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Foreword

I take pleasure in writing this foreword for the excellent new book 
entitled Fracture Mechanics of Electromagnetic Materials: Nonlinear 
Field Theory and Applications, written by my former colleagues, Drs. 
Xiaohong Chen and Yiu-Wing Mai, at the Hong Kong University of 
Science and Technology.

Novel multifunctional materials have tremendous potential for high- 
performance structural and functional applications in aeronautical, 
mechanical, and civil engineering, as well as in microelectronic and 
biomedical devices, due to their versatile actuating, sensing, healing, and 
other functional properties. The susceptibility of such advanced materials 
to cracking in service is of fundamental concern and has become a very 
popular area of research. Attempts to describe the failure behavior of 
these advanced materials and structures have clearly shown that linear 
piezoelectric/piezomagnetic fracture mechanics does not adequately 
explain the crack growth behavior under combined magnetic, electric, 
thermal, and mechanical loadings. It appears that coupling and 
dissipative effects play an important role in the growth and propagation 
of cracks.

Significant discrepancies still exist between theoretical predictions 
and experimental observations. Both new and modified theories have 
been proposed to overcome the discrepancies, with only limited success. 
These failures may be because there is no comprehensive guide to the 
theoretical basis and application of nonlinear dynamic fracture 
mechanics, especially in cases involving multiple coupled fields with 
dissipation effects.



viii Foreword

This book is the first monograph on the subject of nonlinear dynamic 
field theory for piezoelectric/piezomagnetic materials. It provides an 
overview of the current state of the art of fracture mechanics and some of 
the authors’ recent research outcomes. In developing the theoretical 
models for application to fracture characterization of materials and 
structures in the presence of magneto-electro-thermo-mechanical 
coupling and dissipative effects, the authors emphasize the physical 
interpretation of the fundamental concepts of fracture mechanics. One of 
the book’s unique contributions is the development of a nonlinear 
fracture mechanics theory which rigorously treats the dynamic crack 
problems involving coupled magnetic, electric, thermal, and mechanical 
fields. By unifying the coupling of these fields, this book fills a gap in 
the literature of fracture mechanics involving multifield interactions. 
This book is a valuable resource which sheds light on the still-developing 
multidisciplinary subject of multifield fracture mechanics.

The book has an extensive list of references reflecting the most recent 
developments. It can be used as a textbook for graduate students as well 
as a reference for researchers and engineers studying and/or applying the 
concepts of advanced fracture mechanics to design and practical 
applications in the presence of multifield coupling and dissipative 
effects.

Pin Tong 
San Diego 

April, 2012



Preface

This book covers the current status of conventional fracture mechanics 
methodologies and presents a new formulation of a nonlinear field theory 
of fracture mechanics for electromagnetic materials. The study of classic 
fracture mechanics problems is concerned with the mechanical state of a 
deformable body containing a crack or cracks. Nevertheless, recent 
advances in multifunctional smart materials have created new research 
frontiers due to the occurrence of magneto-electro-thermo-mechanical 
coupling and dissipative effects accompanying crack propagation.

Electromagnetic materials have broad civilian and defense 
applications such as infrastructure health monitoring, microelectronic 
packaging, novel antenna designs, and biomedical devices owing to their 
remarkable multifunctional properties. Fracture of these smart material 
systems has become the subject of active research because of their 
susceptibility to cracking in service. A major challenge is how to resolve 
the fundamental discrepancy between theoretical predictions and 
experimental observations on the fracture behaviors of piezoelectric and 
piezomagnetic materials.

A highly important question in the development of a fracture 
mechanics theory for electromagnetic materials is whether there is any 
particular thermodynamic quantity of a cracked body that can be 
interpreted as the “driving force” for crack propagation under combined 
magneto-electro-thermo-mechanical loadings. The answer to this 
question has been pursued for decades, but no satisfactory agreement has 
yet been reached. Thus, the establishment of a physically sound fracture 
criterion becomes the hallmark of an advanced fracture mechanics 
treatment for electromagnetic materials.



X Preface

As the first monograph on the subject of nonlinear field theory of 
fracture mechanics for deformable electromagnetic materials, this book 
offers postgraduate students, academic researchers, and engineering 
specialists who are active in this challenging multidisciplinary area a 
sketch of the history, an overview of the current status, and a description 
of some most recent research outcomes based on our own work. It gives 
first priority to physical interpretation of fundamental concepts, 
development of theoretical models, and exploration of their applications 
to fracture characterization in the presence of magneto-electro-thermo- 
mechanical coupling and dissipative effects. A general formulation of a 
nonlinear field theory of fracture mechanics and a rigorous treatment of 
dynamic crack problems involving coupled magnetic, electric, thermal, 
and mechanical fields fill a gap in the literature.

We would like to express our sincere appreciation and gratitude to 
those who have provided helpful discussions and support to this book 
project, especially Professors Pin Tong and Tongyi Zhang (Hong Kong 
University of Science and Technology), Cun-Fa Gao (Nanjing University 
of Aeronautics & Astronautics), Baolin Wang (Harbin Institute of 
Technology), Qinghua Qin (Australian National University), and Meng 
Lu (CSIRO). XHC is also heartily indebted to the late Professor Ren 
Wang for his guidance and inspiration during her graduate studies in 
solid mechanics at Peking University and for his care and encouragement 
throughout all these years. The Centre for Advanced Materials 
Technology at the University of Sydney, where XHC previously worked 
and YWM was Founding Director, has provided an intellectually 
stimulating environment for advanced fracture mechanics research. 
Special thanks are due to Lance Sucharov, Tasha D’Cruz, Rajesh Babu, 
Lindsay Robert Wilson, Gregory Lee, and Romen Reyes-Peschl from 
Imperial College Press and World Scientific Publishing for their 
commitments to excellence in publishing this book from proposal review 
to proofreading. Permissions from professional societies and publishers 
to use cited materials in the book are also gratefully acknowledged.

Xiaohong Chen & Yiu-Wing Mai 
San Diego & Sydney 

August, 2012
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Fundamentals of Fracture Mechanics

Chapter 1

Classic fracture mechanics is concerned with the study of the mechanical 
state of a deformable body containing a crack or cracks by application of 
analytical mechanics to calculate the driving force for crack propagation 
and experimental mechanics to characterize the resistance of materials to 
crack extension. A highly important question in the development of a 
fracture mechanics theory is whether there is any particular 
thermodynamic quantity of a cracked body that can be interpreted as the 
“driving force” for crack propagation.

1.1 Historical Perspective

The establishment of fracture mechanics as an engineering discipline 
dates back to the early work of Griffith (1921), Orowan (1948) and Irwin 
(1948, 1956, 1957, 1958). In Griffith’s famous paper “The phenomena of 
rupture and flow in solids” (Griffith, 1921), which quantitatively relates 
the flaw size to the fracture stress, he proposed an energy balance 
approach for the fracture of brittle materials with the introduction of the 
surface energy term by realizing that the relatively low strength and the 
size dependence of strength were due to the presence of crack-like flaws 
in the materials.

The Griffith energy balance leads to a critical condition for fracture of 
an ideal elastic-brittle material:

dW__dU__dr^
dA dA d A '

1



2 Fracture Mechanics o f  Electromagnetic M aterials

where A is the crack area, W is the work done on the cracked body by 
external forces, U is the strain energy stored in the system, and Ts is the 
surface energy.

For a through-thickness crack with length 2a in an infinite plate under 
remote tensile stress a  (Fig. 1.1), Griffith (1921, 1924) used the solution 
of Inglis (1913) to show that the fracture stress, crf , is given by

(1.2)
J V 7ta

where E - E  for plane stress and E -  EI {i - v 2) for plane strain, E is 
Young’s modulus, v is Poisson’s ratio, and ys[= (\/2 )dT s / dA\ is the 
specific surface energy.

a

Fig. 1.1. Griffith crack with length 2a under remote tensile stress a .

Although the Griffith energy balance approach provides excellent 
agreement with experimental data for brittle materials such as glass, the 
surface energy predicted by Griffith’s fracture criterion is usually 
unrealistically high for ductile materials such as steel. Irwin (1948) and



Fundamentals o f  Fracture Mechanics 3

Orowan (1948) independently modified Griffith’s fracture criterion to 
account for the energy dissipated by local plastic flow. Under small-scale 
yielding (SSY) conditions, the plastic work required to grow the crack is 
a material constant that can be added to the surface energy. The modified 
expression is given by

where yp is the plastic work dissipated during the creation of a unit area 
of crack surface, which is typically orders of magnitude larger than the 
specific surface energy ys .

It is also feasible to extend the modified model to account for any 
type of energy dissipation, that is,

where R is the crack resistance, including viscoelastic or viscoplastic 
effects, depending on the material type.

Subsequently, Irwin (1956, 1957, 1958) found a way to relate the 
global amount of energy available for fracture to the local crack tip 
parameter called the stress intensity factor. Linear elastic fracture 
mechanics (LEFM) is also known as the Griffith-Irwin-Orowan theory 
because of their leading roles in its establishment. When large-scale 
inelastic deformation or a significant amount of crack growth occurs, 
nonlinear approaches must be adopted instead. Rice (1968) developed a 
path-independent line integral called the У-integral, which has dominated 
the development of nonlinear fracture mechanics (NLFM) in the USA. In 
the meantime, Wells (1961, 1963) advanced an alternative approach by 
employing the crack opening displacement (COD) as the fracture 
parameter, which has guided fracture mechanics research under general 
yielding conditions in the UK and Europe.

(1.3)

(1.4)
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1.2 Stress Intensity Factors (SIF)

Irwin (1957, 1958) and Williams (1957) realized that the stresses near a 
crack tip in a linear elastic solid have an inverse square-root singularity, 
that is, they are inversely proportional to the square root of the distance 
from the crack tip. The near-tip fields in plane elasticity problems are 
associated with three basic modes, shown in Fig. 1.2. Mode I is the 
opening (tensile) mode where the displacements are normal to the plane 
of the crack surface, mode II is the sliding (in-plane shear) mode where 
die displacements are parallel to the plane of the crack surface and 
normal to the crack front, and mode III is the tearing (out-of-plane shear) 
mode where the displacements are parallel to the plane of the crack 
surface and parallel to the crack front.

Fig. 1.2. Three fracture modes: (a) mode-I crack -  opening mode, (b) mode-11 crack -  
sliding mode, and (c) mode-III crack -  tearing mode.

The asymptotic expressions for the near-tip stress fields under mode- 
1, П, or Ш fracture are given by

<J,, = -^ =  cos(0 / 2)[1 -  sin(<9 / 2) sin(30 / 2)]
\}2ПГ

• <T22=-^=rCOs((9/2)[l+sin(6»/2)sin(36»/2)], (1.5) 
v 2 nr  

<T,J =-^=cos(6>/2)sin(6>/2)cos(36>/2) 
yjlnr
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C722 =

<7„ =

— ^ = s i n ( 0  / 2)[2 + cos(0 / 2)cos(30 / 2)]
л/2ЯГ

sin(0 / 2) cos(0 / 2) cos(30 / 2)
у]2к г

—j====?cos(@ / 2)[1 -  sin(0 / 2) sin(3<9 / 2)]
yjlTUr

( 1.6)

///
CT|3~

sin(0 / 2)

К
(1-7)

in

yjlKl
cos(0 / 2)

where /*, 0are polar coordinates, ЛГ,, AT,, and AT;// are mode-I, II, and III 
stress intensity factors with units of MPaVm .

For the classic Griffith crack, the stress intensity factor is given by

К, = <У\[ла . (1.8)

Since failure at the crack tip in a linear elastic solid is driven solely 
by the stress intensity factor, a fracture criterion based on the stress 
intensity factor approach can be expressed as

K = KC, (1.9)

where Kc is the critical stress intensity factor as a measure of material 
resistance to fracture, which is called the fracture toughness.

The American Society for Testing and Materials (ASTM) standards 
E399 and D5045 describe the experimental procedure for measurement 
of fracture toughness of metallic and plastic specimens, respectively. The 
size requirement for obtaining a valid measurement of Klc is given by

\ 2

B ,a ,W -a >  2.5
К1C (1.Ю)

where В is the specimen thickness, a is the crack length, W is the 
specimen width, and crv is the yield strength.
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1.3 Energy Release Rate (ERR)

Griffith (1921) was the first to propose the energy approach for fracture 
of brittle materials, but Irwin (1948, 1956) was primarily responsible for 
defining the present version of the energy release rate (also referred to as 
the strain energy release rate), G,

where П is the potential energy of the system, U is the strain energy 
stored in the system, and A is the load-point displacement.

Irwin (1957) showed that the energy release rate for a planar crack in 
a linear elastic body subjected to mixed-mode loading is related to mode- 
1, II, and III stress intensity factors by performing crack closure analysis:

where A denotes the jump between the upper and lower surfaces of the 
crack.

Crack initiation occurs when G reaches a critical value, Gc,

The energy release rate, also referred to as the crack extension force, 
provides the thermodynamic driving force for fracture. The onset of 
crack extension is determined by (1.13), but crack growth may be stable 
or unstable depending on how the crack driving force and the crack 
resistance vary with crack extension (Atkins and Mai, 1985; Cotterell 
and Mai, 1996). In general, the conditions for stable crack growth can be 
expressed as

( 1. 11)

G = lim t 4 - J ° +<S° (*1 >0)Ли, (*| -  Sa)dx,
( I . 12)

G = G . (1.13)

(1.14)

dA dA
(1.15)

Unstable crack growth occurs when
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clG dGR 
—  > — - (1.16)
dA dA

A plot of G versus crack extension gives the crack driving force 
curve, whereas a plot of GR versus crack extension gives the crack 
growth resistance curve (Fig. 1.3). The transition from stable to unstable 
fracture occurs when the crack driving force curve is tangent to the crack 
growth resistance curve (R curve).

1.4 /-Integral

Path-independent integrals have been extensively employed to study 
bodies with defects or cracks since the pioneering work of Eshelby 
(1951, 1956, 1970, 1975), Cherepanov (1967, 1968, 1979) and Rice 
(1968). As indicated by Kannimen and Popelar (1985), the number of 
path-independent integrals appears to be unlimited. The energy release 
rate in a nonlinear elastic body containing a crack can be expressed as a 
contour integral called the У-integral (Rice, 1968). The У-integral has also 
been related to the crack-tip stress fields in a power-law hardening 
material (Hutchinson, 1968; Rice and Rosengren, 1968). The path- 
independent /-integral formulated from the complementary energy 
density (Bui, 1974) can be taken as the dual of the 7-integral. Further 
discussions on the У-integral and other invariant integrals can be found in

Fig. 1.3. Illustration o f  crack driving force and resistance curves.
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the papers by Knowles and Sternberg (1972), Kishimoto et al. (1980), 
Atluri (1982), Atluri et al. (1984), Freund and Hutchinson (1985), Li et 
al. (1985), Shih et al. (1986), Moran and Shih (1987a-b), and Simo and 
Honein (1990), among others.

Consider a path Г in a nonlinear elastic body extended counter clock­
wise from the lower crack face to the upper crack face, as shown in Fig. 
1.4. The У-integral is defined as

J = j r(wdx2- f f ijnj ^ - d s ) ,  (1.17)

rCjj
where w = Jq cr d̂e  ̂ is the strain energy density, cr. are the components

of the Cauchy stress tensor, €ij are the components of the infinitesimal 
strain tensor, n} are the components of the unit outer normal vector, ui 
are the components of the displacement vector, ds is the length increment 
along the path Г, and the ^-direction is perpendicular to the crack line.

Most importantly, Rice (1968) showed that, for deformation plasticity 
(i.e., nonlinear elasticity), the value of the /-integral in a two- 
dimensional cracked body free of body forces is independent of the path 
around the crack, provided it is taken outside the fracture process zone. 
The 7-integral criterion for crack initiation gives

J = J C. (1.18)
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The dimensionless tearing moduli (Paris et al., 1979; Atkins and Mai, 
1985; Anderson, 2005) may be introduced by

(L19)

7 . - 4 ^ - .  ( 1-20)

where <r0 is an appropriate flow stress.
The conditions for stable crack growth can be expressed as

J =  ( 1.21)

( 1.22)

Unstable crack growth occurs when

Tapp>TR. (1.23)

The У-integral method has great success in nonlinear fracture 
mechanics (NLFM). Nevertheless, the У-integral might lose its path 
independence when there is a combination of significant plasticity and 
crack growth (Kanninen and Popelar, 1985; Anderson, 2005).

1.5 Dynamic Fracture

A comprehensive overview on the development of dynamic fracture 
mechanics, which is concerned with fracture problems in which either 
the applied load or the crack size changes rapidly, can be found in the 
monographs by Freund (1990) and Ravi-Chandar (2004). Linear 
elastodynamic fracture mechanics is the dynamic version of LEFM, 
incorporating inertia effects but neglecting nonlinear material behavior. 
A review paper by Cox et al. (2005) focuses on modern topics and 
challenges in dynamic fracture. For example, hyperelasticity may play an 
important role in the dynamics of fracture where the linear elastic theory 
is incapable of fully capturing all failure phenomena (Geubelle and 
Knauss, 1995; Geubelle, 1995; Gao, 1996; Abraham et al., 1997; 
Buehler et al., 2003; Tarantino, 2005).
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The first important dynamic crack propagation analysis was 
conducted by Yoffe (1951) for the problem of a moving Griffith crack of 
fixed length gliding through an otherwise unbounded solid at constant 
speed with the crack opening at the leading edge and closing at the 
trailing edge. This is referred to as the Yoffe problem. The next 
important dynamic crack propagation solutions were contributed by 
Craggs (1960) and Broberg (1960). Craggs (1960) considered the 
extension of a semi-infinite crack at constant speed with the crack face 
loading moving with the same speed as the crack tip. The Broberg 
problem is that of self-similar expansion of a crack from zero initial 
length at constant speed under uniform remote tension. While these 
models were not physically realistic, they provided an indication of the 
influence of the crack speed on the stress state near the moving crack tip.

In a series of papers, Freund (1972b-c, 1973, 1974a-b) provided 
results for dynamic crack growth in an elastic solid subjected to general 
loading. The asymptotic stress fields near a moving crack tip in linear 
elastic materials still have the inverse square-root singularity and are 
generally expressed as

<х„ ( t )= J = = £ '-  {в У  с ) + £ "  (#УС) + % = г  К '  (0 у  с) л  1 -24)

where the functions 1 '(0 ,У С) ,  I? (0 ,V c ) ,  and Zl."(0,Vc ) describe 
angular variation for any value of crack tip velocity Vc for the cases of 
mode-I, II, and III crack growth (Freund, 1990).

The mode-I and 11 dynamic stress intensity factors, K, and Ku , tend 
to zero as the crack velocity approaches the Rayleigh wave speed, 
whereas the mode-HI dynamic stress intensity factor, Km , tends to zero 
as the crack velocity approaches the shear wave speed. The dependence 
of dynamic propagation toughness on crack speed, loading rate and 
temperature can be measured by means of photoelasticity and caustics.

Mott (1947) realized that the inertia effect on crack advance could 
become significant at high crack speed and did the first energetic balance 
analysis of a dynamic crack. An extension of the Griffith energy balance 
approach to dynamic fracture problems with inclusion of the kinetic 
energy, Ek, over the cracked body leads to the following expression for 
the dynamic energy release rate:
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- dW dU dEk
( l 2 5 )

Consider a two-dimensional body A that contains an extending crack 
(Fig. 1.5). A contour Г enclosing the crack tip translates with the crack 
tip moving at instantaneous speed Vc . A dynamic contour integral 
(Atkinson and Eshelby, 1968; Freund, 1972a, 1990) is given by

j f  = Т г | г К '1Л  +(W+pk)Vcn { \d t , (1.26)

where w = j* a^Ujjdt is the stress work density, pk  = рщщ / 2 is the 
kinetic energy density, and Vc = |V C| is the magnitude of the crack speed.

The dynamic contour integral given by Eq. (1.26) is generally not 
path independent in elastodynamics. For quasi-static crack problems, the 
dynamic contour integral is reduced to the conventional 7-integral.

Fig. 1.5. A two-dimensional body A containing an extending crack with contour Г ? 
translating with the crack tip moving at instantaneous speed Vc.

The dynamic energy release rate is the rate of energy flow out of the 
body and into the crack tip per unit crack advance, that is,

G = J0= \nA  + (w+ pk)Vcn i j » (1 *27)

where the limit implies that Г is shrunk onto the crack tip.
For the special case of steady-state crack growth, the displacement 

field wf.(X ,,X 2,r) is invariant in the reference frame affixed to the crack
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tip moving at uniform speed Vc, that is, u.(X v X 2,t) = u.(Xv X 2) , where 
X, = Х ,-У С/ and X2 = X2. Thus, the dynamic contour integral takes 
the special form

h  = | f [{w+pk)dX2 -<тЛ  ^ - d t ) . (1.28)

A particular choice of the contour Г (see Fig. 1.6) enables the 
generalization of the Irwin relationship (1.12) to the dynamic case. If the 
contour Г is shrunk onto the crack tip by first letting S2 —> 0 and then 
<5j —»0 , there is no contribution to the dynamic energy release rate from 
the segments parallel to the X2 -axis. Consequently, the dynamic energy 
release rate can be computed by evaluating only the first term on the 
right-hand side of Eq. (1.27) along the segments parallel to the X { -axis, 
that is,

G = J 0 = у  l i m l i m A (*,  A ■ (X ,, <52,/ ) < « , , (1.29)

where the factor 2 is introduced to account for the sides of the rectangle 
at X2 = S 2, by symmetry.

Thus, the dynamic energy release rate can be related to the dynamic 
stress intensity factors by

G = h  = j [ A ,  (VC)K] + A„ (УС)К1\ + ~ А Ш (VC)K;„, (1.30)

where , Au , and Aul are universal functions of crack speed and 
material properties (Freund, 1990).

4 * 2

Fig. 1.6. A convenient selection of the contour Г .
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Increasing interest in engineering applications of polymeric materials has 
consequently stimulated the study of viscoelastic fracture mechanics 
which incorporates a time-dependent response. Willis (1967) first 
considered anti-plane, steady-state crack propagation in an infinite 
viscoelastic medium. Later, Atkinson and Popelar (1979) and Popelar 
and Atkinson (1980) investigated dynamic crack propagation in a 
viscoelastic strip subjected to mode-I and III loadings. Knauss (1970, 
1973, 1974), McCartney (1977), and Christensen (1979, 1982) explored 
the possibilities of generalizing the Griffith energy balance approach to 
viscoelastic fracture problems. Discussions on viscoelastic fracture 
criteria occurred between Christensen and McCartney (Christensen, 
1980, 1981; McCartney, 1980, 1981; Christensen and McCartney, 1983), 
leading to further studies on this subject (Nikitin, 1984). Meanwhile, 
Schapery (1975a-c) developed a crack-tip model for viscoelastic 
materials based on an assumption of the material behavior in the fracture 
process zone. Schapery (1984) also developed correspondence principles 
and a generalized У-integral for large deformation and fracture analysis 
of viscoelastic media. An overview of the constitutive equations, fracture 
and strength models for nonlinear viscoelastic solids can be found in 
Schapery (2000).

Fracture characterization of polymers, polymer blends, and 
composites in hygrothermal environments is essential for safety 
assessment and life prediction for many practical applications. The major 
challenge lies in the coupling among thermal, mechanical and other 
physicochemical effects involved in time-dependent fracture. For 
example, experimental and analytical studies have shown evidence of a 
large temperature rise in the vicinity of a fast moving crack tip in metals 
and polymers (Weichert and Schonert, 1978; Maugin, 1992; Kotousov, 
2002). This temperature rise may participate in governing the fast- 
running crack through influencing the energy release rate. Diffusion adds 
another complexity to time-dependent fracture problems. High stress and 
temperature gradients associated with the crack tip lead to thermally- and 
mechanically-enhanced fluid transport, which, in turn, affect the energy 
release rate. For polymeric materials subjected to combined mechanical

1.6 Viscoelastic Fracture
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loading and hygrothermal exposure, Chen (2007) developed a consistent 
thermodynamic formulation of a coupled hygro-thermo-viscoelastic 
fracture theory from the global energy balance equation and the non­
negative global dissipation requirement based on fundamental principles 
of thermodynamics.

An extension of the Griffith-Irwin-Orowan theory to hygro-thermo- 
viscoelastic fracture problems, with incorporation of the coupling and 
dissipative effects, leads to the expression

dW dH dEk
dt dt dt

= GA + J  pkdV  + j  psfdV  

-£ /> (Д (Л - p t s))cU)dV (1.31)

+JVJm ' -(fl/> - f ' "  -  V(/> + V(IV V >

where G is the generalized energy release rate serving as the 
thermodynamic driving force conjugate to the crack variable А, H is the 
Helmholtz free energy over the cracked body, p  -  p {f) + p {s) is the total 
mass density, p {/) and p {s) are the densities of the fluid and solid phases, 
A is the rate of viscous dissipation per unit mass, T is the absolute 
temperature, s is the entropy per unit mass, fi{f) and fi{s) are the 
chemical potentials of the fluid and solid phases, c(/) = p (f)/ p  is the 
mass fraction of the fluid phase, j (/ } is the mass flux of the fluid phase, 
f (/) and f (s) are body forces acting on the fluid and solid phases, and 
v(/) and vU) are the accelerations of the fluid and solid phases.

Under isothermal conditions in the absence of fluid diffusion, Eq. 
(1.31) is reduced to the global energy balance approach for viscoelastic 
fracture (Knauss, 1970; McCartney, 1977; Christensen, 1979, 1982):

= C A + f  p k d V . (1.32)
dt dt dt

For a two-dimensional crack problem, the generalized contour 
integral is related to the energy flux through the contour Г affixed to the 
crack tip moving at instantaneous speed Vc by

h  i +p{h + k)VcSij]njd t ,  (1.33)
V C
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where h is the Helmholtz free energy per unit mass and к is the kinetic 
energy per unit mass.

The difference between the generalized contour integrals along the 
paths Г, and Г2 is caused by unsteady, viscous, thermal and 
hygroscopic effects as well as the total body force, that is,

Jf. - J t  = 77—[f. -~-(ph + pk)dA -  f p{-\dA +\_  pkdA 
2 1 Vc М2Э t J/'l2 JA12

+ f psTdA-\_  p(fi{f)- f i {s))cif)dA\,
JA n JA „

(1.34)

where Д , is the difference in the areas enclosed by the contours Г, and 
Г2 including the crack faces, and f = (p{/)f (/) + p (s)f (0) / p  is the total 
body force per unit mass.

The generalized energy release rate is the rate of energy flow out of 
the body and into the crack tip per unit crack advance, that is,

G = 70= } im j^ -  [ j c r  u, + p(h + k)Vc6Xj b j d r  j . (1.35)

For quasi-static and dynamic fracture characterization of elastic 
materials, Eq. (1.33) is reduced to the conventional У-integral and 
dynamic contour integral, respectively. Without accounting for fluid 
diffusion, Schapery’s crack-tip model (Schapery, 1975) relies on a 
special form of Eq. (1.35).

The generalized energy release rate method and the generalized 
contour integral method should give consistent results, independent of 
material systems, loading and environmental conditions. An 
experimental study by Frassine and Pavan (1990) has verified that the 
observed behavior of an elastomeric epoxy resin is in qualitative 
agreement with the theoretical predictions by the global and local 
approaches for viscoelastic fracture, which are the special cases of the 
generalized energy release rate method and the generalized contour 
integral method presented here. Another experimental and numerical 
investigation on crack propagation in carbon/epoxy composite (Gamby 
and Delaumenie, 1993; Gamby and Chaoufi, 1999) has also 
demonstrated the agreement between Christensen’s model and 
Schapery’s model.



16 Fracture M echanics o f  E lectrom agnetic M aterials

1.7 Essential Work of Fracture (EWF)

Fracture characterization for new ductile materials, such as polymeric 
thin films, toughened polymers and polymer blends, has greatly 
stimulated the development of fracture mechanics, which, in turn, plays 
an important role in design and safety evaluation with an optimum 
combination of stiffness, strength and toughness. Energy release rate and 
stress intensity factor in LEFM are widely used to characterize fracture 
toughness of glassy polymeric materials under brittle fracture (Atkins 
and Mai, 1985). If plastic flow occurs, the energy approach becomes 
more complicated. The У-integral (Rice, 1968) based upon deformation 
plasticity is used as an alternative.

Nevertheless, crack advance in an elastoplastic material involves 
elastic unloading and nonproportional loading around the crack tip, 
neither of which can be adequately accommodated by deformation 
plasticity. Hence, the У-integral theory might break down for a 
combination of significant plasticity and crack growth. In addition, it is 
difficult and cumbersome to use for the evaluation of impact fracture 
toughness. Similarly, the 7-integral testing procedure for fracture 
toughness characterization of polymeric thin films is cumbersome. 
Accordingly, a simple yet elegant method, i.e., the essential work of 
fracture (EWF) method, was developed by Cotterell, Mai and co-workers 
(Cotterell and Reddel, 1977; Mai and Cotterell, 1980, 1986; Mai et al., 
2000) from the unified theory of fracture (Broberg, 1971, 1975). It has 
been adopted by many research groups for the experimental 
measurement of fracture toughness for thin metal sheets, polymeric thin 
films, toughened plastics, and blends. A European Structural Integrity 
Society (ESIS) Test Protocol for Essential Work of Fracture has also 
been established (1997). The advantage of this technique lies in its 
experimental simplicity and ease of test data analysis.

The general concept of the EWF Method for toughness measurement 
is demonstrated in Fig. 1.7. There exists an inner autonomous zone, 
which is crucial to the fracture process, called the fracture process zone 
(FPZ). As crack growth is accompanied by permanent deformation of the 
surrounding material, plastic dissipation in the outer region is not directly 
associated with the crucial fracture process. The total work of fracture,
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Wf , can be partitioned into the essential work imported into the fracture 
process zone (a material property) and the nonessential work absorbed by 
the outer plastic zone (geometry-dependent), that is,

Wf =W ,+ W p. (1.36)

Fig. 1.7. A schematic o f  a double-edge notched tensile specimen, showing the inner 
fracture process zone and the outer plastic zone.

The specific essential work of fracture can be conveniently 
determined using deep-crack specimens, where the height of the outer 
plastic zone may be proportional to the ligament length. Hence, the 
essential work of fracture is proportional to the ligament length and the 
nonessential work of fracture is proportional to the square of the 
ligament length, leading to the expression

wf = we +fiwpl ,  (1.37)
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where wf = (Wf / BI) is the specific total work of fracture, wc is the 
specific essential work of fracture, wp is the specific nonessential work 
of fracture, and /? is a geometry-dependent plastic-zone shape factor.

On the assumption that we is a material property and wp and P  are 
independent of / in all tested specimens, there should be a linear relation 
when wf is plotted against / according to Eq. (1.37). By extrapolation of 
this line to zero ligament length, the intercept at the Y-axis and the slope 
of the line give we and /?wp , respectively. Therefore, Eq. (1.37) 
provides a sound theoretical basis for a simple yet elegant experimental 
method of determining we from the load-displacement curves for 
specimens of different ligament lengths.

Mai and Cotterell (1986) also showed the following equivalence: 
\ve = Jc , J3wp = (1 / 4)dJR / da for double-edge notched tension (DENT) 
and deep center notched tension (DCNT) specimens, and 
J3wp = ( \ l  2)dJR I da for deep single-edge notched tension (DSEN) 
specimens.

1.8 Configuration Force (Material Force) Method

The notion of the Newtonian force is clarified by its role in describing 
the motion of a body. By contrast, the concepts of the energy-momentum 
tensor (also referred to as the Eshelby stress tensor) and the configuration 
force (also referred to as the material force) are introduced in the 
interpretation of the evolution of material microstructures such as defects 
(Eshelby, 1951, 1956, 1970). The nature of the configuration force and 
its application to fracture have been discussed by Stumpf and Le (1990), 
Maugin and Trimarco (1992), Maugin and Berezovski (1999), Gurtin 
(2000), Steinmann (2000), Steinmann et al. (2001), and Nguyen et al. 
(2005), among others.

Eshelby (1970) recognized the use of the energy-momentum tensor in 
the 7-integral, that is,

J = J n - b d r - i j  = J e ,, (1.38)

where b = iv I - o  uV is the energy-momentum tensor, J = j  n -b t/Г  is 
the configuration force (also referred to as the Jk -integral vector), and
e, is the unit vector along the crack advance direction.
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For steady-state crack growth, the dynamic contour integral can be 
rewritten as

J = J_n br/f e, = j  ё , , (1.39)

where b = ( w + £ ) I - a u V  is the dynamic energy-momentum tensor, 
and j  = J n -b t/Г  is the dynamic configuration force.

Hence, the classic /-integral or its dynamic counterpart, the J - 
integral, are the projection of the configuration force on the crack 
advance direction. The material force (configuration force) method 
affords a uniform treatment of complex material behaviors in inelastic 
fracture, as demonstrated by Nguyen et al. (2005) for the quasi-static 
case. The formulation requires only that the constitutive relations are 
derived from a free energy density and that the evolution of inelastic 
strain conforms to a dissipation potential.

For a simple illustration, the presentation is restricted to quasi-static 
small-strain problems. An internal variable description of associative 
elastoplasticity assumes the existence of a free energy density function 
4*(Ee,a) for an additive decomposition of the strain tensor into elastic 
and plastic parts, that is,

e = et'+ e /\  (1.40)

where a  is an internal strain governing the hardening behavior.
The energy-momentum tensor is defined as

b = vP(ef , a ) I - o  uV . (1.41)

Under quasi-static conditions, the resulting local balance of energy- 
momentum relates the divergence of the energy-momentum tensor to two 
material body force terms, each of which is the product of the gradient of 
one internal strain and its thermodynamic conjugate stress, i.e.,

V b  + o :V e p + q : V a  = 0 . (1.42)

Consider a crack in an otherwise homogeneous body as shown in Fig. 
1.8. In the material force framework, crack growth is treated formally as 
a change in the material configuration. A contour Г with outward unit 
normal N is defined to trace the external boundary of the body £> and 
the crack surfaces. It is joined to a similarly defined contour Ts 
surrounding the infinitesimal volume £ls containing the crack tip.
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N

Fig. 1.8. A crack in an otherwise homogeneous body. (From Nguyen et al., 2005, with 
permission from Elsevier).

The global energy-momentum balance is obtained as

where the global material and dissipation forces are defined by

The global material force corresponds to the path-domain integral 
developed by Moran and Shih (1987a-b) and Simo and Honein (1990) 
for elastoplasticity. For elastic problems, the global dissipation force 
vanishes so that the global material force becomes path independent.

If the elastic strain energy density, Uc, instead of the free energy 
density, 'P , is used to define the energy-momentum tensor in Eq. (1.41), 
the result, in the absence of strain hardening, becomes the Jk -integral 
given by Kishimoto et al. (1980):

f N • b d S -  lim f [ - ( a : Vep + q : Va)]dV =  lim f N • hdS , (1.43) Jr ^ £->oJr*

F"“ = | r N • bdS -  Fdissip, 

Fd'“ip= l im f  - ( a t V e ' + q i V c i ) d V .s^ola-a,

(1.44)

(1.45)
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where £*. = £i} -  s i  are the components of eigenstrains (thermal strain, 
plastic strain, etc.) in the formulation of Kishimoto and co-workers.

1.9 Cohesive Zone and Virtual Internal Bond Models

The cohesive zone or yielded strip models have been developed for 
examining the crack-tip behavior of materials (e.g., metal, polymer, and 
concrete) which may exhibit nonlinearity and viscosity by many 
researchers, including Barenblatt (1959a-c, 1962), Dugdale (1960), 
Irwin (1961), Knauss (1974), Schapery (1975), and Hillerborg et al. 
(1976). In order to describe the inelastic behavior in the fracture process 
zone ahead of a crack tip, it is assumed that the material along the crack 
path obeys a specified traction-separation function in the cohesive 
surface model (e.g., Tvergaard and Hutchinson, 1992; Xu and 
Needleman, 1994).

5, 1 1 1 1 1 1  t t  t t

Y ield ed  strip or 
co h esiv e  zone

1 1 1 1 1 1 1 1 1 1

Fig. 1.9. Dugdale-Barenblatt model.

As shown in Fig. 1.9, Dugdale (1960) applied this concept to the 
problem of a Griffith crack in an elastic-plastic material on the 
assumption that the opening of prospective crack surfaces ahead of the 
crack tip be opposed by a closing stress equal to the yield strength of the
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material. The elastoplastic problem was thus turned into a simple elastic 
one, which is similar to the analysis of the cohesive forces at a crack tip 
by Barenblatt (1959a-c, 1962). The condition that the total stress 
intensity factor for the Dugdale model must be zero for nonsingular 
stresses yields

K, = —(<7V -  a ) +  2crv.^ - s in у  1 =  0 .

The extent of the cohesive zone is thus given by 

dp = ( l - a ) - a {  s e c / ? - l ) ,

where

b J ^ ~ .
2

If cr/<7V is small, Eq. (1.48) can be approximated as

(1.47)

(1.48)

(1.49)

d = -
p 8

(1.50)

This expression can be compared with the estimation of the plastic 
zone size by the Irwin approach (1961):

0 1 
Г' = 2Г> = *

(1.51)

Wells (1961, 1963) suggested that fracture in metals occurs when the 
crack-tip opening displacement (CTOD) reaches a critical value. The 
CTOD can be calculated from the elastic field (Goodier and Field, 1963) 
as

5, =
'&crya '

ln(sec P) (1.52)

Generally speaking, if the extent of the cohesive zone is small enough 
compared to characteristic dimensions, regardless of the force-separation 
law, the 7-integral, the energy release rate, the stress intensity factor, and
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the crack-tip opening displacement are all equivalent fracture mechanics 
parameters under small-scale yielding conditions, that is,

J = G = K f j  E = J* <j(S)dS. (1.53)

For limited amounts of crack extension, the tearing modulus approach 
generally gives a more accurate assessment than that based only on the 
critical У-integral at crack initiation. The crack-tip opening angle 
(CTOA) appears to be an attractive alternative parameter in elastic- 
plastic analysis of extended amounts of stable crack growth accompanied 
by significant elastic unloading (Kannimen and Popelar, 1985).

Recent advances in nanotechnology have provided a strong impetus 
for understanding the fracture behavior of nanoscale materials. Many 
classical fracture mechanics concepts will no longer be applicable as the 
characteristic dimension of a structure becomes comparable to or smaller 
than the size of the cohesive zone near a crack tip. For example, no well- 
defined crack front was observed in molecular dynamics simulations of 
nanowire fracture (Walsh et al., 2001). Gao and Klein (1998) and Klein 
and Gao (1998) developed a virtual internal bond (VIB) method with 
direct incorporation of a cohesive interactive law into the constitutive 
model so that crack initiation and growth become natural consequence of 
the method without a presumed fracture criterion. Gao and Ji (2003) 
applied the VIB method to study fracture in nanomaterials with a focus 
on the features that are unique at nanoscale. They investigated the 
transition of the fracture mechanism from the classical Griffith fracture 
to one of homogeneous failure near the theoretical strength of the solid 
with no stress concentration at the crack tip. Ji and Gao (2004) also 
studied fracture mechanisms in biological nanocomposites via the VIB 
method with a focus on the effects of protein and protein-mineral 
interfaces. Volokh and Gao (2005) further proposed a modified VIB 
(MVIB) formulation, which allows for two independent linear elastic 
constants.

The VIB method was developed based on an extension of the so- 
called Cauchy-Born rule for establishing continuum constitutive 
equations with the use of atomic-like bond potentials. This is a multi­
scale assumption that relates the motion of atoms to continuum 
deformation measures. Under this assumption, atoms in a crystal move
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according to a single mapping from the undeformed to the deformed 
configurations. As the mapping is taken to be the deformation gradient F, 
a link between the discrete microstructura! description and the continuum 
constitutive model is attained by equating the strain energy density to the 
potential energy stored in a virtual network of internal cohesive bonds, 
that is,

w(E„) = (1/(0) = + 2 £ E u4j ) ) ,  (1.54)

where Eu = (C /; - S u) / 2  is the Lagrange strain tensor, also called the 
Green-Lagrange strain tensor, CtJ =FklFu is the right Cauchy-Green 
deformation tensor, (/(/) is the bond potential, denotes the bond 
orientation, I is the bond length, /0 is the length of the unstretched bond, 
and (•••} is a weighted average with respect to a bond density function.

Thus, the symmetric (second) Piola-Kirchhoff stress can be obtained 
from the derivative of the strain energy density function as

The finite-deformation form of the /^in tegral is given by

JK= ^ a - W N j d T ,  (156)

where Tu is the asymmetric (first) Piola-Kirchhoff stress tensor 
satisfying the relation

TijFp = Fi'L'jFjj = jOy . (1.57)

The onset of fracture predicted by the VIB model is not only 
determined by the choice of the bond potential but also by the state of 
deformation in the fracture process zone (Klein and Gao, 1998; Gao and 
Ji, 2003; Ji and Gao, 2004). The size of the fracture localization zone h 
can be evaluated via У-integral analysis by selecting a contour that lies 
along the upper and lower edges of the localization zone (see Fig. 1.10);

h = -------(1.58)
x D 0U  (/„)

The size of the fracture localization zone is correlated with the 
fracture energy and the virtual bond potential of the VIB model. The
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cohesive surface models only apply the traction-separation law to the 
crack plane rather than to the bulk of the material, whereas the VIB 
method does not assume pre-existing weak paths and directly 
incorporates the cohesive interactive law into the constitutive model on 
the continuum level. A VIB-based finite element method (VIB-FEM) is 
typically used to simulate the fracture process with crack nucleation and 
growth represented by separation of two adjacent nodes near the crack 
tip, resulting in localization of strain within one overstretched sheet of 
mesh. An important difference between VIB-FEM and conventional 
FEM lies in the specific physical meaning of the mesh size in VIB-FEM, 
which is no longer a purely numerical concept as in conventional FEM.

Cohesive zone

Fig. 1.10. Illustration o f fracture localization zone and У-integral contour. (From Gao and 
Ji, 2003, with permission from Elsevier).



Elements of Electrodynamics of Continua

Chapter 2

Electrodynamics is a branch of physics which studies electric charges in 
motion, whereas mechanics is the science of force and motion of matter 
(Fung and Tong, 2001). Electrodynamics of continua or continuum 
mechanics of electromagnetic materials is concerned with the behavior 
of deformable electromagnetic materials modeled as continuous media 
under combined magnetic, electric, thermal, and mechanical loadings. 
The ten fundamental laws, namely (1) conservation of mass, 
(2) conservation of linear momentum, (3) conservation of angular 
momentum, (4) conservation of energy, (5) entropy inequality, 
(6) Gauss’s law, (7) Faraday’s law, (8) Gauss’s law for magnetism, 
(9) Ampere’s law, and (10) conservation of electric charges, may be 
applied to material points (particles) at the continuum level. Since these 
general physical laws are insufficient for formulating a deterministic 
problem, it is necessary to specify the material laws, which rest upon the 
axioms within the framework of continuum mechanics. In an attempt to 
extend classical fracture mechanics to deformable electromagnetic 
materials, we shall make a summary of the elements of electrodynamics 
of continua in this chapter, including conventional terms and notations, 
Maxwell equations, balance equations of mass, linear momentum, 
angular momentum and energy, constitutive relations and transport laws 
from the general nonlinear formulation to the simple linearized theory. 
The reader who desires more information may refer to the literature, 
from classical treatises (e.g., Landau and Lifshitz, 1960; Eringen, 1980; 
Maugin, 1988) to recent papers (e.g., Dorfmann and Ogden, 2003-2006; 
McMeeking and Landis, 2005; McMeeking et al., 2007; Vu and 
Steinmann, 2007; Suo et al., 2008; Kuang, 2008; Bustamante et al., 
2009; Trimarco, 2009).

26
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2.1 Notations

In this section, physical terms and notational conventions are presented 
for the statement of basic field equations and they will be used 
throughout the book. Modeling a body as a continuum is a mathematical 
approximation that is highly accurate when the characteristic length in 
macroscopic phenomena is much larger than the atomic size. Under this 
hypothesis, the atomistic structure of the body is ignored and 
neighboring points remain as neighbors under any loading condition.

2.1.1 Eulerian and Lagrangian descriptions

The Eulerian (spatial) description, in terms of the spatial coordinates and 
time, focuses on what is occurring at a fixed point in space as time 
progresses, whereas the Lagrangian (material) description, in terms of 
the material or referential coordinates and time, gives attention to 
individual particles as they move through space and time. The choice of 
two distinct coordinate systems (see Fig. 2.1), one for the reference 
configuration at time t0 and the other for the current configuration at 
time t, has many advantages in describing the motion and deformation of 
a continuous body.

Fig. 2.1. Two coordinate systems for reference and current configurations.
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A position vector is used to characterize a particle within a deformable 
body in the current configuration as

з
* = 2> Л  = x kek , (2.1)

k=\

where л*А. are the spatial coordinates of the particle and ek are mutually 
orthogonal unit base vectors in a Cartesian coordinate system for the 
current configuration. The summation over the repeated index implied by 
the last entry in the continued equality is adopted as a convention. An 
index that is summed over is called the dummy index, and one that is not 
summed over is called the free index.

This vector can be expressed as a function of the particle position in 
some reference configuration; for example, the configuration at initial time, 
that is,

X = £ x KEK = X KEK9 (2 .2)
K=\

x = X(X,0, (2.3)
with inverse

X =% -l(x ,0 , (2.4)

where X K are the material coordinates of the particle and are 
mutually orthogonal unit base vectors in a Cartesian coordinate system 
for the reference configuration.

The vector joining the positions of a particle in the initial and current 
configurations is called the displacement vector, that is,

u = x - X .  (2.5)

Vectors and tensors are represented by boldface and their components 
are represented by means of subscripts throughout the book. The 
rectangular components of a vector n and a second-order tensor A are

n* = n-e*, пк = п - Ё к , (2.6)

Ay =®f ■ А-ёу, Au = Ё / -А ЁУ, (2.7)

where the dot denotes the inner product operator.
The inner product or the dot product of two vectors m and n is a scalar 

with value



m n = n m = S ijir if r i j =  , (2.8)

where 5 is the Kronecker delta symbol
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. 1 for i = j

The right or left dot product of a second-order tensor A and a vector n is 
a vector with components

(A • n). = A ijt i j , (n • A),. = A y P j . (2.10)

The double dot product of two second-order tensors is a scalar with 
value

А :В  = В :А  = Д ^ ; =В„Д,,.. (2.11)

The cross product of two vectors m and n is a vector 1 with components 

lk = ( mx n ) k = - ( n x m ) k = € jjkminji  (2. 12)

where £ijk is the permutation symbol

=
+1 if ijk is an even permution of 123
- 1  if ijk is an odd permution of 123 . (2.13)
0 otherwise

The nabla notations in the Eulerian and Lagrangian descriptions, 
respectively, are given by

v  = (214)
oxk

The deformation gradient is defined as

(2.15)
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where the symbol ® is the dyadic product as an outer product of two 
vectors and a comma is used to denote partial differentiation when 
Cartesian coordinates are used. The index К after the comma denotes the 
partial derivative with respect to X K , whereas the index к after the 
comma denotes the partial derivative with respect to xk .

The Jacobian determinant is given by

j  = det(F) =

3£j_ Эл:, Эл:,
ax , ЭХ2 э х 3
dx2 дх2 Элг2
ЭХ, ЭХ2 ЭХ3
Эдг3 Эх, Эл'з
эх7 ЭХ2 ЭХ3

(2.17)

The right and left Cauchy-CJreen deformation tensors are defined as

С = Fr • F , 

b = F F 7\
The Lagrange strain tensor is defined as

E = —( C - I )  = —(Fr 
2 2

F - I ) .

(2.18)

(2.19)

(2.20)

The material time derivative of a tensor A, denoted either by the 
symbol d/ d t  or a superimposed dot, is defined as

dA _  д  _  dA
dt dt

(2 .21)

where X is kept constant during material time differentiation.
The velocity vector v is the material time derivative of the position 

vector or the displacement vector of a particle, that is,

du Эи
v = —  = u = -— 

dt dt
(2.22)

The deformation rate tensor d is the symmetric part of the velocity 
gradient, that is,

d = i ( v V  + Vv) . (2.23)
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The vorticity vector oo is defined as

a> = —V x v .  (2.24)
2

The convective time derivative of a vector m, denoted by a super­
imposed asterisk, is defined as

m = m - ( m - V ) v  + m ( V - v ) . (2.25)

If a vector field m  in the reference configuration is associated with a 
vector field m in the current configuration by

ril =  j F 1 m , (2.26)

then the material time derivative of the vector field m  is related to the 
convective time derivative of the vector field m by

rii =  y'F"1 • m . (2.27)

2.1.2 Electromagnetic field

The electromagnetic field can be viewed as a combination of the electric 
field and the magnetic field, which are mathematically represented as 
vectors. The electric charge in a body may be positive or negative. The 
motion of charged particles in a given direction is known as the electric 
current. The Maxwell equations and the Lorentz force law have been 
used to describe the way that charges and currents interact with the 
electromagnetic field. It is known that the Maxwell equations are form- 
invariant with respect to the Lorentz transformations. Since a high 
velocity close to light speed is not easily achievable in solid material 
media, to which this book is devoted, the Galilean approximation is 
adopted hereafter instead of a relativistic treatment.

