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P refa ce  by S G  S a jja d i

It is a pleasure and honour to write this brief preface to introduce this three- 
volume selection o f papers by a close colleague, Professor Michael Longuet- 
Higgins, FRS.

As a biographical sketch written by him follows this preface I will limit 
myself to some thoughts o f mine having to do with his influence on our 
community. From the recognition which Professor Longuet-Higgins has received 
in appreciation o f his work I would like to mention his work on microseisms.

Scientists have long known about microseisms, but, until recently, no one 
could determine where they came from. Microseisms were first recorded as a 
strange, continuous buzz on the earliest seismometers, devices that measure 
earthquakes. Every year, the cumulative energy released by these small vibrations 
equals the amount o f energy released globally from earthquakes. Records o f 
microseismic activity give scientists a history o f wave interaction in Earth’s 
oceans since the early 20th century. They are also used to examine the history 
o f storms over the ocean. Scientists are interested in learning where these 
microseisms originate because the information can help them monitor stress in 
Earth’s crust.

The theory o f the origin o f microseisms was first introduced in 1950 by 
Michael Longuet-Higgins whilst at the University o f Cambridge in England. 
Longuet-Higgins suggested that the vibrations originated in places where ocean 
waves were traveling in opposite directions toward each other at the same 
frequency and at a certain ocean depth. According to his theory, when these 
waves collide, they combine to form stationary waves that remain in a constant 
position over large areas o f the ocean. These waves create tall, pulsing columns 
o f pressure that repeatedly beat down on the ocean floor, causing it to vibrate. 
The vibrations generate seismic surface waves, which spread out thousands o f 
miles and are detected by seismometers as noise. This new study on microseisms, 
which appeared in the March 2007 issue o f the Proceedings o f the Royal Society, 
Series A  was part o f interdisciplinary collaboration, which included Longuet- 
Higgins and researchers from the California Institute o f Technology, Pasadena 
and the Hydrologic Research Center in San Diego.

This three volume set presents selected original research papers o f Professor 
Longuet-Higgins in the various areas o f water waves, ocean dynamics, and 
fluid mechanics. I believe they will serve as a milestone and beacon for future 

generations.
Apart from the subject area covered in these three volumes, Longuet-Higgins 

has published papers in other fields such as electromagnetic measurement o f



vi

tidal streams and ocean currents, time-varying currents depending on the Earth’s 
rotation, projective geometry, etc. These papers have not been included in the 
present selection, but it is hoped that they will be published in a separate volume 

in the near future.
Finally, my thanks are due to a number o f publishers for their permissions for 

photographic reproduction o f the original papers. In particular I wish to thank the 
Royal Society o f London, the Oxford University Press, the Cambridge University 
Press, MacMillan Publishing Co., the Journal o f Physical Oceanography, the 
Journal o f Marine Research, the American Physical Society, the American 
Geophysical Union, Prentice-Hall, Pergamon Press and Elsevier Publishing Co.

S G Sajjadi 
ERAU, Florida 

December 2008



Preface by Michael Longuet-Higgins

The practical consequences o f wave motion for both the coastal engineer and the 
geophysicist are many and varied, and new applications constantly arise to keep 
the subject alive. At the same time, surface waves challenge the fluid dynamist to 
find an explanation for such spectacular phenomena as wave breaking, when the 
upper surface overturns on itself.

The present collection o f original papers is not intended to cover the whole 
subject. It is simply a selection o f basic contributions by a single author and 
his collaborators. On reflection, the papers can be seen to have been guided by 
certain points o f view: (1) a preference for simple or “physical” explanations 
where possible, and particularly for geometrical interpretations. (2) a desire 
to solve problems by accurate analysis initially, but then to find simpler 
approximate models, easier to apply in practice. (3) an acknowledgement o f 
the need to compare theoretical results with field observations or laboratory 
experiments. Like many other subjects, fluid mechanics advances by putting one 
foot forward and then the other.

For convenience, this collection is arranged according to subjects. Included 
in this first Volume are the author’s principal papers on microseisms; on mass 
transport by water waves; on stochastic processes, especially applied to wind- 
waves; on various mechanisms o f wave generation by wind; and on the theory 
and consequences o f  radiation stresses (momentum flux due to waves). 
Conference papers are generally omitted, since usually they consists o f reviews 
o f the original papers, doubtless in a more readable form. Preceding each group 
o f papers, there is a brief introduction giving the circumstances under which the 
papers were written, and providing further background information.

As an appendix to Volume III, a list is given o f the author’s papers on other 
subjects. Some, as for instance time-varying ocean currents, are closely related to 
papers in this Collection, while other subjects are widely different.

My thanks are due to Professor SG Sajjadi for offering to undertake 
the editing o f this selection o f my papers. I would also like to express my 
indebtedness to some o f my mentors, colleagues and collaborators, aside 
from those named explicitly in the subsequent text. In particular I wish to 
mention CV Durrell, the senior mathematics don at Winchester College, for his 
thorough mathematical grounding, and for his encouragement o f my first forays 
into mathematical research; to Dr George Deacon, leader o f Group W at the 
Admiralty Research Laboratory at Teddington, England, from 1944 to 1949 and 
subsequently the first Director o f the UK National Institute o f Oceanography 
at Witley, for his consistent support; to Norman Barber, a senior physicist in



group W; he was my first research supervisor who introduced me to “ physical” 
ways o f  looking at mathematical problems; to Sir Harold Jeffreys, for his 
inspiring lectures on probability and statistics at Cambridge University; and to 
Sir Geoffrey Taylor, for his inimitable style o f  research. Walter Munk has been 
a long-time friend and advocate. It is be appropriate to mention those many 
anonymous referees who have helped me on my scientific journey.

Perhaps the greatest credit o f all should go to the subject o f  water waves 
for affording the student such great pleasure and interest, and to the waves 
themselves, for following so obediently the laws o f mathematical physics.



A  B rie f B iography

In 1943, at the age o f seventeen, the author entered Trinity College, Cambridge, 
with a scholarship in mathematics from Winchester College, the school where he 
had spent the first four years o f World War II. Already he had acquired a taste for 
research in geometry. By the summer o f 1945, he had qualified for a Cambridge 
BA in mathematics. He was then required to do three years “ work o f national 
importance.” Fortunately for him, he was assigned to “ Group W ” (for waves) at 
the Admiralty Research Laboratory, Teddington. This Group had been formed in 
June 1944 to study the long-distance propagation o f ocean waves in preparation 
for projected military operations in the Pacific Ocean. The Group had been 
spectacularly successful, and its lease o f life had been extended, with wider terms 
o f reference. During three years at Teddington (1945-8), he worked not only 
on the theory o f wind waves but also on the geomagnetic induction o f voltages 
by tidal streams, and on the generation o f oceanic microseisms. In September 
1945, he returned to Cambridge to read for a PhD. There was, however, no 
break in his research; he continued to develop the same subjects o f interest, 
reporting at the end o f each term to Sir Harold Jeffreys, and later to Dr Robert 
Stoneley. In 1951, he was awarded a 4-year research Fellowship (Title A ) at 
Trinity College. The first year (1951-2) he spent in the USA as a Commonwealth 
Fund Fellow, staying first at the Woods Hole Oceanographic Institute on Cape 
Code, Massachusetts, and then at the Scripps Institution o f Oceanography at La 
Jolla, California, with Walter Munk. At Scripps he became interested in wave 
generation by wind, in the statistical properties o f sea states, and in several other 

topics.
On his return to England in 1952, he spent two years o f his Research 

Fellowship in Cambridge after which he accepted Dr George Deacon’s invitation 
to join the newly formed NIO, the U K ’s National Institute o f Oceanography, 
at Witley in Surrey. There he was to spend thirteen happy and fruitful years, 
working (mainly) on ocean waves. After 1963, he concentrated more on time- 
varying ocean currents, especially those which depend essentially on the rotation 
o f the Earth. This period also included visiting appointments in the Mathematics 
Department at M IT (1957-8), the University o f Adelaide, Australia (1964) and 
at the University o f  California, San Diego (1961—2 and 1966—7). In 1963, he 
was elected to the Royal Society o f London. From 1967 to 1969, he spent two 
years assisting in the expansion o f the Department o f Oceanography at Oregon 
State University, in Corvallis, Oregon, but in 1969, he was appointed to a Royal 
Society Research Professorship, to be held jointly at Cambridge University, in 
the Department o f Applied Mathematics and Theoretical Physics, and at The



National Institute o f Oceanography at Witley. Once there, he decided on a multi
faceted attack on the problem o f wave breaking, involving both theory and 
innovative experiments in the field and laboratory. He was also free to pursue 
research in other subjects.

In 1989, on reaching the age o f  formal retirement, he wished to continue 
doing research and for two years joined the La Jolla Institute in San Diego, 
California. In 1991, he was appointed to a position as a Senior Research Physicist 
at the Institute for Nonlinear Science in the University o f  California, San Diego, 
with an Adjunct Professorship at the Scripps Institution o f Oceanography. There 
he turned attention to the natural sources o f  underwater sound, particularly the 
sound produced by the creation o f bubbles in breaking waves (previously this 
sound was call “ wind noise” ). Financial support came mainly from the US Office 
o f  Naval Research and from the National Science Foundation. Since his second 

“ retirement”  in 2001, he has used his freedom as a Research Physicist Emeritus 
to indulge his interest in a variety o f  problems without the necessity o f applying 

for outside grants. These interests have included the damping o f  incoming swells 
by sand ripples, and the construction o f  very simple but accurate approximations 

to gravity waves o f  limiting steepness.



XI

C o n ten ts

Preface by S G Sajjadi v

Preface by Michael Longuet-Higgins V I1

A  Brief Biography IX

Volume I

Introductory Notes for Part В 1

В. O ceanic M icroseism s 3

В 1. Sea Waves and Microseisms, 5
Nature, bond. 162 (1948) 700 (with F. Ursell).

B2. A  Theory o f  the Origin o f Microseisms, 7
Phil. Tram. R. Soc. Lond. A 243 (1950) 1-35.

B3. An Experimental Study o f the Pressure Variations in 43
Standing Water Waves,
Proc. R. Soc. Lond. A 206 (1951) 424-435 (with R.I.B. Cooper).

B4. Can Sea Waves Cause Microseisms? 55
Proc. Symposium on Microseisms, U.S. Nat. Acad. Sci. Publ.

306 (1952) 74-93.

Introductory Notes for Part С 75

С. M ass Transport in W ater Waves 77

C l. Mass Transport in Water Waves, 79
Phil. Trans. R. Soc. Lond. A 245 (1953) 535—581.

C2. On the Decrease o f Velocity with Depth in an 126
Irrotational Water Wave,
Proc. Cam. Phil. Soc. 49 (1953) 552-560.

C3. The Mechanics o f the Boundary-Layer Near the Bottom in a 135
Progressive Wave (Appendix to a paper by R.C.H. Russell 

and J.D.C. Osorio),
Proc. 6th Conf. on Coastal Eng. (Miami, 1957), pp. 183—193. 

tConference papers (not included).



xii

C4. Mass Transport in the Boundary Layer at a Free Oscillating Surface, 
J. Fluid Mech. 8 (1960) 293-306.

C5. Steady Currents Induced by Oscillations Round Islands,
J. Fluid  Mech. 42 (1970) 701-720.

C6. Peristaltic Pumping in Water Waves,
J. Fluid  Mech. 137 (1983) 393-407.

Introductory N otes for Part D

D. Stochastic Processes

D 1. On the Statistical Distribution o f  the Heights o f  Sea Waves,

J. Mar. Res. 11 (1952) 245-266.

D2. The Statistical Distribution o f  the Maxima o f a Random Function, 
Proc. R. Soc. bond. A 237 (1956) 212-232 (with D.E. Cartwright).

D3. Statistical Properties o f  a Moving Wave-Form,
Proc. Cam. Phil. Soc. 52 (1956) 234-245.

D4. On the Velocities o f  the Maxima in a Moving Wave-Form,
Proc. Cam. Phil. Soc. S3 (1957) 230-233.

D5. The Statistical Analysis o f a Random, Moving Surface,

Phil. Trans. R. Soc. bond. A 249 (1957) 321-387.

D6. Statistical Properties o f  an Isotropic Random Surface,
Phil. Trans. R. Soc. Lond. A 250 (1957) 157-174.

D7. A  Statistical Distribution Arising in the Study o f the Ionosphere, 

Proc. Phys. Soc. В 70 (1957) 559-565.

D8. On the Intervals Between Successive Zeros o f  a 
Random Function,
Proc. R. Soc. Lond. A 246 (1958) 99-118.

D9. The Statistical Distribution o f the Curvature o f a 
Random Gaussian Surface,
Proc. Cam. Phil. Soc. 54 (1958)439-453.

D10. The Distribution o f  the Sizes o f  Images Reflected in a 
Random Surface,
Proc. Cam. Phil. Soc. 55 (1959) 91-100.

146

160

181

197

199

201

223

244

256

260

327

345

352

372

387



xiii

Dl l .

D12.

D13.

D14.

D15.*

D16.

D17.

D18.

D19.

D20.

D21.

D22.

The Focusing o f Radiation by a Random Surface When the 
Source is at a Finite Distance,
Proc. Cam. Phil. Soc. 56 (1960) 27-40.

Reflection and Refraction at a Random Moving Surface.
I. Pattern and Paths o f Specular Points,
J. Opt. Soc. Amer. 50 (1960) 838-844.

Reflection and Refraction at a Random Moving Surface,
II. Number o f Specular Points in a Gaussian Surface,
J. Opt. Soc. Amer. 50 (1960) 845-850.

Reflection and Refraction at a Random Moving Surface,
III. Frequency o f Twinkling in a Gaussian Surface,
J. Opt. Soc. Amer. 50 (I960) 851-856.

The Statistical Geometry o f Random Surfaces, pp. 105-144 
in Hydrodynamic Instability, ed. C.C. Lin, Amer. Math. Soc., 
Providence (1960).

The Distribution o f  Intervals Between Zeros o f a Stationary 

Random Function,
Phil. Trans. R. Soc. Lond. A 254 (1962) 557-599.

Bounding Approximations to the Distribution o f Intervals 
Between Zeros o f  a Stationary Gaussian Process pp. 63-88 
in Time Series Analysis, ed. M. Rosenblatt, John Wiley and Sons, 

New York, (1962).

The Effect o f Non-Linearities on Statistical Distributions in the 

Theory o f Sea Waves,
J. Fluid Mech. 17 (1963) 459-480.

Modified Gaussian Distributions for Slightly Nonlinear Variables, 

Radio Sci. 68D (1964) 1049-1062.

On the Joint Distribution o f  the Periods and Amplitudes o f 

Sea Waves,
J. Geophys. Res. 80 (1975) 2688-2694.

On the Distribution o f the Heights o f Sea Waves:
Some Effects on Nonlinearity and Finite Band Width,
J. Geophys. Res. 85 (1980) 1519-1523.

On the Skewness o f Sea-Surface Slopes,
J. Phys. Oceanog. 12 (1982) 1283—1291.

397

411

418

424

430

473

499

521

535

542

547



xiv

D23. On the Joint Distribution o f  Wave Periods and Amplitudes in a 556
Random Wave Field,

Proc. R. Soc. Lond. A 389 (1983) 241-258.

D24.t Can Optical Measurements Help in the Interpretation o f -
Radar Backscatter?,

pp. 121-127 in Satellite Microwave Remote Sensing, 
ed. T.D. Allan, Ellis Horwood, Chichester (1983).

D25. Statistical Properties o f  Wave Groups in a Random Sea State, 574
Phil. Trans. R. Soc. Lond. A 312 (1984) 219-250.

D26.1 Wave Group Statistics, pp. 15-35 in Oceanic Whitecaps,
eds. E.C. Monahan and G. MacNiocaill, (D. Reidel Publ. Co.,

Dordrecht, 1985).

D27. On the Skewness o f  Sea-Surface Elevation, 606

J. F lu id  Mech. 164 (1986) 487-498 (with M .A. Srokosz).

D28. An Effect o f  Sidewalls on Waves in a Wind Wave Channel, 618

J. Geophys. Res. 95 (1990) 1765.

In trod u ctory  N otes for P art F  619

F. W ave A nalysis and W ave G en eration  621

FI. B oun ds for the Integral o f  a Non-Negative Function in 623

Terms o f its Fourier Coefficients,
Proc. Cam. Phil. Soc. 51 (1955) 590-603.

F2. Observations o f  the Directional Spectrum o f Sea Waves 637

Using the Motions o f  a Floating Buoy,
pp. 111—136 in Ocean Wave Spectra, Prentice Hall, New  York, 1963 

(with D.E. Cartwright and N.D. Smith).

F3.^ The Directional Spectrum o f  Ocean Waves, and Processes o f  

Wave Generation,
Proc. R. Soc. Lond. A 265 (1962) 286—315.

F4. A  Nonlinear Mechanism for the Generation o f  Sea Waves, 663
Proc. R. Soc. Lond. A 311 (1969) 371-389.

F5. Action o f a Variable Stress at the Surface o f  Water Waves, 682

Phys. Fluids 12 (1969) 737-740.



XV

F6. Some Effects o f Finite Steepness on the Generation o f 
Waves by Wind pp. 393-403,

in A Voyage o f  Discovery ( George Deacon 70th Anniversary Vol.), 
Pergamon Press, Oxford (1977).

F7. Theory o f Weakly Damped Stokes Waves: A New Formulation 
and its Physical Interpretation,
J. Fluid Mech. 235 (1992) 319-324.

Introductory Notes for Part G

G. R adiation Stresses

G 1. Changes in the Form o f Short Gravity Waves on Long Waves 
and Tidal Currents,
J. Fluid Mech. 8 (1960) 565-583 (with R.W. Stewart).

G2. The Changes in Amplitude o f Short Gravity Waves on 
Steady Non-Uniform Currents,
J. Fluid Mech. 10 (1961) 529-549 (with R.W. Stewart).

G3. Radiation Stress and Mass Transport in Gravity Waves, with 
Application to ‘Surf Beats’ ,
J. Fluid Mech. 13 (1962) 481-504 (with R.W. Stewart).

G4. A  Note on Wave Set-Up,
J. Mar. Res. 21 (1963) 4-10 (with R.W. Stewart).

G5. Radiation Stresses in Water Waves; a Physical Discussion, 

with Applications,
Deep-Sea Res, 11 (1964) 529-562 (with R.W. Stewart).

G6. On the Wave-Induced Difference in Mean Sea Level Between 
the Two Sides o f a Submerged Breakwater,
J. Mar. Res. 25 (1967) 148-153.

G7. Longshore Currents Generated by Obliquely Incident Sea Waves, 1, 

J. Geophys. Res. 75 (1970) 6778—6789.

G8. Longshore Currents Generated by Obliquely Incident Sea Waves, 2, 

J. Geophys. Res. 75 (1970) 6790—6801.

G9.f The Average Wave Forces Acting on Wave Power Machines,

J. Soc. Underwater Tech. 2 (1976) 4—8.

686

697

703

705

707

726

747

771

778

812

818

830



xvi

G10. The Mean Forces Exerted by Waves on Floating or Submerged 842 
Bodies with Applications to Sand Bars and Wave Power Machines,
Proc. R. Soc. Lond. A 352 (1977) 463-480.

G 11. The Propagation o f Short Surface Waves on Longer Gravity Waves, 864 
J. F lu id  Mech. 177 (1987) 293-306.

G I2. The Orbiting Double Pendulum: An Analogue to Interacting 878
Gravity Waves,
Proc. R. Soc. Lond. A  418 (1988) 281-299 

(with K. Dysthe, F.S. Henyey and R.L. Schult).

G 13. Laboratory Measurements o f Modulation o f Short-Wave Slopes by 897 
Long Surface Waves,
J. Fluid Mech. 233 (1991) 389-404 
(with S.J. M iller and O.H. Shemdin).

V olum e II

In troductory N otes for Part H 913

H. W aves in Shallow  W ater; Beach P rocesses 915

H I. The Refraction o f Sea Waves in Shallow Water, 917

J. F lu id  Mech. 1 (1956) 163-176.

H2. On the Transformation o f a Continuous Spectrum by Refraction,

Proc. Cam. Phil. Soc. 53 (1957) 226-229.

H3. Sea Waves and Beach Cusps,
Geogr. J. 128 (1962) 194-201 (with D.W. Parkin).

H4. On the Trapping o f  Wave Energy Round Islands, 944

J. F lu id  Mech. 29 (1967) 781-821.

H5.^ Recent Progress in the Study o f  Longshore Currents, pp. 203-248 -

in Waves on Beaches, and Resulting Sediment Transport, 
ed. R.E. Meyer, Academic Press, 1971.

H 6* The Mechanics o f  the Surf Zone, —
Proc. 13th Int. Cong, on Theoretical and Applied Mechanics,
Moscow, Springer-Verlag (1972) pp. 213-228.

H7. On the Nonlinear Transformation o f Wave Trains in Shallow Water, 985 

Archiw. Hydrotech. 24 (1977) 445—457.

932

936



xvii

H8. Oscillating Flow Over Steep Sand Ripples,
J. Fluid Mech. 107 (1981) 1-35.

H9. Wave Set-Up, Percolation and Undertow in the Surf Zone,
Proc. R. Soc. Lond. A, 390 (1983) 283-291.

H 10. On Wave Set-Up in Shoaling Water with a Rough Sea Bed,
J. Fluid Mech. 527 (2005) 217-234.

Introductory Notes for Part I

I. N onlinear Interactions in Surface Waves

I I. Resonant Interactions Between Two Trains o f Gravity Waves,
J. Fluid Mech. 12 (1962) 321-332.

12. Phase Velocity Effects in Tertiary Wave Interactions,
J. Fluid Mech. 12 (1962) 333-336 (with O.M. Phillips).

13. An Experiment on Third-Order Resonant Wave Interactions,
J. Fluid Mech. 25 (1966) 417-435 (with N.D. Smith).

14. On the Nonlinear Transfer o f  Energy in the Peak o f a 
Gravity-Wave Spectrum: A  Simplified Model,
Proc. R. Soc. Lond. A 347 (1975) 311—328.

Introductory Notes for Part К  

К . Steep, Steady Gravity Waves

K l. On the Form o f the Highest Progressive and Standing Waves in 

Deep Water,
Proc. R. Soc. Lo nd. A 331 (1973) 445-456.

K2. On the Mass, Momentum, Energy and Circulation o f a 
Solitary Wave,
Proc. R. Soc. Lond. A 337 (1974), 1-13.

КЗ. On the Mass, Momentum, Energy and Circulation o f a 

Solitary Wave II,
Proc. R. Soc. Lond. A 340 (1974), 471-493 (with J.D. Fenton).

K4. Integral Properties o f  Periodic Gravity Waves o f Finite Amplitude, 
Proc. R. Soc. Lond. A 342 (1975) 157-174.

998

1033

1046

1065

1067

1069

1081

1085

1104

1123

1125

1127

1139

1152

1175



xviii

K5.

Кб.

К7.

К8.

К9.

К 10.+

К11.

К12.

К13.

К14.

К15.

К16.

К 17.

On the Speed and Profile o f  Steep Solitary Waves,
Proc. R. Soc. Lond A 350 (1976) 175-189 
(with J.G.B. Byatt-Smith).

Theory o f  the Almost-Highest Wave: The Inner Solution,
J. FluidMech. 80 (1977) 721-741 (with M.J.H. Fox).

Theory o f  the Almost-Highest Wave. Part 2. Matching and 
Analytic Extension,

J. F lu id  Mech. 85 (1978) 769-786 (with M.J.H. Fox).

Some New Relations Between Stokes’s Coefficients in the 
Theory o f  Gravity Waves,
J. Inst. Math. Appl. 22 (1978) 261-283.

The Almost-Highest Wave: A  Simple Approximation,

J. Fluid  Mech. 94 (1979) 269-273.

The Orbital Motion in Steep Water Waves 
(Appendix to a paper by J.H. Nath),
Proc. 16th Int. Conf. on Coastal Eng. Hamburg, 1979, 
pp. 874-877.

Why is a Water Wave like a Grandfather Clock?,
Phys. Fluids 22 (1979) 1828-1829.

The Trajectories o f  Particles in Steep, Symmetric Gravity Waves, 
J. F lu id  Mech. 94 (1979)497-517.

Spin and Angular Momentum in Gravity Waves,

J. F lu id  Mech. 97 (1980) 1-25.

Trajectories o f  Particles at the Surface o f  Steep Solitary Waves,

J. F lu id  Mech. 110 (1981) 239-247.

On Integrals and Invariants for Inviscid, Irrotational Flow 

Under Gravity,
J. F lu id  Mech. 134(1983) 155-159.

New  Integral Relations for Gravity Waves o f Finite Amplitude,
J. F lu id  Mech. 149 (1984) 205-215.

Bifurcation in Gravity Waves,
J. Fluid  Mech. 151 (1985)457-475.

1193

1208

1229

1247

1260

1265

1267

1288

1313

1322

1327

1338



XIX

К18.* A  New Way to Calculate Steep Gravity Waves, pp. 1-15 in 
The Ocean Surface,

eds. Y. Toba and H. Mitsuyasu, D. Reidel Publishing Co., 
Dordrecht, 1985.

K19. The Asymptotic Behaviour o f the Coefficients in Stokes’s Series 
for Surface Gravity Waves,
I.M.A. J. Appl. Math. 34 (1985) 269-277.

K20. Accelerations in Steep Gravity Waves,
J. Phys. Oceanogr. 15 (1985) 1570-1579.

K 2 1. Accelerations in Steep Gravity Waves:

II. Subsurface Accelerations,
J. Phys. Oceangr. 16 (1986) 1332-1337.

K22. Eulerian and Lagrangian Aspects o f Surface Waves,
J. Fluid Mech. 173 (G.I. Taylor Symposium Vol., 1986) 
683-706.

K23.* Eulerian and Lagrangian Wave Measurements,
Proc. Ocean Struc. Dyn. Symp. (Corvallis, Oregon, 1986)

1-32.

K24. Lagrangian Moments and Mass Transport in Stokes Waves,

J. Fluid Mech. 179 (1987) 547-555.

K25. Measurements o f the Vertical Acceleration in Wind Waves,
J. Phys. Oceanogr. 17 (1987) 3-11 
(with J.A. Ewing and M.A. Srokosz).

K26. Lagrangian Moments and Mass Transport in Stokes Waves.

Part 2. Water o f Finite Depth,
J. Fluid Mech. 186 (1988) 321-336.

K27. Asymptotic Theory for the Almost-Highest Solitary Wave,
J. Fluid Mech. 317 (1996) 1-19 (with MJ.H. Fox).

K28. A  Close One-Term Approximation to the Highest Stokes 

Wave on Deep Water.
Ocean Engrg. 33 (2006) 2012-2024 (with R.C.T. Rainey).

1357

1366

1376

1382

1407

1416

1425

1441

1460



XX

Introductory N otes for Part M

M . C apillary-G ravity W aves

M l. The Generation o f Capillary Waves by Steep Gravity Waves, 
J. Fluid  Mech. 16 (1963) 138-159.

М2. Limiting Forms for Capillary-Gravity Waves,
J. F luid  Mech. 194 (1988) 351-375.

М3. Capillary-Gravity Waves o f  Solitary Type on Deep Water,
J. F lu id  Mech. 200 (1989) 451-470.

M4. Capillary Rollers and Bores,
J. Fluid  Mech. 240 (1992) 659-679.

M5. Capillary-Gravity Waves o f  Solitary Type and Envelope 
Solitons on Deep Water,
J. F lu id  Mech. 252 (1993) 703-711.

M6. Parasitic Capillary Waves: A  Direct Calculation,

J. F lu id  Mech. 301 (1995) 79-107.

M7. Surface Manifestations o f  Turbulent Flow,

J. F lu id  Mech. 308 (1996) 15-29.

M8. Capillary Jumps on Deep Water,
J. Phys. Oceanogr. 26 (1996) 1957-1965.

M9. Experiments on Capillary-Gravity Waves o f  Solitary Type 

on Deep Water,
Phys. Fluids 9 (1997) 1963-1968 (with X. Zhang).

M10. Viscous Dissipation in Steep Capillary-Gravity Waves,
J. F lu id  Mech. 344 (1997) 271-289.

M l 1.̂  Solitary Waves on Deep Water, pp. 149-167 in
Wind-Over- Wave Couplings. Perspectives and Prospects, 
eds. S.G. Sajjadi, N.H. Thomas and J.C.R. Hunt,
Oxford, Clarendon Press, 356 pp. (1999).

1473

1475

1477

1499

1524

1544

1565

1574

1603

1618

1627

1633



x x i

Volume III

Introductory N otes for Part L

L. U nsteady Free-Surface Flows; Wave Breaking

L I . On Wave Breaking and the Equilibrium Spectrum o f 
Wind-Generated Waves,
Proc. R. Soc. Lond. A 310 (1969) 151-159.

L2. A  Class o f Exact, Time-Dependent, Free-Surface Flows,
J. Fluid Mech. 55 (1972) 529-543.

L3. Periodicity in Whitecaps,
Nature, Lond. 239 (1972) 449-451 
(with M. Donelan and J.S. Turner).

L4. A  Model o f Flow Separation at a Free Surface,
J. Fluid Mech. 57 (1973) 129-148.

L5. Review of: ‘Breaking Waves’ , (film) by G.B. Olsen and 
S.P. Kjeldsen,
J. Fluid Mech 57 (1973) 624.

L6. An ‘ Entraining Plume’ Model o f a Spilling Breaker,
J. Fluid Mech. 63 (1974) 1-20 (with J.S. Turner).

L7. Breaking Waves —  In Deep and Shallow Water,
Proc. 10th Symp. on Naval Hydrodynamics,
(Cambridge, Mass. 1974), pp. 597-605.

LS.* Recent Developments in the Study o f Breaking Waves,
Proc. 15th Conf. on Coastal Eng. (Honolulu, 1976) pp. 441-460.

L9. Self-Similar, Time-Dependent Flows with a Free Surface,
J. Fluid Mech. 73 (1976) 603-620.

LIO. The Deformation o f Steep Surface Waves on Water.
I. A  Numerical Method o f Computation,
Proc. R. Soc. Lond A 350 (1976) 1-26 (with E.D. Cokelet).

L11}  A  Calculation o f Unsteady Surface Waves,
Proc. N th  IUTAMCong. (Delft, Holland, 1976), pp. 423-424 

(with E.D. Cokelet).

1653

1657

1659

1668

1685

1690

1710

1711 

1731

1740

1758



xxii

L I 2^ Advances in the Calculation o f Steep Surface Waves and 
Plunging Breakers,
Proc. 2nd Int. Conf. on Numerical Ship Hydrodynamics, 
Berkeley, 1976 pp. 332-346.

L 13.+ The Calculation o f Steep Gravity Waves,

Proc. 2nd Conf. on Behaviour o f  Offshore Structures, 
Trondhein, Norway (1976) 2, pp. 27-39 
(with E.D. Cokelet and M.J. Fox).

L14. The Instabilities o f Gravity Waves o f Finite Amplitude in 
Deep Water. I. Superharmonics,
Proc. R. Soc. Lond A 360 (1978) 471-488.

L I 5. The Instabilities o f  Gravity Waves o f  Finite Amplitude in 
deep water. II. Subharmonics 
Proc. R. Soc. Lond. A 360 (1978) 489-505.

L I 6. The Deformation o f Steep Surface Waves on Water.
II. Growth o f Normal-Mode Instabilities,
Proc. R. Soc. Lond. A 364 (1978) 1-28 (with E.D. Cokelet).

L I 7.* On the Dynamics o f  Steep Gravity Waves in Deep Water, 

pp. 199-220 in Turbulent Fluxes Through the Sea Surface,
Wave Dynamics, and Prediction,
eds. A. Favre and K. Hasselman, Plenum Publ., 1978.

L 18. A  Technique for Time-Dependent Free-Surface Flows,

Proc. R. Soc. Lond. A 371 (1980) 441-451.

L I 9. On the Forming o f Sharp Comers at a Free Surface,

Proc. R. Soc. Lond. A 371 (1980) 453-478.

L20. Modulation o f the Amplitude o f Steep Wind Waves,
J. Fluid  Mech. 99 (1980) 705-713.

L 2 1 -1" The Unsolved Problem o f Breaking Waves, (Keynote Address), 
Proc. 17th Int. Conf. on Coastal Engineering 
(Sydney, Australia, 1980) pp. 1-28.

1784

1802

1819

1847

1858

1884

L22. On the Overturning o f  Gravity Waves,
Proc. R. Soc. Lond. A 376 (1981) 377-400.

1893



xxiii

L23.f

L24.

L25.

L26.

L27.

L28.1

L29.T

L30.

L31.

L32.

L33.f

L 34.f

A  Parametric Flow for Breaking Waves,

Proc. Int. Symp. on Hydrodynmics in Ocean Engineering 
(Trondheim, 1981), pp. 121-135.

Parametric Solutions for Breaking Waves,
J. Fluid Mech. 121 (1981)403^124.

Bubbles, Breaking Waves and Hyperbolic Jets at a Free Surface,
J. Fluid Mech. 127 (1983) 103-121.

Rotating Hyperbolic Flow: Particle Trajectories and 
Parametric Representation,
J. Mech. Appl. Math. 36 (1983) 247-270.

Measurements o f Breaking Waves by a Surface Jump Meter,
J. Geophys. Res 88 (1983) 9823-9831 (with N.D. Smith).

Towards the Analytic Description o f Overturning Waves, pp. 1-24 
in Nonlinear Waves, ed. L. Debnath, Cambridge Univ. Press, 1983.

Surface Wave Interactions, Keynote Address, pp. 29-34 
in Proc. 9th Australasian Fluid Mech. Conf.
(Auckland, New Zealand), 1986, 29-34.

On the Stability o f Steep Gravity Waves,
Proc. R. Soc. Lond. A 396 (1984) 269-280.

Bifurcation and Instability in Gravity Waves,
Proc. R. Soc. Lond. A 403 (1986) 167-187.

A  Stochastic Model for Sea Surface Roughness I. Wave Crests, 

Proc. R. Soc. Lond. A 410 (1987) 19-33.

Advances in Breaking-Wave Dynamics, pp. 209—230 
in Wave Dynamics and Radio Probing o f  the Ocean Surface, 
eds. O.M. Phillips and K. Hasselmann, Plenum Publ.,

New York, 1987.

Measurements o f Breaking Waves,
in Wave Dynamics and Radio Probing o f  the Ocean Surface, 
eds. O.M. Phillips and K. Hasselmann, Plenum Publ.,
New York, 1987, 257-264 (with N.D. Smith).

1917

1939

1958

1982

1991

2003

2024



xxiv

L35.+

Ь36.*

L37.

L38.

L39.

L40.

L41.

L42.

L43.^

L44.

L45.

Mechanisms o f Wave Breaking in Deep Water, pp. 1 30 
in Sea Surface Sound, ed. B. R. Kerman, D. Reidel Publ. Co., 
Dordrecht, 1988.

The Dynamics o f Bragg-Scattering Waves on the Sea Surface, 
pp. 57-83 in Mathematics in Remote Sensing, 
ed. S.R. Brooks, Oxford, Clarendon Press (1989)

Flow Separation Near the Crests o f  Short Gravity Waves,
J. Phys. Oceanogr. 20 (1990) 595—599.

A  Stochastic Model o f  Sea-Surface Roughness. II,
Proc. R. Soc. Lond. A 435 (1991) 405-422.

Highly-Accelerated, Free-Surface Flows,
J. F luid  Mech. 248 (1993)449-475.

Crest Instabilities o f  Gravity Waves.
Part 1. The Almost-Highest Wave,
J. F lu id  Mech. 258 (1994) 115-129 (with R.P. Cleaver).

Crest Instabilities o f  Gravity Waves.
Part 2. Matching and Asymptotic Analysis,

J. F luid  Mech. 259 (1994) 333-344 

(with R.P. Cleaver and M.J.H. Fox).

A  Fractal Approach to Breaking Waves,
J. Phys. Oceanogr. 24 (1994) 1834—1838.

The Initiation o f  Spilling Breakers, Keynote Address,
Proc. Int. Symp. on Waves —  Physical and Numerical Modelling, 
University o f  British Columbia, Vancouver, B .C.,
21-24 August 1994, pp. 24-48.

On the Disintegration o f the Jet in a Plunging Breaker,
J. Phys. Oceanogr. 25 (1995) 2458—2462.

The Crest Instability o f Steep Gravity Waves or How Do Short 
Waves Break?, pp. 237-246 in The A ir Sea Interface, 
eds. M .A. Donelan, W.H. Hui and W.J. Plant, Toronto, Canada, 

Univ. o f  Toronto Press (1996) 789 pp.

2039

2044

2062

2089

2104

2116

2121

2126



XXV

L46. Crest Instabilities o f Gravity Waves. Part 3. Nonlinear 
Development and Breaking,

J. Fluid Mech.336 (1997) 33-50 (with D.G. Dommermuth).

L47. On the Crest Instabilities o f Steep Surface Waves,
J. Fluid Mech. 336 (1997) 51-68 (with M. Tanaka).

L48.t Progress Toward Understanding How Waves Break,
Proc. 21st Symp. on Naval Hydrodynamics, Trondheim, 
Norway, 24-28 June 1996, Washington, D.C.,
Nat. Acad. Sci. Press (1997), pp. 7-28.

L49. Shear Instability in Spilling Breakers,
Proc. R. Soc. Lond. A 446 (1994) 399-409.

L50. Instabilities o f a Horizontal Shear Flow with a Free Surface,
J. Fluid Mech. 364 (1998) 147-162.

Introductory Notes for Part N

N. Standing Waves

N1. Theory o f  Water Waves Derived from a Lagrangian.
Part 1. Standing Waves,
J. Fluid Mech. 423 (2000) 275-291.

N2. Vertical Jets from Standing Waves,
Proc. R. Soc. Lond. A 457 (2001) 495-510.

N3. On the Breaking o f Standing Waves by Falling Jets,
Phys. Fluids 13 (2001) 1652-1659 (with D.G. Dommermuth).

N4. Vertical Jets from Standing Waves: The Bazooka Effect, 
pp. 195-204 in Ю ТАМ  Symp. on Free Surface Flows, 
ed. Y.D. Shikhmurzaev, Kluwer Acad. Publ. (2001).

N5. Vertical Jets from Standing Waves. II,
Proc. R. Soc. Lond. A 457 (2001) 2137—2149 

(with D.G. Dommermuth).

N6. Asymptotic Forms for Jets from Standing Waves,
J. Fluid Mech. 447 (2001) 287-297.

2136

2154

2172

2183

2199

2201

2203

2220

2236

2244

2253

2266



xxvi

N7. On Steep Gravity Waves Meeting a Vertical Wall:
A  Triple Instability,
J. F lu id  Mech. 466 (2002) 305-318 (with D.A. Drazen).

N8.* Standing Waves in the Ocean, pp. 201-218 in Wind over Waves II: 
Forecasting and Fundamentals o f  Applications, 
eds. S.G. Sajjadi and J.C.R. Hunt, Horwood Publ.,
Chichester, U.K., (2003) 232 pp.



1

In tro d u cto ry  N o tes  for P art В 
В. O cea n ic  M icro se ism s

Papers B1 to B4

Oceanic microseisms are small movements o f the ground recorded by sensitive 
seismographs. They are quite independent o f any seismic signals due to distant 
earthquakes. The author’s interest in microseisms originated in 1946 when 
Dr George Deacon, then leader o f Group W, noticed that the microseisms 
recorded at Kew Observatory near London followed closely the amplitude o f the 
ocean waves recorded at Group W ’s station in North Cornwall. Remarkably, the 
dominant wave period o f the microseisms, which varied in time, was consistently 
half that o f  the corresponding ocean waves. The papers recorded in Section В 
tell the story o f how an explanation o f this phenomenon, now generally accepted, 
was first formulated.

Paper B1 is a preliminary note announcing the basic idea behind the theory. 
A  first version o f the complete theory appeared as an internal Admiralty Report 
in July 1948, but the final version, Paper B3, was not submitted for publication 
until after the author returned to Cambridge and had performed experiments 
confirming the soundness o f the hydrodynamical theory. These experiments are 
described in Paper B4. The complete theory takes into consideration as well the 
compressibility o f sea water. Paper B3, however, is most advantageously read 
in conjunction with the simplified account given in Paper B6. In addition, B6 
provides further historical information; see p. 85. Both B3 and B6 emphasize 
the important role o f sea-water compressibility in amplifying the energy o f the 
microseisms by “organ-pipe resonance” in certain depths o f water (typically 
3 km for ocean waves o f period 12 s). This largely ignored effect has only 
recently been confirmed quantitatively by field observations, see Kedar et al. 
(2008): “The origin o f deep ocean microseisms in the North Atlantic Ocean,”  

Proc. R. Soc. Lond., A , 464, pp. 777-793.
Two papers, B6 and B7, not reproduced here, were concerned with the 

correction or rebuttal o f statements made by other authors.
It may be noted that the statistical treatment o f a random sea state, as given in 

Papers B3 is a precursor o f the modern representation o f sea surface elevation by 
a stochastic integral (Phillips 1966). In 1950, this mathematical tool was not yet 

available.
The same mechanism as is responsible for oceanic microseisms, namely the 

interaction o f oppositely travelling sea waves, has also been found to give rise



2

to microbaroms, which are similar oscillations occurring in the atmosphere. 
For detailed references, see Paper N8 titled “ Standing waves in the ocean,”  in 

Volume III o f  this collection.
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( R ep rin ted  f r o m  N a tu re , v o l. 162, p. 700, O c to b e r  30, 1948)

Sea W aves and Microseisms
I t  is well known1 that the pressure variations 

beneath a progressive g ra v ity  w ave o f  Stokes’s type 
are insufficient, in deep water, to generate m icro
seisms o f  the observed m agnitude. This is because 
the pressure variations on the sea-bed decrease e x 
ponen tia lly  w ith  t-he depth. Th e fo llow ing argument, 
how ever, shows the existence, in a general class o f  
w ave m otions, o f  ‘second-order’ pressure variations 
which are not attenuated w ith the depth.

Th e surface elevation  in a simple stationary w ave, 
fo r  exam ple, is g iven , in L a m b ’s notation®, b y

(A )  i| =  a  cos kx  cos at +  О (a2),

where
a* =  glc tanh kh.

Consider the mass o f  w ater contained between the 
bottom  z =  — h, the surface z =  r] and the tw o v e r t 
ical planes x  =  0Д where ^ =  2n/k. There is no flow  
across the vertical planes and therefore this mass o f  
w ater consists always o f  the same particles. Therefore, 
i f  F  is the vertica l com ponent o f  the to ta l external 
force acting on the mass, we have, summing the 
equations o f  m otion  fo r  each particle o f  mass m and 
cancelling internal forces,

1 r l1
F  =  E  m  —  = ---- — (potentia l energy).

a t2 g at*

N o w  the forces across the vertica l boundaries con
tribu te noth ing to F  ; the pressure p 0 a t the free 
surface contributes a downwards force ? p a and 
g ra v ity  a constant force Zpgh. Hence

F  =  X(p — Pa — pgh), 

where p  is the m ean pressure on the bottom . N ow  
fo r  the stationary w ave  (A )  w e have, neglecting 
com pressibility,

poten tia l energy =  j i  pg r f  dx
0

=  J Ар да2 cos2 at +  0 (a 3).
H ence

(i? ) £.___ =  gh — i  a 2a2 cos 2at -J- 0 (a 3).
P



Th e  second term  is o f  order (w ave-h e igh t)2, which 
expla ins w h y  it  is n o t revea led  in the ord inary  first- 
order theory. I t  is also o f  double the fundam ental 
frequency and, fo r  a  g iven  frequ ency and am plitude, 
is independent o f  the depth h. E qu ation  (В ) has been 
derived  b y  M iche3 in the course o f  a com plete 
evaluation  o f  the second approx im ation  to  the 
sta tion ary  w ave-m otion . B y  a s ligh t extension o f  
the present argum ent one can evaluate the m ean 
pressure below  the series o f  long-crested w aves g iven  
by
(C )  K] ”  2  cos {m kx  -J- nicy -|-

m,n

w here m  and n are in tegers and

=  (™ 2 +  n 2) l/2 gk  tanh (m a +  n 2)1/2 Jch, (om„ >  0). 

I f  p  is the m ean pressure on the bo ttom , we find

(D )  =  gh -  
P

2  а1п,п a — m, —n Gm,ns cos (2Om,nt +  £щ,п -f- e — m, — «)•  
m,n

H en ce this typ e  o f  pressure flu ctu ation  occurs w hen
eve r  w ave-tra in s cross w hich are o f  the same fr e 
quency and tra ve l in opposite d irections (correspond
ing  to  in tegers (m ,n ), A  single w ave 
tra in  g ives  zero flu ctu ation  in the m ean pressure.

These results p ro v id e  the basis fo r  a new  th eory  o f  
m icroseism  generation . T h e y  exp la in  how  m icro
seisms com e to  be generated  in  deep w a ter4’®, and 
w h y  the frequ ency  o f  the m icroseism s is sensib ly 
double th a t o f  th e  w aves  associated w ith  them*. 
T h e  theoretica l orders o f  m agn itude are in agreem ent 
w ith  those observed. A  fu lle r account o f  the th eory  
is in  preparation .

M . S. L o n g u e t - H i g g i n s  

F . U r s e i x  

A d m ira lty  Research  L a b o ra to ry ,
T edd in gton , M idd lesex .

M a y  20.
1 Gutenberg, B., Bull. Seis. Soc. Amer., 21, 1 (1931).
* Lamb, H ., "Hydrodynamlca'' (6th edit., Camb., 1932).
* Miche, М., Ann. Лея Pont» et ChautnSet, Nos. 1-4 (1944).
4 Banerji, S. K ., Phil. Tran». Roy. Soc., A, 229, 287 (1930). 
‘ Gilmore, М. H., Bull. Seti. Soc. Amer., SO, 80 (1940).
* Deacon, G. E. B... Nature, 160, 419 (1947).
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A  TH EO RY OF THE O R IG IN  OF MICROSEISMS

By  M. S. LONGUET-HIGGINS 
Department of Geodesy and Geophysics, University of Cambridge

(iCommunicated by H . Jeffreys, F.R.S.— Received 19 September 1949—
Revised 18 March 1950— Read 30 March 1950)
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In the past it has been considered unlikely that ocean waves are capable o f generating micro- 
seismic oscillations o f the sea bed over areas of deep water, since the decrease o f the pressure vari
ations with depth is exponential, according to the first-order theory generally used. However, it 
was recendy shown by Miche that in the second approximation to the standing wave there is 
a second-order pressure variation which is not attenuated with depth and which must therefore 

ultimately predominate over the first-order pressure variations. In §§ 2 and 3 o f the present paper 

the general conditions under which second-order pressure variations of this latter type will occur 

are considered. It is shown thatin an infinite wave train there is in general a second-order pressure vari
ation at infinite depth which is applied equally over the whole fluid and is associated with no particle 

motion. In  the case of two progressive waves o f the same wave-length travelling in opposite direc
tions this pressure variation is proportional to the product of the (first-order) amplitudes o f  the 

two waves and is o f twice their frequency. The pressure variation at infinite depth is found to be closely 
related to changes in the potential energy of the wave train as a whole. By introducing the two- 
dimensional frequency spectrum of the motion it is shown that in the general case variations in the 
mean pressure over a wide area only occur when the spectrum contains wave groups o f the same 

wave-length travelling in opposite directions. (These are called opposite wave groups.)
In § 4 the effect of the compressibility o f  the water is considered by evaluating the motion o f an 

opposite pair o f waves in a heavy compressible fluid to the second order of approximation. In  place of 
the pressure variation at infinite depth, wavesof compression areset up, and there is resonance between 

the bottom and the free surface when the depth of water is about (4л +  £) times the length of a com
pression wave (n being an integer). The motion in a surface layer whose thickness is o f the order of 
the length of a Stokes wave is otherwise unaffected by the compressibility.

Section Й is devoted to the question whether the second-order pressure variations in surface waves 

are capable of generating microseisms o f the observed order of magnitude. By considering the 
displacement o f the sea bed due to a concentrated force at the upper surface of the water it is shown that 
the effect of resonance will be to increase the disturbance by a factor of the order o f 5 over its value 

in shallow water. The results o f §§ 3 and 4 are used to derive an expression for the vertical displace
ment o f  the ground in terms of the frequency characteristics o f the waves. The displacement from  
a storm area of 1000 sq.km. is estimated to be o f the order o f  6 '5 fit at a distance of 2000 кпь 

Ocean waves may therefore be the cause of microseisms, provided that there is interference 

between groups of waves o f the same frequency travelling in opposite directions. Suitable con
ditions o f wave interference m ay occur at the centre o f a  cyclonic depression or possibly if there is 
wave reflexion from a coast. In  the latter case the microseisms are likely to be smaller, except 

perhaps locally. Confirmation o f the present theory is provided by the observations o f  Bernard 

and Deacon, who discovered independently that the period o f the microseisms is in many cases 
about half that o f the ocean waves associated with them.

Vol. 243. A . 857. (Price 0j.) i [Published 27 September 1950
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1. I n tr o d u c t io n

The word ‘microseisms’ is commonly used to denote the continuous oscillations of the 

ground of periods between 3 and 10 sec. which are recorded by all sensitive seismographs, 
and which are not due to earthquakes or to local causes such as rain, traffic or gusts of wind. 
Since the original researches of Bertelli in the latter half of the nineteenth century, many 

investigations have confirmed the close connexion of microseisms with disturbed weather 
conditions, especially with those centred over the sea. Increased microseismic activity tends 

to occur simultaneously over large areas of Europe or o f North America (Gutenberg 1 9 3 1 , 
1 9 3 2 ; Lee 19 34 ), and the greatest disturbance is found to be in a coastal region bordering on 

a well-developed depression. It is not true conversely (Whipple & Lee 1 9 3 5 ) that depres
sions of the same intensity necessarily give rise to the same amplitude o f microseisms. How
ever, Ramirez (1940 ), by using a triangular arrangement of seismographs, has shown beyond 

doubt that microseisms at St Louis, Missouri, are received from the direction of depressions 

off the Adantic coast. His methods of direction-finding have also formed the basis of a 

successful projcct for tracking hurricanes in the Caribbean area (Gilmore 1946 ).
Several suggestions as to the cause of microseisms have been put forward, none of which, 

however, is entirely satisfactory. Gherzi ( 1 9 3 2 ) has considered microseisms to be due to 

‘pumping’ o f the atmosphere such as is sometimes shown on barographs near the centre o f 
intense tropical cyclones. This cause cannot be excluded for storms of tropical intensity, where 

observations taken in the path o f the storm show that the amplitude may be as much as 
0-2 mm. of mercury (Bradford 1 9 3 5 ). Ramirez, however, has pointed out ( 1940 ) that there 
is practically no connexion between the microseisms at St Louis and the barograph oscilla
tions at St Louis or Florissant, even during the close passage of a tornado during March 1938. 
Also the periods o f the oscillations quoted by Gherzi for the Shanghai typhoon are of several 
minutes, which would appear to be too long. It is considerably more doubtful whether 
microseisms could be caused by the much milder atmospheric oscillations found in tem
perate latitudes. The observations of Baird & Banwell in New  Zealand ( 1940 ) have indicated 

amplitudes of only a few inches of air.
Scholte ( 19 4 3 ) has sought to demonstrate that microseisms may be generated by atmo

spheric pressure on the surface o f the sea, by showing that the amplitude of the compression 

waves generated by an oscillatory pressure spread sufficiently widely over die sea surfacc 
is as great as 1 0 -4 times the amplitude of the gravity waves (ocean waves) so generated. The 

weakness of this argument is apparent. Ocean waves are not generated by oscillating pressure 
distributions of the type described by Scholtc, but more probably by a systematic difference 

o f pressure between the front and rear slopes of die crests of a wave train (Jeffreys 19 2 5 ). 
The effect of a pressure distribution of this latter type, while tending continually to increase 

the energy of the gravity waves, would tend to cancel out for the much longer waves of 
compression.

An earlier theory, due originally to Wiechert and until recently strongly supported by 

Gutenberg, was that microseisms are caused by the impact of waves breaking against a steep 
coast. It is argued in favour of this theory that there is a statistical correlation between, for 
example, the amplitude o f the microseisms at Hamburg and the height of the waves off the 

coast o f Norway (Tams 19 3 3 )- This theory will account for some of the facts, although it
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involves a coefficient for the proportion of the wave energy imparted to the ground which 

some may consider too high (Bradford 19 3 5 ). Observations also seem to show that micro
seisms associated with storms at sea may be recorded several hours before the waves reach 
the coast (Baneiji 19 3 0 ; Ramirez 1940 ; Deacon 1949 ), so that a further explanation, at any 
rate of these latter observations, is required.

Possibly the most natural explanation of microseisms, and one that might have been 
previously considered more seriously but for theoretical objections, is that they are generated 
by pressure variations on the sea bed due to ocean waves raised by the wind. It is unfortunate 
that in the past use has had to be made of Stokes’s well-known theory of progressive waves, 
with the result that the pressure variations on the bottom, at any rate in deep water, appeared 

far too small (Gutenberg 1 9 3 1 ; Whipple & Lee 1 9 3 5 ). The physical reasons for this are 
twofold. In the first place the pressure variations in a progressive wave decrease exponentially 
with depth, and secondly the wave-length of gravity waves is extremely small compared to 
that of seismic waves, so that the contributions from different part of the sea bed effectively 

cancel one another. Baneiji ( 1930 ) sought a way out by supposing that the water motion is 
not strictly irrotational, but his analysis cannot he defended. It was also shown (Whipple & 

Lee 19 3 5 ) that the compressibility of the water makes little difference to the general result.| 
A  further difficulty was that investigation of the wave periods usually showed them to be 
considerably greater than the corresponding periods of the microseisms. Bernard's careful 
studies of the periods of swell off the coast of Morocco ( 19 37 , 194 1 a, b) indicated that they 
were in fact about twice the microseism periods. In a comparison of the Kew seismograms 

with records of waves taken at Perranporth in Cornwall, Deacon ( 1947 ) independently 
arrived at the same conclusion.

It has been pointed out (Longuet-Higgins & Ursell 1948 ) that Miche, in a theoretical 
study of wave motion ( 1944 ), discovered that the mean pressure on the bottom beneath a 

train of standing waves is not constant, as in a progressive wave, but fluctuates with an 
amplitude independent of the depth and proportional to the square of the wave height. This 
oscillation is of precisely the type required for the generation of ground movement, for not 
only is it unattenuated with depth (and is therefore the most important term at depths greater 
than about half a wave-length) but also, being in phase at all points of the bottom, it is suit
able for producing long seismic waves. A  further remarkable fact is that the frequency of 
this pressure variation is twice the fundamental frequency of the waves. Owing to the cus
tomary neglect of terms of higher order than the first, this term had been overlooked, the 
standing wave being in the first approximation the sum o f two progressive waves of equal 
amplitudes travelling in opposite directions. A  shorter proof of Miche’s result, bringing to

I  An  attempt was made by Baneiji ( 1935 ) to show that the compressibility o f the water would allow  
pressure variations o f the same period as the surface waves to be transmitted to depths great compared with 

the wave-length. However, an error in his analysis was pointed out by W hipple &  Lee ( 19 3s, p. 295). 
In  the same paper ( 1935 ) Banerji describes experiments in which he set up waves o f length 2 to 6 cm. in 
tanks o f depth 84 to 108 cm. and observed the oscillations in a tube o f  diameter 4 cm. sunk to varying depths 

and open at the lower end. Appreciable oscillations were observed at all depths. Banerji’s results are difficult 
to interpret, but it seems unlikely that the compressibility of the water can have aflected experiments on 

this scale. J. Darbyshire has also pointed out that the period of the oscillations shown in plates X X V I I  and 

X X V I I I  o f Banerji’s paper lies between 0-0 and 0-75 sec.; these cannot have been of the same period as the 
surface waves unless the latter were o f length Яй to ЙЙ cm., or comparable with the depth and width o f the 

tank.
1-2
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light the physical reasons for the existence o f this pressure oscillation, was given by Longuet- 
Higgins & Ursell ( 19 4 8 ). A  generalization of this proof led the present author to the con
clusion (see§ 3) that variations in the mean pressure over a wide area arise as a result of the 

interference o f groups of waves o f the same wave-length, but not necessarily of equal ampli
tude, travelling in opposite directions.

For a few years previously Bernard { 19 4 1  a, b) had held the view, unsupported at that time 
by hydrodynamical theory, that standing waves (Fr. clapotis) were the cause of microseisms. 
He had suggested that favourable conditions for standing waves would arise at the centre of 
a cyclonic depression or possibly off a steep coast where there was reflexion from the shore 

(this idea is to be distinguished from Wiechert’s surf theory, although similar conditions 

would favour the generation o f microseisms on either hypothesis). Bernard does not appear 

to have foreseen the doubling o f the frequency o f the unattenuated pressure variations in 
a standing wave, for he is inclined to suggest other causes for the difference between the 

frequencies of the microseisms and those of the waves (Bernard 19 4 1  a, p. 1 0 ).
In the present paper we shall first investigate, in §§2 and 3, the physical reasons for the 

existence of unattenuated pressure variations of the type occurring in the standing wave and 

the general conditions under which they will occur; in § 4 the effect of the compressibility of 
the water on the wave motion will be considered; and in §5, using the results o f §§ 3 and 4, 
it will be shown that the second-order pressure variations due to surface waves are of the 

right order of magnitude for producing microseismic oscillations of the sea bed. W e shall also 

consider briefly under what meteorological circumstances waves suitable for generating 

microseisms may be expected to be produced.

2. P re s s u re  v a r ia t io n s  in  a  p e r io d ic  w a v e  t r a in  

2 -1 . The attenuation ofpressure variations and particle velocities with depth 

Although the second-order pressure variations in a standing wave in deep water are not 
attenuated exponentially with the depth, the unattenuated terms are not associated with 

any motion o f the particles. That this is possible may be seen as follows. Let rectangular 

co-ordinates (x, y, z ) be taken with the origin in the undisturbed level of the free surface and 

the 2-axis vertically downwards. For simplicity we shall consider motion in two dimensions 

(x ,z )  only; similar arguments are, however, applicable to motion in three dimensions. W e  

assume that the motion is irrotational, and that it is periodic in the ж-direction with wave
length Я. The components of velocity (u, w) are given by

дф дф 
U =  ~ T x ' W =z~Tz>  (1)

where, since the fluid is incompressible, we have

idu . du)'
Ш + з г Н -  m

The equations o f motion may be integrated (see Lamb 19 3 2 , §20) to give the Bernoulli 

equation | _ 1 (и !+ „ , ) + а д ,  ( » )
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where p denotes the pressure, ft the density, g  the acceleration of gravity, p, the pressure at 
the free surface (supposed constant) and 6(t) is a function of the time I only, ф itself contains 
an arbitrary function of but this may be made definite by specifying that the mean value 
of ф with respect to x, taken over one wave-length, is zero. Similarly, by a suitable choice 
of axes the mean value of a may be made zero (both conditions may be satis6ed for all values 

of 2 and t). Then, since ф is a harmonic function periodic in x and bounded when z > 0 , it 
may be shown that in water of infinite depth ф, и and w all diminish with z at least as rapidly 

as exp( — 2nz/X) (to all orders of approximation). Therefore when z exceeds about half 
a wave-length we have from equation (3)

Pjy £- g z  =  9{t). (4)

Thus, although the particle velocities in any irrotational periodic motion must decrease 

exponentially with the depth, the pressure may still be a function of the time t. The pressure 
variation (4), being simultaneous over the whole fluid, is the same as if  a uniform pressure 

6(1) were applied to the free surface, the fluid being at rest. 6 (t), being the limit o f (3) when 
z tends to infinity, may be called the pressure variation at infinite depth. 6(t) does not in 
general vanish, though in one case, namely, that of the'progressive wave, we may show that 
it is a constant; for in equation (3) every term except 6(1) is then a function of (x — ct) and z, 
where с is the wave velocity. Therefore в also is a function of (x — ct). Hence в, being in
dependent o f x, is independent of t also.

In general, since 6(t) is in phase at all points, there is a fluctuation in the mean pressure 

with respect to x on any plane z =  constant. Thus if^ denote the mean pressure with respect 
to x in the interval we have from (3)

----- T\ j (u ? + w * )d x + e ( t )  (5 )

(since the mean value of ф vanishes by hypothesis); and for large values of z  we have

=  (6)

The occurrence of an unattenuated pressure variation at infinite depth is therefore closely 
associated with a variation in the mean pressure on the plane z =  constant. As we saw in § 1 , 
it is the variation in the mean pressure which is likely to be of physical importance in pro
ducing seismic oscillations of the sea bed.

2-2. Evaluation o f  the mean pressure 

W e shall now obtain a general expression for the mean pressure over a given area of the 

plane z =  constant, from which the special cases of the standing and the progressive wave 
may be very simply derived. It will not be assumed, in the first place, either that the motion 
is irrotational or periodic. Some of the equations will therefore be applicable to the more 

general types of motion to be discussed in § 3.
A  very general relation between the vertical motion of a mass M  of fluid consisting always 

of the same particles and the vertical forces acting upon it may be obtained as follows.
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Suppose that (x ,z ) are rectangular co-ordinates referring always to the same particle of the 
fluid in the Lagrangian manner, so that x  and z are functions o f the time t and of the co
ordinates (x0>z0) at some fixed instant, say t =  0. The equation of motion in the vertical 
direction is dp id2z

Sz S P ^  pd t21 ( 7)

and the equation of continuity may be expressed in the form

pdxdz =  p0dx0dz0, ( 8)

where pD is the density when t =  0 . N ow  we have

f  d2z f d2z d2 f  д2 Г
) Mp W dxdz =  \MPoW =  dT2j j ° zdxodz0 -  № ) J zdxdz- (9)

Therefore on integrating equation (7) over the fluid M  we find

!MP xdz~Lgpdxdz=- S L pzdxdz- (io)
In  evaluating the integrals in equation (10) we may treat x, z and I as the independent vari
ables, though the boundaries o f M  are now functions of I. The right-hand side of ( 1 0 ) may 

1 d2V
clearly be written — , where V is the potential energy of the fluid M.

Suppose now that, in any wave motion at the free surface of an incompressible fluid, M  

denotes the body of fluid which at time t — 0 is contained between the free surfacc z — £, 
the horizontal plane z =  z ' and the two vertical planes x  «■ *, and x =  x 2. I f  fi' denotes the 

pressure in the plane z =  z ,  andps the constant pressure at the free surface, we have, at the 

initial instant, . ,  .
j M£ dx dz = j \ p ' - p , ) dx = ( P - p s) ( * 2- * i ) >  0 1)

wherep ' denotes the mean value ofp ' with respect to x. Similarly we have, since p is assumed 

to be constant, -n .n
[ gpdxdz =  gp\ ( z ' - Q d x ^ g p z ’ f a - x J —gp Idx. ( 1 2 )

J  M  j  Xt J  Л

To  evaluate the third term in equation ( 1 0 ) we need an expression for the integral at times 

other than the initial instant. Suppose then that at time I the fluid M  is bounded by the

surfaces z  =  C{x, t ), z =  z '+  £ '(*,*), x =  £l (z , t ) and *  =  £2(z ,0 ,

where ^^{zг ^ ) =zX\̂ ^2(2> ® )=лг2‘ ( 1 ^)

The (x , z ) co-ordinates o f the intersections o f the surfaces z =  £', (z ' +  f ' )  with the surfaces
*  =  £2 may be denoted by (a„ у,), (a'„ y [ ) ; (a2, yz),  (д* у'г)  respectively, these being func

tions o f t. Then we have

Г zdxdz =  +  t ' ) 2d* ~  f a,i C * * +  V ' t i z d z - \ 7' 1 ^ ~ \ [ а гу ^ - а \ у ^ - а гу1-\-ахг(\. 
Jm •><*; J «< J y>

On differentiating twice with respcct to I we find

+  2[агУ2у'г - а [у '1у [ - & г^гУг + А 1̂ 1У1] ,  ( 15)
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where a dot denotes partial differentiation with respect to t. At the initial instant we have

ai ~  ai =  *n “ 2 ~  *2 “  *21 У1 ™ Уг “  z • (16)

Therefore, if f, and denote the values of £ when x — x, and x2, equation ( 1 0 ) becomes

* 7 * - <«■ - « *

The above equation may be put into a form which is independent of the initial instant chosen. 
For if (a', w')  denote the components of velocity in the plane z — z' we have, at the initial 
instant,

§ ( K ' 2) = £ f + £ ' 2 =  * ' 2. ( i s )

Also by considering Z)2(£' —z )ID t2, where D jD t  denotes differentiation following the motion, 
we find

(iB)

Similarly £, =  Щ ~уг {и,wt)  ( i  = 1 , 2 ), (20 )

where («„ ur) are the velocity components in the plane x =  xt. Since (4„ y,) and (aj, |J) are 

equal to the components of velocity at (*,-,£) and (x (,z '), we have finally, after integrating 
by parts and dropping the dashes,

( 21)

The above equation is now valid for all values of z and t. In equation (2 1 ) the first group of 
terms would give the mean pressure on the plane z =  constant if the planes x =  x2 were 

assumed to be vertical barriers. The second group of terms gives the correction due to the 
motion across these planes.

By allowing x2 to tend to in equation (21) an expression for the pressure at any given 

point can be obtained. Thus

^ - y - ' - g z =  («k +  a w J 'k -H z b - c ] -  ( 22)

It may easily be verified that in a periodic wave motion in deep water the first-order terms 
on the right-hand side of (22 ) decrease exponentially with the depth.

Suppose now that the motion is periodic in x with wave-length Я. I f  we write =  0, 
x2 "= Я in equation (21) the second group of terms then vanishes identically. Further, if the 
origin is assumed to be in the mean surface level we have

Г gidx =  0 ; (23)
J 0
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and since the net flow o f water across the plane z =  constant is zero we have also

J,A g /-А
zwdx =  wdx =  0 . (24)

(“ )

Therefore the mean pressure over one wave-length is given by

- p - S *  =  \ (25)

If, in addition, the motion is irrotational we find by comparison with (6) that the function 
6{t) is given by л 22 r \ , r \

в ( 1) “  J ^ 2j 0 2-(“2- u |2) * -  (26)

It may be verified that the second term is independent of z, for

I / o  (“2“ ^  dX =  lo' (“ Й + W & ) dx =  [ UWX ’ (27>
which vanishes by the periodicity o f the motion. In deep water, sincc u and w decrease 
exponentially with depth, the pressure variation at infinite depth is given by

1 д2 Гл ,
'о

In  water o f constant finite depth h the vertical velocity w vanishes when z  — h. From (25) 
we see that the mean pressure variation on the bottom is also given by the right-hand side 

o f (28). Thus both the pressure variation at infinite depth and the mean pressure on the 

bottom in the case o f constant finite depth, depend on a second-order function of the wave 

amplitude, closely associated with changes in the potential energy of the wave train.
It will be noticed that the equations so far obtained are exact, and that no assumptions 

depending on the smallness o f the wave amplitude have been made.

2-3. The standing wave and progressive wave

W e shall now use the formulae o f the previous section to evaluate the mean pressure on 
the bottom in some special cases of wave motion. This may be done, as we shall see, by  

consideration o f the first approximation only.
Let the water be o f constant depth h. Consider a motion which in the first approximation 

consists o f two progressive waves o f equal wave-length Л and period T  travelling in opposite 

directions. The equation of the free surface is given by

£ =  atcos (k x ~ tr l ) +a ,cos  (kx-\-(Tt) -(- 0 (a 2fc), (29)

where к =  2тг/Д, a =  2яr jT  and a2 — gk tanhkh (30)

(Lam b 1 9 3 2 , p. 3G4). The last term in equation (29) represents a remainder ofsccond or 
higher order in the wave amplitudes ax and a2 which it will not be necessary to evaluate. 
When z — h, 10 vanishes, and so from equation (25) the mean pressure ph on the bottom is

given у ps ̂  f  cos (fa -a rt')  4-a2cos (Ax +  <rt)]J < & + 0 (aV 2A2)
p Л d r  J 0

=  £ (a? I- +  2 j, at cos 2at) +  О (a?tr2k2)

=  — 2al a2ff2cos2<rl, (31)
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to the second order of approximation. Thus the mean pressure fluctuation on the bottom is 
of twice the frequency of the waves and proportional to the product of the wave amplitudes. 
For a given period T  it is also independent of the depth A.

Two special cases are ofinterest. First, when the amplitude of one of the opposing waves 
is zero, that is, in the case of a single progressive wave, the right-hand side of equation (31) 
vanishes. The mean pressure on the bottom is therefore constant. Secondly, when the 
amplitudes of the two waves are equal and

a, =  a2 =  \a, (32)

say, we have a standing wave given by

£ =  acosfoc cos at -I- 0 (a 2k). (33)

From equation (31) we have then

^  =  ~  c°s 2 at. (34)

Therefore in a standing wave the mean pressure on the bottom varies with twice the fre
quency of the original wave and with an amplitude proportional to the square of the wave 
amplitude.

Equation (34) was obtained by Miche ( 1944, p. 73, equation (85)) after evaluating the 
second approximation to the wave motion in full.

A  physical explanation of these two results, and of the difference between them, may be 

given as follows. Consider first the standing wave given by equation (33). When t — (л +Ю  т, 
n being an integer, the wave surface is approximately flat. The centre of gravity of the whole 
wave train is therefore at its lowest point. On the other hand, when t =  n T  the wave crests 
are fully formed and the centre of gravity has risen, since water has been transferred from 
below to above the mean level (this is equivalent to saying that the potential energy is 
increased). This raising and lowering of the centre of gravity occurs twice in a complete 
cycle. But the vertical motion of the centre of gravity of any mass of fluid is determined 
solely by the vertical external forces acting upon it. O f these, the force due to gravity is 
constant, and the pressure on the free surface supplies a constant additional downwards 
force. There remains the pressure on the bottom, which must therefore fluctuate in a similar 
manner, with twice the frequency of the waves.

In a progressive wave, on the other hand, similar considerations show that the mean 

pressure on the bottom is constant. For the potential energy, and hence also the centre of 
mass, of the whole wave train remains at a constant level throughout. There can be therefore 

no fluctuation in the mean pressure on the bottom.
It should be possible to verify formulae (3J) and (34) quite simply by experiment, since 

these terms represent the only pressure variations measurable at a depth of more than half 
a wave-length. The water should be almost stall at this depth, so that the formation of eddies 
round the measuring apparatus would be avoided. A  standing wave could be produced in 
a long wave tank by the reflexion of a wave train from a vertical barrier at one end of the 
tank. I f  the inclination of the barrier to the horizontal were varied, reflected waves of 
different amplitude would be obtained, since for small inclinations some energy would 
almost certainly be absorbed at the barrier itself. In the first-order theory of surface waves 
the absorption of energy at the barrier cannot be taken into account without assuming a

Vol. 24.3. A . 2
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singularity at the origin, and the amount of energy absorbed is indeterminate. However, 
by the present method the coefficient of reflexion could be determined experimentally, 
since the pressure variation on the bottom (at a few wave-lengths from the barrier) is directly 
proportional to the amplitude of the reflected wave. Hence also some indication could 

probably be obtained as to the amount of wave reflexion taking place at a steep coast and 
from beaches of different gradients.

3. G e n e r a l  t y p e s  o f  w a v e  m o tio n

Perfectly periodic wave trains of standing or progressive type rarely occur in practice, 
and in the present section we shall consider the pressure variation in wave morions of more 

general type. When the motion is not perfectly periodic in space the pressure variation at 
infinite depth, in the sense of § 2 -1 , no longer exists, but expressions may still be found for 

the mean pressure or the total force over a given area of the plane z =  constant. These assume 

a simple form provided that the area is large enough for the motion across the boundaries 

to become negligible.

31. The force on a given area o f  the plane z =  constant 

Still considering motion in two dimensions only, let F  denote the variable part of the total 
force, per unit distance in the у-direction, acting on the plane z =  z' in the interval 
- R < x < R ,  i.e.

(35)

where p is the mean pressure on the plane z — z ' in this interval. Then from equation (21) 
we have _ R

-  =  J  (a z+u w )/ fe -(u w z )z, cJ ^ .  (36)

Now  since the flow o f water across the horizontal plane z =  z ' ( —R < x < R )  is equal to the 

net flow across the vertical planes x  =  (z > z '), we have

J  zwdx =  [ z j  lirfzj , (37)

where h denotes the depth o f water (not necessarily constant); if the depth is supposed 

infinite, the upper limit o f the integral must be replaced by со. Similarly, if the mean 

level of the free surface z =  {  is zero at time / =  0 we have

(38)
Hence from equation (36), after integrating by parts,

— (uwz)*^J (39)
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Let us consider the relative magnitudes of the terms in equation (39). W e suppose that 
the motion is wave-like, in the sense that the energy is nearly all confincd to a narrow range 
of frequencies in the frequency spectrum (as defined in § 3-2); and that the mean frequency 
aj2-n corresponds to a wave-length A which is small compared with R. In general, the relative 
phase of the motion at two widely separated points of the jc-axis will be random. W e may, 
however, suppose that the motion is regular and periodic over any interval of the x-axis 
less than or equal to 2R b say. W e suppose also that the motion is initially confined to an 
interval —R 2< x < R 2 (where R 2 may be very great compared with Й,), that is, that the 
elevation and vertical velocity of the free surface at points outside this interval are initially 
zero. There will be three distinct cases:

Case I. R ^ R U i.e. the motion is regular over the whole interval —R < x < R .  Then

[ ~ m ~ ^ 2~\dx (40)
-к

is of order a2a2R, where a is the maximum wave elevation. I f  we assume for the moment 
that и and w are of order ao and that r - rz

L J H - ,  (41)
is of order a<r\ for all z, the remaining terms in (39) are of order acr4z or atr2A2 at the most 
(if £ is of order Atr2). Hence if Rjk and R/z were sufficiently large we should have

(41!)
approximately. It must, however, be verified that these second-order pressure variations, 
which are in phase over the whole interval, do not produce any significant motion across 
the planes x  =  ± Л .  Now if we consider the displacement produced by the pressure dis

tribution a f2a2ir2cos2(7i ( M  <Д ),
t  =  J (43)
p Ю (М > Л ), 1 ;

acting on the upper surface of deep water we find that the velocities in the planes x =  ±  R 
are of order <z2o7A (we ignore a logarithmic singularity at z  =  0, which is due to the local 
discontinuity in pressure), and that the total flow (41) is of order nV log (Л /A). The assump
tion that (41) is of order independent of R  therefore needs slight modification in this case, 
but since log {R j A) is small compared with i?/A the validity of equation (42) is not affected.

When z is small compared with A the approximation (42) is valid under the condition 
RajA2<^1 . However, the first-order terms in (39), taken together, may be expected to 
decrease rapidly with the depth, and when z is greater than about £A the largest terms in the 
remainder will arise from the unattenuated pressure variations of second order. Hence 
(42) will be valid under the less restrictive conditions Л/А^>1 and Rlzp> 1. Since the second 
term in (42) will be small compared with the first we shall then have

F Зг Г -R

In particular (44) will be valid if z is of order A and R/A|> 1 .
Case 2. R t < R ^ R 2- In this case suppose the interval — R < x < R  to be divided intosmaller 

intervals oflength less than or equal to 2Й,. W e assume that the motion in each of the smaller
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intervals is regular but that the phase differences between successive intervals are random. 
Since the sum of n vectors of comparable magnitude in random-phase relationship with one 

another increases like я* the integral (40) will be of order a2a2R l {R jR l) i . I f  we assume that 
the velocities are bounded and that the total flow across any plane x  =  constant is o f order 
aoX or a2<rlog (R ] /А) at most, equations (42) and (44) will be valid under conditions similar 
to case 1 ; in particular, (44) will hold ifz  is of order Я and (AS,)'/A§>1 .

Case 3. R > R 2. By allowing R  to tend to infinity an exact expression for the total force F  

over the whole plane z =  constant may be obtained. The velocity potential of the motion 

due to an initial elevation o f the free surface concentrated in the line x =  z =  0 is propor
tional to g tz (x2+ z 2)~ 1, when gt2(x2+ z 2)~ i is small (see Lam b 19 3 2 , §238). A  similar result 
will hold when the initial disturbance is distributed over a finite interval of the л-axis. 
Hence for very large R  the velocities across the planes x =  ± R  will initially be proportional 
to R~2, and the total flow (41) will be proportional to R ~ '. The terms in (39) to be evaluated 

at the planes x < ~ ± R  therefore tend to zero. But since the total potential energy is finite, 
we may assume that the first integral in (39) converges. Hence the total force F  over the 

whole plane is given by -p. r  i2 -1

(45)
When z is greater than about £A the second term in the integrand will be small compared 

with the first, so that F

(4e>
approximately. ^

The previous results may be extended without difficulty to motion in three dimensions.
Let p  denote the mean pressure on the plane z =  constant inside the square S given by
—R < x < R ,  —R < y < R , and let F  denote the variable part of the total force acting on the
plane inside S, i.e. ц. /s a \

L  =  (47)
P \ P >

I f  the motion inside S  is assumed to be wave-like with mean wave-length A then we may 

establish that p  г л (-л г-лг _  "j , .

(48)
under similar conditions; in particular, if z is comparable with A, and /J/Л and (/?ft,)4/A are 

both large compared with unity, where 2R l in the side of the largest square over which the 
second-order pressure variations are effectively in phase. Since the motion diminishes 

rapidly with depth, we shall have in this case also

I f  it is supposed that the motion is initially confined to a finite region o f the (x ,y ) plane we 

may show that the motion produces a force F  over the whole plane given by

(50)
jut £A we have approximately

< 5 i >

p
Again, when z is greater than about £A we have approximately

F  32 

P
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3-2. The two-dimensional frequency spectrum 

In order to be able to describe the motion of the sea surface in terms of its frequency 
characteristics, we shall now introduce the two-dimensional frequency spectrum. The mean 
pressure, or total force, over a large area may be derived immediately from the frequency 
spectrum owing to the connexion of the mean pressure with the potential energy of the waves.

Any continuous and absolutely integrable function/(jc, у) of two variables may be expressed 
in the form

f (x ,  #) =  9? I I F(u , v) е^ь+ивд dudv (52)
J  - a  J — to

° r f {x ,y ) =  f  f  — u)] dudv, (53)
J -CO J — CO

where $ [F (u ,v ) +  F * ( - u , - v ) ]  =  (к/2л)2 f f f (x ,y )  c-^ukl+ub̂ dxdy, (54 )
J — <n J  — tH

provided that the right-hand side of (54) is also absolutely integrable (Bochner 1932 , 
§ 44). In the above equations 31 denotes the real part and F *  denotes the conjugate 
complex function of F. The value of

. (55)
is still indeterminate.

Let z  =  £ be the equation of the free surface in any wave motion in two horizontal dimen
sions. W e shall assume the general conditions necessary for the validity of the following 

work, and in particular the possibility of differentiating under the integral sign. Suppose 
then that the values of (  and d^jdt at the initial instant t — 0 are expanded in the forms

(0 ;=0 =  И Г  H  A & ** * *d u (b ,  (56)
J  —at J  —an

=  5R P  П  B e ^ ^ d u d v ,  (57)

A and В  being functions of (u,ti). W e may impose the further condition

В  =  iaA (58)

where a is the positive function of и and v given by

о-2 =  (if2 +  #*)*£Jttanh (а2 +!»г)*Н . (59)

By equation (54) we have then, using equation (58),

i (A  -М * )  =  (*/2я)2Р  Г  (£)<=o e '^ ^ d x d y ,  (60)
J -  ec J —eo

a c
t(i<rA-i<rAt) =  (*/2тг)г| “  J ”  (| j)r -o e - ^ ^ d x d y ,  (61)

where A_ denotes A{ — u, —v). These last equations are equivalent to the single equation

a -  (62)
Consider now the expression

=  f  A g(ukx+vky<<Tt)du dv, (63)
J —« J -  m
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where A  is determined by (62). The expression under the integral sign represents a wave
whose crests are parallel to the line , . .

^  u x+vy  =  0, (64)
and whose wave-length A is given by

.  2w
(u2 +  v *y k ‘ (66)

By equation (59) this wave satisfies the period equation for waves in water of constant depth 

h, and hence tj is also a solution, to the first order o f approximation. But from (5) and (67) 
we have ,,

ю » .  -  (»),..• (№)

N ow  an irrotational motion is uniquely determined by the initial values o f the surface 

elevation and its rate of change with time (for the difference between two motions with the 

same initial conditions has initially no kinetic or potential energy). It follows that £ =  r), i.e.

С =  5R f  f A e *ukxl'',k*+‘rC><iudv (67)
J —on J — on

for all times t.

Any given free motion o f the sea surface may therefore be analyzed (in the first approxi
mation) into the sum o f a number of wave components of all possible wave-lengths and 

travelling in all possible directions. This analysis, by equation (62), is unique. Each wave 

component corresponds to a vector O P  in the (x, y) plane drawn from the origin to the point 

P { —uk, —vk). The direction of U P  gives the direction of propagation of the wave, and the 

length o f O P  is, from equation (65), equal to 277 divided by the wave-length. Wave com
ponents of the same length will correspond to points P  lying on the same circle centre 0 , 
and diametrically opposite points will correspond to wave components of the same wave
length but travelling in opposite directions. Such pairs of wave components play an im
portant part in the following theory and will be called opposite wave components. 

Equation (67) may also be written in the form

£ = f  f ( 68) 
J -  a J —«o

Hence by an extension of the Parseval-Plancherel theorem (Bochner 19 3 2 , §§ 41-5 and 

44-8) we have

Г  Г  Q  dxdy =  (2 tt/A) 2 P  P  j ^ (A e‘rl +  А *  е~ш) \2dudv, (69)
J — со J — ao J — to J — со

since the integral on the left-hand side is convergent. After simplifying the right-hand side,

we have pm * л ^•  (•«
Г I \t?dxdy =  Щ -nlky j I { A A * ^ A A _ ^ l)diidv. (70)

J  —«  J  —to J  —<O j — DO

Thus the potential energy o f the motion is given by

SRteW*)2 P  Г  (A A * + A A _ e !* ‘)dudv. (71)
J — CD J —00

Similarly, we find for the kinetic energy

Э?^(тг/А)2 Г  Г  (A A * - A A ^ e 2M)dudti, (72)
J — to J -  OQ
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and so the total energy is given by

2pg(n/k)2 {  f  A A * dudv (73)
J —CD J — 00

(the above integral being real). The total energy therefore depends only upon the square of 
the modulus of the wave amplitude A (u ,v ). On the other hand, both the potential and the 

kinetic energies separately vary with the time and depend on the product AA_.

3-3. Pressure variations in terms o f  the frequenqj spectrum

W e are now in a position to determine the general conditions for a variation in the mean 
pressure or total force acting on a large area of the plane z =  constant. W e consider first 
the simpler case when the area includes the whole (x ,y ) plane.

From equations (68) and (69) we have

-  = J” (A A *  +  AA  ea<7‘) dudv

- ~ Ш ( ф ) г Г  Г  A A . ^ e * ’1. (74)
J -«a J — ш

N ow  A and A_ are the complex amplitudes of opposite wave-conponents in the frequency- 
spectrum. It follows from (74) that

( 1 ) Variations in F  arise only from opposite pairs of wave components in the frequency 

spectrum.
(2 ) The contribution to F  from any opposite pair of wave components is of twice their 

frequency and proportional to the product of their amplitudes.
(3) The total force F  is the integrated sum of the contributions from all opposite pairs of 

wave components separately.
A  wave group may be defined as a motion in which most of the energy is confined to a 

small region of the (a, v) plane, excluding the origin. Thus a single group o f waves will not 
cause variations in the total force F. In order that F  should be appreciable the motion must 
contain at least two wave groups which are opposite, in the sense that some wave components 

of the first group are opposite to some wave components of the second.
In practice we must consider the force F  over only a finite region of the (x, y) plane. Let 

this be the squared [ — R < x < R ,  — R < y < R ) .  We define a hypothetical motiong  such that 
at any time С and d£'/dt are equal to the corresponding values of £ and dQdt inside 5 and zero 
outside. This motion will not satisfy the equations of motion, especially near the boundaries 

of S, but we shall now have

< 7 5 >

W e also define A '(u , v; t) by the equations

£ '= < r J  J A ' dudv,

dt
Then we have, as before,

i<rA‘ e*lh‘*uky+al)dI1dv.

(76)

* - « n
А '& 1=  (А/2тг)2| ” J ” ( с Ч ^ ^ ) е - * “* +”**><&^. (77)
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I f  the actual motion is given by equation (67) we have on substitution in (77 )

A '(u ,v ; t) =  (k /2 v )2 f  f  dxdy f  f  du.dv,
J  —R J  -JJ J — со J — oo

where a is written for cr(ui, v j .  Since к is still at our disposal we may put

2 ф  =  2Л. (79)

Then, after integration with respect to a- and y, we find

i f  Г
л \ a }  (u — ux) ti (i/ — i/j) 77 1 1

I f ®  f®  A±/ . /  0*,\ sin (ы +  И,) 7T sin fv-f-гО 7Г ,
+  A * (u t,v l) I I -----r r V i --------/ I V  e ^ ^ '> ‘ du,dvl

2 \ <r) («+ «[)? ?  ( » + » , ) »  1 1

=  / ,+ / 2, (80)

say. N ow  by hypothesis the frequency spectrum o f £ consists chiefly o f waves whose wave
length, given by (05), is small compared with 2R. From (70) it follows that A fa ^ v J  is 
appreciably large only when (aj-|-ii})} is large. But the factors in the denominators of 
/, and /2 make the integrands small except when (a ,,»,) =  (a ,») in the first case and 
( « , , » , )  =  ( —а,, — в,) in the second. In either case it, = a, so that the contribution from /2 is 
small, while that from /, gives

лч  . f "  f “  л/ \ s'n fa — u.) v  sin (v —v,) n „____ . , .
A ( U- Ui ) ;  (81)

Although Л ' is dependent upon /, the integrals for dA'jdt, d2A'/dt2, ... contain factors 

(c — o1), (tr- cr,)2, ... which are small over the critical range of integration near (а, и). These 

expressions are therefore small, and A ' is only a slowly varying quantity.
From equations (75) we have then

а д * )2 — J ” J “ (Л 'Л '* + Л 'Л : .е « ‘» ) ‘* “ *«

=  — Jl4(jr/A)2 Г f  A 'A '_tr2c2b‘ dudv. (82)
J — CD J —BO

The expression for the force F  over a finite area is therefore similar to that over the whole 

plane, except that the original spcctrum A is replaced by the new spectrum A '. Equation 
(81) shows that A ' is the weighted mean o f ‘neighbouring’ wave components in the original 
spectrum. Conversely each wave component in the original spectrum contributes to 
‘neighbouring’ components of the newspectrum. From equations (65) and (79), the number 

o f wave-lengths of any wave component intercepted on the л-axis inside S is u, and the corre
sponding number on the у-axis is v. The width of the spread pattern in (81) is of order unity. 
Hence, for this purpose, 1 neighbouring ’ wave components are those such that the number of
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wave-lengths intercepted on any diameter of .S does not differ by more than 2 or 3 from the 
corresponding number for the original wave component.

The replacement of the ‘sharp’ spectrum A by the 'blurred 1 spectrum A ' may be con
sidered as the result of our inability to define the spectrum exactly from a knowledge of the 

conditions over only a limited region. For practical purposes, however, the amount of 
blurring will not usually affect the frequency characteristics of F to a very great extent.

4. W a v e  m o tio n  in  a  h e a v y  com pressible  flu id

In the present investigation the water has so far been treated as incompressible. This 
assumption is only valid so long as the time taken for a disturbance to be propagated to the 
bottom is small compared with the period of the waves, that is,

k jc ^ T  or h ^ c T ,  (83)

where с is the velocity of sound in water. For ocean waves h may be of the order of several 
kilometres, с is about 1-4 km./sec. and Г  lies between about 5 and 20 sec. The condition (83) 
is therefore no longer satisfied. It follows that in practice the compressibility of the water 
must be taken into account.

Surface waves in a heavy compressible fluid were first considered by Pidduck ( 1 9 1 0 , 1 9 1 2 ) 
in connexion with the propagation of an impulse applied to the surface of the water. His 

method involves the neglect of squares and products of the displacements and is thus only 
a first-order theory. The relation obtained by him between the period and wave-length of 
the waves was discussed by Whipple & Lee (193 5 ), who showed that for waves of a few seconds’ 
period two possible types exist. On the one hand there is a motion approximating very nearly 
to an ordinary surface wave in incompressible fluid, in which the particle displacement 
decreases exponentially downwards (to the first order). This may be called a gravity-type 
wave. On the other hand, there are long waves controlled chiefly by the compressibility 

of the medium, and hardly attenuated at all with depth. These may be called compression- 
typc waves. Stoncley ( 1926 ) and Scholte ( 1943 ) have in addition taken into account the 
elasticity of the sea bed. Here again the two types of wave may be distinguished.

The pressure variations of particular interest to us are, however, of the second order, and 

to investigate these it will be necessary to work to the second approximation. In the following 
we shall consider a case of special interest, namely, the motion which in the first approxima
tion is a standing wave of gravity type. We shall find that in the second approximation long 
compression-type waves appear. One consequence of this is that in the second-order theory 

pure gravity-type or pure compression-type waves do not in general exist; the one type of 
wave cannot exist without the other. As a compensating advantage, however, our work 

leads us to the distinction of two definite regions of the fluid in one of which gravity, and in 

the other compressibility, is the controlling factor.

4-1. General equations

Take Cartesian axes (x ,y ,z ) with the origin in the undisturbed free surface, the y-axis 
parallel to the wave crests, and the z-axis vertically downwards. It is assumed that the 
motion is periodic in the ^-direction with wave-length A. Let z =  h be the equation of the 
rigid bottom and z =  £ the equation of the free surface. Also let u =  velocity, p =  pressure,

Vol. 243. A. 3
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p — density, and letрг and ps denote the (constant) values o fp  and p at the free surface. W e  

shall assume that viscosity is negligible and that the velocity is irrotational, so that

u ^ — grad^. (84)

W e assume also that p is a function ofp only. Then the equations of motion may be integrated 

(Lam b 19 32 , § 20) to give , ,
g - i u t + ^ - J ' - O ,  (85)

where ф contains an arbitrary function o f the time t and where

r . j 'J t .  m

W e assume, lasdy, as the relation connecting p  and p,

=  c2 =  constant, (87)
dp

that is, the velocity of sound с in the medium is constant. Then from equation (86 )

Р  =  сг \P^  “ M a g  (pip,)- (88)
J  P t  P

N ow  the equation of continuity may be written

=  0, (89)

where D jD l  denotes differentiation following the motion. Hence

<*»

1 T)P
and so from (88)

O n  eliminating P  between equations (85) and (91) we have

c2v2*=U%~iu2+gz)
=  W ~ W i  ( * u2) +  u ' grad f r u -z™ d - g % '  (92)

But u. grad ^  =  U.J; (grad }5) =  - ^ ( * u 2) (93)

Hence ^ - ^ j6 - i?g - i ( j u 2 ) - u .g ra d (iu = ')= 0 . (94)

This is our differential equation for ф. W e consider now the conditions to be satisfied at the 

boundaries.
The boundary condition in the plane z =  h is simply
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At the free surface z =  f  we have p =  pt, and therefore

0. (96)

Thus from equation (86) ^ ~ l u 2+ g z j =  0 . (97 )

Since a particle in the free surface always remains in the free surface we have also

( ж ) . , ' 0’
and so from (91) (®9)

Equations (97) and (99) are to be satisfied at the surface z — £. It is more convenient, how
ever, to replace these by conditions to be satisfied in the plane z »» 0. This may be done by 
expanding the equations in a Taylor series as follows:

( « - i " ' ) , . . +c ( S - " - E + * L + • <ioo>

and (V V ) , - » + C ( ^ V ^ )  o +  ... =  0. ( 1 0 1 )

In order to define the solution completely it is necessary to add a further condition derived 

from the assumption that the origin is in the undisturbed free surface. Since the mass con
tained below the free surface is the same as in the undisturbed state we have

f d x (  p d z = [  dx f padz, (Ю 2 )
Jo Jj Jo Jo

where a suffix 0 denotes the value in the undisturbed state. Equation ( 10 2 ) may be written

Г dx f  (p —p0)d z — f  dx f  pdz =  0. (103)
Jo Jg J o J o

In the second term let p be expanded in a Taylor series from z =  0 . After integrating with 

respect to z we have

j > / > - * , )  -  »• <*«> 

From equations (85) and (88), p is given in terms of ф by

pjpi =  eplc* =  (105)

so that Polfls =  ег‘ 1с3- ( 106)
W e also have, from (87),

p - p s =  c \ p -p t),  (107)

P o -Ps  =  ‘2P,e*llc'~ l- (108)

W e seek solutions for ф by a method of successive approximations. Let

ф =  сфх +  е-фг +  

u =  <ru,-f «2u2-f 
£ - * £ ,  +  «*£2+ - .  (109)

p — Pa =  ер\ +  егрг-т

P — Po — eP l + etP2 +  •••<
3-a
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where e Is asmall parameter. On substituting in equations (94), (96) and ( 1 0 1 ) and equating 

coefficients of the first power of e we have

M i .

® L - *
(V 2fS,L. 0 =  o,

and from equations (84), (100), (105) and (107)

u i = -g r a d  0 i,

* - » L -
P\lpi =  c2PilPs =  =2y",

where 7 =  gl2c2. Similarly for the second approximation we find

(110)

( 1 1 1 )

дгФг дфг

and

№ L -°-

u 2 “  — gTad 0j,

A /A  =  «*A/A =

(112)

(113)

On substituting for /; and £ in equation (104) and equating coefficients of e and e2 we obtain 
the further conditions on фх and фг

„ a  4 W . ‘ * f e , ” + / . 4 $ ) , . . - 0  ( i , 4 >

2 y (Xdx J ' d z ^ e ^ + ^ d x ^ l

Suppose that ф and £ are any periodic functions satisfying equations (94), (95), ( 10 0 ) and 
( 1 0 1 ). I f  P  and p are defined by (105) then these equations imply also (89), (96) and (98). 
Provided grad P  is not identically zero, (96) and (98) show that z  — £ is a surface moving 
with the fluid. But since the equation of continuity (89) is satisfied, it follows that the left- 
hand side of ( 1 0 2 ), (103) or (104) is at most a constant. Hence any periodic solution фх — 
of equations ( 1 1 0 ) must make the left-hand side of equation (114) a constant, say C *. Then
a solution of (114) is given by

ф1 =  ф * - С * с - 2тН. (116)
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But this also satisfies equations ( 1 1 0 ). Hence if <j>* is any periodic solution of ( 1 1 0 ) a solution 
of all four equations (110) and (114) may be found by adding to ф* a constant multiple of< 
(that is, by increasing the pressure uniformly). Similarly if ф$ is any periodic solution of 
( 1 1 2 ) a solution of all four equations ( 1 1 2 ) and (116) may be found by adding to ф* a con
stant multiple of t. These results may be verified direcdy by differentiating equations (114) 
and (115) with respect to i and using equations ( 1 1 0 ) and ( 1 1 2 ).

4-2. First approximation and period equation 

Let us assume for ф, a simple progressive wave of the form

ф{ =  Z (z ) (117)

where к — 27г/А, <r =  2irj T  and Z  is a function of z only. Writing

Z  =  e~TzZ , (z ) ,  (118)

and substituting in the first of equations ( 1 1 0 ) we find

tP Z
—atZf — 0, (119)

where a2 =  k 2 — a2jc2+ y 2. ( 1 2 0 )

Assuming a + 0 we have Z, =  Ле“ + .Ве ‘ “ , (121)

where A and В  are constants, and hence

ф{ — (J22)

From the last two of equations (110) we have two simultaneous equations for A and B : 

~ ( У ~ а) е"(г' “)* Л — (y + a ) e ^ * a)hB  =  0} )

{ { y - a )2- k 2} A + { (y + a )2- k 2} B  =  0.J {123)

Let Д ( it,  k) denote the determinant of these equations, so that

Д (<7-,k) =  — {y — a) { ( 7 + a )2 — £2} е - <1'““[1й +  (7 + а }  { ( у —а)2 — к2} е-(У+“>А

=  — 2е_?л [у{у2- а 2- к 2) sinha/t+a(y2—а2+ к 2) coshaA]. (124)

In order that non-zero solutions of (123) may exist, A(<r, k) must vanish, giving

J\ah )^  ahcothah—P(oJi)2 — Q =  0, ( I 25)

where P  ~  Ы?-’ Q =  У К 1~ Р у Ь )- ( 126)

If a and Л are given, (125) is an equation for determining a and hence к and A. When ah tends 
to zero,/tends to the finite value (1 — Q), which will be assumed to be positive. When ah 
is large and positive_/(aA) is negative. But, writing 17 =  a2h2, we may easily show that tPf/dr/2 
is always negative when a is real, so that /has only one positive zero, which corresponds 

to a wave of gravity type. There are an infinity of imaginary zeros, each corresponding to 
a wave of compression type (Whipple & Lee 1935 ). It may also be shown that/(aA) has no 

complex zeroes.
W e shall now assume that a is the positive real root of equation (125). SinceJ(yh) is positive 

it follows that уг< а 2, к2>аг2/с2> 0, (127)
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so that the corresponding value of k is real. Then from equations (123) we have

ф{ =  [(y  +  a) ( y—a) e'(tx+<r'). (128)

This solution also satisfies equation (114). Since the equations for the first approximation 

are all linear the sum of any number of solutions is also a solution. W e may therefore take as 
our first approximation

Ф\ — [ (у + а ) е- “*-(7-|1)г— ( y—a) е“л~<7+а>-!]  [^ s in  (кх—trt) + b 2sin (for+cri)], (129)

representing two waves of the same wave-length travelling in opposite directions.

4-3. Second approximation 

After substituting in equations ( 1 1 2 ) and (115) and simplifying we find the following 
equations for фг:

— 2C(3)e_2?r] [AJsin2(hx—at) —b\sin 2(kx+<rt)]

- { - [&*>e-Xv-a>‘ + C S ) - 2 C M 2 b tb2sin2<rt, (130)

(131 )
/ z-h

( V % ) - o  =  DfAf sin 2 (fe: ~  <ri) — sin 2(b: 4 - сгг) +  2й ( i 2 sin 2iri], (132)

27l » dX! o dz^ ^ r t+ S »dx( ^ i )  = & lW i+ b l ) +  &2>2b1b2cos2<rt, (133 )

where С41*, C®, C®, D  and are constants given by

C^1' =  — <r{(y—a)2—k 2} ( у + х ) 2е~2аЛ, О*'1 =  — a{(y— a.)2-\-k2} (y -f a )2e_2*ft, j

C® =  — <т{(у+а.)2—к2} (y —a )2e2at, №  = -< r { (y + a )2+ k 2}  ( y - a )2^ ,  (134)

C0> =  - ф 2- х2- к 2}  (у2- a2),  С<6> =  - a { y 2- a 2+ k 2} (у2- а2),

and Z) =  - ~ y a 2(r2- a 2), №  =  -А а* (у 2- а 4) (135)

(the value of will not be required). W e first eliminate the right-hand side o f equation 
(130) by the substitution

фг =  [F ,|)e- 2<r-«)--(-/('(2)e_2(’'+e)J— 2/r(3)e_2>"] \b\sm2(kx—<rt) — 42sin2 (,b :+at)]

+  [FW e-Xr-*U +F<.S )e-Ky+z)z_2]Xb)e-iyz\2bl b2sm2(rt +  ф'ъ (136)
where

Cm
/ Л 1)  =

Я 2) =

— 4<r2 — 4 c 2{ ( y — a ) 2— A2} +  2 g  ( y — a ) ’

____________CW___________
— 4<r2 — 4£?{(y +  a )2 — k2} +  2 g (y + a) ’

c®
-4<r2 —4£2(y2 —A2) + 2 ^ ’

(137)
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C<4>FW -  

FW — 

jy<6) _

This gives

—4a2 — 4c2(y — a)2 +  2g(y—a)’ 

________ ____________
— 4(T2 — 4c2(y +  a)2 +  2.g(y+a) *

C<6>
— 4tr2 — 4c2)'2 +  2^y ’

23

(138)

(139)

( t t )  =  C?1’! #  sin 2(fo — <rf) — i |  sin 2(Ax - f at)] +  Gm2bt b2 sin 2a I, (140)
\U£-! z-A
( ^ 2й ) £=0 =  ( .D + //(1)) [6 ?s in2 (b :-(rt)-& isin2 (fo4 -< rt)] +  ( .D + tf(2>) 2 is62s in 2сгг, (141) 

2 y _ f V ^  =  В 'Щ + Ь 1 )  +  (В ^ + Г )  2bl b2cos2<rt,

w here G*1* =  2 ( y — a) c~2<-~'~a)h №'>-{-2 ( y + a.) e “ 2( у+« )Лрт)_ е - 2ул jr p n  

G<4 =  2 ( y - a )  с - ^ - ^ ^ + г ^ + а )  e-aft’+«J*i?<S)— 4ye- M |

(142)

(143)

(144)
and  #<» =  - 4 { ( y - a ) 2- A 2} F C )-4 { (7 + a )2-A s}F(2’+ 8 (7 2- j t 2)F<3)!|

Я<2> =  _ 4 ( у _ а) 2 ^ 1> - 4 ( у + а ) г.Р<5>+8у2Я 6>. J
W e now write

ф2 — [,/<1>e-<1'- ‘ ')i:4->/(2,e"ft'+0:1z] [ifsin  2(kx—at) — 0 |sin  2(kx +  crt)~\
+  [J(3>e-(y-Oz+ j ( 4i e-c?+*V] 2A[ i 2sin 2ai +  ф”ъ

where a '2 =  4A2 — 4a2/c2+ y2, a '2 =  — 4 c2jc2 +  y2,
and JW, J®, JW and J (i) are to be chosen so as to reduce the right-hand sides of equations
(140) and (141) to zero. We must have

- ( у_а ')е -<У -“')*7<1> - ( Г+ а ')е '' (у+‘ОА-/<® =  & l), )
{(y—a ')2 —4^2} JTO+{(y+<r')2-4 A 2} JV> =  D  +  HP\\

(145)
(146)

(147)

and

giving

and

- ( y - a " )  с -^ ~ а'> Ч < ^ ~ (у + а )  e-<r+aO* J «) =  era

(y - * ’ ) * №  +  ( y + a ) 2J™ =  D  +  H™,

Jn ;  _  {(y +  a ')2-4 A 2) QW -Ky+q*) e~fr*«Q* (Р  +  Я (1))

----

b(2a,2k)

{ ( y - a ) 7- I k 2} G<"+ (y -oc ' )  (Л + Д ™ )
A (2 ffj 2it)

„ ( y + 0 2C<2)+ (?+<*"! e-<r+OA (£> +  Я<2>) 
Д(2<г, 0)

(у—a")2 GC2)-(- (у —а") (Д  +  Я<*>)
Д(2<г,0)

(148)

049)

(150)
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where &,(2tr,2k) =  — 2e~Yh[y (y2—a '2~ 4 k 2)sm h .a 'h + a '(y 2—a '2)coshix'h],}

A (2cr, 0) =  — 2e~v* [y(72 — a*2) sinh a 'A +a"(y 2 — a"2) coshct'A], [  

provided neither Д (2 a, 2 k) nor Д (2 a, 0) vanishes. Now if в is any real number we have

Д (8a, ffk) =  — 2 e_),'lsinh /%[у( 1  — 2^2e2/<r2) coth ДЛ] 62<T2jc2, (152)

where ft2 =  в2(к2— а2/с2) (163)

Since (k2 — ff2lc2) is positive (equation (127)), /J2 is a positive, increasing function o f# 2. But 

/Jcoth f!h  is an increasing function of^ 2 when /?2>  0 and hence is an increasing function of 0 2. 

Equation (152) then shows that Д (ва, 8k) cannot vanish for more than one positive value of 0. 
But A(a, к) vanishes and therefore Д (2сг, 2k) cannot vanish.

It is quite possible, on the other hand, that A (2u, 0) may be zero. The physical significance 

of this case will be discussed later. For the present it will be assumed that Д (2 <7, 0) is different 
from zero.

As a result of our choice of J (t>, etc., we have for ф\ the following equations:

dY2-c*vy 2- g d$1 =  0,

Щ  = 0
d z ) . . kf

( V V ^ o  =  0,
г* 9ф1 - гл

(154)

г  А /-Л Я Л "  /*Л
2y j dxJ d z j f c * y * + J ‘tx ljf j = ^ ( b 2l +  b2) +  ( 3 2> + I + K )2 b l b2cos2at, (155)

where К  is a constant. Now  it was shown earlier that a solution of all four equations (112) 
and (114) could be obtained by adding a constant multiple of t to any given solution of (112). 
It follows, by subtraction, that a solution of all four equations (154) and (155) may be obtained 
by adding a constant multiple of г to any solution of (154). But (154) are satisfied by ф"2 =  0 . 

Hence we have =  c “t, (156)

where on substitution in (155) we find

X ^ C "  =  Е -1Щ  +  Ь\). (157)

W e have incidentally shown that E & + I + K  =  0 . (158)

We therefore have finally

ф>2 =  [ ^ ' ' e ^ + P l e ' 2" - 2/ ^ ]  e~2?* [ij|sin2 (/fcx— at) — b\sm2(kx-\-at)]

+  [F ^ e ^ - i -  Л 5>е“2“ -  2F<6)] e”2̂  2b, i 2sin 2at 

+  [JO)еа'г -I- J<*> e"*-*] e“** [ i ?sin 2(kx -  at) -  b\sin 2 { k x a t ) ]

+  [J (3) c*'2+ J<4> e~*‘z] e~y* 2b, Ьг sin 2at

+ & '> k -l e -2y*(b2i +  b l)i .  (159)

4-4. Discussion
For ocean waves we may take

g =  0-98 x 103cm./sec., с — 1-4 x I05cm./sec. (160)

a =  0-5 sec.- l , A < 1 0 6cm.

This gives Pyh =  1-0 x 10“4, у Л <2 -5 х10 ~2, (161)

and so Q =  yh{\ — Pyh) < 2 -b X \ Q ~ 2. (162)
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Since aAcothaA^l for all real values of a, equation (126) shows that Pah is of the same order
ascothaA, Hence , n

yja =  PyhjPah^  lO"4. (163)

Our method will be to evaluate the constants in equation (169) by expanding in powers 

of у/a. From (126) we have cothah =  РаА[1 +  0 Ш ] >

so that сгг/с2 =  2yafPah =  2yatanhmk[l +  0(yja)'\

and k2 =  a2[I-t -2 (y/a) tanhaA-f 0(y/a)1].

Hence, retaining only the terms of highest order in у /а, we find

(164)

(166)

(166)

ya2 e ^sinhctA 
a cosh2 aA 5

fx2) — 2?! e^sinhaA 
(7 cosh2aA J

/■<5) =  — —  tanhaA,

/•"W =  —  e-2“* tanh аЛ,
(J

Я 5> =  ^ e ^ t a n h a A ,
O'

ir® =  - ^ 3 tanhaA,
2(7 ’

(167)

4<r sinh2aA’

JW ____ £ , . £ - ■
4a sinh2aA’

cosh 3 oh.4 e -a-A 
j(3) _  i  „c .  .  .________________

о- cosh a'A cosh ah ' 

_  a4 c“’* cosh 3aA 
a cosha*A coshaA ’

£Ч> =  Да4, a '2 =  4a2, a"2 =  -  4<r2/c2.

(168)

(169)

When A ,i2^ 0  the Erst two terms in equation (159) are negligible compared with the 
fourth. I f  we also neglect quantities of order yh (though not those of order (ya)1 A), ah, a'A, a'A 
and e** may be replaced by kh, 2kh, iitrkjc and 1 respectively, and we have

a1 =  ^A tanh kh,

Ф1 =  ta i sin (k x ~ at) - ^ s i n  (kx +  trt)],

ф2 =  — ~  д  — [a? sin 2 ( Ax— <rf) — af sin 2 (kx +  <ri)]
smb* kh 

cosh ‘ikh cos 2a(z—h)jc
8 sinh2AA cosh AA cos lahjc

2al (L! sin2fft

. g a- +  °i ( 
4sinh2 AA

where ri|, a2 — — ; Г b„

(170)

(171)

(172)

(173)
1 2A2sinhAA1'1’ “ 2 2k2 sinh kh v  

Let A„ and Xc denote the wave-lengths of a gravity wave and a compression wave respec

tively. Thus A* =  2тг/А, Ac =  2  nc/ff, А ,Я  =  (//“ ) * tanh*ah- (174)

When z is less than say £Af , equations (170), (171) and (172) show that the motion is in
dependent of с and therefore unaffected by the compressibility of the water. When z is 
comparable with Kg, both e"*1 and e‘ w are small, and so from equation (172) the pressure

й, is given by л
lZ =  — 2ata2<r2cos2at. (!76)
P,

Vol. 243. A.
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Finally, when z is of the same order as Ac, the motion reduces to the compression wave

ercos2tr(z — h)lc . ^

л - — ^ V s№M (176)
This wave may be regarded as being generated by the unattenuated pressure variation 

(175). When cos2<rhjc (or more exactly Д(2£г,0)) is zero, фг becomes infinite, a situation 
corresponding to resonance. The necessary condition for resonance is that

2<rh/c Ф (n +  ^ ) n  (в =  0, 1 ,2 ,. . . ) ,  (177)

that is, that the depth should be about (£n +  J-) times the length of the compression wave (176).
The ocean may therefore be divided into two regions, namely, ( I )  a surface layer where 

thickness is of order Xg, where the motion is controlled by gravity alone and is the same as 
if  the water as a whole were incompressible, and (2 ) the main part of the ocean where the 
motion is small and controlled only by compressibility. The distinction o f two such regions 

is probably valid in more general types of wave motion. In equation (94) the gravity term 

gd<j>ldz\s in general small compared with the compressibility term c2V 2̂ . It is only near the 

free surface, where V 2̂  vanishes (equation (99)), that gravity predominates. The pressure 
variations at a depth As, that is, in the lower part of the surface layer, are of order pa2a2, 
where a is the mean amplitude at the free surface. These will produce compression waves in 

which the displacements are of order аг1Хс. But the latter will be small compared with the 

vertical displacement of the centre o f gravity of the surface layer, which is of order a2/Af , 
and hence will not affect the motion in the surface layer.

6 . T h e  d is p l a c e m e n t  o p  t h e  g r o u n d  d u e  t o  s u r f a c e  w a v e s

In the present section we shall estimate the displacement of the ground due to a given storm 

at sea. Since observations are not made in the storm area itself, it is not appropriate to con
sider the displacement of the sea bed due to an infinite train of waves passing overhead. The 

storm is more correctly considered as a disturbance of finite area from which energy is 
propagated outwards in all directions.

The velocities of seismic waves in the sea bed being comparable with the velocity of 
sound in water, the general results suggested in §4-4 are likely to remain true when the 

elas deity o f the sea bed is also taken into account. Thus the mean pressure at a depth of say 

over any given area of the sea surface may be derived as in § 3, and the amplitude of the 
elastic waves may be calculated as though this pressure distribution were applied to the 
upper surface of the ocean. Since A£/Ac is of the order of 1 0 -2, the storm area may be divided 

into a number of squares S  whose side 2 R  is large compared with Af but only a fraction, say 
less than one-half, of the length of an elastic wave in the sea bed. Thus the amplitude o f the 
compression waves from any given square S  will be of the same order of magnitude as if 
the whole force were concentrated to a point at the centre of the square. The displacement 
from the whole storm may then be found by summing the energies from all the different 
squares.

5-1. The displacement due to a concentrated force

W e take as our model an ocean of constant depth k overlying a sea bed of uniform density 
and elasticity. For the reasons given above, we shall be able to make use of the first-order 
theory of elastic waves in such a model, which was first investigated by Stoneley ( 19 2 6 ).
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The motion due to a concentrated force applied to the upper surface of the water was stated 
by Scholte ( 19 4 3 ). W e shall evaluate the solution rather more completely, using the method 
of contour integration due to Sommerfeld ( 1909 ) and Jeffreys ( 19 26 ).

Let pl and p2 be the densities of the water and of the sea bed, let с =  a, be the velocity of 
sound in water and a2 and (i7 the velocities of compressional and distortional waves in the 
sea bed. Then if an oscillatory force e” ' is applied to the surface of the water at the origin, the 
vertical displacement of the sea bed measured downwards is given by (Scholte 1943 )

where r is the horizontal distance from the origin, J 0 is Bessel’s function of the first kind of 
zero order and G(Q  is given by

c (o  =  (а п 4 (£2- * 2/<*r‘ - № - * w ]  cosh (p - * * / « f )* *

+  (л/А) (£2- ^ M ) - ‘sinh ( P - « W A .  (179)
In order to ensure that the displacements at infinite depth are bounded, the signs of the 
radicals in equation (179) must be chosen so that the real parts of (£2—<r!/af)! and (g2—er2//?|)‘ 
are positive от zero. £ being considered as a complex variable, this restricts us initially to 
one sheet of the Riemarm surface bounded by the cuts

M( P — =  0. (180)

It will be seen that the choice of sign for (f2— 1гУа2)* is immaterial, since cosh(£2—o-2/®?)1 h 

and (£2 —«r2/ai)~*s'nb ( f2—<?2l&i)l A are both single-valued functions of £, analytic at all 
points.

When a is real the integral in equation (178) is indeterminate owing to the vanishing of 
G (f) at certain points of the real axis. To obtain a correct interpretation we suppose <r to be 
complex, and take the limit as arg <r tends to zero. The final solution then contains converging 

or diverging waves according as arg и tends to zero through positive or negative values. 
Since we require the waves to diverge we choose the latter case. Now it can be shown that, 
when — |7r < a rg  f f < 0, G(Q  has no zeroes in the sector 0 <a rg  <r. There are therefore
no zeroes on the real axis, and, in the limit when arg a tends to 0, the zeroes of G approach the 

real axis from below. Hence the path of integration in equation (178) should be indented 
above the real axis near the zeroes of G (see figure 1  b). Further, the cuts in the £-plane given 
by (180) are arcs of rectangular hyperbolas which, as argff tends to zero, approach the 

positive axis from below (see figure 1 a). Hence the path of integration should be taken along 

the upper side of the cuts.
To evaluate the right-hand side of equation (178) we write

./„(& )- i [ H » 0(&r) +  H i,(g r)] (181)

(for the notation see Jeffreys & Jeffreys 1946 , p. fi44) and consider the integral in two parts. 
When a is real it may be shown that G has no complex zeroes. Hence for the part involving 
Hs0 the contour of integration may be deformed into the imaginary axis from 0 to too to
gether with an arc of infinite radius in the first quadrant. For the part involving Hi„ the
path of integration may be deformed into (a) the imaginary axis from 0 to —ico, (A) a

4-2
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contour Г enclosing the cuts In the £-p!ane (see figure 1 c), (c) small circles enclosing the 
zeroes o f G(£) in the clockwise sense and (d) an arc o f infinite radius in the fourth quadrant. 
The contribution from the integrals along the imaginary axis are equal and opposite, while, 
since (Jeffreys & Jeffreys 19 4 6 )

Hs0 (z) ~  ( | ) ‘ *«*-»■>, H i, (z) ~  ( I ) *  ( 1 8 2 )

a  b

J ,  j ,  
—© -

Г'

In j .

F ig u r e  1. C ontours o f  integration  in the J-plane.

for large I z | and — 7r + e < a r g z < 7r — e, the integrals along the two infinite arcs tend to zero. 
By slighdy deforming the contour Г as in figure Id, it is easily shown that the contribution 
from this part o f  the integral diminishes at least as rapidly as r~* when r is large. Hence the 
main contribution comes from the neighbourhood o f the zeroes, being — 2ni times the sum 
o f  the residues o f  the integrand there. On replacing Hi0 by its asymptotic formula (182) 
we find

Щ *,Г )  J ,  « . ( 183)

where с — ( (& /<r)5/2£™2 (184)
"  ( ) d G (U ld im’  (I84)

and denote the positive zeroes o f  G(£) in descending order o f  magnitude. It can
be shown that when a, </?2 all the zeroes are greater than <тЦ}г  The zeroes o f  G(£) separate 
alternately the zeroes o f cosh (£2—<r2ja\Y h, and if  the latter function has n zeroes in the 
interval <г/Д2< £ < а о , then N  equals either n or ( « + 1 ) .  When сгЛ//?2 is small there is just 
one zero
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Each term in equation (183) represents a diverging wave o f  length 2w/£„, and o f  amplitude
proportional to em. In figure 2 e„ c2, c3 and c4 are plotted against <rhj(i2 for the following
constants: , „ , , ,

P\ ~  l'O g./cm . , a, =  I-4km ./sec.,]
p2 =  2-5g./cm .3, y?2 =  2 -8 km./sec. )

and with Poisson’s hypothesis o2 == J3ft2. The corresponding values o f£ „  £lt £3 and are 
given in table 1 . It will be seen that г, increases rapidly to a maximum at about ahjfl2 =  0-85 
before falling away finally to zero. This maximum value occurs when the depth is about
0-27 times the wave-length o f  a compression wave in water, and may be interpreted as the

ah/p,
F ig u r e  2. The amplitude o f  (be vertical displacement of the sea bed as a fun ction  o f  the depth h.

effect o f  resonance. The amplitude does not, however, become infinite owing to the pro
pagation o f  energy away from the source o f  the disturbance. c2, c3 and e4 show similar 
resonance peaks when <rhjp2 — 2-7, 41  and 6-3 respectively. There are also maxima in the 
earlier parts o f each curve. This might be expected from the fact that the group-velocity 
curve has two stationary values (Press & Ewing 19 4 8 ). These do not, however, coincide 
exactly with the maxima in figure 2 .

W c define TP2 to be the sum o f the squared moduli o f the terms in equation (183). Thus

F - , - 3 4 s ? L f , 4  <" ,6>

5 -2 . The displacement o f the ground in terms o f  the frequency spectrum o f the waves 
From equation (82) we see that the wave motion in any given square 5  will cause a vertical 

displacement S' o f  the ground given by

Й' =  -Шр(тт/к)2 Г Г A ' A ' . г) t? ° ‘ dudu, (187)
J — со J — СО

where г Ls the distance from the centre o f  the square and W(tr,r) is given by (183). We shall 
now find an expression for the order o f  magnitude o f the right-hand side o f equation (187).
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J ./V o  a-h/ffa

T a b l e  1

M
a-h IP2 ci crA/A

l-0877 0-00 0191 1-3784 0-89 0-890 1 8439 1-68 0-205
1 0951 0-10 0-206 1-4142 0-92 0-857 1-8974 1-99 0-139
11402 0-48 0368 1-4832 0 99 0-759 1-9494 2-59 0 078
11832 0-63 0565 1-5492 1-06 0-649 1-9748 3-23 0-049
1-2247 072 0-728 1-6126 1-13 0-542 1-9875 3-87 0-034
1-2649 0-77 0-837 1 6733 1-22 0-444 1-9975 4-87 00 21
1-3038 0-82 0-894 1-7321 1-33 0-365 2-0000 5-31 0-017
1-3416 0 86 0-908 1-7889 1-48 0-276 2-0025 6-92 0014

iM <r trh/p, 4 I M °
(»)

<тЦРг 4 £гРгl a vNPi *2
1-0000 14)1 0-000 1-0677 1-58 0-170 1-3784 3-06 0-351
1 0005 103 0-038 1-0770 1 72 0 172 1-4142 314 0-316
1-0025 1-04 0-076 1-0863 1-86 0 ISO 1-4832 3-33 0-256
1-0050 106 0-108 1-0954 1-98 0-194 1-5492 3-54 0206
1-0100 1-09 0141 1 1402 2-39 0-318 1-6125 3-79 0-165
1-0190 114 0-168 1 1832 2-58 0-418 1-6733 400 0-131
1 -0296 1-20 0-178 1-2247 2-70 0-454 1 7321 4-47 0 101
1-0392 1 28 0-180 1-2649 2-80 0-448 1-7889 4-99 0-076
1-0483 1 36 0-177 1-3038 2-89 0 421 1-8439 5-73 0-054
1-0583 1-46 0-173 1 3416 2-97 0-386 1-8974 6-96 0-034

0-Л/& cs
(«>

<7A/A £3 i , P ^ <rhlP2 es
1-0000 2-83 0-000 1-0488 3 21 0-165 1-2247 4-69 0 330
1-0005 2 84 0-036 1-0583 3-32 0-163 1-2B49 4-83 0-305
1 0025 2 86 0-070 1 0677 3-44 0-162 1 3038 4-96 0-275
1 0050 288 0-098 1-0770 3-58 0 164 1 3416 5-09 0-245
1-0100 2-91 0 126 1-0863 3-73 0-171 1-3784 5-22 0-218
1-0198 2-97 0-151 1-0954 3-86 0-184 1-4142 5-36 0-194
1-0296 3 04 0-163 1-1402 4-30 0 280 1-4832 6-67 0-154
1-0392 3 11 0-166 1-3832 4-53 0 331 1-5492 6-02 0-123

U N * <rhlP 2 *4 U > l°
M

o-A/ft 4 M J * a-hlP, *4
I-0000 4 64 0-000 1 0198 4-S0 0-138 1-0677 5-30 0-154
1-0005 4-65 0031 1-0296 4-87 0-150 1-0770 544 0-157
1-0025 4-67 0-065 1 0392 4-95 0-155 1-0863 5-60 0 164
1-0050 4-69 0-000 1-0488 5-05 0-156 1-0964 5-73 0-176
1-0100 4 73 0115 1 0583 5 17 0-155 11402 6-21 0-250

From the definition given in§ 3'3, A'(a, v; /,) is the frequency spectrum o f  the hypothetical 
free motion in which, at time i =  (  and dCjdt take their actual values within S but are 
zero outside. When f =■ f, all the potential energy and nearly all the kinetic energy are 
contained inside S. Hence the total energy in the square is given by

P  A 'A '*dudv= (2irjk)*E, (188)
J -  to J — со

where E  denotes the mean energy per unit area o f W e define the mean amplitude a o f 
the motion within S as half the height, from peak to trough, o f  the simple progressive wave
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train having the same mean energy per unit area. The mean energy of a wave train of 
amplitude a being \pga2, we have from (188)

a2 =  f  f A'A'*dudv. (189)
J  — m J — ai

When considering a group o f waves (see § 3-3) we suppose that all the energy is confined 
to a certain range o f  frequencies and directions characteristic o f  the group. This range will 
be very nearly the same for the ‘ blurred’ spectrum A' as for the original spectrum A. Let 
Q be the region in which the point P (—uk, —vk), defining the length and direction o f the 
wave components o f  the group, must lie. W e also use Q to denote the area o f this region. 
Then the area o f the corresponding region in the (и, t>)-plane is Cijk2. Hence the root-mean- 
square value A o f the modulus o f A' is given by

A2Q.lk2 =  P P A'A'*dudv, (190)
J — to J -00

or from equation (188) -7 _
H v '  A =  akjD>. (191)

The case o f most practical importance is when the motion consists o f  two distinct wave 
groups, say A\ and A2. We denote the mean amplitudes o f  these groups by a1 and a2 respec
tively and the corresponding areas in their frequency spectra by Q, and ii,. The root-mean- 
square values o f  A\ and A'2 are given by

A l =  a ^ /Q j, A2 =  a2k lQ .  (192)
O n  writing A1 =  A\+A'2 in equation (187) we have

S' ~  —’R ipfrlk)2 Jj" (А[ +  А^ {A [_ + A ‘2_ )o 2W{2<r,r)e*°‘ dudv, (193)
Oi+n,

where A[_, etc., is written briefly for A'^—u, —v). Since Q, defines a progressive wave 
group, it will contain no opposite pair o f wave components, nor, similarly, will £lj. Thus 
equation (193) reduces to

S' er2"'* — — $R8/3(tt/A)2JJ A[A2_tj2W(2a, r) eKr~'ra'>‘ du dv, (194)
n„

where 0 , 2 denotes the region common toO , and —Hj, and we have introduced <rI2, the mean 
value o f  a over D 12.

N ow it may be assumed that there is no correlation between the phases o f  wave com 
ponents at different points in the original spectrum A. The same will in general be true for 
the modified spectrum A\ but because o f  the ‘ blurring’ function (equation (81)) there may 
be some correlation for points that are close together in the (u, в)-plane. The degree o f 
correlation will depend on the separation o f  the points concerned relative to the width o f 
the blurring function, which we have seen is o f order unity. Values o f  A(u, v) much closer 
than this will be highly correlated, while those much more widely separated will be hardly 
correlated at all. Suppose then that the range o f  integration in (194) is divided into unit 
squares and the integration carried out over each square separately. The final result will be 
the sum o f  D.njk2 vectors o f  random phase and each o f  the order o f magnitude o f

&p(irlk)2A l~A2a‘il2W(2<rl2,r). (195)
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Hence the order o f magnitude o f S' is given by

S'^&p(vjky A xA2a\2(Q\Jk) W(2<ri2, t) e2*"'. (196)

Similarly, if the total storm area is A  there will be AA2/47t2 separate squares S into which the
storm area is divided. Hence the amplitude 8 o f the displacement from the whole storm is
o f the order ___

8— 8/)(тг/А)2^4,Л2(7̂ 2(Л1П}2/27г) W (2ir12, r) e2'"”1. (197)

T o the same order o f  approximation W , which may be the sum o f  two or more terms, may 
be replaced by W  (equation (186)). On substituting from equations (192) we have finally

W(2cr]2)r) е2“ги(. (198)

As we should expect, this formula for S is independent o f the size o f  the squares chosen for 
the subdivision o f the generating area A. It depends only on the total generating area, on the 
mean wave height o f  each group and on the areas o f  the corresponding two-dimensional 
frequency spectra, defined by Q, and All these are quantities o f  which rough estimates 
can in practice be made. It is interesting to remark that although 8 increases as the square 
root o f the area common to Q, and —Q ,, it also diminishes with the square root o fQ , and £22. 
Hence, in general, the more widely the energy is distributed in the spectrum the smaller is 
the resulting disturbance.

6-3. Discussion

W e procecd now to consider the application o f equation (198) in some practical cases. 
As weis first intuitively suggested by Bernard ( 1 9 4 1 a), the necessary condition for the 
generation o f  microseisms on the present hypothesis is the interference o f  groups o f waves o f  
the same wave-length travelling in opposite directions. Although not much is at present known 
about the generation o f  waves by surface winds, observation certainly suggests that a wind 
blowing steadily in one direction will in the course o f time generate waves or swell travelling 
mainly in that direction, or in a direction not differing by more than 45a from it. We must 
therefore either look for cases in which two wind systems are in some way opposed, or else 
assume the possible reflexion o f  wave energy from a steep coast.

Bernard suggested that favourable conditions for wave interference would be found at the 
ccntre o f  a cyclonic depression, where waves originating on all sides o f  the depression might 
be received. It is known that in a circular depression the winds, though mainly along the 
isobars, have also a component inwards towards the centre, and in fact observation o f sea 
conditions in the ‘ eye ’ o f  a cyclone tend to confirm this expectation. It is well known that in 
such regions relatively low wind velocities may be combined with high and chaotic seas such 
as would be characteristic o f  wave interference.

Suppose then that in the centre o f  a circular depression in the Atlantic wave energy is 
being received equally from all directions with a range o f  periods between 10  and 16 sec. 
The wave-length A in deep water being given approximately by Я =  g T 2j2n, where T  is the 
period, we have A !<A <A 2, where

A, =  1-64 x 104cm., Az =  4 00 x 104cm.
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The energy in the frequency spectrum is contained in an annular region lying between the 
two circles having their centres at the origin and radii 2я/Л, and 2jt/A2 respectively. This 
region may be divided by any diameter o f the circles into two equal regions £), and f l2, where

Q, =  Q , =  f l 12 =  2-15 X 10-7 cm .-2.
Assuming A  =  1000  km . 23 <r12 =  2я/13 se c . '1, u1 =  a2 =  3 m.)

we find that the coefficient of W e 2'™1 in equation (198) is 1-8  x  I0 15 dynes. If also

A = 3 k m ., r =  2000 km.,

we find fF(2 (T12, r) — 1-8  x 10 _ 19cm./dynes, giving as the amplitude o f the displacement, 
from peak to trough, 2  | | =  6-5 x  1 0 - 4 m. =  6 -5ц.

The above estimate shows that the theory is in agreement with observation as regards 
the order o f  magnitude o f the expected ground movement. It has been assumed that the 
energy is uniformly distributed within the given range o f frequencies. Any concentration 
o f  energy within a narrower band in the frequency range would tend in general to increase 
the amplitude o f die microseisms. It has also been assumed that f^is constant over the whole 
frequency range. From the chosen value o f a l2 we have 2tr!2A//?2 =  1-03, so that, from figure 1 , 
[Scm] ' is 0-69 or about three-quarters o f  it? maximum value. However, since [2c,,,]' is never 
less that its value o f 0191 for shallow water, and increases to 0-91 within the frequency range, 
the mean value chosen is certainly not a serious over-estimate.

Most cyclonic depressions are themselves in movement over the ocean with a speed com
parable to that o f  the waves. This movement may considerably increase the effective area 
o f  wave interference. For, if  the velocity o f the depression as a whole exceeds the group 
velocity o f the waves, the waves generated by winds on one side o f  the depression and travel
ling in the same general direction will interfere with those generated at a later time on the 
other side o f the depression and travelling in the opposite direction. Thus, even if the winds 
blew directly along the isobars and only generated waves running stricdy in that direction, 
there would still be a ‘ trail’ o f wave interference in the wake o f the depression. In general, 
therefore, the motion o f a depression may be expected to increase the amplitude o f the 
microseisms generated.

The amplitude o f  the microseisms due to coastal wave reflexion is more difficult to estimate, 
since less is known about the amount o f  energy reflected from a sloping beach. The reflected 
wave is usually hidden from observation by the much larger amplitude o f  the incoming wave, 
although if the crests o f  the reflected wave are not parallel to those o f  the incoming wave the 
former can sometimes be clearly seen. Effective interference will take place only at those parts 
o f  the coast where the shore-line is perpendicular to the direction o f  propagation o f some 
components o f  the wave group, and the narrower the range o f directions o f  the incoming 
waves, the more critically will the amount of reflexion depend upon the direction o f the 
shore-line. The refraction o f the wave crests parallel to the shore-line in shallowing water 
will operate in favour o f  effective wave interference, although the amount o f refraction is 
small until the depth is less than about half a wave-length.

As an example consider a swell o f  mean amplitude =  2m . and period 12 to 16sec., 
whose direction o f  propagation lies within an angle o f 30°. This gives O, =  1-4 X I0~a cm .-2.

Vol. 2 4 3 . A. 5
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The direction o f the reflected wave energy is then also spread over an angle o f  30°. Sup
posing, however, the shore-line to make a mean angle o f  10 ° with the mean direction o f 
the incoming waves, only one-third o f the angle o f the reflected waves overlaps that o f  
the incoming waves. Thus i l j  =  1-4 x  10 - 8cm .-2, £i12 =  0-47 x 10 - 8 cm .-2. If we assume 
that the reflected wave extends a distance o f  1 0 km. from the shore with a mean amplitude 
equal to 5 %  o f that o f  the incoming wave, and if the effective shore-line is 600 km. in length, 
we have Л  =  6000sq.km., a2 =  0-1 m. Taking h =  0 , т =  1000  km., we find from (198) that
2 | 8 j == О'З/г. This amplitude is rather smaller than that in the case considered previously. 
W e conclude that the largest microseisms are probably due to wave interference in mid
ocean, although coastal reflexion may be a more common cause o f  microseisms o f smaller 
amplitude. Exceptions may occur for stations near to the coast.

It has been seen that the microseism amplitudes may be increased by a factor o f  the order 
o f  5 owing to the greater response o f  the physical system for certain depths o f  water. In 
practice, with an ocean o f non-uniform depth, the amplitude will be affected by the depth 
o f water at all points between the generating area and the observing station. Since, however, 
the energy density is greatest near the source o f the disturbance, the depth o f  water in the 
generating area itself may be expected to be o f  most importance.

In so far as the sea waves must be considered to possess not a single frequency but a spec
trum o f  finite width, we may expect that the unequal response o f  the ocean will cause an 
apparent shift o f the spectrum towards those frequencies for which the response is a maxi
mum. In the case o f  disturbances due to coastal reflexion, which in most instances would 
take place in shallow water, less frequency shift is to be expected. On the other hand, the 
coefficient o f  reflexion will very probably depend both upon the height and wave-length o f 
the waves. There will probably also be a lengthening o f  the average wave period with 
increasing distance from the storm area, owing to the more rapid viscous damping o f  the 
higher frequencies in the spectrum. Evidence o f this effect has been given by Gutenberg 
(1932).

6 . C o n c l u s i o n s

Unattenuated pressure variations o f  the type discovered by M iche in the standing wave 
are a phenomenon o f  more general occurrence. They are due essentially to changes in the 
potential energy o f  the whole wave train. The general condition for fluctuations in the 
mean pressure over a wide area o f  the sea surface is that the frequency spectrum should 
contain groups o f  waves o f  the same wave-length travelling in opposite directions. The 
pressure fluctuations are then o f  twice the frequency o f  the corresponding waves and are 
proportional to the product o f  the wave amplitudes. Waves o f  compression in the ocean and 
sea bed should be set up, which may be o f  sufficient amplitude to be recorded as microseisms. 
For certain depths o f  the ocean the displacements will be increased by a factor o f  the order 
o f  5 owing to resonance.

On the present theory suitable conditions o f  wave interference would arise near the centre 
o f  a cyclonic depression, as suggested by Bernard, but more particularly if the depression is 
moving rapidly. The effect o f  wave interference over deep water would be probably greater, 
under favourable conditions, than the effect o f coastal wave reflexion, though the latter 
may be the determining factor for stations near to the coast. The periods o f  the microseisms



41

T H E O R Y  OF TH E O R IG IN  OF M ICRO SEISM S 35

should be half those o f the corresponding waves, though an apparent shift in the frequency 
spectrum may be expected owing to the variation o f the frequency response with the depth 
o f the ocean and to the more rapid damping o f the higher frequencies.

I  should like to express my thanks to Dr G. E. R. Deacon of the Admiralty Research 
Laboratory for suggesting the subject o f  the present investigation and for his encouragement 
during the early stages. I am much indebted to Professor H. Jeffreys for many valuable 
suggestions, and to him and to Dr R . Stoneley for advice in the preparation o f this paper. 
Publication is by kind permission o f the Admiralty.
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Errata

d2 z
p.6 . equation (7); right-hand side should be

line below equation (13): for z =  ( '  read z  »  ( .  

p .7. equation (17): for z'£ read z 1 in

equation (18): for C i  read 

p. 10. equation (39): for —g read +g.

integral in last bracket should be J ‘  j -  J* iidz  +  uuj J dz. 

p.lfi. in text between (80) and (81): for (—u i, —v\) read ( - i i ,  - v ) .  

p .19. equation (108): right-hand side should be (?p te91^  — 1. 

p .23. equation (144): in second equation for read F^4\ 

p .24. equations (157): last term in first equation is a '(y 2 — a '2 +  4k2) cosh a'h.
Я2 л "

equation (154): for д^ф'  ̂ read 

equation (159): in last term, for k ~ l read A- 1 , 

p .25. equation (168): in expressions for J W  insert a factor j .
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A n  experimental study of the pressure variations in 
standing water waves

B y  R .  I. B . C o o p e r  a n d  M. S. L o n g u e t -H ig g in s  

Department of Geodesy and Geophysics, University of Cambridge

(Communicated by R. Stoneley, F.R.S.—Received 9 December 1950)

Although the first-order pressure variations in surface waves on water are known to decrease 
exponentially downwards, it has recently been shown theoretically that in a standing wave 
there should be some second-order terms which are unattenuated with depth. The present 
paper describes experiments whioh verify the existence of pressure variations o f this type in 
waves o f period 0-45 to 0-50 вес. When the motion consists o f two progressive waves of equal 
wave-length travelling in opposite directions, the amplitude o f the unattenuated pressure 
variations is found to be proportional to the product o f the wave amplitudes. This property 
is used to determine the coefficient o f reflexion from a sloping plane barrier.

1. I n t r o d u c t io n

In the well-known first-order theory o f  surface waves in deep water (Lam b 1 9 3 2 , 
chap. 9) the pressure fluctuations at a given point in any periodic wave motion 
decrease exponentially with the depth. Thus in a progressive wave o f  length 
A, =  2;7/jfc, o f  period T, =  2тт/а, and height 2a from crest to  trough, the pressure 
fluctuations pl are given by

p t =  pga e_te cos (kx — art), ( 1 )
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where p is the density and g is the acceleration o f  gravity, i denotes the time and 
x  and г are horizontal and vertical co-ordinates, z being measured downwards from  
the mean surface level. The wave-length and period are connected b y  the relation

сг* =  дк or Л =  gT 2l2n. (2 )

Therefore, at depths greater than about half a wave-length, the first-order pressure 
variations are very  small. The work o f  Levi-Civita ( 1 9 2 5 ) also shows that in 
a progressive wave the pressure variations ате attenuated exponentially to  all 
orders o f  approximation. N ow, in the first approxim ation tw o progressive waves 
o f  equal wave-length and amplitude travelling in opposite directions com bine to 
form  a standing wave. The first-order pressure terms are o f  the form

p 1 — 2pga e~b  cos kx cos crt, (3 )

and are therefore attenuated exponentially as in a progressive wave. H ow ever, 
Miche ( 1 9 4 4 ) recently showed that the second-order pressure variations in a standing 
wave do not tend to zero but to  the value

(p 2)co =  2pa?cr2 cos 2rrt. (4)

Although this term is o f  second order it will becom e predom inant over the first- 
order term  at depths greater than about half a wave-length. Since it is independent 
o f  both  x  and z it represents a pressure variation applied uniform ly over the whole 
flu id; it is o f  twice the fundamental frequency. A  physical explanation o f  the 
existence o f  this term has been given {Longuet-H iggins 1 9 5 0 ), and it has been 
shown that in the general ease when two waves o f  equal length but o f  different 
amplitudes and a2 encounter one another travelling in opposite directions the 
unattenuated pressure variation is given by

(Pi)™ =  Ъ ра ^ о-2 cos 2at. (5)

The standing wave is the special case where the tw o w ave am plitudes are equal, 
the progressive wave the special case where one o f  them is zero.

The existence o f  second-order pressure variations o f  this type  is not on ly o f  
theoretical interest but m ay also be o f  im portance in practice. Under suitable 
conditions the pressure variations in ocean waves m ay extend to  considerable 
depths, and it has been suggested (Longuet-Higgins 1 9 5 0 ) that these m ay be one 
cause o f the small osoiUatione o f  the earth’s crust which ате generally know n as 
microseisms. The present experiments were undertaken w ith the purpose o f  
verifying the existence o f  these pressure variations on a m odel scale, and o f  showing 
how they m ay be used to  determine the am ount o f  wave reflexion from  different 
types o f  obstacle.

2 . A p p a r a t u s

The experiments were carried out in a wooden tank o f  length 970 cm ., depth 
60 cm. and width 24 cm. (see figure 1 ). A t one end o f  the tank waves were generated 
by  a paddle A  consisting o f  a rectangular metal plate o f  width 23-6 cm. hinged at 
its lower edge and made to  oscillate about a mean vertical position by  a crank-shaft
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driven b y  a £ h.p. electric motor. B y  an adjustment to the arm o f the crank the 
amplitude o f the waves could be varied at w ill; the wave period, and hence the 
wave-length, was controlled through the speed o f  the motor. It was found con
venient to use waves o f  period about 0 6  sec., the corresponding wave-length (about 
40 cm .) being less than the depth o f  the tank but sufficiently large compared with 
the measuring apparatus.

--------------------------------------------------------9 70 cm.----------------------------------------------------- »-

С D________________________H ttjA

'/ / / / / / / / / / / / / У  /.S  STTZi
'//л

F ig u r e  1. Vertical section o f  the wave tank, showing the relative positions af the 
paddle (A) ,  wave-absorber (£ ) , sand beach (C) and hydrophone ф ) .

Between the paddle and the near end o f  the tank was a honeycom b arrangement 
o f  metal sheets (В  in figure 1 ) designed to destroy the wave energy on that side o f  
the paddle. W aves travelled down the tank towards the far end, where they were 
either absorbed by  a shallow sand beach (С ), or reflected from a suitable reflector 
inserted in the tank. The regularity o f  the waves depended slightly on the depth 
at which the paddle was hinged. In  the present experiments the hinge was at 
10  cm ., or about a quarter o f  a wave-length, below the surface, this giving a steady, 
sinusoidal wave profile. It  was found that the wave surface could be made smoother 
b y  previously wetting the sides o f  the tank to a level higher than the wave crests.

Measurements o f  wave height were made with a hook-and-point gauge consisting 
o f  a thin wire (the point) extending vertically downwards into the water and fixed 
relatively to a similar inverted wire (the hook) extending upwards from below. 
B oth  wires were rigidly attached to a sliding vertical scale. The apparatus was 
initially adjusted so that the point, when lowered from above, first made contact 
with the still-water surface at the same scale reading as that at which the hook 
broke the surface when raised from below. T o measure the wave height, the gauge 
was first raised until each crest just touched the point and then lowered until each 
trough just missed the hook; the difference between the two readings was taken to 
be the wave height 2a .

The w ave period was measured by  timing, with a stop-watch, the passage o f
20 successive crests past a fixed point.

The m otor quickly accelerated from  rest and reached an almost steady speed in 
about 2-6 sec. The speed was unaffected b y  the presence o f the water, the energy 
imparted to the waves being in fact negligible.

The pressure was measured with a quartz-crystal hydrophone o f  a type con
structed at the Admiralty Mining Establishment.* This consisted o f  a circular 
brass head, 9 cm. in diameter and 2 cm. thick, attached to a brass cylindrical body
6 cm. in diameter and 50 cm. long. The hydrophone head contained tw o circular 
quartz crystals cemented, back-to-back, to  a central brass plate, the outer faces 
o f  the crystals being cemented also to two outer brass plates which were electrically

* The authors are indebted to  the Adm iralty for permission to describe this apparatus.
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com m on but insulated from  the body. Rubber sheet in. thick was cem ented to  
the outer plates and clam ped to the hydrophone head by  a brass ring, making 
a water-tight seal. W hen pressure was applied, an electrical signal was developed 
between the inner and the tw o outer braes plates. The outer plates were connected 
to  earth via a small resistance used for the purpose o f  calibration ; the inner plate 
was connected to  the grid o f  the first valve o f  a pre-amplifier contained in the b od y  
o f  the hydrophone. A  cable, carrying power supplies and leads for the output 
signal and for calibration, entered the end o f the bod y  through a w ater-tight 
rubber gland. The electrical signal from  the hydrophone was passed through an 
adjustable attenuator to  a second amplifier, whose output operated an Esterline- 
Angus recording milliammeter. T o  reduce ‘ noise ’ , series resistors and shunt 
capacities were incorporated between the stages, making the gain appreciable 
on ly between 1 and 10c./sec. (Such an arrangement, however, necessarily in tro
duces som e phase distortion.)

Let К  denote the piezo-electric constant o f  quartz, R  the resistance o f  the 
crystals, A  the area o f  the outer brass plates and G the capacity o f  the plates and 
their leads. Then it m ay be shown that an oscillatory pressure p 0 cos at appUed to 
the plates o f  the hydrophone produces a voltage V cos <rt given b y

V lp =  K A IC ,

provided that cr2R 2C2%> 1, a condition satisfied in the present case. The theoretical 
sensitivity o f  the hydrophone head, based on the above formula, was

1-5 x  10-5  V /dyne-cm .-2 .

T o calibrate the apparatus a voltage equivalent to, say, 10 0  dynes-cm .-2  and o f  
the appropriate frequency was in jected across the small calibrating resistor in the 
hydrophone head, and the deflexion o f  the milliammeter was then com pared with 
that produced by  the waves.

W hen the pressure was not uniform, it was assumed that the deflexion was the 
same as would be produced b y  a uniform pressure equal to  the mean pressure over 
the plates o f  the hydrophone. Since the plates were circular, and the pressure 
p  theoretically obeyed Laplace’s equation W2p  =  0 , this mean pressure was equal 
to the value o f  p  at the centre o f  the plates.

The hydrophone was suspended in a horizontal position from  tw o iron bars laid 
across the top  o f the tank, the ЬеаЛ being away from  the paddle (see figure 1 ). The 
plates o f  the hydrophone head were set in a vertical plane, in order to  cause the 
least possible disturbance to the m otion. Though the support was n ot rigid, the 
m otion  o f  the hydrophone itself was very small, and no difference in the measured 
pressure could be detected when the body was attached rigidly to  the walls o f  
the tank.

The estimated limits o f  accuracy o f  the different measurements are as fo llow s; 
each figure represents the m axim um  error :

w ave height 2a : + 0-02 cm.
w ave period T : ±  0 -0 1 sec.
depth z to  centre o f  hydrophone: + 0-06 cm.
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Thus for waves o f  height 1'0 cm. and period 0-5 sec. the maximum error in the 
theoretical first-order pressure variation pga e -^ lo  at a depth o f  15 cm. is 13 % . 
The maximum error in the second-order pressure variation 2p a V 2 is 8 % .

The theoretical sensitivity o f  the hydrophone was known to within 5  % , and the 
voltage and frequency o f  the calibration signal could each be set to  within 3  %  o f 
their desired values. The deflexion o f the recorder was read to  the nearest tenth o f  
a division (the attenuator was adjusted so that the deflexion was normally about 
1-5 divisions). A  change o f 3 %  in the frequency o f  the calibration signal involved 
a change o f  not more than 6 %  in the amplitude o f  the response. Hence the actual 
pressure could be measured with certainty to within about 20 % .

In  each o f  the above estimates o f  the maximum error, allowance has been made 
for both a random and a systematic part. Though the rough analysis just given is 
sufficient for our purpose, we m ay notice that, since the systematic errors from 
independent sources do not necessarily tend in the same direction, the combined 
system atic errors are probably less than those given above. Also, because o f  the 
random errors, the accuracy o f  the measurements will he im proved by taking the 
mean o f  several observations.

3 . T h e  p r o g r e s s i v e  w a v e

W hen the m otor was switched on, a train o f  waves advanced down the tank, the 
wave front travelling with approxim ately the theoretical group velocity gT/in. 
The arrival o f  the wave front was preceded b y  several rather longer waves due 
perhaps partly to  dispersion and partly to  the initial acceleration o f  the paddle. 
In  the steady state the wave height was found to diminish with distance from the 
paddle. The decrease was o f  the order o f  a few units per cent per metre, and was 
attributed m ainly to friction at the sides o f  the tank. N o significant variation in 
the wave height across the tank was observed, and, with the wave amplitudes used, 
the m otion appeared to  be entirely two-dimensional.

It  will be convenient to  denote b y  x  and z respectively the horizontal distance 
o f  the centre o f  the hydrophone head from  the paddle and its vertical distance 
below  the mean surface level. A  typical record o f  the pressure, taken at x  =  400 cm. 
and z =  8-8 cm ., is shown in figure 2 a. Z 171 is a calibration signal equivalent to  
100 dyne-cm .-2  at the frequency o f  the waves, and T T ' is a time trace operated by 
a clock  which made and broke an electrical circuit once every half-second. The 
paddle m otor was first switched on at O. Until the point A , the deflexion o f  the 
pen is negligible, indicating there is no signal due to  vibration o f  the m otor or 
paddle. On the arrival o f  the wave front the pressure variations increase quickly 
to a maximum and remain at a nearly constant amplitude. The theoretical time o f  
arrival, supposing the front to  travel with the group velocity, is denoted by <3. In 
the steady state the pressure variations were o f  the same period as the waves.

A  similar record, but taken at z =  17-3 cm., is shown in figure 2 b. The calibration 
signal X ,7 , represents 25 dynes-cm - a. It will be seen that the pressure variations 
are reduced to about one-quarter o f  their previous value.

T o  measure the amplitude o f  the pressure variations, the mean value was taken 
o f  tw enty successive oscillations o f  the recorder pen in the steady state (for
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example, PQ in figure 2 a). The period was deduced by timing the waves in  the tank 
simultaneously, and a calibration signal o f  the appropriate frequency was after
wards injected. Three successive sets o f  observations were made for eight different 
values o f  z. The mean values o f  the three measured pressures at each depth are

F i g u r e  2. T y p ica l re co rd s  o f  pressu re  v a ria tion s  in  p rog ress ive  and  re fle cted  tra in s o f  w a v es , 
a , p rogress ive  w a v e , z = 8 - 8  c m .;  6 , p rog ress ive  w a v e , z =  17-3 c m .;  c, re fle cted  w a v e , 
z =  17 3 c m .;  d, re fle cted  w a v e , z *  37 0  cm .
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given in the second column o f  table 1. For each observation o f the pressure 
a separate observation o f  the wave height 2a was made at a point immediately 
over the hydrophone head. The theoretical pressure, given in the third column o f  
table 1 , was calculated from the formula

Pth. =  рд» е"л ,»1
using the mean values o f  the twenty-four observations o f  2a and T, which were
1-11 cm. and 0-453 sec. respectively. Pressure variations o f  less than 10 dyne-cm .~2 

could not be measured accurately; but it was verified that at depths between 
29-0 and 38-8 cm. (the greatest value o f  z possible) the pressure variations were less 
than 5 dyne-cm .-2.

T a b l e  1 . C o m p a r i s o n  or t h e  m e a s t j r e d  a n d  t h e o r e t i c a l  v a l u e s  o f  t h e

PRESSURE VARIATION S AT DIFFEREN T DEPTHS IN A PROGRESSIVE W AVE

x — 400  cm . h — 41-6 cm . 2a -  1-11 cm . T  = 0-453 sec.

z P m«as- Рл. 43 в z cr

(cm .) (d y n e -cm .-2 ) (d y n e -cm .-2 )

6-5 152 151 1 0 1

8-5 97 1 0 2 0 9 5
10-5 63 69 0 94
12-5 46-6 47-3 0-98
14-5 30-4 31-4 0 9 7
16-5 19-6 2 1 - 2 0 9 2
18-6 14-0 16-4 0-91
20-5 9-7 9-5 1 0 2

In  view o f  the limits o f  accuracy o f  the experiments given in §2, the agreement 
between the second and third columns o f  table 1 is satisfactory. The measured 
pressure closely obeys the exponential law o f  decrease down to a depth equal to 
half the wave-length, and probably deeper. The mean value o f  the ratios in the last 
colum n is 0-96.

4 . T h e  s t a n d i n g  w a v e

T o  produce a standing wave, a sm ooth aluminium sheet, o f  the same width as 
the tank, was inserted into the water to  act as a reflector. Figure 2c shows the 
pressure at the same point as in figure 2 b when the distance Z o f  the reflector from  
the paddle was 800 cm. X l Y 1 is a calibration signal representing 25 dynes-cm ,-2  at 
the fundamental frequency o f  the waves, and represents 10 0  dynes-cm . -2  at 
twice this frequency. On the first arrival o f the waves (point A )  the pressure 
variations are similar to  those in the progressive wave. H owever, as soon as the 
reflected waves arrive (point B) the record begins to differ, and at O', the theoretical 
time o f  arrival o f  the reflected wave front, a second-order com ponent o f  tw ice the 
original frequency has appeared. Later an almost steady state is reached in 
which com ponents o f  both frequencies are present. A t G, however, the record begins 
to degenerate owing to  the arrival o f  the waves reflected a second tim e from  the 
paddle. (G" denotes the theoretical time o f  arrival o f  the twice-reflected wave 
front.)
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In  figure 2 d the depth has been increased to  37-0 cm. The first-order pressure 
variations becom e very small, and the arrival o f  the first wave train can hardly be 
detected on the record. The on ly pressure variations are now  o f  tw ice the funda
mental frequency, which appear, as before, on the arrival o f  the reflected w ave 
front. W hen the reflector was rem oved the pressure variations quickly becam e 
negligible.

T o determine the amplitude o f  the second-order pressure variations, the reflector 
was placed at I *« 600 cm. and the hydrophone at such a depth that the first-order 
pressure variations were small. I t  can easily be shown that the apparent effect 
o f  a small first-order term is to  increase and decrease alternately the am plitude o f  
the (second-order) oscillations b y  very nearly the same am ount, leaving the mean 
am plitude practically unchanged. The am plitude was determined from  forty  
successive oscillations (PQ  in figure 2d) in the steady state, before the record de
generated owing to  the t w i c e -T e f l e c t e d  waves. Three sets o f  measurements were 
taken, at four different depths z. The mean values o f  the pressure at each depth 
are given in the second colum n o f  table 2 . I t  was difficult to  measure the height o f  
the standing waves accurately during the short tim e that they remained regular. 
A ccordingly, the height o f  the progressive wave in the absence o f  the reflector 
was first determined. Owing to  the attenuation o f  the waves w ith distance along 
the tank the reflected wave was expected to  be slightly smaller than the incident 
wave. T o  allow for this effect the wave height was measured at x  =  500 cm . 
for, on  the assumption that the attenuation o f  the waves along the tank was ex 
ponential, the wave height at x  =  500 cm. should be the geom etric mean o f  the 
height o f  the incident and reflected waves at x  «  400 cm. The mean values o f  the 
sixteen observations o f  w ave height and period were 0-99 cm. and 0-461 sec. 
respectively. The theoretical pressure was calculated from  the form ula

Pth. =  2p a V 2.

T a b t /e  2 . C o m p a r i s o n  o f  m e a s u r e d  a n d  t h e o r e t i c a l  p r e s s u r e  v a r i a t i o n s

AT DIFFERENT DEPTHS Ш  A STANDING WAVE 

x  =  400 cm . I =  600 cm . /t> ■  41 '2  cm . 2a =  0-99 cm . T  =  0 ‘461 sec.

* ^meas. P th. p  mcas. / p th.
(cm .) (dyne-om .-8) (dyne c m ."a)
21 6 88 91 0 97
26-6 87 91 0-96
3 1 5  90 91 0-99
36-5 94 91 1-03

Table 2 shows that the difference between the measured and theoretical values 
is again very  slight, and the measured values show no significant dependence on  z. 
The mean value o f  the ratios in the last colum n is 0-99.

B y  carrying out similar observations at a constant depth but at distances from  
the reflector varying over a range o f  a quarter o f  a wave-length, it was verified 
that the unattenuated pressure variations were also independent o f  x. Because o f  
the phase shift in the amplifier no attem pt was made to  determine the relative
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phases o f  first- and second-order pressure variations, but it was found that near 
a nodal plane the first-order variations were relatively small.

T o  determine the dependence o f the unattenuated pressure variations on the 
wave height, similar observations were made with wave heights 2a lying between 
0-65 and 1-75 cm. The results are given in table 3. Each figure represents the mean 
o f three observations. It  will be seen that the pressure variations increase very 
nearly as the square o f  the wave height. W ith waves o f  greater amplitude than 
about 2 0 cm., the wave crests in the standing wave became unstable, and a sideways 
oscillation was set up across the tank, destroying the two-dimensional motion.

T a b l e  3 . M e a s u r e d  a n d  t h e o r e t i c a l  p h e s s t t r e  v a r i a t i o n s  m  t h e

STAN DIN G W A V E , FOB DIFFEREN T VALOT5S OF THE W AVE AMPLITUDE 

x  =  400 cm . i= 5 0 0 c m .  г  =  35-4 cm . . h =  41-3 cm . T m  0-473 вес.

2a
(cm .)

Pmeas.
(dyne-cm .-1)

Р,ъ.
(d y n e -cm .'2)

PmmJPtb.

0-66 37 37 10 0
0-82 58 59 0-98
1-06 90 99 0-91
1-21 126 129 0 9 8
1-58 207 219 0 9 5
1-76 250 270 0-93

5 . P a r t i a l  r e f l e x i o n

To obtain interference between tw o opposite wave trains o f  known but unequal 
amplitude, the reflector used in §4 was replaced by another designed to  reflect only 
part o f  the wave energy. This consisted o f  a rectangular metal sheet, o f  the same 
w idth as the tank, extending to  a variable depth h' below  the mean surface level. 
The reflexion coefficient from a vertical barrier o f  this kind has been obtained 
theoretically, for low  waves, b y  Ursell ( 1 9 4 7 ). Since the unattenuated pressure 
variations are in theory proportional to the height o f  the reflected wave, their 
amplitude should be given by  2p fia W , where a is the amplitude o f  the corre
sponding progressive wave at the point where the reflector ia inserted, and fi is the 
reflexion coefficient.

Three successive series o f  observations were carried out as for the standing wave, 
with values o f  h' lying between 2 -0  and 10-0 cm. (Over this range p  increases from 
0-26 to  nearly unity.) The measured and theoretical values o f the pressure are 
com pared in  table 4. There is fair agreement, although for the smaller values o f  
h' the measured pressure is rather lower than m ight be expected.

L et us consider whether the distance o f  the hydrophone from  the reflector 
(10 0  cm .) is great enough for the reflected wave train to be regarded as infinite in 
length. I f  we suppose a uniform pressure variation p', given by

[ 2pfia2(r2 cos 2 crt (x  < I), 
P' =  \

(0  ( * > 0 .
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to  be applied to  the upper surface o f  the water, then it may be shown that the 
pressure variation within the fluid is given by

p '  =  [ l  ■- 1  t a n - ^ - l  b a n - » 2P / W  cos Ш ,

(neglecting surface displacements). Taking (I — x )  =  100 cm ., z = 3 6 '6 c m .  and 
h =  41-5 cm. we find that the expression in square brackets equals 0-98. Thus, the 
pressure variations should be reduced on ly b y  about 2  %  owing to  this cause.

T a b l e  4. M e a s u r e d  a n d  t h e o r e t i c a l  p r e s s u r e  v a r i a t i o n s  m  a  p a r t i a l l y

REFLECTED TRAIN OF WAVES 

г — 400cm . £™ 500cm . 2 =  3 6 '6 om . h =  41-6 cm . T  =  0 4 6 8 s e c . 2<z =  0 847 cm .
h' P* Pi h. P meas. P mcas./Ptb-

(cm .) (dyne-cm . ~J) (dyne-cm .-2)

2-0 0-26 18 13 0 7 2
3-0 0-58 39 33 0-84
4-0 08 1 53 44 0-80
6 0 0-94 64 54 0-84
6-0 0 97 66 59 0-89
7-0 0-99 67 69 0-95

10-0 1 0 0 68 66 0-91

* From  TJrsell ( 1 947).

From  the last colum n o f  table 4 we see that the difference between the measured 
and the theoretical pressures is on the whole greater for the smaller values o f  A', 
that is, when the lower edge o f  the reflector is nearer the surface o f  the water. 
H ence it is reasonable to attribute the discrepancy to a loss o f  energy at the lower 
edge o f  the reflector, where the velocity  theoretically becom es infinite. In  practice 
w e m ay expect that a thin boundary layer will be form ed and that eddies will be 
thrown off alternately in either direction.

6 . R e f l e x i o n  f r o m  a  s l o p i n g  b e a c h

The measurement o f  second-order pressure variations provides a convenient 
m ethod o f determining b y  experim ent the reflexion coefficient from  a reflector o f  
any given fo rm ; for since the theoretical amplitude is Ър/Зa 2cr2, f)  m ay be deduced 
i f  both a, <t  and the actual am plitude are known. A lternatively, it m ay be assumed, 
consistently with the results o f  §4, that the reflexion coefficient from  the sm ooth 
vertical reflector extending to  the bottom  equals unity. The reflexion coefficient in 
the given case m ay then be obtained simply as the ratio o f  the second-order pressure 
variations to  those in the case o f  the vertical reflector. The latter m ethod has the 
advantage that it is independent o f  the absolute sensitivity o f  the hydrophone and 
that it does not necessarily involve measurement o f  the w ave height and period.

As an illustration o f  the second m ethod a brief study was made o f  the reflexion 
coefficient from  a plane barrier inclined at a varying angle a, to  the horizontal. 
Three measurements were taken at each position o f  the reflector, and between each
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observation a separate measurement was made with the reflector vertical. The mean 
values o f  the three corresponding ratios are given in table 5. I t  will be seen that 
between 90° and 4 5 °  the reflexion coefficient does not differ much from unity. 
A fter 4 5 °  there is a sharp decline, and at 1 5° the reflexion coefficient is less than 
10  % . Thus at the lower angles nearly all the wave energy is absorbed at the 
barrier. There was no genuine 'breaking 1 o f  the waves; but at 15° the foremost 
edge o f the wave began to be visibly turbulent.

T a b l e  5 . C o e f f i c i e n t  o f  r e f l e x i o n  /J f r o m  a  s m o o t h  p l a n e  b a r r i e r

IN C LIN ED  AT A N  ANGLE a. TO THE HORIZONTAL,

a ;= 4 0 0  cin. z =  35-6 cm . h =  41-6 cm. I m 500 to  630 cm . 2 o t = 1 0 I c m .
T  =  0-46 sec. Tem perature =  13-5° C.

a /? a

90° 10 0 30° 0-72
75° 0-92 25° 0-56
60° 0-99 20° 0-31
46“ 0 8 7 16° 0-08

C o n c l u s i o n s

The foregoing experiments have shown very clearly, for waves o f  half-second 
period, the difference in character between the pressure variations in progressive 
and in reflected trains o f  waves. In  a purely progressive wave the pressure variations 
obey the exponential law o f  decrease down to  a depth o f  at least half a wave-length, 
and below  this depth are very small. H owever, i f  any o f  the wave energy is 
reflected, appreciable second-order pressure variations, proportional to  the am pli
tude o f  the reflected wave, appear at all depths. Equations (1 ) ,  (4 )  and (5) o f  § 1 
have been verified as accurate well within the limits o f  error o f  the experiments.

Since the second-order pressure variations increase as the 9quare o f  the wave 
height they are relatively more im portant for waves o f  large am plitude; and they 
exert a considerable total force on the sides and bottom  o f  the tank and on the 
reflector. For standing waves o f  height 1-8  cm. the second-order pressure variations 
were o f  the order o f  320 dyne-cm .-2, giving a total force on the reflector o f  
3‘07 x 10s dynes or about 0-31 kg. The force corresponding to the first-order 
pressure variations was only 0-13 kg.

The formulae o f § 1 , which are independent o f  the viscosity, should hold equally 
well for waves on the same scale as ocean waves. The chief difference between the 
waves used in the present experiments and the ocean waves occurring in practice 
is that the latter are usually much less regular; a generalization o f the simple 
formulae to the case o f  waves having a general type o f  frequency spectrum has 
been given elsewhere (Longuet-Higgins 1 9 5 0 ).

The reflexion coefficient for a sloping plane reflector is nearly unity when the 
reflector is vertical, and decreases steadily with the inclination to  the horizontal, 
as might be expected. Since, however, the reflexion coefficient in this case depends 
on the viscosity, the same values will not necessarily apply to  waves o f  different
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period and wave-length. F or ocean waves, som e energy will be dissipated in 
breaking, which will also increase the turbulence present in the water. It  would be 
useful to investigate in the laboratory the effect o f  wave height and period on  the 
reflexion coefficient, on  both aides o f  the breaking-point. I t  may also be possible 
to  obtain inform ation as to  the am ount o f  reflexion o f  ocean waves by  com paring 
the frequency spectra o f  the pressure at points off a sloping beach and o ff a headland 
or harbour wall.

The authors are m uch indebted to  Professor J. A . Steers and Mr W . V. Lewis for 
permission to use the wave tank in the laboratory o f  the Departm ent o f  Geography, 
Cambridge.

R e f e r e n c e s

L am b, H . 1932 Hydrodynamics, 6th ed. Cam bridge U niversity Press.
Levi-C ivita, T . 1925 Math. A nn . 93, 264.
Longuet-H iggins, M. S. 1950 Phil. Trans. A , 243, 1.
M iclie, M. 1944 A nn. Ponts Chauss. 2 , 42.
Urael], F . 1947 Proc. Camb. Phil. Soc. 43, 374.

P R IN T E D  IN  O R E A T  B R IT A IN  A T  M'HH! U N IV E R S IT Y  P R E S S , O AM B RID G K  

(B R O O K E  C R U T C H U C Y , U N IV E R S IT Y  P R IN T E R )



55

From: Proc. Symposium on Microseisms, Harriman, N.Y., Sepl. 1952, pp. 74-93. 
Washington D. C., N .A.S. -  N.R.C. Publ. No. 306 (1953).

CAN SE A W AV ES CAUSE M ICR0SEISM S7 
B y M . S. L onguet-H iggin s 

Trinity College at Cambridge

Abstract— This paper is an exposition o f  the 
"w ave interference" theory o f  microseisms. 
Simple proofs are given o f the existence, in 
water waves, o f second-order pressure fluctua
tions which are not attenuated with depth. 
Such pressure fluctuations in sea waves may he 
sufficiently large to cause microseisms. The 
necessary conditions are the interference of 
opposite groups of waves, such as may occur in 
cyclones or by the reflection o f waves from  a 
coast.

Introduction— It has long been known that 
there is some connection between certain types 
o f  microseisms and deep atmospheric depres
sions over the ocean; and the similarity be
tween microseisms and sea waves —  their 
periodic character and the increase o f  their 
amplitude during a "storm " —  naturally sug
gests some causal relation between them. But 
until recently there have seemed to he many 
difficulties, both theoretical and observational, 
to supposing that sea waves could, by direct 
action on the sea bed, be the cause o f all these 
m icroseism s; fo r  the latter have been recorded 
while the corresponding sea waves were still in 
deep water, whereas theory seemed to show 
that the pressure fluctuations associated with 
w ater waves were quite insufficient, at such 
depths, to produce any appreciable movement 
o f  the ground.

However, lecent theoretical w ork in hydro
dynam ics has altered this situation: Miche 
(1944), in quite another connection, discovered 
the existence, in a standing wave, of second 
order pressure variations which are not attenu
ated with the depth; a much shorter demon
stration o f this r e s u lt  w as g iv e n  by 
Longuet-H iggins and Ursell (1948), and the 
result was extended by the present author 
(I960) to more genera] systems o f waves. In 
the latter paper it was shown that such pres
sure variations may be quite sufficient, under 
certain circumstances, to produce the observed 
ground movement, the ch ief conditions re
quired being the interference o f waves o f  the 
same wavelength, but not necessarily of^ the 
same amplitude, travelling in opposite direc
tions. This, then, may he called the “ wave in
terference theory.”

In the latter paper (which will be referred 
to аз I) the results on which the theory dependa

were derived in a general and concise form, 
with detailed proofs. In view o f the interest 
o f the subject it seems desirable to clarify tho 
main ideas behind the theory and to discuss 
further some o f the more unexpected results. 
This will be attempted in the present paper, in 
which we shall rely as fa r  as possible-on physi
cal reasoning, and refer where necessary to the 
form er paper fo r  rigorous proofs o f the results 
quoted. W e shall conclude with a br ie f histori
cal review o f the theory.
1. The importance o f the mean pressure— Let 
us suppose that seismic waves are to be genera
ted by some kind o f oscillating pressure distri
bution acting on the surface o f the earth or of 
the sea bed. I f  the period o f the oscillation is 
T, and the corresponding wavelength o f seismic 
waves is L, then the pressure distribution over 
an area whose diameter is small compared with 
L may be regarded as being applied at the same 
point, so fa r  as the resulting disturbance is 
concerned; fo r  the time-difference involved in 
applying any pressure at another point o f the 
area would be small compared with T . Hence 
the resulting disturbance is o f the same order 
o f magnitude as if  the mean pressure over the 
area were applied at the point. N ow  the wave
length of a seismic wave is many times that o f 
a gravity-wave (sea wave) o f the same period. 
It is therefore appropriate to consider the pro
perties of the mean pressure, over a large num
ber o f  wavelengths, in different kinds of 
gravity-wave. W e shall first consider some 
very special but physically interesting cases, 
when the waves are perfectly periodic and tho 
wave-train is infinite in length. It will be as
sumed fo r  the moment that the water is incom
pressible.

2. The progressive wave— Consider any peri
odic, progressive disturbance which moves, un
changed in form , with velocity с  (see figure 1 ) .  
Let p (t)' denote the mean pressure on a fixed 
horizontal plane (say the bottom ) between two 
fixed paints, A , B, separated by a wave length

W e may shew that p (t) is a constant 
Let A  and В denote the points, separated from 
A  and В respectively by a distance ct. Then 
since the motion progresses with velocity с the 
mean pressure over A 'B 1 at time t equals the 
mean pressure over A  В at time 0 , i.e. p (0) ;
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graaaive v iv a  at t*c d i f fe r e n t  tiaoa.

the total force  on A 'B ' is \ p ( 0 ) .  But since 
the m otion is periodic the force  on A  A 1 equals 
the force  on В В Hence, by subtraction, the 
force on A  В equals X p ( 0 ) ;  and the mean 
pressure on A  В equals p ( 0 )  which is inde
pendent o f the time. Thus there is no fluctua
tion in the mean pressure on the bottom over 
one wave-length, or over a whole number o f 
wavelengths; in any interval containing more 
than N wavelengths the fluctuation in the mean 
pressure is less than N _1 p ma3( where p m» x is 
the maximum pressure in the interval. In 
other words, in в progressive.wave the contri
butions to the disturbance from  different paTts 
o f  the sea bed tend to cancel one another out.

There is a second reason w hy progressive 
water waves m ay be expected to be relativly 
ineffective in producing seism ic oscillations o f 
the sea bed : not only the mean pressure fluctua
tion p, but also the pressure fluctuation p at 
each point decreases very rapidly with depth 
and is very small below about one wavelength 
from  the surface. This fa ct is closely con
nected with the vanishing o f  the mean pres
sure fluctuation; the m otion below a certain 
horizontal plane can be regarded as being gen
erated by the pressure fluctuations in that 
plane; and hence we should expect that the 
contributions to the motion from  the pressure 
in different parts o f the plane would tend to 
cancel one another out.
3. The standing wave— Consider now a stand
ing wave, and let A  and В be the points where 
two antinodal lines, a wavelength apart, meet 
the bottom (see figure 2 ) .  To a first approxi
mation, a standing wave can be regarded as 
the sum o f two progressive waves o f equal 
wavelength and amplitude travelling in oppo
site directions. Therefore the mean pressure 
on the bottom between A  В vanishes to a first 
approximation. However, the summation o f 
the waves is not exact; i f  tw o progressive m o
tions, each satisfying the boundary condition 
of constant pressure at the free surfacc, are 
added, (i.e. i f  the velocities at each point in 
apace are added) there is no " fre e  su rface" in

7Б

the resulting motion along which the pressure 
is always exactly constant; although i f  the ele
vations o f the free surface are added in the 
usual way, the pressure is constant along this 
surface, to a first approxim ation. W e should 
not expect the motions to be exactly super- 
posable, on account o f  the non-linearity o f  the 
equations o f motion.

It can be seen from  the follow ing simple 
argument that the mean pressure on the bot
tom, in a standing wave, must fluctuate. Con
sider the mass o f water contained between the 
bottom, the free surface, and the two nodal 
planes shown in figure 2. Since there is no 
flow across the nodal planes, this mass consists 
always o f the same particles; therefore the mo
tion o f the center o f gravity o f this mass is that 
due to the external forces alone w hich act up
on it. F igure 2 shows the mass o f  water in 
four phases o f  the m otion, separated by inter
vals o f  one quarter o f  a complete period. In 
the first and third phases the wave crests are 
fully form ed, and in the second and fourth 
phases the surface is relatively fiat (though 
never exactly flat; see Martin et al., 1952). 
W hen the crests are form ed the centre o f grav
ity o f  the mass is higher than when the sur
face is flat, since fluid has, on the whole, been 
transferred from  below the mean surface level 
to above it. Thus the centre of gravity  is raised 
and lowered tw ice in a complete cycle. But

W

Ы

(e)

Figure 2. Ceapariion o f  a standing wave with 
a avinging pendulun, at four d i f f e r e n t  рЬааеа 
o f  the n o t io n  aap arated by a q u a rte r  o f  a 
p er iad .
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tion for  each element o f fluid, and cancelling 
the internal forces:

Figure 3 .  Two phaaea o f  the in t e r f e r e n c e  
between two «area o f  e<ju al length hut d i f 
f e r e n t  anpli  tudai ■  ̂ and a  ̂ t r a v e l l i n g  in 
o p p m i t e  d i r e c t i o n a .  The p r o f i l e  o f  the 
f i r a t  wave (daahed l in e )  ia  reduced Co reat  
by auperpoaing on the ayatea a v e lo c i t y  -  c; 
the second wave appeara to travel  aver the 
f i r a t  with v e l o c i t y - 2 c .  The f u l l  l in e  ahowa 
the f i n a l  wave fora.

the external forces acting on the mass are, 
first, that due to gravity, which is constant, 
(the total mass being constant) ; secondly the 
force from  the atmosphere, which is also con
stant, since the pressure p0 at the free sur
face, i f  constant, will produce a constant down
wards force Xp„ ; thirdly the forces across the 
vertical planes, which must have zero vertical 
component, the motion being symmetrical 
about these planes; and, lastly, the force on 
the bottom, which equals X p. Since all the 
other external forces besides X p are constant 
it follows that {J must fluctuate with the time, 
in  figures 2 (a ) and 2 (c ) the mass o f  water 
above the mean level is proportional to the 
wave amplitude a ; since it is raised through 
a distance o f  the order o f a, the displacement 
of the centre o f gravity, and hence the mean 
pressure fluctuation, is proportional to a 2.

An explicit expression for  p can easily 
be derived. Let z denote the vertical coordi
nate o f a particular element of fluid o f  mass 
m, so that z is a function o f  the time t and of, 
say, the position o f the fluid element when 
t =  o. I f  F denotes the vertical component o f 
the external forces acting on the mass o f wa
ter, we have, on summing the equations o f mo-

£  (и a 1 1 ) = *) ( 1 )

the summation being over all the particles. The 
expression in brackets on the right-hand side 
will be recognized as g " 1 times the potential 
energy o f the waves; in an incompressible fluid 

* \ j
J » .  i  =  P i  H С dx -t -  c o n s t a n t  ( 2 )

J*
where x  is a horizontal coordinate, p Is the 
density, X is the wavelength, and £ (x, t ) is the 
vertical displacement o f the free surface. But 
by our previous remarks

F =  X <P - p .  - p g  h ) .  (3 )

where h is the mean depth o f  water. On 
equating ( 1 ) and (3 ) we find

L j u .  -  g h =  - i l  * f l  я  с 2 dx. 
p  8 ,? X j ,  u )

Now fo r  a standing wave

C =  ■ c o s  kx c o a s t  (S )
where к =  2 л/Х and о =  2л/т (r  being the 
wave period), and higher-order terms have 
been omitted. On substituting in (4 ) we find, 
after simplification,

P -  P . g h =  -X 2 о t ( 6 )

This shows that, to the second order, the mean 
pressure f  fluctuates sinusoidally, with twice 
the frequency o f the original wave, and with 
an amplitude prpportional to the square of the 
wave amplitude. The pressure fluctuation is 
independent o f the depth, for  a given wave 
period, though o f  course the depth enters into 
the relation o f the wave period to the wave
length, given by

m : • IlM »l Lrmrl I j 
toff»

Figure 4* Wavea in a heavy, eernpreaai hie f lu id .



58

C a n  S e a  W a v e s  C a u s e  M ic r o se i s m s

a1 =  g к tanh к h ( 7 )

There is a close analogy with the m otion 
o f  a pendulum (see figure 2 ) .  In a complete 
cycle the hob o f the pendulum is raised and 
lowered twice, through a distance proportional 
to the square o f  the amplitude o f swing, when 
this is small. The only forces acting on the 
pendulum are gravity, which is constant, and 
the reaction at the support. Hence there must 
he a second-order fluctuation in the vertical 
component o f the reaction at the support. 
Furtherm ore the reaction will be least when 
the pendulum is at the top o f the sw ing (the 
potential energy is greatest) and will be great
est when the pendulum is at the bottom of its 
sw ing (the potential energy is least).

It will be noticed that the above analytical 
p roof does not necessarily involve the idea o f 
the centre o f gravity, whose vertical coordinate
I  is defined by

( X  m ) I  =  £  (h i i )  . ( 8 )

The theorem on the centre o f gravity that was 
used previously is in fa ct usually derived from  
equation ( 1 ) : but in the present p roo f we have 
appealed directly to the original equations o f 
m otion for  the individual particles, without in
troducing z.

4. Two progressive waves— The above proof 
can easily be extended to the m ore general 
case o f two waves o f  equal period but unequal 
amplitude travelling in opposite directions. 
For, such a disturbance is exactly periodic in 
space. Thus we m ay consider a region one 
wavelength in extent, as fo r  the standing wave. 
This will not always contain the same mass o f

у

Figure S. The apectrua r e p r e ie n ta t io n  o f  a 
v a ie  group.
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w ater; but, ow ing to the periodicity, the ver
tical reaction on the bottom due to the flow o f  
water across one vertical boundary will be ex
actly cancelled by that due to the flow across the 
opposite boundary (see I Section 2.2) ; thus 
equation (4 ) is still exactly valid. The' wave 
profile in this case is represented by

С =  еоа  ( к x - о с )  + a , coa  (k x  + o t )  

and so ^

7 j? * dx =
К l i , 1 -I- I ,1 t  2> t • , coa 2 a t )  (10 ) 

giving

P * Pi -  g h =  -  2a]  a ,  a 2 cos  2 o t  ( 1 1 )

The mean pressure fluctuation on the bottom  
is therefore proportional to the product o f the 
two wave amplitudes &| and Э]. W hen these 
two are equal (a , =  a , =  - i  a ) w e have the 
case o f the standing wave, and when one is 
zero (a , —  a; a ,  =  0 ) we have the case o f  
the single progressive wave.

A physical explanation o f this result may 
be given as follow s. Suppose that one o f  the 
waves, say the wave o f amplitude a<, is re
duced to rest by superposing on the w hole sys
tem a velocity - с in the direction o f  x decreas
ing (this will not affect the pressure distribu
tion on the bottom ). The second wavo w ill 
now travel over the first with a velocity - 2c. 
The crests o f the second wave w ill pass alter
nately the troughs and the crests o f  the first 
wave - each twice in a complete period. F ig 
ure 3 shows the two phases. One may pass 
from  figure 3 (a )  to figure 3 (b ) by transferring 
a mass o f  fluid, proportional to a 2 , from  a 
trough to a crest o f the original wave, i.e. 
through a vertical distance proportional to a j 
(the transferred mass docs not o f course con
sist o f  identically the same particles o f  w ater). 
The vertical displacement o f  the centre o f grav
ity o f the whole mass is therefor shifted by an 
amount proportional to а , а г ; and hence the 
fluctuation in p is also proportional to a , a , .
5. Attenuation o f  the particle m otion— The 
fact that there is a pressure fluctuation on the 
bottom even in deep water does not, however, 
mean that there is movement at those depths, 
in  f a c t  it  m ay be sh ow n  ( L o n g u e t -  
Higgins 1953) that in exactly space-period ic 
m otion, whether in a simple progressive wave 
or a com bination o f  such waves, the particle 
m otion decreases exponentially with tho depth, 
apart from  a possible steady current. Now 
if  the velocities at great depths are zero, or 
steady, it follow s from  the equations o f  m o
tion that the pressure-gradient must be inde
pendent o f the time. Thus i f  there is a pres-
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sure fluctuation it must be uniform  in space, 
i.e. it must be applied equally at all points o f 
the fluid. This indicates that below a certain 
depth, in a strictly space-periodic motion, the 
pressure fluctuations are uniform and equal to 
the fluctuation jj ( t )  in the mean pressure on 
the bottom, which has been evaluated. The 
effect o f the waves, at great depths, is then 
the same as would be produced by an oscillating 
pressure applied uniformly at the upper sur
face o f the fluid— fo r  example an oscillation o f 
the atmospheric pressure. Alternately one may 
imagine a rigid plane or raft to be floating on 
the surface of the water and completely cover
ing it, and the pressure to be applied to this 
plane by means o f a weight attached to a 
spring and oscillating in a vertical direction.
6. An experimental verification— The above 
results were verified experimentally (Cooper 
and Longuet-Higgins 1951) in the fo l
low ing way. Waves were generated at one 
end o f  a wave tank and allowed to travel to
wards the far end, where they were dissipated 
on a sloping beach. The pressure beneath the 
waves was detected by means o f a hydrophone 
and was recorded continuously. On starting 
the motion from  rest, no appreciable pressure 
fluctuations were recorded until the wave-front, 
travelling with approximately the group-veloc- 
ity o f the waves, passed over the hydrophone. 
The pressure fluctuations then built up quickly 
to a constant amplitude, and had a period equal 
to that o f the waves. The amplitude agreed 
well with the first-order theory; it diminished 
exponentially with depth, and was negligible 
below about half a wavelength.

A  vertical harrier was then placed in the 
wave tank, between the hydrophone and the 
beach, which reflected the waves back over the 
hydrophone. A s soon as the reflected wave

S y m p o s i u m  o n  M ic ro se is m s

F igure 7 .  Graph o f  CJ( C2 , C3 ind С  ̂ ■■ 
function o f  oh /p 2 , «having the r e l a t i v e  ал- 
p li tu d c  o f  the v ort ic a l  diap1■cemene о i  tha 
" аса  bad" in the f i r a t  four Bodea,

Figure S. The fora  o f  tha « н а  apoctrua in  
a c ir c u la r  a t o m .

Figure 6. The region a a I in terferen ce  o f  two 
group* o f  »»ve* in the ipectrun.

Figure 9. in te rfe re n c e  c iu ied  by mov
ing cy c lo n ic  dopreaaien.
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front arrived over the hydrophone the appear
ance o f the pressure record was changed. A t 
moderate depths there were not only first-order 
pressure fluctuations from  the incident and the 
reflected wave, hut also considerable second- 
order pressure fluctuations, o f tw ice the funda
mental frequency. A t greater depths the first- 
order pressure fluctuations become negligible 
and only the pressure fluctuations o f  double 
the frequency remained. The amplitude of 
these was in good agreement with equation (6 ), 
W hen the barrier was removed, and the rear 
end o f  the reflected wave train had passed the 
hydrophone, the second-order pressure fluctua
tions rapidly died out.

Interference between waves o f  unequal 
amplitude was obtained by placing in the tank 
a vertical barrier extending only to a certain 
depth below the free  surface, which allowed 
the waves to be partly reflected and partly 
transmitted. The coefficient o f reflection from  
such a barrier is known theoretically fo r  d if
ferent ratios o f  the depth o f  the barrier to the 
wavelength o f the waves, and it was verified 
that the amplitude o f the second-order pressure 
fluctuations was proportional to the amplitude 
o f  the reflected w ave. Indeed this property 
seems to provide a convenient method o f  ac
tually m easuring the coefficient o f reflection 
from  different types o f obstacles or from  plane 
beaches.

Since standing waves produce only second- 
order pressure fluctuations below moderate 
depths one would expect that, i f  pressure fluc
tuations were induced deep in the water, stand
ing waves o f half the frequency would be pro
duced at the surface. A n  experiment o f this

у

Figure 10 .  The ipectriiD rcp reion  t i  t ia n  o f  
i n c i d e n t  end r e f l e c t e d  w ir e -g r o u p i .
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kind was in fact perform ed by Faraday 
(1831) ; (see Section 13 o f the present paper) 

who produced standing waves, o f half the fun
damental frequency, by means o f a vibrating 
lath inserted in a basin o f water. Faraday re
marked that the general result was little in
fluenced by the depth o f w ater: " I  have seen 
the water in a barrow, and that on the head 
of an upright cask in a brewer's van passing 
over stones, exhibit these elevations.”  (1831, 
footnote to p. 33 4 ). The present author has 
observed в sim ilar phenomenon on board sh ip : 
a pool o f water on deck, when excited by the 
vibration o f the ship's engines, sometimes 
shows a standing-wave pattern whose ampli
tude gradually builds up to a maximum, and 
then collapses; the process is repeated indefi
nitely.
7. Standing waves in a compressible fluid—  
The water has so far been assumed to  be in
compressible, and we have seen that in this 
case the pressure fluctuations below about half 
a wavelength from  the surface occur sim ul
taneously at all points o f the fluid. But this 
can only be true i f  the least tim e taken fo r  a 
disturbance to be propagated to the bottom 
and back is small compared with the period 
of the waves. In the deep oceans, where the 
speed o f sound is about 1.4 k m /sec  and the 
depth may be o f the order o f  several kilom eters, 
this time may be several seconds. Thus the 
compressibility o f  the water m ust he con
sidered.

The first-order theory o f waves in a heavy, 
compressible fluid (in which all squares and 
products o f the displacements are neglected) 
indicates that water waves o f a few  seconds’ 
period fall into two classes (W hipple and 
Lee 1935). On the one hand there are waves 
approxim ating very nearly to ordinary surface 
waves in an incompressible fluid, in which the 
particle displacement decreases exponentially 
downwards, to first order; these m ay be called 
gravity-waves. On the other hand there are 
long waves controlled chiefly by the com pres
sibility o f  the medium and hardly attenuated 
at all with depth; these may be called com pres- 
sion-w aves; their velocity is nearly the velocity 
of sound in water. The wavelengths o f a grav
ity-wave and a compression wave will be de
noted by X g and Ac respectively. For waves 
o f  period 10 sec. АдЛс is o f  the order o f 10 ' 1 .

However, the pressure variations which 
are o f  interest to us at present are o f  second 
order. T o investigate the effect o f  the com 
pressibility, therefore, a com plete_ example, 
namely a motion which in the first approxim a
tion is a standing gravity-w ave, has been 
worked out in full to a second approxim ation 
(I  Section 4 ) .  The result is аз follow s.

Near the free surface, that is within a dis
tance small compared with l c ,  the waves arc 
unaffected by the com pressibility o f  the Water
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— as one m ight expect, since a disturbance 
could be propagated almost instantaneously 
through this layer. A t a distance o f about У± 
?. g from  the free surface the first-order pres
sure variations are much attenuated, and the 
second-order pressure variations are practical
ly those given by the incompressible theory 
(equation [ 6] ) .  Below this level the displace
ments are comparatively small, but, instead o f 
the uniform, unattenuated pressure fluctua
tions in the incompressible fluid, there is now a 
compression wave, whose planes of equal phase 
are horizontal: the pressure field in this wave 
is given by

(12)
.  js a2 0 2 5 H j a ( i - h ) / c  c o s  2 

c o s  2 o h /c '
very nearly, where z is the vertical coordinate 
measured downwards from  the mean surface 
level, and c 1 is the velocity o f sound in water. 
This wave can be regarded as being generated 
by the unattenuated pressure variation ( 6) . 
There is a resonance, or "organ-pipe,”  effect: 
when cos 2 о h /c  1 vanishes, the pressure on 
the bottom  (z =  h ) becomes infinite. This 
happens when

t ( x ,  1, t )  =

(14)« 00x 00

R  I | a  (u ,v) e i<ul“  + + a t )  du dv
J-oo J-oo

where (x , y ) are horizontal coordinates, к is a 
constant and о is a function o f (u, v ) :

(j5 = g к (u2 + v 2)K tonh (u2 + v к h (IS)

A  (u, v ) is in general complex, and R  denotes 
the real part. The expression under the inte
gral sign represents a long-crested wave With 
crests parallel to the line

u x + » у =  0

and o f wavelength X given by

2o h / c '  =  (п + И )л (1 3 ) ~  (u 3 + v J ) K к

(16)

(1 7 )

that is, when the depth is (Vb n +  Ц.) times 
the length o f the compression wave. In gen- 
eral, however, the displacements in the com
pression wave are small, being only o f  the order 
o f  a 2 A c  I the displacement of the centre of 
gravity o f the layer at the surface o f thickness 
Yl Xg is o f the order o f a '/X g . This explains 
why the compressibility o f the fluid below has 
little effect on the pressure fluctuations at the 
base o f the surface layer.

W e have then the follow ing picture (see 
figure 4) : there is a surface-layer, o f  depth 
about i/fc 3ig, in which the compressibility o f 
the water is, in general, unim portant: this may 
be called the "gravity-layer." Below this lay
er there exist only second-ordcr compression 
waves, generated by the gravity-waves in the 
surface layer, and o f twice their frequency.

8. Application to sea waves— So fa r  we have 
considered only the very special cases o f  per
fectly periodic and two-dimensional waves. 
Such waves cannot, be expected to occur in the 
ocean, although the sea surface usually shows 
a certain degree o f  periodicity. W e shall now 
consider how the sea surface is to be described 
in this m ore general case.

It can be shown (See I Section 3.2) that 
any free  m otion o f the sea surface can be ex
pressed as a Fourier integral:

I f  the point P, =  ( -  uk, -  vk) is plotted in the 
(x, y ) plane (see figure S) the direction o f the 
vector О P is the direction of propagation o f 
the wave-component and the length o f  О P 
equals 2n divided by the wavelength. Points 
on a circle centre 0  correspond to wave com 
ponents o f the same wavelength; diametrically 
apposite points correspond to waves o f  the same 
length but travelling in opposite directions. 
When the energy is mainly grouped about one 
wavelength and direction, the complex ampli
tude A (u, v ) will be appreciably large only in 
a certain range o f values of (u, v ) ,  say fl, as in 
figure 5. The narrower this region, the more 
regular will be the appearance o f the waves.

The spectrum A (u , V) of the waves is de
termined uniquely hy the motion o f  the free 
surface, at a particular instant, over the whole 
plane (see I, Section 3 .2 ). Since we shall want 
to consider the wave motion in only a certain 
part o f the plane, say a square S of side 2R, it 
is convenient to define a motion £ '  which, at 
any time, has the same value as С inside S but is 
zero outside. Let A ' be the spectrum function 
o f so ^ a t

V  =
/•“> r*> (18)

R i(u k x  + vky + О О
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A 1 la very closely related to A ; i f  к ia chosen 
ao that

k =  я / R  (19)

and if  R  is large compared with the -wave
lengths associated with moat energy in the 
apectrum then (see I Section 3.3)

к Ч  \ -Г °вГ“>А( \ ain (u-u ) n  s in  ( v - v j ) n  - i ( o - f f jA ' ( u , t ) =  A ( u . , v . )  — .--------- J—  e ‘' d u d v .
J . J .  (u-UjjTt (v-vjlt

(20)

where o ,  ~ o(U|, v , ) .  In other worda A '  
is the weighted average o f  values o f A  over 
neighboring wavelengths and directions. Since 
u and v are proportional to the number o f  wave
lengths intercepted by the x —  and у— axis in 
S, a ‘ ‘neighboring’ ' wave component is one 
-which has nearly the same number o f wave
lengths, in each direction, in S. A 1 gives a 
"blurred”  picture o f A ;  but the larger the side 
o f  the square, the leas ia the blurring. The 
region О 1 in the (u, v ) — plane which corre
sponds to the blurred spectrum  will be almost 
the same as the region £2 corresponding to the 
original spectrum. A 1 also varies slowly with 
the time— the waves in S change gradually—  
but this rate o f  change is slow compared with 
the rate o f  change o f the wave profile, or com 
pared with о A 1.

The energy o f  the waves ia given very 
aimply in terms o f the apectrum function A 1; 
in fact, i f  a denotes the amplitude o f  the single 
long-crested wave which has the same mean 
energy inside S,

=1.1A 'A 1*  du dv (21)

where a star denotes the conjugate complex 
function (I  equation [1 8 9 ]) . a may be called 
the equivalent wave amplitude o f  the motion.
9. General conditions for  fluctuations in the 
mean pressure— We shall evaluate the mean 
pressure p at the base o f  the gravity-layer, i.e. 
at a distance o f about >/i Xgbelow  the free sur
face, over a square o f aide 2R. (H ere X g re
fers to the mean wavelength o f  the predom i
nant components in the spectrum .) Consider 
first the two-dimensional case. The mass o f 
w ater contained between the surfaces z =  t  
and 2 == Vi Xgand the planes x =  ±  R no long
er consists o f the same particles o f w ater; but 
it is possible to extend the analysis o f Section 
3 so as to take account o f  the motion across 
the boundariea (sec I Section 2 .2 ). Provided 
that tho horizontal extent 2R o f  the interval 
ia large compared with X gthe effect o f the flow 
across the vertical boundariea can be neglected 
(I  Section 3 .1 ). Further, since the motion de
creases rapidly with depth the effect o f  flow

across the horizontal plane z =  l/i A^is small. 
The expression for  the mean pressure variation 
is therefore the same as if the free  surface were 
the only m oving boundary:

P-P. „ a 1 Г „ „ , <22)

Similarly in the three-dimensional case

P -P .
P

S  i  j; л *  —
(23)

that ia 

?  ■ P.
p • “ * * !  ~

CO oo

h ' w  I I

(24)

aince vanishes outside the square S. N ow  
the expression on the right-hand side is closely 
related to the potential energy o f  the m otion 
t  •, and can be simply expressed in term s o f 
the Fourier sp ectru m -fu n ction  A 1. In fa ct 
(I  Section 3.2)

oo a 

/  / ac * d* dy =
(2S)

R (  п Д ) а

oo cO 

/  / „ - 2icrt.
'A"* + A'Ai e °  ) du dv
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where A I  stands fo r  A 1 (— u, — v ) ,  and is the 
Amplitude o f  the wave component opposite to 
A (u , v ) .  On substituting in (24) we have

-  Я g X =

tO eo (26)

1 A’ Ai e du dv

This shows that fluctuations in the mean pres
sure p arise only from  opposite pairs o f wave 
components in the spectrum ; that the contribu
tion to p from  any opposite pair o f wave com
ponents is o f  twice their frequency and pro
portional to the product o f their amplitudes; 
and that the total pressure fluctuation is the 
integrated sum o f the contributions from  all 
opposite pairs o f wave components separately.

The necessary condition for  the occurrence

o f  second-order pressure fluctuations o f this 
type is, therefore, that the sea disturbance 
should contain some wave-groups o f appre
ciable amplitude which are "opposite,”  i.e. such 
that part at least of the corresponding region 
in the Fourier spectrum is opposite to some 
other part. For example, if fi lies entirely on 
one side o f  a diameter o f  the (u, v ) — plane, 
the mean pressure fluctuation, to the present 
order, vanishes.

An important case is when the disturb
ance consists o f  just two wave groups, cor
responding to regions П i and f i j ,  and o f  equiv
alent amplitudes a , and a? (see figure 6 ) .  
fl ]. and A 3. , denote the regions opposite to 
Я i and flj and П и  and О и  denote the re
gions common to fl i and fl 2.  and to H i- and 
fl i respectively. Effectively, then, the inte
gration in (26) is carried out over the two 
regions fi и  and fi ц .  . When the spectrum is 
narrow an order o f magnitude for  the integral 
on the right-hand side o f  (26) can be obtained. 
It may be shown (see I Section 6.2) that

(27)

where o la is the mean value o f  о in Я ц . Thus 
the mean pressure on S increases proportion
ately to the square root o f  the region О ц  o f 
overlap o f the wave groups, and inversely as 
the square root o f £5] and ft , separately, for  
fixed values o f a ,  and а г.

10 . Calculation o f (he ground movement— In 
order to estimate the movement o f the ground, 
at great distances, due to waves in a storm area 
Л, we suppose the storm area to be divided up 
into a number o f squares S o f  side 2.R such that

S contains many wavelengths Ig  o f the sea 
waves, but is only a fraction, say less than 
half, o f the length o f a seismic wave Xs in the 
ocean and sea bed. This we may do, since the 
wavelengths o f seismic waves are o f the same 
order as the wavelengths o f compression waves 
in w ater; therefore 1 , Л 5 is o f  the order o f 
10 ' 1 . The mean pressure or total force on 
the base the gTavity-layer can be calculated as 
in Section S ; the vertical movement o f the 
ground Й 1 due to the waves in this square is o f 
the same order as if  the force were concen
trated to a point at the center o f the square, i.e.

6 ’ —4П* . 2 a.
12

% к W ( 2 o 12 r) (2 6 )

where r is ф е  distance from  the center o f the 
storm  and W  (o, r ) e i c t  is the movement of 
the ground at distance r due to n unit pressure 
oscillation e 1^ 1 applied at a point in the mean 
free surface. The pressure can be considered 
to be applied in the mean free  surface rather 
than at the base o f the gravity-layer, since the 
latter is relatively thin compared with the 
length o f the seismic waves. To find the total

displacement 8 from  the storm w e may add the 
energies from  the different squares S, on the 
assumption that the contributions from  the 
different squares are independent. Since 
there are A /4R  such squares in the whole 
storm area, this means that the disturbance 6 1 
from  each individual square is to be multiplied 
by ЛИ /2 К . Hence we have

6 ~ 4 n .  Oj| ( Л Й 12/ П 1 02)X * (2a U .  r )  * (29)

T o calculate W  (o, r ) we may consider the 
disturbance due to a force applied at the sur- 
face o f a compressible fluid o f depth h (rep
resenting the ocean) overlying a semi-infinite 
elastic medium (representing the sea bed ). A l
though this model takes no account o f  varia

tions in the depth o f water, or o f  the propaga
tion o f the waves from  the sea bed to the land 
or across geological discontinuities! it can nev
ertheless be expected to give a reasonable esti
mate o f the order o f magnitude o f  the ground 
movement.
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The disturbance W  (a, r )  e»0 1  at grpat I.e. waves spreading’ out radially in tw o dimen- 
distances from  the oscillating point source e l0 t  eions (see I Section Б.1). Thus 
consists o f one or  m ore waves o f surface type,

W(0 , r )  e 10t= ----------- 7 ^ - 7 x Z C „ e  r  + < » + ^ 1  <30)
ра 0 2 ( 2n r )x  • *  *

w here p ,  is the density o f the elastic medium, 
P j the velocity o f secondary waves in the medi
um, 2jt/£m is the wavelength o f the mth wave 
and Cm is a constant amplitude depending on 
the depth o f water and on the elastic properties 
o f  the fluid and the underlying medium. The 
first wave has no nodal plane between the free 
surface and the "sea bed,”  the second has one 
nodal plane, the third two, and so on. When 
the depth h o f  the water is small, only the 
first type o f wave can exist; the others appear 
successively as the depth is increased. Graphs 
o f  С i, Cj_— have been computed fo r  some typ
ical values o f the constants: p , (the density o f 
the fluid) =  1.0  g ./c m J ; c 1 (velocity o f com
pression waves in water) = 1 .4  km./в е с .; p j =  
2.8 km ./sec., and with Poisson’s hypothesis, 
that the ratio o f  the velocities o f com 
pressions] and distortional waves in the medi
um is У^/Т. The results are shown in figure 7, 
where C l  , C 3 , C 3 and C 4 are plotted against 
o h /P j . С i , fo r  example, increases to a m axi
mum when o h /p a =  0.85, i.e. when h =  0.27 X
2 i c  ’ /a , or h is about one-quarter o f  the wave
length o f a compression wave in water. This 
maximum may therefore he interpreted as a 
resonance peak. The amplitude, however, does 
not become infinite as in the case o f the infinite 
wave-train discussed in Section 7, since now 
energy is being propagated outwards from  the 
generating area. C j, Co, and C« have similar 
resonance peaks when oh/pa =  2.7, 4.1 and 6.3, 
respectively, i.e. when the depth is 0.86, 1.31 
and 2.0 times the length o f a compression wave 
in water. A measure W o f the total disturbance 
can be obtained by summing the energies from  
each wave. Thus

s  = — s r f — ?  (r.  ‘ ■ T  <J1> 
02 (аПг)

11. Practical examples— We have seen that a 
necessary condition for  the occurrence o f the 
type o f  pressure fluctuations studied in this 
paper is that the m otion o f  the sea surface 
should contain at least some wave groups o f 
the same wavelength traveling in opposite di
rections. We shall briefly consider some situ
ations in which this may occur.

(a ) A circular depression. The “ eye”  or 
centcr o f  a circular depression is a region o f 
com paratively low w inds; yet there are often 
observed to be-high and chaotic seas in this 
region (w hich  indicates the interference of 
more than one group o f  sw ell). Thus, the

waves in the "eye”  must have originated in 
other parts o f the etorm. N ow  the w inds in a 
circular depression are mainly along the iso
bars, but in some parts o f  the storm  they usu
ally possess a radial component inwards. In 
addition, some wave energy may well be propa
gated inwards at an angle to the wind. This 
then may account fo r  the high waves at the 
center o f the storm.

I f  wave energy is being received equally 
from  all directions, the energy in the spectrum 
w ill he in an annular region between two 
circles o f  radii 2 n/Xu nnd 2 it/Xj, where 
XI and X] are the least and greatest wavelengths 
in the spectrum (see figure 8 ) .  This region 
may be divided into two regions fl l and Q з by 
any diameter through the origin. Let us take 
numerical values appropriate to a depression 
in the A tlantic Ocean. Suppose that the wave- 
periods lie between 10 and 16 seconds, so that 
jii =  1.64 x  10* с т . ,  X] =  4.00 x Ю 4 cm. and 
ЬепсеО , = А , = П15 = 2,1Б x  10 ’ 7 cm . ' 1 . A s 
suming A =  1000 km 3 (corresponding to »  c ir 
cular storm  area o f diameter 17 k in .), a n  =
2 л /13 s e c . '1 , a| =  a ,  =  3m., h =  3 km. and 
r =  2,000 km. we find from  (29) that |fi I =  
3.2 x  10 ‘ 4 cm., or 3.2|jl The peak-to-troug;h 
amplitude o f  the displacement is 6.5ц. This is 
o f the same order o f magnitude as the observed 
ground m ovem ent

(b ) A  m oving cyclone. Consider a cy
clone which is in m otion with a speed com 
parable to that o f the waves. F igure 9 repre
sents the position o f the cyclone at tw o d if
ferent times. When the center o f the storm 
is at A, say, winds on one side o f the storm 
(marked with an arrow ) will generate waves 
travelling in the direction o f motion o f the 
s torm ; these will be propagated with the ap
propriate group velocity. When the storm  has 
reached B, winds on the opposite side will gen
erate waves travelling in the opposite d irec
tion ; and i f  the storm  is m oving faster than 
the group-velocity o f the waves, there will be a 
region С where the two groups o f waves will 
meet. Thus, in the trail o f a fast-m oving cy 
clone we may expect a considerable region o f 
wave interference.

(c )  Reflection from  a coast. The extent 
o f wave reflection from  a coast is hard to judge, 
since the reflected waves are usually, hidden 
by the incom ing w aves; but when the waves 
strike a coast or headland obliquely the reflected 
wavee can sometimes be clearly seen. E ffec
tive wave interference will take place only on 
the parts o f  the coast where the shorelino is
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parallel to the crests of some wave components 
o f the incoming waves, but refraction of the 
waves by the shoaling water will tend to bring 
the crests parallel to the shore.

I f  the incoming waves are represented by 
a region fi | in the spectrum, then we may as
sume that the reflected waves are represented 
by a region Я i which is the reflection o f fli in 
the line through О parallel to the shoreline (see 
figure 10 , in which the x-axis is taken parallel 
to the shoreline). Q j- is then the reflection 
o f  Q | in the line through О perpendicular to 
the shoreline (the y -ax is).

Suppose that the period o f the incoming 
swell lies between 12  and 16 seconds, that its 
direction is spread over an angle o f 30°, and 
that its mean direction makes an angle o f 10° 
with the perpendicular to the shoreline. Then 
we find О . =  (1, =  1.4 x  1 0 " ' cm ." ’  , 0| , 
=  1 /3  0 ,  =  0.47 x  10 -" cm . ' 1 . I f  the ef
fective shoreline is €00 km. in length and the 
region o f interference extends, on the average, 
10 km. from  the shore, then Л =  6,000 k m ’ . 
I f  also a i =  2n, a 3 =  0 . lm(a reflection coeffi
cient o f Б%) and i f  г  =  2,000 km., then we find 
from  (26) (assuming h —  0) that 2 |8l—  0.3ц. 
Since this amplitude is somewhat smaller than 
in case (a ) , we may conclude that coastal re
flection does not give rise to the largest disturb
ances at inland stations, though it may be a 
more common cause o f microseiams near to the 
coast.

Besides the examples given above there is 
another possible doss o f cases, namely when a 
swell meets an opposing wind. For example, 
coastal swell may be subject to an offshore 
wind, or there may be a sudden reversal o f the 
direction o f  the wind at the passage o f a cold 
front.* The wind will doubtless tend to dim
inish the amplitude o f the original swell, but 
it may also tend to generate waves travelling 
in the opposite direction, the amplitude o f 
which may increase rapidly on account o f the 
roughness o f  the sea surface. However, in 
none o f the first three cases discussed above is 
it necessary to assume that such action takes 
place.

12. Observational tests— The present theory 
suggests several possible kinds o f experimental 
investigation. The first is a comparison o f the 
periods o f  microaeisms and o f the sea waves 
possibly associated with them, (which should 
be about twice the microseism periods). There 
is a general agreement between the periods, in 
that the range o f microseism periods is from  
about 3 to 10 seconds while the periods o f  high 
вен waves vary from  about 6 to 20 seconds. 
Further, the periods o f both microaeisms and 
sea waves both increase, in general, during a 
time o f  increased disturbance. The close two- 
to-one ratio between the periods o f  sea waves 
and o f  the corresponding microseisms which 
was found by Bernard (1937 and 1941) and re-

* Sea alio the author*! comment on the paper by 
Prank Prraa.
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lated by D ea con  (1947) and Darbyahirc 
(1948) is highly suggestive, though not conclu
sive. A similar, though less detailed study by 
Kishinouye (1961) during the passage o f a 
tropica] cyclone, has not confirmed the relation
ship. Comparisons o f  this kind are, however, 
inconclusive, unless it can be shown that the 
microseisms can be associated uniquely with 
the recorded sea waves. The meteorological 
conditions are rarely so simple, and the record
ing stations so well placed, that it is possible 
to be certain o f  the connection ; the examples se
lected by Darbyshire (1950) were, how
ever, chosen with this requirement in mind.

Figure 7 shows that the displacement of 
the “ sea bed" may vary by a factor o f  the order 
o f Б, depending on the depth o f the “ ocean." 
Although the model chosen is extremely simpli
fied, we can nevertheless infer that the ampli
tude o f microseisms should, on the present the
ory, depend considerably on the depth o f  water 
in the pnth o f the m icroseism s; the depth in the 
generating area itself, where the energy-den- 
sity is greatest, should be of the most critical 
importance. Comparisons between the m icro- 
seisms due to storms in different localities 
would therefore be o f  considerable interest It 
should be noticed that the unequal response o f 
the ocean to different frequencies may result 
in a displacement o f the spectrum towards 
those frequencies fo r  which the response is a 
maximum.

The nature o f  the frequency spectrum o f 
sea waves under various conditions is o f fun
damental importance, and further studies 
should be undertaken. The wavelengths and 
directions o f the components o f the spectrum, 
both for  swell and for  waves in the generating 
area, could be studied by means o f aerial photo
graphs or altimeter records taken from  an air
plane. An estimate o f the amount o f  wave re
flection from  a coast might be obtained by tech
niques similar to those which were used in the 
model experiments described in Section 7, that 
is, by comparing the frequency spectra o f pres
sure records taken at different depths in the 
water, or off different parts o f the same coast 
where the bottom gradient varied. The effect 
o f  an opposing wind on a swell might be in
vestigated on a model scale, by generating pro
gressive waves in the usual manner and then 
exposing them to an artificial w ind; the growth 
o f the opposing waves would be measured by 
means o f the second-order pressure fluctua
tions deep in the water.

It would be o f  great interest to record 
the pressure fluctuations on the ocean floor 
directly, i f  the practical difficulties o f  making 
measurements at such depths can be overcome. 
A  pressure recorder has been designed for  this 
purpose by F. E. Fierce, o f the National Insti
tute o f  Oceanography.
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13. Historical notes— It was known to F A R A 
D A Y  (1831), who refers to earlier work by 
Oersted, Wheatstone and W eber, that fluid rest
ing on a vibrating elastic plate will form  itself 
into short-crested standing waves. Faraday 
was the first to show, by an ingenious optical 
method, that the period of the standing waves 
is twice that o f the vibrations o f the plate. The 
waves that he used were mostly "ripples,”  con
trolled predominantly by surface tension, since 
their wavelength lay between >4 and %  inch. 
In the same paper (1831) Faraday describes 
many other interesting experimental studies 
of waves in water, mercury and air.

About fifty years later Rayleigh (1883 
b ) repeated Faraday's experiments and veri
fied, by a slightly different method, the doub
ling o f the period. In a theoretical paper 
(1883 a) Rayleigh gives general consideration 
to the problem of how a system can be main
tained in vibration with a period which is a 
multiple o f the period o f the driving force. He 
refers in particular to Melde’s experiment, in 
which a stretched string is made to vibrate by 
the longitudinal oscillation o f a tuning fork 
attached to one end; such a phenomenon ia 
Bometimes called "subharm onic resonance.”

Neither F a ra d a y  (1 8 3 1 )  n or  R a y 
leigh (1883) evaluated the s e c o n d -o r d e r  
pressure fluctuations associated with standing 
waves. This, however, was done by M ICHE 
(1944) in a different connection, using a La- 
grangian system of coordinates. Miche noticed 
the unattenuated terms, and, though he does not 
mention microseisms, he remarks, "on  peut 
aussi se demander si ces pulsations de pression, 
malgrd leur faible intensity relative, n ’exercent 
pas une action non n£glig£able sur la tenue des 
fonds soumis au clapotis.”  (1944, p. 74.)

The wave interference theory seems to 
have arisen as fellows. In 1946 Deacon, fo l
lowing similar studies by Bernard (1937, 
1941 a) compared the period and amplitude of 
swell off the coast o f  Cornwall, England, with 
the corresponding microseisms at Kew, and 
found a two-to-one ratio between the periods 
(Deacon 1947). F. Biesel, then visiting 
England, pointed out to Deacon Miche's theo
retical work on standing waves. Miche’s re
sults, however, cannot be applied directly to sea 
waves, since exact standing waves do not oc
cur in the ocean. M oreover, his method is not 
easily generalized, since it involves a complete 
evaluation o f  the second approxim ation to the 
wave m otion. A  very simple proof o f Miche's 
result, however, which depended essentially on 
the idea o f the vertical motion o f  the center 
of gravity o f  the whole wave train, was 
found by Longuet-Higgins and Ursell (1948) ; 
the advantage o f  this method was that 
the second-order pressure fluctuations on the 
bottom could then be obtained immediately 
from  the first approxim ation to the surface ele-
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vation, It then became possible to extend the 
results to much more general and realistic types 
Of wave motion. A  complete theory, giving 
the necessary conditions fo r  the occOrrcnce o f 
this type o f pressure fluctuation, taking into 
account the com pressibility o f the ocean, and 
determining the order o f m agnitude o f the 
ground movement, was given by Longuet- 
Higgins (1950).

It  is interesting that Bernard (1941 a, 
b) had suggested, with intuitive reasoning, that 
microseisms might be caused by the standing- 
type waves observed to occur at the center o f 
cyclonic depressions:

“ J'ai cru qu’on pourrait trouver la raison 
de cette particularite dans le charactere que 
prGsentent les mouvements de la m er au centre 
des depressions cycloniques: la houle s ’y  dressc 
nux vagues pyramidales constituant un clapotis 
gigantesque dont les points de plus ample os
cillation peuvent etre autant (les sources de 
pression periodique sur le fond de la mer, 
pression qui donnera naissance a un mouve- 
ment oscillatoire de m im e periode du sol . . . ”

“ Un clapotis analogue, avec oscillations 
sur place du niveau de I'eau, se produit lorsque 
la houle, se reflechissant sur un obstacle, vient 
interferer avec les ondes incidentes . . .

"A u  contraire, dans le cas d'un train 
d'ondes de front continu et de deplacem ent 
constant, les points ou les mouvements sont de 
phase opposee donneront sur le fond de la mer 
des pressions de sens contraire, et la longeur 
d’onde des oscillations microseism iques etant 
beaucoup plus grande que celle de la houle, les 
mouvements transmis par le sol a une certaine 
distance seront pratiquement simultanes, mais 
opposes, et ils interf£reront, de sorte que 
l'effet total du train de vagues a 1'exterieur sera 
nul." (B E R N A R D , 1941 a, p. 7.)

However, Bernard did not apparently see 
that the corresponding pressure fluctuations 
must have a frequency twice that o f the waves; 
for  he suggests other causes fo r  the observed 
doubling o f the frequencies in the case o f coast
al waves." (Bernard, 1941a, p. 10.)
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Discussion
G. E. R. Deacon (N ational Institute o f Ocean

ography at Teddington)
The wave-interference theory explains, 

fo r  the first time, how energy sufficient to gen
erate long, regular, microseisms is communi
cated to the ground. It has been clear for a 
long time that the occurrence o f microseisms is 
associated with the presence o f  aea waves, but 
it could not be proved that the wavea played an 
essential part in the energy transfer.

Although each breaker, a s  it crashes on 
the coast, must cause a local disturbance, and 
has been ahown to do so, the variations in the 
m oment o f impact along a stretch o f coast, and
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the shortness o f the wavelength compared with 
that o f  3 to 10 second microseisms, make it 
most unlikely that the actual beating o f  surf on 
a coast could produce the long microscismic 
waves that can be detected far from  the coast

The exponential decrease in wave move
ment with depth was sufficient reason why a 
train of progressive waves should not disturb 
the sea bottom at great depths, and at lesser 
depths the contributions from  different parts 
o f the sea bed would tend to cancel each other 
out. Taking account o f the compressibility of 
the water made no significant difference to this 
conclusion.

I f  the conviction held by many who had 
studied microseisms, that sea waves are di
rectly concerned in the generation o f micro
seisms were to be confirmed, we had to find a 
theory which showed that sea waves were modi
fied in such a way that they were able to cause 
regular changes in pressure, acting simultane
ously over large areas o f the sea hEd. During 
the past few  years it has, in addition, become 
necessary to explain why the periods o f the 
micraseismic waves are-half those o f the sea 
waves, and how the effect o f wind and wave- 
height could vary with the depth o f water, 
being sometimes greater in deep water than in 
shallow.

The new wave-interference theory seems 
to fill these requirements, and to he capable o f 
withstanding the test o f  more precise and well- 
directed observations.

It is not easy fo r  the non-mathematician to 
understand the precise demonstration that two 
trains of waves o f the same wavelengths, meet
ing each other in opposite directions, will cause 
variations in pressure on the sea bed with twice 
the frequency o f the surface waves, but Dr. 
Longuet-Higgins has done his best to explain 
it in non-technical terms. The deduction is 
simplified by considering the vertical move
ments o f the centre o f gravity o f a water mass 
bounded by two vertical nodal planes, and by a 
comparison with the changing tension in the 
string o f a pendulum. It is perhaps not very 
difficult to accept the result intuitively, as 
Bernard (1941) did, particularly if  we re
member the convincing agreement between 
theory and observation obtained by measure
ments in a tank.

There is also confirmation o f the mean 
pressure changes and their ability to produce 
microseisms that can be detected fa r  from  the 
coast, in the work of Derbyshire (1950). 
As Dr. Longuet-Higgins says in his paper, 
confirmation o f the two to one relationship 
between wave and microseism periods does not 
completely verify the theory, but when, as 
Darbyshire showed, the trend o f a band o f swell 
from  long to short periods was exactly par
alleled by proportionate changes in the m icro
seism periods there is little room to doubt that 
the waves caused the microseisms.
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I f  the previous literature is re-examined, 
bearing the w ave-intcrfcrence theory, and 
what we already know about waves, in mind, 
some o f  the apparent contradictions to which 
emphasis has been given appear explainable. 
The example given by W hipple and Lee 
(1935) o f almost identical isoharic charts o f 
two depressions south-east o f Greenland, one 
associated with intense m icroseism ic activity 
and the other with practically none, ia not such 
an obstacle when the previous histories o f  the 
two depressions are studied. One had moved 
rapidly northwards over the ocean, with plenty 
o f opportunity fo r  wave interference, whereas 
the other had developed over the land. Similar 
attempts to estimate wave interference m ight 
explain why less m icroseism ic activity was 
found with a depression over the mouth o f  the 
St. Lawrence river and an anticyclone over the 
Great Lakes than when the positions o f the 
depression and anticyclone were reversed ; or 
why, with a shallow depression off the east 
coast o f  Japan, the microseisms were larger on 
the coast o f  China while the wind was stronger 
off the coast o f  Japan.

There is, however, not much to be gained 
by studying cases which are not fu lly  docu
mented. W e must, as Dr. Longuet-H iggins 
emphasizes, learn m ore about the conditions 
which give rise to wave interference; we must 
select examples in which the m etorological con
ditions are sufficiently simple fo r  us to be cer
tain o f  the connection between the storm and 
the microseisms, and we must measure the 
waves and the microseisms as precisely as 
m odem  techniques will allow. It is possible 
that some o f  the present misunderstanding ia 
due to faulty interpretation o f  records from  
seismometers that are highly tuned to the 
short-period end o f the microseism range, and 
faulty estimation o f  the sea surface or wave 
and m icroseism recordings, in which the size of 
a long period oscillation can be underestimated 
ow ing to the interruption o f  its sw ing by m inor, 
shorter, waves.

The wave-interference theory is, to say the 
least, an excellent working hypothesis, and i f  it 
is subjected to further question and experi
ment, o f  the standard set by Dr. Longuet-H ig
gins and his co-w orkers, we must move rapidly 
towards a full solution.

It seems to me that the subject has now 
been put on a systematic basis, and that its 
progress must be more rapid. In spite o f  some 
setbacks we shall soon be in a better position to 
take full advantage o f  the practical possibili
ties.

I think that Dr. Longuet-H iggins’s histori
cal note gives a proper account o f  the develop
ment o f  the new theory.
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Discussion
J a c o b  E . D in g e r  

N a v a l R esea rch  Laboratory
As a discussion o f  the theoretical paper 

"Can Sea W aves Cause M icroseism s,”  I should 
like to present some o f  the data and interpreta
tions obtained by the Naval Research Labora
tory on various field trips during the hurricane 
seasons o f the past several years.

The data considered here is concerned with 
hurricanes which have followed paths in the 
Western Atlantic and Caribbean. It has been 
a prim ary objective o f  this work to obtain evi
dence which m ight help to  determine where the 
area o f m icroseism  generation is w ith respect 
to the hurricane center and to determ ine under 
what condition a hurricane can generate m icro 
seisms. In furthering this objective it has be
come o f interest to study the data in the light 
o f various theories to see if  the data lends sup
port to any o f these theories.

During the hurricane seasons o f  1948-1951 
records o f  microseisms have been obtained at 
points in the Bahamas, Florida, N orth Carolina 
and W ashington D. C. as various hurricancs 
have followed varying paths in the W estern 
Atlantic. The follow ing observations have in 
general been true fo r  all these hu rrican es:

(1 ) Storms which generate in the M iddle 
Atlantic and approach the seismo
graph locations do not produce ap
preciable m icroseism ic activity  until 
the storm moves over the continental 
shelf or, over the shallower waters 
surrounding the Islands o f  the Carib
bean Sea. This same observation is 
pointed out by Donn (1 9 5 2 ).

(2 ) As the storm  recedes, the m icroseism s 
continue at a  much higher level o f  
amplitude as compared to the same 
distance from  the seism ograph loca
tion during the approach o f the storm.

(3 ) The point o f  nearest approach is not 
necessarily the time o f  maximum 
amplitude.

The above observations can bo interpreted 
as g iving evidence that the storm  must m ove
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over the shallower waters o f the continental 
shelf before microseisms are recorded and that 
the wake o f  the storm continues to be important 
in the generation o f  microseisms. This and 
similar observations in the light o f  the 
Longuet - Higgins (I960) theory, together 
with the word o f Deacon (1947) a n d  
Derbyshire (1950). prompted t h e  Naval 
Research Laboratory group to conduct field 
experiments during the 1961 hurricane season 
designed to obtain data which could assist in 
determining whether any correlation appears 
to exist between microseisms and hurricane
generated ocean waves.

The installations o f the field experiments 
included the follow ing:
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(1 )  A  tripartite station on the West End 
o f  Grand Bahama.

(2 ) The installation o f two wave gagee at 
Cocoa Beach, Florida, through the 
cooperation o f  the Beach Erosion 
Board and the University o f Cali
fornia. These gages ware o f the 
pressure-sensitive type; the one was 
similar to the type developed by 
W oods Hole, and used quite extensi
vely by the Beach Erosion Board, and 
the otber was developed by the Uni
versity o f California. These gages 
were in water depths o f  about 29 and 
46 feet respectively.
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(3 ) A single horizontal-component seismo
graph was placed on the grounds o f 
the U. S. Navy Underwater Sound 
Reference Laboratory at Orlando, 
Florida. This location is approxi
mately GO miles inland from  Cocoa 
Beach, and therefore can be con
sidered isolated from  local surf vibra
tions, which can cause high seismic 
noise near the shore.

The simultaneous data o f microaeisms and 
water waves obtained by these Installations 
during the two hurricanes of the 1951 season is 
o f special interest in that the paths o f  the 
storms were radically different. Figure 1 
shows the paths of the two storms "E a sy" and 
“ H ow.”  "E asy" followed a path which was 
well out over deep water during its entire 
course (except near its end when it moved over 
the Banks o f N ewfoundland). Its nearest 
approach to Florida was about 650 miles.

Hurricane ‘ ‘ H ow" generated in the Gulf of 
Mexico, rapidly moved across Florida, and 
entered the Atlantic with the center passing 
«lightly to the south o f the wave-recorded loca
tion. Both o f these storms produced high 
waves on Florida but the character o f the 
waves was considerably different and the mi- 
croseismic activity was greatly different. The 
two storms therefore provide an interesting 
comparison.

Figure 2 gives results o f the simultaneous 
recordings o f microseisms and water waves 
throughout the period hurricane "E a sy”  was 
in existence. The wave-gage data was an
alyzed by the Beach Erosion Board to give the 
significant wave height and period plotted as 
curves С and D respectively. A measure o f 
the amplitude o f the microseisms was obtained 
by measuring the area enclosed by the envelope 
o f the micraseiems during а 1Б minute interval, 
an interval being used every two hours and in

HURRICANE EASY -  SEPTEMBER. 1951

f igure 2. Microeeiaaic and Water Wave A c tivity  (Xjring Hurricane 
"Eaay".
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some parts of the record every hour. The rela
tive position o f curves A and В has no signifi
cance since the two curves have been shifted 
with respect to each other. However, the 
value o f the arbitrary unite for A  and В is the 
aarae.

The sharp increase in both wave height 
and period aa shown in curves С and D on the 
morning of September 8 accompanied the arri
val o f the swell from "E asy .” Data from a 
Beach Erosion Board gage at Cape Henry and 
a report from Weather Ship H, several hundred

miles east o f Charleston, N. C., also gives added 
evidence that the wave activity shown by 
curves С and D on Sept. 8 is associated with the 
arrival o f swell from ‘ ‘Easy.”  The micro- 
seisms as recorded at Orlando on 8 Sept. show 
some increase in amplitude at approximately 
the a m i  time as the maximum wave activity at 
Cocoa Beach. Thfs increase in amplitude was 
not at all pronounced; in fact this particular 
period o f micrcseiams normally would not have 
received any attention as being an indication 
o f anything unusual. The record was too 
erratic to permit an analysis o f the most pro-

F i p i n  3.  H i e r o a a i a e i с and Water Wave A c t i v i t y  A i r i n g  Hu 
14 Ho«'\



72

C a n  S ea  W a v e s  C a u s e  M ic r o se is m s

nounced period. The slight increase in micro- 
seisms during the wave activity can be inter
preted as being associated with the swell rather 
than being generated directly under the etonn 
for these reasons:

(1 ) No simultaneous increase in m icro- 
seisms occurred in Washington.

(2 ) Microseisms generated under the 
storm should also have shown in
creased activity before the arrival of 
swell.

According to the Longuet-Higgins theory, 
a standing-wave pattern is required to transfer 
the water wave energy to microseisms. A  
standing wave pattern can conceivably be es
tablished upon reflection of the incoming swell 
by a sufficiently steep coast. The low level of 
microseismic activity during the swell from  
"E a sy" would indicate, if the Longuet-Higgins 
theory is o f importance, that the reflected wave 
energy along the Florida coast is very small. 
Because o f the very gradual slope o f the shore 
along Florida one would indeed expect low 
reflections.

The fact that no microseisms o f any con
sequence were recorded during the period this 
intense storm remained over deep water indi
cates either one o f two things : ( 1 ) microseisms 
were not generated by any method or ( 2 ) the 
generated microseisms were almost completely 
attenuated before reaching the continent. The 
data obtained by NRL ia unable to resolve 
which o f  these two factors is the important one. 
Carder (1951) has presented evidence to 
indicate that the attenuation o f microseisms 
propagated through the floor of the Western 
Atlantic ia much greater than the attenuation 
over continental land masses. I f  attenuation 
is the important factor, then the attenuation 
may vary with the nature o f the ocean floor 
and thus the results could be different in vari
ous parts o f the world. Derbyshire (1950), 
Banerji (1935) and o t h e r s  have pre
sented evidence that microseisms are generated 
in deep water and have been recorded at distant 
points in the case o f storm s over the Eastern 
Atlantic, the mid-Bay o f  Bengal, and the Paci
fic. In view of these observations which con
trasts with the observations in the Western 
Atlantic it may be inferred that attenuation is 
a much greater factor in the Western Atlantic 
than in certain other parts o f the world.

It is o f interest to point out the fact that 
longer period (7.5 to 8.0 second) mocroseisms 
are evident on curves A and Б, Figure 4, as 
occurring at Washington and Orlando on the 
m orning o f 12 September. The records o f 
these microseisms were nicely form ed and o f a 
regular nature. The simultaneity in time and 
period o f these microseisms at Washington and 
Orlando would indicate a common area o f 
generation. The fact that the storm  at this
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particular time was dissipating itself over the 
shallow areas off the coast o f Newfoundland is 
further evidence that a storm m oving from  
deep water to shallow water begins to generate 
micrcseisms. Intense winter microseisms are 
frequently observed when low-pressure areas 
move over this portion o f the North Atlantic.

Let us consider Figure 3 which shows sim
ultaneous data on wave and microseismic acti
vity obtained during hurricane “ H ow.” The 
wave gage was fortuitously placed in a strate
gic location slightly to the north o f the area 
where the storm entered the Atlantic. We 
may therefore assume that, i f  waves are re
sponsible for  the generation of microseisms, the 
waves as measured at this time should yield the 
best possible correlation inasmuch as the wavea 
were confined to the water areas near the 
gages. Let us therefore compare the water 
wave amplitude and the position of the storm. 
We note an abrupt increase in wave amplitude 
during the early m orning of 2 October, reach
ing a maximum about 1200 and dropping ofT 
abruptly about 2000. Referring again to 
Figure 1 we see that the forward part o f the 
storm entered the Atlantic in the m orning o f
2 October with strong winds blowing from  
south-southeast and bringing waves toward 
Cocoa Beach. A t about 1200 the center o f the 
storm moved into the Atlantic and by 2000 the 
winds in the trailing part o f  the hurricane were 
from  the north, thus effecting a reversal of 
wind as it existed 20 hours previously over this 
area. This reversal o f wind is evident on the 
wave records by a rather abrupt decrease in 
wave amplitude. On Figure 3 we see from  
curve С that the maximum microeeisms oc
curred ju st after the wind reversal. From 
curves D and E we observe that during the 
period when the water wave activity was con
fined to an area near the wave recorder the 
period o f  the water waves was closely tw o 
times the period o f the microseisms. It should 
also be pointed out that the magnitude o f the 
arbitrary units used as a measure o f microseis
mic amplitude on the Orlando records during 
‘ ‘ Easy" and “ H ow”  are the same. It is appar
ent that, although the height o f water waves 
recorded during the two storms is about the 
same, the amplitude o f the microseisms during 
“ H ow" was five or six times as large as the 
amplitude during “ Easy”  and in the case o f 
"H ow " the amplitude was very outstanding 
above the normal background.

From the above facts one may make the 
following interpretations:

(1 ) The correlation between one half the 
period o f the waterwave and the 
period o f the microseisms during 
"H ow ”  lends support to the Longuet- 
Higgins theory.

(2 ) The reversal o f wind and the setting 
up o f waves in a direction more or
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less in opposition to the waves gen
erated a few hours previously may be 
a very effective method o f producing 
the necessary standing wave system.

One may also refer here to the association 
of microseisms with cold fronts to support the 
thought that a relatively sudden reversal o f 
wind over shallow water areas provides a con- 
dition for microseism generation. Typical 
weather conditions off the eastern North 
American coaat, prior to the arrival o f a cold 
front, include moderately strong southemly 
winds. These winds would develop waves 
travelling in a northerly direction o f relatively 
small amplitude and short period. Following 
the passage o f  the cold front the wind direction 
normally changes abruptly to the northwest. 
It  is reasonable that at some time, shortly after 
the passage of the front, waves developed by 
the northwest winds will have periods and 
wavelengths nearly equal to that o f the dying 
swell from  the south. Thus, a standing wave 
component could exist which would have the 
potential for excitation of microseisms in ac
cordance with the Longuet-Higgins theory.
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ocean a second order pressure variation exiata 
which is not essentially influenced by the depth. 
Moreover, as the frequency of this variation 
is twice that of the ocean waves and as Bernard 
had observed that the period o f microscisms is 
roughly half that of sea waves, Longuet- 
Higgins and Ursell (1948) supposed that 
thig second order effect is the p r i m a r y  
cause of some microscisms.

The formula obtained by Miche can be 
derived by a small extension o f the theory o f  
gravity waves Consider the irrotational mo
tion in an incompressible ocean o f infinite 
depth; for simplicity's sake we suppose the 
movement to be two-dimensional.

The horizontal (u) and vertical (w ) com 
ponents o f the velocity are determined by a 
velocity-potential:

u = - дф/ 9*  and w d i/Qt.
From the equations o f motion

яр D* 
D u /D t  =  - —  and -----

e x Dt
do

- —  + 80 di

where D /D t =  a differentiation following the 
motion o f  the fluid, and p =  the pressure, we
obtain вф 1 ,

—  - — q + az = fit 2

with q4 = u2 + w 2 and pe =  the constant 
pressure at the free surface.

Placing the origin in the undisturbed sur
face the equation of this surface is

. t .
I = с

The potential Ф has to satisfy the equation 
o f continuity Д < =  0 and the boundary con 
dition

Discussion
J. G. SCHOLTE 

Royal Netherlands M eteorological Institute

The existence o f an unattenuated pressure 
variation in the ocean was already suspected 
by Whipple and Lee (1935) and some years 
later Bernard (1941) also suggested that a 
standing wave-system p rod u ced  in som e 
way microscisms, but the well known expo
nential decrease of gravity waves precluded 
any understanding o f  the process. However, 
in 1942 Miche proved that in the case of 
standing gravity waves in an incompressible

g Г
9 j =  “ < B js in  (kx - K t)  - *• 2

D/Dt - i  q2 + K i j  =0 fo r  i  =C  , o r  

ex.2

g —  + + ‘A q d q2 fo r  l  ~ C
Q z  d t

....................( 1)

A wave system consisting o f  two plane 
progressive waves travelling in opposite d i
rections :

Д  -kz
sin  (kx i  V t J > e  with aj s z  a 2
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fulfils й 4 = 0  and satisfies the boundary 
condition equation 1 , to a first approxim a
tion if  ка 1 and v * = gk . For a second ap
proximation we put Ф =  Ф,  + v a ’  f  where d «  d 
neglecting terms o f third and higher order in
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к * we obtain a 1 f = a, a a s in  2 i* t .
The corresponding surface elevation £ = 

С i + С j .with

С =  « ,  c o s  (kx - v t )  + a ,  cos ( k x  + „ О

= - —  к I  » I  2 cos 2 (k x - Kt) + a *

and the pressure =  pa + go* - g p £ , e

- 2 0 a, »2 v 2 c o s  2 v

Obviously at large depths(ki>> 1) the vary
ing part o f the pressure is

p = 2 Pa ,a J v 1 c o s  2 I/ t .........................(2)
which ia the result obtained by Miche for a 
standing wave system (a , = a2 ).

Considering a rather general irrotational 
movement LONGUET-HIGGINS (19Б0) was 
able to generalize equation (2) and to calculate 
the amplitude o f  microscisms caused by an 
arbitrary wave-like motion of the ocean. His 
final formula (his equation 198) may be in
terpreted in the following (inexact) way.

The Miche force o f the square X 2, where 
I =  the mean wavelength o f  the interfering 
progressive waves, is according to ( 2 ) equal to

2 p a j »2 v 2 X2
If the microscismic amplitude caused by a con
centrated unit force with frequency 2 v at a 
distance r is denoted by w (2 v , t )  the total 
amplitude will be

2 « ‘ | ■, » !  I 1 * 1 2 » ,  i)
Supposing the phases o f ocean waves at points 
separated by a distance o f a wavelength to be 
uncorrelated the amplitude generated by a 
storm with an area A will be o f the order

2 p a j a 2 и г \ г  H ( 2  и,  г)

With A =  lO 'kra’  and X -0.25km ( v =%) the 
vertical amplitude at a distance o f 3000 km. 
appears to be 9.4|i, which is o f the order o f the 
observed amplitudes. The detailed investiga
tion o f Longuet-Higgins shows that this has 
to be multiplied by a factor which depends on 
the frequency spectrum o f the wave system. For 
instance, if the energy of the movement is uni
formly divided in every direction within a 
range o f wave lengths between and X] this 
factor is

{ 4  М Г

cos 2 (kx + » t )  + 2a j « 2 соя 2 kx

O f 1 ( a ,2 + a 2 - 2 i ]  i .  cos 2 t ) e '2*1"J 1 L

the numerical value o f  this quantity is about
0.54 if i  i =  400 meters and =  154 meters. 
The vertical amplitude is then 5ц, and the 
horizontal Зц.

This theory undoubtedly explains the phe
nomenon of microseisms in a straightforward 
way. The only difficulty which it encounter* 
is the fact that microscisms occur very often, 
while it is a matter o f considerable doubt 
whether standing waves of rather large ampli
tudes are as common.
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Discussion from  the Floor
Haskell. (Questioning Longuet-Higgins.) 
Ocean waves are coherent over more than ju st 
one wave length, so shouldn’t the area o f  gen
eration be subdivided into areas that are larger 
than one wave length on a side— perhaps the 
wave lengths? (Lonffuet-HiffiginB answered, 
perhaps so.)
Longuet-Higgins. (In answer to Press’s ques
tion, ‘ 'what if  the wave periods on the surface 
occur off the peak of your resonance cu rve?") 
The sea waves must be considered as possessing 
not a single period, say 12 seconds, but a fre
quency spectrum of a certain width, say 8-16 
seconds (the pressure fluctuations would then 
be from 4 to 8 seconds period.) The spectrum 
□ f the microseisms should be a combination o f 
the spectrum o f the pressure variations and 
that o f a response curve. I f the moat promin
ent period o f the pressure variations occurs off 
the peak of the resonance curve, the most prom
inent period o f the microseisms would be ex
pected to be displaced towards the peak.
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Introductory Notes for Part С 
С. Mass Transport in Water Waves

Papers C l  to C6

The papers in this section were stimulated originally by some remarkable 
experiments due to RA Bagnold (1947) conducted at Imperial College, London, 
during World War II. These showed that in water waves advancing towards a 
shoreline there was, near the bottom, a strong forward jet, contradicting the 
classical expression given by Stokes (1881) for waves in water o f  finite depth. 
Paper C l below gives an explanation o f  this phenomenon. The mathematical 
theory, in fact, is similar to that used by Rayleigh in 1881 to explain the 
circulation o f  air in a Kundt’s tube, with the difference that it is here applied to 
progressive, not standing, waves.

The existence o f  a boundary-layer at the bottom implies that the waves are 
not irrotational, as was assumed by Stokes. The motion is initially irrotational 
when started from rest, but vorticity is propagated inwards from the boundaries, 
either by convection or diffusion. This paper (C l) was the first to give general 
equations for this effect, under certain assumptions, among which are smallness 
o f  the wave amplitude compared to wavelength, and uniform density o f  the fluid. 
Later authors have generalized these equations, showing the important effects o f  
non-uniform density o f  the fluid, especially near a surface o f  discontinuity.

Paper C2 shows formally that in any regular, irrotational wave, even if the 
amplitude is finite, the mass-transport velocity must decrease monotonically with 
the mean depth o f  a particle below the surface. Hence the bottom jets observed 
by Bagnold (see above) can be explained only by the presence o f  vortical flows.

The equations o f  viscous motion (the full Navier-Stokes equations) are o f  
higher order than the Euler-Lagrange equations often used for water waves. 
So paper C3 provides a simple “ physical” explanation for the forward bottom- 
jet observed by Bagnold (and subsequently confirmed by others), in the special 
case o f  a progressive wave. It also shows that the analytic expression for the 
maximum velocity in the jet is not only independent o f  the viscosity (or the eddy 
viscosity) but is also robust; it remains valid even when the viscosity is non- 
uniform, provided that the viscosity is a function only o f  the mean height o f  a 
particle above the bottom.

Paper C4 turns attention to the upper surface o f  the water, where the normal 
and tangential velocities are unconstrained but the pressure is assumed constant. 
Here a different type o f  boundary-layer is found. Instead o f  the mass-transport 
velocity just beyond the boundary-layer being determined theoretically, it is the
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normal gradient o f  the mass-transport velocity which is determined. The latter is 
measured by a simple experiment, and the theoretical value is confirmed.

In paper C5, the general theory o f  paper C l is applied to the ideal case o f  
a circular island which finds itself subject to a broad ocean current such as a 
periodic tidal or inertial oscillation. The current induces a local wave close to 
the island, and the corresponding mass-transport velocity or steady streaming is 
calculated. A  simple experiment, corresponding to an island with vertical sides, 
confirms the theory (see Figure 3 o f  paper C5).

A much later paper (C6) suggests an explanation o f  how a shallow-water 
wave passing over a thin flexible bag filled with water can pump the water down- 
wave, circulating it back via an external pipe —  a possible means o f  extracting 
energy from the waves.



С. Mass Transport in Water Waves
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It was shown by Stokes that in a water wave the particles o f  fluid possess, apart from their orbital 
motion, a steady second-order drift velocity (usually called the mass-transport velocity). Recent 
experiments, however, have indicated that the mass-transport velocity can be very different from 
that predicted by Stokes on the assumption o f  a perfect, non-viscous fluid. In this paper a general 
theory of mass transport is developed, which takes account o f  the viscosity, and leacfo to results in 
agreement with observation.

Part I deals especially with the interior o f the fluid. It is shown that the nature o f the motion in 
the interior depends upon the ratio o f the wave amplitude a to the thickness S o f the boundary layer: 
when a2JS2 is small the diffusion o f vorticity takes place by viscous ‘ conduction*; when a2(S2 is large, 
by convection with the mass-transport velocity. Appropriate field equations for the stream function 
o f the mass transport are derived. The boundary layers, however, require separate consideration.

In part II special attention is given to the boundary layers, and a general theory is developed for 
two types o f oscillating boundary: when the velocities are prescribed at the boundary, and when 
the stresses are prescribed. Whenever the motion is simple-harmonic the equations o f motion can 
be integrated exactly. A general method is described for determining the mass transport throughout 
the fluid in the presence o f  an oscillating body, or with an oscillating stress at the boundary.

In part III, the general method o f  solution described in parts I and II  is applied to the cases o f 
a progressive and a standing wave in water o f  uniform depth. The solutions are markedly different 
from the perfect-fluid solutions with irrotational motion. The chief characteristic o f the progressive- 
wave solution is a strong forward velocity near the bottom. The predicted maximum velocity 
near the bottom agrees well with that observed by Bagnold.
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P A R T  I. TH E IN T E R IO R  OF T H E  FLUID

1. I n t r o d u c t io n

As was pointed out by  Stokes in a classical memoir ( 1 8 4 7 ), the individual particles in a 
progressive, irrotational wave do not describe exactly closed paths; besides their orbital 
motion they possess also a second-order mean velocity (called the mass-transport velocity) 
in the direction o f  wave propagation. I f  the equation o f the free surface is

z  =  а е ^ -^ + О ^ а Ч ) ,  ( 1 )

where x and z  are horizontal and vertical co-ordinates (z measured downwards), t is the 
time, a is the wave amplitude, к — 2тгЧ-wave-length, and a — 2 ^ ~ w a ve  period, then 
Stokes’s expression for the mass-transport velocity V  is equivalent to

f j  a?<rk cosh 2k (z~ h )  , n  /0 >
w ------- Ш Ш к + ~’ U;

where h is the depth and С is an arbitrary constant. I f  it is assumed that the total horizontal 
transport is zero, we must have

„  a2irsinh2kh cfltr . . .

----- 2* С0ШАИ- <*>

In deep water [kh'p 1 ) equation (2) becomes simply

U ^ a Z ffk e-**  (4)

d irection  o f  w ave  a d va n ce

mean surface 
level

-  +

bottom

F iq u r e  1 . A  typ ica l p ro file  o f  the  m ass-transport v e lo c ity  in  a progressive, 
irrota tion al w ave  (kJi = 1-0).

The velocity profile for a typical ratio o f  depth to wave-length (kh =  1 ) is shown in figure 1 . 
It will be seen that the velocity increases steadily with height above the bottom and that on 
the bottom itself the velocity gradient is zero. Both these features can be shown to be 
necessary consequences o f  the irrotational character o f  the motion, and not to depend on 
the smallness o f  the wave amplitude as assumed by Stokes (an elegant geometrical p roo f 
for waves in deep water was given by Rayleigh ( 1 8 7 6 ) ;  proofs for finite depths have been 
given by Ursell ( 1 9 5 3 ) and Longuet-Higgins ( 1 9 5 3 )).

