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FIXPOINT APPROACH IN MATHEMATICS

-Duro R . Kurepa

Some fixpoint methods and results will be presented with a particular aim 
to show how the matter developed. Some author’s results are included. The 
matter consists of sections 0,1,2,3,4 with positional subdivisions. Universality 
character of the fixpoint approach is shown in no. 4,5.

Notations and Terminology

Antichain: no 2 distict comparable points
Branch or clique: the most extensive subchain
Chain or complete subgraph: each 2 points are comparable
I  =  Д [0 ,1]
Inaccessible number: each infinite non-countable regular limit number. 
KARD [KARDoo]: the class of all [infinite] cardinal numbers. 
(n ) !( (n )2)is the first (second) part o f 2-relation (n).
No : =  set o f 0 and all finite cardinal (ordinal) numbers. 
u> or u>o is the first infinite ordinal number.
ON (ONoo): the class o f all (infinite) ordinal numbers.
Ordered: =  partially ordered 
p X  :=  power of X
Л [#о] :=  the set o f all real numbers [> 0].
R(i)  is the set o f all complex numbers.
S-un: any procedure /  such that f x  (x € S) is a point, set, structure,, 
if pS =  k, one has ib-un; 2-un: =  ordered pair; 3-un: =  ordered triplet. 
v : vacuous, empty, void.
W n  ox W n or W (n )  : set o f all ordinal (cardinal) numbers <  n; 
n is a given ordinal (cardinal) number.
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X  С Y  embraces X  =  Y  as well.

0. A Heuristic Approach

0.0. If a pupil in primary school were asked to find x from
(0) x2 +  x — 2 =  0, it is quite possible that he would write the 

same equation (0) as
(1) x ( l  +  x) =  2 thus x =  2 /(1  +  x) and write
(2) x =  2 /(1  +  x) =  2 /(1  +  (2 /(1  +  x ))) =  . . .  and get
(3) x =  2 /(1  +  (2 /(1  +  (2 /(1  +  . . . ;  in this edifice o f x the sign x 

does not appear but the edifice itself does appear after each 1, in particular 
after the first 1, in such a way that from (3) one gets (2). Similarly, if

(4) x =  f x  ( /  is given and fixed, x is varying in R  or else), then 
the pupil would write x =  f  f x  =  f f f x  =  . . .  =  f f f f . . .  thus

(5) x =  / / / , . .
In the “spear” for x the symbol x does not appear at all but the edifice for 
x does appear again as the whole section coming after each / ;  in particular 
from (5) one has (4). Such puerile heuristic approaches are elaborated and 
founded as a whole mathematical discipline -  Iteration procedures, a very 
interesting and very large field of researches.

0.1. Definition of fixpoint

For a given function /  which is defined in a set 5 , each x 6 S such
that

(0) x =  f x  (if /  is single-valued) ox x £  f x  (if f  is set-valued) 
is said to be a fixed (invariant, immuable, reproductive) point of / .  The 
relation (0) is read also as x is /-fixed or x is an /-fixpoint or /-fixvalue, 
or x is / - invariant. The set of all invariant points of f\S is denoted

(1) Inv (S} f )  :=  {x  : x € S and x =  f x }  and Inv (S , f )  :=  
{x  : x G S and x € f x } respectively.

For abbreviation, one simply writes 1 (f )  ox I f  instead of Inv ( £ , / ) .

0.2. Task

A major task is the following one: given f\S} determine Inv ( 5 , / ) .  In 
general case, it is not needed to know completely the set Inv. Anyway, one 
has to determine whether the fixpoint set (1) is v (vacuous, empty, void) 
ox ф v (nonvacuous) i.e., whether the power p /  of I  is 0 or ф 0. There
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are many degrees and nuances in the knowledge of I  and of the members 
o f I . In practice it is frequently sufficient to know approximately some 
member(s) o f Inv.

Example. I (R (i ) ,p (x ) )  = ?  Here, p(x) is any algebraic polynomial 
over the field R(i) o f complex numbers. Inv (p, R(i))  =  v, if and only 
if p(x)  =  x 4- c, where с € R(i)\{0}.  Except this case, 0 is a fixpoint for 
every polynomial over R(i)  and /(p (s ))  has gp members, where gp denotes 
the grade or degree o f p(x). The preceding fact is the content of the Fun
damental Theorem of Algebra, each fixpoint z o f p being counted with its 
multiplicity; one has I (p (x ))  =  spectre of p(x) — x\ thus, each p-fixpoint z 
is counted with its multiplicity in such a way that if 
p ( x ) - x  =  p o + p ix + .. .*fpnxn,pn ф 0, { p i , . . .  ,pn} С R{i), then f { x ) - x  =  
pnП (г — (z  running over the spectre o f p(x) — x).

Exercise. How does I(R (i) ,  sin x)  look like?

For each particular function /  : R(i) R(i)  it is worth to consider 
I ( R ( i ) J ) .

0.3. On the oldest open mathematical problem
It is interesting that the oldest not yet resolved mathematical problem 

is connected with fixpoints. For any natural number n >  1 let s(n) denote 
the sum of all divisors d o f n such that d <  n. In classical Greek mathemat
ics one partitioned N  into N < , N= and consisting o f all natural numbers 
n >  1 for which s(n) <  n ,s (n ) =  n ,s (n ) >  n respectively. One knows that 
N < ,N > are infinite; but still at present time, in 1990, one does not know 
whether the set N -  o f all “perfect” numbers is finite or infinite. (Any 
1 <  n G N  such that n =  s(n)  :=  Ed (d divides n and n >  d €  N )  is called 
perfect; cf. Euclid, Stoicheia IX: Def 23., and Theorem IX:36: Let n E N;  if 
2”  — 1 is prime, then the product 2n -1 (2n — 1) :=  En is perfect. Euclid men
tions no particular perfect number). Ancient mathematicians Nikomedes 
(cca 180), Boetius (4807-524) knew the following 4 perfect numbers: 6, 
28, 496, 8128; all these numbers are En for n =  2 ,3 ,5 ,7  respectively. The 
question on whether Inv ( N t s) is infinite is the oldest open mathematical 
problem; the same is true for the problem whether there exists any odd 
perfect number.
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n ,  1 A verv instructive nmark. The set N  has 2 interesting order struc-
* and ^  where a|& means “a divides 6” ; for any n 6 N  one 

h T th e  corresponding strict left-cone Ln consisting of all z  £ N  which are
< n and “strictly less than” n; in either o f the cases one forms the sum 
s(n) of all members of I „ ;  the question is to find the set Inv o f all invariant
points of s(n).

In the case of (N, < ) one has s(n) =  1 +  2 + . . .  +  (n -  1) =  n(n -  l ) /2 ;  
the requested Inv =  {3 }; thus 3 is the unique n £ N  which is the sum of 
its predecessors 1,2, in (N }<).

Really, a trivial solution! The corresponding situation in (N , |) is com
pletely different because, in this case, the set Inv is precisely the set o f all 
perfect numbers. Thus, transfering the problem of determining Inv ( (N y < ), 
s(n)) =  {3 } to the problem to determine 

(1) Inv {(N, |),s(n)) 
one encounters the oldest not yet resolved mathematical problems: Does 
the set (1) contain infinitely many even numbers? Does the set (1) contain 
some odd number?

1 . Iteration Procedures

In this section (M,d)  will denote any metric space; thus d(xyy ) (£  
•ft® •= [0,oo) =  R(Q} .)) denotes the distance between x }y.

1.0. If one has a function F  : R  »  R  it matters to find one zero z o f F }
i.e., a z e R  such that F(z)  =  0. In general, a relation like

(0) F(x) =  0 could be equivalently written as
(1) x =  f x -

If then one starts with a special value clq for x as a possible approximative 
value for a requested solution of (1), then one gets ax :=  f a 0 as a possible 
solution of (1); by iteration one gets a2 :=  f a u . . .  ,a n+1 :=  / a n(n =
0 ,1 , . . . ) .  If an is convergent and if {  :=  lim an and if /  is continuous at
f , then one gets a valid relation {  =  f ( ;  i.e., £ is a root o f (1) and of (0). 
Thus {  is a zero of the given function F.

1.1. Graphically we have the following picture and procedure. In the first 
picture, the procedure is converging; in the second picture the procedure is 
diverging.
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1.2. If instead o f /  in the second case one considers the inverse function
g , the picture o f which is the symmetrical map of /  with respect to the 
symmetry axis у =  x, one gets a converging procedure yielding a solution 
o f gx =  x thus also o f f x  =  x  because both equations have a common root.

Theorem. If I  is a closed segment R[a,b] of R  and /  : I  > -» I  is 
such that the derivative / '| /  exists and satisfies sup |/'| :=  £  <  1, then the 
equation x =  f x  has a unique solution £; the solution is the limit point of 
the above sequence an+j =  / a n, taking for do any point of I.

A proof o f the theorem is easy because if a}b G I , then f a  — fb  =  
(a — 6 ) / '( c )  for some с G R(at b) (mean value theorem) and one gets

|fa -  fb\ <  |a -  b\B , for some 1 >  В >  \f'c\.

Now, we have the following general

1.4. Theorem. g-Contraction Principle (Banach, 1922; cf. Picard, 1890) 
on g-contraction in any complete metric space. Let (M yd) be any complete 
metric space and T  be any selfmapping o f M  such that some number q G 
Я [0 ,1) satisfies d(T x ,T y)  <  qd(xt у ), whenever x ,y  E M ; then there is just 
one point x  G M  such that T x  — x\ if Xo G M , then T^xо »  x as n
oo. In other words, T  has a unique fixpoint in M ; in addition it is obtained 
as lim T^xo for every xo G M .

At first we have the following
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1.4.1. lem m a. If T\(M,d) is any selfretraction, i.e., if d (T x ,T y)  <  d {x }y) 
whenever x, у G M  and x ф у, then the mapping T  is continuous (proof is 
easy).

Proof o f Theorem 1.4. Let Xq E M  and
(0) xn =  f nx 0 (n G N ) t where / 1 :=  f  and / n+1 is the com

pound / / n . The sequence (0) is Cauchy. As a matter of fact, if n ,s  are 
natural numbers and с any given real number >  0, then d(xn}x 3) <  i  for 
any sufficiently great natural numbers n ,s . Namely, we have d(xn ix s) :=  
d(T xn_ i ,T x ,_ i )  <  $ d (x „_b x ,_ i ) ,  thus d(xn, x s) <  qd(xn- i , x , _ i )  and 
for the same reason,

d(xn_ b x ,_ i )  <  qd(xn- 2, x » - 2) ,

i.e., d(xn)x s) <  92(x „ _ 2, x , - 2); analogously, if n <  s,
(1) d(xn, x s) <  qnd(x0,x ,_ n). Now, the last factor satisfies

d(xo ,x ,_ n) <  ^(х0,хх) -I- d (x i }x 2) +  . • ■ +  <i(x,_n_ i , x , _ n)
<  d(x0) x i)  +  qd(xoyx i )  - f  g2(x0,x i )  +  . . .  +  qa~n" l d(x0, Xi)

<  (1 +  5 +  92 +  • • • )d(xo, x i)  =  (1 -  q)~xd(xo, x i ) .

This relation jointly with (1) yields
(2) d (x „ ,x ,)  <  qn{ l - q ) ~ 1 d(x0}x 1) .

Since, |g| <  1 and qn >^  0, the evaluation (2) says that xn(n G N)  is a 
Cauchy sequence in the space (M , d)\ since this one is complete, the limit of 
xn is a determined point x in M . Therefore the relation x „+ i =  T x n yields 
lim xn+i =  lim T xn =  (because T  is continuous) T lim x n i.e., x =  Tx.  
We say that x does not depend on xo G M , because if xo Ф yo G M  
then the Umit of T^yo yields a definite value у G M  such that Ту =  y. 
Again the supposition 0 ф d(xiy) =  d ( f x , f y )  contradicts the condition 
d(T x ,T y) <  qd(x,y) <  d (x ,y).

1.5. The above considerations are typical in approximation procedures by 
tangents (I. Newton 1669, J. Raphson 1697), Regula falsi or Method of se
cants and Mixed methods. Emile Picard used and developed the “method 
of successive approximations” in the theory o f differential equations (in
cluding partial derivatives) and integral equations.
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1.6. The idea o f contraction mappings with various nuances and variants 
was very much examined, used and generalized. Hundreds papers were 
written on the subject. It matters to stress that also the contraction coeffi
cien ts) allow great generalizations, in particular that they may be members 
o f ordered sets instead of to be in R (cf. the idea of pseudometric spaces; 
uniform spaces, general metric spaces,... cf. Collatz 1964; further one may 
deal with system of mappings etc.) We are going to indicate some general
izations.

As illustration of such a trend let us quote the following facts 1.7, 1.8,
1.9.

Iseki (1965) has transfered Theorem 1.4 to general metric spaces =  
uniform spaces and proved the following

1.7. Theorem (S.Iseki 1965). Let {M ,d ,E )  be a sequentially complete 
metric space over a topological semifield E  and T\M be a selfmapping such 
that d (T x } Ту)  <  cd(x, у), where с is a positive number <  1 and <  denotes 
the order in R ; then T\M has a unique fixpoint u; one has и =  lim T nx for 
every x  £ M .  He pointed out that the condition с <  1 is not replaceable 
by с <  1.

Ciric (1987) has extended Iseki’s result and proved the following

1.8. Theorem (Th. 1 in Ciric 1987). Like Theorem 1.7, for с £ К  with 
с <  1.

Ciric has furnished a space for which 1.7 does not hold and Theorem 
1.8 does hold.

The terminology is like in Antonowski-Boltjanski-Sarymsakov 1960.

1.9. A  very general Fixpoint Theorem in pseudometric spaces with deter
mined approximations was proved in [§11, pp. 160-171, Collatz 1964].

1.10. As to the terminology, one has: uniform spaces =  pseudometric spaces 
=  spaces with ordered ecart =  spaces over topological semifields =  Kurepa 
spaces =  Weil spaces =  generalized metric spaces, (/-spaces (cf. also p. 184, 
Nagata, Jun-Iti 1985).

2. Т -Orbits for Any Selfmapping T\S



720

2.0. Given a Set^ 0 and a selfmapping T\S] it is natural to consider the 
w-sequence o f iterates: T°  :=  l ^ T 1 :=  T , T 2 :=  7 T , . . .  ,T n+1 :=  T T n 
(n G JV) and to examine how they behave.

2.1. Г-огЫ
For any x G 5  and any T  : 5  > -» 5  the set {T ^ x  : n <  lj]  is called the 

T-orbit o f x and is denoted by 0 (T ,x ) ;  thus 0 (T , x) :=  {T ^ x jn  G N 0}.  If 
the power o f the orbit is pО =  2, then {x ,T x }  is a fixed edge; if pО =  3, 
then { x ,T x ,T 2x } is a fixed triangle, etc. If pO (T , x) =  n G N ,  then 
T\0(T , x) is a cyclic permutation of 0 (T , x).

Obviously, if a =  Та  then Та  =  TTa  thus a =  T 2a, similarly a =  T n a.

2.2. Lemma. If 1 <  n G N  and if и is the unique fixpoint o f T ^ S , the same 
и is the unique fixpoint o f T|5 as well:

(0) Inv (S jT ” ) =  {u }  => In v (S ,T ) =  {u } .

Proof is trivial because u =  T nu =>* Tu  =  T (T nu) =  (because T T n =  
T nT) T 11 (Tu), i.e., Tu  =  T n(Tu ), thus Tu  is T ” -fixpoint and by (0) equals 
u, i.e., Tu =  u.

2.3. It matters to consider 0 (T , x) also as infinite sequence T nx (n  G N )  
and to say:

(1) a metric space (M , <f) is orbitally complete <=> Each Cauchy sub
sequence o f 0 (T , x) (x G M )  converges in the space;

(ii) a space (5 , cl) is orbitally continuous *<=>> у G cl 0 (T , x ) => Т у  G 
cl T O (5 , x) (x , у G 5 ).

2.4. A  natural complete graph tied with T\S and (x, y) G S 2 is a graph 
G(T, x ,y )  such that the members o f the orbits 0 (T , x ) ,0 (T ,  y) constitute 
the vertex set o f G (T , x, y) and that all {x , y }^  С G are edges o f the graph. 
For a given 2-un (r, s) o f natural ordinal numbers one has the subgraph 
G(T, x, r, y, s) consisting o f  all vertices x,* (i <  r) and yj ( j  <  s).

2.5. Theorem (^-Contraction Principle for orbitally complete metric 
spaces). Let (M , d) be any T-orbit ally complete metric space for some 
selfmapping T\M ; let r G N, q G Д [0 ,1) exist such that

(0) d(Trx , T ry ) < q d ( x , y )  ( x ,y G M ) .
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Then T  has one and only one fixpoint it in M ; one has и =  lim 0 (T ,x )  
whenever x £ M .

Proof. If г =  1, then the proof of Theorem 1.4 is transferable to the 
present situation, thus V  :=  T*- has a unique fixpoint u. In virtue o f Lemma 
2.2 the same it is the unique fixpoint of T|(M, d).

2.6. Theorem (=  Th. 2 in Rassias 1985). Let (M ,d ) be a complete metric 
space, Tn be, for each n £ N y a cn-selfcontraction; if sup c„ :=  с < 1 and if 
T x  :=  lim Tn(x) (x £ M )  exists then d (Tx,Ty) <  cd(x,y)  ( x ,y  £ M )  and 
the selfmapping T\M has a unique fixpoint u; one has и =  lim un, where 
un is the fixpoint o f Tn\M.

2.7. Theorem. Let (M , d) be a metric space, Я  be a system of selfmappings 
T\M\ if ( M , d) is T-orbitally complete for each T  £ H  and if there exist 
r e N  and a positive constant 0 <  с <  1 such that

(0) d(Trx yV ry) <  cd(x,y) ( T , V e  Я ), 
then each T  £  H  has a unique fixpoint ит £ M ; moreover « т  =  Uu for 
T ,V  £ Я  (cf. Kurepa 1972(3) Th. 2).

Proof. In virtue of Theorem 2.5, if T  £  Я , one has J (T, M ) =  { « t }  
and ut =  lim T^x, where x is any given point in M .  Now, one has ит =  uy  
whenever T, V  £ Я . In the opposite case, there would be some Г , V  £ 
Я  such that ит ф « v ,  thus d (w T ,«v) >  0. But, in virtue of (0) one 
has d(T uT ,V uv)  <  cd(uT,uv), i.e., d(uT,uv)  <  cd(uT,uv)  and therefore 
(divide by d(uT,uv) Ф 0)1 <  c, contrary to the assumption 0 <  с <  1.

Remark. Theorem 2.7 may fail if both pH >  1 and с =  0.

2.8. Theorem. Let (M , d) be a nonempty metric space, T  be a selfmapping 
o f M  and (r, s) be a 2-un of natural numbers such that x, x\ :=  Tx, x2 :=  
T 2x , . . .  , xr :=  T rx )y , y i } . . .  , ys are pairwise distinct and

(0) d(xr }y3) =  0, whenever x ,y  £ M\ then the set J (M ,T ) of 
all T-fixpoints in M  is nonempty; more precisely:

(1) If г =  5 =  1, then the function T\M is a constant и £ M  
and it is the unique T-fixpoint in M .

(ii) If 1 =  г <  s y or if 1 <  г =  s, then / (M ,T )  =  T SM  :=  the 
range o f the function T a\M.
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(iii) If l < r < 5,t h e n /(M ,T )  =  T , - 1M .

Proof o f (i) is trivial.
Proof o f (ii) for the subcase 1 =  г <  s. In this case the relation (0) 

says that x — ys is a T-fixpoint because d(Tys ,y s) =  0 ( j/G  M)\ in other 
words T aM  С / (M ,T ) .  The dual relation holds as well, i.e., if some v £ M  
satisfies v =  Tv, then also v =  T 3 у for some у £ M , and even v =  va. 
Namely, v =  Tv  implies Tv =  v2, thus v =  Tv =  v2 and inductively v =  vn 
(n £ N ),  thus in particular v =  v9.

Proof o f (ii) for the subcase r =  s >  1. The assumed relation (i) 
d(xa}ya) =  0 ( x ,y  £ M )  for у  =  T x  becomes d(x3, T 3(T x))  =  0 i.e., 
d(u\Tu) =  0 ,it =  Tu  for и — T sx (x  £ M )  because Ta(T x)  =  T (T x ) .  
Thus T SM  С I T ) .  The dual inclusion holds also, as one sees, like in 
the previous first subcase.

Proof o f (iii). In this case l < s - r E . A r ; i f : c  =  ya- r ( y  G then
(0) is fulfilled because T r(T a~ry) =  T ay. If x =  Т а~г~1у 1 then x r =  ya- 1 
and (0) yields d(Ta~1y ,T ay) =  0, and consequently d(u} Tu) =  0,tt =  Tu  
for it : = T a~l yy whenever у  £ M . Thus the sign Э for =  in (iii) is correct. 
As in other cases, one proves that the sign =  in (iii) is replaceable by С as 
well.

2.8.1. Corollary to 2.8 Theorem. If (0) is satisfied, then for every x £ M  the 
sequence T^x  (n £ N )  is not only a Cauchy sequence but is almost constant,
i.e., there is some m(a:) £ N  such that T m^ x  =  T nx (m  <  n £ N)\ 
therefore T\M is orbitally continuous and (M , d) is T-orbitally complete.

2.9. Theorem. Let ( M , d) be a complete metric space; for a nonempty set 
I  o f indices let m\I be an /-u n  of natural numbers т * ,Т | / be an J-un of 
selfmappings TJ : M  > »  M , c\I2 be an I 2-un of real numbers Cjj, such that

(0) Cjj £ R (0 y l )y d (T r X y T p j y) <  <*<*(*,y) ( i J  €  1\х)У £ 
M ); then TJ has a unique fixpoint щ £  M\ one has

( 1) U{ =  Uj for iyj  £  I.

Proof. At first, the mapping Vi :=  T f11 being a c,*t-contraction has a 
unique fixpoint щ and for every x  £  M  one has

(2) V{nx  »  щ. We claim that
(3) Т{щ =  tx. (i £  I).
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In fact, the relation (2) for x =  Тщ  yields У ?Т щ  »  щ thus (V*  and T  
commute)

(4) T V ? щ >*► щ(п  G N).
Since щ is a Vi-fixpoint, we have У{пщ =  щ; therefore, (4)i is a con

stant sequence Тщ  which, by (4), converges to it,-, thus we have (3).
Finally, one has (1). In the opposite case there would be i, j  £ I  such 

that щ ф Uj. For x =  щ ,у  =  Uj, the relation (0) would yield
(5) d(Tj7ltUi,TjniUj) <  d jd (u i tuj). But (5) is not possible 

because (5)i =  d(ui,uj)  and (5)2 <  d(uit }u j ) f the number being in 
[0,1). This completes the proof o f theorem 2.9.

2.10. Paths contracting selfmappings T\M
We shall illustrate one case, i.e., how graph theoretical considerations 

are useful in fixpoint considerations.

2.10.1. Graph g. For a given 2-point-set {x ,y }  G M  we consider the 
corresponding complete graph {x ,y ,T x ,T y }  :=  g.

2.10.1.1. There are paths joining the points Tx,Ty\ there are just 5 such 
paths, viz.

(0) Lo =  T x T y ,L i  =  T x xT y ,T 2 =  TxxyTy,T$  =  T x y T y ,T 4 =  
TxyxT y; all these paths could be visualized in the following way:

2.10.1.2. Length of a path. The length IL o f a path L is the sum of lengths 
o f all its edges; thus

( 1) IL0 =  rf(Tx,Ty), ILi =  d(Tx, x) +  < f(x ,T y),. . . ,
ILa =  d(Tx, y) +  d(y , x) +  d(x ,Ty).

To each o f these oriented paths corresponds the sequence o f edges o f the 
path.
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2.10.1.3. Contracted length.

Definition. Contracted length cL o f an oriented path L  is the scalar 
product o f the sequence o f the lengths o f the corresponding edges and of 
a sequence o f numbers 6 R[0,1). In other words, contracted length o f the 
paths (0) are of the following form respectively: 

coLq :=  coo d(Tx>Ty) for Lo 
C\L\ :=  cu  d(T x} x) +  ci2 d (x ,T y)  for L\

(2) C2L 2 :=  C21 d(T x} x) 4- C22 d(x , у) -f  с2з d (y ,T y )  for £2 
C3L3 :=  C31 d(T x , y) +  c32 d(ytTy)  for L3
C4L4 :=  c4i d(Tx, y) +  c42 d(y, x) +  c43 d(xTy)  for £ 4- 

O f course C{j depends on x ,y  and T . In this way for given T  : M  >ъ> M  
we have 11 functions

(3) Cij( x ,y )  e  R[0,1) ( ( х , у ) е м 2).

2.10.2. Theorem. Let (Af, d) be a metric space and T  : M  >^> M  a 
c-contracting path mapping in the sense that there are functions like (3) 
satisfying for every x ,y  e  M :

(4) d {T x ,T y )  <  b c i L i

=  coo d(T x ,T y )  -f cn  d (T x t x)
+С12 d (x ,T y)  +  C21 d (T x } x)  +  c22 d (x } y)
+ c 23 d(y, Ту)  +  C3i d (T x , y) +  c32 d(y , Т у)
+ c 4i d(T x, у) +  С42 d(y, x) -f C43 d (x } T y )

and such that
(5) sup [c12 +  c43 +  £ tjci; (xy)] :=  с <  1.

x,y 6M
If the space (M ,d ) is T-orbitally complete, then there exists one and only 
one fixed point и o f T\M , and for every x E M  one has

(6) lim„ T nx =  u,
(7) d(Tn,u) <  cn( l  — c) -1  d (x ,T x ), and even
(8) (T nx ,u ) <  mn( l  — m ) ” 1 d (x ,T x ), where
(9) m  =  o ( l  — 6) " 1, 0 <  m <  с <  1,.
(10) a =  сц  4- C12 -f c22 4- C42 +  C43
(11) b =  coo +  C12 +  C23 +  C32 +  С43 (cf. Kurepa 1973(8) Th. 2.2).

2.10.3. Proof. The case с =  0 being obvious, because T\M is constant, let 
us assume 0 <  с <  1. Let us majorate

^(яп»жп+1.) =  d(Txn- i y T x n) .
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Putting x n_ i  instead of x and xn instead of у in (4) we get
(12) d(xn, xn+ i) =  d(Txn_ i tT x n)

<  Coo d(xn + u xn)
+ cll  ^(хп, Xn_ i )  -f с 12 d(xn_ i, Xn + i)
+C21 d(xn, Xn_ i )  +  C22 rf(xn- l ,  xn)
+C23 d(xn} xn^.i) -f- C31 d{xn} xn)
~Нсз2 d(xny z n+ i) +  C41 <f(xn, x „)
+C42 d(xn,x n_ i )  +  C43 d(xn_ i, xn+i).

On the other hand, by the triangular relation,
(13) c?(xn_ j , хп+1) K. d(xn_ i , xn) +  d(xn, xn_|_i).

Writing the expression (13)г instead of (13)i where (13)i occurs in (12) we 
get the following relation after transfering on left side the terms containing 
d(xn ,x n+ i) as factor:

(14) d(xn, xn+ i ) ( l  — b) <  a .d(xn_ i ,x „ )  where a,b are defined 
by ( 10) and ( 11) respectively.

One has either a =  0 o r 0 < a < c < l .

A. Case a =  0.
The relation (14) implies d(xn,x „ + i)  =  0 (x 6 M }n E N )  thus in 

particular x\ =  T x  1, i.e., T x  is a fixpoint, whenever x G M .  We claim that 
T x  =  Ту for every x, у 6 M . In the opposite case, there would be 2 distinct 
points x ,у G M  and T x  ^  Т у , thus 0 <  rf(Tx,Ty); since Tx =  x ,T y  =  y, 
the relation (4) would yield

0 < d (x , y) <  coo d(x} y) +  c i2d(x, y)
+  c22cf(x, y) 4- c3i<f(x, y) +  c4id(x, y) +  c42cJ(x, y) +  c43d(x, y)

and therefore, dividing by d(x}y) ф 0, one would have 0 <  1 <  coo 4- C12 +  
C22 +  C31 +  C41 +  C42 +  c43; the last sum being <  c, one would have 0 <  1 <  c, 
in contradiction to the condition (5). This contradiction proves that the 
assumption T x ф Ту  does not hold; thus one has T x  =  Ту, whenever 
x ,y  G M , i.e., the mapping T\M is constant, и G M , thus in particular 
Tu =  u, and therefore T^u =  и (n G N )  etc.

B. Case 0 <  a.
According to (5) we have а + 6-f C31+C41 =  c, that jointly with 0 <  с <  1 

yields а +  6 < с , а  +  с6 < с
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(15) а <  с(1 — Ь).
Since 0 <  b <  с <  1, one has 0 <  1 — 6 <  1, and the relation (15) yields 

(15') 0 <  e <  с with e =  а /(  1 4- 6).
Consequently, the relation (7) reads

(16) d (xn,x n+1) <  ed(xn_ i , x n) for some e satisfying
(17) 0 <  e <  с <  1.

2.10.3.2. The classical argument is applicable to the sequence (x n)n yielding 
the limit point и =  limn x n.
2.10.3.3. Moreover Tu  =  u. As a matter o f fact

(18) d (T u ,u ) <  d(xn ,u ) +  d (T u ,T xn- i )  for every n E N.
In virtue o f (4) we have

4
d (T u ,T xn- i )  <  E c,*Lt* putting there x  =  u ,y  — x n_ i . 

Therefore (18) yields
4

(19) d(Tu}u) <  d(xntu) 4- ^ QC{Li or explicitly:

d(Tu} u) <  d(xn , u) 4- c00 d(Tu , T x n_ i )  4- cn  d(Tu , u)
+C12 d(u, T x n_ x) +  c2i d(Tu , u) 4- c22 d(u} x n_ i )  
4*c23 d(xn_ i , T x n) 4- c31 d(Tu , xn_ i)
4-c32 d(xn_ i , T x n_ i )  4- c41 ^ (Т и ,х п_ ! )
4-C42 d(xn- i ,  u) +  c43 d(u, T x n_ i ) .

Applying the triangular relations d(Tu,Xk)  <  d(Ttt, u) +  с?(и,х*) for jb =  
n ,n  — 1 the relation (19) yields

(1 -  coo — c21 — c3i -  c41)rf(Tti, ti)
<  d(xn , u) 4- coo c/(u, x „ )  4- ci2 d(u, x „ )  4- c22 tf(u, x n_ i )

4"C23d(xn_ i , x n+i)  4- c31 d (u ,x n_ i )  4- c32 cf(xn_ i , x „ )  
4-С41 d(u ,xn- 1) 4- c42 d(xn- i ,  ti) 4- c43 d(uy xn). 

Applying in this identity the operator lim, each term at the right side yields
0 and therefore

(1 — coo “  c2i — c31 — C4i)d(Tu,u) < 0 .
Since

0 <  coo 4- c2i 4- c3i 4- C41 <  с <  1,

one concludes that d(Tu,u) <  0, i.e., d(Tu,u)  =  0 and Tu  =  u.

2.10.3.4. By a similar argument,, taking any point x ' G M  and the cor
responding u( =  l im T 'V , and applying the majoration (4) to the ordered



727

pair ( x ,y )  :=  (и ,к '), one proves that necessarily и =  it'. In other words 
I T = { u } .

2.10.3.5. Let us prove still the evaluations (7), (8). Now, for every n E N  
we had the relation (16) from where obviously

(20) d(xntx n+i) <  end(xtT x ) , (n E N).
Using this evaluation and the formula

d (x n ) x n+p) ^  d(xn > x n+ i)  4* ^(£n+i> x n+2)  +  ^(xn+p~i, ®n+p)) n  E N  

we get

d(xn ,xn+p) <  (en +  en+1 +  . . .  +  e " ^ " 1) d (x ,T x )  .i.e., 
d(xn, x n+p) <  e " ( l  -  e)~1d (x ,T x)  (p € N ) .

Applying here operator lim one gets precisely the requested formula (8). 
The Theorem 2.10.2 is completely proved.

2.10.4. Some particular cases of the Theorem 2.10.2.
2.10.4.1. All quantities c,j are vanishing: Cij =  0. Then the mapping 
T  : x  E M  > M  is constant (this occurs in particular if с,-;- =  0 for
( » .л  ф  ( ° .° ) ) -
2.10.4.2. c22 ф 0 V c42 Ф 0 and cy =  0 for all other One gets the 
classical Banach case.
2.10.4.3. 0 <  c2i =  с23 <  1/2, and all other ctJ- =  0. One gets a theorem of 
R. Kannan (1968, Theorem 3).
2.10.4.4. The functions с ц ,012, 032, 041, 042,043 are identically 0. One gets 
a theorem o f Lj. Ciric (1971, Theorem 2.5).

2.11. Diametral f-contractions in (M ,d )
Let us prove the following

2.11.1. Lemma (L .l in Taskovic 1980). Let /  : R+ >-» R+ be such that 
(Vf E R o)ft  <  t and

(0) lim supX>^ ,t+0f x <  t whenever t £ i 2+ ; 
let a sequence

( 1) xn (я €  N )  o f reals >  0 satisfy
(2) jcn+ i <  f x n (я E N)\ then xn is a 0-sequence i.e., limn x =  0.

Proof. Since the sequence (1) is decreasing and its terms are >  0 the 
limit t of (0) exists and is >  0. We claim that t =  0. In the opposite case
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there would be t >  0. Thus there would be 0 <  t :=  lim sup xn+i <  (by (2)) 
lim supn f x n <  (obviously, because (x „ )(n  E N )  is a particular sequence 

t -1- 0) lim sup f x  <  t (by (0)); thus one has the contradiction t <  t }
r-*t+0

which proves that the Lemma is true.

2.11.2 . Definition. Let /  be a mapping like in 2.11.1 Lemma, then a 
selfmapping T\M is said to be a diametral /-contraction if and only if 
d (T x ,T y )  <  f 6 ( 0 ( x , y , T ) )  and 6 0 (T ,x )  £  R + ]6 X  :=  sup d (x }y) 
(x ,y  e M).

On basis o f the Lemma 2.11.1 one can prove the following.

2.11.3. Theorem on diametral /-contractions. Let (M ,d ) be T-orbitally 
complete for some diametral /-contraction selfmapping T  o f M . Then T  
has a unique fixpoint u. In addition, this и is the limit o f the orbit T nx, 
whenever x  £  M  (cf. Theorem 1, p. 250, Taskovic 1980).

2.12. Theorem. Let (M ,d )  be a complete y-metric (=  uniform) space 
and T  : M  M  a continuous (U} q, fc)-contraction with some (0 ф U С 
M 2,0 <  q <  l,Jk € N).  I f M x T M C  Hull U :=  U U U2 U U3U, . . . ,  
where Un =  U о Un~ x (n =  2 ,3 , . . . ) ,  then for every x  €  M  the iterates 
T nx converge to a T-fixpoint и G M .  IF (M , d) is {/-chainable (i.e., M 2 =  
Hull U), then и is the unique fixpoint o f T\M.
Terminology: T  : M  »  M  is a (£/, g, A:)-contraction «<=>- if (x, y) £ U then 
d(Tkx , T ky) <  q max d(Tix )T iy) (i <  к), (v. Marjanovic 1968, Naimpally 
1965 Th. 3.7).

2.13. Case of T  : M k > -»  M .  One can prove the following interesting

2.13.1. Theorem. Let there be given: a natural number k f a point x :=  
( x i , . . .  , X*) £ M k and a mapping T  : M k > -» M ; if there exists a fc-un 
с :=  ( c i ,c 2 ). . .  , Cfc) o f reals >  0 such that c\ -I- c2 -I-. . .  +  c* <  1 and

d ( T ( « i , . . .  ,tijb),T(u2,u 3, . . .

<  ci d(u i , u2) +  a2 d(u2t u3) +  • • • +  ajfc d(uki ujb+i)

for each (w i , . . .  ,«jfc+i) £ M fc+1, then sequence х*+п :=  T (x n, x n+ 1, . . .  , 
xn+jt_i) (n £  N )  is a Cauchy sequence. If the space (M , d) is T-orbitally 
complete, then there exists one and only one у £  M  such that у =  f ( y , у , 
. . .  , у) £  M k; one has у =  lim 0 (T , x) for every x £  M k (cf. Theorem 1 
Presic 1965).
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2.13.2. The wording of the theorem is transferable to any sequentially 
complete (/-metric space.

2.14. Quasicontractions of (M , d).

2.14.0. Definition. A selfmapping T\M is a quasicontraction <=>• there 
exists a number с £  R [0 ,1) such that

(i) и =  lim T^x  (z  £ M )  and
(ii) d(Tnx ,u )  <  cn( l - c ) - 1 d {x ,T x)  (x £ M )  (Th. 1 Ciric 1974).

Using the graph theoretical terminology, Theorem 2.14.1. becomes

2.14.2. Theorem. If a selfmapping T\(M,d) satisfies d(T xtTy) <  c6Vg} 
where 6Vg  denotes the diameter o f the vertex set { x , y ,T x ,T y }  of the 
complete graph д (х }у }Т х ,Т у ) ,  and if (M ,d ) is T-orbitally complete, then 
T  has a unique fixpoint u £ M  with the properties (i), (ii).

It matters to notify the following

2.14.3. Lemma. Any 0 <  с <  1, any c-quasicontraction T  o f (M ,d)  and 
any x E M ,n  £ N  satisfy d(T*x}T^x) <  c6 0 (T t x tn]t where 0 (T ,x ,n ]  :=  
{T*xt i =  0 ,1 , . . .  ,n } ;  thus 6 0 (T }x,n] =  (f(x ,T mx) for some m €  [1,tx] 
(Lemma 1 p. 269, Ciric 1974).

2.15. Theorem: =  “Theorem 1 (Monotone principle o f F.P.). Let T  be a 
mapping of metric space (X , p) into itself and let X  be T-orbitally complete 
with the condition of A T -type. Suppose that there exists a mapping 7 :
> -» such that (7 ) and (T) A (T x ,T y )  <  y (A (x ty)) for any x ,y  E X ,  
where A : X x X  »  x >-» A ( x }T x )  is T-orbitally lower semicontinuous 
(or A  is continuous and A (x, x) =  0) and p (x , ,  y) <  A (x , y) for all *, у  E X .  
Then T  has unique fixed point £ £ X  and T^x  > *  £ for each x  E X ” (p. 128, 
Taskovic 1985).

Terminology: Condition of A T -type in a metric space X  means: if x  £  X
and i4(Tnx ,T n+1a?) 0 (n »  00), then {Л (Т "х ,Т ,т‘

d (T x ,T y )  <cmaLX.{d(x1y ) } d (xJT x ) ,d (y )T y ) ,d (x 1T y )1d {y ,T x ) }

( x ,y  E M )  (cf. Ciric 1974).

2.14.1. Theorem. Every quasicontraction T  o f any T-orbitally complete 
metric space (M ,d )  has just one fixpoint и in M\ one has
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double sequence, where A  : X  x X  »  Я + ,х  > A (x ,T x )  is T-orbitally 
lower semi-continuous.

For a 7 : R+  > -» R+ the (7 ) condition means (W G R+)  (7 (t) <  t) and 
lim sup 7 (2) <  t for z »  t +  0. A  g : X  > -» Я  is said to be T-orbitally 
semicontinuous at p if (xn) is a subsequence in the orbit ( x , T x , T 2x . . . )  
and if xn >*> p then y(p) <  lim inf g (xn).

The quoted Theorem 1 embraces many known theorems on fixpoints. 
For other Taskovic’s results, the readers are referred to his bibliography 

and his book 1986.

2.16. c-contractions; с-expansions in (M ,d ).

2.16.0. Definition. Let с be a given member o f R + :=  R (0 ,.). If a selfmap
ping T\M satisfies

(0) (T x ,T y )  <  cd (x ,y )  ( x , y € M , x ^ y ) ,  
then T  is called a c-contraction o f ( M } d). In particular, 1-retraction means 
d (T x ,T y )  <  d (x ,y )  in M 2 for x ф у .

If d (T x ,T y )  =  0(x, у  G M ) ,T  is said a 0-contraction in (M , d). If
(O') d (T x ,T y )  >  cd (x ,y )  (x ,y  G M yx ф t /) ,T  is said a 

с-expansion in (Af,<i); in particular, 1-expansion means that d (T x ,T y )  >  
d (x ,y )  for x ф у  in M 2. If in (0), (O') one has respectively <  instead 
o f <  and >  instead o f > , T  is said to be a weak c-retraction and a weak 
с-expansion respectively.

The preceding definitions are of a global character; o f course, they 
could be localized as well in the sense that the corresponding relations hold 
in a certain neighborhood V (x ) for every x  G M  with a given c.

2.16.1. Theorem. If (M yd) is T-orbitally complete for some c-contraction 
T\M for some 0 <  с <  1 and if M  contains a point x  such that the T-orbit 
o f x  contains a convergent subsequence s, then lim s :=  ti is the unique 
fixpoint o f T\M (v. Th. 1 in Edelstein 1962).
2.16.1.1. Corollary. Every 1-contractive selfmapping of every compact 
metric space has a unique fixpoint.

If in Theorem 1 one assumes that T\M is a local c-contraction, then in 
the conclusion one has the following: и is a periodic point o f T\My i.e., for 
some к G N  the point и satisfies T ku =  ti (Theorem 2 in Edelstein 1962).

2.16.3. Theorem (see Rosenholtz 1976). Let (Af, d) be compact and con
nected; if a selfmapping T\M is a continuous weak с-expansion for some
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с >  1 and if the T-image TG  of every open set G  in M  in an open set, then 
T  has a fixpoint in M .

The proof uses covering space techniques.

3. Further Fixpoint Theorems in Various Structures
In this section we list some important results on fixpoints concerning 

various structures (spaces, ordered sets,.. . ) .

3.0. The last Poincare's geometric theorem
One could write a drama on what is called Poincare’s last G. Theo

rem., especially if one bears in mind that Poincare was one o f the greatest 
mathematicians and that he had presentiment of his proper death soon. In 
his study o f  the problem of three bodies Poincare arrived in 1912 at the 
following statement.

3.1. Poincares last geometric theorem (Poincare 1912)
Let Я be a ring formed by 2 concentric circles ca of radius a, cj of radius 

b (a >  b >  0); let T\R be a one-to-one continuous selftransformation such 
that it advances the points on са,сь in opposite directions; if T  preserves 
area, then T\R has at least 2 fixpoints.

Poincare knew that there were >  2 fixpoints, provided that there is at 
least one; he proved the theorem for various special cases, but had no time 
to settle the general case. The proof for general case was given by George 
Birkhoff 1913, very soon after Poincare’s death!

3.2. Brouwer’s fixpoint theorem (1912 Satz 4)
“A one valued continuous transformation o f n-dimensional elements 

into itself has surely a fixpoint” and on p. 97 one reads: “Under an n- 
dimensional element 5  we understand a one-valued continuous image of 
n-dimensional number space” . O f course, all these happen in

The proof given by Brouwer is not simple. Afterwards, much simpler 
proofs were found, especially founded on Sperner’s lemma. A very inter
esting proof was discovered by John Milnor 1978 and is backed on the fact 
that the function (1 +  x 2)n! 2\R is not a polynomial over Л, whenever n is 
odd.

3.2.1. It is extremely interesting that the great french mathematician 
Poincare Henri (1956.04.29-1912.07.17) in his fundamental researches on
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qualitative solutions o f differential equations, in the period 1883-1886 and 
later on used tools which are equivalent to the Brouwer’s theorem (cf. Mi
randa, Carlo 1940; for more details and a relevant bibliography cf.F.E. 
Browder 1983).

3.2.2. It is worth-while to notice that the Poincare’s last geometric theo
rem 3.1 is not (is) covered by the Brower’s (Schauder’s and a fortiori  by 
Tychonoff’s) F.P.Th. 3.2.

In connection with the Poincare’s last Geometrical Theorem it is in
teresting to quote the following

3.2.3. Theorem (Rassias 1982). Let D 2 be the open unit ball in R 2. If T  is 
Lebesgue measure preserving and orientation preserving homeomorphism 
of D 2 onto £>2; then T\D% has at least one fixpoint. If one deletes the 
condition of the orientation preserving, then T 2\D2 has some fixpoint (the 
statement is not true for n >  2).

3.2.4. Brouwer’s Theorem deals with particular subsets o f Euclidean spaces 
R n(n  G N );  the theorem was studied and generalized replacing simplexes 
in R n by more general subsets o f more general spaces. Typical results were 
obtained by Schauder, Tychonoff, Kakutani (s.3.3.1, 3.3.2, 3.4.1).

3.3. In 1930 J. Schauder proved the following two theorems I, II.

3.3.1. Theorem I. Let (M ,d )  be linear, complete and such that:
1° d (x } y) =  d(x — y, 0) (x, у € M  : 0 is the zero of the space).
2° lim d(xn , x)  =  0, lim d(yn , y) =  0 imply lim d(xn -f  yn, x +  y) =  0. 
3° If A„ is a sequence of real numbers and x n a sequence o f elements 

o f M  then An > -»  A and d{xn ,x )  »  0 imply d(\nx n i\x)  0.
Let Я  be a convex closed and compact subset. Then every continuous 

selfmap o f Я  has a fixpoint in Я .
Here is a translation o f a section from the same paper. “For linear 

normed and complete spaces, considered by Mr Banach in his dissertation
—  we call them shortly “B” -spaces —  the preceding theorem could still 
be generalized. Namely one need not assume the compacity of the convex 
closed set Я . It suffices to know that the image F (H )  is compact. Thus 
one has

3.3.2. “Theorem II. Let Я  be a convex and closed set in a “B” -space. Let 
the continuous functional operation F (x )  map Я  into itself. Further let 
F (H )  С Я  be compact. Then there exists a fixpoint” .
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In Collatz [1968] p. 281 this theorem is labelled as “a far-reaching 
generalization [of the Brouwer’s theorem] which is very suitable to applica
tions” .

3.3.3. Theorem (Th. 1, Rassias 1977). Let (M }d) be linear topological 
space with convex balls; let А  С M  be complete and convex; let T  : A  > >  
M  be continuous. Then there exists at least one и £ A  such that

d(Tu,u) =  d (T u ,A ),

where d(x , A)  :=  inf d(x , у) (у £ A ), whenever x £ M .  In particular, if in 
addition Т А  С A, then Tu =  u.

The Theorem 3.3.3 is a generalization of Schauder’s theorem because 
Rassias gives an example o f a space (M , d) which satisfies the conditions of 
Theorem 3.3.3 but the space is not normed.

3.4. Tychonoff’s paper 1935 was reviewed by J. Schauder in Zbl. 12 (1936) 
308 where one reads “On generalizing a reviewer’s fixpoint theorem the 
proof of which yields the existence of a fixpoint only when the space is 
linear, metric and locally convex (J. Schauder, Studia Math. 2, 171-180, 
Theorem I) the author proved the following”

3.4.1. Tychonoff’s Fixpoint Theorem. “For each continuous selfmapping 
o f a convex bicompact set in a linear topological locally convex space there 
exists at least one fixpoint” . ..

To be noticed that the quoted text 3.4.1 is an English translation by 
the exact reproduction o f the origin ad Tychonoff’s wording [1935].

The proofs o f fixpoint theorems of Schauder and Tychonoff were 
founded on the Brouwer’s Fixpoint Theorem.

3.5. Case o f  multivalued mappings

3.5.0. If T  is a set function, i.e., if  values of T  are sets, then every x  £ 
Dom T  such that x £ T x  is called a fixpoint of T. The set of all fixpoints 
o f T  is denoted also by Fix T.

A  very great job  on fixpoint problematics of multivalued mappings was 
done. The following Theorem is well known.

3.5.1. Theorem (Kakutani 1941). Let S be a closed r-dimensional simplex; 
let to every x  £  S be associated a closed convex subset T x  o f 5; if the
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mapping T\S is such that xn > -» x0, yn »  Уо, Уп G T (x n) imply y0 £  T x 0) 
then x 6  T x  for at least one x  £  S.

W hat a beautiful generalization of Brouwer’s theorem (1912) found 29 
years after Brouwer’s result. If T x  is a singleton whenever i G 5 ,  oen gets 
Brouwer’s result.

From Olga Hadzic’s numerous results on fixpoints o f multivalued map
pings let us quote the following

3.5.2. Theorem. “Let (E } t )  be a Hausdorff locally convex space, К  be a 
nonempty closed convex subset o f E, T  a continuous mapping from К  into
E ,S  be a compact mapping from К  into the class B ( K )  o f all nonempty 
closed and convex subsets o f К  such that for every у £  S (K )  there exists 
one and only one solution x(t/) £ К  o f the equation x =  T x  «+■ у  and 
the set {x (t/)}t/ £  S (K )  is compact. If the mapping T  is affine, then 
Fix (T  +  5 ) ф Г  (cf. Theorem 1. Hadzic 1980).

For some other Hadzic’s results cf. her books 1972*, 1984*.

3.6. Theorem (Th. 1, Ciric 1978). Let X  be a topological space and 
T  : X  > -»  X  a strongly nonperiodic orbitally continuous selfmapping. If 
for some xo £ X  the set

(1) cl 0 (T ,  xo) is compact, then (1) contains a T-fixpoint it; in 
particular, if L  is any maximal Э -chain in the system F  o f all closed subsets 
Z  o f (1) such that

(2) T Z  С Z,  then f)L :=  Lo satisfies
(3) v ф L q С In v ( X tT).

Proof. First, (1) is the initial member in the chain (£ ,Э ) ;  further, 
Lq ф v, because in the opposite case Lo would be the closed empty set 
v; thus the system C L :=  {(1 )\ У ;У  £ L } would be an open cover of (1); 
since (1) is compact, CL would contain a finite sub cover M  o f  (1), thus 
UM  =  (1). Now, CL is a chain; therefore, M  is a finite Э -chain and its 
union UM  would be the initial member I  in (JVf, Э ); hence, I  =  (1), i.e., 
(1 )\ / =  v, contradicting the fact that for each D  £  L thus also for D  =  L 
the complement (1 )\ ^  is a nonvoid closed subset of (1). So Lo ф v. It 
still remains to prove the second relation in (2), i.e., that every и £  L q is a 
T-fixpoint. Assume, on the contrary и ф Tu  for some u £ Lq. Since T  is 
strongly non-periodic one would have

(4) и £  Cl 0 ( T 2u) :=  E\ now, E  is a Z  and satisfies (2) when С
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means =  and not Сф because otherwise L\J { E }  would be a sub chain of 
F y more extensive than the maximal subchain L. Thus Lq — E  and ti £ E, 
contrary to (4).

Theorem 3.6 implies various known results like the following ones for 
metric spaces (M , d).

3.6.1. Corollary (Edelstein 1962). Let T  be a contractive selfmapping of 
(M }d), i.e., d(T x ,T y)  <  d (xty) for each (x fy ) £ M 2 such that x ф у. 
If M  contains a point x such that the sequence T nx (n £ N ) contains a 
convergent infinite subsequence и £ M , then {ti} =  Inv (M ,T ).

3.6.2. Corollary (Ciric 1971). Let T  : M  > -» M  be orbitally continuous and 
M  be T-orbitally complete. If T  is a contraction type mapping (:=  there are 
functions q : M 2 >ъ> Я [0 ,1) such that sup q(x}y) =  1 and d(Tnx,Tmy) <  
q (x ,y )nd (x , y) (n £ N ) ) y then T  has a unique fixpoint ti in M  and one has 
it =  lim T nx y for every x  £ M .

3.7. Some continuation theorems for  А -proper maps

3.7.0. The famous Leray-Schauder continuation theorem for compact per
turbations o f the identity map proved to be very useful in proving the exis
tence o f solutions o f nonlinear operator and differential equations. Presently, 
there are many extensions o f it to more general classes of maps (condensing, 
L-compact, ^4-proper etc.). For L-compact maps we refer to Mawhin 1979 
and to a survey paper [Mawhin -  Rybakowski 1987]. In what follows, we 
shall briefly discuss some extensions to А-proper maps.

3.7.1. Let X  and Y  be Banach spaces, { X „ }  and {Yn} be finite dimensional 
subspaces o f X  and Y  respectively with UXn dense in X ,  dim X n =  dim Yn, 
and Q n : Y  Yn be linear projections with ||<2n|| <  M  <  oo for all n. 
Let D  С X .

Definition. A  map H  : [0,1] x D  »  Y  is said to be an A-proper 
homotopy w.r.t. Г =  { X ny Yn,Q „ }  if whenever {x nfc £ £>ПХПь} is bounded 
and tk £ [0 , 1] with t* »  t are such that Q „k # (< * ,x nfc) »  / ,  then a 
subsequence хПк. »  x  and H (t ,x )  =  / .  For such homotopies, we have 
the following general continuation theorem, whose proof is based solely on 
the Brouwer degree theory.
3.7.1.1. Theorem (Milojevic 1982, 1983). Let D  С X  be an open and 
bounded subset, V  С X  be a dense subspace, /  £  Y  and Я  : [0,1] x (DC\V)
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»  У  be ап Л-proper homotopy w.r.t. Г such that
(i) H { t , x ) ^ f f o i x e d D n V t t £ [0,1]
(ii) t f  (0, x) ф t f  for x £ dD  П V, * £ [0,1]
(iii) the Brouwer degree deg (<2„tf(0, .)tD  П X „ ,0 )  ф 0 for all 

large n.
Then the equation Я (1 ,х )  =  f  is feably approximation-solvable (i.e., its 
solutions are limits o f some subsequences of solutions o f Q nH (\ ,x )  =  
Q nf , x e X n).

In applications (cf. 1982, 1983), H (t ,x )  takes various forms depending 
on the type o f equations considered. For example, when studying semilinear 
equations with Fredholm maps, we can take H (t t x) =  A x  +  F ( t , x ), where 
A  : D (A )  С X  »  У  is a Fredholm map of index i(A ) =  0. Let Xo  =  ker A  
and X  С X  and Уо С У be such that X  =  X q ф X  and У =  Уо 0  R (A ).  
Let D  =  { x 0 +  * i  6 X o ®  X|||x0|| <  r, ||a?i|| <  R } for some r, R >  0 and 
Q : У  > -» Уо a linear projection.

3.7.1.2. Theorem (Milojevic 1982, 1983). Let H (t yx) =  A x  +  F ( t , x )  be an 
А-proper homotopy on [0,1] x (D  П D (A ))  w.r.t. Г and

(i) A x  +  F ( t , x ) ф f  for x € 6D  D D (A ) , t  £  [0,1]
(ii) ^ (0, . р ) с У о
(iii) F (0 ,x )  ф t Q f  for x £ 3 D n X 0yt £ [0,1]
(iv) deg (jF(0, .), D  П X 0, 0) ^  0.

Then the equation A x  +  F ( I } x) =  /  is f.a. solvable.
The following corollary is useful in applications.

3.7.1.3. Corollary (Milojevic 1982, 1983). Let A + t N  : D n D ( A )  С X  >*> 
У, t £ [0,1], be А -proper w.r.t. Г with Q nA x  =  A x  on X n,N  be nonlinear 
and bounded and

(i) A x  +  1М хф  0 for x e d D H  D (A ), t £  (0,1)
(ii) Q N x  ф 0 for x £ dD  П X 0
(iii) deg (Q N ,D C lX o ,0 )  ф 0.

Then the equation A x  -I- N x  =  0 is f.a. solvable.

3.7.2. Positive solutions of operator equations
When У  =  X  =  V , К  is a cone in X  and Я  : [0,1] x D  П К  >*> 

К ,  then a version of Theorem 3.7.1.1, based on the index theory, gives the 
existence o f positive solutions, i.e., x £  K } o f Я (7 ,х )  =  / .  In particular, if 
H (t ,x )  =  x — t N x } we get positive fixed points o f N .  We refer to [Milojevic 
1977] for details. However, in Milojevic 1986 a method was introduced,
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based on topological transversality and approximation-essentiality, which 
gives more general results. For example, one has

3.7.2.1. Theorem (Nonlinear alternative) (Milojevic 1986). Let С  С X  be 
convex, D  an open subset of G with 0 G D  and N  : 15 > »  С  such that
I  -  tN, 0 <  t <  1, is A-proper at 0 w.r.t. Г =  { X n,P n}  with PnC  С С. 
Then

(i) 0 £ ( I  — N ) (D)  and, if 0 £ ( I  -  N )(d D ), 
the equation N x  =  x  is f.a. solvable; and/or

(ii) there exists an x G dD  such that x =  tN x  for some t £ (0,1). 
Imposing conditions on N  which prevent (ii) to hold, one gets various

types of fixed point results. For example:

3.7.2.2. Theorem (Milojevic 1986). Let С С X  be convex, 0 G C, N  : С  
> -» С  be such that N (C  П D)  is bounded for each open neighborhood D  
o f 0 and I  — tN y 0 <  t <  1, be Л-proper at 0 w.r.t. Г =  { X n>Pn}  with 
PnC  С С. If S =  {x  G C\x =  tN x  for some t G (0 ,1 )}, then either S is 
unbounded, or the equation N x  =  x is f.a. solvable.

When N  is compact, Theorems 3.7.2.1 and 3.7.2.2 are due to Granas 
1976.

3.8. For locally convex normed spaces very much has been done about 
fixpoint problematics (Leray -  Schauder 1934, Krasnosel’ski,.. . ) .

3.8.1. Theorem (Hadzic O.- Stankovic S., 1970). Let 5  be a sequentially 
complete subset o f a locally convex vector space E  and | |a (or G J) 
a saturated system of seminorms. If for every (or, Ar) G J x N  there is a 
qa (k) >  0 such that \Tkx -  T ky\a <  ga(fc)fc -  $/!*>(«,*)(*, у G 5 ), £&>(£) <
oo (k G N )  and if for every (ar,x,y) G J x S x S  there is pQ( x } y) G [0,oo) 
such that |x -  y|v(a,)t) <  Pa(*, у), к >  1, then T\S has unique fixpoint u\ in 
addition и =  lim T nx  whenever x G S.

In the same paper, the Theorem 3.8.1 was applied for solving some 
differential equations in the field o f Mikusiriski’s operators.

3.9. Fixpoints is probablistic spaces

3.9.0. In 1942 K. Menger replaced the Frechet’s distance d(p}q) between 
p,q £  M  by a real-valued function Fpq : x G R  > -» Fpq{x ) € /  :=  #[0,1]; 
he interpreted Fpq(x)  as the probability that the distance between p, q be
<  x. If is left continuous and —oo) =  0, Fpq (oo) =  1, then
is called a probability distribution function (pdf). He considered any set
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P  o f p d f’s each of which is: 0 at 0, 1 on the diagonal p =  q and such that 
if p ф qt then Fpq(x)  <  1 for some x >  0. Menger introduced statistical 
metrical space as any (S, F)  where F  : S x S > -» P  is such that

(0) Fpq (x  +  y) >  T(Fpq( x ) ,F qr(y))  whenever (p ,g ,r )  £ S3 and 
(x ,y ) £ R 2 and where T  : 12 »  I  satisfies

(1) T (a, b) =  T(fc, a) (a, 6 £ / )
(2) T (a ,6) <  T ( c ,d) whenever a ,6, c ,d £  7 and a <  c,b <  d
(3) T (a , 1) >  0 for a >  0 and T ( l ,  1) =  1.

3.9.2. This was a generalization o f metric spaces because if there is a 
mapping d : S  x S R ^ such that

' 0 , x <  d(p, $)
(4) Fpr(z ) =  < for, ж £ R

k 1 , x >  g)
then (5, rf) is a metric space. And conversely, if (5, d) is a given metric 
space and if one defines F  by (4), then (5, F )  is a statistical metric space 
for every T  : 12 > -» I  satisfying (1), (2), (3).

3.9.3. Any T  : I 2 >*> I  such that (1), (2), (3) and the associative law 
T (T (a , b), c) =  T (a ,T (b , c)) ((a , b, с) £ I 3) hold is called a triangular and 
more specifically the T-norm.

3.9.4. Menger space is any 3-un (M , F, T ), where M  is a set, F  is a mapping 
o f M 2 into P  as above and T  is a t-norm. One can prove the following (p. 45, 
Istracescu 1974*):

3.9.5. Theorem. If T  is a continuous t-norm, then one has 12 =  (UJ 2) U 
£(U«7fc)2 (fc £ K ]  the index set К  is at most countable); the sets J* (к £  К )  
are disjoint open intervals o f I  and the restrictions T* :=  T\Jk (к £ К )  are 
Archimedean semigroups, i.e., Tjt(x,a;) <  x ( x  £  J*)*

3.9.6. Theorem (=  Theorem p. 108, Hadzic 1979). Let ( M yF ,T )  be a 
complete Menger space with a continuous t-norm T  such that the system 
T\(x) =  T ( x ) }Tn+ i (x )  :=  T(Tn( x ) ) ( x  £ 7 ,n  £  TNT) is equicontinuous at 
x  =  1 and for every к £  К  and whenever у <  z one has Tfc(z, y) <  T k(x , z).

Let Я  be a selfmapping of M  such that for every 5-un г :=  (r i , Г2,гз, 
Г4,г 5) £  R\ and every 2-un (и, v) £  M 2 one has some 5-un (a, 6, c, d, e) £  
R+  such that a +  6 +  c +  d - f e < l  and

F „ u ,H * (Z h )  >  T (T (T (T (F UiHvh/a) ,Fv,Hu(r4/b)) ,F V, „ V (r3/ c ) ) ,
JFU|Hu(r2 /d ) ) ,F u,„(r1 /e ) ) .
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Then Я  has a unique fixpoint.

3.10. Invariant points of continuous self-similarities of well-ordered sets
It is worthy to know that historically the first paper concerning in

variant points was Veblen’s paper 1908 dealing with finite or infinite ordi
nal numbers or equivalently with well-ordered sets W .  Selfmappings T\W 
which he studied were continuous self-similarities, i.e., such ones that x <  у 
in (W, < )  implies Tx <  Т у  and that for every nonvacuous S С W  one has 
sup T S =  T  sup S.

3.10.1. Theorem. Let u 0 be any regular non-countable ordinal initial num
ber and W  :=  W u a :=  {O N (n ),n  <  cvc }. For every continuous self- 
similarity s\W the set I  :=  Inv (W , s) of invariant points is order-similar to 
the whole set W .

Proof. First of all, one has sx  >  x  for every x E W  because if there were 
an x E W  such that sx <  x one would have ssx <  sx <  x, i.e., s2x <  sx etc. 
One would get an infinite regression . . .  <  sn+1 <  snx <  . . .  <  sx <  x in 
the well-ordered set W  —  which is contrary to the definition of well-order.

1. Lemma. For every x E W  and every limit ordinal A <  u a the point 
x' :=  sup saa;(a <  A) where sa+1s :=  s(sax) and sax :=  sup s&x (j3 <  a 
if cr is limit) is a point in Inv(ty, s).

As a matter o f fact, sa x(oc <  A) is a strictly increasing A-sequence 
in W\ since A <  u)a :=  type W ,  the point х' =  sup sax ( a  <  (3) is a 
point in W .  Now, sx ' =  s(sup sax)  =  (by the continuity o f s) sup ssax  =  
sup sa+1x (a  <  A) =  sup sa+1 x (a  +  1 <  A) =  x ' . Thus sx' =  x ‘ .

2. Lemma. If у E 7, then (у +  1)' is the immediate successor o f у in / ,
i.e., у E I  and (y  +  1)' are consecutive fixed points of s (proof is obvious).

Now, there is a similarity-mapping g o f W  onto I.
Put go :=  sup sno (n  <  w); let 0 <  (3 <  wa\ assume that goc(a <  /?) 

is defined as strictly increasing; let us define g(3 as well. If /? — 1 exists, let 
gp  :=  g(g(a  -  1) +  1); if P is limit, we define gp  :=  sup ga(a  <  P).

By transfinite induction the function g is defined in W. Obviously, g 
is strictly increasing continuous and maps W  onto I. This completes the 
proof of Theorem 3.10.1.
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3.10.2. Theorem. There are exactly 2pw a continuous self-similarities of the 
set W ljg \ in other words, the set В  o f all continuous self-similarities s of 
the set W u a is equinumerous to the set o f all selfmappings o f the set W u a.

Proof. In the representation s =  So <  $i <  . . . < « « <  . . .  ( o r  < w#) 
the unique restrictions are so £ W  and sa £  H ^ s o ,  • • • , . . . }(/?  <  a); 
thus each member o f s is running independently through a set o f power 
Xa] therefore pJ5 equals Xa>--- >Xo (the number o f factors is x<r); thus 
pВ — Xa" — 2x<r =  p P ( W ), what was to be shown.

Consequently, the number pВ  is the maximal number o f all self
mappings o f W .  It is interesting and surprising that everyone o f this im
mense set of 2pW selfmappings o f W  has an invariant set which is isomor
phic to the whole basic set W .

Is there any another structure S o f a similar bizzare property? Yes, 
because by similar arguments used in the proof o f Theorem 3.10.1. one 
proves the following

3.10.3. Theorem. Let W  be an ordered set such that for every x G W  
the cone W(a;) consisting o f all members o f W  each comparable to x is a 
well-ordered set of some regular non-countable initial type. Then for every 
continuous self-similarity s : W  > -»  W  such that whenever x £  W  the 
points a, sx  are comparable, the set I(W , s) o f  all invariant points o f s\W is 
order isomorphic to the set W  itself. If pW  is regular and equal to pL for 
some sub chain L o f W ,  then the system B' o f all continuous self-similarities 
o f W  is equinumerous to the system of all selfmappings o f L.

Remark. The continuity o f s : W  > -» W  is defined by the implication 
X  С W  and sup X  E W  => s(sup X )  =  sup(sX ) where sup X  6 W  means 
that sup X  is an element x o f W  such that X  <  x and that X  <  у G 
W  => x  <  y. Therefore, for a given X  С W  either sup X  exists as a unique 
member o f W  or sup X  does not exist at all. In particular, for the empty 
set v one convenes that sup v exists and denotes the first element o f  W  
provided W  has such an element.

P roof o f Theorem 3.10.3. We restrict ourselves to prove the last sen
tence in the Theorem. Now, by assumption, W  is equinumerous to a sub
chain L\ thus L is well-ordered and o f regular power p W  >  Xa\ since W  is
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degenerate, we can assume that I  is a branch in W.  Now, in virtue of The
orem 1 the system В of all continuous self-similarities s\L is equinumerous 
to the system Ll o f all selfmappings of L\ thus pВ  =  pLl =  2pL =  2pW =  
p iW ,  i.e., p В =  pP W .

Now, every continuous self-similarity s\L is extendable to some contin
uous self-similarity s\W\ it is sufficient to consider for every branch L' ф L 
o f W  a continuous self-similarity s(2/)|Z/; then the union of s\L and of 
Us(L/)|jL/ ( V  running through the set of all branches o f W )  is a continuous 
self-similarity o f W  (remark that W [a ,.) (a £ RqW )  coincides with the sys
tem of all branches o f W , because supposedly W  is degenerate). Therefore, 
J3' o f Theorem 3 is o f a power >  pB =  pP W  =  p W w , thus pB' >  p W w 
and a fortiori pB' =  pW w . This completes the proof of Theorem 3.10.3.

3.11. Fixpoints of permutations
Let 5  be a given set and 5! be the set o f all permutations of S. This 

means that every T  £  5! is a bijection of S onto 5 , thus, in particular, 
TS =  S.

A special kind of permutations are transpositions T  in 5  defined by 
the property o f T-invariance of every point of 5  except just two-ones. In 
other words if ж, у are 2 distinct members of 5  then the corresponding 
transposition is defined by T x =  y ,T y  =  x and Tz =  z (z £  S \ {x ,y } ) .

3.11.1. An interesting kind of permutations are cyclic ones. A permutation 
с o f 5  is quoted to be cyclic if for each x 6 S the corresponding c-orbit of 
x  coincides with S.

3.11.2. Lemma. A given nonempty set S admits some cyclic permutation, 
с E SI if and only if the power n :=  pS € N.

The proof is obvious. If n £ N, it is sufficient to consider any x £ S 
and to consider as cx any member in 5\{a:} and inductively if clx (t <  k) is 
defined for every ordinal i <  к (putting c°x :=  x), then ckx would denote 
any member of S such that ckx ф clx (i <  k).

If n is finite, the procedure of forming ckx stops for к =  n. But n is 
necessarily finite, because in the opposite case one would have an infinite 
bijective sequence clx (i =  0 , 1, 2, . . . )  and thus in particular the c-orbit of 
cx; this orbit is obviously {cx, c2x , . . .  } and does not contain x, contrarily 
to the cyclicity o f с that the c-orbit o f each member of S coincides with 5.
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3.11.2.1. Corollary. Let S be any nonempty set and T\S be any selfmap
ping; if r is an ordinal number such that some x £ S satisfies T rx =  x 
and that the r-sequence T lx ( i  <  r) is bijective, then r is finite and the 
subfunction T|0(T, x)  on the T-orbit of x is a cyclic permutation on the 
orbit.

3.11.3. We assume that n :=  pS is not infinite. One knows that 0! :=  1 
and n! =  1 • 2 • • • n (n 6 N).

3.11.3.1. Let n!o denote the number o f all T  G 5! having no fixpoint; and 
0! :=  1; one can prove that

(0) n!o = n!—(")(n -l) !+ (  j)(n—2)!+.. .+ ( - l ) "C )  = n!Sg(-l)7i! 
(cf. Vituskin, p. 73).
(1) n!0/n ! =  E (—l)* /i! (i =  0 ,1 ,2 , . . .  , n) (n 6 N q).

3.11.3.2. The number n!> o f all T g 5! having at least one fixpoint equals
(2) n!> =  n! — n!0.

One has
(3) lim n\0/n\ =  lim £ ( — l)*/t! (i <  n) =  e" 1 =  0,367879441 and
(4) lim n !> /n !0 =  e - 1 =  1,718281828... for (n G N ).

The equality (4) is a very nice occurrence of e.

3.11.3.3. The equalities (1) show that for even (odd) integers the corre
sponding subsequence o f (1) is decreasing (increasing). The number n!> o f 
members o f 5! equipped with some fixpoint is almost 2 times the number 
n!o o f members o f S\ having no fixpoint at all.

3.11.3.4. The number n !0 (resp. n!>) is called the subfactorial (cofactorial) 
o f n. Corresponding to the formula

n! =  (n -  l)[(n  -  1)! +  (n -  2)!]
one has

n !0 =  (n -  l ) ( (n  -  1)!0 +  (n -  2)!0) .

3.11.3.5. It is interesting that (n —l) !o / (n —1)! =  — res K ( —n )(n  =  2 ,3 , . . . )  
where the left factorial \z — K {z )  =  / 0°° e_ t( /z — 1 )/(t — 1 )dt for Rez >  0 
and stepwise one extends K (z )  in the field R(i) o f complex numbers using 
the difference equation K (z )  =  K (z  +  1) — T(z +  1) (cf. Kurepa 1973 (2)). 
The relation (0) yields
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3.11.6. If n !k denotes the number o f members o f 5! having just к fixpoints 
one proves without difficulty that

n!* =  ^ J n ! n_ t > n!i  =  ( n ! / t ! ) E ( - l ) ,7 i!  (0 <  i <  n -  к, к <  n ) .

For к =  0 one gets (0). O f course, n!> =  SJ=1n!fc.

3.11.7. If pS =  n is transfinite, we are not able to establish without choice 
axiom that n!o >  0, although one has p(S!) >  pS for each set S.

3.11.8. For any alef n one has n! =  2n =  n!o (cf. Kurepa 1953(4), 1954(16)). 
Therefore it is natural to put forward the following question.

3.11.9. Problem. What is the position of the following statement Fn?
Fn If n is infinite cardinal, then n!o =  n! where n!o denotes the 

power of the set S!o of all permutations f  o f S such that / х ф х  for each 
x G S\ S is any set o f power n. O f course AC=>- Fn. We convene that
S\> := 5!\5!0.

We have also the following consequence of AC.

3.11.10. If I  is any nonempty set let f\I be any I-un of sets o f power >  1 
each; then there is an 7-un of permutations p,- G (/* )o  (* € I).

3.12. Fixpoints o f  self-mappings o f  ordered sets

3.12.0. We denote by (0) ( 0 ,< )  any ordered set and by L any linearly 
ordered set or chain; extremal cases of (0) are well-ordered sets and an
tichains, i.e., ordered sets in which there are no distinct comparable points. 
Sections 3.10, 3.11 dealt exactly with such kinds o f ordered sets because 
every set S  could be considered as an antichain or free set.

In this section we shall discuss on Inv ((O , < ) ,T )  for 2 particular im
portant cases that T|(0, < ) is isotone (=  increasing: if x < у  in (0) then 
T x  <  Ту)  or decreasing: (=  if x <  у  in (O, < ), then T x >  Ту).

3.12.1. Definitions. (O, < ) is (condionally) left complete: <=> For every 
nonempty subset X  (such that a <  X  for some a G O) the infimum of X  rel
ative to (O, < )  exists and is a member of О ; it is denoted as inf X  rel (O, < ) 
or simply inf X  and defined by inf X  =  у 1) у G O, 2) у <  X  and 
3) if x  G О and x <  X  then x  <  y. Dually one defines the (conditional) 
right completeness of (0 , < ) as the left completeness o f the dual (O, > ) of 
(O, < )  : sup x in (O, < ) :=  inf x in (О , > ). Completeness of (O, < ) :=  left
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complete and right complete. Conditional [c.] completeness :=  c. left and c. 
right completeness. The empty set is considered to be complete. A  lattice 
is any (O, < ) such that x , у G О implies inf {я , y },su p {a ;, y } €  O.

3.12.2. Lemma. For any selfmapping f\ (0 ,  < ) , one has the partition
о  =  (О , < ) /  U (О, < У  U (О , < ) ( / ) ,  where

(i) ( 0 , < ) ,  :=  { х  : х  € О and f x  <  i } , ( 0 ,  < У  :=  { х  : х €  О 
and х <  f x };
ОО , < ) ( / )  :=  {ж : х е  О and x\\fx}.

(ii) One has (О, < ) /  П (О, < ) '  =  Inv (О , / )  :=  I.
(iii) If f\ 0  is increasing, then f O J С О? \ if S sup О* exists, 

then either f S < S  or /5Ц 5 .
(iv) If f\0  is decreasing, then (1) f O j  C O ^ f O *  С O f ] O j (O j ) 

is a left (right) piece in ( 0 ,< ) ;  (2) moreover, if sup Of  :=  s exists, then
1 (s <  f s ) .  If s <  f s } then s =  f s .

P roof o f (iv). Let us prove (2) and that О* is a left piece. Now, 
if x <  у <  f y ,  then f x  >  f y  >  f 2y , hence x <  f x  and (2) is true. 
Analogously, if f y  <  у <  x, then f 2y >  f y  >  f x ,  thus (1) is true and Of  
is a right piece of (0 ,< ) .

Further let us assume that sup Of :=  s exists as a member of O. One 
does not have s <  f s  because this relation implies f s  >  / / s ,  i.e., f s  would 
be an element o f Of  greater than the supremum s o f the same set-absurdity. 
If 5 G , i.e., if s <  f s  one has s =  f s  because the relation s <  f s  was 
proved to be impossible.

3.12.3. Theorem (=  1 Th., Kurepa 1964(4)). Let (O, < ) be any ordered set 
(totally or non-totally ordered) and /  any mapping of О  into itself.

(i) If 1.1. The set ( 0 ,< )  is left complete,
1.2. /  is increasing in (O , < ),
1.3. the set Of  :=  {x ; x  G О Л f x  <  x }  is not empty.

then the ordered set I  =  (Inv (O, / ) ,  < )  is non-empty and is left complete; 
in particular the point

( 1) inf Of : = I m
is the minimal point o f (I , < )  in the sense that

(2) Im G I[Im »•) =  I  where X [ /m,.)  =  {x\x  G X  A Im <  s } .
(ii) Dually, if:

l . l . d (0 ,< )  is right complete,
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1.2.d /  is an increasing function on (O, < ) to (0 , < ),
1.3.d О* := {x-,x £  О A f x  >  x ]  ф 0,

then the set (1 (0 ,  f )  < )  is a non-empty right complete ordered set; in 
particular the point

(1)d sup Of  :=  IM
is the maximal point of I  in the sense that

(2)d Im  £  /(•, I m ) •'= {x\ x £  I A x <  Im } =  I .
If /  : ( 0 , < )  > -» ( 0 } <O is decreasing (antitone, order-reversing), the set 
1 (0 ,  f )  is an (empty or non-empty) antichain; if moreover, ( 0 , < )  is left 
or right complete, or both, the set I  might be o f any cardinality; in the 
particular case when I  ф 0, then both

(3) m  =  inf I, M  =  sup I
do exist and are elements of О , satisfying

(4) fO (. ,M \  С 0 [ m , .),
(5) f O [ m , .) С (., M)\

in particular
(6) f m  > M ,
(7) f M  <  m.

3.12.3.1. Corollary. Let ( 0 ,< )  be any complete non-void lattice.
(i) If /  is any increasing mapping o f (O, < ) into itself, then I ( ( 0 ,  < ), 

/ )  =  { x\x £ О A f x  — x } is a non-empty complete lattice, in which in 
particular inf /  =  inf Oj  =  in f{x ;z  £ О A f x  <  x },sup  I  =  supO-^ =  
su p {x ;x  £ О A f x  >  x ) .  (A. Tarski (1955), p. 286, Theorem 1; cf. G. 
Birkhoff (1948), p. 54, Theorem 8 and Exercise 5; cf. also V. Devide (1964)).

(ii) If /  is any decreasing mapping o f (O, < ) into itself, then the set 
1 (0 ,  f )  is an antichain (empty or non-empty) with properties as in Theorem
1 (ii). In particular, a decreasing mapping of a chain into itself may have 
at most one fixpoint.

(iii) If (O, < )  is any nonvoid complete lattice and f\(0 ,  < ) is a decreas
ing self-map, then I  =  ln v ( (0 ,< ) ,^ )  for g =  f 2 is a nonempty complete 
lattice, in which in particular inf / ( =  inf Og) and sup I ( =  sup O9) are 
permuted by / .

3.12.3.2. Remarks on Theorem l(i) .
1. In Theorem l(i)  the three conditions 1.1, 1.2, 1.3 are valid. 

If anyone is dropped the main conclusion that Inv ф v may fail. This is 
verified by the following examples:

(Q, < }f x  =  x +  1); here the condition 1.1 is violated;
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(Я, < , / х  =  х +  1); here the condition 1.3 is violated
(# [0 ,3 ; < ; /| [0 ,1] =  2 ,/|Д (1,3] =  2); here the condition 1.2 is 

violated. In all three cases, /  has no fixpoint.
2. If incidentally, ( 0 ,< )  has a maximal point 1, then every in

creasing self-function f\0  satisfies /1  =  1; since completeness o f (O , <
) left completeness and Max ( 0 ,< )  :=  1 exists, the case o f 1.3 when 
sup(0 , < ) :=  1 exists and of course belongs to (0 , < ) /  yields precisely the 
Tarski’s Complete Lattice Fixpoint theorem. The generalization o f this 
theorem is just the case when sup(0 ,< )  does not exist, whenever some 
x G О verifies f x  <  x, thus it is not true that each x G О verifies x <  f x  
or x||/x.

3. It matters to take note that the set 1 ( 0 , < , / )  in Theorem l(i)  is 
non-empty and left [right] complete but that in general case if 0 ф X  С Inv 
the point inf A" as an element o f Inv is not the infimum o f X  relative to 
the whole set (O, < ); in general, one has in f(/(<) X  <  inf(o,< ) X -  One has 
the following

4. Lemma. If А  С О and if (A , < ) , (O , < ) are left (right) complete, 
then for any nonvoid X  С A  one has inf X  (relative to ( 0 , < )  >  inf X  
(relative to A ), where in general >  stands for > ; and dually for sup X .

4.1. Example. Let A  :=  { ljior : a <  ww,c /o f  =  u>i} and X  =  
{u iu in  : n <  o>o); then sup X (m o d A ) =  ljiWi Wi >  sup X (m o d O N (<  
wo) =  wiwiwo ; where 0 N (<  ft) :=  the initial segment o f the ordered 
class ON of all ordinal numbers <  /? ordered by ordinal magnitude < , i.e., 
ON(/?) <O N (y) means that a well ordered set of type /? is order similar to 
a proper initial segment o f a well ordered set of order type 7 .

3.12.4. Theorem (=  2 Th., Kurepa 1975(2)). Let (O, < ) be a non-empty 
right conditionally complete ordered set and /  a decreasing selfmapping of 
( 0 ,< )  such that for at least one member x G О we have

(2.1) x <  f x  V x >  /x ,  i.e., 1 (Vx G О , x||/x).
Let us assume that;

(2 .2) /s u p  =  inf / , /  inf =  sup /
(2.3) Each point o f Oj  is comparable with each point o f О*
(2.4) If S :=  sup О* G О exists then S >  fS ]

Then
(2.5) 0 1 <  Oj  (i.e., if f x  >  x  G О and f y  < y  E O ,  then x <  y);
(2 .6) the points S :=  sup 0 ^ ,i  :=  inf Of exist and satisfy
(2.7) f S  =  5  =  inf Of.
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(2.8) S :=  sup 0 J -  inf 0 /  = : i G 0 .
3.12.4.1. Remark. A typing error in Kurepa 1975(2): in Theorem 2 the 
second condition /  inf =  sup /  in (2.2) is missed; the same condition under 
the code 2.2 was explicitly used in the paper in 2.11 lines 2,3 ; 2.15.2 line 2; 
p. 116, line 9.

3.12.4.2. In the same paper the following conditions ( < ) , ( > )  were consid
ered:

(< )  If a set А С (О, < ) satisfies fa  <  a(a G A) and if sup A  (resp. 
inf A)  exists, then also /(su p  A) <  sup A  (resp. / i n f  A  <  inf A).

(> )  =  the dual o f (< ).
In no. 3 “A way to get some solution of f a 2 =  a” (of course / a 2 should be 
f 2a) the following was proved.

Let ( 0 ,< )  be cr-complete and /| (0 ,< )  be a decreasing selfmapping 
such that /  sup =  inf /  and /  inf =  sup / .  If (0 , <)*  and (0 ,  < ) /  satisfy 
( < ) , ( > ) ,  then for every a G 0^ the element s G /О defined by s =  s(a) :=  
s u p { /(0)a =  a , / 2a , / 4a , . . .  }  exists, the sequence f ( 2k^s(k =  0, 1, . . . )  is а 
decreasing sequence o f members in O* such that I  :=  inf f ( 2k ŝ G О* (k =
0 , 1 , . . . ) ;  the sequence f ( 2k+1h (k  =  0, 1, . . . )  is increasing in Of such that 
S :=  sup / ( 2*+1>s G О/ (к G N ); one has f l  =  S J S  =  /  and { / , 5 }  С 
I n v ( ( 0 ,< ) , /2). Thus, { / , 5 }  is a fixed edge for / .

3.12.5. Theorem (=  2 Th., Kurepa 1988(2)) For any non-empty ordered 
set (O , < ) and any decreasing selfmapping d in (O, < ), such that

(PS) dOd =  Od , dOd =  O d and

(2.1) O d ф v (=  vacuous set)
the following four statements are pairwise equivalent:

(F) d has a unique fixed point in 0 ,  i.e., the equality dx =  x has 
a unique solution in 0 : the set / ( ( 0 ,< ) ,d )  is a singleton; 

(S =  i) 5  :=  sup O d and i :=  inf Od exist in ( 0 ,< )  and are 
equal;

(S) S  :=  sup O d exists in ( 0 ,< )  and satisfies S >  dS\ thus 
S G Od ]

(i) i :=  inf Od exists in ( 0 ,< )  and satisfies i <  di, thus i G O d.

3.12.6. Theorem (=  Fixed Edge Theorem. =  Th. 1, Klimes 1981). For any 
non-empty complete lattice L and decreasing selfmapping f\L there exists 
a fixed edge { x }y\^.Ly i.e., f x  =  y, f y  =  x. In particular, the edge {u, v}
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where tx :=  inf Lg, v :=  sup L9 for g =  f 2 is fixed; и is the least element in 
L such that (u , fu )  is invariant.

3.12.7. Theorem (=  Th. 5, Klimes 1981). For every complete lattice (L, <) 
and every non-empty commuting family F  of decreasing self-mappings o f L, 
the set (E (F ) ,  < ') ,  is a complete atomic lattice o f power >  1; E (F )  :=  {0 }  +  
In v (L ,F ); for members (a, 6), (c, <i) o f the non-empty set Inv:=  In v(X ,F ) 
of all common fixed (invariant) edges for all members o f F  one introduces 
the ordering (a, b) < ' (c, d) <=> с <  a and b <  d] 0 is a thing not belonging 
to Inv; one defines 0 < ' Inv.

3.12.8. Theorem (=  Th. 8 , Klimes 1981). Let L be any non-empty complete 
lattice and F  be any non-empty family o f commuting set-valued decreasing 
mappings from L to P'(L )  :=  { X  : 0 ф X  С L }  such that sup f x  £ 
f x ( x  E L) for every /  E F\ then there exists a common invariant edge for 
all members /  o f F  (f\L is decreasing means: x <  у in L implies f x  >  f y ,
i.e., a >  6 (a £  f x ,  b E fy)\ (x , y ) is an invariant edge for f  means x £  f y  
and у E f x ) .

3.12.9. Theorem (cf. Th 3 in Dacic 1983 and Klimes, I.e. Ths 7 and 8). 
Let (L , < )  be a non-empty complete lattice and d : (L , < )  >^> P 'L  be such 
that for every x <  у in L and each v E dy some и £ dx verifies v <  u. If 
sup dx £ dx(x  £ L), then there exists a d-fixed edge (a, 6) in the sense that 
a <  b in (L , < )  and a £ db, b £ da.

3.13. Retracts

3.13.0. The set Inv of invariant (fixed) points could be given in advance. 
In this connection one has an important notion o f retract R  o f an entity 
E  with respect to a mapping T  : E  > -» R. If R  С E  and if T  : E  »  R  
is such that T\R =  1# (=  identity selfmapping o f R), then R  is called the 
T-retract of E. If E  is a space, then one assumes that T  be continuous; if 
E  is ordered, then one assumes that T  be increasing.

Several properties of a space (like connexion, compacticity, paracom- 
pacticity, fixpoint property ,...)  are preserved in retracts. Every closed set 
F  in a space E  is a retract of E  (Borsuk). No sphere Sn is a retract of 
a ball K n+1 o f dimension n +  1 because K n+\ has the fixpoint property 
(Brouwer 1912) and Sn does not have this property. Here is a nice

3.13.1. Theorem (G . Birkhoff 1937). Let (0) (O, <) be any ordered set. 
Every complete sublattice o f (0) is a retract of (0).
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3.13.2. Theorem. If (0) (О  < ) is finite, connected and containing no crown, 
then a subset X  of (0) is a retract o f (0) if and only if there is an increasing 
self-mapping T  o f (0) such that X  =  Inv (T ,M ) (Duffus -  Rival 1979).

Definition. A subset К  o f (0) is a crown if К  is isomorph to ]\ 
(thus p K  =  4) and there is no x £  E  such that 1, 3 < x <  2,4 or if pE  is 
even >  5 then К  is the union of two equinumerous disjoint antichains A, В 
such that every member of A  has exactly two successors in В  and every 
member o f В  has in A  exactly two predecessors.

Polish mathematician K. Borsuk worked very much on retracts (cf. 
Borsuk 1967). Yugoslav mathematician Zivanovic Zarko [s. 1973] extended 
the notion o f retract introducing generalized retracts: A  is a generalized 
retract o f a space containing A, if for every neighborhood V (A )  o f A  there 
is a continuous mapping f  o f the space into V(A)  such that f\A =  1^. The 
notion is more general than the notion of retract, but many statements 
concerning retracts are holding for generalized retracts.

4. Fixpoint Equivalents of Some Mathematical Statements

In this section we shall list several fundamental notions and statements 
each expressible equivalently in terms of fixpoints. Our considerations are 
in frame o f the ZF-Set Theory.

Example. In a topological space (S, closure) the closed sets are defined 
as fixpoints o f C\X (X  E PS),  i.e., as solution of CiX =  X  in PS.  In 
particular we list the following statements.

4.0.0. AC (Axiom  o f Choice) (cf. Theorems 4.3.5, 4.4.3).
AC could be formulated in the following form: For every nonvoid sys

tem D  o f nonvoid disjoint sets there is a self-map f\D such that f x  E x ( x  £ 
D).

4.0.1. LO (Linear Orderability) of every set (s. 4.4.8.1 Th.)

4.0.2. xH (Alef Hypothesis) 2x a  =  Xct+i for every ordinal number a.

4.0.3. GCH (General Continuum Hypothesis). For any infinite cardinal 
numbers x, y, if x <  у <  2х , then either x =  у  or у =  2х .



750

4.0.4. ТА (Tree Alternative). The power pT  o f every infinite tree T  satisfies 
pT  =  length T  :=  sup{pL : L С T ,L  is a chain} or pT  =  width T  :=  
sup{pA : А  С T , A  is antichain}.

4.0.5. KA. Every ordered set contains a maximal antichain (cf. Kurepa 
1952 (11), 1953 (1); pp. 61-67, Feigner 1971.).

4.0.6. MKG (Maximal Complete Graph): Every graph (G yR ) contains a 
clique ( :=  maximal complete subgraph) К , i.e., such that К  x К  С R  and 
that the conjuction К  С X  С G and X 2 С R  implies К  =  X .

4.0.7. Remark that KA is a particular case of MKG when for any ordered 
set (0 , < ) one considers the graph

(1) ( 0 ; 0"U diag ( 0 x 0 ) ) ,  where On :=  { ( x yy) £  0 x 0  and ж||г/}; 
d ia g (0  x 0 )  :=  {(ж, ж) : x £ 0 }.T h en  every maximal antichain A  in ( 0 ,  < ) 
satisfies A  =  K \ diag, A  U diag =  К , where К  is any clique in (1).

4.1.0. Theorem (Fundamental property of ordinal numbers)
ON (a ) => Ord W (a ) =  a , i.e., every ordinal number a  is a fixpoint of 

the selfmapping Ord W  (a)| ON; where ON denotes the class o f all ordinal 
numbers and W  (a ) :=  {ON (/?),/? <  a }  :=  ON [0 ,a ).

4.1.1. For cardinal numbers the situation is different. If K ARD (n ), i.e., if 
n is a cardinal, let KARD [0,n ) :=  {ж : KARD  (ж) and ж <  1}, then the 
class of all fixpoints of the selfmapping

(0) pKARD [0, n)|KARD is the class KARD [0,xo]U W IK , where 
W IK denotes the class of all weakly inaccessible cardinal numbers.

4.2. Invariant points o f T x  =  1 -f ж
Obviously, in the field R(i)  o f complex numbers one has Inv (R ( i ) } I +  

ж) =  0. One has a different situation in classes KARD, ON.

4.2.0. Theorem. A  cardinal or ordinal number n is infinite if and only if
(0) 1 +  n =  n, i.e., Inv (Kard, 1 +  ж) =  Kardoo,Inv (ON, 1 +  ж) =  

ONqq. It is sufficient to prove the implication •<=: if (0), then n is infinite. 
Now, let n be a cardinal number satisfying (0); let 5  be a set o f power n 
and e be an object such that e ^ 5 ; then Z  :=  {e }  U S is a set o f power
1 +  n equinumerous, by (0), to the proper subset S. Let b be a bijection of 
Z  into 5 ; then, in particular, be С 5 ; therefore, bke £ 5  for every к £  N■ 
We claim that for distinct i , j  £ N  one has 6*e ф b>e. As a matter of 
fact, if 6*e =  b*e and i <  j ,  then acting by bijection 6“ * :=  (b~1)* one gets
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b * (6*e) =  6 * (^ e), i.e., 6* *e =  fr7 *e thus e =  b* l t  and j - i  =  0 because 
6* €  5  for every к e  N  and e £ 5.

So we have established that 5  contains the infinite orbit 0 (6 , e); there
fore the power of S  is infinite.

' The proof that every ordinal n satisfying (0) is infinite and in particular 
w <  n is simpler than the above proof for cardinals.

4.3. Invariant points of squaring

4.3.0. O f course, In v (R (i ) fx 2) =  {0 ,1 }. In general, for a ring # (+ ,• ) the 
“idempotents” , i.e., solutions o f x 2 =  x £ R  play an important role. We 
are interested to determine all idempotents in ON and KARD respectively. 
For ordinal numbers the solution is simple: Inv(ON,a:2) =  {0 ,1 }.

4.3.1. As to cardinals the equation m 2 =  m is satisfied not only by 0, 1 but 
also by pR  (v. Th. A, Cantor 1878) and for every alef (LXVII p. 896 resp. 
[108, Hessenberg 1906 where we read (we translate it into English): “LXVII. 
If X a > X p ,  then Xa +  */? =  XaX(3 =  X«- In particular, n\a =  X« =  X« for 
every finite n” ). The class Inv (KARD, x 2) is closely connected with AC 
(Choice axiom) (cf. 4.2.5).

Let us remark that in the quoted paper of Cantor 1878, end of §8, it 
occured for the first time the famous continuum hypothesis that pR  is the 
immediate successor o f pN.

4.3.2. Mapping m £ KARD »  x (m ) £ Alefs. One knows (s.p. 229i2_9, 
Sierpinski 1928) that without the use of the axiom o f choice one can prove 
that to every infinite cardinal number m there corresponds a least aleph 
x (m ) such that

(0) neither m <  x (m) nor m >  x ( m)- 
Let us prove the following

4.3.3. lemma. Let m  be a fixed transfinite cardinal number; if m and 
m +  x (m ) 3116 invariant for squaring:

( 1) if m2 =  m and
(2) (m +  x (m))2 =  m +  x (m)> 

then m is an alef.

Proof. Since for any cardinals x, у one has (x -I- y)2 =  x 2 +  2xy +  y2 
this formula for x — m, у — x(™)> (I)» (2)» becomes
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m +  x (m) =  m +  2m x(m ) -f x (m)> an(  ̂ therefore
(3) m x(m ) <  2m x(m ) <  m +  2m x(m ) +  x (m ) =  m +  x (™ ). 

Since for any cardinals x yy one has x  +  у <  xy, (3) implies
(4) m x(m ) =  m +  x (m)-

Now, according to Tarski (s.L .l, Tarski 1924), if a cardinal с and an alef 
X satisfy cx =  с +  X» then c, x  are comparable. Therefore (4) implies 
m <  x(m) °r x (m ) <  m; thus by (0) one has m =  x ( m )> i-e > m is an alef.

4.3.4. Problem. Determine {m  : K ARD  (m ) and m 2 =  m } = ?
Now, 4.3.3 Lemma implies the following

4.3.5. Theorem (=  Th. II, Tarski 1924). If every infinite cardinal m satisfies 
m2 =  m, then the choice axiom is true.

Since every alef is invariant by squaring (Hessenberg 1906), the theo
rem 4.3.5 implies

4.3.6. Theorem. The axiom of choice AC is true if and only if each infinite 
cardinal m satisfies m 2 =  m; in other words AC -<=>- Inv (Kardoo, squaring) 
=  Kardoo (Hessenberg 1908 for =>; Tarski 1924 for <<=).

There are many equivalents o f AC; especially one has

4.3.7. Theorem. AC is equivalent to the following
Maximal Chain Principle: Every (O, < ) contains a branch ( :=  maximal 
linearly ordered subset), i.e., AC <<=>> MCP (Hausdorff 1914 p. 140 for =>, 
Birkhoff, Garrett 1948 pp. 42-43 for 4=).

4.4. Branches in (O, < ) .  Cliques in graphs (G ,R )

4.4.0. It is very important to know some branch or the class Lm ( 0 ,  < )  o f all 
branches o f a given ordered set (O , < )  and the class Lm (G , R)  o f  all cliques 
(=  maximal complete subgraphs) o f a given graph (G ,R )  (Reminder: A  
complete subgraph (clique) in (G ; R) is defined as any (maximal) solution 
X  o f X 2 С R). The notion of cone ( 0 ,< )  (a) =  { x  : x  6  О and x is 
comparable to a } relative to a given object a plays an important role; a 
might not belong to O.

Analogously, one defines the a-cocone o f (O, < )  as the complement 
O \ (0 > ^ )(a) '-= { x  : x  e O  and a||z}. Similarly, for graphs (G ,R )  and any 
object a one defines the a-cone as (G ,R )(a ) :=  { i  : i  G G and (a ,x )  €  R ),  
and the a-cocone as the complement C (G ,R )(a )  :=  G\(G, R)(a).  Thus a 
is not in the a-cocone.
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4.4.1. Theorem. Clique as a fixpoint (cf. 2:3 L., Kurepa 1976(3)). If a 
non-empty subset X  of a graph (G ,i2) is a clique, i.e., if

(0) X e L m(G ,R ) ,  then
(1) FikX  = X  where
(2) FikX :=  fl(G , Я )(х ),(х  £ X)\ and vice versa. In other words, if

(0), then X  is a fixpoint o f the selfmapping
(3) Fik\P'G; P'G :=  {y  : 0 ф у С G); and conversely.

Proof. =>: Claim: if X  £ L m , then (1), thus ( l ) i  С (1)г and
( 1)2 С ( l ) i  under the condition (2). Now, if z £ (l)x then, by (2), 
z £ (G, R)(x) (x £ X ) } thus (z f x) £ R(x £ X)] this means that { z }  U X  is 
a complete graph containing the clique X\ therefore, the clique maximal
l y  condition implies z £ X  =  (1)г- Dually, if у E (1)2 =  X }X  being a 
complete subgraph, one has X 2 С R , thus (x ,y ) E (G ,i£ )(x )(x  £ X) and 
consequently у £ (2)2 :=  T X  =  ( l ) i .

<=: Claim: if (1) and (2) then (0), i.e., X  is a clique. At 
first, (1) and (2) imply that X  is complete because if x ,y  E X  then by
(1) x ,y  £ F a X  and by (2) (y ,x ) E R ; thus X 2 С R . It remains to 
prove that X  is maximal. Now, if e £ G and if (e ,x ) £ R (x  £ X), then 
e £ (G tR ) (x) (x £ X )  and consequently e £ FikX = (by (1)) X , thus X is 
maximal and complete. This finishes the proof of 4.4.1 Theorem.

4.4.2. Theorem (Branches in ordered sets as invariants points). A  non
empty subset X  o f an ordered set (O, < )  is a branch if and only if FikX =  X , 
where FikX :=  f l (0 , < )(x )  (x £ X  С О).

Theorem 4.3.7 and Theorem 4.4.2 yield the following

4.4.3. Theorem. The choice axiom AC is equivalent to the statement that 
for every non-empty ordered set (O, < ) the selfmapping Fik\P'(0)} defined 
by FikX  :=  П (0, < )(a ) (a £ X  £ P'{0 )  :=  {Y  : 0 ^  У  С 0 }  has a fixpoint.

4.4.4. Complemented graph of (G ,i£). Let us apply Theorem 4.4.2 to the 
“Complemented graph”

(G}R)C :=  (G ,G  x G\R U diag (G  x G )) o f (G ,R ); let us observe that 
cones and cocones in (G, R ), (G, R )c are related; one proves easily that 
(G, Я )с(а) =  {a }  U C (G , R )(a )  for every a (as to symbolics cf. 4.4.0). 
Therefore the clique version o f Theorem 4.4.1 for (G ,R )C yields the fol
lowing anticlique version in (G ,R ).
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4.4.5. Theorem (Anticlique as a fixed element). A  non-empty subset X  
of a graph (G yR ) is an anticlique (=  maximal antichain), if and only if 
F{aX  =  X  where

FiaX := n (\ \ (G yR ) ( x ) U { x } )  (x  G X )  .

If for an ordered set (0 ,  < ) we apply Theorem 4.4.5 to the graph ( 0 ,  ||+ 
diag) where || :=  { (x ,y )  : x yy G О and neither x <  у  nor x >  y }, one gets 
the following

4.4.6. Theorem (Antibranch as a fixpoint). A  non-empty subset X  С 
( 0 ,< )  is an antibranch in (O, < ) if and only if X  is a fixpoint for the 
mapping Fia\P'0 defined by

FiaX  =  П ({х } U C (0 , < )  (* ))  (*  £ X  G P 'O )  .

4.4.7. Theorem (KA as a fixpoint statement). The statement К A (=  every 
(0 , < )  contains an antibranch) is equivalent to the statement that for every 
(0 > < ) Ф  ̂ the selfmapping Fia\P'0  has a fixpoint.

4.4.8. A  specification of Theorem 4.4.2. Let us specify Theorem 4.4.2 for 
power sets (0) (P S yD ) (S  is any set). Then one gets branches В  in (0). 
Now,

4.4.8.0. Lemma. Each branch В  in (P S y Э ) allows a total order o f 5 ; in 
particular if for ж, у G S  one considers that x < в  у means the existence 
o f an x  G В  such that x £ X  and у G X y then (5, < b )  is a total order 
and that every X  G В  is a right part of (5 , < b )  (cf. Kuratowski 1921; also 
Kurepa 1935 (2,3*) pp. 33-43).

The propositions 4.4.2, 4.4.8.0 imply the following
4.4.8.1. Theorem ( = 2 : 1  th. in Kurepa 1976(3)). Statement

LO(S) Set S is orderable totally 
is equivalent to the statement:

(Fjk)S The selfmapping Fik\P'P'S defined by X  G P 'P 'S  >^> 
FikX  :=  П(P 'P 'S , D) (a) (a G X )  has at least one fixed point. In other 
words, the statement

LO Every set is totally orderable 
is equivalent to the statement

Fik. For every non-empty set S the mapping Fib\P'P'S has a
fixpoint.
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4.4.8.2. Let us note that AC implies Fjk; the converse does not hold.

4.4.8.3. Theorem. LO and KA <=> AC (Kurepa 1953(1) Th. 3.1).

4.4.8.4. Theorem. In full ZF-Set Theory, KA <=> AC (Feigner 1969). 
Foundation axiom is used.

4.4.8.5. In ZF° ( :=  ZF\Foundation axiom) AC is independent of К A 
(Halpern’s Doctoral Thesis, Berkeley 1962; see pp. 62-66, Feigner 1971). 
The facts 4.4.8.3-5 are interesting in particular when one knows the follow
ing

4.4.8.6. Theorem. Every graph (G, R) contains a clique <=> AC.
It is remarkable that many special forms of R  С G 2 are sufficient to 

imply AC. So in virtue o f Theorem 4.3.7 it is sufficient that R  = <  U >  
(comparability relation К  as the union of any order relation <  and its dual 
> ) ; according to Vaught 1952 it suffices to consider that R =  D  (disjunction 
relation where X D Y  stands for X  П Y  =  0); this is a special case o f the 
following

4.4.8.7. Theorem. Let D, K, J respectively denote: 
the disjunction relation X D Y  <=> X  П У =  0,
the comparability relation for sets, i.e., Л"КУ «<=>■ X  D Y  or X  Э У

and
the overlapping relation X J Y  :=  X \ Y  ф $ ф  Y \ X ; 

let R  e  {  D, nonD, J, nonJ, K, nonK}; R^nonJ be fixed; if for every 
non-empty family G of sets the graph (G, R) contains a clique, then AC 
is holding (cf. Th. 3.1 in Kurepa 1952 (11)). The case R  = K  is Theorem 
4.3.7; case R  = D  is due to Vaught 1952. The Theorem is not valid for 
R  =nonJ (J. D. Halpern, Ph. D. Thesis 1961; p. 23, Rubin and J. Rubin 
1963).

4.4.9. A lef Hypothesis (* Я )

4.4.9.1. Theorem (cf. Kurepa 1972(1)) The following two statements are 
equivalent:

(0) x  2*“ =  Xcr+i whenever ON (a ),
(1) Alef Left Factorial Hypothesis (xLFH) !x<* =  X<* f ° r every

ON (a ).

Proof. Put n :=  X a,n +1 :=  x «+ i- Let us prove that (0)=>(1). Now,
( l ) x = !n  =  (Def. 6.1 in K. 1964(3))= E0<*<n*! =  £ о <*kl =
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(the first sum is xo; for each alef \ one has fc! =  2* (cf. Th. 2.2 in К 
1954(4), 1954(16); 3 proofs are given) =  Xo +  £pw0<Jk<n2k =  (summand xo 
is absorbed; apply (0 ))=  ЕрШо<к<пк+ =  supfc<n k+ =  n =  (1 )2. We applied 
the implication (0)=> supfc<n k+ =  n for any alef >  xo*> the implication is 
obvious: if n~ <  n, the supremum is (n “ )+ =  n; and if n~ =  n, then 
к <  k+ <  n and sup к =  sup k+ =  n.
Proof o f (1)=>(0). Now, (0)2 =  n+ =  (by (1) one has !n+ =  n+ ) = !n + =  
n! = 2" = (0)i.

Theorem 4.4.9.1 should be compared to the following.

4.4.9.2. Theorem. The Alef hypothesis is equivalent to the equality 2<n =  n 
whenever n is an alef (Lemma 9; p. 194, Tarski 1930; at p. 188 one reads 
а<ь =  Eг<ьаг (Def 4) specifying at p. 188g that 1 <  r <  6; thus 0 =  r was 
excluded).

4.4.10. GCH as a fixpoint statement.

4.4.10.0. Definition. For every 2-un (a, 6) of cardinal numbers let
(0) a<b :=  £ а г (0 <  r <  6), i.e., r is running through the vertexless 

left cone Kard ( . ,6) of all cardinals <  6 (cf. Tarski 1930 p. 188; he excluded 
r =  0).

4.4.10.1. Theorem. General continuum hypothesis (GCH ). If x ,y  €  
KARPqo, and x <  у <  2х , then either x =  у or у =  2х .

This is equivalent to the following
TAS ( 1) 2<n =  n, whenever n is an infinite cardinal number. 

Under AC, the Theorem 4.4.10.1 reduces to the Theorem 4.4.9 .2. 
Therefore since GCH=>-AC, the conclusion GCH=>>TAS in Theorem 4.4.10.1 
is true.

Proof of TAS=>-GCH. The proof is based on the following very inter
esting fact.

4.4.10.2. Theorem (= T h . 1, Tarski 1954) “Statement Si is provable without 
the help o f the axiom of choice” .

“Si. For every cardinal m there is a cardinal n such that
(i) m <  n, and
(ii) the formula m <  p <  n does not hold for any cardinal p” .

In other words, each cardinal m  is endowed with at least one immediate 
succesor -  let us denote it by m+ ; thus the class Succ m of all such solutions 
n is non-empty, in particular m +  h(m)  6  Succ m, where h(m)  is the least 
alef which is not <  m; Hartog’s number hm  is defined by hm  :=  p {a  : 01 is
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the order type of some well-orderable subset o f a set M  o f power m }. Now, 
let us apply TAS just for the situation in Si; thus ( 1) is true. Since m <  n, 
the term 2m is a summand in the expression by which ( l ) i  is defined by
(0). Therefore 2m <  ( l ) i  =  (1)2 =  n, thus 2m <  n and (in virtue of the 
Cantor’s inequality m <  2m) one has m < 2m <  n. Consequently, 2m =  n 
or 2m <  n. The last inequality is excluded by the wordings of Si. Thus 
n =  2m and the wordings of Si become the wordings of GCH for the number 
x =  m. This finishes the proof o f Theorem 4.4.10.1.

4.4.11. General Left Factorial Hypothesis (GLFH)

4.4.11.0. For any cardinal number n the left factorial of n is defined by 
!n :=  K n  ; £о<т<п*п!. The left factorial alef hypothesis (every alef x  
satisfies !x =  x) is equivalent to the general alef hypothesis: each alef x 
satisfies 2X =  x + (v - Th. 4.4.9.2). Here are the corresponding wordings in 
KARD.

4.4.11.1. GLFH: !n =  Kn =  n whenever K A R D ^ n ).

4.4.11.2. SRFH (Successor Right Factorial Hypothesis): n! covers n for 
every infinite cardinal (in the following sense).

4.4.11.3. Definition. Given ( 0 ,< )  and x ,y  £ 0 , ( 0 ,  < (x,y)  :=  (0,<) 
(y,x) := { z ; z  £ О and x < z <  у or x > z > y). If x < у and if 
( 0 , < ) ( x , y )  = v, one says that у covers x or that у (resp. x) is a right 
(left) neighbor of x (resp. y) or that x is covered by y.

4.4.11.4. Right Factorial Hypothesis (RFH) n! =  2n for any KARDoo(n) 
(cf. Kurepa 1953(1) Problem 6.1; 1953(4); 1954(16) end of no. 6; 1972(1) 
no. 1,2).

4.4.11.5. Succesor Right Factorial Hypothesis (SRFH). If KARDoon, then 
n! covers n.
4.4.11.6. Theorem. GLFH => SRFH, i.e., whenever n is infinite cardinal, 
then (0) !n =  n implies ( 1) n! covers n.

Proof. Let us apply the equality (0) for the number n occuring in the 
above Tarski’s statement Si; thus (0) holds. Now, in the expression of !n 
occurs also the term m! because m <  n. Thus m! <  K n  =  (0)i =  (0)2 =  n. 
Therefore, since (2) m <  m! for every infinite m (cf. Th. 4.4.11.7) one has
(3) m <  m! <  n. By the wordings o f Si the sign <  in (3) is prohibited to 
mean < . Thus m! =  n, i.e., m! covers n.
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4.4.11.6.1. Problem. SRFH => GLFH?

4.4.11.7. Theorem. Let n be any cardinal number; then:
(0) 2n — 2 <  n! <  nn.

(i) If n >  2, then
(1) n <  2n — 2 <  n! and n <  n\

(ii) If 0 <  n — 2n, then n is infinite and satisfies n < 2 n <n\ < n n.
(iii) If 1 <  n =  n2, then n is infinite and satisfies n <  n\ =  2n — nn .

Proof of (0). At first, n! <  nn because 5 ! is a part o f the set s S  of 
power nn of all selfmappings o f S. Further, since (0) is true for n =  0,1, 2, 
let n >  2, and S be a set of power n; let 0 ,1  be signs for two distinct points in
S. Let D  :=  { 0 , 1 } x S  =  { 0} x S U { l }  x S , where { r } x 5  :=  { (x ,s )  : s € S } .  
Then

(2) pD  =  2pS =  2n .
For every (x ,y ) E D  let (xy) denote the permutation o f S which is cyclic 
in {x ,y }  and is the identity in S \ {x ,y } ; then obviously (xy )  E jC>\{0, l } 2 
implies ( y ,x )  £ jD \ { 0 ,  l } 2; the mapping (x ,y )  £  D  —̂► ( x ,y )  E S\ is a 
bijection of D \{(  1,0), (1 ,1 )} into 5 !, thus (0) is true.

Proof o f (i). If n is finite and >  0, then (0) implies (i) because n <  
2n — 2. If n is infinite, then so is 2n and obviously 2n — 2 =  2n and the 
true relation (0) becomes 2n <  n!; therefore (since n <  2n) n <  2тг <  n!. 
Consequently, if n <  2n, then ( 1) holds. If

(3) n =  2n, let us consider the following mapping f\PS  o f the 
power set P S  o f S into D\

For any X  E P S  (including the cases X  =  empty, X  =  S) let X 1 :=  
{0 ,1 }  x X  and fX \ D  be defined as the identity mapping in D \ X ,m, in X ' 
let

f X ( e , x )  =  (1 — e, x) (e =  0, l ; x  E X )  .

One checks readily that f X  E D\ and that the mapping f\P (S )  is a 
bijection o f P S  into D l  Thus pP S  <  p (D\) =  (pX>)! =  (by (3), (2 )) =  n!,
i.e., p P S  <  n! This relation jointly with Cantor’s Theorem pS <  pP S  =  
2p5, and p 5  =  n yields n <  2n <  n! for every infinite cardinal. The proof 
of (i) is done. By the way, so is for (ii) as well.

Proof of (iii). The assumption in (iii) implies that one can apply (ii); 
one gets the four term relation in (ii), which by raising to the n-th power 
yields nn <  2nn <  n!n <  nnn and therefore (because n =  nn) nn <  2n <
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n!n <  nn , thus 2n =  nn and, by (ii), 2n =  n! =  nn. This completes the 
proof.

4.4.11.8. Remark. I am acquainted with results 4.4.11.7 since 1968; since 
1968 I published several papers [only a short paper 1972(1)] on finite [infi
nite] factorials and combinatorics. Meanwhile appeared in M. R. 50 (1975)
#  9595 the rewiew, by J. E. Rudin, of my paper 1972(1) concerning the 
problem as to whether RFH => AC (Problem 1.4. in the paper) one reads: 
“ (It is still an open question whether RFH >*> AC. Recent results of J. 
Dawson and P. Howard [see Howard, Notices Amer. Math. Soc. 21 (1974), 
A-499, Abstract 74T-E56] show that RFH is not provable in ZF. In fact 
they show that if n is an infinite cardinal any o f the three alternatives (i) 
n! and 2n are incomparable, (ii) n! <  2n, or (iii) 2n <  n! are possible in 
ZF )” . See pp. 186-7 Dawson-Howard 1876.

4.4.12. Chain x  Antichain Hypothesis for trees as a fixpoint statement.

4.4.12.0. In K. 1935 (2, 3*) general trees or ramified tables T  (pseudotrees 
or ramified sets R) were introduced as ordered sets in which each left cone 
is well (linearly) ordered.
4.4.12.1. Degenerate or D -sets were defined as ( 0 ,< )  in which every cone 
is linearly ordered. Let Pd (P><)  :=  { Х , Х  С 0  and X  is degenerate} and 
6 (0 , < )  :=  su p{pX  : X  £ PD{ 0 , < ) } .

O f course, these definitions are literally transferable into graphs (G, R) 
on substituting “linearly ordered set” by “complete subgraph” . Let length 
( 0 , < )  :=  Р ь ( О у < )  :=  sup{pX  : X  is a linearly ordered subset o f (O, < ) }  
and width (O, < ) :=  Pa {0> < ) :=  su p{pX  : X  is without distinct compara
ble members and X  С О }. How are the numbers р,рл,Рь  related?
4.4.12.2. Let 7 (O, < ) be the least ordinal number which is not embeddable 
into (O, < ) ; 7 (0 , < ) is called the rank or the ordinal height o f (0 , <) .

4.4.12.3. Lemma. If 7 (0 , < ) is finite, then
(i) P7{0 ,  < ) =  P l (0 ,  < ) and
(ii) p ( 0 , < ) <  pA( 0 , < )  • pL{ 0 , < ).

A  corresponding majorization for infinite ( 0 ,< )  might fail; already 
for well-founded sets majorisation is exponential holding also for infinite 
binary graphs. In this way I discovered, independently, Ramsey’s result
—  very basis o f Partition Calculus (cf. K. 1937(5) “relation fondamentale”
( 1); 1939(2) =  1959(1), 1959(2) Th. 6.2.2): If a graph G  is infinite, then
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pG <  ху , where х =  sup{p a G . v l G } , у =  m i{p AG ,p LG }) .

4.4.12.4. Henceforth, let Г  be a tree; then one has the following basic 
disjoint partition of (T ,< )  into “ levels” or “rows” :

(P) T  =  URaT  (a < 7 T)

where R a(T } < ) :=  { x  : x £ T  and ord (T, < ) ( .,  a:) =  a } .  One has

Г  =  U(T, < ) [ * , . ) , ( *  6 ЛоТ).

Each level R a is an antichain; the number m (T, < )  :=  sup p R aT  
(a  <  7 ) is <  Pa { 0 , < ) .  Otherwise, pAT  does not depend upon m T. The 
disjoint partition (P) yields

pT  =  EpR aT  (a <  7T ) , pT  <  m T  • P7T .

The number P7T  either equals to or covers р ь (Т } < ) .

4.4.12.5. Theorem (=  Th. 1 p. 105, Kurepa 1935(2,3*)): For infinite trees 
T , the power pT  either equals or covers bT.

W hat is the character o f this alternative? My standpoint was expressed 
by the following quoting.

4.4.12.6. Theorem- “Theoreme fondamental. Les hypotheses P i, P2, ••• > 
P 12 sont, logiquement, deux a deux equivalentes ” (Ibidem p. 132).

“P i: Quel que soit le tableau ramifie T , la borne superieure bT est 
atteinte dans T , c ’est-a-dire T  contient un sous-ensemble degenere ayant la 
puissance bT (Hypothese ou Postulat7 de ramification);

P 2: Tout tableau ramifie infini a meme puissance que l ’un de ses sous- 
ensembles degeneres (Principe de reduction);

P3 . . .
P4 : T  etant un tableau ramifie infini quelconque d ’ensembles, lafam ille 

T d a meme puissance que l ’une de ses sous-familles disjonctives10 (Propo
sition fondamentale sur les tableaux ramifies d}ensembles\

7Cf. ce Postulat sur lequel est batie l’Analyse dassique: La borne superieure de tout
ensemble borne de nombres reels est un nombre reel bien determine.
10T d designe la famille des ensembles distincts qu’on obtient en adjoignant a T les 
ensembles A-В , A, В parcourant les elements de T (cf. ma Note des C. R., 199, 1934 
p. 122).
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Р5: Quel que soit Pensemble ordonne infini E y il existe une famille 
disjonctive d ’intervalles non-vides de E  ayant la puissance p iE  (Probleme 
de la structure cellulaire d}ensembles ordonnes);

P6: . . .

P i2: . . . ” (Ibidem pp. 130-131; p iE  is density number of E).

4.4.12.7. Simple consequences of the RHT (Ramification Hypothesis for 
Trees): =  Pi  or o f the RPT (Reduction Principle for Trees): =  P2 are:
4.4.12.7.1. ЬТ =  pT  for every infinite tree.
4.4.12.7.2. LAHT (Chain x Antichain Tree Hypothesis):

<  РлТ.рьГ  for each tree (cf. 4.4.12.3 (ii)).
LAHT is also called Rectangle Hypothesis for Trees (ReHT) for obvious 
reasons when one looks on geometrical or mechanical scheme of a tree.
4.4.12.7.3. MATH (Maximal Antichain Hypothesis) Each tree T  contains 
an antichian A  such that pA >  p X  for every antichain X  С in 
other words: The antichain number p^T  is attained inside each tree T  
(let us remark that MATH is provable for every T  unless р д Т  is weakly 
inaccessible; cf. Kurepa 1987(2)).
4.4.12.8. In K. 1937(5) no. I ll the theorem 4.4.12.5 was formulated in the 
form oc <  n (a ) <  a  +  1, introducing the following
4.4.12.9. Definition. Mapping na | ON is defined by

Xn(or) •= sup { PT ,T  is tree and bT <  xor} •

There is no restriction to require in the definition that T  С (C (a ),  
<k)'}C a :=  the class o f all ^-sequences over ON[0,wa) , {  running over or
dinals <  u a+i;:e <* у  :=  x is an initial section o f у (cf. Kurepa 1953(12) 
no. 2). In such a way one has the following
4.4.12.10. Theorem. Chain x Antichain Hypothesis pT  <  pAT  • р ьТ  for 
trees is equivalent to the fixpoint equality

na =  a  for each ordinal number or.

In particular, the equality n0 =  0 is equivalent to the positive answer to 
the Suslin problem and is a postulate.

4.5. Universality of the fixpoint approach

4.5.0. Sofar we had the opportunity to see how various mathematical state
ments could be equivalently worded as fixpoint statements. It is interesting
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that, in some sense, such an approach is feasible in each case; we have the 
following

4.5.1. Theorem. Given any theory X  equipped with a given truth values 
system V  of power >  1. Each statements S  in X  is equivalent to a fixpoint 
statement concerning a self-map t>s|y in such a way that the decidability 
of S is equivalent to the existence o f a unique fixpoint o f vs'  the fixpoint 
of vs is the truth value tS o f  S.

As a matter o f fact, it suffices to define vs|K in such a way that 
vs(tS) =  rS  € V  and that vs(^ ) ф x  for each x  £ ^ (S )  :=  ^ \ { г 5 } .  
In particular, one could require that V5 |V(5 ) be any permutation o f 1^(5) 
having no fixpoint, provided p V (S ) >  1. If e.g., V  =  {0 ,1 } ,  it suffices to 
define v s (0) =  t>s(l) =  1(0) if S is true (false) and v s (0) =  l , v s ( l )  =  0 if 
S is indecidable.
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Exact Controllability and Uniform Stabilization of 

Euler-Bernoulli Equations with Boundary Control Only in

I . Laslecka and R. Triggianl

1. Introduction. Statement of Main Results. Literature

1.1. Introduction; Exact Controllability with Control Action Only 

in_Aw|2

Throughout this paper, fi is a bounded open domain in Rn, 

typically n > 2, with sufficiently smooth boundary Г = ЭП. In П we 

consider the following Euler-Bernoulli mixed problem in the solution 

w(t,x):

wtt+A2w * 0 in (0,Т]хП; (1.1a)

w(0,«) = wQ ; wt (0,*) = w x in П; (1.1b)

w|2 = 0  in (0,Т]хГ = I ; (l.lc)

Aw|^ ■ u in 2, (1•ld )

with control function u only in the boundary condition (l.ld). When 

(l.lc) Is replaced by the non-homogeneous B.C. w|^ = v, regularity 

results in appropriate functions spaces (in fact, optimal regularity 

results) and corresponding exact controllability results using both 

boundary controls v and u were given in [Lio.l], [Lio.2], [L-T.2],

[L-T.3]. The question of exact controllability with just one boundary 

control such as u in (1.1) is pointed out in [Lio.2, Remark 4.1] to be
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an open problem. In Section 2 we shall study such questions of exact 

controllability of (1.1) on the spaces

Z = 2>(АЙ)х!,2 (П); W = L2 (Q)x[2)(AVt) ] '  (1.2)

и
(the second component of W denoting the dual of 2 ( A )  with respect to 

the (П)-topology) where A is the positive self-adjoint operator 

defined by

Af = A 2f; 2(A) = {f € H4 (D): f|f = Af|f = 0}

so that A^f = -Lt\ 2>(АЙ) = Н2(П) П Н*(П). (1.3)

The choice of the space Z implies at the outset the homogeneous B.C. 

(no control action) in (1.1c). We set

llxll = llAax|| ,n . , any real a, (1.4)
2>(Aa ) 2

where, if a < 0, by 2)(Aa ) we mean 2)(Aa ) = [^(A-01)]', the dual of

^(A-**) with respect to the (П)-topology. The following exact 

controllability result on Z for any T > 0 requires no geometrical 

conditions on П (except for smoothness of Г).

Theorem 1.1. Let T > 0. Given {Wq/Wj} € z = 2>(А̂)хЬ2(П), there

exists a suitable control g € L2^0'T ihV ) )  such that the 

corresponding solution of (1.1) satisfies w(T,•) - wt(T,•) = 0 .  ■

1.2. Stabilization with Control Action Only in

The problem of uniform stabilization for system (1.1) with just 

one feedback control is markedly more difficult to solve; more 

importantly, the results on uniform stabilization given below in 

Theorems 1.3 and 1.4 require severe geometrical conditions. By 

contrast, the exact controllability result in Theorem 1.1, and the 

results of strong stabilization to be given in Theorem 1.2 below on

the entire continuum of natural spaces Z^ = 2)(A^+a)x25(A°t), a real, 

require no geometrical conditions on П. It should be noted that
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absence of geometrical conditions for strong stabilization, while 

typical for second order problems (in the space variable), i.e., wave 

problems [Lag.l], [L-T.l], [T.l], is as yet untypical for plate 

problems. In the present case, this is the consequence of the

UL
particular choice of boundary conditions in (l.lc-d) which produce A 

as defined by the differential operator -Д as in (1.3). For instance, 

if we replace the boundary conditions (l.lc-d) with w|^ = u € L2 (Z)

3w 3w
and 5 or else w|^ = 0 and = u € (2), then the class of

domains О where strong stabilization (in the appropriate spaces of

optimal regularity) is presently achieved is not any larger than the

class of domains Q  where uniform stabilization can be claimed [B-T.l],

[O-T.l], respectively. It is the latter, not the former, that is the

typical situation for plates. The technical issue behind this will be

explained in Remark 2.1 below. The class of domains П covered by our

uniform stabilization result will be singled out in Definition 1.1

below and are very restrictive. It contains spheres, or small

deformations thereof, or set differences of such domains.

Choices of the Feedback Operator. It is justified in Section 3 

that the following choice of a feedback operator on 2:

a i 3 A2a * l+2a . , л
Aw j^ 3 u = - A w^ = -G^A wfc, a real, (1-5)

*
where G2 is the adjoint of the Green operator Gg defined in (2.2), 

(2.3), below provides a reasonable candidate for stabilization problem 

of (1.1), as justified by the following results. The feedback control 

in (1.5), once inserted in (l.ld), gives rise to the following closed 

loop problem

wtt+A2w = 0 in (0,«>)xfi; (1.6a)

w(0,•) - wQ ; w t(0,-) = Wj in 0; (1.6b)

w|^ = 0  in (0,»)хГ; (1 .6c)

Awlj. = - g—  A20̂  in (0,~)хГ. (1 .6d)
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The abstract model for problem (1.6) Is (see Section 3)

лг л * l+2cc . d
"tt ' ^ 2 2  Wtb  0Г dt

w *

II
t 1 t 1

(1.7a)

■A -AG G*A1+a“ 2 2

, 2>(A) = {z € Za : Az € Za } : (1.7b)

After the above background, we can finally state our main 

stabilization results for problem (1.1).

Theorem 1.2 (well-posedness and strong stabilization on

Za = 2?(A^4<X)x2&(Aa )). Consider the closed loop problem (1.6), or 

equivalently, (1.7). Then

(i) (well-posedness) the corresponding map -* {w(t),wt(t)}

.At
defines a strongly continuous contraction semigroup e on

Z = 2)(Aii+<X)x2)(Aa )/ a real, a
(ii) (I^-nature of feedback operator)

d II 4 t| W0 ||2 o i i r V +aa~ ii2 
dtll* |wj llz ‘ 2 t L2 (Г)

a*201.За w,

L2< rr (1.8a)

At

Za 'Wl
■2J IlGgA1 wtl|2 p)dt

= '2J  \\4ir wJ l  ( D dt; 
0 2

(1.8b)

j ( D dt * J ,IG2a1 aa*rt {t)l,L2( n dt - ,K w < V ' wt (V } |lz<x

for any tQ > 0. (1.8c)

(iii) The resolvent operator R(A,4) of the feedback generator A in 

(1.7b) is given by
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R(X,4)
v’ W 1

-v_1(X) Xv' ^ xja"1
(1.9a)

V(X) = I+XA^+<XG2G*A^+a+X2A *, (1.9b)

at least for Re X > 0 and is compact on Z^; moreover, 0 € p(A), 

the resolvent set of A.
(iv) The resolvent operator R(X,A) is well defined and compact on Z■ 

on the closed half-plane Re X > 0. Thus, the spectrum (i.e., 

point spectrum) о(Л) of A is contained in { X : Re X < 0}.

(v) (strong stabilization) We have for each fixed a real:

|w(t) I _ Xt|"ol _

as t -» <», V [wQ,wl] € Z^. I  (1.10)

We next pass to uniform stabilization. Here we single out 

two values of a: a = 0 and a » -)£, in which case we write Za=fQ =

Z = »(АК)хЬг(П); and - W = L2 (fi)x(»(AK ) ] as in (1.2). The

class of domains П covered by our uniform stabilization results is 

singled out in the next definition.

Definition 1.1. Let 0  satisfy the following condition. There

exists a vector field h(x) « [С2 (П)]П such that:

(i) h is parallel to v (exterior unit normal) on all of Г; i.e., 

h(o) *= b(o)v(o), for b(o) a smooth scalar boundary function,

a € Г; b e H1(Г);

(ii) the following inequality holds,

Jiq( 2 Vh i -Vqx )dT) > р||Дч|2аП, (1.11)

Q 1=1 1 Q

where q(x) € 2>(A), and therefore satisfies

q|p = 0 and Aq|r 5 0,
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and p > 0 is a suitable constant, possibly depending on h(x), П, 

and q(x). ■

Examples of domains satisfying Definition 1.1 include 

n-dimensional spheres with center xQ, where h(x) = x-xQ and small 

deformations thereof; also set differences of such domains. See 

Appendix C.

Theorem (1.3) (uniform stabilization on Z = Я(А̂)хЬ2(П)). 

Consider problem (1.6) with a » 0 in (1.6d), i.e., with

3w *
H z ■ u -■■-s H z  = - G2Awt (1Л2)

in (1.6d), whose well-posedness is asserted in Theorem 1.2. Let now 0  

satisfy the geometrical conditions of Definition 1.1 above. Then 

there exist constants M and 6 > 0 such that

t > 0. ■ (1.13)

Theorem 1.4 (uniform stabilization on W =« 1#2 (П)х[2)(а̂ ) ]'). 

Consider problem (1.6) with a = 44 in (1.6d), i.e., with

3(A-1w
H 5 '  u -----------э г г Н :  -  - G2" t <1 1 4 :"3S— 4  -  2 t

in (1.6d), whose well-posedness is asserted by Theorem 1.2. Let now П 

satisfy the geometrical conditions of Definition 1.1 above. Then the 

same conclusion as in (1.13) holds true, with Z there replaced by W 

now. ■

2. Proof of Theorem 1.1: Exact Controllability

2.1. Preliminaries for Exact Controllability and Stabilization

As in [L-T.2], [L-T.3], we introduce the Green's operator G2,

s s
G2g2 2 У; G2: continuous H (Г) - H (Л),

[L-M.l, pp. 188-9], s real; (2.1)
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Д у « 0 in П; у = 0 on Г; Ду = g2 on Г. ( 2 . 2 ;

Then, the solution at time T to the Euler-Bernoulli problem (1.1) with

wQ * w^ * 0 can be written explicitly as

w(T; wQ = Wj = 0)

- 2 Tu -

a [ S(T-t)G.u(r)d7-
Jo 2

(2.3a)

w (T; w - w = 0)
T

Дt 0 1 A C(T-t)G u(f)dr (2.3b)

[L-T.2], [L-T.3], where C(t) is the s.c. cosine operator generated by

t

the operator -A in (1.3) and S(t) = Jc(r)dr. It is expedient to

0
introduce the Dirichlet map D [L-T.l],

Dv *  ̂с* Д$ «= 0 In П; С * v on Г; (2.4a)

D: continuous HS (T) •+ HS+^(Q), [L-M.l, pp. 188-9], s real, (2.4b)

and recall that as a consequence of the special B.C. we have the 

relationship [L-T.2], [L-T.3],

* * -Vt
G2 = - A D ;  G2 - -D A ; (2.5)

(V ' V)L2<n) -  (s 'V > L 2( r ) : <Dg' V)L2(n) '  (g' D*V)L2( r ) :

g € Ь2 (Г), V € Ь2 (П). (2.6) 

We have [L-T.2], [L-T.3] via Green's second theorem

* * Vi
G0Af = -D A f = пт- , f € Я(А).

(2.7)

(2 . 8 )

In the uniform stabilization problem we shall use the following 

properties:
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D : continuous H S(D) -♦ H S+^(r), 0 < s < Yi, (2.9) 

which follows by duality from (2.4b), and

D D: continuous L2(Q) -* H (fl), ( 2 . 10 )

which follows by applying (2.9) with s = 0 followed by (2.4b) with 

s - й.

2.2. Exact Controllability on Z = 2>(Ал)хЬ2(0)

Step 1 . We need to show that the unbounded, closed operator

in (2.3) satisfies Lg (О, T;Н (̂Г)) => #(2T ) -> onto Z, or equivalently 

that there is CT > 0 such that [T-L.l, p. 235]

ь2(о,т;нй(Г)) ’ T
( 2 . 11 )

for all {z1/z2) ^or wbich the left hand side of (2.11) is finite.

where is the Hilbert space adjoint

( 2 . 1 2 )

Step 2, Lfi— fl 2.1

(a ) We have

>)

where

(2.13)

Л: isomorphism НГ(Г) -♦ НГ~̂ (Г), self-adjoint on L2 (T), (2.14)

and where <f>(t) « solves the following homogeneous

problem:
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ф1г+л ф .  о in Q:

♦ It-T “ V  +tlt-T  " +1 1пП:

ф|2 = Дф|2 = 0  in Z,

with initial data

t 0 - A"* z2 « 2 <аЙ>; t j  -  - A\  6 L2<n)

(2.15a) 

(2.15b) 

(2.15c)

(2.16)

(b) Inequality (2.11) is equivalent to the following inequality: 

There exists CT > 0 such that

L2 (0,T;H (Г) а(А")хЬ2(П)
C'E(O)

(2.17)

for all (to'ti) 6 Z = ®(A )x L2 (Q) for which the left hand side 

of (2.17) is finite; in (2.17) we have set

E(t) = ||А*ф<Г)11* (n)+,l+ t(t)H* (n) - J { H ( t ) ) 2^ ( t ) >  <fi.

2 2 П
(2.18)

Thus, exact controllability of (1.1) on Z over [0,T] within the

class of Ь2(0,Т;Н^(Г))-controls u is equivalent to inequality

(2.17). I

Proof. (a) On the other hand, we have from (2.12) and (2.14)

and z = tz1>z2^

m i ; dU l/ * (U/*C«,Z) w
2(Ай)хЬ2<П) Ь2 (0,Т;1Г(Г))

(Ли,Лет2 ) ^ (0Л;Ь^(Г)) (u ,J12t z )l^(0 Т. ^ (Г)) • (2-19)

On the other hand, we compute from (2.3) as usual [L-T.3], [T.2]



777

[AJc(T-t)G2u (t)d t,z2JL
2 (П)

0 

T

= J(u(t),G*A(S(T-t)A21+C(T-t)z2])L (r)dt. (2.20)

0 2

Thus, by comparing (2.19) with (2.20), using that С is even while S is 

odd, and recalling (2.7), we have

U 2**z>(t) = G*A,4[C<t-T)A',4z2+S<t-T)(-AK z1)J =■ - 3(A|^t)), (2.21)

and (2.13), (2.15), (2.16) are proved.

(b) We have from (2.14), (2.13),

I v i  ,  .  \\m ; 4  .  h ->  a- m
" T "ь2 (0,Т;Н*(Г)) 11 T "L2 (0,T;L2 (D) 11 ИЬ2(0,Т:Ь2(Г))

г а . . . .  л „ .  •l 2 (o ,T;h (Г))

Thus, (2.17) follows from (2.22), (2.11) and (see (2.16)),

" 4 < A * >  = "АЙф0"ь2 (П, * "Z2l(L2 ( Q r

Step 3 . Thus, the key technical issue is to show that equality

(2.17) holds true. This is accomplished in the next two propositions.

Proposition 2.2. Let T > 0 be given. With reference to problem 

(2.15) for ф, the following inequality holds true:
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<£>- <T-*> E<°> -fnWlicao.ThL.tf») ’ (2 23)

where h(x) - x_x0» xQ € Rn , t > о arbitrary and с is a constant. ■ 

Proof. The proof uses the multipliers h -Уф, h(x) * x-x0 ; ф; and 

ф^ The computations are reported in Appendices A and В where they 

are carried out in the case of a general vector field h(x), since such 

case is needed in the problem of uniform stabilization. Multiplying 

(2.15a) by Ь'̂Тф with h(x) « x-xQ, hence div h = dim П ■ n, one obtains

"J h'v 112 = 2j ( ^ ) 2dQ+[ (ф1,Ь ^ф)0 ]^[(ф 1.,ф div h)n ]J.

2 Q
(2.24)

See Appendix A. Similarly, multiplying (2.15a) by ф one obtains

J(Z^>)2dQ » | ф ^ - [ ( ф ^ ф ) п ]^ . (2 .2 5 )

Q Q

Inserting (2.25) into (2.24) and recalling (2.18) yields the following 

identity for the right hand side (R.H.S.) of (2.24):

R.H.S. of (2.24) - jE(t)dt+/>0T - TE(0)+/>O T ; (2.26)

/>QT - [<| -l)<tt,40n +(*t.h.^)n ]J. (2.27)

In the last step of (2.26), we have used that E(t) s E(0), which is 

proved e.g., by using the multiplier ф^

Finally, we readily obtain from (2.27) using Poincarfc inequality 

on ф, (2.18) and E(t) з E(0):

V *  -  ^ H I 'c n o . T l i V n , ) )  • (2 -28)

By using (2.28) in (2.26), and recalling (2.24), we arrive at

(2.23). ■
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Step 4 . As to the left hand side of (2.23), we write

i W i S - ' i W ' l t U . H j u *

where in the last step we have used 

Id „ < ci14.11 ,
L2 (0,T;ir(r)) Ь2(0,Т;Н (̂П))

T

< Clltll - C{{||aV L «,,«>*
Lo(0,T;»(A*)) i  L2lUJ

T

< cfE(t)dt = CT E (0), (2.30)

since ф|̂  5 0 and since E(t) s E(0). Combining (2.29) with (2.24), we 

obtain

Corollary 2.3. Let T > 0 be given. The following inequality 

holds true for the solution <j> of (2.15):

> (T-e-Ch£)E(0). ■ (2.31)

Step 5 . We finally absorb lower order terms in inequality

(2.30) by a compactness argument of the type used in [Lio.1-2],

[Lit.1], [L-T.3], etc. in other circumstances.