The electromagnetic field quantities in a fixed Galilean frame Rc , also 
referred to as the laboratory frame, are denoted by P, E, D, M, В, H, ĵ ,, 
where P is polarization, E is electric field, D = £‘0E + P is electric 
displacement, M is magnetization, В is magnetic induction, H = B///0 -  M 
is magnetic field, j e is total electric current, €0 is vacuum permittivity, and 
//0 is vacuum permeability.

The field quantities in the co-moving frame Rc are introduced by
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E  =  E + v x B ,  (2.28)
M  = M  + v x P ,  (2.29)

H  =  H - v x D ,  (2.30)

y'( = J e - 9/ v . (2-3!)

where E is electromotive intensity, j e is conduction current, and qf  is 
the free electric charge density.

2.1.3 Electromagnetic body force and couple

The force that the electromagnetic field exerts on electrically charged 
particles is called the electromagnetic force, which is one of the 
fundamental forces in nature. The other fundamental forces are the 
strong interaction, the weak interaction, and the gravitational force. All 
other forces are ultimately derived from these four fundamental forces. 
The electromagnetic field contains electromagnetic energy with a density 
proportional to the square of the field intensities. The Lorentz force law 
that describes the force acting on a point charge due to the 
electromagnetic field has been used to construct the expressions for the 
electromagnetic body force and couple in continuous media.

The Lorentz force acting on a point charge Sqa in a microscopic 
volume element (see Fig. 2.2) is

S f a = 8q a [ e (x “ ) +  v “ x b ( x “ ) J ,  (2.32)

where e(xa ) and b (xa ) are the microscopic electric field and the 
microscopic magnetic induction at x ff, respectively.

The electromagnetic force and the electromagnetic couple acting on the 
microscopic volume element are given by, respectively,

„„fAv =  Z ^ e ( x + ^ ) + Z < % “ (v + 4 “ +  l “ ) x b ( x + r ) .  (2-33)
a a

™ lAv = X (x + ) x e(x + £ “ )
“ . (2.34)

+ I ^ “ (x + ^ ) x [ ( v  + 4“ + 4“ ) x b ( x  + ^ ) ] ,
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where x + £a is the average position of the point charge 5qa and is 
the fluctuation velocity.

Fig. 2.2. Microscopic volume element.

The macroscopic electromagnetic field quantities are introduced by

E(x) = e(x), (2.35)

B(x) = b (x ) , (2.36)

qf Av = Z&]a , (2.37)
a

= (2.38)
a

M A v = - I < % “^ a x 4 a , (2.39)
2 a

j eAV = Z&Iai a ■ (2.40)
a ,

Thus, the expressions for the electromagnetic body force em f  and the 
electromagnetic body couple em с are

einf = ^ £  + a + P ) x B  + (P-V)i5 + (VB)-M,  (2.41)

e„ ,c = „ „ l-x x emf = P x S  + M x B .  (2.42)
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Hence, polarization is related to the electric dipole moment, 
magnetization is related to the magnetic moment, and conduction current is 
related to the fluctuation velocity of charges (Mazur and Nijboer, 1953). A 
material is electrically polarized if P is nonzero, whereas a material is 
magnetized if M is nonzero. Materials can also be classified as conducting, 
semiconducting, or insulating, based on their ability to conduct electric 
current.

2.1.4 Electromagnetic stress tensor and momentum vector

There exist an electromagnetic stress tensor em O- and an 
electromagnetic momentum vector Gk (Eringen, 1980; Maugin, 1988), 
such that

(2.43)

« с*  =«*»«. о* • (2.44)

One solution is
mio = P 0 £ - B ® M  +  ( M- B) I  + f oE 0 E

, (2.45)

G = £0E x В , (2.46)

where emuf  = £ 0Е -Е /2  + В -В /(2 //1) is the energy density of the free 
electromagnetic field, and I is the second-order unit tensor.

By introducing the Maxwell stress tensor involving only the free 
electromagnetic field

f a  = f 0E ® E  + B ® B / Ju0- w,1H/ I ,  (2.47)

the electromagnetic stress tensor em a  can be decomposed as
(2-48)

with
fmc  = P ® £ - B ® M  + ( M ' B ) I .  (2.49)

Therefore, the electromagnetic body force and couple can also be 
expressed as
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e m  f k  — i f  к + e m  & i k , i  » (2.50)

e m  С  к  ^kij e m  ® i j  > (2 -5 1 )

where Lf = qeĴ E + j f f xB = V-FG-dG/dt  is the effective Lorentz 
force, qeff = qf -  V • P is the effective charge density, and 
j f  = j e + P + V x M is the effective current.

Hence, the electromagnetic stress tensor can be taken as an extension of 
the Maxwell stress tensor in classical electrodynamics, which also involves 
the contribution due to polarization and magnetization defined by Eq. 
(2.49). For the special case of electrostatics or magnetostatics, we have the 
electric stress eG = D ® E - eiif I or the magnetic stress 
/„ a  = B ® H  + (M B ) I -m«/ I with the corresponding energy density 
denoted by euf = e 0E-E/2  or muf  =B- B/ (2 fo) .

2.1.5 Electromagnetic power

The electromagnetic power is the rate of work done by the 
electromagnetic forces, that is,

«  wAv = (V + +  i a )  ■ e(x + % a ) . (2.52)
a

The useful equivalent expressions for the electromagnetic power density 
in terms of different time derivatives are listed as follows:

„ w = E ~ - M ~ + V . [ v ( E - P ) ] + j , - E ,  (2.53) 
St dt

'mW='„f v + PE n - M * + j ' E > (2-54)

.H ’=y,f  v+,„c (D+e a:d + £  P - M  B + / ,  £ , (2.55)

where 71 = P Ip  is the polarization per unit mass and p  is the mass 
density.
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2.1.6 Poynting theorem

The Poynting vector, which represents the flux of the electromagnetic 
energy, is denoted by S = E x H  in the laboratory frame Rc and by 
S = E x H  in the co-moving frame Rc .

The Poynting theorem in Rc gives the identity

H ~  + E ~  = - j t E - V S .  (2.56)
dt dt

With use of this identity, the electromagnetic power density can be 
expressed in a new form

Э. и
= ---- V [ S - v ( E P ) ] .  (2.57)

at
The Poynting theorem in Rc gives the identity

H B + E D = - j c E - V  S . (2.58)

Using this identity, the electromagnetic power density can be expressed 
in another form

d r f Л
е п У + V - [ L c  + v ® G  ) - v - S ] .  (2.59)

2.2 Maxwell Equations

With use of the notations in Section 2.1, the set of equations named after 
James Clerk Maxwell are expressed in a fixed Galilean frame Rc as

V D = qf% (2.60)

V x E  + ^ -  = 0 , (2.61)
dt

V B  = 0 , (2.62)

V x H - ^  = j e . (2.63)
at

Equation (2.60) is Gauss’s law that relates the divergence of the 
electrical displacement to free charge density, Eq. (2.61) is Faraday’s law
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that describes how a changing magnetic field is related to the induced 
electric field, Eq. (2.62) is Gauss’s law for magnetism which shows that the 
magnetic induction has zero divergence, and Eq. (2.63) is Ampere’s law 
which states that magnetic field can be generated either by an electrical 
current or by a changing electric field. From Eqs. (2.60) and (2.63), the 
electric charge balance equation is obtained as

= (2.64)

In the co-moving frame Rc , the Maxwell equations are rewritten as

V D  = qf , (2.65)

V x E + B  = 0 , (2.66)

V B  = 0 , (2.67)

V x t f - D  = ./,. (2.68)

With the introduction of the corresponding Lagrangian fields Q f = jq f ,
A . A ■ Л /4 * • J

D = yF ' D , B =  / F - - B ,  E = E  F ,  H  = H  F ,  and 
the material formulations of the Maxwell equations (Lax and Nelson, 1976; 
Trimarco, 2002, 2009) are given by

V « D  =  e /> (2.69)

Vs x £  + B = 0 ,  (2.70)

V * -B = 0 , (2.71)

V Rx H - i )  = J e , (2.72)
Д « д $

where В = j ¥ ~ l В and D = JF D are used following the relation (2.27).
The material formulation of the electric charge balance equation is 

obtained from Eqs. (2.69) and (2.72) as

- Q f  = V R J e. (2.73)

If field quantities are discontinuous across a surface moving at a speed 
vs , the Maxwell equations and the charge balance equation are replaced by 
the following jump conditions in the Eulerian description (Eringen, 1980):
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n[[D ]]= fiT / t  (2.74)

n x [[E  + B x ( v - v J ] ]  = 0 , (2.75)

n [[B ]]  = 0 , (2.76)

n x [ [ f f - D x ( v - v , ) ] ]  =  0 , (2.77)

n • [[У* +<?/(v-V j)]] + —2 ^  = 0 , (2.78)

where [[• • •]] represents the jump of the field quantity inside the double 
square brackets across the moving surface, S /S t  denotes the convective 
time derivative operator following the motion of the surface along its 
normal, n is the unit normal to the surface, and GJf  is the free surface 
charge density.

Interface or boundary conditions for electromagnetic field quantities in 
the Eulerian description can be obtained by considering a special surface of 
discontinuity moving at the speed = v , that is,

n-[[D]] = fiT/ , (2.79)

n x [[E ]]  = 0 , (2.80)

n [[B ]]  = 0, (2.81)

n x [ [ # ] ]  = 0 , (2.82)

n [ L /c] ] + - ^ r -  = 0 . (2.83)
ot

In the Lagrangian description, the jump conditions across a surface of 
discontinuity moving at a speed Vs through the material can be rewritten as

N - [ [ D ] ] = ^ ,  (2.84)

N x [ [ E - B x V J ]  = 0 , (2.85)

N-[[B]] = 0 , (2.86)

Nx[[tf + DxV ]] = 0, (2.87)
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where V,=F' ' -vs , V = F ' ' v ,  Gff =GJf da/dA ,  N = f 'n -Fda/dA  is 
the unit normal of the moving surface in the initial configuration, and 
da/dA = j ^ N KCKLN L is the ratio of the area elements in the current 
configuration to those in the reference configuration.

Interface or boundary conditions for electromagnetic field quantities in 
the Lagrangian description can be obtained as the surface of discontinuity 
coincides with the interface or boundary considered, that is,

N -[[D ]]= A /f  (2.89)

N x [[£ ]]  = 0 , (2.90)

N [[B ]] = 0 , (2.91)

N x [[tf]]  = 0 , (2.92) 

SGJf
N•[[7,]] + —=- -̂ = 0. (2.93)

2.3 Balance Equations of Mass, Momentum, Moment of 
Momentum, and Energy

Following the notations in Section 2.1 we use conservation laws in order 
to derive the local field equations for balance of mass, momentum (linear 
momentum), moment of momentum (angular momentum), and energy, 
in addition to the Maxwell equations. These balance equations are valid 
irrespective of material constitutive laws.

Based on the law of conservation of mass, the local mass balance 
equation is given by

^ - = - p V v ,  (2.94)
dt

where p  is the mass density in the current configuration.
In the material formulation, the local mass balance equation can be 

rewritten as

Pa = } P . (2-95)

where p 0 is the mass density in the initial configuration.



40 Fracture Mechanics of Electromagnetic Materials

Based on the law of conservation of momentum, the local linear 
momentum balance equation is given by

/>-7 - = V -<J+/Jf+e,„ f , (2.96)
at

where о is the Cauchy stress tensor and f is the mechanical body force 
per unit mass.

Based on the law of conservation of angular momentum, the local 
angular momentum balance leads to

W - C* = 0 - (2.97)

Using the electromagnetic stress tensor enia and the electromagnetic 
momentum vector G  defined in Eqs. (2.45) and (2.46), Eqs. (2.96) and 
(2.97) become

P ^ r  = v '(o+ „„o ) + p (2-98) 
dt dt 

е«№ ч+ 'т° ч ) = ° -  (2.99)

Thus, the total stress tensor {a = a+ei)lG is symmetric, that is, 
,cr = fcr., although the Cauchy stress tensor or the electromagnetic stress 
tensor may not be symmetric.

In the material formulation, the local linear and angular momentum 
balance equations can be rewritten as

Po(y + k) = Vr •(,T +Po V ® i)  + A,f • (2-100)
« = 0 , (2. 101)

where g = GIp is the electromagnetic momentum per unit mass and 
,T = yF-1 *, о  is the first Piola-Kirchhoff total stress tensor.

Based on the conservation law of energy, the local energy balance 
equation is given by

f A
p ^ -  = - V - i q + o : y V  + pE i z - M  B + E j ey (2.102)

where e is the internal energy per unit mass and is the heat flux.
Applying Poynting’s theorem as discussed in Section 2.1.6, the local 

energy balance equation (2.102) becomes
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P ^ e  + k+emuf ) = - V- i q + V [ ( lc + y ® G ) \ - S ] + f i \ 1

(2.103)
where emu - emuf  I p  is the energy of the free electromagnetic field per 
unit mass.

In the material formulation, the local energy balance equation can be 
rewritten as

Poe + Pok + Poemuf  = -V*  •J9+ V /?-[(/T + V®g)  v - S ]  + /?0f -v,

(2.104)
where = j¥~] ■ and S = j¥~l • S  .

If field quantities are discontinuous across a surface moving at a speed 
v,, Eqs. (2.94), (2.98), and (2.103) are replaced by the following jump 
conditions:

n -[[/> (v -v 5)]] = 0 , (2.105)

n - [ [ (v -v J)® /T v -(,c  + v,® G )]] = 0 , (2.106)

n [ [ ( v - v J)(/Je+/3t+fm« / ) + j ? - ( , a + v ® G ) - v  + S]] =  0.

(2.107)

Interface or boundary conditions for total traction and heat flux in the 
Eulerian description can be obtained by considering a special surface of 
discontinuity moving at speed vs = v , that is,

n -[[/a  + v® G ]] = 0 , (2.108)

п [Ц г  - ( /a + v ® G ) -v  + S]] = 0 . (2.109)

In the Lagrangian description, the jump conditions across a surface of 
discontinuity moving at a speed Vs through the material can be rewritten as

N - [ [ A , W 1 ]  =  0 .  (2.110)

N ■[[(-VJ) ® / 90(v + g ) - ( , T  + p 0V ® g)]] =  0 , (2.111) 

N [ [ ( - V s)(/70« + M + P o , m"/ ) + J , - ( , T + V ® g ) v + S ] ]  =  0.

(2.112)
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Interface or boundary conditions for total traction and heat flux in the 
Lagrangian description can be obtained as the surface of discontinuity 
coincides with the interface or boundary considered, that is,

N • [[,T 4- p 0V  ® g]] = 0 , (2.113)

N*[[J9 - ( ,T  + V ® g )-v  + S]] = 0. (2.114)

2.4 Constitutive Relations

The Helmholtz free energy per unit mass is defined as

h = ё - T s  y (2.115)

where T is the absolute temperature and s is the entropy per unit mass. 
Substituting (2.115) into (2.102) yields

ds 1 . 1 1 . 1 n—  = ------ V J + — g:vV + —E я -------M B
dt pT 4 pT T pT

л (2.116)
, 1 17 ‘ 1 1 dh+ — E ■ / -----s T ----------.

pT e T T dt

The entropy production inequality is 
d s  ds 1

j s > 0 ,  (2.117)
dt dt p

where j 5 is the entropy flux.
In the reference configuration, the entropy production inequality can be 

rewritten as

^  =  - + - V , - J , > 0 ,  (2.118)
dt d t p 0

where = jF~' - j j .
Substituting (2.116) into (2.118) gives

—  =  —  V r ) + —  j ,  V r - +  —dt p 0 T p 0 R T p 0T

H— —  £Z : C + — i n ---- —  > 0,
2p0T E p j  p 0T T T dt

(2 .1 1 9 )
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where £ £  = y'F ‘^ a -C F  !)r  is the second Piola-Kirchhoff stress tensor 
conjugate to the right Cauchy-Green deformation tensor C,

A Л a

EG = G+limo - Fa=(G-FG is symmetric, E = E - F , П  = jF~ ■ P , 
M  = M  F , B = jF - '  B , J q =  y'F"1 • j 9 , and J e = jF - ' j e.

Material laws should satisfy the restrictions imposed by the fundamental 
principles of thermodynamics. As an illustration, we focus on the behavior 
of a typical magneto-electro-thermo-elastic solid for which the Helmholtz 
free energy h is taken to be a function of deformation, temperature, 
temperature gradient, polarization, and magnetic induction in the reference 
configuration VR with respect to which the deformation gradient F is 
measured, that is,

h = h(C,7\ V*7\ П, В; X ) . (2 .120)

Since the entropy production inequality (2.119) should always be valid, 
it is necessary and sufficient that the state equations fulfill the following 
conditions:

Э h = 0 , (2.121)

ET.KL = 2 p 0 —  , (2. 122)
°CKL

s = ~ ,  (2.123)
ЭТ ’ 

J h  
ЭП*

_d[ 
as

EK = P o ^ ~ ,  (2-124)

M K = - p 0- ^ L ,  (2.125)
К

(2126)
T

= V * i  + - ! - £ - . / , > 0 .  (2.127)
dt p 0 T p j



44 Fracture Mechanics o f Electromagnetic Materials

From Eq. (2.121), the Helmholtz free energy does not depend on the 
temperature gradient. Since the inequality (2.127) should always be 
satisfied, transport laws for coupled heat conduction and electricity 
conduction can be determined accordingly.

It is proposed that the thermodynamic fluxes for heat conduction and 
electricity conduction depend linearly on the corresponding thermodynamic 
forces with the Onsager reciprocity relations, that is,

J , = l o t v r I + 1 l - ' ' £ ,  

Je=  L ^ V r 1 + I l « £ ,

where the coefficient matrix

(2.128)

(2.129)

(2.130)

is positive definite. It can be seen that the generalized transport laws 
(2.128) and (2.129) contain Fourier’s law and Ohm’s law as well as the 
Peltier-Seebeck effect.

Thus, the coupled heat transfer equation is obtained from Eq. (2.116) 
with the use of the state equations as

d Г Э h
~dt ~ d T

i f q

1 T
~ v q V е'

r£ f e e p q f e e

(2.131)

2.5 Linearized Theory

Nonlinear constitutive equations incorporating magneto-electro-thermo- 
mechanical coupling effects can be formulated when the free energy is 
expanded in its arguments. In the reference configuration VR, expansion 
of the Helmholtz free energy with respect to strain, temperature, 
polarization, and magnetization for an anisotropic magneto-electro- 
thermo-elastic solid to the second-order terms gives



Elements o f  Electrodynamics o f  Continua 

p Qh — p QhQ — PqSo0+ eT, ki + ЕКПК — M KBK

+  ~ ^ C K L M N ^ K L & M N  ~  f M K L ^ K j ^ - M  ~  f M K L ^ K L & M

+ ~^Ckl^ k^ l ~ ^ Z kl^ k^ l - Л оА А

~~^Zt C h Q ~ P kJ ^ kl® ~  У Р\ Д ~  Y k &k &'
Z70

where the Lagrange strain tensor E  = (C —1)/2  and the temperature 
change 0 = T -T q  are used, cKLMN, f MKL, f MKL, ( KL, ЛК1, X k l» » 
Pkl* У к . are material properties, cKLMN=cMNKU ( kl = Clk> 
X kl ~  X lk  ■

Substitution of Eq. (2.132) into Eqs. (2.122H2.125) yields anisotropic 
constitutive equations in finite deformation:

E^KL~E^KL + CKLMN̂ MN ~ fMKlfiM ~ fMKL&M ~ PKL& » P - 133)

= “  IkLM^LM + CkL^-L~ ̂ KL^L~yK^ » (2.134) 

M К = M 0K + fKLM Еш + ̂  ft l  + j r f A  + > (2-135)

A)1* = /V o  + P kl^ kl + д: + + • (2.136)
*0

The first terms on the right-hand sides of Eqs. (2 .133)—(2.136) stand 
for the values of EZ>KL, Е к , M K, and /?0s in the reference state, the 
second terms for mechanical contribution, the third terms for electric 
contribution, the fourth terms for magnetic contribution, and the last 
terms for thermal contribution.

By linearization about the initial configuration, Eqs. (2.133)—(2.136) 
become

E  &kl ~ E &kl + Cklnm £mn ~ fmkl ̂ m ~ fmkl ̂ m ~ Pkl & » (2.137)

Ek = El -  fL t im  +CuPi- K * i  -  y Pk ° . (2-138) 

M k = M I + fum£Im + \Ik f*l + Xkl ВI + Yk& » (2.139)

Po$ = /V o  + Pkl£kl + Уk ?!: + У к &к + ~̂ Г ̂  H & » (2.140)
У0

where £тп =(чт%п +unjn)/2  is the infinitesimal strain.

45

(2.132)
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With the use of P = D -  f 0E and M = B///0 -  H , we can rewrite Eqs. 
(2.137)—<2.140) with the strain, electric field, magnetic field, and 
temperature change as independent variables:

E a kt = Е СГк1 +  Cklnm £ mn ~  e mkt “  ^m kl P k l&  ’ (2. 141) 

Dk =£>“ + е ы„Л л  + ки Е, + gklH, + Щ 0,  (2.142)

В к ~ &к + hum £im + 8 ik Ei + Mki H i + Mo У к &» (2.143)

/ V  = Pô Q + Pkl£k! + Щ &k + МоУк H к & ' (2.144)
yo

By transformation, we can also rewrite Eqs. (2.141)—(2.144) with the 
stress, electric field, magnetic field and temperature change as independent 
variables:

£ kl = £ kl + Sklmn E G mn + ^mkl + ̂ m k l^ m  + a kl ® » (2.145) 

D k = D°k + d * m E crlm + K ° E t + g * H ,  + Gfk 6 , (2.146)

Bk = B°k + r f l  e * i.  + g lE i  + Mu Hi + . (2-147)

/ V  = Po^o + <*u E &kl + ®k &к + /4)% + ~ZT ^ ^ ^  ̂ 8)
h

It is obvious that the material constants in the equivalent constitutive 
representations are related, which means that material constants in one 
constitutive representation can be transformed to those in another 
constitutive representation. Material constants are subjected to constraints 
imposed by the thermodynamic requirement for stable materials (Alshits et 
al., 1992). The physical meanings for commonly used material constants 
are listed in Table 2.1.
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Table 2.1 Physical meanings o f material constants

Symbol Physical Meaning
Ckhiin ~ C)tmkl ~ С/ктп = k̂liim elastic moduli

$ll_ dielectric permittivity
Hkl-liik magnetic permeability
emkl = em!k piezoelectric coefficients
hmki h/nlk piezomagnetic coefficients
8kl magnetoelectric coefficients
(Ok pyroelectric coefficients
Yк pyromagnetic coefficients

Pkl thermal moduli
c . specific heat

Materials with nonzero emkl exhibit piezoelectricity, that is, 
mechanical load can produce electric polarization or electric field (direct 
effect) and, vice versa, electric load can produce deformation or stress 
(inverse effect). The direct piezoelectric effect was first discovered by 
Pierre Curie and Jacques Curie (1880) in some crystals such as 
tourmaline and quartz. A year later, the inverse piezoelectric effect was 
theoretically predicted by Lippmann (1881) and subsequently confirmed 
experimentally by the Curies (1884). By analogy, materials with nonzero 
hmki exhibit piezomagnetism, that is, mechanical load can produce 
magnetization or magnetic field (direct effect) and, vice versa, magnetic 
load can produce deformation or stress (inverse effect). The first 
experimental observation of piezomagnetism was made by Borovik- 
Romanov (1960) in the fluorides of cobalt and manganese.

Materials with nonzero Ct)k exhibit pyroelectricity, that is, temperature 
change can produce electric polarization or electric field (direct effect) and, 
vice versa, electric load can produce temperature change (inverse effect). 
Correspondingly, materials with nonzero yk exhibit pyromagnetism, that 
is, temperature change can produce magnetization or magnetic field (direct 
effect) and, vice versa, magnetic load can produce temperature change 
(inverse effect).

The cross terms due to nonzero gkl represent the magnetoelectric 
coupling effect. The co-existence of piezoelectric, piezomagnetic and 
magnetoelectric coupling is called the magneto-electro-mechanical 
coupling. Advances in state-of-the-art technology have facilitated the
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formation of new monolithic materials and the synthesis of composite 
materials, which, remarkably, breaks down the performance barriers 
encountered with conventional materials. We refer the readers to the 
Handbook of Electromagnetic Materials: Monolithic and Composite 
Versions and their Applications (Neelakanta, 1995) for detailed 
classification of different classes of electromagnetic materials and 
characterization of various material properties.

In summary, the full set of dynamic field equations of coupled magneto- 
electro-thermo-elasticity are listed as follows:
Maxwell equations:

V D  = q f y  (2.149)

V x E  + ̂  = 0 , (2.150)
Э/

V B  = 0 , (2.151)

V x H - ^  = j e . (2.152)
dt

Equation of continuity:

Equation of motion:

—  = -/?V • v . (2.153)
dt

p ^ -  = V - , o + p ( ~ .  (2.154)
d t  d t

Heat transfer equation:

p T ^  = - V j „  + E j e . (2.155)

Infinitesimal strain-displacement relation:
e  =  ( V u + u V ) / 2 . ( 2 . 1 5 6 )

Constitutive relations (linearized theory):

E  O k i  =  C k lm n  £ n ill —  e m k l  ~  K i l d ^ m  ~  P k l  &  » ( ^ . 1  5 7 )

D k  =  e k l m £ lm  +  K k l E l  +  8 k l H l  +  > ( 2 . 1 5 8 )

В  к = hklm£ lm + 8  Ik E l + Mkl H I + МоУк & * 1
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Jump conditions:

PoS = Pki£kl+ 4 E k +МоГкН к + ^ C V0 ,
'o

(2.160)

= - k ?<? • V 6)+T0k qe - E , (2.161)

j c = - k eq VO + k "  E . (2.162)

n [ [ D ] ] = 6T/ , (2.163)

nx [[E ]] =  0 , (2.164)

n [[B ]]= 0 , (2.165)

п х [[Я ]] = 0 ,

8.W,
n [\je +qf (v v ,)]]+  -  = 0 ,

(Л

(2.166)

(2.167)

n [ [ /7 ( v - v j ] ]  = 0 , (2.168)

n [ [ ( v - v v)® /7 v -( /a  + vJ ®G)]] = 0 , (2.169)

n-[[(y~vs){pe+pk+emuf )+ iq - ( ,C + v ® G )-v + S ] ]  = 0. 

Initial conditions:

ul = u o > lr=/0 0 ’

(2.170)

(2.171)

о>IIif (2.172)

III (2.173)

оиIIII
w

(2.174)

Hi = H 0 .l/=/0 0 (2.175)

Boundary conditions may be obtained by letting vs = v in the jump 
conditions (2.163)—(2.170). Prescribed boundary and initial conditions must 
be compatible with uniqueness of solution.

In the classical linear theory of piezoelectricity (Voigt, 1910) and its 
extension, all fields are small so that stress and momentum due to the
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electromagnetic effects become second-order and can be omitted in the 
formulation,i.e., a  ~ 0 , Fc  = 0 , G  ~ 0 .

In practice, it is sometimes convenient to introduce the so-called Voigt’s 
notation with the relations between the indices 11 —► 1, 22 —> 2, 33 —> 3, 23 
—► 4, 31 —> 5, and 12 —> 6 so that constitutive equations (2.157)—(2.162) 
may be expressed in matrix form as

{TP} = [Cpq ]{<■,} -  [e,„r ]T[E,„) -  ]T [ H m (2.176)

{Dt ) = [et,]{£ ,}  + [Ar(.( ] { E ( ) + [ g t, ] { t f ,  } + {*>* )0 ,  (2.177) 

{ B J = [**,]{£, } + [g „ ]r (£ ,)  + [ ^ ] { « , )  + //0{ n )i9 , (2.178)

p 0s = { p  }r { f , } + [Щ }T [Ek ) + ц 0{ук )T{Hk ) + ± С ге , (2.179)

where

U i )

кT11 T0[k }>

1 Л } = - i K ? н * * 7 ] ( £ , }

~ { e  Cr\ l >E C722,£ a 33'E ^ 2 3  ’ iE ^ 3 1  *£• ^ 1 2

( * „ }  == {f M >^22 1,eJ3,2e.23^;31 ’^ f 12 V ,

C 11 C 12 C 13 C I4 C 15 C 16
C, 2 C22 C23 C 24 C25 C 26

[c,„] = C 13 C23 C33 ^34 C35 C 36
ИЧ

C I4 C24 C34 C44 C45 C46

C 15 С 2 5 C35 C45 C55 C56

.CI6 C 26 C36 C46 C56 C66_

(2.180)

(2.181)

(2.182)

(2.183)

(2.184)

[*•«]=
“23

(2.185)

№\\ A|2 /*13
/ 1̂2 Lhi Мгз 

_M\ з №23 №33

(2 .1 8 6 )
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«11 «12 e,3 «14 «15 «16

[ % ] = e2\ «22 «23 «24 «25 «26

/31 e32 «33 «34 «35 «36,

A , /2,2 Л13 Л14 Л,5 Л.б'

[ \ ] = К ^22 h23 /*24 *25 л26

J h  i ^32 к зз ^34 /г35 V

[<£ kl ]
£ll 812 #13 

8 21 8 22 8 23 
_8з1 8 32 £зз.

} Г  = { г ,  У 2 У з } .  

{ £ / = ^ 1  А  А  А  А  А)»

(2.187)

(2.188)

(2.189)

(2.190)

(2.191)

(2.192)

*11
ЬЯЯ

12 к й

М * ] =
ЬЯЯ

12
ЬЯЯ
*22

ЬЯЯ
23 > (2.193)

и?
*13

ЬЯЯ
23

ЬЯЯ
*33

~кее К\ 1 к ее12
, ее' 
*13

№ П  =
» ее 

12
«ее 
К 22 » ее

23 1 (2.194)

.*»

, ее
23

1 ее 
*33

~кеч*11 *.7 *.7‘

•о

V 5-
8

Г = *21 *22
Ь еЯ
*23 (2.195)

ь ея
*31 *3 2 *33

The number of material properties required for coupled multifield 
analysis depends on the material type. For a general anisotropic material, 
there are a total of 21 (elastic stiffness) + 6 (dielectric permittivity) + 6 
(magnetic permeability) + 18 (piezoelectric coefficients) + 18 
(piezomagnetic coefficients) + 9 (magnetoelectric coefficients) + 3 
(pyroelectric coefficients) + 3 (pyromagnetic coefficients) + 6 
(thermoelastic coefficients) + 1 (specific heat) + 6 (thermal conductivity) +
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6 (electric conductivity) + 9 (thermoelectric coefficients) =112  independent 
material constants.

The material constant matrices for the special case of transverse 
isotropy with the a*3 -axis in the poling direction become

Ci i Cp C|j 0 0 0
0

13

12

13 33

0 0 0

44

44

0
0
0
0

“ (Сц “ с1г)

0 0 "
[*•„]= 0 **П 0 *

0 0 *33 _

>11 0 0 “

ш = 0 Ми 0 у
0L 0 Мъг_

"0 0 0 0 615 0 '

[«* ,]= 0 0 0 e \s 0 0

_е з\ 1е31 *33 0 0 0

"0 |0 0 0 h]5 0~

0 0 0 hl5 0 0

j h  1 *э» *33 0 0 0_

-§п 0 0 '
[« « ] = 0 £п 0 >

0 0 £зз.

{<У*}Г ={0 0 <У3},

( п Г = { о  о уъ1  

{PqY ={Р\ А А о о о},

(2.196)

(2.197)

(2.198)

(2.199)

(2.200)

(2.201)

(2.202)

(2.203)

(2.204)
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kjf 0 0

№ 5 4 = 0 *11 0 > (2 .205)
0 0 и ?к зз ^

~ k ee*n 0 0 "

№ ? ] = 0 ,ee
*11 0 (2.206)

0 0 ,ee 
*33 _

b e4AC,, 0 0 "

[ * £ П = № П Г = 0 k eq*11 0 (2.207)

0 0 k s

It can be seen that the transversely isotropic material symmetry reduces 
the number of independent material constants from 112 to 28, comprising 5 
(elastic stiffness) + 2 (dielectric permittivity) + 2 (magnetic permeability) + 
3 (piezoelectric coefficients) + 3 (piezomagnetic coefficients) + 2 
(magnetoelectric coefficients) + 1 (pyroelectric coefficient) + 1 
(pyromagnetic coefficient) + 2 (thermoelastic coefficients) + 1 (specific 
heat) + 2 (thermal conductivity) + 2 (electric conductivity) + 2 
(thermoelectric coefficients).

In particular, for piezoelectric materials with hexagonal symmetry (class 
C6v = 6m m ) in the absence of electricity conduction, the number of 
independent material constants may be further reduced to 16, consisting of 
5 (elastic stiffness) + 2 (dielectric permittivity) + 3 (piezoelectric 
coefficients) + 1 (pyroelectric coefficient) + 2 (thermoelastic coefficients) +
1 (specific heat) + 2 (thermal conductivity).

In crystallography, a point group, also called a crystal class, is a set of 
symmetry operations like rotations or reflections. There are 32 possible 
combinations of symmetry operations, resulting in 32 point groups. 20 of 
the 32 crystal classes exhibit piezoelectricity, which is the property of 
nearly all non-centrosymmetric crystals. Only 10 of the 20 piezoelectric 
crystal classes exhibit pyroelectricity, which is the property of all polar 
crystals. Crystal classes are commonly represented in the Schoenflies 
notation and the Hermann-Mauguin notation (Ikeda, 1990; Hahn, 2005). 
C6v is in the Schoenflies notation, where the character “C ” is for cyclic, 
the subscript “6” for six-fold rotation axis and “v” for vertical mirror planes
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containing the axis of rotation. 6mm is in the Hermann-Mauguin notation, 
where the first character refers to the primary symmetry direction (six-fold 
rotation axis) and the second and third characters refer to the secondary and 
tertiary symmetry directions (mirror planes).

The quasi-electrostatic approximation indicates that there is almost no 
change in the magnetic field with time. Thus, Faraday’s law (2.150) can be 
simplified to

V x E = 0 .  (2.208)

As a result, the electric field E  is related to a scalar function called the 
electric potential 0 through

E  = - V 0 .  (2.209)

The quasi-magnetostatic approximation indicates that there is almost no 
change in the electric displacement with time. Thus, Ampere’s law (2.152) 
can be simplified to

V x H  = j , .  (2.210)

If the electric current can be ignored, the magnetic field H is related to a 
scalar function called the magnetic potential у/ through

H  = - V ^ .  (2 .211)

For some applications, both quasi-electrostatic and quasi-magnetostatic 
approximations may be made without loss of accuracy. Since the basic field 
equations for anisotropic magneto-electro-thermo-elastic problems have a 
similar mathematical structure to those for anisotropic elastic and 
thermoelastic problems, the existing solution procedures in anisotropy 
elasticity as reviewed by Ting (1996, 2000) can be readily extended to 
multifield analysis. Among the powerful techniques for solving two- 
dimensional problems in anisotropic elastic materials, the Lekhnitskii 
formalism (Lekhnitskii, 1950) starts with the stress functions and then the 
compatibility equations, whereas the Stroh formalism (Stroh, 1958) stalls 
with the displacements and then the equilibrium equations. The solution 
techniques for crack problems in electromagnetic materials will be 
discussed in Chapters 4-8.
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Chapter 3

Hysteresis effects pose new challenges for the modeling of deformation 
and fracture processes in time-dependent materials. In this chapter, we 
will outline the basic equations of thermoelasticity, viscoelasticity and 
thermoviscoelasticity as prerequisites for understanding the subject 
matter in later chapters. Further information may be found in the books 
by Williams (1973), Eringen (1980), Ferry (1980), Christensen (1982), 
Ward (1983) and Fung and Tong (2001). The reader who is familiar with 
these theories may skip this chapter.

3.1 Thermoelasticity

Consider an anisotropic thermoelastic body subjected to external forces 
and heating. The reference state is taken as the initial stress-free state at 
the reference absolute temperature, T0. The temperature change from the 
reference state is

в  = Т - Т 0, (3.1)

where T is the instantaneous absolute temperature.
A transient coupled thermoelastic problem is mathematically 

formulated with basic equations and appropriate boundary and initial 
conditions as follows.
Equation of continuity:

p = - p v u - (3-2)

Equations of motion:

P v ,= ^ i . i+P f r  О-3)

55
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Infinitesimal strain-displacement relation:

1
2£li = x ( “u +«;.,)• (3-4)

Duhamel-Neumann relation:

(3-5)

Fourier’s law for heat conduction:

j ? = ~ k ,A r  (3-6)
Heat transfer equation:

Initial conditions:

р т Л ё а + р с гв = - Л ,-  (3-7)

u U = u o> (3.8)

« L 0= v o , (3-9)

* 1 = 0 .  (3.10)

Boundary conditions:
u = u fl on Slt, (3.11)

n a  = tfl on Sat (3.12)

в  = вв on V  (3.13)

n - j ,  = <?„ o n S , ,  (3.14)

where S\ | refers to a certain part of the boundary: displacement is 
prescribed on Su, traction on Sa (the complement of SH), temperature 
on Se , and heat flux on Sq (the complement of Se ). Therefore, we have 
Su u  Sa = S and Se u  Sq = 5 . Other mixed boundary conditions may 
also be possible which satisfy the existence and uniqueness theorem 
(Eringen, 1980; Fung and Tong, 2001).

It is usually rather difficult to solve boundary-initial value problems 
involving coupled effects under transient conditions. As discussed by 
Fung and Tong (2001), uncoupled, quasi-static approximations may be 
made in most engineering applications by omitting the coupling term in
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the heat transfer equation (3.7) and the inertia term in the equations of 
motion (3.3).

3.2 Viscoelasticity

Viscoelastic materials such as polymers display the characteristics of 
both elastic solids and viscous fluids. Accelerated test methods have 
been developed based on the time-temperature superposition principle 
(TTSP) under the approximation that at higher temperatures and shorter 
time periods a polymeric material will behave the same as at lower 
temperatures and longer time periods. The material behavior can be 
modeled by various combinations of springs and dashpots to represent 
elastic and viscous components. The simplest models of linear 
viscoelasticity are the Maxwell model and the Kelvin-Voigt model 
(Ward, 1983; Fung and Tong, 2001), which comprise an elastic spring 
and a viscous dashpot in series or parallel (Fig. 3.1).

(a) (b)

Fig. 3.1. Simplest models o f linear viscoelasticity: (a) Maxwell model and (b) K elvin- 
Voigt model.
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For the Maxwell model, the spring stress is equal to the dashpot 
stress, and the total strain is a sum of the spring strain and the dashpot 
strain. Thus, we have

—  = (3.15)
dt Em dt Tjm

By integration with a specified step function for strain e = €0h(t) , Eq. 
(3.15) becomes

<T(r) = £„,£oexp f - ~ j '  (ЗЛ6)

where T = Tjm / Em is called the relaxation time.
The generalized Maxwell model is represented by multiple Maxwell 

elements arranged in parallel, that is,
/  • \

<r(0  = X £J l exP
t - t d£{{)d t ,  (3.17)

dt

where En and T„ are the spring constant and the relaxation time of the 
/2th Maxwell element.

The above summation can be written as a convolution integral

f f ( l ) = [ ' С ( ( - ( ) ^ Л ' ,  (3.18)
dt

where G (0  = G v+J / / ( r ) e x p ( - f / r ) d r  is called the relaxation 
function, Gr is the relaxed modulus, and H (t) is the relaxation time 
spectrum.

Let cr^t) and €- (t) be the stress and strain tensors defined in the 
time interval -°o<t<oo.  Equation (3.18) can be extended to a three- 
dimensional, anisotropic constitutive law of the relaxation type:

<Гц(1) = \ '^G ijkI(t - 1) d£^ ‘ ) dt , (3.19)

where Giju (0  is called the tensorial relaxation function.
By contrast, for the Kelvin-Voigt model, the spring strain is equal to 

the dashpot strain, and the total stress is a sum of the spring stress and the 
dashpot stress. Thus, we have
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°  = EV£+T]Vde
~dt

(3.20).

By integration with a specified step function for stress, a  = cr0li(t), 
Eq. (3.20) becomes

£ = ̂ -
E..

1 — exp I — (3.21)

where t = tjv / Ev is called the retardation time.
The generalized Kelvin-Voigt model is represented by multiple 

Kelvin-Voigt elements arranged in series, that is,

1-e x p
t - t dcr(t)

dt
dt, (3.22)

where En and Tn are the spring constant and the retardation time of the 
IIth Kelvin-Voigt element, respectively.

The above summation can be written as a convolution integral

dcr(t')
s 0) = l '

dt
(3.23)

where J(t) = Ju + j  L ( r ) [ l - e x p ( - / / r ) ] d r  is called the creep function, 
J tl is the instantaneous compliance, and L(r) is the retardation time 
spectrum.

Similarly, Eq. (3.23) can be extended to a three-dimensional, 
anisotropic constitutive law of the creep type:

d<Ju(t) 
dt

5y(0 = - t )  da “?  - d t , (3.24)

where Jijkl(t) is called the tensorial creep function.
It has been shown that the inverse of Eq. (3.19) exists and can be 

written as Eq. (3.24) if Gijkl{t) is twice differentiable and the initial value 
of Gijkl (t) at t = 0 is nonzero (Gurtin and Sternberg, 1962). Discussions 
on the thermodynamic restrictions on these functions and applications of 
the Laplace transform to solving linear viscoelastic problems can be 
found in the books by Christensen (1982) and Fung and Tong (2001).
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3.3 C oupled Theory of Thermoviscoelasticity

The fundamental principles of thermodynamics have been applied to 
physical, chemical, mechanical, and biological processes in several ways 
(e.g., Groot and Mazur, 1962; Eringen, 1980; Truesdell, 1984; Muller 
and Ruggeri, 1993; Fung and Tong, 2001; Truesdell and Noll, 2004). As 
pointed out by Schapery (2000) in an overview of constitutive, fracture, 
and strength models for nonlinear viscoelastic solids, nonequilibrium 
thermodynamic approaches are, essentially, of two types. In state- 
variable thermodynamics, the free energy is expressed as a function of 
current strain (stress), temperature, and other variables, including so- 
called internal state variables (e.g., Coleman and Gurtin, 1967; Rice, 
1971; Schapery, 1969, 1994, 1997, 1999; Horstemeyer and Bammann, 
2010). In functional thermodynamics, the free energy is expressed as a 
functional of the histories of strain (stress), temperature, etc. (e.g., 
Coleman, 1964; Crochet and Naghdi, 1969; Cost, 1973; Eringen, 1980; 
Christensen, 1982; Lustig et al., 1996; Caruthers et al., 2004; Chen and 
Wang, 2006). The use of “functional” as a mathematical term originates 
in the calculus of variations, which is concerned with the minimization of 
a functional with its arguments as functions. Here, we will summarize 
the thermodynamic formulation of a coupled theory of 
thermoviscoelasticity at finite deformation.

3.3.1 Fundamental principles o f  thermodynamics

Based on the first principle of thermodynamics, the local balance 
equations of mass, momentum, moment of momentum, and energy are 
given by

(3.25)

flv _ л
p i i l  = V a  + /7f,

dt
(3.26)

(3.27)

/7^  =  " V ^ + 0 : V V ’
(3.28)
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where p  is mass density, v = ii is velocity, u is displacement, f is 
mechanical body force per unit mass, a  is the Cauchy stress tensor, e is 
internal energy per unit mass, and j9 is heat flux.

Based on the second principle of thermodynamics, the entropy 
production inequality is given by

^ 5 y + - V . j , > ° ,  (3.29)
dt dt p

where s is the entropy per unit mass and js is the entropy flux.
In the reference configuration VR, the entropy production inequality 

can be rewritten as

^ T  = ^ - + — V J . * 0 ,  (3.30)dt dt p 0

where p 0 is the mass density in the reference configuration, 
is the entropy flux in the reference configuration, 

j  = p0 / p  = det(F) is the Jacobian determinant, F = dx/dX  is the 
deformation gradient, X is the position in the reference configuration, 
and x = %(X,r) is the position in the current configuration.

3.3.2 Formulation based on Helmholtz free energy functional

With the use of the Helmholtz free energy h = e - T s y the local energy 
balance equation (3.28) can be rewritten in the reference configuration 
VR as

—  = - — VR- ^ - + — J„ V „ - + —!— Z - . C - - s T - - —  ,(3.31) 
dt p 0 T p 0 T 2 p0T T T d t

where T is absolute temperature, J <7= yF"l -j<7 is heat flux in the 
reference configuration, £  = y'F-1 • a  • F “7 is the second Piola-Kirchhoff 
stress tensor, and C = F r F is the right Cauchy-Green deformation 
tensor.

The Lagrange strain measure and the temperature deviation are given
by

E = —( C - I ) , (3.32)
2
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0 = T - T o . (3.33)

The Helmholtz free energy is taken to be a functional of the histories 
of strain and temperature. In thermodynamics of materials with memory, 
the fading memory hypothesis states that the influence of long past 
events should be weaker than that of recent ones in determining the 
material response (Coleman and Noll, 1960; Coleman, 1964; Truesdell 
and Noll, 2004). Expansion of the Helmholtz free energy functional for 
materials with fading memory up to the second order yields

pjx = Р Л + J 1  L,J (X, f -  T)dE" £ ' T)dT

- j^ M  (X, t -  T)

4 r r (334)

where /?0 is the value of the Helmholtz free energy in the reference state 
(i.e., E = 0 , T=T0\ G IJKL( X , t - T j - ( )  = GKUJ( X , t - C , t - T ) ,a n d  
CH( X , r - r , f - 0  = Cw( X , r - ^ , r - T ) .

Substituting Eqs. (3.31) and (3.34) into (3.30) and performing 
differentiation with respect to time using the Leibnitz rule, we obtain

+J>„ (x,o,r -

— Г ^( Х, <- г , 0) - 8Ец(Х’Т)^  (3-35) 
Д Т  J_~ Эг

С „ (Х ,/-т ,0) в ^ Л ] Г
г . J~" Эг 

+ ^ Л  + — J -Уя1  + — V . (J - i - ) > 0 ,  
г  л  * RT р, R s т ’



where

л л _  Г d . .д Е .,(Х ,г ) ,А>Л — J ^ t )  -  dz
J^°dt dr

а з е

1 Ц а 1Ь - » - { > У У м (

2T0J- J '-Э/ " Ь Эг Ь

Since the entropy production inequality (3.35) is always valid, state 
equations should fulfill the following conditions:
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£ „(X ,r)  = z« (X) + Г G,m (X,0,f-  C)~ y ' C)d C

- f  A v(x ,o ,r - O ^ g ^ < ,
oQ

p 0s(X,t) = M \ X ) +  Г Д , (Х ,< -г ,0 ) — " (X-T)rfr
Эг

+ ^ Г  CH(X ,f -r ,0 )  - (X’r )^ ,
7q d t

(3.37)

(3.38)

(3-39)

— = — J  -V*—+ — > 0 , (3.40)
dt pQ " RT T

where GIJKL(X ,0 ,t~C ), C „ (X j-T ,Q ),  /?„(X ,0 , t - £ ) ,  and 
Pu (X,t  -  T,0) are appropriate memory functions.

The first terms L°j and M° on the right-hand sides of Eqs. (3.37) 
and (3.38) stand for the values of Lu and p0s in the reference state, the 
second terms for mechanical contribution, and the third terms for thermal 
contribution. It is shown from (3.40) that the total dissipation is
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associated with heat conduction and time-dependent dissipation. Since 
the inequality (3.40) should always be satisfied, kinetic laws for specific 
irreversible processes may be determined accordingly.

The time-dependent dissipation rate per unit mass satisfies the 
following inequality:

A > 0 .  (3.41)

It is proposed that the thermodynamic flux for heat conduction 
depends linearly on the corresponding thermodynamic force, that is,

(3.42)

where LqqT = I f 4 is positive definite.
Substituting (3.38) and (3.42) into (3.31) yields the following coupled 

heat transfer equation based on the Helmholtz free energy functional:

P,J( X , t - r , 0) - d r  
dt дт

+ ± f  CH( X , t - T ,0 ) d e (X ’T)dT] (3.43)
T0 J~  дт

= i v * (  t r . v Ke )+ ± p o A ,
1o 1o

where the integral involving the strain history gives rise to a coupling 
between thermal and mechanical effects.

3.3.3 Formulation based on Gibbs free energy functional

With Gibbs free energy g = e - T s - L : E / p0, the local energy balance 
equation (3.28) can be rewritten in the reference configuration as

— = — “"Vj, •— + — J  • Vs —---- i - £ : E — - s T (3.44)
dt p 0 T p0 RT p0T T T dt

The Gibbs free energy is taken to be a functional of the histories of 
stress and temperature. Expansion of the Gibbs free energy functional for 
materials with fading memory up to the second order yields
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-P 08 = ~Po8o + { 4 v  (X,f - r)

f '  K A f V  N ^ ^ ( X , T )+J M ( X , t - r )—

4 l l w  o-«>

J . J -  J '
2T0 дт d£

where g0 is the value of the Gibbs free energy in the reference state (i.e., 
£  = 0 ,  T= T0), J  UKL( X j - r , t  -  ( )  = J  KUJ( X j  -  ( j - T ) , and 
CG(X,t - T , t  -  £) = CG(X,t -  £ ,t - t) .