The irrotational wave is not the only type o f  wave theoretically possible in a perfect flu id : 
in the exact solution o f  Gerstner ( 18 0 9 ) and Rankine ( 1 8 6 3 ) the particles describe exactly
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circular orbits, and the mass-transport velocity vanishes identically; indeed, Dubreil- 
Jacotin ( 1 9 3 4 ) has shown that a wave motion may be superposed upon a steady stream 
having an arbitrary velocity distribution, so that the mass-transport velocity could take 
any desired value. The hypothesis o f  irrotational motion was assumed by Stokes on the 
ground that, under conservative forces, no vorticity can be generated in the interior o f  
a uniform fluid, even with viscosity; if, therefore, the motion is started from rest it must 
initially be irrotational. The mass transport is then uniquely determined.

However, the mass-transport velocities observed in laboratory experiments may differ 
markedly from those predicted by the irrotational theory, especially in water o f moderate 
depth. Thus Bagnold (1 9 4 7 ) has found a strong forward velocity near the bottom and a 
weaker backward velocity at higher levels— the exact opposite o f  the Stokes velocity dis
tribution. Other observers (Caligny 1878 ; King 1948) have found a forward drift both 
near the bottom and near the free surface, with a backward drift between.

It appears, therefore, that some assumption on which Stokes’s theory is based is not valid. 
Now, in the theory o f  perfect fluids it is supposed that at a solid boundary the fluid may 
‘ slip ’ , i.e. that it may have a tangential velocity relative to the boundary. In fact, however, 
the particles o f  fluid in contact with the boundary must have the same velocity as the 
boundary itself; on the bottom , for example, they must be at rest. But quite near the bottom 
the fluid is observed to be in motion with velocities comparable to that in the interior o f 
the fluid, so that in general there must be a strong velocity gradient near the bottom. This 
implies that there is in fact strong vorticity in the neighbourhood o f the bottom ; and it 
will be seen that, even i f  the vorticity is confined to a layer o f infinitesimal thickness, the 
total amount o f  vorticity must still be finite. In an oscillating motion this vorticity will be 
o f  alternating sign; and the question then presents itself: will any o f the vorticity spread 
into the interior o f the fluid, or will it remain in the neighbourhood o f the boundary ?

In considering the diffusion o f  vorticity, the viscosity o f  the fluid must be taken into 
consideration; for, although the viscous terms in the equations o f  motion vanish when the 
motion is irrotational, they do not do so when there is vorticity. Although the viscosity may 
be small it cannot be ncglcctcd near the boundaries; for it is found that, as the viscosity 
tends to zero, so the thickncss o f  the boundary layer decreases; the viscous terms in the 
equation o f  horizontal motion, which depend upon the second normal derivative o f the 
velocity, remain o f finite magnitude.

A  straightforward method o f taking into account the viscosity would be to proceed by 
successive approximations as in Stokes’s solution for a perfect fluid; that is, in the first 
approximation to neglect all terms proportioned to the square o f  the displacement; in the 
second approximation to neglect all terms proportional to the cube, and so on— all the 
viscous terms being retained. For surface waves in water o f  uniform depth there are now 
four boundary conditions: both components o f  velocity must vanish on the bottom, and 
both components o f  stress must vanish at the free surface. This was the method by which 
the present author originally approached the problem. The first approximation, which 
had been calculated by Hough ( 18 9 6 ) and Bassett ( 18 8 8 ), is practically identical with the 
perfect-fluid solution except that there are now transitional boundary layers at the bottom 
and at the free surface, and that the motion has a small attenuation, either with the hori
zontal co-ordinate x or with the time t (Hough and Basset considered only the latter case).

66-a
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T o  obtain the mass transport, the present author took the solution to a second approxi
mation; and when this was done some new and unexpected features appeared. These will 
be briefly described here, although another method, as will be explained below, was later 
found to be more satisfactory.

T w o cases were considered: the progressive wave and the standing wave. O n  the assump
tion that the total mass transport in a horizontal direction was zero, a unique solution for 
the mass-transport distribution was found. But, when the viscosity was made to tend to 
zero, the limiting velocity distribution was different from the irrotational, perfect-fluid 
solution. The thickness o f  the boundary layers at the bottom  and at the free surface tended 
to zero; but the mass-transport velocity just outside these layers tended to a value different 
from zero and from that in the Stokes solution. In  the progressive wave, the forward 
velocity near the bottom (i.e. just beyond the boundary layer) was given by

f ?  6 a2ffk tz\
U ~ i  5 H '  (5)

and the velocity gradient near the surface was given by

^  =  — 4a2o-kcoxhkh; (6)

this is twice the corresponding value for the irrotational wave (cf. equation (2 )). In  the 
interior o f  the fluid the velocity distribution was given by the sum o f  the distribution (2 ) 
and a parabolic distribution, which was adjusted so that equations (6 ) and (6 ) and the 
condition that the total horizontal flow should be zero were all satisfied. Som e theoretical 
velocity profiles, for different ratios o f  depth to wave-length, will be illustrated in figure 6 , 
part III .

T he case o f  a standing wave, in which the surface elevation is given by

z =  2a cos kx cos at, (7)

had already been partly evaluated by Rayleigh ( 1 8 8 3 ), w ho showed that there must be a 
circulation in cells o f  width one-quarter o f  a wave-length, very similar to that occurring in 
a K undt’s tube. The magnitude o f the circulation is independent o f  the viscosity, when this 
is small. Rayleigh considered only the case o f  deep water, and he did not take into account 
the boundary conditions at the free surface. In  the general case when the depth is finite 
the present author found that the mass-transport velocity near the bottom  (just outside 
the boundary layer) is given by

u = ~ \ s m sin2b; (8)
the velocity gradient near the free surface is zero,

dU
dz =  0. (9)

(The distribution o f  the mass transport in a typical standing wave will be illustrated in 
figure 7, part III.) The solution again differs from the corresponding solution when the 
motion is irrotational; in an irrotational standing wave the mass-transport velocity vanishes 
everywhere.
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An interpretation o f these results may be given as follows. Suppose the motion is generated 
from rest by conservative forces, or by propagation o f  the waves from outside into the region 
considered. Then at first the motion in the interior will be irrotational, and the mass 
transport will be given by Stokes’s expression. But this state is not permanent; vorticity 
will diffuse inwards from the boundary layers at the bottom and at the free surface until 
a quasi-steady state, given by the viscous solution, is obtained. Thus the Stokes solution 
describes the initial motion (except very near the bottom ); the viscous solution describes 
the final motion

However, the method by which these results were derived is open to criticism: the process 
o f approximation involves, in general, the neglect o f the inertia terms in the equations o f 
motion compared with the viscous terms; and this implies, as is shown in this part o f  the 
present paper, that the amplitude a o f  the motion should be small compared with the 
thickness 8 o f  the boundary layer (8 is defined as (^ /c )* , where v is the kinematic viscosity). 
It can also be shown that, unless a<^$, it is not permissible to use Stokes’s classical method 
o f obtaining the boundary conditions at the free surface, for this involves expansion in a 
Taylor series, which is only valid if  the displacement o f the free surface is small compared 
with all other distances involved. Since the thickness o f  the boundary layer may be o f  the 
order o f  a few millimetres only, this condition seems to restrict the validity o f  the solution 
to very small waves indeed.

In this paper a different, and more general, approach is adopted. W e start from the two 
fundamental assumptions that the velocity is periodic in time, and that the motion can be 
expressed as a perturbation of a state o f  rest. A  general definition o f  the mass-transport 
velocity U can then be given (see § 2 ), and equations o f  motion for П can be derived. On 
examining these equations it is found that the expression for the diffusion o f the vorticity 
consists o f two parts. The first represents viscous diffusion, similar to the diffusion o f  heat 
in a solid, and the second represents diffusion by convection with the mass-transport velocity 
itself. These two sets o f  terms may be called ‘ conduction' and ‘ convection’ terms respec
tively. The equations used by Stokes and Rayleigh are only valid, in the interior of the fluid, 
when the convection terms are small compared with the conduction terms, which restricts 
the solution to waves o f  very small amplitude (a<^8). If, on the other hand, a^>8, the motion 
is governed by convection; there is then a quite different field equation for the motion in 
the interior o f  the fluid (see §4).

The boundaries, however, require special consideration, on account o f  the large velocity 
gradients encountered there. These are treated in part II, again in a general manner, so 
that the results could be applied to motions other than those o f  a standing or progressive 
wave in uniform depth. A  general, oscillatory motion o f the boundary is assumed, and 
moving co-ordinates relative to the boundary are taken. A  boundary-layer approximation 
is made, similar to that used by Schlichting ( 1 9 3 2 ) for a cylinder oscillating in an infinite 
fluid. T w o different types o f  boundary layer are considered: first when the normal and 
tangential components o f velocity at the boundary are prescribed (a special case being a 
fixed boundary or bottom ); secondly, when the normal and tangential stresses are pre
scribed (a special case being a free surface, when both components o f stress must vanish). 
In both cases the equations o f  motion can be integrated through the boundary layer, 
although the order o f  magnitude o f the velocity gradients is different. In  the first case the
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mass-transport velocity beyond the houndary layer (i.e. just in the interior o f  the fluid) is 
determined in terms o f  the boundary conditions and the known first-order m otion; it differs 
in general from  the mass-transport velocity at the boundary itself. In the second case it is 
the normal gradient o f  the mass-transport velocity which is determined just beyond the 
boundary layer, and this also differs from the velocity gradient at the surface itself.

The boundary-layer method just described has the advantage o f not depending for its 
validity on the smallness o f  the ratio a/S. By combining the new ‘ boundary conditions’ 
with one or other o f  the field equations for the interior o f  the fluid which are derived in 
part I, the mass-transport velocity throughout the field can be completely evaluated. In  
part I I I  the method is applied to the special cases o f  the progressive and standing waves 
in water o f  uniform depth. The ‘ conduction solution ’ , i.e. the solution for small values o f  
ajS, is identical with that obtained by the method o f successive approximations described 
above, as one would expect. The ‘ convection solution’ , however, is indeterminate for the 
progressive wave, and for the standing wave there are infinitely many solutions. Indeed, 
is seems very probable that for such large wave amplitudes the mass-transport velocity in 
the interior o f  the fluid is unstable; the assumption o f  periodicity then breaks down.

However, the solution in the boundary layers is still well determined, and is suitable for 
comparison with observation. In the last section o f  part I I I  the experiments o f Bagnold 
( 1 9 4 7 ) and others are discussed, and rather good agreement with the theory is found.

2 . D e f in it io n  o f  t h e  m a s s -t r a u s p o r t  v e l o c i t y

W hen the m otion is not progressive, an exact definition o f the mass-transport velocity 
for waves o f  finite amplitude, such as was given by Rayleigh ( 1 8 7 6 ), is no longer possible; 
but for small motions a definition may be given as follows.

Let u (x , I) denote the velocity at the point X , =  (x, y, z ), at time t. W e assume, first, that 
the motion is periodic in time with period t :

u (x , t +т) =  u (x , t) ; ( 1 0 )

secondly, that u is expressible asymptotically as a power series:

u =  e u ]+ e 2u2+ . . . ,  ( 1 1 )

where e is a small quantity and u ,, u 5, etc., are o f order //r. Here I denotes a typical length 
in the geometry o f  the system, for example, the wave-length i f  the motion is periodic in 
space. Equation ( 1 1 ) implies that we are considering the motion as a perturbation o f  a 
state o f  rest. T he order o f  magnitude o f the displacements is el, or a, where a denotes the 
wave amplitude, so that e is o f order ajl. Thirdly, i f  a bar denotes the mean value with respect 
to time over a complete period, we assume

Щ = 0, (12)
that is, there are no steady first-order currents. It may not, however, be assumed that 
u 2 is zero.

Let U (x c,i)  denote the velocity o f the particle whose co-ordinates at time t =  0 are x 0. 
Then the displacement o f  the particle from its original position is

f'udt. (13)
Jo
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W e have therefore

V  =  u (x 0+ J 'U d / , i ) ,  (14)

=  u(Xo>0+JoUd<-gradu(x0,t ) -K ..,  (15)

by Taylor’s theorem. Since U  is o f  a same order a s u w e  assume that

U =  eU,-fe2U2+ ..., (16)

whcncc, on substituting in (15) and equating coefficients o f  £ and c2, we have

U i =  U „  (17)

U 2 =  u 2+ J  Ujdi-gTadUj, (18)
and therefore

° Г =  ST -  0, (19)

U s =  u z +  j  U ]d /-gradu ,. (20)

The lower limit o f  integration in (20) has been omitted, since it contributes nothing to the 
mean value. Thus, besides the first-order oscillatory velocity eUj, each particle possesses 
a steady drift velocity given by

U  =  «*U2 =  «2^  +  J u ,d f-g r a d u ,j (2 1 )

to the second order o f  approximation. I f  U a, U 4, etc., are calculated, they are found to be 
aperiodic in general, so that no mean value independent o f  the initial value o f  t can be 
assigned to them. Indeed, U cannot in general be expected to be a periodic function o f  t, 
since in the course o f  time a particle may drift into a region where the motion is quite 
different from that at its initial position. The progressive wave is an exception, since each 
particle remains at a nearly constant level; but the period o f  the motion for a fixed particle 
then depends upon the vertical co-ordinate z0. Thus the mass transport can only be defined, 
in general, i f  terms o f higher order than the second are neglected, that is, for small motions. 
W e shall therefore define the mass-transport velocity as being that given by equation (2 1 ).

The mass-transport velocity may be measured as the ratio o f the displacement d o f  a 
particle to the length t o f the corresponding time interval provided that | d | <^/ and that the 
contribution to d from the second-order terms is large compared with that from the first- 
order terms; this implies | «2U ^  | | e\Jlr | and so Both conditions are satisfied i f
e is sufficiently small and if t is o f  order, say, e~b.

Let f  be any periodic quantity associated with the motion and let

f  =  e fi+ e sf2+ . . . ,  (2 2 )

where f t is zero. Then we may show similarly that the mean value o f f  following a particle
is given by -------------------

e ^ + J i^ d f - g r a d f ^  (23)
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to the second order o f  approximation. Suppose f  is the acceleration

f  =  ^ + u - g r a d u ;  (24)

then f 2 ~ ^ + u r g ra d u i> (25)

and the mean value o f  f  following a particle is therefore given by

fJ( l f 2+Ul' grad U‘ +  JUldt' grad ж )  ’ 

==e2& 4 l { / u‘ d'-2radu‘})>

= v [ us+ /uid<,Sradui]] о ’ (26)

which vanishes by die periodicity o f  the motion.
The mean acceleration o f a particle is therefore o f  a higher order than the second. This, 

indeed, is what we should expect. For the mean acceleration over one complete period is 
the difference between the initial and final velocities, divided by r. But since in this time the 
particle has advanced through a distance o f  second order, the difference between the 
velocities at the initial and final positions o f  the particle is o f  third order at most.

3. T h e  s t r e a m  f u n c t i o n  f o r  U

In the following we shall restrict ourselves to the consideration o f  two-dimensional m otion 
on ly; thus i f  u, v and w are the components o f the velocity, v is zero, and u and w are in
dependent o f  the horizontal co-ordinate y. Assuming the fluid to be incompressible w e have

du dw 
dx dz

whence

0 ,

where f  is a stream function. T he vorticity is given by

W e may write

so that

в - s - * *

(u,w) “ e f a . w , )  + e * ( a „ w2) +

f  ~  e ^ i+ e 2ĵ 2+  J

dJb±-Ц Щ -п
dx dz ’

td jj _d j_\  
[ d z ’ d x)'

( i =  1 , 2 , . . . ) .

(27)

(28)

(29)

(30)

(31)
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From (1 2 ), the arbitrary function o f the time contained in jrf-, may be chosen so that

Ti =  0. (32)

The components (e2Ui,e2W2) o f the mass-transport velocity are given by

Г Г , - 7 ,+  j»,d 1*1  + Ji»ld, * j j ,  I

Now if A  and В  denote any periodic quantities we have identically

(33)

Hence

where

(35)
t/2 - a 2+ j  3z d^ - J ^ d t - ^ -  =  -3F ,

J i3z 5дг2 J d x d z  5л

+  J ^ ^ .  (38)

Thus £21F is  a stream ftincdon for the mass-transport velocity U.

4 . T iie  e q u a t io n s  o r  m o t io n  

The equations o f  motions for a viscous, incompressible fluid may be written

{ j t+ U Tx+ W T z - vV1) (u> “ ) — Й ’ A )  ( ? - ^ Z)  <S7>

in the usual notation. On differentiating the first component o f  (37) with respect to z  and 
the second with respect to x , and subtracting, we find

( я - 1' “ ж + " ж - л ! ) у ! '> - ° -  (38>

and hence vVsJ — 0. (3fl)

The second and third terms in equation (38) represent minus the rate o f  change o f the 
vorticity at a fixed point due to convection; the last term, which is similar to a term in the 
equation o f  heat conduction, represents minus the rate o f change o f  the vorticity due to 
viscous diffusion. On substituting from equations (30) and formally equating the coefficient 
o f  the highest power o f « to zero we have, from (38),

( j r vV2) V¥l =  ° ’ (40)

a n d  from  (39) (“ 13х + “ '1й )  =  (4 1)

V ol. 245. A. 67
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Equation (40) gives V 2̂  =  (42)

so that on substitution in (41) we have
3 T T S

d t. (43)t  9 , i>\ffa )  J
H ence the field equation for *F in terms o f is

w -  ( « )  

The introduction o f  viscous terms into the equations o f  motion involves a new funda
mental length 8, ш(2ч/сг)ь, and a new dimensionless ratio a/8. In  the case o f  water waves, 
i f  v =  0 -0 1 cm 2/s and т =  1 -Os, we see that 8 is o f the order o f  0 -0 2 cm. W e may therefore 
assume that

8/l<£ 1 (45)

(but not necessarily that aj8<^ 1 ). Now, a typical periodic solution o f  the equations

( i r vVt) f =  °> 7 -  0 (4e)
is given by

f a - giflcif+tax+iwO, (4 7 )
where n is a positive integer and

k\ +  k\ =  —intr/v =  —in/82. (48)

Hence, in a direction perpendicular to the plane

^(iA^+i/fc-jZ) =  0 (49)

f B must increase or decrease by a factor г in a distance o f  the order o f  8. I f/ 0 is to remain 
bounded in the interior o f  the fluid, it can be appreciably large only in the neighbourhood 
o f  the boundaries, and must decrease inwards exponentially.

It is useful to distinguish between the ‘ boundary layer’ or the region near the boundaries 
whose thickness is o f  the order o f  S, and the ‘ interior’ o f  the fluid, or the region ‘ beyon d1, 
i.e. inside, the boundary layer. For the remainder o f  the present section we shall be co n 
cerned only with the motion in the interior.

From  equations (32) and (40) we see that V 2̂ , satisfies equations (46). Therefore, 
assuming that V2̂ , is expressible as the sum o f  functions o f  the type (47) over any region o f  
the interior, we may expect that

V 2^ ,-> .0  (60)

exponentially inwards. T he second-order terms in equation (38) now give

g - p v ^ v ^ o  ( s i )

in the interior, so that by  a similar argument we may expect that

0  ( 5 2 )

exponentially inwards. Equation (50) states that in the interior the first-order vortid ty  is 
exponentially small, while equation (52) states that the second-order vortidty  becomes
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independent o f  the time, though it is not necessarily zero. From the third-order terms in 
(38) we now have - „

( j j - p V * )  V ^  +  ( ^  +  Wxf z ]  V ¥ ^ o ,  (53 )

so that V^ 3 =  _ ( J Uld < ^ + J u .,d t^ ) V V J + W i ,  (54)

where V2( ^ - ^ ) - > 0 . (5 5 )

Let us now return to equation (39) and retain temporarily all the terms up to the fourth 
order. Assuming (50) and (52) we have, in the interior,

€,[_{UlJx+ W 'Hz) VJ^3 + (“ 2^ + I"2^ )  V2^ ] - " V4(£2i^ +  £V j  +  «V4) =  0. (66)

W e may substitute for V2̂ ., from equation (54). Then since

( ^ + - (^ i+ ^ r z )  V2K  = °> (57)

in the interior o f  the fluid we have

s{ “(û +ŵ )l(l“>d4 +lu'‘d4 )v4 +(u4 +̂ l)v¥2]
—i'V4(e*^j+e3^s+ e 4̂ 4) =  0. (58) 

Now if Л, .fl and С are any three periodic quantities we have identically

a f Bdc\ J j s s c  v c
,1 s r s r “ f c f c + “ w

But, i f  A =  dBjdt, and С is independent o f the time, 

Thus writing

(59)

ЛВР С  RdBd'-C 1 Ttm,P C  ,

A =  u „ £  =  J Uld<, С «  V2̂  =  V2̂  (61)

д ™ t -
we have “ ‘ ^ ( / “ *d* ^ ^ 2)  =  (“ ^ / “ ‘ ^ d x ^ 2’ ^

and therefore (using equation (34))

(e3)

Similarly S ( J “ ' d‘ Й T!|>>) ' - ( I " 1 d' T l i E (84i

“ d % S b * s ^ i +

(8!)
67-a



90

546 M . S. L O N G U E T -H IG G IN S  O N

Therefore on substitution in equation (58) wc find

V 2l ^ - vVV ^ + * ¥ j + « V « )  =  0; ( 66 )

where Z/2 and JV2 axe given by (35). The first group o f  terms on the left-hand side represents 
minus the rate o f change o f  the vorticity due to convection by the mass-transport velocity. 
The second group o f  terms represents minus the rate o f  change o f  the vorticity due to 
viscous ‘ conduction ’ . These groups o f  terms may be called the convection terms and the 
conduction terms respectively.

Suppose that all terms in ( 66 ) o f  higher order than the second are neglected. W e then have

V f c  =  0, (67)

<68>
which are the equations that w ould be obtained by setting V2̂ , =  0 in the right-hand side 
o f  equations (43) and (44). But, i f  the velocity gradients in the interior o f  the fluid are not 
large, then the ratio o f  the convection terms to the conduction terms in equation ( 6 6 ) is 
o f  order eitrjv> that is, o f  order a2jP . Therefore a necessary condition for the validity o f  equa
tions (67) and (68) in the interior o f  the fluid is that a2/ i 2<^l.

In most practical cases, however, we shall have a$>S; so that the ‘ conduction equation ’ 
(67) will not apply. W e should expect in this case that the appropriate field equation w ould 
be that obtained by  equating to zero the convection terms on the left-hand side o f  ( 6 6 ). 
This cannot be  deduced from the preceding analysis, which rests on the assumption that 
<i2/£2«^ 1 ; but the same equation can be derived by another method. Let us assume that the 
viscous terms in the original equation o f  motion (38) are entirely negligible; thus

( s + ' s + ' - s W - "  <69)

a n d ( « £ + „ ! )  V V - 0 ,  (70)

O n substituting from (30) and equating coefficients o f  e successively to zero we have from 
(69), in the first approximation,

^ ( V ¥ i )  =  o, (71)

so that V2]̂ i is independent o f  t. Thus, by (32),

V V , =  =  0. (72)
From the second-order terms in (69)

^  ( v ¥ . )  +  (a. f c + w\ g j)  V ¥ i  =  0. (73)

Since the second group o f terms vanishes,

| ( V ¥ 2) = 0 , (74)

and so V2̂ 2 =  V2̂ j. (75)
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Similarly in the third approximation

| ( V ¥ 3) - i- (« i| .+ «> 1 A ) v ^ = o 1 (76)

so that V ¥ 3  =  - { { “ id i^ + J u > 1d i ^ j v 2lF2. (77)

The terms o f  highest order in (70) give

(“»Tx+W1U  7 ¥ з+ й +и,4 )  =  °- (78)
O n substituting from (78) into (77) and using the relations (63), (64) and (65) we obtain

К  + = (™)
or, from (35) and (36), _________

Ш тиМ ^-Я я^ж Н - <»>
In deriving (79) the first non-zero term omitted owing to the neglect o f  the viscosity is 
£2i/V4^ 2 (since V4̂ ! is zero); the largest terms retained are the fourth-order terms in equa
tion {79). Hence a necessary condition for the validity of these equations is that

(81)
and hence that агр&2.

Equations (6 8 ) and (80) may be called the ‘ conduction equation’ and the ‘ convection 
equation’ respectively.

Let us consider equation (79) more closely. It may be written in the form

=  0 ,8sn
d[x,z)

where the left-hand side is the Jacobian o f T  and V2̂ 2. Thus Vif 1 is functionally related 

“  'F : =  FC ¥), (83)

or by (36) №

Hence the vorticity is constant along a stream-line. Also, since j}•, satisfies Laplace’s equation 
we have, on differentiation,

Ф - * / 5 * 5 Н т 5 * 5

(85>
using equation (34). From (84) and (85) we obtain

w - f m - i j g i d - g ,  m

an alternative form o f the conduction equation.
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P ART II. TH E  BO U N D AR Y LAYERS

5 . I n t r o d u c t i o n

In part I the mass-transport velocity in any oscillatory motion was defined, and field 
equations were obtained for the mass-transport stream function 'F  in the interior. It was 
shown, however, that the neighbourhood o f  the boundaries requires special consideration, 
on account o f  the large velocity gradients encountered there j it can no longer be assumed, 
for example, that the first-order vorticity is zero, as in the interior o f the fluid.

An exact solution o f  the problem o f an oscillating plane boundary, in a fluid at rest at 
infinity, was given by Stokes ( 1 8 5 1 ). Lam b ( 1 9 3 2 , p. 662) gave the solution to the closely re
lated problem  o f a semi-infinite fluid, with a fixed plane boundary, moving under the action 
o f  a harmonically oscillating body force. In these exact solutions the vorticity remains always 
in the neighbourhood o f  the boundaries, and the motion beyond a layer o f  thickness o f  the 
order o f i ,  =  (2л>/а)1, is zero. Also the mass-transport velocity vanishes identically. A pproxi
mate solutions for wave motion in water o f  finite or infinite depth have been given by 
Basset ( 1 8 8 8 ), H ough ( 18 9 6 ) and Lam b ( 19 3 2 ). In  these approximate solutions the vor
ticity is also confined to the boundaries, to the first approxim ation; but to obtain the mass 
transport it is necessary to study the second-order terms.

The objections to a direct extension o f  the solutions o f Basset and H ough to a second 
approxim ation have been discussed in part I. Briefly, the method would only be valid for 
very small values o f  the ratio a/8, where a is the wave amplitude. A  different method, for 
the case o fa  circular cylinder oscillating in an infinite fluid, was used by  Schlichting ( 1 9 3 2 ). 
This involved initial neglect o f  8/1, where I was the radius o f  the cylinder— essentially a 
boundary-layer approximation. It will be found that in Schlichting’s analysis there is no 
im plied restriction on  the ratio a/8 for the motion near the boundaries.* In  the following 
we shall use a similar approximation to Schlichting’s, but treat a m uch more general 
problem , assuming an arbitrary oscillating motion o f  the boundaries, and taking into 
consideration more than one type o f boundary condition.

6 . C o - o r d i n a t e s  a n d  g e n e r a l  e q u a t i o n s

Since the normal displacement o f  the boundary may be large com pared with 8, a co 
ordinate system must be chosen which is attached to the moving boundary. As in part I, 
assume the m otion to be two-dimensional and independent o f  у and let

s =  arc length measured along the boundary,

л ■= distance measured inwards along a normal.

/c(s,t) =  curvature o f  the boundary (positive when concave inwards),

(see figure 2  a) ■ T he co-ordinates (s, я) are to be chosen so as to be in the same sense, right- 
handed or left-handed, as the cartesian co-ordinates (x , z) o f  part I. (1, n) are orthogonal,

• However, for the interior o f  The fiuid Schlichting uses the ‘ conduction equation1 (see §4), which may 
not be justifiable.
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the lines n =• constant, being parallel curves. The square o f the displacement corresponding 
to small increments df, d« is

ri2ds2 +  dn2, ( 8 7 )
where

Tj — l - я * .  (88)

I f  gs and qn denote the components o f velocity, resolved parallel to the directions o f  s and n 
increasing, the equation o f  continuity

implies the existence o f a stream function ijr such that

( Ц

(89)

(90)

0 \
p

?l

7<U
cln\ _ fan

1 Hd9

(«)
F i g u r e  2

(*)

T o  find the normal and tangential stresses we temporarily introduce rectangular co
ordinates (S, N) tangential to (s,n) at the origin. The corresponding velocity components
я, and q„ are given by . . ,

qs =  qs CO%e-qnsm ey\

q „=  q,smd+qHcose,) 

where в is the angle between the normals s =  0 and s =  constant (see figure 2A)< Thus

as

When s =  0 =  в we have

?s = q> i 3s ds 

dJ ji =  dJ n .

X f  =dJ i  =  dJL
dn dn

?* = ?„» =
3qN ..3 q n 
dn 3n

(92)

(93)

T he normal stress pm and the tangential stress p „  are given, when s =  0, by

i . / *  4-л1 =  2 —  =  2  —
py/Wm* P) 3N dn*

1 i _  j

pvp"~ d N ^ d S  dn i) ds ’J

(94)
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where p  is the mean pressure. Thus from (93)

> + й ~ 4 ( $ ) ,
(95)

1 1Г d f  д /1 d
'pvt>n‘ =  q\_K'5 n ~ T s \q J s /] '

Since the form of these equations is independent of the position of the origin, they are valid 
for all values of (j,n).

A . d s  В

, / /  x  

j
j / ( K+a td^

/
Figure 3

To describe the motion of the co-ordinate system, let

Vs(s, t) =  velocity of the point (s, 0) parallel to the boundary,
Vn(s, t) =  velocity of the point (s, 0) normal to the boundary,
£l(j, t) ■ angular velocity of the normal s =  constant (positive in the sense of в 

increasing).

Then the velocity components of the point having co-ordinates ( j ,  n) axe

(V -n Q ,V „), (96)

and if (j, я) denotes the rate at which the co-ordinates of a particular element of fluid are 
increasing, and (qt, qn) denotes its actual velocity in space, we have

i  =  +  n =  q - V n.

The following relations between Vnl Vs and will be of use:

37.
ds

дк
T t'

3Q 
"ds '

(97)

(98)

(99)

These may be proved as follows. Consider the normals to the surface at two neighbouring 
points A and B, separated by an arc-length dr (see figure 3). Suppose that, in a short time 
d/, A and В are displaced to A' and B' respectively. The displacements of A perpendicular
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and parallel to the normal at A are Ĵ dt and Vndt; thus, if the tangent and normal at A  are 
taken as co-ordinate axes, the vector AA' is given by

A ! ' =  (V„V„) dt. (100)

Similarly, the displacements of В  perpendicular and parallel to the normal at В are
ЭК

{V’+ JFds) di and {V" +  J s ds) dt-
But the normal at В  mates an angle «dr with the normal at A. Hence, referred to the 
tangent and normal at A, we have

B B '= (]r+d-£ds-JcdsV„ V n + ^d s+ K & l'jd t  (101)

to the present order of approximation. From (100) and (101)

B B '~ A A ' = d̂ + KV̂ dsdt. (102)

Now in time dt the vector AB remains of constant length ds (neglecting dr3) and turns 
through a small angle Qdt. The displacement of the vector AB is therefore given by

i rS ' - l B  =  (0, fid/dr). (103)
But since

AA' +A !B ' = AB' = AB + BB', (104)

the left-hand sides of (102) and (103) are equal. This proves equations (98). Equation (99)

may be proved similarly: if AB, A'B', etc., denote the angles between the normals at A 
and B, A' and B \  etc., we have

AB  =  at dr, A B '  =  dj- (1°5)

AA! = Q.dt, BB' = ( n + dJ jd s )  dt. (106)Also

But AA '+ A 'B ' = AB' =  A B + B B (107)
from which (99) follows.

As a result of the first of equations (98) we may write

y J U l ,  (108)
d ’ " y U T ’ v ‘

where = - j  9^di, (109)

and therefore q,-V , =  =  — > 1̂10^

where f  =  f - р »  =  ]fr-t-j  !)Vnds. (HI)

Clearly is a stream function for the motionof the boundary itself; ijr' is a stream function 
for the motion ‘relative to the boundary’. There is in general no stream function for the

Vol. 245. A. 6®
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motion of the co-ordinate system at points other than on the boundary, since the term 
( —nlljO) in (96) represents a divergent velocity field. From (97) and (110) we have

( 112)

Consider now the equations of motion. Equation (38), which is obtained after ehmination 
of the mean pressure/», may be expressed in the invariant form

(113)

where D/D t denotes differentiation following the motion, V2 is Laplace’s operator and oi 
is the vorticity of the fluid: ш (114)
With the present co-ordinates

D d .d  . d
W r J t + s T s+ n Tn ( U 5 )

and

’ Ч Ш Ь т , ’ © ] -  <iie >
Thus (113) can be written

V2 being given by (116).
For future reference it will be convenient to state also the equation of motion for each 

component of the velocity separately. If the co-ordinates (S, N] are taken to refer to a 
definite instant of time, say t =  0 , then we have

Now when t =  0 ,

Also, from equations (91) we find

(118)

(119)

3*9з д%  г 2, 3?, dx

^  = d-hn-K*a  + 2З 4-— a 
ds2 ds2 d s + d s g<’

whence, after some simplification, we have

VJ<7C -  — L  Kh
dn2 у  dsdn  p v  P**'

v*a l ldP«
■v  dn2 i] dsdn pvt} ds

d*4s _  d2q, 
St?  dn1 ’

Pq* _  d2q„
dn2 dn2

(120)

(121)
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The equations of motion are therefore

“ d ( l ' +Q«')+J( f + 4 -)+ " l ' - ‘' ( S + i S * $ - » • ) •  <12S>
Up to the present point no approximations of any kind have been made.
In order to define the mass-transport velocity we assume, first, that the motion at each 

point of space is time-periodic, and that the co-ordinate system is also chosen in a periodic 
way; all functions of the velocities, for given co-ordinates (j, n), are then periodic in t. 
Secondly, we assume that the motion is expressible in the form of an asymptotic series

'/r = ejrl +c2ijr2 + ..., (124)

and we write qt =  £?1, +  Е2?1г +  •••> (125)
with similar expressions for qn, Vsi Vn, Cl, s, n, and f . Thus the motion of the co-ordinate 
system, defined by Vs, V„ and Cl, is of first order at most. On the other hand, we write

< =  <a + eK\ +£г*2+  • ■ .,1О Т  I T  2 T  ,

V =  Vo +  &ll +  ̂ ’h + - - ; l  
allowing for a curvature kd of the boundary in the undisturbed state. As in § 2 the mean values 
of the first-order velocities at each point in space are supposed to be zero. Thus, if the co
ordinates (S, N ) are chosen as above, we have with an obvious notation

?si =  fyi =  0> (127) 
where a bar denotes mean values with respect to time. It follows from (91) that

4,\ *  ?„ i =  0 , (128)
since в is constant with respect to time except possibly for a first-order variation. It may
be shown also that w~ * /ю о1

and, since £2 =“ =  0 , (130)

we have SJ »= Q, =  ... =  0. (131)

From (98) and (99) we have also the useful relations

?^i_y( y  — o 
d s  1

I - v  -  Ог *o*ii — **!> 

дкх dQt
dt ~  ~ST‘

(132)

Since, from (88), g0 =  1 -лг0п, =  - * i n, (133)

it follows, by the third of equations (132), that

j ( i 34)
68-2
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The choice of the normal s =  0 is still at our disposal. If the boundary is rigid, the origin 
(0 , 0) may be chosen to be a point on the boundary and fixed relative to it, so that, at all 
points on the boundary,

К =  К  =  ?,.• (135)

On the other hand, it may he more convenient to take the origin at the point of intersection 
of the boundary with a line fixed in space, say a line normal to the position of the undis
turbed surface. Since the angle between this line and the normal to the moving surface is of 
first order in e, it follows that P̂ (0 , /) is of order e2 at most, i.e.

when s =  0 . But from (132) we have
К
ds

^ 1  =  0 

«Л».

(136)

(137)

so that when xc vanishes VlX is constant along the boundary and (136) holds for all values 
of s. In other words, if the undisturbed surface has no curvature, the co-ordinates may be 
chosen so that Vsy vanishes at all points of the surface.

In precisely the same way as in § 2 , it may be shown that the mean rate of increase of 
the co-ordinates (j, n) of a particle is given, to order e2, by

where, from (112),
2[& . «j)+ ( p i  d/^ + .К  d tTr!) (fi’ "■)]’

n, =  —U h
По 9s ’

1 чй\дп  /)а дп ija V ^  q0\ d s  4a ds/

(138)

(139)

But the position of the co-ordinate axes remains on the average unchanged. We therefore 
define the components of the mass-transport velocity s2(<5j2, Qn2) by the equations

Q72 =  ^ + p ld / ^ + J n 1d ^ .

(140)

It can be shown by direct differentiation, using equation (134) and the periodic property 
of the motion (equation (34)), that

o ~  H  o ___ I*'* '4 .  a  d n ,  7 7 .
(141)

where ’F, which is a stream function for the mass-transport velocity, is given by

'г - * > + т М + п а ' Г ^ -
(142)

(143)
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In order to simplify .the above equations we shall now make a boundary-layer approxi
mation. The procedure we shall adopt will be, first, to neglcct all quantities of order Sjl 
(where S =  (йу/сг)* and I ia a typical length associated with the geometry of the system), 
then to find a first-order solution in powers of e, and finally to derive the mass transport 
The initial neglect of S/l involves relative errors of the order of S/i in the first approximation. 
But it will be found that, although the normal velocity gradients may be of order atr/8, the 
corresponding components of the normal velocity я relative to the boundaries are in that 
case of order а<т8Ц\ by equation (140), the mass transport remains a homogeneous second- 
order function of the velocities. Hence the relative errors involved in the mass-transport 
velocity are only of order Sjl', no restrictions on the ratio aJS are implied.

The orders of magnitude of the different terms will depend, however, on the type of 
condition to be satisfied at the boundary. The two cases where the tangential velocity and 
the tangential stress, respectively, are prescribed will therefore be considered separately 
(§§7 and 8).

The velocity gradients in the interior of the fluid are assumed to be of ordinary magnitude, 
i.e. of order atr/l. Thus, over distances which are small compared with L the velocity may be 
assumed to be uniform. The velocities or velocity gradients in the boundary layer, which 
may vary rapidly in the boundary layer itself, will tend to their relatively constant values 
‘just beyond the boundary layer’, that is, in a region whose distance from the boundary is 
greater than a few multiples of S but is still small compared with I. For points in this region 
we shall write n =co, with the understanding that this implies only 8<^n<^l. Thus the 
components of the velocity just beyond the boundary layer will be denoted by 5<1“) and 

; those at the surface itself by g(tm and 3™.

7 . T h e  v e l o c i t i e s  a r e  p r e s c r i b e d  a t  t h e  b o u n d a r y  

When я -O w e  have

g —  K —  i f .  ^ - 0 , <■«)

a»d l - Л  3 r - « " - p'  <U5)

Assuming the tangential velocity dfjdn to be of order unity (in powers of Sjl) throughout the 
boundary layer, we have ,

i t  - 0 (1), (U .)

and therefore, on integrating from n — 0 ,

dl = , - v n+ o ( m ,  3£ = o m .  (147)

But, since the tangential velocity ф? just beyond the boundary layer in general differs from 
we must have „  ,

^ = o m - \  i t = o m ~ \  (148>
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and so on. p b) and its derivatives being of order unity at most, we have also (since

*  *  Г )  ж = 0 { 1 ) ’  т £ - ° т - \  1 & - O W 0 ' 2 > ( 1 4 0 )

etc. Each differentiation of p  with respect to n raises the order of magnitude by a factor 
(Sj[)~l, whereas differentiation with respect to s leaves the order of magnitude unchanged. 
Retaining only the terms of highest order, we have from (88) and (112)

j) =  1

. W  . d p

(ISO)

and (151)

The equation of motion (117) becomes

(162)

and on taking mean values with respect to time we have

(163)

In the first approximation (in powers of f) we have from (152)

(154)

and so (155)

for the expression on the left-hand side, being independent of n, equals its value just beyond 
the boundary layer. From (154)

and from (155) (157)

The terms of lowest order in e in equation (153) give

(158)

and so from (156)
(159)

Now from (142), to the present approximation,

(160)
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If (142) is differentiated four times with respect to n it will be seen that the terms of highest 
order in S/l are simply those that would be obtained by differentiating (160) four times. 
Thus, by Leibniz’s theorem

д*ЧГ д*Тг
Bn* dn*

On substituting for d*^/dn* from (159) and using a property of the periodicity (equation 
(34)), we find

This is our differential equation for VF in terms of jr\. It may be integrated as follows: 
from (156) and (157) (and (34))

(163)
Thus (162) may be written

S - № 3 ^ + * £ № S -  <**>
dH\ d V  <J3VF д2Х¥~On integrating twice from n = oo, where -3- 5S  -5-=- and -3-5- vanish to the present
on* on* on1 on1

order, we have

which can also be written

<«■>
On integrating once more, from я =  0, we have

o - i

Now when n =  0 we have from (144), (145) and (160)

( ? ) . _ = + j № - v̂ dtTs ( № - v'i)> (168)
so that altogether

ЭЧ
dn

+ f f i = v a + j u s - v , d  d t j s № - v sl). (169)
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Suppose that the first-order motion is simple harmonic, that is, that q etc., are 
given by the real parts of complex quantities proportional to Then equation (155) 
becomes

(170>
the general solution of which is given by

^ - ( e S r ,- K i ) + ^ e « + 5 e - - ,  (171)

where A and В are arbitrary constants and

a =  (iajvy = ~ ± .  (172)

Since the solution is to remain finite in the interior of the fluid, A  must vanish. The second 
constant В must be chosen so as to satisfy the boundary condition

p">

Hence we have ^  =  (ji°’)—^j) +  (jSi — ЙГ1) c~‘“ - (174)

Thus the first-order velocity tends to its value in the interior of the fluid exponentially, but 
with a phase depending on n, since a is complex. A graph of the function (e“an— 1) elcT< for 
different values of t is given by Lamb (1932 , p. 623) to illustrate the motion in the neighbour
hood of a plane boundary when the fluid at infinity is oscillating harmonically. Equation 
(174) shows that in the first approximation the boundary may be regarded as plane and 

> ?»"' and ^ i M independent of s as well as n. However, the fact that these velocities arc 
not completely independent of s produces a small normal velocity relative to the boundary, 
given by ,

+ fs t f 1) \  (e-“ - i ) .  (175)

Just beyond the boundary layer this velocity is given by

- ( ® L ~  (‘74
In considering the second-order terms a development of the notation will be useful. 

If Fi and F2 are any two periodic quantities of the form

Fl =  Я/ t  z'at, F2 =  eirt, (177)

where and^ are complex and independent of i, and 31 denotes the real part, we have 

Fi F2 =  U f,  x K / 2e“ + / 2*e-“ )

= (178) 
a star (*) being used to denote the conjugate complex quantity. Thus

i C ( 17°)
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If the symbol is omitted in (177) and (179) we may write

= iF?F2, (180)

it being understood that the real part only is to be taken. Any group of terms in a product 
may therefore be replaced as a whole by the conjugate complex group of terms.

From equation (174) we have

(181)

= — (я® _  (/■>>■) e-«*
\дздп)л ds ’ ,1 '

On substituting these results in (169) and integrating the second term using (172) we find

I  (eff-eff) Js (e-“ - l ) + !%^1 (Й)- Й )) js(flT-sSr) 1)
1 , ™ rr л 5

+ (sS -J I i)  + g j « y - 5 i )  jjfo a r -T O - (182)

Just beyond the boundary layer we have

+  (S»-»Ii) W M i )  Js (Й -К П - (183)

Thus the tangential component of the mass-transport velocity is determined by the 
tangential velocity g*01 at the boundary, the tangential velocity j^ just beyond the boundary 
layer, and the velocity Vs, which depends partly on the movement of the boundary and 
partly on the choice of origin. When there is no stretching of the boundary we may take

V, =  Й». (184)
Equations (182) and (183) then become

^ ^  (C-fiT>) Js (« Г  -  t f * )  [ 8 ( 1 - c - ) + a ( i + i )  (e"te+e,)*—l)] (185)

and T  (186)

respectively. In particular when the boundary is stationary we have

в » - 0 , (187)

^ = s^ ? iT >̂ ^ [ 8 ( l - e - “ ) +  3 (l+ i)(e -(‘+» > - l ) ]  (188)

( ш )

and so

V o u  345- A . 69
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At the boundary itself the normal component of mass-transport velocity vanishes and so 
'F must be constant. In general the normal component of the mass-transport velocity can 
be found from the equation л .„дуг

T s - s j . ^  <leo>

For example, when the boundary is stationary we have from (188)

d'Y

(191)

8 .  T h e  s t r e s s e s  a r e  p r e s c r i b e d  a t  t h e  b o u n d a r y

Let denote the tangential stress at the boundary, which is assumed to be of order 
pvaajl. We have then

(s L ~ f-  E  S - w + ' s ^ L - ? * -  <1И)

If we assume ^ tj= 0 (1 )  (194)

(in powers of Sjl), it follows that dffds and dijrjdn are constant, to this order, throughout the 
boundary layer. Thus

£ — к — % - o m .  d « )

g - A  («* )

The second of the two boundary conditions (193) may therefore be written

")■ (1»4

or alternatively, since, when n =  0 ,

we have (V¥)»-o =  ^ - 2( § + < ) -  (190)

But the value of d t̂jrjdn2 just beyond the boundary layer in general differs from that given 
by (197). Therefore we must have

^ = о { щ - \  g j - o w o - * ,  (20°)
and hence also

3 J - 0 ( 1 ) .  ^ - W ) - ‘, ^ '  =  0 ( W S, (201)
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each further differentiation with respect to л raising the order of magnitude by (i/0 ' 1. 
It should be noticed, however, that there is a break in the sequence, since both dpjdn  
and Srp /дпг are 0(1). This introduces a significant difference between the present case 
and that considered in § 7 .

The equation of motion (117) now becomes

/ d d p  д d p  д 5г \ ,
II t+ l K T r i T T n - v ^  ^  =  °- (202)

This may be compared with equation (152), where the corresponding terms are of a higher 
order of magnitude. It is not possible in the present case to replacc Vajfr by д2̂ /дп2 or by 
d2p  jdn1. In the first approximation we now have

i i r V£ )  =  °’ (203)

and so V2̂ ! =  •'J'^ 2  V ^ d f  =  (204)

On taking mean values in equation (202) we find

( f «  
so Лаг, by (204), “ 3 ?  "  (20e>

as in equation (159). The mass-transport velocity is constant throughout the boundary 
layer; for from (139)

(207)

S - S M f + o - o o ) .  й - К - а д ,

and so from (140) . ^  + / («ST ^i) *(Й ?-К »>. (208)

However the velocity gradient дгл¥/3пг is not constant. We have from (142), after differ
entiating four times, using Leibniz’s theorem, and retaining only the terms of highest order,

w>
which may be compared with equation (161). Thus, from (206),

- • l l w l i M J -  (24 )

On integrating from я =  oo we have
д"¥  , Гд

П А  (al2>
69-9
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and on integrating from n =  0

< 2 1 3 >

To obtain a boundary condition for 'F when n =  0 we have from (140) and (141), after 
differentiating with respect to я,

д (1  дЧЛ ds2 ГЙ , , 3s, f .  d2s. f<9h. ds. f .  , . d 2i ,  
dn i*1 йЗя J "5я 3n J ”l dn**  ̂ ^V?o

or, since Я] vanishes and dnjdn  equals —dsjds,

(d7XV dst . _ fdi, . i f ,  f . , 34 x fo . _n

But from (207) ^  =  ^ +JC(fl<«i,_pj) +  Q5 (216)

so that from (197) and (132) 

Hence
( ~ )  =--*»>. (217)W „ _  о

/«-0  ™ /'*' 
Thus altogether

дЩГ. 3VF
5ла+ < . ^  =  4 j (V V ,)S d * j j ( j iM i)

+ ^ [й £ + а j5 f t  d/^ + J ( ? i¥ - K .) d ^ ] .  (219)pv

From (219) we have, on replacing ^  [ by gjjjf,

pv
so that (219) can be written

( V ¥ , ) „ - o  «  ^ ? 1- 2 ( ^ + * о ^ ) . (2 2 0 )

dtjs (Jff-K i) + J (jff-J? i) d^] • (221)
Also Y  is to be constant along the boundary.

When the first-order motion is simple harmonic, equation (203) becomes

V¥ j  =  °- (222)

The only solution of this equation which is finite for large n and which satisfies the boundary 
condition (2 2 0 ) is

v ¥ i  =  [ j / £ \ - 2  ( % - + ‘ Q r i ? ) ]  c _ "  ( 2 2 3 )
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Thus from (213)

d2X¥ . d'Y
дпг

(гг*)

and just beyond the boundary layer we have from (221)

@ *+Кащ  o,* ™
\5l!2 +  0 i<rUj

■ “ [ Ж - 5 А . . E (ЙГ -Kf) + i  («SP-J5:) ^  • (225)+  • .
M

At a free surface vanishes, making the last group of terms in (224) and (225) zero. If 
also ка =  0, then the co-ordinates may be chosen so that vanishes (see § 6). We have then

f22e)
дпг i<r ds ds ^  e >’ v226'

and just beyond the boundary layer

© L - a r a -  «
Thus, in the present case, it is the normal gradient of the mass transport which is deter

mined throughout the boundary layer.

fl. D e t e r m i n a t io n  o f  Y  i n  t h e  i n t e r i o r

Suppose that it is desired to find a periodic motion satisfying, at the boundaries, one of 
two types of condition: either the normal and the tangential velocities are prescribed to be 
equal to j® and 5™ respectively or else the normal and tangential stresses are to be equal 
to pfljl and р(® respectively. Suppose also that a perfect-fluid solution \jra exists, satisfying 
Laplace’s equation in the interior of the fluid, having the normal velocity ф® at the first 
type of boundary, and having a value of p equal to — p{® at the second type of boundary.

will not of course satisfy the other two boundary conditions, in general.) Let e fal be the 
first approximation to in powers of e; , is to be considered as being referred to co
ordinates normal and tangential to the boundaries. Since satisfies Laplace's equation, 
it satisfies also the equations of viscous motion in the interior of the fluid. Also, since p, 
apart from the hydrostatic pressure, is a function of the velocities of the order of рааЧ (see 
equation (122)) and since, from equation (94),

An “  —p + 0(pi/a<r[l) (228)

it follows that q^, gives the prescribed value of the normal stress pm, with relative errors 
of the order of (8/1)2. Further, from §§ 7 and 8 we see that by adding to ifra j functions, say 
ijrb „ which vanish exponentially inwards from the boundaries, the conditions of prescribed 
tangential stress or velocity may be satisfied (to order e). The functions e^41 produce also
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additional stresses and velocities normal to the boundaries. But, considered as functions 
of the velocities, these are at most of order 8Ц relative to the corresponding functions for 
e fa j. Hence e ( fa j +  jrb,) satisfies all the prescribed boundary conditions for with neglect 
only of Sjl. In the intenor of the fluid c^rl tends exponentially to tijra j. Hence the velocities 
<7*"’, Vt , and Vn, may be calculated by the ordinary theory of perfect fluids, and will be 
correct to order Sjl in the interior. The effect of surface tension, which enters only into the 
normal stress, may be taken into account by calculating its effect on f a, in the usual way.

Thus the theory of perfect fluids can be expected to describe the motion in the interior 
of the fluid successfully to order e. But to order e2 this is not so. From § 7 we see that when 
the normal and tangential velocities at the boundary are given, the mass-transport velocity 
d'Fjdn just beyond the boundary layer is well determined, and not arbitrary as in the theory 
of a perfect fluid. To the present order of approximation the velocity is independent of the 
viscosity, and, as v tends to zero, it tends to a value different from that at the boundaries. 
This phenomenon was noticed by Scblichting (1932) and Rayleigh (1883) in special cases. 
Similarly, from § 8 , when the tangential stress is prescribed at the boundary the normal

(
дщг 3'F\
-j-j- + * 0 - y \ , is determined just beyond

the boundary layer.
To determine У  in the interior of the fluid, suppose that the first-order solution i]ral is 

found by the classical theory; gls“\etc ., are then known. At the first type of boundary
we have

^ - “  0, (229)

and just beyond the boundary layer (if the velocities are expressed as the real parts of 
complex quantities)

™ = Ф ' Т ' -S'T) - ?Й2г * / ( г ё , - |Я )  d t £ ( $ > - sS)

Л № - г , г ) + \ ,) d4 (« JT -^ i)  (23°)

by (183). Since the boundary layer is only of thickness 8, the second condition may be 
supposed to be satisfied at the boundary itself, or at the mean boundary, for this will not 
affect the value of 'F in the interior to the present approximation. Similarly, at the second 
type of boundary we have

^ -  =  0, (231)
and from (2 2 1 )

— -4 -J f  — - — ft Г i - Ur  лСоД AtJL (пМ V \ 
dn2 + 0 dn J I ds vn )

+ ^ p S a - a J j S  (fSP -K „)diSgb]. (232)

In the interior of the fluid the field equation may be taken to be either (68) or (86 ), accord
ing as or Solutions of these equations may be called conduction solutions 
and convection solutions respectively, corresponding to the names for the equations 
suggested in §4.
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Since the conduction equation is of the fourth order we may expect that a conduction 
solution satisfying all the boundary conditions exists in general. But since the convection 
equation is only of the second order, a convection solution can he expected to exist only in 
special cases.

Let us consider more closcly the conditions to be satisfied hy the convcction solution near 
a free surface, say z =  0 . Setting =  *0 =  Vs , =  0 in equation (232), we have

d W  r j f f i  дрЩ'
T * - * } i r d‘- w >  <233>

or, on replacing (s,n) by (x, z),

( У 5 _ о = ~ * \ 4 f d t i £ k -  ( 2 3 4 )

Now since Y  is constant when z =  0 we have from the convection equation (86)

(S L =constant-4i%  dfe -  2̂3s)
From (234) and (235) it follows that a necessary condition is

=сотШЛ' (236)

J'dz2 dxdz

since j!ra! satisfies Laplace’s equation. This is equivalent to

df =  constant, (237)

(on differentiating with respect to x and using the property of the periodicity, equation (34)). 
Now die condition of constant normal pressure at the free surface gives, for the perfect- 
fluid solution, лг. 3 .

ф ч ф - о ,  (•»•)

where фа, is the velocity potential corresponding to \jral (Stokes 1847). On differentiating 
with respect to x and replacing дфа Jdx by — djra Jdz we have

(2i0)

Thus the left-hand side of (238) may be written

1 Г 1 £ Ж + В Д  {24П
g \_dxdzdt dxdz dz2 dz2dtJ'

Each term vanishes, by the periodicity; thus the necessary condition is satisfied. The proof 
can be extended to the case when the surface tension is taken into account. Hence, if both 
normal and tangential stresses at the surface vanish, it may be possible to satisfy the con
dition (232); but if the stresses do not vanish a convection solution cannot in general 
be found.

1
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P A R T  I I I .  W AVES IN  W A T ER  O F U N IF O R M  D E P T H  

1 0 . I n t r o d u c t i o n

In parts I and II a general method was described for finding the mass-transport velocity
in any oscillatory motion of small amplitude, given the first-order motion for a perfect fluid.
In this part the method will be applied to the case of waves in water of uniform depth.

As shown in part I, the motion in the interior of the fluid has a different character when
the ratio a2/S2 is small, and when it is large, compared with unity (a denotes the amplitude
of the first-order oscillation, and 8 = ('Zvjay, where v is the viscosity and 2 jr/<r is the period).
In the first case the vorticity is diffused throughout the fluid by viscous conduction, and
in the second case by convection with the mass-transport velocity. There are two different
field equations for the two cases (equations (68) and (84)). The mass transport near the
boundaries, however, does not depend critically on the ratio ajS, but is determined by the
first-order motion and the local boundary conditions. The thickness of the boundary layer
is of order S. Just beyond this layer either the mass-transport velocity d'Yjdn itself or its
normal gradient d2}¥jBn2 takes a certain definite value, depending on whether the boundary
is fixed or ‘free’; and, by combining the known values of iWjdn  or d^Vjdn2 just beyond the
boundaries with the approximate field equations for the stream function 'F in the interior
of the fluid, a ‘conduction solution’ or a 'convection solution' may be obtained.

In order to treat the progressive and the standing wave together we shall consider a
motion which, in the first approximation, consists of two waves of the same period and
wave-length travelling in opposite directions; that is, we suppose that the equation of the
free surface is . ,, .z =  <J] cos (kx — art) +  аг cos (kx-\-<rt) (242)

in the usual notation; of, if the real part only is taken,

z =  (я, c -^ + a j  e14*) clrt. (243)

The corresponding stream function is given by

-  - г т м & г * I»' <“ *>

(Stokes 1847). The condition of constant pressure at the free surface gives

a2 ■= gk tanh kh. (245)

To obtain a single progressive wave of amplitude a travelling in the direction of x increasing 
we shall write a, =  a, a2 = 0. (246)

To obtain a standing wave of amplitude 2a we shall write

a ,  ^  a2 =  a. ( 2 4 7 )

We shall first evaluate the motion in the boundary layers, and then proceed to consider the 
motion in the interior of the fluid. Finally, the results will be compared with some observa
tions of mass-transport velocities.
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11. T h e  b o u n d a r y  l a y e r  a t  t h e  b o t t o m  

In equation (188) we write
s -----x, n =  h - z ,  (248)

"  зшИл (a‘ e" * - a’ e'*>e'"- (249)
This gives
and

£’ Ж  =  4Ш Ш [8 (1 —с—<л-̂ 0) _ 3 ( 1  _f_i) ( i_ e -t«+ «* )(* -rt)].

Now a{h -z)  =  (1 -fi)^  Z
Thus, retaining only the real part, we have

' ~ r -

e*V- =3z 4 sinh2 kk
where

/ WU0 =  5 —8 e ■"cos/i+3 e '2'*,| 
/ 0 ) ^ ) -----3+ 8  e- '1 siniB +3e-2>‘.''

Assuming (246) we have

(250)
(261)

[ ( * ? ( V )  + 2 a ,« 2s in 2 b y w ( A z f ) ] > (262)

(253)

(a) The progressive wave 

„dW <Рок fh—z\
£ 1 ^ ~  Г Г ] • (2б4)

F io u t l e  4. Graph o f r e p r e s e n t in g  the profile of the mass-transport 
velocity in the boundary layer at the bottom, in a progressive wave.

/O>0 0 , which represents the typical velocity profile near the bottom for the progressive wave, 
is plotted against ц in figure 4. It will be seen that JWfji) is always positive and, when /1 

tends to infinity, tends to the value 6 . Thus, just beyond the boundary layer,

,dW  5 агок
dz 4sinh2AA‘ (255)

V o l .  343. A.
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d /0 >

The lowest root is given by

- ^ - - 8 7 2 e-/‘s in ( ^ + i» ) - 6 e -2/‘> 

so that stationary values of the velocity occur when

sin (/(+£*) =  ^ e - ' .

fl — 2-306, / ( «  =  5-505,

so that the maximum value of the velocity is given by

Л!Я¥\ , „ „ „  аЧк
[d z )m̂ , sinh 2kA'

Subsequent maxima or minima occur when

(m =  2,3,...).

Assuming (247) we have
(b) The standing wave

dz 2 sinhsW in 2

(256)

(257)

(258)

(259)

(260)

(261)

is plotted against/z in figure 5. As ц tends to infinity/W  tends to —3. Thus just beyond 
the boundary layer we have

лиг О -2—£.
(262).dW  3 a2trk . , 

dz ~  2 sinh2 kh Sm

/ “ W
Figure 6. Graph o f , representing the profile of the mass-transport 

velocity in the boundary layer a t the bottom, in a standing wave.

However, for small values of takes positive values. There is one zero, namely, when 
fi =  0-93. Since

=  8 J2 erf sin (ji +  fxr) -  6 e" 4

maxima and minima occur when

(263)

(264)
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The first two stationary values occur when

M= 0-49, /W =  -0-41  (265)
and ц = 3 -945 /И  =  з .ц .  (266)
Subsequent maxima or minima occur when

/* = (« -£ « )  (m = 3 ,4 ,...). (267)
We see from (261) that the horizontal mass-transport velocity varies as sin 2kx; in the planes
* =  0, ±  JA, ±  ...... it is zero, and in the planes x =  ±-JA, ±$A, it is a maximum. The
particles very close to the bottom tend to move towards the planes of greatest horizontal 
first-order motion and away from the planes where the motion is purely vertical, but for 
larger values of (A — z)/& the particles drift in the reverse sense. Hence there is a circulation 
in the boundary layer itself, in cells whose length is JA. The vertical velocity is given by 

„dY a2Sk2<r f <»-«>/!
<268)

This vanishes when (h—z)/5 =  0 and 1-47.

1 2 . T h e  b o u n d a r y  l a y e r  a t  t h e  f r e e  s u r f a c e  

Since the boundary is moving we retain at first the co-ordinates (j, я). In equation 
(226) we write e^> =  i<r(e, e ' 1̂ + a2 e1*) e1(rt (269)

and =  — a coth kh (Д[ e_u“ —д2 еш) е.ш, (270)

giving ег = — iak2co^b.kh{a\—a\—2ia,a2sin2&) (1 — e_an). (271)

Thus, retaining only the real part of (271) we have

£2 =  4irk2 coth kh £(fl? — a|) jW) -f- 2a, sin 2 k s ^  , (272)

Ŵ ere =  —1+e-^cos/i, (273)

=» — e^sin/f. (274)

(a) The progressive wave
In this case

=  4aV£ coth kh . (270)

As ц tends to infinity tends to - 1 . Thus, just beyond the boundary layer the velocity
gradient is given by мш

e2 ~rAr = — 4a2 irk coth kh, (276)on*

which is twice the corresponding value for the irrotational wave (see Stokes 1847)- Hence 
there is a vorticity given by _  _ 2a Cothkh. (277)

From (273) we see that is always negative except at the free surface, where it vanishes. 
The stationary values of j*® are given by

/1 =  (m — i ) »  ( т =  1 ,2 ,...) . (278)
70-2
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The greatest value of the velocity gradient is given by

m =  1, fi =  Jtt, gV>) =  — 1-67. (279)

(i) The standing wave
In this case we have from (274)

=  8аг1тк coth kk sin 2ks . (280)

As ц tends to infinity ̂  tends to zero. Thus, just beyond the boundary layer

« * ^ - 0 , (281)

as in the irrotational wave. In the boundary layer itself the velocity gradient may take 
both positive and negative values. The stationary values of jW are given by

/ ! - ( » - * ) »  (тя — 1, 2 , . . .) .  (282)

The greatest and least values of the velocity gradient occur when

#> = — 0-67, (283)

and Ц =  Jw, ^W=0-14, (284)

respectively. The velocity gradient vanishes when

fi — mn [m ~  0 , 1, 2 , . . . ) .  (286)

13. M o t io n  i n  t h e  i n t e r i o r : t h e  c o n d u c t io n  s o l u t i o n

As boundary conditions for the motion in the interior we find the values of d'F/dn (or 
d2y¥jdn2) just beyond the boundary layers (й§>5), and suppose that these are to be taken at 
the mean boundary itself. Thus from (262) and (273) we have, so far as the motion in the 
interior is concerned,

‘*6 Э «  =  J iM T A  -  К  *2sin 2b]  (286)

, „/d2'F\ 2<r£2 sinh 2kh. , ..
and sinhш  (287)

On each of the mean boundaries T  is to be constant. The arbitrary constant in 'F may be 
chosen so as to make T  vanish at the upper boundary. Thus

CF)x-o =  0 (288)

and C¥)i-b — constant. (289)
Also from equation (244) we have

** f dl * l  d t =  ?sinh2A(z-A) ^ (290)
J dz dx 4 sinh2AA 4 1  V '

so that the conduction equation for Y  in the interior of the fluid is, by equation (68),

(291)
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However, the equations (286) to (289) and (291) are not quite sufficient to determine.'F 
uniquely; one further condition is required. We may suppose that

-  0, (292)

i.e. that the total horizontal flow due to the mass transport is zero. Assume a solution 
of the form

=  aTinh2kh [(“i—аг) Щ 2-—Л) +  Z<«(z)} + 2a! a2 sin 2kxZ«(z)]. (293) 

Then and 2!w must satisfy
d <Z<*> 
dz* =  0 ,

®  , 
\  dz

: ЗА,

and

/dJZ -̂ j =  ~ 4 k2 smh 2kh, (Z®) ̂  =  sinh 2 kh

( S - « = ) > - 0,

■ - 3 4 ,  ( » ! ) _ , - 0 ,

(294)

I d * /*
/d2Z(,A
( dz2 ~  °’ (ZW)f : 0 .

(295)

The solutions of these equations arc given by

=  sinh 2kh +  Skz  +  k 2h 2 sinh I k l ^ j l i 5 — Q,z2jh2+ z/A) +  J  (sinh 2A/;+’ikh ) (z 2//ls — 3z /Ii)

. a  <298>
. 2kh cosh 2kJi sinh 2kz—2kz cosh 2kz sinh 2kh .OQ_.

-----------------------------ш ш = т ------------------ •

This gives the solution (293) uniquely. But if the condition (294) is relaxed an arbitrary

a!<r(zs/A3—3z/A) (298)multiple of

may he added to 'P'. The expression (298) represents a parabolic velocity distribution which 
vanishes on the bottom and has zero velocity gradient at the free surface.

(a) The progressive wave 

When a, =  a, flj =  0, we have from (293) and (296)

c2~  =  аг<гк№{ф), (299)

where F^(ji) =  ^g^j-^jjjcosh&fcA^— 1) +  3+iAsinh2iA(3^—4/i+ l)

+ » ( т в г + 1 ) о ' - 1 > ] -  ( 3 0 0 )
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In figure 6, FUlis plotted against /i for kh =  05, 1-0 and 1-5. It will be seen that the curve is 
always concave towards the right. For small values of kh the velocity is greatest near the 
bottom. When kh is negligible we have

and so

where b is the amplitude of the horizontal motion:

b =  acothkh = ajkk.

z/h-l-Q

(301)

(302)

(303)

F i g u r e  6. Graphs of F(l’)(zlh) when kh = 0'6, 1-0 and 1-6, representing the profile of the mass- 
transport velocity in the interior of the fluid in a progressive wave (conduction solution).

Equation (302) gives a parabolic velocity distribution, which is zero when zjh =  JZ  and 
has a vertical tangent at the mean free surface. However, for small values of kh the present 
approximation may not be good unless the wave amplitude a is very small; for the method 
can only be expected to remain valid if the mass-transport velocity is small compared with 
the orbital velocity of the particles; it will be seen that this requires a /k ^ l .

For large values of kh the velocity is greatest near the free surface. When (kh)~l and t~kh 
are negligible we have m ( j l )  =  1}> (304)

j r  
‘5 Гand hence e2-*— =  ifl2o-A2A(3z2/A2— 4z/A+l). (306)

This represents a parabolic velocity distribution which is zero when zjh — 1 and zjh “  
and has a vertical tangent when zjh — §.

When a, a, ■
(b) The standing wave 

■ a we have from (293)
a2<r (306)

Z<‘> being given by (297). Contours of the function sin 2kxZ(s'>{z) when kh =■» 1-0 are shown in 
figure 7 . The circulation is in cells bounded by the vertical planes x =  JwA (where m is any
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integer) and by the horizontal planes z  =  0 and z =  h. I t  may he shown that Z ^ (z)  has only 
one stationary value, given by

2 kz tanh 2 kz — 2kh coth 2kh—l .  (307)

F i g u r e  7. Contours of sin 2kx Z(,1(z) when kh= 1-0, representing the circulation 
of mass transport in a standing wave (conduction solution).

Hence there is only one cell in each vertical line. When kh is small we have

W  =  -JiVAAsin 2kx (z '/h '-z lk ) ,  

where b is given by (303), so that there is a point of zero velocity where

* = (£ m + i)A , г/А =  уз.

(308)

(309)

(310)

When kh is large we find

£JlF =  sin 2£*e~2iA 2k(h—z) er2tik~1\

This is the special case found hy Rayleigh (1883).* The velocities are very small, owing to 
the factor e_2W. The circulation is driven by the tangential velocity near the bottom, and 
takes place almost entirely within a quarter of a wave-length from the bottom. There is 
a point of zero velocity where

x =  (im + i) X, 2k (h -z )  =  1, h - z  =  A/4it. (311)

14. M o t io n  in  t h e  i n t e r i o r : t h e  c o n v e c t i o n  s o l u t io n  

The boundary conditions for Y  are given, as before, by equations (286) to (288), but the
field equation, from equation (84), is now

(a) The progressive wane

In this case a solution is simply
<*¥-■ 4sinh2£AЯ(г),

(312)

(313)

♦ Rayleigh d id no t examine the m otion near the  free surface, or show th a t the m ass-transport velocity 
g radient vanishes there. His solution is therefore incomplete, even for waves in deep w ater; for, a non-zero 
velocity gradient near the free surface would produce additional velocities near the bottom of order 
а2(ткс.-11къ w hich arc  com parable with those produced by the tangential velocity near the bottom.

I
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where H {z) is an arbitrary function satisfying only the conditions

tdH \
a 5k,

® , - o  =  - 2*2sinh2M~ J
and, if the total horizontal flow is assumed to be zero,

( f i U  =  o;

(314)

(316)

for, equation (313) defines z as a function of Y, and then F  can be defined by equation (312). 
The motion represented is a horizontal flow depending only on z . I t  can only be defined 
further if the conditions at x — ±  oo axe specified.

(6) The general case

When neither a, nor a2 vanishes, we assume, as the simplest hypothesis, that F  is a  linear 
function of V :

where С and r are constants to be determined. The differential equation for 'F  is then

( V * + ^ Y - ^ S ® [ O T + 4 * * B n h 2 * ( * - * ) ] .  (317)
Let

4 sinh2 kh

j ^ + j — ^sinh 2k ( z -h )+ Z f» ( z )J + a e 1«*anabrZM'(z)]-

(318)
Then Z<«' and Z w  must satisfy

and

(£,+**) z » - o ,
(d 2№ \ (Ш Ч б г 2)*
{ dz ) t4 t~  4A*+r* *

l ? * U — y r + W ^ ? s^ h 'm -

(319)

/ii2Z « \
I dz2 Л_о; 0, ( Z ^ U - o .

(320)
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From the first and the last two of equations (319) it follows that

С «  — 4 sinh 2kk. (321)
The first three equations give

mtv _  (12А5 +  бг2) к sinrz , 8i J . , , cosr(z-h)
(322)

Equations (320) possess a solution
7 0 y o i sin (r2 —4it2)*Z , л ,

“  (r2- 4 i 2)‘cos(rs—4A2)'A’  ̂ ^

provided that r2 =  4A2+m W lh2, (324)

where m is a positive integer. In this case (323) may also be written

Z W - ( _ i ) - «  Jj$sin(mra/A). (325)

Once m is chosen, both Z ^  and 2ZW are completely defined. There is an infinite number 
of solutions, each corresponding to a different integer m, but solutions corresponding to 
different values of m are not of course superposable. Now when z  — k we have

jvi, <r(a\-4) Г • u n n  , (12кЧбг*)к , , (2Jt2+ r2) 8*2 . ln J [ Л 
4sinh2jtAL r2 smhatA+ (4/fc2+j-2)r tanr/! +  “(4A2 +  r2)r J'

(326)
It may be shown that the expression in square brackets cannot vanish when kh>0. Hence 
the present solution does not represent a motion having zero total horizontal flow, except 
when af = a\ (the case of the standing wave).

(c) The standing wave 

When a, -  jj =  и we have from (318) and (315)

This represents a circulation in cells similar to those in the conduction solution (§13), 
except that in each vertical line there are now m cells instead of only one as formerly. The 
vertical boundaries of the cells are the planes x = \m!A (where m' is any integer), and the 
horizontal boundaries are the planes z  =  mhjm  (0 <m'^m). The circulations in adjacent 
cells are in opposite senses; those in the lowest cells are in the same sense as the circulations 
in the corresponding cells in the conduction solution.

The results of the present section may be summarized by saying that for the progressive 
wave the convection solution is arbitrary, for the standing wave there is an infinity of possible 
solutions, and in the general case of two opposite waves of unequal amplitude there exists 
an in f in i ty  of homogeneous solutions of the present type; these, however, represent motions 
with non-zero total horizontal flow.

Vol. 245. A. 7»
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1 6 . D is c u s s io n

The conduction and convection solutions for the first-order motion which is represented 
by (244) are exact, to the present degree of approximation. However, owing to the dissipa
tion of energy by viscosity, equation (244) itself is only approximate; for the motion cannot 
be exactly periodic in both space and time. The assumption usually made (see Basset 1888 j 
Hough 1S96 ) is that the motion is periodic in space and has a small decrement in time. But 
since one of our fundamental assumptions is that the motion is periodic in time, we must 
here suppose that the motion is attenuated in a horizontal direction. For a progressive 
wave in which the energy is propagated in the direction of* increasing, there will be an 
exponential dccrcase with x; instead of a ‘standing wave’ we may consider the sum of 
two progressive waves attenuated in opposite directions.

Now the energy dissipation E  per unit volume is proportional to pv times (velocity 
gradient)2. Thus in the interior of the fluid, and in the boundary layer at the free surface, 
E  is only of order pvaWk2, or р£а2<гк(8/1)г, where I is the wave-length. But in the boundary 
layer at the bottom the velocity gradients are of order aajS, and hence the energy dissipation 
is of order pgcP-ak per unit volume, or pga2<r(S/l) per unit area of the bottom. Thus most of 
the energy dissipation takes place in the boundary layer at the bottom, provided the depth 
is not too great. But the transfer of energy horizontally can be shown to be almost in
dependent of the viscosity, so that the proportional rate of attenuation horizontally is of 
order 8/1 per unit wave-length at most. This is of the same order as quantities already 
neglected.

The conduction solution for the progressive wave given in § 1 3 , which is independent of 
the horizontal co-ordinate x, satisfies also the convection equations; for the stream-lines 
are parallel, and the vorticity along each is constant. It might therefore be supposed that 
the solution is valid for ah values of a2/82. However, if the horizontal attenuation of the waves 
is taken into account there must be a small vertical component of velocity, and the con
duction terms no longer vanish identically. It then becomes difficult to find a convection 
solution. The conduction solution, on the other hand, can easily be modified to take account 
of the attenuation. Since the vertical velocities are small it is possible that, for the progres
sive wave, the range of validity of the conduction solution (for which it was specified that 
a2/82‘4  1) is slightly greater than that assumed. However, in the case of the standing wave, 
where the convection terms do not vanish identically, the condition а2182Щ 1 cannot be 
relaxed.

Let us now consider the possible sequence of events, supposing that the motion is started 
from a state of rest. For definiteness suppose that waves are generated in a rectangular tank 
of length L, width D, and depth h (where L  is large compared with a wave-length) by an 
oscillating plunger or paddle at one end of the tank. If a progressive wave is considered, 
the waves may be supposed to be dissipated by a ‘beach’ or wave absorber at the far end 
of the tank, or they may be partially or wholly reflected by a suitable obstacle placed in. the 
tank; if they are wholly reflected a standing wave is formed.

Observation has shown (see Cooper & Longuet-Higgins 1950) that the wave energy 
travels down the tank with approximately the theoretical group velocity g/2tr, and that 
soon after the passage of the'wave front’ the first-order motion is well established. The mass-
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transport distribution in the boundary layers can be expected to be set up almost immedi
ately, for it depends, as was shoy/n in part II, only on the first-order motion and on the local 
boundary conditions. There may be some departures from the theoretical velocity dis
tribution owing to the presence of large velocity gradients just beyond the boundary layer, 
for these might not at first be small compared with the velocity gradients in the boundary 
layer itself, as was assumed. But after a few cycles the velocity gradients just beyond the 
boundary layer can be expected to be smoothed out by the viscosity.

In the interior of the fluid the motion will at first be irrotational, since no vorticity can 
be generated there. The mass-transport distribution should therefore be as described by 
Stokes (1S47). Subsequently the nature of the motion will depend upon the ratio a2jS2. 
If a2jS2<̂  1, that is, for very small waves indeed, the motion would be as described by the 
conduction solutions of § 13 (except possibly near the vertical sides of the tank, where the 
motion has not yet been considered). In order that the solution should be valid it must be 
supposed that the width D  of the tank is great compared with the depth h of water. By 
analogy with the diffusion of heat, the time taken for the vorticity to diffuse into the interior 
and for a steady state to be reached will be of the order of h2jv.

In nearly all practical cases, however, we shall have <z2/<52 > 1 ,  so that, if a steady state 
exists, it is given by the convection solution of § 14. For the progressive wave, this solution 
is arbitrary, or rather it depends on the boundary conditions imposed at x =  ± 00 . In prac
tice, therefore, we may expect that the motion win depend upon the special conditions at 
the wave maker and the wave absorber respectively; vorticity will be generated at these 
points and will be diffused horizontally along thestrcam-lines. The time taken for the whole 
interior of the tank to be affected in this way is of the order of £/(aVA). In the meantime, 
some vorticity will be diffused inwards from the bottom, from the free surfacc and from the 
vertical sides by viscous conduction. The width affected in this manner is of the order of 
(Lv/a2trky (this quantity is assumed to be small compared with h or D). However, it is by 
no means certain that a steady state will exist which is compatible with the boundary con
ditions at both the wave make; and at the wave absorber, or that, if it exists, it is stable. The 
situation is even less predictable when one considers a partially reflected wave, for which 
no convection solution satisfying the condition of zero total transport has been found, or 
the standing wave, for which there is an infinity of such solutions.

16. C o m p a r is o n  w i t h  o b s e r v a t io n

It appears from the preceding discussion that the theory can best be compared With 
observation, first, in the boundary layers, where the motion is well-determined irrespective 
of the ratio a?jS2, and, secondly, in the interior of the fluid before vorticity has had time to 
be diffused inwards; the motion should then be described by Stokes’s irrotational theory. 
Not many quantitative determinations of mass-transport velocity have been made under 
controlled conditions, but the chief observations will now be discussed.

Caligny (1878)
The earliest quantitative observations seem to be due to Bertin & Caligny (Caligny 

1878). These authors used a tank of length 29-7 m, depth 47 cm and width 50 cm; the depth
71-a
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of water was 36 cm. Waves were generated at one end by a steam-driven plunger, travelled 
down to the far end and were dissipated on a sloping plane ‘beach’. The movement of 
particles of resin suspended in the fluid was observed through glass windows in a side wall 
of the tank. Caligny gives the following values of the mean horizontal velocity for waves 
of period 1 s, wave-length 130 cm and height 6 cm:

distance above bottom  (cm) 0 5 9 15 23 27 36 
m ean velocity (cm/s) 0'4 0-0 -0 -3  — 0 '5  O'O 0-3 0-5

This shows a forward velocity both near the bottom and near the free surface, with a nega
tive velocity between. Assuming a =  2tts~1, к =  2я-/130ст'1, h =  36cm and a =  3cm we 
find that the theoretical velocity j ust in the interior of the fluid, according to equation (255), 
is 0'45 cm/s, in good agreement with the observation at the lowest level. The velocity 
gradient near the free surface was not recorded; the theoretical value given by equation 
(276) is — 0-5 6 s-1, compared with a mean value of —0-02 s-1 between the two observations 
nearest the upper surface. Cafigny, however, mentions that the observations at the upper
most levels were rather scattered. This might either be because the motion was not steady, 
or because the velocity gradient was so large that the velocity depended critically on the 
depth of the particle of resin below the free surface.

In some previous but less precise experiments (1861) Caligny had observed a backward 
movement of grains of sand and resin on the bottom. But this movement diminished 
rapidly with distance from the wave maker and seems to have been due to the fact that 
locally the waves were not progressive.

Mitchim (1939)
A systematic experimental study of deep-water waves was made by Mitchim {1939) using 

a tank 60 ft. long, 1 ft. wide and 3 ft. deep. The depth of water was 2'5ft., and the wave
lengths investigated were from 2 to 5 ft., or less than twice the depth of water; thus the waves 
were, effectively, in deep water. The motion was generated at one end of the tank by 
a wooden flap hinged on the bottom, and was dissipated at the far end on a sloping plane 
beach. The mass-transport velocities below the free surface were measured by photographing 
the tracks of white liquid particles suspended in the fluid; the velocities at the surface were 
measured by observing the progress of a small wooden cylinder in diameter.

The surface velocities agreed fairly well with the irrotational theory, being mostly within 
2 0 %. The velocities in the interior were in qualitative agreement with the irrotational 
theory, being forward near the surface and backward at the lower levels; but the scatter 
of the observations, even on the same run, was such that it seems Unlikely that a steady state 
had been reached. No observations very near the bottom are reported.

The United States Beach Erosion Board (1941)
Some mass-transport observations are included in an experimental study of surface 

waves by the United States Beach Erosion Board (1941). The wave-lengths A used were 
between 3-5 and 12-2ft., and the depth of water was between 1 and 3ft. There were no 
observations near the bottom, nor is it stated for how long the waves had been running at 
the time of the observation. In deep water (h >  -J-Я) there was reasonable agreement with
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Stokes’s theory in the upper half of the fluid (though no observations within 2 in. of the 
surface are given); in shallow water (A<£A) the agreement with Stokes’s theory was poor 
and the observations show considerable scatter; it seems unlikely that a steady state had 
been reached.

Bagnold (1947)
In the course of a study of the movement of sand by water waves, Bagnold (1947) also 

made observations of the motion of the water particles themselves. His apparatus consisted 
of a glass-sided channcl 11 m long, 30 cm wide and 30 cm deep, opening at one end into 
a slightly deeper channcl 3 m long. A paddle hinged at the bottom of the deeper channel 
generated waves which travelled down the channel and were dissipated on a beach of pebbles 
or sand. To observe the mass transport, grains of dye impregnated with fluorescein were 
inserted into the water; these fell to the bottom, leaving a vertical streak which then 
gradually deformed, giving a direct picture of the velocity profile.

dye inserted
here direction of wave advance

F i g u r e  8 ( a f te r  B a g n o ld  1947). Successive p o sitio n s  o f  th e  d y e  s tre ak , in d ic a tin g  th e  p ro file  o f  
th e  m a ss - tra n s p o rt v e lo c ity  (a) a f te r  o n e  w a v e  (4) a fte r 10 w aves.

Bagnold’s first observations were made with asandless bed, the bottom being of painted 
wood. His sketch of a typical velocity profile is reproduced in figure 8 . It shows a strong 
forward drift near the bottom, and a weaker backward drift at higher levels. The upper
most part of the profile was unsteady; but in all cases there was a forward bend at the top 
of the curve.

The velocity of the foremost tip of the dye was observed; Bagnold’s two series of obser
vations are tabulated in the final column of table 1 (a) and (b). The parameters used by him 
to define the motion were the period 2яг/<т, the wave height 2a and the height of the wave 
troughs above the bottom (A —a in the present notation). For each observation the non- 
dimensional parameter <r2h/g has been calculated, and kh found from equation (245). In 
the fourth column of table 1 is given the theoretical maximum velocity in the boundary 
layer, calculated from equation (259).

The agreement between the last two columns of table 1 (a) is within 15 %, which is 
satisfactory considering the errors probably involved in the observations. In table 1 (4) 
there is good agreement at the two ends of the range of observation, but some discrepancy
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for intermediate values. No explanation of the 'kink* in the experimental curve has been 
found.

On reaching the point at which the waves broke, the dye was observed to rise vertically 
from the bottom and to become dispersed in the upper layers, which drifted slowly away 
from the shore. From the velocities in table 1 we should expect that the motion, if controlled 
by convection, would be established in a few minutes. After starting the paddle, a few 
minutes were always allowed for the motion to settle down; afterwards the velocity profile 
remained the same shape indefinitely. However, the initial drift profile could not be 
observed very well owing a to ‘seiche’ which was set up in the tank when the motion was 
started.

T a b l e  1 . C o m p a r i s o n  o f  t h e  o b s e r v e d  a n d  t h e o r e t i c a l  m a ss - t r a n s p o r t

VELOCITIES NEAR THE BOTTOM Ш  A PROGRESSIVE W AVE

r(s) â hjg kh t/тм. (cm/s) 4 ы  (cmj
(a) a = 8-0 cm, A - 16-0 cm

0-78 105 1-24 3-1 3-0
0-88 0-83 106 3-6 3-2
0-96 0-71 0-06 3-8 3-8
108 0-55 0-82 4-4 3 8
1-32 0-37 0-66 4-9 4'1
1-68 0-26 0-63 53 4-6

(A) a -  1-55 cm, A 14-6 cm
0-59 1-67 1-77 0-5 0-5
0-78 0-96 1-17 1-0 1-4
0-98 0-61 0-87 1-3 2-2
1-09 0-49 0-76 1-4 2 0
1-30 0-35 0-63 1-5 1-8
1-57 0-21 0-51 1-6 1-6

Similar observations to those of Bagnold, but on an inclined wooden ramp, were made by 
King (194 8 ). In this case the forward movement was found both near the bottom and near 
the free surface, with backward movement between.

Conclusions

The strong forward velocities near the bottom, which were observed by Bagnold and by 
Bertin & Caligny, are accounted for quantitatively by the present theory. In a progressive 
wave we may expect a forward bending of the velocity profile near the free surface—twice 
that predicted by the irrotational theory—but no careful observations are yet available. 
In the standing wave there should be a circulation in the bottom boundary layer in cells of 
width one-quarter of a wave-length. Although there are some indications from the motion 
of sand particles that this may be so, there is as yet no direct experimental verification.

The observations of mass transport in the interior of the fluid may be divided into two 
classes: those in deep water and those in shallow water. In deep water the observations seem 
to be not gready different from those predicted by the irrotational theory—as one would 
expect if the waves had not been running for long. In shallow water the observations appear 
to be very scattered; it is uncertain whether, in any of the observations quoted, a steady 
state had been reached.
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Further experiments are desirable to determine the range of validity of the boundary- 

layer theory for progressive waves, to verify the results predicted for standing waves and 
to determine whether the motion in the interior is stable.
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A B S T R A C T . T he following theorem s are proved for irro ta tio n a l surface w aves o f finite 
am plitude  in a uniform , incom pressible fluid:

(a) I n  any  space-periodic m otion  (progressive o r otherw ise) in uniform  d ep th , th e  m ean 
square of th e  velocity is a decreasing function  o f the  m ean d ep th  z below th e  surface. H ence 
th e  fluctuations in the  m ean pressure p  increase w ith z.

(b) In  an y  space-periodic m otion  in infinite d ep th , the  partic le  m otion  tends to  zero exponen
tia lly  as z ten d s to  infinity. T he pressure fluctuations a t  g rea t dep ths are  therefore sim ul
taneous, b u t th e y  do n o t in general ten d  to  zero.

(c) In  a  progressive periodic w ave in uniform  dep th  th e  m ass-tran sp o rt velocity  is a  d e 
creasing function  of the  m ean  d ep th  o f a  partic le  below th e  free surface, and  th e  tan g en t to 
th e  velocity  profile is vertical a t  th e  bo ttom . This resu lt conflicts w ith  observations in w ave 
tanks , and  shows th a t  the  w aves canno t be wholly irro tational.

(d) A nalogous results are p roved for th e  so litary  wave.

The present paper discusses the vertical attenuation of certain physical quantities 
associated with irrotational wave motion. The interest of these quantities arises in 
different connexions, but because of a similarity in the analytical methods employed 
it is convenient to consider them together.

In the well-known approximate theory of surface waves (see Lamb(2) chap. 9), in 
which squares or products of the displacements are neglected, both the pressure 
fluctuations and the particle motion decrease rapidly downward from the surface; in 
deep water this decrease is exponential. I t  was therefore surprising when Miche (6) 
discovered that in a standing wave there are second-order fluctuations in the pressure 
even at infinite depths. Similar pressure variations have been shown to occur in a 
more general case, when the motion consists, in the first approximation, of two waves 
of the same wave-length, though not necessarily the same amplitude, travelling in 
opposite directions (Longuet-Higgins (3)). It is of some interest, therefore, to consider 
whether, in higher approximations than the first, the particle motion possesses a 
property similar to the pressure fluctuations or whether it decays rapidly with depth 
in all cases.

The results proved in §§ 1 and 2 of the present paper are for any irrotational motion 
which is periodic in space—for example, a progressive or a standing wave, or a motion 
which in the first approximation is a combination of two progressive waves of equal 
length. Periodicity in time, however, is not required. In § 1 it is shown by a simple 
argument that the mean square of the velocity at a given depth z is a decreasing func
tion of 2 , and hence also that the mean value of the dynamical part of the pressure 
increases with z. In § 2 upper bounds are found for the velocity; when the depth is 
infinite the velocity diminishes exponentially. These results are independent of the
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pressure condition at the free surface, and follow from purely kinematical considera
tions, assuming the fluid to be incompressible and the motion irrotational. No approxi
mations depending on the smallness of the wave amplitude are made. In deep water, 
therefore, the decay of the particle motion must be exponential to all orders of 
approximation.

One consequence of this result is that the pressure fluctuations at great depths, 
though depending in general on the time t, must be uniform in space.

In § 3 the mass-transport velocity of the waves ia considered. It was Stokes (8) who 
first showed that in a progressive irrotational wave the particle orbits are not closed, 
but that each particle has in general an average, non-zero forward motion (called the 
mass-transport velocity). Stokes’s method was approximate only. An exact and very 
elegant geometrical demonstration of this property was given by Rayleigh (7). The 
existence of a forward mass-transport velocity relative to the fluid at great depths was 
shown by him to be a consequence of the irrotational character of the motion. However, 
Rayleigh’s proof is valid only for water of infinite depth; his argument does not apply 
when the depth is uniform and finite. Recently Ursell(io) presented an analytical 
proof, found by him some years previously, which extends Rayleigh’s result to water 
of finite depth; he showed that the mass-transport velocity must be an increasing, 
or at any rate a non-decreasing, function of the depth, and that the tangent to the 
(mass-transport) velocity profile is vertical at the bottom itself. These results are of 
considerable interest, since wave-tank experiments have shown that for real fluids 
there is, on tne contrary, a strong forward velocity near the bottom, in water of moderate 
depth (see, for example, Bagnold (l)); hence there must be a strong vorticity near the 
bottom, and the assumption of irrotational motion is invalid for real waves. Bagnold’s 
observations have been accounted for quantitatively by the present writer (4) by intro
ducing the viscous terms into the equations of motion. The original discrepancy 
between theory and observation has in fact led, in the paper just quoted, to a funda
mental re-examination of the theory of mass transport and of the diffusion of vorticity 
in an oscillatory motion.

The method of proof used by Ursell (10) was to translate the first part of Rayleigh’s 
geometrical proof into analytical terms; that is, he supposed that the progressive wave 
was reduced to a steady state by superposing a constant velocity — с on the system 
(c being the wave velocity) and then found the time T  taken by a particle to travel 
along a stream-line over a complete wave-length in the form

where A is the wave-length, x  and z are horizontal and vertical coordinates, and ф 
and \jr are the potential and stream function respectively. Then, by expanding x  and 
z in Fourier series he showed that T  was an increasing function of <jr, and hence that 
the mass-transport velocity increased with height above the bottom. In § 3 of the 
present paper we shall give a slightly simpler proof which avoids the use of a Fourier 
series expansion; T(\jr) is shown to be an increasing function of f t  by direct differentia
tion; the analysis is precisely similar to that used in § 1 .
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Analogous results for an irrotational solitary wave are proved in §4. Here the 
advantage of the present method compared with that of Ursell(io) is also apparent; 
for the present method avoids altogether the use of Fourier integrals.

The usual notation will be used: x  and z are rectangular coordinates, z being measured 
vertically downwards from the mean surface level, и  and w denote the components of 
the velocity, which is two-dimensional and takes place in the (x, z)-plane. A is the 
wave-length, h the mean depth of the fluid, p  the pressure and p  the density. The 
velocity potential and the stream function are denoted by ф and \jr. The fluid is 
assumed to be uniform and incompressible. A bar will be used to denote mean values 
with respect to x  over a complete wave-length.

1 . I n  any space-periodic motion the. mean square velocity at a given depth is a decreasing 
function of z.

Since the motion is irrotational the components of velocity are given by

дф дф
—  £ •  (1) 

where, by the equation of continuity,

w - 1  +  ̂ - 0 . (2 )

The mean square of the velocity at a fixed depth is given by
fA  1 f*A

Я2 dx. (3)

Differentiating with respect to z, we have

1 ^  =  ! Г ЛГ
dz A jo  \d x d xd z  dz dz2\

2 Гх [дф Ьгф дф ЪгфЛ ,
"  A J 0 [дхдхдг dz дх2} l J

by equation (2). But 

by the periodicity of the motion. Thus

ршз^_ j a w  г W ]A_n
J  о [a *  dx d z +  dz dx2\  ~  \d x dz Jo  * 1 '

I о dx dx dz

On differentiating a second time we have similarly

(«I

_ 4 гАг /э 2й \ 2 _ а ^ э 3̂  
A Jo [\ЭжЭг/ dx 9 ?

’1 ’ \ax



129

555 Decrease of velocity w ith  depth in  an irrotational water wave

The right-hand aide of (7) can never be negative; so that 9(g*)/3z is an increasing func
tion of z. But, on the bottom z = h, Э0/Эг vanishes, and hence also do д2ф/дхдг and 
S(g2)/3z. Therefore 3(^2)/3zia never positive when z ^ h  and so q2 is a decreasing function 
of z. This proves the result.

(We may note that, since дф/дг also satisfies Laplace’s equation and is periodic in x,

Hence, by exactly similar arguments,

» < 0  & > о  г ш

az3 ^ ’ az4 ' ( '
0(2rt—1)̂ 2̂)

and m general 0 , (11)

for every positive integer и.)
Since the density of the kinetic energy is proportional to q2 the result may be stated 

in the form: the mean density of kinelic energy is a decreasing function of the depth. 
Some corollaries may also be deduced. We have

dx
_  2 Г  ГЭ0 8гф 

A J o  [dx dxdz

A J o  [эхЭхЭг Эг д х %\

by equation (5). Therefore и г — ги2 = С, (13)
where 67 is a function of the time only. Since, at any instant, и2 and w2 differ by a 
constant, and their sum q2 is a decreasing function of z, each separately must be a 
decreasing function of z. Thus the mean square of each component of velocity is a de
creasing function of the depth.

The total pressure p  is given by the Bernoulli equation

Z  = - d- £ - № + g z + F ( t)  (14)

(see Lamb (2), § 20), where g denotes gravity and F(t) is a function of the time t only. 
The dynamical part of the pressure, that is, the difference between the actual pressure 
and the pressure in the fluid at rest, is given by

l - t f + w  <15>
ф is not yet completely determined, since the addition of an arbitrary function of 
t would not affect the velocities. Suppose then that ф and F(t) are chosen so that the 
mean value of ф over a wave-length, at a certain depth z, is zero:

ф = 1 Г<6(£е = 0 . (16)
Л J о
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Now (l7) 
since the total flow across any horizontal plane is zero. Therefore (12) holds for all 
values of z. On taking теал  values in equation (15) we have

^  = - ii*  + F(t). (18)

It follows that p ' is an increasing function of z: the mean value of the dynamical part of 
the pressure increases with the depth.

The function F(t) may be evaluated explicitly in terms of the displacement £ of 
the free surface. It has been shown (see Longuet-Higgins (3), equation (28)) that

<«>
and so, on comparison with (18),

t f ( f ) «  ^ ( K * ) +  * (« * -!? ). (20)

2. I n  any space-periodic motion in  infinite depth, the motion tends to zero exponentially 
with depth (the fram e of reference being suitably chosen).

To prove this result a stronger method is required. From equations (1) and (2) 
above we have u - i w = f ( Z ) ,  (21)

where f (Z)  is ал analytic function of the complex variable
Z  =  x  + iz. (22)

f (Z )  is only defined when 0 ^ z ^ h*\ but since w vanishes when z — h, f (Z)  may be con
tinued analytically to the region h ^ z < 2h by simple reflexion in the line z — h.

Consider a large rectangle A  BCD  with vertices at the points (R , 0), ( — R,  0), ( — R,  2h) 
and (R , 2 h ) respectively. I f  Z 0 ~ x 0 + iz0, is any point inside A BC D , we have by 
Cauchy’s theorem i с t i 7,\

i r ± dZ- (23)l  J ABCD A A  —
Now f (Z)  is periodic in x  and therefore bounded as x  tends to infinity. Thus on the sides 
BC  and D A  the integrand is of order Д-1. As R  tends to infinity the contributions 
from these sides of the rectangle therefore tend to zero. Hence we have

f ( Z 0) =  lim Г - Г  ^ - d x +  Г  „ dx  1 (24)
2 m R-их, L J - r X - Z 0 J - r X + 2 i h - Z 0 J

- s < [ - A + u  (25>

say. Now since the integrand tends to zero for large x  we have
T v ^  f A f ( x  + nX)

= lim 2  1 — — 7— <26)  
n ---- AT JO  X + n \ — Z 0

-  lim 2  Г  J f  7  dx (27)
N-*<n n = - N j  0 Х + П Л — Z/.j

* S tr ic t ly  f ( Z )  ia o n ly  d efin ed  w h e n  b u t  w e a ssu m e  t h a t  j  c a n  be  c o n tin u e d
a n a ly tic a l ly  u p  to  th e  m e a n  su rfa c e  lev e l z — 0 .
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by the periodicity of / . When z0 > e > 0 the above aeries is uniformly convergent, so 
that the order of summation and integration may be reversed, giving

Гл Г N 1 1
< 2 8 >

-JV)j (29)

by a known result (see, for example, Titchmarsh(9)).
Now since the total flow of water across any horizontal plane is zero we have

(•A

/:wdx ш 0 (30)
I

for all z and t. By imposing on the axes a suitable horizontal velocity we may also make

udx  = 0 (31)

for particular values of z and t. But
r a

<32>
which vanishes by the periodicity, and from the Bernoulli equation (10) we have

<33)
which again vanishes by the periodicity. Hence (31) is valid for all values of z and t. 
From (30) and (31) we have then

rkf{Z )d x  = 0, (34)j;
so that (29) may be written

1 = J о A [ A - 1 dx  (35)

1 — exp {ik(x — Z0)}
where ife = 277/A. Hence when J (that is, when z0 is greater than about £A) we have

I I x I < 4я e_fa!omax | f(x) \. (37)
Similarly we may show that

f A„_. ikexy{ik(x  + 2 ih - Z 0)} ,oq,
2== J 0 1. — exp [ilc{x + 2ih — Z )̂} ^

so that when exp{ — k(2h — 20)}< J (which is certainly satisfied if < J and 
0 < z o^A), we have

| / 2 | < 4я exp {-fc(2A -z0)} max |/(:r)]. (39)

Therefore from equation (25)

j f(Z0) N ^ ( | / , |  +  | / 2|)<  4e-w cosh fc(z0 -  K) max j f(x) |. (40)

On dropping the suffix 0 we have
(м2 + го2)* < 4 e_ftA cosh lc(z — h) max [(и2 + м>2)*]«-о> (41)
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and on letting kh tend to infinity we find that in infinitely deep water

(u2 +  wj2)* ^ 2 e-fc2 max [(м2 + w2)*]2_0. (42)
This proves the result.

и  and w are each less than or equal to [u2 + w'2)i in absolute value. Thus (42) implies 
that both components of velocity diminish exponentially.

If ф is chosen as in § 2, so that ~<f> vanishes, then we may show that ф also decreases 
exponentially. For since ф is continuous and its mean value when 0  < x  < A is zero, it 
follows that ф itself must be zero somewhere in this interval, say when x  =  x '. We
have then I /”*3фI Л. I _  I I -JLjfo;

dx ^ \ x - x '  I m, (43)

where m  is the maximum value of | дф/дх | in the interval. But | x  — x ' \ < A, and m  is 
exponentially small; hence ф also is exponentially small.

F'rom equation (11) we have then, at great depths,

£  =  F(t), (44)

so that the pressure fluctuation is a function of the time t only, and therefore occurs 
uniformly and simultaneously at all points; and from equation (16) we see that in 
this case Fit) is given by аг _

F ( t ) = W i( m -  (45)

The above expression has been evaluated in some particular cases (see Longuet- 
Higgins and Ursell(5), and Longuet-Higgins (3), §2 3). In general, F(t) represents a 
pressure fluctuation of double the fundamental frequency of the waves.

3. I n  a progressive wave in  water of uniform depth the mass-transport velocity 
diminishes with the mean depth of the particle.

Following Ursell (10) we first express Rayleigh’s geometrical argument (Rayleigh (7)) 
in analytical terms. Let the motion be reduced to a steady state by referring it  to axes 
moving in the direction of the waves with the wave velocity c. In the present section 
x, z, ф and \jr will denote the coordinates, velocity potential and stream function in 
the steady-state motion. If the orbital motion of the particles does not exceed с it 
follows that the horizontal component of the steady-state velocity is negative:

Now let ф and i/r be taken as fundamental coordinates, and x  and г be expressed as 
functions of them. Let &(ф, \jr) denote the arc-length measured along a stream-line, 
tjr =  constant, from the equipotential line ф = 0. The motion being space-periodic, 
there will be another equipotential line ф =  фх at a wave-length’s distance from 0  =  0 , 
where the motion is identical with that on ф = 0. If the time taken for a particle to 
travel from ф = 0  to ф =  фх is denoted by Т(тр-), then the forward mass-transport 
velocity U(tjf) may be defined by the equations

O - . - J .  (47)
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Now the velocity q along a stream-line is given by the ratio of an increment d<f> to the 
corresponding increment ds, \jf being kept constant; that is

? = ( ^ )  =  ( ~ )  \  (48)\d s j  ̂  constant

We have therefore T  -  J V *  -  -  £ ( § )  V  <«)

At this point UrselKio) introduces a Fourier series expansion. However, since x, z are 
conjugate functions, 3z/3ф can be replaced by — Sxjdijr, so that

x  satisfies Laplace’s equation in the coordinates ф and ifr, and all its derivatives are 
periodic in ф with period 0 Л. Therefore, precisely as in § 1, we have

ЭТ J h d x  дгх
a ^ ~  Jo д ф д ф д ^  (50)

рччште)v
dTjd\jf vanishes on the bottom ijr =  ijrht since dxjdi/r, which equals — дг/дф, is zero. 
Since by (46) }/r> ijrh in general, it follows by an exactly similar argument that ЭТ/Э -̂ 
is in general positive. Thus U by (47) is an increasing function of ̂  and so a decreasing 
function of the mean depth of the stream line. This proves the result.

It may be asked whether the analytical proof given above could not be translated 
back into geometrical terms. This is probably so; but the geometrical version would 
almost certainly be more complicated; for it will be seen that the proof essentially 
involves the curvature of the velocity-profile, that is, the second derivative of the 
velocity. In a geometrical proof, therefore, small quantities of the second or higher 
orders would have to be taken into account.

4. The solitary wave.. Similar results may be proved for the solitary wave. In this 
case it is assumed that when + oo the motion tends to zero, or that, when a uniform 
velocity is superimposed, the motion tends to a uniform stream. Thus the velocity at 
+  oo equals that at — oo. Instead of the mean velocity q2, which over an infinite interval 
would be zero, we may consider the quantity

£ [ ( £ ) ’ \dz)
where x1 and x.2 are made to tend to + oo and — oo respectively. In other words Q*, 
in the limit, is the square of the velocity at a given depth z integrated with respect to 
x  from —oo to +oo. Since the values of дф/дх, дф/дг ajid their derivatives at the two 
ends of the interval are equal in the limit it follows, as before, that

dQ* 3*0* (53)

+ dx, (52)
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and hence (1) the total density of kinetic energy, integrated from  — oo to +  oo, is  a de
creasing function of the depth z\ (2 ) the square of each component of velocity, integrated 
from  — oo to + oo is a decreasing function of z; (3) the dynamical part of the total force on 
a horizontal plane z = constant increases with z.

To consider the mass transport we suppose, as in § 3, that the motion is reduced to 
a steady state by superposing on it a uniform horizontal velocity — c. The time T  
taken by a particle to travel along a stream-line f t  =  constant between the two 
equipotential lines ф =  ф1 and ф — фг is given by

dф (54)

(where x, ф and f t  now refer to the steady motion). The displacement of the particle 
with respect to the moving axes is [a;]$;. Hence the displacement D with respect to 
stationary axes is given by D -  [x]J; +  cT, (5 5 )

dD ГЭа;1* Э Tand so =  I + c _ .  (56)

Now as ф1 and фг tend to —oo and +oo respectively the flow, in the steady state, 
tends to a uniform stream, and so dxjdft tends to zero. Thus, in the limit,

- 7 '
dft d f t ' V 1 

But since дх/дф, dx/dft, etc., tend, in the limit, to the same values at the two ends of 
the interval, we have from (54)

дТ л д2Т  л /rQ.
a j f * 0' s ^ > ° -  <5S>

Hence in the original motion: (4) the total horizontal displacement of a particle during 
the passage o f a solitary wave is a decreasing function of the mean depth of the particle.
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AN EXPERIMENTAL INVESTIGATION OF DRIFT PROFILES 
IN A CLOSED CHANNEL

I t  was found p o s s ib le  to ob ta in  d r i f t  v e lo c i t i e s  s e t  up by p ro g ress iv e  
waves in  a c lo s e d  chann el, which were independent o f  p o s it io n  and tim e.
I t  i s  probable however th a t the v e lo c i t i e s  would be d iso rd ered  by c ir c u la 
t io n s  in  a h o r izo n ta l p la n e , i f  the waves were not confined  to  a narrow 
chann el.

S ta b le  d r i f t  p r o f i l e s  were not ob ta ined  w ith  the very lo n g e st waves, 
th o se  amounting to  a su cc e ss io n  o f  s o l i t a r y  w aves, except when the waves 
were very  low. P o ss ib ly  th e  ch a n n e l, which was on ly  long enough to  con
t a in  fou r  o f  th e se  waves a t  a tim e, was too sh o rt.

Near the bottom  the d r i f t  v e lo c i t i e s  are as p r e d ic te d  by Longuet- 
H i^gins fo r  a l l  vaues o f  kd th a t  were in v e s t ig a te d . F ig . 15 shows t h is  
agreem ent. T his i s  in  s p it e  o f  the f a c t  th a t  the th eory  a p p lie s  in  the  
f i r s t  p la c e  to  lam inar c o n d it io n s , whereas the flow  was n ea r ly  always 
tu r b u le n t. However in  an appendix L onguet-H iggins has g iv en  reasons why 
th e  formula may be g e n e r a lly  a p p lic a b le  in  the tu rb u len t ease  a lso .

For the su rfa ce  and in t e r io r  o f th e  f lu id  there i s  no s t r i c t l y  
a p p lic a b le  th eo ry . However in  deep w ater th e  su rface  d r i f t s  are found 
to  be a s in  S to k es ' i r r o t a t io n a l  th eory . F urther, when 0 .7  < kd < .1 3  
the p r o f i l e s  in  the in t e r io r  are f a i r l y  w e l l  f i t t e d  by L onguet-H iggins' 
condu ction  so lu t io n . . There i s  on ly  one departure from t h i s  curve which i s  
system m atic. I t  i s  th a t  fo r  a g iv en  va lu e  o f  kd th e  lower waves produce 
b ig g e r  non-dim ensional d r i f t  v e lo c i t i e s .

The d r i f t  p r o f i le s  are d isru p ted  in  the neighbourhood o f breaking  
waves. T his o ro v id es  a mechanism capable o f su sta in in g  an o ffsh o re  sand 
b a r , because opriosed bed d r i f t s  are s e t  up which meet a t th e  top o f  the  
bar.

When the waves do not break, the slop e  o f  th e  bed does not a l t e r  the  
d r i f t  curves a great d ea l and the t h e o r e t ic a l  v a lu e s  o f  the d r i f t  a t the  
bed are alm ost eq u a lly  a p p lic a b le  to  waves over a h o r iz o n ta l or a g e n tly  
9 lo p in g  bed.
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APPENDIX

THE MECHANICS OF THE BOUNDARY-LAYER NEAR THE BOTTOM IN A PROGRESSIVE WAVE

M. S. L on g u et-H ig g in s  
N a tio n a l  I n s t i t u t e  o f  O ceanography,

Wormley, England

Mr. R u s s e l l  h a s ask ed  me to  g iv e  a b r i e f  t h e o r e t i c a l  account o f  th e  
somewhat p a r a d o x ic a l forw ard s d r i f t  in  th e  b o u n d a ry -la y er  near  th e  bottom , 
w hich  he and Mr. O so r io  have m easured. A g e n e r a l trea tm en t, o f  such  
b o u n d a r y -la y e r  e f f e c t s  i s  to  b e  found in  a p r e v io u s  p a p e r '2'1; b u t in  th e  
f o l lo w in g  I  s h a l l  t r y  to  g iv e  a s im p le  p h y s ic a l  p ic t u r e  o f  one p a r t ic u la r  
c a s e ,  nam ely where th e  wave m otion  i s  p u r e ly  p r o g r e s s iv e ,  and th e  bottom  
i s  r i g i d  and l e v e l .

I t  i s  assum ed a t  f i r s t  th a t  th e  v i s c o s i t y  i s  c o n sta n t and th a t  th e  
m otion  i s  lam in ar  -  a  c o n d it io n  n ot a lw ays s a t i s f i e d  in  Mr. R u s s e l l ’ s 
e x p e r im en ts . Under th e s e  c ir cu m sta n ce s  i t  i s  shown th a t  th e  m a ss -tr a n s -  
p o r t  v e lo c i t y  near  th e  bottom  and j u s t  o u t s id e  th e  b o u n d a ry -la y er  i s  
g iv e n  by

u -

where A  i s  th e  am plitud e o f  th e  h o r iz o n ta l  o s c i l l a t o r y  m otion a t  th e  
b ottom  and с i s  th e  wave v e lo c i t y .  S in c e ,  how ever, th e  o b s e r v a t io n s  
are  in  agreem ent w ith  t h i s  r e s u l t  even  when th e  f lo w  i s  tu r b u le n t ,  I  
a l s o  c o n s id e r  th e  c a se  where th e  (c o n s ta n t )  c o e f f i c i e n t  o f  v i s c o s i t y  i s  
r e p la c e d  by a c o e f f i c i e n t  o f  eddy v i s c o s i t y  depend ing  on th e  d is ta n c e  
from  th e  bottom . I  f in d  th en  th a t  th e  above form u la  i s  v a l id  ind ep en 
d e n t ly  o f  th e  fu n c t io n a l  form  o f  th e  v is c o u s  c o e f f i c i e n t .  T h is  appears  
to  be a s te p  tow ards th e  e x p la n a t io n  o f  th e  phenomenon in  th e  tu r b u le n t  
c a s e .

(1 ) The boundary la y e r  a t  th e  bottom  A ccording to  th e  f i r s t - o r d e r  
th e o r y  o f  su r fa c e  w a v e s , and from  o b s e r v a t io n , a wave in  w a ter  o f  f i n i t e  
d ep th  p rod u ces near th e  bottom  a h o r iz o n t a l  o s c i l l a t o r y  v e lo c i t y  g iv e n  b y

* А «чгэ ( crt - kx)  ^
ap p ro x im a te ly , where

CLOT 

tod
H owever, on th e  bottom  i t s e l f  th e  v e lo c i t y  must be z e r o . I t  a p p ea rs,  
th e n , th a t  th e r e  i s  a r e g io n  o f  s tr o n g  sh ea r  v e ry  c lo s e  to  th e  b ottom , 
where v is c o u s  s t r e s s e s  are  im p o r ta n t, and o u t s id e  w hich th e y  are  
r e l a t i v e l y  sm a ll .  T h is  r e g io n  may be c a l l e d  th e  " b o u n d ary-layer11.

To d eterm in e  th e  h o r iz o n ta l  m otion  w ith in  t h i s  la y e r ,  compare an 
e lem en t o f  f l u i d  w ith in  th e  la y e r  w ith  an elem en t J u st o u t s id e .  ( P ig .A l ) . 
The f o r c e s  a c c e le r a t in g  ea ch  e lem en t h o r iz o n t a l ly  are th e  p r e ssu r e
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u

F ig .  A l . C o m p a r is o n  o f th e  m o tio n  of tw o flu id  e le m e n ts  
in  and  o u ts id e  th e  b o u n d a ry - la y e r  .

F ig .  A 2 . T h e  v e lo c i ty - p r o f i le s  ( c o r r e c t  to  f i r s t  o rd e r )  in  th e  b o u n d a ry -  
l a y e r  f o r  f iv e  s u c c e s s iv e  p h a s e s  of th e  m o tio n  a t  in te r v a l s  of 
T / 8 .  (V e r t ic a l  s c a le  g r e a t ly  e x a g g e ra te d ) .

U

' — »___t ___ !___
F i g . A3 . D ia g ra m  sh o w in g  th e  o r ig in  of th e  v e r t ic a l  m o tio n  

in  th e  b o u n d a ry - la y e r  .
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g r a d ie n t  d f r /b x  and th e  v is c o u s  s t r e s s  . Now s in c e  the
la y e r  i s  v ery  th in  and th e  v e r t i c a l  a c c e le r a t io n  i s  n o t la r g e ,  th e  p r e ssu r e  
g r a d ie n t  i s  p r a c t i c a l l y  th e  same f o r  th e  two e le m e n ts , w h ile  th e  v is c o u s  
s t r e s s  i s  a p p r e c ia b le  o n ly  f o r  th e  e lem en t w ith in  th e  la y e r .  So th e  
d i f f e r e n c e  in  t h e i r  h o r iz o n ta l  a c c e le r a t io n  i s  due to  th e  v is c o u s  s t r e s s  
o n ly .  Hence ( n e g le c t in g  seco n d -o rd er  term s)

h t  -  +  «I ( v
d t  i t  l ЭуУ (2 )

When th e  v i s c o s i t y  i s  c o n s ta n t ,  the s o lu t io n  o f  t h i s  e q u a tio n  i s

u  =  A  [ .  O *  ( e r t - - l p x )  -  e  ^  c n  { c r t - k x  -  у  /& )] (3 )

where

(H ere ij i s  m easured v e r t i c a l l y  upwards from  th e  b o tto m ).

The m otion  i s  i l l u s t r a t e d  in  F ig .  A2, where th e  v e lo c i t y  p r o f i l e  i s  
shown f o r  v a r io u s  p h a se s , a t  a f ix e d  p o in t .  E f f e c t i v e l y  th e  v e lo c i t y  i s  
th e  same a s  f o r  a un iform  f l u i d  o s c i l l a t i n g  in  th e  neigh b ou rh jod  o f  a 
p la n e  w a ll  { s e e  Lamb(5) $ 3 4 7 ) .  The v e l o c i t y  te n d s  v e r y  r a p id ly  to  i t s  
v a lu e  u.«) j u s t  o u t s id e  th e  l a y e r ,  and th e  t o t a l  th ic k n e s s  o f  th e  la y e r  i s  
o f  th e  same o rd er  a s  £ .

An im portant f e a tu r e  o f  th e  m otion i s  th a t  th e  phase o f  th e  v e l o c i t y  
in s id e  th e  la y e r  te n d s  in  g e n e ra l to  be in  advance o f  th e  v e l o c i t y  j u s t  
o u t s id e .  The in te g r a te d  f lo w  in  th e  la y e r  in c r e a s e s  i n d e f i n i t e l y ,  o f  c o u r se , 
a s  у te n d s  t o  i n f i n i t y .  But th e  component o f  th e  in te g r a te d  f lo w  w hich  
i s  in  quadrature w ith tto e  i s  f i n i t e ,  and i s  g iv en  by th e  shaded a rea  o f  
th e  v e l o c i t y - p r o f i l e  cu rve  (c ) in  P ig .  A3. D en otin g  t h i s  by we have

OD

/ 4  =  (Л d tj  =  j  A  1  ( e r h  -  к  .

Now i f  th e  f lo w  w ere uniform  h o r iz o n t a l ly ,  as in  Lamb's s o lu t io n  
j u s t  m en tion ed , th e r e  w ould b e  no v e r t i c a l  component o f  m otion . But s in c e  
tx v a r ie s  s in u s o id a l ly  w ith  x ,  so a ls o  d o es th e  t o t a l  f lo w  / 4  ; t h i s  
p ro d u ces a p i l in g - u p  o f  mass w ith in  th e  la y e r  which g iv e s  u se  t o  a sm a ll  
but im portant v e r t i c a l  component o f  v e l o c i t y .  "Prom F ig . A3 we se e  th a t  
j u s t  b eh in d  a c r e s t  the f lo w  A i i s  n e g a t iv e ,  and j u s t  in  fr o n t  o f  a c r e s t  
i t  i s  p o s i t i v e .  Hence ben eath  th e  c r e s t  i t s e l f  th e r e  i s  " s tr e tc h in g 1* o f  
th e  la y e r ,  g iv in g  a downwards v e l o c i t y .  S im i la r ly  ben eath  a trough  th e r e  
i s  a p i l in g - u p  in  th e  l a y e r ,  g iv in g  an upwards v e l o c i t y .  A n a ly t ic a l ly ,  
we have ^

«■ * С % ’ I (' ^ dj "  * ^  ■
P ayin g  a t t e n t io n  o n ly  to  the p a r t  o f  V  th a t  i s  in  p h ase w ith  UM , th a t  i s ,  
th e  p a r t  a r is in g  from  h  we have
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-  ( i r t - k x ) .  (5)

T h is  shows th a t  th e  mean v a lu e  o f  th e  product U„VJ, i з n e g a tiv e :

(u v )„  « -  A1 /? $ < o. (6)
th e  s ig n i f ic a n c e  o f  which w i l l  soon become apparent.

(2) The mean 3 tr e s s  on the bottom  I f  f i r s t - o r d e r  term s o n ly  are  
c o n sid e r ed , th e  mean s t r e s s  nn th e  bottom i s  i d e n t i c a l ly  zero . But we 
s h a l l  show, by a s tr a ig h tfo rw a rd  c o n s id e r a t io n  o f  momentum, th a t to  second  
o rd er , the mean s t r e s s  must in  f a c t  be p o s i t iv e .

Imagine a rec ta n g le , one wavelength long , drawn in  the f lu id  w ith  f   ̂
i t s  upper s id e C D  ju s t ou ts id e  the boundary-layer and i t s  lower sid e  С D 
on the bottom. When f lu id  having a h orizon ta l v e lo c ity  ui crosses the 
upper e id e  CD w ith  v e lo c i t y  IT th e r e  ia  a tr a n s fe r  o f  momentum a cro ss  th e  
boundary a t  the r a t e p u w p e r  u n it  h o r iz o n ta l  d is ta n c e .  The mean r a te  o f  
t r a n s fe r  o f  momentum a c r o s s  CD  in  t h i s  way i s  g iv en  k y p U V , the fa m ilia r  
R eynolds s t r e s s .  C onsider then th e  momentum balan oe in s id e  the r e c ta n g le  
CDD'C'* Along th e  upper s id e  v is c o u s  s t r e s s e s  are n eg l i g ib le  and th ere  
i s  a t r a n s fe r  o f  momentum due to  th e  R eynolds s t r e s s  jo . On the
low er s id e  C /D *  th e  Reynold s  s t r e s s v a n ish e s  ( s i n c e i r - O ) ,  but th e r e  i s  
a mean v isc o u s  s t r e s s  p (  th e  two v e r t i c a l  a id es th e
c o n d it io n s  are id e n t i c a l  by th e  p e r io d ic i t y  o f  the m otion , and so the  
t r a n s fe r  o f  momentum a c r o s s  one s id e  ju s t  c a n c e ls  th e  tr a n s fe r  a c ro ss  the  
o th e r  s id e .  But th e  t o t a l  momentum w ith in  th e  r e c ta n g le  rem ains unchanged; 
th e r e fo r e  th e  v is c o u s  s t r e s s  on th e  bottom  must ju s t  b a lan ce  the Reynolds 
s t r e s s  a t  th e  to p . In o th e r  words

(7)

We have seen  from eqn. (6 ) th a t  th e  mean product ( iaU-Jim i a  n e g a tiv e . In  
o th e r  words th ere  i s  a  downwards tr a n s fe r  o f  momentum in to  th e  boundary- 
la y e r .  To b a la n ce  t h i s ,  th e r e  must be a backwards s t r e s s  on the la y e r  
a t th e  bottom , that i s  to  say a forw ards g ra d ien t o f  mean v e lo c i t y .  In 
th e  c a se  when th e  v i s c o s i t y  i s  c o n sta n t we have

i *  •  -  -  Г и г г )  = >  О  .
3J И  )a°  3 c *  (8)

The v e lo c i t y  g ra d ien t a t  o ther  l e v e l s  w ith in  the la y e r  may be ob ta in ed  
by c o n s id e r in g  a r e c ta n je  ODDfc" (se e  P ig . J4) which has i t s  lower s id e  C * l *  
a t  an a r b itr a r y  l e v e l  w ith in  the boundary la y e r .  The same c o n s id e r a tio n s  
o f  momentum app ly , but now account must be taken o f  hoth  the v is c o u s  s t r e s s  
and th e  R eynolds s t r e s s  a t the l e v e l  C 'D ”. T his le a d s  us a t  once to  th e  
r e la t io n
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I f  th e  v i s c o s i t y  i s  g iv e n , th e  p r o f i l e  o f  th e  mean v e l o c i t y  a  may be deduced  
by d i r e c t  in t e g r a t io n .  T h is  i s  done in  S 5 ,  and we f in d

“  -  i  +  £  “ a -  (1 0 )

a r e s u l t  w h ich  d o es n ot depend upon th e  d i s t r ib u t io n  o f  v i s c o s i t y  w ith in  
th e  la y e r .  For c o n sta n t v i s c o s i t y  we o b ta in  th e  le f t - h a n d  cu rv e  shown 
in  P ig .  A5-

(3 )  The ш азз- tr a n s p o r t  v e lo c i t y  I t  i s  e s s e n t i a l  to  d i s t in g u i s h  betw een  
th e  mean v e l o c i t y  u  m easured a t  a f ix e d  p o in t  and th e  m a ss -tra n sp o r t  
v e l o c i t y  U , w h ich  may be d e f in e d  as th e  mean v e lo c i t y  o f  the same 
p a r t i c l e  o f  f l u i d  averaged  o v er  a com p lete  p e r io d  (b o th  ЕГ and (J b e in g  
assum ed sm a ll compared w ith  th e  o r b i t a l  v e l o c i t y  u . ) .  For exam ple in  th e  
S to k e s  i r r o t a t io n a l  wave th e  mass tr a n sp o r t  v e lo c i t y  i s  a lw ays p o s i t i v e  
r e l a t i v e  to  th e  mean v e l o c i t y .  T h is i s  fo r  two r e a so n s:  f i r s t  b eca u se  
a s a wave c r e s t  p a s s e s  overhead  th e  o r b i t a l  v e lo c i t y  i s  p o s i t i v e ,  and 
so  th e  p a r t i c l e  " s ta y s  w ith  th e  wave", spending s l i g h t l y  lo n g e r  on th e  
fo rw a rd s p a r t  o f  i t s  o r b i t  than  on th e  backw ards p a r t;  s e c o n d ly , th e  
v e l o c i t y  o f  a  p a r t i c l e  i s  s l i g h t l y  g r e a te r  a t  th e  top  o f  i t s  o r b i t ,  where  
i t  i s  t r a v e l l i n g  fo rw a rd s, than  a t  th e  bottom , where i s  i s  t r a v e l l i n g  
backw ards ( s e e  F ig .  А б).

The same c o n s id e r a t io n s  a p p ly , in  g e n e r a l ,  in  th e  b o u n d a ry -la y er ;  
a lth o u g h  th e  v e r t i c a l  d isp la c e m e n ts  are v e ry  sm a ll ,  the v e r t i c a l  g r a d ie n t  
o f  v e lo c i t y  i s  c o r r e sp o n d in g ly  la r g e ,  so th a t  b o th  th e  e f f e c t s  ju s t  
m entioned  become a p p r e c ia b le . However, th e  p h ase d i f f e r e n c e  betw een  
h o r iz o n ta l  and v e r t i c a l  com ponents o f  v e lo c i t y  i s  a fu n c t io n  o f  th e  mean 
p o s i t io n  o f  a p a r t i c l e  w ith in  th e  la y e r .

A n a ly t ic a l ly ,  i f  P  i s  th e  p o in t  on th e  o r b i t  o f  a p a r t i c l e  whose mean 
p o s i t i o n  i s  Q  , th e  in s ta n ta n e o u s  v e lo c i t y  a t  P w i l l  d i f f e r  from  th a t  
a t  ф  by an amount

-  к  +  д а
w here A jc .A j  are  th e  h o r iz o n ta l  d isp la c e m e n ts  o f  P fram  ф .  T hese  
d isp la c e m e n ts  are  g iv e n  by

Д х  -  J u d t ,  = J V d t -  (11)

a p p ro x im a te ly , (a p a r t from a c o n s ta n t term ). Hence the d i f f e r e n c e
betw een the mean v e lo c i t y  o f  th e  p a r t i c l e  and th e  v e lo c i t y  a t Q  i s  g iv e n ,  
t o  th e  second  a p p ro x im a tio n , by

u - = - + I s ! 1'" -  аз)
On the bottom  i t s e l f ,  u. , \ r , and t o / f y  a l l  v a n ish .a n d  во on
d i f f e r e n t i a t i o n  we f in d

>  О  - (13)
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С
_c:

0
O'
D1

F ig .  A4 . D ia g ra m  f o r  d e r iv in g  th e  
s t r e s s  on th e  b o tto m .

5/‘

F ig .  A5 . T h e  m e a n  v e lo c i ty  й a n d  th e  m a s s - t r a n s p o r t  
v e lo c i ty  U in  th e  b o u n d a ry - la y e r  .

U T

2  A/*

F ig .  AG . How th e  m a s s - t r a n s p o r t  v e lo c i ty  a r i s e s  ,
when й = 0.
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S in c e  (J  v a n is h e s  on th e  bottom  i t s e l f ,  t h i s  shows th a t  (J  must be p o s i t i v e  
v e r y  c lo s e  to  th e  bottom ; h ere  a t l e a s t  th e r e  i s  a forw ards m a ss -tra n sp o r t  
v e l o c i t y .

At o th e r  l e v e l s  w ith in  th e  b o u n d a ry -la y er , how ever, th e  l a s t  two 
term s in  eqn. (1 2 ) are  n o t n e g l ig i b l e .  For a p r o g r e s s iv e  wave we have

by eqn. (2 1 ) b e lo w , and so from  (10)

(J * 1 ( u mu. + 1  ZJ )

i
(1 4 )

When U. u.— we have

U  -*  /  £  • (15)«с С

T h ese  rem arkably s im p le  form u lae are  independent o f  th e  a b so lu te  v a lu e  
o f  th e  v i s c o s i t y  and even (a s  w i l l  be shown) in d ep en d en t o f  th e  form  o f  
th e  d i s t r i b u t i o n  o f  v i s c o s i t y  w ith in  th e  la y e r .  However, in  the s n e c ia l  
c a s e  when th e  v i s c o s i t y  i s  c o n s ta n t  and th e  iro tio n  s in u s o id a l  we have on 
s u b s t i t u t io n  from  (3 )

( J  = Al ' ( s - -  ' j / ‘  <*• J ) / *  +  3 * * 9 / S )  . (16)
‘т C-

T h is  d i s t r ib u t io n  i s  shown by th e  second  curve in  P ip . A5. U  i s  a lw ays  
p o s i t i v e  and has a maximum v a lu e

(J = / 3 7*  A %1 с (17)

As y /6  te n d s  to  i n f i n i t y

0  -*■ 1 -2  S' A */ с (ia)

conroared w ith  th e  l im i t in g  v a lu e

u -+ о  Г г A' /*  ds)
f o r  th e  mean v e lo c i t y .

(l+) D is c u s s io n  We have remarked th a t  th e  form u lae ( lk )  and (15) are  
in d ep en d en t o f  th e  d i s t r ib u t io n  o f  v i s c o s i t y  w ith in  th e  la y e r ,  p ro v id ed  
th a t  th e  f lo w  i s  la m in a r. Now f o r  tu r b u le n t  but s te a d y  b o u n d a ry -la y ers  
i t  h a s been shown th a t  th e  f lo w  may b e  q u ite  w e l l  approxim ated by th e  
la m in a r  v e lo c i t y  p r o f i l e ,  p r o v id ed  th a t  in  th e  o u te r  p a r t o f  the la y e r  
th e  o r d in a r y  v i s c o s i t y  i s  r e p la c e d  by a uniform  c o e f f i c i e n t  o f  eddy 
v i s c o s i t y ( ° 5 . Now i f  th e  eddy v i s c o s i t y  f lu c t u a t e s  a cco rd in g  to  th e  
in s ta n ta n e o u s  v e l o c i t y  g r a d ie n t ,  th en  an o s c i l l a t o r y  b o u n d a ry -la y er  w i l l  
n o t be s t r i c t l y  com parable w ith  a s te a d y  b o u n d a ry -la y er . I f  on th e  o th e r  
hand we assum e t h a t  th e  e d d y - v is c o s i t y  o f  a sm a ll elem ent o f  f l u i d  d o es  
n o t f lu c t u a t e  a p p r e c ia b ly  throughout a wave p e r io d  i t  i s  p o s s ib le  to  
r e p la c e  th e  o r d in a r y  k in em a tic  v i s c o s i t y  у  by a  c o e f f i c i e n t  w hich i s  
c o n s ta n t  f o r  a p a r t i c l e ,  though v a r y in g  w ith  th e  mean d is ta n c e  o f  th e
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p a r t i c l e  from th e  bottom . Our r e s u l t  then in d ic a te s  th a t  the eq u ation

f o r  th e  v e lo c i t y  Ju st o u ts id e  th e  boundary-layer i s  v a l id  a lso  when th e  
f lo w  i s  tu r b u le n t .

M oreover t h i s  ex p r ess io n  i s  v a l id  even when th e  m otion, though 
p e r io d ic  i s  not s t r i c t l y  harm onic, as w i l l  happen w ith  lon g  waves in  
sh a llo w  w ater when th e  form  o f  a s o l i t a r y  wave i s  aoproached. Suppose 
th a t  th e  v e lo c i t y  near the bottom , in ste a d  o f  b e in g  sim ply harmonic i s  
g iv e n  by an ex p r ess io n  o f  the form

in  w hich  th e  c o e f f i c i e n t s  may be deduced t h e o r e t ic a l ly  or  found from 
o b ser v a tio n  by F o u r ier  a n a ly s is .  Then th e  above e x p r ess io n  g iv es

A lthough the m a ss-tra n sp o r t v e lo c i t y  ju s t  o u ts id e  the la y e r  has been 
shown to  be independent o f  у  , eqn. (2) shows th a t  the d is t r ib u t io n  o f  the  
v e lo c i t y  w ith in  the la y e r  ia  c e r t a in ly  dependent on the form o f  the  
v i s c o s i t y .  For t h i s  reason  the ex p ress io n  (17) fo r  the maximun v e lo c i ty  
w ith in  the la y e r  may not be v a l id  fo r  a tu r b u le n t la y e r .

However, what i s  observed  in  p r a c t ic a l  experim en ts i s  l e s s  l i k e l y  to  
b e  the maximum v e lo c i t y  than th e  v e lo c i t y  ju s t  o u ts id e  the la y e r ,  where 
th e  v e lo c i t y  g r a d ie n ts  are l e s s  s te e p  -  e s p e c ia l ly  i f  th e  boundary la y er  
i s  th u s and o b se r v a tio n s  are made w ith  str ea k s  o f  dye. For, a s len d er  
tongue o f  dye i s  l e s s  easy  to  ob serve  than a d if fu s e d  cloud moving forwards 
w ith  a r e l a t iv e l y  uniform  v e lo c i t y .  I t  i s  fo r tu n a te  th a t the l a t t e r  
v e lo c i t y  appears to  be more e a s i ly  p r e d ic ta b le .

(5 ) P roof o f  eqn. (10) F in a l ly  s h a l l  prove our statem ent th a t eqn. (10) 
i a  tr u e  in d ep en d en tly  o f  the v i s c o s i t y .  A lthough the argument can a t  some 
le n g th  be tr a n s la te d  in to  p h y s ic a l term s, i t  i s  sim p ler  at th is  s ta g e  to  
g iv e  an a n a ly t ic a l  p r o o f.

We s t a r t  fro n  eqn. (2 ) and ( 9 ) ,  which are both  v a l id  even when the  
v i s c o s i t y  i s  a fu n c t io n  o f  tim e and p o s it io n .  From (2) we have by 
in t e g r a t io n  w ith  r e s p e c t  to  t  ,

u M = A, ( v t - h * )  + A ,4*» A ( r t - k * )  +-■"
+  B j -Ач-v 3 ( a -t ~ /Px) ----

and th erefore
u.
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S in ce  U  v a n ish es  on the bottom  i t s e l f ,  t h i s  shows th a t  (J  must be p o s i t i v e  
v ery  c lo s e  to  th e  bottom ; here a t l e a s t  th ere  i s  a forw ards m a ss-tra n sp o r t  
v e lo c i t y .

At o th e r  l e v e l s  w ith in  the b o u n d a ry -la y er , however, the l a s t  two 
terms in  eqn. (12) are  n ot n e g l ig ib l e .  For a p r o g r e s s iv e  wave we have

WF7t--iWF't - i~'
by eqn. (21) below , and so from (10)

u  =  1  ( Z ^ Z .  + 1 Z J )  . (14)

When a  ■+ и л  we have

U  - *  ■ (15)

T hese rem arkably sim ple  form ulae are  independent o f  th e  a b so lu te  v a lu e  
o f  the v i s c o s i t y  and even (as w i l l  be shown) independent o f  th e  form o f  
the d is t r ib u t io n  o f  v i s c o s i t y  w ith in  the la y e r .  However, in  th e  s n e c ia l  
c a se  when th e  v i s c o s i t y  i s  co n sta n t and th e  m otion s in u so id a l  we have on 
s u b s t i t u t io n  from (3)

(J  = £  (s- -  8  e  - J "  0 »  s / i  +  . (16)
" f  C-

T hia d is t r ib u t io n  i s  shown by th e  second curve in  Pip;. A5. (J  i s  a lw ays  
p o s i t i v e  and has a maximum v a lu e

(J = / - 3 7 *  _  A 7 c  (I?)
As ij/6  ten d s to  i n f i n i t y

0  -+  I I S '  A 1 / e  (18)

compared w ith  th e  l im i t in g  v a lu e

С  o  • 7 r  A 1/*- (19)

f o r  th e  mean v e lo c i t y .

(4 ) D isc u ss io n  We have remarked th a t th e  form ulae (14) and (15) are  
independent o f  th e  d i s t r ib u t io n  o f  v i s c o s i t y  w ith in  th e  la y e r ,  p ro v id ed  
th a t  th e  f lo w  i s  lam in ar. Now fo r  tu r b u le n t b u t s tea d y  b o u n d ary-layers  
i t  h as been shown th a t  th e  f lo w  may be q u ite  w e l l  approxim ated by th e  
lam inar v e lo c i t y  p r o f i l e ,  prov ided  th a t  in  the o u te r  p a rt o f  the la y e r  
th e  ord in ary  v i s c o s i t y  i s  r ep la c ed  by a uniform  c o e f f i c i e n t  o f  eddy 
v i s c o s i t y ' l l .  Now i f  th e  eddy v i s c o s i t y  f lu c t u a t e s  accord ing  to  th e  
in sta n ta n e o u s v e lo c i t y  G rad ient, th en  an o s c i l l a t o r y  b ou n d a ry -la y er  w i l l  
not be s t r i c t l y  com parable w ith  a stea d y  b o u n d ary-layer . I f  on th e  o th er  
hand we assume th a t  th e  e d d y - v is c o s ity  o f  a s n a il  elem ent o f  f l u i d  does  
not f lu c t u a t e  a p p r e c ia b ly  throughout a wave p er io d  i t  i s  p o s s ib le  to  
r e p la c e  the o rd in a ry  k in em a tic  v i s c o s i t y  V by a c o e f f i c i e n t  w hich i s  
c o n sta n t f o r  a p a r t i c l e ,  though v a ry in g  w ith  th e  mean d is ta n c e  o f  th e
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p a r t i c l e  from the bottom . Our r e s u l t  then in d ic a te s  th a t  the eq u a tio n

f o r  th e  v e lo c i t y  ju s t  o u ts id e  th e  houndary-layer i s  v a l id  a lso  when the  
f lo w  i s  tu r b u le n t.

Moreover t h i s  ex p ress io n  i s  v a l id  even when the m otion, though 
p e r io d ic  i s  not s t r i c t l y  harmonic, as w i l l  happen w ith  lo n g  waves in  
sh a llo w  water when th e  form o f  a s o l i t a r y  wave i s  approached. Suopose 
th a t  th e  v e lo c i t y  near the bottom , in ste a d  o f  b e in g  sim ply  harmonic i s  
g iv e n  by an e x p r ess io n  o f  th e  form

in  w hich the c o e f f i c i e n t s  may be deduced t h e o r e t ic a l ly  or found from 
o b ser v a tio n  by F o u r ier  a n a ly s is .  Then the above e x p r ess io n  stives

Although the m ass-transport v e lo c ity  ju st outside the layer has been 
shown to be independent o f у , eqn. (2) shews that the d is tr ib u t io n  o f  the 
v e lo c i ty  w ith in  the layer i s  c er ta in ly  dependent on the form o f  the 
v is c o s i t y .  For th is  reason the expression (17) fo r  the maximup v e lo c ity  
w ith in  the layer  may not be v a lid  fo r  a turbulent layer .

However, what i s  observed in  p r a c t ic a l  experim en ts ia  l e s s  l i k e l y  to  
he the maximum v e lo c i t y  than th e  v e lo c i t y  ju s t  o u ts id e  the la y e r ,  where 
th e  v e lo c i t y  g r a d ie n ts  are l e s s  s te ep  -  e s p e c ia l ly  i f  th e  boundary la y e r  
i s  th u s and o b se r v a tio n s  are made w ith  s tr ea k s  o f  dye. For, a s len d er  
tongue o f  dye i s  l e s s  ea sy  to  obser-ve than a d if fu s e d  clou d  moving forwards 
w ith  a r e l a t iv e l y  uniform  v e lo c ity *  I t  i s  fo r tu n a te  th a t the l a t t e r  
v e lo c i t y  appears to  be more e a s i ly  p r e d ic ta b le .

(5 ) P ro o f o f  eqn. (10) F in a lly  s h a l l  prove our statem en t th a t  eqn. (10) 
i s  tr u e  in d ep en d en tly  o f  the v i s c o s i t y .  A lthough the argument can a t some 
l e n g th  be tr a n s la te d  in to  p h y s ic a l term s, i t  i s  sim p ler  at t h i s  s ta g e  to  
g iv e  an a n a ly t ic a l  p r o o f.

We s t a r t  from eqn. (2 ) and ( 9 ) ,  w hich are both  v a l id  even when the  
v i s c o s i t y  i s  a fu n c tio n  o f  tim e and p o s it io n *  From (2) we have by 
in t e g r a t io n  w ith  r e sp e c t  to  t  ,

u = A, c*o (a-t -A x ) + -kx.) t -----
ОС 1

+■ Bj я (<rt - k x )  + - - -

(20)

and th erefore
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Now from the eq u ation  o f  c o n t in u ity

dv _ h ь - J- i t
*5 с

and so

-  A r slb -C ‘*-v)ao ■= J" «•«.
OO

a i •° tt? “
where the l im i t  oo d en o te s  a v a lu e  o f  3  la r g e  compared w ith  & but 
sm all compared w ith  th e  w avelen gth  o r  t o t a l  depth . On s u b s t i t u t in g  f o r  

from eqn. ( 2 ) we have

i j j  -  i  ‘ « . v  j

s in c e  u.^ . Эи^/ЗЬ" i s  id e n t i c a l l y  z er o . F u rth er , i f  P  and о d en o te  any 
two p e r io d ic  q u a n t i t ie s  then  V J

(21)
f h  •  U s  ■  i v t )  -  -  0

and so in  any averaged product o f  t h i s  type the o p era to r  Ъ/ i t  may be  
tr a n s fe r r e d  from one member to  th e  o th e r , provided  th e  s ig n  i s  r e v e r se d  
a t  th e  same tim e. Thus f o r  example

/ 4 ( * % ) ■ ‘“ •■v -  -  4  5 )/ » • * • •
On s u b s t i t u t in g  th e se  r e s u l t s  in  eqn. (9) we o b ta in

§■ -  i  ~ ^  (22)
We assume th a t th e  v i s c o s i t y  i s  c o n sta n t fo l lo w in g  a p a r t i c l e  but 

i s  a fu n c tio n  N [Y)  o f the mean h e ig h t Y  o f  th e  p a r t i c l e  above th e  b ottom , 
then  a t any f ix e d  p o in t ( x ,y )  th e  v i s c o s i t y  w i l l  be a s l i g h t l y  v a ry in g  
fu n c t io n  o f  the tim e. To th e  f i r s t  approxim ation

=  N ( Y )  -  j $ A b -  w  -  $ J V d / - .

S u b s t itu t in g  in  (22) and n e g le c t in g  th ir d -o r d e r  term s we have

(N - iy  m £ j~ -  (H  s y  + $  * j ) J ' r,lh '
The term s in v o lv in g  c a n c e l ,  and on d iv id in g  through by W , w hich i s
a fu n c tio n  o f  У o n ly , we o b ta in

— m ” 0̂0 — — "j~T f V-J t  .
Ц  c  ^  *1f J

T h is r e la t io n  i s  e n t ir e ly  f r e e  from Л1 • The l a s t  term can be w r it te n  as
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and s in c e

Jit -  -  -L ^  -  —I -  u t 
Jy J d<j dcj J  с 3 t c <*j 3  e. <J«j

we have

^  • i u  *0: +• —  Д  ** ~  (  ~a<j e *• f  J c  i j  *3 W j J /
On in te g r a t in g  from у жО , where and V  v a n ish , we f in d  eqn. (10)

S in ce  th e  r e la t io n  (12) betw een U and U  i s  p u re ly  k in e m a tie a l,  i t  
f o l lo w s  th a t eqn. (14) and (15) a ls o  are independent o f  yV-
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Mass transport in the boundary layer at a 
free oscillating surface
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(Received 24 November 1959)

In a previous paper (19536) it was shown theoretically that just below the 
boundary layer at the surface of a free wave the mass-transport gradient should 
be exactly twice that given by Stokes’s irrotational theory. The present paper 
describes careful experiments which confirm the higher value of the gradient.

The results have an implication for any oscillatory boundary layer at the free 
surface of a fluid; such a boundary layer must generate a second-order mean 
vorticity which diffuses inwards into the interior of the fluid.

1. Introduction
Although it was Stokes (1847) who first theoretically predicted the existence 

of a mean forwards velocity of the particles (mass transport) in a water wave, 
only since the experimental work of Bagnold (1947) has it been realized that the 
mass-transport velocities may be very different quantitatively from those given 
by Stokes’s irrotational theory. For example, Bagnold observed a strong for
wards ‘je t’ close to the bottom, a phenomenon unaccountable on the hypothesis 
of irrotational motion. The whole distribution of the mass transport is in fact 
strongly influenced by viscous boundary layers both at the bottom and at the 
free surface, as was shown by the present author (1953b; this paper will be 
referred to as (I)).

The boundary-layer theory of (I) yielded two surprising results; first, that just 
above the boundary layer at the bottom the forward mass-transport velocity is 
independent of the viscosity and has the value

5 агак
4 sinh2 kh ' ( ' )

where a denotes the amplitude of the waves at the surface, 2тг/cr the wave period, 
2Trfk the wavelength and h the mean depth. This value is quite different from that 
obtained on the non-viscous theory of Stokes (1847).*

Secondly, just below the boundary layer at the free surface the vertical gradient 
of the mass-transport velocity is given by

ДГГ
-5-  =  — 4a2crkz ooth kh, ( 1.2 )oz

* Stokea’a theory ia given partially in Lam b’s Hydrodynamic» (1932, Ch. 9); the maaa- 
tranaport velocity ia there derived only in the caae of deep water (kh^> 1).
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г being measured vertically downwards. This is also independent of the viscosity 
and moreover is exactly twice the value given by Stokes.

The value (1.1) has been well verified by the recent experimental studies of 
Vincent & Ruellan (1957), Russell & Osorio (1958) and Allen & Gibson (1959), 
though with a considerable scatter of observations in the last case.*

On the other hand no careful verification has yet been attempted of the 
gradient (1 .2 ), which may be no less important in determining the distribution of 
mass transport throughout the fluid. Partly, no doubt, this is due to the greater 
experimental difficulty in making measurements close to a moving surface, and 
partly also to the weak stability of the motion near the surface, which can be 
easily disturbed by external influences, as will be explained in § 4.

Our purpose is to describe some experiments designed to measure the velocity 
gradient near the free surface. These do in fact confirm equation (1-2) as against 
Stokes’s prediction.

The opportunity is taken to correct a theoretical calculation of Harrison 
(1908) on the same subject. Harrison’s corrected calculation leads also to equa
tion (1.2 ) but over a more restricted range of the amplitude a.

The validity of (1.2) implies that a second-order vorticity is generated by the 
oscillatory boundary layer and is diffused inwards into the fluid, as described in 
§ 5 below. Moreover, a similar phenomenon must occur in any fluid motion where 
there is a free oscillating boundary, even though the mean velocity is zero to the 
first order. The value of the vorticity ш generated by any free surface in this way 
is given by equation (6 .12).

2. Theory o f  the boundary layer
A general theory for an osoillating free boundary has been given in § 8 of (I). 

Here we shall present a simplified version, relying however on (I) for some of 
the results quoted.

On account of the thinness of the boundary layer in relation to the usual 
amplitude of the waves it is desirable to take co-ordinates (s, n) measured along 
and normal to the free surface itself (and therefore moving with the fluid). The 
co-ordinate n  is supposed to be directed normally inwards into the fluid. In the 
notation of (I) the components of velocity tangential and normal to the surface 
are written qs, qn and these are related to the stream function \jr by

(2Л)
where t) =  1 — пк  and к denotes the curvature of the surface. The vorticity is 
equal to Vâ  where

(2 .2 )
1} [ d s \ l ld s )+ &n\V dnJ\

* Vincent <fe Ruellan, as wel] as Allen <fe Gibson, actually compared their observations 
w ith tho predicted maximum  velocity in the boundary layer, which is about 10% greater 
than (1*1).

An extension of the result (1-1) to the case o f turbulent flow is given by the author in 
an appendix to the paper of Russell & Osorio (1958).
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It is supposed that qs, qn and ijr oan be expanded asymptotically in the series

?. =  eq,i + £14.t + --;
? n  =  e ? n l  +  « S? n 2  +  - - - .  ' ( 2 - 3 )

\/r = e f 1 + ei ifri + . . .r

where e is a small parameter which may tend to zero and where the mean values 
of gsl, qnl are identically zero. The mass-transport velocity is then shown in (I) 
§ 6 to be of order e2; its stream function is denoted by c2lF.

The case when the stresses vanish at the surface n  — 0 is included in the 
discussion in (I) § 8 . By applying a 1 boundary-layer ’ approximation it  is shown 
that xjr̂  satisfies the differential equation

( J r - S W ' * 0- (2‘ >
Assuming that the tangential stress at the surface vanishes we have the boundary 
condition

_  2 £|ni (та =  0) (2 .5)
OS

(derived from (220) of (I) by setting pl%\ = 0 and кй = 0). When the motion is
simple-harmonic with angular frequency tr the appropriate solution of (2.4)
and (2.5) is -ym)

V ^  =  —2 ^ e - * ,  (2 .6 )
08

where denotes the value of qnl at n  = 0  and

a =  l ± - \  8 = {2 v l(r)i. (2.7)

It is understood that in (2.6) the real part of the right-hand side is to be taken. 
So the first-order vorticity vanishes exponentially inwards, in a distance 
of order S.

The differential equation satisfied by T  is given by (2 1 1 ) of (I) (in which Vsl is 
to be set equal to zero). We have

where a bar denotes mean values with respect to the time. On integrating from 
outside the boundary layer, where d3y¥/dn3 is assumed to be relatively small, 
we have jmui- i*~2 ;Qoj

( 2 9 >

At the free surface n  = 0, the boundary condition for ’F is that

3^5 =  0 ( «  =  0) (2 . 10) 

(see equation (218) of (I)), and so from (2.9) and (2.10)

(M l)
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In the case of simple-harmonic motion, when V2̂  is given by (2.6) we have

Э*у_ 4ЭзЖЭдт .
Эп 2 iff 3s ds ( l - e - “n), (2.12)

(2.14)

where a star denotes the complex conjugate quantity and the real part of the 
product is to be taken. Hence, just beyond the boundary layer (n S) we have

Эя* _  i t r I T  Ьв ( > ( ,I3)

a value independent of the viscosity.
Now in the case of progressive gravity waves in water of uniform depth the 

orbital velocities at the surface are given by

едЙ' = acr coth kh
eg*,1? = iacr J

approximately, so that (2.12) and (2.13) become

32Te2 —j = 4a2crjfc2 coth kh(l -  ern,scosnjS) (2.16)

32XFand = - 4 a 2ffi2cothfcA (u >  8). (2.16)
on

Sinoe е2ЭЧ',/Эт1 is equal to the mean tangential component of mass transport 
((I), § 6 ) and since n  is approximately vertical, equation (2.16) is equivalent 
to (1 .2 ).

As already remarked, this result represents exactly twice the gradient given 
by the irrotational theory of Stokes (1847).

3. Digression on a result o f  Harrison
It was pointed out to me by Professor P. S. Eagleson that a conclusion appar

ently different from the above was obtained by Harrison (1908). Harrison’s 
method consisted of a direct expansion of the equations of motion and boundary 
conditions in terms of rectangular co-ordinates (z, z). This method has the dis
advantage of being valid only for waves whose amplitude a is small compared 
with the thickness S of the boundary layer. Nevertheless, since the range of 
validity of equation (2.16) certainly inoludes such small amplitudes, one would 
expect Harrison’s result to agree with equation (2.16) over the restricted range.

Another formal difference between Harrison’s solution and ours is that we have 
assumed the motion to be periodic in time, whereas Harrison allows for a slight 
exponential deorement proportional to vk4. I t  can, however, be shown that such 
a slight decrement, or one proportional to (v/ff)* kh:, does not affect the boundary- 
layer theory outlined in § 2 .

Translated into our notation, Harrison’s expression for the elevation of the 
free surface in waves on deep water is

— z =  a e-2”44 cos (kx — at)
+ a?k [■$■ cos 2 (kx — ai) — i (  v7ligk)i sin 2(Icx — at)] (3.1)
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and for the mass-transport velocity (p. 115)

U =
x [e-2ts + ££5{4(cos z/S — sin zjS) g-№+* _1>* — sin 2кг}

+  vk2l<r{ 4 sin zjS e~̂ k+t _1>® — 3e-if^}] (3-2)

terms of higher order in v being neglected. (Harrison’s /?, A, fi, p, у are equivalent 
to our a, 6 -1, 8~l , — cr, —z.) On differentiation with respect to z this gives us for 
the terms of highest order

TiTT
—  = — 2аг(ткЧ 1 — 2 cos zlS) (3.3) 
oz

which is not in agreement with (2.15). (The slight exponential decrement 
e-4»t4 js ignored.)

An examination of Harrison’s analysis reveals the source of the discrepancy. 
For his second boundary condition on p. I l l  ho has assumed that the stress 
component p xy vanishes at the free surface. This is incorrect, for in fact it is not 
Рху but p ns which must vanish, and the two differ by the second-order quantity

«•Sfifc- <3-4'
where г =  —ij denotes the equation of the free surface. Hence to the left-hand side 
of his equation (12 ) should be added a term

2pkl{32 e2a/. (3.5)

This would add to his expression for U  on p. 115 a term

— pkfi^sinSkye?*1, ~  — а2сгк е~^кЧ sin 2kz, (3.6)

whence the gradient of U, for values of z comparable with S, would be
ЯГ7
—  =  — 2a2ak2(2 — 2e-e/i cos zlS) (3.7)
OZ

in agreement with (2.15).
Doubtless the reason why Harrison overlooked his algebraioal slip was that 

it happens by chance to bring the value for (dUjdz)z^.s into exact agreement with 
the irrotational theory of Stokes, as might at first sight have been expected.

4. Observations
The actual measurement of velocity gradients near the free surface is a some

what delicate matter owing not only to the movement of the surface itself but 
to the external influences by which it is easily affected. The presence of grease 
or other impurity in the form of a thin surface film may completely alter the 
gradient by restricting the free tangential motion of the particles and producing 
a forwards jet, as in the boundary layer at the bottom. Turbulent currents in the 
air may have a disturbing influence; and very slight temperature changes can 
produce strong velocity gradients associated with density currents; for if the 
length of the tank or wave system is restricted, the forwards mass transport at
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one level m ust be compensated by a backwards flow a t  other levels; hence any 
tem perature stratification will tend to intensify the horizontal shearing.

Further, the  presence of obstacles in the water, even the vertical walls of a 
measuring tank, will alter the distribution of mass transport in the neighbour
hood. The observations m ust therefore be made far enough from such obstacles 
for their effect to be negligible.

Lastly, it  is extremely im portant to ensure th a t the wave motion is purely 
sinusoidal. In  relatively deep water, for example (coth kh =  1) equation (1.2) 
shows th a t ЭГ//Э2 is proportional to aV&2, th a t is to  a 5 since cr2 =  gk. I f  any 
second harmonic, of amplitide a', is present in the wave motion its effect on the 
velocity gradient will he in the ratio

32 a ' > 2. (4.1)

Even if o '/a  is as little as 1/10 this will be sufficient to increase the observed 
velocity gradient by 32 %. In  shallow water waves, however, the relative effect 
is correspondingly less.

For the purpose of the experiments the wind-wave tank a t the Hydraulics 
Research Station, Wallingford, was kindly made available. A full description of 
the apparatus is given in the paper by Russell & Osorio (1958). The tank is 186 ft. 
long, 4 ft. wide and has a maximum depth of 22 in. The wave generator is of a 
paddle type w ith a fixed or movable hinge a t the bottom. The wave absorber 
consists of a shingle beach, a t a slope of about 1 in 10. All the present observations 
were made from the centre window of the tank, which is about 90 ft. from the 
wave generator. The tank  is covered, and is fitted with a fan capable of drawing 
air over the surface in the direction of the  beach, a t a mean speed of about 
25 ft./s.

In  preliminary trials of the wavemaker it was found th a t on switching off the 
motor, and after the main group of waves had passed the point of observation 
half-way down the tank, there persisted a train  of waves of twice the frequency 
b u t of smaller amplitude, until their group-velocity in tu rn  has carried them  past 
the point of observation. The existence of this second harmonic was a ttribu ted  
to the form of linkage used in the wave generator which had in fact been designed 
so as to increase the velocity of the forward stroke compared w ith th a t  of the 
backward stroke. The linkage was therefore modified w ith the result th a t the 
am plitude of the second harmonic a t the point of observation was reduced to  
about 4 % of th a t of the first harmonic. The error corresponding to (4.1) was thus 
reduced to about 6 %.

Method of observation 
A grid of lines was drawn (see figure 1 ) a t an angle ta n -12 to  the vertical, and was 
attached to  a metal sheet on the far side of the tank, in the plane of motion. 
A drop of black ink (W aterm an’s ink, diluted 3 :1) was le t fall from a syringe at 
a height of about 18 in. above the surface, between the viewer and the gnd of 
lines. The drop penetrated about 1 cm below the surface, leaving a nearly vertical 
streak. Owing to the velocity gradient the streak gradually became inclined 
(figure 1 ), and the time т taken for its mean inclination to become parallel to
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the grid of lines was measured w ith a stop-watch. The velocity gradient was then 
taken to be 377 2

Ж - Г  (4-2)
The height 2a  of the waves was measured against a grid on the near window of 
the tank, and the wave period was measured over 20 cycles w ith a stop-watch.

F m c s e  1. A photograph  tak en  th ro u g h  th e  window of th e  ta n k  from  a  p o in t ju s t  below  
the  surface of th e  wave. This shows the  s treak  left b y  a drop  o f d ilu te  ink, inclined a f te r  
the  passage of a  few -waves. (Some ink is left on the  surface.) T he lines in  th e  background  
were d raw n a t  an  angle ta n -1 2 to  th e  vertical. T he vertica l separa tion  of th e  lines w as £ in.

Precautions
I t  was found th a t a thin film of oil or grease waa nearly always present on the 
surface. In  order to remove this, the fan was switched on for about 15 min, so 
th a t the surface film was driven up to  the far end of the tank. W ithout further 
precautions the film would quickly have returned and covered the surface of 
the tank (at a rate of several cm/s). Accordingly, when the wind ceased a plastic 
curtain was immediately inserted in the tan k  a t about 16ft. from the beach. 
This prevented the return  of the surface film, while allowing the transmission 
of waves from the generator to the beach.

The vigorous action of the wind also had the effect of thoroughly stirring the 
water, so th a t suspended particles were observed to  be carried quickly from near

i
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the  bottom  to the surface and back again. In  this way any tem perature gradient 
present in the tank waa temporarily destroyed.

After switching off the wind, a period of 30-46 min waa allowed for the tank  
to become quiet again, until a drop of ink or dye inserted in the water showed 
th a t the velocity gradients were negligible. The wave generator was then started 
and allowed to run for 5 min before observations were begun. This period gave 
time for the vorticity generated in the boundary layer to penetrate a t least the 
upper 6 mm below the free surface (see § 6 below). Only those observations were

2 /t
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F i q u b e  2. "Results o f observations a t th ree  different w av©  periods:
(a) kh = 2 81, (J>) kh =  1-54, (e) kh =  1-06.

accepted in which the ink trace was initially vertical and remained in a practically 
straight line from 2 to 10 mm below the surface. A t each run, ten acceptable 
observations were reoorded: these were completed between 6 and 15 min after 
switching on the wave generator.

The choice of param eters for the experiments was limited: first, by the design 
of the wavemaker, which could not run safely a t  periods much less than 0-7 sec; 
secondly, by the method of observation, which is satisfactory only if the time of 
observation т contains a sufficient num ber of wave cycles (about 10), for other
wise it  is hard for the observer to judge accurately the moment when the mean 
inclination of the  ink trace becomes parallel w ith the grid of lines; thirdly, by 
the presence of very weak gradients due to  turbulent air movements and to 
residual effects of the stirring process described above: these last set the lower 
lim it to  the observed gradients.

Finally, three periods were chosen: T  — 0-66, 0-926 and 1-20 sec corresponding 
to kh — 2-81, 1-64 and 1-06, respectively, and a num ber of runs were made at
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different amplitudes a, while the wave period was kept constant. The mean depth 
A was kept a t 29-7 cm throughout the experiments.

The observed results are shown in figure 2, plotted in each case against the 
square of the wave am plitude a 2. A t each wave period, according to equation (1.2) 
the plotted points would be expected to lie on a straight line through the origin, 
as has been indicated in the figure. Each plotted point represents the m ean of 
ju st ten consecutive observations, and the vertical lines through the points 
represent the to tal range of the same ten observations.

The most obvious feature of the results is the very wide scatter of observations, 
bu t this is in fact not much greater than would be expected considering the  
m ethod of observation. I t  is perhaps puzzling th a t in figures 2(a) and (b) the 
mean values tend to  lie slightly below the theoretical value while in  figure 2 (c) 
they lie somewhat above it; bu t this could be brought about by quite a small 
error in the measurement of wave period.

Two fairly definite conclusions may be drawn: (1 ) over the ranges of T, a and 
kh  covered by the experiments the velocity gradient does tend  to  increase pro
portionally to  a2 approxim ately; and (2 ) the constant of proportionality is not 
far from th a t given by equation (1 .2), and is certainly closer to  (1 .2 ) than  to  half 
this value.

5. Consequences for the interior of the fluid
Some implications of these results for the motion in the main body of the fluid 

may be briefly mentioned here.
Before the waves are started  the vorticity  is everywhere zero, and  since 

vorticity  cannot be generated within the fluid it  follows th a t im m ediately after 
starting the waves the motion beyond the boundary layer is irrotational and will 
be given by Stokes's theory approximately. The difference between (1.2) and 
Stoke’s value corresponds to a vorticity

o) =  — 2а2(гкг coth kh, (6 .1 )

which can be regarded as having been generated in the boundary layer itself, 
th a t is, within a distance of order (v/cr)4 from the free surface. This vorticity will 
then begin to  diffuse into the interior of the  fluid.

Now it was shown in (I) th a t in a quasi-steady (tha t is, perfectly periodic) 
sta te  of motion the vorticity o) in the interior of the fluid (n (j>!&)$) satisfies 
the equation

U . Voj — vV2(o = 0, (5.2)

where U denotes the  mass transport velocity.* The first term  in (5.2) repre
sents the transport of vorticity by convection w ith the m ass-transport velocity, 
and the second term  represents the transport of vorticity  by viscous conduction. 
This result m ight also be expected on physical grounds (of. Lamb 1932, § 328); 
the motion being two-dimensional, there is no stretching of the vortex lines.

Before the vorticity in  the interior is fully established the motion is no t

* ш ie o f second order; th e  first-order v o rtic ity  vanishes in  th e  in terio r; see (I), 
equation  (60).

1
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exactly periodic beyond the first order; bu t similar arguments suggest th a t the 
differential equation governing the distribution of vorticity in the interior is

Э(0
+  U . V<d — i>V2a> =  0. (5.3)

In  a regular progressive wave the m ass-transport velocity ia almost hori
zontal, apart from effects a t the ends of tank. Any decrease in amplitude with 
distance also produces small vertical mass transports, bu t since the third term 
in (5.3) initially predominates near the surface it  can be seen th a t most of the 
transport of vorticity in the  layers nearest the free surface will take place by 
viscous ‘conduction’.

Thus the equation governing the initial distribution of the vorticity just 
beyond the boundary layer is

дм дгш (6.4)

The solution of this equation w ith initial conditions

fO, z =  0, f < 0,J 
w = \ V (5.5)

U 0, г =  0, t > 0.J
is wen known: ^  =  2« ,  f -  (# ft)

which may also be written

-  f ,  
"о Vя  Jo

'dd  = f(Z ), (5.7)

where Z  = ------j .  (6-8)
2 (rf)i

For a fixed value of z, as t -*■ oo so Z  -> Oand f(Z )  -*■ 0; hence a) -*■ o)0. The following 
table gives some typical values o if(Z )

2Z №
0 0018 0-001
0 0035 0 002
0-0089 0006
00177 0-01
00366 0-02
0096 0-05
0178 001

Thus to ensure th a t the vorticity  is within 10% of its value<i)0a tz  = Owemusthave

z

(*)*
Taking v -  0 013 cm2/s and t =  5 min we find z ^  0-47 cm. 

However, the mean value of ш between О and z, defined by

"meao = J; Г  f(Z )d Z ,  (5.10)
мп Z  J n
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is much closer to unity, as may be seen from the aeries expansion

= 1—L ( z ~  — + (6.11)
ш0 J it \  6 30 180 /  ' 1 

W ith the same values: t =  5m in, z — 0-47 cm, we find

=  0-950, (5.12)

so th a t the  mean velocity gradient in the upper 6 mm is w ithin 5 % of its ultim ate 
value. I t  was this mean value which was measured in the  experiments of §4.

Generally, the  w idth of the upper region influenced by the diffusion of vorticity  
from the oscillatory boundary layer will be of order (vt)b, w ithin the first few 
minutes. This region constitutes an outer ‘boundary layer’ of a different type 
from the oscillatory layer, the thickness of the la tte r being of order (i>T)t only.*

At later times the fluid may be influenced by vorticity  diffused in a similar 
way from the boundary layers a t the bottom  and sides of the tank . However, 
in m ost wave tanks i t  seems likely th a t the transport of vorticity  by convection 
from the ends of the tank  will intervene and ultim ately predominate, so th a t 
conditions beyond the first few cm of fluid a t the surface and bottom  may depend 
somewhat on the type of wave generator or wave absorber which is used. The 
tim e required for vorticity  to be convected from the ends of the tank  through 
a distance x  is clearly of order xj U. In  the experiments described above this tim e 
was considerably greater than the time taken for the observations.

All the above predictions rely upon the assumption th a t the motion is lam inar 
and the m ass-transport current is predom inantly horizontal and parallel to  the 
wave velocity. Even slight winds m ay completely alter the character of the  
circulation (except near the bottom, where the motion is controlled by the bottom  
boundary layer). The possibility of the shearing motion becoming unstable of 
its own accord when the waves are sufficiently short and steep has also to be 
borne in mind. Indeed, this mechanism may contribute to the very m arked 
turbulence th a t is present in all waves under the action of wind.

6. General implications
The analysis of §2 shows th a t the effects just described are by no means 

peculiar to water waves, bu t will occur whenever there is an oscillatory fluid 
motion with a free boundary.

Thus from equation (2.11) we have just beyond the boundary, where V2̂  0,

^ - _ 4 j ( V V i ) o * ^  (»► *). («-I)

which combined w ith (2.5) becomes

* H arrison 's solution for th e  in terior (equation  (3.2)) contains a  te rm  in sin  kz. I t  is h a rd  
to  see how such a  m otion , n o t tending to  zero ав z-> oo, could be realized in practice.
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Since we are now dealing with the part of the fluid beyond the inner boundary 
layer, we may, to the present order in e, replace the velocity gsl, qnl by di/rjdz,
— Sr/fJSx, where (x , z) are rectangular co-ordinates tangential and normal to 
the mean boundary. Thug

9z2 " 8J l (6‘3)
Since the mean boundary forms a streamline for the mass transport we must 
have also a y  d2r

дх ° ’ дхг (6‘4)

so th a t the left hand side of (6.3) can be replaced by V2VF. Now the mass-transport 
velocity is given in terms of and \]гг by

т - ^ + / ж л 1  <6-5’
(see (I) § 3), and since by equation (85) of (I)

<6e>
it follows, on operating on both sides of (6.5) with V2, th a t

(6 .8)

This last expression, multiplied by e2, represents the vorticity just in the  interior 
of the fluid, for, beyond the boundary layer,

V V i  0, V 2^ 2 -► Va^ 2 (6.9)
(see (I) § 4) and therefore

(D =  V!f - > £ ! V2f o + . . . .  (6.10)

Now write =  u, ~ e ^ ~  = w, (6.11)oz ox

for the components of velocity tangential and normal to the mean position of 
the  boundary (these differ from their corresponding values a t the boundary by 
quantities of order e2). Опт result can thus be w ritten

du Cdw
0, = * & j t e dt- (6I2)

In  other words, the presence of the free boundary produces a mean vorticity 
in the interior given by (6.12). The modifications of this result needed to take 
account of any arbitrary tangential stresses applied a t  the surface may be deduced 
from the general formulae of (I) § 8.
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I t  is interesting to note th a t so far as the distributon of mass transport in the 
interior is concerned the presence of the boundary is equivalent to a virtual stress

3и Cdw4 „ g - J g - Д .  (6.13)

Since jxvdt is equal to the surface elevation rj, this last expression may be w ritten

(e- >
which, as we saw in § 3, is equal to the difference between the stress components 
Pzs and^3M. I t  is th a t vanishes and p XS! generally differs from zero on account 
of the tilting of the  surface through an angle ду/дх. Thus we might say th a t the 
v irtual stress (6.13) was due simply to the corrugation of the  free surface; bu t 
this would be to neglect the structure of the boundary layer itself, throughout 
which the tangential stress, like the vorticity, is not uniform.

7. Conclusions
Our concluding picture is as follows. The periodic motion of the  fluid produces 

in the first place boundary layers a t both bottom  and free surface whose thickness 
is of the order of (vT)K where v denotes kinematic viscosity and T  the period of 
the waves. In  practical cases these oscillatory boundary layers have a thickness 
of only a few millimetres. B ut within the surface layer there is produced a second- 
order mean vorticity which, from the moment of starting the waves, begins to  
diffuse downwards into the fluid. After a time t the region affected by the vorticity  
is of order (vi)i, provided t is not too great. This la tte r region may be thought of 
as a kind of outer boundary layer which finally m ay fill the whole fluid. Some 
vorticity may, however, be transported by convection as well as by viscous 
diffusion. Finally, the motion is no longer irrotational, bu t contains everywhere 
a second-order vorticity determined by the oscillatory layers a t the boundaries.

I  am indebted to  the Director of the Hydraulics Research Station for perm is
sion to  make use of the 185 ft. wind-wave tan k  there, and to  Mr R. С. H. Russell 
and Mr F. A. Kilner for their interest and co-operation. The experiments described 
above were carried out w ith the assistance of Mr A. J . Bunting.
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An oscillating current such as a tidal stream  or an  inertial oscillation m ay have 
a horizontal scale of the order of m any tim es the local dep th  of water. Thus an  
island projecting from an otherwise uniform sea bed will give rise to  a local, 
periodic disturbance near th e  island. I t  is shown th a t  this disturbance m ay be 
resolved into two waves travelling in  opposite senses round the  island. I f  the  
particle orbits a t large distances are circular, then only one of these waves has 
non-zero am plitude.

In  addition to  the  oscillatory motion, however, there is a steady d.c. stream ing, 
or m ass-transport velocity, whose m agnitude is of O T der u2jcra where и  denotes 
the m agnitude of the  oscillatory velocity a t large distances, a  denotes the  rad ian  
frequency, and a is the  radius of the  island. In  this paper the  profile of the  
stream ing velocity is calculated for circular islands, w ith or w ithout shoaling 
regions offshore. I t  is shown th a t resonance w ith th e  free modes trapped  by  the 
shoaling regions m ay greatly  increase the stream ing velocity. Viscosity (or 
horizontal mixing) also tends to  increase the stream ing velocity close to  the 
shoreline.

The conclusions are supported by some simple model experiments. I t  is sug
gested th a t  such stream ing may partly  account for the observed p a tte rn  of 
currents near Bermuda.

1. In troduction
The best-known example of a steady, rectified flow associated w ith an  oscil

la tory  motion is the  m ass-transport velocity in a progressive w ater wave, first 
discovered by Stokes (1847); (see also Longuet-Higgins 1953, 1960). I t  has been 
pointed out by Longuet-Higgins (19696) th a t  significant rectified flows are also 
to  be expected in many types of long-period, oscillatory ocean currents, p a r
ticularly in tides, in ternal waves and motions depending on bottom  topography, 
such as double Kelvin w aves.f

The aim of the present paper is to  consider another topographic effect, the  
effect of an island which projects from the sea bed in an otherwise uniform, 
oscillating current.

Assuming the displacement in the  initial oscillation to  be small com pared to
f  M ass-transport in tidal flows was first considered by  H unt & Johns (1963). Pedlosky 

(1965), Robinson (1965, ch. 17, pp. 504—533) and Munk & Moore (1968) have suggested 
m ass-transport effects in other types of current, bu t for a criticism of their analysis see 
Moore (1969).
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the  radius of the island, the first problem to be considered is the  linear response 
of the  fluid near the island to a forced oscillation in  the  ocean a t large distances. 
This problem is solved in  §2 below, for islands w ith vertical sides. For a  circular 
island it  is possible to evaluate the  local disturbance caused by the island in very 
simple terms. Particularly, when the currents a t large distances are inertial, i t  
tu rns out th a t the disturbance is seen locally as a wave progressing anticlockwise 
round the island, in  the northern hemisphere; the  tangential velocity a t  the 
boundary is ju s t double w hat i t  would be in the absence of the island.

The second-order currents associated with this flow are considered in §3. I t  
is shown th a t the rectified flow outside a th in  viscous boundary layer consists 
of a current circulating anticlockwise round the island and falling off rapidly with 
radial distance, like the inverse fifth power of the radius a t first. B u t inside a 
th in  viscous boundary layer, the m ass-transport current is reinforced by viscosity. 
In  fact the  effect of viscosity is to  m ultiply the non-viscous streaming velocity 
ju st beyond the boundary layer by a factor f  independent of v. This effect is 
analogous to the effect of the  viscous layer on the bottom  in a progressive water 
wave (Longuet-Higgins 1953), experimentally verified by Allen & Gibson (1959) 
and others. After some time, the  vorticity  introduced by the viscous boundary 
layer diffuses outwards throughout the interior of the  fluid, augmenting the 
initial circulation.

Some simple experiments to te s t this theoretical prediction are described in 
§ 4 of the present paper.

So far the  discussion has referred to islands w ith vertical sides. On the other 
hand, when the island is surrounded byashallow  region or ‘s k ir t’, the possibility 
arises of free waves becoming trapped  near the island, aa was shown by Rhines 
(1969) in  a particular case. Moreover, the am plitude of the forced oscillations 
m ay increase greatly near the resonant frequencies. In  §5 we calculate both the 
am plitude of the  forced oscillations and the magnitude of the steady mass- 
transport associated w ith them. Figure 6 is atyp ical plot of the relative magnifica
tion near the resonant frequencies. A simple model experim ent is described in 
§ 6, in which oscillations were set up in a ro tating  basin containing islands of 
various shapes. Strong currents were observed to be circulating round the islands, 
consistent with the above predictions.

The possible connection of this phenomenon w ith the  observed pattern  of 
currents near Berm uda is discussed in § 7.

2. Forced oscillations round a cylindrical island
We imagine an island with vertical sides, in  an ocean of locally uniform depth h, 

in  which there exists a large-scale system of oscillating currents. The la tter may 
be inertial oscillations, tidal waves, planetary waves or other types of large-scale 
oscillation, and may be generated, for example, by tidal or atmospheric forces. 
The purpose of this section is to calculate the local effect of the  island on this 
large-scale system of currents and in particular to  find the form of the surface 
elevation a t the edge of the island itself.

We shall suppose th a t the differential equation governing the surface elevation
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£ is the classical equation for long waves of small am plitude oscillating h a r
monically with radian frequency cr, in an ocean of uniform depth h and constant 
Coriolis param eter f ,  th a t is to  say

(v’+£i ? ) { - °  (21) 
(see Lam b 1932). The associated current-vector u is given by

u  =  ^ * ( ; < r V £ - fA m  (2 .2 )

where f denotes the vertical vector of magnitude f .  We assume th a t  cr2 Ф / 2, 
in general, bu t when it  is appropriate we shall take the solutions to the  lim it as 
cr -> + /, bearing in mind th a t the lim it may be singular.

Now for moat applications, and certainly w ith islands of the  dimensions of 
order 100 km the scale of the  local disturbance will be exceedingly small com pared 
to -J(gh)!f. Since cr is assumed to  be of the same order a s / ,  i t  follows th a t  in (2.1) 
the second term  is negligible for practical purposes, and th a t  £ satisfies sim ply 
Laplace s equation, 0 (2 3)

In  the present context (2.1) may be called the exact differential equation 
for £ and (2.3) the  approxim ate equation. A solution of the  exact equation does 
exist representing waves trapped round a circular island (Longuet-Higgins 
1969a). We shall find solutions to  the approxim ate equation, and show th a t  they  
do tend, in one case of special interest, to the  corresponding exact solution.

Suppose first th a t we have a circular island of radius a. L et the  rectangular 
components (it, v) of the current a t large distances r from the centre of th e  island 

be given by u  = A e~M , v -  Ве~™ , (2.4)

where A  and В  are complex constants. I t  is understood th a t the real p a rt of the 
expressions on the right is to  be taken. The radial and tangential components 
of velocity are then given by

u . — u c o sd  +  v s m d  =  С +  D e~iie+<rt), 1
I (2.6)

ue = — и  sin в +  v cos Q — iC  — iD  e ^ e+rt\ \

where С =  $(A ~ iB )  and D  =  ^(A +  iB ). In  o ther words, the  motion can be 
formally separated into two component waves, one w ith complex am plitude 0 , 
rotating clockwise round the island (when cr < 0), the other w ith complex 
amplitude D, ro ta ting  anticlockwise.

To find the corresponding surface elevation we take (2.2) in the form,

(S/0r) (gO =  itrw,+ /% , '!

\{Ь1дв)(д£) =  icrue - f u T!\ (2‘6)

and assume th a t £ vanishes a t  the  origin. I t  follows th a t  the surface elevation 
in the absence of the  island is given uniquely by

gl* =  i(cr+f)Cre'U’e- at)+ H o --f)D re -^e+atl  (2.7)
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In  inertial oscillations, £„ vanishes. Such motion can be represented either by 
(7 =  0 and а  -  /  or alternatively by D  =  0 and  <r =  —

Now to take account of the presence of the island we add  to  (2.7) a surface 
elevation fj of the  form,

=  Р(аг1г) ет ~'н] +  Q(a?lr) e-t('9+'rt> (2.8)

in which the constants P  and Q are to be chosen so as to  make the normal com
ponent of velocity vanish a t the circumference r — a. Thus £ =  £0 -f m ust satisfy

,2-9>
Hence — ((?2—f 2)C —i(cr+ f)P  — 0, (2.10)

w ith a similar equation for Q. Solutions of these equations are

P  =  — i ( a —f)C , Q = -i(< r+ f)D . (2.11)

Therefore altogether we have

g£ = i[(cr + /)  r -  (a - f )  (a2/r)] С + i[ (< r -f)r+ (a + f)  {a2jr)] D
(2 .12)

A t the  perim eter of the island this reduces to

д£ =  2ifa[C -  D  . (2.13)

Thus if и® denotes the transverse component of the  velocity a t infinity, the 
surface elevation a t  the edge of the island is simply given by

gt; =  2 а/и,,. (2.14)

In  the  im portant case of inertial oscillations we take D  =  0 and tr > —f  in 
(2.12), givmg _  2ifC(a2jr) (2.15)

Thus, for inertial motions, the surface elevation progresses round the island in  the 
clockwise sense, in  the northern hemisphere. Since in this case £„ vanishes, the 
surface elevation is given by £i> alone.

To find the components of velocity (ur, u0) near the island, some care m ust be 
taken. The exact expressions

- 1  / .  8 f  д \ Л
%r “  <7« —f 2 [ dr г д в ) 9^’

— 1 (icr d , 8 \
Щ ~  \ r  36 + f f r )

(2.16)

m ay be used only when a 2 ф / 2. However, if we substitu te in (2.16) from (2.12), 
we obtain in the general case,

uT =  (1  — ̂  [C + D  , \

Ug  =  i ^ l  +  ̂ j  [C _  D  e-«*+*«].j
(2.17)
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I t  is rem arkable th a t  this solution is form ally independent of the Coriolis p a ra 
m e te r /a n d  of the  frequency cr. To find a solution for inertial motions we again 
le t D  =  0 and tr =  - /  giving

• , - ( i - £ ) e « — О
(2.18)

r ja

F i g u r e  1. G raphs o f th e  rad ial a n d  tan g en tia l com ponents ur, щ  o f th e  o rb ita l ve loc ity  
in  an  oscillation in th e  neighbourhood of a n  island  of rad iu s o. T he associated  surface  
e levation  is also show n.

These expressions for uT, u e and £ are illustrated in figure 1. A t th e  circumference 
of the  island equations (2.18) become simply

ur = 0, ue =  2iC e’*fl- <rt>. (2.19)

Comparing this w ith (2.5) we see th a t  the presence of the island exactly doubles 
the transverse component of velocity a t the perimeter,

I t  m ay be noted th a t  (2.15) is also the first term  in the asym ptotic expansion 
of th e  exact solution of (2.1), namely,

?£ =  2 i/O ka2K 1(kr) (2.20)

where к = (tr2 < / 2). (2.21)

This represents a mode trapped exponentially a t  large distances from the  island 
(Longuet-Higgins 1969 a). E quation (2.15) is the  lim it of (2.20) when afl*J(gk) -> 0. 
The expressions for the  currents, (2.18), also correspond to  (2.7) of the  paper ju st 
referred to, if the  constants in the  factors (1 + a 2/r2) are replaced by  term s varying 
only logarithmically w ith r.

45 F L U  4 2
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Because in the present approxim ation the surface elevation f  satisfies L ap
lace’s equation (2.3) it is simple to extend these results to  islands of other shape, 
by a conformal transform ation. The boundary condition u . n  =  0 is transformed 
into the same condition a t all non-singular points of the boundary, by (2.2). For 
example, the exterior of the elliptic island,

J  +  f i = 1  ( ° > & > 0 ) .  (2.22)

having principal axes a and b, is transform ed by the substitutioi

z = x  + iy  = \c  +

into th e  exterior of the circle,

A =  fi + iv, 
c =  (a * -b 8)*,

(2.23)

» .  a + b
(2'24)

Moreover, a t infinite distance from the island, z ~  JcA. So the corresponding 
expression for £ is of the  same form as for the circular island, bu t in term s of A, 
n o t z. To obtain the corresponding expressions in term s of x  and у  we replace A 
by th a t solution of the quadratic equation,

A2+ (2/c)zA + 1 =  0, (2.25)

which tends to infinity as z -*■ oo. The expressions for the  currents follow from the 
formula,

( * -  » )  =  Я  « * + / ) ^ У . (2.26)

From  this solution i t  can be shown th a t u, v and £ are in antiphase a t diametrically 
opposite points on the  island, and  th a t currents of near-inertial frequency are 
associated with a surface elevation which travels anticlockwise round the ellipse, 
as for th e  circle.

Similar transform ations may be devised to cope w ith islands of more com
plicated shape. For more than  one island (the ‘archipelago problem ’), extended 
techniques are available from potential theory. B u t in  such a case variations of 
depth  between the islands are likely to prove im portant also.

As suggested earlier (1969a), i t  is possible to  understand the energy in the 
frequency-band centred on 0-73c.p.d. a t Oahu as the local m anifestation of 
near-inertial currents on a wider scale surrounding the island. The observed 
phase difference of about 130° between Mokuoloe and Honolulu (Mokuoloe 
leading) can be interpreted as due to  the tendency of the surface elevation to  
progress round the island in the  clockwise direction. Although the angle sub
tended a t the centre of the island by Mokuoloe and Honolulu is only about 40°, 
the difference m ay be explained by the tendency of some energy to be guided 
round  the elongated ridge on which Oahu stands.
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I t  should be stressed th a t motions of near-inertial frequency are no t necessarily 
uniform currents, as is often supposed. The inertial frequency is the  lim iting 
frequency for m any other types of motion, including in ternal waves and  m otions 
trapped  by topography and /?-effect. The possibility th a t th ey  are internal waves 
cannot yefc be dismissed. An interesting experim ental program  awaits those who 
wish to investigate the m atter further.

3. M ass-transport currents
L et u denote any time-periodic velocity field such th a t to the first order in 

the  am plitude the mean velocity й vanishes. I f  the (second-order) mean velocity 
of a  m arked particle (the Lagrangian mean velocity) be denoted by й^, and  the 
(second-order) mean velocity a t a fixed position (the Eulerian m ean velocity) 
be denoted by йя , then it  can be shown (see Longuet-Higgins 1953) th a t

U i = u E +  U, (3.1)

where U =  Juc& .Vu. (3.2)

The quantity U  has been called the Stokes velocity (Longuet-Higgins 19696) 
after G. G. Stokes, who first evaluated this term for surface waves on water.

When the motion is practically two-dimensional, as in the present application, 
the two components U, V of the Stokes velocity may be expressed in terms of 
a stream-function xjfs (cf. Longuet-Higgins 1953) as follows:

J7 =  —  (о 3̂U dy ’ dx'

where ijra — u j v d t  я  — ju d tv .  (3.4)

In the radial co-ordinates suited to the present problem, the corresponding 
expressions are л „ л .

и  ,  r r _  i a * .
r r 39 ’ **• r d r ’ (3 6 )

where \]fa ж uTj u edt m. —j u Td tu g. (3.6)

For the simple progressive motion given by (2.18) we have

'r - a ( 1 - £ ) 0 0 *’ <3-7>

where a star denotes the complex conjugate quantity . From  (3.5) it  follows th a t  
UT =  0, as we should expect from sym m etry, while

rT 2aB CO*
Ug =  --j f -----  . (3.8)r& acr '  '

Thus the Stokes velocity is altogether tangential and falls off like the inverse
fifth power of the radial distance r. A t the circumference of the  island (т =  a)
we have Tr

TJe =  2СС*1а<т. (3.9)
45-2
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To find either UL or u E we m ust employ the full dynamical equations for the 
mean motion. The motion is in effect two-dimensional and hence by analogy 
w ith surface waves on w ater (Longuet-Higgins 1963, §4), or otherwise, the dif
ferential equation for the stream  function yfrE of the Eulerian mean flow is

( ! “ VV2) V Y * =  °- (3.10)

Initially , if the motion is irrotational, we expect th a t i/rB = 0 everywhere, th a t 
is to  say —

f L = f .  = u jv d t ,  (3.11)

except near the  boundary of the  fluid. The subsequent development of the motion 
represents the diffusion of velocity outwards from the circumference of the island.

N ear the boundary r = a, we expect a boundary layer of the type described 
in Longuet-Higgins (1953, §7). I t  is shown there th a t if  the first-order normal 
and tangential velocities are given by qn and qs respectively then  just beyond the 
boundary layer there is a tangential velocity given by

5 t +  3 5(7*

(loc. cit. equation (189)), the co-ordinate s being measured tangentially to  the 
boundary. In  the present problem, we replace qs by ug and 5 by ав. Thus

5i +  3 dug rn 1 nl
U L- ^ ^ Ue~d6- (зл з)

F or the progressive wave described by (2.19) we find then

u L =  5 GG*lacr, (3.14)

which is to be compared to  the non-viscous value given by (3.9). In  other words, 
the  presence of a viscous boundary layer increases the velocity near the  boundary f  
in the ratio 5/2.

Is  a final steady state possiblel W riting 8jdt =  0 in (3.10) we find th a t \jrE 
has to  satisfy the biharmonic equation in two dimensions, and therefore

ip- =  jPr8logr +  <2r2+iJlo g r +  $ , (3.15)

where P, Q, S ,  S  are arb itrary  constants. I f  иж is to vanish a t infinity, P  and Q 
m ust both  be zero. The value of S is immaterial, and if  the boundary condition 
a t  r «■ a is to  be satisfied we m ust have

R  =  3 CC*!<r, (3.16)

t  These paradoxical effects have been well verified by  experiments in the case of water 
waves; see Russell & Osorio (1958); Allen & Gibson (1959). In  the case of progressive 
waves i t  has been found experimentally th a t equation (3.12) is valid also for turbulent 
flows. A theoretical justification, (based on th e  assumption th a t the eddy viscosity is some 
function of the distance from the boundary) is given in an appendix to  the paper by 
Russell & Osorio (1958).
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so that the transverse component uL of the Lagrangian m ean velocity is given

/2a 5 3a \ CC*
=  ( 7 г + т ) " - -  (3 1 7 >

ultimately by

acr

More generally, when the motion consists of tw o progressive waves travelling 
in opposite directions (see (2.17)) then substitution in (3.6) gives for th e  Stokes 
velocity

+t =  (CC* -  DD*) +  ̂  "  1 ) (C D * e ™ -C * D  e~™ ). (3.18)

1»
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FiGTmE 2. Graphs of the initial and final Lagrangian mean velocities round an ialajad 
of radius a, as a function of r/a .

When the amplitudes of the two waves are equal (CC* =  D D*), th e  first te rm  
vanishes, and taking the origin of в  and (, so th a t С and  D  are real and  equal, 
we have

= ^ _1) C2Sl
sin 26. (3.19)

This represents a kind of dipole motion.
Similarly, (3.13) gives in general for the velocity ju s t ou tside th e  boundary  

layer:

~ (C C * -D D * )  + ~ (C D * e iie-C * D e ~ 2ie). (3-20)o-ar av
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When, as before, С and D  ате real and equal,

3 C* . „
uL = — sm 26. (3.21)

acr ' '

The result is similar to the streaming firat found by Schlichting (1932) to 
occur in the presence of an oscillating cylinder. See also Batchelor (1967, ch. 5). 
The fluid enters the boundary layer a t 6 =  0° and 180° in the plane of oscillation 
and leaves it a t the interm ediate points 6 =  + 90°.

It will be noticed that we have neglected friction on the bottom and taken into 
account only the friction at the vertical sides of the island. This may be justified 
if  the vertical mixing is small compared to the horizontal mixing.

4 . Experim ental verification (i)
So long as the flow is practically two-dimensional and non-divergent, the 

mass transport currents depend only on the relative motion between the axis 
of the cylinder and the fluid at infinite distance. Hence these currents should 
be the same as if the fluid at infinity were stationary and the island were made to 
oscillate in a horizontal plane.

The la tte r arrangem ent is the  more convenient experimentally. Accordingly, 
the author constructed a mechanism (shown in figure 3(a), plate 1), whereby a 
cylindrical can of radius a =  3in. and length 9 in. could be made to  oscillate so 
th a t  its axis described a smaller vertical cylinder of radius 6 =  |  in. Throughout 
the  oscillation the orientation of the can remained fixed. This was achieved by 
fixing the can |  to  a rectangular frame pivoted on four joints, each of which was 
made to  oscillate in parallel by four gear wheels driven from a central vertical 
shaft. This vertical shaft was driven by a bevel gear a ttached to a horizontal 
shaft, which in  tu rn  could be operated either by hand or by attachm ent to an 
electric motor.

The whole apparatus was then supported on two angle pieces laid across the 
top of a circular tank of diameter 30 in., as in figure 3(6), plate 1. The tank was 
filled with water to within 1 in. of the top of the can. With a syringe, some dilute 
ink was injected into the water close to the surface of the can and near its centre. 
The can was then made to oscillate by turning the handle as shown, or with an 
electric motor. The time t required for the ink to make a complete circuit was 
measured with a stop-watch, and also the mean period T  of the first ten 
oscillations.

According to  § 3 above, the m agnitude |C| of the relative velocity between the 
fluid a t  infinity and the axis of the cylinder is equal to <rb. Hence the streaming 
velocity just outside the oscillatory boundary layer is equal to  5arbzja by (3.14). 
I t  follows th a t the tim e taken  for a m arked particle of fluid to complete a  circuit 
of the  cylinder, just outside the oscillatory boundary layer, is just equal to  
a a/562 periods of the oscillation. This result is independent no t only of the 
viscosity bu t also of the period of oscillation, within the range of the present 
approxim ations.

■f K indly supplied by m y wife.
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Corresponding to  the apparatus described above we have a/b = 6; hence the 
time required for a circuit is 6й-f-5, th a t is 7-2, periods.

This simple result in practice is slightly complicated by the following con
siderations:

(i) The radius of the outer cylinder is finite. This introduces errors of order 
a21 A 2 where A  is the radius of the outer cylinder.

(ii) The surface is free. This introduces errors of order <r2alg, where g denotes 
the acceleration of gravity.

(iii) The am plitude of the motion is finite. This introduces relative errors of 
order bja.

(iv) The thickness of the  oscillatory boundary layer, though small, is finite. 
This introduces errors of order S/a, where S — (vjcr)^.

(v) Outside the boundary layer the  m otion is not steady until a tim e of order 
(r — a)2/v after starting.

The presence of these errors, especially (iii), leads us to  expect discrepancies 
of the order of 10%  between the observations and the simple theory of §3.

Nevertheless, the  experim ent was tried. On starting  the motion from rest by 
running the motor so th a t  the m ean period T  of the first ten oscillations lay 
between 1-37 and 6-91 sec, it was found th a t the  tim e taken  for the first trace of 
dye to  orbit the  can lay always between 5-4 and 8 8 periods of oscillation w ith a 
mean of 7-3 periods (see table 1). The agreem ent was thus a t least as good as 
expected.

T t N Serial n u m b er
(вес) (sec)

S
’

•3-II o f observation
1-37 7-4 fi-4 3
1-81 12-3 6-8 2
2-58 2 0 6 7-9 1
3-52 24-2 6-9 4

4-65 Г37-8 8-1 6
\28-9 6-2 6

6-30 f 43-5 8-2 8
138-5 7-3 9

6 9 1 60-4 8-8 7

T a ble  1. T he observed nu m b er N  of cycles tak en  b y  a p a rtic le  to  m ake a  com plete c ircu it
o f th e  cy linder in  figure 3

5. Islands with sloping sides: free oscillations
So long as the sides of the island are vertical it  is impossible for free waves to 

be trapped  near the island unless the  horizontal dimensions of the ocean are a t  
least of order ^j{gh)lf (see Longuet-Higgins 1969a). This restricts the  practical 
possibility of wave trapping w ith vertical sides to  baroclinic motions.

The situation is quite different if the island is surrounded by a sloping shelf 
or ‘sk ir t’. Then trapping becomes reasonably possible, and a double infinity  
of free trapped  motions appears. A n example restricted to the case a  <^f has

i
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been studied by Mysak (1967). Rhines (1967,1969) has considereda more general 
case when the depth h(r) is assumed to be given by

j 0 (0 < r < a), I
h = ! .h 1(rja)a (a < r ^  b), | (5.1)

I h2 (b < r  < со) J

(see figure 4), a  being any positive constant.f  When a < 1 the sloping ‘skirt’ 
is concave upwards; when a  ■< 1 the skirt is conical; and when a  > l i t i s  convex. 
Continuity of h at r =  b requires that h2 — h^b jay .

(a)

yo) «=1
У ////////А

J ■ '

4 . hx

77777777

\c) * = ч
Ту////"/-

щ /W////////A '//////.

К

777Ш Ш  W / / / W
F io t x r e  4. Cross-seotion of the model island w ith a ‘sk ir t’ given by  (5.1) in three typical 

cases: (a) a  =  J, (b] a  =  1, (c) cc = 4.

Rhines (1969, pp. 196-198) has considered the scattering of a Rossby wave by 
an island of the above form. Here we shall assume a simple model in which /  
is constant, and we shall consider simply the response to  an oscillation whose 
form a t  infinity  is given by (2.4) or (2.5). We shall then proceed as in §3 to 
calculate the  corresponding mass transport velocities. Owing to  the possibility 
of resonant excitation of the free modes, the m ass-transport can be very greatly 
amplified.

Neglecting the dynamical effect of the horizontal convergence (which serves 
only to increase the hydrostatic pressure), we may assume the existence of a 
stream  function ф such th a t

(6.2)
1 d\[r 7 8 \[r

hUr~ r W ’ Ы > = -& г -
t  Rhines treated  especially the case a  =  i-  Phillips (1966) considered the motion in an 

annular region between two concentric cylinders, when a  =  2.
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From  the conservation of potential vorticity  it  follows th a t \[r has to  satisfy the 
differential equation,

* V . g v ^ ) - I . v ( i ) A V ^ - 0 ,  (5.3)

where f denotes the vector of m agnitude /  directed vertically. We now seek 
solutions to this equation in the  form,

ijr =  ijr(r) (5.4)

where я. is a positive integer. We are particularly interested in the case n  — 1. 
I t  follows th a t in the sloping region a < r < b ,ijf  m ust satisfy the ordinary dif
ferential equation,

Фр \-адф  n(« + a//<rU Q (55)
dr2 r dr r2

In  the constant-depth region r > b we use the  same equation bu t w ith «  set 
equal to  0. We have further to satisfy the boundary conditions th a t

ф -> 0 (r -*■ a),
d\jr 

' dr
xp ~  Crn (r->oo).J

ijr, continuous (r -> b), i (5.6)

The differential equation (5.5) is satisfied by taking

\jr =  P1(r/a)pi +  P2(r/a)3,s, (5.7)

where P1; P2 are arbitrary  constants and p lt p 2 are the roots (assumed different) 
of the quadratic equation,

p 2 — a.p + n(n+ oiflcr}= 0. (5.8)

Thus P i,P i = i v  + fi, (5.9)

where y? =  (wa +  7ia//cr +  a 2/4)i (5.10)

provided /? ф 0. The boundary condition a t r =  a is satisfied by taking

P1 =  - P 2 =  P ,
say. Then we have

ф =  2P(r/a)af2sinh[/?ln(r/a)] (a < r sg 6). (6-11)

When r  > b, the differential equation and the  boundary condition a t infinity are
satisfied by ^ _ .  , ,

J f  = Grn + Qr-n, (5.12)

where Q is a constant to be determined. Now to satisfy the boundary conditions 
a t  r =  6 we m ust have

(5.13)
2P(b/a)i“ sinhg =  Obn + Qb~n,
2P(6/a)i“ (/? cosh £ +  Ja  sinh £) =  nCbn — nQb~ 

where £ = /Sin (bja). (5-14)
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Thus the ratios of P , Q and С are given by the two equations

-P{6/a)4“ [(и+ ia )  sinh £ + /? nosh g] = nCbn, |  
P(b/a)4“ [(w -£ a )s in h £  —yScoshg] =  n Q b^-j (5.15)

The free modes are given by С  — О, P  Ф 0, and so

(%+ $a)sinh£+ £  cosh g/ln (6/a) =  0. (5.16)

Since In (Ь/a) > 0, there are no real roots £; bu t when fi and £ are imaginary, say 
ft — ifi' and  |  =  i£', (5.16) becomes

f ' c o t £ ' = - ( w  +  $a)ln(6/o). (5.17)

We see th a t for each value of n  there ia an infinite sequence of possible roots 
such th a t  — < £’m < + Each root corresponds to a 

possible free mode, and so to a resonant condition. Moreover, from (5.10) we
b я v p

« 2 +  m a / / < r + =  -/? '* , (6.18)
so th a t  necessarily e r //< 0, (5.19)

th a t  is to say the free waves m ust progress clockwise round the island in the 
northern  hemisphere ( /  > 0) and anticlockwise in the southern hemisphere. From
(5.18) we have also

a  an an /c
~ f ~  ъ? + \а? + Р  < я г +£а* ’ ^ ,20)

The term  on the right attains its maximum value 1 when n  — £a. Hence in all 
cases j a \f  | < 1, th a t is to say the frequency of the free modes is always less than 
the inertial frequency. I t  m ay be shown th a t the corresponding stream function 
ft, given by

j2 iP (r /a ) i“ sin[/?']n(r/a)] (a < r < b), )

(.Cr™, (6 < r < oo),/

has exactly m  zeros in the interval a < r < oo, as well as the zero a t r = a. Outside 
r = a, |^ | decreases monotonically and tends to 0 as r  -> oo. The corresponding 
circulation is in m  cells in the radial direction, 2n  cells in the  transverse direction.

The relative frequencies er//of the free modes are shown in figure 6 as functions 
of b/a, for some typical values of the  constant a.

We are now in a position to  calculate the  mass transport velocities in  both 
forced and free oscillations. From  (3.6) it  follows th a t the stream function \jrs 
for the Stokes velocity is given hy

* • — ? w f w d‘- <5-22>

From (5.4) this is (M3)

In  the  free oscillations, $  has in  general ( m - 1) m axim a and  ( m - 1) zeros in 
a < r < oo, so th a t \ф\2 has ( 2 m - 2) maxima. Hence the Stokes velocity dijrjdr 
changes sign (2m — 2) times in a < r < со.
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In  the forced oscillations, we can calculate the  Stokes velocity from (6.23). 
In  particular, a t the perimeter of the  island, where ̂  vanishes we have from (5.23)

U .=
dijr 

2cra dr
/3 and P  being given by (6.10) and (5.14). 

-1-0

2w/32P 2

b/a

F iqttre fi(o ,6). F o r  legend see p . 716.
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In the important case n  — 1, the total Stokes transport is given by the dif
ference between p\jrB at infinity and ijrs at r =  a. Since x[r3 vanishes at r =  a, and 
when r > b ,  ф-p* _  CC*r2 +  (CQ* +  C*Q) +  QQ*r~2, (5.25)

F ig u r e  6- G raphs o f the  non-dim ensional frequency  (c /f )  fo r some of th e  lower m odes, 
p lo tte d  as a  function  o f b/a. T he sym bol (m, n) deno tes th e  ra th  m ode w ith  azim uthal 
w ave-num ber n, (a) a  =  (6) a  =  1, (c) a  — 2, (d) a  — 4.
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it follows from (6.22) tha t, as r-*- oo,

f B^CC*!2<r. (5.26)

This quantity  has always the  same sign as cr.
The angular momentum of the Stokes flow, on the other hand, is given by

Ca dilra.m. =  2 np -— r^d/r. 
Ja 8r

(5.27)

°7/
F ig u r e  6 . R ela tive  m agnitude of th e  m ass-tran sp o rt velocity  n ea r th e  perim ete r o f th e  
island in  a  typ ical e ase : a  =  2, bja — 4, show ing th e  peaks a t  th e  re so n an t frequencies. 
The vertical scale on  th e  r ig h t (<r// >  0) is ten  tim es th a t  on  th e  left.

In  this expression ip-s may be replaced by (фа — where \Jrsâ  denotes the  lim it 
in (5.26). On integrating by parts, and using (5.22) and (5.24), we find

a.m. = - n± (O Q *  +  C*Q). (5.28)

This quan tity  m ay be either positive or negative, depending on the sign of Q. 
W hen the sides are vertical, we find from § 3 th a t Q =  — Ca2 and so

i . m .
2 npatCC* (5.29)

which has always the same sign as cr,
Consider now the Lagrangian m ass-transport velocity uL. This will depend on 

the viscous boundary conditions on the  bottom  and the vertical wall, and  in 
general also on the tim e since the motion was started . B u t, on the vertical wall of 
the island, the velocity just outside the oscillatory boundary layer is given simply
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by  (3.12), provided we now substitute q, =  ( — St/rjdr)r_a. Since if/ is given by (6.4), 
we have then

5 n
Ul  4 era

dxjr
dr

2 5nfi2P 2
(6.30)cras

As before, the effect of viscosity is to  m ultiply the m ass-transport velocity near 
the  perim eter of the island by the factor 5/2.

As an example let us take a  =  2, 6/a =  4 and n  =  1. Then figure 5(c) indicates 
th a t we m ust expect resonance when er// =  —0-396, —O'125 and —0-056, corre
sponding to the  three lowest modes, m, = 1, 2 and 3 respectively. In  figure 6 we 
show a graph of the non-dimensional quantity ,

(5.31)

This represents the relative magnification of the m ass-transport velocity near 
the perim eter r  =  a, compared to the mass transport in the  absence of a sur
rounding ‘sk ir t’. The amplification of the m ass-transport near resonance can 
be clearly seen. By contrast, the response of the island to waves progressing in 
the clockwise direction (crjf > 0) ia rem arkably small.

In  calculating the am plitude of the forced oscillations, we have of course 
neglected the dissipation of energy by viscosity and also the detuning of the 
oscillations due to  the slight dependence of the frequency on the amplitude. Both 
these effects will act to lim it the amplitude near resonance.

6. Experim ental verification (ii)
The following experiment provided a qualitative verification of the effects 

described in §5.
A circular tan k  of diameter 18in. and depth about 6 in. was fitted w ith a false 

wax bottom  in the form of a parabola, curved so as to be parallel to the free 
surface when ro tating  in equilibrium a t a speed of 0-25 c/s. Projecting from the 
bottom  of the tan k  were three islands. Two of these were circular cylinders with 
vertical sides and diameters l in . and Ц  in. respectively (see figure 7). The th ird  
island was fitted w ith a ‘s k ir t1 corresponding to the param eters л  =  2, b/a =  2. 
The tan k  was placed on a ro tating  tu rn tab le  and filled to  a depth of about 3 in. 
(so as to  cover the curved part of the skirted island). Aluminium powder was 
scattered on the surface to  facilitate viewing the surface velocities.

The tank was then  set in ro tation  a t a speed of 0-26 c/s, and the relative motions 
were viewed through a rotascope.

On reaching the spin-up velocity one m ight have expected a t first to  see no 
relative motion between the fluid and the ro tating  tank. On the contrary, small 
oscillations, having the same period as the  ro tation, were observed in  the main 
body of the fluid, due to  the  fact th a t the  axis of ro tation  was not perfectly 
aligned with the vertical. The ro tation  of th e  tank  being in  the positive (east
wards) sense, the effect was to  produce a component of gravity  ro tating  in the
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negative (westwards) sense relative to  the ro tating  tank. The frequency <r of the  
oscillation was thus given hv

< r / / = - i  (6Л )
since / i s  equal to twice the angular ra te  of rotation.

Close to  the islands, however, the most obvious feature of the motion was not 
the oscillatory motion so much as an intense d.c. component of flow directed 
anticlockwise round each island. The motion was more intense round th e  smaller 
of the two cylindrical islands. This is to be expected from (3.14), in  which th e  
mass transport velocity is inversely proportional to the radius a o f the island.

The most intense current, however, was observed near the th ird  island, the  
one with the skirt. A computation of the relative velocity (5.31) in the  case a  =  2, 
i / a  =  2 and a jf  =  — J shows tha t, for these values, the relative m agnification 
is given by

acruL
5 CC*

= 4-432. (6.2)

I t  was not possible to  measure the drift currents accurately in th is experim ent 
bu t the observations appeared to be consistent w ith the above ratio. F u rth e r  
experiments are a t present in progress.

7. Discussion
Equation (3.14) indicates th a t the order of m agnitude of the stream ing velocity 

is inversely proportional to the radius a of the island. I t  follows th a t the  smaller 
the island, the greater the streaming velocity, w ithin the present approxim a
tions. Hence a quite small island may be, as it  were, a useful probe for detecting 
oscillatory motions in the surrounding ocean.

I t  does not seem altogether fanciful to suggest th a t the drift velocities observed 
in the neighbourhood of Bermuda by Stommel (1954) m ay be partly  a ttrib u ted  
to  m ass-transport streaming associated w ith oscillations nearby. From  figure 1 
of Stommel’s paper i t  appears th a t the  particle tracks nearly  all circulate th a t 
island in the  clockwise sense, and w ith times comparable to  15 days, or abou t 
30 tidal cycles. I f  this is to be comparable w ith a2/562, where a is the  mean radius 
of the island of Berm uda we must have Ь/a ~  0-08, or, since a  ~  5 km, the ha lf 
tidal displacement b m ust be of order 0-4 km. This is n o t inconsistent w ith w hat is 
known of the tidal currents in  th a t area.

This investigation was begun a t Oregon S tate  University, Corvallis, under 
NSF G rant No. GA-1452 and completed a t  th e  National In s titu te  of Ocean
ography, England. The experim ents described in § fi were carried out w ith th e  
assistance of Steve Wilcox a t  Oregon S tate University, using a ro tating  tu rn 
table and rotascope constructed a t N .I.O . The experiments in §4 were first 
performed a t m y home in Cambridge, and subsequently a t Wormley. Jo h n  
Simpson held the stopwatch.
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<«)

F iquhe 3. (a] A m echanism  for oscillating a  cylinder of radius 3 in. so th a t  ita axis describes 
a smaller cylinder of radius & in. The orien tation  of the cylinder rem ains fixed.
(b) An experim ent to m easure the  Lagrangian d rift velocity  near to  the boundary  of 
an oscillating cylinder, using the  m echanism  of figure 3 (a).
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In  this paper we calculate the streaming induced by gravity waves passing over a 
thin fluid layer, one side of which is rigid while the other is a flexible, inextensible 
membrane. The problem is relevant to some recent laboratory experiments by Allison 
(1983) on the pumping action of water waves.

On the assumption tha t the flow is laminar and th a t the lateral displacement b of 
the membrane is small compared with the thickness A of the fluid layer, we calculate 
the velocity profile of the streaming U within the layer. This depends on the ratio 
A/S, where S is the thickness of the Stokes layers a t the upper and lower boundaries. 
When 0 < A/S < 6 the boundary layers interact strongly and the velocity profile is 
unimodal. At large values of A/S  the profile of U exhibits thin ‘je ts ’ near the 
boundaries.

The calculated drift velocities agree as regards order of magnitude with those 
observed. However, the pressure gradients observed were larger than those calculated, 
due possibly to turbulence, but probably also to finite-amplitude and end-effects.

The theory given here can be considered as an extension of the theory of peristaltic 
pumping to flows a t higher Reynolds number.

1. In tro d u c tio n
In a recent experiment to extract power from the mass transport in water waves, 

Allison (1983) laid a flexible bag, 6 m long and 0.5 m wide, on the floor of a wave 
basin, with the longer side in the direction of wave propagation. The two ends of the 
bag were connected externally by a rigid pipe. In the presence of gravity waves of 
0.8-2.5 s period it was found tha t mean circulation of fluid took place down-wave 
through the bag, returning via the pipe. I f  the pipe was constricted, a mean head 
of 1-2 cm of water was built up.

The aim of the present note is to analyse the fluid mechanics of this effect. We shall 
show th a t the pumping action is due very largely to viscosity, being similar to th a t 
occurring in organic tubes (Jaffrin & Shapiro 1971).

In  any oscillating flow, the importance of viscosity in inducing a steady streaming 
close to a rigid or flexible boundary has been known ever since Rayleigh (1884) 
analysed the currents induced by standing oscillations in air or water. On the other 
hand for progressive motions, the streaming tangential to a membrane or solid 
boundary was first evaluated by Longuet-Higgins (1953). His analysis showed th a t 
just outside the Stokes layer, of thickness S = (2v/<r) ,̂ where v is the kinematic 
viscosity and a  the radian frequency of oscillation, the tangential streaming velocity 
tended to the finite value

(1.1)4 с
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Here g denotes the amplitude of the first-order oscillatory velocity relative to the 
boundary, and с is the phase speed. Particularly interesting is the fact th a t the 
limiting value (1.1) is independent of v and so remains non-negligible even when the 
Stokes layer itself is quite thin. This forwards streaming or jet near the bottom had 
been first noticed in water waves by Bagnold (1947), and was later confirmed by 
Russell & Osorio (1956) and many others.

I t  is a forwards streaming of this type which we suggest controls the flow within 
the flexible bag in Allison's experiment. A preliminary analysis is given below in §2, 
assuming the flow to be laminar and the separation Д between upper and lower 
surfaces of the bag to be large compared with the thickness й of the Stokes layers. 
In §§3 and 4 we extend the analysis to the situation of turbulent flow, and to when 
A/8  is not necessarily large. The theory gives a reasonable agreement with Allison’s 
experiment. Further discussion follows in §§6 and 7.

2. A  lam inar m odel: S A
The situation is idealized as in figure 1(a). Homogeneous, incompressible fluid is 

contained between a rigid plane г = 0 and a flexible membrane at a mean distance 
A above the bottom. The vertical oscillations in the membrane are of amplitude b 
and travel to the right with speed c, so th a t the equation of the membrane is

z =  Л + 6 cos (for — cl), (2 .1)

where x and z are horizontal and vertical coordinates, к is the wavenumber, and 
cr/k — c. We shall assume a t first that

kA «  1, (2.2)

th a t is, the wavelength is long compared with the thickness of the fluid layer, and

(и) л

In I к

F ig u r e  I. (a) A two-dimensional model of the flexible bag. (6) A typical profile of the
streaming velocity U.

\
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a'8°  b/A 4  1, (2.3)

th a t ia, the vertical displacements are only a small fraction of the layer thickness; 
this la tter restriction will be modified later. The motion will be treated at first as 
two-dimensional and independent of the y-coordinate.

The vertical velocity w vanishes on the bottom and, when z — A, w is given by 
birsin (kx — crt) to first order in bk. Hence in general

z
w =  — bcr sin (kx — crt) (2.4)

A

everywhere outside the boundary-layers.
To begin with we shall assume

S =  (2v/<r)i «  \A, (2.5)

so th a t outside the boundary-layer the horizontal velocity is given by

her
u  =  - — c o s ( * i  — tri )  (2 .6 )

kA

to first order in bk. To this order the tangential velocity of the membrane is negligible, 
so th a t in (1.1) the amplitude q of the oscillatory velocity relative to the boundary

-s-s
at both upper and lower boundaries.

To evaluate the mean flow we note that, if there were no mean horizontal gradient
in the pressure, the streaming velocity would be uniform and equal to (1.1)
everywhere in the interior. In the presence of a mean pressure gradient w we have
to solve the equation 0J_ ш ^

y _ _  =  — + u - —bw —  (ii.e)
02* p 0Z OZ

(see Longuet-Higgins 1953), where й  is the time-mean velocity a t a fixed point. This 
is related to the streaming velocity V  by

U =  u + J Md < ^  + Jw d /g ^ , (2.9)

the last two terms representing the Stokes drift. In  view of (2.4) and (2.6), this reduces 
to

U = U+iq2/c. (210)

Since the second term on the right of (2.10) is independent of z, we have for U in 
the interior the same equation as for ffi, namely

Ё 1^=  ® (2.11) 
022 pV

with boundary conditions

U =  when 2 =  0, A (2.12)

(see figure 16). The use of =  signifies th a t the condition has actually to be satisfied 
just outside each boundary-layer, but since S A the difference is negligible. In
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addition, to second order in bk the boundary condition can be taken as satisfied a t 
the mean vertical position of the membrane, th a t ia a t z =  A and not on (2.1).

The solution to the problem (2.11), (2.12) is clearly

0 (213) 

In  other words, we add to the uniform velocity (1.1) a parabolic flow, symmetric about 
the central line, as in figure 1 (b).

Corresponding to (2.13), the total volume flux M  is given by

M - \ i *  - J L 5 *  (2.14)
4 с 12 pv

If w  vanishes, the mean velocity is simply

U ~ \ t  (2.15)
4 С

while, if the flow is blocked ao th a t M  vanishes, we induce a pressure head

[pj =  roL = 1 5 ^ £  (2.16)

where L  is the total length of the flexible tube. In general the power P  available per 
unit width of the tube ia p  _  ^  17)

From (2.14) this is a maximum when

¥2*7’ (218)
so the maximum available power ia given by

(*•>’ >

In all these expressions з!/с  may be replaced by {Ь/А)г с, where 2b is the overall 
vertical displacement of the membrane.

3. Com parison with observation
In  Allison’s experiment (1983, figure 6) the wave period T  =  2n/cr ranged from 0.8 

to 2.5 a, in water of constant depth A. =  30 cm. The wave height 2a was greatest a t  
about 5.5 cm for waves of period about 1.2 s.

The amplitude 6 of the vertical displacement of the membrane was however 
measured as 1.0 cm for waves of 1.1 a period. This compares with a notional amplitude

b"'-  =  0.27 cm (3.1)smh kh

of vertical fluid motion at a height A above the bottom, in the absence of the flexible 
bag. From Allison’s figure 2 we take A =  4.0 cm. Since b > b' it appears th a t the 
presence of the membrane does affect the waves above the bag, increasing their 
amplitude, possibly by wave refraction.

For the waves of period 1.1 в we have from the linear dispersion relation

khtnnhkh — (r*h/g =  1.00, (3.2)
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so

k h = i .  20 (3.3)

and the wavelength 2n/k  is about 1 m or three times the depth h. The phase speed 
с is 143 cm/s, and if we assume the ratio b/A  in (2.7) to be constant despite variations 
in A across the width of the bag, then q is constant a t 0.25c or about 36 cm/s. The 
mean-flow velocity (2.15) in the absence of an external pressure gradient would be 
11.2 cm/s, in apparently good agreement with the measured velocity 13 cm/s at this 
wave period; see Allison’s figure 8.

However two adjustments must be made. The cross-section ft of the external pipe, 
diameter d =  9 0 cm, a t the point of measured velocity, was

£2 = ind2 =  64 cm1 (3.4)

compared with the cross-section of the flexible bag, of width W = 50 cm. Assuming 
the upper surface of the bag to be parabolic, the cross-sectional area f t ' would be

f t ' = IWA =  133 cm!, (3.5)

so th a t the theoretical flow velocity should be multiplied by a factor f t '/ f t  = 2.1. On 
the other hand, the external resistance to the flow, both from the turbine and from 
a pipe of non-uniform cross-section, would tend to reduce the flow, so tha t the 
observed flow is not necessarily in disagreement with the simple theory.

Consider the dependence of the flow velocity upon the wave period T. The effects 
of refraction, etc. being difficult to assess, we shall assume roughly tha t the amplitude 
b of the vertical displacement of the bag varied simply in proportion to the theoretical 
displacement b'. Carrying through the same calculation as above for T  ™ 1.1 s, we 
arrive a t the numbers shown in table 1. The velocity

у  = (3.6)
Km“  ft 4 с 1 '

shown on the right of table 1 will be seen to behave qualitatively in a similar way 
to the measured velocity, with a maximum a t around T  = 1.2 a instead of 1.1 s.

Consider now the maximum pressure head [p] as given by (2.16). Clearly this 
depends critically on the thickness A of the fluid layer. Since in the experiment A 
was non-uniform over the width of the bag, being smaller near the two sides, (2.16) 
suggests there may have been some lateral circulation within the bag, in contrast with

T cr'A kh
(s) 9
0.8 1.886 1.962
0.9 1.490 1 613
1.0 1.207 1.373
1.1 0.998 1.198
1.2 0.838 1.064
1.3 0.714 0.960
1.4 0.616 0.875
1.5 0.S37 0.805
2.0 0.302 0.579
2.5 0.193 0.454

с 2a 9
(cm/s) (cm) (cm/s)

120 3.0 13
160 4.5 24
137 5.0 31
143 5.0 35
148 5.5 42
151 5.0 40
154 4.2 35
156 4.2 36
163 3.5 33
166 2.5 25

?!
с Vm &t [p]

(cm/s) (cm/s) (dyn/om r

1.3 3.4 21
3.2 8.3 53
6.9 17.9 113
8.9 23.5 143

11.8 30.6 194
10.6 27.5 174

8.0 20 8 132
8.4 17.7 138
6.8 20.8 112
3.7 9.6 61

T a b l e  1. Wave param eters in f ig u re  6  o f  Allison (1 9 8 3 )
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our two-dimensional model. To estimate the actual mean pressure gradient it is 
perhaps reasonable to replace A by its mean value %AB, where Aa =  4.0 cm, the value 
a t the centre of the cross-section. Then on taking v ■■ 0.013 cm2/s  we find for [p] the 
numerical values given in the right-hand column of table 1. Clearly these are less than  
the observed mean pressures in Allison's figure 8 by an order of magnitude.

Inspection of table 1 suggests one possible reason for the discrepancy, for the 
Reynolds numbers R  = qA /v (3.7)

are of order 103, implying th a t the flow within the flexible bag is possibly turbulent.
Now a formal extension of the theory of oscillatory boundary-layers to turbulent 

flow was given by Longuet-Higgins (1956), who showed th a t if the molecular viscosity 
v were replaced by a coefficient of kinematic viscosity N  which was a function only 
of the mean distance z of a particle from the boundary (N  being constant following 
a particle), then in a progressive wave motion, though the details of the boundary 
layer depended on the form of N(i), the limiting drift velocity U outside the layer 
was unaffected. That is to say (1.1) remained valid. Indeed, some such result was 
necessary to explain the observations by Russell & Osorio (1956).

In a turbulent flow the complete velocity profile (corresponding to (2.13) in the 
laminar conditions) must depend on the function N(z). The observational evidence, 
combined with equation (2.16), suggests tha t in order of magnitude Л7 should be about 
I O p . The result of increasing the effective viscosity by this am ount would be to 
multiply the thickness S of the boundary layer by a factor (N/v)b, or about 3. For 
waves of 1 s period, for instance, 8 would be increased from 0.064 cm to about 0.2 cm. 
As this is beginning to be comparable to the half-thickness of the layer within the 
bag, there may in fact be some interaction between the upper and lower boundary 
layers, leading to a reduction in the net mean flow. We investigate this effect in §4.

4. B oundary-layer in terac tions: $ /A =  0(1)
We now extend and generalize the analysis of §2 to a situation when the thickness 

of the boundary-layer is no longer small compared with the thickness of the fluid layer 
in the flexible bag. Thus we assume S/A  — 0(1), where S =  (2v/er)i. However, the
restrictions . .kA 1, Ъ/А <  1 (4.1)

will be retained. The first of these implies tha t the wavelength is long compared with 
the thickness A of the layer, so tha t b/bx <t 9/Sz in general. The second implies th a t 
the stream function may be expanded in the form

ф =  е^! + бг^2+  ■■■. (4-2)
where e is a small parameter of order b /A , and we may use the equations for the mass 
transport and mean flow developed by Longuet-Higgins (1953).

Thus for the first-order flow xjf̂  we have the differential equation

( ^ - ^ v2) v ¥ i  =  ° . (4-3)

in which V2 may be approximated by 32/Sz2. The boundary conditions are th a t

'J'iz =  0, i/rlz =  0 when z =  0, (4.4)

ei/flx = —w, \}rlz =  0 when z — zf, (4.5)
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where w denotes the vertical velocity imposed a t the upper membrane. For a 
progressive wave this is given by (2.4). Using complex notation, so \j/1 cc we

haVe 'I'uzi-v'l'izzzz =  0 (4-6)
— 0, i/rl2 =  0 when z = 0 ,  (4.7)

ijr1 =  cA e1№z_aJ1, ijru  — 0 when z =  A. (4.8) 

The solution of these equations is

— [Л (cosh <xz — 1) + B(sinha2 — аг)] el<tI-<rt), (4.9)

and A and В  are constants, satisfying

^4(cosha^ — l) + £ (s in h a^  — aA) =  cA, 

j4sinh aA +_B(coshazl — 1) = 0.

where

(4.11)

For the stream function ehjr2 of the mean motion at a fixed point in the fluid, we 
have from the momentum equations

'l 'iz 'l 'ix z~ 'l 'x x '! 'iz z  -------------i ' ( 4 1 2 )pt
ra is the mean horizontal pressure gradient, p is the density, and an overbar denotes 
the mean value with respect to time. The terms on the left represent the convected
momentum. ______

Since the motion is periodic in the a:-direction, the first term \Jrl t ^ 11г vanishes 
identically. In the second term, since the motion is progressive, we may replace 3/3x 
by — c_10/5i, and then use the property that if F and G are any two periodic quan
tities ___________

FtG+FGt =  0. (4.13)
Hence j j

f i x  f l i t  =  — f u ' l ' v z  =  - i ' l ' / ' l z z t -  (4.14)с с

On substituting for from (4.6) we obtain for the equation

ttzzz = - \ l / r  I 'k u z z z+ J ^ -  (4.15)

To obtain the mass-transport velocity we note th a t the stream function e*!P for 
the mass transport is related to by

¥  = f i + \
in general (see Longuet-Higgins 1953, equation (36)). The second group of terms on 
the right corresponds to the Stokes drift. For progressive motion, on replacing i/rlx 
by —c_1^ u  using (4.13) we have

J ifrlx = ~ i l l r i z d l  t/ru =  (4 17)
С с

P - * . + £ ( « > . ■  (4Л8>
so that (4.14) can be written
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From (4.15) and (4.18) we obtain for !P the equation

'f'ttt = l~c iW[)zzzz + ~ i  ■ (4-19)

This can be further simplified. For by Leibnitz’s theorem the first two terms on the 
right can be written

\  {fltlzzzz  + Ч\гФ\ги + 4 \ z z ) - \ f ^ z z z z  = ^ (Фуг^ггг+ f  j |s  (420)

B ut from (4.6) we have
!^izz = ' ' j f i z z z * ^ .  <4 -2 1 )

and so on integration with respect to z

l ^ z ^ j V i  .« d l +  Q, (4.22)

where С ia independent of z. In  fact 

Multiplying (4.22) by ^ 1ггг and averaging, we have

^U^lzzz =  <№««• (4 -24)
From (4.19), (4.20) and (4.24) we have altogether

г  (426)

To obtain the mass-transport velocity

U = e W z (4.26)

we now need only integrate (4.26) twice with respect to z, subject to the two boundary 
conditions [7 =  0 when z = 0  and z =  Л. (4.27)
Since ^rl2 vanishes on both boundaries, we have immediately

^  = ^(W iz  + i^iz) + ̂ ;z ( z - ^ ) .  (4.28)

The total volume flux M  is equal to  е![!Р]£, and so

м  = е- { т , ) г- Л+ \ (4.29)

In evaluating the time-averaged terms in (4.28) and (4.29) we may use the complex 
expressions (4.9) and (4.23) for i/rr and Q together with the rule

W  = i(FG* + F*0) =  $Re FG*. (4.30)

5. Discussion
Consider first the case when A ^  ft. Then from (4.10) we have \aA\ >  1. Neglecting 

quantities of order е~“^, we see from (4.11) th a t

А Ф - В = - ^ - - Ф ^ .  (5.1)
aA — 2 a
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F ig u re  2 The stream ing velocity U end the Euleriftn-meftn velocity U in the 
boundary-layer a t the bottom  when ш =  0 and A /S P 1.

Hence near the bottom, when az =  0(1), we find

=  ^ (e -“  +  a z - l ) e i<*I- ,rt). (5.2)

This is the stream function for a Stokes layer (see Lamb 1932, §347) in which aa az -*■ oo 
the horizontal velocity ei/rlz tends to (bc/A)ei(kx~at\  as in §2 above. Similarly near 
the upper surface, setting z =  A + z \  with ocz' =  0(1), we find, after approximating 
A and В  more closely, tha t

ф1 =  A(aA — 1 + a z '  — eaz”)ei(**-<,<), (5.3)

which represents a similar Stokes layer on the underside of the membrane (z' <  0), 
but with an imposed vertical velocity itrb e1**1-0'** as in §2.

I t  will be noticed th a t the two Stokes layers are nearly but not quite symmetrical 
with respect to the mean level, the strength of the bottom layer being greater than 
th a t a t the upper membrane by a factor |1 — 2/ocJ|-1, with a slight phase difference 
of order 8 /A.

The mass-transport velocity U in the lower layer is easily calculated from (4.28) 
together with (5.2). When w  =  0 we obtain

C/ =  | ! ^ 5 - 8 e - z',,c o s^ + 3 e -2ẑ l (5.4)

where q =  be/A, the amplitude of the first-order horizontal oscillatory velocity just 
outside the boundary layer. A t this point the streaming velocity is U — 5q*/4c just 
as in (1.1). The velocity profile within the layer is shown in figure 2, plotted against 
z / A .W e  show also the profile ofw =  e2ijrtz , the mean velocity a t a fixed point. As will be 
seen, this tends to a different value, namely 3<72/4c, and is quite distinct from U.
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P io u b e  3. The streaming velocity U and the Eulerian-m ean velocity и as 
functions of 2 j  Л , when ш — 0 and A/& << 1 .

The streaming in the upper boundary-layer, which we get from (4.26) and (5.3), 
is entirly similar to  (5.4), being given by reflecting (5.4) in the mean level z =  \A.

Thus we have shown that, in the case when A 5, there is no significant interaction 
between the boundary-layers, and the mean flow is as described in §2.

In the opposite case when A -4 8, the first-order solution (4.9) reduces to

so
* -  8 g £ ( l - 0 e 1“ * - rt>,

where £ =  z/A  and from (4.28)

t f = ^ [ e ( l - £ )  +  10£*(l-£)2] - i — Ш _£).
С pv

This represents a quartic velocity profile (see figure 3) with a total transport

3 аг A 1 tdA%M  =  -2 ----- — ------.
2 c 12 pv

If  the flow is blocked so that M  =  0, the resulting pressure-gradient rnmax is given

® m a * = 1 8 ^ .  (5.9)

(5.5)

(5.6)

(5.7)

(5.8)

For general values of the ratio A /8  it is clear tha t the profile of the mass-transport 
velocity has the form

U -Н4Уto  A1
2 pv Cd-O. (5 .10)

\
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F ig u r e  4. Profiles o f the  stream ing  velocity  U  when w  =  0 an d  A /S  =  I , 4, 6, 8, 16 and  со.

where q is the typical horizontal velocity be/A (cf. (2.7)). If. we define a Reynolds 
number R  by

, 5 .1 1 ,
V V

then A /S  is related to R  by
A IcAR*
I “ (26fcji‘ ( 5

In figure 4 we have plotted the function Ф for a number of different values of A /S. 
The transition from the profile (5.7) a t low values of A/S  to the double boundary-layer 
profile (5-4) a t high values of A /S  can be clearly seen. Between A/S = 1 and 6 the 
velocity profile is unimodal. Between A/S — 6 and 8 the curvature at the central level 
г /A =  0.5 changes sign and the profile becomes bimodal. As A/S  increases further, the 
velocity maxima move apart towards the boundaries and new, less pronounced, 
oscillations develop near the centre. Finally as A/S^-co  the profile tends to the 
limiting form indicated by the straight lines. This is the limiting form used in §2.

I t  can be seen that even when A/S  is as low as 4 there is a strong interaction between 
the two boundary layers. Remarkably, however, little change in the profile takes place 
when A /S < \ .  Indeed the profile for A /S  =  1 is practically indistinguishable from the 
limiting form (5.8) corresponding to A/S  =  0.

In figure 4 we ha ve plotted only the profiles corresponding to zero pressure gradient, 
■m =  0. For general values of tn one has only to add a parabolic velocity profile, as 
in (4.28).

The profiles for V  are all symmetric about the mean level, in spite of the asymmetry 
in the first-order velocity The boundary conditions (4.7) and (4.8) for i/rt are 
indeed asymmetric, but could be made symmetric by the addition of a small 
transverse (vertical) velocity — |6<r e1**1-0^ , independent of z. This would not affect 
the mechanics of the drift velocity V  a t lowest order in e and kA. Hence, provided 
th a t the amplitude b of the vertical displacement is small compared with the thickness
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I 10 100
Щ

Fiqube 5. The integral I, giving the total mass flux in the fluid layer a t 
zero p гада lire-gradient (see (5.13)).

A, and also tha t A is small compared with the wavelength, the mass transport velocity 
must be symmetric.

From equation (5.10) the total volume flux M  can be expressed in the form

(5.13)
с \ 8 /  12 pv 

where ^
I =  \ tf>d£. (5-14)

J .
In  figure 5 we have plotted 1 as a function of A/S. Evidently 1 is almost a constant, 
lying always between the two limiting values 1.5 and 1.25.

From (5.13) the maximum pressure gradient штвх is given by

штах- 1 2 ^ / ,  (5.15)

or, if we express g in terms of the vertical displacement b a t the upper boundary 
(? = be/A), then

* W = 1 2  (5.16)

This shows that, given the measured parameters b, с and A, the pressure gradient 
depends primarily upon v, a t least for small values of b/A. Thus the replacement of 
the laminar coefficient v by an effective eddy coefficient ve might account for the 
observed pressure difference [p].

6. Effects of finite amplitude
When b/A is no longer small, the formulae of §5 must be modified. A general

solution will not be attempted here, bu t we note tha t in the extreme case b =  A , when
the whole layer is occluded by the perturbation, then q — be/A =  c. Since the fluid
is carried along with mean velocity с and the mean thickness of the layer is still equal
to A , the transport M  is ,

M = c A = 9— . (61)
с

In other words (5.13), with m = 0, remains valid if we substitute I  =  1.00. This 
represents a change of lees than 50% from the value for b/A 4  1.
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On the other hand the pressure gradient m must be more drastically affected by 
the finite amplitude. For in the constricted portions of the channel, where the fluid 
flow tends to be reversed, not only is the strength of the oscillating component of 
the current greater (at zero mean flux) owing to conservation of mass, but also the 
pressure gradient is more than proportionately increased. In the limiting case b =  A 
it is clear th a t ттлх must tend to infinity. Hence (5.15) and (5.16) must be serious 
underestimates, even at some values of b/A less than 1.

7. End-effects
We have so far neglected any effects due to the two ends of the bag. But if, for 

example, the flow in the pipe is blocked, the condition of zero net flow at the down-wave 
end may result in a reflected, damped elastic wave, which will tend to increase the 
amplitude px of the pressure fluctuation there; in fact p, may be about double the 
corresponding amplitude far from the ends, i.e.

Pi ~  2p^asechifcA, (7.1)

and similarly for the fluctuation р г a t the other end. The pressure difference 
between the two ends will be a t most

Pi +Рг ~  ^PQa gech kh (7.2)
when the phases are opposite. This estimate agrees quite well with the relation 
between the peak-to-peak pressure P  and the wave height H  in figure 6 of Allison 
(1982). At the same time, the observed irregularities in the curve for P  may be 
accounted for by phase differences between the two ends of the bag. The effect of 
the two ends on the second-order mean-pressure difference is, however, more difficult 
to estimate.

8. Conclusions
We have calculated the mean-drift velocities induced by water waves progressing 

over a thin flexible bag laid on the bed of a wave tank. The induced velocities are 
similar to those measured by Allison, but the calculated pressure gradients are smaller 
than those observed.

Among the assumptions in our calculation are th a t the flow was laminar, and tha t 
the amplitude of the vertical displacement b of the bag was small compared with the 
thickness A of the contained layer of fluid. P art of the discrepancy may be due to 
turbulence in the fluid. Although turbulence can be partly represented by an eddy 
viscosity N(i), it is no longer true, in the presence of interaction between the boundary 
layers, tha t the streaming is independent of N.

A more probable cause for the discrepancies is the finite value of b/A. This ratio 
was assumed constant over the surface of the bag. But any values much greater than 
the assumed value of 0.27 would certainly have the effect of increasing the pressure 
gradient, without drastically altering the total mean flow.

For small displacements, the general method of calculation given in §4 above 
(which was developed previously for water waves) provides a very convenient 
framework for problems of this kind. In  interpreting the theoretical solutions it is 
essential to distinguish between the Eulerian- and Lagrangian-mean velocities, a 
distinction not always observed in previous studies of peristaltic flow. An example 
is given in the Appendix.
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Appendix. On the time-average velocity й
As pointed out in §§2 and 4, the time-average ffi of the velocity a t a fixed point 

differs essentially from the particle drift velocity U. In fact from (4.16) we have in 
general

= C 7 -i(^ ,^ 1„  + ̂ ;i). (A 2)

In figure 6 we have plotted й for comparison with U in dimensionless form when 
/4 /5=  \ / l i .  As will be seen, not only is й  quite different from U, bu t it is also 
asymmetrical. Whereas U must vanish on both upper and lower boundary, и  need 
vanish only on the lower boundary z =  0.

The point is relevant to some previous discussions of peristaltic flow, for example 
Fung & Yih (1968) and Jaffrin & Shapiro (1971). Thus Fung & Yih studied the 
two-dimensional flow induced by small oscillations of the two boundaries of a thin 
fluid layer. Their analysis is directly comparable with ours, with a Reynolds num ber 
R' equivalent to our (A /  д)г /  kA . In numerical examples they took \lcAR' equal to 0.1, 
0.4 and 7.0. However, their discussion is solely in terms of the second-order mean 
velocity m, not the drift velocity U. The appropriate condition for a reflux, or reverse 
flow, is surely not 5 <  0 but rather U <  0. Moreover, with a moving boundary the 
total flux M  cannot be obtained by integrating й  up to  the mean boundary; additional 
second-order terms are involved. Lastly, in Fung & Yih’s paper it is not clear th a t 
the correct boundary condition U — 0 has been employed.

The correct solution to Fung & Yih’s problem can in fact be w ritten down 
immediately from the analysis of §4 above. Moving the origin 0  to the central level
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z — \A by writing z — z —\A we have for the first-order motion \j/\ the boundary
conditions , ,  , . _____ .. ,

ijr1 =  %cA ei<kx~tr<>l \jrlz -  0 when z -  \A ,
(A 3)

= - ^ e i< ^ « ,  f u  = Q when z '= - \ A ,

where e =  b/A  and the amplitude of the vertical displacement at each membrane 
equsls \b. The required solution is

,, c lz '  cosh (kcA}~sinhaz' cA ...
ib .  = -------------------- ~ = ------- -----------------------------------M k z -< r l)  4 1

fazA cosh (%aA) — sinh [%xA) 2 ........

This compares with the first-order solution ij/l of (4.9), which can be expressed simply

Фi = -+№  ei{lcx~at). (A 5)

Clearly х!г\г = 4г\г and in (4.21) Q‘ =  Q. Therefore by (4.26) the mass-transport 
velocity V' is given by U' = U (A 6)

and so is described by the curves in figures 4—6.
The corresponding Eulerian-mean velocity U‘ can be found from the relation

*  =  ^ i« + ? u ) . (A 7)
which in view of (A 5) reduces to

и' = и + {егА e11*1 at) (A 8)

Numerical evaluation of this expression yields the curve for# ' in figure 6, which agrees 
closely with figure 3(c) of Fung & Yih (1968).

The fact th a t the Eulerian-mean velocities й  and S' in the two problems are quite 
different, while the Lagrangian-mean velocities U and U' are equal confirms tha t the 
latter have a greater physical significance.

The author is indebted to Dr H. Allison for stimulating correspondence and to Drs 
T. J . Pedley and S. J . Hogan for comments.

R E F E R E N C E S

A l l i s o n ,  H. 1983 Streaming of fluid under a near-bottom  membrane far utilization of sea-wave 
energy. J. Fluid Mech. 137, 385-392.

B a g nold , R. A 1947 S and m ovem ent by w aves: some sm all-scale experim ents w ith sand o f very 
low density . J. Inst. Civ. Engrs Lond. 27, 447-469.

B a b t o n ,  C. & R a y n o r ,  S. 1968 P erista ltic  flow in tubes. Bull Math. Biophys 30, 663-683
F u n g , Y . C. & Y i h , C. S. 1968 Peristaltic transport. Trans. ASM E  E : J. Appl. Mech. 35, 669-675.
J a f f r in , M. Y. & Sh a p ir o , A. H. 1971 Peristaltic pumping. Ann. Rev. Fluid Mech. 3, 13-36.
L a m b , H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
L o n g u et-H ig g in s , M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 

535-581.
L o n g u e t -H ig g in s , M. S. 1956 The mechanics of the boundary-layer near the bottom  in a 

progressive wave. In Proc. 6th lu ll Conf. on Coastal Engng, C. 10, pp. 184—193.
R a y l e i g h ,  L o r d  1884 On the circulation of air observed in  K undt's tubes, and on some a l lie d  

acoustical problems. Phil. Trans. R. Soc. Lond. 175, 1—21.
R u s s e l l ,  R, С. H  & O so rio , J .  D. C. 1956 An experim ental investigation  of d r if t profiles in a 

closed channel. In Proc. 6th Inti Conf. on Coastal Engng, C. 10, pp. 171-183.



197

Introductory Notes for Part D 
D. Stochastic Processes

Papers D I to D28

The first paper D l o f this series was written at the Scripps Institution o f  
Oceanography in La Jolla, in 1952. Subsequent papers are more abstract and 
therefore more generally applicable, but all are written with the analysis o f  the 
sea surface in mind.

Papers D2 to D4 are about the statistical properties o f  a function o f a single 
random variable. Papers D5 to D7 extend these ideas to a function o f  three 
variables —  two o f  space and one o f  time. Most o f  the quantities analyzed are 
essentially local, involving a function or its derivatives at one point, but D8 is the 
start o f  a series o f  studies o f  the intervals between zeros o f  a gaussian function, 
an easily measured property much used by oceanographers and others. This 
series o f  studies is continued in papers D16 and D17.

Papers D9 to D14 are about optical properties o f  gaussian surfaces, 
particularly the reflection o f  light from the sea surface; they were motivated by 
observations o f  the twinkling o f sunlight, made while the author was vacationing 
on Beach Island off the coast o f  Maine.

Papers D I8 and D19 were written in response to a colleague (H Chamock) 
who remarked that the sea surface “looked different when viewed upside-down”. 
Thus in wind-waves, the wave crests are generally sharper and more pointed than 
the wave troughs. These two papers extend the statistics o f  a gaussian (linear) 
model o f  the sea surface so as to include “weak” nonlinearities (but not strong 
nonlinearities such as wave breaking). A further paper D21 concentrates on the 
effects o f  weak nonlinearity on the distribution o f wave heights in a sea state 
having a narrow frequency spectrum (c .f paper C l)  and also some effects o f  a 
finite band-width. Paper D22, which discusses effects o f  capillarity and viscosity, 
is included in this series.

Paper D27, with MA Srokosz, applies the basic nonlinear theory o f D l 8 to a 
practical problem which is o f  special importance for the accurate measurement o f  
sea-surface elevation by orbiting satellites. (Such measurements are used for the 
calculation o f  ocean currents).

For many engineering purposes it is useful to know not merely the distribution 
o f  heights and the “periods” (defined as the time intervals between successive 
crests or crossings for the mean level) but also their joint distribution. This 
problem is solved approximately in paper D20, and to a higher approximation 
in D23.
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Papers D25 and D26 (but especially D25) contain a thorough discussion o f  the 
meaning o f  a wave “group” and its statistical properties. The dynamics o f  wave  
groups are discussed in a later paper (Paper LI 9).

Lastly, paper D28 discusses the statistical effect o f  side-walls on the w aves in 
a wind-wave channel, an effect often overlooked in laboratory experiments.
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Reprinted with perm ission from
SEA RS FOUNDATION: JOU R N A L OF M ARrNE RESEARCH 
Vol. XI, No. 3, D ecem ber 3 1, 1952. Pp. 254-266.

ON THE STATISTICAL DISTRIBUTION OF THE 
HEIGHTS OF SEA WAVES

B y

M. S. LONGUET-HIGGINS
Trinity College, Cambridge1

ABSTRACT
The statistical distribution of wave-heights is derived theoretically on the assump

tions (a) that the wave spectrum contains a single narrow band of frequencies, and 
(b) that the wave energy is being received from a large number of different sources 
whose phases are random. Theoretical relations are found between the root-mean- 
square wave-height, the mean height of the highest one-third (or highest one-tenth) 
waves and the most probable height of the largest wave in a given interval of time. 
There is close agreement with observation.