Proposition 3.5. With reference to problem (2.15), inequality

(2.30) implies that: There exists CT > 0 such that

W c ( [ 0,T]:L2<n)) * Ст1§® 41111,2(оЛ .„-Й(Г)) ' "  <2 31)

Proof. Suppose by contradiction that there exists a sequence 

{фп} of solutions to problem (2.15) such that

РЙ4  -  0 : (2.32)

. ■ W J W l . L , » » ) . ! .  (233 )

Then, since {ф } satisfies (2.30), we have E (0) < const, uniformly in 

n; i.e.,

{Фоп'Фщ} S°me < W l >  weakly in 2>(А̂)хЬ2 (П). (2.34) 

Then the function <$(t) = C(t-T)$Q+S(t-T)^ satisfies

^n'^n^ f l M K )  ln Lo o ( T A^)x L2 (O)) weak star. (2.35)

Thus, {фп/ф'} uniformly bounded in Lw (0,T;SD(A^)xL2 (П)), where 

®(A^) = Н2 (П) П hJ(Q) from (1.3). Thus, by compactness [S.l],

Фп -♦ $  strongly in 1*^(0,Т;Н (̂П)), (2.36)

so that (2.36) implies via (2.33),

780

11 W C ([0,T];L2 (n)) s 1- (2'37)

On the other hand, solves the problem
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? t t +* 2$ = 0 ln Q; 

* l2 ■ 0: 4 l z  ■ 0: ^ l z  = 0 ln Z' (2.38b)

(2.38a)

the latter condition following from (2.32). Setting t  = Д̂ = we 

obtain the problem

- 0 ;

2 = ° ' 31711 e ° ' ^ 2  = °'

(2.39a)

(2.39b)

where the latter identity follows from A'f = Д2̂  = in Q, whose

restriction on 2 vanishes by the first identity In (2.41b). Then, 

with T > 0 arbitrary, problem (2.39) with three boundary conditions

implies t - 0 in Q [Lio.1-2], hence $ = 0 in Q. But this conclusion 

contradicts (2.37). ■

3. Ihg. Feedback System on Za = 2)(AX+a)x2)(Aa ) find Theorem \ .j
The Feedback System. We follow the conceptual approach of 

[L-T.l], [T.l] in case of the wave equation and of [B-T.l] in case of 

a different plate problem. The abstract differential version of 

problem (1.1)— which corresponds to the Integral version (2.3)— is 

given in factor form or, respectively, in additive perturbation form 

by

wtt «= -A[w-G2u] on L2 (П); or wtt = -Aw+AG^u on [2>(A)]'; (3.1a)

dt
0 I 
-A 0 a g 2u |'

(3.1b)

where A on the right of (3.1) is extended, with the same symbol, as an 

operator, say, (D) -♦ [^(A)]7. For the purposes of solving the 

feedback stabilization problem for the dynamics (1.1) in the space

Za = SUA^^Jx^fA01) we seek, if possible, a "feedback" operator 7 such 
that u = У(w^) inserted in (l.lc) produces a corresponding closed loop 

problem which is (i) well-posed on the space Z^; (ii) satisfies
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?(*t) € L2(0,«;L2(r)), and (iii) decays in the (possibly) uniform

operator topology of Z^ as t -» + ». Since
0 I 

-A 0
is skew-adjoint

on Z^, Eq. (3.1b) plainly suggests to take ¥ - -G2A 1+2a, i.e.,

* 1+2a
u - -GgA wt as a natural candidate for feedback stabilization, for 

this choice then makes the corresponding feedback operator introduced 

in (1.7b)

0 I 0 I
A =

* 1+2a 
-A -AG G A 

2 2
= -A -A^DD* ffi+2a

1>(A) = {y 6 Za : Ay € Za}

(3.2)

dissipative on Za (in (3.2) we have used relation (2.5) between G2 

and D); indeed, from (1.4) and Za = 2)(A^+<X)x2)(Aa ), we obtain with

у = [y^ygl

Re(Xy,y)_ = R e ( 0 1 
-A 0

v ..l+2a_ * l+2a 4
y,y)z -(A G2G2A y2,y2 )L n)

a &

0-llG*A1+2ay2H2 (p) < 0, у « 2>(A). (3.3)

A more explicit description of ®(A) will be given in Section 4, below 

Remark 4.1. With the above choice for the feedback operator, and 

recalling (2.8), (2.5), we have explicitly (1.5), i.e.,

Aw|. *l+2cx 
-G2A wt (3.4)

Thus, the resulting closed loop problem, wehre (3.4) is inserted in 

(3.1a), takes on the form (see (2.4) and (2.5)),

wtt - -A[w+G2G2A1+2awt ] on Lg (П); or wtt = -Aw -A^Dd V 4*20̂ ,  (3.5)

as anticipated in (1.7a) whose explicit partial differential equation 

version is problem (1.6).

Proof of Theorem 1.2 (Sketch). We omit the details for the 

explicit computation of the resolvent R(X,4) in (1.9) and refer to
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[L-T.1], [T.l], [B-T.l], [O-T.l], for similar computations for waves 

and plates. The well-posedness of the feedback problem (3.5), or

At
(1.6.), as a s.c. contraction semigroup e on Z^, is a consequence of 

the Lumer-Phillips theorem, by (3.3) and the well-defined R(X,A) in

(1.9) for X > 0, from which inequality (1.8) follows at once, as 

usual; see the references listed above for conceptually similar 

situations for waves and other plate problems. It remains to show 

parts (iv) and (v) of Theorem 1.2. Actually, the strong stabilization 

in part (v) follows in the usual way, via the Nagy-Foias-Foguel 

decomposition of contraction semigroups, as in [L-T.l], [T.l],

[B-T.l], once we prove part (iv), i.e., that there are no nonzero 

eigenvalues of A on the imaginary axis (that 0 € p ( A )  is immediate);

or, by (1.9a) that V 1 (X)  € £(L2 (fi)) for X * ir, r * 0 real and V (X )  

as in (1.9b). For otherwise, letting V(ir)x * 0 and taking the 

Ь2(П)-1ппег product with x leads, as usual [L-T.l], [T.l], [B-T.l], to

(*) GgA^ ^ x = 0, or Ax = r2x and x, if nonzero, is an eigenvector

x - efl of A with eigenvalue r , so that en |j, = деп|р - 0. Moreover,

(*) yields both G g A A ^ ^ e ^  * (r2 )”̂** = 0 by (2.8), as well as

G*A^A~1+Clen = -(r2)"14*  = 0 by (2.7). Thus, en satisfies all

four boundary conditions and hence x * e^ * 0, as desired. The proof 

of part (iv) is complete. ■

Remark 2.1. Generally, for an operator A which corresponds to a 

fourth-order differential operator, the above argument produces the 

vanishing of only three boundary conditions for en : the two 

corresponding to the definition of $(A) and the third due to the

contradiction argument which yields a relation like (*) above. In our

и
particular set of B.C. which gives A as defined by (1.3), and hence

Эе Э(Деп)

(2.7) and (2.8), the vanishing of “ 0 — Ip s 0 are an

equivalent condition. But, in general, this is not the case; and

non-trivial extra work, perhaps subject to geometrical conditions on П

as in the case of [B-T.l], [O-T.l] where different B.C. are
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considered, is needed to obtain the fourth boundary condition for e .
n

This complication does not arise if instead A corresponds to a 

second-order differential operator, for then 2(A) produces the 

vanishing of one boundary condition for e^, while the counterpart of 

(*) produces the vanishing of the required second boundary condition, 

the total effect of which is to produce e^. ■

For future use, in Section 4, we note explicitly that for the 

case a * 0 the closed loop problem in abstract form ((3.5) for a  = 0) 

becomes

4* *
wtt = -Aw+A DD A w ^ ;

-a^dd’ a14
(3.6)

or in explicit p.d.e. version

w +Д w
"tt

w(0, •) * wQ € »(A ); wt (0,-) - Wj « L2 (Q) on П;

3w

Awlx " ■ з^ -li ■ D A*wt

on (0,T)xO = Q; (3.7a) 

(3.7b)

on (0,Т)хГ « I; (3.7c) 

on (0,Т)хГ * 2. (3.7d)

4. ELQQ.t ot Theorem l,ai. Unlforn Stabilisation gt th? Eulsr-

Bernoulll Problem (1.1) on Z - Я(А*)хЬ2(П)

4 .1 . pxellainarle.g.and a Change at Variable н -» в
For the feedback problem (3.7) or (3.8), we define the 'energy 

functional' E(t) by the squared norm of the (feedback) semigroup in 

Theorem 1.2 f o r a  « 0 (see (1.4)):

- llA^ t)!!* (n)H-ll«t (t)l|2 (f)) S E(0) (4.1) 
2 2
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by the contraction property of Theorem 1.2(1). Our main goal will be, 

as usual, to show that there exists a time 0 < T < <» and a 

corresponding constant С ■ CT > 0 such that

T 2

-ЛЙE(T) < cTj J|a^| dl, (4.2)

О Г

for then (6.1), combined with

T

E(0) » E(T)+2 I Ik cM  d1 (4.3)

О Г

(which is identity (1.8b) for a * 0 as in the present case), yields

E (0) > (2+ i)E(T) and hence, as usual
С

E(T) < rE(0), r < 1 or НеДТ11̂ (2) < 1, (4.4)

which implies the desired uniform (exponential) decay (1.13). (We 

refer to [B-T.l, Remark 3.1] for comments on the advantages and 

disadvantages of using criterion (4.4) over Datko's theorem.) A more 

explicit description of у = [y^yg] « 2)(A) is as follows from (3.7):

(i) у2 € 2>(A*), or A*y2 « b2(0); (iii) y ^ A ^ D o V S ^  « 2(A), or
Ц 1

recalling (2.10), (1.3), and (1), we have Апуг « H (fl). By Theorem

1.2, with a = 0, if € 2(4), then {w(t),wt(t)> e C( [0,T] ;2>(Л)),

and thus

A^wft) « C([0,TJsH1 (П))s AKwt (t) € C([0,T];L2 (n)),

{w^Wj) « 2>(A). (4.5)

Adapting to present circumstances, the ideas of [L-T.l], [B-T.l], we 

introduce a new variable p by setting



786

А - \ е
C(tO,T];®(A )) if [ W g - W ^  « z; (4.6a)

C([0,T]:»(A>) if [Wq.Wj] « 2>(A), (4.6b)

see Theore* 1.2 and (4.4) respectively. Thus, by (4.6) and (3.6),

v> *
-A w-DD A w t €

Ь2 (0,Т;На(П)), if [Wq ^w ^  € Z; (4.7a)

C([0,T];2>(A*)), if [wQ#w l] € 2)(A), (4.7b)

where the regularity follows from (4.5) and (3.6), and (iii) above 

(4.5) respectively. Finally, by (4.5), (4.4),

ptt - - A \ - D D * A \ t -Ap-DD*A^w
tt*

(4.8)

In terms of the scalar function p(t,x), x € П, which corresponds to 

the vector-valued function p(t) = p(t,*b the abstract equation (4.8) 

can be rewritten explicitly as the following Euler-Bernoulli 

homogeneous problem:

Ptt+A p = F

P(0, •) = pQ = A w t(0) € $(A)

Др|2

on (0,T)xfi; 

in П;

Pt(0,*) = Pj = -A^w(0)-DD*A^wt (0) € 2>(A*) inf);

(4.9a) 

(4.9b) 

(4.9c)

on (0,Т)хГ = I  ; (4. 9d)

* К
•DD A w

tt

3Apt
~5i>~ on I, (4.10)

where (4.7b) is used in (4.9b), and where the homogeneous boundary 

conditions (4.9d) are a consequence of p e 3)(A) from (4.6b). In our 

arguments in the sequel, we shall have to consider pointwise values of

Pt (t) In hJ(Q), which make sense for actual data [Wq /Wj I € ®(A) as

assumed, by (4.7b) and 2)(A^) с SD(A^) = h J(Q). In the subsequent 

analysis we shall crucially use that the change of variables implies
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llwt ( t ) H 2 (П) -  l lA^p( t ) l |2 -  J"<Дp ( t ) ) 2dn < E ( t )  < E ( 0 ) ; ( 4 . 1 1 )  

2 2 П

Pt ( t )  =■ -A^w( t ) +0'(||D*A^w^( t ) ||̂  ( r ) ) ;  (4 .1 2 )

Э(ЛР)  |z  = D*Ap *  D*a \  -  Д „|2  -  -  ( 4 . 1 3 )au

where the constant in (J is IIdII . The L2 (0)-norms llÂ pll and HpJI in 

( 4 . 1 1 ) ,  ( 4 . 1 2 )  will arise in the multiplier approach used below, and 

this justifies the need of introducing a new variable p.

Moreover, we shall use that

J|Vp|2df) equivalent to llÂ 1 p||2 < C||Â p||2 = c J ( & p ) 2<jO. ( 4 . 1 4 )

4 .2 . An Identity for the p-SysteB (4.91
Proposition 4.1. The following identity holds true for problem

( 4 . 9 )  where [wQ/Wj] € 2>(Л),  hence [Pq/Pj] € #(A)x#(A Ь  where 

Q * (0,T)xf); I  = (0,Т)хГ,

-f t S 1 Ш h“'dZ - 2f p< * Vhi-Vpx.)dq
2  Q 1=1 1

+ fcJpAp A(div h)dQ + jApVp-V(div h)dQ 

Q Q

+ jAp[Ah1,...,Ahn ]-VpdQ-|Fh*pdQ-%jFp div h dQ 

Q Q Q

+ [(Pt (t),h-VP (t))n  + X(pt (t),p(t)div h ) n ] J .  ( 4 . 1 5 )

Remark 4.1. We note explicitly that the following identities 

hold true:



788

div(H^p) * 2 Vh -Vp +Vp*V(divh); (4.16)
i=i 1 xi

n

dlv(HTVp) - 2 Vh.-Vp +[Ah , .. ,,Ah 1-Vp, (4.17)
1=1 1 X1 "

3h
where H = H(x) is the nxn matrix with (i, j)-entry given by д—  as in

dXj
T

(1. ) and H its transpose, so that (4.16) and (4.17) imply 

T n
div[(H+H )Vp] = 2 Z V h . - V p  +Vp*V(div h) + [Ah , . . . ,ДЬ 1 -Vp,

1=1 1 X i i n

and hence (4.15) can be rewritten as

- j  ~ h*ydZ * J-Др div[(H+HT )Vp]dQ 

2 Q

+ fcJpAp Д(div h)dQ 

Q

- jFh-VpdQ-fcjFp div h dQ 

Q Q

-  ( P i ' ^ P o ^ f f K t P i ' P o  d l v  h )Q ‘ ( 4 - 1 8 )

Proof■ The proof is carried out in Appendices A and B. (For 

h(x) a radial field, it reduces to identities in [Lag.2], [L-L.l].) ®  

The analysis below will show л fo r t io r i that the terms in 

Identity (4.15) are well defined by establishing appropriate estimates 

thereof. To this end, the crucial term is the one involving

* У*
Fh*Vp - -DD A wtth-Vp. What follows is our basic identity.

Proposition 4.2. Let {w^Wj} € 2>(Л). The following identity 

holds true for problem (4.9):
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~'Эь<̂ 3[7 h-udl = г|др( 2 )dQ + ^JpAp Д(div h)dQ

2  Q 1=1 1 Q

+ jApVp*V(dlv h)dQ + jApfAh^ .../AhJ-VpdQ

Q Q

T T

- J ( D D * A ^ t,h-Vpt)n dt - fcj(DD*A*wt/pt div h ^ d t  + PQy .  (4.19)

P0 T - -[(A^w(t)/h-7p(t))n  + fc(A^w(t),p(t)div h)n ]J. (4.20)

Proof. We proceed as in Lemma B.l, Appendix B.

Step 1 . Integrating by parts in t and recalling the term P in

(4.10)/ we find

-J(F,h-?p)ndt - J(DD*AKwtt,h-Vp)ndt = [(DD*AKwt(t),h-Vp(t))n ]J 

0 0
T

- J(DD*A*wt,h-Tpt)n dt; (4.21)

0

T T

-*J(F,p div h)0 dt - Kj(DD*A*wtt,p div h)Q dt 

0 0
T

= +%[(DD*A^wt(t))/p(t)div h)n ]J-^J(DD*A^wt/ptdiv h)Q dt. (4.22)

0

Step 2 . We now insert (4.21), (4.22) into the right hand side

of (4.15) and use (4.7): pt+DD*A*wt =■ -A*w at t - T and t = 0 in 

combining the ( , J^-terms. This way, (4.15) becomes (4.19). ■ 

Proposition 4.3. Let {Wq ^ }  € $ M ) . Assume further that О 

satisfies inequality (1.11) for some smooth vector field h(x) (but not 

necessarily condition (i) of Definition 1.1 which requires h to be
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parallel to у). With reference to the right hand side (R.H.S.) of 

identity (4.19), we then have for any £ > 0,

T

R.H.S. of (4.19) > (2p-t)|(Ap)2dQ-Clht||Vp|2dQ-Ch |^E(T)+J  J  dz]

Q Q 0 Г
T T

- J(DD*AK wt/h-Vpt)n dt-Hj(DD*A*wt,pt dlv h)n dt, (4.23)

0 0

where p > 0 is the constant in assumption (1.11) and where the

constant C„. and C. depend on £ and on the vector field but not on T; 
m t  n

moreover, we have C„. ■ 0 if h(x) is linear in x, in particular a 
lnt

radial field. ■

Proof. For the first term on the right hand side of identity

(4.19), we use assumption (1.11). For the second, third, and fourth

2 1 2
terms on the right of identity (4.19), we use (*) 2ab < £a + —  b 

with a = |Ap| and b either p or else |Vp| plus Poincar6 inequality.

(We note that all these three terms vanish if h(x) is linear in x.) 

Finally, from (4.20) we readily obtain via (4.1), (4.14), (4.11) and 

Poincarfe inequality

T

|P0TI * Ch[E (T )*E (0)] < Ch[E(T)*J J d l ] ,  (4 .2 4 )

о г

where in the last step we have used (4.3). The constant Ch in (4.24) 

depends on h, but not on T. Using (4.24) results in (4.23). *

* К
4.3. Analysis of Terms in (4.23) Involving D(Awj^) = DD A w t : 

ftHjpIetion of Proof of Theorem 1,3

The next proposition deals with the most demanding term in

(4.23). In handling this term, we shall encounter a technical 

difficulty similar to the one met in [L-T.l] for the wave equation 

with feedback in the Dirichlet B.C., in particular [L-T.l, Lemma 3.3]. 

It is in overcoming this difficulty that the geometrical condition 

that the vector field h be parallel to v comes into play. It is in
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order to emphasize the technical analogy between the present problem 

with the Euler-Bernoulli equation and one feedback control and the 

problem with the wave equation in [L-T.l] that we have reduced the 

original Green operator G2 to the operator D which is the same 

Dirichlet map (2.4) which occurs in the wave equation problem [L-T.l].

Theorem 4.4. Let {WQ/W1} € 3)(A). Let the vector field h(x) be 

parallel to v(x) on Г. Then the following estimate holds true:

J(DD*A*wt,h-S7pt )n  = ^ J l l D V ^ I I 2 (r)dt

0 0 2 
T

+ JllD A^wtllL )||A*w |Il (Q)dt)
’2 ' 7 2 ’ и

+ (f ( [E(T)+E(0) ] )# (4.24)

where the constants in Cf are of the form IlDlIĉ , in particular they do 

not depend on T. ■

Proof. The proof is given in Subsection 4.4. ■

Using now Theorem 4.4# we can complete the proof of inequality

(4.2), and thus of Theorem 1.3.

Proposition 4.5. Let the vector field condition of Definition 

1.1 holds true (so that both Proposition 4.3 and Theorem 4.4 apply). 

Then we have

T

-J h‘yd2 i 2(p~£)Ji,aKwIIl (n)+l|wtl!L (n)dt

- c1heTlllV p lllC([0,T];L Ю))

ChE(T)

2
dI .  (4.25)
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* к 3wt
Proof. Since Aw|2 = D A wt = - from (3.4) with a = 0, and

recalling (4.3), we rewrite (4.24) as

T

|f(DD*AKwt,h-Vpt)n dt| < eJllA**!!2 {n)dt

o 0 2

2d2
о г

+ С. E(T). (4.26)n

Moreover, the last integral term in (4.23) can be estimated as

T T С T

|J(DD*A\,pt dlv h)0 | < e|||ptl|2 (Q)dt t J l  | | | D * a \ | | 2 (p)dt

0 0 

т T

“ К < ( П )  + H j  f t ’ * '  (4 27>
0 2 o r

Inserting (4.26) and (4.27) on the right of (4.23) results in (4.25), 

after recalling (4.11). ■

Corollary 4.6. Under the assumptions on 0  of Proposition 4.5, 

we have the inequality

ch * ® ) ^ }  ♦ W W ' i c u o . T h v n »

> [2(p-t)T-Ch]E(T). (4.28)

Proof. We recall (4.1) in the first integral term on the right 

T

of (4.25), as well as jE(t)dt > TE(0) by the dissipativity property 

0
(1.8a). Moreover, we recall (4.13). Thus (4.25) becomes (4.28). ■ 

We next 'absorb' the lower-order terms in (4.28).
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Leilfl-LJ. Inequality (4.28) implies: there is CT > 0 such that

T 2 T

J  J  d r )  д + | |1^1ис<[ол]ь,(п>) i CT J  J  p a ^ - j  <4 2 9 > 
o r  2 o r

Proof. We proceed as in the proof of Proposition 3.5 in the 

special case s = 0 rather than s = fc, with respect this time to the 

p-problem (4.9). We only note explicitly that when we arrive at

Э(Др)
— = 0 on 2 (counterpart of the last identity in (2.38b)) for the 

limit p, we then obtain that the right hand side of the Eq. (4.9a) for

^ P t
the p-problem becomes P =* D 5 0 by (4.10). Thus the p-problem is

homogeneous on the right hand side, precisely like the ^-problem in

(2.38). The rest of the proof may then follow the argument of 

Proposition 3.5 below (2.38), and is based on the uniqueness property

of the resulting p-problem (same as the ^-problem (2.38)) to produce a 

contradiction. I

Corollary 4.8. Under the assumption of Theorem 1.3, we obtain

J J ( й 2<с * V h (T-V h )E(T)'
0 Г

and with T sufficiently large, inequality (4.2) is proved. ■

Thus, the proof of Theorem 1.3 Is complete as soon as we prove 

Theorem 4.4.

4.4. Proof of Theorem 4.4: h Parallel to v on Г
We follow as a guideline the proof of [L-T.7, Proposition 3.2].

* %
Proposition 4.9. We have, where we recall that Aw|j * D A wfc -

3w
- з~ -|2 (from (3.4) with a •= 0 as in our present case):
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i *
J tD o V ^ .h -V p ^ d t - j"( A^w,h*V(DD*A^w )̂ )^dt

T T

•f «•(JllD*A\ll^(r )dt) * 0'(JllD*AK«tllL2(r)llAi4wllL2(n)dt)

0

where the constants in O' are of the form IlDlIĈ , in particular; 

not depend on Т. ■

Proof. Recalling in (4.7), we write

-J(DD*Â wt/h*Vpt)ndt - I1+I2:

0

T

l 1 = |(DD*A% wt,h-V(DD*A% wt ))n dt;
0

T

X2 J(DD*A%wt / h-V(A^w))ndt.

We first estimate 1^. We clai* (see (3.4))

In fact, to show (4.34), we use the identity (obtained from, 

(A.1) in Appendix A),

j$h-VV if) - JijH'h-w dr - Jth-Vif. <T - Jty dlv h dO 

П Г Cl О

for, say, ф,̂  « H (О), which for +  = ф specializes to

j+h-Sty £) - f c j f V n  dr - »J+2 dlv h 41.

Cl Г Cl

(4.30) 

they do

(4.31)

(4.32)

(4.33)

(4.34) 

say,

(4.35a)

(4.35b)
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Taking *  * DD*A^wt in (4.35b), whereby *|r = D*A^wt by (2.4a), we 

obtain, via (2.4b):

(DD*Â wt, h*V(DD*Â wt ) )q = KId’ â ^ d’ a^ ^ - W j.

-  »(DD*AHwt ,DD*AKwt d iv  h)n ) = 0’(»D*A*nt l|J  ( r ) ) ,  (4 .3 6 )

and (4.34) follows. We next estimate I i n  (4.33). We claim that

T T

I2 = J(D*A*wt,A^w h-y)pdt - J(DD*A^wt,A^w div h)Q dt 

0 0

T

- J(A*w,h-V(DD*A*wt ))n dt 

0

T T

- -J(A^w,h-V(DD*A^wt ))n dt + 0r(JllD*A%wtll2 (r)dt)

0 0 2

T

+ <5'(JllD*A>4w tllL (r)||A*wllL (fi)dt). (4.38)

0 2 2

In fact, (4.37) follows at once from (4.33) by using identity (4.35a)

with <j> * DD*A^wt, hence <j>|p = D*A^wt by (2.4a) and f  e A^w. Then

u 3wt
(4.38) follows from (4.37), by noticing that (A w)|p = (-£w)|p = =

* lL
D A wt by (1.3), (1.1c), and (3.4) with a *= 0, via Schwarz inequality 

and D continuous. Finally, (4.31), (4.34), and (4.38) yield (4.30). 

Proposition 4.9 is proved. ■

We finally handle the first integral term at the right side of

(4.30). It is this term which presents technical difficulties similar 

to those encountered in the wave problem with Dirichlet feedback 

[L-T.l]. These are overcome when the vector field h(x) is parallel to 

the normal d  on Г.
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Lemma 4.10. Let {Wq/Wj} € 2>(Л) and let the vector field h(x) be 

parallel to the normal unit vector v on Г, so that h(o) = Ь(о)ь», 

о € Г, for a smooth boundary function b. Then we have

(Ai4w (t) ,h -V(D D *A ,4wt ( t ) ) n  = К <57 0(Ь0*АЙ« ( Ь ) ) , 0 * А ЙМ( 1 ) ) Г

+ 04llD*AKwt (t)llb (r)||AK*»Ct)nb (fl)) a.e. in t. (4.39)
2 2

Proof, step 1 . Recalling (1.3) and w|^ = 0 in (l.lc) and using 

Green's second theorem, we obtain (all inner products are in L^, 

unless otherwise noted)

-(A^w,h*V(DD*A^wt ) ) q  = (Aw,h-V(DD*Ai4wt ) ) n  *  ( 1 )  + ( 2 ) .  ( 4 . 4 0 )

( 1 )  -  (| £ , h-V(DD*A*wt ) ) r  =. -(D *A Kw,h-y(DD*AKwt ) ) r  (by ( 2 . 8 ) ) :

( 4 . 4 1 )

(2 )  = (w,A(h-7(DD*AK» t ) ) n . ( 4 . 4 2 )

Step 2 . We analyze (1). We claim that

(1) - (|; DlbDVwl.D'A11») + 0-(HD*AHwtllL (r)llAKw|lL {Q))
2 2

a.e. in t. (4.43)

To prove (4.43), we use the assumption h(o) = Ъ(о)и on the vector 
field and rewrite (1) from (4.41) by means of Green's second theorem 

recalling that Dg|r = g by (2.4a):

( 1 )  = - ( o W b l ^  (DD*AKwt ) ) r  = -(bD*A4 w, (DdV S ^ ) ) , .  ( 4 . 4 4 )

= - ( g ^  D(bD*AKw),D*A*wt ) r , ( 4 . 4 5 )

where cancellations occur because of the definition of D in (2.4a). 

Next, we compute by (4.44), (4.45),
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D(bD*A*w),D*AVj^ = D(bD*A%wt ),D*Â wJ

+ (D*A^w,b |j(DD*A^wt))r . (4.46)

Using Д(/ЗЯ = /ЗД7+7Д0+2У/Ь̂ / = 2V(Db)-V(Dg), if fi = Db, and i  = Dg for 
some vector g € Ь2 (Г), we can readily verify that D(bg) = (Db)(Dg)~x, 

hence

where x satisfies

ДХ = 2V(Db)*V(Dg) inf); X = 0 on Г;

or x = 2A_1 (V(Db) • V(Dg)]. (4.48)

We now specialize (4.47) to the case of our interest where

g = D A^wt € Lg(Г) a.e. in t by (3.6). Thus, the right hand side 

(R.H.S.) of (4.46) becomes by (4.47),

R .H .S . o f (4 .4 6 )  > (b |^(DD*A>5wt ,D*A ,5w)r  + <0*Айя , b ^ 7(DD*AKwt ) ) f  

*  (D*a\  D*A«w)r  -  < *  D*A*w)r  (4 .4 9 ,

3 * ¥> * %
-  2 (b  gjjIDD A , D A w )f  

+ <r(llD*AKwt llL ( r ) llAKwllL ( n ) ) ,  (4 .5 0 )
2 2

since with g = D A^w € L (Г) a.e., V(Dg) € H~^ £ (П) [L-M.l, p. 85], 
t 6

we obtain X « ^ _Ь(П) by (4.48), hence € Н_£(Г) [K.l, Theorem 

3.8.1]; on the other hand, D*A*w € Н*(Г) by (2.9) with s = 0, and thus

(g£, D*A*w)r = <r(||D*A^wtllL (Г)|Л |1С (П)) a.e. in t, (4.51)
2 2
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which completes the proof of the step from (4.49) to (4.50). (The 

validity of (4.48) can be proved also by the use of Green's second 

theorem followed by identity (4.35a).) Then (4.46) and (4.50), along 

with (4.44), yield (4.43) as desired.

Step 3 . We analyze (2). We claim that

(2) = («,Д(Ь-\7(0П*а\ ) ) п - 04llD*A*wtllL ( r ) llAKw|lL (n ))
2 2

a.e. in t. (4.52)

This follows by writing

(2) = (A“̂w,A(h-V(DD*A% wt ))n , (4.53)

with A^w « Ь2 (П), D*A^wt « Ь2 (Г) a.e. in t, and proceeding as in the 

proof of [L-T.l, Lemma. 3.3] from (A.5) to (A. 15) in Appendix A of this 

reference.

Step 4 . Using identity (4.40), and the estimates (4.43) and 

(4.52), we obtain (4.39). ■

The proof of Lemma 4.10 is complete. I  

Lemma 4.10 allows us to complete the estimate of the first 

integral term on the right of (4.30), hence of the desired integral 

term of Proposition 4.9.

Corollary 4.11. Under the assumptions of Lemma 4.10, we have

T T

|(AVh-7(DD*A,4wt ))ndt - »<J||D*a\ | I l (r ) llAKwllL (n)<lt)

0 0 2 2

+ <Г(Е(Т)+Е(0)), (4.54)

where the constants in Cf depend on ||D||, b, but not on Т. I  

Proof. From (4.39) by integration by parts in t:



Now A^w(t) € L2 (П) implies D A^w(t) € Н (̂Г) by (2.9) with s = 0 and

with b smooth, we have that D(bD A^w(t)) € Н1(П) by (2.4b), and it

solves the Laplace equation. Therefore D(bD*A^w(t)) € Н~̂ (Г) [K.l, 

Theorem 3.8.1, p. 71 and ff]. Thus

U i j  D(bD*A*w(t),D*A*w(t))r | < ll|-  D(bD*A%w(t)ll llD*A*w(t)ll „
1 Н"*(Г) Н*(Г)

< C||A*w(t)||2 (П) < CE(t) . (4.56)

Thus (4.56) used in (4.55) yields (4.54). ■

To complete the proof of Theorem 4.4, we combine (4.54) with

(4.30), thus obtaining (4.24). ■
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Appendix A: Proof of Identity (4.15) of Proposition 4.1: and of 

Ident i ty (2 ,34)
For future reference to exact controllability/uniform 

stabilization problems for Euler-Bernoulli equations with boundary 

conditions possibly different from (l.lc-d), we shall first derive a 

general identity, (A.9) below, for p only solution of Eq. (4.9a) in 

terms of an arbitrary smooth vector field h(x) *= h ^ x ) , .. .,hn (x)] in, 

2 —
say, С (w). Only subsequently, we shall specialize such an identity 

(A.9) to p which also satisfies the boundary conditions (4.9d).

Identity for p Solution of (4.9a). We use the multiplier h*Vp. 

We shall repeatedly invoke the identity

obtained from div('fh) = h-Vf'+H' div h and the divergence theorem.

Term p^^h’Vp. Integrating by parts in t yields, after setting 

throughout Q = (0,T)xO; 2 = (0,Т)хГ:

Using (A.1) with h there replaced by pth now, and with +  = p̂ . yields 

readily

(A. 1)

Jptth-Vp dt cfl - [jpth-Vp <T]J - jp th.Vptdn. (A.2)
Q П Q

Jpth-7ptdn = й|р2Ь-у dr - *Jp2 div h dfi.

П Г П

Thus, by using (A.3) Into (A.2), we obtain

(A.3)

Jpt(;h-Vp dQ = -»|p2h-w dZ + [<Pt <t),h-Vp(t))n ]J 

Q Z

(A .4)
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Теги Д ph*Vp. By Green's second theorem.
2

|д2р(Ь-Ур)сГ) = |др Д(Ь*Ур)<Я + J  h’^P <*r
П Г

■ t
№ i i i £ a . r .  i » .s i

Г

Using the identity

n
Д(Ь*Ур) = 2 2 Vh -Vp +h*V(Ap) + [Ah , . . .,Ah ] *Ур, (A.6) 

1=1 1 X1 i n

and invoking (A.l) for the second term of (A.6) with h there replaced 

by (Др) h now and with 4* = Др, we obtain

Jap A(h*Vp)dQ = г|др( 2 ^ А*̂ РХ + JiJ(Ap)2h'U dr 

n n 1=1 Xl г

- fcj(Ap)2div h dn + |др[дь1# .. .,ДЬп]*Ур dП. (A.7)

П П

Using (A.7) and (A.5) yields finally

|д2р(Ь-Ур)<П = %|(Др)2Ь-У dr - ]др ^ih^ p) dr 

П Г Г

+ гГдР( 2 Vh -Vp )dn - fcf(Ap)2div h dfi
n 1=1 Xl Й

+ |др[ДЬ1/.../ДЬп]*Ур dfl. (A.8)

П

£gmblning the Above Terms. Summing up (A.4) and the term 

obtained from (A.8) after integrating in time, we obtain by use of 

(4.9a):
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J^P <2 -  f  — (h-Vp)dZ - й|(Др)21)-к dZ *■ ftjp^h-v dZ 
2 Z Z Z 

- г|др( Z V l y ^  )dQ + »J[p2-(Ap)2)div h dQ + [(Pt (t),h-Vp(t))n ]J 

Q 1=1 1 Q

+ J^ptAhj, .. .,ДЬп]-Ур dQ - jVh-Vp dQ. (A.9)

Q Q

The second Integral on the right of (A.9) is evaluated in the 

subsequent Appendix B, in (B.4). Using this result, we finally obtain 

the identity

|дР — hg^ p) dZ - J (h-Vp)dZ - й|(Др)2Ь-к dZ + Kjp2h-U dZ 

I I  I I

.  I  e w g L  p div h dZ * к|др 8(* ^  h)- dZ

z z

= 2Глр( Z Vh *Vp )dQ + й(рДр A(div h)dQ + (др Vp*V(div h)dQ
J 1=1 i J J 
Q Q Q

+ |др[ДЬ1,.../ДЬп]‘Ур dQ - jFh-Vp dQ

Q Q

+ H[(pt (t ) ,p(t )div h)fl]J + [(Pt (t) ,h-VP(t) )n ]J

- ttjpp div h dQ - jFh-Vp dQ. (A.10)

Q Q

Specialization of (A.10) to p solution of problem (4.9). Using

p|j = Др|̂ = 0, see (4.9d), hence pt |^ = 0 and h*Vp = ^  h*n in 

(A.10), we obtain (4.15) as desired. Moreover, setting F = 0 and 

h(x) = x-xQ yields (2.24). ■
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Appendix В: An Identity for the Integral of [р2-(Др)2]

Lemma B.l. (a) For p solution of problem (4.9) we have the 

following identity where Q = (0,T)xf),

J[p2**(Ap)2]div h dQ = JpAp A(div h)dQ + г|др Vp*V(div h)dQ
Q Q Q

T

- f(DD*AKwt,Pt div h)n dt + [(A^w(t),p(t)div h)n ]J. (B.l)

0

(b) In particular

T

J[p2-(Ap)2]dQ = -f(DD*A*wt,pt )n dt + [(AK w(t),p(t))n ]J (B.2)

Q 0
T

- <5’(E(t))+Or(Jl|D*A,4wtllL (Г)11Айи|1ь (n)dt). (B.3)

0 2 2

Step 1 . We shall show that for p solution of (4.9a) we have the 

identity

J[p2-(4p)2 ]div h dQ = J p div h dZ - |др Э(Р h) d2 

Q 2 2

+ JpAp &(dlv h)dQ + 2jkpVp-V(dlv h)dQ

Q Q

- J f p  div h dQ + [(Pt(t),p(t)div h ) n ) J '  ( B . 4 )

Q

To this end, we shall use the multiplier p div h.

Term PttP div h. Integrating by parts in t yeilds

Jpttp dlv h dQ = jp2 dlv h dQ ♦ [(pt(t),p(t)div h)n ]J. (B.5)

2
Ten Д p p div h. Using the identity



805

Д(р div h) = Др div h + pA(div h)+2V(div h)*Vp, (B.6) 

as well as Green's second theorem, we obtain

|д2р p div h df) = J(Ap)2div h dfi + |др p A(div h)dD

n o n

+ 2jAp(Vp-V(div h))df)
П

+ J p div h dr - Jap a(p ^  hI  dr. (B.7)

Г г

Summing up (B.5) and the term obtained from (B.7) after integration in 

time, we obtain (B.4) by the use of (4.9a).

Step 2 . Next, we integrate by parts in t after recalling the 

term F in (4.10),

T T

-J(F,p div h)^dt = J(DD*A^wtt, p div h)^dt 
0 0

= [(DD*A^wt ( t ) , p ( t ) d i v  h)n ]J  

T

- J(DD*A^wt,pt div h)Q dt. (B.8)

0

* и и.
Step 3 . Using (B.8) and (4.7): p^+DD A/aw t = -A w, we obtain 

T

-J(F,p div h)ndt + [(pt (t),p(t)div h)n]J 
0

T

= -[(A*w(t),p(t)div h)n ]J - J(DD*A*wt,pt div h)fidt. (B.9)

0

Then, using the B.C. (4.9d) in (B.4) and inserting (B.9) in (B.4) 

yields (B.l) as desired. Part (a) is proved. For part (b), Eq.

(B.2), we simply take div h = 1 in the above argument, i.e., we



The constant к in (С.8) depends on зир|Ь |̂, i * j; on the constant d 

in (C.2); on the constant с in (C.6). Thus, if these quantities are 

sufficiently small with respect to ■ > 0, we may obtain m-k = p > 0 as 

desired. This situation occurs in particular for a linear field 

hjtx) = аА(х^х0 p ,  with constant aA positive such that s u p ^ - m l  « d 

is sufficiently small for some m > 0.

I. Lasiecka and R. Triggiani 
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ON A CLASS OF FUNCTIONAL EQUATIONS CHARACTERIZING 
THE SINE FUNCTION

Stefania Paganoni Marzegalli *

ABSTRACT. In this paper .we show that an analytic function 
/  , defined in a neighbourhood of the origin, is a solution of the 
following class of functional equations

n
/ ( 1 ) Е Л ( 2Л - 1).т] =  ( /(п Т))2 , n > 2 

/1=1

if and only if it has one of the following forms 

f(x )  =  Ax or f(x )  =  Asin(7x) (A G С , 7 6 С \ {0}) .

1. Introduction

It is well known that there are functional equations in several variables 
which characterize the trigonometric functions and, in particular, the sine func
tion (see Ref. 1-2 for a rich Bibliography).

* Partially supported by M.U.R.S.T. : Research funds (40%).
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The aim of this paper is to characterize the sine function by means of a 
class of functional equations in a single variable.

Let us consider the following class of functional equations

/ ( * ) £ / [ ( 2A - l ) * ]  =  ( / ( " * ) ) ’  , n > 2  (*)„
h= 1

where the unknown function /  is a complex variable function defined in a 
neighbourhood of the origin.

Denote by Hn the class of the solutions of (*)n for a fixed n and denote 
by H the class of the common solutions of (*)n for all n >  2.

It’s easy to prove the following statements:

i) If /  € Hn [f e H\ , then Xf G Hn [Xf G H] for every A G C.

ii) If f(kx) = kf(x) for every к € N then /  € # „  [ /  6 H] .
(Therefore if /  is an additive function then /  6 H n [ / € # ] ) •

iii) The functions f(x) =  A|x| , f(x ) =  Ax , f(x )  =  Asin(7x) belong to the 
class Hn and to the class H .

(To prove that /(x )  = sin(7x) belongs to the class H it is sufficient to 
put w =  exp(t7x) and to write sin(7x) =  ^  (u> — w~l ) . Then the first 
member of (*)„ is

—-(tu — tv'1) ^  (w2h~l — гу~(2Л_1̂ ) = 
h= l

1 /  -1\  f  1 — W2n _1  1 — W ~ 2n 'I 1 _ 2 n/ 2n 1 \2=  -  ~(w -  w ) < w - ------ -  -  w -------- T  r = ~ A W (w ~4 { 1 — w2 1 -  w~2 J 4
and it is equal to the second member of (*)n .)

The equations (*)n and (*)m are not equivalent if n ф m , that is 
Hn Ф Hm . For the sake of brevity we show this property in the particular case 
of n =  2, m =  3 by the following two examples.

Example 1. Consider the function <p : С —► С defined in the following way: 

f ¥>(*) =  0 , if x i  N

\ ф )  =  2ai3aa , if x € N and x = 2°l3a’ •••??*•
It is easy to verify that ip 6 Я2 but y? £ tf3 .
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Example 2. Consider the function v?: С —* С defined in the following way: 

j  <p(x) =  0 , if x ^  N

\ <p(x) =  За’ 5а» , if x € N and x =  2ai 3aj • • • .
It is easy to verify that <p g H2 but € Я3 .

2. Analytic Solutions 

f

If we look for the solutions of (*)„ in the class of the analytic functions 
defined in a neighbourhood of the origin, we are in a different situation. Namely 
we can prove the following

Theorem 1. Let f  be an analytic function defined in a neighbourhood of 
the origin and n >  2. f  belongs to Hn if and only if f  has one of the 
following forms :

i) f(z )  =  Лх , A € С
и) Д х) =  Asin(7x) , A g C i 7 6 C \ { 0 } .

Proof. We have already shown that /(x )  =  Ax and /(x )  =  Asin(7x) be
long to H n . Now let us consider an analytic function defined in a neighbourhood

+oo

E
k=о

atem_t ( ^ - l ) * - n m) j z m = 0 . (1)

So (1) is fulfilled if and only if for every m > 0 the following relation holds :

(2)

of the origin. Then /(x )  =  ^  a*x* and (*)n becomes

E atara_ i ( ^ ( 2A - l ) * - n ’" ) = 0  
1=0 '  Л=1 '

If we put m =  0 in (2) we have ag(n — 1) =  0 and therefore ao — 0 . If we 
consider m =  1 in (2) we get

£ а * а , - * ( £ ( 2А - 1) * - п ) = 0  
l=o '» = i  '

(3)
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and, since во =  0 , (3) is fulfilled by every ai . We get the same result if we put
П

m = 2 in (2) and remember that ^ ( 2fr — 1) =  n2 .
h=l

Now we prove that ai ф 0 . Assume on the contrary а\ — 0 and let 
r (> 1) be the least integer p for which ap ф 0. Then, if we define

7„ (2r) := ~  1)Г "  " 2Г > (4)
h=l

by (2) with m =  2r it follows 7n(2r) =  0 and this is impossible because

7p(2r) < 0  for all r > 1 and p >  2 . (5)

(We may prove (5) by induction on p . For p =  2 the property is obvious for
p

all г > 1 . Now if we suppose ^ ( 2 / i  — l ) r < p2r for all г > 1 we have
h=i

P+i p
£ ( 2Л - 1У  =  £ ( 2Л -  1У  +  (2р +  1) '  < р2г +  (2р +  1)г
Л=1 /»=1

and so it is sufficient to show that p2r +  (2p + l ) r < (p + l )2r for all r > 1 , 
that is

2 r

SGy-'-S©"-

(6) is true since, for every к 6 { l , - -  - > r} ,

(5) is so proved).
Therefore from now on we assume, without loss of generality, ai = 1 . that 

is we look for a normalized solution f  of (*)n .
Now if we put m =  3 in (2) we get

^ 2  ak<*3-k ( ^Г(2}1 -  1)* -  n A  = 0 . 
*=o \»=1 J
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As ao =  0 , ai =  1 , we have 

a2
я n V

J 2 (2h - J) + E ( 2ft - 1)2 -  2n3 ) =
A=1 /1=1 J

 ̂ 1
and if we remember that £ ( 2Л -  l )2 =  -n (in 2 -  1) we deduce

A=1 6

Я2 [ -  l ) (2n -  1)] =  0 .

Therefore a2 — 0 . Similarly if we put m — 4 in (2) we get

^ a i .a 4_ t ( £ ( 2ft -  1)* - n 4̂  = 0  . (7) 
<t=о \*=i /

As ao = a? = 0 and a\ =  1 we obtain

аз т 2Л - 1) +  ^ ( 2Л - 1)3 - 2пЧ  
\ h = l h= 1 /

and, since J^(2/i — l )3 =  n2(2n2 — 1) , (7) is fulfilled by every a3 € С .
A=1

Till now we have proved that every analytic and normalized solution of
+oo

(*)n defined in a neighbourhood of the origin has the form f(x) =  ^  with
Jt=o

ao =  a2 =  0 , ai =  1 , аз = a € С . If we prove that the coefficients am, m > 4 , 
are functions of a* with к <  m then the family of all the analytic normalized 
solutions of (*)„ depends only on the arbitrary complex parameter a . Since we 
already know a one-parameter family of analytic normalized solutions of (*)n > 
namely f(x) =  £ sin(aar) if а ф 0 and f(x ) =  x if а =  0 , the families have 
to coincide.

If order to get informations on am , m >  4 we have to consider the 
coefficient of xm+l in (1). By (2) we have

£  { « * « „ + . - * (  £ ( 2h -  1)* -  nm+1)  J =  0 . (8)

and the proof is complete if we show that the coefficient B n(m) of am in (8) 
is different from zero. We have:

n n
B„{m) =  £ (2 Л  -  1) +  £ (2 Л  -  l ) m -  2nm+1 . (9)

A=1 A=1
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By induction on m we prove that Bn(7??) ф 0 for all m > 4 and n > 2 . 
Indeed, since

£ n(4) =  n2 + 77(12 n2 — 7)(4 n2 — 1) — 2 n5 =  ^ (1 8 n 4 — 40n2 +  15 n +  7)15 15
it is easy to see that B n(4) > 0  for all n >  2 . Now, assuming

n
#n(m -  1) = y^(2/i — l )m_1 — 2nm +  n2 >  0 , we have to prove B n{m) >  0 . 

h=i
But

n n
B„(m) =  B„(m -  1) +  ^ ( 2/i -  l ) m -  £ ( 2/i -  l )m_1 -  2nm+1 +  2nm . 

fc=l h=l
So it is sufficient to show that, for all n > 2 ,

n n
£ ( 2ft -  l )m -  £ ( 2ft -  I )” - 1 > 2nm(n — 1) . (10)
h= 1 Л=1

We prove (10) by induction on n , for every fixed m . (10) is clearly true for 
n =  2 . Assume (10) true for n = p ; then

p+i p+i
$ > k - l ) " - £ ( 2f t - l )— 1 =  
л=1 Л=1

p p 
=  2 ^(2Л -  l ) m -  ] T ( 2h -  l )m_1 +  (2p +  l )m -  (2p +  l )m-1 >

А=1 Л=1
> 2pm(p — 1) +  (2p +  l )m_12p

and so, in order to prove (10) for n =  p -f 1 it is sufficient to show that 

pm" 1( p - l )  +  (2p + l )m“ 1 > ( p  +  l ) m

that is

г (”r > ‘>§(?>*
or

{2m_1 -  (1 +  m )}pm_1 +  g  { ( m ^  ^ 2* -  ( 7 ) } p *  > 0 •

But 2m“ 1 > 1 + m  for every m > 4 and

(m; >  - (I) - -«-»)> о
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since 2k(m — k) > m for every к =  1, • • • , m—2 , m > 4 . So (10) holds for every 
n > 2 . Therefore all the analytic solutions of (*)n defined in a neighbourhood 
of the origin are of the form described in the Theorem 1 .

The following Corollary is an obvious consequence of Theorem 1.

Corollary 1. If f  is an analytic function defined in a neighbourhood of 
the origin and тг >  2 , then

f  € H n if a.nd only if f  € H .

3. Some Generalizations

Let N  >  n > 1 and consider the following class of functional equations 

N

/ ( * )  £  /[ (2 Л -1 )* ] = ( f ( N x ) ) 2 . (*)N,n
Л=п-+1

Obviously (*)лг,1 is equal to (*)n . So in this paragraph we consider N  >  n >  2 . 
Denote by K ^  „ the class of the solutions of (*)лг,п for fixed N  and n and 
by К  the class of the common solutions of (*)n ,h for ^  N ,n  with
N  >  n >  2 . Obviously K Ntn D H n П Hn ; on the other hand the following 
example shows that there exist functions that belong neither to Hn nor to Hn 

but belong to Ks,n  •

Eyamplft 3 Let N  =  7, n =  3; consider the function у?: С —» С defined 
in the following way :

V?(x)
- {

0 if x £ N 
32aa7a ,11a413ae if x € N , П = 2*13 °7 • • • p%k ■
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It is easy to verify that (p belongs neither to #7  nor to #3 but it belongs to 
( * b  .

As in paragraph 2 we are looking for the analytic solutions of (*)n,m 1 
defined in a neighbourhood of the origin.

Theorem 2. Let f  be an analytic function defined in a neighbourhood of 
the origin and N >  n > 2 . /  G if and only if it has one of the following

forms :

x) f(x) =  \x , Л е с
ii) f(x)  =  Лsin(7 rc) , A € С , 7  e C\{0} .

Proof. Obviously, if /  has the form i) or ii) it belongs to Kpj,n ■ Now
+00

consider an analytic function given by f(x ) = У^ад.х* . Then (*).v,n becomes

+00 Г m /  N

m=0 l)b=0  ̂h=n+l
N m +  nm ] > xm =  0

n+1

and so /  is a solution of if and only if, for every m > 0 ,

m у N v

£ a tam_ t ( £  (2ft -  1)* -  N m +  nm J =  0 . (11)
k=0 'h=n+1 '

If we put m =  0 in (11) we have ao =  0 . Moreover if m = 2 (11) holds for 
every complex number a\ .

Now we prove, as in Theorem 1, a\ ф 0 . Assume on the contrary ai =  0 
and let r (>  1) be the least integer p for which ap ф 0. T h e n ,  b y  ( 1 1 )  with 
m =  2r , it follows

&N,n(2r):= £  (2ft -  l ) r -  ЛГ2г + nJr =  0 
A=n+1

By (4) we have 6^,п(2г) =  7/v(2r) — 7„ (2r) . But 7p(2r) is strictly decreasing
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7j>+i(2r) -  7, ( 2r) = (2p +  1У -  {p +  l )2r + p2r =

and by (6) this difference is always negative. So 6^)П(2г) < 0 and this is 
impossible.

Therefore from now on we assume, without loss of generality, a\ = 1 . If 
we put m =  3 in (11), as ao = 0 , a\ =  1 , we have

/  N N

E  (2ft- 1 ) +  (2ft -  l ) 2 -  2N 3 +  2n3
'  Л = п+ 1  Л =п+1

that is d2(iV — n)y>N,n(2) =  0 where

?jv ,»(2 ):=  |jV2 +  | n 4 | n W - iV - n + i  > |w 2- | w + 3 > 0  , N > n >  2 .

Therefore a2 =  0 .
Moreover if m =  4 (11) holds with every complex number аз . The proof 

is complete if, as in Theorem 1, we prove that the coefficients am , m > 4 , гиге 
functions of a* with к <  m . Therefore we consider

m+1 /■ N \
£  « * « » + ! - * {  £  (2ft -  1)* -  JV"*+1 +  nm+1 [  =  0 .  (12)
Jk=0  ̂ A = n + 1  '

In (12) the coefficient Cs,n of am is 

N N
Cjv,n(m) =  £  (2ft —1 )+  £  ( 2 f t - l ) m —2iVm+1 +  2nm+1 =  В ц ( т ) —В п{т )

A = n + 1  h = n + 1

where J3/,(m) is given by (9). We have to prove C>vin ^ 0 . It is sufficient to 
show that B h ( m )  is strictly increasing with h .

B h+1(m) -  Bk(m) =  2ft +  1 + (2ft +  l )m -  2(ft +  l )m+1 +  2ftm+I =

with respect to p . Indeed
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because, for everey к =  2, ■ • , m ,

( T ) 2*” I - ( m fc = j ^ n ( m - l ) - - - ( m - f c + 2 ) { ( m - f c + l ) 2 * - 1- ( m + l ) }  > 0

(it is elementary to show that (m — к 4-1)2*-1 > m + 1  for every к =  2, ■ • • , m ).
So the normalized family of analytic solutions is a one-parameter family 

and Theorem 2 is proved.

FYom Theorem 2 we have immediately

Corollary 2. If f  is an analytic function defined in a beighbourhood of 
the origin and N  >  n > 2 , then

f  e  Км,п if and only if f  € К  .
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A G E N E R A L IZA T IO N  OF H O LD E R ’ S A N D  M IN K O W S K I’S 
IN E Q U A LITIE S A N D  C O N JU G A T E  FU N C TIO N S

Janusz Matkowski

A function A: (0, oo)-» R  is convex iff for every positive z i, *2>У1>У2:

h( 1 ~  2 )(У1 +  У2)<Л(~)У 1 +  Ь( —  )У2 •
У1 +  У2 У1 У2

We show that this is a generalization of Holder's and Minkowski’s inequalities.
This inequality establishes a strict relation between A and A*(*):= A( j)* , (*>0)» 
which is said to be a conjugate of A. In particular A satisfies this inequality 
iff A* does; (A*)*=A; and the inequality is symmetric iff A*=A i.e., iff A is 
selfconjugate. Several examples of selfcoi\jugate functions are given.

An integral version of the basic inequality is also considered.

1. In troduction
Holder’s and Minkowski’s inequalities, owing to their extreme impor

tance, have already got several proofs and generalizations (cf. G. H. Hardy, 
J. E. Littlewood, G. Polya [1] and D. S. Mitrinovic [2]). In the first part of 
this paper we present a simple inequality which is equivalent to convexity 
of a function: h : (0, oo) —► IR and which contains the discrete Holder’s and 
Minkowski’s inequalities as very special cases. In Sec. 2 for h : (0,oo) —► IR 
we define a “conjugate function” h*. It turns out that the basic inequality, 
which, in general, is not “symmetric” with respect to the occuring vari
ables, establishes a strict relation between them. Namely, h satisfies this 
inequality if and only if h* does. Moreover (Л*)* =  h and, the inequality is 
“symmetric” iff h* =  h i.e., iff h is selfconjugate. We give several examples 
of such functions.
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In the third section we give an integral version of the basic inequality 
from which we obtain the integral Holder’s and Minkowski’s inequalities as 
well as some accompanying ones. In Sec. 4 we present an n dimensional 
generalization of the basic inequality.

It is worth to emphasize here that the basic inequality is quite elemen
tary and obvious (it requires no proof). Using this inequality we obtain 
“one line proof’ of Minkowski’s inequality without any refering to Holder’s 
inequality. In our opinion this fact is of some value in the didactic point of 
view.

2. A Characterization o f a Convex Function D efined on  (0, oo) 
a Generalized D iscrete H older’ s and M inkow ski’ s Inequality 

The following theorem is the fundamental result of this paper.

Theorem  1 . A function h : (0, oo) —► IR is convex iff for every * i, X2> 
УьУг > 0

h f   ̂ + y 2) < h  ( — 'j yi +  ft ( — 'j У2 . (1)
ЧУ1 +  У2 J \У1 J \У2 J

A function h is concave iff reversed inequality holds.

(This is obvious. But for the sake of completeness one can give the fol
lowing reasoning. Suppose that h is convex. Then, for positive x i, X2, У1 > У2 
we have

ft (ХА  У1 +  ft y2 = +  - ^ _ f t  f  21)1 (У1 +  y2)
ЧУ1 /  \ У2 /  [.У1 +  У2 \ y i j  У1 +  У2 \ y 2 Jl

+  (yi +  y2) =  h ( xJ . + ^ l )  (w  +  yi) .
-  \У1 +  У2 УХ У1 "t" У2 У2 /  \У1 + У 2 /

To prove the converse implication it is enough to put in (1): y\ =  A £
(0)1);У2 =  1 -  A;xi =  Ax;x2 =  (1 -  A)y; where i , y 6 (0,oo).)

From Theorem 1, by induction, we obtain

Corollary 1 . A function h : (0 ,00) —► IR is convex iff for every positive 
integer к and for all positive * i , . . .  , y*:
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A function h is concave iff the above inequality is reversed.

Rem ark 1 . (A proof of Minkowski’s inequality) The function h(t) =  
{V  +  1 >  0), is convex for p > 1 and concave for p < l,p  ф 0.
Applying Corollary 1 for p > 1 we obtain

which is the discrete Minkowski’s inequality. For p <  l ,p  ф 0, we get the 
converse inequality.

Rem ark 2. (A proof of Holder’s inequality) Take p and q such that 
l / p +  l /q  =  1. For p > 1 the function h(t) =  tl!p,(< >  0), is concave 
therefore, by Corollary 1,

Replacing here ж,- by and у,- by y? we obtain the discrete Holder’s in
equality. For p <  l ,p  ^  0, the inequality is reversed.

2. Conjugate Functions
Let h : (0, oo —► IR be an arbitrary function. The function h* : 

(0, oo) —► IR defined by the formula

is said to be a conjugate of h.
It follows from Theorem 1 that there is a strong connection between h 

and h*. Namely, we have the following

z\l¥y\lq +  ■ • • +  x\'ry\h  < ( * !  +  . . .  +  1к)1/р(й  +  • • • +  Wfc)1/* •

Theorem  2. Suppose that h : (0, oo) —> IR. Then
l. (л*)* =  Л;
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2. h satisfies inequality (1) if and only if h* does (an application of h* 
to (1) interchanges the positions of ж,- and y< in this inequality);

3. h is convex (concave) iff h* is convex (concave);
4. if h(t) =  t1̂  then h*(t) =  tl/ q where l / p +  l / q  =  1;
5. if h(t) =  Сtp +  l ) 1/p then h* =  h.

Proof. Properties 1, 4 and 5 follow from the definition of Л. Writing 
inequality (1) for h we have

Interchanging here the positions X{ and y ^ i  =  1,2, we get inequality (1). 
It shows that if h* satisfies inequality (1) then so does the function h. The 
converse implication is now a consequence of property 1. Property 3 follows 
from 2 and Theorem 1.

The expressions on the left and right hand side of inequality (1), in 
general, are not symmetric with respect to the occuring variables (in other 
words the function of two variables s and t given by the formula: (s,t) —► 
h(s/t)t is not symmetric with respect to s and f). From Theorem 2 it 
follows that we have symmetry here if and only if h is sdfconjugate i.e., iff 
h* = h .

Examples.
1. A power function h(t) =  tp is selfconjugate if and only if p =  1/2. 

Moreover h(t) =  t1/ 2 is concave.
2. h(t) =  (tP +  1 y h  is self conjugate for every p ф 0 ; it is convex for 

p >  1 and concave for p <  1 ,р ф  0.
3. h(t) =  щ - is selfconjugate and concave. Applying Theorem 1 (or 

Corollary 1) we obtain the following inequality

z iVi ! ! хкУк <  (s i +  . . .  +  xjk)(y1 - f . . . - f  yk)
*i +  У1 xk -f yk ~  (xi +  . . .  +  xfc) +  (yi +  . . .  +  yk)

for every positive integer к and positive * i , . . . , s * ;y i , . . .  >yk.
4. For every positive integer к the function

! +  *  +  . . .  +  «*
l + t + t2 + ... + tk
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is selfconjugate and concave.
5. For every positive integer к the function

к
л «  =  £ с‘ (<г‘ + < " )

i=l
where с,- >  0; г,- +  s* =  1, (i =  1, . . .  , &), is selfconjugate; it is concave if r,- 
and Si are positive for i =  1, . . .  , ifc.

Because of the above-mentioned symmetry, inequality (1) seems to be 
especially interesting for selfconjugate functions.

Rem ark 3. According to the definition, h is selfconjugate iff it satisfies 
the functional equation h(t) =  Л(1/£)*,* > 0. Let us note that every 
function defined on (0 ,1] or [l,oo) can be uniquely extended onto (0,oo) to 
a solution of this functional equation.

3. A n  Integral A nalogue o f  The Fundamental Inequality
For a measure space we denote by S+ =  S+(fi, £ , / i )  the

set of all /i-integrable step functions x : Q —► (0,oo). We write x a  f°r the 
characteristic function of a set A.

Theorem  3. Let (Г2, be a measure space such that 0 < /i(fi) < 
oo. If h : (0, oo) —► IR is convex then

If h is concave then the reversed inequality holds.

P roof. For arbitrary x ,y  £ S+ there exist a positive integer к and 
disjoint sets A i , . . .  , Ak £ suc^ that

for some positive ®i , . . .  , х*; y i , . . .  ,2/*. Replacing in Corollary 1 Xi by х,а,- 
and у,- by yidi where а; :=  ( A ) ,  i =  1, . .  - , kt we get

x =  Xi XAl +  ... +  x kXAk , У =  ViXAi. +  • • • +  УкХАк

xiai +  ■.. +  gfcgfc 
2/iai +  . . .  -f Ук&к
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Rem ark 4. Assuming in Theorem 3 that the measure space (fi, /i) 
is nontrivial, i.e., there exists a set A  6  £3 suc^ 0 <  A*(^) <  one
can easily prove that h is convex if and only if inequality (2) holds.

Rem ark 5. (A proof of integral Minkowski’s inequality) The function 
h(t) =  (tl/ p +  l )p,f > 0, is concave for p > 1 and convex for p <  l ,p  Ф 
0. Applying Theorem 3 with this function h we obtain for p >  1 the 
integral version of Minkowski’s inequality and for p < l ,p  ф 0, the reversed, 
but only for measure space suc^ that < 00 an<̂  о̂г Х'У ^
S+. The general inequality immediately follows from Lebesgue monotone 
convergence theorem.

Remark 6 . (A proof of integral Holder’s inequality) Applying Theo
rem 3 with h(t) =  > 0, we obtain for p > 1:

L xyd>i -  Q»*4 * ) h (i/**) /,'i'y€5+;9 :=̂ T'
and for p < l ,p  ф 0 , the reversed inequality.

Rem ark 7. Taking in Theorem 3 у =  xn get

for every convex function h : (0,oo) —► IR and for every x G S+. In the case 
=  1 this is the well known Jensen inequality.

Example. Applying Theorem 3 with the concave and selfconjugate 
function h(t) =  we obtain the following inequality

which completes the proof of (2).

f  xy du x u r n
+  J a ^  +  Sa V < ¥ ,X’ V e S + -
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4. A  Finite Dim ensional Generalization o f  Fundamental 
Inequality

Our next result generalizes Theorem 1, Corollary 1 and Theorem 3 (cf. 
also Remark 4).

T heorem  4. Let n >  2 be a positive integer; let h : (0, оо) " -1  —► IR 
and suppose that (П,Е>/*) is a measure space satisfying condition 0 <

<  oo and such that there exists a set A  € E  suc  ̂ that 0 < ^i(A) <  
Then the following conditions are equivalent:

(i) h is convex;
(ii) for all positive x,-,yt(x =  1, . . .  , n),

, / ' x i  +  2/l Z n - l + ! / n - l \ ,  . ч .
h  ------ ---------, . . .  , ----------- -------------  i n  +  Уп) <

\ Х п + У п  * n + 2 / n  )

( Xi  Х П_ Л  , , /  У\ У п - ЛЛ I , . . .  | J xn -f* h I , . . .  , J yn ,
\ X „  X n )  \ yn Уп J

(iii) for every positive integer к and for all positive х|;-, (i =  1, . . .  , k\ 
j  =  1, . . .  ,n):

(  к к

E  j E  хп - и
; = i i=i

к »*•• > k

\j= i j=i /
,=i  j=i  ' Xni n> '

(iv) for every 6 •S'+(Q, £ ,p ) :

ь ( Ш ± ........ J f e f c )  /  w , <  / » ( J t .........\ Jfi xndfi Jn x„d/i V*n /

For a concave function all these inequalities are reversed.

P roof. It is obvious that (i) and (ii) are equivalent. Inequality (iii) 
follows from (ii) by induction on k. Repeating the argument used in the 
proof of Theorem 3 we can easily show that (iii) implies (iv). Finally put 
В  :=  П\А] a :=  ц(А) and b := Setting in inequality (iv) the function
x i , . . .  ,x„  e  S+ given by

Xi :=  ХгХА +  УгХв , X i , yi >  0 1 (i =  1 , . . .  , n ) ,
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ft (  , * - 1°  ±  Vn̂ L )  ( , „  a +  ynb) <
\ х па +  упЪ хпа +  упЪ J 

h f l К - . . , — )  xna +  h ( ^ , . . . , y- ^ ) y nb.
\ * n  *n  J \Уп Уп )

Replacing here Xid by Xi and y,6 by у,- for t =  1, . . .  , n, we obtain inequality
(ii). This completes the proof.

Remark 8 . Let r\, . . .  , rn be positive and such that ri 4- . . .  +  rn =  1. 
Since the function h : (0,oo)n-1 —► IR defined by the formula

is concave, we have from Theorem 4:

x?  ■ • • *n“ +  y ?  ■ ■ ■ yrn <  (*i +  yi)r‘ • • • ( in  +  yn)r'

for all positive , xn; y i , . . .  ,yn- This is a generalization of Holder’s
inequality given in [1], p. 21.

Remark 9. Theorem 4 provides us a simple criterion of subadditivity 
of a function /  : (0, oo)n —> IR. Moreover it allows us to give an interesting 
characterization of a symmetric norm in the linear space IRn. The relevant 
results will be published elsewhere.

we obtain the inequality

5. Final Rem ark
Let (П,52,^х) be a measure space and let y? : [0,oo) —► [0,oo) be a 

bisection such that y>(0) =  0. One can easily check that the functional 
IPy, : S+(Q ,£ , / i )  —► [0, oo) given by the formula

®*v(*) :=  V-1

is well defined. It is worth to mention here that inequalities (1) and (ii) have 
appeared, quite unexpectedly, in the course of the proof of the following 
converse of Holder’s inequality.

Theorem . Let (П,52>а0 be a measure space, let A, В € be sets 
such that 0 < ц(А) < 1 < /i(B) < oo and suppose that <p and ф are
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bijections of [0, oo) such that y?(0) =  -0(0) =  0. If

f  xydf i<JP^(x)JPrP( y ) i x }y e S +1 
J n

then <p and ip are conjugate power functions i.e., there exist p >  l ,g  > 1 
such that p_1 +  tf” 1 =  1 and ip(t) =  <p(l)tp^ ( t )  =  .
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INTEGRATION AND THE FUNDAMENTAL THEORY OF ORDINARY 
DIFFERENTIAL EQUATIONS : A HISTORICAL SKETCH

Jean Mawhin

Abstract. Constantin Caratheodory is fam ous for 
having introduced the Lebesgue integral in the 
fundamental theory of ordinary differential equations : 
the concepts of a Caratheodory function and of solutions 
in the sense of Caratheodory are now classical. This 
paper shows the evolution of the basic existence 
theorem for the Cauchy problem related to ordinary 
differential equations from the pioneering contributions 
of Cauchy to the present time.

1. in t roduction

The influence of ordinary differential equations in the creation 
and progress of the differential and integral calculus has been 
important and constant. The aim of this short essay is to show the 
basic interaction of the concept of integral and that of solution of 
the Cauchy problem for ordinary differential equations, from the 
pioneering work of Cauchy to contemporary researchs. One of the 
milestones of this development will be the important contribution 
of CONSTANTIN CARATHEODORY, who injected in the fundamental theory 
of ordinary differential equations the concepts and techniques of 
the Lebesgue integral. For other surveys of the evolution of the 
basic theory of ordinary d iffe ren tia l equ atio n s , see  
[1 3 ,1 8 ,2 7 ,3 9 ,4 1 ,4 5 ,4 9 ,5 3 ,5 4 ,5 5 ,5 9 ,6 0 ] .
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2. Euler, Cauchv and Lioschitz

The pre-Eulerian period in ordinary differential equations has 
seen a flowering of ingenious tricks in trying to reduce to 
quadratures the obtention of explicit solutions of many particular 
ordinary differential equations and, as noticed by Pa in le v e  [44] "The 
wave stopped when all what was integrable, in natural philosophy 
problems, was integrated". The Institutiones Calculi Integrali of 
E u l e r  (1768) [17] constitute the master piece of this period but 
also the fundamental link to the next one. Realizing that even the 
simplest differential equation

(1 )  У’(х) = f(x)

cannot always be integrated in finite terms, Eu l e r , in Chapter 7 of 
the first Section of Volume 1, returns, to, obtain an approximate 
solution of (1), to the old idea of approximating y(x) by a finite 
sum through a partition of [a,x] through the points

a = ao < ai < ... < am-i < am = x 

and approximating y(x) by the expression

(2) У (a) + S isjsm  f(a j- i) (a j-a j- i) .

He applies the same idea, in Chapter 7 of the second Section of 
Volume 1, to the approximate integration of a first order ordinary 
differential equation

(3) y'(x) = f(x,y(x))

by proposing the following approximate solution

(4) y(a) + X i £ j < m f ( a j - i , y j - i ) ( a j - a j - i ) .
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where the yj are defined recursively by the relations

У0 = y(a),
(5) 

Yj -  Yj- 1  + f(aj-i,yj-i)(aj-aj-i), (1 * j * m-1).

The similarity between formulas (4) and (2) is clear, the only 
difference being the implicit character of (4), due to the recursive 
definition of the yj. Eu ler  does not worry about the convergence of 
expressions (4) or (2) to the exact solution of the problem (whose 
existence is not questionned). But he gives judicious advices of 
how to obtain satisfactory approximations by choosing suitably the 
partitions of [a,x] in what is called to-day the Euler's po lygonal 
m e th o d  in the numerical integration of ordinary differential 
equations.

C a u c h y  had read Euler’s Institutiones and the updated version 
given by LACROIX in his monumental Traite du calcul differential et 
du calcul integral of 1797-1798 [3 3 ,1 4 ]. He will apply to the 
integral and to ordinary differential equations the bright idea that 
he already introduced in his study of continuous and differentiable 
functions : to use the limit concept to transform known 
approximation schemes in existence proofs. Like Bolzano  and Ga u s s , 
but still more systematically, CAUCHY is concerned with the 
question of the existence of the mathematical notions. In front of 
the impossibility of finding, in general, explicit solutions of a 
differential equation, CAUCHY defines and solves, under rather 
general conditions, the problem of their existence. His philosophy, 
well summarized in a note written in 1842 [9], consists, in the 
theory of integration, in placing the concept and the study of the 
definite integral before that of the indefinite integral, and, in 
differential equations, in setting the Cauchy problem, i.e. yo being 
given, find a solution у of (3) such that

(6) У(а) = yo
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instead of looking first for a "general solution" of the differential 
equation.

Recall also that Ca u c h y  proved the existence of the definite 
integral of f over [a,x], for a continuous function f, by showing that
(2) has a limit when the mesh

(7) m a x i< j< m(a j-a j-i)

tends to zero. He applies successfully the same procedure to the 
problem (3)-(6) for f and Dyf continuous and bounded, by going to 
the limit in the approximate expressions (4) and (5) where y(a) is 
replaced by yo-

The recent discovery by G il l a in  [7] of unpublished printed 
material of the Resume du Cours de calcul infinitesimal de Ca u c h y  
at the Ecole Polytechnique [6] has definitely shown the deep unity 
of thinking of Ca u c h y  in his approach of the integral calculus. We 
can conclude, with Do b r o w o ls k y  [13] that "one of the main reasons 
which have led Cauchy to create his first method (for the 
fundamental theorem on ordinary differential equations) is the one 
which motivated him in rethinking analysis in general".

It is interesting to notice that in 1835, in his Memoire sur 
I'integration des equations differentielles [8], CAUCHY will use his 
"calcul des limites" (i.e. the method of majorating functions) to 
"transform into a completely rigorous theory the method of 
integrating an arbitrary system of differential equations through 
series". The basic tool in this memoir is another famous creation 
of Cauchy, namely the theory of integration of holomorphic 
functions along a path of the complex plane. Of course, this method 
only works when the right-hand member of the equation is itself 
holomorphic. A similar result will be obtained independently by 
WEIERSTRASS [58] in 1842.

Therefore, together with its revolutionnary character, C a u c h y 's  
contribution shares the other characteristic of outstanding 
contributions : to find its roots in the work of predecessors. Being 
based upon Euler's polygonal method, Cauchy's first method can be
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linked to the Leibnizian tradition of calculus, although his second 
method justifies the powerful method of integration through power 
series introduced by Ne w to n .

Being apparently unaware of Cauchy's contribution, Lip s c h it z

[35] will reproduce in 1868 Cauchy’s first method, under slightly 
weaker conditions. He assumes only that f is continuous and such 
th at

(8) |f(x,y) - f(x,z)| < L|y-z|

in the neighbourhood of the point (a,yo). This is what is now called 
a Lipschitz condition, and it already appears implicitely in Ca u c h y 's 
work as a consequence of the continuity of Dyf and another 
Cauchy’s famous tool, the mean value theorem [15,20]. Lip s c h it z  
expresses clearly the link between his approach and Cauchy's 
integral when he writes : "In the case where the function f does not 
contain the variable y, the function remaining uniform and 
continuous with respect to x, our analysis shows that the integral 
from a to x of f is well defined and that the derivative of this 
function, with respect to the upper extremity of the interval of 
integration, is equal to f(x ) \

3. Riemann. Volterra. Peano. de La Vallee Poussin

Everybody knows how R ie m a n n , in his famous memoir of 1857 
U ber d ie  D a rs te llb a rke it e in e r F unktion  du rch  e ine  
trigonom etrische Reihe [50 ], will create the first in te g ra t io n  
theory  by obtaining a characterization of the class of functions f 
for which the Riemann sums (already considered by Cauchy  !)

£  1 <j<m f(xj) ( a j‘ a j-1)

converge to an unique value whenever (7) goes to zero, 
independently of the choice of the Xj in [aj_i,aj] (1<j<m). It is the 
case, as shown by Ca u c h y , when f is continuous, but it still happens
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for some discontinuous functions. There is no trace, in R ie m a n n 's 
work, of an extension of his ideas to the fundamental theory of 
ordinary differential equations. The brevity of his life may be the 
reason of it.

L ip s c h it z , in the above quoted paper [35], seems to be the first 
one to mention R ie m a n n 's work in a memoir devoted to ordinary 
differential equations. He makes it only in his conclusion, in the 
following way "Riemann's posthumous memoir on the 
representation of a function by a trigonometrical series has 
emphasized the fact that the existence of the definite integral 
holds under a condition more general than continuity", and he 
recalls Riemann's definition. He then concludes in the following 
way : "But it seems to me that those conditions do not imply that 
the derivative of this integral, with respect to the extremity of 
the interval of integration, is equal to f(x); it is the reason why I 
have thought necessary to keep the condition of continuity of the 
function f(x) for the study of the integration of the ordinary 
differential equations

(9) y'(x) = f(x)."

Indeed, the Riemann integral had destroyed the full reciprocity 
between the operations of differentiation and of indefinite 
integration which holds in Cauchy’s theory for continuous 
functions. In Riemann's frame, the equivalence between the 
differential form (9) of the equation and its integral form

(10) y(x) = a + J[a,x] f(s)ds,

is lost when f is Riemann-integrable without being continuous. And 
it is interesting to notice that Lip s c h it z  refuses to make the first 
step toward the concept of generalized solution  of (9), namely a 
function у satisfying (10).

This step was boldly made in 1881 by VOLTERRA, when he was 
still a student (of DlNl) at Pisa., who incorporated Riemann ideas in
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the Cauchy problem in his memoir Sui p r in c ip ii de l ca lco lo  
integrate [56]. Vo lte r r a , who does not seem to be aware of Da r b o u x  
paper of 1875 on discontinuous functions [1 0 ], introduces  
independently the lower and upper integrals of a bounded function 
over [a,x] as respective limits of the sums

(11) £ 1  <j<mm j(a j_3 j- i)  and S i< j< m M j(a j_aj - i ) »

when (7) goes to zero, where

mj = inf (f(x) : x e [aj_i,aj]} and Mj *  sup (f(x) : x e [a j- i .a j]} .

V olterra  also solves a problem raised by Dini by giving the first 
example of a bounded derivative which is not Riemann integrable, 
which confirms the complete dissymetry between the operations of 
differentiation and indefinite integration in the frame of Riemann- 
integrable functions. Section III of Volterra’s memoir is devoted 
to the Cauchy problem for ordinary differential equations. Again, 
V o lter r a  seems to be unaware of CAUCHY's first approach when he 
writes : "The first existence proof for the integral of an ordinary 
differential equation passing through one point is due to Cauchy. 
Briot and Bouquet have proved Cauchy's theorem in a very simple 
way; their method imposes various restrictions to the differential 
equations, which consist in conditions under which the integrals 
can be developed in Taylor series. Independently of those 
considerations, Lipschitz and Houel have given a proof of the 
existence of the integrals of ordinary differential equations in 
which the argument is similar to that used in the proof of the 
existence of Riemann definite integrals. Following the same 
argument, but applying the method used here in the proof of 
Riemann's theorem, one is led to somewhat more general results".

Indeed, if M denotes the supremum of |f| over a neighbourhood 
С of (a,yo), Volterra considers the sums (11) where, now, mj and Mj 
are defined recursively by the formulas
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r t i j=  inf {f(x,y) : (x,y) e Rj} , Mj = sup (f(x,y) : (x,y) e Rj},

w ith

Rj = [aj_i,aj] x [y0 + Ei<;k<j-1 m k(ak-ak-i) - M (aj-a j.i), yo +

£ 1  <k<j-i M к(ак-ац-1 ) + M(aj-aj_ -j) ]

(1<j<m), where we make sure that the Rj stay in the neighbourhood 
C, by taking |x-a| small enough. Vo l t e r r a  then shows that, like in 
Riemann integration theory, the necessary and sufficient condition 
in order that (4) has a limit y(x) whenever (7) goes to zero is that

( 12 )  £ i< j< m (a j-a j- i)D j -»  о

whenever (7) goes to zero, where Dj denotes the oscillation of f 
over Rj (1<j<m). When it is the case, Vo l t e r r a  shows that the 
function у is continuous, the function f(.,y(.)) is Riemann integrable 
over [a,x] and the function у satisfies the integral equation

(1 3 ) y(x) = У0 + l[a,x] f(s,y(x))ds .

It remains then to find conditions over f in order that condition
(12) holds and to discuss the relation between the solutions of (13) 
and those of the corresponding Cauchy problem. Vo l t e r r a  first 
shows that condition (12) necessary implies the uniqueness of the 
s o lu tio n  of (13) and that each solution of (13) is a classical 
solution of the Cauchy problem when f is continuous over C. He then 
proves that (12) holds when f is continuous and satisfies the 
Lipschitz condition (8) over C. More generally, he shows also that 
condition (12) holds if the above conditions upon f hold on С except 
on a subset which can be covered by an at most countable family of 
rectangles with sides parallel to the axes and such that the sum of 
the lengths of their sides parallel to Ox is arbitrary small. In this 
case, the function у satisfies the differential equation (3) at each 
point x for which f is continuous at (x,y(x)).
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V o l t e r r a  then raises the important question of the so lvability  
of the Cauchy problem (3)-(6) when f  is only continuous on C. He 
gives a positive answer under the supplementary assumption that 
f(s,.) is monotone for each s. This last restriction will be dropped 
by Pe a n o  in 1886 [47]. The same author had already defined, in 
1883, [46] the Riemann integral independently of any limit concept 
by observing that the lower and upper integrals could be 
respectively defined as the supremum and infimum of the 
expressions (11) for all finite partitions a = ao < ai < ... < am-i < am 
< x of [a,x]. In his paper [47], Pe a n o  applies the same idea to 
problem (3)-(6) with f continuous by showing that the infimum V 
(resp. supremum U) of the function v (resp. u) such that

v(a) = u(a) = yo

and

v'(s) > f(s,v(s)) , (resp. u'(s) < f(s,u(s))

for a < s < x, provide solutions of (3)-(6) and that any other 
solution у of the problem satisfies, on this interval, the inequality

u(s) < y(s) < v(s),

introducing in this way the concepts of m axim al and m in im al 
solutions. Like Lipschitz  and Vo l t e r r a , Peano does not seem to be 
aware of Ca u c h y 's contribution based upon the Euler's polygons (he 
only quotes Cauchy's result for f holomorphic and its 
simplification by Briot and Bo u q u e t ), but he refers to Lip s c h it z 's 
memoir [35], to the treatises on analysis by Houel [23] and G il b e r t  
[19], and, of course, to Vo lte r r a ’s paper [56]. In 1898, O s g o o d  [43] 
will give another proof of Peano's result, under the sam es  
assumptions, by using an approach more reminiscent of Volterra's 
one. In contrast to the methods of Ca u c h y , Lipschitz and V o l t e r r a , 
thoses of Peano in [47] and Osgood  do not extend to the case of
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systems of differential equations, and the corresponding existence 
of at least one solution for the Cauchy's problem for a continuous 
right-hand side will be proved in 1890 by the same Peano  [48], by 
combining the approximation method of Euler-Cauchy wfth a 
theorem of ASCOLI and Ar z e l a . His proof will be simplified by de la 
V allee POUSSIN [11], M ie [40] and Arzela [3,4]. One shall notice that 
P e a n o  never tried to weaken the continuity condition of f with 
respect to x.
Apparently unaware of Vo l t e r r a 'S memoir [56], but well informed 
about the contributions of G ilbert [19] and Darboux memoir [10], de  
la V allee P o u ssin  obtains, in his Memoire sur /'integration des 
equations d iffe ren tie lles  of1893 [12], results very similar to 
those of Vo l t e r r a  by a closely related method. His motivation is 
expressed very clearly in the introduction of his memoir : "The 
present work has been inspired by the study of the memoir on 
discontinuous functions of M. Darboux and the note that М. C. Jordan 
has added to the third volume of his Traite d'analyse. Our aim is to 
extend, whenever it is possible, to ordinary differential equations, 
the concept of integrability introduced by Riemann for the special 
case of quadratures. In the same way that one can integrate 
discontinuous functions, we have intended to show that one can 
integrate differential equations containing such functions". Like 
vo lter r a  and in contrast to Lip s c h it z , de la Vallee Po u s s in  will not 
hesitate to call "integral of equation (3) a function у which 
satisfies, for each x, the relation (13), and hence to consider 
solutions which are not differentiable everywhere. Among the 
aspects which complete Volterra's work, let us mention the proof 
of the continuous dependence of the solution with respect to yo 
when condition (12) holds, and the obtention of an interesting 
condition upon f, a forerunner of Caratheodory condition, in order 
that (12) holds, namely the Riemann integrability of f(.,y) over [a,x] 
for each fixed у and the existence and continuity with respect to у 
of Dyf. For example, de la Vallee Po u ssin  proposes as an application 
of his theory the differential equation
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where the functions Xj are Riemann-integrable over [a,x]. Let us 
observe finally that in an historical appendix written upon request 
of P. Ma n s io n , de La V allee P o u s s in  makes a short comparaison 
between his results and those of PEANO's paper [47]. It is not known 
if this gave to DE la V allee POUSSIN the opportunity to discover the 
existence and the content of VOLTERRA's memoir.

5. Lebesgue. Caratheodory and Kurzweil

Everybody knows the immense progress that the L e b e s g u e  
integral made possible in analysis and how Lebesgue himself used it 
in the study of Fourier series and in the calculus of variations. 
LEBESGUE's thesis Integrate, longueur, aire of 1902 [34] contains 
only a few lines about the possible consequences of his new 
integration theory in the theory of ordinary differential equations : 
"(the new integral) allows indeed to solve the fundamental problem 
of the differential calculus in all cases where the derivative is 
bounded and, consequently, it allows to integrate ordinary 
differential equations which can be reduced to quadratures. For 
example, f(x) being an arbitrary bounded function, we shall be able 
to recognize if the equation

y’ + ax = f(x)

has solutions, and, if it is the case, to find them.". He adds, in a 
footnote : "This remark leads to interesting problems. For example, 
f(x) and g(x) being bounded, are all the solutions of the equation

У' + f(x)y = g(x) 

contained in the classical formula

у(х) = S 0^ nXj(x)yj(x)
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у(х) = exp(-Jf(x)dx).Jg(x) exp(Jf(x)dx)dx ?".

It was left to Ca r a t h e o d o r y  In his famous Vorlesungen uber 
reelle Funktionen [5] to incorporate Lebesgue integral into the 
fundamental theory of ordinary differential equations. His 
conditions correspond in a way, in this new setting, to the 
synthesis of those of de la Vallee Poussin and Pe a n o , if we observe 
that he assumes f(.,y) to be measurable over [a,x] for each fixed y, 
f(s,.) continuous for almost each s in [a.x] and that

|f(s,y)| < F(s)

over С (almost everywhere in s) for some Lebesgue integrable 
function F over [a,x] (Caratheodory conditions). A so lu tion  of (3)- 
(6) in the sense of Caratheodory w\\\ be a solution of the integral 
equation (13) and will satisfy therefore the differential equation 
(3) almost everywhere on [a.x]. In Ca r a t h e o d o r y 's approach, the 
fundamental tool to go from approximate solutions to exact ones is 
the Le b e s g u e ’s dominated convergence theorem, after the extraction 
of a convergent subsequence with the use of the ASCOLi-ARZELA's 
theorem.

There has been systematic studies, due to Ne m ic k ii, Va in b e r g , 
Kr a s n o s e l ’s k ii, La d y z e n s z k ii, Rutickii and others on the structure of 
N em ick ii operators  defined on various spaces of functions as 
mappingsof the type

x(.) -> f(.,x(.))

when the function f satisfies the Caratheodory conditions (see 
[1 ,28 ,29] for references). An axiomatic definition of C ara theodory  
opera to rs  has been introduced by Kartak [24 ,25 ,26 ] in order to 
extend Caratheodory theory, and V rkoc  [57] has shown that they can 
always be associated to a unique Caratheodory function. In 1955, 
AQUARO [2] has proposed an extension of the fundamental theory 
where the Caratheodory conditions are replaced by the assumption
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of Lebesgue integrability of f(.,y(.)) for all continuous у and the 
equiabsolute continuity of the family of its indefinite integrals 
OPIAL [42] has shown in 1960 that Aquaro's conditions are indeed 
equivalent to Caratheodory ones.

The conditions and the method of C a r a th e o d o r y  will also serve 
as a model for the obtention, by K a r ta k  [24,25 ,26] and MANOUGIAN
[36] of a fundamental theory for the Cauchy problem in the frame 
of the D e n jo y -P e r ro n 's  extension of Lebesgue integral. See also the 
book [16].

Equation (13) can also be used to introduce an interesting 
extension of the concept of ordinary d ifferential equation  
motivated by the fact that important properties of the solution, 
and in particular its continuous dependence, with respect to a 
parameter, can be expressed uniquely in terms of the application F 
defined by

(14) F(x,y) -  ![a,x]f(s,y)ds

rather than in terms of f itself. To introduce this extension, let у 
be a solution of (13) and (ym) a sequence of piecewise constants 
functions

(15) ym(s) = y(sj), aj.i £ s < aj, 

where

(16) aj.i < Sj ^ a j , 1 s j < m, a = ao < ai < ... < am.i < am = x ,

such that (ym) converges uniformly on [a,x] to y. From Caratheodory 
conditions, it fo llow s that

f(s ,ym(s)) -» f(s,y(s))

for a.e. s in [a,x] and then
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when m -> oo, by Lebesgue dominated convergence theorem. On the 
other hand,

/[a,x]f(s,ym(s))ds = £isjsmj[a,x]f(s,y(sj))ds =

£ ls j< m [F (a j,y (S j) ) -F (a |- i ,y (S j) ) ] ,

where F is defined by (14). In other words, у can be obtained as a 
limit of the expressions

(17) У0 + E is jsm [F(a j,y (S j))  - F(aj-i ,y(Sj))]

when m tends to infinity, i.e. when the partition of [a,x] defined by
(15) and (16) gets finer and finer. The right-hand member of (15) is 
similar to Riemann sums associated to the aj and Sj. This 
observation, that can be found in the monograph [51], had led 
K u r zw eil  [30] to introduce in 1957 the following generalization of 
the Riemann sums. If U maps [a.x] x [a,x] into R and if

A = {ao.si ,ai,S2.....am-i,Sm.am}

where the a] and Sj verify (16), is given, Ku r z w e il  introduces the 
generalized Riemann sum

(18) S(U,A) = Ii< j<m [U(aj,S j) - U(a].i,sj)], 

which reduces to the usual Riemann sum when

(19 ) U(a,s) = f(s)a,

with f mapping [a,x] into R. It is immediately seen that the right- 
hand member of (17) is the generalized Riemann sum associated to 
the function U defined by

U(a,s) = F(a,y(s)).
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It is therefore natural to define the integral

f[a,x]DU(a,s)

associated to U as a suitable limit of the sums (18), and the second 
main contribution of K u r z w e i l  consists in modifying the filter of 
the partitions on which the limit is computed to get a sufficiently 
general integral which reduces, when U is given by (19), to the 
D e n jo y -P e r ro n  integral (see e.g. [22,30,31 ]).J will be the Kurzw eil 
in te g ra l of DU over [a,x] if for each positive e one can find a 
positive function 5 on [a,x] such that

|S(U,A) - J| < e

for each 8-fine partition  A of [a,x], i.e. each partition A satisfying

Sj - 8(sj) < aj-i < Sj < aj < Sj + 8(Sj), (1 < j < m).

Riemann-type integrals correspond to the restriction to constant 
functions 5 in the definition.This modification was independently 
introduced a few years later by HENSTOCK [21] and has had, in 
integration theory, important developments that we cannot 
describe here (see e.g. [22 ,31 ,37 ,38 ,]).

Starting now from an arbitrary function F from [a,x] x R into R, 
K u r z w e i l  defined a solution of the Cauchy problem  fo r the 
generalized differential equation

(2° )  У'(х) = DF(x,y(x)), y(a) = yo,

as a function у which is solution of the integral equation

(21 ) УМ  = Уо + J[a,x]DF(a,y(s)),

where the integral in the right-hand member is a K urzw e il- 
Henstock integral as defined above. One can see that the 
differential notation (20) is purely a symbolic one, as the solution



843

of (21) will not necessarily be a differentiable function (not even 
necessarily a continuous function). Of course, like above, it will be 
necessary to find explicit conditions upon F which insure the 
existence of the integral in (21) and determine the regularity 
properties of the solution. One can consult, in this respect, the 
monographs [51] and [52] and their references, where it is shown 
in particular that the generalized differential equations contain as 
special case not only the Caratheodory situation, but also measure 
differential equations and differential equations with impulses. 
When F(x,y) -  A(x)y for some function A with bounded variation, the 
solutions of (20) are nothing but those of the integral equation

y(x) -  yo + J[a,x]y(S)dA(s),

where the integral in the right-hand member is a Perron-Stieltjes 
in tegral.

In his recent book Lectures on the Theory of Integration
[22],HENSTOCK has used the Kurzweil-Henstock integral, with the 
usual Riemann sums associated to (19), i.e. the Denjoy-Perron 
integral, together with a generalized convergence theorem valid 
for this integral, to propose an extension of the fundamental theory 
of ordinary differential equations. He replaces the Caratheodory 
conditions by the following ones : f(s,.) is continuous for a.e. s in 
[a,x], f(.,y) is integrable for each у , and for some compact set S in 
R, some positive function 5 on [a,x], all 5-fine partitions A of [a,x] 
and all functions w on [a,x], one has

2 is jsm f(S j,w (S j))(a j-a j-i) e S.

Very recently, KURZWEIL and S c h w a b ik  [32] has proved that the above 
conditions imply that f is necessarily of the form

f(x,y) = g(x) + h(x,y)
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with g Perron-Denjoy-integrable and h satisfying the Caratheodory
conditions. Hence, a change of variables can reduce this situation 
to Caratheodory’s one.

Those recent examples show that the interaction between
integration theories and the fundamental theory of ordinary
differential equations continue to be a fruitful source of 
inspiration for the mathematicians.
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SOME BOUNDARY VALUE PROBLEMS FOR A PARTIAL DIFFERENTIAL EQUATION OF

NON-INTEGER ORDER.

Marek W. M ichalski

Abstract. The paper concerns a Goursat-like problem and a genera
lized Cauchy problem for some nonlinear partial differential equa
tion of non-integer order. Assuming the Ceiratheodory conditions 
for the nonlinear part of the equation, we reduce the said 
problems to integro-functional equations and then prove the 
existence of the global solutions by using the Schauder fixed 
point theorem.

1* Derivatives of Arbitrary Order

In this paper, which extends earlier researches of J. Conlan (cf. 

[1]) and the present author (cf. [8]) we deal with boundary value 

problems containing the derivatives of non-integer order. Therefore, we 

first quote the definition and some basic properties of such deriva

tives (cf. [3]).
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D ' V Pf(x,y) = / d J ( x - e ) a 'l(y-n)P’1f(C,n)<in/(r(a)rO)) 
y 0 0

X

D;“f(x,y) = /(x-?)C‘'1f(€.y)d5/r(a)
0

and

D'^fCx.y) = }(y-n)P ''f(x,n)dn/r(P),
0

respectively, a. e. on Q. Thus, the derivative D’0̂ '^ (a, 8 £ 0) can be
x у

treated as a transform of the space of integrable functions into 

itself. One can also prove (cf. [8]) that this transform is completely 

continuous in case when a,0 > 0.

Further properties of the derivative of non-integer order can be 

found in [1], [8] and [9].

2. The Goursat-like Problem

In what follows, we assume that the numbers a and 0 satisfy the 

inequalities 0 < a,/3 й 1.
Let g: [0,A] — > [0,B], h: [0,B] — > [0,A], G:(0,A) — > R, and 

H:(0,B) — > R be given functions1*, (Х0»У0) ^  arbitrarily fixed point 

of Q and с a given number.

We deal with the following partial differential equation

(1) DVu(x.y) = F(x,y,{DrDXu(x,y)}) (x,y) e 0,
x у x у

"У X . .  У \
where {D D u} denotes the finite sequence of all derivatives D D u such 

x у x у
that 7 £ а; X £ 0; 7 + X < a + 0 (the total number of these derivatives 

will be denoted by m)

1) The curves of equations у = g(x) and x = h(y) will be denoted by 
lj and 12» respectively.
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Let Q be the rectangle ft := (0,A)x(0,B), where 0 < A,В < oo, and 

f:Q — > R a Lebesgue integrable function. In what follows, a and 0 are 

real numbers (a,0 € R) and p and q positive integers (p,q € N) such 

that a £ p; ^ q .  The derivative D ^ ^f is defined by the following
X у

equality

DVf(x.y)

Б Д  /аШ х-5Г “(у-п)'РГ(^П)<1т)/(Г(1-а)Г(1-0)) («) 
0 0 for a,0 й 0

DpDq(Da"pD^‘4f(x,y)) for a > 0 or 0 > 0 (b)
хух у

where Г is the Euler gamma function, Dp and D4 denote the classical
l xi y

partial derivatives and D = D , D  = D ( in case (b) we additionally
X X у у

assume that the function Da-pD^"4f is differentiable p times with
X у

respect to x and q times with respect to y).

Let us note that, the constants p and q above can be chosen 

arbitrarily (so that а й p, 0 s q), which easily results from the 
following proposition (cf. [3])

P r o p o s i t i o n  1. I f  v:ft — » R i s  measurable w ith re sp e c t to  у , 
possesses the d er iva tive D^v с L(Q) and s a t i s f i e s  the  in e q u a li ty

(*) |v(x,y)| s M(y)

with M € L(0,B), then the formula

(**) ( I  v(x,n)dnl = / D v(x,n)dn + v(x,x) 
ч  > о x

holds good a. e. on (0,A).

Basing on Proposition 1 and the Fubini theorem, we can assert that 

for a s p, 0 s q (p,q e N) the following relations

DVf(x.y) = D > * V M Jd|Jf(e,n)dn = DpDqf (x,y) 
о о * y

are valid a. e. on Q. Moreover, for oc,0 > 0 the derivatives 

and Dy are integrable and satisfy the equalities.
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By a so lu tio n of equation (1) in Q we mean a function u:Q — > R 

which possesses an integrable derivative D°D̂ u 2) and which satisfies
x у

(1) a. e. in 0.

We study the Goursat-like problem (G) which consists in finding a 

solution of equation (1) in Q satisfying the conditions

(2) D®D*J“\i(xfg(x)) = G(x); Da_1D^u(h(y) ,y) = H(y);
x у x у

(3) -  v

Let us note that the above problem was considered by Z. Szmydt 

(cf. [7]) in the case a = 0 = 1 as a generalization of the classical 

Goursat problem.

We assume the following

I. The function F:QxRm — > R satisfies the Caratheodory conditions 
(cf. [5], def. 12.2) and the inequality

"yX x
W  |F(x,y,{zvl» |  s K(x,y) + I  I  K , (x,y)|z | 7X1

' л y,X l . l  7 1

(z ^  € R) holds true a. e. on Q, where m ^  e N, 0 < x ^  £ 1 are

given numbers and K,K . :Q — > R given functions of class L(Q),

1 / ( 1 "X7X i) 7
and L 1 (Q) respectively.

II. The functions g and h are continuous.

III. The functions G and H are integrable.

2) As a result Da"*D^u and D ^ ' V i  are absolutely continuous with
x у x у a - l  8-1

regard to x and y, respectively, and u is absolutely conti

nuous with respect to both x and y.
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Let us denote s = d“d Pu . One can prove that if u is a solution of
x у

equation (1) in ft, then there are integrable functions p:(0,A) — > R 

and ф:(0,В) — > R, and a constant с e R, such that

(5) u(x,y) = uo(x,y) + сх“ ' 1уР"1/(Г(о)Г(Э)) + x“ ‘ V ' P) (у)/Г («) +

Ф(' 0 )(х)уР' 1/Г(Э) + D ^ V Ps(x ,y)

((P('o)(x) := D‘a!p(x); v(_P)(y) := D ' V y ) )  with

г x° У° 4 „ , S 1
(6) uo(x,y) = co - J G(5)d5 - S H(n)dn x“‘V /(Г(в)Г(Э)) +

 ̂ 0 0 '

+ x“'1H('P)(y)/r(a) + G(_a)(x)yP'1/rO).

One can also observe that the function u satisfies the conditions (2)о
and (3), and the homogeneous equation (1).

Conversely, if u is given by formula (5) with some integrable 

functions *>:(0,A) — » R and ip:(0,B) — » R, and a constant с € R, then 

u is a solution of equation (1) in~ft.

Imposing on function u (cf. (5)) conditions (2) and (3), we obtain

g ( x )
9(x) = -  f  s(x,n)dn;

V(y) -  -  I  s(€,y)d£ 
о

and

* 0 yQ h (17)
(8) с = J d^ J s(5,n)dn + J dr) f  s(5,n)d^.

0 yQ 0 0

Let us observe that the following inequalities

3. Solutions of the Goursat-like problem
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/|<p(x)|dx «; ||s||; J|v>(y)|dy <; ||s||; 
о о

(9)
|c| * 2||s||

hold good, where ||*|| is the norm in the space L(Q). Assuming that a,0 *

0, and using the first two of relations (9), we get the estimates

;|t>(‘°°(x)|dx i Aa/r(l+a)||s||;
О

(10) в
/|/ ' P)(y)|dy s Bp/r(i+P)||s||
0

Denote

(11) L ^ s ( .x ,y ) = сха’1,-1уР-Х'1/(Г(а-г)Г(Э-Х)) +

х“'Т'1К-(Х'Э)(У)/Г(а-Т) + »1(Г'<1)(х)уР'Х‘1/Г(Э-Х) + D*~°DX~Ps(x,y)

with c, <p and y) (depending on s) being given by formulae (7) and (8), 
respectively. It is easily observed that the Problem (G) is equivalent 

to the following integro-functional equation

(12) s(x,y) = F(x,y,{D*DXu0(x,y)+LyXs(x,y)})

( (x»y) € Q).
In the sequel we will show that equation (12) has at least one 

solution and that the set of its solutions is bounded in the space 

L(Q). To this end we consider on L(Q) the transformation T

(13) Ts(x,y) := F(x,y,{DVu0(x,y)+L Xs(x,y)}).

One can observe that T is a composition of three transforms: the 

linear L a translation and a substitution operator.

The relation (resulting from (7) - (11))

(14) l|LrXsll s 5Аа'7ВР~Х/(Г(1+а-у)Г(1+Э-Х))|И|
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implies that is continuous mapping of L(Q) into itself. By a 

standard argument, based on the Riesz theorem on compactness (cf. [A], 

p.166 and [5], Th. A.20.1) one can prove the validity of

Proposttiqh 2. If 7 < a, X < p,then the transformation L ^ : L ( Q )  

— » L(Q) is completely continuous.

Due to Assumptions I and III the substitution operator (cf. [6], 

Th. 12.10) and the translation are continuous mappings of L(ft) into 

itself, whence, and by the continuity of L^, the transformation T is 

continuous. Moreover, by Proposition 2, it is completely continuous in 

case if у < a, X < 0.
Let us observe that in the said case Proposition 2 implies the 

complete continuity of the transformation defined by the right hand 

side of equation (5), where с, ф and ip are given by formulae (7) and 

(8), respectively.

Denote h = (h^,hy) and ths(x,y)=s(x+hx,y+h^). We will use the 

following definition:

A set Z с L(Q) is uniformly continuous in average if and only if 

|(t̂ s - s11 — » 0, uniformly with respect to s € Z, when h — » 0.

Now, let us consider the set

Bp= {s e L(Q): ||s|| * PK + p},

where := ||K|| and p is a positive number, and its continuous in 

average subset Z^. By the Riesz theorem, Z^ is relatively compact in 

L(Q).

Let s € L(Q). In virtue of inequality (A), the estimate

(15) |Ts(jc,y)| s K(x,y) +

holds true.

Bearing in mind the Htilder inequality and basing on relations (1A)
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7Х,+

and (15), we get

тц\ 1/<1-X *,) i-х . f . x
IN I  -  pk ♦ Д  £  ||куХ1 *x' || n i  (||dV u0||

+ (Aa~rBP~X/(r(l+a-r)r(l+0-X)||s||)XlrXlj,

whence and by the inequality

||DyD\i || £ const Аа~УЪР~Х,1 *x у 0м

we obtain

(16) |fTs|| й рк + const max(A,B) (1 + ||s||X),

where const is a positive constant independent of s and x := max(x ).
УД.1 *

Evidently, a sufficient condition for the inclusion T(B^) с B^ is

(17) const max(A,B) (1 + (рк + p)X) £ p.

Let us distinguish two cases: a ) x < l ,  b ) x = l .

In case a), inequality (17) is satisfied provided that p is chosen 

sufficiently large.

In case b), the said inequality holds good if diamft is sufficient

ly small.

We can assert that by the continuity of T, the set T(Z^) is a 

compact subset of L(Q) and hence it is a closure of a certain set which 

is uniformly continuous in average.

Thus, the inclusion T(Z^) с Z^ holds true.

By the Schauder fixed point theorem (cf. [A], p. 57 and [5]. Th. 

3.6.1) equation (12) has an integrable solution. Moreover, if s is a 

solution to equation (12) then, due to relation (16), the inequality 

||s|| й pQ holds, where pQ fulfils condition (17).
Aforegoing considerations establish
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T h e o r e m  1 .  I f  Assumptions I-III are s a t i s f i e d ,  then Problem (G)
3 )has a global so lu tio n  in  the case x < 1 and a loca l one in  the case 

x = 1 (cf. the d iscussion  subsequent to (17)).

4. Extention of the local solutions

It is known from the former Section that Problem (G) possesses a 

local solution in the case x = 1. In this section we are going to 

extend this solution to obtain a global one.

First of all we consider the problem (Gq) , that is the problem (G] 

in which

(18) x = 1, X < Э . У0 = 0; g - 0 4)

(it is clear that (Gq) is a counterpart of the Picard problem).

Let us equip the space L(Q) with the norm

(19) ||s||T=//ftls(x,y)lexp(-Ty)dxdy,

where т is a positive number.

Using the H61der inequality, we obtain

(2°) I I q К ух^Х ’У) lL7Xs(x,y) I yXlexp(-ry)dxdy й

i/Ct-x ) i-x x .
* I^TXi Пт Щ  L^xs(x,y)exp(-Ty)dxdyl Y .

By direct calculation, one can show that the inequalities

SIq exp(-xy)xa_7_1 (y) |dxdy/T(a-y)

(21)

f f Q exp(-xy)D7"aDX"^ls(x,y)ldxdy

The said solution is continuous in case when a = 0 = 1.

4) As a result <p я 0 and с = 0.
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S а“'т/Г(1+о-У)тХ P||s||t

hold true.

Finally, we have

myX x
(22) |frs||t  s  p + const 2  E fl + ( ^ W L ) ^ ' ] .

y,X 1 - 1 V, J

Hence, for x and p sufficiently large to fulfil the relation

(23) const £  I  ( l  + ( T X _ P ( p  + p ) ) X y X l ]  s p ,
ТД 1-1 1 K >

T continuously maps the compact se t ^ ( i .  e. Z^ with ||»|| replaced by 
|HIT) into i t s e l f .

As a result we can formulate

Proposition 3. If Assumptions I-III and (18) are satisfied, then 

Problem (Gq) has a global solution.

Remark 1. The thesis of Proposition 3 is valid if condition (18) 

is replaced by

(18’) x = 1 ; 7 < a; xQ = 0; h в 0.

Remark 2. Since the right-hand sides of estimates (21) do not 

depend on B, one can show that if Q = (0,A)x(0,®) then equation (12) 

has a solution s in the class of measurable functions such that ||s||r <

® (the parameters x in (19) and p in the definition of B^ are chosen so 
that inequality (23) is satisfied).

Remark 3. (the characteristic problem). It is known from paper [8] 

that under Assumptions I-III, and the additional assumptions g ■ 0; h ■

0, Problem (G) has a solution.

We assume that g(0) = h(0) = 0 and the curves 1^ and 1^ do not 
intersect each other in Q \ {(A,B)}, у < a, X < 0 and x q = yQ = 0.

It can be noticed (cf. relations (5) and (17)) that there exists a



sufficiently small number б > 0 such that Problem (G) has a solution,
2

say u^, in the set (0,6) с ft.

Now, we will use Proposition 3 to extend the local solution (cf.

[3]) of Problem (G).To this end we assume that g(6) < 5 (in the 

opposite case h(6) < 6) and define a := max{x € [6,A]: g(x) й 5}.
We seek a function u: (0,a)x(0,6) — > R, such that u = in 

(0,6)2, which is a solution of equation (1) in (6,a)x(0,6) and 

satisfies the conditions

(24) D V ' V x . g ( x ) )  = G(x); D“_1DPu(6,y) = D ^ A ^ S . y ) ;

(25) d“'1DP',u («,0) = Kl (6,0)* у x у 1

(x € (6,a); у € (0,6)).

It can be shown by an argument analogous to that in the proof of 

Proposition 3 that there is a solution, say и?, of the above problem.

Set b := max{y € [6,B]: h(y) й a}. Similarly as above, we search 
for a function u: (0,a)x(0,b) — » R, such that u = ug in (0,a)x(0,6), 

being a solution of equation (1) in (0,a)x(6,b) and satisfying the 

conditions

(26) DaDP‘,u(x,8) = DaDP'V(x,6) ; Da‘Vu(h(y),y) = H(y);
X у x у 2 x у

(27) Da"1D^"1u(0,6) = Da"1D^“*u (0,6).x у x у 2

(x e (0,а); у € (6,b)).

We denote by a solution of the above problem. It is easily seen 

that u3 is a solution to equation (1) in (0,a)x(0,b) and satisfies the 

condition (2) for x e (0,a); у e (0,b) and condition (3).

Continuing this process, we can extend a local solution of Problem 

(G) to obtain a global one.

The above-obtained results can be gathered in

T h e o r e m  2. If Assumptions I-III (w ith x = 1 ) , as v e i l  as those  
formulated above in  the presen t S ec tion , are s a t i s f ie d  then  
Problem (G) has a global so lu tio n .
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5. Generalized Cauchy Problem

Let us keep in force Assumptions I-III, and assume additionally 

that h is absolutely continuous. The above-presented method allows to 

examine the following generalized Cauchy problem (C): Find a solution 

of equation (1) in Q satisfying the conditions

D^Dy_1u(x,g(x)) - G(x);

(28) * У y

Da_1DP"\i(h(y),y) = с + / H(n)dp- 
x y о

One can show that if the function h’G°h is integrable, then

(29) uc(x ,y ) = сха' ,уЭ‘ 1/(Г(а)Г(Э)) + С<-“ ’ (х)уР' 1/Г(Э) +

+ x“ - V ' P)(y )/r (a )  -  х0<' 1 / (у -п )Э' ,Ь’ (п)6 (Ь(п))<Зп/(Г(а)Г(Э))

is a solution of the homogeneous equation (1) and satisfies the 

conditions (28).

We seek a solution of Problem (C) in the form

(30) u(x»y) = u (x,y) + xa"V~^(y)/r(oc) +с

+ «>("“)(х)уР‘1/Г(Э) + D~aD~Ps(x,y),

where (p and ip are integrable functions. Imposing on the above function 
u the conditions (28), we get

gCxJ
*>(x) ■ “ / s(x,n)dn;

<3 1 > у  M y )
¥>(y) = -  h ’ ( y )  S  s ( h ( r ) ) , n ) d П -  /  s ( ? , y ) d 5 .

gC h (у)) 0

Repeating the argument from Sections 3 and A we obtain
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Theorem 3. Assume th a t: 1° Hypotheses I-III are s a t i s f i e d ;

2° the fun c tio n s h and h’G«h are a b so lu te ly  continuous and in te g ra b le , 
re sp e c tiv e ly ,

3° in  case x й 1 , the curves 1^ and do n o t in te r s e c t  each o th er  in  
Q \  {(A,B)} and the condition g(0) = h(0) = 0 i s  s a t i s f i e d .

Under these assumptions Problem (C) has a s o lu tio n .
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O N T H E  C O M PL E X  ANA LY SIS M ETH O D S FO R SOM E  
CLASSES OF PA RTIA L D IFF E R E N T IA L  E Q U A T IO N S

L. G. Mikhailov

The development and applications of complex analysis methods in ap
plication to partial differential equations have a long history starting from 
B. Riemann probably. Its great development in the USSR took place since 
1940 to 1970 in the works by Investigations and Science Organizations Ac
tivity of M. A. Lavrentiev, N. J. Mushelishvili [1], J. N. Vecua [2], F. D. 
Gakhov [3] and others. In the recent time similar International Science 
Organization Activity was displayed with the participation of R. P. Gilbert 
(USA), W. Wendland and E. Meister (FRG), W. Tutschke (DDR) and 
others.

The review of some of the author’s results in the direction denoted in 
the title will be given in this paper, see [4]-[14].

1. G eneralized  C auchy-R iem ann System  w ith  Singular P oints [4]
We shall consider complex-valued functions of two real variables and 

in addition to the customary designation f ( x , y )  we shall use the notation 
/ (z ) ,  where z  =  x  +  iy. If f ( x , y )  =  f ( z )  € C l (D)  the formulae d2f  =  
\ (& xf  +  idyf ) , d xf  =  |(<9X/  -  idy f )  define the formal complex derivatives 
with respect to z  and z. Let R A  and A  denote classes of functions f ( x , y )  
analytic in (x ,y) and f ( z )  analytic in z, respectively. If f ( x , y )  6 C 1 then
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/ ( * . у) =  £  / * i * V  =  J 2  /«**** -  f  Z~ i r )  =  H * ' * } ■ 
t j =  0 t,j=0 4 7

In order to find d2f  it is necessary to differentiate /  with respect to z 
considering z to be constant. If d z f  =  0, then /  independent to z  and 
/  =  /(z ) . On the other hand if

W  =  W ( z )  =  u +  tv 6 C 1( D ) , t h e n d i W  =  |[ ( u r -  vy ) +  i(uy +  »,)]

and Cauchy-Riemann conditions become d z W  =  0. Relative to the opera
tion dz the integral T f  =  — £  f D f  ^Qds(C  =  £ +  177, ds =  c^cfy) possesses 
an im portant property d ? T f  =  f ( z )  for all points within D  (and d ^ T f  =  0 
for exterior points), where d2 is understood in the conventional sense, if 
f ( z )  € 7 i ( D ), and in generalized sense of S. L. Sobolev, if f ( z )  G L (D ) .  In 
addition to the well-known classes of functions and Banach Spaces C ( D )  
and LP(D) let M ( D )  denote a class of bounded functions and Ji =  L ipa 
denotes a class of functions, for which a Holder-condition or Lipschitz-a 
condition is available.

The operator T f  is linear and completely continuous from M ( D )  and 
C (D )  into C (D )  and from Lp( D ) , p  >  2, into C (D )  as well; in the la tte r 
case the function T f  € Lipa, a  =  The integral defines the primitive 
of f ( z )  in respect to 2 , the set of all primitives is given by the formula 
W ( z )  =  Ф(г) + Т / ,  where Ф(г) is arbitrary analytic function. If f ( z )  G 
V ( D ) , p  >  2, and ИЧ*) € C ( D  +  Г), then *(*) =  5^  Jr  ^ d f ,  if / (* )  e  
R A , then its primitive is bounded by conventional integration with respect 
to z F ( z , z )  =  f  f  ( £̂ ) dz  and after this we will have the formula

Sd I  i^Qds =  F(z ,  z ) — f r  ^ r p  dt. All formulas remain valid if f ( z )  
has isolated singular points, exactly the same way in fundamental singular 
integral w(z)  =  - 7 / д /  If ° (2) 6  V ( D ) , p  >  2, then u (z )  =

° ( \ z \~’ )>z  0; if a(z) =  o ( |z |-^ ) ,0  <  /3 <  1, then w(z) =  o{ \ z \~p )\ if 
a(z)  6 M ( D )  and lim |a(z)| =  \i, then |w(z)| < (2/x +  e) In щ  -f N e and if

a(z) €  C ( D ) } then u ( z )  =  ©(In щ ) } z  —► 0.
We shall consider the system

d i W = ^ w + h ~W'w ' (1 1 )



where a(z),fc(z) are bounded in D,  the domain D  is finite and z =  0 is 
its inner point. Every solution of (L l) admits the representation by the 
formula

W ( z )  =  y>(z)expfi(z),fi(z) =  ~ ^ J d J  ~  Щ  -  g)4 0  ds  (L2)

and <p(z) is an analytic function (corresponding to W(z)) .  Utilizing the 
notation u. =  lim \a(z)\ +  lim |6(z)| we have

- ( 2 f t  +  e) In -  N t <  |0 (z )| <  (2/i +  e) In i j  +  Ne , (1.3)

where e is an arbitrary small number and N e is a constant that may —► oo 
when e —► 0. If K i(e) ,  K.2(e) are analogous constants, we have

K ^ e ) \ z \ 2“+ '  <  |exp П(г)| <  K 2(e) \z \ - ^ ^ . (1.4)

Examples of  singular equations d i W  =  A • i & W  with respect to formula 
(1.2)
1- “ (*) =  ПТ^Г- W ( z ) =  V(z)(ln j ^ j ) a ;

2. a(z) =  1, W ( z )  =  <p(z)\z\2X ;
3. a(z)  =  f  • ф  , W ( z )  =  ip(z) ■ е х р ( - ф ) .

Violation of  the Carlemann and Liouville theorems

The Carlemann theorem that the solutions may have only zeroes of 
finite order and that the zeroes are discrete is a fundamental one for the 
theory of generalized analytic functions. From the estimation (1.4) follows 
th a t if a(z) £ M ( D ) } the expQ(z) and W ( z ) =  y>(z)expfi(z) as well may 
have zeroes of finite order only. If in example 3 we put <p(z) =  ex p( j ) ,  
then for W ( z )  =  exp(j)exp(-y^js-) and a  >  1 the singular point z =  0 is a 
limit point of zeroes. Thus the Carlemann theorem may be violated if the 
singularities are higher them the first order.

In the regular case no non-zero generalized analytic function exists 
which is continuously continuable through boundary Г into an analytic
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function which will vanish at z — 0 (Liouville theorem ). Let us consider 
example 2. Putting y>(z) =  z~n , we obtain W ( z )  =  z “ n • |z |2A and if 
2ReA > n, then W ( z )  is continuous everywhere in D , including z  =  0, 
and is continuously continuable through Г into the function cz“ n , which 
is analytic and vanishes for z  =  oo. Selecting Л we obtain equtions, which 
have any previously assigned number of functions violating the Liouville 
theorem.

Fundamental theorems. Integrating (1.1) w ith respect to  z , we obtain 
the equivalent integral equation

where Ф(г) is an arbitrary analytic function. The singular integral equa
tions of this new type have been investigated in [4]. If W ( z )  =  \z\~P • 
W0( z ), where W0(z)  € M (D ), C ( D ) }. . . ,  then W { z )  € M p (D ) ,  C p ( D ) t . . .  
and \\W\\p =  ||Wb||- Thus M p , C p y. . .  are Banach spaces isometrical to
M , C ,----  As it was shown in [4] for 0 <  /? <  1 the integral operator in
(1.5) is linear, but not completely continuous in .. and contrary
to a regular case and may have a non-zero eigen-functions.

T h eo rem  1.1. The Liouville theorem for (1.1) is violated by those 
and only those functions which are solutions of homogeneous equation (1.5). 
Their number is <  [/i +  /?] in M p,C p  and <  [/i] in M, C,  where [/i] is integer 
part of the number /i.

Let

К =  sup |a(z)| +  sup |6(z)|, q(P) =  i  f f ^ — -  .
D D , r -'KI<ooJ ICI1+,3IC -1 |

T h e o re m  1.2. For some (3,0 <  /? < 1, let one of the following two 
conditions be satisfied:

1) a(z),6(z) are bounded and К  ■ q((3) <  1;
2) a(z),b(z) are bounded in D  and continuous at the point z =  0 and
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Then all the solutions for (1.1) of class Mp(D)  are expressed by means 
of the formula

Щ * )  = + J  J  ?•!(* ,0 * ( 0  +  r ,(* ,  0 4 0 ) d s  (1.6)

in terms of analytic function Ф(г), where the correspondence between W (z )  
and Ф(г) is mutually one-to-one.

The conversion of the representation formula (1.2).

Using notation v(z)  =  =  exp Cl(z), we obtain a differential equa

tion dzV =  Applying a formula of type (1.6) and denoting 
the resolvents by Г*(*, C)> Г2 ( * ,0 ,  we obtain:

T h e o re m  1.3. Let one of the conditions:
1) a(z ) ,b (z )  be bounded and К  • q( 1/2) < 1, or
2) a ( z ) yb(z) be bounded in D  and continuous at the point z  =  0 and 

ц ■ q( 1/2) < 1 be satisfied.
Then the formula (1.2) and the inverse formula

W ( z )  =  y>(z) { l  +  Ц [ ! ? ( , , 0 +  ! ? ( * ,C )]* }

establish a mutually one-to-one correspondence between W ( z )  and <p(z) in 
the class of functions with isolated singularities.

K i ( e )  ■ <
W { z )

Ф )
<  K»(€) ■ M - (* ,+0 ( m <  ■

The theorems 1.1, 1.2, 1.3 permit us to expand on the singular case 
the whole of the theory of J. N. Vecua from regular case [2].

These results have been obtained by the author in 1958-1963. Later 
by the author and his co-workers in Dushanbe the other methods have been 
developed as well: the method, based on separation of variables with more 
exact studying of the model equation; the method used in connection (1.1) 
with Partial Differential Equations of the second order of ellyptic type and 
others. In this paper we have no possibility to give full observation of all 
investigations made in Dushanbe. It must be mentioned that many papers
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are written in Alma-Ata and Tbilisi as well. B ut it m ust be said th a t the 
central problem on the correspondence between W ( z )  and <p(z) remains 
open to-day, in general case.

2. G eneralized A nalytic Functions in M any V ariab les, [5]-[7]
The functions named in the title are solutions of the system

dSkW  =  ak( z ) W  +  bk{ z ) W  +  ck(z) ,k  =  1 , . . .  , n , (2.1)

where z  =  (zb . . .  yz n) yzk =  x k ^-iyk}2dzk =  dXk +  idykakt bk) ck are known 
and W  =  W ( z )  =  W ( z \ , . . .  , zn) are unknown functions of class C 2( D ) y D  
is a poly cylindrical domain.

1) ak =  bk =  0 (inhomogeneous Cauchy-Riemann system). Let all the 
necessary conditions dzk Cj =  ck be available. Then the formula

W ( z )  =  T1C 1 +  S 1T2C 2 +  . . .  +  S i . . . S n- 1TnCn( = R [ c l l . . .  ,cn]) (2.2)

where =  £  / Гк
TkW  =  — j  f Dk f  — - tZn) dsk gives a particular solution. As far as 
(2.2) was received by composition of one-dimentional formula mentioned 
above, then besides (2.2), by transposition of indices many analogous for
mulas may be formed.

2) All ak =  0. After cross-differentiations we will have many rela
tions on 6jb, Cfc, which are sufficient for constructing such functions w(z) =  
R[bi , . . .  , bn] and U(z)  =  #[exp(—w )c i,. . .  ,exp(—u>)cn], therefore the for
mula W ( z )  =  [$(z) +  U(z)] exp fi(z) gives a general solution, Ф(г) is an 
arbitrary analytic function.

3) The general case. Let ap ф 0. The first series of c r o s s - differentia
tions leads to the relations of type

d , ,w  = cipdlpW + qipW  + hjpW  + fj p , (2.3)

where apaj^ =  a;-,ap^ J  =  dSjbp -  dIfbj. The second series of cross
differentiations into (2.3) leads to the relations

* i ,  K w  +  Hr ■ °jp ■ =  . . .  (2.4)

(on the right side are members without derivatives). Having even one non
zero equality (2.4), we obtain a relation of type d z p W  =  \ PW  -1- nPW  +  vp ,
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substituting it in (2.3) gives n similar relations; together with equation 
(2.1) they form a total differentials system which can have no more than 
manifold of solutions with finite number of arbitrary constants — (let us 
name it trivial manifold of solutions). For existence of a non-trivial manifold 
of solutions it is necessary that all the coefficients of (2.4) are equal to zero:

dSk<rjp =  0 , qjp =  0 or dzjbp =  dzpbj .

If w =  R[bi , . . .  , 6n] then substitution of W  — exp(—w) • V  reduces (2.1) to 
a canonical form

дЯк W  =  ak( z ) W  +  ck( z ) , к =  1 , . . .  , n . (2.5)

Let us consider the first and second series of cross-differentiations in (2.5) 
and by the method mentioned above many previous and new equalities, 
necessary for the existence of non-trivial manifold solutions, may be ob
tained. In particular, if we consider the holomorphic system dikx  =  <rkl * 
d2lx , k  =  2 , . . .  ,n , it be totally integrable and if x ( z ) is its solution 
satisfying initial condition x (zi>0»--- ,0) =  z lf then changing variables 
Cl =  X(z i ) ••• )*n),Gfe =  z k ik =  2 , . . .  ,n , we transform (2.5) to the sys
tem  cr  ̂W  =  b ( Q W  +  d i , dfk W  =  dk} к =  2 , . . .  , n. After the next similar 
transformation we will deduce dk =  0, к =  2 , . . .  , n, and b(Q must have 

a form 6(C) =  • <*(Ci), where /(C) is an analytic function on <. After 
substitution W  =  /  ■ ф we shall obtain finally =  a(Ci)^  +  ^(Ci)-

T h e o re m  2. Let in the system (2.1) ap ф 0 and all conditions neces
sary for existence of non-trivial manifold of solutions are available. Then 
by changes of variables, the system (2.1) reduces to the single equation 
relative to a function of one variable.

From this basic position many results are followed and, in particular, 
representation formulas of the first and second kind similar (1.2) and (1.6) 
respectively.

3. S y stem s w ith  A rb itra ry  C o m p lex  O p e ra to rs , [8]—[10]

Let

^ X > i ( * ) ( g ) = 0 , i  =  l ........ n.  (3.1)
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х =  ( x i , . . .  ,x n) is real and a^(z) are complex given functions. Let com
mutators [Pj, Pk] be linear combinators of P i , . . .  , Pn. As it can be judged 
from lectures of Nirenbergt*), if a3k(x)  €  C°° then there exist local coor
dinates in which (3.1) takes the form of the Cauchy-Riemann system. We 
can add that here naturally arises the question of studying equations with 
operators PjW  on the left side and with general linear term s on the right 
side:

Pj W  =  ^ k{x) ( ^ j = a j ( x ) W + b i { x ) W + c j ( x ) , j ^ l , . . .  , « .  (3.2)

From the main theorem of (*) it follows th a t in the local coordinates indi
cated above it takes a form of a generalized Cauchy-Riemann system  type 
of (2.1).

In this second half of Sec. 3 we shall obtain formulas for representing 
solutions in terms of Analytic Functions (A. F.), first of all, for one complex 
analytic equation

n
L W  =  J 2  4k(x)dXhW  =  0 (3.3)

k = l

and then for system m equations of this type with arbitrary number of 
variables, even or odd and arbitrary number of equations m, 1 <  m < n. 
Let in (3.3) ak(x) be complex-valued given functions and W  be a desired 
one in some polydisc neighbourhood of the origin. We exclude the cases 
when all а* (я) are real or L and L (or L 1 and L2, where L 1 4- iL 2 =  L , 
are linearly dependent. Moreover we also exclude various singular cases, 
assuming, for example, that a i(x ) ф 0 (then dividing by it we may assume 
th a t a i(x ) =  1). We shall use analytic continuation method (in many 
variables) [8]. This method allows us to obtain concrete formulas very 
useful for practical computations.

T h e o re m  3.1. If ak(x) 6 RA,  then the manifold of solutions of (3.3) 
in R A  is given by the formula W  =  Ф[Лг(х),. . .  , An(x)], where Ф is A. F. 
on complex variables А г , .. .  }A n and A k(x) are the construction in real

(Ф)Ь. Nirenberg, L tc iu r t t  on L in ear  P a r t ia l  D ifferential Equations,  Conf. Board Math. 
Sd Regional Conf. Ser. Math. No. 17, Amer. Math. Soc. Providence, R. I, 1973.
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means of the left sides of the first integrals of the complex analytic system 
of ordinary differential equations ^  =  a*(zb  ■ • • > *n)> к =  2 , . . ,  ,n.

If we change variables according to the formulas Cl =  *ьОк =  ^*(*1, 
. . .  , z n) ,k  =  2 , . . .  ,n,  and denote the inverse transformation by z* =

<**(Cb-- - =  2 , n,  then we obtain C W  =  £  ak(z)dXhW  =  d ^ W
fc=i

and for inhomogeneous equation L W  =  /(x ) , /(x )  E АА by the same 
method we obtain a formula for a particular solution,

Wq(x) =  F ( x ) =  f f { t t Qt2(x)[t tA 2( x ) , . . .  tA n (* ) ] ,. ..  ,
Jo
a n[t}A 2 (x) } . . .  , A n{x)]}dt .

For the more general equation L W  =  b(x)W  +  f ( x )  we obtain the repre
sentation formula

W (x )  =  ехрЦ х){Ф [Л2( х ) , . .. +  Wo(z)} ,

where u>(z) and Wo(s) are particular solutions of the equations

L W  =  b ,L W 0 =  e x p ( - w ) - f .

The equation with the most general right hand side has the form L W  =  
a ( x ) W  +  P ( x ) W  +  7 (z), but the term (3(x)W can be eliminated.

T h e o re m  3.2. Suppose that a ( x ) y P (x ) }y (x)  are complex and belong 
to RA.  Then the manifold of all its solutions in RA  is given by W (x)  =  
Ф[Л2(ж ),. . .  ,Л„(х)] +  ГаФ +  Г2Ф +  Wo(s), where Ф is an arbitrary A. F., 
Wo =  F  +  T i F  +  T2F  and Г1, Г2 are the resolvents of the integral equation. 

Proceeding to the system

A*W =  Y ^ a j ( x )  =  0 , f c = l , . . . , m , l < m < n ,

we assume that the a*(x) are complex and belong to R A , the operators 
A1, . . .  ,Am are linearly independent, and their commutators =  0. By solv
ing the system algebraically for dXlW , . . .  , dCmW , we transform it into the 
form

L kW  =  8XiW +  £  a ^ x ) ( j p j = 0 , k = l , . . . , m .  (3.4)
j=m+l '  Xj '
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Carrying out analytic continuation (by exchanging x k on Z k) t we arrive a t 
the system to which a theory is available th a t is well known for real systems. 
For the first of equations it is necessary to find a system  of the first integrals 
and take their left sides as new independent variables. The first equation 
may be transformed to the form d ^ W  =  0 and the variable Cl be 
missing in all the remaining equations. We then proceed in a similar way 
with a newly obtained system. After m steps we arrive at the assertion th a t 
there exists a homeomorphic analytic change of variables such th a t L l W  —
0 , . . .  , LmW  =  0 can be transformed into d ^ W  =  0 , . . .  , d(m W  — 0.

T h eo rem  3.3. Suppose tha t in the system (3.4) ak(x) £  R A  and 
complex, the operators L 1, . . .  , Lm are linearly independent and their com
m utators are identically zero. Then the manifold of all solutions of (3.4) in 
R A  is given by W  =  Ф[Ат + 1(х ) , . . .  , An(x)], where Ф is an arbitrary  A. F.

For the same operators LkW  we consider the corresponding inhomoge- 
neous system L kW  =  Д , к =  1 , . . .  , m, where Д  (s) £ RA.  Com mutation 
of it leads to the necessary compatibility conditions L k f j  =  V  f k . If they 
are satisfied, a particular solution of the inhomogeneous system is given by 
a concrete formula. For more general system L kW  =  bk( x ) W  +  f k( x ) , k  =
1 , . . .  , m there may be prescribed the necessary and sufficient conditions for 
compatibility; if they are satisfied, all solutions are given by the formula

W (x )  =  ехрц>(х){Ф[А2( х ) , . . .  ,Л П(*)] +  ^ (г )}  ■

4. N o n -lin e a r  S ystem s [11]—[14]
The well-known overdetermined system

дхи =  p(x, y; ti), dyu =  q(x , у; и) (4.1)

is named a total integrable if the condition necessary for compatibility

Py  +  Я ' Pu =  Ях +  P  ■ Яи ( 4 -2 )

will be satisfied identically. If we have for (4.1) the initial data  condition 
M r=*0,y=y0 =  «о, then this problem is equivalent to the next chain of 
integral equations [11]:

u (z ,y ) =  v(y)  +  P[t,y;u(t,y)]<ft , I  (4.3) 
w(y) =  «о +  ?[r, y; u (r ) ]d r . J
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If we consider a complex system

ds W  =  p{z, C- ,W],d(W =  q [ z X ; W ) ,  (4.4)

where p, q are analytic on W  and Я-analytic on 2r,£, then by analytic con
tinuation method (with exchange z and (  on new and independent variables 
s and a)  we will come to the system

f t  W  =  p[s, z; <7, С ; W ] , d „ W  =  q[s, z; tr, < ;W] .  (4.5)

A chain of complex integral equations may be written analogously (4.3).

T h e o re m  4.1. Let in system (4.4) the functions p,q  be analytic on 
W  and i2-analytic on z,C; let the condition necessary for compatibility

P£ +  q • p w  =  qz + p  ■ q w ( =  Л) (4.6)

be satisfied identically, and some conditions of smallness be satisfied too. 
Then mutually one-to-one correspondence between the solutions of (4.4) 
and analytic functions Ф(*,С) exists.

If p t q £ С 2 on z X  the new integral representation formula must be 
constructed first:

W ( z ,  0  =  *(*, 0  +  Tsp +  Tj-q -  T ^ h , (4.7)

where Tg and are operators of type T f  (see Sec. 1) on the first or second 
variables of the function in variables (z ,f) . Integral equation (4.7) (respec
tively to W)  is equivalent to the overdetermined system (4.4), but it is very 
difficult to establish that each solution of (4.7) is differentiable and accord
ing to this fact for (4.4) the theorem of mutual one-to-one correspondence 
will have been established as well.

In recent papers of the author [10]—[14] the similar results are extended 
to the overdetermined systems with arbitrary number of independent com
plex variables:

(hkW  = P k [ z l , . . .  , z n\ W ] , k  =  1 , . . .  , n ,
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where p i t ( z , W ) , z  =  ( z i , . . .  }zn) £  C n_1 on z  and analytic on W  and all 
the conditions necessary for compatibility are available identically, the the
orem of mutual one-to-one correspondence between W  and A. F. Ф ( г ) , г  =  
(zb . . .  ,zn), is obtained.
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IN E Q U A L IT IE S  C O N N E C T E D  W IT H  
T R IG O N O M E T R IC  SU M S

G. V. M ilovanovic and Th. M. R assias

In this survey paper we consider inequalities connected with trigonometric sums. In the 
first part we give several classical results which lead to inequalities of Fejer, Jackson, Gronwall, 
Young, Rogosinski and Szego, and their extensions. In the second part we start with Turan’s 
inequalities and study positivity and monotonicity of some classes of trigonometric sums and 
certain classes of orthogonal polynomial sums.

1. CLASSICAL RESULTS

1.1. P relim inaries

In this paper we consider various inequalities including trigonometric sums of 
the form n

T„(x) =  ^  +  У^(д* cos kx  +  bk sin kx). (1.1.1)
*=i

Several applications of these results can be given in the Fourier analysis. A 
very special role is played by the following sum

S„(z) =  X ^ s i n  for, (1.1.2)
Jt=i

which represents the nth partial sum of the Fourier series 

1 00 1
- ( 7Г — x) =  — s in k x  (0 <  x <  2ir). (1.1.3)
2  _ к

Old



876

The above expansion, as well as the following two expansions are due to 
L. Euler

 ̂ ^  sinfcx =  ^x (|x| < 7 г ) ,  ( 1 - 1 - 4 )£

V ' 57— cos(2fc +  l)x  =  |  (!x| <  «•/2), л
2k +  1 \  — тг/4 (tt/2 < |x| < 7r).

The expansions (1.1.3) and (1.1.4) go back to the year 1755, and (1.1.5) to 
1772 (cf. Burkhardt [1 , pp. 857, 858, and 933] and E. Hewitt and R. E. He
witt [1]). These expansions were investigated by the following mathematicians:
H. Wilbraham studied (1.1.5) in the year 1848 and H. S. Carslaw in 1917; J. W. 
Gibbs studied (1.1.4) in 1899 and Kneser in 1905; Kneser also studied (1.1.3) in 
1905 as well as Fejer in 1910, Jackson in 1911, and Gronwall in 1912. The par
tial sums of these series are continuous functions, while the sums of the series are 
functions with discontinuities.

It is well known that the Fourier series for a given periodic function /  does 
not converge uniformly to /(x ) on an interval where /  has a discontinuity. The 
nature of the deviation of the partial sums from /(x ) on such intervals is known 
as the Gibbs phenomenon, or the Gibbs-Wilbraham phenomenon (cf. an exellent 
survey paper by E. Hewitt and R. E. Hewitt [1]).

The modern theory of Fourier series started with Fejer’s celebrated theorem 
that the Fourier series of a continuous function is uniformly Cesaro summable to 
the function (cf. Zygmund [1]). The proof of this fact was based upon the following

Y s m { k  +  | ) x  =  1 ~ co< n + D l  =  sin (n +  1) f  > о 
2 s m f  s m f

for 0 < x < 27Г. Fejer used this inequality to prove that

U  £  ( l  -  -  V )  coskx =  - 4 - ,  ( si n(-n-t lU .V  >  0.
2 n + l j  2(n + 1 ) V J

Also, Fejer [3] used the inequality

|5„(x)| < M  (Vx € R and Vn G N), (1.1.6)

where M  < 3.6, to estimate the Lebesgue constant and study divergence properties 
of Fourier series. The existence of a constant M  was first proved by Kneser [1], 
without giving any numerical estimate of M.  Fejer [4] proved that M  can take 
the value 7r/2 +  1 «  2.57. However, Fejer had conjectured (see Fejer [5]) that the 
maximum of |5n(x)| increases as n tends to infinity and this limit is equal to

S i(* )=  (  
Jo

----dx =  1.8519370... ,x
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so that M =  1.8519... gives the best constant. Jackson [l] and Gronwall [l] 
verified Fejer conjecture.

The term Gibbs’s phenomenon (for the convergence of 5n(i)  to (я- — x)/2 in 
(0,7Г)) is usually attached to the fact that

Д - 5 П( ;^ Т ) =  Э Д = ( | ) .  1.1789797... > f .

Fejer, also stated another conjecture on the positivity of the sum (1.1.2) on 
(0, ?r), i.e. that

Sn(x) > 0  if (0 < x < тг). (1.1.7)

The above conjecture influenced several mathematicians who tried to verify it. 
This conjecture was answered positively in various ways. It was also generalized 
by many mathematicians. Fejer [8], [15] himself gave two different proofs of his 
conjecture.

These inequalities can be considered as inequalities for sums of special or
thogonal polynomials. There are many inequalities for sums of special, but more 
general orthogonal polynomials. In particular, the polynomial inequality that de 
Branges [1] used in his proof of the well-known Bieberbach conjecture [1] is equiv
alent to the positivity of the sum of certain Jacobi polynomials given by Askey 
and Gasper [1] (see also Askey [7], Askey and Gasper [2], and Gasper [5]).