Substituting Eqs. (3.44) and (3.45) into (3.30) and performing 
differentiation with respect to time using Leibnitz rule, we obtain

^ 1 = - J - [Eu- l i - j ;' j ^ x A t - o ^ ^ d c
dt p0T  d£

- Г  a u (X ,0 ,f-  О  d6<f ' Q  d£]±u fig

[p0s - M °  ~ ^ a u ( X ,/ - r ,0 )  Э£» (Х' 7) d t  (3.46)
PaT "  Эг

1 Г' ^ /v  .  ̂m d0(X,r)
j ’ L . W '  ^’0) <^г]Г

+ I a + ^ - j , - v  * + - L v Jf. ( J , - i
т Po T p Q T

where
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PoA = J '  Э М Х ,< - т ) Э Е „ ( Х ,г ) ^
Э/ Э т 

+ r. ЭМ(X .f - т )  Э#(Х,г)^_ 
J— Эг Эг 

+ I r  f' ЭУшг( Х ,г - г , г - 0 Э Е „ ( Х .т ) Э £ „ .(X .Q  

г- г» ( Х , г - т , г - О  ЭЕ„(X,г) Э0(Х,Q  ^

J _ r  г  ЭСс (Х,г - г ,г  -  С) Э0(Х,г) Э<9(Х,0 
2Г0 dt дт дС

Since the entropy production inequality (3.46) is always valid, the 
state equations should fulfill the following conditions:

E„ (X,r) = L°u (X) + f  J IJKL(X,0,t -  

p0i (X ,0  = M °(X ) + f  « „ (Х ,< -т ,0 )-Э̂ Х’- ) ^ т
J-°° dT

+ ^ f  Cc ( X , t - r , 0 ) - | X^ ) rfr, 
r„ dr

(3.48)

(3.49)

(3-50)

— = — J  V* —+ — > 0 ,  (3.51)
d t p 0 , R T T

where J IJKL(X.,0,t- C ) , C0 ( X , t - r ,  0 ) , a (J(X ,0, / - f ) ,  and 
or/y (X,r -  r,0 ) are appropriate memory functions.

The first terms L°y and M° on the right-hand sides of Eqs. (3.48) 
and (3.49) stand for the values of E/y and p0s in the reference state, the 
second terms for mechanical contribution, and the third terms for thermal 
contribution. It is shown from (3.51) that the total dissipation is 
associated with heat conduction and time-dependent dissipation. Since
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the inequality (3.51) should always be satisfied, kinetic laws for specific 
irreversible processes may be determined accordingly.

The time-dependent dissipation rate associated with the hysteresis 
effect satisfies the inequality

A > 0 .  (3.52)

It is proposed that the thermodynamic flux for heat conduction 
depends linearly on the corresponding thermodynamic force, that is,

J , = L w Vs i ,  (3.53)

where U qT =  Lw is positive definite.
Substituting (3.49) and (3.53) into (3.44) yields the following coupled 

heat transfer equation based on the Gibbs free energy functional:

d r f1 ЭЕ/у(Х,г) ,
— [I a , j (X , t -T ,0)— IJ------ - d t
dt J^° дт

+ Ц '  Cc ( X , / - r , 0 ) 3^ X , f ) rfr] (3.54)
T0 J-  d t

= ^ M  L” - v Re ) + ± PoA,
10 10

where the integral involving the stress history gives rise to a coupling 
between thermal and mechanical effects.

3.4 Thermoviscoelastic Boundary-Initial Value Problems

Coupled thermoviscoelastic boundary-initial value problems can be 
formulated with the balance equations of mass (3.25), linear momentum
(3.26) and angular momentum (3.27), Green strain measure (3.32), 
constitutive relations (3.37) or (3.48), and heat transfer equation (3.43) or 
(3.54), as well as appropriate boundary and initial conditions.

In the small-strain formulation, the basic equations of coupled 
thermoviscoelasticity are summarized as follows:
Equation of continuity:

p  = - p v i i . (3.55)
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Equations of motion:

pv. =<JiJJ+ p f i . (3.56)

Infinitesimal strain-displacement relation:

+«;..)• (3-57)

Constitutive relation based on Helmholtz free energy functional:

(3.58a)
a e(x ,0  = 4  (x) + (x ,0, r -

(3.58b)

Constitutive relation based on Gibbs free energy functional: 

e ,(x ,0  = 4 ( x ) + £ i , jW(x ,0 ,/-

+ | > , ( х , 0, / - О ^ ^ ^ С -

Heat transfer equation based on Helmholtz free energy functional: 

d г  л Эг..(х,г)

+ 7 - f  Cfl( x , r - T , 0 ) ^ ^ d T ]  (3.59a)
T0 дт

=±v-(L” .v0)+±poA.
/ 0 *0

Heat transfer equation based on Gibbs free energy functional: 

d r> Эсг,.(х,т)

+ ^ J '  Cc ( x , f - r , 0 ) ^ ^ r f r ]  (3.59b)
T0 J~  Эг

= J _ v . ( l « . v 0 ) + 1 a A.
*0 Io

Initial conditions are taken as
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u (x ,/)= u 0 ( / < 0 ) ,  (3.60)

u(x,r) = v0 (f = 0), (3.61)

0(x,/) = O ( / < 0 ) .  (3.62) 

Boundary conditions are given by

u = u fl(x,/) on Su ( / > 0 ) ,  (3.63)

n o  = t e(x ,0  on Sa ( / > 0 ) ,  (3.64)

e  = 0B(x,t) on Se ( r > 0 ) ,  (3.65)

n - j* = f t(x .O  on Sq (r > 0 ) ,  (3.66)

where j refers to a certain part of the boundary: displacement is 
prescribed on Su, traction on (the complement of Su), temperature 
on Se , and heat flux on S (the complement of Se ). Hence, we have 
Su u  Sa = S and Se u S q = S . Like thermoelastic problems, other mixed 
boundary conditions for thermoviscoelastic problems may also be used.

Integral transform methods provide a useful tool for solving such 
problems. After an integral transform, such as the Laplace transform, is 
applied to the basic equations for thermoviscoelastic boundary-initial 
value problems, the transformed boundary value problems can be solved 
in a manner similar to that for thermoelastic problems. The final 
thermoviscoelastic solution is then obtained upon inversion of the 
transformed solution. This analogy is often referred to as the 
correspondence principle. For establishment of the existence and 
uniqueness of solutions for linear viscoelastic and thermoviscoelstic 
boundary-initial value problems, the reader may refer to the paper by 
Onat and Breuer (1963) and the book by Christensen (1982).



Overview on Fracture of Electromagnetic 
Materials

Chapter 4

4.1 Introduction

Electromagnetic materials have broad civilian and defense applications 
such as infrastructure monitoring, electronic packaging, novel antenna 
designs, and biomedical devices, due to their remarkable multifunctional 
properties. Energy can be converted from one form to another due to 
interactions between magnetic, electric, thermal, and mechanical effects. 
However, a major concern of these materials is their susceptibility to 
cracking whilst in service (Fig. 4.1). Fracture of these smart material 
systems has become the subject of active research over the past few 
decades because of the rapid development of these new kinds of 
multifunctional materials for various engineering applications (for 
example, see review articles or book chapters by Qin, 2001; Trimarco 
and Maugin, 2001; Zhang et al., 2002; Chen and Lu, 2003; Zhang and 
Gao, 2004; Chen and Hasebe, 2005; Schneider, 2007; Wang et al., 2009; 
Kuna, 2010 including the references cited therein). A general consensus 
is that a major challenge is how to resolve the fundamental discrepancies 
between theoretical predictions and experimental results on crack 
propagation in piezoelectric materials. In this chapter, a summary on 
linear piezoelectric/piezomagnetic fracture mechanics is given, covering 
basic field equations, general solution procedures, crack-face boundary 
conditions, fracture criteria, and experimental observations. Some 
nonlinear problems for which the linear theory is not sufficient will also 
be discussed.

70
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Fig. 4.1. A crack in a PZT multilayer actuator. (From Kuna, 2010, with permission from 
Elsevier).

4.2 Basic Field Equations

The fundamental concepts of fracture mechanics and the elements of 
electrodynamics are described in Chapters 1 and 2, respectively. The 
body o f knowledge developed for describing the fracture behavior of 
piezoelectric materials within the framework of the classical linear 
theory of piezoelectricity (Voigt, 1910) is referred to as linear 
piezoelectric fracture mechanics (LPFM). The extension of LPFM to 
electromagnetic materials inherits the same limitations and drawbacks.

For a simple illustration, the basic field equations in the absence of 
temperature change ( f  = 0 ) and electricity conduction ( j e = 0 ) under 
the quasi-static approximation for the electromagnetic fields are 
summarized as follows:

®ij — Cijkl£kI ~  ^kij^k ~  ^kij^k » (4* 0

D, = eijkeJk + KijEj + giJHj , (4.2)

B, = hijkejk + gjjEj + MijHj, (4.3)
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К
= 2 (" 'V +«/.()> (4.4)

(4.5)

Hi = -V,i > (4.6)

:€II+b* (4.7)

A ,, -  я f  > (4.8)

ja
o II о (4.9)

'iilk > ekij -  ekji > ^kij ~ Kji > к•(, = * > ,  and4JM ~  klij “  ^jikl

Mij -  Mji •
The boundary conditions for a cracked body are given by

n*[[D]] =  G7/ , nx[[E]] = 0 , n [[В]] = 0 , n x [[H]] = 0 , (4.10)

n-[[a]] = 0 , (4.11)

where [[• • •]] represents the jump of the field quantity inside the double 
square brackets across a surface of discontinuity (see Fig. 4.2), n is the 
unit normal vector, and roy is the surface charge density.

The initial conditions are taken as

u = u

u = v
l/=/0

(4.12)

(4.13)

/ '

Fig. 4.2. Jump o f  field quantity / across a surface o f  discontinuity between two regions.
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4.3 General Solution Procedures

Static and dynamic crack problems may be solved by a variety of 
techniques. Barnett and Lothe (1975) first extended the Stroh formalism 
in anisotropic elasticity to treatment of dislocations and line charges in 
anisotropic piezoelectric insulators. Shindo (1977, 1978) studied the 
distribution of mechanical and magnetic fields in an infinite body with a 
planar or penny-shaped crack by the integral transform following a linear 
theory for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Deeg 
(1980) generalized the distributed dislocation approach to piezoelectric 
crack and inclusion problems. Sosa and Pak (1990) conducted an 
eigenfunction analysis of a crack in a piezoelectric material. Sosa (1991) 
started with stress functions and obtained solutions for plane problems in 
piezoelectric media with defects based on the extended Lekhnitskii 
formalism. Pak (1992) applied the dislocation approach to linear electro­
elastic fracture. Suo et al. (1992) solved crack problems in piezoelectrics 
or on the interfaces between piezoelectrics and other materials based on 
the extended Stroh formalism. Dunn (1994) examined the fracture of 
piezoelectric solids based on the equivalent inclusion method of Eshelby 
(1957). Dascalu and Maugin (1995) analyzed dynamic fracture problems 
for piezoelectric materials with inertial effects using the extended Stroh 
formalism. Li and Mataga (1996a-b) described the Bleustein-Gulyaev 
surface wave phenomenon for the propagation of a semi-infinite crack in 
piezoelectric materials using the Laplace transform, Wiener-Hopf, and 
Cagniard-de Hoop techniques. Shindo et al. (1996) and Narita and 
Shindo (1998) reduced the problem of a finite crack subjected to 
longitudinal waves in a dielectric medium or horizontal shear waves in a 
piezoelectric medium to a Fredholm integral equation of the second kind 
by means of the Fourier transform. Qin and Mai (1998) explored the 
application of the thermoelectroelastic Green’s function. Meguid and 
Wang (1998) and Wang and Meguid (2000) studied the dynamic 
behavior of piezoelectric materials containing interacting cracks using 
integral transform techniques and Chebyshev polynomial expansions. 
Finite element method (FEM) and boundary element method (BEM) 
have also been employed for solving complicated thermo-electro­
mechanical boundary-initial value problems (Qin, 2001; Kuna, 2010).
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These typical solution techniques can be readily extended to analysis 
o f magneto-electro-thermo-elastic inclusion or crack problems (e.g., 
Alshits et al., 1995; Chung and Ting, 1995; Kirchner and Alshits, 1996; 
Huang et a!., 1998; Li, 2000; Liu et al., 2001; Sih et al., 2003; Wang and 
Mai, 2003, 2007a; Gao et al., 2004; Du et al., 2004; Hu and Li, 2005; 
Zhong and Li, 2006; Hu et al., 2007; Feng et al., 2007; Zhong et al., 
2009). As one o f the most commonly used techniques for a planar crack 
in anisotropic magneto-electro-elastic materials (Fig. 4.3), the solution 
procedure based on the extended Stroh formalism is illustrated below.

Fig. 4.3. A planar crack in an anisotropic magneto-electro-elastic material.

In the shorthand notation used by Barnett and Lothe (1975), a general 
solution is sought with consideration of displacement components, 
electric potential, and magnetic potential:

Um=amf ( z ) (w = 1,2,...,5), (4.14)

where u4 -  ф, u5 =if/ , the function / i s  analytic in the complex variable 
z -  x x + px2, and p and am are complex numbers to be determined from 
the governing equations.

In the absence of mechanical body forces, inertial effects, and free 
electric charges, the basic field equations given in Section 4.2 lead to

[Q + (R  + R r ) p  + T>2]a = 0 , (4.15)

with a = (alya2,a},a4,a5)T and the 5x5 matrices:
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C \ jk \ e l j l A,„ ' C\ jk2 e 2 j\

Q = eT
- ? n , R = e \k2 - * . 2 S \2

1 ? 
4

“ £ l l - A i . A n &21 - » \ 2 _

T =
C2jk2 e 2 j2  K j 2  

e 2k2 ~ K 22 &22 

2̂k2 8>22 ~^22

(4.16)

Nontrivial solutions are obtained if/? is a root of

det[Q + (R + R r )/> + Tp2] = 0 . (4.17)

There is a total o f ten eigenvalues from Eq. (4.17) which consists of 
five pairs o f complex conjugates. We suppose that pa ( a  = 1,2,- • -,5) are 
five distinct roots with positive imaginary parts and construct a 5x5 
matrix A = [Ama] with columns which are the associated eigenvectors. 
Then, the general solution is given by

Um = i A ma/ a(za) + X A maf a(za ), (4.18)
cc—\ a=\

where za = x ] + p ax2 and over-bars denote complex conjugates.
Hence, stress, electric displacement, and magnetic induction are 

expressed as

,071 = - Z PaLiafa(Za ) -  I.PaLiafa(za)> a-1 a=1
(4.19)

, 0-/2 = I  Liafa(Za ) + lX i a  f a (Za ) .a=l a=1
(4.20)

A  = - | > a W a ( Z<r)- X P < A a /« (Za) .a-\ a=1
(4.21)

= H^4afa(Za) + £  ̂ 4cr/a (Zar) » 
a=l a=l

(4.22)

— * YjPa^5afaiZa) ~ Y.Pa^5a fa (Za) > a=I a-\
(4.23)

B2 = i L iaf a{za) + i l iaf a{za),
a=\ a=\

(4.24)
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where Lna =(Rm„ + p aT„m)Ama = -(£?„„, + PaR,m)Ama ' Pa can be used 
to construct a 5 x 5 matrix L = [L„a ], f a (za ) = dfa (z0 )/dza .

The analytical functions f a (za) can be determined for a given 
boundary value problem in magneto-electro-elasticity with a similar 
solution structure to that in piezoelectricity.

4.4 Debates on Crack-Face Boundary Conditions

Debates exist about the selection o f crack-face boundary conditions in 
piezoelectric materials, as reviewed by Zhang et al. (2002). The electric 
boundary conditions are considered for “ insulating” or “conducting” 
cracks. The former is compatible with the crack interior filled by 
vacuum, air, or oil, whereas the latter is compatible with the crack 
interior filled by a conducting medium. Four sets of electrical boundary 
conditions on insulating crack faces have been adopted -  exact, 
electrically permeable, impermeable, and semi-permeable. Since the 
exact boundary-initial value problems need to be solved in both the 
cracked solid region and the interior vacuum region, approximations 
have often been made for analyzing slit crack problems.

Parton (1976) made the first attempt to define the electric boundary 
conditions over crack faces by considering both the electric displacement 
and the electric potential continuous across a traction-free slit:

0 : = В - ,  ф+= ф (4.25)

where the subscript “и” denotes the component normal to the crack faces 
and the superscripts “+” and denote the upper and lower crack faces.

However, there may be a potential drop across the piezoelectric 
crack, which can be assumed to be a low-capacitance medium. Deeg 
(1980), Pak (1990, 1992), and Suo et al. (1992), among others, imposed 
the electrically impermeable condition on the crack faces:

D : = D - =  0 . (4.26)

Later, Hao and Shen (1994) provided the semi-permeable condition 
across the crack faces, that is,

d : = d -„, D ; ( u : - u ; ) = - K c( r -</>-), (4.27)
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where Kc is the dielectric permittivity of the crack.
The electric boundary condition on crack faces for conducting 

(electroded) crack problems is

ф+=</>-= 0 . (4.28)

To determine the effect o f the dielectric medium inside a crack on the 
electric boundary condition, McMeeking (1989), Zhang and Tong
(1996), and Zhang et al. (1998) introduced the parameter 
(/cm / Kf  )(b/ a) to study an elliptical, flaw-like crack in electrostrictive 
and piezoelectric materials, where Ы a is the flaw aspect ratio, a and b 
are the semi-axes of the ellipse (a>b), and к'" / Kf  is the ratio of the 
dielectric permittivity of the surrounding material to that of the flaw 
interior. Likewise, Gao et al. (2004) used two parameters 
Ле = (rcm / Kf  ){b/ a) and Am =(jum / /и*)(Ь/a) for a mode-III, elliptical, 
flaw-like crack in a magneto-electro-elastic solid, where ц т / fi* is the 
ratio of the magnetic permeability of the surrounding material to that of 
the flaw interior. The crack is impermeable if Ле -> oo and ЛП1 -> o o , 

permeable if Ле -»  0 and Лт —> 0, and semi-permeable if Ле and Лт are 
nonzero finite constants.

Xu and Rajapaske (2001) discussed the influence of different electric 
boundary conditions on an arbitrarily oriented crack by reducing an 
elliptical void solution to a crack solution using the extended Lekhnitskii 
formalism. Wang and Jiang (2004) studied the nonlinear fracture 
behavior of an arbitrarily oriented crack in a piezoelectric medium 
considering the deformed crack geometry. Landis (2004) proposed 
energetically consistent boundary conditions for electromechanical 
fracture. Haug and McMeeking (2006) also investigated cracks with 
surface charge in poled ferroelectrics.

Furthermore, Wang and Mai (2007a) examined four ideal crack-face 
electromagnetic boundary condition assumptions: (i) electrically and 
magnetically impermeable, (ii) electrically impermeable and 
magnetically permeable, (iii) electrically permeable and magnetically 
impermeable, and (iv) electrically and magnetically permeable. In 
addition, Gao et al. (2008) studied the effects of applying only a 
magnetic field to a magnetically permeable crack in a soft ferromagnetic 
solid, including the Maxwell stresses in the boundary conditions, not
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only on the crack faces, but also at infinity. It is found that all the field 
variables are uniform, which means that there is no crack-tip field 
singularity when a mathematical slit crack is dealt with in this case.

In practice, the crack-face electromagnetic boundary condition may 
be expressed as

d : = d ~ = d I  b ;  = b ; ,= b I  (4.29)

where and В ° are either prescribed for the impermeable condition or 
determined through the permeable or semi-permeable condition.

4.5 Fracture Criteria

A fracture criterion can be used to determine whether or not a crack 
advances by comparison of the crack driving force with the crack 
resistance. The extension o f classical fracture criteria to combined 
magnetic, electric, and mechanical loadings is summarized below in 
terms of field intensity factors, path-independent integral, mechanical 
strain energy release rate, as well as global and local energy release rates.

4.5.1 Field intensity factors

Like linear elastic crack solutions, stress, electric displacement, and 
magnetic induction at the crack tip exhibit the traditional inverse square- 
root singularity (Fig. 4.4). The asymptotic near-tip fields can be 
expressed in terms of the crack-tip polar coordinates (r, 6) as

< 7 , ( , % 0 )  =  - | ^ £ ' ( 0 )  +  ^ l ' ' ( 0 )  +  - | i = S f ( (? )  
V2 лг yJ2/rr л/2лг

K °  Z 'K(0 ) + - j^ = S ,v (0 ),
>/2ЯГ 'J yfbrr ij

A(r,<?)= i l ' M  + 4 а - х Я ( 0 )  + (*)
y}2m‘ V 2m- v 2;zr

•Jim' ' -Jim-

(4.30)

(4.31)



Overview on Fracture o f Electromagnetic Materials 79

= S '5(0 ) + ̂ Z ' ' ( 0 ) + - ^  
V2 nr -J2m- V2 nr

(4.32)

42nr 42лг

where K f , K /l9 Km are the mode-I, mode-II, and mode-III stress 
intensity factors, KD is the electric displacement intensity factor, KB is 
the magnetic induction intensity factor, and the functions , 2 ^ (6)

III I V  V J JI ,У (0 ) ,  Sу (0 ) ,  and Ну (0) prescribe angular variations (Wang and 
Mai, 2003; Kuna, 2010).

*2

Fig. 4.4. Singular crack-tip fields.

At a distance r ahead of the crack tip along the crack plane ( в  = 0 ), 
the near-tip fields can be expressed as

(<721,022»023’^ 2>^2) = / к > (4.33)
л/2 nr

where к = {KII,K I,K III,K D,K B)T is the field intensity factor vector.
For a conventional Griffith-type crack of length 2a, the crack-tip field 

intensity factor vector is related to the remote and crack-face loadings by

к  = (<x“ —< 7 ,V n  - ° h ^ n - ° - n >D2 - D1 >Bi - B \ ) t -$na .(4.34)

It can be seen that, at the crack tip, the stress fields are decoupled 
from the electromagnetic fields within the framework of the linear theory
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of piezoelectricity and its extension. It should also be noted that the 
internal stress field induced by domain switching under cyclic electric 
loading may cause fatigue damage in ferroelectric materials, even in the 
absence o f an applied mechanical load. Thus, the local stress intensity 
factor based on domain switching models (e.g., Lynch et al., 1995; Zhu 
and Yang, 1997, 1999; Yang and Zhu, 1998) has been used in a fracture 
criterion to predict crack growth in ferroelectrics under small-scale 
switching conditions, similar to small-scale yielding conditions for 
metals.

4.5.2 Path-independent integral

Many efforts (e.g., Cherepanov, 1979; Pak and Hermann, 1986a-b; Pak, 
1990; McMeeking, 1990; Maugin and Epstein, 1991; Suo et al., 1992; 
Maugin et a l 1992; Dascalu and Maugin, 1994; Maugin, 1994; 
Trimarco and Maugin, 2001; Wang and Mai, 2003) have been devoted to 
extend the basic concepts of the energy-momentum tensor and the path- 
independent integral of Eshelby (1951, 1956, 1970, 1975), Cherepanov 
(1967, 1968) and Rice (1968) to linear and nonlinear electromechanical 
and magneto-electro-mechanical problems. It should be noted that all the 
theoretical treatments of these fracture mechanics models take the path- 
independent integral constructed with use of the electric enthalpy or the 
electromagnetic enthalpy as the crack extension force.

A straightforward derivation for linear magneto-electro-elastic media 
(Wang and Mai, 2003) starts with the differentiation of the 
electromagnetic enthalpy density /  = (cr £;y - DiE l - 2?;/ / , ) / 2  with 
respect to the spatial coordinate xk :

o x k

d f d f  d f  „  d f— ------ U: ik H-------E: k -!------- H k н------
dUjj '•'* 8E, '* a # f • dxk

(4.35)

expl

where the subscript “expl” denotes the explicit dependence of f  on
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With the use of the basic field equations (4.1)-(4.9) in the absence of 
inertial force, mechanical body force, and free electric charge, Eq. (4.35) 
can be rewritten as

3 L
дх,,

= bjkJ, (4.36)
cxpl

where the energy-momentum tensor bjk is defined as

bjk = fS jk - <Tj,uIJt + DjEk + BJHk . (4.37)

If there is no discontinuity in a material, the above divergence 
becomes zero. The energy-momentum tensor provides a general method 
for establishing invariant integrals. For example, the J k -integral vector 
for a three-dimensional body bounded by the closed surface S with the 
outer unit normal vector n can be easily deduced using the divergence 
theorem as

Л  = \s { fS jk -  V jV u  + DjEk + BjH k )n jdS . (4.38)

The J-integral is the first component of the Л -integral vector. For a 
generalized plane magneto-electro-elastic crack problem with the crack 
line along the jcr axis, it follows that

J  = Jr (7«i - +  njDjE\ + n jB jH x)ds , (4.39)

where Г is a contour surrounding the crack tip.
As a generalization o f the crack closure analysis by Irwin (1957), the 

path-independent ./-integral constructed with the electromagnetic 
enthalpy can be evaluated from the field intensity factors using the crack 
closure integral, that is,

y  = (4.40)
+ D2 (*, ,0)A^(xj -  5a) + B2 (*, ,0)A y/{xx -  5a)]dxx,

where da is the virtual crack extension and A denotes the jump between 
the upper and lower crack faces.

Hence, the Irwin-type relation is obtained as

J  = U K n ,K„Km>KD,K B)• H ' • ( K ^ K ^ K , , , ,K D,K B)T, (4.41)
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where H' =2Re(/ALT1) is indefinite and sometimes referred to as the 
Irwin matrix (Lothe and Barnett, 1976; Suo et al., 1992; Kuna, 2010),
i = V -T , and the matrices A and L are given in Section 4.3.

As the magnetic field becomes zero, the above formulae are reduced 
to those for piezoelectric materials. Consider a piezoelectric material 
with hexagonal crystal structure (class C6v = 6mm , see notations in 
Section 2.5) with the x3-axis in the poling direction. Pak (1990) 
evaluated the J-integral for an antiplane crack problem for which a finite 
crack of length 2a is embedded in an infinite piezoelectric medium 
subjected to far-field mechani

Case 1: J =  —
2

Case 2: J  = —
2

Case 3: J  -  -

Case 4: J  =

where c ^ ,  e[5, and atu  are, respectively, shear modulus, piezoelectric 
constant, and dielectric constant, тw is the far-field shear stress, is 
the far-field shear strain, Dи is the far-field electric displacement, and 
Ex is the far-field electric field.

Pak (1990) noticed that the ./-integral constructed with the electric 
enthalpy is always negative in the absence of mechanical loading and the 
electric field would impede crack propagation, regardless of its direction, 
which is essentially different from the traditional role of the ./-integral as 
the crack extension force. The more complicated in-plane crack solution 
predicted the same trend (Pak, 1992; Suo et al., 1992). However, this 
theoretical prediction is contradictory to experimental evidence (e.g., Pak 
and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et 
al. 1995; Park and Sun, 1995a-b; Zhang et al., 2002; Chen and Lu, 
2003).

ical and electric loads:

+ 2е,5г „ р

m
2~

na
~2~

'44

( У 11С44 + g ls )^ o o

(4.42)

(4.43)

(4.44)

(4.45)
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A fracture criterion based on the У-integral formulated from the 
electromagnetic enthalpy indicates that the presence of an 
electric/magnetic field, either positive or negative, should elevate the 
critical load. Hence, an even dependence exists between the critical load 
and the applied electric/magnetic field. As remarked by Chen and Lu 
(2003), whether or not the J-integral thus formulated can be a candidate 
for a piezoelectric fracture criterion has been a long-standing 
controversial issue and some have even used chaos to describe the 
contentious situation. The fundamental discrepancy between 
experimental observations and theoretical predictions has hindered the 
development of the piezoelectric fracture theory, instigating numerous 
attempts to resolve this controversy (e.g., Park and Sun, 1995a-b; Gao et 
al., 1997; Sih and Zuo, 2000; Fulton and Gao, 2001; McMeeking, 2001, 
2004; Li, 2003a-b; Landis, 2004; Zhang et al., 2005).

4.5.3 Mechanical strain energy release rate

Park and Sun (1995a-b) first pointed out that the path-independent 
integral formulated from the electric enthalpy could not be directly used 
as a fracture criterion for piezoelectric materials. Instead, they proposed 
that the mechanical strain energy release rate (MSERR) is a dominant 
parameter governing piezoelectric fracture.

By definition, the mechanical strain energy release rate is expressed 
as the mechanical part of the crack closure integral:

G M = 1 im т т : Г * a 2i(x i»0)Д«((* i - & ) * ,  • (4.46)
&->o Id a

Thus, the mechanical strain energy release rate is related to the field 
intensity factors by

GM = ! ( * „ . К„АГИ ,0,0)-H ' (Ku ,K „ K m ,K D,K B)T. (4.47)

Consider a Griffith-type crack of length 2a in PZT-4 piezoelectric 
ceramics poled along the x2-axis under remote loads cr£ and (Fig. 
4.5). The crack plane is perpendicular to the poling axis. The mechanical
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strain energy release rate and the potential energy release rate are 
obtained as (Park and Sun, 1995a-b)

G M = у ( 1 .4 8 х 1 (Г “ о £ 2 + 2 .6 7 x lO -2c r"D ” ), (4.48) 

G = J  = —  (1.48 x 1 O '" o-”, 2 + 2 x 2.67 x 10‘2 o £ D "  
2 22 22 2 (4.49) 

- 8 .5 6 x l0 7D ” 2).

Fig. 4.5. A Griffith-type crack perpendicular to the poling axis under remote loads.

It can be seen that the mechanical strain energy release rate G si is 
essentially different from the potential energy release rate G. Since G M 
is an odd function of the electric displacement intensity factor, an applied 
electric field may either promote or retard crack propagation, depending 
on its direction. In their landmark study (Park and Sun, 1995a-b), the 
MSERR criterion agreed roughly with experimental measurement o f the 
critical load for a crack perpendicular to the poling axis in simple tension 
and three-point bend PZT-4 specimens. They argued that it may be more 
suitable to take only the mechanical strain energy released during crack 
extension as the fracture criterion, since fracture is a mechanical process.
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4.5.4 Global and local energy release rates

For a better understanding of the fracture mechanisms in piezoelectric 
ceramics under combined mechanical and electrical loadings, Gao et al.
(1997) proposed the concept of global and local energy release rates 
based on a strip saturation model, via a simplified electroelasticity 
formulation. Figure 4.6 illustrates a view of multiscale singularity fields 
in piezoelectric fracture. Inspired by the classic Dugdale model for

E lectrica lly  nonlinear

Fig. 4.6. Multiscale singularity fields in piezoelectric fracture. (After Gao et a l ,  1997, 
with permission from Elsevier).

t I t <7S,D"

Fig. 4.7. A Dugdale-type electrically nonlinear crack perpendicular to the poling axis 
under remote loads. (After Gao et al., 1997, with permission from Elsevier).
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plastic yielding of metal sheets containing slits (Dugdale, 1960), Gao et 
al. (1997) assumed that the electric polarization is saturated only in a line 
segment o f length rs = c - a  in front o f each tip o f a crack o f length 2a 
under remote loads cr î anc* AT 4-7).

The boundary conditions along the electrically impermeable crack 
faces and the electrically nonlinear line segments are

<r22 = 0, D2 = 0, at |jc, | < a , (4.50)

и $ = w j, D2 = Ds, at a < |л',| < с , (4.51)

where Ds is the saturation electric displacement.
A local energy release rate is obtained by evaluating the У-integral 

along an infinitesimal local contour Гс , that is,
л  \na

2 M
1 +

M k
(е£ю + ст„) , (4.52)

where the material constants M, e, and к  represent, qualitatively, the 
elastic, piezoelectric, and dielectric properties.

An “apparent” or global energy release rate is obtained by evaluating 
the ./-integral along a global contour Га , that is,

= J C -
4 Dja

П К
In sec

к  (M/c + e ' ^ E ^ + e a ^ (4.53)

The strip saturation size is

sec
\ 2D J

-1 «  a . (4.54)

Like the small-scale yielding condition for metals, the global energy 
release rate is reduced to that of a linear piezoelectric crack under the 
small-scale saturation condition rs « a  , that is,

( • ^ ш  “ k - ( " * + * * ) # ] • (4.55)
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Thus, a fracture criterion based on the local energy release rate 
indicates that the electric field can positively influence fracture of 
piezoelectric materials, which is notably different from a fracture 
criterion based on the global energy release rate. Nonetheless, the major 
difficulty is that the theoretical treatments are all incomplete -  for 
example, ad hoc neglect the electric contribution to the energy release 
rate (Park and Sun, 1995a-b) or the energy dissipation by the saturation 
of the electrical polarization (Gao et al., 1997).

4.6 Experim ental Observations

Despite the lack of experimental study on dynamic fracture of 
piezoelectric materials, increasing work has been done over the past few 
decades on experimental investigations of quasistatic crack propagation 
under combined electric and mechanical loadings. As reviewed by Zhang 
et al. (2002), there are discrepancies in experimental results, especially 
when the applied electric and mechanical fields are comparable in 
amplitude. Moreover, experimental data presented by different 
researchers sometimes contradict each other. It is a very important task to 
compare theoretical predictions with experimental results for various 
material systems, crack geometries, and loading combinations. A brief 
description is given in this section with a focus on the application of 
fracture mechanics concepts for explaining experimental observations.

4.6.1 Indentation test

The indentation technique has often been used for fracture toughness 
characterization of brittle materials due to its simplicity and economy 
(Anstis et al., 1981; Chantikul et a l 1981). A schematic illustration of 
the Vickers indentation technique is shown in Fig. 4.8. Inelastic 
deformation under the indenter would give rise to residual tensile stress 
at the crack front and, thus, propagates the radial crack to its final 
dimension as the indenter is unloaded.

For isotropic and homogeneous materials, the toughness Kc may be 
expressed in terms of the indentation load P and the induced crack length 
с as (Anstis et al., 1981)
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у  ' l72

K ' - \ a i  ( 4 ' 5 6 )

H  = —̂ - s in ( a /2 ) ,  (4.57)
2 a “

where £ = 0.016 ±0.004 is an empirically determined calibration 
constant, Y is Young’s modulus, H  is the hardness, a is the impression 
half-diagonal, and a  is the apex angle of the indenter.

Fig. 4.8. Schematic illustration o f  the Vickers indentation technique.

Many researchers have observed that the electric field has significant 
effects on the crack behavior of piezoelectric ceramics from indentation 
tests. For instance, Pak and Tobin (1993) and Tobin and Pak (1993) 
found from the Vickers indentation tests on PZT-8 samples that the
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cracks perpendicular to the poling direction were longer with an electric 
field aligned with the poling direction and shorter with an electric field 
opposite to the poling direction compared to the case without an applied 
electric field (Fig. 4.9). This trend is consistent with the fracture test 
results on PIC 151 (similar to PZT-5H) Vickers indentation under 
electric loading by Zhang et al. (2004) and PZT-4 compact tension and 
three-point bending under combined mechanical and electric loadings by 
Park and Sun (1995b).

Cracks perpendicular Cracks parallel
to poling to poling

Fig. 4.9. Influence o f  electric field on the indentation fracture behavior o f  poled PZT-8 . 
(From Pak and Tobin, 1993, with permission from ASME).

With precracks produced by indentation, Cao and Evens (1994), 
Lynch et al. (1995), Jiang and Sun (1999), and Zhang et al. (2004) 
further studied the crack growth behavior of piezoelectric ceramics under 
cyclic loads. Stable crack growth perpendicular to the poling direction 
has been observed for both PZT and PLZT samples under alternating 
electric loading only, for which the linear piezoelectric fracture theory 
predicts a negative potential energy release rate. Jiang and Sun (2001) 
also derived an approximate analytical solution for a half penny-shaped
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crack (semicircular surface crack) in a piezoceramic half space and then 
used it in conjunction with the mechanical strain energy release rate to 
interpret the effect o f the electric field on indentation crack length.

Using the wedge model, the stress intensity factor and the electric 
displacement intensity factor for the semicircular surface crack in 
piezoelectric materials are (Jiang and Sun, 2001)

к  -  2 / {в )K l ~ ~  072
p°M>

\ c 0 J
~ a piczokEc lE t (4.58)

(« У

K d =2 E? Xe J c^ ,  (4-59)

where c0 is the indentation-induced crack length in the absence of the 
electric field, a piezo is a piezoelectric constant reduction factor, E™ is 
the applied electric field, / ( # )  = 1 + 0.2(1 -  201k )1 , 
P0° = (0 .0 8 9 //0) ( Г /Я ) 1/2/ \  and /„  = / ( 0 )  = 1.2 .

For a mode-1 crack in PZT-4, the mechanical strain energy release 
rate can be expressed as

G,M = ^-(1.75х10~и ЛГ2 + 2 .2 \x \0 ~2 K , K d ) (Nm'1). (4.60)

Sun and Park (1995) obtained the critical mechanical strain energy 
release rates o f 3.68 Nm ' 1 and 4.63 Nm ' 1 for indentation loads o f 9.8 N 
and 49 N, respectively. In terms of the critical mechanical strain energy 
release rate and the given indentation load, the relation between the crack 
length and the electric field can be determined iteratively using Eq. 
(4.60). The piezoelectric constant reduction factor (X iezo depends on the 
degree of completion of domain switching. It was found that the solution 
in conjunction with the mechanical strain energy release rate was able to 
explain the electric field effects on indentation crack growth.

Zhang et al. (2004) used a sphere cavity model in dielectrics to 
explain the growth of indentation cracks due to cyclic electric loading. It 
is found that low electric field intensity does not promote fatigue crack 
growth in PIC 151 but, at high applied electric field, the indentation 
cracks initially grow quickly and are then arrested. Electrostrictive strain 
drives cyclic fatigue crack growth and domain switching is the main
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fatigue mechanism. These results have significant consequences for the 
long-term durability of piezoceramics.

4.6.2 Compact tension test

Compact tension specimens have been used to study the fracture 
behavior of piezoelectric materials, together with finite element analysis 
(e.g., Park and Sun, 1995b; Kuna, 2010). An experimental setup for 
compact tension specimens under combined mechanical and electric 
loadings is shown in Fig. 4.10. Electrodes were coated in silver on the 
top and bottom surfaces of the specimens. The procedure of testing using 
compact tension specimens is to increase the tensile load applied by the 
crosshead displacement control of the MTS machine under a certain 
electric field generated by a D.C. power supplier until fracture occurs. 
Since electric discharging between electrodes through the air was 
observed when the electric field exceeded 5 kV/cm during initial 
exploratory tests, the specimen was immersed in a tub filled with silicone 
oil to enforce an insulated crack surface boundary condition.

D .C . P ow er  
S u pp ly

Fig. 4.10. Experimental setup for compact tension specimen under combined mechanical 
and electrical loadings.

Park and Sun (1995b) performed compact tension tests on PZT-4 
specimens poled along the axis perpendicular to the crack plane. The 
material properties for poled PZT-4 in the principal material coordinate
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system (.X\, X2, X3) are listed in Table 4.1. The poling direction is along 
the A^-axis. Figure 4.11 shows the fracture initiation loads under 
different electric fields from fracture testing on PZT-4 compact tension 
specimens. It appears that a positive electric field reduces the fracture 
load while a negative electric field increases the fracture load. It turns out 
that the mechanical strain energy release rate criterion is superior to the 
total potential energy release rate criterion at predicting the effect of the 
electric field on the fracture load.

Table 4.1 Material constants for poled PZT-4 in the principal material coordinate system. 
(After Park and Sun, 1995b, with permission from John W iley and Sons).

Cm (N /m 2) C\2 (N /m 2) c 13 (N /m 2) c 33 (N /m 2) C44 (N /m 2)
13.9x 1010 7.78 xlO 10 7.43 x lO 10 11.3 x lO 10 2.56жЮ 10
e3. (C/m2) езз (C/m2) eis (C/m2) K\ \ (C/Vm ) К33 (C/Vm)

-6 .9 8 13.84 13.44 6 .0 0 x 10 '9 5 .47x10 '9
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Fig. 4.11. Fracture loads under applied electric fields for PZT-4 compact tension 
specimens. (From Park and Sun, 1995b, with permission from John W iley and Sons).
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4.6.3 Bending test

To further verify the validity of the mechanical strain energy release rate 
as a fracture criterion, Park and Sun (1995b) also conducted fracture tests 
on PZT-4 piezoelectric ceramics using three-point bending specimens 
with a symmetric crack for mode-I fracture and an asymmetric crack for 
mixed-mode fracture (Fig. 4.12). The entire setup, including the indenter, 
was made of Plexiglas to avoid electric discharge. The prepared 
specimen was placed in the silicone oil tub that was mounted on the 
MTS machine. The poling direction is parallel to the span of the bending 
setup. Fracture loads versus applied electric fields were obtained for 
various crack locations (Fig. 4.13).

Fig. 4.12. Experimental setup for three-point bending specimens under combined 
mechanical and electrical loadings.
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Fig. 4.13. Fracture loads under applied electric fields for various crack locations in PZT 
three-point bending specimens. (From Park and Sun, 1995b, with permission from John 
W iley and Sons).

It appears that the center-cracked three-point bending specimens 
exhibit the same fracture behavior as the compact tension specimens. 
Specifically, the fracture load has an odd dependence on the applied 
electric field -  positive electric field aids crack propagation, while 
negative electric field impedes crack propagation. The three-point 
bending specimens with an off-center crack also exhibit the same trend.

Later, Soh et al. (2003) used central crack specimens to study the 
effects of an applied electric field on the fracture toughness of poled 
piezoelectric ceramics and demonstrated that changing the applied 
electric field from negative to positive reduced the fracture toughness of 
poled PZT-5 ceramic, which is consistent with the observations by Park 
and Sun (1995b).
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4.7 Nonlinear Studies

Linear piezoelectric/piezomagnetic fracture mechanics analysis is an 
important first step towards understanding the fracture behavior of 
electromagnetic materials. Nevertheless, experimental findings and 
microstructural diagnostics give evidence that there may exist factors 
beyond the scope of the linear theory of piezoelectricity and its extension 
that would affect fracture such as electrostriction/magnetostriction, 
polarization/magnetization saturation, domain switching, and domain 
wall motion, although these activities may be confined to a small region 
near the crack tip. The studies on these nonlinear effects are briefly 
summarized in this section.

4.7.1 Electrostriction/magnetostriction

Electrostriction is a property of dielectric materials whose shape is 
changed under an applied electric field, with the resulting strain 
proportional to the square of the polarization. Since the deformation 
remains unchanged with reversal of the electric field, the electrostrictive 
effect is obviously different from the piezoelectric effect that is 
characterized by a reversal in the direction of deformation when the 
electric field is reversed. Piezomagnetism and magnetostriction can be 
taken as magnetic analogues of piezoelectricity and electrostriction.

Smith and Warren (1966, 1968) studied an elliptical inclusion in an 
infinite isotropic dielectric material with electrostriction in consideration 
of the Maxwell stress. McMeeking (1989) investigated electrostrictive 
stresses near crack-like flaws in terms of a comparison between the fields 
of an elliptical flaw and a slit crack. Yang and Suo (1994) estimated the 
magnitude of the stress intensity factors for the flaws around the 
electrode edges in ceramic actuators caused by electrostriction under 
small-scale saturation conditions.

Based on the rotationally invariant (finite-strain) quasi-magnetostatic 
theory of elastic paramagnets and soft ferromagnets without magnetic 
spin-ordering effects, Sabir and Maugin (1996) constructed two path- 
independent integrals with the use of the magnetic enthalpy, including or 
excluding the contribution of the energy of the free magnetic field, and
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yielded essentially the same results as the canonical field-theoretic 
approach using the notions of Eshelby stress and material forces (Maugin 
et a l 1992). The expressions obtained were applied to an antiplane crack 
problem of an isotropic magnetostrictive body in an axial bias magnetic 
field. In this case, the near-tip solution has the inverse square-root 
singularity like those obtained by Shindo (1977) based on a linear theory 
for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Sabir and 
Maugin (1996) concluded that the magnetic field has a negative 
contribution to the energy release rate so that its presence is beneficial 
from the viewpoint of fracture toughness. However, there is no 
experimental support for this conclusion.

Recently, Gao et al  (2010a-b, 2011) obtained the solutions of a 
single crack and collinear cracks in an electrostrictive solid under pure 
electric loads based on the complex variable method. It is found that the 
total stresses exhibit the classical inverse square-root singularity at the 
crack tip and the applied electric field may either enhance or retard crack 
growth depending on the electric boundary conditions adopted on the 
crack faces and the Maxwell stresses on the crack faces and at infinity.

4.7.2 Polarization/magnetization saturation

Polarization saturation or magnetization saturation is the state which is 
reached when an increase in applied electric or magnetic field cannot 
increase the polarization or magnetization of the material further. As 
discussed in Section 4.5.4, Gao et al. (1997), inspired by the classical 
Dugdale model for plastic yielding near the crack tip in metals (Dugdale, 
1960), developed a strip saturation model for an electrically insulating 
crack perpendicular or parallel to the poling axis of an infinite poled 
piezoelectric medium via a simplified electroelasticity formulation. Since 
the linear piezoelectric model gives singular electrical displacement 
distribution near the crack tip, it is assumed by this idealized strip 
saturation model that electric polarization reaches a saturation limit along 
a line segment in front of the crack tip.

Subsequently, Ru (1999) examined the effect of polarization 
saturation on stress intensity factors for a general piezoelectric medium. 
Ru and Mao (1999) also studied conducting cracks in a poled
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ferroelectric of limited electrical polarization based on a strip saturation 
model of the Dugdale type. Beom (2001) further analyzed an electrically 
impermeable crack in an electrostrictive ceramic with a strip saturation 
model. The strip saturation model may be applicable to magnetization 
saturation due to its similarity to polarization saturation.

As remarked by McMeeking (2001), the polarization saturation 
model may not correspond to the classical Dugdale model from the 
energy point of view because the electric displacement behaves like 
strain and the electric field behaves like stress. Zhang et al. (2005) 
proposed a strip dielectric breakdown model for an electrically 
impermeable crack in a piezoelectric medium with the assumption that 
the electric field in a strip ahead of the crack tip is equal to the dielectric 
breakdown strength, which is analogous to the classical Dugdale model 
from the energy point of view. The dielectric breakdown strength is 
defined as the critical electric field at which dielectric discharge occurs, 
leading to dielectric breakdown. Motivated by the similarities in 
electricity and magnetism, Zhao and Fan (2008) extended the strip 
dielectric breakdown model to magneto-electro-elastic media.

4.7.3 Domain switching

One class of widely used piezoelectric materials exhibit the ferroelectric 
effect. They possess spontaneous electric polarization that can be 
reversed by the application of an external electric field, yielding a 
hysteresis loop. This term is used by analogy to ferromagnetism because 
of the similarity between this hysteresis process and the corresponding 
process involving ferromagnetic materials. Typically, materials 
demonstrate ferroelectricity only below a certain characteristic 
temperature, Tc, called the Curie temperature. That is, spontaneous 
polarization disappears above this temperature.

A ferroelectric domain, in which all dipole moments of neighboring 
unit cells are oriented in the same direction, can switch its orientation to 
align itself in the direction of an applied external electric field as close as 
possible. This phenomenon is called “domain switching”. Consequently, 
not only the local state of polarization is rotated but also the local state of 
strain is changed, which is described by the polarization switch vector
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A P. and the switching strain tensor . A sufficiently strong electric 
field may rotate the polarization direction of an individual domain by 
±90° or 180°, that is, the new polarization can be -90°, 90° or 180° 
rotated from the original direction.

As reviewed by Kuna (2010), models based on domain switching for 
ferroelectric materials have been developed to describe the polarization 
hysteresis loop and the strain butterfly loop (see Fig. 4.14) as well as the 
internal stress field induced by domain switching. For example, Hwang 
et al. (1995) proposed an energetic switching criterion for combined 
loadings:

Е,АР.+а0А£у>2Р;Ес. (4.61)

Fig. 4.14. Ferroelectric hysteresis o f  polarization and deformation (P r -  remanent 
polarization, /  -  remanent strain, Ec -  coercive field strength). (From Kuna, 2010, with 
permission from Elsevier).

It has been realized that domain switching plays an important role in 
the apparent fracture toughness variation for ferroelectric materials (e.g., 
Lynch et a l 1995; Zhu and Yang, 1997, 1999; Yang and Zhu, 1998; 
Fulton and Gao, 2001; Zhang et al., 2002; Beom and Atluri, 2003; Chen 
and Hasebe, 2005; Schneider, 2007; Kuna, 2010). The re-orientation of 
the polarization direction could significantly affect the solution for the
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corresponding boundary value problem and, consequently, the stress and 
electric displacement intensity factors. With an assumption like small- 
scale yielding, investigations on the nonlinear influence of domain 
switching on the fracture of ferroelectric materials have been confined to 
the near-tip process zone.