1. INTRODUCTION
A t p resen t several different q u an titie s  are in  use for describing the  

s ta te  of the  sea: for exam ple, th e  m ean heigh t of th e  waves, th e  
roo t-m ean-square  height, th e  height of the  “ significant” w aves (defined 
by  Sverd rup  and  M unk  [1947] as th e  m ean  height of the  h ighest one- 
th ird  of all th e  w aves), th e  m axim um  heigh t over a given in te rval of 
tim e, and  so on. T he purpose of th e  following is to  investigate  the  
rela tionsh ip  of these q uan tities  to  one ano ther in  some special cases, 
a n d  especially in th e  case w hen th e  spectrum  of th e  w aves consists of 
a single narrow  frequency-band.

1 The author is indebted to the Commonwealth Fund, New York, for a Fellowship 
to enable bim to study at the Scripps Institution of Oceanography, where this paper 
was prepared.
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For definiteness let us consider the elevation f  of the sea surface at a 
fixed point, given as a function of the time t only. Much of the 
following, however, will apply to any oscillatory function of a single 
variable: for example, to the pressure at a point on the bottom, or to 
the rolling motion of a ship as measured by its angular deflection from 
the vertical. In general we shall denote by a the amplitude of 
which may be defined as half the distance in level between a wave 
crest and the preceding trough; thus 2a equals the wave-height. The 
period, or interval between successive crests, will be denoted by r, 
or 2r/a, where a/2ir is the frequency. I  denotes any interval of the 
/-axis, of length T, in which the variable f is under consideration; it is 
supposed that T >  >  r, i. e., the interval contains a large number of 
complete periods. The successive values of a in the interval I  may

£(t)

be denoted by Oi, a2 . . . an. If these are arranged in descending 
order of magnitude, the mean value of the first pN  of these, where p 
is a fraction between 0 and 1, will be denoted by o (p). Thus the 
amplitude of Sverdrup and Munk’s "significant waves” is a (l). The 
mean amplitude of all of the waves is a(1). It is clear that a lv) is a 
decreasing, or at any rate a nonincreasing, function of p; and if 
amu is the maximum value of a in the interval, we have

Amu >  a (*° >  a (1) . (1 )

The root-mean-square amplitude a is defined by

a*= — (ai* +  as2 +  . . .  +  a*a) . (2)
N

It may easily be shown that

Д >  a™ . (3)
Since й is of physical significance in a wide class of cases, o (p) will 
normally be expressed in terms of a. The mode is defined as the moat 
frequently occurring wave amplitude and will be denoted by p(a).
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Example 1. Simple sine-wave. Suppose

f =  do cos at ; (4)
then we have a simple sine-wave of period 2v/a and amplitude Oq 
(see Fig. 1). All the waves are of amplitude Oo, and therefore

am.« = a'”1 — a — ц(а) =  . (5)

4 * 4(t)

Figure 2. Combination of two sine-waves of slightly different frequency.

Example 2. Two sine-waves. Consider the sum of two sine-waves of 
equal amplitude but of very slightly differing period:

f  = Oq cos ait +  Oo cos ant, (6)
say, where | <ri — <rj | <  <  1 ai +  a3 | . We may wnte

<T\ +  aj ai — at
f =  2ae cos -----------1 cos----------- t , (7)

2 2
"4*showing that the resultant consists of a earner wave cos — -  t,

whose period is nearly the same as that of the two component waves,

modulated by an envelope function 2а« cos ■ ■■ ^—  t, whose period,
by hypothesis, ia comparatively long (see Fig. 2). The maxima and 
minima of f  occur nearly on the envelope and so are nearly equal 
in magnitude to the magnitude of the envelope function. In the 
limit they are distributed at even intervals along the i-axis. Taking 
the interval 0 <  t <  r /(a i -  a2) as typical, and supposing it con
tains N  waves, we see that the highest p N  waves will be contained 
in the interval 0 <  I <  рт/(<п — a,). The mean amplitude a <*> of 
these is given by

VT  /•P t/U j—*j) C\ —
------------fl<p) =  j  2aD cos ---------- I d t , (8)
ffi — ffi J  2

2 рж 
а (,) — 2a0 ■ —  sin —  . (9)

pit 2

and hence
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The root-mean-square wave-height is given by

a i  — <r*■*~J

/ 't/I»]-*,)
4ao2 cos*

<T\
t dt

and hence 

Thus

In particular

d* =  2 a o , a — л/2 ao .

2 . pir 
— д /2  • — sin — . 

p r  2

20 y / 2  tаало)/о = ------- Sin _  = 1.408
v 20

6 y/2 v
а (1)/а = ------- sin — =  1.350

x  6
2 д/2 xао)/д = ------- gjn — = 0.901

т 2
a lp)/d is plotted against p in Fig. 3. We have also

flB U  =  2ao J dmiz/A — V 2  .

( 1 0 )

(11)

( 12)

(13)

(14)

The statistical distribution of the wave amplitudes is evidently the 
same as that of the envelope function, which ia that of the simple 
cosine curve

r =  2ao cos в . (15)

See Fig. 4. The probability that a point in the interval 0 <  в <  т/2 
lies in any given region of width dd is 2\dB\/r. Hence the probability 
P(r)\dr\ that the function (15) lies between r  and r +  dr is given by

P(r) I dr | =  — | Я  | .
Thus, when 0 <  r <  2a,

P(r) = -
de

dr
1

2 a o s in 0 (4aos -  t*)‘

(16)

(17)

Clearly a can never exceed 2ao or \ /2й. Hence the probability- 
distribution P(r) of the wave-height a is given by

P(r) =
1

(r <  V2fi)
*  (2a* -  )» ’

0 ,  (r >  V2a)
(18)



205

1952] Longuet-Higgins: The Heights of Sea Waves 249

P
Figure 3. G raph of aW/d as a  function of p. for two sine-wavea of slightly different 

frequency.

Figure 4. The curve u -  2<u cos в.
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г/а
Figure 5. Frequency distribution of the w ave am plitude for tw o sine-waves of slightly 

different frequency.

The function aP  is plotted against r/d in Fig. 5- It will be seen that P  
increases steadily with r and tends to infinity as r tends to a. 
We have therefore

n(a) — \ /2a  — ara„  . (19)

The foregoing examples, however, are very special cases which are 
unlikely to occur in practice. In the following we shall be concerned 
with a more realistic case, namely when the spectrum of the waves is 
narrow and the disturbance is made up of a number of random con
tributions. Such a case was considered by Rayleigh (1880) in con
nection with the amplitude of sound derived from many independent 
sources, and the theoretical distribution of maxima has been used in 
acoustics and in the theory of filters (for example, see Rice, 1944-5; 
Eckart, 1950). Indeed, Barber (1950) has already presented evidence 
that for waves there is rough agreement with this distribution. We 
shall consider rather carefully the application of this distribution to 
sea waves, find the theoretical values of aiv)jd and the distribution of 
Лтм/а, and compare the results with observation.
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2. A NARROW WAVE-BAND
Let the wave elevation f  in any interval I  be expressed as a Fourier 

integral:

- r
A(a) e**‘ da , (20)

where the spectrum function A(<r) may be complex and where it is 
understood that only the real part of the right-hand side is to be taken. 
Suppose that the spectrum consists of a single narrow frequency-band 
of wavelength 2ir/<ra , say, so that A (a )  is appreciable only for values 
of a near era ■ We may write

A{<r) d<r. (21)

In this expression e*'»1 represents a carrier wave of wavelength 2ir/oo , 
and the integral

B(t) = y  A{<x) e*'— ' 1 do (22)
—<30

is a slowly varying function which represents the envelope of the 
waves (see Fig. 6). As in Example 2 above, the maxima and minima

Figure 6. A disturbance f(l) having a narrow frequency band, and its  envelope |BU)I-

of f  are spaced nearly evenly along the <-axis and are approximately 
equal to the value of |B| at these points. It follows that the prob- 
ability-distribution of the wave amplitudes is the same as the prob- 
ability-distribution of |5 | , which we shall therefore consider.

Now the wave-energy received at any point on the coast will have 
originated in many different places over a wide area. We may imagine 
that the generating area of the waves is divided into a large number of 
different regions, each of which will contribute to the wave-height f  
and to the envelope function B. If each region of the generating area 
is sufficiently large compared with a wavelength, it may be assumed 
that the phases of the contributions from different regions are inde-
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pendent of one another. Then it is reasonable to assume that В  is 
the sum of a very large number of small components of random phase. 
The probability-distribution of such a sum, which is known as the 
“random walk,” was found by Rayleigh (1880) and has since been 
studied by many workers (for references, see Bartels, 1935). If the 
component vectors are bj, b2, . . . . b u , i- e., if

В =  bi +  bi +  . . . . +  b u , (23)

r/a
Figure 7. The "random  walk” frequency distribution.

then the mean square value of [B|, taken over all relative phases of the 
component vectors, is given by

#  = +  |b,|« + ------- + \ b M\ \  (24)

and, under certain general restrictions on the size of the component 
vectors (see Khintchine, 1933) the probability that |Б| lie between г 
and r +  dr is given by

P(r)dr =  e-*1». 2r /3 ! dr . (25)

Since the probability-distribution of |S] equals that of the a’s, we have
В = a , (26)

a quantity that can be estimated from observation; no detailed 
knowledge of the component vectors is required. Thus the probability- 
distribution of the a’s is given by

P(r) dr = e-"i*. 2г/а* dr =  -  de-”* ' . (27)

\
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The function
dP(r) =  e-*'**. 2 r/d (28)

is shown in Fig. 7 (cf. Fig. 5). It will be seen that P(r) ia zero when 
r =  0, that it increases to a maximum, and then falls away rapidly 
for large values of r/d. The total area under the curve is, of course, 
unity. The maximum value occurs when r/d = 1/л/2, so that the 
mode fi(a) is given by

The chance <p(r) that a should exceed a certain value r is given by

To find a (p), we note, first, that the proportion -p of a’s which exceed 
a certain value r is equal to <p(r), so that from (30)

The mean value a (p) of those a’s that are greater than r is given by

from (27) and (30). After integrating the right-hand side by parts,

(29)

(30)
r

(31)

(32)
r

or
(33)

r

we have
(34)

Г

and hence
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where H  (в) is the probability function:

[XI, 3

(37)

Numerical values of а 1г>)/й are given in Table I for some representative 
values of p. In particular, the mean a(lJ is given by

■y/ir
a (i )/й -----------  =  0 . 8 8 6  

2
(38)

TABLE I. R e p b e s e n t a t i v e  V a l u e s  o f  e W /d  i n  t h e  C a s e  o f  a  N a r r o w  
W a v e  S p e c t h u m

P а ^ /й P аМ /й
0.01 2.359 0 .4 1.347
0.05 1.986 0 .5 1.256
0.1 1.800 0 .6 1.176
0 .2 1.591 0 .7 1.102
0.25 1.517 0 .8 1.031
0 .3 1.454 0.9 0.961
0.3333 1.416 1.0 0.886

The second moment of the distribution about the origin being a2, by 
definition, we have for the second moment about the mean:

[d(a)]2 = a1 — a 0)2 - ( - t )
Thus the standard deviation d(a) is given by

\*6(a) I a -  ( l  -  J )  -  0.453

(39)

(40)

a ^ /a  is shown as a function of p in Fig. 8, which may be compared 
with Fig. 3. An asymptotic formula for a ^ / a  when p approaches 
zero is found by further integration by parts in equation (35):

a<»/4 =  (log I)' +  j ( b e  I)" - 1 ■ |  (log  1)“
+

1 3 5 /  1 \ h

T ' l l K ) .................  (41)

Thus, in Fig. 8, as p tends to 0, a ^ j a  tends to infinity logarithmically. 
However, for the validity of this Tesult it is essential that the fraction 
of the sample containing the highest pN  wave amplitudes a shall not 
be too small; otherwise the present approximation will not hold.
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P
Figure  8. G rap h  of a(r)/a a s  a  function  of p. fo r the  narrow  frequency  band .

Suppose, for example, that we wish to find the expectancy of
the highest wave in an interval containing N  waves. An approximate 
answer might be obtained by setting p =  1/N  and finding а{1/лЛ 
But this answer will not be exactly correct; for a(l,N) in fact represents 
the mean height of the 1/JVth highest waves in a large sample, say a 
sample of size m N  obtained by collecting together m samples, each 
containing N  wave amplitudes. The m  highest waves may not be 
distributed evenly, one in each of the samples; and if not, the mean of 
the highest waves, one from each group, will clearly be less than the 
mean of the m highest from all m N  wave amplitudes together. Hence 
we see that the expected value of am*x must be somewhat less than 
a< i/w ).

Of course the ratios a ^ /d  found above refer to the total statistical 
“population” of wave amplitudes, or at least to a sample of theoreti-
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cally infinite size selected at random from this population. In practice 
we have to consider samples of finite size N . For each ratio such as 
a Cp)/a, theoretically there will be a corresponding probability-distribu- 
tion depending on N. The expectancy value and the moat probable 
value of a ^ j a  and of a ^ / a W  (where p\ and p 2 are two different 
values of p) will differ slightly from the corresponding (exactly defined) 
values for the whole population. But when N  and pN  are large, 
these differences can be expected to be very small, and in the present 
discussion they will be neglected.

On the other hand, the expectancy of am„, the maximum wave 
amplitude in a sample, depends fundamentally on the size of the sample.

One further point may be mentioned here. Strictly the analysis 
is valid only if the sampling of the wave amplitudes is random. In 
fact the sample consists of N  consecutive wave amplitudes; since the 
envelope function varies slowly, there must be some correlation be
tween members of the sample, especially when the spectrum is narrow. 
This may affect slightly the probability-distribution of, say, a (p)/<*; 
but provided the record contains more than one or two wave groups, 
the effect of the “grouping” can be expected to be very small. Fluc
tuation of the envelope function may even act as a "randomising” 
process and may lead to observed ratios in closer agreement with the 
theoretical ratios than expected. At all events, the effect of “group
ing” will be ignored in the present paper.

3. THE MAXIMUM WAVE AMPLITUDE
The probability-distribution of amkx may be derived as follows: 

The chance that any particular one of the a’s in the sample should be 
less than r, say, is

J  P(r) dr = 1 -  v (r) , (42)

where ip is given by equation (30). The chance that every a in the 
sample shall be less than r is therefore (1 — ip)N; and the chance that 
at least one a shall exceed г is 1 — (1 — <p)N. The chance that the 
maximum a shall lie in the interval (r, r +  dr) is the chance that at 
least one a shall exceed r, minus the chance that at least one a shall 
exceed r +  dr, that is,

(43)
or

N (  1 -  <p)N~l P  dr , (44)
since
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Thus the probability-distribution of On,»* ia

N(1 -  v )1*-1 P  . (46)
The expectation Е(атлх) of the maximum is given by

s* 00
Е(атях) = -  J  rd [1 -  (1 -  * )» ]. (47)

0

On integrating by parta and asauming

r [ l  -  (1 -* )*]-■ >  0 (48)
when r —» <*> , we have

/
00

[1 _  (i _  p)* ]d r. (49)

0

On substitution from (30) we have

E(am„)/a  =  J * [  1 -  (1 -  e-'!*)»] dr/й (50)

= j  J * [ l  -  (1 -  e"»)*J в -Ш . (50a)

For small or moderately large values of N, the above integral can be 
evaluated by a direct expansion, using the binomial theorem; thus

®(Опи)/й =

\ I "  2  1}'  e_M +  * '  * Г 4 6  » (5 1 )2
Q

and since

we have

J ^ e r *  Q-*d6 -  n-1 ^ ^  ^ , (52)

N ( N - D  1 ,  W+1 1 I  (щлл
Е(Отьх) й ------ } ----------------- ---------- +  . . • ( —) + ~~T7 • (53)

2  Ц / 1  1 - 2  V 2  y / N -1

Table II gives the exact values of the integral for N  =  1, 2, 5, 10 and 
20. However, we are chiefly interested in values of N  of the order of 
50 or more, for which the binomial coefficients in (53) become so large 
that computation by means of that expression becomes impracticable.
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An asymptotic expression for large values of N  may be found as 
follows: write

1
flo =  log N  ] е~*> =  — ; в =  Oo +  в ' , (54)

N
say, then

)  Ф e - - 1 ,(1 (55)

F ig u re  9. G rap h  of th e  fu n c tio n  /(«) -  (1 — е~в)н  w hen  N  is large .

with errors of order l/N . Thus we see that the first function in the 
integrand of (43), i. e.,

m  =  1 -  (1 -  e-*Y, (56)
has a rather sudden drop from 1 to 0 in the neighborhood of во (see 
Fig. 9). We have, therefore,

1 /•♦.
j  — — J 0—i fig _j_ д  (57)

2 J с
=  flo* +  R ,

where R  is a remainder of order fl0H at most; in fact

R =  J  « . - [ - / e - - * 'd d '  +  y * (  1 -  e - ‘- * ' ) d e 'J  +  Й ' 

-<Й 0 

1 Г  da r l da  1
~ ~ 2  ° I  J  + J  0 - e - ) - ] + B '

=  Y tr t  Oo-* +  Й ', (58)

where Й' is of order flo-1 at most and у  is Euler’s constant ( — 
0.5772,2; see Whittaker and Watson, 1950: 236). Thus

fi(ttm*x) I й =  (log N)* +  — 7 (log N)~* +  0 (log N)~* ♦ (59)
ш
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N (log N ) »

1 0.000
2 0.833
5 1.269

10 1.517
20 1.731
50 1.978

100 2.146
200 2.302
500 2.493

1,000 2 .628
2,000 2 .757
5,000 2 .918

10,000 3.035
20,000 3 .147
50,000 3.289

100,000 3.393
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TA B L E  I I .  V a l u e s  o f  E (amai)/<5 a n d  ^(а^о^/Л  f o r  D i f f e r e n t  V a l u e s  o f  N ,
f o r  л  N a r r o w  S p e c t r u m

----------- E (amax)/a -----------
exact asymptotic я(«т<м)/<1

expression expression

0.886   0 .707
1.146 --------- 1 .030
1.462 --------- 1 .366
1.676 1.708 1.583
1.870 1.898 1.778
-------- --------------- 2 .124 2 .010
-------- --------------- 2 .280 2.172
-------- --------------- 2 .426  2.323
-------- ----------------2 .609 2.509
-------- --------------- 2 .738  2 .642
-------- ----------------2 .862 2.769
-------- ----------------3 .017  2.929
-------- --------------- 3 .130  3 .044
-------- ----------------3 .239 3.155
-------- ----------------3 .377  3 .296
-------- ----------------3.478 3.400

The above equation may be compared with equation (41) for a ip)jd 
when p =  1 jN . We see that Е(атах) differs from a (lW) in the second 
term of the asymptotic expansion. Since — 0.28861, we have 
Е(атлх) <  a (,/A,J as expected. For large N, however, E(amts) still 
increases like (log iV)* and therefore tends to infinity with the length 
of the interval, though very slowly. Values of the asymptotic ex
pression for -E(am»x)/d are given in Table II for values of N  ranging 
from 10 to 100,000. It will be seen that in this range E(am„)jd  
increases only from about 1.7 to about 3.5. The asymptotic expres
sion may be compared with the exact expression for N  = 10 and 20. 
The differences in the two cases are 0.032 and 0.028 respectively, or 
about 2%. For N  > 5 0  the error in the asymptotic expression is 
almost certainly less than 0.03; for large values of N  the error may be 
expected to diminish proportionally to (log JV)-J .

The “most probable” value of which we shall denote by ju(om„), 
is given simply by the maximum value of the probability-distribution 
(46), i. e., the maximum of

N (l -  е-'Ч**)*-' е~'Чa* ■ 2rjd . (6 0 )
Writing

w e see  t h a t  w e m u s t  h a v e  
d

в -  rVd5, (61)

- 0 , (62)
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“ d hen“  1 (N  -
1  _  1 +  - --------- --------- 0 (63)
2 $  1 -  tr*

or

or

Ne~* =  1 ------ { 1 -  er*) (64)
2 « V  )

в =  log N  -  log £ l -  ~  (1 -  e~*) J (65)

= log N  +  0 ^ (66)

when N  is large. Thus

в = log N  +  0 (log N ) ' 1 , (67)
and the moat probable value of amtx is given by

м(<1т*х)/<2 — 0* =  (log N )t  +  OQog iV)_ i . (68)

Thus there ia no term in (log N )~*. Starting with the approximate 
value (log N)*, one may find closer approximations to ц(атя1)1й by 
applying Newton’s method of successive approximation (see, for 
example, Whittaker and Robinson, 1932:84) in equation (65). Values 
of Ufan«x)/<I so found are given in the last column of Table II.

The chance that shall not exceed (log N )* by more than a given 
amount may be found similarly. We have seen that the probability- 
distribution of dnu is given by

A  ( i  _  fl)tf .  £  ( i  _  е - и м у  . (69)
dr dr

If we define ro by the equations

* = 0o = log N  ; e~r ',3} =  — , (70)
N

we have

* ( ‘ --------- — )  (7,)

approximately. The probability that a will be less than r is therefore
g_ « - / I . , (72)

and the probability that a will be greater than r is

1 -  e- « - . (73)
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4. DISCUSSION
The chief assumptions used in the derivation of the theoretical dis

tribution P(r) in sections 2 and 3 are: (a) that the frequency spectrum 
consist of a single narrow frequency band; and (b) that the waves be 
considered as the sum of a large number of contributions, all of about 
the same frequency, and of random phase. Let us consider under 
what conditions these assumptions should be satisfied.

In the first place, the analysis will not apply to regular trains of 
waves produced by a simple organized mechanism: for example, the 
waves generated by a paddle in a model wave tank, or the transverse 
waves produced by a ship; or the wave-height distribution resulting 
from the interference of two wave trains of the same amplitude but of 
slightly differing wavelength, as in Example 2 (p. 247). In the open 
sea such examples constitute very special and most unlikely cases.

The present analysis is meant to apply to wind-generated waves. 
Since the dimensions of a storm area are large compared with the 
wavelengths we are considering, it is fairly, safe to suppose that the 
phases of contributions from different parts of the storm area are ran
dom. However, the range of frequencies may not be narrow; if 
there are two distinct sources of wave-energy, for example a distant 
storm and local winds, there may well be two distinct frequency-bands 
in the spectrum. The most satisfactory conditions would be repre
sented by a single storm at a great distance (compared with the 
dimensions of the storm); for, in the course of propagation, different 
frequencies in the spectrum, being propagated with different velocities, 
will become spread out in space, and over a short interval of time only 
a narrow range will be present. It must be assumed that the time of 
recording is not too long, so that in this time the frequency and ampli
tude of the waves do not change significantly. On the other hand the 
time must be long enough to ensure that the sample of wave-heights is 
sufficiently representative; this requires that at least several “groups” 
of waves be included in the record.

The method of recording may affect the apparent frequency spec
trum of the waves. For example, if the waves are recorded by meas
urement of pressure on the bottom, as is now usual, the high fre
quencies, which are attenuated rapidly with depth, will be damped out 
relative to the lower frequencies, and the corresponding frequency 
spectrum will therefore be narrower. Hence the present analysis may 
apply more closely to a record of pressure on the bottom than to the 
actual surface elevation. In fact, the free surface, if viewed very 
closely, will usually show a large number of short steep waves, which 
may constitute maxima and minima of the wave elevation but which
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are not normally of interest to us; for example, they would not affect 
the rolling or heaving motion of a ship. Strictly speaking, we should 
consider only that modification of the spectrum which is relevant to 
the purpose in hand. A ship itself acts as a resonant filter, which 
will amplify those components in the spectrum which are close to its 
natural period. The present analysis, therefore, might very well be 
applied to the angular deflection of a ship’s mast from the vertical; 
from an analysis of the rolling motion over a few minutes, one could 
easily compute the maximum roll that is likely to be encountered 
during, say, the next hour, assuming that the sea conditions remained 
constant; for, in the notation in Sections 2 and 3, one could estimate 
й with fair accuracy from observation over the shorter interval and 
hence find Е(атлх) or 1л(атлх) over the proposed longer interval.

However, an important restriction should be mentioned here. One 
of the conditions implied in assumption (b) above is that the contri
butions from different parts of the generating area should be super- 
posable; that is, the mechanical system we are dealing with should be 
linear. This assumption can be shown to be valid for low waves in 
deep water; but clearly it will not hold for waves approaching the 
maximum height. For this reason the analysis could not be applied 
to surf or to waves in the open sea which are nearly at their maximum 
height. Nor could it be applied to the rolling motion of a ship when 
this is large enough for nonlinear terms to become important or when 
the rolling is so great that the ship may capsize.

With these restrictions in mind let us compare some previous 
observations with the theoretical results of Sections 2 and 3.

5. COMPARISON WITH OBSERVATION 
Munk (1944),2 in an analysis of wave records taken at the Scripps 

Institution, California, compared the mean height Я (3/10) of the highest 
30% of the waves with the mean height Н 0) of all of the waves. He 
found

Я»/»> 0.49
--------- = ------- = 1.53 .
Я«> 0.32

The theoretical value from Table I is given by
a <s/io) a cs/io) ia i  454
------- -------------  = -------  = 1.64 .

a (1) an)jd 0.886
Seiwell (1948) found that in two different localities in the Atlantic 

(off Cuttyhunk Island and off Bermuda) the ratio of to was
1 See also Snodgrass (1951) where these and other unpublished observations are 

Bummarized.

I
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1.57. Putz (1950) studied 25 wave records from five different locali
ties; the mean values of the ratios ali)/aa) can be found from table 1 of 
his paper. They are respectively 1.59 (Oceanside, 4 records); 1.66 
(Point Sur, 15 records); 1.66 (Hecata Head, 2 records); 1.55 (Guam,
3 records) and 1.54 (Point Arguello, 1 record). The mean of Putz’s 
observations, weighted according to the number of records considered, 
is 1.63. The theoretical value, from Table I of this paper, is given by

<z<‘> 1.416
----  = -------  = 1.60 ,

0.886

which is in fairly close agreement.
Wiegel (1949) has studied wave records from three different locali

ties off the Pacific Coast of the United States. He found, in the three 
cases, that

a ( l / 10)

------- = 1.27, 1.30, 1.30 (mean value 1.29) .
a Cl)

The individual estimates showed little scatter. Wiegel remarks, 
“Even more surprising was the fact that almost every point waa 
within plus or minus ten per cent of this value (1.29).” The theoretical 
value, from Table I, is given by

a<‘> 1.800
----  ---------- =  1.27,
a<” 1.416

which again is in quite close agreement.
Wiegel also compared the maximum wave from three 20—minute 

records each day with the mean height of the highest one-third waves. 
His ohserved values were equivalent to

Я ( а » .« )
-----------=  1.85, 1.91, 1.85 (mean value 1.87) .

a C*)

Assuming a mean wave period of 12 seconds, we have
60 minutes

N  -------------------- - 300 ,
12 seconds

for which we find from the asymptotic formula (59):
E  (dmil)
— ----- -  =  2.504 .

d
Thus, theoretically,

jE(amax) 2.504  

a«> ”  1.416
=  1.77 .
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A possible explanation of the observed value of B(am«x)/fl(̂  being 
greater than the theoretical value is as follows. Suppose that during 
the day the state of the sea, as represented by the r. m. s. wave ampli
tude d, underwent a change. If, during one of the three 20-minute 
records, the r. m. s. wave amplitude is much larger than, say twice, 
that in the other two, then the maximum wave amplitude will almost 
certainly be found in that record, and the expected value of the maxi
mum will not be much less than twice the expected value if the wave 
characteristics had not changed; for Е{а^л̂ )1а is not much different 
for a 20-minute interval than for a 60-minute interval. On the other 
hand, a (1) will be multiplied by approximately 4/3. Therefore 
^(Оии)/!S will be increased by about 2 -S- 4/3 or by 3/2. The same 
tendency is true in general.

Derbyshire (1953) has shown that in a 20-minute wave record the 
maximum wave-height is about twice the “equivalent wave-height,” 
which is defined by him as the height of the uniform train of waves 
which would have the same total energy as the actual waves. On our 
present assumption that the spectrum of the waves contains only a 
single narrow band, the equivalent wave-height equals the root-mean- 
square wave height d; for, each wave in the record is approximately 
a sine-wave of the same length, and the energy per wavelength is 
proportional to a,2. It may be more appropriate, in this case, to 
consider the most probable value p(Om«) of the highest wave rather 
than the expectancy #(Om.x). For a mean wave period of 12 seconds 
we should have

20 minutes 
N  = ---------------  =  100 ,

12 seconds
and so from Table II

1х(От~)1й =  2.17.
However, we see from Table II that E(am„) is only slightly greater. 
For longer wave periods, N, and therefore /i(Om«)/d, would be slightly 
less; the rather slow change in with N  would account for the
success of the empirical rule irrespective of the period of the waves.

In examples quoted above, the discrepancy between theory and 
observation is in all cases less than 8%, and in some cases it is smaller 
still. In view of the somewhat strict assumptions made in deriving 
the theoretical probability-distribution, this agreement is surprisingly 
close; and it may indicate that the probability-distribution does not 
depend very critically upon the narrowness of the wave apectrum. 
For most practical purposes the theoretical values of an<̂
E{a^ ЛХ )/d can be used with confidence; thua, if one of the quantitiea 
d, o(1), a(*>, a (1/I(1) or E(am„) is known, the others may be estimated 
immediately.
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The present discussion suggests that waves much higher than the 
average are likely to be extremely rare, for a given state of the sea. 
Table II shows that even in a time interval containing 100,000 waves, 
which for 10-second wavea would be about 11^  days, the most prob
able value of the highest wave is less than 33^ times the root-mean- 
square value; of course it is unlikely that the waves would remain 
statistically constant throughout this interval. Equation (73) also 
shows that there is an extremely small chance that the most probable 
value of am„  will be greatly exceeded. The general conclusion then 
appears that changes in the strength of the wind or other generating 
forces are more important in producing variability in the wave ampli
tude than is the statistical variation of the waves at any one time.
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The statistical distribution of the maxima 
of a random function
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This paper studies the  statistical distribution of the m axim um  values of a  random function 
which is the sum of an  infinite num ber of sine waves in random  phase. The results are 
applied to sea waves and to  the pitching and rolling m otion of a ship.

I n t r o d u c t io n

Let f i t )  denote a continuous, random function of the time t, representing, for 
example, the height of the sea surface above a fixed point. It is interesting to inquire 
into the statistical distribution of the heights of the maxima  of f(t).

There are two distinct problems. On the one hand we may consider the total wave 
height 2a, being defined as the difference in level between a crest (maximum) and 
the preceding trough (minimum). The statistical distribution of a is difficult to 
determine in the general case, but when f(t) has a narrow frequency spectrum it may 
be shown that a is distributed according to a Rayleigh distribution

2CL
P(a) =  —  m 0

where m 0 is the root-mean-square value of/(() (see Rayleigh 188o). This distribution 
has been compared with the observed distribution of the heights of sea waves and it 
has been shown that many theoretical relations, for example the ratios o f the mean 
wave height to the mean of the highest one-third waves or to the mean of the 
highest of N  consecutive waves, are in close agreement with observation (Longuet- 
Higgins 1952). Application of the ^2-test to some histograms of wave heights has 
also indicated, apparently, no significant departure from the Rayleigh distribution 
(Watters 1953). It is certain, however, that for functions f ( t)  having a broad 
frequency spectrum, the theoretical distribution of a must be different from the 
Rayleigh distribution.

Alternatively, we may consider the difference in height £ between a crest and the 
mean level of the function f(t).  Although in practice £ may be less convenient to 
measure than a  (since the appropriate mean value is sometimes difficult to deter
mine) the theoretical distribution of £ is easier to obtain, and has been found for 
a wide class of random functions by Rice (1944 , 1945) in connexion with the analysis 
of electrical noise signals. Rice’s solution, which is only one out of many results in 
a long paper, has not been fully discussed, and it is the purpose of the present paper 
to examine the solution and to calculate some of the statistical parameters associated 
with it. We shall also apply the results to ocean waves and to the motion of ships 
at sea.

[ 212 ]
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In  § 1 we outline briefly R ice’s derivation of the  sta tistica l d is trib u tio n  o f th e  
m axim a f . The discussion shows th a t  the d istribu tion  depends, surprisingly , on only 
two param eters: th e  root-m ean-square value of /(f), which we denote b y  m$, and  
a  param eter e which, as we show in § 2, represents the relative w id th  of th e  frequency 
spectrum  of/(£)- W hen e is small, th e  d istribu tion  of £ tends to  a R ayleigh  d is
tribu tion , aa we should expect, and when e approaches its m axim um  value 1 the 
d istribution  of £ tends to  a Gaussian distribution .

One of the m ain  differences between th e  two variables £ and  a is th a t  £ m ay  ta k e  
negative values (since some m axim a m ay lie below the  m ean level) w hereas a  is 
always positive. The proportion r  of m axim a th a t  are negative can be read ily  
determ ined in  practice, and  in  § 3 we show th a t  th is  proportion depends only  upon  e. 
Hence if r is m easured, e can be estim ated.

In  §§ 4—6 we calculate the  mom ents of the d istribu tion , the m ean values o f  th e  
highest 1/nth of all th e  crest heights and the  expectation  of th e  h ighest in  a sam ple 
of N  crest heights, and we show how these quantities depend upon 6.

The distribution  of crest heights, as m easured from  records of ocean w ave 
phenom ena, is com pared w ith  the  theoretical d istribu tion  in  §7. N o significant 
difference is found. On the other hand, the orest-to-trough heights, exam ined in  § 8, 
are found to  depart significantly from  the Rayleigh distribution .

1 . The d i s t r i b u t i o n  o e  м а т о м а  

The random function f(t)  is represented as the sum of an infinite number of 

sine-waveB /(i)  =  2 Cncos(<rnt +  e„), (1-1)
n

where the frequencies <rn are d istribu ted  densely in  th e  in terval (0, oo), th e  phases 
en are random  and d istributed  uniform ly between 0 and 2я, and the  am plitudes cn 
are such th a t  in  any small in terval of frequency dtr

<r+d«r
2  К  =  ^(0-)dcr, (1-2)

where ®(<r) is a continuous function of cr whioh will be called the energy spectrum  
of f( t)  .The to ta l energy per un it length of record is

m0 =  J  E(cr)dcr. (1-3)

More generally we ehall find i t  convenient to  write

= j" E(ar)&*&cr (1-4)

for the  n th  m om ent of E(<r) about the origin.
To find th e  distribution of m axim a o if( t)  we note th a t, if  f( t)  has a  m axim um  in  

the  in terval (t, t + df), then  in th is in te rv a l/ '( t)  m ust take values in a  range o f w id th  
l / ' ( 0  I d( very nearly; and the probability  of this occurrence, and o f/s im u ltaneously  
lying in  the  range (£v  £x +  d ^ ) ,  is

[P (f..0 ,& )d £1|g 1 |d l] d 6 i (1-5)
j :
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where р(£и i 2, £3) is the jo in t p robability  d istribution of

(£»£»£ , )=* ( /./ '* /" )•  (L-8)
T he mean frequency of m axim a in the range f ,  < / < £ x Ч- d ^  is therefore

F(£i) d f i  =  J °  ̂  [*(&, 0, £3) I I d f J  d£3, (1-7)

and  the probability  distribution  of m axim a is found by dividing this distribution 
by th e  to ta l mean frequency of m axim a, which is

tfi-Г Г (1-8)
J  —00 J  — CO

Now from  (1 -6) we have

£1 = /(< ) =  Е с п соа(сгв ( +  еп),
П

£2= / ' ( , ) =  - S c „ o r n sia((7-n< + en), (1.9)

£s = / * (0  =  - 2 c„<^cos(c7-n<+en).
I»

£11 £21 S3 are therefore each the sum of an infinite num ber of variables of zero 
expectation  and  random  phase. Therefore, by the central lim it theorem  in th ree 
dimensions, th e  jo in t p robability  d istribution of (£j, £2, £3) is norm al (under general 
conditions assum ed to  be satisfied by the am plitudes cn; see Rice 1944, 1945)- The 
m atrix  of correlations or sta tistica l averages is seen to  be

( mo 0 - m , \

0 m 2 0 j .  ( M 0 )

- т г 0 m j
Hence

3) =  7 7 7 . 77— л exp { -  £[^/m2 + (m4£f + 2m, + m0I'D/A]},
(2 я)* (Дта2)*

( M l)
where Д =  m0m 4 —rraj. (М 2)

S ubstitu ting  in (1-7) we have

т о - , ,  a f°  < » р { - * { « * а + я « .& ь + " .а ) / А } |Ы « % -  ( ы з )(2тг)* (Am2)iJ  -во 

On evaluating  the integral and writing

i i!m \ = 7), Д * /я , =  5 (1-14)
we obtain

^ ( | 1) =  - ^ - ^ т е - ^ , [е -Ь > « Ч (? /(У )Г  e-**dasl. (1-15)
(2яг)я яг0т $  J - 1/* J

T he last integral can be expressed in  term s of th e  known function

erf г  =  ( ^ j j e ^ ’ d*. (М в )
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The p robab ility  d istribu tion  of tj ia m* tim es the  distribution of

P(V) = ™$P(!’1) = v4 F (£ 1)IN1. (1-17)

F rom  (1-8) we find jVj =  t (1-18)

and  so finally

P(7) = ^ ^ ^ e-il,' /fi'' +  (1 ~ e 2)i ^ e_ i,!J ,U e-te1 da:j, (1-19)

where e2 =  _ i ! _  =  =
1 + <5* m am 4 m Qm t

The function f( t)  is sta tistica lly  sym m etrical about the mean level t =  0. For, in 
equation  (1-1) each phase angle en m ight he increased or diminished by n  w ithout 
affecting th e  random  character of the phases; and this would merely reverse the 
sign o if( t) .  I t  follows th a t  the  sta tistica l d istribution of the minima is simply the 
reflexion of (1-20) in  the m ean level T) =  0.

2. D iscussion

In  equation (1-19) 7} denotes the ratio  of the surface height to  the r.m .s. height 
m$. W e see th a t  the  d istribution  of 7] depends only on the single param eter 6. A simple 
in te rp re ta tion  of e is as follows. From  (112) we have

А — т 0т 4—т 1 = f  Г E(crl )E(cri ) (<т\ — <7? сг|) da-1dcrt . (2-1)
J о jo

On interchanging а 1 and <т2, and  adding, we have

2Д =  Г f  E(<r1)E(cri ) (crj — cr|)2dcr1d(Ta. (2-2)
Jo  Jo

Since E(a) is essentially positive, it follows th a t  Д ^  0 and so

0 < e <  1. (2-3)

F or a very  narrow  spectrum , w ith the energy grouped around a  =  crB, say, E(<r1) and 
E(<t2) are small except when crx and етг are bo th  near to  tr0; b u t then the  factor 
(<rf — 0-2)! щ  (2-2) is small and  so

e<gl. (2-4)

In  general e is a m easure of th e  r.m .s. w idth of the  energy spectrum  E.
Clearly e m ay tak e  values indefinitely near 0. F or a low-pass filter (E = Ea when 

cr < cr0, and E  =  0 when <r > <r0) we find

e =  I  (2-5)

e m ay also take values indefinitely near 1. For suppose a proportion та of the energy 
is a t  frequency <r =  crlt and  (1 — та) a t  cr =  tr2; we have

m 2 =  «г0{®(7= +  (1 -  та) ^

m i  J  m 0{wcri + ( l - w )  аЦ.}
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W hen (Tj/o-j-^oo we see th a t  m |/m 07»4-> 1 —от and  ao

е! н>-от, (2-7)

which oan be as near to  u n ity  as we please.
The first lim iting case (e->-0) gives th e  d istribu tion  for an  infinitely  narrow  

spectrum . From  equation (119) we have then

( 9 > 0 )Л , „ Rvp(7}) =  j V (2*8)
I  0 (T < 0 ) J

which is th e  Rayleigh distribution , or th e  d istribu tion  of th e  envelope of th e  waves 
(see Rice 1944 , 194.5 ; B arber 1950 ; Longuet-H iggins 1952).

The second lim iting case (e->-1) can occur, as we have shown, w hen one w ave of 
high frequency and sm all am plitude is superposed on another d istu rbance of lower 
frequency. The high-frequency w ave form s a 'r ip p le ’ on th e  rem aining waves, an d  
the  distribution of m axim a tends to  th e  d istribu tion  of th e  surface elevation  
(fi/^o ) itself. On le tting  e tend  to  1 in (1-19) we obtain

|M)

which, aa we should expect, is a  Gaussian distribution.
The d istribution  p(rj) has been p lo tted  in  figure 1 for e =  0-0, 0 2 , . . . ,  1-0. T he 

transition  from the Rayleigh d istribu tion  to  the  Gaussian d istribu tion  can be clearly 
seen.

3. T h e p h o p o b t i o k  o f  n e g a t i v e  m a x im a  

This m ay be found by  a simple geom etrical argum ent as follows. Suppose th a t  in  
a  certain  in terval of tim e, say (0 , t), there are zero up-crossings, a t  w h ich /p asse s  
from negative to  positive values, and similarly suppose th a t  there are zero down- 
crossings. Also le t there be n f  positive maxima, n f  negative m axim a, п£  positive 
m inim a and  щ  negative minima. Between a zero up-crossing an d  th e  n e x t zero 
down-crossing th e  function is always positive, and so the num ber of m axim a exceeds 
the num ber of m inim a by one. In  other words, when increases by 1 , so also does 
(%+ — n }) .  Similarly, when щ  increases by 1, so does (я*Г — ttf ) .  Therefore, if  , 
Nq , N£, Ny, denote the  average densities of zero up-crossings, etc., over
a long interval we have

Я; -  .V,-

Now since/(f) is statistically  sym m etrical abou t the m ean level i t  follows th a t

Щ  = Nr =  rNv 
N i - N } - ( 1  - r ) N j

where Nr denotes the to ta l density of m axim a, and r denotes th e  proportion  o f 
negative maxima. So from (3-1)

N+=N, ( 1 - ^) ,  (3-3)

or г =  № - Щ 1 К ) .  (3-4)
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B u t from  Rice (1944 , 1945) and  equation ( M 8) we have

<3'6>

So equation (3-4) can be w ritten

r = 5 [ 1 - Г ~ ^ " а ]  =  И 1 ~ (1- е,)*]- (3 6)

H ence th e  proportion  o f negative m axim a increases steadily w ith the relative w idth 
of th e  spectrum . Conversely, we have

e2 =  1 —(1 —2r)2. (3-7)

This relation  provides us w ith a  ready means of estim ating e by  simply counting the 
num bers o f positive and  negative m axim a in  a length of record.

4. T h e  m o m e n ts  os' p(ij)

The 71th  m om ent fi'n o f th e  probability  distribution p(ij) taken  about the origin, 
is defined by

K = \  p (v )v n&v- (4-1)•/ —«

The even m om ents (n  =  2r) m ay be calculated by meane of the m om ent-generating 
function

/ _ ю6 +  (4' 2) 

On substitu ting  from  (1-19) and evaluating the integral we find

J ”  e-KW jjfoJdg =  (1+Л *)*  ( I +«*)-* (4-3)

and  ao on, com paring coefficients of № in these two equations, we have

T he odd m om ents (n =  2 r+  1) m ay be found in a similar way by means of the 
m om ent-generating function

J r/t ertoiVpiij) dg; =  - — /i'z +  7̂  /« i... .  (46)

From  (1-18) we have

J “  ijte-ibV pM dT !  =  ($тг)*(1 - е а)*г(1 -ИгН  (4-6 )

and hence /4 r+l =  № )*(1 — e2)*1 -8 -6 — -J2r+  l) . (4-7)
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In  particular we have =  1,

/4  =  2-е®,
/4 = (*я)*(1—e*)t.3.

We see th a t the  m ean fi[ ia a steadily  decreasing function of e, th e  w id th  o f  th e  
spectrum . A non-dimensional q u an tity  depending on e is th e  ra tio

1 —e2
P = Pi

( W - ,PoPi '* 2 - e * '
The w idth of the spectrum  is given in  term s of p by  th e  relation

n — 4p
e* = 7T—2p'

(4-9)

(4-10)

F ig u re  2. Graphs of the  m ean /i[ , variance f i t , skewness /3, p roportion  r  of 
negative m axim a, and p( = J tflp Q /tQ  aa functions of £.

On th e  other hand, we have the following two quantities which are independent o f e:

1. /41 Pi =  3. (4-11)
The moments fin about the  mean, which are defined by

Pn =  (7 —Ai)" dl7» (4-12)

m ay be deduced unm edm tely from  the m om ents abou t the origin. In  p articu la r

Po =  1>
Pi = 0,

l - ( ^ - l ) ( l - e s),

/ t s =  ( j 7 7 ) t ( ? r - 3 ) ( l - e 2) t

we have from (4-8)

(413)
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The coefficient of skewness is given by

' , - д - » ' ) >( - 3) [ 1 - ( » , 1- щ 1- и > Г  ' 4 1 4 >

We see th a t the standard  deviation / t |  steadily  increases as e increases, fi, on th e  
other hand, steadily decreases.

The m ean fi'v  th e  variance / i t , th e  skewness fi and  the  ra tio s r an d  p  are show n 
graphically as functions of e in  figure 2.

In  some practical cases we m ay know the  d istribu tion  of th e  m axim a ^  rj) 
experim entally and wish to  m ake an estim ate of the m ean energy ra$. L e t v'n and  

denote the n th  m om ents, abou t the origin and  abou t the  m ean, of th e  v a ria te

Then <  =  »4*n+1)/*n. vn =  " 4 <n+1K .  (4-15)
and so from (4-11)

= **§■ viiv\ = 3wlo- (4-ie)
By forming either of these quantities, therefore, we m ay estim ate m a.

6 . T h e  c u m u l a t i v e  p e o b a b i t j t y

The cum ulative probability  q(if) m ay be defined as th e  p robab ility  o f rj exceeding 
a given value: f<0

?(?) — J PW (6>1)
Substituting from (1-19) we find

q(i)) = ----- г I I  e -k 'd a j +  f l — e^ le -fo 1 | e~i*’ da:l. (6-2)
(2Tr)HJi/« J

W hen e-*0,

*?>-»■{ I ,  (б 3 )l e - «  (r)> 0),J 

1and when e-> 1, q(q) -> ------- e^^'cLe. (5-4)
(2?r ) 'J  ч

Graphs of q(ri) for these and in term ediate values of e are shown in figure 3. The 
proportion r of negative m axim a is given by

=  f  P W t y  -  1~ ?(0 ), (5-5)r ■

which from (6-2) ia r =  J [ l -  (1 - c 2)i], (5-6)
in agreem ent w ith (3-6).

In  some geophysical applications it  is found convenient to  consider only th e  higher 
waves, say the highest 1/nth of the to ta l num ber in a sample. The 1 /n th  h ighest 
m axim a correspond to  those values of tj greater th an  7/', say, where

q W )  =  J ” p(7)di? =  1 /n. (6-7)
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The average value of 77 for these m axim a will be denoted by 1)&п\  so th a t

7jain) = nj  p W y d i) .  (5-8)

Clearly j7W ia the  same as the m ean fi[. rf4n) has been com puted num erically for 
n  =  1 , 2, 3, 6 and 10, and for different values of e. The results are shown in figure 4 . 
7Шп) is apparen tly  a decreasing function of e. F or small values of e, say e < 0-6, th e  
dependence of ^Wn) on € is slight, b u t each curve gradually steepens, and i t  сал be 
shown th a t  as e approaches 1 the  gradient сty№ >/0e tends to — 00. Near e =  1 the  
curves are all exactly  sim ilar in shape, being independent of n.

F ig u r e  4. Graphs o f the m ean height o f  the 1/nth highest m axim a, 
os a  function o f e, for n »  1, 2, 3, 6 and  10.

8 . T h e  h i g h e s t  m a x i m u m  i n  a  s a m p l e  о б  N  
Suppose th a t a sample of N  m axim a is chosen a t  random ; we wish to  know the 

average value o f the highest of these, ^max_. The problem  has been considered in the 
case e =  0 (Longuet-Higgins 1952) and the expectation  has been com puted for 
values of N  up to  20. F or values of N  greater th a n  50 (in which we are usually 
interested) it  has been shown th a t  the asym ptotic formula

W / ( / 4 ) * * ( t o t f ) *  +  i r ( b t f H  (6-1)
is accurate to  w ithin 3 %. (Here у  denotes E u le r’s constant, 0-5772 ....)

The form ula (6-1 ) m ay be generalized to  values of e between 0 and 1 as follows. 
T he probability  d istribution  of is given by*

PiVmb 1 .) =  -  [ 1 - 9  (7m*x. )}*> <e ' 2 )^Угпят.
* W e follow here the  game m ethod as in  th e  paper ju st quoted. B u t a  general s tu d y  of 

th e  lim iting form of the  d istribu tion  of th e  largest m em ber o f a aample haa been m ade by 
F isher & T ippett (1928). F o r a more recent discussion see Qumbel (1954)*
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where q(tj) ia given by  {5-1). Therefore we have

w = j : e ^ [ i - ^ r d . .  <в-з)

On separating the  integral in to  tw o p arts , from  — oo to  0 and  from  0 to  со, an d  
integrating  by p a rts  we fi nd

VmB*. =  J °  {1 — [1 — 9 (7 )]^  diy. (6-4)

W hen N  is large [1 — g(?/)]w is very  small unless q is of order l jN .  Now as x  tends 
to  infinity we have . r , . , . ,

~ M ) ] -  (6-5'
and  so from  (6-2)

q(i)) = ( l - e ^ e - h '  +  O ^ e -* " * ''’!  (6 6)

for large values of ij and  when 0 < e <  1 . I f  g is of order 1 jN , 7] is of o rder (ln.№)t. 
Therefore neglecting te rm s of order (In .W)~i we have

q('i7) =  (1 —e2) le _i^" =  (1 — e2) ^ -8 , (6-7)

where в — \т}г. The first in tegral in  (6-4) is negligible, and  on substitu tin g  in  the  
second we have

W  =  ^  Г {! ■- [1"  (1 “  e*)* er*]»} в - i  dd. (6-8)

W riting 60 =  l o g [ ( l б'  = б - (9 0, (6-9)

and so e_fl =  — ---------. (6-10 )
(1 - e 1) * # '

w e h f t v e  W = ^ J I eJ 1 - [ 1 - ?r ] JV) ( 5o +  ^ H d 0  ( 6 1 1 )

(1 — e s p [ — e~e']) (0O+ 9')~bd$, (6-12)

w ith  relative errors of order 1 jN  only. I t  m ay be shown (Longuet-H iggins 1952) 
th a t  when в а ia large the above integral equals

2*[0о* +  М Г 4 +  О(0о-* )]. ( 613 )
H ence we have

W  =  2»{[ln (1 -  e8)* N ]i + Jy[ln  (1 -  e2)* N]~i}, (6-14)

which can also be w ritten

^ w i - w y - w  ( e . 15)

W hen e -»-0 th is equation reduces to  (6-1 ). The expression on th e  righ t-hand  side of 
(6-16) ia an increasing function of fi, when N  ia large. I t  follows th a t  as th e  spectrum  
broadens, the ratio  o f the greatest in  a  sample to  the root-m ean-square will ten d  
to  increase.
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W hen e approaches 1 {so th a t In (1 — e*)tN  is no t large com pared w ith l ) th e  above 

form ula is no longer valid. The corresponding expression for the general case is 
com plicated and probably no t of practical im portance. We shall simply give the  
lim iting form  when e ^ l ,  and p(y) is norm al (equation (2-9)). Fisher & T ippett 
(1928) have shown th a t  th e  average value of !|Ш 1 in  th is case is given by

Чтат. =  m + T T ~ i  (6-16)1 +  m

approxim ately, where m  is the mode of the distribution  of ^mai , given by

(2w)ijneb>’ =  N .  (6-17)

From  (6-17) we have т г =  I n | ^ j  — ln»ra2, (6-18)

and so m =  [in  Q  -  In In Q ] * . (6-19)

The leading term  in (6-16) is thus

("ao>
However, Fisher & T ippett have shown (1 дг8) th a t  for the norm al distribution the 
lim iting forms are approached exceptionally slowly. A tab le of the exact values of 
Vmax. com puted for values of N  up to  1000 is given by T ippett ( 1925).

7 . A p p l ic a t i o n s

I t  is interesting to  verify th a t  the distribution ju s t discussed is applicable to  
records of sea waves and of associated phenom ena. In  this section we shall consider 
five such examples: a record of wave pressure a t  a  fixed point on the sea bed; two 
continuous records of wave height m ade a t sea by a  shipbom e instrum ent; one 
record o f the angle of p itch of the ship, and one of the angle o f roll. The w idths of the 
corresponding Fourier spectra are fairly  representative of the possible range 0 < e < 1.

Typical sections of the records are shown in figure 6 (a) to  (e). Each com plete 
record lasted  from  12 to  20m in and contained abou t 100 m axim a and  100 m inima. 
In  order to  increase th e  am ount of d a ta  bo th  m axim a and m inim a were included in 
th e  sample. The analysis was carried out as follows. The ordinates A n of all the  
sta tionary  points in th e  record, m easured from  some common baseline, were 
num bered consecutively from  1 to  N  so th a t  the  m axim a, say, corresponded to  even 
values of n  and th e  m inim a to odd values of n. The zero of the record was taken  to 
be the  m ean of A n \ . N

(7-i)
Я  П= 1

The d istribu tion  of th e  varia te

X n = ( - l ) H A n - A )  (7-2)

was then  studied. The histogram s corresponding to  the  d istribu tion  of X n are shown 
in figure 6 (a) to  (e).
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To obtain  th e  param eters for the theoretical d istribu tion  a harm onic analysis o f 
the  original record was m ade by  m eans of the  N .I.O . F ourie r ana lyser (see D e rb y 
shire & Tucker 1953)- The range of frequenoy waa divided in to  a  num ber o f equal

I m i n

I n i n

4 (*)

Imin

10’ (d)

I m i n

2 1  ( < )

Imin
F ig u re  6. Typical short sections of the five records chosen for analysis, (a) pressure on th e  

sea bed off Pendeen, Cornwall, 08.00 to  08,20, 16 March 1946; (6) w ave he igh t in  th e  B ay  
of Biscay, 19.00 to 19.12, 11 Novem ber 1964; (c) wave height in th e  B ay  of Biscay* 
02.00 to 02.12, 12 November 1964; (d) angle of p itch  of U.U.S. Discovery I I ,  in  N o rth  
A tlantic, 13.21 to  13.33, 25 May 1964; (e) angle of roll of R .R .S . Discovery I I ,  in  N o rth  
A tlantic, 14.06 to 14.17, 21 May 1964

narrow ranges each containing about 10 harm onics of the  length  of the  record, an d  
the energy was summed for each interval. The energy spectra are shown in  
figure 7 (a) to (e). The moments m a, m2 and ml  of the  d istribution  were th en  calculated  
by m ultiplying the  energy in  each small range of frequency by  1, cr2 and  <J*
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respectively. F rom  these th ree momenta the param eter e defined by equation (1*20) 
was calculated. The corresponding curves of probability multiplied by the 
to ta l num ber N  in  each sample, are shown in figure 6 (a) to (e).

In  constructing  th e  histogram s the horizontal scale has been divided, no t into 
equal intervals, b u t in to  intervals such th a t the expected numbers of m axim a in 
each in terval (according to  the  theoretical distribution) are equal. The purpose is 
to  avoid the small classes th a t  m ust otherwise occur a t  the two ends of the dis
tribu tion , and which make the application of the x 2 significance te st unsatisfactory 
unless the classes are am algam ated in  some arb itra ry  way. The vertical scale is so 
chosen th a t, for each separate subclass, a rectangle whose height indicated the 
expected frequency of m axim a would enclose the same area as is enclosed by the 
curve o f theoretical frequency. The w idth o f the  two outerm ost rectangles is chosen 
quite arb itrarily , h u t th is does not affect in any way the application of the x 2 test. 
Some relevant d a ta  concerning the five reoords are given in tab le 1 . The first record 
is o f w ave pressure m easured on the  sea bed in a depth of 110 ft. of w ater by apow er- 
phone pressure recorder, in March 1945 (described by Barber & Ursell, 1948). The 
section of record in figure 5 (a) indicates a long, regular swell w ith a fairly narrow 
spectrum  (e =  0-41). However, i t  contains a certain am ount of energy outside the 
m ain frequency band.

T a b l e  1 . D a t a  f o b  t h e  e e c o b e s  in  п о т ш в з  5 to  7

e
(from energy e e

oxample N spectrum ) P(X') (from r) (from p)
(a) 164 0 41 0 60 031 0-37
(b) 220 0-57 0-62 0-58 0 66
(0) 270 0-67 OSS 0-68 0 69
(d) 180 0 48 0-67 0-44 0-46
(«) 260 0-20 0 1 2 0-26 —

The second and th ird  records are of waves in deep w ater (Bay of Biscay) m easured 
by  the shipbom e w ave recorder installed in R .R .S. Discovery I I .  The instrum ent has 
been described by  Tucker ( 1952). The two records are som ew hat more irregular than  
th e  pressure record and have correspondingly broader spectra (e =  O'57 and 
e =  0-67 respectively). This is due p artly  to the  fact th a t  the records of wave height 
contain more energy of higher frequency than  the record of pressure.

The last two records are o f the  pitching and rolling m otion of R.R.S. Discovery I I  
in a seaway in the  N orth  A tlantic The angles o f p itch  and roll were m easured in the 
conventional m anner by  gyroscopes. The roll, in  particular, has a very narrow 
spectrum  (e =  0-20) and the  record is correspondingly regular. This is as we should 
expect, since the rolling m otion of a ship is only lightly  dam ped, and is tim ed sharply 
to  oscillations having a period close to  its period of free motion.

F or each o f the above records the quajitity  y 2 was calculated, and also the 
probability  of %2 exceeding th is value. Since tw o param eters have been estim ated 
from  the sample (the m ean height and the to ta l frequency) x 2 has in  each case 
8 degrees of freedom. F rom  tab le  1 i t  will be seen th a t  for none of the records is the 
probability  of x 2 significantly small.
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F or each m easured sample of X n the quantities r  (the p ro p o rtio n  o f nega tive  
maxim a) and p (=  4 ) have been found, an d  from  the rela tions (3-7) an d
(4-10) two independent estim ates o f e have been m ade. These are also g iven  in  ta b le  1. 
I t  will be seen th a t in examples (b), (c) and  (d) th e  values of e are in  good agreem ent 
w ith th a t  derived from the  m om ents of th e  energy function  E(<r). I n  exam ples 
(a) and (e) the estim ate derived from  r is no t in  such good agreem ent, b u t  th is  is 
hardly surprising, since the  num ber of negative m axim a on w hich th e  es tim ate  is 
based ie r a t h e T  small. In  exam ple 5, the  estim ate derived from  p gives a  sm all 
negative value for e2, w hich is o f course impossible. In  all th e  o ther cases th e  
alternative estim ates o f e are so close to  the  original es tim ate  as to  m ake no 
significant difference to  th e  probability  of x2.

8. Cr e st -to-thouoh wave heights  
In view of the agreem ent of th e  observed distribu tions of th e  heights o f orests 

w ith  the theoretical d istribu tion  it is in teresting  to  s tudy  also the  d is trib u tio n  o f th e  
crest to-trough wave heights in  th e  same records.

The local crest-to-trough wave am plitude on m ay be defined aa h a lf  th e  abso lu te 
difference in  height betw een a  crest and  the preceding trough , or betw een  a tro u g h  
and  th e  preceding crest. Thus

an = i ( X n + X n_t ), (8-1)

The sta tistica l d istribu tion  of an is more difficult to  ob ta in  theoretically  th a n  th a t  
of X n for general values of e. However, when e 1 the  function  f( t)  is a regular sine- 
wave w ith  slowly varying phase and am plitude, so th a t  an — X n very nearly . So we 
m ay expect an to  be d istribu ted  according to  the  R ayleigh d istribu tion  (2-8). By 
considering a  d isturbance consisting of a sm all ripple superposed on a  long w ave 
(e ~  1) i t  can be seen th a t  the  distribution of an m ust in general be d ifferent from  the  
Rayleigh distribution, though no t necessarily by very  much. T he general d is trib u 
tion  no doubt depends on other param eters besides e. Y e t i t  is reasonable to  expect 
th a t  for small values of e the  observed distribution  of an will be in  b e tte r agreem ent 
w ith  the  Rayleigh d istribution th a n  for larger values of e.

In  figure 8 are shown the observed distributions of ал  in  th e  five exam ples 
disoussed in  §7, together w ith the corresponding R ayleigh d istributions

J>(a) = a*

where is a  the  root-m ean-square wave am plitude. The values of x 2 8Jid P ( ^ )  are 
given in  table 2. (y^ again has 8 degrees of freedom, since tw o param eters—in th is 
case th e  to ta l num ber in the  sample and the  root-m ean-square am plitude— have 
been estimated.)

The tab le shows th a t  the records w ith th e  sm allest value of e (examples (a), (d) 
and  (e)) do not give significantly small values of P ()f) .  On th e  other hand, those 
w ith  the two largest values of e give very  significant values of P (x 2). This verifies 
our expectation th a t  the observed distribution  departs m ore from  th e  Rayleigh 
d istribution as the w idth of the energy spectrum  increases.
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From  figure 8 it  wilt be seen th a t  the  records w ith the two broad spectra deviate 
especially from the Rayleigh distribution for low values of the wave am plitude, 
having relatively more waves in th a t  range. I t  appears th a t the mode of the  dis
tribu tion  has a tendency to  move to  the left in the broader spectra.

pressure am plitude  
(ft. o f water)

wave am plitude (ft.)

wave am plitude (ft.)

am plitude of pitch 
(deg.)

am plitude of roll 
(deg.)

F i g u r e  8 .  The sta tistica l d istribu tion  o f  th e  crest-to-trough amplitudes 
for the  five records shown in figure 5.
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O ur conclusions m&y be com pared w ith  those of W a tte rs  ( 1953 ) w ho stud ied  
histogram s of wave heights of 109 records, and  com pared 38 of these w ith  th e  
corresponding R ayleigh distributions (with variance chosen so as to  give th e  best 
fit). A lthough some of the  values of P (x 2) were l°w (as sm all as 0-06) the  values ta k en  
as a  whole did n o t show a  significant departure from  th e  R ayleigh d istribu tions. 
There are two possible explanations for this. F irs t, th e  in te rvals o f w ave he ig h t 
were equal, and so there were m any classes containing only very  few heights. In  
applying the  te s t these olasses were arb itrarily  pooled, and  i t  can be show n th a t  in  
several cases pooling the classes in  a different way would have resu lted  in  m uch low er 
values of x*. (The difficulty is avoided by our presen t m ethod  of m aking th e  
theore tical classes o f uniform  size.) Secondly, th e  w idths of th e  energy spectra  o f th e  
records studied  by W atters were probably  less th a n  in  exam ples (b) an d  (c) o f th e  
presen t paper, which were in fact chosen on account o f the ir exceptional b read th .

T a b l e  2 . D a t a  b o b  t h e  d i s t b i b o t i o n s  o f  figttbje  8

example £ P(X‘)
(a) O il 0-33
(4 067 0 001
(e) 0-67 0-000
<d) 0-48 0-55
(•) 0-20 0-61

9. Co n o ltjsio h s

I f  £ denotes the height of a maxim um  of the random  function /(£) above the m ean 
level, and if « 4  is th e  r.m.s. value of/(t), then the  sta tistica l d istribu tion  of 7) ( =  £/m$) 
is a function only of rj and one other param eter e, which defines th e  re la tive  w id th  
o f th e  energy spectrum  o if( t) .  e lies between 0 and 1 . W hen e-> 0 , p(rf) te n d s  to  
a  Rayleigh d istribution; when e - » l ,  p(?j) tends to  a Gaussian d istribu tion . As 
e increases from 0 to  1 , th e  mean oip(rj) gradually  decreases, the  variance increases 
an d  th e  shewness decreases. The proportion of m axim a th a t are negative stead ily  
increases. The mean height of the highest 1/^th of the  waves varies little  for sm all 
values of e, b u t tends always to  decrease. The highest m axim um  in a sam ple of 
N  m axim a tends to  decrease relative to  b u t to  increase relative to  th e  r.m .s. 
height of the maxima.

The records of ocean waves and of ship m otion which are discussed in th e  p resen t 
paper show good agreement w ith the theoretical d istributions, for various values 
of e ranging from 0-20 to  0-68.

The theoretical distribution of crest-to-trough heights is known only for a  narrow  
spectrum  (e =  0), when it  is a Rayleigh distribution. In  th ree o f th e  exam ples in 
th is  paper, for which e < 0-5 and th e  to ta l num ber in  the sam ple was less th a n  300, 
there was no significant departure from the Rayleigh d istribution . On th e  o ther 
hand, the  examples w ith the broadest spectra (e =  0-67 and  e =  0-67) d id  show 
significant departures.

This indicates the need for a  theoretical derivation of the  crest-to-trough heigh t 
d istribution when e > 0. Meanwhile, for the purpose of practical prediction , i t  would
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be b e tte r to  deal w ith crest-heighta ra ther than  w ith creat-to-trough heights as ia 
custom ary a t  present.
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M any of the s ta tistica l properties of a random  noise function/(Z) have been derived  by  
Rice (4); for exam ple, th e  m ean frequency of zero crossings an d  th e  s ta tis tica l d is
tr ibu tion  of m axim a and  m inim a. These d istribu tions have been shown to  ap p ly  qu ite  
accurately  to  physical phenom ena; in  particu lar, w h e n /(f) rep resen ts th e  heigh t o f sea 
waves a t  a  certain  p o in t or th e  pressure a t  a fixed p o in t on th e  sea bed  (1,3,5).

In  some applications, however, we w ish to  deal w ith  m oving w ave-form s, an d  to  
distinguish betw een positive an d  negative directions. T hus we m ay be in te rested  in  
finding th e  coefficient of reflexion of waves from  a  fixed obstacle. W e have th e n  to  
consider a  random  function  depending on bo th  a space variab le x  an d  a tim e v ariab le  t, 
and  to  consider s ta tistica l p roperties involving th e  m otion of th e  surface as well as its  
configuration a t any  one tim e.

In  th e  p resen t paper a beginning is m ade w ith the  consideration of essen tially  tw o 
such s ta tis tica l d istribu tions: th e  velocities of zeros an d  th e  frequency  of ‘tw in k le s ’.

Im agine a line draw n th rough  a  given level of th e  function, say  th e  m ean, w hich we 
ta k e  to  be zero. A t a  p articu la r in s tan t th e  function will cross th is  line a t  a nu m b er of 
points, th e  ‘ zeros ’ o f/(x , t). A m om ent la ter th e  zeros will have shifted  to  new  positions. 
The ratio  of displacem ent o f each zero to  th e  small increm ent o f tim e m ay be called th e  
velocity of th e  zero, say c; clearly

ЪЦЬх

I t  is the  sta tistica l d istribu tion  of с th a t  is investigated  in  § 2. F o r purely  progressive 
w aves th e  velocities are of course m ainly of the  same s ig n ; if some energy trav e ls  in  th e  
opposite sense the  velocities will more often be negative. In  general, th e  d is trib u tio n  
o f с is found to  be sym m etrical abou t a  m ean velocity w hich depends on th e  first 
m om ent of th e  energy distribution abou t th e  origin.

Certain associated distributions m ay be derived im m ediately. F o r exam ple, th e  
velocity of th e  surface a t a given level, n o t necessarily th e  m ean, has a  sim ilar s ta tis tica l 
d istribu tion ; also the  velocities of points having zero gradient, i.e. th e  m axim a and  
m inim a of the wave-form.

P o in ts on the surface having a constan t g radient m ay appropria te ly  be called 
specular points, being those points a t  which a  d is tan t observer w ould see his ow n 
image, or th e  image of another d istan t object, reflected in  the  surface. The m ovem ent 
of specular points, then, is very similar to  the  m ovem ent o f the zeros, and  m ay  som e
tim es be more conveniently observed. Now it  happens occasionally th a t  a  specular 
point, instead of moving to  an adjacent position, vanishes com pletely, or a lte rn a tiv e ly  
one appears where there was previously none before. This will occur, in  general, w hen 
the  specular point coincides w ith a point o f inflexion, and it  is n o t difficult to  see th a t
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specular points are created or annih ila ted  in pairs. The creation or annihilation of a pair 
of specular points will be called a  ‘tw in k le ’.

In  § 4 we investigate th e  frequency of twinkles, aa a function of the energy spectrum  
o f / .  T he frequency is given by equation  (58). For a narrow  group of waves travelling 
en tire ly  in  one direction, the  frequency of tw inkles is least; for standing waves i t  is 
a  m axim um , as one can observe by  w atching w ater waves reflected from a barrier. The 
frequency of tw inkles depends also on th e  w idth of the energy spectrum  and the  angle 
from  which th e  surface is viewed. The m axim um  frequency is found to  be a t an  angle 
near th e  r.m .s. inclination  of th e  surface. Thus by  simple visual observations one can 
determ ine the r.m .s surface slope of the wave, the  w idth of the spectrum  and the 
proportion  of energy travelling  in  either direction.

before

before

<c)

before after

Fig. 1. I llu s tra tin g  (a) winkles, (6) twinkles, (c) arinkles. A ny  of th e  th ree  events 
m ay  be reversed in time-

W e consider also two events analogous to  a tw inkle, nam ely, when a  pair of zeros 
o f f  coincide and are annihila ted  (which we call a 'w in k le ’) and when tw o points of 
inflexion are created (which we call a ‘crink le’). The frequencies o f winkles and  
crinkles are calculated in term s o f the energy spectrum  o f f .

1. Definitions. Generalizing Rice (4) we consider a random  function of two variables 

given by  f ( x ,  t) =  2  сл cos [knx  + <xj + en). (1)
П

T h u s / i s  represented as th e  sum  of an infinite num ber of travelling  sine-waves. The 
w ave num bers kn are densely d istribu ted  betw een — со and  со, and  crn =  o~(kn) is an 

even function of kn : * < - * ) -  <r(Jfc), (2)
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so th a t  each wave travels w ith  th e  appropria te  velocity  — <rnfk n\ positive  an d  n eg a tiv e  
values of k n correspond to  waves travelling  in  opposite senses. T he am p litudes cn an d  
phases en are random  variables, en being d is trib u ted  w ith  un iform  p ro b ab ility  in  th e  
range (0, 2it ) and  e„ being such th a t  any  sm all in te rv a l o f w ave nu m b er dk

2 Й  =  В Д й -  (3)
dk

E(k) is a  positive, continuous function of к w hich will be called th e  energy sp ec tru m  o f f .  
W e shall w rite m 0 for the to ta l energy per u n it d istance, defined by

m 0 = J  E (k )d k , (4)

and in general m n for the  n th  m om ent

m n =  J “  knE d k .  (5)

Similarly, for th e  m om ents of the  functions crE an d  cr2E  we w rite

kna E d k ,

= J kncr2E d k .

(6 )

I t  is assum ed th a t  the  m om ents exist up  to  all orders required .
W e shall m ake use of the central lim it theorem  in  n  dim ensions, w hich m ay  be s ta te d  

as follows.
L et .......be n  quantities, each th e  sum  of a large num ber of in d ependen t

variables whose expectation is zero. Then under certain  general conditions (see 
Cram er (2)) th e  jo in t-probability  d istribu tion  of . .., is norm al:

1 nl (27T)*»M

where Af^ is the inverse m atrix  to

( 8 )

811(1 Д =  |S y | .  (9)

H ere denotes th e  mean value of over the  p robability  space of th e  random  
variables.

Now /  and its derivatives are, by definition, functions of th is  ty p e  and  we have, for 
exam ple, _

/ * = £ К  =  т „ , (10)
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ao th a t  th e  p robab ility  d istribu tion  of ■= f  ia

1
p i i i ) g—

Sim ilarly we have
(2 я т 0)*

=  2  P i  с* =
n

=  2  M c« =  <>

(11)

(12)

so th a t  th e  m atrix  of correlations for £2, £3, =  3//Эх, dfjdt, is

_  / т е 2

“ « - и  m i) 5

an d  the  jo in t-p robab ih ty  ciistribntion of g2, £a is

1
2тгД$ .

exp [ -  (mj ̂  -  2m; £2£3 +  m a £!)/2Д0],

where До — ГП^т  ̂ 771 .̂

(13)

(14)

(15)

T he correlations of f  w ith dffdx and dfjdt are bo th  zero, ao th a t the probability  
d istribu tion  of £v  £a, £3, = f ,  dfjdx, dfjdt, is given by

- * & ) * ( & & > .  <16> 

where p ( ^ )  is given by (11) and  j >(£2, £a) b y  (14).

2. The velocities o f zeros. Consider the intersection of the curve у  =  f ( x ,  t) w ith  a fixed 
line parallel to  th e  ж-axis, say  у  =  fj. In  a sho rt in te rval o f tim e dt th e  intersection will 
have  m oved th rough  a horizontal distance dx, where

Q d x  + % dt = 0.
ox ot

A ccordingly the  velooity o f the intersection is

dx
с =  з т

m
dfjdx '

(17)

(18)

The probability  d istribu tion  of с is therefore th e  p robab ility  d istribu tion  of 
w here the  d istribu tion  of £a, is given b y  (14). To find th e  d istribu tion  o f с le t ua w rite

so that

— fs/£i — Vi> £з — 7s> 

j  _  d(£ai g,) _  7h
PknvVt) vl'

(19)

(20)
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T he p robab ility  o f (%, ij2) lying in a small region o f th e  (rj1, ij2)-plane is eq u a l to  th e  
p robab ility  o f (£2, £3) lying in the  corresponding region of th e  (£2, £3)-plane— w hich  has 
an  area | J  | tim es aa great. Hence th e  p robab ility  d is trib u tio n  of ifa, is g iven  by

P(V i>4z) =  ^ ^ | W ^ i | exP [ - 4 ? ( njoM  +  2wii/1?i +  OT*)/2Ao]- (21)

To find the  d istribu tion  of с =  i]1 we in teg rate  the  above expression w ith  resp ec t to  
1J2 from  — 00 to  oo, obtaining

V(C) =  ^ _______ 1 _____ . (22)
• 77 m2ca +2m ^c

L et us consider th is d istribu tion . I t  has a  m axim um  or m ode w hen

c =  - ^  =  c, (23)
m 2

say, and  is sym m etrical abou t its  m ean value, as m ay be seen by  w riting  i t  in  th e  form

„(с) =  I ----- --------------  (24)
n ( c - c ) *  + A J m l

The even m om ents of the d istribu tion , a p a r t from  th e  m om ent o f zero o rder, are  
infinite, an d  so therefore is th e  s tan d ard  deviation . H ow ever, a convenien t m easure 
of the spread of velocities is th e  in te rq u artile  range (i.e. th e  cen tra l range con tain ing  
half the  probability  d istribution), w hich is of w idth

w — 2Aj/wij. (26)

As an exam ple le t us suppose th a t  the  spectrum  of th e  function  consists o f tw o 
narrow  bands, of equal w ave-length b u t opposite direction. L e t a  p ropo rtion  q o f  th e  
energy be travelling  in the  positive direction, and  a p roportion  (1 —q) in  th e  n ega tive  
direction. T hen if jfc is th e  m ean (absolute) w ave num ber an d  if th e  corresponding value 
of a  we have

m 2 — kbne, m "0 -  a h n Q, =  (1 — 2q)(rkm0. (26)

T he m ean velocity 5 is therefore

an d  th e  in te rquartile  range is

t = = (27)71b a

w — —  =  4q>i(l — q)i(rlk. (28)
77Ц

F o r purely  progressive waves q =■ 1 and so

с =  a  jit, w = 0; (29)

th e  velocities are all concentrated a t th e  phase velocity ff/fc. F or stand ing  w aves

г - 0 ,  . - » / { ;  (30)

th e  velocities are sym m etrical abou t zero, and th e  half-w idth of th e  d is trib u tio n  is 
2<У/£, the  g rea test possible. J u s t  half the velocities are greater in absolute m agn itude 
th a n  <fjk, half are less.
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We have seen th a t  the relative d istribu tion  of с ia independent of the level £, a t  which 

the  velocity is m easured, though  there will necessarily be fewer crossings of any  given 
level o ther th a n  th e  zero level. F rom  (16) the num ber of crossings per un it distance 
is p roportional to  р(£г) and so to  e~£l/2"V The actual num ber of zero crossings per unit 
length  of th e  ж-axis has been determ ined by  Bice (4); i t  is

O I)

and in general, therefore, the num ber of crossings is

" • - i d * ' - * ” 4- <32>

3. Velocities of specular points. In  a precisely similar way we m ay determ ine the 
d istribu tion  of velocities of ‘specu lar’ po in ts on the surface having a given gradient. 
B y a sim ilar argum ent to  § 2 the  velocity of a specular point is

эу/arat (33,
(33'

To find th e  d istribu tion  of cr we have only to  raise the indices of the m om ents m n in  the 
previous d istribu tion  by two. Thus

о ч

w here the  m ean velocity 5j is given by

h  =  (36)m 4

an d  w here A 1 = ■тлт^ — ‘щ 2. (36)

This d istribu tion  will include as a  special case th e  velocities of m axim a an d  m inim a 
(crests an d  troughs) of the  surface.

B y  com parison w ith (32) we see th a t the num ber of specular points per u n it length  
of the  ж-axis is i \ J

(37)
n \ m j

Sim ilarly, the  d istribu tion  of the velocities ct o f points o f inflexion is

. * 1 _____  / OQ\

! я  (c2 —C g ^ + A j/m S ’ 

w here c2 = ----- -, Aa =  (3®)

th e  average num ber of points o f inflexion per u n it distance is

(=*)*• n  \ m j
(40)



250

M. S. L o n g u e t -H ig g in s  240

4. Frequency of twinkles. I f  th e  specular points on a surface are observed  con
tinuously  it  will occasionally happen th a t  one will d isappear a lto g e th er, or, on  th e  
o ther hand , one will appear ‘ from  now here ’. A d isappearance is caused b y  th e  specular 
p o in t having no ad jacen t p a r t of th e  surface to  m ove to ; its  velocity  becom es 
m om entarily  infinite. Such an  even t will occur, in  general, w hen th e  specu lar p o in t 
coincides w ith  a m axim um  or a m inim um  of surface g rad ien t (see F ig. 1). W e sh a ll call 
i t  a  ‘tw in k le’, including in th is  te rm  also a  reappearance o f a specular po in t. F ro m  
Fig. 1 it  will be seen th a t  th e  specular points are created  or an n ih ila ted  in  pairs, a  pa ir 
a t  each twinkle.

К  th e  velocities of specular po in ts were observed a t  one in s ta n t only, a  tw inkle w ould 
of course he an infinitely ra re  event. B u t supposing observation  is con tinuous, one m ay 
inquire in to  th e  m ean frequency of tw inkles per u n it  d istance per u n it tim e. I f  th is  is 
denoted by Ft th en  N 1jF1 gives th e  average lifetim e of a  specular p o in t, betw een  
appearance an d  disappearance.

We wish to  find the  p robability  of the  event

1 4 .  =

\dx
oonstant, a y

dx*
- o )

in a  tim e in terval (t, t + dt) and space in te rv a l (a:, x  + dx). L e t

a/_. Ъ1 - £

a*/
Scttt 5s’

a*/
ЪхШ 5e’ Эж» “ 57'

(41)

(42)

Now the  pair of variables £2, | 4 are functions of th e  pair of variab les x, t. I f  th e re fo re  
(x, t) is confined to  a  certain  region of the (x, i)-plane having area  dxdt, ( | 2, £4) ia confined 
to  the  corresponding region of th e  (£s, f j-p la n e , which is | J  j tim es as g reat, w here

r _  <4 2̂' £i) _  r r r r 
" 1 ( M f

(43)

Therefore the  probability  of £2, £4 tak ing  prescribed values th is  region is

1 1 J 1  0 ’(£*’ &  4б’ 1 i dxdtdbdUdtr (4 4 >

P u ttin g  E,4 =  0 and  dropping the  dash from  we have for th e  frequency o f tw inkles 
per u n it distance and tim e

*!(£.) =  Г Г Г Pit» o, | 5, U f 7) | U ,  | dbdbdfr
J  —cc J  — a: J  — 02

Now th e  m atrix  of correlations for (gs, £4, gB, £,) is

(45)

!
0
0

- m j
- m .

0 0 — - m , 1
m A 0 0

0 0
0 0 m"A щ

0 0 m!b me

(46)
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and  so 

where

and
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p d t ,  i t ,  is ,  £e, £,) =  P ( i  4, & )?(£» &).

1
* & .£ ,)■ 2 яД |

exp [ -  ( т г Й  -  2 + т ^ / г д , ] ,

Ai =  »i£«84—ra^2,

(47)

(48)

(49)

(50)

So we have

(
mi —m .\ -1

-m'3 m\ m6 1 , 
-»»«, «ij m a /

(61)

(62)

where i, j  tak e  values 2, 6, 7. The in tegration  w ith regard to  £s oan be carried o u t 
im m ediately. W e find

Now  if a{j is any  positive-definite (3 x 3) m atrix  we have, by  standard  methods,

(54)

where

J e~ia‘}*ixj \ x a \d x t dx3 ^  2(2ir )iA e ~ iB*l^e-ic ,*t + C x1 j <* er^1'd x

<4A  =
° 2 2  a33 a 23

В  =

с  =

_ К  I
а 22Я 33 ®23 

а 22а 31 — а 3 2 а 21

(55)

(56)

а ^2(°22а 3а ~  а 2з)̂

S ubstitu ting  £2, £в> i t  ^ог * 1» **■ Х3 ™ геа^  an<  ̂w riting

s M  = v. =

j ;  =  А  —  8 e - ii ' e - l’,/4* +  (?//<S) [  e- **1 <&|. 
1 Я 2Я1, J o  J

find

or

where

and

F1 =  ^sdF {7},8 ),

а — d a

F (r j, 8) =  5 e ~ V

т ^т 4

r W ^  +  d / i ) b * d J .

(67)

( 68 ) 

(69) 

(60) 

( 01 )
J  0
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Considering the  term s in  (59) we see th a t  s is a scale fac to r, d d iscrim inates betw een  

progressive and standing waves, and  F(r/, <S) is a  function  o f  r)— th e  inc lina tion  of th e  
surface relative to  the  r.m .s. slope m |—an d  of S, w hich is a m easure o f th e  w id th  of 
the  spectrum  regardless of d irection of trav e l o f the  energy.

F or exam ple, le t us consider a narrow  b and  of swell w ith  m ean  (absolute) w ave 
num ber It and frequency if. I f  a  p roportion  q o f th e  energy trav e ls  in  th e  positive  
direction and (1 — q) in the  negative direction  we have

т г =  hbrio, m4 =  Icbn^

=  fcV m 0, m'a «= fc®?(l — 2q) m,
(62)

and so s =  —t? - ,  (63)
лТ

where A a n d f  are the  m ean w ave-length an d  period; also

d =  2 g * ( l-? ) l .  (64)

d vanishes for q = 0 or 1, i.e. for purely  progressive waves, and  is a m ax im um  for 
q — i.e. for standing waves. I t  follows th a t  for progressive w aves th e re  a re  no 
tw inkles, as we should expect, since then  th e  specular po in ts will advance w ith  un ifo rm  
velocity (cf. § 2) and will have little  tendency  to  vanish. O n th e  o th e r h an d , for 
standing w aves the range of surface grad ien ts is changing frequen tly  an d  w e m ay  
expect considerable tw inkling. This is confirmed by th e  vigorous tw inkling  in  w a te r 
waves when they  are reflected from  a fixed obstacle.

W e m ay note th a t  d  is p roportional to  (ft, and so to  th e  r.m .s. am p litude of th e  w aves 
travelling  in the  positive direction. I f  аг and a 2 denote th e  r.m .s. am p litudes o f th e  
waves travelling  in  the  two directions we have (for th e  narrow  spectrum )

2 o i O ,  ( 6 5 )

N ex t consider the  dependence of Fx on th e  angle of observation. The form  o f F(ij,  S) 
depends on th e  ratio  TjjS. F o r rj/Sp  1, e.g. for narrow  spectra  and  for m odera te  o r large 
values of ij, we have

F(V,S)  =  a * ) i 7e ~ b \  ( 66 )

So th e  frequency of tw inkles has a Rayleigh d istribu tion  w ith  regard  to  angle o f 
observation, w ith a m axim um  frequency a t  i) =  1, when £, — th e  r.m .s. g rad ie n t m \. 
T he m axim um  frequency is given by

m »  - ( £ ) ' ,  <«>

a n d  so (68)

Thus for narrow  spectra the frequency of tw inkles provides a m ethod  of determ in ing  
bo th  th e  r.m.s. gradient and the  proportion of energy travelling  in either direction .

\
v
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F o r b roader spectra, o r for angles of observation very near to the vertical, the above 

approx im ation  to  F  breaks down, b u t we have

F(n,S)  = S

very  nearly , giving

(69)

(70)

So th e  frequency o f tw inkles a t  the  azim uth  is roughly proportional to  S, the  r.m.s. 
w id th  of the spectrum .

Fig. 2. Curves of Л). showing th e  frequency of tw inkling aa a  function of th e  relative 
gradient q, for eix different w idths o f epeetnrm  &.

To estim ate the  frequency of tw inkles a t  in te rm edia te  values of jj/<S we have p lo tted  
F (7), S) against 7j for S =  0-0, 0-2, 0-4, 0-6, 0-8, 1-0 in  Fig. 2.

The m ean density  of specular points being given by (40), th e  average lifetim e L y of 
a  specular point is

(71)

where £(7/, 5) ^  +  {iy/<5) J  e r ^ d x  (72)

an d  d is given by  (60).

6. W inkling and crinkling. The analysis of tw inkling, like th a t of specular points, 
involves essentially the  function dfjdx and its  deriv a tiv es; /  itself does no t necessarily
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enter. There is therefore a  corresponding set of events involving th e  fu n c t io n / in  place 
of 0//Эж; the  order of each derivative th a t  occurs is to  be reduced  b y  one.

A tw inkle is defined as th e  coalescence o f tw o poin ts o f g iven g rad ie n t a t  a  p o in t of 
inflexion (zero ra te  of change of gradient). T hus th e  corresponding ev e n t o f low er order 
is the  coalescence of two points a t  a fixed level a t  a m ax im um  or m in im um , in  o the r 
words, th e  passing of a  m axim um  or m inim um  th rough  th e  given level. I f  th e  level is 
th e  mean level, th is entails the  disappearance (or reappearance) of a  p a ir  of zeros; th e  
p a r t of th e  curve on one side of th e  m ean level is, as i t  were, rem oved , or w inkled ou t. 
Such an  event we shall call a ‘w inkle’. T he frequency  F 0 o f w inkles m ay b e  w ritten  
down a t  once by analogy w ith  the  frequency of tw inkles (equation  (58)). F o r  w inkles 
a t a general level we have

F„ = ± ^ F (v « A ) .  (73>7T‘ m 0

where now r/a =  ^ /m j ,  5? =  (74)
VTIqTTI 4

and Д„ =  т"0т г — т'*. П®)

In  particular, a t  the  m ean level we have

(76)
■v 2 т я
± Ф ,
77*

The m ean lifetim e of a  zero is
ЛЬ (m0m2)* (77)
Jo Д f a  ’

The corresponding sta tistics for higher derivatives m ay  also be in te resting . F o r  
Э2//Эа;г th e  analogous even t to  a winkle or tw inkle is the  creation  or ann ih ila tio n  of tw o 
points of inflexion, or more generally tw o new  poin ts having a given second d eriv a tiv e  £4. 
T he case where th e  given curva tu re  is zero, an d  th e  po in ts are po in ts o f inflexion., is 
p robably  m ost easy to  visualize. The curve th en  develops an  ex tra  ‘ crinkle ’, w hich  is 
accordingly the nam e th a t  we give to  such an  event. The frequency of (generalized) 
crinkles is

<78>7r*m4

^ ere ?. = &/*!, = (79)mg

and  A2 =  (80)

T he frequency of ‘o rd inary ’ crinkles is

Pt  =  (81)
7T2 m 4

and  th© mean lifetime of a point of inflexion iв

L  n  j>»4m6)i
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In  a  recent paper (1) expressions were found for th e  s ta tis tica l d is trib u tio n s of th e  
velocities o f the zero-orossings and of the m axim a an d  m inim a o f a  random  m oving 
wave-form. In  th e  presen t note it  will be shown th a t  these d is trib u tio n s are to  some 
ex ten t arb itra ry , depending on how the  po in ts of observa tion  are selected.

The sam e n o ta tio n  will be used an d  th e  sam e basic assum ptions m ade as in  (1). I f

z = / ( z , t )  (!)

represents the height of a m oving wave-form , being a function  b o th  of th e  ho rizon ta l 
co-ordinate x an d  of th e  tim e t, th e n  th e  jo in t-p robab ility  d is trib u tio n  of th e  th ree  
variables

<*)

was shown in (i) to  be p(£v  g2, £,) =  p f t j p {^  £3), (3)

where p(Z i) =  — ■-1-  exp(-gjj/2TOo), (4)
(2mn0)i

P(£ i ' b )  = ^ j e x p [ - ( m J ^ - 2 m ; | 2ga +  » i2£|)/2A 0], (5)

Д0 = (6)

and are constants, being m om ents of th e  energy spectrum  o f / .  T he
velocity of a point a t  a constan t level /  =  is given by

.  _  №  g3 (7) 
dfjdx l \ ’

an d  from  (6) i t  was concluded th a t  th e  probability  d istribu tion  o f  с is

p i  с) =  I __ _______  (8) 
p ' } т г (с -г )» + д 0К ’

where (9)
m t ‘

This distribution  is independent of th e  level and is a  sym m etrical d is trib u tio n  w ith  
m ean c. We shall denote i t  more specifically by  рСН(с).

However, the distribution of с depends upon the  m anner in  w hich it  is observed. I f  
a po in t x  and tim e !■ are taken  a t  random , and  if  с =  - £ , /£ ,  is ca lcu lated  for each  
x  and t, then the distribution  of с is indeed given by  p™. M oreover, if  only  those  values
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of с are counted for w hich £j( =  / )  lies in the  range < gj < gj +  dg,, then  с has the same 
p robab ility  d is trib u tio n  (though th e  to ta l frequency ia naturally  reduced), since by 
equation  (2) £2 and g3 are sta tistica lly  independent of gr  If, however, a; and t are choaen 
n o t a t  random  b u t so th a t  exactly , th a t  is, if  only those points and instan ts are
chosen a t  w hich th e  function  /  crosses a  given level, then a different d istribution 
for с results.

This som ew hat paradoxical situation  m ay be clarified by  considering a simpler 
instance of th e  sam e behaviour. The probability  distribution of gt itself, th a t is, th e  
probab ility  th a t  will lie betw een th e  lim its g{ + d^  a t any  point and in stan t (ж, t), 
is given by

= ~ - T ,e x p  (10)(2tt m B)i

H ow ever, th e  p robab ility  th a t  will cross the level £[ in the  range (x ,x  + dx) and a t 
tim e t is found by  w riting

dx
— d f — d x = \ ^ \ d x  (11)

in  (10). Clearly th is  depends also on the  gradient g2. A lthough gj will cross th e  level 
gj on each ‘occasion1 when it  lies in  the range (£[, £t'1 -\-dil ), when this is sufficiently 
small, nevertheless i t  ‘ spends longer ’ in the  range if  the gradient £2 happens to  be sm all. 
To find the to ta l p robab ility  N (£[)dx  for a crossing in  th e  in terval (x, x  + dx) i t  is 
necessary to  in teg rate  over all possible values of the gradient. Thus

N ( Q d x  = J “j ( Z 1, i 2) \£ 2 \d x d b ,  ( 12)

and  since from  (3) p (g i,S 2) = ^ ( ^ i ) / ^ ~ j j exP ( - ^ / 2wlo). ( i3 )

we ob ta in  N (£i) = -  (~ ^ \  exp ( -g f /2 m 0) (14)7T \т$]
(cf. (1), equation  (32)).

W e no w apply th is argum ent to find the d istribu tion  of с under the conditions sta ted . 
W erequ ire  first the probability  J5<2|(g^ f s M S a ^ a ^ h a t^  < i i <  й  +  < i s < 1з+<^ з  
w hen it  is known th a t gj =  gj in  {x, x  + dx), t being fixed. By th e  law  o f inverse 
probabilities, M i r '  I f  f ' l

w here J>(2)(g{ | £2, g^) dxd£2d£3 denotes the  probability  th a t  <  £2 +  th a t
Is  < gs < ьз +  d ^  and th a t gx =  gj in  (x ,x  + dx). B u t by th e  previous argum ent

<16)

w here p (gj, g2, g3) is th e  ord inary  jo in t-p robab ility  d istribu tion  of (gj, g2, g3). S ub 
s titu tin g  from  (3) we have

№ . £ , )  =  J  л . \  -7 1 g, i exp [ -  (fflga- 2w lg ,g»+«i43)/2A 0], <17)
2 (2я)* (т2Д0)*
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which m ay be com pared w ith  (5). To find th e  d is trib u tio n  o f c, =  £3/^2» w rite

- & / £ * - ? i. ё . - * .  <18)

= \ Ъ \ (19)

in (17) and obtain

= ^ ^ T - a 7 — г т * ’? 2 е х р [ - К  +  2 Ч ’/1  +  т е 2 ’? ! ) '7 г /2 Д о ] -  ( 2 0 ) 
2(2тг)4 ( т гД0)>

On in tegrating  w ith respect to  ij2 from  — с »  to  00 and  w riting  7j1 — с we find

vm(c) _ I ___ Ao/l̂ l___ (21)
*  (C) 2 [(c —5)z +  A0/m|]4

с being given by (9). L ike p(11(c) (equation (8)) th is d is trib u tio n  is in d ep en d en t o f £, and  
is sym m etrical abou t th e  m ean value 8. I t  differs from  p a)( c) only  in  hav ing  th e  index 
\  in the denom inator, an d  in  th e  norm alizing constan t. T he w id th  o f  th e  in te rq u artile

ral,8e i s  2 ,/ЗД J/m , (22)

w hereas th a t  of pa '(c) is 2Д$/этг2. (23)

The in te rp re ta tion  of th e  d istribu tion  of с is accordingly very  sim ilar to  th a t  given 
in  ( 1 ), equations (26)—(30).

To find p (21(c) we supposed th a t  I was k ep t constan t, and  th a t  с w as to  be considered 
a t  those po in ts  x  for w hich /  or £1 passed th rough  a certain  value. In  o th e r w ords we 
have considered /  as a function of x  for fixed t. O n th e  o th e r h an d , we m ay  keep 
x  constan t and  consider those in stan ts  t w h e n /p a sse s  th ro u g h  a ce rta in  value, th a t  is 
we m ay consider /  as a function of t for fixed x. In  this сазе th e  sam e arg u m en t leads 
to  the  following jo in t d istribu tion  for (£2, £3):

[ | S . | e » p [ - K S - 2 « i £ , « , + » , a ) / 2 A J .  <24>2(2я)* ( т 0Д„)1

an d  a  sim ilar substitu tion  gives for th e  d istribu tion  of c:

р»>(с)=Л ------- Ы н * -------V | c | .  (25) 
2[(c-5)* + A0K ] * W

Thifi d istribu tion  is sim ilar to  p(1)(c) and jj(2)(c) in being independen t o f an d  hav ing  
a  w idth  of order Д$/?n2. B u t i t  is no longer a sym m etrical d istribu tion , on acco u n t o f 
th e  factor | с | .

F rom  the  examples given it  is clear th a t  the  p robability  d is trib u tio n  p(c) depends 
upon the m aim er of selection of th e  points to  be observed. I f  we im agine th e  surface 
z  — f(x ,  t) draw n, the  first case corresponds to  taking th e  in tersection  o f the  surface by  
an  arb itra ry  ordinate parallel to  the z-axis, and th e  second and  th ird  cases correspond 
to  taking the  intersection of the  surface by lines parallel to  th e  я -axis and  th e  i-axis 
respectively. Clearly we m ay choose lines of intersection in  any a rb itra ry  d irection , 
or indeed, curves of intersection having any shape or orientation .
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T he second case considered m ay well be th e  m ost common in practical applications. 

Thus w hen study ing  w ater w aves in  a model ta n k  photographs m ay be taken  of the  
same w ave profile a t  successive in stan ts of tim e. The appropriate d istribution is then 
p(2)(c).

In  th e  p aper (1 ) already  quoted, th e  d istribu tion  of the velocities с of specular points 
was derived by d irect analogy w ith th e  velocities of zeros. Here also the  distribution 
depends on th e  m anner of selecting th e  points (x, t). If, as m ay be the case in practice, 
th e  specular po in ts are stud ied  by photographing points of reflected light from a fixed 
d irection  a t  successive in stan ts, then  th e  appropriate  d istribution  will be th a t  analogous 
to  p m(c), th a t  is to  say,

Pm(<h) =  I  ------- .--Д , (26) 
[(ci — ci) + &ilml\

т п1
where 5, « ----- - (27)

m,4

an d  = (28)

ra th e r  th a n  th e  d istribu tion  given by equation  (34) o f (l). Sim ilarly for the  velocities 
c2 of th e  points o f inflexion we have

р?(сг) = \ -— - У г !  г  »ii- (29)2 [(сг —c2)J + A 2/We]*

w here = ----- - (30)m e

and  A2 =  (31)

I t  will be noticed th a t  the frequency of ‘tw ink ling’, which is also trea ted  in (l) , is not 
sub ject to  the  sam e arbitrariness.
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The following statistical properties are derived for a random , moving, Gaussian surface: (1) the 
probability distribution of the surface elevation and o f the m agnitude and orientation  o f the 
gradient; (2) the average num ber of zero-crossings per unit distance along a  line in an arb itrary  
direction; (3) the average length of the contours per unit area, and the d istribution o f their direc
tion; (4) the average density of m axima and m inim a per unit area of the surface, and  the average 
density of specular points (i.e. points where the two components of gradient take given values);
(5) the probability distribution of the velocities of zero-crossings along a  given line; (6) the pro
bability distribution of the velocities of contours and of specular points; (7) the probability  dis
tribution of the envelope and phase angle, and hence (8) when the spectrum  is narrow , the p ro
bability distribution of the heights of m axima and minima and the distribution o f the intervals 
between successive zero-crossings along an arbitrary line. All the results are expressed in terms of the 
two-dimensional energy spectrum of the surface, and are found to involve the  m om ents o f the 
spectrum up to a  finite order only. (1), (3), (4), (5) and (6) are discussed in detail for the  special 
case of a narrow spectrum.

T he converse problem  is also studied and solved: given certain statistical properties of the  
surface, to find a convergent sequence of approximations to the energy spectrum .

T he problems arise in connexion with the statistical analysis of the sea surface.
(M ore detailed summaries are given a t the beginning of each part of the paper.)

Reproduced with permission from Phil. Trans. R. Soc. Lond. A 249 (1957) 321 337.
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I n t r o d u c t io n

O n observing waves in the open ocean, one is struck by their irregularity: no single wave 
retains its identity for long, the distance between neighbouring crests varies with tim e and  
placc3 and frequently it is difficult to assign to the waves any predom inant direction or
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orientation. Thus although the sea surface may, for some purposes, be treated as a uniform 
train of waves advancing in one direction only, such a representation is usually far from 
reality.

The first attempt to treat the sea surface as the sum of more than a finite number of simple 
sine-waves is due to Barber and his collaborators (1946), who used a harmonic analyzer 
to resolve a length of record, say of wave height or pressure at a fixed point, into its Fourier 
components. The physical basis for this procedure is that, if the waves are not too steep, 
the energy in any particular frequency band may be expected to be propagated indepen
dently of the rest o f the spectrum, and with a velocity characteristic of its frequency. It was 
shown by Barber & Ursell (1948) that for ocean swell this is in fact nearly true.

Just as sea waves have no single frequency or wavelength, so they have no single direction. 
One must therefore consider the Fourier spectrum of the sea surface with regard to both 
frequency and direction or, what is equivalent, the spectrum with regard to wave-number 
in two horizontal directions. A two-dimensional Fourier analysis for sea waves was proposed 
by Longuet-Higgins & Barber (1946), who also suggested apparatus for finding a certain 
amount of information about the spectrum. Independently, Pierson (1952) has emphasized 
the importance of the distribution of energy with regard to direction when studying the 
generation and propagation of waves and swell. Thus waves from a limited storm area will 
decay more or less rapidly with distance according as the spread in direction of the energy 
is wide or narrow. Similarly, the angular distribution of the energy in a swell will be more 
or less concentrated according as the region in which it was generated subtends a wide or 
narrow angle at the point of observation.*

A very interesting problem now arises: the relation between the energy spectrum of 
the surface and its observable statistical properties. To take a simple example, suppose that 
we measure the surface elevation £ at a fixed point: what is the r.m.s. value of £ with regard 
to time; what is the average time interval between the maxima of what proportion of 
the maxima have heights between two given values?

Questions of this kind have been studied theoretically by several authors, notably by 
Rice (1944, 194s) in connexion with the analysis of electrical noise currents. Rice con
sidered the function _  5; Cncos (<rnt+ en), (1)

n
which is the sum of a large number of sine-waves of different frequency (Г„/27Г. The phases 

are random variables distributed uniformly in the interval (0, 2n), and the amplitudes 
cn are such that in any small interval of <r of width dor,

— E{<r) du, (2)
П

say (our notation is slightly different from Rice’s). The function E(ff) may be called the 
energy spectrum of It is the cosine transform of G. I. Taylor’s correlation function

m  =  к™ a t ' + о м  (з)

* Some other applications of the two-dimensional spectrum may be mentioned. It has been used to 
calculate the seismic energy generated by sea waves, where the directional distribution of energy is essentially 
involved (Longuet-Higgins 1950). Eckart has used a two-dimensional analysis to calcuJate the scattering 
of sound from the sea surface (1953 a) and the waves caused by a random distribution of pressure pulses 
(I9S3^)* ^  Denis & Pierson (1953) have applied it to ship motion; see also Cartwnght (1956).
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(see Khintchine 1934). One can show that the method of harmonic analysis used by Barber 
& Ursell (1948) is essentially equivalent to making an estimate of J E , within limits of 
accuracy imposed by the finite length of the record (see Tukey 1949).

Using the above representation, Rice was able to derive many statistical properties of (, 

in particular the probability distribution of [ itself (which is Gaussian), the average number 
of zero-crossings of f  per unit time, the probability distribution of the maxima, and certain 
statistical properties of the envelope.

It was found by Rudnick (1950) that records of sea-wave pressure are in fact Gaussian 
(see also Pierson 1952). Barber (1950) considered the distribution of wave heights, that is, 
the difference in level between a crest and the preceding trough, and compared some 
observations with the ‘ random-walk’ (or Rayleigh) distribution,* which is the theoretical 
distribution for a narrow-band spectrum. This distribution has been discussed in more 
detail by the present author (1952), who showed that the theoretical ratios of the mean 
wave height, the mean of the highest one-third of the waves, and the height of the highest 
of N  waves were in close agreement with observation. Further observations are given by 
Watters (1953).

Some two-dimensional statistical properties of the sea surface have also been measured. 
By photographing the pattern and intensity of sunlight reflected from the sea surface, Cox 
& Munk (19542,4) have deduced the statistical distribution of the two components of surface 
slope, in winds of different intensity. They find that the distribution differs only slightly 
from a normal distribution, f  One may expect that for swell, which is usually less steep 
than waves under the action of the wind, the departures from the normal distribution will 
be still less.

For more than fifty years attempts have been made to construct contour maps of the sea 
surface. Some results, together with references to earlier work, are given by Schumacher 
(1952). At the present time some very extensive maps are being made as proposed by Marks 
(1954). These maps may well be suitable for statistical analysis.

On the theoretical side, Eckart (1946) has considered the intensity of light reflected from 
a random surface whose gradient and second derivatives are all distributed normally; and 
he has also calculated the first and second moments of the total curvature. However, no 
extensive theoretical study of the two-dimensional statistical properties of a random  
surface appears to have been made.

The purpose of the present paper is to study theoretically the statistical properties o f a 
random, moving Gaussian surface, in relation to its two-dimensional spectrum.

In view of the observations mentioned above, there is reason to believe that some at least 
of the results are relevant to waves in the open ocean. The analysis may also apply to other 
geophysical phenomena, for example, to microseisms or perturbations of the ionosphere. 
In addition, however, the subject is of interest as a branch of geometry, and we shall develop 
it here on its own account, leaving the application of the results and comparison with 
observations to a separate study.

* So called because it was derived by Rayleigh in connexion with the theory of sound. See R ayleigh 
(1880; 1945, p p . 39—42).

t  Schooley (1954) has made similar measurements for the river Anacostia. A different technique was used 
earlier by Duntley (1950) on Lake Winnipeg.

40-2

'i
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The paper is in three parts. Part I is mainly introductory; we define some convenient 
parameters for describing the surface: the long-crestedness, the skewness, the carrier wave and 
the envelope, and we find conditions for the surface to split up in various ways into one or 
more simpler systems of waves.

The chief results are contained in part II. Expressions are derived for the statistical 
distributions of the surface elevation and the magnitude and direction of the surface slope 
(§ 2-1); for the average num ber of zero-crossings of £ along a line in an arbitrary direction 
(§2-2); for the average length of a given contour and for the distribution of its direction 
(§ 2-3); for the density of maxima and minima (humps and hollows) per unit area of the 
surface, and the density of specular points (points where the two components of surface 
gradient take given values) (§ 2-4); for the statistical distribution of the velocities of the 
zero-crossings of £ along a given line (§ 2-5); for the statistical distributions of the velocities 
of the contours (§2-6) and of specular points (§2-7). In order to interpret the more complex 
results, the case when the energy spectrum is narrow, i.e. when the waves are more or less 
uniform in wavelength and direction, is studied in detail. In  §2-8 some properties of the 
wave envelope are considered, and from these are deduced the average number of waves 
in a group, the statistical distribution of the heights of maxima and the distribution of the 
spacing between successive zeros, all for a narrow spectrum.

In  part I I I  the converse problem is considered: given the statistical properties of the 
surface, to find its energy spectrum. To do this, use is made of a striking feature of the 
present distributions, that they depend only on the moments of the energy spectrum up to 
a finite order. Thus the average number of zero-crossings along a line involves only the 
moments of order 0 and 2. The average number of maxima and minima along a line involves 
only the moments of order 2 and 4. Properties depending on the motion of the surface involve 
the odd as well as the even moments. Hence, by considering the statistical properties of the 
surface along a line in a num ber of different directions, the moments of the two-dimensional 
spectrum up to, theoretically, any order can be deduced. From this it is possible to obtain 
a convergent sequence of approximations to the spectrum (§ 3-3).

Detailed summaries of the results will be found at the beginning of each part.

P a r t  I. D e s c r i p t i o n  o f  t h e  s u r f a c e

Section 1-1 introduces the representation of a  simple wave pattern by a point in the wave-number 
diagram , and defines the concepts of carrier wave and  envelope, which are afterwards to be extended 
to a surface with a  continuous spectrum. The fundam ental definition of a random  surface in terms 
of its spectrum is given in §1-2.

In  §13 conditions are found for the surface to degenerate in various ways. Thus, a  simple con
dition for the surface to be ‘long-crested ’ (i.e. for the energy to travel always in the same direction) 
is given by (1-3-3). A condition for the surface to consist of no more than two long-crested systems 
is given by (1-3-7), and a condition for no more than n such systems is given by (1-3-8). All these 
conditions are expressed in terms of the moments of the energy spectrum E, which are defined 
by (1-2-7). A condition for E  to degenerate into a  ‘rin g ’ spectrum, i.e. for the energy to have 
uniform wavelength though not necessarily constant direction, is given by (1-3-11). For standing 
waves, both (1-3-3) and (1-3-11) must be satisfied simultaneously. Necessary and  sufficient con
ditions for the spectrum to be narrow so that the energy is uniform in both wavelength and direction, 
are given by (1-3*14). Necessary conditions for the existence of not more than two narrow bands 
of energy are given by (1-3-17) and (1-3-18).
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In §1-4 the curve of intersection o f the surface by a perpendicular p lane in an  a rb itra ry  direction 
0 is considered. I t  is shown how the spectrum Ee of this curve is related to the spectrum  E of the 
surface. T he principal direction is defined as the direction in which the second-order m om ent o f  E0, 
and so the r.m.s. wave-number, is a maximum. T he m inim um  r.m.s. w ave-num ber is in the per
pendicular direction, and the ratios of the r.m.s. wave-numbers in these two directions is a  con
venient m easure o f the long-cresLedness o f the surface.

In  §1-5 the carrier wave and  the wave envelope are defined for a  surface having a  continuous spec
trum . I t is seen th a t in general the principal direction of the envelope is different bom  th a t o f the 
wave surface, so that the waves form a ‘staggered’ or echelon pattern. T he angle betw een the two 
principal directions is called the angle o f skewness. I t is proved th a t the envelope o f the curve in 
which a  vertical plane intersects the surface is th e  same as the curve in w hich th e  plane intersects 
the envelope.

In  §1-6 some special properties of a narrow  spectrum are deduced; in particu lar, th a t the long
crestedness equals the reciprocal o f the r.m.s. angular deviation o f energy from  the principal 
direction.

1-1. The representation of simple wave patterns 
Im agine a single long-crested wave of length A travelling in a direction which makes an 

angle 6 w ith the x axis (see figure l<z). The wave-number w along a line perpendicular to 
the crest is defined as w = 2i,/A. (1 -1 -1 )

T he wavelength and direction can be specified very conveniently by draw ing a vector OP 
from a fixed point 0  in a direction в, such that the length of OP equals w. T hen  if we con
sider a section of the surface along any line making an angle в' with the x axis, it is clear th a t 
the wavelength along this section is increased in the ratio sec(0 —в'), so that the wave- 
num ber is multiplied by cos(0—в'). In  other words the corresponding w ave-num ber is 
simply the projection of 6 P on a line in tha t direction. In  particular, the wave-num bers 
parallel to the two fixed directions (x ,y ) are the co-ordinates of the point P  w ith respect 
of axes in these directions. The equation of the wave surface is then

f  =  ccos (ux+ vy+at), (1-1-2)
where «, w =  hj cos 0, ui sin 0,

and a is a function of и and v. I t  will be assumed that a depends only upon the wavelength,
th a t is o n ./ (u 2+w2) =  w; . . . . ,, , ..■' '  ’ tr =  o(u,v) =  <r(w). (1*1*4)

W e may take a to be positive, so that the direction of propagation is opposite to Op. I t
follows from (1-1-4) that , . , .v ' < r (-u ,-v )  = <r(u,v), ( 1 1 6 )

that is, waves of the same length but opposite indirection have equal and opposite velocities.
Consider now a pair of long-crested waves of equal am plitude с (figure 1 b). I f  these

are represented in the wave-number diagram by the vectors OP, and OP2, where P, =  (u„ »t)
and Рг =  (u2, u2), we have for the surface elevation

С = ccos(u1x + v Iy+ tr1t) + ccos(u2x + v2y + <r2t). (1-1-6)
This may be written

С =  2ccos(u'x+v'y+cr't) cos (йх+vy +  Vt), (1-1-V)

where u' =  K “ i - “2)> »' =  <? =  i(<r,-«r2) . j

“ = J(“l+ “j). 3 = i(w,+ti2), o =  i(<r,+<r2).J
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If  the wave-numbers (a„«,) and (u2>v2) of the two original waves are nearly equal, the term

2ccos (u'x+v'y + tr'l) ( i . i - 9)

in (1-1-7) represents a slowly varying amplitude which we may call the ‘envelope’ and

cos (Пх+ V y+ fft)  (1 -M O )

represents a ‘carrier’ wave of approximately the same wavelength and direction as the 
original waves. The carrier wave is represented in the wave-number diagram by the vector 
OM, where M  is the mid-point of P, P2. The envelope is represented by M PX or ]ЙРг.

V

F ig u re  1. Representation in the wave-number plane o f (a) a  single long-crested wave and 
(b) the sum of two long-crested waves of different wavelength and direction.

For example, suppose that the two waves are in the same direction but of different wave
length. Then the vectors 0P] and 0P2 are in the same direction and so also are OM  and MP2. 
Thus the envelope has the same direction as the carrier wave; the crests are infinitely long.

Again, suppose that the two waves are of equal length but in different directions. Then 
the vectors Op] and 0P2 are of equal length but different direction. The carrier wave, 
represented by OM, lies in the mean direction, but the direction of the envelope is now 
at right angles to the carrier wave. The result is a short-crested system of waves.

In  the general case (figure 1 b) it will be seen tha t the wave crests are staggered, or form 
an echelon pattern one behind the other. The direction of this pattern is perpendicular to
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P,P2. The wave-number perpendicular to PlP2 is given by the length О Т  of the per
pendicular from 0  to P,P2', i* ^  t^ e direction in which the wave-num bers of the two com
ponent waves are equal.

The angle between OM  and Pt P2 is a measure of the skewness of the waves.
The envelope (1-1-9) and the carrier (1-1-10) are not necessarily ‘free’ travelling waves, 

that is, they do not satisfy equations of the form of (1-1-4). T heir representation in the wave- 
number diagram is valid only so far as the spatial periodicity is concerned. However, 
for a narrow spectrum Й, v, a are nearly equal to u,, t/,, <r, respectively, and so the carrier 
wave does move with nearly the free-wave velocity, if the com ponent waves are themselves 
free waves. But the envelope moves with a velocity whose com ponents are

To a first approximation this is

which is the so-called group velocity. Thus in this special case the envelope moves with the 
group velocity of the carrier wave.

1-2. The representation o f a surface having a continuous spectrum 
W e now assume that the surface possesses a continuous noise spectrum  in two dimensions. 

Generalizing the representation used in equation (1) we write

=  I c ,  cos («„*+!v„y+<r„t+e„), (1-2-1)
Л

where it is supposed that the wave-numbers (и„,»л) are densely distributed throughout the
u, v plane, i.e. there are an infinite number in any elementary area dudv. is a function

*e = a(un,vm); (1-2-2)

the amplitudes сл are random variables such tha t in any element dudu we m ay assume

I ^ - E ^ d a d a ;  (1-2-3)
Л

the phases en are distributed randomly and with equal probability in the interval (0 ,2тг). 
The function E(uj v) will be called the energy spectrum of the m ean-square value of £ 
per unit area of the sea surface per unit time* is given by

=  p " = П > > » )  d“ d" (1‘* 4)

Thus the contribution to the mean energy from an element dudu is proportional to Edudv. 
We shall write

I Г E(u,v) dudw =  m00, (1-2-5)
J  —CO J —CD

I t  is assumed that average values taken with respect to x> у or t are equivalent to average values w ith 
respect to the phases ea.
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and in general for the (p , q) th moment of E(u, v) about the origin we write
Г Л  r  CO

I | E(u,v) aVdudw =  mM. (1-2-6)
J —an J — a:

These quantities will occur repeatedly throughout the following analysis. I t  is assumed that 
they exist up to all orders required.

T he function E(u, v) is closely related to the correlation function i/r(x,y, t) defined by

f { x ,y ,t )  Ax'Ay'At'. (1-2-7)

On substituting from (1-2-1) in the above we find

i{ x ,y ,t)  =  2 ^  cos [u„x+vny + tr j) ,  (1-2-8)
П

which can be written
Г со r  as

f ( x ,y , t )  = \ I E(u,v) cos (ux + vy + at) dudti, (1-2-9)
J  — CO J  —CO

so that jlr is the cosine transform of E. The even moments mpt are related very simply to 
the derivatives of f  a t the origin:

0>+? =  2r). (1-2-10)

1-3. Conditions for degeneracy 
Some im portant features of the surface can be described immediately in terms of the 

moments. For example, to find a condition that the wave energy shall all travel in one 
direction, so tha t the spectrum is effectively one-dimensional, consider the integral

Г m  /• ao (*«3

I I I I E(uu vi) E{u2,v2) ( a ^ -B jU ^ d t^ d u jd u jd ^ .  (1-3*1)
J — <B J —CO J J —to

I f  the spectrum is one-dimensional, the product £ («„  и,) E(u2, v2) is zero everywhere except 
when щ/vi =  u2jv2, when the squared factor vanishes. Therefore the integral vanishes. 
Conversely, if  the spectrum is not one-dimensional there will be a contribution to the 
integral from some pairs of elements du,dt),, du,d»2 for which u j v ^ u j v ^  and since the 
integrand is never negative the integral does not vanish. But on expanding the squared 
factor and separating the integrations with respect to and u2,v 2 we find that (1*3*1) 
is equal to

2 (mMm02- m 2u ) =  2 =  2Д„ (1-3-2)

say. Thus a necessary and sufficient condition for E  to degenerate into a single one-dimen
sional spectrum is that — 0 (1*3'3)

By similar reasoning, a condition for E  to degenerate into two one-dimensional spectra 
(see figure 2 a) is that

J7  " '  £ ( “ 2> "2 ) Bs)

X (a2w3 — u3tf2) 2 (a3b1 — a 1w3) 2 (a 1v2- a 2» ,)2 d a 1dfl1d a2dtf2da3df;3 (1-3-4)
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shall vanish. The squared product may be written

4 «3
2 «? u\ “ 3

a,«, Ujtl2 u3Vs =  «0 w * “ l wl U2t>2 “ з^з

4 «* v\ v\

v V

К--------------

45

0

( d )( C )

Ficure 2. The form of the energy spectrum for (a) two intersecting long-crested systems of waves,
(4) a system of standing waves, (c) a narrow  band of waves, uniform in wavelength and direction 
and (d) two narrow bands of waves.

(where eijk ~  ± 1 according as (i , j ,k ) is an even or odd perm utation of (1 ,2 , 3), and so the
integral equals ,

I •»« m31 m22 
6j msi m22 m,3 =  6Д4, (1-3-6)

ff!13 m04

say. Thus E  degenerates into not more than two one-dimensional spectra if  and only if

Д„ =  0. (1-3-7)

There is an obvious generalization to any number of one-dimensional spectra : the condition 
tha t E  degenerate into not more than n one-dimensional spectra is that

«2л. 0 m2n-l,l m n n

A * * 1 m2n-2,2 •• m n - \ n+1

m nn mn-\,n+l ■■ m0 2 n

=  0. (1-3-8)

V o l . 249. A.

\
\
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(In practice Д2, A ,̂ etc., must be compared with quantities of the same dimensions. Thus 
Дь, may be compared with (m20 +  m02)".)

A condition for E  to degenerate into a ‘ring’ spectrum, such that a]l the energy corre
sponds to wave components of the same length but possibly different directions, is that

f f f f  £ K « , ) £ ( a 2, v 2) [ ( u ? +  ^ ) - (“ 2 +  *4 ) ] 2d u 1d v 1d u 2d »2 ( 1 .3 - 9 )
J  — <B J  —CO J  —00 J  —00

shall vanish. This integral equals

2[(m<0 +  2fflS2 +  мм) т 00-(о т 20 +  т 02)г], (1-3-10)
and so we must have

(mi0 + 2m2i +moi)m m - ( m m+m 02)2 =  0. (1-3-11)

The condition for the energy to be situated at two diametrically opposite points of the 
spectrum (giving a standing-wave pattern) is that (1-3-3) and (1-3-11) shall be satisfied 
simultaneously (see figure 2 b).

A condition for the energy to be concentrated about a single point in the spectrum is that

Г Г Г Г  £ (“i>bi)-E(“2>®j) [(м, —«2)2 +  («1 — «г)2] d u , d y , d u 2d v 2 (1-312)
J  — аз J  —со J  —to J  —ас

shall vanish. This is equivalent to the pair of conditions that

(1-3-13)
л тз i" <a j*® pto
1 1 ) 1  £(«<„»,) E(u2,v2) ( ^ -B ^ d i^ d u jd u jd v j

J  — 00 J  — во J —to J —to

shall vanish, and a similar integral with factor (Wj—1>2)2- These are the conditions that the 
energy be concentrated on lines parallel to the v axis and the u axis respectively (see figure 2 c) 
On expanding the integrals we have

m2B mio =  0, I m02 «01
mio moo 1 m01 moo

=  0. (1-3-14)

A condition for the energy to be concentrated about not more than two points in the 
spectrum (not necessarily opposite) is that

Г ... P  E(ult iij) E(u2,v 2) E(u3,v3) П [(t<j—ttj-)2-)-(i>j—w,-)2] dujd^dujdwjdujdiij (1-315)
J  — 00 J —л  i+j

shall vanish. The term under the product sign may be written

(u2 - u3) 2 (u3 -  U,)2 («! - U2)2 +  {v2 - V3) 2 [v3 -  U,) 2 V2) 2

+ ^ (и 2- а 5)2 (и3- и 1)2(«1-У 2)24-Д и 2-И з)2(» з -« 1)2 (»1- » 2)2. (1-3-10)

Since all the terms are non-negative, each separately must vanish. The first two give the 
conditions

m 40 mso m20 % т оз
m30 m20 mio =  0, m 03 m02 Mfll
m20 mio m oa m02 m 0i m oo

0, (1-3-Д7)

which are the conditions that the energy shall be at the intersections of two pairs of lines 
parallel to the v and u axes, i.e. at the comers of a rectangle (figure 2 d). The remaining
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conditions can also be expressed in terms of the moments. Thus the group of terms under 
the first summadon sign in (1-3-16) leads to the condition

m 30 m 20 m n m S€ m 20 m n «40 m 2o

m 2, m 02 +  2 m 10 Щ о m \ i + m 20 m 00 m 0\

m 20 Щ о m 01 m io m 02 m 2\ m 0 l m 02

=  0. (1 -3 1 8 )

The last group of terms in (1-3-16) leads to a similar condition, the pair o f suffixes in each 
of the moments mH being interchanged.

We have incidentally shown that each of the combinations of moments on the left-hand 
sides of equations (1-3-2), (1-3-6), (1-311), (1-3-14), (1-3-17) and (1-3-18) is never negative.

1 -4. The spectrum of the surface in an arbitrary direction 

Let us consider the curve in which the surface f  is intersected by a perpendicular plane 
in direction 6, that is, the plane jrsintf—ycos# =  0 . The curve will represent a one-dim en
sional random function, whose spectrum Ee with regard to the w ave-num ber и in this 
direction bears a simple relation to the original spectrum E (u ,v). W e m ay call Ee(u') the 
spectrum of the surface in the direction 6.

First, let x', y' denote co-ordinates in the x ,y  plane in directions parallel and perpen
dicular to the direction в :

x' =  xcos6  +  y  sin/9, у — — xsin в +  у  cos в. (1-4-1)

Reciprocally, x ,y  are given in terms of x ',y ’ by similar relations, bu t w ith the sign of в 
reversed. O n substituting in (1-2 -1) we have

c =  i c „ Co s ( « ;* '+ » ; ,y - K * + o .  О -* 8)
Л

where u'„ — ancos0-bu„sin0, v'„ =  — u„ sin в +  vn cos 6, (1-4-3)

that is, the new wave-number is the co-ordinate, in the direction в, o f the point (ая,ип), 
and v'„ is the co-ordinate at right angles. We have also

<  =  т { ж + » 2)} = < к ж 2н ч 2)}- a - 4-*)
O n the curve of intersection we have y ‘ — 0 and so

C =  Z c ,c o s « * '  +  i r ' f + 0 -  ( l -4 -б)
Л

The spectrum Ee(u ) of this curve is defined as the function such tha t the energy corre
sponding to any small interval (a', u '-fdu ') is Ee(u')du‘. Thus if 2  denotes sum m ation 
over the strip (a ',a '+ d u ') ,

Ee(u') dn — 2  fcj| =  da' Г  E(u, v) d»', (1-4-6)

and therefore £ (a, v) d«'. (1-4-7)

In  other words, if we take a section of the surface in any direction 0, the spectrum  Ee(u') 
of this section is found by integrating E(u, v) along the line through P  =  (a' cos в, и' sin 6) 
at right angles to OP.

4 1 0
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From equation (1-4-7) there follow some simple and fundamental relations between the 
moments of the spectrum Ee(u') and the moments of the original distribution E(u,v). 
Let the nth moment of Ee about the origin be denoted by mn(Q). Then we have

т„(в) =  Г° Ee(u') u'”du =  f f E(u,v) a '“d a 'd i / .  (1-4-8)
J — CD J —00 J  — 00

Since u' — acos0 +  «sin0, v' =  — usintf+wcosfi (1-4-9)

(1-4-10)and M  =
d[u,v)

we have тп(в) =  I I E (u ,v )  (и cos 0 + »  sin#)" dud». (1-4-11)
J —in J —or.

After expanding the binomial and integrating each term we find

тп(в) =  ;nnOcos"0-f mn_x i cos"-1 6 sin в + . . .  +  „ sin" в, (1-4-12)

where mpt is the [p ,q ) th moment of E  about the origin (equation (1-2-0)) and denotes 

the binomial coefficient.
In  particular we have mo{6) ”  moo> (1-4-13)

showing that the r.m.s. value of £(*') is independent of the direction в and equals the r.m.s. 

value of £(*,y ) . Next, щ {в) =  m1()cos0+m ol sin0. (1-4-14)

I f  (a, v) denotes the centroid of the two-dimensional spectrum :

Woo oo
and if a' denotes the mean wave-number of the spectrum of £(*') we have

=  =  a cos 0 + 8  sin 0 , (1-4-16) 
щ [в)

which can be expressed as W — Eicos (в —д), (1-4-17)

where (a, v) =  (wcosd, wsinD). (1-4-18)

w and 3 may be called the mean wave-number and mean direction of the two-dimensional 
spectrum. Thus the mean wave-number of Ee(u') is the projection of the mean wave-number 
of E(u, v) on to the line of the section. The physical significance of this result will become 
clearer in § 1-6 .

T he second moment т2(в) is particularly important. From (1-4-12) we have
щ (0) =  m2Ocos20 +  2mt l cas0 sin0 +  mo2sin20. (1-4-19)

The maxima and minima of this expression are given by

= M K o  +  'no2)±7{(»«2o-nlG2) 2 +  4mf1}]> (1-4-20)

and these occur always in two directions at right angles, given by

tan  2 0 , -  2m" ■ (1-4-21)
m2Q 0̂2
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I f  0p corresponds to the maximum we have

Щ(в) = m 2m„ c o ^ ( e - e p) + m 2min_ s i n ^ ( e - e f ). ( 1 - 4 - 2 2 )

The direction 6p corresponding to the maximum will be called the principal direction of the
waves. Now m\> i

PhVLL] ( 1 - 4 - 2 3 )
\  Ща '

is the r.m.s. wave-number in the direction в. For a long-crested system o f waves the r.m.s. 
wave-number is a maximum perpendicular to the crests and a m inim um  parallel to the 
crests. In  general, therefore, a convenient measure of the long-cresUdness is given by the ratio

t ( 1 - 4 - 2 4 )
' 'Я ?  m in . '

which we denote by 1 /у. Thus we have

y-> (тга^~тт) ~-7{(m20~wi)?)2 +  ‘*7n ii}  (1 - 4 - 2 5 )
м 2»ш. (m20+ тог) +  Л ( т 20 ' т ог) 2 +  4mii} ’

W hen the condition (1-3-3) for a  one-dimensional spectrum is satisfied we have

y  =  0 ,  1 /7 = 00. ( 1 - 4 - 2 6 )

The two quantities m2mlx, m2min. are clearly invariant under a rotation of the axes. Hence 
we have also the invariants

^2  max. ^ 2min. ^ 2fl- -̂ ^02 ^  2 7 )

say, and m2mtx »i2miD. =  m20mM- m { i =  A2. ( 1 - 4 - 2 8 )

1-5. The tuave envelope

By analogy with § 1-1 we define the mean wave-number as the centroid of the energy 
distribution: ,

т00й =  j  j  E(u, v) adudu =  m10,

Г  C£ Г  CD

=  | I E(u, v) «dudti =  mol
J —CD J — ®

(1-6-1)

and wc define also the mean frequency a fair by the analogous equation

^ o o ^ J  J* E(u,v)<rdudv *=m'ao, (1-5 -2)

say. Now let (1 - 2 -1 )  be written in the form

£ =  « 2 <rnexp{i(u„jr+v„y-(-i7„i+ eI1)} (1 - 6 - 3 )
Л

=  a [I«»exp{i[(un- 2 )  * +  (v„ -v) y + (< r„ -v ) t + f j}  exp {i(1tx +  vy+ V t)}] , (1-6-4)

where Я  denotes the real part. This expresses £ as the product o f a carrier wave

e x p f i ^  +  tty-t-ff-f)}, (1-6 -6 )

and a slowly varying amplitude function

/'с 1#=  2 *„exp{i[(uB—2)* + (» „—» ) y + ( ( r„ -? ) f + e j} ,  (1-5-6)
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which may be called the complex envelope, (p and ф are real functions of (x ,y , t ), with 
/>3s0 .) Any other choice for the frequency of the carrier wave might have been taken; the 
mean wave-number has the unique property that the secular increase of ф with x and у 
is zero (as will be shown in § 2 -8).

Com paring (1-6-3) and (1-6-4) we see that the real part of the amplitude function, i.e. 
p cos ф, has the same spectrum as £, only with the origin moved to (U, 3); similarly for the 
imaginary part. (p itself, however, is a  different type of function, being essentially positive.) 
The properties of the envelope, therefore, are defined by the moments of the energy dis
tribution about the mean. Let

It is easily seen that 

and

E{u, v) ( u - u y  (w-T)« dudv =
J  — CO J  - «

Moo — mooi Mio =  Moi ~

MlO m20 “^OC =  {m20m00 ™Ло)1тОО,

Mu =  mn ~ uvmoo =  {mu maa~miamtii)lmoo>

Mo2 =  =  (m02m0 0 - mli) lm00-

The second moment about the mean in a direction в is

/1г(в) — /1гв cos2 6 + 2/i,, cos 6 sin 6 + /i02 sin2 0,

and the principal direction of the envelope is given by

tan 2 6 = — .
Мга~Мог

The angle /? between the principal direction of the envelope and the principal direction of 
the waves is given by

2Mi i (m20~  тог) ~  2m l, ith.0 ~ Aoz)

(1-5-7)

(1 -6 -8)

(1-5-9)

( 1-6-10)

(16-11)

tan 2В =  tan 2(5.—6Л =  ---------- 77------------v m --------■ (1-6-12)

Thus ^  is a convenient measure of the skewness of the waves (see §1-1).
Consider again the curve of intersection of the surface with a vertical plane in direction 

в. We may see that the envelope of this curve is simply the intersection of the two-dimen
sional envelope with the vertical plane. For on the one hand we have from (1-5-6)

/ j e ‘* =  2 c „ e x p { i [ ( u i —V) x'+ ( v l , - 'v )  y '+ (<r'„—^ ) i + e „ ] } ,  (1 -6-13)
R

where and «' are given by (1-4-3) and

a' =  a cos 6 +  5 sin в, V =  — a sin 6 + 5  cos 0. (1-5-14)

The intersection of the envelope by the plane y' =  0 is therefore given by

p c l* =  2 < ,e x p { i [ « - 5 ') * ’ +  K - y ) / + « J } .  (1-6-15)
Я

O n the other hand from (1-4-6) we may write

= « [ I c „ e x p { i [ ( a : - u ) j c '+ ( ^ - S ) < + e n]} « P { i( ^ '  +  !rO}]. (1 5 1 6 )
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where u' is given by (1-5-14). But we saw in § 1-4 that 2 ' is also the m ean w ave-num ber for 
the function £(*'>0  and therefore exp {i(SY +?«)} is, by definition, the carrier wave for 
£{x',t) and (1-5-15) is the envelope; which proves the result.

1 -6 . A narrow spectrum

A case of special interest is when the energy is concentrated near a single point in the 
spectrum, so that the component waves are nearly constant in w avelength and direction. 
As we saw earlier, the conditions satisfied by the first-order and second-order moments are 
that the left-hand sides of equations (1-3-14) are small. In  terms of the m om ents this implies 
A>o+ft>2^ m20+ m02> or equivalently

/<2o+A>2<̂ (“2+ l,2) moo- (1 -6 -1)

The envelope of the waves, as defined in the previous section, then has some special pro
perties. I f  in (1-5-2) we expand a(u, v) in a Taylor series about (й, v) we have

m00ff =  ^ |  E{u,v) ^ (u ,w ) +  (« -u )^ (r (u ,li)  +  ( i ; - » ) ^ j(r(8 )!>)Jdttdjj

=  ( 1-8 -2 )

terms of higher order being negligible. Since /i10 =  /*01 =  0 we have

?  =  <r(a,3). (1-6-3)

In  other words, the carrier wave is a free wave with the frequency and velocity appropriate 
to its wave-number. Further, in (1-5-8) we may write

* „ -*  =  (“„ - E ) ^ + ( « „ - l i ) ; | ,  C1'6'4)

so that pe}$ =  2exp{i[(un—*0 {x+ tfo /d ii) +  (vn — V) (y +  tdV/dv)]}, (1-6-5)
Л

which is a function of (x+ldVjdU) and (y+ tdtijdv) only. In other words, the envelope moves

Д  ( i-6 -6)
du ’ o il

j  being a function of w =  (u2+ »2)  ̂only, this velocity is

which is the group velocity of the carrier wave.
Let axes be chosen so that the и axis passes through the centroid (5 , B), making 5 =  0 . 

O n expanding и =  {u +  (n—a)^}, by the binomial theorem we have
1*00 i»oo

mpq “  I I Щи, v) utvvdudv
J — CD J — ®

1*00 /‘ to

=  J J  ^ E(u,v) [^+/>u*-‘(u -5 )4 - . ..  +  ( u - 5)*] (»-Z)*d«dw

=  *%> + / i* -,Af +  . . .+ ^ f. (1-6-8)

bodily with velocity , . .
7 I da da\
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In  particular, since /110 =  цах =  0, we have

v шго =  «Чо+Яго» ”1 | |= / ' | | ,  Щ2 =  Мо2- (1-6-9)
Thus (1*4-9) becomes

m2(0) =  u2/^ c o s 20 + (/i2ocos2й +  й /^со в в sinB+fim sin2в). (1-610)

Since fin  sj (^оЛю)1 follows that all three moments /in , /i02 are small compared with 
Hence т2{в) has a maximum near в =  0, ti and a minimum near 6 =  ± Jjr. In other 

words, the principal direction lies along the axis of u. The long-crestedness y~l was defined 
as the ratio of the r.m.s. wave-numbers parallel and perpendicular to the principal direc
tions. Thus .

7’ =  ^ ®  =  4 °-^. (1-9-11)
m2(0) и Moo

Now in the neighbourhood of the centroid we have v — ив very nearly, so that

Л)2 =  f E(u,v) S262dudv. (1-6-12)
J — и J

Hence 72А » = Г *  Г” E(u,v) 62dudv. (1-6-13)
J -® J ~a>

In  other words, у is the r.m.s. angular deviation of the energy from the mean direction.
Since the principal direction of the waves coincides with the и axis, the angle of skewness 

fi is the angle between the и axis and the principal direction of the envelope, that is,

tan 2/?= 2|“n . (1-6-14)
tha Mm

It will be found convenient to introduce one further parameter for a narrow wave 

Spectrum: ■’ -О и /Я Ч о )* . (1-6-15)
v is proportional to the r.m.s. width of the spectrum in the principal direction. We shall 
show in § 2-8 tha t v~l is a measure of the average number of waves per ‘group’.

P a r t  II. S t a t i s t i c a l  p r o p e r t i e s

The fundamental statistical distributions of £ ar>d iu  derivatives are given in §2-1. The following 
three sections are devoted to properties of the surface not involving motion, and the next three 
sections to the distributions of velocities associated with these properties. Lastly, §§2-8 to 2-10 
deal with the envelope of the surface and with properties which can be derived from it.

The distributions of the surface elevation £ and of the two components of gradient S^jdx , 3C:dy 
are normal in one and two dimensions respectively (equations (2-1-8) and (2-1-12)). The greatest 
r.m.s. gradient is in the principal direction of the surface, The distribution of the magnitude a  of 
the gradient regardless of direction is given by (2-1-31) and figure 3. For very short-crested waves 
the distribution is a Rayleigh distribution; for very long-crested waves it tends to a normal dis
tribution, with an anomaly near ot =  0, the shape of which is shown in figure 4. The probability 
distribution of the horizontal direction в of the gradient is given by (2-1-37) and figure 5. It is 
shown that as the long-crestedness increases, the direction of the gradient becomes more and more 
certain to be near the principal direction.

In §2 -2 is found the mean number of zeros of the surface along a horizontal line in an arbitrary 
direction в. The number N0 per unit distance is given by (2-2-6). Thus JV0 is a maximum when в is 
in the principal direction, and a minimum in the direction at right angles. The ratio iV3m<I./ArcnuE
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is equal to the long-crested ness y-1. The mean number of times that the surface crosses a line at 
arbitrary level is also found (2 2-12), and the mean number of crests and troughs of a  plane section 
of the surface in any direction.

The average length of a  contour of constant height drawn on the surface is derived in §2-3. The 
length s per unit area is given by (2-3-16). The distribution of the direction в of the normal to a 
particular contour, a t points distributed uniformly along it, is given by (2-3-23). As in §2-1, when 
the waves become long-crested, the direction becomes concentrated near the principal direction.

Next (§24) the average density of maxima and minima of the surface per unit horizontal area 
is considered. It ia shown that the average density of maxima, is equal to one-half of the
average density of saddle-points, and to one-quarter of the total density of stationary points on the 
surface. The actual density is given by (2-4-61), in the general case. For a narrow spectrum, 
the density is given by (2-4-61) and table 1. Dme. depends not only on the long-crested ness but also 
on a parameter a representing the peakedness of the energy distribution with regard to direction.

Passing now to properties depending on the motion of the surface, we consider in §2 6 the 
velocity of the zeros of the surface along an arbitrary line. We find that the velocities have a 
probability distribution given by (2-5-16). This is symmetrical about a mean value depending on the 
first-order moments. Similarly, the velocities of maxima and minima of a plane section of the 
surface have a distribution given by (2-6-19). These distributions are studied in the special case 
of a narrow spectrum. The width of the distribution depends on both the width of the energy 
spectrum and on the dispersive properties of the medium.

The motion of a contour on the surface can be defined locally by the velocities of its points of 
intersection with lines parallel to the axes of x, у (§2-6). The distribution of the reciprocals of the 
velocities, which is simpler than that of the velocities themselves, is given by (2-6'21). The dis
tribution is discussed in detail for the case of a narrow spectrum; the contours o f constant pro
bability are then concentric ellipses.

In §2-7 is considered the motion of the ‘specular points’ of the surface, that is, points where the 
gradient of the surface takes a certain value. (Such points on the sea surface are, to a  distant 
observer, points of reflected sunlight.) The probability distribution of the two components of 
velocity is given by (2-7-31). In the special case of a narrow spectrum the mean velocity of the 
specular points is equal to the phase velocity of the carrier wave. The departures of the velocities 
from the mean velocity have a distribution given by (2-7-37). This expression has been computed 
for three different values of the pcakedness a, and is shown in figure 12 <j, b and c.

In §2-8 we consider some properties of the wave envelope, from which we derive some other 
useful distributions. The distribution of the envelope function itself is a Rayleigh distribution 
(2-8'6). The joint distribution of p } d p jd x  and d p jd y  is given by (2-8-16), from which it follows that 
the envelope possesses a number of properties analogous to the original surface. The envelope also 
controls the ‘grouping* of the waves, and we find, taking a section of the surface in an arbitrary 
direction в, that the average length of a group is 2/N, where N is given by (2-8-26). Hence the 
average length of a group is least in the principal direction and greatest in the direction at right 
angles. We find the average number of waves in a group (2‘8'27) and the condition that this shall 
be independent of the direction в (2-8-28).

When the spectrum is narrow, the crests of the waves lie practically on the envelope, and so we are 
able to deduce that the probability distribution of the heights of crests is approximately a  Rayleigh 
distribution (2-9-l). The distribution of the heights of maxima is found through the distribution 
of the heights of the maxima of the envelope (2-9-8). This distribution is shown in figure 13 for 
different values of peakedness a. The limiting case of two crossing swells (a = 1) is given by (2'8'12) 
and is also shown in figure 13.

Finally, in §2’10 is deduced the distribution of the intervals / between successive zero-crossings, 
or between the successive points of intersection of a straight line with a contour at fixed height. The 
distribution of I for waves of all heights is given by (2-10-18). However, if the waves are classified 
according to their height, the distribution of I is given by (2-10-23), and hence it is found that I is 
less scattered for the high waves than for the low waves. The degree of scattering is inversely pro
portional to the average number of waves in a group.

V o l . 249. A-
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(2-1-2)

2-1. The distribution ojsurface elevation and gradient 

Let J,, be n quantities, each the sum of a large number of independent variables 
whose expectation is zero. Then under certain general conditions (discussed by Rice 1944, 
1945 ; see also Сгагпёг 1937) the joint-probability distribution of is normal in
n dimensions:

P ( £ u - ,L )  -  ^ Г д * е х р { - W ' M j}, 

where (M y) is the inverse matrix to

/1 !  (Z  -  IZ\
(s0.) = j Щ  Ц ... U n  j 

\U L  1 и * . ••• i n )
and Д =  I j. (2-1-3)

The elements of (E 0) are the mean products . of the variables £, and {■, over the probability 
space of the independent components. (Sy) is a positive-definite matrix, for if a„ . . . ,a t  
are any n parameters not all zero

a iaj l f ( j  =  (a,i,)2> 0 . (2-1-4)

Now according to equation (1-2 1 ), f  and also its derivatives are variables of this type. 
Further, writing for brevity

unx + v„y+< r„t+en =  ф„, (2-1-5)

we have ?  =  (2 fBcos?>J2 =  2  (2 -1-6)
Л Л

since the phases are random. Thus

t? =  Г" f  E(u,v) dudw =  т 00,
J  —to J — «

and accordingly the probability distribution of £„ =  £, is

_  ^  =  ( ^ eXP{- £i,2m^ '  

Similarly = ( ~ 1 с яи„апф.)2 = 2  Ы 4  = Ща,

( ^ )  = ( - 2 f n » „ s i n ^ ) 2 = 2 ^ n ^  =  :

dS dS  =  (2 «„u„sin^„) (2 c„v„sinj!Sn) =  2 =  mn . 
ox ay „ „ n

T he m atrix of correlations for 

is therefore

Г г К  dj
Ь2' ъ з“  dx’ dy

/ — \ _  (m20 m l l \  
y U „  m j ’

and the joint-probability distribution is

рИгЛъ) =  ^ д * е х р { - ( и 0 2 й - 2 т и £2^  +  т 2 0 Й )/2 А2},

(2 -1 -7 )

(2 -1-8)

(2 -1 -9 )

(2 -1-10)

(2 -1-11)

(2-1-12)
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where A ,=

The cross-correlations between £ and dQdx, dQdy are given by 

i j j i  =  ( Z f . c o s ^ H - X c .^ s i n j O  =  0 ,
ux n n

$  =  ( 2  Cn C0S Фп) ( - 1 СЛ ^ ПФп) =  °.иУ n n >

so that £ and dQdx, dQdy are uncorrelated. The joint-probability distribution of

а М г )  =  (Ш д х ,д Ц д у )

” therefore giv' n by f (S „ fc ,{ ,)  -  # < { , № « .

w here/>(£,) is given by (2 -1 -8) and />(£я>£з) by (2 -1-12).
In general we find, by repeated differentiation,

(2-1-13)

(2-1-14)

(2-1-15)

(2-1-16)

and

\d x » d y * j
д»*1Г ЯР'*ч'Г
,  ■-— г— -, =  (  —  i)k.p+<i-i>'-tnm  
дхрду*> dxp diji

(2-1-17)

Р+Р',я+я', or О,

according as (p +  q —p' — q') is even or odd. For example, the derivatives of order p +  q =  n 
are not correlated with those of order p' +  q' =  n + 1 ; but they are correlated, negatively 
in general, with those of order h + 2 .

Slightly different results apply to derivatives involving the time t. W e have from (1-2-1)

ЙГ
f t  =  -  2 < n<r„sin (unx + v ny  +  <r„t+en), (2-1-18)

and so the energy spectrum of d^/dl is o2E(u,v). The correlations between the derivatives 
of £ and those of dfydt are given in terms of the moments

/Ч Е  Л ®

т'м = I i aE(u,v) dudv,
J  —tB J —«O

rr"pq —■ f  f  ir2E(u,v) uh^dudv
J  —CO J — о

of the functions <rE(u,v) and rriE(u,v). As in (2 -1-9) we have

and in general

and

т у  _  . m  , mldt) _m°«’ ШТх~Щй' шту ~  

\dx*dy*Bt} ~

Щи

(2 1 -1 9 )

(2 -1-20 )

( 2-1-21)

/#*♦»+•£ \ / дР'+l'l" \ ,  ,

W f c W  f o v )  "  or 0 , (2-1
22)

according as (p +  q —p ’ — q■') is odd or even. Thus all the correlations of the spatial deri
vatives of dQdt with the spatial derivatives of £ are expressible in terms of the odd moments

4 9-2
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of <rE. The odd derivatives of d̂ jdt are all independent of the odd derivatives of f  but are 
correlated with all the even derivatives; and vice versa.

Let us now consider more closely the pattern of surface slopes. I f  the magnitude of the 
surface slope is a and its direction is 0 we have

& .f j)  =  =  (acosff, a sin в), (2-1-23)'dy, 

d ( a ,P W )  =  * ( & .& ) .  (2-1-24)
or from (2 -1-12)

р(а ,в )  =  ^ e x p  {— a2(m02 cos2 6 — 2m,, cos в sin 3 -|-m20sin2 6)/2Д2}. (2-1-25)

I f  we take the x axis along the principal direction, so that mu vanishes and mM^ m 02, then

р(и ,в) =  ^ ^ j e x p { - a 2(7n02cos2/5 +  m20sin2 l9)/2Aj}. (2-1-26)

For a fixed value of в, the r.m.s. slope is given by

( a2p (а, в) da 
Jo
J/M) da

=  Г--------^ -----i - J * . (2-1-27)L.77Iq2 COS в -f- ТЯ2о Sin P.J '

The maximum r.m.s. slope, therefore, is in a direction в — 0, that is to say, in the principal 
direction. The minimum slope is in the direction at right angles to this.

The statistical distribution of the slope regardless of direction may be found by in
tegrating p(a, в) with respect to в from 0 to 2w. We find

P{*) = ^ e x p { - a 2(m20-l-m02)/4A2}/0[aJ(77i20- m 02)/4A2]} (2-1-28)

where I0(z) =  Г e~zl,nCI d8 =  J0(iz), (2-1-29)JWJo
Ia being the Bessel function of order zero with imaginary argument (see W hittaker & 
Watson 1952, chap. 17). W riting

„ = ------ 2------(2-1-30)
(т20+ т 02)* m

for the relative slope, and y~l =  (m20/m02)* for the long-crestedness, we have

P (l) = 7 ( У + Г 1) ехр { - 7 2(7+7~ 1)7 4Ш 7 2( Г 2- 7 2) /4]- (2-1-31)
This distribution is shown in figure 3, for у =  1, i ,  J and 0 . W hen у =  1 we have, since 

7o(°) =  1> р (ч) = 2 г 1 е -* .  (2-1-32)

Thus for short-crested waves the slopes have a Rayleigh distribution. Now as z tends to 
infinity, 70(z) ~  (2пг)-*ег (W hittaker & Watson 1952, p. 373) and so when у is small we 
have, for general values of n, i

P M ~ ( D  e-M . (2-1-33)
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F ig u re  3. The probability distribution of the surface slope rj — a /(m 0̂ +  m§2)i, 
for different values of the long-crestedness.

F igure 4. The limiting form of the slope distribution close to the 
origin, for a very long-crested surface.

In  other words, for long-crested waves the slopes have in general a norm al distribution (as 
we should expect, for since the slopes are nearly all in one plane, the distribution of a is 
the same as the distribution of dQdx, which is normal). However, for very small slopes, 
comparable with ym, we must use the approximation

Р(Ч) =  Ш ^ Ч 0( ^ ) ,  = / ( , / ? ) ,  (2-1-34)

\



281

342 M. S. LONG U ET-H IGG IN S ON T H E

saY' f i v h )  is plotted in figure 4. As tjly-yco, so f - >  (2/n)l, which is the value of (2-1-33) at 
the origin. The anomalous distribution near the origin appears to arise from directions в 
which are nearly perpendicular to the principal direction; since the crests are only of finite 
length, the chance of a very small slope in this direction is less than if the waves were 
two-dimensional. Nevertheless, the integral of (2-1-34) from 0 tooo is equal to 1, so that as 
the waves become infinitely long-crested the contribution to the integrated probability 
from the anomalous term is vanishingly small.

F igure Б. T he probability distribution of the direction в of the surface gradient for different 
values of the long-crestedness. в = 0 is the principal direction.

Even when the waves are not long-crested, still for large values of r)
1

Pin)-(I (2-1-35)
W  ( I - /* ) 1

Thus for large slopes the distribution always approaches a normal distribution ultimately, 
provided у < 1.

The statistical distribution of the direction 8 of the gradient is found by integrating 
(2-1-26) with respect to a from 0 to o o : ^

' 2тг(т02 cos2 в + m20 sin2 6)'pm

2ir(y2cos28 +  sin2#) ’

(2-1-36)

(2-1-37)
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When у  =  1 (the waves are short-crested), p{6) is independent of в and there is no pre
ferential direction for the slopes. As у diminishes the slopes become m ore and m ore con
centrated about the principal direction (see figure 5). W hen y<^ 1 we have in  general

pm 2nsin20 ’

which tends to zero as у ->■<). But near the principal direction, i.e. when в  is com parable 
with y, we have

p W  =  2n (y2+ 02) ’

a distribution whose w idth is proportional to y. The integral o f the distribution from 
в/у =  —oo to oo is equal to Thus the probability that в is near zero is and so also is the 
probability tha t в is near v. Hence it becomes almost certain th a t the gradient is nearly 
in the principal direction.

I t  should be noted tha t the probabilities so far discussed are for points distributed 
randomly and uniformly in  the x ,y  plane. T he corresponding probabilities for points 
selected so as to lie, for example, on a particular contour £ =  constant, are different, as 
will be seen in §2-3.

2 -2 . The number o f zero-crossings along a line 

As in § 1-4, let us consider the curve in which the surface is intersected by the vertical 
plane xsin0 =  ycos0. A point where this curve passes through the m ean level (f  =  0 ) 
m ay be called a  zero-crossing of {. We shall now consider the num ber of zero-crossings of £ 
per unit distance x' measured along the line of intersection of the vertical plane and the 
mean level.

The mean number of zeros for a random function of a single variable has been derived 
by Rice ( 1944, 1945)- We recall his argument briefly. £ and dt^/dx’ are random  functions 
which we shall denote by £, and £2 respectively. Suppose tha t £ passes through zero at 
some point x in the interval (x'0, x'0 +  dx'), and with gradient d^/dx' lying in the range 
(£г> £2+ ^ 2)- Then at the point x‘ =  x0 itself £ lies in the range (0 , — £2dx'), approxim ately, 
i.e. a range of height d£s =  | £21 dx'. The probability of this occurrence is

p (0 ,&) |f , |d x 'd £ s, (2 -2 -1)

where p (£\,£2) is the joint-probability distribution of (£,, £2). The total probability of a zero 
in (*i,xe +  dx') is found by integrating with respect to £2 from —00 to 00 . Hence the total 
num ber N0 of zeros per unit distance is given by

K =  Г  Р(0,Ь)\Ь\<Иг- (2-2-2)
J  —«о

Now the matrix of correlations for (£,,£,) is

<s„) -  ( 7  W

and so by (2 -1-1) ,
M £i,k) -  щ ) t exp{~ /2w„ ~ (2-2-4)
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O n substituting in (2-2-2) and carrying out the integration we find

" • - ; £ $ ) ) * •  (2'2'5) 
In  other words tiN0 is equal to the r.m.s. wave-number in the direction в. I t  follows at once 
from § 1-4 that

(1) the number o f zeros is a maximum and a minimum for two directions at right angles, given by

Qjm
tan 20,  =  - — U p ; (2-2-6)

m 2Q "4 )2

(2) the maximum and minimum values o f N0 are given by

^ 0max.» ^ 0min. “  _± [ (^ 2 0 ^ 02) ^n /{(^20 ^ог)2”̂ J (2‘2‘7)7rmj0

(3) the number o f zeros in a general direction в is given by

Х ^ Х ^ с о ь Ц б - в ^  +  Щ ^ т Ц в - е , ) ;  (2 -2 -8)

(4) the ratio N0miJ N 0aiaL is given by

$ 1 ”“! =  r, (2-2-9) 
^Dmax.

where y~l is the long-crestedness; for a narrow spectrum А^амл./^отах equals the r.m.s. 
angular deviation of the energy from the mean direction.

There are similar relations for the mean number of crests and troughs along the curve, 
since these are simply zeros of the derivative дЦдх'. The energy spectrum of d^jdx' is u' 2 
times the energy spectrum of £. So the mean num ber Nj of crests and troughs together is

<2 2 '10>

(the num ber of crests or troughs separately is half this). m2 and тл can be expressed in terms 
of the two-dimensional moments of E(u, v) by means of ( 1 -4-12). mt is of the fourth degree in 
cos в and sin в, and it is found that in general N l (6) has four maxima (in two pairs of opposite 
directions) and similarly four minima; these can be found, if necessary, in terms of the 
fourth-order moments m ^ ,m 3U .. . ,m 04 and the second-order moments m20, m n , m02.

In  the same way the mean number N2 of points of inflexion on the curve is

and the maxima and minima of N2 are given in terms of the sixth-, fourth- and second-order 
moments of E(u, v).

We may find similarly the average number of times that the curve of intersection 
crosses the level £ =  For in (2-2-1) and (2 -2-2 ) it is necessary only to replace />(0 , £2) 
by />(£,>£2)- Since £i and £2 are independent, this simply amounts to multiplying by a factor 
exp{ —£?/2ma}. So in the general case we have

No =  I  g j f j ) *  exp Ы У 2 т 0(в)}. (2-2-12)
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By similar reasoning, the number of times ЛГ, per un it distance tha t the curve has a  gradient 

is given by jyi = l  Q g j ) *  exp { - £ 1/2* # ) } ,  (2-2-13)

and there are similar expressions corresponding to the higher derivatives of £(*').

2-3. The length and direction o f the contours

Let us consider now a corresponding property in two dimensions. Im agine the surface 
contours £ =  constant to be drawn in the x, у  plane. Contained in any region A of the plane 
there will be a certain length s of the contour £ =  £0. The average length o f contour, being 
proportional to the area A , m ay be denoted by sA. The factor £ is now to be evaluated.

d/t
F ig u re  6. T he length s  of contour intercepted by a small elem ent o f area d A .

Let P be any fixed point in the plane, and cL4 the area of a  small region surrounding P 
(see figure 6). Let s denote the length of a contour C ~  Co intercepted by the region dA, 
and let n denote the perpendicular distance of the contour from P. Suppose th a t the 
magnitude a and direction в of the gradient are fixed. Then the height £ of the surface at

Pis  Siven ЬУ (2-3-1)

For the contour to cut the element of area, the perpendicular n and the height £ must lie 
in  certain small ranges (п{)п2) and (£i,£2). I f  now <*,6 are allowed to vary w ithin small 
ranges (a ,a+ d a ), (6 +  66), the expectation sx e dAda.d6 of s over the area dA  is given by

Ja (jd<4da:d5 =  f  sp(C,, a, 6) d£dad$ =  f  sp(C, a ,6) adn dadd , (2-3-2)
J £i J ni

where />(£, а, в) denotes the joint distribution of £, a, в a t P. Since £, а, в  are nearly constant 
over the small range of integration of n we have

smitd A ^ a .p ( i ,a,e )  [ ' j d n  =  ap(C, а, в) d^4, (2-3-3)
J П,

and so *а.в =  * Ж .“>0 )- (2 3‘4)
Integrating over all possible values of a, в we have

s =  j *  J \ ,  tfdadtf =  J “ _ [% (£ ,«, 9) dadd. (2-3-6)

Now from § 2-1 /,(£, а, в) =  p (Q p(a, в), (2-3-6)

43 V o l.  249. A.
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w here/?(£) is given by (2-1-8), with £, =  f, and fi(a,6) is given by (2 -1-20). On substituting 
these values in (2-3-5) we have

i=  (a'g)* (m00A J i exp ^/2woq) Jo Jq a2exp { -a 2(mmcos2в+m20sin26)j2A2} dtzd6.
(2-3-7)

(11 has been supposed that the x axis is taken in the principal direction, so that mu vanishes.) 
Integration with respect to a gives

1 =  1^ Г ех р Ь № < ю }  p 7 ------T ^ - r ^ --------J^ ri, (2-3-8)47rmJ0 Jo (m02sinzf - f m20cos2^),

where ф =  6 4 - \n . T hat is to say

J -  . т'Л e x p { - f i/2woo} f* - — j ,  (2-3-9)77(wm 2̂2Q)4 Jo (1—A^sm2^)*

where *2 = 1 —y2. (2-3-10)

Now since А_кЫпфсо&ф _ , *2- l
d (* (l-A 2sin2^  * Sm Ф) +  ( 1 -A 2sin2fi)»’ (‘ 3 l i )

it follows, on integration between 0 and that

“  ■ ; -  В Д .  ( * H 4

where E(A) is Legendre’s complete elliptic integral of the first kind (Legendre 1811). 
Hence we have finally

J =  W m ^ H ^ 2) ‘ exp {_ f2/2m°o}(1 + r 2) . j E{V(1 -У 2)}- (2-3-13)
11 \ m0o >

In  the special case of long-crested waves, when у =  0 , we have E (l)  =  1 and further

т20 = тг( 0), OTo2 =  0, (2-314)

giving J =  ^ { - £ 2/2mM}. (2-3-16)
•f \ " ‘00 I

Comparison with (2 -2 -12) shows what we might expect, namely, that the mean length of 
contour per unit area is equal to the mean num ber of crossings of the contour level per unit 
distance by a plane perpendicular to the wave crests.

In  general (2-3-13) may be written

.  _  1 рИ ±«!ю )*  е х р Ь д а ^ Л г ) ,  (2-3-16)
я  v /

where f{y )  =  (1 + 72)~*E{./(1 — y2)}. (2-3-17)

This function is shown in figure 7. At the two extreme values we have

/(0 )  =  1 (2-3-18)

and  /( 1 )  =  ^ =  1-1107 .... (2-3-19)
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Throughout its whole range the function departs very little from unity. T here is, however, 
a weak singularity at the origin, where

/ ( 7) =  l +  i r 2( l n ^ - |  +  0 ( r 2ln r ). (2-3-20)

A very closely related distribution is that of the direction в of the norm al to a given con
tour. Let us suppose th a tЙ is measured at points randomly and uniformly distributed along 
the contour, в  is also the direction of the surface gradient at the point of measurement. 
However, the distribution of в for a given contour is quite distinct from the distribution 
of в found in § 2 1 , where it was supposed that the angle was measured, not on a particular 
contour but at points randomly distributed in the x ,y  plane.

Figum 7. Graph a tf(y) = (1 + y2)-* E [J(l - y 2)}.

To find the distribution p{6)j for the contour f  =  constant we may note that the con
tribution of a given length of arc to the distribution of в in the interval (0 ,0 +  dв) is simply 
proportional to the expected length of arc for which в lies between these limits, that is,

р(в),А6сс  f \  e dad6. ( 2 - 3 - 2 1 )
Jo

O n normalizing the right-hand side by dividing by J we have

P(*)С =  ^ f \ » « b  =  \ Г “Ж ,М )  Aa. ( 2 - 3 - 2 2 )J J0 j Jo

Substituting from (2 -3 -6 )  and ( 2 - 3 - 1 3 ) ,  and carrying out the integration we find
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(where в =  0  is chosen as the principal direction). The form of this expression is somewhat 
similar to (21-37). W hen у — 1 (for short-crested waves)

№  f =  (2-3-24)

i.e. the contours have no preferential direction. As у diminishes the distribution becomes 
more and more concentrated about the mean direction 0 =  0. When у is small, we have 
for general directions 2

(2’3'26)

which tends to zero as y-+ 0 . But near the mean direction, that is, when в is comparable 
with y, .

5 ^ '  ( a ' 3 ' 2 6 >

The integral of this expression from djy — —co to oo is equal to J. Thus the probability 
that в is near zero is £, and so also is the probability that в is near n. Hence it becomes 
highly probable that the direction of the contour is near the principal direction.

2 -4. The density o f maxima and minima 

Let us consider now the problem of how many maxima and minima (humps and hollows) 
the surface possesses, on the average, per unit area.

At a maximum or a minimum the two components of gradient dQdx, dt ĵdy must vanish. 
But not all such points are maxima or minima; we may also have a col or saddle-point, 
where the surface tends to rise in one pair of opposite directions and fall in another pair of 
opposite directions. We shall prove the following theorem:

On a statistically uniform surface the average density o f maxima per unit area plus the average 
density o f minima is equal to the average density of saddle-points, or

-Dma +Л ш . “  f la -  (2-4-1)

Let a  contour map of the surface be drawn, and let a direction ф be assigned to each 
contour, say to the right when facing up-hill. Thus at each point of the plane, except the 
stationary points, there is a unique direction ф. Consider now the variation of ф round a 
small closed curve С on the map (see figure 8 ) . С may at first be so small as to contain no 
stationary point, in which case ф will return to its initial value after the circuit is completed 
(figure 8 a). I f  now С is expanded so as to enclose a  single stationary point, ф will increase 
by 2tt on completion of the circuit С if the stationary point is a maximum or a minimum 
(figure 8 b and c), and will decrease by 2 v  if the stationary point is a saddle-point (figure 8 d). 
As С is further increased in size, so as to enclose d ^ . maxima, dmi. minima and da . saddle- 
points, say, the variation of ф round С will be 2Tr(rfma. +  </mi. — da ) ,  or 2-nA(Dm*.-\-DTri.—Л&.) 
approximately, where A is the area enclosed by C. But since the surface is statistically uni
form, the variation of ф round С will increase proportionally to L  a t most, where L is the 
circumference of C* On the other hand A increases like L2, supposing С is of constant 
shape. Thus 2n(D aa.+ D wi. - D !a.) is proportional to L“ ‘ at most, and letting L  tend to 
infinity we see that ( D ^ + D ^  - D ^ )  must vanish. This proves the result.

* In fact it may be shown that the increase is proportional only to D .
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Figure  8. Illustrating the way in  which the contour direction varies round a curve enclosing 
(a) no stationary point, (b) a  maxim um, (c) a minimum and (d) a saddle-point.
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F ig u re  9. (a) Stationary points on a surface which consists of two intersecting wave systems.
#  =  a maximum, o = a  minimum, +  =  a saddle-point. (A) Stationary points in a hexagonal 
pattern.

A simple example is shown in figure 9 a. The surface consists of two long-crested systems 
of waves of slowly varying amplitude. W here a crest from one system intersects a crest from 
the other system there is a maximum, and where two troughs intersect there is a minimum. 
But where a crest from one system intersects a trough from theother there is a saddle-point.
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The pattern  o f saddle-points is similar and congruent to the pattern of maxima and minima 
together, so that (2-4-1) is satisfied.

O n this surface the density of maxima is equal to the density of minima. But a case in 
which this is not so is illustrated in figure 9 b. Here the maxima are a t the centres of the cells 
of a hexagonal honeycomb, the minima are at the vertices and the saddle-points are half
way along the edges. There are twice as many maxima as minima, and three times as many 
saddle-points, so that „  fC „ ,  < * « )

In  general it can be shown that the stationary points must form a cellular pattern, and the 
theorem (2-4-1) then follows from Euler’s relation V + F =  E + 2  connecting the number of 
vertices V, faces F  and edges £  of a convex polyhedron (Euler 1752- 3 ; Sommerville 1929, 
chap. rx).

T he class of random surface represented by ( 1-2 -1) satisfies the further relation

Ana. =  Ani.- (2-4-3)

For the phases e„ of the component waves are randomly and uniformly distributed between
0 and 2 tt. The statistical properties of the surface are unaffected if a constant, v , is added to 
each phase. But this reverses the sign of f  and converts maxima into minima, and vice versa. 

From (2-4-1) and (2-4-3) it follows that

Aa. =  2 Dm^ =  2 D mi_ (2-4-4)

and if  Z)sta denotes the total density of stationary points per unit area of the surface

A u . =  2 A ,  =  ^Ana. =  4A„i. ■ (2-4-6)
In  other words, of all the stationary points on the surface, one-quarter are maxima, one- 
quarter are minima, and the remaining half are saddle-points.

We proceed now to evaluate D in terms of the energy spectrum of £. The variables 
entering the problem are

япн ^  i ! L ^  =  r  г г (2-4-7)
and дхг ’ дхду’ дуг ( '

say. (f2, £3) is a pair of functions of (x ,y ), and if (x,y) varies within a certain small region 
dA, =  (*,x +  d:r; y ,y  +  dy), (£2,£3) will vary within a region d Z  of area

|d2?| =  I J \  \d A \,  (2-4-8)

where
« ' - 3 f e § * “ W e _ a ' ( 2 ' 4 ‘ 9 )

The probability that a given point, say a stationary point, lies in dA is equal to the pro
bability that (f2, £3) lies in the corresponding region dZ, which is

Г Г rdi.dbdbffd&df^b.fcb.b.W- (2-4’10)
J — 00 J —аз J — «*> JJAZ

Since (£2з£з) =  (0,0) somewhere in d27, Р{Л>2Л *Л аЛ ь>£ь) т а У replaced by

0 , £4, £51 £e)
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when d Z  is sufficiently small, and since

J Jd & d fj- lc L E I , (2-4-11)
d£

the above probability becomes

Г Г r<ibd£Id£,|d£|rtO,Ofb,ee,fit). (2'4'12)J  —аз J  — CD J  —®

O n substituting from (2-4-8) we have for the probability of a stationary value of £ in dA,

D ,u .dA  =  Г Г Г P(0 , 0 , Ь Ш  IЬЬ-ЙI dg4dfedbdA. (2-4-13)
J  - e  J  —<c J

For a true maximum of the surface we must have £4< 0 , £ < 60 and 0; for a true minimum, 
^4^ 0, fs> 0  and J^-0. Thus the true maxima and minima correspond to the region of the

(Ь .& .й )  space given by J m ^ U - l ! > 0 . (2-4-14)

T he boundary of this region is the surface J  — 0 , which is a cone w ith vertex at the origin. 
The remaining part of the (£4, £5) £6) space corresponds to the saddle-points.

Now since the second derivatives £4, £5, | 6 are uncorrelated with the first derivatives 
£2, £3 (see §2 -1) it follows that

p { i M «,&.£.) (2-4-15)

where />(£2>£э) й  given by (2 -1-12) and />(f4, £5, £6) is the distribution for (£4,£5,£e) indepen
dently of the other variables. The matrix of correlations is

In 40 msi 7712 2\
( а 0) =  |тя„ m, 2 m13| ,  (2-4-16)

\m22 mi3 m04y

and hence p {U U > U ) =  (2-4-17)

where (Afy) is the inverse matrix to (Hy) and

A « = |S „ | .  (2-4-18)

Therefore, altogether we have for the density of stationary points

A *  =' (2тг) * A* Aj JT„ J„„eXp ̂  ^uW if+»}l£«£«-£i|d£4d£5df6. (2-4-19)
The density of maxima is given by a similar integral taken over the region £4<  0 , £6< 0 ,
J  >  0 . The density of saddle-points is given by the same integral taken over the region J  <  0 .

Since (Hy) is a positive-definite matrix, so also is its inverse (M„), and there exists a real
linear transformation r  .(£*,&>&>) = r(v„v2,v3) (2-4-20)
which simultaneously reduces the exponent in (2-4-19) to the unit form

=  7i +72+7§ (2-4-21)

and J  to a diagonal form £4£6- £ l  =  *i<7i+  ̂ 72 +  ̂ 3- (2-4-22)
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The quantities Z„ l2, l3 are easily found, for they are the roots of

| Vq—lM y  | =  0, (2-4-23)
where (<r,j) is the matrix of J:

(ff<i) — I 0 — 1 O l. (2-4-24)

/0 0 i\ 
ro) = 0 - 1  o). 

\ i о о/

: 0. (2-4-20)

O n multiplying (2-4-23) by | |, =  | M y' |, we have

(2-4-25)

where Su is the unit matrix of order 3. In  other words /„  l2, l3 are the latent roots of (H ̂ irit) :

\ m22 I ~ m)l i miO 
i mu  —m22—l  im51

O n expanding the determinant we find

4 Л - З Я / - Д < =  0] (2-4-27)

where 3H  =  tniomot — 4 m3,ffl13-(-3n^2. (2-4-28)

Hence f, +  /2 +  /3 =  0 (2-4-29)

and l t l2l, = *Д4> 0 . (2-4-30) 

It follows that one of the roots, say is positive and the other two: say t2, l3, are negative.

W eW rite 11> 0 > 1 2>13. (2-4-31) 

The solution of the cubic equation (2-4-27) is

=  #* (co s^„  cos j^2* cos^j), (2-4-32)

where f 2, jr3 are the roots of cQs ^  _  д ^ ,  (2.4.33)

T he modulus of the transformation T  is

f f e ’&'Se) -  j M u И  =  Д*. (2-4-34)
Чь>4г>4з) U

We find then Д ,ц. =  (2-4-35)

where

Г r « « p { - i W + W + ? i ) } l /i? ! + i i f l+ < i4 i l ‘i?i<i4.dii. (2-4-36)
J —to J  - e  J — CO

T he density of maxima is given by

No

where /'(/„Z 2,/j) =  J"J"J*exp{— 4 (»7i +  172 +  7з)} I h V i+ ^ l l  +  ̂ l l  I d7idV2d9j> (2-4-38)

( 2 4 ' 3 7 )
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and V is the conical region
<?,>0, li4 i +  l2v l + l3,l l > 0- (2-4-39)

Clearly 41'—1 — f f f е х р { -^ (1у5 +  72 +  7з)}(А>Я +  ̂ 72+ 4 7 з ) ^ 1^ г<17з
J  — to  «  - e  J  —to

=  (2я)* (^ +  i2+ /3), (2-4-40)

which vanishes, by (2-4-29). Thus
1 = 4 1 ' ,  Д а .  =  4D mtJ (2-4-41)

in agreement with (2-4-5).
The integral I' m ay be evaluated by means of the substitution

7i =  1Т*т, j
Пг =  ( - ^ r s m d c o s x , ]  (2-4-42)
b  =  ( - J s ) " * r s i n 0 s i n x , j

where 0 < г  <oo, 0 < Й < ^ 7Г, 0<^<2я-. (2-4-43)
We have then

/ ' = -----— : [  dr f  dd f d;(exp{—(1-f/s in 20) г ^ /Л г 4cos3 0 s in 0, (2-4-44)
Jo Jo

where f = f i x )  =  — r  cos2^ —^ sin2^- (2-4-45)t2 i3
Integration with respect to r gives

(2“ -4e)
Further integration with respect to в gives

( 2 • 4 ' 4 , ,

This is an elliptic integral and may be evaluated by known methods (Legendre i 8 u ) .  
We find finally

Г  =  ( to )* [(M 3) 4 ( ( ^ ) *  E(*, W  -  (j^ i F(k, Ц

- { / , + / 2+ г з) {F(к',ф) E (к, \v )  + Щ к \ ф) F(k, iff) - F (к’,ф) F(A, * * ) -* * } ] ,  (2-4-48) 

where E and F are the Legendre elliptic integrals of the first and second k in d :

E (M )  =  f  (1 —A2sin2^)ld^ , I J о
(4S (2-4-49)

F(A,{5) =  (1—i 2sin2 (£)_ id^,
J о

» d * - * $ $ , ■  * - “ » - , ( - 9 ‘ - <2*'5o>
I f  we now make use of the condition (2*4*29) we find for the density of maxima

D-  -  ( * * « )  

44 Vol. 4̂9. A.
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The density of stationary points £)J(a is four times this value. 
E quation (2-4-51) may also be written

.  ■ Ь м - i

where

■Dm- 2я2Д»Ф( l^ '

Ф (a) =  {a(l -a)}» [(* ± ? )*  E(*, **) -  (^ -J *  F(*, *тг)],

*2 = r = S  (» < « < « •

(2-4-52)

(2-4-53)

F igure 10. G raph of<D(ix) (defined by (2-4-53)).

The form of Ф(а) is shown in figure 10. W hen a->  0 , k7-*-1 and F (k, \n ) ->oo logarithmically. 
Hence aF(A, \ir) -> 0 and Jim ф(а) =  ^  (2.4.54)

CL-*-0

Also when a =  £, k2 =  0 and so

ф (£ ) =  (3 t —з - 4 )я /4 =  0 -9 1 7 .. . .  (2-4-55)

Throughout the whole of its range, Ф departs very little from unity.
A particularly interesting case is when the energy spectrum E(u, v) is narrow. Let us 

take axes of (a, v) so that the и axis passes through the centroid (u, v), making 5 =  0 . Then on 
substituting from (1-6-8 and 1-6-9) and retaining only the terms of highest order we find

Д2 =  “Voote
S t f - l W f c  +  W .  (2-4-56)

A* “  ^e(Aoô oгАн Moo/̂ 3 ~~ Д02) ■

Now fa0, /i021 /j03, fioi are moments of the energy spectrum of a section of the surface at 
right angles to the mean direction. We have

A>2 =  (Г“) 2 т оо. i“03 =  A(yt/)3?7ioo. Мм =  аг(уВ)4тоа, (2-4-67)

where y~1 is the long-crestedness (defined in §1*4), a2 is a non-dimensional parameter 
(always greater than 1) which represents the peakedness of the spectrum Е ^ у and b is a
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measure of the asymmetry of about its mean (but is independent of the angle of skewness 
fi). I f  we assume fios =  0 and so b =  0, we have

Д2 =  (yfl2)2» ^ ,

Я -(7Й*)«я«Ь(1+**/3), (2-4-58)

At =  (752)6 mJo(a2- l )  .
and so from (2-4-32)

( lu k ,h )  =  (ra2) 2m0ll( l + a 2/3)‘ (cos(}-l, co s^2, cos^-j), (2-4-59)

where cos 3^ =  —^—tt-t i- (2-4-60)
( l + a 2/3)»

Thus from (2 4-52) we have =  y p c (a ) ,  (2-4-61) 

where C(a) =  ^  (1 + a 2/3)‘ cos (2-4-62)

which is a quantity depending only on the peakedness a. For a given peakedness, D mB is 
proportional to the square of the wave-number of the carrier wave and inversely pro
portional to the long-crestedness y~l. To illustrate the effect of varying peakedness, С (a) 
has been computed for a num ber of different values of a, including some interesting special 
cases. The results are given in table 1 .

T a b l e  1

a1 C(a) a1 C(a) a2 C(a)
1 0-0507 4 0-0695 8 0-0880
1 00562 5 O-OW 9 0 0919
2 0 0578 6 0 0794 10 0-0956
3 0-0639 7 0-0838 20 0 1265

a2 =  1 corresponds to a pair of intersecting wave trains, for then Д4 vanishes (by (2-4-54)), 
which is the condition for the spectrum to degenerate into two one-dimensional spectra 
(equation (1-3-7)). In  the lim it as a2-»-l we find from (2-4-60) that

(^ 1.^2 . W  =  ( ± K  ± $я),
and hence

С  =  ^  =  0 05000.... (2-4-63)

This is what we should expect, for the wavelengths of the pattern in the u direction and the 
v direction are 2^/Eand 2n/yu respectively. Reference to figure 9 a will show that each maxi
mum is at the centre of a parallelogram (bounded by troughs) whose diagonals are of 
length 2п/й and 27r/yE, and whose area is therefore 2я2/уй2. The density of m axim a is the 
reciprocal of this area, i.e. 7^ / 2я2.

The case a2 =  £ has been included, since this is the peakedness of a low-pass spectrum, 
when the wave energy is uniformly distributed with regard to direction over a narrow 
sector, a2 — 3 corresponds to a normal distribution of energy with regard to direction. 
Another special case is a2 =  9, when (^,, jtri} i/r3) =  (0, ± §я , ± §я), and so

C =  ^ ( 3 * - 3 - ‘) =  0-09189 .... (2-4-64)

44-2
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Finally as a->oo we find
r ___ __

4 я 2 (2-4-W)

O n the whole, however, the variation of С with a is slight. As a2 increases from 0  to 10, С is 
less than doubled.

The density of specular points, i.e. points on the surface where the gradient takes a given 
value, not necessarily zero, may be found similarly. For it is only necessary to replace 
/'(0, 0,£4,£5,£s) in  equation (2-413) by and, from equation (2-4-16), this
amounts to multiplying by the exponential factor in (2 1 1 2 ). So the density of specular 
points with gradient (£2, £3) is given by

Ар. =  4 Л п ^ ех р { -(ю 02£2-27я,,£2£3 +  гл20^)/2 Д 2}, (2-4-66)

where -Dma is the density of maxima.

2 -5. The velocities of zeros along a line 

In  this and the following two sections will be considered some statistical properties of the 
surface which depend on its motion, that is to say properties involving the time t.

Let G(x', t) denote the curve in which the surface is intersected by a fixed vertical plane 
in direction в. Consider the movement of a point where the curve crosses a fixed level f. If  
x’ and x' +  dx' are its co-ordinates at two successive instants of time t and f+ d i, then we have

0 =  dC =  § d * 4 | | d  t. (2 -6 -1)

Therefore the velocity of the point is given by

Consider now the statistical distribution of c.
Let the variables {, <?£/<?*', dC/dt be denoted by £,, £2, £3 respectively, so tha t с =  —£3/£2, 

and let p ( i  „  £3) denote the joint distribution of £,, £2, £3 at an arbitrary point x’ on the plane 
section. The probability distribution of £2, £3 at points x' where £, takes a given value will 
be denoted b y p(£2,£3)f,. This may be found as follows. I f  (x', x' +  dx') is any fixed interval 
of distance, the probability of £, taking the given value in (x',x' + dx ') is

В Д  d*' (2-5-3)

(evaluated in § 2 -2 ). But if, at the point x', the variables f „ £ 2, £3 lie in certain ranges of width 
d£„ d£2, d£3, then we have =  | ^  | d />  ( 2-5 .4)

so that the probability of £, taking the given value in (x', x' +  dr') and of (2, £3 lying in the 

given range is p ^ M i ) d ^ d ^ d ^  =  * (£ ..£»&  I f , I d*'d|2d£3. (2-6-6)

The probability of £2, £3 lying in the ranges df2, d£3 given that crosses the given level in 
(x',.x' +  d.x') is the quotient of (2 6 5) and (2-5-3). Hence

h(C _-/(£и&»£з) I |g j  (2-6-6)Р(Ь,£»с, -  7 Ш  '
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Now the matrix of correlations for £„ £21 is

/Щ
(Щ ) =  I 0 m2 m [) , (2-5-7)

> o  0 0 \ 
j 0 m2 
\  0  m[ m"J

and therefore

Р(1\ЛгЛг) =  JTTTT— — e x p { -£ \l2 m 0} e x p { - (m '0t;i-2m 'i£2£3+ m 2ll) l2 A z } , (2-5-8) 

where Д2- =  т2т’й—т\г . (2-5-9)
From this and (2 -2 -12) we have

Р Ш г ) ь  =  I & I exp{— { m li\- 2m[£2£ , + т 2Й)/2Д2.}. (2-5-10)

We require now the statistical distribution of — £3/£2. Writing

- £ 3/£2 =  r, b  =  c’ (2-5-11)

in (2-5-10), so that | ? Й Г !  =  ? ’ (2‘512)

we have />(c, f ')£l = exp{ —(mj/c2 +  2m'i/c-fm2) с^/гД^}. (2-5-13)
2 (2л)* (m2Ду)*

The distribution of« is found by integrating with respect to c' from —oo tooo. Thus

/>(«){. =  ^ jV”*-----^  (2-5-14)2 (т0 + 2т,£ +  т 2с2)*

or />(c)£ = 1 ------- ----------------  (2-615)
2 [ ( г - г ) 2+ Д г /т |]* ’

where I =  —ml/»i2. (2-5-16)

This distribution has a maximum or mode when с =  с and is symmetrical about this mean 
value. The second moment of the distribution is divergent, but the interquartile range is 

8ivenby (» П )J3m2 v ’
I t  will be seen that the distribution (2-5-15) is independent of the height £, at which the 
velocity is measured (provided this height is constant).

We may consider similarly the distribution of velocities of points on the curve having 
a given gradient (say, zero). The velocity of such a point is given by

_  т а * ' at
1 d2Cldx'* ■ • 1

Hence the probability distribution is the same as for the velocities of zeros, except that the 
index of each of the moments is increased by two. Thus

p(c,) =  -------------------------- (2-5-19)

where Д4. =  тАщ —т^ (2-5-20)
and j ,  =  -m '3/m4. (2 -5 -21 )
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This is a  distribution with mean and interquartile range equal to

2 Д*.
-7j - .  (2-5-22)

Similar distributions can be written down for the velocities of points having given higher 
derivatives of f.

Let us in terpret the above results for a narrow spectrum. W ithout loss of generality we 
may take the и axis to pass through the centroid. On expanding in a Taylor series about 
this point we have

1 / 2̂ 2̂ 2̂ \
m" =  “'-Л0+ 2Т “ ^  +  2̂ > ^ + ^ Ы “'Л +  -"*

1 ( 2̂ 2̂ \
<  =  “ '"^оо +  з ^ о ^  +  З / ' п ^ + Л . г ^ )  ( « ' ^ ) + - > (2-6-23)

m" =  +  ̂ Ц ё + 2̂ т а + А , 2£ )  («'■**) +  ...,

where u', v' and c are to be evaluated at (u, 0). Suppose that 0 =  0 , that is, let the plane of 
intersection be taken parallel to the principal direction. Then и в  к and, a being a function 
o f  («■ +»’ ) o n ly , i ,  n ,  ,

S - « .  Я »  ■  °- <№ 2 4 »

From (2 5-16) and (2-5-21) we find first

с =  ё, — (2-5-25)

showing that the mean velocities of zeros and of specular points are equal to the phase 
velocity of the carrier wave. Also from (2-5-9) and (2-5-20)

Д? (2-5-26)
д ч- =  MooMmA*/' u -d a jd u )12,)

so tha t 4  =  4  =  . (2.5.27)
^4  V̂OO' M

Thus the interquartile ranges of both the velocities of zeros and the velocities of specular 
points are equal to „

^ ( г - Г ) ,  (2-S-28)

where v is defined by (1-6-15) and Г =  dajdu is the group velocity of the carrier wave. Thus 
we see that the width of the velocity distribution depends both on the r.m.s. width of the 
spectrum (given by vu) and aJso on the dispersive properties o f the medium. I f  the medium 
is non-dispersive, Г  =  ? and so (2-5-28) vanishes. This is what we should expect, since in 
a non-dispersive medium a long-crested disturbance advances without change of form and 
the zeros and specular points move with uniform velocity in the direction of wave pro
pagation.

For gravity waves in deep water the group velocity is half the wave velocity and so the 
interquartile range equals v c jj3,
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2-6. The motion of the contours 

Consider first how to define this motion. Let P  be a point in the plane lying on the contour 
£ =  constant. A moment later the contour at the same level will have moved to a  new 
position, say QSR (see figure 1 1 a). I f  PQ and PR  are axes parallel to Ox and Oy, the rates 
at which PQ and PR  are increasing, which we denote by cx and cyt define the local displace
ment of the contour uniquely, and we have

(2 -6-1)x I K ld t дЦд(\ 
1 \ dQdx’ В д 

ет an arbitrary line, (b) by its normal displacement.

However, if we take a  line through P  in an arbitrary direction в , and if this line intersects 
the displaced contour in 5 (figure 11), then it may be shown that

7 S  =  ? Q c o s 9 + F R sin9’ 

and so if с is the rate a t which the intercept PS is increasing

-  =  — cos# +  i s i n 0 .

(2-6-2)

(2-6-3)

This shows that the reciprocal quantity (1 /^ ,1 /^ ) is transformed like a vector, bu t not 
(c„ cy) itself. I t  is therefore more appropriate, and in fact more convenient, to consider the 
distribution of j ® .

rather than the distribution of (e,, cr). However, each may be derived from the other by 
a simple substitution. For since

d(*„ О  1— _ . — *-2 „2 
° x cyd{c„c„) c U ~ ^

: have

(2-6-5)

(2 -6 -6)P { ^ cy) =  -7ПгР(к„Ку).

The distribution of the velocities of the contours normal to themselves can also be found. 
In  figure 11 b, T  is the foot of the perpendicular from P  to QR, and TU , T V  are drawn 
perpendicular to PQ, PR. I t  can be shown that

PQPR1 PV_ P Q 2PR
’ QR2 ’

P U = J
QR2

(2-6-7)
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and hence the components of the normal velocity are

{q" ?,) =  t l + ^ ’ clT % )=  3^ )  • (2‘6’8)
Solving, we have

(r ,   ̂ -  i Ч' J b   ̂ d(K” *«) 1 rn a „л
{ " y) (£+ & % + % /•  * (ь ь )  (?,2+?y2)2’ {S-' 9)

and so ?,) =  k9). (2-6-10)

Let us write £, jjj, g  (2 -6-11)

and let />(^i, £2i ̂ 3) £<) denote the jo in t distribution of £h £2, | 3, £4 a t an arbitrary point P  
in the (x,y) plane. We require the joint distribution of £2,£3, £t a t points distributed uniformly 
along the contour f, =  constant. Let this be denoted by  To find this dis
tribution let d A be a small area surrounding P. I f  £2l £3, £4 a t P  are restricted to lie in certain 
ranges of width d£2, d£3, d£4, the contribution of the area dA  to the distribution over these 
ranges is, by the argument of §2-3,

K £„£ 2,£3,£«)a<L4dS2d£3df4> (2 -6-12)

where a =  (£2+£j)*- But the total expectation of contour length over the area dA  is sdA  
(see § 2-3). Hence we have

p(£z,£ M b  =  . (2-6-13)

Now by §2 -1, the elevation £, is uncorrelated with the first derivatives f 2, £3, f 4. Therefore

P i i M v U )  = Я Ш £  2, b ,W .  (2-6-14)

where p(£i) is given by (2-1-8). The matrix of correlations for (£2,£3,£4) is

( m20 | mlc\
« и  m02 « o il-  (2-6-15)

. /
m  10 fR0i m GQ/

H en«  p { i i , i i ,£ t ) =  (2-6-ie)

where (Mg) is the inverse matrix to (Sy) and where Д3 =  | Hg1. O n substituting these 
values in (2-6-13) we have

=  4ff(mM+m 02) » A i E { y ( t - ^ } (5 ? + a )*C X p b iA f^ ,4l^ * ,}- (2' 6' 17) 
W riting now kc =  —ii l i t ,  = - £ 3/£«> * =  £< (2-6-18)

so that d fc ,* ,,* ) 1 1  (2-6-19)
* (& 6 ,b )  H K

Pi*»  v  *)* =  4згД^ +(7!o2) | E{7 ("i ^ r 2) } 1 * * 1 W + ^ }‘

X exp{ — \K2(Mn Kl +  2Mn KzKy + Мггк \ — 2М^кх—2M,3*y+iW33)}. (2-6-20)

we have
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To obtain the distribution of k„  ку, we eliminate к  by integrating from —со to со ; thus

(i+y*)* («г+ф *
-  л Д ^ + и ^ Е у р —7*)} R2 

where Я ш М и к^+2М хгкхку+ М 2ги^-ЧМ ^кх—2Мгъку -\-Мъъ.

We may also write

R  =  М п (кх—кх)2+ 2Л/,2 (*, - X„} (* ,-* „) + М 22(ку —Иу)2 +  М ,

where _  ^13-^22 M l2M22 _  ml0 
Ми М гг- М \ 2 -  mW

-  _  Mu M23- M i2M t i ___ w0,
* » -  M n M22-  M?2 m"m’

M  =  М3, — (Мп к1+2Мп 1схк!/+ М п к1) — - 4 - .
m  00

(2 -6 -21)

( 2 -6 -2 2 )

(2-6-23) 

(2 6-24)

The denominator R  is thus a symmetrical expression with a maximum at

< M ' 2 S )

The distribution (2-6-22) itself is not in general symmetrical. However, when the spectrum 
is narrow, R is appreciable only in the neighbourhood of {Xx> 7t„), giving

P =* (2'6-26)
irmA\ R2

approximately. The curves of constant probability are then the ellipses R  =  constant. The 
major axis of each ellipse makes an angle w with the x axis given by

2ta n 2ro = Af[, —M22
(2-6-27)

Since р(к„ Ky)  ̂is proportional to Д 2, it may be shown that the fraction of the distribution 
lying outside the ellipse is proportional to R~l. At the centre, R  =  M . Therefore the ellipse 
enclosing just half the distribution is

R =  2M . (2-6-28)

T he semi-axes of this ellipse are of length

rn r2 — [(Л /,, ■
Ш

.+ ^ )± У Р ,.-Л У 2+ Щ ? 1 • (2'6‘29)
To interpret these results, let the u axis be taken so as to pass through the centroid (u, Щ 

of the energy spectrum. The spectrum being narrow, we may expand in a Taylor series 
about (u, 0) thus:

1/ Ьг , d2\M ч . 1 I I / ,  U I «
moo -  1711̂ >+2\(‘гаШг ftaldvV,r +  ‘"' 

«10 =  “^ 00+  2 (^2 0 +  foij (««■) +  ...»

a2 . . , 
A,l3 ^ (wr) +  -

(2-6-30)

45 V o l.  24g. A.
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where и =  Й. M aking use of (1-6-9) we obtain

Мог_______ (g/“)2A f „ -
М2оМо2~Ми (я /и -д а /д и )2’ 

An "•/“
Ml2 Ы а г - К \ \  а /и -д а /д и ’

M2 2 —
M20M0 2 n  1 

д з =  Моо(М?оРог-/4\) “V / “

Hence

and tan 2w =

-да/ди)2.

(*-*,) =  °)> 

2fin iylu(aju — dajdu)

(2-6-31)

(2-6-32)

(2-6-33)
'  ^ 2 о (° ’/ы — да/ди)2 — /i02 (o'/m) 2 ’

showing that the centre of the distribution is the inverse of the phase velocity, and that 
tan 2ш, like tan 2^, is proportional to /iu (cf. equation (1-6-14)). When the spectrum is 
symmetrical the semi-axes of the distribution are given by

' ■ - ( £ ) ?  <2"“ > 
tha t is, r, =  I rtf(l — Г*) |, r2 =  I yif |, (2-6-35)

where if, =  — и/a, is the mean reciprocal velocity; Г, =  — да/ди, is the corresponding group 
velocity; v — (fi1(I//j00u2)t  and у  =  (Am/Aoch2)*. This shows that гг/к, which represents the 
width of the distribution perpendicular to the principal direction of the waves, depends 
only on the long-crestedness y-1 ajid is proportional to y. O n the other hand, r2/«, which 
represents the width of the distribution parallel to the principal direction, depends not only 
on the r.m.s. width of the spectrum, represented by v, but also on the dispersive properties 
of the medium. For gravity waves in deep water Г? =  J and so

(2-6-36)

2-7. The velocities o f specular points 

A specular point on the surface is defined as a point where the two components of the 
gradient take given values. Such points would be indicated to a distant observer as the 
points where light was reflected from a distant source. In  § 2-4 we deduced the mean density 
of such points per unit area; let us now consider the statistical distribution of their velocities. 

I f  (x ,y ) are the co-ordinates at time t of a point whose components of gradient

К  dA _ r  ,
dx' dy

(2-7-1)

are fixed. At a subsequent time t +  df the point will have moved to a position (x +  dx, у  +  dy),

(2-7-2)
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The ratios

are the required velocities. W riting

dx d^ 
d t ’ d/

d v  а к  d % _  
№ ' Ш у ' ' 5 ? ~ ^ Л ьЛ *'

dxdt’ dydt ~  8

(2-7-3)

(2-7-4)

in (2-7-2) we have
(2-7-5)

Since the velocities cz, cy are given in terms of£4, we require first the jo in t distribution
p [ i41 ■■ -i £e){j, fj these quantities at points where £2, £3 take the given values.

Let cL4 denote any small area of the x ,y  plane, and P  a neighbouring point. As usual, 
P(£2, • •■>£*) w'4  denote the ordinary distribution of£2, ■ ■■, at P. N o w if£2,£ 3 take the given 
values at some point in dA, and £4) . . . ,£ 8 are fixed, then (£2, £3) at P  lies w ithin a certain 
region d r  of area d£ =  | | ^  (2 -7-6)

(cf. §2-4). Hence the probability that £2, £3 take the given values in d A and th a t £4,
Ue in ranges of width d£4,. . . ,  df8 respectively is

*(£»,£: ........S e ) | ^ - a i ^ d | 4d ^ .. .d £ 8. (2-7-7)

But the total probability of £2, taking the given values in dA  is

Ap.<M, (2-7-8)

where D ^  is the density of specular points with gradient (£2,£3). Therefore the probability 
that £4 . . . f 8 lie in their respective ranges given that there is a specular point in dA  is the 
quotient of (2-7-7) and (2-7-8), tha t is

In  other words f(£  41 •••>£>)(,, ь

(2-7-9)

(2-7-10)

Now the first derivatives £2, are statistically independent of the second derivatives £4 ... £a- 

Therefore Л Ь . - . Ь )  -  *(?»£,)*(£«. (2-7-11)
where />(£2, fa) “  * е ordinary distribution of£2, £, given by (2 -1-12) and/>(£4, ...,£„) is the 
ordinary distribution of £t , . ..,g a. The matrix of correlations for £4, . . . ,£ 8 is

rt40 m 3I m 22

mv

(S„) = m13 m.04

m 3a m 2i^

тг1 m)2

m12

m21 m12
m12 m03

mi0 mn 

^ li  mod

(2-7-12)

45-5

1
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and 50 P&> - . 6 >) =  (2я) t M C*P * ~ *М.Д|+з(/+з}> (2-7-13)

where (M y) is the inverse matrix to (S y) and where

A5 = | S 0 |. (2-7-14)
Substituting in (2-7-10) we have then 

P iiu  ”  4^27r)  ̂(Д A )*£>  ̂ й  I ^ P f - $^(/£i+j£/+i}> (2-7-15)

where B mlL is given by (2-4-51).
The distribution of the velocities ct , cy is now obtained from the relations (2-7 -5 ). I f

we write also r r _
el»C2> CJ ”  £<> i s ;  £e (2-7-16)

and transform to the variables c„ cy> e„ c2, c3 we have

r g £2 с ,  .2 (2-7-17)
3(«x,e„,ei . ea>e3)

Hence Р{сг>сц>с)>с2>сз)^(, ”  4 ^ 77) Д ) ! / )  (ci c3—f*)2exP{ — i ^ i j cicj}> (2-7-18)

where (Лгу) is the (3 X 3) matrix whose elements are

n \\ =  M aA  —  2 jW 4 , ex +  M lu

#22 =  ^ 55^ + 2^ 45^ ^  + М и с*~ %МЪ2сх —2M42cy + М 22,

(2-7-19)
Afjj — Л/55 с* 2 А/53с̂  +Л /33,

N 23 =  M5scxcy + M t5cy— Мм сх — (Mi3-\-М5̂ ) су + М 231

#31 =  4 s crcy -  -  MS^y + М Э1,
iV|2 =  Л^|5^+ ^ U CxCy — (Л/ 42 +  Л/3!) — A/41 fy +Л /]2.

O n eliminating c,, c2, c3 by integration between ± 0 0  we have

~ 4(2ir)t (д|д^* Д £ .  jT, Л (<|Сз~^)1еХр dC| dc2dc3- (2'Г20>
The m atrix (N y ) is positive-definite. For, if any real values of eu c2, clt not all zero existed 
which made the quadratic form NyCjCj zero or negative, a corresponding set of values of 
£4 . . . f a could be found from (2-7-5) which made M y£i+3£j+3 zero or negative. But this is 
impossible, since (My) is positive-definite. Therefore (N y) is positive-definite. Therefore 
by a real linear transformation of variables cl,c 2,c i ^y!jl> 2̂, 7з we have

V r t - t f + d + f * .  1 (2 .7 .21)

=  117? +  1г71+1э7з.| 

where 1„ 12, 13 are roots of the equation

= 0 .  (2-7-22)
As in § 2-4 we have then

P{C” = 4(2»)* (Д А  I ^  |)* D _ 1(1,1 h' ls)’ (2'7'23)

L
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where

Wi.M j) = Г Г f ( l i 7 H l27l+ l37i)2“ p { - i ( i r f + 7 H ^ } d7 id 72d73- (2-7-24)
J  — CD J  — 00 J  — OO

This integral is much easier to evaluate than the similar integral /( / , ,  l2, l3) of equation 
(2-4-30) on accountof the factor in the integrand heingsquared. In fact we have im m ediately

Therefore / ,(«*.СЛ .,Ь  =

I ( l„  I*, 1») =  (2 if)» [3 (l |+ 4 + lJ )+ 2 ( l1l , + l 1H - l1l1)].
=  (27Г)« [3 (1 1 +  12 +  13) г - 4 ( 1 21з +  1з11+ 1 112)]  

1
16тг2(Д2Д5| ^ |  ) 'D a , [ 4 V i]* 4| 1Д;]'

Equation (2-7-22) on expansion becomes

м з - ( К з -« 2 2  +  £я31) 12+(£ЛГ13- р г 22+ | Л у 1- $  -  0 ,

where Л Г = |Л ^|

and

Therefore 

and so finally

^21-^32 ~  ̂ 22-^з i ■ n .31> П22 “  NnN „ -  2̂2-

I V Л !3  П 22 X- 1 1 . _ V »  i -^22
, V ,V ---------n ~ '

З(п|3 я2г)2'Ь ( ^ 22~ ^ ^ 1з) ^
N *

(2-7-26)

(2-7-26)

(2-7-27)

(2-7-28)

(2-7-29)

(2-7-30)

(2-7-31)

I t  will be seen that in general the quantities N y, ntj and N  which occur in this expression are 
polynomials in cz, cy of degree 2, 4 and в respectively.

As before, we may study this distribution in the special case when the energy spectrum 
is narrow and has symmetry about the principal direction. Taking the и axis along the 
line of symmetry we have m^ — 0 whenever q is odd, and so

(m40 0 m22 | ° \
«12

<E tj) 0 m Щу

\ 0 m'i2 0 

T he reciprocal matrix (MtJ) is given by

0

(2-7-32)

M n o
I o B,

-^12 -̂ 13 0 
0 0

where (Au) -

(̂ (/) j -421 ® -̂22 -423 ®
I j43i 0 A32 A33 0
\  0 5 21 0 0 B 2

/ m \a т гг
[ m22 me4 ln12 j , (By 
\m 3f, m<, Шчп/

^ 2\ - ’
Jn\2 твг1

(2-7-33)

(2-7-34)
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Since the spectrum is narrow, each coefficient may he expanded in a Taylor series about 
the centroid (I!, 0 ). Thus

m4a — Moau*
Зг

3 ^2 
»!22= / ‘02“2+ / 'l2^ ( “2) + tA j2^ 2 («2).

m0i Mail
1 /  d2 d2\

+  2 V i i ( ‘ M + M a 2 M ^ ( r ) + - >

m'l2 =  fi02u a + /il i ^(u<r) +  ̂ (M22~ + M l)t^ iJ M  +

«го =  Moou2ff2

(2-7-35)

'  2 ( “?0 диг + i“,)2 dv2)  + ' ‘ ’

=  М о г^ + М х гу^ 2) +  \ { м п ^ 2+ М о * ^  {<r2) +  - >  

where и = u  and a =  a(H, 0 ). Thus we find for the determinants of (Лц)~1 and (By)~l

(2-736)|i4e | - ‘ - V » ( * /« - a r / f c ) V  
\B U\ - 1 =  82u2(tr/u -daldu)2,

where i3 =
Moo 0 Mo 2

, «2 = Mo2 Ml 20 Мъо M, 2 МггM\2
Mo2 Ml 2 Mot

(2-7-37)

(Each zero term  in 8, could be replaced by Further, on evaluating (A {j) and (By) 
and substituting in  (2-7-19) we find eventually

+ <h2u29i9i + an u92 “23“3?i +“u“2 \
f a 22“ 2? l ? 2 + “ l2 “ ?2 “ 22“ 2?2 a 23 “ *?2

+£>2“4? I + 2A 2«3?L +A l“ 2 + A 2“4?l?2+ /S’l2“ S?2

l a 2 3 “ 3« l + “ l 3 “ 2 “ ! 3 “ 3?2  “ 3 3 “

+ A 2“4? 1?2+ A 2“3?2 + A j
(2-7-38)

where and fl4 are the (i,j)th  elements of the reciprocal matrices of S3 and <S2 respectively, 
and

_  c„+tr/u Cy
?u ?2 ffju—да/ди’ <rju—d(rjdu

(2-7-39)

Thus qtJ q2 are non-dimensional quantities proportional to the departures off,, cy from their 
mean values ( — aju, 0). In  deriving (2-7-38) it has been assumed that q, is of the same order 
of magnitude as y, =  (ftaJu2Moo)̂ j but that q2 is of order 1 ; this makes the m atrix (Ny) 
more homogeneous. Before proceeding further we may make the additional restrictions

Mi 2 =  0» Мгг =  МгоМог/Моо! (2-7-40)

and we may write //20 =  Л 2/^0, ftm =  y2u2f i00, — <2V"Voo. (2-7-41)
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where v, у  and a  have the same meanings as before, namely, V 1 is a m easure of the average 
length of a group of waves, y_I is the long-crestedness and a  is the peakedness of the 
spectrum in the v direction. Then (2-7-38) reduces to

/ (£2+ d 2+ 1) inly  - d 2I f  \
ы у  ( ? + f + m 2 ш  )

\  -<Piy* Ш  (l2+ 7 2) /rV

, СЛ Ф  У',,
v ^ a / t t - d e / d u ) ' v ( a j u - d a j d u )  ’

(2-7-42)

where £ =  q,/v, l ^ y q j v ,  d 2 =  I/(fl2 - 1). (2-7-43)

Clearly the (»,j)th term of (N y) is of order \jy'*K  Therefore

i 1, i 2. i s = 7 2«V00(i;,u ,iS ) (2-7-44)

where lj, Ц, 1, are the corresponding roots of the equation

| O q-V N 'y  | =  0 (2-7-46)

and (N'u) is the non-dimensional matrix

(
P + ^ + I  b\ ~<P\

f t  i * W + l  b> ) .  (2-7-46)

. If, f + d ? /

Also |ЛГ«| =  | В Д Л 12/Зо). (2-7-47)
So from equation (2-7-26)

r V u  3 ( 2 4 ) * - 4  2 i;ii;

p{c”  ~  i S 5 ( M j t e -  p v r f 1  • ( 2 "

I t  is convenient to state the solution in terms of the non-dimensional variables
^2-7-49)

First, on expanding the left-hand side of (2 -7 -45) we have

tfT S + 7 2! '2-  [*(£*■+V2+ 1) +<P] l ' - i  =  0, (2-7-51)

where X ' = \ N b \  =  (Z2+ f + l ) V 2+ { { i+ V ) i  +  y } { ( . t - 4 ) i + l } d \  (2-7-52)

giving 2 i : = - 7 2/ ^ ' ,  1 Щ  =  - [ Ш 2+Чг +1)+<Р]1М '. (2-7-53)
I i+J

Secondly, from (2-4-68), (2-7-36) and (2-7-37),

A, =  72a Voo, b i = \ A iJ\ - ' \ B IJ\- ' =  Si Si u»(altl-d<rldu)*, (2-7-54)

and 2̂ *, =  /̂ 20^22/̂ 02(^00/̂ 04 A02) =  v y u ' Y aa(a2- \ ) .  (2-7-65)

Thirdly from (2-4-61) D n̂  =  учгС{а). (2-7-56)
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(e) a1=00

F igure 12. T he probability distribution of the velocities of specular points, for a  narrow  spectrum

Therefore, altogether we have

Р 'Ь Ю ь .Ь -  16тг2С(а) N ' * (2-7-57)

where C{a) is given by (2-4-62) and N' by (2-7-52).
Two special cases are of interest. Suppose first that the surface consists o f two systems of 

long-crested waves, intersecting at a small angle 2y. As we saw in § 2-4, this corresponds to 
the limiting case when a ->-1 and oo. Equation (2-7-57) then becomes

1
P & v )b .u  2 {(E+9)* + i} i{ (g -,)* + i}» - (2-7-58)

T he distribution is shown in figure 12 a. There are two ridges of high probability, in  the 
directions £ =  ± 7) that is е, + ф = ± у с у, (2 -7 -5 9 )

or when the vector difference between the specular velocity (e„«y) and the m ean velocity 
( — (г/ц, 0 ) is in the direction of the crests of one of the two wave systems.

This particular case may also be derived quite simply as follows. We have seen that the 
velocities of specular points have the same probability distribution as the velocities of the 
maxima only. Now with two intersecting systems of long-crested waves, the m axim a occur 
a t the points of intersection of the crests of the two systems, and at no other points (see

46 V o l . 249. A .

\
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/ « “. « P k l ,  (2'7'64)
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figure 9 a). I f  the point of intersection of two crests has components of velocity cy parallel 
and perpendicular to the mean direction, then the rates of advance of the crests in the two 
systems of waves are

c\n =  «,cosy +  c-ysin}', =  cx co sy—cy sin y, (2-7-60)

where 2у  is the angle between the two wave systems. But the distribution of c, for a long- 
crested system of waves was found in § 2-5 to be

\ ... 1 уЦсг/и-да/ди)2
2 [{с1 +  ф ) 2+ » 2{<г1и-да!диУ]*> 1 J

where и is measured in the direction of propagation. Since the two systems are independent,

P (4 '\c ? )  = p ( c \ " ) p m  (2-7-62)

When the angle o f separation 2 у is small, v and и are effectively the same for the two systems 
and for the combined system. Thus

е}п +  £г/и =  (cx+crju)+ycy =  (l+rf) v(a/u—да/ди), 

с ^ + ф  =  (cx+ a ju ) - y c y =  ( f -г?) v(aju -da jdu ).

Further>

and so P{C>v)h.b =  ^ (( г /и -д с /д и У p(c[J))p(c\a), (2-7-65)

from which (2-7-58) follows.
A second case of interest is that of infinite peakedness: a ->oo and d-+  0. For large values 

of a, (2-7-57) becomes „ » + ( ? + , « + p i
P & l l i 2.Й 4fl2 73^2 +  72+ 1 )* • ( )

This distribution is shown in figure 12 c. There is only one ridge of high probability, namely, 
that in the principal direction of the waves. The expression is valid only asymptotically,

as is shown by the presence of the factor I j ia 2 and the fact that jjP d >  7)f2ljjd£d7 diverges.

An intermediate case, a2 =  3, d2 =  is shown in figure 12 b. This corresponds to a dis
tribution of energy distributed normally with regard to direction, over a narrow range.

2-8. Properties o f the envelope: the number o f waves in a group 

We shall now consider briefly some statistical properties of the envelope of the wave 
surface, as defined in § 1-5 . The envelope function p is essentially different from the surface 
elevation f, in that p is always positive whereas £ has a mean value zero. Nevertheless, many 
o f the properties of p will be seen to be analogous to corresponding properties of f.

I t is convenient to introduce the auxiliary variables

=  p cos ф =  3> „cos{(u„-2) * +  (w„ —®) у +  ( * ■ . - t+£„}> j
И I

£2 =  рйпф  =  J e ,  sin {(«„—Iй)ж+(»„—v) y+ (< r„ -if)  t + e j ,
(2 -8-1)

which are the real and imaginary parts of the complex envelope function pc'* (see equation 
(1 -5 ■ 6)). f  [, £2 have the same form as £, each being the sum of an infinite nu mbcr of sinusoidal



310

STATISTICAL ANALYSIS OF A RANDOM , M O V IN G  SU R FA C E 371

components with random phase. In  fact, the energy spectrum of£,, £2 is the same as that of 
£, but with the origin moved to the mean wave-number (n,v). Thus £2 are normally 
distributed with mean value zero. Since

ST

we have /'&>£,) = 2“  e x p { - ( ^ + ^ ) / 2m0o}-

We now transform back to the variables p, ф. From (2-8-1)

Я + Й - Л  - Л

and so

(2 -8 -2 )

(2-8-3)

(2-8-4)

(2-8-5)

This is independent of the phase angle ф. The distribution of p alone is found by integrating 
with respect to ф from 0 to 277:

( 2 -8 -6)P[p) =  ~ - p e x p { - / ) 2/2m00},

which is the well-known Rayleigh distribution.
The joint distribution of p, ф and their first-order derivatives with respect to x, у  may be

(2-8-7)
found as follows. Let

3>̂ 4 —* 1
д х ’ ду J Ь5>£б

or
"&2
d x 1

Ч 2
Tit

The matrix of correlations for ..

IP 00 0 0 0 Mio A01'
0 Мои -Mio - / “01 0 0

(S„) = 0 - - “10 M20 Mu 0 0

0 —Mai Mn M02 0 0

A10 0 0 0 M-w Mn

\Aoi 0 0 0 Mn MoJ

(2 -8 8 )

where (ipq is the (p, g)th moment of E(u, v) about (Я, V). But since (5, v) is the centroid of E, 
the first-order moments ^ 01 vanish. Hence £3, £5, £6 are independent of £„ £г, and

f i & . - . u - P i S i . e j f i & . - . e , ) .  (2’8’9)
where

p ( t»...... u  =  ^ < ^ { - [ А и ( а + ® - ч м £ А + ь & )  + A o ® + a ) ] /**}, (2-8-10)

(2 -8-11)and we have written 

Now since

we have

i  = Мгч Mu 
Mil M02

£3 = ^  (/> cos ̂  =  Px cos ^ sin ̂  
etc.,

_  _  j
3(Р,Ф,Р„Ф„Ру,Ф,) P>

(2 -8 -12)

(2-8-13)

46-2
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and hence

Р{р>Ф>Р,>Ф„Ру,Фу) =  щ i  ~g P3 exp { ~ p 2/2m00}

x  exP {— (МагРх ~%1111рхр!/+  fi2oPl)/28} exp { —р2{/102ф1—2/111фхфу +  р 20ф*}128}. (2-8-14)

From this distribution some immediate conclusions may be drawn. First, by integrating 
with respect to ф (from 0 to 2 я) and фх, фу (from —oo to со) we obtain the jo in t distribution

of P, P* and py. Thus Р(Р,РХ,РУ)=Р (Р )Р (Р „Р У), (2-8-15)

where p(p) is given by (2 -8 -6) and

Р{Р„Р„) =  2^ехр{-(/<о2^-2^пА /»»+А 2о^)/2#}. (2-8-16)

This shows that pt , py are statistically independent of p, just as d(/dx, dQdy are independent 
of £. Furtherj the distributon (2-8-16) is formally identical with (2 -1-12), if the moments 

about the centroid are substituted for the moments about the origin. We deduce 
immediately that

(1) the steepest r.m.s. gradient of the envelope is in the principal direction of the envelope, 
and the gentlest r.m.s. gradient of the envelope is in the direction at right angles;

(2 ) the most probable direction of contours of the envelope is perpendicular to the 
principal direction of the envelope, and the least probable direction is parallel to the 
principal direction.

We see from (2-8-14) that the mean values of фх and фу are zero. I t follows that the phase 
angle ф of the envelope has zero secular increase in any horizontal direction. Now the phase angle 
of f  is the sum of the phase angles of the envelope and of the carrier wave. Hence the phase 
angle of f  increases at the same average rate as that of the carrier wave, in any horizontal direction. 
This property is the result of our having chosen the centroid (й, v) of the energy distribution 
as the wave-number of the carrier wave (§ 1-5).

By integrating (2-8-14) with respect to px, py and ф we obtain

Pifi, Фу) =  ^ - ^ j / > 3exp{-/>2/2'«oo}exP { - / ,2(A)2?>?-2/'ii^^+ /^o^)/2< J} - (2-8-17)

This shows that фх and фу are not statistically independent of p. In  fact the standard deviation 
of (фх, фу) (defined as the square root of the mean value of (ф1+фу)) is

+*»)*, (2'8' 18) 

which is inversely proportional to p. Roughly, this means that the higher waves are more 
regular than the lower waves (cf. § 2‘ 10). The jo in t distribution of фх and фу alone is found 
from (2*8-17) to be

р{ф" ф' ] = l [ i + M l  -  Ш +Й0Й *o./*P • (2‘8‘19)
I t  will be useful to consider also the statistical properties of the envelope of the curve in 

which the surface is intersected by a vertical plane in a direction в. W hen в — 0 , x =  x \  the
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distribution ofp, ф. px, ф, may be found from (2-8-14) by integration w ith respect to py and фу. 
O n replacing /ij0 by р?[6) and x by x' we have in the general case

Р(Р,Ф,Р,;Ф*) =  ( o - s L — P* ex p { -/)2/2m|)0}exp { -  {р$+р2ф1)12р2}- (2 -8 -20) 
(■*"/ maofh

Alternatively, the distribution m ay be derived from first principles by the m ethod used to 
obtain (2-814). The jo in t distribution o ip  and px, is found by further integration with respect 
to ф and фх, :

P(P,P,') =  P exp { - p 2l2mw} exp { - р Ц  2/ь,}- (2-8-21)

Similarly the jo in t distribution of p, ф and фх, is

Р{р,ф,ф*) =  ^ i r n ^ 2 exp (—^2/2moo) exp {-/>2vi2./2^ 2}, (2 -8 -2 2 )

and the distribution of ф and фх, is
р(ф,ф,) =  -  Ы М А * ... (2-8-23)

4)т( 1 +  ф\ m00lfi2)l

From these distributions one can state immediately some general conclusions for the one
dimensional envelope analogous to those for the two-dimensional envelope of surface. Thus 
p j,  bu t not ф ,̂ is independent of p\ the mean secular increase of ф w ith x' is zero; the 
standard deviation of фх. is inversely proportional to p.

W hen the spectrum is fairly narrow, the envelope follows closely the crests of the waves. 
In  any particular plane section the waves will appear in groups, and a rough measure of 
the average length of a group is given by 2 /N , where N  is the average num ber of times per 
unit distance that the envelope crosses an arbitrary level p. Now by the argum ent of §2-2,

N (P) =  \ j ( P >  /V) IP* I dPs- (2-8-24)

O n substituting from (2-8-23) and carrying out the integration we have

N (/0 =  ®  £ 2-A’exp{-/>2/2m00}. (2-8-25)

For definiteness we may take the largest possible value of N, which occurs when p — 

g i™ g i v W lu -X l
К - У ( £ ) -  <2'8'26>

Now by § 1-5 рг(в) is greatest when в defines the principal direction. I t  follows that the average 
length o f a group of waves is least in the principal direction and greatest in the direction at right angles.

A rough measure of the number of waves in each group is given by N0/N , where N0 is 
the number of zero-crossings of £ in the direction в (see § 2-2). When p — mj0 we have

# o _  /  * _  /  e ^  cos2 # +  2fn,, cos sin +  m02 sin2 * (n.0.n7)
N  \2n) \/i2) \2ir)  L M20 cos2 0 -f 2//n cos d sin sin2 в  J * '

In  general this number will vary with the direction 0, but it may also be constant. The
condition for constancy is rt nnv

/*20’/*ii :/*02 — u'w iw  (2*8*28)

\
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When this condition is satisfied the number of waves in a group is independent of the 
direction.

If  we write v'(6) =  (2-8-29)
Щ ( 0 )  V m oo /

so that (for a narrow spectrum)

it is clear that v' is inversely proportional to the number of waves in a group. In  particular, 
when the section is taken in the direction в — 0 we have

where v is the param eter defined in § 1-6. Now 0 =  0 was taken there to be the mean direc
tion, and also the principal direction. I t follows that v is inversely proportional to the number 
of waves in a group corresponding to a vertical section taken in the principal direction.

219. The heights o f maxima 

Throughout this and the following section it will be assumed that the spectrum is narrow. 
We shall see that from the properties of the envelope one can then derive some interesting 
statistical properties that are otherwise difficult to obtain.

Consider first the distribution of the heights £ of the crests. A crest may be defined as the 
locus of the maxima of all vertical sections of the surface parallel to the mean direction 5. 
Now when the spectrum is narrow, the waves will be long-crested and regular, and the 
crests will lie almost on the envelope. Further, the crests will be spaced at more or less equal 
intervals in the x ,y  plane. I t follows that the distribution of the crest heights is practically 
the same as the distribution of the envelope function p. So from (2  8 -6)

P(E) — ~  CXP { —£2l%moo}- (2-9*1)moo

In  other words, f  has a Rayleigh distribution.
Consider, on the other hand, the distribution of the heights of the maxima. A maximum 

of the surface is simultaneously a maximum perpendicular and parallel to the mean 
direction. The distribution of maxima of the surface therefore approximates to the dis
tribution of the maxima of the envelope of a section at right angles to the mean direction.

Now the distribution of the maxima of the envelope of a single random variable has been 
studied by Rice (1944, 1945)- Making the simplifying assumption that =  0 (in
our case /г, =  0 anyway), he obtains for the jo in t distribution of x and the height R  of a 
maximum , 1 « л ,л

(2'9'2»

„ > = * * ,  <№ 3) 

and Л , -  2  +  (2-9-4)
m-0  »>!
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(the term  corresponding to m =  0 in (2-9-4) is я + l ) .  To obtain the probability density of 
R alone we must normalize (2-9-2) by dividing by the num ber N  of m axim a per un it dis
tance x'. N  is found by integrating with respect to R from 0 to со. We have

1 /лЛ*(в* - 1)» - ( * *  +  « ! 4 , ,0 _ .v
W  A  (* « + * ) !>  ' '

(Rice 1945, p. 83).
This may be checked immediately by comparison with our previous work. For, since the 

maxima occur only at the crests of the waves, which are more or less evenly spaced at 
distance 2vju apart, it follows that the mean density of maxima per unit area is Nuj2n 
approximately. On replacing (/i2//*0)4 by yE, where y~* is the long-crestedness, we have

D  = ~ = — -— (аг—I ) 2 у  {ln  +  \ ) \ A r ^  (2 -9 -6)
ra* 2я 4(2*)* a* nf 0 (l«  +  i ) ! «"7

This expression should agree with (2-3-57). Rice summed the series in (2-9-6) for a2 =  3 
(the normal distribution) and found it to be about 3-97. W ith this value (2-9-6) becomes

=  0-0638Гй*, (2-9-7)

which is in agreement with the more accurate value Dma =  0-0639yS® given by (2-3-57) 
and table 1.

The distribution of the heights of maxima may be stated in terms of the non-dimensional 
param eter у =  Д//4 =  Л/mJ0. O n dividing p(x ',R ) by Nft£*, we find

( 2 ‘ 9 ' s )

This distribution has been computed fora2 =  2 , 3,5, 9, and the curves are shown in figure 13.
W hen а1 Ф1 the above series becomes unsuitable for computation, b u t we may obtain 

a solution by an independent method as follows, a2 =  1 corresponds to two narrow  bands 
of energy of slightly different frequency. These form beats, and the m axim a of the envelope 
occur when the two wave bands are in phase. The height of the envelope R is then the sum 
of the amplitudes pu p2 of the two wave trains at that point. But the am plitude of each wave 
train  has a Rayleigh distribution:

PiPi) = ^ - е х р { - /> 2/ т 00}, р{рг) = ^ e x p { - ^ / w 00} (2 'fl'9)
moa rnotj

(the mean energy for each wave train being ^m0D) . The distribution of the sum of these is

P(R) =  \ ’lp(p l)p (p i) d pu (2-9-10)
J 0

where p2 =  R —pv  In  terms of non-dimensional variables we have

p(V) =  2 r £ e -P (? -£ )e -< ^ > sd£. (2-9-11)
Jo

O n  evaluating the integral we have

p{!)) =  e-**s [i/e-b>4(72—1) r* e -* d t] , (2-9-12)
Jo

which is the distribution shown in figure 13 for a2 =  1.



315

376 M. S. LONG U ET-H IGG IN S ON THE

I t  can be seen independently that this is the appropriate distribution for two long-crested 
systems of waves intersecting at an angle. For the maxima of the combine system occur at 
the points of intersection of the crests of the two long-crested systems. The height of a maxi
mum is the sum of the heights of the crests of the two systems. Consequently rj is the sum of 
two variables each having a Rayleigh distribution.

F ig u re  13. The probability distribution of the heights of maxima, 
for a  narrow spectrum (a2 =  1, 2, 3, 5, 9).

2-10. The intervals between successive zeros 

Finally, let us consider the distribution of the intervals I between successive zeros of the 
surface, along a line drawn in an arbitrary direction 6. An approximate expression for the 
distribution ofintervals for a one-dimensional function has been derived by Rice (1945, § 3-4) 
after a series of approximations assuming that the spectrum is narrow. I t  will now be shown 
how the same distribution can be derived very simply using the properties of the phase 
angle ф. Further, the distribution will be derived for a section of the surface in an arbitrary 
direction 6, and for waves of any particular amplitude p.

For simplicity we may take initially 8 =  вр =  0 and x' =  x, and we may generalize to 
arbitrary values of в at a suitable stage. The equation of the curve at an arbitrary time, say 
t =  0 , may be written (2 -10-1)

where

Z - a p & t ,

Х-=Ъх+ф, Х, =  Ъ+Ф,: (2-10-2)
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and fl =  mjm^. Like ф, x is a multivalued function of x, having branches separated by 
multiples of 2ir. Since „ >,

Й Й - » .  <— >
we have from (2-8-23)

(™ ' 4)
Now £ has a zero -crossing when and only when x =  n7!, where n is an integer. By the same 
reasoning as in §2 -2 , the probability of x taking the value 2nr in (x, x +  dx) is

IZ x |d * d ^ =  ^ ( ^ ) J dx. (2-10-5)

The probability of^  taking the value (2 r+ l)w  is the same. Therefore the total probability 
of a zero in (x, *+dx) is twice this value, or

1
- P * )  d*.v  \rrij

(2 -10-6)

in agreement with (2-3-5).
Let I denote the interval between successive zeros. The average value I o f the distribu

tion of I may be written down immediately; for it is simply the reciprocal of the average 
number of zeros per un it distance, i.e.

f2'10-7»

where v is defined by (2-8-31). W hen the spectrum is narrow (i> is small) we have

I =  n[H, (2 -10-8)
approximately.

Lefus now consider the whole distribution of I, on the assumption th a t v is small. In  the 
first place we may note tha t where x crosses any level nit it nearly always has an up-crossing. 
For the probability of a down-crossing (x ,< 0) in the interval (*, *+ d x ) is given by

IX«|dxdx, =  ^ ( ^ ) l [ l - ( l + v :!) - i ]d* , (2-10-9)

and the proportion of down-crossings is therefore

+ *•'*, (2 -10 -10)
which is negligible. I f  each crossing of 2nr or (2г + 1)я is an up-crossing, it follows tha t 
between any two successive zeros x] and x2, x must increase by v . Hence

*  = x(xt) -x(*i) = U x,+ ¥ 2xx,+—]y (2-Ю-1 1)
where we have expanded in a Taylor series about x =  I t  can be shown that Xn is o f order 
v2, and so to our present order of approximation

J-w /X r (2 -10 -12 )

Now the distribution of Xx> a t points where x takes a particular value, is given by

=  (2-10-13)

47 V o l.  243. A.
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where H(x) is given by (2-10-5). T hat is to say

___ 1^1 К  1Мг)*___ Г2 -10-Ш
^  j W i i  +  И З Д ] ' '  ( 0W )

O n substituting from (2-10-12) we have, when l > 0 ,

Р ^ = 2 П $ )  [P jp + tf l lL  l ) 2/„2]l> (2-10-16)

where 1 is given by the approximate relation (2-10-8). Clearly p(l) is appreciable only when 
I differs from I by an am ount of order v. Writing

Z = ( l - l ) I I  (2-10-16)

for the relative departure of I from its mean value, we have finally for the approximate 
distribution of £ in the neighbourhood of the mean

(2' 1° '1,)
This is similar to the approximate distribution found by Rice (1945, p. 63) by a rather 
longer method.

In the general case when the line drawn on the surface is in an arbitrary direction 6, 
v may be replaced by v'(6). Thus we have in general

* 0 - V ( ihW  < ы о ' , 8 )

The second m om ent of this distribution is divergent, but a convenient measure of its spread 
is the width of the interquartile range, given by

j 3 v \  (2-10-19)

So we may say tha t the width of the distribution o f£ is inversely proportional to the average number of 
waves in a group. The w idth of the distribution of / is given by the above expression multiplied
by L that is to say - i  i

7 ’ 7 2пт Ш  (2 -10-20)

T o find the distribution of intervals I for waves of a given amplitude (say with amplitude 
lying between p and />-f-d/>), we may start from the distribution of {ф,ф^ for values of p 
lying between these limits. This is given by

P M M ( 2 ' 1 0 Ы )

from (2-8-6) and (2-8-22). Hence

=  (2^ f ^ « p b P 2(X .-5 )V W - (2 -10-22)

O n carrying out the same calculation with pp(x, &) *n place of p(x, X*) we & given
by (2-10-16), that , _

p№  =  ( 2 ^ * V ^ 0/>eXP{_'fl2̂ /2l' '2m°o}' (2-10-23)
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This is a normal distribution for £, with mean value zero and standard deviation

(210-24)
P

The mean and standard deviation of I are equal to I and v'm\j.lp respectively. Hence we 
may say that the expectation o f I is independent of the height of the waves (to the present order o f 
approximation) and also the width of the distribution of I is inversely proportional to the wave height. 
I f  we take this width as a measure of the irregularity of the waves as regards their Intervals, 
we may also say tha t the lower the waves, the less regular are their intervals.

P a r t  I II . A m e t h o d  o f  d e t e r m in i n g  t h e  e n e r g y  s p e c t r u m

In the two previous parts of this paper we have derived some statistical properties of a random 
surface in terms of its energy spectrum £(u, v). In this part we solve the converse problem: given 
the statistical properties, to find the energy spectrum.

The best method of determining E  depends to some extent upon which properties can be 
measured most conveniently. We assume that it is possible to obtain the height £(*') of the surface 
along a line in an arbitrary direction в. (In the case of the sea surface one may imagine the 
observations to be made by an aircraft flying on a fixed course at high speed and constant altitude 
and recording by radar its height above the waves.) We also assume that d£(x')jdi can be measured 
(by a pair of radar sets, or otherwise).

In §3*1 it is shown how from the statistical analysis of such measurements the moments тп„(в), for 
each value of 6t can be deduced. In §3-2 it is shown how to obtain the two-dimensional moments 
mpi} from the moments mn[6) ; and in §3-3 how to obtain the energy spectrum from the moments mpfl.

3-1. To obtain mn(6)

We saw in  § 2-2 th a t the number of zeros of £(*') per unit horizontal distance x' is given by 

and in general the num ber of zeros of the rth  derivative of f  is given by

N
• <M * >m2r(6) J ‘

Now from the record of £, the numbers N0J Nit etc., may be determined by simple counting 
of zeros, maxima and minima, points of inflexion, and so on. m0(6) can be determined as 
the r.m.s. value of £ along the curve. From (3-1-1) we have

щ (в) =  гг*Щт0{в) (3-1-3)
and from (3-1-2) т2г+г(в) Tt2N?m2r{e). (3-1-4)

So m2, mA, ..., m^ + 2  can be determined in succession, or else directly from

т ^ г(в) =  Щ т0(в). (3-1-5)

To obtain the moments of odd order we have to use some property involving the motion 
of the surface. We take the distribution of the velocities of zeros of £(**), which was derived 
in §2-5. I t was shown tha t the mean velocity of the zeros of g is given by

(3-1-6)
2V /

47-2
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and that the mean velocity of points where the rth derivative vanishes is

<3 I , >

Now m'2r+2(d) is already known, from equation (3-1-5), so from

m2r+1(0) =  - c rmir+2(6) (3-1-8)
we may determ ine От2г+|(б).

I t is true that the odd moments m'2r+l(9) correspond not to the original function E(u,v) 
but to a(u, и) E(u, v). However, we shall show in § 3-3 how this difficulty can be overcome.

3-2. To obtain

In §1-4 we saw th a t mn(6) is related to the moments (p  +  q -» n) by the equation

mn(6) =  m„ 0 cos"i5-l- m„_,: Icos"-’ e s in 0 + . . .+ m o „sin"0. (3-2 -1)

The expression on the right-hand side is a trigonometric polynomial of degree n, with 
coefficients which are linear combinations of the moments. Therefore we may expect to 
solve for mpq by taking the Fourier components of m„(0), that is, by considering the quantities

an.i =  l \  т„(в)еш 6в. (3-2-2)
"  J  0

Going back to equation (1-4-11), we have

a„_( = -  f f f E(u,v) (acos0I -|-0 sin 01)', dad!je1Mld01
7T J0 J  — m J —со

=  ~ J  J  E (u ,v){w cos(ff—ff1)}"dudveiie'dffl, (3-2-3)

where (wcostf, w sin#) =  (u, v). O n writing в , —в =  в2 and reversing the order of inte
gration we have

a„ , =  -  Г° Г f E(u, v) up cos" 6 2eiU‘e*e^de2&u.db 
1 7Г J  —<и J  —to J  0

— 7 . , i j  P  E(u,v) uin t M dudv, (3-2-4)

where yn l is a  numerical constant:

Л  J  0

Now

ум  =  ^ Г  cos"02eilfl’d02 =
2 '" t  I when n—l = 2 r > 0

W  (3-2-5)
0 otherwise.

, =  I | E (u ,v)u l‘v^dudv
J  — eo J  —со
pec pea

=  I E{u, u) wn cos* в sin5 Q du du
J  — eo J  —eo

=  f f E(u,v) to"~r- (ele +  e-ie)" (eifl — e-i9)?dudi/
J -eo J  —eo 2"l^

=  J “ I ” E(u,v) u ^ e ^ - f ^  ?j e i<”- 2) « + ^ 2 ?)e'<"-4l»-(-... +  ( - I ) » e - 1”1']dudB,

(3-2-6)
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where  ̂ is the coefficient of л1' in the expansion of (1 (1 — *)e. In  full,

(м-енувчые—«-*«• «•*«
where =  1 and =  0 for r > p .  From (3-2*4) and (3-2*6) we have

“pq i i  [ an,„+ (p  1 ? )  I  ( " )  *n, »-2 +  (p  2  q)  1 0  an. n-A +  "  • ■+ ( ■ - 1 ) » n] ■ ( 3 - 2 -8 )

C» = i

f C20 =  cos 29 + J 
|  C„ =  sin 2в 
IC02 =  — cos 20 +  J

С * -  cos 46 +  cos 20+ § 
C31 =  sin 46 +  J sin 26 
C22 — —cos 46 +  $

I Cjj — — sin 46 +  £ sin 26 
' *  cos 46 —cos 26 +  |

T a b l e  2. F u n c t io n s  C ^ (0 ) 

(CIG -  cos 6
(C0, -  sin в

'CiD— cos 3 6 + cos 6 
C2j =  sin 36 + £ sin 6 
Cl2 =  — cos 36 +  J cos 6 
C03 =  —sin 3 6 + sin 6

C50 =  cos 50+cos 3 6 + cos 6 

C4, =  sin 66+ |  sin 36+  £ sin 6 

C32 =  — cos 66 — £ cos 36 +  £ cos 6 

Си  =  —sin 56 + |  sin 36 + J sin 6 

Cl4 =  cos 56—I cos 3 6 + | cos 6 

C05 =  sin 56—sin 36 + sin 6

So on substitution from (3*2*2)

where C* w  =  ^  [ cl"<’+  Г  1 q) / 0  e‘(n' 2>e +  ••• +  ( - 1)" с - 4"*].

(3-2-9)

(3-2-10)

T he quantities m„(0) being known, this determines the moments mM. The first few functions 
Cpq(B) are listed in table 2 .

Incidentally, when the spectrum E(u, v) has circular symmetry, тп{в) is independent of 
в and so from (3-2-9)

^ { в ) Л - Н \ п Ю т" when Mareboth
I 0 otherwise.

In  particular TYlnn — WI/|9 — 771 n

(3-2-11)

(3-2-12)

and so the condition (1-3-11) for a narrow ring spectrum reduces to

|  m4 m€ — 4m\ — 0

Tfl̂  Ид 3 
~ S " = ~mi 2

As a corollary, we see tha t m4m jm l is never less than

(3-2-13)

(3-2-14)

47-3
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3-3. To obtain E{u,v)

We have so far obtained the even moments of E (u,v) and the odd moments m'M of 
it(u, v) E(u, v). Now consider the function

F{u, v) =  |[£ (u , v ) + E ( - u ,  —w)]. (3-3-1)

This is clearly an even function of (u,v), since F( — u, —v) =  F(u,v). Therefore its odd 
moments vanish. But its even moments are the same as those of £(ы, w). Therefore both 
the odd and even moments of F(u, v) are known. Similarly

G(u,v) =  %[<r(u,v) E(u, v )— jr( — u , — v)E ( — u, — »)] (3-3-2)

is clearly an odd function of [u, v), since G( —u, —v) =  —G(u,v), and so its even moments 
vanish. But since <r( — u, —v) =  <r(u,v) (equation (1-1-5)) the odd moments of G are equal 
to those of cr(u,v) E(u,v). Therefore both the odd and even moments of G are known. I f  
F  and G can both be determined from their moments we may then determine E, from the

identity E(u,v) — F (u,v)+G (u,v)j(r(u ,v). (3-3-3)

We have then simply to consider how to determine F  and G from their moments.*
Formally, if the moments were known to all orders, the problem would be solved. For 

since the even moments mpq are equivalent to the derivatives of the correlation function 
ft(x,y, 0 ) (equation (1 -2 -10)) we have

I  ( —1 )r ^ * v .  (3‘3‘4)pu- ь Р-Ч-
But by (1-2-9), \jr(x,y,Qi) is the cosine transform of E(u, v) and so of F(u,v). Hence

=  m у >°)cos (ax+ vy) ‘k d y -  (3-3-51

Similarly, if we define a function

P ! ?!
* '(* ,* « )  =  (33-6)

we have G (u ,w )=^pJ  J  ir '(x ,y ,$ )sm (u x+ vy)A xA y. (3-3-7)

In practice, however, only a finite number of moments can be obtained, and if (3-3-4) 
is replaced by only a finite number of terms of the series, (3-3-5) does not converge. The 
problem then is to find a convergent sequence of approximations to F  and G, each approxi
mation depending on the moments of the function up to a finite order.

I t  was shown by Weierstrass (1885) that a function of a single variable may be approxi
mated over a finite range by a polynomial, and that this may be done in a variety of different 
ways. A simple method is given by Courant & Hilbert (1953, §4), which we generalize to 
two dimensions as follows. Consider the function}

gn(u>v) =  ( l - a 2- » 2)"- (3-3-8)
* For a  discussion of whether a function is uniquely determined by its moments, see Kendall (1952, 

chap. 4).
t  This is different from the generalization suggested in Courant & Hilbert (1953, p. 68), and leads to 

a more homogeneous approximation.
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As я tends to infinity, g„ tends to zero for all values of (u, v) inside the circle u1+ v 2 =  I except 
the origin. Further, if S is any smaller circle of radius £ < 1,

/ / « > . » )  d - d n ^ J 'J *  ( l - w2)"«.d««dtf =  ^ [ l - ( l - ^ ) » +>], (3-3-9) 
s

which also tends to zero. However, the dom inant part of the above integral is contributed 
by the neighbourhood of the origin, tha t is, if  S' is any interior circle of fixed radius S \ 
however small, almost the entire contribution to the integral comes from S ':

dudv

S

Now suppose th a t/(a , v) is any continuous function of two variables tha t we wish to approxi
mate in the region S, (а2+ в 2)*<£. Then if (u,v) is any interior point of 5, the function

w,) [1 -  (« -  a , ) 2 -  (« -  "j)2]" dv, 

fn(u,v) =  s - --------------------------------------------------  (3-3-11)
j J[! —“f—z,i]"du1di)1

is a weighted mean o ff (u ,v ) , with weighting function g„(u—а„в  —в,) centred on (а, в). 
And since the neighbourhood of (a, v) contributes almost all the weight when n is large 
we see tha t lim_/j,(a, v) = / ( a ,  v). (3 -3 -12)

n-*B
The convenience of this approximation lies in the fact th a t /n(a, v) is a polynomial in (a, v) 
of degree 2 b ,  and with coefficients that are definite integrals taken over S. Further, if  we 
assume that / ( а ,  в) is negligible or zero outside S  the coefficients in /„(а , в) are simply 
combinations of the moments of/  of order not greater than 2n.

To apply the representation in the present case let us assume th a t E(u , в) is negligible 
when (и2+и2)*>£ш01 say. In  other words, we assume a cut-off a t high wave-numbers (some 
such assumption is in any case necessary in order to ensure the uniqueness of the solution.) 
Then we take as an approximation to F(u, v)

Fniu>v) [ l - ( a - a j ) 2/u i? -(B -B )!!/a)g]"du1dB1, (3-3-13)

where 5, is the region И + » 1)*<£и>0. Similarly we take

G*(u,v) = ^ £ jfr ffG(ui>vi ) t 1 - ( u - ui)2/wo - ( v - V i) V wo]"duidi>i, (3-314)
Si

and finally E„{u,v) =  F„(a,»)+G„(u, »)/*(«, в). (3-3-15)
O n expanding the polynomial expressions in (3-3-13) and (3-3-14) and carrying out the 
integrations we find, say, for n =  2 ,

F 2(u, v) =  -[m 00(wg—a2-B 2) -2 ( m 20 +  m02) (w §-u2- b 2) u»g+(m4O +  m04 +  2m22) wfl] (3-3-16)
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and
3

c 2(«>*0 =  +  (« '§ -и 2- » 2)и)0-4 { (т з 0 +  т ; 2)а+ (от21+ ^ з ) » } “|о]. (3-3-17)

so that F2 and G2 are expressible as polynomials in (u, v) having as coefficients the moments 
of_E up to degree 4. Approximations of higher order may be written down at will.

-^4/2

F ig u r e  14
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F ig u re  14. Successive approximations £„(«,«) =  W ^u, »;ui0/4, 0).

We have seen that F„ and Gn are essentially weighted averages of F  and G  by a weighting 
function proportional to £„[(«—и,)/ш0, (и—«j)/uj0] ■ The weighting function corresponding 
to En is somewhat different owing to the presence of the factor (r(u,v) in  (3 -3 1 5 ) . In  fact 
we have from (3-3-1) and (3-3-2)

St

<да8>Si
O n changing the sign of (u„ »j) in the second integral we have

E (u>v) =  ui) K ( u-V> “ i . »,) * i ,  (3-3-19)

i
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Wn is not a function of (u — u,) and (a— »j) alone. However, the second half of (3-3-20) only 
gives a contribution when (u^u,) = (и,»), and then this is small owing to the presence of 
the factor \ \  — a(ul,v x)l<r(u,v)'\.

To obtain an idea of the accuracy of successive approximations we may consider the case 
of a narrow spectrum, when E[u, v) is appreciably large only in the neighbourhood of a 
single point, say ( — $u/<„ 0 ). Then

E „ (u ,v )  =  Wn(u ,v ;  - i w „ , 0 ) .  (3-3-21)

JV„ has been computed for n =  2, 4, 8 assuming that, as for gravity waves on deep water,

o {u ,v )  oc(u2+ « 2)*. (3-3-22)

The results are shown in figure 14 a, b and c. I t  will be seen how the functions become pro
gressively more peaked as the degree of the approximation is raised. When n =  8 the area 
in which Wn exceeds half its maximum value has a radius of about О-Зш0. For large values 
of n we have, in the neighbourhood of (uu v j ,

И£ +  2 « р  { - « [ ( « - « , ) *  +  ( * - » , Я / » » ,  (3-3-23)

and so the ‘rad ius’ of Wn is proportional to n~K I t  will be seen then that En converges to E  
rather slowly. In  order to distinguish parts of the spectrum separated by a distance S, it is 
necessary to take n to be of order (w 0/S ) 2.

I am indebted to M r D. E. Cartwright for advice in evaluating the elliptic integral 
(2-4-47) and to M r E. A. Steer and Miss S. A. Yeo for assistance with the computation for 
figures 12 and 13.
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A number of statistical properties of a random, moving surface are obtained in the special сале 
when the surface is Gaussian and isotropic. The results may be stated with special simplicity for 
a ‘ring’ spectrum when the energy in the spectrum is confined to one particular wavelength A. 
In particular, the average density of maxima per unit area equals jt/(2^3 A2), and the average 
length, per unit area, of the contour drawn at the mean level equals n j(^ 2 ^).

I n t r o d u c t io n

Some of the statistical properties of a random, moving surface have been studied in a recent 
paper (Longuet-Higgins 1957) j  in connexion with the analysis of sea waves. The surface 
was there assumed to have a correlation function of general form. In  the present paper 
we shall discuss the special case when the surface is isotropic, that is to say, its statistical 
properties are independent of direction.

Although the corresponding properties of an isotropic spectrum are simpler than for 
a spectrum of general form, to derive them from first principles would in most cases take 
almost as long. In  w hat follows, therefore, free use will be made of the more general results 
already obtained in (A).

The paper falls into two main sections. The first defines the parameters used to describe 
the surface, and discusses the relations between them. The second and main section derives 
various statistical properties: the distributions of elevation and gradient; the mean number 
of zeros along a line in arbitrary direction; the average length of contour per unit area, 
and the average density of maxima and minima per unit area. All these properties are 
independent of the motion. Next are considered the statistical distributions of the velocities 
of zeros, of contours and of specular points on the surface (i.e. points where the components

•f This will subsequently be referred to as (A).