1.2. Fejer-G ronw all-Jackson’s, Young’s and R elated  Inequalities

Let Sn(x) be given by (1.1.2). Since 5„(0) =  S„(ir) =  0 and S„(x) = 
Sn(27r +  x) =  — S„(—x), to describe completely the behavior of Sn, it is enough 
only to know its behavior in the open interval (0, ir).

The first proofs of Fejer’s conjecture

Sn(x) > 0  (0 < x < тг) (1.2.1)

were published by Jackson [1] and Gronwall [1] in 1911 and 1912, respectively. 
Fejer [16] stated that the proof of Gronwall was communicated to him in a letter 
of October 22, 1910 that he received from Gronwall himself. Fejer also stated that 
Jackson’s proof was communicated to him in a letter of December 19, 1910 that 
Jackson sent to him.

Jackson [1] proved the following conjectures by Fejer:

1° The function x i-> S„(x) has a maximum at the point x =  xn =  rr/(n + 1) ,* 

2 5 n(xn) > Sn—i(xn_ i);
3° lim 5„(xn) =  C(s in x/ x) dx  =  1.8519370. . . <  тг/2 +  1.n—►oo
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Gronwall [1] proved that the function x >-► 5 n(x) has maxima in (0,7r) at the 
points x ^  =  (2m + 1 )?r/(n +  1) (m = 0 ,1 ,. ..  , N ), and minima at = 2rmr/n 
(m = 1 ,... , N), where N  =  N(n)  =  [(n — l)/2]. This follows immediately from

d " s in ^ cosl!!±l}£
— Sn(x) =  У  cos kx = ----- -—:—-—-—  = 0.
dx ' s in fJfc=i 1

We note that

*<"> < y<"> < ,<"> < < y<m"> < «<? <  • • • <  y{Nn) <

Furthermore, Gronwall proved also the following results concerning the be
havior of Sn(x) at its extrema:

T heorem  1.2.1. Let m  =  0 ,1 ,. ..  , N .  Then

S . « ( № ) >  *•(№ )■
If m — 1 ,.. .  ,N ,  we have

5n+i ( ^ r * ) > S n( 2 f » ) .

PROOF. Since ^±1тг <  < ^ т г ,  i.e., *(mn+0 < *<mn) <  we
conclude that the function Sn+\ is decreasing in this interval 
Thus, we have

S„+1(*<m"+1)) > Sn+I(xW ) =  S„(*W ) +  ^  sin((n +  l)xW ),

s»+, ( № )  > 5 - О й Н  •
Similarly, from тг < ^ т г  < ^ т г , i.e., x ^ l j  < y(m+l) < ym \  we have

Sn+,(y<„n+1)) =  S„(y(mn+1)) +  7“ Г sin((n +  l)y<"+1>) > S„(yLn)).n +  1

This is the second inequality in Theorem 1.2.1. □

T heorem  1.2.2. The inequality Sn(x) > 0 holds for all n €  N and all x € 
(0, 7r) .

PROOF. First, we estimate Sn at its minima 2m n/n , where 2ттг/п < 7Г, i.e., 
2m +  1 < n. By Theorem 1.2.1 we have

s- ( ? ’) > 5~ ' G S i ' ) > - > s—  ( s r r ) .
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i.e.,

2m-fle 2m \  ^  . Л  2ттг \  
Sn -- 7Г > > 7 sin k - ------ -V n J "  к \  2m +  l J

2m+l (_!)*_! кж
--- »---- Sin -------- -к 2m +  1= E 

k=l

Since the function x sinx/x is decreasing in [0,7r], the last alternating series is 
positive, and thus ^„(x) > 0, when x 6 (0,7r).

T heorem  1.2.3. For two successive maxima of Sn, we have

> Sn{ 2mj j V 7r)  (m =  0 ,1 ,. ..  ,JV — 1).V n + 1  / V n + 1  /

PROOF. After some elementary trigonometric manipulations, we find

sin(-x7)sin(n +  l)x

Set (Gronwall [1])
(2m + 2)7r ±  t'

and
iy(t) =  — */>-(* — 2тг) — + 2tt).

Then

<M<) s i n ^sin sin t j  1

dt = "  + 1

}C0S(^+T) — cos ii!2±21l±A 

If 0 < t <  7Г and 0 < < 1, we have

c o s ( ^ ) > c o s ^ ^ > c o s ^ ± ^ ,

and then w’(t) > 0. Therefore the function t w(t) is strictly increasing in [0, тг]. 
Since ги(0) =  0, we conclude that w(tt) > 0, i.e.,
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This inequality holds for 2m + 3 < n +  1, i.e., for 2m +  3 < n (if n is odd) or 
2m +  3 < n — 1 (if n is even).

Let (2m +  3)7r/(n +1) be the last maximum of Sn in (0 ,7r). Then m =  N  - I  
(N =  [(n — l)/2]) and (2m +  5)7r/(n +  1) =  7r +  x0, where x0 € (0 ,7r). Since

5„(tt + x0) =  Sn(x0 -  tt) =  - S n{* — x0)

and 5п(тг -  x0) > 0 (by Theorem 1.2.2), on the basis of (1.2.2) we claim that

S „ ( ^ * ) > 5 „ ( ^ * )  (1.2.3)
V n  +  l  /  \  n + 1  /

for m =  N  — 1. By making use of induction and using (1.2.2), we obtain a proof 
of (1.2.3) for m =  N  — 2 , .. .  ,1,0. □

We give the following result in the form presented in the paper of E. Hewitt 
and R. E. Hewitt [1].

Theorem 1.2.4. For every m  6 N, the sequence {Sn ^  } ^ li *s

mately increasing and has limit Si((2m — 1)тг). The sequence {■Sn(^r7r)} n=1 “  
ultimately increasing and has limit Si(2m7r).

From this theorem, for the first maximum (m — 1), we obtain (1.1.7). Gron
wall [1] found further over and under shoots in the convergence (also see E. Hewitt 
and R. E. Hewitt [1]):

Theorem 1.2.5. For n < 42, the minimum values of Sn in the interval (0, n) 
form a decreasing sequence. For n > 43, there is an integer mo such that

<  5 » ( 2!!St2 ’r) (m  =  l , . . . , m 0 - l )

and

5" (2? 7Г) > (m =  m0,m 0 +  1 ,.. .  , N  -  1),

where N  =  The number m0 is or + 1 , Also, the asymptotic
equality

holds.

It seems that the shortest proof of Fejer’s inequality (1.2.1) has been given by 
Landau [1]. In the following we give his inductive proof:
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Suppose that n > 1 and 5„_ i(x) >  0 for 0 < x < тг. Let t be any extremum 
point of the function x Sn(x) in the interval (0, тг). Then from the equality

t t n
0 =  2 sin ~S'n(t) =  2 sin -  ^  cos kt — sin (n +  t — sin |

Jk=l

it follows

sin nt =  sin (n +  j )  t cos |  — cos (n + | )  t sin |  |  gjn°r |  ^  0,

i.e.,

Sn(i) =  Sn- i ( t )  +  — sin nt >  5n- i ( 0  > °- n
Thus, the function x »-> Sn(x) does not have nonpositive minimum on (0,7r), 

such that 5„(a:) > 0 for all x € (0,тг).
Fejer [3] also proved the inequality

n 1
j £  Г sin(2Jfc -  l ) i  I < 2 +  3M ( i  6 R, n € N), (1.2.4)

* = 1

where the constant M  is the same as in the inequality (1.1.6).
Lenz [1] estimated trigonometric sums of the form

n n
N n(x) =  ^ b t  sin(2к -  l)x and Pn(x) ~ ^ 2 Ck s*n 

k= l *=i

under the conditions

В В
0 < 6* < — (1 < к <  n), 0 < bk -  bk+1 < - p  (1 < к < n)

and

о < C* <  J  (1 <  к < n), 0 < ct  -  с1+, <  Д  Yj ^  ^  ” )>

respectively, where В and С are constants. Then Lenz obtained for all real values 
of x and all values of n € N the following inequalities

|iV"(l) l -  sin(6i/2B) ^  |i,n(l)l "  sin(c1/2C )'

In the following we state a few special cases of the above inequalities:
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1° If bk =  1 /к  and В — 1 then

| g l sin( 2 * - l ) x | < - ^ < 2 . 1 ,

which gives a stronger estimate than (1.2.4);
2° If Ьк =  l/(Jt +  1) and В =  1 then

3° If Cjt = 1/fc and С — 1 then

|S„(2x)| = | g | s i n 2 b  |<  < 2.1,

where Sn(x) is given by (1.1.2).
A better estimate was obtained by Bohr [1]. Bohr proved that

\Sn{x)\ <  2.

It has been mentioned before that the best constant is Si(7r) =  1 .8 5 1 9 ....
We will consider now an analogous classical result for the cosinus sum

Cn(x) =  T cos kx (0 < x < 7r), (1.2.5)
*=i k

which represents the nth partial sum of the Fourier series

The greatest value of Cn(x) is attained at the origin. Since

^/ /_ч V '' . , 1 x f x  (2n +  l ) x \
СЛ*)  =  ~  2 ^ sm kx =  ~ 2  CSC 2 \  2 ”  C°S----- 2----- )  ’

i.e.,
4 x . nx . (n +  l)x 

W W  =  -  esc -  sm —  s in---- ----- ,

it follows that the maxima of Cn(x) occur at x =  2mn/n  (m =  0 ,1 ,. . .  ,[n /2])j 
and the minima occur at x =  2mn/(n  +  1) (m = 1 ,...  , j(n +  l)/2]).
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■2mir/(n-fl)
For Л < m it follows that

^  ( 2 m n \  „  (  2Атг \
(n  +  l )  ”  /  Cn(x)dx\n +  l/ \n +  l/ J 2 \ n / ( n + l )

2 f mnr . x \—    I I sin x co t----- 7 — cos x ) sin x dx
n + l J Air V n +  1 )'Xir 

•mjr
sin2 x cot — dx ,

2 /"
= ------- - I sii ___

n +  1 J \ n n +  1
which is negative, because m < (n +  l )/2 and the cotangent in the integral is 
positive. Thus the minima of Cn(x) form a decreasing sequence in the interval 
[0,7г]. The smallest value of C„(x) is attained at • Therefore, if n is odd,
the least value of Cn(x) is C„(tr), while if n is even, it is then Сп(ъ — ^ т ) .  Using 
this fact, Young [1] has proved the following result:

T heorem  1 .2 .6 . The cosinus polynomial (1.2.5) satisfies the inequality

Cn{x) > - 1  (0 < x < tt). (1.2.6)

PROOF. We consider two cases:
Case 1. If n is odd, then

а д  =  - 1  +  5 ---------- i > - i .2 n
Case 2. If n is even, then for p =  7r/(n  + 1) we have

= C „ ( v - p )  =  J 2  Ц р -  cos kp,

i.e.,

From
1 1 _1__ 1 _  _ 1 _  2 1 
n > 2 n — 1 > 3 n — 2 n (n /2) +  1

and np
cosp > cos2p > • • • > cos —

it follows that

I ) > - ( 1 - - ) cosP > - 1-

Therefore, the inequality (1.2.6) is valid. □
Young [1] also proved the following result:
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Theorem 1.2.7. The inequality

holds.

Nikonov [1] (see also Pak [1, p. 132]) obtained the following results for Cn(x):
1° All maxima of Cn(x) for x 6 (тг/2,Зтг/2) are negative;
2° The maxima of Cn(x) for x € (0,тг) form a monotone decreasing sequence;

3° All maxima of Cn(z) for x E (0,7r/3) are positive;
4° Cn(x) has a zero in (7г/3,7г/2);
5° The minima of Cn(x) for x € (7г/3,7г/2) are negative and for a given k, 

the k-th minimum increases as n increases.
In 1925 Fejer [6] obtained the following three results about the nonnegativity 

of trigonometric sums:

T heorem  1.2.8. Let the sequence A0, Ai , . . .  ,A„,A„+i be nonnegative, mono- 
tonically nonincreasing and convex, i.e.,

{Ao > Aj > • • ■ > An > An+j =  0,

Д 2A* =  Ajt+2 — 2A*+ i +  A* >  0 (k =  0 , 1 , . . .  , n — 1).
(1.2.7)

Then

(1.2.8)
k= 1

for all values of x. 

P r o o f .  Let

c0 =  Ck =  -  +  cos x H------ h cos kx (0 < к <  n),z z
O k  =  Co 4 -  C l н-------h Ck ( 0  < к <  n).

Then

(1.2.9)

From
— = Co =  oo, cosx =  c\ — cq =  — 2<7o, 

cos kx =  ck -  ck- i  — crk — 2ak- i + ak- 2  =  A2^fc-2,



Л-(х) =  Y^, +  (^n-i -  2An)<rn_, +  An<7„. (1.2.10)
k= 0

The last equality, because of conditions (1.2.7) and (1.2.9), implies inequality
(1.2.8). □

The function D k(x) =  ck is known as the Dirichlet kernel, and 

as the Fejer kernel. We can see that

sin(A: +  l/2)x
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we obtain
n —2

and

2sin(z/2)

. \ 1 n — к +  1
f n(*) =  5 +  2 ^  -  т  i cos kx-2 £  n +  1 

R em ark 1.2 .1 . The conditions (1.2.7) can be replaced by

Ao Ai ^ Ai — A2 ̂  ^ A»»—1 — Ад ̂  An ^ An+i =  0.

R em ark 1.2.2. If we set x =  arccos t ( - 1  <  t <  1), the inequality (1.2.8) reduces to 

b 0r 0(0 + AiT,(t) + • • • + AnTn(<) > 0, 

where Tj, is the Chebyshev polynomial of degree k.

T heorem  1.2.9. For all n €  N and 0 < r  < 1/2, the inequality

i  +  r cos x -\------ 1- r n cos nx >  0 (0 < x <  2тг)

holds.

T heorem  1.2.10. Let a0 > a\ >  • • • > a„ > 0. Then the inequality 

a0P0(t) +  a iP ,(*) +  ♦•• +  anPn(t) > 0  ( -1  < t < 1) 

holds, where Pk is the Legendre polynomial of degree k.

In the special case, when ao =  «1 =  • • • =  an =  1, the above theorem was 
proved by Fejer [1] in 1908 (see, also [2]). In fact, using Mehler formula

2 Г
P*(cosx) =  -

* Jx

sin(2 к +  1 ) |
y/2(cos x — cos 9)

i = d e t k =  0 , 1 , . . . ,
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" 9 Г  sin2
Unix) =  Y ,  P‘ (C0S x) =  -  I  ■ » / , ,  - д\ de •7Г sin |  >/2(cos a: — cos 9)

wherefrom Un(x) > 0, when 0 < x <  7r. The general case follows from a* = 1 by 
summation by parts

n n —1

5^ajkPjk(t) =  ^ ( a j t  -  ak+i )Uk(x) +  a„i7„(x). 
fc=o Jk=0

Also, Fejer [1] proved the following inequality

и »(х) <  ------(0 <  * < *)■

\  П 2 /

Fejer obtained the following representation

However, if 0 < a  < x < 7Г, then

\ m 2 /

R em ark 1 .2 .3 . FVom the proof of Theorem 1.2.8 the following Fejer’s  inequality can be 
obtained

<rn =  —------ h n  cos x + ----- 1- cos nx >  0 (0 <  x <  2ir).

In fact this inequality follows from (1.2.8) if we set Ao =  n +  1, Ai =  n , A2 =  n  — 1 , . . .  , A„ =  1.
When Ao =  2, Afc =  1 /к (fc =  1 , . . .  , n)  the conditions of Theorem 1.2.8 are not satisfied  

for n >  2. Namely, the following inequality

Д2Ап»! = 0 - 2 A n +  An_i > 0  

does not hold. However, in this case, the inequality (1.2.8), i.e.,

П
1 +  ^ cos kx >  0 

fc=i
holds, because it is Young's inequality (1.2.6).

Fejer [6, § 3] has also proved the following inequalities

<rn(x) =  nsinx +  (n — l)sin2x H------ h sin nx > 0,

. / \ « . / ч sinnx ^ л 
h n\ x )  = sinx +  sin2x + ---- sin(n — l)x H-------—— > 0,

which hold for all values of n €  N and 0 <  x <  7Г.

(1.2.12)
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Fejer [8] considered the generalized sum of the form

T heorem  1.2.11. Let ,Яп be a positive, monotone decreasing and
convex sequence, then the polynomial Qn(x) is nonnegative in [0,7r], i.e.,

we conclude that (1.2.13) holds, since the following inequalities

=  <Tfc(x) > 0 (k =  1 ,...  ,n  — 1), hn =  hn(x) > 0 (0 < x < 7r)

are satisfied on the basis of (1.2.12). □
By making use of this result, Fejer gave one proof of his conjecture (1.2.1), 

which was stated in 1910. In fact by setting qjt =  1/k (k =  1 ,... ,n), Fejer [8] 
obtained from (1.2.14), for n > 3, the following inequality

The trigonometric polynomial Un(x) in (1.2.15) is positive for ir/n <  x <  
ж -  7Г/n , when n > 3, which follows from the following inequalities

Qn(x) > 0 (0 < x < тг). (1.2.13)

P r o o f . Let

s* = sjt(x) =  sin x + sin 2x H------ 1- sin kx,

(jk = сгк(х) =  s i + s 2 + -" + sk}

According to the identity

n n—2
qk sin kx =  ^  A 2qk<rk + (qn- i  ~ qn)on- 1 +  qnhn + q^ ™ ™  (1.2.14)

sinn i

i.e.,
•S'n(x) > -  sin x + — sin nx =  Un{x).

3
(1.2.15)

4/3 |sinnx| 
2 n 2 n

Thus, Sn(x) > 0 for ir/n  < x < 7Г — 7r/n and n > 3.
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For 0 < x <  7r/n , we have that 0 < kx <  ктг/п <  тг, 1 < к <  n, so that each 
term in Sn(x) is positive and 5n(x) > 0.

For тг — тг/п < x < тг, we put x =  7Г — t, so 0 < t <  п/п.  Then we have

5 .(* ) =  5 « ( * - 0  = D -
Jfc=l

i.e.,

* = 1

Since the function z sin z / z  is positive and decreasing in (0,тг), the last alter
nating series is positive, and thus Sn(x) > 0 for тг — тг/n  < x < тг and n > 3.

For n =  1 and n =  2 the inequality (1.2.1) is evident.
For qk =  n — к +  1 the inequality (1.2.13) reduces to the first inequality 

in (1.2.12). This inequality was first proved by F. Lukacs (cf. Fejer [8]), who 
transformed <rn(x) to

<7n(x) =  (n 4- l)(sinx 4 ----- h sinnx) — (sinx 4  2sin2x 4  . ■ • 4  nsinnx)

_  (n 4  1) sin x — sin(n 4  l)x 
4sin2(x/2)

from which it follows that <rn(x) > 0, when 0 < x < тг. It is evident that tfn(0) =  
<7п(тг) =  0.

If we set qk =  where m > 1, then the inequality (1.2.13) reduces to
the inequality

^ s i n f c x > 0  (0 < x < тг), (1.2.16)

which was proved by induction (Turan [1]). It can be proved (see Fejer [15]) that 
the following inequality

En ( n  4  m  — k \  sin ka sin kx л 4
\  m ) -------к------ > (0 < a < тг, 0 < x < тг)

holds.
К for the geometric series 1 4  z 4  z2 H---- we define the sums of the order m

by means of

5n,m(2) =  50,m—1(^) 4  $i>m_i(z) 4  *' * 4  —

5 м (г) =  1 4 2 4 - ” 4 г \

E
k=i
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then we have

Setting z = eMZ we obtain

■Sn,m(€ ) =  Х п>т(х)  4* *^n,m(x),

where

Xn,m(x) = X] (П + ̂  C0S kx and Yn,m(x) = + ™ ^  sin fcx.
jfc=o ' '  k = o  V m /

We can remark that the inequality (1.2.16) can be written in the form У ,̂т (®) > 0 
(0 < x < 7 г), where то > 1.

Szego [5] proved the following result:
Theorem 1.2.12. Let 7 be defined by sin2(7 / 2) = 0.7 (тг/2 < 7  < 7г). Then 

the following inequalities

Yn A X) = XI ^  О fc) sinA;X>0 (0 < X < 7t),
*=0 '  '

-^в,з(*) = ("  + 2 * ) is in fc r > 0  (0 < х < 7 ),

Yn,i(x) = ( "  + g ^  k cos b  < 0 W 2 < 1 ^
Дг=0 '  '

Xn>2(x) -  X n,2(y) = X  (П + 2 ■ *) (C0S kx ~  COS > °

(0 < x < 7t /2; 7 < у < 7г)

hold.

Considering the inequality —X'n 2 > 0, Schweitzer [1] proved that instead of 7 
one can put 27t/3 and that this bound is best possible. Another way to state this 
inequality is given by Askey and Fitch [4], using absolutely monotonic functions. 
In Section 2.5 we will consider such problems.

By a geometric interpretation of the sum

£ > * “ * (a* > a l+1),
Jfc=0
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Tomic [1] gave a method which can be applied to determine bounds of trigono
metric polynomials and series. At almost the same time Hylten-Cavallius [1] used 
similar geometric methods, proving that

x 1С'п(я) < — log sin -  + -(*■ — x) (0 < X <  7t) z &

and
0 < Sn(x) < 7Г — X (0 < X  < 7 r) ,

where the sums C„(x) and 5n(x) are given by (1.2.5) and (1.1.2) respectively.
Tomic [l] illustrated applications of his geometric method by proving Fejer’s 

theorem 1.2.8, as well as proving of the inequality (see Fejer [15])

У" ajfc sin ( к -f i  j x > 0 (0 < x < 2ir), 
k=o ' '

where a0 > ai > • • • > an > 0.
Using the same geometric method Karamata and Tomic [1] proved the fol

lowing results (see also Tomic’s thesis [2]):

Theorem 1.2.13. Let ak- i  > ak (k = 1 ,... ,n) and

n

s Q>p(x) =  Y l ak sin(afc+
*=0

where a and (i are arbitrary real numbers. Then

-ao  sin2 (p  -  I )  § < sin Щ-5а,0(х) < a0 cos2 (p  -  | )  |  (0 < x < »).

Theorem 1.2.14. Let ak- i  > ak >  0 (k = 1 ,... , n), then

0 < ak sin ( к + ] x < a0 csc ^ (0 < x < 2тг). 
jfc=o \  2/  2

If ak-i > at > 0 (k = m -f 1,. . .  ,n), then

n
—am sin2 mx < sinx ^  ak sin(2fc + l)x < am cos2 mx (0 < x < тг).

k=m
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Theorem 1.2.15. Suppose that the sequence satisfies the hypotheses
of Theorem 1.2.8, then

0 < A„(i) < -  Al csc2 |  (0 < x < 2тг), 

where Лп(х) is given by (1.2.10).

Theorem 1.2.16. Let Am ^ Am+j > ••• > An > An+j = An _̂2 == 0 and 
Д2А* = Afc+2 — 2A*+i + A* > 0 (k = m ,... ,n), i/ten

n

Wr..' ' _I
Jfc=T

i(x) < A * cos kx < Wm(x) (0 < x < 2tt), 

where

л /ft . sin2(m — l)x . sin2 mx
2wm(2x) — Am ; о ATO_i ; 2 isin x sin x

2^ m(2, )  = Am_1^ - A mCOs2(m2- 1̂ .
sin x sin X

Similarly to Fejer’s theorem 1.2.11 Tomic [3] (see also [2]) obtained the fol
lowing results:

Theorem 1.2.17. Let q k > b ( k  =  1,... , n),

qi — 92 > q2 — q$ > ■ ■ • > ?n-i — > 0, (1.2.17)

and

m—1
mg2m < У" kA2q2k-i + m(g2m-i -  92m) (m = 1, . . .  , [гг/2]).

Then Л
Qn(x) = sinfcx > 0 (0 < x < 7r). (1.2.18)

t=i

Theorem 1.2.18. The polynomial (1.2.18) is positive in (0,тг/2) if the in
equalities (1.2.17) hold and gn+i < qn/ 2.

Tomic [2] also proved the following result:
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(o ) ° n “  ^ ^ ° n+1 -̂-----(“ *)* Q ) ° n+* — ® = ^2,3,4).

Then, for 0 < x < 7Г,

Theorem  1.2.19. Let the sequence be four tim es monotonic, i.e.,

oo

In a recent paper, Steinig [1] considered sine polynomials with real coefficients 
of the form (1.2.18) and proved the following result:

Theorem 1 .2 .20 . Let

n —k

9 fc > 2 X (“ l) '+19Hi (t = 1,... ,n  — 1) and qn > 0. (1.2.19)
i= 1

Then
Qni*) > 0  (0 < i  < tt), (1.2.20)

where Qn(x) is given by (1.2.18). Inequality (1.2.20) is strict on (0,тг) if only if 
(k i ,... , ka, n) < 2, where k \ ,.. .  , ka are those к (1 < к < n — 1) for which strict 
inequality holds in (1.2.19), and (fcj,... ,fce,n) is their greatest common divisor 
with n.

It is easy to show that Fejer’s theorem 1.2.11 is a corollary of Theorem 1.2.20. 
Examples show that Fejer’s conditions are more restrictive than those in (1.2.19). 
For instance, Theorem 1.2.20 implies the positivity of

4 sin z + 3 sin 2x + (2 — e) sin 3z + is in 4x

for 0 < x < 7Г and 0 < e < 1/ 2, but Theorem 1.2.11 applies only to the case £ = 0. 
Steinig [l] also showed that his theorem is equivalent to Theorem 1.2.8.

Some extensions of the above inequalities to two variables were considered by 
Koschmieder [1]. Namely, he studied estimates for sums of the type

Sn(x, y) =  £ M * } f M  ( l )y e (M )) i  (1.2.21) 
*= 1

when
(a) A* = fc2*-2, y>*(x) = \/2 sin kx\

(b) A* = (к — I) 7Г2, (pk(x) — y/2sm(k — 1)*;
(c) A* = fc27r2, y>k{x) = \/2cos kx.
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2 sin kx sin ky л ,
~~2 2_^----- ĵ 2----- > 0  (0 < X < тг, 0 < у < тг), (1.2.22)

T heorem  1.2.21. The following inequalities hold:

2 sin(fc — x)xsin(k — J)y 
' ° < ^ E  (1 _  1) ,  2 < !  (0 <  i  <  it, 0 <  у  <  ?r),

1  ̂ *2 ^  cos kx cos ky  ̂ 1 
~6 < ir2 ^  P  < J  '

The inequality (1.2.22) follows from the Fejer-Gronwall-Jackson’s inequality 
(see Fejer [17] and [14]).

Fejer [12] also stated the following more general result:
oo

Theorem 1 .2 .22 . Let £  |A*| < oo. If 
k=l

oo
/(*) = £  A* s in b > 0  (0 < * < » ) ,  (1.2.23)

jfc=l

then
oo Л

9(xiy) — X / IT sinArxsinfcy > 0 (0 < х ,у < 7г), (1.2.24)
Jt=i

and conversely.

Proof. Let x, у € [0,7r] and let a = |x -  y| and b = min(x + у, 2тг -  (x + y)). 
Then a, 6 e [0, тг].

Since

0(*,y) =  \ f a f W dt'

(1.2.23) implies (1.2.24). In the other direction we have

/ ( I )  =  lira  £ ( M ) .  D
y—0 Sin у

Similarly, we can prove:
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Theorem 1.2.23. Let £  |Ajt| < oo. If
Jk=l

oo
f i x) =  ^ 2 x ksin(k -  | ) x > 0  (0 < x < тг),

Jfc=i

then

° °  Л
9(x> У) =  ~— sin (к -  I) x sin (к -  1) у > 0 (0 < x, у < 7г),

* = i  2

and conversely.

Using Theorem 1.2.22, Askey and Fitch [2] proved that the inequality 

В - 1 ) * + 1 ( ^ ) 2Г> 0  (r =  1 ,2 , . . . )

holds for all real x. This inequality was stated as a problem by Lyness and Moler 
[1]. Askey and J. Fitsch [1] gave the following generalization of the above result:

Theorem 1.2.24. Let 0 < x* < n and N = 1, . . .  , n, where n = 1 ,2 ,...,
then

N  n .
T T  s in  fcx;

Е П - ^ > 0  k= i  i = i

// 0 < X i  < 7Г and n =  3 ,4 ,..., then

oo n . .
E

l T T  s m  ЯХ i

jt= i i = i

Koschmieder [1] considered also inequalities for s'n(x,y) = ^ -5n(x, y), where 
sn(x,y) is given by (1.2.21). For example, in the case (a), he proved that

5n(*> У)>0 (0 < у -  x < тг, 0 < у + x < тг)

and

*'n(x,y) <0  (0 < x -  у < 7Г, 1 < x + y < 2тг) 

and, in the case (b), that

sn(x> У) > 0 (0 < x < у < тг).
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1.3. Inequalities of Rogosinski and Szego and Their Extensions
Let К  be a class of all series

/ ( « ) «  f > z " ,  
k=o

which converge in \z\ <  1 and satisfy |/(г)| < 1 for \z\ < 1.
Rogosinski and Szego [1] considered the bounds for the following partial sums

П
Sn(z) =  ^2ckZk (n = 0, 1,. . . ), 

k=0

using three methods for estimating the upper bound of the |Ln|, where

n

L n  =  У ^ ^ к С к  
k=0

and the coefficients Ao, Ai,... , An satisfy certain conditions.
These methods are based on the following facts:
1° Let An ф 0 and

oo

y j \ n + An_iz H-----f Ao2rn =
k=0

then
|Ь„| < |/io|2 + |^ i |2 H------Ь 1/*п|2.

2° For n > 2 the following inequality

n —2
\ L n \ <  +  1 ) |A *  — 2 A *+ i  +  Ajt-f-21 +  л |А п - 1  — 2A n | +  ( n  - f  l ) | ^ n |  

k=0

holds. If the conditions (A* real)

A* — 2А*+1 + Ai+2 > 0 (A: = 0,1,... , n — 2), (13 1)
An_i — 2A„ > 0, An > 0

hold, then we have that
\L„\ < Ao, (13-2)

with equality if and only if f(z)  = e, |e| = 1.
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3° Let А к be real numbers. Then the inequality (1.3.2) holds if the cosine  
polynomial

Лп(х) = -£■ + Ai cosx H------f-An cosnx (1.3.3)

is negative. This fact follows directly from the following equality

r2jr
Ln = lim — f  f  (retx) A„(x) dx. 

r^ 1 *  Jo

Using 2° Rogosinski and Szego [l]  considered bounds for the absolute v a lu e  
of the sum

7n(z) = a s„ (« “/n) +  ?  0, a  ^  0, n >  1),

where а, /?, a, b are real or complex constants. Namely, if f  € K ,  they proved 
that the relation

ore® + fieb = 0

represents a condition necessary and sufficient for the |7n(z)| to be uniformly 
bounded for all n € N and all \z\ < 1.

The following cases are specially interesting:
1. Case when ot = 0 and b < 0.
Theorem 1.3.1. Let \z\ < 1. Then

|<*Sn(*) +  f3sn (z e bt n)| <  |a  +  (b  <  0, a  +  (3eb =  0).

For or =  — 1 and (3 =  e b, this result reduces to: 
Corollary 1.3.2. Let \z\ < 1. Then

sn(pz) -  pnSn{z) 
1 -  pn <  1 (0 <  P  < 1; n G N).

2 . Case when a and b are purely imaginary.

Theorem 1.3.3. Let f  £ K. Then the inequality

| зп(ге'*^п) +  в„(ге- ‘' / 2") |< Mn (И  < 1)

holds, where

Mn = 2 s m £ § P 2 ( c°s £ )
Jb=o
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and Pk is the Legendre ‘polynomial of degree k. 

Some bounds for Mn follow:

Mn < 2n sin < 7Г, 
2 n

/•1r/2
Mn < lim Mn = 2 I Jq(x)2 dx = 2.155... ,

"-><» Jo

where J0 is the Bessel function of the order zero.
Regarding to nonnegativity of the polynomial (1.3.3), Rogosinski and Szego 

considered a special cosine polynomial

C<»(x) =  i  +  ^  +  ^  +  - + ^ f ,  (1.3.4)

which is similar to Young’s polynomial (1.2.5).
Theorem 1.3.4. For all real x and all n 6 N the inequality

C?>(*)> 0

holds.

PROOF. For n = 0-, 1,2 we find easily

C'1)(x) =  =  i  +

„(D, N 1 cosx cos2x 2 /  3\ 2 7 7
Л ) = 2  + —  + —  = 3 ^ + 8 j  96 96'

Now, we consider the case when n > 3. Evidently, Cn (̂O) > 0. Because of 
2Tr-periodicity of the sum Ci^(i) and Ci^(—x) = C^(x), it is enough to consider 
only the case when x € (0,7г].

Using the formulae

. (2 n + l)x sin-----------1 n-  + V  cos kx = ------T
2 h  2 s in |

and
sin (2*+^х- _  sin2(n + l) f

^  2 sin f  2 sin2 fk=о 1 1
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we obtain the identity

П- 2  ft - 2 ( k + l ) x  • 2 nx
2sin2 -C (1)fx>) = V ___ — ___?_____ + —

9  n  W  2 ^ , ( U  - U 9 V t  4 - . ^fcr j(*  + 1) (* + 2)(*+3) n(n + 1)

+ 2
П +  1

Since
о (n + l)x . * nx . (2n + l)x . xsill ---- -----  — sin —  = sin----- ------ sin —,

2 2 2 2 ’

we conclude that Cn ^(x) > 0 , when (2n + l)x < 27Г, i.e., when the condition

7Г 1  _  2 7 Г +  

x + 2 2x
„ ^  7Г 1  2 7 Г +  X  _  / 1  О A\n + l < -  + -  = — ----= P (1.3.6)

is satisfied.
On the other hand, according to the above property, we have

_  . о X  \ 1 . о X  l . o  1 . X

m 2 “ (*  ̂— з sln 2 + l 2 Sm x — n"+T Sm 2 ’

which also means that ci^(x) > 0 , when the condition

n + l > _ , J “ f  , ,  = — A ------ - = (3 (1-3.7)
J sin § + ^  sin x Sin §(3 + cos x)

is fulfilled.
To prove the statement, we will divide the interval (0,7r] in two intervals 

(0,7Г/3] and [7г/3,7г].
At first, we suppose that 0 < x < 7r/3. Then we can prove that P > Q, i.e.,

sin ^(3 + cos x) > r———. (1.3 .8)
2 2тг + x

Since

c o s * > l - i * ’ and = 3
2 x/2  ”  тг/6  тг

in order to prove (1.3.8) it is enough to verify that (27Г + x)(4 — x2/2) > Sir, i.e., 
x2/2  + 7ГХ < 4. Since 0 < x < 7r/3, the last inequality is indeed valid, because of

Y  + , r i S I5 +  T  =  l 8 ‘ < l 8 < 4 -
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Thus, we have proved that P  > Q. Then the inequality C „ \x )  > 0 holds, 
because at least one of the conditions (1.3.6) or (1.3.7) is satisfied.

Finally, consider the case when x 6 [7г/3,7г]. Setting t = sin(x/2), we have 
that 1/2 < t <  1. Since

t H-> g(t) =  sin 7̂ (3 + cos x) = 2t(2 — t2) 

is a concave function on [1/ 2, 1] (g"(t) = - 12t < 0), we conclude that 

g(t) > min(y(l/2),y(l)) = g( 1/2) = 7/4

and Q < 24/7 < 4, which means that the condition (1.3.7) is fulfilled for every 
n > 1. □

Tomic [4] improved the above mentioned result of Rogosinski and Szego. 
Namely, he proved the following result:

Theorem 1.3.5. For all real numbers x and all n > 2 there is a constant 
К  > 0 ( independing on x and n) such that the inequality

Ci»(*) > *  > ijg  (n - 2)

holds.

R em a rk . Using the Tomic’s idea, the lower bound of the constant К  can be replaced by 
1/73. Furthermore, if we take n > 4, the constant К  can be improved so that К  >  1/67.

P r o o f .  From the proof of Theorem 1.3.4 we see that C ^ \x )  > 7/96. Be
cause of that, we suppose that n > 3, and, of course, 0 < x < 7Г. Notice that all the 
terms on the right side in identity (1.3.5) are positive in the interval (0,27r/(2n+l)). 
Taking only the first term (к =  0), we obtain the following inequality

<*»(.)>  J  ( ° < * < ^ ) -

On the other hand, from the identity (1.3.5) it follows that

С&'Ч») > g + g c°s2 2 “  2(n + l)sin (i/2) =

We consider now the interval [27r/(2n + I)»*]- By setting t = sin(z/2), we
have

,,(х) =  i  -  =  « 0 ,
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where sin(Tr/(2n + 1)) < t < 1. Since the function t *-» <}>(i) is concave (^"(0 < 0) 
on that interval, we have that

<p(x) > min (ф ^sin j  , <£(!)) .

Evidently, the right side of this inequality depends on n. Notice that

In order to determine inf ф (sm 5^ 1) > ^ 1S enough to investigate the function 

9 ьч g(9) = i  — i  sin2 в —3 б (7r + 0)sin0

for 0 G (0,7г/7]. '
Since д(в) > g(тг/7) = 1/72.14... (в € (0 ,тг/7]), according to the above we 

conclude that we can take the value 1/73 for K.
If we suppose that n > 4, the constant К  can be improved. Namely, than we

have
inf ф ( sin = lim д(в) = \  □n>4 у 2n + 1 J $-*0 3 тг 67

Using the same method, Tomic [4] found a better bound for n > 1 in Young’s 
inequality (1.2.6). He proved that

cosx cos2x cosnx . л .
1 + + + "■ + -------> K \  n = 2,3 ,... ,

1 z n

where K' is a positive constant independing on n and x. One can take K' =  1/20. 
The following result is a corollary of Theorem 1.3.4:
Corollary 1.3.6. The cosine polynomial

-r / \ A0 Ai cos x A2 c o s  2 x  An cos nx
Л»(*) =  Т  + — j —  + — 3—  + - -  + - ^ П “ >

with nonnegative and nonincreasing coefficients А* (к = 0, 1, . . .  ,n), is nonnega
tive.

This result follows from

Л„(х) =  g  C l ' \ x ) ( \ k -  Al+1) + C i ' \ x ) \ n >  0. 
k=0
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Rogosinski and Szego [1] considered a more general cosine sum than (1.3.4),

C(°)fx1 -  1 | cos 1 I cos 2* , cosnx 
n 1 + a  1 + a 2 + a n + a

Notice that
> 0 (1.3.10)

for a = 1 (Theorem 1.3.4) and a = 0 (Young’s inequality).
Putting A0 = 2/(1 + a), A* = (k + 1 )/(k -fa) (к = 1, . . .  ,n), we see that 

A* > A*+i > 0 (fc = 0, 1, . . .  ,n — 1), for — 1 < a < 1. So, the inequality (1.3.10) 
holds for such values of a. Rogosinski and Szego showed that there is a number 
A, 1 < A < 2(1 + >/2), such that the polynomials C i°\x )  (n =  0 ,1 ,...) are 
nonnegative for — 1 < a < A, while this is not the case for a > A.

Gasper [1] determined this constant A. Namely, he proved the following result: 
Theorem 1.3.7. Let A be the positive root of the equation

9a7 + 55a6 -  14a5 -  948a4 -  3247a3 -  5013a2 -  3780a -  1134 = 0. (1.3Д1)

If — 1 < a < A, then Cn°\x) > 0 (n = 0,1,...). However, if a > A then 
C$?\x) < 0 for some x,

An elementary computation yields

A = 4.5678018... . (1.3.12)

Theorem 1.3.7 ia an immediate consequence of (1.3.12) and the following three 
lemmas:

Lemma 1 .3 .8 . Let a > /? > —1. If C[a\ x )  > 0 (к = 0,1,... ,n), then 
C lf \x )  > 0.

P r o o f . Sum by parts. □
Lemma 1 .3 .9 . Let A be defined as in Theorem (1.3.7). If — 1 < a < A, then 

C{n \ x )  > 0 (n = 0,1,2,3). However, if a > A ttien c£a)(z) < 0 for some x.

P r o o f . Clearly

1 + cos x

i.e.,

and

C2“ > ( l ) = 2 T ^ ( ( C O S I + l + ^ )  + 4 1 6 ( l + ^ ) - °

for -1  < a < 2(1 + V2) = 4.8284....



902

Putting t =  cos x, we have

1 ± £ d " > (I ) = t3 + - ^ < 2 -  “ ■■ 3 + “4 + 2a 2 + 2a 4(1 + <*)(2 + a) 
= t2 + pt2 + qt + r = /(*; a).

The polynomial /(<; a) has at least two equal real zeros if and only if Д = 0, where

Д = 27 b2 + 4a3, a = i(3  q - p 2), b = ^ (2 p 3 -  9 pq + 27r).

Since Д is a (strictly) positive multiple of

-9 a 7 -  55a6 + 14a5 + 948a4 + 3247a3 + 5013a2 + 3780a + 1134,

the equality (1.3.11) holds if only if Д = 0. Denoting the (unique) positive root 
of (1.3.11) by A, we find that Д < 0 for a > A. Hence /(<;a) (a > A) has 
a relative minimum in (—1, 1), it follows that if a  > A then /(f;a )  < 0 for 
some point in (—1,1). Also, since F ( - 1;A) > 0, / ( 1; A) > 0, and /(*;A) is 
tangent to the t-axis, f ( t ;A )  has a zero in (—1, 1) and is nonnegative in [—1, 1].
Interpreting these statements in terms of Сз°^(х) and applying Lemma 1.3.8, we 
get Lemma 1.3.9. □

Lemma 1.3.10. Let n > 4 and a =  4.57. Then Cio)(x) > 0.

This Lemma was proved by Gasper [1], spliting the interval (0,7r] in a special 
way and using the methods similar to ones used in the proof of Theorem 1.3.4. 

Also, Gasper [1] gives the following extensions of Theorem 1.3.7:
Theorem 1.3.11. Let a0 > ax >  ■ • • > an >  0. Then

Qo Qi cos x q2 cos 2x an cos nx
1 + A 1 + A 2 + A n + A — ’

where A w given as in Theorem 1.3.7.

Theorem 1.3.12. Let - 1  < a < A. Then

т ^  + Ё г Ь Й 005̂ - 0- *=i j=l

2 . P O S m v I T Y  AND MONOTONICITY OF SOME SUM S

2 .1 . Turan’s Inequalities
In [3] Turan has proved the following results:



n
f{x) =  sin(2 i  -  V х ^ 0 (° < 1 < *)> (211) 

k=l

then we have for the same n

" b
g(x) = 2̂ T  sinkx > 0 (0 < x < тг). (2.1.2)

*=i

R em ark 2 .1 .1 . For bjt =  1 (k =  1 , . . .  , n), the inequality (2.1.2) reduces to Fejer-Gronwal 1- 
Jackson’s inequality (1.2.1). This exhibits (1.2.1) as a consequence of the basic inequality

П
У  ^sin(2fc — l)x  > 0  (0 < x < 7r). 
k= l

Theorem 2.1.2. If the numbers ao,aif... ,a„ лте not all zero and

n

5 > *  = 0 (2.1.3)
Jfc=0

and
n

A(x) = ak cos kx > 0 (0 < x < 2тг), (2.1.4)
*=o

then

B(x) =  ^ ao + ai + k " +  a t- ‘ sin kx >  0 (0 < * < * ) . 
k=l

R em ark 2 .1 .2 . If we put ao =  1, =  aj =  • • ■ =  an_ i =  0, an =  — 1, i.e., A(x) =
1 — cosnx > 0, we get again (1.2.1).

Theorem 2.1.3. If a* (k =  0,1,... ,n) are real,

n n
£ a *  = 0 and | cos/:x |< M (0 < x < 2л-),
k=o k=о

then for 0 < x < 7Г we have 

*= 1

903

T heorem  2 .1 .1 . If the real numbers b i , . . .  , b„ are not all zero and



904

R em ark 2 .1 .3 . Putting ao =  1, ai =  as =  • • • =  an_ i = 0 ,  a„ =  —1, from this result we 
obtain the inequality

П П
-  sin kx < 2  -  sin kx =  ж — x (0 < x <  it), 

fc=l k=i

which was proved by Turan [2].

In order to deduce Theorem 2.1.1 from Theorem 2.1.2, Turan expresses (2.1.1) 
in the form

. • x , • 3x . (2 n — l)x 6i sm -  + b2 sin — + • • • + bn sin-----------> 0

which is valid for 0 < x < 2ir. Multiplying by 2 sin(x/2), he obtains, again for 
0 < x < 2n,

6i(l — cosx) + ^(cosx — cos2x) H----+ 6„(cos(n — l)x — cosnx) > 0,

i.e.,

+ (&2 — bi ) COS X + (63 — 62) COS 2x -̂---- 1"(6n — bn- i )  cos(n — l)x — bn cos nx > 0.

Thus (2.1.3) and (2.1.4) are satisfied for

a0 = bi, ai = b2 -  61, . . . ,  an_i =  bn — bn_1« Gn = —bn-

Hence, Theorem 2.1.1 follows as an application of Theorem 2.1.2.
In order to prove Theorem 2.1.2, Turan considered the function

F(*) =
k=0

Then by hypothesis

F(*) ч Jt-l
 ̂ _  — /  AQo +  a i H-------- b a * - i ) z  ,

Jt=o
Turan showed that

A ao + a1 + ,.-  + at - i s in t i=  / (" ‘,/2Re{F(1 _ ре-~)} da, (2.1.5) 
b=l *  «/o

where p = |1 — z\ = |1 — e,x| (0 < x < 7r). Using (2.1.4) this gives Theorem 2.1.2. 
In the case of Fejer’s sum (1.1.2), the representation (2.1.5) takes the form

” sinjfcx r(n~z)/2 
Sn(x) = Y ,  - 1 -  = /  Re{l -  (1 -  p e - ' ° r  } dec 

fc= 1 K JQ
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found by Turan [2]. From this, we have
.(*-*)/2

Sn (x) >  /  {1 — |1 — P*~ia \n } dot,
Jo

and, since |1 — pe~tQ \ < 1, we get further that
■(ir-r)/2

’o
Using

,(ir-*)/2

д( tt- i )/2
Sn(*)> /  {1 — |1 — /5е '“ |г} da ( n > 2).

Jo

f  Z  /  2 v - /  X  n — X \J  {—p + 2p cos a) da = |̂ 2 cos — — /?———

. о x f тг — x тг — x \=4sin _^ tan_ ---------_ j

we obtain a simple positive minorant to Fejer’s polynomial 5n(x), i.e., the inequal- 
ity E sin kx л . * X  ( 7Г — X  7Г — X \ 4——  > 4sm2- ( u n  —----------— ) (n > 2 ,  0 < i  < я-).

The representation (2.1.5) gives immediately Theorem 2.1.3.
In [2] Hylten-Cavallius studied the trigonometrical kernel

— к 2 s in |t

i.e.,

Л * .0  = X) П Г ^  (I + cos< + '"  + cos k̂ ~ '
4=1 '

The series (2.1.6) converges in the domain 0 < x < 7r, —7Г < t < 7r except 
on the three segments where 0 < x < n and t = 0 or |£| = x. The formulae for
0 < x < 27Г

^  cos kx , / . x \ ^  sin kx 7Г — x^  and = — ,
*=1 *=1 

give the following explicit expression for P(x, £):

cot ^ log |T(x, t)| 4* x (0 < x < * < ir),
4 P(x,<) =

cot £ log |T(x,t)| + X -  7Г (0 < * < X < Тг),
(2.1.7)

where T(i, <) = (tan(«/2) + tan(x/2)) /  (tan(t/2) -  tan(i/2)). Using this formula, 
Hylten-Cavallius has obtained:
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Theorem 2.1.4. P(x,t) is positive when 0 < x < тг, —тг < t < тг and |<| ф x,
гф  0 .

P roof . We can suppose 0 <  t <  тг. In (2.1.7), however, the expression 
T(x,t) is always greater than 1 and the assertion is proved for 0 < x < t < тг. For 
0 < t < x < 7rwe use the inequality

log = 2 + ~u3 + .. > 2u (0 < и <  1).

Then we get

x t tan 4 (  тг — x тг — х \
4P(x, t) > 2 cot -  ------ \  + x — тг = 2 I tan —---------- -—  ) >  0

2 tan f \  2 2 /

and thus the theorem is proved. □
By a partial summation we can express P(x,<) in the form

1 °°
■PC*»*) = 9ro(*) + 5 ^rfc(*)cosH,

z  4=1

W n P f P

00 in m x sin(* +  i ) t  dt/ 4 sinmi Г*■*(*)= E —  = Jzm=k+1 -  ■'* 2 sin it
Similarly, for the trigonometrical kernel

ai 
к

oo
Q(x,t) = Y j  Sm̂ X (sin t + sin2t H------1- sin kt)

4=1

=  E
sin fcx cos Й -  cos(fc +

. к 2 sin5t4=1 *
we obtain the following expression

4Q(x t) = (  106 ^  + * °0t \  (° < x < * < *)»
1 log|T(x,*)| ^(0 < t < x < тг).

Theorem 2.1.5. Q(x,t) is positive when 0 < x < T r ,0 < t < T T  and t ф x.

Using Theorem 2.1.4, Hylten-Cavallius [2] has given proofs of Turan’s theo
rems 2.1.1 and 2.1.2. For example, for Theorem 2.1.2 he obtains

1 Г0 < -  / A(t)P(x, t) dt =  a0r0 + a in  -\------\- anrn
* J-n

OO . , /  min(4—l,n ) \

= E ^  E -)-*<*).
4=1 \  m =0 /
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We conclude with two proofs of Turan’s theorem 2.1.1.
Proof (Hylten-Cavallius [2]). We have

я(х ) sin kx = Y I  ~ /  Л 0  sin(2fc -  1 )tdt
te l *  te l *  *  ■ > -*

^  sin kx 1 f n
= X! ~ г ~  • -  /  /(0  sin(2* -1)* Ai=1 K * J-ir

and the assertion is proved.

sin kx . .sin(2A: — 1)H d<,

i.e.
2 f*

g ( x ) = -  f ( t ) P ( x , 2 t )  s i n  t d t  >  0  ( 0  <  X <  7 t). □
^ — 7Г

PROOF (Askey, Fitch, Gasper [1]). A simple computation shows that

d /  sin a* N _ sin(a — 1)< 
dt ya^sin*)0/  (sinf)®*1

Letting a =  2k and t — x/2 we see that

sin kx __  ̂ {*!2 / sin x /2 \ 2* sin(2A: — l)t
A: J x/2 V sin< /  s*n*

Thus
£ ^ s i n b  = 2 /  s in i^ y *  sin(2fc -  l)t
^  *  J  x / 2  V S m i  /  S m t

But 2 te i  6»r2t 1 sin(2£ — 1)< > 0 (0 < г < 1) if J^tei bisin(2fc — 1)< > 0 and 
not all 6* are zero. □

2.2. Positivity of Some Classes of Trigonometric Sums
In 1958 Vietoris [1] published a dramatic improvement of the inequalities of 

Fejer-Gronwall-Jackson and Young ((1.2.1) and (1.2.6)). Namely, he proved:
Theorem 2 .2 .1. If a0 > ai > ••• > an > 0 and (2k)a2k < (2A: — l)a2*_i 

(к > 1), then
n

sn(x) == X ajk sinkx > ® (0 < x < 7t) (2.2.1)
k=l
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and

<„(x) = cos kx > 0 (0 < x < 7r). (2.2.2)
fc=o

Vietoris observed that (2.2.1) and (2 .2 .2) follow from the corresponding as
sertions for the special case in which a* = c*, where

2k — 1
C0 =  Ci =  1, C2k =  C2fc+l =  — — — c 2k-1  { k  >  1 ),

i.e.,
C2k =  C2Jt+i = 2~2k ^  ̂^ (k > 0). (2.2.3)

This is the extreme case of equality in the inequalities for the numbers a*. 
Theorem 2 .2 .2 . If Ck are given by (2.2.3), then

n

<7n(z) = ^cjfcsinfcz > 0  (0 < x < 7t) (2.2.4)
ifc=i

and
n

r„(i) = °k cos kx > 0 (0 < x < 7t). (2.2.5)
k=o

These two theorems are equivalent (see Vietoris [1]). Theorem 2.2.2 is obvi
ously a special case of the first theorem. On the other hand, Theorem 2.2.1 follows 
from Theorem 2.2.2. For do > di > • • • > dn > 0, a summation by parts shows 
that

n

Y  ° kd k  sin kx > 0 (0 < x < 7Г)
Jfc=l

and
n

Ckdk cos kx > 0 (0 < x < 7t).
Jfc=0

Letting ak =  Ckdk (0 < к < n) Theorem 2.2.1 follows.
R em ark 2 .2 .1 . It is of interest to note that c*. has order of magnitude k~1̂ 2 as apposed 

to the order of magnitude fc-1 for the coefficients in the earlier inequalities (1.2.1), (1.2.6), and 
(1.3.10).

Rem ark 2 .2 .2 . This paper of Vietoris was unknown up to the appearance of D. S. Mitri- 
novic’s book [1], where this result has been treated in p .255. Later, Askey and Steinig [1] have 
also performed a valuable service in drawing attention to Vietoris’s theorem (see, also, a paper of 
Brown and E. Hewitt [1]). In a recent paper about these inequalities, Askey [6] writes: “Times



909

had changed enough so that Mathematical Reviews gave up trying to get a review of [7]* after 
it was sent back unreviewed by three people”.

Askey and Steinig [1] gave an alternative version of Vietoris’s proof of Theorem 
2.2.2. They use some of Vietoris’ ideas, but many of the difficulties of his proof 
they replace by easier arguments. For the proof they need the three following 
lemmas:

Lemma 2.2.3. Let m > 1. Then (2™) < 22тп(пт)~J/2.

P r o o f .  Let =  m 1/ 22-2m (2™). Then 7m <  7m+i for m >  1; and by 
Stirling formula, 7m —> 7Г-1 /2 as m —► oo. □

Lemma 2.2.4. Let the sequence {c*}£l0 be defined by (2.2.3). Then for
0 < x < n,

°° °° 1 £ *
Ck sin kx  =  Y , c* cos kx =  cot • (2.2.6)

k=l 4=0

PROOF. For \z\ <  1, z  ф  1, we have (1 — z ) ~ 1 2̂ =  Y ^L o c2kZk. Since C24 =  
c24+i> it follows that

( i + z ) ( i - z 2r i / 2 =  f ; c * z *
Jfc=0

for |z| <  1, г ф ± 1. On setting z  =  e,z (0 <  a: <  tt) and separating real and 
imaginary parts, we get (2.2.6). □

Lemma 2.2.5. Dei P r(x) =  ]C*=o^ke**r> where b0 >  b\ >  • • • > br > 0. 
ТЛеп /or n >  m >  0 we have

(2-2-7)

PROOF. Sum by parts and use the standard estimate 

4=0 V /  У

Now we give Askey-Steinig’s proof of Theorem 2.2.2.
P r o o f  o f  (2 .2 .4 ). We may assume that n  >  2. Different arguments are 

needed for each of the intervals 0 <  x <  7r/n, тс/п <  x <  тс — n / n  and тг — тс/п <
X <  7Г.

In the first case, all terms in the sum are nonnegative, and the first is strictly 
positive.

* [7] is the Vietoris’s paper in references of Askey’s paper [6].
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For тг — 7г/п  < х < тг, we set х = тг — у, so that 0 < у < тг/п. If п is even, 
i.e., n = 2m, we have

2m
<Tn(x) = Ck  sin ky

*=l 
m

= X X е2*-1 sin(2fc “  1)2/ -  C2k sin 2ky) 
k=1

The last sum has positive terms since t  »-> sin t / t  is decreasing function on (0, тг] 
and 2ky < 2my = ny < тг. And if n is odd there is an extra term, c_„ sin ny, which 
is positive for 0 < у < тг/п.

If n > 3, we must still consider the interval тг/п < x < тг — тг/п. There we 
have sinx > sin(Tr/n) > (?r/n)(l — тг2/ 6п2). Now by Lemmas 2.2.4 and 2.2.5 we 
obtain

<rn > ( i  cot — V / 2 -----En±3_.
\2  2 /  sin(x/2)

Hence, for тг/п < x < x -  тг/п, we find

2- ^ n ( x ) > ( ^ ( l - g ) ) ,/2 - 2 CK+1. (2.2.8)

The first term on the right hand side of (2.2.8) is decreasing in n for n > 3, 
and C2m = C2m+i for m > 0. Hence, the right hand side of (2.2.8) is positive 
for n = 2m — 1, if it is positive for n = 2m. And for n =  2m it follows from 
Lemma 2.2.3 that the right hand side of (2.2.8) is at least equal to (2тгт)_1/ 2 {тг(1— 
тг2/24т2)1/2 — 2у/2,} > 0 ( т  > 2). Therefore <7п(х) > 0 for тг/п < х < тг — тг/п. □

PROOF OF (2 .2 .5 ). The result is obvious for n = 0 and n = 1, and an 
elementary computation shows that t 2 ( x )  = cos2x + cosx + 1 /2  > 0. We can 
therefore assume n > 3.

Firstly, we observe that r„(x) > 0 for 0 < x < тг/п since

d,T n
*** sinfcx < 0 (0 < x < тг/п)

Jk=l

and

ln/2] kn
г п ( т г / п )  = X) (C* “  cn-k) COS > 0.
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Secondly, we show that rn(x) > 0 for тг-тг/(п + 1) < x < тг. We set у = тг-х, 
and write

[(n—1)/21
r»(*)= £  c2*(cos2fo/ — cos(2 к -f l)y) + £n, 

k=0
where Sn = 0 if n = 2m — 1 and 6n =  c2m cos 2my if n = 2m. When 6n =  0, the 
monotonicity of cosx (0 < x < тг) shows that rn(x) > 0 for 0 < у < ж/п. When 
n = 2m, we have

rn(x) > c2m(l — cos у + cos 2у — cos Зу H------h cos 2my)
— C2m(l + cos x + cos 2x + cos 3x + ----h cos 2mx)

sin(m + l / 2)x cosmx cos(m + l / 2)y cos my
°2m sin(x/2) cos(y/2)

It follows that тп(х) > 0 for 0 < (m + 1/ 2)y < тг/2, i.e., 0 < у < 7r/(n + 1).
Lastly, we consider the interval ж/(п + 1) < x < ж — тг/(п +1) for n > 3. The 

same argument as for a„(x) on тг/п  < x < тг — тг/n  shows that it is enough if

Here, again, it suffices to consider even values of n, say n = 2m. Computation 
shows that this inequality holds for n = 4 and 6. For m > 4, the stronger inequality

( —_—  ( i ------- —— 1 ___-L= > 0
\ 2m + lV 6(2m + l)2/ /  у/жm

holds, since it holds for m =  4 and since its left hand side, when multiplied by 
у/m,  is an increasing function of m. □

Three corollaries of Theorem 2.2.1 are given also in Askey and Steinig [1].
Corollary 2 .2 .6 . Let (2к -  1)A*-* > U A k > 0 for к > 1, and 0 < x < 2тг. 

Then vn n >
Ak sin(k + \)x  > 0 and ^  Ak cos(k + |)x  > 0.

Jk=0 *=0

Corollary 2.2.7. Let Au . .. , An satisfy the conditions of Corollary 2.2.6. If
0 < v < 1/4 and 0 < x < 2тг, or —1/4 < и < 1/4 and 0 < x < тг, then

n
Y  A* cos(A: 4- ^)x > 0.
4=0
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Corollary 2 .2 .8 . Let A\ , . . .  , An satisfy the conditions of Corollary 2.2.6. If 
1/4 < v <  1/2 and 0 < x < 2n, or 1/4 < v < 3/4 and 0 < x < тг, then

n

A* sin(fc + i/)x > 0 .
4=0

Combining the above results with an argument due to Szego, Askey and 
Steinig [1] gave bounds for the zeros of a wide class of trigonometric polynomials.

We consider the trigonometric polynomials

p(x) = A0 cos nx + A! cos(n — l)x H------1- An_! cos x + An (2.2.9)

and

q(x) = A0 cos (n + I) x + Ax cos (n -  1) x -\------h A„ cos \  x, (2.2.10)

and their conjugate functions

p(x) = A0 sinnx + Aj sin(n — l)x H------\- An_i sinx (2.2.11)

and

q{x) = A0 sin (n + i)  x + Ai sin (n -  |)  x H------h A„ sin \  x, (2 .2.12)

respectively.
First, we give the theorem of Polya-Szego (see Szego [6 , pp. 134-135]):
Theorem 2.2.9. Under the conditions A0 > Xi > • • • > An > 0, the polyno

mials p(x) and q(x), given by (2.2.9) and (2.2 .10), respectively, have only real and 
simple zeros. There is, respectively, exactly one zero in each of intervals

. . *  + 1/2 , fc — 1/2 к + 1/2~  л to*  <X  <• ---and ----------------- “— 7Г < x < ------ - тг, (2.2.13)n + 1/2 n + 1/2 n + 1 n + 1

where к =  1,2, . . .  , 2n, and к =  1,2, .. .  , 2n + 1, respectively.

PROOF. The first part of the statement was proved by Polya [1], using the 
principle of argument. Szego [3] used the classical Fejer inequality

g s i n ( f c  +  l ) x  =  ^ ^ ± l > > 0  (0 <  i  <  2tt) (2.2.14)

to prove the estimates (2.2.13).
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According to the summation by parts and using (2.2.14), we find that 

W(x) = Im {e-'<"+,/2>*(P(x) + ip(*))} = Im {е-‘<"+1>*(9(*) + «,-(*))}

and n
—W(x) = A* sin (fc + |)  x > 0 (0 < x < 2n). 

k= 0

Therefore,

p(x) sin (n + I) x -  p(x) cos (n + i) x > 0, 
q(x) sin(n + l)x -  q(x) cos(n + l)x > 0,

for 0 < x < 27Г, whence

( k -  1/2 ^ ( k  — 1/2 ^ 
sgnp v^T+T/2 ’'J  =  sgn« ( т + Г  V  = (-1)k+1

This shows the existence of at least one zero in each of the intervals in (2.2.13). 
On the other hand, the polynomials p(x) and q (x )  cannot have more than 2n and 
2n + 1 zeros in [0,27t], respectively. □

Similar results about zeros of the polynomials p(x) and q(x), defined by 
(2.2.11) and (2.2.12), respectively, can be given. Also, some improvements of 
bounds can be obtained for additional restrictions of the coefficients A* (see Szego
[3]).

Askey and Steing [1] proved the following stronger result:
T h eo r em  2 .2 .1 0 . If

(2к -  l)A*_i > 2k\k > 0 , к > 1, (2.2.15)

then

^TTTI * < * < —T u Z * ’ k =  (2.2.16)n +  1/4 n + 1/4

- Г Т Л ^ К ^ Т Т м * '  k =  (2.2.17)n + 1/4 n 4-1/4
where s k and t k denote the zeros of the polynomials  p(x) and p(x) in (0,tt), re
spectively.

P r o o f .  Multiplying p(x)+ :p (x) =  Х)£=0 А*е,(п_*)г by e «("+1/ 4)1 and using 
Corollary 2.2.6, we find that

n

p (x )  cos (n +  1) x +  p(x) sin (n +  1) x =  Y  A* cos (k  +  j )  x >  0,
*=o

and
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p(i) sin (n 4- J) x — p(x) cos (n + £) x = 52  A* sin (k 4- j)  x > 0,
k= о

for 0 < x < 2я\ Putting x = ктг/(п +  1/4) and x = (k + l /2 )n /(n  +  1/4) in the 
above inequalities, respectively, we obtain

(-l)*p(fc7r/(n 4- 1/4)) >0, к = 0 ,1 ,... , n,
(-l)*p((Jfc + 1/2)тг/(п + 1/4)) >0, * = 0 ,1 ,... , n -  1,

which imply (2.2.16). Similarly, we prove (2.2.17). □
The other zeros of p(x) are at x =  2m7r±sjt and those of p(x), at x =  2m7ri<jt 

and at ж =  m7r (m =  0, ± 1 , ± 2 , . . . ) .
Recently, for the sequence

4» = * * « « 7 $ - .  (2.2.18)
\ 2 J k

Brown and E. Hewitt [1] have proved the following inequalities:
do 4- d\ cos x 4- d2 cos 2x H------h dnco sn x > 0  (0 < x < я), (2.2.19)

d\ sin a; 4- d2 sin 2x ------h d2m+i sin(2m 4- l)z > 0  (0 < x < 7r), (2.2.20)
dy sin a: 4- d2 sin2x Ц------b d2m sin2mx > 0  (0 < a; < тг — -—)• (2.2.21)Im
Using a summation by parts it can be stated (Brown and E. Hewitt[l]):
Theorem 2.2.11. Suppose that is a nonincreasing sequence of non

negative real numbers such that ao > 0 and

Q2к < -̂ k+  1aat- i (k = 1 ,2 , . . . ) . ' (2.2.22)

Then, for all positive integers n, we have

ao + cos x + a2 cos 2x 4------f- an cos nx > 0 (0 < x < 7r).

The sequence (2.2.18) is the extreme case of equality in the inequalities 
(2.2 .22).

Let 6k =  d2k. Using (2.2.19) for n := 2n +1 and (2.2.20) for m := n, we have
that

n n
У2 6k (cos 2kx 4- cos(2к + l)x) = 2 cos ^ 52 k̂ cos(2* + 2)1 
4=o 2 k=0

and
n n

y~] 6k (sin 2kx 4- sin(2fc + l)x) = 2 cos ^ 52  ̂ k sin(2* + 2 )ж >^’
4=o 2 4 =0

for 0 <  X  < 7Г.
According to the above, Brown and Hewitt [1] gave:
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Theorem 2.2.12. Suppose that {6jt}fl0 is a sequence of nonnegative real 
numbers such that

(* = 1,2,...).
Then we have

n n

bk sin(k + j)x > 0 and У"] bk cos(k + j-)x > 0 
*=o 4=0

for all positive integers n and 0 < x < 2n.

Suppose that {a*}^  is a nonincreasing sequence of nonnegative real num
bers, such that a\ > 0 and 2ka2k-\ > (2А:-+1)а2* = (2fc + a)a2jt+i for к = 1 ,2 ,..,, 
where a = 1 or a  = 2. Brown and Wilson [1] considered the inequalities

Q\ sinx -f a2 sin2x H------h an_i sin(n — l)x + a„ log 2sinnx > 0  (0 < x < тг)

and

3
ai sin x + a2 sin 2x -|------1- an_! sin(n — l)x + j a n sin nx > 0 (0 < x < 7r),

for a  =  2 and or =  1, respectively.
They have made the following remarks:
R em ark 2 .2 .3 . The constant log 2 in the first inequality is the best possible. It can be 

proved that the derivative of
n_1 • LE sin kx sm nx-------1- oc -----

Jb+1 n + 1
Jt=l

is positive when x =  r  for or > log 2, when n is even and sufficiently large. Then the sum will 
take negative values when x is close to 7r.

Also, the constant 3/4 in the second inequality is the best possible. Note that

3
d\ s in s +  - d 2 S\n2x =  (1 +  cosx ) sin*,

4

where d\ and d  ̂ — 2/3.

2.3. Positivity of Some Orthogonal Polynomial Sums 
Fejer [14] proved the following result:

Theorem 2.3.1. For 0 < A < 1/2, we have

£ С * Л(<)> 0 ( - l < i < l ) ,
4=0

(2 .3.1)
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where C£(t) are Gegenbauer ultraspherical polynomials defined by the generating 
function

(1 — 2tz +  z2) x =  У''j Ck(t)zk.
k=o

In other words, the power series coefficients of the function

г и ( 1 -  z)—1 (1 — 2tz  + z2)~x

are positive if 0 < A < 1/2.
Szego [4] proved that the Fejer inequality (2.3.1) holds for —1/2 < A < 0. 

This inequality fails to hold for A > 1/2.
In the case where A > 1/2, Feldheim [1]* proved the following result:
Theorem 2.3.2. For A > 1/2 the inequality

l _ 1 < , < 1 )  <2'“ ’

holds.

PROOF. For two ultraspherical polynomials of equal degrees but of different 
parameters, Feldheim [1] obtained the following relation:

r/2

< * - ” ■> -  i v T T ^ f - , ) ' Ш  j  ( г г )  * •

where и = (1 — sin2 x cos2 y)1/2, A > v > —1/2, A^O,  i / ^0,  0<ж<тг-  
We conclude from this that

£ § S c*w> 0  {x - v’ v* 0’ - 1<<<x)-

since the sequence {ufc}J_0 is decreasing, so that by (2.3.1)

* This paper was translated and edited by Szego. In a footnote he writes: “The main part of this 
note is a slightly modified version of a letter of the young and able Hungarian mathematician 
Ervin Feldheim, dated March 12, 1944, a few months before he became the victim of the terror 
of the Nazis. The letter was addressed to Fejer and found in his posthumous papers by Turan -
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In particular for v = 1/2, (2i/)* = fc!, we obtain (2.3.2), where A > 1/2. □
R em ark 2 .3 .1 . In the case A =  1/2 we obtain the Legendre polynomials and (2.3.2) 

reduces to П
( - ! < * <  1). (2.3.3)

Jfc=0
This is a result of Fejer (see Fejer [1], [2] and Theorem 1.2.10).

The case A = 1 is particularly interesting since

v sin(k + l)x /л .Cjt(cosx) = — 4-----— (0 < X < тг),SlIX 1C
so that (2.3.2) yields the classical Fejer-Gronwall-Jackson’s inequality

n+1 . .
S„+,(x) = £  S- ^ -  >0 (0 < x < ж). (2.3.4)

4= 1

Another generalization of (2.3.4) is the following:

£  J T J  > 0 (-1  < < < 1; -1 /2  < л < 1), (2.3.5)
4=0

which follows from (2.3.2) for 1/2 < A < 1, since the sequence {(*+2*Л_1)х+т}^_0 
is decreasing for these values of A. On the other hand, the inequality (2.3.5) follows 
from (2.3.1) for —1/2 < A < 1/2 since {*+1) 4=0 *s a decreasing sequence.

Using some asymptotic estimates, Kogbetliantz [1] proved that

( т  +  Ч п - 4  ( 2* +  a  +  /? +  l ) ( a  +  (3 +  1)4 ’̂ ( t )  ^  л го ч
(a + P +  W  I ) ” "’ ^

when — 1 < t < 1, for a — 0 > —1/2 and 7  = 2a + 2. Here, Pff'^it)  are Jacobi 
polynomials defined by the Rodrigues formula

(1 -  <)“ ( 1 +  t / P ^ M (t) =  £  ((1  -  t ) k+a( l  +  i )* + ") .

or by the hypergeometric representation

p(«.»(t) = ( - к ,  к +  a + /? +  1; a  +1; , (2.3.7)

where the generalized hypergeometric series is defined by

Y"' (a i)4  “  ' (a p)* ** 
rF,(al t . . .  ,ap-,bu . . .  ,6,; ‘) = E  (4,)t . . . (ЬД ' fci'
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y v  (2A +  2 ) .  »(fc +  A)c , (t) >  Q ( _ ! < < <  1, A >  0). (2.3.8)

jb=o “  к>Л

We note

C‘ W = ( A T f e P*“’a)(<)’ “ = A- X/ 2'

The limit case of (2.3.8), when Л —► 0, gives the Fejer kernel Fn(x), t = cosx, 
defined by (1.2.11).

Using the inequality (2.3.3), Fejer [2] proved a special case of (2.3.8), when 
A = 1/ 2, i.e.,

E  + 1 ) P k { t )  - 0  ( _ 1  -  ‘  - 1 ) 1

where P* is Legendre polynomial of degree k.
For A = 1, the inequality (2.3.8) reduces to the following inequality

t  / - ""T * (k +  1) sin(k + l)x > 0 (0 <  i  <  tt), 
i=o(n >■

because of Cj(<) = sin((fc 4* l)x)/sinx, t = cosx. The sign > in this inequality 
can be replaced by > ,  if 0 <  x <  7Г. This inequality was proved by Fejer [12].

Also, Fejer [13] proved (2.3.6) when or = — /? = 1/ 2, 7  = 2, i.e.,

(fc + \ )  sin(k + \ ) x  > 0 (0 < x < 7г). (2.3.9)
k=Q  ̂ '*

We note that
pil /2 , - l /2){t) Sin(n + I ) x
__________ 4 / ^ L 1 f -- pAQ 7*
p(- 1/2,1/2)(l) sin(x/2) ’

A weaker result them (2.3.9), i.e.,

E  (n -  fc)!̂  + ^ sin^  + D* > 0 (° < * < * ) .

was proved by Robertson [2]. He used it to prove a theorem on univalent functions. 
Ruscheweyh [1] proved the following result:

Actually, Kogbetliantz [1] proved the following equivalent inequality
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Theorem 2.3.3. Let A > m/2, m € N. Let ak £ R, к = 0,1,... , n, satisfy 
1 = a0 > a\ > • • • > a„ > 0.

Then for — 1 < t < 1 we have

И < 1 .  (2.3.10)
4=0 Wmi1;

The case A = 1/2, a* = 1 (k = 0,1,... ,n) reduces to the well-known Szego 
result [2].

Lewis [1] extended the case a* = 1 to

^ ( A  + l ) „ _ t  (A +  l ) t  P<“’«(<) _*

for — 1 < t < 1 when 0 < A < a + /? and (3 > a.
The following result is contained in Theorem 2.3.3.
Corollary 2.3.4. Let A > m/2 and m E N. Then for — 1 < t < 1 we have

y £ L i l l > 0 . to CUD
For m = 1, this result reduces to Theorem 2.3.2.

2.4. Completely Monotonic Functions
Definition 2.4.1. If x »-» f(x), x > 0, is the Laplace transform of a nonneg

ative measure, i.e.,

/(*) = Г  e-*‘ dp.(t\ dfi(t) > 0, (2.4.1)
Jo

then f  is called completely monotonic on (0,oo).

An equivalence of (2.4.1) with

( - 1 ) " ^ / C r ) > 0 ,  * > 0 , n  =  0 , l , . . . ,

is given by the Hausdorff-Bemstein-Widder theorem (see Widder [1]).
For example, the function x *-» x~a, a > 0, is completely monotonic since

« —  fr(«) Jo°°e.-z ,ta- l dt, a > 0.

Alternatively, for x >  0 and n = 0,1,... ,

(-i)n  ^ = (a )"i_<“+n) > °- a > °- 
Askey and Pollard [1] proved the following result:
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Theorem 2.4.1. If X is a real number, then i h i  21А1(з2 -I-1) л are com
pletely monotonic functions for x > 0, i.e.,

j g ~ l  I > 0 > ^ W > 0 -

This theorem follows immediately from the following theorem of Schoen
berg [1] (see Askey and Pollard [1]):

Theorem 2.4.2. A function x »-* /(я), x >  0, with /(0) = 1 has the property 
that x f(x )x is completely monotonic for x > 0 and all A > 0 if and only if

/(x) = e x p ( - ^  g(t)dt) ,

where 1 1—»• g(t) is a completely monotonic function.

It is enough to identify g(x) as a completely monotonic function for f(x) =  
f e(x) = 1 /x 2(x2 -f l)e, e = ±1. Indeed, we have

g(x) = - ±  (teg/( .) )  = 2 ( i  + £ p |L _ )  ,

i.e.,
f°°

g(x) =  2 I e z<(l+£cos t)dt.
Jo

Now, consider another example- Using

/ 2  . 14-0-3/2 _ 2 a 1Г(1/2) Г°° t +i / . \ j .  ^ i 
X(X +1) _Г(сг + 3/2) y0 e * a >

where Ja is the Bessel function of the first kind, defined by 

j  (t) _  f ,  i r
п!Г(п + a + 1)’n=0

we have (see Gasper [2])

Г.- (A* - «4 * - r"I1-t» ,3 ,Jo \Jo  J  Г(1/2)ха+3/2 (ж2 +  i ) a+3/

and thus we conclude that the following inequality

/  (< -£)“+3/2{“+1Л,(£)<^>0, *>°> (2.4.2)
Jo
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1
X 1 ) -

a-or+3/2 +  ^ « + 3 / 2  ■

In the case when a = —1/2, the complete monotonicity is a consequence of the 
formula

is equivalent to the complete monotonicity of the function

ф Ь г ) = 1
Using the above property and the fact that the product of completely mono

tonic functions is completely monotonic, Askey [4] proved:
Theorem 2.4.3. For k =  1 ,2 ,..., the function

1
xk(x2 + l )k

is completely monotonic.

This suggest that the function

1
xc(x2 + l)c (2.4.3)

is also completely monotonic for с > 1, i.e. that the inequality (2.4.2) holds for 
a > —1/2. Here с =  a  + 3/2.

Fields and Ismail ([1], [2]) proved this by applying an asymptotic argument of 
Darboux type to an integral representation for a iF2. They first proved (2.4.2) for 
1/2 < ot < 1/2 and then used the multiplicative property of completely monotonic 
functions to prove this result for a > 1/2.

Gasper [3] found another proof of (2.4.2). By an integration by parts,

j \ t  -  Oa+3/*ta+'Ut)de = ( °  + I )  J \ t  -  Oa+1/Iia+1Ja+ !«)</*,

Gasper considered this problem in the equivalent foYm

j \ t  -  >0, <* > 1/2, t > 0,

where с in (2.4.3) is equal to or + 1/2.
Expanding this integral as a sum of squares of Bessel functions with nonneg

ative coefficients, Gasper obtained

f \ t  -  #  = At°+1/2 f l  “» Jn+a(*/2),
Jo n=o
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23oT(g + 1/2)Г(2а + 1)Г(а + 1)
Г(3а + 3/2)

and
_  ((2а + l)/4)»((2a -  l)/4)„ (2a + 1)„ 2n + 2a n>Q  

((6a + 3)/4)„((6a + 5)/4)„ ' n! ' n +  2a ’

Thus, (2.4.4) is true.
Gasper [3] extended this case to

f \ t  -  O x- ' /2ZxJa(() d ( >  0, 1/2 < Л < a, a > 1/2, t > 0.
Jo

A more general inequality

f ( t  -  0 " +2м_1/гГ +'‘J«(0 di > 0, t  > 0, (2-4.5) 
Jo

for 0 < <  1, a  + /x > 1/2, was conjectured by Gasper [3].
In [4] Gasper proved this conjecture:
Theorem 2.4.4. J/0 < ц < 1 and a +  fi >  1/2, then inequality (2.4.3) holds. 

The equality occurs when fx = 0, a  = —1/2 or ц =  1, a =  —1/2.

2.5. Absolutely Monotonic Functions
In this section we will consider the absolute monotonicity of functions. A 

function is absolutely monotonic if its power series has nonnegative coefficients.
As we mentioned in Section 2.3, the statement of Theorem 2.3.1 can be ex

pressed as the power series

with positive coefficients for 0 < Л < 1 /2.
One extension of this result was proved by Askey and Pollard [1].
Theorem 2.5.1. The function z к-* y>(z) = (1 — z)-2A(l — 2tz +  z2) л has 

positive power series coefficients for — 1 < t < 1, Л > 0.

PROOF. Letting t = cosx and

g(z) = logip(z) = —21og(l — z) -  log(l — 2zcosx + z2),

where



i.e., z g'(z) is an absolutely monotonic function. Since <7(0 ) =  0, we conclude 
that 2 и  5(2) is also absolutely monotonic, and hence so is

n=0

for A > 0. □

This theorem is equivalent to

£  ^ T i T C‘ (t) > 0 (-1 < < < 1. A > 0). (2.5.1)
^ Л п ~ к>'

As in Theorem 2.4.1, there is a second result of this type. They can be stated 
together as:

Theorem 2.5.1'. If A is a real number then the function z к-» (1 — z)“2!Al(l — 
2tz + z2)~A is absolutely monotonic for — 1 < t < 1.

When A = 2, there is a different extension of this theorem (Askey [2]):

Theorem 2.5.2. The function z н-> (1 — zt)( 1 — z)“3(l — 2zt + г2)-2 is 
absolutely monotonic for — 1 < t < 1.

This theorem can be considered as a consequence of other extensions of Theo
rem 2.5.1 when A = 2, but these extensions are only partial extensions, since these 
do not hold for — 1 < t <  1, but only for part of this interval. The first result was 
proved by Schweitzer [1] (see Theorem 1.2.12). Another way to state his result is 
the following (Askey and Fitch [4]):

Theorem 2.5.3. The function г м ( 1  + z)(l -  z)~2( 1 — 2zt + г2)-2 is abso
lutely monotonic for —1/2 < t < 1.

Askey and Fitch [4] proved also the following similar result:



Theorem 2.5.4. The function г и  (1 -  г) 2(1 — 2zt + z2)-2 is absolutely 
monotonic for 0 < t < 1.

Putting t = cos x, we can see that this result is equivalent to the inequality 

E (c o s  -  cos(k + (cos i X -  cos(n -  к + ^)x^ > 0 (0 < x < тт/2). 

Since

_____ 1 ~  z c o s x _____ __ (3) n - k  (З)  ̂ sin(A; + l)x \
(1 -  z)3(l -  2zt + *2)2 („ -* :) ! ' it! ' (jfc + l)s im  J '

Askey [2] obtained the following result

which is equivalent to Theorem 2.5.2.
Also, Askey [2] proved the following result:
Theorem 2.5.5. The function г и ( 1 -  zt)2{ 1 -  *)-2(l -  2zt +  z2)~2 is 

absolutely monotonic for — 1 < t < 0.

P r o o f  o f  T h e o r e m  2.5.2. Let 0 < t < 1. Then
1 -  zt I -  zt 1

(1 -  2)*(1 -  2zt + z2)2 1 -  г (1 -  z)2{ 1 -  2zt + г2)2 '

The second factor on the right is absolutely monotonic by Theorem 2.5.4, with 
t = cos x, and the first factor is also absolutely monotonic, since it is

n = l

Since the product of two absolutely monotonic functions is absolutely monotonic, 
we see that Theorem 2.5.2 holds for 0 < t < 1.

Let now — 1 < t < 0 and

______ 1 - z t ________ 1 (1 _  zt)2
(1 -  *)*(1 -  2zt + z2)2 (1 -  zt){ 1 -  z) ' (1 -  z)2{ 1 -  2zt + г2)2 '

®У Theorem 2.5.5, the second factor on the right side in the above equality is 
absolutely monotonic and the first factor is
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and so it is absolutely monotonic. □
Proof of Theorem 2.5.5 is simple except when t is close to zero (see Askey

[3]).
The sum (2.3.8) has the relatively simple generating function, namely,

(2A + 2)..»(fc + 
“4  (n — fc)!An = 0 \Jfc=0 v '

А) d(x)  = < ? л ( * ,о ,

where

^  =  ( 1 - г ) 2 А + 2 ( 1 _ 2 « г  +  г 2 )А +1-  ( 2 -5 -3 )

The inequality (2.3.8) can be interpreted in terms of absolutely monotonic 
functions.

Theorem 2.5.6. The functions z «-+ G \(z , t), defined by (2.5.3) are absolutely 
monotonic for — 1 < t < 1, A > —1/2.

PRO OF. We will use the statement of Theorem 2.5.1. Since 
G \(z,t)  = Go(z,t)<p(z) 

and z <p(z) is absolutely monotonic, it is enough to prove that

Go(2,<) = ( l - * ) ( l - 2 2 t  + *J) 
is also absolutely monotonic.

Letting t = cos x, we have

because of
. ,  . . . sin(fc + l)x , sin kx sin(fc + l/2)s . л

Cl (cos x) + CLifcoex) = — Ц-----— + —----= — = 2Dk(x).*v ' * 7 sm i smx smz
Using Fejer kernel (1.2.11), we obtain

G„(z, t) = - 4 -  Ё  *>*(*)»*= 2 Ё  ( Ё  ®*(*)) * “■
1 Jt=0 n=0 \k = 0  J

i.e.,
oo

G0(z,t) = 2(n + 1) £  F«{x)zn,
n=0

which concludes the proof. □
This shows that Kogbetliantz’s asymptotic argument can be replaced by a 

very easy proof.
In [1] Askey and Gasper found several absolutely monotonic functions:
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z  I-» (1 -  г)-1"1 ( l ± 2 + (1 -  2zt + *2)1/2) °

have positive power series coefficients for — 1 < t < 1 when they are expanded in 
power series in z.

Theorem 2.5.8. The functions

z *-* (1 -  г)-|а | ( l  -  tz  + (1 -  2zt  + z2)1/2) “

T heorem  2 .5 .T. If a  >  0 or a  <  0, then the functions

and
z h ( 1 - г)"1в| (z  -  t + (1 -  2zt + z2)1/2)

are absolutely monotonic for — 1 < < < 1, a a real number.

One stronger result is the following:
Theorem 2.5.9. For a >  0 the functions

z b-> (1 -  z)“3of/4 ( l -  z + (1 -  2zt + *2)1/2) 

are absolutely monotonic for

Theorem 2.5.10. The functions

f^  = ^ z ( l S ^  (-1<A^ ’A* 0)
and

1 z sin x
f0(z) = lim f \(z )  = —-----r arctan ------------J K ' Л—*o ^ ( l - z )  1 — 2: cos я

have positive power series coefficients for 0 < x < ir.

Askey and Gasper [1] obtained the following formulas:
1° For Л ф 0, we have

£■*" о гт§ “"(* + 1)*

=  f *  sin(jfe +  1)x  V  ^ 4 ± % r  2 ” " ‘

— V '  ( V '  +  l)n~* (A +  l ) t  sin(fc +  l ) x \
(— *>> ' k\ ■ k + i  )  ■
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Using the limit case Л —»■ 0 we conclude that 

(Л + l)n-fc (Л +  1 )k sin (к + 1)з;
k\ m — > 0  ( ° < x < * )  (2-5.4)

for every A such that — 1 < A < 1.
2° Express / a(z) in the form

/a(^  = А г ^ -  г ) Im K1 -  Z)(1 “  2e,I)] ” Л

If t =  ze'1!2 then

/л(г)=мг=^)1т (1 _ 2<с°51 +<2)~Л

= хщЬ)1тЕс»АК ) <п4 J n= 0

=  A ( I ^ )  E  °n  ( в *  I )  «‘ “ ' V " *
n=0

00

= A (ib)ImE c»(<:osl ) e,w v' 1

= з ^ г Ь )  E  ( c »+. (“ S1 ) s i n  z "

= Е ( х Ё ^ Н | ) з ш ^ ) г».
n=0 \  k=Q J

Hence

i  Ё  c *+i ( cos | ) sin > 0  (° 
*=0

<  X <  7r),

for —1 < A < 1. As A approaches 0 this inequality reduces to Fejer-Gronwall- 
Jackson inequality (1.2.1).

R em ark 2 .5 .1 . This method is due to Turan [3j.

The inequality (2.5.4) is also valid when 1 < A < 2. This follows from a 
combination of results of Askey [3] and Bustoz and Savage [1].

Bustoz and Ismail [1] established the same inequality for 2 < A < 4 when 
tt/3 < x < 7Г.
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2.6. M onotonicity o f Some Trigonometric Sums

Askey and Steinig [2] proved the following result on monotonicity of the 
trigonometric sum

T-<'> - ; Щ )  < " < * < * > •  <г '6л>

where Sn{x) is the Fejer sum given by (1.1.2).
Theorem 2.6.1. For any positive integer n, we have

■j- T„(x) < 0 (0 <  * <  * ), (2-6.2)
ax

where Tn(x) is given by (2.6.1).

For n = 1 as well as for n = 2, with 0 < x <  7r, we have

т ;(х ) = — sin ^ < 0 and T2(x) =  —6 sin ^ cos2 ^  <  0, z z z

respectively.
The proof of Askey and Steinig uses the following facts:
1° Since S„(x) > 0 (0 < x < 7r),

dSn(x) ^  . nx (n + \)x /  . x— :----= > cos kx = sin — cos----- -----/ s i n - ,dx ^  2 2 / 2fc=i

and
nx (n + l)xsin — cos---- -----
2 2

. (  l \  . x л sin I n + -  J x — sin -  = 2 j

the inequality (2.6.2) is equivalent to

0n(s) > 0  (0 < x < 7r), (2.6.3)

where
9n{x) = 5„(x) cos |  + sin |  -  sin (n + |  j  x.

2° Using (1.1.3), the function gn can also be written in the form

9n(x) = i(?r -  x) cos |  + sin |  -  sin (n  + 0  x -  cos |
00 sin kx

x
k = n + l
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Then, a summation by parts and the classical inequality 
N  _ j

Y  sin kx |< ^sin ^  (0 < x < тг),
k=M

yield
7Г — X X  X  1 X

9 n{x) > ~ Y ~  cos -  + sin -  -  1 -  cot -  (0 < x < тг).

3° For n > 3 the inequality (1.2.15), i.e.,

Sn(x) > i  sin x + sin nx (0 < x < тг)О ZTl
holds.

4° The inequality (2.6.3) follows from the well-known Fejer-Gronwall-Jackson 
inequality (1.2.1), i.e., 5n(x) > 0  (0 < x < тг), on those subintervals of (0,тг), 
where

sin ^ — sin ( n + r  1 x > 0.

This is the case if x < тг and
(n+9 *-

(2m + 1 ) t t  2(m + 1)тг------------ < x < ------------,n + 1 n
for some m, 0 < m < [(n + 1)/2].

Using the above mentioned facts and considering separately three intervals 
(0,2тг/п), [2тг/п, 2тг/3], and (2тг/3,тг), Askey and Steinig [2] gave the proof of 
Theorem 2.6.1.

The inequality (2.6.2) is equivalent to a special case (A = 0, a = 3/2, (3 = 
—1/2) of the following inequality

<2“ »
which was conjectured by Askey and Gasper [1], for 0 < A < a + /?, P > —1/2, 
except when A = 0, <* = —/?= 1/2, when the sum is nonnegative and there 
are cases of equality. It was shown that this conjecture holds for (!) >  a, for 
101 < <* < 0 + 1» for 0 < A < 0, and for some other special cases. More details 
about (2.6.4) will be given in the next section.

Using (2.6.4), with a = 3/2, /? = -1/2, 0 < A < 1, Gasper [4] proved a more 
general result than (2.6.2). Namely, he showed that for 0 < A < 1, the inequality

d_ У '  (A + l ) „ - t  (A + l ) t  Sin(fc + l ) g _  0 to < х < ж )  
dx ^  (n -  *)! Jfc! (k +  l)s in ( i/2 )

is true. It is stronger than (2.5.4).
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2.7. Positivity of Some Jacobi Polynomial Sums
In this section we will give several general results on positivity sums, which 

include Jacobi orthogonal polynomials. The basic results on this area belong to 
Askey [1-7], Askey and Gasper [1-2] and Gasper [2-5].

Feldheim’s result given in Theorem 2.3.2 is 
Theorem 2.7.1. If

>(<*.«) 

i)
« >

Jfc=0
then

>W) 

M  1)

Askey [1] gave another result of this type: 
Theorem 2.7.2. If

>(£,<*)k=o л
then

( - l < t < l ,  * , /? > - l ) ,
Jfc=0 *4к I 1 )

У  ak~rzт------> 0  (-1  < f < 1, 0 < fi <  v).' р(£+*Ла-й)/-| \ — 4 — s _ ’ — — t
k = 0 UJ

As an application Askey [1] showed the following result:
Theorem 2.7.3. If a >  (3 > —1/2 and

^  > 0  
Jt=0 UJ

then

0 (-X < *,€ < 1), (2-7-1)
Jfc=0

for 0 < r < l/(or -f (3 -f 3), where

= (2fc -f a  + /? + 1)Г(А: + a + (3 + 1)Г(А: + 1) 
a‘ Г(А: + a + 1)Г(Ь + /? + 1)

The inequality (2.7.1) fails forn =  1, t = —1, £ = 1 if r > l/(a  + /? + 3).

Later, conditions were given so that the conditional assumption is true. The 
case a = /3 = 0 was considered by Szego [1].

As an extension of Feldheim’s result (2.3.2), the most useful one is



Theorem 2.7.4. The inequality

- * “Л (0
£ ^ 7 7 ; >0 ( - ! < < <  1) (2-7.2)
Jt=0 Гк С1)

holds when (or,/?) satisfies

a + / J >- 2 ,  /3>0 or a  + /3>0, P > ~ \ ,

except when a  = —2, /? = 0 and n = 1, or t = 1 and n > 2, or when at = 1/2, 
0 = “ 1/2.

This was obtained in steps, first some easy cases by Askey [1], then the case 
P > 0 by Askey and Gasper [1], and finally the hardest case (3 > —1/2 by Gasper
[4]. The essential cases are a  > —2, /? = 0 and a > 1/2, /? = —1/2. The remaining 
cases follow from Bateman’s integral formula ([1])

_ гдз+д + i) r< piaM(t) (i+«y> 
pw+,,„-,)(1) Г(/з + i)r(/i) ' (i + u ;
Askey and Gasper [1] considered three cases when ^ = —1/2 in the inequality 

(2.7.2). Я a = — /? = 1/2 one has the inequality of Fejeer

\r^ • ( i  1 \ 1 —cos(n + l)x .7 Sin I fc +  -  ] X =  ----- -- . — —т-----  >0 (0 <  X  <  7ГV 2У 2sm(x/2)

If a = 3/2, /9 = —1/2 and — 1 < t < 1, the inequality (2.7.2) is equivalent to 
an inequality of the form (2.6.2). If a = 5/2,/? = —1/2, then the corresponding 
inequality is equivalent to

, , „4s in ( n - l ) x  , 4sin(n +  l)x  . . (  s in n x \(n + 1)— Ц----------(тг- 1)— Ц------— < (3 + cosx) n ---- :----
v ' sinx v sinx V smx J

for 0 < x < тт. This is stronger than an inequality of Robertson [1], in which on 
the right side we have factor 4 instead of 3 + cosx.

The remaining cases a > 1/2, (3 = —1/2 were proved by Gasper [4].
Remark 2.7.1. Inequality (2.7.2) does not hold for 0 < —1/2 or for or + P < —2.

Since the case /2 = 0 has been the most useful so far, an outline of the argument 
of Askey and Gasper [1] follows:

Using the hypergeometric representation (2.3.7) they obtained
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Applying (2a)2j =  22j (a)j(a + 1/2)j and Ylk=o(a)k /^  =  (a + l)n/n!, it follows 
that

п(а,о)/л\ (а  +  2 )п /̂  a  +  1 a  +  3 1 — A
2 ^ P* W  = — ^ — 3F2 “ + 2 , - ^ —; a + 1 ,—^—; —  1 .
4=0 '

Using Euler’s beta integral, a formula of Gegenbauer which expresses an ultras- 
pherical polynomial as a sum of another ultraspherical polynomial with positive 
coefficients when the parameters inside the sum is lower than the other one, and 
Clausen’s formula expressing a special 3F2 as the square of a 2^ 1, they obtained

n ln/2] 2

E ^'0)(()=E ( e t r  (m 1/2)) .
Jt=o j = 0

where
2» i

АЛп'а> = TiTHTi--- 75Щ---- TTTn--- •
}■ I t ) , - j  \  J )n -2 j (a  +  1>п~г’

and C£(t) is the ultraspherical polynomial. Using this identity Askey and Gasper 
[1] proved:

Theorem 2.7.5. If a > —2, then the inequality

n

E ^ “’0)w > °  (—1 < < < 1)
4 =0

holds. The equality is achieved only when a  = —2 and either n = 1 or t =  1, 
n > 1. However, if a  < — 2 then 1 + P{ft,0̂ (t) = (a + 2)(1 + t)/2  < 0, if t >  — 1.

Much to their surprise (see Askey [8]), this inequality for a =  2,4,. . .  was the 
final step in L. de Branges’s remarkable proof of the Bieberbach conjecture, and 
even the stronger conjectures of Robertson, and Lebedev and Milin.

R em ark 2 .7 .2 . Let S  denote the class of functions of the form

/ ( 2 ) =  z +  c2z 2 +  c3z 3 +  • • • ,

which are analytic and univalent in the unit disk |*| <  1. In 1916, Bieberbach [1] conjectured 
that if /  € S, then

|c n |< n  (n =  2 ,3 ,. ..)»

with equality holding only for rotations of the Kobe function

* ( * ) = 2 ( l - 2) - 2 =  * +  222 + 3 2 3 +  -** .
This conjecture was proved for n =  2 by Bieberbach in his paper [1], using the area principle which 
had just been proved by Gronwall [2]. The inequality for n =  2 led to sharp forms of Kobe’s 
distortion and covering theorems. Lowner [1] introduced a representation of slit mappings in
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terms of a differential equation. The convergence theorem of Caratheodory proves that the slit 
mappings are dense in S. Lowner using Caratheodory’s method verified Bieberbach conjecture 
for n — 3. For n =  4 the conjecture was proved by Garabedian and SchifFer [1], for n =  5 by 
Pederson and SchifFer [1], and for n =  6 by Pederson [l] and Ozawa [1]. L. de Branges [1],

which reduces to (2.7.2) for A = 0 and to (2.7.3) for A = a +  /?.
This inequality was conjectured by Askey and Gasper [1] for 0 < A < a  -f /?, 

(3 > —1/2. In [1] they proved that if /3 > a and —l < A < a  + /? then their 
conjecture holds, as well as it holds when |/?| < a < /3 + 1.

If a = (3 = 1/2, -1  < t < 1, the inequality (2.7.4) reduces to Fejer-Gronwall- 
Jackson inequality (1.2.1), i.e.,

*=o
when A = 1. If A is between —1 and 1 one has to (2.5.4).

The inequality (2.7.4) can be extended to a large set of (or, (3, A). So, Gasper
[4] proved the following results:

Theorem 2.7.6. 7/0 < A < a + /?, {3 > -1/2, then

building an earlier idea of Lowner and introducing new ideas of his own, succeeded in reducing 
this conjecture to an inequality equivalent to that given above.

The inequality (2.5.1) can be stated for Jacobi sums. It is

> 0 ( -1  < t < 1; 7  > - 1/ 2).

Bateman’s integral suggests consideration of the sum

(a 4- 0 + l)n-A (a + 0 + 1 )k
t o  (" -  *)> *! ‘ '“>(1)

(2.7.3)

More generally, consider

>0 (-1<C<<1), (2.7.4)

П

when A = 0, and to Lukacs’ inequality (cf. Fejer [8])
n

Y t n  + 1 — k)s\n(k + l)x >0 (0 < x < 7t)

yMA + l)„ -t (A + l)t P[a'n (t)
L  ( n  — i i !  ‘ k\ р ( Л « ) т

and the only cases of equality occur when t — —1 for n odd and when A — 0, or —
- P  = 1/2.
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Theorem 2.7.7. Let (3 >  a, /3 > A > —1 and 2 ( 3 > \ > / 3 - a - 2 .  Then 
inequality (2.7.5) holds and the only cases of equality occur when t = — 1 for n odd, 
when a  = —2, /? = A = 0, n — 1, and when a  = —2, (3 = A = 0, t = 1, n > 1.

Theorem 2.7.8. Let a > -1 , A > max(-l,/3 -  a  -  1), and either -1  < /3 <
— 1/2 or — 1 < (3 < 1/2, A = a + /? + 1 >0. TTien inequality (2.7.5) fails to hold, 
and the integral f*(t — £)Л£Л-^^<*(0 t > 0, changes sign infinitely often as 
t —► oo.

Gasper [4] also obtained similar inequalities for sums of Laguerre polynomials 
using

Jim ^ “л (-1  + 2 t / c )  = (-1  )*£f(4)

and the fact that (0), where L^(t) is the generalized Laguerre
polynomial. Namely, Gasper obtained the inequality

Z  (A. + V  • > 0 (2.7.5)
ItZ ( ) •  bf(o)

for t > 0, which holds when (3 > A > —1/2. This inequality is a limit case of
(2.7.4).

Also, in [4] Gasper connected the inequality (2.7.4) with completly monotonic 
functions (cf. Section 2.4).

The reader who is interested in these results should first read Chapters 1, 8 
and 9 in Askey [5], and then read Gasper [4].
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ORDERED GROUPS, COMMUTING MATRICES AND 
ITERATIONS OF FUNCTIONS IN TRANSFORMATIONS OF 

DIFFERENTIAL EQUATIONS

Frantisek Neuman

ABSTRACT
This paper describes a topological structure of a 

certain group of iterations of functions. This problem 
arose in the transformation theory of differential equa
tions. By contrast to analytic methods having mostly been 
used in this area , an algebraic approach is dominated 
here.
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1. INTRODUCTION
The structure of an Ehresmanngroupoid is given by
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stationary groups of its elements taken by one from each 
of its connected components. Each of these components is a 
Brandt groupoid and stationary groups of its elements are 
always conjugate. Linear differential equations of the nth 
order, n £ 2, as objects and global transformations of 
them as morphisms form an Ehresmann groupoid. Each of its 
connected component is a set of globally equivalent equa
tions. The stationary group of a linear differential equa
tion is the set of all global transformations of this 
equation into itself, the group operation being a composi
tion of these transformations. Characterization of these 
stationary groups can be reduced to description of certain 
groups of bijections of open intervals of reals onto 
themselves, see C5D, C6U and also C8D. The present note 
shows how technically complicated proof in C7D can be 
substantially simplified by using purely algebraic approach 
involving linearly ordered group and commuting matrices.

2. NOTATION, DEFINITIONS AND SOME PRELIMINARY RESULTS
Let F denote a group of all functions f : R -*■ R 

defined by

f(t) = Arctan % ^  I H  > (1)

a,b,c,d G R, |ad - be| = 1, where Arctan for a particular 
t denotes this branch of t ^ arctan t + к that makes 
functions from F continuous. Each element f of F is a real 
analytic bijection of R onto R, f '(t) > 0 on R exactly 
when ad - be = 1. In accordance with 0. BorCivka C1D we call 
the group F fundamental. This group is not such a special 
one as it may seem to be. In fact, it is (locally) conju
gate to the three-parameter homographic group

ax + b
x cx + d

that is, up to conjugacy, the most general Lie group
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transforming R onto R having finite number of parameters, 
see e.g. [3D. In this sense for this type of groups the 
fundamental group is a general representation which, in 
addition, has this nice property that it is real analytic 
on the whole R.

Consider also the following groups whose elements are 
some functions from the fundamental group F or their 
restrictions to an open interval of reals:

F^: all increasing elements of F, i.e. those with ad -
- be = 1;

F 2: f 5 (0,«) (0,«) ,

f(t) = Arctan ь ^ п Т Л / а  ' a £ (0'” > ' b 6 R;
F 3 m : for each posivite integer m 

f : (0,ттт) -► (0,mn) ,

f(t) = Arctan £ ttnttn+tl/a ' a 6 (0'” )' b 6 R;
F 4 m : for e^ch positive integer m

f : (0,ттт - tt/2) -► (0,ттг - тг/2) , 
f(t) = Arctan (a tan t) , a 8 (0,«>) .

Let F^, F2, F a n d  F4m be equipped with the topology given 
by the relative topology on

{ (a,b,c,d) 6 R 4; ad - be = 1}

induced by the usual topology on R 4.
Let and G2 be two groups whose elements are (some)

bijections of intervals I- and I0 onto themselves, respec-
кtively. We say that the groups G 1 and G 2 are С  -conjugate 

( with respect to ф) for some positive integer к if there 
is a С -diffeomorphism ф of I1 onto I2, i.e. ф (Ix) - *2 '
Ф 6 С (I1), dф(x)/dx Ф 0 on 1^, such that

G2 = фо G^o ф 1 := { ф о ^ ф - 1 ^  G G ^ .
If G^ is equipped by a topology, the topology on G2 is
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induced by the conjugacy.
For an element a of a group and an integer n define

to be the unit element of the group,
cn] cn-i: -a := a о a for positive n, and

л CnD . -1, C-nD £a := (a ) for negative n,

a * being the inverse to a; call the nth iterate of a.
A group is called cyclic if it admits an element a 

all iterates of which from the whole group. The elements 
of this property are called generators of the group. If, 
in addition, m Ф n implies Ф a^n^, then the group is
an infinite cyclic group.

A group is (partially of linearly) ordered if the set 
of its elements is (partially or linearly) ordered and for 
any triple of its elements a, В and у the relation a £ В 
implies both a o y  £ B o y  and yo а й yo$. An ordered group 
is called archimedean if the following implication holds:

"whenever й В for some elements a and В and for
all integers n, then a is the unit element of the group".

Proposition 1. (0. Holder [23): For each linearly ordered 
archimedean group there exists an order preserving isomorphism into a 
subgroup of the additive group of the reals.

Corollary. Each linearly ordered archimedean group is commu

tative.
Let Sb2 denote the set of all 2 by 2 real matrices 

with the determinants equal to 1.

Proposition 2. The Jordan canonical form of AG SI^ is just one 
from the following four mutually exclusive cases:

I- (±1 0 \  = 
'  0 ±1/



946

11 • ( о  х°х ) , X ф О, X Ф ±1, X е R;

III. /  ±1 о \
\  1

cos X sin Л \
sin X cos X j ' Л е ( 0 ’ ,,) и

A matrix from S L 2 that commutes with a matrix in case:

I. is any matrix from S ;
II. is just any matrix of the form

(  о i / ц )  f ° r  “ *  о- n 6  R ;

III. is exactly of the form

(*;

IV. is just any matrix of the form

f cos у sin у 
у  - sin p cos у
Proof. For A G SL2 having the real elements, I and

III are characterized by a double (real) characteristic 
root ±1 whereas case II occurs exactly when the roots are 
real and different. Cases I or III correspond to the rank 
0 or 1 of the matrix A + I. In case IV the characteristic 
roots are not real, cos A±i sin X, the Jordan form of A in 
the complex domain is

( : “ ■

The form of matrices that commute with those ones 
introduced under cases I, II, III and IV follows immediately 
from C4D or can be obtained by a straightforward computation.
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From now let G denote a group of some Cn-diffeo- 
morphisms of an open interval I с R onto itself, n being 
a positive integer. Moreover, we always suppose that the 
graphs of different elements of G do not intersect each 
other (on I) .

3 . THEOREM

If G is С — conjugate to a closed subgroup of the group F^, or 
F2' or F 3 m ' or F 4 m / then either G is trivial,

or G is an infinite cyclic group iHth a generator h0 G Cn (I) , 
dhe (x)/dx > 0 and hQ (x) Ф x on I,

or G is Cn- conjugate to the group of all translations 
{hc : R -*• R, hc (x) = x + с; с G R} .

Proof of this theorem was given in £73. However, it is 
rather lengthy an involves many technical details and 
analytic investigations. Here we present a rather simple 
proof, basicaly relying upon Holder's result and the 
explicit form of commuting matrices in SI»2.

Due to the supposition that different elements of G 
do not intersect each other on I, group G can be linearly 
ordered in the following way:

for h1 , h2 G G we write hx й h2 if either h^ (xQ) <
< Ь2 (Хф) for some (then any) xQ G I or (xQ) = h2 (xQ) 
(then h^ = h2).

Moreover, G is archimedean, because for h G G, h Ф 
Ф idj (the unit element in G) we have h(x) Ф x on I and 
hence the limits

lim h 1-13 (xn) and lim h Ci:i (xQ)
i+ + °o  u i + - ° °

converge to different ends of the definition interval I 
for an arbitrary X q G I.

Thus, due to Proposition 1 there exists an order 
preserving isomorphism of G onto a subgroup G of the 
additive group R.
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If G is trivial then G = (id-j.) and G = {0}.
Let G be not trivial and G = { i e ;  i G Z) for a fixed

e G R, e ф 0, i.e. G is an infinite cyclic group generated
by a nonzero number e.Mark as h this element of G corre-e
sponding in the above isomorphism to the number e. Evident 
ly h0 G Cn (I), dhe (x)/dx > 0 and h0 (x) Ф x on I . Moreover

G = i 6 S} ,

h0 being a generator of the infinite group G.
From now, let G be not trivial, neither it be an 

infinite cyclic group. Hence there exist two of its ele
ments, h i and h2 that do not belong to the same infinite 
cyclic subgroup of G. Both h^ and h 2 are Cn-conjugate 
(with respect to ф) to the elements f^ and f2 from F^, or
2

'  a 2 b 2 
C2 d 2

matrices in the representation (1) of ^  and f2, respec
tively. Functions and h 2 are determined by these 
matrices up to a translation of f^ and f2 by к̂ тг and k 2ir; 
k^,k2 G X. However

a9 tan ф b~
a i  —----------= i— -  + b ihjohj = ф о Arctan c2 tan ф + d2_______  =

a7 tan ф  ̂+ b- 
c i ~ ---------- =T----- ~  + d ic2 tan ф + d2

(a,a0+ b,c0)tan ф (a,b0+ bvd9)
= ф о Arctan — — --- — ------ Гу---- — --- ----

(cla2+ d^c2)tan ф" + (с^Ь2+ d^d2)

Зга' or F, . 4m Let

a l b i \
C 1 - 0

and

ll " b lcl = 1 and a2d2

that shows that the group G is homomorphic to a subgroup
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G in SI»2 « Now, instead of G in SI»2 take such a subgroup 
G* in SI»2 conjugate to G,

G* = P G P_1, fixed P 6 S L 2 

/ \ _]^in which P ̂  с £ J p corresponds to one of Jordan matrices

introduced in Proposition 2. It is easy to see that if G is 
conjugate to the subgroup ф 1o Go ф in or F2, or F3m, 
or F^m , then there always exist a Cn- diffeomorphism ф such 
that

ф  ̂ о G о ф

is a subgroup in or F2, or F3m, or F ^ ,  respectively, 
having G* as its matrix representation.

Of course, groups G and G* are isomorphic. Since 
bijections h^ and h2 commute, their corresponding matrices 
commute as well. According to Proposition 2 only the fol
lowing cases can happen:

Case I.

^  is the representation of h^ (in G*) and

ad - be = 1 otherwise arbitrary,

corresponds to h2 (in G*) . In this situation we may again 
change the matrix representation such that for a suitable
Q e s l 2

we have d ) Q~1' the rePresentative of h2' of the
Jordan form corresponding to the cases I - IV in Proposition 
2; representation for h, remains the same because
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Let g^ and g2 with these matrix representations denote 
those functions that are conjugate to and h 2; A°rctan f 
for f(0) = 0 denoting this branch of Arctan f for which 
A^rctan f(0) = 0. Hence

g^t) = A°rctan (tan t) + k ^  = t + k ^  ,

where k^ ф 0 because g^ ф id. Since g^ is a bijection of I 
onto I, we get I = R, that means that in this situation 
the group G is conjugate to a subgroup of (and not of
F2' or F 3m' or F4m^ * For ^2 we ^ave followng possibili
ties .

(Case I in Proposition 2) :

g2 (t) = A°rctan(tan t) + k ^  = t + к2тт, k2 G Z,
к 2 Ф Of

that is imposssible because h^ and h 2 as well as g-ĵ and g2 
cannot belong to the same cyclic group;

(case II in Proposition 2) :

g2 (t) = A°rctan (X2 tan t) + к2тт, k 2 G Z,

that again cannot happen since
Cn1] Cn2D 2n9

о g2 (t) = A rctan (X tan t) + (n1k1+ n2k 2)11

that intersects identity at 0 for n x= k2 and n2= -kx Ф 0; 
(case III in Proposition 2) :

g2 ( t )  - A ° r e t a n r ^ l _ T  + V

for which

я 1 1 O g2 2 = A°rctan Тп2^ а п \  + 1 + (nlkl+ n2k2>"' 

that again intersects identity at 0 for n 1= k2 and n2 =
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(case IV in Proposition 2) :

g, (t) = Arctan (cos V » n V * in \ )  = t + Л + к ж2 - s m  X tan t + cos А л + K2 '
X Ф ктт,

and r _ r n Ln^J Ln2J
gl 0 g2 = + (n1k1+ n2 (k2+ Л/тг) ) тг .

Since and g2 do not belong to the same cyclic group, 
(k2 + Х/тг) /k^ is irrational that shows that

^nl kl + n2^k2 + ' П1/П2 e

is dense in R. Because the group G is closed, that is 
preserved by any Cn-conjugacy, it is Cn-conjugate to the 
group of all translations of the reals:

{t ** t + c; c G R ) .

Case II.

X ^ O ,  X Ф ±1, is the representative of

= -к1 Ф 0;

h^ (in G*), and, according to Proposition 2,

( Ц  P ^ -1 are the only representatives

of h2, since for у = ±1 the situation was already consid
ered in Case I. Hence g^ and g2 conjugate to h^ and h2 can 
be expressed as

g^(t) = A^rctan(X^ tan t) + к̂ тг,
g2 (t) = A^rctan(y^ tan t) + к2тг, and (2)
Cn,D Cn-l 2n, 2n2

gl 0 g2 Arctan(X у tan t) + (n1k1+ п2к2)тг,

the last function intersecting the identity at zero for
2 . 2 2  suitable integers n^, n2, n1 > 0 (if k^ + k2 > 0 we take
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= -k2r n 2 = k^, otherwise k2= 0 and we may take
n^ ф 0 and n 2 arbitrary). Hence the group G cannot be 
conjugated to be a subgroup of that means that 0 is the 
left end of the definition interval of g^ and g2- This 
gives k^= 0 = k 2 in (2) . Then also тт/2 cannot be in the 
definition interval of 9^^2^ because g^ (tt/2) = тг/2. Thus 
functions g^ and g 2 are defined on (0,тт/2) . Now

Cn,D Cn^D n n,ln X2+ n~ln y2
g^ о g 2 (t) = A  rctan(e tan t),

as h^ and h 2 belong to the same cyclic group that was 
excluded from our considerations. Hence the set

is conjugate to the translations

G2 = {x r* x + c , x 0 R; с G R)

with respect to i|) = In о tan : (0, тг/2) -► R since G^ = 
= A^rctan о exp (In о tan t + с) = о G2 о ф .

Case III.

t G (0 , ir/2) ,
2 2and In X /In у is irrational, otherwise g^ and g2 as well

is dense in R However the group

G^= {A°rctan(eC tan t) , t G (0,тт/2) ; с G R)

^  corresponds to (in G*) and

^  is the representation of h2. Hence
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The same reasoning as in Case II in this proof gives k^ =
= 0 = k2 and zero is the left end of the interval of 
definition of g^ and g2. Then д̂ (тг) = тг, д2 (тт) = тт, and G 
is conjugated to a subgroup of If у is rational then
g^ and g2 belong to the same cyclic group, the case already 
excluded. Hence у is an irrational number and the set

{n1+ n2u; n^,n2 G *}

is dense in R. The group

= {A°rctan _c ^an t + 1 ' 1 6 (0,lr) ' c 6 R}

is Cn-conjugate to

G 2 = {x и- x + c, x G R; с G R)

for any n. This can be seen from the fact that G^ is 
conjugate to

G3 = {A^rctan (tan s + c) , s G(-tt/2, tt/2) ; с G R}

with respect to s = t -тт/2 because
*  0 . , tan (s + t t / 2 )  x tt _  . 0 _ . ап/я , *A rctan (—  tan(s + „/2) + !> " 2 A + tan s).

Moreover G^ is conjugate to G2 with respect to arctan:
R -► ( - t t / 2 ,  t t / 2 )  .

Finally Case IV 
where g^(t) = t + X + к^тт, X ф ктт, t G R,
and according to Proposition 2 ,

+ (п 1к1+ п2к2)тт.

g2 (t) = t + у + к2тт.
Then

gl' g2 6 F1 and
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Cnj3 Cn2D 
g x о g (t) = t + (nn (Л/тт + k,) +

+ n2 (р/тг + k2) ) 7Г .

Since g^ and g 2 do not belong to the same cyclic group, 
the quotient (X/тг + к^)/(р/тт + k2J is irrational and the 
set

{nx (Л/тг + kx) + n 2 (p /тг + k2); n 1,n2 G X}

is dense in R. With respect to the fact that the group G 
is closed, relation (3) shows that G is Cn-conjugate to 
the group of all translations of R onto R , Q.E.D.
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F U N C T IO N S  D E C O M P O S A B L E  IN T O  F IN IT E  SUMS 
OF P R O D U C T S  

(O LD  A N D  N E W  R ESU LTS, P R O B LE M S  A N D  TR E N D S )

Frantisek Neuman and Themistocles M. Rasstas

In  this paper we give an account o f some o f the m ost im portant develop
ments concerning the problem  of finding necessary and  sufficient conditions for  

functions o f n real variables to be  decom posable into finite sums o f products  

of one variable functions w ith  m inim al requirements on the regularity o f the 

function. Th is problem  goes back to J. d ’A lem bert.

Functions of certain special forms were investigated by several authors 
for centuries. One of such forms is a product of two functions of a single 
variable each, i.e.,

h(x,y) = f{z)g(y)- Ш
It is known at least from the time of J. d’Alembert [2], [3] in the year 1747, 
that each sufficiently smooth function h  of the form ( 1) has to satisfy the 
following partial differential equation

S i H -  (2)
A generalization of the form, namely to a finite sum of products of one-place 
functions

h( x > =  fi(x)9i{y) (3)
»=i

was considered since the beginning of this century. In the year 1904 in the 
section Arithmetics and Algebra at the 3r<* International Congress of Math
ematicians in Heidelberg, Cyparissos Stephanos from Athens presented as

956
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a necessary and sufficient condition for a function h to be of the form (3) 
the nonvanishing of the determinant

D N(h) :=  det

dh d"h 
dx dxN/ h

dh a*h d N * lh
dy Эхду ' ' * dxN dy

aN h dN+1h "  d ™ h

= 0. (4)

d ” h d ” + l h a*” h /
'  d y ^  dxdy^  * ’ ' dx**dy^ '

His presentation with some further applications and consequences was pub
lished in [14] (see also [15]) in the same year. This three-page paper contains 
no proofs, and we have not succeeded in finding any paper of his, giving at 
least a hint of such a proof, the sufficiency part of which we consider as not 
completely trivial.

Indeed, in 1984 Themistocles M. Rassias sent a paper [12] for pub
lication (that was published in 1986) containing a counter example: the 
function

h(x, y) =  xy2 +  2/M on R2

satisfies

Hot  (  k ^  -  d e t  ( Xy2 +  y2 ^  -Vi *У)~dy dxdy

for N = l ,  but it is not of the form (1).
However, in the meantime, in 1980, Frantisek Neuman [8] and [9], 

found a correct version of a sufficient and necessary condition for smooth 
functions h to be of the form (3):

Theorem 1. Let I  and J  be unions of open intervals of the reals. If a 
function h : I  x J -> IR, having continuous derivatives for k j  < N }
can be written in the form (3) on J x J, then (4) is valid on I  x J . If, 
moreover, /,• € C N (I ) ,g i  € CN(J ) and

f l  h Jn  \
f l  n f's U o

■<N-1) A N -1) 
1 h ::: & ' - * )

for all x G I ,  and

01 92 • ■ • • 9N

det I 9' 9'2 ;;; g'N | # o  (5b)
(N - l )  „ ( t i - l )  .(^-1)

Si 9 2 ■ • ■ Я н
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D N~ \ h ) ф 0 for all ( x , y ) e l x j  (5)

holds.
If h satisfies D N (h) =  0 on I  x J and (5), then h is of the form (3) 

with functions /,- G C N ( I )  and g{ G C N (J ) , i  =  1 >N> complying with 
(5a) and (5b) (and thus { / i } ^  and { 0, } ^  are linearly independent). All 
decompositions of h of the form

N

4 x >y) =  ^ 2 M x )§ i (y )
<=1

are then exactly those for which

( A ....... f s )  =  ( f u . . .  J n ) - C t  ,

and

,9n )  =  ( p i , . . .  , gN)  C ~ l }

where С is an arbitrary n by n nonsingular constant matrix, Cf1 and C~l 
being its transpose and inverse respectively.

Remarks 1 .
a. The above JV-tuples { / i } ^  and {<7*}£Li are in fact solutions of 

certain ordinary linear homogeneous differential equations in the corre
sponding variables. The observation has occured to be useful in further 
considerations for functions of more variables.

b. The above Theorem 1 is a version of Theorem 2 in Th. M. Rassias
[12].

c. In the papers [8] and [9] F. Neuman has derived a necessary and 
sufficient condition for decomposition (3) of functions h even without any 
regularity condition.

Theorem 2 . Let I  and J be arbitrary nonempty sets. A  function 
h : I  x J —* IR can be written in the form (3) with linearly independent /* 
and gi if and only if the maximum of the rank of the matrices

for all у G J, then

(.h(x t , y j ) ) - k  =  1 , . . .  , r\ j  =  1 , . . .  ,s;
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is N  when xk G I fyj G J , and r, s are arbitrary integers. If, in addition, I  
and J are intervals, h G C d( I  x J )yd >  0, then /,• G Cd( I )  and g{ G Cd(J )  
for all i =  1,... , N.

A simple algorithm verifying the criterion is also derived in [9], and 
topological properties of functions of the form (3) in L 2 are studied in [10].

J. Falmagne, a mathematical psychologist at New York University, 
asked (cf. [6], J. Aczel [l,p. 256]) about characterizations, by functional 
equations, of the functions of the form

h : X  x У  —► IR, fi : X  —> IR, gi : У  —*■ TR}X ,Y  arbitrary sets, {/ »} inde
pendent, {</,} independent, G : IR —► IR strictly monotonic (even continuity 
may be supposed).

To our best knowledge, only very little has been done in this subject. 
Let us mention just a few comments:

Remark 2. It can immediately be observed that the function h in (6) 
has exactly the same system of isohypsis, i.e., curves

{(x , y) G IR2 : h(x , y) =  c =  const., с G IR} ,

as that of the argument of G in (6) that is, a function of the form (3) for 
which we have characterizations in Theorems 1 and 2.

Remark 3. For N  =  1 in (6), G , f  and g of the class C1 with f ( x )  • 
9'(у) Ф 0, we have

h(x,y) =  G (f (x )g (y ) ) }

hence
dh,dh r ( x )  g{yl ( )
Эх/ dy f {x )  g'(y) П  m V I  K >

is of the form (1). Thus the left-hand side of (7) has to satisfy the condition 
(4) with N  =  1.

In 1984, Th. M. Rassias [12] and in 1988, H. Gauchman and L. A. 
Rubel [7] considered functions h of the form (3) from several points of
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view. They derived some very interesting properties of such functions sup
posing their analyticity, n-times differentiability or merely continuity. Also 
convergence of sequences of these functions was studied. All three authors 
proposed a study of functions H  of three variables of the form

N
H (x ,y ,z )  =  ^ A (x )B , ( t / )C i ( z ) .

»=1

Th. M. Rassias even asked in P 286 [13] for a sufficient and necessary con
dition for functions of an arbitrary number of variables to be representable 
in finite many sums of products of one-place functions

N
H (X  i , . . .  ,Xm) =  A ‘m (*m ) ( 8)

»=1

with minimal requirements on the regularity of H.
At the beginning of 1989 there were obtained definite results concerning 

also this problem. First F. Neuman [11] observed that for three or more 
variables it is convenient first to study decompositions of the form

N
H (x  1 , х 2, ж з ) =  Ci jkAi (xi )Bj (x2 ) Ck (x3)  (9)

(and its analogue for more variables) from which we get (8) by setting 
all dj к =  0 except of an =  1. He obtained the following sufficient and 
necessary condition for smooth functions H  to be of the form (9).

Theorem 3. The function H : I  x J x К  —►IR with continuous
лЗ^ TT Ж . ч

дх^дх^дх^ “  ^ е  о̂ гт  (^) linearly independent N -tuples {A , j ;=u 

{CfclfcLi having the nonvanishing Wronskians if and only if Я  as 
a function of each single variable, i.e.,

Xi # (® 1,Х2,®з) € {1,2,3} ,

is a solution of just one ordinary linear homogeneous differential equation 
for any choice of other variables as parameters.

If a function is of the form (9) with some constants сдо then the 
question whether it is of the form with given, prescribed constants, e.g. like
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that in (8), can be answered by solving certain system of algebraic relations. 
Analogous results were derived in [11] for an arbitrary number of variables.

M. Cadek and J. Simsa have continued in these investigations in [4] 
and [5]. They derived:

Theorem 4. If

m
H (x ,y , z )  =  ^2Ai(x)<pi(y,z)

1=1
П

=  '%2Bi(y)'l’i (x ,z )  
i = i

* = 1

with linearly independent { A } ^ ,  {С * } * =1 then

m n p

H {  x,y, 2 ) =  Y 2 Y 1 ^ 2 ci i tM x )B j ( . y )C k{ z ) .
* = 1 j = 1 Jfc =  l

By using this result (that can also be extended to any number of variables) 
they obtained a characterization of functions of the form (9) by means of 
certain functional determinants without explicitly referring to differential 
equations. By a similar manner they extended Theorem 2 from two vari
ables to more variables in the case when no regularity condition on H  is 
required at all. Their results in [5] concern again decompositions of func
tions of several variables this time in the form

N
H (x  i, . . . ,Xb XJ+1, . . . ,Xm) =  f i ( xl } • ' • • • • yxm)

1=1

They introduced an original method of characterization of finite-dimen
sional spaces of functions of several variables that generalizes the notion 
of Wronskian for functions of one variable. By using this approach they 
obtained a characterization of finite dimensional linear spaces formed by 
functions of several variables by means of certain special systems of partial 
differential equations.
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This is the present stage of the story that started at least 250 years 
ago, has had a very interesting development in this century and we hope 
still several important new results will be added to it in the future.
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O N  R A T IO N A L  M A P S  B E T W E E N  КЗ SU R FA C E S

V. V. Nikulin

1 . Introduction

Here, а КЗ surface is a non-singular projective algebraic surface X  
over complex numbers field С with the trivial space of the regular 1- 
dimensional differential forms: =  0, and the trivial sheaf of the
regular 2-dimensional differential forms: Q.2X =  Ox, where the O x  is the 
sheaf of regular functions on X. The last condition is equivalent to the 
existence of a regular non-zero 2-dimensional differential form ljx which 
has no zeros on X.

Thanks to global Torelli theorem due to 1.1. Piateckii-Shapiro and I. R. 
Shafarevich [PSh-Sh], we know very much about isomorphisms between КЗ 
surfaces over the complex numbers field C. Two КЗ surfaces are isomorphic 
iff their periods are isomorphic.

Recently, I. R. Shafarevich posed an analogous question about rational 
maps between КЗ surfaces: How can one know, using periods, when does 
a rational map between two КЗ surfaces exist? A description of rational 
maps between КЗ surfaces is interesting maybe from the view-point of the 
Arithmetic of КЗ surfaces.

Let X  be an algebraic КЗ surface (over C), let Hx  =  Я 2(Х ,1 ),  and 
let Sx and Tx  be respectively the lattices of cohomology classes of alge
braic and transcendental cycles on the surface X.  By definition, Tx  is the 
orthogonal complement to Sx in Hx  with respect to the intersection pair
ing. Here and in what follows “lattice” means a “non-degenerate symmetric 
bilinear form over Z ” . Hodge decomposition of H x <S> С induces a Hodge 
decomposition of T x <8> C. It is defined by one-dimensional linear subspace
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Question 1.1. Is it true that a rational map between КЗ surfaces 
X  and У  (i.e., an inclusion over С of the fields С (У ) С CpQ of rational 
functions) exists iff there exist a positive A e Q and an isomorphism <p : 
Т у  <S> Q —► Tx ® Q  such that <p(x ■ у) =  А(ж • у) for any x,y G Т у  <g> Q (or 
(p is a similarity of quadratic forms over Q), and <p(H2>0(Y ) )  =  H 2>°(X)7

Let 7 : X ------- ► У  be a rational map between КЗ surfaces. Then a
resolution of indefinite points of 7 gives a commutative diagram

Н 2,0( Х )  С Т х ®  €. I. R. Shafarevich posed the following

Z

7
X ------ » У

where Z  is a non-minimal non-singular projective КЗ surface, a is a bi- 
rational morphism and 0 is a morphism. It gives the inclusion 7* =  
(or*)-1/?* : Ty(d) —+ Tx  of the lattices of a finite index for which 7* (H 2,0 
(У ))  =  H 2}0(X )  (7* preservers periods). Here d is the degree of 7 and 
M{d) is the lattice obtained, multiplying by d of the form of the lattice 
M . The inclusion 7* does not depend on a choice of Z , ol and /?, and is 
the invariant of the rational map 7 . Let d =  d'm2, where d! and m are the 
positive integers and d! is square-free. Then 7* gives a canonical chain of 
inclusions

Ty(d') <—  mTy(rf') =  Ty(d'm2)  ^  Tx

of lattices of finite index. Here, we use the following notations: for m G 
Q, m M  denotes the sublattice (or the overlattice) of the lattice M  where 
m M  — {mv\v G M )  with the restriction on m M  of the form of the lattice 
M. (We use the notation M m to denote the orthogonal sum of m exemplary 
of the lattice M .) We canonically (by the obvious way) identify sublattice 
mTY(d!) of the lattice Ty(d ') and the lattice TY(d'm2). This chain gives 
the isomorphism 7* : Ту (d7) Q —► ® Q of forms over Q, which we call 
the modification corresponding to the rational map 7 . At first, the lattice 
Tx  is replaced on some sublattice T'x  С Tx  (e.g., T'x  =  7*(Ty(d'm2)) or 
7*(Ту(с//))ПТх'), then T'x  is replaced on some overlattice Ty(d'), and then 
Ty(d ') is replaced on the lattice Ту by dividing the form on df.

We want to discuss here the following question which is similar to
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Question 1.2. Let X  and У  be КЗ surfaces, d' be a square-free 
positive integer and (p : Ty{d!) <g> Q —► Tx  <8> Q be an isomorphism of 
quadratic forms over Q (e.g., (p is an abstract modification of the lattices 
Tx  and Ту) and <p(H2>°(Y)) =  Я 2>°(Х). Is it true, that then there exists 
a rational map / : X ------- ► У such that (p =  /•?

We say that an abstract modification <p above is trivial for a prime p 
iff p | d! and <p induces an isomorphism <pp : Ty(d') ® Z p —► Tx ® Z p of 
p-adic lattices. It is sufficient to answer the question 1.1 for every prime 
p only, i.e., for modifications which are nontrivial for one prime p only. 
(One can deduce this from the epimorphicity of the Torelli map for КЗ 
surfaces [Ku] and the following arithmetical fact: a primitive embedding of 
a lattice S into an unimodular indefinite lattice L exists iff for every prime 
p, a primitive embedding of the lattice S <g> Z p into L ® Z p exists.)

The basic result of the paper is to show that the answer to the Question 
1.2 is positive if p =  2 and rk Tx  =  rk Ту < 5.

Theorem 1.3. Let X  and У  be algebraic КЗ surfaces with rk Tx  =  
rk Ту < 5, and <p : Ty(d) <g> Q —► Tx<8> Q be an isomorphism of quadratic 
forms over Q (i.e., <p is an abstract modification of the lattices Tx  and 
Ту) for which tp(H2>°(Y)) =  t f2,0(X ), d | 2, and <p induces an isomorphism 
(pp :Ty (d )®  Z p —¥ Tx  <8> ~Hp of p-adic lattices for any p ф 2.

Then there exists a sequence X  =  X i , X 2}... ,X n+i =  Y  of КЗ sur
faces and rational maps /,• : X,---------► X t+1 of degree 2 such that the
rational map / =  /n • • • • • /2 • /1 induces the modification tp} i.e., <p =  f * •

See the proof of the theorem 3.1 below.
The proof of the theorem is based on two of our old papers [N2] and

[N3]. If h : X ------- >У is a rational map of degree 2 between КЗ surfaces,
then the Galois involution t of this map is a symplectic involution of the 
surface X , i.e., 1 acts trivially in the space t f2,0(X ) =  Q2[X] of regular 
2-forms of X . The map h is the composition of the quotient map X  —*■ 
X/ {id, 1}  and the minimal resolution of singularities У  —► X/{id, *}. So, to 
set up the rational map of degree 2 of КЗ surface X  in other КЗ surface, one

question 1.1.
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should find a symplectic involution on X . In [N2] symplectic involutions 
(and, more generally, finite abelian symplectic groups) of КЗ surfaces were 
described very completely, see Sec. 2. To investigate modifications under 
sequence of involutions of КЗ surfaces, we use discriminant form technique 
developed in [N3]. Of course, constantly, we use global Torelli theorem for 
КЗ surfaces [PSh-Sh]. We should say that results of [N2] and [N3] that 
we have mentioned above were used already by D. R. Morrison in [Mo] to 
prove that for КЗ surface X  with rk Tx >  3 a rational map of degree 2 in 
Kummer КЗ surface exists (to prove this fact, he used also results of [Nl] 
about the characterization of Kummer surfaces). But, to prove theorem
1.3, a more careful analysis than in [Mo] is required.

We want to remark that, we also prove the Theorem 2.2.7 below which 
gives the effective criterion for a preserving periods modification over 2 of 
transcendental lattices of КЗ surfaces is defined by a composition of degree 
two rational maps between the КЗ surfaces. We deduce Theorem 1.3 from 
this Theorem 2.2.7.

From the Theorem 1.3 and the characterization of Kummer surfaces 
in [Nl], see also [Mo], we obtain the following theorem which was proved 
by I. R. Shafarevich and the author together.

Theorem 1.4 (V. V. Nikulin and I. R. Shafarevich). Let X  and Y  be 
algebraic КЗ surfaces. Suppose that for all odd prime p there are primitive 
embeddings of p-adic lattices:

Tx ® 1 T c U 3® 1 p and Ту ® 7LP C U 3 ® 1 p \ 

and for p =  2 there are embeddings of the quadratic forms over the field

«Ь :
T x  ® Q2 С u3 ® Q2 and Ту ® Q2 С U3 ® Q2 .

Here U is an even unimodular lattice of the signature (1,1). (Roughly 
speaking, X  and У  have transcendental lattices of abelian surfaces over 
Z p for any p ф 2 and over Q2.)

Then the answer to Question 1.2 is positive for the КЗ surfaces X  and 
Y. (See the proof of Theorem 3.2 below.)

The proof of Theorem 1.3 shows that some success in the investiga
tion of rational maps between КЗ surfaces is connected with a construction 
of some concrete rational maps between КЗ surfaces (similar to maps of
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degree 2, which we use here). They should play the same role as the fac
torization of abelian surfaces by the points of order p. Every rational map 
between abelian surfaces is a composition of such rational maps and of an 
automorphism.

See some further remarks to the Theorems 1.3 and 1.4 in Sec. 4.
At last, we would like to mention some results related with rational 

maps between КЗ surfaces. In the situation of Question 1.2 (or 1.1), the 
cycle Zv G (Tx  ® Ту) <g> Q corresponding to belongs to H 2,2(X  x Y, Q). 
Suppose that d! =  1. I. R. Shafarevich posed the following conjecture 
[Sh], which is a particular case of the Hodge conjecture: the cycle Z^ is 
algebraic. This conjecture is proved now if rk Tx  < 17, and more generally, 
if the lattice Sx represents zero (or X  has a pencil of elliptic curves). See 
[Shi-I] for rk Tx  =  2, [Mo] for rk Tx  < 3, [Mu] for rk Tx  <  11, and [N4] for 
the case when the lattice Sx represents zero. Thus, this weaker conjecture 
is proved in much more generality now.

The Theorem 1.3 was inspired by our discussions with I. R. Shafare
vich (by his initiative) on the rational maps problem for КЗ surfaces. The 
Theorem 1.4 was deduced by I. R. Shafarevich and the author together. 
These theorems would not have appeared without Shafarevich’s interest to 
this subject. We are very grateful to I. R. Shafarevich for his interest and 
support to this paper.

Notations for lattices and quadratic forms. Following [N3], we 
will use the following definitions and notations connected with lattices and 
quadratic forms.

We denote as x • у the value of the form of the lattice M  for a pair 
x }y e M , and x2 — x • x .

The lattice M  is called even iff x2 is even for any x € M .
The discriminant group A m  of a lattice M  is the A m  — M* /М, where 

M* =  Hom(M, Z ).

The discriminant bilinear form Ьм of a lattice M  is the symmetric 
bilinear pairing bM : A m  x A m  - »  Q/ 1 } where bM (x* +  M ,y m +  M )  =  
x* • y* +  Z, x*, у* e M*. Here we extend linearly the bilinear form of M  on 
the M*. The form Ьм is degenerate.

For an even lattice M  the discriminant quadratic form дм : A m  
Q/2Z is defined as ?м(х* + M ) =  (z * )2-f 2 Z for x* € M * . The quadratic 
form qM has the bilinear form Ьм -
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The symbol ф denotes the orthogonal sum of lattices and bilinear and 
quadratic forms.

The symbol (А )д  denotes the orthogonal complement to A in B.
The discriminant form of a lattice M  is the orthogonal sum of its p- 

components (the restrictions of the form on the p-components of the group 
A m ) у which are defined by the discriminant forms of the p-adic lattices 
Mp =  M  <g> Z p.

Every p-adic lattice is an orthogonal sum of the following elementary 
p-adic lattices: the lattice K ^ \ p k) of rank 1 has the matrix (врк),в  G ZJ; 
the 2-adic lattice U^2\2k) of rank 2 has the matrix

( 0  2*\
\2k 0 )  ’

the 2-adic lattice К^2̂ (2А) of rank 2 has the matrix

( 2*+1 2k \ 
V 2* 2*+1)  •

The discriminant quadratic forms of the p-adic lattices KgP\pk) ,U (2\2k) 
and V (2\2k),k  > 1, are denoted as Ядр\рк) } t i^ (2*), v ^ ( 2fc) respectively. 

Their bilinear forms are denoted as tff\pk) ,v ¥ \ 2*),v ^ (2 * ) respectively.
In this article we consider only even lattices and even 2-adic lattices. 

Thus, here, the term “discriminant form” denotes every time discriminant 
quadratic form.

For a finite abelian group A  the symbol 1(A) denotes the minimal 
number of generators of A. For a form g on a finite abelian group A  we 
denote A q =  A  and l(q) =  1(A).

