d). We will use the same notations 

as those in Introduction. We first introduce conditions for the 

sequences {лп} and {дпК

Condition (C.l) The sequence {лп> converges weakly to a 

probability distribution л.

Condition (С.2) The sequence (дп) converges vaguely to

a Radon measure д on Rm -{0}.

Let S(Rm ) be a ring of Rm generating the Borel field of Rm

For the later discussion it is convenient to assume that any

element E of 9(Rm ) satisfy linr л (Е)=л(Е). (The condition is
n-**> n

always satisfied if лд=л for any n or all E of 9(Rm ) is a 

л-continuity set i.e. л(ЭЕ)=0 holds for any Ee<S(Rm ) if лп*л.) 

Simlarly let 9(Rm -{0}) be a ring of Rm -{0} generating the Borel 

field of Rm-{0 } such that any F of 9 (Rm -{0}) satisfies
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on £(IRm ) (or 3?(Rm - {0 >)) is denoted by *(Rm ) (or A(Rm-{0}). Then

the law of the pair (0n »Nn ) can be defined on the Skorohod space

D=D([0 ,®);Ж(Rm )хЖ(IRm -{0 >)). The typical element of D is denoted

by B=B( t , E) and N=N(t,F). We denote by P the law of (B ,N ).
n n n

If the sequence {Pn > converges weakly in D, the sequence of 

pairs ((Bn .Nn )} ls said to converge weakly.

We wish to prove the following.

Theorem 2.1. Assume Conditions (С.1) and (С.2). Then

the sequence of pairs {(Bn »Nn H  converges weakly. Let 

(B(t,E) ,N(t,F) ,PJ be its weak limit. Then

(1) {B(t ,E)} is a Levy process with values in relatively

(tn,trc)-orthogonal measures. The associated time-space measure 

of {B(t,E)> is Gaussian with characteristic (0 ,т®л,т®тг) .

(2) {N(t .F )> is a Levy process with values in orthogonal 

measures. The associated time-space measure of {N(t,F)} is a 

Poisson random measure with characteristic (т®д,т®д).

(3) {В(t ,E)} and {N(t,F)} are independent.

In order to establish the theorem, we need to prove two 

facts. The first is to prove that the sequence {Pn } is tight, 

i.e., for any n>0 there exists a compact subset К of D such that 

Pn (K)>l-7) holds for all n. If it is shown, then the sequence 

{Pn } contains a subsequence converging weakly. Let Pe be any 

limit measure. The second problem to show is that Pe is a 

solution of a certain martingale problem (See Proposition 2.3).
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The theorem will then be proved by showing that the limit 

measure is unique and it has the property required in the 

theorem.

Proposition 2.2. The sequence {Pn } is tight.

Proof. Obviously (B (t,E),Nn (t,F)) is a semimartingale 

adapted to the filtration = <7(^_ j£[nt)). We may apply a
Ь n , J

tightness criterion for a sequence of semimartingales. See • 

Jacod-Shiryaev [6 ], Chapter VI, Section 4. We omit the detail 

since it is not difficult.

Proposition 2.3. Let Pe be an arbitrary weak limit of

(Pn b  Set B(t,E)=(B(t,E1).... B(t.EM )) and N(t.F)-

(N(t,Fx)___ ,N(t,FN )) where Ep€»(IRm ) ,p = l ..... M and Fj€»(Rm -{0 }) ,

j=l,...,N. Then for any C^-function F(x,y) on RMxRN , the 

following is a martingale with respect to Pe .

(2.1) F(B(t,E),N(t,F))

t 2
- | Д(я(ЕрпЕч)-л(Ер)д(Еч))|од|-|̂ -(В(8-.Е).М(5->П)а5

"ГГт [f (B(s -,E) ,N(s-,F)+I|r-(x)) - F(B(S-,E),N(s-.F))l 
J0JRm-{0}v * }

хд(dA)ds.
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Taking a subsequence of {Pn > if necessary we may assume that

{ P I  converges weakly to P . We denote В (trE), N (t,F) by 
П 00 n n

B„(t). Nn (t) and B(t,E) ,N(t,F) by B(t), N(t), respectively. 