V ol. 550. A. 975. so [Published 17 October 1957
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of the gradient take given values). The results are discussed in detail when the surface has 
a ‘ring’ spectrum, that is to say, when the energy is confined to one particular wavelength, 
while distributed uniformly with regard to direction.

In  a final section the question is discussed of how far the spectrum is determ ined by its 
statistical properties.

1 . P a r a m e t e r s  f o r  t h e  s u r f a c e  

The energy spectrum

The surface under consideration is assumed to be representable as the sum of an  infinity 
of long-crested waves:

С{*»У.О =  I ‘„cos(unx + v„ y  +  (r„t+en), (1)
Tl

where x and у  are horizontal co-ordinates and t denotes the time. The summation is over 
a set of wave numbers (u„, чл) distributed densely throughout the (u, v) plane. T he frequency 
<rn of each wave component depends only on the wavelength 27r/ui„, where

« Ч . - М + 1®*, (2 )
and the phases e„ are randomly distributed in the interval (0, 2n). The amplitudes cn are 
such that, over any element dud»

24** =  E(u,v) d«dt>. (3)
n

T he function E(u, v) is called the energy spectrum of £. Formally, it is the cosine transform 
of the correlation function ijr(x,y) defined by

« o W n * / ! ,  J [ r ^*'>y,»nC(x+*'.y+y'»<')d*'dy'd<'- M

In  the special case considered in the present paper E(u, u) is assumed to have circular 
symmetry about the origin, i.e.

E(u,v) =  E(w), (5)
say, where w =  (u2+w2)*. (в)

Moments of the spectrum 
Parameters which frequently occur in the analysis of the general two-dimensional 

spectrum are the moments m'  ̂ and m"pq defined by
f* CD 1*<S

nM =  I I A'{u,«) uMdudu,
J —в» J — oo

n'^ =  E(u, u) a(u, v) u^vfiduAv,
J - a  J - в

п’щ — Г° I" E(u, v) <r2[u,v) uWAuAv.
J  — «С J  —to

(7)

For example, mM defines the total energy of the surface per unit area. I t  is assumed that 
the moments exist up to all orders required.

I f  we consider the intersection of the surface by a vertical plane in an arbitrary direction 
в (that is, the plane я$ш 0 =  у cos в) the resulting curve has a  one-dimensional spectrum
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which we may denote by E0(u'), where «' is the wave num ber measured in the direction в. 
The moments of this function are defined by

m„(0)= f  Ee(u’) u’-du'. (8)
J  — CO

The moments and т"„(в) are, by definition, related to Ea and Err7 in the same way that 
т„(в) is related to E. A simple relationship exists between mn(6) and the moments mpq of 
the two-dimensional spectrum. On the one hand

m„(B) =  mn 0cosnв + cos"- 10 s in 0 + ... +  mOjnsin“0 (9)

((A), equation (1-4-12)); on the other hand

=  dd, (10)

where Cpq(d) =  ^ei',9+  ^  l Д ”) ei<"̂ >9+ ... +  ( - l ) " e - in9J  (II)

and  ̂ denotes the coefficient of i f  in the expansion of (1 + x)f (1 — *)? (see (A), § 3-2). 

When the spectrum has circular symmetry, тп(в) is independent of 6 and hence

* „  =  f  L)‘? f  i n )  I  (in) m-  A 7 b0th even;|  (12)
0 otherwise. J

Similar relations hold between т’„(в) and m'pt, and between m"„(6) and m
It is possible to describe the statistical properties of the surface in terms of the moments 

т„(в), m'n[6) and m”(8). Nevertheless, for an isotropic spectrum it is more convenient to 
use the radial moments, defined by

M = f f  E(u, v) wndudv (13)
J —CD J —*

= Г" P E(w) wnwdwd6
JO J  0

= 2я f E(w )vf*xdw, (14)
J a

AfJ =  f Г  <r(u,v) E(u,v)Wdudv (16)
J — m J — a:

= 2я Г" <r(u>)E(w)w”+'dw (16)
j  a

М :=  Г  Г  a2(u,v)E(u,v)w"dudv (17)
J  - a  j  —to

=  2я Г” o,2(w)E(w)uin+,dw. (18)
J о

and, similarly,

and
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The relation of Mn to when tt is even, can be found as follows. We have

Г” [ E(u,v) (u2+ «s)r dad!)
J — CC J — Ш

=  ^ , 0 +  ( j J  m 2 r-2 ,2  +  7n2 r - 4 , 4 + ” - + m 0,2r

- [ Г О - О Г г *  Л Ь « / Ю
from equation (12). The expression in square brackets is the coefficient of xr in

(19)

(20)

(1+ x ) * - (1+*)*-* ( 1 - * ) * + . . .  +  ( - 1 ) - ( 1 - * ) * '  =  R 1 + * ) * - ( l -* )* ] '

=  M r-

Hence Мъ  =  2 ^ ( 0 ) / ^  щ ,

Similiarly, we have 2 .4 .6 ......2 т ,
7 r  l o t ;  / о  -I \  ^ 2 r

and

1.3 .6 ......(2r— 1)

M "  2 ' 4 6 ..............2 r

Jr“  1 .3 .6 ......(2r— 1) ™2r-

In particular, M0 щ , M2 = 2тг, Mt = $mv

For an isotropic spectrum the odd moments vanish identically:

m2r+lW =  »hr+1( )̂ =  m2r+I W  =  0.
The odd moments „ Af .̂+1> MJr+1 do not occur in the present analysis.

(21)

(22)

(23)

(24)

(25)

(26)

Invariants of the spectrum 
The following determinants are fundamental for the analysis of the general spectrum:

Ao =  i

Д2 =

Д5 =

and, more generally,

m40 m22

Д* =
m2r-l,l m2r-2,2 mr l.r+l

(27)

(28)

(29)

(30)

mr,r mr-l,r+l ••• m0 ,ir

The vanishing of Aj, is a necessary condition for the spectrum to consist of not more than 
r one-dimensional spectra (see (A), §1-3).

L
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Substitution from (12) and (25) shows that for an isotropic spectrum

Л0 =  mo = Ц »  ]
A2 =  m\ =  j (31)

It can be proved (see Appendix) that, for all integers r > 0,

r =  2 r̂+ (3 )̂

As we should expect, Д2г vanishes only when M2r vanishes, since an isotropic spectrum can 
be the sum of a finite number of one-dimensional spectra only in the trivial case when 
all the energy is concentrated at the origin.

Since, in an isotropic spectrum, тя^6) is independent of в, we have m2m3x =яг2тш - 
Thus the long-crestedness y~l is given by

y— i =  =  i (33)

The invariant quantity (mM + m02), which is independent of the direction of the co-ordinate 
axes in the general case, has (from equations (12) and (26)) the value

m20 +  m02 =  MV (34)
Another invariant that we shall require is the quadratic expression

ЪН — т^тм —4яг31т )3-(-Зт|2. (35)
Substitution from (12) gives 3H  =  (36) 
and so from (25) H  ̂ (37)
Therefore for an isotropic spectrum

A ring spectrum
When the surface is isotropic it is impossible for the spectrum to be ‘narrow’ in the sense 

that the energy is concentrated with respect to both wavelength and direction (except in 
the trivial case when all the energy is at the origin). However, an interesting special case 
is when the energy has predominantly one wavelength Л, that is, when it is concentrated in 
a narrow annular region in the (u, v) plane, with centre the origin. If W — 2я/Л denotes 
the mean radius of the annulus we have approximately

Ц , =  wnM0, (39)
and hence M0M4 — (40)
or m0mt =  (41) 
Now from (14)

MaM4- M l  = j j j j £(«!,»,)£(«2, 0  {wl-w\uil) dUjdDjdUjdWj, (42)

2 [M0M4-M $ ) -  [ f  j  j  E(ultvt) EiitvVi) (w?-w|)2duldv1du2d!;2. (43)
and hence
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This quantity is always positive or zero and vanishes only when E(u,v) is a ring spectrum. 
Further, in the isotropic case,

M%) =  4ст2 Г° f E(w,) E(w2) (w l—wlYdw ^w ^,  (44)
J о J о

which, for a nearly annular spectrum, is proportional to the square of the width of the 
annul us. A convenient parameter for specifying the width of the annulus is therefore

<«>Aij

2 . S t a t is t ic a l  p r o p e r t i e s  

The distribution of surface elevation and gradient 
The statistical distribution of the surface elevation £ ( =  £() is given by equation (2-1-8) 

of (A). Substituting mD = Mq we have

<46)

This is a Gaussian distribution, with mean-square value

Ш = K  (« )
The joint distribution of the two components of gradient

is given by

— £ Г (48)
dx’ dy’ 6l’ S2’ K '

P itv b )  = ^ ехр[ - К 2й -2 И 11̂ з + т 2°й)/2Д2] (49)

in the general case (see (A), equation (2-1-12)). On substituting from (12) and (31) we have

p & , q = щ  exp [ -  (so)

a symmetrical Gaussian distribution in two dimensions. The distributions of £, and (£2, £3) 
are statistically independent (see (A), §2-1).

Let us write
(l2.Cs) = (acos/9, asintf), = a (61)

in (50), so that a and в denote the magnitude and direction of the surface gradient. Then 
we have for the joint distribution of a and в

P(<hв) (62)

which is of course independent of в. The mean-square slope of the surface is given by

=  M2. (53)
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The distribution of the slope a, regardless of в, is a Rayleigh distribution:

P(a) = щ е х р  (—a2/M2). (54)

The distribution of в, regardless of a, is a constant:

Л 0 - 5 - (я )

The number of zeros per unit distance 
If we consider the curve of intersection of the surface by a vertical plane in the direction 

8, we may count the number N0 of zeros of this curve per unit horizontal distance. From 
(A), equation (2-2-6), N0 is given by

0 п[т0(в)) v \2 M j  '
Similarly from equation (2 -2-10) of (A) the number of maxima and minima of the curve 
per unit distance is given by

1 {т<Щ* l (3M\*
1 п[т2(в)} п\Щ г}

In general, the number of zeros, per unit distance, of the rth derivative of the curve is 

^уепЬу
T 7Г \ m2r(6) ) it \2r + 2 M2r) ■ 1 1

Also from (2 -2 1 2 ) and (2-2-13) of (A) the number of points per unit distance where the 
curve crosses the arbitrary level £ =  £, is

а д = ^ ( щ ) * « Р ( - ^ / 2Л/о)> (59)

and the number of times when the gradient of the curve takes the arbitrary value £2 is

В Д  =  £ (Щ )*« р (-£/*»•  (6°)
For a ring spectrum, we have

&/П* 2 /l\* , a l 4

* - ; ( > / - i ® -  (81) 
.. W /3\* 2/3\*

, • лг w /2r+ n *  2 /2H -l\* /mNand, m general, Nr = -  [— j  =  -  , (63)

where ^ =  Ш- (64)W

denotes the characteristic wavelength of the spectrum. For a long-crested wave of the same 
wavelength, the number of zero crossings per unit distance would be 2/A in a direction at 
right angles to the crests, and zero in a direction parallel to the crests. Equation (63) shows 
that, for an isotropic spectrum, Nr is always less than the maximum value 2/1 On the other 
hand, for large values of r, Nr approaches this value.
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The length and direction of contours 
Let contours be drawn on the surface at the level f = £, =  constant; the length of contour 

lyingin any given horizontal area will be, on the average, proportional to that area. The mean 
length J per unit area is shown in (A), §2-3, to be given by

<ю)
where y~l denotes the long-crestedness and E(k) is the Legendre elliptic integral of the 
first kind. For an isotropic spectrum we have

У =  1. Е(У(1—у2)) =  $71, (66)

(67)and hence

The distribution of contour direction for an isotropic spectrum is of course uniform.
V /

7Т Г

\ y

/ \ / \
V \j/\://;\ :: V !
/;\A i\:/\i/\!/

\!/

/ Л

F ig u r e  1. T h e  p a t t e r n  fo rm ed  b y  tw o system s o f  re g u la r  w av es  in te r s e c tin g  a t  r ig h t  an g le s .
------- , c re s ts  o f  th e  in d iv id u a l w av e  s y s te m s ;--------- , t ro u g h s  o f  th e  in d iv id u a l  w a v e  sy s tem s;
------- , c o n to u rs  o f m e a n  leve l in  th e  c o m b in e d  sy s te m ; • ,  m a x im a  o f  th e  c o m b in e d  sy stem .

For a ring spectrum the average length of contour becomes

% )  =  2^ e*P ( - £ ? « ) ,  (68)

and in particular at the mean level f =  0 we have

(69)
This result may be compared with the simple pattern made by two regular sine waves of 
equal wavelength Д and of equal amplitude intersecting at right angles (see figure 1). It 
is easy to see that the contours of zero level run diagonally, making angles of with the 
directions of the two sine waves. The distance between adjacent parallel contours is ^Д/2. 
The mean length of contour for each diagonal direction is therefore ,/2/Д, and the total 
mean length is twice this, or

J(0) = 2 7 2 ^  =  2-83.. . j .  (70)
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This is somewhat greater than in the isotropic case. However, f(£j) falls off in a different 
fashion in the two cases; clearly for the two intersecting waves i(£,) vanishes when £, exceeds 
twice the amplitude of each wave.

The density of maxima and minima 
A very interesting problem is that of the density of maxima, minima or stationary points 

per unit horizontal area. It is shown in (A) that for any statistically uniform surface the 
density of maxima Лгаа together with the density of minima _Dmi equals the density of saddle 
points Z)!a. Also that for the special surface represented by equation (1), Z>ma = JDmi . 

It follows that Dm t= D rni, = lD M,, A*. =  iAu,, (71)

where denotes the total density of stationary points. The density of specular points, 
that is, points where the two components of gradient take given values £2, £3 is given by

A P. =  D ^ { - {& + % )№  (72)
for an isotropic surface (cf. (A), equation (2-4-66)).

The evaluation of Z)ma in terms of the energy spectrum of the surface is given by

< ™ >

where these being the three roots (always real) of the cubic equation
4/3 —3 # /-Д 4 =  0, (74)

and where Ф is a function involving complete elliptic integrals (see (A), equation (2-4-53)). 
Substituting for Д4 and //from  (31) and (48) we have

6iP —3Mt l—M l = 0, (76)

and so (/,,/2,/3) =  (76)

Since, from equation (2-5-55) of (A),

а д  - 5 3 i .  <” »

» e h.v« » - - S » 5 & s 3 5 - S 3 n &  (,8)
In particular, for a ring spectrum,

D = —i— = =  0-907. . . i .  (79)
Ш8- 8 j3 n  £,/33* Д2

This may be compared with the corresponding result for two regular sine waves of equal 
wavelength Л, and equal amplitude, crossing at right angles; in that case

D =  i  (80)

simply. So the density of maxima in the isotropic case is slightly less than for the two 
intersecting sine waves.

a l  V o l . 350. A .
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The velocities o f zeros
I f  a plane section of the surface be taken in a direction в as before, we may consider the 

distribution of the velocities of points on this curve which lie at a given level, say £ — 
This would be equivalent to drawing a contour m ap of the surface and finding the velocities 
of the intersections of the contours £ =  £, with a fixed line in direction в.

For a genera] spectrum, the distribution of the velocity is given by

л/,\ _ ! ____ ^ 2'/m2_____ /oi\
‘ ' /fl 2 (т"0+2т[с+тгс2̂

(see (A), equation (2-5-14)), where
A2, =  mlm2—mj2. (82)

For an isotropic spectrum we have

m° = M" m[ = °' \  (83)
m2 = J

(e4)
This distribution is symmetrical about the origin, as we should expect. Its second mom ent 
and standard deviation are infinite, but a measure of its width is the interquartile range,

eivenby ~ « e v »

For a ring spectrum this becomes
' j m -  <->

D i - v a n  m

where с is the phase velocity of the component waves.
I t  will be noticed that the distribution of с is independent of the particular contour 

£ =  f  i a t which the velocity is measured.
Similarly, we may consider the velocities cl of the maxima and minima of the curve. 

From equation (2-5-19) of (A) we find for the distribution of c,

2M ;/3A f„

“  [сг+ ш у 3M „)*

This is of the same form as p(c) but with an interquartile range of width

m 1- <->

p ( c ) --------(87)•гл /.? • i и»/»»

For a ring spectrum this becomes

s l - *  <89)
The distributions of the velocities of higher derivatives of the curve may be found in a 
similar way.

i



337

PROPERTIES OF AN ISOTROPIC RANDOM SURFACE 107

The motion of the contours 
The motion of a contour may be defined as follows. Let P be a fixed point through which 

the contour passes at a given time, and Jet straight lines be drawn through P parallel to 
the axes Ox, Oy. The intersections of the contour with these two lines will move with velo
cities c„ Cy, say, which determine completely the local motion of the contour. If any other 
fixed line is drawn through P in a direction 0, and if г is the speed of the contour intersection 
along it, then it can be shown that

— =  — cos0 + —sin3. 
С с  сv ''It

(90)

The reciprocals ljcx, 1 jcg will be denoted by кх, ку respectively.
Alternatively we may consider the components qs, qy of the velocity of the contour 

normal to itself at P. Between (л̂ , ку) and (qx, qy) there is a reciprocal relationship:

^  *, \ '
T % ’ K*+Kl)>

M  =  ( q f i r r  7. + ? )

(91)

(see (A), §2 -6).
The statistical distribution of (кх,ку) is given by equation (2-6-21) of (A). In the general

case,

where

fi(K K) i V (i+ r2)_.W+_ ^
P M ) h  nA\(m2a+ m a2) i V U ( l - f ) )  *  ‘

Д, —
mll

ml0 m01 m00

y” 1 is the long-crestedness, E is the Legendre elliptic integral of the first kind, and 

in which (M.j) is the matrix inverse to that of Д3. In the isotropic case we have

W t  0 0
Д5 =  о \м г о

О О М"0
2 1 

and so ^  = М2 К̂*+К^ + Я11'
Setting also у — 1 in (92) we have

2 / M2 (*2+*S)*
V f. “  p  \Ш У  [ ( ^ + ^ )  +MJ2M"0]2’

whence also
. 2 / 2  ю *  (ti+ q l)-*

/ ( f o W f t - a  V j r )  гга+ЯГГяЛй

(92)

(93)

(94)

(96) 

(90)

(97)

(98)

These are symmetrical distributions, independent of direction in the horizontal plane.
If  we write

( ? » ? , )  = ( ? C O S 0 ,  ? s i n 0 ) , (99)
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so that q is the absolute value of the normal velocity, we have

/>(?){, =  2МЯ> 6)h =  Znqpig*, ?y)£l, 

or from (98) P(g)h  =  ± (? ^ )*  (?i +  2^ ^ )}.

(100)

(101)

This distribution has a mode at the origin q =  0. The mean-square value of the velocity 
is given by

(102)
4 M 2

2V*For a ring spectrum, q2 =  —  2c2
ur

where ? is the velocity of a component sine wave in the spectrum.

(103)

The velocities of specular points 
As defined above, a specular point is a point that would be seen by a distant observer as 

a point of reflexion of a distant source of light. We may imagine such a point to be followed 
continuously. If its velocity is denoted by (e„ cy) then the distribution of (e,, cy) is shown in 
(A), § 2-7, to depend upon the matrix

(5,<) =

ffl40 m u m 2 2 m 30 m 2l

m s j m 22 m \s m 2\ m l2

m  22 m t 3 « 0 4 m \2 m 0 3

m 30 m  J , m \ 2 m ia m ’u

m 21 К г m 03 m li m 02

(104)

If (M^) denotes the inverse of this matrix, then it is found that

f.1. . \ _  ________ 1________ 3(n ls —n22) 2-f N(N22 — ̂ NS1)
N i

where (Ny) is the symmetric 3x3 matrix whose components are

(1 0 5 )

— 2М41сж
&22 =  Mi5c*+2M4Sc,cy+ M u c l - 2 M S2cx 

* 33 ~
N2 j  =• MKcKcy-\-M4ic l~ M isct

^ 3 1  — M4iCtCy M 4%ct

N i i = M *s<2+

and where
Д2 =

m i, m02 Л5 = |3 * | ,

я13 ~  -̂ 21 -̂ 32 '^22^31>\ 
"22 =  ^ , ^ , - ^ .  }

+ M n ,

1 M 4 2 C y + a / 2 2 ,

- % М ь ъ с у +  ■ ^ 3 3 ;

—  ( М 4 3  +  М 5 2 ) Cy  +  M 23>

— M S i  с у +  А ^ 3 ] 1

■ M 4 i  c y +  ■ ^ 1 2 1

A T = | A r t f | I

(106)

(107)

(108)

1
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(-̂ ma. denotes the density of maxima.) For an isotropic spectrum these expressions are 
considerably simplified. Thus (Sff) becomes

/ \M <  0

(3(,)

and so

(4 j)  =

Hence we have

' м \

m 0

0 0 0

0 0 0

3 л 1и Mt

Л 8 ли м 4
и

1 3
~ Ж

0
к

0 0 0

0 0 0

/2£2 + 3 2&
2 ( ? W

\  - 1 2&7

0 0

0 0

0 0

m i
0

0

0

° \
0 0

0 0

2
щ ° /
0

ж

7

where

After some reduction we find from (105)
к , .)  -  ( $ ) W

where

i j S M i  (a2 +  4) (3a2+4) (a2+ 6) +  6a4
P\c» cw)ii.b= „ M \ [(a2 +  4)(3a2 +  4)]‘

To find the distribution of the non-dimensional velocity a we may write
(Lv) =  (a cos в, a sin в),

and so 

giving p(a) = 8 j 3 a [-

(109)

(110)

(111)

( 112)

(113)

(114)

(П5)

(116)

(117)

p(a) =  2 irap((,r;) =  2л a j^p (cB ct ),

(a2 + 4) (3a2+ 4) (a2 + 6) + See*
[(a2 + 4)(3a2 + 4)]*

The form of the distribution is shown in figure 2 . There is a single maximum, at a =  0-72 
approximately. At infinityp(a) is O(ors), so that the second moment diverges. The median 
value (dividing the distribution into two equal parts) is at

a =  1-240 ... = am, (118)
21-3

4
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say. The value am has the following significance: if the positions of the specular points are 
noted at two successive instants t and t + dt, half of the points may be observed to have moved 
through distances greater than

from their original positions.

(119)

F ig u re  2. Graph of ̂ (a ), showing the form of the probability distribution of the absolute
velocities of specular points.

For a ring spectrum this median distance is 

where I is the velocity corresponding to the wave number ffl.

( 120)

3. O n t h e  u n iq u e n e s s  o f  t h e  s p e c t r u m  

Suppose we are given certain of the statistical properties discussed in § 2, the question 
arises whether these determine the spectrum uniquely, or to what extent the properties 
may be shared by other spectra.

The correlation function tfr(x,y), if known for all values of x and y, would suffice to 
determine E(u,v) under general conditions; for E  is simply the cosine transform of ф. 
However, the properties discussed above are purely local, that is to say, they involve the 
behaviour of the surface at one point and its immediate neighbourhood. We have seen that 
these properties depend only on the moments Мъ, M ”2r of the spectrum (which are the 
derivatives of ^ at the origin). In fact Мъ is the rth moment with respect to (! (— tv2), of 
the function

defined over 0<fl<cc.
F(fi) =  F(w2) — uE(w) (121)
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The properties which depend on moments Мгг up to order r = s will be said to be of 
order 2s. I f  all the properties of order up to 2s are known, the moments up to order 2s may 
all be determined. For example, from (47) and (59) we have

м 0 =  Г2, 1

^ 2r +2 — 2r + 2 2f f l  (r _  о  1 2 ) I №%)Мг. 2r+ 1 '  ir ~  0 ,1 ,2 ,...),)

and therefore Мъ  =  (123)

Suppose first tha t the moments of F  exist and are known up to infinite order. This does 
not determine F  uniquely in general (see Kendall 1952, chap. 4), but if certain restrictions 
are placed upon F  for large values of /?—for example, if £  is exponentially small at infinity 
—then only one function with these moments can exist.

(a) (*)
F i g u r e  3. Exam ples o f spec tra  whose statistical properties are  isotropic (a) to o rd e r  2,

(4) to o rder 4.

In  practice we may know, or be concerned with, properties up to a finite order 2s only. 
Except in special cases, if the moments are known up to a finite order only, infinitely many 
functions may be found having these same moments. A particularly simple function is one 
consisting of the sum of delta functions. I t  can be shown (Stieltjes 1894, chap. 1 ) tha t if 
the moments Af2, are specified for r =  0,1, then a function F*, the sum of not more than 
[■J.t+1] positive delta functions, may be found having these same moments and lying in 
the range 0< ^ < c o . Hence a combination of not more than [ i i+ 1 ]  ring spectra may be 
found which has the required statistical properties, to order 2s.

One can also find non-isotropic spectra with the same statistical properties. Consider, 
for example, a  surface which is the sum of two pairs of long-crested, incoherent systems of 
waves, o f equal wavelength and mean-square amphtude, intersecting at right angles 
(figure 3 a). The spectrum function has the same moments mM, m20, ffin, 7noi as an isotropic 
ring spectrum of the same radius Э, for if

=  K >  ( 124>

then (л*20, я ш я 02) =  iw W 0)- (126)

i
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Now by equation (9) both т0(в) and m2(6) depend only on these moments; thus they are 
the same as for a ring spectrum, and so independent of 8. Hence the number N0 of zeros 
per unit distance, which is given by equation (56), is also independent of the direction в. 
Similarly, all properties depending only on moments of order 0 and 2 will appear as 
isotropic, including the distributions of surface slopes and of contour direction.

More generally, if we consider a surface which is the sum of j+ 1  pairs of long-crested 
waves travelling in directions 8 = j7r/(j+l) uniformly spaced between 0 and 2тг, then all 
the moments m^ of order^-f q ^2 s  are the same as for a ring spectrum. Hence N0, Nt, ..., 
Ns_ | are all independent of 6, and so are all properties of order less than or equal to 2s.

The case s =  2 is shown in figure ЗА. For this surface both the number N0 of zeros and 
the number N\ of maxima and minima in a direction 8 are independent of в.

The general theorem may be quite simply proved as follows. Consider any spectrum in 
which the energy is all concentrated on the circle mi =  B, and in which the distribution of 
energy with regard to 6 is given by some function G{8). The (p, <jr)th moment of the spectrum 
is then

r5”uVG(0) dd, (126)f
" ' H oI 0

where (и, и) =  (3 cos в, V> sin 6). That is to say,

f  cos" в sine0G(0) dB. (127)J 0

The product cos» в sin« в can be expressed as a trigonometric series in в containing terms in 
cosn# and sin лб, where n does not exceed p+q. Suppose then that the Fourier series for 
G(8) is of the form

G(d) = G+ 2  [^„cosn5+jBnsinn#], (128)
n=l

where A l = A2 = ... =  =  0,1
Bj = B2 =  . . .  = B2s+i = O.J (129)

Then ifp + qt£ (2r +  l) all terms in (126) will vanish except those arising from the constant 
term G. This gives «я _

mt. = j ui*+,'cos<)0sm«6Gde. (130)
”  Jo

In other words, mM is the same as for a ring spectrum. Now when the spectrum consists 
of j  uniformly spaced pairs of wave systems we have

w - g i J A ' - S i ) -  (191)
where 8(8) denotes the Dirac delta function. So

1 1*2* 71 2l + 2 ,'ятг
Л „ = -  I G(ff)cosпвd6 =  -  j - r  2  cosj —r , (132)

" J o J + I  1 J t  A

which vanishes when n = 1, 2 ,..., (2s+ 1); and similarly for B„. Thus the conditions (128) 
are satisfied.

i
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As a corollary it follows that any spectrum which is periodic in 6 with period я/(*+ 1) 
will have isotropic properties up to order 2 f+ 1. For the spectrum may be considered as 
the sum of regular systems of point spectra of the type just discussed.

A p p e n d i x  

Proof of equation (32) 
Substitution from (7) into (30) gives

poo /*оо /"со

3 J  - c

“ fr “2r“4  —
« Г Ч  и\г~ч\ ... u j ; i d

1*00 /*00 t* CO ĈD
Д 2 г =  I I I I £ ( « l , » l )  ■■• £ ( “ ,-+l .« r + l)

da.dw, ...(к г+^ г+1 (Al)

“i"i «Г1®**1 — *#i
<*« ("СО лов roo
I ... | j £(«„ »,)... £(ur+1,»r+l)

J — to J —в  J —со J —аз

l l ... 1

11,/a, vju2 ... (wr+1/ur+l)

fyl/Ul)r (̂ 2/̂ 2)Г ••• (*Wl/“r+l)
x (щ М г M viY~l ■■■ (“rti/"r+i)°
X («!»,.H2W2......“r+it’r+i)rd“idt'i -- dar+1d!)r+1. (A2)

The value of Д2г is unaltered by permuting the suffixes 1, 2, . . . ,(r+ l) among themselves. 
Thus, adding all the (r+ l)! different permutations we have

(г+ 1)! Д2г =  Г  Г  ... Г  Г  £(«,«;,) ...£(ar+1>»r+i)
J — со J — «  J — в  J -®

1 1 1 1

X X :

( и , / и , ) -  • • ( « V + A + l ) ' ( “ j H ) r  ■ ■ ( “r * l K t l  ) r

Now writing

x (u^vlu2v2... «rnt'r+i)rdu,du1 ...dar+1d»r+1

Г  Г  ... Г  Г  П М . . . Е ( и г+1,ьг+1)
J — ей J — со J  —со J -«о

х П  (V V  "U«H) П  (vpluf -  V й?)*>?
х («,«,... иг,, WP, ,)r du, du,... dur+1 dur+1,

(«л» *, H/,) (<u,cos0#, i^sinf,),!
«,) “  £(“>)> J

( A 3 )  

(A 4)
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in tie  above, we have
Г® r2n  fM rZn

(г+ 1)!Д2г=  Г г . . . !  Г E (w ,)...E (w T̂ )
2п j»* |»2я

J о J о J о J о 

X П  sin2 (вр- в я) w\+l ... wTr%\ du), d0, ... dtor+1d/9r+1
P > g

M  \r+ l Г2* Г2я
I . . . j  Ц  sin2 [9p — 0q) ... dflr+1./ Jo j  0 i»a' 0 Jo #>«

The multiple integral may be evaluated as follows. Since 

we have
sin2 =  J ( e ^ - e 2iB4) (e-2̂ - e ~ 2W«),

T Ism 2 0V
P>Q

Л )
1 1 1 1 1 1

1 e 2ie. e 2№ g21flr+ ] e -2iD , e_21l,! .. e -2 i9 r+l

™  2 * r+I> : :
X

: : |

e 2rl0, e2rl02 g2rie,+ i е -2г1в, e -2rl0j e —2 r№r+ 1

A typical term in the expansion of the first determinant is
]  е 21Л e *W ,......... e 2 r l» „ i

which, when multiplied into the second determinant, gives

1 e2'®1 ... e2ri9r+1
£ — 2 1 0 1  J g2(r-l)i(9j-+1

g -2r l6 i e -2 (r -1 )I*  _ j

The integral of this determinant over the given ranges of 0U ..., 0r+] is
2n 0 ... 0

0 2n ... 0
=  (2 ir)7 + 1

(A 6) 

(A 6)

(A  7)

(AS)

(A 9)

(A  10)

0 0 ... 277

Since the first determinant in (A 7) contributes altogether ( n + 1 )! such terms we have

Г ;  -  j j , i , sin2 -  (г+ £ й Г - (a  u )

From this and (A 5) the result follows.
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Abstract. An approxim ate distribution is deduced for the directions of the 
‘ lines of maxima ’ on a random  surface. T he theoretical distribution is found 
to  be in good agreem ent with some experimental results obtained previously by 
Briggs and Page.

§ 1. I n t r o d u c t io n

Th e  analysis of fading patterns of radio waves reflected from the ionosphere 
gives rise to some interesting statistical problems. Among these is one 
studied by Briggs and Page (1955) which may be stated as follows.

Suppose we are given a two-dimensional surface whose height represents, 
say, the intensity f (x ,y )  of a beam of reflected radiation as a function of two 
horizontal coordinates x and y.  L et two parallel sections of the surface be 
taken, along the lines у  = y0 and у  —y 0 + S. Consider the maxima of the sections 
along these lines. If the lines are sufficiently close (S sufficiently small) the 
maxima of the two functions will correspond in pairs, the members of a pair 
being slightly shifted relative to one another. I f  the line joining a pair of maxima 
makes an angle a  with the jj-axis the problem is to find the statistical distribution 
of tan a.

Lacking a theoretical solution, Briggs and Page constructed pairs of random 
sequences to  represent the fu n c tio n s/(* ,y 0) and f (x,y0 + &). These sequences 
were arranged so as to be normally distributed with zero m ean and unit standard 
deviation. Further, their auto-correlograms and cross-correlograms were also 
of normal form. T he observed distribution of ta n a  for the pairs of sequences 
is indicated by the experimental points in the figure, which are transcribed from 
Fig. 3 of Briggs and Page (1955).

T h e  theoretical problem, however, is similar to many that have been treated 
in connection with the analysis of the sea surface (see Longuet-Higgins 1957 a, b) 
and in this note we shall present a solution. I t  will be shown that, provided only 
the jo in t distribution o f /(* ,y )  and its derivatives is normal (a condition satisfied 
in very general circumstances) the probability distribution of ta n a  is given by

A 2
^ tana)=  2[^4a + (tana—£ ) 2]312 ’ .........(1)

where A  and R  are constants which depend only on the form of the correlogram 
off .  W hen the surface is isotropic, so that its correlogram has circular symmetry, 
we have

Л 2= 1/3 , Я  =  О
and so

p(-UlX a) = 6 [J + ta n 2a p '  .........
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In the case treated by Briggs and Page we have apparently (see § 5 below)
j4b =  2/3, B =  0

and sa

P(tafl = 3[§ + tan2a]3'2 ’ ......... (3)
This curve is shown by the dotted line in the figure. It will be seen that the 
agreement is fairly close. Moreover, the curve is in adequate agreement at the 
tails of the distribution, in contrast with the normal frequency curve tentatively 
suggested by Briggs and Page.

§ 2. T he D erivation of p(tan a)
Suppose that two corresponding maxima are separated by intervals dx and 

dy in the x and у  directions. Then, since the gradient df/dx vanishes at both 
maxima we have

|£ (x  + d x ,y  + dy)~  !£(*,;y) = 0
or

3 * +s&*e0
approximately, and therefore

dx Э *fldx3y ...
......... (4)

Clearly this formula also holds for any pair of points having the same gradient 
not necessarily zero.

Now, let us assume that /  is a stationary random function whose partial 
derivatives up to the second order are distributed normally.
Writing for convenience

S f  a y  d * f _ _  

dx ’ ’ Щ /  6l’ 
we have for the probahility-density of (flt £2, £s)

P(£i> fsi £з) (2тг)3/гр . ц/г exP t “  4 2  ..........(-*)

where (Мй) is the reciprocal of the matrix of mean values

(н « )= (Ш -
In fact, if ф(Х, У) denotes the correlation function

Ф(Х, Y ) - f { x ,y ) f ( x  + X ,y + Y )  ......... (6)
we have by repeated differentiation

____ 32  J ,

fi2 = -  ^ 5  (°> °) = say,

(0 . 0) — mte<
04 i

fa BX^dY2 ^  =

-(?)
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and also

So

and

where

—
£г£з = g^sgy (®> = mu

^i^a=fi^3=0«
OT2a 0 0 
0 m10 m31 

0 ™ai m22 

^2> £з) = ?(^l)/’(^2> £з)> 
1

(8)

•(9)

iexP ( - f i 2/2w20),

1
(2ТГД)1'2

(2irm20yi*

exp [ -  (mS2| 22-  2m31̂ 3 +  от40£35)/2Д], 

Ь = тм Щ г-”Н1

. ( 10)

p(£j) andp(£2, £3) are the distributions of f j  and of (f2, f 3) separately, and equation 
(9) shows that they are statistically independent.

We wish now to find the distribution of the quantity
7) =  ta n a =  - £ 3/ f2

at the points where the gradient vanishes. First let us find the joint distribution 
of ( | 2, f 3) at such p o in ts ; we shall denote this by p(tj2> fa)#,- Now since f 2 and 
£3 are statistically independent of f j, the distribution of (f2, £3) for points on the 
ж-axis such that 0 < f l < d ( 1 is the same as the ordinary distribution p (f2, £3) for 
points distributed randomly and uniformly with regard to x. But near any 
particular zero of f j  the function £г remains in  the interval 0 < f 1 <rf^1 for a 
distance dx inversely proportional to \d£ijdx\ = |£j|. Hence we have

P(£H &) = C|?2l_1 P(%2t £з)(, 
or ^ 2, £3).
where С is a normalizing constant. This gives

Pt fv  fa)*, = 2(2nlm  )Vi ^  CXp ~̂~ ~  2nt31^ 3 + т^ 21Щ-
....... (И)

T o  find the distribution of ij we now put
/  t It t \  /  '\ ^(^2* f 3)
( — fa / fs> f  г) ~{V>V )> 3 (4 ,4 ')

giving
1

P i l ,  v )  (, = 2(2тгДот40)1Т2 V* eXp * ■ 7}' ‘(m22 +  2m3lV + '

O n elim inating rj' by integration over the whole range ( — со, oo) we find

V 1 Д К о 1'*
A 2[mn  + 2т31г) + miriri2Y /2 

or / \ 1
2[А* +  ( т ) -В )2]3* '

where

This is the result stated in equation (1).

Д1/2

”*40 mi0

. (12)
I

.(13)

.(14)
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W e have included in this distribution all points at w hich the gradient vanishes, 
i.e. both maxima and minima. However, since />('»}, V){, ‘s sym m etrical about 
the origin, the contributions to p[rj)( from  the maxima ( t j '  < 0 )  are equal to the 
contributions from  the m inim a (i)'> 0). So, after introducing the appropriate  
normalizing constant, we see that equation ( 1 ) represents the d istribu tion  of 
ta n a  for the maxima alone, and also for the minima.

Clearly p(r))( is a symmetrical distribution centred on 77 =  В and falling off 
like 7J- 3 for large values of 7j. T hus the standard deviation is infinite. But a 
convenient measure of the w idth of the d istribution is the in terquartile range, 
which is

- ^ Л  =  М 5 5 . . .  A . .......... (15)
V3

T he width of the distribution at a level equal to half its m axim um  height is

2л /(4 1(3 — 1)^4 =  1-532 . . .A .  .......... (16)

§ 3 .  R e m a r k

We have seen that the angle a can be defined at all points of the curve, being 
the angle made with the у-axis by lines of constant dfjdx. The distribution of 
tana for points where Sfldx takes any particular value other than zero is also 
given by equation (1); this follows from the fact that p(£2< £3)*, is independent of 

itself.
However, if instead of the distribution of tan a at points of given gradient we 

wish to find the distribution of tana at points randomly and uniformly distri
buted with regard to x, then we have only to replace p(£2,£s)fl in the foregoing 
analysis by the ordinary distribution p(£a,£3). As a consequence we find the 
following distribution for tana:

/.«(tan a) = -  i4i + (tana_ jBj*. ......... (17>

where A  and В  have their former meanings. This expression is similar in form 
to the previous distribution, having a mean value В and a width proportional to A . 
However, the two distributions are not to be confused, and in fact the former 
distribution (1) is the one which ib appropriate in the present case, considering 
the method of observing the data. For a further discussion of these distributions, 
which arise also in the analysis of moving waveforms, the reader is referred to 
Longuet-Higgins (1957 b).

§ 4. A n  I s o t r o p ic  S urfa ce

Assuming that the derivatives of the correlation function ф(Х, Y ) at the 
origin exist up to the fourth order, we have in general 

ф(Х,У) = Са0 + (С10Х  + С01Г)
+  {CvtX* +  C11X Y  +  CaiY*) 
+  (C3aX s +  CtlX *Y  + C1ZX Y * +  C03Y3)
+  (C 10X» +  C31X 3Y  + СггХ*У* +  CviX Y * +  СС4У4)
+  R

where c - - L ^ L ( o o )
pa p lq ld X r d Y  K , )
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and R is a rem ainder term  of higher order. Suppose now that the surface is 
isotropic. T hen  from  the two conditions

ф(Х, У) = ф ( -Х ,  7)1 
Ф(Х, У )-ф (Х ,  — Y)J

we see tha t Cpg vanishes whenever p is odd and whenever q is odd, respectively. 
T h e  rem aining term s in the expansion of ф are integral powers of both X 2 and 
Y 2. F urther, since the surface is isotropic, ф(Х, Y) is a function of X 2+ Y4 
only. T h e  only polynomial of the 2nth degree having this form  is (X 2 + Y 2)n. 
Hence

ф(Х, Y) = D0 + D,{X? +  Y2) 4- D2{X* +  2X 2Y 2+ Y4) +  R, 
where D0, D1 and D2 are constants. This gives

дЧ

OT*1= a ^ Y (0’ °^ = 0

mvi= ^  = ^ 2
and so

^ 2= A  =  5 l 3  =  0. .......... (18)m4Q J
W ith these values of A  and В  the distribution (13) becomes

^ П , ) а 6 Ц + 1 « а Р ' ......... (19)
T h u s ^ (tan a )  has a mean value zero and an interquartile range 2/3. T he width
of the distribution at half the maximum level is 0-884___

T h e  conditions (18), although necessary for an isotropic surface, are not 
sufficient. F or example, a surface consisting of three long-crested but in
coherent wave systems whose directions make angles 0, 2-П-/3, 47r/3 with a fixed 
direction would also satisfy the same conditions. T he surface would therefore 
give rise to the same distribution of ta n a  as does an isotropic surface.

§ 5. T h e  S u r f a c e  S tu d ie d  b y  B r ig g s  a n d  P a g e  (1955)
T o  represent the two functions f(x , y 0) and f ( x ,y 0 +  8) Briggs and Page first 

constructed two sequences of num bers

Pt-  I  Qi= 2  w * .......................... (2°)j— — 00 ®
where and rjt (i=  . . .  — 2, — 1 , 0, 1 , 2 , . . . )  were two sets of mutually independent 
random  normal deviates (each with zero mean and un it standard deviation) and 
where the a,- were fixed weighting constants given by

aj =  constant x exp ( —j^/o2). .......... (2 1)
It can be shown that under these circumstances each of the sequences Р@( is 
normally distributed, and further that their auto-conelations and cross- 
correlations are given by

Р,Р(+Я =  Q(Qi+n -  constant ж exp ( -  n2/2 d 1) ,  (я even)

PiQt+n = o.
} .......... (22)
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T he constant in  (22) is taken to be unity. T he authors then rep resent f ( x ,y 0) by 
the series Pt and f{ x ,y 0 + &) by the series

R ^ p P i + ( l - p 2Yl2Q;, 

wheie p is a constant, equal to exp ( — 82/<r2). I t can easily be seen that

RjRj+n =  exp ( -  и2/2ст2) , |  

^ i +Jt = exP ( - « 2/2oJ2)-J
T hus

f(x , y 0)f{x  +  n , j 0) =  e x p ( - я2/2о2),

f(x , y 0 +  S )/(x  +  n, y 0 + 8) =  exp ( -  n2l 2a2), .(23)

f ( x ,y 0)f{x  + п,Уо + S) = exp [ -  (и2 +  2S2)/2cr].

so that, in so far as the two functions are concerned, they behave like sections of 
a surface having a correlation function

Ф{Х, У) =  exp [ — (X 2 + 2 У2)/2сгг]. ......... (24)
For this surface we have clearly

04 л

m 40 ~  0^4 ( 0> 0 )  =  ^4 >

9 V  
3X 3d Y

(0, 0) =  0, • (25)

A 2 —213, B =  0.

(3/8)1'2 .(27)

giving

T h e  corresponding curve is

^ ( ta lla )“  3 [ | +  tan2a]3'12 ”  [1 +  |  tan2a]3f2*

T he experimental points of Briggs and Page are shown in the figure. T hese 
were not normalized, but were reduced so tha t the maximum ordinate, for each 
value of p, was equal to unity. T he broken curve in the figure corresponds to 
the distribution (27) multiplied by a factor (8/3)lf2 to bring the m axim um  ordinate 
also to unity. I t  will be seen that there is reasonably good agreement.

tan a

T h e  theore tica l curve o f equation  (27) (w ith vertical scale m u ltip lied  by  (8 /3)l/2) com p ared  
w ith  th e  experim ental poin ts o f  Briggs and  Page.
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I t  should be noted that in their paper Briggs and Page assumed that P,-P1+n 
was proportional to exp( —n2/o-2), omitting the factor 2 in equation (22)-f\ 
Consequently, they assumed the correlation function to be of the form

Ф{Х, У) =  exp [ — (X 2 4- У2)/2о2], 
which would represent an isotropic surface. In  fact an isotropic correlogram 
could have been obtained by assuming

p — exp ( — S2/(t2)
and by plotting the frequency curves in Fig. 3 of their paper against the para
m eter (A /c ) (-2 lo g p )1'2 instead of against (Д/<г)( — log/j)1/2.

§ 6 . C o n c lu s io n s

T h e distribution of ta n a  for a random, normal surface is in general given by 
equation (13), where 7) =  tan a and A and В are constants depending on the 
correlation function of the surface. This is in agreement with the experimental 
d istribution found by Rriggs and Page.

F or an isotropic surface the distribution of ta n a  is given by equation (19).

A c k n o w l e d g m e n t
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On the in terva ls betw een  su ccessive  zeros 
o f  a random  fu n ction

B y  M . S . L o n g u e t - H i g g i n s  

National Institute of Oceanogrwphy, Wormley, Surrey

(Communicated by О. E. B . Deacon, F.R.S.— Received 13 February 1958)

A new approach is suggested to the problem of the sta tistical distribution of the  intervals 
betw een successive zeros of a  random , Gaussian function. Hence is derived a sequence of 
approxim ations р п(т) {л =  3, 4, б, ...) to the desired probability  density p(r). The th ird  
approxim ation is already correct to  order r*, and has the correct lim iting form in the  case 
of a narrow  spectrum . The analysis abo gives rise to an alternative approxim ation р*(т), 
less accurate for small values of r ,  b u t possibly more accurate for larger values. Num erical 
com putation  of both  p t , p 4, p h and  p f, p f, p f  is carried out for a  low-peas spectrum , and  the  
results are com pared w ith observation.

I n t r o d u c t i o n

L et f  denote a sta tionary  random  function of the  tim e t, w ith m ean value zero. 
W h a t is the  sta tistica l d istribution  of the in terval r between tw o successive zeros 
of f ,  or betw een two successive m axim a or minima?

T he problem  arises in connexion w ith  the analysis of the  sea surface, where f ( t ) 
m ay represent, for exam ple, the height of the surface above a fixed point. I t  has 
also been considered by Rice (1945) in connexion w ith th e  analysis of noise in 
electrical circuits.

As in  a  recent paper ( 1956), /  will be assumed to be representable as the  sum  of an  
infinity of sine waves in  random  relative phase, and its  energy spectrum  will be 
assum ed a continuous function of the frequency. U nder general conditions (see 
Rice 1944) the  sta tistica l d istribution  o f / i ts e lf  is then  normal.

The d istribu tion  of т (which we denote by р(т)) has a mean value which is easily 
ound; i t  is reciprocal of the  average num ber NQ of zero-crossings per u n it tim e, and  
Rioe (1944, 1945) has shown th is to  be given by

where rjrT denotes the  correlation function of f ,  aa defined in  § 1 below.
To find the  com plete d istribution  of т is som ew hat more difficult. In  certain  

lim iting cases p (7 ) is know n : for example, when т is small an approxim ate expression 
has been given by R ice (1945, p. 59) and when r  is very  large it  m ay be shown th a t  
р(т) decreases exponentially (Kuznetsov, S tratonovich & Tikhonov 1954). F u rth e r, 
in  th e  im portan t case o f a narrow  spectrum , when /  appears as a sine w ave of slowly 
varying am plitude and  phase, R ice gave an approxim ation to  p(r) valid for a lim ited 
range of т around th e  m ean value f  (1945 , p. 63). I t  ia interesting to  note th a t  th e  
same approxim ation m ay be derived by two alternative m ethods, e ither th rough  
the  d istribution o f / " / /  (Longuet-Higgins 1956) or through the  distribution  of the 
phase angle o f f  (Longuet-H iggins 1957 . § 2'Ю).

[ 88 ]
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The purpose of the present paper is to describe a fresh approach to the problem, 
by which successive approximations toр(т) may be calculated. The method depends 
upon a simple relation (equation (2-1) below) between р(т) and the function V(t ), 
defined as the probability that f  is entirely positive over a fixed time interval of 
length т. Since U(t ) may be approximated by the probability Un(r) that /  be 
positive at n  suitably chosen points in the interval (where n  is sufficiently great), 
we thus obtain a set of successive approximations to р(т), depending on n.

I t  is found that the third approximation р 3(т) already has the correct gradient, 
curvature and derivatives up to the fourth order at the origin; moreover, it tends to 
the correct limiting form when the energy spectrum is narrow. The next two 
approximations, j j 4( t )  and р ь(т) can be evaluated without difficulty, though higher 
approximations require one or more additional integrations to be performed. 
Numerical computation of p 3,p t and p5 is carried out for the case w hen/has a low- 
pass spectrum. The results are compared with experimental data, with encouraging 
agreement.

An alternative approximation p*(r) is also derived which is less accurate than 
p„ for small values of r, but more accurate for larger values.

1 . D e f i n i t i o n s  

We assume that/(f) may be represented in the form

f i t )  =  T ,c n cos(arn t + e J ,  (1-1)
П

where the frequencies <rn of the individual sine waves are distributed densely in the 
interval (0 , oo); the phases en are randomly and uniformly distributed in (0 , 2я) 
and the amplitudes e„ are such that over a small interval of frequency (<r, <r + d<r)

2 & - Щ г ) & т ,  (1-2)
n

where E(<r) is a continuous function which will be called the energy spectrum of /. 
The moments of E  about the origin, given by

ч:E(<r)<7rd<r (r =  0 ,1,2 ,...) (1-3)

are assumed to exist up to all orders required. 
The correlation function of/, defined by

f{ r )  = f( t) f( t  + r), (1-4)
where a bar denotes a mean value with respect to the phases or with respect to t, 
exists and ia related to the spectrum by

The derivatives of ijr a t the origin are given by
d ^ = | ( —1 )bm T r even, |  
drr 1 0 r odd. j

f { T)  =  J V ,  coecrrdcr. (1-5)
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Thus if we w rite (in R ice’s notation)

(Ит) = ir„ dT/rJdr = f'T, (1-7)

we have \}r0 — m0, ^  =  0 , т/г°0 = —m ^  etc. (1 -8)

The mean frequency in  the spectrum  m ay he defined by

IT =  w tj/m 0 (1-9)

and the  r th  m om ent abou t the  m ean is then

ч ; E(a) (cr— 7T)r dr = mr— К  j  mr_1tf + ... ( — 1)гт 0<тт . (1*10) 

In  particular, fia =  m0, fiy = 0, /i2 =  «t2 — т в<тъ =  m 0<r2<J2, ( I ' l l )

where S2 — т йт 2 — т \ ' _lg)

<52 is a non-dim ensional param eter proportional to  the  variance of E(cr)\ i t  m ay be 
expressed also in  the form

<** =  ^  Г  T  E(<Ti)E{(T2) (<tx- <r2)2dodder,,. (М 3)

W hen 6<̂  1 the spectrum  will be said to  be narrow, and  we see th a t  in  th a t  case 
th e  energy is concentrated  in  a narrow  range surrounding the  m ean frequency tr. 
The correlation function m ay then  be expanded asym ptotically  in the  following 
way. In  (1-5) let the  te rm  cos <rr be w ritten

siniJV. (1-14)

cos (XT =  сов (<r — (t)t cos o r  — sin (c  — (f)r sin (TT

Г, (cr — cf)*T2 ] Г (<г-<?)т
-  [ l ~ — 2Г ~  + ~ .]o o s B * - |i -n J - - . . .

On m ultiplying by E(cr) and in tegrating term  by term  we have

№ )  =  J / to - / t* ^  +  . . . j c o e » T - |^ - . . . jB iD ? f T .  (1-15)

In  th e  second b racket, /ix vanishes. Then assuming th a t  is o f order Sr and  neg
lecting (ftfrr)3 we have

i/r(r) =  A T cos 3 t ,  ( M 6)

where A ,  =  ц0 — \(1гтг =  \^0(1 -  fcrhW ). (1-17)

In  other words, the  correlation function then approxim ates to  a sine wave o f period 
2nl'tr and  of slowly varying am plitude A T.

I t  has been m entioned th a t the  distribution  of f  is in  general normal. T hus if  
tv  are n given values of t, and if/(<x) ..-f(tn) are denoted for short by  £„>
then  the  jo int-probability  density of ... £„ is o f the form

* b ..... (I-18)

i
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In this expression the matrix (M[j) is the inverse of the matrix of mean values 
(Зй), given by —  ______

— tj) — фц, (1-19)
say; and Д , = | Цгц) j = | (Щ) |-i. (1-20)

I t  may be shown that {My) is positive-definite (see, for example, Longuet-Higgins 
1957)-

2 . A  RELATION IO B  p(T)
Our method depends upon the following lemma: let U(t ) denote the probability 

t h a t /  is positive over an arbitrary time-interval of length t ;  then the distribution 
of the intervals between successive zeros is given by

2 d2U
P{T) = N0 d ? ’ (SM)

where Na denotes the average number of zero crossings per unit time (equation (0-1)).
To prove this, let t', t" be any two instants of time separated by an interval 

т = t° —t'. Then we have

U(t’ —t') — prob{/> 0 at all points in (t',t’ )}. (2-2)
Now let

( f >  0 at all points in W, Г) 1 
Г(Г-П с1Г = ргоЪГ У (2-3)

I /  =  0 at some point in (t ',  t" + df") J

then U(t" - I') = U(t" + dT -  f') + V(t" -  f )  dT, (2-4)

for the possibilities represented in the right-hand side are mutually exclusive and 
together exhaust the possibilities represented on the left-hand side. Taking the 
limit as dГ tends to zero we have

V {tr - f )  =  ~ U { t ' - t ' ) .  (2-5)

Similarly, if we define

i ' / = 0  a t  some point in  ({', t' +  dt') j 
a t all noints in (i' +  d t ' .O  !.W(t" — f ')d / 'd r  = prob j /  > 0 at all points in (i' + dt'.t") I, (2-6 )

I /  = 0  a t some point in (Г, Г + di") |

we have V(t“~ t ' - d t ' )  = V ( t '- t ')  + W (t" - t‘)dt' (2-7)

and so W(t’ - f )  = J ;  (2-8)

or W ( t ' - t ' )  =  - ^ p U ( t " - t ' ) .  (2-9)

Now p(t’ —t')dt° is, by definition, the probability th a t / > 0  at all points in (t’, t ') 
and that /  = 0 at some point in (Г ,Г + di'), given that t‘ is an up-crossing o ff ,  or 
alternatively given that there is an up-crossing at some point in (t',t' + drf'), no 
matter where. (The probability of two or more zero-crossings in (t', t' + d2') becomes
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negligible as But the prior probability of an up-crossing in (t', t' +di') is
^NBdir. Hence, by the rule of inverse probabilities,

On substituting t" — t' = r, we have the relation (2-1).
The relation is proved, in the first place, only when т denotes the interval between 

an up-crossing and the next down-crossing. But sinee/(t) is symmetrical about zero, 
the relation holds also for the interval between a down-crossing and the next up- 
crossing, and so when т denotes the interval between any two successive zeros.

The relation between р(т) and U(t ) is sketched in figure I, assuming a fairly 
narrow spectrum. U(t) is always a positive function, tending to zero at infinity. 
Also, since there is an even chance that in any given small interval of tim e/w ill be 
positive we have U(0 ) = At the origin p(r) vanishes (as will be shown), and has 
a finite gradient. Hence the curvature of U ( t )  is zero at the origin.

OS

F ig u r e  1 . The relation between p(r) and t/(r) for a typical random function.

Since р(т) can never be negative it is clear from (2-1) that the curvature of V (r) 
is always positive or zero.

giving

(2-10)

(2- 11)

( r

3. An e x p r e s s i o n  f o r  U(t)
By the preceding lemma our problem is now reduced to the evaluation of U{r). 
Taking n  points tu t2, .. . ,tn between V and t”, with = i' and tn = t”, let

Un(h, У  = prob {f(t1)> > 0}. (3-1)
Then if n  tends to infinity in such a way that the largest interval between the

(3-1)

points tends to zero it is reasonable to assume (if/(J) is continuous) that

......У  = (3-2)
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An expression for Un may be written down immediately. For

(3-3)
Jo  Jo

where §£ denotes/(£,). So from equation (118)

u~ *  ■ Г “ р 1 i щ ш *  ■■■*- (3'4)
Since (Mij) is positive-definite we may, by a real linear substitution

it  = (36)
transform the integral into the form

Un = + —d^»’ (3'6> 

where V denotes the solid angle

2  aijVj ^  0 . (3 ‘7)
J » 1

This in turn may be written

v '  = ( i ^ L " exp [ "  ir2] r“"ldrS"’ (3'8)

where r2 = i]l + ... + 7® and Sn (or S) is the region of the unit hypersphere 

bounded by the hyperplanes ■" 0. Integration with respect to r gives

<*»>

4 .  P r o p e r t i e s  o f  S n 
When n  = 2 or 3, Sn denotes the angle contained by two straight lines, or the solid 

angle contained by three given planes, respectively. For general values of n, Sn is 
obviously a function of the ^n (n — 1) angles between the n  bounding hyperplanes 
of (3-7). Denoting the interior angle between the ith and j th  hyperplanes by 6if 
we have „

_ f iS

008 * (SeW *(S«b)* к к

and so вц = оов- 1( - ^ e / W  (0<б^<я-). (4-2)

In the case n = 2, Sn = S2 = 612 (4'3)

and when та = 3 the well-known formula for the area of a spherical triangle gives

Sn - S 9 =  6tа +  031 +  вм -71. (4-4)
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Schlaefli (1858) has shown that in general Sn may be expressed in terms of functions 
of the type Sn_lt Sn_t , whenever n  is odd, but not when n is even. There is in 
fact no reduction formula for Sn which is valid for all integral values of n, although 
for particular values of the angles 6^ it is sometimes possible to express Sn in finite 
terms (see Schlaefli i 860 ; Coxeter 1935; Anis & Lloyd 1953).

However, there exists a fundamental differential relation, first proved by 
Schlaefli (1858; see also Plackett 1954), namely

ML 1_ »  = ---- (»> 4),n  — z
(4-5)

where 5(Рв) denotes the simplex $„_E corresponding to the (n — 2 ) x (та—2) matrix 
M ^ q) which is derived from (My) by deleting the jjth and ^th rows and columns.

The relation (4-5) reduces the number of consecutive integrations to be performed 
in evaluating 8n to \n  or \(n  — 1) according as n  is even or odd. S s involves essenti
ally one integration since

6lt =  cos-i(_ rjrjilra) = [ i . (4-6)

We shall make frequent use of (4'6 ) in the following work.
From the definition of it will be seen that the (r, s)th angle of S is given by

cos =  —

where I p
V

(p « ;)  (p 4 ; )
r N

1 denotes the 3 x3  determinant
*/

(0 (4-7)

Фрр Фрч фр*

«J
 

.GO 
2 II Ф<п> ф« Фт

К к Фт,

(4-8)

6 .  A p p r o x i m a t i n g  to  p(r) 
From (2T) and (2-11) it follows that

p ( f - t ' )  = - у д Л т -  lim
ly0Oll Olnn-+fD

P (T)
2^d*

1V0 QT2
lim

(6 -1)

(6 -2)

Assuming that the order of differentiation and of letting n  tend to infinity may be 
reversed, we have either р(т) = lim р„(т), (5 -3)

or

where

р(т) =  lim p*(r),

P J t) -  -
Э2

un( h - t n)

and P*(T) — ^ ( j T2Un(tx *»)■

(6-4)

(Б-6)

(6 -6 )

i
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We Ъа-ve therefore two alternative approximations to р(т), namely рп(т) and p*{r). 
In the first of these, ..., tn) is differentiated partially with respect to and („ 
only, t2, being kept constant. In  the second, each of is considered to
be a function of r, and in fact the most natural assumption is that the t( are all 
equally spaced: jT

 ̂ 71— 1  ̂ ^
Differentiation with respect to r  then involves all the points.

We shall examine both types of approximation and compare their merits.

e - Pn(T)
From (5-5), (3-9) and (0-1) we have

I
The first interesting case is n = 3. Substituting from (4-4) we have

Ш  - <6'2>

Since 6{j depends only on tt and <}- and since

6a  = cos-1 =  cos-1 M M , (6-3)
\  Vо /  V Po /

1 /  \ i  d2 ! ~ ik  > 
it follows that ?з(т) = ^ 003-1 (6'4)2 \ ~У>о/ <*7‘ \ Vo /
On performing the differentiation we have

Рз(т)=2 (3 *5) 3; (jfrj-Vs1 ( 6 ' 5 )

_ 1 /  \ Ч Ж - Г г ) - 4 г Л >  (6.6)
~ 2 \ - f J  (* $ -# )*  ' • '

I t  will be noticed that this distribution is quite independent of the choice of the 
middle ordinate <2. We now examine some of the properties of the distribution. 

Small values of r. By straightforward expansion of \jr in powers of r  we find

i*> Ч “ й * Г т+0И- (e'”
Thus p 3 vanishes when r  = 0, and the gradient there is

/dp3\ _  l fo^oT — (6.B) 
\ d r / T_0 8 - \/r0i/r'o 

This agrees with Rice’s approximation (1945, p. 59). Now from (1-8) and (1-3) 
we have

= I J ^ J / ^ i ) ^ * )  (6 .10)

= i f  f  ^(<r1)JB(<r,)((r1 + o-S!):i(<r1-c ra)adcr1d[ril, (6-11)
2 J 0 Jo
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showing that, when the spectrum is narrow, the above quantity is almost propor
tional to S3, the variance of the spectrum (cf. (1-13)). Hence, the narrower the 
spectrum the smaller is the gradient at the origin.

In general, the gradient at the origin is closely related to the parameter e2 
defined by

ei = m0m4 - m | 
m9m i

(see Cartwright & Longuet-Higgins 1956). In fact

W W t-o 8 m a * 4 i - e 2

(where NB denotes the number of zero-crossings per unit time. I t  is shown, in the 
paper just referred to, that e lies between 0 and 1, and its exact value, together with 
the value of m„, determines the statistical distribution of the heights of the maxima
o f/(0 -

A  narrow spectrum. We have seen in § 1 that for a narrow spectrum

= ^ 0(1 -  F'SV*) cos от + 0($3ё*т*). (6-14)

I t  follows that y!r* = — ̂ 0aF2(l-l-52) (6-15)

and therefore, from (CM), NB = — (l + 52)&. (6-16)
n

The mean interval т is therefore given by

1 . ir
" Я Г &

(617)

neglecting S2. In the neighbourhood of this mean interval let us write

?Тт =  я  +  7), ( 6 ' 1 8 )

where ij is of order S. Then from (6-14) we have

f ,  = Ш  ~  ifo*+"***)] + 0(S3) (619)

and so (6-7) becomes = (6-20)

(terms of order S2 are neglected). This expression is equivalent to the expression 
obtained by Rice (1943, p. 63) for a narrow spectrum and also to the results found 
by two independent methods (Longuet-Higgins 1957, §2-10 and 1958). The dis
tribution is symmetrical, about r) = 0 огт = я/сг, and it diminishes like (?)2 + я252)- *.

Large values of т. Assuming that y!rT and its derivatives tend to zero at infinity, 
we have jJj(r)-»-0 (r->-oo), (6-21 )

unlike Rice’s approximation, which tends to a positive value (1954, P- 60). How
ever, neither approximation can be considered valid when т is large.

In fact, pn(7) cannot be expected to give a good approximation to p{r) when r  is 
greater than about (n — 1) f ; for Un is only an approximation to U provided that the
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probability of /  being negative between two positive ordinates £<+1 can be neg
lected; and this is not so when (f<+1 —1{) is greater than f.

Therefore we shall not be surprised to fmdpa(r) becoming erratic or even negative 
when т is greater than about 2f.

Higher approximations
Returning to the general formula for pn (equation (61)) we see that, since Sn ia 

a function of the angles вф
dS dS дв„
ы г Ы М -  m 2 )

Since is a function of (t{ — tf ) only, the above reduces to
эs  » a s  дви
Й1 _ Д э  вц Ы1 ' ( )

ЭS  1 *
s <e' 1

by (4-5). Hence

otl atn n — 2 3tj9fn n — 2^_s otn 3^ 
and so, from (6-1),

When r  is small it can be shown (see the appendix) that the dihedral angles 
of the spherical simplex S fln) all approach 7r; hence S(lTl) approaches half the 

content of a hypersphere in {n — 2) dimensions, that is

5 &n)= (1 S ) !  + 0 M- <6’27)

Thus the first term on the right of (6-26) becomes

£s(t ) + 0 (t2) (6‘28)
(since p a itself is 0(t) a t the origin). In the second group of terms we have

Ъ -я& е'Ш *0*  , e ' 2 9 )

к Т к -(Ш ~ + « *
It is shown in the appendix that

n dS™2  Ц г -  = 0 (ra) (6-31)
1-1 Otn

and so finally Рп(т) ~  Рз(т) + ̂ (тЯ), (6-32)
from which we conclude that р 3(т) has both the correot value and the correct
gradient a t the origin.f

t  A Iso the correct curvature. For р„(т) involves only odd powers of T, all coefficients of 
even powers being zero.
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We aaw in § 4 that Sn can be evaluated in terms of known functions up to and 
including n  =  3. Since S <Ifl is of degree {n — 2), it follows from (6-26) that pn(r) 
may be evaluated aa far as n — 5.

Thus for n  »■ 4, for example, we find

* »  -  5 * » - e  Й Й Ш М Й  (M 3)

«here ( l  2 ’ ) / _ / { (  1 2 J) ( l  2 * ) ) ] ,

А - О Д > - „ « - . [ - ( .  3 3 / У ( ( .  з *)(i з *))

r > « 8 , » . c o r - > [ - ( .  * D /y{(l « *)(1 4

(6-34)

In  carrying through the computation certain relations between the determinants 

q are found usefol. These arise from the fact that each determinant depends 

only on the correlations ijrpq,ifrp$, ... and therefore on the magnitudes \p  — q\,PQ> T ps>
| p - s | ...... Thus we have

(:P ? ' )  =  (g p  I) = ( p q r) (6‘36)

and q T̂  = (p  r = q P̂ .  (6-36)

If, foT  convenience, the points t{ are equally spaced at intervals of jj(n  — 1) apart, 
we also have relations such as

(p <7 ' ) - ( * + »  5 + 1 =  * - «  " i j  (6‘37)
which greatly reduce the number of quantities to be calculated.

The computation of p n for n — 3,4, 6 has been carried through for the case of a 
low-pass spectrum:

В Д . Л 1 (6-38,
10  (1 «Г). I

The correlation function in this case assumes the simple form

t z  = BB Z  (6-39)
fo  r

The results for pn are shown in figure 2 . I t  will be seen that p 3, p A andр Б all lie very 
close together up to about т = 3-6, suggesting that the third approximation is 
accurate up to this point. In  fact the numerical results show that (p4— p s) an(i 
(Pb~Pi) both behave like тБ near the origin, so that p 3 is very probably correct as 
far as the term in r4.

As we should expect, p 3 begins to differ appreciably from the next two approxima
tions when т exceeds n, that is, half the cut-off period 2n. When т > 6, p 3 becomes
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negative, which is of course impossible. also becomes negative at about т — 7-3, 
though to a lesser extent. However, p 5 is positive until т = 12-6 and shows the 
interesting phenomenon of a second maximum at about т = 10, also observed 
experimentally. The observations of Campbell quoted by Rice are also shown in 
the figure. I t  should be borne in mind that in the observational material the cut-off 
frequency was not well defined, and that this has probably affected the position of 
the two maxima; the presence of any additional energy beyond the theoretical 
cut-off frequency might be expected to increase the number of short intervals in 
the distribution and so to shift both observed maxima towards the left. The 
theoretical cut-off frequency was chosen so that the first maximum of yjrT coincided 
with the observed maximum, but the correot position of the second maximum is 
somewhat uncertain.

7. rt(r)
From equations (6-6 ) we have in general

\ id tS « Г7-П
d ^ ‘ (71)

P fM  Л  ( ^ ) *  *L(0e + 0n + 0u -* ) .  (7-2)

When n  = 3 this becomes

In contrast to the previous case, all three angles в23, в31, в 12 make non-zero con
tributions. Supposing that the points tlt f2, ta are equally spaced, then — and 
f3 —12 are both equal to \ r  and hence

Pffr)  =  Рз(7) + 1Рз(Ь). (7’3)

where p s(r) is the approximation considered in § 6 .
Gradient at the origin. On differentiating with respect to r  and putting r  = 0

w e  011(1  / J  * \  r  / J  X

№ L -J № L -
Therefore, the gradient of p% at the origin is not equal to the true gradient, but 
exceeds it by 25 %.

A narrow spectrum. On making the same approximations as before we find, 
when т is in the neighbourhood of f , that р$(\т) ia small; hence

2>*(7)==Рз{т) (7-6)
and the approximations have the same limiting form for a narrow spectrum.

At infinity, p* like p s tends to zero.
Computation of p* for a low-pass spectrum shows (figure 3) that although the 

approximation is not so good as p3 near the origin, yet it is somewhat better for 
values of r  greater than about 4.

Higher approximations of the same type may be obtained by computing

^  _  v  Л £ . = _L_ у  Я . (7-6)
dr dr n - 2 t<)
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at regular intervals of т and then differentiating numerically in equation (7-1). 
Since №if> is of degree n — 2 , this may be done up to and including n = 5.

The above procedure waa carried out for a low-pass spectrum (given by (6-38)) 
and the results are shown in figure 3. I t  will be seen that the gradient of and p% 
at the origin differs from the gradient of p%, and all in fact differ from the correct 
gradient. On the other hand, none of the approximations p* becomes as negative 
as the corresponding approximation p*, and from the observed points (which are 
the same as in figure 2) it appears that, for the larger values of r, p*  is somewhat 
more accurate than p n.

8 . C o n c l u s i o n s

Two sequences of approximations to p(r) have been derived, namely p n(r) and 
Рп(т). Of these, the sequence p n(r) is the better approximation near the origin. 
Indeed the third approximation р 3(т) is remarkably accurate over the lower half 
of the distribution, so that we have

p(T)̂ i ^ co8_I(if)  (8>i) 
where r m denotes the median value of r. The alternative sequence p*(r), however, 
appears to be more accurate for larger values of r, and for a low-pass spectrum 
p j  and p£ give secondary maxima in accordance with observation. Both types of 
approximation tend to the correct form when the spectrum becomes narrow.

To compute higher approximations it would be necessary to carry out numerically 
some further steps of integration; though rather long, this might be done on the 
lines suggested by Plackett (1954).

ITroin equation (8-1) some simple conclusions may be drawn. On integrating 
from the limit r  = 0 (that is to say over the range of т for which the approximation 
is most accurate) we have

£*T)dT* » I ;p ^ ( iB r .-  ( 8 ' 2 )

The expression on the right, evaluated at т = 0 , is

^  = = nN° ^  ^  т -> о (Й ~ Й 4 \ F« /

“ d,° i a ; M“( ^ ) +H„’r(r)dT- <8'4'
At the first minimum of \jrTy we have }jr'T = 0, and so the left-hand aide vanishes, 
giving

I p{T)dT =  £. (8-5)
J 0

In other words, т = rm, the median of the distribution; or the median of p(r) is 
approximately at the first minimum of the correlation function ijrT.

Further, from (8-4)

* L pW  ,lr ~ m - ( 8 ' e )

i
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where F(t ) is the distribution function of т measured from the median. Hence

f j l f a  ̂  coa J 0̂ (r ) dT] • (8‘7)

This serves to give ip'rl'P'o very simply in terms of F(t), which in turn may be found 
from the observed distribution of r.

Thus by measuring the distribution of intervals between zeros we have a simple 
Monte Carlo method to determine the correlation function tlrr. The method is valid 
for values of т less than the median of the distribution.

A p p e n d i x .  T h e  b e h a v i o u r  o f  p n  n e a r  t h e  o r i g i n  

To prove the assertions which were made in § 6 regarding the behaviour of p j j )  
at the origin, we must examine the nature of iS(ln) and S3<S(lfl/3in for small values of r. 

From (4-7) the (r, s)th angle of is given by

f a

cos = —
t i l i f l l

f a f a
trr firs

( A I )

(where for convenience only the diagonal element of each determinant is written). 
Now ..  . .

t v  = ^(*<-*i) -  f  rJ (A 2)

a function which, by hypothesis, may be expanded in even powers of r. Thus we 
may apply the following lemma: H F(x) is any function expansible in a power series 
about x  = 0 , and if xv  .. . ,x n, уг, . . . , у п are proportional to r, the first term in the 
expansion of

Р(х1~Уг) — F (x x-Vn)
F(xt - y  j) Р(х г~Уг) ■■■ F(x2- y n)

18

F(xn~Vi) F(xn - y 2) ... F(xn — yn)

F( 0) F'(0) ... ^"-«(0) 
F'(0) ^"(0) ... F<”>(0)

pin-1)(0) Fir,)(0) ... JW2"l 2>{0)

П (xi - xj)(yj-yJ
i<i____________
[1 ! 2 ! ... (я.— l )!]2

For example
to 0 Го

f u = i(ii — ti) (t1 — tr) (t{ — tT) . (t4 — fj) (ts — tj) (ts t{) 0 Го 0

t n К 0

the remainder being of order r 8. Applying this in (A 1) we find 

cos лее _  _  (*i ~ br) (*x ~  f«) & ~  K) (h ~  ls)
TS \ l h - t r  ) ( * i - U ( * i - W ( t i - o r

( A 3 )

(A 4)

(A 6)

(A 6)
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According aa i does or does not lie between r, s we have

cos = ± 1 ; = 0 or 7т.

Hence the firat of our assertions is proved.
To examine 2Э/8°Й/Э*Ж (which we denote by Q), we have first

115

(A 7)

f l l f l l fix
f a f a - fa

frr f«, fr.

frr

fill
f a

К

(AS)

By Jacobi’s theorem on the minors of a determinant the numerator may be written

fix

I * '  t .  ,A9>

and on using the lemma we find

э -W b
Since 0 ^  lies between 0 and it by definition, we have, assuming г < s and so tr < t,,

sin (A ll)

where a ^ - \  ro w  o r о ~ r o |)  (A 12)

Hencef 

Writing 8 =  n  we have

3 L " r̂o( r̂ol/roT — V̂ o*)J '

0«O . /  G(l‘ ~ + 0(т3) (r  < i  < eH  
U - O ^ - y  + OjT*) (t< r< s).J

( (?+0 (тг) (r < iц  
3<„ l - G  + 0 (Ta) (t< r);J

and writing i = n  (so that neither r nor а = n) we have
9 0<in)
~ £ ~  =  ° (Tt)- 

I t  follows from the last equation that

адо») ю м а в ц *  _  
К  г < .Щ ?  dtn {

and  hence, neglecting term s of order t2,

- ", dS1-1» »->9SM> " - 1 dS™d0W
Si» # 3  3<„ К  '

l+i

(A 13) 

(A 14)

(A 16) 

(A 16) 

(A 17)

t A geometrical interpretation of this reeult ia given in another paper (in preparation).

i
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When n = 4 we have simply S af> =

Э0йа> деф
Q oL oh = 0  — 0  = 0 .and so

When n  = 5, we have San = 6QP +в%£ + n > 

where г, k, I denote 2 , 3, 4 in any order. Then

e - s f - . ,  i,j-2 -h  
i-H

aince for every pair (i,j) with i <j there is another pair (j, i) and these give contribu
tions + G which cancel. So again Q vanishes.

When и ̂  6 we have from (4-5) and (A 17)

(A 18) 

(A 19) 

(A 20)

(A 21)

0 =
1

i — 4
n-i я m i) 
2  S aiin) 

i+i
(A 22)

with an obvious notation. To show that this expression is o f  order t 2  we may 
examine the dihedral angles в ^ п) of Saiih>. These are given by

f n
f i t

f i l

fr .

fill i ih i

f a f u

f i i h i

fin* f n n

t f T

(A 23)

Using the lemma, we find that when т = 0

д а м  = о or (A 24)

according as the pair (r, s) does, or does not, separate the pair (г, j). Now if any one 
of the angles vanishes, then S aiin) vanishes. The only cases in which this is 
not possible is when i, j  are consecutive, or if (i,j) = (2 ,n — 1) or (и — 1, 2); then 
gaHn) equals half the surface of a hypersphere in (и —4) dimensions. In all cases, 
interchanging i and j  leaves the value of unaltered, but reverses the sign of 
dd%[>ldtn and so the sum (A 22) vanishes, when т = 0 . To the first order, therefore, 
this expression equals

Q

where Qk =
1

- 2  Qkh> k-i
_ n-i dSM*>30№ 

71-4 ctk dtn

h  2jn - 4 ,  dt

(A 26) 

(A 26) 

(A 27)
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Now by considering sin5£Ji,n*M before we find that

gaijn) ф f H &  ~  U  <r -«) separate g
\тг — (t9 — £r) if not; J

where J? is a positive constant, and therefore

dffaiin) f  —Л  if (r,s) separate (i,j), 
1 H  if not; 

gflCHin) f H  if (r, s) separate (i,j),

4 J
(A 29)

and so Qk = ~ £  E ~ ----- 5Г -. (A32)

l —Я  if not;

(terms of order t2 being neglected). Further
zatuin)

= 0(т2) (4 + г.л). (A 30)

When 7i =  6 we have _  gvjjn) (A 31)

1 I  y  Эб£ Л) agg»
r<« &. Э*Е

Interchanging г and j  has no effect in the first term, but reverses the sign of the 
second, and so on summation

<2fc = 0. (A 33)

Similarly when n  — 7. When n>  8 we have by (4-5)

1 7,-1 ала«п> AffXi)
Qk = 7Г "  7w„~ 2  (A 34)

By the same argument as before, the (p, g)th angle of approximates to 0
or 7т. The only non-zero S <-Utrm  ̂ are those all of whose angles are n, and these are 
unchanged by interchanging i and j .  But 3(9j.’<in)/3ifc is unaltered also, whereas 
Ъв%?jdtn is reversed in sign. Therefore, the terms in the summation again cancel in

paksand  Qk = 0, (A 36)

This shows that Q is of order r e, as was to be proved.

I  am indebted to Miss D. Greenwood and Miss D. B. Catton for assistance with 
the numerical computation for figures 2 and 3.
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P R IN T E D  IN  G R E A T  B R IT A IN

TH E STATISTICAL DISTRIBUTION OF THE CURVATURE  
OF A RANDOM GAUSSIAN SURFACE

By M. S. LONGUET-HIGGINS

Received 16 December 19S7

A B ST R A C T . The distribution of the to tal (or ‘second’) curvatu re  of a  sta tio n ary  random  
Gaussian surface is derived on the assum ption th a t  the  squares of the  surface slopes are negli
gible. The d istribution  is found to depend on only two param eters, derivable from the  fou rth  
m om ents of the energy spectrum  of the  surface. Each distribution  function satisfies a  linear 
differential equation of the th ird  order, and the  d istribu tion  is asym m etrical w ith  positive 
skewness, in general. A special case o f zero skewness occurs when the surface consists o f two 
intersecting system s of long-crested waves.

1. Introduction. The study of a random, Gaussian surface with a continuous energy 
spectrum is of interest in physics as providing a realistic model for ocean swell and for 
other geophysical phenomena (S), (7). Where optical properties of the sea surface are 
involved, it becomes important to know the statistical distribution of the total cur
vature at a point on the surface; for the curvature determines the relative intensity of 
a reflected beam of light and the size of the reflected image of a distant object 
(see (2), (3), (s>).

I t  will be recalled that there are two invariant measures of curvature for a surface, 
the mean curvature J , which is the sum of the principal curvatures ка, кь, and the 
total curvature Q, which is the product of ка and кь. If the slope of the surface is so 
small that its square is negligible, then J  and Q are given by

* c  a *
5 ? (M )

where £ denotea the height of the surface and x, у  are rectangular coordinates in a 
horizontal plane.

The statistical distribution of J  ia normal, as was remarked by Cox and Munk(3). 
The distribution of O, on the other hand, is known not to be normal, though its func
tional form has not yet been found.* The main object of the present paper is to obtain 
the distribution of Q, in terms of the energy spectrum of the surface. We shall show 
that the distribution is in fact strikingly non-normal.

2. The distribution of £ and its derivatives. The surface that we shall consider is one 

glVenby S =  cos {unx + v ny + en), (2-1)
П

where x, у are horizontal coordinates, un, vn are wave-numbers with respect to x, y, 
and cn, en are amplitude and phase constants. The two-dimensional wave-numbers

* E ck art (5) assum ed th a t  fi waa d istribu ted  norm ally, b u t  only for the  purpose o f a  r o u g h  
analysis.
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(un, vn) are assumed to be densely distributed throughout the wave-number plane, so 
that in any small region dS  of the plane there are an infinite number of points (un, vn). 
The phases en are assumed to be randomly and uniformly distributed between 0 and 
27Г, and the amplitudes cn are such that over any region dS

Zic%  = E (u ,v)dS , (2-2)
d S

where E (u ,v ) is a continuous function* which will be called the energy spectrum of 
The expression under the summation sign in (2-1) represents a long-crested wave of 

length
__ _ 2jr i2.2)

( «  + *)*  1 ] 

and in a direction = tan-1— . (2-4)

Thus £ is represented as the sum of an infinite number of sine-waves of different wave
lengths and directions and in random relative phase (cf. (7)).

I t  is convenient to write фп for the total phase,

=  + (2‘6) 

so that £ = 2 cn ooa0 n- (^'6)
П

Since en is randomly distributed, so also is ф„. We shall seek statistical averages over 
the field of values of e„, and clearly this will be equivalent to averaging over all possible 
values of фп. We assume an ergodic theorem, namely, that these averages are the same 
as would result from averaging with respect to x  and y. All such averages will be 
denoted by a bar.

For example, the mean square value of £ per unit area of the surface is

?  =  (2  cn 008 Фп) (2  cos фт)
П  771

=  2 K Cm[c°s (0*+0m) + cO8(0n- 0 J J
n,m

=  2 Й  (2‘7> n

since only the  second term , when m = n, gives a non-zero contribution  to  the  average. 
B y (2'2) we m ay also w rite

f 2 =  [  Г E (u,v)dudv  (2-8)
j  — mj — ос

w hich shows th a t  the to ta l contribution to  th e  m ean square value of £ from  any  elem ent 
of th e  (и , u)-plane is proportional to  E(u, v).

* W e here generalize to two dimensions th e  representation  used b y  R ice (9). A m ore rigorous 
though  less in tu itive  definition of £ ая a sta tionary  continuous procesa can of course be given 
(see for exam ple Doob(4), C hapter 11).
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I t  will be convenient also to write mpQ for the (p, g)th moment of the energy about 

the origin
m-p, =  H = J E (u ,v )u pv<I<kidv. (2-9)

I t  can be shown that m m  ia related to the derivatives of the correlation function a t the 
origin (see, for example, (7)).

Consider now the derivatives of £ on which fl depends. We have

9*£_^  =  3- 2 =  - 2 X < C 0 S  фп ,

* -  -  - E c n«n^«cos0 e,дхду
д2£

^ S = g -a = -  S  cos Фп-

(2 -10)

Since , £2, £a are each the sum of a large number of contributions of independent 
phase, their joint distribution, under certain general conditions, is normal. Also the 
matrix of averages (£,{ £j) is given by

( mtc ™ai ‘ЩгХ
m si m 22 m ja J =  (E 4 ), (2 -1 1 )  

m ia m ot J
where mpeis given by (2-9). Hence, the probability distribution of (£x, £2, £3) is given by

р (Ь ,£ г ,Ь )  = (2-12)

where (Щ ) = (E^ ) -1 (2-13)
and Д = |(Hy)|. (2-14)

3. The distribution of J . We have

J = k + i3 = -?,0n{<+<)™<t>n- (3-1)71
Therefore J , being the sum of two variates with a normal joint-distribution, is itself 
distributed normally. Alternatively, we may remark that J  is of the same form aa £, 
being the sum of an infinite number of components in random phase; hence (under 
appropriate conditions) its distribution is normal. The variance of J  can be written 
down at once, for on replacing cn in equation (2-7) by — cn(u^ + v^) we have

J5 = 2 + “n)8 = f f E(u,v)(v? + v2)2dudv. (32)
71 J — eoj —oo

Expanding the squared factor and integrating each term we find

J 1 = m t0 + 2mlt + m(Jl = D, (3-3)

say. The distribution of J  is then given by

p { J ) = — 1 e-J4iD' (3-4)
’ (2 irD)l
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4. Moments for p(Q). The distribution of П, which involves squares and products 
of normally distributed variables, is essentially more complicated than that of J. 
But the first few moments of p(Cl) may be quickly calculated. From (2 -10) we have

o - f i i  ь - а
= ( 2  cnu l  cos фп) ( 2  cm^m cos фт) -  ( 2  cnunvn cos фп) ( 2  cmumvm cos фт)

Tl 771 71 771
= 2  cncm(unvm -  umvnf  cos фп cos фт. (4-1)

n,m

Interchanging the suffixes n, m  and adding gives

О -  1 2 ,спст( и ^ п - и туп)*со5фп coa фт (4-2)
п,m

= J 2  cncm(unvm -  “mfn)2COS (± ф п ± фт), (4‘3)
71 j 771

where the last summation is to he taken over all combinations of positive andnegative
signs, as well as over n and m. On taking mean values in the last equation, all the cosine
terms vanish except those for which m = n  and the signs of фп and фт are opposite.
But when m  = n  the squared term vanishes, giving a zero contribution to the sum in
this case also. Thus » .£ 2 -0 . (4-4)

To oalculate the second moment we have from (4-2)

D2 = £ 2  2  cncmcn.cm.(unvm- u mvn)2[un.vm.-u m.vn.y cosфп cosфт cosфп- cosфт- 
n,77i n\m'

(4-6)

= TO2  2  c„cmcn.cn .(u„vm- u,nvn)2(un.vm.- Um.vn.)2COS(±ф п ±фт + фп’ + фт).
n,m n \m ‘

(4-6)

To obtain a non-zero contribution to the mean value, the phases фп, etc., must cancel 
in pairs. The only such pairs giving non-zero contributions are n‘ — n, m! — m  and 
n ' = m, m! — n, the signs being both positive or both negative. Hence

П2 = i  2  -  umvn}1 (4-7)
я ,771

=1ЯЯ-<“ ,v) E(u ',v ') (uv' — ti'v)* dudvdu'dv'. (4-8)

On expanding the binomial term and evaluating the integrals we find

П2 = -  4m31mla + 6»4a -  4ми м31+ т мя 40)
=  (m40 m Bi -  4wslm13 + 3j?4) (4-9)

= 3 H, (4-Ю)

say. Since E  is non-negative we see from the integral expression (4-8) that D2 oan 
vanish only if E(u,v) and E(u',v ') vanish at all points for which ( u v '- u ’v) does not 
vanish, that is, if all the energy is concentrated along a single line through the origin.
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In  other words, the spectrum must be uni-directional and the surface perfectly long- 
crested. I t  may also be seen intuitively that П2 must vanish in this case, since at each 
point of the surface one of the principal curvatures is zero and so £}, which equals the 
product of the principal curvatures, vanishes everywhere.

Similarly for the third moment consider

= 27 2 2 2 (unvm- umvn)2 (un.vm. - um.vn.)2 (un..vm„- um..vn.. f
»,m n',m‘ n",m‘

X Cn Cm Cn,Cm,Cn..Cm:  COS ( ± ф п ± ф т ± ф п- ±  фт. ±  Фп" ±  Фт"У (4 ‘1 1 )

Again, the phases must cancel in pairs, but any combination containing pairs (и, m), 
(та',яг') or (n",m“) gives zero contribution. We find there are eight possible com
binations of the six phases, and for each of these there are eight combinations of sign. 
Hence

H3 = J  2  («„ V -  un.vj* (un,vn„- un,.vn,)2 (un..vn- n „ v ) ! 4 4 - 4 "  (4-12)
n,n‘,n*

= ~ u v)2 (u‘v“ ~ u"v')s (u’v — uv’ )2
x E(u, v) E(u', v') E (u",v”) dudvdu' dv‘ du" dv’ . (4-13) 

On expanding the squared factors we find (as in (7), § 1-3) that

=  6Д, (4-14)
miB m 31 m M

= 6 TWgj

W i  3 W&04

say. The integrand in (4-13) is never negative and so

П ^ О .  (416)

From (4-13) it also follows that П3 vanishes only if the energy is concentrated on not 
more than two lines through the origin; if there are appreciable amounts of energy in 
three or more different directions, then the integral is positive. Hence, we may say that 
the skewness of the distribution vanishes only when the surface degenerates into one 
or two systems of long-crested waves.

5. The, characteristic function of £2. The comparative simplicity of the first few 
moments of £2 suggests that the complete distribution p(fl) may be derived moat 
simply from its characteriatic function

ф(1) = Г  p(Q)e™dQ. (6-1)
J  — CO

i f  (it)s
= /*«+ j7/“i + i 2r /t2+ - ’ (

where /iT denotes the rth moment.
Now it can be shown (see (7), §2-1) that the matrix (E^) of equation (2-11) is positive- 

definite; hence by a real linear transformation of variables

£, = 2 < v ? , ( i=  1,2,3) (5-3)
$
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the exponent in (2-12) can be reduced to the unit form and simultaneously Q to a 
diagonal form. Thus г ц у *  _ „ + *  + *

i j
Q — £ iid~  £1 — h v l + ltVi + hvl<

where Z,, Zj, 1̂  are the roots of 

and {(Tij) is the matrix of f l :
К - Щ ,-1 -  0

On multiplying each side of (6 -6) by

д  =  |(By)| =  | w 3.)|-1

we have |(<ri#) (Ejk) -  l(Sik)\ = 0,

where (Slk) is the unit matrix. In other words

%тг2- 1  - m 31 £m40 

^22 ^
£m№

- m n - l
-m ,. im n - l

= 0 .

On expanding the determinant we obtain

4l3- 3 H l - A  = 0,

(6-4)

(6-5)

(6 -6)

(6-7)

( 6 -8 )

(6-9)

(6 -10)

where H  and Д are the combinations of moments given by (4-10) and (4-14). Since 
the roots Zj, Z2, Za of the cubic (5-10) are all real we must have

(6-11)

(5-12)

and further
ll + ̂ 2 + Zg =  0 ,

2̂̂ 8 + ̂ *̂ 1 + ̂ 1̂ 2 =  — ^
Z^Zj = JA S= 0 .

The first and third of these equations together show that in general one of the roots is 
positive and the other two are negative. We shall write

Zj > 0 > Z, » t,. (613)

Now the probability distribution of r/v  i)2} tj3 is given by

p(VvV»VJ  - \l {t , v M P iil' ^ a) = |(a«) |p ( ll ,ls ’^  (6' U)

where |(aJ#)| is a constant independent of %, i?2, 7/3. So on substituting from (2-12) 
and normalizing the distribution we have

1
P(V i,V * y3) = J ^ ex p [ - i ( v i+ v l+ v l ) l (6-IS)
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Integration with respect to two of the variables gives

=  ( 5 ‘ 1 6 )  

and so P(Vi,V2 ,V3) = P(Vi)p(Vi)Pi.V2 ), (6' 17)
showing that i\lt ^2, ij3 are statistically independent variables. Hence £2, by (6-4), is 
the sum of the statistically independent variables 1{ч\, l^vh h v i  an(  ̂ characteristic 
function of П is, by a well-known property, the product of the characteristic functions 
for these variables. From (616) we have for the distribution of X\ — h vb

(  0 (X i < 0),

?("l)=l ( d r ^ ê '  (a:i>0)- (518)
Hence, the characteristic function for x.\ >a given by

Ф М  =  =  (1-2»V )-*. (5-19)

We find similar expressions for the characteristic functions 02(<), of an(  ̂Aj - 
Therefore the characteristic function of £2 is given by

= ф-у(Ь)фг{£)
= [(1 - 2»?!*) (1 -  2il2t) (1 -  2il3t)]-b
=  (l + 3Ht* + 2iAtt)-i, (5-20)

where we have used equations (5 -12). On expanding in powers of t and equating with 
(5-2), we find

/* o = l. /*i =  0, j
ц г = 3 H , ц 3 =  6Д, I (5-21)
ц  4 = 81H 2, fiB =  640H b ,\

etc. The values of ц г /jl2, fi3 will be seen to agree with those found in § 4.

6 . The. distribution of £1. The distribution of О may now be obtained by inverting 
the Fourier transform (3-1). Thus

*>(£>) = ^ J "  0(t)e-™dt (6-1 )

1 Г°°я  _  I _____ “________ ^
27rJ-=,(l + 3# { 2 + 2tAf3)i

ico g--<nl3H)a
----!---------------- ™__ (0-2)

~ioo (1 -  a 2 — Aa3)*

where we have written a  = i(3H)bt (6-3)

= i  г
%7lJ .

and Л = — . (6-4) 
(3 Я)*
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Introducing the non-dimensional variable

_ fl 
Ы ~  (3H )i ~  (J?)t (6 -6 )

we have р(П) = ~ - ^ ( ш), (6-6)

where = Л t l  = / К A). (6-7)
J -<® (Aa* + a* -  1 )*

This is the formal solution of the problem, showing that, apart from the scale-factor 
(3#)i, the distribution of Cl depends on only one other parameter A, given by (6-4). 
We have seen from §4 and from equation (5-11) that Д/Я$ is positive and less than 
unity, in general; and we shall see in § 8 that Д/ffi may take either of the extreme values 
0 or 1. Hence the range of A is

0 < A s? 2/3^3. (6-8)

7. The evaluation o ff  (со, A). Let us examine more closely the function/(ti, A) defined 
by (6-7). Clearly the integrand has branch-points at the three roots Oj, a2, of the 
cubic

Aa3 + a 2 — 1 = 0. (7-1)

The roots are all real; in fact, by comparison with (3-10) we have

. (ЗЯ)*/1 1 1\
(a „ a 2,a 3) -  2 J  < >

and hence Oj > 0 ^  a 2 > Oj. (7'3)

The situation is as shown in Fig. 1, one of the branch-points lying to the right of the 
contour of integration, the other two to the left.

When 0) > 0 the path of integration may be deformed so as to run from со to at, 
along the lower side of the real axis and from a, to co on the upper side, giving

1 f“:
V{A(a -  аа) (а -  а,) (а -  а 3)}

ia . (7-4)

Similarly, when <u < 0 the path may be deformed into a closed contour surrounding 
the branch-points Oj and 03. Taking this to he along the real axis in each direction, 
we have _

da. (7-5)1 f*
-J{Ma  -  “ 1) “ s)}

At the two extreme values of A,/(w) may be expressed in terms of known functions 
aa follows:

(i) A = 0 . One of the roots of (7-1), namely a 2, goes to —00, and we have from (6-7)

1 fica p—ua 1

( 7 '6 )



380

Statistical distribution of curvature of a random Gaussian surface 447
where K e denotes the modified Bessel function with imaginary argument ((10), § 3-7). 
The function is symmetrical about the origin, where it has a logarithmic singularity:

For large values of ]&i| we find, from the asymptotic expression for K a(z),

1
/(« ) ~

л/(2я Н )
л-М

(77)

(7-8)

Fig. 1. Contours of integration for

(ii) A = 2/3^3. Two of the roots of (Б-l), namely, oc2 and ctg, coincide and we have 
CLy = -J-̂ /3, a g = as = — ̂ 3. (7 9)

When ш > 0 we have from (7-4), writing a  + ̂ 3 = a ',

The above integral may be transformed ((6), equation (4-3), (8)), into the form

m  = = eV" erfc ( J ^ )  ■ (7,11)

On the other hand when ш £ Owe have

c { a  + j3 ) (a - y l3 l2 ) *
da, (7-12)
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where С is a contour enclosing the point — J 3. On evaluating the residue at this point 
we find simply / ( „ ) - . * -  (7-13)
Thus altogether

1, (ш < 0 ) j
(7-14)

For large positive values of ы we have, from the asymptotic expansion of the error 
function,

(,15>
We come now to the intermediate case:

(iii) 0 < Л < 2/3д/3. On differentiating under the integral sign in (6-7) and in
tegrating by parts, we find that/(w) is a solution of the third-order equation

-  A/'" + / "  - /  «  -  ( f  A f  - / ' )  (7-16)(l)

(where a prime denotes differentiation with respect to ы). This has a regular singularity 
at the origin, with exponents 0 , 1 and J. (In the case Л = 0 the equation reduces to a 
second-order differential equation of Bessel type.)

f(o)) is not expressible in terms of known functions,* except for particular values of ш. 
Thus from (7-5) we may deduce, by means of the substitution a. = cos2 ф + a3sm2 ф, 
that „  / , ч

m  = ,m  , , к (  , (7-17)
it v{A(<h -  a 2)} \л/ «1 -  a 2/

where K(k) denotes the Legendre complete elliptic integral of the first kind. Similarly, 
by differentiating (7-6) under the integral sign we find for the gradient to the left of 
the origin

---- -Try,--------И 11Ч  —a» ~  i i I —1— 1 /_  _ I ■ (7T8)
n  V\A(a l

where E(ifc) denotes the Legendre integral of the second kind. From (7-4) we see that 
the gradient to the right of the origin is infinite; in fact

1 Г со 0 —ocr 1

f'(0>)--------- I <719)1T^AJA <Ja Vя Aw

(A denotes some constant greater than atj).
A discontinuity of this kind is consistent with the nature of the differential equation 

(7-16) near the origin.
The asymptotic behaviour of the function for large positive values of gj may be 

derived from (7 -4 ) by expanding in a Taylor series about ctj and using Watson s lemma. 
This gives, as a first term

/ И  ~  -1T-T,----- !ZTT--------7-1 <" > °>- (7-20)^/{пЦа^ -  a 2)(a4  -  a3) a)}
* A  different solution of (7-10), expressible as a  generalized H um bert series, would be obtained 

by  tak ing  th e  p a th  of integration  to  th e  rig h t of all the branch points {see (6), p . 13).
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Similarly, for large negative values of ы the integral (7-5) gives

«-<»)■ <’ ■»>

Since —+ —+ — = 0  (7-22)
a t a 2 a 3

we see that < — a^, and ao the function tends to zero lesa strongly on the positive 
aide of the origin than on the negative aide. This accounts for the poaitive coefficient 
of skewness noted previously.

The rth  moment off((o) about the origin is given by

(7-23)
r (3 H )* '

where (it ia the corresponding moment for р(П). From (S-21) we have

va = 'j
Vt = 1, v3 = ЗЛ, 1 (724)
v4 = 9 , v5 = 90A J

Thus vB, vlt v2, are all independent of A. The coefficient of skewness (v3jvf) ia 
proportional to A while the kurtosia (vjv%) ia constant and equal to 9 (compared with
3 for the normal distribution). Higher momenta than the fifth are, in general, poly
nomials in A.

Numerical computation of f(w) has been carried out by D. B. Catton, and B. G. 
Millis at the Mathematical Laboratory, Cambridge, and the computation is described 
in an adjoining paper (l). In Fig. 2, the form of f(u>) ia ahown graphically for

A = 2/3^/3 x (0, 0 -2, 0-6 and 1).
The skewness of the curves, and the aingularities at ы = 0 , are apparent.

8 . The significance of A. Lastly let us consider the significance of the parameter

Л = ^ А  (81)

in terms of the apectrum of the surface. Of particular interest to ua are the conditions 
under which Д/if* may take the extreme values 0 and 1.

In  equations (4-8) and (4-13) we may transform to polar coordinates by the sub
stitution (w, u) = (w cos в, w Bin 9) (8-2 )

so tha t w, в represent the wave-number and the direction, respectively, of a typical 
wave component in the apectrum. Using (4-10) and (4-14) we have then

H  = \ \  f dwdw’ Г I ded£'E(u, v)E(u', v')who'ssin4 (в —в') (8-3) 
oJoJo J oJ o

and
1 fto Гео Лл Г2п Г2ff f2irA = ejo j0 J dwdw'dw"j0 J J Mde1 dd"E(usv)E(u',v')E(u\v")

x v£w'iv f b ain2 (в ' — в") ain2($* — в) ain2 (в ' —в"). (8-4)
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We have already seen that if the energy is concentrated in two distinct directions 
6 — вг, 6г then Д vanishes hut not H  and so

<»■»>

If all the energy is concentrated in a single direation then both H  and Д vanish, and 
the ratio is indeterminate. However, this case may be examined by considering 
a spectrum of finite angular width tending to zero; and it will be shown tha t Д/Я^ 
may, for a narrow spectrum, take any value between 0 and 1.

Suppose, for example, that the spectrum E(u, v) has the form

E(u,v) = W(w) Q(<9), (8-6)

where W  is a function of w only and 0  is a function of 6 only, then from (8-3) and (8-4)
we have n .  ra,

Н  = $М* I I ©(в)0 (5 ')sin * (0 -0 ')i0 d 0 ' (8-7)
and J о J о

Г2jt Г2я Л2я
Д =  р / Ч  I I ® (е)Щ в')® (в’)вт Ц в‘- 6 ’)в ш Ц в " -в )в т 3(е-в')<1в(1в'<1е\

Jo Jo Jo
(8-8)

where M  = ^ °  W (w)vf‘dib. (8-9)

H the energy is all confined to one narrow range of direction, then, over the important 
region of integration, sin (6' — 6"), sin (5* — 6) and sin ifi — в') may be replaced by 
(6 — 6"), (6" — в) and (6 — 6'), respectively. Hence we find

H = iM4t<t0-4 t3tl+ 6t } - « г«, + *оУ (8-10)

*0 1̂ 2̂
and Д = M 3 <i t2 tt 

t2
(811)

where tn denotes the 7ith moment of 0,

tn = J©(<9) (8-12)
Assuming that t, — t3 = 0 (as for a symmetrical distribution) we find

Д a2 — 1
H i  (a2/ 3 + 1)*’

(8-13)

where a2 = ^  . (8-14)

The parameter a2 representa the ‘peakedness’ of the energy spectrum with regard 
to direction. The minimum value of aa is unity, attained when 0  consists of two close 
but separate concentrations of energy

0 = 8(6- 0 i )  + <S(0-0a). (8-16)
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This is when the surface £(x, y) really consists of two distinct systems of long-created 
waves intersecting at a email angle (в1 — в2); and ДjH i has the value zero, aa we ahould 
expect.

For a uniform distribution of energy over a narrow seotor, a2 = f  and so

Д Зл/6
^ - J L - 0-194.... (8-16)

For a normal distribution, a2 = 3 and ao

о . ,» , .... (8.17)

The maximum value of A is attained when a2 — 9 and

(818)

By further concentrating the energy around the central direction, a2 may be made to 
increase indefinitely and so .

J j - > 0  (8-19)
once m ore.

A quite different case in which A attains its maximum value is when the surface is 
iaotropic. For then

E(u,v) = W(w) x constant (8-20)

and on writing 0  = (2я )-1 in (6'7) and (6-8) we have

H  = ^ M \  Д = &М* (8-21)

and  ao =  1- (8-22)
S i

Lastly, since H  and Д depend only on momenta of order 4, the same value of A will 
be found for any two surfaces whose spectra have the same fourth-order moments. 
Thus the maximum value of A is attained by any spectrum having та-fold rotational 
symmetry about the origin, where n — 3, 6,6 ,7 ,..., for this will have the same fourth- 
order moments as ал isotropic apectrum (see (8)).

9. Conclusions. Unlike the mean curvature J , the total curvature ft has anon- 
normal distribution; it is skew in general, and has a discontinuity in gradient at the 
origin (see Fig. 2). The distribution depends on only two parameters H  and Д, given 
in terms of the energy apectrum of the surface by equationa (8-3) and (8-4). The scale 
of the distribution is proportional to (3i7)4 which equals the r.m.s. value of П. The 
skewness of the distribution is proportional to A, = 2Д/(3H)l. The analytical expres
sion for p(£i) is given by equation (6-6).

If  D  denotes the r.m.s. value of J  (see equation (3-3)) then

s -
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when and only when, the original surface degenerates into a single system of long- 
crested waves; and

Л „ #  „
5 s = + ’

when and only when the surface consists of two systems of long-crested waves inter
secting at a non-zero angle. In  this case Л clearly vanishes. The maximum value of A, 
which equals 2/3^3, may be taken in a variety of circumstances, for example if the 
surface is isotropic.

In the present paper was found by evaluating the characteristic function of Q 
and then taking the Fourier transform of the result so as to obtain the function in the 
form of an integral. I t  may be mentioned that the same method would serve to deter
mine the distribution of a general quadratic form in n  normally distributed variables, 
and that the frequency function would satisfy a linear differential equation of the 
nth degree.

In a subsequent paper we shall apply the present results by deducing the distribu
tion of image sizes of a distant object reflected in the surface.
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1. Introduction. I t  has been shown recently that a fruitful method, of studying the 
formation of wavea on the sea surface is through the average intensity of reflected 
sunlight, as seen from different angles ((3), (4)). This gives, in effect, the statistical 
distribution of the components of surface slope.

Following the same line of thought, we may inquire what information could be 
derived from the distribution of the sizes of the reflected images of the sun. The size of 
an image depends essentially on the total curvature of the surface at the point of 
reflexion (see § 2 ).

S

As a physical model for the sea surface it is reasonable to assume in the first place 
a Gaussian surface, that is to say one whose elevation £ and derivatives dp+QQdxp Эy9 
are distributed normally. The model has given satisfactory Tesults for the distribution 
of wave heights (l) and of surface slopes (4) and i t  is reasonable therefore to try  it next 
for properties depending on the curvature.

The statistical distribution of the total curvature fi for such a surface has been 
evaluated in a recent paper (7), and has been shown to depend upon two parameters 
H  and Л derivable from the spectrum of the surface. I t  will be shown in the present 
paper that the distribution of image sizes depends upon the same parameters, but that 
its form is almost independent of Л. Hence, from the observed distribution the para
meter H  could be accurately found, but not Л. The information given by H  is discussed 
in some detail in § 6.

2 . Geometrical relations. Suppose that light from a distant object S, after reflexion 
from a surface near O, is received at a point Q distant R from О (see Fig. 1). The 
projected area of the image at О is given by

I  = R*q, (2-1)
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where q denotes th e  solid angle sub tended  by th e  beam  a t  Q. T he inc iden t rays SQ  do 
n o t in  general m eet in a  po in t, b u t i t  m ay  be shown* th a t  th e  solid angle q‘ form ed by  
the inciden t rays is re la ted  to  the  solid angle q by the  expression

— q'/q =  1 + 2R (k1 sec в  +  к2 cos в) +  4Д Ч 2, (2 -2 )

where Kj and k 2 denote th e  cu rva tu res o f th e  surface in  th e  p lane of th e  ray  an d  p e r 
pendicular to  it, в  denotes th e  angle of incidence and Q denotes th e  to ta l cu rva tu re . 
(Q m ay be defined aa th e  p ro d u c t of th e  two principal cu rva tu res ка an d  к ъ a t  O.) T he 
negative sign in (2-2) signifies th a t  th e  sense of ro ta tio n  of the im age is reversed. 
P rovided  J2k„ an d  В.кь a re  b o th  large, we have

\q'lq\ =  4R2 |Q |, (2-3)

a rela tion  w hich is independen t of 6 . Combining (2-1) and (2'3) gives

I  =  — — (2-4)
4 |Q | ’ K ’

K g ' is fixed (as for a  d is ta n t object, large com pared w ith  1), th en  I  is inversely p ropo r
tional to  |£2|.

3. Definitions. I f  th e  surface is represented  in th e  form

* =  £(3 . 2/). (3-1)

where (ж, у) a re  horizontal coordinates and  z is m easured vertically  upw ards, th e  to ta l 
cu rv a tu re  Q is given by

(see (10), § 33). I f  th e  squares o fd^jdx  and c^Jcy are supposed negligible th is  reduces to

, 3 . 3 ч

As in  a recent paper (7), i t  will be assum ed th a t  £ is given by

C(z,2/) =  E cncos{iinx +  uny +  eJ , (3‘4)П

where un and vn are w ave num bers densely d istribu ted  in  th e  w ave-num ber plane, and 
w here cn and en are am plitude and phase constants. T he en are supposed random ly  an d  
uniform ly d istribu ted  between 0 an d  2n, and the  cn are such th a t  in any  small region 
dudv  of the  (u ,v) plane

2  =  E (u , v ) du dv, (3-5)
П

where E (u , v) is a continuous function. E (u , v) will be called th e  energy spectrum  of th e  
surface.

* T h is  re la tion  m a y  be de riv ed  fro m  firs t princip les, o r  from  a  m o re  g enera l fo rm u la  g iv en  by 
P rim a k o ff  a n d  K eller (8), e q u a tio n  (42).
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U nder certa in  general conditions (see (9), §2-10) i t  follows th a t  the jo in t distribution 
of £ an d  its derivatives is norm al, and  it  has been shown (7) th a t in th a t  саде the dis
tribu tion  of £1 is given by

Р(П) = ’ д а )  • (3-6)

where H , Д are constan ts given in  term s of E (u ,v)  by

H =  ^ JjjjE (u ,v)E (u ',v ')(uv '-u 'v)4d u d v d u ' d v (3-7)

A = ^ j  j .. ■ (j  E{u,v) E(u' ,v') E(u" ,v") (u'v’ —v,’v')z (u"v — uv’)*
x (uv‘ — u'v)2 dudvdu' dv du"dv’ (3-8)

“ d ” here '<"■ A> -  S  J l  ( A ^ - i ) t  <3'9»

This la s t function  has been discussed in  (7) and evaluated num erically by C atton and 
Millia (2). G raphs are given in  (7). The non-dimensional param eter

is restric ted  by  th e  condition th a t

N ow  jp(O) ia th e  d istribu tion  o f Q for points on the  surface selected a t  random  in the 
(x < ^)-plane. In  practice, however, the surface ia viewed from  a particu lar angle, and 
th e  im ages are seen only a t those points on th e  surface (called specular points) where 
th e  surface has th e  p articu la r slope required to  reflect the ligh t into th e  observer’s eye. 
W h a t we seek, therefore, is the  d istribution  o f Q a t specular points, which d istribu tion  
we shall denote by I t  tu rn s ou t th a t  y*(£2), although different in form  from
jj{£2), is very  closely related.

4. The distribution o f Q. at specular points. As in (71 let us w rite for short

* £  £ .£ .  (4-1)
dx*’ dxdy ' dy*

an d  also =  (* 2)

The problem  then  is to find the d istribu tion  of

а - ь ь - й  ( * 3)

a t  those points where £t , §s tak e  particu lar values.
L e t p (£ j,£ 2, £3,£ t ,£b) denote the  probability  density  of £v  ...,£ 5 a t  an  a rb itra ry  

p o in t P  in  th e  (x, y)-plane, and le t dA  denote a small area of th e  (x, j/)-plane surrounding
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P .  I f  £4, £5 take the specified values somewhere in dA  then (£4, £5) a t P  itself m ust lie 
within a certain region of the  (£4, £fi)-plane having an area

d- ^ \ d A  =  \ i d * ~ & \ d A  =  \Cl\dA. (4-4)

So the probability th a t £4, £s take the given values in dA  and th a t  glt £2, £3 also lie in the 
ranges d£1( <i£2, <i£3 is p{^ ...... gs) d ^ 2d£3 \Cl\dA  (4-5)

The to ta l probability of £4, £6 taking the specified values in d A  is

f "  d d *  d£s r  d£3p(Zi...... i b) \ Q \ d A , ~ D s t d A ,  (4-6)
J ~ea J —CO J — ®

(where Д ,  denotes the average density of specular points w ith gradient ( |4, £5), per unit 
horizontal area). Therefore the probability th a t £,, £2, £3 lie in  their respective ranges 
given th a t there ia a specular point in dA  is the quotient of (4-6 ) and (4-6), th a t  is to  вау

j>(gi .- ,* » >  (4-7)

In  other words, the probability distribution of ( |j ,  | 2, | 3) a t such points is given by

P*(Zv Z* b )  =  y(gl‘ • v M l B l . (4-8)
^•P

I t  may easily be shown (see (51 §2-1) th a t the first derivatives £4, £5 are statistically 
independent of the second derivatives £lt £2, £3 so tha t

!»(«!.- . W  - Ж .  & 6з)1» (Ь .Ы . <4-9)
where p(£„ f 6) denotes the probability distribution of (£4, £6). Hence p ( |4, £ 5 ) is a factor 
in both the num erator and denominator of (4-8) and we have

P*(S1. W  =  . (4 ‘10)

where M  denotes the normalizing constant

Л Г - Г  Г  f “  |C2|i>(g1,£ №£,)<Z£Ld£.<Z£,. ( * “ >
J ~ coj — сOj —Л

Now the distribution of Q a t those points where the gradient is specified is given by

" J f J ^ k k b )  <*& #»«* <4'12)
dfl

where the triple integral is taken over the space between the two adjacent surfaces

£ i £ . - 3 - Q .  й  + dQ. (4' 13)

Similarly for the previous distribution p(O)  we have

p (Q )d Q  = J J J jK f J,f i .,b )d g 1« I «*g1. (4' 14)



391

Sizes of images reflected in a random surface 96

B u t on substitu ting  from  (4-10) in to  (412) we see th a t over the region of in tegration the 
factor |Q | is constan t (to th e  first order). Hence

where p(£2) is th e  d istribu tion  previously evaluated. W riting

Q
(3 Я)*

=  a>, (416)

we have p*(Ci) = - i  |w| f(oi, A), (4-17)

w h e r e / is  given by  equation  (3-9).
T he constan t M  is re la ted  to  the  density  of specular points per u n it area of the 

surface and  has been eva lua ted  in (5), §2-4. The result is

( 4 ' l 8 )

where K[k) and  E(lc) are the  com plete elliptic integrals of m odulus

and Zj, l2, l3 are the  roots of th e  cubic equation

4гз - з я г - д  =  о (4-20)
in descending order.

To eva lua te  this expression num erically it is convenient to  w rite

г1(г2Л  =  К з я )* (Л .А .А 3) (4'2 I>
so th a t  /?!, /?2, /f3 are the roots of

/J3 —/? —A =  0. (4-22)

W e have then  M  =  (2/tt) (ЗЯ)* А  Ф( - f i j f i j .  (4'23)

where Ф({) =  ( i ( l - t ) *  * £ ( £ ) -  »

* - , / (£ ? ) •  (4'24) 

The function  Ф ia shown graphically  in K g . 10 of (5). I t  is a  very  slowly varying 
function  w ith  a m ptim nm  value Ф(0) =  1 (corresponding to  A =  0) and a minimum 
value Ф(£) =  0-907... (corresponding to  Л =  2/3*). A ltogether we have

<4 ' 2 S >

я - щ ч - ы ы - ( 4 ' 2 S )

Values of N  are given in  Table 1 for some values of A equally spaced over the  range
0 ^  A ^  2/3*. I t  will be seen th a t N  differs very  little  from  1-5 over the whole range.
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6 . The distribution o f | £2|-1. Since th e  ap p a ren t im age size I  ia inversely  p roportional 
to  | Q |, we consider now  the  sta tis tica l d istribu tion  of | f i |_I a t  specular points. W riting

we have Р * (^ )
<m
d V

(61 )

j3*(£2) =  N (2 H )l  H s/ H  (6-2)

from (4-25); or if  _
(i) 12

th e n  p*(W ) = N[3H )i}/r-3f(}jr-1). (6-4)

T he d istribu tion  of |V | =  | f l |_1 is found by  adding th e  tw o d is trib u tio n s for positive 
and  negative values of 4 \  T hus

p * m  =  ( 3 tf ) iff( M ) ,  <5-5)

w here gr(|^|) =  N + / ( - ^ ) ] .  (6' 6)

T hen  the  d istribu tion  of ap p a ren t image sizes ia given by

(6-7)p*(I) 4(ЗЯ)* „
=  q. 9 ( \ f \ )

:m (2-4).

Table 1
Ax3«/2 N A x 3*/2 N

0-0 1 571 0 6 1-534
01 1-568 0-7 1S25
0-2 1-563 0-8 1-517
0-3 1-557 0 9 1-509
0-4 1-550 10 1-500
0-5 1 542 — —

The form  of 0(1^1) is shown in K g. 2 for th e  tw o ex trem e values of Л. T he tab les  of 
f{w) given in (2), and th e  graphs in  (7), show th a t the  curves for in te rm ed ia te  values o f Л 
lie m ain ly  between those for th e  tw o extrem e values. B u t the whole fam ily of curves he 
so close together th a t  for the  sake of clarity  only those for th e  ex trem e values of A are 
shown.

A  strik ing  feature of th e  distributions is th e  very  sharp  cut-off a t  ab o u t \\jr\ =  0-1. 
F o r large values of |w| we have from  § 7 of (7)

/(w )+ / (  — <!)) ~  C i ^ e _c>M, (6 ' 8)

w here C\ and C2 are constan t; therefore for sm all values of |^ |

3 ( \ f \ )  (5'9)

The average value of \t]r\ is very  simple: we have

J J W l )  \ f \  < ¥  =  =  J “ № ) < ^  -  N ,  (5-10)
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since/(<u) itse lf ia a  p ro b ab ility  d istribu tion . F rom  T able 1 we see th a t  N  lies betw een 
l -б an d  ab o u t 1-571 ( th a t is to  say \ t t ) .  This m ean value is som ew hat g rea te r th a n  m ight 
be expected  from  Fig. 2, owing, no doubt, to  th e  long ‘t a i l ’ on th e  positive side of the  
d istribu tion .

T he second m om ent of 9( |^ |) ,  and  all higher m om ents, are  infinite.
F rom  (6-10) it  follows th a t  th e  m ean value of |£2|-1 is given by

" • и - * - "  Д - щ }  <5 “ )
an d  th e  m ean value of I  ia given by

av. I  =  av. - j —j =  —— ; . (6-12)
4|£2| 4(3 H )i '

6. D iscussion and conclusions. We have seen th a t  th e  d istribu tion  of im age sizes 
depends fundam en tally  on tw o param eters, H  and A, determ ined  by  th e  energy spec
tru m  of th e  surface. The q u a n tity  (3 H )~i, which defines th e  scale o f th e  d is tribu tion , is 
re la ted  to  th e  spectrum  of th e  surface by equation  (3-7). W e see th a t  H  is alw ays 
positive (unless th e  surface degenerates in to  a  single system  of long-crested w aves, in 
w hich case equation  (2-3) becomes inapplicable). T he p aram ete r A m ay he anyw here 
betw een 0 an d  2/3* (see ( 7 ) ,  § 8). The lower value A =  0 is characteristic  o f tw o in te r 
secting system s of long-crested waves; th e  upper value A =  2/3* m ay occur in a v a rie ty  
o f circum stances, fo T  exam ple, if th e  surface is isotropic, or if  th e  angu lar sp read  of 
energy is sm all an d  has a certain  ‘peakedness ’ (see ( 7 ) ,  § 8).

On th e  o ther hand, i t  haa been shown in the p resen t p ap e r th a t  the  form  of th e  
d is trib u tio n  of im age sizes is n o t critically  dependen t on A, and  th a t  th e  d istribu tions 
corresponding to  d ifferent values of A are very  alike, even those corresponding to  th e  
tw o ex trem e values 0 and  2/3*.

Suppose th e n  th a t  th e  d istribu tion  of image sizes is observed; w h a t in form ation  
a b o u t th e  spectrum  can be deduced? Clearly, th e  value of A could n o t be determ ined 
accu rate ly  w ithou t very  m any  observations. On the  o ther hand , H  could be determ ined 
q u ite  reliably, for exam ple, from  equation  (6-12), since N  is very  nearly  equal to  1*6. 
A lternatively , H  could be found from  th e  position of the sharp  cut-off a t  th e  low er end 
of th e  d istribu tion .

T he inform ation given by В  is sum m arized in equation  (3-7). L e t us transfo rm  to  
polar coordinates w, в  by  th e  substitu tion

u, v =  ш cos в, oi sin в, {6-1 )

so th a t  w  and в  denote the wave num ber (и2 +  г»2)* and d irection  ta n -1 vju, respectively, 
for th e  d istribu tion  of energy in  th e  spectrum . Then we have

1 /*оо Г® Г2it
H  = -  I I d w d w '\ I dO dO 'E(u,v)E(u',v')<i)sw '6 sm4(0 —0'). (6‘2) 

e j o J o  Jo Jo

I f  we assume th a t  th e  spectrum  has th e  form

E (u ,v )=  W (w )0 (e), (6-3)
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where Ж is a  function  of w only and 0  ia a function  of в  only, then

Г2n
U  = \D 2 I | 0 (0 )0 (0 > in -* (0 -0 ') i2 < 9 d 0 ', (6-4)

Jo Jo

where D  =  J  W {w)vfidw. (6-5)

D  is essentially  th e  fou rth  m om ent of the  d istribution w ith regard to  w ave num ber; for 
th is  ia given by

— f  f  E (u ,v)w 'l dudv = ( f 2 oj(w) Q(6 )w Gdw d6  =  D  (6-6)
J — CO J — CD J 0 J 0

provided th a t 0  is normalized:

Г " в ( в ) а в = 1 .  (6-7)
J о

In  particu lar, when the energy ia confined to  a narrow  range of wavelengths, corre
sponding to  a w ave-num ber w we have

D  =  M t =  w4 1 a, (6-8)

where M a is th e  m om ent of order zero, equal to the to ta l energy in  the surface per u n it 
area (6).

W hen th e  surface ia isotropic (which m ust be established by o ther means) then
0  =  co n stan t =  (27r)_1, and  so from  (6-4)

Я  =  JjZ»2. (6-9)

If, on th e  o ther hand, th e  spectrum  is fairly  narrow  in direction, th en  on replacing 
sin (в — в ')  by  (в —в') in  (6-4) we have

Я  =  + + W  (6-Ю)

where tn denotes the  Tith angular m om ent of the diatribution:

tn = ^® (в )вп<М (6-П )

A ssum ing =  ts =  0 as for a sym m etrical distribution , and w riting (as in (5))

Ь = у*, ? £ . « >  (6-12)

we ob ta in  Я  =  M fy 2(l  +  | a 2). (6-13)

H ere у  denotes the r.m .s. angular spread of th e  spectrum  and a2 denotes its ‘peaked
ness F o r a norm al d istribu tion , a2 = 3 and  so

Я  =  2 y»M}.  (6-14)

I f  у  is determ ined independently , as for exam ple in (5), then  (6-14) provides us w ith 
a  m eans of estim ating  M 4.
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P H IN T E D  IN  G R E A T  B B IT A IN

THE FOCUSING OF RADIATION BY A RANDOM SURFACE 
W HEN THE SOURCE IS AT A FINITE DISTANCE

B y M. S. LONGUET-HIGGINS 

Received 13 Ju n e  1959

1 . Introduction and summ ary. Im agine a nearly horizontal, sta tistically  uniform , 
random  surface £(x, y), G aussian in  th e  sense th a t  the second derivatives 32£/9a;2, 
д2£1дхду, д2£/ду2 have a  norm al jo in t d istribution. The problem  considered is the  
s ta tistica l d istribu tion  of th e  q u an tity

F  ш
Эя2 dx dy

v — 2-  1 +  v —2 
дхЗ у  dy2

l + v J  +  j^O, (!•!)

where J  and  Q denote the  m ean curvature and to ta l curvature of the surface, respec
tively, and  v is a  constan t param eter.

In  a  previous paper (2) th e  d istribu tion  of J  and  Q separately  was determ ined; the 
d istribu tion  of F  reduces to  th a t  of v2Q as v tends to  infinity. The previous results were 
applicable to  th e  focusing of rad ia tion  reflected by  the surface when the  source of 
rad ia tion  and  th e  observer were bo th  a t  infinite distance from  th e  surface. The present 
results app ly  to  a source o r observer a t  finite distance, provided th a t  th e  radiation  falls 
nearly  vertically .

The problem  is solved com pletely w hen the surface is sta tistica lly  isotropic; typical 
curves for th e  d istribu tion  of F  are shown in  Fig. 2. The fam ily of curves depends upon 
a single p a ram ete r A  proportional to  the square of v (i.e. height above th e  surface) and 
to  th e  m ean-square value of J ,  the  m ean curvature.

F rom  th is d istribu tion  we deduce the d istribu tion  of th e  sizes of images reflected in 
th e  surface (see Fig. 4), which is also equivalent to  the d istribu tion  of the  intensity , 
provided th e  rad ia tion  from  each image is considered separately.

The general d istribu tion  for an anisotropic surface depends in  addition  on three 
fu rth e r param eters of th e  surface B v  B 2, B 2 (and no others). I t  is shown th a t  in  the 
ex trem e case when A  1 th e  other three param eters do no t affeot th e  d istribution, 
while if A  1 only  one of the  th ree enters th e  solution, and  then  as a simple scale- 
factor. So from  the  form  of the  d istribution , together w ith the observed d istribu tion  of 
image-size or in tensity , i t  m ay be possible to  determ ine th e  param eter A  w ith a fair 
degree of certain ty .

2 . Parameters o f the surface. In  the no ta tion  of (2) th e  jo in t d istribu tion  of

«  с у  -  № .  Д -  Щ  (2-1 ) 
1 [д&’ Ы у ’ ду2) K
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where

say;
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(m40 m ,! т . Л - 1

m tt  ^hs J =  S  1

m 2t m 13 m 04 /

A -  ISt,

(2-2)

(2-3)

(2-4)

and  the  quan tities m pq are m om ents of th e  energy spectrum  E (u, v) o f th e  surface

>У)- fa, (•<»
mvtl =  I I E (u ,v)vP tfid u d v . (2-6)

J —m J —со

(They are also derivatives of th e  correlation  function of g(x, у).) In  th e  above in tegral 
th e  quan titie s u, v correspond to  w ave-num bers in the  x, у  d irections, an d  ev idently  th e  
quan tities mpa depend on the  p articu la r o rien tation  chosen for th e  axes of x, y. The 
physical problem , however, is independent of choice of axes. So we shall expect to  be 
concerned w ith  param eters th a t  are  in v arian t w ith  respect to  ro ta tio n  of th e  axes of 
x, y. W ith  th e  aid  of po lar coordinates, defined by

(u, v) — (w cos 6 , w sin 6 ),

(u ',v ')  =  (w 'cosfl'.w 'sinf? '), (2-6)

(u", v ’ ) = (w" cos 6 ", w" sin в"), 

such invarian ts m ay be w ritten  down a t  will. F or exam ple,

D  =  JJ E (u ,v )w t dudv,

2 в  =  JJJJ E (u ,v )E (u ',v ')w * w 'i Bin2 (6  — 6 ') d u d v d u ‘ dv',

6H  —  JJJJ* E (u, v )E (u ’,v')w *io‘* sin* (6 —6 ') dudv d u 'd v ',
(2-7)

6Д =  JJJJJJ E(u,v)E(u',v')E(u‘’,v')toi w'*w’*

x sina (в ' — 6 ") sin0 (6 ° — в) sin2 (6 — 6 ') du dv du' dv' du’ dvr

(The physical significance of H , Д is discussed more fully in  (3).) B y su b stitu tin g  from  
equation  (2-6) and  separating  th e  various te rm s we have identically

D  =  m i0 + 2m22 + m M,

О ~  (mM +  wiaa) (mu  +  m M) -  ( %  +  m,,)*.

3 H  =  m40m M-4 7 n 81wils  +  3m |J,

m u  mil  m it

Л - ™3i

Щ»

(2-8)

V
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Now th e  five m om ents m iB, m 31, m 22, m 13, m M are independent. R otation  of the axes 
represents one degree of freedom, and one therefore expects ju s t four independent 
in v a rian t com binations of the m om ents, unchanged by ro tation  of the axes. Four such 
independent com binations are in fact D , G, H  and Д. A nother invarian t which will 
ocour in  the  following, nam ely

G' =  E (u ,v )E (u ’,v ')w l w'i am'l (e — в')соа2(в — e ')d u d v d u ' dv'

= (mw -  +  m M) -  (mal -  те^)3, (2-9)

is expressible in  term s of th e  o ther four. E vidently

G' =  G - 2H. (2-10)

I n  the special case when th e  surface is isotropic all the above param eters are expres
sible in term s of one only, say D. For then  E(u, v) is a  function of w only; on replacing 
d udv  by w d w d d  and carrying o u t the integrations w ith respect to  в we find

G = R =  + D \  А  = £ П \  (2-1 1 )

and hence G‘ =  (212)

I f  on th e  o ther hand  the surface consists of two intersecting systems of long-crested 
waves crossing a t  an angle 60, and  ifZ> =  Da\  1Р ] for the two system s individually, then 
in  the  com bined system  we have

d  = m + m ,

G =  m m s i n * 6 0, 3 H  =  D «D ® sm «0Ol (2-13)

Q' = m m  sin2 <90 cos2 0O, Д =  0.

In  the  p articu la r case when ZX11 =  =  \D  (i.e. m ean-square curvatures are equal for 
th e  tw o system s) th en

G = iD *  9ins 0Ol E  = ^ D 2ND*e0, G' =  -^Z )2 sin2 26V (2-14)

3. The distribution o f F.  F rom  the  definition of F  we have

Г = 1  + Н Ь + Ь )  + Л £ Л > -& ).  <3<1>

where th e  jo in t d istribu tion  of (£lt £2, £3) is given by (2-2). By a  real linear transform ation

=  (3-2)

Ц J. (d-d)
— t iv l+hvl+hv l , )

say. Then the  jo in t d istribu tion  of ?jv  7jt , ija is

P(V i. Vi. Ъ )  =  exP [ -  i(7 i +  7t +  <3'4) 

an d  we have F  =  Xi + Ха +  Хя +  Хл> (3'6)
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where
=  +  O' =  1, 2, 3),

V  -  ;  _  у  ( a u  +  g 3 j ) 2 M  — * — 2j -----Tt
i - i  4ч

(3.0)

(3 -8)

This expresses F  as th e  sum  of functions Xj 'whose characteristic  functions

Ф # )  =  &iXj‘ dXj (3-7)
are know n. In  fac t we have

AM -  О -  и,(Л)-* « р 0  “  3)'

The characterietic  function  of J 1 is th e  p ro d u ct o f th e  characteristic  functions <fij, t h a t  is 

' [t ' _  exP Iй  + i W 2 у2 +  gai)a/(1 -  2 h iv 4 )] (3-9)

Now  from  (2), equations (5 '12) we have

k + k + k ^ o ,  i2i3 + h h + h h = - W ,  гл * э  =  *Д; <3 1 0 >

an d  i t  m ay also be shown (see A ppendix) th a t

Е ( « ч Н ( ) '  =  A  S ^ o ^  +  o 3,)s =  4, S i № u+ < hi)* = G- <3-11)
i i  1

B y m eans of these relations ^(<) is reduced to

exp
, l  + bD(iv4) + G'(iv4)*~\
**1 -ЗЯ(г)<*<)а- 2А(г»>*0»] (3. 12)

[1 -  3 -  2Д (гЛ )2]*

T h e p robab ih ty  d istribu tion  of F  is now  found from

p(F )  =  —  f “  ф{1)ет <и. (3'13)
T̂J J _oc

W riting \v2D  =  A ,  (3 ' 14)

%  =  =  (3' 15) 

(so th a t  in  th e  ieotropio case B 1} B 2, B 3 will reduce to  un ity ) an d  changing th e  variab le 

o f in teg ration  to  a  ^  A it  (3' 16>
we have finally

1 Г *  Г“  /  l  +  2a  +  B 1«* _  F\1

1К П - 5 П  (3-17)
.i -ia, [2Bj a a +  3B2 a 2 — 1 ]*

where th a t value of th e  square roo t is tak en  which has negative rea l p a r t  a t  a  =  — too .
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4. Discussion: the isotropic case. F or general values of the ratios B Y, J32, B s the 

d istribu tion  p (F )  is n o t expressible in  term s of know n functions, as m ay be shown even 
in the special case w hen A  is large (see (2)). However, if  the surface is isotropic we have 
from  (2-11) and  (315)

giving
~  m

j?i — В г -
p too

exp

B 3 = l ,

Ш т ^ Н ] da,.

(4-1)

(4-2)
( a + l ) ( 2a - l ) i

This function  has different forma for positive F  and for negative F. W hen F  is negative 
the contour of in teg ration  m ay be com pleted by a semi-circle of infinite radiua in the 
left half-plane, since th e  in tegrand  satisfies Jo rd an ’s lem m a (see (5)). Hence

1
p(F ) — 2m  x  {residue of in tegrand  a t  a =* — 1} =  д -^jj е ^ ^ А. (4-3)

■ da. (4-4)

W hen F  is positive, we m ay proceed aa follows. W rite F jA  =  f .  Then on m ultiplying 
p{F) by  e~* and  differentiating under th e  integral sign we have

J —tea (2ct 1)®

On se tting  2a  — 1 =  the  above expression becomes

< 4 ’5>

where th e  contour G m ay  now  be deformed as in K g . 1. The in tegral m ay be recognized 
as a Bessel function  of order — \  (see for exam ple (5), C hapter 17) or directly as the 

hyperbolic coaine 2w* cosh (*M )*. ( ^ )

A fter substitu tio n  in  (4-4) and  in tegration  w ith  respect to  \]r from  \jr to  со we have

***m  -  д а '  ( 4 ' , )
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T he substitu tion  z® =  3 ^ /2  gives

■where

f "  е -га e[<2')U>,s +  e-® 34>*e] dz. (4-8)

erfc(z) =  - ^ J  e~‘ 'dz. (4-10)

M ultiplying by  &  an d  com bining th is resu lt w ith  th a t  for negative F , we have  altogether 

1 ( F <  0),

*<*■ >-j o ' 1' 4 " * - М Ш Ч й Г Н Ш Г - Ш (F  > 0). 

(4-11)

Limiting forms. F o r sm all values of the  param ete r A  th e  argum ents o f th e  error 
functions are large. Since, aa x  -»■ oo,

e r f c ( a : ) ~ i - —  (412)
7Г* x

we find ^ ( ^ )  ~  (4-13)

In  o ther words F  is alm ost norm ally  d is trib u ted  ab o u t F  =  I w ith  variance 4 4 . T his is 
w h a t we should expect since for am all A  ( th a t is, in effect for sm all v) we h av e  from  

equation  (IT ) F  ± l + v J  (4-14)

and  i t  is well know n th a t  th e  d istribu tion  of J  is norm al, w ith  variance D. (The p ro b a 
b ility  of negative F  is negligible.)

On th e  other h an d  for large values of A  we have, w riting

F  =  Aijr, =  A p {F ), (4-15)
th e  lim iting form

P ( f )  =  T 5 e)f,>< j 1 ( ^ < 0 Ц  4̂ .16)
lerfcdVO* > 0).J

This is in  agreem ent w ith  th e  d istribu tion  of th e  to ta l cu rv a tu re  for an isotropic surface 
found  previously (2). In  fact for large values of A

7  =  й ,  (417)

while for isotropy A  — J v2D  =  v2H l, (4-18)

so th a t  ilr = ?r = —  = J3(i). (419)
r  A  ‘ m  v

T he d istribu tion  of ш, as given by  equation  (7-14) of (2), will be seen to  agree w ith  (4-16) 
above.

\
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F o r general values o f A  th e  d istributions p(F), given by  (4-11), m ay still be com puted 

num erically, for exam ple, by  m eans of th e  excellent tables in (4). Some typical curves 
are show n in K g . 2 . The transition  from the  norm al p robability  curve to  the skew curve 
ap p rop ria te  to  the d istribu tion  (4-16) can be clearly seen.

Fig. 2. The statistical distribution of F  for an isotropic surface.

T he value of p(F )  a t  th e  origin is sim ply

r f O J - T O '" * 4
(4-20)

w hich has a m axim um  value 3 e-1 a tta ined  when A  =  The probability  of negative 
F  is given by r0  l

p (F )d F  = (4-21)

w hich dim inishes very  rapidly aa A  decreases beyond about 0-1 .

6. Applications. Im agine a source of rad ia tion  a t  a p o in t 0 , height Aj above o r below 
a  nearly  horizontal surface, as in K g. 3 (a). The rad ia tion  is reflected from  the surface 
a t  a typical po in t P  and  received a t  a  corresponding po in t Q on a  horizontal p lane 
d is tan t h2 from  th e  m ean surface level. I t  is supposed th a t  O P  and P Q  are bo th  nearly  
vertical. I f  x, у denote th e  horizontal coordinates o f P , and x', у th e  coordinates of Q 

rela tive to  0  as origin, then  we have

x' =  (1 +hJky) ^x +  hy ,

y ‘ =  ( l  + h j h j  ( 1/  +  ^ ^ ,

(6-1)
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where z =  £(x,y) is the  equa tion  of th e  surface. I f  now th e  p o in t P  describes a  sm all 
olosed circuit of area da, th e  corresponding p o in t Q describes a  circuit o f area  da' where

da/
da

Ч х'.У ')
3(x,y)

(6 -2 )

H ere F  is given by  equation  (1-1) w ith  A, replaoing v. H ence th e  area o f th e  im age of th e  
source a t  P , as seen from  Q is p roportional to  |-F|-1. In  fac t, since F  =  1 for a  flat 
surface, the  im age area is sim ply

a  =  a0\F \~ \  (5-3)

w here a 0 is the  area  of th e  im age reflected by  a  p lane surface a t  P.

0

<*) (b)
Fig. 3. D efinition o f param eters for (a) reflexion an d  (b) refraction .

Sim ilarly, if  IB denote th e  in tensity  of rad ia tion  a t  Q supposing th e  cu rv a tu re  to  be 
zero, th e  in tensity  a t  Q due to  rad ia tion  received from  the neighbourhood of P  is

I  = 10 \F \-K  (Б-4)

(If, however, m ore th a n  one im age is seen a t  Q, say from  Pl t P2, ... ,  Рдг th e n  th e  
to ta l in tensity  will be th e  sum  of such expressions eva lua ted  a t  Pi, A>

Suppose now th a t  we wish to  find th e  sta tistica l d istribu tion  of th e  image-sizes, as 
seen from  ал a rb itra ry  p o in t Q{x’,y ') . W e have already  ob ta ined  th e  s ta tis tica l d is
tr ib u tio n  of J 1 a t  a  fixed po in t P (x ,y ), for an  ensemble of surfaces; an d  assum ing the  
surface is ergodic w ith  respect to  space and tim e, th is d istribu tion  p(F )  is th e  sam e as 
w ould be obtained b y  random  sam pling of a  particu lar surface £(г, у) a t  po in ts d is
tr ib u te d  uniform ly w ith  regard  to  x, у  (and not too far from  th e  origin). B u t we require 
th e  d istribu tion  p*{F) fo r  points Q uniformly spaced in  the (x' ,y')-p lane. T he concen
tra tio n  of sampling points Q(x', y') differs from  th a t  of th e  corresponding poin ts P (x, y) 
by  a  fac to r (

+  (5-6)

an d  hence we have P*(P) =  cj-F| p(F ), (Б-6)

where с is a pure constant, which m ay be found by the condition th a t

l = f "  p *(F )dF  =  c f “ |.F |p (J ’)d-P’. (6-7)
J —oo J — co
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In  th e  сазе of an isotropic surface it  is found w ithou t difficulty th a t

2 A 

V3

and  hence ' 2 A  
7 3  *

This d istribu tion  of & =  |-F|-1 is given by

dF
P * №  = dd

36

( 6 -8 )

(5-9)

(610)

(611)

Fig. 4. The s ta tistica l d istribu tion  of £  =  |.F |-1, giving the  d istribution of image sizes, 

■where F  =  and p*(F) is given by equation  (5-6): th a t  is

p*(&) = c | JF |* ( j> * (^ + P * ( -- f ,) W > -
T he m ean value of th is d istribu tion  is given by

§  =  =  с j" p {F )d F  = c, (6-12)

some values o f which are given in  Table 1 . All higher m om ents are infinite.
T he fam ily of d istribu tions is shown in Fig. 4, for various values of th e  param eter A . 

Two lim iting form s m ay be no ted : when A  1

( 6 ' i 3 )

th a t  is to  say  a norm al d istribu tion  centred on •& =  1. Secondly w hen A  1 we have

m  - i ^ - ^  +  e ^ e r f c  ( ^ ) * ] ,

w hich will be found to  be identical w ith th e  d istribu tion  of image-sizes for d is tan t 
points, as given in(3).

(5-14)
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Table 1 . M ean values o f -d-
A 5 A
0 1-0000 i 0-8700

0-99Б9 i 0-7714
0-9842 1 0-5472

i 0-9582 2 0-3384
— — 00 A x 0-86B0

T he d istribu tions clearly become less sym m etrical as th e  p aram ete r A  increases. The 
conventional m easures of skewness (see for exam ple (1 )) are inapplicab le since th e  higher 
m om ents of th e  d istribu tion  are infinite. H ow ever, th e  curves generally  have a  very  
sharp  cut-off on th e  lower side, and  a convenient m easure o f the  skewness ia given by

ft = (5-16)

where 5  is the  m ean and  dQi™) the  value of & such th a t  5 %  o f th e  d is trib u tio n  lies to  th e  
le ft of it:

I p (& )d&  =  (6-16)

V alues of (3 have been determ ined graphically and are show n in  figure 6 aga inst th e  
param ete r A$.

Fig. 6. Skewness of th e  curves in  Fig. 4, as a  function  of *JA.

A  precisely sim ilar reasoning will app ly  w hen the source 0  and  the  receiver Q are  on 
opposite sides of a  surface bounding tw o refracting m edia, of indices an d  (see 
F ig. 3(6)). Then w ith  the  same no ta tion  we have

(f12~  /h )  1̂ 2̂* ' =  +  |TV,
\ Мч^Н/ \ / ^ i +  Vх)  

w  = l \
\  Ih h i +  /*a 2̂ t y )

(617)



407

Focusing of radiation by a random surface 37
and th e  analysis proceeds exactly  as before, b u t w ith

(5-18)
fh  h i+/^2̂ 2

T he sam e analy tical function  (б' 11 ) clearly describes the d istribu tion  of the intensity  I  
in  th e  p lane of Q provided, however, th a t  the radiation  from  each image is considered 
separately . W hen there is an  appreciable chance th a t more th an  one image m ay be 
seen a t  a tim e, th en  th e  sum  of th e  intensities has a difference law  of distribution. In  
th is case, however, a t least one of the images m ust correspond to  a negative value of F. 
The presen t d istribu tion  will therefore apply to  the  total in tensity  only when the  
p robab ility  o f negative F, given by equation (4-21), is negligible.

0. Anisotropic surfaces. Generally, aa we have seen, the d istribution  of |P |d e p e n d s  
upon four independent param eters A , B lt J3a, _B3; we have so far fully evaluated only 
th e  d istribu tion  for an isotropic surface, which depends on A  alone. To w hat ex ten t are 
th e  resu lts applicable to  anisotropic surfaces?

Some k ind  of answer can be given in the two extrem e cases A  1 and A  >  1. In  the 
form er case we have seen th a t F  =  1 4- vJ, and, since th e  distribution  of J  depends 
always on one p aram eter D, it follows th a t th e  distribution of F  (and likewise of | J | _1) 
depends only  on A . H ence for small values of A  the above d istributions are independent 
o f the o ther th ree  param eters, and are valid generally.

W hen on th e  o ther h and  A  P  1, i t  has been shown in a previous paper (3) th a t  the  
d istribu tion  of |_F|-1 depends on two param eters. One of theae,

угН* = В \А ,  (6-1)

determ ines th e  scale of th e  distribution. The other,

H i!  Д =  £ l lB 3, (6-2)

h ard ly  affects the  d istribu tion  of |-P|-1 a t  all, so th a t  for p ractical purposes the only 
variab le param eter is B \A . F o r an isotropic surface B 2 takes the  value 1 . Thus the  
above results (for large A ) are applicable provided only th a t  A  is replaced by B \A , th a t  
is, th e  scale o f th e  d istribu tion  is stretched by a  factor J3j.

F rom  th e  definitions (3-15) we have

4  =  4 Я * /Д  (6-3)

w hich m ay  v ary  considerably, b u t is generally of order 1. F or exam ple, i f  the surface 
consists of two long-crested system s of waves intersecting a t an  angle 60 we have from

(2' U )  4 =  ( |) i  sin в0. (6-4)

I t  is curious th a t  when 6 a =  sin-1  (f)4 =  |тг (6-5)

( th a t ia, th e  two system s interseot a t  an  angle of 60°), th e n  B% =  1 and th e  lim iting form  
for p*(&) is valid  w ithout any  change of scale.

7. Conclusions. I t  has been shown th a t  th e  random  surface £(x,y) is fully charac
terized , for the  present purpose, by  four independent param eters D, в ,  H  and Д. The 
d istribu tion  of F  is found to depend on all four of these, which, when combined w ith v,
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give four non-dim ensional param eters A , B b  B 2, B 3 for th e  d is trib u tio n  (§3). How ever, 
w hen th e  surface ia isotropic th e  num ber of p aram eters is reduced  to  one, an d  the 
d istribu tion  is dependen t on th e  param ete r A  only. M oreover, th e  d is trib u tio n  o f F  is 
th e n  expressible in  term s of know n analy tical functions.

F o r very sm all values of A  th e  d istribu tion  tends alw ays to  a norm al curve, irrespec
tive of the  values of B v  B 2, B 3\ for large values of A  th e  d is trib u tio n  ten d s to  a  form  
w hich depends only on the  scale-factor B ^A  (which equals u n ity  b o th  for an  isotropic 
surface and  for tw o long-crested system s of w aves in tersecting  a t  an  angle of 60°). 
H ence th e  form  of th e  d istribu tion , a p a r t from  its  scale, m ay  depend  m ainly  on A  
th ro u g h o u t th e  whole o f its range, so th a t  th e  curves com puted  for th e  iso tropic case 
are typical. F rom  the skewness of these curves the  p aram ete r A  can be fairly  well 
es tim ated  provided A  < 1. W hen A  increases beyond 1 it  becom es easier to  estim ate 
3B t A 2, th e  m ean-square value of v2Q,

APPENDIX 
Proof o f equations (3-11)

L e t us in troduce new variab les f 2, £s, linearly  dependen t on £1; £2, £s, by

k  =  (A l)

w here / 1  0 1 \

( Z y = ( o  1 O j .  (A 2)

\ l  0 - 1/

I n  m a trix  n o ta tio n  th is can be w ritten  (j =  T£. Inverting , we have

£ =  T _15 =  T _1at] =  toirj, (A3)

w here a  denotes th e  m atrix  (ai}), and b =  T - 1a . Since

/ *  °  ! \
T - 1 =  I 0 1 0 (A 4)

4  0 - J
th is  gives in  particu la r

=  i(® u +  ̂ i)»  =  K °i*+ °»s)i bis =  i ^ s  +  ejs), (A 6) 

a n d  ou r ob ject ie now to  prove
Ь Ъ + Ь Ь + Ь Ь  =  * А  <A 6)

t 1b i i+ J r 16? ,+ is- 1bb  =  i ,  (A 7 )

h b ii+ iiV i t+ k # *  =  №■ <A 8 >
W ith  the  above transform ation we have

, - в - в - я - в л

n ' ' a
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Focusing of radiation by a random surface 
where N  =  T 'M T

and ao N " 1 =  T ^ S T " 1',

where S  ia given by  (2-3). W riting N -1  =  И we have

(
i ( m io + 2m 2a + m ai) U m si + m n )  i ( m 40- m 01)

£(m31 +  m 13) m M

Ц Щ 1~Щ з)  i(«i40- 2 m 22 +  7»M);'

Now from  (3-3) and  (A 9)

$  — £l ~  £s =  h 7fi + ltVl + h v l■ I

F rom  th e  first o f these equations,
b ’N b  =  I,

where I denotes the  u n it m atrix . So on taking inverse matrices

Ь-ЧИг1' = I
and  hence И  =  b b '.

In  p a rticu la r Ии  =  &ii +  Ь|г +  *ia-

Since from  (2-8) and (A 12) we have И п = \D , this proves (A 6).
Sim ilarly from  th e  second of equations (A 13) we have

b 'K b  =  L,where

С
о о

К =  ̂ 0 - 1  0 I, L = 

\0 0 - 1 /
an d  so by  the same procedure

K-1 = bL_1b'.
T he leading elem ent of th is  m atrix  relationship gives us (A 7). 

To prove (A 8) we no te th a t from  (3-2) and (3-3)

a'Ma = I, a'aa = L,
where

4  0 0 /

F rom  th e  first of (A21), a' = a-1M-1 =  a_1S;
and  so from the  second L = a^SoS'a-1,
giving b L b ' =  b a _1S o S 'a _1'b '  =  S o S ',

where S =  ba-1E =  T-1S.

39 
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F rom  (2-3) an d  (A 4) we have

'40

S  = (A 27)

On tak in g  th e  leading elem ent in  equation  (A 26) we ob ta in  th e  desired rela tion .
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Reflection and Refraction at a Random Moving Surface. 

I. Pattern and Paths of Specular Points
M. S. LoNccreT-Hicoras 

National Institute of Oceanography, England 
(Received January 25, 1960)

L ight falling from a  point source on a  ruffled surface produces a pattern  of images, which move about 
over the surface. The image points correspond to the maxima, minima, and saddle points of a certain func
tion. I t  is shown th at the images are  generally created in pairs, a maximum with a saddle point or a mini
mum with a  saddle point, and th a t the total numbers of maxima, minima, and saddle points satisfy the 
relation

ЛГм +ЛГ.*-ЛГ_+1.
T h e  process of creation or annihilation of images is studied in detail, and also the tracks of the image 

points, in certain  special cases, I t  is shown th at closed tracks may be common. This is confirmed by photog
raphy of the sea surface.

I .  IN TR O D U C T IO N

\X 7 H E N T light from a fixed source falls upon a wave-
^  * like surface, such as the surface of a  lake when 

ruffled by the wind, an observer may see a number of 
dandng images of the source reflected a t different points 
in the surface; these points arc sometimes called the 
“specular points.” 1 Similarly, an observer beneath the 
surface would also see a number of moving images, 
depending upon the refractive index and the positions 
of the source and observer.

The number of images seen by the observer is not 
constant. The images move, and two specular points 
may come together and disappear or, on the other hand, 
two such points may suddenly appear where there were 
none before. Such an event, namely, the creation or the 
annihilation of two specular points may be called a 
“ twinkle.”2

I t can be shown that a t a “ twinkle” the intensity of 
the image becomes exceptionally bright; the light is 
partially focused on the observer, so that the latter sees 
a bright flash. Correspondingly, if the reflected or re
fracted light is allowed to illuminate a fixed surface 
parallel to the mean wave surface, the intensity of 
illumination on the fixed surface fluctuates, and lines of 
especially bright illumination may be seen, for example, 
on the bottom of a shallow lake or sea. At the instant 
when one such line sweeps across a point Q in the plane, 
an observer at Q will see a "twinkle.” A particular case 
of this phenomenon when the water surface is perfectly 
regular and sinusoidal and the source is a t infinite dis
tance has been considered by Shenck.3

I t  is well known, however, that water waves generated 
by wind are not perfectly regular but have a certain 
degree of randomness arising from the character of 
their origin. For example, the slopes of wind waves are 
known to have a statistical distribution which is ap

1 C. Cox and W. M unk, J .  Opt. Soc. Am. 44, 838 (1954).
* M . S. Longuet-Higgins, Proc. Cambridge Phil. Soc. 56, 234 

(1956).
*H . Shenck, J. Opt. Soc. Am. 47, 653 (1957).

proximately Gaussian.1 I t is sometimes .convenient to 
assume that the water surface is the sum of an infinite 
number of long-crested waves of different wavelengths 
and directions, whose phases have been chosen at 
random from the interval (0,2?r); under suitable condi
tions, this leads to a Gaussian distribution of the 
elevation, slopes, and higher derivatives.*

The purpose of the present paper is to study the 
pattern of specular points in a random surface, to show 
how specular points may be added or subtracted a t a 
“ twinkle,” and to examine the paths of specular points 
such as would be revealed by a time exposure of the 
surface. I t is not here assumed that the surface is 
Gaussian but only that it has a certain degree of 
randomness so that special and unlikely cases (with 
probability zero) can be ignored. In subsequent papers 
the Gaussian assumption will be explicitly made, and the 
average numbers of specular points, as well as the mean 
number of twinkles per unit time, will be determined in 
terms of the spectrum of the surface.

First, in Sec. 2, we consider the pattern of specular 
points on the surface at a typical instant. Some of these 
points are “maxima,” some are “minima,”  and some 
“saddle points.” A simple relation between the number 
of each kind, namely,

( 1. 1)

is established.
I t  is then shown that as the surface moves, the 

specular points are generally created in pairs—a maxi
mum with a saddle point or else a minimum with a 
saddle point. The way in which these fit into the pre
vious pattern is also considered.

Ordinarily, a specular point, as it moves about on 
the surface, has a finite velocity; but we find that a t the 
beginning and end of its life (that is to say when it is 
created or destroyed with another specular point), the

‘ M . S. Longuet-Higgins, Phil. T rans. Roy. Soc. London A247, 
321 (1957).

838
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velocity becomes infinite—in such a way, however, that 
the total distance traveled by the point is finite.

Typical tracks of specular points are considered in 
Sec. 6. When the surface consists of certain kinds of 
wave systems, it is shown that dosed tracks will be 
common. A photograph of such tracks on the sea 
surface is reproduced in Fig. 9.

2. C O N D IT IO N S  AT A SPECU L A R P O IN T

Let the equation of the surface in rectangular coordi
nates be

*={"(*,J,0. (2.1)
where the z axis is directed vertically upward. If the 
light source О and the point of observation Q are a t 
(0,0,Ai) and (0,0,Аз), respectively (both above the 
surface), then the conditions for a  point P  a t (x,y,f) to 
be a specular point are

where
d{/dx=  — кх, д£/ду—— ку, (2.2)

* - i C d / * 0+ { i / В Д  (2.3)
it being supposed that «f and Bt/д х , d i/tiy  are all small 
quantities. Similarly, if Q is situated a t a distance hi 
below the surface and /i|, are the refractive indices 
for the two media above and below, we again have 
Eq. (2.2), but with

1 {fiihi+n2h2)/(jn~ in)h\hi. (2.4)

where

(<0 (4 (O

I t  follows from (2.2) th a t the specular points corre
spond to the solutions of the equations

af/dx=0, dj/dy=0, (2.5)

Л*,У,!)={•(*,У ,О + М * Ч У ) ,  (2.6)

th a t is to say, they ате the stationary points of the 
function / .

Let us first consider the surface as “frozen” a t one 
particular time t, so th a t /  is a function of x, у  only. 
The form of the surface in the neighborhood of a 
specular point is well known. Shifting the origin of x, у  
to the point P and assuming that f  (x,y) is differentiable 
up to the second order, we have

/(*  j )  •“  h (^2o ^ +  2<3i iiy  “Ьло2у2) +  R, (2.7)

where R  is a remainder of higher order than the second. 
We may write

n,= О2//**2) W/ay*) -  W /dxdyy
— flakes—Лц2 (2.8)

for the discriminant of the quadratic form in (2.7); Qf 
also equals the “ total” curvature of the surface z — / a t  
P. There are generally two distinct cases: either

(1) Q />0; the quadratic form in (2.7) is always of 
the same sign, and /  has a maximum or a minimum 
according as аго^О; the contours / =  constant are 
ellipses as in Figs. 1(a) and 1(c). Alternatively,

F i g .  1. The full lines indicate contours of f ( x ,y , l ) in the neigh
borhood of an  ord inary  spccutar po in t: (a) a  m aximum, (b) a 
saddle point, (c) a minimum. T he broken lines and arrow s indicate 
d irections of steepest ascent.

(2) f i /< 0 ; the quadratic form is indefinite, and the 
contours of j  are hyperbolic, as in Fig. 1(b).

Of special interest to us are the paths of steepest 
ascent on the surface; these are the orthogonal tra
jectories of the contour lines shown in Fig. 2. I t is 
evident that in case (1) a path of steepest descent may 
either leave or enter P  in any direction whatsoever, and 
there is a continuous family of such paths. In case (2) 
on the other hand, the orthogonal trajectories are 
rectangular hyperbolas with center P  and so can never 
pass through P  itself, with the exception of the hyper
bola of zero “ radius,” that is, the line pair which forms 
the asymptotes of all the other paths. Thus, a t a saddle 
point only two pairs of directions exist from which a 
path of steepest ascent may enter or leave the point, 
compared with a continuous family of directions for a 
maximum or minimum.

We have purposely not investigated the special case 
ft/=0  a t  present, because if the surface is “ frozen” the 
probability of such points occurring is nil; only when 
the surface is allowed to move, that is to say, it is given 
an extra degree of freedom, is there a finite probability 
that ft/ will pass through zero in a given length of tim e,

3. PA T T E R N  O F  SPE C U L A R  P O IN T S

I t  is sufficient, then, so long as the surface is “frozen,” 
to suppose that the stationary points are either maxima, 
minima, or saddle points; any other cases have a total 
probability zero.

We now give a chain of reasoning which suggests 
that all the minima on the surface may be joined by a 
network of palhs so that each mesh co)Uains one maximum 
and each segment contains one saddle point.

Consider the form of z= f(x,y) as the radius 
г— (a^+y2)* tends to infinity. In Eq. (2.6) the constant 
к is positive. If we suppose th a t f  (x,y) is Gaussian, so 
that the probability of large negative values is expo
nentially small, then it will follow that as r —» «>, 
f ( x ty) almost always tends to infinity also.

Further, if the first and second derivatives of f  are 
also Gaussian (and certainly if the slopes are bounded) 
we may expect that the paths of steepest ascent on the 
surface will, outside a circle of given radius foj all tend 
to infinity, except for a set of surfaces having probability
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e, where с tends to 0 as fo—» « . We assume, therefore, 
that beyond a given radius all paths are directed out
ward to a “maximum at infinity,” it being understood 
that we are neglecting a set of cases of vanishing total 
probability.

We shall also assume that there is only a finite 
number of stationary points a t any time throughout 
the whole plane.

Starting from a  typical point P  on the surface (not a 
stationary point), let us follow the path of steepest 
ascent from P ; this will climb until it reaches a station
ary point or else goes to infinity. Generally, the path 
will not encounter a saddle point, since to each saddle 
point there are only two paths of steepest ascent; 
therefore, it will generally reach a maximum A (which 
may be the "maximum at infinity1’). Moreover, if PJ 
is a  point in the neighborhood of P, the path of steepest 
ascent from P' will generally arrive a t the same maxi
mum A. Hence P  lies in a continuous region, all points 
of which are connected to A by paths of steepest 
ascent. From Fig. 1(a), every maximum is surrounded 
by such a region.

In this way the whole plane, with the exceptions of 
the minima and of the paths passing through the saddle 
points, is divided into regions, one region for each 
maximum.

Let us now go to a typical minimum В and follow 
the line of steepest ascent, starting out from В in an 
arbitrary direction в. This path, for the same reason, 
generally leads to a maximum A (в). Moreover, all paths 
adjacent to the first path, that is starting in slightly 
different directions в+dd, generally arrive a t A also.

Suppose now there exist two different directions 0i 
and 02 for which the paths of steepest ascent arrive at 
different maxima A i and A 2 [Fig. 2(a)]. By varying в 
continuously from fli to 02 we must encounter a direction 
flia for which the path bifurcates, one branch going to 
A \ and one to Аз (where 4 з т а У be the same as A*). 
The point of bifurcation cannot be an ordinary point or 
a maximum or minimum; it must therefore be a saddle 
point C, say.

Now the path from В to С must form a part of the 
boundary of the region surrounding A \ (for a slight

(.) (b)
F ig. 2. Configurations of stationary points, ( f l  — maximum, 

О  =  minimum, X™ saddle point)

variation of 0 produces a path leading to A  x on the one 
side or to A *  on the other). Further, if the path BC is 
continued beyond the saddle point С and down the 
other side it must eventually reach a stationary point, 
which is either a  minimum or another saddle point. A 
saddle point is ruled out, as being of vanishing prob
ability. So in almost all cases the path ends in another 
minimum B \  say.

On continuing in this way round the maximum A \  
we have a succession of minima В, B \ В ", and we 
eventually arrive back a t В, having toured A 1 just once. 
I t is quite possible for B' to coincide with B, as in 
Fig. 2(b).

Proceeding to the contiguous region which surrounds 
At, say, we may make a similar circuit. So eventually 
we fill up the whole plane with a network of paths, each 
mesh of the net containing just one maximum. The 
minima lie a t the corners of the mesh, and along each 
segment between two adjacent minima there is one 
saddle point.

In fact, the network of minima may be considered as 
the Schlegel diagram of a polyhedron1 in which the 
faces correspond to the maxima, the vertices correspond 
to the minima, and the edges correspond to the saddle 
points—with the difference, however, that it is allow
able to have one “vertex” joined to the rest of the net
work by a single “edge/’ as in Fig. 2(b).

The dual network, formed by lines joining the 
maxima, and passing through the saddle points, is 
easily constructed.

Both the original network and its dual satisfy Euler’s 
theorem6,7:

laa= 2  (3.1)

(where Ntic* denotes the number of faces, etc.). One 
“face” in the original network corresponds to the maxi
mum at infinity. On omitting this, we have

N ^ + N „ < = N ' 0+ 1, (3 .2 )

where N ^ ,  iV*,,-, and N ia denote the total numbers of 
maxima, minima, and saddle points, respectively.

I t  may be noted that the surface can be divided in 
another way, into regions where 12/  is positive (elliptic 
regions) on the one hand and regions where Я/ is negative 
(hyperbolic regions) on the other. The maxima and 
minima all lie in elliptic regions, and saddle points in 
hyperbolic regions. The boundaries between these, 
that is to say, the loci of points for which Q/—0, are 
called the parabolic lines.

4. C O N D IT IO N S AT A TW IN K LE

From now on we shall allow the surface to be in 
motion, so that individual specular points move about

1 H. S. M . Coxeter, Regular Polytopes (Methuen and Company, 
L td., London, 1946), p. 321.

• L. Euler, Nov. Comment. Acad. S d . Im p. Petropol. 4, 109 
(1752-1753). , „

’ D, M . Y. Sommerville, A n  Introduction to the Geometry of я 
Dimensions (M ethuen and Com pany, L td., London, 1929), p. 196.
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on the surface. Let us follow one such point. Its  coordi
nates are given by the conditions that

S j / B x ~  0, d / /d y = 0 , (4.1)

and on taking the differential of these equations with 
respect to both x,y and I we have

(4.2)
(flJ }/dxdy)dx+  (d,f /d y ‘)dy+  (d* //dydl)dl= 0.

Equations (4.2) may be solved uniquely for the ratios 
dx/dt and dy/dl, provided that

П/, = (Vf/dJ) W /V ) -  (av/axdy)vo. (4.3)
In other words, after a short time A, each specular point 
will move to a well-defined new position, provided that 
SI; is not zero. A necessary condition, therefore, for the 
creation or annihilation of a specular point (which we 
call a “ twinkle’') is the vanishing of П/.

Let us shift the origin of coordinates to the position 
of the twinkle, a t which time we also take /= 0 . If the 
surface is continuous and differentiable up to the third 
order, f ( x tytl) may be expanded in the Taylor series

where

flfjk
/(*, y,0= £ ------*У1‘+Д, (4.4)

Osoo=0.

The coordinates of a specular point in the neighbor
hood are found by substituting this expression in (4.1), 
which gives

(̂ajoox2+2flaioâ y4-«i2oy2) +  aioi/H----—0,
flo2oy-b 2 ( f l a i o ^ - b 2 a Дозо^ +  Лоп̂ -!- ■ • • =0, (4.13)

whence it is clear that x is of order |/|1 and у  of order t. 
In fact, on retaining only the lowest powers of I in each 
case, we have

*ijk— (4.5)

and R  is a higher-order remainder. Since the origin is a t

flooo= 0, (4-6)

and the conditions (4.1) a t J— 0 give also

Gioo— fl<jio= 0. (4.7)

Further, by a rotation of the axes of x,у  we may make

io=0. (4.8)

The condition that ft/ shall vanish now gives

Д2Ы>Д030= 0, (4.9)

whence either a?oo or аозо must vanish also. By naming 
the axes appropriately we make

(4.10)

( — 2aioi/\ * <2210̂ 101—взловои 
----------I ,  y = ---------------------- 1. (4.14)

fljOQ /  £3000020

Lastly, the terms independent of x,y do not alter the 
form of the surface near P, except to raise or lower it 
bodily by a small amount. So without loss of generality, 
we assume

aoci — floo2—e«oi=0. (4.11)

The resulting expression for /  in the neighborhood of the 
twinkle is

/(*.?>0 “  (ааоо^+3а31о̂ +3ацсрзг4-<2с8оу8)
+  (aioii+^iiy)/-fMa2otri-|-2aiUry+ao2iya)̂  

4- i ( ai<»aH"a<)iO') '̂‘b^- (4.12)

The interpretation is interesting. If amo/oaoo is posi
tive, two solutions exist when /<0  and none when 
t> 0 ; hence, two specular points are simultaneously 
annihilated. If, on the other hand, амо/вмо is negative, 
no solution exists for i <0 and two solutions exist for 
/ > 0 ; therefore, two specular points are simultaneously 
created.

The path of the points is found by eliminating I 
from (4.14):

(Д210Я100— <*a 00 вою)жН~ 2 аюоЛо2оу= 0, (4.15)

which is a parabola with axis y = 0 . The velocity of the 
specular points near the vertex of the parabola is 
given by

dx /  — flioi\* dy fl2io®ioi—fljooflon
— = ± ( ------- ) ,  — = ---------------------- , (4.16)
dl \ 2 flj((]// dt ajooflo2o

showing that the x component of velocity tends to 
infinity as \t\ —>0, as was expected.

Consider now the locus of “parabolic points,” that 
is to say, points for which the total curvature, given by

fy, =  (e*f /B J )  (a!j /ду'-) -  (д '//д ха уу  (4. i 7)

vanishes. Substitution from (4.12) gives this locus as

<Jao<#-l- a2ioy4“C2ai/=  0 (4.18)

(terms of higher order being neglected). This is a 
straight line making an angle

tan-1 (азоо/ Лио) (4-19)

with the path of the specular points, and passing 
within a  distance of order t from the origin. B ut the x 
coordinates of the specular points are of order A  Hence, 
the two specular points lie generally on either side of 
the parabolic line Q/—0.

Now the parabolic line is a  boundary separating 
points for which ft/< 0  from those for which ft/>0. It 
follows that one of the two specular points is a saddle 
point and the other is a maximum or a minimum.

In other words, specular points are generally created 
or annihilated in pairs; a maximum together with a 
saddle point or a minimum together with a saddle
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point. I t  is evident that this process preserves the 
relation (3.2).

The form of the surface at the twinkle itself (time 
/•=0) is found from (4.12):

/(*»У|0) *= ^ОоаоУ+^азоо^+ЗагюЖ2}'
+3auoxy2+oojoya) +  ■ ■ ■ • (4.20) 

By the linear transformation

X+ (л?ю/ йш)у = £ (4.21)
y=V

(a change to oblique axes), the equation becomes

/ ( ^ 0 ) - i a 3ooi3+ ^ W ( l + ^ H - S 4) +  ■ ■ (4.22)

where A and В are constants; or, since $ and rf are small 
near the origin,

/ — 2^0204*+ £взоо£Ч----- . (4.23)

The contour through the origin ( /= 0 )  is thus a  semi- 
cubical parabola with a cusp lying to the left or right of 
the origin, according as дого/азоо is positive or negative. 
The tangent a t the cusp is the line q=0, i.e., the x  axis.

The essential features of the surface before and after a 
twinkle are illustrated by the function

/(*>У,0 =  $ уЧ-^яЧ-Зд^О +л*, (4.24)
whose contours are plotted in Fig. 3 for t= — 0.01, 0, 
and 0.01. Two specular points—a minimum and a 
saddle point—are shown in the process of annihilation.

A geometrical interpretation may be given as follows. 
A t each point on the surface there are two principal

( • )  (b )  (c )

F ic . 4. Modifications of the pattern  of stationary points by the 
addition of a  maximum and a saddle point.

curvatures, ка and kj, say, and the total curvature ft/ is 
the product of these. At a maximum or minimum, 
and кд are of the same sign, while at a saddle point they 
are of opposite signs. At a twinkle, when Q/ vanishes, 
one of the principal curvatures also vanishes (in the 
foregoing example this curvature is in the x  direction). 
That is to say, one of the principal sections of the surface 
has a point of inflexion. I t  is not difficult to see, by con
sidering the corresponding two-dimensional problem2 
that, a t a point of inflexion, two specular points must 
coincide and that their velocities become infinite.

If the source of light is of small but still finite di
mensions, each image on the surface covers a small area. 
I t  can be shown that as Lhe two specular points approach 
each other, the images become elongated along their 
direction of travel (that is to say in the x  direction). 
During this process the area of the image is greatly 
enlarged, so that an observer sees a bright flash.8 How
ever, the brighter the image, the faster it is moving, 
and it can be shown that the total intensity of light 
(integrated with respect to time) which is received from 
any small part of the track remains finite. Hence a 
time exposure of the whole track shows no particular 
increase in brightness a t the twinkle itself.

In what has been said we have purposely ignored the 
possibility of such special cases as до2о=0  or jjqo=0. 
These situations, besides being of zero probability, may 
be considered as coincidences of the kind of twinkle 
just described. For example, if аого=0, then we have 
for the coordinates of the specular points the equations

i(eaQO.ta+2aiioxy-bai!oy3)H-flioi^4-. . .  =  0 ^ 25)
$ (o«o*2+  2Gi2o#y“t"Gflaoy2)+ Qcii*"!- • ■ • — 0,

which represent two concentric conics. Generally, there 
are either four real intersections or none, giving four 
specular points in the neighborhood or none. If either 
conic is real when *<0 it will be imaginary when t>0. 
So we may distinguish the following cases: (1) both 
conics are simultaneously real and intersecting: then 
four specular points are simultaneously created or 
annihilated; (2) both conics are simultaneously real 
but nonintersecting: this gives an isolated flash a t 
I— 0; (3) one conic is real, the other imaginary: again 
there is an isolated flash at i= 0 . In case (1) the event 
can be regarded as the simultaneous creation of two

1 At an ordinary point the  to ta l brightness is proportional to 
|П / |-1, bu t when O ' vanishes this approximation breaks down.
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pairs of specular points (or their simultaneous destruc
tion). In cases (2) and (3) the event can be regarded as 
the simultaneous creation and annihilation of the same 
pair of specular points; their life ends as soon as it has 
begun.

S. CHANGING THE PATTERN OF SPECULAR POINTS

Let us now consider how two new specular points 
may be fitted into an already existing pattern.

We have seen that specular points are generally bom 
in pairs a t a parabolic line. Let us consider first the 
addition of a saddle point and a maximum.

The saddle point must He on a path joining two 
minima. Since the minima are to be preserved, the only 
way to create a new path is to join up two already 
existing minima—these must therefore belong to the 
same mesh. The mesh being thus divided into two parts, 
a new maximum is created at the same time.

Three possible ways of dividing the mesh are illus
trated in Figs. 4(a)^l(c). These ways correspond to the

/  I \

<eJ (»> («)
F ig . 5. M odifications of the  pa tte rn  of stationary points by tbe 

addition o i a  minimum and  a saddle point.

joining of one minimum to itself, to an adjacent 
minimum, or to one of the other minima of the same 
mesh.

The addition of a new minimum may be regarded in a 
precisely similar way but from the point of view of the 
dual network (see Sec. 3). Modifying the dual as in 
Figs. 4(a)-4(c) and then returning to the original we 
obtain the three types of division shown in Figs. 
S(a)-5(c).

The destruction of two specular points consists of 
any such step in reverse.

Since a complete network may be built up from a 
single minimum or may be reduced to a single minimum 
by a combination of such steps, it follows that any 
pattern of specular points may be converted into any 
other by the steps described.

6. PA TH S OF SPECULAR PO IN T S

If г —f  (*,y^) is a Gaussian surface, the tracks of the 
specular points are generally complicated. However, in

L
~

tj- i A*
*

i

F ig . 6. T he form ation of specular lines on a  moving waveform.

some special cases purely qualitative considerations 
may help in understanding certain features of the 
observed tracks.

Consider the special case when tbe surface consists of 
two systems of long-crested waves crossing at right 
angles. We have

?(*,>, (6.1)
and the conditions for a specular point reduce to

/ д х ——кх, д $ ч /д у ^—ку, (6.2)

which is to say that a specular point in the combined 
system is the intersection of two specular lines, one from 
each of the long-crested systems individually.

Let us further suppose that each of the systems fi 
and consists of a fairly narrow band of wavelengths, 
and that the distances of the source and observer from 
the surface are great compared with the mean wave
length X. Then the condition for a specular line in the 
system fi (say) is that the gradient dfi/d* shall take 
the value — кя, which value is almost constant over a 
few wavelengths.

Consider now a progressive train of waves in a dis
persive medium such as water (Fig. 6). The envelope of 
such a wave train will move forward with the group 
velocity of the waves, and if, as in water, the phase 
velocity exceeds the group velocity,9 the individual 
waves will grow at the rear of the group, move forward 
through the group and eventually die out at the front. 
At the instant when the wave amplitude rises through 
the value *|*]X/2ir, two specular lines suddenly appear, 
and when the amplitude falls below this value, they 
disappear together. The specular lines are thus carried 
along through a distance comparable to the length

— J = < ,  —  <■

(«) (*) (*)
F ic. 7. T he formation of specular points by two 

intersecting wave systems.

• This is for gravity  waves. For surface-tension waves tbe reverse
is true, bu t a similar argum ent applies.

\
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of the group, which equals «X, where « Is the number of 
waves in the group.

Consider on the other hand a standing wave train. 
The wavelength is nearly uniform but the amplitude 
fluctuates rapidly, twice per complete cycle. Specular 
lines will appear (in pairs) and disappear again within 
half a cycle. The distance that they traverse is, by 
contrast with the previous case, only a fraction of Л.

Figure 7 illustrates the combined effect of the two 
intersecting systems. In Fig. 7(a) a pair of specular lines 
exists in system but not in system f s; then (b) a pair 
appears also in the system this generates simul
taneously two pairs of specular points (of which one 
pair is a maximum and a saddle point, the other a 
minimum and a saddle point). The pairs of points 
quickly separate in the у  direction. Then either (c) the 
specular lines of f t vanish first or (a) the specular 
lines of f 2.

Typical tracks of the points are shown in Fig. 8. In 
Figs. 8(a) and 8(b), both systems fi and fj are pro
gressive. In  case (c), fi is a progressive wave but a 
standing wave; in case (d), both fi and f t are standing 
waves. The directions of movement are shown by 
arrows.

(«0 (b)

ф  о
<0 («)

.-'X'

F ig. 8. Possible tracks of specular points (the 
arrows indicate directions of motion).

F ig .  9. A time exposure of the sea surface, showing t r a c k s  
formed by images of the sun. The photograph was taken at mid
day, the camera being indined a t about 45° to the horaootaJ. 
(T ric i XXX plate film was used, with a red filter.)

A time exposure (0.2 sec) of the pattern of sunlight 
reflected in the sea surface, taken a  few feet above the 
water, is shown in Fig. 9. It seems from the photograph 
that the existence of dosed tracks is quite common. 
Probably some waves were being reflected from the 
structure in the foreground, thus producing standing 
waves.

In Figs. 8(c) and 8(d) we saw that a closed track may 
correspond to two or four nearly simultaneous twinkles. 
Thus the closed tracks will enhance strongly the glitter
ing appearance of the sea surface.
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The num ber of specular points reflected in a random Gaussian surfacc is determ ined theoretically under 
the following alternative conditions: (1) when the surface is perfectly long crested (two-dimensional); 
(2) when the  surfacc is three-dimensional b u t isotropic; (3) for quite  general surfaces, provided th a t the 
observer and the source of radiation are  b o th  a t a  great distance from the surface.

Tbe results can be applied to  the  similar problem when the surface forms the  boundary  of two refracting 
media.

1. IN T R O D U C T IO N

SUPPOSE that light from a point source falls upon 
a wavelike surface such as the surface of a lake or 

sea. An observer may see many distinct images of the 
source reflected in the surface at the specular points. 
Following a previous paper1 we shall here determine 
the average number of reflections seen by the observer, 
as a function of tbe wave-energy spectrum of the 
surface and of the positions of observer and light 
source.

It will he supposed in this paper that the surface is 
Gaussian, that is to say, the probability distribution of 
the surface slopes and their derivatives is jointly normal. 
Such an assumption is convenient mathematically and 
may approximate to naturally occurring surfaces under 
some conditions; for example, it may apply to water 
surfaces where the slope is not too great, so that the 
waves do not approach breaking point. Ocean swell or 
shorter wind waves passing through “slicks*1 may come 
under this heading. Very steep wind waves, however, 
can be markedly non-Gaussian.3

When both source and observer are at infinite dis
tance from the surface, the specular points in any 
finite region are those points where the surface has a 
particular gradient, The average number of specular 
points per unit area in this case has been evaluated 
previously.1 Here we shall treat the more general case 
when both the source 0  and observer Q may be at a 
finite distance from the surface; but we restrict the 
discussion to cases where OQ is nearly perpendicular 
to the surface level.

With very slight modification the solution can be 
applied to the case when О and Q are on opposite sides 
of the surface, and the latter forms the boundary 
between two media of different refractive index: for 
example, how many images can an observer above water 
see when a light source is situated below water level, 
or vice versa?

The problem is first solved in the two-dimensional 
case when, strictly speaking, the source О is a line

1 M . S. Longuet-Higgins, J . Opt. Soc. Am. 50, &38 (1960).
1 A. H. Schooley, Trans. Am. Geophys. Union 36, 273 (1955).
* M . S. Longuet-Higgins, Phil. T rans. Roy. Soc. London A249, 

321 (1957).

source and Q is a line receiver. The full three-dimen
sional problem is solved formally in Sec. 3 and is 
explicitly evaluated in Sec. 4 for the special case when 
the surface is isotropic (its statistical properties are 
independent of a2imuthal direction). The mean number 
N  of images is given by Eq. (4.11), in which A is a 
parameter proportional to the mean-square curvaLure 
of the surface and to the square of the distances of 
source and observer from the surface.

In Sec. S the solution is given for the case when the 
surface consists of two sets of long-crested waves (both 
Gaussian) intersecting at right angles. The number N 
is then given by Eq. (5.7). This and the isotropic case 
are compared in Fig. 2.

Finally, the solution is given for large values of A 
(corresponding to the source and observer at great 
distances) and an arbitrary form of the wave spectrum. 
In particular it is shown that if the surface consists of 
two wave systems intersecting at an artytrary angle 
во, then the number of images is proportional to sinflo 
[see Eq. (6.9)]. The mean number of images is equal 
to the mean number for an isotropic surface of the same 
ims curvature provided that 0O=66° 30'.

2. T W O -D IM E N S IO N A L  CASE

Let (x,e) be rectangular coordinates, with z vertically 
upward, and let 0 =  (0,Aj) and G=(0,/ii) denote the 
positions of the source of light and of the observer, 
respectively, at heights hi and hi above the mean surface 
level. Further, let P =  (z,f) denote a typical point upon 
the surface г—f(x). I t  is easily seen1 that for P to be 
an image point we must have, at P}

d£ j  dx — — к%, (2 1 )
where

*=iC(l/A.)+(l/A.)l (2-2>
provided that «f and д£/вх aie both small quantities.

In the case of refraction, if hi and At denote the 
distances of О and Q above and below the surface, and 
if pi and ^  denote the refractive indices, then Eq. (2.1) 
must hold, but with

<= (Ц1*1+Й*5)/(Р|—
845
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On writing, for brevity,

(i/*)(ar/d*)-$lf зч /а*-* ,, (2.4)
we seek first the probability that, a t some point in a 
given small interval {xyx~\-dx), {i takes precisely the 
value —~k. Let us denote by ^(£j,&) the joint proba
bility density of £i and £2; thus gives the 
probability that £i, £2 lie in given small intervals of 
width d£if d£2- But £i——к in (s, x+dx) if and only if 
{i a t x lies within a  range of width

И . 1 =  I a z ja x  | i%= ( 1 / 1 * | ) U , -  (, | dx (2.5)

approximately, £3 being kept constant. Hence the 
probability of a specular point in (x, x+dx) is

Г* 1N jdx— I /»(£ i,f})— jfi—%i\dxd$t, (2.6)
1*1

and the total expectation of specular points over the 
whole range — qo < x <  «  is given by

N =  NJx. (2.7)

As a model for the surface we may take the repre
sentation used by Rice/ and suppose that

no
f(*) = Z  Cn cos(fcnX+tn), (2.8)

n-*l

where the k„ denote constant wave numbers, the 
phases t n are randomly distributed in (0,2ir), and where, 
in the end, щ  tends to infinity and the cn tend to zero 
in such a way that over any small interval of wave 
number (A, k~\-dk), we have

£  W =E (k)dk, (2.9)

where £  is a continuous function of k , known as the 
energy or power spectrum of f(z). The function f(*) 
may also be expressed as a stochastic integral.6

F ic. 1. The mean num ber of images jV, as a  function of the 
param eter a , defined by Eq. (2.15).

4 S. O. Rice, Bell System Tech. J . 23, 282 (1944); 24, 46 (1945). 
‘ J- L. Doob, Stochastic Processes (John Wiley & Sons, Inc., 

New York, 1953).

Under general conditions to be satisfied by the ampli
tudes the distribution of f  and its derivatives is 
Gaussian: We shall assume that this is so a t least as 
far as the second derivative £j. Now the matrix of 
mean values for the is4

(я н /* *  0  \
). (2.10)

0 m« J
where

m ,= Г E(k)k'dr (2.11)
•'o

and hence we have 

lxl
f(tiif i)  =  — ---------- е х р [ - М |’**/»1а+й7лц)]. (2.12)

2 Tr\mirtity

On substituting into (2.7) and writing & =  — к, we have

" - я Ь - С О * * "
X e x p [-i(£ i!*V*’ii+fjV»>»<№xif{!. (2.13) 

The preceding integral is easily evaluated and we find

Л Г - ( - У | а е х р ( - ^ ) + ^  exp (-is= )rfsj, (2.14)

where
a—m ^/t.  (2.15)

From (2.2) it will be seen that when Ai =  A*, then 
l /к  represents the distance of the observer from the 
mean surface [Eq. (2.2)]. Also, m,1 equals the root- 
mean-square value of the curvature fa [from (2.10)]. 
The nondimensional quantity is the product of these 
two. For small values of a (which therefore correspond 
to sources or observers very close to the surface), we 
have

iV= 1 , (2.16)

as we might expect; only one image can be seen. For 
large a, on the other hand, we find

N ~  C2/ir)*a, (2.17)

that is to say, the total number of image points increases 
almost linearly with distance from the surface.

The number N  as a function of a is plotted in Fig. 1.

3. TH R E E -D IM E N S IO N A L  CASE : GENERAL SO LU TIO N

The formulation of the problem in three dimensions 
is very similar. If z = f  (x,y) denotes the equation of the 
surface, and if hu hi denote the distances of 0, Q from 
the mean surface level, then the conditions to be 
satisfied by an image point P(x,y,f) are

3 f / f t r =  — ее, Э£/ду=—ку, (3 .1)
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where к is defined by (2.2) or (2.3) according to the 
physical situation. On writing

(1 /x m /d x ) ,  0 /y)<ar/ay) = * „ a
dV txdy, e w - b ,  ft, ft, (3-2)

we seek the probability that (£i»b)— (—г, —к) a t some 
point in a given small region dxdy. This probability is

* • * * * - O I L *

R E F L E C T I O N  A N D  R E F R A C T I O N .  I I  

where

847

l*y|
2»(mM»ioj—«и*)*

X exp [- 2(.тж™м- т и,)> j ' (3.11)

where

9(x,y)

d(x,y) 

X djdyditiidU , (3.3)
*-—■■■«фС- i  T. M iM il (2*)'

and (My) is the matrix inverse to

(H«)“

“—[(£i+ k)({s+*) —£<“]• (3.4)
*y

The total expectation of image points is then 

=  J  N avdxdy.

m 10 m« mj!
« л  mn mu =(Jf<f)-1. (3.12)
«•22 «13 «  04.'

On substituting the expression (3.3) into Eq. (3.5) 
and setting £i=£i= — *, we find that the integration 
with respect to z, у  may be carried out immediately, 
and hence

(3.5)
N

! Мц |1 r ” r - r-

" ( w 5 L L L l ( i , ' k , ( i , + , , ) “ w l

X e x p [ - i  E  (3-13)
*,1-3,0

We adopt the same model of the surface as in previous 
studies.1-fi It is supposed that

f  (* .> ) =  £  C« c o s ( « „ * + n , y f  «„), (3.6)

where и* and r„ denote constant wave numbers, the 
phases «„ are randomly distributed in (0,2»), and where, 
in the limit, asn0-» «  we have, over an arbitrary small 
area dudv,

YAc*~-E(Mj})dudv. (3.7)

Here E(u,v) is assumed to be a continuous function— 
the spectrum of Г(*,у)- 

As before, we assume that f  and its derivatives up 
to the second order are distributed normally. The 
matrix of mean values for the ft is easily shown to be

where

« s o /* 3 m u j x y  0  0  0
m \ \ j x y  0  0  0

0 0 fftio win wiji
0 0 «3i Жи «13
0  0  nhi «и «о i,

(3-8)

It is the evaluation of this integral which now concerns 
us.

By means of the linear transformation

ft=*L *V4h *=3,4,5, (3.14)
J-l

it is possible to reduce the quadratic forms in (3.13) 
simultaneously so that

<yftft-?1*+ч**+?Л

The constants J2j /a may be shown1 to be the roots of 
the cubic equation

(3.16)

(3.15)

4 Л - З Я / - Д = 0 ,

where Я and Д are certain invariant combinations of 
the moments те»,. Thus

* | Г E(u,v)u^dudv. (3.9)

Hence we have

* ( f t , - ’,ft)=*(ft,fc)/>(fc,ft,fc), (3.10)

■ M . S. Longuet-Higgins, Proc. Cambridge Phil. Soc. (to be 
published).

ЪВ =  тщтс*—4ж цЛ 1ц+Зж и4, 

Д =|(2ц)| = |(М.,)|-‘.

From (3.16) we have

/l +  il+ij = 0| 
W.+W.+/A— |Я, 

ш . = к

(3.17)

(3.18)

1
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It can further be shown® that

(вц+ви)я+  (<J35+asa)2H-(flj3+fl6>)1 = Д  . 
(вц+вц)а/^1“Н (оа*+вба)а/^я+ (ва1+ЛБз)2/7з = 4, 
where

D = miQ-\-2myr\-tnQi) (3.20)
another invariant of the surface. The first factor in the 
integrand of (3.13) may be written as

(Ы|-Ь*)+«(Ь+Ь)+«*

= (/ii)»*"Ha4is“Hi4aa)+* 5Z (eai+ei/Jfli+ic3 
i-i

= Y. ^{чН-«(вщ+в|i)/2lj)9t (3.21)
i - i

by the second of equations (3.19). Since the modulus 
of the transformation (3.14) is

e(i.,«<,f»)/a(4.,44,4.) =  | (о./) I -  I (Me)I *, (3.22) 
Eq. (3.13) becomes

* - 5 5 5 £ £ £ '5 « « +rfl
Xexp[—$ J] 4,0*4 (3.23)

j-i

in which we have put, for brevity,

» -* (« v + « w )/(» )- (3-24)
Now the corresponding triple integral without the 
modulus sign equals

T ^ — i:M l+ y /)(2 r)»  = l (3.25)
( 2 t ) V  j - i

by (3.18) and (3.19). On adding this quantity to each 
side of (3.23), we have

П 4 , ‘̂ ' п
Xexp[—^ £  n/Vnitndm, (3.26)

j - i

where the integration is over that region of n space for 
which the first factor in square brackets is positive.

Now A being a positive quantity it fallows from (3.18) 
that one of the roots lj is positive (let it be lh say) and 
that the other two are negative in general. So over the 
region of integration we may make the substitution

(l'foi+j’i ) - '’,
(—W K ls + y ^ - 'S m f lc o s ^ , (3.27) 

(—lt)4vt+yt) “  r sinfl sin ф.

E  T  -  H I G G  I N S Vol. SO

The ranges of the variables are
-oo < ,<oo, 0<fK x/2, 0<*<2x, (3.28) 

and the modulus oi transformation is

«Кч1Л1лО/в(*АЙ = (W i)- *»* cosS S'0®- (3-29) 
So, on using (3.17), we have

2‘ r  r " ‘ Г”N + l =  — -— J dr I d$ I Афг* cosl0 sintf
rVa' J, J,

Xexpl-U Pr'+lQ r+R )'], (3.30) 

where we have written

P = Ir '-k ~ '  sin's cos‘ф—l r 1 sinW sinV, 
Q=yifi- 4 -y i(—Щ-1 sinfl cos^

+y»(—ii)- i  sinfl sin^, (3.31)
R=yi*+yt,+yit.
The integration with respect to r can be carried out 
immediately, giving

2e-4« /.»/> «1.
iV+l=*------  I de I <1ф cos*0 sinfl

J* *0

X {2>Р*+Ы?Р+0к)Р-*1' exp(^/2P). (3.32)

4. ISO T R O PIC  CASE

In general, the integral (3.32) cannot be expressed 
in terms of known functions. We therefore specialize 
to the case when the surfacc is isotropic, that is to say, 
its statistical properties are independent of direction 
on the surface. In that case the spectrum E(utv) is a 
function of (uM-o*) only, and it has been shown4 that

Я - (1/16)0», A= (1/64)Z>*. (4.1)

The roots of (3.16) aie then

- | Д  - fD . (4.2)

Equations (3.19) then give

(си-Ьви)4*»#, 
(лл+Дв*)а+(«аз+ам)3 — 0| (4-3)

whence it is clear that both squared terms in the second 
equation must be zero. So, from (3.24),

Уь (4-4)
and hence from (3.28)

P-4ZJ-41+ 2 sin*),
Q -4D -1*, (4.5)
R=42>~V.

We see then that the integrand in (3.32) is independent 
of ф, so that integration with respect to ф amounts to
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multiplying by 2x. On writing, for brevity, 

2>/(4xa)= y l)
we  f i nd

(4.6)

sinaS4 /•*« Г ___
iV+l = — J d6■ cos*0sinfl expl-----—----- -— —I

A •><, L A (1 + 2  sin!fi)J

X [3 X J( l+ 2 s in 2» )> + 6 4 ( l +  2 s i n ^ + l ]  

X ( l+ 2 s in Jfl)-s'J. (4.7)
The substitution

i+ 2  sin5̂ * - *  (4.8)
reduces this integral to the form 

1 r'
N + 1 = -  |  (3**-l)(3J4»+64ia+*<)

Хехр[(^—l)/2/J]rfj, (4.9)

which can easily be evaluated by integrating by parts. 
The result is

ЛЧ-1 =  2+(2/1/лЯ)<!-‘)‘*",>, (4.10)
so that

ЛГ=1+(24/\Я)«-Чл''>. (4.11)

The interpretation of this result is very similar to 
the two-dimensional case discussed in Sec. 3. The 
parameter A defined by (4.6) is proportional to к-2, 
that is to say, to the square of the distance of the 
observer from the surface, and also to D, -which by 
(3.20) represents the average square of the “mean 
curvature” ; for this is

/ / a ’f 32f \ \

4-2(£з£Б)пгН"(£ба)*т—w « + ImvrV«o i (4.12)

by (3.8). When the point of observation is very close 
to the surface (.A is small), we find

N - l
as before, and at great distances 

N -2 A /tf ,

F ic . 2. T he m ean num ber of images as a  (unction of A> defined 
by Eq. (4.6): (a) an isotropic surface, (b) a surface consisting of 
two long-crested system s a t right angles.

and it is clear that the two conditions for a specular 
point [Eqs. (3.1)] are satisfied if and only if

d^i/dx— —KXt д£г/ду=— ку. (5.2)

Thus, specular points occur only when they would 
occur (in the two-dimensional sense) for each of the 
two long-crested systems simultaneously; whence it 
follows that the total number of specular points is the 
product of the number for the two systems individually:

N^NW N *, (5.3)
where

NW:

(4.13)

(4.14)

that is to say, the number of points increases as the 
square of the distance from the surface. N  is graphed 
against A in Fig. 2, curve (a).

5. TW O  LO N G -C R ESTE D  SY STE M S

Another special case for which a complete solution 
may be given is when the surface consists of two 
systems of long-crested waves intersecting at right 
angles.

If the axes of x and у are chosen to be parallel to the 
two systems, respectively, we have then

ffoy) = fi(*)+fi(y) (5.1)

= ( - )* [“' “ PC- 9 я-“!)]

+ £  exp(—^z!)dzj (S.4)

and ai, aa are the nondimensional parameters for the 
two systems.

The energy in the spectrum E must be regarded as 
being concentrated along the two axes of u, v, and 
negligible elsewhere. The moments mP4 of equation
(3.9) are then zero whenever pqp^0, and the two pa
rameters ai, a 2 are given by

ai=«4oVlfi o*VK- (5*5)
In the case when the two systems have equal mean- 
square curvature, i.e., т4о—т<ц, then

a,=a«=  (*»)'/«=  (2A)>, (=-6)
where D and A are given by (3.19) and (4.6). Hence,

2Г r u<*A)» -i
jV = -J ^ )^ < M 4 > + J  exp(-*z2y z j. (5.7)

This function is shown in Fig. 2, curve (b), and it will 
he seen that the results are not very different from the

k
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isotropic case [curve (a)]. For large values of A, we 
find

N^AA/ir. (5.8)

6. CASE k - > 0

Further, it is possible to determine the behavior of 
N  at great distances from the surface for quite general 
forms of the energy spectrum E. For when к—>0, we 
have, from (3.26),

Xexp[— \  22 (6.1)
J-l

The preceding integral has been evaluated previously 
(footnote reference 3, Sec. 2.4; the integral equals If'). 
The result is

" ~ > 4 (x ) ,£<* 4 7 y ''i4  <«
r ' nE(k)= I (1—Jfe* зш?ф)Щ

where

F(i)= j (1-Jk*sirf*)-U*
and

(6.3)

(6.4)

This can also he written

N ~ W ,)(.h /D )*(-b /ld , ( « )
where

p = — Z j/J i, A! =  ( l~ 2 p ) /(1  —p 1).

The function Ф is plotted in Fig. 10 of footnote reference 
3. I t  is a very slowly varying function and lies always 
between 0.917 and 1.

For example, when the surface consists of two equal 
long-crested systems of waves intersecting at an 
arbitrary angle в0, it can be shown (see footnote 
reference 6) that

HEAD'S  in^o, 4=0, (6.7)
and so from (3.16),

l \h h —\D  sinflo, 0, — i  sinflo- (6.8)
I t  follows th a t p =  0 and Ф(p) =  1, whence

N—ibA/т) sinfla- (6.9)
When 0o=ir/2, i.e., the systems are perpendicular, we 
regain Eq. (5.8).

On the other band, when the surface is isotropic, we 
see from (4.2) that p=£ and so Ф(р)=т/2\3. Hence

N -D /2tf*?=2A№  (6.10)
in agreement with (4.14).

We may compare an isotropic surface with a surface 
consisting of two intersecting long-crested systems 
having the same mean-square curvature D. From Eqs.
(6.9) and (6.10) we see that they will give equal numbers 
of image points provided the angle of intersection во is

sin- 1  ( t / 2 \# ) = 66°30'. (6.11)

7. CONCLUSIONS

The average number of specular reflections seen by 
an observer at distance h from an isotropic Gaussian 
surface is given by Eq. (4.11), in which A =\h2D and 
D denotes the mean-square curvature. This number 
increases from 1 at small distances to a value pro
portional to h2 at great distances.

For two long-crested systems of waves intersecting 
at right angles, the number of images is given by Eq.
(5.7). The two solutions are shown as functions of A 
in Fig. 2.

Finally a solution can always be found for large 
values of h ; it is given by Eq. (6.5). In particular, when 
the surface consists of two long-crested systems of 
waves intersecting at an angle во, the total number of 
images is given by Eq. (6.9).
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Reflection and Refraction at a Random Moving Surface. 
Ш . Frequency of Twinkling in a Gaussian Surface

M . S. L o n g u e t - H i g g i n s  
National Institute of Oceanography, England 

(Received Jan u ary  25, 1960)

When light is reflected or refracted a t  a  m oving Gaussian 
surface, the observer sees a  num ber of m oving images of the source, 
which appear от disappear generally in  pairs; such an event is 
called a  "tw inkle.’' In  the present paper the num ber of twinkles 
per unit tim e is evaluated in term s of the frequency spectrum  of 
the surface and the distance of the source 0  and observer Qt on 
the assum ption th a t the surface is Gaussian and Lhat OQ is 
perpendicular to the mean surface level.

A solution is found first for a  single system  of ]ong<reated (or

two-dimensional) waves, and then extended to the  case of two 
sucb systems intersecting a t right angles.

The rate  of twinkling is found to depend, ap a rt from a scale 
factor, on two param eters of the surface, one of which, a, increases 
steadily  w ith the distance of О or Q from the surface; the  other, 
d, discrim inates between waves of standing type and waves of 
progressive type. Over a  considerable range of a , the  ra te  of 
twinkling is alm ost independent of d, bu t for large values of a  the  
rate  is much greater for standing waves than  for progressive 
w aves; waves of interm ediate type are  included in the  analysis.

1. INTRODUCTION

IN two previous papers1,8 we have studied the 
pattern of reflections of a point-source in a random, 

moving surface, and have determined the average 
number of distinct images seen by an observer in the 
case when the surface slopes and curvature have a 
Gaussian distribution. I t  was shown1 that the specular 
points (that is, images of the point source) are generally 
created or annihilated in pairs, such an event being 
called a “ twinkle.” In this paper our purpose is to 
evaluate the frequency of twinkling, that is to say the 
average number of twinkles per unit time over the whole 
surface. This number я is to be expressed in terms of the 
wave energy spectrum of the surface.

I t  can be shown that at a twinkle the intensity of 
radiation seen by the observer is greatly increased, so 
that the observer sees a bright flash. (This may be analo
gous lo some sudden increases in the recorded intensity 
of radio waves reflected from the ionosphere.*) In the 
language of ray optics, the surface momentarily focuses 
the radiation at the point of observation. Corresponding 
to the principal radii of curvature, there are gener
ally two focal points along a reflected ray, and the 
flash occurs when one of these coincides with the 
observer.

An exactly similar effect is produced when the surface 
is the boundary of a refracting medium (such as water) 
and the source of light is observed from a point on the 
far side of the surface; an observer below the water 
surface will see a pattern of images of the light source; 
these are created and destroyed in a manner analogous 
to the reflected images.

Another way of looking at the phenomenon is as 
follows. Suppose that the radiation, after passing 
through the surface, illuminates a horizontal plane at 
some fixed distance below the mean surface level—

l M . S. Longuet-Higgins, J .  Opt. Soc. Am. 50, 838 (i960), 
paper I of this series.

* M . S'. Longuet-Higgins, J . Opt. Soc. Am. 50, 845 (I960), 
paper П  of this series.

■ J. D . W hitehead, J . TerresL Atm. Phye. 9, 269 (1956).

as sunlight falling on the sea bed in shallow water. If 
the plane is not too near to the surface it can be seen 
to be covered with a pattern of bright lines—the Loci 
of those points where a twinkle may be momentarily 
observed. The rate of twinkling is then the average 
number of times that one of these lines sweeps through 
a fixed point in the plane.

The general problem, for a Gaussian surface with 
arbitrary frequency spectrum, appears to be compli
cated. Our approach will be to solve first the analogous 
problem in two dimensions (when the surface is long- 
crested and the light source is a line parallel to the 
crests); then we may deduce the solution for a surface 
which consists of two such long-crested systems inter
secting at right angles.

It is found that apart from a scale factor the rate of 
twinkling depends upon two parameters of the surface. 
The first of these, a, is proportional to the distance of 
the observer from the surface and to the rms curvature 
of the surface. The second, d, is small for waves of 
progressive type and increases to a maximum for waves 
of standing type. Over much of the range of a the rate 
of twinkling is found to be nearly independent of d\ 
for larger values of a, however, the rate of twinkling 
increases with d, and is much greater for standing waves 
than for progressive waves.

2. G E O M E TR IC A L  C O N D IT IO N S  

If 2 =f(s,y,0 denotes the equation of the surface in 
rectangular coordinates, z being directed vertically 
upward, then it can be shown1 that the condition for a 
specular point, when source and observer lie on the 
z axis, is

df/dx^O, df/dy=  0, (2.1)
where

f(x,y,t)= t(xlyj)+%K(x‘+ y i) (2.2)

and к is a constant. In the reflection problem, if hi and 
hi denote the heights of source and observer above the 
mean surface level, then

«={[(l//‘i)+(VM]. (2-3)
851

I
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In the refraction problem, if Ai and Aj denote the 
distances of source and observer above and below the 
surface, and if щ and are the refractive indices of the 
two media, then

к— (jitki+nihi) /С(д2— (2.4)
The condition for a twinkle is that, besides Eqs. (2.1),

W /d * K d * f/d ? )  -  (&//дхду)г=  0 (2.5)
shall also be satisfied; that is the vanishing of the total 
curvature of the surface z—/.

In the corresponding one-dimensional case, when the 
situation is independent of the у coordinate the con
ditions are simply that

df/dx=  0 , д»//Э а?= 0 , (2.6)
where

/(*, 0 - f f c f l + i i A  (2.7)

3. TWO-DIMENSIONAL CASE: STATISTICAL MODEL 

We take as a model for the surface the function

K*»0 = £c„cos(£„x+(r4i4' €.)>

0 0 -w*
0 ТП2 0
0 w W ' 0

— m« 0 0 me
where

Шг= f  f  E(k,c)krdkdo,
•'-x, *'0

i  f  E(k,o)krodkdc, 

* - " = f  £  E{k,a)k-Mkda.

The probability density oi {i, it, {i, (< is therefore 
given by

----------ехрГ ^ YL M «{<£/], (3.6)
4т3 и

where (My) is the matrix inverse to (3.4). The occur- 
rence of zeros in the matrix implies that the distributions 
of £ij Si and of {2, b  are independent. In fact.

where

Ptiub)*

£(£*»£*)“

1

(3.7)

2к{ттть~twi2)1
m e £ Л~\~ 2 fn 4 £ 1 + m: f JI

2(fthme—m43) Jx<4
1

(3.8)

2v 1r— m f)*

(3.1)

where the phase constants are supposed to be 
distributed randomly and uniformly over (0,2т), the 
■wave numbers trn are distributed over the intervals 
(— oo ( oo) and (0,eo), and where «0 at last tends to 
infinity in such a way that over any small intervals 
(k, k^-dk), (at v-\-d<r),

(3-2)

where -Е(Л,<т) is a continuous function of k, a- (the 
spectrum function). Such a model is a generalization 
of that employed for a time-independent surface.2

Under certain conditions the distribution of f  and 
its derivatives at a given point x and time t is Gaussian. 
On writing, for brevity,

д{/дх, dH/dxdt,
a*r/<>**= (3-3)

we have for the matrix of mean values of the products:

(3.4)

Г w /,f22“ 2m3,(2fa+mib a1 
Xexpj ——-—------- ■ ' --------j.

L 2 ( * W '- n * s'*) J

It will be convenient to write 

4l>4!,4i>’M= a/ /  dx.&f/dx1, a2/ /  dxdt,fff/dx1
-* ((1+**)|({1+к)>£з,£<1 (3.9)

so th a t the probability density of 1)1, 4 1 , Чз, Л< a t  a fixed 
value of *, < is given by

P(vi,4!,4i,4t)=f(ti,(t,ta,(t), (3.10)
where

( 1, ( 1, {>■!«“  ( i i -  «*), (41—«)л»л* (3-11)

4. e v a l u a t io n  o f  t h e  p r o b a b il it y

We wish now to find the probability that in a given 
small interval of time (t, and in — « О С ® ,
the conditions

Чг=0, ча=0 (4.1)

shall be satisfied. Let this probability he ndl (clearly, 
n is the mean number of “flashes" per unit time). We 
first seek the probability of (4.1) being satisfied in a 
small interval (/, t+di) and in (re, x+dx); if this proba
bility is denoted by ngdxdt, then clearly

fitdx. (4.2)

(3.5)

The advantage of dealing first with nx is that for fixed 
x the distributions of iji, iji, Чз> 4« 3X6 invariant.4

Now the probability p{ti\tfi)dri\dtii represents the 
probability that iji, V* lie within the limits ль 
and Vi, tji+^ 2  at certain fixed values of *, /. On the

4 пж has been evaluated previously in the case when the source 
and observer are a t infinite distance. See M. S. Longuet-Higgins, 
Proc. Cambridge Phil. Soc. 56, 234 (1956).

\
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other hand if iji, tjj take the given values (4.1) in a 
given range (x, x+dx) and interval (/, l+dt) then 
(»?i,4j) a t (x,t) itself may vary within a region of 
measure

*(*Л Iav/ai5 a'f/ax* 
a 'f/d x a i a 'j/a ^ a t

dxdl, (4.3)

n-------------- f  екр(—T)c/2mt)\rii\dr],
f2jrVKTrt** J -(2jr)*Kj»e*

X
1

2r («*9*2”—W 2)*

X IL eipl
Г fn2/V 'f 2 W o 7 3+m<i?a2l

2{гттг"~ ma'2)

2* жИСядо*"- W 1)1
- ехр(-*У2л*«)

where

2 »
f (of,rf)=—ad exp (—2a2)”

irl

which in the neighborhood of the points (4.1) reduces 
to \iiii)i\dxdl simply. Hence the probability n^lxdl is 
given by

n*dxdl= L I  pfai.m, 41,4ч) Us1< I dxdldriidr),, (4.4) 

and the required probability ndl is given by

-IL L  P(V1,V*,VB,V<) I VsV* Idxdijsdrji. (4.5)

Now x is involved only in ij2, so that the integration 
with respect to x may be carried out immediately. 
Replacing jj* at the same time by 0, we have, fiom 
(3.10),

and

X ^exp( — exp(  — ̂ z2)rfzj (4.12)

# - ( i - # ) ‘M
Since the error integral on the right-hand side is a 
tabulated function,6 this completes the formal solution 
of the problem.

5. DISCUSSION

In Eq. (4.11) the first factor on the right-hand side 
has the dimensions of (time)-1. If the spectrum con
tains a single narrow band of frequencies centered on 
a mean wavelength X and period r, then

( ю е * И 2 / / ) У * Я 4 =  2 я /  t , (5.1)

(4.6)

The remaining integrals present no difficulty, and give 
the following:

х |стр(-$**)+ <(|^  exp(—iz')£kj, (4.7)

where
ф  =  K T fti/ [  W  { m  — *л a*1) 1 ] .  (4 .8 ) 

If we now define the dimension!ess quantities

a = m 4y * i  (4 .9 )

d=[(m <*n,"-m ,'1)/»n«mi"]1, (4.10) 

then (4 .7 )  can be written in the final form

n =  [  (пцгги") (ot,i), (4.11)

approximately. This factor, therefore, essentially deter
mines the time scale.

Of the remaining two parameters a, dt the first is 
inversely proportional to к, and so increases linearly 
with the distances of О and Q from the surface. Also, а 
is proportional to mД the root-mean-square value of 
the “curvature” З^/Эх*.

The parameter d is a function of the frequency 
spectrum E(k}ff) only. Now, since

2 —nt зч) =• err.Г E(kitai)E(ki ,er2)

X ( k f k tW + k S k M - 2 k № w )
'Xdk\doidk?d<r2, (5.2)

and since the factor in the integrand is a perfect square, 
we have

mtmj" — W 2̂ 0,
whence

0< d ^ l.
The lower limit of d is approached whenever the spec
trum of the surface is narrow; the surface then has the 
appearance of a progressive wave of slowly varying 
amplitude and phase. The upper limit of d is attained 
when т /=0, which occurs, for example, if the spectrum 
function E(k,cr) is symmetrical with respect to k: 
E(k,o) = E{—4,cr), while <r is an even function of k\ 
the surface then has the appearance of a standing-wave 
pattern of varying phase and amplitude. Thus the 
parameter d discriminates between progressive and 
standing waves.

The function f(a,<f) is shown in Fig. 1 for various

1 A. N . Low an, “Tables of normal probability functions, 
N atl. Bur. Standards, Appl. M ath. So-. 23 (1953).
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/(-••I
Fic. 1. Graphs of 

J{a,d) showing the 
rate  of twinkling as 
a function of a (pro
portional to distance 
from surface) for 
various values of d.

values of the parameter d. Two limiting forms may be 
noted: as d —>0

i(a,<0-(lA )exp(-2e>)-> , (5.3)
and when d —* 1

f (a,d) -> (2*/xl)a exp(— 2a*)-'. (S.4)
Although these two functions behave very differently 
at infinity it is remarkable that when a<1.5s they lie 
quite close together, as indeed does the whole family 
of functions; over the range 0<or<1.5, t(a,d) may for 
some purposes be taken as independent of d.

All the functions have an extremely sharp cutoff at 
abouta=0.3, because of the factor exp(—2a*)-1. Hence 
the rate of twinkling falls off suddenly as the observer 
approaches the surface.

On the other hand, for large values of a, and when 
d > 0, we have

l(a,d)~(2y*l)ad, (5.5)

that is to say, n increases linearly with distance from 
the surface, as we might expect. The limiting case d=0, 
when f(a,rf) —* 1/ тг as a —» « , is never in fact attained, 
because the bandwidth of the spectrum is never quite 
zero.

6. TH R E E -D IM E N S IO N A L  PR O B L E M

The general problem in three dimensions, when 
stated analytically, involves the evaluation of multiple 
integrals of high order. A useful simplification, however, 
results whenever the surface consists of two systems of 
long-crested waves (both Gaussian) intersecting at
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right angles; for then by choosing the axes appro
priately, we have

Г(вдО-*1(*Л+МзгА (61)
and the conditions (2.1) and (2.5) reduce to

a/,/a*=o, ад/а**о, (as/1/axa)(dV?/dy‘)=ol (6 .2)
where

ЛЗД-МяО+ДО. ( )
Equations (6.2) show that a twinkle will occur in the 
combined system if a specular point in the one system 
(a/v/Э 1 = 0) is combined with a twinkle in the other 
(Sfr/dy—0, д*/%/ду=0), or vice versa. Hence the total 
rate of twinkling is given by

(6.4)

where N 0) and N № denote the numbers of specular 
points in the two systems, respectively, and я0} and 

denote the rates of twinkling. Now N has been

855

evaluated in a previous paper,1 in fact, for a long- 
crested system of waves,

= exp( — 2а*)~*+ j  exp( —^ 3)d*j, (6.5)

where a  is the same parameter as before [Eq. (4.ОД. 
N is a function which increases steadily from unity at 
small values of a to the asymptotic value

-tf~(2/V)*a (6.6)
for large values of a.

If the frequency characteristics of the two systems 
happen to be similar, then and я (,)—« (a) and
we have, from (6.4),

n=2n™N*K (6.7)
This can be expressed in terms of the parameter

A=W=\«-'D, (6.8)
where D represents the mean-square value of the mean 
curvature of the surface (see footnote reference 1).

R E F L E C T I O N  A N D  R E F R A C T I O N .  I l l

Fjg. 2 Graphs of gCAjl), showing the rale of tw irkling for two interjecting systems as a function of A (proportional to 
the  square of the distance from the surf&cc) for various values of d.
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Thus,
C(msW') ,<f). (6.9)

The function &(A}d) is shown in Fig. 2.
The interpretation of this result is similar to the two- 

dimensional case. A is proportional to the square of the 
distance from the origin and to the mean-square 
curvature, while d discriminates between standing 
waves and progressive waves. The function g(4,rf) is 
пеат]у independent of d for 0< X < 1, while for large 
values of A (that is, great distances from the origin), 
we have

£(A,d)±(S/**)Ad. (6.10)
Thus, the rate of twinkling is more vigorous for standing 
waves d— 1 than for progressive waves d<£l.

A rather general result may be deduced from Eq.
(6.4). Consider the mean lifetime of a specular point. 
Since each specular point involves two twinkles, one 
at the beginning and one at the end of its life, and since 
two specular points are involved in a twinkle it follows 
that the mean lifetime of a specular point is given by

L=N /n , (6.11)

and similarly in the two long-crested systems the mean 
lifetime of a specular line is given by

=  (6 .12)

Now, since a specular point in the combined system is 
always the intersection of two specular lines, one from 
each of the two systems, we have

N = N wNm. (6.13)

On dividing each side of Eq. (6.4) by the corresponding 
side of (6.13), we find

l /L - ( V £ ro)+ (l/* » > . (6.14)

Hence, the lifetime of a specular point in the combined 
system is always less than the lifetime of a specular 
line in either long-crested system. When the two long- 
crested systems are similar, L ^ = L IV, and hence

l/L = 2 /L « \ (6.15)

that is, the mean lifetime in the combined system is 
exactly half that in either system individually.
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The probability density Pm of the spacing between the ith zero and the (z+ m + l)th  zero of a 
stationary, random function f ( t)  (not necessarily Gaussian) is expressed as a series, of a  type similar 
to that given by Rice (1945) but more rapidly convergent. The partial sums of the series provide 
upper and lower bounds successively for Pm. The series converges particularly rapidly for small 
spacings т. It is shown that for fixed values of r, the density Ря(т) diminishes more rapidly than 
any negative power of m.

The results are applied to Gaussian processes; then the first two terms of the series for Рт{т) 
may be expressed in terms of known functions. Special attention is paid to two cases:

(1) In the 4regular* case the covariance function is expressible as a power series in tj 
then Pm(r) is of order t1c«+zK">+3)-2 a t the origin, and in particular P (t) is of order т (adjacent 
zeros have a strong mutual repulsion). The first two terms of the scries give the value of Pq(t) 
correct to 7ie.

(2) In a singular case, the covariance function has a discontinuity in the third derivative. 
This happens whenever the frequency spectrum of/(f) is 0  (frequency)-4 at infinity. Then Pm(j) is

V o l .  254. A . 1047. 68 [Published 24 M a y  1962
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shown to tend to a  positive value / ’„(O) as r - y  0 (neighbouring zeros arc less strongly repelled). 
U pper and lower bounds for / ’„(O) (m =  0, 1, 2, 3) are given, and it is shown that P0(0) is in the 
neighbourhood of l'156(fr*/( — б ^ ”). The conjecture of Favreau, Low & PfefTer (1956) according 
to which in one case Р0(т) is a negative exponential, is disproved.

In  a final section, the accuracy of other approximations suggested by Rice (1945), M cFadden (1958), 
Ehrenfeld et al. (1958) and the present author (1958) are compared and the results are illustrated 
by com putations, the frequency spectrum o f /( f)  being assumed to have certain ideal forms: a 
low-pass spectrum, band-pass spectrum, Butterworth spectrum, etc.

I n t r o d u c t io n

The problem of finding the statistical distribution of the intervals r between zeros of a 
stationary, random  function /( f)  is one with many physical applications, for example, to 
noise in electrical circuits (Rice 1944, 1945; McFadden 1956, 1958), sea waves (Ehrenfeld 
et al. 1958), microseisms (Longuet-Higgins 1953) or irregularities in the ionosphere (Briggs 
& Page 1955; Longuet-Higgins 1957). Yet in one most useful case, when /(f)  itself is 
Gaussian, only approximate solutions to the problem have been found. One such solution 
was given in a previous paper (1958). In  the present paper the solution is expressed in the 
form of a series, in which each term is an integral of the joint probability

Щ + ,  - ^ - d f ,

th a t/( f)  have an up-crossing in the infinitesimal interval (f,, f, +  df,) and a down-crossing 
in the remaining (n— 1) intervals (f(, f(+df,) (i =  2 , 3 , я). The series is somewhat similar 
to one given earlier by Rice (1945) but converges more rapidly. Moreover, successive 
partial sums of the series provide upper and lower bounds to the required distribution P0(t). 
The present series leads to a much more accurate estimate of the behaviour of PQ near the 
origin т — 0 and to a systematic comparison of other approximations that have been 
previously proposed.

Following Rice ( 1945), the probability density of the interval between the ith and the 
(i+ m  + l ) th  zero off(t)  is denoted by Рт(т); and the probability of exactly n zeros occurring 
in the interval (f, f +  7) is denoted by p(n, t ) .  In  § 1 of this paper, some relations between the 
W  and the Рт(т) are proved, and series are obtained for both P J j)  and р(п,т) in terms of 
the W. O ne result is to show that P J i)  decreases with m more rapidly than any negative 
power of m. The relations are quite general, and no assumption is made as to the Gaussian 
character o f /( f ) . I t  is assumed only that / ( f)  is statistically stationary; that —/(f)  is 
statistically equivalent to /(f)  (i.e. that /( f)  is statistically symmetric with regard to the 
a x i s /  =  0); and that the various quantities defined actually exist.

In  § 2 we obtain explicit expressions for the W  in terms of the covariance function of/(f), 
which is denoted by ^(f). By using some recent results of K am at (1953) ac|d Nabeya (19S2) 
it is shown that W( + , —) can in fact be expressed in terms of known functionals of 
ijr(t), a fact not apparently used previously. Moreover, in special cases the W  can be 
evaluated for any integral n.

The results are applied in § 3 to the case when (f) is itself a regular function at f =  0 
(implying the differentiability o f/(f)  up to all orders). Thus it is shown that for small 
intervals | * - | , |  .......  _

KJ
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where C„ is a  constant independent of the Hence the asymptotic behaviour of Pm(r) and 
p(n, t)  for small т is obtained. In  particular it is shown tha t

Pm(j) 00 7"i<ni+2)(m+3)-2

and p(n, t) ao т1я<л+1).

T he power of т increases rapidly with m or n, indicating a strong ‘m utual repulsion’ of 
neighbouring zeros off(t).

A very interesting singular case is studied in § 4, when the covariance function ф((), 

instead of being regular a t t =  0, has a finite discontinuity in the third derivative 
This occurs, for example, whenever the spectral density of/(t) is proportional to (frequency)-4 
a t high frequencies, and some examples have been studied experimentally by Favreau, 
Low & Pfeffer (1956). In  contrast to the regular case, it is shown that, for small spacings

W (+  — +  ( — ~ *8» 0 ______  rn >  2)

where F (t„ t2, • • ■ > О  is a function of the (tj— tj) lying between positive upper and lower
bounds. I t  follows now tha t „  , > „ , _

Pm(r) cc 7 [m ^  0),
and p(n, т) ост2 (n >  2),

so that, as т -> 0, Pm(r) tends to a value /*„(0) independent of т.
Moreover, upper and lower bounds for Pm(0) can be found. Thus

1-147a <  P0(0) <  1-2180c, 
where a =  ^"(0 + )/{ — 6^''(0)}. This result enables us to disprove rigorously the ‘ exponential 
hypothesis’ of Favreau etal. (1956), whereby the distribution of intervals т for the function 
whose spectrum is (1 +<r2)~2 is conjectured to be т г 1 e-T/’'. For this would make

P0{0) -  3ff-‘ct =  O-065a, 

in  contradiction to the above inequality.
Some rough work shows tha t a close approximation to P0(t) is probably

PB{0) Ф 1165a.

Lasdy in § 6 we use the asymptotic expansions of Pm(r), p(n, 7) and the W  to com pare the 
accuracy of the approximations proposed by Rice (1945), M cFadden (1956, 1958), 
Ehrenfeld et al. (1958) and the present author (1958), especially in the neighbourhood of 
the origin. Numerical computation of the various approximations is also com pared with 
experimental results o f Bldtekjaer (1958) and other authors.

1. G e n e r a l  r e l a t i o n s  b e t w e e n  Рт(т), р(п,т) a n d  JV (5 )

Let W( +  , + ,  ..., + )  d / j ... d/n denote the probability that the function f(t) have an up- 
crossing (zero-crossing with positive gradient) in each of the intervals

{t,,t,+dtt) (i =  I,

by substituting a minus sign for any plus sign in W( +  , + ,  ..., + )  we denote the corre
sponding probability for a down-crossing. Thus Щ + ,  —, + ,  ..., ( —)n-1) d^  ... dt„ denotes
the probability of alternate up-crossings and down-crossings in (f,-, /,• -(- d^,), the first being

68-a
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an up-crossing. I t  will be seen later that the W  may in many cases be evaluated explicitly 
in terms of the covariance function of the random process f( t) .

In  this section we shall derive some quite general relations between Рт(т), р(п,т) and the 
W, which are valid not only for Gaussian but for non-Gaussian processes.

1 ■ 1 . Generalization o f a result of McFadden 
I t  was pointed out by M cFadden ( 1958) that

И/^ 1 У ) =  P0(t)+ P 2(t)+P<(t) +  .. . ,  ( M - I )

^  =  Pi(T) +  P* M  + Ъ  (T) +  -  . t 1'1'8)

where т =  (<2“ î)- The proof is very simple: the left-hand side of (1 -1 -1), when multiplied 
by di2, represents the probability th a t /h a s  a down-crossing in (t2, f2 -f- df2) given that it 
has an up-crossing at fj. This down-crossing must be either the next zero off  or the next but 
two, and so on. These mutually exclusive events correspond to the individual terms on 
the right o f (1-1-1); hence the identity. A similar argument proves (1-1-2).

Corresponding to ( l- l - l )  and (1 -1-2) we may establish the following three relations:

к < ь * Щ Щ + ) + )  d<2 =  P1W + 2P»W +8J,»W +  •••> (1' 1‘3)

/«,«.<«. d' 2 =  4 r )  +  2™ +3Pe{T) +  (1-1’4) 

[  W {w ’( l \ - + ) dt2 =  рз(т) +  2f ,(r)  +  3P6(r) +  ..., (1 -1 -6)

where т =  (/3 —*,). To prove (1-1-3), for example, consider

^ (  +  > j i j /
W {+)

This represents the probability th a t/h a s  a down-crossing in (t2, i2+ d /2) and an up-crossing 
^  (̂ 3j *3 +  d<3), given that it has an up-crossing at Now the up-crossing in (Л,, <3 +  d<3) 
is either the second zero after ij or the fourth or the sixth, etc. Suppose it is the (2r)th. 
Then the down-crossing in (i2, i2 +  d<2) is either the first zero after I, or the third or the fifth, 
up to the (2r— 1 ) th. But if  the probabilities are each integrated with respect to t2 from 

to 23 each gives precisely P^ -1 d/a. The r possibilities together contribute rij^-idfy  Hence 
the series (1-1-3); and similarly for (1-1-4) and (1-1-5).

We now prove the following general theorem. Let 5 denote any sequence of n signs, 
plus or minus, the first sign being + ,  and let s denote the number of times that the sequence 
changes sign. (For example, if  5 =  ( +  , —, + ,  —) then s =  3.) Then the expression X(S) 
defined by

X(S)m
is the sum of the series

X(S)  =  I  ^ ~ 1 +Т) р^ - , ^ { г), (1-1-7)-

where т =  (<„—*,) and P )  denotes the coefficient of л* in ( 1  *)#.

J- L M S )
Щ + )

(l-1-в)
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Proof. T he integrand in  (1 -1 -6) represents the probability that the (и— 1) intervals 
(<„ tj+dJj) (t =  2,3, ...,n ), contain zero-crossings o ff( i)  with gradients of the appropriate 
sign, given th a t/v a n is h e s  a t t x. Suppose tha t the last interval (t„, t„ +  dt„) contains the 
(A + l)th  zero o f /a f te r  t{. The rem aining (n —2) intervals (t2, t j+ d t2) , ... ( /,-i,t,,_ i+ d /„_ |) 
m ust contain (я—2) of the remaining к zeros between f, and tn. Each distinct way of choosing 
these (я — 2) zeros contributes a term Pk(r) to the integral X(S). Hence

m  = 2 ‘Л (т ), к

where ck denotes the num ber of distinct ways of choosing the sequence S  from a sequence 
S' o f (k + 2) signs, alternately +  and —, so th a t the first and last signs of S~ correspond to 
those of S.

Now between each pair of successive signs of 5  that are both +  (or both —) there must 
be an odd num ber of signs of S. From the definition of s there are (я —1 — j ) such cases, and so

k+  2 =  n+ (n — I —j) +  2r,

where r =  0, 1 ,2 .......The remaining r pairs of signs of S' may occur anywhere in the (я —1 )
gaps between the signs of S. The num ber of distinct ways of disposing of these is

O n  combining the last three equations we obtain (1-1-7).
I t  follows from the theorem that in the sequence S  the only two relevant param eters 

are я and j. So we may write V(S) — X  (1'1'S)

T he following special cases will be useful. W hen 5 = (  +  , +  , . . . , + )  then s — 0 and

* , o =  i ( ” ~ ? + r ) ^ - 3 +2,. а -i-»)

W hen £ = * ( +  , —, —, . . . , —) then s = 1 and

i 0(n - * +  f) ^ - 4 +2,- ( M -Ю)

W hen S  = (  +  , “ , + j  (—)"_1) then s =  (я—1 ) and

| ( " _ f + r )p „ -2+2,  ( м - n )

From  these series there follows also a useful result on the order of magnitude of Рт(т) for 
large values of m (when т is fixed). For the binomial coefficient in each case is

(”- ” ’) -  ̂ +,)(ГЛУ)-"(1+,) -( * - 8)1 

:rges the i 

lim r"-2R  =  0.

as t tends to infinity. But if the series converges the individual terms must each tend to zero. 
So from (1-1-fi), for example,
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In this expression the factor r"~2 may be replaced by (2л — 3 +  2r)"-2 without altering the
limit. So ..

bm mn~2Pm — 0 (1-1-12)
m—«о

if m tends to infinity through the odd values; and similarly for the even values.
Thus P J t) tends to zero more rapidly than т being kept constant. Provided, then,

that the X n s exist for all values of n, it follows that Рт(т) tends to zero more rapidly than 
any negative power of m.

1-2. Series for Pm(r)
Equations (1 -1 -1) to (1-1-5) may be written

, _ ) _ ( J » + /> + /> + .. .) ,  

p, =  * ( + , + ) - ( * , + А + Л + - ) ,  

andt  Pt = X (  + , - , + ) - ( 2Ps+SPs+ iP 1+ ...),
P2 =  X( +  , —) — (2 ^  +  3.P6-|-4/’a +  ...),
P3 =  X( +  , + , + )  — (2P5 +  3P7 +  4P9+ ...).

Rice ( 1945) and M cFadden (1958) neglected P2,P „ ... and took as an approximation

' • * *  +  • -> •1  (1-2-3)

However, by eliminating P2 and Ps from the right-hand side of (1-2-1) by means of equations 
(1-2-2) we have

0̂ =  X (+ , - ) - X ( + ,  - )  +  (P4+ 2P6 +  3Pe + ...),l

- o f

( 1 -2 -1)

(1-2-2)

(1-2-4)

(1-2-5)

.P, — X( + , + ) — X(-\r, + ,  + )  +  (/’5 +  2P7 +  3P9 +  . 

so t h a t  a  h i g h e r  a p p r o x i m a t i o n ,  n e g le c t in g  o n ly  Pt, * 5 > -  is g iv e n  b y

Р0 +  Л Г ( + , - ) - А Г ( + , - , - Ц
P, * * (  +  , + ) - X ( + ,  +  ,+ )■ !

I t is easy to show that these approximations are the first in an infinite sequence. Equa
tions (1-1-10), which involve only the even Pm, may be solved for P0 by multiplying the first 
equation (n 2) by 1, the next by — 1, and so on up to n =  N, and adding. On the right- 
hand side the coefficient of Ръ, when i <  N, is

r<“U
and when i > N  it is

Hence X 2,, -  * s, , + * 4 > ( -  ) * ^ +2>,

=  P0+ ( - 1 ) ^ [ /> w +2+ ( ^ 1) p2W+4+ ( JV2 2) ^ 6 + - ] -  (1-2-6)

t  The five equations (1-1-1) to (1-1-5), regarded as equations for the P„, are not independent, for we have 
the identical relation X ( +  , -  , + )  -  X( +  , + , + )  =  X{ +  , +  ).
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Thus provided the expression in square brackets tends to zero we have

*o =  * 2. . - * 3l , +  (1-2-7)

and similarly P, =  X 2a — X 3%B + X 4 0—.... (1-2-8)

The approximations (1-2-3) and (1-2-5) correspond to the first two partial sums of these 
series.

Moreover, the rem ainder after ( N + 1 ) terms of the series is

{ - l ) A,+ 1[ ^ +2 + ( ^ 1) ^ +4 +  (# J 2) ^ +6+ - ]  (1-2-9)

which, since the P are all positive, has the same sign as ( —1 )л+1. Hence the sums of the 
series (1-2-7) and (1-2-8) lie between any two successive partial sums.

The corresponding series for Pir and P.̂ ,+ 1 (r >  0) are found from (1-1-10) and (1-1-9) 
to be

*T+2+i1 1*
( 1-2-10)

iV +i =  l (  —l) ‘ (r t ‘) * r+2+i(0

(the coefficients in the two series being identical). The solution of (1-1-11) for Pm is

f „ -  ( -+ ■ )  a « »

for all m >  0, where X n is written more shortly for X„ „_l. The solutions are valid provided 
each series is absolutely convergent.

1-3. Relation to a series o f Rice 
I t  is interesting to compare the series (1-2-7) for P0(r) with one stated by Rice (19451 

equation (3-4-11)). His series may be written

p0 =  r 2- r J + r < - . . . ,  (1-3-1)

and W ( ± ,  ..., ± )  d<,... d tn denotes the probability of a zero-crossing in each of the 
intervals (t0 /, +  df,) irrespective of the sign off '( t ) .

Now from the point of view of calculation 7n is of a similar complexity to X n_ „  since each 
involves an (n—2)-fold integration of a probability density such as ^ (S ) . O n the other 
hand in the series (1-3-1) the first term neglected after N  terms is YN+i, which is o f order 
Рц+i (see below), whereas the remainder after N  terms in the series (1-2-7) is only of order 
Ргя+г- Clearly then (1-2-7) is more rapidly convergent than (1-3-1).

T he reason for this difference is apparently that in deriving (1-2-7) we have made use 
of the continuity off ‘(t) which implies that up-crossings and down-crossings follow one 
another alternately. In  (1-3-1) no such property is used.

For completeness we now express Yn in terms of the P J j) .
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Since —f( t)  is assumed statistically equivalent to J(t), the integrand in (1-3-2) may be 
replaced by И (̂ +  , ± ,  ± ,  ± ) / a n d  further by the symmetry of the integrand 
with respect to t2, t 3, we have

Now И^(+, ± ,  ± ,  ± )  can be considered as the sum of 2"_1 expressions of the form W(S), 
where S  is a sequence of n signs such as was defined in § 1 -1 . Corresponding to any given

value o f j  there are ^ such sequences S. Hence

»з:гк.-
But X n s or ЛГ(£) is given by (1-1-7). Thus

T he coefficient o f Pn_2+1 may be summed by comparing coefficients of if in the expansion 
of the identity ( i  + jf)„_, ^  _ x2y(n- „ -  ( j _*)-(*-!)

in powers of л. Hence

7П= 1 ( я~ ? +,)ъ-гн-  (1>3’3)

The first term in this series is P„^2, which proves our statement concerning the order of 
m agnitude of У№+3 made above.

T he solution of equations (1-3-3) for the Pm is

a - 3-4)i-0 \ 1 I

of which (1-3-1) is the special case when m =  0.

1-4. Series for p{n,i)
M cFadden {1958) has shown that^(n, r) (the probability ofexacdy я zeros in the interval 

(t, (+ f))  is related to Рт(т) by the following set of equations :f

p‘ (O,T) = 2 W( + )P 0, 
p’ (l,T) =  2W (+ )(P l - 2P0), 

р'(п,т) =  W { + )  (Ря- 2Рп. 1+Ря. г) (n>  2),

where a prime denotes differentiation with respect to т. O n substitution for P„, Pn-\> Рп-г 
from equations (1 -2-11 ) we have in the general case

р’ (п,т) = 2 W( + ) 1 С Пш1Х„+1, (1-4-2)
i - 0

f  T he first of these relations is a p p a r e n t l y  due to Kohlenberg (1953).

(1-4-1)
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where C„ 0 =  1

Cn.fr =  ( - 1Г 1 (2r - r f i+ n ) ^ ± ^ } [ (r>  1),

С. 1аг+1 =  ( - 1Г ‘ 2п (- у ^ - ! ( r >  0).
Now by definition

(1*4*3)

Y — f  f  >+>■•■»( ) ’t_1) j , (1-4-41
x - ~ \  - J Щ + )  J - d " ( J

which is a function of т =  (/„—^). Hence

where 7 „ = f . . . f  Щ  +  , “ ) " '1) d i , ... df„. (1*4*6)
J  J  0 < /|< ...< Г и< т

O n substituting in (1*4*2) and integrating twice with respect to r  from r — 0 we have

* ( « , ') - Я  2  (1*4*7)
i—0

provided the constants of integration vanish. The first term  in this expansion is 2
Let £(f) denote the covariance function of the function £(<) which equals 1 when /( f)  >  0 

and — 1 when/(<) <  0. Rice (1944) showed that

R(t) =р(0 ,т)-р (1 ,т)+р(2,т) - . . . .

By differentiating twice and using equations (1*4*1) one obtains

Д '(т ) =  8И'( +  ) (Р0- Р 1 + Рг - . . . )  (1*4*8)

(M cFadden 1958). From the first two equations of § 1*1 it follows that

R"{r) =  8[И '( +  , - ) - W {  +  , + ) ] .  (1-4-9)

2. E v a l u a t i o n  o f  И^(5) f o r  G a u s s ia n  p r o c e s s e s  

W e now specialize the discussion to the case w hen/(f) is Gaussian, and seek some explicit 
formulae for И^(5] in terms of the covariance function of/(f).

2*1. A general expression fo r  И^(5)

Consider first the probability Щ  + , + , . . . , + )  d f , ... d*„ th a t/( f )  should have a zero 
up-crossing in each of the small intervals (f,, fj+df,) (t =  1 , ...,« ). For convenience write

Л 0  =  ii, / '( 0  =  m (* =  1» ••*.«)>
and let />(£,, 7 , , ..., rj„) denote the joint probability density of the and щ. Thus

Pii  ........ »7«-)dSi — d^, di?,...d7„ (2*1*1)

is the probability that the £, and r/, lie in given intervals (£„& +dfI), Now if
/(f)  has a zero-crossing in (f„ df,), with gradient t)it then /(f() must lie in a small range of 
values of extent |)7(| d/,. Thus to obtain the probability W( + , 4-, ..., +  ) d f , ... df„ we replace

fig V o l . S54- A .
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d£, in (2-1 -1 ) by |i/f | d/, and integrate over all positive values of the rf{. After dividing by 
d*,... df„ we have

Щ + ,  + i  • ■• , +)  =  Г ... f  \l\ 7»l^(0> ..-i 0 ; 7, , 7„) d ^ , ... d^„. (2-1 -2)
J o  J o

For the covariance function o ff(t)  we write

ЛОЛ'+г) = Ш
The function \jr(t) (or ijr7) is considered as given: it is the cosine transform of the spectral 
density off( t) .

Then the covariance m atrix of the 2я variables £]s 7u ■ b

t i n  t \ \  ••• t \ n  \

( * « ) -

/  f  11 f  1
/  : : :

t„i ■■■ fni ••• f t .
- i \ i  ■■■ - f m  - f i n

(2-1-3)

- K  - K i  -
where =  ijr(tt—tj) and a prime denotes differentiation. 

By the Gaussian hypothesis we have

- i VL.I

M u ••••&.; 7 i.---.7 -) -  (2^)»Д 1е х р [ (2-1-4)

(2-1-5)

(2ff)

where £„+( =  Vi and Д =  | (A,-,)], (Ly) =  (А,,)"1

Substitution in  (2-1 -2) gives

Щ  +  , + ,  . . . , + )  = ^ Г д | / 0 -  j o l7. - - - 7 j e x p [ - i  J i I . tli. +J7i7jd7i..-d7„-

The summation in the last equation involves only the last я rows and columns of (Ly). 
I t  is convenient to denote the inverse of this matrix by (/^)

/ T I \  -iI ,JЯ+1.Л+1 ■■■ Ьл+1,2л \
(i“j / ) = (  : 1 

\  ^ 2n, n+1 *^n,2n /
By Jacobi’s theorem the (r, j)th  element of this matrix is the bordered determinant

(2-1-7)

M r . ,  =

where

^11

..
a

..
a -

- f r  1 ••• ~ f m  - -Г г ,

i^ll t i n
D  = • ; .

i * l  ••• inn

- A

The determinant of (ft,j) is given by
|(A b ) | =  №

(2-1-8)

(2-1-9)

(2-1-10)
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(fijj) will be recognized as the covariance matrix of (17,, ...,т/я) given th a t

Si =  £2 = =  in =  0-
For, if 7„|£„ ...,£„) denotes the conditional distribution of (7,, ...,7„) for given
values of we have

h i -  „ \ f  f '  Р{£ч  - i L i  ?4 •••) 7 n )

...... .. 7 ( t ...... U
w here/>(£,, ...,£„) is the distribution of (£„ £„) only

.....

where (Jty) is the inverse of Hence when the £, vanish we have, using (21-10),

p(n„ .... 7„[0, ■■■> 0) =  (2ff)i„ |(- }̂ exp [ - - _  2 14 +/.„+J7. v J  =  Z(4 , |i) ,

say. W ith this notation (2-1-6) may be written

W{ + , + ,.... +) = j0 ■•■Jj7i---7..lZ(Yl>lA)d7i---dV (21-11)
I t  is convenient to introduce the normalized convariance matrix (vy) whose (t,j'Hh element

^  =  - Л Ц т -  (2-1 -12)
( M . i M j j ) '

Then on writing Q =  (ци) -»7i

in equation (2-1 -11) so that (vtj) is the covariance m atrix of the new variables („ we have

и'< + .+ .......+ ) - X y ^ )t-'-

where 7 „ =  Г ... Г ... f„Z(?,v) dC,... d ^  (2-1-14)
J o  Jo

N ow Z(?,v) is the ordinary normal probability density in the я variables £•, with covariance 
matrix (Vjj). Since the diagonal elements have been normalized (by equation (2-1-12)), 
Jn is a function only of the off-diagonal element Uy (i =¥j).

Suppose that one of the zeros in the sequences (say the £th zero) is to be a down-crossing 
instead of an up-crossing. Then in calculating the corresponding probability density W  
we need only to take the range ofintegration o f ^ in  (2-1 -2) from —oo to 0 instead of 0 to ao. 
Equivalendy, we may simply reverse the sign of the (n+A)th row and column of Ljjt and 
hence the Ath row and column of (jiy) and of (vy).

Hence to find W( + , —, + ,  ..., ( - ) " ”1), in which each alternate zero-crossing is a down-
crossing, we have to multiply i „ +( „+J by ( —l) i+-> and hence also m ultiply Цц and by 
(-l)i+>.

2-2. The cases n =  1 , 2 and 3 
The case я =  1 is trivial, for then Z(S, v) is the normal distribution for a single variate and

6g-s
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Since in (2-1-8) j/'u vanishes we have fiu — — }/f\x •— — t/r"a and so from (2-1-13)

as is well known (Kac 1943).
Also well known is the case n — 2, when

J 2 =  £  IX1  -  Vb) * +  l',2 COS- 1 { -  t'u)]

(the angle being chosen so as to lie between 0 and v). This gives

m + ,  + )  =  с а - ^ ^ с о з - ч - , , , ) ]  (2-2-2)

(Rice 1945, §3-10). By changing the sign ofvI2 we have

Щ + ,  - )  (2’2’3)

Not so well known is the case n -= 3. However, J3 may be derived from some integrals 
calculated quite recently by Nabeya (1952) and K am at ( 1953). One obtains

where t+ % .

(j2, j 3, etc., are obtained by cyclic permutation of the Vy). These angles are also to be taken 
in the range (0, 7r). So from (2-1-13) we find

W{ +  , + , + )  =  {M̂ f  [1Ы 1* + ( л « , + * л + * л ) ] .

Щ + ,  + )  =  (Alg ^ g -* W f + f o — g»l, (2-2-4)

2-3. General values of n
When n >  3, the integral Jn cannot be expressed in terms of known functions, in general. 

However, two particular cases in which this is possible may be stated here for later use.
First, if the covariances all vanish when j + J , then£,, are statistically independent 

varia tesand  Г Г , е- « Р . , т  I
U о (2я)* J (a*)*-

g i v i n g  ( 2 . S . I )

Secondly, if  all the covariances are unity, then£,, all reduce to the same Gaussian 
variate, giving , / „ _ j \

/  *  Г f " 5 _ d c  =  ——  2k "-» |"—-I  1 
Л  J o ^ W  5 (2ir)* 1 » ;

Hence и / 1 f 2 n l )  1 (2-3-2)
”  27rh"+1>\ 2 /■ v '
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3 . A s y m p t o t i c  e x p a n s i o n s  n e a r  t h e  o r i g i n :  f  r e g u l a r  

In  this section we evaluate the probabilities defined earlier, for small time intervals т. 
I t  will be assumed th a t the covariance function f( t)  is regular a t the origin

m  =  ^ o + f p + § v^ + . . .