The discriminant discr(S) of a lattice S is the determinant of the ma
trix of S in some basis. A lattice S is called unimodular iff discr S is 
invertible. The lattice U is an even unimodular lattice of the signature 
(1,1). It is unique up to isomorphism. The lattice Eg is an even unimodu
lar lattice of the signature (0,8). It is unique up to isomorphisms too. The 
signature (<(+),*(_), *(o)) of a quadratic form over IR is the number of its 
positive, negative and zero squares. We do not show the number *(0) if the 
form is non-degenerate.

The invariants of a lattice 5 is a triplet (f(+),t(_), ?), where the (*(+), 
t ( - ) )  is a signature of the S and q-*qs, where qs is the discriminant form 
of S. These invariants are equivalent to the genus of S.
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An embedding N  С M  of lattice S is called primitive iff the quotient- 
module M/N  is a free module.

2. Compositions o f Degree 2 Rational Maps between КЗ Surfaces 

Following [N2] (see [Mo] also), we will give here basic constructions 
connected with symplectic involutions of КЗ surfaces.

2.1. Let X  be а КЗ surface and let i be a symplectic involution of X. 
The following results are contained in [N2].

Let

St =  {x e Hx  | t(z ) =  - s }  ,
and

T  =  { x e H x \ L (x )  =  x } .

The lattice St is a negative-definite lattice of the rk 5* =  8, the discriminant 
group Ast 9* (2  /2 Z )8, and 5* has no elements 6 with square 62 =  —2. 
By the classification of the definite unimodular lattices of rank < 8 (see 
[Se], for example), St =  £«(2). The lattice St is the primitive sublattice 
of the lattice Sx- The lattice Sx is a primitive sub lattice of the lattice 
Hx  =  H 2(X, 2 ) also. Thus, we have a sequence of primitive embeddings 
of lattices:

Si С Sx  С Hx  . (2.1)

The lattice H x  is an even unimodular lattice of the signature (3,19). It 
follows (see [Se], for example) that Hx -  U3 0  2£|. The lattice St has 
the unique (up to isomorphism) primitive embedding into the lattice Hx-  
It follows that T* =  (St)£ x 9* U3 ф Ed(2). By (2.1), Tx  =  (SX )hx is a 
primitive sublattice of T 4, and we have a sequence of primitive embeddings 
of lattices:

T x C T c H x -  (2.2)
Vice versa, suppose we have a primitive embedding S С Sx of lattices, 
where S “  2?g(2). Then there exists w 6 И^2) (5х ), such that w(S) =  5* for 
some symplectic involution l of X .  Here W^2)(S x ) is the group generated 
by all reflections with respect to elements 6 £ Sx with the square 62 =  — 2.

The symplectic involution i has precisely 8 fixed points, and the local 
action of l in these points is the multiplication on —1. It follows, that
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A 7 {id ,i} has precisely 8 singular points of the type A b which are the 
images under the quotient morphism ir : X  —► A"/(id, 1} of the fixed points. 
Let <r : Y  —► X/{id ,i ) be the minimal resolution. The pre-images u~l of 
the singular points of X/{ id, l )  are non-singular rational curves Г1, ... , Г8 
of У  with divisor classes e1}... ,e8, which generate the primitive negative- 
definite sublattices

Qi =  [eij • • • > e& } (ei +  • • • > +eg)/2] (2-3)

with the form e,- • ej =  —26^, of the lattice Sy . So, we have the sequence 
of primitive embeddings of lattices:

Qt С Sy С Ну . (2.4)

It follows that the discriminant group A qt — (Z  /2Z )6, and the discrim

inant form qQL =  u ^ (2 )3. Let Rl =  (<2*)яу - ВУ (2-4)> we have the 
sequence

Ту С Rl С Нх  (2.5)

of the primitive embeddings of the lattices. The lattices Qt and Rl are the 
orthogonal complements one to another in the even unimodular lattice Hx- 
It follows [N3] that qm ^  — —w^(2 )3 ^  t i^ (2)3, the lattice QL has 
unique up to isomorphism primitive embedding in Н у , and R l =  U3 0  Qt.

Let т =  <r~l K : X --------► У be the corresponding rational map of
degree 2. This map gives the embedding of the lattices

r* : Я‘ (2) -  Г  , (2.6)

which has the obvious property:

г * (Я 2' ° ( У ) ) = Я 2'° (Х ).

A lattice (or an 2-adic lattice) F  is called 2-elemeniary iff the discriminant 
group A f  -  (Z / 2Z )° . For 2-elementary lattices the following duality 
takes place: To a 2-elementary lattice F , the 2-elementary lattice F x =  
F * (2) is corresponding, and the canonical embedding F  С F* gives the 
canonical embedding

F (2 )C F ' ( 2 )  =  F *  , (2.7)

and we have the following duality property:

( F * ) * = ( F - ( 2 ) Y ( 2 )  =  F . (2 .8 )
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The fundamental fact is that the embedding (2.6) is extended to the iso
morphism (this extension is obviously unique) of the lattices:

r* : A ‘ (2) С (Я *)х =  T * , (2.9)

where the embedding #*(2) С (Я4)*  is the canonical embedding (2.7). 
Thus, by (2.7) and (2.9) we have the following canonical isomorphisms of 
the lattices:

r* : R \ 2) ~  (T *)x (2) =  (T*)*(4) =  2(Г ) *  С T  . (2.10)

By (2.2), (2.5), (2.6), and (2.10), we have the following isomorphism, which 
describes the modification corresponding to the rational map r  : X ------- *
Y:

r* : Т у (2) S  (Tx  ® Q )n  (T ‘ ) x (2) =  2 ((T* <S> Q) П (T*)*) С Г  . (2.11)

2.2. Here, we want to deduce from the properties 2.1 some general 
statements connected with КЗ surfaces with symplectic involutions. It will 
be useful in what follows.

2.2.1. Let us consider the following general situation, connected with 
lattices. Suppose we have an even unimodular lattice L and two primitive 
sublattices T  С  L ,Q  С  L  which are orthogonal one to another: T  _L Q- 
Let [T ф<2] be the primitive sublattice in L generated by T 0 Q. Then the 
subgroup

Г[те<?1 =  P* $  Q\/(T  Ф Q)  С Ат Ф Aq

is an isotropic subgroup with respect to the quadratic form qr Ф and 
Г[Тф<?] П (Ат Ф 0) =  Г[t®q] П (0 0  ,4q) =  0 0 0 . Let пт and nq be the 
projections in A t  and A q respectively. Let

b =  k t (T[t ®q]) С A t

be the subgroup of A t - Then we have the inclusion

£ : &-> Aq

of the groups, where £ =  ^q (ttt) - 1-, and £ gives the inclusion of the 
quadratic forms:

£ • I b —1> —qQ .
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We would like to express the overlattice T  С ( (Q l Y  П (T  ® Q) of a finite 
index of the T  using the subgroup b •

Lemma 2.2.1. (((Q )£ )• П ( T <8> Q))/T =  <qC A t -

Proof. Let P  =  (T  0  . Then T 0 P 0 Q c L i s a  sublattice of a 
finite index. For a sublattice F  С L } we denote by [F] a primitive sublattice 
[F] =  L П (F  ® Q) of L generated by F. We have the subgroups

TL =  L/ (T  0  P  0  Q) с  Ат® A p Q A q ,

ГргфР] =  [T  0  P ]/ (T  ® P )  С A T Ф A P С A T ® A P ® A q ,

Г[т$9] =  [T 0  Q]/(T 0  Q) С Ат 0  A q  С A t  0  Ap 0  A q .

Here we identify A t  =  A t  0000 , Ар =  О0.4р0О,Лд =  O0O0.4q. Let 
7гт,тгр,7гд be the corresponding projections in A t , A p , A q  respectively. 
The subgroups Г^, Г[тфр], and ГргФд] are obviously isotropic with respect 
to the form qr 0  qp 0  qQ.

It follows that we have to prove that

( [T  0  P]*/ (T  0  P ) )  П Ат -  ^ ( Г •

The lattice L  is unimodular. It follows that ([T  0  P]*/(T  0  P ) )  =  (я*т 0  
я'рХГ.ь). Thus, we have to prove that

(ttt  0  я\р)(Гх,) Г\Ат =  ^т(Г[т®д])-

This is equivalent to Гь П (Ат 0  0 0  A q )  =  Гргед]- This evidently follows 
from the fact that [T 0  Q] is a primitive sublattice of the L. □

2.2.2. Now, let us consider the case of Sec. 2.1 above when КЗ surface 
X  has a symplectic involution *, and specify the situation of Sec. 2.2.1 to 
the case L — Нх^Т  =  Tx>Q — Sl .

The primitive sublattice M  =  [Tx 0  St] in H x , which is generated by 
the sublattice Tx  0  St of the lattice H x , is defined by the inclusion of the 
forms

£ : ?TX \b “ *• =  u+(2)4 » (212)

where b  is a subgroup of the discriminant group A tx • It is defined by 
the graphic 7> =  [Tx  0  St]/(TX 0  St) С A Tx 0  A Sl of the £, which is an



isotropic subgroup of the form qTx Ф 9s. m A t *  ® -4s. • The discriminant

foim ш  = 9rx © « 5 .1 m ) f Txв№ / г е) • (2ДЗ)

By (2.12), the & ^  ( Z/2 Z )°  is a 2-elementary group, a <  8, and also Г* 2  
(Z/2Z )“ . Let be a basis of Г(. By the inclusion (2.12), there
exist a basis .......... of the isotropic group Г( and elements y i ............ ya of
the S +  is, such that we have with respect to the form qTx ® qs, : [x,-, y<] -L 

[ * , , « ]  if «V  J. and [*.-.№] -  u+2)(2)- 11 follows that

qM SS qTx ф U(+2) (2)4' “  if «  < 4 ;  (2.14)

and

«Тх -  « г *  ®  u+ ) (2 )°_4 and « м - ? т х  i f  a  >  4- ( 215)

We used here the fact that the orthogonal term, u ^ (2 ) is splitting off 
uniquely up to isomorphism from a finite quadratic form. It follows that

Ki m , )  =  K«(Tx),) if P Ф 2; (2.16)
and

Кчм7) = Кч(тх ) 7) + 8 -  2a, if p = 2 . (2.17)
Obviously,

rk Af =  гк T * +  8 . (2.18)

The following conditions are sufficient and necessary for the existence 
of a primitive embedding of an even lattice with invariants (<(+),£(-), q) 
into an indefinite even unimodular lattice with signature (^(+)» ̂ (- )):

*(+) < ^(+),t(_) < ^ (_ ); (2.19)

t(+) +  t(-) +  l(g) < £ (+) +  *(_ );  (2.20) 

( - 1)<(+>-‘ (+)|Д,| =  discrK(qr ) mod ( ZJ) 2 (2.21)

for all odd prime p for which <(+) + 1(_) +  l(qp) =  f (+) +

|-4*| =  idiscr K(q2) mod (Z  j ) 2 (2.22)

if t(+) +  ((_) +  l(q2) =  +  £(_) and q2 2  ĝ 2) (2) ф q'2. Here K (qp) is 
a p-adic lattice with the discriminant form qp and rk K(qp) =  l{A qr) (the 
form K(qp) is unique up to isomorphism). See [N3, theorem 1.12.2].

974
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By (2.14)-(2.22), the following conditions are sufficient and necessary 
for the existence of a primitive embedding of the lattice M  corresponding 
to the isomorphim £ into the lattice H x :

гкГ* +  /(д(Тх), )< 1 4  (2.23)

for all odd prime p, and

\Атх I =  -discr K (l(Tx )r ) mod( Z “ ) 2 (2.24)

for all odd prime p for which rk Tx  +  K<l(Tx),) =  14;

a > (rkTx +  % (Tx )3))/2 -  3, (2.25)

and
\Атх I =  ±discr iir(g(Tx)2)m od( Z*2) 2 (2.26)

if a =  (rkTx +  l(q[Tx b ))/2 “  3 and ?(т* ) 2 Щ ?*2)(2) ® $'•
The conditions (2.25), (2.26) and the strong inequalities

ikTx  +  Kq(Tx )r ) < U  (2.27)

for all odd prime p are sufficient for the existence of a primitive embedding 
of the lattice M  into the lattice Hx  •

By the Lemma 2.2.1,

( ( T x ® Q ) n ( T iy )/ T x = < b 1 (2.28)

that defines the lattice (Tx  ® Q) П (T 4)*. By (2.28) and (2.11) we get

Lemma 2.2.2. The r*(Ty(2 )) С Tx is defined by the following: 

r*(Ty (2 )) =  2((Tx  <8>Q)n (T 4)*) С Tx  С (Tx  <8> Q) П (T 4)* ,

and
((Tx ® Q) П (T T )/ T x  С A r*  •

2.2.3. We can repeat results of 2.2.2 to obtain similar results for the 
КЗ surface Y  which has a rational map of degree two т : X ------- ► Y  of
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а КЗ surface X , defined by a symplectic involution l of X .  Here we apply 
results of the 2.2.1 to L =  Я у ,Т  =  Ту, and Q =  Qt.

The primitive sublattice M  =  [Ту ® Qt] in Я у , which is generated by 
the sublattice Ту ф Qt of the lattice Н у , is defined by the inclusion of the 
forms

{  : 9Ty | b -9Q. =  u+ (2)3 i (2‘29)

where Ъ is a subgroup of the discriminant group A t y • ^  is defined by 
the graphic Гс =  [Ту ф Qt]/(Ty ф Qt) С A Ty 0  A Ql of the £, which is an 
isotropic subgroup of the form дту ф in • The discriminant
form is

Ям =  Wty $ 0 Q i) l ( ( r c)t7Y©?Qi/r f ) -  (2 '30^

By (2.29), f) — (^/2Z )^  is a 2-elementary group, (3 < 6, and also =  
(T  / 2 i y . Similarly to the case 2.2.2, we get:

Ям S  «Ту Ф u(+2)(2)3-^ , if p <  3 ; (2.31)

and
qTy “  Йу Ф u(̂ (2 )^ "3 and gM “  q!Ty if P > 3 . (2.32)

It follows that
Кям„) =  Кцту) , ) , if P Ф 2; (2-33)

and
=  KQ(t y)2)  +  6 -  2/?, ifP  =  2. (2.34)

Obviously,
rk M = rk Ту +  8 . (2-35)

By (2.19)-(2.22) and (2.31)—(2.35), the following conditions are suffi
cient and necessary for the existence of a primitive embedding of the lattice 
M  corresponding to the inclusion £ into the lattice Я у :

rk Ту +  /(9(Tr)F) ^ 14 (2.36)

for all odd prime p, and

\ATy\ =  —discr K(q(TY)r)  mod (Z  " )2 (2-37)

for all odd prime p for which rk Т у  +  l{i(Ty), )  =  14;

/?> ( rk Т у +  /(,(Ty)j))/2 - 4, (2.38)
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\ЛТу\ =  ±discr K (q (jy )i )  mod ( I ’2)2 , (2.39)

if P  =  (rk7V +  *(в(ту) ,) ) /2  -  4 and Я(тг ), ¥  ?л2)(2) 0
The conditions (2.38), (2.39) and the strong inequalities

lYTy +  КЯ(ТУ)Г) < 14 (2.40)

for all odd prime p are sufficient for the existence of a primitive embedding 
of the lattice M  into the lattice Ну •

2.2.4. Let X  be а КЗ surface. The pair (Tx ,H 2>°(X) С Tx  ® C) is 
called the transcendental periods of the X. For two КЗ surfaces X  and Y , an 
isomorphism of their transcendental periods is an isomorphism <p : Tx  — Ту 
of the lattices such that (<p ® С )(Я 2'° (Х )) =  Я 2>°(У). We say that а КЗ 
surface X  is defined by its transcendental periods iff every КЗ surface X ' 
with the transcendental periods isomorphic to that of X  is isomorphic to 
X .

Lemma 2.2.3. Let Z  be an algebraic КЗ surface (over <D) which either
has a symplectic involution or has a rational map of degree 2, r  : X -------► Z
of а КЗ surfaces X.

Then Z  is defined by its transcendental periods, and for any КЗ surface 
Z ' and an isomorphism <p : Tz• =  Tz of the transcendental periods, <p =  f* 
for some isomorphism / : Z  “  Z ' of the surfaces.

Proof. Suppose that КЗ surface X  has a symplectic involution i and 
let .T x  —> Tx> be an isomorphism of the periods for КЗ surface X ' .

From the analog of W itt’s theorem [N2], [N3], it follows that a primitive 
embedding of an even lattice К  into an even unimodular lattice L  is unique 
up to isomorphisms (for every two embeddings i : К  С L ,i '  : К  С L we 
have i' =  gi for an automorphism g of L) if the conditions a), b), c) below 
take place:

a) the lattice (K )j ;  is indefinite;
b) rk К  +  1(Ак, )  < rkL — 2 for all prime p ф 2;

c) either rk К  +  1(Лк7) < rkL -  2 or.qx? — q’x^ Ф ^ ( 2).
By (2.15), (2.23), and (2.25), the conditions a), b) and c) above hold for 

the primitive embedding Tx С  H x • It follows that the primitive embedding

and
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Tx С Hx  is unique up to isomorphism. Thus, the isomorphism (p : Tx —> 
Tx> of the lattices has an extension Ф : H x —* H x 1 •

Let, for а КЗ surface Z,

v ( z )  = { i  e ® га. I > 0}

and let V+ (Z )  be a half cone of the V ( Z )  which contains a polarization of 
the Z.

Suppose that Ф (У+ (Х )) =  У + (Х '). Then, there exists an element 
w G Y/W(X) such that Фw(hx) =  hx> for polarizations hx and hx> of 
X  and X ' . w is trivial in T x . From the global Torelli theorem [PSh-Sh], 
it follows that an isomorphism / : X ' —► X  exists such that f *  =  Фw. It 
follows that /* | Tx =  <p.

Suppose that 0(V^+ (X )) =  —Vr+(X /). In this case, let us find an auto
morphism Ф of the lattice Hx  such that Ф | Tx  =  idTx and Ф (К+ (Х ))  =  
—Vr+(X ). Then we can replace Ф by ФФ to reduce the case to the previous 
one.

The discriminant form qSx =  - q r x because Sx  =  (Tx ) h x and Sx is 
primitive in Hx • From this fact and (2.15), (2.23), (2.25), it follows that

rkS *>/ (-4 (s * ),) +  8 (2.41)

for all odd p ф 2, and

rk Sx > KA(Sxh) +  16 -  2cr, (2.42)

where or < 8. By (2.15),

9(Sxb =  u(+2) (2) 0 ?', if or > 5. (2.43)

It follows (see [Kn] and [N3, theorem 1.13.2]) that a lattice with the same 
invariants (t(+),<(_), q) as the lattice Sx is unique up to isomorphisms. 
From this fact and the criterion of the existence of an even lattice with 
given invariants (f(+ ),f(_ ) ,g) (see [N3, theorem 1.10.1]), it follows that

Sx =  Si ® S2 , where Si ^  U от Si ^  U (2) .

For the lattice S\ the discriminant group Asx ^  (2/2 Z )a,a =  0 or 2, is 
a 2-elementary group. It follows that there exists the automorphism Ф of
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H x  which is the (-id) in Si and which is identical in (S i ) i x . The Ф gives 
an automorphism which we look for.

In the case when Z  — Y  has a rational map of degree two

X -------► Y

of the КЗ surface X , the proof is the same if one uses 2.2.3. □
The (2.11) and the Lemma 2.2.2 show that the modification defined by

a rational map of degree two r : X -------► Y  of КЗ surfaces is defined by a
primitive embedding Tx С T l of the lattices where T l =  U3 0  £s(2). The 
Lemma below shows that every such embedding is possible and reduces the 
problem of the description of modifications to a purely arithmetic one.

Let us denote T  £  T* S  U3 0  Es(2).

Lemma 2.2.4. Let X  be а КЗ surface and Tx С T  =  U3 0  £8(2) a 
primitive embedding of lattices.

Then there exists a symplectic involution i of X  such that for the 
corresponding rational map of degree two r  : X ------- ► Y  of КЗ surfaces

r 'T y  (2) =  2(T* П (Tx  <S> Q)) С Tx  .

Proof. In fact, in the proof of the Lemma 2.2.3, we have shown that a 
primitive embedding Tx  —► Hx  of the lattices is unique up to isomorphisms, 
if a primitive embedding Tx С T  exists. It follows that an extension 
T  С H x  of the natural primitive embedding Tx  С Hx  exists, where an 
embedding T  С Hx  is also primitive. The lattice T  is 2-elementary. It 
follows that the involution 0 of the lattice Hx  exists, which is identical in 
the lattice T  and is the multiplication by ( —1) in the lattice S =  (T x )1 - 
qs =* - q r  -  t i^ (2 )4,rkS =  8. Then the lattice S ^  S i(2) where lattice 
Si is an even lattice. Particularly, the lattice S has no elements with the 
square (—2). It follows [N2] that there exists w E W^2)(S;c) such that 
wOw~1 =  i* for a symplectic involution i of the X . The automorphism w 
gives the isomorphism w : T  —► T* of the lattices which is identical in the 
lattice T x . It follows that for the rational map corresponding to l of degree 
two т : X ------- ► У  of КЗ surfaces we have (see (2.11)) that

r 'T y  (2) =  2((T lY  П (Tx  ® Q)) =  2(T* П (Tx  ® Q ) ) . □
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Theorem 2.2.5. Let X  be an algebraic КЗ surface.
If X  has a rational map of degree two r : X ------- ► Y  i naK 3  surface

Y  then the following condition (i) holds:
(i) rk Tx  +  КЯ(ТХ)Г) ^ f°r °dd prime p, and \At x \ =  — discr К  

(tf(Tx),))m° d (Z p)2 for all odd prime p for which rk Tx  +  K<1(TX) , )  =  ^
If the condition (i) holds, then there is the bijection between modi

fications r* : T y (2) —* Tx  corresponding to rational maps of degree two
т : X --------► Y  between КЗ surfaces X  and Y , and pairs (5>^) defined
below.

Here 5 -  ( 2/2 2 ) "  is a 2-elemenatry subgroup Ь С А{тх )a such that 
the condition (ii) below holds.

(ii) There exists an embedding {  : q?x | § —► u+^(2)4 of the finite 
quadratic forms, and

or > (rkT* +  /(g(Tx)a))/2 “

and

И т* | =  ±  discr K(q iTxh) mod ( Z '2) 2

if a =  (rkTx  +  l(q(Txh))/2 - 3  and q(Txh “  ^ 2) (2) ф q'.
For the lattice T *  С Ь CT%  defined by the equality 5 /Tx =  & • the 

tf is an isomorphism of the lattices

0 : Ty (2 )-^2  §  С Г *  ,

such that t?(tf2,0(Y ))  =  # 2,0(X ). For any Sj satisfying the condition (ii) 
there exists а КЗ surface Y  and an isomorphism d with these properties.

$ =  t * for a rational map r : X -------► Y  of degree two.

Proof. We leave the reader to deduce it from the Lemmas above. □

2.2.5. Let us define the composition of modifications which will corre
spond to the composition of rational maps.

Let T i,T2,T3 be lattices and <pi : Ti(d i) <g>Q -+ T2 ® Q,T2(d2) ® Q -► 
Ts ® Q be isomrophisms of symmetric bilinear forms over Q, where d\} d% 
are square-free positive integers. In other words, we have two abstract

By the results above, we get
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modifications of the lattices T i }T2)T3. Let did2 = m2(did2)' where m 
and (did2y are integers and (d\d2)' is square free. Then the sequence of 
inclusions of lattices

Ti( ( * * ) ')  = (l/m)Ti(did2) D Ti(cW2) 

is defined. It gives the identification of the forms over Q

Ti ((dxd2y) <g)Q =  (l/m)Ti(did2) <g> Q =  Ti(<M 2) ® Q , 

and the isomorphism <p2<p\ of the forms

W f i  : T id d & Y )  <S> Q =(l/m )T i(d id2) <g> Q = Ti(d\d2)

® < J - ^ r 2(d2) ® Q ^ T 3® Q

is called the composition of the modifications <pi,<p2.
Suppose that /1 : X i --------► X 2)f 2 : X 2 --------► X3 are two ratio

nal maps between algebraic surfaces. Then the modification /2/i corre
sponding to the composition f i f 2 of the rational maps is obviously the 
composition of the modifications /1 , /2 .

2.2.6. Using the results above, we want to describe modifications cor
responding to rational maps / : X -------► Y  between КЗ surfaces X  and Y
which are compositions / =  /n - - ■ /1 of rational maps /1, /2, • • • , fn of the 
degree two. A composition of any two rational maps of this type is a ratio
nal map of this type also. Thus, these rational maps define the category 1C 
of the rational maps.

Lemma 2.2.6 . Let f  : X --------> Y  be a rational map between КЗ
surfaces X  and Y, which is a composition / =  /„ • ... • /1 of the rational
maps of degree two, /1 : X\ =  X -------► X 2}. .. , /„ : X n -------* X n+i =  Y
between the non-singular algebraic surfaces X i , ... ,X n+i (i.e., / E fC).

Then the minimal models of the surfaces X\, ... , X n+i are КЗ surfaces. 
So, we can choose birationally the surfaces X i , . ..  , Xn+i being КЗ surfaces.

Proof. Rational maps /1, ... , f n give the isomorphisms

= H 2‘°(X  1) а  я 2'°(л-2) a ... а  я 2’° (x n+1) a  h 2'°(Y) ,
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because H 2,0(X )  = 2,° (У ) =  С. It follows that Galois involutions * i , ... , tn 
of the maps Д , ... ,/n are trivial in the spaces

H2’° (X )  =  Я 2'° (Х !) 9* H 2'° (X 2) =  ... =  H 2'°{Xn+1) “  Я 2- ° (У ).

Then the involution l\ is a symplectic involution of the КЗ surface X i =  X. 
Let Y  be the minimal resolution of the singularities of -Xy{id, i}. We know 
(see [N2] and also 2.1) that the surface У  is а КЗ surface. The surface Хг 
is birationally isomorphic to the surface У, and its minimal model is а КЗ 
surface. Thus, we can suppose that X 2 =  У  is а КЗ surface. In such a way, 
we obtain the proof using the induction. □

Using the Theorem 2.2.5 and the Lemma 2.2.6, we obtain the following 
description of the modifications corresponding to rational maps from the 
category К between КЗ surfaces.

Theorem 2.2.7. Let X  be an algebraic КЗ surface.
If X  has a rational map f  : X --------> У  in а КЗ surface У  which

is a composition of rational maps of degree two, and deg / >  1, then the 
condition (i) of Theorem 2.2.5 holds for T *.

Let for Tx  the condition (i) of the theorem 2.2.5 holds, a positive 
integer d\2} and У  is а КЗ surface.

Then modifications f*  : Ty(d )® Q ——*Tx <8>Q corresponding to rational
maps / : X ---- —♦ Y  which are compositions / =  /„ ... f\ of rational
maps / i,... , /„ of degree two (d =  1 if n is even, and d =  2 if n is odd) 
are defined by sequences (Tb § i ) , (T 2, £ 2),..- ,(Tn, bn) of pairs and by 
the isomorphisms tf defined below. Every such sequence and every tf are 
possible.

Here, T,-, t =  1,... , n, are sublattices of the maximal rank in the form 
Tx  ® Q for t odd, and in the form T x (  1/2) <g> Q for i even. Here 53» — 
(2  /2 Z )ai is a 2-elementary subgroup Ь ; С Ат{ • The lattices Ti are 
defined by induction. The sublattice 7\ =  Tx  С Tx  ® Q. For 1 < t <  n the 
sublattice 7 i+ i(2) =  2^,- С Т», where bi/T{ =  b i-  It gives the inclusion 
Ti+i С (1/2) <g> <Q if i is odd, and the inclusion Г(+1СГл-(1/4)®<г =  
( 1/2)TX ® Q =  Tx  ® Q, if i is even. For every pair (!<,&»•), 1 <  * <  n> 
condition (ii) of the Theorem 2.2.5 should be true (one should replace in 
the condition the Tx  by Ti} and b  by b i).



983

The : Ту —► Tn+i is an isomorphism of the lattice which induces 
the isomorphism of the periods, i.e., т?(Я2-°(У)) =  H 2>0(X )  С Tx  <8> €. 
For the sequence (2}, 5 i ) , (T 2, lb )»--- ,(Tn, f jn) satisfying the condition 
above there exists such КЗ surface Y  and an isomorphism i?.

The modification f*  defined by the sequence and the x9 is the compo
sition of the ti and of the inclusion of the sublattice Tn+1 С Tx  ® Q for n 
even and Tn+i С Tx ( 1/2) <g> Q for n odd under multiplication of the forms 
by d =  2 for n odd.

Proof. The Theorem follows from Theorem 2.2.5 using compositions 
of rational maps and modifications above (it is more difficult to formulate 
this theorem than to deduce it from the Theorem 2.2.5). □

Remark 2.2.8. From Theorem 2.2.7, we obtain the following sequence 
of sublattices of the form Tx  <g> Q:

T i D T 2( 2 ) c T 3 D T 4( 2 )C . . .  in T *  <g> Q,

where (1/2)Т|+1(2)/7* =  9)i f° r °dd i, and 7i+i(l/2)/7f =  9)i f° r * 
even.

Theorem 2.2.7 reduces the description of modifications corresponding 
to rational maps between КЗ surfaces from the category JC to the purely 
algebraic problem. We will use the Theorem 2.2.7 for the proof of the 
basic Theorem 3.1 of the paper (Theorem 1.3. of the Introduction) in the 
following paragraph.

3. Rational Maps between КЗ Surfaces with the Transcendental 
Lattice o f the Rank < 5.

Here we prove the basic theorems (the Theorem 1.3 and 1.4 of the 
Introduction) of the paper.

Theorem 3.1. Let X  and У  be algebraic КЗ surfaces with rk Tx  =  
rk Ту  < 5, and : Т у  (d) ® Q Tx ® Q be an isomorphism of quadratic 
forms over Q (i.e., <p is an abstract modification of the lattices Tx  and 
Т у )  for which <p(H2,0(Y ) )  =  H 2,0( X ) }d\2i and (p induces an isomorphism 
(pp : Т у  (d) <g> Z p -> T X ® Z p of p-adic lattices for any prime p ф 2.
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Then there exists a sequence X  =  X\yX 2l... , X n+i =  Y  of КЗ sur
faces and rational maps f i : X { ---- —► X ,+i of degree 2 such that the
rational map / =  /»»*.•.* /2 • / 1  induces the modification <p, i.e., <p =  /*.

Proof. We divide it on several steps.

3.1. We denote T  =  Tx  and f  =  <р(Ту) С T®Q (l/d). Using Theorem
2.2.7 and Remark 2.2.8, one should find a sequence of the Z-sublattices of 
the form T ®  Q:

T  =  Ti D T2(2) С T3 Э .. .Tn+1(<0 =  f  (r f), (3.1)

where n is odd if cf =  2, and n is even if d =  1, such that the conditions of 
Theorem 2.2.7 hold. A sequence which satisfy the conditions of Theorem
2.2.7 is called further an acceptable.

By the condition of Theorem 3.1, T ®  Zp =  T ®  Z p for any odd prime 
p. According to Theorem 2.2.7, quotient modules of the modules of the 
sequence (3.1) should be 2-groups. Thus, one should find the sequence (3.1) 
over ring Z2 only. One has the obvious inequality l (A (rx )r ) < rk Tx  <  5 
for every p. Then l (A p x )9) +  rkTx  < 14. Thus, the condition (i) of 
Theorem 2.2.7 is true, and for a construction of the sequence (3.1) we 
should satisfy condition (ii) of Theorem 2.2.7 only.

3.2. At first, for rk T  < 5 , we will construct an acceptable sequence 
T  =  T i f ... ,Tm+1 =  V  of lattices such that m is odd and T '  =  2Т(1/2) С 
T  ® Q(l/2). Thus, the lattice, T ' T (2). We consider the most difficult 
cases rk T  =  4 and 5.

Let rk T  =  4.
Let (over Z 2)T  =  Si 0  S2 0  R (2) where SU S2 are lattices of rank 1, 

and R  is an even lattice of rank 2. Let {£1}  be a basis of the Si, {C2}  a 
basis of the S2, and {Сз}С4)  a basis of the lattice i?(2). Let us prove that 
the following sequence of lattices is acceptable:

Ti =  [Съб.Сз.Сч] ,T2 =  [2С1,2Сг,Сз,<4](1/2), 

T3 ,Г4 =  [2< i ,2G , 2<3>2C4] ( 1/2) .

In this case the subgroup = [Cl, C2,Сз/2,C4/2]/[Ci,C2,Сз. CJ, and, ev
idently, there exists an embedding of the forms 61 -*  u(̂ (2 )4. We
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have: q?i =  2 > 1 > (rkTi + l (q rx))/2 —3 since 4 =  rkTi > l(qTt )- It proves 
the condition (ii) of Theorem 2.2.7 for the pair (Tb § i). The lattice T2 =  
S i(2)®S2(2)e t f ,  and <*2 =  1. In this case 5 2 =  [Ci, 2Сз. Св,Ct]/[2Ci, 2Ca,
C4], and evidently an embedding q^\ 9)2 —► u+^(2)4 of the forms exists. 
Since the lattice R  is even then either R is unimodular or 1(Ar ) =  2. If 
the lattice R  is unimodular, then a2 = 1 > (rkT2 +  /(?ra))/2 -  3. If R  is 
not unimodular, then we have the equality a2 =  1 =  (rkT2 4- Кят7))/2 — 3. 
And we should prove the congruence (where we consider the lattice T2 as 
a lattice over Z ):

IA t2\ =  idiscr-K(?(T2)2)mod( Z2, ) 2.

In this case, ^ (? (t3)3) — № )2 =  T2 <g> Z2, and this congruence holds 
because

discrT2 =  ±\A t7I •

for the lattice T2 over Z. a3 =  1, and the proof of the condition (ii) for 
№ , 5 з) is the same.

The same proof of the condition (ii) should be produced in all cases 
which we consider below. We will leave this procedures to the reader.

Now, suppose that the lattice T  does not have a representation of the 
type above. From the decomposition of 2-adic lattices in an orthogonal sum 
of lattices of the rank 1 and 2, one obtains that it is possible only in the 
following two cases which we consider at once.

The case T  =  i2i(2m) 0 R 2(2n), where R\>R2 are an even unimodular 
lattices of rank two, m >  0, n > 0. Let {Ci > C2}  be a basis of the lattice 
# i(2 m) and {Сз,C4}  a basis of the R2(2n). If m =  n =  0 then the sequence 
of lattices

Ту =  [<1,<2,Сз,<4], Г2 =  [2<1,2<2,2Сз,2С4](1/2)

is acceptable. Suppose that n > 1. Then the following sequence of the 
lattices is acceptable:

T i =  [Сх,С2,Сэ,<4] , T2 =  [2Ci ,2C2,C3,2C 4](1/2),

T3 =[2C i ,2C2,C 3,(4], =  [2Ci ,2<2,2<3,2C4] (1 /2 ) .

The case T  =  Si Ф S2 ® R, where S i , 52 are even lattices of rank 
one, and R  is an unimodular lattice of the rank two. If one of the lattices
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S i ( 1/2),S2(1/2) is not even, then the following sequence of the lattices is 

acceptable:

T i = T ,  T2 =  2T ( l / 2) .

Now suppose that the lattice S 2( 1/2) is even. Let {C i }  be a basis of S i, {C2}  
be a basis of S2, and {£3, £4} be a basis of the lattice R. Then the following 

sequence is acceptable:

Ti =  [Ci > C2, Сз, C4] , T2 =  [2Ci, C2, 2Сз, 2C4] (1 / 2 ),

T3 =[Ci,C2,2C3,2C4],  T4 =  [2Ci, 2C2,2Сз, 2C4](l/2 ) -

Let rk T =  5.

Suppose that T =  S i 0  S2 0  S3 0  S4 0  S5, where rk S,- =  1, and the 

lattices S4( l/ 2) and S s (l/2 ) are even. Let {£ »} be a basis of S*. Then the 

following sequence of lattices is acceptable:

Ti =  [Ci,Ci.<8.C*,C«] ■ T2 =  [2Ci, 2C2, 2Ca,C4,Cs] (1 /2) ,

T3 =  [2<i,C2,<3,<4,<5] ,  r 4 =  [2Cl l 2C2, 2C3,2C4,C s ](l/2) ,

П  =[C i,C2,2C3, 2C4,Cs], Ts =  [2Ci,2C2l2<3,2C4,2C s](l/2 ).

Let S  =  Si 0  S2 0  S3 0  Ry where S i ,S 2,S3 are lattices of rank 1, rk 

R =  2, and the lattices Ss(l/2 ) and Я(1/2) are even. Let {C i }  be a basis 

° f  & »  {C2}  be a basis of S 2> {Сз} be a basis of S3, and {C4,Cs} be a basis of 
R. In this case the following sequence of lattices is acceptable:

Tx =  [Cl,C*,<S,C«,C*] , T2 =  [2<1, 2С2,2Сз,С4,<5] ( 1/2) , 

T3 =  [2Ci,<2,<3,<4,C5], T4 =  [2C i,2Сг,Сз.2Сч,2Cs](l/2) , 

T 5 =[2Ci,2C2,C3,C4,Cs], Тб =  [2Ci,2C2,2Сз,2C4,2Cs](l/2).

Now suppose that the lattice T has no representations of the types 

above. Then only the following cases are possible. W e consider them at 
once.

The case T =  S  0  Rx(2m) 0  Я 2(2п) , т  >  0,n >  0, where rk S  =  1 

and Я Ь Я 2 are even unimodular lattices of the rank 2. Let {C i } be a basis 

of {Сг> Сз} of # i (2 m), {С4,Сб} of Я 2(2"). Suppose that m >  1. Then we 
obtain the following acceptable sequence:

Ti =  [Ci 1C2.C3.C4, Cs] , Ti =  [2Ci, C2. Сз, 2^4, 2Cs](1/2) ,

T3 — [2Ci > C2, Сз, C4, Cs] > T4 — [2Ci, C212Сз| 2C4j 2Cs](l/2)

Ts =[2Ci,C2,C3,C4,2Cs], Te =  [2Ci,2C2,2Сз,2C4,2C s](l/2) .
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Suppose that m =  n =  0. If the lattice 5(1/2) is not even, then we obtain 
the following acceptable sequence:

Ti =  T ,T 2 =  2T(l/2).

If the lattice 5(1/2) is even, then the following sequence is acceptable:

Tl = [Ci,C2,C3,<4,Cs] , r2 = [Cl,2C2,2Сз,2C4,2Cs]( 1/2), 
T3 =[<i,C2,<3,2<4,2<5], r4 = pCi.2C»,%,ас»,%](l/a) •

The case T  =  R ®  Si 0  S2 Ф S3, where R  is an even unimodular lattice 
of the rank 2, and Si ,S2,S3 are lattices of the rank one. The case, when 
all lattices S i(l/ 2),S 2(l/ 2),S3(l/ 2) are not even is reduced to the previous 
case, because then S i0 S20 S3 =  R'(2)@S', where R' is an even unimodular 
lattice of rank 2 and S' is a lattice of rank 1. Thus, we can suppose that 
the lattice 5з(1/2) is even. Let {C l,C2}  be a basis of Л, { ( 3}  of Si, {C4}  of 
S2, and { ( 5}  of S3. Suppose that one of the lattices Si(l/2) or S2(l/ 2) is 
not even. In this case, we have the following acceptable sequence:

Ti =  [Ci,C2, Сз, C4,Cs] , T2 =  [2Ci, 2<2, 2<3,2C4,Cs](l/2), 

T3 = [C i,C2,2Сз, 2C4, Cs] , T4 =  [2Ci, 2C2) 2Сз, 2C4,2C5] ( l / 2 ) .

Suppose now that the lattice S2(l/ 2) is even (together with the lattice 
S3(1/2)). Then the following sequence is acceptable:

TL = [СьС2,Сз,С4,С5] , т2 = [2Ci, 2C2, 2Сз,C4, Cs](1/2) ,
T3 =  [Ci»C2, 2Сз, C4, Cs] 1 T4 =  [2Ci, 2Сг, 2Сз, 2C4, Cs]( 1/2 ), 

T5 =[Ci,C2,2C3,2C4,Cs], T6 =  [2Ci,2C2,2Сз,2C4,2Cs](1/2) .

It finishes the proof of the statement.

3.3. Here, for a lattice T  of rk T  < 5 and with an even lattice T(l/2), 
we will construct an acceptable sequence T  =  T i,... , Tm =  T "  of lattices 
such that m is odd and T ;/ =  T(l/2) С T  <8> Q(l/2).

Suppose that rk T  < 4. Then the following sequence is acceptable:

Ti =  T ,T 2 =  T (l/ 2 ).
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Suppose that rk T  =  5.
Let T  =  R i (2)® R 2(2)05(4), where the lattices R i , R2,S are even and 

rk R\ =  гкЯг =  2 ,rk5 =  1. Let (СьСг) be a basis of # i(2 ), {Сз>С4}  be a 
basis of Яг(2), and {£5}  of 5(4). Then the following sequence is acceptable:

T l=  [<1,C2,<3,(4,C5] , T2 =  [2Cl,2C2,C3,C4,C5](l/2),

Т3 =[Ci,C2,Сз,C4,Сб/2] , T4 =  [Ci>C2, Сз, C4,Cs](l/2).

Let T  =  i£i(2) 0  R2(4) 0  5(2) where the lattices R2,S  are even.
{Ci»C2}  be a basis of i?i(2), {Сз, C4}  be a basis of Лг(4), and {Cs} be a 

basis of 5(2). Then the following sequence is acceptable:

Tl =  [Ci,C2,C3,C4,Cs] , T2 =  [2Ci,2C2,Сз,C4,Cs](1/2) ,

П  =[Ci,C2,Сз/2,C4/2,Cs] , T4 =  [Ci,C2,C3,C4,Cs](1/2) .

Now suppose that lattice T  has no representations of the type above. 
Then T  =  Я х (2 )0 Я г(2 )0 5(4), where R i ,R 2 are even unimodular lattices 
and rk Ri =  rk R 2 =  2,5 is an odd unimodular lattice and rk 5 =  1. Then 
the following sequence is acceptable:

Ti = T ,  T2 = T {  1/2).

It finishes the proof of the statement.

3.4. Here we will finish the proof of the Theorem. We consider the 
most difficult case rk Tx =  rkT =  5.

Let us reduce the case d =  2 to the case d — 1. Using Sec. 3.2, we 
can find an acceptable sequence T  =  Tb ... ,Tm, such that Tm =  2T(l/2). 
In the case d =  2 both lattices Tm and T  are contained in the one form 
T(l/2) ® Q. It is sufficient to find an acceptable sequence for T  =  Tm and 
T  where both lattices are contained in the one form T(l/2) ® Q. Thus, we 
have to deal with the case d =  1 now:

Now suppose that d =  1. Then both lattices T  and T  are lattices of 
the one quadratic form T<g> Q. Let 5 =  T n f .  Thus, we have the following 
sequence of inclusions of the lattices of the form T  <g> Q :

T D S C T .
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T  =  TU ...  ,T2m =  2 T C T ® Q .

Using results 3.3, we can find an acceptable sequence

2T =  S i,... ,S2„ = f c T ® Q .

Thus, it is sufficient to find an acceptable sequence with the first term 2T  
and with the final term 2T. The lattices 2T and 2T  are more convenient 
because the lattice 2T  S  T(4) and the lattice 2T  — T(4) where T  and T  
are even lattices.

Thus, it is sufficient to find an acceptable sequence for the lattices 
T  =  T '(4) and T  =  T '(4) where T ' and V  are even lattices. Further, we 
suppose that it is true.

The quotient group T/S is a finite abelian 2-group. It follows that 
there exists a sequence of sublattices of the form T  ® Q:

T  =  Si Э S2 Э ... D Sa =  S ,

for which Si/Si+i =  Z / 2 Z , i =  1,... a — 1. Let S{ be a sublattice of T<8> Q 
which satisfies the condition:

Si D Si+i D s; D 2Si, and 5,725,- “  (2  /2 Z )2 .

Then, evidently
5i+1/ S 2 (Z / 2 Z ) ’ .

Let us show that the sequence of the lattices

S*, S-( 1/2), Si+j.

is acceptable.
The lattice S,- =  M (4) where M  is an even lattice (since it is true for 

the lattice T  and S.- С T). Then, the sublattice S- is constructed from the 
subgroup b  =  (1/2)S,- =  (l/2)St7St- С Asu Ь -  ( Z/2Z)2 and gs.l 5 =  0. 
It follows that there exists an embedding of the forms:

Using results 3.2, we can find an acceptable sequence

QSi\ b - >  w + (2 )4 -
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We have: f(-4(S;)a) =   ̂ because Si =  M (4) where M  is a lattice. So, we 
have the equality: 2 =  (rk S,- +  ^М(5.)з)/2 — 3. Thus, we should prove the 
congruence for the lattice Si over Z :

MsJ =  ±discri^({(Sj)3)m o d (z ; )2.

Since Si =  M (4), in this case K(q^Si)7) — Si ® Z 2. It follows that discr 
Si = ±\AsiI, and the condition (ii) of the Theorem 2.2.7 is true.

The lattice 5J(l/2) С St(l/2) С T (l/2) =  T '(2), where V  is an even 
lattice. Using this fact, in the same way as above, one proves that the 
sequence of the lattices 5J(l/2), 5,+i is acceptable. Corresponding to this 
sequence the subgroup b of the discriminant group of the lattice 5t-(l/2) 
is b  =-S»+1(l/2)/SJ(l/2) S  ( Z/2 Z )2.

In such a way, we obtain an acceptable sequence of sublattices of T®Q:

T  =  S\D 51(2) С Si Э ... С Sa- i  D S'a_ x{2) С Sa =  S .

The quotient group T/S is a finite abelian 2-group also. Then we can 
find a sequence of sublattices of the form T  ® Q:

S  =  P l C P 2 C . . . C P h- i C P b - f

with Pi+i/Pi =  Z / 2 Z , 1 < i < b — 1. Let P- be a sublattice of the form 
T  <g> Q which satisfy the condition:

2Pi+i С Pi С Pi and Pi/P! S  (Z  /2 Z )2 .

Let us show that the sequence of lattices

l/2 ),P i+i

is acceptable.
The lattice Р,- =  M (4) where M  is an even lattice, since it holds for 

T, and Pj is a sublattice of the T. Then the lattice P/(l/2) is constructed 
from the subgroup 9y =  (1/2)Р//Р,- С A P> b =  ( Z /2 Z )3 and gp, | & =  0. 
It follows that there exists an embedding of the forms:

ЯР,\Ь -> u(+2)(2)4 .

Since rk Р,- =  5, then we have the strong inequality:

3 >  (rk Р,- +  l (A (P i )3)/2 - 3  =  2.
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It proves the condition (ii) of Theorem 2.2.7, and the sequence of lattices 
Pi, P - (1/2) is acceptable.

The lattice P/(l/2) С P{( 1/2) =  Л^(2), where the lattice M  is even. 
Using this fact, in the same way as above, one proves that the sequence 
of the lattices P/(l/2), Pl+1 is acceptable. Corresponding to this sequence, 
the subgroup f> of the discriminant group of the lattice P/(l/2) is b =  
Pi+1(l/2 )/P/ (l/2 )2 (Z/2 )3.

In such a way, we obtain an acceptable sequence of the lattices of the 
form X ®  Q:

S =  P i D P{(2) C P 2 D . . . C P b- i D  P U (  2) C P b =  T .

This finishes the proof of the Theorem. □

From Theorem 3.1 and the theory of Kummer surfaces, we obtain the 
following theorem (Theorem 1.3 of the Introduction). This theorem was 
proved by I. R. Shafarevich and the author together.

Theorem 3.2. (V. V. Nikulin and I. R. Shafarevich). Let X  and Y  be 
algebraic КЗ surfaces. Suppose that for all odd prime p there are primitive 
embeddings of p-adic lattices:

T x ®  Zp C U 3® I p  and TY ® I p C U 3 ® T p \ 

and for p =  2 there are embeddings of the quadratic forms over the field

Q2:
Tx  ® Q2 С U3 ® Q2 and Ту ® Q2 С U3 ® Q2.

Let for the positive square-free integer d we have an isomorphism <p : 
Ty(d) ® Q —► Tx  <8> Q of quadratic forms over Q (an abstract modifica
tion) and <p{H2>°(Y)) =  H 2>°(X). _

Then there exists a rational map / : X  —► Y  such that <p =  /*.

Proof. One can see very easily that for any odd prime p we have an 
isomorphism: U ® 7Lp ^  U(2)  0  Z p, and that U <8> Q2 — ^(2) ® Q2- It 
follows that for any odd prime p there are primitive embeddings

Tx  ® Hp С U(2)3 ® Z p and Ту ® Z p С U{2)3 ® Z p
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and
Tx  0  Q2 С U (2)3 <S> Q2 and Ту <g> Q2 С !7(2)3 <8> Q2 .

The lattice U(2)3 is unique in its genus (it follows from the classification 
of the unimodular lattices). Then, there exist embeddings of the lattices 
Tx С U (2)3 and Ту С U (2)3 such that these embeddings are primitive over 
all odd prime p. Let Ti be the primitive sublattice of U(2)3, generated by 
T x } and T2 be the primitive sublattice of U (2)3 generated by Ту. We have 
the natural identifications Tx  ® Q =  T\ (8) Q and Ту <g) Q =  T2 ® Q of the 
quadratic forms over Q such that for all odd prime p we have Tx  ® T p =  
Ti® l p and Ту ® Z p =  T2® Zp under the identifications. Surfaces X  and Y 
are algebraic. It follows that rk T *  =  rk Ту < 5 since there are embeddings 
Tx  С I7(2)3 and Ту С U(2)3. From the prove of Theorem 3.1, it follows
that there are КЗ surfaces X\ and Yi, and rational maps g\ : X ------- ♦ X\
and g2 : Y i-------► Y, which are compositions of the rational maps of degree
two, and isomorphisms of the lattices tii : T x x — Ti and ti2 : T2 =  Tyl such 
that g[ =  tii <g) Q and g\ — ti2 <8> Q under the identifications above of the 
quadratic forms over Q:T* <g> Q =  Ti <g> Q and Ту ® Q =  T2 ® Q. Under the 
identifications, the preserving periods modification у?: Ту (rfi )®Q =  T x ®Q 
defines the preserving periods modification

9i =  0>i <S> Q )” 1 • (p • (ti2 <g> Q )"1 : TYl(di) ® Q S  TXl <S> Q ■

The lattices T xx — Ti and Tyt “  T2 have primitive embeddings into the 
lattice U(2)3. It follows from the criterion of [Nl] for КЗ surface to be 
Kummer surface and [N3] (see [Mo]) that both КЗ surfaces X i  and Yi are 
Kummer surfaces. We recall that if A is an abelian surface and l is a multi
plication by —1 on A, then the minimal resolution Z  of singularities of the 
surface A/{1,“ 1} is called Kummer surface. This surface is an algebraic 
КЗ surface. It is not difficult to prove that the statement of the theorem is 
true for the abelian surfaces and homomorphisms of abelian surfaces. The 
transcendental lattices of Z  and A are naturally identified: Tz =  TA(2), and 
under this identification H 2>°(Z) =  H 2>°(A). It follows that the theorem 
is true for Kummer surfaces (every homomorphism between abelian sur
faces gives the rational map of the corresponding Kummer surfaces and the 
corresponding modification of their transcendental periods). Thus, there
exists a rational map h : X i ------- ► Yb and h* =  <pi. Then the rational
map g2 • h - gi : X ------- ► Y  gives the modification (p. □

Rem ark 3.3. It is very easy to reformulate the conditions of Theorem
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rk Tx  +  Кч(тх),) < 6

for all odd prime p, and

\Атх I =  -discr K(q(Tx)f)m od (2 * )2 

for all odd prime p for which rk Tx  +  КЯ(ТХ), )  =  6;

rkTx  +  KQ(Txh) < 6 ,

and

\Atx I =  ±discr ^(f(Tx)a)

if rk Тл- +  Щ т хЬ) =  6 and q(Txh % q^ (2 )  ф q'. (Here q(Txh is the 
discriminant form of a maximal even overlattice of the lattice T * ® Z 2).

Remark 3.4. The condition of the Theorem 3.2 holds if rk Tx  = 
rk Ту < 3. Thus, in this case Theorem 3.2 is true.

3.2 using discriminant forms:

4. Several Remarks

We want to give here several remarks about the results obtained above.

4.1. Theorem 3.1 (or the Theorem 1.3 of the Introduction) is not true 
for rk Tx  =  6. If (T x Ь  =  Т х ® % 2  =  К<2)(1)3, then the condition (ii) 
of the Theorem 2.2.5 does not hold. Thus, the surface X  has no rational 
maps of degree two into other КЗ surfaces, and Theorem 3.1 is not true for 
the surface X  and any other КЗ surface Y  (for example for У =  X ).

4.2. Let us remark that every abstract modification (p : T\(d) ® Q —► 
T2 <g> Q of the lattices defines the inverse modification <p~l : T2(d) <g> Q —► 
T\ <g> Q. Thier composition (in the sense of 2.2.5) y?-1 • <p : T\ ® Q —► T\ <g> Q 
should be the identical map. Thus, a rational map / : X  * У of 
surfaces gives also an inverse modification f* : Tx(d\) <8> Q —► Ту <g> Q.

For rk Tx  =  rk Ту =  6 we obtain the following variant of Theorem 3.1: 
An abstract modification (p : Tx(d) ® Q “ ► Ту ® Q satisfying conditions of 
Theorem 3.1 is a composition of the modifications corresponding to rational
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maps of degree two between КЗ surfaces and of their inverse. The proof of 
the statement is similar to the proof of Theorem 3.1.

4.3. For rk Tx  =  7 the statement above is not true. There are КЗ 
surfaces with rk Tx  =  7 such that for the lattice Tx,  condition (i) of 
Theorem 2.2.5 does not hold. This КЗ surface has no symplectic involutions 
and has no rational maps of degree two Z ------- ► X  of а КЗ surface Z.

4.4. Results of the paper show that it is very important in questions 1.1 
and 1.2 to construct some examples of rational maps between КЗ surfaces. 
Here we used rational maps of degree two between КЗ surfaces and rational 
maps between Kummer surfaces which are induced by the homomorphisms 
between abelian surfaces. All other rational maps between КЗ surfaces in 
this paper were compositions of these rational maps.

It would be very interesting to describe rational maps / : X ------- >Y
of degree 3 between КЗ surfaces. If / is a Galois map then / is defined by 
the action of the abelian symplectic group of order 3 on the surface X } and 
all these actions and the corresponding quotient maps / are described in 
[N2]. In this case, rk Tx  =  rk Ту < 10, and these maps are very rare. But 
a description of the non-normal rational maps / of degree 3 is unknown 
now.

We do not know examples of rational maps f  : X ------- ► Y  of degree
> 1 between general (with rk Sx  =  rkSy =  1) КЗ surfaces X  and Y.
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SOME CLASSES OF VARIATIONAL INEQUALITIES

Muhammad Aslam Noor

ABSTRACT

V aria t iona l  inequa lity  theory is  an e f f e c t iv e  tech
nique to study a wide c lass  of problems a r is in g  in  
various branches of pure and applied sciences* In recent 
years, this theory has been extended and genera lized  in  
various d irections. The main aim of th is paper is  to 
introduce and study a new c lass of v a r ia t io n a l  In eq u a li 
t i e s ,  which includes and generalizes the previous known 
re su lt s .  Pro jection technique is  used to suggest and pro
pose a new un ified  and general algorithm fo r  these c lasses  
of va r ia t iona l  in eq ua l it ie s .  Convergence and s e n s i t iv i t y  
analysis  is  a lso  considered.

1• INTRODUCTION

I t  Is we l l  known that v a r ia t iona l  p r in c ip le s  enable us to 

study many unrelated problems a r is in g  in d i f fe ren t  branches of pure 

and applied sciences In a un ified  and general framework. In recent 

years, these p rinc ip le s  have been enriched by the d iscovery of 

va r ia t io n a l  inequality  theory. Var ia t iona l  in equa l it ie s  were in t ro 

duced by Stampacchia [1] and Fichera [21 in the ear ly  1960’ s to study 

the problems in potentia l  theory and mechanics re spect ive ly .  Since 

then, this subject has been developed In several d irections  using new 

and powerful methods. The variety of problems to which v a r ia t io n a l
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inequa lity  techniques may be applied is  impressive and amply represen

ta t ive  fo r  the richness of the f i e ld *  Some of these developments have 

made mutually enriching contacts with other areas of mathematical and 

engineering sciences including e l a s t i c i t y ,  transportation and econo

mics equilibrium  theory, nonlinear programming and operations  

research, see Kikuchi and Oden [3 ] ,  Baiocchi and Capelo [4 ] ,  Crank 

[ 5 ] ,  and Rodrigues [6] and the reference therein for mathematical and 

physical modelling and applications. This theory was developed 

simultaneously not only to study the fundamental facts  about the 

q u a l i t a t iv e  behaviour of solutions of nonlinear problems, but a lso  to 

solve them more e f f i c i e n t ly  numerically. In fac t ,  this theory provi

des us a sound basis for computing the approximate so lution  of many 

moving and free  boundary values problems in a un ified  framework.

In 1971, Baiocchi reformulated the flow problems through 

porous media in terms of var ia t ion a l  in equa lit ies  by using a t rans fo r 

mation, see Oden and Kikuchi [7] fo r  formulation and numerical 

re su lt s .  Since then, v a r ia t iona l  in equa lit ies  have made a tremendous 

impact in this f i e ld  and re lated areas. Recently Kikuchi and Oden [3] 

have shown that the general problem of equilibrium of e la s t ic  bodies 

In contact with r ig id  foundation on which f r i c t io n a l  forces are deve

loped, can be characterized by a c lass of va r ia t ion a l  in eq u a l i t ie s .  

I t  Is  worthmentioning that the formulation of contact problems as 

v a r ia t io n a l  in eq ua l i t ie s  was o r i g in a l ly  studied and considered by 

Duvaut and Lions [8 ] .  One of the main advantages of the va r ia t io n a l  

in equa lity  formulation is  that the location of the free  boundary 

(contact area ) becomes an ln s t r in s ic  part of the so lution and no spe

c i a l  devices are needed to locate i t .  In most cases, the existence of 

so lu tions  to such problems is an open problem. Some spec ia l  cases  

have considered by Noor [9 ,10 ] ,  Demkowicz and Oden [11 ],  and Duvaut 

and Lions [8 ] .

Equally important is  the area of mathematical programming 

known as the complementarity theory, which was Introduced and studied  

by Lemke [12] in 1964. Cottle and Dantzig [13] defined the complemen
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ta r ity  problem and called  i t  the fundamental problem. A survey paper 

by Lemke [14] outlines the ear ly  theo re t ica l  r e su lt s ,  most of which 

were motivated and inspired  by app licat ions  to equ i lib rium  type 

problems in operations research and game theory. For most recent 

resu lts and applications, see [3 ,4 ,5 ,6 ,1 5 ] .  The re la t ion sh ip  between 

a var iat iona l inequality  problem and a complementarity problem has 

been noted by Lions [16 ],  Lions and Stampacchia [17] and Mancino and 

Stampacchia [18 ].  However, i t  was Karamardian [19 ,2 0 ] ,  who showed 

that i f  the set involved in a v a r ia t io n a l  in equa lity  problem and 

complementarity problem is  a convex cone, then both problems are 

equivalent. This in te r re la t ion  between these problems is very usefu l  

and has been successfu lly  applied to use the v a r ia t io n a l  in equa lity  

technique to suggest and analyze constructive algorithms fo r  comple

mentarity problems by Ahn [21] and Noor [22, 23 ]. For re la ted  work, 

see Rassias [24 ],  where one can find g loba l  v a r ia t io n a l  methods for  

var ia t iona l  problems of more than one va r iab le s .

I t  is  c lear that the theory so fa r  developed in recent years  

i s  applicable for considering free  and moving boundary problems of 

even order. Nothing is  known for the case of odd order boundary 

problems. Tonti [25] has developed a very general theory to derive  

the va r ia t ion a l  p rinc ip les  for both odd and even order boundary 

problems. Inspired and motivated by the applications of v a r ia t io n a l  

princ ip les  in the theory of d i f f e r e n t ia l  equations, the author has 

developed i t e ra t iv e  algorithms for certain classes of v a r ia t io n a l  ine 

q u a l i t ie s  re lated with odd order d i f f e r e n t ia l  boundary problems. I t  

i s  we ll  known that a l l  these classes are gen era l izat ion  of the 

v a r ia t ion a l  inequality  Introduced by Lions and Stampacchia In 1967. 

I t  is  natural to consider the un if ication  of these d i f fe re n t  g e n e ra l i 

zations. In this paper, we introduce a new class of v a r ia t io n a l  ine 

q u a l i t ie s ,  which un ifies  many of the previously known c la s s e s .  

Projection technique is used to suggest an i t e ra t iv e  algorithm fo r  

th is c lass .  Various special cases have been discussed. We have given  

only a b r ie f  introduction of this fast  growing in teres t in g  f i e l d  of 

pure and applied sciences. The interested reader is  advised to
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explore this f i e ld  fu rther.  I t  is  our hope that this b r ie f  introduc

tion may insp ire  and motivate the readers to discover new and innova

tive  applications  of var ia t ion a l  inequa lit ies  in other areas of 

sciences. Despite of a l l  the a c t iv i t ie s  going on in this subject,  

s t i l l  many open problems remain to be considered, e spec ia l ly  the sen

s i t i v i t y  ana lys is  fo r  v ar ia t iona l  in equa lit ies .  Furthermore, the 

development and refinement of algorithms for finding the approximate 

so lutions of v a r ia t io n a l  in equa lit ies  need further research work.

In Section 2, we review the relevant l i te ra tu re  and fo r 

mulate a new general class of var ia t iona l  in equa lit ie s .  Pro jection  

technique is used to suggest to an it e ra t iv e  algorithm, which is the 

subject of Section 3 convergence analysis is discussed in Section 4. 

Sensivity analysis  is studied in Section 5.

2. BASIC RESULTS AND FORMULATIONS

Let H be a real H ilbert space with Its  dual space Hf , whose 

Inner product and norm'are denoted by ( . , . )  and II. II respect ive ly .  Let 

К be a closed convex nonempty set in H. We also denote by < . , . > ,  the 

pa ir in g  between H' and H.

Given a continuous operator T : H -------- > Hf , we consider the

problem of f inding ueK such that

<Tu, v-u> > 0, fo r  a l l  veK. (2 .1 )

The inequality  of type (2 .1 )  is  known as va r ia t iona l  inequality  in tro 

duced and studied by Stampacchia and Fichera in 1964. Lions and 

Stampacchia [171 proved the existence of unique so lution of (2 .1 )  

using e s se n t ia l ly  the pro jection technique. We note that i f  T is a 

l in e a r  symmetric operator, then the solution ueK sa t is fy in g  (2 .1 )  is  

equivalent to find the minimum of the functional I [v J ,  defined by

I [ v ]  = j  <Tv,v> , (2 .2 )

on the convex set К in H.
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For the case, when К = H, then problem (2 .1 )  is  equivalent 

to find ueH such that

<Tu,v> = 0, fo r  a l l  veH (2 .3 )

The problem (2 .3 )  is  known as the weak formulation of boun

dary value problems, where T is  any d i f f e r e n t i a l  or in te g ra l  operator 

associated with the given problem, see Lions [16 ].

In the formulation of the v a r ia t io n a l  in eq u a l i ty ,  the 

underlying convex set К does not depend upon the so lu t ion .  In many 

applications, the convex set К also depends im p l ic i t ly  on the so lution  

u i t s e l f .  In this case, the va r ia t io n a l  inequa lity  (2 .1 )  Is known as 

the quas i -va r ia t ion a l  inequa lity ,  which is a g en era l iz a t ion  of the 

var ia t ion a l  inequality  (2 .1 ) .  This use fu l gen era l iz a t ion  was con

sidered and studied by Bensoussan and Lions [26 ] .  To be more spec i

f i c ,  a quas i -va r ia t iona l  inequality  problem is  indeed a problem of the 

type:

Given a point-to set mapping K:u ------> K (u ) ,  which associates

a closed convex subset K(u) of H with any element u of H, f ind  ueK(u) 

such that

<Tu, v-u> > 0, fo r  a l l  veK(u) (2 .4 )

In many Important applications, see Mosco [27 ],  Bensoussan and Lions 

[26] and Baiocchi and Capelo [4 ] ,  the set K(u) is  of the fo l low in g  

form

K(u) = m(u) + K, (2 .5 )

where m is a point-to -po int mapping and К is a closed nonempty convex 

set of H. Note that i f  the point-to -po int mapping m is zero , then 

quae l-va r ia t lon a l  inequality  problem (2 .4 )  is  exactly  the v a r ia t io n a l  

inequality  problem (2 .1 ) .  I t  has been shown by Noor [28 ] ,  Noor and 

Noor [29 ],  Glowinski, Lions and Tremolieres [30] that the so lu t ion  of 

the problems (2 .4 )  and (2 .1 )  can be obtained from the i t e r a t i v e  

methods using the project techniques.
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In  1975, Noor [28] extended the va r ia t iona l  inequality  

problem (2 .1 )  to study a class of mildly nonlinear e l l i p t i c  boundary 

value problems having constraints . Given nonlinear operators T,A:H

> H*, we consider the problem of finding ueK such that

<Tu,v-u> > < A (u ) , v-u>, fo r  a l l  veK (2 .6 )

The in eq ua l it ie s  of the type (2 .6 )  are known as the 

( s t ro n g ly )  mildly nonlinear v ar ia t iona l  in equa l it ie s .  I t  is  worth 

mentioning that u n i la te ra l  contact problems involing contact laws of 

monotone nature do not lead to the formulation of var ia t iona l  ine

q u a l i t ie s  d i re c t ly .  However, i t  has been shown by Papagiotopoulos 

[3 1 ] ,  using the notions of C larke 's  generalized gradient and 

R o ck a fe l lo r 's  upper subderivative, that the nonconvex un i la te ra l  con

tact problems can only be characterized by a class of v ar ia t iona l  ine

q u a l i t ie s  of type (2 .6 ) .  For the existence, i t e ra t iv e  methods and 

f i n i t e  element approximate solutions of in equa lit ies  (2 .6 ) ,  see Noor 

[28 ,32 ,33 ].

The quasi mildly nonlinear var iat iona l  inequality  problem is  

to find ueK(u) such that

<Tu, v-u> > <A (u ),  v-u>, for a l l  veK(u) (2 .7 )

This genera lization  is again due to Noor [34 ].  For the re lated work, 

also  see Mosco [27 ].  I t  is  obvious that the problems (2 .4 ) ,  and (2 .6 )  

are two d i f fe ren t  genera lizations of the va r ia t ion a l  in equa lit ie s

(2 .1 )  introduced by Stampacchia [1 ] .  C learly  the problem (2 .7 )  is  

most general and includes (2 .1 ) ,  (2 .4 )  and (2 .7 )  as spec ia l  cases.

We would l ike  to point out that a l l  these c lasses of 

va r ia t io n a l  Inequa lit ies  are applicable  to study the boundary value 

problems of even order. The present form of var ia t ion a l  in equa lit ies  

cannot be used to study the odd order constraint boundary value  

problems. This fact alone motivated us to extend and generalize the 

present va r ia t iona l  inequality  theory. In this case, we consider
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problem of the fo l low ing form: Given, T,g:H ----- >H ',  consider the

problem of finding ueH such that g (u )eK  and

<Tu, g ( v ) - g ( u ) >  > 0, fo r  a l l  g (v )eK . (2 .8 )

The inequality  (2 .8 )  is  known as general nonlinear v a r ia t io n a l  ine

qua lity .  This problem is  due to Noor [35 ] .  The v a r ia t io n a l  ine

quality  problem (2 .8 )  has been extended by Noor [36] to the include  

the case, when the convex set a lso  depends upon the so lu tion  impli

c i t ly .  The general quasi v a r ia t ion a l  in equa lity  problem is  to find  

ueH such that g (u )eK (u )  and

<Tu, g ( v ) - g ( u )>  > 0, fo r  a l l  g (v )e K (u )  (2 .9 )

Motivated and inspired by the research work going on in this  

area, Noor [37] considered and studied the more general case, which 

enable us to include the odd order (s t ro n g ly )  mildly nonlinear boun

dary value problems subject to some constraints .  Given T,A,g:H  — > H' 

nonlinear operators, we consider the problem of f ind ing  ueH such that 

g(u )eK  and

<Tu, g (v )  -  g (u )>  > < A (u ) , g (v )  -  g (u )>  fo r  a l l  g (v )eK  (2 .10 )

which are known as general mildly nonlinear v a r ia t io n a l  in e q u a l i t ie s ,  

see Noor [37] for i t e r t iv e  method and app lications.

We note that fo r  g -  I ,  the iden t ity  operator ,  the 

var ia t iona l  in equa lit ies  problems (2 .8 ) ,  (2 .9 )  and (2 .10 )  are exactly  

the same as the problems (2 .1 ) ,  (2 .4 )  and (2 .6 ) .  These problems 

enables us to study both the even and odd order boundary value  

problems in a unified  and general framework.

I t  is  c lear that the va r ia t iona l  in eq u a l i t ie s  problems 

( 2 «4 ) ,  (2 .6 ) -  (2 .10 ) are d if fe ren t  genera lizations of the o r i g in a l  

var ia t iona l  inequality  problem (2 .1 ) .  I t  is  natural to consider the 

un ificat ion  of these problems and study them in a general framework. 

This is  the main motivation to consider the problem of the type:
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<Tu, g (v )  -  g (u )>  > <A (u ),  g ( v ) -  g (u )> ,  for a l l  g (v )eK (u )

( 2 . 11)

Special Cases

We know consider a special case, which is i t s e l f  a very 

important and active f i e ld  of research. We consider the case, when 

the convex set К is a convex cone. Let

K* = (veH ',  ( v ,u ) > 0, fo r a l l  иск}

be the polar (du a l )  cone of К in H. The corresponding problems are 

a s :

Find ueK such that

TueK* and (u,Tu) = 0 . (2 .12 )

Such types of problems are known as l inea r  and nonlinear complemen

t a r i t y  problems depending upon whether the operator T is  l inea r  or 

nonlinear.  These problems are o r ig in a l ly  due to Lemke [12] and Cottle  

and Dantzig [13 ].

The quasi complementarity problem is to find such that

TueK* and (u ,Tu) «  0 . (2 .13 )

Such types of problems have been studied by Dolcetta [38 ],  Pang [39 ],  

and Noor [22,23] using d i f fe ren t  techniques.

The mildly nonlinear complementarity problem is  to find ueK

such that

(Tu -  A (u ) )  e K* and (u , Tu -  A (u ) )  = 0. (2 .14 )

Find ueH such that g (u )eK (u ) and

The problem (2 .14 ) has been studied by Noor [40,23] using the tech

nique of var ia t ion a l  in eq ua l it ie s .  I te ra t iv e  algorithms for problem 

(2 .14 )  are considered in [41] along with convergence ana lysis .
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Noor [42] has also studied the general quasi complementarity 

problem of the type:

Find ueK(u) such that

TueK*(u) and (u ,Tu ) = 0 . (2 .15 )

Here K*(u ) is  the polar cone of K(u) in H.

The general complementarity problem is  to f ind  ueH such that

g(u )eK , TueK* and (Tu, g ( u ) )  = 0. (2 .16 )

This problems is due to O e tt l i  and Noor [43 ] .  These problems have 

been further generalized and extended as fo l low s :

Find ueH such that

g (u )eK , (Tu -  A (u ) )eK* and ( g ( u ) ,  Tu -  A (u ) )  = 0 (2 .17 )

This problem appears to be new one. Note that i f  the operator A (u )=0 ,  

then problem (2 .17 ) is  exactly the one studied by O e t t l i  and Noor 

[43 ] .  The re lated  general mildly nonlinear quasi complementarity 

problem is  to find ueH such that

g (u )e K (u ) , (Tu -  A (u ) )  e K* and ( g ( u ) ,  Tu -  A (u ) )  -  0 (2 .18 )

Note that i f  A (u) = 0 and K(u) is  independent of u, that is  K (u ) = K, 

then problem (2 .18 ) reduces to the problem (2 .1 6 ) .

From the above discussions, we conclude that the genera l  

strongly  nonlinear quasi var ia t ion a l  inequa lity  problem (2 .1 1 )  

i s  more general and Includes a l l  the previous ones as sp e c ia l  

cases.
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3. ITERATIVE ALGORITHMS

We, in this section, show that the problem (2 .11 ) is  equiva

lent to a f ixed  point problem. The fixed point formulation is then 

used to suggest a general i t e ra t iv e  type algorithm for computing the 

so lution of the quasi v a r ia t iona l  inequa lit ies  and its  various special  

cases.

Lemma 3 .1 ; I f  K(u) is  defined by the re lat ion  (2 .5 ) ,  then 

ueK(u) is  a so lution  of (2 .11 ) I f  and only i f  ueK(u) s a t i s f i e s  the 

fo l low ing  re la t ion

g (u )  ■ PR[g (u )  -  pA(Tu -  A (u ) )  -  m(u)] + m(u), (3 .1 )

fo r  some p > 0. Here P is  the projection of H into К and m Is any
K.

a rb i t r a ry  po in t -to -po in t  mapping. Л is  the canonical isomorphiom from 

H* onto H such that fo r  a l l  veH and feH’ ,

< f ,  u> -  (A f ,  v ) .  (3 .2 )

P ro o f : I ts  proof is  s im ilar  to that of Lemma 3.1 in Noor 

[4 3 ] .  See also  Chan and Pang [44 ].

Lemma 3.1 implies that the problem (2 .11 ) is  equivalent to 

f ind ing  a f ixed  point of

u -  F (u ) ,

where

F (u )  = u -g (u )  + m(u) + P jJg (u ) -  pA(Tu -  A (u ) )  -  m (u ) ] ,  (3 .3 )

with a pos it ive  constant p. The fixed point formulation enables us to 

propose the fo l low ing  general and un ified  i t e ra t iv e  algorithm fo r the 

quasi va r ia t ion a l  in equa lit ies  (2 .11 ).

Algorithm 3.1

For given e H, compute u^+1 by the i t e ra t iv e  scheme:
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f o r  p

I.

I I :

III:

u -  g(u ) + m(u ) + Pv [g (u  ) -  pA(Tu -  A(u ) )  -  m(u ) ]  
n n  n К n n n  n

n »  0 , 1 , 2 , • • • .  ( 3 . A)

> 0 .

Special Cases

I f  the poin t-to -po in t mapping m is zero , then Algorithm 3.1 

is  exactly the same as discussed in Noor [37 ] .

Algorithm 3.2

For given uqe H, compute by the i t e r a t iv e  scheme.

V i «  un"  + p^ [ g ( un) -  pA(Tun-  A (un> ) ] ,  n=0, 1 , 2 . . .

I f  the nonlinear operator A (u ) = 0, then Algorithm 2.1 is  

equivalent to:

Algorithm 3.3 

For given u^e H, compute un+  ̂ by the scheme.

Un+1= V  g(un} + m̂ un^ + PK^g ^Un^ “ рЛТп" m(un ) , f  n -0 ,1 ,2 ,

For the convergence analysis of Algorithm 3.3, see Noor [3 6 ] .

I f  the nonliner operator A(u) = 0 and m(u) = 0, then 

Algorithm 3.1 reduces to the fo l low ing .

Algorithm 3.4

For given u e H, find u .. from the i t e ra t iv e  scheme о n+1



Un+1= un" g (un) + PK[g (u n) "  РЛТипЬ  n=0, 1 , 2 , . . . .

This resu lt  is  again due to Noor [45 ].

IV: I f  g= I ,  the identity  operator, and m(u) = 0, then Algorithm

3.1 is  exactly the one discussed in Noor [33] and Noor and 

Noor [29 ].

Algorithm 3.5

For given u e H, find u ,, from the scheme, 
о n+1

u = Р Д и -  P(Tu -  A(u ) ] ,  n -  0 , 1 , 2 , . . . .  
n+l K. n n n

V: I f  g=I, the identity  operator, m(u) = 0, and A (u ) E 0, then

Algorithm 3.1 becomes:

Algorithm 3.6

For given u e H, find u from the scheme.°  о n+l

un+l  "  V un -  p Tun> ’  » ■  0 , 1 . 2 . .........

This algorithm is  mainly due to G lowiniski, Lions and 

Tremolieres [30] and Noor and Noor [29 ].

V I. I f  g=I ,  the identity  operator, and A (u) E 0, then Algorithm

3.1 reduces to the one that is proposed by Noor [45 ],  see 

a lso  Chan and Pang [44 ].

Algorithm 3.7

For given uqE H, find ur+  ̂ from the i t e ra t iv e  scheme

1007
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For the corresponding complementarity problems, these 

algorithms can be suggested with the same convergence c r i t e r i a .  From 

the above discussions and observations, i t  is  c lea r  Chat Algorithm 3.1 

proposed in this paper is  more general and includes many previously  

known algorithms fo r  various c lasses of v a r ia t io n a l  in e q u a l i t ie s  and 

complementarity problems as spec ia l  cases, which are mainly due to 

Cryer [46 ], Mangasarian [47 ],  Ahn [21 ],  Chan and Pang [44 ] ,  Pang [39 ],  

Noor [22,23,25] and Fang [48 ].

4. CONVERGENCE ANALYSIS

In this section, we study those conditions under which the 

approximate solution obtained from Algorithm 3.1 converges to the 

exact solution of the general quasi v a r ia t io n a l  in equa lity  (2 .1 1 ) .  

For this purpose, we need the fo l low ing  concepts.

D e f in it ion  4 .1 : An operator T:H ------> Hf is  said to be

.Strongly  monotone, i f  there exists a constant a > 0 such that

<Tu -  Tv, u-v> > a lu -v l  , for a l l  u,veH (4 .1 )

l ip s c h itz  continuous, i f  there exists  a constant 0 > 0 such that 

ITu -  Tvl < 0 lu -v l ,  fo r a l l  u,veH. (4 .2 )

From (4 .1 )  and (4 .2 ) ,  i t  follows that a < &.

We now state and prove the main result of this paper.
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Theorem 4 .1 : Let the operators T , g : H -------- > H' be both

strongly  monotone and Lipschitz continuous respective ly .  I f  the 

operator A and the po in t-to -po in t mapping m are also both Lipschitz  

continuous, then

u^ ------> u strongly in H,

, a + Y (k - l )  j \/ (o+ -r (k -D )2 -  ( e 2 -  y2)k (2 -k )  . . , fo r  |p -  — r \ < ------------------- - --------j ----------------------  , к < 1,
8 -  Y 8 -  Y

a > Y(1—к.) + '/(V2 -  Y2)k (2 -k )  , and Y ( l “k) < a,

where u and u are solutions sa t is fy ing  (3 .4 )  and (2 .11 ) respec-  
n+1

t iv e ly .

P ro o f : From Lemma 3.1, we conclude that the so lution u of 

(2 .11 )  can be characterized by the re lat ion  (3 .1 ) .  Hence from (3 .1 )  

and (3 .4 ) ,  we have.

|lun+1“ u| | = | |un~ u -  ( g (u n) -  g ( u ) )  + m(un) -  m(u) + P^ [g (un) -  ® (un)

-  pA(Tu -  A(u ))J -  P [g (u )  -  m(u) -  pA(Tu -  A(u)) ]||  
n n к

< 2 |lun“ u -  ( g ( un ) ~ g ( u ))||  + 2 l l m( un) “ m(u)||

+ ||un“ u -  pA(Tun~ A (u^))|| + PI IA(un) “  A (u )| | ,

(4 .3 )

using the fact that P is  a non-expansive operator [4 ] .  
K.

Since T, g are both strongly monotone and Lipschitz con

tinuous, so by using the technique of Noor [45 ],  we have
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| |un -  u -  ( g ( un) "  g (u ) )  I |2 < (1 -  26 + О2) I |un~ u| |2 (A .A )

and

| |u -  u -  pA(Tu -  Tu )) | |2 < ( l - 2 p a  + 02p2) | |u -  u| 12. (A. 5) n n ' 1 1 ' n

From (A .3 ) ,  (A .A ) ,  (A .5) and by using the L ipsch itz  continu ity  of the 

operator A and mapping m, we obtain

l l v r  “n il ( U 2A^26+<j2) 25 + PY + (/(l-2ap + B 2p2)} 1 (u^- u ||

-  (k + py + t ( p ) } ||un-  u|| .

“ 9 I lun“ ull*

where

9 = к + py + t ( p ) ,

with

к * 2£ + 2 / 1 -  26 + a2 , t ( p )  = / l - 2 a p + p V  .

Now t (p )  assumes i t s  minimum value for p = —  ̂ with 

j — - j  B 
t ( p )  «  V 1 -  . We have to show that 0 < 1. For p = p, k+pY+ t (p )< ^

implies that к < 1 and a > Y ( l - k )  + V^02-Y 2)k ( 2 - k ) . Thus i t  fo l low s  

that 0 =» к + py + t (p )  < 1 for a l l  p with

■ _ оЦСк^П . / (a n ( k - l ) ) 2 -  (82-Y2)k (2 -k ) . . .
IP 2 2 I ~2 2-------------- • k < 1

3 -  Y 0 -  Y

a > Y ( l - k )  + / (в 2 -  у2) k (2 -k )  and y U -Ю  < a .

Since 0 < 1, so the fixed point problem (3 .1 )  has a unique so lu t ion  u 

and consequently, the ite ra t ive  solution u obtained from (3 .A )  con-
n4>1
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5. SENSITIVITY ANALYSIS

We now study the sen s it iv i ty  analysis for the general quasi 

v a r ia t io n a l  inequa lity  problem (2 .11 ).  Sens it iv ity  analysis fo r  

va r ia t io n a l  in eq ua l it ie s  has been studied by Dafermos [49 ],  Kyparisis  

[50 ,51 ],  Qiu and Magnanti [52] and Tobin [53] using d i f fe ren t  methods. 

We mainly fo l low  the pro jection technique used by Dafarmos [49] and 

Noor [54] fo r  the study of the sen s it iv ity  ana lysis .  This approach 

has strong geometric f lavour .  To formulate the problems, le t  M be an 

open subset of H in which the parameter X takes values and assume that 

{ k^ (u ) : XeM} is  a family of closed convex subsets of H. The para

metric general quasi v a r ia t iona l  inequality  problem is to find ueH 

such that g (u )  e K^(u) and

< T (u ,X ) , g ( v ) -  g (u )>  > <A (u ,X ) , g (v )  -  g (u )> ,  (5 .1 )

fo r  a l l  g ( v )  e K ^ (u ) ,  where T (u,X) and A(u,X ) are given operators  

defined on the set of (u ,X ) with XeM. We also assume that fo r  some 

XeM, the problem (5 .1 )  admits a solution u.

We want to investigate  those conditions under which, fo r  

each X in a neighbourhood of X, the problem (5 .1 )  has a unique so lu

t ion  u (X ) near u and the function u(X) is  continuous and d i f fe re n 

t i a b l e .  We assume that X Is the closure of a b a l l  in H centered at u.

We a lso  need the fo l low ing concepts.

D e f in it ion  5 .1 : The operator T (u,X ) defined on XxM is  said  

to be lo c a l l y ,  fo r  a l l  XeM, u,veX;

( a )  Strongly monotone, i f  there exists  a constant a>0 such that

<T(u,X ) -  T (v ,X ) , u-v> > a lu - v l2, (5 .2 )

( b )  L ipsch itz  continuous, i f  there ex ists  a constant 8>0 such that

verges to u, the exact solution of the problem (2 .11 ).



1012

IT (u ,X) -  T (v ,X )  П < Bllu-vd, (5.3)

From Lemma 3.1, we conclude that problem (5 .1 )  can be trans

formed to the fixed point problem of the map:

F(u, X) «  u -  g (u )  + m(u) + PK^ [g (u )  -  p (T (u ,  X) -  A (u ,X ) )  -  m (u ) ] , (5 .4 )  

fo r  a l l  XeM, some p>0 and m is a po in t -to -po in t  mapping.

Since we are interested in the case, when the so lution  of 

the problem (5 .1 )  l i e  in the in te r io r  of X, so we consider the map 

F* (u ,X ) defined by

F irs t  of a l l ,  we show that the map F * (u ,X )  has a f ixed  

point, which is  the motivation of our next r e su lt .

Lemma 5 .1 : For a l l  u,veX, and XeM, we have

IF* (u ,X )  -  F * (v ,X ) I  < Qlu-vl ,

where 0 -  k + t (p )< l  fo r  Y ( l - k )  < a, k< l,

and

with

к -  2£ + 2/T-26+02 and t (p )  -  /l-2ap+32p2.2 2
-2ap+8 p .

P roo f : I ts  proof is  sim ilar to that of Lemma 3.1
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Remark 5.1: From Lemma 5.1, it is clear that the map F*(u,X) 
defined by (5.5) has a unique fixed point u(X), that is u(X) = 
F*(u,X). We also know that by assumption, the function TI, for X = X 
is a solution of problem (5.1). Again using Lemma 5.1, we see that Ti 
is a fixed point of F*(u,X) and it is also a fixed point of F*(u,X). 
Consequently, we have u(X) = u  = F*(u(X),X).

We now show that the solution u(X) of the parametric 
variational inequality (5.1) is continuous (Lipschitz continuous).

Lemma 5.2: If the operators T(u,X), A(u,X), g(u)>m(u) and
the map X ---> P [g(u) - p(T(u,X) - A(u, X))-m(u) ] are continuous

KXA X
(Lipschitz continuous), then the solution u(X) satisfying (5.1) is 
continuous (Lipschitz continuous) at X = X.

Proof: For XeM and using Lemma 5.1, we have

lu(X) - u(X) I < BF*(u(X),X) - F*(u(X), XI + IF*(u(X),X) - F*(u,X),X)l

< eOu(X) - u(X)I + IF*(u,(X),X) - F*(u(X), X)fl (5.6)

From (5.5) and the fact that the projection map is non- 
expansive, we have

IF*(u(X),X) - F*(u(X),X)I < plT(u(X),X) - T(u(X),X)l

+ pIA(u(X),X) - A(u(X),XI

+ IPR A x [g (u (X) )  -  p ( I (u (X) ,X)

- A(u(X),X)) - т Ы ]  - pK. ^ x[g(u^)>

-  p(T(u(X) ,X)  -  A (u (X) ,X) )  -  m(u) ] l .
(5.7)
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lu(X) - u(X)l (IT(u,X) - T(u,Л) I + IA(u,X) - A(u,X)l

+ T~e lpKxn x [ g(“) “ m(“> " p « “,x ) - A(u,X))]

"" p(^(u,X) “ A(u,X)) - m(u)U

the required result.

Similarly using the technique of Dafermos [49], we can show 
that there exists a neighbourhood NC.M of X such that for XeN, u(X) is 
the unique solution of the parametric general quasi variational ine
quality (5.1) in the interior of X.

On the basis of the above results and observations, we 
obtain the main result of this section.

Theorem 5.1:

Let u be the solution of the parametric general quasi 
variational inequality (5.1) at X = X amd T(u,X) be the locally 
strongly monotone Lipschitz continuous operator for all u,veX. If the 
operators T(u,X), A(u,X), g(n) and the та X - ?4 ^ [ g ( n )  - p(T(u,X)
- A(u,X)) - m(u)] are continuous (Lipschitz continuous) at X =1, then 
there exists a neighbourhood N C M  of 1  such that for XeN, the problem
(5.1) has a unique solution u(X) in the interior of X, u(X) = u and 
u(X) is continuous (Lipschitz continuous) at X = T.

■̂ mar^— would like to point out that the function 
u(X) as defined in Theorem 5.1 is continuously differentiable on some 
neighbourhood N of X. Its proof follows from the technique of 
Dafermos [49].

We have already shown that if the convex set К is a convex 
in H, then variational inequality problem and the generalized

From (5.6), (5.7) and remark 5.1, we have



1015

complementarity problem are equivalent. One can study the sensitivity 
analysis for the parametric generalized quasi complementarity problem 
of the type find ueH such that g(u) e K^(u) and

(T(u,A) - A(u,A)) e K^(u) and (g(u), T(u,A) - A(u,A) » 0'
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THE AHLFORS LAPLAC IAN  ON A R IE M A N N IA N  M ANIFOLD  

Bent Qrsted Antoni Pierzchalski

ABSTRACT

Motivated by the theory of quasi-conformal map
pings, we define a second order elliptic operator L on the 
vector fields on a Riemannian manifold M. The kernel of 
L is the space of conformal Killing vector fields, and we 
investigate the spectral properties of L under conformal 
deformations of the metric. In particular we find the confor
mal variation of the constant term in the asymptotic ex
pansion of the heat kernel of L. This variation is proportio
nal to the log term in the expansion for a related non-ellip- 
tic operator. One of our main applications of L is to con
struct families of smooth quasi-conformal deformations of 
transformations of M.

0. INTRODUCTION

The classical notion of quasi-conformal transformations, both infinitesimal 

and global, can in a natural way be extended to the category of Riemannian 

manifolds [8 ]. A key role is played by the first-order differential operator 

^  =  X )g, where X  is a vector field on a Riemannian manifold

(M ,g) and L .̂ denotes the Lie derivative. We introduce the second-order diffe-

AMS Mathematics Subject Classification: 53A30, 35J25.

Key words and phrases: Quasi-conformal deformations, elliptic boundary condi
tions, spectral asymptotics.
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$ з|с
rentiatial operator L =  S S, where S is the formal adjoint of S, and investi

gate some of its geometrical properties. L will be called the Ahlfors Laplacian of 

the Riemannian manifold.

L is shown to be elliptic, and the kernel of L consists exactly of the con- 

formal Killing vector fields on M; for that reason (among others) the Lie algebra 

of conformal vector fields on M forms a finite-dimensional space. The spectrum 

of L turns out to have some interesting geometrical properties related to con- 

formal deformations of the metric. We find the transformation rule for L under 

such deformations and apply this to the conformal deformations of the asympto

tic expansion of the trace of the operator exp(-tL). It follows that under a cer

tain technical assumption the coefficient to t° in this expansion is a conformal 

invariant of M for M even-dimensional. This technical assumption is some

what mysterious; we hope to relate it to geometric properties of M, see the re

mark at the end of Chapter 3. Specifically we find a relation between the varia

tion of tr exp (-tL ) and a trace of the heat kernel for SS ; as a by-product we 

get asymptotic expansions for tiu exp(-tSS ), и a function. Finally we apply 

the same semigroup exp(-tL) to an arbitrary vector field X to obtain a family 

X fc converging uniformly to a conformal vector field as t - » oo ; this provides a

partial solution to the problem of finding quasi-conformal deformations of trans

formations on a Riemannian manifold.

Let us finally mention that from our formula for L it follows directly (as 

observed in [12]) that a manifold of negative Ricci curvature does not admit 

any conformal Killing vector fields.
Apart from the examples we give in this paper, we hope that the Ahlfors 

Laplacian will have further applications in the study of conformal and quasi-con- 

formal geometry on manifolds. L and its spectrum certainly encode much global 

information, in a natural way generalizing the case of Riemann surfaces.

The authors would like to thank Thomas Branson for many fruitful discus

sions on this topic.
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1. BASIC PROPERTIES OF S AND S*

Let M be a Riemannian manifold of dimension n with a Riemannian 

metric g. For simplicity, we assume that all manifolds and mappings are 

smooth, i.e. of class С00. V denotes the Levi-Civita connection of the metric g. 

We extend it in a natural way to the whole tensor algebra of M, denoted by the 

same letter V. &  and Л  denote the spaces of all vector fields on M and of all 

symmetric trace free tensor fields of type (0.2) on M, respectively. 3) * denotes 

the space of all differential 1-forms on M. Jt^  denote the correspond

ing spaces of tensor fields with compact support. A t each point p 6 M, T p and 

T p denote the tangent and the cotangent space at p, respectively.

If ej,...,en is a base for T p and its dual base in T p we define

the scalar product g(v,w) of covectors v =  v.o/, w =  v/м? (summation conven

tion) as follows:

g(v,w) =  g,Jv.v.

where ( g J) is the inverse matrix of (g „) =  (g(e.,ep). Similarly, if v,w are two 

symmetric tensors v =  v{.u} ® J ,  w =  i }  ® J  we define g(v,w ) as follows

g(v,w) =  g V v . .w kl •

The fact that we use the same letter g for the extended metric should not 
be confusing.
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(V ,W ) =  J g(V ,W ) V,W  6 Я  (or 3 ) \  or Л )
M

if V  or W  is of a compact support. The integral is taken with respect to the 

Lebesgue measure on M generated by g.

An investigation of quasi-conformal deformations of a Riemannian mani

fold leads in a natural way to the Ahlfors operator S defined on the space 3  of 

all vector fields (=  deformations) Z on M as follows:

SZ =  L zg - ^ d i v Z  • g (1.1)

where Lz is the Lie derivative in direction Z and div Z =  tr(X  -» VXZ) is the

divergence of Z (cf. [1 ], [9 ]). SZ is then a symmetric trace free tensor field of 

type (0.2).

The norm of SZ is a good measure of the rank of quasi-conformality of 

the deformation Z in the sense that the rank of quasi-conformality of the 

one-parameter group of transformations generated by Z may be estimated by 

the norm of SZ (cf. [11], [8 ]).

In the case M =  IR2 (=  C), S reduces (if we use a complex notation), to 

the Cauchy-Riemann operator. It might therefore be regarded as a multidimen

sional generalization, makin| sense for all dimensions.

Its formal adjoint S is the operator of divergence type acting on the 

space Л ,  see (1.5).

Consider now the following two operators of second order

*
S S

and
*

SS .

*
L =  S S is strongly elliptic in the sense that its leading symbol is positive 

(see the end of this chapter). In the case n =  2 it reduces to the Laplace-Bel- 

trami operator: 2(<§d +  d£). We decided therefore to call L the Ahlfors Lapla-

Now we define the global scalar product
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dan of M. Being natural generalizations of classical operators, S and S S 

have many nice properties and, we think, are interesting in their own right.

The operator SS is semi-elliptic in the sense that its symbol is nonnega

tive, see the end of this chapter.

Studying^ transformation formulas it is more convenient to have the opera

tors S and S S act on forms rather than on vector fields:

Let or be a 1-form and Z a vector field on M dual to each other in the 

sense that

a (X ) =  g(Z ,X ), XeJST.
Since

div Z =  -  dot

where, in coordinates, 6a =  -  V1**., and since

(L zg )(X ,Y ) =  (V o )(X ,Y ) +  (V a )(Y ,X )

we get that

Lzg - f  d iv Z g  =  2Vsa + ^ a *  g (1.2)

where V8<* is a symmetrized version of Va, i.e.

(Vsa)(X,Y) = i[(Va)(X,Y) + (Ve)(Y,X)].

Consider the differential operator S : -♦ Л  defined by

Sor =  2Vsa +  ^ ft* g . (1.3)

Then, by (1.2), Sa =  SZ where SZ is defined by (1.1). It is easy to see that 

Sore Л ,  i.e. Sa is a symmetric trace free tensor field of type (0.2). Indeed, 

symmetry is obvious, and if X ,...,X is a local orthonormal frame then1 n
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trSa =  E(Sa)(Xi,Xi) =  E[2(Vs«)(X ',X i) +  | f ttgCX'.X1)] =  - 2 fa  + ^ a - n  =  0.

The kernel Ng of S, i.e. the space of all 1-forms a  such that Sa =  0 

consists exactly of the conformal Killing 1-forms.

Example 1.4 [1 ]. In the case M =  IRn , n > 3, a  e Ng if and only if in the 

Cartesian system x =  (x1,...^11)

a (x) =  +  b.kx*dxk +  2с^х*х8£ kdxk -  x^£x8ckdxk

where a =  (a i r ..,an), с =  (cJt...,CD) are constant vectors and b =  (b „) is a 

constant matrix such that b.. +  b.. - -  &.trb =  0, i,j =  l,...,n.
1J J1 n 1J ’

Now for an arbitrary two-tensor field ip 6 Л  define 

S*<p=26<p (1.5)

where Sip is the 1-form defined locally by 6(p. =  -VVy • Then

S* : Л-* 3>X

is a first order linear differential operator formally adjoint to S in the sense 

that

(Sa,p) =  (a,S ip) а  £ 3 ^, Л

if only oc or ip are of compact support [9J.

The two above operators S and S define two second order differential 

operators

s * s : a 1* 3>l
and
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SS* : Л *  Л .

By (1.3), (1.5) and the local expression for 6, we get the following local
* * 

expression for S S and SS :

S*Sa. =  -2V'V.ar. -  2V‘V.a. -  -  d a . , a 6 3>l U-6)J » J J J И J

and

ss\.. = -  2V.Vk% +  i  v'vV^gy . V 6 ■*. (I-7)

By (1.6) we can get two other useful formulas for S S expressing its rela

tionship to the Laplace-Beltrami operator and the Ricci tensor of M. W e have 

namely

S Sa =  -4R a +  2Aa +  d fa  (1*8)n

or, equivalently

S*S<* =  -4R a  +  Ш а  +  ^  d5a ( 19 )

where Д  =  £d +  dS is the Laplace-Beltrami operator, R  is the Ricci tensor 

and R a  denotes the 1-form defined by

R o (X ) =  R (Z ,X ) X 6 JS ( 1Л° )

where Z is the vector field dual to a  (a (X ) =  g(Z ,X ), X  € 3 ) .
Now we would like to observe how S, S , S S and SS transform under 

a conformal change of the Riemannian metric g. To this aim assume that g is 

another Riemannian metric on M conformally related to g in the sense that 

there exists a positive function Cl on M such that

g = n 2g .  a n )



All objects related to the metric g will be denoted by letters with 

over them.

Observe first that if a is a function on M then (cf. [9 ])

Sac* =  aSc* 4- 2da ®sa -  ̂  a(Va) • g (1-12)

and

S a<p =  aS y>-2<p(Va,-) (1-13)

where ®s denotes the symmetrized tensor product: (da ®s a )(X ,Y ) =  

| (da (X )a (Y ) +  d a (Y )a (X )) and Va is the gradient of a.

As we need some auxiliary formulae we will prove the following 

Lemma 1.14 [10]. For arbitrary a e  & 1 and <p€ Л  we have:

Sat =  Sot -  f t  dH ®sc* +  ^  a(Vft)g (1.15)

and

(u6)

where Vft denotes the gradient of П (with respect to g).

Proof. First of all we are going to derive that if a 6 2 1 then

=  П? a ft**)' ( l - l ’O

Using the transformation formula for the Levi-Civita connection (cf. [7 ]):
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VXY  =  VXY  +  ^ (d ft (X )Y  +  d fi(Y )X ) -  ^  Vflg(X,Y) (1.18)



we get that in local coordinates 

t a  = - f a .  =  -g yV.a. =  - « ij(V .a)(X .)

=  ^ [X . ( o (X . ) ) - a (V .X . ) ]

=  -|i j [X .(a (X .)) -  tt(V.X. +  & d fl(X .)X . +  d fi(X .)X .) - f t  Vfigy]

=  & gy [X .(a (X .))-a (V . . ) ]+ j| jg ii[d n (X .M X .)+ a (X .)d n (X j)-a (V ft )g ij]  

6a — [a (V fl) +  ft(VH) — по:(УП)]

where X. =  i =  l,...,n, i.e. (1.17).

Similarly we get

Va =  V a - ^ d n ® 8a +  ^ o (V n )g . ( U 9 )

Indeed, (Va)(X.,X.) =  ( \ a ) X .  =  X .(o (X . ))- o(Vx X.)

=  X .(« (X .) )  -  o(VY X. +  ^j(dn(X.)X. +  d ft(X .)X .) -^ V O r fX p X p )

=  X  (o (X .)) -  o(V X.) -  jj(d fi(X .)a (X .)
j  J 

+  o (X .)dn (X j) )  +  ^ a(Vn)g(X.,X.)

=  (Vfl)(X .,X .) -  2(dn ®s tt)(X.,X.) +  a(Vn)g(X.,X.)



i.e. (1.19).

Consequently

Using now (1.3), (1.17) and (1.20) we obtain 

Sa =  У8л  +  ^  ^or-g =  V8a - ^  dH ®8 a + ^  a(Vn)*g

=  Vsa +  | <fa -  ^  dH ®8 a  +  ^  a<Vft)g

and the (1.15) is proved.

In the same way we get (1.16). Indeed,

S V j  =  2 ^ j  =  - 2 V V y  =  - 2 g lkVkv3;j 

=  2| л [ х ^ х рх р  -  t f ^ X . )  -  *>(ХДХ.)]

=  -2gik[X krtX .,X .)

-  ^ VkX i +  57<d n ( X k )X i +  d f i ( X i ) X k ) -  ki-X j )

-  p(X.,VkX. +  ^ d n (X k)X. +  d fi(X .)X k) -  ^Vfigkj)]

=  -  j p  ел [ х к^ х . ,х . )  -  r tv kx .,x .) -  ^ x . ,v kx . ) ]

+  ^ gik[d f ! (x kM x . ,x . )  +  d n (x i) ¥< x k,x j ) - g ki^ v n ,x j )



+  d f i (x k)¥<x.,x .) +  < ю (х .м х . ,х к) - g kjV(x .,v n )]

=  4 ч  +  4  +  ¥>(V n ,x .) -  nV(v n ,x )
n2 J ft3 1 J 1

+  <p(vn,x.) +  0 -  <Kva,x.)]
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which completes the proof. q.e.d.

Now we can prove the following

Theorem 1.21. If g is a Riemannian metric conformally related to g in 

the sense of (1.11), then for arbitrary a  e and (p€ J t the following trans

formation formulas hold:

fT 2Sn2a =  Sa (I-22) 

ttnS*a-nSa2a = S *S a  (1-23)

n nS*Sfa+2<p=S*<p (1*24)

ft-2Sftn+2S*(Tn+V  =  SS %  (1-25) 

hold, where n =  dim M.

Proof. Replace S by S and a by П2 in (1.12):

Sfi2a =  f i2Sa +  2dft2 <# a  - 1 a(TO2)g .

Since dO2 =  2М П , VO2 =  2ПУП =  2fi ^  W  and g =  f i2g, we obtain

Sn2a =  f i2Sa +  4Ш П »e a -  j  fio (Vn )g .



SQ2a =  Q2( S a ~ и 6 П ^ а + Ш  ®(V a )s) +  4fidfi ®8 а ( Щ -g

which is equivalent to (1.12).

Replace now S by S , V by V and a by fl~n+2 in (1.13):

s V " +2 =  S*fi-n+2S*V -  2^>(Vfi-n+2, ■) .

Since

m ~ 0+2 =  (-n +2 )n _n+1Vf! =  (-n+2)Ji_n_1Vn ,

we get

=  n _n+2S*<p +  (2n-4)Q~°~1ip(V{l,-) .

Using now Lemma 1.14, we get

s n_n+2y> = n-n+2(jpr s (p- vfyft* ’))

+  (2п -4 )<Г °+1<р(ЧП,-)

which is equivalent to (1.24).

Finally, combining formulas (1.22) and (1-24) we get (1.23) and (1.25).

q.e.d.

Assume now that g and g are conformally related in the sense of (1.11),

where

П =  euU, u e IR .
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Using now Lemma 1.14 we get
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Converting formulas (1.22) -  (1.25) we get

S =  e2ua,Se-2uW

S* =  e- ” “ ws*e("-2)«w

g g *_e2uâ ge-(n+2)u(J

By differentiation with respect to u we get the following 

Corollary 1.26

(§ ) ' =  2wS-2Sw (1-2T) 

( i*S )* =  -nwS*S -  2S*Sa> + nS*ufi (I-28)

=  -2S Sw-2ni(u )S  

where i(w) denotes interior derivative

(§ * ) ’ =  -nuS* +  (n-2)S*u (1-29)

(SS*)' =  2u6S* -  (n+2)SwS* + (n-2)SS*« (I-30)

where • =  an u=0

W e will conclude this chapter by deriving inequalities for the leading sym

bols of S*S and SS*.

Let p G M and ш e T p. The symbol (at p) of a differential operator on a

vector bundle f



L : C°°(f) "* С°°(£)

is the mapping =  aL(p,w) defined by

<TL(w)s =  -L (a 2s)p , s s C“ ( f )

where a is a function in a neighbourhood of p with

a(p) =  0, da(p) =  и  (1.31)

Of course, this definition does not depend on the choice of a.

Take and <pe Л .  If  a satisfies (1.31) then, by (1.12) and (1.13)

as*s(a>)a =  -S S(a2a )p =  S (a2Sa +  4ada 8s a  -  £ aa(Va)g)p

=  (8 (d a «? a )(V a ,-))p - |  a(Va)g(Va,-))p

=  8u>®8 a(ai^)g(u/^,-)

=  4(u(uft) a  +  Sjp a(J^)u)

where o ft is the vector dual to ui and, similarly, 

ass,(a))¥> =  -S S * (aV )p =  -S(a2S V  -  4a^Va, • ) )p 

=  8da v<Va, •) -  f  ¥<Va,Va)g

=  8w ®? •) -  j  v> (w ^.^ )g •

Consequently,
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g (V s M a , a)p =  4(|| ш ||1 1| a ||2 +  ¥  M w * ) f )

and

g ^ S S .^ W )  =  8 || lip •

Since (ar(w^))2 < || и  ||p || a  ||p , we get the following inequalities

which says that L =  S S is strongly elliptic, and

g(<7ss* M M p > 0

which says that SS is semi-elliptic. It would be very interesting for our pur

poses in Chapter 3 to know, which parts of the theory of elliptic operators ex

tend to semi-elliptic operators. For example, whether SS is hypo-elliptic, and 

whether its heat kernej admits an asymptotic expansion for small time para

meter. At any^rate, SS has presumably a large kernel, but the same non-zero 

spectrum as S S.

2. THE HEAT KERNEL OF THE AHLFORS LA PLA C IAN

Recall that L =  S S is an elliptic second order differential operator on 

the vector fields (or by canonical duality on the one-forms) on our compact Rie

mannian n-<limensional manifold M with metric tensor g. The spectrum of L 
is non-negative

0 < Xx < A2 < ... (2.1)

with -* oo as к ->»  . As in standard elliptic theory [5] we get for t >  0 an 

asymptotic relation
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k=i i=u
(2.2)

where the left side in (2.2) is the sum over all the eigenvalues in (2.1) counted 

with multiplicity, so it is just the trace in L2 of the operator

where {<Pk|k =  1,2,...} is an orthonormal basis of the Hilbert space of

square-integrable vector fields. The coefficients ai in the right hand side of 

(2.2) are integrals of local expressions in the jets of L, in our case local invari

ants in the metric, its inverse and its derivatives:

U. has level 2i in the sense that if we make a uniform dilatation of the metric:

g =  A 2g for 0 <  A e IR, then 0. =  A-2iU . .

It is to be expeGted that the information encoded via L in the spectrum 

and the coefficients (2.4) is of particular relevance for conformal and quasi-con

formal geometry. Let us pause to make two very elementary observations of this 

nature; they are well-known, see [12].

Proposition 2.5.

(1) The kernel of L consists exactly of the conformal Killing vector fields; 

these therefore span a finite dimensional Lie algebra.

(2) If M is of negative Ricci curvature, then the kernel of L is zero; hence 

M does not admit any conformal Killing vector fields in this case.

Proof. (1) A  vector field X  is conformal if and only if SX =  0; this
♦

means 0 =  (SX,SX) =  (S SX,X) =  (LX ,X ) which again is equivalent to LX =

0. Note that by elliptic regularity theory there also are no weak solutions to SX 

=  0 other than smooth ones. For (2) we apply the formula (1.8) acting on

exp (-tL ) =  S e  V  ® <a  , 
к- l  R k

os —tA. *
(2.3)

a. =  / U. d vol.
1 M 1

(2.4)
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one-forms; if R <  0 there is only a trivial kernel for L, since the last two terms 

are positive semi-defiinite operators.

q.e.d.

Example 2.6. Let M =  Sn be the standard n-sphere; it admits the maxi

mal conformal group 0 (n + l,l) and isometry group 0 (n + l). A  conformal vector 

field X is an isometry if and only if div X  =  -6 a  =  0, where a  is the corres

ponding one-form. On such an a

Lor =  2 & la -4 R a

with R  =  (n—1) and the possible eigenvalues of <Sd equal to (k + l)(k + n -2 ), 

к =  1,2,3,... . Hence La  =  0 corresponds to к =  1, since 2 -2 (n -l) -  

4 (n -l) =  0. Similarly, on da =  0 we have the spectrum of d£ equal to 

(k +n -l)k  and so L a =  0 happens exactly when к =  1; these are the purely 

conformal vector fields. This method (see [4 ]) gives us the whole spectrum of L 

on Sn : The eigenvalues are with к =  1,2,3,...

Л =  2 (k+ l)(k +n -2 ) -  4 (n -l) on co-closed 1-forms

(2-7)
д _  4n 4̂ (кн-П—l)k  -  4 (n -l) on closed 1-forms.

The multiplicities are as in [4].

Remark 2.8. Using Hodge theory as in the previous example, one could 

similarly compute the spectrum of L for the compact symmetric spaces. 

Another interesting class of examples is that of hypersurfaces in Cn, see [9 ].

The heat semigroup is an infinitesimaly smoothing operator converging to 

the projection onto the conformal Killing vector fields; we shall return to this in 

Chapter 4 as another example of the interplay between the functional analysis of 

L and the quasi-conformal geometry of M. In the following Chapter 3 we con

sider the dependence Ak =  Ak(g) of the eigenvalues on the metric and the

corresponding dependence a. =  a.(g), especially under conformal deformations.

Note that the kernel of L is clearly conformally invariant.



1037

3. THE ASSOCIATED CONFORM AL VARIATIONS

In this chapter we shall introduce the pseudo-differential calculus for con

structing parametrices and the approximate heat kernel of L; for references see 

[6] and [3] -  we shall adapt the notation and the concepts primarily from 

these. In particular we shall follow the latter in the consideration of a one-para

meter family of metrics g =  g(u) =  exp(uo>)g (u 6 IR), where a; is a fixed 

smooth function on M, and g the Riemannian metric. Corresponding to this 

deformation we get the Ahlfors Laplacian L =  L(u) depending on u, the eigen

values Ak =  Ak(u) and the coefficients (2.4) a. =  a.(u), etc. By a dot we denote

the u-differentiation of quantities at u =  0. Our aim is via (2.2), (2.3) and con

sideration of their u-derivatives to see under which conditions (ацу2) * =  0, i.e.

when a ^ 2 is a conformal invariant (n even). For this we need the variational

formulas in Chapter 1 for L and the operator calculus in [3].

First we establish the variational version of (2.2):

Proposition 3.1. Let the metric g depend on u G IR as above; then the
2

L -trace of the heat semi-group for L is differentiable in u, as are the coeffi

cients a. in (2.4), and we have the asymptotic expansion

(tr exp (-tL ))' ~ E a. t(2i_n)/2, t i  0. (3.2)
i=o  1

Proof. This is just a reformulation of Theorem 3.3 of [3]; the symbol class 

is as in 3.1 of [3] and the vector bundle just the tangent bundle of M. Note that 

the term-by-term differentiation of an asymptotic series is a delicate matter, as 

simple examples will demonstrate.

q.e.d.

Our next result is also taken from [3]; it is the formula of Ray and Singer 

generalized to the operator L. Since exp(-tL) is infinitely smoothing, the vari

ous formulas and formal manipulations are valid.
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Proposition 3.3. With notation as above, we have (at u =  0)

(tr exp (-tL )) * =  - t  • trL exp(-tL). (3-4)

Now we can combine (3.2) and (3.4) using one formula for L from Chap

ter 1; recall that (acting on 1-forms)

, *
L =  -2L(j -  nS wS -  nwL.

This may be substituted into (3.4), and using cyclic permutations under 

the trace (exp(-tL ) is infinitely smoothing, and S and S are first-order diffe

rential operators) we get as 1 1 0

E a. t^2l-n^ 2 ~ -t«tr(-2Lo; +  nS*u£ -  nuL)exp(-tL) (3.5)
i=o  1

=  -nt*trS dS exp(-tL) +  (n + 2)t*tru>Lexp(-tL).

We shall treat the two terms in (3.5) separately: The second term in (3.5) 

is n +  2 times

t*tru «xp (-tL ) (3-6)

=  - t  trtjexp(-tL)
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as we may differentiate the asymptotic expansion in t term-by-term (see [3]

(3.20) and the preceeding argument). For the first term in (3.5), it is -n times

t ’ trS exp(-tL ) (3.7)

=  t • tru£ exp(-tL)S

=  t • tru exp(-tSS )SS

=  t-tnjSS exp(-tSS ).

*
We have thus arrived at the corresponding heat semi-group for SS , 

which, however, is not an elliptic operator. It has a possibly infinite-dimensional
*

kernel, does not have the elliptic regularity properties of S S. But it does have 

the same non-zero spectrum as S S with the same multiplicities (a  -* Sa pro

vides the isomorphism between the eigenspaces). Combining the three previous 

equations (3.5), (3.6) and (3.7) we arrive at

E a. t (2i_n)/2 (3.8)
i=0 1

~ E (n-2i)t(2i_n)/2 f ы U. dvol
1 i=o J 1M

-  nt-trwSS exp(-tSS ), 1 1 0.

Proposition 3.9. For every smooth function w on M there is an asymp

totic expansion of



Proposition 3.3. With notation as above, we have (at u =  0)

(tr exp (-tL )) ‘ =  - t  • trL exp(-tL). (3.4)

Now we can combine (3.2) and (3.4) using one formula for L from Chap

ter 1; recall that (acting on 1-forms)

*
L =  -2Lw  -  nS ojS -  na»L.

This may be substituted into (3.4), and using cyclic permutations under 

the trace (exp(-tL ) is infinitely smoothing, and S and S are first-order diffe

rential operators) we get as t j  0

£ 4 t̂ 2l-n^ 2 ~-t-tr(-2Lu; +  nS (j5 -  nwL)exp(-tL) (3.5)
i=o

=  -nt*trS (ЛЗ exp(-tL) +  (n+2)t*trwLexp(-tL ).

We shall treat the two terms in (3.5) separately: The second term in (3.5) 

is n +  2 times

t • tru «xp(-tL) (3.6)
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as we may differentiate the asymptotic expansion in t term-by-term (see [3]

(3.20) and the preceeding argument). For the first term in (3.5), it is -n times

t-trS*oS exp(-tL) (3.7)

=  t • troS exp(-tL)S

=  t • tru; exp(-tSS )SS

=  t-tro^S exp(-tSS ).

*
W e have thus arrived at the corresponding heat semi-group for SS , 

which, however, is not an elliptic operator. It has a possibly infinite-dimensional 

kernel, does not have the elliptic regularity properties of S S. But it does have 

the same non-zero spectrum as S S with the same multiplicities (or-* Sa pro

vides the isomorphism between the eigenspaces). Combining the three previous 

equations (3.5), (3.6) and (3.7) we arrive at

£ a. t (2i-n)/2 (3.8)
i=0 1

^  £ (n-2i)t(2i_n)/2 f w U.dvol
2 i=o A 'м

-  nt- trwSS exp(-tSS ), 11 0.

Proposition 3.9. For every smooth function w on M there is an asymp

totic expansion of



tr ш SS exp(-tSS*)

=  ~  31 tr0 ^  exp(-tSS*)
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(3.10)

Furthermore, (3.10) may be integrated (in t) to obtain an asymptotic expansion 
of

trQ ш exp(-tSS*) (3.11)

~ S a t(2i“ “ )/2 +  b log t, t i  0. 
i=0

Here tr^ denotes the L -trace on the orthogonal complement to the kernel of 

S , i.e.

trQA =  tr PAP

with P the orthogonal projection onto (ker S*)1 =  (range S)- .

Proof. The first equality in (3.10) is obtained by working with the ortho- 

normal basis {A ^ S y^ } of (ker S )x =  (range S)~, with {<pk}  an orthonormal
♦

basis consisting of eigenfunctions of S S with non-zero eigenvalue A  ̂ . If

is the matrix of и  we get for (3.10)
_ -tA. . -чА,

summing as indicated only over non-zero eigenvalues. The asymptotic expansion

in (3.10) follows from (3.8), and the integrated form (3.11) by the (allowed)
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term-by-term integration. The coefficients c. and b are again integrated local 

invariants. Note that they depend on ш.

q.e.d.

At this point we conjecture that the log t-term in (3.11) is absent in ge

neral; to prove it, one would need a theory of heat kernels etc. for semi-elliptic 

operators like SS . We suspect optimistically that SS is in fact sub-elliptic 

and that methods from that theory will establish this conjecture. What we can 

immediately assert is the following

Theorem 3.12. Let M be an even-dimensional compact Riemannian ma

nifold with metric tensor g and Ahlfors Laplacian L. Then the coefficient a ^ 2

in the asymptotic expansion

tr exp(-tL) ~ E a. t(2i_n)/2 
i=0 1

О

is invariant under conformal deformations g =  fi g of the metric, if and only if 

the asymptotic expansion (3.11) never has a log t-term. More generally, we have

(3.12) below.

Proof. The absence of the log t-term means exactly that the right-hand 

side of (3.8) contains no constant term in t. Thus in this case &n̂ 2 =  0. In gene

ral

K/2 =  П ' Ь (3'12)

so the result is clear.
q.e.d.

Remark. As a weaker conjecture we offer that b =  0 under either some

geometric conditions on M, or conditions on u.
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(3.10)

Furthermore, (3.10) may be integrated (in t) to obtain an asymptotic expansion 
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is the matrix of и  we get for (3.10)
_  ” *А. , -tA,

summing as indicated only over non-zero eigenvalues. The asymptotic expansion

in (3.10) follows from (3.8), and the integrated form (3.11) by the (allowed)



1041

term-by-term integration. The coefficients c. and b are again integrated local 

invariants. Note that they depend on из.

q.e.d.

At this point we conjecture that the log t-term in (3.11) is absent in ge

neral; to prove it, one would need a theory of heat kernels etc. for semi-elliptic
* * 

operators like SS . We suspect optimistically that SS is in fact sub-elliptic 

and that methods from that theory will establish this conjecture. What we can 

immediately assert is the following

Theorem 3.12. Let M be an even-dimensional compact Riemannian ma

nifold with metric tensor g and Ahlfors Laplacian L. Then the coefficient a ^ 2

in the asymptotic expansion

tr exp(-tL) ~ E a. t(2i_n)/2 
i=0 1

О

is invariant under conformal deformations g =  fi g of the metric, if and only if 

the asymptotic expansion (3.11) never has a log t-term. More generally, we have

(3.12) below.

Proof. The absence of the log t-term means exactly that the right-hand 

side of (3.8) contains no constant term in t. Thus in this case a ^ 2 =  0. In gene

ral

K /2  =  “  • Ь (3-12)

so the result is clear.
q.e.d.

Remark. As a weaker conjecture we offer that b =  0 under either some

geometric conditions on M, or conditions on u.
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4. APPLICATIO NS TO  QUASI-CONFORM AL DEFORM ATIONS

In this chapter we will treat an application of L and the corresponding 

semi-group close to the original motivation for introducing L. Namely, we shall 

apply L and exp(-tL) to the problem of finding quasi-conformal deformations 

of a given transformation.

Suppose X is a smooth vector field on our Riemnnian manifold M, com-
*

pact as usual. Then X can be expanded in terms of eigenvectors X fc for S S:

00
X =  £ X. 

k=0 k

* * 
where S SXk =  AfcXk . I f  S S has a kernel, then the first eigenvalue will be

zero, and the^corresponding projection of X onto the zero eigenspace we shall 

call XQ. If S S does not have a kernel, we set X Q =  0.

Now we can apply the semi-group for L to X  and obtain

exp(-tL )X  =  E e kx, (4.1)
k=o k

oo —tA,
=  X  +  E e X,

0 k=l k

where 0 <  X̂  < A2 < ... . (4.1) is clearly a smoothing out of X, so that for t

large, the result is very close to being a conformal Killing vectorfield. Indeed, 

(4.1) is convergent in L2 to XQ. By using the Sobolev inequalities this conver-

gence may be made uniform and even with control over the quasi-conformal 

modulus of the family of deformations

X(t) =  exp(-tL)X. (4.2)
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Theorem 4.3. Let X  be a smooth vector field on M and consider the 

family of deformations as in (4.1) and (4.2). Then we have the following estima

tes:

(i) ||X (t)-X 0||2<e 1 ||X||*

-2 tA . О
(ii) ||X (t)-X 0|£8 < (e  1 +  (| )V ) ||X||2 (s >  0) 

where || • ||2 g denotes the Sobolev norm.

(iii) For any s >  n/2 there is а С >  0 such that

—2tA, . /л
||Х(1)-Х0||ш< с (е +  ( § f e - * )1/2 ||Х||2.

(iv ) For the quasi-conformal modulus we have

_2tA
||SX(t)||e  < C(e 1 +  ( | £ ) * V - 1) V * HX||2 

where 0 <  С is a constant depending only on s >  n/2.

Proof, (i) is clear from (4.1). For (ii) we use the elliptic operator L to get 

the Sobolev norm

||X||’ s =||Ls/2X||* +  ||X||2

=  ( ( I  +  LS)X ,X ) 

(inner product in the space of L2 vector fields). Then
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Ilx (t ) -  X 0\ \ l  =  ( ( I  +  L8)(X (t ) -  X 0), X (t ) -  X 0)

oo —2tA, n
=  £  (1 +  A°)e k ||X II2 

k=l K

—2tA. 0
< (e  1 +  (|ГО ||Х ||2 .

,8 -2tA
This last estimate follows by considering the function A e“

In (iii) we invoke the Sobolev inequalities [6] using (ii), and finally in (iv) 

the fact that S is a differential operator of order one, and therefore continuous 

between the Sobolev spaces in question:

IlSXftyil^ < C»||SX(t)l|2 e

=  C "||S (X (t)-X 0)||2>8

=  C '||X (t)-X 0||2|8+1 

—2tA
=  C(e 1 +  (И_1)*+1е-*-1)||х||2)

with С", С', С positive constants and s >  n/2. Here Sobolev's inequality was 

used in the space (image of S) of symmetric, trace-free 2-tensors.
q.e.d.

Remark 4.4. In the argument above, X may just be a square-integrable 

vector field (not necessarily smooth); the family X (t ) (t >  0) will by the 

smoothing property of exp(-tL) consist of smooth vector fields, and

llX(t) -  X||2 -4 0 as t-»0.



On the other hand, the limit as t - » oo still behaves as in Theorem 4.3. 

Thus by (iv ) in particular, X (t) provides a very natural family of quasi-confor- 

mal deformations of X.

From the formulas in Chapter 1, writing L as a sum of positive-definite 

operators plus -4 times the Ricci curvature, we get the following estimate for

v

Aj > - 4 R .  (4.5)

This is to be understood in the sense of pointwise inequalities for the eigenvalues 
of R.

Corollary 4.6. Suppose M is of Ricci curvature < -R Q, where RQ is a

positive constant (so in particular there are in this case no conformal Killing 

vector fields). Then the first eigenvalue of L is A1 > 4RQ, and the quasi-confor

mal family X (t ) in Theorem 4.3 converges to zero. Furthermore,

—8tR
l|SX(t)||Qo < C-(e 0 +  ( |t!)s+1e ^ - y / 2 ||X||2

for s >  n/2 and С the Sobolev constant from (iv ) Theorem 4.3.

In general, an estimate of the first non-zero eigenvalue would give the 

exact rate of decay in Theorem 4.3.

We shall finish our discussion with the analogue of Theorem 4.3 for the 

case of global transformations of M. We shall not carry out the details in maxi

mal generality (the consideration of homeomorphisms instead of smooth trans

formations, measurable vector fields instead of smooth ones etc.).

Recall from [9] the fact that if the vector field X  is k-quasi-conformal,

i.e. ||SX|| < k, then the corresponding one-parameter family Fg of transforma

tions Fg =  exp(sX) are K-quasi-conformal with К =  exp(k2|s|/2). We can

1045
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therefore get global quasi-conformal deformations by deforming the generator

Theorem 4.7. Consider the one-parameter group F (t ) of transformations 

of M generated by a smooth vector field X. Then the family o f deformations

with X (t) as in Theorem 4.3 is a family of Kt-quasi-conformal transforma

tions with (notation as in [8 ])

Proof. This is just the global estimate corresponding to (iv ), Theorem 4.3.

The estimate (4.9) gives some control over the behaviour of the family 

(4.8). Note that we have thus arrived at a very natural family of deformations of 

global transformations F connected to the identity in the diffeomorphism group 

of M. The limit F(oo) is conformal, so we may record the following

Corollary 4.10. Suppose the transformation F is in the group generated 

by one-parameter groups as in Theorem 4.7; suppose furthermore that the orien

tation-preserving conformal diffeomorphisms of M form a connected group. 

Then there is a quasi-conformal family F (t) with F(0) =  F, converging point- 

wise to the identity, and with quasi-conformal modulus satisfying an estimate

X.

F (t) =  exp (X (t)) (4.8)

(4.9)

q.e.d.

Kt < exp(Ae-Bt +  C ( s ) 0

for A,B, >  0, s >  | , and C(s) > 0.
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Proof. This follows by repeated use of (4.9), since F is now a product of

transformations of the form in Theorem 4.7.

q.e.d.
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UNIFORM STABILIZATION OF THE EULER-BERNOULLI EQUATION 
WITH FEEDBACK OPERATOR ONLY IN THE NEUMANN BOUNDARY CONDITION

N. Ourada and R. Triggiani

Abstract. We study the uniform stabilization problem for the 
Euler-Bernoulli equation defined in a smooth, bounded domain
П of Rn, with just one suitable dissipative boundary feedback 
operator acting on the Neumann B.C., while the Dirichlet B.C. 
is kept homogeneous. The uniform stabilization results which 
we present are fully consistent with recently established 
exact controllability and optimal regularity theories, which 
in fact motivate the choice of the function spaces in the 
first place. In particular, if the dissipative feedback 
operator acts on the entire boundary Г, no geometrical 
conditions on П are needed.

1- Introduction, Preliminaries, and Statement of Main__Re,3U_lta
i . i .  ifltrsdygUQn Md L itera tim

Let П be an open, bounded domain in Rn, where typically n > 2, 
with sufficiently smooth boundary Г - rQ U Г , relatively open with 
Г0 possibly empty, while non-empty.

In П we consider the Euler-Bernoulli mixed problem in w(t,x) on 
an arbitrary time interval (0,T] with homogeneous Dirichlet boundary 
condition and non-homogeneous forcing term (control function) acting 
only in (possibly a part of) the Neumann boundary condition:

1049
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Wtt+A w - 0
2

in (0,Т]хП = Q; (l.la)

w(0,•) « wQ, wt(0#•) = w1 In П; (1.1b)

in (0,Т]хГ = 2;

in (0,T]xrQ - I0 ;

in (O^Tlxfj => 2 1\

(l.lc)

(l.ld)

(l.le)

Data in L2(0)xH 2(П)хЬ2(2) produce a unique solution

{w,wt} € С([0,Т];Ь2(П)х н"2(П)) [Lio.l], [Lio.2], an optimal regularity
result. Indeed, exact controllability on [0,T], T > 0 arbitrary, on

holds true as well [Lio.l], [Lio.2]. It should be noted at the outset 
that the case where a control function acts in the Dirichlet B.C.

been studied and is. In fact, quite different fro* the case (1.1) of 
the present paper (the function spaces are different, the multipliers 
are different): here results of exact controllability on an arbitrary 
T > 0 on (appropriate) spaces of optimal regularity are obtained in 
[L-T.l], [L-T.2], [L-T.3], while results of uniform stabilization on 
such spaces are obtained in [B-T.l], by means of an explicitly, 
dissipative feedback acting on the velocity w^. Finally, we remark 
that the abstract theory of the linear quadratic regulator problem and 
corresponding algebraic Riccati equation as in [FLT.l] (which extends 
the case of the wave equation with Dirichlet control as in [L-T.4]) 
covers both the above problem (1.1), as well as the case of a control 
function acting in the Dirichlet B.C. (l.lc). As a result, it 
produces In both cases a feedback operator, based on the algebraic 
Riccati operator acting on the full pair {w,wt}, which yields uniform 
stabilization in the spaces of optimal regularity and exact 
controllability (see [FLT.l; Appendix D] and [L-T.5]). Indeed, it is

the state space L2(fi)xH 2(Q) within the class of L2(2)-controls g

(l.lc), while the control g in (l.le) may or may not be zero has also



1051

precisely the foregoing theory of exact controllability on spaces of 
optimal regularity which guarantees the Finite Cost Condition of the 
quadratic cost problem over an infinite horizon, and thus allows for 
the application of the Riccati theory in [FLT.l].

One problem that still needs investigation to complete the 
overall theory is the problem of uniform stabilization of the dynamics
(1.1) by means of an explicit, dissipative feedback operator based on 
wfc. The present paper is devoted precisely to this problem. The 
results which we shall obtain in our Theorem 1.2 are fully consistent 
with recent results of exact controllability [Lio.l], [Lio.2], 
obtained directly via H.U.M. rather than through stabilization, both 
in regard of the spaces of optimal regularity and in regard of the 
properties of the triple {Р'Г0,Г2}, in particular, in regard of the 
lack of geometrical conditions on Л (except for smoothness of Г), if g 
in (l.le) is applied to all of Г (i.e., rQ =0). Indeed, according to 
a well-known result for time reversible systems [R.l], the uniform 
stabilization results given here imply corresponding exact 
controllability results: these precisely coincide with those in 
[Lio.l], [Lio.2] as far as spaces and properties of the triple 
{ П , in terms of a radial field are concerned. However, in 
Remarks 1.2 and 1.3 we point out possible generalizations of our 
uniform stabilization result (hence of exact controllability) which 
involve suitably small perturbations of a radial field.

1.2. Preliminaries and Choice of Dissipative Feedback
Throughout this paper, we let A: L2(П) => 2>(A) -» L2(fl) be the 

positive self-adjoint operator defined by

Af * A2f, 2>(A) = H4(0) Л Н2(П). (1.2)
We have [G.l]

»(АЙ ) - Нр(Л); 2>(Ай ) - Н2(П) = {f * Н2(П): f|f - |£|г - 0> (1.3)

% 1with equivalent norms. Thus, for f « 2>(A ) - H0(O),
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llfll w = llÂ fll , equivalent to IlfII ,
2>(A*) L (П) Н^П)

In turn equivalent to {J|Vf|2dn}% (1.4)
П

by Poincar6 inequality. Also, for f € 2(A*S = Н2(П),

" ^ ( А » )  *  ( Ь 5 >

As mentioned in the introduction, our optimal space will be

Z -  Ьг (П)хн"2 (П) -  Ь2 (П)х[2(АК ) Г  • ( 1 -6 )

Choice of feedback operator. With g = 0 in (l.le), the 
resulting homogeneous problem generates a unitary group on

Lg(f))x[2>(A^S]' described by the map {Wq/W^} -* {w#wt}- 1t is justified 
in Section 1.4, see below (1.25), that the following choice of a 
feedback operator 9r(wt) on = (О^хГ^:

= g * ?(" t ) “ " V t  ’  (17)

provides a reasonable candidate for the uniform stabilization problem 
of (1.1), in the sense that the closed loop feedback dynamics with 
(1.7) used as (l.le) is well-posed in the semigroup sense in Z and all 
of its 8olutions originating in Z decrease as t -» <» In the Z-norm. To 
show that they decrease to zero, and, in fact, in the uniform norm

*(Z) is the major task of this paper. In (1.7) we have set G2 to be 
the operator (Green map)

*
Д2у - 0 in П; (1.8a)

G2*2 У |r - 0 in Г; (1.8b)

i£ lr 0 ‘  ° '  I r l r j  ’  g2: (1 -80)
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V  l 2( D  н * (0 )  n hJ(O), ( l . e )

while G2 is the adjoint of Gg in the sense that

< V 2'v,L,(П) - (g2'V>L,(r,)' V g2 * W '  v € 12(П)- (110>C* 6 1

Moreover, it is proved by Green's theorem that [L-T.2]

in l\
G2Af f € 35(A).

-[Af]r in Гг

Thus, (1.11) justifies the last step in (1.7).

1 .3 . Ihfi Feedback System ;.-Stateaen.t 9 f Main Resvil-ta

By virtue of (1.7), the resulting candidate feedback system, 
whose stability properties in Z we shall investigate, is

tt

w|z = 0

3w,

3w i

= 0 in (0,T)xO - Q; (1.12a)

! v  wt(0/'* = w1 in П; (1.12b)

in (0, Т)хГ = 2; (1.12c)

0 in (0,T)xrQ = 20; (1.12d)

[A(A~*wt) ]j in (0,Т)хГ1 = 2 i (1.12e)

Using the techniques of [T.l], [L-T.7], [L-T.2], [B-T.l], etc., 
problem (1.12) can be re-written more conveniently in abstract form as

"tt = -A"-AG2G2 V

H t C j  - < t l ° " z

(1.13a)

(1.13b)
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А =
0 I

-A -AG2G* : 2)(Л) = {у  € Z: Ду € Z). (1.14)

A more explicit description of 2)(А) will be given in the subsequent 
analysis, see (2.3)-(2.5) below.

Theorem 1.1. (i) (Well-posedness on Z) The operator A in (1.14)

is dissipative on SD (А) с Z = L2(0)x[2>(A^) ]' (see (1.6)) and satisfies 
here the range condition: range (Xl-A) « Z for all X > 0. Thus, by 
Lumer-Phillips theorem, A generates a strongly continuous contraction

Atsemigroup e on Z. The resolvent operator R(X,A) is given by

R(X,A)
V_1(X)A_1

-V '(X) Xv 1 (X )A 1
(1.15)

V(X) -  ItXGgG* + X2A J , (1.16)

at least for Re X > 0, and moreover, R(X,A) is compact on Z. The 
resolvent set of A satisfies p(A) => {X : Re X > 0} if Г satisfies the 
uniqueness property (1.21) in Remark 1.1 below, which is certainly the 
case if Г = Г.

(ii) (Lg-boundedness in time of the feedback operator) For 
{W0,W1} € Z the solution w of (1.12), or (1.13), satisfies

2dE(t)
dt -2 dr - -2llG‘wtl|2

d 1

■alA(A_4 ) « J  ( r i , -< о (1.17)

2
E(t)-E(0) = -2j  j  (pj (Г dt = -if llG*wtl|2 (p )dt; (1.18)

o r .  0 2 1
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J J (It) dr dt “ J ll®2WtllL (Г )dt * *E(0)' <1 Л 9 >
л г л 2 1

2

o r l

where throughout the paper we set for convenience

E(t) s ||e4 t | °||| = llw(t)||2 ,m +llA~V (t)ll
11 I 11 L^(0)x[2)(A ) 1' 2

2 I
Ь 2 (0 )х [2 > (А Й ) Г  L2(fl) * L2(0)

( 1 .2 0 )

Remark 1.1. The point ifJ, ц real and fJ t 0, of the imaginary 
axis belongs to the resolvent set p(A) of the operator A in (1.14), 
provided the following uniqueness property holds true: If ф(х) is a 
(smooth) function which satisfies

Д2ф « /л2ф in Q; (1.21a)

Ф1г = з£ )г = 0 in Г; (1 -21b)

Дф|г = 0  in Г ; (1.21c)
1

then, in fact,
ф s 0 in П. (1.21d)

Plainly, the above uniqueness holds true if Г1 * Г: in this case one

readily obtains also the fourth boundary condition ? ^ ~|p * 0 from 
the second condition in (1.21b), see e.g., [L-T.8, Remark 2.1], and a 
standard uniqueness result yields the conclusion (1.21d).

More generally, a sufficient condition on the inactive portion 
of the boundary rQ for the uniqueness (1.21) to hold true is that 
be as in (1.23) below. I

The next Theorem 1.2 gives a uniform stabilization result, in 
particular when the feedback (1.12e) is active on the entire boundary 
Г, i.e., when »  0. If, instead rQ * 0, then is assumed of the 
special form as in (1.23) below. Theorem 1.2 then recovers the exact 
controllability results obtained directly by H.U.M. in [Lio.l],
[Lio.2] (same spaces and same assumption on rQ), by a direct 
application of [R.l].
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Theorem 1.2. (Uniform stabilization: the radial field case) 
a) Let Гд = 0 so that the feedback (1.12e) acts on all of Г. Then, 

the feedback system (1.12), equivalently the abstract system
(1.14), is uniformly (exponentially) stable on the space Z given 
by (1.6): there exist constants 6 > 0 and M =» > 1 such that

wt (t)|nz и К
"<t> III .  |e4t|-0|| s Me-£t t > 0. (1.22)

(b) More generally, the uniform decay (1.22) holds true if we take 

Г0 - r_(xQ) - {x € г : (x-x0)*v < 0} (1.23)

for some point xQ € Rn, where v - unit normal vector pointed 
outward. ■
Remark 1.2. The uniform stabilization result (1.22) in Theorem

1.2 may be (slightly) generalized to linear vector fields

h^x) - ai(x1-x()̂ )  for some xQ » txo, l'* * ‘' X0, J  € R”' (1-24)

where the coefficients {a^} are constant, and there Is a constant 
m > 0 such that the corresponding differences satisfy the condition 
that

sup|a -m| (1.25)
i 1

is sufficiently small. See Section 2.5. A further generalization is 
pointed out in the subsequent Remark 1.3. ■

Remark 1.3. The uniform stabilization result (1.22) in Theorem
1.2 may be generalized to the case of a triplet {П,Г(),Г1} satisfying:

there exists a vector field h(x) * [hj(x),. . Ьд(х)] € [С3(Г5)]П such 
that

< i )  f o q ( Z V h . - V q  ( a n  > / > f ( 4 q )2d a  ( 1 . 2 6 )

h  1=1 i &

2where q(x) is an HQ(f5)-function on П satisfying therefore
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qlr '  trlr * °' <127)

and p > 0 is a suitable constant, possibly depending on h(x), П, 
and q(x);

(ii) either the (elliptic) uniqueness property (1.21) holds true; or 
else the corresponding dynamical uniqueness property: if t(t, x) 
solves

* tt+A2* * 0  in (0,T]xfl - Q; (1.28a)

t|2 - = 0  in (0,Т]хГ = 2; (1.28b)

e 0 in (0/Т]хГ1 = (1.28c)

then, in fact,
+ г 0 in Q. (1.28d)

Either uniqueness property (1.21) or (1.28) holds true in case rQ is 
given by (1.23).