By analogy with the phase-transformation toughening mechanism 
(McMeeking and Evans, 1982), Zhu and Yang (1997) and Yang and Zhu 
(1998) studied switching toughening of ferroelectrics by adopting the 
switching criterion of Hwang et al. (1995) and derived the change in 
stress intensity factor AK as a result of stress redistribution induced by 
90° polarization switching. In the case of small-scale switching, where 
the switching zone size is considerably smaller than the specimen size, 
the stress field near the switching boundary may be approximated by the 
remote АГ-fleld. The near-tip stress intensity factor Ktjp is related to the 
applied stress intensity factor Ka by

K tip= K a +AK.  (4.62)

A fracture criterion may be defined in terms of the near-tip stress 
intensity factor as

Knp= K ,c . (4.63)

Depending on the sign of AК  for shielding or anti-shielding effects 
caused by domain switching, the apparent fracture load measured in 
experiments can be either enhanced or reduced. Based on the small-scale 
domain switching model, Zhu and Yang (1999) provided a mechanistic 
explanation of fatigue crack growth in ferroelectrics driven by cyclic 
electric loading. Recently, Kalyanam and Sun (2009) modeled the 
fracture behavior of piezoelectric materials using a gradual polarization 
switching model with the internal energy density as the parameter to 
estimate the amount of domain switching and the resulting gradual 
change in the polarization direction.
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4.7.4 Domain wall motion

Domain switching may be regarded as a result of domain wall motion 
caused by the growth of domains with low-energy orientations and the 
shrinkage of domains with high-energy orientations (Zhang et al., 2002). 
The domain wall may be treated either as a sharp or diffuse interface. 
The configuration (material) force method has been used to study the 
motion of a ferroelectric or ferromagnetic domain wall as a sharp 
interface. For example, Fomethe and Maugin (1997) studied the 
propagation of phase-transition fronts and domain walls in thermoelastic 
ferromagnets by exploiting the notion of the material forces. Fu and 
Zhang (2000) proposed a domain wall kinetic model to explain the 
effects of temperature and electric field on the bending strength of PZT- 
941 ceramics. Shilo et al. (2007) developed a model for large 
electrostrictive actuation in ferroelectric crystals by assuming a 
reasonable arrangement of domain walls and formulating equations of 
motion for these walls.

By contrast, phase-field simulation provides a powerful method for 
studying the evolution of ferroelectric or ferromagnetic domain structure 
as a diffuse interface. The major advantage of this approach lies in that 
the well-accepted Ginzburg-Landau equation is used to govern the time 
dependence of a spatial inhomogeneous order parameter without any 
preset transformation criterion. Phase transformation is a direct 
consequence of the minimization process of the total free energy of an 
entire simulated system. Wang and Zhang (2007) simulated polarization 
switching-induced toughening in a ferroelectric material with the original 
polarization direction perpendicular to an electrically permeable crack by 
a phase field model, accounting for the domain wall energy and the long- 
range mechanical and electrical interactions. Based on a local ./-integral 
as a fracture criterion, the result indicates that an applied uniform electric 
field parallel to the original polarization direction reduces the apparent 
fracture toughness while an applied uniform electric field anti-parallel to 
the original polarization direction enhances it.
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4.8 Status and Prospects

The fracture mechanics approaches within the framework of the linear 
theory of piezoelectricity and its extension outlined in this chapter cover 
the great majority of current applications. Simplicity is generally 
associated with the linear piezoelectric/piezomagnetic fracture mechanics 
methodology and so it is useful for a first approach at achieving a 
solution for a given crack problem. While nonlinear investigations 
beyond those of linear piezoelectric/piezomagnetic fracture mechanics 
are increasingly attempted, they are still confined to the small-scale 
region in the vicinity of a crack tip such as small-scale saturation 
conditions or small-scale switching conditions.

The major challenges in the current understanding of the complex 
fracture behavior of electromagnetic materials are:

• Discrepancy between theoretical predictions and experimental 
observations

• Various nonlinear effects
• Magneto-electro-thermo-mechanical coupling
• Large-scale dissipation
• Fully coupled dynamic framework
• Functionally graded materials (FGMs)
• Damage and failure at multiscales (nano, micro, meso, and 

macroscales)

At this transition between the elementary aspects and the more 
advanced treatments of the subject to come, it is worth stating that a 
highly important question in the development of a fracture mechanics 
theory for electromagnetic materials is whether there is any particular 
thermodynamic quantity of a cracked body that can be interpreted as the 
“driving force” for crack propagation under combined magnetic, electric, 
thermal, and mechanical loadings. The answer to this question has been 
pursued for decades, but no satisfactory agreement has yet been reached. 
Thus, the establishment of a physically sound fracture criterion becomes 
the hallmark of an advanced fracture mechanics treatment for 
electromagnetic materials. The objective of this book is to further the
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progress with development of a nonlinear field theory of fracture 
mechanics for electromagnetic materials by inclusion of magneto- 
electro-thermo-mechanical coupling and dissipative effects.



Chapter 5

Crack Driving Force in Electro- 
Thermo-Elastodynamic Fracture

5.1 Introduction

As reviewed in Chapter 4, it is theoretically predicted that an even 
dependence should exist between critical load and applied electric field 
based on the path-independent integral constructed with electric enthalpy 
(Pak and Hermann, 1986; Pak, 1990; Maugin and Epstein, 1991; Suo et 
al., 1992; Dascalu and Maugin, 1994, 1995). On the contrary, however, it 
is found experimentally that the critical load for piezoelectric fracture is 
an odd function of the applied electric field (e.g., Pak and Tobin, 1993; 
Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995). Hence, 
a major challenge in the fracture mechanics of piezoelectric materials is 
how to resolve the fundamental discrepancy between theoretical 
predictions and experimental observations.

A great advance in this area is owed to Park and Sun (1995a-b) who 
first pointed out that the path-independent integral thus formulated 
cannot be used directly as a fracture criterion for piezoelectric materials. 
Instead, they proposed that the mechanical part of the crack closure 
integral, i.e., the mechanical strain energy release rate (MSERR), is the 
dominant parameter governing piezoelectric fracture. In their landmark 
study, the Park-Sun semi-empirical fracture criterion could be reconciled 
with experimental measurement of the critical load for a crack 
perpendicular to the poling axis in simple tension and three-point 
bending PZT-4 specimens. Nevertheless, the difficulty is that the 
theoretical treatments are incomplete, with omissions such as an ad hoc

103
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neglect of the electric contribution to the energy release rate by Park and 
Sun (1995a-b).

In the sections to follow, the crack driving force in electro-thermo- 
elastodynamic fracture is evaluated based on the fundamental principles 
of thermodynamics within the framework of the nonlinear theory of 
coupled electric, thermal, and mechanical fields (Chen, 2009a). The 
presentation is restricted to the quasi-electrostatic approximation for a 
simple formulation, which implies the near absence of a time-varying 
magnetic field.

5.2 Fundamental Principles of Thermodynamics

As shown in Chapter 2, the physical laws in electrodynamics consist of 
the conservation of mass, conservation of linear momentum, 
conservation of angular momentum, conservation of energy, and entropy 
production inequality, in addition to the Maxwell equations.

Using the notations in Chapter 2, the first principle of 
thermodynamics leads to the local energy balance equation in electro- 
thermo-elastodynamics:

|A

A ^ = - V - j J + o:vV  + /® -*  + E -(je - g / v) (5.1)

Substituting the internal energy e by the Helmholtz free energy 
h = e - T s  and using a series of transformations, Eq. (5.1) becomes

* L - L V i
dt Po R T Po""

1 1
T p j

2 p j '
E:C + 1

E D - - s t  — 
p 0T T T dt

E J,

h +

(5.2)

where ,L  = jF~ltaF~T is the second Piola-Kirchhoff total stress tensor, 
,a  = a+ f<j is the total stress tensor (which is the sum of the Cauchy 
stress tensor о and the electric stress tensor eo = D ® E -<?M^I),



c и f = e0E • E / 2 is the energy density of the free electric field, E = E ■ F , 
D = JT'  D , J 7 = JF-' j , ,  J e = JF-' j c, and j e = j e - q f y .

The augmented Helmholtz free energy, including the contribution of 
the energy of the free electric field, is introduced by

-  * ufh = h  + ̂ — . (5.3)
P

The second principle of thermodynamics leads to the entropy 
production inequality

^ £  = ^ + 1 у . ^ >  0. (5.4)
dt dt p

In the reference configuration, the entropy production inequality can 
be rewritten as

i l A  - L v . - J . i O .  (5.5)
dt dt p Q

The augmented Helmholtz free energy, including the contribution of 
the energy of the free electric field, is assumed to be a function of 
deformation, temperature, temperature gradient, and electric 
displacement in the reference configuration V^, with respect to which 
the deformation gradient F is measured, that is,

h = h ( C j y RT,D-X).  (5.6)

Since the entropy production inequality (5.5) should be always valid, 
it is necessary and sufficient that the state equations fulfill the following 
conditions:
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S = ~ ,  (5.9)
dT

EK = P o ^ >  (5-10)
d u  ы

(5.11)

d l  = . L t  . v  i + J  
dt p 0 q R T p j
£- = - f  J , - V ^ + - ^ E . / , > 0 .  (5.12)

From Eq. (5.7), it is shown that the augmented Helmholtz free energy 
does not depend on the temperature gradient.

5.3 Energy Flux and Dynamic Contour Integral

Consider a two-dimensional body В that contains an extending crack 
(Fig. 5.1). The boundary of the cracked body В is denoted by dB . A 
contour Г enclosing the crack tip translates with the crack tip moving at 
instantaneous speed Vc . When the energy balance is written in global 
form, the energy flux through Г can be expressed as

F ( f ) = J  [n ■ (o + eo ) • v - n ■ S + (ph + pk)n• Vc ]dT

= f .[n ( o + (o ) - v - n  S ) ( f i- f  _ H-(ph + pk)dA
J dB J B - A f d t  P - i - M

+ f pf \ d A - \  ps tdA-  f -£-E JedA,
J B - A j .  J  B-Aj. J B - A ^ P q

where the Poynting vector in the co-moving frame is given by

S = - E x ( v x D ) . (5.14)
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Fig. 5.1. A contour translating with the crack tip moving at instantaneous speed Vc . 

The dynamic contour integral is related to the energy flux integral by

J r = = -J - /r [n • (o+ ,o) v - n  S + (ph+pk)n Vc ]df, (5.15)
*чс *c

where Vc = \VC\ is the magnitude of the crack speed.
In general, the dynamic contour integral is not path independent. The 

difference in the energy flux through two contours Г, and Г2 is

F ( f , ) - F ( f i )  = k  | - ( p h + p k ) d A - \ - A p i  v d A

_ (5.16)
+ \ p?TdA + \ P  E J edA,

‘ Уо

where An is the difference in the areas enclosed by the contours Г, and 
Г2, including the crack faces.

The energy flux integral can be extended to the three-dimensional 
case. If Г is interpreted as a surface in the reference configuration that 
moves at speed Vc with respect to the material particles instantaneously 
on it, the energy flux through the surface Г is

F (f)  = \ - n S  + (ph +pk)n-Vc ]dT. (5.17)
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The first term of the energy flux integral expression is the rate of 
work done by the total traction acting on Г , the second term represents 
the contribution due to the traveling of electromagnetic waves through 
Г, and the third term represents the contribution due to the transport of 
material through f  . It is noted that the associated energy density 
includes the kinetic energy density and the augmented Helmholtz free 
energy density, rather than the electric enthalpy density. As a general 
expression for the energy flux through a surface translating through a 
deformable solid, expression (5.17) does not depend on the existence or 
absence of a moving crack. Like its counterpart in elastodynamics 
(Freund, 1990), the energy flux integral expression (5.17) is valid for 
large deformation applications.

5.4 Dynamic Energy Release Rate Serving as Crack Driving 
Force

The dynamic energy release rate is defined as the rate of energy flow out 
of the body and into the crack tip per unit crack advance, that is,

where the limit implies that Г is shrunk onto the crack tip.
In view of its definition, the dynamic energy release rate provides a 

unique characterization of the near-tip fields and thus plays a central role 
in the fracture criteria. The quantity J0 introduced here cannot be related 
to mechanical energy variation alone. Instead, J0 refers to total energy 
variation due to work done by total traction, traveling of electromagnetic 
waves, and transport of material with its associated energy density.

5.5 Configuration Force and Energy-Momentum Tensor

For steady-state crack propagation in the absence of mechanical body 
force ( f  = 0 ), temperature change (Г = 0 ), and electricity conduction 
( J e = 0) > it can be seen from Eq. (5.16) that the dynamic contour integral
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becomes path independent as the contour including the crack faces is 
chosen, that is,

If a field quantity is invariant in the reference frame affixed to the 
crack tip moving at a uniform speed VC=VCE]3 the field quantity 
depends on t through the combination X = X - V ct only, where E, is the 
unit vector along the crack advance direction. Expression (5.15) for the 
dynamic contour integral takes the special form

J = j^n • [-(<*+<.<*) • uV + D® E • uV - (D • E)uV + (ph + pk )I ]d T • Ё , .

(5.20)

Using (n x E) x D = (n • D)E -  (D ■ E )n , (5.20) becomes

J =-Jf.il ■ (o+t> a)-uV df-E j +Jf [ (n x E )x D ]u W f-1,

+ Jf-{ph + pk)ndV- E |.

Introducing the energy-momentum tensor

b = - (a + ,o )  uV + D ® E uV -  (D E)uV + (ph + pk ) I , (5.22) 

expression (5.20) can be rewritten as

where J = Jf.n b<r/T is the configuration force (material force) on the 
singularity as an extension to the notation by Eshelby (1951, 1970).

Hence, the dynamic contour integral can be taken as the projection of 
the configuration force on the crack advance direction, which is 
consistent with the physical interpretation of being the dynamic energy 
release rate. The dynamic contour integral thus formulated is related to 
the energy-momentum tensor in the same way as given by Pak and 
Hermann (1986), Maugin and Epstein (1991) and Dascalu and Maugin

(5.19)

(5.21)

7 =Jf n -W f-E , = J  E,, (5.23)
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(1994). Nevertheless, distinct from previous work, the dynamic contour 
integral constructed with the use of the augmented Helmholtz free energy 
within the framework of the nonlinear theory of coupled electric, 
thermal, and mechanical fields fully satisfies the thermodynamic 
requirements and hence can be used in a physically sound fracture 
criterion.

5.6 Coupled Electromechanical Jump/Boundary Conditions

There are debates in the literature about the selection of the electric 
boundary conditions on crack faces, as discussed in Section 4.4. Dascalu 
and Maugin (1995) studied the dynamic fracture problem for 
piezoelectric materials with the impermeable crack-face condition. Li 
and Mataga (1996a-b) imposed electrode- and vacuum-type of electric 
boundary conditions on the crack surfaces, respectively, in their analysis 
of semi-infinite antiplane crack propagation in a hexagonal piezoelectric 
medium. Chen and Yu (1997), Chen and Karihaloo (1999) and Wang 
and Yu (2000) investigated dynamic crack problems in piezoelectric 
materials subjected to mechanical and electrical impacts for two kinds of 
crack-face conditions: impermeable and electrical contact. We discuss 
below the application of coupled electromechanical jump/boundary 
conditions for a cracked body within the framework of the nonlinear 
theory of coupled electric and mechanical fields.

For an inclusion problem, the coupled electromechanical jump 
conditions across the interface are given by

n[[D ]]=C7/ , (5.24)

nx[[E]] = 0 , (5.25)

n [ [ o + t,o ]]= 0 , (5.26)

[[u]] = 0 . (5.27)

For a slit crack problem, the crack-face boundary conditions may be 
expressed as
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n+ -(ст+(,о)+ = - n  -(а+,аГ

= -{<72°,+e0-2°i, a°2+, cr2°2, <j°3+c o-2°3 }r, (5’28)

n+ • D+ = -n" • D' = - D ° . (5.29)

Conditions (5.24)-(5.27) are exact, but the corresponding boundary- 
initial value problem needs to be solved in both the cracked solid region 
and the interior fluid (vacuum, air, etc.) region. It is noted that the total 
traction should be considered in the coupled electromechanical boundary 
conditions along the crack faces and the remainder surfaces of the solid. 
D° in (5.29) can be either prescribed for the impermeable crack-face 
condition or determined through solving the boundary-initial value 
problem with the permeable or semi-permeable crack-face condition.

5.7 Asymptotic Near-Tip Field Solution

The dynamic energy release rate serves as the crack driving force for any 
electro-thermo-elastic boundary-initial value problem and can be 
evaluated as long as the solution for the propagation of a crack, either 
electrically insulating or conducting, is given. Different from a stationary 
or quasi-static crack problem, a dynamic crack problem is concerned 
with fracture phenomena for which inertia effects arising from either 
rapidly applied loads or rapid crack propagation become significant. The 
influence of material inertia on the distribution of near-tip fields is of 
great importance because these fields represent the environment in which 
the mechanisms of crack advance are operative. Since it is rare to obtain 
closed-form exact solutions for this class of complicated problems, 
asymptotic solutions are often sought.

It emerges from the analysis by Yang (2004) and Li and Yang (2005) 
that the difference between the solutions for the fully dynamic antiplane 
unelectroded crack problem of polarized ceramics and the dynamic 
antiplane unelectroded crack problem based on the quasi-electrostatic 
approximation is small, since the crack speed is much lower than the 
speed of light. Thus, the quasi-electrostatic approximation can still be 
adopted for studying dynamic crack propagation so that the electric field
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may be expressed by the gradient of a scalar function called the electric 
potential.

Consider a generalized plane crack problem with the crack tip of 
primary interest advancing at instantaneous speed Vc along the X, - 
axis. The displacement component um (/71=1,2,3) and the electric 
potential ф are independent of X 3. To derive the asymptotic expansion, 
the scaled variables X, = X, /£* and X 2 = X2! £ are introduced, where £ 
is a small parameter, X, = X, -  Vct , and X 2 = X2. If £ is taken to be 
indefinitely small, all points in the plane (X ,,X 2) except those near the 
crack tip are pushed out of the field of observation in the plane ( X ,,X 2). 
Furthermore, as viewed from the scaled reference coordinate system 
affixed to the moving crack tip, the crack appears to be semi-infinite 
along the negative X, -axis.

As an extension of a standard solution procedure for asymptotic fields 
near a moving crack tip in elastodynamic fracture mechanics (Freund, 
1990), the displacement components and the electric potential are 
expanded in powers of £of the form

u„XXl, X 2,t) = £<°u®\XlJ 2j ) + e 4' tfl)( X l, X 2, t)+---,  (5.30) 

# X „ X 2,f) = e ‘,°fi0\ X l, X 2, t ) + e ‘hfr')( X l, X 2, t ) + - ,  (5.31)

where and ф{0) represent the dominant contribution, uj,1/  and ф"] 
represent the first-order correction, and so on. This implies that the 
exponents are ordered such that q0 < q] < q2 < • • •.

The above expansion is essentially an assumption that the near-tip 
fields can be represented as a series of homogeneous functions of 
increasing degree. The assumed form of expansion is substituted into the 
governing equations and the coefficient of each power of £ is set equal to 
zero. The coefficient of the lowest power of £ vanishes if the dominant 
asymptotic solution satisfies

(5.32)

e f,(0) -  к  rf»<0) -  П e jklu k.jl K j l9 , j l  U • (5.33)
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Based on the Stroh-type formalism discussed extensively in Section 
4.3, the solution is sought in the form

“l0) = o„ ,/(z ) (m=l,2,3), z = X l+ P X2, (5.34)

where the function /  is analytic in the complex variable z = X, + pX2 
and the complex numbers p and am must be determined from Eqs. (5.32) 
and (5.33).

Substituting Eq. (5.34) into Eqs. (5.32) and (5.33) yields

1(0) _

[Q -  pVc2U + (R + R r )p + Tp2 ]a = 0 , 

with a = (fl|,a2,e3,a4)r  , U = diag(l, 1,1,0) and the4 X4 matrices:

C \ jk l  e \ j \  

e \k\ ~ K \\

R = C \jk2  e 2 j \

12
,T = C2jk2 e 2 j2

к 2 22

(5.35)

(5.36)

Nontrivial solutions are obtained if p is a root of

det[Q -  pVc2U + (R + R r )p + Tp2 ] = 0. (5.37)

The eight roots of Eq. (5.37) depend on the crack velocity Vc, that is, 
Pa = Ра^Ус  ̂• A real root P Eq. (5.37) corresponds to a value of Vc 
equal to the velocity of bulk waves propagating in the direction (1, p) in 
the ( X , ,X 2) plane. Following the treatment by Lothe and Barnett 
(1976) in the study of surface waves in piezoelectric crystals, cL is 
introduced to denote the inferior limit of such bulk wave velocities. 
Then, Eq. (5.37) has no real roots for Vc < c L. Since the coefficients of 
Eq. (5.37) are real, the eigenvalues and the eigenvectors form two sets of 
complex quantities with one set being conjugate to the other. We suppose 
p a ( a  = 1,2,3,4 ) are four distinct roots with positive imaginary parts and 
construct the matrix A with columns that are the associated eigenvectors. 
Then, the solution of Eqs. (5.32)—(5.33) is expressed as



Фт = i .A 4J a(za )+  T.A4a f a(za),  (5.39)
a= 1 a= 1

A A

where za = X l + p aX 2 ( a  = 1,2,3,4) and the over-bars denote complex 
conjugates.

Hence, the total stress and electric displacement in the vicinity of the 
crack tip moving at instantaneous speed Vc are given by

, a n = £ (,°-') h p V ^ a - PaLia) fa Cza)
_  _  ______ (5.40)

+ £{%-l)T(pV?A,a - p aL,a)fa(za\a=l

,°Г2 = £<,0' ,) iX la faG *)*  (5-41)
a=l a - 1

D\ ^ p й .̂te / a (гa ) - £ (,"ЧI Ъ а К а Ш а )  - (5-42)
a =1 ar=l

D2 = ««*-» i b 4af a(za) + г *"0-0 i l 4af a(za) , (5.43)
a=l a=l

where = (#„,„ + PaT„m)Ama= - (Q lm + paRnm-p V * U lm)A,„a / p a . 
Let us introduce

f  = ( / ,(? ,) ,/ 2(г2) ,/з (г з ) ,/4(г4))Г , (5.44)

h = Lf . (5.45)

The singular solution that gives bounded displacements and electric 
potential is

h(z) = —J = k  , (5.46)
V8 7cz

where к is the dynamic field intensity factor vector.
It is evident that the parameter q0 in expressions (5.30) and (5.31) 

has the value of one-half. The total stress and electric displacement have
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the classical inverse square-root singularities at the crack tip. 
Accordingly, at a distance r ahead of the crack tip,

(/ &2\ V ^ 22»/ ^23»^ 2) = к , (5.47)

where к = (Кп ,К п Кпп KD)T, K t , Kin Kw are mode-I, mode-П, 
and mode-ill dynamic total stress intensity factors and KD is the 
dynamic electric displacement intensity factor.

To evaluate the dynamic energy release rate, we choose the contour 
Г0 in the reference frame ( X ] = X l -  Vct , X 2 = X 2) as shown in Fig. 
5.2. This is a convenient choice because n{ = 0  along the segments 
parallel to the X,-axis. The contour is shrunk onto the crack tip by first 
letting S2 —>0 and then S] —>0. As in the purely elastodynamic case 
discussed in Section 1.5, there is no contribution to J0 from the 
segments parallel to the X2-axis. Furthermore, the second and third 
terms on the right-hand side of Eq. (5.18) along the segments parallel to 
the X,-axis vanish. Consequently, 70 can be computed by evaluating 
only the first term on the right-hand side of Eq. (5.18) along the 
segments parallel to the X,-axis, that is,

J0= ^ \ im { \ im i% l ( T 2j ( X ],S2j ) + e(72j (X l,S2m j ( . X l,S2,t)dXl }.
Vc <?,-» О Л -» 0 1

(5.48)

Fig. 5 .2 . A particular ch o ice  o f  the contour for evaluating the dynam ic energy release  
rate.
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Hence, the dynamic energy release rate is equal to the following 
crack closure integral:

J0 = \ m ^ t f [ < r 2j ( X i A t ) + e<T2j (X uO,t)]AUj( X l -&, ,0±,t)dXl ,
& —>0 L uci

(5.49)

where Auj(X{ -  & ,0r  >t) = uj ( X l -  &i ,0+, t ) - u j ( X l is the 
crack opening displacement at a distance да -  X, behind the crack tip.

Consequently, the dynamic energy release rate is calculated as

j 0= ^ ( k n,K,,  K m , 0) • H' • (* „ ,£ „  K „  , k D)T, (5.50)

where H' = 2Re(/AL~l) is the dynamic counterpart of the Irwin matrix 
described in Section 4.5.2, which depends on material properties and 
crack speed.

Remarkably, Eq. (5.50) shows that the dynamic energy release rate is 
an odd function of the electric displacement intensity factor, which is in 
agreement with experimental observations (Pak and Tobin, 1993; Tobin 
and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995; Park and Sun, 
1995a-b; Jiang and Sun, 1999, 2001; Qin, 2001; Zhang et al., 2002; Soh 
et al., 2003; Chen and Lu, 2003). As explained by Dascalu and Maugin 
(1995), the behavior of the dynamic Irwin matrix as a function of the 
crack velocity is intimately related to the existence of surface waves on 
the crack faces.

For the mode-I dynamic crack problem, the dynamic energy release 
rate and the dynamic crack opening displacement intensity factor are 
given by

J0 = i  (0, k ,  ,0, 0) • H' • (0, k ,  ,o, KD)T, (5.51)

K f0D = 4J0 / k ,  = (0,1,0,0) • H' • (0, К, ,0, KD f . (5.52)
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For the mode-Il dynamic crack problem, the dynamic energy release 
rate and the dynamic crack opening displacement intensity factor are 
given by

For the mode-III dynamic crack problem, the dynamic energy release 
rate and the dynamic crack opening displacement intensity factor are 
given by

For complete evaluation of the crack driving force, total stress and 
electric displacement intensity factors should be obtained from the 
solution of a particular boundary-initial value problem. Quasi-static 
propagation of a crack perpendicular to the poling axis under the 
impermeable crack-face condition studied by Park and Sun (1995a-b) 
can be taken as a special case of the mode-I dynamic crack problem as 
the crack velocity tends to zero.

The antiplane dynamic crack problem studied by Dascalu and Maugin
(1995) corresponds to the mode-III dynamic crack problem with the 
crack front parallel to the poling axis. With the replacement of the 
Cauchy stress by the total stress in their solution, the dynamic energy 
release rate and the dynamic crack opening displacement intensity factor 
are

J o ,0,0,0) • H' • ( K „  ,0,0, K D)T, (5.53)

J0 = -  (0,0, кш ,0)-й'- (0,0, k„ ,kD)T, (5.55)

k n , D=^J0l k nl = (0,0,1,0) Н' т Л шЛ о ) т. (5.56)

(5.57)

(5.58)
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where a 2 =1 — (УсIc]-) and cT is the piezoelectrically stiffened bulk 
shear wave speed given by

2 _  c 44Ct — '15

' 44^11 J
(5.59)

5.8 Remarks

This formulation successfully captures the singularity of coupled fields, 
offers the right expression for the crack driving force, and reconciles the 
fundamental discrepancy between theoretical predictions and 
experimental observations. The important features are summarized 
below:
• The dynamic total stress intensity factors describe the inverse square- 

root singularity of the near-tip total stress as the sum of the Cauchy 
stress and the electric stress, and the electric displacement intensity 
factor describes the inverse square-root singularity of the near-tip 
electric displacement. The crack-face conditions affect dynamic crack 
propagation by changing the field intensity factors.

• The definition of the dynamic contour integral originated from the 
energy flux integral, which is generally path dependent. For steady- 
state crack propagation in the absence of mechanical body force, 
temperature change, and electricity conduction, the dynamic contour 
integral becomes path independent as the contour including the crack 
faces is chosen.

• The dynamic energy release rate can be evaluated by the 
“mechanical” part of the crack closure integral with the replacement 
of the Cauchy stress by the total stress, which is consistent with the 
semi-empirical fracture criterion proposed by Park and Sun (1995a- 
b). Nevertheless, the difference lies in the replacement of the Cauchy 
stress tensor by the total stress tensor and the equivalence of the 
crack-tip dynamic contour integral to the dynamic energy release rate 
instead of the mechanical strain energy release rate.

• The dynamic energy release rate serving as the crack driving force is 
an odd function of the electric displacement intensity factor, which is
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in agreement with experimental evidence (Pak and Tobin, 1993; 
Tobin and Pak, 1993; Park and Sun, 1995a-b; Jiang and Sun, 2001; 
Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu, 2003). 
The application of a purely electric load can drive crack growth in the 
absence of a mechanical load due to its contribution to the dynamic 
energy release rate through the dynamic total stress and electric 
displacement intensity factors, which is in agreement with the 
experimental observations on fatigue crack growth under cyclic 
electric loading (e.g., Cao and Evans, 1994; Lynch et al., 1995; Jiang 
and Sun, 1999; Zhang et al., 2004).
In addition to the dynamic energy release rate, the dynamic crack 
opening displacement intensity factor may be taken as an important 
parameter to monitor electro-elastodynamic fracture.



Chapter 6

Dynamic Fracture Mechanics of 
Magneto-Electro-Thermo-Elastic 

Solids

6.1 Introduction

In Chapter 5, electro-thermo-elastodynamic fracture was investigated 
under the quasi-electrostatic approximation, that is, the near-absence of a 
time-varying magnetic field. Since the early work by Van Suchtelen 
(1972), piezoelectric/piezomagnetic composites have been developed for 
various engineering applications as a result of the emergence of a new 
product property, i.e., magnetoelectric coupling, which is absent in 
single-phase piezoelectric or piezomagnetic materials. The co-existence 
of piezoelectric, piezomagnetic and magnetoelectric coupling effects 
(i.e., magneto-electro-elastic coupling effects) in composite materials 
consisting of piezoelectric and piezomagnetic phases introduces many 
complexities to multiphysics analysis.

Research on the deformation and fracture behavior of magneto- 
electro-thermo-elastic solids has drawn considerable attention (e.g., 
Harshe et al., 1993; Nan, 1994; Maugin, 1994; Alshits et al., 1995; 
Kirchner and Alshits, 1996; Huang et al., 1998; Li, 2000; Trimarco and 
Maugin, 2001; Liu et al., 2001; Sih et al., 2003; Song and Sih, 2003; 
Wang and Mai, 2003, 2007a-b; Gao et al., 2003, 2004; Du et al., 2004; 
Hu and Li, 2005; Zhong and Li, 2006; Niraula and Wang, 2006; Hu et 
al., 2007; Feng, et a I., 2007; Zhong et al., 2009; Wang et a I., 2009) 
because of the safety and reliability requirements for their service in 
actuators, sensors, waveguides, electronic packaging, and biomedical 
devices. Recently, Chen (2009b) studied the energy release rate and the
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path-independent integral in dynamic fracture of magneto-electro- 
thermo-elastic solids, which is an extension of the new formation of the 
crack driving force and the energy-momentum tensor in electro- 
elastodynamic fracture (Chen, 2009a).

This chapter begins with the thermodynamic formulation of a fully 
coupled dynamic fracture mechanics framework for crack propagation in 
nonlinear magneto-electro-thermo-elastic solids, followed by evaluation 
of the dynamic energy release rate through seeking the complex variable 
solution based on the Stroh-type formalism. After that, magneto-electro- 
elastostatic crack problems are discussed as special cases. Finally, a 
summary is given.

6.2 Thermodynamic Formulation of Fully Coupled Dynamic 
Framework

The elements of the non-relativistic electrodynamics of continua have 
been discussed in Chapter 2. We now focus on developing a fully 
coupled dynamic framework for crack propagation in nonlinear magneto- 
electro-thermo-elastic solids based on the fundamental principles of 
thermodynamics. The thermodynamic formulation enables us to deal 
with complex material and fracture behaviors in a unified way and 
requires only that constitutive equations should be derived from an 
explicitly defined free energy function and transport laws conform to the 
requirement of non-negative dissipation.

6.2.1 Field equations and jump conditions

For a cracked body В under combined magnetic, electric, thermal, and 
mechanical loadings, the basic field equations and associated jump 
conditions are summarized below, following the localization of the 
fundamental physical laws.

Gauss’s law (in В ):

V D  = qf . (6.1)



Gauss’s law for magnetism (in В ):

V B  = 0 .

Faraday’s law (in В ):

V x E  + — = 0 .
dt
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Ampere’s law (in В ):

Conservation law of electric charges (in В ):

+ v - j  = 0 .
d q f

Эг

Conservation law of mass (in В ):

—  + pV • v = 0 . 
dt

Conservation law of momentum (in В ):

dv - 3G

Conservation law of angular momentum (in В ): 

£к№ц+етОц) = 0 . 

Conservation law of energy (in В ):

de
p —  = - V j ? + o :v V  + /3 E -J t-M B  + E -j.

Entropy production inequality (in В ):

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8) 

(6.9)

(6.2)
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-7-  + — V - j ,  > 0 .  (6.10)
dt p

Constitutive equations (in В ):

e^ kl- ^ P o » (6.11) 

S = ~ ,  (6. 12)

EK = p 0z ^ - ,  (6.13)
a n *

dh . .x
M к ~ A) -v - • (6.14)

дВк

Transport laws (in В ):

1 1
T T

J e = ^ - V RU U “ E.  (6.16)

Jump conditions (across ЭВ ):

n[[D ]]=fi7/ , (6.17)

n [[B ]]  = 0 , (6.18)

nx [[E + v x B ]] = 0, (6.19)

n x [[H -v x D ]]  = 0 , (6.20)

Вт,
n - [ [ j , - 9/ v ] ] + - = £- = 0, (6.21)
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n • [[a+e O'+ v ® G]] = 0 , (6.22)

n • [Uq ~(o+emo + v ® G) • v + S]] = 0 . (6.23)

6.2.2 Dynamic energy release rate

Consider a three-dimensional deformable electromagnetic body В 
containing a propagating crack of arbitrary shape (Fig. 6.1). The X3-axis 
is tangent to the crack front at the observation point P attached to the 
reference frame translating with the crack front moving at instantaneous 
speed Vc along the X,-axis. A surface Г surrounding the crack front is 
fixed relative to the reference frame.

Fig. 6.1. A three-dimensional deformable electromagnetic body containing a propagating 
crack o f  arbitrary shape.

A global form of the energy balance leads to the following expression 
for the energy flux integral:



Dynamic Fracture Mechanics o f Magneto-Electro-Thermo-Elastic Solids 125

F (f)  = Ji,[n(CT+m,a  + v ® G ) - v - n S  + ( ^  + pA+OT«/ )n V c ] #  

= Ja5[n • (ст+й„ а + v ®G) • v -  n S]<tf

^  «V

where is the volume bounded by Г , dB is the boundary of the 
cracked body В , and S = E x H  is the Poynting vector in the co- 
mo ving frame Rc .

Hence, the total energy flux is caused by work done by the total 
traction, traveling of electromagnetic waves, and transport of material 
with its associated energy density. It is noted that the associated energy 
density includes the kinetic energy density, the Helmholtz free energy 
density, and the energy density of the free electromagnetic fields.

The dynamic energy release rate is defined as the rate of energy flow 
out of the body and into the crack front per unit crack advance, that is,

J0 = • (0 +„„a + v ® G ) v - n - S  + (pk + ph+emuf  )n • Vc ]tT,

(6.25)

where the limit implies that Г is shrunk onto the crack front and A is 
the crack area growth rate.

The above definition is reduced to Eq. (1.27) as the electromagnetic 
fields are shut off and to Eq. (5.18) under the quasi-electrostatic 
approximation.

6.2.3 Invariant integral

In view of its definition, the dynamic energy release rate serves as the 
crack driving force for any boundary-initial value problem and can be 
evaluated when the solution becomes available. Since it is rare to obtain 
closed-form full-field solutions under combined loading conditions, 
numerical techniques are often used to determine coupled magnetic,
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electric, thermal, and mechanical fields. However, it is difficult to 
proceed numerically to the limit required in (6.25) for definition of the 
dynamic energy release rate due to inaccuracy of numerical solutions for 
points very close to the crack front where gradients are severe. 
Therefore, an equivalent representation that is less sensitive to numerical 
inaccuracy in the crack-front region is needed for efficient evaluation of 
the dynamic energy release rate.

The relationship between the energy fluxes through two surfaces Г, 
and Г2 is obtained as

Jf. [ n • ( a +„„G + \ ® G )  v - n  S +( pk  + ph+clnuf )n-Vc ]dT 

~ Iimnk  -v, J -(P *  + р Ь + с У  )d V + i'm  к  - v  P*' ydVГ0-»0 fj Го Э/ r0-»0 12 f-0

-  Jim к  _v - E  J ' d V -  limU ^ psTdV
о 1-0 p 0 Г0-»0 f2 r0

= Jfi [n • (o+„„o+ v ® G) • v -  n ■ S + (pk + pii+emuf  )n • Vc ]df

It can be seen that the above integral becomes invariant because of 
the added domain integral terms. Consequently, the dynamic energy 
release rate can be represented alternatively by

J0 = J

= T  Jrtn ‘ ( ° +™ ° + v ® G ) v - n - S  + (pk + ph+tmuf  )n • Vc ]*/f/I

'  b i  H  |  v * + ~p k + - u !  ) d V + b i H  ~p (  ■v d V

-  lim Д-J  ̂ - -Z-E J ' d V - l i m l l  9 pstdV.
Го̂ ОД f fo p 0 П,->0А*гЛ>

(6.27)
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If a field quantity is invariant in a reference frame traveling with the 
crack front at a uniform speed Vc = Vc E ,, the field quantity depends on 
t only through the combination X = X - V ct. Hence, for steady-state 
crack propagation in the absence of mechanical body force, temperature 
change, and electricity conduction, the path-domain independent J - 
integral becomes path independent, that is,

A *4*

J = J

= - - Ц  n • (o+„„a) • uWf-E, +-Un-(P* + Ph+emuf  )МГ I,
D  b

1 . ---------i _________(6.28)
- J f [(nxE )xD ]-uV dr-E , + - L [ (n x H )x B ]u W r -E ,
В В

+ —}r n-v® (PxB )-uV flff-E ,,
В

where В is the thickness along the crack front.
With the introduction of the energy-momentum tensor

b = - [o + Wfo  + (D -E )I-D ® E  + (B H )I-B ® H
A л (6.29)

-  v ® (Px  B)] • uV + (pk + ph+emuf  )I,

the J -integral can be expressed as the first component of the J K - 
integral vector as an extension of the configuration force (material force) 
notation (Eshelby, 1951, 1956, 1970, 1975; Maugin and Trimarco, 1992; 
Gurtin, 2000), that is,

J = - L n b # - I .  (6.30)
В r

Nevertheless, the J * -integral vector and the energy-momentum 
tensor В derived in this formulation are different from those obtained 
with use of the electromagnetic enthalpy (Maugin et al., 1992; Maugin, 
1994). The physical meaning of the crack-front J -integral is the 
dynamic energy release rate, which represents the rate of energy flow out 
of the body and into the crack front per unit crack advance. Unlike other 
path-independent integrals, the J -integral thus formulated fully satisfies 
thermodynamic requirements and, hence, can be used as a physically
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sound fracture criterion. When the added domain integral terms in Eq. 
(6.27) are nonzero, the J -integral becomes path dependent and, thus, the 
invariant J -integral is used as an alternative representation. The 
invariant J -integral method is not only generally applicable to various 
material systems and loading conditions but also relatively easy for finite 
element implementation due to its path-domain independency.

6.3 Stroh-Type Formalism for Steady-State Crack Propagation 
under Coupled Magneto-Electro-Mechanical Jump/Boundary 
Conditions

6.3.1 Generalized plane crack problem

To illustrate the application of the developed theory, consider a 
conventional planar crack extending in a magneto-electro-elastic solid 
(Fig. 6.2). A reference frame is affixed to the crack tip advancing at 
instantaneous speed Vc . The X3-axis is along the crack front and the 
crack faces are on the half-plane containing the negative X r axis. For a 
generalized plane crack problem, the field quantities do not depend on 
X 3 but may have components in the X3-direction.

j | \  °Zj+ - oZj.d ; , b;

x.

A 252 
— ►
T x,

25,
I— ►Vc

Fig. 6.2. A conventional planar crack extending in a magneto-electro-elastic solid.
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For an elliptical cavity-like crack problem, the jump conditions across 
a material surface of discontinuity are given by

n-[[D ] ] = 0 f9 nx[[E]] = 0, n • [[B]] = 0, nx[[H]] = 0. (6.32) 

For a slit crack problem, the crack-face conditions may be expressed
as

The total traction should be considered in the coupled magneto- 
electro-mechanical boundary conditions along the crack faces and the 
remainder surface of the solid. The jump conditions (6.31) and (6.32) are 
exact, but the corresponding boundary value problem needs to be solved 
in both the solid region and the cavity region. For a slit crack problem, 
D? and Я? in (6.34) are either prescribed under the impermeable crack- 
face condition or determined through solving the boundary value 
problem with the permeable or semi-permeable crack-face condition. 
The crack-face boundary conditions may also involve crack opening, 
surface charge or discharge.

Since the basic equations in anisotropic magneto-electro-elasticity 
have the same structure as those in anisotropic electroelasticity, general 
solution techniques for linearized problems like the Stroh-type formalism 
remain valid. As an illustration, a steady crack growth problem is dealt 
with below.

6.3.2 Steady-state solution

A steady-state solution for dynamic crack propagation at constant speed 
may be achieved in some limiting sense. The steady-state condition 
permits further reduction of the number of independent variables from 
three to two so that the analysis is considerably simplified. If a field

п-[[о+шо]] = 0 , [[u]] = 0 , (6.31)

n+-(a+„,„a)+ = - n  •(C+....CT)
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quantity is an element of a steady-state solution, the field quantity 
depends on I only through the combination X = X - V ct , that is,

n x l, x 2, t ) = n x l, x 2),

| / ( X „ X 2,0  = -Vc ^ / ( X 1,X 2),

^ / ( X ItX2,0  = J - / ( X lfX2),

y L / ( x 1>x 2, o = - J - / ( ! „ x 2),

where the forms of the functions on the left-hand and right-hand sides of 
the equations are different, but the values of the functions represent the 
same physical quantity, and so they may be represented by the same 
symbol with little risk of confusion.

Under quasi-electrostatic and quasi-magnetostatic approximations, 
the governing equations for an anisotropic magneto-electro-elastic solid 
in the absence of mechanical body force (f  = 0 ), electricity conduction 
Ue = 0) ,  and free electric charge ( =  0 ) can be rewritten in the 
rectangular reference coordinate system affixed to the moving crack tip 
as

cukiukji + %Ф.л + hujVj, = рУсЩ.\ i • (6-39)

ejklukJI ~ *  j i b  -gjlV.JI = 0 • (6-4°)

hjkiuk,ji ~ S i j V . j i = 0 , (6.41)

E, = -<!>:,, (6.42)

H , (6.43)

(6.35)

(6.36)

(6.37)

(6.38)



where ф is electric potential, у/ is magnetic potential, eijk, hijk, and g 
are piezoelectric, piezomagnetic, and magnetoelectric coupling 
coefficients, respectively, cjjkl, Kij9 and jui} are elastic stiffness, 
dielectric permittivity, and magnetic permeability coefficients, 
respectively.

Based on the Stroh-type formalism, a general solution is sought of the 
form

Dynamic Fracture Mechanics o f Magneto-Electro-Thermo-Elastic Solids 131

and the complex numbers p and am must be determined from Eqs.

11 m = a„,f(z) (m = 1,2,3), (6.44)

Ф = а4/ Ь ) , (6.45)

V = a5f ( z ) , (6.46)

where the function/is analytic in the complex variable z = X, + pX2

(6.39)—(6.41).
Substitution of (6.44)-(6.46) into (6.39)—(6.41) yields

[Q-/?V/c2U4-(R + R 7)p + Tp2]a = 0 , (6.47)

with a = (alta2ia3,a4,a5)T, U = diag(l,l,1,0,0), and the 5X5 matrices:

C\jk\ e \j\ K j \
Q = elkl — *̂ii “ 5n » (6.48)

_h\ki ~S  и ~Mu_

(6.48)

(6.49)

*U2 8 21 M\2_

(6.50)

Nontrivial solutions are obtained if p  is a root of
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det[Q -  p V 2M + (R + R T )p + T p 2) = 0 . (6.51)

The ten roots of Eq. (6.51) depend on the crack velocity Vc, that is, 
pa = p a(Vc ) . A real root p of Eq. (6.51) corresponds to a value of Vc 
equal to the velocity of bulk wave propagating in the direction ( 1, p) in 
the (X , , X 2) plane. Let cL denote the inferior limit of such bulk-wave 
velocities. Then, Eq. (6.51) has no real roots for Vc < c L. Since the 
coefficients of Eq. (6.51) are real, the eigenvalues pa and the 
eigenvectors aa form two sets of complex quantities, with one set being 
conjugate to the other. We suppose pa ( a  = 1,2,3,4,5) are five distinct 
roots with positive imaginary parts and construct the matrix A with 
columns that are the associated eigenvectors. Thus, the general solution 
of Eqs. (6.39)-(6.41) is given by

um = iA „ a/« (z e )+  I.A,„a f a(za ),  (6.52)
a - \  a=\

Ф= t A M z a) +  Y A la fa ( za ),  (6.53)
a=\  a= 1

V  = 2 > s « /a (Za ) + I ^ iafaiZa ) , (6-54)
a= I a= I

where za = X, + p aX 2 ( a -  1,2,3,4,5) and over-bars denote complex 
conjugates.

Hence, total stress, electric displacement, and magnetic induction are 
readily expressed as

,Oi, = I.(pVcAa-PaL,a) fa(Za)+ U p V 2̂ -  , (6.55)
a =  1 or=l

, a i2 = 'LLiaf a(za) + Zbafa iZa)  - (6-56)or=l a -1

D, = - Z p aL4a/ a (za ) ~  X p aL4af a(za )'  (6-57)
a-\ a-I



(6.58)

(6.59)

(6.60)
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where Lna = (Rmn + paT„m)Ama = - {Q nm + paR„,„ - Pv£u„т)Ата/ pa is
used to construct the matrix L. The unknown functions /  can be 
determined by the boundary conditions for a given crack growth 
problem.

Let us introduce

The dynamic field intensity factor vector is defined in terms of the 
total stress, electric displacement and magnetic induction at a distance r 
ahead of the crack tip as

N Л I H i  и  '  • «  ^
and mode-III dynamic total stress intensity factors, KD is the dynamic 
electric displacement intensity factor, and KB is the dynamic magnetic 
induction intensity factor.

The jumps of the displacements, electric potential, and magnetic 
potential across the crack faces at a distance r behind the crack tip are

f  = ( / | ( г | ) , / 2(г2)./з(гз)./4(г4)./5(г5))7’- (6.61)

The asymptotic solution is

hU) = Lf*(z) = - r = k .
V87ZZ

(6.62)

к = lim л/2лг(, cr2l „ tf22,, <r2}, D2 ,B2)T, (6.63)

where k = ( K„ , Kl , Kll, , K D, KB)T, К, ,  K„,  Kw are mode-I, mode-П,
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where H' = 2 Re(/AL-1) is the dynamic counterpart of the Irwin matrix 
described in Section 4.5.2, which depends on material properties and 
crack speed.

Hence, the dynamic field intensity factor vector in terms of the crack 
opening displacement (COD), electric potential difference, and magnetic 
potential difference across the crack faces at a distance /* behind the crack 
tip is defined as

k* = l im j—  (Ди,,Ди2,Ди3,Д 0 ,Д ^)г , (6.65)
r-*o V 2 r

where K f 0D, K C°D, K™D are
mode-I, mode-II, and mode-III dynamic crack opening displacement 
intensity factors, Кф is the electric potential intensity factor, and K¥ is 
the magnetic potential intensity factor.

As a result, the two dynamic field intensity factor vectors к and k 
are related by

k* = H' • k. (6.66)

6.3.3 Path-independent integral for steady crack growth

For steady-state propagation of a planar crack without mechanical body 
force (f  = 0 ), temperature change (Г  = 0 ) and electricity conduction 
U e = 0), dynamic energy release rate can be represented by the 
path-independent dynamic contour integral as the closed contour 
including the crack faces is chosen, that is,

J0= J g = J l . (6.67)

Choose the contour as shown in Fig. 6.2. This is a convenient choice 
because n, = 0  along the segments parallel to the X,-axis. The contour 
is shrunk onto the crack tip by first letting d2 —> 0 and then —> 0. By 
analogy to the purely elastodynamic case (Freund, 1990), there is no 
contribution to JQ from the segments parallel to the X2-axis and the
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segments along the crack faces. Moreover, the second, third, fourth, and 
fifth terms on the right-hand side of Eq. (6.28) along the segments 
parallel to the X, -axis vanish. Consequently, J0 can be computed by 
evaluating only the first term on the right-hand side of Eq. (6.28) along 
the segments parallel to the X, -axis, that is,

J 0 = - 2 lim { lim f i  [<x2y (X „ <5, )+„, <5, ,}.
<5|—>0 S2—>0 ЭХj

(6 .68)

Consequently, the dynamic energy release rate is equal to the 
following crack closure integral:

J 0 =  Iim - V £ V 2,(x ,>0)+c,„a 2j ( X l,0)]Ак (X, -  &i,0±)dXt , (6.69)
&->o2 da

where AUj(X} -&i f l ±) = uj{ X l - & ,0 +) - и у(Х ,-& ,0 " )  is the crack 
opening displacement at a distance da -  X { behind the crack tip.