(coefficients of the odd powers vanish, since f{ i)  is an even function o f (f).

3-1 . Expansion of
O ur first object is to obtain a multiple power series in the t, for the probability density 

W^S). Since W  depends only on the covariance matrix (Ay) of equation (2-1-3), it is evi
dently a  function of the time differences (tj—tj). We shall see tha t the leading terms in W  
are homogeneous and of degree \n (n — 1) in the (tj—tj).

We use the following lem m a: if F(x) is any function of x regular at x  =  0, then the leading 
term  in the expansion of

F (* !+ y ,) ... f (* !+ y ,)

in powers of the x, and yt is

F( 0) 
F '( 0 )

F(*n+yi) — * К + У „ )

F ’( 0) 
F"( 0)

F " - ‘)(0)
F<»>(0) П (*,—*) ( y j - y d  

[1 !2! ... (n—l ) I p ’
j№-4(0) F<">(0) ... р т" -2)(0)

T o  prove this, first express each term as a Taylor series in the

F(xi+yi) = F(yj) + xiF {y]) + % F ’(yJ) + ....

S ubtract the first row of the determ inant from the remaining rows, taking out the factors 
(x2—* ,) ,.. .  (*„—*,); then subtract the second row from the rows beneath it, taking out the 
factors {xs—x2) t (хп—хг); and so on. In the result write

Я%yj) =  F®(0) +y,F<i+1>(0) +  | ^ +2>(0) + ...

and proceed similarly with the columns. This gives the result.
Setting F  =  f ,  x, =  t, and y{ = —tt in the lemma we find, from (2-1-9),

n ( f , - 0 2
n  ~  D  ___ ___________

" [ 1 !2 ! ... (n— I)!]2’

fo  fo  •

where D m — ( — l)tm("-l)

f r "

f t - 1» -  Л2"-2'

(з-1 -i)

(3-1-2)
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It will be noticed that since the odd derivatives of ^  all vanish, every alternate element of 
D m is zero, so tha t Dm may be factorized into two determinants

to Го - Го to  -
D m -  (_l)»"(m-l) Го W  ... X Го w  -

By a similar method we may evaluate the leading term in /iTi (equation (2-1 ' 8)). One finds

mfact D П (<•-',)П (<,-*,)
_ . П+ 1 t+r________ j+s________ (3-1-3)

Hence

according as firl is positive or negative. Now since ( f tl)  is a positive-definite matrix its 
determ inant D  must be positive, so that by (3-1-1) Dm is positive also. On the other hand 
when t l <  f2 <  ... <  tn the product Д  (<r —/,) has the same sign as ( — l ) r+*, and so has

the same sign as (—l) r+i. I t follows that

Now to calculate W (+ , +  , ..., ( —)“_1) we recall that vTS was to be multiplied by 
( —l) r+J. The elements of the corresponding covariance matrix thus all become equal to 
unity, in the limit, and so (2-3-2) applies. O n substituting for and D we find

w ( + ,

where 1 ! 21... (я —I)! ( n - l \  | (D M i*  
27г4<"+1)(я!)я \ 2 j :  lD ;+1/

In particular when n =  1 and 2 we have the known results

A

(3-1-4) 

(3-1-5)

(3-1-6)

(3-1-7)and

(cf. Rice 1945, §3-4).
3-2. Evaluation o f Pm{r)

The integral In defined by (1-4-6) can now be evaluated. We use the identity

Г Г т  г, j .  [1 ! 2! 3 !... (я —1)!]2^ л(п+1, (з-2-i)
ГГ (< # -« « 1  уГзГб! (2л—ТУГ * К '

a proof of which is given, for example, by M ehta ( i960). From (1-4-6) and (3-1-4) we have

then ,  П !2! з ! ... (я —l)!]2^, . y , t D (3.2.2)
■ l! 3! 5 !... (2n— 1)! *

which is of order r ^ n+1l  From this it follows that

^  =  щ + у 7» =  ° ( т1л("+1Ь2)' ( 3 - 2 ' 3 )
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Since the power of т increases with n, one sees tha t Pm[t) is given asymptotically by the first
term  in the series (1 -2-1 1), i.e. d ' ^  v  fo о“m\TJ ~  Лт+2• (Э'б'Ъ)

From the last three equations and (3-1-5) we have

P lT) ~  [1 !2 !3 ! ... (m + 1 )!]2 Cm+2 d2 tfm+2Um+31 (З-2-б) 
" (T) 1 !3 !б !...(2 ш  +  3)! ^ T d r 2 T •

(3-2-6)

In  particular C2 _  1 D \D ^
o( ) ~  C, 8 D \ ' 

p , .  C , t« _  1 D \D \ .
~  C] 6 648л D \D \ 7 ’

in agreement with Rice (1945) and Palmer (1956), respectively. In  general we have

Рт(т) =  0 ( TUm*2Hm+3)-2̂  (3.2-7)

a power of r  tha t increases very rapidly with m.

3-3. Evaluation o f p(n, t)
W hen n =  0 and 1 we have trivially

p{0,т) -  1 (3-3-1)

and ^ l iT) „ 2 H 4 + ) T  =  i ^ T  (3-3-2)

from (3-1 -6).
W hen n ^  2, both In and I'n vanish a t т =  0, and therefore (1-4-6) is valid provided both 

p(n ,0) and /)'(n ,0) are zero. Both conditions are satisfied if we assume^(n, t)  =  0 ( r 1+s),where 
e >  0. In  the series (1-4-7) the terms / . +((r) are proportional to increasing powers of т and 
hence р{п,т) is given asymptotically by the first term

р{п,т) ~  2/„, (3-3-3)
or on substitution from (3-2-2)

р м  ~ 2 с .***»*  < * > 2). (з-з-4)
For example

48я £)|

/(3,т) ~  АС3т« = 19440яг /)2 т-|
(З-З-б)

Since p( 2 , т) is of order r s and not r2 we see that neighbouring zeros of/(f) are not indepen
dent of one another. The effect may be called a ‘m utual repulsion’ o f the zeros. I t  is con
nected with the property, seen in the previous section, that P0(t) -» 0 as t  -»• 0, that is to say, 
small intervals r  are unlikely.

Moreover, as n increases, so the power of r  in p(n, т) increases very rapidly.
A heuristic argument for the rapidly increasing power of 7 may be given as follows. I f  

/(<) is to have n zeros in ( t,t +т) then by Rolle’s theorem f ( t )  must have a t least (л—1) 
zeros in the same interval, and further f" (t)  must have a t least (я —2) zeros, and so on, till 
finally_/(“- , ,(<) must have at least one zero in the interval. Therefore (assuming the existence

\
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of/<">)/ d -ц  must be of order r  throughout the interval, and by in teg ration /("“2), / <“_S1,
/ must be of order т2, 73, respectively. T hat is to s a y , / " -4 , / " -2*,. . . , / at some fixed 
point in the interval, must lie within ranges . . . ,S f  of order т,т2, ...,тп, respec
tively. T he probability of such an event is of order

Sf(’' - ,)S f ’' - 2K ..$ f=  0 ( t i+2+- +") =  0 ( t^ " +i>).

4 . A s y m p t o t i c  e x p a n s i o n s  n e a r  t h e  o r i g i n :  a  s i n g u l a r  c a s e  

We shall now seek expansions at the origin in a very interesting singular case. Instead of 
theTaylorseries for )£■(*) (equation (3-1)), suppose now that f ( t )  has an expansion of the form

(4-1)

In other words, the third derivative of \jr(t) possesses a finite discontinuity at the origin, f 
Some examples of such functions were studied experimentally by Favreau et al. (1956), 
and M cFadden (1958) has considered them theoretically. They occur whenever the 
spectral density of/(<) is of order (frequency)-4 a t high frequencies.

4-1. Expansion o f W(S)
I f  the procedure of §3-1 is attempted it is found that altogether fewer factors can be 

extracted from the determinants. For example, to evaluate D, defined by (2-1-9), we begin 
by subtracting row (я — 1) from row n of the determinant, then row (я — 2) from row (я — 1), 
and so on, in turn extracting the factors (t„ — (/nM —/„_2) , ..., (t2—ty) ; and similarly 
for the columns. The process is then repeated as far as row 2 only, and without extracting 
any factors. The leading term in the determinant is then seen to be

(4*1*1) 
(4-1-2)

(4-1-3)

W hen n -  2, IAJ is replaced by unity in equation (4-1-1).
Instead of calculating (prj) direcdy, it is rather more convenient to determine first 

(£n4.j.„+,•)■ Now (Lu) is the reciprocal of the covariance matrix (A^), given by (2-1-3). The 
determ inant of (Ay) is found, by a process similar to the above, to be

A ~  (4-1-4)
where E  denotes the (2я —2) x (2я —2) square matrix made up as follows:

D ------ t o t ' o ^ T T2 — r* -l)2 |A-| ( « > 2),
where we have written ■ с, ~  Tl>
and where A  is the (л — 2) x (л — 2) square matrix

/ 4 ( t i+ t2) 2r2 0
° \< 2тг 4(r2 +  r,) 2 t .
°  )A - 0 4(tj+ t4) . . .
!

V 0 0 0 4(r„_2+ 7 „ _ i) /

Б =  ( c .  Э
t  The existence of is sufficient to ensure the joint distribution of/(/) an d /'(f) as in §2. If the expansion 

of |£r(l) contains a term in |1| then the mean density of zeros no longer exists in the usual sense. Such a case 
was considered by Siegert (1951)- See also Rice (1958 ,̂ §9).
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in which A  is given by (4-1-3), В is the n x n  matrix

4t ,

673

/  4Ti

В

\ 0

and С is the (n—2) x  n m atrix

/

-2 т , 0 0 0

T1 4r, 0 0 0
0 4r2 0 . 0
0 0 4t s . 0

0 0 0 7с

- 2 t , 4Ti 2t2 0 0 0 0
0 0 4 t2 2 r3 . 0 0 0
0 0 0 4t3 . 0 0 0

0 0 0 0 ■ 4 t„-3 2 ^ -2 0
0 0 0 0 0 4 t„-2 2Л.-1

(C* denotes the transpose of C). By subtracting the (n — 1 +  t)th row of E  from the Jth row 
(i =  1 , 2, . . . ,  (n — 2 )), and similarly for the columns we find

and so A ~  12”~1{ — с 2п~ 2 (т 1т2 ... (4-16)

The quantities Л£„+l n+J involve the cofactors of the last n rows and columns of (Â ) 
and hence of E. Hence we find

/  «] ¥ \ 0 0

/  i “ t (a, +  M2) К 0
0 К (и2 +  «з) • 0

\  0
0 0 • (“„-2 +  “*

\  0 0 0 К -i “„-l '

where

, (4-1-6)

(4-1-7)

4-2. The cases n =  1, 2 and 3 
In  the special case n =  1 the above expansions do not apply, but the well-known result

is easily derived as in § 2. 
W hen n — 2 we have

and so by inversion

iLn*l,n+j)

w-cva

(4-2-1)

70 V o l . 254. A .
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g iv in g  i>12---- \  =  cos

When n * 3 w e  have

M. S. LONGUET-HIGGINS

1 (f ir), Thus from (2-2-2) and (2-2-3)

»Ч + *-»-’* {М > < = Й Й '-
/ u , £u, о '

2 ( 1*1 (“>+“2) К
\ 0 i«2 U2

and so
/ 7 ,(3 7 ,+  47,) - 2 7 , 7 j

7,72 -  27,7j  (4 7 ,+ 3 7 2) 7j /

‘'51’ ‘' ,г  =  “ ( з ^ + i f j  ’ ( (3 7 , +  472) ( 4 7 1 +  372 )  ’ “ ( iT ; 

W riting for short

Thus
-f- З7 .

t j —/1
7 ,+ 7 2

T 2
T , + T s

so that x + y  = I, we find from (2-2-4)
I

U - t ,
1 -= У.

where
" W - a - F K e * ^

q f .  * . « , 3 - cor  * ( i ) + *(*#  -  ■>»-1 f t ) ,

<?l+’ ~'+) = 3 + -6- - ~ТГ cos“ ‘ ( - y - )  + g (*y)t + ^ 4 ^ ) f  cos' ‘ (“ 2^) ’

Ф

( 4 - x ) i  

=  3 - ( ? ~ 2х) х*

(4-2-2)

) ‘

(4-2-3)

(4-2-4)

(4-2-5)
(4 -v )*

(i= 3 ^ r  “ *'■

These three functions are plotted in figure 1. +’ +) and Q(*'~,+1 are symmetrical about 
the mid-point x = as would be expected, whereas Qf-*'”■ is asymmetrical.

The probability density of a down-crossing at f2 given up-crossings at f, and l3 is pro
portional to Q<+.-.+), Figure 1 then shows that the probability density is a maximum 
when t2 is mid-way between the two ends of the interval. On the other hand the curve for 
§(+,+,+) shows that given up-crossings at both i, and l3 the probability density of an up- 
crossing at an intermediate point /2 is fairly insensitive to the position of l2- At the mid-point, 
the density is actually a minimum.

4-3. General values o f n
Exact expressions do not appear to exist in general, but upper and lower bounds for 

M^S) m ay be obtained in the following way.
In equation (2-1-6) write

7, =  7 ^ 7 . 1о =  т Л -П -  (4 -3 -1 )llJ=( r £ y
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F igure 1. Graphs of Q <+.+.+), Q(+,-i+) and

This gives 

where

щ + ‘ + .......+ , * ( s k e r „ i t w x

ф(1)- Я
Using the asymptotic formulae for Д ал<1 Ltj (equations (4-1-4) and (4-1-6)) we have

1 3" c __________ - (4-3-4)
[2v)n l2 »< --«  ( - ^ 0 f 0)i (tj + Tj ) (т2 + f s) . . .  (t„ . 2+ 7 „ - i )

/  1

2 \u, - fи2/

1/ u, \*

2V«i + V  +

. (4-3-6)
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2*/ <
i.j i

It is now easy to find bounds for Ф. For since u, > 0, all the elements of {I adjacent to the 
diagonal lie between 0 and Therefore, the x, being non-negative,

I * f  < 2  2 * ? + 2  ЗД+i- (4-3-6)
I i . J  ■

In the right-hand inequality substitute

x,xj <  i(x f+ xj)

giving

Thus from (4-3-3) 1 > Ф > i/2". (4-3-7)

These bounds may now be substituted in (4-3-4).
For H^S), when the signs of 5 are not all - f , one or more of the ly may be reversed in 

sign. Hence the left-hand inequality in (4.3.6) is not valid but may be replaced by

I i i,j
Now it can be shown that

* 2 * ? <  2* .?-2 * ,* i+ i.
J I J

where A is the smallest root of the equation 

( l -Л ) - J  0 
- i  ( l - A )  - i  
o - i  (1 -A )

that is to say

Since, then, in a ll possible cases

0 0 ... (1 —A) 

A = 2sin2 {я/2(я+!)}■

= 0.

we have

A 2  ^  2 <  2 2 * i
* i.j i

2"sin2"W 2(n + l) } > 2s "
(4-3-6)

Our general result then is that

ia//c\ ____________ 2,/ЗФ . .
 ̂ (2л)" \4/ (< j-l,) -•• (г, . - Л - 2) ’

where Ф is a function of the lying between the bounds (4.3.6).

4-4. Asymptotic behaviour o f Рт (т)
By the mean-value theorem for integrals, the integral X n of (1-4-4) can be expressed as

/3\ь  с „ ,„ A,„  (4-4-1)

(4-4-2)where f Г
71 J  J (*з ^i) (*< *2) (̂ п ^п-г)
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and Ф' is some value of Ф within the bounds (4-3-6). It can be shown that K n is finite, and 
since the denominator of the integrand is homogeneous and of degree (n—2), K n is in
dependent of (t„ —^ ), or т. In fact when я = 2, 3, 4, 5 , . . .

K . =  l . l . K . K . —  (4-4-3)
Thus, as т -* 0, Xv tends asymptotically to a positive value independent of r. From the 
expansion (1-2-11) it  now appears that, for each value ofm, Рт (т) tends asymptotically to 
a  lim iting value Pm(0).

This behaviour of Pm(i) is in marked contrast to the corresponding behaviour when f ( t )  
is a  regular function. Then, as was seen in §3-2, Pm(t) is proportional to an increasing 
power of т as m increases. A further discussion w ill be given in connexion with p(n,r) (see 
§4-8). M eanwhile, however, we shall establish some close inequalities for /*„(0) when 
m — 1,2.

4-6. Approximations to f m(0)
From the results of §4-2 we may evaluate X(S) explicitly when n = 2 and 3. Thus from 

(4-2-1) and (4-2-2) we have .

^ (  + > +)

where we have written for short

( £ - !) «  
_ Го+

(4-6-1)

(4-5-2)
~ Г о ~  - Ч о

Further, on integrating the expressions (4-2-4) with respect to /2 over t l <  t2 <  t3 we find

* ( + ,  + ) -

X  ̂+  > ~  (8 ^  + 2 7 з ^ _ 288)“’

•^( + > + . + ) ~
1 49

Sir* У Зя+ 288,

(4-5-3)

The identity X ( + , —, +) — Jf( + , + , + ) = JF( + , + ) can be readily verified. 
Equations (1-2-1) and (1-2-2) give, in the lim it when i  -*■ 0

P0 = 1-217996а-(Р2+Р<+Рв + ...)Л
^  = 0-217996a-(P3 + P5-bP7+ .. .)  j 

P2 =  0-070 856a-(2P 4 + 3P6 + 4Pa + . . . ) , l  

P3 = 0-024358a-(2P5 + 3P,-|-4P9-|-...) }

P0 = 1-147 13Q<i+(P4+2P6 + 3Ps -|-...),l 
P, = 0-193 638a+(P5 + 2P7 + 3P9+ . . . ) . [

Hence the inequalities l-147e < P0(0) < l-218n,|
0-193a < P,(0) <0-218a,J 

0 < P2(0) < 0-071a, |
0 < P,(0) < 0 026a.

and

whence also

and

(4-6-4)

(4-6-5)

(4-6-6)

(4-5-7)

(4-5-8)
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4 6 . Disproof o f the ‘exponential hypothesis’
We now apply the inequalities of the previous section to a particular case which was 

studied experimentally by Favreau etal. ( 1956). This is the Gaussian process/(j) whose 
spectral density is given by * « 1/(1 + ®»)*, (4-6-1 )

where a  — frequency. The covariance function f 7, being the cosine transform of E, has 

Л еГ°Г т  № «  (1 + |<|)е-'« = 1 - ^ 2+ * И 3- . . .
and so is of the form (4-1).

The experimental results showed that the distribution of zero-crossing intervals P0(t) 
was quite close to a negative exponential. Since the mean of the distribution must be

J ___ I/M * 1
n + ) ~ * \ ZIw  s*2W ( +  ) * \ = r j

the only possible exponential law is
P0(r) =  ( l/ ir)e -" '

which makes P0(O) = l /я, or, since
« =  t a + l ( - 4 l ) = i

in this case, ^o(°) = âl7r = 0'9бб ...a . (4-6-2)

McFadden ( 1956 ) doubted the conjecture but was unable to disprove it (McFadden’s 
assumption th a tр"(п,т) — 0 when 4 is actually incorrect), since the only inequalities 
then available to him were the right-hand inequalities of (4-5-7). However, the left-hand 
inequality Ы 4 7а < PB(0 )

is definitely contradictory to (4-6-2). Thus the exponential hypothesis is disproved.
It may be pointed out that because of certain limitations in the experiments (indicated 

by Favreau et al.), the value of P0(t) is liable to be underestimated at the small values of 1 ; 
so that it is not surprising that the experiments suggested a too low value ofP0(0 ).

4-7. Further estimates of -P„(0)
If Pt, P5, ... are neglected in equations (4-5-5) and (4-5-6), the resulting estimates of 

/*„, P„ P2 and P3 show that P^PX and PJP2 are about equal to 1/3. Now in § 1-1 it wasshown 
that Рт (т) tended to zero with m more rapidly than any negative power of m. It is consistent 
with this result to conjecture that the ratio Pm+i/Pm tends to a constant value. I f  we take

r o u g h !y  P4(0 )  = ^ , ( 0 )  Ф 0 0 0 6 a ,

P 5(0 )  = £Р„(0) + 0 -0 0 2 a , (4 -7 -1 )

P6(0) Ф *P»(0) *  0-001*.
then on substituting in equations (4-6-5) and (4-5-6) we find as possibly closer approxi- 

mations /»в(0) = 1165a, j
Л (° ) + О-106а, I .
P2( 0 ) = 0-05ба, j
/*з(0) Ф 0 '0 I 7 a . j
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4-8. Asymptotic behaviour o f p(n, t )

As in § 3-3 we have , 1 /—№\
/’(О,?') ~  1, (4-8-1)

When n > 2 we have from (1-4-1) by integration

p(n,t) = f ' d r ' f d r - a Ж( + ) [Рп(т’ )~ 2Р п -х (т ')+  Л - 1(0 ]Jo JO
provided that^(n, 0 ) and p' (n, 0 ) are both zero. This w ill he satisfied provided

р ( п , т )  =  0 ( t i+‘ ) ,  where e >  0 .

Now we have seen earlier that in the singular case Рт (т) tends to a positive v a lu e/^(0) 
as т -> 0 . Hence by integration

p(n,T) ~  Ж (+) К ( 0) - 8Р,_1(0 )+ Р ._ 1(0 )]та  (4-8-2)
as т -> 0 .

From. (4-5-8) and (4-5-9) we have the strict inequalities 

0-71 1/?t2 < />(2, r) <  0-903/V2,
0-051jfr2 < />(3, r) < 0-243y?r:;} (4-8-3)

where A = m + ) a  = —-------—  (4-8-4)
12" ( - * , « ) *

The rough estimates (4-7-2) would yield

> f t r ) * 0 . H * V  ( 4 . 8 . e ,

/)(3, г) Ф 0-103/?r2J

Equation (4-8-2) shows that, in contrast to the regular case, p(n, r) is o f order r2 for all 
values of n greater than or equal to 2 ; there is no longer a strong m utual repulsion of the 
zeros.

Again, a heuristic argument suggests that this result is not unreasonable. Since r/r' 
no continuous derivative at the origin, the second derivative of/is, in this case, non-existent 
aLmost everywhere (cf. Bartlett 1955 , chapter 5) and the first derivative f ' ( t )  m ay be ex
pected to behave like a random-walk process in which the standard deviation of

L / 'W - / ' ( « ]
increases like | ̂  1 2̂1 * f°r small time-differences. Now in the fixed interval (0, t) , if f  has 
two or more zeros , f  has at least one. S o f  is of order 7  ̂in the interval while/, by integra
tion, is of order r*. That is to say / and f  lie within intervals S f  and S f  of order r* and 
respectively. Since the joint probability density o f f  and f  at some fixed point t in the 
interval exists by hypothesis it follows that p(n, 7 ) is of order

S f .S f  = 0 (тМ ) = 0 ( t2).

One consequence of (4-8-2) is that, given the existence of two zeros in  the interval 
( 0 , t ) ,  the probability of (n—2) further zeros in the same interval is of order т2/тг = 1 - 
Roughly speaking, we may say that the first two zeros serve to ‘ pin down’ the function 
/ and its derivative so that the probability of any fbrther number of zeros in the interval is
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finite, no matter how short the interval is. However, the probability density of, say, a third 
zero lying somewhere between the first two depends upon the situation of the third zero 
relative to the first two, as was seen from the curves of figure 1 .

6 . A COMPARISON OF DIFFERENT APPROXIMATIONS TO Pq(t)
In the following we shall compare the accuracy of the approximations suggested by 

Rice ( 1945 ), McFadden ( 1956 , 1958 ), Ehrenfeld et al. (1958 ), and Longuet-Higgins ( 1958 ; 
this paper is referred to as (I)), with the approximations suggested in the present paper. 
Discussion is purposely restricted to those methods of approximation on the basis of which 
numerical computation has been, or readily could be, carried out.

Two different aspects of the approximations are first considered: (a) their accuracy for 
small values o fr, both in the regular and singular case of§§ 3 and 4, and (b) their accuracy 
for large values ofr. The results are tabulated in table 1 .

Then the ‘ narrow spectrum’ approximation is considered in §5-8, and lastly the approxi
mations are compared numerically with experimental results obtained by analogue methods 
when the spectrum off(t)  has certain ideal forms.

б-I. Rice's approximation ( 1945)
This has been used as a starting point for several of the later approximations. It is

=  * (+ > -)>  (6-1-1)

in our notation. The right-hand side, being the first term in the series (1-2-7) may also be 
written as P$\ where P ^ is  the sum of N  terms. As we have seen, the calculation of fV (+ , —) 
involves the evaluation of a bivariate normal integral.

From equation (1 -1 -1 ) the error in Pj,11 is equal to

P2+P< +  P6+ .. . ,  (6-1-2)
which is always positive. Thus Pq 1 always exceeds PB.

(a) Small values o f r. In the regular case the highest term in the remainder is

P t - M C J C J r * .  (6-1-3)

Thus Pj,1' is correct to order r7 near the origin. In the singular case equations (4-7-1) and 

(4-7-2) give P2 + P4 + />s+ ... = 0 062a, (5-1-4)
an error of about 5%.

(A) Large values o f 7 . When т is so large thatf( t)  and/(£ + t) are uncorrelated then we have

pu> = ~ W (-)  = ИЧ+). (5'1,6)
P0, on the other hand, must tend to zero, in order that JP0(t) shall converge. Thus (5-1 -5) 
represents also the error in P^11.

5-2. The approximation P&21 

The approximation discussed in the present paper, namely
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appears as a  natural second approximation to P0. Its evaluation involves the single integra
tion of W ( + ,  —, — which, as we have seen in § 2 -2, is expressible in  terms of known 
functions. Higher approximations

will each involve additional integrations, in general.
Equation (1-2-4) shows that the error in />(021 is equal to

- ( Я 4 + 2Р6 + ЗР8 + .. .)  (5-2-2)

which is always negative. Thus •Pj,21 is always a lower bound for P0.
(a) Small values o f r. In the regular case the highest term in the remainder is

<№3>
Thus -P^'is correct to order r ,a near the origin. In (he singular case equations (4-7-1) give

- ( P 4 + 2P6 + ...)  = - 0  008a, (5-2-4)
an error of 0-7 % .

I t is clear that near the origin this approximation leaves little to be desired.
(b) Large values of r. Asymptotically we have

W(+)  (+)

and hence P $ ] ~  — W (  +  ) 2 t  (б-2 -б)

which is 0 ( t )  at infinity. It is clear that the approximation fails rad ically for large values of т.
Indeed it w ill be seen generally that the approximation of P0 by is analogous, for large 

r, to the approximation ofe-1 by a finite number of terms of its power series; the convergence 
of the approximation is non-uniform over (0 , oo).

5-3. The ‘ multiply conditioned' approximations 
In §3-10 of his original paper ( 1945 ) R ice suggested that the approximation (б-1-l) 

m ight be improved by including in the probability density И̂ ( + , —) the condition that 
f( t )  be positive at one or more given points of the range (<1,^2). The inclusion of just one 
extra point leads to a  threefold normal integral that ean be expressed in closed form. The 
inclusion of more than one point leads to fourfold and higher integrals.

The suggestion was taken up by Ehrenfeld etal. ( 1958 ), who refer to such approximations 
as ‘ multiply conditioned’ approximations. Thus (5-1-1) is denoted by M C-0 ; with one 
condition at the mid-point of the range the approximation is MC-1, and so on. C learly all 
such approximations are, like M C-0 , upper bounds for the true value P0.

(a) Small values o f r. The error in M C -1 is just equal to the probability density of a down- 
crossing at t  =  r  plus a  zero in (0 , r), given that/ (0) =  0 and J { \ t )  >  0 . Now if/ ( I t )  >  0, 
there must be at least two zeros in the interval (0 , \t) and/or at least two zeros in (\t , r). 
I f we ignore р(б,т), p (6 ,r), etc., relative to/>(4,T), the error is clearly

Щ + , - , + , - )  d<2dij (6.3.!)
• Я !}«,<(,<}r fW( “b )

7* Vol. 254- A.
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In the regular case, the neglect ofp(5, t), etc., is justified by § 3-3, and we have from (3-1 4)

~  t A h - h )  ( j - ч )  i r - h ) .

Substituting in (5-3-1) we find for the error

| f § A  (6-3-2)

This m ay be compared with (б11 ■ 3). Clearly the order of the error is the same as in M C-0 , 
but is less by the ratio 39><280 n

8 ! 48"

In the singular case the lim iting value of MC-1 as r -»■ 0 was calculated by Rice ( 1958 ) 
in the case of the spectrum ( l  + o-2) -2 (cf. §4-9 above), with the result

MC-1 ~ 1 Ш =  1.195л,
1т

since a = 1/3 in this case. From (4-7-2) the error appears to be

l-1 95 a-l-1 5 5 a  = 0-040a (5-3-2)

or about 3 % of P0(O). Compared with MC-O, the error is reduce by about one-third.
In the case of the higher multiply-conditioned solutions, if the subintervals of (0, t) are 

denoted by i<,+ 1>) (with № — 0) then the expression corresponding to (5-3-1) is

? Я
Since W  is of order t 6 it follows that the error is always of order r8.

(b) Large values o f r. When the interval r is sufficiently large, the sign off{\r) becomes 
independent of the other conditions, and the probability off(k r) being positive is one-half.

Hence М С -1~ | М С -0 ~ } Ж (+ ). (5-3-3)

Thus the error is reduced relative to M C -0 by one-half.
Generally, if  the N  ‘ conditioned’ points in the multiply conditioned approximation 

MC-N are spaced so that their separation tends to infinity with r, then

М С - # ~ ^ М С - 0 ~ ^ Ж ( + ). (5-3-4)

5 4. McFadden’s first approximation 

McFadden ( 1956 ) gave the following approximation to Р0(т), valid for small intervals r

а д  -*■<’ >•

say. Here Л '(т) denotes the correlation function of the ‘ clipped’ form of/(/), defined in 
§ 1-4. From (1-4-8),

F(r) = Р0- Р 1 +  Рг - Р 3+ .. .  = X (+ ,  - ) - X ( + ,  + ). (5-4-1)
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The approximation is equivalent to neglecting P2, ... in the above series; thus it is 
actually of a lower order of accuracy than

In the Gaussian case we have the well-known formula

and so

(a) Small values o f r. In the regular case the error is of order

(б-4-З)

and in the singular case we find by expansion in powers of т

F ( t) -------t l + M l  =  “ •

By comparison with (4-7-2) the error is
-0-1551. (5-4-4)

(b) Large values o f т. In (5-4-1) each of the terms X( + , —), Z( + , + ) tends to 0, and so 
F(t) tends to 0. The error thus vanishes.

6-5. рг(т) andp*{r)

The sequence of approximations proposed in (I) depends on writing the first of equations 
(1-4-1) in the form . „

po(T) =  ~  W {+ ) д Щ ,

ад $, ад.
where U(r), = ^ (0 ,т ) ,  is the probability thatf( t)  be positive throughout the interval (0, r). 
Let U(t) be replaced by the probability иг(^\ ...,Z(r)) thatf( t)  be positive at r suitably spaced 
points in (0, t). (For convenience it is supposed that the points are equally spaced and that 
I*11, № are at the end-points.) As the number r of points is increased, Ur becomes an in 
creasingly good approximation to U. The corresponding approximations to ^o(T) 2116 
defined by . -m

л ( ’ >— щ щ з т <««i>

»nd ( 5 “'2)

It tums out that in the Gaussian casep 3(r) is identical with F(r) given by equation (5-4-2). 
Generally, although Ur involves an r-fold normal integral, the approximations p Y and p * , 
which depend on the derivatives of Ur, involve only (r—2)-fold normal integrals. Thus p3> 
pit ps and p*, can all be evaluated in terms of elementary functions.

(a) Small values o fi. The difference (Ur — U) is equal to the probability that/(f) bepositive 
at each of the points and have a zero-crossing at some point in the interval (0, r). Hence

71-a
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f( t)  must have two, four or more zeros in at least one of the subintervals (<u), i°+,)) (the first 
such zero a down-crossing) and certainly not one, three of five zeros in any of the 
remaining subintervals. If we neglect/>(4, t) relative to p(2, r) and />(3,т) the probability 
of such an event for the subinterval (/®, fi*») is

f f  ^ ( - >+ )d l1d*1- f f f  »4 + ,- ,+ )< M *|d «s
J J /«></,</,««+ II .  J J </,<<•*♦»*

- f f f  ^ ( - , + , - ) d / 1d<2d^  (6-5-3)
J  J  J  I*t fa</$<&)

Again, if  ̂ (4, r) is ncglectcd the probability of a pair of zeros in more than one of the sub- 
intervals is negligible, so that the events are mutually independent. So (Ur — U) is equal to 
the sum of (r~  1) expressions like (5'5-3).

On differentiating (5-5-3) partially with respect to both and £r) the first integral 
vanishes identially whenever r>  2 ; the other integrals also vanish except when t = 1 or 
(r— 1). Hence we have

Substituting for W (+ ,  — j + ) from (3-1-4) we find

A M -  а д  = - Ш С , )  (*r)- * I>) ( iw + s ^ - » - s n » ) .
Now putting (/W—/<‘>) = r and (^r)—r<r' 1)) = r/(r— 1) we obtain for the error in p,

-  ( .3r~ 5,).£ V -  (5-6-4)3 ( r - l ) ’ ? i  V '

Thus/>r(r) is correct to order r 3 (not t4, as was stated in (I)). In particular when r =  3, 4, 6 
the errors are, respectively,

— -'З т *
6C i ’ 81 C, * 96C ,
I S  ,4 _ * . £ ы  (5-5-5)

The case r — 3 is in agreement with (5-4-3j .
On the other hand p * involves the first term in (5-6-3) which is of a lower order. Thus

Ur- U =  (r—1) ГГ */( + , - )  dijdt, + 0(t*).
J  J  1)

On substituting in (5-5-2) and using (3-2-4) we find

P7 M -Po(r) =  r4 i  A  (r- 3 l )  + 0(r«).

Therefore at r = 0 = 1̂ Л> = ®>

d £ _ / 1+
dT "  \ + { r - l ) 4  d r ’

dV3 , 1 \ d^n 
dr2 ~ \ +  ( r - 1 ) v  “a?2 ’

Ё ! £ _ Л + _ М * 5 p
dr3 \ ( r - ) ) 1/ dr5
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For example, when r =  3 we have

dr = 4 d т '

a relation proved independently in (I). For r ^  3, since P0(t) ~ (C2jC x)T, the error in 
P*{r) is i n

In the singular case we make a straightforward expansion of pT(r) in powers of т. The 
calculations lead eventually to the following, when r = 3, 4, 5

Л (о) = “>

/-4(0) = I  [ c o s -  ( ^ )  + 3^ 5]  a = l-0683a,

Л(°) = i [ ( 2cos" ( ^ ) - cos“  (I)]+Te(JI+lW 2)]a
- l-0879a.

The corresponding expansions ofp*(t) lead to 

jft3*(0) = I 15a,

P №  = £ [ c o s - ( - ^ )  + 2cos- ( ^ )  + Scos- ( ^ )  + 9cos- ( ^ ) ]

=  l-3561a,

^*(0) =  I ^ [ ( C0S"  Й +С05"‘ 3 ^ +cos"lZr +cos"  2 7 ё) + 16cos"‘ ( ^ )

_  2 (c°s-  f ^ + c o r 1 i )  + 4 ( c o s - ^ - c o s -  JA .)

+ 8 (C0S_1 2 72 “  C0S' ^ )  + 9 (С0Г14 7 1 +  C0S' ' § + C0S_I § )]
= 1-2899a.

These results are plotted in figure 2 against the abscissa l/(r — 1), and taking a = 1. The point 
labelled Pj,”1 and plotted at r  = 00 corresponds to the estimate Рв Ф l-155a of §4-7. It will 
be seen that pT and p* both approach P^\ the one from below and the other from above.

For comparison, the other approximations to /5,(0) discussed above have been plotted 
in the same diagram. Because they are of comparable complexity, MC-0 and MC-1 have 
been plotted on the same ordinates as pt and p5, respectively. Pff\ which involves the single 
integration of a  known function (corresponding to a fourfold integration) is plotted level 
with r — 6. It is obviously the closest approximation.

(b) Large values o f т. As т -*■ 00 so t/,(r) tends to zero; for the probability that f( t )  remain 
of constant sign throughout the infinite interval becomes vanishingly small. Hence also 
pr and p* tend to zero at infinity, and the error in both/>r and p* is vanishingly small.
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Figuke 2. Approximations to P0(0) in the singular case.

6 -6 . McFadden's second approximation 
A quite different method was suggested in a later paper by McFadden ( 1958). On the 

assumption that a given interval т is independent of the sums of the previous (2m + 2 ) 
intervals (m = 0 ,1 , 2 , McFadden derived the integral equation

P0(-r) = Х (  + , - ) - Х (  +  , + ) * Р 0(т). (б-6 -l)

A’’( + , —) and Z(-|-, + ) are as in § 1*1 and a star * denotes convolution:

*■.(*)• Л М  = Г > ,( г ') ^ ( г - г ') а г ' .
J  0

The solution of this (approximate) integral equation may be denoted by M cF(t).
(a) Small values o f r. In the regular case, X ( + ,  + ) ~  Pj (by (1-2-1)) and so the second 

term in (б в-l) is, by (3-2-6),

- д + . + ) . л м  ~ / > < '- '■ > * ■  -  ш

But we saw that -AT(+, —), or P*0l) is correct to order t7, so that the major part of the error is 
in fact due to the second term. This corresponds to the fact that for small intervals at least 
the assumption of independence is invalid (Palmer 1956)-

In the singular case the second term is zero at the origin and so 
McF(r) = * (  + , - )  = l-218a.

The error is therefore the same as in P tf1 (see equation (6-1-4)).
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(b) Large values o f  r. Since X ( + ,  —) and A 'f-f, + ) both become equal to W( +  ) at 
infinity. The solution to the lim iting equation

F(t) ± W (  +  ) ~ W {  +  ) Г F ( t - t ' )  dr'
J о

is F (t) ф W ( +  )e~ w^ ,

a negative exponential. Hence we expect M cF(t) to tend to zero exponentially a t infinity. 
The results of §§ б-1 and 5-6 are summarized in table 1.

T a b l e  1. C o m parison  of d ifferen t APPROXIMATIONS TO P 0(t)
error for small r

approximation regular case singular case error for large т

pj,u = м с -o I ct .
280 C,

0 0 62a Щ + )

p? 8 x6 t19 2 1 .( 1 1 ) !ц — 0-008a -W(+)2t

M C -l 00 40a \щ+)

Рш -Г - 0 1 5 5 a «(I)

A 81 Ci - 0  097a 0(1)

Pi -  ®
96 C, - 0 0 6 7 a 0(1)

pi 4 C j 0-345a 0(1)

Pi i a T
9 C, 0-200a 0(1)

pi i . S r 
16 c, 0 1 35a 0(1)

McF 1 C;C)^ 
180 C? 0062a 0(1)

6-7. The nanow-band approximation 
Let E(a) denote the spectral density of/(/), related to f ( t ) by the equations

E(<r) = ir(t) costrtdi,

m  = Г coso’Jdo’.
J  о

The mean frequency of the spectrum is defined as a  = mt/m0, where
Ce

mT = I E(tr) orda 
J  о

is the rth moment of the spectrum. It is convenient to write also

fir = Г" E(o) (<r—a\T do.
J о ‘
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The spectrum is said to be narrow if

“ Mo

and it can be shown (I) that in that case rjr(t) has the form

f( t )  = A(t) cos m + О (Sat)3, (5-7-1)

where A(t) is a  slowly varying function of t

Under these conditions one expects f ( t )  to have the form of a sine wave of almost constant 
frequency ff and slowly varying amplitude, so that the greater part of the distribution 
P0(t) lies within the neighbourhood ofr0 = u/W. In fact the approximation F(t) of equation 
(5-4-2) reduces to j

F{T) Ф 2Sr0[ l  +  (T-T0m S r 0y ] i  ( 5 ' 7 ' 2 )

provided (r — r„) is comparable with i r 0. It can be shown that all the other approximations 
discussed in this paper have the same limiting form as 5 -*• 0. This approximation will be 
called the narrow-band approximation and will be denoted by NB(t). It has the following 
properties:

(1) It is symmetrical about the mean point r = r0.
(2) For large values of ( r —r0) it is of order |r—r0|_a, and so has no second moment.
(3) The maximum probability density is

(4) The width of the curve where it reaches half its maximum height is given by

2 x (2}-1 )*£ t0 = 1-533£t0.

(5) The cumulative distribution function is

Г  N B(T)dr______(т ~ то)/(|?то) + i ,
J -  U  2 [ l  +  ( r - T 0 ) ’ / ( i r 0) ^

(6) Hence the quartiles are given by

t - t0 _  1

Srt ^3

and the interquartile range is l-155jr0.

5-8. Numerical computations 
In this last section, the various approximations to P0(r) described in §§ 5-1 to 5-7 are 

compared by numerical computation over values of т not necessarily very small or very 
large. Where possible, the results are compared with those obtained experimentally by 
analogue methods (Favreau etal. 19 5 6 ; Blotekjaer 19 58 ).

Only these approximations are shown which are the highest of their type at present 
available. For example, MC-0 is not shown if MC-1 is available, and ps, pt are not shown 
ifp 5 is available.

= 0-5774
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Figures 3 to 7 show the approximations р$,р$ , P f\  McF and M C -0 (or МС-1) for spectra 
of the form.

E(<r) — cr2" I (1 + <r2)m

(see table 2 ). In  two cases (figures 3 and 6) the spectra are 0(cr~*) at infinity so that ijr has 
the singularity discussed in § 4. Figure 3 corresponds to the case discussed in § 4-6, where it 
was shown that P0(r) is not a negative exponential, as the observations m ight suggest.

The experimental results of Favreau et al. are indicated in figure 3 by the plotted points 
(the vertical lines indicate the estimated uncertainty of the observations); in figures 4 
to 7 the experimental values (Favreau et al.) are shown by broken curves.

The curves which form lower and upper bounds of P0—namely P(0г> and M C -0 or MC-1— 
are drawn rather more heavily than the others. From figures 3, 6 and 7 it w ill be seen that 
at small values of r the experimental points lie considerably below the theoretical lower 
bound. This implies that in some other parts of the curve the experimental points must 
he too high, since the total area under each curve must be unity.

T a b l e  2
figure m

3 (l+o-2)-2
4 (1 + c-2)-*
5 (l+o-2)-5 е-..|(1+|,|+|{2+А|<Г+ тЬ ,4)
6 <r*(l е-'«(1 + И -2«г+*№)
7 <7*(1 +CTS)-S e-1'1 (1 + |f |— -  f |(|3 -H I*)

Nevertheless, there is substantial agreement between the experimental points and the
three approximations p*, P $] and McF. For all except small values of r the agreement with
ps is less good than with p%.

Figure 8 shows a similar study in the case of the Butterworth spectrum

£(") = l/(l+<rH),

which has a fairly sharp cut-off at about a =  1 . The plotted points are those of Favreau 
et al. ( 1956 ). Evidently the agreement between the observations and the theoretical curves 
p%, Pq21 and McF is quite close. In the range 6 < т < 8, where PJ,2’ is the uppermost of the 
three curves Pjj2) must also be the closest approximation, since it  is a  lower bound.

For the low-pass spectrum
fl (0 < <r < I),

E(a) =
\o (I <  a <  00),

the best experimental results available appear to be those of Blotekjaer ( 1958 )) which are 
represented by the broken curve (B) in figure 9. It will be seen that the agreement with McF 
is fairly good, with p\ somewhat better, and with P n21 very close indeed, as far as r  = 14. 

For the band-pass spectrum
0 (0 < a < (Г,),

E(a) = 1  (cr, < o- < 1),
0 (1 <  a <  00),

V ol. 254. A.
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F*a] can be expected to be an even closer approximation than that for the low-pass spectrum, 
since some of the low frequencies w ill have been eliminated. Accordingly Pff' has been 
plotted in figure 10 for o', = 0, J , J and J. It w ill be seen that as approaches 1 and the 
spectrum becomes narrower so the distribution also becomes narrower and the height of

F io u r e  10. Computed values of Pa(t)  for a band-pass spectrum 
(low and high cut-ofls at cr, and 1, respectively).

the maximum probability density is increased. The position and height of the maximum, 
and the width of the curve at half the maximum height are shown by the full curves (a),
(b) and (c) in figure 11. (For plotting these curves the distributions Pq21 for cr, = 0-1, 0-2, 
0-3, 0'4 and 0-6 were also computed.)
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A comparison may be made with the narrow-band approximation of § 6-7, which gives 
for the abscissa of the maximum

t „ =  2 jt( 1

and for the height and width of the distribution (2^r0)-1 and l-533£r0 respectively, where

* _  2я 1 -cr,
ЙТ° “ УЗ ( !+ ,, )* •

These values are represented by the broken curves in figure 1 1 . It will be seen that for 
a i >  i  the narrow band approximation agrees well with Я02) but there are noticeable 
divergences when trx < ф.

F ig u r e  11 . Characteristics of the distribution of intervals in a  hand-pass spectrum, (a )  Abscissa 
of maximum; {b'\ ordinate of maximum; (c) width of distribution at half the maximum height. 
The lull curves represent the broken curves the narrow-band approximation. Plotted 
points correspond to 6 tperimental curves of Blotekjaer (1958).

In the same figure some experimental results due to Blotekjaer ( 1958 ) have been inserted. 
As one would expect, they agree with P tf rather than with NB. In particular one may note 
the slight negative trend in curve (a) as cr, approaches zero.

The author is indebted to S. O. Rice, D. S. Palmer and J .  A. McFadden for stimulating 
correspondence, and to the latter especially for useful comments. A reference to the work 
of M. L. Mehta was provided by F. J , Dyson. The computations onpT and p* were carried
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out by Miss D. B. Catton on the DEUCE at the Royal Aircraft Establishment, Fam borough; 
the computations on were carried out at the M athem atical Laboratory, Cambridge, by 
Mrs M. O. Mutch and M r P. F. Swinnerton-Dyer.
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C H A P T E R  4

Bounding Approximations to the 
Distribution of Intervals between 
Zeros of a Stationary Gaussian Process

M . S. Longliet'Hlggins, National Institute of 
Oceanography, Wormley, England
Appcndix, F. J .  Dyson, Institute/or Advanced Study, Princeton

ABSTRACT
L et P ( t) denote the p ro b ab ility  density  of zero-crossing in tervals in a  sta tio n 

a ry  gaussian  process. This chapter discusses a  rap id ly  convergent sequence of 
approxim ations w hich form successively  upper and  lower bounds to P (r). 
P art icu la r  a tten tion  is paid  to processes whose covariance has the form 
t ( t )  =  a — bt2 +  c|̂ 3| 4- ■ - ■ for sm all t. Close bounds are obtained on the 
in it ia l va lue  P (0 ) . I t  is shown th a t

1 .1 5 5 ,6 a  <  P (0) <  1 .1 5 8 ,0 a

where a  = c/2b. S im ila r bounds are obtained for the re lated  quan tities  
P m{r) and  p(n , t ) .  An a lte rn ativ e  approach to the eva luatio n  of P m(0) 
is described in A ppendix 2 by F . J . Dyson.

1. INTRODUCTION

L et /(/) denote a  continuous, sta tio n ary , gaussian  random  function of a  
continuous param eter I. I t  is supposed th a t f ( t ) is ergodic and has the m ean 
va lu e  zero. T he covariance function

№  = +  t') 

is known, or, eq u iva len tly , the spectra l d ensity

E (a) =  ~  f  ^(<) cos at dt.
4T J  -<*

A classica l problem  [1] is to find the p ro b ab ility  d en sity  P ( t) of the in terva ls  т 
betw een successive zeros of /(/). The so lution is requ ired  both as a  function of 
r  and  as a functional of the covariance $(£)*.

* ф(1) is also written as ft- It is assumed that the probability density P(i) exists, which 
implies the existence of -

63
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A  recent bibliography on this and related  problems will be found in reference  
[2]. I t  appears th a t no exact solution to the general problem  is known, though  
a num ber of approxim ations have been suggested. Rice [1] eva lu ated  the 
p robab ility  density (p.d.) И^(+) of a single zero a t t\\

which gives the expected num ber of zeros per unit t im e :

hence the mean va lu e  of the distribution  of r

i  tPW * “ 5 - 1 (rtf) ■
Rice also eva lu ated  the jo in t p.d. W ( + , —) of an up-crossing a t  t\ and a  
down-crossing a t ti and suggested the approxim ation

+  > ~ )  . p/4 , . (O')
1 г ( + )  -  p w> T = ~  ь - w

The expression on the le ft represents the p.d. of a down-crossing a t  <2, given an  
up-crossing a t  ty, regardless of any zero-crossings between. I t  therefore  
includes th e  probab ility  of j(t) becoming negative a t some interm ediate points, 
so th a t s tric tly  (2) represents an upper bound to P {r).

As a closer approxim ation, Rice suggested including the condition th a t /(<) 
be positive a t some interm ediate point, say  t = t\ +  -jr. The expressions 
invo lved  are then threefold  norm al integrals which can be evaluated  in finite 
term s. The conditions th a t f(t) be positive a t  other points m ay be added, 
introducing integrals of higher order. Som e com putations have been carried  
o u t by Ehrenfeld et al. [3], who denote b y  MC-n the p robab ility  density  
Иг( + , — )/й7'(+ )  w ith  n conditioned points added. Thus R ice’s approxim a
tion is M C-0 . Since there is the possibility of f(t) becoming negative between  
the  conditioned points, MC-n is alw ays an upper bound to P (r).

O ther approxim ations to P(r) have been proposed in [3], [4] and [5], b u t none 
of these constitutes a strict upper or lower bound.

H owever, recently [6] a sequence of approxim ations was suggested, which  
form  successive upper and lower bounds to P ( r ) ; (2) is the first o f th is sequence. 
M oreover, the second approxim ation, which is a lower bound, m ay be com puted 
w ithout difficulty. I t  was shown th a t if t//(0 is a regular function a t  t ”  0 
then the second approxim ation is correct to a v e ry  high order in powers of r. 
The second approxim ation also yields a positive lower bound to P (0 )  in the  
singular case in which has a finite discontinuity a t t — 0 .

The purpose of this chapter is to give a simplified account of the resu lts in 
reference [6] (w ith detailed proofs om itted) and to obtain closer lim its on the  
values of P(0) in the singular case. An a ltern ative  and closely re lated  
approach to the same problem is discussed in Appendix 2 b y  F. J .  D yson.
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2. THE SEQUENCE P ^ 5

Imagine the zeros of a particu lar function /(f), numbered in order of increas
ing t, and let

Pm(r) =  p.d. of the in terval between the ith  and (i +  m +  l) th  zeros.

Thus P 0(t) is the probability  density of the in terval between successive zeros 
of /(<), th a t is, P 0(t) = P ( t ) . Further, if <  f2 < ■ ■ ■ <  t„ are any и 
points and S  is any  sequence of n signs, +  or —, we denote by TF(iS) dt\ ■ ■ ■ 
dtn the p robability  of zero-crossings in the intervals (<i, t\ +  dti), ■ ■ ■ , (tn, 
tn +  dtn) w ith  gradients specified by £; th at is,

Ж(£) = p.d. of zero-crossings at ti, ■ ■ ■ , tn, w ith  signs S.

The following relations were stated  by M cFadden [4]: if r  =  (<2 — <i),

W ( + < =  p  , p  , p  t 
W ( + )  = Po +  Л  +  P ,  +  • • •

' (3)
W ( + ,  + )  _  _

щ + )  —

The in terpretation  of the first equation, for example, is sim ple: ti is either the 
first zero a fte r t\ or the third  or the fifth, and so on. These m utually exclusive 
possibilities are represented by the individual terms in the series.

In  [6] these relations were generalized as fo llow s: le t iS denote any sequence 
of +  or — signs and let

X(S) = f  ■ ■ ■ J  ■ ■ ■ din-i, (4)

■■ <1»

so that, fo r example, X ( + ,  —) = W(+, —)/W(+). Then it m ay be shown 
th a t

m

X(S)  = ^  ( "  ”  f  J  r )  P 2̂ . +2r, T = tn -  h, (5)
r - 0

where s denotes the num ber of times th at the sequence S  changes sign. Equa
tions (3) are the special cases n = 2 and s =  1, 0. Since X(S) depends on the 
sequence S  on ly  through n and s, i t  m ay be w ritten  in a shorter form : X(S) =

Since Xni, can be evaluated, a t least in principle, (5) m ay be regarded as a 
set o f simultaneous equations for the Pm. These are not all independent, for 
by a property  of the binomial coefficients there follows the identity

Xn,a-\~2 X ni8 X n—i (j. (6)
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Thus it  w ill be seen th a t X„,c and X„ti (n = 2, 3, • ■ •) fo rm  a com plete set on 
which all the  o ther X„,e depend.

E quations (5) can now be solved  for the Pm:

P 0 =  X 2il -  Z t,i +  * 4.1 -  ■ ■ ■ (7)

P x =  X 2i0 -  X 3.o +  X ii0 -  • • ■ (8)

and, in general,

P 2r = ^ ( - 1  г ( г | ^ х г+2+1, 
i  = 0

Р 2Г+1 =  1 ( - 1 У ( Г^ ) х г+^ 0. 
t -0

(9)

These series have the convenient p roperty  th a t the rem ainder a fte r n term s 
has the sam e sign as the first term  neglected. F or exam ple,

Po =  X 2il -  X tll +  ■ • ■ +  ( - D ^ X j v + i . i  +  RlN\ (10)

w here

я<*> = ( - и »  [ p 2JV +  p 2W+l +  f t  + x)  p 2y+4 +  • • • ] . ( и )

Since th e  P m are all nonnegative, has the sam e sign as ( —1)^ . Hence 
the partia l sum

P f >  =  X 2tl -  X tll +  X 4l, -  ■ ' • ( - l ) W+1^ +1.i (12)

is an  upper or lower bound to Po according as iV is odd or even.
I t  w ill be noted also th a t the first term  in the rem ainder Й(ЛГ) is ( — 1 )NP 2N- 

In  a som ewhat sim ilar series stated  b y  Rice [1], nam ely,

Po =  У 2 -  Y3 +  7 4 -  ■ • ■ , (13)

where

v n = - J — r . . .
" (n — 2 )  \ ) tl J h W (± )

(14)

and W( + , ■ ■ • ± ) is the p.d. of zero-crossings a t fa, • ■ ■ tn regardless of sign, 
the rem ainder a fte r N term s is of order P^. Hence the series (7) converges 
more rap id ly  than  the series (13).*

'S in ce  the binomial coefficient n 2 ^  is 0 (r") as r->  « ,  keeping n  fixed, the

convergence of (5 ) implies that mnP m —* 0 as m —> и , for fixed n. Thus Pm(r) decreases 
with m  more rapidly than any negative power of m.

\
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3. EXPLICIT FORMULAS FOR AND P ^

As is well known [1], TF(S) m ay be expressed in the form

= /„* • • • /„* p{0, • • • ; 4 i, ■ • • 4 n )b i • ■ • ч«|А» ■ ■ ■ dvn
(15)

where {,• = f( lt), Vi = j'(ti) and p ({1( - ■ ■ f n; ц, • • ■ ij„) is the jo in t p.d. of 
the J, and тц. Hence for Gaussian processes

W (S )
/о " / о  (2 т )  ПД^4 6ХР [

О - i  
l^i * * * Чл| 7̂1 ■ ' ' dl}ni (16)

where Li} and Д depend on the covariance function ф(С). Thus FP(<S) is 
expressed as an n-fold norm al integral, which can he evaluated explicitly in 
term s of known functions when n ^  3. W hen n > 3, the integrals involve  
the functions of Schlaefli and Lobatehevsky, which are known only for certain  
values of the arguments.

W hen n — 1, 2, 3, the explicit expressions for JP(<S) are as follows ([6], Sec
tion 2). Let \pij denote ф(и — tj) and le t

Mn =

D =

^ i i

Фп1

Фп

Ф nl

Ф1п

Also let

vTt

Then, when n = 1, we have

F (+ ) ми

Ф1п Фи

Фпп
- ф 'Ттп

Фп.
-Фг',

Mr,

brM ,.)»'

Г1 / - Ф о 'У
2тг \  Фо /

-r D.

When n = 2.

W ( + , + )  = 1 [(1 — >'1г)54 +  vi 2 cos 1 ( — иг)],

W (+, - )  = (^ $ T - К1 -  Лг)У‘ ~ cos” 1 („„)],

(17)

(18)
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the  angles being chosen to be betw een 0 and ir. W hen n — 3, we find

И Ч + , + » + )  ”  Г  d ( y» i) lH +  (“ iS l +  “ 2S2 +  a 3S3)]

Щ  +  , —I + )  = [| ( ^ )Г  +  “ l ( s l — » )  +  <x2s2 +  a 3(s3 — -Я-)]

(19)

Щ + , - )  =  *3 J f j j l ? ' '  [ | Ы 1И +  « lS i +  <*2(s2 ~ t) +  a3(s3 -  x)], 

where

Ql = V3 1 V1 2  +  »2S

»’aii, i 2 — "'гз 
Sl “  C0S (1 -  ^ « ( l  -  • * ,)“ '

a 2l аз, etc., being obtained b y  cyclic perm utation  of the indices.
Hence the approxim ations

=  X2 i -  w l * ’ 
TF(+)

0(2, Y W ( + > ~ )  f U W ( +  , - , - )
i0  -  -  *>■* -  - щ + г  ■ л  -  W i + r  2

(20)

(21)

m ay be com puted w ithout difficulty. Figure 1 shows the results fo r the low- 
pass spectrum

when

W ) - * i

I t  will be seen th at F ®1 lies quite close to the experim ental curve o f B lo tek jaer 
[7], as fa r as т = 14, when it leaves the curve and goes negative. In  Figure 2 
are shown some com putations of P ^  for the bandpass spectrum

(23)

The abscissa and ordinate of the peak, as well as the w idth  of the distribution  
a t half the peak height, are shown in Figure 3 (solid curves) com pared w ith  
experim ental data of B lotekjaer [7]. The broken curves represent character
istics of a narrow-band approxim ation due to  Rice [1]. I t  appears th a t this  
approxim ation is v e ry  good fo r o-j >  £ (less than  one octave bandwidth), 
tolerable for \ i  (one to two octaves), and poor a t bandw idtbs g reater
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t
Figure 2. Computed curves of j2)(t) for bandpass spectra (23)
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° i

F igu re  3. Characteristics of the curves of Figure 2, compared with observation: (a) abscissa 
of peak, (6) ordinate of peak, (c) width of distribution at half the peak height. Plotted 
points correspond to the observations of Blotekjaer [7]. Broken curves correspond to the 
narrow-band approximation of Rice {!].
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th an  tw o octaves. C om putation of P o2) fo r several o ther spectra are shown  
in [6].

4. BEHAVIOR NEAR THE ORIGIN
I t  is interesting to  exam ine the behavior o f P 0(r) and Р ^ \т)  fo r sm all 

values of the in te rva l т. Here the behavior depends on the character of the  
covariance function ф(С) a t the origin. Suppose first th a t \£(t) is a regular 
function a t t = 0 :

t (Q = t o  +  ~  t'o't2 + +  • • • ;

i t  can be shown [6] th a t as ( l„  — ti) —» 0

Щ + ,  - ,  ■ ■ ■ ( - Г - 1) ~  C n U  (t; -  U),
»<j

(24)

(25)

where C„ is a constant (independent of the <,):

1 !2! ■ ■ ■ ( n - 1 )  I /п -  IV V *
2тгы + 1)"‘ ‘ 1 “ —  ‘ ' 1

w ith

Dm = ( - l ) (1/1)m(m~ 1)

* о t o  ■ ■ • t i m~" 
io  t o  • • • Ф oml

1) . . . ^Um-2)

B y  substitu ting in (4) and perform ing the integration, we find 

X  = I I 1213! ■ • • (n  -  l ) ! ] 2 C n d?_ n (n + 1V 2

n,n_1 1 !3 !5 !  • • ■ (2n — 1 ) !  C\ dr2* 

which is of order 2. Now b y  setting s =  n — 1 in (5) we have

■ X .,-1  = ^ ‘ ( ”  “  I  +  Г)  P * - 2+2r, 

of which the solution is

(26)
r - o

t-o

+  l ) ( w  +  2Q! 
\(m +  i  +  1 ) ! *■ m-f 2+ 2i, wi+1+ 2*«

The first term  in this series is Hence

P m ~  Z m+2.m+1 =  0 ( т {И>(т+2><т + 3 >-2),

(27)

(28)
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a power th a t increases rap id ly  w ith  m. So, fo r example,

P 0 -  0(r)

P 2 = 0 ( r 8) (29)

P *  =  0 ( r 1 9 ) .

Since P 0( t ) —>0 as t —>0, neighboring zeros of f(t) are strongly repelled. 
F urther, the error in the approxim ation Pq-\ which ia of order — P 2(r), is 
0 (r8). Thus Pq1] is correct to order t 7 a t the origin. Sim ilarly P(j2) is correct 
to order t 18.

A  quite different behavior is seen in the case in which ф(1), instead of being 
regular a t t = 0, has the expansion

m  = +  u w  +  a'o+W  +  • ■ • .  (30)

In  o ther words ф"'{Ь) has a finite discontinuity a t the origin. Such a singular
ity  arises w herever the spectral density E(a) is of order <r~ 4 a t high frequencies, 
fo r example, in the case

ЕИ  *  ( T T ^ T 2 (31)

* (0  a  (1 -  1«|)е-141.

I t  is shown then in [6] th a t for all я  ^ 2 as т —> 0

F \l/fn
w w  ~  о . - ц в . - ц " .  . . « . - . - Г )  • Р Й *  <32)

where Fn is a function only of the ratios (tг — <i): (h — ti): ■ ■ ■ : (tn ~ <n-i) 
and of n and lies m oreover between two positive bounds th a t depend only 
on n. W hen n = 1, TF(-I-) is given by (19) as before. B y substitution in (4) 
i t  follows th a t

X«,t =  X(S) ~  Kn.,a, (33)

w here КПш, is a constant depending only on n, s, and where we w rite for 
convenience

,  i"

“  -  <34) - 6^0
So from  the series (8)

Pm(r) ~  K ma,

where Km is a pure constant depending only on m. Since Km is positive  
in general, P m(r) tends to  a positive value P m(0). Thus, in contrast to the  
preceding case, the zeros of /(<) are no longer so strongly repelled.

A  heuristic explanation of the behavior of P (r) in the two cases m ay be 
given as follows:

Let p(n, t )  denote the probability of exactly n zeros occurring in an arb itra ry  
in terva l (ta, t0 +  r)  of fixed length т. The following general relations between
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p(n, t) and Рт(т) have  been proved by M cF adden [4]: 

p "(0, r)  =  2W ( + ) P о

p " ( l,  r)  = 2 Ж (+ ) (Р , -  2 P 0) (35)

p"(n, r)  = 2W (+)(Pn -  2P n_ j  +  P „ _ 2), (n > 2),

where prim es denote differentiation w ith  respect to r . In the  first case, 
in w hich (24) is valid , /(f) is a Tegular function ; th a t is, it  has d eriva tives  
of all orders, except in a set o f measure zero. So, if /(f) is to van ish  n tim es in 
(to, to +  t ) ,  f'(t) m ust vanish  a t least (n — 1) times in the sam e in terva l, 
f"(t) m ust van ish  a t least (n — 2) times, and so on; finally  f (n~15 m ust vanish  
a t  least once in the in terval. Now f (n) exists, and so /(7*—1Ч^о) m ust be of 
order r , /(n—2) m ust be of order t 2, etc., un til fina lly  f(to) m ust be of order r “, 
th a t is, f(to ), /'(to), ■ ■ ■ , /(п-1)Оо) m ust lie in ranges Sf, 5/', ■ • ■ , 5/(n_1) of 
order т", r n_1, • • - , r ,  respectively. B u t the jo in t p.d. of /(i0), ■ ■ ■ ,/<n—l) (fo) 
exists, so th a t  the probability  of such an even t is

p(n, t )  =  0(5/- Sf ■ ■ ■ 5/<n_1>) =  0 ( r c>4)n("+1)).

D ifferentiating  tw ice and using (35), we see th a t

P„ -  2 P „ _ ! +  Pn—2 = 0 (т(И)п(и+1)“ 2), (n > 2).

Since the term  of low est order is P n_ 2, we have, w riting n — 2 = m,

Pm -  0 (r(>4)(m+2)(m+3)-2) (36)

in agreem ent w ith  (29).
On the o ther hand, when the expansion (30) applies, the second d eriva tive  

of / is, in  this case, nonexistent alm ost everyw here, and the first d e riva tive  
can be expected to behave like the Gaussian M ark o v  process [8] in which  
l/'(ti) — /'(*2)! increases like |fi — for small tim e differences. N ow if 
/(f) has tw o o r m ore zeros in (f0, f0 +  r) , /'(<) has a t least one, and so f'(to )  is 
of order r H. Hence /(f0) is of order t*4. So

p(n,r) = 0 («/•«/') = 0(т’4+и) = 0 (r2)

fo r all w > 2. Substitu tion  in (35) now gives

P„ -  2Pn_ x +  P n—2 = 0 (1).

Therefore, assuming P„, P „ _ i to be of no lower order than  P n_ 2, we have

Pm = 0 (1) , m =  0, 1, 2, ■ • • (37)

in contrast to  (36).
The argum ent can be extended to other types of spectrum . F or exam ple, 

when E(a) is 0(o-~®) as a —* °o, then ^(f) has no term  in |f|3 but a te rm  in |f|6, 
and /"(f) behaves like a Gaussian M arko v process. Thus, when n ^  3, 
Sf" = 0 ( rw), Sf  =  0(т}4), and Sf = 0 (r*4). Hence

p(n, r) =  0 (r ’4), n >  3

\
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but p(2, т) = 0 ( r 3), as it  does when ф is regular. Therefore, from (35),

Pm{r) = 0 (r*4), m > 1 

Po(r) =  0 ( t ) .

Sim ilar results can be deduced when E(a) is 0(<т~2r) a t infinity and r  — 4, 5, 
etc.

5. BOUNDS FOR Pm{0) IN THE SINGULAR CASE
I t is interesting to obtain bounds for the value of Po(0) in the singular case 

(30) since this enables us to test the va lid ity  of conjectures on the form of 
P(r).

On returning to (16) and making expansions in powers of (U — ty), we find 
th a t fo r n ^ 2

—4 (39)

and

(X'n+i.n+j) “  . Ill 
Vo+

2 « i  Mi
u-i 2(uj +  u2) 
0 u2

0
u2

2(ll2 +  Из)

0
0
0

2 ( u „ _ 2 +  Mn_ l )

(40)

-  1

respectively, where

1*1 ~ (^i+l k)  ̂ = 2, ■ ■

[see [6], equations (4 .1.5) and (4.1.6)]. B y substituting in (16) and writing  

Vi = (Фо+/2)Vi and “  = (-Фо'/ЪФо), we find

Щ + ,  + , + )
W ( + )

(U j«2 ■ • ■ U „_08

П

exp [ - * 2  +  Vdfcfi +  3/lbi)] 2/1 ' ■ ' Sndj/i

Thus from  (4)
1 = 1

(«

n ~ 1 _

1 • • • t in - i)2*/! • • ■ 2/n exp  - 3  ^ « . ( j/ i  +  ViVi+l +  j'
« - 1

cfyf.

(41)
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X n i is given b y  an exactly  sim ilar expression, except th a t in the  sum m ation  
the first term  is щ{у\ -  yiy2 +  у I) instead of ux(yl +  yYy2 +  y\).

W hen n = 2 or 3, the in tegration  m ay be perform ed first w ith  respect to the 
yi and then  w ith  respect to the f,-, giving [6]

X 2, j  = ^-----  ~b a  = 1 .217 ,996a

\  (42)

■^2,0 =  f ----  —  a  — 0 .2 1 7 ,9 9 6 (1

and

/Л^З 1 17 \

"  ( a ?  +  2 V T *  ~  2 8 i )  " *  0 07C'8 5 6 ”
(43)

(V  3 1 49 \
8 7 “  V ^  +  2 8 8 ) a  = °  ° 24 ,358“ -

Using Х г д  and (Х г д  — ^Гз,i) as upper and lower bounds fo r Po, w e have  
im m ediately

1.147a < P 0(0) <  1 .218a, (44)

which is sufficient to disprove the conjecture of F avreau , Low, and P feffer [9] 
th a t fo r the process (31) P ( t ) has the exponential form

P o W  = - e _r/x,
7Г

since fo r th a t special case a =  ̂ the conjecture would im ply

Pfl(0) — -  a  =  0 .955a,
7Г

w hich is outside the bounds (44).
In  order to examine the behavior of P m(0) as m increases, closer bounds are  

desirable. These bounds can be obtained by calculating two fu rth er term s in 
each of the series (7) and (8). W hen n 4, exact integration of (41) does not 
appear possible. H owever (41) m ay be transform ed to a form  more am enable  
to num erical evaluation :

Since the integrand involves the U only through the differences (<t+ i — U)> 
we m ay set ti =  0 and so t„ =  т. Now le t us m ake the substitution

ti — т — Xi

— т — A1X2

tn — т — Х1Л2 ■ • ■ An,
where

\ i  =  r ;  0  < X; < 1, (t -  2 , 3 ,  1 ) ;  X„ = 0.
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Thus
1 1

U i
ti Xi ■ ■ - Xt ( l  — Xi^-i) 

and
d(<2, • • • <w- i )  _  n _ 2  n _ 3  

3(X2) . . . X„_i) -  Xl Xs
_ \ я —2\ n—3 л
— Al Л2 ‘ • лп_2*

Also substitute

ъУ1 — Mi(l — M 2) 

i v l  "  М1Мг(1 — ms)

iVn ж Ml * * Mn(l Mn+l),

where

0 < Ml < ОС ; о < Щ <  1 ( i  =  2, ■ ■ ■ n); Mn+i = 0, 

so th at

d(Vi ' " 1 2/n) n_ i n—2
Vi yn ----------- : = mi м2 ■ ■ ■ Hn-ii

o(Ml ■ ■ ■ MnJ

(41) then becomes

-^n.o = (3 a ) J  ^X2 ■ ■ • j  dX n-i j  dm  J  du2 • • ■ J dy.n

_______  м Г ^ Г 2 ' • • Atn-i___________ exp f -  -  р Л
x j x r 1 • • ■ X*_i(l ~ X2)2 ■ • ■ (1 -  X„)2 \ )

where

F  (1  — M 2M 3) +  [мг(1 ~  Мг)(1 ~  мз)]1*

(1 -  x2)
, М2 (1  —  МЗМ4)  +  [м з (1  —  М З)(1  ~  М 4)]И 

т  Х2 (1 -  Хз)

+  ■ ■ •
М2 • ■ • Мп- 1  ( 1  — МяМи+ l)  +  [мп(1 — Мп)(1 ~  Мп+0]И 

Х2 * * ■ Xn_ i  (1 Хп)
Since

L  ',г'ехр (■ *"')*■ ■<в ■1)1 (й) ’
the integration w ith  respect to mi m ay be carried out im m ediately, giving

■Xn.o = (3a) ^ (n — 1)1 j  ■ ■ ■ j  dX2 • • • Й Х „ _ 1С?М2 ■ ■ • dun

М2- 2Мз- 8  ■ ■ • M »-i_________________ L .  C4 5 )
\2 pnx ; - l x r *  • • • * L iU  -  x 2)* • • • ( !  — x„_ i) F nn
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The expression fo r I n,i is identical w ith  th a t fo r X n,o except th a t in Fn the  
sign of the first square root is reversed.

The foregoing expressions weree va lu ated  fo r n =  4, 5 by quadratures, as 
described in Appendix I. The results are

X 4,i =  0 .0 1 0 ,9 0 a

Z 4,0 = 0 .004 ,34a

w ith  a possible erro r of one un it in the fifth  decim al place; and

X bA = 0 .0 0 2 ,1 8 a

X 5i0 =  0 .0 0 0 ,9 1a

w ith  a possible error of one un it in the fo u rth  decim al place. T ogether w ith
(42) and (43), these lead to the following inequalities on the Pm:

1 .15 5 ,6 a  <  P 0(0) <  1 .15 8 ,0 a  

0 .1 9 7 ,1 a  < Р Д 0) < 0 .19 8 ,0 a  

0 .0 4 9 ,1a  <  P 2(0) <  0 .055 ,6 a  

0 .0 15 ,7 a  < P 3(0) < 0 .0 18 ,4 a  

0 .004 ,4a  < P 4(0) < 0 .0 10 ,9 a

0 .0 01 ,6 a  < P 5(0) <  0 .0 04 ,3a  

0 < P 6(0) <  0 .002 ,2a

0 < P 7(0) <  0 .000 ,9a ,

w ith  a m axim um  error of 0.000,2.
B y  inserting these inequalities in the relations (35), we deduce the follow ing  

bounds fo r p(n, т) :

0 . 8 0 8 , 7/Зт2 < P( 2, r ) < 0 .8 19 ,5 / J r2

0 . 1 0 1 , 50T2 < Vi 3, t ) < 0.118 ,3/Зт2

0 . 0 1 6 ,  6/3t2 < P( 4, r) < 0 .0 3 5 ,  l/3r2

0 < P( 5, r) < 0 . 0 1 4 , 0/3r2

0 < P(6, t) < 0 . 0 0 9 , 7/St2

0 < P( 7, r) < 0.005,2/Зт2
where

6. FURTHER ESTIMATES OF Pm(0)
The com puted values of X„ f o r  n =  2, 3, 4, 5 are shown graphically in  

Figure 4, plotted on a logarithm ic scale. I t  will be seen th a t the Х Пш, tend to  
lie on two parallel but not quite coincident curves. F or higher values of n

1
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F ig u re  4. Numerical values of X „,i and X n,o-
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F igu re  S. Estimated numerical values of P m(0).
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the calculated values are quite closely fitted by

Ax2n~ 3
X . . i  = 2n -  3

r  & - ■  (4e) 

where A  — 13.2, В  = 11.8 , and x2 = 0 .28. Using these formulas to estim ate 
higher term s in the series (9), we find

Po = 1.155,97a P: = 0.197,23a 

P 2 = 0 .054 ,12a P 3 = 0 .017,77a 
(47) 

P 4 = 0 .006 ,40a P6 = 0.002,49a 

P6 = 0.001,01a P7 = 0.000,41a,

These are p lotted  in Figure 5, and it  will be seen th at they lie all on the same 
sm ooth curve.

From  (47) and (35) we find

p(2, r ) = 0 .815,63/3ra p(3 , r )  = 0.106,76/3r2 

p (4, t )  = 0.024,98/St2 p(5, т) = 0.007,460т2 (48) 

p (6, r )  = 0.002,43(3r2 73(7, r ) = 0.000,880т2.

7. BEHAVIOR AT INFINITY
I f the covariance tends to zero as t —» oo, we expect th a t as |t,- — t}\ —» o° 

the  probability  density of a zero a t ti will become independent of the probabil
i ty  density of a zero a t  tj, hence

TF(S) -  [Щ+)Г.
Therefore from  (4)

Ж (5) ~  [Щ + )Г - 1  —
n—2

(n — 2)1 
and from  (12)

РоУ) ~  ( - ) W W ( + ) ] y

Since P o(t) m ust tend to zero a t  infinity, the approxim ations PqW) clearly  
fa il there. Like the power series for e~T, the series (7) is nonuniform ly con
vergent over the infinite in terval 0 <  r  <  <».

Thus for large values of r  an altogether different type of approxim ation is 
required. One promising method seems to be th a t of K uznetsov, Stratonovich, 
and T ikhonov [10]. A  rough method of approxim ation, based on the idea that 
P 0(t) behaves exponentially for large t, has been suggested by Rice [11]. Some 
rigorous, but not necessarily close, bounds on probabilities related to P o(t) 
have been proved b y  Slepian [2] and by Newell and R osenblatt [12].
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APPENDIX 1. NUMERICAL EVALUATION OF X n WHEN n = 4, 5

The m ultip le  integral (45) was approxim ated  by the A-point Gaussian  
quadratu re form ula

,  *
J ■ ■ ' J f(xi, ■ • ■ xT)dx i ■ ■ ■ dxT =  ^ w{l ■ ■ ■ WiJixn, ■ ■ ■ xir),

•I,it, ■ ■ ■ ir “ 1

the weights to, and abscissas я,- (which depend on k) being quoted, to 10 decimal 
places, from  [13]. Let X(k) denote the right-hand  side o f the foregoing equa
tion. I t  is clear th a t this form ula involves the eva lu ation  of f{x\, ■ ■ ■ xT) a t 
kT points. This places a practical lim it on к, and so the final resu lt was 
obtained from  X (2 ), X (3 ), ■ ■ ■ Х(ктЛ1) b y  extrapolation . The approxim ants

X  (к) m ay be expected to behave sim ilarly  to the approxim ants to  f *  log x dx, 

whose errors are 0 (1  Д 2); but, if X(k) has an error (C/kp +  D/kp+1 +■■■) ,  
then X(k) +  (k/p)[X(k) — X(k — 1)] has an error of order 1 /k7̂ 1. Hence a 
closer sequence of approxim ations should be given by

X'(k) =  X(k) +  ^ [X(k) -  X(k -  1)]

and then

X"(k) = X'(k) + 1  [X'(fc) -  X'(lc -  1)]

and so on.

T able l a  
S u ccessive  Approximations to X 3A

К (1) (2) (3) (4) (5)

2 0.072 354 108 3
3 0.071 863 612 9 0.071 127 870
4 0.071 710 196 3 0.071 403 363 0.071 770 69
5 0.071 565 901 8 0.071 205 166 0.070 874 84 0.069 755 0
6 0.071 445 127 6 0.071 082 805 0.070 838 08 0.070 783 0 0.072 016
7 0.071 348 926 2 0.070 012 221 0.070 847 53 0.070 864 0 0.070 978
8 0.071 272 693 2 0.070 967 761 0.070 849 20 0.070 852 6 0.070 834
9 0.071 211 938 9 0.070 938 545 0.070 850 89 0.070 854 7 0.070 859

10 0 071 163 055 8 0.070 918 640 0.070 852 29 0.070 855 8 0.070 858
11 0.071 123 300 3 0.070 904 645 0.070 853 33 0 070 856 2 0.070 857
12 0.071 090 619 4 0.070 894 534 0.070 854 09 0.070 856 4 0.070 857
13 0.071 063 477 1 0.070 887 052 0.070 854 63 0.070 856 4 0.070 856
14 0.071 040 717 2 0.070 881 398 0.070 855 01 0.070 856 3 0.070 856
15 0.071 021 461 8 0.070 877 046 0.070 855 29 0.070 856 3 0.070 856

/ 3  ^ 1
_  1 L \ — П П7П

\8я-г 2 V 2  jr 288/
— U.U/Uj|OJO
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T a b l e  l b  
S u c c e s s i v e  A p p r o x im a t io n s  t o  -Y ji0

К (1) (2) (3) (4) (5)

2 0 .020 625 884 4
3 0 .022 038 333 6 0 .024 157 007
4 0 .022 807 980 3 0 .024 347 274 0.024 600 96
5 0 .023 256 744 2 0 .024 378 654 0.024 430 95 0 .024 218 4
6 0 .023 537 634 8 0 .024 380 307 0.024 383 61 0 024 312 6 0.024 426
7 0 .023 724 142 9 0 .024 376 921 0.024 369 02 0 .024 343 5 0.024 387
8 0 023 853 964 8 0 .024 373 252 0.024 363 47 0 .024 352 4 0.024 367
9 0 .023 947 824 0 0 .024 370 190 0.024 361 00 0 .024 355 5 0.024 361

10 0 024 017 818 3 0 024 367 790 0.024 359 79 0 .024 356 7 0.024 359
11 0 .024 071 374 9 0 .024 365 936 0.024 359 14 0 .024 357 4 0.024 359
12 0 024 113 250 3 0 024 364 503 0.024 358 77 0 .024 357 7 0.024 358
13 0 .024 146 601 8 0 .024 363 387 0.024 358 55 0 .024 357 8 0.024 358
14 0 024 173 590 1 0 ,024 362 508 0.024 358 41 0 .024 357 9 0.024 358
15 0 024 195 733 6 0. 024 361 810 0.024 358 32 0. 024 358 0 0.024 358

( ~ --------- = 0.024,358
W 2 л/з 7Г 288/

The m ethod was first tested  on the three-fold in tegra ls X 3_i and X 3,0t
whose exact va lues are known (43) . The approxim ants X(k) for X 3 i are
shown in the first colum n of T ab le 1a, X'(k) is shown in the second column,
X "  in  the th ird , etc. I t  w ill be noted th a t X"'(k) is a lre ad y  correct to the
s ix th  decim al p lace when к ^  10. The convergence of Хз.о, shown in Table
lb , is eq u a lly  rap id . H owever, the convergence of X""(k) is not more rap id
th an  X"'(k), possib ly  because of rounding errors.

S im ila r ca lcu lations for Xi.i and are shown in T ab les 2a and 2b, m

T a b l e  2a
S u c c e s s iv e  A p p r o x im a t io n s  to

К (1) (2) (3) (4) (5)

2 0.007 592 467 3
3 0.008 930 321 0 0.010 937 102
4 0.009 531 476 3 0.010 733 787 0.010 462 70
5 0.009 883 793 6 0.010 764 587 0.010 815 92 0.011 257 4
6 0.010 113 668 5 0.010 803 293 0.010 880 71 0.010 977 9 0.010 642
7 0.010 272 773 8 0.010 829 642 0.010 891 12 0.010 909 4 0.010 813
8 0.010 387 646 8 0.010 847 139 0.010 893 80 0.010 899 1 0.010 883
9 0.010 473 378 7 0.010 859 172 0.010 895 27 0.010 898 6 0.010 898

10 0.010 539 109 3 0.010 867 762 0.010 896 40 0.010 899 2 0.010 900
11 0.010 590 642 3 0.010 874 074 0.010 897 22 0.010 899 5 0.010 900
12 0.010 631 810 8 0.010 878 822 0.010 897 81 0.010 899 6 0.010 900
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T a b l e  2b  
S u c c e ssiv e  A p p r o x im a t io n s  t o  .X Y c

К  (1) (2) (3) (4) (5)

2 0.002 761 049 9
3 0.003 178 844 7 0.003 805 537
4 0.003 442 463 6 0.003 969 701 0. 004 188 59
5 0.003 621 953 6 0.004 070 679 0. 004 238 97 0. 004 302 0
e 0.003 750 374 7 0.004 135 638 0. 004 265 56 0. 004 305 4 0 .004 310
7 0.003 845 865 1 0.004 180 082 0. 004 283 78 0. 004 315 7 0 .004 330
8 0.003 919 046 4 0.004 211 772 0 004 296 28 0. 004 321 3 0 .004 330
9 0.003 976 519 0 0.004 235 146 0. 004 305 27 0. 004 325 5 0 ,004 333

10 0.004 022 577 7 0.004 252 871 0 004 311 96 0 004 328 7 0 .004 335
11 0.004 060 124 3 0.004 266 631 0. 004 317 08 0. 004 331 2 0 .004 337
12 0.004 091 181 3 0.004 277 523 0. 004 321 09 0. 004 333 1 0 ,004 338

which 12. It appears that

X 4.1 == 0 .0 1 0 ,9 0

X 4,0 == 0 .0 0 4 , :34 ,

with a possible error of 1 unit in the fifth decimal place o f

T a b l e 3a
S u c c e ssiv e A p p r o x im a t io n s TO * 5 , i

К (1 ) (2) (3 ) (4) (5 )

2 0.001 055 668 0
3 0.001 368 765 4 0.001 838 412
4 0.001 537 181 2 0.001 874 013 0 .001 921 48
5 0.001 653 178 3 0.001 943 171 0 .002 058 43 0 .002 229 6
6 0.001 738 354 2 0.001 993 882 0 .002 095 31 0 .002 150 6 0 .002 056
7 0.001 803 133 6 0.002 029 861 0 .002 113 81 0 .002 146 2 0 .002 140
8 0.001 853 876 9 0.002 056 850 0 .002 128 82 0..002 158 8 0 ,002 179

T a b le  3b 
S u c c e ssiv e  A p pr o x im a t io n s  to X s . o

К (1) (2) (3) (4) (5)

2 0.000 412 953 6
3 0.000 518 728 3 0.000 677 390
4 0.000 589 878 3 0.000 732 178 0.000 805 23
5 0.000 641 435 0 0.000 770 327 0.000 833 91 0.000 869 8
6 0.000 680 662 2 0.000 798 344 0.000 854 38 0.000 885 1 0.000
7 0.000 711 480 1 0.000 819 343 0.000 868 34 0.000 892 8 0.000
8 0.000 736 294 7 0.000 835 553 0.000 878 78 0.000 899 7 0.000
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The calculations fo r X s .i  and Xs.o are shown in Tables 3a and 3b, with 
кш*,с = 8. The convergence ia not much less rapid than th at of X 4ii and X 4t0 
a t the same values of k. W e take

X Sil = 0 .002 ,18

X 6i0 = 0 .000,91,

allowing a possible error of one unit in the fourth decimal place.
I t m ay be mentioned that other methods of extrapolation, assuming, for 

exam ple, in itia l errors of order 0(l/&) or using the nonlinear transform ations 
e{m) (see [14]), lead to estim ates consistent w ith  those ju st stated, though the 
convergence is less rapid.

The com putations were carried out on the IB M  1604 of the U niversity of 
California, San Diego.

APPENDIX 2. AN ALTERNATIVE APPROACH TO THE EVALUATION 
OF Pm (r) IN A SINGULAR CASE

F. J. Dyson

Consider the random  process f(t) which satisfies

И ) 2 / « )  = ? (0 , (49)

where q(t)q(t') — S(t — t'). Thia is identical with the example (31); in fact

m  = i ( i  +  M)»4 *1. (5° )

L et P(x, y, t) denote the p.d. of finding

/, f - t e t o

a t  tim e /. From  the equation of motion (49) it  is easy to derive the Boltzm ann  
equation

—  +  y - — — (x + 2y) ~  — 2 — 2P = 0. (51) 
dt y dx 4 dy dy2

The statio n ary  solution of (51) is

Щх, у) = (52)

W e w ant a solution P(x, y, t) to describe the probability of arriving  a t  
(x, у, t) w ithout crossing x — 0 a t any tim e t' > 0. So P(x, y, <) m ust satisfy  
(51) w ith  the boundary conditions

P(x, y, t) = П(г, у) when t = 0

У> 0 = 0 when x = 0, t > 0
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W e can co n vert the differential equation for P(x, y, t) into an  in tegral equa
tion if we know  G reen’s function  Q(x, y, I; £, ч, to), which gives the p robab ility  
fo r a rriv in g  a t (x, y) a t  tim e t if we s ta r t  from  (£, ij) a t tim e t0 < t, crossings of 
x = 0 being allowed. This function can be calcu lated  exp licitly  fo r an y  
gaussian process. W e find in fac t

«  -  ^ ( -  ш 111 -< *  - 2s +

-  4 sh~2sxy +  [1 -  (1 +  2s +  2s2) e - 2a]y2t ) ,

where

M = (1 — e~ 2s) 2 -  4 s 2e—2s 

s = t — t0

f  = * - [ €  +  a(« +  v)]e~a 

У =  у -  [v ~ s(£ 4- v)]e~*.

T he in tegral equation for P(x, y, t) is then

У, t) = П(ж, у) -  dta |_“и Q(x, y, t; 0, v, t0) P ( 0, v, «о)|ч| dr>- (56 )

T he ra te  of crossing the barrier a t x = 0 per u n it tim e t is

C(f) =  /_"я P (0 , у, <)Ы dy. (57)

This is re la ted  to the q u an tity  Po(0) in the earlier p a rt of the chapter by

P l(0). - . [ ® L  <58»

provided we take a — A ll th a t is necessary is to solve (56) fo r an infinitesi
m al range of tim e 0 < I <  «.

Since we are interested only in short times, we m ay approxim ate (54). W e  
find fo r sm all s

(2(0, y, t; 0 , i?, io) ~  G{y, jj, t -  t0) (59)
where

G(y, v, s) = exp -  ~  (y2 + yn +  , ’ ) }

One m ay expect (59) to be valid  for any gaussian process w ith  a = -j, although, 
of course, (54) holds only for the special exam ple (49).

Let Rk(y, 8) be the p.d. fo r arriving a t the position (0, y, s) along a t ra 
jectory  th a t crosses x — 0 precisely к times between tim e zero and tim e s. 
In  particular,

t f  o(У, S) = P (0, y, s). (60)
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W e also introduce the generating function

R“(y, s) =  'ZvkRk{y, s). (61)

The integral equation (56) becomes

Ro(y, s) = t ( 0, y) — JQ dt JQ [G(y, i), t) +  G (y,—n, t)]RQ(ri, t)ii di), (62) 

which fo r short we write

До = П -  (G+ + G L )fl„ . (63)

A  com plete set o f integral equations for all the Й* is given by

R' = П -  (1 — „)(<?+ +  (?_ )« '. (64)

The q u an tity  P m(0) is given by

Pm(0) =  —2ir -j- Г f Rm(y,s)ydy\ (65)
as l  Jo j,_o.

If we iterate  (63), we find a series expansion equivalent to equation (13). 
For more rapid convergence) we should use a set of equations equivalent to (7). 
These equations are

R’ = П -  (1 — y)H -  (1 -  v^G+R’, (66)

where H denotes the known function

H =  J  Rik+1 = (<?_ -  (?+)П. (67)
к

Note th a t in (66) only G+ and not (?_ appears. I f » = 0, (66) gives

Ra = n  — H — G+Ra (68)

which when iterated  gives (7). The first power of v in (66) gives

Rl = H -  G+Ri, (69)

which when iterated  gives (8).
Let us look in detail at (68). The solution for small s will look like

* * • > - 5  [ > - ' ( :& ) ] ■  (70)
W hen this is put into (68), the dependence on s disappears, and we have an  
integral equation for the function F (x ) of one variab le :

F(x) = ^  d\ u d u  |е-СИ)Х(**-ги+«»)

• (7 1 )
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W hen  this is solved, we have im m ediately

P o(°) =  / “ xF(x) dx. (72)

A s a  check, we m ay note th a t neglecting the term  in F on the rig h t of (71) gives

Po(0) =  ^ 0  ^  d\ xdx udu  еГ<иж**-*1*+<*'>, (73 )

which is identical w ith  _Y2ii (see Section 5). (N — 1) successive substitu tions  
fo r F  on the right-hand side will produce the series (12).

A  solution of (73) in closed form  would be of interest.
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The s ta t is t ic a l d en sity  function is derived for a variab le  (such as the surface 
elevation  in  a  random  sea) th a t is ‘w eak ly  non-linear’ . In  the first approxim ation 
the d istribu tion  is G aussian, as is well known, In  higher approxim ations it  is 
shown th a t  the d istribu tion  is g iven by successive sums of a  G ram -Charlier 
series; no t qu ite  in  the form th a t has sometimes been used as an em pirical fit 
for observed d istribu tions, but in  a  modified form due to Edgeworth.

I t  is shown th a t  the cum ulan ts of the d istribution  are much sim pler to calcu late  
th an  the corresponding m om ents; and the approxim ate d istributions are in fact 
derived  b y  inversion of the cum ulant-generating function.

The theo ry  is app lied  to  random  surface w aves on w ater. The th ird  cum ulant 
and hence the skewness of th e  d istribution  of surface elevation  is evaluated  
ex p lic it ly  in  term s of the d irectional energy spectrum . I t  is shown th a t  the 
skewness Л3 ia g enera lly  positive, and positive upper and lower bounds for Л3 
are  derived. The theoretical results are com pared w ith  some m easurem ents m ade 
b y  K insm an (1960).

I t is found th a t  for free, undam ped surface w aves the skewness o f the d is
tr ibu tion  of surface slopes is of a  h igher order than  the skewness of the surface 
elevation . Hence the observed skewness of the slopes m ay  be a  sensitive ind icator 
of energy  transfer and d issipation  w ith in  the w ater.

1. Introduction
I t  is w ell known th a t  in  the lin ear theory of w ind-generated w ater w aves, in 

w hich squares and  h igher powers of the surface d isp lacem ent are neglected, the 
s ta t is t ic a l d istribu tion  of the surface elevation  and its  d erivatives is Gaussian, 
under qu ite  genera l conditions. Moreover, the G aussian d istribu tion  of the 
surface e levation  and bottom  pressure has been fa ir ly  w ell verified in  some c ir
cum stances (see, for exam ple, R udn ick  1950; B arber 1950; P ierson 1955; M acK ay 
1959). Q uite ea r ly , however, B irkhoff & K otik  (1952) pointed out sign ificant 
departu res from the G aussian d istribution  for w aves in  shallow  w ater. S im ilar, 
though less pronounced, effects for w aves in  deep w ater were found by B urling
(1955) and K insm an (1960).

The d istribu tion  of surface slopes w as shown b y  Cox & M unk (1956) to have 
an appreciab le skewness in  the direction of the w ind ; and surface curvatures in 
w ind-generated  w aves m ay  be even more ra d ic a lly  non-G aussian (Schooley 
1955).
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Several theoretical investigations h ave  la te ly  been m ade into  th e  dynam ical

m ,  * 1!  r ~ “ 6S pr0duce in  th e  4u ad ra t ic  spectrum  of the sea surface 
ib  ° № ♦ f  L1 lp s  1960, 1961; H asse lm an n  1960, 1961, 1962). However, 

., , 60 °_ “ ®. non"l*nearit ie s  on th e  s ta t is t ic a l d is tr ib u tio n s  h as  received  less 
a  en  ion. i 'ps (1961) has po in ted  out th a t  th e  su rface  e lev atio n  m ust in 

с av e  а  сое c ien t of skew ness of th e  sam e order of m ag n itu d e  as th e  surface
, U ® gher m om ents of th e d is tr ib u tio n  h av e  n o t been ca lcu la ted , nor 
has th e  com plete d istr ibu tio n  been derived .

/ ‘ Г  au ^ 0,"s №ox & M unk 1956; K in sm an  1960) h av e  fitted  th e  observed 
stn b u tio ns of surface slope or e levation  b y  m eans o f a  G ram -C h arlie r series, 

™ ap p aren tly  no ju stifica tion  beyond the fac t th a t  a n y  function th a t  is 
su c ien t у  w ell-behaved can be expanded  in  such a  series. The coefficients of 
successive term s are  re la ted  to the m om ents of th e  function  itse lf.

n  t  e present paper we derive the theo retica l d is tr ib u tio n  of q u an titie s  (such 
e sur ace e levation  or surface slope) w hich can  be described  as ‘ w eak ly  non- 

ear , th a t  is  to s a y  the o rd inary  rep resen tation  as  th e  sum  of independen t 
om com ponents is v a lid  to a  first app rox im ation , b u t q u ad ra tic  and  higher- 
m  eractions between the com ponents cannot be en tire ly  n eg lected . A t each 

ampUtud ^  CÛ a^ ° n ^  can 'ied  un ifo rm ly to a  ce rta in  pow er of th e  com ponent

As one would expect, the first approxim ation  corresponds to the o rd inary  
., r , lan  . " " » * » ■  found th a t  h igher ap p ro x im atio n s are  described  by 

e aussian  aw  m ultip lied  b y  certa in  po lynom ials. These expressions corre- 
successive term s in  a  G ram -C harlier series; not, how ever, in  th e  

f  l a\  j 6611 СОттоп1У use<  ̂f°r f ittin g  the d istr ibu tio n s, b u t in  a  modified 
orm  ue о  gew orth (1906a,6 ,c ). For exam p le , i n  th e  s e c o n d  app ro x im atio n  

po ynom ial occurs, b u t in  the th ird  app rox im ation  one m u st include a  
q u a r t ,с po lynom ial p lus another of degree six.

ughly the method is as follows: from  the dynam ical equations i t  is possible 
, з- е successively higher moments o f the statistical variab le . I t  tu rn s out 

. , еГ. ajn °0D* .̂ na^̂ ons the moments, nam ely, the  cumulants, are sim pler
1 l l i 1̂1  ̂as converuent to handle, as the moments them selves. B y  

a  mg e cum ulant-generating function to a certain order and taking  the

function ГаГ1£ 0ГШ ° Пе 0*3fcâ ns desired approxim ation  to  th e  d is tribu tio n

The analysis is essentially sim ilar to Edgew orth’s (1906) generalization o f the  

М aW °  ЛГ  ^°r  a Ŝ n^ e v a riable, but is presented here in a ra th er 
Th ^  °-ГШ ^  m oreover extended to  tw o or more dependent variab les.

, ,  6 о tru n ca tin g  th e cum ulan t-generating  function has been  used  in
!°a  fc eory turbulence (see, for exam ple, O’B rien & F ran c is  1962)

’ л° a.*.aS t  tt a u t^0 r *s aw are , f°r  the specific purpose of ca lcu la tin g  pro-
ы  У  1®s ' ence some of the resu lts of the present s tu d y  m ay  be ap p lic 

ab le  also to tu rb u len t fluctuations.
The basic an a ly s is  for a  single non-linear v a riab le  is  g iven  in  §2 . This is  th en  

pp e , in  § , to the d istribu tion  of surface elevation  in  a  random  sea. In  § 4 
e res ts are com pared w ith  recent observations m ade b y  K insm an  (1960).
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The next th ree sections follow a  sim ilar scheme: the jo in t distribution of two 
re la ted  non-linear va riab les  is  derived in § 6; th is is  applied to the jo in t d istribu
tion of surface slopes in § 6, and in § 7 the well-known observations of Cox & Munk
(1956) are discussed. The conclusions are restated  in §8.

2. A  single non-linear variable
As w ill be shown in §3, the lin ear spectral representation of the sea surface 

e levation  £ can be expressed in  the form

i -  z « t & ,i—1
where the a { are  constants and  the are independent random  variab les sym 
m etrica lly  d is tr ibu ted  about 0 w ith  variance V{, say . The convergence of p(Q 
to  a  G aussian d istribu tion , w ith  va rian ce  2 ^ , is a  case of the so-called ‘ law  of 
la rg e  n u m b ers ’.

In  the m ore ex ac t non-linear theory, in  order to satisfy  the dynam ical equations 
for £, q uad ra tic  and  higher-order term s m ust be added to £. L et us then consider, 
in  a  genera l w ay , th e  d istribution  of the variab le

£ = O ik  + a t / k f ,+ < *«*& £,& + ..., (2.1)
where a,it a ip  ctijk, e tc ., are  constants, and the sum m ation convention is used. 
Thus in  (2.1) each  product is  summed over a ll repeated  suffices, from 1 to N. 
W ith  each va lu e  of i is associated a  vector u,- (the w avenum ber). L ater, we shall 
m ake N ->cc and each Vi -*■ 0 in  such a  w ay  th a t  over an y  sm all b u t fixed region du

2  V i^ - F W d u  + Oidu)2. (2.2)
o3da

T lie first few m om ents of £ can be w ritten  down b y  inspection. Thus tak ing  
m ean  va lues in (2.1) one has

£ = + £* + . . . .

A ll m ean va lues o f odd-order term s vanish , w hile am ong the term s of even order 
on ly  those rem ain  in which each is paired  w ith  a  s im ilar Thus*

£ = « « 4  + 8. + (2-3)

(I t  is assum ed th a t  the a  are  sym m etric in  th e ir suffices so th a t , for exam ple, 
“ iitf = a ijji = a i w )  There are, in  general, term s invo lv ing e tc .; these
become neglig ib le  on passing to the lim it as N ->■ со, and  so w ill be ignored.

In  a  s im ilar w ay , by  squaring  both sides of (2.1) one has

£2 = (a i £t + ay& £ J + ...) (a * £ *  + a H£ft&+---) 

an d  on tak in g  m ean values

= a i a {Vi +  {2ai j a j i  + a i i a.J j)Vi Vj +  6 a i a i j j Vi Vj  +  . . . .  (2.4)

The higher m oments m ay  be calcu lated  s im ila r ly , b u t a d irect approach leads to 
com plications. W e shall show how these can be circum vented.

* The usual summation convention ia extended to three repeated indices.
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I t  w ill be no ticed  th a t  some of th e term s in  (2.4) an d  in  h igher m om ents can 
b e factorized*

“ « a - j jV J j  =  (a«F<) (аи Ц),

b u t other term s, e .g . cannot. The la t te r  te rm s m ay  be called  ‘ irre 
d u c ib le ’ , and i t  w ill be conven ien t to in troduce an  ab b rev ia ted  no tatio n  for them . 
Thus le t  a ^ i  be denoted sh ortly  b y  A r, where r  is th e  num ber of suffices i , j  . . . I ;  
an d  le t  the sum  of a ll the irreducib le  term s in  th e  m ean  product

be denoted s im p ly  b y
(A p A Q. . . A s).

C learly  when (p  + q +  . . . + s)  is odd, th e  above expression  van ish es. A lso

(4 f )  = а & М , (A t) =  a  {i7*, (2.5)

( 4 ? )  =  0  (n  > 4 ) , j

(А \ А г) =  2 с с ^ а ^ 7 р  И 1Л )  = 3<*ia w Vi Vi ’ (2 '6)

(2.7)

(A l)  — (A t ) — 3

(А\А\) = 8a  i a.j a,ika jk Vi Vj Vk, ( 4 M s )  = 6сс^ сска.т Щ У к,}

{А\АД  = ацккЩ У к. ( A .A ,)  = \5а.и ) т У ^ к,

(A 1 A 2A s) =  (6<Xi<X-ij&jkk + ®a i a 3'fca tife) (-^2) = 8a ii  a jk a fc£ ̂ гЦ к̂>
(4£) = (9a w a ilck+  6ccijkctiJk) (A 2A t ) =  12 а ^ а т к У{Щ ,

(As) =  15a цт к Щ У к.

The first few m oments can now be w ritten  sh o rtly  as

£ = Z (-4 P), P  =  'Z [(A p A i ) + (Ap) ( A t ) l
P P,Q

P =  S  t(A p A qA r) +  3(A p A q) ( A r) +  (Ap ) ( A l, ) ( A T)],
(2.8)

etc ., where th e  sum m ations ате over a ll positive in teg ra l v a lu es  of p , q, r  (in 
c lud ing  equal va lues). G enerally,

Zn =  2  [С (я )ш (п )  +  0 ( » - 1 , 1 ) ш ( п - 1 , 1 ) + . . . ] ,  (2-9)
p. г......e

where v}(i, j ,  denotes some grouping of A p, A a, . . . ,  A s in to  u n o rd ered f sets
contain ing i, j ........ I m em bers, and  G ( i , j , . . . , l )  denotes the num ber of w a y s  of
choosing such sets. I f  r  denotes the num ber of sets in  та we h ave

C(i i I) = — -  n! -  (2.Ю)

* The factorization of any given product can be shown to be unique.
Both the seta and the members of each eet are unordered. Each w  ia considered as 

distinct from the rest.
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W e have thus calculated =  /in, the nth moment o f the distribution. I t turns 
out, how ever, th a t the cumulants o f the distribution are much simpler. Whereas 
the moments correspond to the coefficients o f (it)n in the function

ф(Щ = j^ p iQ eK d S

= I + f f W + f f W 2+ - ,  (2.11)

the cum ulan ts, b y  definition, correspond to the coefficients of (it)71 in 

К  (it) = log ф(Щ

= + (2 .12)

On eq u atin g  coefficients of (it)n in (2.12) one has

=  к3 =/1г - / 4 ,  лга = /fa — 3/ iy^  + 2/4, 

etc ., and  so on substitu tion  from (2.8) we have

<1=11 (A p)> *2 = I  (А р А Я)> *3 = S  (AV\ Ar)>
V P.Q P.Q-r

etc . This suggests the re lation

*n = S  (Ap A , . . . A , ) .  (2.13)
V.9.

To prove th is, we note th a t since

ф(И) = eK<<0 = exp J i+ y |  W  + ̂ ( i i ) 2 + ---J (2-14)

one has, on equating  coefficients of (it)n in  th is expression,

«  nl Ki K j . . .K,
^  r ^ r\  i+, +- +1. n i\j\...l\

=  2  2  C ( i , j , . . . , l ) K i Kj . . . Kl, (2.15)
r —1 i+i+...+Z—n

where C ( i , j ,  . . . , l )  is g iven  b y  (2.10). Therefore the equations for fin in  term s of 
th e  кп are  fo rm ally  id en tica l w ith  th e  equations for /г„ in term s of ^ (A p A q ... A s). 
Since f ix — ~Z(Ap) th e  general resu lt (2.13) follows b y  induction.

R eta in in g  a ll term s up to the six th  order in  the (i.e . th ird  order in  JJ) we have 
from (2.13)

K1 = (A 1) + (A t ) +  (A e),

кг =  (Л?) + (A l)  + (A l) + 2 (А 1А а) +  2 (А гА 5) + 2 (А гА ,),  

к3 = (^1) + З М М 2) + З М ? Л ) + 6 И И 2^з), 
k4 = (A l)  +  4 ( A lA a) +  6 (A {A l).

From  (2.16) i t  is seen th a t  k1 and k2 are both of order V, in  general. However, 
when n  > 2 the low est non-vanishing term  in  к п  is га(4™_1.(4п_1), which is  0 (  Km_1).

(216 )
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The coefficients of skew ness an d  of ku rto sis  w ill be defined b y

Аз = *a/*2> К  = KJ Kl> (2-17)

w h ich  are  of order and  V , re sp ec tiv e ly . M ore g en e ra lly ,

A . = K j 4 n = O (F b - i ) .  (2.18)

The density o f  £
Now provided  th a t  the p ro b ab ility  d en sity  p(£) is u n iq u e ly  determ ined  b y  its  
m om ents, p(£) can be ob tained  d ire c t ly  й о т  (2.8) b y  in v e rt in g  th e  Fourier 
transform :

?(£ ) = ^  Ф(И) e~a£ dt = ^  J  exp [К(г<) -  itQ  dt

= ^  J *  exp  [(/Ci -  £) it  +  \кг{й)г + £/с3(г()3 + . . . ]  dt.

Su b stitu tin g  t =  s /k \, ( £ - K i ) = f i 4 ,
we h ave

#(£) = j" e x p [ - ^ ( s 2 + 2ifs) + ^ 3{is)3 +  ^t Xi (is)i +  ...]<2s,

where A ,̂ as we h ave seen, is  0(Ft™-1). The second group of te rm s under the 
exponen tia l can now be expanded in  powers of V^, g iv ing

P ( 0  = “ j  J _  exp  [ -  i ( s 2 + 2i/s)] [1 + ^Аз(й)3 + {^fA4(is)4 + ̂ A | (is)6} + . - ■] ds. 

B u t we have id en tica lly

^  | ^ £ >в ч ' [ - « « , + а д а д *

where B n denotes th e  H erm ite po lynom ial of degree n :

f f  w ( 7 t - l ) / m~a та(та — 1 ) (ra — 2 ) (та- 3 ) f n~* (2 .10)
n J  1 ! 2 2 ! 22 

H ence we have

p(Q  = (2лк„)-4е-4/, [1 + ̂ АзЯз + (Д А 1Я4 + ̂ А | Я в) + . . . ] .  (2-20) 

From  (2.19)
Нй = р - 3/, Я4 = /‘ - e/* + 3,
Я5 = /» - 10/3 +15/> Д6 = /6 _  !5/^ + 45»/« -  15

E quation  (2.20) is  the d istribu tion  sought. I t  corresponds qu ite  c losely to  E d ge
w orth ’s form of the typ e  A G ram -C harlier series (K endall & S tu a r t  1968, § 6.18). 

In  a  first approxim ation , A3 and A4 can be neglected and we tak e

J (2 .21)

*2 =  (A \) =
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Thus y(£) = <ri/7(2™2) i , f = C l 4 -  (2-22)

This is the well-known G aussian law .
In  the n ex t approxim ation  A3 is taken  into account, hu t A3 and A4 are neglected. 

To the sam e approxim ation

*1 = Ш  = a HVit k2 = (A l) = с ^ а ^ Л  ^  

к3 = 3 (А \ А г) =  6а (а^акЦЦ, кп =  0, (n > 4), J
and  so p(Q  -  (2VTK2)~i H ** [1 + ^Л3(/3 -  3/)], (2.24)

where f = £ l Kl ~ Ki !K\ (2.26)
and  A3 = 6a.i a.j a.i j Vi Vj l(a i a.j Vi)i. (2.26)

Thus the m ean  va lue  of £ is  shifted b y  an am ount a.i iVi and the density  is m u lti
p lied  b y  the facto r ^  + ш / з _  3/)] (2 .27)

w hich in troduces a  skewness A3. The kurtosis is zero, as are a ll the higher 
cum ulants.

In  the next approxim ation , the d istribution  is given b y  the fu ll equation (2.20). 
The m ean к1г v a rian ce  k2 and  skewness A3 are  a ll s ligh tly  modified, and a  non-zero 
ku rtosis Л4 appears, g iven b y  kJ kI, where

к , =  4 (А \ А 3) + Ц А\А1)
= 24cci ocj cckcc0 k Vi Vj Vk + 4 8 a i a J <xikfkVi Vj Vk. (2.28)

3. Application to gravity waves
Consider a  random , homogeneous surface d isp lacem ent on w ater of infin ite 

depth . To a  first approxim ation  such a surface m ay  be represented in the form 
г = where

J w = E « n c o s^ n, »//■„ = ( k ^ . x - c r j + e j ,  (3.1)
71 = 1

where x is the horizontal Cartesian co-ordinate, t the tim e, a  horizontal vector 
w ave-num ber, <rn the frequency, re lated  to k„ b y

<A = 9 !k J  = Я К
(where g is  the acceleration  of g rav ity ). a„ and dn are  am plitude and phase 
constan ts, chosen random ly so th a t  an co s6n and  an sin  6 n are jo in tly  norm al, 
w ith  6 n un ifo rm ly d istribu ted  and

2  f r * ^ E ( k ) d k .
k,3dk

L e t a n cosfln = £n, a n s m 9 n =  ^ ,  (3-2)

th en  we have £(1) -  £  [£«, cos ( k . x -  <ri) + £'n sin ( k . x -  <rt)], 
n=l

which, if  we w rite  is of the form
2 N'

£a) = 2  
i —1
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th e  a  being constan ts for a  fixed position  an d  tim e. Also

= K  « = 1 .........22V').

B y  th e  assum ption  of hom ogeneity we m ay  consider the d is tr ib u tio n  of £a) a t 
th e  sp ec ia l po in t x  = 0 and  tim e t — 0; hence we m a y  ta k e

= ; 1  (г = 1 , N'), |
4 to  (i =  N' + 1, ...,2 2V ') ./

(3.3)

W e can  now m ake (3.3) correspond to  the lin ea r p a r t of (2.1) b y  se ttin g  2V = 2N 1 
and  u t = k j, = k j ( i = 1, ...,2V '). M oreover

2 l f  = 2 R  = ® (k )d u  (3.4)
du  da

in  each  range i  = 1 = N ’ + 1 , . . . ,  22V'. So com pared w ith  (2.2) we have

F (u )  =  E ( k )
in  each  range also.

Corresponding to the free surface e levation  £a) is  a  v e lo c ity  p o ten tia l

Фа) = 2  bi ek<t smifr-i  (b{ = Oj o - j k j .
г

H ow ever, £a) and  ф(1) a re  on ly  first approxim ations. To sa t is fy  th e  b o un d ary  
conditions a t  the free surface to h igher order one m ust add fu rth er term s in  the 
series £ = £,1)+ £ ® + ...1 

ф = ф@> + -f
in  w hich  £(2), Ф12> contain  term s proportional to  the squares of th e  am p litu d es ; 
g(3)( ф(2) contain  term s proportional to the cubes of the am p litu d es, an d  so on. 
The equations for and  £(2) are

V ^ ( 2) = 0;

Уфа) о, when z-*- — oo;

( p + g S ) ф{?)= - | w (i))2-^ a,| ( § + * | ) Фт  when г = °-

(3.5)

т г +*<^>,+ ^ Щ _ а- (36)
I t  is assum ed th a t  the m ean leve l is zero. Su b stitu tin g  for фт  in  the th ird  of 
equations (3.5) we have

( gj 0 \
dt? + 9 dz) = ~ 'p bi bM tri ~ <ri) (kf-kj + Ai^sin ( f a - f a )

+ (<7i + <Tj) (Ц  • k j  -  fej k}) sin  { f i  +  fa ) ]

and*, *>>. g » A Л ' «

N
1
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Inserting th is in  (3.6) and substituting for bit and it{, crj we find

467

£<2) = S  — {т [(Вц ,  + B t i  -  К . к ,  + (k{ + kt) (M ,)*} cos i r t coa f ,

+ ( B - j - B l ) - k i k) ) a m . f i s m f j ], (3.7)
where

В  «• (V^i ~ A - )2 (kf ■ k, + kt kj) + (л/kj + V&j)a (k j . k j — k{ kj) . 
(^kf — yjkj)2—Ik j.k jl ,j (V^i + V ^)*—I кг + Ц)

Now a t  the point x  = 0, t = 0, the phase f a  reduces to 0{ and so 

(a*cos xjriy at sin \jr() = (£„£*+.)■

Hence to a second approximation we have

£ = 2  a <£i + 2  a t ji iZ ji
< *.3

where a i5- is given b y  (3.3) and

'(fe* + B+} + Ц .Ц + &  + *,) (^  ̂ )i}  when
(ki ̂ ) _ i ( R i j  ^ ) when i , j  = N' + 1 ,. . . ,2N ',
0 otherwise.

(3.9)

The diagonal terms a tt are given aa the lim it of the above expressions as k j - »  kj. 
Then B[j and 2?t. both vanish and

( к{ (t = 1,
“ “  1 -A f (i = N' + l , . . . ,2 N ') .

Taking account of (3.3) we have then

S  M S -  S  W  = o.1=1 i-1

/c2 =  a , a ( ^  =  2  17., 
1=1

(3.10)

*3 =5= 6a<a j a «F i^  = 6 2  ЛцЦЦ.
г,3-1

The first equation sim ply states that the mean surface level is zero, to second 
order, as was specified. The next two equations, in  integral form, can be written

кг Ф j j E ( k ) d k ,  к3 Ф 6 j J j fK (k ,k ' )E (k ) E (k ' ) d k d k ' ,  (3.11)

where
Х.Л- ,,.4 1 U J k - J k ’)*(k.k' + kk') , Uk + J k T ( k . k ' j - k k J

} ~  (И')Н (#-#')a-|k -k T + (VA+#')2-|k + k'l
- k . k 4 ( *  + 4 ') (» * )* ] .  (3.12)
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I f  we take polar co-ordinates (k, ff) in the к -plane and introduce the directional 
spectrum .F(cr,0) b y

F(cr, <9) dtrde — .E(k) ik  = ^(k) ledlcdfl

so th a t F(<r,e) = k ^ E ( k )  = i r E(k),
acr act 

then we have 

к2 = f f F(o-,6)d<rde, k3 = 6 fffjк(k ,k')J?(M )P(< Л 0O < ^^'< Ш6''■ 
J J  J J J '  (3.13)

In  the one-dimensional case when F(<T,d) vanishes everywhere except when
6 = 0 the above expressions sim plify very  considerably. For when k ' is parallel 
(or anti-parallel) to к  we find

K (k, k ') = min {к, к')
and hence

k2 = J  F(a)dir, k3 = 6 jjm in (fc ,k')F(cr)F((T')dadcr', (3.14)

where F(<r) = jF(cr, в) d6 denotes the spectral density w ith regard to frequency. 
The above expression for k3 m ay be w ritten

/cs = 12 f f kF(<r)F(<T')d<Td<r' (3.15)
J Jk<k'

= 1 2 1 ” [ f  b P (^ )do ] F(<r')d<r', (3.16)
where k = <r2/gr.

L et us exam ine the form of K (k, k ') in the general case, when the angle between 
к  and k ' is equal to y , say. W riting

(k + k')l2 {kk')i = i) 2s 1

(by Schwarz’s inequality) we find from (3.12) that

K (k ,k ') = (kk ') i f (V, y ) ,  (3-17)

where f ( V, y ) = ----- f t " I ) (I  + C) x-------- ( i? + l) ( l~ c )  (2  } (318)
(7 - l ) - ( ^ - ^ - i c ) i  ( ,  + i ) _ ( ^ _ ^  + ic ) i

and с  = cosy. I t can be shown th a t/(7 , 7 ) is non-negative. For from (3.18)

f(v> y )  = 2 ( » | - l ) ( l+ c ) [ ( r l )  + t f - b ^ ]
— (4tj — с — 3)

2(V + l ) ( l - c № + l )  + { r j* - i  + f r f t  ft>
(4Ч-С + 3) '

Since all the factors in each expression are non-negative, the two radicals m ay  be 
replaced by (?/2)i = 77 without diminishing the right-hand side. After some 
reduction we then find

ЯЧ.У) *  ' > °- (3‘19)

I t  follows that K (k, k ') is non-negative, and th at so also is k3, in  the general case.
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The form of/(17, 7 ) can be seen from the curves in figure I. The two extreme 

fiV. °) = № ,* )  =V-(V*~  1)*. (3-20)
7 = 1001

values are eq u a l:

F i g u b e  1 . Graphs o f /{5/, y), defined by (3.17), for various values of T).

and for fixed values of ij there is a  minimum, a t about tj = 90°. However, the 
curves are not sym m etrical about the mid-point of the range of tj. For example, 
/ (1, у ) has a  stationary point a t у  ■» Obut not a t  у  — тг. Further, though it  appears 
a t  first sight that /(i?,y) never exceeds f(T), 0 ), in f a c t/(17, y ) is an increasing 
function of у  when у  is sm all and tj is very close to 1 . A numerical investigation

shows th a t 0 -4 4 /(17, 0 ) </(’? .У) < I'Ol/fo.O) (3.21)

over a ll values of y. From (3.13) and (3.17) i t  then follows that in general

0-447 «  k3 sj 0-01/, (3.22)

where I  denotes the integral on the right-hand side of (3.15) or (3.16). Further,

Writing L = 1/4, (3.23)

we deduce the following theoretical bounds for the skewness:

0-44L sS A, sS 1 0 1 L. (3.24)
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In  the two-dimensional case we have alw ays

Aa = L. (3.25)

I t  w ill be seen from (2.28) th a t the next cum ulant Ki  generally  involves the 
th ird- and fourth-order terms ctijk and ctikjk. These can be calcu lated  in  a  sim ilar 
w ay . In  general, however, they w ill be w eakly dependent on the tim e t, owing 
to resonant interactions between the wave components (cf. Ph illips 1960; 
H asselmann 1960). Moreover oc{jk, for exam ple, w ill gen era lly  be of the sam e order 
as min (le%, Ц, Jcfc). Hence the convergence of the corresponding in tegra ls will 
depend rather critica lly  on the behaviour of the spectral density -E(k) a t  high 
wave-numbers. W e shall not calculate the higher-order moments here, beyond 
rem arking th a t according to the present analysis k4 and A4 are proportional to 
{.E(k)}2 and {E(k)}, respectively. Hence if  the integrals sub stan tia lly  converged 
over the region in  which viscous damping was negligib le then A4 would be of 
the same order as A|.

4. Comparison with observation
An extensive study of the power spectra of w ater waves over short fetches, and 

of the corresponding statistical distribution of surface elevation, has been made 
by K insm an (1960). In the second column of tab le 1 are shown K insm an’s 
observed values of k2, and in the th ird  column the value calcu lated  from the 
power spectra* using equation (3.11). The first group of calculations, from records 
009 to 067, are based on estim ates of spectral density a t  frequencies of 0(0-1) 2-5 
c/s; the second group are based on estim ates a t more closely spaced intervals 
from 0(0-05) 2-5 c/s (not availab le for records 009 to 028). I t  w ill be seen th a t the 
agreement between the observed and calculated values of k2 is w ithin  5 % except 
in  the case of two records, 028 and 087 (for which there seems no obvious exp lana
tion). There is only a  slight difference, of the order of 1 %, in  record 067, between 
the values of calculated from the less closely spaced, and from the more closely 
spaced, spectral estimates.

In  the fourth column of tab le 1 are listed the values of the skewness coefficient 
A3, as observed by Kinsman, f  I t  w ill be seen at once th a t a ll except three of the 
observations are positive, as predicted, and of the three negative values, two are 
very  sm all.

In  the next column of tab le 1 are shown the values of L calculated from 
equation (3.20), th a t is to say  the theoretical values of A3 if  the spectrum were 
uni-directional. (The two theoretical estimates for record 067, which differ b y  
about 12% , suggest that the estimates derived from the more closely spaced 
spectral estim ates are significantly more accurate.) The ratio  AJ L  is shown in 
the sixth column of table 1. According to equation (3.24) th is ratio should lie 
between 0-44 and 1-01. Out of the total of 24 records i t  w ill be seen th a t 18aatisfy 
the inequality AJL  ^ 1-01 and that 15 satisfy AJL Ss 0-44.

In  the last column of tab le 1 are shown the observed values of A4 as found b y

* Kinsman tabulates P ( f )  where f  — frequently in c/s. He uses a slightly different 
definition of the power spectrum, so that P d f = \ F ( a ) d ( T .

t  In table 5.10 of Kinsman (1960) it is JA3 that is tabulated.
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K insman (who tabulates £A4). Although some of these values are of order Al, аз 
m ight be expected, there are several values of nearly 0-4, which is unexpectedly 
high. P art of the variab ility  in A4 m ay no doubt be attributed to the finite size 
of the sample; but probably i t  reflects also the sensitiv ity of the integrals to the 
high-frequency end of the spectrum, which is not included in the measured values.

к г (cm*)
r 4 A, L A3/£ A,

R ecord obs. th . obs. obs.

009 8-45 8-39 0-344 0-284 1-21 0-092
010 8-94 8-94 0-286 0  293 0-98 - 0 - 0 3 0
O il 10 -82 10-77 0-192 0-234 0-82 - 0 - 2 5 0
012 8-45 8-46 0-364 0-273 1-33 0-202
0 17 3-30 3-24 0-350 0-274 1-28 0-100
0 18 4 -12 4-09 0-438 0-257 1-70 0-366
027 3-87 3-83 0-316 0-264 1-20 - 0 - 3 9 2
028 3-13 3-77 0-356 0-204 1-75 0 -118
067 4-99 4-95 0 1 6 4 0-282 0-58 - 0 - 0 1 4

067 4-99 5-02 0-164 0-258 0-64 - 0 - 0 1 4
068 5-57 5-60 0-174 0-260 0-67 0-050
069 7-71 7-71 0-138 0-248 0-56 0 -4 14
070 7-23 7-23 0-054 0-243 0-22 0-090
075 9-65 9-62 0-202 0-249 0-81 0-080
076 7-37 7-37 0-184 0-240 0-77 - 0 - 0 6 2
0 8 1 3-46 3-40 0-058 0-169 0-34 - 0 - 1 3 0
082 3-64 3-59 0-068 0-196 0-35 - 0 - 2 3 2
083 7-57 7-37 - 0 - 0 0 4 0-192 - 0-02 - 0-202

084 6 64 6-59 0-088 0 -217 0-41 0-048
085 7-91 7-77 - 0-010 0-203 - 0 - 0 5 - 0 - 4 4 8
086 7-72 7-71 0-022 0-223 0 1 0 - 0 - 1 5 6
087 3-45 7-45 C-010 0-068 0-15 0-330
088 4 0 6 4-05 - 0 - 0 9 2 0 -177 - 0 - 5 2 0-300
093 9-34 9-33 0-288 0-336 0-86 0-432
094 U -30 11-29 0-272 0 363 0-75 0-046

T a b le  1 . C om parison o f  observed  andL th eoretica l coefficients
o f  d istrib u tion s o f  surface e levatio n .

The observed distributions p(£) themselves have been compared by Kinsman 
(1960) w ith the expressions

[exp ( -  K 2W ]  (2m cs)~i [1 + |A 3H;, + (4.1)

(see figures A III  2.01-2.24 of Kinsman 1960) and it  is found that the observa
tions are an appreciably better fit to (4.1) than to the corresponding Gaussian 
distributions, from which (4.1) differs by terms of order A3. Equation (4.1) 
differs from the theoretical distribution (2.20) by the term

[exp ( - № , ) ]  ( й п с .Н А З Д  (4.2)

which is o f order A|. Since the maximum value of

|(2*И  exp ( -  № !к г ) 1
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is equal to 0-083 a t £ = 0, and since the m axim um  value of A3, from tab le 1, is 
0-438 (A| = 0-192) i t  w ill be seen th a t the term s (4-2) are in fact rather sm all. 
I t  is found th a t they make no appreciable difference to the theoretical d istribu
tions (for the values of A3 observed) and th a t the agreement w ith  observation 
is not significantly improved. Equation (2.20) is indeed a  significant im prove
ment over the Gaussian distribution, but th is is brought about m ain ly  b y  the 
term  in As which is a lready included in (4.1).

S. Joint distribution o f two non-linear variables
The joint distribution of two or more variab les of type  sim ilar to (2.1) m ay be 

investigated in an exac tly  sim ilar w ay. In the present section we shall evaluate 
the distribution for two such variables. This w ill enable us, in  the following 
section, to evaluate the jo in t d istribution of the two components of surface slope 
in a  random sea.

Consider two variab les £, 'ij defined by

4 = £<+a i j£ < + x i ) k + • • ч 1 /g j*

v  -  f i i i i + № e , + f i < i u t e , b + . J  v '
where a t , a ijt ... and /?{, ... are constants and the £, are defined as before. 
W e denote by Ap and B Q the terms a.i} and /?<j m which contain respectively 
p  and q suffices, and by (Ар В я ...) the itreducible part of the mean product

For example
( ^ .B J 1) = 0 [n + m >  2);

(Al B 1 B 2) — i a i p j PijVi Vj , ( ^ B j )  —
(A\B2) = 2 а ^ 0 ц Щ .

The the jo in t moments of £ and rj m ay be written down by inspection. Thus

(6 .2)

f t i - f o -  ^ [{ A v B q) + {Av ){Bt )],
2>.Q

Ы  = = S  [{Av AqB t) + (Ap Ae ) (BT) + 2 (Ap) (AaB r) + (Ap ) (Aq) (B r)],
3=.a

and in  general
/*nm = £n?/m = S  C W 4 . i i i h . i i i - ) .  <5-3)

P . t ,  - .3

where rn denotes a grouping of Ap , . . . ,B g , . . .  into unordered sets containing 
i j  of Ap and j x of B q\ i 2 of Ap and j 2 of etc., w ith  (г-j + гг+ .. .)  = w and 
( j i+ j 2+ ...)  = m\ and w  is the number of distinct w ays of choosing such a 
grouping.

If j)(£, if] denotes the joint density of £ and rj the moment-generating function 
for the joint distribution is defined by

<]>{it,i8) = f  (*£(£,17) exp (it^+isrf) d^dfj = £  ^Я. (HY ( is )1 
J  J
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and the cum ulant-generating function is defined by

К  (it, i s )  = log ф(И, i s )  -  2  №  (is)1,
Ж0.0)

■where in the summation i  and j  take aJl pairs of non-negative integral values 
except ( i , j )  ш (0 ,0). Thus we have

ф(И, is) = exp [K(if, is)] = S  U  2  ^  (it)* (й)*Г
r=0 r - Ц1.Я+{0.0) J

and by equating coefficients of tms n in  this expression we have

where C(i1, j 1 ; i2, j 2\ ...)  is  the same constant as in (5.3). Hence we have simply 

Ki i  ~  2  № vi ■ ■ ■ ■ ■ ■ -®ep‘ (®-^)
Р ,  - и в , - - m

In  particular, к{а = к{, which is given as far as the terms in  Fs b y  equation (2.13). 
S im ilarly

*u  = (A.B,) + [(АгВ3) + (A2B2) + (A3 BJ] 
+ [(A1Bs)+(A2Bt) + ...+(Ai B1) l

КП = +
+ 2(АгА3В2) + (^1Р2) + 2(A1AiB1) + 2(A2A3Bl)], 

к22 = [2(A\B1Bz) + (A{B*) + i(A1A2BlBl) + (AlBl)+2(A1A3Bl)], 
к31 = [(A\B3) + ЦА\А2В2) + 3 (4 ^ 1 5 ,) ] ,

etc. I t  is evident th at in general is of O Tder 

The joint density p(£, ij) can now be found from

P(£,V) = exP [ - » (&  + ¥')] d tdt'

= (Texpf-i£<-M7<' + s

= J J  exp [{(k10- O  it  4- (лс01 -  у )  it'} -  £{k20<s + 2ku W + K02t'2}

+ ifo o W 3 + ̂ n ( i t ) 2 (it') + 3,h 2(it) (it ') 2 + Ar03(i<')3} + ■ (5.6)
W riting

t w/a"|0, (£—/Сю) =/k|0,

f  =  u ' l 4 2, (71 -  K01) = f 4 2 ,

and A0- = КуН4 0к>02)Ь,
we have

(5.5)

= лГТГГ----- Ti f  f  exp [ “  'Vй +f 'u,) ~ *(u*+ 2Al1 uu'+ u<2)](2Я)2 (*20*02)* J " »  
x exp[£г3{Ааощ3 + 3A21mV 4-.. .} + ...]dudu' .  (5.7)
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Now

I I exp { — i ( f u  + f 'u ' )  — %(u2+ 2p u u '+ u ' 2) ] ( i u )m (iu ' )n d u d u '
27Г J  —да J  _ w

= ^ ]Г« j _ toexV i - i(J u + f'u' ) - i ( u2+2Puu' + u'i^ dudu'

‘  ( w *  ^ « 4 . 1; - w + w + n / a - ^ i

= (1 -  p * ) - l /о) exp [-* (/ ■  -  2ptf' +/'2)/(l - p 2)] 
say , where Hmn is a two-dimensional analogue of the Herm ite polynom ial. Thus

H00 = 1,

S,o = ( / -p / ')/ ( l-p 2)4,
Я 01- < / '-/>/)/(!-/>*)*,
Я20 = ( / - р Л г/ (1 -р г) - 1 ,  
Я ц  = (/-p/') {/' -p/)/(l - p 2) + p,
Я ог = (/ '-р / )2/ (1 -р 2) - 1 ,  

etc., and when p = 0
Я»т (/, A  0) э  Hn( f ) H J J ' ) .

So w riting Au  = p in (5.7) we have
2K&1?) = { 2 ^ 2o'fo2-'fn)i }_1e x p [ - i ( / 2-2 p / / '+ / '2) / ( l - p 2)]

x [1 + 4(АзоД»0 + ЗАг1Я 21 + . ..) + . . .] .  (5.9) 
In  the first approxim ation, when terms of order are neglected,

P(C,V) = -к :? ,)*}-1 exp [ - ^ ( / 2-2 p / / '+ / 'a)/ ( l - p 2)],
where / = £/4o. / ' = and

*20 = « » “ i. «02 = A A . *11 = «»A - 
This is the fam iliar Gaussian b ivariate distribution.

In  the second approxim ation, taking into account Vi bu t neglecting V, the 
mean of the distribution is shifted to

(£>Ю = (Kl0>*0l)
and the abscissa is multipied by the factor

[1  + $ (А 30Я 30 +  ЗА21# 21 + . . . ) ]  

introducing various kinds of skewness, specified b y  the param eters Aao, Aai, Aia 
and A03.

6. Application to the distribution o f surface slopes
W e shall now apply the results of the last section to evaluate the jo in t d istribu

tion of the two components of slope of a random sea surface.
Suppose that the surface elevation is given by equation (2.1). Then on p artia l 

differentiation w ith respect to x and у  respectively we have

dg/dz = A l i  + A jS < !j+ —0  (6.1)
К Р У  = y d i  + 7 u Z i£ f+ - - - J
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where, if  (u{3 v t) denote the components of the wave-number к {! we have

Pi  = a tUi, y i  = a i v i .

Using the form of a.i as given by equation (3.3) we see th at and y it when 
expressed as vectors, have the form

: — и . . —и .........—
(6 .2)

(A) = ( 0 ,0 , . . . ,0 ;  - t t j ,  -Мдг),1
(?<) = (0, o , ..., 0; -  -  v ....... . -  i>w).J

Sim ilarly from (3.9) we see that f)ijt when expressed as a m atrix, has the form

/ 0 M\
W - ( M , 0 ) .  (».»)

where
/  ( U 1 a N + l, N +1 — и 1 (Zl l )  ■ • • ( '“ ' l  “ iV + l, 2N — U N  “ l ,  n )  \

M = | I J; (6.4)
\ ( UN a 2 N ,N + l~ U i aCN , l l  (U N K Z N ,2 N ~ 'U N ClN ,N )/

( у 0 ) has an exactly  sim ilar form, except that v{ replaces 
Let GT denote the term  y {j n which contains just r  suffices. We see now that 

the results of §6 are applicable to the two non-linear variables Э£/Эж, Э£/Эу  
provided th at we replace Ap , B Q by B v , Cq, respectively. In particular we have 
for the first few cumulants of the joint distribution (retaining only the lowest- 
order terms) the following: for the second-order cumulants

*М = (В|)=«ЗГ,= JJW(k)dk,
* u  = = j j u v E { k ) d k ,

*M = (C !)= t* F ,« J J «* tf (k )< fc .

(6.5)

Each of these is proportional to E(k) (or V). In the expressions for the third- 
o r d e r  cumulants *ao, k2V k12, kb3 i t  will be seen from (6.2) and (6.3) th a t a ll the 
leading terms vanish identically,

(B\Bt ) = (В\Сг) = [С\Вг) = (С1Сг) -  0.

Hence in the jo int distribution of the surface slopes, the th ird -order cum u lan ts  
a r e  o f  o rd e r  F3 at least.  The terms of next lowest order are

*ao — 3(J5|54) 4- 
*21 = {BlOi ) + 2 (B 1 B 2Ca) + 2 (B 1B 3Gi) + 2(B1 B i C1) + 2(B2B 3C:

with sim ilar expressions for k12 and /r03.
If  the distribution of slopes were sym metrical about the mean, then clearly 

all cumulants of odd order, such as the third-order cumulants, would necessarily 
vanish identically. This would certain ly follow if, for example, i t  were possible 
to reverse the direction of time (so th a t forward slopes became rear slopes, and 
vice versa) w ithout altering the statistics of the surface. However, we know in
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fact th a t the tim e cannot be reversed, even for free, undam ped waves, for i t  has 
been shown th a t there exists a  slow transfer of energy from one part of the 
spectrum to another (Phillips 1960; Hasselmann 1960). This transfer is repre
sented by certain terms of the third-order which occur in  A3 and hence in B 3 
and Ca * Since either B3 or C3 occur in  (6.6) we expect th a t the third-order cumu
lan ts are indeed of order V3.

Sim ilarly  from (5.5) we have for the leading term s in  the cum ulants of fourth 
order

#см = 4 ( В Д )  + в ( а д ) ,
< 3I= (£?Q ) + 3(B1S1C1), (6-7)
*1. = (В1С1) + 2(В»С2С3) + Ц В 1 В 2С1 Сг) + 2 (В 1В аС*) + (В1С1),.

etc. These also are of order V3.
I t  follows th a t the coefficients of sbewness

âo = к зо1 (к 2о)̂ > ^21 “  *21/̂ 20*021 etc,, 
are each of order F t in general, and th a t the coefficients of kurtosis

Л40 “  *4o/*ld 8̂1 = KzilKta ô2) etc.,
are each of order V.

I t  should be emphasized th a t the present model of the sea surface is a  model 
of ‘ free ’ waves, in  which not only is the viscous dam ping neglected bu t i t  is also 
assumed th at the stresses a t  the free surface are iden tica lly  zero. On the other 
hand, both the viscosity, and also the stresses due to the action of the atmosphere 
on the surface, m ay  be expected to produce some asym m etry in  the w ave profile. 
Since for free waves the skewness is theoretically of such a h igh order, 
~ ( к 2 о  + к0гЛ  the actual skewness of sea waves m ay be a  ra ther sensitive in 
dicator of energy transfer to the w ater, or dissipation of energy in  the medium.

7. Comparison with observation
I t follows th at in an y  comparison of the theoretical results w ith observation, some 

consideration must be given to whether the conditions of the theory (i.e. free, 
undamped surface waves) are ac tu a lly  satisfied. I f  there is an y  appreciable 
transfer of energy from the atmosphere to the sea surface, or if  there is a  con
siderable contribution to the slope distribution from the very  short waves, 
which are the most highly damped, then the free-wave model cannot be expected 
to apply.

In  model experiments, Cox (1958) has shown th at in  winds of between 3 and 
12 m/sec a  large part of the contribution to the mean square slope (observed 
optically) is associated w ith frequencies above 10 c/s, and hence w ith waves th a t 
are influenced predominantly by surface tension. ̂  If  the analysis of the preceding 
section were modified so as to include the effect of surface tension, it  would still 
be found that the third-order cumulants were of fourth order in  the wave 
amplitudes. On the other hand it  is unlikely that, even w ith surface tension

* If the spectrum is one-dimensional, these terms vanish.
t  The frequency of waves having the minimum phaee-velocity is about 11 c/s.
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(*20 + *0»)1

(к£0 + /с0а)®
F igure  2. Observed values of the coefficients of skewness, plotted against 

(mean-square slope)i, &om the data of Cox & Munk (1956).
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included, the perturbation analysis of § 6 would app ly  in  such a situation, for 
the following reasons.

F irst, as the w avelength decreases, the short waves become increasingly 
influenced by viscosity, the tim e-constant being equal to (2vk2)- 1  or about 
0-71Л2 where A is the w avelength in  cm (see Lam b 1932, § 348). In  § 5 th is damping 
was en tirely neglected.

Secondly, i t  is un like ly  th a t a  linear first approxim ation is appropriate when 
the wavelengths and tim e-constants of the short waves are sm all compared with 
the orbital displacements and the periods of the longer waves. I t  is known also 
th a t there is a d irect transfer of energy to cap illary  waves from the steep crests 
of the grav ity  waves (Longuet-H iggins 1963), which can h ard ly  be described in 
term s of the linear perturbation scheme.

Third ly, the d irect action of the airflow over the w ater surface, which is 
perhaps most im portant a t  h igh frequencies, has been neglected.

Hence the conclusions of § 5 cannot be expected to app ly  to the observed slope 
distribution, certa in ly  if  the wind exceeds 3-18 m/sec and probably if  i t  exceeds 
the minimum phase-velocity of 19 cm/sec. An exception m ay  occur in  the 
presence of oil slicks, which are known to remove the energy in the highest 
wave-numbers.

In the measurements of surface slope made b y  Cox & Munk (1956), the local 
wind-speed ranged from 72 to 1380 cm/seo. Nevertheless, using the data  given in 
tab le 1 of Cox & Munk’s paper we have calculated the coefficients of skewness 
in  terms of the quantities defined in their paper, th a t is (if the ж-ax is is taken  in 
the direction of the w ind ):

A30 = cc3 = — ®<т̂ (а1 + а з)> 1 (7 1)
= cai = -2<ru<r?(Ch-3as)- i  

A ls o  *20 =  сг£, k 02 =  <r2. (7 -2 )

A plot of A30 and A12 against (/c20 + <c02)$ is shown in figure 2 (a) and (b), for those 
cases when the sea surface was free of slicks.

From figure 2(a) i t  does appear th a t A30 is approxim ately proportional to 
(/c20-f * 02) ,̂ as predicted. However, since the order of m agnitude of A30 is 
about tw enty times th at of (<c20 + xr02)  ̂it  appears more lik e ly  th a t the theory does 
not rea lly  apply to these observations.

On the other hand, Cox & Munk observed th at in  the presence of oil slicks 
the coefficients of skewness were very g reatly  reduced, and were in  fact so 
sm all as not to be measurable by their technique. Though not conclusive, th is 
observation is certain ly consistent w ith the theoretical result.

8. Conclusions
We have rederived the statistica l distribution of w eakly non-linear variab les 

of the type given by equation (2.1) or equations (5.1). The distribution of such 
quantities is shown to be Gaussian in the first approximation, and in successively 
higher approximations to be given by Edgeworth’s form of a  G ram -Charlier 
series, as in equations (2.20) and (5.9), respectively. These series differ from the
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series used, for example, by Kinsman and by Cox & Monk as empirical fits to 
observed data, but the differences occur only in the third and higher approxi
mations; they are practically negligible in the cases considered.

The coefficients in the distribution depend essentially on the cumulants of 
the original variables, which can be calculated simply in terms of the constants 
in (2.1) or (5.1). If  one assumes that the sea surface consists of free, undamped 
waves then it  can be shown that the skewness of the surface elevation is always 
positive and lies between the two bounds (3.24). This agrees, for the most part, 
w ith K insm an’s observations. The skewness increases proportionally to the 
b..m.s. surface slope s. On the other hand the skewness of the s l o p e  distribution 
is of a higher order and increases proportionally to s3. While this prediction is 
consistent w ith the observations of Cox & Munk, nevertheless, if  the local wind 
is appreciable the skewness m ay be largely affected by energy transfer from air 
to w ater, and by viscous dissipation.

I am indebted to Dr K. Hasselmann and Dr C. S. Cox for valuable comments 
on a first draft of this paper, and to Mr C. L. Gulliver and Mrs W. Wilson for 
assistance with the calculations for table 1 and the diagrams.
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M any random variables are almost linear, in the sense that they can be represented 
approxim ately as the sum of independent components in random phase. Such variables 
(for example, the surface elevation in a random sea) m ay have a  gaussian distribution in the 
first approximation. However in higher approximations the phases of the different com- 
ponents become correlated, due to nonlinear interactions. The purpose of this paper is to 
show theoretically what is the effect of such nonlinearities on the basic gaussian distribution.

The modified distribution is derived both for a  single variable and for two or more 
related variab les (such as the components of slope of a  random surface). The results are 
applied in the first place to sea waves, and are compared with observations. However the 
analysis is applicable quite generally to any such nonlinear variables.

Two further problems are solved for weakly nonlinear variables: the mean number of 
zeros per unit tim e of a stationary random function f  (i) and the distribution of the maximum 
values of f(0 - These solutions are essentially generalizations of the well-known results of 
R ice for gaussian variables.

1. Introduction

M a n y  random  variab les occurring in physical problem s m ay  be considered as the sum of 
a large num ber of in dependent com ponents; thus we w rite

“i£< (1)

w here the a ,  are constants and the ( ,  are independent random  variab les sym m etically  dis
trib u ted  ab ou t 0  w ith  varian ce  Vit say . U nder certain  conditions as and each Vt ^0, 
the d istrib ution  o f f  tends to a gaussian distribution  w ith variance ^ .V i .

In p a rticu la r it  is possible to consider some s ta tio n ary  stochastic  processes as the lim it o f  
a sum  such as ( 1 ), the £( being com ponents corresponding to p articu la r frequencies a ,  or w ave  
num bers k,;  there m ay  exist a continuous function E{v), the spectral density  o f f ,  such th a t in 
an y  sm all in te rv a l (<r,<r+dj) the sum of the variances Vt is given b y

lim  / 2  V, )= E M d< r+ 0 (d* y .
N->m

Such a representation  (eq uivalent to a stochastic in tegral) has been w idely  used in the 
th eo ry  o f noise in e lectrical circuits [Rice, 1944 and 1945], in the th eo ry  of random  sea surfaces, 
m icroseism s, turbulence, and o th er physical phenom ena [Longuet-H iggins, 1960]. The rep re 
sen ta tion  g ives m ost sa tis fac to ry  resu lts when the variab le  f  satisfies a  linear d ifferential 
equation  and can be shown ph ysica lly  to be the re su ltan t of large num ber of independent 
contributions.

In  some instances, how ever, the assum ption of lin ea rity  is o n ly  app roxim ate ly  justified , 
and the va riab le  in question m ay ac tu a lly  sa tis fy  a nonlinear d ifferentia l equation whose non
lin ear term s are sm all b u t n o t com pletely  negligible. Such is the case w ith  variab les f  associ
a ted  w ith  sea w aves. T he d istrib ution  p (f)  is then n early  gaussian, b u t n o t exactly  ao. T he  
question we w ish to discuss is : w h at is the effect of the non lin earities on p ( f) ,  and how  can th ey  
be calcu lated  in term s o f the differential equation satisfied b y  f ?

1049
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In a recent paper [Longuet-Higgins, 1963], the representation (1) was generalized in the 
following way. Consider the variable

■ ■ ■ (2)
where the a h a„, a ,„ , etc., are constants and the £, as before are independent random 
variables with variance V (The repetition of any subscript will be taken to imply summa
tion.) If the are given, then by substitution in the differential equation for f  it may be 
possible to determine by successive approximation the values of а „ ,а 11К, etc. Assuming that 
these are bounded, then as N—»=» the contributions to f from successive terms in the series 
can be expected to be of decreasing order of magnitude.

To calculate p(f) from (2) it is assumed that p(f) is uniquely determined by the sequence 
of its cumulants, which can be found from (2) to any order required.

This generalization1 of the representation (1) leads to a distribution p(f) which is a generali
zation of the gaussian distribution; in fact it is the gaussian distribution multiplied by a sequence 
of Hermite polynomials, of increasing degree but decreasing order of magnitude. The series 
may be only valid asymptotically, and nonuniformly with f. Nevertheless when applied to 
sea waves the second approximation has been shown in [Longuet-Higgins, 1963] to give 
reasonably good agreement with observation.

In the present paper what we propose to do is to state without detailed proof the general 
results of Longuet-Higgins [1963], and then to apply the results to the solution of two related 
problems: to determine (a) the mean number of zero-crossings of f per unit time and (b) the 
distribution of the values of f  at a maximum.

2 . Distribution of a  Single V ariab le

We may start by writing down the moments of p (f)- Thus taking mean values in (2) 
one has

. . . .

The mean values of all odd-order terms vanish, while in the terms of even order only those 
remain in which each f ( is paired with a similar f Thus

Г=«,У ,+За(ш^,У,+  . . .

it  being assumed that the a ’s are symmetric in their suffices. Terms involving f t ,  f t ,  etc. 
are assumed to become negligible in the limit as N— . Similarly since

■ • .) («»£«+«, 1W 1+ • ■ •)

we have on taking mean values

!̂=a,a,Vi-\-(2 at,ai,-\-a,ta]J)VtV1 + Sixla tljViVI-{- . . . 

and so on for higher moments. Now some of the terms in the last expression can be factorized,
e-g.,

au<*j]VtV,= (atlV,) (aJtV,)
while others, e.g., o ^ „ V ,7 ,, cannot. We call terms which cannot be factorized “irreducible”. 
For simplicity the following notation is introduced. a tl . . .  i is denoted simply by At, 
where f is the number of suffices i, j ,  . . . l\ and the sum of all irreducible, terms in the product

i A  lo ss  d i r e c t  a p p ro a c h  ia  s u g g e s te d  b y  W ie n e r  tlflfiS ]. I t  s h o u ld  bo  n o te d  t h a l i n  th e  p r e s e n t  p a p e r  th e  i n d iv i d u a l  b  o re  n o t  a s s u m e d  n ec ea*  
e a r t ly  to  b e  g a u b s ls o .
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. . .  £<г) (A,{<i . .  . f ja) . . . ( -4^  ̂ . . . f i s) 

is denoted b y  (ArAt . . . A,). T hen we h ave

7 = S  (Л)p

Р = х ;[ м л ) + м ,) ( л ) 1VI
etc. H ow ever, m uch sim pler than  th e  m om ents o f p ( f)  are  the cum ulants defined b y

/ * _  P ( r )« ,,f^ = e x p  (it)  + §  <»t)'+ . . . ] .  (3)

W e  h av e

( Л )p

* ; = ? - G V - s  (Л Л )j. j
and in general i t  can be shown th a t [Longuet-H iggins, 1963]

«„=■ X I  (AcA,  . . . A,) (4)
P ,0 , . . .  a

w here p ,  g, . . . s ru n  through a ll va lues from  1 to «  independently. Thus if  we re ta in  term9 
up to the third order in the V, we have

лг1= (л)+ (д ,)+ (л )
K , =  (AD +  (Ai) +  (Ai) +2(A lA3) +2(A lA ,)+2(A 2A,) 

K ,  =  (A% + 3  Ш  A*) + 3  (A?A,) + 6  (A: A M  

.К,= (Л*)+4(А?Л,)+6(ЛМЭ

(5)

W e see th a t  K\ and K i  are b o th  of order V in general, b u t w hen n > 2  the low est nonvanishing  
term  in icu is  0 (V ’l~1).  I f we define the coefficients

\,=КЖ '*
\,=KJK\ (6)

and g en era lly

K=KJKp  (7)

w e see th a t Xn is o f order Ул/2~1 in general.
The d en sity  p (f)  is now  found b y  in vertin g  th e  expression (3):

p(i)=  ̂J_ exp [ i r
W ritin g
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we find [Longuet-Higgins, 1963] that

? т - о т > [ ‘ +^ н ,+ й х'н ' +я >!Н' ) + ■ ■ ■] »

where I i n(J) denotes the Hcrmite polynomial of degree n:

тт _ л  n(n“  1) /п- ! , 1»(я—l) (n —2)(m— 3 ) / r ‘ /,пч
1! 2 + 2! 22 ' • " V '

This is the required distribution. In the first approximation X3| Л*, . . . are neglected and the 
distribution is gaussian with mean K t and variance K 2. In the next approximation a term 
\J-I3 is included, where H3 is the cubic polynomial СУ3 — 3/). In the third approximation the 
quartic polynomial IU and the sextic polynomial Ht are both involved. Higher approxima
tions can be written down at will.

Equation (9) will be recognized as essentially similar to Edgeworth’s form of the 
Gram-Charlier distribution [Edgeworth, 1906].

3. A pplication to a  S tochastic V a r ia b le
Suppose now that the variable f is a stationary random function of the space coordinate 

T and the time t , satisfying a nonlinear partial differential equation (or boundary condition) 
in x and i. How is the distribution p (t)  related to the spectral density of f?

Let the equation satisfied by f be represented symbolically by

i « )  + Q({) + C(f)+ . . .  =0 (11)

where L, Q, C, etc., represent operators that are linear, quadratic, cubic, etc., in To solve 
(1 1 ) for small perturbations we naturally substitute

+  +  (12) 

where t is a small parameter. Writing (1 1 ) in the form

m = - Q ( n - c ( n -  . . .  (13)
and equating coefficients of e, t2, t3, . . .  on the two sides of the equation we have successively

£({■“>)=0 (14>

• £ ( £ * ) <15)
Ut™)=-Q({V, CCr'1) (16>

etc., where Q(i"(,), f <2)) denotes on expression that is bilinear in and f (2). If there are wave
like solutions to (14) then we can write

Г“ ’ = 2  a„ cos (k„ ■ i - c nt+ B „ )  ( 17^T .n-1
where a„ and 0„ are amplitude and phase constants and k„ and <r„ are wave numbers and fre
quencies respectively. Generally (14) implies a relation between k„ and <rn. Thus in the case 
of gravity waves on water we have

Now (17) can be written

N '
f (1>=:2  1°» cos cos (k„ ■ i —<rnt)+ an sin sin (k,s—a„l)}.
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I f now w e suppose th a t  a ,  cos 0„, o„ sin fl„ are  n orm ally  and independently d istrib uted  then 
we h ave

w
r (,) »i” l

w here
{ .= a „  cos S., cos (k . x — ^

fw+„=<t„ sin 6., алг+. =  sin (k . • I —a , t ) J

T hus f (l) is expressed in the sam e form  as in  (1).
T o find f C2) w e now su bstitute  for f ai in (15 ). Since the term s on the righ t are quadratic  

th ey  can in general be expressed as a series of sum  or difference w ave num bers, i.e., harm onic  
term s in { ( k „ ± k „ ) i— (a„±ir„)t}. Hence we can in  general find expressions fo r f 01. On w riting  
the so lutions again as p roducts of the original harm onics constituents we find

f (S,= S
n, m

T hus +  has the form  of (2), as fa r as the second-order term s. The evalu ation  of f 0), 
etc ., proceeds sim ilarly .

T he app lication  to g ra v ity  w aves on w ate r is given in Longuet-H iggins [1963]. I t  is 
convenient to use the assum ption o f hom ogeneity so th a t we can consider the w aves at the 
special point x = 0  and tim e i = 0 . T h at is, we m a y  take

“I
f l ,  i = l , 2 ,  . . .N' I  

[ 0 , i —N ' + l ,  . .  . 2N‘ J

T hen fo r g ra v ity  w aves i t  is found th a t

/ гт  {B ij+Btj—Ki-kj-]-(ki~\-kj)-)fkJcj), 1 ,^ = 1,. . . N f

w here

л/Щ

( В ^ Б Т . - Ш ,  i , j —N ' + l ,  . . . N
SKikj
0

D._ (V £ -V £ )! (k
( V * i - V £ ) * ~ | k , - k , f

P4.
( ^ + ^ ) !-|к(+ку|

a as

T he diagonal term s a tl are sim ply given b y

k,, i= 1, . - . N',

-k,, i=N'H, . . .N .
So we find, fo r exam ple, th a t, to  the second order of approxim ation

K l= a HVi= % l k y i+  s  ( - w v ,= 0  (18)|s=l i-JV'+l

as w as to be expected; while

2&=eie,V ,= lj V ,= J J  E(k)dk (19)
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and

Хз=6 atcr,aifV t V,

=6 S  ««A W  и -i

- 6JJJJK(k, k')E(k)£(k')«' (20)
where X  is a function of к and k'.

In the special case when the waves travel all in the same direction the above expressions 
become very simple, and it turns out that

K(k, k ')—min (к, к').

Hence introducing the frequency spectrum F(<r) of f we have

/fj=J  F(a)d<r (21)

X i - e J J m i n  (k, k')F(*)F(a')d<,da’

F V*” } F ( W  (22)

since k^i^/g.
Returning to the general case, when the waves are not unidirectional, it can be shown 

that the expression on the right of (22), which we denote Ъу I, is related to K 3 by the inequalities

0.44 I.

Combined with (2 1) this gives us bounds for the skewness coefficient Хз=Кз/К}/2, in terms 
of the frequency spectrum F(a) and irrespective of the directional properties of the spectrum.

These results have been compared with the observations of Kinsman [1960; Longuet- 
Higgins, 1963]. It is found that the inequality on the skewness is satisfied in most cases of 
observed wave spectra.

Some observed distributions of wave height have been compared by Kinsman with 
a Gram-Charlier distribution based on the measured coefficients of skewness and kurtosis. 
As shown in figure 1 , these are a better fit to the observations than the simple uncorrected 
gaussian distribution. Kinsman’s suggested distribution differs from the form of the Gram- 
Charlier distribution found in section 2 of this paper, since it does not include a term in Ht. 
Nevertheless the difference resulting from the terms in H4 and Ht is so small in his measure
ments that the correction is essentially given by the second term Xjfl'j. Hence his figure can 
be used effectively as an assessment of the present theory.

If one attempts to carry the formal calculation of the moments to third and higher 
approximations in the application to water waves, the calculation breaks down. This is 
because of the occurrence of resonant interactions at the third approximation (Phillips, 1960; 
Hasselmann, 1962; and Benney, 1962], which render some of the third-order terms a,lt in the 
series (2) slowly dependent on the time t. Thus the present method of calculation is consistent 
only as faT as the second approximation in water waves.

In general, however, there seems no reason why the process should not be carried further 
and the higher-order terms in (2) be evaluated.
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U n its of о

F ig u h e  1. From K insm an I960. Comparison o f an observed distribution o f  wave height in  sea waves with the 
normal distribution  (broken Une) and with a  Qram-Charlier distribution  (solid  line).

4. The Joint Distribution of Two V ariab les

The m ethod of section 2 can be extended to the determ ination  o f the jo in t distribution  
of a n y  num ber of variab les of the type

w here the a's and  £’s are know n constants and the £( are random  variab les defined as before. 
F o r s im p lic ity  we sta te  the resu lts fo r two variab les f ,  ij.

L e t us denote b y  A,  and В „ the term s a t l . ,  . j and B i t . . . „  w here p  and q are the 
num bers of suffices i,  j  . . .  I and i ,  j  . . .  m ;  and le t [ArB t . . .) denote the irreducible p a r t  
of the m ean prod uct

(At{ « ,b i ■ ■ ■ £i,) ■ • • im j) ■ •

T h en  it  can be shown [Longuet-H iggins, 1963] th a t the cum ulants K „ ,  in the jo in t d istrib ution  
o f J  and if are given b y

K m =  S  ( Л .  . .  . A,mB 3l . . . B J  (24)
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the summation extending over all positive integral values of the p ,  and q,. In particular we 
have K„a—K„, the cumulant of p(f), as found in section 2, and as far as the terms in X73 we 
have

К „ = и В 1)-Н(А1В ,)К Л В О + (Л ,В ,)Ж (^Я 5)+(Л.В«)+ . .  . + ( M ) ] ,  

Kn=\{A\B2)+1(AiA-lB i)}+\(.A\Bt)+2{AiA1Bl)+2(AtA3Bi) + {AlBl)+2 {AlAt B i)-ir2{AiA3Bl\], 
к й= [2 м д щ + (л д а + 4 (л ,л а д + (А В Д + 2 (А Л В !)1 ,  

к,i -  [ м;в,+з (лм.5») +зм,л;в,) ].
The joint distribution of f, 7j is now given by

*cr. v) ~ pl' [ 1+£ (^Язо+ЗХ,1й а1+ЗЛ1ай-1,+Х03Д м)+ . - • ] (25)

where

_V — go.
'  b̂ l/3xv oa

P=Xn

(26)

and Я тп(/ ,/ ; p) is a two-dimensional analog of the Hermite polynomial, viz.

Д » , exp [ —it/ * - 2p//'+//2)/(l—p*)]=(—j)"+» exp [ - i ( / 2- 2p/ i'+ / '!)/ ( l-P 2))

In particular
(27)

(28)

H . = l

Н10= (У -рУ')/(1-р*)

н ^ и ' - р л / а - р 3)
« M= c/-p/')s/ d -p 2) - i

H . . = ( / - « / ' )  ( / '  - p / ) / (  1 -  P5) + p

The first approximation, in which Хтя (m-j-n^>2) are neglected, is the familiar bivariate gaussian 
distribution, as we would expect. In the second approximation cubic polynomials in j ,  j* 
must be included, which introduce various types of skewness depending on the coefficients 
Хза, Xii, Xia, and Ход. In higher approximations we encounter further terms in a bivariate 
Gram-Charlier series.

In the paper [Longuet-Higgins, 1963] this distribution was applied to the joint distribution 
of the two components of slope of a random surface. In the present paper we shall apply it  to 
two different problems: the mean number of zeros per unit time of a nonlinear random function 
f (£); and the distribution of the maximum values of f (i).

5. M ean Number Oi Zeros Per Unit Time
We now consider the problem of determining the average number of zero-crossings (or 

of maxima and minima, which are zeros of the derivative) per unit time in a wave record. 
We assume that the process is stationary to all orders.

A general formula for the number of crossings of a level t  per unit time t is due to Kac 
[1943].
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J _ _  ? ( f ,  (29)

where p(f, f ,) denotes the joint distribution of f  and its time-derivative f,. Now for this 
distribution we have

•Kio=f =0 

Kii=fi=0
and

t f , . = t t « - ? r > ^ (  f ) - 0

fo r a n y  s ta tio n a ry  process f ,  so th a t  p= X „ =  0 and from (25)

s (r ' H " s r a 3 > N  o j w ><w >+-. .} + . . . ]  M
w here

7 (Щ * ;  (Ko,)*

Now since е_,/'г|/'| is an even function of/', the integral of this function multiplied by 
will vanish whenever n  is odd. Moreover, when n  is even and greater than 0

= 2Я _г(0)

on integration by parts. So on substitution in (29) we find

ЛГ(Г)=^ ё £ , !к м)* [ 1 + 5 { ^ W - S / J + S W R -  . .]■ (31)

Thus the number of zeros per unit time, considered as a function of has a skewness similar 
to that of p(f), but a mean value

different from the mean of f.
I f  we tak e  /« *0  in (31) then th e  th ird-order term s van ish  and wo h ave, to  fou rth  order

[ 1+ ^  { ^ ( 0 ) + 6 иН-г(0)—X0(H0(0)}]

[ 1+8 X,0~ i  Хй“ 24 X"'} 02)

6. Distribution of Heights of M axim a 

The distribution p(f„„) of the heights of the maxima of f  is given quite generally by

P(f, 0, (33)

w h ere p ( f ,  £,, f ,,) denotes the jo in t d istrib ution  o f f  and its first tw o d e riv a tives  w ith  respect 
to t [Kice, 19 4 4 -19 4 5 ; Caxtw righ t  and Longuet-H iggins, 1956]. N ow  if  К щ  denotes the ( i , j ,  fc)th 
jo in t cum ulant o f f ,  f , ,  f „ ,  i t  is clear t h a t j f i « ,  Кою, K m, a ll van ish , as do K no and X 0u- Hence 
we h ave  (as in  sec. 3)
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P ( f j  f t i  f  х с) ~ (2 т г р  О У 6 X ^  С — — 2  ^'^200^2^- ^ 020^ 2

Writing now

we have

+ K mt"*+2Kmlt") + £  (ЛГ300(3+ З Я т Л '  +  . . . ) + • •  ^dtdt'di".

i=s/K^, ^

l'= s'/K &, ! ,= K & ,f, 

t"=s"IK%a, i„  = K A J" ,

r" г“)= м т а з 5 з *  ' x « p  [ - 1  ^ + , - +. - + 2 » " >

+|{Хзоо(м)3+ЗХг,0(г«)2(г«')+  . . . } + • •  . ] * * ' * "
where p= K ml(K ,xK m Y'2. Now in

(2x)W/J
the terms in «' are separable from the terms in s and s"  and hence as in sections 2 and 5 the 
above expression equals

p)Hr'(/')в-илч-(/>-г»//"

Hence we find

P(fj fli fir) —

x [ l р )Я 0(/ ')+ З Х 210Н 20( / , / " ;  р )Я ,(У >  +  . . . } + ■ •  ■]■ <34>

To find (̂Гшли) from (33) we set f ,=0=/', multiply by |fn| and integrate with respect to fu  
from — ™ to 0. Writing

/ = ( l-p J)«a:

in the resulting integral we have

KZoQ-p')"

J " — ( 1 - р Г у

P( Cmn,' =

where

)” Jo y e '(2ff) (КгоО̂ООз) >

X^l"bg { (Xaoô ao + SXjioiifai-l-SXî affij-i-Xooĵ oa) — ЗХиоЯщ—3Xoai^oi}“b ■ • ’J  ^У

■Hm—l+PJ 

ff0i=pz+tf
#2o=(z+P3/)J—1 
Hl, — (x+py)(px+y)—p

я и=(рг+г/)2- 1
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and g en erally

H„. (— 1)™+" (36)

To evaluate the integrals we use the following results. Straightforward integration by parts 
gives

J o (37)

w henever n > 2 . To deal w ith the cases n.= 1 ,0 , we note th a t

- ( J — P *-) e-̂<*+г'*'+̂1>=x(l-pг)e-̂ ■̂ ,'I•+'г,.

So  b y  repeated  app lication  о/ the op erato r 

Я 10 — рЯо1~я(1 P2) —

Ны—2/>Яц+р2Я0,=1а(1 — p*)2— (1—рг) =  в ,  

Ha —3pH«,+3ptH,1—p3Ha =xs( l —pT)1—3x(l  — p1) 1= G3
and in general

« » .„ - ( " )  рЯ ,-,.,+  . • - = (1-р ’)'"йг.{х(1-р')Ч=<?.. 

say . T h us in general,

£  у Я „ .  . e - l ^ + ^ + ^ y

=I" tC) рЯ—-'“G) ■ ■ ■ +(-l)"-’P"ff., .+ <?.]

= [ ( " )  р Н . . ^ - Q  ргЯ „ _ , , +  . .  . + ( - 1 ) —  р " Я 0. о  

+  G„F{x - p) (38)

where
F{x\ p)=J^ rfy= e - w a - r t j  e -\-'dz. (39)

S im ila rly , w hen m = 0 ,

f ~  y H n. 0e - ^ ^ ’ + n d y = j ~  y [ ( ^  р Я . . ы - Q )  . . . +  < ? „ ]  . - « « H W r t *

- » р[ { ( ЯТ 1) ^ - » - ( П2 1) р'Я - “ + ' - P)]

+ [ - ( ” ) РгЯ . - ! .а+ ( з )  Р » Я . . , , -  . . ^  o — p x ^ ( x ;  p ) l

=[l (”)  р!Я „ . а, 0- 2 g )  pW .-,.,+  . .  . +(?„] в-*11
+  р (л0 ,- ,-* < 7 .)* ,( * ;р>. (40)
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Using formulas (7.5) to (7.8) we find altogether

+| Xs,M{ (a -p J)V - (3 -9 p 4 5 / )a : ) « - ^ - (p ( l- P 3) V - 6 ( l - p i)2i 2+ 3p (l-P !))F (I ;p)}

+| Xmi {P (2— p2) re"4' 1 + ((1 — p2) V — (1 — Ps) ) F ( i ; p)}

+| Xio2ie _,lJ+|>4»s/=a:e“Jl2—|Xim{(1 — p2)xe~^+(p— px+ p3x)F (x\ p)}~\ p)J (41)

where

f
( W )1/2 [ Z 2„ „ (1 - p 2)]'/2 

-̂ 101
" (К**Кт У“

The cumulants can be expressed in terms of the spectrum in the following way. If

Г.=0.{.+/3„{«Ь+«.»1<£/Ь+ ■ ■ -

then we may take

Also if

“i= (l, 1 , . . .  1; 0 ,0 , . . .  0)
0<= (0, 0,. . . 0;—o-i,—сгг, . . . — <rN) 

7j~(tf lj °2> ■ ■ ■ <*N1 0, 0, . . .  0)

M =

“ 11 ■ ■ <*1.W o

aN. | • ■ ■ ■ a N ff 0

0 ................. 0 алг+i.w+i

■ 0 a ,№

1 0 6 0
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then

(0„) =

1 0 ( <T, влг+1,ЛГ+| + 0Ч<*ц) 1 • ■ (—̂ 1«лг+|.я» + »«0|.|*)'

® ...................................... 0  ( — *N<*2.4.N +  l + f f t O k - . l )  ■ • ■ ( —  JW +<*JV<*JVn)

(ffian ffiô +i,.v+i) ■ * (cjctuv—iT.va.vil ;.v) 0 ................. 0

and

w here

C =

(V.v̂ .v : fficĉ iv,n+i) ' ■ * —ffvoriv.iv) 0

Ы ), - f  “)  
\0 D/

and in  D th e  suffices of а ц  are each increased o r decreased b y  N.  T h e nonvanishing cum ulants 
can now  be expressed as fo llow s:

^ 2 о о Ф  ( A j ) = o (f l f jV {=  ̂ K d a — 771Q

Km= (Iff) =0SiVi—J<r1Eda=m}

Km=(.C}) —~iCi<V 1= Jor,Eda=m,

K m ^(AiG’i)=a{yiVi= —̂ a*Ed<r=—mi

Also

and

K m =3(A'IA,)=Saiajai,VlVt= Q j j a (*, a')EE’dad*'

Kayj=3 f V/■= 0

Кю=Ъ(С1Сг) J J  <rV*{ -  (<r+ o')+ 2™' „*(<,, <r')} E E ’dudv' 

KM=(AiC,)=2c,iafY„V,Vj=‘i j j  ( - ( » ’+ »'’)«(», < r')-2^ 'a‘ (^ О ) EE'dada' 

K Wf=(ClAi)= 2y a la„V,Vl ^ 2  J J <Аг'Ч*, a')EE'doda'

1061



534

tf|»=(BM,)=2l3(ft[*ijV(V,J= 2 j J a2 a "2c ? (a , o ' )  E E 'd a d o '

R m = ( B i C , )  =  2 d S ly t lV iV l = 2  j j s o '  { - ( , r 24 V  W ,  o ' ) + 2 o o ' a ( o ,  o ' ) ) E E ' d o d o ' .

One can if necessary retain the next term in X200, K w0, K«a, and Й101! thus

■Kjm= (AJ) -f- (AQ=a,atiV, + 2а„а,/У, Vy=̂ |" E d a ~ \ - 2 j j  \a(a , o ' ) Y  KKJ d o d o ' ,

with similar expressions for Kao and K m - (Note that K m — — Ko2a to all orders).
In the first approximation (7.9) gives

[ е - ^ - р х Д х ;  p ) ]

where

X = f / ( l  —  p2) \  p =  —  m 7/ (m 0m 4)  *

This is the distribution obtained by Rice [1944-1945] and studied by Cartwright and Longuet-
Higgins [1956].

The remaining terms in (7.9) represent the corrections to this distribution, which are
order V1/2.

7. References

Benney, D. J . (1962), Nonlinear gravity wave interactions, J. Fluid Mech. 14, 577-584.
Cartwright, D. E., and M. S. Longuet-Higgins (1956), The statistical distribution of the maxima of a random 

function, Proc. Roy. Soc. A, 237, 212-232.
Edgeworth, F. Y. (1906), The generalized law of error, or law of great numbers, J. Roy. Statist. Soc. 6 9 ,497-530.
Hasselmann, K. (I960), Grundgleichungen der Seegangsvoraussage, Schiffstechnik 7, 191—195.
Hasselmann, K. (1961), On the nonlinear energy transfer in a wave spectrum, Proc. Conference on Ocean Wave 

Spectra, Easton, Md.
Hasselmann, K. (1962), On the nonlinear energy transfer in a gravity-wave spcctrum. Part I. General theory, 

J. Fluid Mech. 12, 481-500.
Kac, M. (1943), On the average number of real roots of a random algebraic equation, Bull. Am. Math. Soc. 

49, 314-320.
Kinsman, B. (I960), Surface waves at short fetches and low wind speed—a field study. Chesapeake Bay Inst. 

Tech. Report 19.
Longuet-Higgins, M. S. (I960), The statistical geometry of random surfaces, Proc. Symposium Applied Math., 

Ajn. Math. Soc. 13, 105-143.
Longuet-Higgins, M, S. (1963), The effect of nonlinearities on statistical distributions in the theory of sea waves, 

J . Fluid Meoh. 17, 459-480.
Phillips, О. M. (I960), On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The ele 

mentary interactions. J . Fluid Mech. 9, 193-217.
Phillips, О. M. (1961), On the dynamics of unsteady gravity waves of finite amplitude. Part 2. L o c a l  proper

ties of a random wave field, J . Fluid Mech. 11, 143-155.
Rice, S. O. (1944), The mathematical analysis of T an d o m  noise, Bell System Tech. J . 23, 282-332.
Rice, S. O. (1945), The mathematical analysis of random noise, Bell System Tech. J . 24, 46-156.
Wiener, N. (1958), Nonlinear problems in random theory, p. 131 (Chapman and Hall, London).

(Paper 68D9-406)

1062



535

VOL 80, NO 18 JO U RN A L OF GEOPHYSICAL RESEARCH JUNE 20. 197S

O n  t h e  J o i n t  D i s t r i b u t i o n  o f  the  P e r i o d s  a nd  

A m p l i t u d e s  o f  S ea  W a v e s
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A theoretical expression for the joint distribution of wave period und amplitude, which was previously 
derived for a Gaussian record with a narrow spectrum, is restated in simple form. According to this dis
tribution the variability of wave periods, for waves of a  given height, is inversely proportion j I to the wave 
height, so that the higher waves lend to be more regular. The distribution is found to agree well wiih some 
observations o f wave periods and amplitudes from the Gulf of Mexico, as given by Bretschneider (1959).

Introduction

A prob lem  o f  som e in te rest in ocean en g in eer in g  is to find 
th e  jo in t d is tr ib u tio n  o f  the he igh ts an d  periods o f  sea w aves. 
By th is we m ean  the w av e  he igh ts and periods o bserved  v isu a l
ly . o r from an in stru m en ta l reco rd . over an in te rva l o f  tim e 
d u r in g  w h ich  the sea  co n d itio n s m ay  be regard ed  as s ta t is t ic a l
ly s ta t io n a ry . O ne w ou ld  hope to re la te  th is d is tr ib u tio n  to the 
u n d e r ly in g  energy  spectrum  o f the sea su rface .

A usefu l co llec tio n  o f  such w av e  o b serva tio n s w a s  m ad e  by 
B r e t s ch n e id e r  [1959). U n fo rtu n a te ly , m an y  o f  the a n a ly t ic a l 
exp ress io n s th at h e  used to d escrib e  h is o b servatio n s w ere 
co m p lic a ted  and had litt le  p h ys ic a l b a s is . On the o th er han d , 
the s ta t is t ic a l th eo ry  o f  ran dom  fun ctions first deve lo ped  by 
R ic e  (1944. 1945) for no ise in e le c tr ica l c ircu its  is n a tu ra lly  
su ited  to d escrib e  w in d -gen erated  w aves. For som e tim e it has 
been kn o w n  th a t th is  m odel is re m a rk a b ly  successfu l in p red ic
ting both th e  crcst-to -tro u gh  heigh ts o f  sea w aves [L ongu et- 
H iggin s . 1952] and a lso  the d is tr ib u tio n  o f  the he igh ts o f w ave 
c rests  above the m ean  su rface  level [C a rtw righ t a n d  L on gu et- 
H iggin s . 1956]. T h is is  in sp ite  o f  the e ssen tia lly  lin ea r  
c h a ra c te r  o f  the m odel.

T o d e te rm in e  the d is tr ib u tio n  o f w ave ‘p e r io d s ,' defined as 
th e  in te rv a ls  betw een successive up-crosstngs o f the m ean  level, 
is a m ore d ifficu lt p ro b lem . V ar io u s  ap p ro x im atio n s have been 
d iscu ssed , for exam p le , by R ic e  {1944. 1945] and  by L on gu et- 
H ig g in s  11958. 1962. 1963].

The jo in t  d is tr ib u tio n  o f w ave he igh ts and  p erio d s is still 
m o re  d ifficu lt, in th e  m ost gen era l case. N evertheless, in the 
s p ec ia l c a se  when the frequen cy spectrum  o f  the w aves is 
n a rro w , som e p rogress tow ard  a  th eo ry  can  be m ade. The 
o v e ra ll d is tr ib u tio n  o f  the in te rva ls  betw een tw o  successive 
ze ro s fo r a  n a rro w  spectrum  w as first g iven by R ice  (1944,
1945 . scctio n  3 .4 ). T hen from the d en s ity  o f the w ave envelope 
an d  its tim e  d er iv a tiv e , W ood in g  [ I955J derived  the jo in t densi
ty  o f the w ave frequen cy an d  am p litu d e  for a n arro w  spec
tru m . A s im ila r  a n a ly s is  for the jo in t d en sity  o f  w ave period 
an d  a m p litu d e  w as g iv en  in d ep en d en tly  by L on gu e t-H ig g in s  
11957] for a  cross sectio n  o f  a ran d o m  su rface .

T he p u rp o se  o f  th is note is  to d raw  atten tio n  to  the 
th eo re tic a l jo in t d is tr ib u tio n  m entioned  ab o v e  and  to show  
h ow  it can  be ap p lied  to ocean  w aves . P a rt icu la r ly , we shall 
co m p a re  the d is tr ib u tio n  o f  period  and a m p litu d e  w iih  the 
d a ta  g iv en  by B r e t s ch n e id e r  (1959]. It is co n c lud ed  that the 
ag reem en t, a s  in p rev io us experience  w ith  th is  th eo re tica l 
m o d e l, is  rem arkab ly  good .

Copyright © 1975 by ihe American Geophysical Union.

S t a t e m e n t  o f  T h e o r e t i c a l  R e s u l t s

W e first s ta te  b riefly  those th eo re tica l resu lts  o f  the random  
noise m odel which we sh a ll ap p ly . T hese results are derived  
conc ise ly  in the append ix  on the hypothesis that the sea  su rface  
is G auss ian  and  th at the en erg y  spectrum  is  suffic iently  
narrow .

T he p ro b ab ility  d en s ity  o f th e  w ave am p litu d e  a  (defined as 
h a lf  th e  crcst-to -trough  w ave h e igh t) by itse lf  is g iven by the 
w ell-know n R ay le ig h  d is tr ib u tio n

Pit) -  I  exp ( - * 7 2 )  f  = (I)

w here  is the zeroth m om ent o f  the en erg y  spectrum . {!n fact, 
pa is  the m ean sq u are  w ave am p litu d e .)

T he p ro b ab ility  d en sity  o f  the w ave period  т  (defined as the 
tim e in terval between successive up-crossin gs o f  the m ean 
level) by itse lf  is g iven  by

= 2(1 + S7 71 1 = <T “ <r»/‘,<r> (2)
where (r) is  the m ean w ave period  and v  is p ro p o rtio n a l to  the 
w id th  of Ihe energy sp ectrum . In fact

* = 0*»/M.)w,(Cr>/2T) (3 )

where p , deno tes the second m om ent o f  the energ y  spectrum  
ab o u t the m ean . T he d is tr ib u tio n  (2 ) is illu s tra ted  by the b e ll
shaped  cu rve  (w h ich  is not G au ss ian ) in F igu re  I . T h e  do tted  
lin es show  the two q u ar tile s  at a  d istan ce  l/ (3 )l/1 from  the 
m ean . It fo llow s from  (2 ) th at the in te rq u artile  ran ge  (1Q R ) o f 
the wave p er io d  is given by

IQ R (r)  -  2 * т )/ (3 ) , я  (4 )

T h ird ly , the jo in t p ro b ab ility  d en sity  o f w ave p eriod  and  
am p litu d e  is  given  th eo re tic a l ly  by

p « .  v) =  ^ T 7 I  exp l - t ’ O +  4a>/2] (5 )

w here  { an d  7j h ave  the sam e m ean in gs as befo re. H ere p(£, n) 
d i  dn deno tes the p ro b ab ility  th a t { an d  n sh e ll sim ultaneously 
tak e  v alu es in sm all in te rva ls  (£, (  + d ( ) ,  (ij, q + d tj), resp ective
ly . C o n to urs o f the d en s ity  (3 ) a re  in d ica ted  by th e  ‘cocked  h a t' 
cu rves o f F igu re  2 . E v id en tly  a t  the sm a lle r  w ave am p litu d e s  
(n ea re r  the h o r izo n ta l a x is )  th e  d is tr ib u tio n  o f  w av e  periods 
becom es broader.

From  (5) an d  (2 ) th e  d en s ity  o f  w ave p er io d s a t  a specified

2688
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Pfn)

y\
Fig. 1. Graph of the function /ф)} Й(1 + giving ihc probability densily of the wave period r .

where »j = (г/(т) — I)/*. The broken vertical lines mark ihc quuriiles.

w av e  a m p litu d e  (th e  ‘m a rg in a l’ d en s ity ) is  g iv en  by

P lM  “  « Р  ( ~ £ V / 2 )  (6 )

S in ce  { is  fixed, ih e  d en s ity  o f  ч is  e x ac tly  G au ss ian , w ith  
v ar ian ce  £ *. The q u a n ile s  o f  th e  d is tr ib u tio n  co rresp o n d  to 
th e  b ro ken  lin es in F ig u re  2 . T h e in te rq u ar t ile  ran ge  is  1.35{~‘. 
H en ce the in te rq u ar t ile  ran ge  o f  the w av e  p er io d s  (Гог a  p a r 
t ic u la r  w ave a m p litu d e ) is

l.35*(r>/{ (7 )

w hich  is inversely  p ro p o rtio n a l to  th e  w av e  am p litu d e . T h u s 
the h igh er the w aves , the less v a r ia b le  a re  th e ir a p p a ren t 
periods.

C o m pariso n  W ith O bservation  

Bretschneider (1959) has p u b lish ed  ex ten sive  o b se rva tio n s o f  
v isu a l w ave p ro p ertie s , in p a r t ic u la r  a set o f d a ta  in c lu d in g  the 
ap p aren t w ave he igh ts an d  w av e len g th s  o f  399 w aves from  a 
co n tin u o u s record  taken  in the G u lf  o f  M ex ico . F igu re  3 is a 
rep ro d u ctio n  o f  f ire is ch n e id er ’s F igu re  5 .1 . on w hich  w e h ave  
su p erp o sed  certa in  g r id  lin es  to  help  in  th e  an a ly s is . T he v er
tic a l sc a lc  in d ica tes  Ihe ‘ re la tiv e  w ave h e igh t,' th a t is, the w ave 
h e igh t n o rm alized  b y  th e  av e rag e  o f a ll th e  o b serva tio n s. T he 
h o rizo n ta l sc a le  in d ica te s  the 'r e la t iv e  w av e len g th ,' th at is , ih e  
sq u a re  o f  the w ave p erio d  r  d iv id ed  b y  th e  m ean  sq u a re  (t).

F irs t, to test the R ay le ig h  d is tr ib u tio n  (1 ) . w e d iv id ed  the 
ran g e  оГ re la tiv e  w av e  h e igh ts in to  eq u a l in te rv a ls  and  counted  
th e  n um b ers o f w av es  in each  in te rv a l, regard le ss  o f w av e  
p er io d . T h e resu ltin g  h isto gram  is show n in F igu re  4 , co m 
p ared  to  the co rresp o n d in g  G au ss ian  d is tr ib u tio n  (eq u atio n  
( I ) ) .  T h e  ap p ro p ria te  h o r izo n ta l sca le  has been o b ta in ed  by u s
in g  the p ro p erty  th a t for th e  R ay le ig h  d is tr ib u tio n  the m ean  
v a lu e  (*) is ju s t  to * »»  = 0.862 ■ tim es the rm s valu e . T here  
ap p ears  to be a reaso n ab le  fit, though  w ith  a  s ligh t excess o f 
w av es  w ith  heigh ts n ea r  the m id d le  оГ the ran ge  a n d  a  defic.en- 
c y  a t  th e  two extrem es .

T o  co m p are  th e  w av e  p e r io d s  w ith  the th e o re t ic a l d is t r ib u 
tion  (2 ), the v a lu e  o f  th e  p a ram e te r  v w as ch o sen  to sa tis fy  (4 ), 
th at is , w e to o k

► -  — X  I Q R ( t )  <*>

T h e a re a  o f  th e  c u rv e  in F ig u re  I w as d iv id ed  in to  Ю eq u a l 
p a rts  by o rd in a te s  t]„  • • ■ ij„  u s in g  the fact th a t

/. **> *•- 2(1 +\V'J = 2 ,,n“
w h ere  a  — o rc ian  q. T h u s ta k in g  sin  a  = —0.8, —0 .6 , • ■ ■ 0 .8 , 
th e  co rresp o n d in g  o rd in a te s  a re  g iven  by

if =  ta n  a

r / ( r )  -  (1 +  kit)

X = (т/<г»а
T hen co u n tin g  the n u m b er o f  w av es  in each  ran g e  o f  X. w e  o b 
ta in  a  h is to g ram  w h ich  is  co m p ared  w ith  th e  th e o re tic a l d is 
tr ib u tio n  in F igu re  S. A g a in  th e re  is a  r e aso n ab le  fit.

L a s tly , to test (7 ), w c  c a lc u la te d  the q u ar t ile s  o f  th e  d is tr ib u 
tion  o f  w av e  p er io d s  in  each  su b ran g e  o f  w av e  a m p litu d e s . 
T h ese  a re  show n in T ab le  1. A c c o rd in g  to (7 ) th e  c e n tra l q u a r -  
t ile , or m ed ian , o f  e ach  d is tr ib u tio n  sh o u ld  be in d e p e n d e n t o f  
the w ave a m p litu d e . O n in sp ec tio n  o f  T ab le  I w e sec  th a t i f  w e  
exc lu d e  the ran ge o f  sm a lle s t am p litu d e s , w hich  c o n ta in s  o n ly  
six  w aves , th ere  is indeed  no m ark ed  trend in  th e  m ed ian s .

C o n sid er  no w  the in te rq u a r t ile  ran ges . A cco rd in g  to  ( 7 )  th e  
in te rq u a r t ile  ran ge  sh o u ld  be ap p ro x im a te ly  L 3 W { .  w h e re  £ 
co rresp o n d s to  the m id p o in t o f  the su b ran ge . A  co m p a riso n  
between th e  observed  an d  the th eo re tic a l v a lu es  (w ith  v  = 
0 .2 3 4 ) is sho w n  in  F ig u re  6 . A g a in  th ere  is  go o d  a g ree m e n t, 
w ith the excep tio n  o f  th e  po in t co rre sp o n d in g  to th e  lo w es t 
w ave am p litu d e .
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D i s c u s s i o n

C o n sid er  first the a p p lic a b ili ty  o f th e  theory  F rom  T ab les  
4.1 and 4 .3  o f B r e is c h n e id e r  [1959) the m ean  h e igh t and period 
оГ the w aves in reco rd s e - l l  lo  e-15 , from  w hich th e d a ia  w ere  
taken , a re  H -  4 .88  fee l an d  T = 4 .8  s , resp ective ly . The w aves 
being in fa ir ly  deep  w a te r , th e ir  h e igh t-to -len g th  ra t io , on 
ave rag e , w a s  g iven  by

T h is steepness w ou ld  co rresp o n d  ap p ro x im a te ly  to  the po in t £ 
“  4 *  1 in F igu re  3. T h e lim itin g  steepness o f  p rogressive  
w aves , on th e  o th er h an d , is ab o u t 0 .14 2 , o r  3.5 lim es th is  
v a lu e . H ence n o i m ore than  a sm a ll fra c tio n , p erh ap s 0.3% . o f 
the w aves w ou ld  b e  o f  lim itin g  steepness. H ence it is  n o i u n 
re aso n ab le  to expect lh a i the lin ea r  th eo ry  w o u ld  ap p ly  T h e 
d e ta iled  effects o f  n o n lin ea r ity  can  be ca lcu la ted  [Longuet~  
H iggin s , 1963] but o n ly  if  Ihe en erg y  spectrum  is w ell specified .

A s regard s  ih e  second assu m p tio n , th at th e  spectrum  is 
n a rro w , w e note th a t the v a lu e  o f  v , the d im ension  less w id th  o f 
the energy  sp ec tru m , as c a lc u la ie d  from  (8 ), w as 0 .234 . 
R e la t iv e  e r ro rs  in th e  p ro b a b ility  d en sities m ay  be expected  to 
be of th e  sam e  o rd er o f  m agn itu d e . H ence such d iscrep an cies 
between ih e  th eo re tic a l an d  th e  observed  q u an tit ie s  in F igures 
4, 5 . and  6 a rc  c e rta in ly  not u n d u ly  la rge . Indeed  Ihe ag ree 
m ent is su rp r is in g ly  goo d . T he expectcd  d isag reem en t is  such 
th at it is h a rd ly  w o rth w h ile  lo  perform  an y  e lab o ra te  tea l for 
goo dness-o f-fit.

It is  w o rth  rem ark in g  th a t th e  p a ram e te r  к , used in th is  
p ap er to  define th e  w id th  o f  the sp ectrum , is, fo r a n arro w  
spectrum , q u ite  c lo se ly  re lated  to the m o re  gen era l p aram eter t 
defined b y  C a rtw r igh t Qnd L on gu e t-H ig g in s  (1956]. In fact for a

n a rro w  spectrum  w e have ap p ro x im ate ly

r  ?  t t t  (9)

(sec  A p pend ix  8 ). In the case  o f  the w ave record studied in the 
p rev io us section  th is  w ou ld  in d ica te  a value of с o f about 0 .47 , 
co m p arab le  w ith  the v a lu es  for the w ave records analyzed  by 
C a rtw righ t and  L on gu e t-H ig g in s  [1956, T ab le 1].

A s is w ell k n o w n , p ressu re  record ings in general tend to 
f ilter o u l the h igh frequencies and so rcduce the w idth o f the 
spectrum . F or reco rds of su rface  e levation , la rger values o f p 
a re  p ro b ab ly  m ore typ ica l.

T he three p a ram e te rs  p*, (t>, and v , which o ccur in the 
th eo re tica l d istr ib u tio n s o f  the section on sta iem en l of 
th eo re tica l resu lts a re  defined in the first p lace  in re lation  to the 
b asic  en erg y  spectrum  o f  the record (see  A ppendix A ). S ince  
the energ y  spcctrum  fo r the record we analyzed  was not 
p resented  by B r e is c h n e id e r  [I959J, we w ere com pelled  to es
t im a te  th e se  p a ra m e te rs  from  Ihe d a ta  them selves. 
N evertheless, to  ju d g e  from  th e  exam p les given by C artw righ t 
a n d  L on gu e t-H ig g in s  (1956], wc w ou ld  expect th a l the v alues o f 
s ta t is t ic a l p a ram eters  derived  from the energy spectrum  will 
u su a lly  be c lo se  to those estim ated  from  the sta tis t ica l d a ta .

C o n c l u s i o n s

W e have com pared  the theoretica l d istr ibu tion  o f w ave 
h e igh ts and periods, ap p licab le  to a  narrow  G auss ian  w ave 
spectrum , w ith ocean w ave d a ta  from the G ulf o f  M exico and 
found good agreem ent. It has to be rem em bered, how ever, 
th at in p ressure reco rds, m uch o f the h igh-frequency ta il o f the 
spectrum  is reduced , and in un filtered records o f su rface  e leva
tio n  the n a rro w  b an d  ap p ro x im a tio n  is p ro b ab ly  less 
app licab le .

t

F i». 2. Contours of the function p it, n) -  u p  |-{M + V)/2| l i « n »  the jo int probability dcn.it>
of the wsvc amplitude a ”  tnd  r  ■ (rXI ♦
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t (0  = ® 52 c. exp i + <.))
(A  5)

f ( 0  =  Я р е '*  e x p  (i(< r)0  

w h ere  p and  ф a re  r e a l fu n c tio n s o f  / defined by

p c * — £  c .  e x p  { ([(cr . — (»))<  +  « .I I  (Л 6 )

In (A 5 ) w e  m ay  Ih in k  o f  exp  (/(<r)f) a s  r e p re sen tin g  a  c a rr ie r  
w av e  an d  p e 1* a s  r e p re sen tin g  a  co m p lex  w av e  en v e lo p e . The 
fun ctio n s p  an d  ф m ay  be c a lled  th e  am p litu d e  a n d  ph ase  func
tio n s , re sp ec tiv e ly . I f  m ost o f  th e  e n e rg y  in the sp e c tru m  is co n 
cen tra ted  n e a r  th e  m ean  freq u en cy  (tr), then from  (A 6 )  w e  see 
th a t p  an d  ф a re  s lo w ly  v a ry in g  fun ctio n s o f  / c o m p are d  to the 
c a rr ie r  w av e . It w ill be sho w n  th a t a  suffic ien t co n d itio n  for 
th is  to  o c c u r  is  th at

V* = »(?)’) «  I (A 7)

• Wax I \
Fig. 3. Scattcr diagram of the relative wave height { and the 

relative wavelength X from 399 consecutive waves from the G ulf of 
Mexico (data from B retschn eider [1959]).

T h e  d a ta  w ere a lso  taken  in m o d era te ly  deep  w a te r . In 
sh a llo w  w a te r , e sp ec ia lly  for steep  w aves , the d is tr ib u tio n  can 
a g a in  be expected  to be less a p p lic ab le  b ecau se  of the en h an ced  
n o n lin e a r ity .

N everthe less, it ap p ears  that u n d er th e  ap p ro p r ia te  co n 
d itio n s  the th eo re tic a l d is tr ib u tio n  m ay  be o f  so m e use.

A ppendix A : Proops o f  Eq uatio n s ( ! ) - ( ? )

F o r conven ience  w e g ive h ere  a  d irect an d  s im p le  d e r iv a tio n  
o f  th e  re su lts  s ta led  in the section  on s ta tem en t o f  th eo re tic a l 
resu lts .

L et f ( 0  be a n y  fun ction  o f  the tim e  (rep re sen tin g  for e x am 
p le the e leva tio n  o f  the sea su rface  a t a  g iven p o in t), w h ich  is 
g iv en  by

(A  I )

If (A 7 ) is s a tis f ied , w e  sh a ll s a y  th a t  th e  freq u en cy  sp ectrum  js 

n a rro w .
W e  sh a ll n eed  to k n o w  the jo in t  p ro b a b ilit y  d e n s ity  o f p and 

Ф ( '  = д / d t )  F o llo w in g  R ic e  [1944 , 1945], w e  w r iie

'= p  co s ф =  J !  c» co s ■*" ( * ) ) *  ■+"

&  =  p s in  ф — E  c .  s in  [(*„  — (<r))f +  «„ ] 

a n d  a lso

{, ■= t , ---- Y, ("„ — (*Ж si" K*. -  (r)V + •*!

(A 8 )

(A 9 )

t. “ fj -  T. <ff- “ WV- cos l(tr- -  + *■*
U sin g  an g le  b ra ck e ts  to  d en o te  m ean  v a lu e s  w ith  respect to  the 
en sem b le  (o r  w ith  resp ect to  th e  tim e  0  w * havc

«,) = («  = «>> - <w - 0 (Ai0)
a n d  for the seco n d -o rd e r c o r re la t io n  m atrix  

/ * , 0  0 (i,

r (0 = 22c. “ s
(Ш

w h ere  the frequencies <r„ a re  d is tr ib u ted  d en se ly  in the in terva l 
(0 . “ ). the phases <„ a re  ran dom  v ar iab le s  d is tr ib u ted  u n ifo rm 
ly  o v e r the in te rva l (0 , 2 x ) . and th e  am p litu d es  c n a re  such th at 
over an y  frequency in te rva l (<гл, с я + dtrK)  w e h ave , to o rd er
d o .

0 p 0 — Mi 0 

0 —Pi Ma 0 

p , 0 0 p2

( A l l )

S in c e  p , v an ish es (e q u a t io n  (A 4 ))  th is  red uces to  a d ia g o n a l 
m atrix . H ence a ssu m in g  th a t the c o n d itio n s  n ece ssa ry  fo r the 
c e n tra l lim it  theorem  a re  sa tis f ied , w e  have for th e  jo in t  d e n s ity  

o f  £tP { i, f i .  an d

(A 2 )

H ere £ (o ) deno tes the en erg y  spectrum  o f f (0 -
N ow  le t <a) denote the m ean  frequen cy o f  th e  sp ec tru m , 

defined  b y  ih e  p ro p e rty  th at if

P , =  [  (a  — (<r))T E( tr) da  J о (A3)

denotes ih e  n h  m om ent o f the frequency sp ectrum  ab o u t the 
m ean , then

P . *= 0  ( A 4 )

W e define th e  wave envelope a s  fo llo w s. Let ( A l )  be w ritten
Fig. 4. Histogram of ihe normalized wave amplitude {/p*1'  com- 

pored with ihe Rayleigh distribution (I).

)
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PVOAAI н I Тт ММУТТ

O' Л

I
ex p  [ - ( { , *  +  Ь 7)/2ц0]\3{2tt) HafAi

•CXP [ - « J 1 +  b 3)/2j*>]
N ow  since

it fo llow s th a t

£э — p cos ф — рф  s in  ф 

£4 =  P s in  ф +  рФ cos ф

*(p. *)
(2r)

- 773- exp  ( — pJ/2p 0) ex p  (  — р*ф2/ 2ц3)

p ip )  =  *^ e x p  ( - p a/ 2po) 
Pn

an d  the d en s ity  o f  ф a lo n e  is

,  r, Qjfl/̂ a)l/a
^  “  211 +  w ^ P

(A  17)

(A  18)

E quatio n  (A  18) show s th at th e  ran ge o f  4  is o f  the sam e 
o ld e r  as (u»/po)*'*- H ence if  the cond ition  (A 7 ) is  satisf ied , it is 
u n lik e ly  th a t ф w ill exceed  <9) in ab so lu te  m agn itu d e . T h is im 
p lies th a t the to ta l phase

X = (a)t + Ф (A  19)

is a lm o st c e rta in ly  an in c re as in g  fun ction  of th e  tim e f , as 
show n in F igu re  7.

W e now  assu m e th at the spectrum  is n a rro w , so th at the

to ta l phase x  w iH n ea rly  a lw ays  increase w ith r. Zeros o f f ( i )  
w i]] occur w henever x  tak e s  the value  n r  (л being an in teger). 
(O ther zeros o f  f(/) w ill o f co u rse  occur when p  vanishes, but 
s ta t is t ic a lly  th is w ill be a rare  even t.) A wave period m ay then 
be defined as the lim e in te rva l between successive up-crossings 
o f the p h ase  x  th ro u gh  the v a lu e  2л*.

A ssum in g  J  sm a ll co m p ared  to  (<r)x we shall have

where

r  =  ~  =? <r>(l -  i/ W ))  
X

( r )  =  2 « - ( it)

(A 2 0 )

(A 2I)

N O tiu llS (D  WAVI И1ЮО "П —  — —
vT

Fig. S. Histogram of the normalized wave period ц compared wiih 
ihe narrow band distribution (2).

W e therefore need th e  p ro b ab ility  density  o f Ф a t the in sian ts 
w hen x  = 2 л т . T h is is  g iv en  by

(A  12)

(A I 3)

(A I 4 )

р(Ф\х) = <Пх|р(х. Ф) 
where С  is a n o rm aliz in g  con stan t such that

j  P(«£|x) & = I

Since  /Kx. <*) independen t o f  x . and  since

X =  (aXI +  0 (f))

we have , to low est o rd er in r ,

р(Ф\х) = СР(Ф)

where ev id en tly  С  m ust be u n ity .
The p ro b ab ility  d en sity  o f  r  is g iven  by

(/>. ф. p ,  ф)

and  hence the jo in t  d en s ity  o f  p , Ф, p .an d  ф is  
1

p ( p .  Ф, P , ^ )  =  “  гч-------e xp  ( — р а/2мо)
V РоРэ

• e x p  [ - ( p a +  PV ) / 2 m, 1 (A  15)

T h e  jo in t d en s ity  o f p and  ф can  now  be found by in teg ra tin g  
w iih  respect to  Ф from  0  to 2w an d  with respect to  p from 
to g ivm g

p ( r )  »  J—J р(ф) =  «т)/(г)М)
So  from (A  18) we find 

P (r )  =

(A  16)

T h e  d en s ity  o f p a lo n e  is  then the R ay le ig h  d istr ib u tio n

w here  v is g iven by (A 7 ).
If we now  m ake the substitution

( = p/p*1'* 4 --- (о)Ф/*
and  s ince  the am p litu d e  a  is n ea rly  equal to  p , we

a  = r  «  (rX 1 + *n)

F rom  (A  17) there f o llo w s ( l) ,  from (A 18) follows (2 ).

(A 22)

(A 2 3 ) 

(A  24) 

(A 25 )

(A 2 6 ) 

(A  2 7 )

(A 28 ) 

have 

(A 29 ) 

and from

TABLE 1 .  Q u a r t i l e s  o f  th e  D i s t r i b u t i o n  o f  W ive P e r io d s  
in  F ig u r e  3

R ange
n

o f N in b e r  o f  
N avas Q u a r t i l e a (T/<T> ■ (A/<X>)%)

0 . 0 - 0 ,.2 6 . . . a . « 8 . . .

0 . 2 - 0 , ,4 IS 0 .8 1 0 .9 3 1 .2 9
0 . 4 - 0 . .6 52 0 .7 8 0 .9 8 1 .1 7
0 .6 - 0 - .6 67 0 .  88 1 .0 5 1 .1 9
0 . 8 - 1 . .0 77 0 .7 3 l .O l 1 .1 1

1 . 0 - 1 . .2 £4 0 .9 8 0 .9 8 1 . 1 1
1 .2 - 1 . .4 56 0 .8 6 0 .9 9 1 .1 1
1 . 4 - ] ,,6 28 0 .9 1 1 .0 2 1 .0 6

1 . 6 - 1 . a 18 0 .9 3 0 .9 7 1 .0 3
1 . 8 - 2 . Q 11 0 .9 2 0 .9 4 1 .0 6

2 . 0 - 2 . 2 4 . . . 1 . 1 0 . . .

2 . 2 - 2 .
T o ta l

6 1
3 9 9

1 .0 3
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ТЫТЕКОилЯШС RANG!

Fig. 6. The observed interquartile range of the relative wave 
period r/(r) (plolled points) as a function of the relative wave height 
(  = a/(a). The broken curve represents the narrow band approxim a
tion.

(A  16) fo llow s the jo in l d is tr ib u tio n  (S ). T o  ob ta in  the m arg in a l 
d is tr ib u tio n  (6). w e s im p ly  d iv id e  (5 ) b y  (1).

B ecause  o f  the a ssu m p tio n  th a t th e  p h ases in (A I )  a re  
s ta t is t ic a l ly  in d ep en d en t, th e  G au ss ian  m odel th a t we h ave  
u sed is  e sse n t ia lly  a lin ea r  one . W e m ay  th ere fo re  expect th a t it 
w ill be so m ew h at m o re a ccu ra te  for lo w  su rface  w aves in  deep 
w a te r  th an  for steep  w aves o r  fo r w aves in sh a llo w  w a te r .

T h e effect o f  n o n lin e a r ilic s  m ay  a lso  be so m ew h at d im in ish 
ed by o u r  defin ition  o f  the w av e  p eriod  т a s  the lim e  in te rva l 
betw een a lte rn a te  c ro ssin gs o f  Ihc m ean  lev e l, ra th er  th an  as 
tw ice  th e  in te rva l r '  betw een tw o  ad ja ce n t cro ss in gs . F or the 
p eriod  m easu red  over a  co m p le te  w avelen gth  w ill p ro b ab ly  be 
less affected  b y  th e  p resence o f  h a rm o n ics.

T h e d is tr ib u tio n  o f  the h a lf-p erio d  r '  co u ld  indeed  be d eter
m ined  th e o re t ic a l ly  by p rec ise ly  the sam e a rg u m en t, acco rd in g  
lo  w h ich  w e sh o u ld  h ave , in p lace  o f  (A 20 ), th e  re la tio n  r ’ = 
»/X - But th e  co rresp o n d in g  w ave p erio d s 2 r ' w o u ld  ihen  be 
m o re su b jec t to  e rro rs from  th e  th ird  and  h igher h a rm o n ics , o f 
odd o rd er.

A d ifferen t k in d  o f  e rro r m ay  be expected  to a r is e  from the 
f in ite  w id th  o f  the sp ec tru m , th at is , from  term s o f  h igh er o rder 
in v . It sh o u ld  be p o ss ib le  in theory  to o b ta in  h igh er a p 
p ro x im atio n s on rep lac in g  (A 20 ) by p a r t ia l su m s o f  the T ay lo r  
exp an sio n

2 r  = r x  + +

c irc u m stan c e s , p{ r’ ) m ay  b e  d e te rm in ed  m o re a c c u ra te ly  than 
P ir ) .

A p p e n d i x  B :  P r o o f  o f  E q u a t i o n  ( 9 )

L et m„  den o te  th e  sith m om ent o f  th e  e n e rg y  sp ec tru m :

т л — I a "E (a ) da

{a) •= m j m .

end
Mi = {m7me - т,*)/т9 

F ro m  the d efin it io n  (А 7 )  w e  h a v e  then

— (rnam0 — W| )

= JJ  Or’ -  ea ')E (a )E (< r')  d c  d a '

R e v e rs in g  a  an d  a' and  ad d in g , w e get

= // (* ~ *')*£(»)£(»') d» dc' <BI)
S im ila r ly  from  th e  d e fin itio n  o f  e in C a rtw r igh t a n d  L on gu e t -  
H igg in s  [1956 ] w e h ave

eam4m0 — (mim0 — m*)

= JJ  (а* -  * V * )E (» )£ < * ')  do da'

hence

=  JJ  ( » ’  -  a “ fE ( a ) E ( a ' )  d a  d a '  ( B 2 )

N ow  when th e  sp ec tru m  is n a rro w , w e h ave  m 4 f  (a ) lm 0. A lso  
( a  + a ')* , w h ich  is a fac to r  оГ th e  in teg ran d  in (B 2 ) , is n e a r ly  
co n stan t over the im p o rtan t p a rt o f  the reg ion  o f  in te g ra t io n , 
w h ere  о  = a ' = <<r). S o  from  (B 2) w e  have

2t ’ ( a )4/n„ == JJ  (2 (a ) )2(a  — f f 'Y E (o )E (o ')  d a  d a '

S o  from  ( B l ) ,
<J(a)*m0 = 4  »lm ?  

w hich  is eq u iv a le n t to  (9 ).

(A 30 )

an d  then m ak in g  use o f  th e  th eo re tica l d en s it ie sp{j>, ф, ф), e tc ., 
w h ich  m ay  be derived  in th e  sam e w a y  as p (p , Ф). H ow ever, 
s ince  p{p, ф, ф), for e x am p le , depends on the h ig h e r m om ents 
ц ь and  ^4. w ith  two fa r th e r  m om ents being ad d ed  Гог e ach  new 
d e r iv a tiv e  o f фъ the an a ly t ic a l d e ta ils  rap id ly  becom e co m 
p lica ted . P erh aps th e  ap p ro x im atio n  d erived  in the present 
p ap er is  a ll th a t is re a lly  u sefu l.

It sh o u ld  b e  noted that for a  b road  spectrum  b u t re la tiv e ly  
low  w aves th e  co rresp o n d in g  series for t \  n am ely ,

т = t’x + + .. ■ (A 31 )

m ay  converge  m ore rap id ly  than  the se rie s (A 30 ) Гог т . In such
Fig. 7. Sketch of ihe total ph**« x  -  <#M ♦ ♦ “  0 func,,on 

of the time r.

J
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On the Distribution of the Heights o f Sea Waves: 
Some Effects o f N onlinearity and F inite Band W idth

M ic h a e l  S . L o n g u e t -H i g g i n s

Department o f  Applied M athem atics and Theoretica l Physics, University o f  Cambridge. England 
Institu te o f  O ceanographic S cien ces, Wormley, Surrey, England

l i  is shown that some receni data on the crcsi-to-trough heights оГ sea waves arc filled ju st as well as by 
ihe one-parameter Rayleigh distribution as by ihe two-parameter W eibull distribution, provided that the 
rms amplitude a  is taken as 0.925(2wio) l/I, where m,, is ibe lowest moment of the frequency spectrum. 
Reasons why ihe ratio d/(2m0) ,/J should differ from unity are discussed. It is shown that the effect of 
finite wave steepness would be to increase the ratio by a factor [I + 4(a * )2] approxim ately, contrary lo 
observation. The cffcci o f finite band width is estimated from a model assuming low background noise 
superposed linearly  on a  della function spcctmm For narrow band widths one obtains the formula J 2/ 
2л1о ~ I -  0.7Э4Г-2, where v is ihe rms spread of the noise about the mean frequency. Values o f v3 corre
sponding ю Pierson-Moskowicz spectra give results in close agreement with observation.

I . I n t r o d u c t i o n  

T h e  d is tr ib u tio n  o f  th e  h e igh ts  o f  w ind  w aves is  a  questio n  
o f  so m e p ra c t ic a l an d  th e o re tic a l in te rest. Som e y e a r s  ago  th e  
p re sen t au th o r  [L on gu e t-H ig g in s , 1952] show ed th a l i f  the sea  
s u r fa c e  is  a ssu m ed  ю  be the sum  o f  m an y  s in e  w av es  in  r a n 
d o m  p h ase , an d  i f  ih e  f req u en cy  sp ectrum  is su ffic ien tly  n a r 
row , then  th e  w av e  am p litu d e s  ( a  w ave am p litu d e  is  here d e 
fined  as o n e  h a lf  o f  the h e igh t o f  a  w av e  crest ab o v e  ih e  p re 
c e d in g  tro u gh ) a re  d is tr ib u ted  a cco rd in g  to a  R a y le ig h  d is tr i
b u tio n . T h a t  is , th e  p ro b a b ility  P  th at th e  am p litu d e  a  o f  a n y  
g iv en  w a v e  ex c e e d s  (h e  v a lu e  a0 is  g iven  b y

P  =  e xp  ( - a j / e r )  ( I )

w h e re  d d e n o te s  the rm s am p litu d e . In the d er iva tio n  o f  th is 
la w  it  w a s  im p lied  th at the sea  su rfa ce  s lo p es w ere  su ffic ien tly  
sm a ll th at ih e  co m p o n en t w av es  cou ld  be l in e a r ly  superposed  
a n d  h en ce  th a t th ere  w as no  co rre la tio n  betw een  the phases o f  
th e  d iffe ren t F o u r ie r  co m ponents.

S u rp r is in g ly , th e  d is tr ib u tio n  ( I )  h as been  found ю  agree  
w e ll w ith  m a n y  f ie ld  o b serva tio n s, for e x am p le , th e  recent 
h ig h -q u a lit y  d a ta  o f  E arle  11975], even  though  th e  rm s su rface  
s lo p e  m ay  exceed  0.1 in  m agn itu d e  an d  th e  freq u en cy  sp ec 
tru m  m a y  not n ec e ssa r ily  be narro w .

F o llo w in g  C a rtw r igh t a n d  L o n gu e t-H ig g in s  ] 1956] som e a u 
th o rs [e .g ., H arin g  e t  a l ., 1976; F orr is ta ll, 1978] have used  an  
a lte rn a t iv e  exp ressio n ,

P  -  e x p  (а02/2тй) (2)

w h e re  m 0 d en o tes  th e  low est m om ent o f  the freq u en cy  sp ec
trum :

Л1,  =  I  E (a)  d a  (3)

S in c e  b y  th e  K h in tcb in e  theorem

mо -  if2 (4)

w h ere  q is  the in stan tan eo u s su rface  e lev a tio n , i l  fo llow s ih a l 
for l in e a r  m otions, w hen  th e  in d iv id u a l w av e  crests a re  ap 
p ro x im a te ly  s in u so id al,

m. -  (5)

Copyright ©  1980 by Ihe American Geophysical Union.
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W h en  an d  o n ly  w h en  th is re la tio n  is sa tis f ied , th ee  (2 ) is 
eq u iv a le n t to  ( I ) .

H o w ever, H arin g  e t  a l. (1976] an d  F orr is ta ll [1978 ], u s in g  
d a ta  w h ich  in c iu d c  those a n a ly z ed  by E arle  (1975] h av e  com e 
to th e  co n c lu s io n  th a t th e  d is tr ib u tio n  (2) do es not fit th e ir  
d a ta  so w e ll . In p la ce  o f  (2 ), F o r r is ta l l h as p ro p o sed  m ore 
co m p lic a ted  exp ress io n s (se e  sec tio n  5 an d  eq u atio n  (6) ) .  T b e 
pu rpose  o f  ih e  p resen t note is , first, to  sh o w  th a t the d a ta  p re
sented  b y  F o rris ta ll d o  n ev erth e less fit th e  d is tr ib u tio n  ( I )  
ra th er  w e ll an d  seco n d , to  d iscu ss  th e o re tic a l reaso n s for the 
d ifferen ce betw een  d is tr ib u tio n s  ( i )  a n d  (2).

2 . F ie ld  O b s e r v a t io n s  

F ig u re  1 sh o w s the sam e d a ta  a s  p re sen ted  b y  F orr is ta ll 
(1978, F igu re  2] an d  a lso  b y  H arin g  e t  a l. (1976]. T h ese  a re  e s 
s e n t ia lly  w av e  h e igh t d is tr ib u tio n s from  sto rm s in  the G u lf  o f  
M exico , e ach  d a ta  set b e in g  n o rm aliz ed  b y  ih e  v a lu e  т о 'л .

T h e  b roken  cu rve  in F ig u re  I co rresp o n d s to th e  d is tr ib u 
tion

P =  exp  (-{"//?) t  "  a J 2 m 0'n  (6)

w h ich  is  c a lled  b y  F o rris ta l l ‘ ih e  e m p ir ic a l d is tr ib u t io n .’ T h e  
v a lu e s  a  =  2 .126  an d  f t  ** 1.052 w ere fitted  to the d a ta  po in ts .

It ap p e are d  to m e th a t th e  d a ta  in F ig u re  1 m igh t e q u a lly  
w e ll be f illed  b y  a  s im p le  R a y le ig h  d is tr ib u tio n  o f  the form  o f  
(1 ) b u i w ith  a  s u ita b ly  chosen  v a lu e  o f  a . B y in sp ec tio n , I tr ied  
the v a lu e

a  -  0 .925  (2wi0) ,/J 0 )

T h e co rresp o n d in g  d is tr ib u tio n  is  show n b y  ih e  so lid  cu rv e  in 
F ig u re  1. It w ill be seen  th at th e  so lid  c u rv e  fils the d a ta  ab o u t 
as w e ll a s  the b ro ken  cu rv c .

3 . D is c u s s io n  

F rom  a  p rac tica l po in t o f  v iew , w hen  p o n d e r in g  w h eth er  to 
use the R a y le ig h  d is tr ib u tio n  (1 ) o r the W e ib u ll d is tr ib u tio n  
(6) ,  one m ny w e ll g iv e  p re fe ren ce  to an  exp re ss io n  in w h ich  
o n ly  o n e p aram e te r, a , h as to be estim a ted  an d  not two p a 
ram e te rs , a  an d  0 .  M oreover, the s im p le r d is tr ib u tio n  ap p ears  
to fit the d a ta  so m ew h at better a t  the h ig h e r w a v e  a m p litu d e s , 
w h ich  m ay  be c r it ic a l for c e rta in  ap p lic a tio n s .

Som e con fus io n  bos been  in tro d u ced  b y  F orr is ta ll (1978] in  
re fe rrin g  lo  (2 ) as ‘the R a y le ig h  d is tr ib u tio n ,' w h en  in fact 
there  is  m ore th an  o n e poss ib le  su ch  d is tr ib u tio n , an d  w h en
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tio n a l w aves , how ever, if  l a  denotes the cresi-to -lro ugh  w ave 
h e igh t, we h ave

■>’/ (<*) (9)

(10)

Fig. I , Probability o f the wave heights exceeding a given value Ho 
“= 2л0. Plotted paints a re  F orristairs (1978) data. Full curve represents 
(I )  with a  = 0.925(2m<,)l/3. Broken curve represents (6).

( ] ) ,  and  not (2 ), w as the form o r ig in a lly  proposed by L on gu et- 
H igg in s  (1952). F o r r is la ll a lso  refers to  (6) as the em p ir ica l dis- 
tr ib u tio o , w h e reas  ( I )  is  a lso  fitted to th e  d a ta  and  is  about as 
goo d  a  fit. S o m ew h at in co n s isten tly , he suggests that ( I )  is d e 
fec tiv e , s ince  it req u ire s  the fittin g  o f  a p a ram ete r  a  from the 
d a ta . T w o s im ila r  'd efects ' seem  to ap p ly  to  (6) .

It is  in te restin g  to consider poss ib le  reason s for the d iscrep 
an c y  b etw een  ( I )  an d  (2 ). W c  sh a ll co n s id er  tw o  possib le rea
sons: the fin ite  steep n ess o f  the d o m in an t w aves and  the fin ite 
w id th  o f  th e  sp cc lrum .

4. FlNiTE-AMPLFTUDE EFFECTS: BOIWD HARMONICS

O ne fea tu re  o f  a  n o n lin ear  w ave o f finite am p litud e is a cor
re la tio n  betw een  the phases o f  the fun d am en ta l F o urier com 
p o n en t w ith w av e  num ber к  and  the second h arm on ic, w ave 
n u m b er Ik . T h is gives rise Ihe w ell-kn ow n narrow ing  o f  Ihe 
w av e  crests an d  flatten in g  o f  the w ave troughs. A n other co rre
la tio n  is  b etw een  th e  fun d am en ta l and its th ird  harm o n ic  ЗА:, 
w h ich  g iv es  rise  to an  in crease  in  the m easu red  cresl-to -trough  
h e igh t 2a, re la tiv e  to  a  s im p le  s in e  w ave o f  the sam e rms am 
p litud e .

C o n sid e r  now  th e  p o ten tia l en ergy  o f  a un ifo rm , d eep -w ate r 
w av e  tra in  o f  fin ite  am p litu d e . T he m ean  p o ten tia l en ergy  V 
p er u n it h o r izo n ta l a re a  is

Г-Н' (8)
w h ere  i](x , /) is the su rface  e leva tio n  and  w e take  fo r conve
n ien ce  p  g = к  = 1. A cco rd in g  to S tokes’s th eo ry  o f  irro ta-

w h ere  / len d s to I o n ly  in  d ie  lim it as ak  - *  0. T h e function /, 
and  hence V, h as been  ca lcu la ted  by L on gu e t-H ig g in s  [1975a, 
b. F igure  1 and  T ab ic  2]. In F igu re  2 w c  show  V as a  function 
o f  (ak )1 (so lid  cu rve). T h e b roken lin e corresponds to lin ear 
theory, or s in u so id a l w aves . F or sm a ll values o f  ak it is found 
that

V -  i  ✓ Jl -  )(«*)' -  If <«*)* -  ^  «.*)* -  "J
(see  L on gu e t-H ig g in s  [1975л, 6]; not a l l  subsequen t term s are 
n ega tiv e ). N ote that V has a m ax im um  at around ak “  0 .41, 
{aky  «  0 .19 , co m p ared  w ith  the steepest un iform  w ave w hich 
h as ak  — 0.443, (ak )7 = 0.196. T h e m ax im um  P h a s  been co n 
firm ed by L on gu e t-H ig g in s  a n d  Fox  [1978] b y  a qu ite  in d e
penden t m ethod o f  c a lcu la tio n . Such  a m ax im um  occurs a lso  
in so litary  w aves [L on gu e t-H ig g in s  a n d  F en ton , 1974] an d  is in 
fact ch arac te ris t ic  o f  a ll s te ad y  g rav ity  w aves in w a te r  o f  u n i
form  depth [see C ok ele t , 1977].

From  F igu re  2  it fo llow s that we w ou ld , in gen era l, expect 
l i e  p o ten tia l en erg y  o f  fin ite -a rap litu d c  w aves to be som ew hat 
less than  that o f  a p u re ly  s in u so id al w ave o f  the sam e crest-io - 
trough  heigh t.

Suppose now  w e have a  ran dom  sea w ith a  continuous 
spectrum . N ote first that (4 ), connecting the low est m om ent 
m Q o f  the F o u rie r  spectrum  and the m ean -sq u are  e levatio n  7jJ , 
rem a in s  v a lid  even  i f  the phases o f  F ourier com ponents a re  
co rre la ted . It fo llow s th at for n o n lin ear w aves a lso  w e have , in 
gen era l,

mo — тр = 2V dl)
w h ere  V denotes Ihe m ean p o ten tia l energy  o f  the se a  su rface , 
per un it h o rizo n ta l a rea . T he m ean k in etic  energy  w ill, ho w 
ever, differ from Vt so  that the to ta l energ y  is not e q u a l to mo.

Fig. 2. Plot of the potential energy density V for a uniform train of 
deep-water waves o f amplitude a.
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N o w  su p p o se  th a t th e  se a  su rfa c c  c an  be m o d e lled  a s  a  su c 
c e ss io n  ( in  sp ace , o r  in  tim e) o f  w a v es  o f  n e a r ly  co n stan t w av e  
n u m b e r  k b u t o f  v a r y in g  с  re st-to -tro ugh  h e igh t 2u . W e  sh a ll 
th en  h a v e

m « -  2 j  V{a) d P (12)

w h e re  V'fo) d en o tes  the p o ten tia l en e rg y  o f  a  w av e  o f  a m p li-  
tu d e  a  a n d  P  is  the p ro b a b ility  d is tr ib u tio n  of a.

B ut w e  a lr e a d y  h ave  seen  bo th  from  E arle  (19751 a ° d  from  
F ig u re  I o f  the p resen t p ap er th a t the d is tr ib u tio n  o f  a  is g iv en  
a p p ro x im a te ly  b y  ( I )  even  for w av es  o f  fin ite  steep n ess  an d  
fo r sp cc tra  th a t a re  no t v ery  n a rro w . Su p p o se  th a t fo r e ach  in 
d iv id u a l w a v e  th e  p o te n tia l e n e rg y  is  g iv en  b y  (9 ) a s  fo r  a  
s te a d y  S to k e s  w av e  o f  fin ite  a m p litu d e . S o m e o f  the w av es  
m ay  o f  co u rse  be b re ak in g  an d  so m e th a t a re  not q u ite  b re ak 
in g  m ay  be u n s te a d y  an d  a sym m etr ic . L et us a ssu m e n e v e r
th e le ss  th a t the cu rv e  for V in  F ig u re  2  is  v a lid  a s  fa r  as (вЛ)3
— 0 .19 6 , an d  th at b eyo n d  th is v a lu e , V la k e s  the sam e v a lu e  as 
w h en  (ak )1 — 0 .196 . T h e  ap p ro x im a tio n  w ill be ad e q u a te  so 
lo n g  as o n ly  a sm a ll p roportion  o f  the w av es  a re  a c tu a lly  
b re ak in g . F rom  ( ! )  an d  (12) w e  sh a ll h ave

2  V(a) d  exp  ( - a 1 /a*) +  S (1 3 )

( 1 4 )

F o r  la rg e  v a lu e s  o f  а твлг/аг  th e  ‘rem a in d e r ’ & w ill be e x 
p o n e n tia lly  sm a ll. U s in g  th e  resu lt

r
w e h a v e  from  ( 10)  th a t

И1-(А Г- v W

(1 5 )

(16)

fo r su ff ic ien tly  sm a ll ak.
F ig u re  3 sh o w s a  p lo t o f  th e  r*tio

R =  2 m j t ?  (17)

b y  w h ich  th e  p o te n tia l e n e rg y  is  red uced , re la tiv e  to a  un iform  
s in e  w av e  o f  am p litu d e  eq u a l to a  So lo n g  as 6/m0 is  sm a ll, 
a n y  e r ro r s  in R  a r is in g  from  th e  assum ption  th a t V is  in d e 
p en d en t o f  a  w hen  a  > a IK, ,  w ill be n eg lig ib le . It ap p ears  th a t 
th is  is  the c ase  so long a s  a/d  is  less th an  ab o u t 0 .25, w h ich  is 
e a s i ly  su ffic ien t for o u r purposes.

N o w  from  the d a ta  o f  G rden a n d  D o rr es te in  J 1958] quo ted  
b y  L ak e a n d  Yuen (1978] it ap p ears  th at over a  w id e  ran ge  o f  
c o n d it io n s  th e  m ean  steepness a (tik  o f  w ind  w aves lies b e 
tw een  a b o u t 0 .14  an d  0 .18 . S in ce  from  (I ) ,

1.128 (18)

[see  L on gu e t-H ig g in s , 1952], it fo llow s that g e n e ra lly

0 .158 < d k <  0  203 (19)

F ro m  F ig u re  3 w e h ave  then

0 .968 <  R < 0 .935 (20)

In o th er words, for the sam e rm s am p litu d e  a  the effect o f  
n o n lin e a r ity  is  to red uce  the p o ten tia l en erg y  ±ma b y  betw een

F ig .  3 . T h e  r e d u c t io n  o f  ih e  m e a n  p o te n t ia l  e n e r g y  Jm o  o f  a  n o n -  
u n ifo rm  t r a in  o f  w a v e s  w i th  rm s a m p l i t u d e  a, r e la t iv e  lo  a  u n ifo rm  
s in e  w a v e  o f  a m p l i t u d e  a.

3 .2  an d  6.5% . H en ce th e  r a t io  a f m j n  is  in c re ased  b y  b e tw een  
1.6 an d  3.3%.

C le a r ly , th e  effect w o rk s in  th e  oppo site  d ire c tio n  to  th e  o b 
se rved  effect (e q u a t io n  (7 )) .

5 . F in it e  B a n d  W i d t h : F r e e  H a r m o n i c s

W e  sh a ll now  c o n s id e r  Ihe effect o f  su p e rp o s in g  on a  nar- 
ro w -b an d  sp ectrum  a sm a ll p e rtu rb a tio n  co n s is tin g  o f  free  
w av es , p ro p aga ted  in d e p e n d e n tly  o f  th e  u n p e rtu rb ed  s ig n a l. 
T h ro ugh o u t th is  sec tio n  we s h a l l  o p era te  w ith in  th e  f ra m e 
w ork  o f the l in e a r  th eo ry  in w h ich  d ifferen t co m p o n en ts in  the 
sp ec tru m  m ay  be s im p ly  ad d ed  w ith o u t a n y  d y n a m ic a l in te r 
a c tio n

T o  b eg in , su p p o se  w e h av e  som e fun ctio n  o f  th e  lim e  / o f  
th e  form

K 0  -  (A +  } 0 * )  +  (a  + f i t  +  b O (2D

w h ere  A, C, a ,  f i , у  a re  co n stan ts . T h e  first two term s rep resen t 
a b as ic  fun ctio n  h av in g  a m ax im u m  o r  a  m in im u m  a t / =  0 , y  
•=» A, a c co rd in g  as С  $  0 . T h e  r e m a in in g  term s rep resen t a  p e r
tu rb at io n , in w h ich  w e suppose th at a , fi , у  a re  o f  o rd er e 1 
co m p ared  lo  |C]. It is e a sy  to  ch eck  th a t th e  d e r iv a t iv e  o f  th e  
co m p le te  exp ressio n  y{t) v an ish e s  not a t t =  0 bu t at

fi
C + y

w h en  w e h ave

у  =  {A +  a )  -  ;2(C+y)
S in ce , fu rth er, у  <к С, w e  m a y  w rite , to  o rd er €*,

fi’у  = (A +  a )  -  ^

C o n sider, for ex am p le , th e  p ertu rb ed  sine  w ave 

у  = b  cos o t  + a H cos ( o„i + 9)

(22)

(2 3 )

(24)

(25)

\
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w here  в  is a  fixed ph ase  and

a„ <k b  «  a2b (26)

= (6 +  a„ cos в )  +  [ s in 2 в

' - - i f

+ -■ ~m̂~j' ^ + sin2 (в  +  тта/а.))

у  -  b  cos (a i  +  ф) +  X я - cos (°*1 +  ^-)

w h ere  F (o )  rep resen ts the spectrum  o f  th e  perturbation . T he 
ap p ro p riate  gen era lizat io n  o f  (34) is that

C o n sid e r in g  the m ax im um  n ear / -  0  w e  have in  (23) lo  set A 
•=" b , С  “  — A a2, e tc ., an d  h ence f {sin:I2 (4 77-o/d) +  (a/ a )1} E'(o) d a  (37)

(2 7 )

T o  first o rd er the co rrectio n  to v__ is ju s t  aK cos в. But the
p h ase  в  is ran dom  I f  w e  now  take  average  v alues (in an g le  
b rackets) w ith  respcct to the v a r ia b le  phase в, w e  ob ta in  sim - 
p ly

(28)

In o ther w o rd s th e  h e igh t o f  tb e  m ax im u m  is on ave rag e  ia -  
c reased  by an  am o un t p ro p o rtio n a l to  the m ean -sq u are  slope 
o f  the p ertu rb a tio n .

S im ila r ly ,  for th e  m in im u m  n ear I = v/ a  w e h ave  in  (2 3 ) lo  
set A ™ —by С  = b o 2, etc . H ence

2g 3
Ym* “  ~b  + a .  cos (tf +  >го./о) -  J  sinI (6  + t o  J o )

(29)

(30)

(31)

(32)

an d  tak in g  phase averages 

N ow w hen w e w rite  for the w av e  am p litu d e

= K̂mu 1 Ут1л)
we find

T h e  p ro p o rtio n a l in crem en t in w av e  h e igh t, n am ely , a *a „2/ 
(4 Ь2а*), is c le a r ly  dep en d en t on th e  w ave am p litu d e  b. It fo l
lo w s th a t the d is tr ib u tio n  o f  a  w i l l  not n e c e s sa r ily  be a 
R a y le ig h  d is tr ib u tio n .

C o n sid er  now  th e  m ean -sq u are  v a lu e  o f  a . R e lu m in g  to 
(3 1 ), we h av e

a  — b + am sin  ( в  +  \тгоя/а) sin  ($170я/ о)

I a . ' a *

the am p litu d e  b  being fixed. N ow  le i us furth er suppose that 
in (3 5 ) the am p litu d e  b  and ph ase  ф a re  s lo w ly  v a ry in g  in such 
a  w ay  th at the first terra  has a  narrow -band spectrum . T hus 
the spectrum  o f  the un p ertu rb ed  w ave w ill be

E(a) -  J/?S(o  -  a )  (38)

w h ere  6 is the D irac  d e lta  function . T h e d istr ib u tio n  o f  b  w ill 
be R ay le ig h :

P (b )  -  exp  ( -b V B 1)  (39)

E quation  (37) w ill be v a lid  excep t for the v ery  low  valu es o f  
th e  am p litu d e  b  w hen  the con tribution  o f  bi2 lo  Ihe expectancy 
( a 3) w ilt be re la tiv e ly  s m a l l  T h erefo re on m u ltip ly in g  d p  and 
in teg ra tin g  over 0 < b  < oo, w e sh a ll have , to the present o r
d er,

<>’ =  <o3> = P  + J  ( s in 1 (\ v a / a )  +((T/S)’ ) S ( a ]  d o  (40)

N ow the lowest m om ent o f  the spectrum  is

mo -  j  (E  + E") d o  -  i P  + j  £ ( o ) d o  (41)

It fo llow s th at, to first o rder in E'/m0t

a1-  bn„+ j~  US/S’  -  1) -  c o s ' (1 vo/ a ))  E (o )  d o  (42)

In o ther w ords, the m ean -square  am p litud e is ch an ged  re la 
tive  to 2 m c  b y  the value  o f  the in tegra l on the right.

T h e first term  in the in teg ra l m ay  be positive  or n ega tiv e  a c 
co rd in g  to the form o f  the perturbation  spectrum  £*; en erg y  at 
frequencies h igh er than о w ill tend lo in crease  the in tegran d , 
w h ile  en erg y  a t  low er frequencies w ill len d  lo red uce  it. T he 
second term  in the in teg ra l (4 2 ) is , how ever, a lw ay s  negative .

One sp ec ia l case can  be d iscussed  very  s im p ly , n am ely , 
when (he en erg y  o f  the perturbation  is concen trated  n ea r  о  it
se lf. T h en , s in ce

(o V a3 -  I) -  2(o/B -  1) + (o/ o  -  1)‘  (43)

and

(33)

so  th a t on sq u a r in g  an d  tak in g  m ean  v a lu e s  w ith respect to 0, 
we find, to second  o rder,

( a ’ ) -  * ’  +  Jo.1 s in1 ( W o j o )  +  j a .1".1/"1 (34)

T h e  ad d it io n a l term s on the r igh t a re  now  indeed  independen t 
o f  b.

N ext le t us suppose that у  is a  ran dom  process, g iven  by

cos3 (J tra/ 9 ) -  J (1 — соsw(o/o — I))  —  (a/b -  I)2 +  • 

we c an  express (42) in term s o f  the m om ents 

/  (0 -

w h ere  r  =  1 ,2 ,  T h u s w e o b ta in

л3 = 2 nta +
(35)

ij

(44)

(45)

(46)

w h ere  a ll th e  phases в„ a re  ran dom . T h e sum m atio n  on the 
r igh t is th e  u su a l rep resen ta tio n  o f  a  stochastic  sum . T hus w e 
w r ite

£  ~  E'(a) dn  (36)

correct to sccond o rder, and  hence

<47)
T o  low est o rd er in  th e  b an d  w idth , the s ign  o f  ( t f/ b r ig  — 1) 
dep en d s upon but i f  j i ,  ■= 0 , that is, the p ertu rb atio n  spec
trum  is w eigh ted  eve n ly  ab o u t a , then to second o rder.
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-  |

w h ere

r' -

p3 -  1 -0 .7 3 4 И (48)

(49)

6. C o m p a r is o n  W i t h  O b s e r v a t io n  

T h e  p a ram e te r  p in (48) rep resen ts a d im en sio n les*  b an d  
w id th  o f  the sp ectrum . In th e  exam p le  from  the G u lf  o f  M e x 
ico d iscussed  b y  L on gu e t-H ig g in s  [39756] il w a s  found th at v  
w as e q u a l to ab o u t 0 .23 . so J  =  0 055 , but th is sp ec tru m  w as 
u n u su a lly  n a rro w . F o r the m ore ty p ic a l P ie rso n -M o sko w itz  
sp ec tru m

£ (o ) -  m r '  exp  {-(/8/0)*) (50)

w h ere  a  an d  0  a re  constan ts, it is e a s ly  sh o w n  th at

4/5'
-  Г (1 -  r/4) (51)

w h ere  Г  d en o tes th e  u su a l g am m a  fun ction , an d  h encc

в — m . 3

in d e p e n d e n tly  o f  a  a c d  /3. Then (48) g iv es

-  0.931 (53)

w h ich  is  q u ite  c lo se  to  th e  em p ir ic a lly  d e te rm in ed  v a lu e  0 .925 . 
F o r th e  m o re g e n e ra l spectrum

£ (o ) -  a o ' s ex p  {-(fi/a )'}

w e find s im ila r ly ,

Г (4 / т)Г (2 / у )
(Ц З / у)}1

-  1

(54)

(5 5 )

so th a t in  th e  cases  у  “  3 an d  5, for exam p le , w e h av e  v2 «
0 .2092  an d  0 .1645 , h en ce д/ (2л10) ’/а — 0.889 and  0 .938 , respec
tiv e ly . A llo w in g  for th e  f in ite -am p litu d e  effects d iscu ssed  in 
sec tio n  4 , it a p p e ars  that th e  o bserved  v a lu e  o f  a/{2m0) ,/2 can  
b e  acco u n ted  for.

It sh o u ld  be em p h asized  that w e  h ave  used th e  P ierson- 
M o sko w icz  sp ec tru m  for illu s tra tio n  o n ly . A n y  o th er spectrum  
w ith  a  n a rro w  p eak  an d  w ith  the sam e to ta l m om ents, m,, 
a c d  m 2 w ou ld  y ie ld  the sam e resu lt. M oreover, there  ap p ears 
no need to id e n tify  p rec ise ly  w h ich  p arts o f  th e  sp ectrum  be
lo n g  to the p eak  and  w h ich  to th e  b ackgro u n d  n o ise .

7 . C o n c lu s io n s  

W e  h av e  sh o w n  th a t the d a ta  o f  ForristaU  [1978] support the 
co n c lu s io n  th a t th e  d is tr ib u tio n  o f  w av e  h e igh ts in a sto rm  is 
w e ll d e sc rib ed  b y  the R ay le ig h  d is tr ib u tio n  (1 ), p ro v id ed  the 
rm s am p litu d e  a  is e s tim a ted  from  the o r ig in a l record  an d  not 
from  the f re q u e n c y  sp ec tru m . T h e  in tro d u ctio n  o f  th e  tw o -pa- 
r am e te r  W e ib u l l d is tr ib u tio n  o ffers no  obv ious a d v a n ta g e , e i
ther e m p ir ic a l o r  th eo re tic a l.

F o rristaU 's sto rm  w av e  d a ta  fit a  d is tr ib u tio n  in w h ich  a  is  
ab o u t 0.925(2m<j)l/a. O ur d iscu ss io n  h a s  sh o w n  th a t the ob ser
v atio n  th a t a/ (2m 0) tn  is  s l ig h t ly  less th an  u n ity  c an n o t be a c 
co u n ted  for a s  a  f in ite -a m p litu d e  effect but m ay  on th e  o th er 
h an d  be d u e  to the p resen ce  o f  free  b ackgro u n d  ‘n o ise ’ in  the 
sp ec tru m , o u ts id e  the d o m in a n t p eak .
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On the Skewness of Sea-Surface Slopes
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ABSTRACT

Sunlight reflected from a  w ind-roughened sea surface produces a  glitter pattern in which the region of 
m ax im um  in ten sity  lends lo be sh ined horizontally by an apparent angle Д. depending on the w ind speed. 
It is shew n that Д is related d irectly  to the skewness o f the d istribution o f  surface slopes. From the observed 
data o f Cox and M unk (1956) i l  is  possible to deduce a sim ple correlation between Д and ih e  wind 
stress r .

The physical m echan ism  underly ing slope skewness is investigated. The skewness which results from 
dam p in g  o f in d iv id u a l waves is shown to be negligible. A two-scale model is  proposed, in which dam ped 
ripples or short g rav ity  w aves ride on the surface o flo n gergrav ity  waves. The model is found to give skewness 
o f  ihe observed m agn itude. The sign o f the skewness depends on the angle between ihe w ind m ainta in ing 
the ripp les and ihe direction of the longer waves, in agreem ent with observaiion.

C erta in  theoreiica l relations between Д and the phase у  o f the short-wave m odulation m ay be o f  interest 
in in terp reting observations o f  Ihe sea surface by o iher types o f remote sensing.

1 . Introduction

The glitler-pattern  of reflected sunlight has been 
used by Cox and M unk (1956) to study the distri
bution o f sea-surface slopes, in relation to the local 
w ind speed. Am ong the effects that they observed was 
that the location of the most intense reflection 
tended to be shifted horizontally, relative to its po
sition in the absence o f wind or waves. The angular 
d isp lacem ent was evidently associated w ith a skew
ness in the m easured d istribution of the surface slope. 
S ince an angle is easier to m easure, in general, than 
an in tensity, the question arises: can we use such a 
m easurem ent to obtain inform ation on the slope dis
tribution , and hence the wind stress?

Som e encouragem ent for this view can be derived 
from a theoretical dem onstration (Longuet-H iggins. 
1963) that in the absence o f applied surface forces or 
viscous stresses, the d istribution o f surface slopes is 
highly sym m etric ; the coefficient o f skewness is at 
most or order a2 where a  is the rm s slope. Hence any 
actual surface skewness m ay be a sensitive indicator 
o f w ind stress.

The questions to be addressed in this paper are the 
following:

1) How precisely is the observed angular d isp lace
m ent Л o f the m axim um  optical intensity related to 
the slope d istribution? This is answered by Eqs. (2.13) 
and (2.14).

2) Is there an em p irica l relation between Л and 
the horizontal wind stress? This is answered in  the

affirmative by Eq. (3.12), for wind speeds up to 15 
ms"1.

3) W hat is the physical explanation for the ob
served skewness? We show first in Section 4 that al
though a sim ple phase shift in the first harm onic of 
a travelling wave causes no slope skewness, any shift 
in the bound s e c o n d  harm onic does tend to cause 
such a skewness (see Fig. 4 and Eq. (4.6)]. In free but 
undamped waves, such a phase-shifted harm onic oc- 
cure only in a transient state, which can lead lo 
breaking.

Section 5 treats damped waves, where it is shown 
by a simple argum ent that viscous dissipation also 
gives rise to a phase-shifted second harm onic and 
hence to a skewness in the slopes However, the m ag
nitude o f this effect is too sm all to account for the 
observations.

Accordingly in Section 6 we propose a different, 
two-scale model in which short ripples, or cap illa ry , 
gravity waves, are assumed to ride on Ihe surface of 
much longer gravity waves, the shorter waves being 
m odulated by the presence o f the longer waves. Il is 
shown that this gives rise to a slope skewness (Eqs.
(6. 10) and (6.13)) of the sam e m agnitude and sign as 
is actually  observed

These results enable us to discuss in Section 7 a 
fourth underlying question, nam ely whether there is 
any necessary, fundam ental relation between slope 
skewness and wind stress, and to answer it in the 
negative.

On the other hand, some o f the sim ple relations

0072-3670/82/1II283 -09S06  25 
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F ig . 1. T he reflection o f  rays  from  ih e  sun S  tow ards an 
observer O, when w ind  an d  w aves are  in Ihc sam e d irection .

р(П

is t\x, t) w ith dow nw ind slope then the probability 
density p(£x) has a  m ax im um  when

t* = 'ЛД. (2 .1)

derived in the course o f the paper m ay well be o f use 
in  the interpretation o f radar backscatter a t cen ti
m eter wavelengths. In particu lar, we m ay m ention 
Eq. (6 .10), w hich relates Д to the steepness j  o f the 
longer waves, the phase ang le 7  o f  short-w ave m od
u lation , and the depth o f m odu lation  5. These re la 
tions follow from the geom etry o f the m odel, and  are 
independent o f an y  particu lar d yn am ica l assum p
tions.

1. Geometry

Throughout th is paper we shall restrict the d iscus
sion to the tw o-d im ensional situation when the d i
rection o f  the sun, w ind and swell are a ll in  line. This 
suffices to e luc idate  the m ain  princip les, and  the 
reader w ill read ily  supp ly the appropriate genera liza
tions to the case o f arb itrary  re lative directions.

Suppose then that the d irection o f the w ind  is in 
the vertical p lane conta in ing the sun S and the ob
server O, and is tow ards the observer, as in Fig. 1. If 
the sea surface were ca lm , the rays w ould be reflected 
from near a specu lar point P, say, where SP and PO 
m ake equal angles w ith the horizontal. W hen the 
w ind blows, the region o f m ost intense refection  
(after allow ing for reflectance and background rad ia
tion) is from the neighborhood o f a  point Q, say, 
shifted dow nw ind from P by an apparent angle Д. 
A ccord ingly, the m ode o f the slope d istribution must 
be shifted by a positive angle 'ЛД.

If we take axes as in Fig. 1 w ith the jc-axis hori
zontal in the plane OPQS, and if  the surface elevation

T h is is shown ex p erim en ta lly  in F ig. 2, which is 
a dow nw ind section through a typ ica l jo in t d istr i
bution p(£„ £V) as observed by Cox and M unk (1956). 
T he d istribu tion  is norm alized  by d iv id in g  f ,  by the 
rm s dow nw ind slope it?'12.

W e now derive a sim ple expression for Д in term s 
o f the m om ents o f p{f ,) .