Set

Proof. We prove the case M=N=1 only for simplicity.

J = {t : ?m ((AB(t),AN(t))#0)>0} ,

where ДВ(t)=B(t)-B(t-) and AN(t) =N(T) -N( t -) . It is at most a 

countable set. Then the finite dimensional distribution of

( ( W . r y t i » ....  *Вп к̂* ’Nn (tk ))} converges if tx .... tk do

not belong to J. See Billingsley [1].

Set tj=J/n. By the mean value theorem, we have

(2.2) F(Bn (t).Nn (t)) - F(0.0)

. [nt]д2р 2

n ( t J - l ))4Bn<*J>2

[nt]rt /
* 1 ПВ (t.) *Nn (t4
j = l  J Rm-{0>^ n J "  J 1 F

- F(Bn (tJ ).Nn (tJ_1 )))ANn (tJ ,dj.),



692

where

* V V  * V V - V V i ’ *

Амп(»гр) = N^tj.FJ-N^tj^.F) - IF ( ^ ) .

and Tjj are random variables satisfying I n j-Bn ( t ) l  £ 

lBn(tj)-Bn(tj-l)|- Denote the ^irst* second and third terms of 

the right hand side of (2.2) by I ^ t t ) ,  l£2)(t) and I^3)(t), 

respectively.

Let ф(х ,̂...,х ,̂ УХ»...»УХ) be a bounded continuous 

function on R^xR1 . Set

Фп = Ф(ВП(8Х).... Bn (sl)e Nn {sl)’,,,,Nn (sl ))*

Ф = <p(B(s1),...,B(s1), N(s1),...,N(s1))>

where s^s. Note that (9F/9x)(Bn (t ^),Nn (tj_x )), Двп(^) and 

Фп are independent if J^[ns]+1 and that the expectation of 

ABn (tj) is 0. Then we have

- In1)(s)j®n] = 0. Vn.

Next set
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[nt] л2.

!n ,(t) ' I j ? ,  y < Bn (tJ-l>-Nn < V i m B n (y 2-

Since E[ABn (tk )2 ]=n"1 ^ n (E)-nn (E)2J , we have 

E [ ( l‘2) (t)-f<2) (•>)*,,]

=  2  < U i  ^ v v i ’ - v v i ’ O H v e b v ^ v -

Since

[ ̂  t 1 fl̂ F
I  9 (Bn (t, , ) , N ( t ,  , ) ) £ -  2-4(Bn (u-),Nn (u-))du

j-[ns)*l Эх2 n J'1 n J'1 n s Эх2 n n

and {(Bn (u),Nn (u))} converges weakly for any u€J, the above

converges to

2 Е-![[* (B(u-) .N(u-) )du^«] (тг(Е)-Tt(E) 2j .

On the other hand, we have E[II^2 *(t)-f^2 *(t)I]— >0 as n— »«, 

Therefore we get

lim E[(Vf2) (t)-I^2)(s)l*n J
П->“»

= |  Ee [ (J ^-|(B(u-) ,N(u-) )duj<t>3 (л(Е)-л(Е) 
s Эх



[nt]
P (A) )

- F < W l )- V tJ-l)0 4Nn < V U)

Then we have E[ 11^3  ̂(t)- ^ 3  ̂(t) | ]— >0 as n— »0. Further,

[nt]

E[| 2  l ^ _ { 0 ) {FtBn( t j - l ) -Mn( t J - l >* I F ( * »[ 2 Г
\j = [ns]+l^Rr

V й»)*»1-

It converges to

E„ ( Q’tJ> m [F(B(u-),N(u-)»IF (A))-F(B(u-).N(u-)))tt(dx)du]*) 
s IR — {0 }

These computations imply that if s,t€j°,

E_t(F(B(t).N(t))-F(B(s),N(s)))*]



695

А  m ^F(B(u-) .N(u-)^Ip (x))-F(B(u-) .N(u-) )J #1 (dA)duJ Ф ] .