The dynamic energy release rate is thus calculated as

J0= U k ink „ k , „ , 0,0)■ H '• ( k u , k , , k „ , , k D,k„)T. (6.70)

Equation (6.70) shows that the dynamic energy release rate is an odd 
function of the electric displacement intensity factor and the magnetic 
induction intensity factor, which is consistent with experimental 
evidence (Pak and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans, 
1994; Lynch et al., 1995; Park and Sun, 1995a-b; Jiang and Sun, 1999, 
2001; Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu, 
2003). The axisymmetric dynamic crack problem under the 
electromagnetically impermeable or permeable conditions studied by 
Feng et al. (2007) is analogous to the mode-I dynamic crack problem 
with the crack plane perpendicular to the poling direction.
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6.4 Magneto-Electro-EIastostatic Crack Problem as a Special Case

As the crack velocity tends to zero, the near-tip field formulae in the 
previous section are reduced to the quasi-static case discussed in Chapter 
4 with the replacement of the Cauchy stress by the total stress. For a 
conventional Griffith-type crack of length 2a, the crack-tip field intensity 
factor vector is obtained as

к = ( K„ , KI, KIII, K D, KB)T (671)
=(, 0-2° . 0 - 5 -  0-2 2 0T3- ,  cr2°3,D~ -  D°2, S“ -S ,° )r 4 m ,

where , , D“ and B~ are, respectively, total traction, electric
Q

displacement, and magnetic induction components in the far field, , 02j 9 
D? and B2 are, respectively, total traction, electric displacement, and 
magnetic induction components at the crack surface.

Since the total stress tensor is the sum of the Cauchy stress tensor and 
the electromagnetic stress tensor, the total stress fields are coupled with 
the electromagnetic fields, which is fundamentally different from the 
decoupled prediction based on the linear theory of piezoelectricity and its 
extension.

From Eq. (6.28), the energy release rate for a quasi-static or 
stationary planar crack in the absence of mechanical body force ( f = 0 ), 
temperature change (T = 0 ), and electricity conduction ( J e = 0 ) can be 
expressed by a path-independent integral constructed with the augmented 
Helmholtz free energy, including the contribution of the energy of the 
free electromagnetic fields, that is,

^  ^  Jf n • H ( a + eiJ1o) + (D ■ E)I -  D ® E + (B • H)I 

-  В ® H] • uV + ) I } #  • Ё ,.

As the electric field or the magnetic field is shut off, the above 
expression becomes
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J  = 1  Jf n • H (o + ,e )  + (D ■ E)I -  D ® E] • uV

7  = -^ Ir"  ■ H ( 0 +mCT) + (B H)I -  В ® H]- uV 

+ (рЛ+„,И/ )1МГЁ, .

6.5 Summary

The thermodynamic approach provides a uniform treatment of nonlinear 
constitutive and fracture behaviors of deformable electromagnetic 
materials involving multifield coupling effects. The elements of dynamic 
fracture mechanics for nonlinear magneto-electro-thermo-elastic solids 
are summarized in Table 6.1. The dynamic energy release rate 
representing the rate of energy flow out of the body and into the crack 
front per unit crack advance under combined magnetic, electric, thermal, 
and mechanical loadings can be expressed as the crack-front J -integral 
or, alternatively, the invariant J -integral. The J -integral including both 
path and domain integral terms is invariant (i.e., path-domain 
independent) as a whole, but in general neither path independent nor 
domain independent separately. For steady-state crack propagation in the 
absence of mechanical body force, temperature change, and electricity 
conduction, the path-domain independent J -integral is equivalent to the 
J -integral, which becomes path independent as the closed surface 
including the crack faces is chosen. Unlike other invariant integrals in the 
literature, the invariant J -integral thus formulated can be used as a 
physically sound fracture criterion for magneto-electro-thermo-elastic 
solids so as to provide guidelines for design and analysis of smart 
material and structure systems. Remarkably, the dynamic energy release 
rate is an odd function of the electric displacement intensity factor and 
the magnetic induction intensity factor, which is consistent with 
experimental observations. The crack driving force and the energy- 
momentum tensor in electro-thermo-elastodynamic fracture given in 
Chapter 5 can be taken as a special case. While many efforts have been
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devoted to the establishment of an advanced fracture mechanics 
methodology involving multifield analysis, much remains to be done for 
practical applications. The crack growth problems under combined 
magnetic, electric, thermal, and mechanical loadings are certainly worthy 
of more studies, especially involving surface wave phenomena and 
material hysteresis effects.

Table 6.1 Summary o f  the elem ents o f  dynamic fracture mechanics for nonlinear 
magneto-eleclro-thermo-elastic solids

Helmholtz 
free energy h = e-Ts = Л(С,7\Ул7\П, B ;X )

Poynting
vector

S = ExH

Dynamic 
energy 
release rale

J0 -  lim lfp [n .(a+ wlO + v ® G ) . v - n - S  +(pk + ph+emu* )n-Vc ]dT 
r-»0 A

Invariant
integral

J = 4-Jp[n• (a+ew<3 + \ ® G ) - \ - n S  + (pk + ph+emuf )n Vc }dT
A

-  Jim  - lk _ v  + Ph+e,»«' W  + Jim  - U v- pt ^V  Го->0 A r r0 Э/ Го->0 А г r0

- J i m  4- U д —  E JedV -  Jim 4- U ,7 psTdV
Го-*0 А  г Го Po rj)—>0 Л f r0

Path-
independent
integral

J = J Ё, = ( l /B )J f n -b < /f  I ,
(steady-state crack propagation in the absence o f mechanical body force, 
temperature change, and electricity conduction)

Energy-
momentum
tensor

b = - [ o + em a  +  (D  E)I -  D ® E + (B • H )I -  В ® H 

-  v ® (P x B)] • uV + (pk + ph+emuf  )I

Irwin-
relation

J = ^ k n,Kl ,Kl„,o,o)Hi -(Kll,Ki,Kin,KD,KB)T
(linearized theory)



Chapter 7

Dynamic Crack Propagation in 
Magneto-Electro-Elastic Solids

7.1 Introduction

The transient response of electromagnetic materials in the presence of 
multifield coupling effects is essentially distinct from those found in 
purely mechanical problems. For example, shear horizontal (SH) surface 
waves may occur in a piezoelectric material with hexagonal symmetry 
(Alshits et al., 1992; Alshits, 2002), whereas there are no antiplane-mode 
surface waves in a purely elastic material of the same symmetry. Due to 
the shear horizontal surface wave effects, antiplane dynamic crack 
propagation in piezoelectric materials (e.g., Li and Mataga, 1996a-b; Ing 
and Wang, 2004a-b; Melkumyan, 2005; Chen et al., 2007, 2008) 
exhibits many features only associated with in-plane modes in the elastic 
case. The magneto-electro-mechanical coupling effects introduce more 
difficulties to solving transient crack growth problems analytically.

Since the previous chapter demonstrated the solution procedure for 
steady-state crack propagation in magneto-electro-elastic solids, we now 
focus on the techniques for analyzing transient crack growth in magneto- 
electro-elastic solids. Our attention is limited to the illustration of sudden 
constant-speed extension of a mode-III crack in a magneto-electro-elastic 
solid, so that the model is mathematically tractable for a closed-form 
analytical solution following the work by Chen (2009c). For more 
complex problems, numerical methods are often resorted to because of 
mathematical difficulties. The treatment of this subject is far from 
exhaustive and the reader may refer to the literature for further 
information.

139
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The following section begins with a brief description of the shear 
horizontal surface wave phenomenon. In Section 7.3, the boundary- 
initial value problem for a sudden constant-speed extension of a semi- 
infinite mode-III crack is formulated with a unified treatment of 
electrically and magnetically permeable, semi-permeable, and 
impermeable crack-face conditions. In Section 7.4, integral transform, 
Wiener-Hopf and Cagniard-de Hoop techniques are used to solve the 
boundary-initial value problem in both the cracked solid region and the 
interior fluid region. In Section 7.5, the fundamental solutions for 
traction loading only are attained with the inverse square-root singularity 
near the crack tip. In Section 7.6, the fundamental solutions are 
generalized to mixed loads, resulting in self-induced and crossover 
dynamic field intensity factors. In Section 7.7, the dynamic energy 
release rate is evaluated based on the near-tip field solutions 
characterized by the dynamic field intensity factors. In Section 7.8, the 
surface wave effect on dynamic crack propagation in magneto-electro- 
elastic solids is discussed.

7.2 Shear Horizontal Surface Waves

In contrast to elastic body waves (P waves or S waves in seismology) 
that move through the body of an object, Rayleigh waves are a type of 
commonly known surface waves which travel along a surface and decay 
exponentially away from the surface. Bleustein (1968) and Gulyaev 
(1969) independently discovered the propagation of shear horizontal 
waves in piezoelectric materials with hexagonal symmetry. Lothe and 
Barnett (1976, 1977) further developed the theory for surface waves in 
piezoelectric crystals. Alshits et al. (1992) studied the existence of 
surface waves in half-infinite anisotropic elastic media with piezoelectric 
and piezomagnetic properties. Alshits (2002) also reviewed the role of 
anisotropy in crystal acoustics. Wang et al. (2007c) analyzed a magneto- 
electro-elastic half-space problem. The surface wave effect is very 
important for the design and analysis of high-performance devices such 
as transducers and wave filters. The major solution steps for shear
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horizontal surface wave problems involving magneto-electro-elastic 
coupling effects are outlined below.

Consider the propagation of shear horizontal surface waves along the 
free surface of a magneto-electro-elastic solid poled in the X3 -direction 
(Fig. 7.1). The field equations as well as the boundary conditions for the 
out-of-plane displacement component w and the electric and magnetic 
potentials (p and у/ are independent of X3 and uncoupled from those 
for the in-plane displacement components.

(poled)

/  Free surface /<— W
Direction of propagation

/
1r

X2

Fig. 7.1 Schematic o f shear horizontal wave propagation along the free surface o f a 
magneto-electro-elastic solid occupying the half space.

Based on the quasi-static approximation for the electromagnetic 
fields, the basic field equations for the half-space solid region 
Qis) = { X 2 >0 ,-°o<X , <+oo} and the half-space fluid region 
Q{/) = { X 2< О,- °° < Xy < -H»}, in the absence of mechanical body force, 
electricity conduction, and free electric charge, are expressed as
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142 Fracture Mechanics o f Electromagnetic M aterials

ЭХ, dX;
= 0 in a (s)

э 20(/) э у я 0 in a „ ,

9f y (/) [M
= 0  in £2(/)

ЭХ, ЭХ22

p 's> =( p<J> in f l w 
**11 All ~ #11

e|sg" w in a (s) 
*iiAi ~ Su

_  Эн» Э^<5) Э(И5) .
r(7t3 = c44^—  + «15^г—  + Л|5-г-—  m f t(J)

44 ЭХ* 15 ЭХ, 15 ЭХ,

Dm = - k  ^ - - е  ^  jn о<*>* " эх, г" эх, 1

^ 1 - »  ^  in д<«»
* g" эх, эх, 

£,</>=_*:/M l inii</>
ЭХ,

Й( Л= / Э £ ^  (Л 
ЭХ,

шП<’>
ЭХ,

(7.3)

(7.4) 

(7-5)

(7.6)

(7.7)

(7.8)

(7.9) 

(7.10) 

(7.И)

(7.12)

(7.13)
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in ftw (7.14)
dXk

i na < / \  (7Л5>

H'n-JgH. m а <л (7.16)
в х к

where к = 1,2, cT = {c ^ lр)'п is the piezoelectromagnetically stiffened 
bulk shear wave speed, p  is the mass density, 

4̂4 = C44 + (£|5//]| — 2el5hl5gu + h\5K\X) j  (kX\P\\ — gn) is the
piezoelectromagnetically stiffened elastic constant, ,, gu ,
e]5, and h}5 are the elastic, dielectric permittivity, magnetic 
permeability, magnetoelectric, piezoelectric, and piezomagnetic 
coefficients for the solid, Kf and juf are the dielectric permittivity and 
magnetic permeability coefficients for the fluid (vacuum, air, oil, etc.), 
,<7*3 are the total stress components, D[p) are the electric displacement 
components, B[p) are the magnetic induction components, E[p) are the 
electric field components, H[p) are the magnetic field components, 
where the superscript p = s stands for the solid region and p = /  for the 
fluid region.

The remote conditions may be taken as

,<7,3 = 0, (j){s) =0, ^ u ) = 0 ,  a s X 2^-+oo, (7.17)

(p(f) = 0, y/(f) = 0 , as X2 -»-oo. (7.18)

The boundary conditions at the free surface are given by

,C723= 0, on X2= 0 , (7.19)

(pls) -  cp(f) = 0, £><5)-£><л  = 0, on X2 = 0 , (7.20)



y,w _  yif)  = 0) B(,) _ B(/) = 0j on x 2 = 0. (7.21)

A general solution of Eqs. (7.1)—(7.5) for surface waves propagating 
along the X, -direction and decaying in the X2 -direction is represented
by

w = tf, exp(-£2X2)exp[i(£,Xj — f)], C7-22)

= a2exp(-£X 2)exp[/(£1X, C7-23)

i^(s) = a 3exp (-^X 2)exp[/(^X, -  со 0 ] ,  (7.24)

^ (Л =А4ехр(^Х 2)ехр[|*(ЙХ, 0 ], (7.25)

^ (/) = a5exp(flX2)exp[/(£,XI -  cot)],  (7.26)

where i = , Q)=cTyj^  - £ 2 is the frequency of a time-harmonic 
disturbance, ^\=со^сьч is the wave number, and cbq is the shear 
horizontal surface wave speed.

Application of the boundary conditions (7.19)—(7.21) leads to

cu ^2a{ + el5£ a 2 + = 0 , (7.27)

o , (7.28)

+ 0t (7 .29)

лгпа2 + £паз + ^ «4  =0 ,  (7.30)
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£lia2 "*”/4 1̂ 3 + a 5 = 0 • (7.31)
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For a nontrivial solution, the determinant of the coefficients must be 
zero, resulting in

(7-32)

where kem is the magneto-electro-mechanical coupling factor satisfying 

* i = ( l - c l J c i r

_  jr^[£is( / /  + A i ) - g ,A 5Kg|5/Ai
[(*•' + «•,, Xa '  +  я  i) -  *?, К *,, a , -  в,1,)

(7.33)

 ̂ 1̂ Igl51(^*IS1 glS&l|)
c44[(*/  + *ii)(A/  + Л ,) -« п К * 1Л 1 -S ,2,) '

As and / / , , / / / - > 0  for the electrically and
magnetically permeable crack-face condition, the limiting case of (7.33) 
is

As Ku / K f ^> oo and / / , , / / / - > 0 0  for the electrically and
magnetically impermeable crack-face condition, the limiting case of
(7.33) is

^ 0 .  (7.35)

It can be seen that the shear horizontal surface wave speed cbg should 
only be lower than the piezoelectromagnetically stiffened bulk shear 
wave speed cT for the existence of the surface wave-type solution. As 
the magneto-electro-mechanical coupling factor tends to zero (i.e., 
kem -» 0 ), the shear horizontal surface wave speed approaches the piezo­
electromagnetically stiffened bulk shear wave speed (i.e., cbg-^cT).
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Hence, the shear horizontal surface wave may occur under the 
electromagnetic all у permeable or semi-permeable crack-face condition, 
but there is no surface wave of this type under the electromagnetically 
impermeable crack-face condition. The propagation of Bleustein- 
Gulyaev surface waves in hexagonally symmetric piezoelectric materials 
can be taken as a special case.

7.3 Transient Mode-III Crack Growth Problem

Since the class of transient crack growth problems is rather difficult to 
solve analytically, existing solutions in the literature often involve certain 
assumptions. For example, Baker (1962) studied constant-speed crack 
growth under stress wave loading. The imposed constant-speed condition 
enables extraordinary simplification of the corresponding boundary- 
initial value problem. A solution procedure for the sudden extension of a 
pre-existing crack in an elastic body subjected to general time- 
independent loading is summarized by Freund (1990) in his monograph 
on dynamic fracture mechanics:

“The mechanical fields prior to crack growth are equilibrium fields. If the loading 
is increased to a sufficiently large magnitude, then the crack will begin to extend...
The applied loads induce a traction distribution on the crack plane ahead o f  the 
crack tip, and the process o f crack growth is essentially the negation o f  this 
traction distribution. This idea is exploited to obtain a complete solution for 
general loading by means o f superposition... First, the situation o f  crack growth 
with a pair o f  opposed concentrated forces acting on fixed material points on the 
crack faces is analyzed, giving rise to a very useful result called the fundamental 
solution for the problem. Then, the corresponding field quantities for any 
distribution o f  tractions on the crack faces can be determined directly by 
superposition over this fundamental solution.”

This method can be extended to transient crack growth in the 
presence of magneto-electro-elastic coupling effects. Consider a semi- 
infinite crack propagating at constant speed Vc in a magneto-electro- 
elastic solid (Fig. 7.2) under the assumption that there is vacuum, air, or 
other fluid of negligible mechanical influence inside the crack occupying 
the region Q}f) = {(X,,X2)|-oo < X, < 0 , - £ <  X2 < S ] . A reference 
Cartesian coordinate system {Хк,К = 1,2,3} attached to the moving
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crack tip is chosen, which coincides at time t = 0 with the fixed 
Cartesian coordinate system {XK,K  = 1,2,3}. It is assumed that, for time 
f < 0 , the crack tip is at X, =0  and the magneto-electro-elastic solid is 
load-free and at rest everywhere. At time t = 0, the crack tip begins to 
move at speed Vc in the positive X, -direction and leaves behind a pair 
of mixed concentrated loads. Then, the crack tip at any time t > 0 is at 
X, = Vct . Analyzing the situation of crack growth with a pair of mixed 
concentrated loads acting upon fixed material points on the crack faces 
gives rise to the fundamental solutions, which can be used to determine 
the corresponding field quantities for general mixed loading by means of 
superposition.

Fig. 7.2 Kernel crack growth problem with a pair o f  concentrated loads equal in 
magnitude and opposite in sign applied to the upper and lower surfaces o f  a semi-infinite 
mode-III crack propagating at constant speed Vc  in a magneto-electro-elastic solid. (After 
Chen, 2009c, with permission from Elsevier.)

The Galilean transformation can be introduced as

X ,= X ,- 1 V , * 2 = * 2» *з = *з> C7-36)

For a transient mode-Ш crack growth problem in a transversely 
isotropic magneto-electro-elastic solid with the X3 -axis along the poling 
direction, the out-of-plane displacement and the electric and magnetic
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potentials are independent of X3 in the reference frame moving with the 
crack tip, that is, vv = vv(X,,X2,F ), <p{p) = (p(p\ X v X2, i ) , 
y/{p) = i//{p)(X ^ X 2 j ) . Here, the superscript p -  s stands for the cracked 
solid region and p = /  stands for the interior fluid region. Based on the 
quasi-static approximation for the electromagnetic fields, the governing 
equations in the cracked solid region and the interior fluid region 
Cl(f) in the absence of mechanical body force, electricity conduction, 
and free electric charge are expressed in the reference frame moving with 
the crack tip as

- 4 ^  = 0 in £!<*> (7.37) 
ЭХ, ЭХ2 ст ЭХ,Э/ cl dt

д2ю{5)
9  + ^ -  = 0 in П 1' 1 (7.38)

ЭХ,2 ЭХ

^ - + ^ -  = 0 in a u) (7.39)эх, эх,2

d2<z>(/) Э2й>(/)
^  + ̂ -  = 0 in Q.(f) (7.40)

ЭХ, ЭХ2

(/)
^ + ^ _  = 0 ШЙ.Л (7.41)

ЭХ, эх22

where s = (1-У (? /ст),/2» = |Vc | is the crack tip velocity, and the 
relations (7.6)—(7.16) are still valid.

Under the assumption that the pre-existing state is quiescent and can 
be removed by superposition, the remote conditions are taken as

,сг23(Х ,,Х2,Г) = 0, E f  (X „X 2,f) = 0, Я ^ (Х „ Х 2,Г) = 0,

as |x 2| —> °o . (7.42)



To obtain the fundamental solutions, a pair of mixed concentrated 
loads equal in magnitude and opposite in sign are suddenly applied on 
the upper and lower surfaces of the crack at time t = 0+. In the reference 
frame moving with the crack tip, the corresponding boundary conditions 
are imposed

, <т2з(Х „<У,Г) = -Р 0<У(Х| +Vct)H(t),  (7.43)

,a 13(Xt - 5 J )  = -P0S(Xl +Vct)H(i),  (7.44)

D(2, \ X „ S J ) - D i2f \ X l,S,i) = -Q0S(.Xl +Vct)H(J), (7.45) 

D{21\ X , - S J ) - D {1' \ X l, - S j )  = -Q0S(Xl +Vct)H(t),  (7.46) 

B[s\ X l, S J ) - B i2f \ X „ S J )  = -R<,S{Xl +VJ)H{1),  (7.47) 

B(2’\ X ,  - S , f ) - B “ \ X l - S J )  = -R0S(Xl +Vci)H(i),  (7.48)
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<p's\ X l,SJ)-<pfr\ X „ S J )  = 0, (7.49)

<pu\ X v -S J) -<pu \ X x, - S J )  = 0, (7.50)

V, M(Xn S J ) -V 'u \ X l,SJ) = 0, (7.51)

VfM( X , - S J ) - y f ‘f \ X l - d J )  = 0. (7.52) 

The initial conditions are

w(X,,X2,0) = 0, (7.53)

w(X„X2,0) = 0, (7.54)

<p(p\ X „ X 2,0) = 0, (7.55)
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i/fip)(X[yX 2 i0) = 0. (7.56)

7.4 Integral Transform, Wiener-Hopf Technique, and Cagniard- 
de Hoop Method

The Wiener-Hopf technique was originally developed to solve a 
particular type of integral equation and then extended to a variety of 
applications (Noble, 1958). The essence of the solution process is to 
determine two unknown analytical functions from one single equation 
based on the theory of complex variables using the integral transforms 
such as Laplace, Fourier, or Mellin transforms. This technique was 
applied to the analysis of half-plane diffraction problems by de Hoop 
(1958) through suppression of time dependence by the Laplace 
transform. Once a solution in the transformed domain was attained, the 
Cagniard-de Hoop method was used to invert the transforms to obtain a 
solution in the physical domain. The reader may refer to the books by 
Freund (1990) and Broberg (1999) for further details.

The one-sided Laplace transform with respect to the time variable t 
and the two-sided Laplace transform with respect to the spatial variable 
X, are applied as follows:

f \ X „ X 2,p)  = \ ~ f ( X l, X j ) e x p ( . - p i ) d t ,

/ ( X p X2,F ) = - L  f / ' ( X l,X J,p)exp(pf)dp.
2 m JBr\

f \ C . X , , p )  = \ m f \ X , , X i , p ) e x p ( - p CXt)dXl,
J  —oo

/• (X „ X 2, /> )= -£ -:f / • ( f ,X 2,p )exp(p^X 1)d f ,
2 m i

where the inversion integration is taken over the Bromwich path.
Application of the transforms to Eqs. (7.37)—(7.41) yields a set of 

ordinary differential equations:

(7.57)

(7.58)

(7.59)

(7.60)
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Vcr C
./>) = <*

(7.61)

dX. - p 2 { S - £ 2) $ M\ C , X 2,p)  = 0. W X .p J e f i ' ; 1, (7.62)

# (s),( ^ x 2,p )= o , (7.63)

# (/,‘(<ГЛ>/>) = 0, V(CJi2j>)e & P ,  (7.64)

</X.
r (/)* (f.X 2 ,p) = 0, V(f Д 2,P) 6 n (/» , (7.65)

where £ —»0+ is an auxiliary (positive real) perturbation parameter. The 
technique of introducing an auxiliary perturbation parameter may be 
viewed as the quasi-static approximation for the electromagnetic fields 
since the crack speed is much lower than light speed.

Consideration of the remote conditions (7.42) leads to general 
solutions of the form

w (C, X 2,p)  = sgn(X2 ) - ^  A(C) ex p (-p a |x ,|) , (7.66)

<pM' ( f , X ,, p) = sgn( X , )— 5 ( 0  exp(-p/tf IX 21), (7-67)
P

fr ' ' \C ,X 2 ,p) = sgn( X2)-V c (O e x p (-p /0 |x 2|), C7-68)
p .
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where a(C)  = ^(l/c 2 -2Vc£ / c 2 - s 2£ 2) and P(C) = lim ^J(e2- £ 2).

Since the solution in the interior fluid region is not subjected to any

# l/)' ( f ,X 2,p) = -lr [Ot (Oexp(pAX2) + D (O exp(-p^X 2)], (7.69)

f (Л‘( f ,X2, p) = -L [£ + (С)exp(p/?X2) + Е Л О exp(-p/?X 2)]. (7.70)

In the complex £  -plane, the function a  has branch points at 
f  = - l / ( c r -V c ) and f  = l / ( c T +VC) , and the function P  has branch 
points at С = ~£ an<3 £  = +£.  The branch of a  with a positive real part 
R e(a)> 0  and the branch of p  with a positive real part Re(/?)>0 
should be chosen, where the branch cuts run from the branch points 
outwards along the real axis.

To apply the Wiener-Hopf technique, the traction and displacement 
boundary conditions are expanded over the full range of the X, -axis, 
that is,

remote conditions at |X2| —»°o, the complete form of the solution should 
be used:

P

P

,<723(X ,,0\ t )  = <j+{XlJ ) - P 0S(Xx+Vct ) H ( t \  - с о е в о е ,  (7.71) 

w(X,,0+,f) = w_(X,,f) + 0, -oo< X , <oo, (7.72)

with

(7.73)

X , > 0

X , < 0
(7.74)



We first solve the case of traction loading only. To satisfy the 
transformed boundary conditions (7.45)-(7.52) with Q0 = 0 and R0= 0, 
it follows that

M O  = U_ ( f ) = P2 £  w_(Xt, p)exp(-pCX, )dXt, (7.75)

B „ _ e x p (p /? J-p g J) cosh(

f j t - f ]  (7.76)

* (^ 1 f [ t ~ C2

_  exp(p/?^~ paS)cosh(pfiS)

f j ' - f l  (7.77)

* ( сг/к№11 ~Cyfglc{i)A(£)t

е ^ - - - ЕЛС,- Ш т С ( ( ) + с' Ж м м ( ) - <г79)

where f K = s\nh(pf3S)/cu -cosMpfiS) ^ , f g =sinh(pflS)gu ,

fp =sinh(p/?<5)iull -cosh(p/?<5)^,c, =(е15//п -  Л,5«и )/(*",, A,, -  «и), 

and c2 = (Л,5at, , -  <?,5g, ,)/(*•,,//, , -* ? ,) •

By letting »0 while keeping sinh(p//c>')ArM/ ^  —»A,. and 
sinh(р /Щ ц м/ / ^  -» /lm, Eqs. (7.76) and (7.77) become

5 ( 0  = -c ,A (0 . (7-8°)

C ( 0  = - c 2A( O .  (7.81)
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where Яе and Ят are mutually dependent with
К  /  Кл —̂ к \ \№\\) / (*iiM i) *

q = [*;,aia - Л.Ц + a |Лс2]/[*•.ia..a-я,>(i - д„,) - x x s u ].

and

C2 =  i d  — Л - ) С2 ■*" * п £ ] |Л » 1 С1 ] / [ * * !  l /A  1 Д . ) 0  “  Л и )  “  Л*Л |» <? I|] *

It is noted that c, —> c, as A, —» 0 and c2 —»c2 as ЯП1 —> 0.
There are four limiting conditions: (i) electrically and magnetically 

permeable crack-face condition as Яе —> 0 and Ят —» 0 , (ii) electrically 
and magnetically impermeable crack-face condition as Яе —> and 
Ят —)oo, (iii) electrically permeable and magnetically impermeable 
crack-face condition as Яе —> 0 and Ят —> , and (iv) electrically 
impermeable and magnetically permeable crack-face condition as 
Л, -» ©o and Ят -» 0 . The electromagnetically semi-permeable crack- 
face condition may be approximated if Яе and Ят are considered as 
finite nonzero parameters. For simplicity, Яе and Ят are assumed to be 
constant in the following analysis.

The transformed total stress, electric displacement, and magnetic 
induction are expressed in terms of the single unknown function U_(£) 
as

,(r;i ( x lj 2, p ) = ^ \ \ y i" c u s c ) ^ - p ( c c x 2- c x l) )dc27tl
(7.82)

[ - р { р х г - ; х х) щ ] . 

i<T^(X1,X2>p ) = - ^ { \ Ĉ a ( C ) U _ ( 0 ^ v l - p ( a X 2- C X t)]dC

(7.83)

“ j £ T f  Р ( О и л С ) ы р [ - р ( / з х 2 - c x , ) ] d c } ,
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p H x „ x 2, p ) = C|f|' +C2g|
2m (7.84)

x l  ’ CU_(0™p[-p(pX2-CX,)]dC,

Di2s)' (X „ X 2, p ) = - - l f i l± £ £ l

X

2m (7.85)

f r K /.(0 « p [ - p ^ 2  -  f * .J С я -ioo

g,U),( x „ x 2,p )= -C|g" +C2A-J
2;ri (7.86)

х Г '+'“ f t/ .(O e x p  1- p t f X ,  -  CX,)VC,
J С я  - I »

2;п (7.87)
x f f' +i~/?(0 t/-(O exp[-p(y0X2- f X , ) ] ^ .

where ^  = ^(c{el5 + с2Л,5)/с44 is the magneto-electro-mechanical 
coupling factor which depends on the permeability parameters Xe and 
Лт through cj and c2, - l /(c r -V c ) < Ca < l/(cr +VC), - £ <  ^  <£■ 

Substituting Eq. (7.83) into the transformed traction boundary 
condition (7.71) leads to the following Wiener-Hopf equation:

E - ( ( , + y ^ m ’ K ( C ) U A a  <788)

where

K ( 0  = - с м[а( О  -  ( k l f p i O l  (7.89)

£ +ю = p ^  ( ^ i . p) exp (~p c  x^dx, . (7.90)
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The modified form of the Bleustein-Gulyaev wave function

BG( 0  = <*(0 - ( O V ( 0 . (7-91)

has a simple structure with roots at £  = - l / ( c bg - V c ) and
£  = l/(c*g +VC) , where the shear horizontal surface wave speed is 
defined as

<  = ^ Сф)[1~ ^ " " )4] = ст . (7.92)

For the electrically and magnetically permeable crack-face condition 
(Л “ >0 and Я „ -> 0 ), we have cxbg ->с°я =c rN/ [ l a n d  
*™ > = \l(cie \5 -ь с2/г,5 )/c44 , whereas for the electrically and 
magnetically impermeable crack-face condition -»«> and 
we have —> cr and /седш -> 0. In particular, for an electrically 
permeable mode-III crack propagating in a hexagonally symmetric 
piezoelectric medium, we retrieve the electromechanical coupling factor 
and the Bleustein-Gulyaev surface wave speed (Li and Mataga, 1996a; 
Ing and Wang, 2004b). The equality of the shear horizontal surface wave 
speed to the bulk shear wave speed in the limit of electromagnetic 
impermeability indicates that there is no shear horizontal surface wave 
mode under the electrically and magnetically impermeable crack-face 
condition.

It is convenient to rewrite Eq. (7.89) in the following form:

= -cv [ s - ( k * j ] p  1 (4 + vc) - a i / ( <  - v c)+ m o ,  o w

where an auxiliary function S(£) is introduced by

S ( 0 = ________________________________ « ( O - ( O W ) _________________________________

u -  (kL)2] p  1 (4 + vc) -  е в  / К -vc)+a
(7.94)
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It should be noted that 5 ( f )  —> 1 as |f | —»°°. The essence of deriving 
the solution of the Wiener-Hopf equation (7.88) is to decompose 5 (f)  
such that

where 5+(f )  and 5_(f) are analytical in their respective half planes 
with an overlapping strip.

The primary features of the complex f-plane pertinent to the solution 
of the Wiener-Hopf equation (7.88) are depicted in Fig. 7.3 with the 
branch points at f  = -1 /(cT-V c) , f  = l / ( c r +VC) , f  = - £ ,  and 
f  = +£, and the roots at f  = —1 / (сД -V c) and f  = l/(c£  + VC) . The 
common strip of analyticity is between the two dashed lines, and the 
overlapping half planes in which the functions labeled with subscripts (+) 
and (-) are analytical and are indicated with arrows.

Fig. 7.3 The complex £plane showing the primary features pertinent to the solution of  
the W iener-Hopf equation (7.88).

The final factorization of 5 ( f )  into products of two sectional 
analytical functions leads to

s ( 0 = s .  (C)SAO, ( 7 . 9 5 )

А Ы 0

>  (+)
С") «—

; = - \ i { c xbs- v c ) c = i  /(4 + v c >

|« C = l / (Cr+Vc ) Re(0

(7.96)
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SA O  =
i / ( 4 + y c ) - f  
1 /{cT+Vc) - C* .(0 . (7.97)

^ ( 0  = exp-{ — [',<CrT',c)a ictan [0(+ 77)]-^ -[, (7.98)
v ± C )

drj

0(77) = ( O 2^
jV tl/(c r -V ,c) + >7][l/(‘T+V’c)-»7]

(7.99)

Hence, the two unknown functions in the Wiener-Hopf equation 
(7.88) are determined to be

л  U + (fc i)2] l
[l-(fci)4] Vl-Vc /cr

(7.100)

g ,( l /V c ) 9 - ( 0  у1 1 ЦСт+Ус) - С  
(l+Vc / < ) ( r - l / V c ) [ l / ( c 4 +Vc ) - 0 ’

2 . ( 0  = vc(C -u v c)

~ ^ { l - V c lcis) l / ( c£ -V e) + f  ®+0/Vc)

(7 .101)

where

-Vc /cr „/l/(cr -Vc) + f  ©ДО

© ±(0  =

-1

(4 (0
(7.102)

Once lf_(£) and L+( f ) are obtained by the Wiener-Hopf technique, 
the Cagniard-de Hoop method can be used to find the closed-form 
solutions in the physical domain by employing the following inversion 
paths in the complex f-plane:
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<TI+( V )  = X,2+.s2X 2
/  - V 

X j + ^ - X l
CT j

+ar 2 Js2t2- ^ f  x.t ~ t x ;  +x'i)2Vr - .  1
(7.103)

X 2 + X 2
- Х л  +iXJ- [  2x 2 + x 2l . (7.104)

7.5 Fundamental Solutions for Traction Loading Only

The closed-form fundamental solutions for traction loading only are 
obtained as

w(X„X2,f) = - f ' l m
Л  J 'i дт

dT, (7.105)

<p{*)(XlJ 2J )  = - \ c X l  m 
ft J'i

- c j . 'lm  U .iC bW )

дт
d T

Эг

^ w (X„X2,/) = -  ic j . ' lm
Я- ^

-с , f Im■ J*,

d £ +(r)
Эг

d r

O .C ^ W ) rfT

,<T13(X1,X 2,/)  = - ^  Im
К

э с
dt

( K t f  Im ,2+“ - 492̂  a?С г .и Л ^ У

H i t - I I)

(7.106)

(7.107)

(7.108)



160 Fracture Mechanics o f Electromagnetic M aterials

,о-я (Х „Х г>|") = — ^Mlm 
к

P ( ( 2j u _ ( C 2+) э<Г2+ 
2+' ” э Г

(7.109)

P,w (X „ y 2,F) = C|,r" +C2g"
Л

xlm C2+V-(C2+) dt
H ( t - L \

(7.110)

D ^ (X p X2,/)  = -

xlm

_  C\K\ \ +C2<̂11
n

2+/̂ -VS2W э?/КСиУилС*)-

(7.111)

B'S)(X „X 2,F )= M i i l M n .
к

xlm
'2̂ - 4S2+; dtС г . и л с л

(7.112)

В'1’ (X ,, X2, t ) = - M u l f z A i

xlm
2t/“ - V52+; Э?

(7.113)
H ( t - t 2),

where F, = [VCX, / c2 + J (X ,2 + i 2X 2) / cr ] /s2 and t2 =£sj0T? + X 2) .

The asymptotic behavior of the solutions near the moving crack tip 
will be examined below. As X2 —> 0 , both inversion contours take the 
same path £ + = C2+ = С . i e ->

(7.114)
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__ L
dt X,

(7.115)

Hence, the total stress, electric displacement, and magnetic induction 
fields ahead of the moving crack tip are represented by

( ] - V  /  r *  ) p
, < T a ( X „ Q V ) =  . c  bd $ t Q /v c y  0

V l - v c /cr
(7.116)

д (хро+,?)=&±М м)--- L _  [£±(^1
U - ( k y ] ( \  + Vc /cis )

x
(7.117)

В (X 0+ Г) ~ "*~C2All) 1_____[s + (fcc,„) ]
2 P  * *44 [1 - » i ) 4 ] ( l + V c / c 4 )

X ^(1/vc) /j__ L_
>/1_VC I  CT  y j V c *

(7.118)

It is evident that the near-tip total stress, electric displacement, and 
magnetic induction fields possess an inverse square-root singularity, 
similar to the near-tip stress field in classical elastodynamic fracture 
mechanics. The dynamic total stress, electric displacement, and magnetic 
induction intensity factors for mode-Ш crack propagation are defined as

Kn, = .lim 72л-Х,,сг23(Х ,,0 \О  , (7.119)x,-»o+

KD = lim J 2^ D 2(X ,,0V ) ,  
°  x.-*o+ v

(7.120)
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k B = um ^/гжх.в-дХрО*,?). (7.121)

With normalization based on the corresponding quasi-static value, the 
dimensionless dynamic field intensity factors are obtained as

where the superscript (T) indicates traction loading.
The functions / ,я and / 2Я are universal functions of the crack tip 

velocity. As shown in Figs. 7.4 and 7.5, the functions / ,Я(УС) and 
/ 2Я(УС) decrease monotonically with increasing crack tip velocity Vc . 
The larger the magneto-electro-mechanical coupling factor k*n, the 
lower the values of / ,я and / 2Я. It is noted that the function f*(Vc) 
approaches zero but the function //(V c ) does not tend to zero as 
Vc / cig —> 1. Consequently, the dynamic total stress intensity factor 
tends to zero but the dynamic electric displacement and magnetic 
induction intensity factors do not vanish as the crack tip velocity Vc 
approaches the shear horizontal surface wave speed c*g. The dynamic 
total stress, electric displacement, and magnetic induction intensity 
factors are reduced to those for the electromagnetically impermeable 
crack-face condition as /ся —> 0 .

k ' ? ( v ci , v c ) [ s + ( * l ) 2] g» q  /Vc)
k Z \ V ci , 0) [1 + ( k i  )2 ](1 + vc / Clbs) J \ - V c / c T (7.123) 

= A \ V C),

k ^ y J j V c )  i s H k L ) 2] g .q /V c )
k f W J , 0) [1 + ( 0 2](1 + Vc / c* ) /̂1 - vc / cr (7.124) 

= //(V c),

’em
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—  *1=0

---- kx
= 0.3 
0.6

- •  =0.9 
_ .  kL  =0.99

Fig. 7.4 Universal function versus dimensionless crack tip velocity Vc /  cj* for a 
broad range o f magneto-electro-mechanical coupling factors. (After Chen, 2009c, with 
permission from Elsevier.)
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Fig. 7.5 Universal function f *  versus dimensionless crack tip velocity Vc /  C*g for a 
broad range o f magneto-electro-mechanical coupling factors. (After Chen, 2009c, with 
permission from Elsevier.)
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The solution for dynamic antiplane crack propagation in a purely 
elastic medium (Freund, 1990; Ma and Chen, 1992) and the electrode 
solution for dynamic mode-III crack propagation in a hexagonally 
symmetric piezoelectric material (Li and Mataga, 1996a; Melkumyan, 
2005) can be taken as special cases.

7.6 Fundamental Solutions for Mixed Loads

For a pair of mixed concentrated loads, the general solutions given by 
(7.66)-(7.70) still hold but the unknown functions need to be determined 
under the boundary conditions with nonzero P0, Q0, and R0. Since the 
continuity conditions (7.49)-(7.52) for the electric and magnetic 
potentials are kept the same, the functions D+( 0 , D _ (f) , E+( £ ) , and 
E_(C) can be calculated from (7.78)-(7.79) so long as the functions 
A(£ ), B( £ ) , and C ( f ) are attained.

Substituting the unknown functions A ( 0 ,  # ( 0  and C(^) back 
into the transformed version of the boundary conditions (7.43)-(7.48) 
yields the following integral equations:

, forX, < 0 ,

1 c +i°° ~ ~
—  f ;  AiOexpipCX^dC  = 0, for X, > 0 , (7.125)

2 7ii*Cc-i~

с V44 С

' p Xl

2 ftip

for X , < 0,

1 г Cr +/°° — ~ ~
7 Г 7 - ] .  . B ( 0 exp(pf-X'i)rf^ = 0 ,fo r  X, > 0 , (7.126)
AKip

^ £ > ( O C ( O e x p ( p < r x , ) < ^ = - ^ ^ exp
pX

V^c у
forX, < 0,
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л C +i°о _ ~ _
—  Г . C (O exp(/7f X , ) ^  = 0 ,fo r X ,> 0 , (7.127) 
2 m p J &->•*>

where -£< R e(£ _ )< £  and the functions B(£),  C( £ ) , L(P0,Q0 ,R0), 
L,(2 0,/?0), and 4 (2 0.^о) are defined by

£ ( 0  = £ ( 0  + q> K 0, (7.128)

С ( 0  = С (0  + с2Д ( 0 ,  (7.129)

L(Pq,Qq,Rq) — P0 + (Qo>Ro) + ̂ 15̂ 2(60’ ̂ 0)’ (7.130)

(7.131)

(7.132)

It is noted that the load function Z,(2 0,/?0) goes to zero for the 
electrically permeable crack-face condition (Д ,—>0 ) and the load 
function ^(Qq^Rq) goes to zero for the magnetically permeable crack- 
face condition (Am —> 0). Thus, the total traction is the only contribution 
to the load function L(P0 ,Q0 ,R0) for the electromagnetically permeable 
crack-face condition ( Яе —»0 and Лт —> 0).

The dual integral equation (7.125) has the same structure as the 
Wiener-Hopf equation encountered for the traction loading-only case. 
Thus, the solution is obtained as

= д р 0, е пл ) [ * + ( О 2] i
n - ( 0 4i

(7.133)

.. 0Д 1/КГ) 0 . ( 0  V l/(C r+ ^ c ) -^
(1 + Ус / с ^ ) ( С - 1 /Ус ) [Щ с ^ + У с) - С У
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Following the procedure outlined by Sih and Chen (1977) and Li and 
Mataga (1996b), the dual integral equations (7.126) and (7.127) are 
satisfied if

в л О = Ц ( О о Л )

с_(£) = МО>Л)

l l

1 1_______ 1_

^ « r - i / V c ) V ^ T

(7.134)

(7.135)

Similar to the traction loading-only case, the closed-form 
fundamental solutions for the mixed loading case can be achieved by the 
Cagniard-de Hoop inversion scheme, that is,

w (X„X 2>F) = - f ' l m  
n*' I Эг

d t ,  (7.136)

^ , (X1,X 2,r) = - j c , f ' l m
71 1 *">

- c j ' l m

хГ Im
2

* (£ .(* ))

А(&*(г)) ЪСгЛ*)
Эг

Эг

d r+ L ,(Q 0A )

1 Э £ +(г)

d r

d г  ,

(7.137)

i /M(X „ X 2, t) = -  c J 'lm
71 1

- с 2Г ьп

A(fl+(r)) Э <T„(r)

A (f,t ( r ) ) ^ * ^
Э r

:f>

Эг

</г+4(£>0Л)

1 Э£,. (r)

d r

( ^ +( r ) - l /V c) ^ - f 2+(r) Эг
Л .

(7.138)
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,CTl3(X „X 2,f) = ̂ i  Im
л

- ( k W  Im

e\$L\ ( & Л )  ^15^(0) >^p)
c„Jv~c

xlm <Г2+ i a f j и ( 7  _  7 \  I
L ^ - i / V c ) ^ - ^  a ? .

** V‘ *2 / [

, a 23( X „ X 2 J )  =  - b i i i m  
я

*(<Г,+М(<Г,+)
ЭГ

Ж 2+М(<Г2+) ^ Я ( / - ? 2)

gl5̂ 1 (QqiRq) ^sLjiQoiRp)

xlm \le + C2+ э& / H(t —t \ I4̂ Ю + 1 £ dt
«V* r2n

£>,W(X ,, X „f) = - 1 (c,*-„ + c2g ,, )Im 
71 2+' lvS2+; dt

С г .xlm 1 э<г2+

( £ ♦ - 1  / У с ) л / ^ 7  a r _

(7.139)

(7.140)

(7.141)
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D‘s) (X ,, X2 ,/)  =  - - U c ,  лг,,+  c2g „ ) Im 
71

/?«Г2+)Ж<Г2+) ^

((2q> ^p) + ^ Л ( О ) Л )

xlm э < г 2+ и ( 7  _  7 \

(<T2+ - 1 / V C )  dt _
H  V  *2 /  j

(7.142)

B,(5)(XI,X 2,F) = — -I (c,g,, 4-c2/^ ,)Im  
ж

х Я (г -Г 2) - Л Л )  /4 1 ̂ 2 (00> ̂ 0 )

xlm 2+ 1 ^ 2t
( ^ +- i / v c ) ^ r ^ 7  эг Я ( ? Ч )  ,

(7.143)

BjJ)(Xp X2,f) = - —^ ( q g n + c ^ ^ I m
ЯГ
1

хЯ (Г-Г2) -

/?(<Г2+М(<Г2+) 

S i 1А (Оо»̂ о)~*~ All^ ( Q q i R q)

ЭС*2t ,<.vS2+; a -

xlm > + £ ♦  э<г2+ И (t —t \ I
_ ( ^ - l / V c) df ^  2 ' f

(7.144)

The results may be generalized to mixed load distributions following 
the procedure outlined by Freund (1990) for elastodynamic crack growth. 
Let f P( X , - X v Xv t - X J V c),  f Q( X , - X \ , X 2 , t - X \ l V c)> and 
/ Л(Х, - X ,,X 2, f -X ,  /Vc) denote, respectively, a field quantity in the 
fundamental solutions for unit concentrated shear loads, unit 
concentrated electric loads, and unit concentrated magnetic loads 
appearing on the crack faces at X, = Xj as the crack tip passes the point 
X, at time t = X] /Vc . The field quantity for the case of distributed 
shear loading p (X |) , distributed electric loading q(X\),  and distributed
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magnetic loading r(X,) appearing through the crack tip is thus given by 
the superposition integral

/ ( х „ х 2, о = |ос л ( а : , - х ; )х 2, / - х ; / у с ) р ( х ; ж

+ Г V f l t f ,  -  x ' v  X 1 ’ 1 -  X '< 1  V c ) 4 ( X , ) d X

+ j;c7 * (x , -  Xv X 2 , t - X \ l V c )r(X\)dX\.

(7.145)

Consequently, the near-tip fields for mixed load distributions are 
expressed as

, a 23(X „0+,f) = # ( * ,)
^ , / i

( l-V c /cM2>+(l/V c ) .
£(1,0,0) Г  p-—^ - dx\

Jo

L(o,i,o)fVc' ,g(X|) <«; 
J° 4 v j - x \  

£(0,0,1) Г  t r{X, )  , dx[  
Jo Jvct - X l

V i - v c ,
(7.146)

Д (Х .,0\< )  =

^ ( 1 / У с ) . £ (1 Д 0 )р>- _ * * , ) _ д ;
(1 + Vc / сД ) 71 -  Vc / cv n/vc? -  x ;

(С|УМ +с2̂ ц) 1 [* + ( Q 2] 2>t (l/Vc)
c„ [1 - ( ^ ) 4](1 + ̂ с / < ) 7 1 -У с /с г 

x£(o,i,o)fV|:' ^ ,+ [y „ £ ,( i ,0 )+ g | ,£ 2(i,0)]
Jo Л ? - * , '



r v  _ ^ = d x -+ ( ^ к ± М и > ------

J° d - ( 0 4i

x u + (0 ,;j й _ о /у с ) £  * х а _ д ;  (7Л47) 
a + v c / < ) V i - v c /cv  Jo

+[y, ,A (0.1) + g, Л ( 0 .1)] Г С'~ -T r (X |- ;  ЛХ,
J° > c/ - x ,
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g 2(X ,,0V )  = - ^ ^ l (C|g|1 +ĉ ">------ 1 _

x j f ± l Q 4  ftO /V p ) ^  p U Q _
V + Vc lc ls ) J l - V c l c T Jo . _ 1

.Д \2
, ( 5 у . .+ а д , )  1 U + ( C n  g .q /v 'c )  

c„ [i -  ( O 4] ( i+ vc / <  > V i- v c /c 7

x£(0,l,0)fVc' g(X|) , rix;+[g„£,(l,0)+ //„ 4 (l,0)] 
° V V c'-X ,

+ S i u ± £ A ) — L _
Jo V v ^ X i  [ l- ( fc i)4]

x . !» + (£ > * ] ^ (1 /V c )  д 0,0Л)^  r ( j O _ , x ; 
u + v c /c}g) J \ - v c ic T ;J°

+[gl,A(o,D+A,4(o.i)]|0Vc'-,r(X|) , rfx; .
yjVct - X , J (7.148)

It can be seen that the near-tip fields still exhibit the inverse square- 
root singularity in the local coordinate affixed to the moving crack tip. 
The self-induced and cross-over dynamic total stress, electric 
displacement, and magnetic induction intensity factors can be expressed 
in the form of a universal function of the crack tip velocity times the 
corresponding quasi-static value, that is,



km(Vct,Vc ) = kZ\Vc)K%\Vci,  0)

^ v J 7 T C J° 7 vcr - x ;
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k\?,\vci y c) = W \v c)k f°\vct,0)

2>+(l/V c) - l
V l - V ^ /c  

k)n\vj,vc) =k^(vc)k^(vct,0) 

(1-V -c/ci)

■V <7(X.)