Suppose that the d istribution  o f f t is approxim ately 
G aussian , and  m ay be represented by theG ram -C har- 
lier series'

ML)
I

; exp(—'Л/г)[1 + 'UH>

/ =  t j * i a
Fig . 2 . Schem atic d iagram  o f  the d istribution o f  upwind slope. 

Com pare with Fig. 15 of Cox and M unk (1956).

(2™2)''2
+ ('ktKIlt + +••■], (2-2)

in  which k„ is the nth cu m u lan t o f i.e ., i f

Л. = J а М Ж *  , (2-3)
then

*i -  Mi
*2 = М2 “ Ml2
*з -  Мэ “  ViM: + 2mi3

Also
Xn = *!>/* г 11-,
/  = (fx  -  *|)/‘ J/2,

and H„ is the nth H erm ite po lynom ia l: 

t f 3 = f 3 -  3/ -j

w . = /‘ - 6/2 + 3 > .
I

(2.4)

(2-5)

(2-6)

(2.7)

In deep w ater we can assum e that the sea surface has 
a negligib le m ean  tilt, so рч -  0 and  hence

кi =0, *2 -  м2 i -  Ms ■ (2-8)
Also

/ = Ш г. (2.9)

Then to order /2, and if  we neglect X4 and  Xj2 com 
pared to I,

Pttr) = (2тгK2) - l/2(\ -  '/2/2Xi -  ‘/2\if) .  (2 .10) 

Hence p({x) has a  m ax im um  when

j  = —У2Х3 = — 11)
this is when

1 A theoretical ju stifica tion  for th is form , which differs s ligh tly
from Cox and  M unk  (1956), was given by L onguet-H iggins (1963).
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-  -Чгкфг. (2.12)
From (2 .1) and ( 2 .12) il follows that

Д = -*э/кз . (2 13)
where and k3 are equal lo  the second and third 
mom ents, respectively, o f the distribution of p( ( ,).
T his can also be written

Д = (2.14)

in which a bar denotes ihe ensem ble average.
Three com m ents are in order. First, it does not 

appear from Fig. 2 that the m ean slope is zero.
However, this is because only the central part o f the 
distribution is shown, the tails not being m easured 
accurately. In Fig. 2, the rightward shift o f the dis
tribution over the central range, say - 2  < / < 2 , is 
actually  com pensated by a leftward shift in the “ tails '1 
of the d istribution , when |/| > 2.

Likewise it would appear from Fig. 2 that the third 
m om ent ц2 is positive. But the com pensation from 
the tails of the d istribution is relatively greater for 
*<jthan for v  i, so that in fact #i3 turns out to be nega tive.

In the actual evaluation o f the coefficients in the 
scries (2), Cox and M unk (1956) found it convenient 
not to calculate the m om ents o f p (k )  directly, but to 
use a method ofcurve-fu tin g to  the central, accurately 
determ ined, range of slopes.

F ig . 3. The observed coefficient o f skewness X3 plotted against (rm s slope)1 
from the data o f Cox and M unk.

3. The wind stress: an empirical result

Regardless of the cause o f the skewness, we m ay 
use the results of Section 2, com bined with the field 
observations o f Cox and M unk (1956), to derive an 
em pirical relation between the angle Д and the hor
izontal wind stress, at m oderate wind speeds.

Fig. 3 shows a plot of the coefficient of skewness

л 3 = * ,ы\п  (3.1)

as a function of к\а . calculated from Iheir data (see 
T able 1) (cf. also Longuet-H iggins, 1963, Fig. 2). In 
their notation

*i = <rj
\3 = - 6o„\a! +

in other words, we take a one-dim ensional section 
through their two-dim ensional slope distribution. 
From Fig. 3 il would appear that

X3 =  -4 5 < P  (33)

approxim ately. Hence

*3 = - 4 5 * 1 ,  (3.4)

and so from (2 .13)
A = 4 5 « i . (3.5) 

But Cox and M unk also found (see their Fig. 13)
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T a ble  I. C a lcu la ted  v a lu es  o f  A and s cos\K from  ihe 
d a ta  o f  C ox and  M un k  (1956).*

w
(m  s~‘ )

H,
(ft)

T,
(s) (deg) *2 A s СО$ф

11.6 3.5 4 _ 0 .03 90 -0 .1 6 3 0 .072 _
13.3 6 5 6 0 .0484 -0 .4 6 3 0 .217 0.10
13.8 6 5 6 0 .0452 - 0.220 0.101 0.10
13.7 6 5 6 0 .0404 -0 .3 4 5 0 .155 0.10
0 .72 1.5 3 9 0 .0005 +0.100 -0 .0 1 5 0 .07
8.58 2 3 19 0 .02 30 -0 .1 6 5 0 .064 0 .09
0 .89 — — 0 .01 53 -0 .0 0 4 0.001 _
3.93 1 0 0 .0098 + 0.003 - 0.001 0.11
8 0 0 2 3 6 0,0191 -0 .1 5 6 0 .213 0.10
6 .30 A 3 5 0 .01 70 -0 .1 4 3 0 .052 0 .19
6 .44 4 3 5 0 .0186 -0 .1 4 8 0 .055 0 .19
4 .92 4 3 10 0 .0174 -0 .0 8 0 0 .029 0 .18
1.83 3 4 120 0 .0090 +0.043 -0 .0 1 3 -0 .0 4
1.39 3 4 176 0 0 0 8 7 + 0 0 3 3 - 0.010 -0 .0 8
3 .35 5 4 85 0 .0125 - 0 0 5 3 0.018 0.01
10.2 4 4 0 0 .0357 -0 .2 8 3 0 .123 - 0.11
11.7 5 4 0 0 .0374 - 0  105 0 .046 0 .14
5.45 2 3 90 0 .0137 -0 .0 4 6 0.016 0.00
9 .79 4 3 6 0 .0264 - 0.180 0.075 0.19
9 .74 4 3 8 0 .0322 -0 .4 9 1 0 .208 0.19

10.5 5 3 12 0 .0365 -0 .5 9 8 0.261 0 .24

• Notes: H'was measured at 41 ft, Ht denotes significant wave 
height, T, denotes period of significant waves.

w here W denotes the w ind speed (m  s ') . Com bining 
(3 .5 ) and  (3 .6 ) y ie lds

Д =  4 .6  X lQ -'W '2.

т «  39Д dyn cm

To P a C mir

(2gT )" ‘  »  23 cm  s - '

4. Skew n ess of individual waves

W e consider first the skewness o f the slope d istri
bution that m ay  arise from the ind iv idua l waves, as 
illustrated in Fig. 4. Let

{ = a  cos/) + О(a2k) cos2/) + b  sin20, (4.1)
w here

в = k{x -  Cl), b  <i a. (4.2)

In other words suppose there is a second harm onic 
b s in 2tf phase locked to the fundam ental w ave, but 
in quadratu re w ith the o rd in ary  second harm onic in 
a steady surface wave. If b  > 0, the effect w ill be to 
steepen s ligh tly the forward face o f the wave and lo 
correspondingly flatten the rear slope, as in  Fig. 4. In 
fact, the slope f ,  is given by

f* = - a k  sinfl + O(afc)2 sin20 -  2bk cos2fl, (4 .3 ) 

so that to lowest order

*i = ii = о
K2 = J} a2k2 s5n*e :

“  fjr = 6a2hk* s in ’tf cos20 ■

where a bar denotes ihe average w ith respect to  X  
Therefore

4ia2k 2

-\ a 2b k '  J
j .  (4-4)

(3 .6 )
3̂ 1

and from (2 .J3 )

«э/«2

(3.7) Д *

—3 V2fc/a

\bk.

(4 .5 )

(4 .6)

T h is relates the angle o f deflection Д d irectly to the 
w ind speed W, when W «  15 m s ' 1.

On the other hand, the shear stress т exerted by 
the w ind is g iven approxim ately by

( 3 .8)

w here Co -  1.5 X 10“ ’  is a drag  coefficient, and  
p„ == 1.2 X 10 ! g/cm“3 is the density of a ir . Com 
paring  (3 .7 ) and  (3 .8 ) w e see that

It is then possible for the asym m etric  second har
m onic to ex ist? If lin ear theory is app licab le , the free 
speed o f a  g rav ity w ave w ith w avenum ber 2k is not 
с  but c/ i2. T o  m ain ta in  the harm on ic as a forced 
wave with speed с  requ ires the app lica tion  o f a surface 
pressure p ‘ given by

p ’/t> = - ф ; -  g f ,
where

Ф', = —c b e 2ky cos2tf]
(3.9)

(4.7)

(4 .8 )

In other words, ih e  w ind stress is directly proportional 
to the an gu lar d isp lacem ent of the glitter m axim um .

To express Eq. (3.9) in dim ensionless form it is 
conven ien t to introduce the basic shear stress

(3.10)

w here cm;n denotes the m in im um  phase speed o f cap- 
ijla ry-grav ity  waves, i.e.,

Г  =  b  s in 26 J

and с 2 *  g/k. This yie lds

p '  -  p g b  sin20 =  O(Xipga) ,

from (4 .5). However, the surface pressures due to the 
w ind are probably o f order 10-5 pga, considerab ly 
sm aller.

(4 .9 )

(3 .11)

(see Lam b 1932, Section 267); thus r 0 = 0.53 dyn 
cm " ! . As a result Eq. (3 .10) m ay be written

т/т0 =  74Д. (3-12)
F ic . 4. Schem atic  diagram  show ing how skewness o f in d iv id u a l 

w aves can arise from a  sccond h arm on ic.
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However, if  the steepness ak o f the fundamental 
is sufficiently great, the contribulion of its orbital ve
locity to the dynamics o f the harmonic J" becomes 
appreciable. Since the orbital velocity is forward at 
ihe crest, where ihe energy o f the harmonic lends to 
be greatest, the effective relative speed between the 
free harmonic and the fundamental will be reduced. 
Hence p '  is also reduced. Finally, as shown by precise 
calculation (Longuet-Higgins, 1978, Figs. 1 and 4), 
Ihe speeds o f the free second harmonic and o f its 
fundamental become equal at ak = 0 .436 (less than 
(he maximum steepness ak = 0.443). At this point 
ihe second harmonic exists as a neutrally stable per
turbation o f the fundamental Stokes wave, and 
p ' s  0. When ak > 0 .436 Ihe perturbation becomes 
unstable, that is to say it grows exponentially in time. 
This presumably leads very rapidly to an overturning 
o f the free surface, as was found in a similar case 
studied numerically by Longuet-Higgins and Cokelet 
(1978).

We conclude that skewness of individual, un
damped waves can exist, but only in a transient state, 
jusl before breaking.2 It might be possible to base a 
theory o f skewness on the assumption of a supply o f 
energy from the wind, sufficient ю maintain Ihe wave 
field in face o f losses due to overturning o f the free 
surface. But since the rates of growth o f the instabil
ities depend strongly on the difference between the 
actual steepness ak and the critical value ak -  0.436, 
the rate o f growth o f the skewness is difficult to es
timate precisely.

This type o f skewness may be most important for 
records o f the sea surface in which Ihe high-frequency 
part o f the spectrum has been eliminated by a low- 
pass instrument or filter.

5. Skewness in damped waves

In the previous section it was assumed that indi
vidual waves were undamped. We show now that the 
action o f viscous damping on the otherwise free grav
ity wave is to induce a slight asymmetry in the wave 
profile.

As pointed out by Lamb (1932, Section 348), sur
face waves in a viscous fluid can be maintained in a 
steady state by the application o f the appropriate nor
mal and tangential stresses at the ffee surface. Let 
these be denoted by t„„ and respectively. In the 
absence o f these applied stresses, there develops a thin 
boundary layer, as if fictitious stresses - r „  and - t „  
were applied lo an otherwise inviscid fluid.

Now in a steady wave, with symmetric profile, the 
normal stresses -t„„  are symmetric also, and so pro
duce no asymmetry. However, the tangential siress 
—тт is asymmetric, and so produces some asym
metry. By a very simple argument it may be shown

Fig. 5. Thickening of ihe boundary layer due 10 variable 
tangential stresses on a surfacc wave.

(see Longuet-Higgins, 1969) that any tangential stress 
t' acting at the surface of the wave produces a local 
thickening o f the boundary layers given by

a n  1 1
dt * p c1 (5.1)

where H is the boundary-layer thickness (see Fig. 5). 
This produces an cxcess pressure pgH at the surface 
which generally is in quadrature with r', and does 
work on the fluid in a way entirely equivalent to an 
applied normal stress.

To prove (5 .1) we note that if  Л/is the excess mass 
flux or momentum within the boundary layer then

dM
(5 .2 )

and if  (»', i/) denote the components of the excess 
velocity in Ihe directions (s , n) tangential and normal 
to the surface, then
m  , .  r aw .
—  = M  1  r  dndt J  an

С du' d M
= -  -7“ -  Г  — • (5'3) J ds ds fl

since M -  J  pu'dn.  But if the motion is (approxi
mately) progressive with phase speed c, then correct 
to second order in ak

d
ds

1 1  
с  dt

Hence
BH \_dM 
dt p c  dt

(5 .4 )

( 5 .5 )

from which (5.1) follows.
In fact by applying (5.4) again, Eq. (5 .1) can be pul 

in still more convenient form

а я ж _ т
ds p c '

In the present case we have

т' = - t „  = -2цф„ ,

( 5 .6 )

(5 .7 )

1 For cap illa ry-grav ity  waves ib is  conclusion m ust be m odified.

where и is the coefficient o f viscosity and ф denotes 
the velocity potential o f the irrotational flow just be
yond the boundary layer. To first order in the wave
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For cap illa ry  or cap illa ry -g rav ity  w aves s im ila r  con
clusions w ill app ly.

2-к/к
F ig . 6. A  m odulated tra in  o f short waves rid in g  on 

the surfacc o f  longer waves (C  >  0).

steepness ak, this stress produces a  th icken ing o f ih e  
boundary laye r on the forward slopes o f the w ave as 
ind icated  in Fig. 5, but no change in the slope dis
tr ib u tio n , because the surface is still s in uso ida l, 
though shifted slightly in phase.

To second order, it is easy to show (see A ppendix 
B) that

ф„, = a k 2c  cosB + a7к 3c (cos’ s — 2 s in 30). (5 .8 )

T he no n lin ear term s now give rise to a term  in cos2fl:

Ф'п, -  3h<?k3c  COS20, ( 5 .9 )

and so from (5 .7 ) the relevant contribution lo  the 
stress is

t '  = - 3 iia2k 3c  cos20, (5 .10)

which is  greatesl at the w ave crests. By (5 .6 ) th is pro
duces a sm all change f ' = H to the surface elevation , 
the change in the surface slope being

where

dH
Si w  —  = 3(ak)2va/(c2 cos20), as

a  = ck

(5 .11)

(5 .12 )

and p = ц/р is the k inem atic  viscosity.
The fo rm ula (4.6) for the angle Л now app lies, so 

that we have

0 6 . Skewness due to ripples: a (wo-scalc model

It w as shown exp erim en ta lly  by Cox (1958) that 
a  significant proportion o f the variance o f surface 
slope m ay be contributed by short g rav ity-cap illary 
w aves and ripples, rather than by longer grav ity 
waves. M oreover, the ripp les are found preferentially 
on the forward faces o f the steep g rav ity  waves, even 
in the absence o f w ind.

T heoretica lly , the spontaneous generation of cap 
illa ry  w aves at the crests o f  steep grav ity waves was 
analyzed  by Longuet-H iggins (1962). Furtherm ore, 
P hillips (1981) has shown that cap illa ry  waves o f 
w hatever orig in  can be trapped on the forward face 
o f a grav ity w ave, by convergence o f the orb ital mo
tion.

Even if  the shorter waves are not trapped, however, 
v iscous dam p in g  o f the short waves, com bined w ith 
the action  o f ihe rad iation  stresses, m ay tend lo  pro
duce a  greater steepen ing o f the short waves on the 
forward slopes o f the longer waves than on the rear 
slopes. A theoretical exam p le is given below in  A p
pendix A.

A ccord ingly we consider a  sim p le  two-scale m odel 
o f the sea surface in which short (cap illary  or grav ity- 
cap illa ry ) w aves ride on a random  sea o f m uch longer 
waves, as in Fig. 6 . The steepness of the shorter waves 
is assum ed to  be m odulated  by the longer waves, and 
in such a  w ay that the short w aves are sleeper, on Ihe 
average, w hen rid ing  on the forward faces of the lon 
ger waves. T hus we let

f  = a  cosfl + a ' cos#1, (6 . 1)

Also

Д = -  (ak)2vo/ c2. 
4

^ ( a k f v c / c 2

(5 .13 )

(5 .14)

from (4 .5).
H owever, it w ill be seen that for grav ity waves the 

effect is qu ite  sm all. For i f  we take

v = 0 .013 cm s_l

a = 10 rad s" 1

с  »  c .̂„ = 23 cm s_l .
then

v a le 2 < 2.5 X 10“

and so Д is 0 (1 0 “ ')  a l most, while X, is ООО"3), 
genera lly  m uch sm aller than in the observations o f 
F ig. 3.

where a and  в denote the am plitude and phase func
tion for the longer waves, w ith  w avenum ber

к  = дв/дх. (6 .2)

Here a and к  are assum ed to be slow ly v ary ing  func
tions of л  and l. Prim ed sym bols о '.S ', etc., w ill denote 
corresponding quan tities for the short waves, and  we 
assum e

a ’k' -  a  + ISak cos(0 — 7 ), (6 .3 )

where a , fi and  7  are constants. W e expect 0 < 7  
< 90°.

S ince by hypothesis k' s> k, the surface slope fx is  
found from (6 . 1) to he

fx = —ak sinfl — [or + fiak cos (0 — 7 )] sin tf. (6 .4 )

From this we m ay ca lcu late  the m om ents of/K D  by 
averaging f f ,  first w ith respect to the fast phase f f  and 
then w ith respect to the slower phase 0. In this w ay 
we obtain

*1 = Г* = 0 ( 6 .5)

as required. Next

J
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*2 = Й  = '/is1 + 'На2 + 'Л(3 V ) ,  (6.6)

where 5 2 = (ak)’ , tw ice the m ean-square slope of Ihe 
longer waves. F inally ,

= -3 (a fc  sinf?) • 2a0ak  cos(fl -  7 ) ■ '/2

= -\ a& s2 s in y . (6.7)

If the m axim um  ripple slopes occur on the forward 
faces o f the longer waves, then afi s in ?  > 0, and so 

is negative. To interpret this, we note that on the 
rea r  slopes o f the waves, where the ripple slopes are 
sm allest in m agnitude, the effect o f the longer waves 
is to shift the slopes in the p o sitiv e  sense. Hence the 
central part of the distribution tends to be shifted to 
the right, as in Fig. 2. On the other hand, where the 
m agnitude o f the ripple slopes is greatest, i.e., on the 
forward face of The longer waves, the slopes are shifted 
negatively. H ence the tails of the distribution are 
shifted to the left. Because of the predom inant effect 
o f the tails, the third cum ulan t <t3 becomes negative.

Further, if  the ripples make a preponderant con
tribution to the slope variance, so that or S> s 2, we 
have from (6 .6)

к2 = 'M l  + W2). (6-8)
where

5 = ffs/a (6 .9 )

represents a “depth o f m odulation” of the shorter 
waves. F inally  from Eq. (2.13) we have

л = т т Ъ “ шг (6I0)
In other words, the apparent angular displacem ent 
Д o f the mode is independent o f the m ean-square 
ripple steepness, and depends only on the rms steep
ness o f the longer waves, together w ith the relative 
depth o f ripple m odulation 5 and the phase shift 7 . 
S ince 3/(1 + V262) is m onotonic in the range 0 < 6
< 1 , the first factor in (6. 10) has as its upper bound 
the value taken when 5 = I, so we have alw ays

A ^ 2s s in y . (6.11)
H ence it follows im m ediately that

A S 2s. (6 . 12)

W e have supposed the direction o f the ripples to 
be the sam e as that o f the longer waves. If, on the 
other hand, the direction o f the longer waves is op
posite to that assum ed, i.e., it is aw ay from the ob
server, the sign o f the right-hand side in (6 . 10) would 
be reversed (regardless o f the ripple direction)

Are these results consistent w ith the observations 
shown in Fig. 3? In those observations, which are 
sum m arized in Table 1, the w ind direction, which 
presum ably determ ines the direction of the ripples, 
generally differed from that o f the significant waves

1289

by an angle ф < 90". There were two exceptions, 
m arked by arrows, which happen both to correspond 
10 positive values o f Xj. The only other positive values 
are the plot very close lo the horizontal axis at

-  0.0010, for which |X3| was only 0 .003, and the 
plot at к\п  = 0.00034, which was in a wind speed
< I m s"1, and for which the determ ination o f X3 was 
probably less accurate. This has been m arked with 
square brackets.

The simplest generalization o f (6 .10) to a situation 
in which the longer waves travel at an arbitrary angle 
Ф to the wind is

A = F(S) s t ny  ■ s  cost//, (6.13)

where F\b) denotes the first factor on the right of
(6.10). The counterparts o f the inequalities (6.12) are

IA| *s |2 sin 7 -jcosiAI (6.14)
and

IA| < 2s|cos^|. (6.15)

To test whether (6.14) is satisfied, we have plotted 
in f ig . 7 the values of

A = — #j/«2 = — (6.16)

against the corresponding values of s  cos&, where 
j  = dk is estim ated from the relation

в  = Я ,/2.83, (6.17)

and H, is the significant wave height. Also k = a2/g 
where a is the rad ian frequency of the longer waves, 
taken equal to 2*/T,.

The inequality (6 .15) corresponds to the sectors 
bounded by the diagonal line in Fig. 7 and Ihe hor
izontal axis. It will be seen that the plots do in fact 
lie more or less in this region, apparently confirm ing 
our simple model. (It should be borne in m ind, how
ever, that some o f the m easured param eters, partic
u larly for the swell, are not given very accurately.)

W e note that for points lying close to the diagonal 
line in Fig. 7 both b and |sin7 j must approach 1. 
Hence the ripple m odulation must be a  m axim um , 
and it must be nearly in quadrature with the elevation 
o f the longer waves.

7. Discussion

We have suggested three possible mechanism s for 
producing skewness o f the surface slopes, and have 
shown that one of them — m odulation o f short waves 
riding on longer waves— predicts a skewness agreeing 
w ith observation in both m agnitude and sign. One 
other m echanism —viscous dam ping of individual 
waves—gives an effect that is too sm all, and does not 
conform with the observed change o f sign when wind 
and swell are in opposite directions.

We have also dem onstrated an em pirical relation 
between the skewness and the mean horizontal wind

M .  S .  L O N G U E T - H I G G I N S
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stress, which however is valid only when wind and 
swell are in the same direction. Thus there seems to 
be no necessary connexion between skewness and 
windstress. This conclusion is confirmed by the il
lustrative model discussed in Appendix A.

It appears that, if we are to gain information on 
wind stress from the observed skewness, we must rely 
on the empirical correlation o f Fig. 3. Moreover, the 
direction of the underlying swell relative to the wind 
is a factor to be taken into account.

Acknowledgment.  1 am indebted to Walter Munk 
for suggesting to me some o f the questions in this 
paper, and for encouragement in finding the answers.

APPENDIX A 

On Ripple Dynamics

We show by an example that the phase у  o f cap
illary waves riding on the surface o f lodger gravity 
waves may well be positive.

W ithin the approximations o f Section 3, an equa
tion for the short waves can be written as

dE ,dU
-  +  - № { + [ / )1 + S -  + B = G , (A l)

where
E = 'hT\a’k ‘f (A2)

denotes the energy density for capillary waves (T  is 
surface tension), and

'НтГ (A3)

is the corresponding group velocity. Also

V = aa  costf (A4)

is the horizontal orbital velocity in the long waves,

5  = \E  (A5)

is the radiation stress for the short waves (see Lon
guet-Higgins and Stewart, 1964, Section 3);

D = NE, N = 4vk '\  (A6)

is the energy dissipation due to the kinematic vis
cosity v (see Lamb, 1932), and G is the direct input 
o f energy from the wind. W e assume that

G = KE, (A7)

that is, the input of energy to the short waves is di
rectly proportional to the local short-wave energy it
self.

Owing to the horizontal convergence o f the long
wave orbital motion, the wavenumber к  ’ o f the short 
waves is greatest at the long-wave crests; in fact to 
order ak

k ‘ = ki(\ + akcasf f) .  (A 8)

The group-velocity cs given by (A3) varies accord
ingly, that is

Cg = Ce  o(l + Viak cosfl). (A9)
Similarly

N = N dl  + 2ak cosfl). (A 10)
Now writing

E = E0 +E,ak cosB + E,*ak итв ( A l l )  

and substituting in Eq. (A l)  we find, from the terms
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independent of 0. that

^  = ( K - N B)Eo. dt (A 12)

Likewise from the terms in cosfl and sin0 we find 

(K  -  N0)E, + (o  -  kcs)E, * = 2NqE0 

(a  -  kcg)E, - ( K -  N0)Et* = ( V  + 'hkc, + К )E0 .
(A 13)

If К  and Л'о were both zero we should have the 
solution: E0 = constant, Ei* = 0 and

2(с  -  с ,)
(A 14)

In this situation the steepness o f the ripples fluctuates 
in-phase with the elevation o f the long waves and у
-  0. (Note the “resonance” when cg = c.)

Suppose on the other hand К  and Л'о do not both 
vanish, but that we have a quasi-steady slate in which 
the short-wave energy is saturated. (Since the dissi
pation may be due partly to breaking or turbulence, 
the kinematic viscosity v must be replaced by an ef
fective coefficient Л'о/4к^.) Then in (A12) we have 
dE0/8i = 0, hence

N0 = K  (A l 5)
and from (A 13)

£-,* = - ™ 7 , (A 16)
(c -  c g)k

with E\ being given by (A 14) as before. Hence the 
phase angle у  is given by

.  _  £■* _  4K 
аП7 E, k(5c + c„) ‘

(A17 )

When (5c + cg) > 0 the angle у  will lie between 0 ‘ 
and 90° ,  and when c, 4  с  we have simply

4 К
tan-r = -  -  .

5 a
(A 18)

Similar conclusions would apply if the short waves 
were assumed to be not pure rippies but short gravity- 
capillary waves.

If the underlying swell is in a direction opposite to 
that o f the short waves, then the signs o f с  and a are 
reversed. Eq. (A 18) then indicates that the phase an
gle у  lies between —90° and 0°.

In the limit when the rate o f energy dissipation in

(B4)

the ripples is large compared with the long wave fre
quency <r, then (A 18) implies that tan-y will be large 
and that у  will be near 90°.

APPENDIX В

Evaluation of ф„
Let f denote the angle of inclination of the free 

surface, hence the angle between the coordinates 
(s, n) and (x, z). We have then

Фш ~ <McosJ< -  sin2e) + (Ф-, -  флJcose sin<- (Bl)

Since tane = f ,  and + ф.. = 0 we have, to second 
order in ak,

Ф., = Ф„  -  2 . (B2)

or if  we expand the right-hand side in a Taylor series 
about z = 0,

Ф «  =  (Фх.: + ГФх-., -  2 Ш  (ВЗ)

For gravity waves in deep water

ф -  a c e kz sin0 + О 
f  = a  cos# + Oia'k)

with в = kx — at.  Substitution into (B3) gives Eq.
(5.8).
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On the joint distribution of wave periods and amplitudes 
in a random wave field

B y  M . S . L o n g u e t - H i g g i n s , F .R .S .

D epar tm en t  o f  A p p l i ed  M a th em a t i c s  a n d  T h eo r e t i c a l  P h y s i c s ,
S i l v e r  S tree t ,  C am b r id g e  CBS 9EW, U.K. 

a n d  I n s t i tu t e  o f  O ce a n o g ra p h i c  S c i e n c e s , W orm ley ,  S u r r e y  GV8 SUB, U.K.

(R e c e i v e d  15 M a r ch  1983)

A theoretical probab ility density is derived for the jo in t d istribution of 
wave periods and am plitudes which has the following properties: ( 1 ) the 
distribution is asym m etric , in  accordance w ith observation; (2 ) i t  depends 
only on three lowest moments m 0, m x, т г of the spectral d ensity  function.
I t is therefore independent of the fourth moment m 4, which previously 
was used to define the spectral w idth (Cavani6  et al. 1 9 7 6 ). In  the present 
model the w idth is defined by the lower-order param eter

v  = (mam 2/m\ —1)£.

The distribution agrees quite well w ith wave data  taken  in the North 
A tlan tic  (Chakrabarti & Cooley 1 9 7 7 ) and with other d a ta  from the Sea of 
Jap an  (Goda 1 9 7 8 ). Among the features predicted is th a t the to ta l d istr i
bution of wave heights is slightly non-Rayleigh, and th a t the in terquartile  
range of the conditional wave period distribution tends to zero as the wave 
am plitude diminishes.

The an a ly tic  expressions are simpler than those derived previously, and 
m ay be useful in handling real sta tistica l data.

1 . I n t r o d u c t i o n

In  a  previous contribution (Longuet-Higgins 1 9 7 5 ; to be referred to as I) the author 
proposed a theoretical expression for the jo in t distribution of the periods and 
am plitudes of sea waves, which was based on a  narrow-band approxim ation applied 
to the well known linear theory of gaussian noise. W hile g iv ing a  fa irly  good fit to 
wave data  w ith a  narrow spectrum such as those of Bretschneider (1 9 5 9 ) 1  the model 
did not account for the asym m etry in the distribution of wave period r  which is 
commonly observed in wave spectra with a  broader bandw idth (see, for exam ple, 
Goda 1 9 7 8 ).

A t about the same time, Cavanie et al. (1 9 7 6 ) proposed a  theoretical distribution, 
also based on a  narrow-band, gaussian model, which accounted very  successfully 
for the asym m etry in the distribution of т. However it involved the use of the well 
known spectral width parameter e  where e 2 = 1 and m n denotes the 
71t h  moment of the spectral density. For some practical purposes th is param eter is

( 241 ]
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inconvenient, since the fourth moment, m 4, m ay depend rather critically on the 
behaviour of the spectrum at high frequencies.

Some lengthy and perhaps accurate approximations to the distribution of wave
length and amplitude in gaussian noise have been given by Lindgren (1 9 7 2 ) and by 
Lindgren & R ych lik  ( 1 9 8 2 ), but for their evaluation these require a great deal of 
computation. Moreover, these expressions also involve high moments of the 
spectrum.

The purpose of this note ia to present an alternative theoretical distribution, also 
based on narrow band theory, which has the same merit as the Cavani6  distribution 
in being asym m etric in t , but which depends only on the lower-order moments 
m 0, m v  m2, as in paper I. A measure of the spectral width is provided by the para
meter v, where v 2 = m0wi2/mf — 1. As we shall see, this also accounts well for the 
observations, and in addition the theoretical expressions are somewhat simpler to 
handle than those in  Canani£’s distribution.

2. T h e o r y

As in paper I we begin with the representation of the sea surface elevation £ in 
the form

S = R e ^ e i5t, (2.1)

where A(t) is a  complex-valued envelope function:

Л = р е ‘ *, (2.2)

with am plitude p  and phase ф both real but slowly varying functions of the time t. 
I t is convenient to choose the carrier frequency ?  so that

a  = m j m 0, ( 2 .3 )

where m n denotes the wth moment of the spectral density E(cr):

m n = j  стпЕ((т)Аст. ( 2 .4 )

A spectral width param eter v  can then be defined in terms of the variance of E(<r) 
about the mean:

v* =  ц г/ а * т 0, ( 2 . 5 )

where /in = j" (o' — W)n E(<r) dor. (2 .6 ) 

Clearly,
t*o =  m o. =  р г =  т г - т у т 0, ( 2 . 7 )

and so v2 = m Bm 2/m\~ i .  (2 -8 ) 

W e shall adopt the narrow band hypothesis, nam ely,

v2 1. ( 2 .9 )
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In  practice we assume th a t v2 ^  0.36. This ensures (as we shall see) th a t the envelope 
function varies slow ly compared w ith the carrier w ave ехр(1ёг f) so th a t the wave 
crests He alm ost on the envelope £ = p. Also, the ra te  of change of the total phase, 
Х - ф  + т ,  th a t is, *  = + (2.10)

(where a  dot denotes differentiation w ith respect to t) is alm ost equal to <r. In  other 
words ф <£ JT, in general. We shall assume further th a t ф < 7Тф, so th a t ф varies little  
over a  wave period (an assumption discussed below). Then the local wave period т 
can be approxim ated by T = 2jr/* = 2jt/{v + ф). (2.11)

The wave am plitude p  and the wave period r  m ay be norm alized by w riting
R = p/(2mQ)i, T  = t/T, (2.12)

where we define f  = 2n/?f = 2n m 0/m1. (2.13)
Now i t  can be shown rigorously (see paper I, and earlier papers referred to 

therein) th a t the jo in t probab ility density of p  and ф is given by
p i p ,  ф) = {рг/(2п$ (2.14) 

We can now find the jo in t density of R  and T  from
р{В,Т)=р(р,ф)\д{р,ф)/г(В,Т)\. (2.15)

A pplying the above formulae we obtain im m ediately
p ( R ,T )  = (2/rtb) (2.16)

where L(y)  is a norm alization factor introduced to take account of the fact th a t we 
consider only positive values of T :

I  = — f “ e-tW i-hi-i/zW ]di? d T  (2.17)
L n i j o  J o  T 2

On evaluating the in tegra l (see the Appendix) we find,

l/L  = J [ l  + ( l  + ^ )" i] .  (2-18)

For sm all values of v  this is close to un ity :

L k  1 + i iA  (2.19)

Some values of L are listed in table 1.

T a b l e  1 . P a r a m e t e r s  o f  p (R ,  T)
m ode

V L R T Paai
0.1 1.0025 0 .9 55 0 .9 90 4 .2 0 3
0.2 1.0098 .981 .962 2 .1 8 0
0 .3 1 .0 2 15 .958 .9 17 1 .5 4 1
0 .4 1 .0371 .928 .862 1 .2 48
0 .5 1.0557 .894 .800 1 .0 9 6
0.6 1.0767 .857 .735 1 0 13

i
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F i g u r e  1 a - f .  C o n to u r s  o f  p (R ,  T ) / p ^ x, w h e r e  p (R ,  T )  ia  t h e  j o i n t  d e n s i t y  o f  t h e  n o r m a l iz e d
w a v e  a m p l i t u d e  R  a n d  n o r m a l i z e d  p e r io d  T  a n d  v __ ia  t h e  d e n s i t y  a t  t h e  m o d e , s e e

( 4 .2 ) ;  p / p m«  t a k e s  t h e  v a l u e s  0 .9 9 ,  0 .9 0 , 0 .7 0 , 0 .5 0 ,  0 .3 0  a n d  0 .1 0  r e s p e c t i v e l y  f ro m  
t h e  c e n t r e  c o n t o u r  o u t w a r d s .
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3 .  D i s c u s s i o n

S tr ic t ly  speaking, (2.16) gives the probability density of R and T  (the dimension- 
less w ave am plitude and period) a t points uniform ly distributed with regard to t. 
To find the density  of R  and T  a t particu lar points, say , the m axim a of f , we would 
have to consider the jo in t density  of £, £ and £ at least, as is done b y  Arhan et al.
( 1 9 7 6 ), or equ ivalen tly  the joint distribution of p , f i , 'p  and ф, ф. B ut the variance of p

F i g u r e  1 e- f .  For legend see opposite.

is proportional to v* or /u.t (see Longuet-Higgins 1 9 5 7 ) so th a t p  is negligible, b y  our 
assumption (2.9). This implies th a t p  varies slowly compared w ith if. S im ilarly , we 
have assumed ф Ъф, th a t is, ф is also slowly varying. Hence the crests w ill occur 
a t alm ost regu larly  spaced intervals in time, and it  m atters not, in this approxi
mation, whether the density is for values a t the crests of the waves, or values 
uniform ly distributed with regard to t as in  (2.16).

In figure 1 we show contours of p (R ,  T) for a sequence of values of the param eter v. 
The density clearly shows some asym m etry with regard to T, in general. However, 
in  the lim it as v -*■ 0  if  we write, as in paper I,

£ = p/m\ = 2iR, i} = ( T - l ) / v ,  (3-1)

and assume \T —1 | is of order v, then (2.16) reduces to
j>(£, 4 ) = (2n)~i P  e-W i+ rt, (3.2)

as in  I, equation (5). In other words, in  the neighbourhood of T = 1 the distribution 
becomes sym metric about the mean wave period, independently of R.
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I t is pertinent to enquire whether the general expression (2.16) is any more 
accurate, theoretically, than the expression (3.2) which is restricted to small values 
of v and of \T — 11. One reason why this m ay be so is that in the derivation of (3.2) in 
paper I, the ‘ period’, r , as defined by (2.11) of the present paper, was approximated 
by т(1 — ф/7Т) (see paper I, equation (A 20)). In the present paper this approximation, 
though formally legitim ate, has not been made.

Another w ay of stating the situation is that though the distribution of the time 
derivative x  is exactly  symmetric about its mean value Tf, the distribution of the 
reciprocal 2n/^ is asymm etric. In other words, the distribution of apparent wave 
‘ frequencies’ is sym metric, but the distribution of wave periods is not.

In making the approximation (2.11) we assumed im plicitly that (TT + ф) was 
positive, for it  is difficult to attach  any meaning to a  negative period. We therefore 
agree to ignore the part of the density (2.16) for which ф < — a ,  or T  < 0.

4. P r o p e r t i e s  o f  p(R , T)
The position of the mode, or maximum value of p(R, T) is found from the condition 

th a t bpjbR and dp/dT both vanish. Hence we find

R = 1/(1 + p2)i, T = 1/(1 + v2). (4.1)

The value of p(R, T) a t th is point is therefore

Pm ax = (%L/nle){l + vi )/v -  0 .415(i'+ v-1)L(v). (4.2)

The effect of broadening the spectrum is therefore to reduce the ‘most probable’ 
jo int values of the wave period and amplitude, and also to reduce their probability 
density (when v < 1).

Consider now the behaviour of p[R, T) near the origin. When R and T are both

sm all, we have T) и  ^ L j тсЬ) (Л2/Г2) e - R1̂ T', (4.3)

th a t is, p (R ,  T) и  (2г£/я*) А2е_л‘ , (4.4)

where A = R/vT. Hence the contours of p  become tangent to the radii R/T = Ау, 
constant. The axes R = 0 and T — 0 both correspond to p  = 0. The direction from 
0 in which p  is greatest is given by the maximum of (4.4), which corresponds to

A2 = 1, hence R/T = v, p  = p0= (2/ n i e ) vL ,  (4.5)

(compare (4.2)). The contour p  — p 0 actually has a  cusp at the origin. W henp  < p a, 
the contours p  ~ constant all pass through the origin. On the other hand when 
p 0 < p  < )̂max, the contours enclose the mode once, but do not pass through the 
origin.

From (4.2) and (4.5) it  follows that

Ро/Рты = ^ / (1 + ij2). (4-6>
so th a t in figures 1 (a- с )  no contours pass through the origin, and in figures 1 (d - f ) 
only the lowest contour: p = 0 . 1 .
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5 .  T h e  d e n s i t y  o f  R
The density  of the wave am plitude R  by itse lf is found on integratLngp(i2, T) w ith 

respect to T  over 0 < T < oo, th a t is,

Setting

we have

where

p (R )  = П ж е г Л М 'С Т И а а '.nh J,5 Тг

R ( l - 1 / T )  = v/J,

2  L CRIV
p (R )  = ^ R e - R ,\ e-^d/?

= 2Re~Rt L (v )F (R /v) ,

1 Гв 'у

( 6. 1)

(6.2)

(6.3)

( 5 . 4 )

( 5 . 5 )

a well known error function. Equation (5.4) states th a t the density  of R  ia almost 
R ay le igh , but m ust be corrected by the factor LF(R/v).  For values of R  th a t are of 
order 1 or larger, the correction will be exponentially small. However when R  is of 
order v, th a t is, close to the origin, the correction becomes significant. F igure 2

F i g u r e  2 . T h e  d e n s i t y  o f  R ( s e e  ( 5 .4 ) )  w h e n  v =  0 .2 ,  0 .4  a n d  0 .6  ( f u l l  c u r v e s )  
c o m p a r e d  w i t h  t h e  R a y l e i g h  d i s t r ib u t io n  ( b r o k e n  c u r v e ) .

Vol. 389- A
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shows some examples. The effect of the correction factor is to reduce the number of 
very low waves, and to shift the mode of the distribution, which otherwise is at 
R  = 2~i, somewhat to the righ t of this point.

T a b l e  2 . P a r a m e t e r s  o f  p (R )

V д .. Л?ш. (Д „-Ы >
0.1 0.8832 1.0025 0.0020 0.0012
0.2 .8935 1.0095 .0072 .0047
0.3 .9006 1.0202 .0144 .0100
0.4 .9087 1.0332 .0224 .0165
0.5 .9167 1.0472 .0304 .0233
0.6 .9241 1.0611 .0378 .0301

The lower order moments o f  p (R ) ,  found by numerical integration, are shown in 
tab le 2. From th is it  will be seen that the r.m.s. value of R  differs only slightly from 
un ity. When v  = 0.3, for example, the difference is only 1 %.

6 . T h e  c o n d i t i o n a l  d i s t r i b u t i o n  o f  w a v e  p e r i o d s  p(T/R)
The distribution of T  a t fixed values of the wave amplitude R  is found on dividing 

p (R ,  T)  by p (R ) ; hence

p(T\R) = (я* vF iR / v ) ) - 1 (R /T * )e -R4-u™'>.  (6.1)

To find the mode, or peak, of this function we set Ър/ЬТ = 0 to obtain

( l/ T H l/ T - l)  = v2/R\ (6.2)

and so T  = 2/[l + (1 + ^v1 / (6.3)

This curve is shown by the dashed lines in figure 1. I t must clearly pass through the 
mode (4.1) and where i t  intersects any countour p  = constant, the tangent to that 
contour is parallel to the ax is of T. For small R  we have T  x  R/v, so th at the curve 
touches the contour (4.5). On the other hand, for large R  the curve is asymptotic to 
the vertical line T  = 1. In general, the curve expresses very well the asym m etry in 
the distribution of T.

Now the quartiles o ip (T / R )  are given by

r° 'p (T \ R )dT  = in ,  n =  1 ,2 ,3 , (6.4)Г
th a t is —гi j jV ^ d / ?  = \nF(R/v),  (6.5)

where /} = R{ 1 — l/T)/v. (6.6) 

So we have to solve numerically
F(/3) = l nF (R/v )  (6.7)

for (3, and then
Qn =\/{\-PvR) .  (6.8) 

These curves are illustrated in figure 3, in the case v = 0.3. C learly all the quartiles
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F iq d t ie  3 .  Curves showing t h e  mode and quartiles o f  the conditional 
density of wave periods when v — 0 .3 .

are now asymmetric, and pass through the origin. Moreover, the interquartile range 
(Qs — Qi), instead of being proportional to 1 /R for all values of R, as in paper I, has 
a maximum at around R = 0.22 (£ = 0.31) and tends to 0 both as R oo and as 
-R-> 0.

7. T h e  t o t a l  d e n s i t y  p(T)
The density of T regardless of R is found by integrating p{R, T) with respect to 

R over 0 < R < oo, to give
p(T) = (Ь/2чТг) [1 + (1 — 1 /T)*/i'a]~i. (7.1)

This is shown in figure 4 for some representative values of v. The median and 
quartiles are found by the substitution

a  = (1 — l/T)/v, (7.2)
leading to

<,3)
bence a/ (l + aa)i = n/2L —l ,  n=  1 ,2,3 . (7-4)
Solving for a we find,

a =  ( n / 2 L - l ) / [ t - ( n / 2 L - l ) * ] i ,  (7.5)

and then Qn = T = 1/(1-v a ) ,  к  =1 , 2 , 3 .  (7-6)
9-2

I
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F i g o t l e  4 . The density of the -wave period T. (see ( 6 .9 ) )  when v — 0 .2 , 0 .4  and 0 .6 .

Some representative values of Qn are given in table 3. Also shown is the interquartile 
range

I Q R  =  Q3-Qi- ( 7 .7 )

The mode of the distribution is alao easily found and is given by

Tm = 2/[(9 + 8n’ )i —1]. (7.8)

Note th at the mean of the distribution is theoretically infinite, since for large 
values of T the density p(T) behaves like T~2. This implies only that as T -> oo the

T a b l e  3 .  P a r a m e t e r s  o r  t h e  d i s t r i b u t i o n  o f  p e r i o d s ,  p (T )

V T. <3, Q. <3, IQ R т..
0.1 0 .9 9 3 4 0 .9452 0 .9998  1 .0 60 6 0 .1 1 5 4 0 .9 95 0
0.2 .9742 .8953 .9981 1 .12 4 9 .2 2 96 .9806
0 .3 .9444 .8488 .9937  1 .1 8 9 1 .3403 .9578
0 .4 .9065 .8050 .9859  1 .2 49 2 .4442 .9285
0.6 .8633 .7636 .9743  1 .3 02 0 .5 3 84 .8944
0.6 .8 1 7 4 .7243 .9589  1 .3 45 0 .6207 .8574
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integrated error becomes infinite. An alternative estimate of the mean does, how
ever, exist. For we know the exact result that the average frequency of up-crossings 
of the mean level is N  = (2it)-1 (m jm 0)i.
From the relations (2.3), (2.5) and (2.7), this can be written

N  = (1 + v2)i<T/ 2л.
Hence

тл,  = N -1 = ? /(l + v2)i, 
and so T„v *= t , v/ t  = (1 + v2)~i.

These parameters are all shown in table 3.

(7.9)

(7.10)

(7.11)
(7.12)

8 . C o m p a r i s o n  w i t h  o b s e r v a t i o n  

The measurement of the local wave height and period from a wave record is liable 
to some ambiguities. For example, in figure 5, should the ‘period’ be taken as the 
crest-to-crest interval t ,  or the up-crossing interval r2? Not all authors specify their 
choice precisely. It may be that for the Cavani6 distribution, depending on the 
higher moment m4, the choice of t1 is more appropriate, whereas for the present 
distribution, depending only on m2, it is more appropriate to choose r2.

№

t f 2 „

Ъ
F icure 5. A lternative measures o f  the local w ave height and period.

Without knowing precisely the authors’ procedure we shall nevertheless compare 
the theoretical model described in §§ 2-6  with some previous observations.

Chakrabarti & Cooley (1977) measured 1624 waves from a North Atlantic storm, 
over an interval of 3.5 days. The scatter diagram of their observations is shown in 
figure 6 , where the vertical scale is the wave height normalized by the ‘r.m.s. wave 
height’ Hrms\ the horizontal scale is the wave period normalized by the ‘mean 
period ’ !Tev. To judge by the spread of wave periods (see figure 7 of their paper) an 
appropriate value of v for these data was 0.30.

To make a comparison withp[R, T), we replot the contours to a new vertical scaJe 
R' = R / R TTns, and a new horizontal scale T' = Т /Т лv where Tav = (1 + У2)- *- There 
will be a new value of pmax, namely р'тлх = Т „ р тлх, but the relative values 
of p,  namely p'(R', Т ’)/р'тлх, will be unchanged.
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This is done in figure 7, and it will be seen that the resemblance between figures 0 

and 7 is close, in particular as regards the shape of the distributions and the tendency 
for plotted points to be drawn down towards the origin. However, the absolute 
densities are not easy to determine from the scatter diagram.

F i g u r e  6. (From Chakrabarti & Cooley 1977  ) A scatter diagram of normalized heights 
against normalized wave period, for a storm in the North Atlantic.

F ig u r e  7. Contours o f p'{£, Т ,) /р тлх when v — 0.3, for comparison w ith the data of figure 6. 
The contour values are as in figure 1.

Figure 8 shows a histogram of the wave heights measured by Chakrabarti & 
Cooley {1977). The horizontal scale has been normalized by the r.m.s. value of the 
observations. In the same diagram, the full curve indicates the theoretical density

p (R /R lms) = Rrmsp(R), (8 .1)

where p(R) is given by (5.4) and v =  0.30. The broken curve shows the Rayleigh 
distribution corresponding to v = 0 . It will be seen that the curve for v =  0.30 is a 
slightly better fit to the observations when R  is small, and near the peak of the 
distribution.

In figure 9 we show a comparison of the interquartile range (Q3 — , corre
sponding to the theory of figure 3, and the data plotted by Chakrabarti & Cooley
(1977). At large values of £, the theoretical curve is asymptotic to the hyperbola 
given by the narrow-band theory: Q̂  — Q̂  = 1-35 v/£, but at lower values of £ the 
curve reaches a maximum and then returns to the origin. The plotted observations 
follow the theory down to about £ =  1, and then lie inside the curve. The discrepancy 
between theory and observation is less than previously, but is still appreciable.

Goda (1978) has presented diagrams of the relative wave height H /H hv against the 
relative wave period Т /Тлч, as in figure 10, the data being classified according to the 
value of a certain ‘skewness parameter’ r. Goda has found a fairly good correlation



568

Periods and amplitudes of random waves 263

F i g u r e  8 . H istogram  o f  wave heights from Chakrabarti & Cooley ( 1977 ) norm alized b y  the  
r.m .s. value. The full curve represents p  = (equation (5.4)) w hen v =  0.3.
T he broken curve is the R ayleigh distribution: p  =  2R  e R'.

TIRE 9. The interquartile range of the wave periods, aa a function of the norm alized wave  
height £. D ata are from Chakrabarti & Cooley (19 77 )- The full curve represents the  
difference (Qt — Qt) in figure 3. The dashed curve is the narrow-band asym ptote.
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F i g u b e  10. ( F r o m  Goda 1978 .) Scatter diagrams of H / H „  against T / T m,  for different ranges 
o f  r .  The contours of p(x, t) take the values 1.0 , 0 .5 , 0 . 1, 0 .0 3  respectively from the centre 
curve outwards. The parameter т(Н, T )  lies in the range ( a )  0 .2 0 - 0 .3 9 ;  (6 ) 0 .4 0 - 0 .5 9 ;  
(c) 0 .6 0 - 0 .6 9 ;  (d) 0 .7 0 -0 .7 9 .

between r and the parameter vr  (derived from the distribution of wave periods) which 
corresponds roughly to v. In table 4 we indicate the average values of v chosen (from 
Goda’s figure 10) to correspond to the stated ranges of r.

We note also that since Goda plotted Н /Н лч rather than the vertical scale of his 
plots is different from that of Chakrabarti & Cooley (1977). Accordingly the scale 
must be modified by the factor 1 /i?av; see table 4. The horizontal scale has also to be 
modified bythefactor 1/Tav, which we assumeis given by the formula Тлу =  (1 4- у4)- ! 
derived from zero-crossings (see § 7). This factor also is shown in table 4. Finally the 
theoretical value • n m _ /Q ON
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T a b l e  4. P a r a m e t e r s  f o r  t h e  d a t a  o f  G o d a  (1978)
P a A  I

i
r V K-, TД ..У t h e o r . o b a .

( a ) 0 .2 0 - 0 .3 9 0 .2 9 0 .8 9 9 9 0 .9 6 0 4 1 .3 4 1 .37
№) 0 .4 0 - 0 .5 9 0 .3 8 .9 0 7 0 .9 3 4 8 1 .0 6 1 .14
(c) 0 .6 0 -0 .6 9 0 5 0 .9 1 6 7 .8 9 4 4 0 .8 5 1.05
(d) 0 .7 0 - 0 .7 9 0 .5 8 .9 2 2 6 .8 6 5 0 0 .7 6 0 .9 6

nr

(b)

/  I__■ ■""

к =  0.38

/7 \ \

Ho 1 \
/

1  2 
T

R-  2

(d)

/ ~  
/  \ / /  /

/ /
/  .........'

= 0 .5 8

\
\

;

r
F i g u r e  11. C o n to u r s  o f  T)  f o r  v a lu e s  o f  v c o r r e s p o n d in g  to  f ig u r e  7 . C o n t o u r s

t a k e  v a lu e s  1.0 , 0 .6 , 0.1 i n  (a ) a n d  (b) a n d  0 .6 , 0.1 in  (c) a n d  (d) f r o m  in n e r  t o  o u t e r .
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where^>max is given by (4.2) is shown in the next-to-last column of table 4, compared 
with the maximum observed value, from Goda’s figure 10. The agreement is 
reasonable, except that the theory is consistently lower. Most of the discrepancy 
seems due to our choice of Tiv , and it is possible that a value nearer to unity would be 
more appropriate.

In figure 11 we show contours of Rtv Tivp(R, T), which may be compared with the 
corresponding contours in figure 10. We have not plotted any contours corresponding 
top" = 0.03, since Goda’s data appear insufficient for him to trace the corresponding 
curves with any accuracy.

The agreement between figures 10 and 11 seems reasonable. In particular the 
position of the modes agrees fairly well, though in figure 10 there is an indication 
that for the larger values of v the mode of the distribution splits into two, one 
further from and one nearer to the origin.

Other authors, for example, Cavani6 et al. (1976), have combined data for many 
different spectra, which precludes any precise comparison with theory. However 
Cavani^’s data, containing 28 240 waves with a mean value e = 0.865 do appear to 
resemble in a general way the contours of figures 1 (d - f ).

9. C o n c l u s i o n

We have derived an approximation to the joint distribution of wave periods and 
amplitudes that gives a reasonably good fit to some typical data, and that depends 
only on the low-order parameter v. Technically the approximation is correct only 
to order v, but by not making certain approximations, legitimate to this order, 
which were made in a previous paper I, the distribution is given an asymmetry with 
respect to T  in agreement with the observations. Undoubtedly there are further 
corrections of order v2 to be made if the distribution is to be entirely correct to this 
order, but the observational evidence suggests that such corrections are small and 
not very significant for practical applications.

In comparison with the analysis of Cavanid et al. (1976) the present model has 
the advantage of comparative simplicity, and in depending only on v rather than on 
the higher-order parameter e. This seems desirable, since for many spectra that 
behave like cr~* or tr-5 at infinity (such as the Pierson-Moskowitz spectrum) m4 
becomes infinite, making e = 1. Thus 6 becomes insensitive to other parts of the 
spectrum. On the other hand, v, which depends only on m„, is less subject to this 
difficulty. Rye & Svee (1976) have suggested that even v is unduly influenced by the 
high-frequency cut-off but the examples given are for rather broad spectra. The most 
satisfactory procedure may be to estimate p not from the spectrum E(<r) but from 
the measured distribution of wave periods, as is done by Longuet-Higgins (1975) 
and Goda (1978). Indeed Goda finds that vT is highly correlated with certain other 
parameters which shows that it is reasonably stable. Apparently the reason for the 
success of this method of estimating v is that it reflects whatever subjective choices 
are made by the observer when measuring т from the wave record, choices which 
may amount to applying a subjective low-pass filter to the record.



5 7 2

Periods and amplitudes of random waves 257
Finally, the parameter v has one clear advantage in being related theoretically to 

other statistical properties of the record and in particular to the lengths of the wave 
groups, (see, for example, Longuet-Higgins 1957, 1983).

This paper was written during a visit to the Department of Engineering Sciences 
at the University of Florida, Gainesville, Florida. The author is indebted to Dr K. 
Millsaps and his staff for their hospitality and assistance. Valuable comments on a 
first draft have been given by Professor М. K. Ochi, Dr M. Y. Su, Dr 0 . S. Madsen 
and Dr S. J. Hogan.

A p p e n d i x .  E v a l u a t i o n  o ;  L(v)
To carry out the integration in (2.17) set

( 1 - 1  /T ) /»  = a, (A l)

1 2 Г11"^  I I Е г e- л (1+a 'dfida. (A2)

1 _  1 Г d a

L  ~  2 J  _ „ ( ! +  a 2)5
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A p p e n d i x  B. O n t h e  r e l a t io n  b e t w e e n  d is c r e t e  

v a l u e s  o f  t h e  g r o u p  l e n g t h

R e f e r e n c e s

T w o a p p a re n tly  d istin c t app ro ach es to the analysis o f w ave g ro u p s in a  ran d o m  sea 
sta te  a re  described In  the first, the  p robab ilities o f the g ro u p -len g th  G an d  the  length  
of a  ‘h igh r u n ’ H  a re  defined in term s o f a w ave envelope func tion  p (t) .  T hese  lead 
n a tu ra lly  to expressions in term s o f a  single p a ram e te r v th a t defines th e  sp ec tra l w id th .

In  the  second ap p ro ach , the  sequence o f  wave heights is trea ted  as a M ark o v  chain , 
w ith  a non-zero  corre lation  only betw een  successive waves. T his leads to expressions 
for G and  H  in term s o f transition  p robab ilities p + an d  p_.

In  this p a p e r  we find ap p ro x im ate  an a ly tic  expressions for p + an d  p_ th a t  show  
th a t the two ap proaches a re  roughly  equ iva len t, to o rd e r v.

T h ro u g h o u t the  p a p e r i t  is em phasized  th a t  the  co ncep t o f  a  w ave g ro u p  assum es 
im plicitly the neglect o f those ha rm o n ic  com ponen ts th a t a re  e ith e r very  sh o rt o r  very 
long com pared  w ith the  peak frequency <r„. T h a t  is, som e filtering o f th e  o rig inal 
record is im plied. For typical records o f w ind waves it is found th a t  a  band -p ass filter 
with u p p e r and lower cut-offs a t 1.5 crp and  0.5 trp is the m ost su itab le .
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C alcu la tions are done for typical records o f sea waves, and for some num erically  
sim ulated  d a ta , a n d  there  is agreem ent betw een the d a ta  an d  the analysis.

1. I n t r o d u c t i o n

A casual observer o f  the sea surface will notice th a t the heights o f w ind-generated  waves are 
no t u n ifo rm ; they occur in successive groups of h igher o r lower waves; this leads to  the popular 
b u t m istaken  no tion  Lhat ‘every nth wave is the h ig h es t' where я =  3 , 7 or 10 , for exam ple. 
In  fact the  w ave groups are no t all o f equal length , as we shall see, b u t their group  behaviour 
and  o th er p roperties m ay  be described w ith rem arkab le  success by trea tin g  a  typical record 
o f the sea-surface elevation  as a  random  G aussian process, statistically  steady in the short term , 
say over a  d u ra tio n  of less th an  3 0  m in.

T h e  G aussian  m odel, as applied  to noise in electrical circuits, was first developed in well 
know n papers by  R ice ( 1 9 4 4 , 1 9 5 8 ) and  was app lied  to o th er aspects o f  sea waves by 
L onguet-H igg ins ( 19 5 2 , 19 5 7 ), Pierson ( 196 2 ) and others. F o r a  recent survey o f the subject 
see O chi ( 1 9 8 2 ). T h e  physical basis for the m odel is o f course th a t the energy of surface waves 
a t any p o in t in the  ocean arises from the action  o f  w ind in m any  different parts o f the sea surface, 
in an  essentially uncorre la ted  way. So long as linear superposition o f the m otions is valid, the 
surface disp lacem ents should therefore be Gaussian.

P a rtic u la r  a tten tio n  to p roperties o f wave groups in G aussian noise was paid  by L onguet-H iggins 
( 195 7 , 1 9 6 2 ) and  R ice ( 1 9 5 8 ). R ecen t in terest in the subject (G oda 1 9 7 0 , 1 9 8 3 ; Ew ing 1 9 7 3 ; 
Rye 1 9 7 4 ; K im u ra  1980  and  others) has been stim ulated  by the suggestion th a t exceptional 
dam age to ships, coastal defences o r offshore structures m ay be caused by the occurrence of 
runs o f successive high waves.

A fu rth e r reason for in terest in the subject is the relation  o f wave groups to the occurrence 
o f  w ave break ing  (see D onelan  el al. 1 9 7 2 ); also the p robah le  effect o f steep or b reaking waves 
on the flow of a ir over the sea surface.

An essential p relim inary  to the analysis is to consider w hat we m ean by a  w ave group , or 
indeed by a  single wave, in a random  sea. A typical observer counting  high waves is not 
in terested  in the very short fluctuations, e ith e r ripples o r short grav ity  waves, rid ing  on the 
backs o f the do m in an t waves. H e does no t include them  in his count. Even if  presented  w ith 
an  accu ra tc  in stru m en ta l record of the sea surface for analysis, he tends e ither to ignore the 
sho rt waves o r to  sm ooth them  ou t, for exam ple by draw ing  a  s tra ig h t line betw een ad jacen t 
crests o f  the d o m in an t waves, to represent the local wave height. T h u s by pay ing  a tten tio n  a t 
all to the  g roup  aspect o f  the w ave record he is, consciously o r otherw ise, dealing  w ith a filtered 
version o f the w ave record, from w hich the high frequencies have been elim inated  or suppressed.

S im ilar considerations app ly  to the low frequency end o f  the spectrum . In  analysing  a record 
o f a  certa in  d u ra tio n , say 20  m in, w e are no t generally  in terested  in the total m ean surface level, 
b u t only in  the  crest-to -trough  heights o f the  waves, o r in the height o f the crests relative to 
some local m ean value, taken over a few waves only. T hus we subconsciously filter ou t those 
h a rm on ic  com ponents o f zero frequency or o f  frequency m uch lower th an  the d o m in an t waves.

P a rt o f  o u r p roblem  is then  to arrive  a t  a  satisfactory m ethod  o f filtering the  record so as 
to  re ta in  only those aspects in w hich we are  interested. This question  is discussed in detail in §8 .

T h e  above po in t o f  view is im plicit in the app ro ach  o f  R ice ( 194s , 1 9 5 8 ), Longuet-H iggins 
( , 9S7)> and  N olte & H su (1 9 7 2 ). These au thors recognized th a t  for a  sufficiently n arrow -band
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reco rd  a  re m a rk ab ly  a p t  descrip tion  o f  the g ro u p  p roperties o f  a w ave reco rd  can  be given in 
term s o f  the  w ave-envelope function . For a  G aussian  noise process, th e  envelope function  can 
alw ays be defined, even if  th e  sp ec tru m  is n o t n a rro w ; see § 2. T h e  sta tistics o f  the w ave-envelope 
fu n c tio n  p ( l ) c an  be exp lo red  in  m uch  th e  sam e w ay  as th e  sta tistics o f  th e  in s tan tan eo u s  surface 
e levation  £(/). For exam ple, th e  len g th  o f  a w ave g ro u p  can  be defined in term s o f th e  n u m b er 
o f  tim es th a t  the envelope p(l) crosses a  given reference level, say the  ‘s ig n ific a n t’ h e ig h t o f  
the  waves. T hese  sta tistics a re  all given in term s of the  rth  m om ents mr o f  th e  sp ec tra l density  
function  o f £(*).

T h is classical a p p ro ac h  has en co u n tered  som e ob jections (R ye  1 9 7 4 ) o n  the  g ro u n d s th a t 
for typ ica l sp ec tra  o fw ind-w aves, the h ig h e r  m om ents mT, and  in p a r tic u la r  mt , d ep en d  critica lly  
u p o n  the h ig h -freq u en cy  c u t-o ff in  the sp ec tru m . B ut we h av e  seen th a t th e  existence o f such a 
cut-off, o r filter, is really  in h e re n t in th e  p h en o m en o n  u n d e r  d iscu ssio n : th e  sh o rte r  the  waves 
th a t  we consider, th en  the  sh o rte r  also m ust be th e  average  g ro u p -len g th . M o reover, as we shall 
em phasize  below , if the defin itions o f  g ro u p -len g th  suggested by L o n g u et-H ig g in s ( 1 9 5 7 ) an d  
by  N o lte  & H su ( 1 9 7 2 ) a re  em ployed , th en  only th e  low er m o m en t mt  is invo lved , unlike R ice 's 
( 1 9 4 5 ) defin ition , w hich d ep en d ed  on  the m ax im a  o f p ,  hence  th e  fo u rth  m o m en t mt .

An a lte rn a tiv e  a p p ro ac h  has been suggested by S aw nhey  ( 1 9 6 2 ), W ilson & B aird  ( 1 9 7 2 ), 
K im u ra  ( 1 9 8 0 ) an d  o thers , nam ely  to co n sider the co rre la tio n  be tw een  successive, o r  alm ost 
successive, waves, w ith o u t co n sid era tio n  o f th e  frequency  sp ec tru m . Besides se p a ra tin g  the 
m odel fu r th e r  from  the  physics, it should  be c lear th a t  this a p p ro ac h  by no  m eans avo ids the  
qu estio n  o f w h a t filter is in fact ap p lied  to the  w ave record  by  an  o b server w ho selects, by  som e 
u n sta ted  c rite rio n , the local w ave h e igh t. N one  the  less, the re la tio n  o f  this th eo ry  to the 
p rev ious th eo ry  is o f som e in terest.

T h e  p resen t p a p e r  falls in to  two parts . In  § § 2 - 9  we sta te  an d  develop  essentially  the R ice,
o r  envelope, th eo ry , based on the  sp ec tra l m om ents. F o rm u lae  are  given for the  av erag e  n u m b er
o f waves G  in a  g ro u p  an d  for the  m ean  n u m b er o f  waves R  in a  h igh ru n  (see §§4 and 6
respectively). T hese  a re  seen to d ep en d  on ly  on th e  critica l level p  — p*  an d  o n  the  dim ensionless
b a n d w id th  p a ra m e te r  , ,  , »H v1 = (Ы)

F o r swell, it ap p ears  th a t v lies typically  be tw een  0 .05  a n d  0 . 16. F or w in d  waves, v has a low er 
b o u n d  a t  a b o u t  0 .35 , before filtering. In  §7 we discuss the  calcu la tio n  o f  the w ave envelope 
(figures 1 c—e) and  in § 8  we show  by ap p ly in g  this to typical w ave records th a t  th e  th eo re tical 
expressions for G and  H  agree well w ith the  d a ta  (see for exam ple  figures 3—6). T h e  frequency  
filter w hich gives results best in accord  w ith  visual m easu rem en ts is found  to be one  h av in g  
low er an d  u p p e r cut-offs a t 0 .5  and  1.6 tim es the  peak frequency.

In  §9  we give a very rough  theory for th e  p ro b ab ility  density  o f  G a n d  H. S im ple  a rg u m en ts  
suggest th a t  for large G and  H  the densities p(G) a n d  p(H )  a re  b o th  ex p o n en tia l, a n d  this is 
su p p o rted  by  the  availab le  d a ta . H ow ever the reasoning is no t really  ap p licab le  to  s m a l l e r  values 
o f  G a n d  H.

A ccordingly  in the  rem ain d er o f the p a p e r we consider th e  a lte rn a tiv e  a p p ro ac h  m en tio n ed  
above, in w hich the w ave heights a re  trea ted  as a  M arkov  chain , w ith a  positive co rre la tio n  
у  on ly  betw een succcssive waves. W e derive  an  a p p ro x im ate  re la tio n  be tw een  у  an d  v, n am ely

у ф  1 -  4 i t ! >>2, ( 1 - 2 )

w hich, however, is valid  only for sufficiently sm all values o f v. I t  is show n in § 11 th a t  th e  effect
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o f filtering can  be to b ring  th e  spectral w id th  to w ith in  the range of valid ity  o f (1.2). In §12 
we give a  sim plified version o f the M arkov  theory  for p(G) and  p (H ) and  show th a t filtering 
o f the spectrum  produces a  percep tab le  im provem ent in the agreem ent betw een the theoretical 
d istribu tions and  K im u ra ’s ( 1 9 8 0 ) d a ta  (see figures 17-20).

F inally , by ad o p tin g  fu rth er rough approxim ations to the M arkov transition  probabilities 
p + and  p_ we show th a t  the R ice (envelope) theory and the M arkov chain  theory are in 
rem ark ab ly  good agreem ent, over a  useful in te rm ed iate  range o f v.

T h e  m ain  conclusions, together w ith fu rther discussion, are  restated in §13.
In  an  A ppendix  we derive the properties o f an  analy tic  expression for the spectral density  

function  th a t m ay be o f use in the descrip tion  of ocean swell.

2. D e f i n i t i o n s : t h e  w a v e  e n v e l o p e

W e assum e th a t the surface elevation £ m ay  be represented as a sta tionary  random  function 
o f the  tim e t, w ith  corre lation  function

п г ) = л т + г )  (2 . i)

(a b a r  d en o tin g  the  m ean value w ith respect to  /). T h e  energy spectrum  E (a)  is related  to ^ ( t )
by ! r

E (a) =  — I vKT) cos t f r d r  (2.2)
я Jo

and
\[r(t) = J E(er) cos err d a ,  (2.3)

W e assum e also th a t over some finite tim e in terval ( —jT", ^7") the  function  f  m ay be 
represen ted  as a  F o u rie r sum : w

f =  E  cn c a s (a n t +  en), (2.4)
n—0

w here a n ш 2 п к /Т ,  the  phases e„ are d istribu ted  uniform ly over (0, 2л) and  the am plitudes 
c„ are  such th a t

lim 2  =  E(cr) dcr (2.5)
Т-юс do-

to o rd e r d<r, the sum m ation  being over any sm all bu t fixed frequency range  (a , cr +  dtr).
T h e  spectra l m om ents mr are defined by

- Г
so th a t  by (2 .1) , ш

m0 =  J  E{cr) d ,r  =  ^ ( 0 ) =  С

a rE (a) Aa, (2.6)

(2.7)

represents the m ean-square  surface d isplacem ent and

a  =  m jm 0 (2 .8 )

may be defined as the ‘mean frequency’. If /i, denotes the rth moment of£(<r) about the mean,
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th en  clearly
/*o =  mo. j“ i =  =  (2.10)

a n d  we m ay define the  sp ec tra l w id th  p a ra m e te r  v by

*'* =  /*г//“ о<7* =  тгтв/т 1 ~ 1 .  (2 . 11)

W h en  V1 ^  1 we say th a t  the sp ec tru m  is n a rro w .
E ven  w hen  the sp ec tru m  is n o t necessarily  n a rro w , it is possible to define th e  com plex  envelope 

function  A (t)  by w ritin g  (2.4) in  the  form

£ = R e , 4 ( / ) e ‘*‘, (2 .1 2 )

WherC A  =  £  c„ eU0r.-»>‘+*.] *  р ^Ф (2.13)
Я

say. H e re  p(l)  m ay  be called  the  real envelope  func tion , o r  w av e-am p litu d e , a n d  th e  phase. 
T h e  real and  im ag in ary  p a rts  o f  A  are  g iven by

/> c o s 0 =  S t „  cos [ ( c r „ - lT)/ +  en]>|
Я

р ь т ф  =  E ^ s i n  [(&„ — <?) < +  e„];
(2.14)

a n d  w e shall see in  §7 how  these m ay  alw ays be co m p u ted , given on ly  the in itia l func tion  £(/).
F ro m  (2.13) it will be seen th a t  the  tim e de riv a tiv e  A = d A /d t  co n ta in s, u n d e r  the  su m m atio n  

o n  the r ig h t, th e  facto r (crn — ? ) ,  so th a t

t f i * - *  (2 -15)

a n d  w hen  th e  sp ec tru m  is n a rro w  A varies slowly, on  av erag e, co m p ared  w ith  th e  c a rrie r  w ave 
e*?<. T h u s  th e  w ave reco rd  is p rac tica lly  sinusoidal, a n d  th e  local, c rest-to -tro u g h , w ave  h e ig h t 
is given by 2p , very nearly . A closer inspection  suggests th a t  the assu m p tio n  is co rrec t a t least 
to o rd e r  v. Som e term s o f o rd e r v1 will nevertheless be carried  a long  in  th e  analysis.

3 .  P r e l i m i n a r y  r e s u l t s

W e begin  by  sta tin g  some know n exact results o f  w hich proofs m ay  be found , for exam ple , 
in th e  papers by  R ice ( 1944 - 19 4 5 , 1 9 5 8 ) o r L onguet-H igg ins ( 1 9 5 7 ).

T h e  p ro b ab ility  density  (or sim ply ‘d e n s ity ’) o f  the function  £ is G aussian :

/ . ( £ )  =  (2Tfme) - « e - « * ' t ’» . ;  ( 3 . 1 )

an d  sim ilarly  for the  deriva tive  £ o f  £:

p(C} =  (2jum2)~ le - ^, ',a'ni. (3-2)

T h e  jo in t  density  o f £ an d  £ satisfies

Ж . Й - Ж ) * ( Й .  (3 -3)

so th a t £ and  f  are statistically  in d ependen t. T h e  n u m b er o f  up-crossings by  £  o f a  given level 
£ pe r u n it tim e, is given by

V  =  J % ( t  Й =  (2*)-» (« ,/«„)»e-P'*™.. (3-4)

S

i
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T his n u m b er is a  m axim um  a t the m ean  level f  =  0, so

^ n u i  =  (2я) 1 (m2/m 0)l. (3.5)

C orrespond ing  results for the w ave envelope p  a re  as follows:

Pifi) =  (p /> .)  (3.6)

and

*(/>) =  (2я а , ) - ‘ с- ^ . ,  (3.7)

(i.e. the  densities o f p  and  f) are R ayleigh and Gaussian respectively), and

P(P,fi) =P(P)P(A ) (3-8)

as in  (3 .3). T h e  n u m b er o f up-crossings o f a given level per un it time by the wave envelope is

N' = Jo = ^u J 2 n )ip ift) . (3.9)

T h is n u m b er is a m ax im um  w hen p(p) is a  m axim um , i.e. when p  *  fi'Q} hence

Л'та* =  (2ле)“1 (/t,//i„)». (3.10)

4 . T h e a v e r a c e  c r o u p  l e n g t h

In  defin ing  a g roup  o f h igh waves, we m ight consider the statistics o f the maxima o f the  wave 
envelope. H ow ever, the m ean n u m b er o f  m axim a o fp ( /) , given by

£
involves the jo in t  density  p {fi,p ), which depends on the fourth m om ent / i4l hence mt (see R ice 
I94S)- In  add itio n , we are no t really in terested  in sm all fluctuations o f the  wave height, b u t 
on ly  in  b ro a d er features o f the group.

W e therefore a d o p t a  low er-order definition of the length  I o f a wave g roup  as the time interval 
betw een two successive upcrossings o f some chosen level p; see Longuet-H iggins 1 9 5 7 ; Ew ing 
•9 7 3 ' T h e  m ean  length  o f wave groups, so defined, is then

/ =  1 / jV', (4.2)

w here N 'ip) is given by (3.A). C learly  I  depends upon the a rb itra ry  chosen level p . H ow ever 
th ere  is one p a rticu la r level for w hich N‘ is a m axim um . A t this level ? is sta tionary  w ith respect 
to  sm all varia tio n s in  p . Such a level m ay be particu la rly  useful for determ in ing  I em pirically , 
since the value of / s o  determ ined  will be insensitive to sm all errors in the  chosen level. From
(3.0) this level occurs precisely w hen p /ji'a — 1, giving

4nn *  (2 яе)} (/* ./> .), ■ (4 -3)

Since for a  n a rrow  spectrum  the w avelength is alm ost co n stan t a t  1/ whe r e  Мтлх is 
given by  (3 .5 ), the  m ean nu m b er o f waves in a g roup , in general, is

=  (2*)-! («Ц/Л)» 04 /p ) (4-4)
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T a b l e  i .  V a l u e s  o f  G a n d  R  a s  f u n c t i o n s  o f  t h e  s p e c t r a l  w i d t h  p a r a m e t e r  v

С Н
V та тГ о—

- It (i*)1 2 1 (Jk)} 2

0.05 13.2 14.0 29.5 8.0 6 4 4.0
0.06 11.0 11.7 24.6 6.7 5.3 3.3
0.08 8.2 8.8 18.5 5.0 4.0 2.5
0 .10 6.6 7.0 14.8 4.0 3.2 2.0
0 .12 5.5 5.9 12.4 3.3 2.7 1.7
0.15 4.4 4.7 9.9 2,7 2.1 1.3
0.20 3.4 3.6 7.5 2.0 1.6 1.0
0.25 2.7 2.9 6.1 1 в 1.3 0.8
0.30 2.3 2.4 5.1 1.4 1 . 1 0.7
0.35 2.0 2.1 4.5 1 .2 1.0 0.6

In terms o f  the param eter v this is

<7 = (2n)-i[(l+  **)»/■'] {A lp)*''1'», (4.5)

which is inversely proportional to v, w hen i> is sm all. T he m inim um  group length is when
p / t i l  — 1 , so _

Gm in =  (е /2 я )* (1  +  хг)*/» =  0.6577 ( l  +  i>*)i/i>. (4.6)

T he values o f  Cmln for some representative values o f  v  are shown in the second colum n of  
table 1 . In the third colum n are shown the corresponding values o f  G  when the critical value  
o f p  is taken as the mean wave am plitude p  =  {̂ 7t)4/ij. In the fourth colum n are the values 
w hen p =  2/iJ, which is close to the significant wave am plitude p  »  2 .0 0 3 /4 - For these two 
colum ns, the num erical constant in (4.6) is replaced by 0.6981 and 1.4739 respectively.

5 .  R u n s  o f  h i g h  w a v e s  

Consider now  a different quantity: the num ber of successive waves exceeding a specified level 
p. W e denote this by H (p ).

T o  obtain an average value H (p ),  R ice ( 19 5 8 ) reasoned that from the known density (3.6) 
the proportion o f time during which p  exceeded the given level would be

?(/>) =  J  p (p ) dp  =  (5.1)

H ence the average length o f a ‘high run* would be

P = qT = q /N ' .  (5 2)
By (3.6) and (3.9) this is

V =  (2 n / f i j i p j p .  ( 5 3 )

T o  estim ate the average number H o t 'waves in a high run we m ultiply Г by the mean up-crossing 
rate (see equation (3.5)) to give

R =  (s-4)
or in terms of v

H = ( 2 n ) - l [ ( l  +  V* ) l / ^ A / p .  (5 5 )
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T his varies very  sim ply like p~ l . I f  we take the reference level as p  — /4 ,  then

H =  0 .3989 (1 +  k*)1/k. (5.6)

O n  the o th e r h a n d , a t  the  m ean  level p / f i \  — o r the  significant wave am plitude  p / / i ,  я  2 
the num erica l co n stan t in (5.6) is replaced by 0.3183 or 0.1995 respectively.

R ep resen tativ e  values for Й  a re  given in tab le  1. I t  will be observed th a t since

H /G  <  q <  1, (5.7)

H  is alw ays less th an  G.

6 .  P a r a m e t e r s  f o r  o c e a n  w a v e s

For ocean  swell, values o f v  equal to 0.16 o r less m ay  be typical, as we shall see below. A 
spectrum  o f p u re  swell is b and-lim ited , so th a t as a  very sim ple m odel it is fair to assume

E (a ) =  [ * •  |<Г- ^  < * 4  
v ‘ lO , \<г-(Г\>8<т ,\

5.1)

w here S ^  0.5 say. For such a  spectrum  we have

v =  а /л /З  ^  0.289. (6.2)

A conven ien t expression for an Ocean swell spectrum  having a sm ooth cut-off is

Е(<т) =  a o - i e - 4 -W -+ W 1 , (6.3)

w here a., fi and  я are constants- F o r such a spectrum  it m ay be shown (see the A ppendix) th a t

m0 =  2 а (я //? )> /л е " ,
S  =  (1 +  1 /я)//? , 
v =  (n +  2 )1/  (я +  1).

(6 .4 )

W hen л is large we have v ~  n «. H ence useful values o f я will lie in the range 50 to 500. W e 
note th a t the spectrum  (5.3) has a  half-w idth fiS1 given approx im ately  by

Д (г+(^<г) - 1 =  2 1 п 2 , (6.5)

ЬеПСе «Г ~  (1п4)*/л +  0 (я-1), (6 .6 )

correspond ing  to y Q g 4 9  ^  (6 .7 )

as com pared  w ith „«= * Д / 3  =  0 .5 7 7  * (6 .8 )

for the sim ple hand-pass spectrum . T h e  ru le (6.7) should be fairly easy to app ly  in p ractice. 
O n  the  o th er h an d  for w ind-waves, a  typical form is the P ierson-M oskow itz spectrum

E(<t) = a r s e - Wff)7 (6.9)

w here  a, /3 an d  у  are constants depending  on the w ave field. I t  is easily show n th a t the  rth  

m o m en t mr is given by mT =  W ' / y )  Г ((4 -г)/у ) ,  (6 . 10)

w here  / '(z )  is the usual gam m a function: Г(п) =  (я — 1)! H ence we have

<? =  / ? Г ( 3 /у ) /Г ( 4 /у )  (6.11)
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in d ep en d en tly  o f a ,  and
Г ( 2 / У) Г ( 4 / У)

[ Г ( 3 /у ) Р  ■ 1 '

in d ep en d en tly  o f  b o th  a. an d  /9. Som e values o f m0, a  an d  v a re  given in tab le  2 .  I t  c an  be seen 
th a t  as у  decreases from  00 to 1, so v ranges from  8 ~i =  0 .3536  to 2~1 =■ 0 .7071 . T h e  v a lu e  у  =  oo 
corresponds to  the  Phillips spec trum

E ( a ) = {  °> < r / 0 < L , \  (6.13)
\ a < r  5, c r//?  >  1 . /

A com m on value o f у  is 4, w hen  v =  0 .4247.

T a b l e  2 .  P a r a m e t e r s  f o r  t h e  P i e r s o n - M o s k o w i t z  s p e c t r u m  ( 6 . 9 )

У 37/9 V i/

00 0.2500 1.3333 0.3536 0.1132
10 .2218 1 3487 .3713 .1314
8 .2216 1.3374 .3790 .1405
6 .2257 1.3089 .3933 .1570
5 .2328 1.2791 .4056 1711
4 2500 1.2254 .4247 .1804
3 ,2877 1.1198 .4574 .1939
2 .5000 0.8862 .5227 .2151
1 6.0000 0.3333 .7071 .2483

H ow ever, we shall see la te r  (§8 ) th a t  for b ro a d  sp ec tra , such as th e  P ierson—M oskow itz 
sp ec tru m , it is im plicit in  th e  defin ition  o f a w ave g ro u p  th a t  w e use a  filtered  version o f the 
spec tru m , th e  Т .Р .М . o r ‘T ru n c a te d  P ie rso n -M o sk o w itz ’ spec trum . T h is in  g en era l reduces 
the  va lue  o f  v to  a  value  v' d ep en d in g  on  the  c u t-o ff frequencies. Som e values o f  v' a re  given 
in the  last co lum n o f tab le  2 .

7 .  C a l c u l a t i o n  o f  t h e  w a v e  e n v e l o p e

R ecords o f  sea waves a re  com m only  in d ig ita l form , th e  surface e levation  f  (г) being  specified 
a t  d iscrete  b u t uniform ly spaced tim es i v  t2, . ..  lM say. T o  ca lcu la te  the  w ave envelope function

P =  « *  +  * ')•  (7Л )

o f  §2, we need b o th  th e  surface elevation  £(<) itself an d  its H ilb e r t  tran sfo rm  ’/(O- F ° r  v e r /  
long records it m ay  be convenien t to use a d iscrete  form  o f  the  fo rm ula

, w _ i r  a u , (7.2)

w here  j  denotes the p rincipal value  o f the in teg ral. F o r exam ple, if  £ =  cos a t  th en  7) sin сrt. 
H ow ever, for short o r m oderate ly  long records, say M  ^  104, a  m eth o d  based on  F o u rie r 
analysis is p rac tica l and  m ore feasible.

Let denote £(£m), and set
J м  \

MS m ffn ,

b .  =
1 M

Й  £  C - « n  « Г .
Я1"1

(7.3)
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where

In particular,

It is easy to show that
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trn — 2rm /M .

1
**-<>■

(7.4)

(7.5)

£ „ ,=  2  (a„ cos m an +  bn sin т а n) . (7.6)
Я—1

H ow ever, we shall dispense w ith  the u p p e r frequencies (я >  \M ]  by using instead the identity

\M
2 
П-1

£m =  2 2  {an coimcrn + bn i \n m v n) - ( - l ) MaiM + au
Я -1

(M  is assumed even). W e m ay then take

(7.7)

\ы
Vrn =  2 2  (fln sin m<rn -  bn cos т а я). (7.8)

In practice, the low-frequency com ponent o f  the record is o f no interest generally when 
considering crest-to-trough wave heights; for example, a non-zero mean value a M is irrelevant. 
H ence in any exam ination o f the properties o f wave heights, or o f  the wave envelope, it is 
appropriate to work with a filtered version of the record and its transform:

Cm =  2 2  (an cos mcrn +  sin m<rn) ,
Я

nm
y'm =  2 2 (ansinm < r„-i„  cos mtr„),

(7.9)

where n' and n" are suitably chosen numbers such that 1 <  n’ <  n“ < \M .  A  reduction in the 
upper lim it may be desirable to avoid the aliassing o f  energy from frequencies higher than the 
Nyquist frequency <nM.

W e may then calculate the envelope function p '(l) for the filtered record C(t) from

Р ' =  ± ( Г + * ’){- (7.10)

8.  E x a m p l e s

Figure 1 a shows a typical section of a record o f surface elevation taken in the southern North 
Sea by a ship-borne wave recorder. The record is digitized at time intervals o f  1 s.

T he spectrum o f  a stretch o f the record lasting l&J min (M  =  1170) is shown in figure 2 . 
Each ordinate represents 2j<^ summed over 10  successive harmonics. The vertical scale has 
been normalized so that n

£ =  e *  =  0 (8 . 1)

and ? =  2  «  =  1 , (8 .2 )
71— 1

where cj — It can be seen that, apart from the slight rise in energy at very low
frequencies (which m ay be partly due to the method o f m easurement) there is a single dom inant
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Figure 2. Frequency spectrum of the complete record shown partly in figure Id.

peak in the spectrum  at ab o u t n =  np — 165 (corresponding to a  frequency n /M  =  0.141 H z). 
O n  the h igh-frequency side, the energy falls aw ay rapidly. For reasons m entioned in §1, the 
energy a t n >  2np is irre levan t to a study  of dom inant-w ave grouping , if  we neglect nonlinear 
effects.

Suppose we take the low er and  up p er cu t-o ff frequencies a t n' — 0.5 np and n «■ 1 5 n p, for 
exam ple. F igure  1 b shows the  resulting  filtered record £'. C orresponding crests and troughs 
o f the d o m in an t waves betw een figures 1 a and  b can easily be iden tified . T h e  envelope function 
± p '  is show n by itself in figure 1 c, and  it will be noticed a t once th a t there are a surprising 
n u m b er o f points w here p' seems to approach  zero, so th a t the positive an d  negative branches 
cross over. T h e  function  £'(t) and  its envelope are shown superim posed in figure id .

Figure 3 a  shows the total n u m b er o f up-crossings o f a given level p  by the envelope function 
th ro u g h o u t the  record  (w ith the sam e choice o fri, n’ ). T h e  solid curve represents equation  (3.9). 
T h e  fit ap p ears  reasonab le; statistical fluctuations m ight be expected to produce differences 
o f o rd e r (T N )l.  I t  will be noticed th a t the m axim um  theoretical value  T N  =  43 is qu ite  close 
to the value T N  “  45 w hich is ob tained  if  one constructs a visual envelope o f the original record 
£ by d raw in g  stra ig h t lines betw een successive crests.

F igure 1 e shows the effect o f  taking different c u t-o ff frequencies, so th a t now л =  0.25 nf and 
n” — 1 ,75лр. T h e  envelope has m any  m ore fluctuations (m axim a and  m inim a) w hich seem to 
be  irre lev an t to the fluctuations in the height o f  the  d o m in an t waves. T h e  corresponding n u m b er 
o f level-crossings T N  is show n in figure 3 b. A gain, the  em pirical points agree reasonably w ith 
the theoretical curve, b u t  the m axim um  value o f T N  is now 56, o r som ew hat g reater th an  the 
visual value.

T ab le  3 sum m arizes the results for various values o f я '/ я р and  n" / I t  will be seen th a t a 
change in n ' / np from 0.5 to  0.25 has relatively little  effect, b u t as n’ /n v is varied from  1.5 to 
2.5, so T N  d eparts m ore an d  m ore from the visual value.

F igure 4  shows the average nu m b er G  o f waves in a  g ro u p , corresponding  to figure 3a, th a t
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F i g u r e  3. N um ber of level crossings o f the wave envelope in the com plete length o f record shown partly  in figure 1, 
as a  function o f the critical level (a) when л '/лр  =  0.5, л '/ я р =  1.5; (b) when я '/л р =  0.25, л"/лр =  1.75.

F i g u r e  4 . Plot of the m ean group length G corresponding to figure Id, as л function of the critical level. T he 
theoretical curve represents (4.5).

F i g u r e  5. Plot of the m ean length of high runs П  corresponding to the rccord of figure 1 d. T he line represents (6.5).

T a b l e  3 .  S u m m a r y  o f  t h e  e f f e c t  o f  v a r y i n g  t h e  c u t - o f f  f r e q u e n c i e s  n' a n d  n" o n  t h e

ANALYSIS OF TH E RECORD  IN FIGURE 1

Pc * Pc = zraj
л'/лр » 7 " p V "4 iheor. obs. theor. obs.

O.fiO 1.50 0.160 15.5 43.2 45 19.3 19
0 50 1.75 .172 15 8 48.9 52 21.8 24
0.25 1.75 .196 15.9 53.4 56 23.8 25
0.25 2.00 .213 16.1 58.8 59 26.2 25
0.25 2 25 .237 16 2 66.1 69 29.5 26
0.25 2.50 .250 16.2 70.5 72 31.5 30

v isu a l 45 18 5
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F i g u r e  7. Frequency spectrum  o f the com plete record shown partly  in figure 6 a.

F i g u r e  8 . N um ber o f level crossings o f the wave envelope in the com plete length of record shown partly  in figure 6 , 
as a function of the critical level (e) when я '/яр  =  0.5, п '/я^  -  1.6; (A) when n '/n p =  0.25, я '/я р -  1.75.

is to say w hen я /л р := 0.5 an d  л*/яр — 1.5. T h e  full curve represen ts the  theo ry , e q u a tio n  (4.5). 
E xcept for very low levels p  there  is fair agreem ent. T h e  m in im um  value ^ min a t  pfaiI — 1 is 
a b o u t 4.1, an d  a t the  significant w ave am p litu d e  ( p /p \  =  2 ) G  is a b o u t 9 .2 .

F igu re  5 shows correspond ing  results for the  m ean  n u m b e r o f  waves H  in a  h igh ru n , g iven 
by eq u atio n  (6.5). T h o u g h  the  two curves for С and  R are  q u ite  d ifferen t, th e  ag reem en t 
betw een  theo ry  an d  observation  is o f course sim ilar in  figures 4  a n d  5 .

As a  second exam ple, we show  in figure 6 a a  typical w ave record  tak en  from  the N ordw ijk  
tow er in the  N o rth  Sea d u rin g  M A R SE N . T h e  in s tru m en t used w as th e  ‘w ave follow er 
described by H saio & S hem din  ( 198 3 ). F igure  7 shows the sp ec tra l d en sity  function . T h is has 
a slightly  longer h igh-frequency  tail th an  the previous exam ple, figure 2. H ow ever, if  we tak e  
the cutoffs n /п р =  0.6 and  л*/пр ~  1.5 we o b ta in  the reasonab ly  sm ooth  envelope function
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show n in figure 6 c. T h e  w ider cut-offs л '/л р =  0.25, в " /я р =  1.75 give the record in figure 6 </, 
in w hich the envelope has a  g rea te r nu m b er o f ‘w iggles’. T h e  corresponding num bers of 
level-crossings a re  show n in figures 8 a and  b. Again, there is fair agreem ent, bu t the scale 
value T N m^x (a t p / p \  =  1) agrees b e tte r with the  visually determ ined value ( T N  =  35) when 
the  cu t-o ff lim its a re  n arrow er (л '/л р =  0.5, я ' / л р — 1.5). G raphs o f G  and H  a re  show n in 
figures 9 and  10.

F i g u r e  9. Plot of the mean group-length G corresponding to  figure 6c as a f u n c tio n  of the c r i t ic a l  level.
T he theoretical curve represents (4.5).

F i g u r e  10. P lo t  o f the mean length of high ru n s  H  corresponding to figure 6c.  T he line represents (5 .5 ) .

F rom  these exam ples we m ay  conclude th a t typical w ind-w ave spectra  are  effectively filtered 
by  a ‘g ro u p  ana ly sis’, and  th a t the  cu t-off frequencies n' =  0.5 лр, л ' =  1.5 яр a re  app ro p ria te . 
As seen from table 3, this filtering of the record reduces slightly the total energy m0 in the record. 
F o r a  satisfactory  analysis we m ay specify th a t  m0 shall no t be changed  significantly by the 
filtering. Such a lim ita tion  appears to be inheren t in the idea of a w ave-group analysis. For, 
a n y  energy outside the do m in an t wave ban d  is irrelevan t to the quan tities o f  interest. T h u s, 
a n y  spectrum  th a t is no t o f the unim odal type, say one th a t has energy d istribu ted  in two or 
m ore w idely separa ted  frequency bands, is essentially unsu itab le  for sim ple g roup  analysis. M ore 
com plicated  definitions m ay  o f course be sought.

9.  T h e  d i s t r i b u t i o n  o f  g r o u p  l e n g t h s  

T he length I o f  a g roup  was defined in §4 as the in te rv al betw een two successive up-crossings 
o [p (t) .  T h e  sta tistica l d istribu tion  of /, a p a r t from  its m ean  /, is difficult to de term ine  in general 
(see R ice  1 9 5 8 ). H ow ever, for n a rro w  spectra  an ap p ro x im atio n  m ay be derived from the notion  
th a t since the spec trum  o fp  is p red o m in an d y  low-pass, we expect successive up-crossings to be 
u n co rre la ted , a t least w hen I is sufficiendy large. H en ce  the  d istribu tion  o f  i will be
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asy m p to tica lly  the sam e as in a  ‘sh o t-e ffec t’, w h ere  the tim e-ax is is p ep p ered  ran d o m ly  w ith 
po in ts a t  a  m ean  ra te  д  _  j  jj-  ^

p e r  u n it lim e. T h e  density  p(l)  for this process is know n to be sim ply

P(l) =  Ае~Л1, (9.2)

th a t  is a  negative  ex p o n en tia l (see R ice  1 9 5 4 , section  3 .4 ). R ice  gives a  p ro o f  invo lv ing  an 
infin ite  series o f term s. A m ore d irec t p ro o f  is as follows. D iv ide a given in te rv a l ( t , t  +  l) in to  
a larg e  n u m b er m o f  equal p a rts . T h e  p ro b a b ility  th a t p  has no level crossing in any  o f these 
su b -in terva ls is ( 1 — and  in th e  lim it as яг-* 00 th is tends to

P{1) =  е - Лг. (9.3)
T h e  density  (9.2) then  follows on a p p ly in g  the general fo rm ula

p{l) =  (1 /A ) <i*P/dP, (9.4)

w here  A is th e  m ean  n u m b e r o f  up-crossings p e r un it tim e (see L o n g u et-H ig g in s 1 9 5 8 , 
section  2 ).

In c id en ta lly  it m ay  be no ted  th a t  for the  low -pass sp ec tru m  E(ar) — (1 +  cr2) -2 , the  d is tr ib u tio n  
of zero-crossing in te rvals o f  £ is a lm ost (b u t no t q u ite ) negative  ex p o n en tia l; see F av reau  et al. 
( 1 9 5 6 ) ;  L o n g uet-H igg ins ( 1 9 6 2 ).

A ssum ing (9.2) to be valid , w e have  sim ply

p(l)  =  Ге-'Л (9-5)

and so for the number of waves G in a complete group

p{G)  =  C t ~ G/ e  (9.6)

w here G is given by  (4.8). Som e com parisons w ith o bservation  will be given below .
T h e  question  arises as to w h a t m ean in g  we should a tta ch  to a  frac tio n a l n u m b e r  o f waves 

in a  g roup . T h is can  o ccu r because the  w ave envelope p  m ay exceed the  reference level for only 
a sh o rt in te rv al o f tim e. In  any  given case a w ave crest m ay  or m ay  no t be p resen t d u rin g  the  
in te rval. H ow ever, th e  frac tiona l n u m b er o f w aves is still a m easure  o f the  probability o f a  w ave 
crest exceeding the given level in th a t  in te rv al. As a m a tte r  o f fact, o w ing  to th e  dispersive 
properties o f g rav ity  w aves, the phase velocity  is g rea te r th a n  the  g ro u p  velocity . H ence  any  
p a r tic u la r  w ave tends to adv an ce  th ro u g h  the g roup , a n d  any  section o f the  envelope con ta ins 
a  w ave crest a t least som e o f the  tim e.

T o  estim ate  the statistical density  p { H )  of h igh runs, we m ay assum e as a n  ap p ro x im atio n  
th a t  each  h igh ru n  H  is, o n  th e  w hole, in p ro p o rtio n  to the co rresp o n d in g  g ro u p  len g th  G, so 
H  =  gG, w here  q is given by  (5 .1). It follows th a t  the  d is tr ib u tio n  o f H , like th a t  o f  G, is also 
a negative  ex p o n en tia l: ^  +  (9  7)

Does this fit existing observations? M ost d a ta  a re  given for in teger values o f th e  g ro u p  leng th  
С o r ru n  leng th  H . W e m ay reasonably  assum e th a t the  p ro b ab ility  H \ o f  H  for an  in teg e r value  
J >  0  is re la ted  to th e  con tinuous p ro b ab ility  density  p (H )  by

H. cc Г*%(Я) dH, <9-8)

16 Vol. 3 1 2 . A
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th a t is to  say, the p ro b ab ility  density  o f a run  of length H  con tribu tes to the p robab ility  o f the 
discrete ru n  hav in g  the  nearest in tegar value. T h e  densities for runs H  less than  J con tribu te  
only to ru n s o f zero  leng th , th a t is they are ignored.

I f p (H )  is a  negative exponential, then  the assum ption (9.8) has two sim ple consequences:
(1) the  p ro b ab ility  Hf is also negative exponential, th a t is

H} ce e~}/rf, (9.9)

and  (2) because of the effective tru n ca tio n  of the d istribu tion  a t H  =  \ ,  the m ean value is 
increased by app ro x im ate ly  the sam e am o u n t, i.e.

Hj =  /7 + 0 .5 . (9.10)

Sufficiently long w ave records a re  qu ite  rare , bu t the num erically  sim ulated  d a ta  o f K im ura  
( 1 9 8 0 ), rep roduced  in p a r t in figures 17 an d  18 below, show conclusively th a t the d istribu tion  
o f H} is indeed negative exponential, over p ractically  the whole range o f j .  Figures 19 and 20 
show th a t  the d istribu tion  o f  Gt  is alm ost exponential, particu larly  w h e n j is large, as expected, 
b u t  for sm all values o f  j  there are  system atic differences.

F o r it is therefore w orth  testing the second conclusion (9.8) ju s t m entioned. T h e  'ta rg e t 
sp e c tra ’ used by K im u ra  ( 1980 ) and shown in his figure 8 ap p ear to be o f the form

S ( f )  = / “ " ( / =  о-/2я ) , (9 .1 1)

w here у  =  4 and  n runs from 4 to 8  in K im u ra ’s cases 1 to 5, respectively. It will be seen 
th a t the an a ly tic  form  (9.11) has a peak a t /  =  / p =  1, w here 5  =  Smai =  1, as requ ired .

T a b l e  4. C o m p a r i s o n  o f  t h e o r e t i c a l  a n d  o b s e r v e d  v a l u e s  or t h e  m e a n  p r o b a b i l i t y  H l 

o f  h i g h  r u n s ,  i n  t h e  d a t a  o f  K i m u r a  ( 1980 )

case n i/ И

P Ртелп

я , daia H

P =Pi

data

1 4 0.1879 1.72 2.22 2.20 1.08 1.58 1.28
2 5 .1805 1.82 2.32 2.29 1 ,12 1.62 1.29
3 в 1742 1.85 2.35 2.34 1.16 1.66 1.29
4 7 .1680 1.92 2.42 2.42 1.20 1.70 1.37
6 8 .1635 1.96 2.46 2.45 1.23 1.73 1.53

W ith cu t-o ff frequencies a t j  =  0.5 and  1.5, we calcu la te  the values o f v, П  and  seen in 
table 4 , bo th  for p  =  р телп (p / f i \  -  V (2 /ir ))  and for p  = p i (p/fi\, =  2). C om parison w ith the 
d a ta , taken  from  table I o f  K im ura  ( 1980 ) shows good ag reem en t when p  =  pmean, though 
less so w hen p  =  p j.

In  the following three  sections (§§10-12) we shall ou tline  a  different approach  for finding 
the d istribu tions o f  and based p a rtly  on the w ork of K im u ra  ( 1980 ), b u t w ith some 
significant m odifications.
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10. C o r r e l a t i o n  b e t w e e n  s u c c e s s i v e  w a v e  h e i g h t s

C onsider the  jo in t  d en sity  o f  p x =  p fa )  an d  р г =  p ( t2) a t tw o p o in ts  se p a ra ted  by  a  constan t 
t im e  in te rv a l т  =  г, — tv  T h is  is know n ex acd y  from  th e  w ork  o f U h len b eck  ( 1 9 4 3 ) an d  R ice 
(1 9 4 4 , 1 9 5 8 ). T h e  g en era l resu lt m ay  be w ritten  

> ( * . * >

w here  , m
X  — I E(cr) cos (<t — <f) rd(T,

Jo
f®

Y =  I E((t) sin (o' — <r) r d o -, 
Jo

( 10.2 )

* =  ( Z > + 7 s)V /i„  (Ю .З)

a n d  /„ denotes the m odified Bessel fu n c tio n  o f  o rd e r zero:

1 Г2П
Ia(z) = — I ez cos6 dfl. (Ю-4)

Jo

W h en  к  =  0 then  p ( p v p ^  reduces to  the  p ro d u c t o f tw o R ay le ig h  d is tr ib u tio n s: p(p^) P(pt)- 
W e shall assum e th a t  w hen  th e  sep a ra tio n  т  equals 2n/<f, th en  p ,  an d  p 2 a p p ro x im a te  the  

am p litu d es o f  tw o successive waves.
T h e  c o rre la tio n  coefficient y , defined as M 11/(yW20A/02)l w here

MpQ = io  jo  (1° '5)

has been ev aluated  by  U h len b eck  (1 9 4 3 ) ;  see also M id d le to n  ( i 9 6 0 ), as

у  =  [ E - J ( l  - a t * )  К - M / ( l  — } я ) ,  (Ю .6 )

w here  E  a n d  К  are  com plete  elliptic in teg rals :

Г I*
£ (« )  =  ( 1 —/cJ sin2 0 ) id 0 , (1 0 -7)

Jo

a n d  Â (at) =  J (1 —* 2 sina 0 ) 5d0. ( 10-8)

у  is show n as a  function  of к1 in  figure 11 (cf. K im u ra  1 9 8 0 , figure 1, w here  у  is show n as a  
func tion  o f к).

F o r values o f  к very close to 1 it m ay  be show n th a t

у  ~  1 - ( 1 - * г) / ( 4 - п ) ,  (10.9)

an d  this is represen ted  by  the  tan g en t a t  к  — 1 to the cu rve  in figure 11. H ow ever, it can be 
seen im m ediately  th a t for values o f * 2 less th an  0 .6  a  closer a p p ro x im atio n  to у  is given by the  
sim ple expression ^  jq j

16-2
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F i g u r e  I I .  T h e  c o r r e la t io n  c o e ff ic ie n t у  b e tw e e n  p ,  a n d  p ,  sh o w n  as  a  fu n c tio n  o f  th e  p a ra m e te r  к*.

represen ted  by the s tra ig h t diagonal in figure 1 i .  T h is holds good to w ithin a sm all percentage 
over the w hole range of

C onsider the in te rp re ta tio n  o f these results for a  narrow  spectrum . From  (2.10) and  (2.7)

we have r -
p l  =  I E (a) E(tr') dadcr'

J о Jo
and  sim ilarly  from  ( 10 .2 )

( 10.11)

Х г +  Y 2

So by (10.3)
- a :

E(cr) E(cr') cos (cr —(T ')rdcrdcr'.

/г*(1 - * а) =  2 j ' E J ” £ (< r)£ (( r ') s in 2 i (£ r - c ')T d ( rd f lr /.

(10.12)

(10.13)

F or a  n a rro w  spectrum  let us form ally replace the trigonom etric  term  in (10.12) by the first 
term  in its pow er series, th a t is set

T h en  we ob ta in

s i n s ^ (o -  — (t ' )  t  =  | ( < r — « г ')*

=  i { ( < r - * ) * - ( ✓ - * ) * ]  r*. 

^ ( l - * ’ ) Ф \ (р г (10- 2 ц 1 + р 011г) =ц„м ,т *, 

since /*, =  0. H ence w riting  ^

we see from  (10.13) that, to lowest order,

1 - * * = ( Л / Л )» , - 4 * * Л

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
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So from  (10.9)
у  Ф 1 —45.99 v2, (10.19)

B ecause o f  th e  coefficient i n 2 in (10 .19) th is fo rm ula  for у  c an  be expec ted  to be adequate  
on ly  w hen  v <  0 .1, say. A sim ilar lim ita tio n  on  th e  va lue  o f  v arises from  th e  represen ta tion  
o f th e  sinuso idal term  in (10.13) by  a  single term  J(cr — а ' ) гт2. T h is  c an  be va lid  a t best only 
so long  as |er — сг'\т <  Jje. B ut for su b s titu tio n  in the d oub le  in teg ra l (10 .15 ), we shou ld  require 
\(r — a'l to  be a t least as g re a t as tw ice the  sp ec tra l w id th  ( j iJ n e)>. H en ce

2(̂ «//“.),r < Jit, (10.20)
w hich w ith  r  given by (10.19) is eq u iv a len t to

С“ 2/> о ) ' <  ( 10 .2 1 )

th a t is , „ „ .
к <  0.125. (10.22)

I f  we w ished to calcu la te  th e  co rre la tio n  y 2 betw een  alternate w ave heigh ts, we w ould  have to 
su b stitu te  т =  4ji/< t in  (10 .16), thus d o u b lin g  r  an d  restric ting  the ra n g e  o f  v a lid ity  o f  the linear 
theory  to v <  0 .025, a t m ost. N one th e  less the linearized  th eo ry  does suggest q u a lita tiv e ly  the 
very d rastic  re d u c tio n  in у  to be  expec ted  as v and  r  a re  increased  beyond  the lim its estim ated  
above.

For la rger values o f v o r  r  we m ay  use th e  a ccu ra te  expressions for к г p rov ided  by (10.2) 
an d  (10.3), to g eth e r w ith  th e  re la tio n  betw een  у  a n d  к in d ica ted  by  the  solid cu rve  in figure 11, 
o r its ap p ro x im atio n , eq u atio n  (10.10). A lte rn a tiv e ly , к3 m ay  be d e te rm in ed  d irec tly  from 
observation  since it is equal to  coefficient o f  co rre la tio n  betw een  p \  an d  p \.

11. T h e  c o r r e l a t i o n  c o e f f i c i e n t : e x a m p l e s

T o  illu stra te  the depen d en ce  o f к on v for typical sp ec tra , consider th e  b an d -p ass spec trum
(6 .1), for w hich у =  3- !й. F rom  (10.1) we have  im m edia tely

X  =  m0(sin Y  =  0. ( I l l )

H e" Ce ** =  [(sin<S6 7 ) / £ d r ] 4. (11.2)

T o  find у — у . ,  w rite  т =  2 л / а ,  so , , ,
=  [(sin2m5)/2jt«S]2.

As iS->0 we have  кг =  I — ̂ Tt2̂ ,  in ag reem en t w ith (10 .20). As S increases from  0, a t first к 
decreases m onoton ically  to 0 a t  S =  0 .5  (v — 0 .289). H ow ever, as S increases fu rth er, к* rises 
ag a in  to a  m ax im um  value 0.047 before falling finally  to zero  a t  S =  1 (v =  0 .577).

In  figure 12 we also show  кт, the co rre la tion  coefficient co rresp o n d in g  to т  =  2mn/<? T h is  
show s t h a t y ,  <  y ,  always, h u t as m increases, i t  is no t alw ays tru e  th a t  y m+, <  y m. f o r  in stance  
w hen  v =  1.4, y ,  m ay exceed у г .

T his non-m onoton ic  behav iour m ay  be associated w ith  the  sh a rp  cu t o ff in a  b an d -p ass 
spec trum . An exam ple w hen the cu t-o ff is sm ooth , b u t  still decisive, is p rov ided  by the 

ocean-sw ell’ spectrum  (6.3). For this spectrum  it m ay  be show n th a t

w here  ** =  ( 1 +  г* ^ е - * д а г « > И ,1 - . )  (11 .4)

r =  4mJt/(n + 1). (11-5)

\
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F ig u r e  12. к* as a  function o f  v fo r the band-pass spectrum (6.1). The b roken  curve represents the asymptote
(10.18) when m — i.

F i g u r e  13. r* as a function o O  for die 'ocean swell spectrum ' (6 .3 ) .  T he broken curve represents the asymptote
(1 0 .1 8 )  w h e n  m =  1 .
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T h e  expression (11-4) is p lo tted  against v in figure 13. E ach  cu rv e  is now  m o n o to n ic  in bo th  
v a n d  m, over the  ranges show n, and  w hen  v >  0 .15 , у г, y 3 and  y t a re  all very  sm all.

W h en  v — 0.082, for exam ple, the sequence o f values o f кг for m =  1 , 2, 3 an d  4 is 0 .76, 0.34, 
0 .10  and  0 .02, g iving y m =  0 .74, 0 .32 , 0 .10  a n d  0 .02 . T h is co m pares w ith  G o d a ’s ( 1 9 8 3 ) values 
for swell o f y m =  0 .65 , 0 .35, 0 .18  an d  0.07.

F or w ind-w aves, how ever, very d ifferen t results a re  to be expected . F igu re  14 shows /с2 p lo tted  
against v for the P ierson-M oskow itz  spec tru m , e q u a tio n  (6 .9 ). In  g enera l, th e  in teg rals X  and
Y o f (10.2) w ere found by q u a d ra tu re s , th ro u g h  in two cases th e  n u m erica l values could  be 
checked against explicit expressions. F o r in th e  case 7 — 00 (the  Phillips sp e c tru m ), in te g ra tio n  
of ( 1 0 .2 ) by pa rts  gives

the last function  being  tab u la ted  in A b ram o w itz  & S tegun  ( 1 9 6 5 ), tab le  5.3. Also w hen  у  =  I, 
we find from  E rdelyi ( 1 9 5 4 ) (1.4.21) an d  (2 .4 .31) th a t

w here  z  — 2 (i^ r) i  an d  K t  denotes the m odified Bessel function  o f o rd e r four (see E rdely i <953* 
ch. 8 ).

T h e  b eh av io u r o f к1 show n in figure 14 differs from  th a t in figure 13. For one th ing , th e  v a lue  
o f v for the  Pierson-M oskow itz spectrum  is never less th a n  0 .3536. Also th e  m ax im u m  value
о ( к 2 is alw ays less th an  0.34. I t  is clear th a t for this sp ec tru m  the n a rro w -b an d  expression (10.18) 
never applies.

( 11 .6 )

(11.7)
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H ow ever, for the tru n ca ted  P ierson-M oskow itz  spectrum , as shown on the left o f figure 14, 
the s ituation  is again  d ifferen t. T h e  low er bound  for v' is now reduced to 0.113 (see table 2) 
and  к2 can  be as g re a t as 0.595 com pared  w ith the narrow -band  approxim ation  0.500. T he 
sequence of values for y lt y 2, y 3, y t is then 0.596, 0.139, 0.080 and 0.052. However, only a 
slight shift to the  righ t, to say v' =  0.16 reduces y , to ab o u t 0.33, w hich is typical o f wind-waves. 
F u rth e r, y a, y 3 and  y 4 a re  each reduced to less than  0.01, w hich can be considered insignificant.

1 2 .  D i s t r i b u t i o n  o f  G} a n d  H} : M a r k o v  t h e o r y

K im u ra  ( 1 9 8 0 ) has given a  rough b u t sim ple theory for the d istribu tion  of g roup  lengths 
and  of high runs, trea tin g  the sequence o f  w ave-heights as a M arkov chain, as first suggested 
by S aw nhey  ( 1 9 6 2 ). K im u ra ’s theo ry  can be presented in an  even sim pler way, w ithout the 
use o f m atrices, as follows.

h>h"
P. P . P . P.

(a> ___ _____________________

h<h‘

k>h.'
P* P.

Ш ___________________  \  _______ _ / _

7
h<h’

F j g u r e  15. D ia g ra m  s h o w iя g  th e  b asis  fo r  (a) th e  p ro b a b i l i ty  o f  a  h ig h  r u n  o f )  w a v e s  (1 2 .1 )  w h e n  j  =  5 3 a n d  (Л) 
th e  p r o b a b i l i ty  o f  a  w a v e  g r o u p  o f  j  w av es , (1 2 .3 )  a n d  (1 2 .4 )  w h e n  i — 4 t j  =  6.

Choose a critical w ave-height A* as in figure 15. G iven th a t a certa in  w ave-height h1 exceeds 
A*, let />+ deno te  the  p ro b ab ility  th a t the next w ave-height h2 also exceeds A*. T o  determ ine 
the p ro b ab ility  o f a high run  of length j  we know a lread y  th a t the  first w ave-height exceeds 
A*; the nex t ( j — I) w ave-heights m ust then exceed h* and  the one after m ust not exceed A* (see 
figure 15a). T h e  probabilities being assumed in d ependen t, the com bined p ro b ab ility  is

Р Щ -  m - 1 ( w +)- ( 1 2 1 >

T h e  m ean  leng th  o f h igh runs is then given by

R  =  =  1/ ( 1 -/>+)■ ( 12 .2 )
1

T o  find the d istribu tion  o f  total runs we m ay reason as follows. In  a to ta l ru n  o f length  j  
the first i waves, say, will be a  high ru n  o f  length  t an d  the  rem ain in g  ( j —i) waves will be a 
low  ru n  o f length { j —i) (see figure 15 b). T h e  p ro b ab ility  o f such an  even t is clearly



598

W A V E  G R O U P  S T A T I S T I C S  243

( 1 2 . 3 )

w here  p_ deno tes the  p ro b ab ility  th a t h2 <  k* g iven th a t hx <  h*. S u m m in g  the  above 
expression from  i =  1 to  i = j — 1 w e o b ta in

P(G,) =  (1 -P+) (1 -P-) № l- p t l)/(p+-p-) (12.4)

w hen л ^  2. T h e  m ean  leng th  o f a to ta l ru n  is th en

0 =  Z jp iG ,)  =  1 / ( 1 - ^ )  +  1 /(1  - P . ) .  (12.5)
t

T h e  only question  th en  is to d e te rm in e  p + a n d  p_ for a given w ave reco rd .
K im u ra  ( 1 9 8 0 ) proposed  th a t p(h i,h 2) be a p p ro x im a te d  by a tw o-d im ensional R ayleigh  

d is trib u tio n  o f  th e  form ( 10 . 1), w hich  is reasonab le  if  w e assum e th a t  Aj a n d  h2 can  be 
a p p ro x im ated  by 2p t an d  2p a respectively (th o u g h  K im u ra  does no t m ake  this assum ption  
explicitly). T h en  the co n d itional p ro b ab ilities  p + a n d  p_  c an  be ca lcu la ted  d irec tly  from

С ос /*оо j  Г а з  /*оо

P + =  I I P (P i,P i)dP , dP tl  j I P (P l,P z)dP ld p 2,
J p x j p '  I JQ J pe

ГР* Г Р‘ j  Г ®  ГР'

P - =  I I />(Pi,P2) dpi< ip2/  I I />(/)„ p 2) d p ,  d p „
J  0 J  o I J  0 J 0

( 12.6)

w here p*  =  Such probab ilities a re  th en  a  function  only o f к2, as show n in figure 16. H e re  
we p lo t p + an d  ag a in st к 2, a n d  n o t against у  as w as d o n e  by K im u ra  ( 1 9 8 0 ).

F i g u r e  16. G raphs of and p_ as functions of к2 according to (12,6) a n d  § 10. T he  dashed curves represent the
parabo l ic  a p p ro x im a t io ns  ( 1 2 .8 ).

4



599

244 М . S. L O N G U E T - H I G G I N S

T a b l e  5a. P a r a m e t e r s o f  t h e  K i m u r a  s p e c t r u m  (9 .12)

W i 1
case n V ** 7 P+ P- P* P,

1 4 0.8319 0.1253 0.И6 0.490 0.574 0.194 0.874
2 5 .6980 .1513 .140 .498 .581 .207 .876
3 6 .6118 .1820 .169 .507 .589 .225 .879
4 7 .5507 .2152 .200 .517 .598 .242 .8815 8 .5047 .2493 .232 .528 .606 .260 .883

T a b l e  5b. P a r a m e t e r s  o f  t h e  t r u n c a t e d  K i m u r a  s p e c t r u m

Kntt n
case Л V У /> . P- />* P-

1 4 0.5857 0.2071 0.192 0.516 0.595 0.237 0.880
2 5 .5453 ,2412 .224 .526 604 .256 .883
3 6 .5113 .2723 .254 .535 .613 .275 .885
4 7 .4820 .3011 .281 .545 .620 .292 .888
5 8 .4565 .3284 .307 .555 .628 .308 .890

T a b l e  5  c. M e a n v a l u e s  o f  H) FOR THE t r u n c a t e d K i m u r a  s p e c t r u m

^MU
case (12.2) obs. (12.5) obs.

1 1.96 2.20 1.16 1.28
2 1.99 2.29 1 26 1.29
3 2.03 2.34 1.29 1.29
4 2.07 2.42 1.32 1.37
5 2.12 2.45 1.35 1.53

T a b l e  5 d. M e a n VALUES OF Gj FOR T H E  TRUNCATED K i m u r a  s p e c t r u m

*1
case (12.2) ohs. (12.2) obs.

1 4.31 4.66 9.18 9.33
2 4.38 4.67 9.33 9.47
3 4.46 4.94 9.55 10.00
4 4.56 5.17 9.72 9.95
5 4.66 5.32 9.90 10.71

Assum ing th a t  K im u ra ’s five ‘ targ e t sp e c tra ’ are  given by (9.12), we have calcula ted  (see
table 5a]| the corresponding  values o f iк2 and  hence o f p+ and  p_ from figure 16. T h e
corresponding  values for the  tru n ca ted  spectra  a re  given in table  5b. I t  will be seen th a t while
the  tru n ca tio n  changes the values o f  v, кг and  у  very considerably , the  values o fp+ and  p_ are 
m uch  less affec ted f.

T h e  d istribu tions o f  Gt and  Ht corresponding to the two extrem e spectra (cases 1 and  5) are  
seen in  figures 17—20. AJso shown are K im u ra 's  observations. F rom  these results we m ay 
conclude

( 1) th a t tru n ca tio n  o f the spectra has a sm all bu t apprec iab le  effect upon  the theoretical 
d istributions,

|  T h e  values  o f  у  used b y  K im u r a  ( 1 980) 10 ca lcula te  p+ a n d  p_ w ere  d e t e rm in e d  empirical ly , a n d  not ca lcula ted  
from th e  frequency spect ra  as here.
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F ig u re  17. T h e  probability  Hj of a high run , as a function of j  for the K im ura  spectrum  (9.12) when n = 4. The
curves represent (1 2 .1 ):------, original sp ec tru m ;-------, truncated  spectrum . Plotted points arc d a ta  from K im ura
(i 980), figure 9 д.

Figure 18. As figure 17, bu t with л =  8. T he p lo tted  points are from K im ura (1980), figure 9 <.

F i g u r e  19. T he probability Gj of a group of total length j  for the K im ura spectrum  (9.12) when n =  4. T he curves
represent (1 2 .4 ) :------, original sp ec tru m ;-------f truncated  spectrum . Plotted points are d a ta  from K im u ra
(1980), figure Ю л.

F io u r e  20. As in figure lfl, but with n =  8. T h e  plotted points are from K im ura  ( 1980), figure 10«.
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(2 ) th a t the  observations agree fairly well w ith e ither set o f curves, bu t d istinctly  bette r with 
those for the  tru n ca te d  spec tra  (solid lines).

Based on figure 16, we m ay also give some rough analy tic  expressions for П  and  0 . For the 
values o f p + an d  p_ on the left axis (y  =  0 ) a re  know n:

P+ =  p_ =  l - e - i S ’, ( i  2.7)

w here £ =  p//i\,. I f  we ap p ro x im ate  the curves in figure 16 by parabolas through the po in t (1 ,1 ) 
with h o rizo n tal axes we m ust have in general

1 - А + =  (1 - е - * Р ) ( 1 -** )»

1 —p -  =  e- *** (1 — Af2)̂

N ow  by  (10.18) we have (1 — к2)* =r 2ni> and so

1 — p+ =  2л » (1 —e ^ )

1 — p  m 27ti>e“^ .

N ow  su b stitu tin g  in (12.2) we get

H, =  (2л 1') “ 1е « 7 ( е ^ - 1), (12 . 10)

and  sim ilarly  from  (12.5) ^  =  (2jfir)- . e<-/(e K . _  1}. (12. U )

T hese equations ind ica te  th a t R  and  (7 are bo th  inversely p roportional to v, as was also found 
in §§4 and 5. In  fact if  v2 is negligible, (4.5) and (5.5) can be w ritten

£ =  (2я)~»е #■/»>£, (12 . 12)

an d  R = {  2я )"У * £  (12.13)
respectively.

( 12.8 )

(12.9)

T a b l e  6 . A  c o m p a r i s o n  o f  t h e o r e t i c a l  v a l u e s  o f  v H  a n d  v G

A* Z vHj
( 12 . 10 )

^mode 1 0.404
^roein 0.293
At 2 0.184

vR vQj vO
(12.13) ( 12 .1 1 ) ( 12 .12 )

0.399 0.667 0.658
0.31Я 0.642 0.698
0.199 1.360 1.474

T h e  func tional dependence  on f  in (12.10) an d  (12.11) is qu ite  d ifferent from  th a t in the 
two last equations. H ow ever, a  num erical com parison is interesting . T ab le  6  shows the functions 
o f£  evaluated  a t th ree  different levels: A* =  Amo(ie, and Aj (£ =  1,V(£rc) and 2). In  every 
case the pairs o f form ulae, though  analy tically  different, agree to w ith in  1 0% . H ence over a  
certa in  range  o f у and  o f f  the two theories give qu ite  sim ilar resu lts f.

t  In  fact, according to (9.10) we would expect the corresponding values of vHf and vf!  to differ by a  small am ount 
of order 0.5 v. For further discussion see Appendix В
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13. D i s c u s s i o n  a n d  c o n c l u s i o n s

W e have  seen how  tw o d ifferen t ap p ro ach es to the analysis o f  w ave g ro u p in g  can  lead  to 
a lm ost iden tica l results. O f  these ap p ro ach es , the first o r  G aussian  noise th eo ry  is m o re  closely 
re la ted  to  th e  w ave spec tru m , and  is va lid  a sy m p to tica lly  as T h e  second , o r  M arkov ,
th eo ry  has b een  re la ted  rough ly  to th e  w ave sp ec tru m  over an  in te rm ed ia te  ra n g e  o f  v, w hich 
includes typ ical sp ec tra  o f sea swell, an d  also su itab ly  filtered  sp ec tra  o f  w ind w aves.

As ag a in st this, the  G aussian  th eo ry  is ap p licab le  s tric tly  on ly  to  lin e a r surface  w aves. W hen  
the w aves becom e steep  th e  h a rm o n ic  co m p o n en ts  in a  w ave  reco rd  a re  n o t in d ep e n d en t, a n d  
th e  surface m ust becom e n o n -G aussian . M ark o v  th eo ry , how ever, can  still be  ap p lie d , though  
its physical basis is no t yet secure.

W h atev er th e  re la tiv e  m erits o f  th e  tw o ap p ro ach es , it a p p ea rs  th a t  n e ith e r can  be app lied  
in  a sensible w ay  excep t to sufficiently  n a rro w -b a n d  processes, o r  to d a ta  th a t  h av e  been  filtered 
so as to e lim in a te  b o th  h igh an d  low  frequencies. T h e  sam e conclusion  was also reach ed  by 
N olte  & H su  ( 1 9 7 2 , 1 9 7 9 ) th o u g h  th e  a rg u m e n ts  for the  tap e red  filter suggested  in  th e ir  1979 
p a p e r  do  no t a p p e a r  to be conclusive. W e have  recom m ended  a surface  ‘sq u a re - to p p e d 1 filter 
w ith  lim its 0 .5 J  an d  1 .5 / p w hich has tw o ad v an tag es:

( 1) it leaves th e  peak  freq u en cy /  u n ch an g ed ;
(2 ) tw o successive ap p lica tio n s o f  th e  filter hav e  th e  sam e effect as on ly  one.
M oreover, the  chosen lim its hav e  been show n to give answ ers in ag ree m e n t w ith  a  visual

assessm ent o f  th e  g ro u p  p ro p erties  o f  th e  record .
T h is p a p e r  has confined a tte n tio n  to the  essentially lin ea r p ro p erties  o f w ave groups. Som e 

n o n lin ea r s ta tistica l p rop erties  o f w ave g ro u p s deserve fu rth e r a tte n tio n , a n d  studies d irec ted  
tow ards this a spect a re  u n d e r  w ay.

A p p e n d i x  A .  T h e  s w e l l  s p e c t r u m  (6.3)

T o  ev a lu a te  the  m om ents o f the spec trum  E ((j) o f  (6.3) we hav e  from  E rdely i it al. ( !954)i 
e q u a tio n s  (1 .4 .22) and  (2 .4 .32), th a t  w hen

/ (* )  = (A 1)

then
00

fix) cos xy dx =
(A 2)0

J.
f"I J(x) sin*y dx = —j----- f-re  2̂ “ (asin  m +  ucosifl),

(ог +  Г )1

w here

и =  Ш <*г +  У2)*+  a]}*, (A 3)

and
w =  v. (A 4)

‘V
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N ow  le ttin g  y -> 0  in (A 3) we have

и =  а }(1 +У 2/ 8<х!) , ' 

v =  у /2  al,

to o rder у 1 a n d  then  from (A 2), on eq u atin g  coefficients o f  1, у  and  y!, 

m* =  (ittyai)

m• =  (я»/«хJ) +

m* =  (Ttl/aS) е - г<*л‘ [а +  з (a /?)l +  a/?]. _

N ow  w riting

( a ^ ) i= J n ,  (a /0 ) tx  = <r, 

mc =  (“ //?)* "о*.

v =  { а /Р ) \{т * -т * г/т *).)

S u b stitu tion  from (A 6 ) and (A 7) leads im m ediately  to equadons (6.4). 
From  (A 2 ) we have also, in the no tation  of §10

X 2+ Y 2 =  [ J t / (a 2 +  y2) ] e - ,'ri“ («, +  »s)
=  [ к / (** +  y*)i] e-««M»<i-*V/.*>»-4)i

аП<1 /4 = (л/а)
Whet1Ce «-I =  (а ! + y J)-5

O n  m aking the substitu tion  (A 7) this becomes eq uation  (11.4).

we have

(A 5)

(A  6)

(A 7)

(A 8 )

(A 9) 

(A 10) 

( A l l )

A p p e n d i x  B .  O n  t h e  r e l a t i o n  b e t w e e n  d i s c r e t e  a n d  c o n t i n u o u s  v a l u e s

o f  t h e  g r o u p  l e n g t h  

Suppose th a t discrete waves are identified by  their crests, and  th a t these are nearly  equally  
spaced in regard  to the tim e t. T ak e  the w ave period as un it o f rime.

In  a continuous tim e in terval of m agn itude  т such th a t

j <  т  <  i +  1, (В 1)

w here i is a  positive integer, there  m ust be e ith e r i o r (i + 1) w ave crcsts. Assum ing the crests 
a re  d istribu ted  uniform ly in time, the p ro b ab ility  o f there  being ( i + 1) crests in the in te rval 
is ( t — i), and  the p ro b ab ility  of i crests is ( i+  1— r ) .  H ence we have

p{H f) =  J*   ̂( r - j +  1 )p (r)  d r  +  J ^ +1 ( j  +  1 - t ) P ( t ) d r , (B 2)

w here р(т) is the density  o f r .  Identifying r  w ith / / ,  we see th a t  is the w eighted m ean of 
p (H )  by  the trian g u lar w eighting function  w ith base (7 — 1,^/H-1 ) and  height 1 (see figure 2 1 ).
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F i g u r e  21. Form  o f  the w eighting  function  for p(H ) in th e  in tegral for H,. Fu ll-line : e q u a tio n  (B 2 ); broken
line: eq uation  (9.8).

Exceptionally when j  — 0, only the right-hand half of the triangle is used. If/>(//„) is set equal 
to zero, then p(Hf) , j  >  0 must be renormalized.

Now the rough approximation (9.8) amounts to replacing the triangular weighting function 
by the square with base ( j— and height 1. Again, when./ = 0 only the right-hand half
of the square is used, and setting p ( H a) — 0 necessitates a renormalization.

This paper was begun while the author was visiting the California Technology Jet Propulsion 
Laboratory, Pasadena, in July 1983. He is indebted to Dr О. H. Shemdin, Dr V. Hsaio and 
Mr J. A. Ewing for kindly supplying the wave data discussed in §8 . Useful discussions have 
been held with Mr D. J. T. Carter and Mr P. G. Challenor at I.O.S., Wormley. A first version 
of this paper was presented at the Whitecap Workshop held at University College, Galway, 
in September 1983.
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Surface skewness is a statistical measure of the vertical asymmetry of the air—sea 
interface — exemplified by the sharp crests and rounded troughs of surface gravity 
waves. Some authors have proposed a constant ratio between surface skewness and 
the significant slope ’ of the waves. Here it is shown theoretically that no such simple 
relation is to be expected.

Wave records are of at least two different types; Eulerian (as made with a fixed 
probe) or Lagrangian (as with a free-floating buoy). The corresponding statistical 
properties are examined. At first sight it might appear that the degree of skewness 
in corresponding records would be different. However it is shown that to lowest order 
the skewness is invariant; only the apparent mean level is different, at second order.

1. Introduction
With the advent of radar altimetry from orbiting satellites, and its application to 

the measurement of ocean waves, currents and surface winds, certain questions 
concerning the statistical properties of surface waves have come increasingly to the 
fore. Among these is the magnitude of the surface ‘skewness’, defined as follows. If  
we suppose the vertical displacement £ of the ocean surface to be recorded as a 
function of the time t at some fixed location, then, in a given sea state, the elevation 
£ will have a probability density p(£,), say. For waves of small slopes, p ( Q is known 
to be nearly Gaussian (see for example Longuet-Higgins 1957). However, in steep 
waves, including sometimes very short gravity or capillary waves, p i t )  becomes 
asymmetric about its mean level £ =  0 and may have an appreciable skewness A3, 
as defined in terms of the second and third cumulants of p{Q. One familiar 
manifestation of surface skewness is the up—down asymmetry of a steep gravity wave, 
in which the crests are more peaked, the troughs flatter or more rounded.f

The value of A3 can be related to the nonlinear dynamics of free surface waves. 
Phillips (1Э61) first showed theoretically that A3 was of the same order of magnitude 
as the r.m.s. surface slope. Longuet-Higgins (1963) gave a detailed theory, deriving 
the skewness and kurtosis of p(Q  in terms of the underlying frequency spectrum 
of £. However, in some more recent papers (Walsh 1979; Huang & Long 19 8 0 ; Huang 
et al. 1981) there have been suggestions, made on empirical grounds, that there exists 
a simple linear relationship between A3 and a quantity s, the ‘significant slope , 
defined in terms of the frequency spectrum of £. Thus Huang & Long (1980) proposed 
that

A3 =  8tcs. (1-1)

t  T h is t y p e  o f  a s y m m e t r y  i s  t o  b e  d is t in g u is h e d  f r o m  th e  h o r i z o n ta l  a s y m m e t r y  in  s o m e  
w in d  w a v e s ,  w h ic h  is  r e la te d  to  t h e  d i s t r i b u t io n  o f  t h e  s u r f a c e  s lo p e s  (see  L o n g u e t - H i g g in s  1982).
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Such a relation would indeed be convenient. However, one of the conclusions of the 
present paper is that no such simple relation exists.

In the first part of the paper, which is theoretical, we introduce a simple model 
of the wavefield, appropriate to long-crested waves with a narrow frequency 
spectrum. In this case it is easy to derive a simple relation between the skewness and 
the significant slope. The result (2.16) is shown in §3 to be consistent with the more 
general theory of Longuet-Higgins (1963) after correction of an elusive factor. The 
more general theory is then used to investigate the effects of finite spectral bandwidth 
and varying shape of the frequency spectrum, on the ratio between A3 and s. The 
relation is found not to be unique. In §4 we review recent observations of A3 in the 
light of our theoretical results.

In situ measurements of waves are often made with different types of instrument, 
giving rise to wave records of either Eulerian or Lagrangian type. The latter, for 
example, would include measurements with a free-floating buoy. Are there any 
differences in the skewness as evidenced by different types of measurement? This 
question is investigated in §§5 and 6 . In §5 we obtain a general relation, correct to 
second order, between the two types of measurement ((5.9)) and apply it to the 
narrow-band spectral model. In §6 we consider a more general case. The conclusions 
are summarized in §7.

2. Model for a narrow spectrum
Suppose first that the waves are long-crested and have a narrow frequency 

spectrum, in the sense of Longuet-Higgins (1957). Choosing the horizontal ж-axis in 
the direction of propagation we may write

£(x,t) =  a cosв + \ а 2к cos 2 в + 0 ( а 3к2), (2 .1)

where a represents the local wave amplitude, к is a fixed wavenumber and в  is the 
phase function

& =  kx — crt +  e. (2 .2 )

Here cr is the (fixed) radian frequency and a and e vary slowly with x and t. The first 
term on the right of (2 .1) represents a linear, sinusoidal wave, of slowly varying 
amplitude and phase. The second term represents the nonlinear correction appropriate 
to a deep-water gravity wave of uniform amplitude (see for example Lamb 1932, 
p. 417).

By linear theory, and for a narrow spectrum, the distribution of wave heights 2a 
is Rayleigh:

2> ( a ) = ^ e - “’/s ’, (2.3)

where a is the r.m.s. value of a. We note that, even after the addition of the second, 
nonlinear term on the right of (2 .1), the crest-to-trough wave height is still equal to 
2a, if we neglect quantities of order а3кг. We shall assume that a is distributed 
according to (2 .3 ) in the nonlinear case also, and that the phase в  is distributed 
uniformly in (0, 2k), as in narrowband linear theory (see Longuet-Higgins 1963). Thus 
the joint density of a and в  is

J ,(a i 0 ) = 4 5 e - ,'* \  (2.4)
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From (2.1) and (2.4) we may at once calculate the surface skewness. The rth 

moments /ir being defined by
ro o  r 2 n

^ r =  £rp(a,d)dade, (2.5)
Jo Jo

we easily find =  0  and

/f2 =  | d z, fit  =  \a*k, fiA =  *a?k2. (2.6)

Hence the cumulants кг are given by /q =  0 and

кг =  \ а г, к3 =  f a*k, к4 =  0, (2.7)

to the present approximation. The coefficient of skewness is then

к» 3

and the coefficient of kurtosis is

Л3 =  Ц  =  ak (2 .8 )

к г
to this order.

These results should agree with the expressions for the cumulants given by 
Longuet-Higgins (1963) for a general long-crested frequency spectrum F(a-). These 
are (after correction-)- of a factor \  in his equation (3.7))

=  0 , (2 . 1 0 )

k2 =  f  F(a)dcr,  (2.11)
Jo

к, =  3 Г j* min(fc, k')F(<r) F{<r')dcrdo''. (2 .12)
Jo Jo

Kt was of higher order, as noted. If in (2.11) and (2.12) we introduce the narrow 
spectrum

F(a) =  \ a 2S{a-—cr0), (2.13)

where S denotes the Dirac delta function, we retrieve precisely (2.8).
Consider now the relation of the skewness to the ‘significant slope’ s. This was 

defined by Huang & Long (1980) as
s =  l / L v (2-14)

where a bar denotes the r.m.s. value and Lp is the wavelength corresponding to the 
peak in the spectrum. So in our model

* \ k  _  ak  (2.15)
2k  2h t

and from (2 .8 ) we have the relation

A3 =  6tis. (2-16)
t  See B itn e r (1976) an d  B itner-G regersen (1980). T here  should  be a  fac to r |  m u ltip ly in g  th e  

righ t-hand  sides o f  equations (3.7), (3.9), (3.12) and (3.17). H ence th e  num erica l fac to rs  in  (3.14), 
(3.15) and  (3.16) should be 3, 6  and  6  respectively. T he ra tio  A3/L  in (3.24), (3.25) an d  tab le  1 is 
unaffected.
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Lastly, in this section, we note that by (2.1) the r.m.s. surface slope t,x is given by

l l  =  \(ak)\  (2.17)

so that from (2.7) A3 =  3&.. (2.18)

This can also be written <£3> =  3<f|>*<£2>*- (2.19)

This is the correct formf of a relation first given by Phillips (1961, p. 154) in which 
the factor on the right was given as §.

3. Effects of finite bandwidth
We now generalize some of the results of §2 to seas that are still long-crested, that 

is to say unidirectional, but have a non-zero bandwidth. For such waves, (2.10)-(2.12) 
will apply, and from the definitions of A3 and s given above we have

i
(*00

A, =  12™-^, (3.1)

where /j =  cr f F(cr) d a  (3.2)
Jo

and I2 =  J"  { J" a'F((T) d o j F(a')d<r'. (3.3)

In (3.3) we used the dispersion relation <r2 =  gk, and in (3.2) the relation <r* =  2ng/Lp 
for the radian frequency crp at the spectral peak.

We shall now evaluate the factor I J J \  on the right of (3.1) for some typical wave 
spectra.

Consider first spectra of the special form

* » - { Г  : < # •
n  being a constant greater than 3. (The case n  =  5 corresponds to the Phillips 
spectrum, Mark I). Substituting into (3.1) we find

6 ( т е - 1 ) __  /0 K ,
s  —  ~ n ^ 2 ~  ( }

This is the correct version of equation (5.9) of Huang et al. (1983) and the result, for 
n =  5, given previously by Jackson (1979). When те-» со, (3.5) reduces to (2.16), as 
would be expected. When n  =  5 (and only in this case) (3.5) agrees with the empirical 
relation (1.1) given by Huang & Long (1980).

To assess roughly the dependence of A3/s  upon the spectral width we may introduce 
the spectral-width parameter v defined by

m 0 m 2 - 1  (3.6)
m ?

(cf. Longuet-Higgins 1980), where mr denotes the rth spectral moment

mr =  С trTF(<r)dcr. (3.7)
Jo

t  W e are in deb ted  to  P rofessor Ph illips for verify ing th is  s ta tem en t.
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n V А3/ я  s

4 0.5774 9
5 0.3536 8
6 0.2582 7.5

10 0.1260 6.75
100 0 .0 1 0 2 6.06
OO 0 6

T a b le  1. D im ensionless p a ram e te rs  v an d  \ 3/n s  for th e  ideal sp ec tru m  (3.4)

(Note that m0 =  ji t ). From (3.4), (3.6) and (3.7) we find

= -------- --------- . (3.8)
(n— l ) ( 7l — 3)

Table 1 gives the results for some integer values of n. It suggests that, as the spectral 
width decreases, so also does the ratio A3/s.

Next consider a generalized form of the Pierson-Moskowitz (P-M) spectrum used 
successfully by Liu (1983, 1985):

F{<r) =  ocar-n e-W 01”1, (3.9)

which has a peak at cr =  a p =  fl(m/n)l,m. When m — 4 and n =  5 (3.9) gives the 
well-known P-M spectrum, while for m  — 4 and n  arbitrary we obtain the Wallops 
spectrum (Huang et al. 1981). Lastly when n =  5 and m  is arbitrary we obtain the 
spectrum used by Longuet-Higgins (1980).

From (3.7) we find, when r <  (те—1),

mr = (310)m /?n_

and so from (3.8) v2 =  Г  Г  j  Г  ( ^ ) *  - 1  • <3 '11}

Furthermore from (3.1) we find (see Appendix) that

<3i2>
where ^  is a generalized hypergeometric function, from which numerical values may 
readily be computed.

Results for various values of n  and m are given in table 2. It  can be clearly seen 
that the ratio of skewness to significant slope varies widely, is crucially dependent 
on the form of the wave spectrum and is not simply a function of the bandwidth 
parameter v.

We note that (3.1) and (3.3) apply only to long-crested waves. However, for a more
general three-dimensional spectrum it has been shown that the coefficient of skewness
A- satisfies . _ /о iq\

3 0.44L3 <  A3 <  l.OlZ/j, (3 *3)
where L 3 denotes the corresponding skewness for a long-crested sea (Longuet-Higgins 
1963, pp. 469-470). The proof of this result is unaffected by the presence o f a factor 
J in equation (3.7)*.|

t  We U9e a star * to denote equation numbers in Longuet-Higgins (1963).
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v  Aj/iw

n \
4 5 6 7 4 5 6 7

4 0.64 0.62 0.61 0.60 3.66 2.16 1.41 0.98
4 0.42 0.41 0.39 0.39 6.96 4.33 2.88 2.03
6 0.33 0.31 0.30 0.29 10.26 6.95 4.81 3.46
7 0.28 0.26 0.25 0.24 12.66 9.51 6.97 5.17

T a b l e  2. Values of v and A3/jи for the generalized P-M spectrum (3.9)

4. Discussion
Consider first the observations reported by Huang & Long (1980). In their figure 6 

(where A3 is plotted against s) the data fall mainly into two groups: the field 
observations, for which 0  <  s <  0 .02 , and the laboratory data, for which
0.02 <  s <  0.04. The former show considerably more scatter. Thus their empirical 
result (1.1) is probably weighted in favour of the laboratory measurements. The field 
data alone would not suggest such a definite relationship.

We note that a similar scatter in field data is reported by McClain, Chen & Hart 
(1982, figure 3). This certainly supports our conclusion that the relation (1.1) is not 
unique.

There may also be systematic differences between field and laboratory data arising 
from different ranges of the parameter u*/c  (where u* is the wind friction velocity 
and с the phase speed of the dominant waves). For waves in the open ocean u*/c  is 
typically of order 0 .1, compared with values of order 1 for wind waves in the 
laboratory (Phillips 1977, p. 129). The laboratory data of Huang & Long (1980) 
include results with u*/c  >  0 .6 ; below this value their measurements of skewness are 
considerably more scattered.

A non-Gaussian model of the sea surface somewhat similar to that in §2 above was 
proposed by Huang et al. (1983), except that they include a term \a2k in (2.1), as well 
as higher-order terms. Such a term, however, does not arise dynamically in deep 
water; it would correspond to a local change in the mean surface level, i.e. a ‘wave 
set-up’. Although such terms are significant in shallow water (Longuet-Higgins & 
Stewart 1962, 1964), nevertheless in deep water they become negligible when Ak k, 
where Ak is the spectral bandwidth, that is when the spectrum is narrow and there 
are many waves in a group — the situation considered in §2 .

5. Lagrangian measurements: narrow spectrum
In determining the skewness of the surface elevation from instrumental records, 

some attention must be paid to the method of measurement, since different methods 
may give apparently different answers.

The definition of surface skewness given in §2 applies directly to measurements 
made with a fixed probe or wave staff. However an alternative method of observation 
is often used, in which the vertical displacement is derived by twice integrating the 
vertical acceleration in a free, or almost free, floating buoy. To first order in ak the 
two wave records are equivalent, but to second order, which is required for an 
assessment of the skewness, the records are different, as we shall show.

Note first that an irrotational deep-water Stokes wave can be considered as the
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la'* №k

/  /
N j —

'V ia2*
-----

V i ---

\alk

F i g u r e  1. Sketch  o f o rb ita l m o tion  in a  steep , ir ro ta tio n a l w ave, w hen th e  fram e  o f reference m oves 
w ith  th e  S tokes d r if t  velocity  for surface  partic les. T he b roken  cu rv e  corresponds to  lin ea r th eo ry .

sum of a rotational Gerstner wave (Lamb 1932, section 251) in which the particles 
describe perfectly circular orbits, plus a steady, second-order Stokes drift. The 
superposition of the two motions is accurate to third order in the wave steepness (see 
Dubreil-Jacotin 1934). Hence in a Stokes wave each particle at the surface describes 
a circular path, if seen in a frame of reference moving with the steady drift; see 
figure 1. Moreover, its orbital velocity in this circular path is constant (see Lamb 
1932). So apparently there is no asymmetry in its vertical displacement, to third 
order, and one might expect the corresponding skewness in the wave record to be 
small.

To analyse the situation further, let z be the vertical coordinate and u, w  the 
horizontal and vertical components of the velocity. We shall suppose that

f  =  7^(1) +  y 2g(2) +  . . . , (5-1)

where у  is a small parameter proportional to the maximum surface slope, and we shall 
use suffices L and E to denote quantities following a particle or with fixed spatial 
coordinates, respectively. Then the horizontal displacement of a particle is given by

Ax =  =  J Ue (jc-j- Ajt)d< (5-2)

and on expanding in a Taylor series about x,  we find

Да; =  J  uE( x)  d< +  Дх' J  Vme (jc) d< + . . . .  (5-3)

Thus to first order in у  we have simply

A a ^ J w d t. (5-1)

In a similar way the kinematic surface condition leads to

correct to first order, and

f  =  M) (5-5)
dt

CL =  £E(s+A x) =  £E + A z j |  <5-6>

correct to order у г. But, to first order,
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Since the motion is irrotational to first order at least, 3w/Ъх may be replaced by bu/bz. 
Hence

га«. a f  ,  a „

Combining this result with (5.5) we find, correct to second order, that

£L = £E +  ~ ( A * ) 2, (5.9)

where Ax is given by (5.4). This relates the vertical displacement as measured by 
a free-floating buoy to that measured by a fixed probe.

The relation (5.9) can be applied in the first place to the narrowband model of §2. 
For, associated with the first-order terms a cos-0 there is a horizontal velocity

и  =  <№ вкг cos 6. (5.10) 

So on evaluating the second term in (5.9) at z =  0 we obtain

£ l =  +  sin20 +  O(a3fc2). (5.11)

From (2.1) this is £L =  a cos0 +  £a2fc, (5.12)

correct to second order. In other words the motion is purely sinusoidal, apart from 
a term which varies only on the longer timescale of the wave groups. The latter 
represents a displaced mean level, midway between the level of crest and trough. The 
Eulerian mean level being taken as zero, it follows that this local mean level must 
be equal to the amplitude of the second harmonic in £E, that is \a2k\ see figure 1.

Physically, the reason for this displaced mean is that a particle in the free surface 
lingers for longer near the wave crests, where it is moving forwards with the wave, 
than it does in the wave troughs, where its motion is opposite to the phase speed. 
Hence, Lagrangian averages will tend to overweight crest values and under
weight trough values, relative to Eulerian averages. A first consequence is that the 
Lagrangian mean surface level is higher than the Eulerian.|

To calculate the moments fiT of £L from (5.12) we have, to lowest order,

=  \ а гк, fit =  | o 2, /ts =  \a*k. (5.13)

Hence the cumulants are given by

ас,  -  ^ a 2k ,  к г  =  \ а г , к 3  =  l a * k .  (5.14)
Remarkably, although the first cumulant k1 is now positive, the second and third 
cumulants are the same as for £E (see (2.7)). Hence the coefficient of skewness 
A3 =  агэ/аг| is the same!

A qualitative explanation is as follows. In a wavetrain of uniform height the 
vertical displacement is indeed symmetric about its mean value; but that mean value 
is displaced from zero by a second-order amount depending on the wave steepness. 
Now even in a narrowband spectrum, the waves are not of uniform height. So the 
‘tails ’ of the distribution, which are due mainly to the larger waves, are shifted more 
in a positive sense, relative to the average, than is the region in the centre, which

t  F o r  uniform  waves, th is effect was noticed in dependen tly  by  I. D. Jam es (personal 
com m unication).
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depends partly on the lower waves. But the third moment of the distribution is 
influenced by the ‘ta ils’ more than is the mean value. The net effect is to produce 
a positive coefficient of skewness.

6 . Lagrangian measurements in random wavefields
Equation (5.9) can easily be generalized to three dimensions to give

(6 .1),

where v is the у-component of the particle velocity, and this may be used to evaluate 
the skewness in a random wavefield.

Adopting the approach of Longuet-Higgins (1963), in which the first-order motion 
is represented by

N
£ =  E a( cosd , =  k f ‘x  — cTjt +  ej, (6 .2 )

i -1

the phases et being random, we find

~ { (  «d t) + Q i> d t) j  =  ^ I  а4а , ^ ^ ( & { +  ̂ ) sin0t sin0,, (6.3)

where k% =  | k t |. To obtain £L we have only to add the above terms to the right-hand 
side of the (corrected) equation (3.7)* for Following through the argument of 
that section we find that, to a second approximation,

(6.4)

where

6 . “ 2  0 , 6  +  2 : 
i i,i

=  l  1 ( i=  1 ,2 ,. ..,2V)

a<_lo (г=  (2V + 1) , . . . ,22V),
(6.5)

as before, but now

'!(*,,kj ) \ { B l ) + B l ] - k i 'k j -ir(ki + k j )(ki kj)-r}, when i , j  =  1 ,2 ...... N,

_ _  \{kf kj) «{B t' j — B^ ̂  — k i • k } +  (kt +  k}) (kf kj)~t k( kj} (6 .6 )
when i , j ,  =  (2V+1), ...,22V,

чО otherwise.

In (6.4) the denote independent random variables, at cos or — t^sin^,. The 
constants and Щ } are functions of k t and k} given by equations (3.8)*. When 
i =  j, then В*  ̂and B ^ } both vanish and we have

a t i = \ k t ( i =  1, 2 , . . . , 22V). (6-7)

The expressions for the cumulants then become, in integral form,

*l = II kE{k) dk ,

, = JJtf(*)d*, 

, =  6 JJ К(к, к') E(k) E(k') dJfc d*',

(6.8)



615

496 M. A. Srokosz and М. 8. Longuet-Higgins

where E(k) denotes the two-dimensional spectral density and К  (к, к') is the same 
function as given in (3.12)*.

In the one-dimensional case these equations reduce to
Г CO

k x =  I kF((r)d<r 
Jo

(к =  а г/д),

- i  -*п
F(<r) dcr,

min (&, к') F(<t ) F(er') da  da-'.

(6-9)

The only difference between these expressions and those for the Eulerian cumulants, 
(2.9)-(2.11), lies in the value of kv Whereas for the Eulerian cumulants Kt =  0 (which 
is a consequence of the choice of origin for г), in the Lagrangian case k1 is positive, 
on account of the second harmonic in f E, which raises both crests and troughs by 
an equal, second-order quantity.

However, the non zero value of at, has no effect upon the values of кг and k3. Hence 
the measured skewness is unaltered, just as in the narrowband case (§5).

7. Conclusions
We have shown by a simple model that in a narrowband, unidirectional sea the 

skewness A3 and the ‘significant slope’ s are related by (2.16), not (1.1), and that in 
a broader spectrum the ratio A3/jts may have a rather wide range of values, as shown 
in table 3. This conclusion is consonant with the available field data (§4) and there 
may be reasons why laboratory measurements are not truly representative of ocean 
wave conditions.

We have derived a general relation (5.9) between the surface elevation £E as 
measured in an Eulerian sense, say by a fixed probe, and the corresponding 
Lagrangian elevation as recorded by an ideal small float. This relation is 
generalized in (6.1). When the statistical properties of £E and £L are compared, it is 
found, contrary to expectation, that the skewness and the variance in the two records 
are equal, although the apparent mean level in the Lagrangian record is slightly 
raised. Thus the relation between A3 and s is the same. The change in mean level, 
which would of course not be noticed by an accelerometer, is due to the fact that 
particles in the surface remain somewhat longer near the crests of the waves than 
in the troughs.

In practice, Lagrangian wave observations are often made by means of accelerometer 
buoys which have a response falling off at low frequencies. For our theoretical 
conclusions to apply to such measurements, it appears necessary that the frequency 
range should include at least the group frequencies. The possible effect of mooring 
forces on the buoy motions is left for a separate study.

Appendix. Derivation of equation (3.12)
On substituting (/3/er)m =  £, (/?/<r')m =  ij in (2 .12) and (3.9) we have

j f  { J "  C<n“s)/m- 1 е - Ц  e - M ,.  (A 1)
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This may be written

6 a 2

3 m2g{Pln~2) 

where Г(г, ij) is the incomplete gamma function:
j'CO

Г(г, ij) =  e~‘ tz~l dt. (A 3)

Equation (A 2) may be further simplified by using a result from Erdelyi et al. (1953, 
vol. n , p. 138), to obtain

6 a *
*•> = m 2g/P{̂ n ! >A ( , , ? f i L « ; ! L - ! + I i i ) ,  (A4)

where 2Ft is a generalized hypergeometric function. On using the definitions of Л3 in 
(2.8), k2 in (2.11) and s in (2.14), together with <rp =  fi(m/n)llm and k2 — fi2 =  0, given 
by (3.10), we obtain equation (3.12).

In the special case m  — n — 1 (which for n =  5 gives the P—M spectrum) it is possible 
to reduce (3.12) by use of the relations

tFi(p, l - q , p + h v )  ~  PV~p B 4{jp,q), (A 5)

where B7t{ p , q ) = [  ip-1(l — ()9_1 di (A 6 )
Jo

(Erdelyi et al. 1953, vol. I, p. 87). This leads to

A> =  6 , M f e r ” ”  ( I ) '  (2(— ( AD

However, as n-*  oo (A 7) does not reduce to (3.12) owing to non-uniform convergence 
in the narrowband case. In the special case considered here, we have also from (3.11) 
that

f ) - 1- (A8’
Some numerical values derived from (A 7) and (A 8 ) are shown in table 3. In this 
case the ratio A3/7ts does not differ greatly from 7. But in the more general case 
(table 2 ) the variation is considerably greater.

We thank David Carter for suggesting the topic of this paper, and Peter Challenor, 
David Evans, Trevor Guymer and David Webb for useful discussions. Financial

n Лэ/тм

4 0.679 7.103
5 0.425 6.965
6 0.314 6.952

10 0.157 7.072
100 0.013 7.463
00 0 7.520

T a b l e  3. Parameters v and XJns  for the spectrum (3.9), when m = n —1
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An Effect of Sidewalls on Waves in a Wind Wave Channel 
M i c h a e l  L o n g u e t - H i g g in s

Center for Studies o f Nonlinear Dynamics, La Jolla Institute, La Jolla, California 
Department o f Applied Mathematics and Theoretical Physics, Cambridge, England

M any experim en ts on Ihe generation o f surface w aves by wind have been  c a rried  o u t  In lab o ra to ry  
wind w ave  channels wiih vertical sidew alls. In this note  it is show n th at su rp rising ly , th e  w av es  near 
the  wall m ay be considerably  s teep er than those along the c e n te r  line  o f  the  tan k , b y  a  fac to r  o f  abou t 2»/2

M any v aluab le  e x p e rim en ts  on the  genera tion  o f  su rface 
waves by  w ind have been  ca rried  out in  lab o ra to ry  w ind 
wave ch a n n e ls . S u ch  ch a n n e ls  usually h av e  vertica l s ide
walls. and  the  effect o f  such  w alls on th e  dam ping o f  the 
waves by v iscosity  o r  su rface  tension effec ts has som etim es 
been c o n s id e red . H o w e v e r, a possib ly  m uch s tro n g er effect 
has ap p a re n tly  been  o v e rlo o k ed . This applies particu larly  to  
three-d im ensional, random  w a v e s .In  the following no te  it is 
shown tha t su rp ris ing ly , the w aves near th e  wall m ay be 
considerably  s tee p e r than  those  along the  ce n te r line o f  the  
tank, by a fac to r o f  ab o u t 2 |/2.

A ccord ing  lo  lin ea r th e o ry , the su rface  e levation  rj in an  
unbounded w ave field m ay be rep resen ted  approx im ately  by

N
1? =  2  Um COS (<*„ +  £ * )  (1 )

m • 1

where фп =  k„ * x -  <r„t. and as N  -*  *  the  w ave num bers 
k„ are  assum ed  to  beco m e d istribu ted  densely  o v e r  the  w ave 
number p lan e . T h e  ph ases  c* are d istributed  uniform ly  ov er 
the in terval (0, 2tr). T he m ean square am plitude 7j2 is then 
given sim ply by

4 1 = 2 {«; = ' '  u)

The abo v e  rep resen ta tio n  might well apply in a  w ind w ave 
channel a t poin ts  far from  the  walls com pared  w ith  the 
correlation d is tance  L  a c ro s s  the channel (the  v d irection).

N ear to a w all, h o w ev er, w e can no longer assum e tha t the 
phases a re  u n co tre la ted . F o r  according  to  inviscid theory  
ihe bou n d ary  cond ition  at the  wall is  tha t the  norm al 
com ponent o f  velocity  m uch vanish ; hence

Эту

for all values o f  x and t. H ence each com plex w ave am pli
tude m ust be paired with an opposite  o r  reflected 
amplitude a me l,m having the sam e phase ел a t the w all. T h e  
absolute am plitudes a„ a re  the sam e as in ( I ) . T o  find the 
fnean sq u are  surface e leva tion , we have now to  conside r the 
fnean square  am plitude o f half the num ber o f independen t 
vectors:

Copyright © 1990 by ihe American Geophysical Union.

Paper number 89JC03532.
0 14«-0227/WWJ C-03 5 32S02.00

* .« '* •  =  +  a m e l,m =  2 a „ e " -  (4)

Thus if I *  denotes the sum over all pairs of such wave 
numbers,

} ( 2 a J J =  2A  (5)

H ence at th e  wall the rm s w av e  e lev a tio n  is  m ultiplied by 
2 'n .

Since the  co m ponen t o f  any  w av e  n um ber parallel to  the 
wall is unaffec ted  by reflection  a t  the  sides.* the rm s steep
ness o f  w aves  nea r the sidew all a lso  is inc reased . T h is  m ay 
lead to b reak ing  o f  the  w aves n e a r  the  sidew all, ev e n  though 
near the  c e n te r  o f the  ta n k  the  w aves  m ay n o t b e  b reaking . 
(F o r use o f  th is fact to  s tudy  b reak ing  w aves  in deep  w ater, 
in a nonrandom  c a se , s ee  Longuet-H iggins (I974J). L oss  o f 
energy nea r the  sidew alls  w ill lead to a  reduction  in the  
am plitude o f the  reflected  w av e  com p o n en ts . H ence  if  the  
cross-w ind co rre la tion  d is ta n ce  L  is m uch less than the w idth 
of the tank , and if th e  w aves  are  regene ra ted  in  a horizon tal 
d istance w hich  is la rger than  L  tan  a ,  w here a  is the  m ean 
square d irec tional sp read  o f  the  w ave energy , then breaking  
at the w all could lead lo a m inim um  o f e ith e r side o f  
the ce n te r  line. In o lh e r w o rd s, the d istribu tion  o f  energy  as 
a function  o f  cro ss-w av e  d is ta n c e  w ould have the form  o f  a

Finally , w c note that if  L  is com p arab le  to th e  width o f  the  
channel the w aves  will (b y  definition) be m ainly  tw o  d im en
sional. This ce rta in ly  will be iru e  if Ihe dom inant w avelength 
exceeds th e  critical w avelength  fo r trapp ing  o f w aves be
tw een the sidew alls . T h e n  th e  m ost im portan t th re e - 
d im ensional effects m ay arise  from  viscosity  and su rface 
tension  a t the  sidew alls.
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Introductory Notes for Part F 
F. Wave Analysis and Wave Generation

Papers FI to F7

Papers FI to F3 concern the distribution of the energy of wind-generated waves 
with respect to their direction of propagation (в). Paper FI is preliminary; it 
discusses how to extract information about a function f{6) when the observations 
yield only a finite number n of the Fourier coefficients of f  The most important 
case is when n = 2. The second paper (F2) is an account of wave measurements 
made with the pitch-and-roll buoy, designed by NF Barber. The observations 
and analysis yielded important results regarding the frequency-spectrum of 
the waves, their rate o f growth under the action of the wind, and the spread in 
direction of the wave energy. (An attempt to measure the local air pressure on the 
sea surface was less successful). Paper F3 is largely a summary and review of the 
findings o f Paper F2.

Papers F4 and F5 are about various mechanisms for the generation of waves 
by wind. Note that the “maser mechanism” described in paper C4 was later 
shown by К Hasselmann to be incomplete; the effect of mass flux by the short 
waves riding on the longer waves is actually cancelled by the effect of their 
momentum flux when viscosity is ignored. But OM Phillips then showed that 
when viscous damping o f the short waves is taken into account there is indeed a 
(smaller) net transfer of energy to the longer waves. Paper F5 discusses the effect 
o f an uneven tangential wind-stress at the surface, greater at the wave crests than 
in the wave troughs, and shows that it is equivalent to a normal pressure 90°out 
o f phase with the applied tangential stress. In Paper F6, the theory is extended so 
as to include surface tension, and it is shown to provide a physical explanation 
for the system o f equations proposed by Ruvinsky and Freedman (1985, 1987).

Paper F7 discusses the possibility that in very steep waves both the normal 
and tangential stresses at the surface become localized near the crests of 
the waves. This localization will produce waves traveling at a certain angle 
either side of the direction o f the wind, depending on the wave number. The 
calculations are extended so as to include capillarity.
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BOUNDS FOR THE INTEGRAL OF A NON-NEGATIVE FUNCTION 
IN TERMS OF ITS FOURIER COEFFICIENTS

By M. S. LONGUET-HIGGINS 

Received 28 October 1954

A B S T R A C T . The first 2 ^  +  1 Fourier coefficients of on unknown, non-negative function f(6)

are given, and it is required to find bounds for j  f(6) dd, where В  is some given region of

integration. We also wish to find the interval E  for which the bounds a r e  most strict, when the 
width of E  is specified. f{0) may represent a distribution of energy in the interval O <0< 2я; 
the object is to determine where the energy is chiefly located.

In the present paper we show that if the energy is located mainly in the neighbourhood of not
r

more than M  distinct points, significant lower bounds for I /(в) dO can be found in terms of the
J s

first 2M  + 1  Fourier coefficients. The effectiveness of the method is illustrated by applying the 
inequalities to some known functions.

The results have application in determining the direction of propagation of ocean waves and 
other forms of energy.

1. Introduction. The following problem, arises in connexion with the analysis of 
ocean waves (Barber (l)). Letf(6) be an unknown, non-negative function of в, integrable 
and periodic with period 2w. We are given the first 2N  + 1  Fourier coefficients off(d):

an =  -  Г / ( 0 )cosn0 d0  (n =  0 , 1 , 
n j  о

b„ = -  f  / ( 0)sin 7iddB (n = 1, 2, . . . ,# ) .  
7TJo

Can we find upper and lower bounds for the function

( 1- 1)

F(E) f  № d d ,  ( 1 -2 )
J E

where E  is some given region of integration ?
In practice f(d), or a related function, may represent the energy density of ocean 

waves approaching a recording station from a direction specified by в. Barber (l) has 
shown that, if the waves are recorded at m  different points, then a0,a1, 61, . . . ,a N,b^, 
where N  < %m(m— 1), can be determined from the correlation coefficients of the com
ponents of wave motion at the m  points; from this information it is required to find, 
so far as possible, the angular distribution of the wave energy.

For convenience we shall refer to в  as the ‘direction’ and to (1-2) as the ‘energy’ 
contained in the interval E.

An approximation f N(d) to the required function f(6) might be given by summing 
the first 2N  +1 terms of its Fourier series

N
f N{6) =  £a0+ 2  (an 008 n0 +  bnBin 710), (1-3)

k~l
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Bounds for the integral of a  non-negative function  591
for, under certain conditions, f N{6) tends to f(6) as N^-oo. But this approximation 
may be inadequate, for it often happens that most of the energy comes from a very 
restricted range of directions; f(6)  will then have one or more pronounced maxima 
which can be only poorly approximated by the smooth function f N(6). In addition, 
f N(6) may take negative values, while f($)  is non-negative. (The Cesaro sums С1, 
however, are non-negative; see, for example, Zygmund(l2), p. 46.)

In the present paper we make use of the fact that/(0) is non-negative, and it is when 
the energy is concentrated in one or more narrow ranges of direction that our method 
yields the most information.

The argument is as follows. Let <7(0; a^Oj, ■■■,a.N) be a polynomial in cos0 and 
sin0 of degree N  at most, with coefficients involving a x, . . . ,a N. Then the integral

I(av  ...,a.N) = l-  f /(0)0(0 ; 04,a* ...,<xN)de (1 >4)
ttJ o

is expressible in terms of 0̂ , . . . ,a N and the first 2N  4-1 Fourier coefficients of f(6). 
Suppose that g is always positive, except at в — a.v  where it vanishes (see
Fig. 1 forthecase N  =  1). Then I  is never negative, and is small if and only if the energy
is nearly all concentrated in the neighbourhood of the points ...... a.^. For if E  denotes
a set of N  narrow intervals surrounding a 1, the contribution to the integral
from within E  is small, since g is small there, and the contribution from the remaining 
regions E' is also small, since the proportion of energy in E ' is small. Conversely, if
I  is small, then the proportion of energy lying outside E  is small, for otherwise there 
would be an appreciable positive contribution to I  from the regions E'.

More precisely, let p  denote the proportion of energy lying outside E  (that is, in E  ). 
Then since the total energy equals яа0, we have

F(E') =  pna0, F(E) =  (1~р)тга0. (1-6)
38 -a
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In E we shall have 0 ̂  g  < G, say, and in E', G' < g  < G". Thus from (1-4)

i - “ f f  л ^ + f  (i-в)«о 7rao U в J я- J

[(?^)+ С ",Р (® ')] (1-7)
л а 0

= G ( l - p )  + G"p. (1-8)
When the intervals Е are so narrow that G4,1, and if at the same time p<£ 1, then it 
follows that //а0<̂ 1. Conversely, since

f  fv de> ^ r Q' W )  = ^  (1>9>° 0  w a0 J  JE' ^ «0

we have p  < ™—• (I'lO)Cr a0

Thus if IjG'a0 is small then p  is also small, and so nearly all the energy lies within E. 
In general, a knowledge of IjG'a0 provides an upper bound for p  and so a lower bound 
for F(E) (by (1-5)).

The smaller the value of IjG'a0, the greater the amount of energy known to be 
contained in E. We therefore seek the values of 04, ■■■,a.iV which make I (av  ...,a.N) 
a minimum. (O' depends also on the subsequent choice of E.) The directions a.Y, . . . ,aN 
which make 1(а1г..., aN) a mininrnm will correspond to the predominant directions of 
the energy, so far as these can be defined. The chief mathematical problem is then to 
find the m in im u m  of the integral (1 -4 ) and to determine the corresponding directions 
0 = a u .. . ,  ocpj.

The cases N = 1 and N >1 will be considered in §§ 2 and 3 respectively. In § 4  we give 
some practical examples, where the inequalities are applied to the Fourier coefficients 
of known functions/(0). The tests are found to be reasonably effective.

2. N = 1. Let ft—a.
g (d ; ctj) = 2sina 2 - (2-1)

= 1 — costfcosa — sintfsinap (2-2)

g{6\ a j) is positive everywhere except at в  = а„ where it vanishes (see Fig. 1), and 
hence it satisfies the conditions stated in § 1. Consider then the function

*7(0) sin *&- ^ d e  (2-3)2 f !
/ ( « , ) = -

7TJ  0 2
= a0 — ̂ coso* — ftjsinaj, (2-4)

which is a function of 04 with known coefficients a0, av  bv  For E we may take the 
interval of width 28 having a t as mid-point. Everywhere outside E we have

<7> 2sinz£<S = O', (2-5)

7(g l) . (2-6)
2a0sin2 $<S V '

and so the inequality (MO) becomes
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Now from (2-4) the minimum value of I  (a:t) is

I  = aa-J{a\+b\), (2-7)

and occurs when cosa^:sin0^:1 = — a^: — b^.-J^al + bl). (2-8)

The best possible inequality (2-6) is therefore

a 0-V (® i + b?)
p * - 2 ^ w  ( }

The corresponding direction a l5 given by (2-8), defines the ‘predominant’ direction of 
the energy.

We may remark that the maximum and minimum values of I (ал) are the roots of

P  — 2a0 J  + (a§ — a\—b\) — 0 ; (2-10)

also that a necessary and sufficient condition for the energy to be concentrated within 
a  single interval of infinitesimal width is

a l - a \ - b \ = Q .  (2-11)

3. N > 1. Generalizing equation (2-1) we take

д(в; a ^ c t^ . . . , a N) = 2 ^ -* sin2 sin2 . . . sin2^ - ^ ,  (3-1)

which is positive everywhere except at the points в  = a v  a 2, ..., aN, where it vanishes. 
The integral N_x 2„ Q_

J (a i, . . . , a„ ) = i - _  (3-2,

is expressible in terms of a 1;..., a.N and the first 2N +1 Fourier coefficients

®0> •■•> % i ЬN>

we have to investigate the minimum values of I(oLly . . . ,aN). We shall now show that 
under certain conditions the maximum and minimum values of I ( a ly -  ,% ) are *be

(3-3)

(3-4)

and we have written An = a n -  ib n = ^  J f{ 6 ) e~in6 d6 . (3'6)

(A* denotes the complex conjugate of An .) When N = 1 equation (3-3) reduces to 
(2-10) provided we take conventionally = 1.

Since
sin2— = ±(ei$ — e<a") (e-^  — e_la*), (3‘6)

roots of the quadratic
Л»- 2&n- i I  + = 0,

where .40 A1 ... An

д„ = A* Aq Ац-\

-^w-i ••• A0
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l  f 2”I ( a l t . . . , a N) —— f(6) (eie — eiat) , . . ( e i0~ t ian) (e~ie — ... (e~ie — e~ias) dd  (3-7) 
j  о

1 П*
= 2n j о Пв) xn) -  О  • ■ • С*'1 “ a * 1) M. (3-8)

where t = eie and xn = e“ ". Thus

( - 1) "Xy . . . Жу/ —
2 я

' /*2»г 
^ / (0 )

3/ э/At a stationary value of I ,  — = —ie~ian -— = o,
dxn dccn

and so on differentiating both sides of (3-9) with respect to xn,

x \  • ■ ■ x n  j  _  ( —  1  ) JV+I [ гя* / а \  j - A r  ( ^ — * 1 )*  • ■ ■ ~

We shall make use of two lemmas:
L e m m a  1 .

d6.

(3-9)

(3-10)

(3-11)

where

OV*77l/y* At IW «W ... xN ... *1*2.. XN
-JV-2 ~iV-2 •*1 *̂2 ... & -2 1

xf-»  x f -3 ...

1 1 ... 1

x*~‘ x?--1 •r̂ -1

Dn = af-* *?--I ~N-2Xn

1 1 1

( - 1  )™ D N (m = 0),
0 (m = 1,2......N - 1),

= П
»> m

(3-12)

(3-13)

For the value of the left-hand determinant is unaltered by dividing the first row 
by ....Хд, and multiplying the first column by x1, the second by x2 and so on. 
If m  = 0, the determinant is then identical with DN except for an interchange of rows. 
If m  = 1, 2, .. . ,N  — 1, two rows of the determinant are identical.

L em m a 2 . When m  = 0 ,1 ,  . . . , N —  1, 

x f 2%
t X̂  t ~ x̂ t - X N

z f - z  X ? -2 .. . a#"2 
a f - «  a ^ -3 x-N

tmD'N
(«-ЖЛГ) ’

(3-14)

1 1  . ..  1 

For on multiplying the top row of the left-hand determinant by

{ t - x j  (<-x2) ... ( t - x N),
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the first term, for example, becomes
x f\ t -x 2) ... ( t - x N) = хГ‘№ лг-1->8<11><лг- г + ... + ( - l ) * - 1£$], (3-15)

•where S™ denotes the symmetric sum, of degree n, of the roots x2, x N, and by 
convention, equals 1. /SJJ1 may be expressed in terms of the symmetric sums Sn of all 
the roots xv  хг, . . . ,xN by successive substitution as follows:

SF  = S 1- x 1,S?) = S ^ x . S 0,
<Sg> = S i - Х г ^  = 5 , - z ^  + aJSo.
S<3» = (3-16)

^ - m - l  — '^A?-m-l- ' a:l^JV-7n-2+--- + ( — l ) W-m 1а;Г  ™ l 0̂>,
all the powers of on the right-hand side being of degree less than or equal to 
(N — m — 1). For the remaining coefficients we start from the other end:

i  = x^ 1S N,

S $ -2  =  Хг 1('Sjv-i — S 'v -t) =  1&n - i  ~  X1 23n ,

= x1 1{Sn- 2~ S $ - i )  - 1S N_2~ xl  *^W-1 + (3-17)

1Sn-vi+1 —  X1 2£>N-m+Z + - - • + ( — 1 )m lx l  mSf/- 

On substitution in (3-15) we see that the first term of the top row of the determinant 
is of the form PlX?~'+ P2x?~* + ... + PN, (3-18)

where the Pn are symmetrical expressions in zl tx2, . . . ,x N and
i\ = tm. (3-19)

Each of the terms Pnx̂ ~™ (m = 2,3, . . . ,N  — 1) can be eliminated by subtracting Pn 
times the nth row from the first row of the determinant. Only the first term P ^  1 
remains. By (3-19) this proves the lemma.

Now let the nth of equations (3-11) be multiplied by ж” times the cofactor of the nth 
term of the first row of DN, and let the equations be added. For m = 0 this gives

(_ 1 )n +'Dn I  = P / ( 0 ) ... ( t - x N)DNdd,  (3-20)
7T J q

and therefore, if DN ф 0,

/=- Г т  [i -  t-'+ssи  -...+(- de
n j o

= A o S v - A ^  + A z S , - . . .  + ( -  1)*М Н „. (3'21>

Similarly, form = 1, 2, . . . ,N — 1, we have
0 = 4 * S 0- ^ * _ 15 1+ ... + ( - I)*A„_mSN. (3-22)

Finally, we add the equation for m  = N, which is most conveniently obtained by 
taking the conjugate of equation (3-21) and using S* = SN_„ISN:

IS N = 4fcS0-il& _1S1+ ... + ( - 1 ) "  A08n . (323>

4
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These equations may be written in matrix form:

1о Ax A2 ... A„ \ /  s 0
At A0 Аг An_ j  \ (  S ,
At Af A0 A y-i  J I

A*a N -  1 A L  2 ... A0- i / \ ( - i  r s t

(3-24)

The diagonal terms of the square matrix axe all At except the first and last, which are 
A0—I. Since the symmetric sums Sn are not all zero (S0 = 1), it  follows that

Aq—1 Аг At Aff
At A0 A, An- i
Af At A0 An-»

h A%-i A%-2 ■■ ■ A0 — I

=  0 , (3-26)

which on expansion is seen to be identical with (3 3), the result to be proved.
To find the corresponding angles an, we first choose the smaller root I  of equation 

(3-25) and then solve any N of equations (3-24) to obtain the N ratios Sq.S^. . . . :S n . 
The roots x1,x2, . . . , z N of

/S0tJV--S1<JV-1+ ... + ( - l ) Ar,SAr = 0 (3-26)

then give the required angles, through the relations xn = e***.
It was assumed in the proof that DN Ф 0, i.e. that all the roots xn are distinct. Since

/(at...... aN) is a bounded function of a1; it must always possess at least one
maximum and one minimum; but only if these correspond to unequal values of 
a.,, . . . , a N does the present theorem necessarily hold.

In one important case, however, the above analysis is certainly valid, namely when 
the energy is concentrated in N infinitesimal intervals surrounding N distinct directions 
e i t e 2, say. For, when (Oj, . . . ,aN) = {6lt I  vanishes, from (3-2), and

Ь * * *  Ы  2 » - .  f *  .

щ . ' - —

Therefore (<Xj, ...,a.N) = (6V ... ,6N) is a  solution of equation (3-11) and hence also of 
equations (3-25) and (3-5), with 1 = 0. The determinant (3-26) is of rank N, as will be 
shown in the appendix, and so the ratios S0:SX: . . . :S N are uniquely determined. 
Therefore i = eien satisfies (3-26). But (3-26) has not more than N roots, which must 
therefore be identical with the N distinct quantities eMi, ew«,..., e^V

When the minimum value of 1 is small, equation (3*3) shows that it is given by

I  = 2Д (3-28)
•N -l

very nearly. Therefore by (1-10) all except a proportion p  of the energy is contained 
in E where .

p< 2G'A0An_1-
(3-29)
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“  (3'30) 
then nearly all the energy is contained in E.

Suppose that we take as E the set of N intervals of width 28 with mid-points
ocj.......a N. If 8 is small compared with the distances between successive a ’s we have,
in the nth interval,

д(в ;  a„  a2, sin2^ ^ П' sin2 (3-31)

very nearly, where in the product to runs from 1 to N exoluding n. Thus, outside E,

hi ( п ' я п 2— = O'. (3-32)

A rough estimate of G' may be obtained by replacing sin §8 by £5 and each of the terms 
sin2|(am —a n) by a mean value Thus

G' = 2N~W, (3-33)

and (3-30) becomes ---- <̂ £2. (3*34)
2 о&N- 1

If one of the distances | am — an | is only of order 8 or less, then G’ will be an order of 
magnitude less than (3-33). But in that case we may expect that a smaller number of 
directions a„ would give a  significant inequality, for the same value of 8. Therefore 
a criterion for the energy to be grouped mainly in N separate intervals of width 8 is 
that N shall be the least integer for which (3-34) is true.

4. Applications. To illustrate the method we shall discuss some examples when the 
energy distribution/(0) has certain simple forms; we shall find how much information

about Г f(6) dd  can be obtained from a knowledge of the first five Fourier coefficients. 
J S

Example 1. Suppose that
■n

/(*) =
^  if в-у— е < в < в х + е, (4-1)
0 elsewhere,

that is, the energy is evenly distributed in a narrow interval of width 2e and mid-point 
в х (see Fig. 2a). Then we have

A =  1. An = e< * * i* ^  (n — 1,2 ,. . . ,N ),  (4’2)ne
and so Д0 == 1,

(4-3)

Since Дх/Дд is of order e2, we know at once that the energy is mainly grouped in a  single 
interval whose width is of order e.
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Let us apply the test when N = 1. From (2-8) we find that the ‘predominant’ 

direction is given by a x = в г , and further from (2-9) that

p  *  ЗЯ2 (4-4)

(sin has been replaced by ££). Thus, taking S = e, we could tell that not more than 
one-third of the energy lies outside the original interval, or taking S — 2e, that not 
more than one-twelfth lies outside an interval of twice this width.

m

(»>

m

л He

I
(b)

2it

m

To apply the test when N = 2 we have to solve

вй1— /Sx+ ( 1 - / ) S 2 = 0. 
2c e

On subtracting the first equation from the third we find
S 2 = e*«iS0,

(4-6)

(4-6)
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lie second

Equation (3-26) then becomes

and so from the second ~ „eineS1 = 2 —-  el0i S0. (4-7)

c m  f
ta _ 2 ^ e « lt + 2e2iffi = 0, (4-8)

of which the solution, to order e, is
t = eW,±e/V3)# (4-9)

The predominant directions <xlt a 2 are therefore given by

a v a 2 = 61±e/<JZ. (4-10)

The separation of a t and a 2 is 2e/V3. К  we take as E two separate intervals of width 
28 surrounding a.1 and a 2, 8 being less than e/V3, we shall obtain a bound G' of order 
62e2. Thus (3-29) will be of order e2/52, and no advantage is obtained by taking S much 
smaller than e (as, indeed, we should expect from the actual form of/(#)). If, on the 
other hand, we take for E a single interval {в1 — 8 ,в1 + 8), where 8> e/V3, we have

G' = 23 sin2 —  - №■-  sin2 S + eH* = (^2 — ag2)2 (4.!  1)
2 2 3

approximately, and so from (3-29)

« < - ----- ------- . (4-12)5 (352 —e2)2

If S = e, we have p  $  1/5, showing that not more than one-fifth of the energy lies 
outside the interval (compared with one-third in the previous test). If 8 = 2e, we have 
p  < 1/180, showing that only about 0-5 % of the energy lies outside the interval 
(compared with one-twelfth previously).

Thus the test for N = 2 provides a stricter inequality than the test for N = 1, but 
not by an order of magnitude.

Example 2. Let t *  ^  d i _ e < e < d i  + e>
4e

/ ( * ) = £
4c— if в2 — е< в < 6 2 + е,

VO elsewhere,

(4-13)

where 2e<62 — 61<2n — 2e, so that the energy is evenly distributed in two non
overlapping intervals of width 2e (see Kg. 2b). For simplicity we shall suppose also 
that в2—в1 = \тт, i.e. the average directions for the two intervals are at right angles. 
Then we have

A0 = 1, An = e ^ o c o s  — ( n = l , 2  (^ 14)4 Tie
where 0O = \(вг + в2), and Д0 = 1,

д _  ls in e  ,
1 _ 2 1 ~ ^ * ’ (4-15)
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approximately. Since Дг/2Д0 Aj is of order e2, 1, whereas Ai/A2 is of order unity, we 
can tell at once that the energy lies mainly within two separate intervals whose width 
is of order e.

In the test for N = 1, 1(ax) is a minimum when a l = в а = %(ву + 62). But since Дх/Д§ 
is of order unity the test gives a barely significant result. If we take, for example, 
8 = %n, so that E is the interval of width я  and mid-point 60, we have from (2-9)

p  ̂  1 -  = 0-293, (4-16)
so that only about seven-tenths of the energy certainly lies in this semicircle.

Now let us apply the test for N — 2. We have

/, t\ a  e-^osine
* * 0 V2 e  1 ’

sin e _ „ sin e „
VS— '5» -  s ' + ^ - r s > = ° ’ 

еЛ зте5 1+ ( 1 - 7 ) 5 , - 0.

(4-17)

V2
Proceeding as before, we find

а 1 = в 1 + ̂ е2, ajj = 62-| e2. (4-18)

Thus the two ‘ predominant ’ directions differ from the directions Qx and в2 by quantities 
of order e2 only. If E is taken to be two small intervals of width 28 surrounding and 
a 2 we may take _ „

G' = 23 sin2 sin2 = 82 (4-19)
62approximately, and so from (3-29) p  < j ^ .  (4-20)

Thus we could tell that at least two-thirds of the energy comes from within two 
intervals of width 2e almost coinciding with the original intervals, or that eleven- 
twelfths of the energy comes from within two intervals of twice this width.

As expected, there is a marked improvement in the inequalities obtained from the 
test for N = 2 compared with those obtained from the test for N — 1, in this example. 
However, from the experience of Example 1 we should expect that tests of higher 
order would give only a smaller improvement.

Example 3. In the two previous examples we assumed that the energy was entirely 
confined to one or two narrow intervals, that is to say there was no ‘background’ of 
energy outside those intervals. To investigate the effect of such a background we may 
add to the energy distribution of Example 1 a small constant term. Thus

+ i  *  9г ~ е < в < в 1 + е , ^
i£)/ elsewhere,

where щ is a small quantity (see Fig. 2c). The effect of this is to increase A0 by 7 but to 
leave the other Fourier coefficients unaltered:

A0= l + 4. = ( » -  1, 2, (4-22)
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Equation (2-9) then gives 2v + i e lL_2— (4-23)

(higher powers of 6 , 6 , 7 )  being neglected).
In order that the background shall be negligible, therefore, we must have r) or 

in other words the background must be an order of magnitude smaller than the square 
of the width of the interval. I t appears, therefore, that the effectiveness of the present 
teste depends rather critically on the absence of such a background.

APPENDIX 

Propert ies o f  &N
We now prove the result used in § 3. This is part of a more general theorem (Theorem 

A 9) which was first proved algebraically by ToepHtz (11); other proofs have been given 
by Fischer (6), Schur (10) and Frobenius (7)f. The proof we now give is more direct than 
any of those mentioned, and brings to light more clearly the significance of &N.

First we establish the identity
ОВДЛЧ-1) Г21Т Г2-п й  — в

4 " -< т г п >т р 4  ~ J ,/ w . . j h w  (A I)
where, in the double product, n  runs from 1 to N +1 and m  from n  +1 to N +1. From 
(3-4) and (3-6) we have

У ( в 2)е~**<1в2 . . .
(*2ir

o f(@N+i) е - * т *+1 d d N+1

д  1 ' j ( 0 2) d d 2
Л2 n

o f@N+l)  e “ i0 V _ 1 )  9Я¥' d d N+l

' j ( 6 t ) e W - » e i d e 2 . . .
*2тг

0

1 Л 2  it  (* 2 r r

- v* j. -J>-> ■•■/<*»«>
е<°1

g—г'Л'%+1
е- т - 1)ея+,

d@± . . .

= p i+ i J 0 - J oM )  - M m )

1 1 1

e*®i t i$x e^s+i d0x . ■. dOfl .̂j . (A  2)

eim i eiNOt gtN6j/+ ,

t  Some equivalent geometrical conditions on the Fourier coefficients were given by Cara- 
th6odory(2, 3). The equivalence of the algebraic and geometrical conditions was established by 
Carath6odory and Fej6r (4). See also Riesz(8, 9) for related results.
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Interchanging any two of the 0n does not affect the value of the left-hand side, but 
interchanges two rows of the determinant on the right-hand side. The two rows can be 
changed back if at the same time the sign of the right-hand side is changed. Hence, 
adding all the (N + 1)! possible permutations we have

2 n1 Г2гг(■№+1)! = _^_Jo ...Jo/(̂ ).../((9jV+1)

1 1 . . .  1 1 1 . . .  1

e iei ... e-i9 , g -l'0,  . . .  g-W , +1 d0^. . .  dO
e iN»x eiN6, _ f>—iN0l g—iN0t . . .  g—Nd#+,

1 Л2 n Г2тт
= -Щ  I • • • M ) • • •/ (V ) П (e"m- e«")(e -^ .- e~^)dd,...<WN+1.

7J ' J O  J O  m > n
(A 3)

If equation (3-6) is now used, the identity (A 1) follows immediately.
Since f(6) is non-negative, the whole integrand on the right-hand side of equation 

(A 1) is non-negative, from which it follows that
AN>0. (A 4)

Suppose now that/(0) consists of N ‘ pulses ’ of energy, that is ,f(6)  is zero everywhere 

except near N points в  = 6(m\ where it becomes infinite in such a way that J  f(6)dd 
has a finite discontinuity Cm at this point. In Dirac’s notation (5) we may write

(A 6)

The function /(#j) ■■■f{6N+1) is zero everywhere except where each 6nequals some 
But since there are only N 0(m>, this implies that at least two of the вп must be equal. 
The part of the integrand under the product s ign  then vanishes, and the contribution 
from the neighbourhood of this point is zero. Hence

I f  f(6) is  the sum o f  N pulses , then AN = 0. (A 6)

Conversely, if it  is assumed that/(0) is continuous except possibly for a finite number 
of pulses, we may show that

I f  AiV = 0 and i f f (6 )  > 0, then f  (6) is  the sum  o f  at most N pulses . (A 7)

For, suppose that/(0) is continuous and positive, or has a positive pulse, at more than
N points, say в = ва)...... (9сл'+1). When в г....... Оц+i аге *п the neighbourhood of these
points there will be a positive contribution to the integral (A 1), and since the integrand 
is never negative A* must be greater than zero, contrary to hypothesis. Therefore 
f (6 )  cannot be different from zero at more than N distinct points.

The first part (A 6) of the theorem can also be quite simply proved algebraically. 
For if f(6) is given by (A 5) then from (3-5)

1  N

An = - ±  Сте ~‘"вт Пт- l
(A 8)
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If these expressions for An are substituted in (3'4) it  w ill be found that &N vanishes 
identically. However, the converse {A 7) is necessarily more difficult to prove, since 
it  depends upon/(0) being non-negative.

From (A 7) we deduce that if f (6 )  is the sum of just N pulses, then Д д^ > 0; for if 
An-i vanished/(0) would consist of no more than (N — 1) pulses. Now Aw-1 is a minor 
of Дл„ so that An must be of rank N (which is the result used in §3). Conversely, if 
An = 0 but > 0, then f ( d )  consists of just N pulses. Hence

A necessa ry and sufficient set o f  condit ions f o r  a  non-negative fu n c t io n  f  (9) to con s is t  o f  
ju s t  N pu lse s  is  that

Д0>0, A1>0, Дл,_1>0, An = 0. (A 9)
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OBSERVATIONS OF ТИЕ DIRECTIONAL SPECTRU M  OF SEA WAVES

USING THE M OTION S OF A FLOATING BUOY

ABSTRACT

The vertical acceleration of a floating buoy, and 
the two angles of pitching and rolling, can be used 
to determine the first five Fourier coefficients 
(ao, ai, bi, <h, bt) of the angular distribution of 
energy in each band of frequency.

From these coefficients can be found a weighted 
average of the directional spectrum with respect to 
the horizontal azimuth ф, and also certain useful 
parameters: the total spectral density (CnM), 
the mean direction of the energy (Ф), the angular 
spread of the energy (^), and a parameter indicat
ing the shape of the distribution (/mi„/ao).

Five complete records were analysed, corre
sponding to local wind speeds that ranged from 
8 to 23 knots. The record with the highest wind 
speed (Record No. 5) fortunately corresponded to 
a very simple weather situation, with a well- 
defined fetch and constant wind direction. In this 
record it was found that at the higher frequencies 
the total spectral density tended to Phillips’s 
limiting law, proportional to (frequency)-*. The 
angular spread of the spectrum increased with the 
frequency. At low frequencies it approximated 
the “resonance" angle sec~l (U/c), where U and с

denote wind speed and wave speed respectively. 
At intermediate frequencies the angular spread 
was somewhat less than the resonance angle, ow
ing probably to the growth of the waves by shear- 
flow instability. At the highest frequencies the 
angular width was again increased, owing probably 
to nonlinear effects.

The parameters of the spectrum were consistent 
with an angular distribution proportional to 
cosu (&), where the parameter s varies markedly 
with frequency. Thus s decreases from about 4 at 
low frequencies to less than 1 at high frequencies. 
The parameters of the spectrum did not fit a 
“square-topped” distribution of energy so well, 
much less a distribution with two narrow direc
tional bands of energy. However, the possibility 
of a mildly “bimodal” spectrum cannot be entirely 
ruled out.

The atmospheric pressure fluctuations at the 
sea surface were also recorded. These were gener
ally of an order of magnitude smaller than those 
assumed by Phillips (1957) to exist in a turbulent 
air stream. Moreover, the recorded pressure fluc
tuations can be attributed mostly to the aerody
namic pressure changes produced by the flow of 
the stir over the waves, together with the hydro
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static pressure changes due to the vertical dis
placement of the buoy. The pressure fluctuations 
were consistent with the cosine-power law for the 
angular distribution, stated above.

INTRODUCTION

The question of how the energy in sea waves is 
distributed with regard to direction of propaga
tion is not only essential from the point of view of 
the wave forecaster, but is also of great interest 
because it throws light on the processes of wave 
generation. Very few determinations of the com
plete two-dimensional spectrum have been at
tempted. Among those hitherto published we 
may mention Barber’s (1954) technique using an 
array of wave height recorders, and also the analy
sis of aerial stereophotographs described in the 
SWOP report (Chase el al., 1957; Cote et al., 
1960). In the present paper we propose to de
scribe some results obtained by a different method, 
which makes use of the recorded motions of a free- 
floating buoy. The method was first suggested 
by Barber (1946) and was developed by Longuet- 
Higgins (1946, 1955); the observations have been 
made at the National Institute of Oceanography 
since 1955. Simultaneously with the motions of the 
buoy, we have recorded the atmospheric pressure 
fluctuations close to the sea surface. Our present 
object is to describe the method and the results 
and to discuss them in the light of recent theories 
of the generation of water waves by wind.

THEORY OF THE METHOD

To a first approximation, a floating object may be 
regarded as performing small oscillations about a 
fixed point, with horizontal co-ordinates x, у  and 
vertical co-ordinate г  (measured upwards). Fur
ther, for waves sufficiently long compared with 
its diameter, a floating buoy will tend to have the 
same vertical and horizontal displacements as a 
particle in a free wave, and to take up the same 
orientatioh as the free surface.1 Hence, if the 
motions of the buoy (i.e., vertical displacement 
and angles of pitching and rolling) can be recorded 
we shall have available the quantities

1 Later on, calibrated response factors, appropriate to
each wave length and frequency, are used.

>■ Ё1 dl  
d x  ’  d y

( 1 )

as functions of time, where f(x, y ,  t )  denotes the 
elevation of the free surface.

As a representation of the sea surface we may 
take the stochastic integral

a / / (2)

where x — (x, y )  and к  = (к  cos Ф , к  sin ф )  repre
sents a vector wave-number. To a first approxi
mation the frequency a  satisfies the well-known 
relation for waves on deep water:

^  = gk. (3)
The directional spectrum F ( a ,  Ф ) of the waves is 
defined by _____

, id A  dA* ...
'<••♦> - - З Л Г  ( )

(where a star denotes the complex conjugate, and 
a bar denotes the mean value). In other words, 
F(a, ф)<1а йф is the contribution to the mean- 
square value of f arising from wave elements which 
lie in the infinitesimal ranges of frequency and 
direction (a ,  a  + d a )  and (ф, ф + <1ф).г

Suppose then that the three quantities of (1) 
are denoted by b> fi> b- We have

ft = К / /  e'<Wx~',)dK 

h  = J  f  ik cos ф ei(k', " ,)dA 

?» = & / /  i k  sin Ф e‘Ik , - *<)dA

(5)

By numerical methods or otherwise we may form 
the co-spectra Cij and the quadrature-spectra Qa 
of any pair of quantities £» and From the 
definitions we have

Cn = Г  F(ff, 4>)d4>Jo

Ctz — f fc2 cos2 Ф F(a, ф)йф

Cn  = f  fc2 sin4 ф F(<r, ф)<1ф 
Jo

(6)

* In term s of the two-diraeneionftl spectrum E ( k )  used
^dk 2£ E  

in Longuet-Higgins (1957) we have P  m fa  a
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and

Cn = j a k* cos ф sin ф F(a, 0 )d0

Q12 = j  к cos Ф F(a, ф)<1ф

fJo к sin ф F(a, ф)<1ф

(7)

each of the above six quantities being a function 
of s. The right-hand sides are clearly related to 
the Fourier coefficients

1 r2'a* + ib„ = -  / eni*F(ix, ф)<1ф v  Jo

of the spectrum F ( v ,  Ф), and in fact

(8)

Oo -  c„

(9)

We can therefore obtain from the motions of the 
buoy, the first five Fourier coefficients of the angular 
distribution of energy and thus the first five terms 
of the series

F(<r, Ф) = Jao + (oi cos ф + bi sin ф)
+ (th cos 2Ф + bi sin 2ф)

(10)

From df/dx, and d(/dy it is not possible to get 
higher coefficients, but more terms could be 
obtained if quantities such as У1;/дхг, d’f/ftr dy, 
etc., could be measured.’

What then can be done with this amount of 
information? In the first place we can form the 
partial Fourier sum

Fi(<r, Ф ) = iao + (a, cos ф  + bi sin ф )

+  ( a ,  cos 2ф  +  bj sin  2Ф ) .  (11)

This may be a fair approximation to the infinite 
series (Equation 10) provided that terms of 
higher order are relatively small. On the other 
hand, substitution for at, au bh a,, in Equation
11 shows that

1 An experimental program to measure the second de
rivatives of f  ia in  progreae.

Ы *, Ф ) = ^ - Г  * ’№ (*' ~ ФШ' (12)2ir ■'o

where

W i = 1 +  2 cos (ф ’  — Ф ) +  2 cos 2(0' — Ф ) 

sin j(0 ' - Ф )

“  sin *(*' -  Ф )  ̂ ’

In other words, the partial sum Fi(e, 0) is the 
smoothed average of the actual distribution 
F(а,ф) by the weighting function — ф).
Since W\ can be negative, it is possible that F\ 
may be negative too, whereas F(a, ф) itself is 
essentially positive. One may therefore prefer, as 
in the present paper, to take an alternative 
approximation to Р(а,Ф), namely

Fi(<r, Ф) = j<k, + f(ai cos ф + b, tin ф)
+ i(dj cos 2ф + bt sin 20) (14)

which corresponds to the weighted average of 
Fla, ф) by the weighting function

W, = 1 + j  cos (ф= 1 +  $  cos (Ф’  -  Ф) -I- i  C08 2 (0 ' -  Ф) 

= f  cos4 Ц ф ' -  Ф) (15)

Wi is not only non-negative but is also a decreas
ing function of |Ф1 — ф\- Other weighting func
tions are of course possible; which particular 
function one chooses is to some extent a matter of 
taste, since each of the averages F i( e ,  Ф) is a 
weighted average of each of the others.

Apart from the weighted averages just men
tioned, the first five coefficients ao, Oi, 6i, a?, bi can 
be used to provide some useful and significant 
parameters of the spectrum F ( e ,  Ф). The simplest 
of these is ao itself, which measures the total 
energy per unit of frequency, summed over all 
possible directions.

Second, as a measure of the directional proper
ties at each frequency we may define the two 
angles 0i and 0j which "best” fit the distribution, 
in the following sense. Consider the integral

J  = 16 sin1 ̂  2 ~ 8*n* * 2 ^  ^ (Г’
(16)

where Ф1 and 0j are any angles. I  may easily be 
expressed in terms of Ф1, Ф> and the five known 
coefficients do, au bt, <h, th. We now choose Ф, and 
0. so as to make I a minimum.

This definition is clearly appropriate in the 
extreme case when swell is coming from two direc-
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Figure 3-1-1, (a) Exterior view o f the wave recording buoy; 
(6) The instrument panel.
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tions only, say  and <*j. For then I/ao = 0 only 
if ф|, <fo coincide w ith  a i, a»; if Ф,, Фг do not coincide 
w ith  a i, a t, then I/aо is positive, since there is  а  
positive contribution to the in tegral a t  ф = at, 
at, and the integrand is never negative.

In a  more general case, when F (a, Ф) has a 
continuous distribution, the two “best" angles Ф\, 
Фг s till have a  useful significance. For if the spec
trum  is  not too broad, the mean value

Ф = +  ф.) (17)

approxim ates the mean direction of energy in the 
spectrum , and the half-difference

f  -  Фг\ (18)

is a  m easure of the angular w idth of the spectrum . 
I t  is  shown in the Appendix that ф is approxi
m ate ly  equal to the r.m .s. angular deviation of the 
energy from the mean direction.

L ast, if /m|„ is  the minimum value of I  (corre
sponding to the two “best” angles Ф, and фг), then 
la , in/°o is  an  indicator of the shape of the distribu
tion F (a, ф). For exam ple, very sm all values of 
^min/ao would ind icate th a t the energy was concen
trated  near two directions a i, a 2 a t  most. In the 
Appendix i t  is shown that in general /„in/ao is 
re lated  to the fourth moment of the angular dis
tribution of energy about the mean.

Form ulae for calcu lating ф\, fa , and /„io/ao in 
term s of the known coefficients ao, a h bh aj, 6» are 
given La the Appendix.

APPARATUS

A general view of the buoy is  shown in Figure 
3-1-1. The frame is an alum inium  a lloy casting, of 
horizontal d iam eter 5 '6" , which when loaded floats 
in w ater up to the top of the vertical rim. I t  is 
surrounded b y a  stout hemp fender. The four- 
legged hoisting gear is secured a t  the base by four 
steel pins, which can qu ickly be removed. Inside 
the buoy (Figure 3-1-1 (b)) can be seen the instru
ment panel. In the center is an accelerometer of a  
design sim ilar to th a t used in the shipborne wave 
recorder (Tucker, 1952, 1956). The working part 
of the accelerometer is  mounted on gym bals so 
th a t it  tends to take up an orientation in line 
w ith the vector acceleration plus grav ity . Since 
the w ater surface also tends to do ju s t this, the 
accelerometer rem ains practically  fixed relative 
to the buoy.

The electrical output from the accelerometer is 
in tegrated twice electronically before being re

corded. (The in tegrating circuits are contained 
in the m etal box nearest the accelerometer.) All 
recording was done by the 12-channel galvanom 
eter-recording cam cra seen in the foreground.

Two gyroscopes for m easuring angles of pitch 
and roll can be seen on the far side of the instru
m ent board. Each is center-seeking w ith a  time 
constant of about 6 m inutes. The other instru
ments on the panel are tim e sw itches for m aking 
tim e m arks on the record and for autom atic oper
ation of the equipm ent over predetermined in ter
vals. The batteries are seen surrounding the 
instrum ent panel.

To record atmospheric pressure a  very  sensitive 
condenser-type m icrobarograph was bu ilt very 
sim ilar to th a t described, for example, b y Baird 
and Banwell (1948). For modifications to the 
interior design and to the accom panying electronic 
circuits we are indebted to M r. R . Dobson and 
M r. M . J .  Tucker. The microbarograph and its 
electronics were s ituated  in the lid of the buoy (see 
Figure 3-1-1 (a ))  and access to the atmosphere was 
through 12 small orifices (diam eter 0.04 inch). 
To prevent sea w ater from blocking the instru
m ent, a  series of precautions was taken : the open
ings were raised 2.4 inches above the surface of the 
buoy (F igure 3-1-1 ( a ) ) ;  the orifices themselves 
were surrounded by small heating elements (dissi
pating 5 w atts per coil) so a s  to evaporate any 
spray blocking the passages (the tim e taken to 
clear any  hole was a  fraction of a  second); the 
passages to the microbarograph were designed so 
th a t liquid penetrating the orifices was drained off 
into a  drip-can beneath the instrum ent; and last, 
the passages were surrounded b y dessicators. To
gether these arrangem ents proved effective.

To keep the buoy in a  constant alignm ent rela
tive to the wind, a  drogue and pellet were attached, 
as in Figure 3-1-2. So far as could be judged from 
visual observation, the orientation of the buoy 
remained qu ite constant during an y  period of 
observation.

Figure 3-1-2. Arrangement fa r aligning the buoy with 
the wind.

wyra of
WIND
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B oth  the m icrobarograph  and  the in tegrated  
acceleration  possessed phase and am plitude char
ac te ris tic s  dependent upon frequency, which were 
m easured  in  the lab o rato ry . The buoy itself, 
because of it s  fin ite dim ensions, had a  vary in g  
response a t  the h igher frequencies. C alib ration  of 
the h eav ing  and p itch ing motions of the buoy re la 
tiv e  to the e levation  and  slope of the w aves in  the 
absence of the buoy w as carried o ut for us in  the 
1200-ft. w ave  tan k  a t  the Ship  H ydrodynam ics 
L abo rato ry (N ational P h ys ica l L abo rato ry). The 
ca lib ration s covered the range 2.1 < a  < 4.5 rad i
ans/sec. and ind icated  a  "resonance” a t  around 
a  — 4.0 rad ians/sec. in both heave and p itch. 
H ow ever, because of the h igh dam ping, the am p li
tude response factors did  not differ much from 
u n ity  w henever a  >  3.5 radians/sec. A ll the 
response factors have been allowed for in the sub
sequen t determ ination  of the frequency spectra.

TREATMENT OF THE DATA

O ut of 16 records obtained during 1955 and 1956,
5 w ere selected as being apparen tly  free of fau lts 
over continuous stretches of tim e lasting  12 m in
u tes or m ore. The corresponding positions, dates, 
and tim es, together w ith  local w ind speede and 
d irections as m easured by the ship ’s anemometer, 
a re  given  below in T ab le  1. It w ill be seen that 
conditions ranged from ligh t w inds (8 knots) to a  
fa ir ly  constant w ind of force 6 (23 kno ts); th is 
w as near the lim it for safe launching and recovery 
of the buoy. C harts showing the synoptic weather 
s ituatio n s a t  about the tim es of recording are 
shown in  F igure 3-1-3.

A typ ic a l record of the outputs from the two 
gyroscopee, the accelerom eter (after in tegration), 
and the m icrobarograph is reproduced in F ig
ure 3-1-4. Each of the four traces w as digitised 
(m an ua lly ) a t  in tervals of approxim ately 0.5 sec., 
so th a t  the records, 12-17 m inutes long, contained 
about 2,000 sets of readings each. These were

stored on punched cards. The com putation  of th e  
co-spectra and quad rature-spectra , which w as 
carried out on the D eu ce  a t  the R o ya l A ircraft 
Establishm ent a t  Farnborough, w as s im ilar to th a t 
described b y B lackm an  and T u key  (1958). A 
standard  program  com puted the m ean variance 
and auto- and cross-correlations of two given  series 
of observations, w ith  a  to ta l num ber of “ lag s” 
between 57 and 66 . A nother program  w as then 
used to com pute the Fourier sine- and cosine- 
transform s, and the resu lt w as smoothed b y con
secutive w eighting factors J ,  J ,  J .

The num erical resu lts showed th a t the spectral 
d en sity dropped to negligib le va lues beyond a  — 5 
radians/sec. confirm ing th a t the sam pling in terval 
was sm all enough not to introduce "a lia s in g” diffi
cu lties. F u ll calcu lations, however, w ere m ade 
only up to a  = 4 rad ians/sec., ow ing to the re
sponse characteristics of the buoy.

F in a lly , to allow  for “ noise” introduced b y 
errors in  read ing the traces, a  sm all constan t w as 
subtracted  from each auto-spectrum . The errors 
were ea s ily  estim ated  b y  repeating a  few d ig ita l 
conversions and corresponded to a  standard  error 
of about 1J  un its in 1,000 (about 0.2 m m. of the 
original film record).

Consideration was given  to possible correction 
of the spectra  for nonlinear effects. T ick  (1958) 
has estim ated  the second-order correction to a  
un i-directional spectrum  to  allow  for nonlinear 
term s in the boundary conditions a t  the free sur
face. The correction consists m ain ly  of a  super
posed spectrum , largest in the region of frequen
cies double those of the largest w aves. A rough 
calcu lation of the correction to Cn M  for Record 
No. 5 (corresponding to the steepest w aves) 
showed i t  to be sm all—about 10 per cent of Cn a t  
a = 2 to 3 radians/sec. Such corrections w ere 
therefore ignored. The corrections for non-verti- 
ca lity  of the accelerom eter (Tucker, 1959) were 
appreciab le on ly a t  low frequencies, for a < 0 .4 
radians/sec., and  sim ila r ly  for the second-order 
corrections to slope. S ince these corrections are

TABLE l  
D ata C oncerning W ave  R ecords

Number of 
record Date

Time
(G.M.T.) Position

Wind speed and direction 
(ship's anemometer)

1 31.5.55 0915-0935 41°08'N 14°37'W 19 kls. from 340°
Cruise 1 2 31.5.55 1435-1455 41 W N 14°37'W 14 kts. from 350°

3 3.6.55 0910-0930 39°16'N H"53'W 17 kts. from 320°

Cruise II 4 30.10.56 1450-1510 50°58'N 12°15'W 8 kts. from 080°
5 1.11.56 1525-1545 fi0°19'N ll°54'W 23 kts. from 065°



Id)

Figure 3-1-3. Synoptic charts o f the weather situation a few  hours before the timet 
o f recording. The position o f the ship it marked b ya fu li circle •  .

(o) 0001 G.M.T., 31.5.55;
<b) 0001 G.M.T., 3.6.55;
(c) 0001 G.M.T., 30.10.56;
(d) 0001 G.M.T., 1.11.56;

---------------------------------------------------------------------- 75 l i e ----------------------------------

Figure 3-1-4. A typical length o f film record, showing the tracts o f the fou r meas
ured quantities:

(a) angle o f pilch;
(b) angle o f roll;
(c) twice-integrated vertical acceleration;
(d) atmospheric pressure.
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Figure 3-1-5. Histograms o f  the film  traces, fo r  record  
No. S (wind speed 23 knots).

(a) Heme; (b) Pitch; (с) Roll

proportional to the square of the first-order spec
tra , th ey  m ust be even  sm aller for records other 
than  No. 5. T h ey  w ere not investigated  further.

A further ind ication  of the lin e a r ity  of the 
w aves w as afforded b y  a  com parison of the ob
served d istributions of height and slope w ith  the 
theoretical G aussian  d istributions. T he histo
gram s for Record 5 (the h ighest w ind speed) are 
shown in  F igure 3-1-5. V isua lly  the d a ta  fit the 
G aussian curves fa ir ly  w ell, though a  x J-te s t based 
on the to ta l num ber of observations (2,000) in 
each record does in  fac t g ive probab ilities well 
below the 1 per cent significance level in  each case.

RESULTS

The to ta l variances of the w ave elevation  (  and 
of the two components of slope d£/dx, df/dy, in 
the frequency range 0.4 < a  < 4.0 rad ians/sec., 
are listed in T ab le  2.

In only one case, Record No. 5, w ere the w aves 
sufficiently free from external sw ell for the w ave 
height to be d irec tly  re lated  to the local wind 
speed. In th a t  case the wind speed w as V = 23 
knots over a  well-defined fetch of 300 m iles. The 
observed r.m .s. e levation  of 2.6 ft . m ay be com
pared w ith  the va lue 2.8 ft. given b y  the em pirical 
form ula V { 0 .121 (V / 10 )5| of Pierson, N eum ann 
and Jam es (1955) and 2.2 ft. given b y  the form ula 
0.00405V2 of D arbysh ire (1959).

The variances of the surface slopes, w hich de
pend ch iefly upon the shorter w aves, h ave been 
p lotted aga in st local w ind speed in  F igure 3-1-6. 
As w as found b y  Cox and  M unk (1954, 1956), the 
variances increase about p roportionally to the 
w ind speed. H owever, the ac tu a l va lues for the 
to ta l variance are only about 20 per cent of those 
suggested b y  Cox and M un k 's  optical m ethod 
(0.053 radians* a t  10 m /sec.). T h is  p resum ab ly is  
because m ost of the slope variance is  contributed 
b y  w aves of frequency a  g reate r than  4 .0  rad i
ans/sec.

TABLE 2
V a r ia n c e s  or W a v e  H e ig h t s  a n d  S lo p e s

Number of Wave height Angle of roll Angle of pitch Total angle Ratio of
record m (deg1 x 10*) (deg’ x I0>) (deg1 x 10>) angular variances

1 1 1.92 2.80 3.25 6.1 1.16
< 2 2.09 2.34 3.65 6.0 1.56
I 3 2.33 1.95 3.83 6.8 1.97

4
2.03 1.82 2.24 4.1 1.23

\  5 6.68 4.19 7.81 12.0 1.86
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w ith  the constant С  = 14.8 X  10"' choscn to fit 
Burling’s (1955) data . I t w ill be seen that the 
nearest approach to this spectrum is in Record 5, 
corresponding to the highest wind speed.

We come now to the directional properties of 
the spectra. For each of the five records, the 
“smoothed” spectra Fi(<r, Ф), defined b y equa
tion (15), have been computed, and these are 
shown in Figure 3-1-8.

The weather charts in  Figure 3-1-3 show that 
the mean directions in each frequency band do in 
fact correspond fa ir ly  closely to the directions of 
the winds expected to generate the w aves (</> = 0 
corresponds to the local wind. In Records 1, 2, 
and 4, and to a  lesser extent in Record 3 there is 
eome change in the mean direction w ith frequency. 
In Record 5 the mean direction is p ractically  con
s tan t between a = 0.6 and 3.6, and this corre
sponded to a  s ituation in which the wind was in a  
s teady direction from the ENE w ith little  possi
b ility  of interfering swell. On the other hand, in 
Records 1 and 2 there is evidence of secondary 
m axim a in the spectrum (necessarily smoothed out 
by the weighting function Ws), which can be 
shown to correspond to swell from different wind 
system s.
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Figure 3-1-6. Variances o f  surface slope:
(a) up-wind; (6) cross-wind; (с) total.

The frequency spectra of the surface elevation 
(regardless of d irection) arc shown in  Figure 3-1-7
(i) to (v ). Both the scales are logarithm ic. In 
each of the figures a  straight line has been inserted 
corresponding to Ph illips’ (1958a) lim iting spec
trum 1

C„(<r) -  C3V -‘ , (19)

1 Phillips’ (1958a) uses Ф(»), equivalent to } Cu(r).

Figure 3-1-7. Frequency spectra o f surface elevation.
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Figure 3-1-8. Smoothed estimates o f  the directional spectrum. 
[Note added in  proof: In  Record 4, a — i  •£ r , 1 •8, the verti
cal scale shoud be 0.1 J

•e 
4]
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ANGULAR WIDTH OF THE SPECTRUM

The angle ф defined in Section 2 has been plotted 
in Figure 3-1-9 as a  function of the ratio U\/c, 
where Ui is the reference wind velocity , defined 
on page 123, and e = g/a is the speed of the 
w aves of frequency tr. Only those d ata  from Rec
ords 3 and 5 have been used in which the wind 
direction w as p ractically  constant over the region 
of w ave generation.

If we neglect the two observations a t  a = 0.4, 
which m ay be influenced b y external swell, it  
appears th a t the angle ф increases as the ratio  
Ui/c increases; in other words, th a t the angular 
w idth  of the spectrum increases w ith  the ratio of 
w ind speed to w ave speed.

The curves inserted in  Figure 3-1-9 are discussed 
below (page 124).

F igure 3-1-9. Observations o f the angular width ф. 
X Record 3 ;*  = Records.

COMPARISON WITH THE SWOP RESULTS

An exact comparison w ith  the results obtained b y 
the stereogr&phic method of Chase et al. (1957) is 
not possible, since an instantaneous stereophoto- 
graph does not in principle distinguish opposite 
directions in the spectrum . Hence, the stereo- 
graphic method is  unable, w ithout some further 
assumption, to y ie ld  the coefficients a . ,  i>„ corre
sponding to odd  harmonics of the angular d istribu
tion of energy. In face of th is situation, Chase 
e t al. have assumed F (<*, Ф) to be zero when 
Ф differs b y more than 90 degrees from the wind 
direction —  an assumption which we prefer not to 
m ake. I t  follows that an y  comparison of our d a ta

w ith the SWOP d ata  must be carried out through 
the harmonics a„, b„ of even  order.

One suitab le param eter for this purpose can be 
defined as follows. Let

/■2т

m t(a , ф ')  = j  s in ' (ф  -  ф ' ) Р ( а ,  ф)(1ф 'о (20)

denote the second moment of the distribution of 
energy about the direction Ф'. In term s of the 
Fourier coefficients,

m ,(< r, ф ' )  <r oo — (oi cos 2ф' +  6,  sin  2Ф') (21)

The maximum and minimum values of this func
tion are ao ± V o » +  bi, and they occur in two 
pairs of directions, m utually  a t  right angles. A 
measure of the angular spread of the spectrum in 
the frequency band (o , a  +  d a )  is, therefore,

t(, ) = W "  = (22)
L(n4)m«*J Lao + + bi-l

When the spectrum is narrow, i t  can be shown th a t 
7 (<r) is  almost equal to the r.m .s. angular devia
tion of energy in the spectrum .

To fit the SWOP data, Chase el a l. have sug
gested the em pirical formula

' l  + [0.50 + 0.82Q(<r)] cos 2ф 
+ 0.32Q(tr) cos 44,

Р (а ,Ф ) = P(<r)X
W < 5 * (23)

0,
where

Q(a) = e - v w r t  (24)

and P ( c )  is another function of a and V only. 
According to this formula we should have

a, = 0.25 +  0.41Q(<r), b, = 0, (25)

and so
Г0.75 -  0.41Q(ff)]>«

7 W  = L 1.25 +  0.4lQ(j)J (26)
The theoretical curve is shown in  Figure 3-1-10 
together w ith  our observed results. I t  w ill be 
seen th a t our results are not inconsistent w ith  the 
SW OP curve.

SHAPE OF THE SPECTRUM

It  was seen in Section 2 above th a t an indicator 
of the shape of the spectrum is the ratio lo s J a ,, .
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Figure 3-1-10. Observation o f  ф (с ) , compared with the 
SWOP curve. X — R ecord s; •  = R ecord6.

In Figure 3-1-11 th is ratio  has been p lotted aga in st 
the corresponding angu lar half-w idth  ф for the two 
Records 3 and 5 for which the w ind system  was 
sim plest (from th is point of view greater w eight 
should be given to  Record 5, the d a ta  for which are 
indicated b y circles).

For comparison, w e have p lotted in the same 
figure the values of I n i J a о and ф corresponding to 
some very  sim ple distributions.

F igure 3-1-11. / plotted against ф. X = Record 
S; •  “  Record 5.

(1) The line draw n  along the ^ -ax is corre
sponds to an  idealised  d istribution  consisting of 
(a t  m ost) two narrow bands of long-crested w aves:

F (a , ф) ос & (ф — a i)  +  6(ф — a t ) .  (27)

For such a  d istribution  w e h ave seen th a t  I m\Ja* 
vanishes.

(2) The low est of the three curves corresponds 
to a  “square-topped” an g u la r d istribution  of g iven  
w id th  2фо:

f 1, |ф| < 00 )
Ф) «  , , \ (28) 

( 0, |*| > фо J

(The given  values of Фо are  ind icated  along the 
curve.)

(3) The m iddle continuous curve corresponds 
to the cosine-power d istribution

F (o , ф) <c (1 +  cos Ф )‘  «  cos5*(40) (29)

for which

a ,  = ф  -  1) . . .  (s -  n +  1) 
do (* +  1) (s +  2) . . .  (* +  n )

(The value of the param eter s is  ind icated  along 
the cu rve.) W hen 8 = 0, then the d istribution  is 
independent of Ф, and as s increases, the d istribu
tions become more and more concentrated about 
the m ean d irection ф = 0 . W hen s is large , the 
d istributions a re  approxim ately norm al, w ith  
angu lar variance equa l to  (2/s) radians*.

F igure 3-1-12. Closest values o f the parameter [s corre
sponding to the plotted points o f Fig. 8*1-11 (data from  
Record 6).

о _____ 1—----- 1-------- ----------—
O O  O l  О- I  O f

u / «
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Figure 3-1-13. Values o f  (C«/ 
Ci l )I/T, giving ratio o f  spectral 
densities o f  pressure (in ft. o f 
air) and surface elevation. u,/.

(4) The upper continuous curve corresponds to 
the “ quasi-norm al” distribution

F (o, ф) a  e '*4"* *1 г (31)

which when Д is sm all also approximates a  normal 
distribution . For this d istribution it  is  found that

a ,
a*

W - ’)
/.(Д-)

(32)

where I „(г) is the Bessel function of im aginary 
argum ent.

Of the four law s considered, it  appears th a t the 
cosine-power (28) is the best fit to the observa
tions. For each observation, a  corresponding 
value of s m ay  be allotted by tak ing the point on 
the “cosine-power” curve nearest to the observa
tion. The values of s so obtained have been 
plotted in Figure 3-1-12 again st the value of Ui/c 
for each observation. I t  w ill be seen th a t in 
general 8 is  a  decreasing function of Ui/c.

THE PRESSURE FLUCTUATIONS

From the typ ica l length of record shown in Fig
ure 3-1-4 it  w ill be seen th a t the trace of atmos
pheric pressure has a  general tendency to follow 
the trace of surface elevation ; and when the spec
tra  of the pressure fluctuations were computed

they were found to be very  sim ilar in general to the 
spectra of surface elevation. Figure 3-1-13 gives 
the ratio  of the spectral density of pressure (units 
are feet of a ir) to the spectral density of surface 
elevation in the typ ical case of Record 5. The 
theoretical curves drawn in the same figure are 
based on the discussion given below.

DISCUSSION OF RESULTS

We propose now to discuss our results re lating to 
the angu lar distribution of energy in the light of 
w hat is known or conjectured about the processes 
of w ave generation by wind.

In the first place, we need some estim ate of the 
wind profile. Observations a t  sea (Roll, 1948; 
H ay, 1955) appear to support a  logarithmic form 
for the mean wind velocity U, in conditions of 
neutral s tab ility :

(33)U = С/, log.

where Ui and zo are constants. We have

(34)

where C/» is  the friction velocity (=  Vro/po) and 
К  is  von K arm an’s constant (= 0 .41 ). U» m ay,
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in tu rn , be expressed in  term s of the “anem om eter 
w ind speed” Ua b y

= CdU», (35)
w here e D is  a  d rag  coefficient. Sheppard (1958) 
quotes th e  em pirical form ula

c D = (0.08 +  0.001 U U .)  X 10-»,

V. in cm/sec. (36)

U . w ill be identified w ith  the m easured w ind 
speed V, so th a t

Ф) *» 2 ( g p . y L  П(к’

К . c o s ,  \ "I-----/ I ̂ 7|
where I denotes the tim e since the w ind started  to 
blow, П(к, т ) is  the pressure spectrum , defined by- 
Ph illip s, and  U is  the “convection ve lo c ity” of the 
eddies of w avenum ber k . T h is  ve lo c ity  is  prob
ab ly  not v e ry  different from the m ean w ind speed 
a t  a  height above the eurface of order 2x/k. 
Ph illip s pointed out th a t  if  the pressure spectrum  
is reasonab ly isotropic, the in tegra l on the right- 
hand side of (41) is  l ik e ly  to  be g rea test when

U cos ф = с (42)

in o ther words, when the com ponent of the wind 
ve locity  in  the d irection  of propagation  is  ju s t  
equa l to the w ave speed. T h is m ay  be called  the 
resonance condition, and the corresponding ang le

r)

1/ 2

u- i ° - (37)

is  of order V/10.
On dim ensional grounds, Cham ock (1955) has 

suggested th a t
Ul

*  = -  (38)

where a  is  a  constant. N ot a ll observations g ive a  
consistent va lue of a , b u t H ay ’s (1955) d a te  
support a  va lue of around 13 (see E llison, 1956). 
M iles (1957) has introduced the param eter

„ ffzо дьК? Ю
* ш о \ ш 1 ъ ш Т '  <39>

whose va lue  is  thus about 1.3 X 10"s; b ut i t  m ay 
well v a ry  b y  a  factor of 2. S ince surface w aves of 
length 2т/к m ust trave l w ith  alm ost the free- 
w ave ve loc ity  с = ( в Д ) ‘« ,  i t  follows th a t  (3 3 ) 
can be w ritten

V C/i, / к г  \

the right-hand side being a  function on ly of кг, 
Ui/c, and Cl.

THE RESONANCE ANGLE

At the present tim e, two kinds of m ech an ism  for 
the transfer of energy to w ater w aves from the 
atmosphere are under active discussion. On the 
one hand, the effect of pressure fluctuations 
(associated w ith atmospheric turbulence) ac tin g  
on the surface of the w ater has been considered by 
Phillips (1957, 1958b). According to Ph illip s ’ 
original hypothesis, the spectrum of the w ater 
surface in the principal stage of development 
would be given b y 1

1 Phillips’ *(k, 0 is equivalent to 2F(<r, ф) d*- . tb .t
.  к  d k  а л ,
ш to » y ,  to W * k )P .  Our П(к, f) ц, the в а т е  а» Ы,.

,  V
Ф = sec-1 — 

с
(43)

ф = sec"

m ay be called the resonance angle.
L et us assum e th a t the convection ve lo c ity , as 

defined b y  Ph illip s (1957), can be identified w ith  
the m ean ve lo c ity  U a t  a  he igh t г  = 2-r/k. W rit
ing к г  = 2 r  in E quation  (9 .40 ), we have

[ т ( 1о ^ - 2 1 о * т ) ]  ( 4 4 )

If w e were to tak e  the ve locity  a t  a  different 
height, s a y  т/к, th is would be equ iva len t to a  
change in the assum ed va lue of fi b y  a  factor 2 .

W e have ca lcu lated  the angle ф corresponding 
to (43) tak in g , for defin iteness, ft = 1.3 X  Ю-1; 
the resu lt is  ind icated  b y  the fu ll cu rve in  F ig
ure 3-1-9. The lower broken curve shows the 
effect of tak in g  a  va lue of Я five tim es g rea te r than  
th is, and the upper curve the effect of tak in g  0 
five tim es less.

Two conclusions are obvious. In the first 
p lace, the value of the resonance angle ф  depends 
o nly s lig h tly  on the param eters of the logarithm ic 
profile, and second, the ang le ф does indeed show a  
trend sim ilar to the resonance angle.

On the other hand , M iles (1957, 1959) has con
sidered the grow th of an  a ir-w ater in terfac ial 
d isturbance as an  in s tab ility  in the shearing flow 
of the a ir , or rather, of the combined a ir-w ater 
system . An inpu t of energy into the w aves is 
brought about (according to this m odel) b y a  
coupling of the surface pressure fluctuations to the 
a lre ad y  ex isting w aves. A ssu m in g  th a t the air-
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flow m ay be treated as a  sm all perturbation of the 
m ean w ind profile (so th a t the perturbed poten
t ia l satisfies the Orr-Sommerfeld equation) and 
th a t the m ean profile is  logarithm ic, M iles has 
computed values for the ra te  of growth of the 
waves which are in  substantia l agreem ent w ith 
observation.

M ore recen tly (1960) M iles has combined hie 
mechanism w ith th a t of Phillips, in such a  w ay 
th a t the turbulent pressure fluctuations in the air- 
stream  appear as the means of in itia tin g  the 
waves, which are then augmented b y the insta
b ility  of the shear flow. Thus, in place of (41) 
M iles proposes a  more general equation (4.5a) 1 
which we rewrite as follows:

coS [ ( ^ - l ) , < ] < « ,  (45)

U m t£ (!h_ c ~ * Y » . a
Р »  \  С /  с

where

T  = —  
I/.

and

7 (M T )  =
„пт _  !

' MT

(46)

(47)

Here 0 is  a dimensionless coefficient which has 
been computed b y M iles (1959). For small 
values of T, and so for sm all values of M T, the 
function CF(MT) tends to 1, and equation (45) 
tends to (41). In it ia lly , therefore, the Phillips 
spectrum  is applicable. However, as I increases, 
M T  m ay become large, and У (M T) exponentially 
large. In that case, if (45) is  still valid , the 
function S ’ (M T) represents a  factor b y which the 
original spectrum F  is  distorted. Since M  depends 
upon the direction of propagation ф, so also does 
7 (M T ) .

Using M iles' values of /3, and tak ing as before
0  = 1.3 X 10-‘ , we have computed M  as a  func
tion of ф for various values of Ui/c (see Figure 
3-1-14). From this graph i t  is fa ir ly  simple to 
compute S (M T )  for any  given record, if  T  is 
known. For Record 5, for example, we have taken

U.  = 23kn = 1,180 cm/sec

1 Compare Phillips (1960).

c D = (0.08 +  0 .00114 U a)  X  10-*

-  2.15 X 10-* 

c w
Ui = -jr Ua = 134 cm/sec

Л.

I/, aUl
—  = —  = 0.136cr (<r in radians/sec) с  g

According to the weather charts, the length of 
tim e since the wind began to blow was about 
45 hours. However, the fetch L being lim ited to 
300 miles, the spectrum a t  the lower frequencies is 
lim ited b y fetch. W e have taken  t < L ■f- group 
velocity = 2<rL/(7, and so

g i  . f 0.72 X  10l<r 1 
T — —  = mm 1 t

Ui I 1.28 X 10‘  J

W ith  these values, the factor 7  (M T) is as shown 
in F igure 3-1-15.

The most strik ing feature of the figure is the 
ve ry  large amplification factors involved, especi
a lly  a t  the higher frequencies. These, however, 
need not be taken lite ra lly , for we saw in Section 5

Figure 3-1-14. M at a function o f  the angle ф, (taking
0 = 1SX ltT1).
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F igure 3-1-15. Curves o f  the distortion fa ctor У  as a 
fun ction  o f angle ф, fo r  Record No. S.

th a t a t  the higher frequencies (a  > 2.0 radians/- 
sec) the to ta l spectrum  approaches P h illip s’ 
equilibrium  law ; this ind icates th a t  nonlinear 
effects associated w ith  breaking of the w aves are 
predominant, and a  linear theory would no longer 
app ly . N evertheless, a t  some of the lower fre
quencies (1.3 <  <r < 2.0) i t  would appear th a t  the 
effect of M iles ’ coupled mechanism would be to 
narrow som ewhat the angu lar d istribution of 
energy. Referring again  to Figure 3-1-9, we have 
apparent confirmation of th is, since in  the range 
0.15 < Ui/c < 0.4 ( i.e ., 1.1 < a < 3 .0) the angu
la r  w idth  of the spectrum  for Record 5 is  some
w hat less than  the resonance angle.

On th is in terpretation  then, the sequence of 
events would be as follows: in the first stage of 
development of the w aves, exemplified b y the 
range ff < 1.1 in Record 5, the w aves are due 
m ain ly to uncoupled turbulent pressure fluctua
tions in the a ir. A t a  later stage, exemplified by 
the range 1.3 < a < 2.0, the shear-flow in stab ility  
mechanism takes over, and this has the effect of 
reducing the r.m .s. angular width of the spectrum  
in any given frequency band from the value indi

cated  b y  the resonance ang le . F in a lly  the spec
trum  is  lim ited  b y  b reak ing  of the w aves, and it  
would appear from F igure 3-1-9 th a t  there  is some 
associated broadening of the d irectional spec
trum . T h is also can be understood from Figure 
3-1-15, for if 7  is  lim ited  b y  nonlinear effects to a  
certa in  value , s a y  10*, i t  w ill be seen th a t the higher 
the frequency the broader is  the an g u la r spread 
of S ’. T h is  is  qu ite  ap a rt  from an y  broadening of 
the spectrum  th a t  m ay be due to  b reak ing and 
o ther nonlinear effects.

INTERPRETATION OF THE PRESSURE 
FLUCTUATIONS

In  his o rig in al paper (1957) P h illip s assum ed a 
value for the m .s. tu rbu len t pressure fluctuations 
in  the a ir  equa l to

i ?  = 9 X 10-y.Ul (48)
where U„ denotes anem om eter w ind speed. Th is 
is  equ iva len t to

Щ  = M W 's  (49)
\ g p J  я 2

In T ab le 3 the above value is compared w ith  the 
m ean-square values a c tu a lly  observed in  Records 
1-5 . The comparison confirms w h a t had been 
suspected b y both Ph illip s (1958b) and  M iles 
(1960), nam ely th a t  the pressure fluctuations are 
genera lly sm aller than  those o rig in a lly  assumed 
in  Ph illip s (1957).

TABLE 3
V a rian ce s op th e  Atmobpheric P r e s s  ttrk 

F lu c t u a t i o n s

Record No.
V .

(ft./eec.)

* 
9 

1 
■**! 

©

(£)'
(ft.1)

1 32 91 7.3
2 24 29 8.2
3 29 62 5.2
4 14 3 9.8
£ 39 203 13.1

M oreover, we shall now show th a t a  sub stan tia l 
p art of the observed pressure fluctuations can be 
attribu ted  sim ply to the flow of a ir  over the undu
la ting  surface of the sea.

Ь  M iles’ (1957, 1959) model the aerodynam ical 
pressure exerted on a  sinusoidal boundary

f (5°)
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by an airstream  in the direction of wave propaga
tion has the form

p = £R(a +  iP )paUi Ц , <51)

where a  and 0 are real, non-dimensional quanti
ties depending on the wind profile. To (51) we 
m ust add the static  pressure term  —gp «f. Thus, 
the to tal pressure measured by an apparatus float
in g  in  the surface is

-  £R j —g p j 1 -  (o  +  i/3) (52)

The phase lag  *  of the pressure re lative to the 
surface depression — f  is  given by

tan-
fl({/,/c)»
-  «(t/ i/c )5

(53)

From the num erical values given b y  M iles (1959) 
for the logarithm ic profile we have computed x 
(see Figure 3-1-16)1. I t appears th a t over the

range 0 < Ui/c < 0.5 the phase-angle does not ex
ceed 0.35, = cos-1 (0.94). Hence, the am plitude 
of the pressure fluctuation is due alm ost en tire ly to 
the in-phase component of the pressure:

—  1 -  '  — 1 (54)

w ith  an  error of a t  most 6 per cent.

1 Miles’ Figure 6 givee the angle Um~‘( —0 / a ).

Figure 3-1-16. The theoretical phase-angle x between 
the surface depression, on Miles'$ shear-flow model.

Figure 3-1-17. The theoretical in-phase component of
the p ressu re :---------according to Miles (1969);----------
approximation from  Brooke Benjamin (1969).

We have computed the right-hand side of 
(54) (denoted by a )  from the numerical values 
given by M iles (1959), and the results are shown 
in  Figure 3-1-17 for representative values of 0 . It 
w ill be Been th a t a  has a  minimum a t around 
Ui/c = 0.1] ,  th a t is, a t  around U Jc  = 1.

The behaviour of a  can be understood if we 
consider the well-known Kelvin-Helmholtz model 
in which the wind profile is assumed to be vertical: 
the velocity U is constant. In th at case (see 
Lamb, 1932, p. 370) it  is easily found that

a  = 1 +  KU/c) -  ip  (55)

which is  c learly  a  minimum when U = c ,  th at is 
to say , when the wind speed ju s t equals the phase 
velocity of the waves.

More generally, Brooke-Benjamin (1959) has 
shown that an approximation to the in-phase com
ponent of the pressure is given by

on »  1 + Г  l(U/c) -  IP e"d(kv ) (56) ■>0

(we have added the statica l term ), where ч is a 
co-ordinate orthogonal to the free surface. On 
substituting for V from Equation (40) and re
placing z b y ч, we find on evaluating the integral
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<»>
■where 7  - exp (0.5772 . . .) .  The curves for a ,  
h ave been p lotted in F igure 3-1-17 for comparison 
w ith  M iles ’ num erical resu lts. I t  w ill be seen th a t 
gji som ewhat exceeds a  b u t th a t the general behav
iour of e* and a , is  v e ry  sim ilar.

Consider now the more general case of a  sine- 
w ave trave llin g  a t  an  a rb itra ry  ang le ф re la tive  
to the w ind. B y  Squ ire ’s  theorem  (cf. L in , 1955, 
C . 3 ), the component of the w ind p aralle l to the 
crests h as no effect on the pressure perturbations, 
which m ay thus be ca lcu lated  as though the m ean 
w ind-field w ere equal to U cos ф in the direction of 
w ave propagation . R eturn ing  to (40), w e see 
th a t  the effective w ind profile U cos Ф rem ains 
lo garith m ic ; b ut to m ain ta in  the f o rm  of the resu lts 
the param eter П m ust be m ultip lied  b y  sec’ ф. 
Since the dependence of a  upon ф cannot be read 
i l y  expressed a n a ly t ic a lly ,1 we use as an  approxi
m ation Equation (57), generalised to a rb itra ry  
d irections of p ropagation ; th a t is to say

, f l f j  c o s * ,  y(2U !  ,  , 1 *
+ [— r _ ,0 g ~  + 1J  ' (58)

L et the right-hand side of (58) be denoted b y  
o(<r, ф). W e see th a t the spectrum  of the pressure 
(in square feet of a ir )  is  then

= /o a?F (o, ф) <1ф; (59)

and since a* involves only the fourth  power of 
сов Ф, C u M  m ay be expressed in  term s of the co
efficients a„, b , up to n = 4. On division by

r*»
Cn(ff) = Jo F (a, ф)<1ф = xOo, (60)

we have the ratio  C«/Cu in term s of a^/a, and
b ./ oc up to n = 4. In p articu lar for a  sym m etrical 
spectrum  (6.  = 0) we find

= 4 +  8P -  +  (4P 1 +  2Q= )(1 +
I'll Oo \ во/

1 And in any case the numerical value* of a  and $ may 
be sensitive to actual departuree from the logarithmic wind 
profile.

+  Р (Р ’  +  <2’ ) ( з -  +  - )
\ Oo Oo/

+  U l »  +  Q > y (z +  * -  +  - )  (61)o \ Oo <Jo/
where

в . г ( й у  m

The curves draw n  in  F igure 3-1-14 illu s tra te  the 
ra tio  (Cu/Cn)w  com puted for the cosine-law 
spcctrum  (29). The (constant) va lues of Ui and 
fi are those appropriate to the d a ta  of Record 5. 
I t  appears th a t the behav iour of the observations 
(a  m inim um  a t  around Ui/c = 0 .11 ), corresponds 
qu ite  w ell w ith  the behav iour of the theoretical 
curves. I t  should be borne in  m ind th a t  a t  larger 
va lues of Ui/c the theoretical curves m ay be some
w hat h igh, since g>i genera lly  exceeds w. N everthe
less, there is  q u a lita tiv e  agreem ent even in  this 
p ar t of the range of Ut/c. M oreover, there is a  
tendency for the equ iva len t va lue of « to dim inish 
w ith  Ux/c, as shown independently in  F igure 
3-1-13.

From th is com parison i t  appears th a t the greater 
p ar t of the pressure fluctuations a t  the surface are 
sim ply the aerodynam ical pressure changes due to 
the flow of a ir  over the undu lating  surface, to
gether w ith  the s ta t ic a l pressure changes arising 
from the buoy’s ve rtica l d isp lacem ent.

Confirm ation is provided b y  considering the 
phase differences between the pressure and  the 
surface elevation . If the pressure fluctuations 
were due o n ly  to uncoupled turbulence, there 
would be no defin ite phase re lation  between p 
and  f .  If, how ever, the pressure fluctuations are 
due m ain ly  to  the local shear flow and not to  the 
turbulence, then from F igure 3-1-16 we expect the 
phase-differences between p  and  — f  to be sm all.

Owing to  uncerta in ties in  the phase calib rations 
of the micro barograph, the accelerom eter and its  
in teg ra tin g  circu it, and of the heaving motion of 
the buoy, the phases could be determ ined only to 
w ith in  about 10 degrees for a  < 3.0, and  w ith in  
w ider lim its a t  h igher frequencies. The estim ated  
phase differences a re  shown in  Tab le 4.

I t  w ill be seen th a t  over the most energetic p art 
of the spectrum , p and f  a re  about 180 degrees out 
of phase. (H owever, for a  > 3.0 the ang les can 
not be relied upon.) From  th is evidence i t  would 
seem th a t  more than 90 per cent of pressure spec
trum  is coupled to the w aves, and less than  10 per 
cent is associated d irec tly  w ith  turbulence.
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T A B L E  4
P hase  L ag o r  P re ssu re  B eh i.su  W ave H eioht 

(R ecord 6)
a

(radiano/eec.)
Phase lag 

on film
Instrumental

correction*
Corrected 
phase lag

0.4 214° - 5 0 ° 164°
o.e 220 - 3 6 184
0.8 210 - 3 0 180
1.0 209 - 2 6 183

I 12 207 - 2 4 183
1.4 207 - 2 3 184
1.6 210 - 2 2 188
1.8 202 - 2 2 180
2.0 205 - 2 2 183
2.2 206 - 2 2 184
2.4 213 - 2 2 191
2.6 211 - 2 2 180
2.8 197 - 2 3 174
3.0 230 - 2 3 207
3.2 224 - 2 2 202
3.4 221 -1 3 208
3.6 222 +14 236
3.8 221 38 259
4.0 225 86 311

I t  appears then th a t the mean-square pressure 
fluctuations o rig inally assumed by Phillips m ay be 
in error by a  factor of the order of 10s. This 
would invalidate Phillips’ formulae (1957, p. 442) 
for the m ean-square surface displacement after 
tim e t. On the other hand, we have seen th a t over 
much of the spectrum M iles’ in stab ility  mecha
nism is probably responsible for much of the wave 
growth. If M iles’ more general expression for the 
w ave spectrum (Equation 45) is  used, a  reduction 
in the estim ated turbulent pressure fluctuations 
b y the am ount indicated is  not inconsistent with 
the observed w ave spectrum.

APPENDIX: Calculation of th» Anghi

I t is  shown in Longuet-Higgins (1955) that to 
m inim ise the in tegral of Equation (16) in this 
paper, the angles ф1 and <h m ust be roots of the 
quadratic

So e“* -  S ,e ‘* +  5 ,  = 0 (63)

whose coefficients So, Si, S t satisfy

(<k -  I)S o -  (a i +  ib i)S . +  (a, +  '
= 0

(a i — ibi)So — QqS\ -+- (oi -|- ib i)S t = 0 • (64) 

(a> — ib ,) St — (ai +  tb i)S i +  (a* — I)S t

The value of 7 is found from the condition th a t the 
simultaneous equations (64) shall be consistent, 
th a t is, th a t the determ inant of the coefficients 
shall vanish. Thus,

До/ 1 -  2Д,/ +  Д, = 0 (65)

where Aw denotes the determ inant

fli + ibi . . . .  а» 4- lb# 

an-1 + t6w_i

A.v =

a,

Oi -  ib i .

а н  — й д г  o jv - i  — i b s - Oo
(66)

The lower root of (65) gives the minimum value 
of I .

In terms of real quantities we have 

1
/ = -  [(a5 -  a! -  b\) -  V(9>' + 2*)], (67) 

ao
where

and so

S’ = tjfflt — a* +  i>! 