The equality is valid for any s.t since Jc is dense in [0 ,«) and 

both sides of the equality are right continuous with respect to 

s and t. Therefore the proposition is established in case M=N=1 .

limit. We will prove properties (1)— (3) of the theorem. Then 

this implies the uniqueness of the limit measure Pe since 

properties (1)—(3) determines the law of (B(t).N(t)) uniquely. 

The following discussion is close to Kunita-Watanabe [7]. We 

shall apply Proposition 2.3 to the function

Proof of Theorem 2.1. Let (B(t),N(t),Pe ) be any weak

F (x ,у) = exp i{(a.x)+(5.y)}.

where (x,y)€RMxRN and (a.0)€RMxRN . Then we find that

(2.3) exp i{(a.B(t,£))♦(*.N(t.F))}

where
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and M(t) is a martingale. Denote the left hand side of (2.3) by 

<l>(t). Then we have

0 (t) - Ф(s) = *(а.в)|* *(u)du * M t - M s .

Therefore

Ф(t W s ) ”1 = 1 ♦ Vr(cx,ff)J Ф(и)Ф(8)-;Чи + (М̂-Мз)Ф(s)_1 .

Taking the conditional expectation with respect to Pe , we obtain 

E ^ W t W s ) " 1 !^] = 1 + *(«.*) ГГЕа>[Ф(и)Ф(з)"1 |Уз̂и.
j s

It may be regarded as a linear integral equation. The solution 

is an exponential function of ф(а,0). Therefore,

( 2 .4 ) EJexp i {  (c c ,B (t ,E ) -B (s ,E ) ) + (0 ,N(t  ,F ) -N (s  , F ) ) }  1Уд]

= exp{- § <t-s)^apaq (K(EpnEq )-*(Ep )*(Eq ))}

16
x exp (t-s) { 2  (e p-l)u(F )}.

Р p

The above formula shows that (B(t,E)-B(s,E ) ,N(t,F)-N(s,F ) ) 

is independent of Consequently both B(t) and N(t) are Levy
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processes. Furthermore, setting 6=0 in the above formula, we

find that B(t,E)-B(s,E) has a Gaussian distribution with mean 0

and covariance matrix ((t-s){л(Е nE )-л(Е )л(Е )})
P 4 P q P. q=l.... M

Therefore it induces a time-space Gaussian random measure with 

characteristic (0,т®л,т®л). Next, set a=0 in formula (2.4).

Then we find that N(t,Fp )-N(s,Fp ), p=l,...,N are independent and 

Poisson distributed with intensities (t-s)M(Fp ), respectively. 

Therefore N(t,F) induces a time-space Poisson random measure. 

Finally formula (2.4) implies

E J e x p  i{(a,B(t,E)-B(s,E))+(0,N(t,F)-N(s,F))} l?g ]

= E J e x p  i(a,B(t,E)-B(s,E)) l?s ]Ejexp i(* ,N(t,F)-N(s,F))l?s l.

This proves that two processes (B(t,E)} and (N(t,F)} are 

independent. The proof is complete.

Let (K8 (t ,G)} be a sequence of random measures defined by 

(0 .7 ) and let be a sequence of measures defined by (0 .8 ).

We iontroduce a condition.

Condition (C.3) For any £, the sequence (v8>, n=l,2,...

converges weakly to a measure ve on ftm .

Obviously the restriction of the measure v8 to R coincides 

with ( 1 * U I ) 2k(<U) . Furthermore, under Condition (C.3), the 

sequence {§8} defined by (0 .9) converges weakly in Rm and the



limit 5 satisfies §(dx) = (1+IAI)л(dA). Indeed, we have

Г - f (x )Sn (dA )  = Г f H r r vn(dx)J Û m Jn J û m 1 + I a I n

—* JRm ГмЬ'’е(<,;‘-> ж JRmfU)(1*UI)7t(dA>

for any bounded continuous function f. Further if G is a 

ve-continuity set, it is a t;-continui ty set.