A ' - * ;

=|цо,о,1)
-Jl -Vc/c,

®+a  /Vc)-1
•v  r(X |)

•<а„

< ’ (Vcf, vc ) = *{," (Vc ж  Л' (Vcf , 0)

4
[ n 0  01 (C1*H +С2̂ ц) I_____+ ]

c* [ l - ( 0 4] ( l + v c / 4 )

0 t (l/V c ) fKcf P(X,)
4 ~Vc /c T jo № - Х [

dX,

K (DD)(Vct,Vc ) = k^(Vc)K'Du,(Vct\0)

/СП I (С|УЧ ~*~с2̂ ||)  I_____[5 + (fc.m) ]
CM [ 1 _  (k*m ) 4 ]  (1 +  V c /  Cjs )

m f a o ,  1,

Ж f  m p '
л/i  I c t  ° y ] v j ~ x i

(7.149)

(7.150)

(7.151)

(7.152)

(7.153)
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K {DB) <yci y c) = С  (Vc) t DB) (Vct ,0)

= , - £ ( 0 ,0 , 
V к

L(0 ,0 ,1) (?|K'II+C2g||)------ - л - [s + (k^ -
c„ [ i - ( 0 4] ( i+ v c / < )

x 2>+(l/V c) fVc? r(X ,)------------ j c -T ± = j L , dx'i
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k'P(vct y c) = k(p ( y c ) t p ( v ci, o)
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#= J - L ( 0,l,Q)- ^ " '  + C ift|)------ 4 +
c« [ l- ( f e i )4](l + Vc /c 4

1 В ! , Г М Й  д ;
^ l -V c /c r Jo ^Vc? -X i

- j | [ g „ £ ,  (1,0) + ^ , 4 (1,0)] r f- -g-(̂ b rfy; 
v *  Jo Jvr t - x ,C v "1

(7.154)

(7.155)

)

(7.156)
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K f \ V ci,Vc ) = k{aB\V c )K<BB)(Vct,Q)

= J - L ( 0,0, l ) (C|g" +C;'“" ) ------ ' 4 [5 + (^ ' )"]
[ l - ( 0 4](l + Vc /<£)

„  ^ 0 / У с ) fV  r j X )  . (7.157)

V ! - V c r J o  V v c r - x ;  1

+ Л -  .........* * )
V Я"

■[*„£, (0,1)+Л,4(0,1)]Г-7КХ|) -dx\,
0 Л ' - * ,

where the superscript (7) stands for traction loading, superscript (D) for 
electric loading, and superscript (В) for magnetic loading.

In general, the dynamic total stress intensity factor does not tend to 
zero as Vc —> c*g under mixed loading due to the existence of the cross­
over terms. The self-induced and cross-over dynamic total stress, electric 
displacement, and magnetic induction intensity factors are reduced to 
those for the electrically and magnetically permeable crack-face 
condition as Ле 0 and Лт—> 0 , the electrically and magnetically 
impermeable crack-face condition as A, —> «> and Xm -> the 
electrically permeable and magnetically impermeable crack-face 
condition as Ле - ^ 0  and Лт —»«>, and the electrically impermeable and 
magnetically permeable crack-face condition as Ле —» and Лт —> 0. In 
particular, it emerges that the dynamic field intensity factors are not 
altered by electric displacement and magnetic induction loads on the 
surfaces of an electromagnetically permeable crack because there is no 
gap assumed between the top and bottom surfaces of the crack and the 
electric displacement and magnetic induction loads on the upper surface 
effectively cancel out those on the lower surface. This outcome is 
analogous to the finding by Haug and McMeeking (2006) on a 
permeable crack with surface charge in poled ferroelectrics. As the crack 
propagation velocity approaches zero, the quasi-static limits of (7.149)- 
(7.157) are consistent with the existing static crack solutions (e.g., Liu et 
al., 2001; Gao et a l 2004; Wang and Mai, 2003, 2007a) with the 
replacement of the Cauchy stress tensor with the total stress tensor. In 
particular, the cross-over terms due to electric and magnetic loadings in 
(7.150) and (7.151) become negligible for quasi-static crack propagation.
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7.7 Evaluation of Dynamic Energy Release Rate

The dynamic energy release rate, which is defined as the rate of energy 
flow out of the body and into the crack front per unit crack advance, can 
be evaluated by the definition (6.25) given in Section 6.2.2. By choosing 
the contour shown in Fig. 7.2 and allowing the contour to shrink onto the 
crack tip by first letting S2 —> 0 and then <5J —»0 , there is no 
contribution to J0 from the segments parallel to the X2-axis and the 
segments along the crack faces. Furthermore, this is a convenient choice 
because и ,= 0  along the segments parallel to the X,-axis. 
Consequently, the dynamic energy release rate for mode-III crack 
propagation is calculated from the near-tip field solutions as

jo = 2 l im l  l i m - f f i  , o ^ X v 82j)w(X^S2j)dXx
<5,—>0 I <5ц-»0 V c  ^

_ J_ гг COD

(7.158)

where the mode-III dynamic crack opening displacement intensity factor 
is defined as

Kf°D = lim 7 t
Av^XpOV). (7.159)

Based on the near-tip field solutions, the mode-III dynamic total 
stress and crack opening displacement intensity factors are given by

k,„ (Vct y c) = Д ц 1,о,о)(1 Vc/c,,54  (i / vc ) f
v #  , /1-VW c,. •"

Ус! p ( X \ )

ф ф . о .

а - у с / < )
n/1-V c /c r

q - V < )
V i-v c /c r

©+q /v c) - i

0+q / v c ) - i

№ - x [
dX,

]Jo

fJo
A < ~ x >

dX\

dX\,

(7.160)
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Kf°D(vct,vc ) = 2 / Z  W & 1 -----------------—  ...
Ъ  cM[ i - ( k i ) A] (1+vc / < )  7 i -v c 77T

Jo V ^ c j i - ^ n a + V c / c i )

X

X

^ О /У с )  fV  g(*i) [2 _ Ц 0 Л 1) _
sll-Vc fCr Jo ' V » c ^ [ l - ( * i ) 4]

[« + (0 * 1  2>t (l/Vc ) rvcf r(X,')______________________г  _ =
a + vc 'cls ) J ^ v J 7 T ]°

2
*,« (Vcf,Vc) + e'5/U" KD(Vct,VC)

*nMii £ 11

, ( W c )

(7.161)

From Eqs. (7.158) and (7.161), the dynamic energy release rate for 
mode-III crack propagation in the presence of magneto-electro­
mechanical coupling effects has an odd dependence on the dynamic 
electric displacement intensity factor and the dynamic magnetic 
induction intensity factor, that is,

Л (vcl  vc) = J ^ p d M = [ K m ( v j ,  vc) 
2 cu J l - V t / c r

+f15 B i z M ± K D(vct , vc )
\̂\№m 8  ii

+ M i z M n j e e(vcf,vc )].
*ii/4i 8  ii

(7.162)

The dynamic energy release rate is reduced to that for the electrically 
and magnetically permeable crack-face condition as Xe —> 0 and
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Ят —> 0, the electrically and magnetically impermeable crack-face 
condition as Яс —> °o and Ят —» the electrically permeable and 
magnetically impermeable crack-face condition as Яе —> 0 and Ят -> 
and the electrically impermeable and magnetically permeable crack-face
condition as Яе —> °o and Ят —> 0 .

7.8 Influence of Shear Horizontal Surface Wave Speed and Crack 
Tip Velocity

As the crack tip velocity Vc tends to zero, the quasi-static case is 
recovered, that is,

к,„(УсЮ) = Д ц 1 ,о ,0 )Г сГ ,P(X,) -dx„ (7.163)
v Vc* ~

k f f a(Vct,0) = 2.l^ - _ - ( l ' 0 ' ^ 2 fVc' . p (X’} dX 
V* c„[l-(*„„) ]J° J v j - x ;

l 2 _ Ц 0 .1.0) ГУ^ ) _ Д

/ j  w i )  а , д
У я  см[ 1 - ( 0  ) Jo 7vcr -  Xj

(7.164)

J0(Yct, 0) = -  k m (yci ,0)k™D(yct ,0). (7.165)

Next, we will examine the special case of the electromagnetically 
permeable crack-face condition. As Яе —> 0 and Ят —»0 , we have 
cbg = ^ > / [ l - ( 0 4] and С , =л/(С|€1°5 + c2/£ )/< £  . The dynamic total 
stress intensity factor, dynamic crack opening displacement intensity 
factor, and dynamic energy release rate normalized by the corresponding 
quasi-static value become



^/(V c/.O ) sj \-Vc lcT + c (7.166)

=  / > c ) ,
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кТ<У с<У с) [£+(0 !] g .o /V c) 
k T W j f i )  V H k l f ] № + V c f<*')J l-Vc t c r (7.167)

[* -M Q 2] g - r c o/ Vc) f
J 0(Vcr, O) [l + ( C ) 2Kl+Vc / < ) ( l - V c /c r ) (7.168)
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Fig. 7.6 Universal function / 3° versus dimensionless crack tip velocity Vc /  for a 
broad range o f magneto-electro-mechanical coupling factor. (After Chen, 2009c, with 
permission from Elsevier).
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Like the functions f*(Vc) and f * (Vc ) > the function / 3°(VC) is a 
universal function of the crack tip velocity. The dimensionless function 
/ 3°(УС) is plotted against the dimensionless crack tip velocity Vc / c°bg in 
Fig. 7.6. Similar to the universal function f*(Vc ) (see Fig. 7.4), the 
universal function / 3°(VC) has the feature that f*(Vc) = l for 
Vc /c°bs= 0 and / 3°(VC) = 0 for Vc I c°bg = 1 . It also decreases 
monotonically with increasing dimensionless crack tip velocity and 
increasing magneto-electro-mechanical coupling factor k°em. Hence, as 
the crack tip velocity Vc approaches the shear horizontal surface wave 
speed c£g, the dynamic energy release rate tends to zero so that the shear 
horizontal surface wave speed c°g serves as a speed barrier for the 
propagation of an electromagnetically permeable mode-III crack.



Fracture of Functionally Graded 
Materials

Chapter 8

8.1 Introduction

Functionally graded materials (FGMs) are nonhomogeneous materials 
whose properties vary continuously along one or more directions. Bones 
and wood may be taken as FGMs in nature. The idea of FGMs originated 
from high-temperature applications of thermal barrier coatings for 
aircraft and aerospace industries in the mid-1980s. Due to the gradual 
spatial variation in properties instead of a sharp jump across interfaces, 
FGMs have potential advantages in reducing stress concentration and 
increasing fracture toughness. Eischen (1987a—b) developed a path- 
domain independent Jk -integral for fracture of nonhomogeneous 
materials. Honein and Herrmann (1997) studied the conservation laws in 
nonhomogeneous elastostatics by means of a special version of 
Noether’s theorem and proposed a path-independent Je -integral. The 
near-tip stress field in a FGM possesses a classical inverse square-root 
singularity like that in a homogeneous material, so that existing crack-tip 
finite element modeling codes can be used to analyze structural 
components made of FGMs (Erdogan, 1995). Suresh and Mortensen 
(1998) and Jin (2003) provided comprehensive reviews on the 
fundamentals of FGMs and the progress in fracture mechanics of FGMs. 
Wang and Mai (2005, 2006) investigated a periodic array of cracks in 
FGMs subjected to thermomechanical loading and transient loading.

This new concept of tailoring materials can also be extended to 
piezoelectric/piezomagnetic materials to improve reliability and achieve 
optimized performance in aerospace, transportation, communication,

179
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biomedical, and other applications (see for example Wu et al., 1996; Zhu 
et al., 2000; Hudnut et al., 2000; Li and Weng, 2002a-b; Takagi et al, 
2002, 2003; Kwon, 2004; Chakraborty et a l ,  2005; Chue and Ou, 2005; 
Zhou et a l ,  2005; Feng and Su, 2006, 2007; Ma et a l ,  2007; Wang and 
Mai, 2007b; Sladek et al ,  2007a-b; Ueda, 2005-2008; Singh et al, 
2009; Rao and Kuna, 2008, 2010; Shin and Lee, 2010; Dineva et al, 
2010). Successful applications of FGMs rely on a thorough 
understanding of the fracture behavior of such materials under various 
aggressive operational conditions.

This chapter is focused on the extension of fracture mechanics 
methodologies to this emerging class of FGMs subjected to combined 
magnetic, electric, thermal, and mechanical loadings, covering boundary- 
initial value problems, typical solution methods, and fracture 
characterizing parameters. While this subject is far from mature, the 
formulation presented in this chapter will likely form the basis for further 
advances.

8.2 Formulation of Boundary-Initial Value Problems

The boundary-initial value problems under combined magnetic, electric, 
thermal, and mechanical loadings can be mathematically formulated by 
the basic field equations with appropriate boundary and initial 
conditions. The fundamental difference between functionally graded 
materials and homogeneous materials is whether material properties vary 
spatially or not. Since the quasi-static approximation for the 
electromagnetic fields may be adopted in many practical engineering 
applications without loss of solution accuracy, it is employed in this 
formulation for simplicity.

Consider a FGM occupying the region V in the absence of mechanical 
body forces, free electric charges, and electricity conduction. The 
boundary of V is denoted by S. The equations to be satisfied in the region
V are listed as follows:

Constitutive relations (linearized theory):

t^kl Сklmn̂ mn ^ m k l ^ m k l ^ m Pk f t  » (8.1)



A t  =  e klm£ lm +  ^ k l^ l  +  8 k l ^ l  +  ® k&  » ( 8 .2 )

^ k  ~ K lm £ lm +  8 Ik E l  +  № k{H l + Mo Yk &» (8.3)

P~S = Рк,£и + 6>t Ek + ц 0 укНк + -L  c ve , (8.4)
J 0

j 9 = - k w • V 0, (8.5)

where material properties and mass density are functions of the 
coordinates X K (A=l,2,3), i.e.,
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СЬш = Cmnkl = Cklmn = Cklmn (X ,, X j, Xj ) , (8.6)

emlk = emkl = e»iW(^1 .X 2,X 3) , (8.7)

Knlk = hmkl = hmkl( X , (8.8)

А* = А / = А / ( ^ 1>-^2>^з) • (8.9)

=  *И = Ли(-^|>-^2'^з)> (8.10)

А» = Ан = А й (^1>^2>^з) • (8.11)

Ski = 8 kl(X | . ^ 2»^з)> (8.12)

= ^ (Х |}Х2,Хз) , (8.13)

y4 = y t (X lfX2,X ,) , (8.14)

Cr = C ,(J f„ X 2,X 3) , (8.15)

k ” = k w(X 1(X2,X ,) , (8.16)

/J = /9(Xl,X 2,X 3). (8.17)

Kinematic relations:



= (“»!.» +  UnM ) / 2 > (8Л8)

E , „ = - K >  (8-19)

H , n = - W . m- (8-20)
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Balance equations:

dt

The boundary conditions are

n [[D ]]  = 0 across S , 

nx[[E]] = 0 across 5 , 

n [[B ]]  = 0 across S,  

nx[[H ]] = 0 across S,  

n*fo  = tg on Stj., 

u = u s on S„, 

n i 9 =<7e on 

T =TB on 5r ,

V D = 0 , (8.21)

V • В = 0 , (8.22)

— = —pW ■ v , (8.23) 
dt

P ^  = V ,o ,  (8.24) 
dr

p r ^  = -V  i . (8.25)
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where n is the unit outer normal vector of the boundary S and 
S = S(7 u S u = S C}u S T. Other mixed boundary conditions may also be 
employed.

The initial conditions are

" Ц  = u o> (8-34)

“Ц  = vo • (8.35)

Г | = Г 0. (8.36)

8.3 Basic Solution Techniques

Due to the difficulties and complexities of the spatial dependence of 
graded properties plus multifield coupling effects involved in this class 
of boundary-initial value problems, numerical methods such as finite 
element method (FEM), boundary element method (BEM), or meshless 
local Petrov-Galerkin method (MLPG) are often used. Analytical or 
semi-analytical solutions may be obtained only for some limited 
variations of graded properties such as exponential or power-law 
functions of spatial coordinates. For example, Li and Weng (2002a) were 
among the first to study a stationary crack problem in a strip of 
functionally graded piezoelectric material (FGPM) subjected to antiplane 
mechanical and in-plane electric loadings with variations of the material 
properties one-dimensionally perpendicular to the crack plane, by using 
the Fourier transform to reduce the problem to two pairs of dual integral 
equations and then into Fredholm integral equations of the second kind. 
Their results showed that the near-tip stress and electric displacement 
fields in a FGPM exhibit the same inverse square-root singularity as 
those in a homogeneous piezoelectric material, but the magnitudes of the 
field intensity factors depend significandy on the gradient of the graded 
properties. Li and Weng (2002b) further investigated the Yoffe-type 
moving crack problem in a strip of FGPM subjected to antiplane 
mechanical loading and in-plane electric loading using the Galilean 
transformation and the Fourier transform. They found that the increase in



184 Fracture Mechanics o f  Electromagnetic Materials

the gradient of the material properties can reduce the magnitudes of the 
stress and electric displacement intensity factors, which has the same 
effect as the electromechanical coupling factor. Zhou et al. (2005) 
studied the behavior of a crack in functionally graded 
piezoelectric/piezomagnetic materials subjected to an antiplane shear 
loading with the variations of the material properties one-dimensionally 
parallel to the crack, by using the Fourier transform to reduce the 
problem to a pair of dual integral equations which are solved by the 
Schmidt method. Feng and Su (2006, 2007) and Ma et al. (2007) 
considered dynamic and static mode-III embedded or edge-crack 
problems in a functionally graded magneto-electro-elastic strip/plate with 
variations of material properties one-dimensionally parallel to the crack, 
by using integral transforms and dislocation density functions to reduce 
the problem to a system of singular integral equations. Wang and Mai 
(2007b) analyzed a mode-III crack problem in functionally graded 
magneto-electro-elastic materials with the variations of the material 
properties one-dimensionally perpendicular to the crack plane by using 
the Fourier transform to reduce the problem by means of the singular 
integral equation technique.

The integral transform/integral equation method is illustrated below 
for the Yoffe-type moving crack problem in a transversely isotropic 
functionally graded magneto-electro-elastic strip subjected to antiplane 
shear loading and in-plane electric and magnetic loadings (Fig. 8.1). 
Following the treatment by Yoffe (1951) and Li and Weng (2002b), 
consider a crack of length 2a moving at constant velocity Vc while 
keeping its length unchanged. A reference Cartesian coordinate system 
[X K,K  = 1,2,3} attached to the moving crack tip is chosen, which 
coincides at time t = 0 with the fixed Cartesian coordinate system 
{X K,K = 1,2,3}. The principal material axes are taken to coincide with 
the reference axes with the X3-axis in the poling direction, where the 
X3-axis is parallel to the crack front.

Thus, the Galilean transformation can be introduced as

X i = X i - V c f ,  X 2 = X 2 , X 3 = X 3, t = t . (8.37)
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t t t t t t t t
®  ®  ®  ®  ( • )  ®  ®  ®  pk

0 0 ( g ) ( 2 ) 0 0 0 0

t t t T t t T T * *
Fig. 8.1 A Yoffe-type mode-III moving crack problem in a functionally graded magneto- 
electro-elastic strip.

For the Yoffe-type mode-HI moving crack problem, only the out-of­
plane displacement w, electric potential ф, and magnetic potential у/ 
are non-vanishing, which are independent of X 3 and 7 in the reference 
frame moving with the crack tip, that is,

w = w(Xt, X 2),  ф{р)=ф{р\ Х у, Х 2),  y {p)=ii/{p\ X v X 2),  (8.38)

where the superscript p = s stands for the cracked solid region and p = f  
stands for the interior fluid region filled with vacuum, air, or oil of 
negligible mechanical influence.

The linearized constitutive equations are given in the Voigt notation
by
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3w d(p(s)
' ° i3_c«4 axl +e,s dXj 15 ЭХ,. ’

(8.39)

Dis)_ _3w 9 / J)
' ЭХ, 11 эх,. *"

dy/u) 
ЭХ, ’

(8.40)

Bw _ A a^(f) „ dy/M (8.41)
' эх, g " эх,. 1 ЭХ, ’

JS
L 0 II (8.42)

ЭХ,. ’
(8.43)

where i = 1,2.
The graded properties are taken to vary continuously 

axis inside the strip in the same proportion with 
distribution:

along the X 2 - 
the following

c44(X2) = c i ( l  + a |x 2|)\ (8.44)

Аг,,(х2) = лг°(1 + а |х 2|)1*. (8.45)

/Л.(Х2) = а °(1 + 4 М > \ (8.46)

el5( x 2) = e°(l  + a |x 2|)* (8.47)

ft15(X2) = /I|05(l + a |x 2|)i*. (8.48)

*i.(X2) = «n( i + « |x 2|:1*. (8.49)

p(X2) = p°(l + « X 2|)к» (8.50)
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where /с is a constant and the parameter a  can be determined by the 
values of the material properties at the X2 = 0 and X2 =±h  planes, i.e.,

а  = ф Ъ / с Ъ  -1  )/fc = (V * f , /* f ,  -1)/Л = ф н Л “ п -D /A

= (Ve< V 4  = -l) //»  = (V sii/ gu "D /A  (8.51)

= ф ' ‘ / р ° -  1)/A.

Due to the symmetry in geometry and loading, it is sufficient to 
consider the problem for X ,> 0 ,X 2 > 0 only. Since the Yoffe-type 
moving crack problem is in a steady state, the governing equations with 
respect to the reference frame moving with the crack tip may be rewritten 
as

(8.52)2 d2w 8 2w ка dw
s эх,2+ ЭХ2 1 + аХ2 эх2

э ¥ (1>. Э2?'» ка Э0 (1) _

ЭХ2 эх2
|

\ + аХ2 эх2

э у (1) Э2р7(5) ка| э г (,)
эх2 эх2 1 + оХ2 эх2

(8.53)

(8.54)

(8.55)
dXf ЭХ22

^  + ̂  = 0, (8.56)
Э Х2 э х ,2

(8.57)

=y/u) -c^ w  y (8.58)

where s 2 = l- (K c /c®)2, c° = ( c ^ / p 0 ) ' 12 is the piezoelectro- 
magnetically stiffened bulk shear wave speed at the X2 = 0  plane,



C°„=C°U +[(e?5)V n  +(Ai°s)‘ * u l / [* fX . is the
piezoelectromagnetically stiffened elastic constant at the X 2 = 0 plane,

C? = ( 4 X .  -/*.05« n ) / [ x f X  -< *? ,)2], and

c2° = ( «  ~ (« n )2] •
For an elliptical cavity-like crack, the following exact boundary 

conditions are imposed:

(сг23(Х 1,/г) = Рл, (8.59)

D<I)(X„A) = D„, (8.60)

B<S)(X,,/J) = B;„ (8.61)

,<т„з(Х„Х2) = 0, (X ,/a )2 + (X 2/b )2 =1, (8.62)

0<л)(Х 1,Х 2) - 0 < / ) (Х 1,Х 2) = 0, (X ,/a )2 + (X 2 /fr)2 = l, (8.63)

B,<,!)(X 1,X 2) - B ' / ) (X ,,X 2)= 0 , (X, / a )2 + (X 2 /b )2 =1, (8.64)

E[s)(X „ X 2) -E < / ) (X i,X 2)= 0 , (X ,/a )2 + (X 2 /b )2 =1, (8.65)

H,(I)(X 1,X 2) - H ,</)(X l,X 2) = 0, (X ,/a )2 + (X 2 /b )2 = 1, (8 .66)

w(X|)0) = 0, | x j > a ,  (8.67)
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0<!>(X,,O) = O, |x , |> a ,  (8 .68)

^ (1)(X,.0) = 0, |x,l > a, (8.69)

where the subscript “n” stands for the normal component and the 
subscript “f” for the tangential component on the crack surface.

With the introduction of the Fourier cosine transform to Eqs. (8.52)-
(8.56), the general solutions can be found as



Fracture o f Functionally Graded Materials 189

vKXlfX2) = % ( l  + a ? 2r ^ A ( O y a + ^ 2K / « ]я  (8.70)
+ A1 { O K p [{\ + c £ 2)s^a})cos(QC,)dC+aaX1,

фм  (X, , X 2) = -  J0" (1 + aX2 Г? {fi, (C )Ip [(1 + c5L2 )C / a]
it (8.71)

+ B2 (C)Kp[( 1 + aX2)C/or] }cos(f£, )dC-b0X 2,

r s)(Xl,X 2) = - j ; ( l  + a ¥ 2)-/, {C1(0 ^ [ ( l  + aX2K /a ]  0(8.72)
+ C2 (О К Д О  + К / « ] ) cos(£?, )d (  -  c0X2, 

^ / ) (X „X 2) = - j 0“ O ,(O s in h ( f? ,)c o s (^ ,)^ ,  (8.73)
К

^ (/)(X l,X 2) = - J 0“ £ l( O s i n h ( ^ ) c o s ( ^ , ) ^ ,  (8.74)
Л

where p  = (/: - 1)/2 , Ip and Kp are the first- and second-kind modified 
Bessel functions, a0, b0, and c0 are real constants, and Aj(f), A2( £ ) , 
5 , ( 0 ,  Д2Ю> Cj(0 . C2(0 . A ( 0 . and * i( 0  are unknown 
functions to be determined.

Hence, the expressions for the total stress, electric displacement, and 
magnetic induction are obtained as

/ а 13(Х 1,Х 2) = с44(Х2)и;л + е 15(Х2)^ + Л 15(Х2) ^ 1

= - - Jo“ <Г(1 + с6Сг)-р { с ^ Х 1 )Л, (<Г ) / ,[ ( l  + a x 2 К /  or] 
л

+ el5(X 2)B,(0 ^ [  (l + oX2) f /« ]

+ Al5(X2)C,(0 ^ [ a + ^ 2) f / a ]
+ c44(X2)/l2(0 ^ [ ( l + a X 2K / a ]  

+ e l5(X2)52( 0 ^ [ d  + ^ 2) f / « ]

+ /il5(X2)C2(0 ^ [ a  + « ^ 2) f /« ]} s in( ^ i ) ^ >
(8.75)



lO’23 (X\yX2) = C44 ( X 2)W2 + ^ 15( X 2 ) ^ 2  \̂5 ^ 2 ^ . 2

= - - Г { [ с 44(х 2и (  e w c . x j
к  0

+e13 (X2)fi, (0 6 , (P  x 2) + h,s (x 2 )C, (OQ, (C, X2)]

+[cM (X 2)A,(OPK ( 0  X 2) + els(X 2)B2 (O Q K ( 0  X2) 

+/))5(X2)C2( f  )QK (<Г, X2)] Jcos^X ,

+c44(X2)a0 1̂5("̂ 2)̂ o ~^5^X2)Cq,
(8.76)

D, (X ,, X2) = ё15(Х2)w, -  /r,, (X2 Щ  — g ,, (X2 W ,

=  --Г ^ (1  +  а Х 2Г д{ё|5( Х , ) А Ю / Д ( 1  +  а Х , К / а г ]
Л'*'0

-*-п ( Х 2)В 1( 0 / Д ( 1  +  а Х 2) ^ / « ]

- g n(X2)C ,(O y(l + aX2K /a ]  

+els(X 2)A2(C)K/)[(\ + a X 2) s C l a ]

- K u( X 2)B2( O K p W  + a X 2)C /  a]

-g „ (X 2)C2(OX^[(l + a X 2K /a ]} s in (fX ,)rfO
(8.77)

D2(X „X 2) = £is(X2)w2 — /гп(Х2) ^ 2 ~ 5n(X2) ^ 2

= - | | о“{[е-15(х 2м ,(О я ,(О х 2)

-*■„ (x 2 )B, (0 2 , (0  x 2) -  ( x 2 )C, ( 0 6 , (0  x 2)] 

+[e15(X2)^ (O /V (0X 2) - r n(X2)B2(O 6K(0 X 2) 

-g„ (X2 )C2 (OOir ( 0  X2)]} cos ( f  x, w f  

+6?15(X 2)tf0 **11 (^2)^0 £ll (^ 2 )C0» 
(8.78)
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S, (X „X 2) = A15(X2)w, - g |1(X2) ^ , - ц и(Х 2 )у/л

= - | | 0” Г(1 + оХ2)^{Л|5(Х2)Л ,(О /д [(1 + ^ 2Х / а ]

- g u (X 2 )Bt(C)Ifi[ (l + a ? 2)^ /a ]

- Л | ( В Д ( 0 / , К  l + aX2)£ /a ]

+ Ai5(X 2)A2( O ^ K  1 + aX2 ) s ( / a )

- g u(X2)B2(C)Kfi[( l + aX2)C/a]
- М Х г У С г Ю К р Ш  + с К М / с Ц Ш & М ,

(8.79)

B2 (XlJ 2) = ih5 (X2)w 2 - g n(X1)^2 -M,,(X2) ^ 2

= - - r { [ h [5 (X1)Ai(C)P,(C'X2)7t 0

- gll( x 2)B1( o e , ( r ^ 2) - A , ( ^ ) c , ( o a ( f . ^ ) ]

+[Л!5(Х2)А, (O pk (C ,x 2) - g „  (X2)B2( 0 Q K (C. * , )

- A , (X2 )C2 ( f  ) e ,  (f , x 2)]} cos(^ X, )rff 

+hX5(X 2)ci0 + £ц(Х2)Ь0 "*"/Ai(^2)co»
(8.80)

where

c44(X2) = c44(X2) + c ^ 15(X2) + c2°A15(X 2) ) (8.81)

el5 (X2) = el5 (.X2 )-c°icu (X 2 ) - c 02g n (X2),  (8.82)

A15(X2) = A15(X2) - c ^ 11(X 2) - c 2V „ (X 2), (8.83)

/> ( f , X2) = /fctfl + o ? 2 )_/M /Д (1 + < * 2K / a ]
-  л • -  (8.84)

- 5^(1 + aX2 r fiI/iK 1 + aX2 )sC/a],
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PK( ; , X 2) = p a ( \  + cSi1 r p-xKl)[{\ + cX 2 ) sC la ]

-  j f ( l + aX 2 r fi Kf [{ 1 + aX 2 )sC/a] ,

Q, (С, X 2) = Pa{  1 + a X 2)- fi-' / Д  1 + oX2) f /a ]  

- ^ ( l  + o £ 2)-% [( l  + a ? 2)£7a],

S* X 2) = p a (\  + oX2 ) ^ 4  Kp [(1 + aX2) ( / a] 

- f ( l  + aX2y ' , fC/)[(l + c>X2) f / a l
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(8.85)

(8.86)

(8.87)

Application of the edge-loading conditions (8.59)—(8.61) results in 
the following relations:

pft= ? > 1- 4 f r 1- / 4 c 1, (8 .88)

D„ = ?*5a, ч - ^ с , , (8.89)

= 1̂5a l + Sll^l AllCl> (8.90)

ro --
--

--
--

--
s

II > (8.91)

b 2 ( C ) = q 2]b  i(0 . (8.92)

c 2(0 = e 2. c 1(0 . (8.93)

where P21 = - P , ( f  Ji)/PK(С,A) and Q2l =-Qj(C,h)IQK(C,h)-
By analogy with the treatment in Chapter 7, letting b/a —> 0 while 

keeping (Ък° ,)/(алг/j) —> Ae and ( b j u ^ ) / —> Am, satisfaction of the 
crack-face boundary conditions (8.62)-(8.69) leads to three pairs of dual 
integral equations:

lfZ£F,(OA(f)cos(tf,)df = \x ,|<в, (8.94)
ж С  1 1

J0“ A (O cos(^X ,)^  = 0, |X ||> a , (8.95)



where
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f r e ( O S ( O c o s ( ^ , ) ^  = - M D 0,B0). I* ,|<«,

£B(C)cos(0C,)dC=O, \x, \>a,  

^ C F 2 (O C (£ )c o s (& l)d£ = - l 2(D0 ,B0), |x , |< a ,

r C ( O c o s ( f f , ) ^  = 0 , \ x } > a ,

M O  = M O lIf i ( sC /a )+P :uK^sC/a) ] ,  

B(C)  = В| ( f / «)  + fi2, ^ ( f / e ) ]  + c , ° A ( 0 , 

C ( 0  = C,tf )Ue(C/a)+Qu K ,(C /a ) ]+ cS M O , 

P; (fO ) + P2,Py (CO)
/  p(s£ la )  + P2lKp(s£ la )

_ (kx )2 Q,(C,0 ) + Q2<Qk(CQ) 
em I / a) + Q2lK I a)

F i i O - = J / fi( p a )  + Q2lKfi(C/a)

L(P0,Dq,Bq) — Р0 + (Dq,B0) +  /i,5Zo (Z)0, Z?0 )i 

7  ( n  п  л  ° Л ( 1 - и Ы - в о 8 п

A 0 о ”  (1- 1/ л Д 1- 1/ л > ; х  - ( ^ n )2 *

f m  / ? л -  B0Kfl(\ — l/Ae) — D0g n

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

(8.101)

(8. 102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)
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P0 = c “ a I - e “ b , - / I|05c„ (8.108)

D0 =*-|°lfc ,+ g“ c1, (8.109)

B0 = 8 >  , + a W  (8.1Ю)

•̂0 _ y ilA l|Q —Лп)с1 А ||£пЛ?с2 (8.111) 
"̂l l/ l̂ I Cl Лг )(1 — Ли ) “  ЛДп (gП ) 

тгО _  У 1 | А | | 0  ~ Л )С2 +  * ~ | |£ | |Я п С| / о  i 124

2 « ( 1- Я еХ1-Я ,„ ) -Я Д „ (5 » )2 ’

0 -0  . I о -о 
/ь Я  ч2 _  g 15Cl ^15 2 _\е/л / _п

•44

i(  \
1 -

C bg

4 \  1 /

(8.113)

It is noted that the magneto-electro-mechanical coupling factor k*m 
and the shear horizontal surface wave speed ĉ g defined at the X 2 = 0 
plane depend on the permeability parameters Ae and Am through q0 and 
c2 . Like the homogeneous materials discussed in Chapter 7, there are 
four limiting conditions for FGMs: (i) electrically and magnetically 
permeable crack-face condition as Ae —» 0  and Am —> 0 , (ii) electrically 
and magnetically impermeable crack-face condition as Ae and
Лт —> oo y (iii) electrically permeable and magnetically impermeable 
crack-face condition as Ae —> 0  and Am —» ©° , and (iv) electrically 
impermeable and magnetically permeable crack-face condition as 
Ле —> °° and Am —» 0 . The electromagnetically semi-permeable crack- 
face condition may be approximated if Ae and Am are considered as 
finite nonzero parameters.

The dual equations have the following solution (Copson, 1961):

a ( o = ^ — о,? о,Во)|;>/?Ф| ( ^ 0( т  (8-114>
2 C44
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(8.П5)

C ( 0  = - ^ L 2 (D0 , b X № i ( Z ) J o ( & № '  (8 4 6 )

where J 0 (£a<!;) is the zero-order Bessel function of the first kind and the 
auxiliary functions Ф,(£) and Ф2(£) should be governed by the 
standard Fredholm integral equations of the second kind:

Ф, (#) + J > ,  (£)G, (£,Tj)dT) = V f , (8.117)

ф 2 (£) + Jo1Ф 2 (#)C2 (Z,T})dTj = VJ, (8.118)

with the kernel function in the form

G]& n )  = 4 f y £ s [ F l{ s / a ) - l ] j 0 (sZ)J0 (sTi)ds, (8.119) 

C2 (#- Ф = Г  ? (?/ a ) ■-1] /о ( J ( ? ( 8-120)

As the crack velocity Vc tends to zero (i.e., $ 1), the quasi-static 
solution is retrieved.

8.4 Fracture Characterizing Parameters

Next, we discuss the extension of classical fracture mechanics concepts 
such as intensity factors, energy release rate, and path-independent 
integrals to FGMs under combined magnetic, electric, thermal, and 
mechanical loadings.

8.4.1 Field intensity factors

The near-tip field solutions can be derived from the asymptotic analysis 
when f  —»©о. The singular parts of the total stress, electric 
displacement, and magnetic induction near the right crack tip are given 
by



C44 -\j27D \
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- L (P 0 ,D0 ,B0K k i f  ф |(1) " п^ | /2 )

- £ ( 0 ,Р 0,£ 0)Ф2( 1 ) ^ У ' /2 ) ],
y / 2  7D\

-0
,<г, 3 =л/ ^ ^ 1 [ £ ( Р 0, в 0,в 0)5Ф, (i)£0S(giZ.2)

C44 д /2 ^ ) ]

- £ ( я0,р0,в0хО Ч ( 1)—ŝ - 2)
42m\

- ц о , в 0,д 0)ф 2(1)£° 5(^ /2 ) ],
4 1т\

= - 7 ^ { £ ( р 0,о 0,в 0)^ £ 1 ^ Ц £ з1 и )ф | 0 )
•44

+  [ у ° £ , ( В о , В о )  +  § 10Л ( Д о . Д о )1Ф 2 ( » ) } $1П,( 6 ' ' / 2 ) ,
■\J27D‘j

= V ^ (Z (P 0,D0,S0) H [ 5 m + M )  ф1 (1)
C44

+ [y° l ,  (O0, g 0) + z;  (Op, д0 )]Ф2 (1)} 1°1(3 /2 ) ,
У/2 Щ

= - 4 ^  (£(Р0,о 0.Д0)—  » * C2A|°' ) ф, (l)
C44

+ и °  z; (d 0 , i 0) + ^  (p 0, g0 )]ф2 a ) } i 7 2> t

(8.121)

(8 .122)

(8.123)

(8.124)

(8.125)
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B2 = Jm[L(P 0 ,D0 ,B0) (ci5n + ciMu) Ф,(1)
'44

18 11 ̂ 1 ( D0, ) + //,! ̂ 2 ( D0, #q )]<̂> 2 ( 0]
cos(0, / 2)

V ^i~

(8.126)

where

r, =tJ(X1 - a ) 2 + X2 , =arctan[X2/(X, -  fl)], (8.127) 

?j = д/(Х, - я )2 + (jX 2)2 , (9, = arctan[1yA?2 /(X, -  fl)]. (8.128)

It can be seen that the near-tip field solutions for FGMs exhibit the 
inverse square-root singularity in the local coordinate system affixed to 
the moving crack tip, like those for homogeneous materials. Hence, the 
definition of the dynamic field intensity factors introduced in Chapter 6 
can be extended to FGMs, that is,

'K,n{Vc )
KD(VC) = Jim+ д/'

^В<Ус),

V 23(X „0)N
£>22 (X 1,0) 
B22(X „0)

(8.129)

The self-induced and cross-over dynamic total stress, electric 
displacement, and magnetic induction intensity factors can be expressed 
in the form of a universal function of the crack velocity times the 
corresponding quasi-static value, that is,

К%<Ус ) = № < У с )К ш (  0)

= ^  L(p0m is  -  ( * i  ) 2 ] ф ,  ( l ) ,

(8.130)

к№<Ус ) = к%><Ус )К%>{ 0)

•44

_ ь (0) (D)

J i m & U O .D o M I s  -  ( * i ) 2№ , (1) -  Ф 2(1)}.
(8.131)

'44



к № (У с )=к£><ус ) к ™ (  0)

= ^ 4 - 1 ( О Д В 0) { [ 5 - ( ^ „ ) 2]Ф ,(1 )-Ф 2(1)),
C44

K S \ v c ) = k Z \ v c ) K % \ o)

= -J^a (C|°y °1 p C°g ° } £(Р0,0,0)Ф, (1),
C44

^ d)(Vc ) = ^ o ,(Vc ) ^ D)(0)

= 4 ^a < £ l ^ ± £ i £ u 2 1 (0, о 0,о)Ф, (1)
C44

+ V »[*f,L ,(D 0,0) + £°М £>о,0)]Ф2(1),

^ B)(V'c) = *D>(V c)^D )(0)

= ^  ( £ M l± £ M >  I  (0 Д  B0) Ф , (1)
C44
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+  л/да[к?,1 ,  ( 0 , S 0) +  « ? Л ( 0 ,  в 0 )]ф 2(1). 

кТ <У С) = к ? \У с ) К £ \ 0)

+ ^ [ 8°4 (0 ,В 0) + / /“Г2(0,В0))Ф2(1),

(8.132)

(8.133)

(8.134)

(8.135)

(8.136)

(8.137)

(8.138)



where superscripts (Г), (D) and (В) indicate traction loading, electric 
loading and magnetic loading, respectively.

For the special case of an electromagnetically permeable crack 
(Ле —> 0 and Лт —> 0), the near-tip fields are expressed as

i k in(vc) ~ ( C f  к ш(ус)
, , 0  '2 u ~  sin(g,/2) + .0 ,г n r ~  sm (tf,/i),

^ ( k em) s  ( k em)

(8.139)

^  » - < 0

(8.140)

D| = _ m n(V 2 ,, (8.141)

p  A-D(Vc ) co s(g /2 ), (8.142)

в  = _ ^ Ш 5т(6»1/2 ) , (8.143)
р щ

В2=Щ Ш  costf,/2 ) , (8.144)
у 2 лг|
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where

(Vc ) = % 5 -  ( С ) 2 Fo ̂ Ф ,  (1), (В. 145)
С44

^ с (ус) = ̂ Г / о ^ ф |(1)> <8146)
44
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к в(ус)= ±§-р04 ^ ф ^ \ \
Слл

(8.147)

О О , , О О 
/ / , 0  \ 2  _  g 15c i 15^2 _  \кет / _п

'bg (8.148)

As the magnetic field is shut off, the electrically permeable case for 
the Yoffe-type moving crack in a FGPM strip studied by Li and Weng 
(2002b) is recovered. The dependence of the dynamic stress intensity 
factor normalized by the quasi-static value on the crack velocity 
normalized by the Bleustein-Gulyaev wave speed is shown in Fig. 8.2.

Fig. 8.2 Effect o f  crack velocity on stress intensity factor (k = 1, alh = 0.5). (From Li and 
W eng, 2002b, with permission from the Royal Society).
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The trend is akin to that for the propagation of a semi-infinite 
permeable crack in a homogeneous electromagnetic material as discussed 
in Chapter 7. It can be seen that the dynamic stress intensity factor for a 
FGPM decreases monotonically with the increase of the crack velocity 
and tends to zero as the crack velocity approaches the Bleustein-Gulyaev 
wave speed. Similar to the increase of the electromechanical coupling 
factor, the increase of the material property gradient helps to reduce the 
dynamic stress intensity factor.

8.4.2 Dynamic energy release rate

The two alternative representations (6.25) and (6.27) for the dynamic 
energy release rate introduced in Chapter 6 are valid for homogeneous or 
nonhomogeneous, linear or nonlinear, magneto-electro-thermo-elastic 
media, including FGMs, containing a propagating three-dimensional 
crack of arbitrary shape, that is,

J 0 =J

= ]im4-Jf [n-(a+OTa + v ® G )-v -n '5  + ( ^ + ^ + ffflM/ )n-Vc ]cff,
ro-»° A 0

=-r(f [n-(o+mo + v ® G )’V - n - S + 0 + p / i+ Mi// )n-Vc ](ff’
A

-  S i H  ! " *  * + S i V » ,

(8.149)

The invariant J -integral method is more useful than the crack-front 
generalized J -integral method for numerical analysis. If there exists a 
steady-state solution for the propagation of a planar crack along the E[ - 
direction in a FGM without electricity conduction, the dynamic energy 
release rate can be expressed by the special form of the invariant J - 
integral:
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+ —|f [(nxE )xD ]-uV df-E , + —Jr [(n x H )x B ]-u V d f -E,
B Jl 1 В

+ v ® (P x B )-u W f  E, (8.150)

expl

The last term involving the explicit derivative of the total energy 
density with respect to X, reflects the shielding or amplification 
influence of the material property gradient on crack propagation in 
FGMs.

8.4.3 Path-domain independent integral

It is known that the /-integral is generally not path independent for 
nonhomogeneous materials. Significant efforts have been made to 
modify the classical /-integral method to account for material
inhomogeneity. Here, we introduce the / * -integral vector, the /  K- 
integral vector, and the energy-momentum tensor b as

(8.151)

(8.152)
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b = - [ ,o + (D  E )I-D ® E + (B  H ) I -B 0 H
л л , (8.153)

-  v ® (P x  В)] • u V + (p h +pk+emuf  )I.

It can be seen that the first component of the J K -integral vector 
reproduces expression (8.150) for the invariant У-integral, which is an 
extension of the configuration force (material force) notation (Eshelby, 
1951, 1956, 1970; Maugin and Trimarco, 1992; Gurtin, 2000). Several 
variations of path-domain independent integrals proposed for 
nonhomogeneous materials or graded materials (e.g., Eischen, 1987a-b; 
Honein and Herrmann, 1997; Gu et al., 1999; Anlas et al., 2000; Jin and 
Sun, 2007) can be retrieved as the electromagnetic fields are shut off, 
e.g.,

J k = ^ W P ^ +P ^ nk - nja nui * WD

( 8 I5 4 )

In contrast to homogeneous materials, the difference between the 
global and local J K -integral vector for FGMs is caused by the gradient 
of material properties along the crack line, in addition to mechanical 
body force and temperature change. The domain integral terms in the 
expression (8.151) vanish only if mechanical body force and temperature 
change are negligible and the graded properties vary one-dimensionally 
perpendicular to the crack plane. For this special case, the path-domain 
independent J -integral becomes path independent, that is,

y = J  = l r pn b r f f l l . (8.155)
В

Moreover, the dynamic energy release rate for crack propagation in a 
FGM can be evaluated by the crack closure integral in the same way as 
discussed in Section 6.3, that is,
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J* = \ \ m 4 r C & ; ( * i  - в .0 ) Д и /Х , -a -Sa ,Qr)dX,  ,(8.156)
&t—>0 2 ud

where A uj ( X ] - a - &,()*) = uj ( X ] - a -  & , 0+) -  u.j(XL-  a -  &,0") 
is the crack opening displacement at a distance d a + a - X x behind the 
crack tip.

For the Yoffe-type mode-Ш moving crack in a FGM, the dynamic 
energy release rate is thus calculated as

J0 = lim r^-Jo*, <723(* . -  a,0)Aw(X, -  a -  Sa.O*)rfX,
&->o Zoa (8.157)

= \ к ш ( У с ) к Т < У с ) ,

where the mode-III dynamic crack opening displacement intensity factor 
at the right crack tip is given by

Кш°(Ус)=  lim *  AvKX.-a.O*)
X, —»a V L \C l X j )

2

iVi- < y J 4 y

[k w (Vc ) (8.158)
(2

J )  ,,0  »,0 о »о „о о „ 0
. ^\5S\\ / I /  \  | ^15 11 15^ 11 is  / I /  \

+  « - ( . Г , ) 1  , № >

Therefore, the prediction that the dynamic energy release rate is an 
odd function of the dynamic electric displacement intensity factor and 
dynamic magnetic induction intensity factor is valid for FGMs, similar to 
homogeneous materials.

8.5 Remarks

Significant progress has been made in understanding the quasi-static and 
dynamic fracture behaviors of FGMs under combined magnetic, electric, 
thermal, and mechanical loadings, with generalization of classical 
fracture mechanics concepts such as intensity factors, energy release rate
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and /-integral to FGMs. Nevertheless, fracture mechanics of FGMs is 
still far from emerging as a mature engineering science discipline. Areas 
that require substantial efforts include numerical simulation, 
experimental characterization, mixed-mode fracture, creep-fatigue crack 
growth, environmentally assisted cracking, and higher-order theory. 
Multiscale modeling involving magneto-electro-thermo-mechanical 
coupling and dissipative effects may find increased usage in simulating 
fracture processes in FGMs. The development of efficient methods for 
analyzing flawed structure components made of FGMs is greatly needed. 
Correlation of theoretical prediction with experimental measurement 
under combined loadings is vital for successful applications of FGMs in 
various demanding areas such as aerospace, armor, and biomedical 
engineering.



Chapter 9

Magneto-Thermo-Viscoelastic 
Deformation and Fracture

9.1 Introduction

With increasing interests in the engineering applications of 
magnetosensitive polymers and polymer composites capable of large 
deformations, studies on nonlinear magneto-thermo-viscoelastic 
deformation and fracture are necessary for evaluating the reliability and 
durability of intelligent devices made of these advanced materials. It is 
well known that fracture in metals is influenced by plastic dissipation in 
the plastic zone, whereas fracture in polymers is accompanied by viscous 
dissipation in the bulk material. The need to incorporate the effect of 
viscous bulk dissipation on crack initiation and growth is the main 
motivation for the development of magneto-thermo-viscoelastic fracture 
mechanics.

As discussed in Chapter 3, nonequilibrium thermodynamics provides 
an effective way of studying irreversible processes involving energy 
dissipation. There are essentially two types of approaches to the 
derivation of constitutive, fracture, and strength models for nonlinear 
viscoelastic solids in the published literature (Schapery, 2000): 
functional thermodynamics and state-variable thermodynamics. In 
functional thermodynamics, the free energy is expressed as a functional 
of the histories of strain (stress), temperature, etc., whereas, in state- 
variable thermodynamics, the free energy is expressed as a function of 
current strain (stress), temperature, and other variables including so- 
called internal state variables. Recently, Chen (2009d) developed a 
nonlinear magneto-thermo-viscoelastic constitutive and fracture theory,

206
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which incorporates the augmented Helmholtz free energy as a functional 
of the histories of deformation, temperature, and magnetic induction in 
the reference configuration. The nonequilibrium thermodynamic 
approach affords a uniform treatment of complex time-dependent 
constitutive and fracture behaviors in the presence of multifield coupling 
and hysteresis effects.