The linear vector field in (1.24), (1.25) satisfies the 
inequality (1.26), and, moreover, the quantity

Mh = *ax{|Ah |, |A(div h)|,|V(div h)|> (1.29)

is zero in this case. Thus, see Section 2.5, no lower order terms are 
involved in inequality (2.8) below: it is precisely to absorb the 
lower order term И|^р |Пс ц 0 Tj.L of inequality (2.8) that

condition (ii) is invoked. More general perturbations of the radial
field than the linear field (1.24), (1.25) can be given which satisfy
inequality (1.26), but then the uniqueness property (1.21) or (1.28) 
comes into play; see Section 2.5. ■

1.4. sfcetch ai Brflfll of Theorem -1*1
The proof of much of Theorem 1.1 is very similar to the proof of 

analogous results for wave equations with Dirichlet control [L-T.6], 
or Neumann control [T.2], and for Euler-Bernoulli equations with 
control in the Dirichlet B.C. [B-T.l]. Thus, details are omitted and



1058

only some distinctive features of problem (1.12) will be mentioned. 
According to techniques as in [T.l], [L-T.7], etc., for waves, or 
[B-T.l], [L-T.2], etc., for Euler-Bernoulli problem, the abstract 
differential equation which models problem (1.1) is

wtt = -Aw+AGgg, (1.30)

(recall (1.8)) whose corresponding first-order system is

0 I 
-A 0 (1.31)

'AG2g'

Since I ® J| is skew-adjoint on Z, (1.6), Eq. (1.31) plainly suggests

to take g = ~®2wt (mo(*ulo a positive function which we shall take 
Identically 1) for feedback stabilization (as anticipated in (1.7)), 
for this choice then makes the corresponding feedback operator A in
(1.14) dissipative on Z; indeed, for у = [y^yg] « 2>(Л):

Re(4y.y)z - -< Л аф а.уа)|^ # - - ( ° 2V 2-y2>L2(0)

'  -< °- (132) 

The proof of Theorem 1.1 follows closely the above references; 
in particular, for the compactness of R(X,A) one may follow the 
argument of [B-T.l; Theorem 1.1, Step 2]. The only point which needs 
further explanation is the claim that the imaginary axis is in the 
resolvent set p(A) of A. That 0 € p(A) is immediate, as the resolvent 
is compact.

Next, if /j * 0 real, an argument as in the above references 
yields that if i/л is an eigenvalue of A, then Eqs. (1.21a-b-c) hold 
true, and if the uniqueness property (1.21d) applies, then we have a 
contradiction. To show the final statement of Remark 1 .1 — that the 
uniqueness property (1.21) holds true for rQ as in (1 .2 3)— we proceed 
as follows. We apply the multipliers (s-Sq)*V<|> and ф to problem 
(1.21a). This produces (see subsequent Section 2.2)
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|(Дф)2(х-х0)*Ус1Г - 4|(Дф)2сГ). (1.33)
Г П

Then, using (1.21с) and (1.23), we obtain

0 = |(Дф)2(х-х0)1МГ > J (Дф)2(x-xQ)•ndr, (1.34)

Г1 Г

and then Дф s о in Л follows from (1.33): this, along with the first 
condition in (1.21b) yields ф * 0 in О as desired. I

2. Proof of Theorem 1.2
2.1. frellilnarles and a Change QL_Varlable и -» p

With reference to the 'energy' E(t) of the w-problem (1.12) 
defined in (1.20) our task is, as usual, to show that: There exists a 
time 0 < T < <» such that

E(T) < r E(0), r < 1; or 11еДТ||̂ (2) < 1, (2.1)

Z * L2(f))x[2&(Â ) ] norm-equivalent to 1*2(П)хН 2(П), after which the 
uniform decay (1.22) is then established. To prove (2.1), it will 
suffice, as usual, to show that: There exists a time 0 < T < » and a 
corresponding constant cT > 0 such that

T 2
e(t> < ct J J ИЗ ^ dt <2-2)

o r l

for (2.2), combined with the non-increasing property (1.17) of E(t), 
will then yield (1.22). Our subsequent effort is aimed at 
establishing (2.2). To this end, we use the idea introduced in 
[L-T.6] which consists in lifting the low (though optimal) topology

I*2(П)хН 2(П) for the solution {w(t),w^(t)} of (1.12) to the level

H2(Q)x L2(D) suitable for multipliers techniques for the pair 
{p(t),Pt(t)}, where p is the dependent variable of a new problem.
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This idea was also successfully used in [B-T.l] in the study of 
uniform stabilization of problem (1.1) with feedback also in the 
Dirichlet B.C. (l.lc). (But the transformation w -» p in [B-T.l] is 
different from the one in (2.8) below for the present problem (1.12), 
due to the different topologies involved; moreover, for the very same 
reasons, the multipliers used in the p-problem in [B-T.l] are 
different from the multipliers used in the present paper.)

Unless otherwise noted, we take henceforth {w0'wj} € an<*
show the estimate (2.2) with constant cT independent of {Wq'Wj}- It:

follows readily from (1.14) that Az = { z 2, -Afz^GgGgZg]} € z “

Ьг (П)х[»(АК) Г  implies

f z 2 <= L 2 < 0 ) ;  ( 2 . 3 )

{z ,z } e »(Л) » J
[ v ¥ a z2 * ®<A > ■ Ho<nb (2 4)

and thus, by (1.9),

G2G*z2 e Н3(П) П Hj<n), hence 6 Н2(П) П Н^(П), (2.5)

upon using (2.4). Since {wQ,w1} € 2>(A) implies {w(t),wt(t)} « 
C([0,T] ;2>(A)) by Theorem 1.1(1), we then have by (2.3) and (2.5),

€ 2(A)
2<n)rmJ

wt ( t )  « с ( [ о , т ] : Ь 2 (П)) (2 .7 )

H ( t )  « C ( [o ,T ] :H  (П)пн^(О)) (2 .6 )

Following the idea in [L-T.6], [B-T.l], we then introduce a new 
variable p in the present case by setting

A*p - A"*wt; i.e..

p - A_1wt €
C([0,T];JD(A*)) if {w0,Wl} € Z; (2.8a)

C([0,T];2>(A)) if {w^w*} « 2>(A). (2.8b)

From (2.8) and (1.13a), we obtain
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L2(0,T;L2(n)) if {w0,wj} « Z; (2.9a) 

C([0,T] ;»(АЙ )) if {w0,w1> s 2 ( A ) ,  (2.9b)

where the regularity in (2.9) follows from (1.18), (2.6), and (2.4). 
Hence, from (2.9) we obtain via (2.8) (left),

In terms of the scalar function p(t,x), x € П, corresponding to 
the vector-valued p(t) = p(t,•), the abstract equation (2.10) can be 
rewritten as the following Euler-Bernoulli problem:

respectively, and where the homogeneous boundary conditions in

In the sequel, we shall have to consider pointwise values of 
Pt(t): these make sense by (2.9b) for initial data {Wq/Wj} « 2>(A) as 
assumed, while from (2.9a) the pointwise meaning of pt(t) in I*2(fi) is 
lost for general initial data in Z. In the analysis below of the 
p-system (2.11), we shall crucially use from (2.8) (left) and (2.9) 
(left), respectively, and (1.5),

--- *
( 2 . 10 )

2Ptt+A p = F;

P(0, •) = pQ * А Pt(0, •) = p2 » A_1wtt(0);

p|2 s 0; (2.11c)

(2.11a)

(2.11b)

(2.lid)

where pQ с 2&(A) and p1 « '^wo+̂ 2^2Wl̂  € by and (2.9b),

(2.11c-d) are a consequence of p € 2>(Â ) - Hq (̂ ) froe and f1-3)*
In (2.11a) we have set

( 2 . 1 2 )

{j(Ap)2dn}*; (2.13)
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Pt = -w+0r(||6*wt HL (Г j ) ,  (2.14)
2 1

where * -G2Wt 6 L2^0,CO;L2 ^ 1 ^  from since G2 is bounded on
Ь2(Г) (see (1.9)). Recalling the 'energy' E(t) of the w-problem from
(1.20), we have via (2.13), (2.14),

E(t) = Jp2(t) + (^p(t) )2df) + «'(HG*W(.I|2 (Г J 
П 2 1

). (2.15)

In (2.14), (2.15), the symbol Cf means, as usual, bounded above 
by a constant, in fact, independent of T. Dependence of constants on 
T will always be noted explicitly.

2-2. Integral Identities for the p-Problem (2.11)
Throughout, we let Q = (0,Т]хП, 2 = (0,Т]хГ, etc.

Proposition 2.1. Let h(x) = [hj(x),...,Ьд(х)] € [С3(П)]П be a
given vector field, and let {w^wj} € 2(A) so that {Pq /Pj} €

и
2>(A)x2)(A ). Then the solution p of problem (2.11) satisfies the 
following identity:

%f(Ap)2h-v d2 = 2|дрГ 2 Vh -Vp ldQ 
2 Q i=1 XiJ

+ jAp[Ah1# . . . ,AhR] *Vp dQ 
Q

+ ttj[p2-(&p)2]div h dQ 
Q

- J f h-Vp dQ + [(pt(t), h*Vp(t) )q ]q - ■ (2-16) 
Q

Remark 2.1. We note explicitly that the following identities 
hold true:



div(HVp) = 2Vh.*Vp +Vp-V(div h); (2.17)
1=1 1 Xi

т ndiv(H Vp) = I  Vh -Vp + [M ,.. .,ДЬ 1-Vp, (2.18)
1=1 1 xi 1 n

3h
where H => H(x) Is the nxn matrix with (i,j)-entry д-i- and H its

j
transpose, so that (2.17) and (2.18) imply 

T ndiv[(H+H )Vp] = 2 2  Vh *Vp +Vp*V(div h) + [Ah ,. . . ,Ah ]‘Vp, (2.19) 
i=l 1 Xi i n

and hence (2.16) can be rewritten as

fcJ(Ap)2h-y d2 = fcJ[p2-(Ap)2]div h dQ + |др div[(H+HT)Vp]dQ 
2 Q Q

- |др Vp*V(div h)dQ - Jf h*Vp dQ 
Q Q

+ [(Pt(t),h-Vp(t))fi]J. (2.20)

Proof of Proposition 2.1. One uses the multiplier h*Vp as in 
[Lio.2], [Lag.l], [L-T.8], [Т.З]. (We use a general field h, even 
though we shall specialize later to radial fields in our principal 
result, Theorem 1.2, mostly for the benefit of including in our 
arguments the generalizations pointed out in Remarks 1.2 and 1.3.) I 

We now handle the first integral on the right of (2.20). 
Proposition 2.2. Under the assumptions of Proposition 2.1, the 

solution p of problem (2.11) satisfies the following identity:

J[p2-(Ap)2]div h dQ = -Jf p div h dQ + JpAp A(div h)dQ 
Q Q Q

+ 2^Др Vp*V(div h)dQ + [(pt(t),p(t)div h)]^]^. (2.21)
Q

1063
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Remark 2.2. We note explicitly for future use that identity
(2.21) continues to hold true if we set div h s 1 in it; i.e., if in 
the proof we multiply Eq. (2.11a) simply by p rather than p dlv h. ■ 

Proof of Proposition 2.2. One uses the multiplier p div h 
[Lio.2], [Lag.l], [L-T.8]. ■

We next insert (2.21) into (2.16), or respectively, (2.20), and 
obtain the final identity of the p-system.

Proposition 2.3. Under the assumptions of Proposition 2.1, the 
solution p of (2.12) satisfies the following Identity (from (2.16)):

The analysis below will show л-fortiori that the terms in 
identity (2.24) are well defined by establishing appropriate estimates 
thereof.

2.3. Analysis of Terms Involving F and the Boundary Data bQ T 
The crucial term in (2.24) is the one involving F h*Vp. 
Proposition 2.4. Let the assumptions of Proposition 2.1 hold

true.

%J(Ap)2h-y d2 - 2 
2

2|др[ 2 Vhj *Vpx ]dQ + [лр[ДЬ1, . . .,ДЬ..,Ahn]-Vp dQ

+ й рДр A(div h)dQ + Др Vp*V(div h)dQ
Q

- Jf h-Vp dQ - fcjF p

Q

div h dQ + bQ (2.22)
Q Q

(2.23)

where (2.22) can be rewritten (from (2.18)) more concisely as

fcJ(Ap)2h-y d2 - Jap div[ (H+HT)Vp]dQ + iiJpAp Д(div h)dQ 
2 Q Q

■ (2.24)
Q Q
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(a) Then, the following Identity is satisfied: 

■J? h-Vp dQ - %Jf p div h dQ + bQ T

- [ (w ,h -V p )n ]J  - й[(и, p d iv h ) ]n ]J

T

j (® 2 V t ' h'Vpt)ndt ‘ KJ (V 2 Wt'Pt dlv h)ndt (2-2s:

where

<°252Wt'h-Vpt)0 + * (S2 ® 2 V Pt dlV h)l

- -t4(G2G*wt,pt div h)n - (pt/h-V(G2G*wt))n (2.26a)

■ ' [ * '52WtllL2(r i , llptllL2(n , ) '  (2 ' 26b)

Ус'with constant in Cf depending on h and IIA Ggll.
(b) The following estimate holds true for the right hand side of 

(2.25), with E(t) as in (1.20) where £ > 0 is arbitrary:

-jFh-Vp dQ - KjFp div h dQ + bQ T > -Ch[E(T)+E(0)]
Q Q

T T

-  f  Ch/ll°2wt llL (Г ) dt -  e/ llpt " L ( 0 ) d t ' (2 27>
0 2 1  0

Proof. (a) Recalling F = "G2G*wtt from (2.12) and integrating 
by parts in t, we obtain

T
-J f h-Vp dQ * J(G2G2Wtt/h‘Vp)ndt 
Q 0

T

- 1 ( ¥ Л ' 1,'7Р)()10 ’ J (52S 2W t'h 'Vpt)n dt' <2'28)
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and using now G2^2wt = “w“Pt ^rom ^2,9Ь  we obtain from (2.28),

-Jf h-Vp dQ + [ ( P t ,h -Vp)n ]J =■ - [  (w, h 'V p )^ ]^

- J ^ 2V t,h-Vpt)ndt. (2.29)

- J(G2«2Wt/Pt diV h)Od t- <230)2 2 t' t
0

Then (2.29) and (2.30) lead to (2.25). Finally, using the identity

a consequence of the divergence theorem, with v = G2G2Wt and ^ = Pt 
along with the B.C. pt|p = 0 from (2.11c), we readily verify identity 
(2.26a), from which estimate (2.26b) follows at once.

(b) Estimate (2.27) follows readily from (2.25), (2.26b), 
recalling (2.13) and the definition (1.20) of E(t). ■

2.4. Completion of the Proof of Theorem 1.2: The Radial Field Case 
and_Absence of Geometrical Conditions If rQ = ф
Step 1. We specialize to the radial field h(x) = x"xq as in the

assumption

H(x) = Identity; div h e dim П « n; V(div h) = 0, (2.32)

so that the basic identity (2.22), or its more concise form (2.24)/ 
becomes

%|(Др)2Ь-у dl = 2j(Ap)2dQ - Jph*Vp dQ - fcjFp div h dQ+bQ т - (2.33)
2 Q Q Q
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J (A p )2dQ = Jp2dQ + jpp  dQ - [ (p t ,p )n ]J,

Q Q Q

which inserted in (2.33) produces the identity

й | (й р )2Ь-к dZ = 2Jp2dQ -  Jph*Vp dQ -  й|рр d iv  h dQ 

I  Q Q Q

+ 2JpP - 2C(pt ' pWo + bo,T*
Q

Summing up (2.33) and (2.35) results in

fcJ(Ap)2h-y dZ - 2J [(Ap)2+p2]dQ - 2{jFh-Vp dQ + *Jfp d iv  h di

2 Q Q Q

+ 2|fP dQ - 2[(pt/p)n ]J.
Q

Step 2. We now recall (2.15) for the first term on the
(2.36); estimate (2.27) for the last term in { • } of (2.36); 
similar estimate for the last two terms in (2.36) (which are, 
contained in (2.27)). We obtain for the right hand side (R.H
(2.36):

T
R.H.S. of (2.36) > (2-t)|e (t)dt - Ch[E(T)+E(0)]

0

- r 1
0

Recalling (1.18), we rewrite (2.37) as

T т 2
R.H.S. of (2.36) > (2-e)jE(t)dt-2ChE(T)-Ch J dr dt.

О o f 1

Next, identity (2.21) and Remark 2.2 give

(2.34)

(2.35)

(2.36)

right of 
and a 
in fact, 
S.) of

(2.37)

(2.38)
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i£ |2 l - (ДА' Ч  V  l* p)V  (2,39)

so that with the definition of rQ = r_(xQ) given by (1.22), we have 
for the left hand side (L.H.S.) of (2.36)

L.H.S. of (2.36) = J(Ap)2(x-xQ) -ud2
I

T 2
< J^P )2(x-x0)-KdZ1 < c j  J (§£) <£,. (2.40)

2, « Г ,

Combining (2.38) with (2.40), we obtain

T 2 T 

ch,t 1 1  ( M l ar dt - <2-£) f E( t >dt -  2ch e (t )
0 Tj 0

> [(2-£)T-2Ch]E(T), (2.41)

where in the last step of (2.41) we have used the dissipativity 
property (1.17) of E(t). Taking T sufficiently large in (2.41) yields 
the desired estimate (2.2), Theorem 1.2 is proved. ■

2.5. Fl_na_l Remarks on Possible Generalizations
In this section we elaborate on the possible generalizations 

pointed out in Remarks 1.2 and 1.3.

Concerning Inequality (1.26). Let h(x) € (С3(П)]П be a vector

ahifield, and let H(x) be the nxn matrix with (i,j)-entry д—  as in
J

Section 2.2. If h(x) is radial, then H(x) = identity. We then 
consider the following perturbation H(x) of the identity matrix:

Step 3 . From (1.7) or (1.12e) and (2.8), we have
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(i) Let the off-main diagonal terms 1 * J, be sufficiently

small In the sup-norm;
(11) let the main diagonal terms satisfy the conditions that

3hi

sup

be sufficiently small, for a constant m > 0.
2Then, inequality (1.26) holds true, if q « HQ(f}) as assumed. 

In fact, we may write

n 2 Aq( I Vh.-Vq ) = m(Aq) +(Aq)Q(x); (2.43)
1*1 1 1

Q(x) *= I  c1J(x)Qx x * (2.44)

[ д ч (  2 )dO  > m J (A q )2dQ -  J| (A q )Q |dO . ( 2 . 4 5 )

o 1*1 Xl П П

But for each i,j,

11чх x 11L (O) i llql1 2 - Cllql1 Й * c|lAKqtlL (П) =■ c№qll (П),
V j  2 HZ (П) ®(A*) V 1" 2

(2.46)

since q e Hq W) “ ®(Â )» equivalent norms (see (1.3) and (1.5)),
where с is a constant of equivalence. Hence, from (2.44), (2.46), we 
obtain

J|(Aq)Q|dfi < k{J(Aq)2dn}*. (2.47)
О П

so that (2.45), (2.47) imply

|Aq(2Vh.-Vq )<*! > (m-k)f(Aq)2<fl. (2.48)
L 1=1 1 xi An ‘ - 1 n
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The constant к depends on supply-1, i # j; on d in (2.42); on с in

(2.46); and if these quantities are sufficiently small with respect to 
m, we may obtain m-k = p > 0 as desired. This situation occurs, in 
particular, for linear fields as in (1.24), (1.25) of Remark 1.2.

MgsUfls3.U&n3_g£-the Proof of Section 2 for a Vector Field

Satisfying Inequality (1.26). We return to the basic Identity (2.22). 
If inequality (1.26) holds true, we readily find for the right hand 
side (R.H.S) of (2.22):

M
R.H.S. of (2.22) > (2p-£)J(Ap)2dQ J|Vp|2dQ

Q Q

- jVh-Vp dQ - fcjp p div h dQ + bQ r  (2.49)
Q Q

where the constant is defined in (1.29) (and is zero if h is linear 
as in (1.24), (1.25)). The proof now proceeds as in Section 2 and 
yields the inequality

3hi

о г

> [(2p-e)T-2Ch] IKp ^ P j )!!2 й (2 .50)
2>(An )xL2(n)

counterpart of (2.41) (recall that ^  = Др on 2^, by (2.39)), where we 
have also used (1.18) for t ■ T and (2.13), (2.14); where we now have 
an additional (lower order) term |Vp|. We absorb this as follows.

Inequality (2.50) implies that: there is a constant

||̂ 1»с ,[0Л ] !ь2(О ) ,^ т 1 Н 2<с- ( 2M)
o r l

CT such that
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Proof. The proof follows similar arguments e.g., [Lio.1-2], 

[L-T.2-3], etc., with the following novelty: The contradiction 

argument

T

J  |(Дрп)2<11 0; (2.51)

0 Г 1

||1Урп1||с([0,т];1.2(П)) s b  (2.52)

for solutions p^ of the non-homogeneous p-problem (2.11), leads in the 

usual way to the result that {pr} are uniformly bounded in 

u
L<e(0,T;2(A )), and hence, by compactness (S.l],

^  U
p -» limit function p, strongly in L (0,T;2)(A )), (2.53) 
n

so that from (2.12),

■ W c a o .T ) : ^ , )  ■ »• (254)

Now, the limit p satisfies Aplj = 0 by (2.11), and hence the

corresponding right hand side function F in (2.11), (2.12) becomes

F = 6 [Др ]T s 0. Thus, the limit problem for p becomes homogeneous
1

on the right hand side (as in the corresponding exact controllability 

question):

Ptt+A2p = 0  in Q;

p|j  * a£lz * 0 ln (2.55)

Др - 0 in 2 y

It is here that the uniqueness property (1.28) is invoked to obtain

p = 0 In Q, a contradiction with (2.14). ■

The rest of the proof proceeds as in Section 2, following 

(2.41).
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Finally, we remark that if, instead of criterion (2.1), one uses 

the equivalent criterion (Datko's theorem):

oo

Je (t)dt < С E(0),

0

then absorption of the lower order terms can be done as in [B-T.l, 

Theorem 1.3b]: but this requires that the imaginary axis belongs to 

the resolvent set p(A) of A. Hence, in this case, the elliptic 

uniqueness property (1.21) is needed. ■
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STRONG G-CONVERGENCE OF NONLINEAR ELLIPTIC 

OPERATORS AND HOM OGENIZATION

Alexander Pankov

General questions on G-convergence are investigated for arbitrary order 
nonlinear elliptic operators of divergence form. The theorems on strong G- 
compactness, on locallity of strong G-convergence, and on convergence of arbi
trary solutions are obtained. As an application, some results on homogeniza- 
tion axe stated for rapidly oscillated nonlinear elliptic operators.

Introduction

Various problems on highly inhomogeneous media give rise to homog- 

enization theory for partial differential equations and to the study of more 

general questions on G-convergence of operators (and on Г-convergence of 

functionals). Now there is an extensive theory dealing with linear problems 

(see [2 -4, 21, 25, 26] and the references therein). As for nonlinear problems 

the Г-convergence of integral functionals is well-studied (see, for example, 

[6, 28] contained important references). For nonvariational problems there 

is a method of construction of formal asymptotics [2, 3]. However, the con

vergence problem (i.e., justification of homogenization procedure) is studied 

only in the two following cases: 1) for periodic second order equations of 

divergence form which are linear with respect to leading derivatives, and 2) 

for second order nonlinear problem in fine-grained domains [8, 22-24].

The aim of the paper is to study general properties of G-convergence 

for arbitrary order nonlinear elliptic operators of divergence form and, as 

consequence, to obtain convergence results for corresponding homogeniza

tion problems. The main results were announced in [13, 14] (a detailed 

presentation was given in [17]), but the proofs presented here are simplified

1075
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with respect to the original ones. We note here the paper [18] dealing with 

the same problems, but only for monotone second order operators and un

der much more restrictive assumptions. Later on, we deal with operators 

whose power rate of growth is equal to p — 1, where p > 2. As for the case 

1 < p < 2 we need to modify conditions (1.2) and (2.3) below (see, for 

example, [13]).

Our starting point is [25]. In this paper the important concept of strong 

G-convergence was introduced and investigated for linear arbitrary order 

elliptic operators. As a consequence, the justification of homogenization 

procedure was done for that case. Namely, this concept, extended to our 

situation in a suitable way, is the central of our approach. As for the 

techniques, it is based on the monotonicity method (the standard reference 

is [11]) in spite of the fact that we consider very general elliptic operators 

which are monotonic in a leading part only.

The contents of the paper is as follows. Section 1 is preliminary and 

deals with G-convergence of abstract monotone operators. Some versions 

of the main results are known, but we need in good estimates for a G- 

limit operator. In Sec. 2 we introduce the concept of strong G-convergence 

and state the main results. For invertible operators this concept may be 

introduced in the same way as in the linear case. But, as we work with 

non-invertible (in general) operators, we need to modify the definition. In 

more restrictive situation similar treating of G-convergence may be found 

in [19]. The proofs of the main results are contained in Secs. 3 and 4. In 

the first of them we study the simplest case, where the operators under 

consideration contain only the leading terms and the leading derivatives. It 

is the central technical point of the paper. Then, in Sec. 4 we pass to the 

general case. We note here that our approach differ from that of [25] (in 

linear case). It is based on a direct construction of a strong G-limit operator 

and does not contain any version of so-called condition (N). It seems that 

this approach is more transparent and technically simple (a similar scheme 

was used in [27, 29] for some linear cases). Finally, Sec. 5 deals with some 

homogenization problems.

Now, we note the paper [16], (the case when the leading terms and the 

lowest one have essentially different growth rates) and the papers [9, 10] 

(nonlinear parabolic operators).
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1. G-convergence of Monotone Operators

Let V be a separable reflexive Banach space over IR and V' be its 

dual. We denote by (. , .) the canonical bilinear form (pairing) on V' x V. 

Assuming p > 2 and fixing A0 > 0, Ai > 0, x > 0, /io > 0,0 > 0 we consider 

a class M  =  M(A0, Ai, h0, x, 0) of operators A : V ---- ► V' such that

\\M\? ^А о- И '+ А ,, (1.1)

(Av — Aw ,v — w) > k \\v  — w\\p i (1.2) 

\\Av - Aw\\p' < Q.H(v, w)l- l p\\v - w\\9 , (1.3)

where 0 < s < p' and tf(v,ty,.. .)  = h0 4- |M|P + |M|P + -- Here and

later on || ||« stands for the norm in V7 and p~l + (p/)“ 1 = 1. Inequalities

(1.2) (with w = 0) and (1.1) imply the following coercivity inequality

(Av,Av) > <fo-IMIp/ “  K *i > C1-4)

where do >  0 and К > 0 depend on x only. In particular all such operators 

are invertible [11].

One say that a sequence Ak : V ---- ► V' of invertible operators G-

converges to an invertible operator A : V----* V\ if (Ak)~l f ----► A~l f

weakly in V for any /  € V'. We write Ak ----► A for this situation.

Theorem 1 .1 . For any sequence Ak € M  there is a subsequence Ak 

such that Ak ------► A, and inequalities (1.2) and

IM IS '<A0.|M|' + tf.Ai, (1.5)

||Av - Aw\\l' < в .||Я ,(*, u))1_r/,,.||v -  Н Г . (1-6)

hold. Here Ao, 0 and К  depend on Ao,s and 0 ,?{1(*) = 7i( ) + Ai, and

s = sp/(p2 - sp  + s).

Proof. It is easy to see that the operators Rk =  (A* )-1 are uniformly 

bounded and equicontinuous on any ball in V1. Hence, using the diagonal 

procedure we may assume that there is a limit operator R f  =  lim R t f



1078

(weakly in V). It is not hard to see that this operator is bounded and 

continuous.

If we pass to the limit in inequality (1.4) ( with A replaced by Ak) and 

use the weak lower semicontinuity of the norm, we obtain the inequality

(/,Д/)><*о.||Д/119 - K M .  (1-7)

Moreover, if in the previous argument we take into account (1.1) and then 

pass to the limit, we obtain the inequality

(/, R f) > Ao 1 do .||/||S' - (Ao + 1<) .A i . (1.8)

Hence, R  is coercive. In the similar way (1.2) and (1.3) imply strict mono

tonicity of R  and, as a consequence, its invertibility.

Now we set A = R *1. Inequality (1.8) together with the Yung inequal

ity implies (1.5). Similarly, (1.7) implies

ЦЛ/1Г< К .(ll/IIS' + Ai). (1.9)

For v,w 6 V we set vjt = RkAv and w* = RkAw. Since Ak satisfied 

inequality (1.2), Av = AkVk and Aw = Aktu*., we have

(At; — A w , V* — Wk) > x .||vjk — tujt||p . (1-Ю)

Passing to the limit, we see that our limit operator A satisfies inequality

(1.2). Now, by (1.9).

H(vk)w*) < K.Hi(v,w ) .

By definition of v* and w^ and by (1.3) we obtain the inequality

||Ли - Aw\\t < 0 .||ut - Xffcll* 

< 0 .||vb - .

Using (1.10) to estimate ||ut — tut|| in the last inequality and passing to the 

limit, we obtain

||Av — Atu||J < 0 .H\(vt w)l~*tp .(Av - A w , v — w )^p

< © ,\\Av - Aw\\’J r .||и - Н Г /Р •

This imphes (1.6) and the theorem is proved. □
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In a bounded domain Qc IRn we shall consider differential operators 
of the form

Au= £  (-l)W3<Ma(M m«), (2.1)
|a|<m

where dj = d/dxj ,d = (d i, ... tdn),Smu is the collection of all partial 

derivatives of и of order not greater than m (the number of them will be 

denoted by M), and the usual conventions on multi-indices are used. Now 

we set dm =  {^Qr}|cr|=m. The numbers of members in dmu and dm~1u will 

be denoted by Mi and M2 respectively. The following notations will be 

used also:

Aa(xt6m-l utdm) = Aa{x,6mu) ,

A»(*.>7>f) = -‘M*,{).{ = (v,S) e RM = RM2 x RMi-
If Aa does not depend on lower derivatives, we write simply Aa(x, dmu) and 

(*»{)• Later on we will use the following convention. If we consider an 

operator of the form (2.1) labeled by some mark, then the same mark will 

be preassigned to the “coefficients” of the operator. For example, A^(x,^) 

are the coefficients of Ak, etc.

Let V = W™'P(Q) and V  = W m*(Q ) be usual Sobolev spaces. The 

space V is endowed with the norm

2. Strong G-convergence. Main Results

i  Ip

MI = H k = ' ~
|or|=m

where || ||p = || ||P)q is the usual Lp (Q)-norm.

Now we give a precise description of the operator classes we shall con

sider later on. We assume that Aa(|a| < rn) satisfies the Caratheodory 

condition, i.e., <Aa(x, 0  is measurable in x 6 Q for all £ € IRM and is 

continuous in (  for almost all x 6 Q- It is assumed also that for almost all 

x G Q the following inequalities are valid:

IAq(x ,O Ip' < Co.\<lp +c(x) (2.2)

where p > 2, cq > 0, and с € L l (Q) is nonnegative;

£  [Л ,(*,ч,0-Л ,(М ,О ] .«« -& )>  « If - fT . (2-3)
|o|=m
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PM-.0 -  А'Ы') f  < e .[(/.(*) + |cr + KT) A\v -  VI) (2 4) 
+ (M*) + ICI’, + lCT)1- ' /p. | f - ^ l ‘ ],

where © > 0,0 < s < p 'X  = (»?,{)> C* = OAf')» ^ nonnegative

and i/(r) is a continuity modulus, i.e., a nondecreasing continuous function 

on [0,+oo) such that i/(0) = 0 ,t>(r) > 0 if r > 0 , and i/(r) =  1 if r > 1.

Operators satisfying the present conditions act continuously in the fol

lowing way [11]: A : V ---- ► V' = W-™*'(Q) and A : V ---- ► V '. Now

we fix the constant p >  2. By specification of another parameters, which 

appear in (2.2)-(2.4), we obtain the operator class E  = E(co> с, /с, h} 0, v, s). 

If we replace (2.3) by the inequality

Y ,  i m * ,q  - Aa(x,c')i .«* - a  >  * - a p • (2 5)
|a|<m

where С = (^.OjC' = (VjfO» we obtain the subclass DM  = D M (c} с, к, Л, 

0, v, s). Moreover we define DM 0(c0) c,ac, h} 0, z/, s) С D M  by the following 

conditions: Aa = 0 if |a| < m ,AQ(xt C) = Aa(a:,f)>C = (*?>0 if N  = m* 
Evidently, DMo does not depend on v.

Note that a union of classes E(-) (or DM(w), or DMo(..)) when their 

parameters belong to compact subsets of corresponding spaces L1(Q) or 

IR+), is contained in some class of the same type.

Now we introduce the concept of strong G-convergence. First let us 

consider the case when Ak, к E IN, and A are invertible operators (from V 

into V') of the form (2.1) (for example, Ak ,A  6 D M  [11]). For и € V we 

set tu = (A*)_1Ati and then we define “generalized gradients” as

Га(«) =  A«(*, 6mu) , Г* (ti) = A*(*, 6muk) , M  < m .

(Here А*(ж,() are “coefficients” of Afc). It is easy to see that Га and 

Г* act continuously from V into L?' (Q). One says that the sequence Ak

strongly G-converges to A(Ak A)t if Ak ------ ► A and Г* (u )---- ♦

Г.(«)(|а| < m) weakly in 1?' (Q) for any u G V.

Operators from the classes E  are noninvertible in general. Hence we 

need to modify the previous definition to cover the case of such operators. 

We do this as follows. Denote by Ao the leading part of A,

A0t i=  (-1)т даАа (х,6т и).

|a|=m

where x > 0;
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Associated with A there is the operator A : V x V ---- ► V7, acting by the
formula

A (u ,v )=  Y ,  (“ I ){aidaAa(x,6m-1v,6mu).

|or| <m

Extractly as above, its leading part Aq(u} v) may be defined. We denote by 

A i(u}v) the sum of lower order terms of A(u,v) and set Ai(u) = Ai(u, u). 

We note that for A E E  all the operators of the form и Aq(u, v)}v E V, 

belong to some DM 0 (depending on v) and, as a consequence, are invert

ible. This simple fact is the key to more general definition of strong G- 

convergence which will be given now.

Consider operators Ak,k E IN, and A , belonging to some classes E  

(their parameters may depend on an operator). For u}v E V we define 

Щ E V as a unique solution of the equation Ao(ujb,v) = Ao(u,v). (Such 

Uk is well defined). Then we set

r a(u,v) = Aa(x,6m-1vidmu),

Tka(u,v) =  Aka(x,6m-1vi dmu).

where |or| < m. We say that the sequence Ak strongly G-converges to A, 

if for any v E V the operators Ak(-,v) are G-convergent to Ao(-,v) and for

any tt,v e V we have r£(u ,v)----- ► Га(и, v)(|a| < m) weakly in L9'(Q).

For strong G-convergence on D M  we shall use the first definition only. 

Equivalence of our two definitions on D M  will be stated later on (it is 

obvious on D M q).

The principal result on strong G-convergence is the following compact

ness theorem.

Theorem 2.1. For any sequence Ak E E(co,c, /с, h, 0 , 1/, s) there exists 

a subsequence A k' such that Ak> ==> A and A E E(co, с, /с, h, 0, v, s), where 

* = sp/(p2 - sp + s).

For any subdomain Q' С Q, expression (2.1) defines an operator A\Q' 

which maps W™,P(Q') into Strong G-convergence is local in

the sense of the following result.

Theorem 2 .2 . Assume that Ak E e(c0} с, к, h, 0, i/s) and Ak A. 

Then A k\Q' ==>• A\Q' for any Q ' С Q■
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It is the following property (convergence of arbitrary solutions) which 

is especially important in homogenization problems.

Theorem 2.3. Under the conditions of Theorem 2.2 let v* E V be

such that и*------► и weakly in V and Akv* ------ ► /  in V1. Then

Au = f  and A*(x, -------► Aa(x,6mti) weakly in IS*(Q)(\a\ < m).

In particular, this result implies the equivalence of our two definitions 

of strong G-convergence on DM .

For operator (2.1) the energy density is defined by the formula

E(u)(x) =  £  A a(x,Sm u(x)).dau(x).
|or| <m

Theorem 2.4. Under the conditions of Theorem 2.3 E k(vk)---- *

E(u) weakly in the distribution space D'(Q).

The proofs of all these statements are contained in the next two sec
tions.

Remark 2.5. In the case when A* is a Euler operator of some integral 
и х . G

functional Ф and A ------- ► A, A is also a Euler operator of an integral

functional Ф. In the case, when Ak (and A) belong to E t the functionals Ф* 

and Ф are not convex in general. However, they are convex if A k € D M  (as 

a consequence A € DM ). Then it is not hard to see that Ф is the Г-limit 

of Ф* (for Г-convergence see, for example, [6 , 28]). □

3. Proofs of the Main Results: Operators of the Class DMq .

First of all we note that operators from D M  (and, as a consequence, 

from D M q) belong to M(A0, Ai,/i0>s, в), where A = MiCo,

Ai =  Ai(Q) = f A(x)dx , A(x) = M i .c(x),
Jq

ho = ho(Q) = f h(x)dx 
Jq
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remember that V = W™,P(Q)). Later in this section we consider operators 

from DM q only.

We need the following technical result.

Lemma 3.1. Let Ak € DM 0}AkUk---- > f ,A kv* ---- ► g} strongly

in V' with {u*} and {v*} being bounded in V, and z* = щ  — v*----- ► 0

weakly in V. Then /  = g,Zk------► 0 in W ^ ,P(Q). Moreover, for any

(independent in rj) functions С*(я,£) satisfying the Carathedory condition 

and inequalities of the type (2.2), and (2.3) (in particularly for AJ) we have

C k(x}dmUk) — Ck(x,dmUk)----- * 0 weakly in L?'(Q) and with respect

to the measure.

Proof. For any ф £ Cq°(Q), 0 < ф < 1, we have, by (2.3),

where Z k = Aka(x,dmUk) - Ak(x, dmvk). Moreover,

T ,  f  Z ka .да (фгк) .dx =  (Akuk -  Akut , M )  -  0.

Since the sequence Z k is bounded in L? (Q), then the Leibnitz formula

and Sobolev inbedding theorem imply z *------► 0 in Wj™,p(Q). Hence

6mZk----- ► 0 by measure. From these and from estimates (2.2) and (2.4)

for Ck it is not hard to deduce that Ck(xydmUk) — Ck(x,dmv*)----- ► 0

by measure. As this difference is bounded in LP (Q), it converges to zero

weakly. When C k =  Ak this implies that AkUk — AkVk----- * 0 weakly

in V '. Hence /  = g and the proof is complete. D  

Now we need some preliminary constructions.

Let X i = Lp(Q )Ml; its members will be written as rf> = (^а)|а|=т- We 

have A — A о <9m, where A .X  \----- ► V‘ is given by

Аф = Y ,  (~1)т д°Аа {х,ф ).

|а|=m
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For, rpyx G X i we set A^x = А(ф + x) and Аф = A^ о dm, the operator 

A0 is well-defined on V (and on F). It is easy to see that

Axp̂ .QTTif2)(ii) — Axp(u u/) у (3.1)

| Р М | | ! '< М М Г  + 1МГ) + А1 (3.2)

(A^u — A^w }u — w) > к .||u — tu||p , (3.3)

\\Aipu — < 0 .H (u)w,ip)1~*tp ]\u — w\\9 . (3.4)

where u, v G V and ip € X For any rp G X\ the operator A^ : V ---- ► V*

is invertible. Hence there is an operator R : V1 x X i ---- >V defined by

R(f, Ф) - A ^ f .  We have

R(f,f + dmw) = R(f,^) + w, (3.5)

||Л(/, V>)||p < ЛГ -(ll/ir' + liv-ir' + Ai) (3.6)

(comp, with (1.9)).

The following statement is a straightforward consequence of inequali

ties (3.2), (3.6) and (2.3).

Lemma 3.2. The operator R  is Holderian on any ball of the space 

V* x X i uniformly with respect to A G D M 0(c0i с, /с, h, 0, s).

It is the following result that is a central point of the section, (and, in 

some sense, of all our study).

Lemma 3.3. Any sequence Ak G DMo(co,c, /с, h, 0, s) contains subse

quence which is strongly G-convergent. The limit operator belongs to some 

DM q (with, possibly different parameters; the parameter s is the same as 

in Theorem 1.1).

Proof. The proof is divided into several steps.

Step 1. By theorem 1.1 and Lemma 3.2 we may assume (passing to

a subsequence, if it is needed) that A\------- ♦ A^(rp G * i) ,  where

Axj> : V ----—► V' is an (abstract) operator. We set A = Ao and

Я(/, VO = A ^xf. Thus we have #*(/, VO----—► R(f,ip) weakly in V
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(here R k( f }i/>) = (A 1f)  according to our previous conventions. Theo

rem 1.1 implies also, that A^ satisfies inequality (3.3) and

\M\Pj < Х 0(\\и\\Р + \\ф\\Р)̂ К.Х1у (3.7)

\\АфП - Ar(,v\\pJ  < Q .H i(u ,v til?)l ^ p .||«- v||J . (3.8)

It is easy to see that the just constructed operators R  and A satisfy equa

tions (3.5) and (3.1) respectively.

Now we define A . X i —► V7 by the formula Аф = j4^(0). By (3.1), 

A = А о dm, and , by (3.7)

1ДО1В'<Ao .\ W +K.\ t . (3.9)

Finally, A may be extended to the space V as А о dm.

Step 2. For ф G X\ we set

фк =  ф + дт Ик(Аф,ф) = ф + dmu l . (3.10)

when ф — dmu, we have фк — dmUk with щ  = и + uj. Evidently, фк —

---- ¥ ф weakly in X i (u *------► и weakly in V). Now we define the

operator Г* : X i ----- ► L? (Q), \a\ = m, by the formula

I*(ф ) =  Ака (х,фк).

Using (3.9), inequality (3.6) for Rk and inequality (2.2) for Aka we obtain 

l|rtWIIP,p '< A 0.|Mr + AC.A1. (3.11)

Set also Г*(и) = Г*(9т и) for u e V.

Step 3. Let Qx X i and V'IQi = xlQi- TJien (Аф)\Qi =

(Ax)|Qi (i.e., A is a local operator). Indeed, we set Xk = X + dmvl, where

Vk = R k(Ax,x) (comp, with (3 .10)). Since фк - Xk----- * Ф — X weakly

in X u  then (uj - vl)\Qi---- ► 0 weakly in W m>p(Qi). Now we note that

and

Л*^04)|<Э1 =  А(ф) |gx
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4 (»i)IGi = Жх) Iq, •
In Q i the operators AJ, and coincide. Hence, applying Lemma 3.1, we 

obtain the required results.

For Qi С 0, passing once more to a subsequence, we may construct 

a G-limit operator A(i) and corresponding operators As above,

it may be stated that A^(xp\Qi) = (Axp)\Qi. In particular the passage 

to a subsequence at this point is really superfluous. Additionally, if Fa(V0 

converges weakly in IP (Q) to some operators Га (^) (for any xp € ^ i) ,  then 

the operators Га are local (in the same sense as A) and generalized gradients 

r(i),a associated with Qi (generally, they disagree with the restriction of 

Га to Qi) converge weakly to r e|Qi.

Step 4- By (3.11) we may assume (using the diagonal procedure) that 

there is a dense countable set in X\ of xp’s such that the sequence (Га(^)} 

converges weakly in Lp (Q). Then, in fact, this remains valid for all xp € X\

and, consequently, the operators Га : X i ----- ► Lp' (Q), |a| = m, are well

defined such that Г * ------► Га weakly in LP'(Q). To prove this it is

sufficient to see that, by Lemma 3.2 and condition (2.4), the operators Га 

are continuous uniformly with respect to k.

By (3.11) we have

!| r «W II?\ < V | W + * .A i. (312)

Moreover,

\M ) -  Га(х)||?', < 0 .Н̂ ф, xу - 1' ” ■ IIФ - xllf • (313)

Indeed, let хрь be defined by (3.1) and Xk = X + dmvl be defined in the 

similar way with xp replaced by x- We set Z * = r*(V>) - Гka(x)>Z k = 

uk ~~ *  -  Ф - X and <?к = Фк - Xk- By (3.6) and (2.4) we have

where H i = Hi(xp}x). For у = Axp — Ax there is a representation

у =  E  (- i)mdaz * .
|or|=m

(3-14)
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(y, 4 )  = /  Y\ Z*<Tkadx- f  У )  Z ka(Tadx
J Q I , J Q , ,^ |or|=m ^ |a| = m

> 1 •IMP’ -в.[н1~‘,р -||<т*||л]1/р' м .

By using the Yung inequality this perimits us to obtain an upper bound 

for 11(7*11 in terms of ||cr|| and (y,Z\). Now put together this bound and

(3.14) and then pass to the limit using the weak convergence Zk----- ► 0.

Thus we obtain (3.13). As a consequence, the operators Га , |o?| = m, are 

continuous. Also we note that these operators are local (see the end of step 

3).

Now we show that

£  [  [Г„ W  - Г„(х)] .(фа - X a ) d x  > X  ,\\ф - xir • (3.15) 

W=mJ Q

We use the notations introduced after (3.14) and set Za =  ^а(Ф) — Га(х)- 

As in the proof of Lemma 3.1,

[  Z*<f>akadx— Y ,  /
|a|=mJ Q \a\=mJ Q

for any Ф e Cq°(Q) such that 0 < ф < 1. Since Ak and R k satisfy inequali

ties (1.3) and (3 .12) respectively, the left hand side here may be estimated 

below by /c||<£<7-*|p\ As liminf ||<£<г*|| > ||<̂cr||, we obtain, passing to the 

limit, that

£  J  z«<t>,T«dx x -ННГ •
|or|=m Q

Since ф is arbitrary, this implies (3.15).

Finally, passing to the limit in the identity

[  r ka(1>)davdx = ( I kil>t,v) =  (Atl>,v),veV,Tl>eX1.

|or|=m ^

AJ> =  £ ( - l ) m0“r aW .
|a |= m

Therefore, using (2.3), (3.6) and (3.14), we obtain

gives rise to the representation
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In particularly,

A“ =  E  (316)
|or|=m

where Га = Га о дт .

We note that estimates (3.12), (3.13) and (3.15) are valid for any sub- 

domain Q\CQ instead of Q with Ax = X i(Q i) and

Step 5. Set ^ (x ,^ )  = Га (£)(х), |а| = m, where £ G IRMl in the right 

hand side is viewed as an element of X\. These functions are measurable 
for all £ and

<ЛоК 1р + к : .А (* ) , (3.17)

K (* ,0  -  л,(*,{')Р' < У .(М*)|«Г + К'Г)1-'7'  -К -  {'Г,
(3.18)

where hi(x) = A(x) + h(x). Indeed, let xo be a common Lebesque point of 

the functions hi(x),Aa(x,{) and Аа(я,£), and Qc be a ball of the radius 

e centered at x0. Take (3.13) with Q = QC}\p =  £ and x =  {' and divide

the result by mesQ*. Now, passing to the limit as e ------► 0 we obtain

(3.18). Similarly, (3.12) and (3.15) imply (3.17) and (2.3) respectively.

By virtue of (3.16), all we need now is to show that Га (^ )(х) =  

Ла(х,^(х)) for ф G X i and almost all x G Q. Since Ла(х,£) is continuous 

in £, then almost all points are common Lebesque points of .Аа(я>£)>£ ^ 

IR 1 (see [8], Lemma 17.1). Therefore, the same is true for common 

Lebesque points of the functions A* (*,{),{ G IR**1, кХуТа (ф) and ф. Let 

xq be such a point and Qc be an e-ball around xo. Now taking (3.13) with 

Q = Qo given ф and \ = £» where £ = ф(х0)1 and passing to the limit, as 

above, we obtain the required result. □

The arguments we used at the end of step 3 and at the beginning of 

step 4 give rise also to the following

Lemma 3.4. Let Ak G £Шо(со,с, к, Л, 0, s) and Ak ==> A in Q . 

Then Ak\Qi ==> A\Qi for any subdomain Qi С Q. □

Lemma 3.5. Let Ak G DMo(co,c,/c,/i,0,s) and Ak ==> A. Assume 

that Akv t ------► /  in V7, where v* G V and v*-------- ► tz weakly.
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Then Au =  f  and Ak(x}dmvk) ---------* Aa(x, dmu), |a| = m, weakly
in Lr'(Q).

Proof. Let uk = и + be defined by (3.10). Then щ -------

and Uk — Vk-------- ► 0 weakly in V, and Акщ  = An — g. Applying

Lemma 3.1, we complete. □

4. Proofs of the Main Results: General Case

To prove Theorems 2.1-2.3 in full generality we need the following 

comparison lemma for G-limit operators.

Lemma 4.1. Let Ak}B k G DMo(co, c,x, h, 0, s), Ak ==> A and 

B k ==> B. Assume that for bounded sequences {7*} С Ll (Q) and {5*} С 

L°°(Q) of nonnegative functions we have

И *(г , 0  - BjCx.OI”' < Ы * )  + m  ■ «*(*) , N  = m , (4.1) 

j k ----- * 7 strongly in Ll (Q) and 6k----► 6 almost everywhere. Then

\Aa(x,Z) - Ba(x,0\p‘ < 0 Ы * )  + A iM  + Ю  •*(*)»N  = m . (4-2)

where /ii(x) = h(x) -f A(x).

Proof. Without loss of generality we may suppose that 7* = 7 and 

6k = 6. Indeed, if our statement is valid in that case, we may apply it with 

7к and 6k replaced by sup{7 ,7*, к > fco} and sup{£, 6k, к > &0} respectively 

and pass to the infimum in the inequality of the type (4.2) which we obtain. 

Similarly, we may assume 6(x) being a step-function with open subsets as 

foots of steps. Therefore, by locality it is sufficient to examine the case 

£(x) = 6*(x) = 1 only.

Now let ф =  £. Consider фк = ф + дт и\ being constructed by formula 

(3.10). Also we construct Xk — Ф + дтук the similar formula for the 

operators Bk. We set у = Аф — Bx = А*фк — В  Xk and we use the



(y. f̂c) = f E  - В£(*>Х*)] • daz\dx
J Q |a|=m

= f  E  Zl  a^ dx-  /  Ц  t"4* (*. Xt) - #*(*, x)t]o-o,t^ •
•'в |or|=m JQ |a|=m

To estimate the second integral here we use the Yung inequality. Then we 

have

(y.**) > *11*4IP - e||<rt II” - C . L k > (/с/2) 4 Ы Г  - C . L k .

where

L k =  [  ( tW  + Ix itW Dd*.
J q

Hence

1Ы Г < ё  •[(!/. **) + £*]•

Now, (2.4) and (4.1) imply

1И£(*.Л ) - B ka(x,Xk)\\̂h  < e.[Ll,s + H l';- 1 -1Ы П .

where #(*) = #(^*,Хк). By inequality (3.6) for ,ft*-type operators associ

ated with Ak and Bfc, we have

< а н х(ф)

(for definition of H i see Theorem 1.1). Evidently,

H i(if) < L =  f  M x ) + hi(x) + \Z\4x.
J q

Therefore

HA*^,V-0 - х*)||рр/а < 6.{Lrk' ‘ + ■

[y.*i) + Lt]} < e.{LP/‘ + 1»/*-1 .(y,2J)} .

Passing to the limit and taking into account that z j --------* 0 weakly,

we obtain

IIA«(*,0 -  Ba(x,0 ||j: Q < 0 .  t  (7(x) + hi(x) + m d x  ,
Jo
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notations we introduce in the proof of (3.13). Evidently,
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By locality, this inequality still valid with Q replaced by any subdomain 

Q i С Q. This implies the required result. □

Proofs of the theorems 2.1 and 2 .2 . For ф £ X 2 = IS(Q )M2 we
set

< * ( « )  =  £  (- 1 Г д аА1(х,ф,дт и).
|or|=m

By Lemma 3.3 we assume that A* ^ ==> Ao)T̂, where Ao>tp is an operator 

of the class DM 0 and ф runs a dense countable subset Л С X 2. Now we 

note that in fact the last is true for all ф £ X 2. Indeed, for any ф £ X 2 we

have A* ̂  = >  A q̂  for a subsequence {к'}. Let ф] £ Л and фj ----- ► ф

in X 2. Additionally we may assume that ф j----- ► ф almost everywhere.

By Lemma 4.1 with 7* = h(x) + \ф(х)\р + |Vv(x)lp and 6к(х) = 1/(\ф(х)\ + 

|т/»;-(х)|) we have

I Aa>tj,j (x}̂ ) — Аа^(х ,£ ) \p

< в .(/ll(x) + \ф(х)\р + \ф5(х) |p) м(\ф(х) - фj (x)\) .

Hence Аагр ;(х ,£ )--------► Ла^(х,^), for almost all x £ Q. Thus, the

passage to the subsequence is superfluous and we obtain the required result. 

Moreover

A0>rp £ DM 0(c0, с + \ф\р,к} hi + Iф\р J ,s ) .

Now we set

Г„(и, Ф) = Л1а(х, ф, dmuk) -|or| < m ,

where uk £ V is the unique solution of the equation A*iXp(uk) =  A0}Xf,(u). 

For |а| = m these are the generalized gradients for the set of operators

{Aq̂ i A q̂ } . Hence Г*(и, ф)-------► Гa(«,V0 = >W (x ,dmu), |а| = m,

weakly in & '{Q). Moreover, we may consider Та(ф\ ф),Та (ф', ф) with 

ф' £ X i in a similar way as in Sec. 3. In addition

| |Г > , ФЖр < Ao .(||V>IIP + Ill'll'’) + Ю.Ai. (4.3)

For a fixed ф the operators Г* are continuous in the first variable 

uniformly with respect to k. (This is stated in the proof of Lemma 3.3 (step
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4) for the case |a| = m. The case \a\ < m is quite similar). Therefore, for 

any fixed xp (and, then, for a countable dense set of such xp’s), passing to a

subseuence, if necessary, we may assume that Г* (xp', xp)-------► ^а(Ф\ Ф)

weakly in Lp (Q)(|a| < m). By remark 4.2 this is true, really, for all xp G X 2. 

Additionally, the operators Га ,|ог| < m, are local with respect to xp' (see 

the proof of Lemma 3.3, step 3); their locallity with respect to xp is obvious. 

Now we define the operator A by the formula

Au = Y  {- l)W daTa{dmu,6m~1u).

|or|<m

It is of the form (2.1) and belongs to some class E. This may be proved 

by a simple modification of steps 4 and 5 of the proof of Lemma 3.3. It is 

obvious that Ak A.

Lemma 3.4 and previous considerations give rise to the locallity of 

strong G-convergence (theorem 2.2). □

Proof of theorem 2.3. The Sobolev embedding theorem implies

that Xk = 6m“ lVfc------> x =  6m~l u strongly in X 2. Then we have

^o.xit ==^ ^o,x- Indeed, by Lemma 3.3, passing to a subsequence, we

may assume that AkXk ==> A. We set 7*(х) = h(x) + |x(*)lp + IXfc(atr)lP 

and £(z) = К1х*(я) — x(*)|) and then apply Lemma 4.1 to the sequences 

{^о.Х)Л anĉ  ^ave A = ^o,x and tbe passage to a subsequence
is superfluous.

Now let xp = dmu and xp* = dmUk be constructed by formula (3.10) 

(with A and Ak replaced by A q̂  and ^ox* resPectively). By definition of 

strong G-convergence for operators from DM q

Aka(z,6m-1vkldmuk) ------- -Aa(x,Sm~1u,dmu) , |o| = m (4.4)

weakly in Lp (Q ). Passing to a subsequence we may assume that this is 

true for |a| < m (comp the proof of theorem 2 .1).
Now we write

Ao,xk(vk) =  fk - A l(vk) .

Obviously, {A*(v*)} is bounded in H'r“m+1,P (Q). Hence, we may assume

that Ak(v]e)----- ► g weakly in that space and, as a consequence, strongly
in V’ . By Lemma 3.5

л о,х M  =  ^o(«) =  f - g . (4.5)
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Since Uk----- > u,Vk----- ► v weakly in V and AoiXfc(u*) = AolX(u) =

/ — <7, we can apply Lemma 3.1. Then, taking C*(x,£) = Ak(x, 6m~1v*(х), 

£) we obtain that

Ata{x,6m-1vk,dmvt ) - A la(x,Sm-1vk,dmuk) -0.|a| < m,

weakly in L?' (Q). This and (4.4) imply that

Aka(x, 6mvk) ---------* Aa(x} 6mu), |or| < m ,

weakly in U ' (Q). In particular, we obtain that g = limA^t»*) = Ai(u). 

Hence, by (4.5) A(u) = Ao(ti) 4- -Ai(u) = /  and the theorem is proved. Q

Proof of theorem 2.4. The proof is similar to that for corresponding 

linear results [25]. D

Remark 4.3. Using the techniques we present here it is not hard to 

see that Ak = >  A iff AJ, A^ for any ф £ LP(Q)M, where A^(u) =

£  (“ 1 Уа'дт А0(х,ф + 6т и).С\ (4.6)
|a|<m

Remark 4 .4 . The proof of the following statement is similar to that 

of Theorem 2.3. Let Ak = >  A and v,uk £ W m>p(Q). Assume that

ii* ------> и weakly in W m'p(Q) and A%(ukiv )------► /  strongly in

W -m>p‘(Q ). Then A0(u,v) = /  and Ak(x}6m-1v)dmuk) ---------->

AQ(x,6m~1v,dmu)1 |a| < m, weakly in I?  (Q). □.

On the set of operators (2.1) satisfying (2.2) we define the metric 

p{A\ A2) = sup (c + |С|РГ Р' .|Ai(x,C) - A*(x,OI (4.7)
гeQX€Rm

\ a \ < m

It is not hard to see, that E(c0} с, /с, Л, 0,1/, s) is complete with respect to 

that metric.

Proposition 4 .5 . Let A\ £ £(c0,c,/c, /i,0,i/,s). Assume that Af = >  

A\,Ak ----—► Ak uniformly with respect to k} and A\ —► A. Then

Ak A.
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The proof is simple, but quite tedious, and we omit it.

5. Homogenization

We consider a family of operators

A'u  = Y  (-1)1“1й0,Л0,(е-1*, Smu) , e > 0. (5.1)
|or|<m

We assume that the functions Aa(x,C), defined IRn x JRM,|a| < m, are 

1-periodic in x £ ]Rn, and satisfy the Caratheodory condition and in

equalities (2.2)-(2.4) with c(x) = c, /i(x) = h. As a consequence, Ac £ 

j&(c0,c,/c,/i,0 ,i/,5),e > 0 for any domain Q С IRn.

To determine the homogenized operator of family (5.1) (i.e., the strong 

G-limit of the family) we consider the following auxiliary equation

E ( - l ) m5 M o(y,4>« + a ^ )  = 0. (5.2)
H=m

For any (  = (ij,£) 6  1RM = IRMaxIRMl there is a 1-periodic in у generalized 

solution N(y,(Z) of (5.2) which is unique up to an additive constant. Indeed, 

let W be the space of 1-periodic functions from VFj^f(IRn), factorized by 

constants. Then the left hand part of (5.2) defines an operator U<; : W  —

----* W' which is continuous, strictly monotone and coercive. Thus, the

required result follows.

Now we set

A *«) = (A.(y,i|,* + aj*tf(¥.C))), (5-3)

where (/) is the mean value of the 1-periodic function. Since dmN(-,C) £ 

•kfocC®'” ) ^ 1 and is 1-periodic, then the function Aa is well-defined.

The following homogenization theorem is valid.

G л
Theorem 5.1. For any bounded domain Q С IRn we have Ac = >  A  

as e ------- >0, where

A u =  Y  (-1)|о|0“Ла(4и)т • (5.4)
|or|<m
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Proof. By Theorem 2.1 for any sequence e1--------► 0 there is a

subsequence e '--------► 0 such that Ac' A. Now it is sufficient to

prove that Aa(x,C) = Aa((), |a| < m.

To do this we set N c(x, ( ) = e:r”iV'(e~1a:, C)- It is not hard to see that 

JVc(-,()------► 0 weakly in И ^ ’Р(Щ,П) for any (. Moreover,

^ iC(tf‘ ,0) = 0,

where Ae0^(u,v) is the leading part of the sheafted operator A^(u^v). By
Q ~

Remark 4.3, A£ = >  A(. Using Remark 4.4, we obtain that Ло^(0) = 0 

and

Aa (e~l z,Ti,( + dmN‘ (x,()) -+Aa(x X ), H  < rn, 

weakly in U ' (Q) for any bounded Q С IRn. On the other hand

Aa(c~1x,ii,£ + dmN ‘ (i , 0 )  = A»(!M>{ + d™N(y,Q)\y='- iz .

By (5.3) this converges weakly in Lfoc(IRn) to Ла(С) and we complete the 

proof. Q

Now we discuss a statistical homogenization theorem for homogeneous 

random operators. Let (ft,/*) be a probabilistic space. On ft we consider 

an n-dimensional dynamical system T(x),x £ ft. This means, that for any 

x £ IRn it is given a measurable transformation T(x) of ft satisfying the 

following conditions:

(1) T(x),x £ IRn, is measure preserving;

(2) T(0) = id and T(x + у) = T(x) о T{y) for x, у £ IRn;

(3) the map T : IRn x f t ------► ft,T : (x,w)------► T(x)w, is

measurable.

The formula (U(x)f)(u) =  f(T(x)u) defines a n-parameter group of 

isometries in the space LP(Q): Later on we assume that this group is 

strongly continuous. The latter is valid if the space Lp(ft) is separable (see, 

for example, the proof of von Neuman theorem in [20], Theorem VIII. 9). 

For simplicity we assume also the dynamic system T being ergodic, i.e., 

any measurable T-invariant function on ft is constant. By (.) we denote 

the mean value, i.e.,

(/) = /  / н ^ м  ■
Jn
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Now let us consider the functions Aa{uy £), |a| < m, on ft x IRM satis

fying the Caratheodory condition. Also we assume that inequalities (2.2)-

(2.4) are valid with x replaced by w G ft (here c(u>) =  с and h(u>) = h). 

Then for almost all u> G ft the operator

A'(w)u = £  {-1 )^д аАа{Т{е-1г)Ш1(,т ч ),е  > 0 , (5.5)

|cr|<m

is well-defined. Moreover, Ac G B(c0) с, к, h, 0, */, 5).

Theorem 5.2. For any bounded domain Q С IRn and for almost all
G л

w G ft we have Ac{uj) =>> A as e -------->>0. Moreover, the coefficients

of A does not depend on x G IRn and и G ft.

The proof may be carried out along the same lines as Theorem 5.1 

(with corresponding technical complications). We describe it briefly. First 

of all we define “derivatives” along dynamical system T (more precisely, 

along its trajectories). We denote by d = (d i,... ,dn) the collection of 

generators of the group U(x). There a dense subspace <p С Lp(Cl) which 

is contained in the domains of all the operators da = d f l ... , a  G Z + 

(comp [25]). Moreover, the operators 5°,a G Z + , are mutually commuting 

(in any reasonable sense).

Now we denote by W m,p the completion of <p with respect to the semi- 
norm

ll/ll = ( £  n*“
\ N = m

This is a Banach space (factorization by the kernel of the seminorm takes

place automatically). The operator dm : W m>p------- ► LP(Q)M }dmf  =

{д*П  |«, =m >is an isometric embedding. In particular, the space W m,p is 

reflexive. Its dual will be denoted by W m,p' . By duality the operators

da : IS  (ft)----- ► W~m’p\ |or| = m, may be defined.

Instead of (5.2) we use now the following equation

^ ( - l H 4 ( w , V,{ + ̂ )  = 0. (5.7)
|or|=m

As above, equation (5.7) has a unique solution N(*,£) G W m,p for any 

С G IRM. Since dm//(•,£) g /^(ft)^1, the functions

Aa(О  = (Aa(u )Г),£ -f 8mN (u X ) )) , H  = m , (5.8)

(5.6)
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A u =  (-l)W d“io,0Sm u). (5.9)
|cr|<m

Now we approximate N(-yQ  by N 6(-,Q G 9  up to a small 6 > 0 

(approximation with respect to 1Ут,р-погт). To prove, that A c(lj) ==> 

A we use N e'S(x ,Q  = emN 6(T(e~l x)o>,C) instead of N c(x,() and the 

statistical ergodic theorem instead of elementary arguments dealing with 

periodic functions.

In particular, we can take ft = IRJ, the so-called Bohr compactification 

of IRn [15]. This gives rise to a statistical homogenization theorem for 

periodic operators. But in this situation there is a more precise result. 

Assume that the functions Ла(ж,£), |a| < m, are continuous in С € IR^ 

for any x G IRn, the functions (1 + |C|p-1)“ M a(x,£) are almost periodic 

in x € IRn uniformly with respect to С € IR^, and inequalities defined by 

(5.1). Then the following individual homogenization theorem holds.

G a
Theorem 5.3. For any bounded domain Q С IRn we have Ac = >  A. 

Moreover, the operator A  is translation-invariant.

Proof. Set ft = IR^. The functions Aa , |a| < m, may be extended to 

continuous functions on IR£ x IRM. These extensions (we will denote they 

by Aa) satisfy all the conditions of Theorem 5.2. Here T (x )lj = l j  -f x for 

x G IRn and l j  G IR# (we remember that IR£ is a compact abelian group 

and lRn С IR#). Therefore, for the family of operators

Ас(ш)и =  (- iy a>daAa(w + e-1x,6mu ) ,e > 0 ,

|orj=m

the statistical homogenization theorem is valid. In other words there is
G a

a measurable subset С П such that /i(fto) = 1 and Ae(l j )  = >  A for 

lj G fto- The operator Ac(lj) depends continuously in w G ft uniformly 

with respect to e > 0. Since fto is dense in ft. Proposition 4.5 (more 

precisely, its version for nets, because IR# is nonmetrizable) applies and we 

complete the proof. О

are well-defined. The homogenized operator A is given by the formula

Remark 5.4. The operator A  may be constructed by formulas (5.3),
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(5.4), where N(yX) is almost periodic (in the sense of Besicovitch) solution 

for (5.2). Q

Remark 5.5. All the results of the section may be extended to the 

case when coefficients of operators under consideration are highly oscillated 

along a slow background, i.e., Aca(x,bmu) = Aa(e~l x ,x}Smu). Q

References

1. M. Artola, G. Duvant, Un resultat d ’homogeneization pour une class de prob- 

lemes de diffusion non lineares stationaires, Ann. Fac. Sci. Toulouse 4 (1982), 

1-28.

2. N. S. Bakhvalov, Homogenization of nonlinear partial differential equations 

with rapidly oscillated coefficients, Dokl. Akad. Nauk SSSR 225 (2) (1975), 

249-252 (in Russian).

3. N. S. Bakhvalov, G. P. Panasenko, Homogenization of Process in Periodic 

Structures, Moscow, Nauka, 1984 (in Russian).
4. A. Bensoussan, J. -L. Lions, Papanicolaou G. Asymptotic Analysis for peri

odic structures, North Holland, 1978.

5. A. Boccardo, F. Murat, Homogeneization de problemes qusilineaires, Publ. 

IRMA (Lille), 3 (7) (1981), 1-37.

6. E. De Giorgi, G-convergence et Г-convergence, Proc. Int. Congr. Math. 

Warszawa, v. 2, PWN-North Holland (1984), 1175-1191.

7. A. Kovalevski, S. Lamonov, I. Skripnik, Nonlinear problems in fine grained 

domains, Kiev, Inst. Math., 1984, preprint |84.40 (in Russian).

8. M. A. Krasnoselski, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevski, Inte

gral Operators in Spaces of Summable Functions, Moscow, Nauka, 1966, (in 

Russian).

9. R. Kune, A. Pankov, G-convergence of monotone parabolic operators, Dokl. 

Akad. Nauk Ukr. SSR 8 (1986), 8-10 (in Russian).

10. R. Kune, G-convergence and homogenization of nonlinear parabolic opera

tors, Thesis, Donetsk, 1989 (in Russian).

11. J. -L. Lions, Quelques methodes de resolution des problemes aux limites non 

lineaires, Paris, Dunod, 1969.

12. V. A. Marcenko, E. Ya. Khruslov, Boundary Value Problems in Fine Grained 

Domains, Kiev, Naukova dumka, 1974 (in Russian).

13. A. Pankov, On homogenization and G-convergence of nonlinear elliptic op

erators, Dokl. Akad. Nauk SSSR 278 (1) (1984), 37-41 (in Russian).

14. A. Pankov, Homogenization of almost periodic nonlinear elliptic operators, 

okl. Akad. Nauk Ukr. SSR 5 (1985), 19-22 (in Russian).
15. A. Pankov, Bounded and Almost Periodic Solutions of Nonlinear Operator- 

Differential Equations, Kiev, Naukova dumka, 1985, (in Russian).



1099

16. A. Pankov, Homogenization of elliptic operators with high order nonlinearity 
in lower terms, Differ, uravn., 23 (10) (1987), 1787-1791 (in Russian).

17. A. Pankov, Monotonicity method in the theory of nonlinear differential equa

tions with almost periodic and with highly oscillated coefficients, Thesis, Kiev, 

1988, (in Russian).

18. U. Raitum, Toward G-convergence of quasilinear elliptic operators with un
bounded coefficients, Dokl. Akad. Nauk SSSR 243 (1981), 30-33 (in Russian).

19. U. Raitum, Toward generalization of G-convergence for quasilinear elliptic 

systems, Latv. Math. Ezhegod. 29 (1985), 73-83 (in Russian).

20. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Acad. 

Press, 1972.

21. E. Sanchez-Palencia, N on-homogeneous Media and Vibration Theory, New 
York, Springer, 1980.

22. I. Skripnik, On convergence of solutions of nonlinear Dirichlet problem as 

the boundary is refined, Zap. Nauchn. Semin. LOMI 115 (1982), 236-250 (in 
Russian).

23. I. Skrinpnik, Quasilinear Dirichlet problem in domains with fine grained 

boundary, Dokl. Akad. Nauk Ukr. SSR, 2 (1982), 21-25 (in Russian).

24. I. Skripnik, S. Lamonov, The first boundary value problem for parabolic equa

tions in fine grained domains, Dokl. Akad. Nauk Urk. SSR 4 (1984), 25-28 

(in Russian).
25. V. Zhikov, S. Kozlov, O. Vieinik, Kha Tien Ngoan, Homogenization and 

G-convergence of differential operators, Uspekhi Mat. Nauk, 34 (5) (1979), 

65-133 (in Russian).
26. V. Zhikov, S. Kozlov, O. Oleinik, On G-convergence of parabolic operators, 

Uspekhi Mat. Nauk 36 (1) (1983), 11-58 (in Russian).

27. V. Zhikov, On G-convergence of elliptic operators, Mat. zametki, 33 (3) 

(1983), 345-356 (in Russian).
28. V. Zhikov, Questions of convergence, duality and homogenization for func

tionals of variational calculus, Izv. Akad. Nauk SSSR (Mat.), 47 (5) (1983), 

961-998 (in Russian).
29. V. Zhikov, E. Krivenko, Homogenization of singularly perturbed elliptic op

erators, Mat. zametki 33 (4) (1983), 571-582 (in Russian).

Alexander A. Pankov

Institute of Applied Problems in Mechanics

and Mathematics

Ukrainian Academy of Sciences

Naucnaja 3-B

(290 047) LVOV

USSR



Constantin Caratheodory: A n  International Tribute (pp. 1100-1107)
edited by Th. M. Rassias
©1991 World Scientific Publ. Co.

"ON THE WELL-POSEDNESS AND RELAXABILITY OF 
NONLINEAR DISTRIBUTED PARAMETER SYSTEMS"

N.S. Papageorgiou

Abstract
In this work we examine the relation existing between well-posedness 

(sensitivity) and relaxability of nonlinear distributed parameter systems.
We introduce the notion of "strong calmness" which describes the 
dependence of the value of the problem on perturbations of the state 
constraints and we show that it is equivalent to "relaxability". We also 
present an equivalent, control free description of the relaxed problem and we 
prove a density result.

1. Introduction.

It is well known that if we want to derive necessary conditions for 

optimality, things do simplify if we have some convexity hypothesis at our 

disposal and this partly motivates the introduction of the relaxed system, 

wherein the original dynamical equations are replaced by their convexified 

versions. Another important reason to consider the relaxed system, is that it 

always has a solution under very mild hypotheses. But then we need to 

know if and when the relaxation process introduces new better solutions or 

leaves the value of the problem unchanged and an original optimal control, 

optimal for the relaxed system too (relaxability). On the other hand, given 

the optimal control problem, it is important—especially when state 

constraints are present — to have a precise mathematical formulation to 

express the fact that the original problem is well posed in the sense that 

arbitrarily small perturbations of the data, do not drastically change the 

value of the problem. The first to formalize this stability concept was Clarke

[1], who for this purpose introduced the notion of calmness. He then proved 

that calmness implies relaxability for finite dimensional systems with no 

state constraints (see theorem 2 in [1]). In this paper we consider nonlinear 

distributed parameter systems with state constraints. We introduce a 

stronger notion of calmness and we show that it is in fact equivalent to 

relaxability. We present the results without proof. A detailed exposition 

will appear elsewhere.
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2. Strong calmness.

Let Y be any Banach space. We will be using the following 

notations:

Pf(c)(Y) = (A - Y: nonemPty> closed> (convex)} and P(w)k(c)(Y)

= (A c Y: nonempty, (w—) compact, (convex)}.

Now let H be a separable Hilbert space and X a dense linear 

subspace carrying the structure of a separable, reflexive Banach space and 

with the embedding X «-► H compact. Identifying H with its dual (pivot

space), we have X *+ H *+ X , where all embeddings are continuous, dense 

and compact. So (X, H, X ) is a Gelfand triple. By || * || (resp. |*|»IMI*)»
*

we will denote the norm of X (resp. of H, X ), while by <•,♦> we will
*

denote the duality brackets for the pair (X, X ) and by (*,•) we will 

denote the inner product of H. Recall that <•»•> = (*»*)• We will

XxH
model the control space using a separable Banach space Y.

Consider the following nonlinear, distributed parameter optimal 

control problem of Lagrange type:

fb
J(x,u) = L(t,x(t), u(t)) dt -» inf = p(0)

J 0
s.t. x ( t ) + A ( t ,x ( t) )= f ( t ,x ( t) ,u ( t ) )  a.e. (*) 

x(0) = xQ, x(t) i C(t), u(t) € U(t) a .e .

We will need the following hypotheses on the data of (*).

НШ- A: T x X -♦ X is a map s.t. (1) t -» A(t,x) is measurable,
★

(2) x -♦ A(t,x) is sequentially continuous from Xw into Xw (where Xw

(resp. X ) denotes the space X (resp. X ) with the w-topology), w
о

(3) x -* A(t,x) is monotone, (4) <A(t,x), x> > ĉ  ||x|| a.e. c  ̂> 0 and

(5) ||A(t,x)|U < g(t) + c2 ||x||2 a.e. with g(-) e L” , c2 > 0,

НЩ: f: T к H x Y H is a map s.t. (1) t -+ f(t,x,u) is measurable,

(2) (x,u) -♦ f(t,x,u) is sequentially continuous from H * Yw into Hw and

(4) |f(t,x,u)| < a(t) + b(|x| -f ||u||) a.e. with a(-) € L^, b > 0,
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H(U): U: T -» Pfc(Y) is an L^-integrably bounded multifunction,

H(C): С: T -» Pj(H) is an L1—integrably bounded multifunction with 

x0 с C(0) П X,

H(L): L:TxHxY-+(R = Ru{+oo} is a proper measurable integrand s.t. 

<£(t) < L(t,x,u) a.e. with ф(-) с L1,

Ha: There exist (x,u) с W(T) x L2(Y) satisfying the constraints of (*) s.t. 

J(x,u) < oo.

Recall that W(T) = {x(-) € L2(X): x(-) с L2(X*)}. We know that 

W(T) с C(T,H) (see for example Lions [4]). To problem (*) we associate 

the following perturbed problem

rb
J(x,u) = L(t,x(t), u(t)) dt -*inf = P(e)

J 0

s.t. x(t) + A (t,x(t)) = f(t,x(t), u(t)) a.e. 
brD

x(0) = Xq, dj^(x(t), C(t)) dt < c, u(t) e U(t) a.e 
J 0

Let V = {m: IR -»IR s.t. m(•) is nondecreasing and lim m (0  
+ + 4 0

- m(0) = 0}. We will say that (*) is "strongly calm" if and only if there

exists m(•) с V s.t. П т  HCO ~ P(°) > _ m. Note that Clarke [1] defined
4 0  m(£)

"calmness" using m(e) = e.

Using our stronger notion of calmness we can easily check that:

Proposition 2.1: И hypotheses H(A), H(f), H(U), H(C), H(L) and Ha 

hold, Ihen P(-) is right continuous at zero Ш (*) is 

strongly calm.

So strong calmness is equivalent to well-posedness.

rb
Let m(*) (V  and set K(m) = inf{J(x,u) + m (jQ dH(x(t), C(t)) dt)

s.t. x(t) + A(t,x(t)) = f(t,x(t), u(t)) a.e., x(0) = xn, u(t) e U(t) a.e.}. We 

have:

Proposition 2.2: И hypotheses H(A), H(f), H(U), H(C), H(L) and Ha 

hold, then P(-) is right continuous iff there exists 

mcV s.t. P(0) = K(m) iff (*) is strongly calm.
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Also to problem (*) we can associate the following penalized version, 

in which we perturb the cost criterion instead of the constraints.

J (xiu) + 7 J dH(x(t), C(t)) dt -4 inf = Q(e) -

s.t. x (t) + A ( t ,x ( t ) )=  f(t,x(t), u (t)) a.e. (*)'(

x(0) = Xq, u(t) с U(t) a.e.

Observe that for e = 0, (*)^ reduces to (*) and so Q(0) = P(0).

The next proposition tells us that the previous analysis is also valid for the 

above "penalized" problem.

Proposition 2.3: И hypotheses H(A), H(f), H(U), H(C), H(L) and H
Cl

hold, then Q(-) is right continuous at zero iff P(-) is.

3. Relaxabilitv and strong calmness.

In this section we will show that well-posedness in the sense of right 

continuity of P( •) at zero and thus strong calmness of the original problem 

is equivalent to the "relaxability" of the system. To this end we introduce 

the following relaxed system:

J (x,A) = [Ь [ L (t,x (t), z) A(t) (dz) dt ч inf = P (0)1
r J 0 J y  r

s.t. x ( t) + A (t,x(t)) = f f(t ,x (t) , z) A(t)(dz) a.e. 

x(0) = xQ, A(-) < S£Y x(t) f C(t)

where E(t) = {A e M_|_(Y): A(U(t)) = 1}, with m |(Y) being the

space of probability measures on M^(Y). We will say that (*) is 

"relaxable" Ш P(0) = Pf(0).

We will need the following stronger hypotheses on the data 

H(f)1: f: T x H x У ч H is a map s.t. (1) t -»f(t^c,u) is measurable,

(2) (x,u) -» f(t,x,u) is sequentially continuous from H x into 

Hw. (3) |f(t,x,u) — f(t,y,u) I <kM(t) |x-y| a.e. for all ||u|| < M with

км (-) с and (4) |f(t,x,u)| < a(t) + b(t) (|x| + ||u||) a.e. with

a(-), b(-) с

H(U)j : U: T -• Pjc(Y) is a measurable multifunction s.t. U(t) С W a.e. 

with W <P wkc(Y)‘

(*)r
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H(L)1: L:T*HxY-+R is an integrand s.t. (1) (t,x,u) -» L(t,x,u) is

measurable, (2) (x,u) -» L(t,x,u) is continuous from X * \V into IR,
w

where Ww denotes the set W with its relative w-topology, and

(3) for every В с  H compact, t -»inf [L(t,x,u): x с В, u e W], belongs

in L1.

With a weaker hypothesis on L (namely joint measurability, lower

. - . fb 
semicontinuity on H * W and for each В с H compact — oo < inf

w Jo
[L(t,x,u): xtB, ueW] dt, we can show that (x,A) -» Jr(x,A) is l.s.c. on

CB x (L°°(T, M(Ww)), w*), where СB - {x(.) с C(T, X J :  x(t) 6 B, tcT} 

and M(W ) is the space of Radon measures on W . Using this fact, we
w W

can prove the following theorem relating well-posedness and relaxability.

Theorem 3.1: И hypotheses H(A), H(f)p H(U)p H(C), H(L)j and Ha 

hold, then P(-) is right continuous iff (*) is relaxable.

So combining theorem 3.1 with the results of section 2, we get the 

following complete characterization of relaxability:

Theorem 3.2: И hypotheses H(A), H(f)1, H(U)1, H(C), H(L)1 and Ha 

hold, then the following statements are equivalent:

(1) problem (*) is relaxable, (2) P(«) is right continuous at 

zero, (3) Q(-) is right continuous at zero, (4) problem (*) is 

strongly calm.

The proofs of these results are based on some density results 

concerning the trajectories of the controlled evolution equations proved by 

the author in [5] and [6].

4- An alternative form of the relaxed problem.

Let p: T * H x X -*IR = Ru{+®} be defined by p(t,x,v)

= inf{L(t,x,u): v + A(t,x) = f(t,x,u), u с U(t)}, with inf 0 = + oo. So

p(t,x,v) represents the minimum cost of producing velocity v at time t

using admissible controls and given that the state of the system is x. Using

P( * > * > •) we can have the following control free formulation of the relaxed 

problem:
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>г(х) = J o P (t.x(t), x(t)) dt 4 inf = Pr(0)

s.t. x(t) + A(t,x(t)) t con? F(t,x(t)) a.e.

x(0) = xQ, u(t) с U(t) a.e., x(t) с C(t) ,

with F(t,x) = U{f(t,x,u): u t U(t)} and p ( v r )  is the second 

convex conjugate of p(t,-,*). The next theorem tells us that problems (*)

and (*) have the same value.

Theorem 4.1: If hypotheses H(A), H(f), H(U)p  H(C), H(L)X and H&

hold, then Pr(0) = Pr(0).

The proof of this result is rather involved and is based on properties of 

Radon measures, of measurable multifunctions and of the convex conjugates.

Also an interesting byproduct of the proof is that (*) and (*)r have 

equivalent dynamics, hence the same trajectory sets. Furthermore from

theorem 4.1 we deduce that system (*) is relaxable iff P(0) = Pr(0).

5. A density result.

The problem of whether the original trajectories are dense in the 

relaxed ones, can not be answered using the results of [5] because of the 

presence of state constraints. In fact it is a nontrivial problem and in this 

section we present a solution to it.

We need the following lemmata, which are also interesting in their 

own as general results about multifunctions and convex sets.

Lemma I: If Z is a Banach space, С: T -* Pfc(Z) is a Hausdorff continuous 

multifunction with bounded values and for all UT int C(t) Ф 0, 

then the set of continuous selectors of C, denoted by CS(C), is 

nonempty and int CS(C) = CS(int C).

The first conclusion of the lemma follows from Michael's selection 

theorem, while the proof of the second conclusion is based on the fact that 

t -» bd C(t) is Hausdorff continuous too (see DeBlasi—Pianigiani [2]).
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Lemma II: If Z is a Banach space, А, В с Z are nonempty, X  is

convex, В is closed convex with int В i  0 and А П int В Ф 0,

then AnB = TfriB.

The proof of this lemma is based on some simple convex analytic 

arguments.

Now we are ready for the density result in the presence of state 

constraints. We were able to prove it for systems with linear dynamics

x(t) + A(t) x(t) = B(t) u(t) a.e., x(0) = xQ, u e = {integrable selectors 

of U(*)}. We will need the following hypotheses:

H(A)1: A: T x X -» X is a map s.t. (1) A(t)(-) is linear, monotone,

(2) ||A(t)x||* < k(t) ||x|| a.e. with k(-) с (i.e. A(t)(-) e

S(X, X*)), (3) <A(t) x, x> > cx ||x||2 Cj > 0, (4) ||A(t')x - A(t) x||,

< m|t'-t| ||x|| m > 0.

Н[В): В « L2(T, ^ (Y , X*)), H(U)2: U(-) is L2-integrabiy bounded,

ЩС)у С: T н Pjc(H) is h-continuous.

From Tanabe [7] (section 5.4) we know that under H(A)1 {A(t)}t£rp 

generates a strongly continuous evolution operator $(t,s) e ^(H )

0 < s < t < b and a trajectory x( •) t W(T) can be written as 

ft
x(t) = *(t,0) xQ + *(t,s) B(s) u(s) ds, tcT. We will assume the following 

about Ф(-,*):

Hc: $(t,s) is compact for t - s > 0.

Let S(xq) be the set of trajectories of the original problem and 

Sf(xQ) the set of the relaxed ones.

Theorem 5.1: И hypotheses H(A)r  H(f)r  H(U)r  H(C)r  Hc hold and 

there exists x(*) с S(xQ) s.t. x(t) с int C(t) tcT, then

Sr(x0) = S(x q ), the closure in C(T,H).
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The proof is based on the two lemmata above and the unconstrained 

density results proved in [5].

Our work extends to distributed parameter systems those of 

Dontchev-Morduhovic [3] and Zolezzi [8].
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GENERALIZED SPECTRUM FOR THE DIMENSION:

THE APPROACH BASED ON CARATHEODORY’S CONSTRUCTION

Ya. B. Pesin*

ABSTRACT

We use a generalization of the classical Caratheodory’s construction 

for introduction and study of the general spectrum for the dimensions.

It is a one-parameter family of characteristics of a- dimension type 

which is widely used at present in various physical investigations.

We show in the two-dimensional case that the generalized spectrum 

calculated to a measure which is invariant under a smooth dynamical 

system and has non-zero Lyapunov exponents does not depend on the 

parameter and is equal to the Hausdorff dimension of the measure.

1. Introduction.

There is a deep connection between the complexity of topological structure of the invariant set 

and dynamical properties of a system acting on it. It generates a relation between a dimension of 

the invariant set and characteristics of dynamics such as entropy and Lyapunov exponents. In the 

investigation of such a kind not only the classical Hausdorff dimension but many other quantities 

are used. They have many other features in common with the general notion of dimension and 

therefore are called dimensionlike characteristics. On the other hand, it is much easier to calculate 

many of them by means of a computer. That is why they are widely used in physical investigations. 

In [4], a general approach for introduction of many different dimensionlike characteristics was 

given based on the classical Caratheodory construction; various general properties were studied 

and formulae for calculating some of them were obtained.

Recently a new type of dimension was introduced in [7] (cf. also [1], [2], [8]) and became 

very popular with physicists. It is a one-parameter family of quantities called the generalized 

spectrum for the dimensions. Leaving in the frameworks of a general Caratheodory approach we 

will give two different definitions of the generalized spectrum. According to them we will introduce 

two different families of dimensionlike characteristics which can be used with equal success in 

physical applications. In these two cases we will obtain formulae for the calculation of the of 

the generalized spectrum for two-dimensional diffeomorphisms preserving a measure with non-zero 

Lyapunov exponents: namely we will show that the generalized spectrum of the measure does 

not depend on the parameter and is equal to the Hausdorff dimension of the measure. It is in 

accordance with the conjecture formulated in [1],[2].

Research supported by GNFM-CNR, with the contribution of Ministero Pubbiic* Istruzione.
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2. A General Construction of Dimensionlike Characteristics.

We describe, with some modifications, the general approach for introducing dimensionlike char

acteristics given in [4].

Let X  be a set, F  be a collection of subsets in X. Assume that there are three functions 

tj, ф, ф : F  —* R+ satisfying the following conditions:

AI. 0 € / ^ ( 0 )  =  0;

A2. there exists 6 > 0 such that < 1 for any U 6 F with ty{U) < 6\

A3, for any Z С X  and t > 0 there exists a finite or countable collection G С F which covers Z 

(i.e., Ut/6C U D Z )  with 1>(G) d=  sup{tf(tf) : U € G} < c.

For a real a , we set

M (c ,Z , ' ) =  mf. |  J 2  W W r

where the infimum is taken over all finite or countable collections G С F with rp(G) < с which 

cover Z. It is easy to see that M(a, Z,c) does not decrease when e tends to 0. Therefore the limit 

exists

me(or, Z) =  lim M (a, Z ,«).

One can show (cf. [4]) that the function mc(a, •) is an upper measure on X  which is called the cr

upper Caratheodory measure on X. Further, the function me(-, Z) (for a fixed Z) has the following 

property: there exists a change-over value crc such that mc(a,Z) =  oo for a < ae and me(a, Z) = 0 

for a > ac. The value orc is called the Caratheodory dimension of Z and is denoted by dime Z. It 

evidently depends on F, q, ф, tp.

We set

m a , z , c) =  inf

acr Vita

where the infimum is taken over all finite or countable collections G С F  covering Z  with ip(U) =  с 

for all U 6 G. Let

r '(a ,Z )  =  l im in f^ a .Z .c ) , г“(a ,Z ) =  limsup R(a, Z,e).
*—o r—.0

These functions have the following property: there exist change-over values alc, such that 

r[-u(a, Z) =  oo for a < a^u,r'-u(a, Z) =  0 for a > oJ*u. The values o^‘u are called the lower and 

the upper Caratheodory capacities of Z  and are denoted by Cap*,u Z.

Let ц be a Borel measure on X. Following [4] we set

dime ц =  inf{dim<: Z : Z  С X,fi(Z) =  1},

C ap^  Ai =  linnnf{Cap'-u Z : Z С X ,^ Z )  >  1 - 6).
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These quantities are called respectively the measure Caratheodory dimension and the lower and 

upper measure Caratheodory capacities.

For a fixed x € X  we set

,, . v . e a\np{U)
d' u e(x) = hm inf --- 7 7 7 T---^ —77777.

> , _ 0 In rj(U) -f a  In ф(и)

/ ч  a\np(U)
<„,„(*) = l.msup

where the infinum and supremum are taken over all U Э x for which ф(1/) < c. The quantities 

e(x) are called respectively the а -lower and or-upper pointwise Caratheodory dimension of 

measure p. at point x. It is worthwhile to emphasize that in general they depend on a.

We formulate some properties of the dimensionlike characteristics introduced above. The proofs 

can be found in [4].

Proposition  1.

1) dime в =  Cap'e 0 =  Cap* 0 =  0;

2) dim* Z\ <  dime Сар^,и Z\ < Сар^,и Zi if Z\ С Zi С X ;

3) dimc (U ,>0 Zij =  sup^o dim* Zi,

c»p«“ ( u  ^ su? Cap*“ Zi> Zi c x<»> 0

4) dim< % <  Capg Z <  Cap“ Z;

5) if p is a Borel measure on X  then

dimc p <  Cap^ p < Cap“ p.

We consider the problem of coinciding the quantities dimeM, Cap“ The first result in this 

direction was obtained for the so-called classical dimensionlike characteristics in [6]. The general 

case was studied if [4]. We formulate the additional conditions on p which are close to ones given 

in [4].

Proposition  2. Let p be a Borel measure on X  with the following properties

1) for ц-almost every x € X

< ,..(* ) = = <*<.(*);

2) there exists 0 ф 0 such that dp(x) =  (3 for p.-almost evry x E X;

3) tJhere exists 0o > 0 such that for p-almost every x € X the function dQ(x) is twice differentiable 

over а  € \p — Po, P + Po] &nd
d Г < 1  i f p >  0, 

if 0 < O',
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4) for p-almost every x G X  there exists a number e(x) > 0 such that

n(U)<t>(U)° < 1

for any U £ F for which U Эх and ф(СГ) < c(x);

S) f°r апУ Z m(Z) > 0, A > 1, t > 0 there exists t\ > 0 such that for any 0 < с < ex there is 

G С  F satisfying the following properties: G covers Z, ф(У) < с for any U € G and

E  "(у)л ^ i- (i)
ueG

Then dime ц - Capj. p = Cap“ p =  0.

P r o o f :  The proof follows closely the arguments given in [4]. First we will show that dim* p  > 0. 

Let Л be the set of points x € X  for which conditions 1,2, 3, 4 hold and let Z  С A be a set with 

fi(Z) =  1 . For given 0o > 7 > 0, p > 0 we set ZPtl to be the set of x € Z such that: 1) p < e(x); 

2)ln/i(tf)/(ln i7(t/) + ( /? - 7 )ln*(C/)) > 1 for any U € F, U Э x, 0(C/) < p\ 3) &dQ(x) < 1 if

0 > 0 and £ d a(x) > 1 if 0 < 0 for all a e [0 - 7>0 + 7]; 4) ii(U)<f>(U)a < 1 for a € [0 - 7 ,0 + 7]- 

It is obvious that ZPl>7l С ZP3t̂  if p\ > ps, 7i > 72- It follows from condition 2 that

U
P>0,7>0

Therefore there exist p0 > 0, 70 > 0 such that p{ZPil) > 1/2 for any 0 < p < p0l 0 < 7 < 70. Fix

0 < P < Po, 0 < 7 <  70, x 6 Zpn and take U 6 F such that U Э х , ip(U) < c. We have from the 

definition of the set ZPi7 and condition 3 that

n(U) < vLUW'f-'. (2)

Let now G С F cover FPil and i>{G) < e. We have from (2) that

Y , > £  »*(*o * ^ i
U€G t/€<?

It follows from this that M{0 - 7 ,ZPtl,e) > ±. This implies that m{0 - 7 ,ZP>y) > A, hence 

dimc ZPi7 > 0  — 1 . Therefore,

dime Z > dime ZPil > 0 - 1 .

As Z is an arbitrary set of full measure it follows that dim«p > 0 - 7 . This implies the desired 

result because 7 can be taken arbitrarily small.

Now we will show that Cap? p < 0. For given 0O > 7 > 0, p > 0, we set Zp>1 to be the set of 

x € Z such that: 1) p < e(x); 2) In p(l/)/(ln rj(U) + $ £  In *(£/)) > 1 for any U £ F, if Э x,
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*(V) < P\ 3) £ d a(x) < 1 if 0 > 0 and £ d a(x) > 1 if 0 < 0 for all a € \0 - y,0  + t]; 4) 

n(U)<t>(U)a < 1 for a e [0 - 1,0 + 1 ]- It is obvious that ZPitll С ^ Pjl7a if p\ > Pi, 7 i > 72- It 

follows from condition 2 that Ц»>о,-у>о Therefore, for given 6 > 0 there exist p0 > 0,

7o > 0 such that n(Zprt) > 1 — 6 for any 0 < p < p0t 0 < 7 < 70. Fix 0 < p < po, 0 < 7 < 70,

1  € Zprt and let U 6 F be a set such that U Эх, =  We have from condition 3 that

n iu w u y * *  < H(U)* (3)

where Л =  (0+2y)(0 + y) <  1. Choose an arbitrary t > 0 and takeco in accordance with condition 

4. Then for 0 < с < c0 we take G С F covering Zp>y and such that ф{11) =  с for any U € G and 

G satisfying ( 1). It follows from (1) and (3) that

E  п (и ) Ф ( и ) ^  < £  n(U)x < t.

l/GC UeG

We have from this that R(0 + 2y, Zpnc) < t. This implies that r“(/? + 2y,Zp>y) < t. As i is 

arbitrarily small, we have that Cap" Z „  < 0  + 2y. Taking into consideration that n{ZPtl) >1-6  

for arbitrarily small 6 and 7 is also arbitrarily small we have Cap“ p <  0. The proposition is 

proved.

As in [4] and [6] we introduce the so-called classical dimensionlike characteristics setting: F is 

the collection of open balls in X, tj(U) =  1, =  ^(U) = diam U, U e F. The Caratheodory 

dimension and the lower and upper Caratheodory capacities of a set Z coincide respectively with the 

Hausdorff dimension and the lower and upper capacities of Z. We denote them by dim# Z, CI,U(Z).

If /1 is a Borel measure on X  then the Caratheodory dimensionlike characteristics of /j introduced 

above are the measure Hausdorff dimension, dim# A*, the lower and upper measure capacities 

С ,,и{р)> the lower and upper pointwise dimensions efyu(x). It is easy to see that

<(z) = liminf' ^ (f (r ,t)), Щ х )  =  limsup
«-0  Inc c_o Inc

The following result is a direct consequence of Proposition 2 (cf. also [6]).

P roposition  3. Assume that for almost every x G X

= д а  d= d-

Then dim# I* — — C M(/i) =  d.

We also formulate the result belonging to L.-S. Young which allows us to calculate the classical 

dimensionlike characteristics of a measure in the two-dimensional case.

Let M  be a two-dimensional smooth compact Riemann manifold, f  : M — M  a C 2-diffeomorphism 

preserving an ergodic Borel probability measure. Denote by xi» xjt the Lyapunov characteristic 

exponents of ц and assume that x j >  0 >  x j (cf. [4], [6]).
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4(*) = W  = M / ) (4 - 4 r )  =<*
\лр лр/

where Л*,(/) is the metric entropy of f. In particular,

dimH I* = C 'M  = C“№  = d.

3. Definitions of the Generalized Spectrum for the Dimension.

The generalized spectrum for the dimensions was originally introduced in [7] (cf. also [2], [8]). 

Another approach was given in [l] for the case of expanding maps. We give two versions of the 

definition of the generalized spectrum using the procedure described in the previous section.

1. Let X  be a compact metric space, ц a Borel measure on X, F a collection of open balls. We 

set for a fixed real q

17(£/) =  v{Uy, 4>{U) =  1>(U) =  diam U.

It is easy to verify that they satisfy conditions A1-A3. Thus the dimensionlike characteristics 

constructed by them are defined (they depend on q and t/). For q =  0 they are the classical 

dimensionlike characteristics. One can show that they are equal to zero if q =  1. Therefore, we 

will assume that q ^  1 and will use the following notations and names:

dim^,,, Z =  — dim^ Z— the generalized dimension of 

order q of Z\

Cev(^) =  T~— CaPe’U Z-the generalized lower and upper1 — q

capacities of order q of z; 

dim*,,, ц =  — dime ц- the generalized dimension of 

order q of /i;

£>’“ (/*) =  —~— CapJ.,u ^-the generalized lower and upper
1 -q

capacities of order q of ц]

4 ',“ .<i.a(x) =  Y ^ 4 ^ .e (* )- the generalized lower and upper 

pointwise dimension of order q 

of ц at point x.

The families of characteristics dim^,,, Z, dim*,* ц are called the generalized spectra for the dimen

sions of a set Z or of a measure /i. Usually the case и =  fi or v is equivalent to ц is considered. It

P r o p o s i t io n  4. For ц-almost every x e  M
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follows from what was said above that the value (1 - g )d im ,it, Z is the change-over point for the 

or-upper Caratheodory measure

me(a,Z,q) =  lim inf | ^ i/ (C /1), (diaml7I)cr : [ jU i D Z , diamtf,- < e j  .

Theorem 1. Assume that

1) v is equivalent to ц and c“ l < dn(x)/dv(x) < с where с > 0 is a constant;

2) d'M(x) =  d£(x) d= d for ii-almost every x 6 X.

Then for fi-almost every x € X

where 0 = d( 1 - qr).

PROOF: It is easy to verify that

=  d (4)

(5)

It directly implies the desired result.

Now we formulate a result which allows us to calculate the generalized spectrum.

Theorem 2. In addition to the conditions of Theorem 1 , assume that X  is & compact smooth 

Riemannian finite dimensional manifold or a compact subset in a finite dimensional Euclidean 

space and ц is a continuous non-atomic measure. Then for all q

dinY„ ц =  C| „(p) =  =  d — dim# ц.

P roof: It is easy to see that the assumptions about X  and ц imply the condition 4 of Proposition

4. It follows from (4), (5) that for ^-almost every x £ X  the function da(x) is twice differentiable 

and

= 9
a=p

(recall that 0 = d( 1 — g)). This implies condition 2 of Proposition 2 for all q. Condition 1 of this 

proposition follows directly from (4). Further we have from condition 1 of Theorem 1 that for 

#i-almost every x G X  and small enough s

C-^diam  U)d-  < fi(U) < C(diam £/)*+'

where U is a ball of a small enough radius (depending on x), С  > 0 is a constant independent of 

• This implies Condition 3 of Proposition 2 because qd + tf( 1 — g) =  d >  0 uniformly over x 

and U. Now the desired result follows from Proposition 2.
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It follows from Theorems 1 and 2 that for //-almost every x £ X  there exist limits lim?_ i  ^ 0(x)

dimensional manifold preserving an ergodic non-atomic continuous Borel probability measure p 

with non-zero Lyapunov characteristic exponents xj, > 0 > \2p. The next result follows form 

Proposition 4 and Theorem 2.

Theorem 3. For aII q

ergodic continuous Borel probability measure p with non-zero Lyapunov characteristic exponents 

x i, x l . x i > 0 > xl- Denote by .

Bn(x,6) =  {у € M  : p(/*(x),/*(y)) < 6 for 

ib = -m(n),-m (n) + 1 ,... ,n}

where p is the distance in Af induced by the Riemannian metrics and

(ent(a) is the greatest integer of a). One can show (cf [5]) that there exist a set Л and functions 

k(x) > 0, 6(x) >  0 such that

for any г e Л, n >  0, 0 < i  < 6(x). We set Л* =  {x £  A : k(x) < t,6(x) > t~1}- It is easy to 

see that Л| С Л|+ь Л = U t> iA‘- Denote by kt =  supx€A| *(x), St =  infr€A( ^(x). Fix t > 1, 

0 <  6 < 6t and choose F as the collection of sets Bn(x, S) over all x £  Alt n >  0. For a fixed real 

q we set

It follows from (6) that the functions tj, ф, ф satisfy conditions A1-A3. In fact, one can show that 

for any г  С Л«, M  there exists a finite cover of Z  by sets S n(x,6). Thus the dimensionlike 

characteristics constructed by these three functions are defined (they depend on q,t,6)- One

— d (P — d(l — q)), lim^_i dim<t„ p — d. The value dim\<vp is equal to the information dimension 

of p and dim2,v P is equal to the correlation dimension of p (cf. [7]).

Consider the case when /  is a C^-difTeomorphism of a smooth compact Riemannian two-

We describe another approach to the definition of the generalized spectrum in the case where /  is 

a C 2-diffeomorphism of a smooth compact two-dimensional Riemannian manifold M preserving an

p(Bn(x,6) )<k(x )6 (6)

!7( £ „ ( x ,£ ) )  =  p(Bn(x, 6))*, ф(Вп(х,6)) = diamBn(x,<5), 

0(B„(*,«)) = i .
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can show that they are equal to 0 if q =  1. Therefore we will assume that q ф I. We use 

the notations d im ,,*  Z — dime Z  for the generalized dimension of order q of Z С А» and 

=  fr jC ap£ ,u Z for the generalized lower and upper capacities of order q of Z С Лс. It 

follows from what was said above that the value (1 - q) dim ,,((* Z  is the change-over point for the 

а -upper Caratheodory measure

mc(ot,Z}q) = l ir m n f| ^  6))?(diam Sn(z,, 6))° :

»

U  Bn(xit6) D z , Xi e\ i , n>  w } .
I

Further, for arbitrary Z С Л, we set

dim- Z =  sup limsupdim, t s Z П Л,, 
e>i *-o

C',U(Z) =  sup lim sup dim, t s Z П A,. 
l>\ 6-~0

and we will use the above names for these values. Now we can introduce, as above, the generalized 

dimension of order q of /4 — dim, ц\ the generalized lower and upper capacities of order q of 

и(^); the generalized lower and upper pointwise dimension of order q of p at point z—d^ ix ). 

The families of characteristic dim, Z , dim, ц are called the generalized spectra for the dimensions of 

a set Z or of a measure ц. We formulate the result which allows us to calculate these dimensionlike 

characteristics.

Theorem 4. 1) For a11 q and ц-almost every x £ M

where 0 =  d(l - q):

2) For all q

dim, ц =  Cj(/x) = C,u(/i) = d =  dim* \x.

P roo f: Fix < > 1 such that /j(A{) > 0 and 6,0 < 6 < 6t. It follows from [5] and relation (6) that 

for arbitrary a > 0 there exists C\ =  C/(a) for which

(C,1) " 1 exp(-(*J - a)n)6 < diamBn(x,6)

<  C/expf-CxJ + a)n)£ ( ')

for x € A,, n > 0. In particular, this implies Condition 4 of Proposition 2. Using the result in 

[3] we have that for any 6 > 0, с >  0 there exist a set A, С At and a number 6} <  6t having the 

following properties:
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1) л(Л\Л,)<6;

2) for /i-almost every z 6 At and any 6,0 < 6 < 6}

exp((- *„(/) "  <0(" + ™(” ))) < fi(Bn(x,6)) 

< С ,2ехр((-Лй(/)+ с)(п  + т(п))) (8)

where C{2 > 0 is a constant independent of z and n. It follows from (7), (8) that for /i-almost 

every x e At and real о  and q

(C?)-‘(o + 6)< <•■.(*) - «МЛ (?a„ ( / )+ » 4 ^ t )
\ XfA XflJ

< Cf(a + 6).

As a, 6 can be taken arbitrarily small and * is arbitrarily large we have from the above that for 

/i-almost every z 6 A

< “.(*) = «М Я («МЛ + « ^ 4 ) •\ X.fi Хц J

This implies Condition I and also the fact that the function da(x) is twice-differentiable and 

£ d a(z) = q. Conditions 1 and 2 of Proposition 2 follow from this. In order to prove Condition

3 of Proposition 2, we notice that (7), (8) imply, for /«-almost every z € At (with large enough 

t) and 6 < n > 0, that

eXp(-(l -  ^)n).
Xfi

This implies the desired result.
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Caratheodory’s fundamental 
contribution to measure theory

Jean-Paul Pier

Abstract. At the beginning of this century, Lebesgue formalized the 
modem theory of integration. His work was completed via the 
incorporation of the Stieltjes integral, mainly realized by Riesz. These 
results were extended to very general situations by Radon and Frechet.

Caratheodory's monograph Vorlesungen iiber reelle Funktionen 
constituted the first complete account on integration theory and has 
remained a classic during a long period. In this treatise, for the first 
time, the integral is superseded by the notion of measure. Both points of 
view, essentially equivalent and equally important, have been adopted. 
Whereas Young and Daniell concentrated on integrals, Caratheodory 
attributed the precedence to measures. The influence of Caratheodory's 
achievements may be traced in later developments of abstract measure 
theory.

1 INTEGRATION THEORY AT THE BEGINNING OF THE 
CENTURY

Following the outstanding accomplishments of Cauchy and Riemann, the 

long history of integration theory underwent a new revolution at the 

beginning of the 20th century.

Up to 1900, the integral has been viewed as a limit of Riemannian 

sums, a concept that originated with Archimedes. This integral lacks two 

major traditional properties : The derivative of a function over an 

interval is not necessarily integrable; the passage to the limit behind the

1120



1121

integration symbol is not always possible. That situation changed when 

Lebesgue succeeded in defining the integral for a larger class of functions.

Lebesgue’s ideas relied on the notion of measure introduced by Borei 

in 1898 [2]. For a bounded open subset of the reals which is a finite or a 

countable union of pairwise disjoint intervals Borel defined the measure 

to be the sum of the lengths of these intervals. He thus approximated 

these subsets from inside whereas so far they had been included in a finite 

union of intervals. Borel then considered the subsets generated by 

bounded open subsets via the operations of countable unions or 

differences of subsets. The measure of such a Borel set was defined by 

complete additivity : The measure of a countable union of pairwise 

disjoint Borel sets is the sum of the measures of these sets. Borel 

observed that a subset of measure zero may be uncountable, but every 

countable set admits measure zero. He wrote :

"Les ensembles dont on peut d6finir la mesure en vertu des 

definitions precedentes seront dits par nous ensembles mesurables, sans 

que nous entendions impliquer par Ih qu'il n'est pas possible de donner 

une definition de la mesure d'autres ensembles; mais une telle definition 

nous serait inutile; elle pourrait meme nous gener, si elle ne laissait pas a 

la mesure les proprietes fondamentales que nous lui avons attribuees dans 

les definitions que nous avons donnees" ([2] p. 48).

Borel's demonstrations were not written out explicitely. In his thesis 

[24] Lebesgue filled in all details and introduced a new concept of utmost 

importance. Every Borel set was called measurable (В). The union of 

such a set В and a subset N of a Borel set with measure 0 was termed 

measurable (/); the measure of BuN  was taken equal to that of B. Later 

Borel stressed that in 1894 he had considered for the first time implicitely 

a set of measure zero [3].

Lebesgue formulated the measure problem in a finite-dimensional 

space:

"Nous nous proposons d'attacher a chaque ensemble borne sa mesure 

satisfaisant aux conditions suivantes :

1°. П existe des ensembles dont la mesure n'est pas nulle.

2°. Deux ensembles 6gaux [i.e., en depla5ant Tun d'eux, on peut les 

amener h. comcider] ont meme mesure.
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3°. La mesure de la somme d'un nombre fini ou d'une infinite

denombrable d'ensembles, sans points communs, deux a deux, est la

somme des mesures de ces ensembles.

Nous ne resoudrons ce probleme de la mesure que pour les

ensembles que nous appellerons mesurables" ([24] p. 235-236).

In 1904, in his famous book Legons sur Vintegration et la recherche

des fonctions primitives [25], Lebesgue was primarily interested in the

determination of an invariant integral. He wanted his integral on real-

valued bounded functions to satisfy the following conditions :
b b+h

(1) For all a,b,h one has jf(x)dx = j f(x-h)dx\

a a+h

(2) for all a,b,c one has jf(x)dx + j f(x)dx + j f(x)dx = 0;

a b с

(3) JIf(x) + (p(x)]dx = j f(x)dx + \(p(x)dx\ 

a a a
jy

(4) i f />  0 and b > a, then jf(x)dx > 0;

a

(5) h d x = l ;

(6) if /лС*:) converges increasingly to /(*), then ^fn(x)dx converges

a

to j f(x)dx. 

a

Observing that it suffices to consider characteristic functions, 

Lebesgue described the problem as the association to any bounded subset 

E of the real line of a number m{E) > 0, called measure of E , which 

satisfies the following conditions :

(Г) Two subsets coinciding via a translation admit the same 

measures;

(2') the measure of a finite or countable union of pairwise disjoint 

subsets is the sum of the measures of these subsets;

(31) the measure of [0,1] has value 1.
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In this formulation (3‘) replaces (5), (2') stems from (3) and (6), (Г) 

is (1). If a < b, the measure of [a,b] is b - a.

An arbitrary subset E is contained in a finite or countable union of 

intervals; the set constituted by the sums of the lengths of these intervals 

admits a greatest lower bound called outer measure m e(E) of E. 

Moreover, A being an interval covering E ym(A) - me(A\E) is the inner 

measure m ,(£) of E. In case m ,(£) = me(E\ the set E is said to be 

measurable and the common value is the measure m(E) of E verifying 

(Г), (2‘), (3'). The Borel sets are Lebesgue measurable; but the new class 

is larger.

In 1905, by means of the axiom of choice, Vitali showed the 

existence of non Lebegue measurable subsets on the reals [33].

Interest focused on the linear functional aspect of the integral. In 

1903, Hadamard [19] proved that every continuous linear functional on 

the space C([0,1]) of continuous functions defined on [0,1] is given by

F(f)= lim f kn(x)flx)dx, 
n—>°° о

0'cn) being a sequence of functions in С([0,1]). Riesz [31] called linear 

functional on С([0,1]) every functional A on this space such that A(fi) 

converges uniformly to A(f) whenever (ft) converges uniformly to /. He 

verified that if a  is a function of bounded variation on [0,1], then the 

mapping / _ >  ^f(x)da(x) constitutes a linear functional. The integral is 

о

interpreted as the limit of sums £/(£<) (afc+i)-tf(*i)) corresponding to 

subdivisions of [0,1] consisting of a finite number of partial intervals 

[*/,*,-+1], Ci being an element of [xiyxi+i]; the passage to the limit signifies 

that the lengths of these intervals converge uniformly to 0. In order to 

establish the converse, Riesz considered a given functional A\ let

F(0(x) = x if 0 < jc < C,

F(0 (jc) = С if £ < * <  1.

The function a  :C •—> A(F(0) admits derivatives that are of bounded 

variation; they give rise to a representation of A.

Dieudonne made this observation :
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"Des 1910, presque tous les theoremes fondamentaux de la theorie 

avaient ete demontres par Lebesgue et ses emules" ([15] p. 270).

We should now quote Bourbaki:

"II est bien clair qu'il ne restait plus qu'un pas a franchir pour

aboutir a la notion generate de mesure que va definir J. Radon en 1912,

englobant dans une meme synthese l'integrale de Lebesgue et l'integrale

de Stieltjes" ([5] p. 120).

Stieltjes [32] had defined on [a,b] a mass distribution, i.e., an

increasing function (p for which the number of points presenting a

discontinuity greater than a given number is finite. The sums

£f(Ci) (<pte+i)-<p(x,)) corresponding to a subdivision a = x  o<x\ < ... < xn
i

= by where e for z=l,...,n, converge to the limit denoted

by b\Rx)d(f>(x). 
a

Exploiting ideas due to Lebesgue, Stieltjes, Riesz, Radon [29] 

generalized the notion of multiple integral associating it to a set function 

fly defined on all bounded Lebesgue measurable subsets and satisfying 

complete additivity. Radon showed that all main theorems of Lebesgue's 

integration theory may be carried over to integrals Jf(x)d/i(jc), I f  dfi 

associated to the Radon measure д.

Shortly later, considering this type of integral J F(P)dh(P)y Frechet 

wrote :

"Cette definition r6sulte d'une sorte de fusion de l’integrale de 

M. Lebesgue et de l’integrale de Stieltjes. La d6finition de M. J. Radon se 

reduit a celle de M. Lebesgue quand h est une fonction lineaire et a celle 

de Stieltjes quand F est une fonction continue.

D'ailleurs, l'integrale de Radon peut aussi s'ecrire

\ F(P)df(e)
E

°й Де) est une fonction additive du sous-ensemble variable e de E.

Or, с est sous cette forme qu'apparait ce qui me semble etre le grand 

avantage de la definition de M. J. Radon, avantage que celui-ci ne parait 

pas avoir remarqu6. M. J. Radon avait pour but de realiser un prog^s
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dans la ТЬёопе des fonctions en unifiant les d6finitions de Stieltjes et de 

M. Lebesgue. Mais, en fait, on remarque que, moyennant quelques 

legeres modifications, la definition et les proprietes de l'integrale de 

M. Radon s'etendent bien au-del& du Calcul integral classique, elles sont 

presque immediatement applicables au domaine infiniment plus vaste du 

calcul fonctionnel.

En d'autres termes, on peut conserver la majeure partie des 

definitions et des raisonnements de M. J. Radon en negligeant l'hypothese 

faite sur la nature de l’argument P й savoir que P est un point de l'espace 

& n dimensions" ([17] p. 248-249).

Frechet developed his theory for an abstract measure that is not 

necessarily associated to Lebesgue measurable subsets. The family of 

subsets he considered must be closed for countable unions and differences 

of subsets; the measure has to satisfy complete additivity.

2 CARATHEODORY'S FIRST RESULTS

Bourbaki gave a description of the situation :

"Avec la memoire de Radon, la th6orie generale de l'int6gration 

pouvait etre consid6^e  comme achev£e dans ses grandes lignes; comme 

acquisitions ult6rieures substantielles, on ne peut guere mentionner que la 

definition du produit infini de mesures, due к Daniell, et celle de 

l'integrale d'une fonction к valeurs dans un espace de Banach, donnee par 

Bochner en 1933, et qui preludait a l'etude plus generale de Г 'integrate 

faible' d6veloppee quelques аппёеБ plus tard par Gelfand, Dunford et 

Pettis. Mais il restait a populariser la nouvelle Лёог1е, et к en faire un 

instrument math6matique d'usage courant, alors que la majorit6 des 

math6maticiens, vers 1910, ne voyait encore dans Г 'integrale de 

Lebesgue' qu'un instrument de haute precision, de maniement delicat, 

destine seulement b. des recherches d'une extreme subtilit6 et d'une 

extreme abstraction. Ce fut \k l'oeuvre de Carath6odory, dans un livre 

longtemps rest6 classique et qui enrichit d'ailleurs la theorie de Radon de 

nombreuses remarques originales.
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Mais c'est avec ce livre aussi que la notion d'integrale ... cede le pas 

pour la premiere fois a celle de mesure, qui avait ete chez Lebesgue 

(comme avant lui chez Jordan) un moyen technique auxiliaire. Ce 

changement de point de vue etait du sans doute, chez Caratheodory, a 

l'excessive importance qu'il semble avoir attachee aux 'mesures p- 

dimensionnelles'. Depuis lors, les auteurs qui ont traite d'integration se 

sont partages entre ces deux points de vue, non sans entrer dans des debats 

qui ont fait couler beaucoup d'encre sinon beaucoup de sang. Les uns ont 

suivi Caratheodory; dans leurs exposes sans cesse plus abstraits et plus 

axiomatises, la mesure, avec tous les raffinements techniques auxquels elle 

se prete, non seulement joue le role dominant, mais encore elle tend a 

perdre contact avec les structures topologiques auxquelles en fait elle est 

liee dans la plupart des problemes ou elle intervient. D'autres exposes 

suivent de plus ou moins pres une methode dej& indiquee en 1911 par 

W.H. Young, dans un memoire malheureusement peu remarque, et 

developpee ensuite par Daniell" ([5] p. 122-123).

The functional approach of Lebesgue's integration theory was 

inaugurated by Young [35]. Starting off from integration of continuous 

functions with compact supports, by limiting processes, he defined upper 

integrals for functions with compact supports that are lower 

semicontinuous and then for arbitrary functions with compact supports. 

Daniell extended this theory to functions defined on an arbitrary set 

explaining his motivations in this way :

"The idea of an integral has been extended by Radon, Young, Riesz 

and others so as to include integration with respect to a function of 

bounded variation. These theories are based on the fundamental 

properties of sets of points in a space of a finite number of dimensions. 

In this paper a theory is developed which is independent of the nature of 

the elements ... It follows that, although many of the proofs given are 

mere translations into other language of methods already classical 

(particularly those due to Young), here and there, where previous proofs 

rested on the theory of sets of points, new methods have been devised" 

([14] p. 279).

In a long communication presented to the Koniglichen Gesellschaft 

der Wissenschaften in Gottingen on October 24, 1914, by Felix Klein,
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Caratheodory submitted his first results on the general measure theory. 

He wrote in the introductory notice of his work :

"Ich habe es ... fur zweckmassig gehalten, meine Darstellung mit 

einer rein formalen Theorie der Messbarkeit zu beginnen. Dabei wird 

eine Definition der Messbarkeit zu Grunde gelegt, die einerseits 

allgemeiner ist, als die gewohnliche, weil sie sich auch auf Punktmengen 

von unendlichem ausseren Masse erstreckt, andererseits aber scheinbar 

viel enger. Diese Definition ist daher viel bequemer als die altere : sie 

erlaubt samtliche in Betracht kommenden Satze ohne tiefliegende 

Kunstgriffe zu beweisen; und sie ist der gewohnlichen Definition 

vollstandig Equivalent..." ([6] p. 404-405).

Caratheodory defined the outer measure by five conditions.

(I) To an arbitrary subset A of the (7-dimensional space R?one 

associates a number fi*(A) e R+ called the outer measure of A. (II) If В

is a subset of A, then /J,*(B) < Ц*(А). (Ill) If A is the union of a finite or 

countable collection of subsets A\Ai>-  ̂ then fi*(A) < ji*(A i) + Д*(Лг) 

+ ...; obviously, the right-hand side has to be convergent. By definition, 

the set A is said to be measurable in case

= fi*(AnW) + ti*(W\(AnW))

whenever W is a set of finite outer measure; ц*(А) is then taken to be the 

measure ji(A) of A. The definition makes sense also if fi*(W) = + «>.

To this new formulation of measurability Caratheodory [12] 

attributed four major advantages : 1) It can be considered for linear 

measures. 2) It makes sense in Lebesgue’s theory even if the outer 

measure is infinite. 3) The proofs of the principal theorems are much 

easier and shorter. 4) The essential advantage is. independence of the 

definition from the notion of inner measure.

Caratheodory [6] established fundamental properties resulting 

directly from these conditions. The complementary subset of a 

measurable subset is measurable. The union and the intersection of a 

finite or countable collection of measurable subsets are measurable. The 

upper and lower limits of a sequence of measurable subsets are 

measurable. The measure of a union of a finite or countable collection of 

pairwise disjoint measurable subsets equals the sum of the measures of 

these subsets. If (An) is an increasing sequence of measurable subsets,
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then / i(u A n) = lim fi(An). If (A„) is a decreasing sequence of measur- 
n n—»oo

able subsets and /л(Ах) < + oo, then /z(n An) = lim }i(An).
П Л—> oo

So far it is not possible to decide whether a given subset is 

measurable or not. In order to insure the existence of measurable subsets, 

Caratheodory introduced a fourth condition.

(IV) If A\yAi are subsets such that inf{d(;t,;y) : x e A\,y e A2} > 0, 

d denoting the distance in R<7, then

M*W iu A 2 )* ai*(A i ) + ^ 2 ) .

Ingenious combinations of all these properties allowed Caratheodory 

to prove that open subsets and closed subsets are measurable. In 

particular, all open intervals in R<7, i.e., all cartesian products of q 

elementary open intervals, are measurable.

The set up is completed by a supplementary condition.

(V) The outer measure Д*(А) of an arbitrary subset A is the lower 

limit of the set of all numbers /x(£), where В is measurable and contains 

A.

Caratheodory could then show that if A is an arbitrary subset and 

/x*(A) < + eo, there exists a measurable subset В such that В => A and fi(B)
- H*(A). By definition, /i*(A) - /л*(В\А) is the inner measure /i*(A) of 

A. The subset A is measurable if and only if fi*(A) = jll*(A).

Carath6odory observed that for arbitrary disjoint subsets A and В 

such that д*(А) < + oo, ц*(В) < + oo and S = AuB,

M S ) < li*(A) + M B ) < n*(S).

In particular, in case S is measurable and fi(S) < + 00,

/i*(A) + Au (£ ) = /x(S), 

hence necessarily /л*(&) = /**(Й); В is measurable and, analogously, A is 

measurable.

Moreover, if (A„) is an increasing sequence of subsets, one has 
/i* (uA „)=  lim jj.*(An).

n n—> 00

This general formalism being established, Caratheodoroy proceeded 

to the study of linear measures.

Consider an arbitrary subset A in R я (q>  1). Let (Un) be any finite 

or countable sequence of subsets with diameters dn, all less than a given
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number p > 0, such that A с  u£/„. The infimum of the sums Z dn for all
n n

such sequences is denoted by Lp(A). Then

L*(A) = lim LP(A) 
p-> 0

defines an outer measure satisfying conditions (I)-(V); it is called the 

linear outer measure. The subsets (Un) may be supposed to be convex or 

open.

Caratheodory verified that if 7 is any curve lacking multiple points, 

its linear measure is the upper limit of the lengths of the inner polygons 

admitting their summits on 7.

Caratheodory stressed other remarkable properties of this particular 

outer measure. If L*(A) < + 00, A is of Lebesgue measure zero. As a 

matter of fact, one may choose Z dn < L*(A) + 1; me denoting the 

ordinary outer Lebesgue measure,

me(A) < Z d\ < ря-i Z dn < p<i-](L*(A)+\).

As p > 0 is arbitrary, me(A) = 0.

Finally, Caratheodory mentioned p-dimensional measures in R?. Let 

Ck be the convex hull of £/*; dt is the least upper bound of the lengths of 

the orthogonal projections of C* on the axes. Considering orthogonal 

projections of C* on /7-dimensional manifolds, one may define a p- 
dimensional diameter dty. These numbers are substituted to the dk s in the

definition of Lp.

Five years later Hausdorff produced an extension of the theory due 

to Caratheodory with whom he had corresponded by letters. He stated : 

"Herr Caratheodory hat eine hervorragend einfache und allgemeine 

die Lebesguesche als Spezialfall enthaltene Masstheorie entwickelt und 

damit insbesondere das p-dimensionale Mass einer Punktmenge im q- 

dimensionalen Raume definiert" ([21] p. 157).

He described a /7-dimensional measure for an arbitrary positive p and 

compared his investigations with Fr£chet's interpolation procedure for 

dimensions. Hausdorffs general outer measure Lp admits the following 

interpretation in cases /?=1,2,... : The subet A is included in a finite or a 

countable union of balls Kn with diameters dn < p;

Lp(A) = lim inf cp Zdpn, 
p-> 0 л
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where cp denotes the volume of the p-dimensional ball of diameter 1.

Cantor had been interested in the classification of continua by 

dimension properties. As a matter of fact, this topic, investigated by 

Caratheodory and Hausdorff, had rapidly been neglected by Cantor; one 

may agree with Hawkins' opinion :

"The reason for this is probably that Cantor soon became completely 

absorbed with the theory of transfinite numbers" ([22] p. 63).

3 CARATHEODORY'S FUNDAMENTAL W O RK

In 1918 Caratheodory published his global treatise entitled Vorlesungen 

uber reelle Funktionen dedicated to his friends Erhard Schmidt and Ernst 

Zermelo. He explained his motivations :

"Die Umwalzung, welche die Theorie der reellen Funktionen durch 

die Untersuchungen von H. Lebesgue erfahren hat, ist ein Prozess, der 

heute in seinen Hauptziigen als abgeschlossen gelten kann. Ein Versuch 

diese Theorie von Grund aus und systematisch aufzubauen scheint mir 

daher notwendig geworden zu sein; dies hat mich bewogen die Vorlesung, 

die ich im Sommersemester 1914 an der Universitat Gottingen gehalten 

habe, auszuarbeiten, und mit manchen Erweiterungen und Zusatzen 

versehen, der Offentlichkeit vorzulegen ...

In einigen ... Lehrbiichem ... erscheint [die Lebesguesche Theorie] 

meistens neben den alteren Integrationstheorien und ist dadurch ihres 

grossten Vorzugs beraubt, der darin besteht, dass sie den kiirzeren und 

bequemeren Weg darstellt, da wo die alte Fahrstrasse oft unnotige 

Umwege macht" ([7] p. V).

The outer measure of the subset A in R<?is defined to be the greatest 

lower bound m*(A) of all finite or countable sums of the volumes of 

intervals covering A. The supremum of the diameters of these intervals 

may be chosen arbitray small. In particular, if A is an interval, m*(A) 

coincides with its volume. The novelty consisted in the interpretation of 

as a set function. The first step concerned the determination of the 

class of all set functions satisfying the fundamental properties of m*.
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A priori, a set function fl* on R?is called measure function 

(Massfunktion) or outer measure if it admits the following properties :

I. For every A с  R<7, /z*(A) e R+; = 0; ji* Ф 0.

П. If В с  A, then fi*(B) < /л* (A).
П1. If (A„) is a finite or countable sequence of subsets, then fi*(u A„)

<Z li* (A n).
tl

IV. If A and В are subsets of positive distance, then ji*(Av B)

- fi*(A) + n*(B).

Another nontrivial example of an outer measure is provided by the 

point measure 8a (at the point a)\ 8a(A) = 1 if a e A, 8a(A) = 0 if a q A . 

For a fixed subset S, an induced outer measure is defined by

v*(A) = n*(AnS)

in case v* Ф 0.

Carath6odory observed that if В is contained in an open subset H and 

A is contained in the closed complement К of Я,

li*(AvB) = fi*(A) + ii*(B)\ 

the situation is a particular case of IV. Putting W = AvB, one has 

A = WnK  = W\(WnH), В = WnH,

= n*(WnH) + ti*(W\(WnH)).

The next рифозе was the realization of the most general formulation for 

the latter equality. Caratheodory established the relation 

H*(W) = jx*(WnH) + fi*(W\(WnH)) 

for an arbitrary subset W and an arbitrary open subset tf , in case
< +00.

The subset A is called measurable for /i* if

//*(И0 = ji*(WnA) + ji*(W\(WnA)) 
whenever < +«>; fi*(A) = ji(A) is termed measure of the

measurable subset A. In particular, for the point measure every subset is 

measurable.

As in his first version, Carath6odory verified the stability properties 

of the class of measurable subsets. He also indicated that if A is a 

measurable subset and В is an arbitrary subset,

V*(AkjB) = ji(A) + ц*(В) - ц*(АпВ).
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Caratheodory noticed that all open, all closed, more generally all Borel 

subsets are measurable; every subset of outer measure zero is measurable.

Generalizing the approximation property of the outer measure of a 

subset by means of the outer measures of open sets, Caratheodory called 

the outer measure /x* regular if for every subset A, A) is the greatest 

lower bound of the numbers д(£), В being measurable and containing A.

If /I* is a regular outer measure, the inner measure /i*(A) of the 

subset A is defined to be the least upper bound of the numbers fi(B) for 

all measurable subsets contained in A. If ju*(A) = fi*(A) < +<*>, the subset 

A is measurable.

For an increasing sequence (A„),

M*(limA„) = lim jU*(A„);
n n

for a decreasing sequence,

/z*(lim A„) = lim fi*(An)
n n

if this number is finite.

Measurable functions had been introduced by Lebesgue. 

Caratheodory also operated the transfer of measurability properties to 

real-valued functions. If (an) is a dense sequence of the real axis and (Ал) 

is a sequence of subsets in E , does there exist a function / : E —> R such 

that

{xe E : a n < f(x )}cA n<z{xe E : an<f(x)} 

whenever n e IN* ? If £  and all the sets An are measurable, such a 

function /  is called measurable function. The fundamental properties of 

measurable subsets imply that if / is  a measurable function and a e  R, the 

sets {xe E : a  </(*)}, {x e E : a  <f(x)},{x e E : a  > /(*)},{* e E : a  

>/(*)} are measurable, and so are {x e E :f(x) = -<»}, {x e E : f(x) 
= +«?}.

The existence of measurable functions is insured by the theorem 

stating that any semicontinuous function on an everywhere dense 

measurable subset is measurable. Caratheodory proved the existence of 

nonmeasurable functions. Let A be a nonmeasurable subset of R and let 

f(x) = x if x e A , fix) = -x if х q A . For every a  e R , {x e R : f(x)
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= а } is measurable; but {x e R :/(x) > 0} = (An Rif) u  ([AnR?) is 

nonmeasurable.

Caratheodory verified that if /  is a measurable function, so is I/I. If

/ь /2 are measurable functions,/ 1+/2, /1/2, and also-̂ - in case/2 *  0, are
/2

measurable functions. If (fn) is a sequence of measurable functions, sup/„ 

and inf/„ are measurable.

The notion of functions coinciding almost everywhere was studied by 

Caratheodory; he called two functions equivalent if they differ on a subset 

of measure zero at most.

Caratheodory gave the interpretation of a definite integral in his 

theory. Let £  be a measurable subset of R" and consider a function/: E 

-> R+. If o0 e R*+1 : P = (*ь...,*л) 6 £ , 0 < у <f(P)} is

measurable in Кл+1 and of finite measure, the latter is denoted by

!f(P)dw;
E

the function is said to be summable. Caratheodory established the 

measurability of any summable function. He then extended the definition 

of summability to real-valued functions; he verified the additivity and 

homogeneity of the definite integral.

Caratheodory established the fundamental properties of summable 

functions. The function/is summable if and only if it is mesurable and 

I/I is summable. If/ is  a summable function over £,

I \f{P)dw\< J \f{P)\dw.
E E

Let (fn) be a monotonous sequence of summable functions converging to/ 

over E\ then /  is summable if and only if the sequence is bounded. 

Moreover,

\f(P)dw = lim \fn{P)dw.
E n -^ 0 0  E

Caratheodory also gave a version of Fatou's lemma.

In case a function is upper semicontinuous and bounded, the definite 

integral may be approximated by Darboux sums. An interpretation of
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Riemann integration was given in Caratheodory’s theory. The indefinite 

integral was defined by Caratheodory for functions / on Rn that are 

summable over every measurable subset e of finite measure. Following 

Lebesgue, he considered

F(e)= j  f(P)dw,
e

F is an additive function.

4 LATER INFLUENCES OF CARATHEODORY'S IDEAS

Nearly all later books on integration theory stressed the importance of 

Caratheodory's constructions and incorporated at least parts of them in 

their developments.

Bourbaki follows a functional procedure [4] [5]. Noticing that the 

prominent role played by continuous functions in this method may lead to 

think that the topological structure is essential, Bourbaki points out that 

the technique can be transcribed on an arbitrary set, but justifies the 

choice made:

’’Toutefois, cette plus grande generalite est en partie illusoire : on a 

pu en effet montrer que toute 'mesure abstraite' est, en un certain sens, 

'isomorphe' a une mesure definie (& partir des fonctions continues) sur un 

espace localement compact convenable; d'autre part, dans l’immense 

majorite des applications, il s'agit d'ensembles E munis d'une topologie 

intervenant naturellement dans la question; et dans les rares exemples qui 

ne rentrent pas dans cette categorie, il est souvent utile d'introduire une 

topologie qui en facilite l'etude" ([4] p. 7).

In his study of product measures ц on a Cartesian product, Halmos 

[20] quotes Caratheodory's results in order to justify the following
n

assertion : If T is the linear transformation defined on Rnby у/ = X a(/X|'
i=l

+b/(i=l,...,n), then for every subset E in Rn, /i*(T(E)) = Idet <2у1/х*(Я), 
MT(E)) = Idet aijiME).
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The measure theory developed by Dunford and Schwartz [16] relies 

on fundamental theorems due to Caratheodory.

Weir provides details showing the essential equivalence of Daniell's 

integration theory and Caratheodory's integration theory. As a first 

major problem he considers the extention of a measure from a ring of 

subsets to a ст-ring or a c-algebra containing the ring, i.e., the extension 

for countable unions. Having achieved this result by means of the Daniell 

construction, he estimates natural to ask whether or not any other method 

of extension would lead to the same measure; he concludes :

"It is comforting to know that the most frequently used general 

method of Caratheodory does in fact give the same measure as the Daniell 

construction" ([34] p. 113).

In his recent monograph Rao makes the following introductory 

observation :

"Generally the subject is approached from two points of view as 

evidenced from the standard works. Traditionaly one starts with 

measure, then defines the integral and develops the subject following 

Lebesgue's work. Alternatively one can introduce the integral as a 

positive linear functional on a vector space of functions and get a measure 

from it, following the method of Daniell's. Both approaches have their 

advantages, and eventually one needs to leam both methods. As the 

preponderance of existing texts indicates, the latter approach does not 

easily lead to a full appreciation of the distinctions between the (sigma) 

finite, localizable, and general measures, or their impact on the subject. 

On the other hand, too often the former approach appears to have little 

motivation, rendering the subject somewhat dry" ([30] p. vii).

Rao's text provides an account of the efficiency of the Caratheodory 

process.

Abstract harmonic analysis could develop after the introduction of a 

one-sided invariant measure on a locally compact group [28]. For Haar

[18] compactness of a metrizable subset signified that every sequence of 

points in the subset admits a limit point. He considered a locally compact 

metrizable separable group G. Two subsets A and В were said to be 

congruent if there exists a e G_such that Aa = B. For two nonvoid open 
compact subsets A and В , h(B,A) is the minimal number of subsets
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congruent to A covering B. Let E be a nonvoid open conpact subset and 

let (Kn) be a sequence of open balls of diameters 1 In with common center. 

For every nonvoid open compact subset В and every n e IN*, Haar 

defined

2п(В) = ЫЁЛй1е  q * . 

h(E,Kn)

Haar called Л null set if for every e > 0 there exists an open compact 

subset U containing A such that

i im su p M M * i < £ .

л- x »  h(E,Kn)

He proved that for every nonvoid open compact subset В for which the 

boundary is a null set, 1(B) = lim &n(B) exists; 1(B) > 0. For nonvoid
П—> oo

open compact congruent subsets B\ and B2, I(B\) = I(B2)- If В \,B2 are 

open compact disjoint, I(Bi<jB2) = l(B\) + I(B2). Adapting Lebesgue’s 

definitions of inner and outer measures, Haar determined the measurable 

subsets corresponding to a right invariant measure. At the end of his 

article, Haar acknowledged comments made by von Neumann and Riesz 

after having studied his text; they observed that Caratheodory's measure 

theory would allow to bypass all the technical developments in Haar's 

paper. Nowadays, invariant measures continue to be studied intensively

[27].

The measure approach, as emphasized by Caratheodory, constitutes a 

basic step in probabiliby theory. The latter became a major part of 

mathematics after Kolmogoroff [23], in 1933, had produced the axioms 

by which a probability is interpreted as a positive measure of total value 
1.

In order to show further algebraization possibilities for the general 

integration theory, Caratheodory [9] considered the Riesz-Fischer 

theorem and ergodicity. The framework was constituted by a Boolean cr- 

algebra, the elements of which were called somas. Caratheodory's proof 

is an adaptation of Weyl's method showing that any sequence of functions
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converging in measure admits an almost everywhere convergent 

subsequence.

_Let (A,A,n) be a Boolean сг-algebra. A measure function (p: A  
-> R+ admits the following properties : <р(ф) = 0, if X g  A  is included in

finite or countable symmetric differences of somas Xy, then
cp(X) < j  (p(Xj).