Now the family of measures {vS ;e>0} decreases as sJ-O, since 

the same property is valid for {v8 ;e>0} for all n: We can 

define the measure v by

(2.5) v = lim ve .
8A0

Let 9(Rm ) be a field on Rm generating Borel sets of Rm such

that any element of $(Rm ) ls a vE-continity sets for any e>0 .

Let Ж( )  be the set of all additive set functions on S(Rm ). We

may define the law of (K8 N ) on the space
n n

D=D([0 ,~);Ж(Rra)ХЖ(Rm -<0})). We denote it by P^e) . If the

(£) £ sequence {P^ '} converges weakly as n->®, the sequence { ( r , N n )}

Is said to converge weakly.

Theorem 2.4. Assume Conditions (C.1)-(C.3). Let e be a 

positive number such that {Ul^e} is a д-continuity set. Then 

the sequence (K8 .Nn ), n=l,2,... converges weakly. Let 

(Ke ,N,P^e )̂ be its limit law. Then It is a Levy process with



values in random measures. Further:

(1) The associated time-space measure of {N(t,F)} Is a Poisson 

random measure with characteristic (т®д,т®д).

(2) Set

(2.6) K(t,G) = KS (t,G) - f UIX_(UI)(N(t.dx)-tp(dx)}.
Gn(R -{0}) 6

Then {K(t,G)> is a Levy process with values in relatively (v.£)- 

orthogonal measures. Further the associated time-space measure 

of К is Gaussian with characteristic (0,ra«v,m®$).

(3) {N(t,F ) } and {K(t,G)} are independent.

Remark Define

(2.7) B(t.E) = Г (l+UI)" 1K(t.dA), EcRm ,
E

(2.8) K (<b) (t,G) = K(t,G) - В (t, GnRm ) .

Then B(t,E) is Gaussian with characteristic (О.твя) and  ̂ is 

Gaussian with characterristic (O.i/*^) where  ̂ is the 

restriction of v to the boundary 8Rm .

Proof. We again omit the proof of the tightness of

{P(S)}. Let P (e) be any weak limit of {p 1E)}. We shall prove 
n ® n

that (Ke ,N,P^e)) satisfies (l)-(3). Then this implies the 

uniqueness of the limit measure P^e .̂ Set Ke (t,G)=
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(KS (t,G1).... K8 (t,GM )) where G €^(Rm ),p = l ----,M. Then for any

C^-function F(x,y)

(2.9) F(Ke (t,G),N(t.F))

t 2
- | p2q (''<GpnGq)-S(Gp )S(Gq))f0 af^fc^(KS(S--G’ .N(s-,F) )ds

' 0 r-"-{0}^F(kE<s',G) + UI5c6(UI)1c ("-u T)'n (s -'f ,+if u>)

- F(KE (s-,G).N(s-,F)) - 2 U I Z g (  U l  ) I G j  »i(d;i.)ds

is a martingale with respect ot . We omit the proof, (c.f. 

Proposition 3.2).

Apply the above property to the exponential function. Then 

similarly as In the proof of Theorem 2.1, we obtain

(2 .1 0) Ê ,e)[exp i{(a,Ke (t.C)-Ke (s,C))t(e.fJ(t,F)-N(s,F))H?s )

= exp(t-s)*(a,5 ), 

where N(t,F)=N(t,F)-tM(F) and

(2.11) *(«,») = - | I (v(GpnGq )-5(Gp )5(Gq )]opct(
p , q

Г _ fexp{i(2 ip (x) » , * 2 tx ixpС1 д.I)Ip (-.тЫа
R -{0} ̂  J Fj J p e Gp U l

p »  -  1



- 1р^(л)^+2 Ul x e(U»)IG (w._j~j)ap}j д(с!л).

Set a=0. Then we get the first assertion (1) of the theorem. 