St = aoo, — 2aib[
(68)

ao -  / = -  [(a,» + 6,«) + V(S’ + a*)]. (69) 
ao

To find ф\ and Фг we note th a t in Equations (63) 
and (64) only the ratios So : S i : 5» are relevant. 
So we m ay take S i to be real, and then the first 
and third of Equations (64) show th a t So and St 
are conjugate complex quantities. So w riting

So : S i : S i = <r“ : r  : e<‘ ,
we have

(во — I  +  a t) cos t> — bt sin  i> — a ir  = 0 

bj cos — (ao — / — a i)  sin  i> — V  = 0 

and  so

^  = = (72)
X Y Z

where

X = (ao — / )a , — (aioj +  bj.fr*)

Y = (ao — l)b\  — (a,bt -  a A )  (73)

Z = (ao — /)* — (a5 4- b})

or

(70)

(71)
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X Y
COS I> — — . — 8Ш l> ■ — , =

V ^ + y i )  V ( ^  + К»)

Z (74)
Г ”  V (X * +  F 1)

From  (63) and (70), the product of the roots is  
given  b y

&e‘(*i + *>) = =2 = e-*.* (7 5 )
So

Thus,

Ф = 4 (^ i +  <h) — (76)

where <> is g iven  b y  (74 ). Further,

Фь <h "  в  ± x , (77)

where from (63)

e‘x — r +  e*x = 0  (78)

I  = — (ao — 2a* +  acOi). (85)
ao

The form ulae for ф and x  then reduce sim ply to

?  — 0 i x — cos-1 — • (86)
at

In te rp re ta tion  o f  x  an d  /„1в/во 

From (86),

sm 2 2 cos ̂  ~ ~~2̂ ^  ^

B u t on expressing ao and  a , as Fourier coefficients, 
we have

1 /■*»
oo — a , = -  I (1 — cos ф)Р(<г, ф) йф 

t  о

cos x = x r = —7= = = =  ‘ (79) 2 V (X 2 + У*)
T h is  is  the required general expression.

A  Symmetrical Sp*ctrum

The m ost in teresting special case is  when the 
spectrum  is sym m etrical about one particu lar 
d irection , sa y  ф = 0. Then 6i and 6j  a re  both zero, 
and E quation  (67) reduces to

/ -  — [(a ! -  a?) -  |a„a, -  aj|]. (80)

Two cases now arise, corresponding to w hether 
(aoCh — a l)  is  positive or negative. Exam ples 
m ay  be given  of both. Thus, if F (a , ф) consists 
of two equal delta  functions a t  ф = 0 and т 
(corresponding to “standing” w aves), then

and  so
ao : Qi : <h = 1 :0 :1

(ooCj -  a?) > 0

(81)

(82)

If, on the other hand, F ( e ,  Ф) consists of two delta  
functions a t  a rb itra ry  angles Ф =  ± a  on either 
side of the mean direction, w e have

a , : a t : at = 1 : cos a  : cos 2a  (83)
and  so

(doOi — a\) «  —sm1 о < 0. (84)

In  a ll the practical cases m et in th is paper we 
have (ада, — o’ ) < 0, and so from (80)

= -  f  2 sin5 -  Ф F(<r, ф )  с1ф (88) 
x -о 2

Suppose now th a t the d istribution  F ( c r ,  Ф )  is fa ir ly  
narrow , th a t is  to sa y  th a t the d irection of m ost of 
the energy is  not w ide ly  different from the mean 
d irection. Then in (88) sin  iФ  m ay be replaced 
by £ф; and  if w e define the rth  angu lar moment 
of the d istribution  b y

m ,  =  [  Ф 'Р { а ,  ф )(1ф  (89)

i t  is  apparen t th a t

B u t also

so from (87)

Oo = — frtfl
7Г

(90)

(91)

(92)

B u t th is is  sm all b y hypothesis so the l.h .s. can be 
replaced b y  W -  Hence,

nit
mo

(93)

In other words Ф equals the r.m .s. angu lar dev ia
tion of energy from the m ean d irection.

In  a  s im ilar w ay  w e have from (85)

la t = a? — 2a? + oca,
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? / / [ '  - 2 cos 0 cos 0 '

+  -  (cos 20 +  cos 20 '] i
X F(cr, Ф )Р (о, 0 ')d 0  <20'

-  $  I f  у

F(<7,0)F(«r, 0')d0 d0' (94)
an exact form ula. Again, if the energy is  not too 
broadly distributed in direction, then

Ia, Ф —  j  j  (01 — 0'*),F(a, 0 )f (<r, 0')d0 rf0' 

(mom, -  ml)

4irJ ■

_1_ 
2r* '

Hence,
I_
a*

rrunn, — mi 
Шо

(95)

(96)

However, since (96) involves the fourth moment 
m< th is approximation w ill generally be less accu
ra te  than (92), which involves only m0 and m,.

For very narrow spectra the ratio

27 mtirrii — 7Пй 
' Z27722 (97)

is  an  indicator of the “peakedness” of the energy 
d istribution  w ith  regard lo direction. Thus, for a 
normal d istribution of energy w ith  regard to Ф this 
ratio  takes the value 2 ; for a  "square-topped” 
d istribution it  is 4 i and for two isolated delta- 
functions i t  is  theoretically zero. However, for 
most forms of P(<r, Ф) the approximation (97) 
w ill be accurate to w ith in  10 per cent only if  ^  is 
less than  about 30 degrees.
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D t S C U S S t O N

Dr. H asselm ann : I should like to congratu late 
the authors for the ir most interesting and original 
m easurem ents. On one point, however, I feel 
there m ay be some danger of a  m isunderstanding.

The high correlation observed between the 
pressure p  and the surface elevation f  im plies a  
sm all correlation between p and the normal sur
face ve locity t ,  as f  and t  are orthogonal random 
v a r ia b le s^  U nfortunately, i t  is  the email mean 
product p t , i.e ., the work done b y the pressure 
forces, which determines the rate of w ave growth, 
and only the spectral analysis of this term  can 
y ie ld  d irect insight into the mechanism of w ave 
generation by pressure forces. The authors, how
ever, restricted their analysis to the mean prod

uct p i ,  app aren tly  because the in strum ental error 
w as too g re a t to determ ine p i  w ith  sufficient accu
racy . As a  resu lt the inform ation gained from the 
pressure m easurem ents, though in terestin g  in  i t 
self, is  irre levan t to the question of w ave gener
ation.

Nor do the pressure m easurem ents alone y ie ld  
in d ir e c t  evidence as to w hether an in tern a l in sta 
b ility  m echanism  or ex ternal tu rbu len t pressure 
fluctuations are responsible for w ave grow th .

The fac t th a t M iles ’ in s tab ility  theory p red icts 
p i  correctly does not im p ly  th a t p t  is  also pre
dicted correctly , since a ll models, if w orth con
sidering a t  a ll (e.g ., the K elvin-H elm holtz m odel, 
Jeffries sheltering theory, e tc .) , g ive reasonab ly
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correct results for the first order term  pf but can 
differ_considerably in the crucial second order 
term  p f .

Furthermore, the fact th a t the observed mean 
square turbulent pressure fluctuations p] are con
siderab ly sm aller than orig inally assumed by 
Phillips does not im p ly that the resulting wave 
growth is also correspondingly sm aller than Ph il
lips’ original estim ate, as Phillips’ derivation of 
the ra te  of wave growth from p] was based on an 
incorrect assumption. This can best be seen by 
w riting Ph illips’ formula for the wave growth in a  
different form.

If the three-dimensional spectrum of the turbu
lent pressure fluctuations т (к ,ш ) in к  X и-space 
is introduced, Phillips’ formula bccomes sim ply

E(k )  = ~  * (k , -  „ ), (98)
f?9

where E (k )  is Longuet-Higgins (1957) spectrum 
and a  = V j i .  According to Equation (98), the 
growth of E(k) is determined by the spectral 
density of the pressure fluctuations on the "reso
nance surface” w +  y/gk  = 0  in к  X ы-space, 
corresponding to pressure fluctuations d i°(k , — a) 
exp [ i(k x )  — i d ]  in  resonance w ith free g rav ity  
waves. Now the pressure fluctuations dP (k , u )  
exp ( i(k x ) +  tut] w ill genera lly  have phase veloci
ties in  w ind direction approxim ately equal to the 
“ local convection ve loc ity” U (Jc). In other words, 
the spectral density ir(k , a )  w ill be concentrated 
m ain ly around the "local convection surface" 
ш +  kU cos Ф = 0, where Ф is the angle between к  
and the w ind direction. We shall, therefore, ex
pect the spectral density » ( k ,  — a)  in Equation 
( 1) to have a  maximum on the cui“ve of in ter
section of the “resonance" and “ local convection" 
surfaces, i.e ., for wave-numbers corresponding to 
free g rav ity  waves w ith  phase velocities equal to 
the wind velocity (see Figure 3 -D -l) . Phillips, 
however, assumed th a t the pressure fluctuations 
corresponding to these very  low wave-numbers 
would be negligible (except for very light w inds) 
and th a t *-(k, — *) is  appreciable only in the 
region of sm all wave-numbers w ell aw ay  from the 
“ local convection” surface, corresponding to phase 
velocities considerably sm aller than the wind 
velocity . In the derivation following, Phillips 
then equated a  differential tim e scale w ith  an in te
gra l tim e scale, arguing that both would be of the 
same order of m agnitude. Although the assump
tion appeared reasonable in  Ph illips’ formulation,

Lee* Convtctio* Surface

F igu re  3 -D -l. Local convection and resonance curvet 
for fixed ф, U (k) constant (Kelvin-Helmholtz model).

i t  can now im m ediately be seen that i t i s  in fact in 
correct, the two time scales describing completely 
independent properties of the pressure spectrum. 
The in tegral time scale determines in effect the 
pressure density r ( k ,  — a) aw ay  from the “local 
convection" surface and is thus a  measure of the 
sp read  of x (k , w) on both sides of the maximal 
surface, i.e ., of the degree to which T ay lo r’s  hypo
thesis (th at fluctuating components can be con
sidered as “frozen waves” being convected by the 
local mean velocity) does not hold. The differen
t ia l tim e scale, on the other hand, is sim ply the 
fluctuation period of a  point on the “local con
vection” surface as seen from a  system  moving 
w ith  the phase velocity of the corresponding point 
w ith the same wave number on the “resonance” 
surface. As a  characteristic tim e scale it  is thus 
based on T aylo r's hypothesis and is independent 
of the degree of accuracy of the hypothesis.

The order of m agnitude of wave generation b y 
turbulent pressure fluctuations is thus still an 
open question. I t  appears probable that the 
mechanism w ill be effectively m ainly, if a t  all, for 
longer waves moving w ith phase velocities approxi
m ate ly  equal to the wind velocity. This view is 
supported b y the fact th a t despite the sm all insta
b ility  of these waves (for waves w ith phase veloci
ties greater than the w ind velocity most in stab ility 
theories predict damping rather than in stab ility ), 
the observed fully-developed spectra a lw ays show 
a  pronounced peak for wave-numbers correspond
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ing to these waves. However, the energy loss of 
long waves is small, so that only relatively small 
generating forces need be involved and further 
observations will be necessary in order to deter
mine the relative importance of the two proposed 
generating mechanisms in this wave-number 
region. For shorter waves, the expected increase 
in instability and decrease in turbulent-pressure 
excitation, together with the observed strongly 
exponential growth of shorter waves as discussed 
by Phillips in the session on one-dimensional 
spectra all point to the predominance of an insta
bility mechanism.

It should be emphasized, however, that our con
cepts of wave generation by pressure forces are 
still based entirely on indirect arguments and that 
it has not yet been possible to obtain further hints 
as to which generating mechanism is most effec
tive for which wave-number region by direct 
pressure measurements. This, of course, does not 
imply that the pressure measurements described 
by the authors are not valuable and will not per
haps later yield a useful estimate of the order of 
magnitude of Phillips’ pressure term, for example, 
when more is known about the distribution of the 
three-dimensional pressure spectrum.

Dr. Longuel-H iggim  (tn reply to Dr. Hasselmann's 
comments): We are grateful to Dr. Hasselmann 
for clarifying certain points in our paper. We 
agree that the approximations involved in the 
later part of Phillips’ 1957 paper cannot be relied 
upon and hence that the observed low value for 
the turbulent pressure fluctuations axe not them- 
eelvee conclusive evidence against the turbulence 
theory. However, our reasons for thinking that 
shear-flow instability is responsible for the greater 
part of the wave energy are based not so much on 
the pressure fluctuations but on the observed 
angular distribution of energy, as discussed in 
Section IX of our paper (on pp. 124-126). The 
pressure measurements in Section X are quoted 
only as being consistent with this hypothesis.

We would like to emphasize that Phillips’ ex
pression for the spectrum (our Equation 41) and 
Miles’ corresponding expression (our Equation 
45) do not depend for their validity upon the 
approximations discussed by Dr. Hasselmann; in 
(41) there is no approximation involving the 
equality of integral and differential time-scales. 
Nevertheless, it is still probable that the integral 
in (41) is a maximum with regard to Ф, when 
cos ф ш c/U. Hence, the discussion in Section IX 
of our paper is not affected.

Certainly we would like to have measured p{; 
but the accuracy of our observations did not 
allow us to do this except to verify that it was 
reasonably small.

A claim to have measured p i  directly was made 
by A. G. Kolesnikov at the Helsinki meeting of 
the U.G.G.I. last August. We have not seen the 
details of Kolesnikov’s work.

Dr. Phillips: The stability analysis should, I 
think, provide us with_estimates of these two 
quantities. Certainly p i  is the one you would 
really like to know from the point of view of wave 
generation. However, if the other quantities 
given by the stability analysis and the experi
ments indicate that this is about the right order 
of magnitude, isn’t it reasonable to say that this 
fact alone, although not a direct confirmation, 
gives us reason to believe that this is on the right 
track?

Dr. Barber: I only have to say how much I 
admire the way in which this is being put into 
practice and brought to a working state. My own 
experiments lead me to appreciate the great differ
ence between thinking of ways in which an experi
ment might be done and actually doing it.

In the discussion it does strike me — and this 
was an outcome of some comments by Dr. Cart
wright on my own paper — that the buoy can 
determine the number of waves of a particular 
frequency. Of course, we know what the wave 
number is, or at least we think we do; but it would 
be nice if the buoy actually did measure the 
wave number and I rather think it does.

Dr. Longuet-Higgins: Yes. One of the things 
that we did was to see whether the frequency 
wave number relationship, as measured by the 
buoy’s motion, was in agreement with the theoreti
cal relation

a1 = gk

In the case of a continuous spectrum the relation 
analogous to t.hiR is

Cn ■(■ Си s  VCu
So tbe ratio

g  ( Cn + C ,V"
A  C„ /

equals unity. We calculated this ratio and I 
would have shown it, if the paper bad not been 
rather long already. I have left it until the dis-



661

OBSERVATIONS OF DIRECTIONAL SPECTRUM OF SEAWAVES USING FlOATlNG BUOY MOTIONS

14

• t *

О о

08 -

0  6 -

F igure 3-D-2. A plot o f  к *• [(Ся  +  Са)/С/11],п д/а 
as a function o f a.

cussion (Figure 3-D -2). We found the usual 
expected sta tis tica l scatter, but i t  is the scatter 
about a  mean value which is  a  little  greater than 
one —  perhaps 1.1 — and there is some odd behav
ior a t  very  high frequencies which m akes us rather 
skeptical of our calibrations in th a t region. I think 
i t  is probably the calibration th a t is  in error be
cause the buoy has a  natural response curve, 
which w as measured as I mentioned. It varies 
v e ry  rap id ly  in  the neighborhood of its  natural 
resonance, which is  ju s t about a t  a equals 4.0.

Dr. P ier so n : I th ink we a ll recognize that this is a  
very interesting and valuable contribution to the 
study of the actual sea surface. M ay  I compli
ment Dr. Longuet-Higgins and his fine group of 
co-workers in this area?

I cannot resist the tem ptation to compare some 
of these results w ith  those of SW OP in  a  little  
more deta il. I th ink the first principle we have to 
recognize is that of the invariance of the difficulty. 
I t  turns out to be about as difficult to obtain 
meaningful results by these procedures as it was 
by a  stereophotogrammetric technique. We both 
encountered a  high attenuation in the am ount of 
d a ta  th a t was taken and the am ount of data that 
w as finally reduced and analyzed.

In the end we had one good set of data . Dr.

Longuet-Higgins ended up w ith two good sets of 
data . So we now have three directional spectra, 
one by stereo and two b y his methods. There is 
the problem of calibration. We could not get a 
wave pole record to agree with the stereo results. 
The ship-borne recorder w as properly calibrated 
against a  directional spectrum for a  ship underway 
in such a  sea, which is a  major accomplishment 
that M r. Cartwright told us about yesterday.

This is quite im portant to the naval architect. 
We find that the pressure sensor of the shipboard 
recorder behaves as if i t  were 2i  times deeper than 
it  actu a lly  is in the water.

There is another interesting problem. The 
question of the possibility of the double peak, as a  
function of $ for high frequencies has not been 
resolved by this analysis nor was i t  resolved in 
our data . We m ight ask ourselves how it  could be 
resolved. W hat kind of experiment or set of ob
servations would have to be carried out? Here 
we would have to pay a  great deal more attention 
to sam pling variab ility . In Dr. Longuet-Higgins’ 
report to us I missed the confidence in terval, or 
something akin  to it , in the charts. I think they 
would be quite important.

Scatter m ay or m ay not be comparable to the 
confidence in terval th a t you would compute from 
theoretical grounds if possible. I don’ t know how 
it  would be done from these data . If possible, it  
would be helpful to see whether the scatter ex
ceeded or fell w ith in  the estim ates that you m ight 
expect due to sampling variab ility .

The question of the double peaked function of в 
as opposed to the single peak, is a  very interesting 
and very im portant one for m any applications and 
in  particu lar for forecasting swell correctly.

M y  feeling is th a t it  will be necessary to go to 
much higher resolution; but a  complicated buoy 
system  is required to get the desired resolution. I 
subm it to you th a t in this particular case stereo 
has advantages, and we can go to an increased 
am ount of resolution for the even harmonics. Of 
course, the d isadvantages of stereo are th a t the 
nonlinear features of the surface a s a  function of X 
and Y observed a t  a  fixed in stan t of tim e m ay be 
fa r more severe than the nonlinear effects that are 
encountered in the integrated response of a  buoy. 
This m akes the analysis  much more complicated.

Is the actua l w ave length shorter or longer than 
the theoretical?

Dr. L ongu et-H iggin s: The ratios were greater 
than one, so the waves appeared a  little  shorter 
than suggested b y linear theory.
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Dr. P ierson: The last point is that it is quite 
likely that we would learn a great deal more by 
combining the two methods than we would by 
using either one alone.

The described method of analysis, even for the 
low frequencies in the spectrum, yields the result 
that some portion of the spectrum as a function of 
direction is travelling opposite to the wind, or at 
an angle greater than 90 degrees to the wind. I 
would ask, does Dr. Longuet-Higgins really be
lieve that this is the case?

Dr. Longuet-Higgins: We have estimated confi
dence limits for the one-dimensional spectrum. 
The plotted points have a 95 per cent probability 
of lying within 20 per cent of their actual values.

As for the question of energy travelling at angles 
of more than 90 degrees to the wind, our observa
tions, of course, cannot really determine this 
question rigorously because we have only two 
harmonics.

I myself have an open mind on this question, 
and I certainly would not like to assert dogmat
ically that there is no energy going at angles of 
more than 90 degrees from the wind. My reasons

for this are that I think that nonlinear mecha
nisms, such as the breaking of the waves and the 
tertiary wave interactions, may contribute some
thing.

Dr. P ierson : Do you think that we made a seri
ous mistake in assuming that the major part of 
the spectrum was contained within 90 degrees of 
the wind direction?

Dr. Longuet-Higgins: I am not saying that you 
made a serious mistake. All I am saying is that 
I have an open mind on the question.

Dr. Cox: I would like to say that I consider this 
work a monumental undertaking, which is giving 
people who are working in the field of waves a pro
found sense of admiration for the work at N.I.O. 
Has anyone measured the coherency between the 
pressure fluctuations and the wave amplitudes? 
This will give some information on the turbulent 
characteristics of the pressure fluctuations.

Dr. Cartwright: I did measure the coherency on 
one set of data. It was certainly high — about 
0.8, but it should be less than 1 theoretically.
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A  nonlinear mechanism for the generation of sea waves

By  M. S. L o n g u e t - H i g g i n s ,  F.R.S.
Oregon State University, Corvallis, Oregon

(Received 3 September 1968)

R ecen t observations of the grow th  o f sea  w aves under the action  o f w ind h ave estab lished  
th a t  the rat© of grow th  ia severa l tim es g rea te r than  has y e t been accounted for. In  th is  p aper 
a  new  m echanism  of w ave generation  is  proposed, based on the id ea  o f a  m aser-like action  o f 
the short w aves on the longer waves.

I t  is  shown th a t  w hen surface waves d ecay th ey  im part th e ir  m om entum  to  th e  surrounding 
fluid . Short w aves a re  re ad ily  regenerated  b y  shear in s tab ility . B u t a  longer w ave passing 
through shorter w aves causes the short w aves to steepen on the long-w ave create. Hence 
the short w aves im p art m ore of the ir m omentum to the crests of the long w aves, where 
th e  o rb ita l m otion of the long w aves is  in the d irection of w ave propagation . I f  th e  short 
w aves are decay ing  only w eak ly  (under the action  of viscosity), the effect on th e  long w aves 
is s ligh t. B u t when the short wavos are forced to deoay strong ly  b y  b reak ing  on th e  forw ard 
slopes of the long w aves the ga in  of energy b y  the la t te r  is g re a tly  increased.

C alcu lations suggest th a t the m echanism  is capable of im p arting  energy to  sea w aves a t  the 
ra te  observed.

1 . I n t r o d u c t io n

After a decade of intense study, which has seen the development of wave generation 
theories by Phillips (1957 to 1966), Miles (1957 to 1962), Hasselmann (1967) and 
others, it  is now evident that the mechanism mainly responsible for the most rapid 
stage of growth of sea waves under the action of the wind still remains to be 
found.

The ‘resonance’ mechanism suggested by Phillips predicts a small but constant 
rate of growth of the energy in the initial stages of development, and gives correctly 
the in itial angular distribution of the waves. The ‘ shear instab ility’ mechanism 
proposed by Miles predicts an exponential rate of growth, which should eventually 
overtake the linear rate. Yet recent observations of the growth rates by Snyder & 
Cox (1966) and by Barnett & Wilkerson (1967) have shown, first, that the observed 
initial growth rate, though similar in form to that predicted by Phillips, is some 
50 times greater than would be expected on the basis of the measured intensities 
of turbulence in air flow over rough surfaces; and secondly that the rate of growth in 
the main stage of development is roughly an order of magnitude larger than pre
dicted by Miles’s mechanism. Since the turbulent parameters of an airstream over a 
moving water surface are not yet well known the discrepancy in magnitude between 
the initial rate of growth and that predicted by Phillips’s theory may still be soluble. 
The discrepancy between the later stages of growth and that predicted by Miles 
seems at present to be more serious.

In addition, neither of the above theories accounts for two well-marked features
[ 371 ]
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of wave generation: the existence of some wave energy in a  frequency range corre
sponding to waves which travel fa s t e r  than the wind-speed; and secondly the rapid 
damping of a swell by an adverse wind.

There has been some revival of interest in a  previous theory proposed by Jeffreys 
(1924, 1925) that there is a separation of the airflow a t the crests of the waves, 
leading to a  sheltering of the lee slopes of the waves, and hence a  net rate of working 
on the waves by normal pressure fluctuations. But i t  is difficult to see how long, 
low waves could be associated with this effect. Nor does it explain the generation of 
waves travelling faster than the wind.

Hasselmann (1967) has recently proposed that the waves react in a nonlinear way 
with turbulent components in the airstream. But so Uttle being known about the 
atmospheric turbulence, and the difficulty of observation being so great, i t  seems 
unlikely that this mechanism can ever be satisfactorily tested.f

The purpose of the present paper is to point out another nonlinear mechanism, 
which is demonstrably operating in a normal sea state and which appears to be cap
able of supplying enough energy to the waves to account for the observed rates of 
growth.

The essence of the mechanism m ay be stated quite briefly. W ith any train  of 
surface waves there is associated both an energy density E, say, and a horizontal 
momentum density M , related to E by the simple equation

E = Mc (1.1)
where с denotes the phase velocity. If the wave decays under the action of viscosity, 
or even more drastically by breaking, it  gives up a proportion of its energy. Conse
quently, it  must impart an identical proportion of its momentum to the surrounding 
fluid.

Consider now a train of short waves riding on the crests of longer waves. I t  can be 
shown that the short waves tend to be both shorter and steeper at the crests of the 
longer waves than they are in the long-wave troughs, being compressed by the 
horizontal orbital motion of the long waves. Hence the short waves have a pro
nounced tendency to break on the crests of the longer waves, rather than in the 
troughs. In breaking they give up a  significant proportion 7  of their momentum to 
the longer waves. But since the orbital velocity и г of the longer waves is positive at 
the wave crests, the energy so imparted to the longer waves is also positive, and a t 
most equal to у M u2.

So we have the following picture: the wind continually supplies energy to the 
shorter waves, imparting to them a momentum at a rate comparable to the wind 
stress r. The short waves cover the whole surface of the longer waves. The longer 
waves, however, travel with a greater velocity and so move through the short

t  Stewart (1967) has pointed out a  more serious objection to this mechanism, namely that 
the total energy in the atmospheric turbulence appears insufficient to generate ocean waves 
of the observed magnitude. In the same paper Stewart (1967) suggests that appreciable energy 
may be imparted by variations in the tangential stress of the wind on the sea surface. A 
correction to his calculation is given in another paper (Longuet-Higgins 19 6 9b).
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waves, causing the latter to break on the forward face of the long wave crests. In 
this way the long waves gain energy at a rate comparable to тщ.

This sweeping up of short-wave momentum by long waves, in a way favourable 
to growth of the long waves, is similar to the action of a  maser and is conveniently 
called the 'maser mechanism’ of wave generation. It is shown in § 8 that the maser 
mechanism may indeed be of an order of magnitude sufficient to account for the 
main stage of growth of the sea waves, and accounts quite well for the observations 
of Barnett & Wilkerson.

First, however, in §§ 2 to 4, we give an account of the emergence of momentum 
from a slowly decaying wave train, and show how it may contribute to the momen
tum of its surroundings by a  ‘virtual wave stress ’ exerted by the boundary layer at 
the free surface. The presence of this virtual stress corresponds to a small but signifi
cant part of the total stress r. Even if the short waves were not forced to break, they 
would still do some work on the lower waves since the virtual stress is greater at 
the long wave crests than it is in the troughs. Then in §§ 6 and 7 we discuss the 
much more draatic ‘maser mechanism’ which results from breaking of the short 
waves. Lastly in § 8 the consequences for generation of energy of the long waves are 
discussed.

It will be seen that the maser mechanism can account for both the generation 
of waves travelling faster than the wind, and the observed damping of waves by an 
adverse wind.

2 . T h e  m a s s -t e a n s p o b t  v e l o c it y

W e first recall some known results from the theory of surface waves on deep water.
The surface elevation £ in a progressive wave of small amplitude a  m ay be de

scribed by the expression f  = acos{kx_ (rt) (2Л)

where a; is a  horizontal coordinate, t is the time and к and c  denote the wavenumber 
and the radian frequency. The latter are connected by the relation

<гг = gk+ (Tjp) P  (2.2)

in which g, p and T denote gravity, density and surface tension (Lamb 1932). 
Equation (2.1) is correct to order (a i), the maximum surface slope. To the same order, 
the components u, w  of the particle velocity in the interior are given by

11 = a a  cos (fee — ai) eto’| ^
w  = a a  sin (fee — ai) efaJ

the vertical coordinate z being measured upwards from the free surface. Close to 
the surface, however, there is a thin boundary layer, with thickness of order

8 = (v ja ) i  (2.4)

where v denotes the kinematic viscosity. This will be discussed in detail in § 3.
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In the interior of the fluid the particle trajections are circles, to a  first approxima

tion in powers of (ak). But in the second approximation, as was pointed out by 
Stokes (1847), a  marked particle possesses a small second-order mean velocity 
U given by ______  ______

u  = E + j u d t i + j w d t Tz <2 6 >

where й  denotes the mean value of и  a t a  fixed point (the Eulerian mean) and the 
remaining terms arise from the orbital displacement of the particle combined with 
the gradients of the velocity field. The second term on the right of (2.5), when 
evaluated by (2.3), gives a  positive contribution \а2(тк&гкг. This arises because 
when the orbital displacement of a particle is positive, as it  is on the rear slope of the 
wave, the horizontal gradient of the velocity field is also positive. Sim ilarly, the 
third term on the right of (2.5) also gives a  positive contribution ^aVAe2**. This is 
because when a  particle is a t the top of its orbit its forwards velocity is greater than 
the velocity a t the centre of the orbit and when the particle is a t the bottom of its 
orbit the backwards velocity is less. Together the second and third terms on the right 
of (2.5) m ay be called the Stokes velocity; thus

U = u + U stoke3 (2.6) 
where ______  ______

( « A

and for the interior of a  progressive wave

^stokes = aVfcezfc* (2 .8)

If the motion is started from rest i t  is in itia lly irrotational, and by a well-known 
theorem must remain irrotational in the interior until vorticity is diffused or con- 
vected inwards from the boundary. Under these conditions, if one chooses axes 
a t rest relative to the deep water, we find that in the interior

5 - 0  (2 -9)

everywhere except near the upper boundary. Hence

4 r r o t  =  ^Stokes ( 2 Л 0 )

This is greatest near the surface and diminishes rapidly with depth (see figure 1). 
The gradient of U near the surface is given by

( S L ,  -  а д * *  (2Л ,)

The total forwards momentum within the wave is given by

M  = f  pU  dz = \pa?<r (2-12)
J — 00
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This forwards momentum is somewhat paradoxical. If one takes any volume 
within the fluid, wholly below the level of the wave troughs then since S = 0 every
where within this fixed space it appears that the total momentum contained within 
this volume is zero. Thus from the Eulerian viewpoint (Phillips 1966, §3.2) the 
whole momentum appears to be above the wave troughs: under the crests, where

С

- k z o

Figure l. Profile of the mass-transport velocity in a progressive wave.-------- , irrotational
motion;-------- , profile modified by viscosity.

there is an excess of fluid, the motion is forwards, and under the troughs, where 
there is a deficiency, the motion is backwards. Analytically this viewpoint is
represented by the formula _______

M  =J*f pudz  = pu^  (2.13)

which on substitution from (2.1) and (2.2) gives the same result as equation (2.12).
The two viewpoints may be reconciled by noting that at any mean level z0 within

the fluid a surface z = £{x, z0, t) may be drawn consisting of the same particles, and
that by the same argument the total momentum contained below this surface is
given by _______

M(z0) = u£(x,z0,t) (2.14)
Since £ = J  w  d< it follows that ____

M(z0) = p u j  w i t  = JpaV e2**» (2.15)

Hence the distribution of momentum within the fluid is given by

pU  = paVifce2**» (2.16)
dz0

in agreement with (2.8).
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There are good reasons, in the present context, for adopting the Lagrangian 
rather than the Eulerian viewpoint, that is to say for regarding the momentum as 
being attached to marked particles rather than to particular regions of space. This 
is because of the important role played by the viscous boundary layer a t the surface 
(which will be described in the next section), combined with the fact that the thick
ness of the boundary layer is generally small compared to the vertical displacement 
of the surface itself. Hence we require coordinates and dynamical quantities related 
to the moving particles; in other words a Lagrangian description of the motion.

3 . T h e  g e n e r a t i o n  o f  v o r t i c i t y  i n  t h e  b o u n d a r y  l a y e r  

Let us take coordinates n  and 5 normal and tangential to the free surface, as in 
figure 2. The boundary conditions a t a free surface are that both the normal and the 
tangential stress shall vanish:

P n n = P n s = Q  (ЗЛ)
с

Figube 2. The boundary layer at the free surface. p n„ and p „ , denote the normal and 
tangential components of stress across the surface.

Now the vanishing ofpns implies that the vorticity cannot va n ish  a t the free surface. 
For, if  в  denotes the inclination of the surface to the horizontal, we have

Pns = (cos2 в  -  sin2 6) Pzx -  cos в  sin d i p ^  -  p a )

= Pzx{l  + 0 ( ak )2)
(du  dw\ 

^  / i\ d z + 'dx )
(3 .2 )

(3 .3 )

Therefore the vanishing of p ns implies that
du _  dw 
dz dx

" ■ ( £ - £ ) - 2 £ * °  (3,4) 
in general. Since in the interior of the fluid the vorticity vanishes identically (to 
start with, a t le ast) it  follows that o) has a  sharp gradient near the surface. A closer 
inspection (Longuet-Higgins 1953) shows that to the first order in ah  we have

<0 = (o0e an (3-6)

where ш0 = 2(dwjdz)_0 a = (-ior/v)i (3-6)
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and n  is the outwards normal. This represents an oscillating distribution of vorticity 
which does not penetrate beyond a  distance of order S, = ( v j a j b ,  from the surface. 
However, to the second order in ak there is found, just beyond the boundary layer, 
a mean (second-order) vorticity

s- 4(s’/S’d‘ L - - 2<“i)v <” >
which is independent of v and of the boundary-layer thickness d (see Longuet- 
Higgins 1953, i 960). This vorticity adds to the mass-transport gradient a term
2(ak)3 cr which is exactly equal to the irrotational gradient given by equation (2.11). 
Thus the total gradient of the mass-transport just outside the boundary layer is

(Stf/&)*ec0IU = 4(afc)V (3.8)

or just twice the Stokes gradient (see figure 1). The velocity gradient in gravity 
waves has been carefully checked by measurements in the laboratory (Longuet- 
Higgins i 960) and found to agree well with equation (3.8) and not with the irro
tational formula (2.11).

We expect that the vorticity given by equation (2.7), being of constant sign, will 
gradually diffuse downwards from the boundary layer into the fluid At a time t, 
after initiating the wave motion, the depth of the fluid affected by the diffusion 
of vorticity will be of order (vt)i.

The wave-induced vorticity (3.7) is in fact entirely equivalent to a virtual tangen
tial stress.

Twave = 2pv(ak)2a- (3.9)

applied to the surface of the fluid. We shall now interpret this stress in terms of the 
loss of momentum in a  decaying wave.

4. The w e a k  d e c a y  o p  a  ttntfo k m  w a v e  t r a i n  

If left to itself, a uniform train of free surface waves will decay under the action 
of viscosity. Thus we have, in the linear theory

a = a0e-Mi (4.1)

where the decay time t0 is given by
*0= (2 ^ ) - i  (4.2)

(see Lamb 1932, §348). Now the original momentum M  of the wave cannot be 
destroyed. How then is it  redistributed ?

One might, expect it to be distributed with depth as in the original motion, that 
is to say proportionally to е гк*. But the existence of the virtual tangential stress 
Twave shows that the decaying waves are in fact transferring all their momentum to
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the boundary layer a t the free surface. For, if  we calculate the total momentum M'
transferred by the virtual stress (3.9) during the decay of the wave we find it  to be
given by <• д,

M '= \  rwaved t=  2pv{a0e - i^k)2(rAt (4.3)
Jo  J o

that is M '  = pva%k2<itQ (4.4)

On substituting for t0 from equation (4.2) we find that

M '  = \pa\o- = M  (4.5)

Hence all the momentum is transferred to the mean flow by the surface wave stress.
Hence the final distribution of momentum will be very different from the in itial 

distribution pU. I t  will be the result of downwards diffusion from the free surface. 
We shall have . t

P V ' = ) K - K ) ^ ) ^  (4 -6)

, exp ( - z 2/4v<)
Wbere Л » ----- V ( J )

F i g u r e  3 .  The flux of (Lagrangian) momentum in a  damped water wave. The momentum i s  

first driven upwards the surface and then diffused downwards from the boundary layer 
by viscosity.

After a time { of order t0, the depth of the layer so affected will be of order к~г 
which is of the same order as the depth to which the motion originally extended. But 
for much larger values of t the depth affected will increase like {tlt0)i.

This interpretation is illustrated in figure 3. The horizontal momentum pU  of 
the waves per unit depth (which initially m ay have been imported solely by normal 
stresses at the surface) is, during the process of decay, expelled upwards towards 
the free surface and then diffused downwards again by viscosity.

Thus the waves act somewhat as a  reservoir of horizontal momentum for the sea 
surface. The momentum is drawn upon more or less gradually during the process of 
decay .f

1* The upwards-pointing arrows in figure 3  represent the Lagrangian momentum flux. 
The Eulerian momentum flux vanishes.
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In this process the boundary layer acts as an essential link. However, for long and 
steep waves it may, under the influence of intense shear, become unstable and break 
up spasmodically, shedding vorticity into the interior far more rapidly than by 
viscous diffusion.

5 . M a g n i t u d e  o f  t h e  v i r t t t a l  w a v e  s t r e s s  

I t is interesting to estimate the magnitude of the virtual stress

Twsve =  2/?v(afc)2 (Г (5 .1 )
in a typical sea state.

The formula (5.1) holds for a discrete wave of amplitude a and maximum slope 
(ah). With a  continuous slope spectrum S(cr) defined by

d(£a2&2) = S(cr) der (5.2)
equation (5.1) is replaced by

Twave =  4 p v j o <rS(<r)dor (5 .3 )

Consider now the contribution to this integral from different parts of the fre
quency spectrum.

For the equilibrium range of gravity waves, in which the spectrum of the eleva
tion £ is given by

F(a )  = a g2o~s (crx < <t < <r2) (5 .4 )
we have simply

crS{cr) = a  (5.6)
where a  is a  constant determined experimentally (Phillips 1966) and theoretically 
(Longuet-Higgins 1969a) to be about 1.2 x 10-2.

T a b l e  1 . V a l u e s  o f  (rs a n d  <r4 a s  d e r i v e d  f r o m  t h e  o b s e r v a t i o n s  o f  Cox
( 1 9 5 8 ) , AND A COMPARISON OF THE VIRTUAL WAVE STRESS Tm v e  WITH THE TOTAL 

WIND STRESS Tw lnd.

u *3 <r«
(cm/s) (rad/s) (rad/s) (dyn/cma) (dyn/cm4)

318 35 300 0.15 1.2 0.13
608 25 900 0.45 4.3 0.11
920 15 1000 0.5 9.6 0.05

1202 12 1000 0.5 17 0.03

In the capillary range, the slope spectrum as measured by Cox (1958) in a wind- 
tunnel, is closely approximated by

crS(cr) = p  (og < cr < <r4) (5.6)

where cr3 and cri  depend to some extent on wind-speed and fetch and is about 
1.0 x 10-2. Some typical values of <rs and cr4 are given in table 1. I t appears that at 
higher wind-speeds the two ranges (5.4) and (5.6) merge, and that over the combined 
range cr, < tr < cr4 we have

crS(cr) Ф 10-2 (5.7)
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as pointed out by Phillips (1966). From (5.3) it  then follows that

7-wave =5* 0.04pv(cr4 -  сгг) (5.8)
Since cr4 > (Tj the lower frequency crx can be omitted. Indeed, by far the largest 
part of the stress comes from the high-frequency end of the range. We can therefore

take Twave = 0.04oy>w4 (5.9)
where cr4 is the high-frequency cut-off.

The values of rwave, as determined by equation (5.9) and the observed values of <r4 
are shown in the fourth column of table 1 ; in the fifth column are shown the corre
sponding values of the total horizontal stress as determined by the empirical formula

^wlnd = <?palr£7* (5.10)
where U is the wind-speed a t a  height of 4 cm above the free surface (as measured by 
Cox 1958) and G is the corresponding drag coefficient. We take С = 6 x 10-3. I t 
can be seen that a t the lower wind-speeds the capillary wave stress appears to account 
for a small but significant part of the total stress exerted by the wind. At higher wind- 
speeds the proportion appears to diminish.

However, it  m ay be pointed out that if  the lam inar motion breaks down, as it  
probably will, the damping of the short waves m ay be greatly increased, leading to 
a  corresponding increase in the virtual wave stress.

The p a it of the total wind stress in table 1 which is not accounted for by direct 
viscous decay of the wave field m ay be attributed to wave breaking and to the sup
p ly of momentum to increasingly long waves. We shall see in §7 that these two 
effects are closely related.

6 .  T h e  w e a k  d e c a y  o f  s h o r t  w a v e s  r i d i n g  o n  l o n g  w a v e s  

I t  is commonly observed that short grav ity waves riding on the backs of longer 
waves are steeper on the crests of the longer waves than they are in the troughs 
(see figure 4). A quantitative analysis was carried out by Longuet-Higgins & 
Stewart ( i 960). The steepening is due to a combination of effects : the primary 
effect is a  shortening of the wavelength due to the horizontal contraction of the sur
face near the crests of the long waves; next, the same horizontal contraction does 
work on the short waves, causing their amplitude to increase; thirdly, owing to 
the vertical acceleration in the long waves the ratio of the potential to the kinetic 
energy of the short waves is increased.

Let Oj, kx and <xx denote the amplitude, wave number and frequency of the short 
waves and a2, k2 and cr2 the corresponding quantities for the longer waves, so that 

> k2, (Jx > cr2. Then in the paper just quoted it  was shown that if viscous dissipa
tion is altogether neglected

% = a t( l  + а2кг cos (k2x — <r2t))
fcj = k^l + a2k2cos (k2x — cr2t)) • (6-1)
cr, = с
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to first order in (ax kt) and (a2k2). The ratio of (ô  at the crests to the corre
sponding value in the troughs, is thus

For small values of (a2k2) (to which the theory strictly applies) this ratio is equal to

r =  l  +  eaa& j (6 .3 )

If for example аг k2 = 0.1, then r = 1.8. Thus the virtual stress of the short waves will 
be considerably greater at the crests of the long waves, where the long wave orbital 
velocity is forwards, than in the troughs, where it is backwards.

с

I I

Fiquee 4. (a) A long wave of amplitude a2 passing through a train of short waves of ampli
tude a v  when the short waves do not break, (b) The virtual stress 2pv(a1lc1)t <Tl  of the 
short waves.

Suppose now that the short waves are subject to viscous damping, but that the 
rate of working by the wind is such as to keep the wave amplitude a  ̂steady and given 
by equation (6.1). The net work done by the long wave against the radiation stresses 
in the short waves is then zero.

From equations (5.1) and (6.1), the virtual stress тг of the short waves is given

n  = Zpviajcj}2 (1 + 4a2fe2cos (k2z  — (r2t)) (6.4)

to order (<z2*2)- Now the work W done by a  small tangential stress тг on the energy 
of a wave motion in which the orbital velocity is a2 is given by

W -  тг и2 (6.5)

the bar denoting the mean value with respect to tim et - But near the surface,

и г = а2а 2с о з  (k2x — cr2t).

t  This can be justified by a simple boundary-layer argument (see Longuet-Higgins 19696).
24*1
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So on substituting from (6.4) and taking mean values we find

W  = 8pv^a^ &i)2 (6.6)

and denoting the energy density \pga\ of the long waves by Ez we have

(6 ‘7)

If we take, say (ax £t)2 ~ 10_2cr4 where cri  is the cut-off frequency for the short 
waves, ca. 103 rad/s, then we have, in c.g.s. units,

f i J E  ~ Ю-боЦ (6.8)

This rate of growth depends rather critically on the frequency of the longer waves. 
For waves of period 6 s (<r2 = 1) it  is negligible, but for waves of period 0.5 s we have

f i j E  ~ 2 x  10-3 (6.9)

which corresponds to a time constant of 250 s.

7 . T h e  b r e a k in g  o f  s h o r t  w a v e s  o n  l o n g  w a v e s

We have so far assumed a small steepness for the longer waves (a2k2 <4 1). If 
a2k2 is no longer small, it  can be seen qualitatively from equation (6.2) that the 
steepening of the shorter waves becomes much more drastic. For example, on putting 
a 2/fc2 = 0.5 in (6.2) we find r  = 81.

Hence the short waves must frequently be forced to break on the forward slopes 
of the longer waves, and to give up a large part of their momentum to the latter. In 
fact, when the long waves are on the point of breaking they are incapable of support
ing any further gravity waves near the crest. The short waves then lose presumably 
all their energy in breaking on the forward face of the long waves.

This is confirmed by the visual observation that long steep waves are often very 
smooth on their rear faces, while their forwards faces are quite rough.

One might say that a  long, steep wave passing through a field of short waves 
tend to ‘ clean up 5 the short waves by causing them to break in the forwards face of 
the long waves (see figure 5).

Now when the short waves give up their momentum to the longer waves they 
contribute to the energy of the latter at a rate proportional to the orbital velocity 
in the long waves. Since this is forwards on the upper part of the wave, the short 
waves supply a  positive amount of energy to the long waves.

Meanwhile between the crests of the long waves the momentum of the short waves 
is replenished, mainly by the wind, and to a less extent by the radiation stresses.

Let us attempt a  quantitative estimate of this effect. Suppose that on passing 
through each crest of the long waves the short waves lose on the average a propor
tion у  of their energy (or momentum) where у  is of order 1. We suppose that the 
proportion of momentum lost over the remainder of the wave is small compared
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to y . I t follows that n ea r ly  all of the momentum supplied by the wind to the short 
waves is ultim ately imparted to the long waves on the forwards faces of the long
wave crests.

<h .
short waves 
breaking

* /

short waves 
breaking

F i g u r e  5 .  (a) The breaking of short waves on the forward face of a longer wave.
(6) The distribution, of the virtual stress.

If the wind-stress т is assumed to supply momentum solely to the shorter waves 
it  follows that the rate of energy supply to the longer waves is given by

W ~ t \u 2\ (7.1)
where \иг\ = a2a 2 denotes the orbital velocity of the longer waves.

I t is important to show that the energy supplied to the longer waves in this way 
is not appreciably reduced by the work done by the long waves against the radiation 
stress.f Now if  Ex denotes the energy density of the short waves per unit distance, 
the momentum density per unit distance is EJc-y. Hence the momentum lost to the 
short waves, per unit time in one wavelength of the long waves, is

y (E J c1) c i  (7.2)
The energy supplied to the long waves per unit time, per wavelength, is thus

y iE JcJC z lu t  1 (7.3)
On the other hand the rate of working by the long waves on the short waves through 
the radiation stress, per wavelength, is of order

S 8- ^ j k t ~S\u2\ (7.4)

where 8, = \E, denotes the radiation stress in the shorter waves. Comparing this 
with (7.3) we see that the latter is negligible provided that

cjca у  (7.5)
which is true by hypothesis, since у  — 0 (1).

t  Phillips (1963) has taken into account only the work done by the radiation stresses and 
so concludes that the long waves are damped.
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I t  m ay be noted that equation (7.1) is the same relation that would have been 
obtained had we assumed that all the wind stress were applied tangentially a t the 
crests of the longer waves. But we emphasize that this is not the present assumption. 
Rather, the longer waves sweep up the momentum that was imparted to the short 
waves (possibly by normal stresses) over the whole extent of the longer waves.

In practice the amplitude of the long waves is variable (having a  Rayleigh dis
tribution; see Longuet-Higgins 1952) and in equation (7.1) Щ must be replaced by 
some mean value

W ~ г|й2| ~ та2к2с 2 (7.6)

to first order. However, the greater the value of a 2k2, the higher the proportion of 
energy swept up by the long wave, so that (7.6) m ay be an underestimate.

The mean value of the wave steepness (a2fc2) m ay be determined either from 
observation or from theoretical considerations (see below) to be of order 10-1, if 
the highest waves are breaking. Hence we have

W ~ 0.1 tc2 (7.7)

where c 2 denotes the velocity of the longer waves.
This last estimate of the energy input m ay be compared with the estimate

W ~ тщ  (7.8)

where w* denotes the friction velocity, defined by u% = т//оа1г. The two estimates 
(7.7) and (7.8) are equal if

« +~ 0.1c2 (7.9)

If  we denote by С the drag coefficient, defined as u%fU2. where U denotes the wind 
velocity a t some standard height, then the condition (7.9) is equivalent to

С ~ 10~2(c2/E7)2 (7.10)

which is consistent with observation (see Phillips 1966, p. 144).
To show theoretically that (a2fc2) is of order 10-1 we m ay note that in the equili

brium spectrum jp'(cr) = a<720—5 (7 U )

the ratio of the breaking wave amplitude a0 to the r.m.s. amplitude a  is given by

? l ~ ± ~ 1 0  (7-12)
a2 8a

(see Longuet-Higgins 1969a). Assuming that the value of (a2k2) appropriate to a 
breaking wave is 0.5, this gives

(aA)r.m.e. ~ 0 5 x KH = 0.16 (7ЛЗ)
Then assuming that the slope (a2k2) has a Rayleigh distribution it  follows that

Я2̂ 2 ~ ~ 0.13 (7.14)
which is of order 10-1 aa stated.
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8 . D i s c u s s i o n

Let us explore some of the consequences of equation (7.1) for wave generation. 
We shall deal only with orders of magnitude.

Assuming that the long waves are steep enough for equation (7.1) to apply, but 
not so steep as to be limited by breaking, then their rate of growth, in a spacially 
homogeneous ocean unlimited by the fetch, will be given by

^  {hP9a2) ~ raa- (8.1)
that is to say

da r
j 7 ------ ^  (8.2)d t p g  v '

This represents a  linear rate of growthf for the wave amplitude:

a ~ —crt (8.3)pg
and for the wave steepness

(тк\ т
= (8‘4) 

at least before dissipation of the long waves by breaking becomes important.
Let us consider the order of magnitude of this growth rate. Since т = Cpalt U2, 

equation (8.4) can be written

( 8 ' 5 )

where T  = 2я/сг denotes the wave period. Thus [t/T) denotes the number N of wave 
cycles. On substituting the numerical values

G = 1.5 x 10-3 and (/>8lr//Wr) = 1 3  * 10-3
we obtain

ak ~ 1.2 x lO-5(U/c)2N (8.6)

Now the maximum value of ak corresponding to breaking waves is, as we saw earlier, 
of order 10-1. Hence if we consider the growth of those waves whose phase speed с 
is equal to the wind-speed U the number N of wave cycles required for them to 
aohieve their maximum steepness would be, according to equation (8.6), of order 
104. This is in agreement with wave observations at sea (see, for example, Sverdrup
& Munk 1947).

In a situation where the wave field is limited by the fetch x rather than by the 
duration t we may substitute for t in equation (8.3) using the relation x/t = group 
velocity = \c, that is to say t = 2x/c. This gives

2 т■ —zx ~ 2(7 , , 
P c  P m ter Vе /

(8.7)

■f If (T is assumed constant. If, on the other hand, <t is allowed to decrease gradually with 
the time t then (8-3) represents a  lower bound for the wave amplitude.
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or with the same numerical values as before,

a  ~ 0.4 x lO~s (U lc)zx (8.8)
This formula m ay be compared with the recent observations of Barnett & W ilker- 
son (1967) who contoured spectral density (in m2/Hz) against fetch x and frequency 
/ (Hz) for a  wind-speed U of about 15 m/s (see figure 6). Consider, for example, the 
situation when x — 200 km = 2 x 106 m. Formula (8.8) then gives

a  ~ 0.8 (J7/c)2metres (8.9)
The peak frequency for this distance in figure 6 is about 0.105 Hz, corresponding to 
a  wave period of 9.6s and hence a  phase velocity с = 15m/s. Hence (£7/c) /v 15 and 
(8.9) gives a  ~ 0.8 m. On the other hand, the total mean-squared surface elevation,

distance from coast (km)
Figure 6 . (From Barnett & Wilkerson, 1967 .) Contours of spectral density as a 

function of fetch (distance from shore) and frequency.

from the section of the contour map a t x = 200 km, is about 0.6 m2. Equating this 
to |a2 we should have a  — 1.0 m. Hence the order of magnitude of the total energy 
transfer predicted by (8.8) appears to be correct.

Since the wave-number к  is equal to g j c 2, equation (8.8) also predicts that before 
the waves are limited by breaking

akaz(U lc)2(gxlc2) (8.10)
Hence the distance x a t which the wave steepness ak achieves a given value is pro
portional to c4. Since с = gjcr, we might expect the frequency/ = 2ncr corresponding 
to the peak spectral density in figure 6 to be proportional to x~ .̂ Such a  curve has 
been drawn in figure 6. The constant of proportionality has been adjusted so as to 
give the best fit to the spectral peaks. One sees that the fit is fairly good, though the 
curve is evidently rather too high for the shorter fetches and too low for the longer 
fetches.

On the high-frequency side of the spectral peak, the spectral density is presumably 
limited by wave breaking. But on the low-frequency side, before the waves are
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limited by breaking, it  may be justifiable to assume that the spectral density is given 
by a formula analogous to equation (8.8), namely

«ш >

where i f  is a constant. For fixed values of U and x this givea

F{cr)aco* (8.12)

Although such a conclusion is not inconsistent with the spectral densities at the 
shorter fetches in figure 6, nevertheless the very steep lower face of the spectrum in 
the lower right-hand comer of figure 6 suggests that the rapid rate of growth on the 
low-frequency side of the peak is probably due to the operation of another mechan
ism.

We suggest that this mechanism may be aa follows. The phase velocity of a  wave 
of finite amplitude is somewhat greater than that of a small-amplitude wave of the 
same length, by an amount of order (ak)2c. It is thus plausible that such a wave 
should interact with a  lower wave of slightly greater length (and lower frequency) 
but travelling with the same phase velocity—particularly if the wave groups are 
of finite length. In other words here may be a transfer of energy to a lower frequency.

A manifestation of this same mechanism is the instability of surface waves dis
covered by Benjamin & Feir (1967) in which the main wave gives up energy to each 
of two side-bands. For steep waves, the side-band of higher frequency would be 
limited by breaking, more than the side-band of lower frequency. Hence the energy 
would appear to be shifted continually towards slightly lower frequencies. This 
effect will be further investigated in a subsequent paper.

An interesting consequence of the maser mechanism described earlier is that the 
phase velocity of the longer waves is not limited to be less than the wind velocity, 
as it would be if only the resonance or shear instability mechanisms were operating. 
For, in order that energy be imparted to the longer waves by maser action it is 
necessary only that the wind generate short waves at some point on the long-wave 
profile, and this it can theoretically do no matter how great the phaae speed of the 
long waves.

We see also that some damping of long waves by an adverse wind is also to be 
expected by the maser action of the short waves. For, the momentum of the short 
waves will be in the same direction as the wind and therefore opposite to the orbital 
velocity u 2 at the crests of the longer waves. So in breaking, the short waves will 
take energy away from the longer waves.

The damping action of an adverse wind may in fact be more pronounced than the 
generating action of a  following wind. For by considering the waves in a  frame 
of reference moving with the velocity of the longer waves, the longer waves are 
reduced to a steady stream in the same direction as the wind. The shorter waves are 
propagated on the stream in the same direction as the stream. However, because of 
the orbital velocity of the long waves the speed of the stream varies with distance
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(according to Bernoulli's law). Now if the adverse velocity in the stream exceeds 
the group velocity of the shorter waves the latter cannot be propagated against 
the stream, and must be reflected or break (see, for example, Longuet-Higgins & 
Stewart 1961). In either case they give up their momentum to the stream, so that 
the maser action is clearly very effective.

I t will be seen that some explanation is still required for the generation of the 
short gravity waves. These can be attributed to the maser action of even shorter 
grav ity waves, and so on down to capillary wavelengths. The latter m ay be due 
to shear instability, essentially as described by Miles (1962).

I t  would be interesting to record instrumentally the form of the surface elevation 
£ in ocean waves under the action of wind. I f  it  can be established that the short 
waves on the forward faces of long wave crests are significantly steeper than those 
on the rear faces, so that the proportion у  of the energy difference is of order unity, 
one of the critical assumptions of the present theory would be verified.

Some indications of this effect, though on a small scale are already given by the 
observations of Cox (1958) in a  laboratory flume. These need to extend to oceanic 
scales. Cox indeed observed steeper capillary wave action on the forward faces of 
longer, grav ity waves than on the rear slopes. Some capillary waves were found 
even in the absence of the wind—a phenomenon attributable to the action of surface 
tension a t the sharp gravity wave crests (Longuet-Higgins 1963). However, in the 
presence of the wind the shorter waves were of far greater amplitude.

This paper is partly based on a contribution to the Symposium on Turbulence 
in the Ocean, held at the University of British Columbia, Vancouver, B.C. from
11 to 14 June 1968. I t  was completed at the Woods Hole Oceanographic Institution 
during August 1968. The research has been supported under NSF Grant GA-1452 
and ONR Contract 241-11. The author is indebted to Dr N. P. Fofonoff and to other 
colleagues a t the Woods Hole Summer School for stim ulating discussions.
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A boundary-layer argument shows that, paradoxically, a variable tangential stress which is greatest 
at the wave crests and least in the wave troughs produces a thickening of the boundary layer on the 
rear slopes of the waves and a thinning on the forward slopes. In deep water, a variable tangential 
stress т  is precisely equivalent to a normal stress it - in quadrature with the tangential stress. The cor
responding rate of growth of the waves is calculated.

A problem which is of in terest in the theory of 
w ave generation b y wind is  the following: A tan 
gential stress is supposed to ac t on the surface of 
a lready existing waves in w ater of constant depth. 
The stress is applied unequally  over the surface of 
the waves, being g reatest a t  the w ave crests and 
least in the wave troughs. W hat is its effect o n  the 
ra te  of growth of the waves?

If the flow is pure ly lam inar, the problem m ay be 
treated b y the methods of classical hydrodynam ics1; 
the ra te  of growth is given sim ply b y  the im aginary 
part of the complex frequency. However, th is solu
tion does not provide a  satisfacto ry physical expla
nation of the wavegrowth, nor does it  cover the 
case when the flow is turbulent.

C learly  the tangen tia l stress m ust create, in 
the first p lace, a  shearing motion in a  th in  boundary- 
la y e r  close to  the surface. How then is it  possible 
for th is shear to increase the energy of the potential 
flow in the in terior of the fluid?

In  a  recent review" S tew art has in tu itively seen 
th a t the explanation lies in the convergence of the 
tangen tia l motion in the surface boundary layer 
producing a sm all additional component of velocity 
normal to the free surface. U nfortunately, however, 
he has given an ana lytica l solution which is certain ly 
incorrect since it  does not satisfy the requirement

1 H. Lamb, Hydrodynamics (Cambridge University Press 
Cambridge, England, 1932), 6th cd. Sec especially Sec. 349'

1 R. W. Stewart, Phys. Fluids Suppl., 10, S54 (1967).

of energy conservation (see below). In the following 
we give a  boundary-layer discussion differing signifi
can tly  from S tew art’s. W e then show th a t th is 
boundary-layer solution is consistent w ith the classi
cal solution, and so satisfies the conservation of 
energy. T h ird ly , we ind icate how S tew art’s  ana lys is  
m ay be modified so as to bring it  into agreem ent 
w ith the other tw e approaches.

Consider a  progressive w ave in which the surface 
elevation is approxim ately given by

c/k (1)f  = a  exp [ i ( k x  — <rt)] ,

where a  denotes the am plitude, and the wave- 
number к  and frequency a  are re lated  b y the dis
persion relation for free w aves in w ater of finite 
depth Л:

о 1 =  д к  tanh k h . (2)

A sm all tangentia l stress of the form

т = f  +  t, exp [ i (k x  — W )], (3)

having a  maximum a t  the w ave crests and m inim um  
in the troughs, is now applied to the upper surface 
of the w ater; the normal stress rem ain ing constant. 
In tim e, the mean stress f  w ill produce a  mean 
current in  the direction of w ave propagation. W e 
are not concerned w ith th is here. On the o ther 
hand, the fluctuating p art of the w ind stress 
Ti exp [t'(fcr — c l ) )  which we denote b y r ', can be 
expected to produce a  th in  boundary la y er  whose

737
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Fio. 1. The boundary layer at the free surface induced by & 
tangential stress in phase with the surface elevation. The 
boundary layer is thickest on the rear slope of the wave.

thickness is of order (у/а)', г , as described, for 
example b y Lam b.'

We need not enter into the details of the boundary- 
layer solution but deal only w ith the integrated 
properties of the motion. Let u ' denote the addi
tional velocity in the boundary layer produced by 
the tangential stress and define the mass flux M 
in the boundary layer by1

M  « j  pu’ dz, (4)

the integral being taken  across the layer. If a t  first 
we neglect the tangential stress beneath the layer, 
then by the conservation of momentum parallel to 
the boundary we have simply

Now, if D denotes the local thickness of the boun
dary layer, conceived as alw ays consisting of the 
same marked particles, and if w ' denotes the addi
tional component of velocity normal to the boun
d ary , we have

f - M - / £ * - - / ? *  «
b y continuity. B u t since the motion is progressive, 
d/dx ~  — (1/c) d/dl. Hence,

^  (7) dt с  d t J  pc d t pc

by Eqs. (4) and (5). Since r '  is proportional to 
exp [t(fcc — at) 1 it  follows on integrating with re
spect to tim e that

D = —-.-------h const. (8)— tape

Thus, the boundary layer is thinnest on the forward 
slopes of the waves, and thickest on the rear slopes. 

W e m ay interpret this result physically (see

* Here x and z denote horizontal And vertical coordinates; 
more exactly they may be taken as tangential and normal to 
the surface. See M. S. Longuet-Higgins, rhiL Trans. Roy. Soc. 
(London) A245, 535 (1953).

F ig. 1) b y remarking th a t the greatest acceleration 
in  the boundary layer is where the stress is greatest, 
that is, on the crests of the waves. Hence, the 
forward velocity is greatest ju st a fter  the crests 
have passed, th a t is, on the rear slope of the waves, 
and is least on the forward face. Hence, the rate of 
convergence of the horizontal velocity u ', which 
coincides w ith the rate of thickening of the layer, 
is greatest between these two positions, th a t is to 
say, a t  the wave crests. Lastly, the layer is thickest 
ju s t after the crest has passed, th a t is, on the rear 
slopes, in accordance with the analysis.

Now, the pressure a t  the free surface, or more 
stric tly  the normal component of the stress, is as
sumed to be constant. The thickening of the layer 
is equivalent, in its effect on the waves, to an addi
tional pressure Sp on the upper surface of the wave, 
given by

Sp = pgD  = . -+■ const. (9)
— I ffC

Neglecting the constant, whose significance is ir
relevant here, and using Eq. (2) we find

Sp = tV coth kh (10)

or in deep w ater (e“  »  1) sim ply

Sp = tV. (11)

In  other words a  flu ctua tin g  tangential stress т app lied  
a l the fr e e  su r fa ce  i s  d ynam ica lly  equivalent to a  normal 
p ressu re flu ctua tion  iт Lagging in  spa ce SO0 behind 
the tangen tia l stress.

Note th a t the mean ra te  of working by the tan
gential stress on the waves is given by

W  = r '(u  +  u ) ,  (12)

where u  and u> denote the components of the orbital 
velocity in the wave a t  the surface. If the waves 
are a lready well developed, we m ay assume that 
u ' «  u. Using the relation th a t и  = aa coth kh 
exp [i(fcc — at)] we find

W — J t iaa  coth kh. (13)

Likewise, the work done on the waves by the addi
tional normal pressure ip  is given by

W  = 5p ' ̂  = J t iaa  coth kh, (14)
at

from (1) and (10). C learly , W  = W, im plying that 
the loss of energy in the boundary layer is negligible. 
This conclusion depends d irectly on our assump
tion th a t u ' « .  u.

Now consider the rate  of growth of the wave
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amplitude. We fix our attention on the deep-water 
case when the boundary layer a t the bottom can 
be neglected. The mean density of energy per unit 
horizontal area being given by

E  = hpga*; 

clearly we must have

that is,

—  <  W  dl ’

pga < \rxac

da  ^  т i 

dl 2  p c

-  —  -  2 —  = 2- 
pv dx dx d t

2crk£

bp *  i(r* —  2pvak$).

2  pv = 2 pvkw =  — 2 ipvuki' oz

Sp =* г(У — ipvakt) (23)

applied at the free surface. Instead of (18) we 
now have

da t , .  , ,ТГ =  s ------ a.
d t  2 p c

(24)

(15)

(16)

(17)

(18)

When the applied stress /  vanishes, we have 74 = 0 
and so Eq. (24) reduces to

(25)

If the work done by the surface stress is much larger 
than the internal dissipation due to viscosity, then 
in (16)-(1S) equality signs are appropriate.

I t  will be noted tha t we have neglected the stress 
on the boundary layer due to the shear associated 
with the wave motion in the interior of the fluid. 
This stress is given by

' " - - - ( s  +  s ) '

where u and to are the components of the orbital 
velocity in the interior. Since the motion in the in
terior is irrotational, we have du/dz = dw/dx and so

-  (20)

from Eq. (1). To include this effect in the previous 
analysis we simply have to replace t '  by ( t '  +  r " )  

giving, instead of Eq. (11),

(21)
To the same order, we must include the viscous 
part of the normal stress component p„  at the sur
face. This is given by

(22)

[see Ref. (2) Sec. 348]. Altogether then the applied 
stress t' and the action of viscosity are equivalent 
to an additional pressure

1 - - Ы Л ,

giving the classical law of viscous decay

а к  exp ( —2vk, t) (26)

[see Ref. 1 , p. 624). In this case the tangential stress 
benealh the boundary layer acts to produce a 
thickening on the forward slopes of the waves, which 
combines with the normal stress to produce the 
wave damping.

By adopting a boundary-layer approximation we 
have implied that the thickness (y /a )'n  of the layer 
is small compared with the wavelength 2tr/k ,  and 
hence that (vk2/a ) «  1. However, detailed solutions 
of the full (linearized) equations of motion and 
boundary conditions including an applied tangential 
stress at the upper surface, can readily be obtained 
by the techniques implicit in Lamb’s treatment of 
the problem,1 not only for small values of (vk'/<r) 
but for all nonzero values. Thus, if Ф denotes the 
stream function, satisfying the vorticity equation

(v l - ,,!t)v v  = 0’ (27)
a solution satisfying the condition that —* 0 as 
z —> — <» is of the form

$  =  (A  exp (kz) +  В  exp [{ia/v]inz\ )

• exp [i(kx — o-t)] 1 (28)

where A  and В  are complex constants, which can be 
chosen so as to satisfy the conditions

p.. =  0, p .. = r  (29)

when г = f  = - /  (дф/дх) dL For a given k the 
solution to this problem yields a value of the fre
quency a which is, in general, complex giving a 
rate of wave growth (or decay) in agreement with
(24) when (v tf/o ) «  1.

On the other hand, Stewart, in the paper referred 
to previously,2 found, instead of (IS), the result

da _  tj
dl pc

(30)

This is clearly impossible, for by Eq. (18) it would 
imply a rate of growth of the wave energy in excess of 
that supplied by the wind. The explanation appeare 
to lie in the fact that Stewart’s solution does not
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satisfy the requirement of constant pressure at the 
free surface. To his expression for the potential Ф in 
the interior must be added another term, in quadra
ture with the first, which can be determined by 
applying Bernoulli’s theorem. This gives an addi
tional term to his second expression for the vertical 
velocity W , (his notation), so that on equating it to 
his first expression and comparing coefficients of 
cos kx and sin kx one obtains

S-5--S (31)
in place of (30). Equation (31) now agrees sub
stantially with (18) above.

Because of the integrated boundary-layer argu
ment used here and by Stewart2 it can be seen that 
the simple results (11) and (18) are quite insensitive 
to the actual value of the viscosity or of the eddy 
viscosity, if the flow is turbulent. Therefore, they 
should be very useful in discussing certain aspects 
of wave generation.*

One may easily generalize the conclusions so as 
to include surface tension by noting that the

' M . S .  Longuet-Higgin», Proo. Hoy. Soc. (London) (to be 
published).

boundary layer produces an additional normal stress
— T d2D /dx2 in quadrature with the surface eleva
tion, where T  is the surface tension constant.

In addition, one can consider the effect of an 
applied stress r which is not necessarily sinusoidal in 
space, acting on a wave held that contains more 
than one wave component. To find the work W, 
done by the stress r on a particular wave component 
having wavenumber к it will be seen by Fourier 
decomposition that, provided the wave motions are 
linear and superposable, the rule

IF, -  гй> (32)

is always valid, where u, denotes the tangential 
velocity corresponding to that particular wave com
ponent. Thus, even if r  were independent of ut , the 
work done by the stress on a particular Fourier 
component would depend on the energy already 
present in that component.
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Some effects of finite steepness on the generation of 
waves by wind*
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Abstract General reasons are given for expecting the localization of the stresses exerted by the 
wind on ihe surface of steep gravity-waves. Some recent observations of the phase velocities of 
wind-generated waves can be very simply interpreted by supposing that the energy o f  waves at 
frequencies higher than that of the dom inant waves is propagated at an angle в  to the wind, 
given by cos0 =  c/co, where с denotes the phase speed and c$ the speed of the dom inant waves. 
This in turn is explained by the hypothesis that the stresses are localized on the dom inant waves, 
probably near the wave crests. Tbe hypothesis is similar to the resonance theory of wave generation 
by a turbulent wind, except that the angle 0 is related to the phase speed c0 o f the steep waves, and 
not to the convection velocity V of the turbulent eddies.

Rough estimates of the energy imparted by the tangential stresses confirm that they could play a 
significant part in the growth of the waves.

1. IN TRODUCTION

T h e  inadequacy oflinear theories of wave generation to explain the observed rates of growth 
ol sea waves under the action of wind has led to the suggestion by S t e w a r t  (1967), 
H a ss e lm a n n  (1967) and others of various non-linear mechanisms for wind-wave genera
tion. In this paper we wish to emphasize one likely mechanism that has received little 
attention, namely the localization of the surface stresses, brought about by the very non- 
sinusoidal profile of steep gravity waves.

General reasons for expecting the localization of both the normal and the tangential 
stresses in the neighbourhood of the wave crests are given in Sections 2 and 3. At the same 
time, in a recent paper (1976) R a m a m o n jia r iso a  and C o a n t i c  have described some 
unexpected measurements of the phase-velocities of wind-generated waves which it appears 
can best be interpreted by assuming that the energy has a bimodal distribution with regard 
to direction, and hence that the surface stresses are localized at certain phases of the 
dominant waves (see Section 4).

The. normal stress at the air-water interface has usually been regarded as the probable 
agent for wave generation. But of the two kinds of stress, it is the tangential wind stress 
wnicn is more likely to become localized. In Section 5 we make estimates which suggest 
that st may indeed be possible for the tangential wind-stress to account for a significant 
part of the observed growth of the dominant waves.

Attention is also drawn to the probable existence of strong non-linear interactions in the
. associated with instabilities and even breaking at the crests of the dominant

* Submitted to Deep-Sea Research on 24.6.76.
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waves. These will tend to give a similar angular distribution of energy. Such a process may 
be called ‘speed-locking’.

2. THE TANGENTIAL WIND STRESS

There are at least two factors affecting the distribution of tangential wind stress over the 
profile of gravity-waves, namely variations in the relative wind speed and variations in the 
small-scale roughness of the surface.

Variations in the relative wind speed

By continuity of mass flux we expect the air speed to be generally greater over the wave 
crests than over the troughs. For low waves, a qualitative estimate is provided by con
sidering the perturbation of a uniform, frictionless air stream, of speed U, flowing over a 
sinusoidal boundary z =  a cos (kx—at) propagated with phase speed c =  а/к. The tan
gential velocity of the air is given, to first order, by

u i =  U + (U — c)akcos(kx — at). (2.1)

When U>c, the velocity is greatest at the wave crests. The tangential velocity of the water, 
however, is given by

u2 *  c  ak cos (kx—at) (2.2)
so that the relative velocity is

(u—u2)=  U + (U —2c)ak cos (kx — at). (2.3)

This is greater or less at the crests than in the troughs according as U ^2c. In reality, 
the critical ratio of Ujc will be affected by the presence of shear in the mean flow, which 
also introduces phase differences between иi and u2 (see, for example, Miles, 1957).

At larger wave steepnesses, the sharper curvature of the surface near the crests tends 
initially to accentuate the difference between ui and u2- This effect will be somewhat 
modified by shearing of the air stream and by the tendency of the airflow to separate in the 
lee of sharp corners. Nevertheless, qualitatively we may expect an increase in (u i- u 2) at the 
wave crests, at least for waves of moderate steepness ak and for larger values of U/c. If 
U /c=  1 then it is possible for (ui —u2) to be less at the wave crests than in the troughs, 
just as for waves of low amplitude.

Variations in surface roughness

Among the factors contributing to a variation in the small-scale roughness of the surface 
are the following.

(a) The horizontal scale of the roughnesses is reduced by the lateral contraction of the 
surface near the wave crests. For low waves, this has been discussed quantitatively by 
L o n g u e t - H i g g i n s  and S t e w a r t  (1960,1963). For steep waves, we note that the tangential 
separation As of two neighbouring particles at the surface is simply proportional to the 
surface velocity q, in the frame of reference travelling with the wave:

As cc q. (2.4)
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Hence the relative contraction between trough and crest is given by

(As)crest/(As)irough =  Qcrest/fjtrough (2.5)

If the roughnesses consist of short waves, whose speed of propagation c' is small compared 
to q, then the ratio (2.5) gives the relative change in wavelength of the short waves, assuming 
that they persist throughout the passage of the long wave.

As the crests become sharp, qcrcs, tends to zero, and the scale of the roughnesses becomes 
so compressed that, if the waves do not break, their speed is increased due to capillarity. 
The condition c '» q  is then not met. If the group-velocity cg of the capillaries exceeds q, 
then the short waves will tend to accumulate on the forward face of the long waves, in the 
neighbourhood of the point where c9 =  q. A general discussion, taking account of the 
shearing current near the interface, has been given b y  P h i l l i p s  and B a n n e r  (1974).

(b) Closely associated with the kinematical effect (a) is the dynamical effect of the surface 
contraction in doing work against the radiation stress of the short waves, and so increasing 
the short wave amplitude. For low gravity waves this effect was calculated by L o n g u e t -  
H i g g i n s  and S t e w a r t  (1960), but for steep gravity waves the effect is far more 
pronounced. A detailed calculation would have to take into account the effects of viscous 
dissipation and possible breaking of the shorter waves, as well as possible replenishment of 
short-wave energy by the wind.

(c) Because of the variation in wind speed over the longer waves the wind will have a 
greater capacity to generate short waves at the long wave crests (at sufficiently large values 
of U/c). If short-wave generation takes place preferentially at the wave crests, and if 
Merest >  cg, the short-wave energy will tend to be left behind, and increased roughness will be 
observed on the rear slopes of the waves. If on the other hand short-wave generation takes 
place preferentially in the troughs of the long waves, increased roughness will be found on 
the forward face of the longer waves, possibly at some critical position not far from the crest.

(d) There is probably a tendency, even in the absence of wind, for steep gravity waves to 
develop instabilities near the wave crest. One such instability, resulting in the formation of 
capillary waves ahead of a sharply curved wave crest, was analysed by L o n g u e t -  
H i g g i n s  (1963); see also V a n d e n - B r o e k  (1974). A  more extreme instability is apparent in 
the breaking of steep gravity waves and the formation of white caps on the forward face. 
When, owing to the advance of a steep wave through a group, a steep wave ceases to break, 
the whitecap is left behind, and the surface roughness which it represents is distributed over 
other phases of the wave and possibly reduced by horizontal extension of the elements at 
the free surface.

Significant variations in the surface roughness have been found experimentally by Lai 
and S h e m d in  (1971) and by K i t a i g o r o d s k i i  (1976). The latter reports variations in short
wave energy in plunger-generated waves under the action of wind. The mean-square 
of the high-frequency roughness < £ 2>  was found to vary by a factor of order 10 over the 
phase of the longer waves, with the highest roughness generally occurring near the crests of 
the longer waves. Further observations of this nature would seem to be very desirable. 
Some distinction may be necessary between conditions when the longer waves are 
essentially passive swell, as in the case just mentioned, and when they are being actively 
generated by the wind.

The above discussion strongly suggests that the combined effect of the variation in the

* M easurem ents a t lower values of U/c0 have been m ade by K e l l e r  an d  W r i g h t  (1975).
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surface roughness and of the variation in wind speed will be to produce a tangential stress 
that is strongly localized near the crests of the dominant waves, particularly for the 
steeper waves and for larger values of U/c0.

3. THE NORMAL WIND STRESS

Most calculations of the normal stress have assumed that the dominant waves are of 
sufficiently low amplitude that the perturbations in normal pressure are small and 
sinusoidal.* In fact, as the waves become steeper and the crests more sharply curved, a 
separation of the airflow near the crest becomes increasingly likely. This implies a 
marked difference in pressure between the rear and the forward face of the wave, with the 
strongest pressure gradient occurring near the crest itself.

The work done by the normal stress, is however, limited by the fact that in a progressive 
surface wave the surface slope never significantly exceeds 30°. Thus the normal velocity 
does not exceed ic 0. The horizontal component of velocity, on the other hand, may be equal 
to c0 if the crest is sharp-angled. This suggests that the steepness of the waves may increase 
the work done by the tangential stresses in a greater proportion than the work done by the 
normal stresses.

4. EVIDENCE FROM  MEASUREMENT OF PHASE SPEED

Some interesting observations of the phase speeds of waves under the direct action of wind 
have been published by R a m a m o n j i a r i s o a  and C o a n t i c  (1976). In a laboratory wind-wave 
channel of length 40 m and width 1.6 m and with wind-speeds of 0.5 to 14 m/s, they 
recorded the surface elevation at two points simultaneously in line with the mean wind, 
separated by a distance Ax of several centimetres. Using two independent methods, they 
deduced the apparent speed of each frequency component, in the direction parallel to the 
wind. Typical results, reproduced in Fig. 1, show that while the speed of the dominant 
waves agrees fairly closely with the theoretical speed at the frequency corresponding to 
the energy peak, the speeds of the higher-frequency components are almost constant, and 
equal to the speed of the dominant waves.

Various explanations may be considered and rejected. The first is that the higher 
frequencies represent harmonics bound to the dominant waves. If this were so, the effect 
would appear only in the neighbourhood of certain frequencies, namely integral multiples of 
the peak frequency. In fact, the speed is remarkably constant at all frequencies to the right 
of the peak.

Secondly, the effect is not due to a smooth spread of directions among the higher 
frequencies, the effect of which, for spectral densities varying as cos в  or cos20, is shown in 
Fig. 1. The constancy of the observed speed is also an argument against this interpretation.

Thirdly, the effect could not be produced entirely by a surface current, unless this were 
comparable in magnitude to the phase speed. Since surface currents are generally only about

*In a recent paper, Gent (1976) has introduced a second harmonic into the wave profile, which does not, 
however, correspond precisely with water waves.
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Fig. 1. Phase velocities parallel to the wind, as a function of frequency, measured in a laboratory wave channel. 
U = 5 m/s, c0 =  0.6 ш/s (from R a m a m o n j i a r i s o a ,  1974).

3% of the wind speed, while the observed discrepancies are much larger, this explanation 
also is ruled out.

However, we can interpret the observations on the assumption that the waves of 
frequency greater than the peak frequency are propagated at an angle в to the wind such 
that their apparent phase speed in the wind direction is just equal to c0, the speed of the 
dominant waves. This implies the relation

cos в =  с/Co (4.1)

where с is the phase velocity of the waves.
Among the possible physical reasons for this effect are, first, a localized effect at the wave 

crests, such as wave breaking, which, by non-linearity in the fluid motion, would tend to 
transfer energy to other wave components. This would not be a weak non-linearity, such as 
that suggested by Phillips and Hasselmann, but rather a strong non-linearity, scattering 
energy from one steep, short-crested wave into an infinity of free wave components. We may 
call this a phase-locked wave interaction; and the resulting effect ‘speed-locking’.

A second possibility is that such a local instability might arise from the boundary layer 
at the side walls of the tank, where the wave amplitude is likely to be enhanced by 
reflection. This possibility cannot yet be ruled out, except by experiments in a broader 
channel or in the open sea. We note, however, that a similar though less pronounced 
effect has also been reported by Yefim ov, S o lo v ’yev  and K r i s to f o r o v  (1972) in wave 
measurements over open water.

A third hypothesis, in the light of the previous discussion, is that the wind stresses 
themselves are localized on the wave crests. For the crests of the dominant waves are not 
generally uniform along their length.* Where they are particularly steep we expect a 
concentration of surface stress, either normal or tangential to the long-wave profile. 
Moreover, these spots of high stress will travel forward with the local phase velocity of the 
dominant waves. Hence they will tend to generate waves travelling at an angle with the

‘ The view of the wave surface in fig . 12b of R a m a m o n j i a r i s o a  (1974) shows clearly that the waves in t h i s  
instance are quite short-crested. Hence localization occurs both in the down-wind and cross-wind directions.
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Wavenumber locus for gravity waves generated by a localized surface stress, or by strong non-linear 
wave interactions. k0 is the wavenumber of the dominant waves.

m

Fig. 3. Sketch of the contours of spectral density at an early stage of wave generation, when l//c0» l .  On the 
left is the free-wave energy clustered round the resonance curve. Also shown are subsidiary peaks near 2k0 and 

3ko, representing energy bound to the lowest harmonic.
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wind direction, but with the same speed in the к-direction as the speed of the dominant 
waves.

The effect is very similar to that proposed in P h i l l i p s ’s  theory (1957) of the production 
of waves by spots of pressure in a turbulent wind stream, except that the patches of stress 
arise not from the free turbulence but from the existing waves; and hence the angle 0 is 
related not to the wind velocity but to the phase speed of the dom inant waves.

Whichever interpretation is chosen, equation (4.1) implies a relation between the wave- 
number and the direction of the shorter waves. Let k be the vector wavenumber with 
components (l,m) in the (x,y) directions, and let к =  |k| =  (l2 + m2)*. Assuming the linear 
dispersion relation с =  (g/k)*, we have from (4.1)

(ko/k)* — cos в =  1/k

so
12 =  kko

and hence

l* = k02(l2 + m2). (4.2)

This curve is shown in Fig. 2. It passes through the point (/,m) =  (ko,0) where it has 
radius of curvature ко- At large wavenumbers, it is asymptotic to the parabolas

m = ±  l2/k 0.

There are two points of inflexion, where

м - ] ( § / .  k ^ k 0,

and where

dw  „ 
d I ~ ± 2' / 1

In a continuous spectrum, we may expect the wave energy to lie generally in the 
neighbourhood of this curve, with some dispersion about it, as in Fig. 3. This portion of 
the spectrum represents the free-wave energy. Waves bound to frequencies in the spectral
peak may be found in the neighbourhood of the wavenumbers 2k0, 3k0.......

As a function of direction, the spectrum is bimodal rather than unimodal. This type of 
spectrum is to be expected only under conditions of strong wave generation, and 
possibly only in the earlier stages. At later stages, the spectrum will be slowly modified 
by dissipation and by weak non-linear interactions, the energy being dispersed from the 
peak in the characteristic directions dm/d/ =  + 1/J2; see L o n g u e t - H i g g i n s  (1976) and 
Fox (1976).

In the observations of R a m a m o n a a r i s o a  and C o a n t i c  (1976) the waves were being 
strongly generated, with U/c0 ~  8 or more. In the field observations of Y e f im o v , S o l o v ’y e v  
and K h r i s t o f o r o v  (1972), where a comparable effect was observed, the ratio U/c  was 
generally less.

It is not difficult to take into account the effect of capillarity on the form of the 
resonance curve (4.2). Adopting the dispersion relation

c = (g/K + T /p -k )*



693

400 M i c h a e l  S. L o n g u e t - H i g g i n s

« KT/g/4

Fig. 4. Wavenumber loci for gravity-capillary waves, showing the effect of capillarity on the resonance curve of
Fig. 2.

and choosing units with p = T  = g =  lv ie  have

The family of resonance curves is shown in Fig. 4, with k0 as parameter. The resonance 
curves corresponding to the longer, gravity-type waves lie inside the circle к =  1. The effect 
of capillarity on these is to bend them round towards the /-axis, so that ultimately they 
form closed ovals. The parts of the curve lying outside the circle к = 1 corresponds to 
capillary-type waves. Evidently these bend backwards towards the origin, meeting the 
circle к =  1 in points increasingly close to the wi-axis. In the special case k0 =  (1,0), 
corresponding to gravity-capillary waves of minimum phase-velocity, the resonance 
curve shrinks to zero, as would be expected; there are no other waves with phase- 
velocities less than c0.

In wind-generated waves it is universally observed that the dominant waves occur in 
groups, the wave amplitude varying both in time and space. This is a well-known 
property of any stationary stochastic process having a non-zero spectral bandwidth. An 
important consequence, however, is that the effects of non-linearities in the generating 
process may be accentuated. For even when most of the individual waves are linear and 
sinusoidal, there can still be a few which are steep and sharp crested. Hence the bulk of the 
energy transfer from the wind may be imparted to the steepest waves.

(4.3)

5. DISCUSSION; RATES O F WAVE GROWTH
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Table 1. Observed phase angles ф between air pressure variations and the 
dominant surface waves; and the estimated values o f  z*jz*

A utho r Ф tJ / t*

D obson (1971) 40° 0.80
E llio tt  (1972) 20° 0.20
Sn y d e r  (1974) 45° 0.02

Despite many attempts, the distribution of the normal stress on the surface of a steep 
water wave in conditions of active wave generation has still not been well determined 
experimentally. The distribution of the tangential stress is even less well known. We can, 
however, use the comparatively well-determined value of the total mean wind stress t *  to 
estimate the rates of growth due to the wind, according to various hypotheses.

Let us divide the total horizontal wind stress t *  into two parts: a part t *  corresponding 
to normal pressures on the dominant waves, and a part t* corresponding to the 
tangent stress’, which may also include normal stresses on the small-scale elements.

The direct observations of surface pressure by D o b s o n  (1971), E l l i o t t  (1972) and 
S n y d e r  (1974) have led to widely differing estimates of the ratio of n*/z* (see Table 1). 
Nevertheless it does appear that the mean tangential stress t f  is generally of the same 
order as r*.

Let us write t ,  for the local tangential stress, so that zs = z f  and

t i  =  t?  +  t '

where r ' is a variable stress with mean zero. We may estimate the work done on the waves 
by the tangential stress under two different hypotheses. First, assume the waves are 
sinusoidal and z' varies in-phase with the surface elevation. Then it was shown by 
L o n g u e t - H i g g i n s  (1969a) that the work done on the waves, per unit time and unit surface 
area, is

W  = 7u;

where u5 is the tangential velocity of the particles at the free surface.* in sinusoidal waves, 
the amplitude |и,| is equal to ak • c, and if we take

It'l = Kz*
where К  is a constant we have

W  =  2 |т'| |м5| =  iK a k  ■ c0r*.

For waves under the action of wind it is reasonable to take ak ~  0.14 ( L o n g u e t -  
H i g g i n s ,  1969a), and since the maximum value of К  is not likely to exceed 1 we have

W  «£ 0.07 CqZ* ^  0.07 c0t*. (5Л)
If, on the other hand, we adopt the extreme hypothesis that all of the tangential stress is 

concentrated at the sharpest wave crests, where the particle velocity is of order Co,

• I n  a recent con tribu tion  G arrett and Smith (1976) have show n th a t this fo rm ula  effectively applies a lso  
when т includes the transfer of m om entum  from the wind to  the short waves.
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it follows that

W ~ c 0t * .  (5.2)

A large part of this work can be expected to go into the dominant waves. Comparing 
(5.1) and (5.2) we see that the work done on waves by the tangential stress is increased 
by an order of magnitude.

Working now with orders of magnitude, if we take

t*  ~  z* ~  C p'U 2 (5.3)

where p' is the density of air and С a drag coefficient of order 2 x 10"3, and if we take the 
mean energy density of the waves to be

E = }pga2 (5.4)

where g =  kc02 = crc0 and ak =  0.14, then from the last three equations, the proportional 
growth of the energy in one wave cycle Tp is given by

£  dt oE p да a

If U/c0^ 4 ,  say, this leads to a proportional rate of growth exceeding 10-2 , which in turn 
is greater than the observed rates by at least one order o f magnitude (see P hillips, 1967).

We have not, of course, allowed for the weak non-linear interactions, or for the probably 
more important dissipation of energy by wave breaking and viscosity. Nevertheless the 
above estimate suggests that the action of the tangential stress in generating the 
dominant waves may well be significant.

As against this it should be pointed out that if the wind speed should fall so that 
U/cqcz I, say, then relative velocity of air and water will be greater in the troughs, where 
the orbital velocity is negative, than at the crests. Though the surface roughness of the 
troughs may be less, it is nevertheless possible that in such a case the tangential wind 
stress might act so as to damp the energy of the dominant waves.
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A tractable theory for weakly damped, nonlinear Stokes waves on deep water was 
recently formulated by Ruvinsky & Friedman (1985a, b\ 1987). In this paper we 
show how the theory can be simplified, and that it is equivalent to a boundary-layer 
model for surface waves proposed by Longuet-Higgins (1969), when the latter is 
generalized to include surface tension and nonlinearity. The potential part of the flow 
is determined by boundary conditions applied at the base of the vortical boundary 
layer. The theory may be of use in discussing the generation of waves by wind.

1. Introduction
Since Stokes’s original paper (1847) the irrotational theory of surface waves on water 
of infinite or uniform finite depth has been outstandingly successful in predicting 
many observed wave phenomena. For certain applications, however, viscous 
damping of the waves is important, and it would be highly convenient to have 
equations and boundary conditions of comparable simplicity as for undamped 
waves. A first step in this direction was made by Lamb (1932) who showed that for 
most wavelengths of interest the effects of viscosity on linear, deep-water waves are 
confined to a thin vortex layer near the free surface, of thickness D0 — (2v/cr'ft (where 
v denotes the kinematic viscosity and <r the radian frequency). When lcD0 1 (k the 
wavenumber) we may say that the waves are weakly damped. Lamb (1932) 
calculated the tangential stress at the surface that would be required in a perfectly 
periodic state; hence the energy loss and consequent wave damping in the absence 
of such applied stresses.

Longuet-Higgins (1960) considered the action of a general, tangential stress at the 
free surface, varying sinusoidally in the horizontal direction, f He showed that the 
stress would tend to produce a vortical boundary layer that was thicker at points 90° 
out of phase with the stress. For example, a stress greatest at the wave crest would 
produce a thickening of the layer on the rear wave slopes, tending to pump energy 
into the potential flow in the interior. Similarly, in the absence of any wind the 
viscous stresses at the base of the vortical layer would tend to thicken the layer on 
the forward slopes of the wave and to produce the calculated wave damping (see 
figure 1.)

In several papers Ruvinsky & Freidman (1985a, b; 1987) have independently 
formulated a system of equations for weakly damped surfaces waves in deep water,

t  At second order in the wave steepness it is known tha t vorticity may diffuse into the interior 
of the fluid (see Longuet-Higgins 1953, 1960). Here we confine attention mainly to the linear 
theory, or at least to times after the start of the motion that are short enough for the diffusion or 
convection of vorticity to be still negligible.
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F igure 1. Sketch of the vortical boundary-layer induced by viscous stresses in a deep-water wave.

and have successfully applied it to the calculation of capillary-gravity ripples riding 
on the forward face of steep gravity waves. They formally separated the velocity field 
into its irrotational and vortical components and hence were led to the coupled 
system: (3.1) to (3.5) below. This they then solved for periodic waves by numerical 
integration. Their analysis is summarized in the Appendix to a recent paper 
(Ruvinsky, Feldstein & Freidman, 1991). As a final remark they state that it is 
possible to use a certain ‘simpler set of equations’, but they give no derivation or 
physical explanation. They justify the simpler system solely on the grounds that it 
yields the correct expression for the decay of weakly damped surface waves.

The purpose of the present note is, first, to give an analytical derivation of this 
simpler set of equations and, secondly, to provide a physical explanation for them. 
Indeed we show that the simpler equations express precisely the physical argument 
given by Longuet-Higgins (1969).

In a further discussion (§4 below) we point out that the simplified system of 
equations may be generalized so as to include applied surfaces stresses. Thus it may 
be of use in the theory of wave generation by wind.

2. Dynamics of the vortical layer
In this section we summarize the physical argument given by Longuet-Higgins 

(1969) for gravity waves and extend it to include capillarity.
Consider a surface wave travelling to the right with speed с as in figure 1. Let n and 

s denote coordinates normal and tangential to the free surface, and v . u' the vortical 
components of the orbital velocities v, и in the corresponding directions. If D denotes 
the thickness of the vortical layer and M — Jpu dw, the integrated mass flux across 
the layer, we have by continuity

3D _  dM _  1 SM _  r {2 i)
 ̂dt ds с dt с ’

where r is the tangential stress acting on the layer. If r is proportional to 
exp i (ks -  at) where к is the wavenumber, then integration of (2 .1) with respect to the 
time t gives

D = —— + constant. (2-2)
pcrc

Thus D leads r by 90°. Now in the cause when the tangential stress at the surface 
vanishes, the only other tangential force acting on the boundary layer is the viscous 
force at the base of the boundary layer, which is given by
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where ц  is the coefficient of viscosity and ij is the surface elevation. From (2 .2) and
(2.3) we see that the tangential stress produces an additional surface elevation

(2 4,pc
This produces an added normal stress

dlP = (p g -T ~ j7 ,\  (2.5)

where g and T  denote gravity and surface tension. But from the dispersion relation
cr2 = gk + (T/p)k3 (2.6)

for capillary-gravity waves, equation (2.5) can be written

S^p =  ~ i / ' = —2i/iarkif. (2.7)

In addition we must take into account the viscous component of the normal stress 
pnn at the surface, which may be written

d v
2ll~  = 2fiJcv = —2iucrkfi,. (2.8)on

Adding this to (2.5) we find that it doubles the total pressure, giving altogether
Sp = —4ifiakr/. (2.9)

Clearly Sp is greatest on the forward face of the wave where the orbital velocity is 
upwards. Hence Sp does work against the orbital motion and so damps the waves. 
In fact (2.9) leads to the classical law for viscous decay of waves of amplitude a, 
namely

a oc exp ( — 2vk’lt). (2-10)

3. The theory of Ruvinsky & Freidman
We shall now reconcile the analysis of Ru vinsky & Freidman (1985 a, b; 1987) with 

the above physical argument. These authors formally separate the potential and 
vortical components of the flow by writing

u = V0 + u', и' = V л ф (3.1)
where ф is a vector stream function. They apply to u' a boundary-layer 
approximation similar to that used in Longuet-Higgins (1953, 1960) and arrive at the 
following system of coupled equations:

V2f> = 0, (3.2)

+ + = 0 on г = 11, (3.3)

on {3A)
at ox ox dz

9 ф—'*■ 0 as «-»■—oo, 
02

(3.5)
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together with

Э»' „ д3ф
—  = 2 v ^ V  . (3.6)bt dx2 3z 2_7

In equation (3.3) /с(т/) denotes the curvature operator: Ь2т)/Ьх2/(1 +drj/dx2)l.
In the above equations the outstanding coupling term is v' on the right of the 

kinematic condition (3.4). To remove this we may write

rj = rj* + rj', i)' = JVd< (3.7)

and evaluate the boundary conditions on the new surface rj = ?/*. For simplicity we 
consider first only the linear terms. Treating tj' as of the same order or smaller than rj, 
we see that (3.4) becomes simply

0 9 / *  _  дф
91 ~  0z

without the additional term on the right-hand side. Similarly (3.3) becomes

(3.8)

дф
bt- +  +  =  °  (3 -9 ) 

to be satisfied on z = if*. But by (3.6)

(3,0)
to within a constant. Now operating on both sides of (3.10) by (g — T/p Ьг/Ьхг) and 
using the dispersion relation (2 .6) we see

2 „ g .  (3.11)

So by virtue of Laplace’s equation (3.2), equation (3.9) becomes simply

+  =  0 (3-12)

on 2 = 77*. Lastly we note that the term —4уЪгф/Ъгг represents precisely the 
additional pressure term given by (2.9). For since icr = — 0/0( and к — 0/0z we have, 
apart from the constant term,

— Sp = i/ik ̂  = 4/iku = 4/i . (3.13)
Ot 02

We see then that the last term in equation (3.12) represents an additional pressure, 
half of which comes from the viscous component in the normal stress p nn. The other 
half comes from the thickening of the vortical boundary layer due to the piling up 
of mass induced by the tangential stress at the base of the boundary layer.

It is important to recognize that the boundary conditions (3.8) and (3.12) for the 
potential ф are to be evaluated not at the free surface z = rj but at the modified free 
surface z = r/*. After the solution for ф is determined, together with ?/*, the free 
surface z — ij may be recovered by means of (3.7).
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4. Discussion
In §3 we simplified the analysis by linearizing the two boundary conditions (3.3) 

and (3.4). Some linearization is already inherent in any case in the last two terms on 
the right of these equations. It is not difficult to show that if we retain nonlinear 
terms on the surface slope e, but not in the ratio kD0 of the boundary-layer thickness 
to the wavelength, then (3.8) and (3.12) above are generalized to

W + -  О (4.1)

and дГ  дф = дф
Ш dx dx 0z 1 '

on z = у*, at least to order ег. At order e2, we find a contribution to the mass 
transport and its normal gradient just beneath the vortical boundary layer, which, 
to this order, may simply be added to the solutions of (4.1) and (4.2). The centrifugal 
forces associated with the mass transport velocity must however be incorporated 
Into (4.2) at order e3.

However, the second-order vorticity generated by parasitic capillary waves and 
released from beneath the boundary layers (Longuet-Higgins 1955, 1960) is much 
greater than that from the original gravity wave. This vorticity may accumulate 
very rapidly (in one gravity-wave period) near the crest of the gravity wave and 
produce a crest vortex. This in turn may significantly affect the dynamics of the 
parasitic capillaries (see Longuet-Higgins 1991).

We note that all of the above analysis applies to non-breaking and non-turbulent 
motions in which the kinematic viscosity v represents the molecular viscosity. It is 
highly interesting to consider whether an analogous theory might be formulated for 
breaking waves, in which v would be replaced by a turbulent eddy coefficient. A full 
discussion of this question is beyond the scope of the present note, except to remark 
that generally it will be necessary to include an exchange of mass between the 
vortical and non-vortical parts of the flow across the lower boundary of the vortical 
layer. For plunging breakers, a flux of mass and momentum across the upper 
boundary will also be required. A further requirement is that the vorticity in the 
surface layer should decay in a time interval of the order of a wave period at most. 
A residual mean vorticity may however be added in the form of a surface shear 
current.
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bo' д3ф
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(3 11)

So by virtue of Laplace’s equation (3.2), equation (3.9) becomes simply

Ъ ф (  T \
а Ч |,т )

7f* + 4i/|-y = 0 (3 12)
oz
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We see then that the last term in equation (3.12) represents an additional pressure, 
half of which comes from the viscous component in the normal stress p nn. The other 
half comes from the thickening of the vortical boundary layer due to the piling up 
of mass induced by the tangential stress at the base of the boundary layer.

It is important to recognize that the boundary conditions (3.8) and (3.12) for the 
potential ф are to be evaluated not at the free surface z = if but at the modified free 
surface z = if*. After the solution for ф is determined, together with tf*, the free 
surface z = if may be recovered by means of (3.7).
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forces associated with the mass transport velocity must however be incorporated 
into (4.2) at order e3.

However, the second-order vorticity generated by parasitic capillary waves and 
released from beneath the boundary layers (Longuet-Higgins 1955, 1960) is much 
greater than that from the original gravity wave. This vorticity may accumulate 
very rapidly (in one gravity-wave period) near the crest of the gravity wave and 
produce a crest vortex. This in turn may significantly affect the dynamics of the 
parasitic capillaries (see Longuet-Higgins 1991).

We note that all of the above analysis applies to non-breaking and non-turbulent 
motions in which the kinematic viscosity v represents the molecular viscosity. It is 
highly interesting to consider whether an analogous theory might be formulated for 
breaking waves, in which v would be replaced by a turbulent eddy coefficient. A full 
discussion of this question is beyond the scope of the present note, except to remark 
that generally it will be necessary to include an exchange of mass between the 
vortical and non-vortical parts of the flow across the lower boundary of the vortical 
layer. For plunging breakers, a flux of mass and momentum across the upper 
boundary will also be required. A further requirement is that the vorticity in the 
surface layer should decay in a time interval of the order of a wave period at most. 
A residual mean vorticity may however be added in the form of a surface shear 
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Introductory Notes for Part G 
G. Radiation Stresses

Papers G1 to G13

The flux of energy associated with progressive water is well recognized; see 
for example Lamb’s classic work (Lamb 1932). The flux of momentum, on the 
other hand, has been little, if ever, discussed. The radiation stress, as defined in 
paper G l, is the additional flux o f momentum associated with a train of waves, 
and it has many practical consequences. In Paper G l, it is used to explain the 
coupling between a short surface wave and the orbital motion of a longer wave 
on which it rides. Paper G2 extends the analysis to waves riding on an arbitrary 
surface current. Some specific examples are worked out. The radiation stress 
is in general a tensor Sy, defining the additional transfer of i-momentum in the 
j-direction. In G3, it is shown that the concept explains the phenomenon of “surf- 
beats” and in G4 how it explains the wave “set-up”, which is especially important 
during hurricanes near a shoreline. Paper G5, which could well be read first, is a 
simplified account o f the theory, with a number of applications. It also extends 
the theory so as to include surface-tension.

Note that a subsequent paper by Bretherton and Garrett (1986) derived many 
o f the foregoing results from the general principle of the conservation o f wave 
action. While this supplies deep insight, the radiation stress remains a useful and 
easily visualized concept.

Papers G7 and G8 apply the theory to gravity waves approaching a shoreline 
obliquely, and show that it is the diagonal term in the radiation stress tensor that 
drives the observed “longshore currents” parallel to the shoreline.

Papers G9 and G 10 were motivated by various proposals for extracting energy 
from sea waves. They point out that if some energy is extracted, by whatever 
means, then a corresponding quantity of wave momentum must be extracted at 
the same time. This will produce a mean horizontal force on the device, which 
must be taken into practical consideration. The principle is demonstrated by some 
simple experiments. It is shown also that radiation stresses may be used to propel 
a boat forwards.

Paper G12 is included in this section because o f its involvement with the 
principle o f action conservation. G13 is an experimental paper on short, wind
generated waves riding on longer waves. The theoretical results of Paper G l are 
used in interpreting the observations.
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Short gravity waves, when superposed on much longer waves of the same type, 
have a tendency to become both shorter and steeper at the crests of the longer 
waves, and correspondingly longer and lower in the troughs. In the present 
paper, by taking into account the non-linear interactions between the two wave 
trains, the changes in wavelength and amplitude of the shorter wave train are 
rigorously calculated. The results differ in some essentials from previous 
estimates by Unna. The variation in energy of the short waves is shown to corre
spond to work done by the longer waves against the radiation stress of the short 
waves, which has previously been overlooked. The concept of the radiation stress 
is likely to be valuable in other problems.

1. Introduction
It is well known that when gravity waves of fairly short wavelength ride upon 

the surface of much longer waves such as ocean swell or tidal currents then the 
wavelength of the short waves is diminished at the crests of the long waves and 
increased in the troughs. The phenomenon was pointed out by Unna in a series 
of papers (1941, 1942, 1947). The relative shrinking of the short wavelength L' 
compared to its mean value L  was expressed by Unna (1947) as

JJ
-=- = 1— a242cothi2A (1.1)
Ju

at the crests of the long waves, where a2 denotes the amplitude and 2irjkt the 
wavelength of the long waves; h denotes the total mean depth.

Besides this contraction of the wavelength on the long-wave crests, the 
amplitude of the short waves can be expected to be correspondingly increased. 
On intuitive grounds Unna (1947) suggested the formula

— =  l+ O j& jC o th ^ A , (1.2)
®i

where is the mean value of a’.
Being unconvinced by Unna’s reasoning, we carried out a systematic 

evaluation of the wave motion by Stokes’s method of approximation, as far as 
the second order. This method allows one to calculate rigorously the change in
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wavelength and amplitude arising from non-linear interactions between the 
two wave trains. The results are given in § 2 of the present paper. Equation (1.1) 
is verified, but in place of (1.2) we find

o!— = 1 + a 2&2(f coth &2Л + £ tanh&2A). (1.3)
°т

In deep water (when k2h -> oo) both (1.2) and (1.3) tend to the same result
a!-  = 1 + a2*2. (1.4)
a i

An interesting physical interpretation of (1.3) can be given. In §3 of this 
paper it is shown that when a train of gravity waves of amplitude a ride upon 
a steady current U, the transfer of energy across any vertical plane normal to 
the motion is the sum of four terms

Ecg + EU + Sx U+^phU'3, (1.5)
where E  denotes the mean energy density, cg denotes the group velocity and V  
is a modified stream velocity. S x is defined below. The first two terms of (1.5) 
represent simply the bodily transport of energy by the group velocity cg and by 
the stream velocity U. The last term in (1.5) represents the transport by the 
stream U' of its own kinetic energy. All these terms are to be expected. However, 
the third term S XU  represents the work done by the current U  against the 
radiation stress of the waves. S x is given by

S. M >

which for short waves reduces to \E . The quantity Sx is one component of a 
two-dimensional stress tensor defined in § 3. The presence of this term does not 
seem to have been pointed out previously.

If the short waves are riding not upon a uniform current but upon much 
longer waves, then the alternate contraction and expansion at the surface of the 
longer waves results in work being done against the radiation stress of the short 
waves. In § 5 it is shown that if this work is assumed to appear as additional 
energy in the short waves, then there must be a change in the amplitude of the 
short waves precisely by (1.3) This confirms the conclusions of § 2 .

By the same method we are also able to calculate the change in the form of 
short waves riding on very long waves such as tidal currents. Setting k2h <  1 
in equation (1.3) gives ,

- = 1 + ^ .  (1-7)a 4A
This, however, is valid only when the ratio of the wave frequencies егг/о̂  is still 
small compared with k2h. If both (ril(T1 and k2h are small but of the same order 
of magnitude we find, on the crests of the long waves,

-  =  1 J-a jfc (1.8)

This reduces to (1.7) when стз/о* k2h.
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The results of the present paper may be extended without difficulty to systems 
of waves crossing at an arbitrary angle, and to wavelengths short enough to be 
influenced by capillarity. In the latter case, however, viscosity probably plays 
a predominant role.

2. Determination of the wave profile 
In this section we shall give a rigorous evaluation of the wave motion by the 

method of Stokes (1847) as far as the second approximation.
It is well known that in a real fluid the motion does not remain irrotational for 

long after it is generated from rest, and that a second-order vorticity ultimately 
penetrates the interior (Longuet-Higgins 1953). However, except in the boun
dary layers, which are very thin, the vorticity is quasi-steady and produces only 
second-order currents which, to the second approximation, are simply super
posed upon the oscillatory motion. Since we shall be concerned only with the 
oscillatory part of the motion, it is therefore sufficient to assume the existence 
of a velocity potential ф] any steady second-order currents may be added 
afterwards.

Infinite depth
Take rectangular axes with the ar-axis horizontal in the mean surface and the 
z-axis vertically upwards. Let u, p, p, £ denote the velocity, pressure, density 
and surface elevation respectively. Within the fluid we have the following 
relations

u = V0,
=  0,

l + g z + i  u 2+ |  =  o,

( 2 .1)

the second equation being the equation of continuity and the third being 
Bernoulli’s integral with the arbitrary function of t absorbed into ф. The boun
dary conditions are

( a + p + 1 « .+ | )  _ 0,

and

w j i & m  _ о
[dt dx dz  Зг/ ^ j

lim Уф = 0,
*->—00

(2.2)

(2.3)

where p0 denotes the pressure at the free surface (hereafter assumed to be zero). 
The surface conditions (2.2) may be replaced by conditions to be satisfied at 
z = 0 by assuming the left-hand sides to be expansible in a power series in z

dt \dxdx dz/^Q [dz\dxdx dzj\

(2.4)
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Now let us assume expansions of the form

u =  eu(1> +  e2u® +

ф = e0 <» + eV(2, + ...,
£ =  е£« +  ег£<2> + ...,

^ + gz = epw + e2p{Z>+

(2.5)

where e is a small quantity.* On substituting in equations (2.1), (2.3), (2.4), 
we have

u ci) =

рЫ  э фЮ 
p dt =  0,

and

VV(1) = 0Л 

Urn V^w =  0 ,
Z—►*'“ oo ‘

= 0
Я  \  3z ) ^ 0 

Elimination of from the last two equations gives

(2.6)

(2.7)

(2 .8 )

(2.9)

Equations (2.7) and (2.9) are equations for фт alone, while the remaining equa
tions give u(1), pm and £(1) in terms of ф(1\

As a solution of these equations we select the first-order motion corresponding 
to two progressive surface waves of wave-numbers and k2\ that is

фW = A x eki® cos (fcjZ — crl t + ei) + A 2 ek*z cos {k2x — cr2t + 62), 

where A lt А г, <тъ cr2, kv k2 are constants and

<A = gkv a\ = gk2.

The corresponding free surface is given by

= a1$in.(k-ix — ar1t + ei) + a2eva.(lc2x Jt-cr2t + 6^,

where a , - - A do —
Anlcn

(2.10)

(2 . 11)

(2.12)

(2.13)

* e is proportional roughly to  the surface slope; here, however, e will be used only as ^  
ordering parameter.
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Proceeding now to the second approximation, we have to satisfy
u® =

569

=  0 ,  

lim  V 0(2) =  0,

9£® , т ЭуД>\ _
dt \  dx dx dz "1"Ь 9z2 ™

(2.14)

Elimination of £(2) from the last two equations gives
/Э гй<2) За5®\ ГЭ

(2.15)

(2.18)

On substituting the special solution (2 .1 0 )  in the right-hand side, we see that the 
last group of terms vanishes identically, and we have

3<2 dz d r  >

= 2А1А гк1кг{а1 -  cr2) cos {(ix- k 2) x -(«Tj -  cr2) t + (0, -  02) + in}.
(2 .1 6 )

This and the above equations for ф(2) are satisfied by
ф{2) = (A1A 2k1k2lcr2) e(Mi~ki)t cos {{k1 - k 2)x-(cr1-o-2)t + (61 -  Q2—\ tt)} + Ct,

(2 .1 7 )

where С is an arbitrary constant to be determined by the condition that the 
origin is in the mean surface level. In fact may be found from (2 .1 4 ) :

•p * —
On making the substitutions and writing for short

k1z  — <r1t + 01 = fa, k2x -c r2t + et = fa, (2-19)
we find
C* = — iaj fcj sin 2\jr1 — k2 sin 2ijr2, —a1a2(k1 cos aos'tjr^k^va.fa sin ̂ г)-

(2.20)
Thus if the small parameter e is absorbed into a ,̂ a2 by writing e = 1, we have 

£ = («! sin fa  — \a\k± sin 2fa) + (Oj sin fa  — ]я%кг sin 2 fa)
— a^a^^coefa  cosт{гг — k2sin \Jrx s in ^ 2) + .... (2.21)

It is supposed that one of the waves is short compared with the other, say 
fcj > k2, and we wish to examine the influence of the second wave upon the first. 
For this purpose the terms in af, at , o| are irrelevant, and the remaining terms 
in (2 .21) may be written

al  sin fa (  1 +  а2к г sin fa )  -  a  ̂cos ̂ ,(а2А;г cos fa ) . (2.22)
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Now if P, Q are any small quantities (varying slowly compared to the
expression £ = a^l + P) sin ̂  + ax Q cos (2.23)

represents a wave of slightly modified amplitude
a '-e tiU + P ), (2.24)

and of slightly modified wave-number

*'=*>KS)- (225)
Writing P = a2k2smifr2, Q = —агкх cos (2.26)
we see that the amplitude of the small waves is increased by a factor

-- =  1 + P  = 1 +a,fc2sin^2, (2.27)

and the wave-number is increased by the same factor; the wavelength is therefore 
correspondingly reduced. This factor varies between (\ + a2k2) on creats 
the long wave and (1 — a2k2) m the troughs.

Finite depth
We now suppose that the water is of uniform finite depth h and that k-Ji, k2h 
are not necessarily large. The boundary condition at the bottom (z = —h) is 
that the vertical velocity vanishes

1Щ  = 0) (2.28)

In order that the elevation of the free surface may be given by
£<*> = a± sin \jrx + a2 sin \jr2 (2.30)

in the first approximation, we must have

фа) = —.—Ql cosh fcj.(z + h) cos tIt-, — -—Vs ̂ -2— cosh fc2(z + h) cos (2.31) kyBVDhkxh 14 ' кг$тЪ.къК
where <r J = gkx tanh кг h, of = gk2t&nh.k2h. (2.32)
The evaluation of the second approximation now proceeds exactly as before. 
The algebra is somewhat longer, but may be simplified by omitting all terms 
except those involving the product ага2 in which alone we are interested. This 
being understood we have for the surface condition

^ W ~ + 9 4 i )  o =  ^ s in ( ^ - ^ g) +  J 5 s i n ( ^  +  ^ 2). (2 ’33)

A  =  — | a 1a 2[2<rxcr2(cx — tr2) (1 +  a xa 2) +  crf(af — l ) - < r | ( a | - 1 ) ] , |  34j 

В  =  - ^ a 1a8[2o-1a-2(a1 +  cr2) ( l - a 1a i!) - o r f ( a f - l ) - o i ( a | - l ) ] . /

where
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and where we have written

== coth ЪуК) a2 = coth&2A (2.35)
for brevity. The solution of this equation satisfying Laplace’s equation and 
equation (2.29) is

A cosh (fcj -  k2)(z + h) sin -  ifr2)
r  / „  n . i . , „ /» . 7- n— (crj -  cr2)2 cosh (kx — &2)/i + g(kt — fc2) sinh (&x -  k2)h

______ В  cosh (ky + k2)(z + h) sin {\]r1 + rjr̂ ______
— (o,1 + <r2)2 cosh (fcj + k2)h + g(k1 + k2) sinh (fcj + k2)h ’ (2.36)

On substituting this expression in (2.18) and using the period equations (2.32),
tp0 tlTlQ

gg® = fa a ^ C  cos - f 2) - D  cos {ijr1 + (2.37)
where

c  = [2gi <r2(o'1 -  (г2) (1 + x | a,) + qj(af -1 )  -  oj(ag -  1)J ( f \ -  <гг) ( o ^  - 1 ) 
< r \ (a \ - l ) -  2<г1о-г(а1аг -  1) + 0-|(a| -1)

+ (crf + <r|) -  o '!cr^02+1), (2.38)
and Z) is given by a similar expression with the signs of аг, cr2 reversed. A more 
convenient form for £®, equivalent to the above, is

£(2> = at агк1/а1[Е cos cos r]r2+F  sin sin ijr2], (2.39)
where

< W ( « ! - 1)2 ~  A*(3a? +1) (aj - 1 )  -  A*(3al + 1) (a2 - 1 )  +  A6(a? - 1)2]
_______________________________________+2A8(a2a |- l) (« i  + <*2) 

[(af — 1) — +  l ) ] 2 — 4A2
(2.40)

-  Ъа̂ ссъЩа.Х-1 )  + As(aj-1)] + (ос? + «1 + M g2) [А2(ж1-  I) + A4(aj-1)]
[(a2 - 1) -  ЗА^Ог + A2H  - 1)]2 -  4Л2

(2.41)
and where we have written

о-2Агг = A. (2.42)

The quantities P, Q of equation (2.23) are now given by
P  = (a A K ) J1 sin ̂ 2, |  ^
<2 = (a^kjocj) E cos ijr2.}

The case of deep water is easily retrieved from the above expressions by letting
Oj-^l, a2-> l (2.44)

(in that order, since o* > c 2). We then find
E -+ -1 ,  J1 -> A8 = k jk lt (2.45)

and the equations (2.43) for P  and Q reduce to (2.26).
Let us now suppose that the shorter waves are effectively in deep water 

(fi~Kh is negligible) but that the depth h is not necessarily great compared with
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the wavelength of the long waves. Under these conditions 04 tends to 1 and 
A2(af — 1) becomes a factor in both numerator and denominator of E  and F. 
Hence —20,(2  —Лаг) + 2Л — Л<аг<а|—1)

(2 —Аа2)2 —A2

- 2 а 2Л3(1+ а1)+А 2(1 + З а |)
(2 — Аа2)2 — Л2

Of particular interest to us is the case when A is very small. Then
, 1 + 3a|E  = — as, F  =■ A2

and so F  — a2lc2
1 + 3a£ . 

4a,

4

sin rjr2,

Q  =  -О 2 * га 2с о з ^ 2. 

Hence the wave amplitude is increased by a factor

— = 1 + a2fca(J tanh k2h + § coth k2h) sin

and the wave-number is increased by a factor
h '— = 1 + а2&2 coth &2/i sin ̂ 2.
Ki

This is always assuming that k2h is not very small also.
The case when the longer waves are effectively in shallow water, that is

tanh knh = — =
«1

may also be studied. Such a situation may occur, for example, with waves 
riding on a tidal current. But the small quantities A, ji may be of the same order 
of magnitude. In a typical situation we might have waves of period Tx = 10 
seconds riding on a tidal stream of period T2 = 12-4 hours, in 50 fathoms of water. 
Then _

(2.52)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

3

(2.51)

and (i = kth =

cr, 1\
1 T2 

2nh

A =  -?  =  —1 =  2-2 x 10-* 
(Ti

= 4-4 x 10-«.

Retaining the terms of lowest order in both A and ft, we find from (2.46)

E = - A«
2/4 —A ' /i(2/i-A)2’

and so from (2.43)

p _  A2(3/t —2A) 
M 2 /4 -A )2 ’

(2.53)

(2.54)

(2.55)
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The changes in wave amplitude and wave-number are therefore given by

(2И)

“ d + (2-57> 
When Xj/i is small these equations reduce to

^ = 1 + S f sin^ '  (2-58)

l&f CLand — = l+ -^ sin ^ 2, (2.59)
respectively.

The above results for shallow water may also be deduced directly starting 
from a velocity potential

фт _  _ <h ^ l ek,zcos^ ^  C0B̂  (2.60)
л»2 /С 2 fb

The only other special cases of interest are when the longer waves are shallow- 
water waves and the shorter waves are either shallow-water or deep-water waves. 
However, the results axe all contained in equation (2.41), and the appropriate 
simplifications may be left to the reader.

Standing waves
So far we have considered only waves of progressive type riding on longer waves, 
also of progressive type, travelling in the same direction.

It is evident, however, that when A is very small (A /i) the expressions for the 
shortening or the steepening of the waves are unaffected if A is reversed in sign, 
that is if the direction of one of the waves is reversed. Hence the shortening and 
steepening of the waves are the same whether the second system of waves is 
travelling in the same or opposite direction to the first.

Further, the interaction terms, on which these effects depend, are evidently 
linear in the two wave amplitudes av a2 separately. It follows that, if two of the 
longer waves are superposed to give a standing wave, and if the short progres
sive waves ride on top of these, the relative shortening and steepening will be 
similar. More precisely if

sin [k1x - a 1t + d j  + a2 sin (lc2x-<r2t + 62) + a2 sin (k2x + o~2t + 62)
= a1 sin (kxz  — (Tjf 4-#i) + 2<x2 smk2x cos {<r2t + 62), (2-61)

then on the crests of the longer waves the amplitude of the shorter waves is found 
to increase by a factor

1 + o2&2(i|tanh&2A+fcothfc/i), (2.62)
and the wavelength is diminished by a factor

l + 2azk2cothkzh. (2.63)
If a2 is written for 2aa these formulae are similar to (2.49) and (2.50).
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H tnninriy, И tw o  th/srl w h w m  н>ч a/Jd<vl V/ \n ‘A n & i >- *br/r*. ус-я г / v.Z4 t  тr a ^ e . *Len 
b y  lb /; l in e a r ity  '/ f  t M  to te ra /A ion  UirrtiH f t  UAU/wk th M  th *  « isn sa-*  in  ^ r i d v z d e  
а л /J wav<ri<;/i^ib o f  tb<> f/irred wav*; a re  £J ven b y  v te n tk a i  ехргчйакяж , b o th  
w)i^/i <,()<•. Jorif/er wav<# <ir<; p r ^ r e *  i ye aryl v/Ь е я  th e y  a re  * t*r.d ir.g  v  s r e s .

(Hi this >Ah>-r bari/J, hi shallow water when /  ** r,</. ftKich -r_sr- я. t i e  сЬааге 
•Л form ,of xhort j>r</̂ reswsive wav»* -\щ*яА>. п у п . х\аят teztctkxi r e t i r e  го the 
longer wave*, Hence different formula*} fur УМагАтц wares ге©?нг, т Ы е Ь  may 
be deduced without/ difficulty from equations $.V>j ar.d *2.57).

3. The radiation stresses
In order to interpret physically the conclusions of f 2, ŝre first consider from 

a general point of view the transfer of energy by surface w ares o r  a steady, 
uniform current.

In a non-viscous fluid, the rate of transfer of energy across a surface fixed in 
красе is given by С f

i2=JJ (iJ+ /̂>U2-rp^2)U.nd,S, (3.1)

where n denotes the unit normal to the surface, and z is measured vertically 
upwards. Hence the mean rate of transfer across a vertical plane z  = const., 
per unit distance in the y-direction, is

Я* = J C (2> + i/3U2+/^z)«dz, (3.2)

where z = £(t) denotes the free surface, and the mean value with respect to time, 
indicated by a bar, is taken after performing the integration. We now express 
the velocity as the sum of two parts

u = U + u', (3-3)
where U = (C7,0 , 0) denotes the mean stream velocity and u' is the additional 
velocity due to the wave motion. It may be assumed that the mean value of u 
at any point in the interior is zero _  q (3-4)

and further that U is independent of г.* On substituting (3.3) into (3.2) and 
taking mean values, we have identically

Л . - Д о + ^  +  Д .  +  Д ,, (3-6 )

where R0 = j4  (p + ̂ pu'2+pgz)u'dz,

Ki=J (P + \Р ^'г + P9Z + pu'z) dz U,

B2 = fpu'dz V \

■•'aR A = ^ \ p d z  U ».

(3 .6)

* These assumptions taken together are valid only for irrotational flow; vorticity  m ay 
be taken into account by supposing U to depend upon z.
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Let us consider these terms separately. The first term R0 is simply equal to the 

energy transfer by the waves in the absence of a steady stream. Adapting the 
notation of § 2, we have

£ = a cos (kx -  at + 6} + 0(a2k), 
aa

= к sinh kh cos  ̂ + ̂  (kx—at+6) + 0(a2a), 

where a2 = gkt&nhhh, ajk = c. (3.8)
Hence it is easily found that, to second order,

я« - * д а гс( ‘ + в- й г щ ) <39>
where E = y g a 2 (3.10)
denotes the mean energy density per unit horizontal area and

da , L  21ch \
°e ~ d k ~  ic \ 1 + swh2kh) ( }

denotes the group velocity (cf. Lamb 1932, § 237).
The second term in (3.6) may be separated into two parts

i?i = J?u + i?i2, (3-12)

(3.13)
where i2u = J  ($pu'3+pgz) dz U + \pg№U = EU,

R12 = J  (p+pu'2) dz U — \pg№U = SXU.

The term Ли is self-explanatory; it is the bodily transport of kinetic and gravi
tational energy by the mean velocity U. The term Rn  is more interesting and 
its presence does not seem to have been previously noticed. It represents the 
work done by the mean velocity U against the radiation stress defined by

^*= J  (V+pu'2)dz-\pgh2. (3.14)

To interpret this expression we divide it again into two parts: first take the 
integral with respect to z up to a fixed point, say the mean level z = 0. (If £ < 0 
then p  and u may be extended analytically.) Thus we have

J7* = J ( f  +pu'2) dz — \pghz, (3.15)

say. In this expression the quantity pv!2 represents the well-known Reynolds 
stress, which arises because the excess velocity v! transfers horizontal momentum 
pv! at a rate pu'2; even when u' is negative the contribution to the Reynolds 
stress is positive.

To obtain Sx we have only to add to Tx the quantity

Zx = (P+Pu'2)dz (3.16)
J о
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(the integral being interpreted in the usual way when £ < 0 ). In this expression 
the term pu'2 contributes only a small quantity of the third order. The remaining 
term p  gives a positive contribution to Zx since when £ is positive (the surface 
is above the mean level) so also is the pressure, and when £ is negative so also is p; 
in fact near the mean level p  is given almost by the hydrostatic pressure term
P9(£-z)\ hence -------------

Z x =  I ‘ p g ( £ - z ) d z  =  \ p g ? .  (3.17)
J о

It will be seen that this term arises essentially from the deformation of the 
free surface.

On the other hand, to evaluate Tx we must express p to the second order in the 
wave amplitude a: assuming £ = 0 , we find

? =  - р 9 г - Ж к * о а Ъ ? Ц г + П ) - ( З Л 8 )

It will be seen that the second term on the right is negative, so that the mean 
pressure at a point is actually reduced by the presence of the waves. On sub
stituting in (3.15) and (3.17) we have, to order a2,

T * ~ (3.19)

Z x  =  iw ® 2- 
Combining these, we have

в" - М г г ш + 5 М т Ч ) -  (3'20)
Thus Sx is an additional stress, due to the wave motion, per unit length across 
a plane normal to the direction of wave propagation. It is composed of the 
integrated Reynolds stress, plus tbe stress due to the correlation between surface 
elevation and pressure, less the effect of the reduction in the average pressure 
in the body of the fluid due to the presence of the waves. Altogether

R ^ W  + S J U - E ^  + ̂ jU .  (3.21)

The last two terms in (3.6) are easily evaluated. Since vl vanishes everywhere 
in the interior of the fluid, and £ = 0 , we have

J?2 = p i / 2/c, R3 = $phU3. (3-22)
But since the motion is irrotational there is, owing to the mass-transport velocity, 
a net momentum Ejc in the direction of wave propagation (Stokes 1847), that 
is, a mean velocity Ejcph. Writing

U + Ejcph = U' (3-23)
and substituting in (3.22) we have, to the present order of approximation,

R i  + R ^ b p h U ' *  (3-24)

which represents the transport of the kinetic energy of the current by itself.
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Collecting together the various terms, we find

Rx = Ece + EU + Sx U + \phV'z, (3.25)
where 8X and U' are given by (3.20) and (3.23).

In an exactly similar way we may calculate the flow of energy in the ̂ -direction
in the presence of a steady transverse current U = (0, 7,0). This is given by
the integral -j--------------------------------

= Г (p + \pu '2+pgz + V2) Vdz, (3.26)
' -л

which is easily found to he
Bv = E V + Sv V + lphV \ (3.27)

where (3'28)

In the general case of a mean stream velocity U = (U, V, 0) the transfer of 
energy across a vertical plane in direction n = (I, m, 0) is

(3.29)R  =  J4  (p + l p u '2+ p g z + p u ’ . U +  J/jU 2) (u '  +  U ) . a dz,

which by exactly similar analysis is found to be
. f f  = JBc(,.n + jeU.n + U .S .n  + \p h \J '2( H ' .  n), (3.30)

where сд = (cQ> 0,0) (3.31)
denotes the vector group velocity,

V  = (U+Elpch,V,0) (3.32)
denotes the modified stream velocity, and where S denotes the tensor

s - ( o  £)• <3-33)
S may be called the stress tensor of the wave motion. In full it is

\ • *(H)/
(3.34)

In very deep water (cg = |c) it becomes

S - ( f  "), (« 5 )

and in shallow water (cg = c) it becomes

s - f o  i ) -  l336)
It is interesting to note that there is also a transport of energy corresponding 

to a vertical component of velocity W across the horizontal plane z = constant. 
In fact the mean energy transport per unit horizontal area is

(p+bpu'2+pgz+pw'W + \pW 2) (w'+ W). (3.37)
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The terms independent of W together vanish identically (there is no upwards 
transport of energy in an ordinary surface wave). The terms proportional to 
W  are 2,

(.p + ipu'*+pgz+pw '•) W = 2- ^ c o s h 2k(z + h) W. (3.38)

In deep water (kh >  1) this becomes
IW pgatke-^, (3.39)

which is negligible below about half a wavelength.

4. The relation between wave amplitude and energy in an accelerated 
wave

In the preceding section we have calculated the transfer of energy horizontally 
when surface waves are superposed upon a steady, uniform current. We propose 
in the following to investigate the case when the surface waves ride not upon a 
steady current but upon a much longer wave, as in § 2, that is to say in place of 
the steady current U of § 3 we have instead the orbital velocity of the long waves. 
(This latter velocity is however supposed small compared with the phase velocity 
of the short waves.)

If the wavelength of the longer waves is sufficiently great compared with that 
of the shorter waves, then it is permissible to regard the orbital velocity V  as 
being approximately constant and uniform over a period and wavelength, 
respectively, of the shorter waves. To a certain extent therefore we may make 
use of the formulae of § 3. However, a significant factor is introduced by the 
presence of a vertical acceleration in the longer waves; this alters the relation 
between the amplitude and the energy of the short waves, as will now be shown.

We shall consider from a general point of view the relation between the 
potential and the kinetic energy of a system undergoing vertical movements.

The discussion of energy relations in frames of reference not moving with 
constant acceleration leads generally to complications. Therefore we shall 
agree from the start to refer all energies to a stationary frame of reference.

In the stationary frame of reference, a progressive wave train of amplitude 
a' will have a gravitational potential energy

P.E. = \pga‘2 (4-1)
per unit horizontal distance (apart from terms independent of the wave ampli
tude o' and terms of higher order than the second).

Consider on the other hand the kinetic energy, measured in the same frame of 
reference. A veiy general theorem in dynamics states that the kinetic energy 
of a system of particles of mass mi and velocity v{ is given by

K.E. = p fV 2 + E iw<(v, -  V)a, (4-2)
i

where M  is the total mass and V the velocity of the centre of mass. Now the 
vertical co-ordinate Z  of the centre of mass of a wave train differs from the 
vertical co-ordinate Zs  of the mean free surface by an amount

Z — Zs =±pa'2jM  + constant (4*3)
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(neglecting terms of higher order). Hence the vertical velocity of the centre of 
mass differs from that of the free surface by an amount

V -V s = [ 0,0  , |  (*/»'«/*)]. (4.4)

The first term on the right of (4.2) can therefore be written

\MV%+Wa l{\pa!%  (4.5)

The last term in (4.2) represents simply the kinetic energy calculated with 
reference to a frame moving (nearly) with the free surface and is therefore given by

ip a W lk ',  (4.6)

where 2я/сг' and 2n jk ' are the period and wavelength of the waves in the moving 
frame. But since this frame is accelerated these are related by the equations

<r'2 = g'k', (4.7)

where g' is the apparent value* of gravity

g = 9  + l H '
Altogether then we have

K.E. = fftfV!+ Уда'* + 1  (\pa'Ws). (4.9)

The total wave energy E' may be defined as those parts of the kinetic-plus- 
potential energy which depend on the wave amplitude only, i.e.

E' = y g a'* + l t {lpa'*Ws). (4.10)

When 3a'2/31 and are both small quantities this expression becomes

( « и

5. A physical interpretation of the results of §2
In the situation described in § 2 we may regard the shorter waves as being 

superposed upon the longer waves, whose orbital velocity near the free surface 
has the components

U  =  a2(T,coth.k,h sm \^ 2,1
m  i I6 ,1 'W ==■ — а2(г2созцгй. )

Consider first the changes in wavelength of the shorter waves. We make the 
physical assumption that the wavelength of the short waves expands in proportion 
to the stretching of the surface by the long waves.

* I t  is aasumed th a t (1/7') Sg'jdt is small compared with <r'.
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Now two particles in the surface which initially are separated by a distance 
dx have a small relative velocity (dUjdx)dx. The separation of these particles 
after time t is therefore given by

(52>

where to a first approximation clUjdx may be evaluated at the original position x. 
The relative stretching of the surface is therefore given by

1+ I* 1 — a2k2cotb.k2h sin^2. (5.3)Jo ox
The relative increase in wave-number of the short waves is the reciprocal of
this expression, or . , /cr , 41+ a2fc2cothK2A sm цг2, (5-4)
in agreement with (2.50).

Now to account for the change in the wave amplitude we shall make the 
following assumptions.

(a) The energy density of the short waves is given by (4.11) (despite the dis
tortion caused by stretching of the surface).

{b) The rate of transfer of short-wave energy is given by

E'(ce + U) + Sx U (5.5)
as in §3.

(c) The short-wave energy is conserved (and in particular that work done against 
the radiation stress appears as short-wave energy).

With these assumptions the equation for the budget of short-wave energy 
becomes -isv -j

- fr  = - f x [E'(cg+ U) + Sx U]. (5.6)

To the order of approximation with which we are concerned we may take on the 
right-hand side of (5.6)

E' = const. = \pga\ — Ely (5-7)
and similarly Sx = const., so that (5.6) reduces to

3E '  Э r dU  . e

1 t = - E ld i{c‘ + U )- s * t e '

The physical interpretation of this last equation is that the rate of change of 
the short-wave content between x and x + dx is determined by the divergence 
of the energy transport due to the group velocity cg and the ambient flow U, 
plus the rate at which the convergence of the ambient flow, (dU/dx), does work 
against the radiation stress Sx. Our assumption is that in this case the work done 
against the radiation stress appears as additional wave energy (although it is 
not possible to assert that such would be the case in other circumstances).

The term SxdUjdx appearing in (5.8) is closely analogous to the term 
UiUjdUJdXj which appears in the equations for turbulent energy and the term 
pV. V which occurs in the energy expression for turbulent flows.
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Now, on relacing Sx by (3.19) and E  by E,, we have

ж - - Е > 1 [ (е’ + и н { % - М  (M)
or, since dcjdx < dUjdx,

(6Л0)

Since U represents a progressive wave motion, the operation 3/3x may be replaced 
b y -(1/с,)Э/31, giving (5 n )

Integration with respect to t (from an instant when the surface crosses the mean 
level and V = 0, E  = Ej) gives

i ) £ .  < » .» )

, /2c. 1\?7 
^ = 1 +  ( ^  +  -2) c - -  (5ЛЗ)

Substituting for from (4.11), we obtain
а'г , /2с. 1\  f7 1 3J7 . ..
^  =  1 +  ( ^ + 2 ) ^ - 2 ^ - а Г '  (5Л4)

and so, since U  and W are both of order o2crg,

-  =  1 + W 4/ ca 4$
In the case when the shorter waves are in deep water, Cgfa = J and hence

-  = x+ \ - - i ? w • (6Л6)Oj 4c2 4g at
Since, from (5.1) and (2.32),

U— = ag&j coth fcjA sin ̂ 2>
(5.17)

1 3 № Ла (Те . .  .  , L I l  ’ /-----— =  ̂sin = OjAJj tanh fc2A sm yr2,
g at 9

equation (5.16) is equivalent to (2.49). Thus we have verified both equations 
(2.49) and (2.50) by alternative reasoning.

It will be seen that in shallow water, when the term (\jg)dW!dt proportional 
to the vertical acceleration, is negligible, we have from (5.15) and (5.16)

- - 1+ M -  (6-18)<h \c  4/ cg
d  3 JJ /e in iand — = 1 + -7 —, (5.19)«h 4ca

respectively, the last equation being equivalent to (2.58).
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The derivation of (5.16), (5.18) and (5.19) does not depend upon the sinusoidal 
character of the longer waves but only upon their being progressive. These 
formulae can therefore be expected to remain valid for short waves riding on 
cnoidal or solitary waves, or any other kind of progressive disturbance, provided 
it is sufficiently long.

Equation (5.16) can be further generalized to any disturbance consisting of 
the sum of a number of wave motions in which the velocities dp may be positive 
or negative. Thus we have

where £(+) denotes the sum over all values of i for which dp is positive, and S(_ 
the corresponding sum for dp negative. In shallow water, when dp = ± ̂ (gh) 
we have

It should be noted that the present method is not capable of yielding in a 
simple way the more refined formulae (2.56) and (2.57) which are applicable 
when the ratio of the wave frequencies is no longer small compared with k2h. 
For deriving these, the longer but more rigorous method of § 2 is to be preferred.

6 . On a result of Unna
As mentioned in § 1, a formula for the change in amplitude essentially 

different from that which we have found was suggested by Unna (1941, 1947); 
his result is stated in equation (1.2).

Unna apparently did not work out the wave interactions exactly but relied on 
a physical argument. His reasoning differs from ours in two respects. First, he 
neglects entirely the work done by the longer waves against the radiation stress 
Sx, which we have taken into account. Secondly, he calculates the potential 
energy of the waves in the accelerated frame of reference, replacing g by 
g + oWsjdt in equation (4.1). He then assumes that kinetic and potential energy 
are conserved in the accelerated system.

It is not difficult to show that the kinetic-plus-potential energy is not generally 
conserved in an accelerated frame of reference, even when the acceleration is 
slow compared to the natural period of oscillation of the system. As examples 
we may quote a simple pendulum hinged at a point which is accelerated vertic
ally, or the oscillations of water in a U-tube likewise accelerated.

The argument from conservation of energy therefore fails unless it is applied 
in a fixed or inertial frame of reference, as in §§ 4 and 5. If an accelerated frame 
of reference is used it must be supposed that there is some kind of interaction 
between the dynamical system and the accelerating forces.

In the case of deep water (k2h §> 1) it happens that Unna’s two mistakes— 
neglect of the radiation stress and assumption of energy conservation in the 
accelerated system—exactly cancel. But that they do not generally cancel is 
shown by the difference between equations (1.2) and (1.3).

(5.20)

(5.21)
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7. Conclusions
The change in wavelength of short waves on the crests of longer waves can be 

interpreted as being due simply to the contraction of the particles in the longer 
wave.

However, to account for the increase in the amplitude of the short waves it is 
necessary to allow for the work done by the longer waves against the radiation 
stress of the short waves. This work is converted into short-wave energy, and 
produces a steepening of the short waves beyond what was previously expected.

The radiation stress is likely to play an important part in other situatione, 
for example in waves riding on steady but non-uniform currents. Without close 
examination it cannot be assumed that work done against the radiation stress 
must necessarily appear as additional wave energy. But we have shown that in 
the present situation at least this assumption proves correct.
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The common assumption that the energy of waves on a non-uniform current U 
is propagated with a velocity (U + cg) where cg is the group-velocity, and that 
no further interaction takes place, is shown in this paper to be incorrect. In 
fact the current does additional work on the waves at a rate Sij where is 
the symmetric rate-of-strain tensor associated with the current, and is the 
radiation stress tensor introduced earlier (Longuet-Higgins & Stewart 1960).

In the present paper we first obtain an asymptotic solution for the combined 
velocity potential in the simple case (1) when the non-uniform current U is in 
the direction of wave propagation and the horizontal variation of U is com
pensated by a vertical upwelling from below. The change in wave amplitude is 
shown to be such as would be found by inclusion of the radiation stress term.

In a second example (2) the current on the x-axis is assumed to be as in (1), 
but thehorizontal variation in U is compensated by a small horizontal inflow from 
the sides. It is found that in that case the wave amplitude is also affected by 
the horizontal advection of wave energy from the sides.

From cases (1) and (2) the general law of interaction between short waves and 
non-uniform currents is inferred. This is then applied to a third example (3) when 
waves encounter a current with vertical axis of shear, at an oblique angle. The 
change in wave amplitude is shown to differ somewhat from the previously 
accepted value.

The conclusion that non-linear interactions affect the amplification of the 
waves has some bearing on the theoretical efficiency of hydraulic and pneumatic 
breakwaters.

1. Introduction
When short surface waves of any kind are propagated over the surface of a 

medium in steady but non-uniform motion, they tend to undergo refractive 
changes in length, direction and amplitude. The changes in length and direction 
depend on kinematical considerations only; a quite general treatment applicable 
to water waves has been given, for example, by Ursell (1960). But changes in 
the wave amplitude are less straightforward. Commonly (see Unna 1942; 
Suthons 1945; Johnson 1947; Evans 1955; Groen & Dorrestein 1958) it has been
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assumed without justification that no coupling between the waves and current 
takes place, and that the wave energy is simply propagated with a velocity equal 
to (U + cy), where cg is the vector group-velocity and U the local stream velocity. 
On the contrary, in a recent paper (Longuet-Higgins & Stewart 1960; this paper 
will be referred to as I), it was found that short gravity waves, riding on the backs 
of longer waves, are modified to a much greater extent than would be predicted 
if there were no interchange of energy between the short and the long waves. 
The discrepancy may be attributed to a term in the equation of energy transfer, 
called by us the radiation stress, and previously overlooked. The stress term occurs 
quite generally, and must give rise to changes in the wave amplitude in other 
situations besides the particular one that was considered.

The purpose of the present paper is to study the changes in amplitude of gravity 
waves riding on steady but non-uniform currents. The subject is of special in
terest owing to its possible application to bubble-breakwaters, whose action is 
probably to be ascribed largely to the stopping power of a horizontal current 
opposing the waves (Taylor 1955; Evans 1955; Straub, Bowers & Tarrapore 
1959). Ocean waves entering tidal streams or crossing river flows are known to 
be subject to a similar effect (Unna 1942; Johnson 1947). The following discussion 
will be limited to the case of deep currents, that is to say, those for which the 
change in currcnt velocity in a vertical distance equal to the wavelength is small 
compared with the wave velocity itself. But quite similar results would apply to 
waves on shearing currents which penetrated to a depth of only a fraction of a 
wavelength.

In our first example we consider a system of waves superposed on a current 
which varies gradually in the x-direction (the direction of wave propagation), 
and in which the variation in surface current is made up by a vertical upwelling 
(or down welling). The modification which the currents produce in the wave form 
is calculated rigorously by a perturbation method. It is found that, while the 
variation in the wave-number к is given by the expeoted formula

1 dk 1 dU ,j
Jcdx c+2U dx ’

the variation in the wave amplitude, on the other hand, is given by
Ida _  2c + 3U dU „
adx (c + 2U)2 d x’

which is a higher rate of change than if there were no interaction between waves 
and ourrents. It is shown that this last result is consistent with the assumption 
that the equation governing the growth of wave energy E  is

| [ * K + O ) ] + « . g - 0 ,  (1.3)

where Sx is the radiation stress mentioned earlier. (In deep water, Sx = \E.) 
This is to say that in addition to the transport of energy by the group-velocity 
and stream velocity, the current does work on the waves at a rate SxdUjdx per 
unit distance. In §4, this conclusion is shown also to be consistent with our earlier



728

Short gravity waves on non-uniform currents 531

results in I concerning the steepening of surface waves on long waves or tidal 
streams. Integration of (1.3) leads to the result

a oc [c(c + 2E7)]-i. (1.4)

In our second example we consider a situation very similar to the first, but in 
which the increase in surface current U is made up, not by a vertical up welling 
from below, but by a horizontal inflow from the sides. The results are strikingly 
different. Although the variation in wave-number is the same as in (1.1), the 
variation in amplitude is now given by

Ida _  c+ U  dU . p.
~aWx ~ ~(c + 2 U fl to '  1 ‘ ]

This is accounted for by including in the energy balance the advection of wave 
energy by the transverse current V, as well as the work done against the corre
sponding stress component (equation (6.4)). The amplitude a is now found

aoc [(c + 2l7)/c]-i, (1.6)

which is a weaker variation than in the previous case.
The appropriate generalization of the equation of energy balance is shown to be

V .№ „ +  U)] +  № i ( | 3  +  g ) - 0 ,  (1.7)

where S denotes the radiation stress tensor. In § 8 this is applied to a third 
example, that of waves crossing a shearing current obliquely. The changes in 
wavelength and direction of propagation в are as found by Johnson (1947), but 
the law governing the wave amplitude is shown to be

a oc (sin20)- i, (1.8)
which differs from Johnson’s result.

2. Two-dimensional current: an asymptotic solution
In thie section we shall obtain a formal solution for surface waves on a non- 

uniform current U(a;) which has no transverse component. The solution is to be 
valid when

- S « i .  (2 Л >ox
where tr is the wave frequency; in other words, the ohange in stream velocity U 
over one wavelength L  (that is, LdUjdx) is assumed small compared with the 
wave velocity Lo’jiir.

General equations 
It win be supposed that the velocity field u is irrotational:

u = V0 ; (2-2)
th a t the fluid is incompressible:

V .u = V2̂  = 0; (2-3)
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and that viscous effects are negligible. Then we have Bernoulli’s integral

? + g z  + №  + ^  = C,  (2.4)

where p , p, g denote the pressure, density and acceleration of gravity, and z is 
the vertical co-ordinate, directed upwards. С is a constant. Ifz = fis the equation 
of the free surface, then for the two boundary conditions there are the kinematical 
condition , 0  (2.5)

dt \dx dx dy dy d z * 
and the condition of constant pressure, which by (2*4) may be written

(2e)
It is convenient to replace these last two equations by conditions to be satisfied 
at the mean surface level z = 0 ; this may be done by assuming the potential ф 
to be analytic and by expanding in a Taylor series in z:

дЛ + (д1 д1 Л д1 Л \
bt \д хд х 'д у д у  dz)t=9r *\dz\dxdx ' дуду dz)

г£+(‘"‘+ й ) _ + г [ 5 ( 4“' + ¥ ) ]

4-... = 0,
2 - 0 (2.7)

(2 .8 )

Lastly, we assume that the waves are effectively in deep water, so that as z -»■ — oo 
the periodic part of the motion tends to zero.

Form, of the solution
We seek a solution having the character of a time-periodic wave-motion super
imposed upon a non-uniform steady flow. Let us then substitute

ф = и0х + (аф10+рф01) + {о?фг0 + а.рф11+РФм) + --;\
£ =  K i o  +/?£oi) +  («Ч*> + « К и  +/9*5») + - ,  J

where U0 is a steady u n i f o rm  velocity, the velocity of the stream at x = 0; ф01 
represents a steady n o n - u n i f o rm  current, zero at x —  0 ; and ф10 represents an 
undisturbed surface wave; a and /3 are arbitrary small parameters proportional 
to wave steepness and to the velocity gradient of the current respectively. The 
terms а?фш etc., are correction terms of higher order, necessary in order to 
satisfy the boundary conditions at the free surface. We are particularly interested 
in evaluating the second-order term а.(1ф1г, whioh is the lowest-order interaction 
potential between the waves and the current.

It may be worth remaridng that to eliminate the uniform current U0 by taking 
axes moving with velocity U0 would not be convenient, since in the new frame of 
reference the motion would no longer be perfectly periodic in time. This is 
because the modified wavelength is generally a function of x, as will be seen below. 
Clearly the choice of axes must be made so as to correspond with the physical 
problem; if the source of the wave-motion is periodic this determines the appro
priate frame of reference uniquely.
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Retaining terms as far only as a/?, we have from (2 .8)
V0 = (U0,0JQ)+a.V<f>10+flV<p01+afi4<f)1

and so

дф 
Ft ~

£ =

a
дф'10 дфп

дфюдф01 дф10 дф01 дфы 0^о1\
дх дх by ду dz dz J

dz

dz =  0,

533

(2.9)

+ « е ( ц ? Ь

а - > - 4 Э ? + ' Й ) + - -

Substitution in (2.7) shows at once that

С = *175.
The terms in a now give

*.+ (5 + 4 5 ) A.-».

to be satisfied at 2 = 0 . On eliminating Cio> we have

(1 +с,4 )^ “ +г?эГ - 0

If we choose for ф10 the wave potential
ф10 = A  еМ-1'Л 

where 4  and fc0 are constants and
q = z + ix,

then ф10 satisfies Laplace’s equation (2.3), and from (2.13)

(cr -U 0k0)2 = Re
introducing the reference velocity

c0 =  *Л Ф о)
and the non-dimensional parameter

Г  =  U Jc0

we have from (2.16) cr = c0fe0(l +y).

(To ensure continuity as у  (or !70) tends to zero, we have adopted the 
sign in the square root.) From (2 .12) and (2.19), we have also

(2 .10)

(2 .11)

(2 .12)

(2.13)

(2.14) 

(2.16)

(2.16)

(2.17)

(2Л8)

(2.19) 
positive

(2 .20)
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Returning to equation (2.7), we see that the terms in p  give equations for ф01 
formally identical with (2.12) except that the time derivatives are now zero:

77 _  дф01 _

dx dz ~

g U + U 0^  = o

(z = 0), (2.21)

whence + = 0 (z = 0). (2 .22)
ox oz

We require a potential ф01 to represent a steady flow having no transverse com
ponent дф01/ду, which satisfies Laplace’s equation, and also the condition 
(Э̂ 01/Эа:)а;=0 = 0 . Such a potential is

Фох = C0k0(x2-z*) +Dccz, (2.23)
where D is a constant to be determined. From (2.22),

D = -2 y 2. (2.24)
Therefore фй1 = c0&0( x2 — z2) — 2y2c0z,|

£oi =  - 27 x ’< J

also Щ  = / 3 ^  = 2/Зс0к0 = 2>?<r(l +7 Г 1 (2.26)

in accordance with (2.1), since fi is assumed small.

The interaction potential 
In equations (2.7) the terms in a/3 yield

(2.26)

(2.27)

(3 3 \ дфп (дфы 3£01 дфп 3£10\ /  3Vox ,  д Щ  __
[dt+ u°dxjfa ' + \ Ж Ъ  W f  V 10 3z2 + Sbi d z * ) - " ’

ж? I I тт m I дфа). дф10дфл \ ~ /3 „  3\ 301O 
+  ^  +  ^0 P u  +  ^  ^  ^  +  boi ̂  +  U* t e )  dz - 0,

to be satisfied when z = 0. (Note that 320ol/3<3z = д2фй1)дхдг = 0.) From these 
equations may be eliminated by applying the operator g~x(d}dt-\-U0djdx) to 
the second equation and then subtracting the first. Without substituting explicit 
expressions for ф10, 0 O1, £10 and £01 but using (2.12) and (2.21) and the fact that 
dф10|dz = к0ф10, we obtain*

g \dt 0 d x )  dz

( * “ »)• <2-28>

Now, after substitution from (2.20) and (2.25), the right-hand side of this equation 
becomes [2г&0(1 — 2y -  2y2) — ±Щх~\ ф10. (2.29)

* In the calculation of фп the complex form of ф1а can be used, since on the right of 
(2.28) only products involving ф10 and ф01 occur, and фп is real.
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As a trial solution let us write

4>11 = i(kl q+liq2')<j>10, (2.30)

where q = z + ix  and kv lY are constants to be determined. Then the left-hand 
side of (2.28), when z — 0 , reduces to

[(1 + 2y) i(kx + Щ х) -  2iy4\jk0] ф10. (2.31)

On equating coefficients of ф10 and хфхо in (2.29) and (2.31) we obtain

Ц  =  2 1 4 -  1

(2.32)

’(1 + 2 у ) ’

The second of equations (2.27) also gives

0£u “  [(У*1 + 2Г2йо) ~ ix{2kl + 2yk\ -  2y% + кйкг) + kQlfx2]с0ф10. (2.33) 

This then is a formal solution of our problem.

Interpretation 
Combining (2.33) with (2.20), we have

а£ю + а/?£п = a£10 ĵ l + 2У + l\x ^  -  2fik0x { \ +У~Щ  + ^ ) ] 1 2̂'3^

Correct to order /?, this expression may be written

“Cio + «^ 11  = езф {‘ \ k°x ~ P ( ^  + 2? +****)])

x [ . - 2M ‘ +r - f  + i ) ] -  (2'35)
Now this represents a wave of slowly varying amplitude and wavelength. The 
local wave-number к is given by the ж-derivative of the exponent:

k = k0-2 p l\x . (2-36)

The proportional rate of change of the wave-number at x — 0 is therefore

/ 1 ЭЛЛ _  2pl\ __ 4/?fc0 (2.37)
{ к д х } ^  k0 1 + 2 у

by (2.32). From (2.19) this may be written

/ l ? f c \ _____ 2 _  iSCf (2.38)
XkdxJ^o l + 2yc0 dx'

The amplitude a of the wave is given by

( 2  3 9 )
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so that the proportional rate of increase is

(2.40)

by equation (2.32), or, from (2.26),

(2.41)

The mean surface level 
Equation (2.25) shows that there is a small change in the mean surface level

glVenby PU  = -2/?yz, (2.42)
corresponding to a mean gradient — 2/?y, as we should expect in a non-uniform 
flow. The additional terms a£10 + a/?£n give no change in the mean level. Therefore 
to order a/? the mean surface level is unaffected; only at higher approximations 
is any change apparent.

3. A physical discussion
We have seen that the interaction between the waves and the current can be 

interpreted as a distortion of the waves, resulting in a change of wavelength and 
amplitude. In this section we shall try to interpret these changes on the basis of 
rough physical reasoning.

As before, we denote by <r the angular frequency of the waves (constant over 
the whole field of motion) and by a, k, U, с the local wave amplitude, wave- 
number, stream velocity, and wave velocity relative to the stream. Our object 
is to obtain a, к and с as functions of U and of their values a0, k0, U0, c0 in some 
fixed plane x = 0.

Consider first the variation in wavelength. Now, the apparent velocity of the 
waves relative to a fixed plane x = constant is equal to (c-f TJ). The apparent 
angular frequency of the waves is therefore k(c + V). But by hypothesis this 
quantity is equal to a at all points, so that

But the waves being in deep water we expect that their velocities c, c0 relative 
to the current will be given by the olassical formulae

The change in wavelength

k{c+U) = cr = k0(c0 + U0). 
к _Cq “Ь ZJfy
к0 ~ c + U '

(3.1)

Thus (3.2)

c* = glk, cl = g/k0. (3.3)

Combining (3.2) and (3.3), we have

(3.4)
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where у = U0jc0 as before. On differentiation with respect to x, we have

2c Эс i i  /Эс am  
cl dx 1 + у  c0 \3a:+ dx J ’ 

and hence at x  = 0 , where с = c0,
Эс _  1 dU 
dx 1 + 2y dx '

Since by (3.4) к varies as c-2, we have (by logarithmic differentiation)
1 die 2dс 2 1 dU

(3.6)

(3.7)к dx с dx 1 + 2y с dx
in agreement with (2.38).

It will be seen that equation (3.4) is a quadratic in c/c0, and has the solution

| { ‘ + У [ 1 + 1 ! Н г Ч )  ( 3 8 )c0 2 (l+ y ) I
(see Unna (1942), for the case у  = 0). In the square root, the positive sign has 
been taken to ensure continuity as x -*■ 0. It is interesting to note that no solu
tion can exist when ... . rr

1 + ^ < 0, (3.9)
co

or - u > — , (3.10)
4 ( 1 + 7 ) ’

that is to say, when the stream velocity is in the opposite direction and exceeds 
in magnitude about one-quarter of the initial phase velocity of the waves. At 
the critical point, when the radical vanishes, equation (3-8) shows that

c 1 (3.11)
2 ( 1 + 7 ) ’

с cn с4)
In other words the stream velocity becomes equal and opposite to the local 
group-velocity \c\ the wave energy can no longer be propagated against the 
stream. We shall see below that the waves tend to break before this point is 
reached. From (3.8) we have also

W + Y j  j2 (3.13)
К  VoJ il+ V t1+ 4(1+7 ) C7/c0]| '

The changes in wave amplitude 
The change in wave amplitude is interesting, for it enables us to decide between 
various conflicting hypotheses.

It was shown in I that if waves of amplitude a are propagated over a stream of 
uniform velocity U, the mean rate of energy transfer across a plane x  = const, 
is given (to order a2) by

Rx = E(ce + U)+Sx U+iEU*lc+lphU*, (3.14)



735

538 M. S. Longuet-Higgins and R. W. Stewart

where E  denotes the wave energy per unit horizontal area:

E = bpga*-, (3.15)

cg denotes the group-velocity of the waves; in ‘deep’ water,

ca = i c = i°7*; (3-16)
h is the mean depth of the stream, and Sx is defined by

Sx = E ^ ~ i y  (3.17)

The first term E(cg + U) on the right-hand side of (3.14) represents simply the 
transfer of wave energy by the group-velocity plus the stream velocity, and is 
to be expected. The last two terms may be written together as \phU'3, where

U' = U + Ejpch (3.18)

represents the mean stream velocity modified by the presence of the mass 
transport. The intermediate term Sx U has been discussed in I. It represents 
a kind of coupling between the waves and the current. By analogy with the 
Reynolds stress, Sx has been called the ‘radiation stress’.

Now, in the present problem of waves on a non-uniform stream, let us suppose 
that the transfer of total energy is given with sufficient accuracy by equation 
(3.14) and further that between the planes x = 0 and x = const, there is no 
reflexion of wave energy. It follows then that

Rx = R0 = const. (3.19)

and so Д Дг = 0- (3.20)ox

Equation (3.20) is merely an expression of the conservation of the energy, 
when dissipative mechanisms are ignored. However, it is possible to regard it 
as the sum of two equations, one representing the balance of wave energy and 
the other the balance of mean flow energy.

For the exact form of this division, no unique answer is given by physical 
intuition. (At least our initial intuition, as well as that of Unna (1942), Evans 
(1955), Suthons (1945), Groen & Dorrestein (1958) and Drent (1959) yielded 
results which sometimes differed from one another but which were all, it as 
appears, incorrect.) Now, however, we have an arbiter for conflicts of intuition, 
for the correct division of (3.20) must yield results consistent with § 2.

The first five of the authors just named made the assumption that there was 
no interchange of energy between waves and current and thus obtained

l[E {ce+U)} =* 0. (3.21)

It is clear both from the results of I and from § 2 of the present paper that this 
assumption cannot be correct.
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One might then argue that all the terms dependent on E  belong properly to 
the wave-energy equation, and write

b_
dz

§EU*1E(ca +U) + SXU + j = 0 , (3.22)

or, since the last term may be included with the mean flow,

^ [E (c g+ U )+ Sx U] = 0. (3.23)

Each of these equations (3.21), (3.22) and (3.23) yields results in conflict with § 2 .
If, on the other hand, it is argued that the effect of the current variation on 

the wave energy is through the work done by the rate of strain against the 
radiation stress, then we have

Thus, in deep water,

*-[E{cg+ U ) ] + S , ^ - 0 .  (3.24)

l[25(£c+i7)] + p ^  = 0. (3.25)

Carrying out the differentiation at x = 0, where U =  yc, and using equation 
(3.6), we have г l air

:Не(, + 2г) ] Ч - — )+ - Ь _ 0 , (3'2e)dx
, ( l d E \  4+6y IdU

"h'n“  b s L ' w s '  (3-2,)
or, since E  is proportional to a2,

/1  9a\ 2 + 3y 1 dU
(l + 2y)2c dx

(3.28)

in exact agreement with equation (2.41).
It appears then that the correct assumption to make is equation (3.24), rather 

than the alternatives (3.21) to (3.23). We interpret this as follows:
In a non-uniform current the energy of the waves may be regarded as being 

transported with the group-velocity plus stream velocity, provided in addition 
we suppose that the mean stream does work on the waves at a rate SxdU/dx per 
unit distance, where Sx is the radiation stress. Equation (3.24) is then the expres
sion of the energy balance for the waves.

An integral for the wave amplitude 
An exact integral of equation (3.25) is

E( \c + U) с = const., (3.29)

for on differentiating the above and dividing by c, we have

l [ E ( ic  + U)] + E ( i c + U ) ^  = 0, (3-30)
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which by (3.6) is equivalent to (3.25). From equation (3.29) we deduce

J®. — co(cQ + m  /о qi\
E0 c(c + 2U) ' ( '

co(co +  2^o)l^ n  ^

This law of amplification is illustrated by curve (1) of figure 1. At the critical 
point, where U = —\c, the amplification of the waves becomes theoretically 
infinite. In practice the waves may be expected to break, but the present small- 
amplitude theory becomes inapplicable before this point is reached.

and thence

-0-25 0-0 0-25 0-5 0-75 Ю
Ufoо

F igube 1. The amplification factor o/a„ for waves on a current V in the direction of wave 
propagation: (1) with vertical upwelling from below; (2) with horizontal inflow from the 
sides. [o0 and c0 denote the values of a and с when V = 0.]

We are indebted to a referee for pointing out that a result similar to (3.29) 
was derived in an unpublished report by Kreisel (c. 1944, pp. 23-24). Kreisel 
started from the energy integral

and assumed that (in our notation)
ф = Ux — acek*cos (kx—crt),
£ = a sin (kx — crt), 

where съ = gk = (tr — kU)*.
Substituting in the integral and treating U, c, a and к as constants during 
differentiation, one finds eventually

\<тагс{с + 2и) = const.
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(higher powers of a being neglected). Since cr ia constant this agrees with (3.29), 
and indeed provides a physical explanation of that equation. The crux of 
Kreisel’s argument is the assumption that дф/dt contains no constant terms pro
portional to a2. This is true for deep water, but not in water of finite depth.

The rules for the variation of wave-number and wave amplitude expressed by
(3.13) and (3.32) may be regarded as generalizations of the results found in § 2, 
the only additional assumptions being that k^dkjdx  and а- 1Эа/Эж depend on 
the local values of U, с and dU/dx and are linearly proportional to dUjdx.

The analysis of § 2 is correct as far as the first power of fik0x only. In order to 
verify that (3.13) and (3.32) are correct to this order we write

= e, (3.33)

so that ^  = 1 +e, — = y(l +e). (3.34)
co

Substituting in equations (3.13) and (3.32) and neglecting ez we find, after some 
reduction,  ̂ 2y

> (3.35)
a = y (2 + 3y) 
a0 (l + 2y )2 ’

of which (2.36) and (2.39) will be seen to be special cases.

4. An application to tidal currents
As an example of the application of the general formulae, and as an indepen

dent check, we apply the formulae to the case of surface waves on a tidal current, 
for which a solution was obtained independently in I.

A short wave of mean amplitude %, mean wave-number and frequency cr 
is assumed to be superposed upon a long (shallow-water) wave of amplitude a2, 
wave-number k2 and frequency cr2, travelling in the same direction as the first. 
The conditions of the problem are that

crjcr, =  A 1 ,| (41)
k2h ~  ii

where h is the mean depth of water; also
g-fcjb ^ (4.2)

This last assumption ensures that the short waves are effectively in deep water, 
so that o'1 = (gfc1)i, сгг =(дК)Ькг; k1h=(/ijX)2. (4.3)
In the case of tidal currents both A and ц  may be of order 10“* in a typical case, 
but the ratio /t/А, = (kyh)^, need not be greater than about 2 in order for the 
condition (4.2) to be satisfied.

Now let us reduce the long wave to a steady current U by superposing on the 
whole system a uniform stream — (gh)*. Choosing the origin of x  at a node of the 
longer wave, we have

U = — (gh)$ 1̂ -  ~  sin k2xj  + 0{az). (4-4)
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At x = 0 the stream velocity and the velocity of the short waves are given by
U0 = — (gh)i; c0 = (glkj)K (4.5)

Thus, у = —' = - fa h f i  = (4 .6)

Also e = — “ —̂ s in k tx. (4.7)

On substitution in (3.35), we find

i  =  1 ______

ka A - 2 f i h  2 ’ 
q ( 2 A - 3 ^ a« 
a0 (A — 2fi)z h sm ^ x>

(4.8)

in agreement with equations (2.56) and (2.57) of I.* Wfien /ijX is sufficiently 
large, then k

7 = l+ - r sm«,a:,
*o «
a , 3d, . , .
— =  1 H— r s m L r  a„ 4 A

(4.9)

5. Waves on a converging current: no upwelling
In the last three sections we have been concerned with an entirely two-dimen

sional motion in which the transverse component of the mean current was zero; 
the increase in the stream velocity with horizontal distance was made up by a 
compensating current upwelling from below. We now study a somewhat dif
ferent situation in which the vertical component of current vanishes and the 
increase in the horizontal a;-component U is compensated entirely by a horizontal 
in-flow V from the sides: лтт 0F

э ^ + з ^  =  0 - (5Л)

The analysis for the asymptotic solution is identical with that in the previous 
case, § 2, as far as equation (2.22). Now, however, instead of the potential (2.23) 
we must choose a potential ф01 to represent a flow having zero vertical com
ponent, and satisfying the equation of continuity (5.1). We take

0oi = c0k0(x*-y*) + Dc0z, (6.2)
and from (2 .22) we see that the constant D has to be — 2y2 as before. Thus,

0oi =  co ко(х* ~  У2) ~  27 2coz> I
Coi =  - 2 y * .  J

and (2.26) still applies.
In the equations (2.27) for the interaction potential, the additional terms all 

vanish identically, so that (2.28) is still valid; the only difference is that the last 
term £io320oi/3zz vanishes, and so in place of (2.29) we have

[2t&0( — 2y — 2y2) + ф10. (5.4)
* In  equation (2.67) of I, the second term  in the curly bracket can be neglected, since

А < p <  1.

(5.3)
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Now, on equating coefficients between (2.31) and (6.4), we find
у + 2y2 + 2y3

** 4A°' (l + 2y )2

4  =  2 ;̂? -———  ,1 0 1 + 2y

(6-5)

Since the value of l\ is still the same, equations (2.34) to (2.38) are still applicable 
and in particular (2.38) shows tha t we have the same rate of change of the 
wave-number к as in the previous case.

But, since кг has a different value, equation (2.41) must now be replaced by

= ___L iZ _ .1 —  (5.6)
\a ^x)x-o (l + 2y)2c0 dx ’

showing that the change in amplitude of the waves is different from the 
previous case.

6 . Physical interpretation
The current U  along the ж-axis being as in § 3, the changes in wave velocity 

and wave-number which were derived in that section (by arguments depending 
only on kinematical considerations) are still given by (3.6) and (3.7). This con
firms what was found in § 5 concerning the change in wave-number.

The change in wave amplitude, however, must be related to the equation of 
energy transfer. Now it was found in I  that in the presence of a horizontal 
stream U = (U, V, 0) not necessarily in the я-direction, the mean transfer of 
energy across a vertical plane whose normal is n = (I, m, 0) is given by

E  = E(ce+ U ).n  + U .S .n  + bphU'2(V ' . n), (6.1)

where cff denotes the vector group-velocity, U' denotes the stream velocity as 
modified by the mass-transport and S is a stress tensor. If  the a;-direction is the 
direction of wave propagation, then cg = (cg, 0 , 0 ), U' = U + (Ejpch, 0,0), and

(Sx 0 0\
S = | 0  Sv O), (6-2)

\ o  0 0/
where Sx is given by (3.17) and

( e - 3 )

Therefore a natural generalization of equation (3.14) is to assume

V .[^c,+U)] + [ f i f ,g + S ,^ ]  = 0. (6 Л)

In other words, the divergence of the energy flux is exactly compensated by 
work done by the mean current against the radiation stress. In  deep water this 
becomes л -

l [ E ( l c + U ) ] + ^ l E V ]  + i E ^ = 0 .  (6-5)
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B y  th e  sym m etry  of th e  flow ab o u t the  plane у  =  0, we see th a t, on the  s-axis, 
дЕ/ду vanishes identically, an d  so m aking use of (5.1) we have

d E .. _  /Эс ЭU\ n
Т х Цс + П ) + ̂ + ъ . ) , 0 .  (6.6)

On substitu tin g  for dcjdx from  (3.6), we find

/ 1 д Е \  2(1  +  y) 1 Э U
\ #  д х ) ^ 0 (1  +  2y)2c dx ’ (6.7)

from  which follows =  -  1 +7 (6 .8 )
\ a d x j ^ 0 {l + 2 y ) 4 d x ’ K >

in  ex ac t agreem ent w ith  (5.7).
E q u a tio n  (6.5) m ay also be w ritten  as

^ [ E ( i c + U ) ] - i E d̂ = 0 ,  (6.9)

w hich has th e  integral
E (\c  + U)jc =  const., (6 .10)

as m ay be verified in  the  sam e w ay as (3.28). Hence, in  th e  present situation,

E  c(c0 +  2U0)

an d  —
an

E b c0(c + 2U) ’ 
'c(c0 + 2U0)

(6.1 1 )

*. (6 .1 2 )
c0(c +  2?7)

I t  will be seen th a t  as th e  critical p o in t is approached, a/a0 -» oo as before.
The am plitude varia tion  corresponding to  equation (6 .1 2 ) is shown in figure 1, 

curve (2 ), com pared w ith  th e  corresponding variation  in  th e  case of no lateral 
flow.

7. W aves on currents o f arbitrary form
To generalize our previous results, we no te  th a t  S  is a  Cartesian tensor of 

ran k  2 , which we m ay w rite S {}; equation  (6 .2 ) gives S y  in  diagonal form , when 
referred  to  axes perpendicular and  parallel to  th e  looal w ave front.

The velocity gradients dVjdx  and  dVjdy  are also com ponents of the  sym m etrio 
rate-of-strain  tensor

7ii =

an d  th e  generalization o f th e  in teraction  term  in  th e  wave-energy equation  is 
S ijJ ip  which is, o f course, an  invariant.

H ence th e  correct generalization of equation  (6.4) for steady  curren ts of 
a rb itra ry  form is

V .№ „ + U )]+ m |  +  g ) - 0 .  (7.2)

F o r tim e-varying currents we assume

f +v.№l+U)]+5«„(^+g)-o. M

1 № + Щ \
2\dX j dxi )  ’

(7.1)
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In  th e  case o f  p u re ly  tw o-dim ensional m otion  (djdy =  0 ), th is  reduces to

! 4 № »+ u )]+ s i p = o- ™

a n  equa tion  th a t  w as verified ap p ro x im ate ly  in  § 5 o f  I .  I n  th a t  p a p e r i t  w as n o t 
possible to  d istingu ish  betw een  eq u a tio n  (7.4) a n d  th e  sam e eq u a tio n  w ith  
d(Sx U)jdx rep lacing  S x dU ldx, since th e  difference, (dSJdx) U, w as negligibly 
sm all. H ow ever, th e  techn ique  a d o p ted  in  § 4 of th e  p re se n t p ap er, w hereby  th e  
long w ave was reduced  to  re s t b y  superposing a  finite neg a tiv e  velocity , rem oves 
th e  am b igu ity  in  th e  final te rm .

G iven th e  a p p ro p ria te  b o u n d a ry  conditions, eq u a tio n  (7.3) is generally  suffi
c ien t to  determ ine  th e  v a ria tio n  in  th e  w ave-energy d en sity  E . F ro m  th is  th e  
v a ria tio n  in  w ave am p litu d e  m ay  be deduced  on th e  assum ption  th a t  th e  
re la tion  betw een  am p litu d e  a n d  energy-density  is

E  = ^pga2( l  + WI2g), (7.5)

w here W  deno tes th e  v ertica l acceleration  o f a  p a rtic le  ca rried  b y  th e  m ean  
cu rren t.*  (See § 4 o f  I .)  F o r  s tead y  cu rren ts  we have

W  = k{U*+  F 2), (7.6)

w here к  is th e  cu rv a tu re  o f  th e  p a th  o f th e  p artic le . I f  И7 is sm all com pared  w ith  
g th en  we m ay  ta k e  ^  ^  (7 .7 )

as has been assum ed th ro u g h o u t th is  paper.
I t  m ay  be  m en tioned  th a t  some experim en ts have  recen tly  been  perfo rm ed  by  

H ughes (1960) on  th e  in te rac tio n  o f w aves a n d  shear flows. T hese he  has an a lysed  
using  a n  assum ption  equ ivalen t to  (7.2), a n d  his resu lts  te n d  to  confirm  th e  
theory .

8. W aves on a shearing current
As a  final exam ple we shall apply  th e  general e q u a tio n  (7.2) to  th e  in terestin g  

case o f  w aves traversing  a  sim ple horizontal cu rren t w ith  vertica l axis o f shear. 
T his w as prev iously  considered b y  Jo h n so n  (1947) w ith o u t tak in g  in to  acco u n t 
th e  tra n sfe r  o f energy betw een th e  waves an d  th e  current.-)-

T he s tream  velocity  (0, V, 0) is supposed to  be  everyw here para lle l to  th e  
w-axis, an d  also 3*17 от7

l r - т г - о -  ( 8 I )oy dz

T he w avelength  an d  am plitude of th e  waves a re  supposed also to  be in d ependen t 
o f y . T he  angle w hich th e  waves m ake locally w ith  th e  a;-axis is d eno ted  by  в  
(see figure 2 ).

P u re ly  k inem atical considerations yield th e  follow ing: since th e  w ave- 
num ber in  th e  у -direction (ksiad)  m ust be independen t of x, we have

k sin Q = m , (8 .2 )

* I t  is assumed that the current ie nearly horizontal.
t  Some of the results of this section were obtained by Drent (1959) who, adopting a 

different approach, was led to make an assumption equivalent to (7.2) in this case.
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a  constan t. Since th e  ap p a ren t velocity of the  waves a t  right-angles norm al to  
th e ir  orests is (c+  Fsin<9) and  th e ir  w ave-num ber is k, the apparen t angular 
frequency of th e  waves re la tive  to  a  fixed poin t is

k (c + V  eiad) = cr, (8.3)

also a  constan t. T hirdly, we have the  relation connecting local wave-num ber 
an d  velocity:

kc2 =  g. (8.4)

F i g u r e  2. D efin ition  d iag ram  fo r w aves on  a sh earing  cu rren t, show ing th e  
q u a lita tiv e  effeot o f  th e  c u rre n t (o) w hen V  > 0, (b) w hen  V  <  0.

F rom  equation  (8.3), by  use of (8.4) and  (8 .2 ), i t  follows th a t

- + m F  =  сг, 
с

or

T hen, from  (7.4),

с = 9

к  =

and , from  (7.2),

I f  Cq, k0, в 0 de 
th en  we have

sin #  =

cr—m V

((Г — т 7 )г 
9 ’ 
Щ ’

(8.5)

(8.6)

(8.7)

( 8 . 8 )
(cr—m F )2’

I f  c0, k0, в 0 denote th e  values o f с, к, в  w hen th e  transverse velocity F  vanishes,

с 1
c0 1 —(F/c„) sin 6?0’ 

к
К

ein в  =

=  [1 — (F /c0) sin 0O]2, 

6 in0f
[ l - ( F / c 0) s in 0 o]a’

(8.9)
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Since sin в  c an n o t exceed u n ity , th e re  is clearly  an  u p p er lim it to  7  fo r w hich 
a  so lu tion  ex ists: , . . „ . i

F <S1 °> 

A t th is  u p p e r lim it в  becom es equal to  \n ,  an d  th e  w aves a re  to ta lly  reflected by 
th e  cu rren t.

On th e  o th e r han d , fo r n egative  cu rren ts  7  < 0 , th e re  is no  k inem atic  lim it 
to  7 .  H ow ever, as V  — oo, к  becom es very  large, th a t  is to  say  th e  w aveleng th  
becom es v e ry  sm all (figure 2  (6 )). T he angle в  approaches zero, th a t  is, th e  d irec
tio n  of p ro p ag a tio n  becom es n ea rly  no rm al to  th e  cu rren t.

N ow  th e  v ec to r group-velocity  is given by

cg = | c  = (£ccos$, fc s in # ) . (8 . 1 1 )

H ence eq u a tio n  (7.2) becom es in  th is  case

J | ; [ t f . £ c c o s 0 ] + |^ ( £ c s i n 0 + 7 ) ]  +  P ' |^ c o s 0 s i n ( ?  =  0 . (8 . 1 2 )

Since a ll deriva tives w ith  resp ec t to  у  van ish  iden tica lly , we find, on su b s titu tio n  
from  (8 .6 ) an d  (8 .8 ),

d I E c o s 6 \  E m соав  9 7  _  (8 1 3 )
d x \cr  — m V ) ^ ( c r  — m V )2 dx ’

of w hich th e  in teg ra l is
E c o s d

7---------7ТГ, =  const., (8.14)
( c r - m 7 )2

or, from  (8 .8 ), Е о о а в  s in #  =  const. (8.16)

T he re la tiv e  am plification  o f th e  w aves is therefo re  given b y

— =  (— V  -  / 8in (8.16)
“o \ E oJ \ sin 26)

T his ra tio  is show n graphically  in  figure 3 as a  func tion  o f  7 /c 0, for various 
values of th e  in itia l angle 60.

E v id en tly  th e  am plification of th e  w aves becom es infin ite  b o th  w hen в  -> 90 
a n d  w hen в  0 . I n  th e  first case th e  in fin ity  is n o t significant: i t  is due  to  th e  
fac t th a t  th e  ray -p a th s  in tersect, an d  th e  corresponding line x  =  const, is a 
caustic. To th e  left of th is  line th ere  are  essentially  tw o system s o f w aves, th e  
inc iden t an d  tra n sm itte d  system s, while to  th e  r ig h t o f  i t  th e re  is a  ‘ shadow  zone . 
In  th e  neighbourhood o f such a line th e  o rd inary  app rox im ations o f  ra y  optics 
do n o t app ly ; a  higher-order theory , generally involving A iry  functions, m u s t be 
used. One m ay expect th a t  th e  wave am plitude in  fa c t rem ains finite even  in  th e  
neighbourhood o f th e  critical line.

T he eecond case, w hen 0 -»■ 0 , corresponds to  th e  lim it 7  -> — oo. In  th a t  case 
th e  infinity is genuine an d  is due m ainly  to  th e  fa c t th a t  th e  w avelength  an d  
wave velocity are  so m uch reduced th a t, in order to  m a in ta in  th e  energy flux 
in the  г -direction, th e  am plitude m ust increase. In  prac tice  th e  waves m ay  b reak ; 
b u t for no finite velocity 7  < 0  is the  ra tio  aja0 theore tica lly  infinite.
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W e m ay note th a t  i t  is possible for the  com ponent of stream  velocity opposite 
to  the  waves to  exceed th e  group-velocity:

+  7 sin 0 < 0. (8.17)

The waves are n o t thereby  stopped, for th e  wave am plitude tends to  be dim in
ished by  a  la tera l stretching of the  wave crests.

4 ^ .  e0-  75° .

\  / W  7 30°
7 ^ ^ /  /  15°

00- r.

---------------- ----------------- 1----------------

60°
715° 30° 15°

v  i  i

----------------1----------------1---------------- 1
- 4 - 3 - 2 - 1 0  1 2 3

V/c0
F i g u r e  3. The amplification factor for waves crossing a shearing current V 

at an oblique angle 6, for various angles of entry в0.

9. Conclusions
T he am plitude o f surface waves on non-uniform  currents is affected by a  non

linear in teraction betw een the  waves and  the  com ponents of the  currents; the  
coupling term s are proportional to  the  rad iation  stresses, an d  th e  general equation 
governing th e  transfer o f wave energy is equation (7.3).

W aves travelling on a non-uniform  curren t U  th a t  varies in the  direction of 
wave propagation  undergo an  am plification th a t  is greater th an  previously 
supposed, and  is dependent on w hether th e  variation  in curren t is m ade up by 
a  small vertical upwelling from  below or by  a  sm all horizontal inflow from  the 
sides; th is difference is illu stra ted  by  th e  tw o curves in figure 1 .

The am plification o f waves on a  transverse shearing curren t has also been 
calculated. H ere the  in teraction  between waves an d  curren t also produces an  
am plification different from  th a t  obtained by neglecting th e  in teraction  term s.

The results show th a t  the  efficiency of a  hydraulic or pneum atic breakw ater 
should be affected no t only by th e  surface curren ts directly  opposing the  waves 
b u t also by th e  transverse or vertical com ponents of the  secondary circulating 
flow, for these produce different effects on th e  wave steepening. The absolute 
lim its to  th e  w avelengths th a t  can be tran sm itted  are still set b y  Taylor’s 
kinem atical theory  (1966). B u t for waves longer th a n  th e  critical w avelength,
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w h e th e r b reak ing  occurs m u s t depend  on th e  am plification  fac to r. W e suggest 
th a t  differences in  th e  secondary  c ircu lation  m ay  acco u n t for some o f th e  
anom alies in  p a s t experim en ta l w ork, b o th  on m odels a n d  on p ro to ty p es.

Since th e  cu rren ts  have  been seen to  do w ork on  th e  w aves, th e n  we w ould 
expec t th e  w aves also to  re a c t on th e  curren ts. F ro m  (6 .1 ), by  conservation  o f  
th e  to ta l energy, one w ould  ex p ec t for s tead y  cu rren ts

V .[J7(c , +  U ) +  S .U  +  (ipA U '2)U ']  =  0. (9.1)

H ence, on su b tra c tin g  (7.2) a n d  using th e  fa c t th a t  S i} is sym m etric , we have

V . К */Л и '*) U '] +  Vt  ̂  =  0. (9.2)
O Xj

A fuller a cco u n t o f eq u a tio n  (9.2) w ill be given subsequen tly .
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This paper studies the second-order currents and changes in mean surface level 
which are caused by g rav ity  waves of non-uniform amplitude. The effects are 
in terpreted  in term s of the radiation stresses in the  waves.

The first exam ple is of wave groups propagated in w ater of uniform mean depth. 
The problem is solved first by  a  perturbation  analysis. In  two special cases the 
second-order currents are found to  be proportional simply to  the square of the 
local wave am plitude: (a) when the  lengths of the  groups are large compared to 
the  mean depth , and  (b) when the groups are all of equal length. Then the surface 
is found to  be depressed under a high group of waves and the m ass-transport is 
relatively negative there. In  case (a) the result can be simply related to  the 
radiation stresses, which tend  to  expel fluid from beneath the higher waves.

The second exam ple considered is the  propagation of waves of steady amplitude 
in  w ater of gradually varying depth. Assuming no loss of energy by friction or 
reflexion, the wave am plitude m ust vary horizontally, to  m aintain the flux of 
energy constant; i t  is shown th a t this produces a  negative t i l t  in the  mean 
surface level as the  depth  diminishes. However, if the wave height is lim ited by 
breaking, the t i l t  is positive. The results are in agreem ent w ith some observations 
by  Fairchild.

Lastly, the propagation of groups of waves from deep to  shallow w ater is 
studied. As the mean depth decreases, so the  response of the fluid to  the radiation 
stresses tends to  increase. The long waves thus generated m ay be reflected as free 
waves, and  so account for the ‘surf b e a ts ’ observed by  M unk and Tucker.

Generally speaking, the changes in mean sea level produced by ocean waves are 
comparable w ith those due to  horizontal wind stress. I t  m ay be necessary to 
allow for the wave stresses in calculating wind stress coefficients.

1. Introduction
In  two previous papers in  this series (Longuet-Higgins & Stew art 1960, 1961) 

we have studied the  non-linear action between w ater waves and steady or 
fluctuating currents, when the la tte r are non-uniform in space. I t  was shown th a t 
the  currents generally do work on the waves, and th a t  the coupling between them 
depends on a stress tensor associated w ith th e  waves, called the radiation stress
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tensor. (The com ponent corresponding to  tw o-dim ensional w aves p ropagated  in 
th e  ж-direction is deno ted  b y  Sx.)

Correspondingly, one m ay  expect th a t  th e  waves will do w ork on th e  sur
rounding  m edium . T he change in  cu rren t velocity  should be proportional, like 
th e  rad ia tion  stresses, to  th e  square  of th e  w ave am plitude. The purpose of the 
presen t paper is to  investigate  some exam ples w here th e  effects m ay be 
appreciable.

I t  is know n th a t  th e  cu rren ts produced by  a  steady  tra in  o f waves of uniform  
am plitude axe largely affected by  th e  viscosity (Longuet-H iggins 1963, I960). 
I n  th e  first p a r t  of th is  paper, however, we deal w ith  waves of non-uniform  
am plitude (the varia tions o f am plitude being due to  th e  presence of m ore th a n  
one frequency) in  w a te r of uniform  dep th . In  th is  s itua tion , th e  groups of high 
an d  low waves are found to  cause fluctuations in  th e  m ass-transpo rt curren ts 
m ore rap id  th a n  th e  slow effeots of viscosity, an d  th e  tw o effects m ay  be trea ted  
independently .

O ur in itia l approach  to  th e  problem  is to  solve system atically  th e  field equations 
and  boundary  conditions b y  th e  m ethod  o f S tokes as fa r as th e  second order in the  
w ave am plitude. F o r th e  first approxim ation  we assum e a  linear sum  of waves of 
nearly  equal w avelength  and  frequency ; these o f course form  ‘ beats ’ or wave 
groups in  th e  usual w ay. In  th e  second approxim ation th e  ‘ difference frequencies ’ 
give rise to  cu rren ts and  ohanges in  surface level having w avelengths com parable 
to  th e  leng th  o f th e  groups. These, are  th e  cu rren ts in  w hich we are in terested .

I n  tw o special oases, the  curren ts are very sim ply re la ted  to  th e  local am plitude 
of th e  w ave g roups: (a) w hen th e  groups are  long com pared to  th e  m ean  dep th , 
an d  (b) w hen th ere  are only tw o first-order waves present, so th a t  th e  w ave groups 
are  all o f equal length. Associated w ith  th e  currents are  fluctuations in the  m ean 
level o f th e  sea surface. C ontrary to  expectation, i t  is found th a t  in  a  group of 
h igh waves th e  m ass-transport tends to  be negative (i.e. opposite to  the  direction 
o f w ave propagation) and  th e  m ean level tends to  be depressed.

I n  th e  special cases (a) an d  (b) a  simplified m ethod  of solution can  be given, 
w hich confirms these results.

A th ird  approach, in  some ways th e  m ost in teresting, applies only in  case (a), 
w hen  th e  length  of the  wave groups is long com pared to  th e  dep th . T hen  i t  is 
show n th a t  changes in  the m ean level and  in  th e  m ass-transport are such as would 
be produced by  a  horizontal force — dSJdx  applied to  th e  fluid, f  In  term s o f th is 
force, a  simple physical explanation can be given as to  w hy th e  surface ten d s to  
be depressed below a  group of high waves: th e  rad iation  stress, being grea ter in  a  
group of high waves, tends to  expel fluid from  th a t  region. H ow ever, in general, 
w hen th e  groups are no t long com pared to  the  depth , th e  s itua tion  is com plicated 
by  th e  existence of a m ean vertical acceleration which is no longer negligible.

In  §§ 4-6 the  results are extended to  waves in  w ater of non-uniform  dep th . I t  is 
well known th a t  even a  steady tra in  of waves undergoes changes in  am plitude in  
w ater of gradually varying depth , in  order to  m ain tain  a  co nstan t flux o f energy. 
B u t the  variations in depth  and  wave am plitude also cause a  varia tion  in  th e

t  This result has been given independently Whitham (1962), but without stating the 
restriction on the length of the wave groups.
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transfer of m om entum , and  i t  is shown th a t this causes a  tilt  In the  mean level £ 
such aa would be produced by a  constant horizontal force — dSJdz  applied to  the 
fluid.

Moreover, i t  appears th a t  the  equation for dQdx m ay be integrated, so th a t  the 
m ean level £ can be found as a  function only of the local depth and of conditions a t 
infinity. К  there is no loss of energy then as the depth becomes shallower the mean 
level is depressed. If, on the  o ther hand, the wave am plitude is lim ited by 
breaking, it  appears th a t  the m ean level m ust rise.

These results account qualitatively for some observations of Fairchild (1958) 
in  w ave-tank experim ents, and for the observed rise in level shorewards some
tim es produced by ocean waves.

Consideration of wave groups in  w ater of non-uniform depth  suggests th a t 
these m ay account for the ‘surf b ea ts ’ observed by Tucker (I960). For m any 
years i t  rem ained a puzzle why a high group of incoming swell was associated w ith 
a  negative pulse of pressure reflected from the shore. B ut this now appears as a 
n a tu ra l consequence.

2 . T h e  S to k es  a p p ro x im a tio n
In  the  usual notation, le t (ж, у, г) be reotangular co-ordinates w ith the z-axis 

horizontal and in  the direction of wave propagation and w ith the  z-axis vertically 
upwards. L et u  =  (и , v, w) denote the  velocity vector; p , p  and  g the pressure, 
density  and gravitational acceleration; z = £ (x ,y ,t)  the  equation of the free 
surface and  z =  —h  the  equation of the rigid bottom .

Now the  fluid m otion in a periodic tra in  of waves, outside boundary layers a t 
the  bottom  and free surface, contains generally a  second-order vorticity (see 
Longuet-Higgins 1953, 1960) which, on the  time-scale th a t we are considering, 
can be considered as independent of the  tim e t. This vorticity  is associated w ith 
a  steady  second-order current. However, to the  second approxim ation this 
curren t does no t affect the distribution of pressure, and m ay be simply added to  
the  field of m otion. Hence, to  the  second approxim ation we m ay regard the fluid 
m otion outside the  boundary-layers as irrotational, afterw ards adding the 
second-order current so as to  satisfy the  special conditions just inside the 
boundary-layers.

The equations to  be satisfied by u , p  and £ are then the field equations

u  =  Чф,
=  0,

pjp  +  gz +  $u2 + d<f>jdt =  0 ,

( 2 . 1)

w ith the  boundary conditions

( П . V ^ ) flxe(i  b oundary  —

(P)r-{ = (2.2)
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In  S tokes’s m ethod  o f ap p ro x im atio n  an  expansion of u , ф, £ an d  p  is m ade in  the 
form u  =  U(1) +  U® +

(2.3)
ф~фР> + 4 Р + . . . ,

p + p g z  =  j)(1)+ p (2) + ....

where u (1), фт , e tc. satisfy  th e  linearized equations and  boundary  conditions; 
«.си +  ы®, фы+фюг e tc . satisfy  th e  equations as fa r as th e  q u ad ra tic  term s, and 
so on. The equations for фт  are:

V20<« =  0 /

0 № U _ ft =  o ,[
/д2фт дфЫ\ л V ' '
(  + 9  dz ) e4) ~  ° \

an d  th en  u®, p m  an d  m ay  be found  &om th e  fu rth e r re la tions

u (i) =  y^cu

pV>lp = -д ф Ъ Щ  (2 .6 )

r fw  =  - ( W 0 _ o . .

F o r th e  presen t i t  is assum ed th a t  th e  m ean values o f u (1) and  £ *  are zero, th a t  is 
to  say in  the  first approxim ation  there  is no m ean curren t, an d  th e  origin o f z is in 
th e  m ean  surface level.

T he equations for th e  second approxim ation  ф{г) are

V*0* =  0,
{дф®>1дг)^ =  0,

г - 0

(2.6)

(see for exam ple Longuet-H iggins & S tew art 1960). T he rem aining quan tities  
u®, p® and  £® m ay  th en  be found from

u® =  V0 ®,
jf» lp  =  -  (tym /at+ £u<»2), (2-7)
9 =  -  (дф^/Bt +  *u« 2 +  ФфМ/дг dt)^0.

T he classical first-order solution for a wave of constan t am plitude a, frequency 
cr an d  wave-num ber k  is

provided th a tf

jjn acr c o s h i ( z  +  A) . 
k .m h k h  

=  a  c o s  (к х —art),

a* =  gk ta n h  kh.

(2.8)

(2.9)

t  If approximations higher than the second are considered, c  must also be expanded in 
powera of (ak). Thus strictly we should write <t® for i t .
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This determines the  phase velocity

/  tan h  lch\ i

and the  group velocity

o’ , „1 / ta n h & A \*
<210)

der /  2kh \
~ dk ~  (  + s in h  2 feA /' ( }

Also to =  U u M -v f iK )  =  — a2gk =  (2.12)
'  2 sin h 2 B  2Л \ c  2 /  * ;

which is independent of z.
The nex t approxim ation, found by solving equations (2.6), is

0(2) =  cosb 2^(z +  A) sin 2(fcc -  <rt) +  Gx +  Dt, (2.13)

where С and D  are arb itrary  constants, of the second order. From  (2.7) i t  can be 
seen th a t  these constants are related to  the  average values of w(2) and £(2); in  fact

(2.14)
W> = G, |  

gZw = - { D + w ) .\

The last equation follows from (2.7) on replacing by d ^ jd t  and noting th a t

3 £ - - i S T ~ ~
Hence a  change in О corresponds to  the  superposition of a small, uniform hori
zontal current, i.e. to  a different choice of the  fram e of reference. A change in 
D  corresponds to  a  small addition to  the  vertical co-ordinate, in other words a 
different choice of origin for z. I t  can easily be verified th a t  the mean pressure on 
the bottom  always equals the hydrostatic pressure:

=  Р Ф  + Q. (2.15)

As in Lam b (1932) i t  is found th a t the m ean energy density of the waves is

^ уеп by E  =  У д а 2

correct to  second order, and the horizontal flux of energy, also to  seoond order, 
is given by F  = E

3. Propagation o f a wave group
In  this section we shall tre a t the  problem of a  group of waves propagated freely 

in w ater of uniform depth, using three different m ethods. The first m ethod is a 
system atic application of the perturbation  prooedure outlined above; this is 
valid irrespective of the  length of the wave groups relative to  the depth h. The 
second m ethod is a simplified version of the  first, valid  only when the  wave
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gro u p s are  long com pared to  h, o r when th e  groups are  of uniform  length . The 
th ird  m ethod  is an  application  of the  conservation of m om entum , sim ilar to  th a t  
o f  W h ith am  (1962), b u t is valid  only for long w ave groups.

Method 1

C onsider a w ave d istu rbance  containing a  narrow  range o f frequencies, for 
exam ple a  d istu rbance  represented , to  first order, by th e  expression

£ a , =  I l a n c o 3 ( k n x - < r n t  +  x n ), (З Л )П

w here a n an d  х л are  am plitude and  phase constants, and all the  w ave-num bers kn
lie close to  a fixed w ave-num ber k. The frequency and  w ave-num ber of each
com ponent are  re la ted  by ,  .  ̂ , , 0

J  o i  = gkn t& vhknh. (3.2)

E q u a tio n  (3.1) m ay  also be w ritten

=  a co s(kx  — crt-rX), (3-3)

w here a  and  x  are  slowly varying functions of x  and  t, representing  th e  envelope of 
th e  w aves: in fac t

a  e‘* =  £  a„ exp i{(kn - k ) x - ( c r n - ( x ) t  + *„}. (3.4)
П

T he square  o f th e  am plitude a is given by

a * =  £  anamexv i{ (kn - k n )x-{< rn -(T m)t + (xn -Xm)}- (3-5)
n, m

S t o “  (3 e )  

th e  whole envelope (3.4) progresses w ith the  group velocity cg.
T h e first-order po ten tia l corresponding to  (3.1) is

<•“  -  <3 ’ »

T h e  equations for the  second approxim ation are equations (2.6). N ow  th e  
righ t-hand  side is a  quadratic  expression in £0) and фт, and  so m ay be expressed as 
th e  sum  of term s w ith wave-numbers (&,, +  km) and (kn — km) respectively. H ence 
Ф'2' and  £(2' will contain term s w ith sum and difference w ave-num bers also. Since 
we are  in terested  only in average values taken  over several w avelengths, only th e  
te rm s which depend on the difference wave-numbers will be re ta in ed . T hus we have

цШ* _  У a " am O-n COsh (fe„ + km) h .  ,  Y _  ,  u  , /v _  Y VI
Д  2 sinh kKh sinh kmh "  " m) ( " Xm)' ‘

W riting  ( K - k m), (<7n -< rm), (Xn~Xm) = &k, Дет, Д*,

an d  neglecting squares of bJc and  Д а  we have

® m* „  a a ar2cosh2kh . . . .  . ,
Ы =  Л  '  ~ 2 sinh*kh ^ ( Д Ь - А ^  + Дх).
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Similarly, using (3.2) we find

and hence
dz[dti + 9 Эг) ~  ?  s in h knh sm ^ ~ •**'+ Xn)’ 

^ d z ( ^  + 9 d i ) ^ 0 =  nSm 2  sinh* fc" А8“ (Afcr “  A{rt +  ̂ X)

(only the  difference term s being retained). By reversing m  and  n in the sum m a
tion  and taking one half o f the  sum, the right-hand side becomes

S n  ( s in h ^ f e  "  й ^ щ )  sin (Д Ь  -  Д trt +  Д*). 

which, to  the first order in  A cr, can be w ritten

4 = 4 ° ' ^ ( . ь£ й ) 8Ш ,А Ь- ЛЛ + Л*>- 

A ltogether, then, the  last of equations (2.6) becomes

/дЧ™ дфЩ
\  W  + g ~dTJz=0 = - J Z J K amanA(r)Ciill( b t e - b ' r t  + bx).

, rr cr2cosh 2fcA. 1 d  /  cr® \
K  -  т ж щ  + ж ( г ж й )  • <3 8 >

I t  will be noted th a t  К  is independent of Ak  and Aar. The solution of equations
(2 .6 ) is

S  ha> . , ш ( ^ - Д^  + ах) + С1 + Д ,, (3 9|
m+n дД A: sinh ДйА — (Дсг)2 cosh ДЛА

where С and  Z) are arb itrary  constants. To the same order in Дк, Дет this m ay be

мы _  IT ^  ДщДпО,; cosh Afe(z + A) sin (Дfcc — Acrt +  Д%) „  im  
Ф' m% g h d -c 2,  ooahAkh A k ’ ( )

, . tanh  Д&А . . 
where в  =  —z-̂ -.— . (3.11)Д kn

In  the  sum m ation in (3.10) we have included term s corresponding to m  =  n. These 
are taken  to  be the  lim its of the term s under the  sum m ation as Ak -*■ 0; in  other 
words we have chosen

Cx + Dt = - K Z - ^ . ( x - c Qt). (3.12)
П gn — Oq

F u rth e r term s of the type (G'x + D 't) m ay of course be added. From  (3.10) we 
have im m ediately

# - 1 ;  (3.13)
£ п дЪ .в-с\ cosh Akh

and  for the  m ean velocity w ith respect to  z,

|w«> =  - К  E  в  cos (A kx -A cr t + AX). (3.14)
m, n 9 ^0  — Cg
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T he m ean  surface e levation  £® is found  from  equations (2.7):

g tm = - K  s  З д р ^ о о з ( д * * - д ( 7 * + д х )
m .n g ke-c*

(ЗД5)
a „ a „  cr5

7П, П l-

T he co n stan t £  m ay  be evaluated  from  (3.8) and  (2.9); w e find

_  <r2 sinh ik h  +  3 sinh 2kh + 2kh
4 sinh2 kh  sinh 2kh +  2 kh

W e m ay  distinguish tw o principal cases:

(a) The wave groups are long compared to the depth h. T hen

Д k h  1, c o s h A £ (z  +  A) =  1, 6 = 1 .

T h e fac to r (ghO—c2)-1  m ay be tak en  outside th e  sum m ations and  we have sim ply

' “ ' " - G & s b *

дГ№) =  -  ( —A"C(,_ + ___—___\  a2
9 X g h - J ' i s i D t f k h )  ’

(3.17)

w here a 2 =  2  o,man coe(Akx — Acrt + A x),
m, n

as in  (3.5).

(6 ) The wave groups are not long compared with the depth. T here is no such 
convenient sim plification as in  (a), since the  factor (ghd — c2)-1  is generally different 
fo r each sinusoidal com ponent in  the  sum m ations. H ow ever, since к >  ДА; and  
Д kh  is a t  least of order 1 , one m ay assume th a t  e~kh 1 , i.e. th e  individual waves 
are  effectively deep-w ater waves. F rom  (3.14) К  =  cr2 =  gk, an d  equations (3.14) 
an d  (3.16) reduce to

|M ® =-2crfc 2  в  cos (Akx -A<rt + Дх ),
m. n  4 < /a Crl—  1m ,  n  -

g£™ =  - o-2 2  i  cos (M x ~ Atrt +  ЛХ)>

(3.18)

0 being given by (3.11). These solutions are no t generally expressible in  term s o f 
th e  local wave am plitude a. However, in th e  special case w hen only one p a ir o f 
waves is present, w ith am plitudes Oj and  a 2, th en  we have

I5 = 2(Tk[ Й Й + Jf&L6 008{ M x - Ш  + Лх)] ’

д^ ) = (т2[ ш ^ 1 + ш г - Л ^ в ^ ь - Д ^ + Д х ) ] .

Since а2 =  (af + a |)  +  2<i1a 2cos(Afcc — Aoi + Ax)
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this can be w ritten
. ... 2 ветка1
I = 4 № M  ’

mi a 2a2
=  W ich ^l co

(3.19)

Moreover, since an expression of the  form (G'x + D ’) may still be added to  the 
potential, the  constants of integration can be taken  as vanishing.

Method 2

This m ethod is more indirect than  method 1 , bu t avoids the  lengthy calculations. 
I t  also leads to  an  in terpretation  of some of the algebraic expressions which occur 
in the solution.

From  the form of equations (2 .11) it  will be seen th a t the potential <j№ corre
sponds to  the  m otion th a t  would be generated by a ‘v irtual pressure’

applied a t  the  upper surface of the fluid. W ithout evaluating this complex 
expression, we note th a t  it  can be expressed as the sum of term s containing both 
sum and difference frequencies, the la tte r travelling with the group velocity cg. 
Thus 0 (2) will contain a p a rt <f>d such th a t

3<h _  1 3Фа
dx ca dt

A dded to  this there will in general be a potential of the form (Ox+Dt) where G 
and D  are arb itrary  constants. Since dф|dt occurs only in the Bemouilli integral, 
we m ay, by  a  suitable choice of origin for z, make D  =  —cgC. The constant G is 
still a rb itrary . So if  ̂  denotes the  average of ф over one wave cycle we have

<5 =  фа + С ( х - с в1),
дф 1Э? 

and  clearly ^

I f  w, f  and  w  denote similar averages of u, f  and w  we have analogously to  (2.14)

m =  Э^/Эж, gr£ =  -  (30/3* )*_0 -  ® ■
Hence cff(tZ),_0- ^  = w. (3.20)

Since the wave am plitude is a  gradually varying funotion of x  we m ay assume 
th a t  locally the  waves are given by (2 .8 ) and so

m  =  *(«<»*-u /» * )  =  Д  ( f  _ г )  ‘ (3' 21)

M  =  f  pudz.
J -h

The mean horizontal m omentum  M  is defined by
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Correct to  the second order we have

M  =  m + ph  | й  (m  =  Ejc) (3.22)

(Stokes 1847; for an  a lte rn a tiv e  proof see th e  A ppendix). T he equation  of
con tinu ity  of m ass is th e n  _ _ , .3 , л  3 M

d t{p Q + T x = 0 ’ 

or, since С and  M  axe b o th  functions o f (x  — cgt ),

S ubstitu ting  for M  an d  in teg ra tin g  we have

m  + ph  | w — pcgC, =  const.

By a  su itab le  choice of axes (or of th e  co nstan t C) we m ay  ensure th a t  th e  co n stan t 
o f in tegration  vanishes, an d  th en

k \ u  — cg^  =  —m jp. (3.23)

E qu atio n s (3.20) an d  (3.23) can now be solved for £, p rovided we have some 
relation  betw een | w an d  i.e. betw een th e  m ean horizontal velocity  an d  th e  
velocity  a t  th e  surface.

(a) The wave growps are long compared to the depth. T hen  th e  po ten tia l ф rep re 
sen ts a  shallow  w ater wave, so th a t  й  is independent of dep th . E qu atio n s (3.20) 
an d  (3.23) become sim ply

(3.24)

of w hich th e  solu tion is

ceu - g £  = w , 1 

h u - c gC, =  — m j p j

c0w + gmjp ) 
lit — "■ '

g h - t f .0 (3.26)
p _  hw + cgmjp  

g h - c l  'j
S u b stitu tio n  for vs and  m gives

p 1 да2 (2c„ 1\
2  g h - c * \ c  2 } ’

These solutions will be seen to  be identical w ith (3.17) in  view o f the  id en tity

£ * 2

(3.26)

a
which can be verified a t  some length.

From  equations (3.25) one can also derive a  simple expression for th e  v ir tu a l 
pressure pr  Since дф( dz vanishes a t  z =  — h we have

( Щ  _  _  щ  _  r° a g  _  ъ ц  
\3 z / r„ 0 J -ftS z 2 J - ft3a;2 dz2 '
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for дгф1дх2 =  dujdx, which is independent of z. Hence

The right-hand side equals — (1/p) dp jd t and so

'a

Substitu ting  from the  first of (3.25) gives

ps =  pm + gm/Cg +  const.

In  the case when e~kh 1 then  w  vanishes and we have

P s = gm jca +  const.

(3.27)

(3 .28 )

This has a  simple physical interpretation, m  represents the additional mass 
tran sp o rt due to  the waves which, because it  is non-uniform in x, tends to  produce 
a  piling-up of mass near the free surface:

The v irtual pressure ps is simply this quantity  m ultiplied by g.
(b) The wave groups are not long compared to the depth. The problem can still be 

solved by the  simple m ethod provided only two wave components are present. 
For then  ф has a single wave-number Ak, and from Laplace’s equation, together 
w ith the  condition a t  the  bottom , i t  follows th a t й  depends on z through the factor

In  equation (3.20) we m ay therefore substitu te  (м)4_0 =  в  1 \u  and also ш =  0, 
since e~kh <<; 1. Together w ith (3.23) we have

which are equivalent to  (3.19).
W hen more th an  two sine-waves are present it  is obvious th a t  | и  and £ cannot 

be simply related to the local wave am plitude, for then the  fluid has a different 
response to  each of the harmonic com ponents of the  v irtua l pressure pg.

cosh Ak(z + h). Therefore
tanh  Akh  

Akh
и

( W ) z = 0

where cg -  y/2cr. Solving these equations we find

Ogmjp 2ва2сгк 
g h -6 c l  =  ~ t f k h - \ '

(3.29)
cgmjp _  агк
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Method 3
T h is is essen tially  th e  m ethod  given by  W hitham  (1962); as will be seen, i t  is valid 
on ly  w hen  th e  groups are long com pared to  th e  dep th .

L e t  S  deno te  th e  flux of m om entum  across a  vertica l p lane x  =  constan t:

S = ^ ( p + p u ^ d z ,  (3.30)

an d  le t  Sx denote  th e  difference betw een th is  an d  th e  p a r t  due to  th e  hydrosta tic  
pressure:

S x =  Г  (p  + p u * )d z -  Г p g { £ -z )d z  
J - h  J~h

= S - i p g ( h  + Q*
± S - p g { W + h Z ) .  (3.31)

S x is th e  radiation stress in troduced by  Longuet-H iggins & S tew art (1960), and  
m ay  be  th o u g h t of as th e  excess transfer o f m om entum  due to  th e  waves (W hit
h am  1962). When the vertical acceleration is negligible we find, correct to  th e  second 
o rder o f  approxim ation,

ST = E { ^ - ^ j  (3.32)

(Longuet-H iggins & S tew art 1960, §3).
N ow  from  th e  continuity  of mass and m om entum

d(pQ ldt+ dM ldz = 0, (3.33)

and  dM ldt + dSjdx = 0. (3.34)

B u t th e  last equation  may be w ritten

^ / y\ dSx /Л *>i*\
1 Г + »4 Ж » - - & -  (3'3 )

E q uations (3.33) and  (3.35) together show th a t  £ and  M  are equ ivalen t to  the  
surface elevation and  horizontal m om entum  in a  long (shallow-water) w ave when 
a  horizontal force — dSJdx  per u n it distance is applied to  th e  fluid. Since Sx is 
proportional to  a2, th e  applied force travels w ith  th e  group velocity , so th a t  Э/31 
m ay  be replaced b y  - c edjdx. Then we have

—pcgdZldx + dM jbx  0, 
pgh dQdx - СддМ1дх = -  dSJdx, 

o f which th e  solution is
Л  = ____i _ a ъ

dx g h - c \  dx ’ 

dM = ___ Cg__dS^
dx gh—ct dx '
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p l  = - g h - o V
c„SxM  ____

gh-<%’

493

(3.36)

the  constants o f integration being a t  our disposal. The mean velocity и  m ay be 
found from the relation (3 .2 2 ) between M  and  £. Hence

u  = \  (M - E / c ) =  c?—
p h  h ( g h - c l )  x phc

This will be seen to  be equivalent to  (3.26).

Figttbe 1. The effect o f the radiation stress in depressing the mean level in a 
group of high waves.

I t  will be noticed th a t beneath a group of high waves, where Sx and E  are both 
large, £ and и  are more negative, th a t is to  say there is a  relative depression in the 
m ean surface level, coupled with a mean flow opposite to  the  direction of wave 
propagation. B eneath a group of low waves, on the other hand, the  mean surface 
level is raised and  the  flow is positive.

The sign of the  response m ay be accounted for in the following way (see 
figure 1). In  a group of high waves Sx is large, so th a t  the applied force — dSJdx  
is positive in advance of the group and negative behind it. Now the wave groups 
are travelling w ith a velocity cff which is generally less th an  the  free-wave velocity 
(gh)i, and so the response of the system  to the applied force is in  the same direction 
as if the groups were sta tionary ; in o ther words, the applied force acts in opposition 
to  th e  restoring force arising from the deformation of the  surface. So the restoring 
force is negative in advance of the high wave group, implying an upwards mean 
tilt, and  positive behind the group. D irectly beneath the  group, therefore, there 
is a depression.

More graphically, we m ay say th a t  the  greater stress in  the  high waves tends 
to  force the w ater ap a rt there, and so to  produce a depression in the  surface level.

In  th e  more general case, when the  groups are no t long com pared to  the  depth, 
th e  above argum ent breaks down, on account o f vertical accelerations in the mean 
motion. For to  re ta in  the form (3.32) o f Sx one would have to  add to  the  right- 
hand  side of (3.31) a term  depending on th e  vertical acceleration D w fD t:

Sx = j ^ ( p + p u * ) d z - J ^ d z |p 0 ( £ - z ) + J % ~ ( k J .
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Thu*, Ui IiIih hhcoik! order,

N„ rn. N ~  y tfi(h, -f f )* -  J ^ <fe ^  j .

T he  effect o f  thm  in Uj lulrl it f u rth e r U;rm to  the  left-hand  side o f  (3.35). Henoe 
th e  Kirnplo arg u m en t no longer ниШоен.

Wuww advancing into иtill woter 
T hin problem  m ay ho trea ted  by th e  нише m ethods as we have  ou tlined , excep t 
th a t  th e  rcprcHentation of £(,) a« a sum  of sine-waves m u st be replaced b y  the  
Fourier in tegral represen tation :

£(1) =  J A  (Ic) сов {lex — a t + x(k)}dk ,

(T being th e  function of к defined by  (2.9). T he analysis proceeds along exactly  
sim ilar lines, Fourier integrals replacing th e  Fourier sum s. The choice o f  th e  
a rb itra ry  constan ts C' and  D ', however, is n a tu ra lly  determ ined  b y  th e  con
sideration  th a t  th e  m ean level £(2) an d  the  m ean velocity  | w® each be zero in  th e  
und istu rbed  p a r t  of th e  fluid.

I f  th e  transition  from  th e  und istu rbed  to  th e  d istu rbed  zone is sufficiently 
gradual, and  if  the  b read th  of the  transitio n  zone is large com pared w ith  h, th en  
we m ay suppose th a t  the  conclusions previously found  for long w ave groups will 
ap p ly . In  particu lar, | u (2) and  will be re la ted  to  th e  local w ave am plitude  as in 
equation  (3.17). M oreover, the  constan ts of in tegra tion  are  as chosen, nam ely  
zero, for bo th  | u(2) and  £(2) vanish in  the  und istu rbed  region, w here th e  w ave 
am plitude is also zero. In  th is special instance then , th e  solu tion  (3.17) is appli
cable. H ow ever, if  th e  transition  is more ab ru p t, com pared to  th e  dep th , th en  
th e  solution is m ore complicated.

In  very  deep w ater, where th e  length of a  group is sm all com pared to  th e  
dep th , th e  effect of th e  rad iation  stress can be seen very sim ply. Consider a  group 
of waves, o f energy density  E , advancing th rough  still w ater. L e ttin g  Дkh -*■ oo 
in  (3.13) we see th a t  th e  m ean velocity u,® tends to  zero. So if  M ' denotes th e  
m ean  horizontal m om entum  in  the  upperm ost layer (say w ith in  a  w avelength  
o f th e  free surface) we have

M ' = m  = Ejc.

H ence д Ж  = 1 д Е = 1_дЕ _ 1 д Е
dt с dt 2cg dt 2 d x ’

i.e.
dt dx ’

since Sx =  \E .  In  such deep w ater, then , we see th a t  th e  rad ia tio n  stress 
g rad ien t provides ju s t the  acceleration required to  give th e  uppermost layer of 
w ater its  known m om entum .

The total m om entum  M , on the  other hand, tends to  vanish  in  deep w ater. 
F o r on letting &kh->-со in  (3.18) we find

P % <2) ~  -  ipo-a2 =  -  Ejc, g£<*> =  0(cr2a 2 Дк/к),



761

Radiation stress and mass transport 495

and  so Jf->- 0 by  (3.22). Thus the fluid responds so as to keep the mean surface 
level alm ost constan t and  the  to ta l m om entum  zero. W ith shallower depths 
the  w ater is unable to  do this. There is a resulting change in the value of M  
and  an  additional stress gradient due to the  mean surface slope.

4. Water o f variable depth. ( 1) Steady wave trains
So far the m ean depth  h has been assumed to  be independent of x. In  this and 

the following section we shall extend the previous results to include the case when 
h varies ra th e r gradually w ith horizontal distance, so th a t dhjdx and higher 
derivatives of h  are small. In  this section it  is assumed th a t the wave amplitude 
is steady, i.e. independent of the time. In  §5 we discuss the effect of a  wave 
am plitude which fluctuates in  time.

Again, use is m ade of the small-amplitude wave theory. I t  turns out th a t 
considerations of energy are sufficient to determine the  local wave amplitude; 
th en  the  m om entum  equation will determ ine the m ean surface elevation or 
depression, if  th e  m ean pressure on the bottom  can be evaluated. One of the 
crucial steps is to  show th a t  the m ean pressure on the  bottom  is in fact equal to  the 
mean hydrostatic  pressure, correct to  the  second order of approximation.

To f i r  the ideas, suppose th a t a regular tra in  of waves advances into water of 
gradually diminishing depth  h(x). I f  there is no loss of energy by breaking of the 
waves and in ternal friction, and if  the reflexion of energy is negligible, then the 
wave am plitude a(x) m ay be determined by the consideration th a t the flux of 
energy F  towards the shore is a constant (see Burnside 1915). So to  the second

orc êr Ecg =  F  =  const., (4.1)

where E  =  \pga2. As is well know n,| cQ a t first increases slightly above the deep- 
w ater value gj2er and  then  diminishes asym ptotically to  (gh)i. So the wave 
am plitude a  a t  first decreases slightly, and  then increases asym ptotically like h~i. 
The wavelength, on the  o ther hand, steadily decreases w ith h, and also the ratio
CK

Consider now the  balance of m om entum  between two fixed vertical planes 
x  =  x0, x  =  x0 +  dx. The fluxes of m om entum  across these planes are S  and 
(S  + dSjdxdx ) respectively. Across the bottom  there  is no normal component of 
velocity, b u t the pressure Pf, contributes a  normal force —p^dl where dl is the 
distance between the two planes, m easured along the  bottom . The horizontal 
com ponent of this force is —p kdl(dhjdl) or —p^dh. In  the  quasi-steady s ta te  this 
m ust equal —dSfdxdx  and hence

3S  _  dh .
(4’2)

Our nex t task  is to  evaluate pk. Since bo th  Vu and  V(3u/3<) vanish by con
tinu ity , the  equation of vertical m otion

13®  d w  {  d w  d w \

t  For graphs of a, к and o/o, relative to their deep-water values aee, for example, 
figure 5 of Longuet-Higgins (1956).
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m ay  also be w ritte n
1 dp д I dw Л d I du \

~ P  i 5 - s + 5 r ¥ + ” V + S  '

On in teg ra tin g  over th e  range — A < z < £ we have

£<?»-*•> -  » « + л > + t * ' ] - l + r i ( ‘ 5 t " )  * •
w here p 3 is th e  surface pressure, assum ed zero. Now 

an d  hence, neglecting term s of order a3, we have

7 - » K + * )+ S (*n - ( z¥ + ” ’) „ _ , + J " , s ( * S + “” ) ' b ' |4 '31
O n ta k in g  m ean  values w ith  respect to  t, th e  tim e-derivatives vanish , b y  periodi
c ity , a n d  we have

1 _  _ _  fo 0 __
-Р л  =  g i £ + h ) - (w2U _ a + J  jg  (MW) dz-

N ow  o n  th e  b o tto m  w  is of order udhldx, and so w2 is proportional to  a2{dhjdx)2, 
w hich  w e neglect, since i t  involves the  square of dhjdx. F u rth e r, since in  uniform  
d e p th  uw  vanishes, in  general i t  is of order a2 dhjdx a t  m ost, and  d(uw)jdx is of 
o rd er a\d h jd x )2 or a2d2hjdx2, which again we neglect. To th is order of app rox im a
tion , th e n , th e  previous equation  gives simply

Vh = pg{h + l) , (4.4)

i.e. th e  m ean  pressure on th e  bo ttom  equals the  m ean hydrosta tic  pressure, as in  
th e  case o f uniform  dep th  (equation (2.15)).

So from  (4.2) we have
dSjdx =  pg(h +  Q dhjdx. (4.5)

B u t b y  th e  definition o f Sx in  (3.31) we have 

3Sx dS =. dh

an d  therefore altogether
d S jd x  = -p g h d ^ d x ,  (4.6)

u i  \
or dx pgh d x '  '

This is ju s t  th e  equation for th e  gradient of th e  surface level £ w hen a  co n stan t, 
sm all horizontal foroe — d S jd x  is applied.

Integration o f equation (4.7)
L e t us assume a t first th a t  no energy is lost by wave breaking, bo ttom  friction, 
etc. Then equation (4.7) adm its an  exact integral. For from  (3.31) and (4.1) 
we have

(4.8)
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where J 1 is a constant and the subscript indicates th a t A is to  be held constant in 
th e  differentiation. Now if we introduce the non-dimensional quantities kh =  £, 
o^hjg =  t] then  the  period equation (2.9) m ay be w ritten

£ tan h  f  =  77, (4.9)
and  we have

/ э _ i  d i  
К  \d(yglh)/h gdt)'

Substitu ting  in  (4.8) we have

In  equation (4.7), h and hence f  and r/ may be regarded as functions of x  only, and 
we have . „„

d£ =  — ~ d S x =  ^  .
pgh x pg3 7} \di} i)J

In tegra tion  by p arts  yields
? o*F d (E\
£ =  — = J -  ( -  + const.

pg3 dt\ \т):

B u t £/77 =  coth f, which tends to unity  in deep w ater (£ > 1 ) .  So if  £ is measured 
relative to  the  deep-water level the  constant of integration vanishes:

< t u >

п ш  5 _ Ц £ (С<Л{)

or, on substitu ting  E  =  \pga? and performing the differentiation,

I  -  1 a*k (4.12)
-  2 s in h 2 feA’ ' 1

As the  w ater becomes shallow [kh > 1 )  we have the asym ptotic expression

(413)

E quation (4.12) shows th a t  when there is no loss of energy the surface is 
depressed relative to  the deep-water level. The values of a  in th a t  equation, 
however, depend on the local depth. To obtain  the  actual profile of £ we re tu rn  to  
equation (4.11) in which F  is assumed constant and equal to  1рд2аЦ<т, where o0 is 
the wave am plitude in  deep water. Substitu ting for F  in th a t  equation we find

£ =  — ao^o f ( v )  1
1 d co th2£

where / ( , )  =  - ^ ( c o t h g )  =  4(g + ainh g ^ E | )  -

2

(4.14)
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a n d  £ is re la te d  to  77 b y  (4.11). /(??) is p lo tted  in figure 2. T he very  sharp  dow n-turn  
in  level a t  a ro u n d  rj =  0-5 will be no ted . In  shallow w ater (rj 4  1 ) we have

fiv) ~ ~ (4-15)
T his asy m p to te  is ind ica ted  by  th e  broken line in  figure 2 : i t  lies rem arkab ly  close 
to  f(t})  w hen 1) < 0-5. F ro m  equation  (4.15) we have

a lk  „
e ~ -

8(cr2A jg )l 8сгЛ^
(4.16)

F iq t jk e  2. Graph of giving the depression of the mean surface level in water of finite 
depth, relative to the level in deep water. The broken curve represents the asymptote 
1/(81?»).

T hus the  surface depression is inversely proportional to  the  three-halves pow er of 
th e  depth.

The above formulae apply only so long as there is no appreciable loss of energy 
and so long as th e  smaU-amplitude theory  is valid. A necessary condition for th e  
la tte r is th a t  (» )»  ( « ’ )
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(see Stokes 1847). The theory is certainly no t precisely valid when the waves are 
so steep as to  be breaking.

However, one m ay perhaps expect a qualitative result from the observation 
th a t  swell in shallow w ater tends to  break when the depth is about 1-3 times the 
crest-to-trough height (Munk 19496). In  shallowwater cgjc = 1 so th a t from (3.32)

SX =  P  = ipga2-

I f  we now w rite 2a =  A/1-3 equation (4.5) gives

9£/cte =  — 0'22dhldx. (4.18)

Since for shoaling w ater dhfdx is negative, the mean level tends now to  rise towards 
th e  shore. In  fact, (4.18) suggests th a t the mean gradient of £ may be practically 
independent of the  initial wave am plitude and period under these conditions.

Some confirmation of these conclusions is to  be found in the experiments of 
Fairchild  (1968). These were made on a 1:75 model of the beach profile off 
N arragansett pier, w ith wave amplitudes a — iH ,  ranging from 16 ft. down to 
2 ^ ft., and  periods of 15 and 9sec. W ith the  larger wave amplitudes, where 
breaking m ight be expected, there was a positive ‘se t-u p ’ (rise in  level) towards 
th e  shoreline. The difference in £ between say 200 and 400 ft. from the shoreline 
is rem arkably  independent of wave am plitude and period. The mean value is 
Д£ =  —0-76 ft., corresponding to  a difference in depth ДА =  6  ft. Thus

-г-̂  =  —0-12 —  ,
A x Ax

which is in  order-of-magnitude agreement w ith (4.18).
Significantly also, a t  the smaller wave am plitudes, where breaking is delayed, 

the  observations show th a t £ can be negative. The author states: “ Other tests in 
the  Beach Erosion Board laboratory have shown th a t  for considerably steeper 
beach slopes (1 on 3 and 1 on 6 ) and wave of som ewhat lesser height (2-4 ft.), there 
is no wave set-up b u t ra ther there is wave set-dow n” . This is to  be expected, for 
under the conditions described the breaking of the  waves would be delayed. 
I f  there is little  loss of energy ap art from wave breaking, then  our analysis 
suggests th a t  the  greatest depression of the  m ean level will be a t  about the  point 
where breaking first occurs.

The m agnitude of the change in level is of the sam e order as th a t caused by wind 
stress over the w ater surface. A t first glance this appears anomalous since the 
m om entum  of the  waves is only a small proportion of the to ta l m om entum  trans
ferred from the wind into the water. However, the  increase in surface level caused 
by  the wind stress produces an increased pressure effective through the  full depth  
o f the basin. On the  other hand, the m om entum  associated w ith the waves 
produces a  ohange in level only when the  w ater becomes shallow, and so the  force 
is exerted over only a small depth. As has been shown by Taylor (1962) the  wave 
m om entum  m ay be transferred directly to  the  boundaries by the radiation stress, 
w ith only a depression of mean level resulting. This occurs when the  bottom  slope 
is sufficiently abrupt.
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5. W ater o f variable depth. (2) G roups o f waves

W e now  generalize to  th e  case o f a  tra in  o f waves of fluctuating  am plitude.
I t  can  be assum ed th a t  a t  each po in t th e  w avelength and  velocity of th e  waves 

correspond to  th e  local d ep th  o f w ater, and  th a t  th e  wave groups advance tow ards 
th e  shore w ith  a  velocity  equal to  the  local group-velocity. To determ ine th e  
am plitude , suppose first th a t  there  is no loss of energy due to  breaking or friction. 
T hen  we m ay  assum e th a t  th e  flux o f energy F  across any  (fixed) vertica l plane 
w ith  co -ord inate  x, a t  tim e t, is constan t for an observer advancing w ith  th e  
group-velocity  cg.

On th e  o th e r han d , if breaking occurs then  the  am plitude o f the  higher waves 
m ay  be lim ited  b y  the  local d ep th  h.

T o find th e  effect on th e  m ean surface level £ we generalize th e  analysis o f th e  
preceding  section so as to  include the  effect of a  tim e-varying m ass-transpo rt M . 
I n  p lace  of equation  (4.2) we obtain

dMjdt+dS/dx  =  pkdhldx. (6.1)
E q u a tio n  (4.2) is th e  special case o f th is equation  w hen dM/dt =  0, and  (3.34) is 
th e  special case w hen dhjdx =  0. On the o ther hand, b y  tak ing  local averages in  
(4.3) we have, _  .

(com pared w ith  equation  (4.4)). S ubstitu ting  — d4djdzdt for 32й/Эгdt in  the  
in teg ra l and  in teg ra ting  by  p a rts  we find

(6-2)
Suppose now th a t  th e  wave groups are long, so th a t  dw/dt is negligible. Then ph is 
g iven  sim ply by  ph =  pg(h + Q. Combining th is w ith  (5.1) we o b ta in  equation  
(3.35) as before. Moreover, th e  equation  of continuity  of mass is still valid  also. 
So we have shown th a t  for long wave groups, even w hen th e  dep th  is variable, the  
m ean  surface £ responds as though a  horizontal stress -  dSJdx were applied a t  
th e  surface.

T he explicit calculation of £ m ust depend upon th e  en tire  form  of bo ttom  
profile h(x) and  n o t merely on th e  local depth  if, as is generally tru e , th e re  is an  
appreciable change of dep th  h w ithin a  horizontal d istance equal to  th e  length  of 
a  w ave group. A detailed calculation will no t be a ttem p ted  here. H ow ever, i t  
m ay  be noted th a t  as the  dep th  diminishes, and th e  group-velocity ca approaches 
(gh)i, so the  response of the  surface to  the  applied stress '«all increase. F o r exam ple, 
th e  surface elevation £, which in the  case of uniform  depth  h is given by

£ ------- ^ 1 Р - +С0Ш t . ,  (5.3)
gh-<%

will become large on account of th e  vanishing of the  denom inator. F rom  (2.10) 
and (2 .11 ) we have

4  -  m  - w + < m r \ ,  (5-*)
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so th a t, if  the  resonan t response had  tim e to  develop fully,

501

(5.6)

W hen there  is no loss o f energy, we should have from (4.6)

3 /
2 ро-аЛг(дк)Ь’

(5.6)

whioh is increasingly negative as h diminishes. However, the validity of these 
form ulae is lim ited by the  condition (4.10) and by the fact th a t the resonant 
response needs tim e to  build up. In  practice, the  waves are often limited by 
breaking, so th a t  f  m ay no t increase towards the shore to  the extent indicated 
by  (6 .6 ).

6. S u rf beats

Off-shore records of wave pressure on the sea-bed when there is an incoming 
swell often show the  existence of longer waves, of 2-3 min period, very similar to 
the  envelope of the  visual swell (Munk 1949a; Tucker 1950); bu t the long waves

F igtjrb 3. Correlation of long waves with the envelope of incoming swell, as a function of 
the time difference between them: mean of the five best correlograms. (From Tuoker

are delayed relative to  the  envelope of the swell by several minutes. Munk and 
Tuoker have both suggested th a t the long waves m ay be caused by an excess of 
mass carried forward by the groups of high swell; the  swell waves, it  is assum ed, are 
destroyed on the beach, bu t the  m ass-transport associated w ith them is reflected 
back and is m easured as a long wave by the pressure recorder after an appreciable 
tim e delay.

To dem onstrate this, Tucker correlated the  long waves w ith the  envelope of the  
swell, a t  varying tim e shifts (see figure 3) and found a  maxim um  (negative) corre
lation a t  a tim e shift of about 5 min—about the  tim e required for the  groups of 
waves to  reach shore w ith velocity ce and  for the  long waves to  travel back w ith 
velocity (gh)i. Tucker also compared the height of the  long waves w ith th e  height 
of the corresponding groups of swell (see figure 4).

Tucker made the  following rem ark: “ Such a  simple explanation disagrees with 
the observations in two m ajor respects: according to  theory, the  m ass-transport

Long waves lagging on 
wave envelope (min)

Long waves in advanoe of 
wave envelope (min)

1950.)
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w ith in  a  w ave (in a  given dep th ) is proportional to  th e  square  of th e  height, 
w hereas th e  observations show th a t  th e  long w ave height is approxim ately  
linearly  p rop o rtio n a l to  th e  o rd inary  wave height. The sim ple explanation  also 
req u ires  t h a t  th e  long w ave should  be an  elevation, w hereas figure 2 shows th a t  
th e  o u ts tan d in g  fea tu re  of th e  observed wave is a  depression in  w ater level.”

W a v e  h e ig h t  in  f t .  (b o t to m  p re ss u re )

F i g u s e  4. R e la t io n  b e tw e e n  t h e  h e ig h t  o f  t h e  lo n g  w a v e s  a n d  th e  h e ig h t  o f  t h e  
c o r re sp o n d in g  sw ell. (F ro m  T u c k e r  1950.)

T he reader will a t  once perceive th a t  th e  second objection is im m ediately  
answ ered, for we have shown th a t  in fact, con trary  to  expectation , a  group of 
h igh  waves is associated w ith a  <depression of the  m ean surface level and  a  conse
q u en t reduction  of pressure on the  bottom .

T o account for T ucker’s first point, however, we shall now try  to  construc t a  
v e ry  crude theory  of su rf beats, on the  lines previously suggested.

Since long waves are more readily  reflected by  non-uniform ities in  th e  tra n s 
m ittin g  m edium  th a n  are shorter waves, i t  is reasonable to  suppose th a t  a t  some 
d ep th  h0 th e  long wave associated w ith  the  m ass-transport undergoes p a rtia l 
reflexion while th e  shorter waves are allowed to  pass on and  be destroyed  in 
shallower w ater. I f  CR denotes th e  coefficient of reflexion of th e  long w ave, th en  
its  am plitude a t  th e  po in t of reflexion would, according to  (5.6) be given by

F 3 Cr F
2 ро*КЫяК)Г

On propagation outw ards th e  height of the  reflected wave will be dim inished like 
(k0jh)i, so th a t a t  any other dep th  h, and  after the  appropria te  lapse of tim e,

? =  A  ° * F  ( h Y
2 p<r2h?,(gh0) i \ h  J
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which represents also the long-wave pressure, in feet of water, recorded on the 
bottom.

Since is proportional to F  and hence to a 2, it would seem that the amplitude 
of the long waves is proportional to the square of the envelope of the incoming 
swell. On the other hand, if breaking has taken place before the point of reflexion, 
the higher waves at least will have been reduced in amplitude, and so one expects 
in fact a law of variation rather weaker than a2. This is not inconsistent with 
Tucker’s observations.

It should be said th a t  the  choice of one particular depth h0 for reflexion of the 
long wave is probably no t realistic, and th a t reflexion m ay take place a t  more 
th an  one place, depending also on the length of the wave groups. F urther 
reflexion by deep w ater (Isaacs, Williams & E ckart 1951) is also not ou t of the 
question. All such possibilities would tend to  lower the  correlation between the 
wave envelope and the subsequent su rf beat.

Finally  i t  m ay be worth mentioning th a t Munk (1949a) has attem pted  a com
parison of the observed long waves w ith the tim e-integral of (breaker height)2, 
using a fixed tim e lag. However, from our po in t of view this time-integral would 
be 90° ou t of phase w ith the appropriate quan tity  for a  periodic wave envelope. 
The fact th a t  M unk obtains reasonable coincidence over four cycles of the envelope 
is n o t evidence against our hypothesis, for with a slightly different tim e lag, the 
evidence could equally well be used in support of our hypothesis. The appropriate 
tim e-lag was no t certain “ in  view of the  1 0 0 0 ft. distance separating the swell and 
tsunam i records and of other uncertainties ” (see p. 853). The procedure adopted 
b y  Tucker, nam ely to  p lo t the  correlation coefficient between the surf envelope 
and  the  long waves as a function of the  time lag, appears to  be the m ost convincing.

Appendix: the momentum integral

The relation
M = p h \u + E jc  (A l)

used in § 3 is due essentially to  Stokes (1847), and in  the case | и  =  0 was redis
covered by S tarr (1959) aa a hydrodynam ical analogy to  E instein’s law M  = Ejc1. 
The m ethod of derivation given by W hitham  (1962) is similar to  Stokes’s. Here 
we give a simple way of deriving the relation, which avoids the explicit evaluation 
of integrals.

The mean horizontal momentum M  may be expressed as

pU dz, (A 2)

where U denotes the  mean velocity of a  particle, in the  Lagrangian sense: in other 
words the  m ass-transport velocity. Now the displacem ent of a  particle due to  
its orbital motion is, to  the first order,

A x  =  J* ull)A
and  so the  horizontal velocity of the  particle in the neighbourhood o f a fixed 
poin t x  is u  + д х  _ у щ.
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The mass-transport velocity, to second order, is the mean value of this expression:

U =  u +  fu  Pdt.Vu™ .
J

Now u(1) is periodic in time and so

u . Vw<«+u(1). V J«» dt = |  J . V J И» A 
which vanishes by periodicity. So we have

U  =  « —u(1). V

=  u - J  ̂  d t+ « /»  j ^ d t .

Since th e  m otion  is progressive, du(l)jdx m a y b e  replaced b y  — ( 1/c) dumjdt\ an d
9m(1)/9z, w hich equals dwa)jdx, m ay  be replaced b y  — (1/c) 9w(11/0£. H ence

U =  5 + i ( ttw* +  1l*i>«) =  u + W 2lc.

S ubstitu tin g  in  (A 2) gives м  =  рЛ-|м +  2 к .в ./с

w here k .e . denotes th e  density  o f k inetic energy. Since k .e . equals h a lf  th e  to ta l
energy E , th e  re su lt (A 1) follows.
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A B S T R A C T

Seaward of the breaker zone, the observations of Saville are in good qualitative agree
ment with the prediction that the mean surface level is incrasingly depressed towards the 
shoreline, proportionally to F(rj), i. e., to (cr* A/g)-J/*, very nearly. The observed depressions 
are on the average greater than the theoretical by a factor of about 1.7 . Between the breaker 
zone and the still-water level the surface tends to rise again in the way described by d^jcbc — 
Q (dkjdx), with the factor Q equal to 0 .15.

1. Introduction. It  was found experimentally by Fairchild (1958), and 
confirmed more recently by Saville (1961), that when a steady train of waves 
is propagated in water of non-uniform depth, the mean level of the water 
surface may differ appreciably from the still-water level. A n  effect of this 
kind was also recently suggested on theoretical grounds (Longuet-Higgins 
and Stewart, 1962)2. T h is  note compares the theory with the experimental 
results.

2. Definitions. Regular, two-dimensional waves, of constant period and 
amplitude, are supposed advancing into a region of non-uniform depth. Let 
a  =  radian frequency =  2jt/wave period; k =  wavenumber =  2 я /wave length; 
a =  wave amplitude, =  */* wave height; h =  local still-water depth; x  =  ho
rizontal co-ordinate in direction of wave propagation.

It  is assumed that the depth varies only gradually, so that (dh/dx)* is neg
ligible. When the waves originate in deep water (kh »  1) their amplitude and 
wavenumber there are denoted by a«, and ka> respectively. W e have simply 

*oo =  CF/g.
1 At present visiting the Institute of Geophysics, UCS0, La Jolla, California.
* A  similar prediction, in less explicit form, is made by Dorrestein ( 1962). See also a report by For- 

tak ( 1962).
4
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3. Theoretical Predictions. In  the paper by Longuet-Higgins and Stewart 
(1 9 6 2 ; henceforward referred to as [ I ] ) ,  two types o f prediction were made:

(1 ) Assum ing that there is no loss of energy in the waves, either by friction, 
breaking or reflection, then the mean surface level at any point is lowered 
by an amount

— С = tfoo* boo F(rj) , (1)
where

4 =  a* hjg,  (2)

and F(r}) is a dimensionless function defined as follows:

F (v)  =  -  7  - j -  co th  £ >4 UV

£ tanh £ =  r j .

(3)

T h e  function F (rj) is plotted in [ I ] :  fig. 1. For values o f rj less than 1 (i. e, 
in moderately deep water), F (rj) lies close to the asymptote

(4 )

F o r the validity of this result it is necessary that the conditions

a k ( (  1 ,  a k ( ( { k h )  3 ( 5)

for the small-amplitude theory of water waves be satisfied.
I f  the waves do not originate in deep water, but in a long channel o f depth 

A0, then the generalization of eq. (1) is

- l  = a m* k m (6)

where
rja =  a1 hojg, (7)

and Д00 is a virtual amplitude at infinity, which may be calculated by the con
dition that the energy flux (1 / 2. Qg a- x group velocity) is a constant. A  graph 
giving the ratio of <?o, the amplitude in water of depth h0, to a<x>, is given, for 
example, in Longuet-Higgins (1956).

(2) T h e  second result of [ I ]  applies to the altogether different situation in  
which the waves are in shallow water (kh << 1) and are limited in height by 
breaking. A  rough argument suggested that
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л - й д .  (*)

where Q is a quantity of the order of 0.2.
Finally, we note that, according to the theory of solitary waves (M unk, 

1949)5 depth hb at the initial breaking point is related to the wave amplitude 
in deep water by

—  =  1.14 (a o o iw )-'/}.  (9)
Q 00

4. Experimental Data. For comparison with eq. (6), the most suitable and 
extensive data are those given by Saville (1961: table 4). These are the ob
served differences in level f  when waves approached a ramp o f slope 1:10, 
topped by another ramp of slope 1:6  or 1:3. T h e  wave amplitude a0 was 
measured in a depth of water equal to 10 feet (on the model scale), and the 
mean levels at four different distances from the shoreline. By reconstructing 
the beach graphically, one finds for the mean depth h at these positions the 
following:

Upper slope 1 :6  Upper slope 1:3

Position: 1 2 3 4  1 2 3 4  
Distance from

shoreline: 18.5 23.6 30.8 51.0 6.5 11.6 18.8 39.0 feet
Depth h: 3.1 3.9 4.6 6.6 2.2 3.9 4.6 6.7

In  order to plot all of the experimental points on the same diagram we have 
calculated ago, ia> and rj0 as defined in §§ 2 and 3, and plotted

■ f A -  + г м  мQ ao к  со

against F ( 17), the above expression being the value of F(rj) given by eq. (6). 
T h e  result is shown in Fig. I . T h e  circles refer to the 1:6  slope (scale model 
1 : 1 0 ) ;  the triangles refer to the 1 :3  slope (prototype tank data), and the 
squares to the 1:3  slope (scale model 1 : 1 0 ) .

In  Fig. 1 a distinction has been made between whether the breaking point 
had or not had been reached, according to eq. (9). I f  h >  ht, i. e., the waves 
had not yet broken, the plotted symbols have been filled in solidly. A t the 
largest value of h for which h ± h b (at any fixed value o f аш and cr), a line 
has been drawn through the center of the symbol; these presumably correspond 
to waves on the point of breaking. A ll other plotted symbols in Fig. 1 are 
left empty; these represent waves which had almost certainly broken.
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Figure 1. Observations of the surface depression [in the form of eq. ( 10)] compared with the theo
retical function F(rf) (solid line). The horizontal co-ordinate is proportional to the local 
mean depth. Data are from Saville (1961): table 4 .

T h e  full curve in Fig. i  represents the theoretical value o f F(rj), and the 
broken curve is the asymptote, eq. (4).

It  is seen that generally the trend o f the observations is very similar to that 
of the theoretical curve, over a range o f 1:1000. T h e  plotted points corre
sponding to waves which had not broken lie generally above the theoretical
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Figure z. As in Fig. I. Data also from Saville (1961): table 1.

c u rv e , i. л ,  the  depression o f  th e  m ean  level is g rea te r  th a n  pred icted , by an  
average  fac to r o f  ab o u t 1 .7 .

A  second set of data, derived from Saville (1961: table 1), is shown in 
Fig. 2. These measurements were made on uniform slopes o f 1:30 a°d 1:15  
(indicated by circles and triangles respectively). O nly those data are shown 
for which the waves had not yet broken (full plots) or had only just broken 
(plots with horizontal lines). Also the plots have been confined to those cases
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when the waves did not over-top the slope. T h e  agreement with the theoretical 
curve is comparable to that in Fig. 1, i f  anything somewhat better. T h is  may 
be because the waves had lost more energy on the less inclined slope.

Saville’s observations were, in the latter case, continued well beyond the 
breaking point o f the waves, so that the gradient o f the set-up in the region 
o f breaking can be compared with the theoretical prediction o f eq. (8) above. 
T h e  observations, which are shown graphically by Saville (1961: figs. 4, 5), 
do indeed suggest that the gradient of the set-up is practically constant in this 
region. T h e  magnitude of the set-up is shown in Table 1. Here AC denotes 
the difference in set-up between the still-water line and the first break-point 
(as computed by Saville3), and A x  is the horizontal distance between them. 
Ah  is the consequent difference in height, i. e., A x  times the bottom gradient.

T A B L E  I. O b s e r v a t i o n s  o f  s e t - u p  i n  t h e  b r e a k e r  z o n e .

Wave
period

(sec)

Wave
height

(ft)

Bottom
gradient

АЦ
(ft)

A x
(ft)

A h
(ft)

AC
A h

9.25 10 1:30 1.7 390 13 0.13
9.25 20 1:30 4.2 780 26 0.16
9.25 30 1:30 4.1 1180 39 0.11

15.0 10 1:30 1.8 390 13 0.14
15.0 20 1:30 4.7 780 26 0.18
15.0 30 1:30 4.0* 900 30 0.13
9.25 10 1:15 2.0 200 13 0.15
9.25 20 1:15 5.7 390 26 0.22
9.25 30 1:15 5.9 580 39 0.15

* Measured from the lowest available observation.

I n  the last column o f Table 1 the ratio A£jAh  is shown. It  is seen that this 
ratio is virtually independent of wave period and bottom slope, and also of 
wave amplitude. T h e  observed values differ little from the mean value 0.15- 
T h is  indicates that the quantity Q  in eq. (8) is in fact about 0.15-

Saville’s observations include other interesting features, such as the effect 
o f a breakwater and of overtopping at a berm. These are not covered by the 
presently available theory.