The soma U is called measurable with respect to (p if 

<p(X) = <p(XnU) + (p(XA(XnU)) 

whenever X e A .  Let T be the family of all functions that are 

measurable with respect to <p, and of the form

/ =  |  at U i  
1=1

where a b ...,an g  R, Ai,...>A„ g  A , n g  IN*. Caratheodory defined

\fd<p = £ a /  (p(A,r\A),

A i=1

A g  A .

Choose A g  A  such that 0 < (p(A) < +«> and a sequence (gn) in T 

such that J Ig n\d(p < +«> and J \gm+n-gn\d(p < ^  whenever m,n g  IN*.

A A

If ne  fN*, let Tn be the element of A  such that 1£„+1-£лК*) < ̂  whenever 

t g  Tn\ let Un = A\Tn and = A\(UnAUn+iA...). Then

±-(p(Un)<  \\gn+l-gn\d<p<^; 

z £/-

hence

q*Un) < ± г

and

<p(AWn) <  °LW {Um+„) <  
m=0 *

Let V = Vi4K24...; <p(A\V) = 0.
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Consider к e IN* such that for one m e  fN*, V* n  Um+k = ф holds. 

Then Vk n  Um+k = 0 for every me  IN*; V* с  7m+*.

If  te  Vb

\gk+m+l-gk+mKt) < W m+k’>

also for p e IN*,

\gk+P-gkKt) ^ \gk+\-gkKt) + \gk+2-gk+\Kt) + ... + \gk+p-gk+p-\Kt) ^ 2b - •

gk(t) - 2^1” + 5Г •

Except possibly on a subset N* of measure 0, for t e V*,

0 < lim sup ^ ( 0  - lim inf gq(t) < ;Я Я
as (y n) is increasing,

0 < lim sup gq(t) - lim inf gq(t) < .

q q .
Let TV = (Л\У)Л^И^2Л... . On AW, £ = lim gn exists; one puts

00

g(r) = 0 for t e N.

By Lebesgue's dominated convergence theorem

lim J lg-g„W<p = 0.
П—» 00 у  J.

For all choices of k,m,n e IN*,

J lg-S„W<p < J lg-gm+nW«P + J Igm+n-gn\d(p-Vk Vk Vk
Thus

j Ig-gn\d<P = lim J ^ J \gm+n-gnM(p < ^ ;
А Й 00 A

lim J \g-g„\d<p = 0.
n~* 00 A
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Let now (fn) be a sequence in T such that \ \fn\ < + oo, J fmHCf^d(p

a a

< £n (m,n g fN*) and lim en - 0. One may choose a subsequence (en.) of
П—» oo

(en) such that еЛ;к< ^  whenever /: € IN* and define gk =fn+k. By the pre

ceding general statement, there exists g e T such that lim J \g-gn\d(p
n —> 00 A

= 0; so also

lim J \g-fn\d(p = 0.
n~* 00 A

It suffices then to make use of Schwarz’s inequality to obtain 

the theorem : Let (fn) be a sequence in T such that J/jJ d(p<+ooy

A

\ (fm+n-fn)2d(p < (m,n e fN*) and lim Sn = 0. Then there exists
А Л—» 00

g e T such that j  g2 dq> < +<* and lim j (fn-g)2 d(p = 0.
А Л->°° A

Caratheodory gave the following description of ergodicity :

"Die Ergodentheorie ist aus der statistischen Mechanik entsprungen, 

als man aus dem statistischen Verhalten einer Schar von Bahnkurven iiber 

das asymptotische Verhalten der einzelnen Bahnkurven Schliisse ziehen 

wollte. Es hat sich aber mehr und mehr gezeigt, dass diese Satze, welche 

man in dieser Hinsicht aufgestellt hatte, fur die ganze Integralrechnung 

von grundlegender Bedeutung sind" ([9] p. 368-369).

Ergodicity concerns a set S equipped with a fmite measure fl. One 

considers a transformation T of S associating a measurable subset to any 

measurable subset and for which Г-1 has the same property. Von 

Neumann [26] proved that given f e  L2(5,/i) there exists g e L2(Syfi) such 

that

lim J Ig ( P )  - tjtt- I Д7WFydH (П = 0.
N-+°0 s yV+1 n=0
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Birkhoff [1] showed that if /  is a measurable function on S, for ̂ -almost 
every point P,

8 (П =  lim - L .  £ /(T 0 )P )
#-> oo I  /=0

exists; g is a Г-invariant measurable function.

Caratheodory obtained the following ergodic theorem : If /

e Ll(M,(p)y there exists a soma N, possibly empty, such that <p(N) = 0 and 
lim onf  exists on MSN where

n—> OO

a n f U ± I L ± ^ ± l M L 9
n

Caratheodory inteфreted this result as a direct generalization of 

Birkhoffs theorem, but wondered whether it may still be carried over to 

more general situations.

In his later note [10] Caratheodory used a method due to Hopf in 

order to further formalize ergodicity in his measure theory over Boolean 

algebras.

5 CARATHEODORY'S ALGEBRAIZATION PROCEDURES

As soon as 1938 Caratheodory had enhanced a further algebraization of 

his measure theory [8]. The editors of [11] claim that from the preface of

[12] it is evident that two more volumes had been planned :

"Nach Vereitlung dieses Planes durch den Krieg und dessen 

Auswirkungen entschloss sich der Verfasser, aus dem fur diese beiden 

Bande vorgesehenen Material durch geeignete Sichtung und weitgehende 

Umarbeitung ein selbststandiges, in sich abgeschlossenes Buch zu formen” 
([11] p. 6).

In the preface to volume II of the planned books, Caratheodory 

characterized the generalization of Lebesgue's integration theory to 

abstract spaces, over a period of fifty years, as the identification with the 

theory of completely additive set functions. He explained his reluctance to 

a simple adaptation of Lebesgue's theory :
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"Bei der gewohnlichen Lebesgueschen Theorie [ist] der ’Inhalt' nur 

dann eine totaladditive Mengenfunktion, wenn man von alien 

Punktmengen des betrachtenden Euklidischen Raumes absieht, die man 

nicht als Summe einer Borelschen Menge und einer Nullmenge darstellen 

kann. Ich habe mich deshalb mit der oben erwahnten Behandlung des 

Integrals nie recht befreunden konnen, umso mehr als bei dieser 

Behandlung mit einer Tradition gebrochen wird, welche seit mehr als 

2000 Jahren besteht und zu den schonsten Errungenschaften der Analysis 

gefuhrt hat” ([13] p. 290).

From among the papers left by Caratheodory the editors of [11] 

quote the following lines summarizing his attitude towards measure 

theory :

"Das einfachste Beispiel einer [Booleschen Algebra] erhalt man, 

wenn man die Operationen der Vereinigung, des Durchschnitts und der 

Differenz (oder den Obergang von einer Menge zu ihrer 

Komplementarmenge) auf Mengen anwendet.

Daraus erklart sich, dass die Theorie des Masses, die ja auf Mengen 

von beliebigen Elementen aufgebaut werden kann, auch fur Ringe von 

Elementen einer Booleschen Algebra ihre Bedeutung nicht zu verlieren 

braucht.

Vor etwa zehn Jahren habe ich bemerkt, dass man auch das Analogon 

einer gewohnlichen Punktfunktion auf Booleschen Ringen bilden kann, 

wodurch auch die Algebraisierung des Integrals ermoglicht wird.

Die Durchfiihrung dieses Programms hat nicht nur theoretisches 

Interesse. Die Satze und Beweismethoden, die man, bei naherer Einsicht 

in die neuen Verhaltnisse, aufzustellen veranlasst wird, sind nicht derart, 

dass sie in einem Raritatenkabinett ihren Platz finden sollten. Decken sie 

doch zwischen Resultaten, die man schon langst auf dem gewohnlichen 

Wege fortschreitend erforscht hat, Zusammenhange auf, welche sont 

unbemerkt geblieben waren. Sie fiihren ausserdem zu einem organischen, 

sehr einfachen und einheitlichen Aufbau der Theorie.

Freilich konnte man auf dem klassischen Wege, vom Borel- 

Lebesgueschen Mass ausgehend, diese Erfahrungen benutzen und die 

Eigenschaften des Masses und des Integrals auf eine Weise ableiten, die 

von der in diesem Buche gebotenen Darstellung prinzipiell nicht
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verschieden ist. Ein solches Verfahren ware aber in mehr als einer 

Hinsicht unnatiirlich, und es scheint mir deshalb vorteilhafter, die Theorie 

in ihrer ganzen Allgemeinheit zu entwickeln" ([11] p. 5).

This formal treatment involves measurability, measure functions, 

integration theory; it includes all standard topics such as Egoroffs 

theorem, convergence in the mean, Jordan's decomposition. Some 

concepts, introduced earlier by Caratheodory, such as regularity, become 

less relevant.
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THE ISO PE R IM E T R IC  IN EQ U A L IT Y  AND  

EIGENVALUES OF THE LA PLA C IA N

Themistocles M. Rassias

This paper gives an account of classical proofs that have been given to the 

isoperimetric inequality as well as of a few properties of the eigenvalues of the 

Laplacian with their meaning and some of their applications to problems of 
Mathematical Analysis.

1 . Introduction

In the following pages, I will try to present a fundamental study to

wards a better understanding of the classical isoperimetric problem. The 

real questions are: What shape must a closed curve С in the plane have 

if, with a given length L it should enclose the greatest possible area? Or: 

When has the curve С enclosing a given area A the least possible length? 

Both questions turn out to be equivalent. The answer is that the curve 

С  has to be a circle. This is the so-called classical isoperimetric problem. 

Caratheodory had discovered that Calculus of Variations began not with 

the quarrel of the Bernoulli brothers in June 1696 and not with the beautiful 

“Traite de la lumiere” of Huygens (printed in 1690 but written twelve years 

before) but it was Zenodoros, who lived sometime between 200 В. C. and 

100 В. C. The isoperimetric problem was first approached by Zenodoros. 

As Caratheodory writes: “The proofs he gives are excellent and even supe

rior in elegance to those we find ... in the geometry of Legendre”. It should 

prove to be very useful if everybody reads this masterpiece of Caratheodory 

“The beginning of research in the calculus of variations” [(1937), now in 

Caratheodory’s Gesammelte Mathematische Schriften, Vol. II]. This prob

lem has been approached since the time of Zenodoros, also by the Bernoullis

1146
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(1697), Euler (1744), and Lagrange (1762), who treated it as an example 

of the calculus of variations. Their investigations show that if there is a 

curve С  of given length L such that the enclosed area A has the maximum 

value, then С is a circle. However they evade the question as to the actual 

existence of the maximum curve ( Weierstrass). By establishing sufficient 

conditions for the existence of actual maximum or minimum solutions of 

a large class of problems of the calculus of variations, Weierstrass has set

tled this question also for the isoperimetric problem. Steiner [32] proposed 

several ingenius ways for proving that the circle is the only curve of given 

length which encloses maximal area. Later the problem has been solved by 

various methods. A. Hurwitz (1902) has applied the so-called completeness 

theorem of the theory of Fourier series; H. Minkowski obtained a general 

inequality in the theory of convex domains implying as a special case the 

solution of the isoperimetric problem. These methods with an analysis will 

be followed here (see [31], and also [7], [8], [27]). Caratheodory and Study 

[9] proved the existence of such an extremal curve in 1909. Since then this 

subject was taken up in a series of papers using different methods which led 

to numerous generalizations and extensions of the isoperimetric problem.

2. Hurwitz’s Proof

An analytic expression of the isoperimetric inequality can be formu

lated as follows: If С is a circle of radius r one has

L2 = (2гтг)2 = 4г27г2 = 4я-A , (2.1)

and the statement is that the area A enclosed by a curve С  of length L is 

smaller than that of the circle:

L2 > 4тгЛ. (2.2)

The equality sign holds if and only if С is a circle. The nonnegative differ

ence j ^ —A is called the isoperimetric deficit of the curve C. In a parametric 

representation the curve С  may be expressed by x = f(t) ,y  = g(t) where 

the parameter t is such that

< = Y * .  (2-3)
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where s is the length of arc measured on С  from a fixed point on C. Thus 

t varies continuously from 0 to 2ir as s varies from 0 to L. All values of 

s beyond the limits of this interval may be taken into consideration; for 

the point (x,y) to remain on С  it is then sufficient to assume the two 

functions f(t),g(t) to be periodic with period 2тг. Suppose that the derived 

functions /'(*), g'(t) axe sectionally continuous for all real values of t. With 

such restrictions the isoperimetric inequality (2.2) is a general statement 

concerning such arbitrary functions that can be expressed by their Fourier 

series:

/(*)= 2̂ + £  (an cos nt + bn sin nt)
n=1

9(t) = ^  + Ц  («П COS nt + /?„ sin nt) 
n = l

(2.4)

where an,6n are the Fourier coefficients of f(t), and an>/?„ those of g(t):

1 f 2* 1 f 2* 
cLn — — I f(t) cos ntdt, an = — / g(t) cos n td t, 

tf Jo tf Jo

1 f 2* 1 Г2ж
bn =  — I f(t) sin ntdt ,/?„ =  — g(t) sin n td t. 

tf Jo tf У о

Using the Hurwitz equivalence notation we may write

oo

f\t) ~ 53 (nbn cos nt — nan sin nt)
n = 1 
oo

g'(t) ~ 52 (»Ai cos nt — nan sin nt)
n = l

(2.5)

The proof of Hurwitz [16] of the isoperimetric inequality uses the complete

ness relation which for the function f ( t )} also if it is not actually represented 

by its Fourier series, states

I /  m ? d t  =  af + Y : « + b i) ,

2

and upon ParsevaVs identity

~ J  / (0 f (0 *  =  i a 0a0 + ^ ( o n « „  + 6„/?„),

(2.6)

(2.7)

n=l
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which follows from (2.6) by substituting there the function Af(t) + ng{t) 

instead of f(t) and comparing the coefficients of A/2 on both sides of this 

equality.

The proof of Hurwitz goes in the following way. From (2.3) it follows

that

= ^ 2  n2(a« + + an + Pn) •
n = l

On the other hand, the area A of the domain bounded by С  can be written 

as the integral

which is expressed as a sum of two convergent series with nonnegative terms. 

Necessary and sufficient condition for ^  — A to be equal to zero is that all 

terms to be equal to zero, i.e.,

(n2 - 1)62 = 0 , (n2 - l )/?2 = 0 which imply bn = /?„ = 0 if n > 1

and thus from

nan — = 0 it follows that an = 0 ifn > 1 and ft = a\, 

nan -f bn =  0 it also follows that an =  0 ifn >  1 and&i =  — c*i.

s = ^ - t , which implies s =  ^
2тг * dt 2тг

and thus by (2.6) one can write

= §  = ± j f W  + (у'(<))2]л

and therefore (2.7), with g'(t) instead of </(*), gives

oo

A = тг ^ 2  n(anpn - bnan) .
n = l

Therefore the isoperimetric deficit of the curve С  is equal to

n = l n = l

' oo OOoo oo

=  ^  y ^ ( (» Q n  -  Pn )2 + (n<*n + hn )2) +  J ^ ( n2 “  !)(frn + Pn)
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Therefore the isoperimetric deficit is never negative and equal to zero if and 

only if С  is given by the parametric representation

x =  f(t) = -a0 + ai cos t — ati sin t

and

У = = ^ ao + oci cos t + ai sin t .

Then

(* - <̂*o)2 + (y-  ^£»o)2 =  al + a l , 

which means that С  is the circle.

QED

Remark. The above is one of the proofs given by Hurwitz [16] in 

which no assumption is made as to the convexity of the curve C.

3. Minkowski’s Approach

Let С  be a convex (simply) closed curve (it is also called an oval) and 

Cn be an n-sided convex polygon inscribed to the oval C. Suppose that 

«1, ... , sn are its sides (and their lengths), and hv the distance of the side 

sv from a fixed point 0 inside the polygon. Then the area of the polygon is 

given by the sum

1 Л,П A
An = — ^   ̂hus„

v = l

and as n —► oo while the lengths of all sides of Cn tend to zero, the se

quence An tends to the area A of the domain bounded by the curve C, and 

according to the definition of a curvilinear integral the limit is given by

A = ± J c h(s)ds

if h = h(s) denotes the distance of the tangent to С  at the point s, from 

the fixed point О inside of C. This function h is called the function of 

support of the convex curve С . We shall note that after having fixed the 

point О and a starting point for measuring the arc s on C, this function 

not only is defined by the curve C, but also defines С  uniquely. Because
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of the convexity of С  we may choose the polar angle 9 at the point О of 

the normal to С  in the point s as independent variable varying from 0 to 

2тг. Therefore we have h = h(s) = h(9) and again we may assume that the 

function h(9) is continued beyond the interval 0 < 0 < 2?r as a function 

of period 2я\ Suppose that the derived function h'(9) is continuous and 

h"(6) sectionally continuous. To prove that the curve С  is determined 

by its function of support we introduce rectangular Cartesian co-ordinates 

with О as origin. We consider the curve С  as the envelope of the family 

of straight lines, vertical to the ray through О which forms the angle 9 

with the z-axis, having the distance h = h(9) from O. The equation of the 

general line of the family, in running co-ordinates £ ,77, therefore is

£ cos0 + 17 sin 0 = h(9) . (3.1)

If we differentiate this equation with respect to 9 we obtain

—£ sin0 + 77 cos 0 = h*(0) . (3.2)

From (3.1) and (3.2) we obtain the parametric representation of С  to be 

given by

x = h cos 9 — h! sin 9 , у = Л sin 9 + h' cos 9 , (3.3)

which is uniquely defined by the function h(9).

From (3.3) we derive the radius of curvature, г = r(0), in terms of the 

function of support to be equal to

r = £ =  \/z'2 + y'2 — h + h" . (3.4)
du

Then 2?r

A - l / W  

= 5 С ” h(h + h")d$ (3-5)

Now, consider the curve which is parallel to С  in the distance 6 > 0. 

Then its function of support is h(9) + 6, and its radius of curvature is 

r(0) + S. Therefore its area is given by

A(S) = I  f \ h  + 6)(r + 6)d$ = A + BS + irS2 (3.6)
2 Jo

where
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В =  \ [  (h + r )d e = lim
A(6)_- A

r0 о —и 6

The difference A(6) — A measures the ring area of width 6 between С  and 

C^6\ which for small 6 is approximately equal to L6. It is clear that В  = L. 

Also

f  2*r(9)d9= : f  ds =  L ,
Jo Jc

= / hdO. (3.7)
Jo

hence
f2t

L

We now represent the function

-  JL =  / (6 )  (3.8)

by its Fourier series

cx>

/ (0) = 7Г + У ^(ап cos n0 + 6„ sin П0) .
n=l

From (3.7) we obtain

Thus

4  / w s<»= £ « + « ) ,  
' Л

l f ' f W d e  =  '£ n * ( a l  + b l) .

Thus

n=l

•2w

Ц  (/(•)*- m * ) « » < o  (3-9>

with the sign of equality valid if and only if

= 0,6n = 0 for all n > 1. (3.10)
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•2jt

From (3.8) and (3.9) we have

i r
which because of (3.5) and (3.7) means that

| - s +i £0 ' <$1I>

i.e., the isoperimetric inequality (2.2). The sign of equality in (3.11) holds 

if (3.10) is valid and therefore

h(9) = + L(cli cos 9 + &! sin0). (3.12)
27Г

From (3.3) and (3.12) we get

L L
x — Lcl\ + —  cos 9 , у = Lb\ + —  sin 9

2тг 27Г

which represent a circle.

QED

Minkowski’s Generalization of the Isoperimetric Inequality

Let Ci and C2 be two ovals, L i , L2 their lengths, A\t A2 the areas of the 

domains bounded by C i,C 2 respectively, and hi(9),h2(9) their functions 

of support taken with respect to a point О inside both ovals. Then, the 

function
f m  - M « ) л*(«)

again satisfies the property

>2»
a0 =  - [  f(9)d0 =  0 

Я" Jo

and therefore the inequality (3.9) is also valid. 

Then

Л1д ~ 2М 2г1т2 +Л2д - 0 (313)
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where
r2*

A n  = \ j  ( h ^ - h ' ^ d e  (3.14)

is the Minkowskian “mixed area” of the two ovals C\, C2. The inequality 

(3.13) expresses that the quadratic form

A(Aj, A2) = A\ A2 — 2Ay2X\X2 4- A2X\

representing the area enclosed by the oval with the function of support 

Ai/ii + X2h2 (А1? A2 > 0), has in general a negative value for Ax =  -ц, X2 = 

2̂ , while for Ai = 1,A2 = 0 it is positive. Therefore А(А1,Аг) is not a 

definite form and therefore its discriminant

A yA2-A\2 < 0 , (3.15)

with the sign of equality holding if and only if

4 0 )  Ь2(в) L • Л
—7----- -—  = ai cos 9 + &i sin 9 .L1 L2

The inequality (3.15) contains the isoperimetric inequality as a special case.

Remarks. For various extensions of the isoperimetric inequality to 

three and more dimensions a lot of new research has been undertaken by 

several mathematicians and applied scientists. The geometers developed 

various types of symmetrizations (cf. [7], [13]), whereas the analysts applied 

techniques of the calculus of variations (cf. [4], [20], [25]). Very beautiful 

results have been obtained on several different generalizations of the isoperi

metric problem in Euclidean and non-Euclidean spaces (W. Blaschke, L. A. 

Santalo, E. Schmidt, and others cf. the references in [4], [20]). It is clear 

that the spheres in higher dimensions should be characterized by a similar 

extremal property. In fact H. Schwarz [30] proved that among all domains 

of given volume the sphere has the smallest surface area. H. Liebmann in 

1900 [18] proved that if a compact, strictly convex surface in R 3 has con

stant mean curvature, then it must be a sphere. H. Hopf in 1951 [15] proved 

a much stronger version of Liebmann’s theorem in which no convexity as

sumptions were needed, and in fact the surface could even be allowed to 

have self-intersections. The only hypothesis was that the surface be defined 

by a regular map of a 2-sphere into Я3. A. D. Aleksandrov in 1958 [2] using
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an ingenious geometric argument generalized Liebmann’s theorem for any 

surface of constant mean curvature with no assumptions on its topological 

type, to be a sphere. However, the surface was not allowed to have self- 

intersections. Aleksandrov in 1962 [3] generalized his result including the 

case when certain surfaces admit self-intersections.

4. Eigenvalues of the Laplacian

Let D  be a simply-connected domain in Rm,m  > 1, with a smooth 

boundary dD. Let и be a solution of the equation

Au + Au = 0 in D  , (4.1)

subject to the homogeneous boundary condition

и = 0 on d D . (4.2)

For m = 2, (4.1) is also known as the Helmholtz equation. Someone reduces 

to it from separating the time variable out of the wave equation. Equations 

(4.1), (4.2) may then represent the vibration of a fixed membrane, with 

the eigenvalue A = k2, where к is proportional to a principal frequency of 

vibration. F. Pockels [24] first proved that (4.1) and (4.2) has a spectrum 

of infinitely many positive eigenvalues

0 < Ai < A2 < A3 < ... < An < ... (4.3)

with no finite accumulation point. We can normalize the corresponding 

eigenfunctions Ui, u2 , 113, . .. so they form a complete orthonormal set for 

L2(£>)> i.e.,

/ щи j dxdy = 6ij (4.4)
J d

where 6{j is Kronecker’s delta and i , j  = 1,2,3,... . It follows that the 

eigenvalues satisfy the mimimax principle

U £ ) 2 + ( § № * /

" = ““И max---- fD u4xdy---- ’ (4 5)

where the maximum is over all linear combinations of the form

(4.6)
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and the minimum is over all choices of n linearly independent continuous 

and piece-wise-differentiable functions ф\,фъ, • • • > Фп> vanishing on C. The 

ratio of quadratic forms on the right side of (4.5) is called the Rayleigh 

quotient (cf. [27], [28]). In 1877 Lord Rayleigh [29] conjectured that among 

all domains of a given area the circle has the lowest principal frequency. 

This statement can again be expressed as an inequality relating the area A 

of D  and Ax, i.e.,

•2
Ai > (j'o =  2.4048 ... , first zero of the ^  ^

Bessel function J q) .

Equality holds only for the circle (cf. [33]). Lord Rayleigh was led to this 

conjecture after having computed Ai for a number of special cases like the 

square, the equilateral triangle, the semicircle, ... . He also applied a very 

special perturbation method to approximate the value of Ai for a nearly 

circular domain (cf. [4]). C. Faber [12] and E. Krahn [17] independently, 

proved (4.7) using a special system of curvilinear coordinates.

Consider now a membrane with inhomogeneous mass density p ,

Aiz + Xpu = 0 in D  

и = 0 on dD
(4.8)

L. Nehari [19] extended the Rayleigh-Faber-Krahn inequality for mass den

sities satisfying Alogp > 0. He proved that the following inequality holds

Ax > (4-9)
JD Pdz

where the equality holds for example for the circle with constant p. The 

extremal case is not uniquely determined. Let As =  A /p. Then As can be 

interpreted as the Laplace-Beltrami operator on a surface with Riemannian 

metric der2 = pds2. Then (4.8) can be reformulated as

A stt + Au =  0 in D C 5 l  (4.10)
ti = 0 on dD J

Nehari’s condition means that the Gaussian curvature of S is non-positive. 

J. Peetre [23] proved that the first eigenvalue of A5 wih Dirichlet boundary 

values satisfies

(,11)
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This inequality includes Nehari’s result. J. Peetre [22] derived an inequality 
of the type

Ai > (4.12)
Aa

for every general surfaces. J. Hersch [14] proved that for convex domains 

with inradius po, the first eigenvalue of the homogeneous membrane satisfies

Ш ’
where the right-hand side is the limiting value for long thin rectangles.

In the paper of R. Osserman [20] one can find other very interesting 

results relating Xx and p0. There are also several variational characteriza

tions of the eigenvalues and some very elegant upper bounds. For this and 

related results one can see the very interesting book of C. Bandle [4].

Little is known for the free membrane described by the eigenvalue prob

lem
Au + vu = 0 in D  С R2

fc = 0 on 8D ' } (4.14)

(<ln denotes the outer normal derivative). There exists a countable number 

of eigenvalues

0 = i/i < z/2 < ^3 < • • • •

G. Szego [33] proved the following beautiful extremal property of a cir

cle. Among all domains of a given area the circle yields the highest second 

eigenvalue 1/2 • This property can be expressed in the following inequality 

form
7Г p2

1/2 < (pi = 1.841... zero of the Bessel ^  ^

functional)

L. Nehari [19] has also considered membranes with mixed boundary condi

tions
Au + ци = 0 in D , Л

и — 0 on Г , > (416)

= 0 on y j

where TUy =  dD  and Г Пу =  0. Nehari proved the following inequality 

for the lowest eigenvalue fix. I f  7 is a concave arc, then

~2A '
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Equality holds for semi-circles with Г as circular arc and 7 as the straight 

segment.

This inequality has been generalized by C. Bandle [4] in several ways.

It is a standard problem used to introduce variational properties of 

eigenvalues in mechanics to determine the equilibrium shape of a soap film 

suspended between two parallel coaxial circular rings. The solution to the 

problem relates the radius of the film r to the displacement z along the axis 

of symmetry by the equation of the catenary

h z ~ b r =  a cos h--- .
a

The constants a and b are to be determined by requiring that r be equal 

to the fixed radii of the rings for z = 0 and ht where h is the separation 

of the rings. If the rings are of equal radius r0, the surface is symmetrical 

about z = |, b is equal to and a, the minimum radius of the film, is to 

be found by solving the equation

го = a cosh -r- .
2 a

There are two solutions for ^  < 0.66274..., only one of which is stable, 

and no solutions at all for > 0.66274.... In the second case, the tubular
ZT 0 1

configuration of the soap film is unstable. From the experimental point of 

view this can be demonstrated as follows ([11], [27]): We start with a stable 

tubular film with ^  < 0.66274..., and gradually increasing the separation 

between the rings until ^  approaches and then exceeds the critical value. 

For ^  greater than the critical value, the film collapses in the center and 

splits into two planar films, one on each ring. As ^  approaches the critical 

value, any perturbation results in a characteristic low-frequency oscillation 
of the film.

A mathematical analysis of this equilibrium problem using eigenfunc

tion methods can be given to prove that the dynamical stability of the 

film is determined by the sign of the lowest eigenvalue Ai of an associated 

Sturm-Liouville problem, with the film stable for Ai > 0 and unstable for 

Ai < 0. For this analysis as well as for a number of related results one can 
follow [11], [27].
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Applications of the Isoperimetric Inequality

We shall present a few illustrations of ways that isoperimetric inequal

ities have been applied to some specific problems in analysis and geometry.

I. On the unit disk, \z\ < 1, one has the hyperbolic metric

ds2 = r = ^ i 2- (51)
This metric has constant Gauss curvature К = — 1. Thus the unit disc 

becomes a model for the hyperbolic plane. Then one can prove ([20]) that 

the isoperimetric inequality becomes

L2 > 4txA + A2 (5.2)

for simply-connected domains, and hence, for all such domains, it follows 

that

L > A .  (5.3)

This property is very essential to characterize hyperbolic Riemann sur

faces. On an arbitrary Riemann surface one may consider conformal met

rics, which are Riemannian metrics of the form

ds = p(z)\dz\

with respect to any local conformal parameter z.

Theorem ([20]). A simply-connected Riemann surface 5 is of hyper

bolic type if and only if there exists a conformal metric on S such that (5.3) 

holds for every simply-connected domain on S.

Remark. This result is a very special case of a theorem of L. Ahlfors

[1] describing relations between L and A that are compatible with the 

existence of a quasi-conformal map of a surface onto the entire plane.

I I . The following is a theorem on conformal mapping of doubly-connected 

domains due to T. Carleman [10]. The proof of Carleman was based upon 

Laurent expansions. However G. Szego [34] gave an elegant proof based on 

the isoperimetric inequality.

Theorem. Consider the family of all doubly-connected plane domains 

bounded by an outer curve C\ and an inner curve Co- For each domain
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D, let Ai be the area bounded by C ,,i = 0,1. Then among all domains 

conformally equivalent to a given one, the minimum of A i/A 0 is attained 

by a circular annulus.

Szego’s argument goes in the following way (cf. [20]). Let r0 < \z\ < rlf 

be a given annulus, and let D  be its image under a conformal map f(z). 

Denote by L(r) the length of the image of |z| = r, and A(r) the area 

enclosed. It follows that

conformal radius of D  with respect to zо and

R  := sup{#Zo : z0 £  D}

is called the maximal conformal radius of D. Consider in D  a Riemannian 

metric da2 = pds2 of bounded Gaussian curvature Ко and let Aa be the 

total area of D with respect to this metric. Then (cf. [4], [5])

Thus 2 < for r0 < г < rb and integrating from r0 to rb one obtains

Therefore

f ( z )  =  ( z -  zo) + a2(z -  zQ)2 + . . .

a complex one-to-one function mapping D  conformally onto the circle {«; : 

|tu| < RZo}- It is a consequence of the Riemann mapping theorem that such 

a function exists and that RZq is uniquely defined. RZo is defined to be the

p2 ______

P(*)(47r ~ KoA0)
, if K qAc < 47Г.
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Polya and Schiffer’s inequality ([26]) connects the maximal conformal ra

dius with the sum of the reciprocal first n eigenvalues. It is stated as follows: 

Let A1}. .. , An be the first n eigenvalues of the fixed membrane equation 

in a simply connected domain D  and let Alc>... , Anc be the corresponding 

eigenvalues of the circle of radius 1. Then

where R  denotes maximal conformal radius of D. C. Bandle [4] obtained an 

elegant extension to non-homogeneous membranes in the following form.

Theorem. Consider D  to be a simply connected domain, z0 € D  an 

arbitrary point and p a mass density satisfying A log p + 2KQp > 0 and 

K q fD pdx < 2тг. Set

fi := p(zoR20, and := (l - f K у  ■

Observe that (3 is a conformal invariant. Let AIC be the t'th eigenvalue of

ДФ' + Xceu^ r'p’KoU c = 0 in {x : 1*1 < 1 , 1 f, -ч
фс = 0 on {x : jxj = 1} . J

Then
1 1 1 1 J _  _ L
Ai A2 A„ “  Aic A2c Anc
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On the Minimum of Re[f(z)/z] for Univalent Functions

M. 0. Reade and H. Silverman

K(r) =  r In

1. Introduction

Denote by S the family consisting of functions of the form f(z) =  z + ... that

axe analytic and univalent in Д = {z: \z\ < 1}. In [8], R. Singh applied the area

theorem to show that if feS then Re f(z)/z > 1/2 in a disk \z\ < />, where the

number p(> 0.41) is the unique positive root of the transcendental equation

*11/2

(1 _ 7 )з| + 2r - 1  = 0 .

While not sharp, this result is close to sharp since the largest disk in which the 

Koebe function k(z) = z/( 1 — z)2 satisfies Re k(z)/z > 1/2 is \z\ < \/2 — 1 =

0.414....

In Section 2, we will prove that the Koebe function is indeed extremal. In fact, 

we will show that the Koebe function is extremal for Re f(z)/z > /3 if and only

if 0.468 ... = ^  P < 1« This will be established by applying Schiffer’s

boundary variation [7] to find min Re feS. from which we determine the
|z|=r x

largest disk \z\ < p(j3) that satisfies Re f(z)/z > fl over all feS  and (3 < 1. 

The case /? = 0 gives the disk \z\ < tanh(?r/4) = 0.655..., a classical result first 

proved by Grunsky [4] using Loewner theory. Our variational approach is very 

similar to that employed by J. Brown [3] while investigating the support points 

of S for some point-evaluation functionals.

1164
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In Section 3, we study the same extremal problem for some subclasses of 

univalent functions. Using extreme point theory we find the largest disk in which 

f ( z) lz > P when /  is starlike (feS*) as well as when f  is starlike of order 

7 (/eS*(7 )), 1/2 < 7  < 1. This improves on a result of Obradovic [6].

2. Extremal properties for S.

Given a point zoeA, we wish to find a function feS for which Re f(zo)/zo < 

Re g(zo)/zo for all geS. If /  is an extremal function, SchifFer’s variational ap

proach [7] may be used to construct a family of neighboring functions f*eS such 

that

(/(*))*
Г  (*) = /(*) + Ar

wo(/(*) - w«)
+ 0(r ) ,

'0'

where и>оеГ = d f(Д) and Ar = 0(r2) as r —* 0. Because /  is extremal, we have

Re \ U { ^ ) ?  , Л/-.ЗЧ

Г*оИ^(/(го) - uiq)
> 0

for all sufficiently small r. From SchifFer’s basic lemma [7], we know that Г is an 

analytic arc satisfying

1} ( / Ы )2 ( * Л \ 0
z0w2(f(z0) -w)\dt J

for a real parametrization w = w(i). Representing Г by w = /(e,f), we may 

conclude from (1) that

on \z\ = 1. Since F  is analytic in Л aside from a simple pole at z — zo, Schwarz s 

reflection principle allows us to continue F  analytically to give a rational function 

in the plane with another simple pole at z = I/zo- Consequently, F  must have a 

zero of order two at a point e,0f, where ^(e**) = 0. Thus we can also represent 

F  by

f ( z) —__Л(г~ e j —  д a constant.

( ) (z —*o )(l - * o z)
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Letting z —► 0 and equating both expressions for F(z), we get A = f(zo)e 2x0. 

Since
. a —4Ae,0r sin^^p-)

we also see that Ae,a = f(zo)e~,a > 0 and hence e,a = . Again equating

both expressions for F(z) leads to

и ы ) ‘
tar\2

_____________  f(zo)e (z - e'g)

*o(/M - / (zо)) (* - г0)(1 - z0z)

/(*») (1 - e~‘ttz)2

(ZJM \
V /(*) J

or, equivalently,

(2) ( * jm ________________________
v ; V /(*) ) /(*o) - /(*) (1 - */*d)(l - *o*)
Now (2) is identical to the expression found by Brown [3] in determining support 

points of S for certain point-evaluation functionals. Following Brown, we set 

w = /(z), P(z) = (1 — z / z q ) (1  — z q z ) ,  and integrate (2) to obtain

dw _  Г  (1 - e~iaz) dz

JZQ
(3)

f

Jf(zi/(г0) Ul^/l -  w /f(zQ)

Letting |z0| = r, M(z) = (i
(i

r*)z/zo, we may then express (3) as

= g M ± ^ ] , w e w . 2^ w +2 - (1 +

(4) I n f i l l
L i- ч /Г ^

1 + V i -/(*)//(*»)

n/1 - /(* )/ /W
= In

<3(z)zo
L(1 — Г2)2Г

Adding In z to both sides of (4) and letting z —> 0, we get

1п(4/Ы) = 1п ( 1^ ) + е - “ 1п ( ^ )

or, equivalently,

/(*») exp{e-“ ln (^ ) }

+ e_‘“ In M(z) .

(5) , a = arg f(z0) ■
zo 1 — r2

In particular, for feS and |z| = r < 1 we find the sharp lower bound

(6)
Z c*e[0,2*) 1 — TL
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2
or

The extremal function associated with (5) is the one for which equality holds 

in (4). Exponentiating (4) and noting that e~ta = |/(^o)l//(^o)> we have

w w w / z w  <э(Фо /  . \ ' {ы и ' ы  rM
г- у. -/(■)/№,) - ( Г ^  г 1■” )  ш™ '

which leads to 1 — f(z)/f(zo) = ((T(z) — 1 )/{T(z) + 1)^

/(,) = 4/(г„)Г(г)/(1+Т(г))2 .

Our problem of minimizing Re f(z)/z(\z\ = r,feZ) is reduced to finding an 

appropriate a for which exp{e“,or ln (^ )}  is a minimum. To that end, we need 

Lemma 1. If G(a) = eBcoe cos(Bsina), В > 0, then

G(a) > G(n) = e~B (0 < В < 1) , 

G{a) >  C“®°cotoro cos a0 (£  > 1)

where ao is the unique value in (0, тг) that satisfies В = ao/ sin tto- The result is 

sharp for all В > 0.

Proof. To minimize G(a), 0 < a < 2ic, we note that G'(a) = — BeBcosa sin(a+ 

B sin a) = 0 when

(7) a + В  sin a = for

for admissible integers k.

If 0 < В  < 1, then a + В sin a increases with a, 0 < a < 2x, and к = 0 

or 1 in (7). In this case, G;(a) = 0 only for a = 0 and a = тг. Therefore, 

G{a) > G(x) = e~P.

If В  > I, set a* = a*(ifc) = ктт - a in (7). Assuming a ^  тг, we see from (7) 

that В  = (—l)*+1a*/sina*, cosa = (-l)*cosa*, and sin or = (-1)*+1 sina*.

So if a satisfies (7), then

eBcosa cos(# sjn = exp

_  g—or* cotar*

(_1)*+1 (  — — ^ (—1)* cos a* 
\sina*/

cos a
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Thus, minG(a) = e-0f°cotoro cos ao for some ao = a*(fc) as long as min (7(a) ф 

(?(7r). Now if 1 < В  < тг/2, then (7(a) > 0 and cosao > 0. We may then choose 

аоб(0,7г/2]. Similarly, if В  > тг/2 then (7(a) can be negative and cos ao < 0. We 

then choose аое(тг/2, л-).

Finally, it remains to show for а = ao satisfying а/ sin а = 5, 0 < а < я-, 

that e acotor cos a < (7(тг) = e~B — e-Qf/sinor} or equivalently,

а
s(a) = cos a exp (1 — cos a) < 1 .

sin a

This is clearly the case when 7г/2 < а < тг. Since lim s(a) =  1, it suffices to

< 0, we see that s(a) < 1. This completes

►o+
show that s(a) is decreasing for 0 < а < r  12. Setting 

that f'(a) = - (
v ' \ sin at J

the proof.

Theorem 1. For \z\ = r < 1,

ш Л е М  > L  < £ц|Л
feS z (1 + r)2 \ - e + 1 / ’

» Л г) m  \ cosa /1 -r\ / е - 1  Л
mm Re ---= C(a): = ----- 1 ----J cos a [--- - < r < 1 ) ,
f 's z 1 -г2 \ l+ r j  \e +1 J

.where a = a(r) is the unique value in (0, x) that satisfies In = sma'

Remark. As r increases from to a increases from 0 to 7г/ 2 and

(7(a) decreases from 0- As r increases from еж/2+|' to 1, a increases

from 7t/2 to ж and C(a) decreases from 0 to —oo. See Appendix for specific 

values of a and (7(a) as functions of r.

Proof. In view of (6), we have min Re min (7(a), where G(oc) is
\z\=r z 1 r

defined in Lemma 1 and В  = In Now r < (e — l)(e + 1) if an оп У̂ ^

В < 1, in which case min<7(a) = (1 - r)/(l + r). Setting В  = a/sin a when

(
\ cos a

J , the result follows from Lemma 1. 

-meQrem Oppose feS and (7(a) is defined bv Theorem 1.

0) В (*£*) < В < 1, then Re M  > B foj. |,| < 5 -1/2-..
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(ii) U f i <  ( ^ ) 2, then Re M  > ft for |*| < p(a) = # £ £= } , where

о = a(/?,r) is the unique value in (0,тг) that satisfies C(a) = (3. The result is 

sharp for all real /? < 1.

Remark. As (3 increases from —oo to 0, a decreases from 7Г to 7r/2 and hence
wj2

p(a) decreases from 1 to = tanh(7r/4) = 0.655..., the classical result of

Grunsky [4]. As /? increases from 0 to » Q decreases from тг/2 to 0 and

hence p(a) decreases from tanh(Tr/4) to (e — l)/(e + 1).

Proof (of i). From Theorem 1, we see for r < (e — l)/e + 1) that

min Re  ̂ _ = (3 < 1 when |z| = (3~1!2 — 1 .
N = r Z ( l+ r ) 2  1 1

But (3~1!2 — 1 < (e — l)/(e + 1) if and only if 0 > ■

(of ii). For (e — l)/(e + 1) < r < 1, we have min Re f(z)/z = C(a). In
l*l=r

particular, the r for which min Re f(z)/z = ^ *s one о̂г w îch

C(a) = (3. Solving In = iiira 35 reQuire<l by Theorem 1, we get r = p(a).

This completes the proof.

3. Extremal properties for subclasses of S.

In [2], Brickman, MacGregor, and Wilken found the extreme points of the

closed convex hull of S* to be z/( 1 — xz)2} |z| = 1, and the extreme points of the

closed convex hull of the convex functions, К , to be z/( 1 — xz), |x| = 1. Since

the maximum or minimum of the real part of any continuous linear functional

defined over a compact family H  occurs at an extreme point of the closed convex

hull of H,clH, the largest disk in which Re f(z)/z > (3 for all feclS* can be

found by examining the extreme points of clS*.

Theorem 3. For |z| = r < 1,

• d  _  /  1/ (1 -h r )2 , 0 < r  < 1 / 2 ,

/2 S> (  2 /  ”" i. (1 — 2r2)/2(l — г2)2 , l /2 < r < l .

Equality holds for /(z) = z/(l —z)2 at z = —r when 0 < г < 1/2 and at z = re ,

cos в = (3r2 — l)/2r3, when 1/2 < г < 1.
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Proof. We know for \z\ = r and |x| = 1 that min Re f(z)/z =  min Re 1/(1 - 

г)2. Setting z = re'6, we have

D„ 1 _  (1 - z)2 _  1 - r2 - 2r cos 0 + 2r2 cos2 0 /m 

(1 - z )2 e | l_ z|4- (1 - 2rcos0 + r2)2

To minimize g(9), we differentiate with respect to 9 and simplify to get (1 — 

2rcos0 + т^Уд^О) = 2rsin0(3r2 — 1 — 2r3cos0), which vanishes when 9 — 0, 

9 = 7Г and 0O = 0o(r)> where cos0o = (3r2 - l)/2r3(l/2 < r l) . Now p(0) = 

“  r)2j^(7r) = 1/(1 + r)2, and (̂0o) = (1 — 2r2)/2(l — r2)2. In particular, 

^(7r) < 5(0) f°r all r and <7(0o) < р(я) for r > 1/2. This completes the proof. 

From Theorem 3 we can give the starlike analog to Theorem 2.

•Theorem 4. If feclS*, then Ле f(z)/z > /3 in the disk |z| < />(/?), where

- 1/2

Р(Я
= J ( l  + (1 - Щ - у Л  , /3 < 4/9 

I /?-1/2 - 1 , 4/9 < /8 < 1

The result is sharp for all real ft < 1.

Proof. We have

(I + r)2 = ^ fOT Г = 0_I/2 - 1 = *(£)

and
1 — 2r2 /  \ _1/2

2(1 - r 2)2 = P *» r = ( l + (1 - 2/?)-1/2]  = m  ■

Now h(P) = s(/?) — t(/3) is a decreasing function of /?, with h(4/9) = 0. Since

*(/?) ^1/2 when /? < 4/9, the result follows from Theorem 3.

Remark. The extremal function for S in Theorem 1 agrees with that for S*

in Theorem 3 only when r < (e — l)/(e + 1). Similarly, the extremal functions

of Theorem 2 and Theorem 4 agree only for 0 > ^(e + l)/2e^ . Thus the

extremal functions of theorem 1 and Theorem 2 axe not in 5*, respectively, when

r > (e - l)/(e + 1) and /? > ((e+ l)/2e) .

Since the extreme points of clK are z/( 1 — xz), we see that min Re f\ feci К ,

— I*l=r
is the same as min Re f(z)/z , feclS*. This produces the following consequence 

of Theorems 3 and 4.



Corollary 1 (i) For \z\ = r < 1,

min Re f'(z) = { j" j j ,  2 , 0 < r < 1/2 
fcd K  I (1 ~2r )/2(l - r2)2 , 1/2 < г < 1 .

(ii) If feclK , then Яе f'(z) > (3 in the disk \z\ < p(/?)} where

p(p) = /  + (* ~ 2P)~l/2^ , < 4/9 ,

i/9_I/2- l  , 4/9 < /? < 1 .

For /ес/tf, min #e But (1 + r) "1 > (3 is equivalent to

r < (1 — (3)/(3, which leads to

Corollary 2. If feclK and 1/2 < (3 < 1, then Re f(z)/z > в for 

\z\ < (1 — (3)(3. The result is sharp.

It is shown in [1] that the extreme points of c/5*(7), 0 < 7 < 1, are z/(l — 

хг)2(1~1\ |x| = 1. Thus for \z\ = r < 1 we have

min Re = min Re —-- ^ 77-77 •
fedS-(y) z (1 -  z)2V-V

We will use this to find the largest disk in which Re f(z)/z > (3, 1/2 < (3 < 1, 

for feclS*(7). But first we need a well-known result on hypergeometric functions 

that can be found in [5, p. 206].

Lemma 2. For с > b > 0 and z ^[1,00),

-- 1 Ш --- / '  (‘" ' ( I  _  t)e-l-I(l - tz)~cdt .
(1 - z f  Г(6)Г (с-6)У„

Lemma 3. If 0 < b < 1, then Re 1/(1 - z)‘ > 1/(1 + r)*.

Proof. The result is clear for b = 1. If b < 1, we set с = 1 in Lemma 2 to 

obtain
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(8)
l_____ Г  r- 1 i д

•(1 - 6) Л  ( l- i ) ‘ l - tz( l- « ) ‘ Г(6)Г(1

Since Ле 1/(1 — tz) > 1/(1 + tr), the real part of (8) is minimized at z =  —r. 

We are now ready to prove
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Theorem 5. If feclS*, 1/2 < 7 < 1, then 3? f{z)/z  > /?, 1/2 > /? < 1, for 

\z\ <  m in j^-1/ ^ 1-7) — 1,1}. The result is sharp.

Proof- Setting b =  2(1 — 7 ) in Lemma 3, we see for \z\ =  r < 1 that

о f ( z) • D 1 1min R e ---= mm Re -----—7-— г = ----- -7-— 7 .
feclS*(у) z (1 - (1 + r) (

But ^ +ту2(1-у) > Р is equivalent to г < /З-1/^1-?) — 1, and the proof is complete.

In [6] Obradovic found the non-sharp result for zeA and feS*(7 ), 1/2 <  7 < 1, 

that Re f(z )/z  > 1/(3 — 27). The sharp result is a consequence of letting /? in 

Theorem 5 be the value for which ^~1/2(1_ 'ir) _  1 — \ This give us

Corollary 1. If feclS*(7 ), 1/2 < 7 < 1, then Re f{z)/z  > l / 22<1-7) for all 

zeA.

Since feK ( 7 ), the family of functions convex of order 7 , if and only if zf'eS*( 7 ), 

we also have

Corollary 2. If feclK (7 ), 1/2 < 7 < 1, then Re f'(z ) > 0, 1/2 < 0 < 1, tSL 

\z\ < min-f/?-1/2̂ -?) — lj 1}. The result is sharp.

Remark. Our proof of Theorem 5 does not extend to 0 < 7  < 1/2 because we 

cannot choose с =  1 in Lemma 3. If we set с =  2 and b =  2(1 — 7 ), then

9) M  =____ I____Г (_L\ '“2т_ 1 _ л
* Г(2 - 27 )Г(27)/о  VI —«У (1 - < * ) 2 '

Since min^ Re will be attained for different values of 9 as t varies, it

is not clear how to minimize the real part of (9). It seems that another method 

is needed to find min Яе f ( z)/z over feS*(i), 0 < 7 < 1/ 2.
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APPENDIX

г a c(a)
.50 0.74 0.44
.55 1.11 0.37
.60 1.35 0.25
-65 1.55 0.03
.70 1.72 -0.37
.75 1.86 -1.15
.80 2.00 -2.87
.85 2.13 -7.24
.90 2.26 -22.10
.95

2.42 -120.50
.99

2.62 -4331.98

Calculations by Professor B. A. Taylor.
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CONVEXITY THEORIES I. 

Г-CONVEX SPACES

Helmut Rohrl

Abstract: A general notion of convexity theory is introduced 
which leads to the definition of the category of Г-convex spaces.
Various properties of Г-convex spaces are obtained, and the spread 
of a convexity theory as well as the semi-norm of a Г-convex space 
are discussed.

0. Introduction

In several previous papers, beginning with8̂ and9̂, the author jointly with D. 

Pumpliin investigated the category of totally convex spaces as well as several of 

its subcategories. Subsequently D. Pumplun6̂ and A. Wickenhauser13̂ introduced 

and studied the category of positively convex spaces. Convex sets which are certain 

objects in the category of convex spaces have been an integral part of mathematics 

for талу years. Superconvex spaces and their category were introduced by G. 

Rode11̂ a decade ago and play a significant role in certain investigations into 

totally convex spaces. This list of what might be called “convexity theories” is by 

no means complete.
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Since these “convexity theories” are dealt with individually and separately it 

seems appropriate to define a general notion of convexity theory that encompasses 

all listed ones (and more) and to develop a general theory of them. Precisely this 

is the purpose of the following paper.

Broadly speaking, convexity deals with sets X  - perhaps imbedded in some 

vector space - equipped with certain abstractly or concretely defined Бпеаг combi

nations £  <*;£», with X,- e X  and а , € these linear combinations, which can be 

finite or infinite, are again contained in X. It is convenient (and justifiable8̂ , §2) 

to consider the sequence (ai,a2, . . .)  to be infinite by adding zeros to it, should 

it be finite. The totality Г of all a* = (ori,a2, . . . )  that occur in these linear 

combinations is the set of operators (or operations) and determines the category 

of Г-convex sets (or better: spaces). What conditions should be satisfied by these 

Г-convex spaces?

A feature that is common to all “convexity theories” is a condition on the 

operators:
oo

K l l  := Y I  N  ^ 1 - for M  g r - (ro)
i=l

Furthermore it is convenient to assume that all unit vectors Si := ,i> • ■ •)»

with Sij the Kronecker symbol, satisfy

6 le  Г , for all j  = 1,2, . . . .  (r i )

Then one must insist on the intuitively clear and unobtrusive rule

oo

SijXi = Xj , for all Xi € X  and all X. (ГС1)
*=l

It is usually called the PROJECTION AXIOM. Finally, if о с .Л Л ,-  ■ ■ are in Г 

and X  is a Г-convex space then we can form
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This expression is again in X  and equals in all listed cases - in particular if X  is 

imbedded in some vector space and the linear combinations are concretely given 

as the ones in the vector space -

oo / oo \

X) ( X] ) xi ‘
j=i \i=i I

This, of course, requires that

:= а 1#+ог2#  + ---€Г> for all (Г2)

and that
oo /  oo \ oo /  oo \

E H E ^ b E  E x> (rC2)
i= 1 \i=l J j= 1 \i=l /  

for all e Г, all xy 6 X, and all X.

The last rule is usually referred to as the BIG BARYCENTER AXIOM.

At this point we have a good definition for a convexity theory Г: it is a set of 

infinite sequences of complex numbers satisfying (ГО), (Г1), and (Г2). Then a set
oo

Л", equipped with abstractly defined “linear” combinations £  а*х,- where а* € Г
i=i

and xm G X N, is called a Г -convex space if (ГС1) and (ГС2) are satisfied. The 

category TC of Г-convex spaces has as its objects the just defined Г-convex spaces 

and as its morphisms the obvious maps.

In §1 convexity theories Г are defined; they turn out to be precisely the 

subalgebras of the algebra Г2 := г (see8̂, §2) of total convexity. An important 

object is the set Sp •= | ]C а« : € r|. It is in fact the free Г-object on the 

one-point set {1} С Sp. Various properties of Sr are obtained and their interplay 

with properties of Г itself are illuminated. Two important invariants of Г are 

introduced, namely

:= sup { | £  or,| : 

;= sup |a,| : a.

РГ := sup и т .  a,*| : a, 6 Г and card(supp(a*)) > 1

and

гг := sup < )  |а,-1 : а* € Г and card(supp(a*)) > 1
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Obviously, pr < rp < 1 holds, and it is shown that there are convexity theories with 

РГ < TT' At the close of this section the notion of convexity theory with pseudo

group condition (PG) resp. strong pseudogroup condition (SPG) is introduced.

§2 starts with the definition of T-convex space, leading to the category Г С 

of Г-convex spaces and their morphisms. A brief construction shows that for any 

set 5 there is a free Г-convex set Fr(S) on that set; in other words, ГС has 

sufficiently many free, and hence projective, objects. A Metatheorem implies that 

the computational rules of^, §2, hold for all Г-convex spaces, with Г arbitrary or 

Г with zero whenever a zero shows up in that rule. As in8̂ , §5, one can show that 

VC is an autonomous category in the sense of3̂ .

§3 is a short section that contains various examples. Their main purpose is to 

show how abtruse matters can be for certain convexity theories Г as judged from 

П.

The spread or of a convexity theory Г is the subject of §4. or takes value in 

the set {—oo} U { t : 0 < t < 1}. от > 0 means if X  is any Г-convex space, ~ is any 

Г-congruence relation on X, and x,y € X  any two elements such that ax ~ ay 

for some a 6 5r with |a| < or then px ~ py for all p € Sr with \p\ < or- &r < Vr 

is true for all convexity theories, and pp < crp holds under quite weak assumptions 

on Г. Convexity theories Г with (PG) plus additional weak hypotheses satisfy 

crp = 1.

In §5 we discuss the semi-norm || || of a Г-convex space. Its definition ap

pears already in8̂, §6. However, in this much more general situation things are 

considerably more complicated. For instance, the two possible definitions for the 

semi-norm as given in8̂, §6, (see (6.1)) agree only under additional, although mild 

assumptions on Г. The same is true for most of the statements of8̂ , §6; for details 

we refer to the body of this paper. The final result of this section gives conditions 

on Г such that for all Г-convex spaces X , x G X  with ||x||r = 0 implies x = 0. 

The fact that this is not true for all infinite convexity theories was shown in §1 

and §4.
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1. Convexity Theories

Let a, := (arb a2> •••) be an infinite sequence of complex numbers such that 

the sum of the absolute values of the a, converges. We set

S(a.) : = f >  and ||a.|| := f> ,| .
«=1 i=1 

Obviously, |S(a*)| < ||a*|| holds.

As in8l we denote by 0. the set of all am for which ||a,|| < 1 holds. Clearly,

the zero sequence 0* is in П as are the S{,j = 1,2,... , where the entry Sj is the

Kronecker symbol. It is customary to denote the set {A": а* ф 0} by supp a,, the

support of a*.

Definition 1.1. A convexity theory is a subset Г of ft satisfying

Si e r , for all j  = 1,2,... (Г1)

oo / 0 0  oo \

if O f . , a r e i n  Г, so is J * (Г2)
*=i \i=i i=i /

Note, if ft is viewed as a general П-algebra by letting ft operate on itself in

accordance with Definition 1.1, (ii), then the convexity theories are precisely the

subalgebras of ft.

A convexity theory Г is called finite resp. infinite, if Г С ft^in := {<** G ft : 

s uppam is finite} resp. Г % f t Г is called proper, if Г э Д := {# : j  =  1,2,...}; 

it is said to be with zero, if 0* G Г holds; it is called real, if a* G Г implies a,- G IR, 

for all i = 1,2, ■ • •.

The set CT of all convexity theories is a complete lattice with

А{ГЛ : A G Л} := П {Гл : A G A} and

V{rA : A G A} := П {Г G CT : Г Э U {ГА : A G A}}.

CT has a smallest element, Д, and a largest element, ft. ftjR := {or. G ft : G M, 

for all i = 1,2,...} is the largest real convexity theory. Additional convexity 

theories that appear in various contexts axe:
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:= {a , 6 ft : a, >0, for all * = 1,2,..., and S(am) = 1}, 

Convexity, given by (see61,131)

« С  :== ^ f in  А  П вс ,

Positive Convexity, given by (see6̂ 13̂ )

V := {a* € ft : e . > 0, for all t = 1,2, • • • }

Strictly Positive Convexity

P+ := { a . e V :  S(am) > 1}.

ese convexity theories are by no means the only ones that appear in the litera

ture.

With each convexity theory Г one can associate the subring Rr of <T that is

g nerated by the set {а,-: a , e Г and i = 1,2,...}. Conversely, let R  be a subring

of with 1 е л  such that for each r € R  there is a r' 6 R  and a n 6 N  satisfying 

|r| < n and r = fir', then

%n,fl := {«. € ft :suppo. is finite and a, € R, for all « = 1,2, . ..}

exity theory with R  = ЛоПп Я. Since there is a large number of such rings, 

that the set of finite convexity theories is distressingly large. However, 

infinite convexity theories seem to be more amenable to classification.

An important invariant of a convexity theory Г is the set

Superconvexity, given by (seellj)

Sr := {S(a.) : a . e Г}.
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Lemma 1.2.

(i) Sr CO{(T):= {ze(T:\z\<l}

(ii) 1 G Sr

(iii) p G Sr if and only if pS\ G Г (for some and hence all j  = 1,2,-**)
oo

(iv) for all a* € Г and all p* G (Sr)1*, 53 а*Р* € Sr; ”*■ particular,
i=i

Sr м a multiplicative monoid.

Proof. Straight forward.

Proposition 1.3. Sr Q bdy 0(@) if and only if

either. ||a*|| = 1 and card(supp(a*)) = 1, for all am G Г

on Г С ftec.

Proof. Clearly, either of the two alternatives implies Sr Q bdy 0((F). Con

versely, if Sr С bdy 0((F) then a* € Г with card(supp(a*)) = 1 satisfies ||a*|| = 1. 

Assume now that there is a a, € Г with card(supp(a*) > 1. For any /?* G Г we 

have 1 < |S(/?*)| < ||/?*|| < 1, whence and 0+ G ftJC- Suppose

there were a /?* G Г with (pp. ^  i^o. mod 2я\ Since, for any bijection a : N  —> N, 

(a<r(1),a<r(2),. ..)  G Г holds, we may assume that a\ ф 0 and &2 ф 0. Hence 

Definition 1.1, (ii), applied to a*,/?i := := /?, and /9* := S\ for j  > 2, leads

to 7* G Г where

7* := =ev>e* ^ ia*+ + ( у :  ‘ ^  •

Since

5(7.) = e‘>- eiv- 5(5.) + a****»- 5(0.) + £  a, j

= e‘v— + a2e'¥’'’- + ,

we have |S(7.)| < 1, contrary to our assumption. Hence ipp9 = (pa., for all /?* G Г. 

Since 6J G Г and = 0 holds, our assertion is proved.
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A convexity theory Г is called normable if there is a p G Sr with 0 < |p| < 1.

Corollary 1.4. The non-normable convexity theories are precisely the 

following:

(i) There is a finite subgroup G of bdy 0((F) such that 

either: Г = {pb{ : p G G and j  = 1,2,...}

or: Г = {0*} U {pSi : p £ G and j  = 1,2,...},

(ii) There is a dense submonoid M  of bdy 0((T) such that 

either: Г = {p6i : p G M and j  = 1,2- • • }

or: Г = {0,} U {p8{ : p e M  and j  =  1,2,... },

(iii) Г = ft,с,

(iv) Г = ftc.

All G and M as specified occur in (i) and (ii).
2]

Proof. Immediate from Proposition 1.3 and from Kuhn’s Theorem (see , p.

87).

For a convexity theory Г we define the length of Г by 

lg(T) := sup {card(supp(a*)) : a* € Г}.

It is easy to see that for any convexity theory T,£g Г > 1 implies £g Г = oo.

Proposition 1.5. Let Г be a convexity theory with lg(Г) > 1 

such that {l}c Sp. Then Г is normable.

Proof. Since the length of Г is at least two, there is a (a i, <*2,0, . . . )  G Г 

Qfi ф 0 and ог2 Ф 0. By assumption there is a p G Sr with p ф 1. If 0 < \p\ < 1 we 

are done. If p — 0 then + a2 • = (<*1,0,...) € Г, whence oti G 5r, making 

Г normable. If |p| = 1 and p ф 1, then either + a2pS\ or + ос2р2&* has 

first entry of absolute value strictly between 0 and 1, again making Г normable.

Proposition 1.6. Let Г be a normable convexity theory of length > 1. Then, 

for every a* G Г with card(supp(a*)) > 1 and for every i G W, ai is an 

accumulation point of Sr-
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Proof. For a choice of a* and i as specified there is a j  ^  i with otj ф 0 and 

(or,-, Ofj,/?, 0 ,. . . ) € Г, where /? =  £  or*. Since 0 is an accumulation point of Sr 

there are p itp2 € Sr arbitrarily close to 0. Since a  + ocjpiS\ + /3p26l G Г, we 

have oti + pi otj -f P2P £ Sr and our claim follows.

Remark. If Г is a convexity theory with zero then, for every a , E Г and

every i € N, a,- G Sr as (or,*, 0 ,. ..)  =  ^2 £ Г. Hence Proposition 1.6 is of
i

interest only for convexity theories without zero.

For a convexity theory Г we define, in [—00, 1],

pr := sup {|S(a*)| : a* 6 Г and card (supp(a*)) > 1} and 

rp := sup {||a*|| : а* € Г and card (supp(a*)) > 1}.

Additionally we call Sr П bdy 0(@) the monoid Mr associated with Г.

Lemma 1.7. For any convexity theory Г,

(i) /</(Г) =  1 implies pr =  тг =  —oo,

(ii) lg(T) >  1 implies 0 < pr < тг < I.

Proof. Obvious.

Proposition 1 .8. Let Г be a convexity theory of length > 1 . I f  

card Mr =: n > 2, where n 6 JV U {00}, then cos (£) Tr < pr-

Proof. Assume n < 00. Let otm =  (e,v>1 |ai |, e,v,2|a?2|,... ) 6 Г. With 

pi 6 Mr, i =  2 ,3 , . . . ,  we have

=  « i £  +<ЧР2% + <ЧР>*1 + ■■■ € Г.

Since each pi can be chosen to bring </?,- + argpi to within J  of y?i, an elementary 

estimate shows that cos (^) • ||a*|| < |*̂ (A*)I where /?* is the stated modification 

of a*. If n =  00 then the modification of a* can be made to bring </>,• + a.rg pi to
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within e oi <p\, for any choice of e > 0. Hence the assertion follows by an obvious 

limit argument.

Scholium 1.9. There are convexity theories Г such that рг < ТГ-

Proof. Let G С bdy 0(C) be the set {tx : t = e2̂  and Л = 0,... tN — 1}

72 = Let furthermore Г be the convexity theory generated by the set

Evidently, Hr С Hr+i for all r > 0. We claim that Г = U {Hr : r > 0}. Obviously, 

Г Э U {Hr : г > 0}. On the other hand, U {Hr : r > 0} is a convexity theory 

as or* £ # r, r > 0, implies that card (supp (a*)) is finite. An easy inductive 

argument (on r) shows that

(i) a* E Яг,г > 0, and ||a*|| = 1 implies o;* = tx6i, for some A and 

some j,

(ii) a* € # r,r > 0, and ||a*|| < 1 implies ||a*|| < in particular, 

if card (supp(a*)) > 2 then ||a*|| <

Next we prove

(iii) a* € Яг,г > 0, and ||a*|| = ^ imphes card (supp(a*)) = 2 and a* 

has as its non-zero entries tAl 71 and tXl 72.

The statement is obviously true for r = 0. We assume that it is true for г 

and proceed to prove it for r + 1. Let ... E tfr. Since

we have ||с*,|| > Hence (ii) implies ||a*|| = 1 or ||a*|| = Suppose 

||a*|| = 1. Then, due to (i), £  akfi* = tx{3{ and thus ||/?*'|| =

where N is a given integer > 2. Put 7* := (72,72, 0, ■ • •) where 71 = Je# and

Ho := {7 *}U{<a« : A  =  0 , . . .  , JV - l ; i  =  1 , 2 ,

We define inductively # r+1, given Я г, r > 0 by

fc=i
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induction hypothesis we are done. Suppose now ||or*|| = Then, for some 

m i ф m2, ami = tXlj\ and ami = tx*72, while a,- = 0, for i ф
00

Hence 53 +<Аа72/?Г3* The above inequality now implies
*=1

HW4 I = И#"’ II = 1> and we are done using (i).

(iv) a* e Hr,r > 0, and ||a*|| = \ implies |S(a*)| < ^ y ^ l  -f cos (-ĵ ). This 

is straightforward as (iii) implies S(a„) = |

(v) There is a M  < ^ such that a, € # r,r > 0, and ||a,|| < | imply ||o:*|| < 

M . All elements of Hi with norm < \ axe of the form 77. = 710™1 + 

72# "’ . If ^mi == tx'6i\0?> = tx'6i' then ll^ll = I  if л ф j 2, or ll^ll =

+ cos (77). Otherwise at least one of ||j0“ l || 

or ||/?Г2|| is < ^ , and hence Ц77*|| < J + | “  f . So, if we choose M = 

max (|, 1 + cos(t7)). ^ben the assertion is true for г = 1. Assume that
00

assertion (v) is satisfied for r. Let a*, (5\, /?*,... E Hr and put 77* = £
Jfc=i

If ||a*|| = 1, then (i) shows that 77* = txpl. Thus \\0i\\ < and the induction 

hypothesis implies ||/3*|| < M, whence ||t7*|| = ||/?i|| < M. If ||or*|| = 5, then

(ii) implies that 77* = *A*7l /3?' + *Аа72/?Г3- И ИД"1 II = II = 1 then the 

discussion of r = 1 shows that ||t7*|| < M  holds. If ЦДЛ*11| < 1, ||/?Г2|| < \ we 

have ||t7,|| < £  + £ = §<  M; similarly for ||/?Г2|| ^  И^Г1 II < f • Finally, if 

||a*|| < £ then indeed ||a*|| < M  and hence ||t;*|| < M.

(i), (ii), and (iii) imply тр = while (iv) and (v) show />г <

A convexity theory Г is said to satisfy the pseudo-group condition if

for all X,p G Sr with 0 < |A| < |/>|, Ap~l E Sr holds. (PG)

Obviously we have

Lemma 1.10. If the convexity theory Г satisfies (PG) then Mr is a group 

and Sr equals MpSr.

Proposition 1.11. Let Г be a convexity theory with (PG). If 0 ф p E Sr w 

an accumulation point of Sr then so is any other point ф 0 of Sr-
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Proof. Suppose there is a sequence pi € Sr,i = 1,2,..., with |p,| < |/»|, 

pi ф />, and lim pi =  p. Then, by (PG), pip~l 6 Sv,pip~l ф 1, and lim pip~l -
i—►oo 1—»oo

1. Similarly, if there is a sequence pi € Sr,t = 1,2,..., with |/?;| > \p\,pi ф p, and 

lim pi = /3, then ppj1 E Sp, ppj1 ф 1, and lim pp j1 = 1. But, whenever 1 £ Sr
*—♦00 I —► oo

is an accumulation point of Sr, so is any other point ф 0 of Sr-

At some point we will need the following strong pseudo-group condition

for all p € Sr and all a* € Г with 0 < ||aJ| < \p\,p~l&*и ĝpG^

:= (<aIp“1,a2p” 6 Г holds.

Obviously, (SPG) implies (PG).

2. The Category of Г—convex Spaces

Let Г be a convexity theory and let X  be a set. A Г-structure on X  (in the 

sense of1], p. 48, or5l, p. 16) is a map Г x X N It is convenient to write this
oo

map as (a,,£*) £  a iC- A set X  equipped with a Г-structure is also called a 
i=i

Г-algebra.

Definition 2.1. А Г-algebra X  is called а Г-convex space, if for all 

or*,/?i,Ply... in Г and all £* in X N the following axioms are satisfied

±*ie=e  (rci>
»=i

oo / o o  \  o o / o o  \

(ГС2)

(ГС1) is usually called the Projection Axiom, while (ГС2) is called the Big 

В arycenter Axiom.

Definition 2.2. A map /  : X  —*■ Y between Г-convex spaces is said to be a 

morphism of Г-convex spaces if for all a* £ Г and all £* € X N

(
oo \  oo

Е а‘П  
»=i /  t=i
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The class of all Г-convex spaces together with their morphisms (under set- 

theoretical composition) forms the category ГС of Г-convex spaces. Similarly one 

defines finitely Г-convex space as Га „-convex space, where Гдп = Г A ftfin, and 

denotes the corresponding category by TfinC. These notations compare to the one 

used in8̂ as follows:

TC<r = QC,TCjr — ft2RC,TCfin = = (fijR A

Clearly, AC is canonically isomorphic with the category of sets, while Aa := 

{0*} U Д furnishes the category A0C that is canonically isomorphic with the 

category of pointed sets. fiscC is called the category of superconvex spaces (see11!), 

and ftcC is variously referred to as the category of barycentric spaces (see4̂ 12̂) 

or the category of convex spaces (see11!). Finally -pc is called the category of 

positively convex spaces (see6!).

The set TC(X, Y) of morphisms of Г-convex spaces from I" to У becomes a 

Г-algebra by setting

(^2  a<f*j (*):= £  a<Mx)-

It follows from Definition 2.2 and8l, (2.4), (ix), that this Г-algebra is in fact a 

Г-convex space Homr(X, Y).

The category Г С is equationally defined and hence is ал algebraic category. 

As such it has free objects on any set S. Such an object, irr(*S,)> is obtained by 

the following construction (see8!, p. 959):

Fr{S) := {/€ 0(^(5)) :a(/)*€ Г}, 

where <*(/)* G ft is such that for some injection (p : supp /  —»N,

holds.

m  ** = <*>(*)

* \ 0, otherwise.
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Note, that the condition <*(/)* £ Г does not depend on the choice of <p : 

supp /  —► N. We define an operation of Г on Fp(S) by restricting the operation 

of П on 0(i\(5)) (see8̂, p. 595) to Г and Fr(S). Clearly, this makes Fr(S) a 

Г-convex space. The map S —► Fr(S) required for having a free object is the 

obvious one, namely S Э s ь-* 6* £ Fr(S). Thus, if 5 is a finite set having n 

elements, the free object on S can be taken to be

Fr (n) := {(<*!,... ,an) : (в1э... ,an,0,0,.. .)  £ Г},

with the map from S to this set the obvious one and the operation of Г the obvious 

one. From this one concludes easily

Corollary 2.3. (i) The free Г-convex space on the one-point set {1} is the 

T-convex space Sr (see (1.2), (iv)) together with the map {1} Э 1 *-* 1 £ Sr*

(ii) The free Г-convex space on the countably infinite set N  is the 

T-convex space Г (see (1.1), (ii)) together with the map N Э n n ► 6" € 

Г.

(iii) The free T-convex space on the finite set {1,... ,ra} is the T-convex 

subspace {(c*i,... ,an,0,0,...) G Г} of Г together with the map

{1,... ,n} э t ~  Si € {(а1э. . . ,a « ,0 ,0 ,. . . )  G Г}.

Given an convexity theory Г it is important to establish computational rules 

that are valid for all Г-convex spaces. For this purpose we choose a countable set 

{ui)w2)-**} of variables. We want to define inductively the notion of nih level 

term over Г in the variables {ui ,u2, ... }. The 0 th level terms are, by definition, 

the variables. Given what the ntk level terms over Г are, the (n + l)9* level terms 

are defined to be the formal expressions

T(n-H) := g a|.r<*> 

i=i

where a. £ Г and is a £|A level term over Г in the variables {ui ,u2>• • ■ }» 

with < n. By an equation over Г in the variables {iii, U2t... } we mean a formal
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equation т = r;, where г and т' are finite-level terms over Г in the variables 

{tib t/2, ... }. We say that ал equation r = r' over Г in the variables {ui, u2, ...} 

is an identity (or computational rule) for all Г-convex spaces, if for every Г-convex 

space X  and every map ip : {1̂ ,112,• • • } -*► X  the equation obtained from r = t" 

by substituting for each «; the element v?(ti,-) € X  is valid in X. For example,
00 00

8\щ = Uj is such an equation (i.e. computational rule), while £  6\щ = uJ+i 
i'=l i=l 
is not.

Metatheorem 2.4. Let т = т1 be an equation over Г in the variables 

{tii,U2, ... } such that the equations obtained from т = r' by substitution for 

each Ui the element £ Q, is valid in Cl. Then т = r' is a computational rule 

for all Г-convex spaces.

Proof. By substituting, in r and r', for each u» the element 6\ E Г С Q we 

obtain two elements r and f 1 of Г that are equal. Since Г is the free ГС-object on 

the set N  by Corollary 2.3, (ii), there is, for every map ip from {iti', U2, - -. } to the 

Г-convex space X , a unique ГС-morphism ф : Г —» X  with ф(6J) = <р(и^.ф maps 

r (resp. r/) to the element f (resp. f') of X  that is obtained from r (resp. t') by 

substituting for each щ the element <р(щ) в X. Since r = r; we have f = f ' as 

had to be shown.

As an immediate consequence of Metatheorem 2.4 we have

Corollary 2.5. Г be a convexity theory. Then the computational rules (2.4) 

and (2.12) of81 are also computational rules for all T-convex spaces, except 

that (2.4), (v)-(vii), and (2.12), (ii), require a convexity theory with zero.

To the rules (2.4) and (2.12) of®1 we add another one - dubbed (2.4), (x) - 

which also falls under the purview of the current (2.5):

(2.4), (x) (see13!, (7.1)):

Let / , g : N  N  be set maps such that (f,g) :N  - > N x N  is a bijection. Then,



1190

f >  (е^А=£«/(0<((Ж- 
«=1 \j=l )  t=1

Proof.

oo /  oo \ oo /  oo \

E*. Е4<1 = E«(ZM!№S)
i=l \j= i J  »=i \<=i /

- Ё  (Ё  4 < o - £  -« » < :№  
t=1 \i=l /  t=l

As in8!, §5, we obtain

Proposition 2.6. ГС w an autonomous category in the sense of\ i.e. it 

possesses a tensor product - <g)p - which, together with the coherent morphisms, 

makes Г С into a symmetric monoidal closed category.

It should be noted that the explicit construction of the tensor product in 

TC = ПС, as given in8l, §5, works in ГС just as well.

Let Г' С Г be convexity theories. Then there is an obvious functor Up> • 

ГС —> Г'С. It assigns to each Г-convex space X  the Г'-convex space Ufi (X ) ob

tained from X  by restricting the operators from Г to Г' and by leaving unchanged 

as set map each morphism of Г-convex spaces. Apparently we have

Up, о Uf, = Uf„ , for Г" c r ' c r .  (2-7)

Uf, is called the forgetful functor from ГС to Г'С. An easy verification leads to 

Theorem 2.8. £/f, has a left adjoint F f ', for all Г 'СГ.

Here we want to provide an explicit construction for the completion functor 

Ff from Г'С to ГС. For this, let X 1 be a Г'-convex space with underlying set \X |.

for all a*,/3* G Q. and (J € X N
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Form FrdJf'l) and denote by ~ the smallest Г-congruence relation on Fr(|.X'|) 

that contains the elements

£  aigC1̂ , e. € г and {* € |Л”|".

Then Ff'(X') := Fr(|X'|)/ ~ is a Г-convex space and the map

№  : X ' -U Fr(|X'|) ^  F f'(X ’) (2.9)

is a morphism of Г'-convex spaces from X' to Uf, (A"')^. A routine argument 

shows that, for each X ' G Г'С, rjx> : X ' -* F f (X') is a universal arrow whence 

we have an explicit construction for F f '.

The obvious forgetful functor from ГС to Sets is denoted by C/r, or simply U if 

the particular choice of Г is clear. Note that via the isomorphism ДС «  Sets, U£ 

and UT are isomorphic.

3. Examples of Congruence Relations

1. Let Г be a convexity theory of length 1. Let ~ be a congruence relation on the 

Г-space Sr and denote the associated partition of Sr by {Pi : t € /}• Then there 

is a map q : Sr x I  —> I  such that

A - Pi С Pq(x,i)y for all \ € S r , i e I .  (3.1)

Conversely, if a partition {Р,-: г G I)  of Sr and a map q : Sr x /  —* I  axe given such 

that (3.1) is satisfied, then the equivalence relation determined by this partition 

is in fact a congruence relation. It is easy to exhibit examples of such partitions 

in case Г is normable. Let 0 < rj < 1 and put

P0 := Sr П {z : \z\ <  77}, Pp := {p} where p G Sr П {z :\z\> jy};

the obvious choice of q : Sr x ({0}U {p G Sr • \p\ > r?}) —► {0}U {p G Sr '• \p\ > 17} 

will satisfy (3.1).



1192

2. There are also partitions that do not fit into the previous example. In order to 

produce one, assume that the length of Г is 1 and that Sp := {^_1 : n G N}. Let

V be any set of prime numbers and put

^ : = { П р ' ,Ы : р е Р , е ( р ) б ^ } :

in particular, Рф = {1}. Then the map q : Sp x {V} —► {V} given by

q(n~l ,V ) :=V  U {p : p\n and p prime}

satisfies (3.1).

Next, let Г be a convexity theory of length > 1. Let ~ be a congruence 

relation on the Г-convex space Sp and denote the associated partition of Sr by 

{-P.- : i G /}. Then there is a map q : Г x I N —► I  such that

^ 2 akpv(k) € Pq{o.lV>), for all a* G Г,у> G I N,p^k) € Pv(k)- (3-2) 
к

And, again, the converse is true. But it is more complicated to give examples of 

such partitions. However, if rp < 1 holds, then for any choice of rj with 7p < rj < 1, 

the partition of Sr given by

Po := Sp П {z : \z\ < i;}, Pp := {p} where p G Sr П {z : \z\ > i}} 

satisfies (3.2) with the following choice of q :

E a*AV(*) if card (supp(0*)) = 1 and E  a kP<p(k) 
к

II«

0 if card (supp(0*)) = 1 and E  a kp<p(k) 
к

» 0 if card (supp(<*,)) > 1 ,

as is easily checked. Of course, there are convexity theories with length > 1 that 

have the above property. For instance,

Г := {z6{ : |z| < 1 and j  = l,2,...}U {a* G ft : | M  <
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does, as is easily checked. Note also, that we obtain examples for (3.1) and (3 .2) 

by defining P0 through “ < ” rather than “ < ” and by delimiting the remaining 

Pp by “ > ” rather than “ > ”.

3. Equip Sr with the stated congruence relation ~, and choose x G P0 and у =  1. 

Then a simple argument shows

{z : \z\ < rj'} resp. {z : \z\ < rj'} provided that

Sr П {z \rj < \z\ <t)'} =  ф resp. Sr П [z : rj < \z\ < rj'} =  ф.

and that any two such sets are mutually distinct. In fact, if the cardinality of 

{|/>| : p G Sr and 77 < |p| < 1 } is then there axe К  distinct sets SrD {z : \z\ < 77'} 

that are equal to {p G Sr : px ~ py} for an appropriate congruence relation ~ on 

Sr and suitable x, у £ Sr- These congruence relations occur if either 1дГ = 1 or 

IgT >  1 and Sr П {z : rp < \z\ <  1 } ф ф. The example presented at the end of 

§1 , by comparison, satisfies IgT = 00 and Sr П {z : rp < \z\ < 1 } = ф. For this 

p2uiicular choice of Г, partition Sr by

{p e Sr : px ~ py] =  5Г П {z : \z\ < r?}.

Of course, in this equation the disk {z : \z\ < rj] can be replaced by the larger disk

Hence, if we assume that our convexity theory has 1 as an accumulation point of 

{|/>| : p € Sr}, then there are infinitely many 0 < r)' <  1 such that for some 

congruence relation ~ on Sr and some x, у G Sr,

{p G Sr : px ~ py} = Sr П {z : \z\ < t)'}

P0 := Sr Г» {z : \z\ < pr } , Pp := {/>} where p G Sr П {z : \z\ > pT}-

By defining
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Again it is easy to check that (3.2) is satisfied. Choosing x G P0 and у = 1 we get 

{a : ax ~ ay} = {/)б5г : \p\ < /?г}-

4. Let 0 < 6 < 1 and put

ft*) := {a* G ft : ||a,|| < b} U Д , 

ft6] :=  {a* G ft : ||a*|| < 6} U A .

An easy computation shows that both ft6) and ftfcj are convexity theories. Clearly,

Sab} =  {ze<B:\z\<b)U{l}%

Sab] =  {ze(T:\z\<b}U{l}.

A simple application of definition (5.1) shows that

Iblln*) = И  , for all p€ Snb)i

IH k; = \p\ , for all p G Snby

4. The Spread Of A Convexity Theory

Let Г be a convexity theory and let a G Sp. Denote by IQ the class of all 

quadruples (Jr,~,x,y) where X  G ГС, ~ is a Г-congruence relation on X } and 

x,y G X  such that ax ~ ay. IQ is always non-empty as we can choose x = y. We 

put

<7г(а) := n{{p G : px ~ py] : (J£,~,a;,y) G IQ for some X  G ГС}.

Let ^r({xo,yo}) be the free Г-convex space on the two-point set {xo,yo}* Given 

any (- ,̂'s',i,y) G IQ there is aunique Г-morphism тг : Рг({хОуУо}) X  satisfying

* ( *̂o) = * and 7Г (6yo) = y. Define, for /, g G Fp({x0, yo}) the relation “/  by
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“*■(/) ~ 7Г(^)”* An easy verification shows that “/  ~ <7” is a Г-congruence relation 

on ^г({*о,Уо}) and that

{/? € Sr : A o  = {? e 5r : px ~ />y|

holds. Hence we have

Lemma 4.1. For all ot e Sr 

ar (or) = n{{p e Sr : />$x0 ~ A 0} : № ({*0, J /o } ) ,^ю Ао) € ôr}- 

Furthermore, a simple argument shows

Lemma 4.2. The following assertions are satisfied for all a € Sr

(i) *?г ■ сгг(ог) С <7Г(а) and <тт(1) = 5p,

(ii) if Г is a convexity theory with zero, then 0 € <7г(<*) and crr(O) = {0},

(iii) if Г is a convexity theory with (PG) then

Sr П {z : \z\ < |<*|} С от(а)

and

0Т(«) Q (?r(P) whenever \a\ < \j3\.

The spread <7p of a convexity theory is defined as the supremum in [—00, +1] 

of all /1, with 0 < ц < 1, such that

{/> € Sr ' \p\ < м} ^  П j«rr(a) : 0 Ф a € Sr J- (4.3)

Proposition 4.4. The following statements are valid for all convexity theories

(0) tgT = 1 implies Pr = err = Tp = —00,

(1) crr < тг,

(ii) Г 'С Г  implies pr> < pr, 0Г1 5: < ЛГ»
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0“) ?л{Г,-:.-€/} < inf{pr, : * € /}

^Л{Г ,:«€/} < bf{<7r; l i e  1}

*Л{Г.:»€/} < inf{rrf : t G /},

(iv) sup{pr. : i G I)  < Pv{ri:i€/} 

sup{(Trf : « € / } <  <Tv{r.:t-6/) 

sup{Tp. : i e l } <  TV{r,:,-e/} .

Proof. (0) and (i) are true for £уГ = 1 as the first example of §3 shows, (i) is 

evidently true for £дГ > 1 and тг = 1; it follows for £дГ > 1 and rp < 1 from the 

third example in §3. (ii) is a consequence of (4.3) and the fact that each Г-convex 

space is a Г'-convex space via restriction of operators, (ii), in turn, implies (iii) 

and (iv).

Theorem 4.5. Let Г be a convexity theory with £gT > 1 and (PG) such that 

for all po € {|p| : p G Sr} with 0 < po < pr there is a <** G ft satisfying

(i) card(suppa,) < oo,

(ii) for all i G supp a* and all p G Sr with |p| sufficiently close to 

po, (a i,.. . а*_1,ajp-1,or,-+1, . . .)  € Г,

0») Po < |S(a*)|.

Then pr < <jr.

Proof. It follows from (PG) that px ~ py, for some 0 ф p G Sr, implies 

{p; € Sp : |p'| < |p|} С {cr G Sr : ox ~ cry}.

Let po := sup{|cr| : a G Sr and ax ~ cry}. If p0 < pr then (ii) implies, that for all 

p G Sr with |p| sufficiently close to po and all i G supp or*,

a , =  <*i5j -l i- a + aip-i . + a .+2 . ;■+! + ... 6 Г

4
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S(a,)x = a\x H--- 1- a ,_ ii + or,-x + a ,+ix H--

= оцх H--- 1- a ,_ix  + a ,/)-1 • px -f a l+i i  H--

~ aix  H--- h a,_ix + a ,/)-1 • py + a1+xx H--

= a ^H --- 1- oti-ix + a,y + ai+ix H--

By assumption, suppa* is finite. Thus, by repeating this argument for the var

ious elements of suppa*, we obtain finally S(a*)x ~ S(a,)y, contradicting the 

assumption po < pr- Hence Theorem 4.5 is proven.

Corollary 4.6. Let Г be a convexity theory with (PG) such that С Г. 

Then 0 < or implies <rp =  1.

Proof. Since S jfin Q = {p E Q 0 < p < I}, the po in the proof of Theorem

4.5 is only subject to po € Q, 0 < po < 1. Given such a po, choose /? € Q with 

2̂  < (3 < po, and put a* = 0 ,0 ,...). An easy computation shows

that a* satisfies the conditions of Theorem 4.5. Hence the assertion follows from 

Proposition 4.4 (ii), and Theorem 4.5.

Corollary 4.7. Let Г be a convexity theory with zero and (PG) such that

(i) there exists a fa 6 Г with |S(/?*)| = 1 and card(supp^*) > 2,

(ii) for 7* e Г and a € Sr with Ц7*|| + \a\ < 1,(<7,71,72,•••) € Г holds. 

Then 0 < ar implies ar = 1-

Proof. |5(/3,)| = 1 implies that fa is a seal гиг multiple of some element of V. 

Since Г satisfies (PG), we may assume that fa € TdV holds. We also may assume

fa ф 0. Now replace fa by fa := f a + f a H--- 1- fabl • • • =  (6,1 - 6,0,0,-...),

with 0 < 6 < 1. Define inductively := 01, and

holds. Hence

\ 2« - i- t im e s
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Then /З'п) € Г П P and 

2 < card(supp(^in))) < OO, S(f3(,n)) =  1, |/3|п)| < (max(f>,1 - b))' for aU i. 

In particular, if e > 0 is given, there is a 5* € Г П V with

2 < card(supp(c**)) < oo, S(a*) = 1, |a,| < e for all i.

Hence, given 0 < or < 1 and e > 0, there is an index j  such that

:= oc\S\ + • • • + &j ■ Si + aj+1S2m + •. • =  (a, 1 - a, 0 ,0 ,...) € Г П V

£(<*'*) = 1, 0<<7 — e <a<(x.

Now we are ready to construct the sequences a* required in Theorem 4.5. Let 

0 < Po < I- Choose n such that 1 — (1 — p0)n > po - indeed n =  2 will do - and 

find e > 0 such that for all 0 < x < e, 1 - (1 - (Po - x))n > p0 holds. W ith this e

satisfies

and with a — p0, find ot'm as outlined above. Then obtain, as above, and set

a . = or*jn)iJ + • ■ • + + • •' € Г П V. Then we have

S(a.) =  1 - (1 - в)" > 1 - (1 - Ро)" > po

and

11(“, ....... .. .....  “i+i. ■ • • )ll + K»o_11 = 1 -  (1 -  a)" + a' (l -  a)"--* (p»"1 -  l) (4-8)

for some 0 < j  < n. Since

and since
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we have that (4.8) is less than one. This remains true if we replace po by 

p with p G Sr and \p\ sufficiently close to po. Therefore (ii) implies that 

(<*i,... , a j_ i, otj+i,. ..)  is in Г. Thus, conditions (i), (ii), (iii) of Theorem

4.5 are verified for all 0 < p0 < 5 . Finally assume 1 < p0 < 1. Choose n such that 

1—(1 — 5)” > po and find e > 0 such that for all 0 < x < e, l- ( l — (5 - x))" > p0 

holds. With this e and with <7 = 5 repeat the construction given in the case 

0 < Po < 5* Then the previous estimates remain in force and the conditions (i),

(ii), (iii) of Theorem 4.5 are verified for | < po < 1. Thus, Corollary 4.7 follows 

from Theorem 4.5.

5. The Semi — Norm of а Г—convex Space

Definition 5.1. Let Г be a convexity theory and let X  be a Г-convex space. 

For i £ l w e  put

||x|Jp := inf {|Л| : x = Xx1 where A G Sr a11̂  x> € X } .

||x||r is called the Г-semi-norm (or simply: semi-norm) of x in X , and ||x||n is 

denoted by ||x||. Evidently, ||x||r < 1. Moreover ||0||p = 0 in case Г is a convexity 

theory with zero. Evidently, Г is non-normable if and only if for all Г-convex 

spaces X  and all x G X, ||x||r = 0 or =1; clearly, ||0||r = 0.

Let Г' С Г be convexity theories and let X  be a Г-convex space. Then X  and 

Uf,(X) have the same underlying set. Hence an element x G X  may be regarded 

as an element of Uf,(X).

Proposition 5.2. For all V С Г, and all X  G TC and x G X, ||х||г < ЦхЦр/. 

In particular, if X  is a totally convex space and x G X , then ||x|| < ||x||r, 

for all convexity theories Г.

Proof. Obvious.

Proposition 5.3. Let X  be a T-convex space and let x G X . Then 

||<**||r < N  ||x||r , for all a G 5r .
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M ir  = M iw ir  = N lr  , for all a e M r .

Proof. Obvious.

Corollary 5.4. Let Г be a convexity theory with (PG), let X  be а Г-convex 

space and x G X . Then

l^ J |r < for all 0 ф a G Sr and 0 ф /3 G crp(a).
Ip I N

If, in addition, err > 0 then there is a 0 < s(x) < 1 such that

||ах||г = з(®)|а| И г  , f or <* € Sr П {z : \z\ < crr }.

If ||x||r ф 0 then x determines s(x) uniquely; if 0 < ||а;||г < ar then s(x) =  1. 

Proof. If ||ax||r = |or| ||x||r , then for all /? G Sr

whence the stated inequality is satisfied. If ||ax||r < |or| ||х||г» then а ф 0 and 

||x||r ф 0. By definition of || ||r there is a A G Sr such that

||ax||r < |A| < |a| ||x||r < |a| and ax = Ay, for some у € X.

Since Г satisfies (PG) and since |A| < |a| we have Aa-1 G Sr- Therefore ax — 

Ay =  a • Aa _1y. Since /9 G <Tr(a) we have /Зх = /3 • A a -1 у and thus

Px||r =  ||^-Aa-1y | | r < | ^ .

This implies the stated inequality. If trp > 0 and both ot and /3 are m 

$r П {z : |z| < crp} then the roles of or and can be reversed and we obtain

IM Ir  М Ф  

M  W ’

If, additionally, M r is a group then
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which implies the second assertion. Obviously, ||x||p ф 0 implies the uniqueness 

of s(x). Finally, assume 0 < ||x||r < <?r- Then we have x =  Ay, for some 

M r  < |A| < ar and у E X . Let a € Sr П {z : \z\ < <7p}. Then

M r  = HorAyllr = |a| |A|s(y)||y||r = |a| ||Ay||r = |a| ||x||r .

Proposition 5.5. Let f  : X  — ► Y be a morphism of T-convex spaces. Then 

||/(*)||r < M r- , for all xex.

Proof, x =  Ax', with A 6 Sr and x' E X , implies f(x ) = A/(x').

Proposition 5.6. Let f  : X  — ► Y be a surjective morphism of T-convex 

spaces. Then

llvllr = inf {||*||г : x € /-*(»)} , for all у 6 Y.

Proof. Proposition 5.5 implies ||y||r < in f {||s||r : x E / -1(y)}* Suppose that 

for some у E Y this inequality would be strict. Then there would be a A € Sr 

and a y' E Y with у = Ay' and ||y||r < |A| < in f {||x||r •’ x € / _1(у)}- Since 

/  is surjective there is a i '  6 A' with y' = /(x'). Hence у = / (Ax') and thus 

x := Ax' E / -1(y). Hence we have the contradiction ||x||r < ||y||r-

Proposition 5.7. Let X j and X 2 be two T-convex spaces and let x,- E X,-, 

t = 1,2. Then ||xi ®r x2||r < ||*i||r||®2||r-

Proof8! pr0of of (6.4).

Note that Proposition 5.7 is crucial for the study of Г-convex algebras (see101).

Proposition 5.8. Let T be a convexity theory. Then every T-convex space X  

satisfies

00 00

||5>Xi|| < У"] |оц| ||X|||r , for all a* G Г and x , E X N,

1=1 i= l
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if and only if Г itself does.

Proof. Assume that the formula holds for X  := Г. Choose for each х,- 

a sequence \\n  ̂ 6 Srn £ N , and a sequence xjj"̂  £ X ,n  £ N, such that 

Xi =  A ^x jn* and lim |A[n |̂ = ||х,||г. Then the Г-convex subspace X ' of X
n—♦oo

that is generated by the x\n\i,n = 1,2,... , is countably generated and each x, 

satisfies ||х,- ||p = ||xj||p where the superscript indicates the space in which the 

norm is taken. Since X ' is countably generated there is a surjective morphism 

/  : Г —► X '. Let ti £ / _1(х,),г = 1,2,___Then Proposition 5.5 implies

I E > « i £ IE>H lr - |е«я«Гг - Ik ( £ « *  i; «=1 *=1 i=l \i=l '

i= 1 i=1

By taking the infimum of the right side with respect to all t{ as specified we obtain 

from Proposition 5.6

ll?>H ir - £  ы  и**= £ |ai|
*=i i=i *=i

Literally the same proof furnishes

Proposition 5.9. Let Г be a convexity theory. Then every Г-convex space X  

satisfies, for all x £ X y

F ir > inf |̂|or*|| : x = ^  а,х,- with а* £ Г and x* £ .

Moreover, this inequality becomes an equality for every T-convex space X  if 

only if it is an equality for Г itself.

Clearly we want an addition to Proposition 5.8 and Proposition 5.9 that 

specifies conditions under which the inequality of Proposition 5.8 and the equality 

of Proposition 5.9 is satisfied in case X  = Г.
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Addendum 5.10. Suppose that the convexity theory Г satisfies (SPG) and 

that a* € Г implies ||a*|| G Sr* Then the inequality of Proposition 5.8 and the 

equality of Proposition 5.9 is valid for all a* £ Г and x. G Г^.

Proof. As stated in Proposition 5.2 we have ||ar,|| < ||ar*||r- However, un

der the current assumption it is easy to see that ||or*||r < ||a*|| whence the last 

inequality is in fact an equality. Thus8!, (6.2), finishes the proof.

Proposition 5.11. Let Г be a convexity theory. Then for any family 

{Xi : t G 1} of Г -convex spaces

||{*i:iG/}||r = sup{||xi||r :tG /}  , for all {*,• : i G /} G П { *  : i G /},

if and only if this is true for the family {Г : i G I}.

Proof. By applying Proposition 5.5 to the canonical projections П{Х, : i G 

1} —> X j we obtain sup{||xi||r : i G /} < ||{x,- : i G 1}||r without needing 

any condition on Г. Conversely, as shown in the proof of Proposition 5.8 we may 

assume that each Xi is countably generated. Hence there are surjective morphisms 

fi : Г -* X{}i G /, giving rise to the surjective morphism F  := {/,• : i G /} from 

Г7 := П{Г : i G /} to Щ Х{ : i G /}. Let U G /ГЧ*.’).* e L

Since {<,• : t G /} G jF-1({xi : i G I}) and since every element of 

F~1({xi : i G I}) is of this nature, (5.6) leads to

|\{Xi : i G /} ||r = in f{||{U : i G J||r : U G / f  Ч*,)}

= inf {sup{ ||<t*||r : i G /} : U G f~ l (xi)}

< sup{||f,||r : i e 1} , for all ii G /Г Ч Х«)-

Given e > 0, Proposition 5.6 shows that tiyi G /, can be chosen to satisfy ||х,||г < 

I I I IГ < ||xi||r +e. Hence

sup{||fj||r : г G 1} < sup{||xt-||r : i G /} +e
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In view of Proposition 5.11 it is interesting to have conditions on Г which 

imply the assumption in Proposition 5.11.

Addendum 5.13. Suppose that Г satisfies (PG) and the condition that for 

every e > 0 and A С Sr with sup{|A| : A 6 A|} < 1 there is a p € Sr with 

sup{|A| : A € A} < \p\ < sup{|A| : A (E A} + e. Then Proposition 5.11 is valid 

without further assumptions on Г.

Proof- We need to verify (5.12) for := € Г, i E I. Let к := 

sup j  Hal0 ||r : i G l j .  If к = 1 we are finished. Hence let к < 1. Given any suffi

ciently small e > 0 there are A, e Sr and 0  6 Г such that = A € J, and 

|A,| < к+е. By assumption there is a A 6 Sr with sup{|A,| : i € 1} < |A| < к + 2е. 

Due to (PG) we have ori0 = A • A.-A-1^  =  *7^ ,  where 7^  = А̂ А-1/?!0. Hence

II { c ^ r . e / }  ||r < |A| < ic + 2e ,

which implies (5.12).

Let /  : X  — ► У be a morphism of Г-convex spaces. Then the semi-norm of 

/  as an element of Homr(X, Y) is denoted by ||/||r- Moreover we define

|||/|||r := inf{A : ||/(*)||r < A||s||r , for all X E IR and x E X ) .

Proposition 5.14. Let f  6 Нотг(Х,У). Then

(О l|/(*)||r < lll/IIIHMIr < lll/lllr , for all x 6 X  

(“) lll/lllr =  sup{||/(i)||r : x € X]

(“ ) lll/lllr = sup{||/(i)||r • ||x||f1 :1  6 X  and ||х||г ф 0}

(iv) if Г is suck that the equality in Proposition 5.11 always holds, then 

lll/lllr < ll/llr.

Proof, (i) Obvious.

and thus

| | {xi  : г e  / } | | r  <  sup{||it||r : i e  / } .  (5.12)
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(ii) Let к := sup{||/(x)||r : x G X]. (i) shows that к < |||/|||r- If к = 0 

then ||/(x)||r = 0, for all x G X } and hence |||/|||r = 0, proving the 

desired equality in this case. If к > 0, let x = px\ with p € Sr and 

x' G X. By Proposition 5.3

ll/(*)llr =  ||/(p*')||r = ll/o/(x')||r < |p| ll/(*')llr < \p\K.

But the definition of ||x||r shows

ll/(*)llr < *IWIr

and thus || |/| ||r < *•

(iii) Clearly, the claim equality is satisfied if |||/|||r =  0. Hence we may 

assume |||/|||r > 0. This, however, shows that there is a xo G X  with 

0 < ||/(x0)||r < ||xo||r> the latter inequality coming from Proposition 

5.5. Hence /с' := sup {||/(x)||r • ЦхЦр1 : x G X  and ||х||г ф 0} is a real 

number between 0 and 1. By (i), ||/(x)||r • ||̂||p1 < |||/|||r, whenever 

||х||г ф 0, and thus к' < |||/|||r- Conversely, if ||x||r = 0 then ||/(x)||r = 

0 by Proposition 5.5, and hence ||/(x)||r < Kf||2||ri if ||x||r > 0 then by 

definition of k\ ||/(x)||r < *'||x||r whence the definition of |||/|||r implies 

Ill/lllr < « '.

(iv) There is a canonical imbedding of Homr(X, Y) into the product

of U(X) copies of Y\ it is given by /  -♦ {/(x) : x G X}. By definition 

this imbedding is a morphism of Г-convex spaces. Hence Proposition

5.5 shows that

||{/(x) : x G AT}||r < H/llr,

and Proposition 5.5 together with Proposition 5.11 and (ii) finishes the 

argument.

The last question we want to discuss in this section is conditions on Г that 

imply x = 0 for any x G X  with ||x||r = 0, where X  is an arbitrary Г-convex 

space. Quite obviously, Г must be with zero. It is known that Г = ft satisfies this
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condition while Г = is in violation of it (see8!, (6.9) a.s.o.). Examples in13!, 

(1.12), shows that there are infinite convexity theories which do not satisfy the 

stated condition. The examples are as follows. Let Г = V. Then

131, (1.12), (d):

Let X  be [0,+oo] with the canonical meaning of then ||x||r = 0, for all

x e X .

13!> (1-12), (e):

Let X  be {0,1,2,... , +00} with a iX{ equal

*=1
sup{it- : а,- ф 0} if а т ф 0., and 0 if a* = 0*; then ||x||r = 0, for all x G X .

We need the following technical

Lemma 5.15. Let Г be an infinite convexity theory with zero and (PG).

Then there are p G Sr with arbitrarily small \p\ such that (p, p2, />3, . . . )  6 Г 

holds.

Proof. First we remark that such a convexity theory is normable due to 

Proposition 1.5. Denote the sequence described in Definition 1.1, (ii), by a* о 

(01). Let a* = (a i,a2, . . . )  G Г satisfy card(supp<*,) =  00. By choosing for 01 

appropriate 6? we can obtain a new a* £ Г with |e*i| > |a2| > • ■ ■ > |«n| > * * * >

0. Set or := a i and choose inductively &t- such that

ki = 1 < fc2 = 2k < k3 = 4jfc2 < • • • < kn = £nk2 <•• •

and

M > M * ‘ , * =  1 ,2 ,... .

Since Г satisfies (PG) we have a*1 a]™1 G Sr and hence ar̂ 'orj-1̂  G Г. Therefore

a* о ( a k{oci =  (a ,a * 2,a*3, . . . )  G Г.



(or, « * * ,  c k> , . . . )  0 ( e * - 1* * , S i, 0 . , . . . )  =  ( a * ,  0 , . . . )  £  Г .

Set Л := а к to obtain (Л, A2,0,. . . )  G Г. Hence, with /?2 — (0, A,A?,0,. .. )  and 

otherwise

(A, A2,0 ,.. .) о (/?*) = (A, A3, A4,0,...) G Г 

and an obvious induction shows that

(A, A3, A5, . .. ,A2"-\A2n,0,...) GT , n = 1,2,..- .

Choosing /?* = A<5̂, t = 1, .. .  , n, and — 0*, * > n + 1, leads to 

(A2,A4, ... ,A2n,0,...) G Г , n = 1,2,....

Set fi := A2 to obtain (;z,/*2, . . . , ^ n,0,...) G Г,п = 1,2,--Since

(a*2, a*3, <**«,...) = (A2,(A2/ 3,(A2)^ , . . . )  = (/z,/3, /\ . . . )  G Г

we have, with = I 0,... ,0,/x,/z2, ... ,/ '+2-1,0,... j G Г,

V «1+1-1 /

( м , Л Л - ) о ( й )  = ( Л Л Л . . . ) е г.

Since 0* G Г, putting p fi2 leads to

(p,p2>pV • ■) € r -

Obviously, p G Sr- Since am G Г implies a[ am — (af+1,ori«2,0^ 3, . . .) G Г, we 

can find (p, p2, ... ) G Г with arbitrarily small |p|.

Theorem 5.16. Let Г be an infinite convexity theory with zero, (PG) and 

or > 0 such that for all sufficiently small p G Sr, —p G Sr holds. Then, for all 

Г -convex spaces X  and all i G l ,  ||*||г = 0 implies x = 0.

1207

Since 0* G Г holds we have
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Proof, (see proof of8!, (6.9)). By Lemma 5.15 there is a p G Sr such that 

И  < 0T,(/>,/>2,/>3,. • •) G Pj that for all a G Sp with |cr| < |p|, —a G Sr holds. 

Let x G X  satisfy ||x||r = 0. Then, for every n =  0,1,2, • • •, there is a p„ G Sr 

and x'n G X  such that |/>n| < |pn| and x = pnx*n. Since Г satisfies (PG) we have 

pnp~n € Sp hence x = pn ■ рпр~пх'п = pnxn, with xn =  pnp~nx'n. Since 

pnxn = pn+1xn+1 = pn • pxn+1 and |/>n| < \p\ < or we have pxn = p2xn+\. Note 

that the last condition imposed on Г implies

(p,p\p3,.. .)  O (± pSl,6lo ., . . . )  =  {±p\p\o,. . . )  e r.

Hence, putting

* := X ^ n+lln-i >
П= 1

we obtain

р2г = g  ̂  =  ,2 (A o ) +p2 ( g

n = l \„= 1 /

=  />2(/>2*o) + p2 p" • =  p2(p2xo) + p2 />" • 

= p2(p2x0) + p2z.

Therefore we have

0 = p\p2z) - p V z )  = ,V ( A o )  + Л )  - , V z )

6
=  p XQ-

Since |p61 < |p| < ar we get px0 = 0. Thus 0 = px0 = p2xb and |p2| < И  < 

shows that 0 = px\ = x as had to be shown.

Remark 5.17. Of the conditions imposed on Г in Theorem 5.16, 0* G Г 

is needed to even formulate Theorem 5.16. The last condition on Г cannot be 

dropped as Wickenhauser’s examples show. The requirement that Г be infinite is
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also necessary as all finite convexity theories violate the conclusion of (5.16) (see8!,

remark following the proof of (6.9)).

If Г satisfies the conclusion of Theorem 5.16, then the semi-norm || ||r is said

to be a norm.
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ADAPTED CONTACT STRUCTURES AND PARAMETER-DEPENDENT 

CANONICAL TRANSFORMATIONS

Hanno Rund

ABSTRACT: It is supposed that a set of 2n independent 1-forms {», , , h:h =  1, n) 

0 l ° L aI v U r  N =  M x R, where M is an orienUble manifold of dimension 

and » 1 T  , T  f  “ ,ta,n conditions on thes« 1-forms gives rise to a Cartan form * 
similar S rU' ture on together with a local symplectic structure on M. A

forns l l  - ' f  COnflg“ratlon tesults from the introduction of an alternative set of 1- 
hv thi. J L v  V  ’ • ^  relationship between these two configurations is established

found Г .Г ,‘к ° "  “ Slngle invariance P°stulate- namely w, Л »> = л Л  and it „ 
transform»f" ^  и aJltarn.0Unt to ^ e  introduction of a parameter-dependent canonical

the Cartan form”  П +Ь'i™1"* ''1' nonvanishinS on an* re8ion of N "bich

0- Introduction

This article is concerned with the construction of certain contact structures and the 

p cations thereof with regard to the theory of nonconservative dynamical systems and 

p meter dependent canonical transformations. It is supposed that a set of 2n smooth 1- 

orms {тг̂ ,7г *h 1, , n} is given on a product space N =  M x R, where M is a 2n- 

'mensional orientable manifold. These 1-forms are subjected to two conditions which 

together imply the existence of local coordinates {ph,qh:h =  1, -  n} on M, and a 

H on N, such that 7г̂  Д яг*1 =  dx, where n has the structure of a Cartan 

form on N. In this context the function H depends on (ph ,qh ,t), where t denotes the 

g oordinate on R, and it is shown that if H is not homogeneous of the first degree in 

Ph a region D, then ir has class 2n -f 1 on D and thus defines a local contact 

ructure on D, together with a local symplectic structure on M. (Since this construction 

'ffers from the standard description of contact structures in terms of a single 1-form of 

mal class on N, the terminology adapted contact structure is used here.) A central role 

p yed by a vector field Z on N whose integral curves satisfy a system of differential 

eq ns that coincides with the canonical equations associated with the function H. A 

of Hamiltonian vector fields on the (2n + l)-dimensional manifold N is 

p posed, however, it is found that, in contrast to such fields on symplectic manifolds, only 

certain classes of functions on N are capable of generating locally Hamiltonian vector

1210
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fields. The introduction of an alternative set of 2n smooth 1-forms {7fj, : j =  1, n} 

on N subject to similar conditions gives rise to a second set of functions p, E, t on 

N such that {p j^rj =  1, n} are locally symplectic coordinates on a hypersurface M 

of N on which t is constant. The two configurations are related by a single invariance 

postulate, namely by the requirement that Sj Л 5f̂  =  7r^ A 7r̂ . This gives rise to a set of 

relationships that represent {pj,^,t} as functions of {pjj,q^,t} subject to an exactness 

condition that had been stipulated by Caratheodory [2] as being characteristic of t- 

dependent canonical transformations. However, the complete definition of the latter as 

given in [2] also includes the condition that the (2n + 1) x (2n + 1) functional 

determinant of the transformation be nonvanishing. This requirement can actually be 

avoided in the present treatment in which an explicit evaluation of this determinant leads to 

the.conclusion that it cannot vanish on the aforementioned region D of N on which the 1- 

form тг has class 2n + 1. A brief description of the properties of t-dependent canonical 

transformations is given within the context of this geometrical background, with emphasis 

on the associated Poisson bracket and reciprocity relations. The latter are used to show that 

the requirement that the Poisson bracket of any pair of functions on N be invariant under 

a canonical transformation can be met if and only if the latter is independent of the 

parameter t.

1- The Development of a Local Contact Structure

Our considerations are based on a product space N =  M x R, where M is an 

orientable manifold of dimension 2n. The single coordinates on R is denoted by t, the 

imbedding of M in N being such that M can be represented as a hypersurface t =  t0 =  

const, of N. Thus, for the inclusion map i:M — N the resulting induced maps i^A ^N ) 

—► A1(M) are such that i*(dt) =  0, where A*(N) denotes the space of 1-forms on N.

It is supposed that N is endowed with a set of 2n independent smooth 1-forms 

{7rh,7r̂ :h =  1> •"» n)> these being such that the set {a^jTr^dt} constitutes a basis in the 

cotangent space Ap(N) at each point p € N. The following conditions are now imposed 

on these 1-forms.

Condition I: The pull-backs i**^» i+7r̂  are closed 1-forms on M.

This implies the existence, at least locally, of a set of 0-forms {p^q^th =  1, •••, n} 

on M in terms of which one has i**^ =  ^Pji» =  dq^. We shall regard {Pj^q } ^

local coordinate functions on M, in terms of which we shall write
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*h =  Ч  “  fhdt> * h =  d4h "  (1 1 )

where {f^,f^:h =  1, •••, n} denotes a set of 2n differentiable functions of the variables 

(Ph»Q*\t)- Consequently

* h Л irh =  d(phdqh) -  (fhdph -  fhdqh) Л dt. (1.2)

Since the rank of this 2-form is 2n by virtue of the independence of {тг̂ тг*1}» it is natural 

to stipulate

Condition H: The 2-form (1.2) is closed.

Since the class of any closed 2-form is identical with its rank, it follows that this 

condition implies that the 2-form (1.2) has class 2n. From the structure of (1.2) it is 

evident that it is closed if there exists a differentiable function H on N such that

* 4  -  fhdqh = dH -  f dt = a^dPh + ^ d<‘h’ (L3)
since this entails that

(f^dpb -  fhdqh) Л dt =  dH Л dt =  d(Hdt). (I-4)

This demonstrates the sufficiency of (1.3); the necessity of (1.3) follows from the simple 

Lemma of Appendix A.

The substitution of (1.4) in (1.2) yields

7rh Л 7rh =  d(phdqh -  Hdt) =  d*, (I-5)

where

* =  phdqh -  H(p,q,t)dt. (I-6)

We shall henceforth refer to this 1-form as the Cartan form since its structure is formally 

identical with that of the Cartan form in the classical theory of integral invariants. It is 

moreover evident from (1.3) that
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Л  _  Ж  f -  _ ж

h aqh’ (ьт)

so that (1.1) can be expressed as

*h =  <*Ph + ^ K dt' ' h =  d<,h - ^ dt- (1.8)

We shall now investigate the class of the Cartan form. To this end we observe that the 

second member of (1.8) gives

Phd4 -Ph* + j L phdi'

so that (1.6) is equivalent to

X =  phirh + hdt, (1.9)

where we have put

„ =  M Ph -  h . (i.io)

As usual, we associate with any s-form ц on N the subspaces

A(p) =  {X € Tp(N):XJ/i =  0} ( l-П)

of the tangent spaces Tp(N) of N at each p g N. Thus, if X € A(dir), we have

XJdx =  0. (I-12)

Because of (1.5) this is equivalent to

(X > h)Th -  (X > h)*h = 0, (1.13)

and hence, by virtue of the linear independence of {71̂ , тг̂ },

XJxh = 0, X J*h = 0. (1.14)
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If the coordinate presentation of X is given by

x = x, + xh -2r + x° (i.i5)
h ®Ph c?q et

one may express the conditions (1.14) by means of (1.8) as

x>h = xh + x°tt; = °» xJ 'h = xh “  X°JjT = °- (1Л6)
0q“ ^ h

Similarly, if X € А(тг), we have

X >  =  0, (1.17)

which, because of (1.9), is equivalent to

Ph(x J*h) =  -ЬХ°. (1.18)

Consequently, if X € A(?r) f| A(d7r), the systems (1.16) and (1.18) must he satisfied 

simultaneously, which requires that

hX° =  0. (1.19)

Let us now suppose that the function H is such that the concomitant function h as 

defined by (1.10) does not vanish on a region D of N:

h(ph,q\t) Ф  0. (1-20)

The equations (1.16) and (1.19) then imply that the vector field X is zero on D, that is,

А(тг) П A(dTr) =  {0}

at each p € D. But, by definition, the class of the 1-form r  at p € N is the 

codimension of this space, regarded as a subspace of Tp(N). Thus the condition (1.20) 

implies that ir has class 2n + 1 on D. Conversely, if h =  0 at some point q € N, the 

relation (1.19) is void at q, and the system (1.16) would admit a nontrivial solution x €
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Tq(N) that is unique up to a multiplicative factor X°. This establishes the

THEOREM: In order that the class of the Cartan form (1.6) be (2n + 1) on a 

region D of the manifold N, it is necessary and sufficient that the condition (1.20) be 

satisfied on D.

Under the conditions of the theorem the class of тг is maximal on D. It therefore 

defines a local contact structure on D, which we shall call an adapted contact structure in 

view of the fact that its construction depends on the given set of 2n smooth 1-forms 

h,7r̂ ) *n contrast to the usual definition of a contact structure that depends on a single

1-form of prescribed class 2n + 1. Moreover, it is evident from (1.8) that the 1-forms 

{dp^jdq^1} are independent in consequence of the stipulated independence of 

Thus the closed 2-form

ы =  dph Л dqh (1.21)

on M has rank 2n, and is therefore nondegenerate. This 2-form therefore defines a local 

symplectic structure on M and admits the representation

ш =  dx + dH A dt =  7г̂  Л 7T̂ + dH A dt, (1.22)

as is evident directly from (1.6) and (1.5). Also, since the rank of a closed s-form coincides 

with its class, we conclude that this 2-form has class 2n.

2. Canonical Vector Fields

Our subsequent analysis will be restricted to the region D of the manifold N on 

which the condition (1.20) is satisfied. Since the 1-form тг has class 2n + 1, the class of 

d7r is 2n ([4], Ch. 6), and being closed, the rank of dir is also 2n. Thus, if the vector 

field Z 6 A(d7r), that is, if

ZJdir =  0, (2-1)

it follows that Z is determined uniquely up to a multiplicative factor since the codimension 

of A(d?r) is 2n. If the coordinate presentation of Z is given by
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z=zh4 +zĥ +z°£’ ( 2 ' 2 )

we deduce as in the case of (1.12) that (2.1) implies the relations

z + Z°-2H- =  0, Zh — Z°|B. =  o. (2.3)
h <3qh aPh

In order to fix Z° we require in addition to (2.1) that the vector field Z be such as to 

satisfy the condition

ZJt =  h, (2.4)

where h is defined in (1.10). Because of (1.6) and (2.3) this is equivalent to

Zhph -  Z°H =  h, 

in which we substitute from the second member of (2.3) to obtain

Z° ( f ^ h - H) = h-

In view of (1.10) and (1.20) this is possible if and only if Z° =  1. The conditions (2.1) and

(2.4) therefore determine Z uniquely, the latter being given by

___ dH d (2.5)
a t + dph 9qh 3qh aph-

Consequently, for any differentiable function F:N —♦ R, one has

Z F  =  f  +  ( H , F )  ( 2 - 6 )

where ( , ) represents the standard notation for a Poisson bracket. Moreover, the integral 

curves of Z satisfy the following system of first order ordinary differential equations

_  ЭН ^£h _  _ д П  (2.7)
dt -  aPh- dt -  aqh-

whose structure is identical with that of the canonical equations of the classical calculus of 

variations. We shall therefore call Z the canonical vector field associated with the function
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whose structure is identical with that of the canonical equations of the classical calculus of

variations. We shall therefore call Z the canonical vector field associated with the function

Remark 1: The construction based on (2.1) and (2.4) is very similar to that of a 

Reeb field E ([1], [5], p. 291). This field is determined by the conditions EJw =  1, and 

EJdu; =  0. Our canonical field reduces to a Reeb field for the special case when H =  1, 

since in this case u> =  d r  in consequence of (1.22), and h =  — H = — 1 by (1.10).

We shall now derive a further important property of the canonical vector field. 

From (2.5) it follows directly that

H.

ZJdph =  ZJdqh - |S-, ZJdt -  1, (2.8)

so that by (1.8)

ZJ(dpj Л dt) =  — Tj, ZJ(dq^ A dt) =  — (2.9)

and thus

ZJirh =  0, ZJffh =  0. (2. 10)

By means of (2.9) it is now inferred from (1.8) that

(2.11)

and

(2 .12)

The Lie derivatives with respect to Z of the 1-forms (1.8) are defined as usual by

£ z7Th =  ZJdirh + d(Zj7Th), £ zi h =  ZJdirh + d (Z > h),

and hence, by (2.10)-(2.12)
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and

Consequently

=  - - « X , .  -  (2.13)
h Sp.aqh J

£z I h =  + а !н  (2.14)

aqJ3ph 9pjaph J

£ z(irh Л irh) =  (£zirh) A irh + * h Л (£zirh)

E„. ,, „ ----,-- „ A irh + g2H яг. A j  + A Jr..
h J * J*Ji h 5pj5ph h j

= __a!H A wh _ X n - j
dp-}dqh J dq]d<J dq dp.

In this expression the first sum is the negative of the third, while the second and fourth 

sums vanish separately by virtue of the symmetry of the partial derivatives. Thus the 2- 

form тг̂  A t*1 is invariant by Z in the sense that

£ 2(7г̂  Л 7Г*1) =  0. (2.15)

The results obtained thus far may be summarized in the

THEOREM: The conditions (2.1) and (2.4) determine a unique vector field Z on 

N whose integral curves satisfy the canonical equations (2.7). Moreover, the 2-form 7Г̂  A 

ir*1 is invariant by Z in the sense of (2.15).

Remark 2: The conditions that specify a Reeb field E (see Remark 1) are such as 

to ensure that =  0. However, this is not generally true for the canonical field Z, as

is immediately evident from (1.22) and (2.15), since these imply that

£ zw =  £ z(dH A dt) =  (£zdH) A dt + dH A (£zdt) =  d(ZJdH) A dt + dH A (Zjdt).

But according to (2.6) we have ZJdH =  ZH =  while Zjdt =  1 by (2.8). Thus

£zu> = d(|B) Л dt. (2.16)
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The notion of a canonical vector field is closely related to that of a Hamiltonian 

vector field. This is readily seen as follows. It is evident from (2.5) that the canonical 

vector field Z admits the decomposition

Z =  |  + ZM, (2.17)

where

is a vector field on the manifold M 

of (2.1) and (2.8) that

Zm Jw -  ZJw =  ZJ(dH A dt) =  (ZJdH)dt -  (ZJdt)dH

=  ^ d t  -  dH =  - ( ^ d p h + ^ d q h) = —i*(dH) =  -d(i*H), (2.19)

in which i* refers, as before, to the pull-back of the inclusion map i:M —► N. This 

suggests that we define the function H^j =  i*H on M, for which Нод(я^,р^) =  

н (ч*\Рь»1о)> it being recalled that the (constant) value of t on M is denoted by t0. 

Accordingly the relation (2.19) can then be expressed as

dHM + ZM >  =  °- (2-20)

which shows that the vector field Z^j on M is the Hamiltonian vector field generated by 

the function HM in terms of the symplectic structure (1.21) on M.

3. Hamiltonian Vector Fields on the Contact Manifold N

The conclusions of the previous section suggest the possibility of the introduction of 

Hamiltonian vector fields on the contact manifold N. We shall now show how this may be 

done in terms of the 2-form

.  дН д дН d /*) io\

'*Ph3qh 3, h 4  ( )

It therefore follows from (1.21) and (1.22) with the aid

Ш =  7Г̂ Л 7T̂. (3.1)



Let X, Y  G $(N), where 96(N) denotes the Lie algebra of differentiable vector fields on 

N. Then

XJb =  (XjTh)Th -  (XJirh)jrh =  Th(X)Th -  Irh(X)xh , (3.2)

and

YJXJw =  xh(X)Trh(Y) -  irh(X)Trh(Y) =  2*^ Л Th(X,Y). (3.3)

Hence, by (3.1)

2w(X,Y) =  Y jXjw  =  —XJYJw. (3.4)

We also have, on the one hand,

£x (YJw) =  XJd(YJw) + d(X JY Ji),

while on the other

£ X (YJ«) =  (£x Y)Jii + Y J£x w =  [X,Y]J(i + Y J£x w,

which are combined to yield

[X,Y]Ju> =  XJd(YJw) + d(XJYJw) -  Y J£X « . (3-5)

This relation is valid for any X, Y  ^  96(N). Now let us suppose that these vector fields are 

such that the 2-form ш is invariant by each of them in the sense that

£xw = 0, £y w = 0. (3-6)

But according to (1.5) and (3.1) the 2-form ш is exact; thus (3.6) requires that

1220

d(XJw) = 0, d(YJw) = 0, (3*7)
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which in turn implies the existence, at least locally, of two functions f and g on N such 

that

df + X ju  =  0, (3.8)

and

dg + YJu> =  0. (3.9)

Consequently we shall regard X and Y as (locally) Hamiltonian vector fields on N with 

respect to the 2~form a», these fields being generated by f and g respectively.

When (3.6) and (3.7) are substituted in the identity (3.5), the letter reduces to

[X,Y]Jw =  d(XJYJw), (3.10)

and hence

£ [ X , Y f  =  ЛЧ.М & +  d(pC,Y]Jw) =  0. (3.11)

This shows that ш is invariant by [X,Y] whenever it is invariant by both X and Y. 

Moreover, it follows from (3.4) and (3.10) that

2d{w(X,Y)} + [X,Y]Jw =  0, (3.12)

which indicates that [X,Y] is a locally Hamiltonian vector field on N with respect to w, 

being generated by the function 2w(X,Y) on N. This conclusion can be stated in a more 

illuminating manner as follows.

From (3.2) and (1.8) we deduce that

and

XJS =  —* h(X)dph + *h(X)dqh -  | 4 ( X ) M  + ’rh(X)J f i ] dt' (ЗЛЗ)
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Y J i  =  - * h(Y)dph + Th(Y)dqh -  ^ h(Y)g|- + ^ ( Y ^ J d t .  (3.14)

These relations hold for any pair of vector fields X, Y. However, if the latter are such that 

the equations (3.6) hold, the expressions (3.13) and (3.14) may be substituted in (3.8) and 

(3.9) respectively, which gives

^ = « hw .  = -*h(x). ! = v x) ^  + *h(x>gb <зл5) 

S t =xh(Y)’ 0 = -'ь(у)- ж = + ^h(Y)3 - (ЗЛ6)

This yields the following expression for the Poisson bracket of f, g:

(f,g) =  -Th(X )^h(Y) + irh(X)TTh(Y) =  2w(X,Y), (3.17)

where, in the last step, we have used (3.3) and (3.4). Thus (3.12) can be expressed as

d(f,g) + [X,Y]Jw =  0. (3-18)

At first sight this appears to be nothing other than a simple extension of a basic result of 

symplectic geometry according to which [X,Y] is the Hamiltonian vector field generated by 

the Poisson bracket (f,g) whenever X, Y are Hamiltonian vector fields generated by f 

and g respectively with respect to a symplectic 2-form.

There is, however, an important difference: whereas any differentiable function on 

the symplectic manifold generates a Hamiltonian vector field on M, the above analysis 

shows that this is not true in the present context. For, if the first two relations in (3.15) are 

substituted in the third, it is 

found that

d i -  _  (d E  d i dE d i \ _  _ /t t  n 

d l ~ 4 , 3 q h 0qh < V ~

which, by (2.6), is equivalent to

(3.19)
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Thus, in order that f be such as to allow for the existences of a vector Held X for which

(3.8) is valid, it is necessary that f be a solution of the first order partial differential 

equation (3.19). Conversely, let us suppose that we are given a function f on N that 

satisfies this condition. By means of this function we construct the vector field

x = xh4  + xĥ  + xt f  (3'21)

whose components are given by

X. =  - Д -  -  X * %  Xh =  # L  + Х °|Н . (3.22)
h 3qh 3qh aPh 3ph

The latter entail that

Xh^  + X. ifl- =  (f,H). (3.23)
a4h h3ph

Also, according to (1.8),

Zf = 0. (3.20)

, h(X) =  Xh + X » M ,  ,Ь (Х) =  ХП _ Х0СШ (3.24)

so that (3.2) gives

xj“ = к +х° з к  - (xh - - (xhg i i+*% )-■  <3-25)

in which we substitute from (3.22) and (3.23) to obtain

x j i = - 5 d4h- f t dPh+(H’° dt-

Clearly this equation, taken in conjunction with the condition (3.19), implies the required 

relation (3.8). This state of affairs is summarized in the following

THEOREM: In order that a differentiable function f on N be capable of 

generating a locally Hamiltonian vector field with respect to u  in the sense of relation
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(3.8), it is necessary and sufficient that f be invariant by the canonical field Z in the 

sense of (3.20).

The relation (3.18) thus yields the

COROLLARY: I f  two functions f, g on N are invariant by Z, then so is their 

Poisson bracket (f,g).

Let us denote by ^z(N) the set of all differentiable functions on N that are 

invariant by Z. Because of the Corollary we can define a composition on ^ Z(N) by means 

of Poisson brackets, thus endowing ^Fz(N) with the structure of a Lie algebra. Also, the 

set K(N) of all vector fields on N that are locally Hamiltonian with respect to o> has the 

structure of a Lie algebra by virtue of (3.12), the composition being defined by the Lie 

bracket. Because of (3.18) one can interpret relations such as (3.8) and (3.9) as 

exemplifications of a Lie algebra homomorphism: 9 Z(N) —» 3€(N).

4- Parameter-dependent Canonical Transformations

The theory of previous sections is based on a given set of 2n independent 1-forms 

on Produc  ̂manifold N, these 1-forms being subject to the conditions I and 

П of Section 1. Because of the latter local coordinates are thus prescribed on M, in terms 

of which these 1-forms admit the representations (1.8) that involve the function H. This 

state of affairs immediately suggests the following procedure. Let us suppose that one were 

to begin with a different set of 2n independent 1-forms {jfj,*J } on N, together with a 

new variable t, such that the sets {5Fj,^,dt) constitute bases in the cotangent spaces of 

N. The imbedding of the hypersurface M of N on which t =  t0 =  const, is denoted by 

I:Kl —> N, so that I*(dt) =  0, and the 1-forms are assumed to satisfy direct
J «

analogues of conditions I and II. Again, this gives rise to local coordinates {Pj»4 У =  

n} on Й, in terms of which these 1-forms admit the representations

*. = dp. + §?dt, IP5 = dq* — fld t; (4-1)
J J OPj

as counterparts of (1.8) for some differentiable function К of the new variables Д).

In order to establish some relationship between the resulting theory and the developments 

described above, one must prescribe a common invariant. In standard symplectic geometry
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the fundamental invariant is the symplectic 2-form (1.21) on M; however, in the present 

context this would not be appropriate. Instead, guided by the relation (2.15), we shall 

stipulate that the 2-form (3.1) on N is to be regarded as the fundamental invariant: that is

u> =  7Th A irh =  Sj A it*. (4-2)

If this 2-form is expressed as in (1.5), we see that (4.2) is equivalent to

и =  dir =  d f,

where тг is given by (1.6), and

*  =  p.d^ -  K(p,q,t)dt.

The condition (4.3) can be integrated, at least locally, to yield тс 

function S on N, that is,

-  K(p,Al,i)di -  (p hdqh -  H(pm ,qm ,t)dt) =  dS. (■‘•5)

Thus, if the transition from the coordinates (р^,я\0 new coordinates (pj.q >”)

described by a set of (2n + 1) equations such as

Pj =  Pj(Ph .qh ,t). ^  t =  t(ph,qh ,t), (4.6)

this system exemplifies a t-dependent canonical transformation on N by virtue of the 

restriction (4.5) ([2], p. 260, [3] Ch. 6, [7], Ch. 2).

We shall now derive some properties of such transformations. To this end it is 

recalled that in the theory of the t-independent canonical transformations a fundamentally 

important role is played by the Liouville 2n-form on M, namely

fi =  dp! A ••• A dpn A dq1 A A dqn. (4*7)

(4.4)

— тг =  dS for some

This form is related to the symplectic 2-form w on M according to the f
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in which u>n denotes the exterior product w A • • • Л ш with n factors, so that in this 

context the invariance of ц would be guaranteed by the invariance of ш. However, in the 

present more general setting we must construct a suitable Liouville (2n + l)-form on N, 

namely

Ji =  ц A dt =  ~ j(~ l)^wn A dt, (4*9)

and it is this form that must be evaluated in terms of u;, since the latter is supposed to be 

the fundamental invariant. In order to do this, we write (1.5) in terms of (1.21) and (3.1) 

as.

w =  w -  d H A d t , (4-10)

from which it is immediately evident that

wm =  u>m — mwm _1 A dH A dt (4.11)

for any positive integer m < n. Thus

wm A dt =  wm A dt,

which is substituted in (4.9) to yield

/* =  i , ( - l ) Nwn A dt. (4*12)

The corresponding Liouville (2n + l)-form on N in the new system is defined by analogy 

with (4.7) and (4.9) as

/i =  i ( - l ) Nwn, N =  in(n -  1), (4.8)

Jt = dp! A A dpn A dq1 A A dq11 A dt, (4-13)

which, as before, is equivalent to



in consequence of the invariance of w. This is related to (4.12) by

*  = 4 - +  л d<>h + I j r "  л dph )  (4Л5)

Clearly wn A  dq*1 =  0, u/n A  dp^ = 0, so that, by (4.11) with rn =  n, 

u>n A dqh =  —nu>n~ l A dqh A dH A dt, u>n A dph =  -nu>n_1dph A dll A dt,

so that (4.15) can be expressed as

* = -  si(-1)Nn“n" ‘ л ( 5 dqh + ^ ; dpb ) л dH л dL (416)

To this expression we now apply the formula (B .ll) of Appendix В to obtain

5 =  [ f |  +  (h ,i ) ]a, (4-17>

which gives an explicit representation of the relation between the two generalized Louiville 

forms on N. This result can be expressed in terms of the canonical vector field (2.5) as

А» =  Z(t)/i. (4-18)

Moreover, it follows from (4.13), (4.6), (4.7) and (4.9) that

/Г= dp1 A A dpn A dq1 A A dqn A dt

,  A d *  л *  л «•>»
5(ph,qh,0 3(ph'4 'l)

A comparison of this result with (4.18) yields the

THEOREM: The functional determinant of the t- dependent canonical 

transformation (4.6) is given by

1227

£ -  л dl (4.14)
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щ  q'.t)
- j — =  Z(t), (4.20)
0(ph.q ,t)

where Z denotes the canonical vector field (2.5).

Remark. For a t-independent canonical transformation one has t =  t, and (2.5) 

gives Z(t) =  1. Thus for such transformations the Jacobian (4.20) has the value unity; this 

is a well-known theorem ([3], p. 92) that is fundamental to Liouville’s theorem in the theory 

of conservative dynamical systems.

The relation (4.20) allows us to examine the conditions under which the functional 

determinant of the canonical transformation (4.6) can vanish. To this end we note that

ZJd* =  ZJdTf =  Zjw =  0

by virtue of (2.1) and (4.3), and hence, by (4.2)

ZJ(»j Л 5Г*) =  -  (Z J ifV j =  o.

Since the 1-forms {5r\»j} are independent, it follows that

Zj*. =  0, Z Jjj =  0. (4.21)

By means of (2.5) and (4.1) this can be expressed as

Z(Pj) =  - ^z ft), Z(q*) =  §|z(t). (4.22)

Moreover, according to (2.5) we have

( f  + I s- A  - + (&? +ан 9J _ м.
Vat ь a4 + + aqh эРЬ/Ц

+( дь + м  _  dn f a  v

I st aPhSqh Sqh <9phM ’
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that is

z  =  Z ( t ) |  +  z ( j ) A  +  z (Pj) A . (4.23)

Because of (4.22) this is equivalent to

(4.24)

Now let us suppose for the moment that the functional determinant of (4.6) vanishes at

some point q € N. By (4.24) and (4.20) this requires that Z = 0 at q, and hence, by

(2.4), that h =  0 at q. This obviously contradicts the assumption (1.20) unless q £ D, it

determinant (4.20) cannot vanish on D. The statement can be combined with the theorem 

of Section 1 to yield the following

COROLLARY: The functional determinant of the parameter-dependent canonical 

transformation (4.6) does not vanish on any region D of N on which the Cartan form 

(1.6) has class 2n -f 1.

The relation (4.24) suggests the definition of the vector field

being recalled that D denotes a region of N on which h ф  0. We therefore infer that the

7 _  <9 , dK d _  SR j L  
z -5! + 3 ' gj d P.}

(4.25)

as the obvious counterpart of (2.5). Thus (4.24) can be expressed as

Z = Z(t)Z. (4.26)

In particular, since Z(t) =  1, we have

Z(t)Z(t) =  1. (4.27)

5. Poisson Bracket Relations

Let us consider once more an arbitrary vector field X € S>(N), whose coordinate 

presentation is given by (3.21), and for which (3.25) is expressed as
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-XJw =  *hdph -  «hdqh + £°dt, (5.1)

where

(b =  X > h =  Xh -  X0^ ,  =  X jxh =  Xh + X »M , {• =  f f ix h + |H  Xh . (5.2)

For a second vector field Y  with

Y = Y. *2- + Yh-^r + Y°4. <5-3)
hSPh 3qh 91

we then have in consequence of (5.1) and (5.2)

XJYJw = i \  - <h4h, (5-4)

where we have put

, b  =  Y j , h  =  Y h  _  Y ° M  , h  =  Y J , h  =  Y h  +  Y » M ,  , 0  =  +  g j ; Y h .  ( 5 . 5 )

We now turn to the (p,q,t)-coordinates, in terms of which we write

х - х ^  + х Ц  + г А ,  у  = 7 9 + Yj Д -. + r & ,  (5-6)
J<5pj d j  di 3 aPj a<? d

together with

= x y  = XJ - X°|§, (. = XJ»i = X  + X°2K |0 = f ix .  + 25x\ (57)
^Pi J J J о Pj J

and

i f  = YJ»5 = Yj - Y°|K, 5- = YJs. = 7. + У°щ , я0 = |KY. + (5-8>
*Pi J J J tfp- JП J J dc? uv'} J дц

In view of the invariance condition (4.2) it is then inferred from (5.4) that

XJYJw =  ( \  -  )Eh , h =  f y .  - (5.9)
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This relation will be used to determine the behavior of Poisson brackets under the 

transformation (4.6).

To this end we return to (5.1), in which we express dp^, dq*1, and dt in terms of 

dpj, dt in accordance with the inverse of (4.6). The expression thus obtained is

compared with the counterpart of (5.1), namely

—XJw =  + f°dt, (5.10)

which yields the following relations

-  <h?Eh f  0qh ,0 at
f  - 4 a?. - < h ^  + < щ

№ll>

Now let us supplse that we are given an arbitrary differentiable function F on N, for 

which we write

P(pj ,q’,t) =  F(ph(pj ,5,,t),qh(pj ,g),t),t(pj ,qi,t)) (5.12)

by means of the inverse of (4.6). According to (5.11) we then have

f - i

These relations are valid for any vector field X 6 S(N) and any d i f f e r e n t i a b l e  function F 

on N. Now let us suppose that X is determined by the following conditions in the p,q 

system:
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ХЬ = ^ ’ Xh = - fR ' X° = 0- <5Л4>dq

It then follows from the third member of (5.27) that

_  OF _  dll dF , dH dF dF _  7fv,

at 5Ph aqh aqh a?h at

where, in the second step, we have invoked (2.5). Thus the substitution of (5.14) in (5.12) 

and (5.13) yields

V =  -  2 (1?)# , ^  + Z (F ) %  (5.15)

j j dq dq

together with a third relation that does not contain any further information since it may be 

reduced to (4.28).