Next, define

(2 .1 2) M(t.C) = Г _ 11 1X_( 1 11) I*-(e *TTT)N(t , dA) .
JR -{0} e ul

It is approximated by linear sums of flfft.F^).... N(t.F^). Then

from (2 .1 0 ), we arrive at

E^e>[exp l{(a.KE (t,C)-Ks (s.C))*(?,M(t,C)-M(s.C))>l?s ]

= exp -|(t-s)p2q (w(GpnGq )'S(GP )!:(Gq ))ap“q

xexp{J [exp 1(2 U l x e ( U I ) I G ( - . y ^ y ) ( a p*?p)> - 1

- (2 lilxe( Iд.I > ( — -7x 7) (ap*?p) ))a(dA)}.

Setting ?=-a, we obtain

E^e) [exp i(oc.Ke (t,G)-M(t,<G)-Ke (s,C)+M(s,€r)) I 3

= exp -|(t-s) 2 fv(G ПС )-5(G )J(G ))«„«„•
P . q 4
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The assertion (3) will be obvious.

3. Weak convergence for sum of non-linear functions of i.i.d. 

random variables

Let {Xn (t)} be the sequence of stochastic processes defined 

by (0.1). The law of (K8 ,Nn>Xn ) is defined on 

D=D([0,-) ;*(Rm )x*(Rm -{0 })xRd ) . We denote it by P8 . We will 

discuss the weak convergence of P8 ,n=l,2,...

We first introduce an assumption to the sequence of 

functions {fn (A )).

Condition (C.4) (1 ) The sequence {fn > converges to f

uniformly on compact sets.

(2) The sequence (fn (/u)/(l+>/n | A l )} converges to h ( A )  

uniformly on compact subsets of Rm- {0>. Further 

h(0 ,0)=limr_>oh(r,0) exists and is a continuous function of 0 .

Theorem 3.1. Assume Conditions (C.1)-(C.4). Set

This proves the second assertion (2).

where s is a positive number such that {lAi£S} is a д-continuity

(3.1)

set. Then the sequence converges weakly. Let

(Ke , N , X , P ^ ) be its limit. Then X(t) is represented by (0.12), 

where B(t,.) and K^lt,.) are defined through (2.6)-(2.8) and
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N (t ,dA)=N(t ,d x ) - 1д(dU).

For the proof of Theorem 3.1, we need to prove that the 

sequence of laws of {(K^e ) .Nn ,Xn )} is tight. Since the proof is 

similar to that of Proposition 2 .2 , it Is omitted. In the next 

proposition, we characterize any limit measure as a solution of 

a martingale problem.

Proposition 3.2. For a CjJ-function F(x.y.z), on Rmx!RNxRd , 

define

2
(3.2) *F(x.r.«) = | 2 (w(epneq)-J(ep)t(eq))^|j-

2

* I k21[fgkeldv -

2

*k2pCL Kkdv - 5(Gp>Jgkd5)af^r

* / ( i - X g d i l ) )  ( F ( * * U I X g (  I X l ) I c ( - , - j f j - ) . y X F ( A . ) . * + U l h ( A ) )  

- F ( x , y . i ) ] » i ( d A . )

* J Xe(UI)[F(x»Ulxe(U I)Ic(-.-iJi-),y*IF(A.).i»Ulh(A))

-  F ( x . y . r ) -  U l x E( U I ) 2 i G (-•itr'lf- '  u|2hk(A)ffr),l(<u)-
p p p к к
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where gMg^^.... gd ) is defined by

e(x) - if x € Rm ,

(3.3)

= h(0,9) if 1 =  (»,fl) € ЭКт,

and .....X- ) etc. Then for any weak limit of
G G1 GM

(3 .4) F(Ke (t,G),N(t,F), X (t)) - f  jSF(K8 (s-,G),N(s-,F).X(s-))ds
J0

is a martingale with respect to p (Б)

Proof. For simplicity we prove the case M=N=0, d=l only.

The general case will be proved similarly, combining the 

technique used in the proof of Proposition 2.3.