In this chapter, we attempt to provide an insight into this rather new 
and developing area on nonlinear magneto-thermo-viscoelastic 
deformation and fracture. The presentation here is restricted to the quasi- 
magnetostatic approximation for a simple formulation. In Section 9.2, the 
local balance equations under combined magnetic, thermal and 
mechanical loadings are summarized. In Section 9.3, the free energy 
functional and entropy production inequality are introduced for memory- 
dependent magnetosensitive materials. In Section 9.4, nonlinear 
magneto-thermo-viscoelastic constitutive relations are formulated from 
the energy balance equation and the entropy production inequality. In 
Section 9.5, the generalized J -integral is constructed for use as a 
physically sound criterion for nonlinear magneto-thermo-viscoelastic 
fracture. In Section 9.6, applications to generalized plane crack problems 
are discussed and the mode-III fracture of a magnetostrictive solid in a 
bias magnetic field studied by Sabir and Maugin (1996) is revisited as a 
special case.

9.2 Local Balance Equations for Magnetic, Thermal, and 
Mechanical Field Quantities

A description of the balance laws in the continuum mechanics of 
electromagnetic solids can be found in Chapter 2. In the papers by 
Dorfmann and Ogden (2003, 2004), rather elegant and simple 
formulations of the governing equations and the constitutive relations 
were provided for the static situation of elastomer-like materials capable 
of large magnetoelastic deformations, based on a modified free energy 
function with the referential magnetic induction vector as the 
independent magnetic variable. Here, the governing equations and the 
constitutive relations are extended to nonlinear magneto-thermo-
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viscoelastic media under the quasi-magnetostatic approximation 
following the work by Chen (2009d).

The local balance equations under combined magnetic, thermal, and 
mechanical loadings are summarized below:

where the total stress tensor ,a  = is the sum of the Cauchy stress
tensor a and the magnetic stress tensor fflo = -B ® M  + B ® B//i0 
+ (М .В -м« ')1 ,  „ « '« В -В /2 Я , is the energy density of the free

moving frame.
Like thermoviscoelastic boundary-initial value problems, discussed in 

Chapter 3, these balance equations should be supplemented by 
constitutive relations together with appropriate boundary and initial 
conditions for proper mathematical formulation of magneto-thermo- 
viscoelastic boundary-initial value problems.

The boundary conditions are given by

V B  = 0, (9.1)

V x H  = 0 , (9.2)

(9.3)

P ^  = V ; 0  + f i i , (9.4)

(9.5)

magnetic field, and S = (v x B )x H  is the Poynting vector in the co-

n [[B ]]  = 0 across 5 ( t > 0), (9.7)

nx[[H ]] = 0 across S ( t > 0), (9.8)

n - ,o = tB(x,f) on Sa ( г >0 ) , (9.9)
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u = uB(x,0 on Slf ( f> 0 ) ,  (9.10)

n 'j?  =<?b(x,0 on Sq ( r > 0 ), (9.11)

T = TB(x,t) on ST ( /> 0 ) ,  (9.12)

where ^  j refers to a certain part of the boundary: displacement is 
prescribed on Su , traction on Sa (the complement of Slt), temperature 
on Se , and heat flux on Sq (the complement of Se). Therefore, we have 
Su u  Sa =S  and ST u  Sq = S . Other mixed boundary conditions may 
also be employed.

The initial conditions are taken as

u = u0 ( / < 0), (9.13)

u = v0 (t = 0), (9.14)

T = T0  (t< 0). (9.15)

B = B0 ( /< 0 ) .  (9.16)

9.3 Free Energy and Entropy Production Inequality for Memory- 
Dependent Magnetosensitive Materials

By introduction of the augmented Helmholtz free energy, including the 
contribution of the energy of the free magnetic field, that is,

ufh =e-Ts+-sl— , (9.17)
P

the local energy balance equation (9.6) becomes

p — (fc + A+7s)=-V-j +V- ( ,a -v -S)  + />f v.  (9.18) 
dt

In the reference configuration, , the local energy balance equation 
can be rewritten as
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cR 
d t '

(9.19)

and the entropy production inequality is expressed as

(9.20)

For memory-dependent magnetosensitive materials, the augmented 
Helmholtz free energy, including the contribution of the energy of the 
free magnetic field, is assumed to be a functional of the histories of 
deformation, temperature, temperature gradient, and magnetic induction 
in the reference configuration , with respect to which the deformation 
gradient F  is measured, that is,

9.4 Coupled Magneto-Thermo-Viscoelastic Constitutive Relations

Since the entropy production inequality (9.20) is always valid, state 
equations should fulfill the following conditions:

h = h(C(t -  t \  T(t -  r), VRT(t -  т), В (t — t);X ) . (9.21)

(9.22)

t^KL ~^Po~^rZ >
vCkl 

s = —

(9.23)

(9.24)

(9.25)
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(9.26)

(9.27)

(9.28)

where A is the viscous dissipation rate, which is time-dependent.
From Eq. (9.22), the augmented Helmholtz free energy does not 

depend on the temperature gradient. Energy can be converted from one 
form to another due to mechanical, thermal, and magnetic coupling, 
accompanied by intrinsic dissipation associated with mechanical, 
thermal, and magnetic hysteresis. Since the inequality (9.28) must always 
be satisfied, kinetic laws for specific irreversible processes may be 
determined accordingly. Next, a special type of material behavior 
pertinent to finite magneto-thermo-viscoelasticity is illustrated as an 
extension of the coupled theory of thermoviscoelasticity at finite 
deformation discussed in Chapter 3.

The viscous dissipation rate satisfies the inequality

It is proposed that the thermodynamic flux for heat conduction 
depends linearly on the corresponding thermodynamic force, that is,

Substituting Eqs. (9.24) and (9.30) into Eq. (9.19) yields the 
following heat transfer equation based on the augmented Helmholtz free 
energy functional:

A>0. (9.29)

(9.30)



With the use of the Lagrange strain measure E = ( C - I ) /2 ,  the 
temperature deviation O = T - T 0 , and the referential magnetic induction 
deviation b = B - B 0, expansion of the augmented Helmholtz free 
energy functional for materials with fading memory on an intrinsic time 
scale up to the second order yields

p 0h = p 0h0 + 1 1 М Х ,У - Г ' ) - Е" (Х’У' W ’
д у /

- J L ^ ( X^ - V  ) Э6>(Х’.  ̂h y/'+ | ^ ^ ( х , ^ - ^ ' ) Э̂ х ’.г -^ г'
дуг ду/

1 ^  л  • •• ) ЭЕ^» (X,m  ̂ ) , • 
+ i : Z J L P ukl& W - V  w - v  ) -  y  KLK J  } d y /d y /

2 д у /  д у /

t v  i r  О / V  - ч ^ Е и ( Х , у / ' ) д в { Х , у / " )  , «)— " v ;  т  dy/dyг
д у /  д у/

W  t v  r h  г л г  ' " ) д Ь А * , У /  )  j  ' j  "

д у /  д у /

1 riff ~  ■ "чЭ0(Х,м^ )Э0(Х,мг ) ,  • ")~  . I. Г - dy/dys
27q

-  Л  Л  И' ( Х , ц г - у \ ¥ - ¥ ) д'У- ^ " ¥  ] Э^(Х’Г  } diffdif/'
д у /  д у/

1 &  - ь  / v  • - 0 M X V )  Э£,(Х,м/') , • . » + т ь Г л ( х , г - к ^ - ^ ) “ J- \  :  - d y / d y ,

(9.32)

where is the value of the augmented Helmholtz free energy in a 
reference state (i.e., E = 0 , T = T0 , B = B0), y/(t) = faa(t )dt is the 
intrinsic time, a ( t ) is a shift function due to the effects of temperature, 
aging, etc., GUKL{X,y /-y /\y /-y /" )  = GKLU (Х,у/- y / \ y / - y /  ), 
(^H(X,y /-y /\y /-y /" )  = CH(X,y/-y/" ,y / -y / ) ,  and 
Xhu {TL,V-V W - V  ) = Z j , ( \ , y r - y  , y - y / ) .

From Eqs. (9.23)-(9.25), the constitutive equations in finite magneto- 
thermo-viscoelasticity are obtained using the augmented Helmholtz free 
energy functional expansion (9.32) as
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=L°tJ +
ду/ 

дуг

-  Z~ fh j  (Х А Г -  W W .d\//

p0s = M° + \ ^ p u (X ,^  -  {у',0)ЭЕ" (Х,(У)^ ^ '

+ 7 - n c w ( X , r - r ' . 0 ) ^ ^ ^ '
Л) Л

+ П И ,(Х,{У-!У’,0)Э̂ Х:|У )</;у', 
ду/

Н,  = <  -  (Х ,у  -  у , 0 ) -ЭЕ" (^ у }  d w
ду/

- L r f ( X A r - r ) - ^ y  W
ду/

+ I l l / J ( Х , 0 , ; у - )— ^—1,  ̂ W '.

where G/JKL(X,0,y/—i/f ) , Сн (Х,у/—у / ,0), (X ,0 ,j/—(/ ), 
Ри (Х,0,у/-щ  ) , p u ( X , y / - y j 0), f$u (X,Q,yf-yf) ,
f iJK{ X , y / - Y ,0), У Ц Х ^ - у / ,0 ), and y f ( X A { / - j / )  are appropriate 
memory functions.

The first terms L°y , M° and Л^° on the right-hand sides of Eqs.
(9.33)—(9.35) stand for the values of ,2 ^  , / V , and t f ; in the reference 
state, the second terms for mechanical contribution, the third terms for 
thermal contribution, and the fourth terms for magnetic contribution. The 
dependence of the long-term property functions on aging time, 
temperature, etc. may be determined from short-term experiments with 
an accelerated test methodology. Physical aging refers to structural 
relaxation of the glassy state toward the metastable state, accompanied 
by changes in almost all physical properties (Hodge, 1995). The

(9.33)

(9.34)

(9.35)
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experimental observations by Maignan et al. (1998) and Dolinek and 
Jaglii (2002) show that the aging phenomenon exists in the samples for 
magnetization relaxation measurements and the magnetization data may 
be fitted with a stretched (fractional) exponential function. The concept 
of the intrinsic time (also called effective time or reduced time) is used to 
describe the equivalence of aging time, time, and temperature for 
polymeric materials (Struik, 1978; Ferry, 1980).

From Eq. (9.26), the viscous dissipation rate in finite magneto- 
thermo-viscoelasticity is obtained using the augmented Helmholtz free 
energy functional expansion (9.32) as

n \ = - \ ¥ ^ У ' д М Х . ' у - Й Э Е ц ( Х , у ' ) ,  ■
0 J~“ dt dy/ di//'

+ ,v dy/ ЭМ(X,;y -  у/)  Эg(X,yQ •
J-“ dt dy/ dy/'

_ dy /bNbl (X ,y/-yr ')Э £ ,(Х У ) • 
dt Ъу/ dy/

_ I ^  ,v dy/ d G j j u Q t , y - y / ^ j - y n  ЭЕ„(Х,;у')ЭЕи (Х ,^")
2 J«oJ-~ л

[V „  Л у Э А / Х ,у - у > - у ') Э Е , / Х У ) Э 0 ( Х ,< / )  ■ ■
Ĵ J-“ dt dy/ dy/ dy/"
„  «, dy/ d fbKU(X,y/ -  y/' , y / - V )  ЭЕ„ (X.yQ Э Ьк (Х,ц/") ■ • 

dt Эу/ Эу/ Ъу/
+ J _ , v  d y Э С ,Д Х .^ -^ У -у г ')Э 0 (Х ,у О Э 0 (Х ,у О  • •

2 dt dy/ dy/' dy/
+ vr tv d у/ d r f  (X, y/_ -  у/ , y_ -  y/_') db, (X, y/_) d g(X, у/ ) ■ ■

”°°~°° dt Э у/ Ьу/ Э у/
_}_,v <v dy_dXij(X,y/-y/\y/-if/") db,(X,y/‘) 8fc,(X V )  ■ ••

2 -»° -со dt ду/ Э у/ ду/

(9.36)

The coupled heat transfer equation is obtained from Eq. (9.31) as
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d Tft// * v  • ЛЧЭ Е „ ( Х ^ ) • 
dt ду/

+ ^ -J lQ (X ,iy -iy ',0 ) ag X̂’f } dy/'
0 - . (9.37)

+ J l r f ( x , r - ^ ' . o ) -  W '] 

= i v , . ( ^ - v ^ ) + ± PoA,
У0 yo

where the integral involving the strain history gives rise to a coupling 
between thermal and mechanical effects, and the integral involving the 
magnetic induction history gives rise to a coupling between thermal and 
magnetic effects.

9.5 Generalized J -Integral in Nonlinear Magneto-Thermo- 
Viscoelastic Fracture

Consider a three-dimensional cracked body (see Fig. 6.1) with the 
surface Г  translating with the crack front moving at a speed Vc . Using 
Eqs. (9.18), (9.20), (9.27), and (9.28) in nonlinear magneto-thermo- 
viscoelasticity without the requirement of a constitutive nature, except 
the existence of the free energy functional, the global form of energy 
balance leads to the following expression for the energy flux integral:

F(P) = Jf [n-,a- v -  n 5 + (ph + pk)n • \ c ]df

= |Эд (П-, о • v -  n • S)dS -  jg_f -^-(ph + pk)dV (9.38)
r dt

+ p f  v d V -  psfdV  -  pAdV,

The generalized J  -integral is related to the energy flux integral by

(9.39)
A

where A is the crack area growth rate.
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The rate of energy flow out of the body and into the crack front per 
unit crack advance provides the driving force for crack propagation in 
the presence of magneto-thermo-mechanical coupling and hysteresis 
effects, that is,

It can be seen that the above expression for the crack driving force 
has a universal form for conservative or dissipative systems at small or 
large deformations under isothermal or nonisothermal conditions.

The relation between the global and local generalized J -integrals is 
obtained from Eq. (9.38) as

including crack faces.
Consequently, the difference between the global and local generalized 

J  -integrals is caused by unsteady state, mechanical body force, 
temperature change, and viscous dissipation rate. Thus, the generalized 
J -integral loses path independence, even for steady-state crack growth, 
due to the occurrence of viscous bulk dissipation.

For the accuracy of numerical evaluation by means of finite element 
analysis, an equivalent path-domain integral expression is given by

(9.41)

where Vg and V, are the volumes bounded by the surfaces f g and Г, ,
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J 0  = J =  i j f [ n , o v  -  n • S + (ph + p k ) n V c ]dT 
A

-  f c l  Я Л  |  < Э  * MWV + Jim i  ̂ л  ,-f - (9.42)

Because of the addition of the domain integral terms reflecting the 
influence of unsteady state, mechanical body force, temperature change, 
and viscous dissipation rate, the J  -integral is invariant, that is, path- 
domain independent.

For a flat, straight, through-crack, if a field quantity is invariant in a 
reference frame traveling with the crack tip at a uniform speed 
Vc = VCE , , the field quantity depends on t only through the combination 
X = X - V cr. Under the condition that there exists a steady-state 
solution for crack propagation in a magneto-thermo-viscoelastic 
homogeneous medium or FGM, the above expression for the path- 
domain independent J -integral becomes

В ro->0 ivr~v?o ЭХ,
dV

cxpl

— lim L д p f - ^ - d V  + — lim L $ p s - ^ - d V  (9.43) 
В f0- > o r f 0 ЭХ, 5  г0- * Л Л ,  ЭХ,

J f  = - | г п Ы Г -Е , = J f -E ,, (9.44)
В

b = -[, а + (В H)I -  В ® Н] ■ uV + (ph + рк)I, (9.45)

where В is the thickness along the crack front.
The domain integral term involving the explicit derivative of the total 

energy density with respect to X, reflects the influence of material
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inhomogeneity on crack propagation. The generalized J  -integral can be 
taken as the projection of the generalized J K -integral vector along the 
crack advance direction. For the special case of steady-state crack 
propagation under isothermal conditions in the absence of mechanical 
body force, viscous bulk dissipation, and material property variation 
along the crack line, the generalized J  -integral becomes path 
independent. With (n x  H) x  В = (n • B)H -  (H • B )n , the expression for 
the generalized J  -integral can be rewritten as

J f  =  - 1  J. n •, CT • uV • Ё,</Г + -  J. [(n x  H) x  B] • uV • E ,rff

(9.46)

+ ^ \ f (ph + p k ) n % d r .

It is noted that the generalized J  -integral and the energy-momentum 
tensor b constructed with the use of the augmented Helmholtz free 
energy, including the contribution of the energy of the free magnetic 
field, are different from those obtained with the use of the magnetic 
enthalpy, including or excluding the contribution of the energy of the 
free magnetic field (Sabir and Maugin, 1996).

9.6 Generalized Plane Crack Problem and Revisit of Mode-Ill 
Fracture of a Magnetostrictive Solid in a Bias Magnetic Field

For a generalized plane crack problem in a magnetosensitive solid, we 
choose the contour as shown in Fig. 9.1. A reference frame is affixed to 
the crack tip advancing at instantaneous speed Vc. As discussed in 
previous chapters, this is a convenient choice because n{ — 0 along the 
segments parallel to the Xj-axis. The contour is shrunk onto the crack 
tip by first letting S2 —>0 and then —>0. There is no contribution to 
J 0 from the segments parallel to the X 2 -axis and the segments along the 
crack faces.
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<-r2j+ m<72>> H 2

7 7 7 7 7 7
A 
/

Fig. 9.1 A generalized plane crack problem in a magnetosensitive material. (From Chen, 
2009d, with permission from Elsevier.)

Consequently, 70 can be computed by evaluating only the first and 
second terms on the right-hand side of Eq. (9.46) along the segments 
parallel to the X, -axis, that is,

rS ~ 4. Э и .(Х |,0+,/)  -
Jo = -2 lim  f t  ,<r,,.(X„0+, 0 - ^ r 4 ------dX ,

<5,->0 1 ЭХ,

+ 2 и т й В 2 (^ 1 .0 +,/)Я1(Х |,0^,/)Э“ |( 5 ' ’°^ ’0 ^ ,
3->o 1 ЭХ,

- 2 l im jS  б,(-У„0+,ОЯ,(Х„0% г)Э“2(У ’° ^У, (9.47) 
£,->o 1 dX,

-  2 Ит f t  Дз(Х„0%ОЯ3(Х„04,ОЭн2У ’/ ^ Х,

+ 2 lim f t  й2(Х „0+,ОЯ3(Х „ 0 \О Э“з(5-1’0 
<$i —*o oX ,

Since fracture mechanics analysis incoфorating nonlinear magneto- 
thermo-viscoelastic material response is rather complex, numerical
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methods are necessary for solving this class of problems. There is also a 
pressing need for comprehensive sets of material data, as systematic 
experimental work under combined magnetic, thermal, and mechanical 
loadings is not yet available. To date, most applications to 
magnetosensitive materials still use conventional fracture mechanics 
methodology without time dependence.

For mode-III fracture of an isotropic magnetostrictive solid placed in 
a bias static magnetic field along the crack front, studied by Sabir and 
Maugin (1996), that is, H° = H °E3, the crack-tip generalized J -integral 
is calculated from Eq. (9.47) as

J 0 = ^ f i ( K s )2 + ^ b H ° K HK s , (9.48)

where H° is the intensity of the bias static magnetic field, //  is the shear 
modulus, b is a magnetostriction constant, K H is the magnetic field 
intensity factor, and Ks is the strain intensity factor.

Hence, the crack-tip generalized J  -integral is an odd function of the 
magnetic field intensity factor, indicating that the magnetic field either 
promotes or impedes crack propagation, depending on its direction. A 
fracture criterion with use of the generalized J -integral as the 
characterizing parameter overcomes the difficulties encountered by other 
treatments and helps understand the fracture behaviors of both 
conservative and dissipative material systems subjected to combined 
magnetic, thermal, and mechanical loadings.



Chapter 10

Electro-Thermo-V iscoelastic 
Deformation and Fracture

10.1 Introduction

With the growing demand of electroactive polymeric materials for 
various engineering needs, such as robotic arms and adaptive control 
systems (see for example, Bar-Cohen, 2002; Dorfman and Ogden, 2005- 
2006; Vu and Steinmann, 2007), considerable attention has been drawn 
to the time-dependent response of these smart material systems with 
novel electronic structures and molecular architecture. Like the 
magnetosensitive polymers and polymer composites studied in Chapter 
9, proper determination of the constitutive relations and fracture criteria 
is also essential for design analysis and durability assessment of 
electroactive polymer actuators and sensors under aggressive operation 
conditions. In addition to piezoelectric, pyroelectric, dielectric, and 
electrostrictive properties, the hysteresis effect should be considered in 
analyzing the deformation and fracture behavior of electronic 
electroactive polymers (e.g., ferroelectric polymers, electroviscoelastic 
elastomers) and ionic electroactive polymers (e.g., conductive polymers, 
ionic polymer-metal composites, responsive gels), among others. Crack 
initiation and growth has a pronounced effect on how such 
electromechanical devices behave over time. For crack propagation in 
the presence of electro-thermo-mechanical coupling and hysteresis 
effects, we seek a physically meaningful quantity whose critical value 
can be used in a fracture criterion. Due to its great importance for 
practical applications, the subject of nonlinear electro-thermo- 
viscoelastic deformation and fracture is addressed separately here.
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This chapter commences with the local balance equations and 
associated boundary and initial conditions for electrosensitive materials 
subjected to combined electric, thermal, and mechanical loadings. It is 
then followed by the introduction of the free energy and entropy 
production inequality for memory-dependent electrosensitive materials in 
consideration of the augmented Helmholtz free energy, including the 
contribution of the energy of the free electric field, as a functional of the 
histories of deformation, temperature, and electric displacement in the 
reference configuration. This gives rise to nonlinear electro-thermo­
viscoelastic constitutive relations, including, as a special case, finite 
electro-thermo-viscoelasticity for materials with fading memory on an 
intrinsic time scale. Next, the generalized J -integral is formulated as a 
physically sound criterion for nonlinear electro-thermo-viscoelastic 
fracture. Then, the analogy between the nonlinear magneto- and electro- 
thermo-viscoelastic constitutive and fracture theories is summarized. 
Finally, reduction to Doifmann-Ogden nonlinear magneto- and electro­
elasticity is discussed.

10.2 Local Balance Equations for Electric, Thermal, and 
Mechanical Field Quantities

The local balance equations for nonlinear electro-thermo-viscoelastic 
media under the quasi-electrostatic approximation are summarized 
below:

V D  = (?/> ( 10.1)

V x E = 0 , ( 10.2)

1 I Q
J

II < (10.3)

-7- = -pV ■ v , (10.4)
d t
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(10.5)

( 10.6)

where qf  is the free body charge density, j e is the total electric current, 
the total stress tensor ,а  = а+га is a sum of the Cauchy stress 

tensor <r and the electric stress tensor еъ = P®  E + £0E®  E -euf l ,

S = (v x D) x E is the Poynting vector in the co-moving frame.
It can be seen that the electric displacement is not divergence-free in 

the presence of free body electric charges, in contrast to the magnetic 
induction. The mathematical boundary-initial value problems for 
nonlinear electro-thermo-viscoelastic media subjected to combined 
electric, thermal, and mechanical loadings can be formulated with 
Gauss’s law (10.1), Faraday’s law (10.2), the electric charge balance 
equation (10.3), the mass balance equation (10.4), the linear momentum 
balance equation (10.5), the angular momentum balance equation (10.6), 
and the energy balance equation (10.7), together with constitutive 
relations as well as appropriate boundary and initial conditions.

The boundary conditions are given by

e uf  = £0E • E/2 is the energy density of the free electric field, and

n-[[D]]=®> ( f> 0 ) ,  

nx[[E]] = 0 ( f> 0 ) ,  

n [[jf - 9/ v]] = 0 ( /> 0 ) ,  

n - ,a = te (x,r) on Sa ( / ^ 0 ) ,

(10.10)

(10.11)

(10.8)

(10.9)

u = u e on Su ( t > 0), (10.12)
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n -j,= < ? s (x,O on Sq ( f > 0 ) ,  (10.13)

T =TB(x,t) on ST (10.14)

where is the free surface charge density, Stlu S a = S ,  and 
ST и  Sq = S . Other mixed boundary conditions may also be used.

The initial conditions are taken as

u = u 0 ( f< 0 ) ,  (10.15) 

u = v 0 (f = 0 ), (10.16) 

T = T0 ( t<  0), (10.17) 

D = D0 (?< 0 ). (10.18)

10.3 Free Energy and Entropy Production Inequality for Memory- 
Dependent Electrosensitive Materials

By introducing the augmented Helmholtz free energy, including the 
contribution of the energy of the free electric field, that is,

h = e - T s  + - ^ ~ ,  (10.19)
P

the local energy balance equation (10.7) becomes

p M k  + h + T s ) = - V i  + V -( ,o -v -S )  + p f -v .  (10.20) 
at

In the reference configuration, VR, the local energy balance equation 
can be rewritten as

T  = Vr ~  + —  J* ■ v * - + — , £ : €  dt p 0 T p 0 q R T 2 p j '0 ™ yo (10.21)
1 л д 1 л 1 1 dh

+ — E D + — E 7 —~ - s T . 
PqT р^Т T T dt
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In the same reference configuration, VR, the entropy production 
inequality is expressed as

= V * .J ,* 0 .  (10.22)
dt dt

For memory-dependent electrosensitive materials, the augmented 
Helmholtz free energy, including the contribution of the energy of the 
free electric field, is assumed to be a functional of the histories of 
deformation, temperature, temperature gradient, and electric 
displacement in the reference configuration, VR, with respect to which 
the deformation gradient F is measured, that is,

h =h{C(t -  r),T(t -  r ) y RT(t -  r),D(r -  r) ;X ). (10.23)

10.4 Coupled Electro-Thermo-Viscoelastic Constitutive Relations

Since the entropy production inequality (10.22) is always valid, the state 
equations should fulfill the following conditions:

dh = 0 ,  (10.24)
dTK

,Zkl=2Po^ ! - '  (10.25)
ЭСKL

s = ~~~  > (10.26)
Э Г ’

Э/7
dDKE K = P o ^ h ,  ( ‘O-27)
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(10.29)

where A is viscous dissipation rate, which is time-dependent.
From Eq. (10.24), the augmented Helmholtz free energy does not 

depend on the temperature gradient. Energy can be converted from one 
form to another due to mechanical, thermal, and electric coupling, 
accompanied by intrinsic dissipation associated with mechanical, 
thermal, and electric hysteresis. Since inequality (10.30) must always be 
satisfied, the kinetic laws for specific irreversible processes may be 
determined accordingly. Next, finite electro-thermo-viscoelasticity is 
illustrated, as was finite magneto-thermo-viscoelasticity in Chapter 9.

The viscous dissipation rate satisfies the inequality

In the reference configuration, VR, it is proposed that the 
thermodynamic fluxes for heat conduction and electricity conduction 
depend linearly on the corresponding thermodynamic forces with the 
Onsager reciprocity relations, that is,

A > 0 . (10.31)

J , = £ » • V*-  + - t qe Ё,
9  к  rp  rp  7

(10.32)

(10.33)

where the coefficient matrix

V я V е J  _ \ t qq t qe~ 
i f4 v e ~ t eq l ee '

(10.34)

is positive definite.
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Substituting Eqs. (10.26), (10.32), and (10.33) into Eq. (10.21) yields 
the following heat transfer equation based on the augmented Helmholtz 
free energy functional:

= — — Г]
P j  I

•I t qq-VR- + - t 4e- t
т T  (10.35)

p0T RT T T

Substituting Eq. (10.33) into Eq. (10.3) gives the coupled electric 
charge balance equation:

——̂- + - ( L ' 4 • V„ —+ —L" Ё) = 0, (10.36)
dt R RT T

where Qf = jq f .
Using the Lagrange strain measure E = ( C - I ) /2 ,  the temperature 

deviation 0 = T - T o, and the referential electric displacement deviation 
d = D - D 0, expansion of the augmented Helmholtz free energy 
functional for materials with fading memory on an intrinsic time scale up 
to the second order yields

p 0h = Р Л + л  M X . ̂  -  УО ЭЕ"Э(*.’¥  W

- J l l l / ? i , ( X , y - y > - y ) 3E^ r ') 3 y W r f r



Z.CH&'Y-v\¥-v')^ ¥ ) * * * 'Y )d¥dY 
2T0 о у/ ду/

t\f/ eif/ л,  v  * " 4 dd»(X, у/ ) Э0(Х, у/ )
- \ S y t  (X > V - V  , r - W  ) l± 1Z L '.z >-d i / fd y

ду/ ду/

1 w w -d  {ЛГ ' ".dd,(X,u/') dd,(X,y/  ) , • , ••+ r L L i « ( x , r - ^ # - r )— ■ J-~ v ^ dydY,2 ду/ ду/
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(10.37)

where h0  is the value of the augmented Helmholtz free energy in a 
reference state (i.e., Е  = 0 ,Г  = 7’0,D  = D0), y/(t) = ^a(t )d t  is the 
intrinsic time, a ( t ) is a shift function due to the effects of temperature, 
aging,etc., GUKL( X , y / - y \ y / - y / ' )  = GKUJ( X , y / - y / \ y / - y / ' \  
CH( X , i / / - y / \ y / - i f /  ) = CH(X , i / / - i j / \ i / / - i / / ) ,  and

From Eqs. (10.25)—(10.27), the constitutive equations in finite 
electro-thermo-viscoelasticity are obtained using the augmented 
Helmholtz free energy functional expansion (10.37) as

Z u  =Lau + J l G fm (X ,0 ,r - jy " )8E^ (X’!y W
ду/

- Л А Д Х . 0 ,  W - Y ) ^ ~ ^ - d y  (10.38)
d l f /

-  Z J iu  (x a  v - v  ) Э̂ (Х: ^ ] d у ,
ду/

p0s = M 0 + £_  J3U (X , у/ -  yi ,0) d у
ду/

+ y  J1  Ся ( Х . у - у  ,0)9g(X’f ) d y  (10.39)
To by/

+ J l y f  ( x . r - r .  o) -  ^ x -: ^ ) d y / ,
д у/
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E, = N ? ° - f  f U X , ¥ - ¥ \ ^ ^ ) d ¥
J-*° д у /

^  (Ю.40)

rr „ Эd . ( X , ¥  ) , ..
+J Z „ ( X , 0 , { y - ^ )  .Y l d y r ,

J-°° dlf/

where GIJKL(X,0 ,¥ - ¥ "), CH( X , y r - y \ 0),
/з„(х,о ,у /-¥ ), р и ( х , ¥ - ¥ \ о), / / „ ( x ,  a ^ - r ) ,
fu K{X,y /-y /\0), yf(X ,{ /-{ /',0),and t f ( X ,0 , r - r " )  are appropriate 
memory functions.

The first terms, L,y, Л/0, and N /° , on the right-hand sides of 
Eqs. (10.38)—(10.40) stand for the values of , I /y , /?0s , and £ , in the 
reference state, the second terms for mechanical contribution, the third 
terms for thermal contribution, and the fourth terms for electric 
contribution. The dependence of the long-term property functions on 
aging time, temperature, etc. may be determined from short-term 
experiments with an accelerated test methodology. It has been reported 
that piezoelectric and dielectric properties follow the stretched 
exponential law (e.g., Zhang et al., 1996, 1997; Koh et al., 2006). 
The number of material properties required for coupled multifield 
analysis depends on the material type. For an electrosensitive material 
with transverse isotropy, there are 18 independent properties: dielectric 
permittivity (2), heat capacity (I), compliance (5), piezoelectric 
coefficients (3), pyroelectric coefficients (1), thermal expansion 
coefficients (2), thermal conductivity (2), and electrical conductivity (2).

From Eq. (10.28), the viscous dissipation rate in finite electro- 
thermo-viscoelasticity is obtained with the use of the augmented 
Helmholtz free energy functional expansion (10.37) as
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~ dy/dLu (X,y/-y/ ')  Э Е „ (Х У ) .
0 J-“ dt Эу/ ду/

+ dy/ d M (X ,y / -y / )  Э<?(Х у /) •
J-“ dt ду/ ду/

_  tv d у  W [  (X, yr-  y_ ) Э6, (X, i//_) .
J-“ dt ду/ ду/

_ V  d4/dGUKL(X,y-ii/\y/-y/)dEu(X,\r)ttKLOi.,y/)dwd
dt ду/ dy/' dy/"

+ tv rr d y /d p u (X ,y / -y / \ y / - y / ' )  дЕи (Х,у/')дв(Х,у/') d ■ 
J- " L “ dt ду/ ду/ ду/

+ tv tv d y / d f dKU{X,y / -y / \y / -y / ' )  ЭЕ u (X,y/) ddK( X , y / ) d ■ • 
dt dy/ dy/ ду/

, 1 tv tv dV_ ЭС» (X ,W_-  V ,Г ~ Г  ) d<9(X,y/_) дврС,у/ ) d d - 
2r 0 L “ J-“ А  Э ^' Э</”

+ tv tv dy/ d / [ {X ,y / -y / \ y / - i / / )  dd,(X,yr) Э6»(ХУ') ^  ^  ■ 
dt ду/ ду/ ду /

_ I j ^  d y / d z ‘l' j(X ,y/ -y / \y / -y /")ddl(X,y/ ')ddl (X,y/") i ^ dt,-

The coupled heat transfer equation is obtained from Eq. (10.35) as

2 dt
(10.41)

j \ . \ ¥J , j ( X , y / - y / <

+ ^ - C . c « ( x . r - r

+ П 7 / (X .^ -^ ',0 ) (10.42)
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where the integral involving the strain history gives rise to a coupling 
between thermal and mechanical effects, and the integral involving the 
electric displacement history gives rise to a coupling between thermal 
and electric effects.

The coupled electric charge balance equation is obtained from Eq.
(10.36) as

dQ r 1 - 1
dt T02 * T0

+ v * • • V Re + ± U e E) = 0 . (10.43)

10.5 Generalized J -Integral in Nonlinear Electro-Thermo- 
Viscoelastic Fracture

Consider a three-dimensional body В that contains an extending crack 
with the surface Г translating with the crack front moving at a speed Vc 
(see Fig. 6.1). Using Eqs. (10.20), (10.22), (10.29), and (10.30) in 
nonlinear electro-thermo-viscoelasticity, without the requirement of a 
constitutive nature except the existence of the free energy functional, the 
global form of energy balance leads to the following expression for the 
energy flux integral:

F(T) = [n-, a  ■ v -  n • S + (ph + pk)n • Vc ]dT
-л

* 5/
P  £

= }Э8- (n-, о  v -  n • S)dS -  I s ^ — iph + pk)dV (10.44)

+ h-vt &  vdV-\-B_it psTdV-\._. f j - E  J ed V - ! s_ffpAdV.

The generalized J -integral is related to the energy flux integral by

7 , = ^ - ,  (10.45)

where A is the crack area growth rate.
The rate of energy flow out of the body and into the crack front per 

unit crack advance provides the driving force for crack propagation in



232 Fracture Mechanics o f Electromagnetic Materials

the presence of electro-thermo-mechanical coupling and hysteresis 
effects, that is,

It appears that expression (10.46) for the crack driving force in 
electrosensitive materials has the same universal form as expression
(9.40) for the crack driving force in magnetosensitive materials, both of 
which can be taken as a generalization of the conventional 7-integral 
method, the dynamic contour integral method, and the crack-tip model 
for viscoelastic crack initiation and growth discussed in Chapter 1.

The relationship between the global and local generalized J -integrals 
is obtained from Eq. (10.44) as

( l 0  4 7 )

where Vg and V, are the volumes bounded by the surfaces and Г /,
including the crack faces.

Thus, the difference between the global and local generalized J - 
integrals is caused by unsteady state, mechanical body force, temperature 
change, electricity conduction, and viscous dissipation rate. The Joule 
heating in conductive or semiconductive polymeric materials contributes 
to the loss of path independence of the generalized J -integral.

For the accuracy of numerical evaluation by means of finite element 
analysis, an equivalent invariant integral expression is given by
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Jo = J = \ I r  [n-, a - \ - n - S + ( p h +  pk)n ■ Vc w

~ г” д1‘- л  ! < ' *  * p l  f t  i  k

(10.48)

For a flat, straight, through-crack, if a field quantity is invariant in a 
reference^ frame traveling with the crack tip at a uniform speed 
Yс =VCEt , the field quantity depends on t only through the combination 
X = X -  \ ct . Under the condition that there exists a steady-state solution 
for crack propagation in an electro-thermo-viscoelastic homogeneous 
medium or FGM, the above expression for the path-domain independent 
J -integral becomes

dV
expl

/  = Jf .—-  lim k  ,
г В dXt

( l 0 ' 4 9 )

J f  = —j^n b d f  E, = J p -E ,, (10.50)
В

b = -[, a  + (D • E)I -  D ® E] • uV + (ph + p k ) l . (10.51)

The domain integral term involving the explicit derivative of the total 
energy density with respect to X l reflects the influence of material 
inhomogeneity on crack propagation. The generalized J  -integral can be 
taken as the projection of the generalized J K -integral vector along the 
crack advance direction. It is noted the generalized J -integral is path 
dependent due to the occurrence of viscous dissipation in the bulk 
material, even for steady-state crack propagation under isothermal
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conditions in the absence of material property variation, mechanical body 
force, and electricity conduction. The J -integral becomes invariant 
because of the addition of the domain integral terms to account for the 
effects of property variation, mechanical body force, temperature change, 
electricity conduction, and viscous dissipation rate in the bulk material.

10.6 Analogy between Nonlinear Magneto- and Electro-Thermo- 
Viscoelastic Constitutive and Fracture Theories

The nonequilibrium thermodynamic approach enables derivation of 
nonlinear magneto- and electro-thermo-viscoelastic constitutive and 
fracture theories in a unified way. The analogy is summarized in Table
10.1. The referential electric displacement can be taken as the 
thermodynamic dual of the referential electric field under the quasi- 
electrostatic approximation, whereas the referential magnetic induction 
can be taken as the thermodynamic dual of the referential magnetic field 
under the quasi-magnetostatic approximation. The thermodynamic 
driving force for crack propagation in electro- and magneto-sensitive 
materials can be expressed as the crack-front generalized J -integral, 
which has a universal form for conservative or dissipative systems at 
small or large deformations under isothermal or nonisothennal 
conditions. A fracture criterion based on the generalized J -integral thus 
formulated, without the requirement of a constitutive nature except the 
existence of the free energy functional, is a generalization of the 
conventional 7-integral method, the dynamic contour integral method, 
the configuration force (material force) method, and the crack-tip model 
for viscoelastic crack initiation and growth discussed in Chapter 1.

Both magneto-thermo-viscoelastic fracture and electro-thermo- 
viscoelastic fracture are time-dependent, involving viscous bulk 
dissipation which contributes to the difference between the global and 
local generalized J -integrals. The fully dynamic framework for 
magneto-electro-thermo-elastic fracture presented in Chapter 6 may also 
be generalized with the inclusion of viscous dissipation in the bulk 
material.
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Table 10.1 Analogy between nonlinear magneto- and electro-thermo-viscoelastic 
constitutive and fracture theories

Nonlinear magneto-thermo- 
viscoelastic constitutive and 

fracture theory

Nonlinear electro-thermo- 
viscoelastic constitutive 

and fracture theory

Augmented 
Helmholtz 
free energy

h -  e - T s + mu f  I p  

= h (C( t  -  t ) ,  T ( t -  r), B(t  -  г); X )

h =  e - T s + ei i f  I p  

= Л (C (/ -  t), T ( t -  r), D(r -  т); X )

Constitutive
equations

у o n  d/l
' “  Л э с л  

dh

s дт

dh

H * = P ° W K

A = - f
dt

у 9/7 — ~Po

.  Э/7 
5 dT

г  л Э/7
' ■ " л а й ,

A = " fЭ/

Crack
driving
force

Jn = lim  { - l | p [ n f o v - n - S  
Го-*0 A 0

+ (ph + p k )n • Vc ]̂ ЛГ}

J0 = J im  {4 -Г» [ n , о  - v - n - 5
Г0->о Л 0 

+ (ph + p k)  n • Vc ]</f}

Poynting
vector

S =  (vxB )xH S = (v x D )x E

Energy-
momentum
tensor

b = -, a  uV + В ® H uV 

-  (B  • H)uV + (ph + p k )I

b =—, a  uV + D ® E uV 

-  (D - E)uV + (p/i + >5̂ )1
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10.7 Reduction to Dorfmann-Ogden Nonlinear Magneto- and 
Electro-elasticity

The coupled theories of nonlinear magneto- and electro-thermo­
viscoelasticity formulated based on nonequilibrium thermodynamics can 
be reduced to the refined theories of nonlinear magneto- and electro- 
elastic deformations developed by Dorfmann and Ogden (2004, 2006) as 
the augmented Helmholtz free energy is taken as a function of basic 
variables such as deformation, magnetic induction, or electric 
displacement in the reference configuration. Within this theoretical 
framework, the boundary-initial value problems can be formulated in a 
simple and elegant way for proper evaluation of the performance of 
deformable electro- and magneto-sensitive materials. Alternative 
formulations which consider the augmented Gibbs free energy to be a 
function or functional of stress, magnetic field, or electric field in the 
reference configuration can also be established (Dorfmann and Ogden, 
2005-2006; Chen, 2010). New examples of nonlinear constitutive 
equations for practical applications may be implemented as user 
subroutines in commercial finite element analysis software packages 
such as ABAQUS or ANSYS. Nevertheless, there is still a shortage of 
systematic experimental work to obtain comprehensive sets of much- 
needed data. It is hoped that the general formulation presented here may 
provide fundamental guidelines for future experimental and 
computational work.



Chapter 11

Nonlinear Field Theory of Fracture 
Mechanics for Paramagnetic and 

Ferromagnetic Materials

11.1 Introduction

From the viewpoint of global energy balance, Griffith (1921) proposed a 
fracture theory of brittle materials based on the theorem of minimum 
potential energy by introducing a specific surface energy on the crack 
faces, marking an epoch of fracture mechanics as described in Chapter 1. 
The energy-based approach is fundamental to thermodynamics and 
continuum mechanics, and is not unique to crack problems. 
Thermodynamics/thermomechanics has been widely used to study 
thermoelasticity, electrodynamics, viscoelasticity, inelasticity, plasticity, 
damage, and fracture (e.g., Schapery, 1964, 1969, 1997, 1999, 2000; 
Coleman and Gurtin, 1967; Crochet and Naghdi, 1969; Rice, 1971, 1978; 
Cost, 1973; Eringen, 1980; Christensen, 1982; Truesdell, 1984; Maugin, 
1988, 1992; Gurney and Hunt, 1967; Gurney, 1994; Lemaitre, 1996; 
Fung and Tong, 2001; Makowski and Stumpf, 2001; Truesdell and Noll, 
2004; Dorfmann and Ogden, 2003-2006; Chen, 2007, 2009a-e, 2010; 
Horstemeyer and Bammann, 2010). Magneto- and electro-thermo- 
mechanical coupling and dissipative effects accompanying crack 
propagation bring about new challenges in extending conventional 
fracture mechanics approaches.

In this chapter, a nonlinear field theory of fracture mechanics, which 
includes magneto-thermo-mechanical coupling and dissipative effects, is 
formulated from the global energy balance equation and the non-negative 
global dissipation requirement, following the work of Chen (2009e) as a
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generalization of the Griffith global energy balance approach. In Section
11.2, the global energy balance equation and the non-negative global 
dissipation requirement are given for crack propagation under combined 
magnetic, thermal, and mechanical loadings in the quasi-magnetostatic 
approximation. In Section 11.3, the Hamiltonian density and the 
thermodynamic requirement on constitutive laws are provided, based on 
two types of nonequilibrium thermodynamic approaches: generalized 
functional thermodynamics and generalized state-variable 
thermodynamics. In Section 11.4, the thermodynamically consistent 
time-dependent fracture criterion is expressed in terms of the generalized 
energy release rate as the thermodynamic driving force conjugate to the 
crack variable. In Section 11.5, the generalized energy release rate 
method is proposed for crack propagation in the presence of time- 
dependent or loading path/history-dependent dissipation in the bulk 
material. In Section 11.6, the generalized J -integral method is proposed, 
with the crack-front generalized J -integral equivalent to the generalized 
energy release rate and the global generalized J -integral including 
additional contributions due to unsteady, thermal, and dissipative effects. 
In Section 11.7, the extended essential work of fracture method is 
proposed, with the specific essential work of fracture equivalent to the 
crack resistance and the nonessential work of fracture associated with 
kinetic energy change, temperature change, and time or loading 
path/history-dependent bulk dissipation.

11.2 Global Energy Balance Equation and Non-Negative Global 
Dissipation Requirement

Consider a cracked body Vt subjected to combined magnetic, thermal, 
and mechanical loadings under the quasi-magnetostatic approximation. 
Following the conservation law of energy, the global energy balance 
equation over the cracked body V, is given by



where El is the internal energy, Ek is the kinetic energy, W is the 
power applied by external forces, and Q is the heat exchange rate.

The internal energy El and the kinetic energy Ek over the cracked 
body Vt are defined as

E ^ l p e d V ,  ( 11.2)

Ek =\v pkdV , (11.3)

where e is the internal energy per unit mass and k = \ - \ / 2 is the 
kinetic energy per unit mass.

The power applied by external forces is given by

W  =  Jav, *(.) • V d S  + Jv,̂ ' y d v  + Jv,m w d v  ’ (! L4>
where m vv=WIf v -  M • В is the magnetic power density.

Using the Poynting vector S  = ( v x B ) x H  in the co-moving frame, 
Eq. (11.4) leads to

w  =  \BVin ■ (CT+,„0) • yd s  + J„ p t  ■ vdV -  f3v n S d S - j t \v muf d V . ( U .5)

The heat flux is introduced to describe the heat exchange rate 
through the boundary dV, as

Q = - b v * i , d S - <1 L 6 >

Hence, the global energy balance equation over the cracked body Vt 
becomes

^ \ v p(k + e)dV = - [ ,V  sqdV+\ (V c + p i + J )  ydV
a t  1 1 ( i t / )

+jv o : \ V d V - \ Vi MBrfV.

By introducing the Helmholtz free energy per unit mass,
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h = e - T s , (Ц.8)

Eq. (11.7) becomes 

ds
PT-j-dV = V • j qd v  + \Vi (v  ■ a  + pf+m f ) • \dV

(11.9)
+ \v ( a : vV -  M • В -  psT)dV f p(k + h)dV.

dt 1

The entropy production is defined as

f . f . I v , , .

The non-negative global dissipation requirement is given by

1 /V

^  = l p T - ^ - d V > 0 . (11.11)
dt

Using Eqs. (11.9) and (11.10), the non-negative global dissipation 
requirement (11.11) becomes

d s
Jv,PT ̂ d v = - L n <i ,  - r h ) d s - \ K-h VTdv  

+ jv py- v d V j - '  ,£ : CdV + \K j  'H 6 dV (11.12)
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- I p s f d V - ^ p
p  )

dV>  0,

where , £  — jF 1, aF 7 is the second Piola-Kirchhoff total stress tensor, 
/a  = (a+mcy) is symmetric, and C = FrF is the right Cauchy-Green 
deformation tensor, H  = H F , В = jF~l • В



11.3 Hamiltonian Density and Thermodynamically Admissible 
Conditions

11.3.1 Generalized functional thermodynamics

In generalized functional thermodynamics, the augmented Helmholtz 
free energy for memory-dependent magnetosensitive materials, 
h=h+muf / p , is assumed to be a functional of the histories of 
deformation, temperature, temperature gradient, and referential magnetic 
induction with the crack parameter, A, as a state variable:

h = h(C(t - T \ T ( t -  т)УкТ(г - r ) M t  - r); A,X). (11.13)

The corresponding Hamiltonian density is given by

5Г(у,С(г-г),Г(/-г),У/гГ(г-т),В(г-г);Л,Х) =

pk (v; Л, X) + ph(C (t- r), T(t - r), VRT(t - т), B(/--  г); Л, X).

where pk(\\A,X)  is the kinetic energy density.
In order that the non-negative global dissipation requirement (11.12) 

is always valid, it is necessary and sufficient that state equations fulfill 
the following thermodynamically admissible conditions:

9/1 =0, (11.15)
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асKL

HK =Po-^->  (Н -17)двк

Эй
э г ’

(11.18)
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j,=4,. (11-19)

Ф = [, PT ^ dV = I, 73, • + JV( pA/V + GA > 0, (11.20)

(11.19)

A

where the time-dependent dissipation rate, Л , and the thermodynamic 
force, G , conjugate to the crack variable, A, are given by

(11.21)

( 11.22)

It can be seen that the total dissipation originates from heat 
conduction, time-dependent bulk dissipation and crack propagation. 
Since the non-negative global dissipation requirement (11.20) should 
always be satisfied, the kinetic laws for specific irreversible processes 
may be determined accordingly, that is,

It is proposed that the thermodynamic flux for heat conduction 
depends linearly on the corresponding thermodynamic force, that is,

<bT =\v Tjq V j d V > 0 ,

<S>A =\v pAdV>0,

Ф д =G A > 0.