5. Conclusions. Seaward of the breaker zone, the observations o f Saville 
are in good qualitative agreement with the prediction of eq. (6); that is to 
say, the mean surface level is increasingly depressed towards the shoreline, 
proportionally to F(rj), i. e., to (or1 h jg ) - l i2 very nearly. T h e  observed depres
sions are on the average greater than the theoretical by a factor of about 1.7 
Between the breaker zone and the still-water level the surface tends to rise 
again in the way described by eq. (8), with the factor Q  equal to 0.15-

3 Saville’s predicted break-points do not differ significanlty from those given by eq. (9) above.
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Radiation stresses in water waves ; a physical discussion, 
with applications
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(Received 17 June 1964)

A bstract—The rad ia tion  stresses in water waves play an  im portant role in a  variety o f  oceanographic 
phenom ena, for exam ple in the change in  m ean sea level due to  storm  waves (wave “ se t-u p ” ); 
th e  generation o f  “  surf-beats the interaction o f  waves with steady currents; and the steepening 
o f  sh o rt gravity waves on  the crests o f longer waves. In  previous papers these effects have been 
discussed rigorously by detailed perturbation analysis. In the present paper a  simplified exposition 
is given o f  the rad iation  stresses and some o f  their consequencies. Physical reasoning, though less 
rigorous, is used wherever possible. The influence o f  capillarity on the radiation  stresses is fully 
described fo r the  first time.

I N T R O D U C T I O N

In  a series o f recent papers (1960, 1961, 1962, see also T a y l o r  1962, W h it h a m  
1962) we have attempted to elucidate some of the non-linear properties o f surface 
gravity waves in terms of what we have called the “ radiation stress.” Some o f these 
non-linear properties have turned out to be unexpected (or at least to differ from 
properties widely assumed previously in the literature). For this reason a m ajor 
part o f the above mentioned papers has been used for a careful check o f the results 
obtained by using the radiation stress concept, by means of detailed perturbation 
analysis to  the required order of approximation.

One effect of this approach (which we believe to have been necessary) has been 
th a t the papers are somewhat analytical, and the straightforward simplicity o f the 
concept may have been partly obscured for some readers. It is the purpose o f the 
present paper to attem pt a simple exposition, setting forth the nature and uses of 
the radiation stress. In many cases results will be stated without proof; readers 
dissatisfied with any o f these are referred to  the previous papers. (We shall refer 
to  L o n g u e t - H ig g in s  and St e w a r t , 1960, 1961, and 1962 as I, II and III)- A t the 
same time we shall extend some of our previous results for pure gravity waves so 
as to include effects of capillarity.

In the first sections of the paper we describe a simple derivation o f  the radiation 
stress, both for gravity waves and for capillary waves. In the second part we shall 
describe the application of these results to  a num ber of interesting phenomena 
observed in the oceans; in particular to  wave “ set-up,” “ surf beats,”  the steepening 
of short waves on adverse currents or tidal streams, and the generation of capillary 
waves by steep gravity waves.

♦National Institute o f Oceanography W ormley, Godalm ing, Surrey.
"(■Institute o f Oceanography, University o f  British Columbia, Vancouver, British Colum bia, 

Canada.
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P A R T  I— T H E  R A D I A T I O N  S T R E S S E S ;  A P H Y S I C A L  D I S C U S S I O N

It is well known that electromagnetic radiation impinging on a surface, or 
originating on a surface, produces a force which is referred to as the “ radiation 
pressure.” It is perhaps less well known that a similar phenomenon occurs in the 
case of acoustic waves and of waves on the surface of fluids (or indeed of internal 
waves in a stratified fluid). In each case the force is principally in the direction 
o f wave propagation. It is therefore not an isotropic one unless the waves themselves 
are isotropically distributed (as is the case for electromagnetic waves in an isothermal 
enclosure). In fluid mechanics it has become customary to use the term “ pressure ”  
for the isotropic stress which figures in the equation of state. We have therefore 
considered it wise to  coin the term radiation stress as a more general one which 
does not carry any implication of isotropy}:.

Qualitatively§, the following argument may serve to introduce the concept :
I t is well known (L amb, 1932, Section 250) that surface waves possess momentum 

which is directed parallel to the direction of propagation and is proportional to

2

the square of the wave amplitude. Now if a wave train is reflected from an obstacle, 
its momentum must be reversed. Conservation of momentum then requires that 
there be a force exerted on the obstacle, equal to the rate of change of a wave 
momentum. This force is a manifestation of the radiation stress.

A stress is by definition equivalent to a flow of momentum. The radiation stress 
may thus be defined as the excess flow o f  momentum due to the presence o f  the waves. 
Let us consider in detail how this stress arises in gravity waves.

]. Progressive waves in water o f  uniform depth
Consider first an undisturbed body of water o f uniform depth h (Fig. 1). The 

pressure p  a t any point is equal to the hydrostatic pressure :
Jit might be argued that “ radiative stress ” would be grammatically more correct, but we wish 

to retain the implied analogy to the well established term “ radiation pressure "—and in any case 
the use of nouns as adjectives is widespread in English.

^Quantitatively, in some special cases, it leads to difficulties and to errors, because some 
phenomena are incompletely described by the discussion in this paragraph.
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P =  -  Pgz, (1)

where p, g  and  z denote density, gravity, and distance measured upwards from  the 
m ean surface. I f  we denote the above expression by p e then the flux of horizontal 
m om entum  across any vertical plane x  =  constant is simply p 0 per unit vertical 
distance. Thus the to tal flux o f horizontal momentum between surface and bottom  
(z =  — h) is

о

J  Po dz (2 )
-л

Since this quantity  is independent of x, the flux of m om entum  across an  adjacent 
plane (x  +  dx) ju s t balances the flux across the first plane, and there is no net change 
o f  m om entum  between the two planes (Fig. 1).

N ow  consider the momentum flux in the presence o f a simple progressive wave 
m otion (Fig. 2). The surface elevation z  =  $ is given approximately by

£ =  a  cos (kx  — at) (3)

where a  is the amplitude, к  =  27r/wavelength and a =  2ir/wave period. The particle 
orbits are roughly ellipses, with the m ajor axes horizontal in general. (In deep 
water the orbits are circular). The corresponding components of velocity are given by

и — sl[g ^  cosh к  (z +  h) cos (kx  — at)

w =  sjn̂ g^ ? sinh к  (z - f  h) sin (kx  — at).

A quite general expression for the instantaneous flux of horizontal momentum 
across unit area of a vertical plane in the fluid is

p  +  риг. (5)

In this expression the second term pu2 represents a bodily transfer of momentum 
pu (per unit volume) at a rate и per unit time (Fig. 3). The term  pu2 is evidently 
analogous to a pressure. Even if  the mean value o f и itself is zero, the mean value 
и2 is o f course generally positive.
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(Similarly, fluid crossing the plane x  =  constant possesses z-momentum 
associated with the velocity component w. A mean product such as puw, which 
represents the mean transport of z-momentum across a plane x  =  constant—or vice 
versa—is equivalent to a shear stress. In turbulence theory, such mean values are 
known collectively as Reynolds stresses, and it will be appreciated that the above

Fig. 3. Bodily transport o f momentum across a  plane x =  constant. In time I a volume udi 
per unit area has been transported across the plane. The momentum transported is thus pu udt.

concepts are also similar physically to those used to explain the origin of pressure and 
viscosity in the kinetic theory of gasses. If due to turbulent fluctuations, the Reynolds 
shear stress is frequently parameterised by the concept o f “ eddy viscosity.” Reynolds 
stresses also occur in waves, but in this case we must seek a different kind of 
description. For a discussion of the Reynolds stresses particularly appropriate in 
the present context, see St e w a r t , (1956)).

To find the total flux of horizontal momentum across a plane дг =  constant 
we have to integrate (5) between the bottom z  =  — It and the free surface z =  £ :

<
J (p +  pu2) dz. (6)
-h

We now define the principal component Sxx of the radiation stress as the mean 
value o f the function (6) with respect to time, minus the mean flux in the absence 
o f the waves, that is to say

с о
S x x -  J  0» + pu1) dz — j  p0 dz. (7)

-*  -*
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Special care m ust be taken to  take the mean value after integration, since the 
fluctuation o f the free surface itself contributes to  the m om entum  flux. We can 
see this best by separating the right-hand side o f  (7) into three parts, that is by writing

.(») (8)
where

ji> — J" pu* dz 
-h

=  j ( P ~ Po) dz (9)

S-,J*  =  J p dz.
о

Consider the first contribution S xxa). Since the integrand is of second order, the 
upper limit z  =  £ may be replaced effectively by the mean level z =  0 , since the 
additional range 0 <  z <  £ contributes only a third-order term. Now, both  the 
limits o f integration 0 , h, being constant, we can transfer the mean value to  the 
integrand. Thus

—о о

S*z(1> =  f  pU2 dz =  j  J 

-h  -h
pu2 dz. (10)

The contribution S ix11', then, is effectively the Reynolds stress p it  integrated from  
the bottom up to the free  surface. I t  is obviously positive in general.

Consider now the contribution S xx{2\  As in equation (10), we may take the 
mean value inside the limits o f integration :

■  / < ? - Po) dz. (И)

In  other words S Xxm  arises from the change in mean pressure within the fluid. Now 
the pressure p  generally contains terms proportional to  a2, which can be found by 
a second order analysis. However, we do not need to calculate all the second-order 
terms explicitly since p  may be found directly from a consideration o f the vertical 
flux o f vertical momentum as follows.

We know that the mean flux of vertical momentum across any horizontal plane, 
which is p  +  pw2, must be just sufficient to support the weight o f the water above it. 
Since the mean level o f the water is at z =  0, we have then

(12) 

(13)

p  +  pw2 =  — p g  z  — p 0
or

■ Po =  -  Pw*

Thus p  is generally less than the hydrostatic pressure p 0. Substitution in equation 
(11) gives

I
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U

Sxxm  =  J ( — pw*) dz. (14)
-h

This contribution is then negative in general.
Combining equations (10) and (14) we have

о

Sxxa> +  S Xx{2) =  j p (и2 — и/2) dz ^  0. (15)
—k

For, since the major axes of the particle orbits are horizontal we have u2 ^  w2. 
After substituting for the velocities from equations (4) and carrying out the integra
tion we find in fact*

с (i) _i_ с <2) _  i раг аг Н _  pgcPkh , l t lОXX T  &jez — i  . . - , , =  ■ . , ( 10)sinh3 kh sinh 2kh. 

having used in the last step the frequency relation

a2 =  gk  tanh ph (17)
for waves of small amplitude.

In deep water the particle orbits are circles, and u2 equals w2; the Reynolds 
stresses are isotropic in x  and z. The positive contribution pu2 from the horizontal 
Reynolds stress is then exactly cancelled by the pressure defect — pw2 arising from 
the vertical Reynolds stress. On the other hand in shallow water the particle orbits 
are elongated horizontally, and w2 becomes small compared with и2. Then 
p (и2 — w2) becomes simply pu2. Since, for the same reason, the kinetic energy is 
then just ipu2 per unit volume, we see that S xxn) +  Sxx{2> is then twice the kinetic 
energy density, that is, the total energy density of the waves.

There remains the important contribution S Xxm - This is equal to the pressure 
p  integratedf between 0 and £ and then averaged with respect to time. It is easily 
evaluated, for near to the free surface p  is nearly equal to the hydrostatic pressure 
below the free surface :

P  =  Pg(.£ —  z)• 0 8)

Thus the pressure at any point near the surface fluctuates in phase with the surface 
elevation £. Substitution in the integral gives

S xx™ =  i p g ? .  (19)

So Sxxl3) is generally positive and is in fact equal to the density of potential energy, 
that is to say half the total energy density E  :

Sxxw  =  lp g a 2 = h E  (20)

♦It may be noted that (u2 — w2) is independent o f  z, for using the incompressible, irrotational 
and progressive character o f  the m otion we have :

л /  Ьи i>w\ ^ /  bw J)u\ .  3 f  4 n
‘2 (“SS -  9 Э  = 2 ("S* + =  2^ (UH,) = °-

tWhen the free surface is below the mean level, the velocity field is assumed to be extended 
analytically up to the mean level. This device leads to the simplest algebra. If preferred, however, 
the upper limit o f integration may be taken at any arbitrary fixed level in the fluid, within a distance 
of order a from the mean level; the final result is the same.

i
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where
E  =  \pga2.

A ltogether we have from equations (15) and (19)

S xx =  Sxxw  +  S xx™ +  S xx™ >  0, 

o r on inserting the values found in equations (16) and (2 0 )

= 4 isinh 2 kh

(21)

(22)

(23)

The ratio 2/c/i/sinh 2kh lies always between 0 and 1. In deep water (kh >  1) the 
ratio tends to  0  and so

S xx =  \E , (24)

while the shallow water (kh < 1) it tends to 1 and so

S xx =  *£. (25)

The transverse components o f  the radiation stress. Now let us consider in a 
similar way the flow o f ^-momentum (momentum parallel to  the wave crests) across 
a  plane у  =  constant. Denoting this by S yv we have corresponding to equation (7) 
the relation

о
(26)

- k  - h

where v is the transverse component of velocity. Just as for S xx we can consider 
S yv as the sum of three parts :

Syy =  S yy™ +  SyVm  +  S yy™ (27)

~l о

Syy =  J (p +  рог) dz — j* p0 dz

where SyVw =  j  dz 
-h

С  (2 )  byy - j ( p - Po) dz (28)

S vv{3) =  J  pdz 
0

In gravity waves the transverse velocity vanishes everywhere and so

S „ '1' -  03

while Syv{2) and Syy(3) are equal to S Zx{2) and S W 3) respectively. 
Thus

о
C (2) =  |  ( -  pwb) 

—h

(29)

(30)

(31)
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Substitution for w from equations (4) and use of the frequency relation equation 
(17) leads to

Sy'J =  E  X sinh 2kh ' (32)

In deep water, w2 =  и2 =  \  (и2 +  v2 +  w2); then S yy{2) is equal to minus the density 
o f kinetic energy, which is — \E . Thus S yyi2) just cancels Sy,j[3) and S yy vanishes :

Syy =  0 (kh > 1) (33)

In othei^ words, the deficiency in the mean pressure p arising from the Reynolds 
stress pw2 is exactly cancelled, in deep water, by the surface deformation effect. 
In shallow water, on the other hand, the mean square vertical velocity w2 is small. 
Hence S vyi2) is negligible and

Syy =  Syy(3) =  JE. (34)

Lastly the flow of jc-momentum across the plane у  =  constant is given by

С

S xy =  J  puodz;
-h

there is no contribution from the mean pressure. Since uv vanishes identically 
we have always

Sxy -  0 (35)

provided, o f course, that the ^-direction is the direction of wave propagation. If 
for some reason we choose a co-ordinate system at an angle (other than a right 
angle), then there will be a non-zero shear stress S xy. Its magnitude may be 
calculated by the ordinary tensor transformation rules from the two-dimensional 
tensor S, which in diagonal form is given by

Ш  +  \  0

2. Standing gravity waves
Let us combine two progressive waves of equal amplitude a and wavelength 

2irjk so as to produce a standing wave. The free surface is then described by

£ =  2a cos k x  cos at (1)

and the components o f velocity by

k(z  +  h) sin k x  sin at j

sinh k(z  +  h) cos k x  sin at.=

sinh 2kh

2 a a 
sinh 2kh

(2)

The surface elevation has antinodes a t k x  =  mr (where и is an integer) and nodes 
ta  k x  =  (n +  \)ir, as in Fig. 4. The two components of velocity fluctuate in-phase,
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proportionally to sin at, so that the particle orbits are straight lines. Beneath the 
antinodes the orbits are vertical, beneath the nodes they are horizontal, and at 
intermediate positions the orbits are inclined generally to the horizontal. The mean 
product uw and also the shearing stress puw do not vanish in general, and are functions 
o f the horizontal co-ordinate x. The horizontal variation of puw supports a difference 
in mean surface level between node and antinode. We can use the radiation stress 
to calculate this difference.

7/7/77/,/777777777777///777//777^7777777777777///////////7///77777'
Fig. 4. Particle velocities in a  standing wave. The com ponents ч  and  w fluctuate in-phase, and 

the  m ean product Ш  is non-zero in general.

Consider the stress S xx, representing the flux of horizontal momentum parallel 
to the x-axis. This is given by the general relation in equation (7), Section 1, (in 
which an overbar denotes the average with respect to time). As before we may 
consider the right-hand side as the sum of three parts SW l), Sxx{2), S xx{3) given 
approximately by

_ (i)

C (2) OXX

pu2 dz.

- J ® -
-A

p0)d z

. ( 3 )

where p 0 =
о

pgz. The third component Sxxi3) is found to be

(3)

— (4)

as before. In the second component S zxl2), the time-mean pressure f  cannot be 
deduced quite so simply as in the progressive wave, being no longer independent 
of x. However, it can be found from the more general relation for the vertical flux 
of vertical momentum :

о
p  +  pw2 — ^  J puw dz = p 0 +  pg £, (5)
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in which the terms on the right represent the total weight (per unit cross-section) 
of a vertical column of water from z to £ (Fig. 5); the terms on the left show how 
this weight is supported : the first two terms represent the mean flux of vertical 
momentum through the base of the column, while the third term is the resultant 
of the fluxes of vertical momentum through the vertical sides of the column. Taking

Р*ры’

Fig. 5. The balance o f momentum in a  vertical column o f unit cross-section.

p  — p0 to the left-hand side and the other terms to the right, we have after integration 
with respect to z :

о o o

Sxz™ =  pgh { — f  pW2 +
- h  —h 2'

Adding this to S W 1’ and Sxxm  we deduce
о o o

Sxx = pgh t  4- J  p («* — w2) dz + yx J  J  puw dz dz’ + %pg (7)
— A —Л z '

Now clearly Sxx must be a constant, independent of x , for otherwise horizontal 
momentum would accumulate at some parts of the wave*. Therefore SXx is equal 
to its horizontal average, that is to  say its average with respect to x  over a wavelength. 
Among the terms on the right of equation (7), the horizontal average of I  is identically 
zero, while the horizontal average of the third term also vanishes by the periodicity 
(the momentum fluxes across two vertical walls a wavelenth apart just cancel). 
So we have simply

о

Sxjc — J  P (a2 — w2) dz +  ipg  2  (8)
-*

where an underbar denotes the horizontal mean value. Substituting from equations 
(1) and (2) we find

+ (9) 
Comparison with equation (23) Section 1 shows that the radiation stress in a

*This follows from the conservation equation fo r x -  m omentum: +  iSxyl'by =  0, and
the fact th a t S xy =  0 in these co-ordinates.

Ш puw dz dz'. (6)
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standing wave is exactly twice the value in each progressive wave; it represents the 
sum of the stresses in the incident and reflected waves, as we should expect.

The local mean level £ can now be found from equation (7) since all other terms 
in the equation are known to the required approximation. In this way we findf

£ =  a*k coth 2kh  cos 2kx. (10)

This shows that the mean surface level is slightly raised at the antinodes and 
correspondingly lowered at the nodes.

The various terms on the right of equation (7) do not all give contributions in 
the same sense; some tend to raise the level at the antinodes and others to lower it. 
A simpler way to estimate £ is to return to the momentum flux equation (5) and set 
z =  0. This gives us

О  +  / » v 2 ) 2 _ о  =  p g  £  ( 1 1 )

(the flux of vertical momentum across the vertical sides of the column is of third 
order only). But on taking time averages in the Bernoulli equation

p + M « 2 +  >v*) +  i f |  = / ( ' )
we have also

[p +  Ьр (и2 +  »v2)]z=,0 =  C, (12)

where С is a constant, not necessarily zero. From equations (11) and (12) we deduce

g  £ =  — \  (t? — w2)z=0 -  C. (13)

The constant С is determined by the condition that |  =  0. Substitution for и and w 
now gives us equation (10) as before. We note in particular that in deep water 
(kh >  1) equation (10) becomes

£ =  агк  cos 2k x  (14)
and in shallow water (kh <  1)

£ =  ^ -7 cos 2kx. (15)
2 h

As the depth h diminishes, a and к  being fixed, the changes in mean level which 
are represented by £ become accentuated.

The evaluation of the transverse stress Syy  follows exactly similar lines; it is 
necessary only to replace иг by v2, =  0 throughout. Hence

о

рм* dz- S xx- j
—A

=  Sx* -  Pga* (g jjjp lyj +  l )  sin2 kx

-  b g a 2
2kh  , (  2kh , , ,

+  Ь^ГтТГь +  1 1 cos 2kx (i6 )
sinh 2kh \sinh 2kh

Hence Syy, unlike SXx, is a function of x  in a standing wave. Perhaps surprisingly,
tThis result is in agreem ent w ith  T a d jb a k h sh  a n d  K e l l e r  (I960) p rov ided  th a t  a c c o u n t is ta k e n  

o f  a  m isprinted sign in  their eq u a tio n  (30).
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it will be noted that the maximum values of Syy occur at the nodes o f the surface 
elevation. The mean value of S vv is given by

( | 7 >

which is just twice the value for the progressive wave (equation (32) Section 1) as 
we should expect.

The radiation shear stress is given by

Sx у ~  Syx  — 0 (18)
as in the progressive wave.

3. Capillary-gravity waves
The effect of capillarity is equivalent to the stretching o f a thin membrane over 

the surface with constant tension T  per unit length. This modifies the previous 
calculations in the following ways.

First, the tension produces a flux of x-momentum across the plane x  =  constant 
given by — T cos where в  is the inclination of the surface to the horizontal. 
The difference between this flux and the equivalent flux in the absence of waves 
is therefore

— T  cos в  +  T  =  T  (1 -  cos в) =  \Тв* (1)

when в  is small. Hence the mean additional flux of momentum due to the presence 
of the wave is equal to which must be added to equation (7) Section 1. Since 
в  == ЪЦЪх we have

Sxx =  J  (p +  pu2) dz -  J  p0 dz +  \T  . (2)
-A  —A

For a progressive wave, the evaluation of S Xxai and S xx{2) can be carried out as 
before, up to equation (15). However in calculating S Xxw  the pressure p  near the 
surface is to be decreased by an amount K T, where К  is the curvature of the free 
surface, that is by an amount ТЪ2£!Ъх2. This adds to Sxxm  the amount

Ъхг

which, because the wave is progressive, is equal to

(3)

For a progressive wave,
t W -  <4)

(5)

(6)

Therefore altogether we have

/  os h Tk-\
Sxx =  i  pga2 ^  s in h 2 kh  +  £ +  i  pg J  ■

Secondly, the stretching of the surface by the waves stores additional energy 
T  per unit extension of the surface, that is to  say
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T see в  — T, = i T 0 2 (7)

per unit horizontal area. The mean density of potential energy is therefore increased 
by an amount.

\TW* --  \T  =  i  Т а2 к2. (8)

Hence the total energy density E, being twice the potential energy density, becomes

E = \ Pg a * ( \  +  — ) .  (9)
\  Р 8 /

Thirdly, surface tension modifies the relation between a  and k, so that

a2 — gk  tanh kh .{ 1  +  —  ̂ • (10)
\  Pg)

On combining the last two equations with equation (6) we find

+  цпй>)
where

£ =  — . (12) 
Pg

This o f course reduces to equation (23) Section 1 when e =  0. In the opposite limit 
when e >  1, that is to say for pure capillary waves, we have

, / —2kh----- \  ( 13)
\sinh 2 kh )

where
E  =  \T a2 k \  (14)

and in particular in deep water (kh >  1)

Sx* =  \ E ;  0 5 )
in the shallow-water case (kh <  1)

=  (16)

To find the transverse stress Syy we note that although the surface has no 
inclination in the ^-direction nevertheless the corrugations o f the wave system 
produce a greater surface area per unit distance in the у-direction and therefore 
more tensile stress. Hence equation (26) Section 1 is replaced by

s vv =  J  (P  +  pv2) dz -  J p 0d z -  \ T  (17)
- а о

This may be split up as before. Since v vanishes, Svya) =  0. Further since w1 is 
related to the kinetic energy we have
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as for pure gravity waves. The third component Sw (3> is equal to SW 3' :

Syym =  bga*  ( l  +  . (19)

However

so that the sum of the last two terms is

5 » ' ' ’ - * т ( й ) ' ' } д а ! ( 1 +  лг’)  =  !£ ' (2I>
Altogether then

Syv =  E  sinh 2kh ’ (22)

the form o f which is independent o f the surface tension. In deep water

Syy =  0 (23)

as for pure gravity waves, and in shallow water

Syy =  iE . (24)

The radiation shear stress is unaffected by surface tension :

Sxy =  Syx — 0. (25)

P A R T  II  A P P L I C A T I O N S

We propose now to describe some of the effects of the radiation stresses upon 
phenomena observable in the oceans.

First we shall consider instances where the radiation stresses either generate or 
modify motions on a scale larger than the waves themselves. As will be seen, such 
effects are liable to occur where there are horizontal gradients of the radiation stresses. 
Such gradients may arise in a variety of ways.

4. Wave “ set-up ”
One of the most important of these wave-driven effects occurs when deep water 

waves encounter a sloping beach. The waves shorten, steepen, and eventually break 
—but continue to advance with decreasing amplitude after breaking. The resulting 
changes in radiation stress lead to changes in the level of the mean surface.

In the steady state, the shoreward flux of momentum must be independent of x , 
which we take perpendicular to the shore. Let us now consider the momentum 
balance in a slice of water bounded by the (sloping) surface z  =  f , the sloping bottom 
z  =  — h and two vertical planes x  =  x 0 and x  =  x 0 +  dx  (see Fig. 6). If the 
bottom slope is sufficiently small that uw and w2 at the bottom* are negligible, then 
the flux of momentum into the slice, crossing the plane x  =  x0 is

•By bottom , o f course, we refer to the bottom  o f the irrotational flow. The boundary layer 
between this and the true bottom  we assume to be thin and inconsequential.
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Sxx  +  J* PS (£ — z) dz =  Sxx  4~ ip ?  (£ +  h y . (1)

Across the plane x  — x 0 +  dz the flow out of the slice will be greater than this by

~ ^ [ S XX +  Ы  d  +  h)2] dx. (2)

d x

p g ( h + £ ) d s

Fig. 6. The balance o f  horizontal m omentum  for waves entering shallow water.

There is an additional flux of horizontal momentum due to  the bottom  pressure, 
since the bottom  is not horizontal, am ounting to

pg (£ +  A) ^  dx. dx
(3)

(The validity o f the approximations used here is discussed in TIT). M omentum 
balance then gives

JQ
(4)dSxX a r C  |  |  \  Э  Л

—г -  +  Pg U +  ft) -г- =  0 dx dx

(5)

and so, since £ < h,
d l =  1 dSxx 
dx pgh dx

W ave energy approaching a shore may either be reflected or dissipated to  heat. 
If  the beach slope is very abrupt, for example like a sea wall, almost all of the energy 
will be reflected. Alternatively, the slope may be very gradual, so that almost no 
reflection takes place.

Here we shall consider in detail only the case of slopes sufficiently gentle that 
reflection is o f negligible importance. Two distinct regions can be identified : 
seawards and shorewards of the line of breakers.

Seawards of the breaker line, in the absence o f reflection, we can obtain an 
expression for the wave energy density as a function o f water depth from the require
ment that the shoreward flux of energy be independent of the distance from shore, 
e.g. if we take the simple but im portant case of wave crests normal to the direction 
o f beach slope :

Ecg =  constant. (6)

As the depth h changes, cB changes and so E  also changes. The radiation stress
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Sxx thus varies because both kh  and E  vary. It is shown in III that with these 
conditions equation (5) may be integrated! to yield

? , а2 к 
 ̂ ~  * sinh 2kh '

In deep water, £ vanishes, while in shallow water (kh <  1) we have

n  a 2

(8)

Formula (7) and (8) express the wave set-up in terms of the local wave amplitude, 
wavenumber and depth. However by using equation (6) it is also possible to express 
£ as a function of the (constant) wavenumber kB and amplitude a0 in deep water, 
together with the local depth h, so that we gain an idea of the dependence o f £ on 
the depth h for a given wave train. Thus if we substitute in equation (6) the known 
value of the group-velocity :

« (  2kh , \
Cg 2k (sinh 2kh ' (9)

we obtain

and so

a2 a I  2 kh \  a02 or—r- +  1) =  constant =
2k \sinh2A:A /  2k0

(10)

+  С " )

But from the frequency relation equation (17) Section 1,

kjk0 =  coth kh. (12)
So we have from equation (7)

9 coth* kh . . . .£ -  i a 0 k0 ш  +  sinh ш . (13)

Since from equation (17) Section 1

kh tanh kh =  =  k0 h (14)
g

it follows that we may write
£ =  -  a02 K f{Jc9 h)

where /  is a function solely of the non-dimensional depth k0 h. The form of /  is 
shown in Fig. 7. It will be seen that as the depth diminishes, the depression of the 
mean surface level increases very sharply. In shallow water, we have from equa
tions (13) and (14) that

/ ~ i ( M ) - 3 ~ H * o A ) - ,/*

in agreement with equation (8), since in shallow water a2 сзс A-4 by energy conservation. 
It will be noted that as A decreases the mean water level is actually lowered by the 
presence of unbreaking waves, i.e. there is a “ set-down.” This is because, with no 
loss of energy, the radiation stress steadily increases.

tAlternatively equation (7) can be derived from equation (13) Section 2, by substituting for 
и and w from equations (4) Section 1.
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On the other hand, inside the line of breakers the wave energy decreases shore- 
wards leading to a decrease in radiation stress. N o adequate theory exists for this 
situation, but we are nevertheless able to draw some approximate conclusions using 
a semi-empirical argument.

0 01 0 0 3 . 0.1 0 .3  I 3

V

Fig. 7. (from  L o n g u e t - H i g g in s  and S t e w a r t ,  1963). The non-dimensional form o f  the wave 
set-up outside the breaker zone, com pared with the observations o f  S a v i l l e  (1961).

The theory of similarity suggests that the amplitude of a breaking wave remains 
an approximately fixed proportion o f the mean water depth, i.e.

a — aJi (15)

where a is a constant o f proportionality. Although the waves are now far too steep 
for our second-order treatment to remain valid, it is probably a not unreasonably 
inaccurate assumption to continue to assume that SXx — i  E. This gives

Sxx =  I  pga2 =  f  pg a? h \  (16)

If we insert this expression in equation (5) we get



7 9 5

546 M . S. L o n g u e t - H i g g in s  and R. W. S t e w a r t

The observations of S a v il l e  (1961) confirm that a rise in level starts to occur 
at about the point where the waves first break (Fig. 8). Moreover in the breaker 
zone it has been shown that dtjdx  was roughly proportional to dh/dx, with a constant 
of proportionality equal to about — 0-15: (L o n g u e t - H ig g in s  and St e w a r t , 
(1963)). We therefore estimate a to be about 0-32.

Bose Test 
I on 30 Slope 
Depth»100 feet ot Beoch Toe
Period '9.25 seconds-----
Period «= 15.0 seconds------
Vertical Tick Marks Indicate 

Location of Depth = !.3 
Wove Heights (Approximate 
Breaker Location)

-2.0------
-200 0

(SWL.)

Fig. 8. (from S a v i l le »  1961).

♦гоо 400 600 000 1000 I200 1400 1600 

Oistonce Seoward S.WL. (ft)

Observed wave set-up on beaches o f different slope. The vertical 
tick marks the breaker point.

height 
= 20 feet

height * 30 feet

M u n k  (1949) observed that swell tends to break when the depth is about 1-3 
times the crest to trough height, i.e.

h =  1-3 X 2a. (18)

This corresponds to a =  0-39, so the two sets o f observations are entirely consistent.
The importance of waves in producing set-up seems only recently to have been 

realized. Contemporary with our work, contributions to the topic have been made 
by D o r r e s t e in  (1962), F o r t a k  (1962) and L u n d g r e n  (1963). H a r r is  (1963) points 
out that since waves are subject to modification by refraction and diffraction, 
variations in wave set-up are to be expected even over short distances. He describes 
the observed variations in the height o f storm surges to this effect. Since these 
variations may amount to “ two to four feet in the peak water level within a distance
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of half a mile ” it can be seen that wave set-up produces very far from negligible 
contributions to storm surges.

Another practically important effect o f wave set-up is its influence on the apparent 
“ tilt ” due to wind stress on the surface of an enclosed body o f water. Measurement 
o f such tilts is one o f the standard techniques for determining the magnitude of 
the wind stress. In his well-known critical article on “ Wave Generation by Wind," 
U r s e l l  (1956) speculated upon the possible importance of “ radiation pressure ” 
effects upon measured water levels.

As we have seen, such effects do occur, and are important. They may well 
account for much o f the variability and unreliability which have beset efforts to 
determine the laws governing wind stress upon water.

5. Groups o f  waves advancing in deep water
Horizontal gradients o f radiation stress can also arise when the waves have 

amplitudes which vary in time, and therefore in space. The simplest illustrative 
example is one where we have sinusoidal wave trains of nearly the same frequency 
and wavelength propagated in the same direction, resulting in the formation of 
“ groups ” o f waves.

We shall assume that the groups are such that the energy density, rather than 
the envelope o f the amplitude, varies sinusoidally. By this artifice we avoid some 
problems with non-linearities which are irrelevant to our present purpose. The 
energy density is then given by

E  =  E0 {1 +  b cos Дк (x  — сд Г)} (1)

where Ak is a measure of the “ band width ” of wavenumbers making up the groups, 
which propagate with speed cg.

Let us assume also that the depth h is large relative to the lengths of the individual 
waves, but not necessarily large relative to the length o f the groups themselves, i.e. 
А-Л >» 1, but not necessarily Akh >  1. Accordingly, the radiation stress will be

Sxx =  iE 0 { 1 + 6  cos Ak (x — cg f)}. (2)

We may now divide the depth into two regions : an upper one with thickness 
D k ~ \  in which virtually all o f the radiation stress is concentrated, and a lower 
one which responds only to any variations in mean surface level produced by the 
radiation stresses. The problem is now analagous to that which arises in the study 
of flow induced by horizontal variations of surface tension.

Within the upper region, the horizontal momentum equation is :

1 bSxx i) £ ^
i t  Dp Ъх ^ Ъх'

where U and I are associated with the groups, i.e. the average is over one wavelength 
of the individual waves. Since D  is small, it is not unreasonable to assume that 
the first term on the right of equation (3) is much larger than the second. We shall 
be able to check the validity o f this assumption post hoc. We therefore put
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Now if we integrate the equation o f continuity over our upper region, we find

hJd =  — D — -f- — 
Ъх bt (5)

where Wd is the mean vertical velocity at the depth D, the mean being taken over 
the individual waves as with и and £. These last two equations may be combined 
to give

aroD a2 1 i a2 s zz 
ar2 —a t ax2

Equation (6) may be interpreted as follows : variations in the radiation stress 
produce convergences in the upper layer. Continuity is preserved by pushing water 
up, thus producing variations in the surface elevation, and by pushing water down, 
resulting in an induced flow in the deeper region. Our equations are closed by the 
fact that these deep induced flows must be dynamically driven by pressure gradients 
produced by the variations in surface elevation.

The flow in the deep region is a periodic irrotational flow and so must be of 
the form of equation (4) Section 1, and derivable from a velocity potential :

Ф cosh ДА: (z +  h) sin №  (x — cg t). 
sinh kh  v (7)

DJ

/ / 7 / / / / / 7 7 7 / / / / / / / / / / / / / / / / / / / / / / / / / S / / / / / / / / / / / / S / / / / / / / / / / / / / / / /

Fig. 9. Groups of waves ш deep water. The radiation stress acts in a shallow layer near the
surface.

For this flow we have, at z =  — D =  0, two requirements on the pressure vd ■ 
First, it must be given by the hydrostatic equation,

- f o  =  g a  +  D)- (8)
P

Second it must satisfy the linearized Bernoulli equation.

*tR +  l p D - g D =  0. (9)
dt p

Together, these conditions give us

£ =  _ ! ! ? £ .  (10) 
g a t

We may now substitute for Год, С and Sxx in equation (6), remembering that 
D A k < 1 :
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— Acg2 - f  — Aк  cg* coth hA k  =  — ■ (11)
g  2 p

Since kh  >  1, c92 =  g/4k, so we can write equation (11) as

A ___________ io p k (12)

(13)

2pg {L — (A kjk ) coth АДА:}

We are now able to find £; from equation (10)

t _  — E0 b Ak  sin A k(x  — cg t) _  (E  — E0) Ak
~~ 2pg {tanh hA k  — Akjk} ~  2pg {tanh hA k — Ak/k}

Since E  =  \pga*, where a is the individual wave amplitude,

f  ________ ~  ao)  пил
b 4 {tanh hAk  -  A kjk) ' v '

This expression is in agreement with the result (3.19) o f III, which was obtained by 
perturbation analysis. We note that £ is always out of phase with a2, that is, the 
mean level is depressed under the largest waves.

Equation (14) simplifies to some extent at the two extreme cases hA k <  1 and 
hA k  >  1. For hA k <  1, when the group length is great compared with the depth, 
we find

f  =  _  (fl2 ~  a o2)  fc (1 5 )
4 k h - l

or, since we have already assumed kh  >  1,

I =  -  . (16)
4A

For hA k  »  1, if we assume A kjk  <  1, equation (14) becomes
I  =  _  i  (a2 _  a *) Ak. (17)

To get a numerical order of magnitude, we might take (a2 — a02) to be about
10 m2. If the individual waves are about 100 m long, and the groups about 1 km 
long, we have к  Ф 0-06 nor1, A k  =  0 006 m-1. In deep water {ft >  500 m) this 
results in a surface depression of about 1-5 cm, while the water 100 m deep the 
depression would be 2-5 cm. These figures, o f course, increase rapidly as the 
individual wave amplitude increases*.

*We are now in a position to make the post hoc. check of our assumption that 

Since Д/r <  к and kh >  1,

^  1 SSx* 
g bx pD Ъх

Also
iSzx

Ъх
Then

i ) £ _ (a2 — У )  (Ak)*
Ъх ' 4 tanh  hAk

' i ( E  — £o) &k =  i  pg (a2 — ааг) Ak.

S j  / J _  f t ,  D A k  
S  Ъх/ pD Ъх ~  tan h  hA k

SLnce tanh hAk = in  глли > i l\ 0  (hA k), h A k  <  i f
our assumption is seen to  be justified.
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It is worth noting that the frequency of the induced motions is the group frequency 
—in practice periods are of the order of one minute. This may be important since 
often it is assumed that there is little motion in the ocean with such periods, and 
buoys are sometimes designed with a natural period of this order, in the hope that 
their free oscillations will not be excited.

6. Wave groups in shallow water; surf beat
Let us now consider the situation when waves enter water which is shallow 

enough so that kh is no longer large compared with unity. In this case we can no 
longer assume that the radiation stress acts in a thin layer near the surface. On the 
other hand since the length of the wave groups is certainly large compared to k~l 
we may certainly assume that the groups are long compared to the depth, i.e. that 
h b k  < 1.

Fig. 10. G roups o f  waves entering shallow water, when the wavelength is no longer small
compared to  the depth.

Figure 10 illustrates the situation. Groups o f waves (whose energy need not vary 
exactly sinusoidally) are propagated to the right with the group-velocity cg. The depth 
h is a t first assumed uniform. In regions of high energy the radiation stress S xx is 
greater than in regions of low energy. Hence there is a tendency for fluid to be 
expelled from under regions of high energy density. The medium responds to the 
stress as to a horizontal force — 7>sxxlbx per unit distance, progressing with the 
group-velocity cg.

The response of the system can be calculated as follows. The additional mean 
pressure due to a displacement £ of the free surface is pgt. Hence if M  is the mean 
horizontal momentum we have for the rate of change of momentum

^  =  -  1  (Sxx +  pghl). (1)
ut o X

On the other hand by continuity we have

s « — (2)

Since the pattern progresses with velocity ся, we may replace Ъ/'dt by сд Ъ/Ьх in 
each equation, giving
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1 (3)

Solving these sim ultaneous equations for ЪМ/Ъх and ЪЦЪХ and integrating with  
respect to  x  we find

N ow  the group-velocity cg cannot exceed the free-wave velocity \/g h  o f  the long  
waves, so that (gh — c?2) >  0, i.e. the response o f  the free surface is in the same 
sense as if  the group pattern were stationary (c9 =  0); below a group o f  high waves 
£ tends to be negative, and below a group o f  lower waves it is relatively positive. 
Since the groups are long, the mean pressure p  on the bottom  fluctuates in the same 
w ay as pgl, i.e. it tends to be negative under the higher waves. This is in agreement 
with som e recent observations in swell off the Californian coast (see H a s s e l m a n , 
M u n k  and M a c D o n a l d  1962).

In very shallow water, c9 approaches y/gh  and hence the denominator in equation  
(4) becom es small. Since in that case

I f  we now suppose that the depth is not quite uniform, but changes with x  so  
slowly that dynamical equilibrium has time to be established, then, with no loss o f

I to be amplified as the waves enter shallower water.
It is possible that such an effect accounts for the occurrence o f  “ surf-beats,” 

as observed by M u n k  (1949a) and T u c k e r  (1950). These are waves o f  long period 
associated with groups of high waves entering shallow water. T u c k e r  (1950) showed  
that in his observations there was a correlation between the surf beats at a point 
som e way off-shore and the envelope o f  the incom ing swell; but with a time-lag 
o f  a few minutes. The time-lag just corresponded with the time required for the 
swell to  be propagated into the breaker zone and for the associated long wave to  
be reflected back as a free wave. If we suppose that, at som e point shorewards o f  
the wave recorder, the swell is destroyed by breaking but that the longer waves 
associated with the groups are reflected back as free waves (with relatively little 
attenuation in amplitude) then it seems possible to account for Tucker’s observations. 
Tucker found that a group o f high waves tended to be associated (after a time-lag) 
with a negative pressure pulse, which would accord with the present hypothesis.

M  = ------Cg ^xx -{- constant
gh -  ce2

(4 )

p l = ------, ^xx ,  -f- constant.
g h  -  Cg

cg* =  g h [\  -  [kh f] (5 )
we have

Sxx _  _  3ga2
po2 h2 2a2 h2

(6)

energy, a2cc and so I r^ .  Thus there will be a tendency for the displacement

7. Interaction o f waves and currents
In the theory o f  elasticity and rheology, where stress is measured in force per
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unit area, it is well known that the product stress times rate o f  strain yields power 
per unit volume. Similarly, in our case o f radiation stress (which is a force per unit 
length) stress times rate o f  strain is power per unit area. We expect that if a fluid, 
upon which are surface waves, is strained due to some other flow, the radiation 
stress due to the waves will interact with the rate o f  strain due to the other flow. 
In general, we argue that the straining flow must do work against the radiation stress. 
Energy must then be lost by the straining flow. In many cases we have been able to 
show that this energy is transferred to the waves. Indeed, if the sign o f the interaction 
is changed, so that the stress does work against the rate o f  strain there seems to be 
no source for the energy added to the straining motion other than that residing in 
the waves. It thus seems legitimate to argue that the energy transfer will always 
be to or from the waves.

w

(a)

(b)
Fig. 11. Waves on a non-uniform current (a) with upwelling from below and (b) with horizontal

inflow from the sides.

Interaction with irrotational plane strains. The simplest m otions to deal with 
analytically are irrotational plane strains. They also serve as valuable examples of  
the nature o f the interaction phenomenon.

Let us consider first a situation in which a contraction o f the surface along the 
x-axis is combined with a vertical extension, i.e.

ъи
3.x 'dZ

(1)

where U and W  are the mean straining velocities in the x  and z  directions (Fig. 11). 
For the moment we shall assume that the mean m otion is not time-dependent. 
The situation we envisage is approximately that which occurs when a stream flows 
along a bed o f  fixed width but varying depth. The only component o f  radiation 
stress which is o f  consequence in this flow is Sxx■ It interacts with the rate o f  strain 
Ъ Ujbx, which describes an extension o f  the surface, in such a way that work is done 
by the stress at the rate

SxxbA  (2)
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per unit surface area. It seems that the only source o f  energy for this work is the 
energy residing in the waves. Since wave energy is propagated with celerity cg and 
transported with velocity U, we postulate a “ continuity ” equation for wave energy 
in  the form*

W e also have another general expression which might be called an expression 
for “ conservation o f phase.” It states that in the steady state the rate at which wave 
crests enter a region must be equal to the rate at which they leave. Another way o f  
stating it is that the apparent frequency observed is independent o f  the position o f  
the observer. This general expression is

where the subscript 0 refers to som e position, perhaps hypothetical, where U =  0.
Since when the depth is known, с and cg are determined by к  and SXx by E, 

evidently equations (3) and (4) are sufficient for the determination o f  E  as a function  
o f  U. In the general case this relation is analytically rather complex, but all the 
im portant features may be demonstrated by the example o f  the deep water case, 
which is simple. In deep water, we may assume

If equation (8) is substituted into (10), we obtain the differential equation (6). The 
corresponding variation in amplitude a, oc Ei, is shown as a function o f  U  by curve
(1) in Fig. 12. The result (9) was also obtained by perturbation methods in II.

Laterally converging current. Another illustrative example o f  waves superimposed 
on a plane strain occurs when the mean m otion is two-dimensional and horizontal 
(Fig. lib ) . Such a situation may arise, for example, at a river mouth. For simplicity,

^ [ E ( U  +  cv)} +  Sx x ~  =  0. 
a * L ax (3)

(U  +  с) к =  constant =  c0 k0 (4 )

C =  (g l ty , Cg =  Jc, Sxx =  \E . 

Thus equation (3) becomes

( 5)

(6)

Equation (4), in view o f (5), can be expressed as

(7 )

or
Sc _  \c  ЪС/
ax ~ u  +  ax '

Equation (6) has the exact integral

E (U +  %c) с =  constant =  E0 ■ \ c j ,  

as may be demonstrated by differentiating :

(8)

(9)

с £  [E (U  +  Jc)] +  E {U  +  ic )  =  0. ( 10)

•For a further justification of this equation see Whitham (1962).
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let us take the waves moving in one o f  the directions o f principal rate o f strain, 
so that if they are propagating in the ^-direction

V being the mean motion in the ^-direction, which is parallel to the wave crests.

>0 »  0 0 О »  OS o n  I о

U/c.

Fig. 12. (from L o n g u e t - H i g g i n s  and S t e w a r t ,  1961). The relative amplitude of waves 
propagated on a steady, non-uniform current U, (1) with upwelling from below (2) with

horizontal inflow from the sides.

Equation (3) must now be modified to take account o f the lateral divergence o f  wave 
energy and the work done by the lateral radiation stress Svy, and so becomes

£  [ E W  +  *> ] +  4  ( « 0  +  « “ £ ?  +  S  -  «• <l2>

If we assume ЪЕ/Ъу =  0 and employ equation (11) this simplifies to

^  и  +  +  (Sxx -  Syv) ^  =  0. (13)

If we once more consider the simple deep water case, then Svv =  0 and equation 
(8) is valid. Equation (13) can then be integrated, as demonstrated in II, to obtain

E (U  + \c)jc =  constant =  E0. (14)

The corresponding change in amplitude (ос E j) is shown as a function o f U  by curve
(2) in Fig. 12.
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A t the other extreme o f  very shallow water we have :

cg =  с =  constant, Sxx — Syy — E. (15)

It is then readily seen that (13) can be integrated to

E  (U  -f c) =  constant =  E0 c0. (16)

It will be noted that in every case so far considered, E  must diverge when 
U  =  — Cg. In practice, o f  course, the waves break. This result is to be expected 
since it is merely a statement o f  the fact that no energy can be propagated upstream  
against a current faster than cg. Apart from this com m on property, it can be seen 
that the behaviour o f  wave energy differs from case to case.

T a y l o r  (1962) has discussed a slightly different case, where a standing wave 
is com pressed longitudinally, thus both reducing the wave length and increasing 
the frequency. There also work is done against the radiation stress. Taylor shows 
that in this situation, too , the energy used in the compression appears as increased 
wave energy.

Waves on a shear flow. W e may use the same kind o f arguments to discuss the 
interaction o f  a wave train with a shear flow. In this case, however, the waves will 
generally be refracted, so that it is not possible to use the direction o f  wave 
propagation as a fixed Cartesian co-ordinate direction. It is therefore necessary 
to  put our radiation stress tensor into general, non-diagonalized form.

T o keep the discussion as simple as possible we shall again confine ourselves 
to the case o f  waves on deep water. The diagonalized form o f the radiation stress 
tensor is then

(17)

For a co-ordinate system orientated at an angle в  from the direction o f propagation, 
the tensor transformation formula gives us

S  =  1-e (  C0S*d  0  sin 0 ^  (18)
“ \co s в  sin в  sin2 в  /

The rate-of-strain tensor for the mean flow is

IU

Y =
Ъх

(ъи  аи\>
\Ъу Ъх)

(ъи  ак\ ак
' * dy Ъх) Ъу

Equations o f the form (3) and (12) may thus be generalized to

(19)

V - [ £ ( l / + C!7) ] + 5 :  y =  0. (20)

As a simple illustrative example we choose the case o f a mean flow with velocity  
in the ^-direction only. If we assume steady state (except for the periodic m otion) 
we have

U =  0, V = V ( x ) .  (21)

Putting in the appropriate value for the radiation stress, we get from (20) :
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- -  \E  ■ \c  cos 01 +  \E  —  cos в  sin в  =  0, 
<>xL Ъх (22)

since the component o f  cg in the x-direction is \c  cos 0.
In order to solve (22) we require some relation between V and c. One is available 

from the “ wave kinematics,” because the wavenumber in the ^-direction must be 
independent o f jc. Otherwise в  would be a function o f y. Thus

In less special cases, (20) can be integrated numerically. This was the procedure 
adopted by H u g h e s  and S t e w a r t  (1961), who studied the interaction of a wave 
train with a stable Couette shear flow. They found that their experimental observa
tions were in quite good agreement with numerical calculations made from (20). 
However, H u g h es  and S t e w a r t  were unaware o f  the full effect o f  capillarity on the 
radiation stress. (The influence ot capillarity is given for the first time in the present 
paper). Since their waves were short enough to be influenced by surface tension, the 
actual effect o f the radiation stress is greater than that which they assumed. It is 
noteworthy that the observations o f H u g h e s  and St e w a r t  indicated a somewhat 
greater influence o f the radiation stress than was obtained from their calculations.

It should be emphasized that the changes in wave energy which are due to the 
non-linear interaction o f  waves with shear flow are o f the same order o f magnitude 
as those which occur due to the geometrical focussing effects produced by the currents. 
At first glance this may seem surprising, since the radiation stresses are a second order 
phenomenon, while the focussing effects appear to be first order. The fact is, however, 
that the focussing effects are first order in the energy, i.e. o f second order in the 
amplitude and comparable with the radiation stresses.

8. Non-linear interaction between waves
In recent years there has been a considerable amount o f  interest shown in the 

problem o f  the non-linear interaction o f surface waves. For some aspects o f  the 
problem, in particular in the study o f  the irreversible redistribution o f energy over 
the wave spectrum (P h il l ip s , 1960; H a ssel m a n n , 1962, 1963), the interaction must 
be taken to the third or higher order. For such purposes the radiation stress concept 
is not particularly useful.

On the other hand there are cases where the radiation stress idea is valuable 
conceptually and, in some limiting situations, sufficient for calculations. These 
cases are ones in which one wave is much shorter than the other with which it 
interacts. Then it becomes reasonable to treat the long wave as a straining motion 
interacting with the radiation stress due to the short waves.

A s a concrete example, we consider here the case o f  the long waves upon which 
are superimposed waves short enough that they are uninfluenced by the bottom. 
M ost o f the important features are illustrated by this example.

In any non-linear interaction between one Fourier component o f  wavenumber 
and frequency ku ог, and another specified by k2, oz, the second-order terms describe

к sin в  =  constant =  k0 sin 0„.

A s is shown in II, we are then able to integrate (22), getting 

E  cos в  sin в  =  constant =  E0 cos в а sin 0O. (24)

(23)
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the generation o f  com ponents к г ±  k 2, a, ±  o2. However, if  one o f  the wave 
numbers, say fcx, is very much greater than the other, then the generated wave 
numbers will all be in the neighbourhood o f  k v  The second-order interaction can 
thus be considered to  describe the influence o f  the long waves on the shorter ones. 
For the reverse interaction o f  the shorter waves on the longer ones, higher order 
terms are needed.

I f  both short and long waves are progressing in the same direction, the problem  
is two-dim ensional. Equation (20) Section 8 then becomes

f  + l [ E < U +C,)] +  S , ™ - «  (!)

where w e interpret E  and cg as pertaining to the short waves and L as the horizontal 
com ponent o f  the orbital (particle) velocity o f  the long wave.

The m otion due to the long wave will be described by (4) Section 1. W e are 
concerned only w ith m otion near the surface, so that the horizontal and vertical 
velocities are given by

(2)
U =  A a2 coth кг h cos (lc2 x  — o2 t) 1

W  =  A a2 sin (k2 x  — cr2 1)

The horizontal variation o f  E  and cg arises only because o f  the interaction, and 
so is irrelevant to (1) if  the equation is taken only to the lowest order. Since the 
short waves are uninfluenced by the bottom, Sxx =  \E . Hence (1) becomes

=  0 (3)
а? ъх

or, since U is due to a wave m otion and so Ъ/Ъх — — (1 /с2) Ъ/bt,

Ъ1 - > . 1 ЪЛ  =  0 (4)
аг сг at

where с2 is the phase speed o f  the long wave. This may be integrated to  give

constant =  E0 (5)И Э -
or, considering that U <  c2,

E =  E0 [1 +  f  A k2 coth k2 h cos (k2 x  — a2 r)]. (6)

Although (6) describes the energy variation, the noticeable feature will be the  
amplitude variation. As shown in I, here the relation between amplitude and 
energy is not quite so straight-forward as it is in m ost cases. The water surface 
upon which the short waves are running is subject to vertical acceleration due to  
the presence o f the long wave. This results in a distribution o f E  between potential 
energy and kinetic energy which differs from that which obtains in the absence o f  
the vertical acceleration.

The question is discussed in some detail in I. In the present paper we shall be 
content with an outline. To an observer moving in an (accelerated) frame o f  
reference tied to one point on the surface o f the long wave, the apparent value o f
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g  is g' =  g +  iW /bt. To this observer, the short wave energy is equally distributed 
between kinetic and potential, i.e.

K.E.' =  P.E : =  £ pg' a2 (7)

where a is the short wave amplitude. An observer in an inertial frame o f reference 
finds himself in agreement with the accelerated observer as to the kinetic energy, 
but calculates a different potential energy. Thus

K.E. =  \ Pg' a2 =  K.E. 

P.E. =  34pg аг Ф P

K.E.' I
( 8)

so

E  =  K.E. +  P.E. =  \ Pg  Л ]  +  1  . (9)

Since 7>W/i>t <  g, we can write this as

After using (2) and (6) this becomes

=  aa |̂ 1 +  A k2 coth k2h +  cos (k2x  — cr2t) (11)

i f  the long waves are also effectively in deep water, the expression simplifies to

a =  a0 [1 +  А к г cos (k2 x  — a2 r)]. (12)

It will be noted that the maximum small-wave amplitude occurs on the crests 
o f the long waves. Such amplification o f short waves on the crests o f  the long wave 
is a matter o f  common observation.

These effects may be o f some consequence in the spectrum o f wind-raised waves. 
It is generally considered (P h il l ip s , 1957) that on a wind swept sea all waves shorter 
than a certain length are “ saturated.” That is, they possess as much energy as 
they are statistically able to. If they gain more energy, wave breaking becomes so 
widespread in both time and space that the energy rapidly reverts to the “ saturated ” 
level.

We see from the above discussion, however, that for waves riding on the backs 
o f longer waves peak amplitudes occur at the crests o f the longer waves. It is there 
that the shorter waves break, and there that the overall energy o f these shorter waves 
is controlled. Since the average short wave energy will be less than that at the crests 
o f the long waves, it seems entirely possible that the average energy o f short waves 
may be somewhat less when they are superimposed upon longer waves than when 
the long waves are absent.

Long waves develop only after high winds have blown for long times over long 
fetches. I f  we envisage a situation where the wind speed increases to a high level 
and then remains constant for some time, it seems possible that the spectral energy 
density corresponding to the short waves will first rise to the saturation level and 
then actually decrease as the long waves grow to significant amplitude. Similarly 
it seems possible that the short wave energy may be less at longer fetches than at 
shorter fetches.
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Another point is worthy of consideration : The excess energy in the short waves 
at the crests of the long ones must have been gained at the expense of the long waves. 
If these short waves then loose their energy due to breaking at the crest, it is no 
longer available to be fed back into the long waves during their next half cycle. 
The net result is a mechanism for the dissipation of long wave energy. This has been 
discussed in detail by P h il l ip s  (1963). A similar, and equally important, mechanism 
involving capillary waves is described in the next section.

9. Damping o f gravity waves by capillary waves
Capillary waves on the surface of the sea can be generated by at least two 

mechanisms. One is instability of the shearing flow of wind over water, as described 
by M iles (1962). Capillaries generated in this way can occur, in theory, on any 
part of the sea surface which is exposed to a sufficiently strong wind. A second 
cause of capillaries is the sharp curvature near the crests of steep gravity waves 
which produces a local accentuation of the surface tension forces. If the waves 
are progressive, these forces act like any other travelling disturbance to produce 
capillary waves ahead of the disturbance. Capillaries generated this second way 
are observed only on the forward face of steep gravity waves; they may occur in 
the absence of wind. Their steepness has been shown theoretically to be given 
approximately by

t “ p ( -§ ? * ■ ) (1)
where К  is the maximum curvature at the crest of the gravity wave (L o n g u e t - H ig g in s , 
1963*), a result in agreement with observations made by Cox (1958).

Whatever their origin, however, capillary waves will subsequently undergo 
rapid modification from two causes : damping by viscosity and non-linear inter
action with the surrounding velocity field. The interactions with gravity waves 
may be especially strong owing to the relatively short wavelength of the capillaries.

Consider pure capillary waves, of energy density E  and wavelength 2тт/к, riding 
on the surface of a two-dimensional flow U =  (U, V, W) where V — 0 and U, W  
are independent of y. We suppose that x  is measured along the surface of the free 
gravity flow, and z normal to it, and we assume that the curvature of the mean 
surface is always small compared to k. Now the rate of dissipation of energy by 
viscosity in a capillary wave is 4vk2E (Lamb 1932, Section 347). Hence, as in Section 
7, we have the following equation for the capillary wave energy ;

^  +  1  [£  (U + cg)} +  Sxx ^  +  4vk*E =  0. (2)
bt ЪхL Sx

Since for capillary waves
cg =  f  c, Sxx =  f  E, с2 =  Tk, (3)

this can also be written

^ + - [ £ ( i /  +  4 c ) ] + 4 £ — + 4  (^/Г2) Ec1 =  0. Wк  i j t L - J ax
To apply this equation in any particular case we need a further relation between 
U and c. As an example let us take the case of capillary waves propagated on the

•This paper will be referred to as (IV).
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forward face o f  a gravity wave (as described above) and sufficiently far from the 
wave crest that the curvature o f  the gravity wave profile is small compared to k. 
The gravity wave being progressive, we may take axes moving with the wave and so 
reduce the motion to a steady state. The velocity U will have one component due 
to the orbital velocity in the gravity wave and another due to the negative velocity 
associated with the forwards motion o f the frame o f reference. Since the capillary 
waves originate at the (stationary) crest o f the gravity wave, they will appear 
stationary in the new frame o f  reference. Hence their phase velocity с must be equal 
to — U. In the steady state ЪЕ/bt vanishes and (4) becomes now

A  ( -  \  EU) +  |  E ^  +  4 (.yr*) EU* =  0. (5)OX OX
Ignoring for one moment the viscous term in (5) we have

_L l i  _  2 ъ у
E Ъ х ~  l/Ъ х  W

and so
Eoc IP. (7)

In other words the energy o f the capillaries increases proportionally to the square 
o f  the opposing current. This increase is due not only to the shortening o f  the 
wavelength by the contracting current but also to the work done by the current 
against the radiation stress. The same result (7) was derived also by a perturbation 
analysis in (IV).

If we take full account o f  the viscous damping in (5) we have now

(8)
E dx U Ъх T*

which has the integral
X

E  oc U* exp Щ  J U3 dxj  , (U  <  0). (9)
0

We see that E  may at first increase, owing to the radiation stresses, but ultimately 
the waves are damped out by viscosity. From (8) it follows that the maximum 
amplitude is attained where

_L Ш  =  _  IT  . (10)
U* Ъх Тг V '

the law o f energy variation (9) was shown in (IV) to be in good agreement with 
observation.

All the energy in the capillary waves is ultimately dissipated by viscosity, including 
any work done against the radiation stresses by contraction o f  the current U. Even 
without the radiation stresses, the energy lost in the capillary waves could be several 
times that in the basic gravity wave (see IV, Section 10), so that the capillaries must 
be important in damping the gravity waves when they are near to their maximum 
steepness. The effect is enhanced by the action o f the radiation stresses.

Moreover, capillary waves o f any origin, whether due to sharp crests or direct 
wind action, may dissipate energy derived from the gravity waves through the 
radiation stresses.
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C O N C L U S I O N

As has been shown in the series o f  examples outlined above, the radiation stress 
concept permits straightforward calculation o f  a range o f  im portant phenomena. 
In every case the sam e results could have been obtained by a detailed perturbation 
analysis, but com parison with the original papers (I, II, III & IV) in which such 
analyses were carried out will reveal the considerable reduction o f  effort required 
and gain in clarity achieved.

It is our belief that the radiation stress should be regarded not as a “ virtual ”  
effcct but as real, at least in the same sense as the radiation pressure in electromagnetic 
theory and the Reynolds stress in turbulence theory are real. Viewed thus, such 
phenom ena as wave set-up (and set-down), where the stress must be balanced by 
hydrostatic pressure, become entirely natural and expected. A lso the non-linear 
energy exchanges between waves and currents and am ong waves can, with this 
concept, be regarded as strictly analogous to corresponding cases in the theory of 
elasticity and the theory o f turbulence, where the rate o f  energy exchange is given 
by the product stress times rate o f  strain.

Radiation stresses will arise not only due to surface waves, but due to internal 
waves. In the oceans the interaction o f  internal waves and currents may be 
considerably m ore important than interaction involving surface waves, because o f  
the much lower propagation speeds. Small propagation speeds tend to increase 
the strength o f  the interaction, as can be seen from two points o f  view : First, in 
any wave current interaction, the energy exchange can be written so as to be seen  
to be proportional to t//c  or U/c0, so small values o f  с lead to large interactions. 
From  the other point o f view, we note that for alm ost all species o f  wave the ratio 
o f energy d en sity: momentum density equals the phase speed. Surface and internal 
waves are no exception, so internal waves, with their low  propagation speed, are par
ticularly efficient at transferring momentum.
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On the W ave-induced Difference 
in M ean Sea L evel Between the Two Sides 

of a Submerged B reakw ater1

M. S. Longuet-Higgins
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A B S T R A C T

Very simple formulae are derived for the difference in mean level between the two sides 
of a submerged breakwater when waves are incident on it at an arbitrary angle. T he formulae 
apply also to waves undergoing refraction due to changes in depth and to waves in open 
channel transitions.

When sea waves approach a submerged breakwater or an offshore sand bar, 
the mean level of the water on the far side of the bar or breakwater is com
monly observed to be higher than on the side from which the waves are in
cident. T he purpose of this note is to show that the difference in mean water 
level can be calculated very simply in certain circumstances, once the height 
of the incident waves and the coefficient of reflection are both known.

T h e situation is as shown in Fig. i.  A submerged “breakwater” separates 
two uniform regions in which the undisturbed depths are hi and A2, say. 
Waves o f amplitude ai are propagated from the left and are incident (not 
necessarily normally) on the “breakwater.” There is a transmitted wave of 
amplitude аг and a reflected wave of amplitude a't.

If the steepness of the waves is sufficiently small everywhere, then the 
coefficients of transmission and reflection, namely

T  = and R  = a'ljax ,

are nearly independent of ai. The coefficients R  and T  may be determined by 
experiment or, in some ideal cases, by the linear theory of water waves. (For 
some examples, see the R e f e r e n c e s .)  In the neighborhood of the breakwater

I. Accepted for publication and submitted to press 17 February 1967. 
Contribution from the Scripps Institution of Oceanography.
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itself the waves are not generally sinusoidalj nevertheless, the motion every
where fluctuates harmonically with time, say with period 2jt/o. The wave
length, гя/кц  of the waves on the near side of the breakwater is related to the 
frequency a and to the local depth by the usual relationship

a2 ■= gki tanh /Mi,

and similarly for the waves on the far side.
These results can be derived from the well-known small-amplitude theory 

of water waves. However, on the two sides of the barrier there will be a differ
ence, A £, in mean surface level that is of second order in the wave amplitude. 
We shall see that A £, though of second order, can be determined directly from 
the first approximation in the following way.

Let x and у  be horizontal coordinates and z be measured vertically upward 
from the still-water level. Let uy v ,  and w  denote the corresponding compo
nents of velocity and p  the pressure. Let д and g denote the density and the 
acceleration o f gravity, both assumed constant. The free surface is denoted 
by z = t)- Neglecting viscous forces, we then have two simple rela
tionships (cf Longuet-Higgins and Stewart 1964).

First, consider the flux of vertical momentum into a vertical column of 
water of unit cross section contained between z  = о and z = £. The flux 
upward through the base of the column equals (j> + qwг) evaluated at z = o. 
The flux through the upper surface of the column is zero. The flux of vertical 
momentum through the sides of the column, which is qu w  per unit area, is of 
third order when integrated over the height £ of the column. Hence this can 
be neglected. The total flux of vertical momentum into the column is therefore

(P + f f ^ V o -

This is opposed by gravity, which produces a downward force, gg£. But 
since the motion is periodic, the vertical momentum within the column re
mains, on average, unchanged. Thus, on taking mean values we have

(j> + Qw i) z - o - e g £  = °  > (A)
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where a bar denotes the average with respect to time. This is our first 
equation.

Second, if  the motion everywhere is assumed irrotational (which excludes 
wave breaking, for example), then we have the Bernoulli integral

p + — Q(иг + v 7, + iv2) + ggz + e ^ r  = о •
2 a t

Here 95 denotes the velocity potential, which includes an arbitrary function of 
the time, t .  I f  we take time-averages in this equation and set z  = o , we have

Рг-о  +  —  в («* +  v* +  ™2)z-о + С = о  ,  (В)
2

С being at most a constant.
From the two equations (A) and (B) we may eliminate the pressure to 

obtain the basic relationship

g l -----— q (u1 + v2-  w 2)z=a + C . (С)
2

From this relationship it is very easy to determine the difference in mean 
surface level, £, at two different points (x i,y t , o) and (х2,у г ,  o ), say. Clearly 
the constant С is immaterial, so we have

e<e(Ci -  Ь )  =  -  - 7  q [(«* +  «* -  « O - o E  •2

Thus, in the present problem, Л f  is given by

л с - f  k «‘ + * ■ ■ -» •) ..  j ; -  ( ° )

This is the simple relationship promised earlier.
N ow , in a wave of amplitude a traveling in some direction that makes an 

angle в with the дг-axis, the components of orbital velocity are given by

a a cos Q . , . ,. ,, . .и = --------cosh k l z - n )  cos [kx - a t  + e)
sinh kh K J K J

a a sin 0 . , . ,. . . .  .
v  ------------cosh k[z — h) cos (** — a t + e)

sinh kh

w  = - 7——— sinh k (z -  h) sin (kx' - a t  + e) , 
sinh kh
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where x' = x cos в +y  sin 9 and e denotes a constant phase. O n  squaring the 

velocities and taking averages with respect to time, w e find

— 1 a2 a2 cos1 6

2 sinh1 kh

—  1 tf*<r*sins 0 

2 sinh1 i  A

"UT =
X a1 a2 
2 sinh1 kh

cosh1 k (z -  k) 

cosh1 k (z -  h) 

sinh1 k (z -  h) ,

so

a1 + v2 — w 2 —
тI a о
2  sinh1^

Using the relationship that a1 = gk tanh kh locally, we then have

a2k

( E i )

—  (“ 2 + v 2~ w 2) =
2^  2 Sinh2 ^A

(E 2)

I f  two systems o f waves are present (as on the seaward side o f the breakwater), 
then in place o f a1 we shall have (ai + ai2). T h ere will also be a contribution 

from the product terms, proportional to ai a i . However, on averaging with 

respect to the horizontal coordinates, as well as with respect to t ,  we find 

that these product terms vanish.
From equations (D ) and (E 1), (E 2) we deduce that in the present situation

A t,
a\

or alternatively,

4^\sinh2 kihi sinh2 k2h t j ’ 

а\кгA - = (a\ + a[2)ki
2 s i n h 2 j t i A i  2 s i n h 2 ^ i A

( Fi )

(Fa)

W hen the depths hi and hi on the two sides o f the breakwater are equal, then 

we have simply
(a\ + a ? - a \ ) k ^

2sin h2^ A  *
( G )

where к = ki = кг> h = Ai = A*. Since a \< a \ , the right-hand side is non

negative, showing that the difference in level is then positive in general.
T h e  outstanding feature o f this result is that in deep water, if  both ki hi 

and ki hi are large,
Л £ = 0 .



8 1 6

I 52 Journal of M arine Research  [2 5,2  

In  other words, the difference in level is essentially a finite-depth effect. 

In  shallow water, where both ki hi and кг h2 are small, equation (F  2) 

becomes 
л  , »* „1

(H)

and, if  hi =  hi =  A, then

O f  course these results are subject to the usual limitations o f the small- 
am plitude theory o f surface waves, in particular that 

I and a k ( ( { k h p  

in each particular region. In  addition, the loss o f energy by friction or other 

means (such as breaking) must not be so great as to affect the results. 
Nevertheless, the formulae are so simple and their application so straight

forward that it would seem worthwhile to check their range o f  validity by 

experiments in the laboratory.
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Lon gsh ore Currents Generated by O bliquely Incident Sea W aves, 1

M. S. L o n g u e t - H ig g in s 1

Oregon State University, Corvallis 97331

By using known results on the radiation stress associated with gravity waves, the total 
lateral thrust exerted by incoming waves on the beach and in the nearshore zone is rigorously 
shown to equal (25o/4) sin 2ft> per unit distance parallel to the coastline, where Eo denotes the 
energy density of the waves in deep water and во denotes the waves' angle of incidence. The 
local stress exerted on the surf zone in steady conditions is shown to be given by (D /c) sin в 
per unit area, where D is the local rate of energy dissipation and с is the phase velocity. 
These relations are independent of the manner of the energy dissipation, but, because breaker 
height is related to local depth in shallow water, it is argued that ordinarily most of the 
dissipation is due to wave breaking, not to bottom friction. Under these conditions the local 
mean longshore stress in the surf zone will be given by (5/4)pum„ a s sin 9, where p is the 
density, um„  is the maximum orbital velocity in the waves, s is the local beach slope, and в 
is the angle of incidence. I t  is further shown that, if the friction coefficient С on the bottom 
is assumed constant and if horizontal mixing is neglected, the mean longshore component of 
velocity is given by (5r/8)(s/C ) u „ ,, sin в. This value is proportional to the longshore com
ponent of the orbital velocity. When the horizontal mixing is taken into account, the longshore 
currents observed in field observations and laboratory experiments are consistent with a fric
tion coefficient of about 0 .010.

1. I n t r o d u c t io n

I t  is well known [Wiegel, 1963; Inm an and 
Bagnold, 1963] th a t when sea waves or swell 
approach a straight coastline a t an oblique angle 
(Figure 1) a mean current tends to be set up 
parallel to the coastline. Such longshore cur
rents and the associated longshore transport of 
sand or other sedimentary material are of 
prime importance for both the coastal engineer 
and the submarine geologist.

M any hypotheses, of a very rough kind, have 
been advanced to  account for this phenomenon. 
However, a recent review of the subject by 
Galvin  [1967] arrives a t the justifiable con
clusion tha t, ‘A proven prediction of longshore 
current velocity is not available, and reliable 
data on longshore currents are lacking over a 
significant range of possible flows.’

I t  has often been suggested [e.g., Putnam  
et al., [1949] tha t the magnitude of the long
shore current is related in some way t-о the

1 Now at National Institute of Oceanography, 
Wormley, Godalming, England, and Department 
of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge, England.

Copyright ©  1970 by the A merican Geophysical Union.

energy or the momentum of the incoming waves. 
Of these two approaches, th a t employing mo
mentum is the more promising since momentum 
is conserved, whereas energy can be dissipated 
by breaking and other processes not immedi
ately associated with sediment transport.

I t  goes without saying th a t any momentum 
theory must be correctly formulated. The esti
mate of the momentum made by Putnam  et al.
[1949] has been already criticized on theoretical 
grounds by Galvin [1967]. Moreover, Inm an  
and Quinn [1952] showed that, in order to 
make the theory fit the observations, the fric
tion coefficient С would have to  be assumed to  
vary over a wide range of 3Уг orders of m ag
nitude. A version of the theory of Putnam  
et al. modified by Galvin and Eagleson [1965] 
also requires a large variation in C.

The aim of this paper is to introduce a more 
satisfactory estimate of the momentum of the 
incoming waves, which is based on the concept 
of the radiation stress as developed by Longuet- 
Higgins and Stewart [1960, 1961, 1962, 1963, 
1964]. This estimate of the excess transfer of 
momentum due to the waves has already proved 
remarkably successful in the prediction of 
several wave phenomena, particularly the 
setup, or change in mean level of the sea sur-

6778
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LONGSHORE

ZONE

Fig. 1. Definition diagram for waves approaching 
a straight shoreline at an oblique angle.

face in the breaker zone [Longuet-Higgins and 
Stewart, 1963, 1964; Bowen, 1967].

In  the present paper it is pointed out, first, 
th a t there exists a simple and precise relation
ship between the total longshore thrust exerted 
by the incoming waves on the one hand and 
their direction and amplitude in deep water on 
the other (see equation 10). This result can be 
derived either from the concept of the radia
tion stress mentioned earlier, or by a direct 
evaluation of the momentum flux due to the 
waves.

Next, it is shown that the local longshore stress 
due to the waves is very simply related to the 
local rate of dissipation of wave energy, regard
less of whether the dissipation is due to wave 
breaking or to bottom friction. Hence, using 
the known relation of breaker height to local 
depth in the surf zone, one can estimate accu
rately the local longshore stress due to the 
waves (section 4).

When the local longshore wave stress is 
known, it is possible to write an equation of 
motion for the longshore current tha t involves 
in general both the bottom friction and the 
horizontal mixing by turbulent eddies. If the 
horizontal mixing is negligible, the momentum 
balance gives an exceedingly simple expression 
for the longshore current {v). The addition of

CURRENTS, 1 6779
horizontal mixing generally reduces the current, 
although not drastically.

A comparison with the available data (sec
tion 7) shows that even without the assump
tion of mixing there is already an order- of- 
magnitude agreement between the observed and 
the theoretical current if one takes an a priori 
estimate of the friction coefficient (about 0 .010) 
based on experiments with flow in rough pipes 
[Prandtl, 1952]. The comparison indicates also 
that horizontal mixing is significant, though not 
dominant, in most circumstances.

Note added in processing. Since this paper 
was prepared, a somewhat similar approach to 
the theory of longshore currents has been pub
lished by Bowen [1969]. Besides containing new 
results, the present treatment differs both in 
the derivation of equation 34 (since Bowen 
takes в to be constant during differentiation) 
and in the assumed form of the bottom fric
tion. For further comparisons see the companion 
paper.

2. Waves Approaching Coastline

Imagine a  straight coastline, as in Figure 1, 
in which the local still water depth h is some 
function of the coordinate x  normal to the 
shoreline and is independent of the distance у  
along the shore. The shoreline itself is at x  =  0. 
A train of two-dimensional waves of amplitude 
a is advancing from deep water toward the 
coast-, the local direction of propagation being 
inclined a t an angle of incidence в to the nor
mal, as shown.

Both в  and a will vary with the distance 
|x| from the shoreline. If a denotes the fre
quency of the waves and k  denotes the local 
wave number, Snell’s law, which expresses the 
constancy of the wave number in the direction 
parallel to tlie shoreline, can be written as

к  sin в = constant ( 1)

or equivalently

(sin B)/c =  constant (2)

where с =  а /к  denotes the local phase velocity. 
If  the bottom slope is gradual, so th a t the 
proportional change in depth over one wave
length is small, it is reasonable to assume that 
<r and к are related to the local depth h(x) by 
the Stokes relation for waves of small ampli-
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=  gk ta n h  kh  (3)

The phase velocity с is then given by

с =  cr/fc =  [(g /k )  ta n h  kh)U3 (4)

and the group velocity, or velocity of energy 
propagation, is given by

_  §£  _  JL  Л  _ l 2fcA N . . 
C'  “  dk ~  2k  V  +  sinh 2kh )

W ith the local energy density per unit horizontal 
area being given by

(6)

d F J B x  =  — D

3. R adiation  Stresses

S i

Similarly the flux of momentum normal to  the 
direction of wave propagation across a plane 
parallel to the direction of propagation is in
creased by an am ount

=  E (k h /s in h  2kh) (11)

where E  =  Уърда1. In  general the momentum 
flux tensor, referred to  coordinates (&, £,) paral
lel and perpendicular to the direction of wave 
propagation, is given by

—

correct to  second order, the flux of energy 
toward the coast, per unit distance parallel to 
the shoreline, is given by

Fz — Ec„ cos в  (7)

If  the waves are losing no energy by breaking, 
bottom  friction, or otherwise, we have

Fx =  c o n s tan t (8)

independently of x, from which one can deduce 
the law of variation of the wave amplitude a 
with distance offshore [Burnside, 1915; Lon- 
guet-Higgim, 1956]. Inside the breaker zone, 
however, some energy will be lost, and hence о 
will diminish tow ard the shoreline and become 
zero a t or near x  =  0. If  D  denotes the rate 
of dissipation of wave energy, either by break
ing or friction, we have identically

J l  , _ 2M \
\2  s in h  2kh )

E

0

kh

(9)

So much is well accepted. We propose now 
to calculate the force exerted on the nearshore 
region by the incoming waves, by using the 
notion of the radiation stress, as introduced by 
Longuet-Higgins and Stewart [I960, 1961, 1962, 
1963, 1964].

I t  can be shown {Longuet-Higgins and 
Stewart, 1960] th a t the presence of a wave train 
of amplitude о in water of depth h increases the 
flux of momentum parallel to  the direction of 
propagation across any plane normal to tha t 
direction by an amount

( 12)
the off-diagonal elements being zero.

Now let us calculate the flux of у  momentum 
parallel to the shoreline across a  plane x  =  
constant, parallel to  the shoreline. Since the 
axes (*, y)  are inclined at an angle в  to  the 
principal axes (&, £a) of the waves, we have

“  S n  sin в cos в  +  S 3г cos в (— s i n  в)

= s ( i  +  d ^ ) cos®sine 
=  E(c,/c) cos в  sin в (13)

By (7) this relation can be w ritten as

S „  =  Fx(sin в)/с  (14)

or, if we make use of Snell’s law in the form of 
(2 ), we then have

S ,v =  F ,(s in  во) / Co (15)
where 6a and Co refer to the (constant) values 
of 9 and с in deep water.

This very simple and exact relation states 
th a t the flux of у  momentum across the plane
* =  constant is proportional, by a fixed, known 
constant, to the energy flux across the same 
plane.

Because of the simplicity and fundam ental 
importance of relation 15 we give here an alter
native proof.

The flux of у  momentum across any vertical 
plane * =  constant is simply equal to  puv,
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where и  and v  are the components of velocity 
in the x and у  directions. On integrating this 
with respect to the vertical coordinate z we find

S „  = p w  dz[ /  (16)

The angle brackets denote the mean value with 
respect to time. Now for waves traveling a t an 
angle в  to the x  axis we have

LONGSHORE CURRENTS, 1 6781
Outside the breaker line (or the line at which 

energy losses become significant) we have

« =  u , cos 6 v =  -Uj sin в (17)
where ik denotes the horizontal component of 
the orbital velocity in the direction of wave 
propagation. Also in (16) the upper limit of in
tegration can be replaced by the mean value г 
=  0 , since the difference JVpuv dz is only of the 
third order a t most in the wave amplitude. (The 
mean value is actually of fourth order.) We 
have then, correct to second order,

<S«, =  J  p(u5) dz cos в sin 0 (18)

Now the flux of energy in the direction of 
wave propagation is given by

[p +  ip ( “ i +  /  *  (19)>
So to the same order of approximation

/ > , ) dz (20)

From the linearized equation of horizontal mo
mentum, however, we have

3uj _  _ 1  dp____1 dp
d t p d(i pc dt

since in progressive wave motion B/dt ~  с 
В/д£i. Then on integration with respect to time 
we have

“ i =  (p /pc) +  constan t (22)
On substituting in (18) and noting tha t for 
irrotational waves (щ) =  0 correct to second 
order we obtain from (18) and (20)

=  (1 /c)F  cos в sin 0 (23)

The energy flux F, being equal to  F  cos $, we 
obtain (14) and hence (15) as before.

From (15) we can a t once calculate the total 
longshore thrust of the waves, as follows.

F , =  constant =  E 0(ic0) cos 60 (24)

c, being the phase velocity in deep water, where 
the group velocity c, =  %c#, and E„ being the 
energy density in deep water. Therefore from 
(15)

( S J .  =  \E 0 oos 0O sin 9a (25)

On the other hand, at the shoreline x  =  8 >
0 (just beyond the reach of the waves) we have

F, =  0 S „  =  0 x = S (26)
Therefore, by considering the balance of momen
tum of the water between the breaker line and 
the shoreline, we see tha t the total external 
force G, parallel to the shoreline acting on the 
water and sediment inside the breaker zone is 
given by

( S „ ) .  +  G, =  0 (27)
In  the absence of wind or other surface stresses 
the only external force must come from bottom 
friction. Hence the total lateral littoral force 
exerted by the waves on the bottom is given by
H , =  — G„ th a t is to say

H , = \Е й sin 2d0 (28)
I t  is interesting that the force is a maximum, 
for a given wave amplitude a t infinity, when 
sin 20o =  1 or =  45°.

4. L o c a l  W a v e  S t r e s s

Inside the breaker zone F , gradually dimin
ishes toward the shoreline. A consideration of 
the momentum balance between two planes x  — 
h  and 34 +  dx parallel to the shoreline and 
separated by a distance dx shows at once that 
the net stress r ,  per unit area exerted by the 
waves on the water in the surf zone is given by

r ,  =  - d S j b x  (29)

and by (15) this equation becomes

'■ -  - £  ( ^ )  -  < * ? )  <“ >
where D  denotes the local rate of energy dissipa
tion. In other words, the local stress exerted by 
the waves is directly proportional to the local 
rate of dissipation of wave energy. Outside the
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breaker zone the mean bo ttom  stress vanishes.

In  some situations the loss of wave energy 
can be a ttribu ted  to  bottom  friction (due mainly 
to the orbital velocity of th e  w aves). However, 
the observation by  M unk  [1949] th a t in the 
surf zone the b reaker height is proportional to 
the mean depth suggests th a t under normal cir
cumstances most of the loss of wave energy is 
due to  wave breaking, no t to  bottom  friction.

I t  is found th a t the rule

о =  ah  (31)

where a  is a constant between 0.3 and 0.6 is in 
agreem ent both  w ith direct observations (see 
Table 1 below) and w ith laboratory measure
m ents of wave setup [Longuet-Higgins and 
Stewart, 1963, 1964; Bowen, 1967] the approxi
m ate linear shallow-water theory is used. On 
the basis of this theory we have from section 2 , 
when kh <SC 1,

c =  (gh) l/1 =  c, (32)

I f  i t  is assumed th a t in  the breaker zone в 
is small enough th a t cos в can be approximated

TABLE 1. Observed and Theoretical Values of a

Investigator s a (a)

Observed Values
Putnam el al.[ 1949] 0.066

0.098
0.100

0.37'
0.36
0.33

0.139 0.32 0.350.143 0.37
0.144 0.32
0.241 0.35
0.260 0.36

Iverson [1952] 0.020 0.41 1
I0.033 0.38 0.440.050 0.42

0.100 0.52J
Larras [1952] 0.010 О.З44 

0.37 >0.020 0.39
0.091 0.43)

Jppen and Kulin  [1955] 0.023 0.60 0.60
Eagleson [1956] 0.067 0.56 0.56
Galvin and Eagleson

[1965] 0.104 0.59 0.59
Bowen [1968] 0.082 0.45-0.62 0.56
Values Determined from Solitary Wave Theory
McCowan [1894] 0.000 0.39
Dairiet [1952] 0.000 0.41
Long [1956] 0.000 0.406

by  unity, we have from (7), (31), and (32)

Pi =  2 p g a \  =  \ a  pg*n t i n  (33) 

and so from (30)

r ,  =  -  4а 2р(дК),/г y - —
u Z  С

=  pgh(s sin в) (34)

where s =  —d h /d x  denotes the local bottom 
slope.

Some values of a  as determined by various 
authors are shown in Table 1. Though the later 
determinations of a tend to  be higher than  the 
earlier ones, no determ ination departs by more 
than 50% from the theoretical value of 0.41 
calculated by  Davies and Long for the solitary 
wave.

Using (31) and the linear shallow-water 
theory, we can also express (34) in term s of 
the maximum horizontal orbital velocity given 
by

«m u =  (a a ) / ( k h ) =  a { a /k )  =  a ( g h ) ' /!> (35) 

Then we have simply

t„  =  ipw„.*J(s sin в) (36)

where s denotes the bottom slope and в denotes 
the local angle of incidence.

We note tha t in this simple relation there are 
no adjustable parameters.

Beyond the breaker line, i.e. where the energy 
dissipation is negligibly small, D  vanishes, and 
so by (31)

r ,  =  0 (37)

5. B ottom F riction

The tangential stress В excited by . the  water 
on the bottom  will be assumed to  be given 
adequately by a relation of the form

В =  Cp |u | u  (38)

where u  is the instantaneous velocity vector 
near the bottom  and С is a constant coefficient.

If there were no longshore velocity, and if 
the amplitude of the motion were small and the 
bottom  impermeable, the horizontal orbital 
velocity would be expected to  be to-and-fro in 
the same straight line, making an angle в  w ith 
the normal to the shoreline (see Figure 2a).
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(a) (b)
Fig. 2. Schematic representation of particle 

orbits (a) with zero mean littoral velocity and 
(6) with positive littoral velocity (v).

The frictional stress В given by

В =  Cp |uorb| Uorb (39)

would then vanish in the mean (according to 
linear theory).

Now suppose th a t a small component of 
velocity (u) in the longshore direction is added 
to  the orbital velocity (Figure 2b). When в is 
small, this component of velocity is almost 
perpendicular to the orbital velocity. Therefore 
the magnitude of the velocity u =  и„,ь +  (0 , (в)) 
is unchanged, to  first order, bu t the direction of

CURRENTS, 1 6783
the bottom stress is changed by a small angle 
(v)/|u»rb| approximately. Hence there is an 
additional stress in the у direction given by

By =  Cp |uorb|J «»>/|и,„ь|) =  Cp |u,,,b| (v)
(40)

Physically, when the orbital velocity is onshore, 
the direction of the bottom stress is inclined 
more toward the positive у  direction (if (v) is 
positive); when the orbital velocity is offshore, 
the bottom stress, now almost in the opposite 
direction, is again more toward the positive у  
direction. Taking mean values in (40), we have 
the relation

(By) =  Ср(|иогЬ|)<») (41)

Assuming u orb to be sinusoidal, we have

< к ,ь |>  =  (2 /x)um„  (42)
and hence

(Bv> =  (2 /г )С р и „ „ (и) (43)

As a guide to the appropriate value of the 
friction coefficient we consider first the values 
for a rough horizontal plate in uniform flow, as 
given for example by Prandtl [1952] and based 
on Nikuradse's experiments with roughened 
pipes. For convenience we reproduce Prandtl’s. 
[1952, p. 195] diagram as Figure 3 below. The 
friction coefficient appears to depend on just 
two parameters. The first is the Reynolds num
ber

Re = U l/v  (44)

Fig. 3. Values of the friction coefficient С for flow over rough plates, as deduced from 
the experiments of Nikuradse [from Prandtl, 1962]. (Figure reprinted by permission of Haff- 
ner Co.)
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where U denotes the horizontal velocity, I de
notes the length of the plate, and v is the kine
m atic viscosity. T he second param eter is the 
ratio  ( l /K ) , where К  denotes a  typical scale for 
a roughness element. H ere we can take as an 
appropriate  value of V  the  horizontal compon
en t of th e  orbital velocity, Ti*,,, and for I the 
horizontal excursion of a  w ater particle from 
its m ean position, th a t  is I =  u».,/® . Thus we 
have

Re =  / vo =  a  gh/va  (45) 

As typical values for field data  we can take

a  =  0 .4  g =  10 m /secJ , . . 4
(46)

h  =  1 m e te r a  =  1 ra d /se c

corresponding to  6-sec waves 0.8 m eter high. 
W ith th e  approxim ate value v =  1.3 X 10"“ 
mVsec and with a sand grain diam eter of 1 mm 
we obtain

Re =  1.3 X  10’ l / K  =  1.3 X 10s (47)

and so from Figure 3 С , Ф 0.007. On the other 
hand, for laboratory data  more typical values 
are

ft =  O .lm e te r a =  5 rad /see  (48) 

W ith the same values of a, g, and v, this leads to

Re =  2 .5  X  10‘ l / K  =  20 (49)

if the roughness scale К  is the same. In  tha t 
case Figure 3 suggests th a t Cr is somewhat 
larger, about 0 .010 .

Bretschneider [1954] has found th a t the ob
served damping of swell which is propagated 
over a  smooth, level, impermeable sea bed is 
consistent with a  friction coefficient lying be
tween 0.034 and 0.097. These values appear to  
agree well w ith P rand tl’s values. On the other 
hand, Bretschneider also found that the spectral 
lim itation of wave growth under the action of 
wind suggested higher values of C, between 0.01 
and 0 .02 . These coefficients may include other 
significant effects such as bottom percolation. 
R. E . M ayer (personal communication) has 
found, however, th a t the theory of run-up of 
surf on beaches [Sften and Meyer, 1963; Free
man and Le Mehaute, 1964] can be made to 
agree fairly well with the model experiments of 
Miller [1968] over a hard sloping concrete bot

tom by  assuming th a t С lies between 0.01 and 
0.02. These values cannot be the result of 
bottom  percolation, bu t m ight be attributable in 
p a rt to  turbulence arising from the breaking of 
the waves as they run up th e  slope.

Taken together, the above data  suggest tha t 
it is not unreasonable to  expect a  friction co
efficient С of the order of 0.01.

6 . E q u a t io n s  f o b  L o n g s h o r e  C u r r e n t

To estimate the longshore current (v ), let us 
assume first th a t the mean current is steady 
and two-dimensional, being independent of the 
tim e t  and of the longshore coordinate y. Then 
the equation of motion in the longshore direc
tion can be w ritten as

0  =  T * +  h  { N  I ? )  -  ( 5 0 )

where in the surf zone t ,  and (B,)  are given by 
(37) and (43), respectively. The second term  
represents the exchange of momentum due to 
horizontal turbulent eddies, with eddy coeffi
cient N .

In  this equation the m agnitude of N  is un 
known. Suppose first th a t the exchange of mo
mentum by turbulence is negligible in compari
son with tha t due to the w aves; then in general 
the second term  on the right of (50) can be 
neglected in comparison w ith th e  first. There 
remains a balance between the first and th ird  
terms:

<B„) =  t „  (51)

Substituting from equations (36) and (43), we 
have in the breaker zone

-  CpUn^ (v) =  f  pu„ « 2 (s sin  в) (52)T
and hence

(ti) =  (5ir/8C)u„.x (s 8in в) (53)

This very simple relation implies th a t for con
stan t values of С and s the longshore current is 
simply proportional to u™., sin 9, or to  the 
longshore component of the orbital velocity.

The proportionality of (v ) and tin ., has been 
inferred on quite different grounds by P . K om ar 
(personal communication, 1969).

Using (36) the relation between and the 
local phase velocity c, we can also write (52) in
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TABLE 2. Theoretical Values of 0

<*)
5 r a  . /s in
¥  с  m V ~ T ) ( 5 3 ')

where с =  (gh)'/t. Now by Snell’s law the last 
factor is a constant. Equation (53') then states 
th a t in a given wave situation, if both С and s 
are constant, the longshore velocity {v> is simply 
proportional to the local depth h.

If  we assume that the shallow-water theory 
is valid as far out as the breaker line where the 
depth h is equal to h,, the mean longshore cur
rent, in the absence of horizontal mixing, can be 
written as

where

«0 =  (дЬвУ'Х* sin 0B)

(5 4 )

(5 5 )

This relation is shown in Figure 4 by the dashed 
line (corresponding to у =  0). The total long
shore flux in the surf zone is given by

«Л-U
Q = I h(v) dx 

Jh-ha

Г Я
h (h /hB)vо dh/e

-  \ h B\ f t  = \h B \xB \ i/0 (5 6 )

We have so far neglected the horizontal mix
ing entirely. In  this idealized model there is a 
sharp discontinuity in the velocity profile a t the 
breaker line. The presence of any horizontal

<v>/v„

Fig. 4. Schematic representation of the long
shore velocity profile as a function of distance off
shore. Broken line denotes values without hori
zontal mixing; full line, with horizontal mixing.

у  = L/\xB | P

0.00 0.500
0.25 0.386
0.50 0.290
0.75 0.218
1.00 0.167

mixing, as well as any variability in wave height 
and position of breaker line, will tend to smooth 
out the discontinuity a t the breaker line and 
produce a smoother velocity profile; this shifts 
the maximum velocity closer to shore, as in 
Figure 4.

A very rough estimate of the effect of mixing 
on the velocity v , at the breaker line can be 
obtained by taking the average of the momen
tum h(v) over a distance L  on either side of the 
breaker line, where L  represents a mixing length. 
When L  is small in comparison with the width 
\x,\ of the surf zone, the velocity v ,  is equal to 
the mean value of the velocities on the two sides 
of the discontinuity in Figure 4. Hence vtt =  
У2 v„. More generally if we take

L  =  у  |z„ | 0 <  7  <  1 (57) 

we obtain for constant bottom gradient

vB «  (3v0 (58)

where

13 = 4 - - +yi  (59)
As у  increases from 0 to 1, /3 decreases from Vi 
to Then we can write

vB
Ьт сф
£  с (дкэУ'Х* sin вв) (60)

where S , denotes the angle of incidence a t the 
breaker line and f3 is a  constant between 0.5  
and about 0 .167 . The dependence of /8 on у  is 
shown in Table 2.

7 . C o m p a r is o n  w i t h  O b s e r v a t io n

Because of the dependence of the longshore 
velocity on the distance from the shoreline it 
is particularly important to define precisely the 
position of the point of observation relative to 
the shoreline and breaker line.
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TABLE 3. Laboratory D ata by Brebner and Kamphuia from Galvin and Nelson [1965, p. 12]

Я я , feet 6B, deg « vBl ft/aec (дНв )ч*/ьа earn вв T

0.092 7 .0 0.10 0.44 3.92 0.012 0.0480.097 7 .5 0 .1 0 0.47 3.77 0.013 0.0490.110 9.0 0 .10 0.67 2.81 0.016 0.0450.118 10.0 0 .10 0.82 2.38 0.017 0.0410.118 7 .5 0 .10 0.49 3.97 0.013 0.0520.138 8 .0 0 .10 0.67 3.15 0.014 0.0440.163 10.0 0 .10 0.83 2 .68 0.017 0.0470.159 12.0 0 .10 0.99 2.29 0.021 0.0470.157 9.0 0 .10 0.63 3.57 0.016 0.0560.159 9 .5 0.10 0.80 2.83 0.016 0.0470 .200 12.0 0.10 0.96 2.65 0.021 0.0550.203 13.0 0.10 1.07 2.39 0.022 0.0540.177 9 .0 0 .10 0.63 3.79 0.016 0.0590.220 11.0 0.10 0.88 3.02 0.019 0.0580.228 12.5 0 .10 1.04 2.60 0.022 0.0560.231 14.0 0.10 1.16 2.35 0.024 0.0570.092 10.0 0.10 0.60 2.87 0.017 0.0500.112 11.0 0 .10 0.81 2.35 0.019 0.0450.110 13.0 0.10 0.84 2.24 0.022 0.0500.118 15.0 0.10 0.91 2.14 0.026 0.0550.118 11.0 0.10 0.83 2.35 0.019 0.145
0.133 12.5 0 .10 0.97 2.14 0.022 0.046
0.153 15.0 0 .10 1.04 2.14 0.026 0.055
0.159 17.0 0 .10 1.14 1.99 0.029 0.058
0.170 13.0 0.10 0.94 2.49 0.022 0.056
0.158 14.0 0.10 1.12 2.01 0.024 0.049
0 .200 17.0 0.10 1.25 2.03 0.029 0.059
0.194 18.0 0.10 1.32 1.89 0.031 0.058
0.184 13.0 0.10 1.07 2.28 0.022 0.051
0.204 16.0 0.10 1.25 2.05 0.027 0.056
0.231 18.0 0.10 1.29 2.12 0.031 0.065
0.234 21.0 0.10 1.32 2.08 0.036 0.074
0.085 12.0 0.10 0.70 2.36 0.021 0.049
0.097 14.0 0.10 0.83 2.13 0.024 0.052
0 .110 17.0 0.10 0.88 2.14 0.029 0.062
0.112 18.0 0.10 1.05 1.81 0.031 0.056
0.118 14.0 0.10 0.91 2.14 0.024 0.052
0.133 16.0 0.10 0.96 2.16 0.027 0.059
0.141 18.0 0.10 1.10 1.94 0.031 0.060
0.147 21.0 0.10 1.22 1.79 0.036 0.064
0.151 17.0 0.10 1.08 2.04 0.029 0.060
0.153 18.0 0.10 1.18 1.88 0.031 0.059
0.176 22.0 0 .10 1.36 2.75 0.037 0.066
0.187 24.0 0.10 1.53 1.60 0.041 0.065
0.177 17.0 0.10 1.21 1.97 0.029 0.057

The profiles of velocity verstis offshore dis
tance measured by Galvin and Eagleson [1965] 
show a maximum velocity about halfway be
tween the mean shoreline (not the still water 
level) and the breaker line, as one would expect 
from section 6 if horizontal mixing were im
portant. In  the above instance, however, the 
flow was being accelerated downstream from a 
eide wall, so th a t the compensating inflow would 
also contribute to the redistribution of longshore

momentum and could have an effect similar to 
the presence of a  large horizontal eddy viscosity.

A useful summary of the available field and 
laboratory data has been compiled by Galvin 
and Nelson [1967]; these data have been criti
cally discussed by Galvin [1967]. I t  seems th a t 
the most commonly observed param eters of the 
wave field are the breaker height

HB =  2ahB (61)
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and the angle of incidence в ,  a t the breaker 
line, though in some instances these quantities 
must be deduced from the wave height and angle 
of incidence as measured in deep water. Galvin 
and Eagleson [1965] have shown that there is 
considerable uncertainty in the measurement of
H , and в ,  (especially в ,)  even under laboratory 
conditions.

Now substituting for h ,  in (60) we have for 
the longshore velocity v ,  a t the breaker line

vв =  s ^ / 2 -V ^ '~ (вНвУ'*(* sin 9B) (62) 

In  other words, if we write

—  (a s in 0j) =  r  (63)
vB

a dimensionless ratio, we have

6787
С =  1.39 V a  fir (64)

With little uncertainty we can take a  to be the 
mean value of the entries in the last column 
of Table 1, namely a =  0.42; then (64) further 
simplifies to

С =  0.90/Зг (66)

For each entry in the data compiled by Gal
vin and Nelson [1967] we have computed the 
quantity r as given by (63). The results of 
these computations for a typical page of labora
tory data [ВтеЬпег and Kamphuis, 1963] are 
shown in Table 3 and for the field data of 
Inm an and Quinn [1952] in Table 4. Despite 
the great range in the values of the breaker 
height H ,  it will be seen th a t the computed 
value of r  remains remarkably consistent. There 
is somewhat more scatter in the field data than

TABLE 4. Field Data by Inman and Quinn from Galvin and Nelson [1965, p. 17]

H B , feet 9B , deg i va, ft/sec (SH b ) " ' / v b < ВШ $s r

2.8 6.5 0.027 0.38 25.0 0.0030 0.076
3.1* 1.5* 0.027 0.04 25.0 0.0007 0.018*
3.7 4.0 0.027 0.22 49.6 0.0019 0.093
3.6* 0 . * 0.027 0.04 269.0 0.0000 0 .000*
4.9 5.0 0.027 0.84 14.9 0.0024 0.035
3.8 5.0 0.027 0.21 52.6 0.0024 0.124
3.4* 0 . * 0.027 0.55 19.0 0.0000 0 .000*
2 .6* 0 . * 0.035 0.04 22.9 0.0000 0 .000*
3.0* 1 .0* 0.035 0.01 98.2 0.0006 0.600*
2.7* 0 . * 0.035 0.15 62.1 0.0000 0 .000*
3.5* 0 . * 0.035 0.09 117.9 0.0000 0 .000*
4.9* 0 . * 0.035 0.21 59.8 0.0000 0 .000*
2.9* 0 . * 0.035 0.50 19.3 0.0000 0 .000*
4.6* 0 . * 0.035 0.88 13.8 0-.0000 0 .000*
3.7* 0 . * 0.028 0.20 54.5 0.0000 0 .000*
5.1 6.0 0.027 0.29 44.1 0.0028 0.124
4.7 7.0 0.027 0.53 23.2 0.0033 0.076
4.5 4.0 0.027 0.70 17.2 0.0019 0.032
4.8 4.0 0.027 1.19 10.4 0.0019 0.020
4.2 4.5 0.027 0.40 29.1 0.0021 0.062
2 .0 4.0 0.027 0.36 22.3 0.0019 0.042
1.7 7.0 0.027 0.23 31.2 0.0033 0.103
2.9 5.0 0.027 0.56 17.2 0.0023 0.041
1.6 5.0 0.027 0.11 65.2 0.0023 0.153
6.2 5.0 0.014 0.54 26.1 0.0012 0.032
3.1 7.0 0.014 0.62 16.1 0.0017 0.028
4.5 3.0 0.014 0.49 24.6 0.0007 0.018
3.5 4.0 0.014 0.17 62.4 0.0010 0.061
2.7 3.5 0.014 0.13 71.7 0.0009 0.061
4.7 7.0 0.014 1.37 9.0 0.0017 0.015
2 .6* 2 .0* 0.014 0.04 228.6 0.0005 0.116*
2 .0 4.0 0.014 0.11 72.9 0.0010 0.071
1.8 2.5 0.014 0.06 126.8 0.0006 0.077

* Values for which 0e ia reckoned to be 2 “ or leee.
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TA B LES. Summary of Observations: Mean Values

Investigators Type of Beach <*> (HB) (вв) N <r>

Putnam et al. [19491* [Bonded sand 0.133 0.28 14.4 14 0.121
< Metal or smooth cement 0.172 0.23 36.8 14 0.134
[Gravel, 1/4 inch in diam. 0.123 0.22 22.0 9 0.322

SaviUe [1950]* Concrete or 0.3 mm sand 0.100 0.14 6.5 7 0.087
Brebner and Kamphuis 0.100 0.15 13.9 45 0.054

[19631 Roughened concrete 0.100 0.14 21.2 48 0.068
0.100 0.16 14.6 48 0.035

Qalvin and Eagleson [1965] Smooth concrete 0.109 0.16 11.8 18 0.044
Putnam et al. [1949] Oceanside 0.021 6.42 11.1 18 0.020
Inman and Quinn [1951] Torrey Pines and Pacific 

Beach
0.022 3.58 4.9 21 0.064

Qalvin and Savage [1966] Nags Head 0.027 3.75 15.4 4 0.035

* D ata rejected by Galvin [1967].

in the laboratory data, as is to be expected, 
especially considering the difficulty in measur
ing th e  angle of incidence 9 ,. I f  we omit from 
consideration all observations (marked with an 
asterisk) for which в ,  is reckoned to  be 2 ° or 
less, the mean value of th e  entries in the last 
column is (т) =  0.054 for the laboratory meas
urem ents and (r) =  0.064 for the field data.

A summary of such mean values is given in 
Table 5, for all the  data  compiled by Galvin 
and Nelson [1967] with the exception of the 
field observations of Moore and Scholl [1961], 
which contained a  large proportion of zero or 
negative values of vB and were thought to be 
influenced by disturbances other than wave ac
tion. In  the laboratory measurements of Saville
[1950] and of Galvin and Eagleson [1965] the 
entries corresponding to angles 9M less than 6 ° 
have also been discarded on the grounds of un
reliability.

On quite different grounds Galvin [1967] has 
rejected all the early laboratory measurements 
of Putnam et al. [1949] since they were found 
not to  be reproducible under almost the same 
conditions either by Brebner and Kamphuis 
[1963] or by Galvin and Eagleson [1965]. I t  
is possible th a t Putnam  et al. employed a dif
ferent definition of breaker height than Brebner 
and Kamphuis or Galvin and Eagleson. Galvin 
also suggests th a t less weight should be attached 
to the observations of Saville [1950], since he 
did not actually measure H ,  and 9 ,\  these 
entries in the table are estimated from H, and 
в,.

Retaining then only tbe most reliable meas

urements in Table 5 (namely those not rejected 
by Galvin [1967]), we find for the field obser
vations (r> =  0.040 and for the laboratory data 
<r> =  0.050.

According to (65), these values of г corre
spond to mean values of the friction coefficient 
С given by

С =  0.036/3 С =  0.045/3 (66) 
where /?, as we have seen, is between 0.50 and 
0.167, depending on the horizontal mixing.

Assuming a friction coefficient С of about
0 .010, we see th a t both field observations and 
laboratory data are consistent w ith a mean 
v&lue of j8 equal to about 0.2. This suggests 
th a t horizontal mixing played some part, though 
not a dominant one, in the distribution of the 
longshore current.

A more precise estimate of the effects of hori
zontal mixing are given in the accompanying 
paper.

8 . C o n c l u s io n s

By the use of the concept of radiation stress 
and the small-amplitude theory of water waves, 
we have shown th a t the total longshore th ru st 
exerted by the waves on the water and sea bed 
inside the surf zone is very simply related to  
the energy density and direction of propagation 
of the waves in deep water (equation 28). This 
relation is quite different from th a t given by 
previous authors, and it  would be interesting to 
test it directly by experiment.

The local wave stress t ,  is also simply related 
to the local rate of energy dissipation, and, it
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would be interesting to  test this relation also.

The comparisons so far made between theory 
and observation suggest that the rational pre
diction of longshore currents may be practically 
possible. There is no need, as some authors have 
suggested, to fall back on empirical correlations.
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Longshore Currents Generated by Obliquely Incident Sea Waves, 2

M . S. L o n g u e t - H ig g in s 1

Oregon Stale University, Corvallis, Oregon 973Si

The profile of the longshore current, as a function of distance from the ewash line, is calculated 
by ueing the concept of radiation Btrese (introduced in an earlier paper) together with a horizontal 
eddy viscosity p. of the form ц, = pNx(gh)Vi, where p is the density, x is the distance offshore, 
g is gravity, h is the local mean depth, and N  is a numerical constant. This assumption gives rise 
to a family of current profiles whose fonn depends only on the nondimensional parameter P  = 
(r/2)(sN /aC ), where s denotes the bottom slope, a  is a constant characteristic of breaking waves 
(а Ф 0.41), and С is the drag coefficient on the bottom. The current profiles are of simple analytic 
form, having a maximum in the surf zone and tending to zero a t the swash line. Comparison 
with the laboratory experiments of Galvin and Eagleson (1965) shows remarkably good agreement 
if the drag coefficient С is taken as 0.010. The theoretical profiles are insensitive to the exact 
value of P, bu t the experimental results suggest tha t P  never exceeds a critical value of 2/5.

1. I n t r o d u c t i o n  

I n  the companion paper (hereafter referred 
to as paper 1 ) a new theory for the generation 
of longshore currents by sea waves was devel
oped ; it is based on the concept of the radiation 
stresses associated with the incoming waves. The 
theory was found to  be consistent with observed 
currents at the breaker line, in both model 
experiments and field observations, provided 
th a t the friction coefficient on the bottom was 
of order 0.010 and th a t the horizontal mixing 
length was of the  same order, bu t less than, the 
distance between breaker line and shoreline.

To make further progress in predicting the 
longshore current, one must make some further 
detailed assumption about the horizontal mix
ing in the surf zone. This we propose to do by 
adopting a certain form for the coefficient ft. of 
the horizontal eddy viscosity, as a  function of 
distance from the shoreline.

I t  is fairly clear th a t p., m ust tend to zero as 
the shoreline is approached, since the dimensions 
of the turbulent eddies responsible for horizontal 
mixing can hardly be greater than the distance 
to  the shoreline. For comparison, one can con
sider the analogous situation of turbulent flow 
over a rough plate, in which ц, is proportional

1 Now at National Institute of Oceanography, 
Wormley, Godalming, England, and Department 
of Applied Mathematics and Theoretical Physics, 
Cambridge, England.

Copyright ©  1970 by the American Geophysical Union.

to height above the plate [e.g., Prandtl, 1952]. 
However, the present flow differs from flow over 
a plate in th a t horizontal driving forces (in the 
form of the gradient of the radiation stresses) 
are also present throughout the surf zone. Thus, 
although ц . should tend to  zero, it does not 
necessarily do so linearly.

In  fact, we assume in the following th a t ц . is 
proportional to the offshore distance x  m ulti
plied by a typical velocity (g h y n, where h 
denotes the local depth. When the bottom  slope 
s is uniform, this particular form for the eddy 
viscosity ц , yields a very simple analytical form 
for the longshore current profile, which is found 
to be in remarkably good quantitative agree
ment with the detailed laboratory m easurem ents 
by Galvin and Eagleson [1957]. In  particular, 
the position and magnitude of the maximum 
current appear to be correctly predicted.

While this paper was in preparation, the 
author’s attention was drawn to a then unpub
lished paper by Bowen [1969] in which the 
concept of radiation stress was also applied to 
the same problem. Bowen also takes into account 
both bottom friction and horizontal mixing, 
though in a somewhat different way. Although 
in general agreement with Bowen’s approach we 
should like to point out two prim ary differences. 
The first is th a t he has assumed a bottom  fric
tion proportional to the longshore current v, 
whereas it was shown in section 5 of paper 1 
th a t the bottom friction is proportional to  uv, 
where u is the amplitude of the local orbital

6790
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velocity (normal to the coastline). This is the 
form adopted in the present paper. Second, in 
Bowen's model the coefficient of horizontal eddy 
viscosity fi, is taken to  be a  constant, not tend
ing to zero at the shoreline. This apparently 
simpler assumption leads in fact to a more com
plicated analytical form for the velocity profile, 
which is at variance in some respects with the 
velocity profiles as measured by Galvin and 
Eagleson [1957]. I t  appears then that the pres
ent formulation of the theory is both more 
plausible on physical grounds and better in 
agreement with the observations now available.

2 . E q u a t io n s  o f  M o t io n

We take axes Ox, Oy normal and parallel to 
the coastline, with the origin 0  at the coastline 
(which may differ from the still-water line 
because of wave setup). The local mean depth 
A(x) will be taken as including the change in 
level due to wave setup, or 'set down/ so that 
A(0 ) = 0  exactly.

If  the longshore current v is steady and in
dependent of y, then, as was shown in section 
6 of paper 1, the momentum balance in the у 
direction can be expressed by the equation

0  “ T »  + t o  ( 1 )

in which r ,  denotes the driving force due to the 
radiation stresses, which is given in shallow 
water by

Ty =  | a Jp(ffA)5/Js or 0 (2)

as * §  x ,, the breaker distance (see section 4 
of paper 1). In (2) о is a constant, about 0.41, 
p denotes the density, g is the acceleration of 
gravity, s =  dk /d x  is the local depth gradient, 
в is the local angle of incidence (вг <SC 1), and 
с is the local velocity of shallow-water waves 
where с =  (g h y“. By Snell’s law (sin в ) /с  is 
a  constant independent of x.  Also in (1) the 
mean stress (B,) on the bottom is given by

(B.) = ^aCp(gK)inv (3)

where С is the drag coefficient on the bottom. 
The middle term on the right of (1) represents 
the effect of horizontal mixing. Now ц , has the 
dimensions of pLU, where L  is a typical length

scale and V  is a  typical velocity. Following the 
reasoning outlined in tbe introduction we take 
L e i  and U oc (gh)’'*, where h is the local 
depth. As the simplest possible assumption, we 
take

M< =  N px(gh)l/t (4 )

where N  is a dimensionless constant. Since L  
is not likely to  exceed Kx, where К  is von Kar- 
m an’e constant, 0 .40 , and since the turbulent 
velocities are not likely to exceed O.lu^,, a t 
most, where u „ „  =  a(gh)1/', the probable limits 
of N  can be set as

0  <  N  <  0 .0 1 6  (5)
(for N px(gh )1 =  ц , =  pLU < p (K x ) 0.1 

а(0ЛГ).
We are particularly interested in a constant 

(or almost constant) beach gradient. We shall 
therefore suppose that

A =  sx (6)

where s =  dk /d x  is a constant that is nearly 
bu t not exactly equal to the bottom gradient m. 
Then (1 )  can be written in the form

3 (  j/a diA 1/a
P YX \ X d x j ~ qx V

_  J —TX*'2 0  <  x  <  xB ^

lo x B <  x  <  ®
where p, q, and r are constants, independent of 
x, given by

p =  N pgu \ v t  

q =  (8)

я 2 з /«  а /а  s m

r = fep} *
In the expression for r  the quantities в „ and h , 
signify the values of в  and A a t the breaker 
line, bu t the values a t  any other particular 
location might also be chosen.

Now let us introduce the nondimensional 
variables

X  = х /х  в V = v/v0 (9)

where v0 is the velocity defined by equation 55 
of paper 1:
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where В is a  constant, provided tha t( 10)

Then, noting th a t h „ =  sx„, we find th a t (7 ) 
reduces to the simple form

where

, д Vх
) -  X ' /2 V

д Х /  

- X 3'2

0

0 <  X  <  1

1 <  X  <  cc
(11)

P  =  (tt/2 )(sN /a C ) (12)
Thus P  is a  nondimensional param eter repre
senting the relative importance of the horizontal 
mixing.

If  there is no horizontal mixing, P  =  0 and 
we obtain the simple solution

V  =
0 <  X  <  1

1 <  X  <  oo
(13)

noted in section 6 of paper 1. T hat is to  say, 
the current increases linearly from the shore
line to  the breaker line. Beyond the breaker 
line it  is zero. A t the breaker line itself the 
current velocity is discontinuous.

For general values of P  equations 11 are to  be 
solved subject to  the boundary conditions th a t
V is bounded when 0 <  X  <  oo and th a t at 
the breaker line X  — 1 both У and dV/dX  are 
to be continuous. ( I t  is no t necessary for V to 
vanish a t  X  =  0, bu t we shall see th a t in fact 
it does.)

A particular integral of equations (11) in the 
region 0 <  X  <  1 is given by

V  = A X  0 <  X  <  1

where

,_L ( y v,
ЭХ  V s- d X l

P (p  +  3 /2 )p - 1 = 0  (18)

In  other words p m ust be a  root of the quad
ratic equation

p +  3 /2 p -  l / P  = 0 (19) 

Denoting these roots by Vx and pt, we have

l l / 23 (  9 lY
Pl = ~4 + \Тв +  P)

3 (  9 lV  
Pz =  “ 4 “  VT6 +  Р /

(20)

Clearly p, >  0 and p. <  0. Hence the complete 
solution to  (11) is of the form

V  =
B .X ’ 1 +  A X  0 <  X  <  1 ^

IB ,X T1 1 <  X  <  со
The boundary conditions a t  X  =  1 are then 
satisfied by taking

B l -  ------— A
Pi Рг

Bt = E u ^ L A
Pi -  р->

(22)

(14)

A =  1/(1  -  *P ) P *  |  (15)

To this we m ust add a complementary function 
satisfying, in both regions, the homogeneous 
equation

(16)

I t  is useful to  note th a t from (19)

Pi +  p2 =  —3 /2  pip2 =  — l / P  (23) 

and so

ip  1 — 1)(?2  — 1) =  P 1P2 — (p i +  P 2) +  1

=  -  — -  =  (24)2 P  A P  4

Then wc have also

B, =  [P ( l  -  p ,)(p , — pa)]"* (25)

Вг =  [P ( l  — Pa)(Pi — Pa) ] ' 1

Equation 21, together with (22) or (25), repre
sents the solution to the problem, for general 
values of P.

For P  =  2/5 the particular integral (14) no 
longer applies. Instead we have a different p a r
ticular integral

V =  - f  X  In X  0 <  X  <  1 (26)

Since pi =  1 and p, =  —5/2 for P  =  2 /5 , we 
obtain, as before,

The above equation has a solution of the form

V =  B X ” (17)
V =

MX - f X l n X  0 < X < 1 (27)
H x - 1 <  X <  ®
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The constants multiplying X  and X~s* are 
chosen to satisfy the continuity of V  and hV/  
dX  a t X  — 1. Equation 27 also represents the 
limit of the solution (21) when P  —» 2/5.

3 . D is c u s s io n

The current profiles given by equation 20 
have been calculated and plotted in Figure 1 
for various values of the horizontal mixing pa
ram eter P. These current profiles have the 
following properties.

1. Velocity near the breaker line. As P —>
0, the profile tends to the triangular form (13) 
appropriate to zero mixing. There is a single 
maximum velocity Vm„  -*  1 just to the left of 
the breaker line. To the right of the breaker 
line we have V -*  0 .

2. Velocity at the breaker line. When X  =
1 we have from (21) and (25)

V B =  [P ( l  -  P3)(Pl -  ps) ] - ‘ (28)
On using the values of pi and pi given by (20) 
we find th a t in the limit, as P —» О, Vn -»  0.5. 
In  other words, the velocity a t  the breaker line 
is the mean of the limiting velocities on either 
side. This was foreshadowed in paper 1, section 
6 . Now as P  increases from zero to infinity, V» 
decreases monotonically from 0.5 to 0. At large

6 7 9 3

values of P  we find tha t asymptotically

V B ~  4 /1 5 P  as P  > oo (29)

Values of V» for some representative values of 
P  are given in Table 1. Also, when P  =  2/5, we 
have

V B =  10/49 =  0.2041 (30)
3. Maximum, velocity. The velocity profile 

generally has a  single maximum value F„.« 
lying within the surf zone (0 <  X  <  1). To 
find the position X„  of this maximum, we dif
ferentiate (21) and obtain

0 =  B lPlX S ' - 1 +  A  (31)

Therefore from (22)

From (21) and (31) the corresponding velocity 
is given by

Vm„  =  ( l  -  (33)

Using the values of pl and p3 given by (20), we 
can show that, as P  —* 0, X„  1 and F m„  —»
1, and, as P -*  со, both and V „„ tend to
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____________ T A B L E l- Parameters of the Velocity Profile (21) for Various Values of P

l°g .rf* VB (y )  v  y_

—' 00 0.5000 0.5000
- 3 . 0 0.4735 0.4847
- 2 .5 0.4544 0.4733
- 2 .0 0.4233 0.4542
- 1 .5 0.3754 0.4230
- 1.0 0.3077 0.3736
- 0 .5 0.2226 0.2992

0 .0 0.1333 0.2000
0 .5 0.0628 0.1024
1.0 0.0240 0.0408
1.5 0.0081 0.0141
2 .0 0.0026 0.0046

i  ®900 1.0000 1.0000 0.0000 l  nnnn
0.8835 0.9108 0.9542 0.0467 1 m m
0.8254 0.8699 0.9208 0.0824 i  0032
0.7456 0.8148 0.8654 0.1447 io ? m
0.6422 0.7422 0.7780 012546 Г 0327
0.5173 0.6466 0.6496 0.4615 l n i l
0.3786 0.5198 0.4803 0.9822 14625
0.2400 0.3600 0.2933 «  „
0.1246 0.1984 0.1399 со
0.0524 0.0861 0.0537 ю
0.0191 0.0316 0.0183 о.
0.0064 0.0107 0.0059 «

0 in such a way th a t

~  ( 34)

Thus X n covers the entire range of X  values 
between 0 and 1 . For P  =  2 /5  we find from 
(27)

X m =  e~5/7 =  0.4895 

mu =  =  0.3496

(35)

The values of F m„  and X „  corresponding to 
some representative values of P  are shown in 
Table 1. I t  appears tha t, as P  increases from 0 
to oo, both V „„  and X „  decrease steadily from
1 to  0 .

Interpreting this result physically, we can say 
th a t the effect of increasing the horizontal mix
ing is to  redistribute the momentum so th a t the 
fluid near the shoreline is dragged along a t a 
faster speed by the fluid farther offshore, but 
farther offshore the fluid is slowed down by the 
mass beyond the breaker line.

4. Gradient o f velocity profile at the shore
line. As X  0, we see from (21) tha t

d V / d X  ~  B ^ X 1' - '  +  A  (36) 

P  *  2 /5
So long as p, >  1, the horizontal velocity gra
dient remains finite and equal to A. However 
when p, <  l  the gradient a t  X  =  0 become^ 
infinite. The critical case p1 =  l  corresponds to 
P  — 2/5  =  0.4. Thus we have

; s ! f  -  | 1/<l~ w  a £ p < * s w
2 /5  <  P  <  «

5. Total transport. In  the longshore direc
tion the to ta l transport can easily be found by 
integration of vh  with respect to the offshore 
distance x. W ithout horizontal mixing the total 
transport Q0 was shown in paper 1, section 6 to 
be given by

Qo =  hBxB (38)
where v„ is given by (10). This follows from 
the fact th a t vh  is proportional to x1. W hen P  
>  0 , the transport within the surf zone is given 
by

Qi = vJiBxB [  V X  d X  
Jo

= +  A) Q°

(39)

\2 +  Pj
On the other hand, the transport beyond the 
surf zone is given by

Q, = v0hBxB J  V X  d X

- 3
2 +  Pa (40)

p a >  — 2

For p, <  —2, which corresponds to  P  <  1, 
the total transport Q, which equals (&  +  Q,), 
is given by

3 S , 3 B ,
+  A\ 2  +  p! 2 — p2 

which after some reduction becomes simply

(41)

Q -  Qo/d -  P) (42)
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When P >  1, the transport outside the surf 

zone (and hence the total transport) becomes 
infinite. This must mean that a steady state 
cannot be established in a finite time, over the 
whole field. However, the flow within any finite 
distance of the shoreline can still be established 
effectively within a finite time.

6 . Mean current (V). The mean current in 
the surf zone, given by

<v> -  / 'J 0
V  d X

B.
V i + l (43)
.55/196 P  =  I

is plotted in Figure 2  with V ,  and as func
tions of the mixing parameter P. Each is a 
monotonically decreasing function of P. The 
corresponding ratios V,/(y), V ,/V m„, and 
(V )/ V».. (Figure 3) can be seen to vary be
tween somewhat narrower limits. In particular, 
V ,/V m,x lies always between 0.4 and 0.6.

The most remarkable feature of Figure 1 is 
that, even when the mixing parameter P  varies 
by a factor of three orders of magnitude (from 
0.001 to 1.0 ), the corresponding value of the 
velocity changes by a  factor of less than
4. This is in striking contrast to the dependence

of the velocity on the drag coefficient С on the 
bottom. Since v„ is inversely proportional to С 
(but P  depends also on C), we see tha t v itself 
is nearly inversely proportional to C.

4. Comparison w ith  Observation

The most careful laboratory studies of long
shore currents along a  plane beach appear to 
be those of Galvin and Eagleson [1965]. Their 
model beach was 22 feet wide and had a gradient 
of about 0.11. Some care must be taken, even 
with these experiments, in comparing theory 
and observation since, as the authors themselves 
emphasize, the measured currents were not uni
form along the beach but were being accelerated 
downstream from one end of the beach. This 
effect is probably present, but unrecognized, in 
many other laboratory measurements. One re
sult of the acceleration must be to entrain fluid 
from beyond the surf zone into the surf zone 
itself, which may have an effect similar to a 
horizontal exchange of momentum by eddy 
viscosity.

The parameters for Galvin and Eagleson’s ex
periments are summarized in Table 2. Their 
measurements for which the angle of incidence 
differed from zero were in series П, III, and IV, 
the deep-water angles of incidence for these 
series being 10°, 20°, and 51°, respectively. In

Fig. 2. The theoretical values of Vj  (the velocity at the breaker line), V .u  (the maximum 
velocity) and (V) (the mean velocity in the surf zone 0 <  X  <  1) as functions of the mixing 
parameter P.
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Fig. 3. The ratios V»/<V), Vb/V„„, and as functions of the mixing parameter P
(full lines). The dashed line gives the coordinate X „ of the position of maximum velocity.

runs 2  to 6 of each series the wave period was 
varied, and in runs 7 to  11 the period was kept 
constant and the amplitude was varied.

The measurements thought most likely to 
represent steady unaccelerated conditions were 
those a t a distance of 15 feet, or about %  the 
width of the beach, from the upstream end. For 
each velocity profile we have assumed as origin 
of X  (in our notation) the mean position of the 
swash zone, taken  a t a  distance (r — W /2) 
from the still w ater line. Here r, as in Galvin 
and Eagleson [1965], denotes the runup dis
tance and W  denotes the width of the swash 
zone. No measurements being available, we have 
assumed W  to  be given closely enough by 
VeSffT5, which is th e  distance through which a 
particle would slide down the beach under grav
ity in a tim e equal to half the wave period T. 
The distance b of the breaker line offshore is 
tabulated by Galvin and Eagleson, so th a t alto
gether we have

v = S + r - W / 2 
b +  r ~  W /2 (44)

where £ is the horizontal distance offshore from 
the still water line ( |  =  Y, in the notation of 
Galvin and Eagleson).

To normalize the measured velocity u, we 
define v„ by ( 10), in which h , is assumed to be 
very nearly equal to sb (if allowance is made

for wave setup, the appropriate value of * is 
reduced by about 10% ; see appendix 1) ;  B, 
is the measured angle of incidence a t the 
breaker line (see Table 2). In  series IV, how
ever, the present approximate theory in which
б ,' is negligible cannot very well be justified. 
Accordingly a  rough correction has been made 
in Figure 4 by replacing the value of v„ in Table
2 by Vo cos 9„, where is the aDgle of incidence 
in deep water. Though no t rigorous, this cor
rection factor can be justified on the grounds 
th a t the total longshore force exerted by the 
waves is equal to %  E„ cos в„ sin 0O, where E„ 
is the wave energy density in deep w ater (see 
section 3 of paper 1). Since the total longshore 
thrust is proportional to cos 0O, we expect the 
longshore current v will, on average, be reduced 
by approximately this amount.

In  the experiments, the param eters r, b, and
в ,  were found to  fluctuate to some extent both 
with time and with distance along the shore. 
However, rather than use the local values of 
these quantities a t the position of the current 
profile, we have adopted the longshore averages
г,», b .r, and (0»),т given in Table A3 of Galvin 
and Eagleson [1965]. The purpose of doing so 
is to  help reduce the statistical variability. In  
addition, we note tha t the longshore currents 
are, in fact, affected not only by the local values 
of h ,  and в ,  b u t also by conditions along the
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TABLE 2. Parameters for the Model Experiments of Galvin and Eagleson. [1965)

Run
0b ,

deg feet
T,

sec feet feet
W/2,
feet

l>0,
ft/sec V’ mu logioP

Series II 
2 5.4 0.191 1.000 1.01 1.62 0.22 2.08 0.25 -0 .0 4
3 5.1 0.167 1.125 1.06 1.53 0.28 1.84 0.35 -0 .4 0
4 3.3 0.143 1.250 1.07 1.33 0.34 1.12 0.48 - 0.86
5 2.3 0.121 1.375 1.15 1.24 0.42 0.74 0.69 -1 .7 2
6 3.7 0.105 1.500 1.04 1.17 0.50 1.18 0.35 -0 .4 0
7 2.6 0.050 1.250 0.62 0.62 0.34 0.59 0.40 -0 .5 8
8 3.1 0.098 1.250 0.77 0.87 0.34 0.83 0.35 -0 .4 0
9 3.8 0.124 1.250 1.03 1.21 0.34 1.21 0.41 -0 .6 2

10 3.7 0.130 1.250 1.03 1.07 0.34 1.12 0.46 -0 .8 0
11 4.0 0.156 1.250 1.08 1.44 0.34 1.40 0.46 -0 .8 0

Series III
2 14.1 0.191 1.000 0.95 1.52 0.22 5.01 0.39 -0 .5 5
3 12.1 0.167 1.125 1.05 1.51 0.28 4.30 0.42 -0 .6 5
4 10.1 0.143 1.250 1.05 1.44 0.34 3.48 0.56 -1 .1 7
5 9.2 0.121 1.375 1.05 1.13 0.42 2.80 0.61 -1 .3 7
6 6.9 0.105 1.500 1.06 1.04 0.50 2.04 0.70 -1 .7 7
8 6.6 0.098 1.250 0.75 0.85 0.34 1.76 0.66 -1 .5 8
9 8.7 0.124 1.250 0.89 1.11 0.34 2.64 0.60 -1 .3 3

11 11.2 0.156 1.250 1.10 1.55 0.34 4.01 0.49 -0 .9 0
Series IV

2 28.0 0.191 1.000 0.84 1.40 0.22 9.29 0.37 -0 .4 7
3 21.9 0.167 1.125 0.88 1.15 0.28 6.74 0.44 -0 .7 2
4 18.6 0.143 1.250 1.02 1.22 0.34 5.87 0.53 -1 .0 5
5 15.8 0.121 1.375 1.17 1.32 0.42 5.04 0.55 -1 .1 3
6 8.6 0.105 1.500 0.90 0.91 0.50 2.37 0.55 -1 .1 3
7 13.4 0.050 1.250 0.59 0.69 0.34 3.18 0.39 -0 .5 5
8 14.3 0.098 1.250 0.79 0.83 0.34 3.71 0.48 - 0.86
9 19.7 0.124 1.250 0.86 1.19 0.34 6.13 0.39 -0 .5 5

10 19.7 0.130 1.250 0.97 1.27 0.34 6.34 0.47 -0 .8 3
11 22.6 0.156 1.250 1.12 1.29 0.34 7.26 0.46 -0 .8 0
12 6.0 0.062 1.500 0.54 0.57 0.50 1.31 0.57 - 1.21
13 20.2 0.110 1.000 0.72 0.88 0.22 5.37 0.46 -0 .8 0

whole length of the beach. (There was some 
uncertainty in the measurement of в в [see Gal
vin and Eagleson, 1965] and hence in the ap
propriate values of v„ and V„„.)

The results of the comparison are shown in 
Figure 4. Each plot in the diagram is identified 
by the number of the corresponding run in 
Table 2 . I t  will be seen that most of the points 
lie between two of the theoretical curves derived 
in section 2, namely the curves corresponding to 
P  =  0.4 and P  =  0.1. Individual profiles (such 
as tha t numbered 11 in Figure 4a tend to follow 
quite closely the predicted profile for some par
ticular value of P; the maximum velocity al
ways lies not far from the dotted curve, which 
represents the locus of maximums in Figure 1.

The values of corresponding to each of

the profiles in Figure 4 are shown in Table 2. 
Also shown are the corresponding values of P 
derived from Figure 2. I t  can be seen that P  
varies from 0.40 to about 0.01.

How does P  vary with other parameters: the 
wave height and period, the angle of incidence, 
and the beach slope? Before a  definite answer 
can be given, further experiments covering a 
wider range of conditions are necessary. There is 
some evidence from Table 2 th a t P  is an increas
ing function of the wave frequency (2ir/Т )  and 
also of the breaker height in deep water (Ha). 
The value of P  can also increase with the angle 
of incidence Bo

l t  is striking th a t few profiles correspond to 
values of P  greater than the critical value of
0.4 (see section 3). At this value of P  the gra-
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Fig. 4<j. Comparison of the longshore velocities measured by Galvin and Eagleson [1965; 
series I I ]  w ith the theoretical profiles derived in section 2 of the present paper. The plotted 
num bers correspond to  the number of each run (Table 2).

dient of the current a t  X  =  0 becomes infinite. 
One is tem pted to  conjecture th a t this is in fact 
the greatest possible value of P, and th a t the 
presence of the shoreline controls the horizontal 
mixing so th a t the value of 0.40 is not exceeded.

In  support of th is conjecture we can note 
th a t the corresponding value of У ,  is about 0 .20, 
or one-fifth, whereas a  rough argument in sec
tion 6 of paper 1 showed th a t V, should never 
be less than  about one-sixth. As shown in paper
1, both laboratory measurements and field ob
servations seem to  point to  0.2 as being a 
common value for V

Ap pe n d ix  1. An  Allow ance for W ave Setup

I t  is well known [Saville, 1961] th a t waves 
approaching a beach cause a change in the mean 
w ater level, or wave setup, in the shelving zone. 
The effect is caused by the onshore component 
of radiation stress [Longuet-Higgins and Stew
art, 1962, 1963]. Outside the breaker zone, the 
wave setup 17 is slightly negative, but inside the 
surf zone, the region with which we are con

cerned here, dtj/dx  and hence 77 become appre
ciably positive. Thus the local depth h(x)  
should, in practice, be replaced by the effective 
depth (h  +  77), and the bottom slope s should 
be replaced by

(A I)

Now it has been shown both theoretically 
and experimentally by Bowen et al. [1968] th a t 
within the surf zone

dr,
dx

dh
1 +  (2 /3 a )  dx

(A2)

(see equation 12 and Figure 5 of their paper, 
with у =  2a). Thus, if a  is constant, the gra
dient of the mean surface level is simply p ro 
portional to the gradient of the beach. From 
(A2) it follows tha t

dh . dr, =  ____ 1 dh
dx dx 1 +  3of‘/2  dx

(A3)
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Fig. 4b. Comparison of the longshore velocities measured by Galvin and Eagleson [1965; 
series III] with the theoretical profiles derived in section 2 of the present paper. The plotted 
numbers correspond to the number of each run (Table 2).

and hence

8* 1 +  3a/2 ^
Equation 10 can therefore be modified to read

5 r a*s

where

a t

(AS)

(A6)
s  1 +  3 a  / 2

A graph of a* as a function of a  is shown in 
Figure 5. I t  sbould be noted th a t over much of 
the range of a  the value of a* differs little from 
its minimum value:

=  (6) ' 1/J =  0.4082 (A7)

In  fact there is little error if we take a =  0.5, 
about in the middle of the observed range. Cor
respondingly we have a* — 0.36. Hence the 
appropriate value of va might be some 12% less 
than the value given by (10) with a  =  0.41.

Appendix  2. T h e  Stokes Velocity

In  any fluctuating field of motion there is a 
systematic difference between the mean velocity 
measured by a freely floating object (the Lagran- 
gian mean velocity) and the mean velocity 
recorded by a current meter a t a fixed point 
(the Eulerian mean velocity). The difference 
between the Lagrangian and the Eulerian mean 
velocities has been called the Stokes velocity 
[.Longuet-Higgins, 1969] after G. G. Stokes [1847], 
who discovered it for surface waves on water of 
uniform depth. A general expression for the 
Stokes velocity U. is given by

U. = u, d i - V u ^  (Bl)

where Ui denotes the first-order particle motion, 
assumed periodic with mean zero, and the angle 
brackets denote the mean value with respect to 
time. Thus U, depends on the space gradient of 
the orbital velocity Ui.

In  shallow-water wave theory, the orbital 
velocity is independent of the vertical coordinate,
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Fig. 4c. Comparison of the longshore velocities measured by Galvin and Eagleson [1966; 
series IV] with the theoretical profiles derived in section 2 of the present paper. The plotted 
numbers correspond to the number of each run (Table 2).

and so likewise isU ,. Nevertheless, the horizontal 
gradients of Ui still give rise to  a  non-zero 
Stokes velocity. If  tti and Vi denote the x  and у 
components of Ui, the longshore component of 
U , is given by

<B 2 >

Consistent with our previous use of the linear
ized shallow-water theory, we have

Ui — a(gh)i/! cos в  cos (ia: +  m y  — <rt) .
(B3)

«1 =  a(gb)u i  sin в cos (Ix +  m y — <ri) 
where

I = к cos 0 m  =  к sin в (B4)

fc being the absolute wave number. By Snell’s 
law, the longshore wave number m  is a  constant, 
bu t the onshore wave number I is related to the 
frequency a and the local depth h  by the rela

tion

<rJ =  k1 gh =  ( i1 +  m )g h  (B5)

On substituting from (B3) into (B2) and 
noting th a t дт/Эх, дт /ду, d l/dy, dh/dy, and 
дв/ду  all vanish we obtain

7, = Ja*(0A/°)[O +  * dl/dx) +  те]
• cos в sin  в (B 6)

If  we ignore dl/dx  in comparison with l/x , the 
above expression reduces to

V , =  %a*(gh/c)[cos в +  sin 8\ cos в  sin  в
(B7)

where с =  а /к  denotes the phase velocity. 
When в3 is negligible, (B7) becomes simply

V , =■ \ a  gh(sin в/с) (В 8)

The last factor is constant, by Snell’s law. Hence 
the Stokes velocity increases linearly with the
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Fig. 6. The virtual coefficient a* as a function of a.

depth h and hence linearly with distance from 
the shoreline.

To show that dl/dx  is negligible in comparison 
with l/x ,  we have from (B5)

I2 =  (cr5/  gh) — m  

21 d l/d x  =  —(<r2/g h 2) dh /dx  

Therefore, if h =  sx

21 d l/d x  =  (12 +  n ) / x  

Thus dl/dx  <SC l/x , provided tha t

(B9)

(BIO)

Z2 +  m «  2i2 (Bll)
th a t is to say m’ «  F or tan* в «  1 . Since 
6‘ has been neglected, this condition is already 
satisfied by our previous assumptions.

Let us now compare the magnitude of the 
Stokes velocity, as given by (B8 ), with the scale 
velocity v0 defined by (10). At the breaker line 
the ratio of the two is given by

V.
v0

_4 aC  
5r s

(B12)

W ith the values s =  0.11, С =  0.010, and a =
0.41 we have simply V,/v„ =  0.01, which is 
negligible.

On the other hand, with very gently sloping 
beaches, where s is much smaller than the value 
in Galvin and Eagleson’s experiments, the 
Stokes velocity may very well have to be taken 
into account.
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[P la te s  1-4]

W ater waves transport both energy and momentum, and any solid body 
which absorbs or reflects wave energy must absorb or reflect horizontal 
momentum also. Hence the body is subject to  a mean horizontal force. In  
low waves, the force may be calculated immediately when the incident, 
reflected and transm itted wave amplitudes are known. Eor wave power 
devices the mean force can be large, so th a t anchoring presents practical 
problems.

Experim ents with models of the Cockerell wave-raft and the Salter
1 duck ’ accurately confirm the predicted magnitude of the force a t  low 
wave amplitudes. For steeper waves, however, the magnitude of the force 
can be less than  th a t given by linear theory. By experiments with sub
merged cylinders, it  is shown th a t this is due partly to the presence of a 
free second harmonic on the down-wave side.

In  breaking waves, it  is confirmed th a t the mean force on submerged 
bodies is sometimes reduced, and even reversed. An explanation is sug
gested in terms of the ‘wave set-up’ produced by breaking waves. Sub
merged cylinders act as a kind of double beach. A negative mean force 
arises from an asymmetry in the breaking waves, associated with a time- 
delay in the response to  the change in depth.

Similar arguments apply to submerged reefs and sand bars. Experi
ments with a model bar show that long low waves propel the bar towards 
the shore, whereas steep, breaking waves propel it seawards. This is similar 
to  the observed behaviour of off-shore sand bars.

The existence of a horizontal momentum flux (or radiation stress) in 
water waves is demonstrated by using it to propel a small craft.

1 . I n t r o d u c t i o n

Economically interesting methods of extracting power from sea waves have recently 
been proposed by Masuda (1972), Salter (1974), Woolley & P latts (1975) and others. 
Remarkably high efficiencies have been obtained in  the laboratory. The present 
investigation was prompted by the realization th a t any device which extracts 
energy must on general grounds be subject to a mean horizontal force. Not only can

[ 463 ]
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this force be large, but it  has a special practical significance in th a t its effect on an 
anchor cannot be reduced by any flexibility in the mooring cable.

Consider a two-dimensional irrotational wave train of amplitude a travelling with 
velocity c, in deep water. Owing to the mass transport velocity (see Lamb 1932, 
ch. 9) the waves have an average horizontal momentum I ,  which for low waves is 
simply proportional to the square of the wave amplitude:

I  = \рдаг1с, (1.1)

where p  is the density and g is gravity. Hence we expect a horizontal flux of momen
tum given by Ice, where cg denotes the group-velocity. In  deep water Cg = £c. So we 
expect a momentum flux

Ice = %P9a2 (1 .2)
per unit distance across the waves. This flux is closely associated with the radiation 
stress (see Longuet-Higgins & Stewart 1964).

Suppose we have any wave power device acted on by the waves as in figure 1. I f  it 
absorbs all the wave energy then it must absorb the momentum also. Hence we 
expect th a t it will be subject to a mean horizontal force

F  = \рдаг (1.3)

per unit distance across the waves. I f  all the wave energy is reflected, then the 
momentum is all reversed, and the resulting force is just doubled. In general, we 
expect tha t the body will be subject to a force

F  = (Icg)in + (̂ Cg)ref — (-fr^trans (1-^)

where the terms on the right represent the momentum fluxes in the incident, re
flected and transmitted waves respectively. In  deep water this becomes

F  = }pg(a2 + a'2-b %  (1.6)

where a, a ' and b are the respective wave amplitudes.
The maximum value of this expression £pga2 is equal to the horizontal stress 

acting on a dam, erected across a reservoir of depth a equal to the wave amplitude. 
I f  a is measured in metres, this force is t/m (tonnes force per metre) measured 
along the dam. Thus waves of amplitude a =  10 m correspond to a maximum force 
of 50 t/m.

In  water of finite depth h, the ratio c jc  is more generally equal to (\  + khjsinh 2 kh) 
where к is the wavenumber. This leads one to expect tha t in general

F  = Ърд(а2+ а'г-№ ) (1 + Ш /sinh 2fcA) (1.6)

the last factor tending to unity as the depth tends to infinity.
In  §2 of this paper we shall first establish equation (1.6) theoretically, under 

certain conditions. Thus the wave amplitude must be sufficiently small for the 
bilinear theory to apply, which excludes breaking waves, for example. Neverthe
less under appropriate conditions equation (1 .6) can be generalized so as to evaluate
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the total force on any num ber of floating or submerged bodies, and to the situation 
where the undisturbed depths of water on the up-wave and down-wave sides are 
unequal. Hence we can consider applying the result to  submerged bodies and sub
marine reefs.

In  §3 we shall describe experiments which verify equation (1 .6) experimentally 
for a Cockerell wave raft, and for a Salter ‘ duck’ in waves of moderate amplitude.

incident transmitted
wave

wave
absorber

/ / / / / / / / / / / / ? / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
F i g u r e  1. Schem atic  rep resen ta tion  o f a  w ave absorber s itu a te d  in  a  tr a in  o f w aves.

For totally submerged bodies, however, it  is found experimentally th a t the mean 
force can be less than  expected, and in §5 we show theoretically and experimentally 
th a t  this is due partly to the presence of a second harmonic in the transm itted wave.

In  breaking waves, Salter has found an even more drastic reduction, and even a 
reversal, of the mean force. This is discussed in §6, and a qualitative explanation is 
p u t forward in terms of the wave set-up. In  §7 it is verified experimentally th a t a 
similar reversal can occur on submerged sand bars, long low waves driving the bars 
shorewards, b u t shorter, breaking waves driving them seawards.

Finally we discuss briefly the possibility of using wave momentum to propel a 
small craft. This is demonstrated by means of a model.

2. The  b i l i n e a r  t h e o r y  

We shall first establish theoretically the results stated in the Introduction. The 
arguments, which are simple, depend solely on the conservation of the mean 
momentum.

Suppose th a t waves of low amplitude a approach from the left in water of undis
turbed depth h. They are incident upon any number of floating or submerged bodies 
(which may be absorbing or generating wave energy a t the same frequency) confined 
to a finite horizontal range. For simplicity, the mean depth on the right is assumed
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to be the same as that on the left, in the first place. The amplitudes of the reflected 
and transmitted waves are denoted by a' and b respectively, and we allow for a 
small, second-order displacement £ of the mean surface level on the left, and (£+AQ 
on the right, due to the waves.

Horizontal and vertical coordinates are denoted by x  and z, with a: in the direction 
of the incident wave and z measured vertically upwards from the undisturbed mean 
water level. The horizontal and vertical components of the particle velocity are 
denoted by и  and w.

A general expression for the flux of horizontal momentum across a vertical 
plane x  =  constant is ^

J  J p+ pu2)dz ,

where p  is the pressure, p the density and £(я, t) the local elevation of the free surface. 
Subtracting the corresponding flux in the absence of the waves (which arises solely 
from the hydrostatic pressure p 0 = — pgz, and taking averages with respect to the 
time, we obtain the excess flux of momentum due to the waves as

& — f  (p+pu2)dz — Г p Q dz. (2.1)
J -ь J - f t

In  the case a’ =  0, £ =  0, this is just the radiation stress, which for waves of small 
amplitude has been evaluated by Longuet-Higgins & Stewart (1960, 1964). Gen
eralizing their argument we note first that (2.1 ) may be written

S  = I" pdz + f ( p - p 0+pu2)dz (2 .2)
Jo J - f t

correct to second order. Now by conservation of vertical momentum of the fluid 
contained between (1) the free surface z =  £, (2) the horizontal plane z =  constant 
and (3) any two vertical planes one wavelength apart, we have

p+ pw 2-pg(% -z) = p 0+pgz,

where an overbax now denotes the double average over both a period and a wave
length. Therefore p - p 0 = pg£-pw* (2.3)

and on substituting in (2.2) and taking averages over a wavelength we obtain

<5 =  j*Cj)dz4-j* p(u2- w 2)dz+pgh£. (2.4)

In  the above integrals we may substitute the well-known first-order expressions for 
the pressure p  and the orbital velocities u, w in Stokes waves of arbitrary depth 
h =  h + £, namely

и =  фх, w = ф„ pip  = фх- g z , £ = д~ЧФь)г=o>
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where ф = [a cos (kx -  art) + a' cos (kx +  at)] a c ° sh k (z + h)
fc sinh fcfb

and cr2 =  gk tanh kh

(see, for example, Lamb 1932, ch. 9). On taking averages with respect to x  and t, all 
term s proportional to the product aa’ vanish, and we obtain

S  = \рд{аг + a'2) (1 + 4:feA/sinh 2kh) + pgh£, (2.5)

correct to second order. So the momentum fluxes in the incident and reflected waves 
are simply added. The last term  pght, can be considered as the effect of an additional 
hydrostatic pressure pgC, exerted throughout the whole depth h.

Consider now the horizontal momentum of the fluid contained between two fixed 
vertical planes x  =  a^, x2, one far to the left and the other far to the right. I f  jP denotes 
the sum of the  mean horizontal forces exerted by the fluid on all the solid bodies 
contained between these two planes, then the flux of horizontal momentum from the 
bodies to  the w ater is just — F. Assuming the mean horizontal momentum of the 
w ater to  be conserved, we must therefore have

F  = S 1- S 2,

where <S, and S 2 denote the fluxes of momentum across the two planes. In  this 
equation we can take averages with respect to xx and x2, each over one wavelength, 
w ith the  result

F  =  \pg{a2 +  a'2 — 62) (1 + 4&A/shih 2kh) — pghAt, (2-6)
from (2.4).

To complete the calculation we must now evaluate the difference A£ in the mean 
level on the two sides. To do this we introduce the further assumption (see Longuet- 
Higgins 1967) th a t  the motion is irrotational to second order. Then we may use the 
Bernoulli integral

p  Ip + |(u 2 + w2) + gz + дф/Ы =  f(t) 

and on taking both time and space averages we obtain

pjp + \(u 2+ w2) + gz = C(t),
where С is independent of both x  and z. Combining this with equation (2.3) and 
writing z =  0, p 0 =  0 we have

g£ = -i(u2-w%=0+oip 

and so gA£ =  -£ (м 2- и )2)г_ 0 . (2-7)
X *  —  CO

Now substituting the first-order expression for the orbital velocities и  and w we find

2 к (2.8)
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This combined with equation (2.5) gives us

F  =  \pg{a2+a'2—b2) (1 + 2M/sinh 2kh), (2.9)

the result to be proved.
When the depths of water on the two sides are unequal it is easily seen that the 

same arguments lead to

F  = \pg{a2 + a '2) (1 + 2 ^ /s in h  2khy) -  \pgb2{ 1 +  2fcA2/sinh 2 kh2), 

where h1 and h2 denote the mean depths on the two sides. That is to say

F  =  ( ^ g)ln + (/cg)ref-(/cg)trans (2.10)
as expected.

We note that the assumption of a steady mean surface level (£+AQ on the down- 
wave side may be appropriate only when there is a beach or other barrier to restrict 
the mean flow on the down-wave or the up-wave side. Otherwise, if the waves were 
started from rest, it would be difficult to achieve a steady state in a limited time.

The assumption that the flow is irrotational to second order also implies that the 
waves are not breaking.

3 . E x p e r i m e n t a l  v e r i f i c a t i o n

A Cockerell wave raft, consisting of six hinged floats each 12 in long x 23.5 in wide 
(see figures 8 and 9, plate 1) was placed in a wave tank of length 40 ft and width 
W = 2 ft. Periodic waves were generated by a plunger a t one end of the tank, and 
absorbed by a sloping beach at the other. Power was extracted by a simple arrange
ment of pumps, generally two a t each hinge, raising water to a height 1.6 m above 
the mean water level. The mean force on the float was measured with a spring 
balance.

Figure 2 shows a typical set of results for waves of period 1.0 s in water of depth 
ft =  0.36 m. The measured force is plotted against the expression

WF = lpgW(a? + a'2- b 2)

a t various wave amplitudes a. The broken line in figure 2 represents the force that 
would be exerted in deep water. The full line represents the theoretical force (1 .6) 
after adjustment by the factor for finite depth, and it can be seen tha t the agreement 
is close. At higher values of the wave amplitude the accuracy of the measurements 
was reduced by a long-period seiche (about 10 s) which was set up in the tank and 
affected both the wave amplitude and the forces on the raft.

Further details of the experiments are given in table 1.
Salter, Jeffrey & Taylor (1976) have measured the mean forces on a nodding 

‘ duck ’, which absorbs a high proportion of the incident wave energy. In  figure 4 we 
have plotted their measured values against the theoretical value £pgWa2 for low 
waves in deep water. Although there is greater scatter than in our measurements the
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F ig u r e  2. M ean horizontal forces on w ave ra f t. W ave period  T  =  1.0 s ; 
m ean  dep th  h = 0.36 m .

T a b l e  1. P a r a m e t e r s  f o r  t h e  d a t a  o p  f i g u r e  2

ru n period/s a/cm (o '/a )2 (6/a )2 efficiency loss
A l 1.00 1.71 .11 .34 .10 .44
A2 1.02 2.36 .07 .24 .14 .55
A3 1.04 3.03 .07 .17 .12 .64
A4 1.05 3.65 .07 .16 .15 .62
B I 1.01 1.31 .11 .32 .13 .44
B2 1.01 1.88 .11 .28 .16 .45
B3 1.02 1.88 .13 .25 .20 .42
B4 1.03 2.18 .05 .21 .19 .55
B5 1.04 2.68 .06 .22 .18 .54
B 6 1.06 3.15 .08 .18 .17 .57

observed values in figure 4 are in fair agreement a t low wave amplitudes. The points 
on the right of the figure are for breaking waves. I t  is not surprising th a t the agree
ment is less good. Nevertheless the reduction in force is interesting, and reasons for it 
will be discussed below.
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force/gf

F ig u r e  3. Mean horizontal forces on wave raft. T  =  1.0 s, A = 0.25 m.

4.  E x p e r i m e n t s  w i t h  a  s u b m e r g e d  c i r c u l a r  c y l i n d e r

Salter et al. (1976) also measured the forces on a circular cylinder, held with axis 
horizontal so as to be completely submerged in still water. For non-breaking waves 
the mean horizontal force was found to be quite small, as would be expected from 
equation (1.5) since a submerged circular cylinder has in fact the remarkable property 
th a t its transmission coefficient is unity and its reflexion coefficient is zero, accord
ing to linearized non-viscous theory (Dean 1948; Ursell 1950; Ogilvie 1963). Thus in 
equation (1.5) we should have a' = 0, b =  a.

At higher wave amplitudes, however, the horizontal force was observed to change 
sign, i.e. the mean force was found to be towards the wavemaker. How is this to be 
explained?
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F ig u r e  4. Mean horizontal forces acting on a Salter ‘duck’.

The present author carried out a somewhat similar experiment in which a sub
merged cylinder of diameter 15 cm was suspended below the surface by a vertical 
arm, free to swing about a pivot above the surface (see figures 10 and 11, plate 2). In  
this way the cylinder was constrained vertically bu t was free to make small oscilla
tions in a horizontal direction. Being flooded internally, the mean density only 
slightly exceeded th a t of the water, and the period of free oscillation (about 10 s) was 
long compared to the wave period.

Now the amplitude of the waves reflected from a submerged, neutrally buoyant 
cylinder, constrained vertically but free horizontally, may be shown (see the 
appendix) to  be given by (4 1 >

where i}rx is the phase-lag of the force on & fixed cylinder (relative to the force on a 
fluid particle on the axis in the absence of the cylinder), and is the phase-lag of the 
displacement of a completely free cylinder (relative to the displacement of a  particle 
on the axis, in the absence of the cylinder). The amplitude of the transm itted wave is

^ еП b'/a =  cos(^x —^ 2)-

The angles and have been computed by Ogilvie (1963), and with the para
meters of the experiment it  is found th a t a’ja is fairly small, lying between 0.25 and 
0.35. For incident waves of moderate amplitude we therefore expect a small mean 
force on the cylinder, directed down-wave.
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force/gf

F ig u r e  5. Mean horizontal forces on a  subm erged circular cylinder. W ave period 1.0 s, mean 
dep th  0.52 m : dep th  of immersion 5.0 cm.

Figure 5 shows a typical set of measurements when the depth d of immersion (of 
the uppermost part of the cylinder below the still-water level) was 5.0 cm. The 
horizontal axis corresponds to the value of \pgWa?, and is a measure of the incident 
momentum flux. The broken line represents the measured value of \pgW{a2 + — 
where a, a[ and are the measured amplitudes of the incident, reflected and trans
mitted fundamental frequencies. The ratios a^/a and 6,/a  were found to be in fair 
agreement with equations (4.1) and (4.2). The measured mean forces are shown in 
figure 5 by crosses. Up to point B, where the waves were first observed to be breaking, 
the force was smaller than expected, though generally positive. After point С it had 
definitely reversed sign. Under these conditions the cylinder tended to be deflected 
strongly towards the wave-maker (see figure 11, plate 2). The effect was obviously 
similar to the one reported by Salter. We consider полу some possible explanations.

5. T h e  e f f e c t  o f  h i g h e r  h a r m o n i c s

Waves in the presence of submerged bodies tend to behave quite non-linearly, and 
with a submerged cylinder it is easy to detect visually the presence of an appreciable 
second harmonic (twice the fundamental frequency) in the transmitted waves. The 
probable reason for this is that the wave amplitude above the cylinder quickly grows 
to a significant fraction of the local depth d. Also, the horizontal fluid velocity is of
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order {gd)ior greater. B oth these facts imply strong nonlinearity, and the produc
tion  of higher harmonics. This is even w ithout the occurrence of wave breaking.

Consider the effect of a  second harmonic in the transm itted  wave. Since the second 
harmonics have a frequency double th a t  of the first harmonics, their group velocity 
in  deep water is only \съ. So their ratio of momentum flux to  energy flux is doubled. 
Denoting the first and second harmonics in the reflected and transm itted waves by 
a[, о»; b{, b'2 respectively, we have by conservation of energy

a2 =  (а? + Ь1) + $(а? + Ц) + е, (5.1)

where e is a positive term  representing the dissipation or extraction of energy. But by 
conservation of momentum

F  = 1Р8[{аг + а ? -Ь \)  + (а?-Ь1)]. (5.2)

I f  the reflected waves are small we may ignore a[2 and a’22 compared to  the other 
term s, and on substituting for a2 we have

F  = \p g { e - m ) .  (5.3)

Thus the sign of the force depends on a balance between the dissipation term  and the 
amplitude of the transm itted second harmonic. When the latter is larger, the radia
tion stress in the second harmonic reverses the sign of F.

To measure the second harmonic b2 in the transm itted wave, the waves were 
abruptly  shut off by lowering a gate into the water down-wave from the cylinder. 
The waves continued to  be recorded a t a fixed distance down-wave of the gate. The 
rear of the fundamental wave-train, of amplitude b1} passed first, with group velo
city cg; then the rear of the second harmonic, travelling with velocity ^Cg. Between 
the two times of arrival, the amplitude b2 of the second harmonic could be measured.

The two upper curves in figure 5 show the measured values of ^pgWiaP+a'^ — b\) 
and — \pg Wb%. These represent the observed mean forces associated with the funda
m ental wave and with the transmitted second harmonic, respectively. The former, 
though not accurately measured, is necessarily positive. The latter is negative, and 
is of the same order as the measured force, bu t is limited in magnitude. (The lowest 
broken line corresponds to the force tha t would be exerted by a second harmonic of 
limiting steepness, in otherwise still water.)

We may conclude tha t the second harmonic contributes an appreciable part, b u t 
not all, of the observed negative force.

The explanation for the remainder of the force may lie partly in the existence of 
harmonics higher than  the second, which are effectively damped before reaching the 
recording point (2.5 m from the cylinder). However, in breaking-wave conditions we 
m ust in all probability go beyond the range of small-amplitude, irrotational theory» 
as follows.
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6. B r e a k i n g  w a v e s

We suggest an explanation for the negative forces in breaking waves by analogy 
with the situation when waves approach a simple beach. The waves cause a change in 
the local mean water level £, called the wave ‘set-up’, which was studied experi
mentally by Saville (1961) and explained quantitatively by Longuet-Higgins & 
Stewart (1963, 1964). On entering shallow water the wave amplitude, after an 
initial decrease, begins to increase sharply. This produces an increase in the radiation 
stress (the momentum flux due to the waves) which has to be offset by a decrease in 
the hydrostatic pressure. The mean level therefore falls, and there is a wave ‘set- 
down The set-down increases almost till the breaking point, when the waves begin 
to lose height and the radiation stress diminishes. The static pressure must now 
iwcrease, and there is a dramatic rise in mean level, producing the much larger wave 
‘set-up’. Assuming tha t the breaker height is proportional to the local depth of 
water then it can he shown that the surface tilt is just proportional to the local slope 
s of the bottom (0£/ds = 0.2s). This result has been rather accurately confirmed by 
Bowen, Inman & Simmons (1968).

F i g u h e  6 . Schem atic p ictu re  o f th e  changes in  m ean sea level o f w aves in th e  presence of a 
subm erged cylindor, if  the waves are n o t b reaking: (a) sym m etrical; (6) unsym m etrical.
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We may think of the set-up as being due to the waves shooting their horizontal 
momentum horizontally a t  the beach. The resulting pile-up is no t statically main
tained, bu t is balanced by the m omentum flux term  (pu)u, where и is the horizontal 
velocity of the particles.

Now we can think of a submerged circular cylinder as two beaches, back-to-back 
(see figures 6 and 7). Suppose first th a t there is no breaking (figure 6). Then there will be

F igu re  7. Schem atic p ic tu re  o f th e  changes in  m ean level o f waves in  th e  presence of a  su b 
m erged cylinder (a)sym m etrical, (6) unsym m etrical, w avelength large com pared to  t h a to f  
cu rvatu re  (c) unsym m etrical, w avelength n o t large com pared to  rad ius o f cu rv a tu re .
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a small wave set-down, but no set-up. I f  the set-down is symmetrical (figure 6a) 
there will be no mean horizontal force on the cylinder, but a small vertical force, 
directed upwards. This is in fact the situation for waves of small amplitude imping
ing on a submerged circular cylinder, either fixed or neutrally buoyant and free to 
move (see Ogilvie 1963). According to the linearized theory there is no reflexion. 
Hence the wave velocities may be all simply reversed in time, the incident and 
reflected waves having their roles exchanged. The mean level must therefore be 
symmetric about the mid-point. For larger waves, however, both non-linearity and 
viscosity may make the mean level unsymmetrical, as in figure 66. Then there can 
be a small horizontal force as well as a mean vertical force.

Suppose now th a t the waves are breaking as in figure 7. The points where the 
waves begin and end their breaking are shown by В  and B' respectively. Outside 
these limits, approximately, there is a wave set-down. But inside, there is a much 
larger wave set-up, to balance the loss of horizontal momentum flux. If  the set-up is 
symmetrical, as in figure 7a, there will be no mean horizontal force, but simply a 
large downwards force on the cylinder. I f  the set-up is unsymmetrical as in figure 7 b, 
there will be a net horizontal force to the right. This is the situation we might expect 
if the wavelength is short compared to the diameter of the cylinder. For then the 
change in depth above the cylinder will be relatively slow and the breaker-height will 
have time to adjust to the local depth of water above the cylinder. To the right of the 
mid-point, when the depth begins to increase, breaking will soon cease, because the 
waves will no longer be forced to try  to become steeper.

In  the present experiments, however, the wavelength is not small compared to the 
diameter of the cylinder. The waves are forced to break, from their point of view, 
without much warning, and there is a delay in the onset of breaking until near the 
point of minimum depth. Moreover, breaking continues until some time after the 
depth begins to increase again. Hence the wave set-up is unsymmetrical as in figure
7 c, with most of the set-up occurring on the right. This produces a net force to the 
left, as shown.

7. E x p e r i m e n t s  w i t h  s u b m e r g e d  b a r s

I f  our reasoning is correct, a similar reversal of the mean force is to be expected 
when breaking waves impinge on a sand-bar or on any other submerged body resting 
on the bottom.

The author carried out exploratory tests with an artificial sand-bar mounted on 
wheels (see, figures 12 and 13, plate 3) which was free to move horizontally in either 
direction. When subjected to long, low waves (period T  =  1.15 s, amplitude a = 1.0 
cm) from the left (see plate 5) the mean force on the bar was positive. Thus the 
forces corresponding to the reflected wave predominated. I f  left entirely free, the 
bar tended to move towards the beach, with a mean speed of 0.95 cm/s.

When on the other hand the bar was subjected to short, steep waves (T  =  0.75 s, 
a = 4.0 cm) the waves broke on the far side of the bar (see figure 13) and the mean
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F i g u r e  8 . The wave raft in position, facing incident waves. On the left is the spring balance 
for measuring the mean horizontal force. Width of tank =  2 ft.

(Facing p . 476)
F igu re 9. The raft under the action of waves: T  =  1.0 s, о =  2.0 cm.

\ 4
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F ig u r e  10. Submerged cylinder in  low waves incident from  th e  le ft: d =  3.5 cm, T  =  1.0 s. 
a  1.5 cm.

F ig u r e  11. Subm erged cylinder in  breaking waves inciden t from  th e  le ft: d =  3.5 cm, 
T  =  1.0 s, и =  4.0 cm.
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F i g u r e  12. Artificial sand-bar in low waves incident from the left, d — 7.0 cm, T  =  1.15 s, 
a =  1.0 cm. Mean motion of bar = 0.95 cm/s to the right.

F ig u r e  13. Artificial sand-bar in  steep waves incident from the left, d = 7.0 cm, T  =  0.75 s, 
a = 4.0 cm. Mean motion of bar = 1.2 cm/s to the left.
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14

15
к ‘ ■

F i g u r e  14. Model boat (side view) with drive and Salter cam at stern. 
F ig u r e  15. Boat propelled by wave momentum flux. Forward speed 12 cm/s.
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force was reversed. I f  left to itself the bar now tended to move in the reverse direction, 
with a mean speed — 1.2  cm/s.

This behaviour is qualitatively similar to the well-known behaviour of offshore 
sand-bars; long, low waves tend to move them beachwards, but short, steep waves 
tend to move them seawards (Sheppard & LaFond 1940).

It is generally supposed that most of the sediment transport due to waves is 
either ‘ bed-load5, taking place in a thin mobile layer close to the bottom, or else 
‘ suspended load’, i.e. carried at a higher level. However, preliminary observations 
by the author have suggested that it is also possible for the motion of the sand to 
penetrate much deeper, presumably in response to the horizontal pressure gradi
ents in the waves above. In that case shear takes place at a lower level, and the 
mass above moves more nearly as a solid body.

It seems desirable to determine the importance of this effect by further 
experiments.

8.  U s e  o f  t h e  r a d i a t i o n  s t r e s s  f o r  p r o p u l s i o n  

The momentum flux in waves will necessarily produce a mean reaction on any 
wave-maker. Thus the radiation stress may be actually set up to use for propelling a 
small craft (see, figure 14, plate 4). In this model, a Salter cam is attached to the stern 
and is made to oscillate by attachment to a crank driven by a small electric motor. 
At wave-maker frequencies of 3 s-1 the boat is propelled along at speeds of 10-15 
cm/s. The ratio of thrust to power expended on the waves is quite advantageous. For 
we have

I  = Ejc,

where E  denotes the energy density \рдаг and с is the phase velocity. Hence the ratio 
of the thrust to the power expended is given by

F/Ecg =  IcgjEcg = 1 /c.
This is larger than for some conventional propellors. The total thrust, at given 
frequency is however limited by the maximum steepness of the waves, and the need to 
avoid cross-waves, which only generate wave momentum in a transverse direction.

By designing a wave-power device in conjunction with a wave-maker on the down- 
wave side which generates waves at a higher frequency, it should be possible, on the 
basis of equation (5.3) to design a wave-powered craft which can advance against 
the waves. However, it is necessary for both the reflected wave amplitudes and the 
energy dissipated to be sufficiently small. In practice this requirement is quite 
stringent.
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A p p e n d i x . P r o o f  o f  e q u a t i o n s  (4.1) a n d  (4.2)

Consider a submerged circular cylinder of radius R, either fixed or making small 
oscillations, with its axis horizontal and at a mean distance (R +  d) below the free 
surface. Let (x, y) be horizontal and vertical coordinates, with x  = 0 as the plane of 
symmetry, and у  vertically upwards, and let (£, tj) denote the instantaneous dis
placements of the axis from its mean position. We consider two-dimensional motions, 
with waves approaching from, or diverging towards, x  = oo.

We know the following:
Theorem A. When the cylinder is fixed, then the coefficient of reflexion vanishes 

(Dean 1948; Ursell 1950).
Theorem B. When the cylinder is free and neutrally buoyant, then the coefficient 

of reflexion also vanishes (Ogilvie 1963).
Theorem C. When the centre describes a small circle, it generates or absorbs waves 

travelling only in the direction of the motion of the cylinder at the top of its orbit 
(Ogilvie 1963).

In general, let £_ and £+ denote the free surface displacements as x - >  —00 and 
4- 00 respectively. Consider the following situations.

(1 ) The cylinder generates waves by making small vertical oscillations:
§  =  0, i} =  ise~M ,

where a and cr are constants and t is the time. By symmetry about the plane x  =  Owe 

have ^  = ae‘№*-(rt-M), |

£_ = — ae1(-**-<rt+e\J

where a and a are amplitude and phase angles.
(2) The cylinder generates waves by making small horizontal oscillations:

£ = se-1<rt, 7 =  0.

Because the motion is antisymmetric about x =  0,
f + =  1 

£_ = — ae1(-kx~<rt+5,,J

where a and a are new constants.
(3) The cylinder generates waves by making small circular motions in a clockwise

sense: g . se~l<rt, t] — — ise-llrt.
We simply subtract (1) from (2). But by theorem C, £_ vanishes. Hence о =  a, 
a =  a and we have g _  2oe^*a:-<rt+aO

c .  =  0 - J
(4) The cylinder absorbs waves coming from x  = — со. In (3), reverse the signs of 

x, t and i. Taking complex conjugate expressions, and adding a phase it we get
£ =  se~lcrt, У — — ise-1<rt
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and = 0, |
£_ =  -  2ae1(fc35_<rt_<x,.j

(5) The cylinder is fixed and subject to waves incident from x =  — oo. Taking 
£ [(3) -  ( 4 ) ]  we have g = 0> ^ = 0

and £+ = ae1(fcl_<rt+a),]
£_ =  aeKkx~at+x). .

This incidentally proves theorem A.
Consider now the mean forces (X, F) on the cylinder. In cases (1) and (2 ) these are,

by symmetry, X  =  0 Y  =  Qei(-ort+®)

and X  = Pe1(-lrt+1'\ Y  =  0,
where P, Q and y, S are real constants. Hence in case (5) we obtain

X  = iPsinye"1,rt, Г  = -Q sin $ e-I,rt.
The phase-lag ^  of the force Y  behind the vertical acceleration д%/Ш2 at x =  0 in 
the incident wave is therefore ф — я + а ( A l )

(6) The cylinder responds freely to waves incident from x =  —со. By theorem В 
we know there is no reflected wave, so the motion has the form

(6 ) =  H (3 )e “ + ( 4 ) e - “ ],

where с is a constant phase. Thus we have

£, =  s cosee~1<rt, ij = — iscosee-1<rt

The phase-lag ijr̂  of the vertical displacement 1] behind the vertical d i s p l a c e m e n t  a t  

x  = 0 in the incident wave is therefore
5̂ 2 =  — — ( —а  —e —л)  =  £я  +  а  —e.  ( A  2)

It will not be necessary to determine e, although this may easily be done from the 
condition that X  = Jf82£/0t2 where M  is the mass of the cylinder. Finally

(7) The cylinder is constrained vertically and free horizontally. We simply modify
(6) by subtracting a fraction of the forced motion (1) to cancel the vertical displace
ment. Thus taking (7) = (6) -  (1) cos e, we have

£ = 3cosee_ltrt, ij = 0.
The addition of the forced motion involved no extra displacement or force in the 
ar-direction; hence the freedom of the motion in the horizontal is unaffected. Now 
the amplitudes of the incident and reflected waves are equal to a and a cos e re
spectively. Therefore the coefficient of reflexion is

cose =  cos (ijr1 — yjr̂ )

and =  ael№x-<rt+“+4),
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from equations (A 1) and (A 2). This proves equation (4.1). Since by conservation of 
energy а'г +  Ьг =  a2, equation (4.2) follows immediately.

Equations (1.1)-(1 .5) were pointed out by the present author in a memorandum 
to a meeting on wave power at the C.E.G.B. Headquarters on 17 March 1975, under 
the chairmanship of Dr D. T. Swift-Hook. A  qualitative confirmation o f the radia
tion stress was reported to the author on a subsequent visit to British Hovercraft 
Corporation, Isle of Wight at the invitation of Sir Christopher Cockerell and Mr 
Peter Crewe. The measurements by Salter et al., made originally at the author’s 
prompting, are here quoted by kind permission of Mr Salter. The author has had 
many interesting discussions with those mentioned and also with Mr J. Platts and 
Mr I. Glendenning. The contents of the present paper were outlined at a discussion 
meeting at the Society for Underwater Technology on 10 March 1976, and at the 
annual meeting of the British Theoretical Mechanics Colloquium in Edinburgh.
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To understand the imaging of the sea surface by radar, it is useful to know the 
theoretical variations in the wavelength and steepness of short gravity waves 
propagated over the surface of a train of longer gravity waves of finite amplitude. 
Such variations may be calculated once the orbital accelerations and surface 
velocities in the longer waves have been accurately determined -  a non-trivial 
computational task.

The results show that the linearized theory used previously for the longer waves 
is generally inadequate. The fully nonlinear theory used here indicates that for longer 
waves having a steepness parameter AK  =  0.4, for example, the short-wave steepness 
can be increased at the crests of the longer waves by a factor of order 8, compared 
with its value at the mean level. (Linear theory gives a factor less than 2.)

The calculations so far reported are for free, irrotational gravity waves travelling 
in the same or directly opposite sense to the longer waves. However, the method of 
calculation could be extended without essential difficulty so as to include effects of 
surface tension, energy dissipation due to short-wave breaking, surface wind-drift 
currents, and to arbitrary angles of wave propagation.

1. Introduction
An important component of radar backscatter from the sea surface arises from the 

Bragg scattering. This involves surface wavelengths of the order of a few centimetres 
for X-band radars, or tens of centimetres for L-band. In both cases the wavelengths 
are usually small compared to the dominant wavelengths of ocean surface waves (10 
to 103 m). So it becomes an important question to study how the short-wave energy 
is distributed with respect to the phase of the longer waves.

In the present study we shall consider the classical model of a short train of gravity 
waves, of small but variable steepness ak, propagated over the surface of a longer 
train of gravity waves of finite steepness AK, as in figure 1. Early workers 
(Longuet-Higgins & Stewart 1960) assumed that A K  <  1, and in that case it was 
found that the variation in the wavenumber к and amplitude a of the short waves, 
in deep water, was given by

1 +  A K  cos xjr +  О(Л^С)*, J

(1-D
| =  1 +  АКсоъ11г +  0(А К )г\
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у

С

- +  X

2к/К
F ig u r e  1. Definition sketch for short waves on long waves. The origin of у is chosen so that

q2 + 2gy — 0 on the free surface.

where k and a are the (constant) values of k and a at the mean surface level and 
Ф =  K(x — Ct) is the phase of the long waves. This gives

| | =  1+ 2 A K  cos i/r +  0(AK)\  (1.2)

showing that the short waves are both shorter and steeper on the crests of the longer 
waves (xjr =  2nn). However, since A K  <  (АК)тлх =  0.4432 the maximum steepening 
predicted is less than 2.

Longuet-Higgins & Stewart (1960) interpreted equations (1.1) by assuming (i) that 
the phase of the short waves was conserved, i.e. that

kq — cr =  constant, (1.3)

where q is the particle speed in the long waves as seen by an observer travelling with 
the long-wave speed C, and cr is the intrinsic frequency of the short waves in a frame 
moving with speed q\ next, (ii) that the intrinsic frequency cr and local wavenumber 
k of the short waves were related by

<r2 =  g'k, (1-4)

where g' was the effective value of gravity for the short waves, i.e.

W  being the vertical component of orbital velocity in the long waves; and (iii) that 
the short-wave energy density E was given by

E =  i g a '+ & £ ,  (1 -6 )

representing the potential and kinetic energies respectively. The changes in short
wave energy E over the long wave could then be attributed to (a) advection by the 
long-wave orbital velocities, together with (b) work done by the straining of the long 
waves against the radiation stress of the short waves.
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Garrett (1967) suggested that the same results (1.1) could be interpreted in terms 
of the conservation of wave action

N = E' j <r, (1.7)
where

f i ' =  & 'a 2 (1 .8 )

is an alternative form of the short-wave energy density, and he introduced the 
equation

- 0 , d -9 )

where cg is the group-velocity of the short waves (cg =  \c).
Finally, Bretherton & Garrett (1968) proved the validity of (1.9) for a general class 

of situations where a group of linearized short waves of wavenumber к is propagated 
through a slowly varying medium with local velocity q, under the general assumption 
that

|Vg| <  kq, (1 1 0 )

the energy density E' being defined as if the medium were locally uniform.
The great advantage of this formulation is its relative simplicity, and that there 

is no explicit restriction on the steepness A K  of the long waves; it appears necessary 
to assume only that

a l M l ,  k > K .  ( M l )

In the case of A K  finite, one would take as the effective (vector) gravity

g' =  g - a  (1.12)

where a is the orbital acceleration in the long wave.
This principle has been partly applied (in principle) by Phillips (1981) to calculate 

the variation in amplitude of short capillary-gravity waves riding on longer gravity 
waves. The calculation could not be carried through in detail because the effective 
gravity g' was not at that time known with sufficient accuracy. However, the accurate 
calculation of accelerations in steep gravity waves has recently been carried out by 
Longuet-Higgins (1985c), and from this it is possible to infer g' by (1.12), hence both 
the shortening and steepening of the short waves. In this contribution we apply the 
results to short gravity waves, in the first place, with application particularly to 
backscattering in L-band. One significant result is that for finite values of A K  the 
short-wave steepening can actually be much greater than that given by linear theory. 
Moreover, it will be seen that the basic calculation of g' opens the way to the solution 
of other important problems, including the case when the short waves are strongly 
affected by capillarity.

2. Formulation of the problem
Relatively short gravity waves, of local height 2a and wavelength 2n/k, ride on 

longer, progressive gravity waves of finite height 2A  and wavelength 2% /K  in deep 
water, where fc >  К  (see figure 1). It is required to find к and ak as functions of the 
phase of the long wave.

The intrinsic frequency cr and the wavenumber к of the short waves are assumed 
to be related by (1.4), where g' is the magnitude of the effective acceleration g‘ given
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by (1.12). Clearly, since the pressure gradient has no component tangential to the 
free surface, g' is always normal to the surface of the longer waves. The frequency 
cr and the phase-speed

c =  <r/k (2.1)

are taken as positive or negative according as the short waves travel in the same or 
opposite direction to the long waves, q denotes the particle speed at the surface of 
the longer waves, as seen in a frame of reference moving with the long-wave phase 
speed C. In this reference frame the long waves appear steady and the free surface 
is a streamline. At the mean level у  =  у, we have q — C; (see Lamb 1932, p. 420).

To determine the wavenumber к at points along the surface of the long waves we 
assume that the phase of the short waves is conserved, that is

k(q—c) — constant =  k, (2.2)

say,Hence

c* =  |  =  / c - y  (q -c )  (2.3)

or
Сг+К~ у с —к~гд'я =  0- (2.4)

This is a quadratic equation for с with solutions

c =  - /3 ± ( /P  +  2/}q% =  (2.5)

Having found с we may calculate k from (2.3) in the form k — д'/сг.
To determine the local wave amplitude a, we assume that action is conserved, that 

is equation (1.9). In the steady flow relative to the moving frame of reference this 
implies that the flux of wave action is a constant, i.e.

E'
(q—cg) —  =  constant, (2.6)

where cg the group velocity of the short waves (=  £c) and E' is the intrinsic energy 
density of the short waves, given by (1.8). Since cr =  g'/c, (2.6) can also be written

(q—\c)ca2 =  constant (2.7)
or

a oc [(g—Jc)c]~* (2.8)

(cf. Longuet-Higgins & Stewart 1961).
Finally, the local wave steepening is defined as

r =  ak/(alc) (2.9)

where a bar denotes the values at the mean level у  =  у.
Clearly the above approach depends upon the accurate evaluation of the velocity 

q and the orbital acceleration a in a (long) gravity wave of finite amplitude.

3. Method of calculation
The real, or orbital acceleration in a surface wave must be carefully distinguished 

from the apparent accelerations as measured by a fixed vertical wave gauge (see 
Longuet-Higgins 1985c). The real accelerations, both vertical and horizontal, vary
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much more smoothly than the apparent accelerations, which can be very 
non-sinusoidal.

Numerical values of the real acceleration a were calculated by the method of 
Longuet-Higgins (1985a) which makes use of a set of quadratic relations between the 
Fourier coefficients an in Stokes’s series for the Cartesian coordinates (x, y) in terms 
of the velocity potential. Thus if К  =  g =  1, and the free surface is given by

5  ( n<f>\У =  a0 +  £ a n c o s l - 4 ,  

* . £  +  ! « „  s m (
(3.1)

where ф is the velocity potential, then the coefficients a0,a lra2, ... satisfy the 
relations

a0fy> +  ai Ьг +  а2Ь2 +  а3 b3+ ... =  c®, ^

a160 +  a0 6j +  â  Ъг +  a263+ ... =  0, J (3-2)

o2 ô + ai^i +  aô 2 + ai^3+-”  = 0> )
with b„ =  nan, n >  0 and b0 =  1. These relations may be quickly and accurately 
solved for a given value of the phase-speed с (in general) or of the wave amplitude

A  =  Oj +  o3 +  a5 + . . . .  (3-3)

The speed q at the free surface is then found from the Bernoulli relation

q2 =  - 2 y ,  (3.4)

and the vector acceleration a from the general relation

«  =  XzXtz =  (35)
where z =  x +  \y and x =  Ф +  l>lf ’ ft the stream function. (An asterisk denotes the 
complex conjugate.) In real terms this is

п = -<?(Хф + ̂ ф)*(Хфф-'Уфф)- <3'6)

The effective gravity g' is then found from (1.12).
Because of the slow initial rate of convergence of the series (3.1) at high values of 

AK, care must be taken to include enough terms in these series. A  recent study 
(Longuet-Higgins 19856) has shown that after an initial rate of convergence like 
an ultimately converges exponentially, the transition to exponential behaviour 
occurs when n =  nc =  0(e~3), where

e* =  2.Q\AK-(AK)maJ. (3-7)

Since individual terms in the differentiated series for and уфф at first increase like 
ni, it is important, in order to ensure sufficient accuracy in the calculation, to include 
terms with n somewhat in excess of nc.

Surface profile corresponding to AK  =  0.1, 0.2, 0.3, 0.4 and the limiting value 
AK  =  0.4432 are shown in figure 2. The corresponding values of the effective gravity 
g' are shown in figure 3. It will be seen that when AK  =  0.4 these range from 0.65g  
at the crest of the wave (x — 0) to about 1.31*7 in the wave trough.
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F i g u r e  2. Surface profiles o f  gravity waves in deep water, when AK  =  0.1, 0.2, 0.3, 0.4 and
0.4432.

ilZ

Fioube-3. The effective value o f gravity g' at the surface of steep waves, as a function o f the
horizontal coordinate x/L.

4. Results: variation in short-wave length
Using suffices 1 and 2 to denote values at the long-wave crest and trough 

respectively, figure 4 shows the relative shortening kx/ka.t the crests of the long waves 
as compared to the mean surface level, in the three cases when к =  2, 10 and 100. 
Similarly k jk  shows the lengthening in the long wave troughs. For values of AK  up 
to 0.2 the three curves corresponding to к =  2,10 and 100 are a lm o s t  indistinguishable,
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F ig u r e  4 . The relative shortening o f short waves at the crests (ki/k) and in the troughs (kjk ) o f 
long waves, as compared to the mean level, when с >  0. Note К  =  1.

F ig u r e  5. A s figure 4, but fo r  с <  0.
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F ig u r e  6. T he relative steepening o f  short waves a t the crests (r ,) and in the troughs (r,) o f  long 
waves, as com pared  to  the m ean level, when с >  0.

and even when A K  =  0.4 there is little departure from the representative curve 
к -- 10, when k jk  =  3.0 and k jk  =  0.82. Thus, the short-wave length varies over a 
range of about to 1. This is for с >  0, when the short waves travel in the same 
sense as the longer waves. Figure 5 shows a similar plot when с <  0, and the short 
waves travel in the opposite sense. Here the variation in к is only slightly less. 
However, as AK->(AK)max it can be shown that kJk->oo when с >  0, but remains 
finite when с <  0.

S. Variation in the wave steepness
Figures 6 and 7 show the variation in steepening r of the shorter waves, in a similar 

manner to figures 4 and 5. Thus

die ’ Г“ aHr, = (5.1)

Again the three curves corresponding to к =  2, 10 and 100 lie very close together, 
showing that not only the wavelength variation but also the steepness variation is 
practically independent of short-wave length.

When AK  =  0.4, however, the short-wave steepness may vary by a factor of as 
much as 8 between the long-wave crests and the mean level. This compares with a 
factor less than 2 given by linear theory.

The variation of steepness r over the profile of the long waves is shown in figure 8 
as a function of x/L, and for different values of AK, using the representative short 
wavenumber к =  8. Comparing A K  =  0.4 with A K  =  0.1, one sees the distorting 
effect of nonlinearity in the long waves.
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x/L
Fioube 8 . The relative steepening r as a function o f the horizontal coordinate x/L,

when ic =  8, с >  0.
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(y-fi/L
F ig u r e  9. The relative steepening r as a function of the vertical coordinate (y—y)/L when

k — 8, с >  0.

f/g

F ig u r e  10. The effective value o f gravity g' at the surface of deep-water waves o f limiting
steepness.

Finally, in figure 9 the three curves of figure 8 are plotted instead against (y —y)/L , 
that is the vertical height above the mean level y. It now appears that all the curves 
collapse almost onto a single curve. This property may be useful in approximate 
analytical work. The appropriate nonlinear steepening is quite different from the 
linear theory, shown in figure 9 by the broken curve.
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(a)

F i g u r e  11. (a) The surface profile near the crest of a steep gravity wave, scaled according to 
e2 =  q\/2C. (b) The effective value of gravity g' near the crest of a steep gravity wave.

6 . Limiting waves

Our previous calculations have been carried only as far as A K  =  0.4. In this Section 
we shall consider the limiting behaviour of the solutions as АК-*-(АК)тлх, and the 
validity of the present approximations at large wave steepnesses.

Consider first the effective acceleration g' in a limiting wave. In figure 10 g'/g is 
plotted against the horizontal coordinate x /L , using the computations by Williams 
(1981, Table 12 d). In the wave troughs, g'/g =  1.301 and near the crests, since the 
surface slope tends to 30°, we have g'/g  =  3«/2 =  0.866. A t the crest itself, however, 
the downwards acceleration tends to 0.388 g (Williams 1981), so that g'/g =  0.612.
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F i g u r e  12. Graph to illustrate the behaviour of the phase-speed c, aa given by (2.4).

For near-limiting waves, the behaviour near the crest is given by the theory of the 
almost-highest wave (Longuet-Higgins & Fox 1977, 1978), which is valid when

дг/С 2 =  2e2 « l .  (6.1)

In this approach we introduce scaled coordinates zs =  z/e2, where z — x-\r\y, and a 
scaled velocity potential xs =  X /^  where x =  Ф+и/г- Making use of the numerical 
coordinates of the free surface as given in table 3 of Longuet-Higgins & Fox (1977) 
we can easily calculate the radius of curvature R and hence the normal component 
of the particle acceleration

%  =  q*/R =  2gy/R (6.2)

at each point on the surface and hence the value of g'. This is shown in figure 11 (b), 
where g'/g is plotted against ж/е2. For comparison with the steepest wave in figure 2, 
(3.7) shows that when AK — 0.40, then e2 =  0.086.

Now consider the propagation of short waves near the crest of a fairly steep 
longer wave. The values of the phase speed с for given values of q and к/g' are shown 
in figure 12, ск/д' being plotted against qtc/g' according to (2.4). Since q is always 
positive, the two roots (2.5) correspond to the branches OA and QB of the parabola 
respectively. In fact the relevant sectors of the parabola are those lying between 
q — ql and q =  q2. For moderate wave steepnesses, ql and q2 are of order С while 
к =  k(C—c) is of order JcC when k p l .  Hence qtc/g' is generally large.

However, when the longer waves become steep, we have e-»0 , hence q/C -*0. For
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any finite value of k, suppose it were possible for the left-hand boundary in figure 12 
to approach the axis дк/д' =  0. Then the positive root of (2.4) would give с ~  q, 
and so from (2.3) k ~  g'/q2, independently of k. In other words the local wavelength
2n/k  of the short waves would be of order e2, comparable to the radius of curvature 
of the crest. Hence the short-wave approximation would not be applicable. Similar 
considerations apply even more strongly to the negative root of (2.4).

For the short-wave approximation to remain valid we must have ke2 >  1. But since 
k =  g'/c2 and e* =  q2/2C 2 this implies q2 £> c2. Hence q/c is at least moderately large, 
and the region of interest in figure 12 lies well to the right, where qi</g' >  1. This in 
turn means that we must have e2k2 >  1. For example, when A K  =  0.4 then k2 10. 
Thus in figures 4 -7  only the plots corresponding to k =  10 and 100 are quantitatively 
valid, at this value of AK.

Nevertheless some qualitative conclusions may be drawn. From figure 12 it is clear 
that the phase speed с and hence the lengthscale fc-1 is always greater for oppositely 
travelling short waves approaching the long-wave crest than it is for short waves 
travelling in the positive direction. This suggests that there may be a real distinction 
between ‘ spilling’ and ‘ plunging’ breakers, the former being caused by forwards- 
travelling short-wave energy, and the latter by perturbations travelling in the 
opposite sense.

7. Conclusions
W e have shown that by taking full account of the nonlinearity of the longer waves 

and by using the principle of action conservation for the shorter waves one can 
calculate accurately the short-wave steepening. This can be several times greater than 
that predicted by linear theory. The short-wave approximation cannot, however, be 
extended to long waves of limiting, or near-limiting, steepness.

W e note that according to our assumptions in (1.1), the principle of action 
conservation is expected to be only an approximation. To test this principle, we 
have studied in another paper (Dysthe et al. 1987) a simple model in which the 
governing equations are ordinary differential equations capable of exact integration 
by numerical methods. The model suggests that action for the shorter waves is indeed 
conserved closely, though not precisely.

All the results of the present paper depend upon a precise calculation of the local 
gravity g'. Hence we have considered only the case when the short waves are pure 
gravity waves. However, it must be realized that the basic calculation of g' for the 
long waves opens the way to a solution of other important problems, particularly 
the case when the short waves are capillary or capillary-gravity waves. A more 
general treatment is in progress which includes the dissipation of the short waves by 
breaking and the regeneration of the short waves by the wind.

Most of the calculations contained in this paper were first presented in a report 
to the TO W AR D  Hydrodynamics Committee at the Naval Research Laboratory, 
Washington D.C. in October 1985. The report was prepared at the Cal. Tech. Jet 
Propulsion Laboratory, Pasadena, with the kind cooperation of Dr C. Elachi and 
Dr О. H. Shemdin.
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The apparent gravity felt by a particle on the surface of water when a 
progressive train of gravity waves of finite amplitude passes is shown to 
be analogous to the apparent gravity on the bob of a rapidly rotating 
pendulum under weak gravity. A train of short gravity waves riding on 
longer waves will thus have some properties in common with those of a 
smaller, rapidly rotating pendulum attached to the first pendulum. The 
variation of the energy and action of the smaller pendulum are examined 
analytically and by numerical integration.

1. I n t r o d u c t i o n

The modulation of short surface waves riding on the surface of longer gravity 
waves is a phenomenon of some interest for the formation of whitecaps on the sea 
surface, and for the imaging of the ocean by radar backscatter. Accurate 
numerical calculations of the short-wave modulation have recently been presented 
by Longuet-Higgins (1987). The purpose of this paper is to describe a simple but 
useful analogue to the two-wave system, namely the motion of a short pendulum 
rotating around the bob of a similar and longer pendulum. The advantage of such 
a model is that it replaces the continuous fluid two-wave system by a discrete 
system having only two degrees of freedom, which is described by two ordinary 
differential equations. Because the latter can be integrated to any desired 
accuracy, it is then possible to test such approximations as the conservation of 
wave action of the shorter waves by reference to corresponding approximations 
made in the discrete model.

The plan of the paper is as follows. Section 2 introduces the pendulum analogue 
for a single water wave. Uniform fast rotation of the pendulum corresponds to a 
steady stream; the perturbation induced by gravity corresponds to a wave on the 
stream. There is a ‘ dispersion relation ’ connecting the frequency and amplitude of 
the perturbation, just as there is for a gravity wave of fixed wavelength.

In §4 we show that for a point on the bob of the pendulum, ‘ apparent gravity’
11 [ 281 ] Vol. 418. A (9 August 1988)
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is always directed radially inwards, that is normally to the circular path. 
Similarly, in free-surface waves ‘ apparent gravity’ is always directed normally to 
the rree surface.

Section 5 introduces the double pendulum, in which a shorter pendulum, with 
a relatively small mass, is attached to the bob of the longer pendulum. Both 
describe complete orbits, the angular frequency of the shorter pendulum being 
relatively fast.

In §6 we discuss the energy and action of the small pendulum from an 
elementary point of view. It is shown analytically that by defining the energy E 
in terms of the local gravity g' induced by the large pendulum, the local 
fluctuations in E can be made relatively small. With certain definitions of the 
frequency cr the ratio E/cr can also be shown to be almost constant. However, 
some important ambiguities remain, which are removed by the hamiltonian 
treatment given in §7. Here it is shown that a more general formula for the action 
of the shorter pendulum yields unambiguous results. Some numerical examples 
are given in §8 which show that the action thus defined is indeed remarkably 
constant. The constancy is further improved by averaging over the initial phase 
of the small pendulum. Further discussion follows in §9.

This paper follows an earlier suggestion by one of us (Longuet-Higgins 1985), 
based on the elementary approach of §§2- 6 . A number of references to the early 
history of action conservation in discrete systems are given in the Appendix. This 
paper represents an alternative approach to the extension of action principles to 
waves in continuous media pioneered by Whitham (1965, 1974), Garrett (1967), 
Bretherton & Garrett (1968) and others.

2. T h e  s i n g l e  o r b i t i n g  p e n d u l u m

Consider a pendulum of length L and mass M  under the action of gravity g, as 
in figure 1. If 0 denotes the angle between the pendulum and the vertical, the 
kinetic and potential energies are given by

T =  \МЬгв\ V =  MgL (cos 0 + 1 ). (2 .1)

Thus Lagrange’s equation of motion

yields

jl  d T _ 0r  =  _ d F  
df 00 30 90 

L6 — g sin 0

(2 .2)

(2.3)

with a first integral

§L202+gL  (1 +  cos 0) =  \Ь*Вг =  E/M ,

R being the value of 0 when 0 =  it. Writing

a  =  10, A* =  4g/LR*

(2.4)

we obtain a* =  \R*( 1 —A* cos2 a),

(2.5)

(2.6)

whence (2 .7 )
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A

в

В

FrotrRE 1. N ota tion  fo r  the single orb itin g  p end u lum , sh ow in g  the d irection  
o f  the loca l g ra v ity  g '.

The angular velocity в at the highest point в =  0 is equal to R( 1 —A2)*. This is 
real provided that A* <  1. The case A* =  1 when the pendulum comes to rest at the 
top of its orbit (taking infinite time to do so) may be said to correspond to a wave 
of limiting height, which has a stagnation point at the crest.

Let us choose units in which L =  д =  1. W e are interested in relatively high 
speeds of rotation, when A2 <1 1. Then the orbit is just a small perturbation of the 
state of uniform rotation

This represents a rotation with the slightly modified radian frequency <r, and 
perturbation amplitude a. The motion is similar to a gravity wave of amplitude
a, viewed by an observer moving with the horizontal phase speed c =  <r. 
Conversely, if we view the pendulum in a reference frame rotating with the mean 
radian frequency cr, the angular displacement в of the bob is sinusoidal, with 
frequency cr and amplitude a.

In higher approximations, в will contain additional harmonics, proportional to 
cos not, where n takes all integer values. The mean frequency cr is found from

t — Aa — |А0, в =  2</A.

Expansion of (2.7) in powers of A gives as the next approximation

(2.8)

< =  (|A 4- |АЭ) в 4-1 A3 sin в, 

the terms in A5 being neglected. Inversely we have

(2.9)

where

в =  a i~a  sin er<,

<r =  2 /A (l + 5A2), a =  jA2.

(2.10)

(2.11)

(2.12)

11-2
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where К  is a complete elliptic integral. From the expansion

we obtain

а д  - 1 ,2 1 3 ’

1  =  |А(1+1А2 +  &А« +  ̂ А 9 +  ...). (2.14)

3. T h e  a c t i o n  i n t e g r a l  

In dimensional units, the lagrangian i f  is given by

^  =  T - V  =  ^M LW -M gL( l +  cos6i) (3.1)

so we may take as conjugate variables

q =  e, р  =  ъ<е/ъё =  м т .  (3.2)

Thus the action integral A is given byt

Г Г ■
A  =  (3.3)

or, from (2.4)~(2.6),

A =  4JL{2EM)*G(\*), (3.4)

where A2 =  2MgL/E  (3.5)

and G(A2) is the elliptic integral of the second kind:

<?(A2) =  (1 —A2 cos2a)tda (3.6)

with expansion

яГ j »2 /1 x 3 V z 2 /1 х З х 5 У г 3 , 1
— 2 1 (?) 1+Iv2x4y 3 \2x 4 xq)  5 " 'J '  ( )

Equation (3.4) is to be compared with the expression for E/<r which would be 
found from (2.12). In dimensional form this is

jE/or =  n~lL(2EM}* K(X2) (3.8)

For small perturbations of the rotation, that is when A 1, we have

A  ~  2nL(2EM)* (3.9)

and B/<r ~  Щ2ЕМ)', (3.10)

so that the two expressions are equivalent. (For a rotor, the ratio of A to 
E/cr is 471, compared with 27t for the harmonic oscillator and for linear surface 
waves.)

■j" Many authors define the action with an additional factor 1/(2я).
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In general, however, A  and E /a  are not equivalent. Note also that the action 
integral A, unlike E/cr, is independent of the origin chosen for the potential 
energy; a constant added to V will not affect the definitions of q and p in equations
(3.2).

4. E f f e c t i v e  g r a v i t y  

Any small body attached to the bob of the pendulum will feel itself to be in a 
local gravitational field

g ' = g - a ,  (4.1)

where g is the vector acceleration of gravity and a is the acceleration of the bob. 
By taking moments about the centre О it is easily seen that the tangential 
component as of the acceleration is always balanced by the tangential component 
of gravity. Hence the tangential component of (g — a) vanishes, and so the 
direction of the virtual gravity g' is always radial. This property has an analogue 
in surface gravity waves, namely that the local gravity vector g' for a particle of 
fluid in the free surface is always directed normally to the surface.

The magnitude of g' is thus the magnitude of the normal component g0, that is 
to say

?' =  ?„ =  L62—g cos <9. (4.2)

By (2.4) we have also
g' =  g(4Д-* -  2 -  3 cos (9). (4.3)

Thus g' is always directed away from the centre О provided that A2 <  f . However, 
when | <  A2 <  2 there are two positions в in the orbit at which g„ changes sign. 
In the critical case A2 =  f, g„ is positive everywhere except at the highest point 
в -  0, where the bob is in freefall. Then the centrifugal force M L62 at that point 
exactly balances the downwards gravity Mg cos в.

5. T h e  d o u b l e  p e n d u l u m  

Suppose now that we have a second pendulum of mass m and length I attached 
to the bob of the first pendulum as in figure 2. It is convenient to choose units so 
that

L — 1, M  +  m =  1, g =  1. (5.1)

The kinetic and potential energies now become

T  =  у92 +  1твф cos (в—ф) +  %12тф2,1
V =  (cos0 +  l) +  im(cos0 +  l), j

(5.2)

where ф is the angle which the second pendulum makes with the vertical. 
Lagrange’s equations

d d T _ ^  =  _ d V 
dt 00 9(9 “  0(9 ’ 
d ^ d T _ d T _  _ d F  
dt dф дф Ъф

(5.3)
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yield respectively

в+1т[ф cos(0—ф) +  фг sm(6—ф)~] =  sin0 (5.4)

and 1ф +  [в cos (в— ф) — в2 sin (в—ф)\ =  sin$. (5.5)

Equation (5.5) may also be written

1ф =  да5 т (в -ф )-д всо&(в-ф), (5.6)

where 9n =  ^ ~  cos 0,1 ^  ^
gs =  0 —sind. }

From (5.6) we see that if a local frame of reference be taken with the same 
orientation в as the first pendulum, the angular acceleration of the second 
pendulum is the same as in a local gravitational field £  =  (gB,ga), where g„ is 
(formally) the same local gravity as in equation (4.2), that is the local gravity due 
to the first mass alone.

We shall discuss the above equations on the assumption that

1 4 L , m < M , 1фг >Ь в\  (5.8)

that is to say the second pendulum is relatively short, its mass is only a small 
fraction of the total mass, and the centrifugal acceleration of the first pendulum 
is small compared with that of the second.

Then, by (5.4) we have

gs =  — 1т[ф cos(в—ф) +  фг sin (в —ф)]. (5.9)

If m is assumed small compared with unity, and compared with all other 
parameters, this acceleration is an order of magnitude smaller than gn, so that
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most of the local fluctuation in g' comes from the radial component дл. Writing 
ф — к =  ф’ we then have for ф' the approximation relation

1ф' =  gn sin (ф'~в), (5.10)

where gn is given by (5.7). This is analogous to (2.3).
Because 0 varies slowly compared with ф, we expect that the dynamical 

behaviour of the mass m will locally be similar to that of an orbiting pendulum in 
a constant gravitational field gn.

6 . D e f i n i t i o n  o f  t h e  e n e r g y

How are we to define the energy E  of the second pendulum ? A  straightforward 
approach might suggest, by analogy with (2.4),

E =  т[\1гф2 +  lg{ 1 +  cos ф)], (6.1)

the first term representing the kinetic energy and the second the potential energy 
in the external gravity field. However, on differentiating with respect to the time 
we have

dE/df =  1тф{1ф — ат ф)
— 1тф[вг sin (в—ф) ~ в соа (в—ф)] (6.2)

from (5.5). Because ф is large, the oscillating terms sin (в—ф) and cos (в—ф) 
introduce fluctuations given by

AE »  1т[в2 cos(0— ф) +  в  sin(0—ф)\ (6.3)

which are of the same order as E  itself and so make the definition inappropriate. 
Consider next the definition

E' — m[\l2 ф2+  lg'{I +  cos (ф — 0 +  Jt)], (6.4)

where g' is the virtual gravity given by equation (4.2). On differentiating with 
respect to t we now have

(l/im )d E '/d t =  ф[1ф — (в2 — cos в) sin (в —ф)]

+  0[(26> +  sin 0){l —cos(0—^)} +  (02 —cos0) sin (в —ф)\. (6.5)

Equations (5.4) and (5.5) show that, to lowest order in m, the coefficient of ф ‘n 
(6.5) now vanishes identically, and we have

1 dE r
— 30 sin0[l — cos(0 — 0)] — в{вг — cos0) sin (ф—в). (6.6)

The fluctuations in Ё' are now of order (в/ф)Е', which is relatively small. The slow 
rate of change of E‘ is found by taking the average with respect to ф in (6.6):

<dL&7dt> =  3lm 0 sin 0 (6.7)

Now from (5.7) we have

dg'/dt =  0(20 +  sin0) =  30 sin0. (6.8)
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Therefore, if we define alternatively

E  =  E' — mlg' =  т[\(1ф)г- I q' cos (0 -0 ) ] ,  (6.9) 

which is just as natural a choice as (6.4), we shall have in this approximation

<d£/d<> =  0, (6.10)

hence E =  const. =  fwZV, (6.11)

where (6.12)

This incidentally shows that the angular velocity of the smaller pendulum at the 
mean distance L from the origin is almost constant.

In the definition of Ё  in (6.9) we note that the potential energy has been defined 
relative to its level at the mean distance L from the centre O.

Corresponding to the parameter A for the single pendulum (see equation (2.5)) we 
may define a dimensionless parameter v by

iz* =  4 g'/lr2 =  2 mg'l/E', (6.13)

where r is the angular velocity ф at the outer point of the orbit, that is when 
(ф—в) =  2пк\ r is then related to s by

s2 « r 2( 1 - | j>2). (6.14)

We note that under the third of the assumptions (5.8) the parameter v, defined 
by (6.13), is small.

Corresponding to (2.12) we have for the estimated period of rotation of the 
shorter pendulum

2 * /o -'=  {4/r)K(v%  (6.15)

where v is related to r by (6.13). By the expansion (2.13) for К  we have then

</ =  f /( l+ J v 2 +  ̂ f«'4+  ...). (6.16)

Because from (6.14) r is related to a by

r » e ( l —i*2)4  (6 1 7 )

we have also

c r '» e /[ ( l - i » ' , )l ( l + ^ + * ^  +  - ) ] -  (6-18)

For small values of v this becomes

<r'«5(l+C »(^)). (6-19)

So we expect cr' to be constant at least to order v2. Hence Ё/ cr is constant to this 
order also, as was expected.

However, in this elementary approach it is not clear why the particular 
definition (6.4) of the energy must be used. There is also a question whether it 
would be preferable to define both E' and cr' in a reference frame that is rotating 
with the angular velocity в of the longer pendulum. Both these questions are 
resolved in the following section.
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7. A  H A M I L T O N I A N  D E R I V A T I O N  

A more rigorous treatment can be given in terms of Hamiltonian mechanics as 
follows. I f as generalized coordinates we take

?i = 0. 9 г  =  Ф  (7.1)
then the corresponding momenta are given by

p, =  bT/bq. =  в +  1тф cos {в — ф), -»
\ (7.2)

p2 =  0 Т /dqt =  12тф +  1тв cos (6 — ф) J

and, working to order m, we can write

T =  \p\ +  008 {0~Ф)¥- (7.3)

To diagonalize the kinetic energy, we make a canonical transformation of the 
coordinates p^qj (see, for example, Landau & Lifshitz i 960, §45) to new 
coordinates p*,q*, by means of the generating function

ф{Яо Ял . Pi) =  £  4i. P* ~  l™-Pi sin (?i “  Яг) ■ (7 -4)
i

Thus we have

(7.5)

p1 =  ЪФ/bq* =  pX — lm p* cos (ql -  qt), ’

рг =  дФ/ддг = p *  +  lmpf cos(q1- q 2),

qf =  ЗФ/S p f — q̂  — lm sin (ft -g * ) ,

?* =  ЗФ/бр? =

On substituting in (7.3) and in the potential energy

V =  cosg^+Zwi cos g2 (7.6)

wc find for the total energy H =  T  +  F the expression

Я  = Н * + Н *  +  0(тг), (7.7)

where =  %pf2 +  cosq* (7.8)

is the hamiltonian for a single pendulum of unit length L, unit mass M, coordinate 
q*, and momentum p*, and

H% — (l/2Pm)p%2 —g*lm соз(д£ — qf), (7 9)

where g* =  p*2 — cosq* . (7-10)

We see that H* represents the hamiltonian of a smaller pendulum of length I, mass 
m under a gravity field g* directed at an angle ( jf  +  it), i.e. parallel to the direction 
q*. As seen from (7.5), q* differs slightly from q1 ( =  в) by a term of order m, but 
the difference in H* is of order m2 at most. Thus H* can be identified with the 
quantity E of equation (6 .9).
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We have thus confirmed the physical reasoning of §§5 and 6. Moreover the 
action A * of the small pendulum is given by

A *  =  4l(2E'm)iG(v2), (7.11)

with E' given by (6.4) and not (6.9). We note that the angle q* serves both as a 
coordinate and as a slowly varying parameter (through g*). In the evaluation of 
an adiabatic invariant such as the action, the integral has to be calculated keeping 
the parameter fixed (see Landau & Lifschitz i 960, §43). Hence it makes no 
difference to the calculation of A  * whether the frame of reference is assumed to be 
rotating slowly or not.

8 . N u m e r i c a l  c a l c u l a t i o n s

Equations (5.4) and (5.5) may be considered as a pair of simultaneous equations 
which can be solved to give 0 and ф in terms of 0, ф, в and ф. Given the initial 
conditions, these expressions can then be integrated numerically to give 0 and ф 
accurately as functions of t.

To test the validity of the analysis in §7 we considered the case when I =  0.1 and 
m =  10-4, with the initial conditions 0 =  0, ф =  0, 0 = 1 ,  ф =  20, when I =  0. 
The trajectory of the mass m is shown in figure 3. One can see how the spacing of

F ig u r e  3. Calculated tra jectory  o f  the sm aller m ass when 1 =  0-1, m  — 10-< and with 
initial condition s 0 = 1 ,  ф — 20, в = ф =  0.
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de/di

F ig u r e  4. The outer curve shows ф aa a function of в. The solid plots represent values of s. 
The inner curve represents ф [1 — 2g' cos (в—ф)/1фг].

de/dt
F ig u r e  5. Graph o f  E'/m as a  fu nction  o f  в.
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dB/dt
F ig u r e  6. Graph of Ё/m aa a function of в.

dS/dl
F ig u re  7. The intrinsic frequency <r' as a function o f  в.
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Ав/dt

F igu re  8. The ratio Ё/т<т' for the short pendulum.

Ав/d t

Figure 9. The action integral A *  for the short pendulum with initial phase ф — 0.



dd/dt

F ig u r e  10. Ejmu' and A*/Alim: average o f  tw o  runs with initial phases ф =  0, я.

dO/d I

F ig u r e  11. E/nur' and Л * /4 т га : average o f  fou r runs w ith initial phases ф =  0, in , л, |n.
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the outermost points of the trajectory increases as в  increases from unity, when 
в  =  0, to about 2.24 near the bottom of the orbit.

In figure 4, ф is plotted against 6. Near the highest point of the orbit ( 0 = 1 )  the 
fluctuations are small, because g' happens to vanish there, but as в increases, so 
also does g' and in consequence ф fluctuates by as much as 20 %  on either side of 
the mean. The values s of ф when ф — в  =  (и +  |) л are marked by circular plots. It 
can be seen that s is indeed nearly constant, to within about 1 % .

Figure 5 shows the variation of E' as a function of 6. The short-period 
fluctuations in E' are much less than those in <j>. Nevertheless, there is a 
considerable long-term variation, as was suggested by (6.7).

In figure 6 is shown the variation of Ё. The short-period fluctuations are very 
similar to those in E' but the long-term fluctuation is almost eliminated, being now 
less than 1 %  of the mean.

In figure 7 we see the intrinsic frequency cr' calculated from (6.15). The mean 
variation in tr' over the complete cycle is again of order 1 % .

In figure 8 the ratio E/mtr' is plotted against в. The total variation here is about 
4 % . The variation of the mean is about 2 % .

In figure 9 we show the corresponding variation of A *, given by (7.11). The 
fluctuations about the mean are of similar magnitude to those in E /a ' (figure 8). 
The fluctuations in the mean are much smaller.

dd/dt
F ig u r e  12. As figure 11, but with I =  0.5, m  =  10-4, фа =  1, 6„ =  20.
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Till now we have used always the same initial value for the phase ф0 of the 
smaller pendulum at time t — 0. In reality we are more interested in the behaviour 
of the average values over some ensemble. Let us consider the average over two 
or more initial values of the phase ф. Thus in figure 10 we show the mean values 
of Ё/т а’ and A */±nm  averaged over the two trajectories with initial phases ф =  0 
and ф =  п. Compared with figures 8 and 9 the fluctuations are much reduced. 
Now if we take the average over the four trajectories with initial phases 0, |тг, л 
and we obtain the results shown in figure 11. The relative constancy of the 
averaged action A*  is now very clear.

If instead of m =  10-1 we integrate the equations in the limit m =  0 the curves 
obtained are found to lie just below the corresponding curves in figures 10 and 11 
by amounts of order 10~4 only, as we might expect.

What are the corresponding results when either I or в/ф is increased? Figure 12 
shows the graph corresponding to figure 11 but with I =  0.5, m =  10~4, в0 =  1, 
Ф а =  20.

9. D i s c u s s i o n  a n d  c o n c l u s i o n s

We have shown both numerically and by a perturbation analysis that the action 
integral A* for the small pendulum, as defined by (7.11), is indeed remarkably 
constant, especially when we consider the average values of A * over two or more 
values of the initial phase. The nonlinear expression (7.11) for the action integral 
is to be preferred over the expressions E'/cr' or E/cr', which are in any case valid 
only for small values of v.

By analogy, we would expect that for short surface waves riding on longer 
gravity waves, where the separation of scales is of order 10:1 or more, the principle 
of action conservation will be accurately valid. If the short waves are steep, 
Whitham’s more general expression 0j£?/0<u is usually to be preferred to the 
linearized expression E'/cr'. (An exception is when the first-order variation of ш 
vanishes.)

In this paper we have assumed that m is very small, so that in the perturbation 
analysis (though not in the numerical calculations) quantities of order m2 can be 
neglected. For water waves, the analagous assumption is that the short-wave 
energy is sufficiently small that any reaction on the longer waves is negligible, for 
this purpose.

It would be of some interest to explore other ranges of m, and of the other 
parameters, but this is beyond the scope of this paper. We note only the possibility 
of irregular and chaotic behaviour of the small pendulum when the scale 
separation is not large, or when higher harmonics of the longer pendulum induce

m

О
F i g u r e  J3. A coupled pendulum with masses M lt М г and m.
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resonant oscillations o f  the small pendulum . A lthough the rates o f  grow th o f  such 
oscillations m ay be small, nevertheless their effect m ay be felt over longer periods 
o f  tim e than we have investigated here.

The present tw o-scale m odel could be extended in another d irection : by 
considering a short pendulum  o f  small mass m attached to the last o f  N  coupled 
pendulum s o f  lengths Li and masses M it say, as in figure 13, In  this way, even with 
N as small as 2, one could m odel the behaviour o f  very short waves on long waves 
o f  non-uniform  am plitude.

The earlier sections o f  this paper are based on w ork done for the T O W A R D  
H ydrodynam ics Com m ittee (see Longuet-H iggins 1985) with the support o f  the 
U.S. Office o f  N aval Research. The jo in t w ork in this paper was supported in part 
by  D A R P A . K .D . and R . L .S . thank the La Jolla Institute for its hospitality 
during the academ ic year 1985-86.

A p p e n d i x . H i s t o r i c a l  n o t e  

The principle o f  action conservation in m echanical system s with discrete 
degrees o f  freedom  has an interesting and im portant history. In  ham iltonian 
m echan icsf the action was originally defined as the tim e integral o f  the kinetic 
energy T  between tw o given instants, and was shown to be stationary. A pplying 
this to periodic orbits, Boltzm ann ( 1866 ; 1 8 7 1 ; 1904, §§47-48) (see also Clausius 
1 8 7 1 ; Szily, 1872) pointed ou t that this implies that T/<o is stationary with respect 
to  small perturbations, where T denotes the tim e-average o f  T and 2п/ш is the 
period. Ehrenfest ( 1914 ) used this result to show that T /w  is an ‘ adiabatic 
in varian t’ , that is to say an integral quantity that remains alm ost constant during 
the slow variation o f  som e parameter o f  the system. Later (1916 , pp. 591-595) 
Ehrenfest proved the adiabatic invariance o f  the action integral, defined as

A  =  jip d g , (A  1)

where p and q are conjugate variables in the hamiltonian sense, and the integral 
is taken over a com plete cycle.

T he simple problem  o f  a pendulum  whose length is slowly varied was solved by  
R ayleigh ( 1902), as an analogue to electrom agnetic radiation in a closed box . I t  
was pointed ou t by  Einstein ( 1912 ) !  that in both  cases the energy E o f  oscillation 
varies in such a w ay as always to  be proportional to the frequency a>. The exam ple 
o f  the slow ly varying pendulum  is often quoted in textbooks on classical and 
quantum  mechanics (see, for exam ple, Born i 960 ; Arnold 1978) as an analogue to 
the harm onic oscillator. (N ote that in this paper we have been dealing with a 
different parameter range, where the pendulum describes com plete orbits.) P roofs

t See, for example, Whittaker (1927). A clear and relevant account of hamiltonian theory is 
to be found in Landau & Lifschitz (1960). For an elegant geometrical treatment, see Arnold 
(J978).

J Rayleigh was unable to attend the first Solvay Conference, at which this result was 
discussed by Einstein and Lorentz.
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of the adiabatic invariance of the action integrals under general conditions were 
given by Burgers ( 1917 ), Krutkow ( 1919), von Laue ( 1925) and Dirac ( 1925).

Another well-known instance of an adiabatic invariant ia the magnetic 
moment of an electron spiralling in a non-uniform magnetic field (see Fermi 
! 949; Northrop 1 9 6 3 ). This has important applications in plasma physics 
(Chandrasekhar i 9 6 0 ; Thompson 1 9 6 2 ; Spitzer 1 9 6 2 ; Clemmow & Dougherty 
1 9 6 9 ).

Lastly we mention that Whitham ( 1 9 6 5 , 1 9 7 4 ) has shown the equivalence of the 
action integral and the expression /ды where is an averaged lagrangian. 
Thus his work is more general than that of Bretherton & Garrett (1 9 6 8 ) and 
applies to nonlinear wave motions.
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Hydrodynamic modulation of wind waves by long surface waves in a wave tank is 
investigated, at wind speeds ranging from 1.5 to 10 m s-1. The results are compared 
with the linear, non-dissipative, theory of Longuet-Higgins & Stewart (1960), which 
describes the modulation of a group of short gravity waves due to straining of the 
surface by currents produced by the orbital motions of the long wave, and work done 
against the radiation stresses of the short waves. In most cases the theory is in good 
agreement with the experimental results when the short waves are not too steep, and 
the rate of growth due to the wind is relatively small. At the higher wind speeds, the 
effects of wind-wave growth, dissipation and wave-wave interactions are dominant.

1. Introduction
The modulation of radar reflections from surface water waves depends, at least in 

part, on hydrodynamic modulation. A nonlinear theory for the propagation of short 
waves on longer gravity waves has been available for some time {Lortguet-Higgins & 
Stewart 1960; Longuet-Higgins 1987). However, there have been relatively few direct 
measurements of hydrodynamic modulation of wind waves by longer surface waves. 
Reece (1978) studied the modulation of the frequency spectrum of short surface 
waves, as indicated by radar backscatter, in a wave tank_and had to contend with the 
added complications of large, variable Doppler effects. Wright et al. (1980) used radar 
to investigate the variation of microwave power scattered by short ocean waves on 
long surface waves. Here, hydrodynamic effects represent just one contribution to 
the resultant backscatter modulation. Rather more experimental investigations 
have been focused on short-wave/intemal-wave interactions (for example, Lewis, 
Lake & К о 1974; Hughes & Grant 1978; Kwoh, Lake & Rungaldier 1988), where the 
modulation tends to be large.

Direct measurements of modulation by surface waves are needed, made under the 
simplest possible conditions. In the laboratory, wave parameters can be controlled 
and stable environmental conditions can be reproduced. Also, long time series can be 
generated, and reliable statistics of short-wave quantities can be obtained by 
averaging over equal phases of the long wave, a technique which is only applicable 
in the laboratory. In the following we present the results of an experiment in which 
wind waves were generated in a wind-wave tank using a range of wind speeds from
1.5 to 10 m s-1. These were modulated by a mechanically generated (6 m long) 
surface wave. One unexpected finding is that the higher harmonics in the
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Instrument fetch

К— 6 .6 — %-----------------------Test section 26.4--------- ~ ----------12.7
--------------------------------------------------- 45.6-------------------------------------

(a) Side view

T
0.9

t
1.5

1

(b) End view
F ig u r e  1. Schematic diagram o f  SIO wind and wave facility (reproduced from 

Miller & Shemdin 1991). Dimensions in m.

mechanically generated wave, though invisible to the naked eye, play an important 
role in modulating the steepness of the wind-generated waves.

The same data set was the subject of a previous investigation by two of us (Miller 
& Shemdin 1991), but that work had a different emphasis from that presented here, 
being concerned with modulation in a spectral sense. The change in the level of the 
encountered frequency spectrum of short-wave slopes, due to hydrodynamic 
modulation and Doppler shifting caused by the long surface wave, was considered for 
spectral components in the frequency band 10 to 20 Hz. The observed modulation 
was compared with the predictions of a linearized solution of the radiative transfer 
equation.

The present paper considers modulation of the total mean-square slope of short 
waves. The details of the experimental configuration are described in §2. In §3 the 
variation of the mean-square slopes of the short waves over the long-wave profile is 
examined. The results are compared with the linear, non-dissipative theory of 
Longuet-Higgins & Stewart (1960) in §4. A  discussion follows in §6.

2. Experimental set-up

The experimental conditions are described in Miller & Shemdin (1991) and are 
summarized here for completeness. The experiment was carried out using a wind- 
wave facility at the Scripps Institution of Oceanography. A diagram of the wind- 
wave tank is shown in figure 1. The facility test section is 26.4 m long and 2.4 m wide. 
The water depth was set at 1.5 m during the test. Wind waves were generated using 
a blower which was operated to obtain wind speeds in the range 1.5 to 10 m s-1 . Low- 
frequency mechanical waves could be generated using a paddle located at the upwind

Air

Water 

It----------2.4------------ Я
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4|--------------------------T--------------------------------------

' ■ 2 VWAWYA/VMAM^WV'

- 2  I----------------------- 1----------------------- !_______________ I_______________1_______________
10 11 12 13 14 15

' ,(s)
F ig u r e  2. Time series of surface displacement (i4), downwind slope (y j and crosswind slope 
(Vx ап  ̂Чу are offset by 2 and 3 units, respectively.) The wind speed is 4 m s"1. No mechanical wave 
is present. (Reproduced from Miller & Shemdin 1991.)

end of the tank. The amplitude of the mechanical surface waves was kept constant 
at 4.1 cm and the fundamental period was 2 s. A wave absorber consisting of a 
transite asbestos cement surface with slope 1/ 12 for 3.5 m followed by a slope of 1/8  
for 12.7 m was situated at the downwind end of the tank. The reflection coefficient 
of the fundamental 2 s wave was previously measured as about 0.1 and less than 0.05 
for its harmonics. Time series of surface displacement were obtained using a 
capacitance wave gauge which responds to frequencies up to 8 Hz.

Crosswind and downwind components of the surface slope were measured at a 
fetch of 24.3 m using a laser slope sensor which measures the refraction of a light 
beam penetrating the air-water interface, as described by Tober, Anderson & 
Shemdin (1973) and Palm, Anderson & Reece (1977). Instruments of this type have 
been used by several authors (for example, Cox 1958; Long & Huang 1976; Hughes 
& Grant 1978; Tang & Shemdin 1983, Shemdin & Hwang 1988). Owing to the fast 
response of the optical system, rapid slope variations due to wave motion are easily 
detected. The shortest wave that can be detected is determined by the spot size of 
the laser beam, which is less than 3 mm in diameter. By positioning the laser slope 
sensor close to the capacitance wave gauge, and obtaining simultaneous measure
ments from the two instruments, changes in the short-wave slopes due to the passage 
of the long waves could be detected. However, the ‘ fish line ’ effect due to the passage 
of water past the wave gauge, was negligibly small.

3. Modulation of slope variance
Part of a time series of the surface displacement, ij, of wind waves in the absence 

of a mechanical wave, as measured by the capacitance wave gauge, is plotted in 
figure 2. The dominant wave has a period of about 0.3 s at a wind speed of 4 m s-1. 
The downwind and crosswind components of surface slope, tix and r)y respectively, are 
also shown. Figure 3 shows the wind waves superimposed on the mechanically 
generated 2 s waves.

The variation of the statistics of wind waves at different phases of the current was 
found by averaging over equal phases of the mechanical wave. The period, T, and
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0 .2S)j
(cm)

- 2
10 14 1511 12 13

l(s)
F ig u r e  3. As fo r  figure 2, but with 2 s mechanical wave present. (Reproduced from

Miller & Shemdin 1991.)

phase, ф, of the latter, were determined by maximizing the coherence of the surface 
displacement with a cosine of variable period, 2 .0 +  0.2 s, and variable phase. Figure
4 shows (?jУ, the surface displacement, averaged over 75 periods. (Phase-averaged 
quantities are denoted using angle brackets.) The phase is defined by ф =  2nt/T, with 
time, t, measured from the crest of (уУ. The wave paddle does not generate a purely 
sinusoidal disturbance, as is apparent in figure 5, which shows (?)ХУ, the phase- 
averaged downwind component of the slope. Fourier analysis reveals components at 
the fundamental frequency,

Яг =  2n/T, (1)
and at its harmonics, Qn =  nQ (2)

The latter give only a small contribution to the surface displacement, but are 
significant in the downwind slope, which has contributions from up to the sixth 
harmonic (see table 1).
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Phase, ф
F ig u r e  5. Downwind component of surface slope averaged over 75 periods. Significant amounts 
of the second and third harmonics of the fundamental oscillation are present. The wind speed is 
1.5 m s '1.

n A, (cm) К Ж
1 4.11 0.043
2 0.40 0.015
3 0.46 0.038
4 0.08 0.013
5 0.01 0.008
6 0.02 0.003

T a b l e  1. Fourier amplitudes of surface displacement, A„, and downwind slope, K„An, measured 
independently when no wind was blowing

is modelled by
<ЛУ =  £  ^ ncos(G„< +  0 n)( (3)

П -1

where the amplitudes A„  and phases фп were obtained numerically from Fourier 
decomposition o f (fl)- Table 1 shows the Fourier amplitudes o f surface displacement, 
A„,  measured with the capacitance wave gauge, together with the Fourier 
components o f downwind slope, K „ A „ ,  measured independently with the laser slope 
gauge. Figure 6  shows K n, the wavenumber o f harmonic ny versus frequency Q n 
deduced from the ratio o f K „ A „  to A n. The result is consistent with the dispersion 
relation for free surface waves,

S2\ =  ^ „ t a n h  (Knd), (4)

where g is acceleration due to gravity and d is the mean water depth. This result is 
expected for waves produced by a paddle wave generator o f the type used here. It 
is noted that since the harmonics are coupled to the wave maker and have period 
T/n, the resultant disturbance at the instrument location due to the wave maker is 
periodic in time with period T.
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0 „ (rad s '1)

F ig u r e  6 . Dispersion relation of the waves produced b y  the paddle wave generator (solid circles), 
derived from the phase-averaged surface displacement and slope. The error bars show plus and 
minus one standard deviation o f the estimate of K„. Also shown are the dispersion relations o f  free 
gravity waves (solid line) and o f  waves bound to the fundamental oscillation (dashed line).

Phase, ф

Phase, ф
Figure 7 (a, 6). For caption see facing page.
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Phase, ф

Phase, ф

F i g u r e  7. Variance of surface slope, normalized by its average value over a long-wave period. Data 
are shown by a solid line and the dashed line is the theoretical result of Longuet-Higgins & Stewart 
(1960), computed using 10 Fourier components. The wind speeds are (a) 1.6 me-1, (6) 4 m s"1, 
(c) 6.5 m s"1, (d) 9 m s" 1 and (e) 10 m s"1.
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Wind speed Short-wave Long-wave (without (with
W (m s *) age, c/W age, CJW long wave) long wave)

1.5 0.19 2.00 0.002 0 .022
4.0 0.13 0.75 0.038 0.026
6.5 0.10 0.46 0.056 0.046
9.0 0.09 0.33 0.063 0.055

10.0 0.08 0.30 0.063 0.059
T a b l e  2. Variance of short-wave slope averaged over the long-wave period, с and C\ denote the 

phase speeds of the dominant short and long waves, respectively

The variance of the short surface slopes at different phases of the long wave, was 
examined by calculating

v2 =  < ( 1? s  —  < 7? i > ) 2 >  +  ( ( 'V i r —  • ( 5 )

In figure 7 cr2/or2 is plotted as a function of <j> at the five wind speeds, W (full line). 
Here cr2 is the mean value of <r2 over the wave period T, and is tabulated in table 2 
as a function of wind speed. For comparison, the value of cr2 obtained when no 
modulating wave was present is also tabulated. W e note that, for W  4.0 m s_1, the 
presence of the longwave reduces cr2 , the greatest reduction being at low wind speeds. 
The reduction of the wave amplitude of short waves on long waves has been reported 
by Mitsuyasu (1966), Phillips & Banner (1974), and Donelan (1987). Phillips & 
Banner (1974) showed that the orbital velocity of the long wave causes the surface 
drift velocity to vary with phase of the long wave. They proposed that this would 
result in enhanced breaking at the long-wave crests, leading to a reduction in the 
r.m.s. height of the short waves. Plant & Wright (1977), however, argued that the 
role of the wind drift current in limiting the short-wave amplitude was small.

The very low value of a3 at 1.5 m s-1 is thought to be evidence of a surface slick. 
The minimum surface friction speed required for wave generation for a clean surface 
has been estimated by Miles (1962) and van Gastel, Janssen & Komen (1985) as 
about 5 cm s-1. Assuming that in a wave tank the friction speed is given by 0 .05W 
(Gottifredi & Jameson 1970; Plant & Wright 1977) this corresponds to a wind speed 
o i W »  1.0 m s "1. When a film is present, Miles estimated that this minimum is 
increased to about 17.5 cm s-1, whereas Gottifredi & Jameson found that it could 
increase up to 20 cm s-1, corresponding to W x  4.0 m s-1 . Evidently, the mean 
surface drift introduced by the deterministic wave disrupted the surface film, and 
wind waves could then be generated at the lowest wind speed.

4. Comparison with the theory of Longuet-Higgins & Stewart (1960)
Longuet-Higgins & Stewart (1960) considered the changes in a group of short 

gravity waves riding on a longer surface wave, A l cos (QI t +  ф^, of small slope, Кг А г. 
They showed that, in the absence of external sources and nonlinear effects such as 
wave breaking, the energy, E, of the short waves is governed by

where cg and Sx are the group velocity and radiation stress of the short waves,
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Л

n
F i g u r e  8. (a) Amplitude and (6) phase o f the Fourier components o f  the modulation transfer 
function, defined by (9), at wind speeds 1.6 m s_1 ( + ), 4 m s-1 (• ) , 6.6 m s 1 ( 0 ) i 9 m s ‘ ( x )  and 
10 m s"1 (Д ).

respectively, and U is the current due to the orbital motions of the long wave. 
Generalizing their solution of (6) to a spectrum of non-interacting gravity waves 
travelling on a long wave with displacement given by (3), gives

<тг(ф) =  (Г2 1 + 2  ( £ c o t h ( i r n d) +  | t a n h ( i£ n cO)A'n4 n c o s ( G n « +  0 B) ] .  (7 )

To compare this with the data, р*(ф), equation (7), was computed using K n 
calculated from (4), and A n obtained from the Fourier decomposition of Of) at each 
wind speed. The results are shown as dashed lines in figure 7.

A more detailed comparison is obtained by inspecting the complex Fourier
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amplitudes of the linear modulation transfer function (M TF); if cr2 is decomposed 
into

* г(Ф) =  0-^1+ 2  ^ c o s f f i^  +  f l j j ,  (8)

the amplitude, M n, and phase, \]rn, of the nth component of the M TF are defined by

мп = ^ А '  ^ п^Оп- Ф п- (9)

A positive value of ijrn indicates that modulation of a2 at frequency Q n lags that 
component of modulating current, that is, the modulation occurs at a later time. The 
first five components of the modulation are plotted in figure 8.

For the conditions of this experiment, the deep-water condition, K „d  >  1.5, is 
satisfied for all n. The MTF predicted by (7) therefore has i/rn =  0 with M n ss 4 for all 
n, the levels being indicated by dashed lines in figure 8.

The goodness of fit of (7) to the data is clearly a function of wind speed, the best 
agreement being obtained at the intermediate values, 4 and 6.5 m s_1, since in these 
cases M n is close to 4. (The low value of M 2 at 6.5 m s-1 is not significant since <i?> 
and сгг have only small contributions from the first harmonic.) The phase agreement 
at 4 m s_l is also excellent, but at 6.5 m s_l harmonics n =  2, 3 and 4 in cr2 lead 
those in <1/ )  by about 45°, as is apparent in figure 7(c). At the lowest wind speed,
1.5 m s-1, the agreement between data and theory is poor, the modulation in the data 
being too small at low frequencies. Also, in this case the harmonics in cr2 lag those in 

by 45°. At the highest speeds, 9 and 10 m s-1 , modulation at the fundamental 
frequency is somewhat amplified compared to the intermediate wind speed cases, 
while it is reduced in the harmonics. The phase agreement is, however, quite good.

5. Discussion
Equation (6) was formulated for short gravity waves isolated from external effects 

such as wind input, and for which nonlinear interactions and wave breaking are not 
important. Its applicability to the conditions of the present experiment are examined 
as follows.

The importance of energy input from wind to a wave group of dominant frequency, 
/ p, can be estimated by evaluating the ratio of the wind growth rate, fi, to the long
wave frequency, £21. In this experiment Ql «  3 rad s-1. When fi is much less than £2t 
the characteristic timescale of growth due to wind, fi~x, is long compared with the 
wave period, so that wind growth can be neglected. In this case (6) might be expected 
to describe the modulation of the variance of surface slopes. However, when fi/Q j is 
not small, the effect of wind input in the modulation process must be considered. 
Table 3 shows the growth rate, fi(fp), evaluated using Plant’s (1982) form with the 
friction speed evaluated as 0.051F,

fi =  6.3 x 10_4(й/ /с )2/ р, (10)

where с is the phase speed at frequency / p.
As the wind speed increases, the wind wave spectrum becomes broader as the 

energy of the small waves increases. The slope frequency spectra of the short waves, 
S(f), where

^ « ( / J d / ,  (1 1 )
- Г
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/(H z )
F ig u r e  9. Slope frequency spectra at wind speeds 1.5 m s_1 (------ ), 4 ro s-1 (-------- ), 6.5 m s_1 (...... ),
9 m s" 1 (------), and 10 m s" 1 (-------- ). No mechanical wave is present. (Reproduced from Miller &
Shemdin 1991.)

w
(m s’ 1) Л(Hz)

ДЛ)
(8- ‘ )

./med
(Hz)

A/mrf)
(s-1)

4Я1Я,Л,
1.5 6.0 0.09 6.0 0.09 0.19
4.0 3.0 0.14 3.0 0.14 0.28
6.5 2.5 0.17 4.0 0.69 1.37
9.0 2.0 0.17 10.0 9.61 19.18

10.0 2.0 0.20 10.0 11.87 23.69
T a b le  3. Growth rate due to the wind

are plotted in figure 9. At 4 m s-1 70 %  of the total area lies below 5 Hz, compared 
with only 40 %  at 9 m s-1. A possibly more accurate estimation of the growth rate 
may be obtained, therefore, by evaluating ft at, for example, the median frequency, 

/med> ° f  tbe slope spectrum, where

P " ^ / )  <*/=£*■ (1 2 )
Jo

The results, which except for the lowest wind speed were obtained when no 
mechanical wave was present, are shown as fi(fmed) in table 3. At 9 and 10 m s *, 

5s 3 suggesting that wind generation effects must be significant in those
cases.

The relative importance of the energy input by the wind to the modulation of the 
short waves by the orbital straining of the long waves, can be estimated by 
considering the ratio of fl/Qn to 4KnA n. With ft evaluated a t /med, this is shown in 
table 3 for the fundamental frequency of the long wave. Interestingly, ft/[4£2iK lA l) 
is much greater than unity for the two highest wind speeds.

The steepness of the short waves increases with wind speed so that the nonlinear 
effects of wave breaking and wave-wave interactions are expected to become
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к (rad cm'1)
F ig t o e  10. Nonlinear transfer for three-wave interactions for wind speeds 4 and 9 m  a"1 and 

D(6,k) =  apcos;>($0) with p =  2 (-------), 6 (-— —) and 10 (...... ).

w
(m s '1)

m̂ed
(rad cm'1) (S'1) Я,

Ail (^тм) 
4a1KlAl

4.0 0.16 0.00 0 .00 0.00
6.5 0.64 0.13 0.04 0.26
9.0 2.60 7.45 2.38 14.87

10.0 2.60 7.45 2.38 14.87
T a b l e  4. Nonlinear transfer rate due to three-wave interactions

increasingly significant. The weakly nonlinear wave-wave interactions are of third 
order in the wave slope for short gravity waves, and second order for capillary-gravity 
waves. The rate of energy transfer due to the latter, /5nl, was computed using the 
expression derived by Valenzuela & Laing (1972). The results evaluated at к =  kmed, 
where

2 */mee =  ( ? * » * +  ̂ *£.ed) 1 (13>

(t and p are the surface tension and density of water), are given in table 4 for the four 
highest wind speeds (the lowest wind speed case was not computed). Details of the 
wavenumber spectrum used in the calculation are given in the Appendix.

Comparison of tables 3 and 4 shows that the estimates of /?nl are similar to those 
obtained for the growth rate due to the wind, with a sharp distinction between 
W <  6.5 m s-1, where the transfer rate is small compared with the long-wave 
frequency and energy transfer is a minor effect in comparison with orbital straining, 
and W  >  9 m s-1, where the three-wave interactions play an important role.

The wind drift current, wd, has not been considered in the above calculations. For 
short waves at high wind speeds the wind drift current can be of the same magnitude 
as the intrinsic phase speed of short gravity waves. For example, at a wind speed of 
10 m в-1, calculating the drift current as 3 %  of the wind speed, gives ud =  30 cm s-1,
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which is equal to the phase speed of a 5 cm wave in still water. If fi is evaluated using 
(10) with с in the denominator calculated as the advected phase speed, the value of 
fi will be reduced by a factor of about 4 at W =  9 m s_1 and 10 m s " 1, and by a smaller 
factor at the lower wind speeds. Also, if (13) is modified to include the wind drift, kmea 
will be reduced by a factor of about 2 at the highest wind speeds so that, from figure 
10, finl is reduced by factor of about 4 in these cases. The distinction between the low 
and high wind cases in the relative importance of orbital straining and energy input 
from the wind or energy transfer due to three wave interactions, would be less 
dramatic than estimated above, but the trend is unchanged.

W e note that at the highest wind speeds, (7) should be modified to include 
capillary-gravity waves, which make a significant contribution to cr2. I f this is done, 
the theoretical MTF due to the orbital motions of the long wave becomes somewhat 
smaller than the value 4 found above for a spectrum of pure gravity waves. However, 
the application of a simple two-scale model to these very short waves is probably not 
realistic.

6. Conclusions
The most striking conclusion to be drawn from these measurements is that the 

modulation of the short waves is determined not by the long-wave amplitude, A„, 
but rather the long-wave steepness, K nA n. Hence, the apparent phase and amplitude 
of the modulation may be related to wave components that are invisible to the eye.

More generally, the modulation of the short waves will be determined not by the 
elevation spectrum of the long waves but by the slope spectrum, as is emphasized by 
Longuet-Higgins (1991).

W e have found that the modulation transfer function of the short waves is in 
agreement with the linearized, non-dissipative theory of Longuet-Higgins & Stewart 
(1960) only where that would be expected, namely when the short waves are not too 
steep, and the rate of growth due to the wind is relatively small. (We found poor 
agreement at the lowest wind speed, however.) With steeper short waves, we may 
expect two additional effects: strong short-wave interactions due to breaking, and 
weak non-dissipative short-wave interactions. For short capillary-gravity waves 
they are of second order (Valenzuela & Laing 1972), and for short gravity waves they 
are of third order (Hasselmann 1962). Their relative importance will vary with short
wave steepness.

Finally we remark that since the tangential wind stress is in part mediated by the 
short wind waves, our findings will have implications for the effect of swell on the 
mean wind stress, and on the modulation of the wind stress by the longer waves.

Paul Hwang and Dave Hayt were responsible for the data collection and the initial 
data processing was done by Paul Hwang. The authors appreciate their cooperation 
during the period of the above work. The work reported here was supported by the 
Office of Naval Research under the SAR Accelerated Research Initiative Program.

Appendix. Calculation of the capillary-gravity wave-wave interaction 
rate

The spectrum of wave heights,

( A l )
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w К Г
(m  s_I) (rad cm -1)

4 .0 0.16 56
6.5 0.25 21
9.0 0.36 13

10.0 0.36 13

T a b l e  5

was modelled using the separable form

4f(k,6) =  F(k)D(e,k), (A 2)

where J " D(6,k)dd =  I. (A3)

The directional spread function D(6, k) was modelled by

D(d,k) =  ap cosp(|0), p =  p(k), (A 4)

where the downwind direction is taken as в — 0.
The model used here is derived from consideration of the two components of the 

frequency slope spectrum obtained before the long wave was generated. Taking the 
minimum wind speed required for wave generation, as =  2.7 m s-1 , F(k) is 
modelled, for 4 m s-1 ^  W <  9 m s-1, by (Shemdin & Miller 1991)

^(fe) =  5 x lO -4( ^ - ^ mlJ ^ ^ e x p ( - 1 . 7 5 ^ J j / ’M for k < k ,.  (A 5)

Here, g is gravitational acceleration, and p and т are the density and surface tension 
of water. k„ =  8 rad cm-1 is the viscous cutoff, and

" - е*р Н У ! г ) '  <A6)

where kp =  (2цfp)2/g  is the peak wavenumber, and Л and M(k) define the height and 
shape of the spectral peak. Г  and kp are wind-speed dependent as shown in table 5.

The part of the spectrum where viscosity is important is modelled by (Shemdin & 
Miller 1991)

F(k) =  4.8 x 10~4(W — W'jnj,,) fc-6-5 for k > k v. (A 7)

Above W =  9 m s-1, the frequency spectrum was found to saturate, so at 10 m s-1 
F(k) was modelled by the same form as at 9 m s-1.

The nonlinear transfer due to three-wave interactions between gravity and 
capillary-gravity waves, was calculated numerically using the expression
given by Valenzuela & Laing (1972). The transfer rate, /?nl s  — ( l /¥ 0  (bW/bt), was 
also calculated for spread functions, D(0, к), with p =  2 ,6  and 10 for all k. The results 
are shown in figure 10 for к ^  5 rad cm-1 and for wind speeds 4 and 9 m s-1. The plots 
show that, as expected, the energy transfer is small for small wavenumbers and 
increases with wind speed. The fact that the transfer is largest for wave triads that 
are inclined at small angles, is reflected in /?nl increasing with p.

At wavenumbers beyond the peak of the spectrum, the angular spread increases 
so that the ratio of the crosswind and downwind components of the slope spectrum
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F ig u r e  11. Downwind (------ ) and crosswind (....... ) components o f the slope frequency spectrum
at wind speed 6.5 m s '1, measured before the mechanical wave was generated. (Reproduced from 
Miller & Shemdin 1991.)

increases, as can be seen in figure 11. The model used here is p  — 10 for к <  kp, 
p  =  2 for к >  [дт/pY and decreasing linearly with к between the two limits. This 
model of the angular spreading function gives ratios of the crosswind to downwind 
slope spectrum which are in agreement with our observations. The resulting transfer 
rate is given in table 4.
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