Similarly, if it is supposed that the components of the vector field Y  are 

determined in the (p,q)-coordinate system by some function G on N as

УЬ = ^ '  Yh = " f J '  Y° = 0’ (516)

it is found that the components (5.8) are given by

j  =  -  Z (G )M , Щ = ~ Щ  + Z ( g A  (5.17)

Ч  4  dit dit

The relations (5.15) and (5.17) are now substituted in (5.9). In terms of the notation

{F,G} =  ( f !  2Ц -  Si. p )  (5.18)

V pj dq1 d j  dpj J

for Poisson brackets in (p,q)-coordinates it is thus found after some simplification that

{F,G} =  (F,G) + {P,t)Z(G) -  (G,t}Z(F). (5.19)

This is the relation that we have been seeking: it represents the transformation law for the 

Poisson brackets of a pair of arbitrary functions on N under a parameter-dependent 

canonical transformation. (The same formula had been derived previously ([8], p. 227) in a
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somewhat different context by entirely “non-symplectic* techniques.)

A slightly more symmetric form of (5.19) may be obtained as follows. As a special 

case let us put P =  t, noting that according to (5.18) one has {t,G} = 0 for any function 

G. Thus

(t,G) =  Z(t){G,t}, (5.20)

and with the aid of (4.26) and (4.27) it follows that

{G,t}Z(F) =  (t,G)Z(F) =  —(G,t)Z(F), (5.21)

together with a similar formula obtained by an interchange of F and G. When these are 

substituted in (5.19) the latter assumes the required form

2{F,G} + {G,t}Z(F) -  {F,t}Z(G) =  2(F,G) + (G,t)Z(F) -  (F,t)Z(G). (5.22)

Additional useful Poisson bracket relations may be obtained as follows. As a special 

case of (5.22) we have

(t,Pj) =  Z(l) Д ,  (t,q') =  - 2 ( Щ .

Also, if we put F =  pj, G =  q* in (5.19), it is seen that

( !  =  (pj.q1) + {Pj,t}Z(q') -  {q',t}Z(Pj).

By means of (5.20), (4.22) and (4.26) this can be reduced to

(P j,q ') =  Sj -  Ct,p p g ;  -  ( W ) g .  (5.23)

To this we adjoin two similar Poisson-bracket relations, whose derivation is carried out in 

the same manner:

(5.24)
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and

(Pj.P,) =  - ( t .P , ) ^  + ( t ,P j ) ^ ,  (5-25)
J dcf J dq*

(These formula also occur in [8] (p. 224), together with the corresponding Lagrange bracket 

relations.)

6. Further Properties of Parameter-dependent Canonical Transformations

According to our construction the sets {x jJij^dt} and {7F*,7Fj,dt} constitute 

distinct bases of the cotangent spaces of N. The relations (4.21), together with their 

counterparts

Z Jtt h =  0, Z > h =  0, (6.1)

indicate that these basis elements must be related according to the scheme

QV 0>ь
(6. 2)

(6.3)

for suitable coefficients P, Q, whose explicit expressions will be derived presently. We 

shall write the inverse of (6.2) as

G K S J x i )

which requires that

/ 0", «“ y O U ' w . !  O N

Ч  ^ Л г „  f ? r \ » *! /

From (6.2) it follows directly that
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'j  л ^  = ^P jh^k "  pjkQih),rh л *V + 2(pjhQik - л *к 

+ (Pjh^ k - PjkQiV h л **• (6-5)

Consequently the invariance condition (5.2) is tantamount to the relations

- 4 %  = *t- pjh^ k - = °’ pjh^k - ^ h pjk =

which can be expressed as

(6.6)

By construction, the 2n x 2n matrices that appear above are all nonsingular. Thus a 

comparison of (6.6) with (6.4) yields

/ P j b - l A  /Qhj Qhj\
(6.7)

In order to determine the explicit form of the entries in these matrices, we note 

that, as an immediate consequence of (1.8),

0- £ > * - * ■  4 > k = 0 - (6-8)

It therefore follows from (6.2) and (4.1) that

p h _ 0 _ ^  + 2K-SL pjh_ 0 1= _ . 0E _0jL (6.9) 
pj  -  §Рь j -  aph + aqJ  aph- ^  -  ^ h > j  -  aqj + ^  aqh’

and

dphJ 0ph apj 0ph’ ь 5qhJ 5qh <9Pj 3qh'

Similiarly
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> J  -  A  I * ,  -  ?Zh +  Ж  at  p _ 9 | .  - ^ E h  +  M i t  (6.11) 
apj apj  aqh pj hj -  a? ~ s j  aqh d '̂

and

Qhi -  JL  |»h _  _  ж  at. Qh _  9 ,,h  _  dq“ _  ж  at (6 12) 
Q -  aP>  aPj ^  aPj- Q > ~ ^ *  ~ dj  aPh ^  <6 >

The substitution of (6.9)-(6.12) in (6.7) gives rise to the so-called reciprocity 

relations. Before listing these explicitly we should derive further identities in order to obtain 

a complete set of such relationships. To this end we note that, according to (2.5) and (6.9),

_ pj , ан dpj dH 9pj 
at aPh aqh aqh aPh

aP; яп ap= - J + |H. _ j( p  _ Ж  ai \ _ ан /p h _ ак a n  at aPhSqhUh dj dqb) d̂ } agjaPh; 

= ж  + I^P ih  -  ^4;F;h— SE( ан « . . f f l j - l  at арь Jh aqh J a/ a Phaqh aqhaPh>

We now apply (6.7) to the second and third terms on the right-hand side, while the fourth is 

re-written in terms of (2.5):

7.(n.\ — ^ _ан p ан f\h aK (7 /r\ at\j ~ at aPhphj ^ h Q j - ^ l z( t ) - 5 t >

which, because of (4.22), reduces to

j. ак at _ эн p , ан nb 
ж  а < р _ 5 ^  hj a ?  j '

By means of (6.11) and (6.12) this may be expressed as

+ ag aj _ ан/f£b + ан д 'j ^ _ ан i t 1) (влз) 
ж  a ^ 51 4 V  ач + aPh a<r ’
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it being noted that the terms in ОЬ/дЦ* on the right-hand side cancel. A similar relation is 

obtained for dcf/dt. These relations are adjoined to the system (6.7) to be listed as 

follows:

dpJ | dK dt _  dgh dE di

dph d j dph d j dph aq»'

dpi . dK di _  dph dEdt_ (C 14\

5qh W  dqhd /  ( )

ai7

together with

+ <Ж dt = ан gph , ан dq 
"  q>at 5PhaqJ  aqh a^at

dK di _ q̂h . ан at 
aph apj aph apj aph apy

ад1 ак at _  ^  , м  i i  гвш 
^E-apj^h-spj+ ^hapy (b' 1 

agj _ ак at _  _ ан Эрь ан dqh 
at apjat aPh apj aqh 5Pj’

These reciprocity relations are central to the entire theory of parameter-dependent canonical 

transformations.

As an immediate consequence we note that the third members of (6.14) and of

(6.15) give
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where, in the second step, we have used (4.25). But the counterparts of (4.22) are

z(Ph) = -gfczw. 2(ЧЬ) = ж ад . («.и)

Thus (6.16) is reduced to the useful identity

эк ак ag| _ _ ан ?Еь _ ан (6-ie) 
aPj at 9gj at - aPh at 9qh a t'

The third members of (6.14) and (6.15) suggest that we adjoin the following entries 

to (6.9)-(6.12): namely

P -  dt pJ _  dK dt (6.19)
jo ~ at + at’ - at “ apj at’

together with

and

P -  _dH  , dH d i  _  /dH  , Ж  (6.20)
poj- a ^ + a t  aqi-  W haqi + aqh ^

p j -  _dH  , dH dt _  /dH  aPh , dH dqh\
0 apj at aPj laph apj 5qh ар̂ л

(6 .21)

This allows us to express the aforementioned equations as

Pjo =  - p0j' and 0*0 =  p0j - (6-22)
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A geometrical interpretation of this construction may be given in terms of the 1- 

parameter family of hypersurfaces M(t0) of N as defined by the equation t =  t(p^,q\t) 

=  t0 in which t0 denotes the parameter while the dependence of t on (p^^^.t) is 

prescribed by (4.6). Each tangent space Tp^M(t0) j at p 6 M has a coordinate basis 

by means of which we now define a set of 2n vector fields by

putting^

d
/v\ / Pjh o '11 \ Щ

)=( - J  J ■ ■ (6-23)
V  v Pjh Q’h > A

According to (6.6) the 2n x 2n matrix that occurs on the right-hand side is non-singular. 

Thus the vector fields {V ^V ^} also define bases in the tangent spaces Tp^M(t0)). 

Again, we adjoin to this set the single vector field

V° =  pj0 Щ  + &  £  (« •* )

We shall also require the counterparts of (6.23) and (6.24):

/V \  /  Phj Q hj \ Щ

and

It then follows with the aid of (6.7) and (6.20)-(6.22) that

VW -  V j = - ^ P h .  (6'27)

vhqi = _ v jqbt V  = ^ Ph, ^  + ^  (628)

and
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From the definitions (6.23) and (6.24) it is evident that the 2n + 1 vector fields 

V*1, V^, V 0 are not independent. In order to exhibit this dependence explictly, we 

rewrite (6.23) by means of (6.7) as

these two systems being equivalent to (6.14) and (6.15) respectively.

f V f Qhi - Qh\  A
VvJ V-Pu: pJ )  a

(6.29)

hj r h '  A

d<f

Because of (6.11) and (6.12) this is equivalent to

.h

and

vh= __ 9H_ ii'j-fir _ ( dqh - Ж  (б.зо) 
V ______aph a ^ j  vapj aPh

v, = + Ж  Щ А .  , (dph . ан at \_a_ (6.31)

From this it follows after some simplification that

M u h  ан Г7 _ p d 1 p J d
^ h v - 5 5 ^  - " p»j Щ  + p° a?i

in terms of the notation (6.20) and (6.21). When the identities (6.22) are applied to the 

right-hand side, the definition (6.24) being taken into account, it is found that

ЭН yh I n  _  г? (6.32)

aqh aPh h "

which displays the above-mentioned dependence.

There are some useful alternative representations of the vector fields (6.23). If we 

substitute in the latter from (6.9) and (6.10) we find that
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vh = ^ iA  + | i ^  Ж (§ Е  JL - Ж  JL\
арь apj арь *> + 4 W  Щ  dpi a /

By means of the definition (4.25) this may be expressed as

vh= 4 r  *k z- (U3)

Similarly,

5qn dqvh = A  - 5 Z- (6-34>

These relations may be used to show that for any pair of differentiable functions F, G on 

N

(VhF)(VhG) -  (VhG)(VhF) =  (F,G) + (G.t)Z(F) -  (F,t)Z(G). (6.35)

If we apply (5.21), together with the corresponding relation in which F and G are 

interchanged, we obtain

(VhF)(VhG) -  (VhG)(VhF) =  (F,G) -  (G,t}Z(F) + {F,t}Z(G). (6.36)

A comparison of this expression with (5.19) shows that

(VhF)(VhG) -  (VhG)(VhF) =  {P,5}, (6-37)

where the right-hand side is the Poisson bracket (5.18). It may be shown similarly that

(^F)(VjG) - (7*G) (^jF) = (F,G). (6.38)

We shall now endeavor to characterize the class of parameter-dependent canonical 

transformations for which the Poisson bracket of any pair of functions F, G on N is 

invariant. From (5.19) it is evident that this is the case if and only if

{F ,t}  =  0, (6.39)
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for all functions F on N, which, because of (5.20), also entails that

(F,t) =  0. (6.40)

The first of these is simply

df dt. _  dF di. _  0>

apj e j  d j  дЬ

so that the special substitution F =  pj, followed by F =  q^, yields

Д  =  0, P-  =  0. (6-41)

The relation (6.40) shows similarly that

4-  = o, S- = o. (e-42)
3qh Sph

From this it follows that the third member of the canonical transformation (4.6) must be of 

the form t =  t(t). Because (4.26) and (4.27) this implies that

Z =  V»(t)Z, with ф(t) =  dt/dt, (6.43)

and hence, by (2.5) and (4.25)

£E JL _  £1 А.- мл(дн д ан d \
a Pj aq* aq5 dpj  ph 9qh 3qh 3|V

Because of (6.42) one also has

(6.44)

-fi- = J- + <>£ А. _в_ _  fS . d_ , d j d_
Sph d p h ap . 9ph g j '  5qh - aqh apj+ aqh d4i’

and consequently (6.44) yields
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Moreover, with the aid of (6.41) and (6.42) the first two members of each of (6.14) and

(6.15) are reduced to

= 5 i = _ 4  K _ _ a ^  a l _ 9ph . . 
9ph *f  a4h a f aPh- aPj’ Sqh aPj'

This allows us to express (6.45) as

Ж  = m (an  ?£h + M  §K _  Ш (Ж  дЛ  + M  (6.47)
aPj W h ^Pj 5q V  d^ ~ m U h 9qj + aqh aj h ( 1

from which it is deduced, again by means of (6.41), that

^ ( к - а д н )  =  о, Д ( к - = 0.

This may be integrated to yield

K(Pj,^ ,t) =  «(t)H(ph,qh,t) + <7(t), (6.48)

where a denotes some function of the single variable t. Also, in the present context the 

derivatives d i/d i that occur in each of the third members of (6.14) and (6.15) are identical 

with l/^>(t); consequently the substitution of (6.47) in these relations reduces the latter to

5  =  0, g  =  0. (6-49)

This shows that the first two members of the canonical transformation (4.6) do not involve 

the variable t explictly:

pj =  pj(ph.qh), i  =  q (p h.qh)- (6.50)
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These relations suggest that we are dealing with a parameter-independent canonical 

transformation. That this is indeed the case follows from a standard theorem ([7], p. 93) 

according to which, given (6.50), the relations (6.46) characterize parameter-independent 

canonical transformations. Conversely, it is well known ([3], p. 83) that all Poisson brackets 

are invariant under the latter. The above analysis therefore establishes the

THEOREM: In order that the Poisson bracket of any pair of functions on N be 

invariant under a canonical transformation it is necessary and sufficient that the latter be 

parameter-independent in the sense of (6.50). Under these circumstances the functions К 

and H are related by (6.48).

Appendix A

LEMMA: Let N =  M X R, the coordinates on M being collectively denoted by 

{xa :a =  1, 2n}, while t represents the single variable on R. Lei

fi = /iadxa

be a 1-form whose coefficients depend on {xa ,t}. Then, in order that ц A dt 6 A2(N) be 

closed ii is necessary and sufficient that there exist a differentiable function Ф on N in 

terms of which ц admits a local represeniaiion

м =  ёФ -  ^ d t .  (A.2)

PROOF: Suppose that /i A dt is closed, in which case d/i A dt =  0. But this relation 

represents a necessary and sufficient condition that dp be ‘divisible’ by dt in the sense 

that there exists a 1-form v on N such that d/x =  v A dt ([6], p. 177, Ex. 5.14). 

However, according to (A.l)

dp =  ^ g d x b A dxa -  % *dxa A dt,
<9x dt

so that compatability requires that д ц ^/д ^  — дц^/дх* =  0 and v — —(d p a /d i) ^ -  

The first of these implies the existence, at least locally, of a function Ф on N such that 

Ma =  дФ/дха , the substitution of which in (A.l) yields (A.2). Conversely, if p is given 

by (A.2), we have /i Л dt =  dФ A dt =  d ^  A dt), which is closed.
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Appendix В

LEMMA: Let T =  T^dq*1, S =  S^dp^ denote a pair of 1 -forms whose 

coefficients are functions on N. Then

u n ~ l Л T Л S =  - ( - ! ) %  -  l)!ThSh#i, N =  in(n -  1),

where w denotes the symplectic 2-form (1.21) and fi is the Liouville form (4.7).

PROOF: For the purpose of this discussion the summation convention is suspended 

for repeated indices that are dotted. We shall write

Лк = dPk A

so that

while

А. Л A. =  0 if h =  к, (B.2)
к h

ш =  dp^ Л dq*1 =  A- + + A^ . (B*3)

Let us construct (2n — 2)-form

Л. =  А. Л ••• Л А. Л А. Л ••• Л Afi. (B.4)
к 1 к—l k+i n

Because of (B.l) this has all of |dp1? •••, dpn>dq\ •••, dqn| as factors with the 

exception of dp^ and dq^. Thus

Лк Л dph =  °* and Лк Л dqh =  ° ’ if h ^  k‘ (B*5^

With

T =  Tjdqj , S =  S^dpj (B.6)

we then have
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and

А. Л T =  T ,A ,d qk = T ,A . Л ••• Л А. Л А. Л ••• A A. Л dqk, 
к к к к 1 к —i k+i п

Л. А Т А  S =  T-SkA. Л Л А. Л А- Л ••• А А- Л dqk Л dp ., 
к к 1 к—1 k+i п к

that is, by (B.l) and (4.7)

A, A T A S =  - T .S kA. A Л A. =  - (- 1 )NT .S *V  (B.7)
к к 1 n к

It is also readily established inductively by means of (B.l) and (B.4) that

wn—1 =  (n — 1 ) ! ^  Л^. (B.8)

k= l

This result, when taken in conjuction with (B.7), establishes the lemma.

We now observe that each term on the right-hand side of (B.8) has (n — 1) 

factors from the set {dq1, dq11}. Thus

A ( f | d q h ) A dH Л dt =  ы "- ‘ Л ^ d q h Л # d p k Л dt,

since the contribution from the term (5H/5qk)dqk in dH gives rise to (n + 1) such 

factors. Thus we can apply the lemma to this expression to infer that

о ."- 1 Л -Й ■dqh Л dH Л dt =  - ( - l ) N(n -  A dt,
3qb 4 ------ ' ^ P h aqh'

or, in terms of (3.9)

nwn_1  Л -^;dqh Л dH Л dt =  - ( - l ) Nnl|H. (B.9)
aq» 4 V ' SPh <9q

Similarly, it is found that

nw" ~ 1 Л ^ - 4  A dH A dt =  ( - l ) Nn !^ -  Щ р -  (0Л °)
3Ph » ‘ «Ph a.

Addition of (B.9) and (B.IO) then yields the formula
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,П 1 A dt Л dH A d t=  nw11" 1 A ( ^ | d q h + ^ - d p h) A dH A dt

=  w b -  &  =  - ( - Ч Н»,( В Д *  (В.П)
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1. Introduction. The potential of the strong nuclear force can be described by the 

solution e“^/r of the elliptic equation

Ли = ji2u , (\i > 0).

This description was first proposed by the Japanese physicist Hideki Yukawa, and the 

equation now bears his name.

Yukawa proposed e ^ /r to be the potential of a point charge in IR3 . In this article 

we shall investigate Yukawan potential theory and the associated pseudo-analytic 

functions in the plane.

A diversity of papers have been devoted to this subject over a number of years.

The story seems to begin with Bouligand [2] who was able to show that every positive 

solution u(re'®) in the plane has a representation in the form

POTENTIAL THEORY 

FOR THE YUKAWA EQUATION

JL. Schiff and WJ. Walker

и (reie) = e^ cos(®-0 dX(t)

1248
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where X is a non-decreasing function. This result was generalised by Caffarelli and 

Littman [6]. (We shall refer to it as the B-C-L theorem.) An important example arises 

if we set X(t) = t/27t to obtain the well-known representation (see [16]),

•2 n

I0 (цг) = ~  | e ^005 ld t ,■if
Jo

for the modified Bessel function. Using this integral, it is straightforward to show that

kr(0 = f ^ ,  0 < r < ~ ,  
lo (Mr)

is a summability kernel.

Section 2 is directed towards an H1-space theory for real-valued solutions of the 

Yukawa equation. This falls within the purview of Brelot's harmonic space theory [4] 

and the HP-space work of Lumer-Naim [11], but more specialised results are obtained 

here, using the positive solution I0 (|ir). In particular, in Section 3 the kernel ky (t) is 

used to study the existence of

U(6) = lim u(rei9)
2tuI0 (Дг)

which corresponds to the "far field pattern" of u .

In [8] Duffin coined the term panharmonic for a C2 solution of the Yukawa equa

tion. He turned the subject in a new direction by initiating a theory of pseudo-analytic 

panharmonic functions. This development fits into the framework of pseudo-analytic 

functions of L. Bers [1] but more detailed results can be obtained for panharmonic 

functions. In particular we refer to a Bieberbach type inequality (SchifF-Walker [13]) 

mentioned in Section 4.

Duffin used the phrase /X-regular to describe the pseudo-analytic functions which
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are characterized by Theorem 5. This leads to Theorem 9, which does not have an 

analogue in classical Hardy space theory.

In Section 6 we give a sampling theorem which yields an exact representation of the 

Fourier coefficients of a ц-regular function f , by taking a countable set of values of f 

on the boundary of a circle of radius r . The authors in [14] have already given a simi

lar algorithm for the Taylor coefficients of an analytic function, but a different approach 

is required in the present case. Here we employ the representation of Fourier cosine 

coefficients developed by Bruns [5] and Wintner [17] (cf also Schiff-Walker [15]).

Finally, by letting r —»o©, the representation for the Fourier coefficients of f is 

obtained in terms of values of the far field F of f . This requires a smoothness 

assumption on F and a lemma of Wintner [17].

Acknowledgement. We are indebted to Philip Quirke who undertook a computer 

investigation of the Bieberbach conjecture for |i-regular functions.

2. A Hardy Space of Panharmonic Functions

As mentioned above, a C2 complex-valued solution w(x,y) of the Yukawa 

equation

d w d w 9 /14
—  + — - = n2w (IX >0) (1)

Эх Эу

is called a panharmonic function. A potential theory for (1) was developed by Duffrn 

[8] and will be intrumental in our development. In particular we require the following 

Fourier expansion of a panharmonic function, [8], p.l 14.

Theorem 1. If w(r,0) is panharmonic in the disk x2 + y2 < R2 and continuous in 

x2 + y2 < R2 then for 0 £ r < R



w(r,0) = £  cjini(nr)ein9 (2 )

where

fJo
and In is the modified Bessel function of the first kind given by

t , (x/2)2 | (x/2)4 

l (n+l) l-2 (n+l) (n+2)
n = 0,1,2,

Observe that 1|п|(|хг)е̂ 0 is panharmonic for each n , and that I0(|ir) is positive 

panharmonic.

Moreover, a panharmonic function w in a domain fi also satisfies a mean value 

property whenever { I z-z0 I < r } Q fi ,

fJow(zo) = 2 s a t e »  w(zo+rei') # -

Since Iq(pj) >1 for r > 0 the mean value property implies:

Maximum Principle.

(i) Let w be complex valued panharmonic in a domain f i £  (C . Then I w I has 

no maximum in fi unless w = 0 in f i .

(ii) Let fi be a relatively compact subset of C and let w 2 0 be panharmonic in 

f i and continuous on fi . If I w I < M on 5fi then I w I < M on fi .



A subsolution u of (1) will be termed subpanharmonic and satisfies whenever 

{ I z-Zq I £ г } с  Cl
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i _ r
o(Mr)Jou(zo) * 1 и(20+ге'Ф)<1ф'

We now turn to the notion of a Hardy space of panharmonic functions.

Definition. The Hardy space h^C) is defined to be the space of real-valued 

panharmonic functions u in С for which the integral means

■ 5 ± R )  I l "(R‘ l,)|d*

are bounded for 0 < R < «>.

For и g h^((C), I и I is subpanharmonic, implying M(u,R) increases as R —> 

Denote

II и II = lim M(u,R) .
R - > o o

Substituting (3) into (2) and interchanging summation and integration, we obtain

w(r,0)
2k

rln

w(Re^)
у  Ihi (цг)е!п<*-«

„ L .  n̂l (цЮ

Jo

d<j>

•2n

2k
w(Re^) 2 У* —

ntlln
cos n(9—<» d<})

_IoOiR) ' '  ̂  In(^R) 

where the bracketed expression is a "Poisson" kernel, which we denote by Р?(0-ф) •



1253

Panharmonic functions satisfy the following (cf. Brelot [3]):

Minimum Principle. If  u is panharmonic in a bounded domain fi and 

continuous on f i with u > 0 on dfi then u > 0 in f i .

From the minimum principle it follows that for fixed г, 8 , and R , Ргк(0-ф) > 0 

on [0,2rc]; for if not, suppose Pf (0-фо) < 0. Then Р?(0-ф) < 0 on some open 

interval I containing ф0. Let F be a closed interval, F С I , and take a continuous 

function f> 0  such that f> 0  on F , f = 0 on Г. Then

л2я

u(r,0)= гИ J «Ке'ф>р?(0-<м<1Ф < 0 •

a contradiction since u > 0 by the minimum principle.

There is another useful characterization of h (̂(E)-functions the proof of which is 

analogous to the classical case. (For the classical proof see [9].)

Theorem 2. A panharmonic function u belongs to ĥ ((C) if and only if, I u I 

has a panharmonic majorant.

Proof. If u is panharmonic and I u I has a panharmonic majorant v in (C then

/-2Я *2n 

■ \ —  I I u(Re^) I d<(> < I ■ ■ I vCRe^M = v(0) < ~
2^I0(|iR) J^ 2jiIo(}iR) }q

for 0 ^ R < oo , implying u € h^((C).

On the other hand, if ue h^(C), let {Rn)~=1 be a sequence of radii R„ t ~ as 

n —> °° . Let
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Vn(r’0) = 2 n j I и(К"е‘Ф} I P'R"(е^  d<f ’ n = 1>2'3 - '

By the positivity of the kernel, {vn}°° is a sequence of positive panharmonic
n=l

functions with vn l { l z l  = Rn ) = l u l .  By the maximum principle for panharmonic 

functions, vn £ v n+1, i.e. (vn)*^ is increasing. But

5 л к ) / о l " (R-e*>ld* S K < -

for n = 1,2,3,..., so Hamack's inequality (cf. [8]) implies vn t v panharmonic in 

С . Since vn > I u I for each n , then v > I u I , as desired. The function v so 

obtained is the least panharmonic majorant of I u I on С .

Corollary 1. For u e h^((C),

II u II = lim M(u,R) = v(0),
R —>»

where v is the least panharmonic majorant of I u I on (C .

Corollary 2. u € h^(IE) implies I u(r,0) I < II u II e ^ , 0 < r < .

Proof. Let v the be least panharmonic majorant of I u I in (C . By the Bouligand- 

Caffarelli-Littman result, v(z) < v(0)eJIr, z = re10 . Then

I u(r,0) I < v(0)e*Ar = II u II e^r .

In view of the B-C-L result we define a panharmonic-Stieltjes integral as



1255

( 2п
I et“ cos(e-t)<a(t),

Jo

for X e BV( [0,2л] ). Then we maintain:

Theorem 3. The following are equivalent in C :

(i) y (C ) ;

(ii) the differences of two positive panharmonic functions;

(iii) panharmonic-Stieltjes integrals.

Proof.

(i) => (ii). Given u e h^OC), I u I < v for some positive panharmonic function 

v in (C . Then w = v-u is positive panharmonic in (C , and u = v-w.

(ii) (iii). Let u = Uj-U2, where ul , are positive panharmonic in (C . 

By the B-C-L representation

,2*

щ(г,0) = I e^cos(9-0dXi(t).

Jo

Then X = A.j-^2 € BV( [0,2tt] and и(ц0 ) is a panharmonic-Stieltjes integral.

(iii) => (i) . If

f 2K
u(r,0) = I e^«>s(ft4)dX(t) 

Jo

for X e BV( [0,2tc] ) , then X = X ^  , where Xl , ^  are bounded non-

( 2K
decreasing functions on [0,2rc]. As I e^ cos(O-t) d^i (t) = Uj (r,0) are positive

Jo

panharmonic, the conclusion follows from I u I £ Uj + u2 .
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3. Radial Limits

We turn now to the question of radial limits of panharmonic functions in С . For a 

panharmonic function u(r,0) in (C , it is most appropriate to consider u(r,0)/Io(jir) as 

r —> °° .

Example. Let u(r,0) = еМ ^Ф-О, for 0 < 0 , t < 2k . Since (cf. [16]), I0(|ir) is 

asymptotic to e ^ / flrcjlr as r —» , we obtain

^  ецг cos(8-t) _ I 0 if 0 * t  

Г-^оо 10(ЦГ) I oo if 0 = t

Thus we can see that the radial limits of as г °° do not uniquely determine
1о(Цг)

the function u even up to a set of Lebesgue measure zero. However, under more 

stringent conditions this is possible.

A mentioned in the introduction,

W A ) = riff” »  
rW  1о(цг)

is a summability kernel, 0 < г < <*> (cf. Katznelson [10]). From the preceding 

theorem, any u e h^ (C) can be represented by

•2л

u(reie) = I e ^ cos(9-t) d^(t),Л6) = j 
Jo

where X = Xl-X2 , and Xl , X  ̂ are non-decreasing on [0,2л].

If dX is AC with respect to Lebesgue measure, the Radon-Nikodym theorem 

implies 6X = f(t)dt, f e Ь^ОДя]) . We consider two cases:



(i) <& = fdt, fe  UtfO^rc]): Then
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u(reie)
eln

■ i l  “ S S * * * - *•»<•>•27tIo(nr)

where * is the convolution of kr and f. Hence by Katznelson [10] p.ll,

II k^f-f llj —»0 as г —> «=.

(ii) dX = fdt, fe  C([0,2n]):

lim " (TrC‘9\ = lim J-|  kr(0-t)f(t)dt = f(6) 
г —»oo 2kIq (М-г) r —> о® 2tcfJo

by [10] p. 15.

Results of this nature are summarized in the following theorem.

Theorem 4. If u e h^ (C) and

•2 я

u(r,0) = I e^cos(e-t) dX(t)
«  - r

Jo

where dX = fd t, then

(i) fe  L1([0,27t]) implies

i
lim I

r -*“ 7o

u_(rê _)—  f(9) 

2тс10 (цг)
de = o
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(ii) f g С([0,2л]) implies

Um =  f(6)
r ->oo 2tcIq (jlr)

(iii) f g  L1([0,27t]) implies

lim Ûre L  = f(0) , a.e. 
r —>oe 2 tcI o (|ir)

Proof. It remains to prove (iii). This can be done using the asymptotic estimate 

I0(pjr) ~ e ^ /  V̂ TCjir as r -х» and the technique of [10] p.20.

4. Pseudo-Analytic Functions

Let u and v be real-valued functions which satisfy the equations

Эи dv
—  = —  + \iu

Эх Эу

Эи -dv
—  = ----|iv . (4)
Эу Эх

Then и and v satisfy the Yukawa equation. Hence the equations (4) are the Cauchy 

Riemann equations for the Yukawa equation and a function f =u+iv is pseudo- 

analytic. Following Duffin [8] we call f ^-regular. If f is ja-regular and с is a 

constant then g = cf is ji-regular only if с is real.

Theorem 5. A function f is ̂ .-regular if and only if it can be written in the form 

f = jiw + Lw where w is a solution (possibly complex-valued) of the Yukawa

equation and L = —  + i —  .
Эх Эу
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Proof. It is straightforward to check that f = p,w + Lw is ц-regular. The converse 

follows from Theorem 21 [8] which gives the expansion of f in pseudo-powers. Each 

pseudo-power can itself be written in the form = jiw + Lw for an appropriate w .

For our purposes we rewrite Theorem 21 [8] in the form of (2).

Theorem 6. If f is ̂ .-regular in the plane then

oo oo

f(z) = X  c„I„((jx)ein® + I  c_„I„(nr)e-i"8 (5)
n=0 n=l

where for a >0  and n >0

t 1*

^  = — 1—  f(aeie) e_ined9 (6)
2itl„ (joa) Jo

and, by the fl-regularity, c_n = Cn_i , n > 0 .

We particularly emphasise the condition c_n = Cn_i which arises from the 

Ц-regularity. It is proved by Duffin [8] using contour integration. We refer to [13] 

(Theorem 5), for a shorter proof.

With this notation we have the following example.

Example. Let w(x,y) = e^x0050 + y sinot), 0<a<2rc, with f as in Theorem 

5 given by

f(x,y) = ц(1 + coso - i sincOei^ cosa + * sina>, 0 < a < 2jt.

Then for all n > 1

1 cn - c-n 1 s  n lc j- c _ , l .
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cn = ц.(1 + cosa - i sina)e-ina.

By equation (6) we have

= ^  + cosa-i sina) Г  ^  e. ine d0

2тс1|п| (Ца) Jq

Proof. We first show that for all n ,

The change of variable 6-а = ф gives

u(l + cosa-i sina)e-ina f 2* .. ж . .
Cn = ^ J---  еца cos ф е-шф йф

2я1ы ftia) Jo

= \L(l + cosa-isina)e-ina^ ^ -  (k *g)(0)
Iw (ИЮ

where g(9) = ein0 . The result follows by Theorem 4, since lim (ka*g)(0) = g(0) = 1
a —> oo

and also lim ^(ца) / IyC^a) = 1 • 
a —> ©о

To complete the proof note that I sin na I £ n I sin a  I . Hence

I c„ - c_n I = I ^(1 + cosa - i sina) I I e_ina -eina I

< I p.(l + cosa - i sina) I I 2i sin na I

< I ц(1 + cosa - i sina) I I 2in sin a  I 

= n I Cj — c_j I .

Remark. This property is interesting in view of the following Bieberbach-de Branges 

type inequality which is a variant of Theorem 9 in [13].



Theorem 7. Let f be /л-regular in (E and suppose f is real on the real axis and 

real only there. Then for n > 1 ,

I Cn - c_n I £ n I Cj - c_j I .

Computer studies of univalent, ц-regular functions in (E indicate the following:

Conjecture: I f f  is a univalent ̂ -regular function in (C as given by (5) then the 

Fourier coefficients cn satisfy

I Cn - c_n I < n I Cj - c_j I , for n > 1 .

The conjecture implies (if c0 = 0, c, = 1),

I cn I £ n + I c_n I = n + I c ÎT I 

and by induction I Cn I ^ — , n = 1,2, . . . .

An analogous Bieberbach type conjecture has been posed for a class of univalent 

harmonic functions in the unit disk by J. Clunie and T. Sheil-Small [7].

5. AHardy Space of u-H.cgu.lar Functions.

The notion of a Hardy space of panharmonic functions in Section 2 can be extended 

to |i-regular functions.

Firstly we mention the following, which precludes the possibility of nontrivial 

bounded ц-regular functions in C .

Liouville's Theorem. If f is fi-regular and bounded in С , then f = 0.

1261
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This follows from the fact that the same holds for bounded panharmonic functions 

(cf. Brelot [4], Ozawa [12]).

Definition. A ̂ .-regular function f belongs to the class H^(C) if

for 0 £R <oo .

Note that if f e H^((C) and f = u+iv , then u e h^((C), v e h^(C), and 

conversely, if f=u+iv is ц-regular in С with ue  hu(C ), ve  h ((C), then fe

j y c ) .

Consequently, by Theorem 2 we conclude:

Theorem 8. А ц-regular function f belongs to Н^((С) if and only if, I f I has a 

panharmonic majorant.

By Theorem 5, every ц-regular function f can be written in the form f = |iw + Lw

where w is a complex-valued panhamionic function and L = —  + i —  . This leads to

the following:

Theorem 9. Let w = u+iv where u, v e h^(C). Then the associated \i-regular 

function

belongs to H^(C).

Proof. It suffices to consider w = u as the proof for w = iv is similar and the sum of 

two ц-regular functions is ц-regular. Indeed, by Theorem 3 it suffices to consider that 

u > 0 is panharmonic in (C . Then by the B-C-L representation of u ,

Эх Эу

f = цw + Lw
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ец(х cosa + у sii;ina) dX(a) + L I ê (* c<>sa + у sina) dA.(a) 

Jo

ед(х cosa + у sii

(1 + cosa) - i sina ] eM(* cos<* + У s«n«) dX(a).

in«) dA.(a) + I p.(cosa - i sina) e^x cosa + У sina> dX(a)

Jo

Consequently, I f I й yu , where у is a real constant, i.e. I f I has a panharmonic 

majorant, and f e НЦ(С ).

Note that by the Riesz theorem (cf. Duren [8]) we should not expect that if 

u e h^((C), then the conjugate v of u also belongs to h^(C). However, the 

algorithm does not find the conjugate.

The next result gives a sufficient condition for a ̂ -regular function to belong to

Theorem 10. Suppose f(z) = £  сп1у(Цг) ein0 is Ц-regular in (П and

Proof. Since f is д-regular, c_n = cn_i , implying £  I cn I < «». Hence

НЦ(С ).

n-0
Z  ICnl<“ . Then fe  НДС).

n =

2jcI0 (|iR)
Jo
I I fCRe’^ ) Id *  < --- '---

9 2icI0(nR)
Z  lcn IIln,(nR)d<|>
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= X  I Cn I
iim(nR)

Io(p.R)
^  X  I cn I < 00 •

6. A Sampling Formula.

In this section we discuss a sampling formula for Fourier cosine coefficients which 

was developed by Wintner [17], and more recently by Schiff-Walker [14, 15].

A key ingredient of the sampling algorithm is the well-known Mobius function, v , 

from number theory, defined on the positive integers by:

(i) v(l) = 1 ;

(ii) v(j) = 0 if there is a prime p such that p21 j ;

(iii) if j = pjp2 . . .  p£ is the prime factorization of p , and the pj's are all 

distinct, then v(j) = (-1)^ .

The role the Mobius function plays in Fourier analysis can be seen by the following 

adaptation of a theorem of Wintner (cf. [17]).

Theorem 11. Let ф be real-valued, of period 2 n on I z I = 1, and let co^ = ekn .

If ф has the normalization ф(е10) d0 = 0 and ф' e Lip^[0,2^]), then the

Fourier cosine coefficients of ф satisfy

The sampling theorem for ц-regular functions can now be established.
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ThgQrgm 12. Let f(z) be fi-regular in I z I <S г. Then the coefficients in the Fourier 

series representation (5) are given by the recursive relation

kn

c" = r f ^ j  <7> 

for n = 1,2,3..........

Fropf. Letting cn = an + ibn we have from (5)

oo

f(z) = E  ( a„ I|ni (Цг) cos n0 - bn I|n( (цг) sin n0 )

OO

+ i I  ( bn IIn, ([ir) cos n0 + ^  I,nj (цг) sin n0 )

= u(re10) + i v(re10) .

The cosine terms of u(rei0) are:

oo

ao I0 (Цг) + I  (an+a-n) !„ (И  cos "6 .
n=l

Likewise the cosine terms of v(re10) are:

oo

b010 (pr) + I  (b„+b_„) In (Цг) COS П0 .
n=l

If we set U(rei®) = u(rei9)-a0 I0(jir), V(reie) = v(rei9) - b010 (цг), then U 

and V satisfy the hypotheses of Theorem 11. As a consequence

(а„+а_п) 1п(цг)= £  ^  f  U « r )  (8)
k=l m=l

kn
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(Ь„+Ь.п) 1„ (ЦТ) = I  ^  I  V K „ r ) . (9)
k=l ^  m=l

Combining (8) and (9),

(c„+c.n)In(nr)= I  ^  I  [fK„r)- f(0)Io(nr)].
k=l Kn m=l

But by the ji-regularity of f , c_n = Cn_i, and we obtain the required recursion 

relation.

We now suppose that by the B-C-L theorem, a ji-regular function f(re‘9) has the 

representation

f Jo

f(rei0) = e^cos(e-i) F(t) dt

where F e С[0,2л] . Then by Theorem 4 ,

Um = F(0)
r-4«>e 2тс1о (цг)

and F(0) is the "far field pattern" of f(re10) .

The next theorem shows how , under more stringent assumptions on F(0), the 

Fourier coefficients of f(re10) in (5) may be obtained from sampled values of the far 

field F(0).

[2П
Theorem 13. Suppose F e  Lip^O^Tt]) and f(rei9) = cos(0-t) p(t) dt .

Jo
Then the coefficients in the Fourier series representation (5) are given by the recursive 

relation
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C „ = X ^ X  [ 2 r tF (O - f (0 ) ] - c ^ T
к=1 *n m=l

for n = 1,2,3......... (We identify F(ei0) with F(0).)

Before proving Theorem 13 we shall establish the following lemmas.

Lemma 1. If ф is a real valued function of period 2n and satisfies 

ф' e Lipj([0,27c]), then

iS
Jo

Ф(е‘е) dS-1- t  ф(е22йш')
Ш=1

where С is the Lipschitz constant.

Proof. See Wintner [17] p. 4.

Lemma 2. Suppose F e  Lipj([0,2Tt]) with Lipschitz constant С and

-ff(rei9) = [ e ^ ^ M F C O d t  .

Then for all r > 0 ,

fe (reie>) f0 (re*®2)

2k  Io (Цг) 2k  I0 (|ir)
< C l  0 i - 0 2 I .

Proof. Rewriting the convolution, we have

Л9) = ( 

Jo

2ic

f(rei9) = I dircoitF(e-t)dt .

lo
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By differentiation under the integral,

fe (reie0
1 r

fe (rei9j) „ j

2 n Io (Цг) 2я 10(цг)| Jo

271

< c ie 1 -  e2 1 [ -eH-^ i -dt = C I 9 , - e 2 l.
1 2 Jo 2л10 (цг) 1 2

Proof of Theorem 13. Rewriting equation (7) we have from Theorem 12

f « nr)_  Ipftir) V v(k) V” 

1„(цг) kt i  kn ir , Io(nr)
f(0) Cn-l • (10)

We wish to take lim of (10) using lim = l and lim = 2n F (coj’n)
г —> °° r-)«> I n (ЦТ) X -» oe Io (И-Г)

First we apply Lemma 2 to the function ф(ге10) = f(re10)Ao(̂ ir) to show that фе 

satisfies a Lipschitz condition uniformly in r . Also

I
'2n ?7n

2 , 1. « » “ > * -  ш м ' т

Hence by Lemma 1, for r > 0 ,

, kn

k n m=i

f « r )

IoOu)
- f(0) 2nC 

k2n2

Given e > 0, it follows that for N sufficiently large and for r > 0 ,

f « nr)
- f(0) < £

2 *

Since the bound is uniform in r , the proof may be completed by considering the 

lim of the first N terms in the summation (10).
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F R E E  B O U N D A R Y  P R O B L E M  F O R  A V ISC O U S  

C O M P R E SS IB L E  F LO W  W IT H  A S U R FA C E  T E N S IO N

V. A. Solonnikov and A. Tani

1. Introduction

In this paper we are concerned with a free boundary problem governing 

the motion of an isolated mass of a viscous compressible barotropic fluid 

whose particles attract each other according to the Newton’s law. The 

problem is formulated as follows: find a bounded domain fit,< > 0, the 

velocity vector field v(x,f) =  (vi, v2 ,из) and the density p(x,t) > 0 defined 

for x E fit and satisfying the Navier-Stokes equations

(1.1)

(1.2)

Pt +  V • py =  0 ,  

p(yt 4- (v • V)v) - VT =  p(i + kVU), X  € fit, t > 0

and the initial and boundary conditions

p\t=o =  PoM , v |t=0 =  v0(a?), x e f i0 =  ^  ,

Tn =  —pc(x,<)n -t- o H n , x G =  dClt •

Here f(x ,f) is the vector field of external forces and pe(*>0 *s 

external pressure prescribed for x G IR3,* > 0, U = /n< is the new-

tonian potential, fi is the given bounded domain, V =  a f l)  ^

is the twice mean curvature of I\,n is the unit exterior normal to Tt,T  =  

(-p(p) + Ai'V • v ) I  4- /iS(v) is the stress tensor, S(v) is the strain tensor 

with the elements 5,j =  + ||f and p(p) is the pressure in the liquid 

which is a given smooth function of density. By VT we mean a vector field
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with the components (VT),- = £  j  = 1,2,3. The constants <r,Ai,/i',/c
1 = 1

satisfy the conditions cr,/x > 0,/c > 0,2/x-f- 3/i' > 0.

According to kinematic bondary conditions, Г is the set of points x = 

sc(£,J) such that

~Xgr’r) =•*(*(*,r),r )‘ »<»■<*, * « ,•) = {€ Г (1.3)

where x is the radius-vector corresponding to the point x. If we set v(£, t) =  

v(x (£}t) ,t) we easily see that
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з

« , * ) = * +  f  y ((,T )dT  =  X i> ( ( ,t ) .  
Jo

* U - ,  .  ■
jo

This formula gives the relationship between Lagrangean and Eulerian co

ordinates, i.e., £ and x. The Jacobi matrix of the transformation Х„ 

has the elements at-y(£, t) = 6 {j + j^ d r  and the Jacobian Ja(£,t) = 

det(ai; (£, t))I J=12l3 is the solution of the Cauchy problem

_  y- datj _  yy dij

dt ~  2 ^  a t  13 ~  ^  11 <%• ’ J “  •
*,i=1 i , j=1 1

Hence,

M(,t) = i +  £  Г A*iisrdral+ / '• 4V vdr

where A{j are algebraic adjuncts of atJ- and A = (Aiy^jsi.^s- Moreover,

since £  i4y ||i = £  Aijab 'B t =  V ' v0M )l*=x. x Л К .0 . il follows 
i,j=l J »,j,fc

that

=  exp f j f  V • v|I=Ar.d r j =  exp Q f  V { ■ vd rj 

\»=1 * / fc=l,2,3

The problem (1.1)—(1.3) can be written in Lagrangean coordinates as the 

following initial-boundary value problem in a given domain Q:

Pt + pVc  • v  =  0 ,

pvt - V )̂To(v) = p(f + ,( e > 0,

Ж .0) = />o(O>v«>0) = v0(O ,f <= П,

Ttjn =  - р еп  + ^ Я п ,  f  G Г,< >  0 .
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Here pe( ( ,t) = pi(XCtt ) ,i( t t )  = f (X « ,0 .P « ,0  = p (X t,t),U  =  U (X€it), 
n = \JjlAn0 \~lJ t lAnQtno is a unit exterior normal to Г at the point

and л
T<, = (-p(p) + /i'Vo • \)I -f nS{,(v) ,

( S  («>>» =  • '.-■ £ <L51

The function p(£»0 can be excluded from (1.4), since

?((.*) = л>(Ое*р (-  Jo Vf-vdrj =f*JZ)J7'(i,t).

Next, we can rewrite the boundary condition, making ьзе of ihe formula

я п  =  v « ( 0 x  =

where Vo is the Laplace-Beltrami operator on Г: fwhich depends on v). If 

we project now the boundary condition X* n  =  —p-n + onto the

tangent plane to Tt, then onto the tangent plane to Г. and to the normal 

to Г, we arrive at the initial-boundary value problem for v

V. -  P o H O ^ V T ^ v )  =  f  +  KViU -  PoH^AVpipoJT1) ,

v|«=0 =  v 0(f)>

^ П о  П  5»(^)п1еег =  о ,

По -7|n- <mo • Д{Хв|(6г = (по •п)[р(Р0^в'1) _ Р«(-^4,<М1«еГ 

where

Ге = Т ,+  p(p)I = n'Ve • V 1 + ^ S c ( v ) , 

w  =  w  - n 0(n 0 • w ) , w  =  w  -  n (n  • w ) ,

ft(f i\ - f  P ivW v  _  f  Po(v)dT]

'* ’ * ~ Ja. IXo(t,t) -y\ ~Ja !*««>*) -  * « ( l .O I  '

Ъь to (1.6), we consider a linear problem

w , - t f f Q A V T L M  =  f ( € . 0 . w l«=o =  w » ( f )  •

^ n , I L 5“(w)n|« r = n ob - (i-7)

no Tl(w)n-crno • Au(t) w<ir|^er  =  &
Jo
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where all the differential operators are determined by a given vector field

u, namely, A  is the matrix of algebraic adjuncts to

<*.; = Sti + f* jr d r , v u = ; ;M v ,
Jo °tj

Ju =  l+  I AV  • u(£, r)dr, Tu(w) = //'Vu • w / + /iVu5u(w ),
Jo

- = = ■4" ,J-4" " r ' 

is a unit exterior normal to I\ = {x = X u(Z,t)>t £ Г}>Пи w = w -n (nw ), 

and A u(t) is the Laplace-Beltrami operator on Г<. When u = 0, (1.7) 

reduces to
w* “  Po 'iO ^T 'iw ) = f , w |<=0 =  w0,

, П о ^ ) п о Ь г  =  П 0 ь  (1 8 )

no • T'(w)n0 — <rno ■ Ao /  wrfr|^€r =  b 
Jo

where T'(w) =  /i'V • w + ^5(w) and До is the Laplace-Beltrami operator 

on Г.

We consider problems (1.6)—(1 -8 ) in S. L. Sobolev - L. N. Slobodetskii 

spaces. Let be a domain in IRn. By W J($ ) we mean the space of 

functions u(x),x 6  equipped with the norm

I M k ' H ) =  ( £  l l ^ l l L m  + N I 2* , ^ )

\H<r /

where =  a falu s,n is a generalized derivative in the sense of S. L. 

Sobolev, and

im i 2̂ ( « ) =  £  i p “« C ( « > =  £  /
|а|=г |a|=r J<§

in the case of integral r and

_  ^  f  [  |Z}°u(x) -  £> °u(y )|2 ^  ,

I N U f ( < ) -  X /  J j  \x  -  y|n+2{r)
N=[r] 9 <9
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in the case of non-integer г =  [г] + {г}, 0 < {г} < 1. Now, we define an 

anisotropic space И ^ ,г̂ 2( ©т) °f functions determined in ©т =  x(0, T) : 

I  € $ ,*  € (0,T) as Wjr'r/2(© T) =  L2(O,T-,WS{<0))nL2(<g-,W''\O,T)) 

and introduce in this space the norm

I N ® T) = j f  IK .0 IIЪ х 9 )*  + 1  IW*>-C;/»(o.t)& - (19)

Finally, we denote by НуГ̂ 2( ©т)>7 > 0 the space of functions u(x,t) 

with a finite norm

T T

!!< ;,/> ( = J  «"27< (ll«C*( <9) + Tr||«llL( 1 )) dt + у_м e-^dt

j;
д*Цр(-,<) _  d * 4 o (- , t- T )

Л *  dt*

dr
r l+r-2Jb

(1.10)
(§ is a non-integer, A: =  [|] ,« 0(x,t) =  u(x,<) for t > 0 )uo(x)t) =  0 for

* < 0). In the case of integral r/2 the double integral in the norm should 

be replaced by

L -271 dru

dV
dt.

For T < oo, the space t f^ r^2( © t) can be identified with the subspace 

of И̂ 2,г̂ 2( © t ) consisting of functions гi(x, t) that can be extended by zero 

into the domain t < 0 without loss of smoothness. In the case r > 1 this 

implies that

d 'u . . Гг — 1"
ЛГ1*= 0 “  ’ ’ [ 2 ~  '

The norm |М1яг,г/2( <§туГ < 1, is equivalent to

h« ii(®;/2) = ( im i^ ,/> ( fflT)+ г-п и 1 ,( Sr)) 1/2

which in its term is equivalent to ^  for any fixed T > 0.

The space W ^(^) of functions defined on a smooth manifold *§ is 

introduced in a standard way by means of local coordinates and partition 

of unity, and W£,r/2( ©т), © t  =  $ . x ( 0 ,T) can be defined in the same 

way as above. The spaces of vector fields whose components belong to 

)»W£’r^2( ©7») etc are denoted by the same symbols.
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Let us now describe resuu~ 4l-

problem (1.8) in the spaces tf^+2,*/2+1

theorem is proved in Sec. 3.

the problem (1.8) has a unique solution w £ tfj+2,,/2+1 

large enough, and
(Qt), provided 7 is

with a constant с independent of T.

The theorem is proved in the same way as in the case of incompressible 

liquid [1-3], first in the half-space, then in a bounded domain. In the case 

of the half-space we give an explicit formula for the solution, and in a 

bounded domain we prove a priori estimates and establish the solvability 

of the problem (1.8) by the construction of a regularizer. This method was 

used in the theory of general parabolic initial-boundary value problems [4]. 

It should be observed that our problem (1.8) is not parabolic in the sense of 

[4] since the complementing condition is violated because of a complicated 

structure of boundary operator Tn—<rAc(t)Xc containing terms of different 

order none of which can be regarded as a principle one.

For the problem (1.7) with a given u the following theorem is proved.

Theorem 1.2. Let Г E € (1/2, l),/?o G W2+1PQ»^o({) —

Ro > 0 and suppose that

(1.12)

where 6  is a small number and

(lM I(£ 2’,/2+ l)) J = IM I^+w ^ ((Jr)+ r -, (llu .|lllWT)
+ £  H ^ l l i i W r ) )  + sup ||u(-, < ) l l ^ +' (n) •



1276

For arbitrary f  G И ^ '^ О г ) ,  w0 € W}+,(Q),b € W^+1/2',/2+1/4(GT) and 

b = b' + crf'BdT  with V € w'2+1 ,V /w , 11(G t),B  € W ,2 ~1 , 2 ',,2 ~1/4 (G t) 

satisfying the compatibility conditions

^ П о  ̂ (wo)nolr =  П о  b l*=° - (1.13)

n 0 •T'(wo)no|r =  i'l(=o

the problem (1.7) is uniquely solvable in И^+2,̂ 2+1(<Зт) and

l|w||<£2',/2+1) <c(T)(||f||^/2) + ||w0||vv,+.(n) + ||b||w,+ W / ^ / . (er)

+ 1|Ь, |1и^+1/3’|/а+1/*(<гг ) + °\\B\\VI V I '  1/4))

(1.14)

where c(T) is a non-decreasing function of T.

The restriction I < 1 minimizes the number of compatibility conditions. 

Theorems 1.1 and 1.2 hold also for <r =  0, in which case the problems 

(1.7), (1.8) sure parabolic and are considered in [4] under more restrictive 

assumptions on the data (in particular on the boundary Г).

Theorem 1.3. Let Г e W*/2+\l e (1/2,1),po £ W$+l (Si), p(t ,t) > 

Ro>0,pe c3(IR+) and assume that f has continuous derivatives of order 

one and two, pt is three times continuously differentiable with respect to xm 

and that f , fXk satisfy the Holder condition with the exponent (3 > 1/2, and 

pe, Vpe satisfy the Lipschitz condition with respect to t. Then for arbitrary 

v0 6 H/21+/(ft) such ^ a t

-p(p0)n0 + /i'(V ■ v0)n0 + nS(vo)n0|{€r = <rHn0 - pen0|t=o

the problem (1.6) has a unique solution v 6 И^2+1’̂ 2+1(<Эт') on a finite 

time interval (0 ,T ') whose magnitude V  depends on the data, i.e., on the 

norms of f , pe, Vo, po and on the mean curvature of Г (see the condition 

(5.25) below).

We observe that evolution free boundary problems for the compressible 

fluid are considered in [6-9]. The papers [10-14] are concerned with free 

boundary problems of a viscous incompressible flow both for <r > 0 and for 

<7 — 0.
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In this section we consider the problem (1.8) in the half-space Ш+(хз > 

0) with po =  const and with homogeneous initial conditions

2. M odel Problem  in the Half-space

wt — [{v + i/)V (V  • w) + i/V2w] = f  (z3 > 0), 

w|t=o =  0,

=  ba(x',t) ( i '  =  ( i b i 2) 61R2)
/ 0W3\

\dx3 dxa ) x 3 =0

(2.1)

fi'V ■ w + 2/i^—̂  + a A' j  w3dr =  63(1', t) 
OX3 Jo

where v =  ,v' — ^- ,A '=  A  + A .  We assume first that f  =  0. After
Po ’ Po 1 OX* OXJ

the Fourier transform with respect to x i,x2 and the Laplace transform with 

respect to t this problem takes the form

Swa — (v + v')i£cr + *£2^2 + ^  ~  =  О»

5гуз -  (у  + + *£2 ^ 2  + ~ v “  €2fia )  =

=  6a , or =  1,2,(Б***) I.
, /  _ _  _ cfa}3\ _ <7̂ 9 ~

P ( >£lU>l + «&«>2 + + 2/i—  - tos =  6 3 ,
xs=0

w —► 0 (x3 —► +00).
(2.10

The solution of this system of ordinary differential equations vanishing 

as x3 —* 00 has the form

0

r

* 6

>-rrj -I- /13

( I )
w =  Л1 [ 0 I e~rls + Л;

• W

.  afi \ /  Л1Г + ^ Л з Х

=  Л3 I ifo I (е_Г1*’ - e-ri3) + I Л2г + «foA* I e ris 
- r i /  \ H - n h 3 J

(2 .2)

with r =  y j + F . n  =  = « 1Л1 + '6 *2. The constants



1278

hQ are determined by boundary conditions, which reduce to 

M - b o r2 + -  2 i£a r ih a )  =  Ъа , <* =  1 ,2 ,

У-' (гЯ - e h 3) + (?' + 2М)(-гЯ  + rlh3) - °-?(H  - Г!hi) =  Ь3 ■
Г2

S

The first two equations imply

l i(- r2H  -  ? H  + 2£2Г1Лз) =  i i i h  + Ъ Ь 2 =  D .

We have obtained the system of two linear equations for H  and /13 that 

gives us

я  =  — W r J  + 0  + Oi + /0(г? - a  + -^ D  -  2/ j r 1f 263} ,

Лз =  - 7 ^ {(2/ir+ 7 <’ >* - M ' 2 + «2) Ы

with

:2

(2.3)

7> =  р е 2 + + *Ро. <  ^ | 3 , (2 .4 )
2/i + /i' r  + гх 2/х Ч- A4 r i  + |{ |

Consequently,

Я  - п /13 = -- ^{[ / i(r j + {2 - 2гп) + ■/ i4~/i7 p0g]^ + posrib3} ,
Po" 2/i + /х'

/i<*r + 3 = ----h -̂—(Н — Г1 Л3 ) + —(г — ri)/i3 .
иг г г

(2.5)

Thus, the solution of (2.1) is given by (2.2)-(2.5). We now pass to estimates 

of this solution in

of (2 .1) is given by (2 .2 )-(2 .5 ). 
я '+2',/2+1(П13 x (o, oo)).

Lemma 2.1. For arbitrary £ = ({1 , ( 2) £ IR2 and s =  7  + 0 with 

7  > 0 the following inequalities hold

l*K2 < c;l \v \ ,{2M 1/2 + <tK|3 + 1*|2 < C2( 1 + j = ) \ v \. (2.6)

The constants c\ and C2 are independent of 7 .



|7>(f,*)l > |5|Мро»+-У , +/ )^ - ^ -
n ‘ + 2fi r  + r i  

, <v>of2 1 i <rKI3 '\ >  |e|>2
(/*; + 2/i) »■ + |f| « J > ci l s K

with ci =  inf 42̂ ,?R e ^ ;  consequently, ^ И 1/2 < < J£JL. Fi

nally for |s| < f 2

И2 < Mf2 < «Г1!?!

4/i(/i + M')lrl|s|f2 , o/>0f2|s|
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Proof. Since |arg ^ | ,  la r g ^ ^ l  < a, we have

*\tr<P\+ (2/i + /i')lr + ri| (2/i + /i')(lri| + |C|)

+ Р о М 2 < с 3(1 + ^ ) И

and in the case \s\ < £2

<Hfl3 < * l f l 2M l / 2 < ^ = .

, ,2 №, , 4/i(/i + /i')|r|]s[f2 Q7>of2M
PoN <\P\+ (2/i + /i')|ri + r| (2/, + /i')lri + If II 

+  O'If I3 <  c4 (l +  ’

which completes the proof.

Lemma 2 .2 . For all £ € IR-2 and у =  Res > 0 the vectors V  =  

/  *£i \ / Л 1Г + *f 1Л3 \

Л3(Г1 _ r) I 2̂ 2 I and W  =  j Л2Г + *£2^3 satisfy the inequalities 

\ - rJ \ Я - г /13 /

|V |< e » (|S i| +  | l , |  +  |8»l), (2-7)
| W | <  ( M + M  + N ) .  (2.8)

v N  + £ 2

Moreover, if 61 =  62 = 0 and 63 = jB  then

,2S’
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Proof. Since

r - r =  (  1 _  2Л  i  =  _ _ # H V _ _ P o $ _
1 + 1/ ) г !+ г  fi(2 fi + Ц1) ri + r '

it follows that

M r , - r 4 =  "  +
(ri r) р(2 ц + + r) { v  [2/lr^

“  /*(£2 + г2)Ьз] + г̂ а ^ а }  '

cr=l

From this formula and from (2.6) we conclude that

|Лз(г1 - rN *  7П 7 Я (М  + >*2i + |ia|)
\/W + £ 2

which implies (2.7). Now, we can write 

H  — n h s  =  .  _ i _ ]  £  « „ » „  +  , A }  .

hence,

|Я -  n h 3\ < Cl° (|М + \h\ + |63|) •
v l * l + £ 2

From (2.5) we conclude that this type of estimate is true for har+i^ah3, 

so (2.8) holds.

Assume now that bi =  b2 =  0,63 =  jB . Then

hllr гч_ <K/* + /'')'-2 + «2 В  0-rjB
Лз(Г1 Г) - "  2p+p' r1+r P '  H ~ Г1/13 -

and (2.9) follows from \V\ > cn(7 )(|s| + £2)3/2 which is a consequence of 

(2.6). The lemma is proved.

Theorem 2.1. Let / > 1/2,ГОТ =  IR+ x (0, T),IRT =  IR2 x (0, T),T < 

oo. For arbitrary f  6  Я ^ ,/2(ГОт),Ьа e Я^+1/2,'/2+1/4(П1т),о = 1 .2  and
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b3  = b'3  + (rfl Bdr where 63 € Я^+1/2,,+1/4(Шт )> В € tf*’ 1/2’,/2“ 1/4(lRr )> 

the problem (2.1) has a unique solution w (E # 7+2’^ 2+1(II>r) and

2

Hw ll* ;+2’,/3+i( iD r) <  с 12(7)(||^||я ;*,/а(Ю т ) + Х ^ И 6а11я;+1/а*,/а+1/4(П1г)Qf=l
+ Н*з11я ;+,/,',/з+1/ ,(П1т )+

(2.10)
with a constant 014(7 ) independent of T.

Proof. Without restriction of generality we can assume that T =  00, 

since we can arrive at this case after appropriate extension of f  and 6,-. First 

we construct the solution w' E Я|+2,^ 2+1(ГО00) of the system

'c ( ^ ’ l ) w = w { _ [ ( , / + + i / V 2 w / ] = f  • (211) 

We extend f  into the half-space x3  < 0 in such a way that

IWIwW^lRVo.oo)) ^  с1з111'11я!г'^(ГО00) (212)

and make the Fourier transform with respect to x =  1,2,3, and the 

Laplace transform with respect to t. The system (2.11) is transformed into 

£(i£, 5 )w' =  f  and w' =  jC_ 1(i£,s)f satisfies the inequality

(  <%o [ |w(f,7 + »fo)|2(|7 + *fo| + £2),+2d£
J - 00 J  IR 1

< C14 f  o f  [f(£i7 + ,fo)|2(h' + »£o| + f 2),^£
J- 00 VlR

which is equivalent to

llw 'llJr;+*.,/ ’ +i (lR ax(o,o0)) ^  Cisllf|lw;.'/>(B . )  • (2 1 3 )

The vector field w/; = w — w' should be a solution of (2.1) with f  =  0 

and with the functions

(£+g)L.
b'3 — f i 'V  • w ' — 2 ^ + a [  (В — Д'и)з)^г|Ха=о =  d'3 + a (  Ddr

9 X 3  J ° J ° (2.14)
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in the boundary conditions. The functions w” are given by (2.5) and it 

follows from Lemma 2.2 that

|di + Иг| + I4I +
dJe i(x3)

dx{

C17

V R + ё
|di| + |d2| + \d'3\ +

a \ D \ d’ e 0( i 3)

dx J3

(2.15)

where ео(гз) = e ГХз, ех(хз) =  - It is not hard to show (see

Lemma 3.1 in [2]) that

dx3  < ci8(|s| + C2)J“ 1/2 ,j:

I
i 2

^ 3 < c 19(|S| + O f - 3 /2 .

axr3 

Jo Jo

/7Jo Jo

dj eo(x3  + z) d>e 0(x3)

dj ex(x3  + z) dj ei(x3)

dx33  dx>3

(0 < Л < 1). Assuming (to be definite) that I is not integral, we can deduce 

from (2.15) the estimate

/-OO f  *00 , j i  ~ // ,0

£ / . . « " 1 ^ * .

/
0° г лоо [oo | j  2+Г1]

dx3l  I t)
-  w (*3 ,£ .6> ))|  Z1+2(1_[|))

< c 22 о / т Д № 12 + И 2р + |412 + щ ! ^ ) ( И + ы ' +1/2^

(s =  7 + i£0) which is equivalent to

||w"||H!(+2.l/3+i (]Doe) <  C23 ( l ld l l l t f l+ l/ ^ / i+ l/ ^ IR ^

+  H ^ sl^ + w ^ + ^ tH U ,) +  1Из11я^+1/3,,/;,+1,4(Ш«.) (2 1 6 )
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Making use of (2.14) and of trace theorems for the spaces Ну г̂ 2(Юу) we 

can evaluate the right-hand side of (2.16) in terms of the right-hand side of 

(2.10). The inequality (2.10) is a consequence of (2.16) and (2.13).

The uniqueness of the solution v 6 # 7+2’̂ 2+1(IDt) of (2.1) follows 

from the energy inequality. Let w be a solution of a homogeneous problem

(2.1). Then

0 = L +c w w d x = I i  О к , ( П ф +

P o M lV '  j f  + •''IlV  • w ||2j(]r3+) +

(2.17)

where V' =  . The last two terms can be estimated from below

hence (2.17) implies that w =  0. The proof is completed.

3. The Problem  (1.8) in  a Bounded Domain

In this section we consider the problem (1.8) in a bounded domain fl 

whose boundary Г belongs to ,/ > 1/2. This means that in the

neighbourhood of arbitrary point £ € Г, the surface Г is determined by the 

equation

Уз =  vK l/) i У' =  (УьУг) G Kd

in a cartesian coordniate system (уь Уг, Уз) with the origin in £ and with y3- 

axis directed along — no(£). The function (p is defined in a disc Kd : |y'| < d, 

and it satisfies the conditions ^>(0) = 0, VV(0) =  0 ап^ |M|w*/7+\Kd) — 

M. The constants d and M  are independent of £.

It can be assumed that (p is extended into IR+ (see [2], Sec. 4), belongs 

to W j+2(IR+), and ^(°) = °> J£lv=o = °>* = i»2»3- In virtue of imbedding 

theorems,

sup |y>(y)| < C\M\ sup |Vy?(y)| < C\M\P (3.1)
M <A  |у|<л

where p e (0 ,1),/? < / - 1/2. The transformation y = Y (z):

Vi =  *i> У2 =  *2, Уз =  z3 + <p(z) (3.2)
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which is invertible if |v?*3| < 1, maps IR3 onto the domain уз >  <р(з/)- 

We prove Theorem 1.1 in two steps: first we obtain the estimate (1.11) 

and then we establish the solvability of (1 .8 ).

Consider the neighbourhood of the point £ E Г assuming for the sake 

of simplicity that ( =  0 and that the coordinates {y,} coincide with {x,}. 

Let Ca(*) =  C(x) where С E C0°°( IR3),C(*) =  1 for |x| < 1/2,C(*) =  0 for 

|x| > 1. The vector field \i\ =  w(\ satisfies the relationships

uxt “  p J1(*)VT#(ux) =  (\f + k i(w ) , w|t=0 =  0 ,

** П0 5(ил)по|*€Г = До Ь(̂л + ’
n 0 • Т7(ил)п0 - <т0 ■ До /  ил̂ г|г€Г =  6Са 4- ^ (w ) 4- <т \ k^(vf)dr

(3-3)

where b =  b1 + <т f* Bdr,

k i(w ) =  Po l ((xVT'(w) - VT'(Cxw)) =  -Po1^  + A(V • w)

+ V(VCx • w) + m(wV2Ca + 2(V(a • V)w ],

k2(w) =  /i J| o(5(wCa) -Ca5(w))iio =  /i Д о  ( w^  + (w 'no)V(Aj I 

k3(w) =  n0(T '(w (i ) - CxT'(w))n0 =  m'VCx • w + 2/i(w • n 0)- ^- ,

M w ) =  « Л  A o w  -  A o(CaW o) )  • n 0 .

In new coordinates z =  Y _ 1(x) (3.3) takes the form

йл« - P i1(2)V lf  (йл) = C*f + k i(w ), 

й\|<=о =  0

, П 05(йл)п°к = о  =  П 0Кл + k2(w ),

no • Т(йл)п0 - <ra0 • До /  йл^т|«,=0 = ЬСл + *3(w) + (Т / h(v i)dr

° (3 4 )
where ux(z,t) =  u*(Y(z),t) etc., V i =  y*V,y =  ( J ^ )  . t= l 2 3 

s  (Vij;)i,i=i,2,3> i-e.,

/  1 0 

ST1 =  0 1 

\<pz 1 1
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operators S,T',k{ written in coordinates {z}, in particular,

Let us rewrite (3.4) as

“ ai - l (0)VT'(ux) =  ix f + ki(w ) + ^ 1(^)[V if'(uA) - VT'(flA)] 

+ [Po1W ~ P o 1(0)]VT'(uA)

with h =  6'Сл+(Гзз(йл)-по Г(йл)по)|2,= о ,Я  = ВСл+(А'иЛз+п0-Дойл). 

As supp ил С Пл =  {^П(|г| < A)}, supp ид С Кл = У -1Пл| supp F С V\ 

and supp да , supp hy supp Я  С = V\ П {x3  =  0}, we can extend these 

functions by zero into ГО,2\У\ and consider (3.5) as the initial-boundary 

value problem in IR+. The function po can be extended into IR̂ - suc^ a 

way that p0  G W21+/(IR+) and p0 (z) > Ri > 0. Applying (2.10) we obtain

(3.6)

The next step is the estimate of norms in the right-hand side. Consider 

for instance the term F i =  (po 1 (z)—pQ 1(0))VT'(ua) in F. We can estimate

s F ( * f t ) , йл|<=0 = o,

- /̂5о3(йл П0 k=o = (П0 ̂ a)q + *2»(w) _ I* 5«з(йл)
+ (  П 0 ̂ (“A)n°) 11 =ga(z',t),a=l,2,

( 3 .5 )

||йл||я3+..1+,/!.(ГОт) < c2 ( I|F||̂ ;.'/>(idt ) + Y 1 11««11я;+,/3''/;,+ ,/‘(И1т)



F i by applying the corollary of Lemma 4.1 from [2]. Since 

max |po 1(2r) - Po ‘ (0)1 < сэ||Ро ЧЦ+ЧШ ’ )Â  > ^  € (0,1), 0 < 1 - 1 /2 , 

this corollary implies

IIF i IIjt;*i/2( Id t ) -  (C4^  + e + c5(c) t " ,/2)IIpo1lliv ‘+i (iR ^)

X |^Т'(йл)||я М/а(Ю т)

with arbitrary e £ (0,1). In the same way we can evaluate F2 = 

x[ViT — VT'] making use of the inequality

sup \Yij(z) - 6 ij\ < . (3.7)
vx

Now, since the expression ki(w ) does not contain second derivatives 

of w,

I|ki(w )ll#'.,/3(IDT) ^  C7(A)||w|| l+Iit j i  , V2\,T =  VjX X (0 ,T ).
H-1 ( У-2Х.Т)

Hence,

11Е 11я^|/3(Ют) - ce(c4^  + £ + Cb{e)l~'l2]\\Po 1llivj+i(]R’ ) 

x ||йл||я .+2.1/3+1(Ют) + c7(A)||w || + 11Сл?||я ^ / а(Ю г) •

The estimates of gQlh,H  are also based on imbedding theorems for
я Ч-2,(/2+1(Ю т ) W e have.

2

Sa3 + ( П 0 ̂ (йА)по)а = 5«3 + ^ зПз + S  3<*РПР ~ П«(П° * £(йл)по) ,
0=1

T3 3  — no • T no =  Тзз(йд) — п|Тзз(йл) — У ]  гц-п^Ту ,

»+j<6

2

А^лз + no • АоЩ =  (Д' — До)«лз + (1 + пз)Дой*з + пР^№\р ■
/?=1

1286
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л „ i  Г— f — L + g L  g  э  A

° v 'l  +  |V V I2 L ^ i \  \Д  +  WW dz! y i  +  i w i 2 ^ 2 /
J . g  f  У£ИР£» 3  ■ 1 + V>l i  ^  \|

3Z 2 \ y r+ T V V P a Z ! y i  +  I W I 2 ^ 2 /J

which shows that the leading coefficients of Ao — A' are proportional to 

a  =  1,2. Making use of (3.7) and of the estimate

K ( z ' ) |  +  |n2(* ') l +  II +  n3(z')l <  c3xp, z' € Кы

we prove that 

2

lballH;+i/2',/2+i/4(iRr) + 11лНя;+1/21,/а+1/4(П1г)
a = l

< (Cg\0 + e + сю(е)?-'/2)||йл||я м-».|/»+1(д}т)

2

+ Cll(A)l[w|| x Ш. + £  ||&«Сл|1Я^/».'/>+1/«(* м r)
Ну a=1

+ IÎ CaII h!+1/7'1/*+1/\K,x,t) + я;-1/а‘,/а_1/4(^м.т)

where K2\>t =  # 2A x (0,T). Choosing £ and Л small, and 7 large enough 

we can conclude that

ЦйА||я 1+а,»/а+1(Ю г) <  c i3 |||w||^+1 i ± i ^ ^  + 11^||я ;.1/а(у2Х/г)

+ Н^^АИя;+1/а-,/а+1/4(яал,т)+ ^  ^л11я;+1/а-,/а+1/4(язл,т)
a = l

Similar inequalities hold in neighbourhoods of any point on Г or in the 

interior of П (in the latter case functions ba)b\B do not enter into the

In local coordinates ( ^ ь ^ )  € K j
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estimates). When we cover fi by a finite number of such neighbourhoods 

and make the summation of (3.8) over all the neighbourhoods, we obtain

+ llb H ^ +l/a*,/a+I/4(GT) + ll^ ll/f!r+1/a,,/3+1/4(GT)

It remains to make use of the estimate

IM |  1+1>Ш  <  Ci57_ 1 ||w||i f ^+a../J+i(QT)
у \чт)

which is a consequence of the definition of the norm ||w lltfr,r/a(QT) anc* 

of an interpolation inequality. Taking 7 sufficiently large we immediately 

arrive at (1.11).

The solvability of (1.8) will be proved by the construction of a regular- 

izer (see for instance [4]), i.e. of a linear continuous operator R  defined on 

the space W7,, = h Y '2 (Q t) x  ^ + 1/2',/2+1/4(G t) x  t f '+1/2',/2+1/4(G t) x  

Я*-1/2',/2-1/4(От) and making correspond to every F  = ( f , b,b,B ) G

пъ, : f e hY,2(Qt),

b  €  =  { u  G я ; +1' 2- " 2+1' 4(С т ) : u  • n 0 =  0 }  ,

V G Я ^ 1/2>,/2+1/4 (GT), в  G Я ^-1/2,,/2_1/4 (G t) the solution v G 

H ^ 2 -'I 2 +\Qt ) of the problem

v, - pZ\x)VT\v) =  f  + M ,F , v|(=0 = 0 ,

 ̂П0 5(v)n° Igt = b + M 2 F ,

no • T^vjno — <rn0 ■ A 0 f  wdr =  Ъ' + M 3F  + a (  (B -f M ^F)dr 
Jo Jo

where M F  =  (M iF , M 2 F, M 3 F, M 4 F) is a contraction operator in 7iyti 

for large 7 . The solution of (1.8) can be expressed in terms of the regularizer 

as w =  R (I + M )- 'F  G h\+2 ‘,,2 +1 (Qt ).

Let {C>(x)} be a smooth partition of unity subordinate to the cov

ering of fi by the balls K{\ =  {|z — f,| < b,A}. It is convenient to as

sume that f b . . .  ,{мл € fi,d ist(£j,r) > | ,6;- = 1/2 ( j =  1, . . .  ,M\) and 

£мм+1> ■ ■ • >£n\ € Г , Ьмх + 1 =  . ..  =  Ьнх =  1. Assume also that

P aC ; l< c i6 ( * ) A - H
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where ci$ is independent of A and j  and let гц(х} A) be smooth function with 

supp rjj С Kjt3Л/2 satisfying (3.13) and such that rji(x,X)Q(x, A) = C*(z,A). 

We define the vector field v =  RF  by the formula

Nx

v  =  £ v i v i ( * . 0

(we suppose that f£,* =  0 for \x — £,-| >  6,-A) and V j , i  >  M\ is defined in 

terms of a certain initial boundary value problem in the half-space Д- = 

{x € IR3 : (x — £,•) • n(£,) < 0} that is described below. Let {t/} be local 

cartesian coordinates at the point : у = Ci(x — £»)(С» is an orthogonal 

matrix), <Pi(y') be the function defining Г in the neighbourhood of & and let

Y  be the corresponding transformation (3.2). The transformation Z{(x) =  

C~1Yi~1Ci(x — (,■) -f & maps the domain y3 > <p(i/) onto Д- and its Jacobi 

matrix equals I  at the point Let

B{(z,t) =  B(Zi 1(z),i)Ct(i2’j Ч*)) and ^  w* a solution of the problem

where A< is the Laplacean on the tangent plane dD{ and П» w =  w —

no(£.-)(n0(6 ) • w )- We set v<(z,i) =  *<(£•(*)>*)• , 2 1/2 1
Clearly, R  is a linear continuous operator from into H-, ’ (<3t)- 

To calculate M F , we write (3.9) in coordinates {x} in the neighbourhood 

| x - f c | < 2 A o f { , -

v« - = tQ  , v,|<=o =  0 ,

P П .  5,(v,)note)Uer = П , >

i= l

where v,-,f < Л/д, is a solution of the Cauchy problem

Vi, - Po ‘ ( * ) 'V ^ v ,)  =  f< ,, X e IR3 , v , | (= 0  =  0,

Wi( - p0 l (£i)VT'(w,-) =  f{(z, t) , 2 e D i , 

w,|(=0 =  0,

^ П ,  5 (wi)no(6 )l*€»Bi =  П,- bi ’ (3.9)

Bidr
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V,. = 2;v,(s,(v)),t = ±  g -  + z mj^  ,
m =l

f K v )  =  , ' V i . v  + , V ^ ( v ) > 2 i =  ( z « ) m i = i 2 3  

is the matrix of Jacobi of the transformation Z{. It is easily seen that 

M iF  = { £  v .U 1(6)V,Ti(vi)-Po1(*)Vr,(v,)|
^ »>MX L J

M x ч /

+ £  wWT1» )  - Po'1 (*))vr(vO | + £ p o 4 * )  U.VT'(vO 
i=l ' *

-Vr'(vi4i)) =XiF + K'F, 

A<2F = £  *ПоМПо5(У->°
»>Мл k 4

- П, ̂ .(vOnote)) + (п, - По )b,Ci}

П 0( ^ 5 (у<)по ■ 5 (7?*v°)n °)
• >Mx

=  -M'2F  + M ' i F ,

•M 3F  =  ^ 2  T?,‘ ( n ° ' T /(v 0 n o -  no (& ) ■ f i(v i)n o (C < ))

»>Mx '  У

-  ^  n 0 • { тцТ ’ (у {)n 0 -  T /(i?iv l)n0) =  -M3F +  M 3 F  ,

■M4^  =  »?i(no(£*)A< -no(x)Ao)vi + ^  n 0(x)(T)iA0Vi

i>Mx i>M x

- Д о Ы )  =  Л < ^  +  ^ .

.M" =  (jM i , М 2 , М 3 , M 4 ) is a smoothing operator, i.e.,

\\M"F\&y., = + 11^2 Л|дМ.1/J,I/J+1/J((;T)

+ + + + ||Л^4 F||^-l/J.I/2-l/<^G

< C l 7 ( A ) E l W | J 1 + 1 £±l , =  П  П  Я ,-,;
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M A h - 1! ;  IN I’ 1+.ш
i Ну 3 (П.-.МХ(0,T))

hence

\\M"F\\ny,, <  c19(A)7 -1/2||F||„t ,1 .

Finally, we estimate M 'F  making use of the smallness of differences Po 4 0 — 

P q 1( x ) ,  Z^k — 6mjb,no(s)—n 0(£,) and of leading coefficients of Д( — A 0 when 

A is small. Repeating the above arguments we can show that

||Л*'ЛК, < («*>A' + eai(*)7~1/2) № , ,

with C20 independent of A. Hence, for small A and large y ,M  is a contrac

tion operator. Theorem 1.1 is proved.

The right-hand side does not exceed

4. Proof of Theorem 1.2

We suppose first that u =  0 and construct the vector field V £ 

^ 2+/1+,^2(^oo) satisfying the initial condition V |t=0 = w0 and the in

equality

llv l l ^ +,*1+I/a(geo) -  cillw °llwa1+'(n) * (4>1)
For the difference u = w — V we get the problem (18) with homoge

neous initial condition and with the functions g = f  — V t+/?g 1VT/(V ), d =  

b - fiS(V)n0,d =  b - n 0 • T '(V )n0 + <t f* n 0 ■ A0Vdr instead of f ,b ,6 

in the right-hand sides. The compatibility conditions reduce to d|t=o =

0,d|t=o =  b'Uo — no ■ T'(wo)no|r =  0, hence d' = b' - n0 • T '(V )n0 € 

н!г+1 12 ' 1^ 2  (G t)D = В  + no • A0v  6 F ^ 1/2’'/2" 1/4(G t) for Г  < oo. 

When we apply Theorem 1.1 and take into account of (4.1), we prove The

orem 1.2 for u =  0.

In the general case we write (1.7) in the form

WI -  Po l (0 v r '(w ) =  f  +  •i(w ), w|,=o =  w o({),

Iх П о  5 (w )n» l« r  =  П о  b + ’

no • T^wjno — <rno • До /  wdr|(£r = i7 + a f  Bdr ^  ^  
Jo Jo

+ k(w) + a f  U(yf)dT 
Jo



1292

where

li(w ) =  Po ‘ (O ^ V T ^ w )  _  VT'(w)] ,

b (w )= / .Д о  ( n os'(w)no ~ I L  5»(w )“ )  -

Z3(w) = n0 • ^T'(w)n0 - T^(w)n| ,

/4(w) = no ■ [(Au(i) - A 0)w + Au(t) f  wdr]
Jo

and A u(t) is the operator whose coefficients are derivatives of the coeffi

cients of Au(<) with respect to t. It is shown in [3] (see (3.13), (3.33)) that 

for small 6

ll'4(w)||£;1/2’,/2-l/4) < c 2«||w||<£2'" 2+1> . (4.3)

Moreover, basing on estimates of the elements of A — I  =  В obtained in [3] 

one can show (in the same way as in Lemmas 2.6 and 2.7 from [3]) that

IPi(w )II<}t/j) + llb(w)||!Vj+i/3.i/2+i/.(Gr) ^

+ IK3(w)||iv,+1/3, /j+./.(Ct) < c3«||w||<£2'" 2+1>.

Let us rewrite (4.2) as

w =  L({ + li(w ), w0,b  + l2(w ),b' + l3 {y/),B + u(vr)) (4.5)

where L is an operator which makes correspond to every element

(f,w 0,b ,4, B) 6 w " l 2 (QT) x W2+I(fi) x W''+1/2,,/2+1/4(G t) 

x W2 +1 , 2 ’l,2 +1 / i (GT) x VP2" 1/2',/2_ 1/4(G t)

such that b  ■ no =  0 and that the compatibility conditions (1.13) are satis

fied, the solution of (1.8) with b = b' + & f* В dr. We have already shown 

that L is a continuous operator. It follows from (4.4) that the operator 

L (li(w ), 0, l2(w), J3(w), /4(w)) is a contraction operator in (Q t),

provided that 6  is small enough. It follows that Eq. (4.5) is uniquely solvable 

which proves Theorem 1.2.
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5. P roof of Theorem 1.3

We begin with auxiliary propositions. Consider the function

ж . о  =  м о л г Ч е . о = m o [ i  + f  a v  ■ u dr] - 1
Jo

where A  is determined by the transformation X u.

Lemma 5.1. Suppose that po E € (1/2,1), and that 

u 6 wS+2>//2+1(Q t) satisfies (1.12). Then

l|p('>0 lliv^+1(n) — C111 Po 1 1 1 (O) » (5-1)

^Jo ~ “  r )llia(0)^T+7)  ̂ ^  c2||po||nrj+»(o) f (5.2)

( Jo dT j f  IK ,< ) ~p{ ,t ~ Г> » Ь г ) ^ й )1/2 < с з Г ^ -'/’ т а х М а
(5.3)

Proof. It is well known (see for instance [2,3]) that

Н/^Ии^+^П) ^  с4|1Л1и^+1(П)1Н1и^+1(П )» ^  ^

Il/i7||ŵ (n) ^  с5||/|1и̂ +1(П)110|1и̂ (П) •

In virtue of the first inequality (5.4), (5.1) reduces to the estimate for 

НЛГЧиг'+Чп)- Applying the estimates

И ц({,01 < с*1И«(-.0 lliv‘+‘(n) <C 7 , JB \AV- u\dT < caS (5.5) 

obtained in [3] under the condition (1.12), we see that

0 < 1 — cg5 < |7u(f,t)| < 1 + cg£,

l|V/«|U,(n) < /  (m axH i;|||DJu|U3(n)
Jo

+ таре ||УЛу ||L3(n)||£4Ue(rt))dr
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where Dv =  tD2v =  > M n =  sup |v(OI-J i j = 1,2,3 V° Ь 9*к /  »,i,Jb=i,2,3 *€n

Since И^(Г2) is continuously imbedded into Ls(Q.) we conclude that

||V«/u||La(n) <  c9 /  ||^u llw24 n )d r - 
Jo’0

In a similar way it can be shown that

||V/u||w.(n) < c5 J  (nJ^x ll^*j'll^+l(n)llĴ  и11и̂ (П)

+ max||VAt;||vv«(n)||I)u||vv«+x(n))rfr (5.6)

<  сю  J  H D u H ^ i+ i^ d r  <  с ц б  .

This implies

l|V ^ T l |k«(0 ) =  Н^и2^ ^ | |^ ( П )  <  c12||VJu||^ (n )  <  C13̂
which leads to (5.1). Now, from

l|Vp(*,t) - V/>(-,< - r)||M n) < ci4||Vpo||L,(n) /  IHVti||Le(n)rfr/
Jt-r

+ \po\nĴ  IIVM V-^11^(0 )^ ') < ci5||po||^+i(n) \\Du\\w'{ti)dT' 

it follows that

( j f  livp(-;t) - Vp(-,t—r)||M n );^ y /2

w'*\n)Jo I U H k ‘ (0 )(t _ r ) l / j  (5.7)
i  /  rt \ 1/2

-  ^ ( 1  -1)\J0 ll-D u llw»(n)<,Tj  М 1 » *+ *(П )

< C16 511 Po 11 iv*+1 (П) 

and (5.2) is proved. Similarly,

( /  IW  ’*) ~ /К-.* — r )llL (r)r3/2+l)

< c17 Sup |po(OI / o (5‘8)

"  4ClT |po|nsup||Du(-,r)||rj(r)t3/4" '/2
3 — 2/ T<(
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which leads to (5.3) after easy calculations. The proof of the lemma is 

completed.

Lemma 5.2. Let p(p) satisfy the hypotheses of Theorem 1.3, then

l|Vp(p)||^/2) < eu(r)||po||^+.(0)( l + IM Iw J+ W  • (5-9) 

M p)\\w<+4*'4*+4\Gt) ^  тал|р(а)|\/5Т|

+ С19(Г)||ро||^+1(П)(1 + llpolliv'+1(o)) (5-10)

where c,(T) are non-decreasing power functions of T.

Proof. Suppose that p is extended from Q into IR3 in such a way that

IH I^'+^IR3) -  с2о|И1и^+1(П) for a fixed *• 14 “  not hard to Prove (see P]> 

Lemma 4.1) that Vp{p) =  p'(/>)V/? satisfies the inequalities

l|Vp||iv](n) < max Ip 'W IIIVpH^n)

f t  dz \1/2
+ max |р"(а)|||Ур|и5(П) (  ||p(* + *) - PM IIi.(n) jT pW J

< C2l||Vp||jvj(n)(l + 1И1и̂ +1(П>) > (5-11)

r - '/2||Vp(p)|U3(Qr) < max|p'(a)|sup||Vp(-,t)||£3(n ) ,
a t<T

IIv p (p(-.0) - Vp(p(-,< - r))||t j (n)

< max|p'(a)|||Vp(-,<) - Vp(-,i -  т)||£з(П)
a

+ max |p/#(a)|||V̂ ||b,(n)IH*,< - r) - p(-,0IU.(«)» (5*12)
a

and

а
т  r t d r  \1/2

dt J  ||Vp(p(., 0 ) - Vp(p(-, t -  T))|)ia(n)7I+r)

r f  rT t* dr  \1
< C” { [ 1  d tJo l|Vp(-,t)-Vp(-,t-r)||l2(n);TjTJ

a T f %
dt / ||p(’> t)-p(-,t- ’■)ll î(n) î+7 )  y  

J ° (5.13)
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The estimates (5.11)—(5.13), (5.1), (5.2) imply (5.9), and (5.10) follows from

(5.3), (5.9) and from the inequalities

11p(p( .*)) -  r ))lkj(r) < max|p'(a)|||p(-,t) - p(-,< - r)||i j ( r ) .

The lemma is proved.

Let и' be another vector field satisfying (1.12) and generating the 

transformation X u/, the matrix A ', the function Ju> etc., and let />'(£> 0  =  

potO^u'1 (£>*)• We estimate the differences p - p',p(p) - p(/>')-

Lemma 5.3. If u and u' satisfy (1.12) and p(p) satisfies the hypotheses 

of Theorem 1.3, then

НрМ11и^ / ’ (г) ^  nw cW ajiir i1' 2 + c23||Vp{p)||„,.(n) ,v< e ( o , r ) ,

Up — /Ни^+Чп) — IIй — u,|llVJs+,(n)^r >

IIVp - Vp'||W/2) + lip - p'||IV,+J/J,/3+1/<(Gr)

<  С25||ро||^+1(П)^ т [ и  -  U'] ,

||Vp(p) - Vp(p')||^/!) + ||p (p ) -  р(р ')1Ц +‘/’ .'т ./ « (Ст)

<  С2б||ро||^+ 1(п )(1  +  ||Р0|и .+. (П ) ) ^ т [ и  -  U ']

(5.14)

(5.15)

(5.16)

where с,- are non-decreasing power functions of T and

Proof. In virtue of (5.4)-(5.6) the difference

+ .4V-(u'-tx)]dr
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satisfies the inequality

l|p(*»Olln^+,(n)

< c27\\po\\ŵl(ci) IIM ' “  *^)V • u' + A V • (u ' — и)||^+1^ Л

<  C28||Po||iv*+(n)| S1̂ P IH*J — r )ll»v'+ l(n) l l^ Ullw^+ l(n)^r

+ НЛУ(•- r)IUj+‘(n) Jo IPO» - u')lln''+‘(n)dr}

The estimates of differences A{j — AJ;- were established in [3], Lemma 

2.2. Applying these estimates and the inequality

j f  ||Du'||w,+1(ft)dr < **/»( j f  |pu'||^+1(n)d r ) 1/2 < S 

we arrive at (5.14). In the same way we show that

r - '/2||Vp|U,(QT) < c27T-'/2||polU.+.(ft) jT  IIM ' - -4)V • u'+

AV  • (u' - u)||nri(n)<fr

< с29||Ро||̂ +1(П)Т"5“ 1Р и'11иМ(П)Л ) J q 1Р ( и ““ и,)Ни^+1(П)Л

<  с29^||ро||и^+1(П) H ^ ( U "" U )llw^+1( n ) ^  *

Now, repeating the arguments in (5.7), (5.8) we obtain

f  (It \
\Jo “ r )llL(n)7TH J  - C3o||/?o|lvK*+i(n)

X {* Jo ^  ~ ^ V ' u< + •4V ' (u _ u')lndr 

+ [ j f  ^  ( £ T IK-4' “  A ) ' Vu' + ■ 0» - uO ll^cn)^ ') ] 7 }

< c3l||Po||^+>(n)| 11“  - и'Ни^+1(П)<*Т

+ /  l l° (u  - u ')lliv‘(n )^ ~ ^ )W  } ’
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at d r  \

< C32||#>o||̂+‘(n){ Jo llU - U'IWj+’(n)d r[1 + Jo (IPu||is(r)

+ ll^u lli3(r)) ̂  _  T,y/2+l/4 j  ̂J0 ll^(u — u IUj(r) ̂  _  ry/2+1/4 | •

consequently,

(i> ** L У̂ '<_г)11мп)̂тт) + (/ /

- £(•>* — T)lli3( r ) ^ 5+rJ

< C33(T)||p0|lw'+i(n)^T[u - u'] j l  + Г 5/4_,/г( sup ||-Du(-, <)|U3(r)

+ sup ||£>u'(-, O lki(r)) | 
i€T )

< сзз(Т)(1 + г ^ - ' / ^ Н р о Н ^ + ч п ^ и  - и'] 

which implies (5.15). Consider the difference

p(p) -  P(P') =  j  p'(p.)ds{p - p' ) , p ,= p '  + s(p - p’) .
Jo

Since p'(ps) satisfies (5.9) and (5.10), (5.16) follows immediately from this 

representation, and from (5.14), (5.15). The lemma is proved.

Lemma 5.4. If f  and pt satisfy the hypotheses of Theorem 1.3 and

11,11' satisfy (2.12), then

||f(Xu , t )  -  f ( * u,,< )ll(« ' /2) <  С34(Г) Г  ||u -  u ' lЬ + Чо)Л ,

Jo 2 V (5.18)

IIP e (^u ,0  -  P c ( X u i t t)\\w i+ i / 3 , i / 3 + i / 4 ( G  v <  C35(T )^ / t[ u -  u'] .
K T) (5.19)

The estimate (5.18) is proved in [3], Lemma 4.3. The proof of (5.19) 

is similar and is based on the representation formula

Pe(Xu, t ) - Pe(Xu.,t) =  Ylj\ e*H(Xu.,t)dsJo (« *- « ;)dr
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Lemma 5.5. For arbitrary e 6 (0,T)

Л'тМ < «V4||v||§+»^4 + c35(e)||v||^y2+l>,

IPv||<£1/2l'/2“ 1/4) < c37e1/4||v||g+2’'/2+1) + c3a(£)||v||^2''/2+1).

Proof is given in [3], Lemma 4.3.

Now we proceed to prove Theorem 1.3. We make use of the formula

Ац(Ь)Хц =  Д о£+  Aa(t) [  vdr+ [  Ao(r)£dr 
Jo Jo

to write the boundary conditions (1.6) in the form

n0 • T-n0 - <m0 ■ A e(t) f  vdr|£€r =<tHo(0 +<t [  щ- A(r)frfr|f€r 
Jo Jo

+  (no • n )(p (p jrl ) - р е(ДГй,<)]|{€Г

where Ho is the twice mean curvature of Г.

We solve (1.6) by successive approximations taking u(°) =  0 and defin

ing u(m+1),m  > 0, as a solution of a linear initial-boundary value problem

U,(m+1> -  Po"1(0-4m v r m (u (”’+1)) =  f ( X m i t )  -  icVmUm ( X m , t )

-P o "1«M m Vp(poJrm1) ,

u(m+l)|<=o = v0(£),

' 1П о П т 5 '" ( и<’П+1))п т Ь г  =  0 ) (5 20)

no I^ ( u (m+1))n0 - <rno • Am(t) j f  u(m+1)dr|(€r = «гЯо(0

+ <T J  no • Am(r)(dT + (no • nm)[p(p0‘̂m̂) - P'(Xm, <)]|«€Г •
Here Vm =  Vu(m),Xm =  Xu^ )}Jm = Ju<m),.4m is a matrix of alge

braic adjuncts to the elements = 6 ,j -I- Jjj dQ̂—dT, Sm =  £u(mb7m =  

Г ',т )|п т  is an exterior normal to the surface Гт (*) = {x =  Xm(£,*)>£ €

where u , =  u ' + s (u — u ').
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Г} at the point X u(m>, П т w =  w “ n m(nm w), and Am(<) is the Laplace- 

Beltrami operator on Гф (*).

For m = 0 (5.20) reduces to

ujl) - />o1(OVT'(u^1)) = f(U ) + *VJ7(0 - Po lU)Vp(/>o),

u (1)|t=o =  v 0( 0 .

^nos(u(1))no>«r = 0-
По -T^U^Jno - cn0 • До /  U^)dr|{£r = ^Я о (0 +P(/>o) - Ре(?!<)|(€Г

Jo

with U(£) =  /п Р̂ -УГ • С0ТГ1Рatibility conditions are satisfied, the

solution u^1) is defined for t > 0 and in virtue of (1.14), for any T < oo

l|u«||('r,,/2+l) < c39(T)(||f||(W J) + ||Po lVp(po)|k.(n)

+ /c||VC/|k(n) llv°llw’̂ +1(n) °г11̂ о11и'з+1/а(Г) (5.21)

+  lb(Po)Hw^+l (n) +  lbe|lvy«+i/2.i/3+1/4(Gr)).

Suppose that v№\j =  1 ,... ,m  are defined and satisfy (1.12) on the 

interval (0,Tm). When we substract from each other the equalities (5.20) 

for neighbouring indices j  and j — 1, we obtain the following initial-boundary 

problem for z(J+1) =  u(;+1) — ):

Z ^ +1) -  Po V , ^ ( z « +1)) =  l ^ ( u « ) )  -  l ^ _1 )( u « ) )  + f  ( X j , t)

-  Ф 0 _ ь t )  +  кV i P t l X j . t )  -  U j ^ X j - u t ) ]

+ «(V,- - V j- i)U j- i(X j- i,t) —Pq1 (Aj - A j- O V p fa Jf1)

-  Po M ,- iV ( p ( p o / r i )  -  p (po Jf_\ )),

z^ +1)|i=o =  0 ,

M Д о  П ; $  (»0+1)>Щ  leer =  l ^ ( u 0 ) ) - 1?_1) ( « W)) ,

no • 3)(z0+l))nj - crn0 • Д,(<) f  zw+1)dT|(er = 4J)(u0))
Jo

- # _1)(u«>) + <r f[^\ yia)) - ^ _1)(U0>)]dr + O- f  no • (A,-(r)
Jo Jo

- Aj_i(r))f(fr + (no • Dj - B j- iM poJ/1) -Pe(Xj.t)]

+  (no • nj_l)[(p(po^,_1) — p ( p o j f j l ) )  +  ( P e ( X j - l ) t )  — Pe(^j'.0)]lf6r-
(5.22)
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I? ’(w) = Ро_1(0(Л' • V7J(w) - VT'(w)] 

4J)(W) = ц П 0 (П о  5(w)“0 - П ; $ ( w)“>) -

4;)(w) = no • (T'(w)no - Tj(w )n ,), 

I4 *(w) = no • [(Ду(<) - Ao)w + Aj(t) [  wdr].
Jo

We evaluate z(J+1) applying (1.14) and taking into account Lemmas 

5.2-5.5 and the following estimates that are actually established in [3]

l|l(/ V 0 ) ) -  +  l l t f V » )  -  4 f " 1))(u«))||„,,+^ w t f . (e r )

+  Il4j ) (u ( j) ) -  1з _1)(и (,))||иг<+»/»,1/»+»/*(Сг)

+ \ № Ы ») - > t l\u0 ))iig ;1/2',/2-1/4)

< c4o(r)«||uW - u0-i)||^2',/2+1) ,

IIV,•№ •№ ,< ) -  i7i _ 1(j¥>_11<)H^/2) + ll(Vj - V i- tm - i& i- b t)||^/2)

<  C4iA/r[u^^ — u (j_1 )] ,

||n0 • (Ai _ 1(<) - A ,(< ))« llg ;1/2,'/2_l/4) < с42(Г)||Д(и«)

- u0_1))||g;1/v/2-1/4) ,т < тт .

As a result, we arrive at the inequality

l|Zy+1)| | £ 2''/2+l) <(C4ZS + C44£1/4)||*0 ) | |& 2,'/2+ l) 

W * ) l l * W)l l £ ! f +1)

which holds for T < Tm, e 6 (0,1). If we choose 6  and e in such a way that 

C43$ + C44C1/4 < 1/ 2, we obtain the following estimates for £ m+i( r )  =

mE i i z (y)n £ :2,!/2+l)
i = 1

Е ^ е т ^ Е Я + г с - Е ^ г - » )

and as a consequence

£ m+1(T )  <  c46 £ X(T )  =  C46(T )||u (1)||g+2',/2+1) (5.24)

Неге
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with anon-decreasing (exponential) function c^s(T). Now,

l|u(m+1)||(£2.-/m) < £ m+i(T) + ||u(i)||g+2-'/2+l>

< (  1 + сА6 (Т))с3 9 (Т)ф(Т)

where ф(Т) is the sum of norms in (5.21).

The condition (1.12) for u(m+1) is satisfied, provided that

Tl'\\ + c46 (Т))с3 9 (Т)ф(Т) < 6 . (5.25)

This holds for T < T'\ consequently, ||u(m)||g*j2',^2+1̂  are uniformly 

bounded, (5.24) is satisfied when T =  T' and {u^m }̂ converges in 

yy2 +,,i+//2(Qt ) to the solution of problem (1.6).

This solution is unique, since the difference z =  v — v' of two solutions 

is a solution of a linear problem of the type (5.22) (with u(J+1), ) replaced 

by v and v') for which the analogue of (5.23) holds true:

IM|(£2’,/2+1) < (c43« + C44£1/4)||z||̂ +2',/2+1)

+ 045(£)INIlg+!-.'/2+1)

This implies z =  0, and Theorem 1.1 is proved.
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SOME LAURICELLA MULTIPLE HYPERGEOMETRIC SERIES 

ASSOCIATED WITH THE PRODUCT OF SEVERAL 

BESSEL FUNCTIONS

H.M. Srivastava

The present work is motivated essentially by some recent developments in 

the theory of the light changes of eclipsing variables in which frequent use is 

made of certain integrals and expansions associated with the product of two or 

more Bessel functions. Starting from some rather elementary expansions 

involving Bessel functions, it is shown how readily one can obtain much more 

general results involving, for example, Lauricella’s multiple hypergeometric

Lauricella hypergeometric function are also considered. Finally, relevant

functions and of r variables. Further extensions of these

and other similar results to hold true for the (Srivastava-Daoust) generalized

connections of many of these general expansions with those available in the 

literature are pointed out, and a brief discussion of their basic (or ?-) 

extensions is presented.

1. Introduction, Definitions, and Preliminaries

Certain classes of integrals and expansions associated with the product of 

two or more Bessel functions Jv{z), where (с/, e.g., [35])

1304
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- (- l)m (\z)^2m

m! r(i/+m+l)
( l . i )

771=0

are potentially useful in a wide variety of problems in several seemingly 

diverse fields of physical, astrophysical, and engineering sciences, and indeed 

also of statistics and operations research. For instance, in the theory of the 

light changes of eclipsing variables, the fractional loss of light, suffered by an 

eclipse of a circular disk of fractional radius (and darkened at the limb 

to the Mh degree) by an opaque disk of radius r̂  with their centres 

separated by a fractional (projected) distance 6 , is represented by the

associated alpha-function а^г^т^Й) of order N, defined by (cf. [14]; see 

also [15, Sections 1.3 and 1П.З])

More generally, if the transparency of the occulting disk increases with the 

angle of foreshortening in the same manner as the limb-darkening of the 

eclipsed star, that is, if the transparency function £(p,() of the second 

aperture is given by [14, p. 232, Equation (3.36)]

o ^ rv r2 ,S) = 1 V ГМ  / V "  dt, (1.2)

where, for convenience,

(1.3)

[1 - (p /r j)Y  (/> g r2),

9 (p X) = sA(M ) = (1.4)

0 (p > r2)<

in place of
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s ip  А) = 9q{pX) =

1 O’ й гг)>

о (р > r2),

then Equation (1.2) is to be replaced by [15, p. 34, Equation (3.38)]

(1.5)

e!u (V a**>  = 2" +A r W r (A+1) k~v

f *  i*~x Ju(kt)Jx+l(t)J0 (ht) dt, (i.6)

which, in view of Equation (1.5), reduces immediately to (1.2) when A = 0; 

here v, h, and к are given, as before, by (1.3).

In another situation of an entirely different nature, let P^{R] fp* • *,r^|p) 

denote the probability that the final distance of an object, after executing a 

generalized random walk in a space of p dimensions (with unequal stretches 

rv — ,rN , say), is-less than a distance R from its starting point, then it 

is easily found that (cf., e.g., [35, p. 421])

* *>r^ l p)

й{Г(?)}ЛГ' 1 / "  (W ) 4 ' 1 J.(Rt) П • 
•'o ? j=i

V  i (V>

FT
dt, (1.Г)

where, for convenience, q = jp.

For a systematic investigation of each of the aforementioned situations, and 

many more in other fields, one finds a genuine need for generalizations of the 

widely useful (discontinuous) integral of Weber and Schafheitlin [35, p. 398 et 

seq] which indeed provides different analytic expressions for the infinite 

integral:

Г  t P~l  J ^ V v{yt) i t
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according as x is smaller than, equal to, or larger than y. One such 

generalization, motivated especially by (1.7), is due to Srivastava and Exton 

[30] who gave the integral formula (see also [31, p. 50, Equation 1.7(12)]):

/V-1 n, {yy)} dt
0 J=l J

oP' 1 / 1  /N-1 / N 'M T , . m
1 N- I N '  ̂ '

Г(/11+1)---Г(0дг j+1)

N-1) *1 *N-1
±M, /tj+l r • *,/i^_j+ l; - i f , ' " )  — j (1.8)

~N *N

where are positive real numbers constrained by the inequality:

XN > xl + * "  + XN-1 (N = 2>3>4»” ,)> (1-9)

M = p + fix + ••• + Мдг , (1.10)

Ке(Пцх +--- + nN) > Re(l-p) - \N , (1.11)

and the special role played by x^ can indeed be assumed by any of the

remaining variables • Here, and in what follows, F^r\

F\j\ and F ^  denote the Lauricella hypergeometric functions of r 

variables (cf. [17]; see also [31, p. 33]). For the sake of ready reference, we 

recall here the definition of each of these multivariable hypergeometric 

functions (together with the precise regions of convergence of the multiple 

series defining them) in terms of the Pochhammer symbol (A)m given by



1308

w ra =

Thus we have

Г ( A+m) 

Г(Л)

1, if m — 0,

A(A+1)* • «(A+m-l), V m  6 W = {1,2,3,...}.

(1.12)

4 Г)[а> V > * r ]

(^ l)
• ■ • ( /?) m i 

r  — r Z 1

rJm

( l * xl + • • •  + |*f | <  1), 

[®1»’ * * ,QV 1 ^1 ’* * * ; 7 5 V  ” »*r]

771-,

I

ml ’ ‘ ‘ *»m r=0
(7)v • • +771

1 г

771.

(1.13)

m , ! m _ !

771.

m j !  m r \

(1.14)

(mix{ I Zj I, • ■ •, I z^l} < 1),

* i r)[a> 0 : v > W  ■>*»•]

771,

771. ••• ,T 7 lr=0 (^1)771

and

1

W\*v

( 7 r )r'm.

+ . . .  + y/\z \ < 1),

771

771 ! 
Г

(1.15)
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ml> * * •>* г

00

I
ТП̂ + • • • +771 j.

(max{|z1|,---)|zr|} < 1).

For г = 2, these functions are precisely the two-variable hypergeometric 

functions of Appell (cf. [2]; see also [3, p. 14]) who denoted them by F2, F ,̂ 

F^ and F^f respectively. More importantly, when r = 1 (or, 

alternatively, when only one variable is nonzero), each of these functions 

reduces at once to the familiar hypergeometric function:

a-p
F(a, 0 , t , z)  = 1 + —  z + 

1-7 1-2-7(7+1)

(z e U = {z : |z| < 1}; 7 Ф 0,-1,-2,-• •).

which corresponds to a special case

r - 1 = s = 1

of the generalized hypergeometric series defined by

z
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(1.18)

(r <g 5+1; г < s+1 and \z\ < m; r = 5+1 and z Ь U\

r = 5+1, z e д%> and Re(o>) > 0),

where

5 r

w = I  V  I  “j>
(1.19)

i= i ;= i

provided, of course, that no zeros appear in the denominator of (1.18). It 

should be remarked in passing that, for the celebrated hypergeometric 

differential equation:

the study of which goes back to Leonhard Euler (1707-1783), Carl Friedrich 

Gauss (1777-1855), and Ernst Eduard Kummer (1810-1893), the function

or, more precisely,

2 Fl (a)P\ 7 ; z)

is the only solution that is regular at the point z = 0 and assumes the 

value 1 at this point (cf. [5, p. 138]).

The recent works of Kopal [16], and Sri vast ava and Kopal [32], were 

motivated by the continuing importance of the associated alpha-functions

z(l-z) + {7 - (a+p+l)z] - apw — 0,
dz

(1.20)

F (qt,/J; 7 ; z)

in, for example, an interpretation of the observed light changes of eclipsing
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variables. In the systematic presentation of a number of new (and 

computable) expressions for these associated alpha-functions, and also for their 

various partial derivatives, these earlier works made use of certain special cases 

of

(i) the Srivastava-Exton formula (1.8) (in addition, of course, to the case 

N = 2 given by the aforementioned Weber-Schafheitlin integral), and

(ii) The Bessel-function expansion:

\-n--- - r
(*z) П {J (zz)}

j - 1  4

i , 1 ••• x r ® (А+2п)Г(А+п)

2 ----- ;----W * )
ГЦ + 1)...Г (рг+1) n!

• A+n; /y-l.-.-./yl;

which was given by Srivastava [21, p. 150, Equation (5.1)] who also showed 

similarly that [21, p. 150, Equation (5.2)]

-----и r

(iz) 1 г П {J (x-z)}
j= i  >ч j 

^ . . .  £  r (A+t) :

Г(д1+1) . . .  r ( V l) J o  n! A+n

• Л+1; /*1+1,---,дг+1; ^*22̂

The object of the present paper is mainly to demonstrate how readily we can 

develop much more general expansion formulas than (1.21) and (1.22) by
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means of some simple techniques based (for example) upon the integral 

representation:

r(e) ■'o

Щ  ■ Pr ]

~t *Л~1 трe t / j z^t
••• Л V

У 7 r '

it (1.23)

(Re(z1+-• -+zr ) < 1; Re(a) > 0),

which is due essentially to Erdelyi [6, p. 696, Equation (1)], and the integral 

representation [29, p. 40, Equation (10)]:

" --t /0-1

Г(а) 0

O

J.

A
o

-  0f l t

У V

dt (1-24)

(IReCzj)! + + |Re(zr ) | < 1; Re(a) > 0),

which (in a slightly modified form) was applied by Srivastava and Exton 

[30, p. 2] in order to prove their general result (1.8).

2. Polynomial Expansions of Lauricella Functions

We begin by rewriting the definition (1.1) in its equivalent forms:
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(4г)
Ш  = ----- „F.Г(*»1)

М *

Г (^ 1)

О 1

"+i;

e±,z F е ^

V

I/+I ;

=f2  iz

2t/+l ;

(2.1)

1 ' A-i;

= «'* Л
2z

2A-1;

where the third member follows from the second by appealing to Rummer’s 

formula [19, p. 126, Theorem 43]:

(2 .2)

In view of (2.1), each of the integrals in (1.23) and (1.24) can be restated as 

an integral involving the product of r Bessel functions of different 

arguments. Furthermore, if we make use of (2.2) in the integrand of (1.24), 

and evaluate the resulting integral by appealing to Erdelyi’s result (1.23), we 

shall arrive at the following transformation formula relating the Lauricella

functions F ^  and (cf. [29, p. 39]):

= ( l+ V .- « p - e 4 r)

27г 1 ."- ,2 7г-1

2z, 2 z.

1+Zj+•••+2y 1+z1+**-+zf
(2.3)
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or, equivalently,

= (1-г1........*r r “ * i r) *a, ia+ i; 71,* “ i7r ;

(2.4)

(l-Sj........-*гГ  (l-«i........ *r )‘

(| Z j|  + . . .  + |*f | <  i ) .

Now we turn to our expansion formula (1.21). Replacing z by 2l in 

it, multiplying each side by

v ^ > d t'

and integrating over the semi-infinite interval (0,®), if we apply the 

Srivastava-Exton formula (1.8) with N = r+1 and N = 2, we shall obtain

the following result expressing the Lauricella function in series of

multivariable polynomials associated with F^p  itself:

"I — .Дг+1; I1z,-",zr zJ

_  - М Д  H f  ^

n=0 (A+n)n n!

ц+п, и+щ

A+2n+l;

F ^[- n , A+n; M1+l>---.Mr+l; I i> " ,>I r] •
(2.5)



1315

where the arguments have been adjusted conveniently, and the parametric 

constraints can be waived by appealing to the principle of analytic 

continuation, provided that each side of (2.5) exists.

In a similar manner, the expansion formula (1.22) yields

n=0 (A+i).

/*+71, и+гц

A+ti+1;

W t *  A+1; V 1," ’ ,V 1’ xV - 'xr] '
(2.6)

provided (as before) that each side exists.

If, in the expansion formula (1.21) with z replaced by izt, we make use 

of the 1F1 representation (2.1) for each of the Bessel functions, multiply 

both sides by

t-ttp-A-l it  i

and integrate over the semi-infinite interval (0,m) by appealing to the 

integral (1.23), we shall obtain

4r)
2 x^z 2 x„zT

1 + (xx+---+xr )z 1 + ( i1+*“ +ir )z

1 + z

1 + (*j+« • m+xr )z
71=0

(A+n) 71!
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2F1

fj,+2n, X+2n+\]

2Л+4Т1+1;

2z
1 + г

F ^[- n , A+n; д1+1,---,/1г+1; 4 > " ‘ >ay]> (2.7)

provided that each member exists.

In a similar way, we find from the expansion formula (1.22) that

Лг) / у - * , * * 2̂ + 1, —  ,2/Ltr+l;

2 x^z 2 xr z

1 + (ij+.-.+Ir )z 1 + (Zj+---+Zr )z

+ z

1 + (l] + - • ‘+xr )z

" м ио * и ) п (-*2/ (i+ *)V

n=0 (A+")n n!

2f l

д+2п, A+n+$;

2z
1 + z

(2.8)

2A+2n+l;

• A+l; /ij+1,- • ->Pr+l;

provided that both sides exist.

Formulas (2.7) and (2.8) express the Lauricella function in series of

Lauricella polynomials It should be noticed, however, that these

expansion formulas can be deduced directly from (2.5) and (2.6), respectively, 

by making use of the transformation (2.3) or (2.4) in conjunction with the 

quadratic transformation [7, p. I l l ,  Equation 2.11(4)]:
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*a, icH-i;

2* =  (I-*)-* 2Fx И 2 (29)

for the Gaussian hypergeometric function.

3. Further Generalizations and Basic (or $-) Extensions

A closer look at the expansion formulas (2.5) and (2.6), and at their 

consequences (2.7) and (2.8), would suggest the existence of much more general 

results involving, for example, the (Srivastava-Daoust) generalized Lauricella 

hypergeometric function of r variables, defined by (cf. [27, p. 454] and [31,

p. 37])

F

ТП,
ГCD

Z

£ Н(7П1,---,7ПГ)
T (3.1)



A
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where, for convenience,

P i mt Ч'ЛШ* '+m
J - l  1 J  г J

j l t 1 '̂-+” -+ror^

S' r )

M

r)

W 1П (6'.) , П (6vA (r)
. . j - i  1 mrv i

-------------------------- —  . (3-2)

O ' r ) ,A
П (<*'•)„ x/ П (<fЯ )„  Лг)

H  ^  j  = l  J mrSj

the coefficients

№ (j=h---,A), # 0=1 # 0 =V--,c).

(3-3)

df>U=h— ,rtk)V, v { i , •••,»•}

are real and non-negative, and (a) abbreviates the array of Л parameters

al ' " ‘ ,aA »

(j(^ ) abbreviates the array of B^) parameters

iC*) ( j = i , . . . , d k\ v *  6 {1,•••,!•}),

with similar interpretations for

e£ cetera.

(c) and ( (Й )  [k 6 {1.---.Г}),
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The case r = 2 of the multiple hypergeometric series (3.1) was 

introduced and studied earlier by Srivastava and Daoust [26]. For the precise 

conditions under which the multiple series (3.1) and its special case when 

г = 2 converge absolutely, see Srivastava and Daoust [28]; see also Exton ([9, 

Section 3.7] and [10, Section 1.4]). In particular, when each of the real 

numbers listed in (3.3) is equated to 1, the generalized Lauricella function

(3.1) reduces to a direct multivariable extension of the Kampe de Feriet 

function (c/[13], see also [3, p. 150] and [31, p. 27]). We shall denote this 

special multivariable hypergeometric function simply by (cf. [31, p. 38])

Our derivations here of the aforementioned generalizations of the expansion 

formulas (2.5) to (2.8) involving the general multivariable hypergeometric 

functions (3.1) and (3.4), would employ multidimensional mathematical 

induction together with some elementary operational techniques which are 

based upon the classical Laplace transformation:

(3.4)

(3.5)

the inverse Laplace transformation:

, 1 r+ too ,

y - V (p ):t}  = —  /  F{V) dp = Kt), (3.6)
2тп T-ia>

and the Riemann—Liouville fractional derivative operator D ^ defined by (cf. 

[8, Vol. П, Chapter 13]; see also [34])



D t i m  =

/  V C )- " '1 ПО  <K (Re(M) <  0 ) ,
Г ( -м )  '0

,771

X jj 0 ^ m{/(*)} (m-1 £  Ве(м) < т ; m€ И).

(3-7)

dz

In what follows we shall find the need for a number of operational

formulas involving the linear operators У, У  \ and D ^ Operational 

images (or operational representations) of many classes of special functions in 

the Laplace transformation (3.5) can be found from the Eulerian integral [cf. 

Equations (1.23) and (1.24)]:

/ "  e'pt iA_1 dt = ^  (3.8)
•'o pX

(min{Re(A), Re(p)} > 0).

On the other hand, computation of the inverse Laplace transformation (3.6) is 

facilitated largely by Hankel’s contour integral in the equivalent form (see, e.g., 

[36, p. 245, Example 1] and [18, p. 17, Equation 2.7(5)]):

1 „r+icD „ 1
—  /  V dp = —
27ft r-iw Г (z)

(3.9)

(r > 0; Re(z) > 0).

Making use of the Г-function formulas (3.8) and (3.9), we can easily find 

from the definition (1.18) that (cf [8, Vol. I, p. 219, Equation 4.23(17)])
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Г(А)
F

r+Vs

'A, aV" ' }ar \ 

0V'" ,0 S'

(3.10)

(Re(A) > 0; Re(p) > 0  if r < s; Re(p) > Re(z) if r = s) 

and [op. c i t p. 297, Equation 5.21(1)]

-1
F

z
: t

y r s V
0V--,PS;

*

-1

rFs+1

г • *)ar ;

(3.11)

(Re(/i) >0; г < 5 + 1),

which incidentally follows also from (3.10) in view of (3.6)

In the с 

known that

In the case of the fractional derivative operator D^ defined by (3.7), it is
Z

DV 1} = —
Г(А-д)

(3.12)

(Re(A) > 0),

which immediately yields the operational formula:
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A-u
F

Г 5

V ’V

^ р ‘ в,Л  >

Г(А)

г м

м-1
Г + Г  5+1

А,

М, Рл>--->Ре>

(3.13)

(Re(A) >0; |г| < ® when г ^  5; z Е ЧС when г = 5+1).

It is not difficult to extend each of the operational formulas (3.10), (3.11), 

and (3.13) to hold true for such classes of generalized multivariable 

hypergeometric functions as those defined by (3.1). Thus, following Srivastava 

and Manocha [33, p. 289, Theorem 2], if we let

8Ц."-.2Г) = I  Z j1
m, m.

(3.14)

for a suitably bounded multiple sequence

then

{A(m1,---,mr )} (т ;. €*„; j= l,---,r)

tA_1 в(21Л ,. . . ,г г t T): p

Г(А)
l  Л(т1,---,тг)

^ m 1p1+---+mj.pr z

m, m
J 1 . . .  zrr (3.15)
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-1

[min{Re(A), Re(p)} > 0; f>- > 0 (j = 

р '^ в ^ р  1 ,---,zr p r ): t-

and

ГЫ
I
i ,• • • =0 v**; т л o-, + * • • + m t I r 1 1  г

0*)

[Re(/i) > 0; о j  > 0 (J = 1,-• -,r) J,

m.
• z. (3.16)

K ziZ\ . . , ZtZ\

^^яцл1+« • *+m к11 гг

mr " " ,mr=o

K_
• Л(т1,- • •,mf,)(ZjZ i ) 1 ••• (ггг г) r (3.17)

*7*1

[Re(A) > 0; Kj  > 0 (j = 1,--,r)),

provided that each of the operations in (3.15), (3.16), and (3.17) is validated 

by the absolute convergence of the integrals and series involved.

Employing the various notations and conventions surrounding the definitions

(3.1) and (3.4), and making use of the linear operators У, У  \ and , 

we shall now prove the multivariable hypergeometric expansion formula:
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А+Е:В';■■■■, 
f1

C+G\D' j * * •

'(a). («): (i');---;(»(r)); 

.(c), (s): ( П — i(4r));

Z j V ■ - , i  z

J r j( .) ,(« ); (,),(•)] (-z)n

n=0 (A+n), n!

provided that

E+U G+V+l

(e)+n, (и)+щ

Л+К+2:В';-..;В(Г)

C+U:D']----dT)

A+2n+l, (p)+n, (v)+ n; 

'-n, A+n, (a),(«):

(П---;(»(г));

V > * r
(3.18)

B + t f < G + K + 2  (or B + t f = G + V +  2 and z € fcr) (3.19)

and

1 + C + i # )  - Л - вв ) > B - G 0 = (3.20)

where the equality holds true when the variables z and are

constrained appropriately (с/ [28, p. 158]; see also [31, p. 38]), it being 

understood that exceptional parameter values which would render either side of 

(3.18) invalid or undefined are tacitly excluded. Here, and in what follows,
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we find it to be convenient to write

U
П (c ■) П (*.)

j= 1 J n j= l 3 n
(я € Ип). (3.21)

n ( j,)n n («.) 
j= 1 ] 71 j= 1 J n

Proof. We begin by rewriting the expansion formula (2.5) in the form:

I1z,...,xr z

= I  -7
n=0 <A+n)n

2 1

/x+n, у+п;

r,2:0; • • • ;0 
0:1;- • *;1

~7l, A+n. j * * ■, |

A+2n+l;

V ’zr
----: ^ r ;

[|z| < m injl, (V|Xj| + ••• + V|sr l) 2]]i

where we have replaced fij by ц- - 1 (j = 1,-*-,г).

Formula (3.22) corresponds to the general result (3.18) when

(3.22)

= = С = eP^-1 = E - 2 = G = U = V = 0  (3.23)

(j = 1.‘ ” |Г).
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Thus, in order to prove the expansion formula (3.18) by appealing to the 

principle of multidimensional mathematical induction on the various 

non-negative integers involved in (3.23), we first replace Xj in (3.22) by

Xj t (j = 1.— tr ) , individually or collectively, multiply each side by ta ,

and operate upon both sides by У  and У  -1 (or, simply, by D® )̂. 

Applying this procedure successively, and making use of such operational 

formulas as (3.15), (3.16), and (3.17), with

P j = ° j = l  0  = 1. •*-.**)» (3-24)

we shall thus be led eventually to an expansion like (3.18) with, of course,

E - 2 = G = U = V = 0 .  (3.25)

Next we replace z in (3.22) by zt, multiply each side by ta \ and

operate upon both sidfes by У  and У~^ (or, simply, by D0̂ ^). Again, 

if we apply this procedure successively and make use of such operational 

formulas as (3.10), (3.11), and (3.13), we shall thus arrive eventually at an 

expansion formula which would yield the general result (3.18) upon trivially 

сал celling some of the numerator and denominator parameters.

In case we successively apply the above operational techniques directly to 

the general result (3.18), followed by an appropriate cancellation of some of 

the numerator and denominator parameters, each of the non-negative integers 

involved in (3.23) would increase by 1, and the proof of (3.18) by the 

principle of multidimensional mathematical induction would thus be completed.

In a similar manner, if we start from the expansion formula (2.6), we can 

obtain the result:

A+E.B' ;• • • 

C+G:D-

■(•Me): (Ь').---;(ь(г)); 

.(с),О): (* );•••;(d(r));

z1z ,- ’ ,xr z
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= I  Гn[(«),(«); Ш «)]
M "

я=0
п\

' e+u f g+v

(е)+п, (и)+п;

(д)+п, (и)+п; 

■в, (а),(к):

(е).(«):

I..- " .1, (3.26)

(<*-);•-sO^); 

provided that

£ + J 7 < G + V + l  (or £+£/■=(? + K + l and z I U), (3.27)

and the constraints surrounding (3.20) are satisfied.

In view of the principle of confluence exhibited (for example) by

К  M  1 ■ ■ /:■ . ■

(|z| < it; m e IH0),

m

m

(3.28)

it is not difficult to observe that the expansion formula (3.26) is, in fact, a 

limiting case of (3.18) when z is replaced by Az, and x by x^jA

0 = lj • • * ,r ), and A -» oo.
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By applying the operational formulas (3.15), (3.16), and (3.17), without 

such constraints as (3.24), each of the expansions (3.18) and (3.26) can easily 

be extended to hold true for the (Srivastava-Daoust) generalized Lauricella 

function (3.1). A general expansion of this type, corresponding to (3.18), was 

proven markedly differently by Srivastava and Daoust [27, p. 456, Equation 

(4.3)]. More generally, for I . e IN (j = 1,* • • ,r ), we have

r I, I ! A+E-.B' ;•••; B̂ -
* v V - . * r * = f  ,P.

1 Г 1 C+G-.D' ;•••; d r

'[(а):

[(с): ф ' • ,ф(Г\ 

[(e): [(6'): |[(Ь(г)): pM];

хлz

п=0 (*«ож 

’ etC/f G+v+i

(с) + п, (и)+л;

A+V+2:B';-'-;£(r)

A+2n+l, ($)+n, (v)+n;

[-я^,. • • ̂ ЦА** V  • • ,д,[(а): 6',• •

C+U:D‘

[ (•Н .- ^ :[ (» ') :Г ] ;- ![ (*М ) Л

[(»Ц.---,д:[(^)^'];---,[(<г(г)):«(г)];
V * * r

(3 .29)
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L
which, in the limiting case when z is replaced by Az, and Xj by x-j\  ̂

(j  = 1>* • • ,r ), and A -+ m, yields

3r(xiz\ ...,x r zlr) = I  r n[(e),(tt): (*),(*)] L J-

71=0

e +u f g+v

(e)+n, (u)+n;

Г1

C+U:£>';---;£>(r )

(?) + »> («)+"; 

[ (e ):? ',- ,/r)], [ ( « ) :V 4 J :

[ ( c ) : t f ' , [ ( u ) : ^ , --- , ^ :

K»'):»>'];---;[(»(r)):»>(r)];

V * * r
(3.30)

In addition to the conditions (3.19) and (3.27), respectively, the expansion 

formulas (3.29) and (3.30) require for the non-negative coefficients (3.3) that

С a b W

1 + I + I ^  - I ^  - I гЕ-° (3-31> 
i= i j =i j= i i=i

(* = l,- " ,r ) ,

where the equality holds true when the variables z and • >xr are

constrained as before.
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The expansion formulas (3.29) and (3.30), together with a mild extension of 

(3.30) not contained in (3.29), were deduced elsewhere by Srivastava [22] from 

the following general results involving multiple power series with essentially 

arbitrary terms:

Theorem 1. For bounded complex coefficients Л(тор* • • ,mr ) and Пп 

(V n,m̂ . € Wq; j  - 1,-••,!■), let the multivariable function Ф{z^ '"> zr ) &6 

defined by

Ш m, mr 
z1 ■•■zr , (3.32)

mr* ” ,mr=0

where, and in what follows,

L = 7̂7î  + ••• + i rmT (3.33)

for arbitrary positive integers •

Then

h  l r ? ( ' z)n v Пп+к **

L < n

ml »* * * > ™r=0

(Л ф 0-1-2,...) ,



1331

L < п
ri 171ч 171
I  Ы ь A(mlf---,mr ) xxL . . .  х /  , (3.35)

ani

71=0
ti!

ш ^

I  Пп+к тг
ЬО *!

L 71

I
т л

(-n)L (Д-an+L)n+k_L 

'0 - aL + L

,m=0

771,
Л(7711, . ‘ .,771г)

771.

p - an + L

(a arbitrary, 0 Ф 0),

(3.36)

provided that the variables z and ip . . . , i r 

member of the expansion formulas (3.34), (3.35), and (3.36) exists.

The expansion formula (3.35) is, just as we observed above in the case of 

its hypergeometric form (3.3), a limiting case of (3.34) when z is replaced

by Az} and Xj by Xj/Х ^ (j = I,**•,?*), and A -» m. Moreover, as 

already shown by Srivastava [22, p. 306], the expansion formula (3.35) would 

follow also from (3.36) in the special case when a = 0.

All these classes of polynomial expansions were applied recently by 

Srivastava [24] with a view to deducing various Neumann expansions for 

multivariable hypergeometric functions in series of the Bessel functions Ju(z) 

and IJ^z) or of their such products as

are so constrained that each

and Jv(z)Iv(z).
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On the other hand, by applying a terminating version of a known summation 

theorem for a well-poised hypergeometric series [20, p. 244, Equation

(П1.13)], Srivastava [25, pp. 257-259] gave a unification (and generalization) of 

the multivariable polynomial expansions (3.34) and (3.35), and hence also of 

(3.29) and (3.30), which is contained in

Theorem 2. For $(z1,-**,zr ) and L defined by (3.32) and (3.33), 

respectively,

* , *1 ^  V (-")» z"  v **Ф(х,г ,*••,! z ) = У ----  — У П .,   —

r i o  (A+")n " ! ь о  (л+2п+%  *!

L g  71
^ (-”)L (A+n)^ (\+ii+n+k+L)n_^

,mr=0 (A+ji+2L+l)n_£

771, m „ .
• A(m1,--->mf ) ••• , (3-37)

provided that the parameters X and \l, and the variables z and

> a™ 50 constrained that each side of the expansion formula (3.37)

exists.

In view of (3.28), the expansion formula (3.37) would yield (3.34) if in

(3.37) we replace z by z/д, and x̂  by x̂  //x ̂  ( j = l,«**,r), and 

then let \l -» od. Furthermore, a limiting case of (3.37) when z is replaced

t-
by Xz/fiy and Xj by а^(м/X )J (j - 1 ,*••,?*), and Л , / х oo leads us to 

(3.35). Yet another limiting case of the expansion formula (3.37) when z is

replaced by Xz, and Xj by Xj/X ^ (j = l , v , r ) ,  and Л -* a> would 

yield the multivariable polynomial expansion:
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Ф(х
1г X  ̂ Пп + к^к7 ;

в=0 n! fcO *!

L п

I
{-n)L т л т_

Л(г71р-• •,771г) 2 ^  ••• 1ГГ, (3.38)

which provides a generalization of (3.35) different from (3.34) and (3.36).

Finally, we turn to some basic (or q-) extensions of the multivariable 

polynomial expansions considered in this section. Indeed, for real or complex 

q (|g| < 1), we write

(*«). = Д  (1-A ,J )

and let (A;g). be defined by

(3.39)

(3.40)

for arbitrary (real or complex) parameters A and /i, so that [cf. Equation 

(1.12)]

and, by l’Hdpital’s rule,

1, if m= 0,

(3.41)

771-b
(1-A)(1-A«)---(1-A« )■ Vm € И

l io  
q -» 1

(Л? ) 771

( f n ) m

—  (m  6 M0). (3.42)
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(See, for details, Bailey [4, Chapter 8], Slater [20, Chapter 3], and Exton [11].)

A basic (or $-) extension of Theorem 1 was given by Srivastava [23] who 

also deduced the corresponding expansions for a general multivariable basic 

(or q-) hypergeometric function analogous to the (Srivastava-Daoust) 

generalized Lauricella function (3.1). For the sake of completeness, we recall 

here a ^-extension of Theorem 2, which is given by (cf [12])

Theorem 3. For Ф(^,*• *,zr ) and L defined as in Theorem 1 and 

Theorem 2,

А Л, y (м;?)« ш nz I • • • ,x z ) = ) ------ ----

L  (*«";«) .  ( « * ) .

j£o n+k (A«2n+1i«)* ш к 

1  !  П (A?n; q)̂  (Aqn+k+Llv ,t)n_L

' * 1, . . . >mr=0

Л mi С  т т
• ) ••• ( ir « ) , (3.4Э)

provided that the parameters A and д, and the variables z and 

are 50 consira n̂e^ fort each of the expansion formula (3.43)

exists.

The assertion (3.43) with A = 0 immediately yields the following 

^-extension of the polynomial expansion (3.38):
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L I  ■ (2/rfn

$(V ■"•■V ) = I (#•;«)» —-
n=0 W>«*

Ш

• I W**:*)* n„+* —
ЬО

L < n

V (»'

m i, . . . ,m r=0 ^  1р *Я)£,

Шч / wi

■ Ц П  1 -  (*и  ) ' (3-44)

which, for \i — l/i/, was given by Srivastava [23, Part I, p. 323, Equation 

(A.2)]. Jain and Srivastava [12] applied some of the aforementioned further 

consequences of Theorem 3 (given by Srivastava [23]) to derive various

summation (or multiplication) formulas for the ^-Lauricella functions

Ф^,г), and Ф^г) of r variables, where (cf., e.g., [12, p. 15])

[“. Pv -■ ■ ,PT: V ' ‘ ' 9> V  ‘ ,zr]

mv ' ' ' ,7V °

Г
П

i= 1

_1____ I __ L-

(7у,я)т . (?; ?)m.
(3.45)
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ФВГ) [“г ■ ■' ’“г1 ̂ 1>' ■ ■ А  > 7 ; Ч; zl ’■ ’ ' ,zr]

I  7 - --------

т Г “ *,771г=0 mi+,*'+̂ r

r
П

j~ l

m.
У J

(“<:S <̂>m

Ф

(3.46)

f l ip *  • ■ ,77ly=0

г
П

j=l

m.
1

. j  j.

and [1, p. 621]

4 r )h  h ■"••/Jr ;7 ;? ;z 1."-,zr ]

I
Шч + • • *+771 

1 Г

(3.47)

т .
г
П

i= i
тп ■

'j (?; q)m.

(3.48)
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Each of these ^-Lauricella functions is contained in the generalized 

multivariable basic (or -̂) hypergeometric function considered by Srivastava

[23]. Furthermore, in view of the limit relationship (3.42), it is not difficult

to see that the ^-Lauricella functions Ф ^ ,  and Ф^г̂

would reduce, when q -» 1 after suitable parametric changes, to the familiar

Lauricella functions anc* respectively. Indeed,

as already remarked by Jain and Srivastava [12, p. 23], none of the 

^-polynomial expansions (considered in the present context) would apply to the

^-Lauricella function Ф^г) defined by (3.46).
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ON TH E A L T E R N A T IV E  S T A B IL IT Y  OF T H E  
C A U C H Y  EQ UATIO N

J. Tabor

Let X be a commutative group, Y a normed space and let 0<e< l. We 

consider the following functional inequality

/(*+y)-/(*)-/(y)<e max{||/(r+y)||l||/(x)+/(y)||} 

for я, y€X.

Similar results, as in the case when the maximum is replaced by the minimum, 
are obtained.

Let (X t +) be a commutative group, Y  a normed space and let 0 < 

e < 1. The following functional inequality was considered in [1], [3] and [4]:

l l / ( *  +  y) - fix ) -  /(y ) | <  emin { | |/ (z  +  y)||, | | / ( * )  +  /(y ) ||)  ^
for x,y e x ,

where /  : X  —► Y.

At the twenty-sixth International Symposium on Functional Equations 

(Sant Feliu de Guixols, 1988) S. Redhofer asked the question what we would 

get replacing the minimum by the maximum. The paper answers to this 

question.

Consider the following condition

IIf ix  + y) -  f{x) - f{y)II < £ max {||/(x + y)||, ||/(i) + /(y)||> ^

for X, у  e  X  ,

AMS (1980) subject classification: Primary 51G05; Secondary 11E81, 12K05, 12КЮ.
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where /  : X  —► Y.

Obviously (2) is equivalent to the alternative

II/(*  + y)~  fix ) - /(y)|| < e||f(x  + V)|| (3)

or

l l / ( *  +  y) - / ( * )  -  / M i l  <  e ||/(* )  +  f(y)II (4)
for x,y e x .

On the other hand, the conjunction of (3) and (4) becomes (1).

We begin with the investigations of the relations between (1) and (2).

Proposition 1. If /  : X  —> Y  satisfies (2) then

II/(*  + j,) - f{x) -  /(»)|| < - i -  min (IIf ix  + V)||, ||/(.) + /(y)||J
1 ”  6 (5) 

for x,y e X  .