Let F(z) be a cjj-function. Set tj=j/n. Then

(3.5) F(Xn (t))-F(Xn (s))

/ l
1 F,<Xn(t1-l) ) - (fn (̂ n 1)_bn)xs( -'^n 1 j=[ns]+l n J 1 Уп n n’J n S Уп n’J

[nt] - p 2 1

2 F " ( l ) n , ) £ < f n « n  1) _ b n ) x 4 ( - l ? n 1 I K  
j = [ns ]+1 n,J n n n,J n 5 Уп n,J

I )
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where

and n , are random variable such that l/f .-X (t.)l^ 
11' J n , j n j

' « n . j - b n ' ^ " -  Set

fn U )

(3 7) s n U )  -  T7TIT-

The sum of the first and second terms of the right hand side of

(3.5) is written as

rtT(F(Xn ( u - W  UI*— )еп(Ли)-— b®) - F(Xn (u-))l 
JsJV- n Л n л п

x(l-Xg(UI))Nn (du,dA)

+ (f^ f C^X (u-) •►( IAI ♦— ) e  ( Упх ) — b̂j?) - F(X (u-))l 
U  SJ  ̂ n n J- n n )

x(Xg(UI)-X4 ( UI))Nn (du.dA)

[nt] ,
-  2  F ’ (xn(t  i ) ) i

J = [ns]+1 n J 1 n 

x j (  |д .|+-4)г п(̂ пд.) ( x e ( l A l ) X j ( - ^ l « n  j l ) - X 5 ( U I ) ] t f n ( d A ) ]
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[nt]

2 F ’(Xn (tl-l)) j=[ns)*l n J 1

x H fn(<n 1)xi(̂ l?n I1’ • "if Vn n n,J 4 Jn n>J ynJ n Ь Уп n ;

j ( l )  ,  j<2) + j ( 3 )  
n n n

Set

%  " ф(ХП(81 ).... Xn (sl })* * = O W 3! * ..... X(Sl»

where sj,is. Then E[J^ *n l is equal to

E[ ГГГГр(Х„(и-) + ( u i + — )en (yiix)-— b®) - F(X (u-) )1 
u SJ V. n A  " Уп n n '

x(l-xe(UI))un (dx)du]5n ).

Let n—>«. Then since £п(Упл)—*h(x) uniformly on compact sets of 

Rra-{0} and Ь8/Уп — >0 as n— ►«, the above converges to

Eie)id tj(F<x(u")* iiihu))~F(x(u~))) u 'x8<ui),M(di,du)$i'

Similarly limt .lim,, E[J' <t> ] exists and is equal to o-*\j n-*°° n n
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g ( S )  ' л,:
t [ [  J ( F ( X ( u - ) * U l h ( j . ) ) - F ( X ( u - ) ) - | x l h ( A ) F - ( X ( u - ) ) )

x x g ( U I  )M(<3A)duj ii ) .

Obviously we have E [J^3  ̂$n ]=0. 

Next we have

[nt]

r>t
= E[(J Ри(Хп(и-))ёи)Фп]

x [ f l &n( x ) l 2dv * ( A )  -  2b*b® * <b®)2/X j ( ^ U I ) d * n U ) ) ,

Since bE=/gn U ) d $ E U )  holds, the sequence b8 ,n=l,2 ,... converges 

to /g(A)d£(A) as n— *0. Therefore the above converges to

|е^е)[ ( ^  F"(X(u-))du)$] [[ * U ) 2d v U )  - (J g(A)d5(A))2]

as n— and 5— >0. Further,

[ritl 1 j 2 ^ n  1^
EtJ. f n s b l ' r ( ',n .J ) - F" (Xn( t J - l ) ) , n ( f n( <n . j> -bn) Х» Г ^ Ч

converges to 0. Putting together these computations, we arrive 

at
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E^8 )[(F(X(t))-F(X(s)))$] = E^S ) [ ( J  JCFCX(u-))du) S ]

if s,t€Jc , where J = {t: P^e)(U K e (t),AN(t),ДХ(t))*0)>0}. Since 

is dense and both sides of the above are right continuous 

with respect to t and s, the equality is valid for any s,t. 

Therefore F(X(t))-/q £F(X(u -))du is a martingale. The proof is 

complete.

Proof of Theorem 3.1. Let P^8  ̂ be any limit of {P^8 ^}.