(11.23)

(11.24)

(11.25)

(11.26)

where Lw is positive definite.
Substituting Eqs. (11.10, 11.18, 11.19, 11.26) into Eq. (11.20) yields 

the coupled heat transfer equation for the cracked body as
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The time-dependent dissipation rate in the bulk material satisfies the 
following inequality:

11.3.2 Generalized state-variable thermodynamics

In generalized state-variable thermodynamics, the augmented Helmholtz 
free energy for magnetosensitive materials with dissipative 
reconfigurations, h = h+muf  / p , is taken to be a function of current 
deformation, temperature, temperature gradient, referential magnetic 
induction, and a set of state variables (scalar, vectorial, or tensorial) at 
the micro/mesoscale, a {m) (m = , and at the macroscale,

A > 0 . (11.28)

A (n) (я = 1 ,2 ,-) :

h = И(С,ТУкТ,В;ам ,Ам , Х ) . (11.29)

The corresponding Hamiltonian density is given by

(11.30)

In order that the non-negative global dissipation requirement (11.12) 
is always valid, it is necessary and sufficient that the state equations 
fulfill the following thermodynamically admissible conditions:
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л Э h
Н к=РоТь~>  (П-33)

dBK

Э/2
* - » •  ( " ' 34> 

j . -4 , .  (11.35)

= Jv 7j, v l r f v  + l } ,  y-,| ("')a (m)rfV + Z C <”,A<") >0,
I  m 1 it

(11.36)

where the thermodynamic force, g (w), for configuration changes at the 
micro/mesoscale and the thermodynamic force, G(,,), for configuration 
changes at the macroscale, are given by

(11-37)

G<n)= - ^ r l , , a w .  (11.38)

The total dissipation originates from heat conduction and intrinsic 
dissipative reconfigurations at different scales. For example, the 
ferromagnetic domain-wall motion corresponds to the change of the 
associated state variable at the microscale, resulting in the intrinsic bulk 
dissipation rate. Damage evolution corresponds to the change of the 
associated state variable at the mesoscale, resulting in the generalized 
energy density release rate. Crack propagation corresponds to the change 
of the associated state variable at the macroscale, resulting in the 
generalized energy release rate. Since the non-negative global dissipation 
requirement (11.36) should always be satisfied, the kinetic laws for 
specific irreversible processes may be determined accordingly, that is,
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4>a = ZIVir ' g im)d (m)d V > 0 , 
111

ФА = I G (/,)A(W)>0.

(11.39)

(11.40)

(11.41)

It is proposed that the thermodynamic flux for heat conduction 
depends linearly on the corresponding thermodynamic force, that is,

j , = L - v A (11.42)

where Lqq is positive definite.
Substituting Eqs. (11.10, 11.34, 11.35, 11.42) into (11.36) yields the 

coupled heat transfer equation for the cracked body:

'  э /Г dv =  -  L v  •
( П. V—

Г arJ Jv, T dV
(11.43)

+ Ц ,  r ' g {m)a {m)dV + Z G (n)A(n).

By analogy with the laws for plasticity and damage (Lemaitre, 1996), 
the evolution laws for dissipative reconfigurations in the bulk material 
may be derived from a dissipation potential, ® , with the normality rule
as

cc{m) = A (11.44)

where the multiplier A > 0 can be determined by the loading condition 
for rate-independent or rate-dependent cases, respectively.
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11.4 Thermodynamically Consistent Time-Dependent Fracture 
Criterion

In terms of the generalized energy release rate,G , defined in Eq. (11.22) 
or (11.38) as the thermodynamic driving force conjugate to the crack 
variable, A, crack propagation under combined magnetic, thermal, and 
mechanical loadings is determined by

where R is the crack resistance.
The time dependence of the thermodynamically consistent fracture 

criterion is reflected by the dependence of the explicitly defined free 
energy functional on the histories of its arguments for magnetosensitive 
materials with memory, whereas the loading path/history dependence of 
the thermodynamically consistent fracture criterion is reflected by the 
dependence of the explicitly defined free energy function on the 
associated state variables for magnetosensitive materials with dissipative 
reconfigurations.

For fatigue crack growth under cyclic loading, the crack growth rate 
may be governed by

where da/dN  is the crack growth per cycle, AG = (Gmax -  Gmin) , and

11.5 Generalized Energy Release Rate versus Bulk Dissipation Rate

From the non-negative global dissipation requirement (11.20) or (11.36), 
it can be seen that the global dissipation has three sources: heat 
conduction, time or loading path/history-dependent material response, 
and crack propagation. Heat conduction leads to the thermal dissipation 
term. Structural relaxation or reconfiguration in the bulk material 
contributes to the time or loading path/history-dependent bulk dissipation

G = R , (11.45)

(11.46)
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term. The energy released during crack growth results in the surface 
dissipation term.

Substituting Eqs. (11.2, 11.6, 11.8, 11.10, 11.19, 11.20) or Eqs. (11.2, 
11.6, 11.8, 11.10, 11.35, 11.36) into the global energy balance equation 
(11.1) yields

Plldv + ̂ r\v pkdV + \v psidV + L pAdV + GA, (11.47) 
at ' dt ' ' '

W = j l v ,  pM V  + -flv, PkdV + \Vt pstdV + Z \Vi j~'gim)a (m)dV + GA.
**■1 Cll in

(11.48)

For stable crack growth, substituting Eq. (11.45) into Eqs. (11.47) or
(11.48) yields

W = —  + —  +[ nsfdV + lp A d V  + RA, (11.49) 
dt dt ' v>

w =  —  + —  + I  p s td v  + Y.L r ' g {m)a im)dV + RA, (11.50) 
dt dt

A

where H  = jv phdV is the Helmholtz free energy over the cracked body.
With inclusion of magneto-thermo-mechanical coupling and 

dissipative effects, the generalized energy release rate method is 
applicable to crack propagation in a broad class of magnetosensitive 
materials with time dependence or loading path/history dependence. 
Equation (11.45) with the definition of the generalized energy release 
rate given by Eq. (11.22) or (11.38) can be taken as a generalization of 
the strain energy release rate criterion. Equation (11.46) in terms of the 
generalized energy release rate difference during a loading cycle can be 
easily adopted to describe the fatigue crack growth rate in the presence of 
remanent magnetization and remanent deformation under cyclic 
magnetic, thermal, and mechanical loadings. Equation (11.49) or (11.50) 
is a generalization of the rate-dependent criterion for viscoelastic or 
viscoplastic crack growth.
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11.6 Local Generalized J -Integral versus Global Generalized 
J -Integral

— ~ 
Consider a three-dimensional cracked body bounded by a surface Г  
in a reference frame ( X = X -  \ ct ) traveling with the crack front at 
speed Vc . With the use of Eqs. (11.2, 11.5, 11.8, 11.10, 11.19, 11.20), 
the global energy balance equation (11.1) for crack propagation in 
magnetosensitive materials with memory can be rewritten as

^(Г) = \ f [ n t с  • v -  n • S + (ph + p k )  n • Vc ]df

= \vf j ( P h  + pk)dV - p t  • ydV + J9fpsTdV (11.51) 

+ \^pAdV+GA.

By contrast, using Eqs. (11.2, 11.5, 11.8, 11.10, 11.35, 11.36), the 
global energy balance equation (11.1) for crack propagation in 
magnetosensitive materials with dissipative reconfigurations is rewritten 
as

F ( f ) = Jj=.[n-, a  • v -  n ■ 5 + (ph + pk)n ■ Vc ] d T

= U -s-tfft + pk)dV -  ^  p i  ■ vdV + L psfdV  (11.52) 
r ot r p

+ I . k r ' g (m)a lm)dV +GA.
m ^

The generalized J -integral is defined as

F (  f )  1 f ^
J f  = - ± - L = ̂ \ f [ n - , o v - n S  + ( p l t + p k ) n \ c ]dr. (11.53) 

A A

From expression (11.53), the crack-front generalized J-integral is 
the energy flux towards the crack front per unit crack advance, which is 
equivalent to the generalized energy release rate, G , serving as the crack 
driving force, that is,
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..  1>(П1Л = Ы - ^ |  = <3. (U.54)
Г->0

The relationship between the global and local generalized J - 
integrals is obtained as

J s = 7< +\ k  -vP i - ( p h + p k ) d V - l k  a p i  vdV
* (11 55)

7« = 7i + i t  -v- i {P~h + P k ) d V - - l  ,  pf  ■ vdVA r, bdt A r, f, ( n  56)

where V- and are the volumes bounded by the closed surfaces Г\
— 1 j * / * 

and Г), including the crack faces.
Thus, the difference between the global generalized J -integral and 

the local generalized J -integral is caused by unsteady state, mechanical 
body force, temperature change, and time or loading path/history- 
dependent bulk dissipation rate. With the addition of the domain integral 
terms to the generalized J -integral, an invariant integral representation 
of the generalized energy release rate serving as the crack driving force is 
obtained as

J s  J f  -4 -J f  h p h + p k ) d V + ± k  p f  ■ VdV 
A r dt A r

- l ^ p s T d V - l ^ p A d V  (11.57)



J = 7 P- j k j W  + P k ) d V + j ^ p f  ■ vdV

- - - I  p s t d V к  F ' g ^ a ^ d V  (11.58)
A Am r

= G.

By introducing the generalized energy-momentum tensor

b uV + B®H  uV-(B H)uV + (ph + pk)I, (11.59)

the generalized J -integral for steady-state propagation of a planar crack 
in the E, -direction can be expressed as

7 P = l j - n - b r f f - I ,  = j f - I , ,  (u .60 )
В

where J ̂  is the generalized J K -integral vector.
It is noted that the generalized J -integral for magnetosensitive 

materials with memory or dissipative reconfigurations has the same 
form, implying that it is universally independent of the material’s 
constitutive nature.

11.7 Essential Work of Fracture versus Nonessential Work of 
Fracture

Integrating Eq. (11.49) or (11.50) over the time domain gives the 
following expression for the total work

AW =AH +AEk + ( , psTdVdt + £ ^pAdVdt + £ RAdt, (11.61) 

AW = AH+AEk +J^Jj, psfdVdt + }' Д  j - ' g {m)a im)dVdt+ /' RAdt.
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(11.62)
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From Eq. (11.61) or (11.62), the total work, from the start of 
loading until final fracture can be partitioned into the essential work of 
fracture, We , and the nonessential work of fracture, Wne, as

W f=W e +Wm, (11.63)

weAdt = J*' RAdt, (11.64)

=AH+AEk +\’’ fK pstdVdl + £ ' (, pAdVdt, (11.65)

Wne=AH+AEk + }'/ ^ pisidVdt+ ( S ^ f ' g ^ W ^ d V d l ,  (i 1.66)
m 1

where we is the specific essential work of fracture.
The essential work of fracture is a material property due to its 

equivalence to the crack resistance, and the nonessential work of fracture 
is geometry dependent due to its association with kinetic energy change, 
temperature change, and time or loading path/history-dependent bulk 
dissipation. Hence, this formulation provides a fundamental basis for 
extending the simple yet elegant EWF method, as described in Chapter 1, 
to fracture characterization of magnetosensitive materials involving 
dynamic, thermal, hysteresis, and other dissipative effects. The critical 
generalized energy release rate, Gc , the critical crack-front generalized 
J -integral, Jc , and the specific essential work of fracture, we , are 
equivalent as a measure of fracture toughness.



Chapter 12

Nonlinear Field Theory of Fracture 
Mechanics for Piezoelectric and 

Ferroelectric Materials

12.1 Introduction

The preceding chapter presents a general and straightforward formulation 
of a nonlinear field theory of fracture mechanics for paramagnetic and 
ferromagnetic materials based on the fundamental principles of 
thermodynamics. By analogy with magneto-thermo-mechanical coupling 
and dissipative effects, electro-thermo-mechanical coupling and 
dissipative effects also bring about new challenges in generalizing the 
Griffith global energy balance approach and the conventional /-integral 
method to fracture characterization of electrosensitive materials for a 
wide variety of applications. For example, it has been realized that 
domain switching plays an important role in the apparent fracture 
toughness variation for ferroelectrics, but existing work is predominantly 
limited to small-scale switching conditions, as reviewed in Chapter 4. It 
becomes necessary to calculate separately the energy release rate and the 
rate of bulk dissipation for the fracture of switchable ferroelectrics and 
electroactive polymers when the effects of bulk dissipation exhibit 
dependence on geometry and cannot be lumped into a material parameter 
like the plane-strain fracture toughness.

This chapter focuses on the parallel development of a nonlinear field 
theory of fracture mechanics for piezoelectric and ferroelectric materials,
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accounting for the total dissipation associated with heat conduction, 
electricity conduction, time or loading path/history-dependent bulk 
dissipation, and crack propagation. In Section 12.2, the nonlinear field 
equations for a cracked body in the presence of electro-thermo­
mechanical coupling and dissipative effects are summarized. In Section
12.3, a thermodynamically consistent time-dependent fracture criterion 
under combined electric, thermal, and mechanical loadings is obtained 
from the global energy balance equation and the non-negative global 
dissipation requirement. In Section 12.4, on the basis of the developed 
theory, the generalized energy release rate method, the generalized J - 
integral method, and the extended essential work of fracture method are 
proposed for fracture characterization of piezoelectric and ferroelectric 
materials, and the interrelation of these methods and their correlations 
with conventional methods are discussed.

12.2 Nonlinear Field Equations

Nonlinear field equations consist of the balance equations irrespective of 
material constitution and configuration as well as the constitutive laws 
characterizing the material nature and configuration change.

12.2.1 Balance equations

The Maxwell equations and mass, linear momentum, and angular 
momentum balance equations under the quasi-electrostatic 
approximation are summarized in Table 12.1, in comparison with those 
under the quasi-magnetostatic approximation. The global energy balance 
equation and the non-negative global dissipation requirement for a 
cracked body V, under combined electric, thermal, and mechanical 
loadings are given in Table 12.2, in comparison with their counterparts 
under combined magnetic, thermal, and mechanical loadings as 
described in Chapter 11.
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Table 12.1 Balance equations in quasi-electrostatic or quasi-magnetostatic approximation

Combined magnetic, thermal, 
and mechanical loadings

Combined electric, therm al, 
and mechanical loadings

V B  = 0 V D  = qf

Maxwell
equations

V xH  = 0 V x E = 0

Э/

Mass
balance

t Iv ^ V = 0  
dt '

dp  _—  = -pV  • v 
dt

± l :Pdv = o

^  = - p V ■V 
dt И

Linear
momentum
balance

J t \ v . P ' M ^ n o d S

+ JV,( p i + J ) d v

p ^ -  = V -(a + ma) + p f  
dt

+ \v (p i+ ,f)dV

d \  л P —  = V-CG+eO + pf 
at

Angular
momentum
balance

\Vi r  x pvdV  = J8V| [r x (n • 

+ lv ( r x f *  + T x J + mc)dV

ekij(.<rij+m<7ij) = 0

f y r x  pvdV  = J3l, [r x (n CT)JdS 

+ /,,_(rxpf + rx t f+,cW V

eu jte ij+ 'V ij)*  0
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Table 12.2 Global energy balance equation and non-negative global dissipation
requirement

Combined magnetic, thermal 
and mechanical loadings

Combined electric, thermal 
and mechanical loadings

Global energy
balance
equation

~  lK p(k + e)dV = - jK V j qdV  

+ Jy, (V • a + pt+m f) • vdV 

+ a : \V dV  -  M • BdV

j . \ v p(k + e)dV m- ^ . j  qdV

+ \Vt (V • a  + pi+eF) • vdV  

+ jv a: \V dV  + jV' pE  • %dV 

4 , E '(j, ~ 4 f y)dV

Non-negative
global
dissipation
requirement

^ di dv 
~ ~idv, n s

“ t f j , -VTdV + h p v \ d V  

+ ~ i v j - ' ,L : C d V

+\v r 4 k i i d v - j v pSidv
( f \  

- d L p k  + h+"'“ d V 2  0
d* { J

k P T ^ d V

= ~kv ,n ' - r3 ,)dS 
- J ^ j  ,-V T d V  + l p y y d V  

+ Jv,E ■ Q ,- q f y)dV

+ ± J„'j-’.z-.cdv

+ lv j - ,E - 6 d V - l V'p S fd V

(  f  \  
- — i p  k + h + -^— \dV>0

‘“ Л  J

12.2.2 Constitutive laws

In generalized functional thermodynamics, the augmented Helmholtz 
free energy for memory-dependent electrosensitive materials, 
h = h + eiif  I p ,  is assumed to be a functional of the histories of 
deformation, temperature, temperature gradient, and referential electric 
displacement, with the crack parameter, A, as a state variable:

h = h(C(t  -  t ) ,T (t  -  т)У RT(t -  r), D(r -  г); A, X ). (12.1)
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The corresponding Hamiltonian density is given by

5 Г(у ,С (г -т ) ,Г (г -т ) ,У яГ (/ -г )16 (г -т ) ;Л ,Х )*  2)
рк (у ‘,А Л )  + p H C ( t - r ) J ( t - T ) y  RT ( t - T ) M t - T ) \ A tX).

In generalized state-variable thermodynamics, the augmented 
Helmholtz free energy for electrosensitive materials with dissipative 
reconfigurations, h = h + euf  I p , is assumed to be a function of current 
deformation, temperature, temperature gradient, referential electric 
displacement, and a set of state variables (scalar, vectorial, or tensorial) 
at the micro/mesoscale, a {m) (m = l,2,---), and at the macroscale, 
A (n) (n =  l , 2 , - ) :

h = h ( C , T , Vftr,D ;a(ra), А(л),Х ) . (12.3)

The corresponding Hamiltonian density is given by

X ( v , C , T y RT,i>-,a<'m),A w ,X) = pk(v-,aM ,A <-n\ X )  

+/?/7(С,Г,Уд7 \6 ;а (т),А(п),Х).

The Hamiltonain density and the thermodynamically admissible 
conditions for electrosensitive materials with memory or dissipative 
reconfigurations are given in Table 12.3 for comparison.

12.3 Thermodynamically Consistent Time-Dependent Fracture 
Criterion

By analogy with Section 11.4, in terms of the generalized energy release 
rate, G , as the thermodynamic driving force conjugate to the crack 
variable, Л, crack propagation under combined electric, thermal, and 
mechanical loadings is determined by

where R is the crack resistance.

G = R , (12.5)
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Table 12.3 Hamiltonian density and thermodynamically admissible conditions for 
electrosensitive materials with memory or dissipative reconfigurations

Electrosensitive materials with 
memory

Electrosensitive materials with 
dissipative reconfigurations

Hamiltonian
density

X ( v ,C ( . i - T ) ,T ( i - r ) y Rn i - T ) ,  

D(/-r);AX) = /at(v;A,X) + 
pil(C(l -  T),T(t -  T),V„T(t - 1), 

D(t - t ) ; A ,X )

X (  V, С, T, V RT, D; a ' ” ’, A , X) 
= pk(y,a{"\  A(”),X) + 
/v7(C,7',V^7',D;a(" ,,A("),X)

у  ЭЛ r kl - Э Д :
vt'KL

г  ЭЛ

э/7
Э7'

. э/Т
5 dT

Constitutive
laws

ro
оII5<

ro
ro

оII

A— £ pm) _  dh
Э/ g Po Э «<” >

C - ± i v M V c<"> = ----- % -r i3 H V
За

Transport
laws

j , = L « v i + l L ’' E  

j f - 9/V  =  L ^ v l + l L " E

j , = L w V ± + ± L* E  

j , - 9 / v =  L'’ v i + i l / '  E

Bulk
dissipation
rate

A>  0 £ £ (,я)<*(т) >0
TT\

Crack
propagation GA> 0 Х С (Л)А(П) >0

It
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The time dependence of the thermodynamically consistent fracture 
criterion is reflected by the dependence of the explicitly defined free 
energy functional on the histories of its arguments for electrosensitive 
materials with memory, whereas the loading path/history dependence of 
the thermodynamically consistent fracture criterion is reflected by the 
dependence of the explicitly defined free energy function on the 
associated state variables for electrosensitive materials with dissipative 
reconfigurations.

For fatigue crack growth under cyclic loading, the crack growth rate 
may be governed by

-^7 = / (Л<5, r) , (12.6)
dN

where d a l  dN  is the crack growth per cycle, AG =  (G max -  G^ n) , and 
r  =  Gmin/G max.

12.4 C orrelation with Conventional F ractu re  M echanics 
A pproaches

Like magnetosensitive materials with time or loading path/history 
dependence as described in Section 11.5, the global energy balance 
equation for electrosensitive materials with time or loading path/hi story 
dependence may be rewritten as

W = — f p h dV + — f p k d V + \ p std V  
d t iv< d t iv- Jv-

+ 1 E • (j, -  q , y)dV + f pAdV + GA,JVt Yf

W = — f p h d v + —  f pkdV  + f p s t d v  
d t 3v■ d t Sv; Jv

+ £  E • (je - q,y)dV  + X J ,  r ' t " t i m'dV + GA.

(12.7)

(12.8)

For stable crack growth, substituting Eq. (12.5) into Eq. (12.7) or
(12.8) yields
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^ ~ ^ l P ^ d V  + \ ^ t- qfy)dV 
(12.9) 

+ \v pAdV + RA,

W = lh~ + ̂ r  + k  pSfdV  + Iv,E ' a  "  q'  y)dV

+ Z I „  r ' g <m)a 'm)dV + RA.
(12.10)

The generalized energy release rate serves as the thermodynamic 
driving force for quasi-static and dynamic1 crack propagation in 
homogeneous or nonhomogeneous, conservative or dissipative materials, 
which is analogous to the generalized energy density release rate for 
damage evolution. Hence, the thermodynamically consistent formulation 
based on the global energy balance equation and the non-negative global 
dissipation requirement unifies the way to handle crack propagation and 
damage evolution. Equation (12.5) is a generalization of the strain energy 
release rate criterion. Equation (12.6) is an extension of the fatigue crack 
growth criterion under cyclic mechanical loading. Equation (12.9) or
(12.10) is a generalization of the rate-dependent criterion for viscoelastic 
or viscoplastic crack growth.

Consider a three-dimensional cracked body bounded by a surface 
Г  in a reference frame (X  = X - V cr) traveling with the crack front at 
speed Vc . The global energy balance equation (12.7) or (12.8) for crack 
propagation in electrosensitive materials with memory or dissipative 
reconfigurations can be rewritten as

^ (P )  = Jf [n*, O • v -  n  • 5  + (ph + pfc) n • Vc ]dT 

= (ph + pk)dV vdV + Jp, psfdV  (12.11) 

+ J ^ - E - ( J . - « / V  W  + ̂ p A d V + G A ,
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F ( f ) s Jf  [n-, a • v - n • S + (ph + pk)n  • Vc ]<r

= к 4- №  + PWV - \ f ~ p t - y d V  + L p s fd V  (12.12) 
r dt r f

+ Jvf - E  • (j, -  qf y)dV + j - ' g ^ a u">dV + ~GA.

The generalized J -integral is related to the energy flux in the same 
way as defined in Eq. (11.53), that is,

F(T) \ r ~J r = - U  = i ) f [ n - a v - n S  + ( ^ + ^ ) n - V c ] £  (12.13)

It is noted that the generalized У-integral for electro- or magneto­
sensitive materials with memory or dissipative reconfigurations has an 
identical form. This formulation further extends the generalized 
7 -integral concept developed in Sections 9.5 and 10.5 for nonlinear 
magneto- and electro-thermo-viscoelastic fracture.

As the surface Г  —»0 ,  the crack-front generalized J -integral is 
related to the generalized energy release rate G by

Л = Н т | Ф [  = <5. (12.14)
f-»o [ A J

The relationship between the global and local generalized J -integrals 
is obtained as

Л к \ р ш * + к - * Л ]Ea <12Л5)
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( ,2I6)

+ 4 I k  r ' g (m)a (m)dV,
A m g 'l

where V-. and V~ are the volumes bounded by the closed surfaces f s 
and Г), including the crack faces.

Thus, the difference between the global generalized J -integral and 
local generalized У -integral is caused by unsteady state, mechanical 
body force, temperature change, electricity conduction, and time or 
loading path/history-dependent bulk dissipation rate. As a generalization 
of the conventional У-integral method, the dynamic contour integral 
method, and Schapery’s crack-tip model for viscoelastic facture, as 
described in Chapter 1, the generalized У-integral method is applicable 
to arbitrary transient crack problems in the presence of electro-thermo- 
mechanical coupling and dissipative effects.

By introducing the generalized energy-momentum tensor

S ^ a u V - f D ® E - u V - ( D - E ) u V  + (y5/7+^)I,  (12.17)

the generalized У -integral for steady-state propagation of a planar crack 
in the E, -direction can be expressed as

7f  = - / f n b ^ 1-El = J r EI, (12.18)
в

where is the generalized J K -integral vector.
Hence, the special form of the generalized У-integral for steady-state 

crack propagation is related to the generalized energy-momentum tensor 
in the same way as the configuration force (material force) method.

With the addition of the domain integral terms to the generalized У - 
integral, an invariant integral representation of the generalized energy 
release rate serving as the crack driving force is obtained as
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- q f v ) d V - l \ i t pkdV (12.19)

( 12.20)

A

Hence, the invariant J-integral is an extension of the path-domain
independent integral method for nonhomogeneous or graded materials. 
Time or loading path/history-dependent bulk dissipation rate and 
electricity conduction bring about additional domain integral terms.

Integrating Eq. (12.9) or (12.10) over the time domain gives the 
following expression for the total work:

4 J v pAdVdt + \ ' jA d t ,

AW = AH + AEk +l'h JV( psfdVdt  + +[' jK E  • a ,  -  q ,  v )dVdt

+ j ;  n ,  r ? m)t i m)dvdt+ \'h RAdt. (1222)
nx

From Eq. (12.21) or (12.22), the total work, Wf , from the start of 
loading until final fracture can be partitioned into the essential work of 
fracture, We , and the nonessential work of fracture, Wne, as

AW =  AH + AEk + J' \Vi psfdV dt  + ^  E  • (j ,  -  qf  \)dV dt
( 12.21)

(12.23)

We = \ ‘/ w eA d t= r /R A d t ,c Jlo Iq (12.24)
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Wne = A H + A E k +  J '' \v psfdVdt

+ 1  Jv, E  ( j,  -  *,v)rftt£r + j ;  fVi pAdVdt,

w„c = д я + д £ ‘ + Г' f /йгаул

+ £  I ' E ' i b - q ^ d V d t  + Sl Z \ Vi j~lg (m)6 f m)dVdt,
( 12.26)

(12.25)

m

where we is the specific essential work of fracture.
The essential work of fracture is a material property due to its 

equivalence to the crack resistance, and the nonessential work of fracture 
is geometry dependent due to its association with kinetic energy change, 
temperature change, electricity conduction, and time or loading 
path/history-dependent bulk dissipation. The separation of the total work, 
W j , from the start of loading until final fracture into the essential work 
of fracture, We , and the nonessential work of fracture, Wne, allows for 
the extension of the simple yet elegant EWF method to quasi-static and 
impact fracture characterization of electroactive polymers, switchable 
ferroelectrics, and piezoelectric semiconductors. The critical generalized 
energy release rate, Gc , the critical crack-front generalized J  -integral, 
J c, and the specific essential work of fracture, we , are equivalent as a 
measure of fracture toughness.



Chapter 13

Applications to Fracture 
Characterization

13.1 Introduction

In previous chapters we have dealt with the current status of 
conventional fracture mechanics and the new formulation of a nonlinear 
field theory of fracture mechanics for electromagnetic materials. 
Although standardized procedures for fracture toughness measurements 
of metallic and plastic materials have been published by a variety of 
standards organizations, such as the American Society for Testing and 
Materials (ASTM), the British Standards Institution (BSI), and the 
European Structural Integrity Society (ESIS), recent advances in 
multifunctional smart materials have created new frontiers due to the 
occurrence of magneto-electro-thermo-mechanical coupling and 
dissipative effects accompanying crack propagation. In this chapter, the 
generalization of fracture characterization techniques to electromagnetic 
materials is examined, with explanations of concepts which are central to 
the development of these techniques and discussions of areas in which 
future work is needed.

13.2 Energy Release Rate Method and its Generalization

The Griffith-Irwin-Orowan theory, as reviewed in Sections 1.1 to 1.3, 
lays a fundamental basis for evaluating the amount of energy required to 
extend a crack per unit area, with the energy release rate given by

264
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(13.1)

where U is the strain energy stored in the system and A is the load-point 
displacement.

From Irwin’s crack closure analysis (Irwin, 1957), if a crack extends 
by a small amount Sa , the energy released in the process is equal to the 
work required to close the crack to its original length, that is,

The virtual crack closure or crack extension technique has been 
implemented in finite element analysis to calculate the energy release 
rate (e.g., Parks, 1974, 1977; Hellen, 1975; Rybicki and Kanninen, 1977; 
deLorenzi, 1982, 1985; Jih and Sun, 1990; Krueger, 2004).

In the regime of LEFM, the energy release rate is related to mode-I, П 
and HI stress intensity factors by

where E = E  for plane stress and E = £7(1 -  v 2) for plane strain, E is 
Young’s modulus, and v is Poisson’s ratio.

Equation (13.3) allows the evaluation of the energy release rate via 
the stress intensity factor method (ASTM Standard E399 and D5045, 
British Standard BS5447). The specimen size requirement to obtain a 
valid measurement of K IC as the critical plane-strain value at crack 
initiation is given by

G = lim —  ̂ Х - а д Д и Д д : , -Sa)dxv (13.2)
6a-*o 2 Sa

G = lim T3r_JifIcr2,(-*:i>0)A«,(*i - 8 a)dxl
Sa~*0 ISd

(13.3)
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where В is the specimen thickness, a is the crack length, W is the 
specimen width, and o y is the yield strength.

By contrast, Eq. (13.1) may result in a simple expression of Glc that 
can be related to the elastic strain energy U stored in the system for 
mode-I fracture (Williams, 1987):

(135)

where В is the specimen thickness, W is the specimen width, and ф is a 
correction factor which is determined by the specimen compliance C:

d(a lW)

Numerical values of ф can be obtained for different specimen 
geometries. Equation (13.5) enables the direct evaluation of GIC from 
the slope of the linear relationship between U and ВУ/ф for a series of 
specimens with different initial crack lengths. The reader may refer to the 
book by Williams (1987) and the book chapter by Mai et a l  (2000) for 
further information.

In Chapters 11 and 12, the generalized energy release rate method 
was proposed for quasi-static and dynamic fracture characterization of 
conservative and dissipative magneto- or electro-sensitive materials with 
the generalized energy release rate defined as

G = ~ \ v M V ,  (13.7)
dA '

Л ~ a

where 3C = pk + ph is the Hamiltonian density, pk  is the kinetic energy 
density, and ph is the augmented Helmholtz free energy density, 
including the contribution of the energy of the free electromagnetic 
fields.

In terms of the generalized energy release rate as the crack driving 
force, the thermodynamically consistent time-dependent fracture 
criterion is given by
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G = R , (13.8)

where R is the crack resistance.
As an extension of Irwin’s crack closure integral, the generalized 

energy release rate can be evaluated via the following crack closure 
integral:

G =  ,(J2 j ( X l ,0,t)AuJ(X l - & . 0 , (13.9)

where J <r2j ( X l ,0,r) is the total traction and Auj (X l 
= [wy(X, - Sci,0+, t ) - u j (X l - <fa,0",/)] is the crack opening 
displacement.

It can be seen that the key difference lies in the replacement of the 
Cauchy stress by the total stress in the required calculations. Thus, the 
existing finite element codes with implementation of the virtual crack 
closure or crack extension technique can be readily extended to 
numerical evaluation of the generalized energy release rate. For example, 
the work required for crack closure for finite element representation of a 
crack modeled with two-dimensional four-node elements (Fig. 13.1) is 
obtained as

G =  ̂ [ , F t d\ u \ c)- u \ b)) + , F ? \ u ? - u ™ ) } ,  (13.10) 
2 oci

where , F^d) and , F2d) are the total shear and normal force components 
at node d , u\b) and u\c) are the shear displacement components at nodes 
b and c, u2b) and u2c) are the normal displacement components at nodes 
b and c.

In linearized magneto-electro-elasticity, it was shown in Section 6.3 
that the dynamic energy release rate is related to the dynamic field 
intensity factors by

G = ^ { K in K , , k m ^ )  W  (K n ,K l ,K nnKD, k B)T, (13.11)

where H ' is the dynamic counterpart of the Irwin matrix.
Equation (13.11) allows the evaluation of the dynamic energy release 

rate for magneto- or electro-sensitive materials via the dynamic field
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intensity factor method. It appears that the dynamic energy release rate is 
an odd function of the electric displacement intensity factor and the 
magnetic induction intensity factor, which is consistent with 
experimental evidence (e.g., Pak and Tobin, 1993; Tobin and Pak, 1993; 
Cao and Evans, 1994; Lynch et a l 1995; Park and Sun, 1995a-b; Jiang 
and Sun, 1999, 2001; Zhang et al., 2002; Chen and Lu, 2003; Soh et al., 
2003; Zhang and Gao, 2004; Zhang et a l ,  2004; Chen and Hasebe, 2005; 
Schneider, 2007; Kuna, 2010) as reviewed in Chapter 4. In addition to 
small-scale yielding conditions, small-scale switching or small-scale 
saturation conditions should be satisfied in order to obtain a valid 
measurement of the critical values of the dynamic field intensity factors.

13.3 J-R Curve Method and its Generalization

Path-independent integrals have been widely used to study bodies with 
cracks and defects since the pioneering work of Eshelby (1951, 1956, 
1970, 1975), Cherepanov (1967, 1968, 1979) and Rice (1968), as 
reviewed in Section 1.4. In particular, Rice (1968) applied the 7-integral
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concept to nonlinear fracture mechanics problems. For a two- 
dimensional crack problem, the У-integral is given by

where w is the strain energy density, cr are the components of the 
Cauchy stress tensor, rij are the components of the unit outer normal 
vector, Uj are the components of the displacement vector, ds is the 
length increment along the path Г, and the „^-direction is perpendicular 
to the crack line.

The У-integral criterion for crack initiation gives

Stable crack growth may be maintained if the crack driving force and 
resistance curves satisfy the following conditions:

where Tapp = ( E / a 0 )dJ/cla and TR= (E /a ~ )d J R/da  are dimensionless 
tearing moduli (Paris et al., 1979; Atkins and Mai, 1985; Anderson, 
2005).

While the definition of the У-integral as a path-independent contour 
integral for linear or nonlinear elastic materials is very useful for fracture 
mechanics analysis, the energetic interpretation of the У-integral is most 
widely adopted for experimental characterization of fracture toughness 
for ductile materials. Since the У-integral is equivalent to the energy 
release rate for linear or nonlinear elastic materials, Begley and Landes 
(1972) developed the multi-specimen J-R curve method based on the 
interpretation of У as the energy release rate given by

J = lr (wdx2 -  crijnl -^ -d s ) , (13.12)

(13.13)

(13.14)

(13.15)

(13.16)
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Rice et al. (1973) proposed a method for estimating J from the load- 
displacement curve measured from a single specimen. ASTM Standard 
E813 describes the test procedure for determining J lc as the critical 
plane-strain value at crack initiation for a wide range of ductile materials.

For a deeply cracked specimen, J is determined from

7 = — , (13.17)
Bb

where U is computed from the total area under the load-deflection curve, 
b = ( W - a )  is the specimen ligament length, and В is the specimen 
thickness.

The specimen dimension requirement for obtaining a valid J /c value 
is given by

(13.18)
a >

ASTM Standard E l820 further covers the procedure for J-R curve 
testing. British Standard BS 7448: Part 1 is equivalent to ASTM 
Standard El 820, both of which combine К, У, and CTOD testing into a 
single standard.

In Chapters 5-12, the generalized J -integral method is proposed for 
quasi-static and dynamic fracture characterization of conservative and 
dissipative magneto- or electro-sensitive materials, with the generalized 
J -integral defined as

J  = Jp[n-, о  • v -  n • S + (ph + pk)n ■ Vc ]d f, (13.19) 
A

where , О is the total stress, S  is the Poynting vector in the co-moving 
frame, pk  is the kinetic energy density, and ph is the augmented 
Helmholtz free energy density, including the contribution of the energy 
of the free electromagnetic fields.

The physical interpretation of the crack-front generalized J  -integral 
is the generalized energy release rate G serving as the crack driving 
force, that is,
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70 =G.  (13.20)

Crack initiation occurs under combined magnetic, electric, thermal, 
and mechanical loadings when 7 0 reaches a critical value, Jc , i.e.,

(13.21)

Stable crack growth may be maintained if the following conditions 
are satisfied:

7  = 7* , (13.22) 

Tapp< T R, (13.23)

wh« e  f app = ( E / a ^ d j / d a  and Tr = ( E / a ^ d j J d a .
The invariant J -integral defined by Eqs. (6.27), (8.149), (9.42), 

(10.48), (11.57), (11.58), (12.19), or (12.20), with addition of the domain 
integral terms to the generalized 7-integral, is useful for numerical 
evaluation of the generalized energy release rate, since the generalized 
J - integral loses its path independence in the presence of unsteady state, 
mechanical body force, temperature change, electricity conduction, and 
time or loading path/history-dependent bulk dissipation rate.

13.4 Essential Work of Fracture Method and its Extension

The essential work of fracture (EWF) method is a simple yet elegant 
experimental technique developed by the Cotterell-Mai research group at 
the University of Sydney (Cotterell and Reddel, 1977; Mai and Cotterell, 
1980, 1986) from the unified theory of fracture (Broberg, 1971, 1975), as 
reviewed in Section 1.7. The total work of fracture for any increment of 
crack growth includes both the essential work in the inner fracture 
process zone and the nonessential work in the outer plastic zone. It has 
become a widely accepted technique for fracture characterization of 
many ductile materials, including metallic alloys, polymeric films, 
toughened polymers, and their blends (Mai et al., 2000; Clutton, 2001). 
Finite element simulation of the EWF method has also been attempted
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for the complete failure process of deep double-edge notched tension 
(DENT), deep center notched tension (DCNT), single-edge notched 
tension (SENT), and centre-lined ligament loading (CLLL) samples with 
different ligament lengths (Chen et al., 2000).

Based on the ESIS-TC4 testing protocol for measurement of the EWF 
established by the European Structural Integrity Society-Technical 
Committee 4 (1997), the total work of fracture Wf  can be separated into 
two components: the essential work We performed in the fracture 
process zone and the nonessential work Wp performed in the outer 
plastic zone, with the essential work of fracture Wc proportional to the 
ligament length / and the nonessential work of fracture W proportional 
to the square of the ligament length /2, that is,

Wf =We +Wp , (13.24)

We = wJB,  (13.25)

Wp =jBW/ B ,  (13.26)

where we is the specific essential work of fracture, wp is the specific 
nonessential work of fracture, and ft  is a geometry-dependent plastic- 
zone shape factor.

As a result, the specific total work of fracture wf = Wf  / Bl can be 
expressed as

wf  = we + pwpl . (13.27)

On the assumption that w e is a material property and wp and P  are 
independent of I in all testing specimens, there should exist a linear 
relation when w j  is plotted against I according to Eq. (13.27). By 
extrapolation of this straight line to zero ligament length, the intercept at 
the у axis and the slope of the line gives w e and pwp , respectively.

In Chapters 11 and 12, the extended EWF method was proposed for 
quasi-static and impact fracture characterization of magnetosensitive 
elastomers, electroactive polymers, piezoelectric semiconductors, and 
switchable ferroelectrics or ferromagnetics, with the partition of the total
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work of fracture Wj into the essential work of fracture We and the 
nonessential work of fracture Wne as

w , = ^ +  Wm, (13.28) 

Wc = f '  w Adt = Г' &4Л, (13.29)
0 0̂

= ДH +  AEk + fv psfdVdt  + 1< I  E ■ a  -  qf y)dVdt
,, t ' 0 ' (13.30)

+ \'<l,pAdVdt,

or

w„e = AH + AEk + fVi p s fd V d t+ J '' \K E • a  -  q ,  y)dVdt

+s::n  r'g(m)̂ dvdt. ( 1 3 -3 I )

m 1

The generalized energy release rate method, the generalized J - 
integral method, and the extended essential work of fracture method 
should give consistent results, independent of material systems, loading 
combinations, and environmental conditions.

13.5 Closure

The development of a nonlinear field theory of fracture mechanics for 
evaluating the crack driving force in the presence of magneto-electro- 
thermo-mechanical coupling and dissipative effects overcomes the 
limitations of classical fracture mechanics theories and sets up a bridge 
between damage mechanics and fracture mechanics. On the basis of the 
developed theory, the generalized energy release rate method, the 
generalized 7 -integral method, and the extended essential work of 
fracture method are proposed, which are generally applicable to quasi­
static and dynamic fracture characterization of conservative and 
dissipative multifunctional smart material systems. In comparison with



274 Fracture Mechanics o f Electromagnetic Materials

conventional fracture mechanics methodologies, the main advantages of 
this formulation are:

(i) It does not only afford a uniform treatment of complex 
nonlinear material and fracture behaviors involving multifield 
coupling and dissipated effects, but also enables damage and 
fracture processes at the micro-, meso- and macroscale levels 
to be managed in a unified way.

(ii) It provides a physically sound criterion for quasi-static and 
dynamic crack propagation in conservative or dissipative, 
homogeneous or nonhomogeneous media, including FGMs, 
subjected to combined magnetic, electric, thermal, and 
mechanical loadings.

(iii) It includes the strain energy release rate criterion, dynamic 
energy release rate criterion, conventional 7-integral method, 
configuration force (material force) method, dynamic contour 
integral method, path-domain independent integral method, 
rate-dependent criterion for viscoelastic/viscoplastic crack 
growth, and Schapery’s crack-tip model for viscoelastic 
facture as special cases.

(iv) It lays the theoretical foundation for the application of the 
generalized energy release rate method, the generalized J - 
integral method, and the extended essential work of fracture 
method to quasi-static and impact fracture characterization of 
electro- and magneto-sensitive materials. The equivalence of 
the critical generalized energy release rate, Gc , the critical 
crack-front generalized 7-integral, J c , and the specific 
essential work of fracture, we , as a measure of crack 
resistance warrants consistent results from application of the 
generalized energy release rate and J -integral methods as 
well as the extended essential work of fracture method for 
fracture toughness measurement.

(v) A key feature lies in the incorporation of the time or loading 
path/history-dependent bulk dissipation in the general 
formulation of the nonlinear field theory of fracture 
mechanics. This large difference is akin to the difference
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between elastic fracture mechanics and inelastic fracture 
mechanics.

(vi) This formulation can be readily extended to include gradient 
effects in thin films and microelectromechanical systems 
(MEMS).

Since the development of the nonlinear field theory of fracture 
mechanics for electromagnetic materials is still in its infancy, much 
remains to be done, especially on multiscale modeling of damage and 
fracture involving various failure mechanisms.
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178, 194

magneto-electro-thermo-elasticity, 48 
magneto-electro-thermo-mechanical 

coupling and dissipative effects,
102, 205, 264
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magnetosensitive materials, 207, 210, 
220, 232, 234, 236, 241, 243, 246,
247, 248, 250, 251, 258, 274 

magnetostriction, 95, 220 
magneto-thermo-viscoelastic

deformation and fracture, 206, 207 
Maxwell equations, 26, 31, 37, 39, 48, 

104
Maxwell model, 57, 58 
mechanical strain energy release rate 

(MSEER), 78, 83, 84, 90, 92, 93,
103, 118 

Mellin transform, 150 
memory, 62, 63, 64, 66, 207, 209, 210,

212, 213, 222, 224, 225, 227, 229,
241, 246, 248, 250 

meshless local Petrov-Galerkin method 
(MLPG), 183 

microelectromechanical systems 
(MEMS), 275 

multifield analysis, 51, 54,138, 229 
multiscale modeling, 205,275 
nabla notation, 29 
nanoscale materials, 23 
nonlinear effects, 95, 101 
nonlinear field theory, 102, 237, 264, 

273, 274, 275 
nonlinear fracture mechanics (NLFM),

3, 9, 269
numerical evaluation, 216, 232, 267,

271
numerical simulation, 205 
odd function, 84, 103, 116, 118, 135,

137, 204, 220, 268 
Onsager reciprocity relations, 44, 226 
path-domain independent integral, 127,

179, 203,217, 233, 274 
path-independent integral, 7, 78, 80, 83, 

95, 103, 121, 134, 136, 138, 195,
268, 269 

Peltier-Seebeck effect, 44

permeable crack-face condition, 135, 
145, 154, 156, 165, 173, 175, 176, 
194

permutation symbol, 29 
phase field simulation (model), 100 
phase-transformation toughening 

mechanism, 99 
piezoelectric fracture, 83, 85, 89, 103 
piezoelectric materials, 53, 70, 71, 73,

76, 77, 82, 83, 87, 90, 91, 97, 99, 
103, 110, 139, 146, 164, 183 

piezoelectric semiconductors, 272 
piezoelectrically stiffened bulk shear 

wave speed, 118 
piezoelectricity, 47, 53,76, 95 
piezoelectromagnetically stiffened bulk 

shear wave speed, 143, 145, 187 
piezomagnetism, 47, 95 
plastic work, 3
plastic zone, 17, 22, 206, 271,272 
plasticity, 9, 16, 237, 245 
polarization, 31, 34, 35, 43, 44, 47, 87, 

95, 96, 97, 98, 99, 100 
power-Iaw hardening, 7 
Poynting theorem, 36 
Poynting vector, 36, 106, 125, 138, 

208, 223, 239,270 
pyroelectricity, 47, 53 
pyromagnetism, 47
quasi-electrostatic approximation, 54,

104, 111, 120, 125, 130, 222, 234 
quasi-magnetostatic approximation, 54, 

130, 207, 208, 234, 238 
rate-dependent criterion, 247, 274 
Rayleigh wave, 10, 140 
reduced time see intrinsic time, 214 
relaxation function, 58 
relaxation time spectrum, 58 
remanent magnetization, 247 
resistance curve (R-curve), 7, 269 
retardation time spectrum, 59 
Schmidt method, 184
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Schoenflies notation, 53 
semi-permeable crack-face condition, 

76,78, 140. 146, 154, 194 
shear horizontal (SH) surface wave,

139, 140, 141, 144, 145, 156, 162, 
178, 194

single-edge notched tension (SENT),
272

size requirement, 5, 265 
slit crack, 76, 78, 110,129 
small-scale saturation, 86.95, 101, 268 
small-scale switching, 80, 99, 101, 268 
small-scale yielding, 3, 23, 80, 86, 99, 

268
smart materials (structures), 70, 137,

221.264 
speed barrier, 178 
spontaneous polarization, 97
stable crack growth, 6, 9, 23, 89, 247,

269, 271 
steady-state condition, 129 
steady-state crack propagation, 11 , 13,

19, 108, 118, 127, 129, 134, 137,
138, 139,218, 233 

steady-state solution, 129 
stress intensity factor (S1F), 3, 4, 5, 6, 

10, 12, 22, 79, 80, 90, 95, 96, 99, 
115, 118, 133, 162, 173, 176, 200,
201.265 

stress tensor
Cauchy, 8, 40, 61, 104, 118, 208,

223, 269 
electric, 104, 223 
electromagnetic, 34,35,40 
magnetic, 208 
Maxwell, 34, 35
Piola-Kirchhoff, 24,40,43, 61, 104 

strip dielectric breakdown model, 97 
strip saturation model, 85,96,97 
Stroh-type formalism, 54, 73, 74, 113, 

121, 129,131 
superposition, 146, 147, 148, 169

surface charge, 38, 72, 77, 129, 173, 
224

surface energy, 1, 2, 3, 237 
switchable ferroelectrics, 272 
switching zone, 99 
tearing modulus, 9, 23, 269 
temperature change, 45, 46, 47, 55, 71, 

108, 118, 127, 134, 136, 137, 138,
203, 216, 217, 232, 234, 238, 249, 
251,271 

thermodynamics 
functional, 60, 206, 238, 241 
state-variable, 60, 206, 238, 243 

thermoelasticity, 55, 237 
thermomechanics, 237 
thermoviscoelasticity, 55, 60, 67 
thin films, 16, 275 
three-point bending, 89, 93, 94, 103 
time derivative 

convective, 31, 38 
material, 30, 31 

time-dependent dissipation, 64, 66, 67,
242, 243

time-dependent fracture, 13, 238, 266 
total traction, 41, 42, 108, 111, 125,

129, 136, 165, 267 
transformation criterion, 100 
transient response, 139 
transport laws, 26, 44, 121, 123 
universal function, 12, 162, 163, 170, 

177, 178, 197 
unsteady state, 216, 217, 232,249, 271 
Vickers indentation, 87, 88 
virtual crack closure or extension 

technique, 267 
virtual internal bond (VIB), 23, 24 
viscoelastic fracture, 13, 14, 15, 206, 

207, 222, 234 
viscoelasticity, 55, 57, 211, 215, 228, 

231,236,237 
viscous dissipation rate, 211, 214, 216,

217, 226, 229
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vorticity vector, 31 
wedge model, 90
Wiener-Hopf technique (equation), 73,

140, 150, 152, 155, 157, 158, 165 
yield strength, 5, 21, 266

yielded strip model see cohesive zone 
model, 21

Yoffe-type moving crack problem, 10,
183, 184, 187, 200
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