Proof. Fix arbitrarily x, у E X  and suppose that (3) holds true. Then

l l / ( *  +  y ) l l - l l / ( * )  +  / (» ) ll< e ||/ ( *  +  »)ll

and hence

\\f{x + y)|| < + /(»)ll •

Since e < Yfj we get from (3)

и л * + y) -  nx) - /(y)n < +y)ii •

Thus

||/(x + y) - f(x ) - f(y )|| < min {||/(x 4- y)||, ||/(x) + /(y)||) ■

In the case where (4) is satisfied the proof runs similarly.

Proposition 1 means that (2) implies (1), but with i11 place of e. 

The question arises whether converse implication is true, i.e., whether (1)
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with j-Z7 in place of € implies (2) (or equivalently whether (1) implies (2) 

with £ replaced by 3̂ 7 ). In the case where Y =  R  the answer is positive.

Proposition 2. If /  : X  —► R  satisfies (1) then

I/O* +  y )  - / ( * ) -  / ( y ) l  <  Y ^ m a x { l / ( *  +  J')l> ! / ( * )  +  / ( у )1> ^

for X, у e X  .

Proof. For an indirect proof suppose that for some fixed pair (ar, y) €

I/ ( *  +  y) - / ( * )  -  / ( y ) l  >  j - ^ 7 m a x { l / ( r  +  у )I> I/ ( * )  + Лу)1)

i.e.,

|/(I + y)-/(x)-/(y)|>ri-|/(a: + y)| (7)
and

I/(*  + y)~ /(*) -  /(» )I > 1/ (1) + f(y)I . (8)

Since, by Proposition 2 of [4] (cf. [3], too), /  is odd, we may assume that 

f ( x + У) > 0 (in the other case we may replace /  by — /). Then by (3)

/ ( *  +  y) - / ( * )  -  / ( y )  <  ef{x + y)

and so

/ ( * )  +  f(y) > (1 -  £■)/(* +  У) >  0 •
Since /(a:) + f(y ) > 0 we get from (4),

/(*  + !/ )< ( !  + «)(/(*) + /(»))• (9)

Suppose that

/ ( I  + у) - /(г) - /(у) > 0.

Я *  +  у) - / ( * )  -  f(y) > / ( *  +  у)

Then (7) becomes
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f{x  + y) > (1 + e)(f(x) + f(y )) .

which contradicts to (9).

Suppose now that

/(*  + y) - / ( * )-  f(y) < 0 .

Then (3) becomes

/(*) + f(y) - f(x  + y) < e  / ( X + y)

i.e.,

/(*) + f{y) < (1 + £)/(* + У)- (10)

On the other hand by (8)

/(*) + f(y ) - f(x  + y )>  -- ^ ( / ( * )  + /(s'))

and hence

f (x) + f(y ) > (1 + £) f (x + y)

which contradicts to (10).

The assumption that Y = R  is essential for Proposition 2. It is shown 

by the following

Example 1. Consider functions /1, /2 : R  —* R  defined as follows 

f i(*)

whence we obtain

/*(*)

h for x e< 0,1 >
* - 3 forx > 1

h (- x ) for x < 0 ;
X for x £<  0,3 >
|x + l for x > 3 ,

fi(-x ) for x < 0 .

Let t  =  1. By Theorem 4 [3] fi and /2 satisfy (1). Therefore the mapping 

F  : R2 -* R 2, F (z i , x2) := (/i(*i) ,h (x 2)) also satisfies (1). But for
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IIF(x + у) - F(x) -  F ( j , ) | |  =  | | ( - i  i ) | |  =  ^ ;

^ m a x { | | F(x + y)||,||F(x) + F(y)||} =  ±max{||(|, 1)||, ||(1, |)||}

1 fл/13 n/IO.
=  _ m a x { _  _ _ }

_  л/гз V2

9 < 3 *

In the case where 0 < ^£7 < i-e., where 0 < e < |, investigation 

of inequality (2) can be, due to Proposition 1, reduced to investigation 

of inequality (1) (of course with another e). If additionally Y  = R, then 

inequality (2) is equivalent to inequality (1) but with j-17 in place of e. So, 

in the case where 0 < e < \ the results of [1], [3] and [4] can be applied to 

inequality (2). Roughly one can say that in this case problem of inequality 

(2) is solved. The situation is quite different in the case where e >  In 

this case solutions of (2) need not have properties of solutions of (1). For 

example every solution of (1) is odd, every solution of. (1) continuous at 

a point is continuous, but it is not true when we replace (1) by (2). It is 

shown by the following examples.

Example 2. Let e > \ and let /  : X  —► R  be bounded. Then for 

sufficiently large c,g(x) := f  (x) + с satisfies (2). In fact, let с > n > 0 and

1/001 < n f°r x € X  .

Then

Is(i + y) - g(x) - g(y)\ < \f(x + y)~ / ( i )  - /(y)| + с < 3n + с

and

ls(*) + ff(v)l>2 (c-n).

In order that (2) holds, it is enough to assume that

2e(c — n) > 3n + с i.e., с >  .
Z£ “  1

х =  (10,4), у =  (-9 ,-3 ) we have
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Example 3. Let e =  §. Then f(x ) = с satisfies (2).

As we have seen above, the results of [3] and [4] concerning inequality

(1) do not hold true for inequality (2). However we can generalize these 

results assuming (2) and the condition /(0) = 0 instead of (1) or (3) re

spectively. We start with some preliminary lemmas.

Lemma 1. If /  : X  —► Y  satisfies (2) and /(0) = 0 then

(i) /  is odd;

(ii) for x , c £ X  

either

||/(x + c) - f(x) - /(c)|| < e||/(c)|| (11)

or

ll/C* + c) - /(*) -  /(<011 < <T||/(* + c) -  /(*)||; (12)
(iii) (1 - e)||/(c)|| < ||/(* + c) - f(x)|| < j-rj-||/(c)|| for x, с 6 X.

Proof, (i) Inserting into (2) у = — x we get

||/(x) + / (- .) II < 0 or 11/ (1) + /(-x)|| < t-||/ ( .)  + /(-*)||.

Since 0 < e < 1 we have

/ ( .)  + /(-*) = 0.

(ii) Putting into (3) and (4) у = с — x we obtain

||/(с)-/(*)-/(с-х)||<4Й5ь)||

or

||/(c) - /(*) - f(c  - x)\\ < e||f{x) + f(c  - c)||.

Now changing с to — с and making use of oddity of /  we get (ii).

(iii) Fix arbitrarily x,c £ X . Making use of (ii) and the triangle in

equality we obtain

(1 - e)||/(e)|| < ||/(* + c) - /(*)|| < (1 + e)||/(e)||
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Y ^ II/W II < ||/(*  + с) - fix) II < j-^l|/(c)||.

Since 1 - e < ^  and 1 + e <  we have finally

(1 - e)||/(e)|| < ||/(x + c) - /(*)|| < Y^H/WH .

Let X  be a group. We say that X  is 2-divisible if for each a £  X  the 

equation 2x =  a has the unique solution.

Lemma 2. Let X  be a 2-divisible abelian group and Y  a pre-Hilbert 

space*. If /  : X  —► Y  satisfies (2) and /(0) = 0 then

ll/toll < eSII/(2nx)ll for с € X, n e N  (13)

where e0 = max 517}.

Proof. Consider an x € X . In virtue of Lemma 1 (ii) either

||/(2*) -2/(.)||<e||/(«)|| (14)

or

||/(2*)-2/(.)||<e||/(2*)-/(.)||. (15)

From (14) we get

ii/ w i i s ^ h/ w h . (lg )

On the other hand (15) becomes

(/(2*)-2/(*))5 < £’ (/(2*)- /(*))’ .

Hence

(4 - e2)(/(*))2 < (£2 - 1)(/(2*))J + (4 - 2e2)/(2*)/(*)

< (4 — 2e2)/(2*)/(*).

Making use of the Schwarz inequality we obtain

(4 - e2)||/(x)U2 < (4 - 2£2)||/(2*)|| ||/(*)||,

i.e.,

*i.e. a complex linear space endowed with the inner product.
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l l / ( * ) l l < T ^ H / (2*)H. (17)

The alternative of (16) and (17) may be rewritten as

ll/(*)ll<ffo||/(2*)|| for x ex.

Induction completes the proof.

Theorem 1. Let X  be a 2-divisible abelian topological group such 

that for every open set U С X  the set \U is open and let У be a pre- 

Hilbert space. If /  : X  —♦ Y  satisfies (2), /(0) = 0 and /  is locally bounded 

at a point then /  is continuous.

Proof. In virtue of Lemma 1 (iii) /  is locally bounded at zero, i.e., 

there exist a neighbourhood U of zero and a constant M  > 0 such that

||/(*)||<M for x E U . (18)

Put

Un := 2~nU for n e N .  (19)

According to our assumption Un is a neighbourhood of zero. Making use 

of Lemma 2, (18) and (19) we obtain

ll/WII < £oll/(2n*)|| < en, M  for xeun. (20)

We may assume that 0 < e < 1 (in the case where e = 0 ,/ is additive). 

Then 1 < £o < 1 and in consequence of (20) /  is continuous at zero. By 

Lemma 1 (iii) /  is continuous at each point.

For the next considerations we need a lemma.

Lemma 3 . If f  \ X  —* Y  satisfies (2) then

l l / ( *  +  * ) l l<  J 3 7 I I/W  +  /W II fo r* . S ' e x .  (21)

Proof. From the alternative of (3) and (4) we obtain directly that for 

x,y £ X  either

l l/ ( *  + y ) l l< r ^ l l / ( * )  + /(s')ll
or
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| | / ( *  +  » ) | | < ( 1  +  е ) 1 1 / ( * )  +  / ( У ) Н -

Sonce 1 + £ < we have (21)-

Theorem 1, Lemma 3 and the theorem of Steinhaus (cf. [2] p. 69) imply 

the following

Corollary 1. Let У be a pre-Hilbert space. If /  : R n —► Y satisfies 

(2), /(0) = 0 and /  is bounded on a set of positive inner Lebesgue measure 

then /  is continuous.

Proof. Let T С Rn be a set of positive inner Lebesgue measure and

let

||/(x)||<M for x e T .

Applying Lemma 3 we obtain

II/(*  + y)H < Y ^ l l / W  + /(»)|| < for *, У  e т ,

i.e., /  is bounded on T + T. By the theorem of Steinhaus int (T + T) =  0, 

and hence we can use Theorem 1.

Similarly, applying topological analogue of the theorem of Steinhaus, 

i.e., the theorem of S. Picard (cf. [2], p. 48) we obtain the next corollary.

Corollary 2. Let X  be a 2-divisible abelian topological group such 

that for every open set U С X  the set \U is open and let У be a pre-Hilbert 

space. If /  : X  —► У satisfies (2), /(0) = 0 and f  is bounded on a set of the 

second category with the Baire property then /  is continuous.

Lemma 4. (i) If /  : X  —► R  satisfies (2) then

sgn f{x + y) = sgn (/(x) + f(y)) for x, у G X  .

(ii) If /  : X  —► R  satisfies (2) and /(0) = 0 then

sgn(/(x + y) - /(x)) = sgn f(y) for x, у e X  .
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Proof, (i) follows directly from the alternative of (3) and (4) instead
(ii) from Lemma 1 (ii).

We consider now the case when the range of /  is included in R. We 

begin with a lemma.

Lemma 5. Let X  be an abelian topological group. If /  : X  —► R  

satisfies (2), / (0) = 0 and /  is locally bounded from above (from below) at 

a point then /  is locally bounded at each point.

Proof. We prove first that if /  is locally bounded from above (from 

below) at a point then /  is locally bounded from above (from below) at 

zero.

Let x e X h e  fixed and let

f (x + h ) < M  for h e U } (22)

where U is a neighbourhood of zero.

Consider a h 6 U and suppose that f(h ) > 0. We obtain from Lemma 

1 (iii) and Lemma 4 (ii)

(1 -*)/(*) < / ( *  + * )- / (* ) ,

and further by (22)

m  < ^ - ( / (* + a) - / (* »  < ^ - е (м  -  л * » .

Thus

/(Л) < max ^ ( Л / -•/(®)), о̂г h e U .

This means that /  is locally bounded from above at zero. But /  is odd so 

/  is locally bounded at zero. Lemma 1 (iii) completes the proof.

Lemma 4 and Theorem 1 imply directly the following theorem.

Theorem 2. Let X  be a 2-divisible abelian topological group such 

that for every open set U С X  the set is open. If /  : X  —► R  satisfies

(2), / (0) = 0 and /  is locally bounded from above (from below) at a point 

then /  is continuous.
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From Lemma 3, Lemma 4, Theorem 2 and the theorem of Steinhaus 

one can obtain the following theorem.

Theorem 3. If /  : Rn —► R  satisfies (2), /(0) = 0 and f  is bounded 

from above (from below) on a set of positive inner Lebesgue measure then 

/  is continuous.

Proof. Let

where T С Rn is a set of positive inner Lebesgue measure. Consider x} у € T 

and suppose that f(x  + y) > 0. Then by Lemma 3 (i) f(x ) + f(y ) > 0 and 

hence, in virtue of Lemma 2,

This means that /  is bounded from above on T + T. But by the theorem 

of Steinhaus (cf. [2], p. 69) int (T + T) = 0. Hence /  is locally bounded 

from above. Theorem 2 completes the proof.

Similarly, applying the theorem of S. Picard (cf. [2], p. 48), we get the 

next theorem.

Theorem 4. Let X  be a 2-divisible abelian topological group such 

that for every open set U С X  the set ^U  is open. If /  : X  —► R  satisfies

(2) / (0) = 0 and /  is bounded from above (from below) on a set of the 

second category with the Baire property then /  is continuous.

Making use of Lemma 1 and Lemma 4 one can easily obtain further 

results for functions /  : R  —► R ( f  : X  —* R) satisfying (2) and the condition 

/ (0) = 0, similar to those obtained in [3] and [4] for functions satisfying

(1) or (3). Only the statements including estimations need to be changed 

respectively.

f(x ) < M  for x G T ,

/(*  + ») £ y t j ( / (* )+ /(» ))<  ^=7-

Thus
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For example in Theorem 3 [3] and in Theorem 5 [4] 1 + e should be 

replaced by
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THE COMPLIANCE AND THE STRENGTH DIFFERENTIAL 
TENSORS FOR THE DESCRIPTION OF FAILURE 

OF THE GENERAL ORTHOTROPIC BODY

P. S. Theocaris

1. ABSTRACT

The spectral decomposition o f the compliance fourth-rank tensor related 
with transversely isotropic materials was developed and its characteristic 
values were calculated by using its components in a Cartesian frame  
defining the principal material directions. Imposing the eigenvalues ot 
the 6x6 matrix associated with the contracted 4th-rank symmetric tensor 
to be strictly positive, as implied by the positive definiteness o f the 
elastic potentia l, bounds o f the values o f Poisson's ratios were 
established restra in ing considerably the ir existing lim its fo r the 
orthotropic materials.

Energy orthogonal states o f stress for the transversely isotropic material 
were also established by decomposing the elastic potentia l in distinct 
parts associated with the deformation eigen-states o f the m aterial 
symmetry. Thus, the unsolved as ye t problem o f extension o f the 
separation o f the elastic energy to anisotropic materials was efficiently 
realized.
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It was shown that the necessary parameters for the unvariant description 
o f the elastic behavior o f a transversely isotropic medium are the four 
eigenvalues o f the spectra l decom position and a dim ensionless  
param eter defined by an eigenangle cj. Thus the general orthotropic 
material could be equally well defined, instead o f its five classical meduli 
and Poisson's ratios, by these equivalent five indepependent variables.

2. INTRODUCTION

The definition of energy orthogonal stress states was first anticipated by 
Rychlewski [ 1 ], by denoting stress tensors mutually orthogonal and at 
the same time colinear with their respective strain tensors. Rychlewski
[2 ] has shown that, if a given stress tensor is decomposed in energy 
orthogonal tensors, then these tensors also decompose the elastic 
energy function. The decomposition of the elastic compliance tensor in 
elementary fourth-rank tensors served as a means for the energy 
orthogonal decom position of the stress tensor, the appropriate 
decomposition being the spectral one.

Different decompositions, but not spectral, of the fourth-rank tensor 
were also given by Walpole [3,4], Srinivasan and Nigam [5] and others, 
in order to simplify calculations with fourth-rank tensors used especially 
in crysta llography, and to obtain invariant expressions for the 
components of the stiffness or compliance tensors.

Assuming the orientation of the axis of elastic symmetry of the 
transversely isotropic medium to be known with respect to a fixed 
coordinate system, the complete description of the anisotropic structure 
of this medium in terms of the invariant parameters emerging from the 
spectral decomposition of its compliance tensor, necessitates five of 
these parameters to be known. That is, the four eigenvalues of the
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com pliance tensor and a d im ension less param eter, ca lled  the 
eigenangle to, which was shown to determ ine the orien ta tion of 
eigentensors associated with the eigenvalues of the compliance tensor, 
when represented in a stress coordinate system.

In this paper the com pliance tensor for a transverse ly iso tropic 
(transtropic) m aterial, usually representing a fib rous re inforced 
composite, was decomposed spectrally and its characteristic values 
were defined. Based on the properties of th is decom position , 
energy-orthogonal stress states were established. It was further shown 
that positiveness of the eigenvalues of the 6x6 matrix associated with 
the respective stiffness symmetric tensor establishes more restrictive 
bounds for the values of Poisson’s ratios, than those already existing in 
the literature. Moreover, the variation of the eigenangle to was studied 
in detail within bounds imposed by classical thermodynamics. It was 
shown that the eigenangle to can be succesfully used as a single 
param eter which characterizes the material anisotropy and it is 
phenomenologically related with quantities accounting for the fracture 
toughness of the medium.

3. ELASTIC INVARIANTS OF THE TRANSVERSELY ISOTROPIC 
MEDIUM

Consider a transversely isotropic medium with its axis of elastic symmetry 
parallel to the 0-33 axis of a right-handed (0-11, 22, 33) reference frame 
and the set of unit vectors 1, j, к  associated with this coordinate system, 
vector к  being directed along the axis of elastic symmetry. The 
compliance tensor, S, of the medium, when spectrally decomposed, 
was shown to be given by the following relation [6]:

S + » + X4E4, о )



1357

in which the roots of the minimum polynomial of S, Am, m=1 , 4 , are 
given by:

A, =(1+v1)/ET 

\ = 1/2Gl

1/2

(2)*3 =(1 -VT)/2ET+1/2EL +{ [  (1 •vT)/2ET- 1/2El ]?+ ^

\ 3= (1 -vT) /  2ET ♦ 1/2E|̂  - 1  [(1-vT) /  2ET ■ 1/2E,]2 1 ^ ,  E[J

1/2

Subscripts T and L in the engineering constants of relations (2) denote 
the transverse (isotropic) plane and the orthogonal (longitudinal) plane 
containing the axis of elastic symmetry.

Idempotent tensors Em figuring in relation (1) are known to decompose 
the unit element, I, of the fourth-rank symmetric tensor space and satisfy 
the following set of equations [3]:

i = e ,+ . . .+ e 4

Em.E„ = 0, m*n (3)

* ^m” *

M oreover, tensors E m, m=1......... 4, subdivide the second-rank
symmetric tensor space, L, into orthogonal subspaces, L^m, consisting 
of eigentensors of the compliance tensor S. For, if a is an element of L, 
by means of equation (3), one has:

I .a  = Er o + ... + E4. a = a 1+... + o4 = o (4)
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whereas eigentensors ffm, m= 1 .......4 of the compliance tensor S satisfy
the set of equations:

a .a  =0, m*n
m n

S о =X о (5)m m m ' '

The simplicity introduced by the spectral decomposition of S in the 
mathematical analysis of the theory of Elasticity, involving anisotropic 
elastic behavior, is reflected in the e lem entary linear form  that 
generalized Hooke's law assumes. Indeed, if o m represents a stress 
tensor, the associated strain tensor (elastic eigendeformation) is simply 
expressed by:

e =A о , m =1,...,4 . (6)m m m

Tensors a m and em were called by W. Thomson [7] orthogonal stresses 
and strains, because of the property they possess, expressed by the 
first of relations (5).

It is a simple matter to prove by using relations (5) and (6) that the unique 
valid energetic decomposition of the elastic potential into distinct strain 
energy densities, each associated with some eigendeformation of the 
transversely isotropic medium, is expressed by:

2T(o) = o . S . 0 = X,o , . o, +... + \ 4o4.o 4 (7)

Eigentensors a m, m = l, ... , 4, can be readily calculated once the 
idempotent tensors Em were shown to be given by [6]:
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Е, < , = 1 « ( ЬЛ +ЬЛ - ЬЛ )

Е 2= Еи к I = 1/2 (bk а , + bij ajk + bjk Зи)

E3 = Ep , = ‘ ®« = Vkl (8)

E4 = E jk| = g®g = g..gk|

Second-rank axisymmetric tensors a, b, f and g of relations (8) are 
defined by:

a = k 0 к 

a + b = 1 =5..

f=- r̂coso)b +sina)a (9)

Д

g = -psimob-cos(oa ,

V2

with

( v 1/2
C0S2©=[ (1 - vT)/2ET - 1/2EJ |[ (1 - Vl)/2Е, -1 /2Е J + 2v2/ Ег| {10)

The two first idempotent tensors of relations (8), i.e., E1 and E2 , were 
also derived by Walpole [4] in the presentation of an invariant 
decomposition of the transversely isotropic fourth-rank tensor, which 
however, did not correspond to the spectral decomposition of this 
tensor.
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The eigentensors of the transversely isotropic compliance tensor S are 
derived by the orthogonal projection of a second-rank symmetric tensor 
о on the subspaces 1_ж , produced by the linear operators  Em as 
fo llow s :

Considering the contracted Cartesian form  of the sym metric stress
tensor a, i.e., a  - o ]t i = 1......... 6, eigentensors o m were found to be
expressed by [6] :

In relations (12) the first two eigentensors a 1 and o 2 are independent of 
the specific material properties and they remain the same for all the 
elem ents of the transverse ly isotropic class. On the contrary, 
eigentensors o3 and a4 have components, which are functions of the 
eigenangle  со, given by relation ( 10), and depending on the 
engineering elastic constants of the material.

tu)

a2 = [С '0' 0' CT4' as-°]T

,T

T
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Thus, eigenangle со, together with the four eigenvalues Am given by 
relations (2 ), constitute the five invariant elastic constants necessary for 
the description of the elastic behavior of the transversely isotropic 
media. Moreover, besides its characterization as an elastic constant, 
eigenangle со controls the values of the parts in which the elastic 
potential is decomposed.

Furthermore, it can be readily shown by adding relations (12) that :

0 = 01 + 02 + 03 + 04 . (13)

It may be derived from relations (12 ), that the characteristic states of 
stress, wh ich correspond to the spectral decomposition of the 
compliance tensor S for a transtropic material, decompose the generic 
stress tensor in a well-defined manner. Indeed, the states ct1 and o2 are 
shears, with a2 simple shear and a 1 a superposition of pure and simple 
shear. The sum of a3 and a4 is the orthogonal supplement to the shear 
subspace of a 1 and a2.

4. CH ARACTERISTIC STATES OF THE SPACE L OF THE 
S E C O N D -R A N K  SYM M ETR IC  TENSO RS L FOR THE 
TRANSTROPIC MATERIAL S.

We define the orthogonal subspaces of L in terms of which the space of 
the second-rank symmetric tensors, L, is expressed as their direct sum. 
These subspaces constitute characteristic states of the tensor S and 
satisfy the following relations :

S . i i a  о (m = 1 to4)m mm '
(14)
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with Xm given by relations (2). These stress states are simply defined by 
equations of the form :

(15>m m  ' '

with Em given by relations (8).

Then, the contracted stress tensor a, expressed in the form of a 6-D 
vector, is given by :

0 = [ ° 1» °2> °3> a4« °5> °б] (16)

whose components a m (m = 1 to 4) are given by the relations (12).

For a loading o, for which it is valid that a (S), the corresponding 
coaxial strain tensor and elastic energy are given by :

e = AKo , 2T =XKo . о . (17 )

For a state of a generic stressing, which does not belong to any of the 
subspaces (S) , the strain tensor and the elastic energy are given 
also in simplified form, after performing the decomposition (1 2 ):

e = S . o = ( \ E 1+ .„ +XmEm) .o  = A,o1 + ...+ Xmom (18)

2T (o, +... + om) = 2T(o,) +... + 2T(oJ = 

= X 1 (tro^) + ... + Xm(tro2J  . m < 6 (19)
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It is well known from the isotropic elasticity that the strain energy density 
at any given stress, a, can be separated into two components, the 
volum inal and the distortional parts, accounting for the recoverable 
e lastic energy stored by dilatation and distortion of the solid 
respectively.

Such a separation for the anisotropic solid with axplicity identified parts, 
as is the case with isotropic materials, is not in general conceivable. 
However, by means of decompositions of the stress tensor in the form 
of (1 2 ), it is possible to distinguish either some loadings, or some 
classes of anisotropic materials, for which such a decomposition of the 
elastic energy in d ilatational and distortional parts constitutes a 
well-defined process.

Consider again the transtropic solid and its characteristic stress states 
given by relations (12). The associated with a 1 and a 2 strain tensors, e 1 

and e2 are related with pure form distortion of the solid, without any 
volum e change. This is obvious, since the only normal strain 
components are those of tensor e1, for which it is valid th a t:

£(1) 1 *E(1)2 "0 * £(1)3 ‘ 0

whereas for the e2 - tensor it is valid th a t:

e(2) Г  ®(2) 2 " %) 3"

Thus, the following part of the elastic energy of a transversely isotropic 

solid:

^ d  = ^1°1 ‘ °1 +^2 °2 ’ °2
(20)
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due to the contribution of the a 1 and a2 tensors creates a p u re ly  
distortional elastic energy.

The remaining o3 and a4 parts of the decomposition (12) are associated 
neither solely with a pure distortional, nor w ith  pure d ila ta tiona l 
components of the elastic energy. Their respective tensors e3 and e4 
produce both volume changes and shape distortions.

A useful in app lications w ith o rtho trop ic  m ate ria ls  geom etric  
interpretation arises for the energy-orthogonal stress states, if we 
consider the "projections" of a K on the principal 3-D stress space. Then, 
the characteristic state a 2 vanishes, whereas stress states a 1, a 3 and 
a4 are represented by three mutually orthogonal vectors, shown in 
Fig.1, oriented along directions with the follow ing associated unit 
vectors :

(21)
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Fig.1 - The projection of on the principal three-dimensional stress 
space.

The angle со defined by relation (10) is expressed by means of the 
components Sjjk, of the initial Cartesin coordinate system. We denote by 
(0 a v  ct2 , a3) the principal stress Cartesian coordinate system with the 
a3 -axis parallel to the axis of material symmetry and the ( a , , a2) its 
isotropic plane.
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Then, vector e 1 being vertical to the plane a 1 = a 2 (diagonal) and to 
a3-axis, see Fig. 2, lies on the intersection of п -plane (deviatoric) and 
the plane a3 = 0.

Fig.2 - Vector e 1 lying on the intersection of the deviatoric and cr3 = 0 
planes.

This is valid for every transversely isotropic solid, as well as for the 
isotropic body. Its direction cosines are thus independent o f the elastic  
properties of the material and retain their values as given by the first of 
relations (21). Vectors e3 and e4, which are mutually orthogonal, lie 
always on the a 1 = o2 diagonal plane, with the vector e4 subtending an 
angle (n - to) with a3-axis, as shown in Fig.3, but their direction cosines 
are functions of the components of the compliance tensor, as defined 
by relations (10) and (21).
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Fig. 3 - Vectors e3 and e4 lie always on the (a3 , 5)-plane with e4 sub
tending an angle (п-co) with the a3 -axis.

Fig. 4 - Vector e4 concides always with the direction of the hydrostatic 
axis for Isotropic solids.
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Fig. 5 - Vectors e3 and e4 remain always on the main diagonal plane 
( а 1 = а 2).

0*2

Fig. 6 - Vector e 1 is normal to the principal diagonal plane (cr3  , 5) as in
dicated in the deviatoric n-plane.
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In terms of these two last relations it can be derived for the isotropic solid 
that vector e4 has the positive direction of the hydrostatic axis, Fig. 4, 
whereas vector e3 lies on the deviatoric plane. Both vectors e3 and e4 

remain on the main diagonal plane a^=a2, as it was also shown in Fig. 5 
and Fig. 6.

Let the initial coordinate system (0 - a ^ O g )  transform to the one 
dictated by the directions of e 1f e3 and e4 , with axis a3 having the 
direction of e3 and axis a 1 the direction of If we denote by 
(0 - o^d2o3) the new coordinate system, it is obvious that the expression 
for the elastic energy function becomes:

.2 J  .2
2T=Xl a1 * *A 3 o3 . (22)

By giving the value, 2T = 1, equation (22) represents an ellipsoid, 
centered at the origin 0 of the coordinate system and having axes of 
sym metry along the directions, e 1( e3 and e 4 . The lengths of the 
semi-axes of the ellipsoid along the axes of the coordinate system are 
respectively 1 /  / Л 1 , 1  /  /Л 4  and 1 /  /Л З .

Thus, the energy orthogonal stress states, which decompose a given 
loading a, were shown also to decompose appropriately the elastic 
energy function, as described by relation (19).

When they are represented geometrically in the principal stress space, 
they lie along the directions of the semi-axes of the ellipsoid 
represented by relation (22), which is the geometric representation of 
the elastic energy function when it is normalized to 2T = 1.
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5. BOUNDS FOR THE ANISOTROPIC POISSON’S RATIOS

An important consequence of the spectral decomposition analysis is the 
simple proof of the positiveness of the elastic potential, expressed by:

AK >0  ; K = 1 ....., 4 -  (23)

Since all the elastic moduli should be positive, i.e., EL, ET, GL, GT > 0, 
the values for the Poisson ratios v L, v T should be also bounded by the 
validity of inequalities (23), which in combination with relations (2) yield:

N < i

/ 0'2 
|vl|< ( ( 1 - V t)E l/ 2Et)  . (24)

It may be derived from relations (24) that the transverse or isotropic 
Poisson’s ratio, v T , has bounds which differ from the bounds for the 
isotropic solid, which are: -1 .0 < Vj < 1 /2 .

Since it is necessary that all the inequalities of the system (24) should be 
satisfied in order to yield a positive value of the strain energy density 
(SED), bounds based on only a partial fulfilment of these inequalities 
should be erroneous and must be rejected. Therefore , if an 
experimentally established value for vT is found to be larger than unity, 
then because of the validity of the first inequality of (24), this value 
should be rejectable.

On the other hand, a value for v T satisfying the inequality |vT | < 1.0 
should satisfy together with the respective value for v L the second 
inequality in the system (24).
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A similar remark should be made for all orthotropic materials for which the 
bounds for their Poisson's ratios are given by the relationships [8]:

lVi ^ ( V E/ 2 (25)

and

2v v v —  < i-v2 — -v2 —  - v2 —  (26)
12 23 13 F  12 F  23 F  13 F  ''  'C11 C11 2̂2 S i

where the repeated indices in (25) do not mean summations.

The inequality (26) is more stringent than the inequalities (25) and this 
relationship should be always checked for its validity during the 
evaluation of any experimental result.

Thus, the experim enta l results derived from measurements in 
boron/epoxy orthotropic plates, cited by Jones [9], yielded:

E(1 = 11.86x 106psi, E2 = 1.33x106psi, V)2 =1.97

These values satisfy the inequality (45) and therefore the author 
concludes that the value for v 12 -  1 -97 is a reasonable one. However, 
such value is rather biased, if one tries to satisfy the second bound 
expressed by the inequality (26). Indeed, the satisfaction of this bound 
restricts further the spectrum of the accepted values for the Poisson 
ratios of the composite.
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An alternative method for establishing the bounds for the values of the 
Poisson ratios for transversely isotropic materials was fo llowed by 
Christensen [10]. According to his method the values of other elastic 
constants are maximized in idendity relationships with the quantities of 
Poisson’s ratios. Thus, for the transversely isotropic elastic body the 
following relationships were used in order to establish the bounds of 
Poisson's ratios [10]:

where in this notation the (2 , 3 ) - plane is accepted as the isotropic 
transverse plane and the 1 -axis is the strong axis of the material, ц23 and 
K23 are the respective shear and plane strain bulk moduli.

Solving for v 12 from Eq. (27) and introducing the limiting values for the 
plane-strain bulk modulus K23-o o  and the shear modulus the
follow ing values for the longitudinal Poisson's ratio v 12 = v L were 
established:

E, ^23̂ 23 (27)
22"

■11

and

•11

(28)

1/2

(29)
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However, for the limiting values of K23 and m23 the transverse (isotropic) 
Poisson's ratio, v23 = v-j- becomes vT = -1.0 and this is the necessary 
condition for the bound of relation (29) to be valid. For any other value of 
the transverse Poisson ration vT *  1 .0, inequality (29) overestimates the 
bounds for Vj_, as it can be easily derived from the exact expressions
(24).

A similar procedure with this followed by Christensen was used in ref.
[11], where the bounds only for vT are established. It was therefore 
erroneously suggested in this reference as the appropriate interval of 
valid values for vT the interval [0,1 ].

In conclusion, it should be again pointed out that in establishing the 
appropriate bounds for the elastic constants of an orthotropic material a// 
conditions (23) for ascertaining the positiveness of the strain energy 
density should be satisfied.

6 . RESULTS

The energy-orthogonal decomposition of the stress tensor a, was 
obtained by means of the spectral decomposition of the symmetric 
fourth-rank tensor, S, which unambiguously defines the positiveness of 
the elastic energy expressed by:

2T=O.S.0

The decomposition of the tensor a for the transversely isotropic solid 
gave four energy-orthogonal stress states, which decompose in a 
straightforward manner the elastic energy function.
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It was shown that the stress vector a in the 6-D Euclidean space can be 
expressed by only four eigentensors a , ,  ct2 , a 3 and o4, expressed by 
relations (1 2 ). It was further proved that the e igentensors of the 
compliance tensor S may be given the significance of a stress tensor 
and express energy-orthogonal loadings. The mathematical expression 
of this definition was given by:

°k S on=ok €n=0 <3°)

which expresses the normality of the six-dimensional vectors of an 
eigentensor of stress and an eigentensor of strain, which corresponds 
to a different than the former stress-eigentensor.

For the transversely isotropic elastic body a generic stress tensor, which 
is analysed into four eigentensors, may decompose the strain energy 
density according to relation (19). If we project these eigentensors in the 
Euclidean space of the principal stresses (0, o 1t a2, a3), this projection 
yields a zero value for a 2, whereas the projections of a v  a3 and a4 
represent three normal to each other vectors.

It was also shown that the e3- and e4-vectors are equally inclined to the 
axes 0a 1 and 0a2 of this frame and therefore they lie on the main 
diagonal plane a 1 = a2, whereas the e 1-vector is norma! to the 0a3-axis 
and therefore it lies on the deviatoric n-plane.

It can be readily proved from relation (10) that angle to for the isotropic 
solid is equal to 125.26° and generally varies between 0° and 180°. 
However, typical values of the angle со for highly anisotropic fiber 
composites are near to the bound of 180°, whereas for metal matrix 
composites, which are characterized by a moderate anisotropy, values of 
the eigenangle ш approach the bound of the isotropic material, i.e., 
125.26°.
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Generalizing the above findings for the anisotropic compliance tensor S 
we may derive that the ellipsoid representing its elastic potential has as 
directions of its principal semi-axes the same directions with its 
eigentensors whose lengths are equal to 1/{Am) 1/2, where Am is the 
eigenvalue corresponding to each eigentensor.

It is worthwhile pointing out that from all the polar radii ending on the 
surface of the strain energy density ellipsoid, which represent stress 
vectors, only those which are colinear with the principal axes of the 
ellipsoid have respective strain-vectors, which are colinear with the 
stress-vectors, whereas in all other cases the stress- and strain-vectors 
subtend some angle. The same phenomenon happens also for the 
isotropic elastic bodies.

It was succeeded w ith this analysis, based on the spectral 
d e c o m p o s itio n  of the  com p liance  tensor, to es tab lish  
energy-orthogonal stress- and strain-states and to separate the SED 
into well-defined components. Similar, but less general, decompositions 
were recently introduced by the author [12, 13], based on geometric 
properties of the stress- and strain-vectors of the transversely isotropic 

body.

A final important remark, which should be made, concerns relation (19). 
According to this relation, the elastic potential should be always positive 
definite, and this property is satisfied only when the tensor S is positive 
definite. It is, however, well known from the algebra of fourth-rank 
tensors[14] that the necessary condition of the validity of this property is 
that all the eigenvalues Лк  are positive, fact which constitutes the basis 
of the analysis of this paper.
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QUASIDIRECT PRODUCT GROUPS 

AND THE 

LORENTZ TRANSFORMATION GROUP

Abraham A. Ungar

ABSTRACT The direct product group and its generalization into the semidirect 
product group are standard in group theory. The aim of this article is to introduce a 

er generalization of the concept into a so called quasidirect product group, and 
to show its relevance by demonstrating that the Lorentz group is the quasidirect 

product of boosts and rotations in analogy with the Galilean group which is the sem
idirect product of boosts and rotations.

1. INTRODUCTION

ic product s.tructure of the Lorentz transformation group of special relativity
ble velocities Let armon*ous interplay of the Thomas rotation and the relativistically admissi

ve = jv e # 3: IvI <cj

•Space ^  the relativistically admissible velocities, where с is a positive constant
p  m special relativity, represents the speed of light in empty space, and where IR1 is the

vc -  “Чисе. rcktivistic velocity addition law, according to which the composition of
mi n*VĜ c’ rise to a groupoid, (2Re3,*). Furthermore, the Thomas rotation of special 
relativity, tom[u; v], gives rise to a mapping

tom : IR}xJR} -> Aut(fl?3)

i art1eS'“ ,product x«c into the group Aut(Я?) of the automoiphisms of m l  The
nnt P e’ Cfc,*.tom), gives rise to a weakly associative-commutative group which turns
, c a, °P PO^ss^g interesting properties, like the following weak commutative and 
associative laws and the loop property,

u*v = tom[u; v](v*u) Weak commutative law
u*(v*w) - (u*v)*tom[u; v]w Right weak associative law
(u*v)*w = u*(v*tom[v; u]w) Left weak associative law
tom[u, v] -tom[u*v; v] Loop property

th* n Jw ,Weakly â ? tive-commutative group Л3=(ДС3,*, tom) is the Lorentz counterpart of
• . .  ^  Stoup IR -(IR ,+), which we interpret as the group of Galilean velocities. Exploit- 
mg this analogy between the Galilean and the Lorentz transformation groups, the aim of this 

1S to preserU 30 abstnict product group called the quasidirect product group.

i СаШеап transformation group as a model for a semidirect product group, the
Lorentz transformation group may be considered as a model for an extended product group that
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we call the quasidirect product group. The Lorentz group is a natural generalization of the 
Galilean group to which it specializes in the limit of large speed of light and with which it 
shares many analogous properties. Since the Galilean group is a scmidirect product group and 
since the Lorentz group is not a semidirect product group, one may hope that the Lorentz group 
gives rise to some generalized product group in terms of which the analogy between the 
Galilean and the Lorentz groups is retained. Furthermore, one may hope that the usefulness of 
the resulting generalized product will be similar to that of the semidirect product and, hence, 
will have impact in the study of abstract groups rather than merely being restricted to the study 
of the Lorentz group. Accordingly, in generalizing the concept of the semidirect product group 
into that of the quasidirect product group we are guided in this article by a hint hidden in the 
structure of the Galilean group and having its echo in ihe structure of the Lorentz group.

The (homogeneous, proper) Galilean group has a well-known semidirect product struc
ture: It is isomorphic to the semidirect product of the normal subgroup of boosts and the group 
SO(3) of 3x3 (proper) space rotations. Boosts are rotation-free Galilean transformations, that is, 
Galilean acceleration transformations. The structure of the (homogeneous, proper, orthochro- 
nous) Lorentz group is more complicated than that of the Galilean group. The Lorentz group 
contains SO(3) as a subgroup, and it also contains boosts, which in this context are rotation-free 
Lorentz transformations, that is, Lorentz acceleration transformations. Like Galilean boosts, 
Lorentz boosts form a subset which is normal with respect to 50(3). Unlike Galilean boosts, 
however, Lorentz boosts do not form a subgroup due to the presence of the Thomas rotationl4>. 
Since the Lorentz group is analogous to the Galilean group and since the Lorentz group does not 
have a semidirect product structure, its structure may lead us to a new product structure which is 
analogous to the semidirect product structure. This is indeed the case; the structure of the 
Lorentz group gives a clue as to how to define the new concept of the quasidirect product in 
such a way that the Lorentz group appears as the quasidirect product of boosts and rotations in 
analogy with the Galilean group which appears as the semidirect product of boosts and rota
tions.

The structure of the Lorentz group, viewed as naturally analogous to the structure of the 
Galilean group, thus, suggests a group theoretic extension of the notion of the semidirect pro
duct group into that of the quasidirect product group. The suggested extension turns out to be a 
natural one along the line of an existing extension of the concept of the direct product group 
into the concept of the semidirect product group. A group possessing the extended structure, 
that is, the quasidirect product structure, is called a quasidirect product group. The concept of 
the quasidirect product group generalizes the concept of the semidirect product group in a way 
similar to the way in which the latter generalizes the concept of the direct product group.

While the semidirect product is a product between two groups, the quasidirect product is a 
product between a weakly associative group and a group. The weakly associative group turns 
out to possess interesting properties some of which have been discovered by Karzel in a totally 
different context, and studied by Kerby, Wefelscheid and others since the 1960’s,0'll>22J3).

The definitions of the direct and the semidirect product groups have several equivalent 
forms in the literature. The form which suits the aim of this article is presented in Section 2 and, 
as a relevant example, the semidirect product structure of the Galilei group is illustrated in Sec
tion 3. The extension in Section 2 of the notion of the direct product group into the notion of 
the semidirect product group is further extended in Section 4 into the notion of the quasidirect 
product group. In Section 5 the Lorentz group is shown to possess a quasidirect product struc
ture, resulting in the newly discovered composition law for Lorentz transformations in terms of 
parameter composition14*. This novel composition law of Lorentz transformations is the natural 
extension to higher dimensions of the well-known composition law of (l+l)-Lorentz transfor
mations in terms of Einstein’s addition law of parallel velocities, and is identified in Section 5 
as the quasidirect product between elements of a quasidirect product group. Finally, we present 
in Section 6 a nonstandard relativistic velocity composition law, as an example of an elegant 
weakly associative-commutative group which, in turn, gives rise to a group by means of the



1380

2. DIRECT PRODUCT GROUPS, SEMIDIRECT PRODUCT GROUPS, AND QUASIDIRECT 
PRODUCTGROUPS

The definition of the direct product group has several equivalent forms in the literature. 
Our purpose will be best served by the following definition.

DEFINITION 1 (Direct product group) A group F is a direct product group if it possesses
two subsets G and H such that
(a 1) G and H are normal subgroups of F ;
0b 1) G and H have only the identity element in common; and
(c 1) every element of F can be written as a product of an element of G with an element of H.
F is said to be isomorphic to G 0  H .

Commonly, condition (a 1) of Definition 1 is replaced by the simpler, but equivalent con
dition (a 10 which reads:

(a 10 The elements of G commute with the elements of H.

Proof of the equivalence between conditions (a 1) and (a 10 may be found in ComwelR

Elements /  of the direct product group F = G <8> H can be written uniquely as 
f=gh=(g,h) where geG  and h e H. The multiplication law for Cg ,/i) is then

/  = f \f 2=lg\Ji\)(g2,h2) = gih\g2h2 = g\g2hih2=(g\g2,h\h2) (D)

If condition (a 1) of Definition 1 is weakened to the requirement that only the subgroup G 
must be normal we obtain the more general notion of the semidirect product group:

DEFINITION 2 (Semidirect product group) A group F is a semidirect product group if it
possesses two subsets G and H such that
(a 2) G is a normal subgroup of F, and H is a subgroup of F;
(b 1) G and H have only the identity element in common; and
(c 1) every element of F can be written as a product of an element of G with an element of H.
F is said to be isomorphic to Gd)H.

In both Definitions 1 and 2 the requirement (b 1) implies that the decomposition (с 1) is 
unique. Elements /  of the semidirect product group F = G<DH can uniquely be written as 
f=gh=(g ,h) where g e G and А еЯ . The multiplication law for (g ,h) is then

/  = / l / 2 =  (£ l^ l) (£2 ./l2 )

= g\h\g2hi= g\hig2hrlh\fi2 (S)

= (gih\g2h\l jh\h2)

If condition (a 2) of Definition 2 is weakened to the point where the normal subset G need 
not be a subgroup we obtain the more general notion of the quasidirect product group:

DEFINITION 3 (Quasidirect product group) A group F is a quasidirect product group if it 
possesses two subsets G and H such that

(a3) G is a normal subset of F with respect to H (that is, h~'gh e G for all g e G and all 
h e H), and H is a subgroup of F;

(63) Ext(G)= (sig?1: g\g2£ G ) and H have only the identity element in common; and 
(с 1) every element of F can be written as a product of an element of G with an element of H .
F is said to be isomorphic to G ® H .

The set Ext(G)= [g\g2l : g\,g^G} in Definition 3 is called the extension of the subset G 
in F. Clearly, if G contains the identity element of F then GcExt(G); and G =Ext(G) if and 
only if G is a subgroup of F . Hence, Definition 3 reduces to Definition 2 in the special case 
when the subset G of F is a subgroup of F .

quasidirect product.
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As in Definitions 1 and 2, the requirement (b3) implies that the decomposition (c l) in 

Definition 3 is unique. To establish this uniqueness let us assume that g\'hi=g2 h2 where 

£ i .£ 2eG  and h\,h2eH . Then higi = h2g2 where gi-hrl g\'h\eG and g2=h2] g2 h2eG , imply

ing gig?1 =hr1h2. But gig2l eExt(G) and h\xh2sH. Hence, by (63), g\g2x =Лг1Л2= 1 so that 
£ i= S 2. Ai = A2 and gi'=g2.

Elements /  of the quasidirect product group F = G © H  can be written uniquely as 
/  =gh = 0?»A) where g e G and h eH . The multiplication law for (g A) is then

f  = f i f  2=(g\,hi)(g2,h2)=g\hig2h2 

= g\h\g2h\]hih2=g\gih\h2 (Q)

=  ^  13Л 13Л 1 Л г =  ( ^  13.Л  1 3 Л IA 2 )

frieq. (Q) g3 =hig2hr' e G ; and £|3e G and Ai3e H are determined by the equation

*1*3 = £ 13*13 (1)

which gives the unique decomposition of the element g\gie F as a product of an element of G 
with an element of H . The semidirect product and the quasidirect product in eqs. (S) and (Q) 

form successive generalizations of the direct product in eq. (D).

Definition 3 provides a natural extension along the line of the extension of Definition 1 

into Definition 2. Definition 3 is suggested by the structure of the Lorentz group, which pro

vides a natural extension of the semidirect product structure of the Galilean group. The Lorentz 

group is, accordingly, a quasidirect product group. In Theorem 2 we will see that a product of 

Galilean transformations is a semidirect product, having the form in eq. (S), and in Theorem 4 

we will see that a product of Lorentz transformations is a quasidirect product, having the form 

in eq. (Q). As we will see in the sequel, the Lorentz group L , its subset of boosts В and its sub

group of space rotations SO(3) form a realization of the group F, its subset G and its subgroup 

H in Definition 3. Since the extension of the Galilean group into the Lorentz group serves as a 

model for the extension of Definition 2 into Definition 3, it would be instructive to illustrate the 

semidirect product structure of the Galilean group before studying the quasidirect product struc

ture of the Lorentz group.

3. THE SEMIDIRECT PRODUCT STRUCTURE OF THE GALILEAN GROUP

The elements, Galilean transformations, of the Galilean group are transformations 

between time-space coordinates which will be specified below. We identify the Galilean group 

with its generic element C{v;K) which is a (homogeneous, proper) Galilean transformation 

parametrized by a (3-dimensional) velocity parameter v, v€ ZR3, and an orientation parameter V,
V e 50(3). The Galilean transformation G {v; К} relates the time-space coordinates of an event 

resolved in two inertial frames with relative velocity v and relative orientation V, as shown in 

Fig. 1 and in eq. (2). The velocity parameter space, /R3, is the Euclidean 3-space, and the orien

tation parameter group, SO(3), is the group of all 3x3 real orthogonal, unit determinant matrices.

Let (t 'jc 'y *y  and ( / .x jv ) ' (the exponent t indicates transposition) be the respective 

time-space coordinates of an event resolved in two inertial frames If and Z, the origins of which 

coincided at time /=0. These coordinates are related by the equation

/ V
X

У
= G[V,V} f:z 2

where v is the velocity of the rocket frame Я  relative to the lab frame Z and where V is the 

orientation of the rocket frame Z' relative to the lab frame Z; see Fig. 1.



X

Fig. 1 2/ and £  are inertial Galilean (Lorentz) frames of reference moving apart 

with relative velocity v, ve 2R3 (ve IR?), and relative orientation V, V e 50(3), the 

origins of which coincided at time / =0. For clarity, time dimension is suppressed. 

The time-space coordinates of an event E measured in the rocket frame If and in the 

lab frame X are respectively (f',x',y',z') and (tjc,y,z). These are linked by the 

Galilean transformation G {v; V) of eq. (2) (by the Lorentz transformation L {v; V} 
of eq. (18)).

r 1 0 0 O'! Г1 0 0 01 г 1 0 0 0̂ 1
vj 1 0 0 0 Vl

v2 0 1 0 0 V - v2 V
lv 3 0 0 1. lo .V3

The Galilean transformation G {v;V} in eq. (2) is a linear transformation which, in terms 

of its effects on time-space coordinates, has the matrix representation

G{v;V} =

where v-(v i,v2,v 3)e 2R3 is a representation of v by its coordinates relative to E, and where

V e 50(3) is a 3x3 unimodular orthogonal matrix representing the orientation of Z' relative to £.

Clearly, the Galilean transformation G {v; V} can be written as a boost B»(v) preceded by a 
space rotation p(V),

G{v;V} = B«(v)p(V), vg  JR\ V e 5 0 (3) (3)

where, anticipating the limit in eq. (11), we use the notation

and where

BJy)

p(V) =

1 0  0 0 
vi 1 0 0 

v j O l O  

.v j0  0 l j

1 0  0 0
0
0 V
0

(4)
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p being a homomorphism, р :SO(3) -* SO(4). Galilean boosts, £-(v), are thus rotation-free 
Galilean transformations.

The matrix representation in eq. (4) of the boost 2?-(v), ye IR3, forms a one-parameter 

matrix group where matrix multiplication corresponds to parameter addition,

£-(u)fi„(v) = u + v), u,ve IR2 (5)

The identity element of this boost matrix group is Я„(0) and the inverse of 5.(v) is £-(-v). Nor

mally, one-parameter matrix groups involve a single scalar parameter9>. To avoid confusion 

we should therefore emphasize that the single parameter involved in the Galilean boost matrix 

group, B„(v), is equivalent to three scalar parameters.

THEOREM 1 The Galilean group G (v; V} is isomorphic to the semidirect product of the nor

mal subgroup £„(v) of Galilean boosts and the subgroup p(V) of spacc rotations,

G[y;V) = 5 .(v )® p (^ ) (6)

Proof of Theorem 1 Both £„(v) and p(V) are subgroups of the Galilean group having only the 

identity element in common. The subgroup 5„(v) is normal, as we see from eq. (5) and from the 

equation

p(JO*..(v)p(V-i) = B_(Vy), yeIR\ Ve SOQ) (7)

Finally, by eq. (3), every element of the Galilean group is the product of an element of 5„(v) 

with an element of р(У). The result of the Theorem, thus, follows from Definition 2. •

THEOREM 2 Two successive Galilean transformations are equivalent to a Galilean transfor

mation,

G\u,U)G[y;V) = G (u + £/ v; UVJ (8)

Proof of Theorem 2 Forming a semidirect product group, the composition law of Galilean 

transformations is the multiplication law of eq. (S): If  we use the notation

G[y\V) = B-(y)p(V) = (#»(v), p(V))

then for all u, v e IR3 and U , V e SO (3), as in eq. (S),

G {u;l/}G {v;K ) = (M u ), p(tf)K M v), p(Y))

*  5-(u)p(t/)5..(v)pOO

= B.(u)p(U)B4y)p(U-')p(U)p(V)

= BMB.(Uy)p(UV)

= B.(\x+Vy)p(UV)

= (B-(u+Uy),p(UV))

= G[u+Uy,UV)

where eqs. (7) and (5) have been employed. •

Eq. (8) demonstrates that the well-known composition law of Galilean transforma- 

tions7.*-iW‘> is the semidirect product between elements of a semidirect product group.
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4. THE QUASIDIRECT PRODUCT STRUCTURE OF THE LORENTZ GROUP

IR3 = jv e  2R3: Ivl <c}

be the set of all 3-vectors with magnitude smaller than some positive constant с . In special rela

tivity the constant с represents the speed of light in empty space; and IR3 is the weakly 
associative-commutative group of relativistically admissible velocities with the group operation 

given by relativistic velocity composition14-17), as explained in Section 5. The relativislic velo

city composition u*v of u, v e ZR3 is given by the equation

u*v = - u +v + J _  ux(uxv) (9)
1 + JLI c2 T. + l 1 + J! 1  

c2 c2

where yu is the Lorentz factor,

associated with the velocity u whose magnitude is и, u = Iu I , and where • and x signify the 

usual dot (scalar) and cross (vector) product between two vectors. Clearly, when с the 

weakly associative-commutative group (27?,?, *), which is neither commutative nor associative, 

reduces to the Euclidean 3-group (K 3,+), which is both commutative and associative.

The Lorentz boost B(y), ve 2R|, is a rotation-free Lorentz transformation which, in terms 

of its effects on time-space coordinates, is represented by the matrix13*

where (vi,v2,y3) are the components of v in a frame relative to which B(v) is represented; see 

Fig. 1. The identity Lorentz boost is B(0) and the inverse Lorentz boost of B(\) is B(-v). An 

important relationship between the Lorentz boost Bc(y)=B(v) of eq. (10) and the Galilean boost 
B„(v) of eq. (4) is clear.

Galilean boosts form a normal subgroup of the Galilean group. In particular, since the 

Galilean group contains the group of space rotations, 50(3), Galilean boosts form a subgroup 

which is normal with respect to 50(3) (here, for simplicity, we identify 50(3) with its image 

p(50(3))c50(4)). Unlike Galilean boosts, and as a peculiarity o f special relativity, Lorentz 

boosts do not form a group. Like Galilean boosts, however, Lorentz boosts form a subset o f the 

Lorentz group which is normal with respect to 50(3). This is due to eq. (7), which remains 
valid for Lorentz boosts,

Yu =

(10)

B-(v) = ton Bc(y) OD

p(V)B(v)p(K-1) = B(Vy), weJRl V e 50(3) (12)

In order to expose the quasidirect product structure of the Lorentz group it is necessary to 

resolve the composition of two boosts as a boost preceded by a space rotation, as we see from 
eq. (1). This resolution is known14-18),
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Tom[u; v] = p(iom[u; v]) € 50(4) (14)

and where tom[u; v] e S0(3) is the 3x3 Thomas rotation of space coordinates generated by two 

successive boosts with velocity parameters v and u. Eq. (13) presents two succcssive (Lorentz) 

boosts as a boost preceded by a (Thomas) rotation. The Thomas rotation iom[u; v], generated by 

two successive boosts with velocity parameters v and u, is given by the equation14*

tom[u; v] = /  + C2Q2, u .v g ^c , tom[u; vj e 50(3) (15a)

where /  is the 3x3 identity matrix, and where the matrix ft=fl(u,v) and the coefficients 

ci = d(u,v) and C2=C2(u,v) arc functions of u and v, given in eqs. (15b-d) below.

The matrix Q=ft(u,v) in eq. (15a) is skew symmetric,

£(u)#(v) = Z?(u*v)Tom[u; v), u,veZI?c3 (13)

where

fl(u.v)

0 -(1)3  Cl>2 

CO3 0 -©1 
- 0)2 0)1 0

(15b)

representing the linear transformation of cross product with cu, that is, Лг = o>xr for a 3-vector r. 

The entries 0)*, 1<*<3, of the matrix ft are the components of the vector product o>=uxv meas

ured in the frame I  of Fig. 1,

© = (0)1, 0)2, о>з) = uxv = (U2V3 -U3V2, U3V1-U1V3, U1V2 -U2V1) (15c)

The coefficients ci = cj(u,v) and с2= с2(ил) in eq. (15a) are given by the equations 

- ч _  1 Y«Yv(YM+Yv+Y*.» + 0
* ’ ' " C2 (y. + 1)(Y> + 1)(Y„., + 1)

(15d)

C2(uv) = 1 V-V_____
с4 (Yj, + l)(y, + l)(yM.r + I)

The Thomas rotation is a rotation about a screw axis parallel to the vector uxv through an angle 

e which is related to u and v and to the rotation angle 0 from u to v by the equations

where

or, equivalently,

cose
(k +cos 8)2 - sin2© 
(k +cos G^ + sin2©

(16a)

. _  -2 (k 4-cos 9) sin 8 

(jfc+cos 0)2 + sin20

2 _  Y« + l Y» + l k > 1 (16b)

* '  Y--1 Yv-1 ’

, = Y. + I Yv + 1 c2 (16c)

Y- Y* «v

where u = I u I and v = I v I. Eqs. (16) can readily be derived from eqs. (26) of ref. 14.

Sin“  lim * = 1
l u l . l v I - * c

we see from eqs. (16) that the Thomas rotation angle, e, is not defined for G-тс when
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I u I = I vI —c. This singularity is associated with the singularity in the velocity composition u*v 

when Iul = lvl=cand6=7c which, in turn, asserts that there is no transformation from the rest 

frame of a photon into a lab frame, or, in Wigner’s words: moving particles "either can, or can

not, be transformed to rest".24) Graphs of cose and -sine as functions of their generating angle 0, 

for several values of k, are shown in Fig. 2 of ref. 14 where the singularity at 0=n when 

I uI = I vI =c is clearly observed. An interesting property of the Thomas angle e is discussed by 

Shahar Ben-Menahem2). The group-theoretic importance of the Thomas rotation rests on the 

weakly associative-commutative structure for JRc3 to which it gives rise:

(i) u*v = tom[u; v](v*u) Weak commutative law of velocity composition

(iia) u*(v«>w) = (u*v)*tom[u; vlw Right weak associative law of velocity composition

(iib) (u*v)*w = u*(v*tom[v; u]w) Left weak associative law of velocity composition

In analogy with eq. (3), the general (homogeneous, proper, orthochronous) Lorentz 

transformation L {v; V} has the form

L{v;V) = B(v)p(V), ve IR}, V e SOQ) (17)

where it is parametrized by velocity and orientation parameters. Lorentz boosts, B(y), are thus 

rotation-free Lorentz transformations and the general Lorentz transformation is a boost pre

ceded by a space rotation. The Lorentz transformation L {v; V } links the time-space coordinates 

of an event resolved in two inertial frames with relative velocity v and relative orientation V, 

the origins of which coincided at time /=0, as depicted in Fig. 1:

t ti
X
у = M v;V ) у:
г У

k

Eq. (18) for the Lorentz transformation is analogous to eq. (2) for the Galilean transformation.

THEOREM 5. The Lorentz group L{v;V} is isomorphic to the quasidirect product group of 

the subset B(y) of boosts and the subgroup p(V) of space rotations,

L{v;V) = fi(v)®  pOO (19a)

Proof of Theorem 3. The inverse of the boost fi(v) is the boost B(- v). The subset of compo

site boosts B(u)B(-v), and the subgroup р(У) of the Lorentz group, L (v; V}, have only the iden

tity element in common. The subset of boosts, £(v), of the Lorentz group is normal with respect 

to p(V) as we see from eq. (12). Finally, by eq. (17), every element of the Lorentz group is the 

product of an element of B(y) with an element of p(V). The result of the Theorem, thus, follows 

from Definition 3 of the quasidirect product group. •

Eq. (19a) may be written as

L[y,V) = fic(v)@p(VO (19b)

in order to display the dependence of Lorentz boosts on the speed of light, с , emphasizing the 

lim it in eq. (11) and the analogy between the product structure of the Galilean and the Lorentz 

groups in eqs. (6) and (19). By letting the speed of light approach infinity, the operators 

L (v; V J, Bc(y) and ®  in eq. (19b) are respectively deformed into G {v; V}, £„(v) and ©  of eq. 

(6).

THEOREM 4. Two successive Lorentz transformations are equivalent to a Lorentz transfor

mation,

L[w,U)L[v;V} = L (u*C/ v; tom[u; Uv]UV)
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P j°°f ° f Theorem 4 Forming a quasidirect product group, the composition law of Lorentz 
transformations is the multiplication law of eq. (Q): If we use the notation

L[v-V) = B(v)p(V) = (B(v),p(V)) 

then for aU u,v € IR} and U , V e SO (3) we have, as in eq. (Q),

L[u’,U)L{y;V) = (5(u),ptt/))(£(v),p(l0)

= *(u)p(£/)5(v)p(l0 

= B(u)p(U)B(v)p(U~')p(U)p(V)

In the chain of equations (20) we have employed eq. (17), eq. (12), and eqs. (13) and (14). • 

In Theorem 4 we have recovered the Lorentz transformation composition law,

when с -»oo. We have, furthermore, identified the Lorentz transformation composition law as 

the quasidirect product between elements of a quasidirect product group, in a way analogous to 

the one in which the Galilean transformation composition law is identified as the semidirect 

product between elements of a semidirect product group.

The special case of Composite Lorentz transformations associated with collinear veloci

ties, u and v, is popular in the literature of special relativity since it does not involve orientations 

and Thomas rotations and is, therefore, simple: for collinear relativistically admissible veloci
ties u ,ve  2RC3, u I v, we have

is Einstein’s velocity addition law for parallel velocities which, being both commutative and 
associative, is well-behaved.

Notations similar to the one in eq. (21G) for the composition of Galilean transformations 

are common in the literature. The analogous notation in eq. (21L) for the composition of 

Lorentz transformations is however novel14*. The naturality and the usefulness o f the notation in 

eq. (21L) rest on the obvious way in which it extends the standard notations in eq. (21G) and in 

eq. (22). This clearly indicates the naturality and the expected usefulness of the generalization 

o f the notions of the direct product group and the semidirect product group between two groups 

into that o f the quasidirect product group between a weakly associative group and a group. In 

this connection we may note that the operation (23) is frequently being cited in the literature as 

an elegant example of a group operation. In contrast, the common generalization, (9), of (23) to 

noncollinear velocities is not a group operation! It is, however, an elegant example of a weakly 

associative-commutative group operation.

= B(u)B(Uv)p(UV)

= B(u*U v) p(tom[u; Uvj) p(UV) 

= (B(u*U\), p(tom[u; Uv] U V)) 

= L[u*Uv; tom[u; U\] U V}

(20)

L[u\U}L[y;V) = L (u*£/v; tom[u;i/v] (/ V] 

which reduces to the well-known Galilean transformation composition law, eq.(8),

(21L)

G [u\U) G } = G[u + Ur,U V) (21G)

L {u}L {v} = L{u*v) (22)
where

(23)
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5. THE WEAKLY ASSOCIATIVE-COMMUTATIVE GROUP OF RELATIVIST/С ALLY ADMIS
SIBLE VELOCITIES

The Galilean transformation group is commonly parametrized, Fig. 1, by a velocity 

parameter v, \eIR2, and an orientation parameter V, VeSO(3) in such a way that the Galilean 

transformation composition is given by parameter composition, eq. (21G). Since the correspon

dence between a Galilean transformation G{v;V) and its parameters (\,V) is one-to-one, the 

Galilean group is isomorphic to the group of pairs (v,V) with composition given by the equation

(u,t/)(v, V) = (u + Uv,UV) (24G)

We recognize this product of pairs as a semidirect product. The group of pairs (u,U), where 

ue/7?3 and UeSO(3), is thus the semidirect product group

27?3© 50(3 ) (25G)

of the group (IR 3,+) and the group SO (3). The group

ZT?3 = (Z7?3,+) (26G)

is the common Euclidean 3-space possessing the binary operation +, the common vector addi

tion, which is both associative and commutative.

Following the introduction of the notion of the quasidirect product in Section 4, eqs. 

(24G), (25G) and (26G) can be generalized to accommodate the Lorentz group. The Lorentz 

transformation group is parametrized, Fig. 1, by two parameters, (v,V), as it is the case with the 

Galilean transformation group. The first parameter is a velocity parameter v, vel??|, and the 

second one is an orientation parameter V, VeSO(3). Since the correspondence between a 

Lorentz transformation L{v\V) and its parameters (v,V) is one-to-one, and since the Lorentz 

transformation composition is given by parameter composition, eq. (21L), the Lorentz group is 

isomorphic to the group of pairs (v,V) with composition given by the equation

Сu,U)(\,V) = (u * t/ v, tom[u; U v]C/V) (24L)

We recognize this product as a quasidirect product. The group of pairs (u ,l/), where ue/7?c3 and 

UeSO(3), is thus the quasidirect product group

27?c3®  SO (3) (25L)

of the weakly associative group

IRс = (IRc,*, tom) (26L)

and the group 50(3). The weakly associative group (J?c3,*,tom) possesses (i) a binary operation 

*, the common relativistic velocity addition law, and a precession-mapping tom,

tom: IR^xIR} -> 50(3)

the Thomas precession of special relativity. While the Galilean counterpart of the binary opera

tion * is the binary operation +, there is no Galilean counterpart to the Lorentz precession- 

mapping tom.

Employing the associativity of the composition (24L) in the group 1R}©S0(3) of pairs 

(u,t/) one may readily find that for any three elements u, v, we 27?с3 we have

u*(v*w) = (u*v)*tom[u; v]w (27)

Eq. (27) expresses a weak form of an associative law for the triple (IR}, *,tom), discovered in ref.

14. It is known in the literature that the Thomas rotation gives rise to a weak commutative law 

for the triple (IR}, *, tom),

for any two elements u.veJ??3; see for instance refs. 1,5,20.

u*v = tom[u; v](v*u) (28)
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The weakly associative-commutative group IR }=  (IR },*, tom), thus, possesses properties 
similar to those of a group:

(/) u*v G IR} Closure

(ii) u*v = tomfu; v](v*u) Weak commutative law

(ma) u*(vw ) = (u*v)*tom[u; v]w Right weak associative law

(iiib) (u*v)*w= u*(v*tom(v; u]w) Left weak associative law

(iv) 0*u = u*0 = u Existence of identity

GO (-u)*u = u*(-u) = 0 Existence of inverse.

(w) tom[u; vl = tom[u*v; v] Loop property

Due to the loop property the weakly associative-commutative group (fl?*,*,tom) forms a loop*, 
that is, a binary system in which each of the two equations u*x=v and y*u=v can be solved for 

x and y. These properties have been discovered in 1965 by Karzel in a totally different context, 

and studied by Kerby, Wefelscheid and others,(U,-22'23). It is thus interesting to realize that the 

algebraic structure underlying the harmonious interplay of the Thomas precession of special 

relativity and relativistically admissible velocities has already been discovered elsewhere. In 

order to demonstrate the importance of the loop property, let us consider the role it plays, 

together with the right weak associative law, in solving the equation x*u = v for the unknown 

xg IR}, where u and v are any two given elements of IR} = (IR}, *,tom).

x = x*0 = x*(u*(- u)) = (x*u)*tom[x; u]( - u)

= (x*u)*tom[x*u;u](-u) = v*iom[v; ul(-u)

Since our study of the quasidirect product group as a natural generalization of the semi

direct product group is guided by the generalization of the Galilean group provided by the 

Lorentz group, it would be instructive to consider a basic distinction between the analogous 

parametrized generic elements, С{у;У) and L[\,V), of the Galilean and the Lorentz groups. 

The second parameter, V, in the parametrized Galilean transformation G[v;V) is ignorable in 

the sense that one may require, by convention, all inertial frames to be constructed parallel to 

one another, so that the only relative orientation between inertial frames is given by the identity 

matrix / ,  IeSOQ). The general Galilean transformation, G {v;/ J, can then be parametrized by a 

single parameter, G (v), with composition given by the equation

G {u} G (vJ = G {u + v} (29)

as we see from eq. (21G) which, for the special case when U = V=I, takes the form

G (u ;/} G {v; / ) = G[u+v;/} (30G)

In contrast to the Galilean transformation, the second parameter, V, in the parametrized 

Lorentz transformation L(v;V} is not ignorable since, as we see from eq. (21L), the Lorentz 

counterpart of eq. (30G) is

L[n\I)L{y\I) = L (u*v; tomfu;v]} (30L)

where, in general, tomfu; v]*/. A Lorentz counterpart of eq. (29), thus, does not exist.

Finally, we may remark that groups possessing a quasidirect product structure, like that of 

the Lorentz group, are not rare. Thus, for instance, it follows from well-known properties of 

matrices6* that the group P„ of all n хл real matrices with positive determinant possesses a 

quasidirect product structure,

S> SO(n)

where S*c/\ is the subset of all n хл real symmetric matrices with positive determinant, and 

SO (л) is the group of all л хл real orthogonal matrices with determinant 1. Indeed, the matrices 

in S„ do not form a group, but they do form a weakly associative-commutative group. By



1390

introducing the concept of the quasidirect product group into abstract group theory as a natural 

generalization of the well-known concepts of the semidirect and the direct product group, and 

by demonstrating its relevance we have completed the task we faced in this article.

6. AN ELEGANT EXAMPLE OF A WEAKLY ASSOCIATIVE-COMMUTATIVE GROUP

The semidirect product is a product between two groups, plenty concrete examples of 

which are available in the literature. In contrast, the quasidirect product is a product between a 

weakly associative group and a group; and the first published concrete example of a weakly 

associative group appeared only in 198814>15). It is therefore useful to indicate that following 

wide interest in the weakly associative group, many new concrete examples are likely to be 

discovered, either by the technique developed in ref. 19 or by other methods. Such an indication 

is provided in this section by presenting a nonstandard relativistic velocity composition law, in 

addition to the standard one in (9), which gives rise to an elegant, interesting weakly 

associative-commutative group.

Let ©  be a binary operation on IR} given by the equation

l + -y u v— L ( uxv)x 

u © v  =  £----- — ------ (u + v), u ,\eIR}
( 1  +  - V u .v ) 2 + - t - ( u x v )2

cL c4

giving rise to a nonstandard relativistic velocity composition law which reduces to the standard, 

Einstein’s velocity addition law (23) for parallel velocities when u and v are parallel.

The composite velocity u © v  is the sum in IR} of two vectors, (u © v )t and (u ©  v)+, which 

are respectively parallel and perpendicular to u+v in the plane spanned by u and v,

1 + ̂ - u v
(u ©  v) i = ---- -----e-- ------- (u + v)

(1 + -y UV)2 + (uxv)2

(u ©  v)+ = - - L ---- ----- 1— ------- (uxv)x(u + v)
C ( l+ ^ jU 'V )2+ A . (uxv)2

The parallel sum (u©v)i is symmetric in u and v while The perpendicular sum (u©v)+ is 

antisymmetric in u and v. The square magnitude of u© v is symmetric in u and v,

(uevp = — (u+v)2.-----
(1 + ~  u v)2 + -L (uxv)2 

с с

satisfying (u©  v)2 < c2; and lim (u © v)2=c2 for any u, ve IR}.

As in the standard case, the nonstandard velocity composition operation ©  is, in general, 

neither commutative nor associative; and this "deficiency" is rectified by means of a nonstan
dard Thomas rotation (or precession) in the same way that it is rectified in the standard case by 

means of the standard Thomas precession.

The nonstandard Thomas rotation is the mapping 

x :IR}xIR} -» Aut(IR})

defined as

_(! + J _  u.v)+-L(uxv)x
t[u; v] = / + ^------c------- (uxv)x

c (1 + — u-v)2 + — (uxv)2 
сL c*
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where / is the identity automorphism. In calculating the effect of t[u; v] on, say, weJRj one 

should note that the cross product is not associative and that the effect involves the product 

(uxv)x((uxv)xw) rather than the trivial product ((uxv)x(uxv))xw = 0.

Similarly to the triple (IR},*,tom), the triple (/R},®,x) turns out to be a weakly 

associative-commutative group, that is, it possesses the following properties for all u, v, welR}.

(i) u © v e i R ^  Gosure

(иа) u ©  (v©  w) =  (u©  v)©  t[u ; v]w Right weak associative law

(iiib) (u ©  v) ©  w = u ©  (v ©  t[v; u]w) Left weak associative law

(iii) u ©  v = t[u;v](v© u) Weak commutative law

(iv) 0 ©  v = v Existence of identity

(v) - v © v  = 0 Existence of inverse

(vi) x[u; v] = x[u ©  v; v] Loop property

The weakly associative-commutative group (IR}, ©  ,t) gives rise to an obvious group, that 

is, to the quasidirect product group (IR}, © ,t)@  SO(3) where the composition law is given by 
the equation

(u ,U)(v,V) = (u®Uv,x[u\Uv]UV) 

foraU u,v€(IR}, © ,t) and U,V<=SO(3).
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ON FAMILIES OF HOLOMORPHIC FUNCTIONS WITH RESTRICTED
BOUNDARY VALUES

Elias Wegert

Constantin Caratheodory1 and Leopold Fejer ini

tiated with their work on bounded harmonic functions a re

search project that is up to now an area of intensive stu

dy and presently includes more and more qualitative, quan

titative and algorithmic aspects.

From a first, mainly function theoretically oriented 

period especially the papers of G. Pick , I.Schur and 

R. Nevanlinna10  ̂ have enduring influence to forthcoming 

developments.

The irresistible progress of what is now frequently 

called Schur analysis started at the moment when methods 

of functional analysis and operator theory entered the 

scene, which placed the problem in a new perspective. Due 

to a variety of interrelations to other themes, such as 

invariant subspaces, reproducing kernel Hilbert spaces, 

Krein space geometry, commutant lifting theorems, exten 

sions of positive/contractive operators, et al., and in 

view of an ample list of applications (pediction theory, 

scattering theory, control theory, signal processing, 

gital filter design) the subject has attracted consider

able interest (cf. I. Gohberg ).

1393
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Replacing, in the classical versions of the problem 

alluded to above, the unit ball in H60 by a set of bounded 

holomorphic functions whose boundary values are subject to 

a more universal sort of restrictions originates a new 

program of investigation. The kind of generalization we 

have in mind effects that methods of nonlinear functional 

analysis become relevant for tackling these problems. In 

particular, it turned out that there is a close interre

lation with an old nonlinear boundary value problem posed 

by B. Riemann, which was satisfactorily solved for the 

first time by A.I. Shnirel'man1 3 *.

In the paper at hand we present a couple of results 

which have proven to be useful in various applications, 

for" instance in approximation theory (Wegert^~^), control 

theory (Wegert 5 ) ; cf. Helton and Howe? ) , Helton, Schwarz, 

and Warschawski ^, Hui  ̂ for different approaches to the 

problem), and nonlinear singular integral equations (We

gert ). The basis of our approach is a variational p rin

ciple which may, in a more general context, substitute the 

maximum modulus principle or the Schwarz lemma (cf. Theo

rem 3). We wish to take the opportunity to demonstrate the 

handling of this technique proving a generalization of the 

following result, commonly attributed to Caratheodory:

Let В denote the closed unit ball in H°°, the Hardy 

space of functions holomorphic and bounded in the open 

complex unit disk D. Caratheodoryrs result says that В 

is the closure of the set of all finite Blaschke products

n

c Л
z-a.
------ - , a  C D,  с e T : =  d D ,

k='l 1-a z k 
к

with respect to the topology induced by uniform convergen

ce on compact subsets of D.
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The subject of our investigation is the set of boun

ded holomorphic functions

A := {w e H00: w(t) € clos int M a.e. on T}

where ^M ^^t€T a P rescriked family of simple closed 

curves in the complex plane. Here int M denotes the 

bounded component of c \Mt and clos refers to the clo

sure of a set.

We suppose that the so-called restriction manifold

M: = y  {t}x M fc 

t€T

is a (^-submanifold of T x С which is transverse to each 

plane { t } x C ,  (t€T). The special choice Mfc=T (teT) yields 

that A = B .

To classify the restriction manifolds according to 

the structure of the corresponding sets A we give the 

following definitions.

A restriction manifold M is called regularly (holo 

morphically) traceable if there exists a function wM €H<SriC 

(H°°nC denoting the space of functions holomorphic in D 

which are continuously extendible onto clos D) with wM (t)

€ int M (t € T ) .

A restriction manifold M is said to be singularly 

(holomorphically) traceable if it is not regularly trace

able and there exists a function w^H^JnC such that wM (t)

€ clos int M (t€T).
If M is neither regularly nor singularly traceable

we speak of a nontraceable M.

In dependence on whether M is regularly traceab , 

singularly traceable, or nontraceable, we write M e (R/ 

e У , or M € N  .
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This classification of the set of admissible restric

tion manifolds is closely related to the number #A of 

elements in A.

Theorem 1 .

(i) M i  }( if and only if #A=0.

(ii) M e У if and only if #A=1.

(iii) M € if and only if #A>1.

14 \

A proof can be found in Wegert

The next question is to ask for the natural generali

zation of the finite Blaschke products. For instance, put

ting M^:=T, the finite Blaschke products can be characte

rized as those functions in H°°nC for which |w(t)| * 1 on 

T, i.e.

w(t) 6 M on T. (1)

Therefore we are looking for the solutions of the nonline

ar boundary value problem (1). Problems of this kind are 

frequently called Riemann-Hilbert problems (RHPs).

The solutions of the RHP (1) can be classified by 

their winding number about M, defined as

wind w := wind(w-m). 
м

where meC(T) satisfies m(t)€int and the wind on the

right stands for the usual winding number about zero. In

the standard case M =T the winding number wind w is
t м

the order of the Blaschke product but in general it may

also be a negative number.

We denote the set of all solutions to (1) (endowed 

with the topology of H^nC ) by ft and the subset of so

lutions with wind w=n by VI . The main result about the 
, M n

solvability of (1) shows that 1W has the same structure
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as the set of finite Blaschke products, provided that 

#A> 1 .

Theorem 2 .

( i )  Suppose th a t M € У  and le t  w^CH^nC be a function

with w (t) e clos int M (teT). Then A=W={w V and 
M t M

w e W fo r  some n<0 .
M n

( i i )  Suppose th a t M € (R and le t  w^eH^aC be a function

with w (t) e int M (t € T). Choose a point t on 
M t о

T, a point W on M , m different points z ,z ,
О t L £

• • • /Zjn in D ( m ^ O ) ,  and m natural numbers n^,

. ..,n ; put n:=n +...+П . Then there exists exact- 
m 1 m

ly one solution in Н°°лС of (1) which belongs to f*n

and satisfies the additional constraints

w(t ) = W , (2)
j  О  О

d^j<w -wM )(zk > = 0  j=0,...,nk~l). (3)

Further w =0 i f  n<0 .
n *

(iii) Fix z,,...,z »D, n . . . . , n  « I (n >1), and let И
1 m 1 m j .

denote the set of solutions to (1),(3) which belong

to W  (n:=n +...+П ). Then the map 
n 1 m

W*— ► Mfc , w w(t)

is a homeomorphism (if W  and Mfc are endowed with 

the topology of Н®лС and C , respectively).

14)
For a proof we refer the reader to Wegert and the 

references therein. Some of the assertions in (ii) (under 

slightly stronger assumptions) are already contained in a 

paper by A.I. Shnirel'man13*.
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Another common property of the solutions to the RHP 

(1) and of Blaschke products is their occurence as solu

tions of certain extremal problems. For instance, an imme

diate consequence of the maximum principle says that if b 

is a finite Blaschke product of order n with the zeros 

Z l',e,/Zm and w t B  satisfies w(zk )=0 (k=l,...,m) then

| w(z)| < |b(z)| z e D. (4)

*
Equality in (4) for one z € D  : = D \ { z , . . . , z }  implies 
. . . ioc , 1 m
that w = e b.

Now replace the unit ball В by the set A, fix m

different points z ....,z ( D and n := n +...+П com- 
-i 1 m 1 m

plex numbers w^ (k=l,...,m, j=0,...,n -1). We study the
к

following interpolation problem of Pick-Nevanlinna type:

Find all functions in A which meet the interpola

tion conditions

d^w • -i
d I j(V  = W k <k= l,-..,m, j=0,...,nk -l). (5)

*

The set of solutions to this problem is denoted by A . 

Further we pick a point z e D and ask for the variabi

lity region

* *
E (z) := {w ( z ): w e A }.

If z=zk (ke{1,...,m}) we put

* dn* ★

E ( v  := { ^ (zk ): W€A* b
*  *

Of course, E (z) degenerates to a point if #A -1. 

The converse can be proved using Theorems 1 and 2. Notice, 

however, that the case where (5) has at least two solu

tions is more interesting.
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(i) The set E (z) is a closed Jordan domain.
* *

f1 1 ) If W g  E (z)\ d E  (z) then there exists an infinite

ly differentiable function w c A  with w(t) € int 

(t € T) and w(z)=W.

Further, { w e A f t W  : w(z)=W} 4 0 , for each ke2 with 

kin.

(iii) If W e d E  (z) then there exists exactly one function 

w ^ A  with w(z)=W. This function belongs to

(iv) The map A — ► E (z), w m » w ( z ) induces a homeomor-
*  * * 

phism between the set W := А л IW and E (z) (en-
n

dowed with the topologies of H°°̂C and С respec

tively) .
*

(v) if z approaches t c T  then E (z) tends to clos

int M^, in the sense that for each compact subset F

of int M and each open set G containing clos 
t  r * 

int there exists a о >0 such that F c E  (z)c G,

provided that Iz -tI< S •

P r o o f . The assertions (i)-(iv) easily follow from 
14)

the results in Wegert . It remains to verify (v). By (l) 

and (iv), до is homeomorphic to T and thus it is a com

pact subset of H®nC. Consequently, the family W  is 

equicontinuous on D u T  and hence there exists a S > 0 
with the property that

w* IW* | z—11 < S ===> |w(z)-w(t)l < £ . (6)

Recall that according to Theorem 2 (iii) the curve 

can be described as

*
Mfc = {w (t ) : w € ).

If z denotes any point of F, the index (winding num

ber) of the oriented curve about z^ is one. Since

Theorem 3.^ Let z € D and suppose that #A >1.
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the index is stable with respect to small perturbations, 

the Jordan curve

*  *

E (z) = {w(z) : w c W  }

has also index one about Zq if | z-t I < & (cf.(6)). Here 

can^be chosen independently of z q g F .  S o  we have F с clos 

int 3e (z) - e (z). An analogous reasoning proves that 

E (z) с G. I

Theorem 3 can be used to examine the solvability of 

the Pick-Nevanlinna interpolation problem introduced above 

(see Wegert ). The crucial point is to find the solu

tions of the corresponding nonlinear Riemann-Hilbert p r o 

blems, which can be done in practice using numerical m e 

thods (see Wegert ).

Here we shall apply Theorem 3 with m=l, z =0, n =n to 

generalize Caratheodory's re s u lt  mentioned abo^e. '

Theorem 4 . The set A is the closure of W  (the 

set of solutions to w(t)eM^_ (teT)) with respect to the uni

form convergence on compact subsets of D:

A = clos \W.

Proof. We take an arbitrary function w e A and 
let о

be its Taylor expansion. Our claim is the existence of a

sequence of functions w e w  such that
n n

V 2 ) - V z) = °<2П>-

This would imply that w^ converges to w uniformly on 

compact subsets of D since all functions w are uni

formly bounded in H® and hence have uniformly bounded
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l Wn<z)-w0 (z)| < С | z|П/ ( 1- |z|) .

So the inclusion A с clos W  is proven once we have

shown the existence of the sequence {w }. To construct
3) ^

(w } we adapt Caratheodory's (p.13) approach and define 

A[Cq , ...,cn_ 1 ]:= {w e A: w f z j - c ^ c ^ - . . .-c^ ^  = °(z >>'

E := {w(0): w e A},

1 d nw

E[Co '“ *'Cn - l ] := { ТГ1̂ 7 (0): W £ A [ C o ,-“/Cn - l ] b

Theorem 3 tells us that E[ Cq , . . . / cn  ̂J is a closed

Jordan domain if and only if #A[cq , .. . /cn_i J 9 1 * Since

w e A[c , .. ., с 1 we have с € E and e g  E [с ,..•,cn_ ̂ 1 
о о n—1 о 11

for all nil.

If #E=1 then A={w } and w e W  =W for some n<0,
О  и  u

and thus there is nothing to prove.

So let us assume that #E[co / . • • ' ^ „ i ^ ^ or some ^

> 0 (we put Е[со,...,ск if k=°> • Further we sup

p ose that the sequence w ^ , ...,wk already constructed.

If скеЭЕ[со.....ck l ] t h e n ,  by Theorem 3(iii), the

set A[c ,...,c ] contains only one function (namely w q ) 

and this function must belong to In this case T

rem 4 is trivial.

jrtrp c l #  Theorem 3(ii)
If ck e E[Cq , . . . /ск_х ^ 3 E[Cq , . . • /ck_! J'

shows the existence of a function W k+1 w ^t 1̂

Taylor coefficients, which yields the estimate
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к к+1
W (Z ) = С + С Z + ... + С Z + 0(z ).
К+1 О 1 к

★
Furthermore, applying Theorem 3(ii) we get a function w ^+1 

in Hmr\ С with

* k k + l v 
w, 4 (z) = с + с z + ... + с, z + 0(z ) 
k+1 о 1 k

*
and w , (t) € int M on T. Then for arbitrarily chosen

K' Jl U

с 6 С with sufficiently small absolute value the function

* k+1
w = w + cz belongs to the set A[c ,...,c ]. Hence

K+1 о к

#Е[с^,...,c^] > 1 and repeating the above construction

yields inductively the sequence {w n b

It still remains to show that clos W  с A. Let

c W  be a sequence which converges to w q uniformly on each

compact subset of D. Since {w } is uniformly bounded,
n

w^ belongs to H®°. Let us assume that w ^  A. Then there 

is a point t 6 T where the nontangential limit w 0 := 

w  (z) exists but does not belong to clos int M . In this
О t

case, d:=dist(W ,clos int M )>0, and hence one can find a 
о t

*
sequence of points 2k € D converging to t such that

*

dist(w (z, ),clos int M ) > d/2, 
о k t

This implies the existence of a sequence of numbers n^ 

with the property that

dist(w (z. ),clos int 14 ) > d/4. (7 )
n ' k t
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* *
Obviously, w (z ) e E(z ):= {w(z }: w « A } ,  and, by 

Пъ к к к

Theorem 3(v), E(z ) _». clos int M as k-*.m, which con-
k t

tradicts (7). Consequently w e A. I
о

Remark. M.A. Efendiev5  ̂ studied the case where the

origin belongs to int for each t€ T. His result is

that the zero-function can be uniformly approximated by a

sequence of functions {w } c W  with a certain prescri-
n

bed asymptotic behavior of arg w on the boundary.
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ON EQUATIONS IN  BAN ACH SPACES IN V O LV IN G  

COM POSIT ION  PRODUCTS OF SET-VALUED M A PP IN G S

F. Williamson

In this paper we derive existence results for equations in Banach spaces 

involving composition products of a finite number of set-valued mappings with 

convex compact images.

Introduction

The aim of this paper is to derive existence results for nonlinear set- 

value problems in Banach spaces, of the form:

(P) x £ Фг о Фг_х о ... $i(x) , х G U

where U denotes a bounded subset of a Banach space and ФгоФг_1 о ... 

a finite composition product of uppersemicontinuous set-valued mappings 

with convex compact images.

Such problems are met in the study of processes having several stages 

and provided with boundary conditions.

1. Notations and Definitions

We first recall some definitions about composition products of set

valued mappings with convex compact images. We denote by X  and Y  

two topological spaces and by Ф : X  —> 2y a given set-valued mapping. 

This mapping is called uppersemicontinuous at the point xq € X  if for each 

open neighborhood V of the image Ф(хо) in У , there exists a neighborhood

1406
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Uv(xo) of x0 in X , depending on V, such that Ф(17у(х0)) С V.

Definition 1.1 . Let X\ be a Banach space and U a given subset of 

X\. A set-yalued mapping Ф from U to 2X \ will be called a convex compact 

product of set-valued mappings if and only if there exists a finite number of 

Banach spaces X 2 ,X 3)... X r together with uppersemicontinuous set-valued 

mappings having convex compact images: Ф: : U —► Tk(X2) with Ф^Л) 

relatively compact (where we denote by Tk(E) the family of all convex 

compact subsets of the vector space E ), Ф, : X{ —► Г^-(Х|+1),1 = 2,.. .r 

satisfying: Ф  =  Ф р о . . . о Ф 1 .

Definition 1.2. Let U denote an open bounded set of the Banach 

space X . Let for г =  0, 1, Ф̂ *) = 0 ... ф ^  from U to 2X denote two 

convex compact products of set-valued mappings. The mappings f(°) = 

Id* — ф(°) and /(!) = Id* — Ф^1) are called komotopically equivalent with 

respect to U and 0 if there exists a family of convex compact products of 

set-valued mappings defined on U x I  Ф(-,2) = Фг(*>0 о ... о Ф1О1О such 

that: Ф; (-,0) = Ф ^ ,Ф ; (*,1) = Фу1*,; = 1,...г and if in addition the 

following condition is satisfied: 0 £ f(dU  x I) with /(•,*) = Id* — Ф(-,£) 

and I  = [0,1].

2. A Degree Notion for Convex Compact Products of Set-Valued 

Mappings

For convex compact products of set-valued mappings it is possible to 

establish approximation and homotopy properties that may be found in [6]. 

If Id* — Ф with Ф = Фг о ... о Фх denotes a convex compact product of set

valued mappings such that: 0 £ [Id* - Ф](dU) and if Id* — ФГ(17 о ... Ф1т)
а Я

and Id* — ФГ>Г) о. ..о Ф1)Г} denote two single-valued ^-approximations of the

same composed mapping in the closure U of the set U of the Banach space
« . .

X  where Ф*>|? resp. Ф*)l? denotes a single-valued continuous approximation

of Ф* in the sense of [2] Thm. 7.3.3, then these approximations are by

Proposition 2.2 of [6] homotopically equivalent with respect to U and to

the zero vector and therefore they have the same Leray-Schauder degree (for

this degree, or shortly L. S. degree, of a single-valued mapping Id* —

where <p : U —* X  is a continuous compact mapping, the notation d(Id* —
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<р, U, 0) will be used).

On account of the above mentioned fact the following extension of 

this degree notion to the case of convex compact products of set-valued 

mappings seems to have some interest.

Definition 2.1. Let U denote an open bounded subset of the Banach 

space X  and Ф =  Фг о ... о фг : U —► 2х  a convex compact product of 

set-valued mappings for which the following holds: 0 ^ [Id* — Ф](д1/). 

Let for к = 1,2,.. .г, Ф*)|? denote a single-valued ^-approximation of Ф* in 

Mk =  Со Фк-1(Мк-\) with M\ = U. Then we define the degree of Id* — Ф 

with respect to the set U and the null vector by:

<f(Id* - Ф, U, 0) = lim d(Ux - Фг,„ о .. . о Ф1л, 17,0).

For р £ [Idx — Ф](д1/) we set similarly:

dQAx - * ,U ,p)=  lim d(Ux - Фг,„ о . . . i i  n,U ,p). (2.1)
n-*>0+

It next follows from the translation invariance of the L. S. degree for single

valued continuous mappings that:

d(Idx - Ф, U,p) = d(Ux - Ф -P, u,0). (2.1)'

We now prove a few properties of the same degree.

Proposition 2 .1. Under the assumptions of Definition 2.1 the follow

ing properties of Id* — Ф with Ф = Фг о ... о Фх hold:

1) If d(Idx — Ф, 17,0) ф 0, then there exists x+ G X  for which:

x+ G Ф(ж+) = Фг о ... о Ф1(г+), ж+ G U .

2) Let (17а)а€Л denote an arbitrary family of disjoint open subsets of 

U and let the following condition be satisfied:

0 i  [Idx -  <*] (U\{ U  Ux)).

A€ A

Then the following relation holds in which on the right hand side an at 

most finite number of terms vanishes:

d(Ux - Ф, U, 0) = Y , - Ф]|(7Х, 17a, o ) .
Л6Л



1409

3) Let ф(‘) = о ... о Ф^,* = 0,1, denote two convex compact 

products of set-valued mappings in the same set U. If Id* - Ф(0̂  and 

Id* — фС1) are homotopic in the sense of Definition 1.2, then the following 

equality holds:

d(Id* - Ф(0), U, 0) = d(Id* - Ф(1\ U, 0).

4) Let Y  denote a closed vector subspace of the Banach space X  such 

that:

Y D С^ФГ(С^ФГ_ !( . .. ( C ^ i (£/))) U {p}with U П Y ф 0 (2.2)

then:

d(Ux - Ф, U,p) = d(Id* - Ф | ^ ,  U П Yyp) . (2.3)

5) Let po and pi be two points from the same connected component of 

Х\[Ых - Ф] (dU), then:

<i(Id* — Ф,1/,ро) = d(lix — Ф, U,pi) . (2.4)

6a) Let Ф1}... , Фг and Фь ... , Фг denote uppersemicontinuous map

pings such that:

ФЬ Ф1 : U -*> TK{X2) with Фх(U) , Vi(U) relatively compact,

Ф*,*, : A i - r ir( * +i),* = 2>3l . . .r

and let us assume that:

о i  pdjf - Со(фг(0 и Фг( )) О . . .  о Co($i(-) и «!(•))] (dU) (2.5)

then:

d(Id* - Фг о ... о Фг, U, 0) = d(Id* - Фг о ... , U, 0). (2.6)

b) Let the following boundary condition be satisfied in which Vi С 

X j+i, i  = 1,2, . . .  r, denote convex neighborhoods of the null vector:

0 £ {Id* -  [Фг(-) +  Vr) о . . .  о [* i(.) +  VI]} (dU) (2.7)
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and let Ф1 : U —► Г#(Хг) with ^\(U) relatively compact, ¥ t- : Xi -* 

Tjc(Xi+i), i =  2,3, . . .  г denote r uppersemicontinuous set-valued mappings 

for which the following holds:

' * i ( * i ) C * i ( « i )  + Vi VxxEdU

i ..........................

k M x r) С Фг(*г) + Vr Vxr G [Фг_х(.) + Vr-l] о ... О [Ф!(.) + Vi](dU) .
(2.8)

Then relation (2.6) still holds.

Proof.

1) Let an = ~ with n > 0 integer. By definition (2.1) there exist for n 

large enough and i =  1, . . .  , r single-valued continuous «„-approximations 

Ф»,ап of the set-valued mappings Ф* in the sets М,- = СоФ»_1(М ,_1) with 

Mi = U such that:

d(Ux -  Фг,ап о ... О ф1|вп, u} 0) =  d( I d x - Ф г о . . . о Ф и и}0 )ф 0 .

Therefore by the corresponding property of the L. S. degree there exists 

xn G U such that:
(2-9)

and as the range of Фг>ог is contained in Mr+\ =  СоФг(М” ), it follows that 

xn G Mr+1. By the uppersemicontinuity of the Ф{ and the compactness of 

their images as well as of Ф1 ([/), the set M r+1 is compact and hence (xn) 

contains a subsequence converging to a limit x+ G U. Moreover it follows 

from the definition of the Ф^ап that:

$i,an(®i) £ Ф1((*1 + cxnBXl) П U) + ocnBx7 V®i € U

®r,an(xr) € Фг((*г + otnBxr) ПМГ) + anBx! Vxr G Mr 

where we denote by Bx, the unit ball of the space X{. Therefore it fol

lows from (2.8) that there exist vectors w* 1, (u*k )jb=iJ2>... ,r > (Ob,n)fc=i,... >r~1 
such that:

xn - anwXl G Фг(Сг-1,п+2а„«^р) with : xn + anuXl G U 

Cfc-i,n G Фк_1(Ск-2,п+2« п ^ к“1) к =  3,... , г

Cl,n G Ф1 (®n + X) ) £ Я*! ,7i^ k G Bxk , fc = 1,. . .Г 

Cb-i,»+2enii?fc € M* , fr = 2, . . .  ,r .



By the uppersemicontinuity of the Ф,- and the compactness nf tv. ■ • 

there exists a further subsequence (*„) 0f (r„) such that Ci ™cT T l 
1 , . . .  , г -  1 with: **>*-

Ci 6 $ i( z  ),Сг G Фг(С*)>• • • tC r- i €  ^ > - - 1 ( ^ 2 ) , С $r(C L i). 

These relations yield together:

x+ eU ,x+ e Ф(я+).

As <f(Id* - Ф, 17,0) is well defined, we have: 0 £ [Id* - Ф] (dU) and this 

implies x+ eU .

2) As the U\ are open subsets of U we have:

3U, дЩ С U\( ( J  Ux) VT € Л . (2.10)
А€Л

We next consider an-approximations Ф*,а„ with an = £ and к — г,... ,1 

in the subsets M* =  СоФ*_1(М*_1) with M\ — U and set Ф«п = Фr,an 0 

•• • 0 Фх1вж. By application of Proposition 2.1 of [6] with M  = U,Q = 

C7\(Uaca ^a) the condition 0 £ [Id* - Ф] (0 ) implies the existence of ni 

large enough such that for n > щ:

0 I  X -  ((1 -  « )* , .« . + t i  г) O . . .  О ((1 -  0 *1 ,« . + <*i) (*) (2 n )  

for а11(ж,<) e Q x 7

and in particular by (2.10) for all (x,t) € dU x / resp. dUx x 7,A G A. 

Therefore we have for the same values of n:

d(IdA- - Ф,£Г,0) = d(Idx (212)

d(Idx _  ф, (7Л, 0) = <f(Id* - ,Ул,0) VA еЛ . (2.13)

It follows from (2.10) that:

о г [ И х - Ф * . ] ( £ ? \ ( и ^ ) )
А6Л

and therefore the generalized excision property for the L. S. degree yields.

d(ldx - = £  d(Id* - Фал|с7д , ^ A , 0 )  (2.14)
А6Л

1411
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where at most finitely many terms on the right-hand side are non zero. The 

announced excision property 2) follows from (2.12), (2.13), (2.14).

3) We denote by ф(’) = Фг  ̂о ... о Ф ^ , :  = 0,1, two convex compact 

products of set-valued mappings and assume that Id* — ф(°) and Id* — Ф^1) 

are homotopically equivalent with respect to the set U and the zero vector. 

Then by Proposition 2.2 of [6] for a > 0 their approximations = 

Ф & о . . .оФ^а are also homotopically equivalent as single-valued continuous 

approximations and therefore we have:

d(Ux - ¥o°\U,0) = d(Ux - ¥ '\ u,0 ). (2.15)

It further follows from Definition 2.1 that:

d(Idx -Ф «,[/,0 ) =  lim dfldA- — ф<;>, 17,0). * = 0,1 - (2.16)
o->0+

The desired homotopy invariance property results from (2.15) and 

(2.16).

4) For simplicity we assume p = 0. It follows from Definition 2.1 of 

the degree that for rj > 0 small enough:

d(Ux -Ф.СГ.О) = d(Ux - *„17,0) (2.17)

with Ф  ̂ = ФГ}|? о ... о ф1>|?. It follows from (2.2) together with: 4rj(^) С 

СоФг( . .. (СоФi(U ) ) .. .) , where the set on the right-hand side is relatively 

compact, that Фч(17) С Y . Therefore the reduction property for the L. S. 

degree yields:

c?(Id* - Ф„ U,0) = d(ldx - Ф „ | ^ ,  U П У, 0). (2.18)

As dy(U ПУ) С dU ПУ, it follows from the boundary condition satisfied 

by Ф together with Proposition 2.1 from [6] and for rj > 0 small enough 

that:

Г 0 £ x - ((1 - i r)$r,r, + <гФг) о ... о ((1 - ti)Q>i>r} + t i$ i)  (x)

\ for all x G dy(U ПУ) and

and hence the mappings Id* —Ф and Id* —Ф,, are homotopically equivalent 

with respect to U C\Y, from where it follows that

d(Idx - U n У, 0) = d(Idx - Ф, и П Y, 0). (2.19)
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d(Id* - Ф, U, 0) = <f(Id* - Ф | ^ ,  U П У, 0).

5) As the space X  admits a neighborhood basis consisting of convex 

sets, it is arcwise connected and as po and p\ belong to the same connected 

component of X\[Id* — Ф](д11) there exists a single-valued continuous map

ping p : [0,1] —► X\[Id* — Ф](dU) with p(0) = po,p(l) = Pi and we have 

for all t ^  I  : p(t) £ [Id* — Ф]{dU). Thus the mapping 7 defined for all 

(x,t) £ U x I  by y(x,t) =  [Id* — Ф](я) — p(t) is a homotopy of convex 

compact products connecting Id* — Ф — p0 and Id* — Ф — pi and therefore 
we have:

<*(Id* -Ф,и,ро) = d(Id* — Ф — po, U, 0) = d(Id* - Ф - Pl, U> 0)

= d (Idx-Ф tU,p1).

6a) The relations:

И *  + (1 - *)**](**) С Со(Ф*(х*) и * к Ы )  

for all (я* ,t) £  Xk x I  and к = 2, . .. r

yield together with (2.5):

0 g x - [<ФГ + (1 - <)tfr] о ... о [<Ф! + (1 - 0*i](z) 1 /о 201
for all (x , t ) e d U x I  j  { )

whence (2.6) results by the homotopy invariance property.

6b) Assuming now that (2.8) is satisfied by Фх,... ,ФГ we have for 

arbitrary t £ [0, 1]:

*Фх(ях) + (1 - *)*i(*i) С Фх(*1) + У\ апУ *i в dU 

*$2(^2) + (1 - *)фг(*2) С Ф2ОР2) + V2 for any x2 € Фi(dU) -f Vx .

Taking into account relation (2.7) we obtain again relation (2.20), so 

that (2.6) still holds.
Q. E. D.

Our next result is concerned with an existence property for solutions 

of equations involving convex compact products of set-valued mappings.

Proposition 2.2. Let U and Ф be given as above and let ы be a fixed 

point of U. if the following boundary condition is satisfied:

The relations (2.17), (2.18) and (2.19) yield together:

(В) Ф(х) jf и + в(х - и) for any x e dU and в > 1
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then we have:

1) d{ldx - Ф, U}0) = 1 if 0 I  [Idx - Ф](ди)

2) there exists x+ 6 U such that x+ E Ф(х+ ).

Proof. By replacing Ф resp. U by Фы(-) = Ф(- + w) — w resp. Uw =  

U — и condition (B) may be rewritten as:

[Id* - <ФШ] (у) 1 0 for any (у,<)еЗС^ж]0,1[. (2 .21)

If 0 i  [Idx - Ф]{ди), then 0 £ [Idx - Фш](дУш) so that relation (2.21) 

is satisfied for all (y, t) £ dUu x [0,1] and it follows from assertion 3) of 

Proposition 2.1 that:

d(Idx - Ф, U, 0) =  d(Idx  - , иш, 0) = d(ldx , Uu , 0) =  1.

Let us assume moreover that 0 £ [Idx — Ф](17), then it follows from 

assertion 2) of Proposition 2.1 that d(ldx — Ф,?7,0) = 0, which implies a 

contradiction with assertion 1). Thus we obtain 0 6 [Idx — Ф](^0-
Q. E. D.

We will finally extend the preceding fixed point result to set-valued 

mappings which are approximable in the sense of the asymmetric Hausdorff 

metric:

(Hf) Д(МЬ М2) =  Sup d{x}M2)
X i

by convex compact products of set-valued mappings.

Proposition 2.3. Let U denote as above a non-empty open and 

bounded subset of the Banach space X  and let Ф : U —► 2X be a set

valued mapping having closed images and such that moreover [Idx — Ф](С )̂ 

is closed. We assume that Ф satisfies the following boundary condition in 

which u) denotes some given point of U and rj a positive eventually small 

constant:

(B£) Ф(х) + т)Вх $ w + 0(x — u>) for all x 6 dU and в > 1.

Under the additional assumption that there exists a family Ф ^  of convex 

compact products of set-valued mappings approximating Ф in the following 

sense:

(AP) lim sup Д(Ф^(г!),Ф(и)) = 0
fc—► + QO
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with A defined as in (Hf), the set-valued mapping Ф admits a fixed point 
in U.

Proof. We will consider the following family of approximate fixed 
point problems:

(Pk) Find и 6 U such that и 6 Ф ^(и) .

As a consequence of the approximation property (AP) there exists for any 

given e > 0 less than rj some integer ke such that к > k c implies:

Ф ^ М с Ф М  + ̂ х  for all и ей . (2.22)

It thus follows from (BJ) together with (2.22) that:

ф(*)(х) ^ cj + 0(x — w) for any x e dU and в> 1 .

As a consequence of Proposition 2.2, ф(*) admits a fixed point щ e U and 

we have further:

0 e [Id* - Ф^](«*) Сщ- Ф(ujt) + £Bx С pd* - Щи) -f £Bx

and hence [Id* - Ф](!7) Пе5* ф 0 for any £ e]0, r/]. As [Id* - Ф](̂ 7) is by 

assumption closed, it follows that 0 e [Id* - Ф](£7) which terminates the 

proof.

Q. E. D.

The closedness assumption on the set [Id* — Ф](С/) is certainly satisfied 

if Ф has closed graph and if Ф(U) is relatively compact.

Moreover assumption (B£) may be replaced by simpler ones as this is 

shown in the following Corollary.

Corollary 2.1. The result of Proposition 2.3 still holds if condition 

(B£) is replaced by either of the following ones:

the set U is convex and Ф is such that Ф (dU) С U

with Ф(dU) relatively compact

X  is a Hilbert space and Ф satisfies:

Sup (у - x,x - и) < 0. 
уеФ(г) 
xeau

(R)

(S)
{
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Proof. It suffices to show for each of the conditions (R) and (S) that 

they imply condition (B£) for some rj > 0.

Case of condition (R)

This condition may be rewritten as Ф(д11) П [X\?7] = 0 and as Ф(dU) 

is compact and X\U is closed, there exists by a well-known result some 

77 > 0 such that:

[Ф(8U) + rjBx] П [(X\U) + t)Bx ] =  0 (2.23)

and thus Ф(дЛ) + rjBx С U . Therefore for an arbitrary x E dU and 

z E Ф(х) -f rjBx we have z E U and hence by the convexity of this set:

x ф (1 — t)u + tz for any t G]0, 1[,

a relation which is equivalent to (B£).

Case of condition (S)

This condition together with the boundedness of U implies the exis

tence of 77 > 0 small enough such that:

Sup (y — x,x — u>) + 17Ц3В — w|| < 0 for any x E dU . (2.24) 
у€Ф(г)

By performing on U and Ф the same translation as in the proof of Proposi

tion 2.2 we may assume that и = 0. As in the proof of Proposition 2.3 for 

given e > 0 at most equal to 77 there exists an integer ke such that (2.22) 

holds for к > kc. We will show that the following boundary condition is 

satisfied by ф(*) for к > kc:

^ Ox for any x E dU and в > 1. (2.25)

Indeed if there would exist x0 E dU, z0 E Ф^^(хо) and 9o > I such 

that zo = OqXo, then there would exist by (2.22) yo E Ф(хо) and uo E Bx 

such that zo = 2/0 + £tto and we would have:

(yo +eu0,x0) = (yo, жо) + е(ио,*о) = 0o||zo||2 (2.26)

with 0q > 1.
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(2 / о - * о ,* о )  + *7 | Ы | < 0 .

Further it follows from (2.24) that:

(2.27)

As € E]0,77] the relations (2.26) and (2.27) imply together that:

0о|Ы|2 = (2/0, X0) + e(u0) x0)

<  (lft>,*o) +  e||*o||

< (i/o,*o) + *?|M I < \\xo\\2
which cannot hold since в0 > 1 and 0 £ dU. Therefore relation (2.25) is 

satisfied and hence for all к > k£i admits a fixed point in U. The 

proof may be completed as with Proposition 2.3. Q.E.D.

To conclude this paper we point out that it is possible to show by an 

argument similar to that of Proposition 2.3 that under the conditions:

- 9(x — a/)) for any x € dU and 9 > 1,

the convex compact product Ф ^  approximating Ф in the sense of Graphs 

still admits for к large enough, a fixed point xW in U and that any cluster 

point x* of the sequence xW is a fixed point of Ф in U.
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M A PP IN G S  CONNECTED W ITH  H A RM O N IC  FUNCTIONS  

OF SEVERAL VARIABLES

Algimantas Yanushauskas

A conformal mapping T realized by the analytical function w = f(z) = 

u(x,y) + iv(xt y) of a complex variable may be considered as the mapping, 

realized by the gradient of some harmonic function <p(x,y). Imaginary and 

real parts of the analytic function f(z) satisfy the Cauchy-Riemann system 

[i]

ux - vy = 0 , uy + vx — 0 (1)

from which it follows that there exists a harmonic function such that и — 

<Py, v = (px. The Jacobian of the conformal mapping T is of the form

J(T) = uxvy - uyvx = ul+u$ = V* + v l .

Consequently, this Jacobian may vanish only in such a set of points which 

is the set of zeroes of a gradient of some harmonic function, where the 

zero set of gradients of two conjugated harmonic functions coincide. Con- 

formal mappings may be also approached from other positions [2,3]. Let 

the harmonic function <p(x,y) be regular in some domain D. Let us try to 

construct the mapping of the domain D  which transfers the level lines of 

the function y? into the straight ones и = const whereas orthogonal trajec

tories of level lines of the function (p transfer into the family of orthogonal 

straights v = const. We shall require additionally the tension coefficients 

along the level lines of the function <p and their orthogonal trajectories to 

coincide.
Let the mapping, which interests us, be given by the correlation

и = <р(х,у),ь = ф(х,у)

1419
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then from the above formulated properties of the mapping it follows that 

functions and ф satisfy the correlation

<рхфх + <руфу = 0 ,<р1 + ф1 = Ф1 + Ф1, (2)

whence it follows

<px = Афу,<ру = -Хфх , А2(Ф1 + ф2у) = Ф1 + Ф2 .

Thus, A = ±1 and functions <p and ф satisfy one of the systems

<Px - Фу = 0 , <py + Фх = 0; (px + Фу =  0 , <py - фх = 0 ,

i.e., the mapping which we are interested is either conformal or anti- 

conformal.

Let us find the substitutions of the variables

€ = ¥>(*,!/), V = Ф(х, !/).

which transform the Laplace operator into the operator of the type

r , /  д2 д2 \ d Q d 

U c 2 + dr)2)  + Qd( + Pdi; '

By a direct calculation we obtain that the functions (p and ф must satisfy 

Eqs. (2). Thus, once again we approach the mappings realized by holomor

phic or antiholomorphic functions. Changes of the variables are realized by 

the conformal mappings of first or second kind.

Each of these three approaches to the concept of conformal mappings of 

flat domains allows us to generalize for a multivarite case. We shall begin 

with the mappings realized by the gradients of harmonic functions. Let 

u(X ),X  =  (jci, ... , x„) be a regular harmonic function of the domain D  in 

the space Rn. The mapping E(u)} realized by a gradient of this function, 

is described by the equations

du .

Let H(u) denote a matrix, composed from the second derivatives of the 

function it, i.e.,
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Local homeomorphism of the mapping E(u) may be disturbed only at such 

points at which det H(u) = 0. This set contains all zeroes of the gradient of 

each derivative du/dxj. However, the set of zeroes of the Hessian det H(u) 

of the function и is not exhausted by the set of zeroes of the gradients of 

the derivatives of the function u. It is clearly illustrated by the example 

9(xt У»z) = z(x2 + y2) — |z3. In this case we have

det H(g) = 8
z 0 x 

0 z у 
x у -2 z

= —8z(x2 + y2 + 2z2)

Here zeroes of the gradients of the derivatives of the function complete two 

straight lines x = z = 0 and у = z =  0, and the Hessian vanishes on the 

plane z — 0, containing these straight lines.

The mapping, realized by the gradient of the function g is given by the 

correlations

E(g) : ti = 2zx , v = 2zy , w = x2 + y2 — 2z2 . (3)

The entire plane z =  0 is transferred into a ray of the straight line и = 

v =  0,0 < w < oo. Everywhere outside the plane z = 0 the mapping E(g) 

is a local homeomorphism. An inverse mapping maps the entire space R3 

of the variables w, v, w with the rejected beam u = v = 0, w > 0 onto the 

upper half-space E + : {z > 0} and is given by the formulas

z =  ±{[w2 + 2 (u2 + v2)]1' 2- '" )1'*,

x  =  u {[w 2 +  2 ( u 2 +  v 2)]1' 2 - w } - 1' 2 , (4 )

у = v{[w2 + 2(u2 + v2)]1/2 - w}~112 .

Though the mapping E(g), given by formulas (3), is a local homeomorphism 

outside the plane z = 0, it is not homeomorphic on the whole. Its inverse 

mapping, the space of the variables u, v,w with the rejected beam и =

v =  0, w > 0 also maps homeomorphically on the lower half-space E 

{z < 0}. Moreover, it is necessary to take the right parts of formulas 

(4) with the opposite signs in order to get another branch of the inverse 

mapping. The points of the beam u = v = 0, u>>0 and the plane z = 0 

are nouniformizable singular points of the corresponding mappings.

/
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Let us consider the mapping realized by the gradient of the funda

mental solution of Laplace equation which is in the form of cr2~n,r2 =  

x\ + ... + x2 , с is a fixed constant. This mapping is given by the formulas

Uj = (2 - n)cXj [*? + ... + x2]-n/2 , ^

J =  1....... n .

From these correlations we obtain

( « ?  +  . . .  +  X 2 ) - 1  =  [ ( «  -  2 ) V ] - ^  [ « »  +  . . .  +  u 2 ] ^  

hence it easily follows that the inversion of formulas (5) is expressed by

Xj =  -[(n - 2 )c ] ^ u ,( u f  + . . .  + ^

j  =  1,... ,n.

It is possible to consider this mapping an analogue of the inversion

u = -x(x2 + y2)~1,v = -y(x2 + у2) ' 1,

I  = — u(u2 + D2) " 1 , у = — v(u2 + w2)-1

which is connected with the fundamental solution of the two-dimensional 

Laplace equation — \ ln(x2 + y2). The inversion, expressed by formulas (7), 

mapps one-to-one one-point compactification of the plane on itself, besides 

the interior of the circle К : {x2 + y2 < 1} transfers to the exterior and vice 

versa. It also transfers circumferences and straights into circumferences 

and straights [1]. If in (5) we assume с =  (2 — n )"1, then mapping (5) 

will map one-to-one one-point compactification of the space Rn on itself, 

besides, the interior of the ball : {x\ 4- ... + x2 < 1} transfers to the 

exterior and vice versa.

Mapping (5) for с = (2 — n)""1 the surface

Ar2 + 2Л r cos 0 = 7

r2 = x? + ... 4- x2,rcos0 =  xiai + ... -f xnan, where A ,у are constants 

and В = }an) is a fixed point, transfers to the surfaces 7p "-2 +

2 cos в = A. Consequently this mapping transfers into spheres only 

the spheres with the centre at the beginning of coordinates. As for the 

surfaces given by the equality

Arn + 2Ar cos в = 7
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IP  *zrT + 2A p cos 9 = A.

If у — 0, i.e., the surface passes through the beginning of coordinates, then 
it turns into the plane.

The fundamental solution of the Laplace equation is determined in all 

the space and vanishes at infinity. In the case of the bounded domain D 

a similar role is played by the Green function with a fixed pole A 6 D. 

Let us suppose that the domain D  has so smooth a boundary Г that the 

second derivatives of the Green function G(X, A) are continuous up to the 

boundary Г. Sometimes it will be sufficient to require such a smoothness 

of Г only in the neighbourhood of some fixed point we are interested in.

Theorem 1. If at the boundary Г of the domain D there is a tangent 

plane Г, the tangency point set of which fills out the isolated variety without 

an edge of dimensionality above one, then on the boundary Г of the domain 

D  the mapping homeomorphism realized by the gradient of Green function 

of the domain D with a pole at any inner point is necessarily violated.

Proof. Since the variety N of tangency points of the plane T and the 

boundary Г of the domain D has the dimensionality not below one and no 

edge, then it cannot be homeomorphic to an intercept of the straight line if it 

is connected. If N  still splits into several coherent components, then none of 

them being a coherent variety without edge cannot be homeomorphic to an 

intercept of the straight, presenting one-dimensional variety with the edge. 

On the other hand, because of the fact that the Green function gradient 

on the boundary of the domain is orthogonal to the domain’s boundary, 

the image of the variety N  is on the straight collinear with the normal of 

the plane T, moreover the image of each connected component N  is an 

intercept of this straight line.

Hence, there follows the validity of the proof of the theorem.

In particular, if the boundary Г of the domain D contains a piece 

of the plane, then the mapping realized by the Green function gradient 

of this domain transfers this flat piece into an intercept of the straight. 

Consequently, in this case the homeomorphism of the mapping is obviously 

violated. However, the mapping may preserve the homeomorphism within 

the domain.

it transfers to the surfaces
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If the domain D is an exterior of the domain В homeomorphic to 

the ball, then the mapping, realized by the Green function gradient of the 

domain D with a pole at any finite point, cannot be a homeomorphism. At 

the infinity the Green function itself and its gradient tend to zero. Besides 

the Green function of the domain D with any finite pole always has at least 

one finite critical point С  [2]. Consequently the mapping realized by the 

Green function gradient of the domain D transfers into one point at the 

infinity and the point C.

The given examples show that properties of the mapping realized by 

the gradients of harmonic functions of many variables differ from the prop

erties of conformal mappings of flat domains. The properties of null sets of 

the Hessian harmonic function of many variables also differ from the case 

of two variables. In the case of two variables this set is a gradient null set 

of some harmonic function, and at such points where Hessian vanishes and 

the rank of the matrix tf (ti), composed from the second derivatives of the 

given function is also equal to zero. The situation is more complicated for 

the harmonic functions of many variables. For example, it is known [4] that 

the Hessian of the harmonic function of three variables changes the sign if 

it vanishes but not vanishing identically. In a general case the following 

statement is valid.

Theorem 2 . Let the Hessian det tf(u) of the harmonic function u(X) 

of the variables X  = , i n),n > 2, vanishes at the point О , where

the rank of the matrix tf (ti) at this point equals to n - 1. Then the Hessian 

det tf (ti) changes the sign at the point O.

Proof. The fact that det tf (it) = 0 at the point О which without 

a limitation of generality may be considered the beginning of coordinates 

denotes that among the lines of the matrix H(u) at this point there is 

a linear dependence. By a linear orthogonal substitution of independent 

variables it is always possible to achieve that at the point О correlations

j du 
grad jr-  = 0 ;

f .  <8> 

would be realized under the conditions of the theorem. Consequently, we 

can assume at once that conditions of (8) are realized. The harmonic func
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tion и in the neighbourhood of the point О may be presented in a series 

according to homogeneous harmonic polynomials [5] which by virtue of 

conditions (8) is of the shape

j  =  2 J= Jt+ l

X ' =  (x2, . . . }xn).

By virtue of the second condition (8) the system of equations

к о

G = = 2....... я ,
j =2

can be solved with respect to X ' in the neighbourhood of the point О and 

it has a unique solution

(9)
Let us make a substitution of variables (9) in the Laplace equation. It will 

take the form

g  + i(» )  = o,
n  « 2  я  r\ ( 1 ^ )

1 = + S

whereas the correlation which defines the mapping realized by the gradient 

и will take the form

дф .
vi = = &+Xi(= i* i)i

/ = 2, . . .  ,n ,
(И)

where ip is the solution of equation (10) which in the neighbourhood of 

the point О acts as 0(r*+1) of the function xi and а^° ^  0(r*)> the 

derivatives of and all xi ac  ̂^  0(r*-1). The Jacobian of the mapping 

defined by correlation (11) has the shape

J  =

dX7
dxi

d3xj> a V
d X i d t l

1 + &

d X x d tn

9X7
du

dxx
ЁХЛ.
дь

14 .ЁХл. 
du
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Since the operator L does not depend on x\, then along with ф this equation 

is also satisfied by д2'*’ /дх\. From the maximum principle for the elliptical 

equations it follows that д2̂ /дх2 changes the sign at the point O. By 

virtue of the fact that in the neighbourhood of the point О we have

and к > 2, a determinant J  also changes the sign at the point O. Hence, 

it follows that det t f  (ti) also changes the sign at the point O, since the 

substitution of variables Xi, a?2i • • • > xn for Xi, (2> ■ • • ,(n has a different from 

zero Jacobian.

The theorem is proved.

It is obvious that by virtue of the harmonic function и the rank of 

the matrix t f  (t i)  can never be equal to one. All the points of zero sets of 

the Hessian det H(u) of the function ti in which the rank tf (tz) is smaller 

than n — 1 are the critical points of the function G(X) = det H(u). By 

virtue of the fact that the rank tf(u) is smaller than n — 1 between the 

lines of this matrix there are at least two linear dependencies, i.e., by linear 

substitution of independent variables it is possible to achieve that two lines 

of the matrix t f  (t i) vanish. Since a derivative of the determinant equals 

to the sum of determinants obtained from the original, substituting one of 

the lines by a line composed of the derivative elements in the line to be 

substituted, therefore the derivative £ -G(X),j = 1, . . . , n, is the sum of 

determinants in each of which at least one line vanishes. Consequently at 

the points under consideration gradG(X) = 0. At such points G(X) may 

not change the sign. If at some point

G pO  = 0,gradGpO = 0,

but the function G(X) does not change the sign at this point, then the 

given point is the extremum point of the function G(X). Only at such 

points a problem on the homeomorphic mapping, realized by the gradient 

of the harmonic function requires an additional investigation.

A generalization of the interpretation of conformal mappings as the 

mappings transferring level lines and their orthogonal trajectories of one 

harmonic function into the level lines and their orthogonal trajectories of 

another harmonic function for a multivariate case leads to another class 

of mappings. At first let us consider a particular case of such mappings
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which are connected with the Green function [2] Let a o' 

outgoing straight beam J0 from it be given, let, further,
T, transferring a unit sphere with centre at the point A into the unit sphere 

with centre at the point В  be given, in this connection A passes to В and 

the beam l0 passes to the preassigned beam A0 = T(/0), outgoing from 

the point B. The mapping T is the composition of parallel translation 

and rotation. By G0(X,A) let us denote the Green function of the domain 

D  С Rn with a pole at the pointyt e D, and by G(X, В ) the Green function 

of the ball : {zj + ... + x\ < A2} with a pole at the point В of

this ball. We shall define the mapping X  : D -+ J2(R) in the following 

way. Let the point у € D  be a point of surface intersection of the level 

Gq(X, A) =  с, 0 < с < oo with the trajectory of the field grad Go, outgoing 

to the point with a tangent /, then as the image Z = x(y) of the point 

у in the mapping x> consider the point of surface intersection of the level 

G(X, В) = с with the trajectory of the field grad G entering the point В 

with the tangent T(/). It is obvious that the mapping \ determined in 

such a way is determined uniquely by the corresponding Green functions 

and the linear orthogonal mapping T. It is also obvious that the mapping 

X reflects homeomorphically some neighbourhood of the point onto the 

neighbourhood of the point В and if Gq(X,A) has no critical points in D , 

the x is the homeomorphism of D on ^near mapping T sets

the correspondence n of orthogonal directions at the point А, n orthogonal 

directions at the point B } i.e., sets the correspondence of frames. From the 

neighbourhood of the point A the mapping x is uniquely continuing along 

the trajectories of the fields grad Go and grad G, in addition the uniqueness 

may be violated only at such points, at which two or more trajectories of 

the field gradG0 intersect. The Green function G(X,t),7 = > 1»

of the ball £ (Я )  : {x\ + ... + x2n < R2} with the pole В = (0,... ,0,7)

writes out clearly

G(X, t) =

2—n

-1 D\ 2

.1 = 1
3-w

П - 1
2

- и -2

.1  = 1

moreover, without limitation of generality we assume that the pole В is on
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the axis Oxn. If the pole is in the centre of the ball XX^)> then we have 

G(X) =

L*=i

- R 2—n

It is obvious that the Green function gradient of the ball does not van

ish anywhere in the ball. The Green function of the exterior fi(i?) : 

{x\ + ... + x2 > R2} of the ball £)(#) with the pole В = (0,... ,0, 6)} 6 = 

vR, has the shape

(X }6) = £  xf + On - VR)‘ 
Li=l

7- n
a

— V
2—n

.«=1

and with the pole at infinity

G i(X ) = Д2-" -

Li=l

By a direct calculation it can be easily checked that the Green function of 

the domain Q(R) with any finite pole В has a critical point С  lying on a 

negative semi-axis Oxn.

The class of mappings described above, connected with Green func

tions, may naturally be called the class of Green mappings. It is also obvi

ous that any flat conformal mapping of simply connected domains may be 

interpreted as some Green mapping, i.e., as the mapping, connected with 

Green functions of these flat domains [2]. For n > 3 the Green mapping of 

the exterior of the ball onto its interior, as a rule, is not a homeomorphism. 

It is homeomorphic only in such a case when it is determined by the Green 

function of the ball and the exterior of the ball Q(R) with the pole to the 

infinity, i.e., the functions G (X ,7 ) and G\(X).

By virtue of the Zaremba-Girord principle [5] on the boundary S(R) 

of the ball X2(i2) we have ^ G (X ,  7) > 0, where n is an inner with respect 

to ^Z(R) normal 5(A), consequently the trajectories of the field gradG at 

all the points S(R) are directed inside All these trajectories enter
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the pole В  of the function G(X, 7). Now let an arbitrary domain D, the 

boundary Г of which has a continuous changing normal, be given; let, fur

ther, G0(X, 7) be the Green function of this domain with the pole A. On 

the boundary Г all the trajectories of the field grad Go are directed inside 

the domain D. While continuing inside D these trajectories either reach 

the pole A or part of them enters the critical point Go which may be con

tained in D. Let yo,... , у* be the critical points of the function Go(X,A)} 

numerated so that G0(yo,A) > . . >  G0(yk,A) > 0. Thus, G0(yo,A) is the 

largest critical value of the function Go(X, A) and Go(j/jb,̂ 4) is the smallest 

one, besides it is possible to restrict ourselves with the case when all these 

critical points are not degenerated. By N* let us denote a point set of the 

domain D , lying on the trajectories of the field gradGo, entering the point 

yj, Nj is a point set of D , lying on the trajectories outgoing from the point 

yj. Further let us suppose N+ = UjNf,N~ = U jN f,N 0 = N+nN~. De

note the M "-set which is obtained from N~ U Л^. The trajectories of the 

field grad Go, filling the set M~, outgoing from the critical points yo,... ,уъ 

and enter the pole A of the Green function Go(X, A). Denote by M J  a 

point set of the domain D, lying on the trajectories of the field grad Go, 

connecting the critical point yj with the pole A, i.e., outgoing from yj and 

entering A.

The Green mapping x> determined by the Green functions Go(X,A) 

of the domain D and Gi(X,y) of the ball ^2(R) maps homeomorphically 

the part of the domain D satisfying the inequality Go(X, A) > Go(yo}A) 

to the ball XX^). Denote by LJ a point set of the ball £ (R ) , lying on 

the trajectories of the field lying in M J , further denote by k j a subset 

L J , satisfying the inequalities 0 < G\(X,y) < Go(yj,A) and suppose k~ =

Ujkj. It is obvious that under the Green mapping x '■ D ~* XX-^) P°ints 

of the mapping k~ have no prototypes in D while the points of the set N + 

from D  have no prototypes in ^  we eliminate the set from the

domain D and the remaining part of D we denote by D+(A), whereas from 

the ball ^2(R) we eliminate the set k~ and the remaining part of the ball 

we denote by (B>,A), then the mapping x a homeomorphism

D+(A) on J2~(r >a )-
The sets D+(A) and £  (R,A) are the domains, i.e., connected by 

open sets. Their openness is obvious while their connectedness can be easily 

proved. Let us suppose that D*(A) splits into more than one connected 

component, then there will be at least one connected component R , to which 

the pole A of the Green function Go of the domain D does not belong. The



1430

harmonic function Go(X, A) is regular in the domain R. The boundary R 

may consist of pieces of the boundary Г of the domain D  and of the pieces 

of the variety iV+. We have

4-G0(X,A) =  о д е  N+-,G0{X,A) =  o , x e r .
on

Hence by virtue of the Zaremba-Giraud principle and the maximum princi

ple [5] it follows that Go(X, A) = 0 on the entire set Я, therefore R  cannot 

be an open connected component D*(A). Consequently, D +(A) consists 

of one connected component. Similarly, (Я,А) is considered, too.

Thus, contractible by itself to the point, domain D may be mapped 

homeomorphically by the Green mapping on the ball only when there exists 

at least one point A E D  such that the Green function Go(X,A) of the 

domain D with a pole at the point A has no critical points in D. Such 

domains are called harmonically weak simply connected [2]. If the Green 

function of the domain D with any pole A £ D has no critical points, then 

we shall call such a domain harmonically simply connected. Some simple 

criteria of the weak harmonic simple connection of the domains can be 

easily given. For example, if the domain D is star relatively to its point 

A , then the Green function of this domain with the pole A has no critical 

points, since having taken A as a pole of the spherical system of coordinates 

from the Zaremba-Giraud principle, we obtain [5]

r ^- G{X, A) <0 ,X  e D .

Hence it follows that a convex domain in RP is harmonically simply con

nected because it is star with respect to its every point. In a general case 

the problem of the harmonic simple connection of the domain or its weak 

harmonic simple connection is sufficiently complicated and little investi

gated until now. Generally speaking, not every homeomorphic to the ball 

domain is harmonically simply connected [2], while the problem on the 

weak harmonic simple connection remains open.

In the above description of the Green mappings one of the domains 

was fixed by the ball ^2{R). From a more general view-point it is possible 

to take two domains D\ and D2 and their Green functions G i(X , A) and 

G2(X,B) with the arbitrary fixed poles A E D\ and В E D2. Now we shall 

give the following.

Definition 1 . Let there be given two domains D\ and D2} the points
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А 6 Di and В e D2 and a linear orthogonal mapping T of the 

Rn on itself, transferring the point A to B. Further let Gi(X  

G2(X ,B ) be the Green functions of the domains Dx and D2 with the poles 

A e Di and В e D2, respectively. The mapping which at the point у 

lying on the intersection of the surface Gi(X,A) = e,0 < e < oo, with an 

orthogonal trajectory of the Gi level surfaces entering the pole A with a 

tangent / compares the point Z 6 D2 of surface intersection of the level 

G2(X ,B ) = e with an orthogonal trajectory of surfaces of the level G2 

entering the pole В with a tangent T(l) we shall call the Green mapping of 
the domain Di in D2.

Now the Green function G2(X tB) of the domain D2 may also have 

critical points. In order that the mapping \ should homeomorphically con

tinue onto the entire domain D i , a mutual coincidence of critical values of 

the functions Gi and G2 is necessary, i.e., the functions must have iden

tical critical values. The correspondence of the trajectories of the fields 

gradGj,.; = 1,2, at the points A and В must be given so that the tra

jectories outgoing from a critical point yj of the function Gi and entering 

the pole A one-to-one correspond to the trajectory of the field grad £ 2, 

entering the В  and outgoing from the critical point Zj of the function G2, 

where Gi(yj,A) = G2(Zj,B). Here the critical points are also assumed 

degenerated.

In Definition 1 the domains Di and D2 may coincide, i.e., Gi and G2 

are the Green functions of one and the same domain but with different poles.

In this case we shall cedi the Green mapping, defined by the functions Gi 

and G2i the Green automorphism of the domain D , while the poles of Green 

functions A and В shall be called the poles defining the automorphism.

If the domain D is harmonically simply connected, then any pair of its 

points may serve as the poles, determining the Green automorphism. In 

a harmonically weak simply connected domain already not every pair of 

points may serve as the poles of the Green automorphism. It would be 

interesting to investigate the structural properties of the set, whose each 

pair of points may serve as the poles, determining the Green automorphism

of the given domain.
As an example, we shall consider a family of domains D(ar, R), which 

are obtained a result of rotating around the axis Oxn of the ball segment

Q(a, R) : {(xi - a )2 + ** + ... + *2-i < Л2, x„-i > 0},or < 0.

It is obvious that for a = 0 the domain D(a, R) turns into a ball. For

/
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О < а < R the domain D(a,R) is homeomorphic to the ball looks as a 

ball impressed at both poles. When ot > R, the domain D (a , R) looks as 

a bagel. When a > R } the Green function of the domain D(a, R) with a 

pole at any interior point has at least one critical point, i.e., this domain 

is not harmonically simply connected. When ot — 0, the domain D(0,R) 

is harmonically simply connected, therefore even for sufficiently small a >

0, the domain D(ot,R) is harmonically simply connected, too. With an 

increase of ot the harmonic simple connection of the domain D (a ,R ) may 

be violated [6], though the domain remains harmonically simply connected 

because the Green function with the pole at any intersection point of the 

axis Oxn, contained in the domain D(a)R) is axially symmetric and has 

no critical points. This is also a property of all the points of the domain, 

located sufficiently close to this segment. Due to the symmetry of the 

domain any two points D(a,R), 0 < a < R, lying on the circumference, 

described by a fixed point of the segment Q(a, R) during its rotation, may 

serve as the poles, defining the automorphism of the domain D (a , R). It is 

possible to show that this is also valid for a > R.

The Green mappings were considered as far as in the thirties of this 

century [3], they are a special case of a more wide class of mappings, to 

which we shall come generalizing the third interpretation of the conformal 

mappings. In the Laplace operator Д we shall substitute the independent 

variables

Let us demand that the correlations ai, = 0,s = 2,... ,n, be fulfilled, 

which have the form

h i  = 1, . . .  ,n.

(13)
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We shall consider correlations (13) as a system n — 1, of linear algebraic 

equations with respect to unknown d^/dxk. From (13) we find

dli
^  = = (14)

where Л is an arbitrary function, and Aj is a cofactor of the element d(i/дх\ 
of the matrix

M=W\,i,j=v......."•

Taking into account the expression ац and correlations (14), we find

& dx*
аи

By a direct calculation the correlation

dAi 

w dxi

is checked. If in (14) we suppose A = 1, then it follows from this correlation 

that f ip f )  is harmonic, and for ац we have

ац =  J(X ) =  det M .

Considering A = 1, in (14) we shall make the variables S = (&,... , xn) 

independent, and X  = (xb . .. ,г„) dependent. The obvious correlations

dxi ^ d x i_  db_ _

dxj f e d b d x j  i j ' (15)

Si i* — 1 ,  — 0 j i  Ф  j  >

take place, from which it follows that the matrix

А Г = 1 Ы , и  =  1....... n.

is reciprocal for the matrix M t i.e., M N  = N M  = E } where E  is a unit 

matrix. From equalities (15) it follows that

f g - • '- м .» . ....... • л . ц - * " *
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where J  = det M, A = det JV, and Bj(x b ... , Zj+i , ... , i n) is a 

cofactor of the element of the j-th line and the first column of the matrix 

N. Taking into account (14) and A = 1, we find

B- A -1 — A — J

and by virtue of the fact that M N  = E  we have /Д  = 1, consequently 

dx\
—  = , ! „ ) , / =  1,... ,П. (16)

System (16) is a system of the Cauchy-Kovalevskaya type only by variable 

f i and is not such by any other variable. The system, obtained from (14) 

for A = 1, has the form

jj* ; = M b , - , M , l  = (17)

Both systems (16) and (17) substitute the Cauchy-Riemann system. 

Consider the matrix

a = ik-ii. *>i = i ....... "•

It is obvious that A =  MM*, where M* is a conjugations matrix for M, 

hence det A =  (det M )2 = J 2. If the functions £j{X) satisfy system (17), 

then

aij =  aji = 0 yj =  2,... , n and det A = an det В , where 

5  = lla»jll>M = 2,. . .  ,n,

i.e., В  is а (n — 1) x (n — 1) matrix. Taking into account that an = J , 

we find det В = J{X). Thus the substitution of the variables, satisfying 

system (17), transforms the Laplace operator A into the operator

d2 A  82 A d

n ^ F  + +

in this connection the correlation

O n  =  det В , В  =  Цац II , i , j  =  2....... n , (18)
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If, however, the functions x/(H) satisfy system (16), then this substi

tution of the variables transforms the operator L into A. By virtue of 

conditions (13), det В is the Jacobian of the trace of the mapping, realized 

by the functions £j (X),  on the surface of the level of the function £i(X). 

However, an analogous feature is typical for the Green mappings [2], too.

Now it is possible to give the definition of a most wide class of map

pings, connected with harmonic functions and generalizing flat conformal 

mappings.

Definition 2 . Let two harmonic functions щ(Х)  and u2(X)  be given, 

regular in the domains D\ and D2) respectively; let, further, a mapping 

X of the domains Di in D2 be given. If this mapping has the following 

features:

1) the mapping transfers the surfaces of the level Mv : (wi(A') = 

i/} into the surfaces of the level Nv : {u2(X) = i/}, and the orthogonal 

trajectories of the surfaces of the level «i(A') are transferred by it into the 

orthogonal trajectories of the surfaces и2(X);

2) the coefficient of tension along the orthogonal surfaces trajectories 

of the level of the functions u,(X), г = 1,2, is equal to the Jacobian of 

mapping ifiy, which is a trace x on the surface Mv\ that mapping will be 

called harmonic in the M. A. Lavrentyev’s sense.

The harmonic in the M. A. Lavrentyev’s sense mappings of multi

variate domains generalize a hydrodynamic interpretation of the conformal 

mappings of flat domains.

is valid.
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