We shall prove that X (t) satisfies (0.12). Then this implies

p )
the uniqueness of the limit P^ . Now apply Proposition 3.3. W 

can prove similarly as in the proof of Theorem 2.1 that

(3.8) E (e)(exp 1{ (ot, Ke ( t ,G) -KE (s ,G) )♦(!>,N(t,F)-N(s,F))

♦ ( r . X ( t)-X(s))ms

exp (t-s) {^1(a,y)+^r2(a, 0,y)}

where

3.9) fjUt.r) - I (v(GpnGq )-£(Gp )5(Gq ))apa(
p.q

p2k[fGp?kdu' s(v K d0vi
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■ lk2! Q V i du - v i 

c e . ю )  * 2 (a,6.r)  = | ( 1 - Х е ( U l ) )  ( ex p  l { l A l x E ( U I ) 2 l G

♦ U p  (A.)ej*Ul2hk (A)rk ) - i)m(<U) 
J J к

♦ J X g ( U I ) ( e x p  1{  U I X g (  U l  ) 2 l G ( " > 7 X T ) o p * 2 l F j (J . ) e j

♦ U!2hk U ) y k>- 1 - H U U e(UI)2lG (“.j~j")otp

+2lp (А)в j* U  l2hkU) vk>J »(dA). 
J J к

Therefore (K8 (t),N(t),X(t)) ls a Levy process. Let XQ (t) and 

X^(t) be the continuous and discontinuous part of X(t), 

respectively. Then (K(t),0,XC (t)) is the continuous part of 

(Ke ,N,X). Its characteristic function is given by exp t^fa.y) 

Therefore (K(t),X (t)) is a Brownian motion with mean 0 and 

covariances

E^6)(K(t,G1 )K(t.G2 )] = t^v(GJLnG2)-5(G1 )S(G2 )J , 

E (s)[K(t,G)X (t)] = tf gdv.
<*> С  Jr .



Setting Xc (t)=/g(x)K(t,dx), the covariance of Xc (t) and Xc (t) 

are given by

E[Xc (t)Xc ( t ) 4  = E[Xc (t)Xc (t)4 = E[Xc (t)Xc (t) ']

- Jgg’dv -  Jgdg-Jg ’d§,

where g* denotes the transpose of the column vector g. Therefore 

we have E[IXc (t)-XQ (t)I 2 ]=0, proving Xc (t)=Xc (t).

Next, (Ke-K,N,Xd ) is the discontinuous part of (Ke ,N,X). 

Therefore

(3.11) E^e)[exp i{(5,N(t))+(y,Xd )}] = exp t*2 (0,в.y) .

Set

Xd(t) - J>Ulh(A)(X-xs ( UD)N(t.dx)

♦ Ju ih(x)xe(UI)Fi(t .dx).

It is approximated by linear sums of N(t,F). Then from (3.11) 

we arrive at

(3.12) E^8)[exp i{(?,Xd (t))+(y,Xd (t))}] = exp t?2 (?,y),
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where



?2 (?,у) = J(l-xg ( U D M e x p  i(?*r. U l h U ) ) - i ) M ((U)

♦ JxB < ШМехр иИ+г. Ulh(A.))-l-i(J.y> U | h U ) ) ) A (dx).

This proves that

E^s)[exp i(?,Xd (t)-Xd (t))] - l. V ?,

proving Xd (t)=Xd (t). We have thus obtained the representation 

(0.12). The proof is complete.

Finally we consider the case where {£ ,} satisfies
n , j

2 + 5
sup E ( U  <1 ]<• for some 5>0. Then the measures

П  П  , J

£ 2 
{v|j:n«l,2p . . .} converge weakly to the measure (l+UI) л(dx).

Therefore the limit measure v8 of (2.4) are not supported by the

boundary 3IRm . Then the random measure defined by (2.6) is

zero. Furthermore the measure дп of (0.6) satisfies
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It converges to 0 as n— Therefore the Poisson random measure 

N(t, •) is also 0. Consequently Theorem 3.1 tells us that the 

limit X(t) is represented by (0.4).
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